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Preface

The special subject “dynamics” calls forth mostly mixed feelings to students
and graduates of technical fields. The first foresee and the second know the
problems to reach a good or very good mark before or after an appropriate
leaving examination.
The reasons for this are well known and even partly understandable. Dynam-
ics – the science of changes or motions which are caused by means of energetic
impulses or forces – requires namely a certain amount of applicable knowl-
edge of mathematics as well as logical abstraction and intellectual power to
its understanding. These are not within reach by means of schematic memo-
rising.

But basic knowledge and field specific applications of special branches
of knowledge are absolutely necessary for engineers, physicists, chemists or
mathematicians, if they in practice and research intend to treat determined
tasks and operation fields successfully. Such knowledges and considerations
are unconditional prerequisites specifically to the analysis of technological
processes, to the suppression of disturbances and to the process stabilisation
by means of qualitative high-class automatic control systems.

This is especially valid for many textile-technological processes. The mas-
tery of their dynamics decisively influences the process economy as well as
the product quality because these processes are often connected with a high
manufacturing velocity and/or with a special disturbance sensitivity.

The manufacture of textile products is one of the oldest machine technolo-
gies of mankind because it satisfies one of the elementary basic necessities,
namely clothing. Many additional technical applications of textile products
came along in the nearest past. The processes of manufacturing, the treat-
ment and the processing of fibre threads have a special importance in this
context because the fibres (in their multiform kind) were and are the most
important basic elements for textile fabrics.

Several ten-thousands of parallel single fibre formations and processing
stages are realised simultaneously in a textile or man-made fibre plant. These
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processes are to be organised with the lowest possible disturbance (e. g. fibre
break) levels. Additionally, a strongly increased production velocity has been
realised in the last decades for the natural as well as for the man made fibre
manufacturing. Both – the multitude of single work positions and the high
production and processing velocities – require an increasing knowledge and
reliable mastery of the process dynamics from engineers.

This presented book collects the results of industry orientated research
which the authors have been carrying out during their work at the Leibniz-
Institute of Polymer Research Dresden, Germany (former Institute of Tech-
nology of Fibres, until 1990). It deals with dynamic-analytical investigations
of different basic processes of the yarn formation and processing for natural
as well as chemical (man made) and also glass fibres. The carding processes
(roller top card and stationary flat card) and also the false twist textur-
ing process are included (Chaps. 4 and 5, Beyreuther). The main point of
these investigations is the dynamic transfer and step response functions and
their methodical fundamentals will be fully explained before hand in the in-
troductory Chaps. 1 and 2 (Beyreuther). Therefore the explanations should
be understandable for experts who are not skilled in the process-dynamical
thinking, too.

A large scale occupies the engineering modelling of the steady state man
made fibre process (Chap. 3, Brünig). The presented results are based on the
current knowledge of the theory of fibre formation but also on own developed
description statements. They include the single filament and multifilament
melt spinning processes as well as the fibre formation of the spunbonded
nonwoven process.

Some representations about the importance of the tensile force time func-
tion for the process stability, its measurement and evaluation conclude the
book (Chap. 6, Beyreuther).

All theoretical investigations and results are discussed and verified by
means of numerous examples within the industrial practice. With the repre-
sentation of these complex subjects the book should be qualified for natural
and engineer scientists of research and education as well as of textile and
man made fibre industry to extend their know-how and know-why knowl-
edge about the processes of fibre formation and processing. The book is also
recommendable for lecturers and students of appropriate technical and chem-
ical special branches at technical universities and colleges. The authors also
considered didactic experiences in the present subject representation which
they have obtained during the last three decades at lectures and seminars at
the Technische Universität Dresden/Germany to graduate students of textile
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1. Introduction

Technologies for the production of textiles are amongst the oldest technolo-
gies developed and used by mankind. Firstly, there are clothing textiles which
protect against cold and heat, and have the largest share of the manufactured
textile industry; then there is the increasing contribution of fabrics for home
and technical use. But of course, the classical textiles represent just one part
of a wide range of products and there has been an increasing growth in
textile intermediary substances which include fibres, yarns and nonwovens,
substances that are employed as reinforcing and/or filling elements in thermo-
plastic or duromeric composites, yarns. The textile yarn or fibre is the most
important basic component of most textile final products; and in the past
several years yarnless and more efficient alternative technologies, for instance
those based on porous sheets, have been developed. But despite the fact that
in certain fields they meet the requirements, there is no doubt among the ex-
perts that in the near future, no new technology can really substitute textile
yarns as the basic component for the production of textile goods. Therefore,
all efforts aimed at increasing efficiency and process rationalisation will be
focused on the processes of fibre formation and processing; improvements
which normally only result from a substantial scientific-analytic description
of the essential cause-effect relations of the processes involved.

The fundamental goals and motives for such a process analysis, which
within the scope of this book are limited to the dynamic aspects, can be
summarised as follows:

1. A generally accepted rule says that a process can only be considered con-
trollable if there exists a sophisticated model by which it can be described
mathematically [1]. Only when the analytical work coupled with the de-
velopment of a satisfactory mathematical model has reached this level,
is the know-how finally complemented by the control of the know-why.
The latter, which can never be obtained from any equipment supplier,
leads to the path of stable and optimised process control. Furthermore it
is then possible to estimate the limits of the process (that is the maximal
speed or throughput) realistically.

2. Already on the level of planning and execution of the theoretical and ex-
perimental investigations on a process, the dynamic process analysis itself
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can lead to a decisive gain of knowledge. The process analysis always ac-
companies an analytical way of thinking. Such theoretical considerations
supply useful know-how for the future work with the technical equipment.

3. The development of different types of technological processes, especially
those for fibre formation and processing, can be characterised by the in-
tegration of single process stages at simultaneously higher process speeds.
Some typical examples are the several processes of melt spinning and tex-
turing of endless yarns. Here, the drawing process, which had been a sep-
arate process in the past, was technologically and technically integrated
into the spinning or texturing process. One of the consequences was the
increasing need for automation, for instance by means of microprocessor
control. It is well known that the efficiencies of all process stages have to
be multiplied to get the total efficiency of the integrated process. There-
fore, even a small disturbance can result in a high loss of production;
and hence, planning of a process automation and rationalisation needs a
thorough knowledge of the dynamic and steady behaviour of the process
under consideration. Then, all the questions about the number, type and
quantitative and qualitative effects of the appearing disturbances, as well
as their influence on fundamental process and product qualities, can be
answered. Furthermore, the meaningful choice of the measurement and
control parameters, as well as stable and high quality production, can
be guaranteed. Fig. 1.1 (after [2]) shows the various functional levels in
automation. The analytic model of the technological process, at the zero
level (that means the process level itself), must be seen as the base for
all other levels.

4. To sum up, it can be said that the quality of the analytical model is
directly related to the efficiency of the process and the quality of its final
products.

According to the aims and motives discussed above, process analysis in
general is a continuous task within the process maintenance.

This present monograph aims at a description of the dynamic cause-effect
relations between a technological machine and its product, the fibre, at sev-
eral fibre formation and fibre processing stages. Following the long-standing
experiences of the authors, the main, but not exclusive focus of this book,
is laid on the fibre formation and fibre processing stages of melt spun fibres.
Firstly, the content is based on strongly revised parts of a former monograph
in the German language [3] as well as on extensive and exhaustive investi-
gations of the modelling of the fibre formation in melt spinning processes.
These investigations, which are still in progress, have been carried out at
the Leibniz-Institute of Polymer Research Dresden, Germany, over the last
twenty five years.
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Fig. 1.1. Functional levels of a complex process automatic control system by use
of a process computer according to [2]:
M measuring device, A actuator device, MVC measuring value computer, MC micro
computer, MP micro processor, MPC micro processor controller, MVCO measur-
ing value concentrator, DMCC digital multi channel controller, PCD programmable
controller device, CPCD connection programmed controller device, CAC coordina-
tion automatic controller, CC coordination controller, DPP data processing periph-
erals, EDPS electronic data processing system

The Chap. “Steady State and Non-Steady State Technological Processes”,
deals with the fundamentals of modelling steady state technological processes
on the one hand and non-steady state (dynamic) processes, on the other. The
ideas are expounded for both the fibre formation and fibre processing process.

In the Chap. “Modelling of Steady State Fibre Formation Process in
Melt Spinning” a model is developed which describes the fibre formation of
thermoplastic polymers for different melt spinning processes, which include
the monofilament, multifilament, staple fibre and spunbonded nonwoven pro-
cesses.

The Chap. “Dynamics of Fibre Formation Processes”, focuses on the ef-
fect of process disturbances on the essential fibre properties during the melt
spinning process of polymers and glass, as well as during carding and drafting
processes.

The Chap. “Dynamics of Fibre Processing Processes”, presents dynamic
models for the description of different fundamental fibre processing processes
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and demonstrates their potential for some exemplary processes.

In the Chap. “Dynamics of the Tensile Force and its Importance for the
Process Stability”, the measurement, signal evaluation and interpretation of
the tensile force (which is an important dynamic product property in all fibre
formation and processing processes) are considered.

The book is aimed at experts and students of technical subjects and
should be useful for:

• understanding of process parameters,
• recognising the importance of occurrences in dynamic processes as the

cause and effect of technological disturbances, and
• gaining strategies and knowledge of disturbance analysis in order to organ-

ise undisturbed production.

As is the case with most technological research, the current subject is
highly specific and requires a union of various classical fields. As such, funda-
mentals from mathematics, physics, technical mechanics, automated control
engineering, textile technology and textile testing were employed to develop
the physical-analytic connections.



2. Steady State and Non-Steady State

Technological Processes

2.1 Definitions

In this section the meaning of some technical terms, which are necessary for
the understanding of the following parts, will be explained. Besides the terms
“fibre formation” and “fibre processing” characterising the textile technologi-
cal process the title of the book contains the terms of dynamics and modelling.
The latter are to be defined first.

2.1.1 The Technological Process

Before the consideration of some specific points, the technological process
itself is defined:

The technological process is an organised series of scientifically determined
changes of the treated product in order to fulfill a certain manufacturing task.
Those changes are initiated by the employment of production instruments and
machines.

The succession of each technological process is coupled with the appear-
ance of certain energetic processes:

Each technological process is a meaningful coupling of different energetic
processes, which are applied to the treated product. Their combination serves
the realisation of a goal-directed procedure.

The example of the drawing process, a basic process in the production of
chemical fibres, shall clarify the given definitions.

Figure 2.1 shows a series of important parameters of the manufacturing
task of drawing. During the process they are connected by varied cause-effect
relations. The drawing process is put into reality by input and output godet
pairs driven with different velocities. The parameters can be divided into two
groups:
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ni no

Di Do

Thg (Uh, Ih, Rh, Nh)

F , Ty

l

Tti, Eyi, Δi, Xci Tto, Eyo, Δo, Xci, εb, Fb

vi vo

Fig. 2.1. Technological scheme of the drawing process, essential process control
and product variables

1. the process characteristics, which define the mechanical, geometric and
energetic, in other words, the technical-physical set point values charac-
terising a certain technological operating point;

2. the product characteristics, which define the quality or state of the input,
the processed and the output materials of the process. Thereby the input
materials can either be raw materials or semifinished products, whereas
the processed materials are semifinished or finished products.

According to Fig. 2.1 the group of the process characteristics contains the
input velocity vi and the output velocity vo of the drawing godets, which are
characterised by the diameters Di and Do and the motive revolutions per
minute ni and no. Furthermore, the length of the drawing zone l, as well as
the godet temperature Thg (only if a hot drawing process, for instance for
the polyester production, is considered), which is given by the heating voltage
Uh, the heating current Ih, the heating resistance Rh and the heating power
Nh, belong to this group.

The product characteristics group comprises for instance the finesses T ti
and T to, the elastic moduli Eyi and Eyo, the birefringences Δi and Δo and
the crystallinities Xci and Xco of the incoming undrawn and the outcoming
drawn yarns, the breaking elongation εb of the drawn yarn, the breaking force
Fb of the drawn yarn, the tensile force F of the yarn in the drawing zone and
the temperature Ty of the yarn at a certain point of the drawing zone.

As the above definitions show, the modification of the properties of the
involved materials is characteristic for each technological process. Those mod-
ifications can either be intentional or disturbing. The materials’ properties,
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which partly serve as a measure of the quality of the raw materials and the
semifinished or finished products, are the product characteristics.

Just as well, the process characteristics are not constant during a certain
period of the process. Compared with those of the product characteristics
the modifications of the process characteristics are quite small but in gen-
eral undesirable. In order to emphasise the dynamic character it seems to be
meaningful to employ the terms product variable and process variable instead.
As already mentioned, the product and process variables are only constant
in some very special cases. In the quality characterisation and classification
it is therefore usual to permit tolerances around a desired mean value of a
product property.

This fact allows a further conclusion. As the process variables vary around
their operating point, the product variables of interest are oscillating around
the defined set point value, as well. In other words, the quantities fluctuate
with the dynamics caused by the cause-effect relations of the single process
lines. Thus, the process dynamics are an inherent component of the process
itself.

2.1.2 Dynamics, Process Dynamics

In technical mechanics, dynamics mean the theory of motions caused by
forces. In connection with the technological process the term dynamics has
to be modified and adjusted. It must be restricted to:

Dynamics relating to the technological process, which will be called pro-
cess dynamics in the following sections, mean the behaviour of a process run
during a transition (transition behaviour) from one technologically adjusted
operating point to another one. This transition is initiated by a determined
or a stochastic disturbance and can be described in its quantitative and tem-
porary progress.

The above definition can be easily explained for the drawing process. Let
us take a yarn, which is, according to its macromolecular structure, relatively
unoriented.

As shown in Fig. 2.2 the yarn is classically spun between the drawing
godets and consequently continuously formed by the elongation ε(t). The
elongation results in a higher oriented form of the yarn which is connected
with some desired physical properties. The realised elongation ε(t) depends
on the input and output velocities of the drawing godets vi(t) and vo(t) in
the following way:

ε(t) =
vo(t) − vi(t)

vi(t)
(2.1)
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drawing
tensile force F(t)

vo(t)

vo1(t)
vi , vo

vi1(t) = vi2(t)

vo2(t) = vo1(t) + Δvo

+Δvo

vi(t)

time t
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F1(t)

t0

t0

cause

effect

time t

step response function:
F2(t) = F1(t) + ΔF Δvo

(t)

Fig. 2.2. Technological scheme of the drawing process, step-like disturbance of the
output velocity Δvo (symbol , see Sect. 2.4.2 too), effect ΔF (t)

The raised elongation causes a reaction force in the drawn yarn, the draw-
ing yarn tensile force F (t). Let the process run at the technological operating
point 1 characterised by the input velocity vi1(t) = const. and the drawing
yarn tensile force F1(t) = const. At the moment t = 0 the output velocity
vo(t) of the drawing godets is step-like increased by Δvo and consequently
reaches the new level vo2(t) = vo1(t) + Δvo, which shall characterise the op-
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erating point 2.1 Let level 2 be constant for t > t0. The input velocity shall
remain constant. Caused by the step-like disturbance +Δv, which can be
classified as determined aperiodic disturbance (Fig. 2.2), the drawing tensile
force (as effect quantity) will leave the level F1(t) for t > t0. This transition is
continuous and not step-like! Thus, the tensile drawing force reaches a level
F2(t) after a transition period. Then, F2(t) remains constant if there is no
further change of the new godet velocities vi2(t) and vo2(t).

The quantitative chronological description of the transition behaviour of
the effect quantity drawing yarn tensile force from F1(t) to F2(t) caused by a
step-like disturbance of a cause quantity (here: step-like increase of vo1(t) to
vo2(t)) is called step response function or simply step response. The response
function describes the transitory behaviour of an effect caused by a step-like
disturbance and is thus an expression for the dynamics of the process un-
der consideration. Already the evaluation of such a simple dynamic standard
function allows some fundamental statements regarding the characterisation
and the assessment of the dynamic properties of technological processes or
specific parts of them. This will be explained in detail in further sections,
general facts are given in Sect. 2.4.2.

Let us assume we have a stable technological operating point. Now let
the output velocity vo(t) periodically (for instance sinusoidal) oscillate with
the amplitude Δvo1 and the circular frequency ω1 around its mean value vom

(see Fig. 2.3).

This periodic disturbance makes the drawing tensile force F (t) oscillate
with the amplitude ΔF1 and the same circular frequency ω1 around its mean
value Fm. The initial oscillation (vo-disturbance) and the response oscillation
(F -disturbance) are not synchronous for the effect runs behind the cause. This
behaviour is reflected in the phase shift angle ϕ1. A change of the circular
frequency of the periodic disturbance from ω1 to ω2 at a constant amplitude
Δvo1 results in a modification of the response oscillation. Then, F (t) oscillates
at ω2 with the modified amplitude ΔF2 and a changed phase shift angle ϕ2.
The magnitude of the ratio ΔF/Δvo and the change of the phase shift angle ϕ
dependent upon the disturbing frequency are, similarly to the step response,
an expression of the dynamic characteristics of the drawing process. They
lead to the terms transfer function, frequency response, amplitude frequency
response (simply amplitude response) and phase frequency response (simply
phase response). Explanations will follow later in Sect. 2.4.3.

1 A step-like change in mass effected technical systems is normally not possible to
realise. Nevertheless, this model image will be used here and in the following,
because this affords an insight in the dynamic process behaviour on the basis of
a well developed mathematical signal and system theory.
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time t

F(t) = Fm + ΔF1•sin(ω1t-ϕ1)F

Fm

ΔF1

ΔF1ϕ1
effect

cause

vi, vo

vi(t)

vo(t) = vom + Δvo1•sin(ω1t) Δvo1

Δvo1TP1=
2π
ω1

time t

Fig. 2.3. Drawing process, periodic disturbances of the output velocity Δvo1, effect
ΔF1, circular frequency of the disturbances ω1, phase shift angle ϕ1

2.2 Modelling of the Steady State Melt Spinning
Process

2.2.1 Goal of Modelling

The goal of each modelling procedure is to obtain a mathematical description
of the technological process for better understanding of the main relations
between process parameters, material behaviour and product properties. An
entire theory of melt spinning should also take into account the history of
the polymer, thermal and deformational (rheological) behaviour, and the
non-equilibrium conditions for the transfer processes. Such a theory would
be quite complicated and is only marginally realised with respect to rheology.
But, stationarity in melt spinning means that there are stable conditions in
time, that there are no dependences of the process variables, no changes, dis-
turbances or drifts in time. The values describing the fibre formation process
change only with respect to space and describe therefore a steady state pro-
cess, but it is noticeable that the process in reality is not one of equilibrium.
A reasonable model for this process involves the dynamics of melt spinning
and the resulting fibre properties. The best model then is one which is simple
enough for handling but good enough for answering the questions which the
fibre producers and developers are interested in. Early investigations to the
melt spinning process, and based on this knowledge the development of the
fundamentals of the model of fibre formation were done by Ziabicki [14–23],
Andrews [24], Kase and Matsuo [25–28], Hamana [29, 30], Han [31–37],
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George [38–40], Shimizu [41–53, 56–60], Yasuda [61–67], and many other
authors [78–99,176–183,256].

The research on this interesting topic is still actively persued, there are
many efforts made by scientists, engineers and producers to get a deeper
understanding of the process. Recently, a multitude of contributions to the
theory of fibre formation and melt spinning have been published. A major
review about the literature is given in two books by Ziabicki [184, 274].

The following two sections only give a short and very simplified introduc-
tion to the model of fibre formation, more details to the steady state model
will be discussed in Chap. 3 later. The goal of this section is only to give an
impression of what the model analysis is capable of doing, therefore, as an
example, a first and simple estimation to the fibre cooling process is made.

2.2.2 Balance Equations

To form filaments, the molten polymer is extruded through capillaries and is
drawn down by a take-up unit which applies the necessary force. The take-
up unit is often realised by godets but in principle it is also possible to wind
up the fibres directly onto bobbins. Another common procedure for taking
up the filaments is by using special air suction devices (for example in the
spunbonded nonwoven process). At their path from the spinneret to the take-
up unit, the filaments cool down, become accelerated to their final take-up
speed, solidify and at last they can be partly oriented and crystallised. The
engineering analysis of this process is made by the application of the physical
balance equations of mass, energy and momentum to the fibre forming process
in combination with material behaviour. In the following, the three basic
equations are briefly summarised.

The most important (and simplest) relation is the continuity equation, it
describes the mass balance in melt spinning:

Q = T t · v . (2.2)

The filament cooling, i. e. the heat loss by heat transfer from the fibre
surface to the surrounding air, is described by the energy balance. If we only
regard the convective heat transfer (see later, Eq. 3.10) it is given in the
following form:

dT

dx
= −(T − Tair) · 1

Lc
. (2.3)

Then, the momentum balance describes the forces acting at the fibres:

F = F0 + Fsurf + Finert + Fdrag − Fgrav . (2.4)

Using Eq. 2.2 above, the fineness (titre) T tL of the as-spun filament with
take-up velocity vL then is given by

T tL =
Q

vL
. (2.5)
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2.2.3 Example: Heat Transfer

The differential equation 2.3 can easily be integrated for constant parameter
Lc and constant temperature Tair of surrounding air. The solution is a simple
exponential function

T (x) = Tair + (T0 − Tair)e−x/Lc . (2.6)

with the cooling length Lc proportional to the primary variable mass through-
put: Lc ∝ Q (for more details see Sect. 3.1.2). The formula (2.6) can be
used as a rough estimation for how fast the filaments will cool down. For
poly(ethylene terephthalate) (PET) as typical melt spinning polymer the
cooling length Lc per mass throughput becomes Lc/Q ≈ 0.2 m/(g · min−1)
(see Sect. 3.1.2). If the exponential course of the filament temperature is
taken into consideration it means for PET, to cool down a filament with a
mass throughput of about 1 g/min from an initial melt temperature of 290
to a temperature of 50 where solidification is surely reached, one needs
about 0.5 m cooling length, for 2 g/min about 1.0 m, etc. (see Fig. 2.4).

Fig. 2.4. Estimated course of PET filament temperature vs. distance, 1 – mass
throughput Q = 1 g/min, 2 – Q = 2 g/min



2.3 Modelling of Non-Steady State Dynamic Process 13

2.3 Modelling of Non-Steady State Dynamic Process

2.3.1 System and Signal

In view of the closing remarks of Sect. 2.1.2 a second definition of the techno-
logical process is necessary. The definition can be derived from the following
way of thinking, which is the norm in the fields of automatic control engi-
neering, system engineering or information technology:
The realisation of each technological process requires an arrangement of cer-
tain mechanical, electrical, electronic, pneumatic or hydraulic devices and
instruments, which are assembled in a machine or a part of a machine. They
are the material basis for the fulfillment of the manufacturing task for the
materials passing the process.

The machine and the passing and processed materials together are called
the system.

As soon as the system, which is assumed to be at standstill and is not
performing any material or energy transfer at first, begins to run, one can
speak about a process. Only then the previously defined process and product
variables begin to interact according to their varied cause-effect relations.
Those interactions imply that all process and product variables are reflected
in their (desired) mean values and their (in most cases undesired) fluctuations
around the mean values. Those lapses of time are called time functions of the
process and product variables, for instance T to(t), F (t), εb(t), vi(t), Thg(t)
and so on. The information content of a time function, in other words the
mean value and the fluctuations, are called their signal. If those signals are
missing (for instance process interruption after a fibre break) the interaction
between the process and product variables will not exist any longer. The
process will fall back into its static (unproductive) state. Thus, the following
process definition, which is the most contensed one, seen under the system
technical viewpoint, is possible:

process = system + signal(s)

Consequently, the scientific analysis of a process with respect to its dy-
namics includes both, at least one signal analysis and one system analysis; in
other words:

process analysis = system analysis + signal analysis

This situation is once more illustrated in Fig. 2.5 (after [4]), some terms
appearing in this figure will be explained in the following section within the
presentation of specific examples.
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process analysis

signal analysissystem analysis

stationarity

information on the spectral
density distribution
depending on the frequency
in the form of the complex 
Fourier coefficients

power density spectrum

auto-correlation function

information on the deviation
from the univariate 
probability distribution of
the normal distribution 
(e.g. skewness and excess)

structure

parameter

Fig. 2.5. Elements of a process analysis under system-technical aspect according
to [4]

2.3.2 Model

The term model is another important expression being introduced now. Deal-
ing with a given process it always has a certain reason, for instance:

• The process runs too instable. The prescribed tolerances of the product
qualities cannot be maintained. The causes have to be investigated and
eliminated.

• There are too many disturbances leading to process interruptions (= in-
terruptions of the signal exchange). The causes must be determined and
removed, too.

• A better machine shall be designed (= construction and design task).

Each of those exemplary mentioned tasks means that, at first, an anal-
ysis of the given state has to be made. This fact leads to the theoretical
and/or experimental attempt to investigate the quantitative relations be-
tween the cause-effect relations of the process and product variables and
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their time-dependent behaviour. In most cases the results of this work have
the shape of an image of the real constellation. This can be a formula, a
graph, a regression equation, a DEq., a machine on a reduced scale, which
is more transparent in its working, or an electronically aided simulation of
the process or its parts. Those representations are designated as a more or
less complete and sufficient model. Thus, relating to the technological process,

the model is an image of a process in its most significant parts, which
describes the essential aspects of and the relations between the process and
product variables with reference to a certain question.

Within the scope of this book the following classification is chosen:
The term model is divided into the steady state model on the one hand and
the dynamic model on the other. The first describes the relations between the
constant mean values of the process and product variables whereas the latter
includes the relations between the changes and fluctuations of the process
and product variables. Thus, the dynamic model represents the time depen-
dence of the cause-effect relations.

As both models will be presented mathematically, it has to be mentioned
that in most cases the steady state model does not require DEqs. in time
whereas the dynamic model always leads to such DEqs.. This must be ex-
plained with the fact that the time-dependent behaviour can only be de-
scribed with differentials of time.

As in the former section, the above definitions shall be clarified by an easy
example. Again, the drawing process according to Fig. 2.1 is employed. With
some fundamental technological knowledge we can write for the fineness of
the drawn yarn T to:

T to = T ti · vi

vo
(2.7)

Here, T to, T ti, vo and vi are the mean values of the corresponding process
and product variables. In this case, Eq. 2.7 would be the quite simple steady
state mathematical model expressing the relations between the mean values
of the target quantity T to and its determining variables T ti, vo and vi.

The dynamic mathematical model describing the modification behaviour
of the same target quantity T to at the same process level is given by the
mass balance equation. In our case, the balance equation is realised by the
following DEq.:

vo · T to + l · dT to
dt

− vi · T ti = 0 (2.8)
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The meaning of the differential element l · dT to
dt

in Eq. 2.8 will be ex-
plained below the Eq. 2.23 in Sect. 2.5.2.

For a step-like disturbance of the input velocity vi of the magnitude Δvi

the solution of the DEq. 2.8 would be the following step response function:

ΔT to|Δvi = Δvi · T ti
vo

[
1 − exp

(
−vo

l
· t

)]
, (2.9)

which describes the lapse of time of the effect of this disturbance on the mod-
ification of the output fineness ΔT to.

The DEq. 2.8 and its solutions (for the case of an aperiodic step-like dis-
turbance such a solution is given by the Eq. 2.9) are a dynamic mathematical
model of the drawing process.

2.4 Characterisation of the Dynamic Process Behaviour

2.4.1 Differential Equation

Restricting the dynamic mathematical modelling of processes or process steps
on the clear representation in the time range and/or the frequency range,
further terms, which accompany the methodical approach, have to be intro-
duced.

For the determination of the dynamics of technological processes the
DEq., describing the time behaviour of the system, plays a fundamental role.
The DEq. is the mathematical reproduction of the cause-effect relations of
those processes and product variables which are taken into account within
the scope of the model. The DEqs. formation for specific technical systems
is based on the dynamic mass-, energy- and momentum balance relations.
Hereby, not only the steady state, but the dynamic (related to the general
case of a running process) balances (processing mode) must be employed. Dif-
ferent a-priori knowledge of the process of interest, mathematical-methodical
knowledge as well as some basic scientific laws are required for the DEqs.
development.

2.4.2 Description in the Time Range; Step Response

If the DEq. shall supply facts about the dynamic properties of the system
forming its basis, it must be solved first. According to the type of the time
function of the independent variables of the DEq., which correspond to the
causes for the system modifications, several solutions for the dependent vari-
able, corresponding to the effect, are possible.
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If the time function of the independent (cause-)variable, which disturbs
the system, initiates a single (aperiodic) change of the previous (steady state)
mean value or technological operating point, the arising new time function of
the dependent (effect-)variable will be called response function. For special
time functions of the independent (disturbance- or cause-) variables the re-
sponse time- (or simple only time-) function can be designated more exactly.
If the cause-time function is a single step (symbol , see also Fig. 2.2), the
response time function will be called step response. If the cause time function
is a single impulse (symbol ⊥), which means that the cause variable leaves
its steady state value only for an infinitely short time t = t0, say impulse-
like, and comes back to this value instantaneously, the response time function
will be called impulse response function. Additionally, it has to be mentioned
that, besides those two standard types of a cause time function, arbitrary
signal types can appear as disturbances. The mathematical algorithm for the
solution of the DEq. for step-like and impulse-like disturbances is well-known
and ready for application. But at technological process steps the impulse-like
disturbance has almost no practical significance, for in an experiment this
type cannot be realised with sufficient exactness. Therefore, all common de-
scriptions are based on the step response or simply response function. As the
response functions are solutions of the DEq. reflecting the time behaviour of
the dependent effect variables, we also speak about a representation in the
time range. The following equation shows the general form:

Δy|Δx = f(t) (2.10)

with Δx as cause, Δy as effect and t as running time.

2.4.3 Description in the Frequency Range

Dynamic Transfer Function; Complex Frequency Response

The cause variable can also be assumed to be a periodic function of time.
In other words, the variable is disturbed frequently and not only at one
time as considered in the above section. Now, in contrast to the case of a
single disturbance, the solution of the DEq. does not reveal the exact time
behaviour of the effect variable after a defined cause disturbance, but the
solution specifies:

a) how the ratio of the amplitudes of the dependent and the periodic inde-
pendent variable, and

b) how the phase shift angle ϕ between the cause-and the effect disturbance

will depend on the frequency ω of the periodic disturbance.

In principle, similar to the case of aperiodic disturbances, arbitrary types
of disturbance signals are possible. In most practical cases the sine function
is used because its mathematical treatment is quite easy.
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However, the amplitude- and phase shift angle dependence on the disturb-
ing frequency are the solution of the DEq., which models the dynamics of the
system under investigation, in the frequency range. This solution is called
dynamic transfer function or complex frequency response. In the common
literature of system control or automatic control engineering the dynamic
transfer function is given as the following complex function:

G(jω) =
Δ̃y(ω)

Δ̃x(ω)
· ejϕ(ω) (2.11)

with the following symbols2:
Δ̃x(ω) vector of the sinusoidal disturbance of the independent cause

variable Δx sin(ωt)
Δ̃y(ω) vector of the sinusoidal response of the dependent response

(effect) variable Δy sin(ωt + ϕ)
ejϕ(ω) factor, which gives the phase shift between cause- and effect

oscillation in the complex plane
j imaginary unit, j2 = −1

As detailed examples later in the text will show, the dynamic transfer
function or complex frequency response are directly obtained as the solution
of the DEq. for periodic sinusoidal disturbances of the independent variable.

The complex frequency response Eq. 2.11 can, as common with complex
quantities, be separated into its real and imaginary part:

G(jω) = Re(ω) + j · Im(ω) , (2.12)

whereas Re(ω) represents the real part and Im(ω) corresponds to the imag-
inary part of the complex frequency response.

The representation of the complex frequency response Eq. 2.11 or Eq.
2.12 in the complex plane (x axis = real axis; y axis = imaginary axis) marks
the end points of all those vectors, which can be drawn from the origin of the
coordinate system dependent upon the excitation frequency ω. This curve is
called transfer locus of the complex frequency response (Fig. 2.6).

Equivalent to the response function in the time range, the transfer locus
describes the dynamic behaviour of a system in the frequency range, because
the amplitude of the dependent effect variable is now plotted against the fre-
quency.

2 In mathematics the imaginary unit is usually designated with i. As in technical
context the symbol i is often used for electric currents, the symbol j is used for
the imaginary unit here.
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Fig. 2.6. Transfer locus of a complex frequency response; general example

It can be easily seen that for the excitation frequency ω = 0, the amplitude
vector of the independent cause variable (which always remains on the real
axis) and the amplitude vector of the dependent variable have the same
direction and melt together on the real axis. This represents the initial point
of the transfer locus defining a kind of steady state excitation for the very
special case of ω = 0. For this exemplary situation there is no phase shift
between cause and effect oscillation: ϕ = 0.

Amplitude Frequency Response

Proceeding from the complex frequency response Eq. 2.12 the ratio of the
amplitudes of the cause- and the effect oscillation, Δ̃y(ω)/Δ̃x(ω), can be plot-
ted against the excitation frequency ω. This amplitude ratio corresponds to
the absolute value of the single complex number of the frequency response
G(jω), that is |G(jω)|, or to the ratio of the mentioned vectors of the transfer
locus of the complex frequency response. Those absolute values are calculated
as follows:

|G(jω)| =
√

Re(ω)2 + Im(ω)2 (2.13)

Equation 2.13 gives the amplitude frequency response, which is one part
of the complex frequency response. Consequently it is just another form of
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Fig. 2.7. Amplitude frequency response of the transfer locus according to Fig. 2.6

representation in the frequency range, as the solution is plotted against the
frequency ω, again (Fig. 2.7).

Phase Frequency Response

The second part which can be extracted from the complex frequency response,
is the phase frequency response. This function describes how the phase shift
angle ϕ between cause- and effect oscillation depends on the excitation fre-
quency ω. In the transfer response representation it is exactly that angle
included by the real axis and each vector beginning at the origin of the co-
ordinate system and ending on the transfer locus curve. The tangent of the
phase shift angle ϕ is equal to the ratio of the imaginary and the real part of
the complex frequency response 2.12, namely:

tan[ϕ(ω)] =
Im(ω)
Re(ω)

(2.14)

According to Eq. 2.14, the phase shift angle ϕ can be calculated directly:

ϕ(ω) = arctan
[
Im(ω)
Re(ω)

]
(2.15)

For the general case the phase frequency response is depicted in Fig. 2.8.
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Fig. 2.8. Phase frequency response of the transfer locus according to Fig. 2.6

While the complex frequency response or its transfer locus, respectively,
contain the information from the DEqs. solution for a certain sinusoidal dis-
turbance of the independent cause variable, i.e. the dependence of the ampli-
tude ratio and the phase shift angle on ω, the amplitude frequency response
and the phase frequency response provide only the dependence of either the
amplitude ratio or the phase shift angle on ω.

For more detailed information, didactically reasoned descriptions and an-
alytical proofs see for instance [5], [6] or [7]. Within the scope of this book,
only the basic knowledge which seems to be inherently necessary for the
understanding of the following sections, has been sketched. A very detailed
example, which is thought to clarify the above mathematical terms and con-
nections, is presented in Sect. 2.5.2.

2.4.4 Correlation and Power Density Spectrum Functions

In the previous sections only such functions characterising the dynamic sys-
tem behaviour have been considered, which are based on the transfer descrip-
tion of determined disturbances or changes of the system. But in principle it
is also possible to develop a mathematical description for the transfer of non-
determined or stochastic disturbances of the cause variables. This becomes
necessary as soon as it is experimentally impossible to produce determined
disturbances or if the process of interest should not be faced with higher
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disturbance amplitudes, which are in most cases needed for determined dis-
turbances, for reasons of safety or any other reasons. In those cases the arbi-
trary (stochastic) fluctuations of the cause and effect variables around their
mean values, which are generally always present and which determine their
technological operating point, can be used for the dynamic system analysis.
Consequently, this method of analysis implies the possibility to gain informa-
tion during the normal process run. In doing so, some very strict conditions
and standards have to be fulfilled. Those conditions and standards specifi-
cally concern the parts of system engineering and system analysis of such an
investigation. This methodical procedure for the system analysis will not be
shown in this book, the approach to this specific theoretical and experimental
discipline can be studied for instance in [5–8]. Within the scope of stochastic
system investigations statistic characteristic functions of the time functions
of the process and product variables are used as they allow a so far hardly
practised approach to the system analysis with a higher gain of information
in the field of advanced, process related disturbance analysis of textile prod-
ucts. Therefore the fundamental equations with some short explications are
now given and will be applied in later sections. These equations are the cor-
relation function and the power density spectrum function.

The correlation function K(τ) of one time function x(t) is defined in the
following way.

Integral representation:

K(τ) = lim
t→∞

1
T

∫ t

0

[x(t) − x̄][x(t + τ) − x̄]dt (2.16)

Sum representation:

K(k · Δt) =
1

n − k

n−k∑
i=0

(xi − x̄)(xi+k − x̄) (2.17)

Boundary condition: kmax ≤ n

5
, with k = 0, 1, 2, 3, . . . kmax.

x(t) time function
x̄ mean value of the time function in the evaluation

range 0 ≤ t ≤ T or 0 ≤ k·Δt ≤ n−k, respectively
xi discrete value of time function x(t), taken in

steps of Δt
T time period of the integration range
τ, k · Δt time shift
k, n, m running (sequence) indices
K(τ), K(k · Δt) single values of the correlation function for τ or

k · Δt, respectively
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As can be seen from Eqs. 2.16 and 2.17 all values of the time function are
multiplied continuously or at certain points with the values of the same time
function after a time shift of τ or k · Δt, namely x(t + τ) or xi+k, and finally
added up to get K(τ) or K(k · Δt) (see Fig. 2.9 too).

t

x

i = 1, 2, 3,... ... n... 11,...

x1 x2 x3 x11 xn

x(t)

Δt

x

Fig. 2.9. Time function x(t), distributed into n single values for the design of the
auto-correlation function

The result of this summation divided by the length of the addition- or in-
terpretation interval T represents the single value of the correlation function
K(τ) or K(k · Δt). The repetition of this calculation for different τ or k · Δt
yields the complete correlation function.

As x(t) is correlated with itself according to Eqs. 2.16 and 2.17, the cor-
responding correlation function is called auto-correlation function.

Without an extended discussion of the efficiency and the interpretation
possibilities (more about this topic in Sect. 6.4.2), it should be mentioned that
the initial value of the auto-correlation function K(0) is equal to the square
spread of the time function in the interpretation- and integration range.

The algorithm for the calculation of the correlation function can also
be applied to two different time functions x(t) and y(t), which could be for
instance coupled by certain cause-effect relations. Analogous to Eqs. 2.16 and
2.17 the corresponding equations are:
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K(τ) = lim
t→∞

1
T

∫ t

0

[x(t) − x̄][y(t + τ) − ȳ]dt , (2.18)

K(k · Δt) =
1

n − k

n−k∑
i=1

(xi − x̄)(yi+k − ȳ) (2.19)

Boundary condition: kmax ≤ n

5
, with k = 0, 1, 2, 3, . . . kmax.

As the partial products of two cross-wisely analyzed time functions are
summed up, the resulting correlation function is called cross-correlation func-
tion. To support a better understanding the situation of a cross-correlation
is visualised in Fig. 2.10.

t

x, y

i = 1, 2, 3,... ... n... 11,...

x1 x2 x3 x11 xn
x(t)

Δt

y1 y2 y3 yn

y(t)
y11

x

y

Fig. 2.10. Time functions x(t) and y(t), distributed into n single values for the
design of the cross-correlation function

The independent variable of the auto- or cross-correlation function is the
time shift τ or k · Δt. Thus, this form of representation is a representation in
the time range (see also Sect. 2.4.2).

The statistic characteristic function, which supplies the equivalent infor-
mation about the signal shape of the time function in the frequency range
is the power density spectrum function. This function can also be written as
auto- (APSF) or cross-power density spectrum function (CPSF).
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Following, the calculation rule for the power density spectrum function is
given, as Sect. 6.4.2 will exclusively refer to it. Furthermore, the principle is
commercially available in the form of modules for yarn and fibre uniformity
testing devices or spectrometers. These instruments allow the automatised
calculation of the amplitude spectrum, which is similar to the power density
spectrum function, of measured signal shapes of the fibre fineness.3

Integral representation to the auto-power density spectrum function:

S(ω) = lim
T→∞

1
T

{[∫ T

0

(x(t) − x̄) cos(ωt)dt

]2

+

[∫ T

0

(x(t) − x̄) sin(ωt)dt

]2 } (2.20)

Sum representation:

S(ω) =
1
n

{[
n∑

i=1

(x(t) − x̄) cos(ω · i · Δt)

]2

+

[
n∑

i=1

(x(t) − x̄) sin(ω · i · Δt)

]2 } (2.21)

Boundary condition:
10π

n · Δt
≤ ω ≤ π

Δt

If the auto-correlation function, in its sum definition according to Eq. 2.17,
has already been calculated the single function values of K(k · Δt) can be
applied directly for the determination of the power density spectrum function
without a repeated access to the values for the xi of the basic time function.
The conversion formula is:

S(ω) = 2Δt

m∑
k=1

K(k · Δt) · cos(ω · k · Δt) (2.22)

Boundary condition:
2π

m · Δt
≤ ω ≤ π

Δt

Further explications are given in [8, 9].

3 The spectrograph of the Zellweger Co., Uster, Switzerland, which is delivered
as a module for the Uster uniformity tester, has been popular for decades.
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2.5 Dynamic Process Analysis and Modelling

2.5.1 Methodical Procedure

Since the most essential terms have been introduced and explained quite inde-
pendently in the previous sections, now some fundamental rules with respect
to the methodical procedure for dealing with process-analytic tasks, which
are well-tried, are given. These rules will help to get a general idea of the
connections and interactions between those essential terms.

There are two stages in the system analysis, which are classified according
to the qualitative representation of their result:

a) the stage of the steady state system analysis aiming on the development
of a steady state model of the process, and

b) the stage of the dynamic system analysis aiming on the setting up of a
dynamic model of the process, which can include the steady state model
as a special case.

According to Table 2.1 (taken from [1]) the mathematical-analytical ap-
proach to the modelling of technological flow-processes (which are, in contrast
to piece-processes, such processes where the process variables are exposed to
continuous changes and not to generally step-like changes) always leads to at
least one DEq. or usually to a system of DEqs.

Table 2.1. Fundamental mathematical-analytical approaches to the modelling of
technological flow-processes; x, y, z . . . space coordinates, t . . . time

Processes with Processes with
concentrated parameters scattered parameters

Steady state Systems of algebraic Systems of ordinary DEqs.

model equations with derivatives
d

dx
Systems of transcendental Systems of partial DEqs.

equations with derivatives
∂

∂x
,

∂

∂y
,

∂

∂z

Dynamic Systems of ordinary DEqs. Systems of partial DEqs.

model with derivatives
d

dt
with derivatives

∂

∂t
and

∂

∂x
,

∂

∂y
,

∂

∂z

Considering the principied type of the chosen methodical approach, the
system analysis can be arranged in three classes:

a) the theoretical,
b) the experimental, and
c) the combined theoretical-experimental system analysis.
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The latter is based on a continuous interaction between theoretically estab-
lished relations and experimental investigations, see Fig. 2.12. Practically,
this type is the most common one.

The specific steps for the dynamic system analysis or the modelling are:

1. All process and product variables, being involved in the process and prob-
ably being connected with each other via cause-effect relations, are to be
collected and sorted. For that purpose the establishment of a cause-effect-
scheme, which inherently goes along with an exact physical-analytical
way of thinking and the inclusion of all available a-priori knowledge, is
inevitable.

2. If possible, all DEqs. of the system, following from mass-, energy- and
momentum balances, have to be set up.

3. The DEqs. coefficients have to be determined theoretically and exper-
imentally. The DEq. is to be solved (step response function and/or
frequency-, phase- and amplitude response).

4. If it is impossible to set up a DEq., the cause-effect-scheme has to be
split into meaningful smaller cause-effect-blocks. The structure and the
parameters of those partial systems must be investigated by actively per-
formed experiments.

5. The model is tested and improved.
6. Mathematical simulations are performed in order to answer the techno-

logical questions. The model is applied.

The realisation of the experiments mentioned in 4., aiming on the investi-
gation of the cause-effect relations between the process and product variables,
requires the modification of the concerned cause variable under a certain law
and the subsequent measurement of the system’s response (of the effect vari-
able). The evaluation of the time functions of the varied input variable (test
signal) and of the output variable allows the determination of the dynamic
behaviour of the system. Figure 2.11 (after [4]) summarises the possible test
signals for the input variable (cause variable).

The transfer functions are the response time functions for aperiodic deter-
mined test signals. From their characteristics the dynamic parameters and the
structure of the system can be derived. If periodic determined test signals,
for instance sinusoidal signals of tunable frequency, are used, the dynamic
transfer function or the complex frequency response of the system can be in-
vestigated experimentally. Analogously, the dynamic system characteristics
can be determined from them. Correlation and spectral analysis methods
belong to the group of methods which employ stochastic signals for the de-
termination of the system parameters and the system’s structure. However,
their application is coupled with a considerable expenditure. Nevertheless,
in several cases it is the only possibility to carry out any dynamic process
investigation at all.
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test signals

non-determinate
signals

determinate
signals

aperiodic

impulse

step

ramp

non-steady state
stochastic
signals

steady state
stochastic
signals

periodic

sinusoidal
triangular
rectangular
sawtooth

Fig. 2.11. Classification of test signals

Figure 2.12 schematically shows the different methods of dynamic process
analysis.

As can be seen here, the problem can be solved theoretically as well as
experimentally. That model which starts from the setting up of the DEq. tak-
ing all qualitative physical-analytical relationships into consideration and in
which only the quantitative fixing of the DEqs. parameters is tested experi-
mentally, must be seen as the most valuable model. All dynamic characteristic
functions, for instance the step response function or the complex frequency
response, can be calculated if the DEq. of the process or process part be-
haviour is known.

As soon as the setting up of the DEq. becomes impossible, the questions
of interest have to be exclusively solved by experiments. In principle, all ex-
perimental methods are equally good, but practically there are big differences
with respect to the expense of time and aid and the achievable accuracy. The
step or impulse test quickly supplies characteristics in the time range, which
can be converted into the qualitatively more valuable characteristic in the
frequency range (the complex frequency response or the dynamic transfer
function) only with a limited accuracy. Investigations applying a periodic
test signal permit a direct access to the complex frequency response – how-
ever, with a higher expenditure of time but also with a good accuracy. Those
methods which utilise stochastic test signals take a lot of time, as well. Their
accuracy decisively depends on the quality of the measuring instruments.
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Fig. 2.12. Methods of the dynamic process analysis: L means Laplace-
transformation from the time to the frequency range, L−1 means retransformation
of the Laplace-transformation from the frequency to the time range

Here, an important problem relating to the purely experimental procedure
(often of necessity) shall be mentioned. Of course the experimental procedure
leads to a quantitatively correct model of the process under consideration.
But such a model cannot contribute to an understanding of the fundamen-
tal physical-analytical relations of the process and product variables. The
experimentally gained model is usually limited to that process that was em-
ployed for its acquisition. It is quite good for the process control but not for
a general explication of the connections between several input and output
variables. Furthermore, such a model should not be transferred to a similar
but larger process (up scaling) without testing its validity again.

Finally it is pointed out that the conversion laws between the dynamic
transfer function and the step response, formally given in Fig. 2.12, are theo-
retically based on the Laplace-transformation (abbreviation symbols L and
L−1), which will be used in some later examples. Some literature hints will
also be given to this later.
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2.5.2 Detailed Example (Drawing Process)

Deviation of the Specified Differential Equation and its Solutions

Here, the methods introduced during the previous sections are demonstrated
by the setting up, the evaluation and interpretation of a simple dynamic
model for the drawing process. For that purpose the following question has
to be answered: Which dynamic transfer properties has the process step of
drawing relating to changes or fluctuations of the input velocity vi in its effect
on the fineness T to of the yarn leaving the drawing zone?

In this special case the first step of the analytical procedure recommended
in Sect. 2.5.1, namely the qualitative coverage of the process and product vari-
ables of interest, can be omitted. With some technological basic knowledge
the fundamental statistic equation for the output yarn fineness T to, see Eq.
2.7, can be given at once. As already mentioned, the output yarn fineness
depends on the input velocity vi as well as on the output velocity vo and the
fineness T ti of the incoming yarn.

The setting up of the DEq. requires the dynamic mass balance equation
for the draw field in which the fibre mass is exchanged continuously (the
undrawn fibre goes in, the drawn fibre comes out).

As the draw field and, by the way, a lot of other process steps of textile
processing processes are systems where a certain mass is stored, the general
balance equation (continuity equation) taking the dynamic processing mode
into consideration can be utilised as the basis for the formulation of the DEq.:

mass inflow
time

=
mass discharge

time
+ change of stored mass (2.23)

Specifically for the drawing zone the terms are:

mass inflow
time

= T ti · vi ,
mass discharge

time
= T to · vo

The term change of stored mass needs, relating to the modelling of the
filament drawing process, a short explanation leading to a simplification. The
yarn mass stored in the drawing zone is T to · l, see Fig.2.1. We assume now
that all changes of the fibre fineness take place homogeneously, quasi rubber
like, over the whole drawing zone. This assumption is sufficiently exact, if
only small changes of process variables around the operating point (<10%)
are in the view.
For the situation, that immediately after the inflow of the undrawn fibre the
full draw ratio of some 100% would be realised the fibre would reach its out-
put fineness T to shortly after the inflow (neck like deformation). The fibre
had to be transported only over the length l of the drawing zone with the



2.5 Dynamic Process Analysis and Modelling 31

output velocity vo. For the last case (which is not shown here) the model
description would be valid for a dead time thread line, which is explained
more in detail in Sect. 5.1.3.

The term change of stored mass means the mass per time interval which
is additionally flowing in or being discharged from the drawing zone after a
perturbation. Mathematically, this term is the first derivative of the stored
mass after the time:

d(T to · l)
dt

=
dT to
dt

· l = Ṫ to · l (2.24)

By inserting this equation in Eq. 2.23 we get the following DEq.:

T ti · vi = T to · vo + Ṫ to · l (2.25)

Equation 2.25, which is equal to Eq. 2.8, is the DEq. describing the drawing
process under the simplified conditions explained above. The cause variable
was vi and the effect variable was T to. The values of T ti, vo and l should be
constant.

Before we continue with the solution of the DEq., an agreement concern-
ing the symbols must be reached. Constants characterising the technological
operating point are written with the index m, standing for mean or mean
value. Variables are split into their constant mean value, also marked by the
index m, and their fluctuating part, which is symbolised by a Δ in front.

In our example we have to introduce T to = T tom+ΔT to and vi = vim+Δvi

for the variables and T tim, vom and lm for the constants.

Then, Eq. 2.25 appears as:

T tim · (vim + Δvi) = (T tom + ΔT to) · vom + (Ṫ tom + ΔṪ to) · lm
After multiplication, with T tim · vim = T tom · vom, which is equivalent to the
steady state balance equation, and with the knowledge that the derivative of
a constant is equal to zero the DEq. gets the following form:

T tim · Δvi = vom · ΔT to + lm · ΔṪ to (2.26)

In contrast to Eq. 2.25 this DEq. contains only those variables which have real
signal character and not the constant mean values. Consequently, Eq. 2.26
fits better with the definition of the dynamic model, which mainly investi-
gates the fluctuation behaviour of the process and product variables. Thus,
Eq. 2.26, represents a view point which is typical for the comparison between
actual value and rated value in the automatic control technique. There, only
fluctuations around the rated value are also considered [10].
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For the calculation of the transfer function the common approach being
well-known in the field of DEq. analysis

ΔT to = C1 · eC2·t (2.27)

is inserted in the homogeneous DEq. 2.26. Setting the independent cause
variable Δvi equal to zero, we get the so-called volatile solution:

vom · C1 · eC2·t + lm · C1 · C2 · eC2·t = 0 ,

which means:

C2 = −vom

lm
(2.28)

We insert Eq. 2.28 in Eq. 2.27, extend the approach by the so-called steady
state solution and get the modified, complete approach:

T to = C1 · exp
(
−vom

lm
· t

)
+ C3 (2.29)

Aiming on the determination of the coefficients C1 and C3 the approach of
Eq. 2.29 is inserted into the complete DEq. 2.26:

T tim ·Δvi = vom

[
C1 · exp

(
−vom

lm
· t

)
+ C3

]
− lm · vom

lm
·C1 ·exp

(
−vom

lm
· t

)
For t → ∞ we get:

C3 =
Δvi

vom
· T tim (2.30)

Inserting Eq. 2.30 into the approach of Eq. 2.29 leads to:

ΔT to = C1 · exp
(
−vom

lm
· t

)
+

Δvi

vom
· T tim (2.31)

For the determination of the constant C1 we investigate the solution of Eq.
2.31 for the case of t = 0, which corresponds to the beginning of the step-like
excitation (Δvi just applied). ΔT to is still equal to zero for t = 0, that means:

0 = C1 +
Δvi

vom
· T tim =⇒ C1 = − Δvi

vom
· T tim (2.32)

Equation 2.32 inserted in Eq. 2.31 results in the complete time transient
function or step response function:

ΔT to|Δvi = Δvi · T tim
vom

[
1 − exp

(
−vom

lm
· t

)]
(2.33)
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According to Fig. 2.12 the transfer function Eq. 2.33 represents the solution of
the DEq. 2.26 for step-like excitations of the system by the independent cause
variable. Equation 2.33 is identical with Eq. 2.9 of Sect. 2.3.2 but includes the
more detailed symbols for the several mean values and fluctuations. Before
the interpretation of Eq. 2.33 it is shown, how the complex frequency response
can be derived from the DEq. 2.26. As explained in one of the former sections
the complex frequency response represents the DEqs. steady state solution
for sinusoidal excitations.

For the cause variable we write:

Δvi = Δ̃vi · ejωt , (2.34)

and for the effect variable:

ΔT to = ˜ΔT to · ej(ωt+ϕ) , (2.35)

where ω is the excitation frequency and ϕ is the phase shift angle. The Eqs.
2.34 and 2.35 correspond to an oscillating behaviour of the two variables and
are written in the complex form, which will directly lead to the questioned
complex frequency response (see for instance [10] for further information).
When we use Eqs. 2.34 and 2.35 in Eq. 2.26 we gain:

T tim · Δ̃vi · ejωt = vom · ˜ΔT to · ej(ωt+ϕ) + lm · ˜ΔT to · jω · ej(ωt+ϕ)

or

T tim · Δ̃vi = ˜ΔT to · ejϕ(vom + jω · lm)

Calculating the cause/effect-ratio finally leads to:

G(jω) =
˜ΔT to

Δ̃vi

· ejϕ =
T tim
vom

· 1
1 + jω · lm

vom

(2.36)

Eqation 2.36 represents the complex frequency response of the system under
investigation and corresponds to Eq. 2.11 in Sect. 2.4.3.
According to Eq. 2.13 the amplitude frequency response is equal to the abso-
lute value of the complex frequency response. For its calculation we have to
seperate the real and the imaginary part of Eq. 2.36. This can be reached by

extension of the fraction by the factor
(

1 − jω · lm
vom

)
:

G(jω) =
˜ΔT to

Δ̃vi

· ejϕ =
T tim
vom

·
1 − jω · lm

vom(
1 + jω · lm

vom

)(
1 − jω · lm

vom

)
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G(jω) =
˜ΔT to

Δ̃vi

· ejϕ =
T tim
vom

·
1 − jω · lm

vom

1 +
(

ω · lm
vom

)2 (2.37)

The absolute value of Eq. 2.37 leads to the amplitude frequency response due
to Eq. 2.13:

|G(jω)| =

∣∣∣∣∣ ˜ΔT to

Δ̃vi

∣∣∣∣∣ =
T tim
vom

· 1√
1 +

(
ω · lm

vom

)2
(2.38)

Employing Eq. 2.15 the phase frequency response is:

ϕ(ω) = arctan
[
−ω · lm

vom

]
. (2.39)

A more elegant and, mainly for the solution of DEqs. of higher order,
faster technique for the calculation of the complex frequency response is
the Laplace-transformation. Cutting out any details, the method is now
explained for the (quite simple) DEq. 2.25.

The derivatives with respect to the time
du

dtu
are replaced by the so-called

Laplacian pu. Because only first derivatives occur (ΔṪ to) results here u = 1:

T tim · Δvi = vom · ΔT to + p · lm · ΔT to ,

where p · ΔT to stands for ΔṪ to or
d(ΔT to)

dt
.

It follows:

G(p) =
ΔT to
Δvi

=
T tim
vom

· 1
1 + p

· lm
vom

(2.40)

It can be easily seen that Eq. 2.40, which is called dynamic transfer func-
tion G(p) in a narrower sense, proceeds to the complex frequency response
G(jω) (Eq. 2.36) when the Laplacian pu is replaced by the complex fre-
quency (jω)u. The advantage of this direct method, which indirectly includes
all boundary conditions, is obvious.

If we look for the step response we will need a transformation from the
frequency range back to the time range. For that purpose the retransforma-
tion integral of the Laplace-transformation must be applied. In our special
case that integral is:
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ΔT to|Δvi =
Δvi

2πj

+j∞∫
−j∞

G(p)
p

· ept · dp , (2.41)

or with Eq. 2.40:

ΔT to|Δvi =
Δvi · T tim
2πj · vom

+j∞∫
−j∞

ept

p ·
(

1 + p · lm
vom

) · dp (2.42)

The value of the integral Eq. 2.42 can either be extracted from the appropri-
ate literature [11], [12] or solved with the residue theoremof the Laplace-
transformation [13]. The residue theorem states that the value of the integral
is equal to the sum of all residues multiplied by the factor 2πj.

This means for the given example:

ΔT to|Δvi = Δvi · T tim
vom

·
2∑

ν=1

Res
pν

[S(p)] , (2.43)

where pν are the zero values of the integrand of Eq. 2.42. Those are:

p1 = 0 and p2 = −vom

lm

The general equation for the calculation of the residues is:

Res
pν

[S(pν)] = lim
p→pν

(p − pν) · S(p)

Here S(p) represents the whole integrand of Eq. 2.42. Now, the two residues
can be calculated:

Res
p1

[S(p1)] = lim
p→0

(p − 0) · ept

p ·
(

1 + p · lm
vom

) = 1 , (2.44)

Res
p2

[S(p2)] = lim
p→− vom

lm

(
p +

vom

lm

)
· ept

p ·
(

1 + p · lm
vom

) = − exp
(
−vom

lm
· t

)
(2.45)

The input of Eqs. 2.44 and 2.45 into the Eq. 2.43 leads to the transfer function

ΔT to|Δvi = Δvi · T tim
vom

[
1 − exp

(
−vom

lm
· t

)]
(2.46)

Obviously, Eq. 2.46 is the same as Eq. 2.43, which has been acquired by the
classical approach with the DEq. 2.25.
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Evaluation of Results

We are now ready to deal with the sixth step (application of the model, sim-
ulations with respect to technological questions) of rules for the methodical
procedure for the dynamic modelling given in Sect. 2.5.1. For that purpose
the potential of the mathematical solutions found in the previous section is
demonstrated by means of a concrete example. Let us assume a drawing pro-
cess of a synthetic yarn characterised by the following process and product
variables:

mean input yarn fineness T tim = 30 tex
mean output yarn fineness T tom = 10 tex
(⇒ mean draw ratio = 3)
mean input velocity vim = 300 m/min
mean output velocity vom = 900 m/min
assumed step-like or sinusoidal
shift of the input velocity Δvi or Δ̃vi = 15 m/min.
Figure 2.13 shows a transfer function calculated with Eq. 2.33 by means

of the above values for lm = 0.3 m.
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Fig. 2.13. Drawing process; time transient function of the fineness ΔT to(t) by
means of an input velocity step Δvi = 15 m/min:
T tim = 30 tex; T tom = 10 tex; vim = 300 m/min; vom = 900 m/min

The following information can be extracted from the curves:

a) The change of the output yarn fineness ΔT to shows an exponential be-
haviour and reaches a steady state value of 0.5 tex. Consequently, if the
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disturbance of the input velocity is 15 m/min the outgoing yarn will have
a constant fineness of 10.5 tex after a certain transition time.

b) The transition period between leaving the old technological operating
point (T to = 10 tex) and reaching the new disturbed one (T to = 10.5
tex) lasts 100 ms.

c) The proportional change of the fineness after the end of the transition
period is equal to the proportional change of the input velocity (5%).

There are a number of further considerations to be made. First, the transi-
tion time of 100 ms seems to be quite short. But we have to bear in mind that
already 1.5 m of the fibre with fineness values differing from the desired value
have left the drawing zone during that period. If the input velocity jumped
back from the disturbed value of 315 m/min to the initial value of 300 m/min
after those 100 ms we would have to wait for further 100 ms until the output
yarn fineness had reached its original value of 10 tex again. Thus, an only
100 ms lasting change of the input velocity to a 5% higher value would have
caused a 3 m fibre segment with undefined fineness and – which is even worse
for synthetic silks – with different orientation and structure characteristics,
which possibly show negative effects on the staining homogeneity. Here, the
terms of skitteriness and barre suggest themselves and do not have to be
interpreted in detail. As for the rest, the changes of the input velocity cause
slippage effects of the fibre on the input godet roll (in diminishing direction),
which are often barely recognised, appear for extremely short periods and
can be hardly measured.

The parameter in the transfer function which finally determines how fast
the effect variable can follow the step-like cause variable, is in our case (and
in many other similar cases) the exponent of the exponential function. The
reciprocal value of the factor vom/lm is called the time constant Tc of the
system:

Tc =
lm
vom

(2.47)

This means for our example:

Tc = 0.3 m
900 m/min = 3.33 · 10−4 min = 0.02 s = 20 ms.

As can be checked easily there is the following correlation between the
time since the beginning of a disturbance and the percentage of the alter-
ation range being passed by the effect variable:

1 · Tc ⇐⇒ 63%,
3 · Tc ⇐⇒ 95%,
5 · Tc ⇐⇒ 99%.
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Therefore it seems to be justified to consider the transition process as
finished after a period of 5·Tc (here: 100 ms). For less exact approximations
(error: 5%) even 3·Tc can be assumed as long enough. Consequently the time
constant can be extracted from a purely experimentally acquired transfer
function with sufficient exactness (in case of an exponential behaviour, which
has to be tested before): One determines the point of the curve, where 63% of
the whole alteration range has been passed, and extracts the corresponding
time value from the abscissa (Fig. 2.13). Another (less exact) method is the
construction of the tangent on the exponential function in the zero value of
time. That tangent also meets the parallel to the abscissa which corresponds
to the steady state final value of the alteration range of the effect variable at
the distance Tc.

Eqation 2.47 shows how the dynamic behaviour of the system (here: the
drawing process) can be changed. A faster responding system reacts with a
diminishing of the time constant which is equivalent to a shortening of the
drawing zone and/or an enlargement of the output velocity, whereas a slower
responding system reacts with an enlargement of the time constant which is
equivalent to a longer drawing zone and/or a smaller output velocity. If, for
a certain reason, the fibre length, being influenced by disturbances, has to be
changed, for instance minimised, this will only be possible by an adequate
diminishing of lm, as the disturbance fibre length is proportional to the prod-
uct Tc ·vom. The right curve of Fig. 2.13 illustrates how the transition process
changes when the drawing zone is enlarged to 0.4 m. For this special case Tc

is 26.7 ms and the transition process is practically finished after 133 ms.

Figures 2.14 to 2.16 show the solutions in the frequency range: the fre-
quency response in its transfer locus representation (Fig. 2.14), the amplitude
frequency response (Fig. 2.15) and the phase frequency response (Fig. 2.16).

The transfer locus as a summarising representation teaches us that

a) the oscillation ˜ΔT to, which is caused by sinusoidal exciting oscillation
with constant amplitude Δ̃vi (vector on the real axis), gets smaller for
growing excitation frequencies ω and finally vanishes for ω → ∞,

b) the phase shift angle ϕ, which is a measure for the delay of the effect
oscillation behind the (exciting) cause oscillation, grows from initially
zero (for ω = 0, quasi steady state excitation) to a value of −π

2
(for

ω → ∞).

Amplitude and phase frequency response show those statements sepa-
rately. The ordinate values of the amplitude frequency response are explicitly
given as the amplitude ratio ˜ΔT to/Δ̃vi for our example. The maximum value
for this ratio, appearing at ω = 0, is 0.5

15
tex

m/min = 0.033 tex
m/min. This means

that at the beginning of the amplitude frequency response, therefore at small
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disturbance frequencies, a fluctuation amplitude Δ̃vi =1 m/min results in a
fluctuation amplitude ˜ΔT to =0.033 tex.

The so-called critical (circuit) frequency ωc can be taken as a characteris-
tic value for the estimation of the dynamic system properties in the frequency
range representation. It is defined as the excitation frequency, at which the
effect oscillation amplitude has fallen to 1/

√
2 of the value being valid for the

case of steady state excitation (for ω = 0). In the transfer locus (Fig. 2.14)
the imaginary part of the vector for the effect oscillations is equal to its real
part at this point. This is the case for Eq. 2.37 with

ω · lm
vom

= 1 =⇒ ω = ωc =
vom

lm

or, for Eq. 2.47 with:

ωc =
vom

lm
=

1
Tc

(2.48)

There, the phase shift angle is ϕl = −π

4
= −45˚. For our technological

example we get: ωc =
900
0.3

m/min
m

= 3000 min−1 ∼= 50 s−1. It is clearer to
give the values for the circular frequency ω in the more familiar dimension
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Hertz corresponding to the number of oscillations per time unit f . The well-
known relation ω = 2πf lets Eq. 2.48 appear as

fc =
ωc

2π
=

vom

2π · lm (2.49)

For the example we get fc =
50
2π

Hz = 8 Hz. The frequency abscissas of Figs.
2.15 and 2.16 contain both values: ω and f . Practically, this means that the
drawing zone transfers periodic sinusoidal fluctuations of the input velocity
Δ̃vi · sin(ωt) or Δ̃vi · sin(2πf · t) at frequencies of 0 Hz � f � 8 Hz to the
fineness of the outgoing fibre with a transfer factor of at least 0.7 related to
the maximum amplitude ratio for f = 0 Hz. The input velocity would fluc-
tuate between 285 and 315 m/min. The fineness of the outgoing fibre would
fluctuate for a disturbance frequency of

≈ 0 Hz between 9.5 tex and 10.5 tex,
8 Hz between 9.65 tex and 10.35 tex.

If the disturbance frequency exceeds fc the cause oscillation will be trans-
ferred less to the effect variable ΔT to. Consequently the drawing zone with
its stored fibre mass will dampen the disturbance the better as the distur-
bance frequency reaches higher values. This behaviour corresponds to the
part of the amplitude frequency response which approaches zero for f > fc.
As in most practical cases such a system behaviour is formally desired for
the following appropriate measure, which directly follows from the explained
relations, can be recommended: The critical frequency of the technological
system for the critical cause-effect relations should be as small as possible
because then the desired dampening for the dynamic disturbance transfer
already begins at lower disturbance frequencies.

After the Eqs. 2.47 or 2.48 this means for the drawing zone: diminishing
of vom and/or enlargement of lm. As the first one lowers the productivity, an
enlargement of lm should be the aim. It is quite clear that other aspects, for in-
stance the technical conditions must be considered as well and consequently
compromises have to be made. This point is not further discussed at this
place. For comparison, Fig. 2.15 includes an amplitude frequency response
which is valid for a drawing process with a drawing zone being enlarged to
lm = 0.4 m. As can be calculated with Eq. 2.48 the critical frequency drops
to fc = 6 Hz for this case, so an effective dampening of disturbances can be
expected already for that frequency.

In a similar way as the time constant of the transfer function does, the
phase frequency response ϕ(ω) (Eq. 2.39) allows statements about the thread
length, which leaves the drawing zone before that point of the thread, which
corresponds to a disturbance, appears at the end of the drawing zone. This
thread length is called delay thread length Ld and is calculated as follows:
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Ld =
|ϕ(ω)|
2π · ω · vom =

|ϕ(ω)|
4π2 · f · vom (2.50)

For our example we get:

Ld = 37 mm for fc = 8 Hz (drawing zone 0.3 m),
Ld = 50 mm for fc = 6 Hz (drawing zone 0.4 m).

In Sect. 5.1.5 other problems for which the phase frequency response plays
an important role will be discussed.

The next sections cover important aspects of the dynamics of main process
steps of fibre/yarn/thread formation and processing technologies. There, the
mathematical techniques explained so far will be employed again.



3. Modelling of Steady State Fibre Formation

Process in Melt Spinning

3.1 Steady State Single Fibre Formation Process

3.1.1 Definition: What Does Fibre Formation Mean?

Melt spinning is the production of continuous solid filaments from polymeric
melt. The fibre formation process includes change in shape, structure and
properties of the thermoplastic polymer. The polymer pellets or granules
are fed into an extruder where, through heating, their melting temperature
is exceeded. The polymeric melt is then transported, under pressure, to the
spinneret. Hygroscopic polymers require vacuum drying prior to processing in
order to ensure a low water content. The extrusion temperature T0 is roughly
30-50 K above the melting temperature Tm of the polymer, i. e. T0=250-270
for PA 6 or 280-295 for PET, respectively. A constant mass flow rate of
the melt is achieved by a metering pump (the spinning pump) which can be
positioned inside the spinning head. Within the spinneret the melt flow is
channelled into a number of individual capillary holes, each is responsible for
the formation of a single filament. After the melt flow passes through these
spinneret orifices into the air, the single filaments cool off, solidify, and are
collected into a fibre bundle that is finally wound up. The take-up speed is
much higher than the average extrusion velocity at the spinneret exit. The
ratio between the spinning velocity vL (take-up velocity at any distance L)
and the (average) extrusion velocity v0 at the spinneret exit defines the draw
down ratio ddr:

ddr =
vL

v0
. (3.1)

Between take-up of the as-spun fibre and the final winding to bobbins an
additional drawing procedure (with additional draw ratio DR) may be in-
troduced. The drawing is typically achieved by means of godet pairs. Two or
more drawing steps can be performed (Fig. 3.1). Fibre formation in the sense
of spinnability requires three necessary conditions:

1. Attenuation and acceleration of the filaments, i. e. ddr > 1,
2. Stability in time that allows the production of continuous filaments, i. e.

no filament breakage,
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Fig. 3.1. Melt spinning equipment (schematic): a – spinning floor, b – winding
floor; 1 – container with polymer pellets, 2 – electrical motor and drive train, 3 –
extruder assembly with screw, 4 – spinning head with metering pump (gear pump),
5 – spinneret with capillary holes, 6 – spinning chamber with quenching air, 7 – spin
finish applicator, 8 – pairs of godets for online drawing, 9 – (high speed) winder

3. Steady state conditions (stationarity), i. e. uniform filaments without any
variation of properties throughout the production time and therefore
along the filament length.

The maximum possible draw down ratio for a given polymer is an impor-
tant characteristic value for the spinnability of the polymeric melt. For well-
spinnable polymers draw down ratios of several hundred to up to ddr > 1000
can be reached in the high speed spinning process. Specifically the high speed
fibre spinning shows extremely high deformation and cooling rates. Structural
changes and phase transition from liquid to solid state are possibly taking
place within milliseconds.

3.1.2 Fundamental Balance Equations

At the exit of the capillary holes (at distance x = 0) the polymeric melt is
extruded with a given constant mass throughput Q and extrusion velocity
v0 at a constant extrusion temperature T0 (Fig. 3.2). The diameter of the
spinneret capillary holes is D0. The take-up device (godets, winder or air
suction device) positioned at any distance L from the spinneret, determines
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the final take-up velocity vL of the as-spun filaments. The velocity v(x), the
diameter D(x), the temperature T (x), and the filament force F (x) depend
upon the axial distance x from the spinneret. Their courses play an essen-
tial role in the development of the fibre structure and the resulting textile
yarn properties. The theory of steady state fibre formation helps to describe
the deformation, cooling, and stress developing processes. It is, in principle,
an application of the fundamental physical balance equations [274] of mass,
energy, and momentum, combined with the stress-deformation behaviour of
the polymer and the description of its structural changes.

D=DL

Lv=v

x
D(x)

x=L

x=xs

D0 extrusion

T(x)

v0 T0,

v(x)

zone of fibre
formation

solidification

take-up

fibre 
transportation

,F0

F(x)

F=FL Fig. 3.2. Fibre formation in melt spinning

Mass Balance

The mass balance represents the continuity equation of the melt spinning
process. It is largely simplified because no mass exchange takes place between
the filament and its environment. The mass conservation formula connects
the most important quantities, mass throughput Q, filament cross sectional
area A(x) (or filament diameter D(x), respectively), and the (averaged over
the cross section) axial filament velocity v(x):

Q = �p(x) · A(x) · v(x) = const. (3.2)

The quantity �p in Eq. 3.2 denotes the mass density of the polymer. The
product �p(x) · A(x) = T t(x) is known in textile engineering as fineness
(titre). For a circular cross section with diameter D(x) follows

Q = �p · π

4
D2 · v = T t · v . (3.3)
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The fineness T t quantifies the linear mass density (mass per unit length of
the fibre) and has its own special units. The most common are tex (resp.
decitex ) and denier (den), defined as

1 tex =
1 g

1000 m
, 1 dtex =

1 g
10 000 m

, 1 den =
1 g

9000 m
.

The fineness of a fibre is called 1 dtex if 10 000 meters of fibre material is
equal to 1 gram (resp. the fineness 1 den equals 9 000 meters of 1 gram mass).
The relation between fineness T t (in dtex or denier), and diameter D (in
μm) depends on the mass density �p (in g/cm3) and is given by

T t = 0.0078 �p D2, D = 11.3
√

T t/�p for T t in dtex, (3.4a)

T t = 0.0112 �p D2, D = 9.44
√

T t/�p for T t in denier. (3.4b)

Two examples (with given mass densities) are listed in Table 3.1.

Table 3.1. Equivalence between fineness and diameter

Fineness T t Diameter D

PP – poly(propylene) 1 dtex 12 μm

(�p = 0.9 g/cm3) 10 dtex 37 μm

100 dtex 119 μm

PET – poly(ethylene terephthalate) 1 dtex 10 μm

(�p = 1.35 g/cm3) 10 dtex 31 μm

100 dtex 97 μm

Due of the fundamental character and simplicity of the mass balance Zi-

abicki [274] distinguishes the principal process variables by means of the
continuity equation into primary, secondary, and resulting variables.

Primary variables

• describe the material, its chemical and molecular structure (molecular
weight, molecular weight distribution), and the material’s characteristics
like viscosity, heat capacity, solidification behaviour etc.

• Primary variables are also the parameters which determine the technologi-
cal conditions of the melt spinning process. These are the mass throughput
Q delivered by the spinning pump, the extrusion temperature T0, the di-
mensions of the capillary holes (diameter D0), the length of the spinning
line L from spinneret to the take-up device, the take-up velocity vL, and
the conditions of the cooling process, its velocity profile vair of quenching
air, the temperature profile Tair, and the air humidity.
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Secondary spinning variables result from the primary variables by appli-
cation of the continuity equation (3.2). Examples are:

• the (average) extrusion velocity v0 with

v0 =
Q

�p
π
4 D2

0

,

• the as-spun fineness T tL = Q/vL, and the corresponding diameter DL,
• the draw down ratio ddr (3.1) with

ddr =
vL

v0
=

vL

Q
�p

π

4
D2

0 .

The formulas show that the secondary variables are combinations of the pri-
mary variables, specifically the draw down ratio.

Resulting variables are determined by primary variables as well as the
dynamics of the fibre formation process. Some examples are:

• the development of the fibre velocity v(x) along the spinning path,
• the length of the fibre formation zone, i. e. the distance between the spin-

neret and the solidification point,
• the maximum deformation rate of the polymeric downstream,
• the filament tension force F (x) and the filament stress σ(x) at any dis-

tance x from spinneret, especially at the solidification point and at the
take-up point,

• the filament temperature T (x).

The development of stress and temperature and the structural changes de-
termine the physical and textile properties such as orientation, crystallinity,
elongation at break, tenacity and many others.

Modelling the dynamics of fibre formation should lead to a sufficient de-
scription of the resulting variables and their correlations to the fibre proper-
ties. The main goal is helping to understand the influence of primary variables
(material properties and technological process parameters) on the resulting
product properties.

Energy Balance

The energy equation describes the development of the filament temperature
T (x) from the point of exiting the capillary holes to the points of solidification
and take-up.
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Fig. 3.3. Heat flow balance of a filament volume ele-
ment (schematic)

Simplified analysis. If we at first assume only heat convection (i. e. no heat
conduction and no heat sources within the filament, no heat radiation), then
the heat balance of any volume element between x and x + dx is given by
the following equation: The difference of heat flow into the unit volume and
out of it must be equal to the total heat loss of the unit volume, that is the
heat transfer from the surface of the unit volume into the surrounding air
(Fig. 3.3).
The heat balance equation can be written as

Q · cp · T − Q · cp · (T + dT ) = α · (T − Tair) · π · D · dx . (3.5)

Using the so-called (non-dimensional) Nusselt number Nu with

Nu =
α · D
λair

(3.6)

leads to

dT

dx
= −(T − Tair) · Nu

π λair

Q · cp
. (3.7)

In Eqs. 3.5–3.7 Tair is the temperature of surrounding air, α is the heat trans-
fer coefficient from the filament surface to the surrounding air, cp represents
the specific heat capacity of the polymer, and λair stands for the heat con-
ductivity of air.

The Nusselt number (or the heat transfer coefficient α) is an essential
parameter for calculating the filament temperature profile T (x). A more de-
tailed discussion of heat transfer will follow in Sect. 3.1.3. Here it should
be pointed out that the fraction on the right hand side of Eq. 3.7 has the
dimension of a reciprocal length:

Nu
π λair

Q · cp
=

1
Lc

. (3.8)

Equation (3.7) then becomes

dT (x)
dx

= −T (x) − Tair(x)
Lc(x)

with T (0) = T0 . (3.9)
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Example. To get an impression of the cooling of poly(ethylene terephtha-
late) (PET) filaments the following typical values should be used:

specific heat capacity (PET) cp 1500 kJ/kgK
temperature of the melt (PET) T0 290
air temperature Tair 20
heat conductivity of air λair 10−5 W/m
Nusselt number Nu ≈ 1

Using the parameters above (see also Eqs. 2.3 and 2.6) the cooling length for
PET per mass throughput becomes Lc/Q ≈ 0.2 m/g ·min−1. In order to cool
off a filament from its initial temperature of 290 to a solidification tem-
perature of 70 (glass transition temperature of PET) at a throughput of
1 g/min, a cooling length of approximately 0.5 m is needed. As the through-
put increases, the required cooling length increases as well, for Q = 2 g/min
follows Lc ≈ 1.0 m, and so on.

Further discussions about energy balance. Heat is transferred not only
via convection but also by heat radiation and heat conduction.

Heat radiation strongly depends upon the temperature (power law with
T 4 dependence – Stephan-Boltzmann law). Radiation plays an important
role for glass or metal spinning processes where the temperature can reach
1200 or more. But in melt spinning of thermoplastics with spinning tem-
peratures of up to 300 the contribution of radiation is, consequently, often
neglected.

Heat conduction occurs as inner conduction inside the fibres and also as
outer conduction in such cases where fibres are brought into contact with
other materials of different temperature, like fibre guides, metal plates or
godets. The inner conduction is negligible for thin filaments, but needs to be
taken into consideration for thick and very thick filaments. The contact of
filaments with other objects is sometimes used to force the cooling process.
But it is also possible to heat up the fibres in the contact area to initiate
phase transitions or to achieve certain drawing effects.

A sensitive contribution to the energy balance of the fibre can arise from
the internal heat which is set free when the filament crystallises. Stress-
induced crystallisation appears especially in high speed spinning of PET, PA,
PP and other crystallising polymers. It is necessary to take the crystallisation
heat [59,194–198,200] into consideration for the modelling of such processes.
The energy equation (3.7) then has to be expanded with the crystallisation
term to

dT

dx
= −(T − Tair) · Nu

π λair

Q · cp
+

ΔH

cp

dXc

dx
, (3.10)

where ΔH is the heat of fusion and Xc is the degree of crystallinity.
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The deformation energy can also be an additional source of internal heat.
However, in melt spinning the contribution of internal friction processes can
usually be neglected.

Momentum Balance

The momentum balance equation can be integrated in order to determine
the forces acting on the fibre. In this manner, the forces play an essential
role in structure development: the resulting fibre stress σ (that is fibre force
F divided by fibre cross-sectional area A) leads to the deformation of the
polymer and at least determines the orientational status and the structural
arrangement of the polymeric chains.

The analysis of the force contributions reveals the following components
which add-up to the total fibre force [274]:

• the initial force at the capillary exit F0,
• the inertial force Finert,
• the gravitational force Fgrav,
• the air drag force Fdrag,
• the surface tension force Fsurf ,
• the take-up force FL

Figure 3.4 shows how the forces act on the fibre and how they contribute to
the total fibre force.

F (x) = F0 + Fsurf(x) + Finert(x) + Fdrag(x) − Fgrav(x) (3.11a)
= FL − Fsurf(x) − Finert(x) − Fdrag(x) + Fgrav(x) (3.11b)
= Frheo(x) . (3.11c)

Discussion. Some more details should be discussed with respect to each
force contribution and its effect on the total force should be discussed by
means of simple estimation.

The surface tension force Fsurf should be regarded at first. It is caused
by the enlargement of the filament surface per unit volume during stretching
and thinning of the fibre:

dFsurf

dx
= π

d
dx

(σsurfR) (3.12)

or, after integration with respect to x (assuming constant σsurf) follows

Fsurf(x) = π σsurf

(
R0 − R(x)

)
, (3.13)

where σsurf is the surface tension (or specific surface energy) of the mate-
rial. The contribution of the surface tension force to the total force is usually
low, except for very low viscous materials. A typical value for poly(ethylene
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Fig. 3.4. Forces acting on a fibre

terephthalate) (PET) has a magnitude of about σsurf ≈ 0.05 mN/mm, and
with an assumed initial radius of R0 = 0.15 mm one gets a surface tension
Fsurf lower then 0.02 mN.

The gravitational force Fgrav at any distance x is the weight of the filament
at this point and can be expressed as

Fgrav(x) =
∫ x

0

�p g A(x′) dx′ , (3.14)

where �p is the mass density of the polymer, g is the gravitational acceler-
ation on earth (g ≈ 9.81 m/s2), and A denotes the filament cross-sectional
area. Assuming a circular PET filament (mass density �p = 1.35 g/cm3) with
an averaged radius of 10 μm and a length of about 1 m, then one can esti-
mate a weight of about 0.01 mN, which is also the order of magnitude of the
contribution of Fgrav.

The inertial force Finert is caused by acceleration of the polymeric material
from the initial velocity v0 at the exit point of the spinneret to the velocity
v(x) at any distance x, at least to the final take-up velocity vL. The changes
in speed directly affect the inertial force:

dFinert

dx
= Q

dv

dx
(3.15)

or, after integration with respect to distance x follows
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Finert(x) = Q · (v(x) − v0

)
. (3.16)

The assumption of a filament velocity of 3000 m/min for example and again
a radius of 10 μm leads to an estimated value of Finert ≈ 1 mN.

The discussion of air drag force Fdrag seems to be a little bit more difficult.
The air drag force acting on a filament with circular cross section (radius R)
can be written in the form

dFdrag

dx
= 2 π R(x) τf (x) , (3.17)

where τf is the shear stress at the filament surface to the surrounding air.
The shear stress is often expressed in terms of the air friction coefficient cf

τf =
1
2

�air v2(x) · cf , (3.18)

where �air denotes the air mass density. Unfortunately, the air friction co-
efficient cf depends on the current state of air flow within the fibre forma-
tion region. A short discussion about the interaction between the fibre and
its environment, including both heat transfer (Nu-number) and momentum
transfer (air friction coefficient cf), is presented in Sect. 3.1.3. Here it is to
be remarked that an often used formula to describe the air drag coefficient
is that of Hamana [29]:

cf = 0.37 · Re−0.61 (3.19)

or to be more general cf = a · Reb, with the different parameters a and b.
Re denotes the non-dimensional Reynolds number. The Reynolds number
itself is given by

Re(x) =
�air · v(x) · 2R(x)

ηair
=

v(x) · 2 R(x)
νair

, (3.20)

where ηair is the dynamic viscosity of air, and the fraction νair = ηair/�air is
called the kinematic viscosity of air.

Integrating Eq. 3.17 with 3.18 leads to

Fdrag(x) = 2 π

∫ x

0

R(x′)
�air

2
v2(x′) cf(x′) dx′ (3.21)

and a rough estimation shows that the air drag contribution can reach similar
magnitudes compared to the inertial force, especially at high filament velocity
v.

3.1.3 Interaction Between Fibre and Environment

The following section deals with heat and momentum transfer from the fibre
surface to the environment in more detail. Therefore, the equations for the
Nusselt number Nu and the air friction coefficient cf are presented.
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Heat Transfer

The heat transfer from the fibre surface to the ambient medium (usually
air) involves the mechanisms radiation, free convection, and forced convection
(Ziabicki [274]). The contributions from radiation and free convection are
often neglected or sometimes empirically incorporated into the model by the
chosen relationships for the heat transfer coefficient resp. Nusselt number
[25, 26, 38, 59, 62, 63, 68, 196]. However, some more recent investigations also
show the influence of radiation [203,204].

Radiation. Due to radiation, the heat transfer coefficient αr is strongly
dependent upon the temperature T

αr(T ) = σSB · εm · T 4 − T 4
air

T − Tair
, (3.22)

where σSB is the Stephan-Boltzmann constant and εm is the emissivity
of the polymeric material. Replacing the heat transfer coefficient with the
non-dimensional Nusselt number Nur (Eq. 3.6) for radiation then follows

Nur = const · D · T 4 − T 4
air

T − Tair
(3.23)

with const ≈ 1.7 · 10−6 (m · K3)−1 .

Figure 3.5 shows Nusselt numbers for the radiation heat transfer vs.
temperature for different fibre thicknesses. It can be seen that radiation in
the temperature range of T = 50 . . .300 for polymer melt spinning has
very little effect, only directly below the spinneret (T = 200 . . .300 , D =
300 μm) the Nusselt number can reach values between 0.1 . . . 0.2. This is
equal 5 . . . 20% of the convective heat transfer (see below).

Convection. The free (natural) convective heat transfer is a typical heat
transfer mechanism for stationary systems and is concerned with the move-
ment of the ambient medium (air) caused by thermal expansion and density
variation resulting from the related temperature field. The non-dimensional
Nusselt number Nun for free (natural) convection can be written as a func-
tion of two other non-dimensional numbers, namely the Grashof number
Gr, and the Prandtl number Pr [185]

Nun = Nun(Gr, Pr) , (3.24)

where the Grashof number is given by Gr = g βair (T − Tair)D3, with βair

as the thermal expansion coefficient of air, and the Prandtl number of air is
Pr = ηair cp,air/λair. Fibre cooling by means of free convection depends on the
temperature difference between fibre and ambient medium and becomes an
essential factor at low fibre velocities, especially near the spinneret. Near the
spinneret the high temperature of the spinning block brings forth additional
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Fig. 3.5. Nusselt number Nu vs. temperature T for different diameters D, re-
sulting a) from heat radiation (Eq. 3.23), b) from free convection (Nu = 0.65(Gr ·
Pr)0.07, after [186]), diameters: 1 – 300 μm, 2 – 100 μm, 3 – 30 μm, 4 – 10 μm;
temperature of ambient air: Tair = 25

complications regarding the air flow. Careful design of the spinning block
is required in order to reduce turbulences and improve the stability of the
spinning process.

Resulting Nusselt numbers for free convection, calculated from an em-
pirical correlation which was determined from analyzing the free convection
over thin wires [186] are shown in Fig. 3.5.

Fibre cooling in melt spinning is mainly related to the forced convective
heat transfer . The filaments move with increasing velocity and can be addi-
tionally quenched by cross air flow. The Nusselt number Nuf for the forced
convection can depend upon the exposed length x of the filaments (in parallel
flow), but the main contributions are given by the parallel and/or transverse
air flow described with the related Reynolds numbers:

Nuf = Nuf(Re‖, Re⊥, x, Pr) . (3.25)

Many authors have developed relations to describe the heat transfer us-
ing both boundary layer theory or experimental investigations. Some earlier
expressions are summarised by Ziabicki [184, 274]. The formula developed
by Kase and Matsuo is often used [25]:

Nuf = 0.42Re0.334
‖

(
1 +

(8 v⊥
v

)2
)0.167

, (3.26)

which can be rearranged to the more general relationship

Nuf = a
(
Re2

‖ + b · Re2
⊥
)c

, (3.27)
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Table 3.2. Relationships for heat transfer (Nusselt number) in melt spinning

Equation for Nu-number References and conditions

only parallel flow

0.76Re0.38
‖ Andrews (1959) [24]

0.42Re0.334
‖ Kase, Matsuo (1965) [25]

0.10 + 0.15Re0.36
‖ Sano (1966) [189]

0.53Re0.33
‖ Copley (1967) [190]

0.325Re0.3
‖ Glicksman (1968) [192]

0.76Re0.41
‖ Conti (1970) [193]

0.25 + 0.15Re0.36
‖ Zieminski (1985) [194]

0.16Re0.50
‖ slow melt spinning of PEEK,

Ohkoshi (1993) [202]

0.42Re0.344
‖ Ra0.13 melt spinning of PEEK, Golzar (2004) [204]

3.0Re−0.22
‖ melt spinning of PEEK, Golzar (2004) [204]

only transverse flow

0.891Re0.33
⊥ 1 < Re⊥ < 4, Hilpert (1933) [205]

0.821Re0.385
⊥ 4 < Re⊥ < 40, dito

0.615Re0.466
⊥ 40 < Re⊥ < 4000, dito

0.32 + 0.67Re0.52
⊥ 0.1 < Re⊥ < 103, McAdams (1954) [206]

0.38Re0.6
⊥ 103 < Re⊥ < 5 · 104, dito

parallel and transverse flow

0.42
(
Re2

‖ + 64Re2
⊥
)0.167

(*) Kase, Matsuo (1965) [25]

0.28
(
Re2

‖ + 1024Re2
⊥
)0.17

(**) Brünig (1999) [207]

here with parameters a = 0.42, b = 64, c = 0.167. Re‖ and Re⊥ are the
Reynolds numbers related to the parallel and cross air flow, defined as
follows

Re‖(x) =
v‖(x) · D(x)

νair
, (3.28)

Re⊥(x) =
v⊥(x) · D(x)

νair
, (3.29)

where v‖ is the axial (difference) velocity between fiber and ambient air,
and v⊥ is the cross air velocity, νair = ηair/�air is the kinematic viscosity of
air, respectively. According to Eq. 3.10 it is possible to recalculate the total
Nusselt number for different spinning conditions, by carefully measuring
the fibre temperature T (x) simultaneously with fibre diameter D(x) and/or
velocity v(x), if no crystallisation occurs:

Nu = − d
dx

ln
(
T (x) − Tair

) · Q cp

π λair
. (3.30)
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The experimental investigations can be carried out under different conditions:
heated wires or filaments, running in stationary air, or stationary wires or
filaments in steady air flow, and so on.

Table 3.2 and Fig. 3.6 show some examples for the relationship between
the Nusselt number and Reynolds number.

Fig. 3.6. Nusselt number Nu vs. Reynolds number Re‖, symbols: recalculated
from experimental data, open symbols: without quenching air (Re⊥ = 0 (data
source: recalculated from Bragato, Gianotto [187], closed symbols: with quench-
ing air (vair = 0.4 m/s, data source: recalculated from Haberkorn et al. [188],
1 – calc. after Eq. (*) in Table 3.2, 2 – calc. after Eq. (**) in Table 3.2, a) without
quenching air (Re⊥ = 0), b) with quenching air (vair = 0.4 m/s, Re⊥ > 0)

Air Friction

Equation (3.18) describes the friction-caused momentum transfer between
the fibre surface and surrounding air. Similar to heat transfer, the air friction
coefficient cf was also investigated by several authors [53–55,82,208–211] both
experimentally and by using laminar and turbulent boundary layer theory.
Most results for the air drag coefficient have led to a relationship in the
following manner

cf = a Reb (3.31)

with non-dimensional Reynolds number Re related to the filament diameter
and with different parameters a and b. Often used are the numbers given by
Hamana [29] with a = 0.37 and b = −0.61. A summary of different formulas
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Table 3.3. Relationships for momentum transfer (air friction coefficient cf) in melt

spinning: cf = a · Reb, after Shimizu et al. [59], Table 4

a a∗ b References and conditions

4.8 - -1 Sakiadis (1961), laminar theory

1.8 - -0.5 Sakiadis (1961), laminar theory [208–210]

5.0 - -1 Higuchi, Katsu (1960), 0.04 < Re < 0.2, (a) [72]

1.23 0.4 -0.81 Kase, Matsuo (1967), 3 < Re < 100, (b) [26]

0.68 0.39 . . . 0.41 -0.8 Sano, Orii (1968), 10 < Re < 50, (d) [73]

0.65 0.5 -0.7 Glicksman (1968), 4 < Re < 100, (d) [192]

0.37 -0.61 Hamana (1968) [29]

1.78 Fukuda (1966), 5 < Re < 20, (b) [74]

1.3 Thompson (1953), 20 < Re < 150, (b) [75]

0.84 Anderson, Stubbs (1958), 10 < Re < 60, (b) [76]

0.77 Shimizu, Okui (1983), 50 < Re < 400, (b,e) [53]

0.41 Gould, Smith (1980), 20 < Re < 200, (b) [211]

0.56 Selwood (1962), 5 < Re < 54, (c) [77]

0.31 . . . 0.71 Kwon, Prevorsek (1979), 3 < Re < 30, (c) [182]

0.5 Shimizu, Okui (1983), 40 < Re < 250, (d) [53]

0.39 . . . 0.23 Shimizu, Okui (1983), 25 < Re < 70, (d) [53]

0.37 Matsui (1976), (d) [82]

a∗ recalculated from measurements under the condition that b = −0.61, mea-

surements made (a) on filaments falling in still air, (b) stationary filaments

in airstream, (c) moving filaments in still air, (d) filaments spun into still air,

(e) filaments spun into airstream

for Eq. 3.31 can be found in literary source [216] and some examples are
shown in Table 3.3 [59].

It is surprising that the most published relations do not describe the in-
fluence of quenching cross air on the air friction coefficient. But a simple
consideration leads to the assumption that with increasing quenching cross
air velocity v⊥ the air friction coefficient cf must also increase. The air flow
perpendicular to the fibre axis disturbs the originally axial symmetric bound-
ary layer surrounding the fibre and leads to an additional momentum flux,
analogous to the additional heat flux in the case of heat transfer (3.26). Be-
cause of the similarity of both transfer effects it was proposed to consider the
influence of quenching air by means of both Reynolds numbers Re‖ and
Re⊥ [207]:

cf = cf(Re‖, Re⊥) . (3.32)
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To estimate the parameters in Eq. 3.32 a boundary layer calculation and
several fibre spinning experiments with different profiles of quenching air were
conducted and evaluated. The investigations led to the following result

cf =
a

Re‖

(
Re2

‖ + b Re2
⊥
)c

with a = 0.33, b = 4096, c = 0.2 . (3.33)

Figure 3.7 shows the influence of both effects: the air friction coefficient cf

is depicted there dependent upon the parallel Reynolds number Re‖ and for
different cross quenching Reynolds numbers Re⊥. Usually in melt spinning
the Reynolds numbers are in the following ranges: 5 < Re‖ < 150 and
0 < Re⊥ < 5.

Fig. 3.7. Air friction coefficient cf vs. Reynolds number Re‖, 1 – cf = 0.37Re−0.61

(Hamana [29]), 2 – Eq. 3.33, a) Re⊥ = 0, b) Re⊥ = 0.05, c) Re⊥ = 0.25, d) Re⊥ =
1.0, e) Re⊥ = 4.0

The influence of the quenching cross air on the air friction coefficient leads
to an interesting effect which is unfortunately often neglected in modelling: A
strong quenching air profile causes a high cooling rate and therefore a short
fibre formation zone with a short fibre length exposed to air friction force. But
on the other hand, increasing quenching air flow leads to an increase of the air
friction coefficient cf . Both effects, the shorten fibre formation zone and the
higher air friction coefficient are in competition. This means that the total
air friction force and at least the resulting fibre stress at the solidification
point can decrease with increasing quenching air flow, but it is also possible
that they can increase with increasing quenching air flow. How the resulting
fibre orientation (and also the resulting fibre properties like the elongation
to break) changes with quenching air flow conditions depends on the current
spinning conditions.
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3.1.4 Response of the Polymer Melt

Shear flow of the polymeric melt takes place inside the capillary of the die.
After leaving the die exit, elongational flow takes place within the fibre for-
mation zone until at least the polymer melt stream solidifies to the final
fibre. Only the elongational flow after leaving the capillary die exit and no
flow behaviour inside the spinneret should be regarded: The elongation ε(x),
depending on distance x from the spinneret, is defined by the logarithmic
Hencky measure

ε(x) = ln
v(x)
v0

, (3.34)

where v0 is the (mean) extrusion velocity at the spinneret exit. Com-
paring the definition above with the normally used relation for exten-
sion (see Fig. 3.8) the equivalence for small elongations becomes obvious:
ε = ln(l/l0) = ln(1 + Δ l/l0) → ε = Δ l/l0 for Δ l � l0.

v(x)

ε = ln v /v 

l
l(x)0

0
Fig. 3.8. Definition of elongation:
Hencky measure

For modelling the elongational flow, a suitable constitutive equation is
necessary. It should describe the polymer response depending on the applied
tensile force in a practicable manner, that is the relation between stress σ
and strain ε of the fibre from the spinneret to the take-up device sufficient
for any treatment in an engineering approach.

The stress-strain behaviour is controlled by the rheological properties of
the polymeric material. Therefore, the spinline stress1 σ is given by the (axial)
tensile force F = Frheo divided by fibre cross section A

σ(x) =
Frheo(x)

A(x)
. (3.35)

Several constitutive equations have been developed either on the basis of
continuum mechanics or under consideration of the molecular structure of
the material by means of statistical methods. For modelling purposes of fibre
formation mostly viscous and/or visco-elastic phenomenological relationships
[25, 26, 99–102,155–158,196] are applied.

1 In a more detailed theory of flow problems, the stress tensor σ is related to
any kinematic tensor, and tension is described by the normal stress difference
Δσ = σxx − σrr of the components of the stress tensor σ
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Viscous and Visco-elastic Behaviour

The simplest engineering models for stress-strain behaviour are the basic rhe-
ological bodies Newton dashpot for purely viscous behaviour and Hook’s
spring for purely elastic behaviour. In general, molten polymers are visco-
elastic fluids. They show both viscous and elastic behaviour in their response
to applied stress (see Fig. 3.9). The relation between viscous and elastic de-
formation can essentially influence the spinnability of a polymer (for further
discussion see Sect. 3.3, visco-elasticity also gives reason for the concept of the
so-called apparent elongational viscosity). The viscous behaviour dominates
the elongational flow at comparatively low fibre velocity near the spinneret,
but the influence of the elastic part becomes more and more important with
increasing velocity (especially near the solidification region). Under certain
conditions the necking effect can occur, that is the sudden reduction of the
filament cross-sectional area within a short range because of a dramatic in-
crease in the filament velocity. The necking region is very sensitive to the re-
lationship of viscous and elastic materials behaviour. After solidication there
is only the transportation of the fibre and a (more or less) purely elastic
deformation up to the take-up device. Nevertheless it is often possible to get
reasonable results for describing and simulating the course of melt spinning of
common polymers without taking into account the elastic effects. But on the
other hand, including the elastic deformation behaviour, some possibilities
for calculating the textile properties are given (e. g. the elongation to break,
see Sect. 3.1.6). In the following paragraphs some often used constitutive
equations will be presented.

viscosity η

modulus E

η η η

E E E

1 2 n

1 2 n

...

Fig. 3.9. Model of purely viscous (Newton) and visco-elastic (Maxwell) rheo-
logical behaviour (left); spectral model, series of Maxwell-bodies (right)

Newton model: Purely viscous flow. The mechanical model of the purely
viscous elongation is based on the dashpot approach Fig. 3.9 (left side) and
the stress-strain-relation is given by the simple constitutive equation

σ = η · ε̇v , (3.36)
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where ε̇v = dεv/dt is the viscous deformation rate (strain rate) and η is
the elongational viscosity. For constant applied stress the piston inside the
dashpot moves at a constant strain rate. Under the steady state conditions
(ε = ε(x(t))) and with the definition of Eq. 3.34 then Eq. 3.36 becomes

σ = η · dv

dx
(3.37)

because of the equivalence

dε

dt
=

dε

dx
· dx

dt
=

1
v
· dv

dx
· v =

dv

dx
. (3.38)

Example: Constant tensile force. The course of fibre formation can be
discussed (after Ziabicki [184]) for the viscous deformation in a simple manner
assuming a constant tensile force F (x) = Fc. Neglecting all the contributions
of inertia, gravitation, air friction, and surface tension to the force balance
equation (3.11a) we get

σ(x) =
Fc

A(x)
= Fc · �p · v(x)

Q
(3.39a)

= η · dv

dx
. (3.39b)

This leads to the differential equation for the velocity v

η · dv

dx
= C · v(x), C = �p · Fc

Q
(3.40)

which can be integrated to

v(x) = v0 · exp (C · x · Φ(x)) , (3.41)

where the function Φ(x) is given by

Φ(x) =
1
x

∫ x

0

1
η(x′)

dx′ . (3.42)

The constant force Fc is related to the boundary conditions

v(x = 0) = v0

v(x = L) = vL

through

Fc =
Q

�p
· L

Φ(L)
· ln

(
vL

v0

)
. (3.43)

The function Φ(x) describes the so-called fluidity of the polymeric ma-
terial – the mean value of the reciprocal viscosity over certain length. An
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exponentially increasing elongational flow (Eq. 3.41) results from constant
viscosity η (and constant fluidity Φ). But in melt spinning the temperature
along the spinning line decreases, thus the viscosity increases with increasing
distance, and the slope dv/dx also more and more decreases. Assuming that
at the solidification point the viscosity becomes infinitely large, the velocity
then reaches its final value vL. The resulting behaviour is the characteristi-
cally ”S-shaped” course of velocity vs. distance for purely viscous behaviour.
Figure 3.10 shows an example for two different cases of fibre cooling with
following conditions:

Fibre temperature T (in ): T1(x) = 20 + 280 exp(−x/0.60)
T2(x) = 20 + 280 exp(−x/0.30)

Viscosity η (in Pa·s) : η(T ) = 0.015 exp( 5200
T+273 ) for T ≥ 70

η(T ) = ∞ for T < 70
Final draw down ratio : vL/v0 = 300 .

Fig. 3.10. Example of fibre formation with constant tensile force F0 and two
different cooling lengths: 1 – slow cooling, cooling length Lc = 0.60 m; 2 – fast
cooling, Lc = 0.30 m; Newtonian flow behaviour, draw down ratio ddr = 300

Maxwell model: Visco-elastic behaviour. The mechanical model con-
sists of the combination of dashpot and spring in series (Fig. 3.9). The applied
force causes the (ideal) spring to an immediate elongational elastic deforma-
tion (orientational deformation) εo proportional to the applied stress σ. The
same stress acts on the dashpot and causes the viscous elongational defor-
mation εv. The total deformation ε of the Maxwell body is now the sum
of both parts [280, 281]:

ε = εv + εo (3.44)
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with

σ = η · ε̇v = E · εo , (3.45)

where E is the elongational modulus of the spring. Modulus E and viscosity η
are the two material properties describing the deformation behaviour of the
Maxwell body. Often the modulus E is used together with the relaxation
time λ with

λ =
η

E
. (3.46)

The constitutive equation (considering the stationarity behaviour) of the
Maxwell model is given by

σ +
η

E
· v · dσ

dx
= η · dv

dx
(3.47)

or, expressed in terms of the relaxation time λ as

σ + λ · v · dσ

dx
= E · λ · dv

dx
. (3.48)

Approaching a spectral series of i = 1...N Maxwell bodies (Fig. 3.9, right)
the corresponding relation is given by

σ +
∑

i

λi · v · dσ

dx
=

∑
i

Ei · λi · dv

dx
. (3.49)

Generalisations. The constitutive equations above describe a simple one-
dimensional model for the extension in spinning-direction. All effects related
to the radial stress and deformation components of the uniaxial deformation
are neglected. Considering the three-dimensionality of the real deformation
process, a more detailed analysis needs to be carried out. This can be done
by means of precise formulation with the help of tensor-calculus. Neverthe-
less, the thin-filament approximation in which the radial dependence of axial
velocity (and temperature) ∂v/∂r = 0 (and ∂T/∂r = 0) is neglected should
further be used. For the incompressible axis symmetrical and uniaxial elon-
gational deformation, the deformation rate tensor ε̇ and the stress tensor σ
are given as follows:

ε̇ =
dv

dx

⎛⎝1 0 0
0 − 1

2 0
0 0 − 1

2

⎞⎠ and σ =

⎛⎝σxx 0 0
0 σrr 0
0 0 σrr

⎞⎠ . (3.50)

A possible generalisation for visco-elastic behaviour using the stress and
deformation rate tensors is the upper-convected Maxwell model with relax-
ation time λ and modulus G:
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σxx + λ

(
v

dσxx

dx
− 2

dv

dx
σxx

)
= 2 Gλ

dv

dx
, (3.51)

σrr + λ

(
v

dσrr

dx
+

dv

dx
σrr

)
= −Gλ

dv

dx
. (3.52)

The spinning line tension (3.35) is now related to the normal stress difference
Δσ = σxx − σrr with

Δσ = σxx − σrr =
F

A
. (3.53)

The Phan-Tien-Tanner model [212, 213] is another generalised con-
stitutive equation based on a special type of network theory to describe a
nonlinear strain-softening behaviour. It helps to describe the necking effect
at higher spinning speeds. The constitutive equations are:

K · σxx + λ

(
v

dσxx

dx
− 2

dv

dx
σxx

)
= 2 Gλ

dv

dx
, (3.54)

K · σrr + λ

(
v

dσrr

dx
+

dv

dx
σrr

)
= −Gλ

dv

dx
, (3.55)

K = exp
(α

G
· tr σ

)
. (3.56)

The parameter α describes the additional strain softening effect. For α → 0
in Eq. 3.56 the upper-convected Maxwell equation above follows. tr σ =
σxx + 2 σrr denotes the trace of the stress-tensor.

Of course it is also possible to use combinations of different Maxwell or
generalised Maxwell elements. This leads to a discrete or continuous spec-
trum with more than one relaxation time and modulus, respectively (Fig. 3.9).
Some investigators also describe the viscosity by means of a power law such
as

η(T, ε̇) = η0(T ) ·
(

dv

dx

)n−1

, n < 1 , (3.57)

or a generalised power law equation similar to the Cross-Carreau type
e. g.

η(T, ε̇) =
η0(T )

1 + a

(
η0(T )

dv

dx

)b
, (3.58)

respectively, to describe the additional influence of the strain rate ε̇ = dv/dx
and the deviation of the resulting viscosity from the Newtonian behaviour
with corresponding parameter n, a, b.
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Solidification

The glass transition point marks the temperature Tg at which the mobility of
the polymer chains prevent any further deformation flow. Some of the typical
values are listed in Table 3.4.

Table 3.4. Glass transition temperature Tg of melt spinning polymers

polymer Tg in

PET – poly(ethylene terephthalate) 70

PA 6 – poly(amide) 6 50 . . . 55

PP – poly(propylene) ≈ −20

In reality, the flow deformation often comes to an end before the glass
transition temperature is reached. The reason for this is that crystallisation
can take place within the spinline at certain high levels of orientation and
stress. The developing crystalline regions act as additional strain hardening
segments. Some researchers (e. g. George [39]) investigated the solidification
temperature Ts where the deformation comes to an end. They found that
the solidification temperature depends upon the spinning speed and spinline
stress. The solidification temperature Ts showed a step-like behaviour as func-
tion of stress σ. The solidification cannot be separated from the appearance
of stress-induced crystallisation, especially in the cases of highly crystallis-
able polymers in melt spinning. Therefore, an empirical relation Ts = Ts(σ)
between solidification temperature and spinline stress is often used for mod-
elling the fibre formation process .

3.1.5 Structure Development

Structure development is one of the most interesting aspects [175] in the
modelling of the melt spinning process because the resulting as-spun fibre
structure determines the textile fibre properties like tenacity, residual draw
ratio or elongation to break. This is why a practicable and useful simulation
should not stop with the calculation of fibre temperature, velocity, or stress,
but should also allow for the prediction of the structural parameters and the
correlated textile properties. To quantitatively describe the fibre formation
and resulting fibre structure it is necessary to possess information on how

• the elongational flow influences molecular orientation,
• the orientation influences the crystallisation of the material,
• crystallisation occurs (nucleation and kinetics),
• orientation and crystallisation change the rheological flow properties.
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Of course the effect of the heat of crystallisation should also be included. The
main parameters for structure development are temperature, stress, and time.
Although many researchers have investigated the melt spinning process for a
long time (and with investigations still ongoing) the current models do not
sufficiently consider these effects. A satisfactory description is still missing
specifically for the crystallisation.

Orientation and Birefringence

The polymer deformation, in melt spinning mainly the elongational flow,
causes an alignment of the polymer chain molecules. Herrmann’s orientation
factor f describes the orientation of the molecular chains with respect to the
fibre axis. It can be defined through different methods (e. g. X-ray scattering)
as follows [173]:

f =
3
〈
cos2 θ

〉− 1
2

, (3.59)

where θ is the angle between the molecular chains and the fibre axis, the
brackets denote the mean value. The orientation factor f is equivalent to
the second momentum 〈P2〉 of the development of orientation distribution
function N(θ) to Legendre polynomials Pn:

N(θ) = a0P0(cos(θ)) + a2P2(cos(θ)) + a4P4(cos(θ)) + . . . (3.60)

due to reasons of symmetry the odd-numbered coefficients vanish, the first
three even Legendre polynomials are given as follows:

P0(cos(θ)) = 1 , (3.61a)

P2(cos(θ)) =
1
2
(
3 cos(θ) − 1

)
, (3.61b)

P4(cos(θ)) =
1
8
(
35 cos4(θ) − 30 cos2(θ) + 3

)
. (3.61c)

The orientation distribution function N(θ) is defined at the sphere (see
Fig. 3.11) and of course normalised (〈P0〉 = 1), therefore the second momen-
tum 〈P2〉 gives us the first information about the orientation of the molecular
chains:

〈P0〉 = 2 π

∫ π

0

P0 N(θ) sin(θ) dθ = 1 , (3.62)

〈P2〉 = 2 π

∫ π

0

P2(θ)N(θ) sin(θ) dθ ≡ f . (3.63)

The orientation factor vanishes (f = 0) if all axes of the polymer chains
are randomly distributed. It’s maximum is f = 1 if all polymer chains align
parallel to the fibre axis. The orientation of the molecular chains affects the
polarisability and leads to the difference of the refractive index for linear
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x
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z

θ

Fig. 3.11. Definition of the orientation distribution
function, θ is the angle between fibre axis z and the
end-to-end-vector of molecular chains, the distribution
of the orientation vectors about the sphere defines N(θ)

polarised light parallel and perpendicular to the fibre axis, called birefringence
Δn = n‖−n⊥ (Fig. 3.12). The birefringence is related to the orientation factor
as follows

Δn = f · Δn0 , (3.64)

where Δn0 is the maximum possible birefringence of the material (all molec-
ular chains are aligned parallel to the fibre axis), the so-called intrinsic bire-
fringence.

Fibre axis
Fig. 3.12. Linear polarised light, par-
allel and perpendicular to fibre axis

It was found that for noncrystalline amorphous polymers and for moderate
stress levels the (amorphous) birefringence Δnam satisfies a simple relation to
the applied stress σ, the stress-optical law [30]:

Δnam = Copt · σ , (3.65)

where Copt is the stress-optical coefficient.

The properties of partly crystalline polymers are usually described by
a two-phase model consisting of crystalline regions (fractional part Xc) and
amorphous regions (fractional part 1−Xc). Following this two-phase concept,
the birefringence of a semicrystalline material can be written as [174]

Δn = (1 − Xc) · Δnam + Xc · Δncr (3.66a)
= (1 − Xc) · fam Δn0

am + Xc · fcr Δn0
cr . (3.66b)
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The amorphous and crystalline phases are depicted by the subscripts ‘am’
and ‘cr’. An additional component of birefringence, the so-called ‘form’ bire-
fringence, is caused by the interaction of the two phases. In most cases this
form birefringence has only little effect and can be neglected. (However, if
rod-like voids are generated in the fibre, sometimes the form birefringence is
not negligible).

Crystallisation and Crystallinity

As mentioned above, a satisfactory and easy to handle theory of non-
isothermal crystallisation within the spinline is still missing. Nevertheless,
the basics of a phenomenological model will be shortly presented in the fol-
lowing section. For more details the interested reader is referred to separate
literature [163,214–240].

The crystallisation can be divided into nucleation and crystal growth. For
higher temperatures (near the melting point) the nucleation is low and the
material crystallises slowly, at lower temperatures (near the glass transition)
the molecular mobility is low and the crystal growth is slow. The result is a
maximum overall crystallisation rate at any intermediate temperature Tmax.
The high cooling rate in melt spinning allows for only a short time interval
for the temperature range where crystallisation is possible. Therefore the
temperature-dependent crystallisation rate for an isotropic material K(T, 0)
is given by the approximation

K(T, 0) = Kmax · exp

(
−4 ln(2) (T − Tmax)2

ΔT 2
1/2

)
, (3.67)

where Kmax is the crystallisation rate constant at the temperature Tmax of
maximum crystallisation rate, ΔT1/2 is the half-width of the Gaussian func-
tion. For a non-isotropic material with stress-related orientation f ∝ σ Zi-

abicki [214, 216, 220] proposed a series expansion of the crystallisation rate
K(T, σ) to include the stress and orientation effects in the form

K(T, σ) = K(T, 0) exp
(
C2 σ2 + C3 σ3 + . . .

)
, (3.68)

where Ci are constants. The linear term in (3.68) vanishes because of ther-
modynamic symmetry reasons. For moderate stress the crystallisation rate is
given as

K(T, σ) = Kmax · exp

(
−4 ln(2) (T − Tmax)2

ΔT 2
1/2

+ C2 σ2

)
. (3.69)

It can be seen that crystallisation is extremely sensitive to orientation or
stress, especially for the high-speed spinning process stress-induced crystalli-
sation can be observed. Other approaches [197–200] use the quiescent crys-
tallisation theory from Hoffman and Lauritzen, expanded by the stress-
orientation effect. This leads to
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K(T, σ) = K0 · exp
(
− U∗

R(T − T∞)
− C1

T · ΔT + C2T 2 · σ2

)
, (3.70)

where U∗ is the activation energy for segment motion, R is the gas con-
stant, ΔT = Tm − T is the supercooling where Tm is the melting temperature,
T∞ = Tg − 30K where Tg is the glass transition temperature, and K0, C1, C2

are material constants.

The development of the crystallinity Xc now is in agreement to the
Avrami approximation given by the relation

dXc

dt
= nK(1 − Xc)

[
ln

(
1

1 − Xc

)]n−1
n

, (3.71)

where n is the Avrami exponent, usually an integer value in the range of 1–4.
With n = 1 at steady state conditions the simpler (and often used) equation
follows:

dXc

dx
=

K(T, σ)
v

· (1 − Xc) . (3.72)

Mostly, melt spun fibres are partially crystalline. Assuming the two-phase
model of amorphous (density �am) and crystalline (density �cr) regions, the
mass density �p of a partially (Xc) crystalline fibre is given by the rule of
mixture:

�p(Xc) = (1 − Xc) �am + Xc �cr . (3.73)

Some typical values for fibre densities and also for the densities of the amor-
phous and crystalline regions are presented in Table 3.5, at a temperature of
20 .

Table 3.5. Amorphous, crystalline and typical fibre mass densities at 20

�am in g/cm3 �cr in g/cm3 �-fibre in g/cm3

PET 1.335 1.455 1.34−1.38

PA 6 1.09 α-modification: 1.23 1.12−1.14

γ-modification: 1.17

PP 0.854 0.963 0.90−0.905

Therefore, the precise measurement of the density can be used to deter-
mine the crystallinity in the solid state of the as-spun fibre:

Xc =
�p − �am

�cr − �am
. (3.74)

For example, Fig. 3.13 shows the mass density of some spun PET fibres vs.
spinning velocity. For a higher take-up velocity, the density increases because
stress-induced crystallisation occurs and the crystallinity Xc increases.
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ρ

Fig. 3.13. Mass density ρp for PET vs. take-up velocity vL, data points
taken/recalculated from [58,187,241–246]

3.1.6 Material Properties of Spinnable Polymers

Mass density and specific heat capacity of melt spinnable polymers are not
constant but depend on temperature and crystallinity. Elongational viscosity,
relaxation time and/or modulus also depend on temperature and structural
parameters. Finally the resulting fibre properties like elongation to break or
tenacity are correlated with the fibre structure.

Properties of the Melt

Mass density. The mass density �p of molten polymers can be assumed as
linear relation to the temperature T :

�p(T ) = �0 − �1 · T , T in . (3.75)

Some often used values for the parameter �0 and �1 for modelling the fibre
formation are shown in Table 3.6.

Table 3.6. Temperature dependence of mass density (3.75) in melt spinning

.

�0 �1 temp. range

in g/cm3 in ( )−1 in

PET 1.356 0.0005 70–300

PA 6 1.124 0.00056 55–300

PP 0.90 0.0006 25–260
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Heat capacity. The specific heat capacity of polymers can be determined by
analyzing their (equilibrium) melting behaviour using the established meth-
ods of differential scanning calorimetry (DSC). Regarding the thermal scans;
the glass transition, the crystallisation, and the melting peaks can be ob-
served. Therefore, the thermal analysis can also be used to calculate the
degree of crystallinity of the as-spun fibres. Otherwise the melt spinning pro-
cess appears in a non-equilibrium state. The process speed and cooling rate
are much higher, making it impossible to apply DSC methods for observa-
tion of phase transition. The locations and amounts of latent heat which one
can attain from the calorimetric scans normally cannot be used for describ-
ing the rapid fibre formation process. Regarding the tractability of the fibre
formation model, the specific heat capacity cp is often described by linear
relationship to temperature T :

cp(T ) = cp0 + cp1 · T , T in . (3.76)

Table 3.7 contains some possible values for the parameter cp0 and cp1 for
describing the heat capacity in the modelling of fibre formation.

Table 3.7. Temperature dependence of the specific heat capacity

cp0 cp1 temp. range

in J/(kg·K) in ( )−1 in

PET 1256 2.51 70–300

PA 6 2180 2.2 > 100

PP 1536 10.1 25–260

Elongational viscosity. The change of elongational viscosity with increas-
ing distance from the spinneret, essential, influences the characteristic course
of the spinning line (see the example of applying the constant force in
Sect. 3.1.4 on page 61). The elongational viscosity η (or the relaxation time
λ for the visco-elastic behaviour, respectively) generally depends upon the
molecular weight M and the molecular weight distribution of the polymer.
The dependence on the molecular weight often can be expressed by the in-
trinsic viscosity IV , or the relative solution viscosity. Sometimes it is conve-
nient to use the melt flow rate MFR (melt flow index MFI) instead of the
relative solution viscosity (e. g. for poly(propylene)). The local elongational
Newtonian viscosity η(x) depends on the local temperature T (x), and for
the non-Newtonian case the viscosity additionally depends on the local elon-
gational deformation rate ε̇(x). Finally, if crystallisation occurs, the effect of
the local degree of crystallinity Xc(x) has also to be taken into account.

The Newtonian viscosity is usually assumed to be approximated by the
Arrhenius equation with constant activation energy Ea:
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Table 3.8. Typical melt viscosities (zero shear viscosities) of spinnable polymers

PET PA 6 PP

Molecular weight 19 000 17 000 200 000

Processing temperatures ( ) 285–295 260–270 230–250

Melt viscosity (Pa·s) 120–90 140–120 120–80

η(T ) = η0 exp(Ea/k T ) , (3.77)

where η0 is a material constant depending on molecular weight or intrin-
sic viscosity and k is the Boltzmann constant. Equation (3.77) works well
in the high temperature range above the melting point. The better alter-
native to the Arrhenius formulation within the lower temperature range,
as the temperature approaches the glass transition temperature Tg, is the
Williams-Landel-Ferry (WLF) equation with Tg and melting tempera-
ture Tm as parameters:

η(T ) = η1 exp
( −(T − Tm)

(51.6 + T − Tg)(51.6 + Tm − Tg)

)
. (3.78)

On the one hand, the WLF equation gives a steep rise in the vicinity of glass
transition. However, on the other when solidification is reached the rise of
viscosity can be assumed to reach infinity for modelling purposes.

The influence of molecular weight M (expressed by intrinsic viscosity IV
or relative solution viscosity) on the elongational viscosity is usually given by
the power functions

η0 ∝ M b , η0 ∝ (IV )c , (3.79)

with exponents b = 3.2 . . . 3.4, and c = 1.8 . . . 2.2, respectively.
Table 3.8 shows selected parameters for typical melt viscosities of poly-

mers (measured in oscillatory shearing). For modelling purposes, the elonga-
tional viscosity is often assumed to be approximately three times the zero
shear viscosity. Some examples for the dependency of the elongational vis-
cosity on temperature for PET are shown in Fig. 3.14 .

The dependency of the viscosity on deformation and deformation rate
cannot be separated from the general visco-elastic and/or nonlinear rheolog-
ical behaviour. These problems are also strongly connected with the failure
behaviour of the polymer material. A short but only qualitative discussion is
given in Sect. 3.3.

Another unsolved problem is the correct description of the effect of crys-
tallinity on viscosity. There is a rapid increase of viscosity if crystallisation
occurs. Usually the viscosity η(T, Xc) = η(T )f(Xc) is expressed as a product
of temperature-dependent viscosity and a crystallinity-dependent function
f(Xc). There are several proposals [59, 200, 201] how to quantify the influ-
ence of crystallinity Xc on viscosity:
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Fig. 3.14. Elongational viscosity η vs. temperature T for PET, Arrhenius type
equations

η(T, Xc) = η(T ) exp(a Xb
c) , (3.80)

or

η(T, Xc) = η(T ) · (1 + 99 Xc) , (3.81)

or

η(T, Xc) =
η(T )

(1 − Xc/Xcrit)α
, (3.82)

with parameters a, b, α; Xcrit is a critical value derived from a crosslinking
model where η → ∞ when Xc → Xcrit.

Elastic modulus E. Little is known about the elastic modulus (or re-
laxation time) of the melt during elongational deformation. A possible as-
sumption follows the network deformation concept. For example the modulus
E = dσ/dεo of the Gaussian entropic network is given by

E(εo) = E0

(
2 exp(2 εo) + exp(−εo)

)
, (3.83)

where εo is the elongational (orientational) deformation of the network (see
also the discussion in the next paragraph), and where the parameter E0 fits
to the properties of the melt. Equation 3.83 implies that the relaxation time
λ = η/E has the same dependence on temperature as viscosity.
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Properties of the Solid Fibre - The Network Deformation Concept

Textile properties like elongation to break and/or the tenacity of as-spun
fibres are mainly determined by the orientational state reached during melt
spinning [280, 281]. The orientation itself depends on the realised spinning
stress.

Elongation to break. Regarding the correlation between (amorphous) ori-
entation (birefringence Δn) and elongation to break εb leads to the generally
accepted assumption that a maximum possible elongation εmax may exist de-
pending on the type of polymer. Extrapolating this relation to a hypothetic
value of vanishing orientation with Δn → 0 then allows to estimate the max-
imum possible elongation to break εmax. The same procedure can be applied
in principle for the behaviour of elongation to break vs. take-up velocity. Ex-
trapolating vL → 0 also leads to similar values for the maximum possible
elongation to break. Figure 3.15 shows as an example the elongation to break
vs. take-up velocity for as-spun PA 6 fibres at various spinning conditions.
The elongation ε measured in percentages relates to the corresponding draw
ratio DR and the logarithmic Hencky measure ε by2

DR = 1 +
ε (in %)
100%

, ε = lnDR . (3.84)

Fig. 3.15. Elongation to break εb vs. take-up velocity vL; PA 6, different spinning
conditions, filled symbols (•): molecular weight 16 000 – 18 000, open symbols (◦):
molecular weight 28 000; data source: Institute of Polymer Research Dresden

2 The elongation measured in percentage (%) is labeled with ε and the correspond-
ing logarithmic Hencky measure is labeled with ε.
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Table 3.9 contains the results for the maximum possible elongation to
break εmax also expressed as maximum corresponding draw ratio DRmax and
as logarithmic measure εmax.

Table 3.9. Maximum possible elongation of spinnable polymers

PA 6 PET

εmax (in %) 650–700 800–900

DRmax corresponding draw ratio 7.5–8.0 9.0–10.0

εmax (logarithmic Hencky measure) 2.0–2.1 2.2–2.3

Under the assumptions

• that a maximum possible elongation εmax exists and
• that each deformation (or drawing) step i is independent of the step before,

follows for the deformation steps the simple relation (in logarithmic Hencky

measure)∑
i

εi = εmax (3.85)

or, expressed with the corresponding draw ratios DRi∏
i

DRi = DRmax . (3.86)

Applying this concept of independent deformation steps to a typical melt
spinning process, one can easily calculate the residual elongation to break εb
of the fibre after spinning and drawing:

εb (in%) =
(

DRmax

DRm · DRspun
− 1

)
· 100 % (3.87a)

=
(

exp(εmax)
DRm · exp(εspun)

− 1
)
· 100 % (3.87b)

or, vice versa the necessary machine draw ratio DRm to any residual elonga-
tion to break εb of the final fibre after drawing if the logarithmic elongation
measure εspun of the as-spun fibre is known:

DRm =
DRmax/DRspun)

εb/100% + 1
(3.88a)

= exp(εmax − εspun − εb) . (3.88b)

In the equations above DRm = DR1 · DR2 · . . . · DRN denotes the total
draw ratio of the (machine) drawing procedure with N drawing steps; εmax
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is the polymer specific constant describing the maximum possible elongation.
The (logarithmic) as-spun elongation εspun reached in the fibre formation
process correlates with the elastic elongation and orientational deformation
of the visco-elastic rheological model (Maxwell or Phan-Tien-Tanner)
as described before: εspun ≈ εo. Figure 3.16 depicts this concept.

b
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low speed spinning and drawing with high draw ratio:

high speed spinning and drawing:
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Fig. 3.16. Principle of network deformation concept: independent drawing steps

Tenacity. The tenacity TN (sometimes called strength) is defined as the
breaking force Fb divided by the initial fineness T t0 of the filament at the
beginning of the force-elongation experiment TN = Fb/T t0. Melt spun fibres
often show a strain hardening behaviour with increasing elongation. On the
other hand, the higher the pre-orientation of the fibre (resulting from take-
up velocity and spinning stress) the higher the tenacity and the lower the
residual elongation to break. For typical melt spinning polymers like PA and
PET the product of tenacity and residual elongation to break, the (true)
stress at break,

σb = TN ·
(εb (in %)

100%
+ 1

)
(3.89)

is nearly independent of pre-orientation and the resulting elongation and can
be taken as a property of the polymer and its molecular weight alone. This
assumption in combination with the concept of the independent deformation
steps (Eq. 3.87b) allows us to predict the tenacity TN depending upon the
machine draw ratio DRm of the spun and drawn fibre if the elongation to
break of the fibre is known:
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TN =
σb

εb(in %)/100% + 1
(3.90)

= σb · exp(εspun)
exp(εmax)

· DRm . (3.91)

As a consequence, a (true) stress–(true) strain ’master’-curve of the poly-
mer exists to which the stress-strain curves can be shifted [137,280]. The shift
of each curve from the origin represents the realised pre-orientation in the
spinning process, resp. the spin draw ratio DRspun. Figure 3.17 shows the
stress-strain behaviour and Fig. 3.18 shows the resulting master curve after
the shifting procedure for low and high speed spinning of PA 6.
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Fig. 3.17. Stress-strain behaviour of as-spun PA 6 fibres; Take-up velocities: 1 –
6000 m/min, 2 – 5000 m/min, 3 – 4000 m/min, 4 – 1000 m/min, 5 – 800 m/min,
6 – 600 m/min, 7 – 400 m/min, data source: Institute of Polymer Research Dresden;

hyperbolic envelope:
8.6 cN/dtex

ε/100% + 1

Remark. The concept of independent deformation steps is quite simple but works
well in the manner of an initial approximation. A more exact analysis of properties of
spun and drawn fibres shows that εmax is not independent of the drawing procedure.
There is a slight increase with increasing draw ratio εmax = f(DRm) to a new higher
level specifically for higher drawn yarns (FDY). An analogue observation can be
made for the maximum possible tenacity TNmax.



78 3. Modelling of Fibre Formation

0

200

400

600

800

1000

1200

0.0 0.5 1.0 1.5 2.0 2.5

(true) Strain 

(t
ru

e)
 S

tr
es

s 
[M

P
a]

1
2

34
5

6

7

Fig. 3.18. Master curve of PA 6 fibres (true stress - true strain behaviour), shifted
curves of Fig. 3.17; Take-up velocities: 1 – 6000 m/min, 2 – 5000 m/min, 3 –
4000 m/min, 4 – 1000 m/min, 5 – 800 m/min, 6 – 600 m/min, 7 – 400 m/min; data
source: Institute of Polymer Research Dresden

3.1.7 Practical Modelling: Simulation of Fibre Formation

The complete set of equations which allows the simulation of the fibre for-
mation process differs from case to case, especially with respect to the
question of how the authors or investigators describe the deformation be-
haviour and structure development of the polymer. The available math-
ematical models show the progress made in the theory of fibre spinning
[38,40,59,152–155,157–172,194–197,213,258] but of course they do not satisfy
all experimental observations and many of them give no conclusions to the
resulting textile fibre properties. Generally more agreement exists among the
basic balance equations. The following two sections summarise the relations
for the fibre formation model and give some examples for the simulation of
polyamide 6 melt spinning. The equations used for the model here (specif-
ically the correlations to textile fibre properties) have been developed over
many years at the Institute of Polymer Research Dresden as a result of the
collaboration with industrial and scientific partners.

Complete Set of Equations

Geometry

A(x) =
π

4
D2(x) . (3.92)
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Balance equations

Q = �p · v · A (3.93)
dT

dx
= − (T − Tair) · Nu · π λair

Q cp
+

ΔH

cp

dXc

dx
, (3.94)

dF

dx
= Q

dv

dx
+ cf

ρair

2
v2 π D − �p g A . (3.95)

Remark: The surface tension contribution is neglected.

Rheology: Constitutive equations
Case 1: Newton model, purely viscous behaviour

σ = η
dv

dx
. (3.96)

Case 2: Maxwell model, visco-elastic behaviour

σ + λ v
dσ

dx
= η

dv

dx
. (3.97)

Case 3: upper convected Maxwell model, visco-elastic behaviour

σxx + λ v
dσxx

dx
= 2 λ (G + σxx)

dv

dx
, (3.98)

σrr + λ v
dσrr

dx
= −λ (G + σrr)

dv

dx
. (3.99)

Case 4: Phan-Tien-Tanner model, visco-elastic behaviour with strain soft-
ening

κ · σxx + λ

(
v

dσxx

dx
− 2

dv

dx
σxx

)
= 2 Gλ

dv

dx
, (3.100)

κ · σrr + λ

(
v

dσrr

dx
+

dv

dx
σrr

)
= −Gλ

dv

dx
, (3.101)

κ = exp
( α

G
(σxx + 2 σrr)

)
. (3.102)

Stress for constitutive equations cases 1 and 2:

σ =
F

A
, (3.103)

for constitutive equations cases 3 and 4:

Δσ = σxx − σrr =
F

A
. (3.104)

Crystallisation

dXc

dx
=

K

v
(1 − Xc) , (3.105)

K = Kmax exp

(
−4 (ln 2)(T − Tc)2

ΔT 2
1/2

+ C · f2
am

)
. (3.106)
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Birefringence and orientation

Δn = Δnam(1 − Xc) + Δncr Xc , (3.107)
Δnam = Copt · σ , (3.108)

fam = Δnam/Δn0
am . (3.109)

Polymer material properties

• mass density �p = �p(T, Xc, ...) ,
• specific heat cp = cp(T, Xc, ...) ,
• elongational viscosity ηe = ηe(T, M, ε̇, Xc, ...) ,
• modulus E = E(εo, T, Xc, ...) ,
• relaxation time λ(T, . . .),
• solidification temperature Ts = Ts(σ, ...) .

Transfer equations: heat and momentum

• heat transfer: Nusselt number Nu = Nu(Re‖, Re⊥) ,
• air friction coefficient cf = cf(Re‖, Re⊥) .

Environment material properties, e. g. for surrounding air

• density of air �air ,
• heat conductivity of air λair ,
• kinematic viscosity of air νair .

Structure development and textile fibre properties

• elongation to break εb ,
• tenacity TN ,
• orientation or birefringence Δn ,
• crystallinity Xc ,
• possible draw ratio (to get full drawn yarn, FDY) DR .

Initial and boundary conditions. To solve the coupled system of ordi-
nary differential equations of fibre formation above, the related initial and/or
boundary conditions are necessary. Known conditions at the spinneret are

• T (0) = T0, the filament (spinning or extrusion) temperature, and
• D(0) = D0, the filament diameter, resp. the filament velocity (= extrusion

velocity) v(0) = v0.

The initial rheological force F (0) = F0 is unknown, therefore the boundary
condition for the take-up point L has to be used:

• v(L) = vL, the take-up velocity.
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In practice, a shooting method needs to be applied in order to solve the
differential equations. The unknown initial rheological force F0 is estimated
first and then varied in an iterative procedure until the velocity v reaches the
take-up velocity vL after solidification within a given tolerance range. The
other initial conditions (e. g. the initial crystallisation rate for computing the
crystallisation) are usually set to zero at the starting point.

At higher take-up velocities stress-induced crystallisation may occur. The
differential equations describing the crystallisation kinetics and the fibre for-
mation procedure become stiffer and for solving them numerically a step
width control is necessary. The maximum step width Δxmax can be fitted to
a given maximum velocity step: Δxmax < Δvmax ·

(
dv
dx

)−1
.

Examples of Calculation

The primary interest in simulating the melt spinning process is the possibility
to get results on how the large number of process parameters influence the
spinning behaviour and consequently the fibre properties. But the simulation
results have to be verified by means of experiments in order to assess the
quality of the model. These tests must be carried out in a twofold manner.
At first, by measuring the physical variables within the fibre formation zone
itself, for example by measuring the velocity v vs. distance x from the spin-
neret. Secondly, by determining the resulting fibre properties after spinning,
for example the elongation to break, the birefringence, or the tenacity of the
fibres. Many researchers have investigated several aspects to model the fibre
formation process. However, their results differ more or less with respect to a
satisfactory description of the material behaviour and correlation to the fibre
properties. Sometimes the experimental verification seems rather difficult.

The following simulations were carried out exemplary for PA 6 (but would
also be possible for other materials) and show some effects of changing the
process variables to fibre formation. The computer simulation program and
the equations used here for describing the material behaviour and the corre-
lations to fibre properties (mainly for PA 6 and PET) were elaborated and
tested over a long time during the scientific cooperation of the authors and
their coworkers at the Institute of Polymer Research Dresden, together with
several partners from the industry. The strong interaction between exper-
imental and theoretical work is an unalterable requirement for developing
and improving any model.

Figure 3.19 shows the fibre velocity v versus distance x from the spin-
neret exit for a typical melt spinning experiment of PA 6. The points in the
figure are determined experimentally by means of laser doppler anemometry
(LaserSpeed LSM50, TSI Inc.), the solid lines are calculated using computer
simulation for two different rheological models discussed in Sect. 3.1.4. Nu-
merous experiments with different spinning conditions have been conducted
in order to improve and verify the model equations. Now the simulation can
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be used for quick estimation of fibre formation, the simulation needs less than
1 second on a modern personal computer.

Fig. 3.19. Fibre velocity v vs. distance x from spinneret, points: velocity measured
by means of laser doppler anemometry, each distance with 100...200 measurements,
solid lines: calculated, 1 – Maxwell model, 2 – Phan-Tien-Tanner model for rhe-
ological behaviour, Spinning parameter: PA 6, molecular weight: 17 000, through-
put (per hole): 1.5 g/min, diameter of capillary: 0.25 mm, melt temperature: 250 ,
velocity of quenching air: 0.35 m/s, temperature of quenching air: 15 , take-up
velocity: 4000 m/min; data source: Institute of Polymer Research Dresden

Figure 3.20 shows another comparison between experimentally deter-
mined and calculated fibre velocities, respectively. Each point in the diagram
represents the mean value of 500...1000 measurements of velocity. The simu-
lation results are in accordance with the experimental data, only for the high
take-up speed of 5000 m/min the calculation seems to become a little inaccu-
rate which shows a small gap of about 5 cm for the step (like a jump) to the
final velocity. It becomes clear that melt spinning is a highly dynamic pro-
cess, specifically the course of fibre formation at higher take-up velocities is
very sensitive to little changes because of the occurrence of the stress induced
crystallisation. In principle it seems that the accuracy of simulation which
can be reached with current models is in the magnitude of about 10 percent
of deviation.

The next simulations carried out for PA 6 and shown in the following dia-
grams are based on the Maxwell model in order to describe the rheological
behaviour. The molecular (number) weight (Mn) of the polymer is about
17 000. The molecular weight is related to the relative solution viscosity (in
H2SO4, 96%, 20 ) of about 2.45.

Figure 3.21 shows the effect of different take-up velocities on the cooling
behaviour (up to 6000 m/min). It can be observed that there is only weak
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Fig. 3.20. Fibre velocity v vs. distance x from spinneret exit, symbols: velocity
measured by means of laser doppler anemometry, each point represents the mean
value of 500...1000 individual velocity measurements, solid lines: calculated with
Phan-Tien-Tanner model for rheological behaviour, Spinning parameter: PA 6,
molecular weight: 17 000, throughput (per hole): 2.0 g/min, diameter of capillary
holes: 0.30 mm, melt temperature: 265 , no quenching air, temperature of environ-
ment: 25...28 , 1 – take-up velocity: 5000 m/min, 2 – 3000 m/min, 3 – 2000 m/min;
data source: Institute of Polymer Research Dresden

coupling between velocity and cooling. On the other hand, the take-up veloc-
ity is the most important process parameter to affect the fibre properties. The
higher the velocity, the higher the tensile stress and the higher the resulting
orientation of the as-spun filaments. The higher the orientation, the lower
the elongation to break. In reality, the spinning experiment with 1 g/min
throughput and 6000 m/min take-up is not practicable because of the very
high increase of spinning stress (see Fig. 3.22).

The two figures (Figs. 3.23 and 3.24) show the graphs of fibre formation
for different mass throughputs Q. The mass throughput strongly influences
the fibre cooling behaviour and therefore the filament temperature T (x), and
also the fineness of the as-spun filaments.

As shown in Fig. 3.24 the variation of the mass throughput Q has only
a little effect on the stress at the solidification point. The higher throughput
causes an increased length of the fibre formation zone and leads to an increase
of the acting fibre force F (inertia and the air friction force increase with
increasing mass throughput and distance). However, the larger diameter D,
respectively the larger cross-sectional area A, compensate this effect with
respect to the stress σ = F/A. Finally, the variation of troughput leads to
nearly similar stress at the solidification point. There is only little changing
of the fibre orientation and elongation to break with the variation of mass
throughput.
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Fig. 3.21. (Calculated) fibre velocity v (left) and temperature T (right) vs. dis-
tance x from spinneret exit, Maxwell model, Spinning parameter: PA 6, molecular
weight: 17 000, mass throughput (per hole): 1.0 g/min, diameter of capillary hole:
0.30 mm, melt temperature: 265 , no quenching air, take-up velocity indicated:
500, 1000, 2000, 4000 and 6000 m/min

vL xs σs εspun

m/min m MPa %

500 1.20 0.23 416

1000 1.16 0.80 257

2000 1.12 2.99 138

4000 0.76 7.94 79

6000 0.50 13.41 54

Fig. 3.22. Left: (calculated) tensile stress σ(x) vs. distance x from spinneret,
Maxwell model, right: stress σs at solidification point xs and resulting elonga-
tion to break εspun of as-spun fibres, Spinning parameter: see Fig. 3.21

Combining the changes of both process variables, mass throughput Q and
take-up velocity vL, leads to the diagrams shown in Fig. 3.25. In this figure
the graphs for the proportional increase of both Q ∝ vL are depicted, this
means constant as-spun fineness T t.

Obviously, the stress at the solidification point increases if the mass
throughput and take-up velocity increase in a proportional manner. The re-
sulting fibre orientation also increases and the elongation to break for the
as-spun fibres decreases.

Finally, the effect of the cooling conditions will be investigated. Fig-
ure 3.26 shows the influence of the environmental air temperature Tair and
Fig. 3.27 depicts the effect of different velocity profiles vair of quenching air
on fibre temperature T (x) and fibre velocity v(x).
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Fig. 3.23. (Calculated) fibre temperature T (left) and velocity v (right) vs. dis-
tance x from spinneret exit, Maxwell model, Spinning parameter: PA 6, molecular
weight: 17 000, mass throughput (per hole) indicated: 1...5 g/min (#1...#5), diam-
eter of capillary hole: 0.30 mm, melt temperature: 265 , no quenching air, take-up
velocity: 3000 m/min

Fig. 3.24. (Calculated) fibre diameter D (left) and tensile stress σ (right) vs. dis-
tance x from spinneret exit, Maxwell model, Spinning parameter: PA 6, molecular
weight: 17 000, mass throughput (per hole) indicated: 1...5 g/min (#1...#5), diam-
eter of capillary: 0.30 mm, melt temperature: 265 , no quenching air, take-up
velocity: 3000 m/min

Table 3.10 summarises the effects of changing certain parameters with
respect to fibre orientation, expressed by the elongation to break.

It is interesting to see the model predictions for the practical task of
changing the spinning parameter under the conditions of constant fineness
and constant elongation to break after drawing. The following is a typical
question that occurs in fibre production: How to change mass throughput,
take-up velocity and draw ratio to increase productivity (expressed by the
mass throughput) under the condition of unchanging final fibre properties
after drawing? An answer can be given with the help of the fibre formation
model. The next figures show the main results for the task of spinning a full
oriented PA 6 yarn (FDY) with final filament fineness of 4 dtex and final
elongation to break of 25% after drawing.
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Fig. 3.25. (Calculated) fibre velocity v (left) and tensile stress σ (right) vs. dis-
tance x from spinneret exit, Maxwell model, Spinning parameter: PA 6, molecular
weight: 17 000, diameter of capillary holes: 0.30 mm, melt temperature: 265 , no
quenching air, constant as-spun fineness of T t = 10 dtex: 1 — 1 g/min, 1000 m/min,
2 – 2 g/min, 2000 m/min, 3 – 3 g/min, 3000 m/min, 4 – 4 g/min, 4000 m/min,
5 – 5 g/min, 5000 m/min

T

T

Fig. 3.26. (Calculated) fibre Temperature T (left) and velocity v (right) vs. dis-
tance x from spinneret exit, Maxwell model, Spinning parameter: PA 6, molecular
weight: 17 000, diameter of capillary hole: 0.30 mm, melt temperature: 265 , mass
throughput: 3 g/min, take-up velocity: 3000 m/min, different temperatures of en-
vironmental air: 1 – 0 , 2 – 15 , 3 – 30

Figure 3.28 depicts the simple relations between as-spun fineness T t and
needed draw ratio DR for different mass throughputs Q vs. take-up velocity
vL under the condition that the final filament fineness of (here) T tf = 4 dtex
should be reached after drawing:

T t =
Q

vL
, DR =

T t

T tf
=

Q

vL · T tf
.

Each point of these graphs represents the necessary draw ratio DR to reach
the final filament fineness of 4 dtex for each combination (Q, vL). But each
combination of the spinning parameters (Q, vL) is also connected with desti-
nated orientation of the as-spun fibres and therefore the necessary draw ratio
to reach the final fineness of 4 dtex leads to very different final elongations
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v

v

Fig. 3.27. (Calculated) fibre temperature T (left) and velocity v (right) vs. distance
x from spinneret, Maxwell model, Spinning parameter: see Fig. 3.26, different
velocity profiles of quenching air: 1 – no quenching air, 2 – vair = 0.4 m/s, 3 –
vair = 0.8 m/s, temperature of air: Tair = 25

to break. Only at certain combinations (in Fig. 3.28 they are marked by the
symbol (•)) the elongation to break of 25% can be obtained.

Table 3.10. Variation of technological parameters: effects on orientation resp. elon-
gation to break for as-spun filaments.

Changing see Fig. Example εb in %

Take-up velocity vL 3.21 500 m/min 416

(Q = 1 g/min) 1000 m/min 257

2000 m/min 138

4000 m/min 79

Throughput (per hole) Q 3.24 1 g/min 95

(vL = 3000 m/min) 2 g/min 98

3 g/min 101

4 g/min 102

Q ∝ vL 3.25 1 g/min, 1000 m/min 257

(T t = 10 dtex) 2 g/min, 2000 m/min 146

3 g/min, 3000 m/min 101

4 g/min, 4000 m/min 84

Air temperature Tair 3.26 0 109

(vair = 0 m/s) 15 105

30 101

Air velocity vair 3.27 0.0 m/s 102

(Tair = 25 ) 0.4 m/s 100

0.8 m/s 97
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Fig. 3.28. Relation between (as-spun) fineness T t and needed draw ratio DR vs.
take-up velocity vL to reach final filament fineness of T tf = 4 dtex after drawing; dif-
ferent mass throughputs Q: a) 1.0 g/min, b) 1.5 g/min, c) 2.0 g/min, d) 2.5 g/min,
the symbols (•) mark the combinations where additionally the (calculated) final
elongation of 25% after drawing is reached, see also Fig. 3.29, Spinning parame-
ter: PA 6, moleculare weight: 17 000, diameter of capillary hole: 0.30 mm, melt
temperature: 265 , no quenching air

The calculated results for the dependency of elongation to break of the
as-spun fibres on take-up velocity vL for different mass throughputs Q are
shown in the upper part of Fig. 3.29. In the lower part the resulting final
elongations to break εb after drawing to the final filament fineness of 4 dtex
are depicted. It can be seen that only for certain combinations (Q, vL) it is
possible to reach the required final properties of T tf = 4 dtex fineness and
εb = 25% elongation.

In Fig. 3.30 the results of the calculations are summarised and the answer
to the question for how to increase productivity, posed at the beginning of this
section, is given. The relation between mass throughput and take-up velocity
is a nonlinear one: To increase the mass throughput, a super proportional
increase of the take-up velocity is necessary if the final fibre properties all
remain unchanged.

It is easy now to get the direction of how to adjust the general parameters
throughput and take-up velocity for a given task in fibre spinning and also
to appreciate the effects of changing spinning parameters on fibre properties.

Therefore the model of fibre formation can be a powerful tool not only in
fibre research but also in the production process.
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Fig. 3.29. (Calculated) elongation to break vs. take-up velocity vL before drawing
(as-spun) and after drawing to the final fineness of T tf = 4 dtex, different mass
throughputs Q: a) 1.0 g/min, b) 1.5 g/min, c) 2.0 g/min, d) 2.5 g/min, the points
(•) mark the required 25% elongation to break after drawing; Spinning parameter:
see Fig. 3.28

Fig. 3.30. Relationships between (1) take-up velocity vL, (2) draw ratio DR and (3)
wind-up velocity vw = DR · vL vs. mass throughput Q (per hole) for FDY spinning
process with final filament fineness of T tf = 4 dtex and (calculated) elongation to
break of εb = 25% after drawing, Spinning parameter: see Fig. 3.28
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3.2 Modelling of Fibre Formation in the Multifilament
Melt Spinning Process

3.2.1 Peculiarities in Multifilament Spinning

In the prior discussion about modelling the stationary single filament process,
the environment of the fibre was initially assumed to be the boundary con-
dition with a given temperature Tair(x), resp. velocity profile vair(x) of the
surrounding air. It is important to recognise that in multifilament spinning
these boundary conditions can vary from filament to filament location within
the filament bundle because of the interaction between the filaments and air.
At first, the hot filaments dissipate heat to the quenching air while it flows
through the bundle. The air temperature increases. Secondly, the air flow is
deflected in filament direction because the running filaments will impart the
axial component and reduce the transversal component of air velocity. These
effects are illustrated in Fig. 3.31. On the other hand, the cross flow of air will
also disturb the axially sucked air flow in the boundary layer of the filaments.
For a sufficient number of filaments per square unit the boundary layers for
the individual filaments also may overlap. Near the converging point where
the filaments are bundled the air flow inside the bundle will be pressed out.
As a result, the friction forces for the individual filaments then vanish.

y

x

windward leeward

y

x

Fig. 3.31. Multifilament melt spinning process (schematic), left: active quenching
from left hand side, right: no active quenching but air is sucked from the bundle
itself

All these effects influence the heat and momentum transfer from each
filament surface to the environment. Different geometries of the bundle and
air flow are possible, too (Fig. 3.32). Therefore, the spinning conditions of
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the individual filaments within the bundle vary and the spun filaments show
differences in structure and properties as a function of their position. These
differences lead to non-uniform or scattered properties, respectively, which
may influence the further processing in a negative manner.

Fig. 3.32. Possible geometries of multifilament spinning. Left: one-sided and
double-sided cross quenching; right: radial blowing from inside to outside and vice
versa

Examples. The following two examples give a simple estimation in which a
rise in temperature for the quenching cross air flow in a filament bundle can
be expected:

1. POY - yarn, PA 6

polymer: poly(amide) 6
spinneret: 24 holes arranged on two concentric circles,

diameter of outer circle: D1 = 50 mm,
diameter of inner circle: D2 = 40 mm,
diameter of capillary holes: D0 = 0.25 mm,

melt temperature: T0 = 255 ,
throughput: QPA = 24 × 1.5 g/min = 36 g/min,
take-up velocity: vL = 3000 m/min . . . 4000 m/min,
quenching: cross quenching from one side,

air temperature Tair = 20 ,
air velocity of air vair = 0.35 m/s,
length of quenching zone Lair = 1.20 m .

Assuming that the fibre formation zone ends at the end of the quenching
zone (no further deformation occurs) the transported heat Qair · cair and
the temperature rise ΔTair of air can be estimated as follows

Qair · cair · ΔTair = QPA · cPA · ΔTPA , (3.110)

where cair is the specific heat capacity of air, and the air volume affecting
the fibre bundle is approximately given by Qair ≈ �air ·vair ·Lair ·D1, while
using the diameter D1 of the outer circle as effective width of quenching
air. Using the following parameters
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temperature change of polymer: ΔTPA = 200 K,
specific heat capacity of PA 6: cPA = 2.4 kJ/(kg · K),
specific heat capacity of air: cair = 1.0 kJ/(kg · K),
mass density of air: �air = 1.2 kg/m3,

leads to the temperature rise of quenching air of ΔTair,1 ≈ 10 K. The
higher temperature at the exit side of air causes a delayed cooling of
the filaments and thus increases the length of the fibre formation zone.
The distance from the spinneret exit to the solidification point for the
filaments at the leeward side is larger as at windward side. Figure 3.33
shows the effect of the different curves of fibre velocity vs. distance for
filaments at the windward and leeward side.

Fig. 3.33. Filament velocity v (measured by means of laser doppler anemometry)
vs. distance x from spinneret exit, differences between windward (a) and leeward (b)
sides; quenching air velocity: 0.35 m/s, PA 6 melt spinning, throughput: 1.5 g/min,
take-up velocity: 1 – 4000 m/min, 2 – 2000 m/min; data source: Institute of Polymer
Research Dresden

2. Staple fibre process, PET
The example concerns staple fibre spinning with the following parame-
ters:

polymer: poly(ethylene terephthalate), PET
spinneret: 1300 holes, 13 rows with 100 holes in each row,

dimension W x B: 26 cm x 6.5 cm, rectangular,
diameter of capillary holes: 0.30 mm,

melt temperature: T0 = 290 ,
throughput: QPET = 1300 × 0.6 g/min = 780 g/min,
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take-up velocity: vL = 1200 m/min,
quenching: cross quenching from one side,

air temperature Tair = 20 ,
air velocity vair = 1.5 m/s,
length of quenching zone Lair = 0.5 m .

The fibre formation should be finished after a distance of 0.5 m. In anal-
ogy to the first example and using the parameters applicable to PET

temperature change of polymer: ΔTPET = 220 K,
specific heat capacity PET: cPET = 1.5 kJ/(kg · K),
effective width of quenching air: W = 26 cm,

then follows the mean temperature rise of quenching air at the exit side
of approximately ΔTair,2 ≈ 20 K

The estimated temperature change of air can be confirmed for the PA 6–
POY process experimentally. But, in the case of the second example of the
PET–staple fibre process, the experimental observations differ strongly from
the estimation: The temperature rise of quenching air at the leeward side
varies with distance from the spinneret and reaches more than 100 K near
the spinneret (see Fig. 3.44 following on page 115). Based on the rather simple
heat balance, the approximation carried out is no longer valid because the
local effects of air deflection and heat transfer are neglected. A more detailed
analysis becomes mandatory.

3.2.2 Models of Interaction Between the Fibre Bundle and the
Environment

The temperature and velocity field of air within the fibre bundle and the
fibre strands interact and thus influence each other [247,248]. Therefore, the
multifilament process should be treated as a two-phase system [249] where
the filaments are embedded in an environmental ’matrix’. At the boundary
layers between the two phases the general conditions for heat and momentum
transfer have to be satisfied. This method was employed specifically for the
wet spinning process by Szaniawski and Zachara [250–254]. But, in case
of a common melt spinning process where the ’matrix’ is given by air, the
properties and the behaviour of the two phases are extremely different. This
is why it is possible to regard both phases in a separate manner, and finally
to combine a model of multifilament melt spinning from three parts

• the single fibre formation model,
• the model of air velocity and air temperature fields,
• and the model of interaction between both.

Due to the heat and momentum exchange between fibres and air an iter-
ative calculation procedure is necessary. The iteration can be carried out in
the following manner (Fig. 3.34):
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Fig. 3.34. Schematic model for multifilament spinning

1. Calculation of velocity and temperature fields of air on the basis of simple
assumptions about fibre formation.

2. Calculation of the fibre formation process for some (not all) single fibres in
various positions across the bundle on the basis of the calculated velocity
and temperature fields of air.

3. Like step 1, calculation of velocity and temperature fields of air, but now
on the basis of the new calculated fibre formation results.

Steps 2 and 3 need to be repeated until sufficient convergence is reached, i. e.
no further changes occur. Finally, the calculation of fibre formation for all
fibre positions should be conducted with the final temperature and velocity
fields of air.

Cells method. Matsuo et al. [255], Yasuda et al. [65, 66] and Ishihara

et al. [256, 257] developed a method to treat the multifilament effects. They
divided the fibre bundle into individual cells for each filament row to apply
the balance equations of energy and momentum (Fig. 3.35). This method was
also used by Dutta [258, 259] and later similar treatments were developed
by means of FEM (finite elements method) calculations.

N(j-1) N(j) N(j+1)

i,ji,j-1 i,j+1

v (i,j-1)

q (i,j-1)

v (i-1,j) q (i-1,j)

v (i,j)

q (i,j)

v (i,j) q (i,j)

xx

x x

y y

yy

Fig. 3.35. Multifilament bundle divided into individual cells
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In Fig. 3.35, N(j) is the spinline of row number j, vx(i, j) and vy(i, j) are
the components of air velocity in the cell (i, j), and qx, qy are the components
of heat flow in x and y direction, respectively. The dimensions of each cell are
given by Δx · Δy · Δz (dimensions in fibre direction, in blowing air direction,
and perpendicular to both). The balance of air flow is composed by four flow
elements(

vy(i, j − 1) − vy(i, j)
)
Δz Δx +

(
vx(i − 1, j) − vx(i, j)

)
Δy Δz = 0 (3.111)

and the heat flow balance is given by five elements

qy(i, j − 1) − qy(i, j) + qx(i − 1, j) − qx(i, j)

=
(
T (i, j) − Tair

)
Nu π λair . (3.112)

The components of heat flow are defined as

qy(i, j) = �air cair vy(i, j)Tair(i, j) Δz Δx (3.113)
qx(i, j) = �air cair vx(i, j)Tair(i, j) Δz Δy , (3.114)

where T (i, j) and Tair(i, j) denote the filament and air temperature in cell
number (i, j), respectively, �air and cair are the density and heat capacity of
air. The main problem connected with this method is the determination of
the exact amount of air pumping rate of fibre – this is the difference of the
entrained air flows vx(i, j)−vx(i−1, j). Some researchers used the estimation
of Sakiadis [208–210] based on the boundary layer theory for continuous
cylindrical surfaces. But the cross air flow disturbs the cylindrical symmetry
of the boundary layer and a detailed analysis may show that the assumptions
made by Sakiadis are no longer valid in this case. There is no sufficient
theory for the flow behavior around a fibre in motion with additional cross
air flow. Nevertheless, some calculations using FEM-methods more recently
have been reported.

3.2.3 Continuum Theory

In order to avoid the difficulties related to the pumping effect of filaments
(which are quenched by an additional cross air flow) another model can be
used [260, 261]. The basic idea of this model was originally developed by
Schöne. The following section describes the method of calculating the ve-
locity and temperature fields of air for symmetric fibre bundles based on the
continuum theory of hydrodynamics. The application of this model to the
multifilament staple fibre spinning will be demonstrated later.
The main ideas of the continuum method are:

• Momentum balance: the equivalence of both air friction force acting on
fibres and acceleration impart of axial velocity component of air.

• Heat balance: the equivalence of both cooling of fibres and heating of
quenching air.
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• Continuously smoothed sources: the fibres are the sources of momentum
and heat imposed to the quenching air. These sources are assumed as
continuously distributed density fields in the bundle region.

• Rectangular or axially symmetric geometry is assumed in order to sim-
plify the mathematical treatment and to allow for the use of analytical
expressions for the quenching air flow.

Air Velocity

Rectangular geometry. The expressions for components vx and vy of the
air velocity field vair are given by the Navier-Stokes equations and the
continuity equation. In cartesian coordinates they are written as follows

�air(vxvx,x + vyvx,y) = ηair(vx,xx + vx,yy) + fx − p,x , (3.115)
�air(vxvy,x + vyvy,y) = ηair(vy,xx + vx,yy) + fy − p,y , (3.116)

vx,x + vy,y = 0 . (3.117)

The partial derivatives with respect to the coordinates are symbolised by the
subscripts (),x ≡ ∂()/∂x and (),y ≡ ∂()/∂y, vx and vy are the components of
air velocity in fibre direction x and in cross flow direction y, see Fig. 3.36, left
side. The terms �air and ηair represent the density and (dynamic) viscosity
of air, p is the pressure, and fx and fy are the components of the external
force density (see later). The continuity equation (3.117) can be satisfied by
introducing the potential flow function Ψ(x, y) with

vx = Ψ,y , vy = −Ψ,x . (3.118)

x
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Fig. 3.36. Geometry of multifilament spinning. Left: rectangular (cartesian) co-
ordinates, blowing air from the left side, right: radial symmetry, blowing air from
inner candle (with radius R0) outside
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Discussion I. Some simplifications, which are not so far from real spinning
conditions, should be discussed as follows. These assumptions will allow us
to use an analytical description of the air flow inside the fibre bundle.

1) At first, we should assume a constant air blowing profile vy(x, 0) = vy0,
independent of distance x at the windward-side. The interesting region for
fibre formation is the one between the spinneret exit at x = 0 and the solid-
ification point xs. In this region the course of fibre velocity v with respect to
distance x increases from the (very) low extrusion velocity v0 to the final take-
up velocity vL in an S-shaped manner. This development of the fibre velocity
v(x) should be simply approximated as a linearly with distance x increasing
function: v(x) = x · vL/xs. Furthermore, the relation between the air friction
force and the difference of fibre velocity and air velocity (v − vx) should be
assumed as a nearly linearly increasing function Fair ∝ x · (v − vx). It is
also convenient to approximate the air velocity vx itself as a function linearly
increasing with x. On the other hand, if there are free boundary conditions
on the leeward-side, the pressure p also becomes independent of distance x
and can be neglected in Eq. 3.115 (This argumentation is only valid in case
of the free leeward side, see Fig. 3.32). The advantage of the linearisation
is the possibility to uncouple the partial differential equations (3.115) and
(3.116), in order to get ordinary differential equations with respect to x and
y coordinates. The errors which are made by these linearisations with respect
to the real course of fibre formation can be corrected later by means of an
iteration procedure in a second step. Using the product

Ψ(x, y) = x · g(y) (3.119)

now leads to the simplified relations

�air x
(
g′2 − g g′′

)
= ηair x g′′′ + fx , (3.120)

�air g g′ = −ηair g′′ − p′ + fy , (3.121)

for the reduced potential flow function g, where g is only a function of the
cross direction y. The prime (′) denotes the derivative with respect to y,
g′ ≡ dg/dy.

2) Secondly, we should concentrate on Eq. 3.120. At the moment we are
only interested in the velocity field of air and its deflection and acceleration
within the filament bundle in the fibre direction. This is why we do not
consider the bending of filaments caused by the air stream in cross direction
and its backward deceleration effect on the air. Together with the linear
increasing force density (that is air friction force per unit volume) in the
form

fx(x, y) = x · �air k(y) (3.122)

we get for Eq. 3.120 the relation

g′2 − g g′′ = νair g′′′ + k , (3.123)
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where νair = ηair/�air ≈ 1.5 · 10−5 s/m2 is the kinematic air viscosity. Out-
side the bundle (region I in Fig. 3.36) the force density term k vanishes
and there is a simple analytical solution which satisfies the relation (3.123):
g(y) = c1 exp(c2 y) + c3 νair, with constants ci. Inside the bundle (region II)
the differential equation can be solved numerically. But because of the low
air viscosity, the viscous term νair g′′′ becomes insignificant in comparison to
the other parts and can thus be neglected. The numerical solutions with and
without the viscous part show that it is indeed possible to neglect the vis-
cous part within the bundle, and we then get the most simplified differential
equation

g′2 − g g′′ = k , (3.124)

which allows us to calculate the air velocity field inside the filament bundle.
Because we are only interested in the air velocity inside the bundle (region

II) the coordinate y can now be shifted in such a manner that the left edge
of the bundle fits into the origin at y = 0, and the right edge of the bundle
(its width) is given by y = B.

Analytical expressions for the air velocity field. An analytical solution
for g(y) in (3.124), resp. for the potential flow function Ψ(x, y) = x · g(y)
(3.119) and for the components vx and vy of the air velocity field inside
the filament bundle, exists for the special case that the variation of the force
density term k (3.122) across the fibre bundle in y-direction can be expressed
in the manner

k(y) = κ2 exp(2 α y) . (3.125)

Equation 3.125 includes different possible courses of the force density
across the fibre bundle: α = 0 describes the constant force density, α > 0 the
increasing force density, and α < 0 is related to a decreasing force density
with respect to y.

The analytical solution for the potential flow field in the simplified man-
ner (3.124) is given by an exponential function with complex argument. To
achieve physically realistic behaviour, a careful distinction between various
cases is required. With the abbreviation

β =
α · vy0

κ
(3.126)

the results for different cases can be expressed as follows:

Case 1: 1 − β2 > 0
The solutions for the potential flow function and the velocity components of
air in this case are

Ψ(x, y) = −x · vy0√
1 − β2

exp(α y) cos
(κ

√
1 − β2

vy0
y + c

)
, (3.127)
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vx(x, y) = x · κ · exp(α y)

[
sin

(κ
√

1 − β2

vy0
y + c

)
− β√

1 − β2
cos

(κ
√

1 − β2

vy0
y + c

)]
, (3.128)

vy(x, y) =
vy0√
1 − β2

· exp(α y) cos
(κ

√
1 − β2

vy0
y + c

)
, (3.129)

with

c = arctan
( β√

1 − β2

)
. (3.130)

Case 2: 1 − β2 = 0
The solutions for this (very special) case can be obtained by expanding the
functions above to

Ψ(x, y) = −x · vy0 · (1 − α y) exp(α y) , (3.131)
vx(x, y) = vy0 · α · x · y · exp(α y) , (3.132)
vy(x, y) = vy0 · (1 − α y) exp(α y) . (3.133)

Case 3: 1 − β2 < 0
For this case the square root

√
1 − β2 = i

√
β2 − 1 becomes imaginary. But

using the identities cos(i x) = cosh(x), sin(i x) = i sinh(x) and arctan(i x) =
i artanh(x), the solutions can be given again by means of real expressions

Ψ(x, y) = −x
α

|α|
vy0√
β2 − 1

exp(α y) sinh
(
d − κ

√
β2 − 1
vy0

y
)

, (3.134)

vx(x, y) = x · κ · α

|α| exp(α y)

[
cosh

(
d − κ

√
β2 − 1
vy0

y
)

− β√
β2 − 1

sinh
(
d − κ

√
β2 − 1
vy0

)]
, (3.135)

vy(x, y) =
α

|α|
vy0√
β2 − 1

exp(α y) sinh
(
d − κ

√
β2 − 1
vy0

y
)

, (3.136)

with

d = artanh
(√

β2 − 1
β

)
. (3.137)

Figure 3.37 depicts the graphs of the velocity component vy across the
bundle in non-dimensional manner (reduced by vy0) for the different cases
above.
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Fig. 3.37. Graphs of (reduced) velocity component vy/vy0 inside the bundle for
different cases β, κ B/vy0 = 1, values of β are indicated

Discussion II. Now we will discuss the important case of constant force
density k �= k(y) across the bundle (α = β = 0, case 1). The expressions
for the velocity components vx and vy (see Eqs. 3.128 and 3.129) then are
reduced to

vx(x, y) = xκ sin
(κ y

vy0

)
, (3.138)

vy(x, y) = vy0 cos
( κ y

vy0

)
. (3.139)

Comparing the analytical expressions above with the numerical solution of
Eq. 3.123 (with consideration of the air viscosity) shows that the approxi-
mated analytical solution and the numerical one are in accordance with each
other. The air flow velocity inside the bundle is determined mainly by inert-
ness and force density, therefore the viscous term can be neglected without
changing the overall flow behaviour.

If there is no active quenching the filament bundle will suck the needed
air by itself. This leads to a symmetrical air profile where air enters into
the bundle from both sides. The minimum value of air velocity vy0,min which
enters into the bundle can be determined with Eq. 3.138 and the condition

vx(x, 0) = vx(x, B) = 0 , (3.140)

or in equivalence with Eq. 3.139 and the condition for symmetry

vy(x, 0) = −vy(x, B) = vy0,min . (3.141)

The minimum value of air velocity which results from self-priming and which
describes the symmetric flow within the bundle is given by
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vy0,min =
κ B

π
. (3.142)

The value of quenching air which is necessary to penetrate the bundle vy0,pen

can be determined by the condition

vy(x, B) > 0 (3.143)

and leads to the relation

vy0,pen >
2 κ B

π
= 2 · vy0,min . (3.144)

Figure 3.38 qualitatively shows the air flow for the different cases.

Fig. 3.38. Air flow within the filament bundle. Left: symmetric case, no active
quenching, the filament bundle is self-priming air, vy0 = vy0,min; center: limiting
case of small quenching from left side, no penetration, vy0 = 2 vy0,min; right: active
quenching from left side, air penetrates the bundle, vy0 = 4 vy0,min

The assumption of constant force density (α = β = 0, case 1) across the
bundle is applicable for many purposes. An example of this is the staple fibre
spinning process with uniform distribution of capillary holes in the spinneret.
It will later be investigated in more detail in Sect. 3.2.4. On the other hand,
it is also possible to study the effect of air deflection by means of increasing
or decreasing the number of capillary holes in the spinneret at each line by
assuming a non-constant force density (α �= 0, k ∝ exp(2 α y)). The distri-
bution variation of the spinneret capillary holes changes the force density
k(y) across the bundle and influences the flow behaviour inside. Figure 3.39
shows the effect of increasing (left graphs) and decreasing (right graphs) force
density in comparison to the case of constant force density with respect to
distance y.
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Fig. 3.39. Air flow within the filament bundle. Left: Comparison between constant
force density (—–, α = 0) and increasing force density (−−−, α > 0); right: Com-
parison between constant force density (—–, α = 0) and decreasing force density
(−−−, α < 0)

The minimum necessary air velocity for the self-priming filament bundle
is given by Eq. 3.140. In the cases of variable force density α �= 0, it leads to
the expression

vy0,min =
κ B

π

√
1 +

α

|α|
(α B

2 π

)2

. (3.145)

Contrary to the symmetric flow in the case of constant force density (Fig. 3.38,
left hand side) the streamlines now become asymmetric.
Iterative improvement of the analytical solution. The Eqs. (3.128)
to (3.139) allow fast calculation of the air velocity inside the fibre bundle.
However, they are based on the assumptions of constant air blowing velocity
vy0 and linearly increasing filament velocity v(x). Normally, in real spinning
processes both the blowing air velocity and the filament velocity do notexactly
follow these conditions. But the effects of the afore mentioned assumptions are
mostly insignificant and therefore it is possible to use the developed relations
in a modified manner. The external force density fx(x, y) = x �air k(y) and
the velocity of blowing air vy0 are replaced by their globally varying mean
values (with respect to distance x)

k(y) → km(x, y) =
1
x

∫ x

0

k(x′, y) dx′ , (3.146)

vy0 → vym(x) =
1
x

∫ x

0

vy0(x′) dx′ . (3.147)

The dependence of the flow function on distance x can now be expressed
indirectly through its dependence of km (or κm) and vym, respectively, on
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distance x. Then, for the case α = 0, the Eqs. 3.138 and 3.139 become

vx(x, y) = x
√

km(x) sin
(√

km(x)
vym(x)

y
)

, (3.148)

vy(x, y) = vym(x) cos
(√

km(x)
vym(x)

y
)

. (3.149)

The mean value of the force density km(x, y) needs to be calculated by means
of iteration of the global momentum balance of air flow inside the fibre bundle
with respect to distance x:

Nr∑
j=1

N(j)
∫ x

0

cf(x′, yj)
�air

2
(
v(x′, yj) − vx(x′, yj)

)2
π D(x′, yj)2 dx′

= W

∫ B

0

�air v2
x(x, y) dy + W

∫ x

0

�air vx(x′, B) vy(x′, B) dx′ . (3.150)

Here, Nr is the number of filament rows, N(j) is the number of filaments
in each row j, yj is the inter-filament distance at row number j, and B and
W are the widths of the fibre bundle in y direction (quenching air direction)
and perpendicular direction, respectively. The left-hand side of Eq. 3.150
represents the sum of all air friction forces within the bundle at any distance x.
On the right-hand side, the first term describes the momentum in x direction
within the bundle, the second term is the expression for the momentum of
the air velocity component which has passed the bundle at distance y = B.
Equation (3.150) is the expression for the global balance between air friction
and momentum of the accelerated and deflected air in fibre direction x which
is to be satisfied. As an initial value (subscript 0) for the iteration of km the
result of the linear approximation (vy0 = const, v(x) ∝ x) can be used:

km,0(x) =
2

B W �air x2

Nr∑
j

N(j)Fair(x, yj) . (3.151)

Radial symmetry. It is also possible to find similar analytical expressions
for the air velocity in the case of radial symmetry and air flow from inside
(e. g. from a blowing candle) to the outside (see Fig. 3.36, right-hand side,
page 96). Concerning the rectangular cartesian case the procedures and the
discussions are analogue to the treatment above. The following paragraph
will only summarise the results. The Navier-Stokes and the continuity
equations for the radial case are

�air(vx vx,x + vr vx,r) = ηair(vx,xx + vx,rr) + fx − p,x , (3.152)
�air(vx vr,x + vr vr,r) = ηair(vr,xx + vx,rr) + fr − p,r , (3.153)

vx,x +
1
r

vr,r + vr,r = 0 . (3.154)



104 3. Modelling of Fibre Formation

Satisfying the continuity equation and decoupling the Navier-Stokes equa-
tion is possible by using the radial flow function Φ(x, r) with

Φ(x, r) = x · h(r) , (3.155)

where h(r) now is the solution of

�air · x · (h h′ − r h h′′ + r h′2) = r3 fx . (3.156)

The prime (′) in Eq. 3.156 denotes the derivative with respect to the radial
coordinate r. The velocity components are expressed by

vx(x, r) =
1
r

Φ,r , (3.157)

vr(x, r) = −1
r

Φ,x . (3.158)

With the following approach for the force density

fx(x, r) = x · κ2�air exp
[
2 α (r2 − R2

1)
]

, (3.159)

an analytical solution for Eq. 3.156 can be found. Again, three different cases
with respect to

γ =
2 α · v1 R1

κ
(3.160)

are to be distinguished.

Case 1: 1 − γ2 > 0
The solutions are

Φ(x, r) = −x · v1 R1√
1 − γ2

exp
[
α (r2 −R2

1)
]
cos

(κ
√

1 − γ2

2 v1 R1
(r2 −R2

1) + c1

)
,

(3.161)

vx(x, r) = x · κ · exp
[
α (r2 − R2

1)
][

sin
(κ

√
1 − γ2

2v1 R1
(r2 − R2

1) + c1

)
− γ√

1 − γ2
cos

(κ
√

1 − γ2

2v1 R1
(r2 − R2

1) + c1

)]
, (3.162)

vr(x, r) =
v1 R1

r
√

1 − γ2
·exp

[
α (r2−R2

1)
]
cos

(κ
√

1 − γ2

2v1 R1
(r2−R2

1)+c1

)
, (3.163)

with

c1 = arctan
( γ√

1 − γ2

)
. (3.164)
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Case 2: 1 − γ2 = 0

Φ(x, r) = −x · v1 R1 ·
[
1 − α (r2 − R2

1)
]
exp

[
α (r2 − R2

1)
]

, (3.165)

vx(x, r) = x · 2 α2v1 R1

[
1 − α (r2 − R2

1)
]
exp

[
α (r2 − R2

1)
]

, (3.166)

vr(x, r) =
v1 R1

r
· [1 − α (r2 − R2

1)
]
exp

[
α (r2 − R2

1)
]

. (3.167)

Case 3: 1 − γ2 < 0

Φ(x, r) = −x
α

|α|
v1 R1√
γ2 − 1

exp
[
α (r2−R2

1)
]
sinh

(
d1− κ

√
γ2 − 1

2 v1 R1
(r2−R2

1)
)

,

(3.168)

vx(x, r) = x · κ · α

|α| exp
[
α (r2 − R2

1)
][

cosh
(
d1 − κ

√
γ2 − 1

2 v1 R1
(r2 − R2

1)
)

− γ√
γ2 − 1

sinh
(
d1 − κ

√
γ2 − 1

2 v1 R1
(r2 − R2

1)
)]

, (3.169)

vr(x, r) =
α

|α|
v1 R1

r
√

γ2 − 1
exp

[
α (r2−R2

1)
]
sinh

(
d1− κ

√
γ2 − 1

2 v1 R1
(r2 −R2

1)
)

,

(3.170)

with

d1 = artanh
(√

γ2 − 1
γ

)
. (3.171)

The discussion and application closely follow the analogue cases for the
rectangular filament bundle.

Air Temperature

The basis for determination of the air temperature field Tair(x, y) is the energy
equation of heat conduction and heat convection inside the fibre bundle. In
analogy to the calculation of the air velocity field a two-dimensional steady
state flow without free heat convection is assumed. The energy equation in
cartesian coordinates is then given by

λair(Tair,xx + Tair,yy) = cair �air (vx Tair,x + vy Tair,y) − qfib , (3.172)

where λair, cair, �air are the heat conductivity, the specific heat capacity, and
the density of air, respectively.
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The heat source density qfib is equivalent to the heat transfer from fibre
surfaces into air. Its mean value (for each fibre row at position yj) is deter-
mined similarly to the calculation of force density. The heat quantity per
length unit is given by the fibre cooling balance as follows

qfib(x, y) =
1

B W

Nr∑
j=1

N(j) · Q · cp · dT (x, yj)
dx

, (3.173a)

≈ N

B W
π λair Nu(x, y) · (T (x, y) − Tair(x, y)

)
, (3.173b)

where N(j), Nr and N are the number of fibres in the jth row, the number of
rows, and the total number of filaments within the bundle, respectively. The
product B W is the cross-sectional area of the rectangular bundle. Instead of
the real temperature profile of the air around each fibre, an effective average
temperature field Tair is now calculated.

In the case of radial symmetry the corresponding relation to Eq. 3.172 for
the heat energy is given as

λair

(
Tair,xx +Tair,rr +

1
r

Tair,r

)
= cair �air (vx Tair,x + vr Tair,r)− qfib , (3.174)

where the heat source density in the radial symmetric case is given as

qfib(x, y) =
N

R2
2 − R2

1

λair Nu(x, r) · (T (x, r) − Tair(x, r)
)

. (3.175)

Discussion. There is no analytical solution to the energy equations (3.172)
or (3.174) within the filament bundle. The solutions can only be found nu-
merically by transferring the partial differential equations into any adequate
difference equations and using for example a five or more-points formula.

The amount of heat transportation by means of thermal heat conduction
is insignificant in comparison to heat convection by air:

λair(Tair,xx + Tair,yy) � cair �air(vx Tair,x + vy Tair,y) . (3.176)

For modelling, this suggests the possibility to simplify the energy equations
through neglecting the heat conduction, which means the complete suppres-
sion of the left-hand side of Eq. 3.172 or 3.174. However, in such cases where
no active quenching occurs or in the range between spinneret and onset of
air blowing, the bundle sucks the air by itself (because of the pumping effect
– the momentum balance has to be satisfied) and the air flow becomes sym-
metrical from both sides of the bundle to the center line. The result of these
model assumptions is that no filament cooling takes place along the center
line if the heat conductivity is not taken into account. Therefore, heat con-
ductivity becomes essential especially for the symmetric flow cases and for the
regions without active quenching. Additionally, there are always oscillations
of fibres and air, turbulences, and free heat convection in real fibre spinning
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processes. These effects increase of course the heat transfer described by the
heat conduction term λair alone. For a more realistic simulation the influence
of heat conduction should be taken into consideration by replacing the heat
conductivity λair with an effectively increased term λeff .

On the other hand, the temperature slope for the air in spinning direction
x is small in comparison to the slope in quenching direction y. While assuming
Tair,xx � Tair,yy the term Tair,xx can be neglected in Eqs. 3.172 and 3.174.
Together with a = λair/(�air cair) and with Eq. 3.173b resp. 3.175 then follows

Tair,yy =
vx Tair,x + vy Tair,y

a
− N · πNu (T − Tair)

B W
(3.177)

for the rectangular case, resp.

Tair,rr +
1
r

Tair,r =
vx Tair,x + vr Tair,r

a
− N · Nu (T − Tair)

R2
2 − R2

1

(3.178)

for the radial symmetric case.
After the onset of quenching air the influence of heat conductivity within

the fibre bundle can be neglected in comparison to the effects of the forced
convection. The terms at the left-hand side in Eqs. 3.177 and 3.178 vanish
and the equations to calculate the air temperature inside the fibre bundle are
simplified to

vx Tair,x + vy Tair,y =
N · πNu a (T − Tair)

B W
(3.179)

for the rectangular case, and

vx Tair,x + vr Tair,r =
N · Nu a (T − Tair)

R2
2 − R2

1

(3.180)

for the radial symmetric case, respectively.

Some Remarks to Boundary Conditions, Geometry, and Numerical
Realisation

For the calculation of the air temperature fields Tair(x, y), resp. Tair(x, r), it
is necessary to possess knowledge about

• the velocity fields of air vair(x, y), resp. vair(x, r) within the bundle
• the fibre temperature profiles T (x, yj), resp. T (x, rj) of each row j and

the corresponding Nusselt numbers Nu(x, yj) resp. Nu(x, rj) within the
bundle, and

• the conditions at the borders of the bundle, the boundary conditions.
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Air temperature. Knowledge of the air temperature profile at the bound-
aries of the rectangular region (see Fig. 3.40) is required in order to solve
the partial differential equation (3.177) for the temperature field inside the
bundle (the radial symmetric case can be treated in an analogous manner):

region A : Tair(x = 0, y) = Tair,spinneret(y) ,

region B, C : Tair(x, y = 0) = Tair,0(x) ,

region D, E : Tair(x, y = B) = Tair,B(x) .

The air temperature at the spinneret (region A in Fig. 3.40) is assumed to
be equal to the spinneret temperature itself, this means that it is also equal
to the initial fibre temperature T0:

Tair(x = 0, y) = T (0) = T0 .

y

x A

B

C

D

E

Fig. 3.40. Boundary conditions for rectangular
fibre bundle: A – initial fibre temperature, B
and D – unknown temperature, C – temperature
profile of blowing air, E – temperature profile
results from calculation

Near the spinneret and before the onset of quenching, that is the region
where the filament bundle sucks air by itself, the temperature profile of the
sucked air is normally unknown (region B and D in Fig. 3.40). The air tem-
perature there is influenced by many factors, such as the geometry of the
current spinneret design, the realised spinning conditions, the free heat con-
vection, etc. It seems impossible to determine the air temperature in this
region a priori. The only possibility to derive necessary boundary conditions
for the calculation is to make an assumption regarding the air temperature
based on temperature measurement in a real spinning process. The purely
theoretical solution of the multifilament melt spinning problem in this region
is impossible. This is due to the fact that the temperature profiles at the
borders, required as input parameter, depend in a very complex way on the
specialities of each respective spinning equipment. The boundary parameter
may thus vary from case to case.
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After the onset of quenching air (region C in Fig. 3.40) the boundary
conditions for the windward side are given through the temperature profile
and velocity profile of blowing air which are well-defined parameters in the
melt spinning process. The velocity of the blowing air is much higher than the
velocity of the self-primed air. Furthermore, the heat transfer becomes much
more effective and can be described by means of the forced heat convection
alone. Neglecting the slope Tair,yy dramatically simplifies the energy equation
(3.179). No more information about the temperature profile at the leeward
side is now needed (region E in Fig. 3.40).

There is a second difficulty besides the unknown boundary conditions in
the region near the spinneret. The heat conductivity of air λair is too small
to show any effect for realistic cooling behaviour along the centre line of the
fibre bundle for the case where no active quenching is done by blowing air.
The calculated temperature becomes nearly independent from the distance
x in the centre. As discussed earlier, this unrealistic result can be improved
by using an effective value of heat conductivity λeff (instead of λair) that
takes into account oscillations, turbulences, and free convection effects. The
comparison of calculated temperatures with values measured in real fibre
spinning trials can be used to fit the effective heat conductivity to the mea-
surements. The results from several experiments suggest a factor between
λeff ≈ (100 . . . 200)λair.

Summarizing the discussion above, it can be said that near the spinneret
and for regions without active quenching the air temperature needs to be cal-
culated using the heat energy equation (3.177) (for the rectangular bundle),
whereas the heat conductivity of air is taken into consideration and should
be replaced with a more realistic effective value λeff . For the regions with
active quenching and much higher air flow velocity the consideration of heat
conductivity of air is no longer important and can be neglected. For this case
the calculation can be carried out using Eq. 3.179.

Numerical realisation. For the simplest but most interesting case of con-
stant force density across the fibre bundle, the velocity field of air is given
by Eqs. 3.148 and 3.149 for the rectangular geometry (and the respective
equations for the radial geometry). The improvement made by iterative cal-
culation of the global mean value of force density km with respect to distance
x follows from the global momentum balance equations (3.150) (resp. the
radial correspondence). For iteration the use of the dampened Newton pro-
cedure is helpful:

k(i+1)
m (x) = k(i)

m (x) − δ
F̃
(
k

(i)
m (x)

)
F̃ ′(k(i)

m (x)
) , (3.181)

where F̃ is given by the air friction momentum balance

F̃ =
∑

Fair,i − W

∫ x

0

�air vx vy dx′ − W

∫ B

0

�air v2
x dy (3.182)
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for rectangular bundle geometry, and

F̃ =
∑

Fair,i − 2 π R2

∫ x

0

�air vx vr dx′ − 2π

∫ R2

R1

�air v2
x r dr (3.183)

for the radial geometry, respectively. The dampening factor δ < 1 avoids
too rapid changes within the iteration process and supresses oscillations. The
results of the linearised assumptions can be used as the initial value k

(0)
m to

start the iteration procedure with

k(0)
m (x) =

2
�air B W x2

∑
Fair,i(x) (3.184)

for the rectangular bundle geometry, and

k(0)
m (x) =

2
�air π (R2

2 − R2
1)x2

∑
Fair,i(x) (3.185)

for the radial geometry, respectively. For the cases of non-constant force den-
sity across the bundle (α �= 0, Eqs. 3.125, 3.159) the convergence region for
the iteration procedure is to be carefully observed. The starting values k

(0)
m

above can only be successfully used if |2 αB| � 1, or
∣∣γ (R2

2 − R2
1)
∣∣ � 1 .

The partial derivatives of the energy equations (3.177) and (3.178) can be
replaced with difference quotients expressed by any adapted point-formula.
If the second derivative Tair,yy (resp. Tair,rr) is taken into account for the
symmetric case, the result is a (three-)diagonal system of algebraic equations
which can be effectively solved with LD-dissection. On the other hand, if the
conduction effects can be neglected, a simple step procedure may be carried
out. In the latter case the numerical procedure is quite similar to the solution
procedures for the earlier described cell-method (see page 94). To accelerate
the convergence for the alternating calculations of the multifilament system
(fibres – air – fibres – air ... ) it is convenient to use only the Nusselt number
and then simultaneously calculate the fibre temperatures again, according to
Eq. 3.10.

In principle, the only reason to start the calculation procedure with the
model of fibre formation first is its simplicity. At first, the calculation of the fi-
bre formation is done based on any assumption concerning the environmental
air. Then the air velocity and air temperature are determined on the basis of
the air friction force and the heat exchange from fibres to bundle. After that,
fibre formation calculation is carried out again, and so forth until no further
significant changes can be observed. Depending upon the starting values and
the current spinning parameters (and also on the step width and number of
rows) sufficient convergence can be reached after approximately three to five
calculation runs. A modern personal computer (1 GHz processor clock rate
for example) only needs seconds to complete the calculations.
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Geometrical limits. The described method for modelling the multifilament
melt spinning process is easy to manage and leads to quick calculations which
allow to assess technological parameters with respect to optimised spinning
conditions for high quality fibre products. But the model is restricted to
the assumption of free boundary conditions at the leeward side. The pressure
gradient p,x vanishes only for the free leeward side and it is possible to use
the harmonic functions for computing the air velocity components within
the bundle. This means that the deflection of air is only caused by means
of air friction from the filaments alone. There is no influence of any walls
of the quenching chamber affecting the leeward side. The quenching air flow
originates on the windward side (or from inner side to outer side in radial
geometry), and air flow deflection is only caused by the fibres. If there are
no fibres then no air flow deflection occurs. On the other hand, if any wall is
located at the leeward side then the boundary conditions are not free anymore
as in the before mentioned manner, the deflection of air will then be caused
by both the filaments and the wall. The same effect occurs if quenching air
flow is reached from both sides to the centre (or from outer to inner side in
case of radial geometry). The effect of the wall can then be replaced with a
symmetry line. Furthermore, the pressure gradient p,x cannot be neglected
anymore since the streamlines result from both, air friction from fibres and
from the geometrical conditions of the quenching chamber. The further use of
the developed model is only possible if some modifications are implemented.
Firstly, the streamlines of air have to be determined depending upon the
geometry of the quenching chamber. Secondly, the influence of air friction of
the fibres needs to be considered. The latter can be achieved, for example,
with the described concept of the varying force density km(x). Figure 3.41
illustrates the basic idea.

quenching quenching
wall

Fig. 3.41. Boundary conditions on leeward side. Left: free boundary, air deflection
is caused only by fibres; right: no free boundary, air deflection is caused by wall and
fibres, the influence of the wall can be treated by replacing it with a symmetry line
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3.2.4 Example 1: Numerical Simulation of Fibre Formation in the
Staple Fibre Melt Spinning Process

The PET staple fibre melt spinning with rectangular geometry of the filament
bundle, as the introductory discussed on page 92 shall now be treated by
means of the outlined model for different quenching conditions. The spinning
parameters are as follows

polymer: poly(ethylene terephthalate) (PET),
spinneret: 1300 holes, 13 rows with 100 holes on each row,

dimension W x B: 26 cm x 6.5 cm, rectangular,
diameter of capillary holes: 0.30 mm,

melt temperature: T0 = 290 ,
throughput: QPET = 1300× 0.6 g/min = 780 g/min,
take-up velocity: vL = 1200 m/min,
quenching: cross quenching from one side,

beginning 5 cm below spinneret,
temperature Tair = 25 ,
velocity (1) vair = 1.5 m/s,
length of quenching zone Lair = 1.0 m .

The results of the calculation are shown in the following figures. Fig-
ure 3.42 depicts the streamlines of air flow within the filament bundle. The
deflection of air in fibre direction can be clearly seen on the left hand side
of the figure. The air sucking effect from both sides below the spinneret, in
the 5 cm region free of quenching air flow, is also shown on the right-hand
side of the figure. Next, Fig. 3.43 shows the temperature of air within the
bundle (the isotherms); there is a transition from symmetric temperature
distribution below the spinneret to asymmetric distribution after the start of
quenching at distance x = 5 cm.

Figure 3.44 illustrates the experimental verification of the calculated air
temperature. The diagram depicts the dependency of air temperature Tair on
distance x from spinneret at three positions: at windward side, in the center,
and at leeward side. The temperature at windward side is a given boundary
condition (and thus cannot be used for verification). The temperature inside
the bundle seems impossible to be measured, but the temperature at the
leeward side, when the air has passed the bundle, can be determined easily.

Unevenness of the Filament Properties

The air flow and air temperature distribution within the filament bundle
lead to different environmental conditions for each filament row which influ-
ence their cooling and air friction behaviour. It is obvious that any retarded
cooling caused by higher air temperature increases the length of the fibre
formation zone and affects the resulting filament properties. The longer the
fibre formation zone (the distance from the spinneret exit to the solidification
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Fig. 3.42. Air flow (streamlines) inside the filament bundle. The magnified region
below spinneret (x = 0 . . . 0.1 cm) is presented again at the right part of the figure;
spinning parameter: PET staple fibre spinning process, see before

point) the greater the exposition to air friction, and the higher the part of
the friction force. On the other hand, the deflection of air into fibre direction
(especially at leeward side) reduces the air friction coefficient and therefore
can also reduce the friction force. Both effects interact and it depends on
the current spinning and geometric conditions if and how the resulting stress
at the solidification point changes and thus the connected fibre properties.
The following figures show the courses of temperature (Fig. 3.45) and tensile
stress (Fig. 3.46) for fibres within the bundle in three selected rows, one at
the windward side (row #1), one in the centre of the bundle (row #7), and
one at the leeward side (row #13).

Under the prevailing conditions near the spinneret the filaments at wind-
ward side and leeward side (the outer sides of the filament bundle) are sub-
jected to higher cooling rates compared to the filaments in the center of the
bundle. The symmetric conditions of geometry and air flow in the region
near the spinneret also result in symmetric courses of fibre formation. But
after the onset of (asymmetric) quenching air the cooling rates change to
the (expected) sequence of windward-centre-leeward and the courses of fibre
formation also become asymmetric, as expected. The solidification points for
the individual filaments are reached at different positions. As discussed in the
section about the modelling of fibre formation, the stress at the solidification
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Fig. 3.43. Air temperature (isotherms) inside the filament bundle with quenching
air blowing from the left hand side. The magnified region below spinneret (x =
0 . . . 0.1 cm) is presented again at the right part of the figure; temperatures are
indicated ( ); spinning parameter: PET staple fibre spinning process, see before

point essentially determines the fibre orientation and its resulting properties.
Figure 3.47 shows the stress at the solidification points and the corresponding
elongations to break across the fibre bundle. The lowest stress at the solidifi-
cation point, the lowest orientation and consequently the highest elongation
to break (the highest draw ratio) is not attained to the fibres at leeward side
of the bundle but inside the bundle at row #9. This (for the moment unex-
pected) result is a direct consequence of the conditions near the spinneret.
The course of graphs in the diagram Fig. 3.47 does not appear very smooth,
but the scattering results from the numerical effect of rounding the numbers
to limited digits. In principle the numerical accuracy and smoothness of the
graphs can be improved.

In order to indicate the tranversal uneveness of the filaments (the variation
of the orientation over the bundle cross section) the maximum and minimum
elongation to break can be used to define the variation coefficient CVεb :

CVεb =
εb,max − εb,min

εb,min
· 100 % . (3.186)



3.2 Multifilament Spinning 115

Fig. 3.44. Air temperature inside the filament bundle at three different positions:
1 – windward side (row #1), 7 – center of the bundle (row #7), 13 – leeward side
(row #13), symbols: measured temperature at leeward side; data source: Institute
of Polymer Research Dresden

Fig. 3.45. Filament temperature T (x) (calculated) for three different locations:
1 – windward side (row #1), 7 – centre of the bundle (row #7), 13 – leeward side
(row #13), the position of solidification points at Ts =70 is indicated; spinning
parameter: PET staple fibre spinning process, see before

With the results shown in Fig. 3.47 the variation coefficient of orientation
(resp. elongation to break) is CVεb = 3.6 % .
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Fig. 3.46. Filament tensile stress σ(x) (calculated) for three different locations:
1 – windward side (row #1), 7 – center of the bundle (row #7), 13 – leeward side
(row #13), the position of solidification points is indicated; spinning parameter:
PET staple fibre spinning process, see before

Fig. 3.47. Filament stress σ(xs) at solidification point and corresponding elon-
gation to break (calculated) across the fibre bundle: rows #1 to #13; spinning
parameter: PET staple fibre spinning process, see before

The variation coefficient changes by modifying the process parameters,
but only small improvements are possible. Neither changes in throughput,
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extrusion temperature nor take-up velocity can entirely prevent this geomet-
rically associated variance. An example is shown in Fig. 3.48 which depicts
the trace of the maximum and minimum elongation to break and the vari-
ation coefficient CVεb versus the take-up velocity. The throughput in this
example was related to the take-up velocity in order to achieve a constant
filament fineness.

Fig. 3.48. Maximum and minimum elongation to break and corresponding co-
efficient of variation CVεb in dependence on take-up velocity, constant filament
fineness

Effect of Quenching Air Profile

The influence of changing the quenching air velocity on both the filament
cooling and to the uneveness of filament orientation across the bundle will be
briefly discussed in this section. Five different cases are considered, such as
no active quenching, and quenching air velocities of 0.5, 1.5, 2.0 and 3.0 m/s.
The case of 1.5 m/s air velocity was already mentioned, the figures of the
previous section can be directly compared to the following ones. The air
blowing starts again at distance x = 5 cm below the spinneret, the different
profiles of blowing air velocity and temperature are shown in Fig. 3.49.

The resulting streamlines and the air temperatures within the filament
bundle for the three cases (#A, #B, #D) are shown in Fig. 3.50.

It is obvious that the different velocity profiles affect the fibre properties.
Table 3.11 summarises the maximum and minimum elongations to break
together with the corresponding CV-value for each case. Additionally, results
of the calculations with vair = 1.5 m/s (#C) and vair = 3.0 m/s (#E) are
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Fig. 3.49. Velocity profiles (left) and temperature profile (right) of quenching air,
as used for calculation example

shown. It becomes clear that increasing the quenching air velocity increases
the eveness but also makes the process unstable if a critical value of air
velocity is reached. On the contrary, extremly high air velocities do not result
in a further decrease of uneveness. One reason for that is that the initial
rheological force F0 plays a more important role for fibre formation at low
take-up velocities than inertial or air friction force. The initial force F0 is
essentially determined from the conditions near the spinneret. Therefore it
should be possible to maximise the eveness by means of an adapted mass
throughput or by adapted temperature regime, respectively.

Table 3.11. Maximum and minimum elongation to break for different quenching
air velocity profiles

Air velocity εmax in % εmin in % CVεb in %

A: no active quenching 397 363 9.4

B: vair = 0.5 m/s 361 334 8.1

C: vair = 1.5 m/s 342 330 3.6

D: vair = 2.0 m/s 338 325 4.0

E: vair = 3.0 m/s 332 320 3.8

In general, stress at the solidification point becomes less dependent upon
spinning conditions at high take-up velocities. This is because the inertia force
then dominates the tensile stress. But at lower take-up velocities (which are
commonly used in the staple fibre spinning process and in the example above)
the stress at the solidification point can be influenced by spinning conditions
near the spinneret.
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Fig. 3.50. Streamlines (upper row) and temperature (lower row) of air inside the
filament bundle, A: no active quenching, B: vair = 0.5 m/s, D: vair = 2.0 m/s, the
temperature of the isotherms is indicated

Effects of Adapted Temperature Distribution and Mass Through-
put

The nearly parabolic characteristic of the elongation to break behaviour
which is shown in Fig. 3.47 can be corrected by a gradual adjustment of
the mass throughput and/or melt temperature distribution for the filaments
on each individual row of the spinneret. One possibility is to create a spe-
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cific temperature distribution across the spinneret plate (Fig. 3.51). The melt
temperature distribution has to affect the distribution of elongation to break
in opposite direction. The higher melt temperature at the windward side for
example first leads to a lower viscosity of the polymer melt and, under the
assumption of constant melt pressure, a higher mass throughput can be ex-
pected. Secondly, the higher temperature also affects the cooling length of the
fibres. Both effects act in the same direction and result (theoretically) in a
totally uniform orientation distribution across the bundle. The disadvantage
is that a filament bundle of such configuration indeed shows uniform orien-
tation but non-uniform fineness distribution. The filaments possess different
diameters resulting from the different throughputs. Besides that, it seems to
be difficult to implement the technical means for such temperature gradient
controlled spinneret plate under industrial conditions.

Fig. 3.51. Optimised melt temperature profile (left) and optimised capillary di-
ameters (right)

Another possibility to influence the mass throughput in the described
manner is to adjust the diameters of capillary holes in the spinneret. A similar
idea was already proposed earlier, with diameters gradually reducing from
windward to leeward side. The model calculation now allows to predict the
exact stepwise adaption of the hole diameters of each row. It indicates the
adaption of larger diameters at the windward side followed by the leeward side
and holes of smaller diameters in the centre. Figure 3.51 provides a proposal
for five stages of spinneret hole diameters. The corresponding Table 3.12
shows that, by adapting these five grades, the initial variation coefficient of
the elongation to break of nearly 4% drops to a quarter, and, adapting only
three grades still results in a drop of variation to half of the initial value. The
disadvantage of uneven fineness of course remains.

In principle it should be possible to combine the adapted melt tempera-
ture profile and the adapted capillary hole diameter distribution to minimise
both effects, that of uneven orientation and uneven fineness. But in practice
the realisation seems difficult and may only be achieved under very special
conditions.
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Table 3.12. Optimised spinneret hole diameters

Number of stages Diameter in [mm] Fineness in [dtex] CVεb in [%]

1 0.30 18 4

3 0.29 · · · 0.31 16 · · · 19 2

5 0.28 · · · 0.32 14 · · · 21 1

Effect of Retarded Cooling

A more effective and also easy to realise approach which does not change the
individual filament mass throughputs is the carefully designed asymmetrical
cooling program for the filament bundle. Since the cooling rate for the fila-
ment rows in the centre of the tow near the spinneret cannot be increased
and is always lower than that at the outer sides, the conclusion is to delay the
cooling rate of the filament rows at the windward and leeward side by means
of adapted booster heating. The lateral quenching exemplary adopted here
results in non-uniform cooling down of the windward side, the centre, and
the leeward side, respectively. A compensation of the non-uniform cooling can
be attained via asymmetrically designed booster heating near the spinneret.
The model calculation now allows to find the optimum temperature profile
at windward and leeward sides that provides (theoretically) for reduction to
zero of the CV value of the orientation. In practice the aim is to minimise the
variation of the orientation and the resulting uneveness of elongation to break
in order to achieve high quality yarns and to realise stable process conditions
and high productivity.

Figure 3.52 shows an optimised velocity and temperature profile of
quenching air, and Fig. 3.53 depicts the effect of the optimised profile to
the air temperature within the bundle. The air quenching starts 10 cm below
the spinneret. The region between spinneret at x = 0 and beginning of air
blowing is heated to different temperatures for the windward and the leeward
side, respectively.

Figure 3.53 can be directly compared with Fig. 3.43. The next diagram
(Fig. 3.54) shows the courses of fibre temperatures for three different posi-
tions inside the bundle. A comparison with Fig. 3.45 illustrates the retarded
cooling. The higher temperature near the spinneret mainly influences the ini-
tial rheological forces F0 of the fibres and therefore also the total forces at
each solidification distance. The result of booster heating is the nearly uni-
form distribution of stress at solidification points versus the filament rows
and at last nearly uniform filament orientations. Figure 3.55 shows the cal-
culated elongations to break across the fibre bundle in comparison with the
original (unoptimised) variant. The coefficient of variation for the elongation
to break CVεb changes from initially 3.6% to 0.8%.

As the mean orientation of the bundle is simultaneously reduced, a higher
draw ratio in the following drawing stages becomes possible and opens up the
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Fig. 3.52. Optimised profiles (#1) of air. Left: Velocity profile at windward side;
right: Air temperature profiles at windward and leeward sides, the profiles of the
example before (#2, see Fig. 3.49-C) is shown for comparison
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Fig. 3.53. Streamlines (left) and temperatures (right) of air inside the filament
bundle for optimised air profiles, the temperature of the isotherms is indicated.
Only the region 20 cm below spinneret is shown, please compare to Figs. 3.43 and
3.42

additional opportunity of increasing the mass throughput (increased produc-
tivity) with equal target fibre fineness. For the discussed example this would
lead to an increased productivity of about 4...5%. A further advantage of the
method of retarded cooling is its adabtability and flexibility. The method al-
lows for easy and quick adaptions to changes in production technology [262].
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Fig. 3.54. Filament temperature T (x) (calculated) for three different locations: 1 –
windward side (row #1), 7 – center of the bundle (row #7), 13 – leeward side (row
#13), the positions of solidification distances are indicated; optimised air profile

Fig. 3.55. Elongation to break (calculated) across the fibre bundle (row #1 to
#13) for the optimised air profile, CVεb = 0.8% (1), results of the origin variant
(Fig. 3.47) as comparison, CVεb = 3.6% (2)
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3.2.5 Example 2: Modelling of Fibre Formation in the
Spunbonded Nonwoven Process

The spunbonded nonwoven process represents a typical multifilament spin-
ning process because of its high number of filaments which can be up to a
multiple of thousands. Take-up of the filaments is usually achieved by means
of air friction, either in an excess-pressure or in an underpressure process, or
sometimes a combination of both. Hajji, Misra, Spruiell et al. [263, 264]
discussed the application of a modified single filament model to the Reicofil
spunbonding nonwoven process and found good agreement between experi-
mental and predicted data for their investigation. The following section deals
with the application of both single filament and multifilament fibre forma-
tion models to the underpressure spunbonding nonwoven process in order to
attain high filament velocities and low filament finenesses. The discussion is
based on investigations which were carried out by the authors together with
the Saxon Textile Research Institute Chemnitz [265]. The questions for the
investigations were the following: Which dependencies exist for the under-
pressure process between the filament velocity and the filament fineness on
the one hand and the spinning and take-up condition on the other? What are
the best energetic conditions for the air suction device? How is the take-up
to be designed to enable high filament velocities? Some answers can be given
with the help of the applied fibre formation model.

Friction Forced Filament Take-up

The specialty of the process is that the filament take-up is not realised by
means of godets or a winder like in the conventional yarn spinning processes
but via drag of an air stream in spinning direction (Fig. 3.56). Contrary to
the fibre spinning process where the final fibre velocity is fixed, the take-up
velocity resulting from air drag force is not known from the beginning and
thus cannot be treated as an initial spinning parameter. The higher the veloc-
ity of the axial air stream the higher the friction and drag force transferred to
the fibre – thus the higher the fibre velocity. Furthermore, the higher the fibre
velocity the lower its diameter (at constant mass throughput) and the lower
the resulting friction and driving of the fibre. Consequently, the intentional
effect will be reduced as the resulting air drag itself depends upon the differ-
ence between the velocities of fibre and air and also on the fibre fineness. The
final fibre velocity, its fineness and all corresponding properties result from
the balance between the air drag transferred to the fibre and the inherent fi-
bre force contributions like the rheological, inertial, and gravitational forces,
respectively.

When trying to solve the differential equations of the fibre formation
model it becomes obvious that the initial value F0 for the force at the spin-
neret is unknown. This causes no difficulties in the case of conventional take-
up by means of godets or a winder because the initial rheological force in the
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air

Fig. 3.56. Comparison between conventional yarn melt spinning process (left) and
nonwoven process with air drag take-up (right)

model can be determined via an iteration procedure, that is, until the final
take-up velocity is reached within an adequate numerical tolerance. However,
the situation regarding the take-up by means of air drag is quite different be-
cause the final take-up velocity results from an equilibrium of forces and
therefore is unknown from the beginning.

The simplest idea to solve this problem is to assume the initial rheological
force is equal to zero F0 = F (0) = 0 [263, 264]. But the problem can be
more accurately solved in general by means of an additional iteration if the
rheological force is known (or can be estimated) at any distance x of the
fibre path. Especially the usage of a take-up channel (see below) opens up
the possibility to get a much better assumption for the missing boundary
value.

Figure 3.57 illustrates the basic idea of modelling the effect of a take-
up channel. The possible technical realisation of an underpressure nonwoven
equipment is also depicted. The positions of entrance and exit of the take-up
channel (measured from the spinneret at x = 0) are x1 and x2, respectively.

The tensile force F for a single filament at entrance x1 of the take-up
channel is given by (see Eq. 3.11a on page 50 – the force balance)

F (x1) = F0 + Q · (v(x1)− v0) +
∫ x1

0

�air

2
cf ṽ2 π D dx−

∫ x1

0

�p g
π

4
D2 dx ,

(3.187)

where ṽ is the difference between the velocities of fibre and surrounding air,
respectively, ṽ = |v − vair|. The tensile force must be equal to the force applied
inside the take-up channel:

F (x1) = Fe +
∫ x2

x1

�air

2
cf ṽ2 π D dx −

∫ x2

x1

�p g
π

4
D2 dx . (3.188)

If the fibre is already solidified at the entrance x = x1 of the channel, which
means the fibre velocity and diameter are fixed and the air velocity inside
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Fig. 3.57. Principle of the take-up channel (left) and possible realisation of an
underpressure spunbonding nonwoven process (right)

the channel can also assumed to be constant, then (3.188) is simplified to

F (x1) = Fe + L
�air

2
cf ṽ2 π D − L �p g

π

4
D2 . (3.189)

The term Fe = F (x2) is the tensile force at the exit of the channel and
L = x2 − x1 is the channel length. Both equations can be combined together
for all distances x. If careful attention is payed to the signs of air friction
force contribution inside and outside of the take-up channel follows

F (x) = F0+Q·(v(x)−v0)+Θ

∫ x

0

�air

2
cf ṽ2 π D dx−

∫ x

0

�p g
π

4
D2 dx , (3.190)

with

Θ =

{
1 for v(x) > vair

−1 for v(x) < vair

. (3.191)

The initial tensile force F0 correlates with the initial fibre velocity gradient
dv/dx at x = 0 and therefore determines the final velocity after integration.
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The only reasonable assumption for the equilibrium of forces at any distance
is that the tensile force vanishes at the exit of the take-up channel

F (x2) = 0 . (3.192)

This condition replaces the boundary condition of a fixed take-up velocity.
With the air profile vair(x) given and the equations of fibre modelling, it is now
possible to calculate the final fibre velocity and all connected characteristics
of fibre formation.

High Filament Velocities – Realised by Means of an Underpressure
Spunbonding Nonwoven Process

Subject of the investigations described below is the design of an underpressure
spunbonding nonwoven equipment that realises high filament velocities up to
3000 m/min and filament finenesses of 1...2 dtex [265]. Boundary conditions
are: the maximum total height of the equipment of less than 3 m and the
limited power of the air suction blower. With help from the fibre formation
model it was possible to accompany the design process and to give useful
hints for the construction.

Inside the upper part of the underpressure spunbonding nonwoven equip-
ment, the air entrance chamber, the air flow behavior should be a symmetri-
cal (Fig. 3.57). Assuming a channel width of B = 20 mm, height of entrance
chamber of H = 1 m, and mean value of the air velocity inside the channel of
vchannel = 3000...6000 m/min, then follows for the air entrance velocity ventr:

ventr =
B

H
· vchannel = 1...2 m/s .

The amount of entrance air velocity is comparable to the quenching air veloc-
ity for the staple fibre multifilament spinning example treated in the section
before. Therefore the model of symmetrical flow behaviour can be used to
calculate the multifilament effects on individual fibre formation, for example
to estimate the differences in cooling behaviour of filaments located at the
inner and outer side of the bundle, respectively. Figure 3.58 elucidates the
application of the model for melt spinning of polypropylene.

For this process it must be assured that the filament temperatures inside
the take-up channel are lower than any given critical temperature in that
manner, and that no sticking occurs while the filaments touch each other
or the walls of the channel. The solidification which represents the end of
the fibre formation zone is not fixed because it depends on the spinning
conditions, especially on the mass throughput, the melt temperature, and the
kind of polymer material (with its property of heat capacity). Additionally,
the cooling rate is retarded in the centre of the filament bundle. Therefore
each set of spinning conditions determines a minimum distance xmin where
the temperatures of all filaments is lower than the critical temperature:
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Fig. 3.58. Example of multifilament model application to the underpressure spun-
bonded nonwoven process. Left: streamlines of air, right: filament temperatures
(isotherms), temperatures in indicated

T (xmin) < Tcrit . (3.193)

The next figure (Fig. 3.59) shows the distances where the polypropylene
filaments reach the temperature of Tcrit = 100 as example.

It can be seen that for the indicated spinning conditions these distances
are always lower than 1 m; therefore the minimum distance of xmin ≈ 1 m
according to the mass throughput of Q = 1 g/min is a sufficient distance be-
tween the spinneret and the entrance of the take-up channel. The calculation
also confirms the assumption that the final filament velocity depends nearly
linearly on the length L of the take-up channel. The calculation also provides
relationships to describe the dependence of final velocity on air velocity inside
the channel (see Figs. 3.60, 3.61).

At last the theoretical investigations allow to estimate the pairs of air ve-
locity vchannel within the channel and corresponding length L of the channel
to reach a destined filament velocity (Fig. 3.62). From the figures it can be
seen that the conditions to reach 3000 m/min filament velocity are approxi-
mately the following: channel length ≈ 1 m, driving air velocity ≈ 100 m/s.

The task of reaching a defined air velocity inside the take-up channel
of a given length and width is due to the power and energetic conditions
of the air suction blower and depends upon pressure losses of the channel
together with other parts of the spinning device. The longer the channel, the
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Fig. 3.59. Cooling length x100 (calc.) vs. final filament velocity v (upper and lower
limit for filaments at center and boundaries of the bundle); polymer: polypropy-
lene (PP), melt temperature: 260 , air temperature: 25 , three different mass
throughputs (per hole) are indicated

Fig. 3.60. Final filament velocity v (calc.) vs. length L of the take-up channel, two
different velocities of air inside channel (indicated), other spinning conditions: see
Fig. 3.59

higher the pressure losses and the lower the resulting air velocity inside, but
the higher the exposed length of the filaments to air friction force. On the
other hand, there is an optimum channel width B for a given length L to
achieve maximum possible air velocity. The smaller the channel width from
this optimum value the higher the pressure losses, and the higher the channel
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Fig. 3.61. Final filament velocity v (calc.) vs. air velocity vchannel inside take-
up channel, three different mass throughputs (per hole) indicated: 1 – 1 g/min,
2 – 0.6 g/min, 2 – 0.2 g/min, other spinning conditions: see Fig. 3.59

Fig. 3.62. Combinations for length L of take-up channel and air velocity vchannel to
destined final filament velocity v (indicated), mass throughput (per hole) 0.6 g/min,
other spinning conditions: see Fig. 3.59

width from the optimum, the higher the cross section area and the lower
the resulting air velocity. For the investigated equipment [265] the optimum
channel width was B = 20 mm. At last Fig. 3.63 shows the finally reached
filament velocities and finenesses depending upon the air velocity inside the
channel for the investigated equipment.
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Fig. 3.63. Final filament fineness T t and final filament velocity v in dependence
on the velocity of air inside take-up channel vchannel, mass throughput (per hole):
0.4 g/min, lines: calculated, symbols: measured values

3.2.6 Summary

Process modelling and simulation seems to be an effective way in order to
solve engineering problems. Computer simulations can indeed be a helpful
tool for understanding the principle behaviour of the considered process. But
one has to keep in mind that information generated by the computer pro-
gram is always based on any physical and/or mathematical model of the
real process, and this describes the essential aspects of the treated process
only in a relatively qualified manner. The simulations can never replace the
experimental work and the empirically collected experiences, but they can
powerfully support the laboratory and industrial research in order to avoid
time-consuming and/or expensive investigations regarding process modifica-
tion, extension, or optimisation, respectively. Especially the last mentioned
task of optimisation is typical for engineering procedures in melt spinning: the
prediction of resulting fibre properties after changing the process parameters,
geometrical conditions, the used material, or to optimise the process with re-
spect to productivity and quality. The example treated above shows how
the computer simulation was used to support the design of a special melt
spinning device for underpressure spunbonded nonwoven equipment. Here,
the theory of fibre formation together with the engineering modelling of the
entire process allowed for the determination of major dependencies and rela-
tions regarding material properties, process conditions and characteristics of
fibre formation. This knowledge, combined with additional empirical results
enabled the successful design of the device which provided for the desired
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filament velocity of 3000 m/min, and filament finenesses of 1...2 dtex, respec-
tively.

The results of any simulation are always to verify on the basis of ex-
perimental data. It is possible to measure on-line the filament velocity, the
filament diameter, the temperature, and orientation (birefringence) depend-
ing upon distance from the spinneret and to correlate the process conditions
with the resulting fibre properties. A serious model should be based on such
experimental background. Secondly, such a model should also be tractable
and for engineering purposes easy to handle. The models of fibre formation,
available after more than 40 years of development, do not satisfy all these re-
quirements. Some important effects cannot be described well so far but only
in an approximative manner (e. g. the theory of crystallisation in fibre forma-
tion). Some relations must be fitted to experimental data due to the lack of a
satisfactory theory. On the other hand, there are also reliable empirical data
missing for some polymer types, especially for the non-isothermal behaviour
under high stresses and high deformation rates. Therefore, the model of fi-
bre formation consists of both well investigated and exact relations but also
of approximations valid only for special conditions or within certain ranges.
For any successful engineering the need for the combination of both model
simulation and empirical experience is obvious.

3.3 Limits of Fibre Formation in Melt Spinning and
Spinnability

3.3.1 Maximum and Minimum Fineness

The limits of the melt spinning process can be estimated by some simple
physically based considerations [266, 267]. At first, we want to look at the
maximum possible fineness T tmax. The fineness of the as-spun filament is
given by the quotient T t = Q/v. Additionally, for the final drawn and full
oriented fibre the necessary draw ratio DR to reach final fineness T tf has
to be considered: T tf = Q/(v · DR). This means that in order to reach the
maximum possible fineness, the highest possible mass throughput Q and the
minimum possible take-up velocity v has to be used. The draw ratio itself
depends upon the spinning conditions, mainly on the take-up velocity. One
has to regard that cooling down of the polymer stream strongly relates to the
mass throughput (see Sect. 3.1, Fig. 3.23 on page 85) to realise the maximum
fineness. The higher the mass throughput per hole the longer the distance
to the solidification point. A simple demand for stable melt spinning and
avoidance of fibre breaks means that the fibres need to be cooled down below
the solidification temperature before their first contact with the preparation
applicator or any other fibre guidance element, respectively. The minimum
length Lmin of the spinning tube has to exceed the solidification distance:
Lmin > Ls. After solidification in general no further deformation of the fibres
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occurs. But sometimes it is required that a certain minimum fibre tempera-
ture has to be reached in order to avoid sticking effects between the filaments
and the guidance elements or between the filaments themselves. In Fig. 3.64
on the left-hand side the distance L50 is required to reach the temperature
T = 50 C and the solidification distance Ls for spinning of PA 6 at three
different mass throughputs depending upon the take-up velocity is shown.
For higher take-up velocities (v ≥ 3500 m/min) where stress induced spinline
crystallisation takes place the solidification occurs above the glass transition
temperature of Tg ≈ 50 C. But for maximum fibre fineness the lower take-up
velocities (v ≤ 3000 m/min) should be preferred so that the fibre temper-
ature at the solidification point equals the glass transition temperature of
Tg = 50 C for PA 6. The figure on the right-hand side depicts the calculated
cooling distance L50 ≈ Ls vs. mass throughput Q for different take-up ve-
locities of up to 3000 m/min. The upper curve in the picture represents the
relationship L50(Q) for the minimal possible take-up velocity vmin which itself
is determined by the minimal possible take-up distance (this is the solidifica-
tion distance) and the resulting gravitational force. The calculation based on
the minimal possible take-up velocity vmin was carried out in such way that
the resulting spinline stress shows a nearly constant or an only very small in-
creasing behaviour vs. the spinning distance x, that means that the minimum
take-up velocity has to be greater at least than the velocity of freely falling
fibre. At the solidification point the spinline stress for all variants reaches an
extremly low value: σs = 10 . . .15 kPa. The processing for PA 6 then results
in fibres with no (or very low) orientation and possible draw ratios of about
DR ≈ 6.

Fig. 3.64. Left: (calculated) distance L50 required to reach fibre temperature T =
50 C (solid lines) and solidification distance Ls (dotted lines) vs. take-up velocity v,
mass throughput (per hole) indicated; right: cooling distance L50 vs. mass through-
put Q, different take-up velocities: 1 – minimum possible (150 . . . 300 m/min), 2 –
500 m/min, 3 – 1000 m/min, 4 – 2000 m/min, 5 – 3000 m/min, Spinning parameter:
PA 6, molecular weight: 17 000, melt temperature: 265 C, no additional air quench-
ing
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Figure 3.65 shows on the left-hand side the thermal limitations for re-
garding the maximum possible fineness (after drawing to final elongation to
break of 25%) determined in terms of necessary cooling length vs. take-up
velocity. The figure on the right-hand side shows the maximum possible fine-
ness T tmax depending upon the throughput Q after drawing with draw ratio
DR = 6, applying the minimal possible take-up velocity vmin and under the
condition of an adapted optimum cooling distance.

Fig. 3.65. Left: limitation curves for maximum fineness T tmax (after drawing) vs.
take-up velocity v, cooling length L50 is indicated; right: (calculated) maximum
possible fineness T tmax (1) (after drawing) and minimum possible take-up velocity
vmin (2) vs. mass throughput Q (per hole), adapted spinning length; Spinning pa-
rameter: PA 6, molecular weight: 17 000, melt temperature: 265 C, no additional
air quenching

The maximum possible finenesses presented here are theoretical values,
of course, and estimated without any additional air quenching. Inclusion of
quenching should further stabilise the (low tension) spinning process. Result-
ingly, it can be stated that regarding the filament fineness the upper limit for
conventional spinning equipment with cooling lengths of L = 4 . . . 6 m for PA
is in the range of 30 . . . 40 dtex after drawing. For PET the required cooling
lengths are somewhat smaller, and the maximum possible fineness slightly
increases. In order to achieve any further increase of filament fineness the
conventional cooling by means of air is to be replaced by more effective cool-
ing methods, e. g. cooling and solidification in a water quench.

Remark. It must be mentioned that if the melt is extruded at very high through-

puts (high flow rates) the melt stream becomes distorted. These distortions are

known as melt fracture [268] where the extrudate shows instabilities in form of spi-

ral or gross flow behaviour or surface roughness and the so-called sharkskin effect.

These phenomena have been studied by many investigators and are still up to now

not fully understood.
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The minimum possible fineness after drawing should be reached with min-
imum throughput Q, maximum possible take-up velocity v and (if possible)
high draw ratio DR:

T tDR =
Q

v · DR
. (3.194)

The fibre orientation and therefore the resulting possible draw ratio are deter-
mined by the stress at the solidification point and depend upon the take-up
velocity (see Sect. 3.1, Fig. 3.22 on page 84). The higher the take-up veloc-
ity the higher the tensile stress and also the degree of orientation and the
lower the residual draw ratio. Figure 3.66 (left-hand side) shows the resulting
fineness before and after the drawing (to final elongation of 25%) of PA 6
fibres in a spinning process with increasing take-up velocity and constant
mass throughput. The advantage of getting minimum fineness after drawing
is not very effective due to the fact that, with increasing take-up velocity the
orientation increases and thus the draw ratio decreases. On the other hand,
the reduction of throughput directly decreases the fineness and only slightly
increases the fibre orientation resp. reduces the residual draw ratio. However,
the effect of increasing orientation in the case of decreasing throughput is
smaller than in the case of increasing velocity. To get minimal fineness, the
reduction of throughput is much more effective than increasing the spinning
speed (Fig. 3.66, right-hand side).

Fig. 3.66. (Calculated) filament fineness before drawing (1) and after drawing (2)
of PA 6 vs. take-up velocity v (left) resp. vs. mass troughput Q (right), constant
throughput and take-up velocity, respectively; the limits (marked with symbol ’ ?’)
are unknown and depend strongly on the material and the processing parameter

Increasing the take-up velocity and decreasing the mass throughput
rapidly border on the physical limits of the process. The higher the take-up
speed the higher the resulting spinline stress and the extensional deformation
rate of the material. This may cause filament breakages due to brittle cohe-
sive fracture or visco-elastic ductile failure. In the next section some aspects
of the failure behaviour will be discussed.
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An estimation of the limiting conditions with respect to fibre stress in the
spinning line can be made as follows: After solidification the tensile stress
must not exceed the critical stress level that may cause secondary deforma-
tion. Figure 3.67 shows on the left-hand side the fibre stress σL at certain
distances L depending upon take-up velocity vL. The example is calculated
for single PA 6 filaments with mass throughput Q = 1 g/min. The distance
to solidification for low take-up velocities when temperatures reach 50 C is
about Ls ≈ L50 ≈ 1 m. For higher take-up velocities the distance Ls becomes
smaller, however, the cooling distance L50 remains nearly constant. The fila-
ment stress strongly increases with take-up velocity, at longer distances L it
is mainly caused by air friction. To avoid unwanted secondary deformation,
the critical stress for PA 6 is assumed to be σcrit ≈ 50 MPa. The condition
σL < σcrit leads to the picture at the right-hand side of Fig. 3.67, which
depicts the maximum possible take-up velocity and the resulting minimum
fineness for the given mass throughput depending upon the take-up distance
L before and after drawing to 25% of final elongation. The shorter the take-up
distance L the higher the stress limited maximum possible take-up velocity
and the lower the resulting minimum fineness.

Fig. 3.67. Left: (calculated) filament stress σL vs. take-up velocity for different
distances L, distances are indicated: L = 1 m (1), 2 m (2), 3 m (3), 4 m (4), and
solidification distance Ls, dotted line: calculation without air friction; right: max-
imum possible take-up velocity (1) for the condition σL ≤ 50 MPa and minimum
fineness T tmin before (2) and after drawing (3) to 25% final elongation; PA 6, mass
throughput Q = 1 g/min

For the example above, with constant throughput of 1 g/min, it is not
possible to reach a final fineness of 1 dtex by only increasing the spinning
speed. For the production of fine filaments the reduction of throughput ap-
pears at the same time necessary. To get an impression of this second variant
in the next diagram (Fig. 3.68) the resulting tensile stress at distance L = 1 m
with respect to the accessible fineness is compared if (1) the throughput is
kept constant and the take-up velocity increases (this is the example above)
and if (2) the take-up velocity is kept constant and the throughput decreases,
respectively. It can be clearly observed that reducing the throughput leads to
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much lower stress at any certain distance and opens up the way to spinning
fine and ultra fine fibres.

Fig. 3.68. (Calculated) filament tensile stress σL at distance L = 1 m vs. filament
fineness T t, (1) – constant throughput Q = 1 g/min, increasing take-up velocity,
(2) – constant velocity v = 1000 m/min, decreasing throughput, (a) – fineness
before drawing (as spun filaments, solid lines), (b) – fineness after drawing to 25%
elongation (dotted lines)

Remark. Of course minimum air friction (and minimum stress level) results at
solidification distance Ls. In practice, the take-up distance should be as long as
necessary and as short as possible. To reduce air friction, it is effective to place the
guide, where the single filaments are bundled together, as close to the spinneret as
possible. Additionally, a further reduction of fibre stress seems possible via com-
plete avoidance of air friction. The friction component disappears if air and fibres
have an equal speed, realised by means of finely adjusted air stream in the fibre
direction through using a special shaped (e. g. conical) spinning tube. In this case
the tensile stress is mainly determined by inertia: σ ≈ � · v2

L (see dotted line in
Fig. 3.67) and nearly independent of throughput and the current take-up distance.
For very low mass throughput the cooling distance becomes very low and also the
resulting stress contribution from inertia. Now, the surface tension and the contri-
bution from initial rheological force F0 at the spinneret becomes more and more
important. F0 is determined from the mean fluidity of the material in the deforma-
tion region and can be influenced within certain limits by means of a post heating
zone below the spinneret in order to control the cooling and also the deformation
behaviour. Finally, the limit for possible minimum fineness of continously spun and
drawn filaments could be T tmin ≈ 0.1 dtex .
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On the other hand, the unlimited reduction of throughput leads sooner
or later to capillary break, the filaments divide into single drops. Under lim-
itation of very thin filaments the surface tension is contributed substantially
at the spinneret exit. The following consideration supports this assumption.
Melt spinning of filaments is also a generation of filament surface: The surface
generation rate ȦF for a filament is given by

ȦF = π · DF · vF = 2
√

π · vF · Q̇V , (3.195)

where DF is the final filament diameter, vF is the final velocity, and Q̇V is
the volumetric rate of throughput. Assuming N single drops with radius Rd,
the production rate of the drops surface Ȧd is given by

N · Ȧd =
Q̇V · 4 π R2

d

4/3 π R3
d

=
3

Rd
· Q̇V , (3.196)

and the ratio of surface generation between drops and filaments is given by
the relationship

NȦd

ȦF

=
3

2 Rd

√
Q̇V

π vF
. (3.197)

At decreasing throughput (volume rate Q̇V) the relation (3.197) becomes
at a certain level < 1 and the division into single drops is the energetically
favorable case. Of course the relationships above only provide for a qualitative
discussion and are not applicable to any quantitative calculation. For the
more detailed analysis Ziabicki showed that for capillary break the ratio
between surface tension and viscosity of the melt plays an important role
[274].

3.3.2 Visco-elastic Failure and Nonlinear Effects

Increasing spinning speed and/or decreasing throughput leads to filament
breakage. Failure behaviour in spinning polymer melts includes:

• capillary break,
• cohesive, brittle fracture,
• ductile failure.

For low take-up velocities and low deformation rates the Newtonian viscous
constitutive equation may sufficiently describe the rheological flow and de-
formation behaviour of the molten polymer. But even at higher deformation
rates the visco-elastic polymers show transient effects which characterise the
time dependency between polymer relaxation and deformation, described by
any relaxation time spectrum. To discuss the effect of visco-elastic failure the
simple Maxwell model (3.47) should be used. It is clear that the Maxwell
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model, and only one single relaxation time λ, cannot completely characterise
the rheological behaviour of the fiber forming polymers in melt spinning but
the effect can be made quantitatively visible.

Equation (3.47) on page 63 can be written as

η · dv

dx
= σ + λ v

dσ

dx
, λ =

η

E
, (3.198)

and together with σ = F/A = �p v F/Q then follows

dv

dx
=

1
η
·
σ

(
1 + λ v

1
F

dF

dx

)
1 − σ/E

. (3.199)

It can be seen from Eq. 3.199 that the deformation rate dv/dx becomes
infinitely large if the spinning stress σ or/and the compliance 1/E reach
some critical value. Assuming constant tensile force F (x) = Fc = C · Q/�p

as in the example on page 61 the deformation rate is simplified to

dv

dx
=

1
η
· σ

1 − σ/E
=

1
η
· C · v
1 − C · v/E

. (3.200)

The ratio between stress and deformation rate defines the apparent elon-
gational viscosity

ηapp =
σ

dv/dx
, (3.201)

which for the simplified case of constant force becomes

ηapp =
η

1 + λ
dv

dx

=
η

1 + De
, (3.202)

where De denotes the Deborah-number, which describes the ratio between
relaxation time λ = η/E and deformation time (dv/dx)−1. Visco-elasticity
appears as an artificial reduction of viscosity if the deformation is described
in the manner above.

Ziabicki [184] discussed the solution of Eq. 3.200 for the special case of
E = const. and pointed out that after reaching the critical region some visco-
elastic spinning instability occurs. Its intensity increases the more the ratio
between the elastic and viscous properties of the material increases. Similar
results were found by means of dynamic rheological measurements. For well
spinnable polymers the ratio between storage modulus G′ and loss modulus
G′′ must not exceed any critical value [269]. To illustrate the complexity
of visco-elastic behaviour Fig. 3.69 (left side) shows the spinline velocity v
vs. distance x from spinneret for three different ranges of elastic modulus:
1) the pure viscous case (E → ∞), 2) the visco-elastic case describing the
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spinning behaviour of PA 6 more realistically by means of a deformation
dependent modulus E = E0 f(εe) (Eq. 3.83), and 3) a visco-elastic case like
2) but with drastically reduced modulus (factor 0.01). The condition used
for the calculation in all three cases was that both viscosity and modulus
reach infinity at solidification distance and deformation finishes afterwards.
The corresponding apparent viscosities Eq. 3.201 are shown at the right-
hand side of Fig. 3.69. The Deborah number for the visco-elastic case 2)

Fig. 3.69. The influence of visco-elasticity on spinning behaviour (calc.). Left:
velocity v vs. distance x from spinneret exit, right: apparent elongational viscosity
vs. distance, 1 – pure viscous behaviour (E1 → ∞), 2 – visco-elastic behaviour
(E2 = E0 f(εe)) realistically describing melt spinning of PA 6, 3 – highly elastic
behaviour (E3 = 0.01E2); material PA 6, mass throughput Q = 1 g/min, take-up
velocity vL = 3000 m/min

in Fig. 3.69 varies from De ≈ 0.05 near the spinneret to De ≈ 5 near the
solidification point. This means that the spinning behaviour changes from
viscous at the beginning over visco-elastic to mostly elastic deformation at
the end.

A high deformation rate may lead to another effect well known in rheology:
the decrease of viscosity with increasing the deformation rate. This kind
of nonlinear rheological behaviour is often described in shear melt rheology
by a power-law equation or by the Cross-Carreau model which can be
generalised for extensional deformation to any equation of the form

η(T, ε̇) =
η0(T )

1 + a ε̇ b
, (3.203)

or, respectively

η(T, ε̇) =
η0(T )

1 + a
(
η0(T ) · ε̇)b

, (3.204)

with parameters a, b.
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The nonlinear effect of decreasing viscosity is demonstrated in Fig. 3.70
where the fibre formation was calculated again for the visco-elastic Maxwell

model (Eq. 3.47) but now with deformation rate depending upon viscosity
Eq. 3.203. Because it is only a qualitative comparison the simplified relation
with power exponent b = 1 was used. Other used parameters are the same as
in the example for the purely viscous (case 1) and the visco-elastic (case 2)
behaviours.

η0_________
1 + a dv/dx

Fig. 3.70. The influence of nonlinear viscous and visco-elastic spinning behaviour
(calc.), left: velocity v vs. distance x from spinneret exit, right: apparent elonga-
tional viscosity vs. distance, 1 – purely viscous behaviour (E → ∞), 2 – visco-elastic
behaviour (E = E0 f(εe)) realistically describing spinning of PA 6, (a) linear viscous
behaviour, parameter a = 0, (b) nonlinear viscous behaviour, parameter a = 0.1;
material PA 6, mass throughput Q = 1 g/min, take-up velocity vL = 3000 m/min

Nonlinearity and visco-elasticity amplify each other because both show
similar behaviour of decreasing the apparent viscosity while increasing the
deformation rate. In Fig. 3.70 the beginning of failure at the end of graph (2b)
can be seen, only prevented here by the abrupt end of the deformation be-
cause the viscosity and modulus are set to infinity at the solidification point.
There is no solution for the calculation (within the frame of the used model
equations) for any larger value of the nonlinearity parameter a > 0.1. The
nonlinear and highly elastic behaviour can lead to fibre breakage if no rapid
stabilisation effect follows. In melt spinning the stress induced crystallisation
may overtake this role and acts as an additional hardener. Often the neck-like
deformation observed is followed by stress induced crystallisation.

The different kinds of failure behaviour are shown in Fig. 3.71 (accord-
ing to [270, 273]). Brittle fracture occurs if the stress exceeds the critical
amount of the breaking stress. No special deformation appears at the point
of rupture. Otherwise the ductile failure shows a typical thinning behaviour
which may also lead to break, perhaps in a similar manner to the brittle
fracture because the stress significantly increases. The thinning behaviour
may be locally limited; this deformation is called neck -deformation. If the
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elongation or the elongation rate exceeds some critical value, the transition
to ‘catastrophic’ failure may occur and can be explained with the special
nonlinear visco-elastic rheological material behaviour. On the other hand, if
there is any stabilizing effect like stress/elongation induced crystallisation the
required breaking stress may rapidly increase and thus fibre breakage may
be avoided.

1

2 3 4

Fig. 3.71. Failure behaviour, 1 – brittle fracture, 2 – ductile failure, 3 – neck-like
deformation, 4 – neck-like deformation followed by any stabilizing effect

Figure 3.72 shows some experimental results together with results from
calculation, exemplary for high speed spinning of PA 6. The range from
3000 m/min to 7200 m/min and from 1.0 g/min to 3.0 g/min was investigated
experimentally (the bold marked region in the diagram). Each point within
the ‘spinnability map’ (according to [271–273]) represents a combination of
take-up velocity vL and draw down ratio ddr = vL/v0 ∝ vL/Q. Horizontal
lines in this map represent constant draw down ratios and therefore constant
finenesses. The straight lines passing the origin mark the states of constant
mass throughput. For the experiments the take-up velocity was increased
stepwise at constant mass throughput until fibre breakage occurred and no
stable spinning process was further possible. The points (or more exactly:
the small region) where the stable spinning behaviour turned into unstable
behaviour mark the right border of the investigated region.

Additionally, the calculated lines of constant maximum deformation rate
ε̇ = dv/dx and the lines of constant stress σs at the solidification point are
shown in the diagram.

The maximum possible draw down ratio decreases with increasing through-
put and increasing take-up velocity. This means that in order to get fine
filaments lower throughput and lower take-up speed is to be recommended
with respect to spinning stability. It seems that for small throughputs the
maximum deformation rate and the ductile failure behaviour are the limit-
ing factors of spinnability. For sufficiently high mass throughputs and higher
spinning speeds the melt spinning behaviour of PA 6 shows the typical neck-
effect. Much higher deformation rates and also higher stresses are now possi-
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Fig. 3.72. Spinnability map for PA 6 melt spinning, lines of constant mass through-
put (indicated); bold marked region: experimentally investigated, stable spinning
conditions; points (•): limitation of spinnability, right from the border line no fur-
ther spinning is possible; lines of constant maximum deformation rate (calculated):
1 – ε̇ = 100 s−1, 2 – 800 s−1, 3 – 1200 s−1, lines of constant stress at solidification
point (calculated): A – σs = 5MPa, B – 10MPa, C – 15 MPa, data source: Institute
of Polymer Research Dresden

ble. It seems that the stress induced crystallisation that occurs after necking
acts as a stabiliser and the failure then results from brittle fracture. Similar
conclusions were drawn also by other authors [273]. The failure behaviour of
melt spun polymers is an interesting field of fibre research with many un-
solved problems. The question of spinnability includes problems of material
behaviour (flow behaviour, rheology, crystallisation, phase transition, struc-
ture development, and so on) as well as measuring and analytical techniques
and also engineering practice.



4. Dynamics of Fibre Formation Processes

4.1 Task

It is well-known that textile fibres are produced with essentially three basic
technologies:

a) The separating, refining, strengthening and winding up of spinnable liq-
uid mass streams. All organic and inorganic chemical fibres are to be
subsumed to this group independently, if they are produced in a melt,
dry or wet spinning process.

b) The separating, parallel join and twist of fibres. All fibre yarns are to
be classified into this group independently, if the single fibres come from
natural (animal, vegetable) or chemical sources. The latter case is mostly
extending in front of a chemical fibre spinning process as seen in case a)
with following cut process.

c) Cut of plain sheets of organic polymers into thin, tape like stripes (slit
film yarn).

Each fibre formation process aims at the manufacturing of yarns with
equal properties along to the yarn length axis. This means in conformity
with the given definitions, that all product variables, which estimate the
textile processing and wear properties of the yarn, should be as constant as
possible. The case of effect yarn manufacture with consciously determined
periodic or stochastic disturbed yarn structures along its length axis is an
exception that should be mentioned. However, it will not be subject of the
following considerations.

The processing of textile yarns and their wear behaviour is characterised
by the product variable mass (fineness) along the yarn length axis or defor-
mation resistance (elastic modulus) along the fibre length axis. These product
variables oscillate around their averages caused by oscillations of raw materi-
als and process variables. Therefore these product variables characterise the
yarn unevenness, in which the fineness characterises the so-called outer yarn
unevenness and the elastic modulus characterises the so-called inner yarn
unevenness.
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4.2 Melt Spinning of Polymers

4.2.1 Variable Fibre Fineness

The yarn finenesses and the yarn orientation are the most important among
the different variables which describe the yarn quality. Therefore, the de-
velopment of a mathematical model for these two yarn variables should be
demonstrated here. At first, we start the investigations with the variable fibre
fineness.

Cause-Effect-Scheme

The cause-effect relations of the process and the product variables for the
target quantity yarn fineness should be demonstrated in the following. The
recommended first step of the modelling process (registration and order of
relevant process and product variables; see Sect. 2.5.1) can be carried out best
through the elaboration of a cause-effect-scheme. The technological scheme
of a melt spinning process is shown in Fig. 4.1.

It is to be remarked that this scheme is strongly simplified. It only con-
tains the absolutely necessary tools and variables for our considerations. For
instance thread guides, the oiling system and in some cases existing godets
before the winder are not drawn. It is assumed that the heating system for
the spinning die is an electrical resistance heating equipment. This is usual for
laboratory equipment. Typical for the polymer melt spinning process is, that
the thermoplastic melt (produced normally by means of an extruder) is fed to
the single spinning positions along a melt distribution system by means of an
exactly feeding volume conveyor tool for each (gear pump, spinning pump).
After passing the spinning die (the tool, which distributes the melt stream
into the number of filaments in the yarn) the single thin melt filaments are
rapidly deformed, cooled and strengthened. At this complicated rheological
and structural formation, shift processes take place in the filaments, which are
caused directly or indirectly by the take-up velocity, created by the winder.
For the target quantity or effect variable “fineness of the spun yarn” the
process and product cause variables that are probably interesting at such a
spinning position are shown in Fig. 4.1 as well.
Figure 4.2 shows the cause-effect-scheme for the target quantity fineness T ts
(designed on this basis).

The cause-effect-arrows go from the cause to the effect. The box of the
target quantity fineness is thickly framed, boxes of quantities at the process
periphery are shaded (from these arrows only lead off). The fineness T ts is
only caused under static conditions from the take-down (spinning) velocity
at the output of the fibre formation distance vs and from the throughput
through the spinneret Qs, which feeds the fibre formation distance at its
input. The basic equation uses the suitable dimensions
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melt from the extruder

melt distribution

spinning pump

spinning head

spinneret

fibre formation;
quenching air

fibre traverse motion

winder

Te, pe,ηe

np (Um, fm)
Qp

Uh,Ih, Nh, Rh

Ts, ps, ηs,

Rs, s, d, z
Qs

va

Ta

ϕa

tma, tmf

Tts, vs

nb (Um, fm);D 

Fig. 4.1. Technological scheme (simplified) of a polymer melt spinning process

T ts[tex] =
Qs[g/min]
vs[km/min]

(4.1)

It should be added, that changes of the quenching air velocity Δva below
the die, and the necessary traverse motion at the bobbin of the winder, which
is effected by the amplitude tma and the frequency tmf of the thread guide
for the traverse motion, also effect changes of the yarn fineness. However,
they do not effect changes to the mean fineness. They only change the value
of the fineness differentially. These 3 boxes are dotted frames. More detailed
explanations to the latter are in Sects. 4.1.1.3 and 5.1.5.4.

The main cause variables for the fineness T ts, namely the throughput Qs

and the take-down (spinning) velocity vs, can be traced back now regarding
their cause process and product variables. The take-down velocity vs is caused
by the speed of the bobbin nb, which is caused by the mains supply voltage
Um and the mains supply frequency fm if an asynchronous drive motor is
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Fig. 4.2. Cause-effect-scheme for the target quantity fineness T ts of a polymer
melt spinning process

used, and the wind-up diameter D. The latter of course increases with the
running time t.

The throughput Qs is only caused by the throughput of the spinning
pump Qp, which depends upon itself because of its geometrical design and
its speed np. Back stream leakages of the spinning pump, which would mean
Qs < Qp, are not regarded here. If the spinning pump would be driven by an
asynchronous motor from the same mains supply Um and fm to T ts would
be effectively doubled along the cause-effect-chains:

Um, fm → nb → vs → T ts and
Um, fm → np → Qp → Qs → T ts

The pressure before the spinning die ps does not appear as a cause variable
in regard to Qs. It only depends, corresponding to the Hagen-Poiseuille-
law for laminar flows in the tube, see [279], on the flow resistance inside the
capillary holes of the die Rs and from Qp. The flow resistance Rs depends on
its part from the geometry of the capillary holes (length s, diameter d, number
z) and from the melt viscosity ηs. The dependence of the melt viscosity ηs

on the spinneret temperature Ts and on the chemical polymer composition is
comprehensible by reason of simple basic physical laws. The dependence of
Ts on the cooling conditions at the spinning die and on the heating power Nh
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(itself depending on the mains supply voltage Um and on the Ohm’s heating
resistance Rh) can be concluded with the same reasons.
In the next step it is necessary to set up the DEq. for each cause-effect
relation or, if impossible, to investigate the dynamic signal transfer properties
of the partial transfer systems. The signal transfer and signal interlacing
character can be better represented by means of the so-called functional block
diagram. In automatic control this is an often used scheme, which develops
formally from the cause-effect-scheme by means of technological and prior
physical knowledge. This only contains the change or oscillating parts of
the process and product variables as their signals are connected together
by cause-effect relations. The dynamic transfer properties are represented
by the blocks, “black boxes”, which are unknown at the beginning of the
analysis. This procedure will be demonstrated more fully in Sect. 4.3 with
the example of “glass fibre spinning”. In the following, the set up of the
dynamic model will be demonstrated, which on the one hand describes the
cause-effect relations between the cause variables throughput spinneret Qs

and the spinning velocity vs and the fibre fineness T ts which is effected by
these variables, on the other. The final goal of this procedure is to prepare
technological statements about the disturbance transfer properties of the fibre
formation distance.

Specified Differential Equation of a Fibre Formation Distance (sim-
plified)

Figure 4.3 shows the fibre formation distance of the melt spinning process,
only one monofilament fibre, which is reduced to the most necessary of ele-
ments and variables.

A melt stream is pressed through the capillary hole, cross section qi, of
the spinneret with the velocity vi (input velocity or injection velocity into the
fibre formation distance). At the length l between the spinneret and the take-
up rolls with the output velocity vs it is drawn, solidified and transported.
The ready fibre with the cross section qs esp. the fineness T ts appears at
the take-up rolls. The relationship between the fibre fineness and the cross
section is given by the density � in the following manner:

T ts[tex] = �[g/cm3] · qs[μm2] · 10−3 (4.2)

The following relationship exists between the mass discharge per time (or
throughput) Qs and the input variables of the fibre formation distance:

Qs = � · qi · vi (4.3)

In Eq. 4.3 it is not distinguished between �fibre and �melt, because a constant
factor exists between these two densities and an influence on the time and
frequency oscillation relations will not be given. We split according to the
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vi

~
vs

l

qs,Tts, ρ

qi, Qs, ρ

Fig. 4.3. Fibre formation distance (simplified) of the
polymer melt spinning

agreement the variables, if necessary, into the mean value and the fluctuating
part, consequently for instance:

vi = vim ± Δvi,
qs = qsm ± Δqs and so on

The question is: Which T ts-fluctuations appear and if fluctuations of the
variables vi, qi, �, vs or l appear? The question can only be answered on the
basis of a dynamic fibre formation model. Ingeniously the starting point is
the dynamic continuum equation (2.18).
Applied to the present fibre formation distance are:

mass inflow/time = qi·vi·�
mass discharge/time = qs·vs·� = T ts·vs

change of stored mass = q̇s·l·� = Ṫ ts·l
The assumed simplification at the formulation of the stored mass is, that

the deformation range of the melt stream until it reaches its solidification
point is not considered. At this point the diameter or the fineness of the spun
fibre is reached. However, this range of the whole fibre formation distance is
relatively small (∼ 0.5...0.8 m), and the related mistakes do not prevent qual-
itatively correct results. An exact and quantitatively correct consideration of



4.2 Melt Spinning of Polymers 151

this range makes a correct mathematical solution impossible. In Sect. 3. the
very complex processes which take place in the fibre formation distance are
explained in more detail.

Using the expressions above the complete DEq. of the fibre formation
distance can now be written as:

qi · vi · � − T ts · vs − Ṫ ts · l = 0 (4.4)

By marking the whole left side of the DEq. 4.4 with the letter Φ and in-

troducing the Laplace-operator p =
d
dt

, the DEq. is converted into the
transformed quantic:

Φ = qi · vi · � − T ts · vs − p · T ts · l = 0 (4.5)

Equation 4.5 represents a nonlinear DEq. first order, because all variables
in the single terms, which can fluctuate, are multiplicatively connected to-
gether. Equation 4.5 can be linearised by means of the partial differentiation
as follows:

∂Φ

∂qs
· Δqs +

∂Φ

∂vs
· Δvs +

∂Φ

∂qi
· Δqi +

∂Φ

∂vi
· Δvi +

∂Φ

∂l
· Δl +

∂Φ

∂�
· Δ� = 0 (4.6)

The instruction of Eq. 4.6 means, that the whole DEq. 4.5 is to be derived
partially with respect to each single variable of change. The mean value is to
be set by the single derivation step for these variables which are not to be
derived. The following linearised complete DEq. is achieved as the mathemat-
ical dynamic model of the fibre formation distance after the partial derivation
and order of the single terms:

(vsm + p · lm) · ΔT ts + T tsm · Δvs − vim · �m · Δqs

−qim · �m · Δvi + p · T tsmΔl − qim · vim · Δ� = 0
(4.7)

Equation 4.7 is a multilateral applicable dynamic model equation for fibre
formation and fibre transport processes (see also Sect. 5.1). The performed
linearisation (each term of the Eq. 4.7 contains only variables of change in
time) is connected to the following consequences regarding the analysis:
Equation 4.5 represents primarily a nonlinear relationship. This is imaginable
as a spatial multidimensional curved sheet and it is approached by a plane
tangential sheet in the technological operating point. It is determined by the
mean values of the single variables. The linearised relation is better validated
the nearer the analytical investigation remains at this technological operation
point. That means that the linearised Eq. 4.7 is valid more exact the smaller
the investigated change quantities are in relation to their mean values. In
practice it should be kept for any change variable x:

Δx � 0.1 · xm (4.8)
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Solutions of the Differential Equation of the Fibre Formation Pro-
cess

DEq. 4.7 is the calculation basis for the characterisation of the dynamic
behaviour of the fibre formation distance. It is now possible to calculate the
effects of Δvs-, Δvi-, Δqi-, Δ�- and Δl- disturbances on the fineness changes
ΔT ts. Each change variable is ingeniously to be regarded separately.

Disturbance Δvs (changes of the take-down velocity). The boundary
condition for this case is:

Δvi = Δqi = Δ� = Δl = 0

Introducing this into the DEq. 4.7 and applicatiing the calculation and
conversion algorithms (which were explained in detail in Sect. 2.5.2) results
in:

dynamic transfer function:

G(p) =
ΔT ts
Δvs

= −T tsm
vsm

· 1

1 + p · lm
vsm

(4.9)

The complex frequency response follows:

G(jω) =
˜ΔT ts

Δ̃vs

· ejϕ = −T tsm
vsm

· 1

1 + jω · lm
vsm

(4.10)

Equation 4.10 can be split into the amplitude frequency response (simply
also amplitude response)

|G(jω)| =

⏐⏐⏐⏐⏐ ˜ΔT ts

Δ̃vs

⏐⏐⏐⏐⏐ = (−)
T tsm
vsm

[
1 +

(
ω · lm

vsm

)2
]−1/2

(4.11)

and the phase frequency response (simply phase response)

ϕ(ω) = arc tan
[
−ω · lm

vsm

]
− π (4.12)

By means of Eqs. 4.9 and 2.41 the time transient function can be calcu-
lated as: (also step response)

ΔT ts|Δvs = −Δvs · T tsm
vsm

[
1 − exp

(
−vsm

lm
· t

)]
(4.13)

A collected qualitative and quantitative evaluation of the results of
Eqs. 4.9 to 4.13 is given in the next Sect. “Summarised Evaluation and Con-
clusions to the Solutions of the Differential Equation”. However, already here
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it should be referred to the minus sign in the Eqs. 4.9, 4.10, 4.11, 4.13, which
hints at the physical right dependence: A positive Δvs-change effects a nega-
tive ΔT ts-change. That means an increase of the take-down velocity effects,
under constant other conditions, a decrease of the spun fibre fineness.

Disturbance Δvi (changes of the input velocity). Boundary condition:

Δvs = Δqi = Δ� = Δl = 0

It is to be written in the same manner as described before:

dynamic transfer function:

G(p) =
ΔT ts
Δvi

=
qim · �m

vsm
· 1

1 + p · lm
vsm

(4.14)

or, because qim · �m = T tsm · vsm

vim

G(p) =
ΔT ts
Δvi

=
T tsm
vim

· 1

1 + p · lm
vsm

(4.15)

complex frequency response:

G(jω) =
˜ΔT ts

Δ̃vi

· ejϕ =
T tsm
vim

· 1

1 + jω · lm
vsm

(4.16)

amplitude frequency response (simply also amplitude response)

|G(jω)| =

⏐⏐⏐⏐⏐ ˜ΔT ts

Δ̃vi

⏐⏐⏐⏐⏐ =
T tsm
vim

[
1 +

(
ω · lm

vsm

)2
]−1/2

(4.17)

phase frequency response (simply phase response)

ϕ(ω) = arc tan
[
−ω · lm

vsm

]
(4.18)

time transient function (or step response)

ΔT ts|Δvi = Δvi · T tsm
vim

[
1 − exp

(
−vsm

lm
· t

)]
(4.19)

A collected qualitative and quantitative evaluation of the result Eqs. 4.15
to 4.19 is given in the next Sect. “Summarised Evaluation and Conclusions to
the Solutions of the Differential Equation”. The effects of Δvi-disturbances are
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co-directional to the ΔT ts-changes opposite to the described Δvs-disturbances.
That means an increase of the input velocity effects under constant other
conditions, an increase of the spun fibre fineness as well. Besides it should
also be hinted here, that the result equations of Sect. 2.5.2 (example drawing
process at input velocity disturbances) are equivalent to the presented result
equations of the fibre formation distance for Δvi-disturbances. That means it
corresponds in each case Eqs. 4.15 to 2.40, 4.16 to 2.36, 4.17 to 2.38, 4.18 to
2.39 and 4.19 to 2.46.

Disturbance Δqi (changes of the input cross sectional area). Bound-
ary condition:

Δvs = Δvi = Δ� = Δl = 0

Such a disturbance is actually unlikely for a melt spinning process (it
would be more plausible to assume step-like or oscillating changes of the cap-
illary hole diameter in the spinneret). Nevertheless, dynamic solution equa-
tions will be explained in the following for this disturbance model as well. In a
row of other fibre formation and fibre processing processes Δqi-disturbances
are identical namely with changes of the fineness at the process input. A
modified application of the here given result equations is easily possible. Ex-
amples will follow in later sections.

dynamic transfer function:

G(p) =
ΔT ts
Δqi

= �m · vim

vsm
· 1

1 + p · lm
vsm

(4.20)

or, because vim · �m =
T tsm · vsm

qim

G(p) =
ΔT ts
Δqi

=
T tsm
qim

· 1

1 + p · lm
vsm

(4.21)

complex frequency response:

G(jω) =
˜ΔT ts

Δ̃qi

· ejϕ =
T tsm
qim

· 1

1 + jω · lm
vsm

(4.22)

amplitude frequency response (simply also amplitude response)

|G(jω)| =

⏐⏐⏐⏐⏐ ˜ΔT ts

Δ̃qi

⏐⏐⏐⏐⏐ =
T tsm
qim

[
1 +

(
ω · lm

vsm

)2
]−1/2

(4.23)
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phase frequency response (simply phase response)

ϕ(ω) = arc tan
[
−ω · lm

vsm

]
(4.24)

time transient function (or step response)

ΔT ts|Δqi = Δqi · T tsm
qim

[
1 − exp

(
−vsm

lm
· t

)]
(4.25)

A collected qualitative and quantitative evaluation of the result of Eqs. 4.21
to 4.25 is given in the next Sect. “Summarised Evaluation and Conclusions
to the Solutions of the Differential Equation”. But, it should already be said
here, that the effected ΔT ts-disturbances, caused by Δqi-disturbances, are
co-directional.

Disturbance Δ� (changes of the density of fibre material). Boundary
condition:

Δvs = Δvi = Δqi = Δl = 0

It can be concluded in the same manner as described before:

dynamic transfer function:

G(p) =
ΔT ts
Δ�

=
qim · vim

vsm
· 1

1 + p · lm
vsm

(4.26)

or, because qim · vim =
T tsm · vsm

�m

G(p) =
ΔT ts
Δ�

=
T tsm
�m

· 1

1 + p · lm
vsm

(4.27)

complex frequency response:

G(jω) =
˜ΔT ts

Δ̃�
· ejϕ =

T tsm
�m

· 1

1 + jω · lm
vsm

(4.28)

amplitude frequency response (simply also amplitude response)

|G(jω)| =

⏐⏐⏐⏐⏐ ˜ΔT ts

Δ̃�

⏐⏐⏐⏐⏐ =
T tsm

�

[
1 +

(
ω · lm

vsm

)2
]−1/2

(4.29)
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phase frequency response (simply phase response)

ϕ(ω) = arc tan
[
−ω · lm

vsm

]
(4.30)

time transient function (or step response)

ΔT ts|Δ� = Δ� · Δ� · T tsm
�m

[
1 − exp

(
−vsm

lm
· t

)]
(4.31)

A co-directional dependence of Δ�-changes on effected ΔT ts-changes is
also to be seen here. A collected qualitative and quantitative evaluation of the
result of Eqs. 4.27 to 4.31 is given in the next Sect. “Summarised Evaluation
and Conclusions to the Solutions of the Differential Equation”.

Disturbance Δl (changes of the length of the fibre formation dis-
tance). Boundary condition:

Δvs = Δvi = Δqi = Δ� = 0

At first glance, this disturbance does not seem to be of any practical inter-
est. But it is to be hinted, that the fibre influence by means of the dynamics
of thread traverse motion at winders (especially at the godetless high speed
melt spinning) is exactly equivalent to the change model “length of the fibre
formation distance”. More details can be found in Sect. 5.1.5.

The following result equations are to be concludet:

dynamic transfer function:

G(p) =
ΔT ts

Δl
= −T tsm

lm
· p

p +
vsm

lm

(4.32)

complex frequency response:

G(jω) =
˜ΔT ts

Δ̃l
· ejϕ = −T tsm

lm
· jω

jω +
vsm

lm

(4.33)

amplitude frequency response (simply also amplitude response)

|G(jω)| =

⏐⏐⏐⏐⏐ ˜ΔT ts

Δ̃l

⏐⏐⏐⏐⏐ = (−)
T tsm
lm

· ω ·
[
ω2 +

(
vsm

lm

)2
]−1/2

(4.34)
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phase frequency response (simply phase response)

ϕ(ω) = arc tan
[

vsm

ω · lm

]
− π (4.35)

time transient function (or step response)

ΔT ts|Δl = −Δl · T tsm
lm

· exp
(
−vsm

lm
· t

)
(4.36)

Also these result Eqs. 4.32 to 4.36 will be collected and discussed in the
following Sect. “Summarised Evaluation and Conclusions to the Solutions of
the Differential Equation”

Summarised Evaluation and Conclusions to the Solutions of the
Differential Equation

Three summarised unifying statements can be made by the comparing all
result equations regarding the cause-effect relations between the different
process and product variables Δvs, Δvi, Δqi, Δ� and Δl on the one hand and
the product variable ΔT ts on the other:

1. Statement

Four of the five dynamic transfer functions are equally constructed. (cp.
4.9, 4.15, 4.21 and 4.27). This fact leads of course to equally constructed, from
it derived functions, as complex frequency response, amplitude frequency re-
sponse, phase frequency response and step response. This applies to the dis-
turbances Δvs, Δvi, Δqi and Δ�. This dynamic behaviour is characterised by
it in the transfer function, that the Laplace-operator p exists only once
linear in one of two terms of the denominator. Such a behaviour is called
proportional action with delay of first order. It is typical for such a system
behaviour, that residual changes (esp. step-like) of the cause variables (if they
continue long enough) effect residual changes of the effect variables (ΔT ts),
in which the quantities of cause and effect changes are proportional to each
other. Delay of first order means, that only one time constant and only one
exponential function (coming from only one differential quotient in the DEq.)
determine the dynamic transient process.

2. Statement

The dynamic transfer function for the disturbance Δl (Eq. 4.32) is de-
flectively constructed. It actually possesses the same denominator compared
with the named transfer functions in the first statement, but the Laplace-
operator p appears once more linear in the numerator. This behaviour is



158 4. Dynamics of Fibre Formation Processes

called differential action with delay of first order. It is typical for such a
system behaviour, that changes of the effect variables (ΔT ts) reduce to zero
again, if the changes(esp. step-like) of the cause variables only continue long
enough. Delay of first order means in this case, that likewise only one time
constant and only one exponential function determine the subsidence of the
effect to zero (a transient process as well).

3. Statement

The dynamic behaviour of a fibre formation distance is dominated by the
quantity lm/vsm. This was also the case in Sect. 2.5.2 (there for the drawing
process) for the system time constant Tc (see Eq. 2.47). The time constant Tc

is readable from the exponent of the e-functions in the time transient func-
tions of Eqs. 4.13, 4.19, 4.25, 4.31 and 4.36.
The critical frequency fc can be determined likewise by lm and vsm corre-
sponding to Eq. 2.49 (vsm corresponds to vom).

Considering the first statement it is possible to get common solutions for
the four disturbance causes Δvs, Δvi, Δqi and Δ� regarding their effects to
the fineness ΔT ts. Uniform, normalised solutions can be determined for the
complex frequency response, the amplitude frequency response, the phase
frequency response and the time transient function (step response), which
are valid for all of the four disturbance causes in similar manners.

Considering Eqs. 2.48 and 2.49 one gets from the Eqs. 4.10, 4.16, 4.22
and 4.28 the common normalised complex frequency response, in which ω is
substituted by f :

G[j(f/fc)] = −
˜ΔT ts/T tsm

Δ̃vs/vsm

· ejϕ =
˜ΔT ts/T tsm

Δ̃vi/vim

· ejϕ

=
˜ΔT ts/T tsm

Δ̃qi/qim

· ejϕ =
˜ΔT ts/T tsm

Δ̃�/�m

· ejϕ

=
1

1 + j(f/fc)

(4.37)

Considering Eqs. 2.48 and 2.49 one gets from the Eqs. 4.11, 4.17, 4.23
and 4.29 in the same manner the common normalised amplitude frequency
response:

|G[j(f/fc)]| =

⏐⏐⏐⏐⏐ ˜ΔT ts/T tsm

Δ̃vs/vsm

⏐⏐⏐⏐⏐ =

⏐⏐⏐⏐⏐ ˜ΔT ts/T tsm

Δ̃vi/vim

⏐⏐⏐⏐⏐
=

⏐⏐⏐⏐⏐ ˜ΔT ts/T tsm

Δ̃qi/qim

⏐⏐⏐⏐⏐ =

⏐⏐⏐⏐⏐ ˜ΔT ts/T tsm

Δ̃�/�m

⏐⏐⏐⏐⏐ = [1 + (f/fc)2]−1/2

(4.38)
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The transfer locus of this normalised complex frequency response is shown
in Fig. 4.4.
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Fig. 4.4. Transfer locus of the normalised complex frequency responses for changes
of fibre fineness ΔT ts in consequence of different disturbance causes (Eqs. 4.37 and
4.42)

It should be considered that, at the modulus generation the negative
sign for the disturbance Δvs disappears. The normalised amplitude frequency
response is presented in Fig. 4.5.

The common normalised phase frequency response of the same single
phase frequency responses of Eqs. 4.18, 4.24 and 4.30 is:

ϕ(f) = arc tan[−f/fc] (4.39)

and for 4.12:

ϕ(f) = arc tan[−f/fc] − π (4.40)

Both are also included in Fig. 4.5. At last the common normalised step re-
sponses can be concluded from Eqs. 4.13, 4.19, 4.25 and 4.29 considering
Eq. 2.48:
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Fig. 4.5. Normalised amplitude frequency responses and normalised phase fre-
quency responses for changes of fibre fineness ΔT ts in consequence of different dis-
turbance causes (Eqs. 4.38 and 4.43 as well as 4.39, 4.40 and 4.44)

−ΔT ts/T tsm|Δvs

Δvs/vsm
=

ΔT ts/T tsm|Δvi

Δvi/vim

=
ΔT ts/T tsm|Δqi

Δqi/qim
=

ΔT ts/T tsm|Δ�

Δ�/�m

= 1 − exp(−t/Tc)

(4.41)

The common normalised step response is shown in Fig. 4.6. It is char-
acteristic for this type of disturbances, that the effect to the fibre fineness
is smaller the smaller the disturbance frequency f is. In a way steady state
Δl-changes (frequency f ≈ 0) do not result in fineness changes (see Figs. 4.4
and 4.5), whereas the frequency and amplitude frequency responses rapidly
approach the maximum amplification factor 1 for f > fc.
This differential action appears in the step response. The fineness shift is
first of all a maximum after the imprint of the cause step Δl and after that
decreases to zero according to e−t/Tc . The critical frequency fc or the time
constant of the system Tc are the significant sizes for quantitative estimations
here as well.

Quantitative conditions can be deduced easily, for instance from the devel-
oped relationships for the design of yarn traverse motion systems at wind-up
devices. The goal is in this case a minimising of the fineness changes ΔT ts,
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Fig. 4.6. Normalised step response for changes of fibre fineness ΔT ts in consequence
of different disturbance causes (Eqs. 4.41 and 4.45)

caused by the permanent effecting Δl-changes (see example presentation in
Sect. 5.1.5). A high critical frequency fc (that means short fibre formation
distances lm and high take-up velocities vom) would be preferred for the dis-
turbance type Δl alone. However, these are conditions which are connected
with high amplifications of the other dealt with disturbance causes. At this
point it is necessary that compromises be settled.

More remarks to the phase frequency responses of the dealt with distur-
bance causes (Fig. 4.5):

The disturbances Δvi, Δqi, and Δ� result in the running behind of the
phase shift angles of the effect oscillations against the periodic cause oscil-
lations (they start for f/fc = 0 with ϕ = 0 and end for f/fc → ∞ with
ϕ = −π/2). Whereas, the disturbance Δvs causes (settled by the negative
coupling to the effect oscillation ΔT ts - see the minus signs before the func-
tions in Eqs. 4.9 until 4.11 and 4.13) a running behind of the phase shift angle
which is additionally shifted about −π. That means it starts for f/fc = 0
with ϕ = −π and ends for f/fc → ∞ with ϕ = −3π/2 (see also Eq. 4.12).

A differential action with delay of first order (in the present case Δl-
disturbances) normally results in a running before of the phase shift an-
gles which start at f/fc = 0 with ϕ = +π/2 and end for f/fc → ∞
with ϕ = 0. Because the coupling between the Δl-disturbances and the ef-
fected ΔT ts-disturbances is also negative (minus signs before the functions in
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Eqs. 4.32...4.34 and 4.36) the phase shift angles are shifted in the same way
about −π (see also Eq. 4.35). The result is the altogether running behind
of the phase shift angles, which appear as ϕ = −π/2 (for f/fc = 0) until
ϕ = −π (for f/fc → ∞).

These specialities for Δvs- and Δl-disturbances are considered in Fig. 4.5
by different ordinates for the common dotted drawn phase frequency response
curve.

Further explanations to the use of the phase frequency response for the
analysis of specific problems will be given in Sect. 5.1.5.

The system time constant Tc and the critical frequency fc of a fibre for-
mation distance respectively a fibre formation line (we will see later that it
is also valid for many yarn processing lines in the same manner), which are
characterised by a length lm, can be investigated by means of the nomogram
in Fig. 4.7. These lines are characterised by a length of lm which passes the
fibre or yarn with the output or take-up velocity vom. The nomogram is the
graph of the definition of Eqs. 2.47 and 2.49 and allows for a quick estimation
of Tc and fc. lm and vom (outer ladders) are to be lined rectilinearly and Tc

and fc can be read from the point of intersection with the middle ladder. The
drawn straight lines (1) and (2) represent the concrete application examples
that have been described in Sects. 2.5.2 and 5.1.5.

As one can see, the ordinates of Figs. 4.5 and 4.6 are divided appropriately
into the dimensionless ratio of relative effect-cause-changes, and the abscissa
is divided into the also dimensionless ratio f/fc or t/Tc. The ordinate val-
ues assert, by which factor a percentage cause change is to be multiplied
in order to get the effected fineness change. This factor is at the most 1
for small disturbance frequencies (periodic disturbances) or for infinite long
times (step-like disturbances). If the frequency of the disturbances is exactly
equal to the critical frequency of the fibre formation distance (f = fc) then
the factor is 1/

√
2 ≈ 0.71 and decreases with greater disturbance frequency

quickly to zero.
Normally disturbances should only influence the aim variable as little as pos-
sible. Taking this into consideration the technological operating point of the
fibre formation distance demands that the time constant Tc should be as
much as possible and concerning the critical frequency fc as little as pos-
sible. It is then guaranteed, that disturbances of small frequency no longer
have any considerable penetrance to the aim variable fibre fineness. It is to be
reached, if either the length of the fibre formation distance lm can be enlarged
and/or the take-up (spinning) velocity vsm can be reduced. The latter is not
usually desired. But this dynamic model reflection shows that the instable
process behaviour at increased velocity is objectively foundable on the one
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hand. It also shows on the other the limits of constructive and technological
compromises, which can be made if necessary.

The cause-effect-transmission of the disturbance model Δl is the exact op-
posite of the four dealt with disturbance models above. The normalised com-
plex frequency response can be concluded from Eq. 4.33 considering Eqs. 2.48
and 2.49:

G(jf) =
˜ΔT ts/T tsm

Δ̃ls
· ejϕ = − j(f/fc)

1 + j(f/fc)
(4.42)

The transfer locus of this normalised complex frequency response is also
included in Fig. 4.4.
One can get the amplitude frequency response from Eq. 4.34 in the same
manner considering Eqs. 2.48 and 2.49:

|G(jf)| =

⏐⏐⏐⏐⏐ ˜ΔT ts/T tsm

Δ̃ls

⏐⏐⏐⏐⏐ = (−)(f/fc)
[
1 + (f/fc)

2
]−1/2

(4.43)

The normalised phase frequency response is according to 4.35:

ϕ(f) = arc tan(fc/f) − π (4.44)

Normalised amplitude and phase frequency responses are shown in Fig. 4.5.
The minus sign of the complex frequency response is suppressed in the modu-
lus representation of the amplitude frequency response. At quantitative eval-
uations it has to be considered of course, that a positive Δl-change correlates
with a negative ΔT ts-change and vice versa.
At last from Eq. 4.36 we get the step response as:

ΔT ts/T tsm|Δl

Δl/lm
= −exp(−t/Tc) (4.45)

This normalised step response is shown in Fig. 4.6.

It is characteristic of this kind of disturbance, that the effect to the fi-
bre fineness is smaller if the frequency f of disturbances is smaller. In a way
steady state Δl-changes (frequency f ≈ 0) result in no fineness changes what-
soever (see Figs. 4.4 and 4.5), whereas the frequency and amplitude frequency
responses quickly reach the maximum amplification factor 1 for f > fc.

This differential action is expressed in the presentation of the step re-
sponse (Fig. 4.6) so that an imprinted step Δl causes first of all a maximum
fineness shift, which then decreases to zero according to exp(−t/Tc). The
critical frequency fc or the system time constant Tc are significant quantities
also for quantitative estimations in such cases.
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The developed relationships can be used for instance as the calculation
basis for the design of traverse motion systems at winders. It is possible
to give quantitative conditions for a reduction of the fineness changes ΔT ts
caused by the permanent effecting Δl-changes (see example in Sect. 5.1.5).
A high critical frequency fc would be preferred for the disturbance type Δl,
this means a short fibre formation distance lm and a high take-up velocity
vom would be favourable. However, these are just conditions for a high am-
plification of the other dealt with disturbance causes as named before. The
necessity of compromises is obvious at this point.

A few remarks to the phase frequency responses of the dealt with distur-
bance causes (Fig. 4.5):

The disturbances Δvi, Δqi and Δ� produce running behind phase shift an-
gles versus the causing oscillations (f/fc = 0 starts with ϕ = 0 and ends for
f/fc → ∞ with ϕ = −π/2). Whereas, the disturbance Δvs (involved by the
negative coupling to the effected oscillation ΔT ts - see minus signs before the
dynamic functions of Eqs. 4.9 to 4.11 and 4.13) produces a running behind
phase shift angle which is shifted additionally by −π. This means, it starts
with f/fc = 0 with ϕ = −π and ends with f/fc → ∞ with ϕ = −3π/2 (see
also Eq. 4.12).

A differential action with delay of first order (as being submitted by the
disturbance Δl) normally produces running before phase shift angles which
start with f/fc = 0 with ϕ = +π/2 and ends with f/fc → ∞ with ϕ = 0.
But, also because a negative coupling is given for Δl-disturbances to the
effected ΔT ts-disturbances (see minus signs before the dynamic functions of
Eqs. 4.32 to 4.34 and 4.36) the phase shift angles are also shifted by −π (see
also Eq. 4.35). Therefore, running behind phase shift angles appear altogether
which start with ϕ = −π/2 (for f/fc = 0) and end with ϕ = −π (for f/fc →
∞). These specialities by Δvs- and Δl-disturbances are considered in Fig. 4.5
by different ordinates for the dotted lined common phase frequency response.
More detailed explanations to the use of the phase frequency response for
special problems will be given in Sect. 5.1.5.

The system time constant Tc and the critical frequency fc of a fibre for-
mation distance (we will see later, that it is also valid for many other fibre
processing distances) can be found out by means of the nomogram Fig. 4.7.
This converts the Eqs. 2.47 and 2.49 into a quickly utilisable manner. To this
the length of the fibre formation distance lm and the take-up velocity vom

(outer nomogram ladders) are connected rectilinearly and in the cross point
with the middle ladder the Tc and/or fc can be read. This is done for instance
for two applications, dealt with in Sects. 2.5.2 and 5.1.5 (straight lines (1)
and (2)).

At last some remarks to the question of the model-mathematical treat-
ment of different process and product variable disturbances which simultane-
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example (2): length of the yarn input distance on a twister; vom=58 m/min, lm=0.42
m, Tc=0.43 s, fc=0.37 Hz

ously appear and effect fibre fineness changes. In principle, the superposition
principle can be applied to the single developed solution equations (transfer
function, complex frequency response and time transient function) for the
single disturbance of the DEq. 4.7. However, the following has be taken into
consideration:

a) The related step response (for instance Eqs. 4.13 and 4.19, if step-like
disturbances Δvs and Δvi are at hand) are added in consideration of the time
range. If the different disturbances do not start at the same time t = 0 then
the corresponding time shift of the one transient function to the other is to
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be considered. Of course a graphic addition of the transient functions is also
possible.

b) The related dynamic transfer functions or complex frequency responses
(for instance Eqs. 4.9 and 4.15 or 4.10 and 4.16, if periodic disturbances
Δ̃vs and Δ̃vi are at hand) are to be added corresponding to the rules of
the addition of complex numbers (vector addition) in consideration of the
frequency range. If the exciting frequency ω is not the same for the viewed
disturbances then ω1 and ω2 must be put in separately to both basic equations
of the complex frequency responses (corresponding to p1 = jω1 and p2 = jω2

to both basic equations of the transient functions). The amplitude frequency
responses and the phase frequency responses can only be calculated by means
of the complex added complex frequency responses and not by means of the
simple addition of the amplitude and phase frequency responses from the
both single disturbances.

4.2.2 Variable Fibre Orientation

Cause-Effect-Scheme

A very important product variable of a melt spun fibre is the achieved orien-
tation of the macromolecules along the fibre length axis, consequently along
the main tension direction during the fibre formation and elongation pro-
cesses. The orientation determines the textile-physical properties of the fibre
decisively. This fibre orientation determines the breaking tensile force Fb and
the breaking elongation εb. It should be characterised by the orientation
elongation εo which the fibre has suffered, starting from the complete unset-
tled isotropic state of the thermoplastic melt. A measurement for εo is the
birefringence of the fibre Δo at the exit of a special fibre formation distance.

The following a-priori knowledges from the literature [280, 281] are im-
portant and are concerned with the qualitative and quantitative relationship
between the imprinted orientation elongation εo and the causing process and
product variables in the fibre formation process:

a) Thermoplastic fibre polymers possess a maximum imprintable orien-
tation elongation εomax. This is independent of the kind and the quantity of
as to time consecutive elongation steps (spinning, draw and tensile testing or
high speed spinning, post draw and tensile testing and so on) and its value
is nearly constant for an appointed fibre polymer.

If the achieved elongation εoi of a single elongation step i is expressed as
the natural logarithm, consequently:

εoi = ln
[

T tii
T toi

]
then it is valid with good exactness for the fibre material PA
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εoi =
n∑

i=1

εoi ≈ 2

and for the fibre material PET

εoi =
n∑

i=1

εoi ≈ 2.3

b) In the first step of such a consecutive chain of elongation steps (this is
the spinning step) the fibre has reached the orientation elongation εo1. This
is dependent upon the tensile stress (fineness related tensile force) RTg which
appears in the fibre at the glass transition temperature Tg (for PA 6 nearly
50 , for PET nearly 80 ). For temperatures < Tg the fibre is “ready”, this
means T ts is reached and on the following take-up way the fibre will not be
further elongated plastically.

c) RTg is the tensile stress (fineness related tensile force) at the point
< Tg. Therefore, it is necessary to analyze the tensile force FTg at this point
because it is valid:

RTg = FTg/T ts (4.46)

As informed in [280] and [281] FTg is improved essentially by an air fric-
tion component Fdrag and an acceleration component Finert, in which both of
these components have totally different quantitative importance in the clas-
sical spinning (vs ≤ 1200 m/min) and in the high speed spinning (vs ≥ 3000
m/min). With completing this it should be remarked, that in the classical
spinning process the rheological initial force Frheo should be taken into con-
sideration.

d) The air friction force Fdrag is dependent upon the throughput through
the spinneret Qs, the spinning velocity vs and the distance between the spin-
neret and the point at which the fibre reaches the glass transition temperature
Tg. This spinneret distance lTg is essentially dependent upon the through-
put through the spinneret Qs, the spinneret temperature Ts and the cooling
conditions (surrounding air velocity, surrounding air temperature and sur-
rounding air humidity).

e) The acceleration force Finert is dependent upon the spinning velocity
vs as well as upon the throughput through the spinneret Qs.

The verbally described dependences are summarised as shown in the tech-
nological scheme Fig. 4.8 and the cause-effect-scheme Fig. 4.9.

Looking at Fig. 4.9 it is evident that the fibre fineness T ts is one of the
two relevant product variables which effects the tensile stress (fineness related
tensile force) RTg . The latter effects the target quantity fibre orientation



168 4. Dynamics of Fibre Formation Processes

~

l

Tts, vs

qi, Qs, vi, ρ, Ts

l T
g

Tg, Tts, FTg, σTg, εο1

Fig. 4.8. Scheme of fibre formation at the melt
spinning of polymers. Solidification point at the
glass transition temperature Tg in the distance
lTg

through the elongation orientation εo1. It would be possible to integrate the
whole cause-effect-scheme Fig. 4.2 into Fig. 4.9 for the variable fibre fineness
T ts. Nevertheless, only the important process variables Qs and vs (which
directly effect the fineness T ts) have been inserted in Fig. 4.9 because these
additionally influence the tensile stress (fineness related tensile force) RTg

through the tensile force FTg.

Estimation to the Disturbance Transfer

In the following it should be attempted to estimate (without detailed deriva-
tion) the dynamic disturbance transmission to the fibre orientation εo1 con-
siderating the derived detailed relations from Sect. 4.2.1.

All disturbance quantities which influence Qs (these are Δvi, Δqi and Δ�),
effect by means of the ΔT ts-changes (itself effected by the well-known dy-
namic transfer equations) also changes of force (ΔRTg )- and with this of
orientation elongation (Δεo1)-changes with the same time and frequency be-
haviour. ΔQs-changes additionally cause by means of the FTg -branch changes
ΔRTg (see Fig. 4.9) in the same manner. The necessarily following change of
the stored melt mass in the fibre formation distance with the distance lTg

(which changes too) is decisively for the transfer behaviour of the acceleration
force changes as well as for the air friction force changes. The spinning veloc-
ity vs and the distance lTg are there, on the other hand, the time constant
determining quantities for the acceleration and air friction forces. The same



4.2 Melt Spinning of Polymers 169

fibre
fineness Tts

spinneret
temperat. Ts

throughput
spinneret Qs

orientation
elongation

εο1

spinning
velocity vs

tension
σTg

tensile force
FTg

acceleration
force Finert

air friction
force Fdrag

cooling
conditions

spinneret
distance lTg

see Fig. 4.2.

see Fig. 4.2.

Fig. 4.9. Cause-effect-scheme for the target quantity orientation elongation εo1

at the melt spinning of polymers, especially at the high speed spinning process
(vs ≥ 3000 m/min)

statement is also valid for the effect of spinning velocity disturbances Δvs to
changes of the orientation elongation Δεo1. The steady state amplification
factors are indeed different to estimate for the different disturbance types:
Changes of the spinneret throughput ΔQs (and its effecting disturbances)
effect in each case changes of the fineness T ts and also of the tensile force
FTg with equal sign. The effects referred to RTg and εo1 are comparatively
small, because they will be compensated by means of the quotient according
to Eq. 4.46. The amplification factor will be small.

Spinning velocity changes Δvs on the other hand effect changes of the
fineness ΔT ts and also of the tensile force ΔFTg with unequal sign. The quo-
tient according to Eq. 4.46 for RTg and its effect to εo1 will be large, and the
amplification factor will also be large.

Consequently, spinning velocity changes Δvs in principle to value are much
more influential than spinneret throughput changes ΔQs (which are caused
for instance by unevenly operating gear pumps, effecting changes of input
velocity Δvi) with view to the generation of structural unevennesses of a melt
spun fibre.

The same quantitative data can be authoritative therefore for the velocity
of disturbance transmissions to the fibre orientation (and with it to fibre
or yarn length with undefined structural properties) than they have been
obtained with the dynamic fineness changes.
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4.2.3 Complex Proceedings in the Fibre Formation Distance

A “Specified Differential Equation of a Fibre Formation Distance (simpli-
fied)” has been developed under Sect. 4.2.1. This equation does not consider
the first fibre formation range from the spinneret to the solidification point
of the melt which characterises the ready fibre state. This actual range of
the fibre formation is in principle a range of the highest complex dynamic
proceedings even by an undisturbed steady state process. Dynamic change
proceedings of all product variables of the fibre formation take place inside
this range in a very short time interval. This passage is referred to in Chap.
3, especially to the whole Sect. 3.1 which contains detailed investigations to
these complex processes.

4.3 Glass Fibre Spinning; Variable Fibre Fineness

4.3.1 Cause-Effect-Scheme

Another melt spinning material of a totally different source and with dif-
ferent physical and chemical structure is glass. This inorganic fibre material
obtained a separate importance for technical-textile applications (especially
as a reinforcing fibre material) and (because of its inflammability) for deco-
rative textiles in the last 50 years. Some process dynamic questions for this
technological fibre formation process will be discussed in the following sec-
tions. Specific further specialities for the methodical practice in the physical
analysis of a given technological situation will be explained in more detail
later.

The technological scheme of the glass fibre spinning process is shown in
Fig. 4.10. 1

The missing of a spinning pump is evident in comparison with the melt
spinning process of polymers (Fig. 4.1). The spinneret is the bottom of a
metallic Pt-Rh-oven which is connected serially in the secondary circuit of
an electrical heating current transformer. The oven with the spinneret is,
in this manner, practically an Ohm’s heating resistance. The throughput
Qs will be achieved by means of the hydrostatic pressure of the glass melt
which stands over the spinneret with the glass level h. A volume feeding
spinning pump would not be thinkable here for higher than 1200 of the
oven temperature. The pressure in front of the spinneret holes ps is a process
1 Additionally is to remark, that the so-called two steps process is demonstrated

here. Glass marbles (single mass from 10 until 15 g) are fed into the spinneret
oven. This is typical for small production or single lab equipments. In large
production is to find generally the one step process. The spinneret oven is fed
there directly by molten glass mass coming from the glass melt tub and the
marble phase is avoided.
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Fig. 4.10. Simplified technological scheme of the glass fibre spinning

variable which directly effects the spinneret throughput Qs concerning the
Hagen-Poiseuille-law for viscous melts (in the polymer spinning process,
see Fig. 4.2, the pressure ps was a secondary variable and did not control
Qs and following T ts directly!). The valid cause-effect-scheme of the glass
spinning process is shown in Fig. 4.11 for the target quantity fineness T ts.

These specifics can be learned from Fig. 4.11 in comparison to Fig. 4.2.
Another essential specific is that the spinneret temperature Ts (it is the main
cause variable for the melt viscosity ηs which effects the flow resistance Rs

in the spinneret holes) now directly causes the spinneret throughput Qs and
following the fineness T ts.
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Fig. 4.11. Cause-effect-scheme for the target quantity fibre fineness T ts by the
glass fibre spinning

The dynamics of the being at hand system has been described in detail
in [282, 283] in perspective of possible causes for fibre fineness changes. In
the following some few characteristics will be demonstrated which are based
upon the general strategy of the technical-physical analysis recommended
in Sect. 2.5.1. Specifically it will be clear that each concrete technological
situation enforces the consideration or elaboration of new product or process
specific a-priori knowledges. An additional product variable at the input of
the spinneret oven is the glass mass inflow per time unit Qi. This variable
carries out effects to the glass level h and the spinneret temperature Ts. All
other not else named variables of the cause-effect-scheme are explained in
Sect. 4.2.1.

4.3.2 Functional Block Diagram

The fibre formation distance possesses, in the glass fibre spinning process,
a few other properties than in the polymer spinning in relation to the dis-
turbance transmission. The fibre fineness is actually realised by means of the
glass mass inflow per time unit Qi as well as the spinning velocity vs. However,
the glass fibre is already ready in a distance of 3 to 5 cm below the spinneret
holes, because the glass melt does not have a viscous and elastic elongation
power. At this point the spinning velocity vs and the fineness T ts are reached.
The whole distance between this extremely die near deformation zone until
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the take-up bobbin is a pure transport distance in which fineness changes do
not take place further. The transmission range of disturbances is reduced to
the named short fibre formation distance below the die. This possesses a very
small time constant Tc in consequence of the small stored glass mass and the
short length from this fibre formation distance. This means further that all
disturbances Δvs and ΔQs will be transmitted practically undamped to ΔT ts.
The dynamic properties of the fibre formation distance can be described in
the first approximation by means of the steady state model.2

Therefore, the single cause-effect relations which produce either ΔQs or
Δvs changes must be investigated to the description of the dynamics relat-
ing to the product variable fibre fineness. A similar practice would also be
necessary for a further complete dynamic “backward” view of an adequate
polymer spinning equipment. However, this has been neglected in Sect. 4.2.1,
because a spinning pump enforces the spinneret throughput Qs and the dy-
namic investigation in the Qs, as well as in the vs branch, results in principle
in the investigation of the dynamic transmission properties of the electro-
motoric drives. This will be given now anyway for the lied before glass fibre
spinning process in the vs branch.

The functional block diagram Fig. 4.12 of the cause-effect relations can be
designed now on the basis of Fig. 4.11. This supposes partly the mathemat-
ical calculation of physical relationships, partly the experimental fixation of
the transmission behaviour of single transfer elements. These details are not
given here. They are described completely in [282], [283]. As one can see, from
the outside imprintable cause quantities to fineness changes ΔT ts are possible
concerning the dynamic transfer functions G1 to G18 which the transmission
effects from changes of the mains supply voltage ΔUm, changes of the input
mass per time unit ΔQi1, changes of the mains supply frequency Δfm and
changes of the wind-up diameter ΔD, symbolically marked in step response
in the single transfer elements of the functional block diagram characterise
the transmission behaviour of the concerned element.

A specific of the signal chain is the transfer elements G2 to G6 and G10

to G12 in the present functional block diagram. G2 to G6 characterise the
(linearised) relationships between a change of a heating voltage ΔUh and the
effected change of the spinneret temperature ΔTs as a standard example of
the electrical heating of an Ohm’s resistance generally.

G10 considers that a change of the glass melt temperature ΔTg effects a
change of the output mass per time unit ΔQs1 as well as (about the transfer
2 Strictly speaking the transport distance from the end of the deformation zone

until the take-up bobbin is the dynamic transmission distance which had to be
included in the considerations. This generates however a phase shift only between
cause and effect and not a change of the amplitude ratio of cause and effect.
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Fig. 4.12. Functional block diagram for the target quantity change fibre fineness
ΔT ts by the glass fibre spinning

element G9) a change of the glass level Δh. G12 considers that a change of the
input mass per time unit ΔQi1 effects not only a change of the glass level Δh
but also a change of the glass melt temperature ΔTg. G10 and G12 consider
the existing couplings between the temperature and the glass level regime of
the spinneret oven.

The most important sizes of the theoretical and experimental investigated
glass fibre spinning equipment which characterise the technological regime are
collected in Table 4.1, the dynamic transfer functions G1 to G18 are collected
in Table 4.2.3

Both tables give an impression concerning the physical and technological
constants and relationships which are necessary to know for the solution of
the given task on the other hand. A better understanding of the following
quantitative result interpretations should be obtained herewith.

3 If it is unambiguously the question of dynamic transfer functions it is often
written instead of Gi(p) shortened Gi. This is used sometimes in the following.
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Table 4.1. Compilation of technological and physical constants of the glass fibre
melt spinning equipment at the investigated technological operating point

Data to Designation Symbol Quantity and
complex dimension

Spinneret oven number of holes z 100
surface of glass melt As 20000 mm2

transfer factor of
heating transformer k 1.023·10−2

mains supply voltage Um 220 V
heating voltage Uhm 2.25 V
heating current Ihm 2.06 kA
heating power Nhm 4.64 kW
heating (Ohmic) resistance
of spinneret oven Rhm 1.092·10−3Ω
spinneret temperature Tsm 1223
glass melt temperature Tgm 1223
glass level hm 90 mm
throughput per spinneret Qsm 20 g/min

Winder speed of bobbin nb 2550 min−1

wind-up diameter Dm 0.15 m
gear ratio rg 1
mains supply frequency fm 50 Hz
spinning velocity vsm 1200 m/min
fibre fineness T tsm 16.7 tex
bobbin formation time Tbf 10 min

Static amplification transfer element G4 KS 100 /kW

factors transfer element G8 KS 0.25
g

min/

transfer element G9 K(T0) 0.22
g

min/mm

transfer element G12 KK -1.5 /
g

min
transfer element G13 KU 51 min−1/Hz

transfer element G14 KU 2.32 min−1/V

Delay time constants transfer element G4 TH 140 s
transfer element G7 TH 67 s
transfer element G9 Th 13500 s
transfer element G12 TK1, TK2 52 s, 386 s
transfer element G13, G14 TU 0.9 s

Physical constants resistance-temperature
coefficient of the
Pt-Rh-spinneret oven αrt 1.55·10−4/
glass density �m 2.5 g/cm3
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Table 4.2. Compilation of the dynamic transfer functions of all functional block
diagram elements corresponding to Fig. 4.12

Transfer element Gi Dynamic transfer function Gi(p)

G1
ΔUh

ΔUm
= k

G2
ΔUh/Rhm

ΔUh
=

1

Rhm

G3
ΔNh

ΔNh/Uhm
= Uhm

G4
ΔTs1

ΔNh
=

KS

1 + p · TH

G5
ΔRh

ΔTs
= Rhm · αrt

G6
ΔRh · Ihm/Rhm

ΔRh
=

Ihm

Rhm

G7
ΔTg

ΔTs
=

1

1 + p · TH

G8
ΔQs1

ΔTg
= KS

G9
Δh

ΔQi
=

1

K (T0)
· 1

1 + p · Th

G10
ΔQi2

ΔTg
= KS = G8

G11
ΔQs2

Δh
= K(T0)

G12
ΔTs2

ΔQi1
=

KK

(1 + p · TK1) (1 + p · TK2)

G13
Δnb1

Δfm
=

KU

1 + p · TU

G14
Δnb2

ΔUm
=

KU

1 + p · TU

G15
Δvs1

Δnb
= π · Dm · rg

G16
Δvs2

ΔD
= π · nbm · rg

G17
ΔT ts1
ΔQs

=
1

vsm

G18
ΔT ts2

Δvs
= −Qsm

v2
sm
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It means in Table 4.2:

ΔQi1 change of the input mass per time unit
ΔQs change of the output mass per time unit
ΔUh change of the heating voltage
ΔIh change of the heating current
ΔNh change of the heating power
ΔRh change of the heating (ohmic) resistance
ΔUm change of the mains supply voltage
Δh change of the glass level
Δn change of the speed of bobbin motor
Δfm change of the mains supply frequency
Δvs change of the spinning velocity
ΔD change of the wind-up diameter
ΔTs change of the spinneret temperature
ΔTg change of the glass melt temperature
ΔT ts change of the fibre fineness

4.3.3 Evaluation and Results

The awaited dynamic changes of the glass fibre fineness ΔT ts can be calcu-
lated now on the basis of Fig. 4.12 and the relationships which are given in
Tables 4.1 and 4.2. The time transient function as well as the complex fre-
quency response can be used. However, the dynamic transfer functions should
be preferred to the calculation because a handling, as of items and factors,
on the basis of the functional block diagram is possible. The fineness change
ΔT ts2 caused by a change of the mains supply frequency Δfm through the
drive of the wind-up bobbin is to be calculated simply for instance by means
of the multiplication of the dynamic transfer functions in the cause-effect-
chain from Δfm to ΔT ts2, also

ΔT ts2
Δfm

= G13 · G15 · G18 = −π · KU · Dm · rg · Qsm

v2
sm(1 + p · TU)

(4.47)

All interesting total transfer equations can be built up step-like if the fol-
lowing basic rule is considered: Each output size of a transfer element in the
functional block diagram is equal to the product of its input size and transfer
function of the concerned transfer element, also for instance ΔQs1 = ΔTg ·G8

or Δh = ΔQi · G9. This rule is also valid, if single process variables are held
constant by means of an additional automatic control. Their changes in size
would be then zero (ideal imagination). The following single elements in the
functional block diagram would also be assumed to be zero when starting
from this points, because their input sizes are missing. If Ts were to be con-
trolled, for instance, then ΔTs would be zero in the ideal case and the transfer
elements G7 and G8 would be inoperative in practice. This would mean that



178 4. Dynamics of Fibre Formation Processes

changes ΔQs1 could not exist anymore and fineness changes could only be
induced by means of glass level changes or changes of the wind-up diameter
or changes of the speed of the bobbin motor.

Nine different disturbance transfer functions Gz1 to Gz9 of the fibre fine-
ness are presented in Table 4.3 which have been calculated on the basis of
the dynamic transfer functions G1 to G18 for 9 different disturbance variants.
These can be analysed quantitatively after inputting the equation expres-
sions for G1 until G18 given in Table 4.2. The last and further disturbance
transfer functions of other process variables (for instance glass level or spin-
neret temperature) and all resulting amplitude frequency responses, phase
frequency responses and step response can be found by the interested reader
in [282], [283].

Table 4.3. Compilation of the dynamic disturbance transfer functions of the fibre
fineness at the glass fibre spinning

Cause Additionally Disturbance transfer function Gzi(p)
variable const. held
disturb. variable

ΔUm not one Gz1(p) =
ΔT ts
ΔUm

=

2G1G2G3G4G7G17 (G8 − G9G10G11)

1 + G3G4G5G6
+ G14G15G18

ΔUm nb Gz2(p) =
ΔT ts
ΔUm

=
2G1G2G3G4G7G17 (G8 − G9G10G11)

1 + G3G4G5G6

ΔUm nb and h Gz3(p) =
ΔT ts
ΔUm

=
2G1G2G3G4G7G17

1 + G3G4G5G6 − G7G10G12

ΔUm h Gz4(p) =
ΔT ts
ΔUm

=
2G1G2G3G4G7G17

1 + G3G4G5G6 − G7G10G12

+G14G15G18

ΔQi1 not one Gz5(p) =
T ts

ΔQi1
=

G7G12G17 (G8 − G9G10G11)

1 + G3G4G5G6

+G9G11G17

ΔQi1 Ts Gz6(p) =
T ts

ΔQi1
= G9G11G17

ΔUm Ts Gz7(p) =
T ts

ΔUm
= G14G15G18

Δfm not one Gz8(p) =
T ts
Δfm

= G13G15G18

ΔD not one Gz9(p) =
T ts
ΔD

= G16G18
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The overview representation Fig. 4.13 is only a demonstration of am-
plitude frequency responses of the fineness |Gz1(jf)| to |Gz9(jf)|, shortened
|Gz1| to |Gz9|.

The oscillations percent of the fineness are drawn on the ordinate which
would appear at a one percent sinusoidal disturbance of ˜ΔUm, ˜ΔQi1, Δ̃fm or
Δ̃D appropriately of the selected disturbance variant. Three interacting mea-
surements are drawn on the abscissa (valid for the special numerical example
according to Table 4.1). The first abscissa measurement presents the meter
yarn spun from the start time point, the second presents the running time ac-
cording to the applied spinning velocity, the third the disturbance frequency.
The latter is also strongly connected with both of the first measurements.
The assertion of Fig. 4.13 should be explained by use of an example.

Assertion of the amplitude frequency response |Gz2|: Disturbance ˜ΔUm

with constant speed of the bobbin motor (Δ̃nb = 0). The mains supply volt-
age shall oscillate ±1% with a determined frequency sinusoidal around its
steady state value of 220 V. If the frequency of the disturbance is very small
then the glass level can change quickly enough and the change Δ̃Qs (caused by
Δ̃Ts respectively Δ̃Tg) can be compensated. If the frequency of the distrubance
increases then Δ̃h cannot follow Δ̃Ts respectively Δ̃Tg quickly enough and a
˜ΔT ts appears starting with small amplitude values. This increases more and
more with an increasing f . The amplitude curve stands out against the ab-
scissa and goes to its maximum. This is reached by a disturbance frequency
which is identical to the resonance frequency of the system. In this range an
oscillation of ˜ΔUm = ± 1% effects an oscillation of ˜ΔT ts = ± 10.8%. If f
increases furthermore then Tg cannot follow quickly enough (involved by the
heat inertia of the system) and the amplitudes ˜ΔT ts will again be smaller and
smaller. The amplitude frequency response again asymptotically approaches
the abscissa.

In the first abscissa measurement it is readable, that the mains supply
voltage oscillations in the named critical frequency range operates to the fine-
ness in a length range of 103 until 5 · 107 m yarn. This increase is therefore
precarious, because the Δ̃Uh (caused by ˜ΔUm) can be throughout ± 5% (in a
non-automatic controlled process). Fineness oscillations of ± 54% would be
the result! The conclusion of the dynamic analysis is that the process must be
stabilised by means of an automatic control. However, ˜ΔT ts inside of a yarn
length from 103 m would not be recordable independently of the quantities
of ˜ΔUm respectively Δ̃Uh.

The further disturbance inflows can be explained and estimated in an ad-
equate manner using the other curves of the diagram. Four additional single
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˜ΔT ts-oscillation parts are drawn in Fig. 4.13 (perpendicular straight lines to
the abscissa), which are caused by the yarn winding advance motion and
the wind-up diameter changes along a bobbin changing. These four distur-
bances only exist at four defined frequencies. The length of these straight
lines represents the maximum possible fineness oscillations caused by these
disturbances.

Figure 4.14 shows the yarn traverse motion element, which is generally
used in the glass fibre wind-up process. It consists of a rotating axle with
spacious buckled wires at which the yarn slips off. This special traverse mo-
tion element generates three distinguished oscillation frequencies. Analytical
details shall not be explained here because they are connected to the special
traverse motion element with its geometrical and kinematic specifities.
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Fig. 4.14. Scheme of the package construction by means of winding advance motion
on the glass fibre spinning

The until now given explanations show that practically each disturbance
kind in the spinning process will generate changes or oscillations of the fibre
fineness. These disturbances of the process variables are the real causes of
the fibre or yarn fineness unevenness. This is valid not only for the glass fibre
spinning process but for fibre formation processes in general. The dynami-
cal analysis of the whole process allows assertions which cause variables as
disturbance sizes are suitable for an appointed target quantity and in which
quantity and/or frequency range this will happen.

The reversed question to the conditions for a test proof of appointed dis-
turbance causes in the ready spun yarn will be cleared in Sect. 4.5. We will
come back to the summarised presentation of Fig. 4.13 there once more.
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4.4 Dynamics of Fibre Formation in the Spun Yarn
Spinning Process

4.4.1 Task

The classical technological basic principle to the manufacture of spun staple
yarn exists as you may know in different dissolution (beater), parallelisation
(roller top card or stationary flat card), and refining (drafting, doubling)
process steps of unarranged fibres, mostly pressed in fibre bales, of different
length (staple length) to a roving (flyer) which is the input sliver for the last
spinning process step, mostly realised by means of a ring frame. The dynamic
of the process steps of yarn formation has been investigated and described
(only partly or even empirically) in the past frequently under the preparation
or realisation view of an automatic control system to influence the fineness
unevenness of the produced rovings for the yarn manufacture. Especially the
papers are to be mentioned here which present a sufficient and founded dy-
namic analysis of the automatic controlled process step by means of the time
transient function or the dynamic transfer function description [284] to [289].

Two different types of the dynamic system behaviour can be met at the
appropriate partial processes: the dead time behaviour 4 and the proportional
action with delay 5. The first is typical for some partial systems of passages
in roller top cards and stationary flat cards, the second is for all passages in
drafting systems which drafts imprint into the product. The basic equations
and some conclusions will be given in the following for both types. Estima-
tions in principle and a further approach to the whole problem should be
possible for special tasks.

4.4.2 Dynamic Transfer Behaviour of Carding Engines

Each fibre spinning process pursues the goal to spin yarns with a fineness
unevenness as small as possible. Two general strategies can help to reach this
goal (besides a further development of the machine technique):
a) by means of a greater number of roving operation passages. This was the
only possibility before the invention of automatic controlled drafting systems.
The general law underlies this method that a yarn will be more even the more
it will be doubled and drafted in the spinning process. However, this is con-
nected as you know with a high expense of machines and (not unimportant)

4 Changes of a cause variable at the input of a system appears true after a deter-
mined time (the dead time) at the output as changes of the effected variable (in
the examples of this book it is always a transport time of the treated product).
See also Sect. 5.1.3.

5 To the definition of a proportional action with delay see the first statement of
the “Summarised Evaluation and Conclusions to the Solutions of the Differential
Equation” in Sect. 4.2.1
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a lot of working power is necessary.
b) by means of an automatic controlled drafting system in at least one draft-
ing passage in which the draft ratio changes automatically according to the
continuously measured fineness changes of the input (open loop control)
with or output (closed loop control) slivers. This method allows for draft-
ing and doubling passages to economise in the spinning process plane by an
unchanged quality of the ready yarn.

The fineness unevenness of the layed before fibre material (coming from
the roller top card or from the stationary flat card as pile, fleece or sliver) is
important for both strategies now. At this point, at the latest, the question
appears as to the dynamic disturbance transmission on these machines and
vice versa to the evenness power for uneven feeded fibre mats, fibre fleeces,
fibre flocks and the like.6

The dynamic transfer properties of roller top and stationary flat cards
have been described previously in the Russian special literature [285] to [287].
The essential ideas are explained in the following which lead to the dynamic
transfer function.

Roller Top Card

The technological scheme is shown in Fig. 4.15. Unordered and undis-
solved fibres will be fed into the machine, picked up from the main drum
and conveyed successively to a row of q worker-angle-stripper-pairs i (which
i = 1, 2, 3...q). In the end the fibres will be processed (dissolved and par-
allelised) and in each case delivered up to the main drum back. After the
run through all work elements the web will be taken up from the main
drum and taken off as a sliver. Nevertheless, not all fibres (coming from
the main drum) at each work station (consisting of a worker-angle-stripper-
pair) go to the concerned worker-angle-stripper-pair but only the Kth part
(0 < K < 1). The (1 − K)th part remains on the main drum and will be
transported immediately to the next worker-angle-stripper-pair. The, from
the worker-angle-stripper-pair picked up, fibres go back to the main drum
after the processing or transport time Td. Here also only a part of the fibres
(coming from the main drum) will be picked up in fact too at the removal
point of the web. This part shall be named Ka, whereas the (1 − Kth

a ) part
on the main drum will be mixed to the input of the machine once more after
the run of the transport time Td2. The transport time from the flake feeding
until the first worker-angle-stripper-pair shall be named Td2. It is assumed, to
6 At this point the following hint: The dynamic transfer behaviour of the cotton

beater (as well-known, directly extending in front of the cotton stationary flat
card) has been described fully in [288]. Details must be exempted here. These
would exceed the present investigations because these are technologically to far
from the fibre formation.
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simplify matters, that the coefficient of the fibre distribution K is the same
for all worker-angle-stripper-pairs. If this is not the case (in the practice ex-
perimental to fix only) different K should be put into the following equations.

xi

xo

worker

angle stripper

main drum

Fig. 4.15. Technological scheme of a roller top card; xi, xo input and output fibre
mass per time unit

The dynamic transfer function of a roller top card can be developed now
by means of the given a-priori knowledge. All quantities are to be taken
in equally as changing quantities around the mean averages of an adjusted
steady state technological operation point.

The disturbance of the fibre mass Δxi (caused by uneven flock feed) comes
on the main drum at the input of the machine according to Fig. 4.16. This
Δxi will be mixed with the not fully taken up fibre mass Δxi1 from the exit
of the machine.

The sum passes the dead time element exp(−p · Td1).

Δxi2 = Δxi + Δxi1 (4.48)

This exponential function is the dynamic transfer function of a pure trans-
port or dead time line. The fed fibre mass from the machine entrance appears
at the first worker-angle-stripper-pair:

Δx1 = Δxi2 · exp(−p · Td1) (4.49)

The functional block diagram Fig. 4.17 is qualified for the deviation of
the dynamic transfer function of a worker-angle-stripper-pair.

The fibre mass Δx1 (coming from the main drum) and the fibre mass Δx2

(which is fed back from the processing) will be mixed and the sum Δx will
be processed either once more according to the fibre distribution coefficient
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Δxi1

1 - Ka

KaGAq(p)GA1(p) ....
ΔxqΔy1Δxi2 Δx1Δxi

+

+

Δxo2

Δxo
Δyq

Δy1 = Δx2

Δy2 = Δx3

.........
Δyq-1= Δxq

e -p•Td2

e -p•Td1

Fig. 4.16. Functional block diagram of the roller top card; Δxi, Δxo changes of the
input and output fibre mass per time unit

Δx2

K

1 - K
Δx1 +

+

Δy1Δx

e -p•Td

Fig. 4.17. Functional block diagram of the first worker-angle-stripper-pair on the
roller top card; Δx1, Δy1 changes of the input and output fibre mass per time unit

K (branch with K) or to the main drum transmitted for the next worker-
angle-stripper-pair as output fibre mass per time unit Δy1. The transport
time transfer element exp(−p ·Td) is situated in the branch K. The following
equations are readable as:

Δx = Δx1 + Δx2

Δx2 = Δx · K · exp(−p · Td1)

Δy1 = Δx · (1 − K)

From this it is possible to calculate the dynamic transfer function:

GW1(p) =
Δy1

Δx1
=

1 − K

1 − K · exp(−p · Td)
(4.50)

Because each output Δyi of a worker-angle-stripper-pair is simultaneously
equal the input Δxi+1 of the next worker-angle-stripper-pair the dynamic
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transfer function of all q worker-angle-stripper-pairs of a roller top card can
be written as:

GW1(p) · GW2(p) · · · GWq(p) =
Δyq

Δx1
=

[
1 − K

1 − K · exp(−p · Td)

]q

(4.51)

The dynamic transfer function of the whole roller top card can be calcu-
lated now considering Eq. 4.51 and the following equations, which are read-
able from Fig. 4.16 as:

Δxo = Δyq · Ka

Δxi2 = Δxi + Δxi1

Δxi1 = Δyq · (1 − Ka) · exp(−p · Td2)

Δx1 = Δxi2 · exp(−p · Td1)

The final result for the whole roller top card is at last:

Grc(p) =
Δxo

Δxi
=

Ka · exp(−p · Td1)[
1 − K · exp(−p · Td)

1 − K

]q

− (1 − Ka) · exp[−p(Td1 + Td2)]

(4.52)

The complex frequency response as we know it is obtained when the op-
erator p is substituted by the complex frequency jω. Data about the dynamic
disturbance transmission properties and about the evenness power of the
roller top card are only general and extrapolated from results of possible
concrete realised machines. Prerequisites for a quantitative analysis are the
knowledge of the fibre distribution coefficients K and Ka and the dead times
Td, Td1 and Td2, which can be appointed only experimentally. Quantitative
analyses by means of graphic methods of the vector addition and inversion
say [285]:

a) The evenness power of the roller top card is only given for input dis-
turbances of the fed fibre mass per time unit, if the disturbance frequency is
large. The cycle duration for a full oscillation must be smaller than the whole
transport time of the fibres from the card entrance to its exit. This time can
be nearly estimated with Td1 + q · Td.

b) The evenness power of changes, which the conditions under a) actually
fulfill, will not take place if the cycle duration of the disturbances is equal or
if an integer part multiple of the dead time of a worker-angle-stripper-pair Td.
Then namely, the maxima from fibres which come back after the time Td co-
incide with maxima of the next, after the next and so on disturbance changes.
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c) The evenness power is the better the more worker-angle-stripper-pairs
are situated on the main drum periphery from the entrance of the card to its
exit (trivial assertion) and/or the more uneven these are designed regarding
its transport dead time. Because Td arises from the diameter of the roller
and from their speed (that means from their periphery and their periph-
ery velocity) two possibilities of variation are given in principle. This means
physically-obviously that resonance conditions should be at another distur-
bance frequency for each worker-angle-stripper-pair to avoid whole resonance
conditions for all disturbance frequencies.

Stationary Flat Card

In comparison to the roller top card with discreet situated working ele-
ments on the main drum (worker-angle-stripper-pairs) these melt together to
a closed technological unit in form of a flat clothing (Fig. 4.18).

xi

xo

1

3
2

4

6

5

7

9

8

Fig. 4.18. Technological scheme of a stationary flat card; ranges 1 - 2, 7 - 8 and 8
- 9 draft of the web; ranges 2 - 3, 3 - 4, 5 - 6 and 6 - 7 transport of the web; range
4 - 5 treatment of the web

Referring to [287] the following dynamic transfer function has been derived
and experimentally confirmed for the stationary flat card:

Gfc(p) =
Δxo

Δxi
=

1
V

· exp(−p · Td)
1 + (Tc1 + Tc2) · p + Tc1Tc2 · p2

(4.53)

The single symbols mean:
Δxi, Δxo changes of the input and output fibre mass

V whole draft of the fibre mass=
voutput

vinput

(ranges 1 - 2, 7 - 8, 8 - 9)
Td sum of all transport times of the fibres

(ranges 2 - 3, 3 - 4, 5 - 6, 6 - 7)
Tc1, Tc2 time constants, describing the dynamic of the fibre

redeposition power of the whole flat clothing, which
is a fibre mass storage with permanent fibre exchange
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With that (Eq. 4.53) the dynamic model of a stationary flat card shows
a dead time behaviour (exponential function in the numerator) with delay of
second order.

Complex frequency response (4.54), amplitude frequency response (4.55)
and phase frequency response (4.56) can be calculated on the basis of Eq. 4.53
as follows:

Gfc(jω) =
Δ̃xo

Δ̃xi

· ejϕ =
1
V

· exp(−jω · Td)
1 + (Tc1 + Tc2) · jω + Tc1Tc2 · (jω)2

(4.54)

|Gfc(jω)| =

⏐⏐⏐⏐⏐ Δ̃xo

Δ̃xi

⏐⏐⏐⏐⏐ =
1
V

[
(1 − Tc1Tc2ω

2)2 + ω2(Tc1 + Tc2)2
]−1/2

(4.55)

ϕ(ω) = arc tan
[
− (1 − Tc1Tc2ω

2) · sin(ωTd) + ω(Tc1 + Tc2) · cos(ωTd)
(1 − Tc1Tc2ω2) · cos(ωTd) − ω(Tc1 + Tc2) · sin(ωTd)

]
(4.56)

The following equivalent, to the output web of the card referred distances
gives both time constants as Tc1=̂2.12 m, Tc2=̂0.78 m in [287] for a specific
cotton stationary flat card. Hence they follow the time constants after division
by the web output velocity vo to:

Tc1=2.12/vo, Tc2=0.78/vo

The times will be derived in the dimension s, if vo is put in the dimension m/s.

The amplitude frequency response according to Eq. 4.55 is shown in
Fig. 4.19 and actually not versus the disturbance frequency ω but versus
the wavelength λo in the output web. The used conversion relation can be
read as:

ω = 2 · π · vo/λo (4.57)

The awaited evenness effect of the stationary flat card can be estimated
from this amplitude frequency response. The normalised to the mean values
xom and xim related fluctuation parts Δ̃xo and Δ̃xi are represented in the
ordinate.

The quotient

Δ̃xo/xom

Δ̃xi/xim

is obtained considering the relation

V =
vom

vim
=

xim

xom
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Fig. 4.19. Normalised amplitude frequency response by changes of the output fibre

mass per time unit Δ̃xo caused by changes of the input fibre mass per time unit Δ̃xi

of a stationary flat card

Figure 4.19 shows that a worth-while evenness of input fluctuations Δ̃xi

are only to be awaited to a web length of 5 m, an even good evenness to a
web length of 10 m and no worth-while evenness for a web length of more
than 15 m. The pertinent wavelength of the disturbance cause in the coming
in sliver λi of the stationary flat card (Δ̃xi-course) is simple to calculate by
using the quotient of λo and the draft V :

λi = λo/V

Finally it is to be remarked that the preceding considerations relate only to
the fibre mass distribution along the web. Uneven distributions across to the
transport direction have been excluded from the considerations because they
must be described preferably with other methods. Some hints are represented
moreover in [285].

4.4.3 Dynamic Transfer Behaviour of Drafting Zones in Drafting
Systems

Specified Differential Equation of a Drafting Zone and its Distur-
bance Transfer

The drafting or drawing process is the most important processing step for
the refinement of the slivers at the roving operation and at the final spin-
ning machines. The dynamic of these processes is not to describe easy by
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means of a mathematical model if the statistical discontinuity of the geo-
metrical single fibre properties (above all their length) are to be taken into
consideration by the investigations. An impression of the complication (and
also unfortunately the unwieldy handling) of a complete model description
is shown in [289] and [290]. Nevertheless, it is enough to use the following
simplified DEq. and its solutions for the outlet of design lines for automatic
control tools of drafting systems or also only for the estimation how the fine-
ness fibre of a sliver will in summary be influenced in such a drafting zone.

On this occasion it is assumed, that

- the fibre number in the sliver cross section at the drafting zone exit is
greater than (> 100) and

- the roll setting is 1.5 · lf ≤ l ≤ 2 · lf , in which lf is the middle staple length
of the fibres.

The latter prerequisite means, that neither the drafting forces should
increase to high (under limit) nor should “swimming” fibres appear in a
greater number which can no longer guarantee the cohesion of the free, not
conducted, sliver section.

According to Fig. 4.20 the process and product variables which are nec-
essary for the derivation of the DEq. can be defined in a similar manner as
with the drawing zone of the drawing process (Fig. 2.3). They are somewhat
the same:

vi input velocity
vo output velocity
zi number of fibres in the cross section of the coming in sliver
zo number of fibres in the cross section of the coming out sliver
l roll setting
lf fibre length
T tf fibre fineness
T ti fineness of the coming in sliver = zi · T tf
T to fineness of the coming out sliver = zo · T tf

The dynamic basic Eq. 2.23 for the exchange processes in a mass storage
system is similarly valid for the drafting zone. With this it is now possible
to immediately describe the dynamic transfer behaviour with the general
linearised DEq. 4.7. Single product variables, which apply to the yarn with
endless fibres, must be adapted and defined to the present sliver structure.
The linearised DEq. which fits the drafting zone of the sliver draft can be
defined, if the following variables of Eq. 4.7 are substituted: the middle input
cross sectional area qim and its change Δqi by the mean number of fibres in the
cross sectional area of the input sliver zim and its change Δzi. Furthermore
the mean density of the fibre material �m and its change Δ�, here no more
consisting of a continuum mass, by the mean fineness of the fibres T tfm and
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l

zi, Ttf, vi
drafting zone zo, Ttf, vo

draft V =       =
vo
vi

Tti
Tto

Tti = zi·Ttf Tto = zo·Ttf

Fig. 4.20. Technological scheme of a one step sliver drafting system

its change ΔT tf :

(vom + p · lm) · ΔT to + T tom · Δvo − vim · T tfm · Δzi

−zim · T tfm · Δvi + p · T tom · Δl − zim · vim · ΔT tf = 0
(4.58)

The dynamic transfer function of the fineness T to of the yarn at the
drafting system output can be given on the basis of Eq. 4.58 which was
demonstrated similarly in Sect. 4.2.1. The dynamic functions complex fre-
quency response, amplitude frequency response, phase frequency response
and step response for the changes of Δvo, Δvi, Δzi, ΔT tf or Δl to the effected
ΔT to-changes can now be derived. Probably, the most interesting dynamic
functions (amplitude and step responses) for quantitative estimations are
given as follows accordingly to Eqs. 4.13, 4.17, 4.19, 4.23, 4.25, 4.29 and 4.31.
The functions for Δl-changes are lost on this occasion because these are not
of any interest in drafting systems. The roll setting is assumed as constant
and designed as mean value lm:

disturbance Δvo (changes of the output velocity)
amplitude frequency response

|G(jω)| =

⏐⏐⏐⏐⏐ ˜ΔT to

Δ̃vo

⏐⏐⏐⏐⏐ = (−)
T tom
vom

[
1 +

(
ω · lm

vom

)2
]−1/2

(4.59)

time transient function (step response)

ΔT to|Δvo = −Δvo · T tom
vom

[
1 − exp

(
−vom

lm
· t

)]
(4.60)
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disturbance Δvi (changes of the input velocity)
amplitude frequency response

|G(jω)| =

⏐⏐⏐⏐⏐ ˜ΔT to

Δ̃vi

⏐⏐⏐⏐⏐ =
T tom
vim

[
1 +

(
ω · lm

vom

)2
]−1/2

(4.61)

time transient function (step response)

ΔT t0|Δvi = Δvi · T tom
vim

[
1 − exp

(
−vom

lm
· t

)]
(4.62)

disturbance Δzi (changes of the number of fibres in the cross section of the
coming in sliver)
amplitude frequency response

|G(jω)| =

⏐⏐⏐⏐⏐ ˜ΔT to

Δ̃zi

⏐⏐⏐⏐⏐ =
T tom
zim

[
1 +

(
ω · lm

vom

)2
]−1/2

(4.63)

time transient function (step response)

ΔT to|Δzi = Δzi · T tom
zim

[
1 − exp

(
−vom

lm
· t

)]
(4.64)

disturbance ΔT tf (changes of the fibre fineness)
amplitude frequency response

|G(jω)| =

⏐⏐⏐⏐⏐ ˜ΔT to

˜ΔT tf

⏐⏐⏐⏐⏐ =
T tom
T tfm

[
1 +

(
ω · lm

vom

)2
]−1/2

(4.65)

time transient function (step response)

ΔT to|ΔT tf = −ΔT tf · T tom
T tfm

[
1 − exp

(
−vom

lm
· t

)]
(4.66)

In all cases it is the question of proportional action with a delay of first
order (in Sect. 4.2.1 already described for fibre formation distances) as one
can see and Eqs. 4.59 to 4.62 are identical with Eqs. 4.11, 4.13, 4.17 and 4.19.
Also the phase frequency responses (here not given once more) are identically
with the previously given Eqs. 4.12, 4.18, 4.24 and 4.30 for the appropriate
disturbances. This result means, that the normalised complex frequency re-
sponses of Fig. 4.4, the normalised amplitude and phase frequency responses
of Fig. 4.5 and the normalised step response of the Fig. 4.6 are valid for the
estimating of the dynamic behaviour and its graphic presentation of a sliver
drafting zone in the same manner. Only the following equivalent relations
are to be considered: Δqi, qim of the polymer fibre formation correspond to
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Δzi, zim of the sliver drafting zone and Δ�, �m of the polymer fibre forma-
tion correspond to ΔT tf , T tfm of the sliver drafting zone. On the other hand,
Δvo, vom, Δvi, vim and Δl, zm are fully identical for both different process
steps of the fibre, respectively, yarn formation. The discussion in Sect. 4.2.1
is also consequently valid for the disturbance transmission of drafting zones
in drafting systems according to the fineness of the outrunning drafted yarn.
An additional hint: The disturbance sizes ΔT tf and, of even greater impor-
tance, Δzi characterise of course fineness disturbances of the inrunning sliver
ΔT ti whose evenness power chances can be estimated specifically through
means of the appropriate (homogeneously constructed) amplitude frequency
responses 4.63 and/or 4.65. A good evenness power effect through means of
an increased system time constant Tc = lm/vom is indeed limited at a sliver
drafting system, because the distance of the drafting zone lm cannot be se-
lected (dependent on the staple length of the single fibres) as large as one
would wish. The general observable smaller fineness fibre of long staple spun
yarns compared to short staple spun yarns is to be found objectively through
the viewpoint of the dynamic system. Because, longer staples enforce impera-
tively longer roll settings with greater time constants Tc (and smaller critical
frequencies fc) which are more effectively dampening for disturbances.

Disturbance Transfer of a Drafting System with Two Successive
Drafting Zones

Disturbance Δzi (changes of the fibre number in the input sliver).
Sliver drafting systems are often created in multi stages. It is the question of
how disturbances will be transmitted from the input to the different stages
and how these appear finally on the output. A drafting system with two
successive drafting zones according to Fig. 4.21 will be investigated in the
following.

drafting zone 2 zo, Ttf

Tto = zo·Ttf

drafting zone 1zi, Ttf

Tti = 
zi·Ttf

vi vz vo

zz, Ttf

Ttz = zz·Ttf

l2l1

draft V1 =
vz
vi

draft V2 =
vo
vz

Fig. 4.21. Technological scheme of a two steps sliver drafting system
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A sliver with the fineness T ti will be drafted to the fineness T to along the
drafting zones 1 and 2. The whole draft results as one knows to V1 · V2 and
the steady state equation is valid:

T t0 =
T ti

V1 · V2
= T ti · vi

vo
(4.67)

disturbance variant 1

There should exist a fineness disturbance at the input as a change of
the fibre number in the input sliver cross sectional area Δzi. How will ΔT to
appear at the output of the second drafting zone? The following process and
product variables are to be defined additionally compared with the previous
section: The dynamic transfer functions for the drafting zones 1 and 2 must

vz velocity of the middle drafting godet pair (output velocity of the
drafting zone 1 and simultaneously input velocity of the drafting
zone 2)

zz number of fibres in the cross section of the coming out sliver from
the drafting zone 1 and simultaneously of the coming in sliver into
the drafting zone 2

l1 length of the drafting zone 1
l2 length of the drafting zone 2
T tz sliver fineness at the output of the drafting zone 1 and the input of

the drafting zone 2 = zz · T tf

be derived at first from the dynamic basic Eq. 4.58 which correspond to the
question.
This is for the drafting zone 1:

G1(p) =
ΔT tz
Δzi

=
T tzm
zim

· 1

1 + p · l1m
vzm

(4.68)

One considers that the output fineness of the drafting zone 1 is T tz and not
T to which at first appears at the output of the drafting zone 2. Therefore,
the quantities ΔT to and T tom have been substituted by the quantities ΔT tz
and T tzm in Eq. 4.58 before the Eq. 4.68 has been derived.
The drafting zone 2 is valid as:

G2(p) =
ΔT to
Δzz

=
T tom
zzm

· 1

1 + p · l2m
vom

(4.69)

If the fineness of the fibres T tfm is also constantly valid as
T tzm = zzm · T tfm and ΔT tz = Δzz · T tfm
Therefore Eq. 4.68 is also to be written as:
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G1(p) =
Δzz · T tfm

Δzi
=

zzm · T tfm
zim

· 1

1 + p · l1m
vzm

(4.70)

The dynamic transfer function of the successive systems results from the
product of the transfer functions of the single systems. If one applies this law
to Eqs. 4.69 and 4.70 the following will be obtained for the two steps drafting
system:

GD(p) = G1(p)·G2(p) =
ΔT to
Δzi

=
T tom
zim

· 1(
1 + p · l1m

vzm

)(
1 + p · l2m

vom

) (4.71)

The complex frequency response follows from this:

GD(jω) =
˜ΔT to

Δ̃zi

· ejϕ =
T tom
zim

· 1(
1 + jω · l1m

vzm

)(
1 + jω · l2m

vom

) (4.72)

Equation 4.72 can be split into the amplitude frequency response

|GD(jω)| =

⏐⏐⏐⏐⏐ ˜ΔT to

Δ̃zi

⏐⏐⏐⏐⏐ =
T tom
zim

·

√[
1 − ω2 · l1m · l2m

vzm · vom

]2

+ ω2

[
l1m
vzm

+
l2m
vom

]2

[
1 +

(
ω · l1m

vzm

)2
][

1 +
(

ω · l2m
vom

)2
]

(4.73)

and into the phase frequency response

ϕ(ω) = arc tan

⎡⎢⎢⎣−ω ·
l1m
vzm

+
l2m
vom

1 − ω2 · l1m · l2m
vzm · vom

⎤⎥⎥⎦ (4.74)

Now the time transient function to be calculated from Eq. 4.71 is analo-
gous to Eq. 2.41:

ΔT to|Δzi = Δzi · T tom
zim

[
1 − vom · l1m

vom · l1m − vzm · l2m · exp
(
−vzm

l1m
· t

)]
−Δzi · T tom

zim
· vzm · l2m
vzm · l2m − vom · l1m · exp

(
−vom

l2m
· t

) (4.75)

Equations 4.72 to 4.75 do not mediate a clear assertion about the dynamic
properties of the two steps drafting system without of course an appropri-
ate quantitative analysis. The dynamic transfer properties should be demon-
strated using a numerical example. It should be assumed:
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vim = 1 m/min
vom = 36 m/min
vzm = 1.5 m/min (V1=1.5; V2=24) or 6 m/min (V1=6; V2=6)
T tim = 1000 tex
zim = 3600
T tfm = 0.28 tex
T tom = 27.8 tex
zom = 100
l2m = 45 mm
l1m = 50 mm or 40 mm

The disturbance should be step-like or sinusoidal Δzi = 180 respectively
Δ̃zi = ±180.

The time constants Tcd1 and Tcd2 and the critical frequencies fc1 and fc2

of the drafting zones 1 and 2 according to Eqs. 2.47 and 2.49 are:

Drafting Drafting
zone 1 zone 2

l1m vzm Tcd1 fc1 Tcd2 fc2

[mm] [m/min] [s] [Hz] [s] [Hz]

50 1.5 2.00 0.080 0.075 2.12
50 6 0.50 0.318 0.075 2.12
40 1.5 1.60 0.099 0.075 2.12
40 6 0.40 0.398 0.075 2.12

The normalised presentations of the complex frequency response, the am-
plitude frequency response and the step response are similarly valid if distur-
bances Δzi, ΔT tf or also Δvi appear at the input. The result interpretation is
qualitatively and quantitatively the same for these product and process vari-
ables regarding the effect to the output fineness ΔT to. The phase frequency
response is of course similarly valid for all three disturbances.

The transfer locus of the complex frequency response, the amplitude fre-
quency response and the phase frequency response of a two steps sliver draft-
ing system are shown in Figs. 4.22, 4.23 and 4.24. The amplitude and phase di-
agrams include in each case through agreement two additional curves (drawn
dotted) of a one step drafting zone. The appropriate step response is shown
in Fig. 4.25.

The following statements can be taken from the diagrams:

a) The evenness power effect is more exact the more unsymmetrical the
whole draft is divided between the drafting zones 1 and 2. And indeed, the
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greater part of the draft should be created in the drafting zone 2. This is to
be seen by the amplitude frequency response courses which fall down to the
abscissa at already clearly smaller disturbance frequencies for vz = 1.5 m/min
than for vz = 6 m/min. This tendency can also be seen in the step transfer
behaviour. The curves of vz = 1.5 m/min clearly increase more slowly than
those for vz = 6 m/min.

b) A change of the first drafting zone length by 10 mm (from a starting
point of 40 or 50 mm) does not effect aggravating changes of the dynamic
behaviour. The longer drafting zone 1 improves the dampening behaviour
for disturbances only insignificantly. A longer drafting zone 2 by same or
similar quantities is not practically of influence to the dynamic transmission
behaviour (not drawn here because appropriate diagram curves are nearly
identical).

c) The comparison with the dropped drawn curves for the one step draft-
ing system (following from the two steps system if l1m is set to zero; compare
also Eqs. 4.73 and 4.75 with 4.63 and 4.64) shows that a multi step draft-
ing system (here demonstrated using the two steps system) a more effective
evenness power is allowed than a one step drafting system for the fineness
of the output sliver in a greater frequency range. In our example the two
steps drafting system is able to suppress input disturbances with > 1 Hz to
the fineness effectively if the draft is divided skillfully. This would mean for
the output sliver in our example that a short periodic unevennesses of sliver
length < 60 cm would not appear anymore in a troublesome manner. The
same effect would occur for the comparable short one step drafting system
only at > 15 Hz, appropriate < 9 m sliver length.

Disturbance Δvz (velocity changes of the middle drafting roll pair).
There should exist step-like or periodic disturbances of the velocity of the
middle drafting godet pair vz. How will ΔT to appear at the output of the
drafting system?

disturbance variant 2

The mean value of the output fineness T tom will not change even after
longtime disturbances of vz, because in this case the whole draft does not
change steady state. But short time ΔT to-effects will appear. These consist
of two primary effective transmission processes: Δvz effects at first a change of
the fineness T tz at the output of the drafting zone 1, which is simultaneously
an input fineness disturbance of the drafting zone 2. Second, Δvz effects an
input velocity disturbance of the drafting zone 2. ΔT to consists of the two
parts ΔT to1 and ΔT to2 which are consequently to be added according to the
superposition law. ΔT to1 describes the disturbance transmission of ΔT tz to
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ΔT to and ΔT to2 describes the disturbance transmission of Δvz to ΔT to.

The dynamic transfer behaviour is to be derived from the dynamic trans-
fer functions of the single part drafting zones.

effect of Δvz to ΔT tz:

G1(p) =
ΔT tz
Δvz

= −T tzm
vzm

· 1

1 + p · l1m
vzm

(4.76)

effect of ΔT tz to ΔT to1:

G2(p) =
ΔT to1
ΔT tz

=
T tom
T tzm

· 1

1 + p · l2m
vom

(4.77)

effect of Δvz to ΔT to1 = product of Eqs. 4.76 and 4.77:

G3(p) =
ΔT to1

Δvz
= −T tom

vzm
· 1(

1 + p · l1m
vzm

)(
1 + p · l2m

vom

) (4.78)

effect of Δvz to ΔT to2:

G4(p) =
ΔT to2

Δvz
=

T tom
vzm

· 1

1 + p · l2m
vom

(4.79)

The total ΔT to is the sum of ΔT to1 and ΔT to2. The total transfer function
GD(p) is for this disturbance case the sum of G3(p) and G4(p) according to
Eqs. 4.78 and 4.79:

GD(p) =
ΔT to1

Δvz
=

T tom
vzm

·
p · l1m

vzm(
1 + p · l1m

vzm

)(
1 + p · l2m

vom

) (4.80)

Equation 4.80 shows that a differential action with delay of second order lies
before (no permanent fineness shift after a steady state disturbance). It is
the starting point for the equations of the frequency, amplitude, phase and
step response which can be derived according to the already cited manifold
rules of Sect. 2.5.2.

complex frequency response

GD(jω) =
˜ΔT to1

Δ̃vz

=
T tom
vzm

·
jω · l1m

vzm(
1 + jω · l1m

vzm

)(
1 + jω · l2m

vom

) (4.81)



4.4 Dynamics of Fibre Formation in the Spun Yarn Spinning Process 201

amplitude frequency response

|GD(jω)| =

⏐⏐⏐⏐⏐ ˜ΔT to

Δ̃vz

⏐⏐⏐⏐⏐
=

T tom
vzm

·
ω · l1m

vzm

√[
1 − ω2 · l1m · l2m

vzm · vom

]2

+ ω2

[
l1m
vzm

+
l2m
vom

]2

[
1 +

(
ω · l1m

vzm

)2
][

1 +
(

ω · l2m
vom

)2
] (4.82)

phase frequency response

ϕ(ω) = arc tan

⎡⎢⎢⎣1 − ω2 · l1m · l2m
vzm · vom

ω

(
l1m
vzm

+
l2m
vom

)
⎤⎥⎥⎦ (4.83)

step response

ΔT to|Δvz = Δvz · T tom
vzm

·
exp

(
− l1m

vzm
· t

)
− exp

(
− l2m

vom
· t

)
1 − l2m · vzm

l1m · vom

(4.84)

The transfer locus of the frequency, amplitude and phase frequency re-
sponses of a two steps sliver drafting system for the disturbance Δvz are
shown in Figs. 4.26, 4.27 and 4.28. The step response is shown in Fig. 4.29.

Some statements can also be given here in principle:

a) Extremely short periodic as well as long periodic, fluctuations of the
velocity of the middle drafting godet pair also effect the output fineness
dampened strength (see amplitude frequency response curves). The range
of the maximum disturbance transmission in the example is situated be-
tween about 0.5 and 1 Hz. Relative periodic Δvz-changes have nearly the
same great ΔT to-changes and are actually for strong unsymmetric draft par-
tition (vzm = 1.5 m/min) somewhat greater than for less unsymmetric draft
partition (vzm = 6 m/min).

b) This disturbance type Δvz does not cause permanent fineness shifts
after a step-like disturbance (see step response). The old fineness mean value
T tom will be reached after a sufficient long time (here > 5 s) also if the
disturbance continues. The drafting system further operates with increased
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draft in zone 1 and simultaneously with decreased draft in zone 2 in which
the total draft is unchanged. It is also to be observed here that greater short
time shifts of the fineness appear if the total draft is chosen unsymmetrically.
Length changes of the drafting zone 1 have a smaller influence in which an
increase of l1m effects a small increase of the fineness shift.

c) A result comparison of the demonstrated disturbance types (changes of
the fibre number of the input sliver Δzi or changes of the velocity of the middle
drafting godet pair Δvz) shows that the disturbance dampening effect varies
depending upon the disturbance type. Whereas an, as small as possible, draft
of the draft in zone 1 is an advantage for a good evenness power effect of the
drafting system at Δzi-changes the inverted effect is valid for Δvz-changes. A
greater break draft in drafting zone 1 is more dampening for disturbances
than a smaller break.

4.5 Necessary Measuring and Gauge Lengths to the
Proof of Dynamic Disturbances in Yarns

The presentation until now has shown that dynamic disturbances of different
kinds (periodic, aperiodic, at different technological operating points) of dif-
ferent process and product variables effect yarn disturbances along different
yarn lengths. It should be questioned as to which basic totality of (at one
working position) manufactured yarn length is to be included into a contin-
uous or discontinuous test in the textile test lab. What cut length is to be
selected for the continuous single tests to decisively describe dynamic distur-
bance effects in the yarn?

One can use a well-known rule of thumb for the electric measurement
technique to technically prove test disturbances by means of discontinuous
measurements. This is possible if the frequency of the tracing disturbance is
known and if this frequency is suitable for a measurable effect to the yarn
variable (for instance the fineness) according to the transfer and dampening
properties of the system. The latter mentioned are to estimate simply by
means of the amplitude frequency response or also roughly for the dominating
system time constant Tc or for the critical frequency fc.

The named rule of the electric measurement technique means that the
carrier frequency of the amplitude modulation (a well-known procedure of the
analogous transmission of electrical measuring signals) must be at least five
times greater than the highest awaiting frequency of the measuring size. If this
condition is fulfilled then a true to the form reproduction and transmission
is given of the dynamic measuring size. This means, in other words, that the
cycle duration for an oscillation of the carrier frequency must be included at
least five times in the cycle duration of the shortest awaiting oscillation of
the measuring size [5].
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This rule (applied to the presented problem of the gauge and measur-
ing length estimation) means that the yarn length (which has been exactly
manufactured or processed during a full oscillation of the disturbance) is to
be divided into at least five equal parts for further (for instance statistical)
estimations.

If the disturbance frequency f and the take-down velocity vo are known,
then the wavelength of the disturbance λf in the fibre or yarn amounts to:

λf =
vo

f
(4.85)

The necessary cut length Lcl for the named single tests can be derived
from Eq. 4.85 as follows:

Lcl =
1
n
· vo

f
=

λf

n
(4.86)

condition: n ≥ 5

It is not enough to only select as necessary gauge length Lgl the yarn
length of one cycle duration of the disturbance. Rather it is recommended
that the basic totality of the gauge length Lgl to select be at least so large
that five full disturbance oscillations are included. The necessary gauge length
Lgl for fibre or yarn testings can be recommended consequently to:

Lgl = n · vo

f
= n · λf (4.87)

condition: n ≥ 5

According to Eqs. 4.86 and 4.87, 25 continuous single tests of yarn pieces
with the cut length Lcl would be necessary to prove an expected distur-
bance frequency. Typical disturbance frequency ranges and the necessary
yarn lengths Lgl and Lcl for their proof (which can be derived from the wave-
length of a full disturbance oscillation λf in the shown manner) are collected
in Table 4.4 for a row of disturbance causes in the polymer and glass spinning
processes. Questions about the named aspects could not be answered if fixed
standard gauge lengths or cut lengths were used (fineness testing 100 m or
stress strain testing with specimen length of 0.5 m).

However, if the named conditions are fulfilled the following remarks are to
be added according to the assertion of statistical characteristics as quadratic
dispersion or variance and coefficient of variation. These characteristics do
not express the absolute shifts around the mean values of the concerned
variables in consequence to their integral calculation laws. If conditions are
being observed for the decision of the yarn lengths Lgl and Lcl according to
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Eqs. 4.86 and 4.87 (to investigate an appointed disturbance cause of known
frequency f) then the coefficient of variation will show sinusoidal shifts of
approximately 0.7 times around the mean value only (exactly

√
2/2 times)

for real existing maximum shift amplitudes.

It has been shown in Sect. 2.5.2 that the disturbance frequency f of pro-
cess and product variables essentially effect the interesting product variables
of the final product only if
- the dynamic transmission behaviour is shown with a considerable transfer
or amplification factor and
- the disturbance frequency f is located in an appointed range, which de-
pends on the critical frequency fc of the process line.

The last condition results in a practical undamped dynamic transmission
of a cause disturbance to the effect variable by a proportional action with
delay of first order

f ≤ fc (4.88)

It should be remembered that proportional action with delay of first order
takes place in the fibre formation of melt spinning for the transmission of
Δvo-, Δvi-, Δ�- or Δqi-disturbances to ΔT to-shifts.

If differential action with delay of first order lies before, on the contrary
then the condition reads for undamped disturbance transmission as:

f ≥ fc (4.89)

Differential action with delay of first order exist for instance for Δl-
disturbances, in melt spinning and its effect to ΔT to-shifts.

In Table 4.5 time constants Tc and critical frequencies fc (calculated by
means of Eqs. 2.47 and 2.49 are combined on the basis of the output velocity
vom and length of the process line lm) for some typical yarn formation and
processing lines. The collection can support estimations to possible effects of
periodic disturbances with known frequency f for variables of the yarn at the
output of a yarn formation or processing line.
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Table 4.4. Disturbance causes, disturbance frequencies and disturbance wave-
lengths in the fibre or yarn of melt spinning processes; necessary gauge and cut
lengths for the prove of disturbances (vom = take-down velocity in m/min)

Cause of the Disturbance Wavelength Necess. gauge Necess. cut
disturbances frequencyf in the fibre length Lgl length Lcl at
at the or yarn λf discontinuous
spinning testing
equipment [Hz] [m] [m] [m]

Melt spinning of polymers

Bobbin (1.4...5.6) (12...3) ≥ (6..1.5) ≤ (24...6)
changing ·10−4 ·10 · vom ·102 · vom ·vom

Melt (1.7...17) (10...1) ≥ (50..5) ≤ (20...2)
temperature ·10−3 ·vom ·vom ·10−1 · vom

Oiling disk (1.7...3.3) (10...5) ≥ (5..2.5) ≤ (2...1)
·10−1 ·10−2 · vom ·10−1 · vom ·10−2 · vom

Spinning (1.7...6.7) (10...2.5) ≥ (5..1.25) ≤ (20...5)
pump ·10−1 ·10−2 · vom ·10−1 · vom ·10−3 · vom

Quenching (5...50) (33...3.3) ≥ (16.7...1.7) ≤ (67...6.7)
air ·10−1 ·10−3 · vom ·10−2 · vom ·10−4 · vom

Traverse (1...10) (17...1.7) ≥ (85...8.5) ≤ (33...3.3)
motion ·10−1 ·10−4 · vom ·10−4 · vom ·10−5 · vom

Melt spinning of glass

Bobbin (5.7...16.7) (3...1) ≥ (15..5) ≤ (6...2)
changing ·10−4 ·10 · vom ·10 · vom ·vom

Main power ≤ 4 · 10−1 ≥ 4.2 ≥ 2.1 ≤ 8.4
(melt temp.) ·10−2 · vom ·10−1 · vom ·10−3 · vom

Throughput
spinneret
- without ≤ 1 · 10−3 ≥ 1.7 ≥ 8.5 ≤ 3.4 · vom

Ts-control ·101 · vom ·101 · vom

- with ≤ 1 · 10−4 ≥ 1.7 ≥ 8.5 ≤ 3.4
Ts-control ·102 · vom ·102 · vom ·10 · vom

- quick ≈ 1.751 · 101 ≈ 9.5 ≥ 4.75 ≤ 1.9
traverse ·10−4 · vom ·10−3 · vom ·10−4 · vom

≈ 3.5 · 101 ≈ 4.8 ≥ 2.4 ≤ 9.6
·10−4 · vom ·10−3 · vom ·10−5 · vom

- slow ≈ 3.3 · 10−2 ≈ 5 ≥ 2.5 · vom ≤ 1
traverse ·10−1 · vom ·10−1 · vom
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Table 4.5. Quantities of time constants and critical frequencies of different fibre
formation and fibre processing process lines

Process step Output velocity Formation Time constant Critical frequen-
of the process length of the of the process cy of the process
step process line line line
vom [m/s] lm [m] Tc [s] fc [Hz]

Man-made fibre manufacturing
Spinning
classically
and spin-
draw-winding (1.5...2) · 10 4...6 (2...4) · 10−1 (8...4) · 10−1

Spinning,
high speed
spinning (5...10) · 10 2...4 (2...8) · 10−2 8...2

Draw,
classically (1.2...1.5) · 10 3.5...4.5 · 10−1 (2.3...3.8) · 10−2 6.9...4.2

Draw,
spin-draw-
winding (5...10) · 10 4.5...5.5 · 10−1 (4.5...11) · 10−3 (3.5...1.5) · 10
False twisting,
texturing 2.5...10 1...2 (1...8) · 10−1 (16...2) · 10−1

Yarn manufacturing

Draw,
slivers and
rovings 1...8 (1...5) · 10−1 (1.3...50) · 10−2 12.2...0.32

Draw,
ring frame (3...10) · 10−1 (5...20) · 10−2 (5...67) · 10−2 (32...2.4) · 10−1



5. Dynamics of Fibre Processing Processes

5.1 Dynamics of the Fibre Transport

5.1.1 Task

Each fibre manufacture and processing process is connected to the dynamic
basic principle of the transport. Neither fibre formation nor fibre processing
are possible without continuously running down transport operations, which
are realised as a rule, by means of rotations for specific machine tools. Fibres
or yarns are not able to pick up axial pressure forces. Therefore, a continuous
fibre transport is only possible if a tensile force is produced and permanently
maintained in the transported fibre or yarn. A controlled refining of the yarn
(for instance in the draw process of man-made fibres) can even be effected
by means of this tensile force besides the pure transport and processing (for
instance twisting, package winding, sectional warping, texturing). On the
one hand, specially man-made fibres are very sensitive to tensile force fluc-
tuations during their processing. On the other, some disturbed process and
product variables (caused for instance by thread guide elements, preparation
oils, unbalanced machine tools, fluctuating fibre material itself) permanently
influence the quantity of the tensile force. It is obvious that the dynamic
analysis and the dynamic modelling of the basic process fibre transport is
from fundamental and primary importance for the process analysis of the
technological fibre formation and processing processes.
Some elaborated model ideas to this set of problems are presented in the
following. These are valid for small deformation ranges (elongation demand
< 10%) in which current linearity is between tensile force and elongation in
the first approximation. Nonlinear deformation processes (with changing fi-
bre deformation characteristics along the fibre length or with essential plastic
deformation parts) are excluded.
The investigations can be used as a basis for the treatment of the following
problems:

- process synthesis oriented (for instance statements to favourable or un-
favourable arrangement and design of machine tools in the thread line),

- process analysis oriented (for instance influence of thread guide elements
to the thread unevenness, reaction of measuring sensors to the thread) or
even
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- thread test oriented (for instance questions in relationship with the fric-
tional test or with the unevenness measuring of threads).

Besides our own detailed paper to fibre transport modelling [291] the
reader should be referred to the complementing three papers dealing with
the problem of running elastic fabrics between driven rolls [292]- [294]; [295]
is also recommended.
The analysis of any continuous running thread line in a fibre formation, fibre
processing or fibre testing machine or apparatus shows that three different
thread strain lines (arranged in different manners of series) can be found:
These are the delay thread line, the dead time thread line and the friction
thread line.
The dynamic modelling of any realised thread transport process therefore
supposes knowledge and solutions of the dynamic description equations (that
means the DEq.) for the three named typical thread transport strain lines.

5.1.2 Dynamic Model to the Description of a Delay Thread Line

A delay thread line is in the present relationship a part of a transported,
under a tensile force situated, thread with the length l which runs into this
part with the velocity vi and the fineness T ti and comes out of this part with
the velocity vo and the fineness T to. Here: vo > vi (trivial condition for the
improvement of a tensile force) is valid and each fineness change comes off
evenly at each point along this part. The last prerequisite is a simplification
for the transported thread in the settled limited strain range which the thread
attributed rubber elastic behaviour.

Figure 5.1 (already known in a similar form, compare Figs. 2.5 and 4.20)
shows a possible practical realisation for the given definition. At this, one can
also imagine, the backing-off point of a thread from a cop which is transported
along a determined free way distance into the rotating input element of a
thread processing machine.

The linearised DEq. (the mathematical dynamic model) of such a delay
thread line can be deduced naturally from the basic Eqs. 2.23 and 4.7 to:

(vom+p·lm)·ΔT to+T tom ·Δvo−vim ·ΔT ti−T tim ·Δvi+p·T tom ·Δl = 0 (5.1)

Equation 5.1 can be transmitted easily to the dynamic transfer function (re-
peatedly explained in Chap. 4 before) from which all further dynamic func-
tions in the frequency and time range are calculable.
It is easy to state that after some practice in the handling of DEqs. in the oper-
ator style of writing and their solution functions that the dynamic behaviour
of a delay thread line is practically identical to the already fully described
behaviour of the fibre formation distance in melt spinning polymers for the
product variable fibre fineness (see also Sect. 4.2.1). All resulting equations
and their normalised presentations (Figs. 4.4 to 4.6) are valid, similarly, for
the transport delay line. It is simple to substitute the variables qi, qim and Δqi
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lm, Δl

Ttim, ΔTti
vim, Δvi

Ttom, ΔTto

vom, Δvo

Fig. 5.1. Technological scheme of a delay thread line

by T ti, T tim and ΔT ti in Sect. 4.2.1. Δ� = 0 is to be set additionally because
this variable is not of interest here.

In the following practical example of Sect. 5.1.5 we will fall back upon
Eq. 5.1 and its application will be demonstrated.

5.1.3 Dynamic Model to the Description of a Dead Time Thread
Line

A dead time thread line is in the present relationship a part of a transported,
under a tensile force situated, thread with the length l which runs into this
part with the velocity vi and the fineness T ti and comes out of this part with
the velocity vo and the fineness T to. Here: vo = vi is valid and the thread
does not suffer fineness changes inside this part.
This definition says that the input thread fineness appears unchanged at the
output after running through this part (after the so-called dead time Td has
expired). Under this condition:
mass inflow per time = T ti · vi

mass discharge per time = T to · vo

with the both boundary conditions

vo = vi (5.2)

T to = T ti · exp(−p · Td) (5.3)

Figure 5.2 shows a realisation of a thread (transport) dead time line.
Equation 5.3 expresses the dead time relation between T to and T ti in the
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vom, Δvo

Dm, ΔD

αm, Δα

Fig. 5.2. Technological scheme of a dead time thread line

style of operator writing. It is the dynamic transfer equation for dead time
elements known from the automatic control engineering (see for instance [10]).
If the dead time Td is realised by the thread wrap around a cylindrical thread
transport element (for instance a wrapped godet which is a typical dead time
transport element) with the diameter D, the angle of wrap α (in radian mea-
sure) and the circumference velocity vi can then be written as:

Td =
D · α
2 · vi

(5.4)

One gets the dynamic model equation (first of all nonlinearly according to
the variables T ti, T to, vi, D and α) for the dead time thread line by putting
Eq. 5.4 into 5.3:

Φ = T to − T ti · exp
(
−p · D · α

2 · vi

)
= 0 (5.5)

Linearisation by means of partial differentiation then results in the linearised
final motion DEq. of the dead time thread line to:

ΔT to − exp
(
−p · Dm · αm

2 · vim

)
· ΔT ti

−p · T tim · Dm · αm

2 · v2
im

· exp
(
−p · Dm · αm

2 · vim

)
· Δvi

+p · T tim · αm

2 · vim
· exp

(
−p · Dm · αm

2 · vim

)
· ΔD

+p · T tim · Dm

2 · vim
· exp

(
−p · Dm · αm

2 · vim

)
· Δα = 0



5.1 Dynamics of the Fibre Transport 213

(5.6)

Equation 5.6 can be transmitted into the, in each case interesting, dynamic
transfer function for determined concrete cause-effect-questions. From the
latter the frequency, the amplitude and the phase frequency responses are
calculable. The effect variable output thread fineness T to will surely be of
special interest in most cases. It is to be remarked that the calculation of the
step response on the basis of the transfer function (by means of the residue
theorem of the Laplace-transformation) is not possible here because the step
response function of a dead time thread line is not a continuous function. The
practical application of Eq. 5.6 will be demonstrated by means of an example
in Sect. 5.1.5.

5.1.4 Dynamic Model to the Description of a Friction Thread Line

A friction thread line is in the present relationship a part of a transported,
under a tensile force situated, thread with the length l which runs into this
part with the velocity vi and the fineness T ti and comes out of this part with
the velocity vo and the fineness T to. Thus the following statement is valid:
The tensile force of the thread increases permanently along the part accord-
ing to the tensile friction law and the thread fineness decreases (a constant
E-modulus of the thread material is presumed) permanently according to the
same law (in a modified manner).
Friction lines appear practically on all fixed thread guides at the thread trans-
port. They are as you know even consciously designed parts of the appropriate
friction test apparatuses. The technological scheme of such a friction thread
line is shown in Fig. 5.3. It is at first necessary to determine the thread mass
on the friction element to the development of the continuity equation for the
dynamic working case. The following is valid for the tensile force in the input
and output thread (Fi and Fo):

Fo = Fi · eμ·α (5.7)

eμ·α rope friction factor
μ coefficient of friction
α angle of wrap (in radian measure)

The tensile force within a thread (which possesses the fineness T tzm before
the force influence on it and the fineness T ti during the force influence on it)
can be written as:

Fi = Azm · T tzm

[
T tzm
T ti

− 1
]

(5.8)

Azm to the thread fineness related rise of the force-elongation-
curve of the thread; dimension: force · fineness−1 ·
(relative length change)−1
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Fig. 5.3. Technological scheme of a friction thread line

Equation 5.8 put in Eq. 5.7 results:

Azm · T tzm

[
T tzm
T to

− 1
]

= Azm · T tzm

[
T tzm
T ti

− 1
]
· exp(μ · α) (5.9)

Equation 5.9 results for T to:

T to =
T tzm[

T tzm
T ti

− 1
]
· exp(μ · α) + 1

(5.10)

The, on the friction element situated, thread mass M can now be determined
by means of Eq. 5.10. The fineness T to (dependent on the angle of wrap α)
is to be multiplied by the circular arc α · Dm/2 to this (Dm = diameter of
the friction element). Because To is a function of α it is to be integrated over
the whole way of friction:

M =
Dm

2

α∫
o

T tzm[
T tzm
T ti

− 1
]
· exp(μ · α) + 1

· dα (5.11)

The solution of Eq. 5.11 results after substitution:

M =
Dm · T tzm

2 · μ

⎧⎪⎪⎨⎪⎪⎩μ · α + ln

[
T tzm
T ti

− 1
]

+ 1[
T tzm
T ti

− 1
]
· exp(μ · α) + 1

⎫⎪⎪⎬⎪⎪⎭ (5.12)
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If Eq. 5.10 is reduced to T ti and this value is inserted in Eq. 5.12 then one
gets the thread mass on the friction element M in dependent upon the output
thread fineness T to:

M =
Dm · T tzm

2 · μ
[
μ · α + ln

(T tzm − T to) · exp(−μ · α) + T to
T tzm

]
(5.13)

The time differential of Eq. 5.13 can be formed now because the value dm/dt
is nothing else than the changing thread mass on the friction element if T to
changes. This change element is easy to calculate:

dM

dt
=

Dm · T tzm[1 − exp(−μ · α)]
2 · μ(T tzm − T to) · exp(−μ · α) + T to

· Ṫ to (5.14)

Equation 5.14 represents the change of stored mass. The nonlinear DEq. as
the dynamic model equation for a friction thread line according to the basic
Eq. 2.23 can now be written with the latter and both quantities

• mass inflow per time = T ti · vi and
• mass discharge per time = T to · vo

Φ = vo ·T to+
dM

dt
=

Dm · T tzm[1 − exp(−μ · α)]
2 · μ(T tzm − T to) · exp(−μ · α) + T to

· T to·p−vi·T ti = 0

(5.15)

After partial derivation to all quantities which can change (vo, vi, T to, T ti,
μ, α) the following linearised motion-DEq. for a friction thread line results
from Eq. 5.15:

Ttom · Δvo − Ttim · Δvi − vim · ΔTti

+

{
vom + p

2Tt2zmDmμmexp(−μmαm)[1 − exp(−μmαm)]

[2μm(Ttzm − Ttom)exp(−μmαm) + Ttom]2

}
· ΔTto

+p
2TtzmTtomDmexp(−μmαm)[Ttomαm/2 − (Ttzm − Ttom)[μmαm − exp(−μmαm)]]

[2μm(Ttzm − Ttom)exp(−μmαm) + Ttom]2
· Δμ

+p
2TtzmTtomDmμmexp(−μmαm)[Ttom/2 + μm(Ttzm − Ttom)]

[2μm(Ttzm − Ttom)exp(−μmαm) + Ttom]2
· Δα = 0

(5.16)

The structure of Eq. 5.16 is a bit more complicated than the derivated equa-
tions until now. Nevertheless, it is the basis of the dynamic transfer functions
and their derivated functions in the frequency range (frequency, amplitude,
and phase frequency responses) which can answer to appointed cause-effect-
questions. In the following subsection the use of the dynamic model Eqs. 5.1,
5.6 and 5.16 of the delay, dead time and friction lines thread will be repre-
sented by means of some practical examples. From these derived statements
it will also be shown for the carrying out of the process.
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5.1.5 Examples of Quantitative Investigations of Fibre Transport
Processes

Fibre Influence in a Series Arrangement of Delay and Dead Time
Thread Lines

The investigated delay thread line with a following dead time thread line
is shown in Fig. 5.4. A practical realisation could be, for instance, that the
thread runs from a supply bobbin into the manifold wrapped taking in godet
of a drawing zone or the thread runs in an elongation zone realised between
a taking in godet and a manifold wrapped taking out godet.

Ttim, ΔTti
vim, Δvi

Ttom, ΔTto

vom, Δvo

Dm , ΔD

αm

lm

delay line

dead line

Ttzm, ΔTtz
vzm, Δvz

Fig. 5.4. Series arrangement of a delay and a dead time thread line

The used abbreviations mean:

T tim, vim mean value of the thread fineness or velocity at the input into the
delay line

ΔT ti, Δvi changes of the thread fineness or velocity around their mean values
at the input into the delay line

T tzm, vzm mean value of the thread fineness or velocity at input into the dead
time line (≡ output of the delay line)

ΔT tz, Δvz changes of the thread fineness or velocity around their mean values
at input into the dead time thread line (≡ output of the delay line)

T tom, vom mean value of the thread fineness or velocity at output of the dead
time line

ΔT to, Δvo changes of the thread fineness or velocity around their mean values
at output of the dead time line

lm length of the delay line
Dm diameter of the godet
ΔD change of the godet diameter
αm angle of wrap of the thread around the godet (in radian measure)
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The dynamic model equations of a delay thread line (Eq. 5.1) and a dead
time thread line (Eq. 5.6) – applied to the present case – are used for the
calculation of the dynamic transfer function for a cause-effect relation whose
aim is also to be defined. It should be assumed that ΔD (no eccentricity of the
godet) as well as Δvz and Δvo (no speed changes of the transport godet) and
ΔT ti (no changes of the input thread fineness) are equal to zero. Moreover,
if it is considered that vzm = vom and T tzm = T tom then the equations can
be written as
delay line

(vom + p · lm) · ΔT tz − T tim · Δvi = 0 (5.17)

dead time line

ΔT to − exp
(
−p · Dm · αm

2 · vom

)
· ΔT tz = 0 (5.18)

It should now be investigated whether the reactions of the fineness at the
output of the transport godet (ΔT to) are if the velocity is changing at the
input of the whole transport line (Δvi). Now the dynamic transfer function
is to be formed

G(p) =
ΔT to
Δvi

which is to be calculated from Eqs. 5.17 and 5.18 as follows:

G(p) =
ΔT to
Δvi

=
T tim
vom

·
exp

(
−p · Dm · αm

2 · vom

)
1 + p · lm

vom

(5.19)

amplitude frequency response

|G(jf)| =

⏐⏐⏐⏐⏐ ˜ΔT to

Δ̃vi

⏐⏐⏐⏐⏐ =
T tim√

v2
om + (2πf · lm)2

(5.20)

phase frequency response

ϕ(f) = arc tan

⎡⎢⎢⎣−2πf · lm · cos
(

Dmαmπ

vom
· f

)
+ vom · sin

(
Dmαmπ

vom
· f

)
vom · cos

(
Dmαmπ

vom
· f

)
− 2πf · lm · sin

(
Dmαmπ

vom
· f

)
⎤⎥⎥⎦

(5.21)
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The phase shift angle ϕ(f) (Eq. 5.21) indicates (as you know) in which
angle ϕ (related to a full cycle duration of the disturbance oscillation) the
effect-oscillation follows the cause-(disturbance-)oscillation. It is easily pos-
sible to conclude from this phase shift angle ϕ(f) by means of the known
output velocity vom and of Eq. 2.50 to the thread length Ld which passes
the transport system at its output before an input disturbance reaches this
output. An independent representation of this delay thread length Ld from
the velocity vom can be given if it does not use the disturbance frequency f
as an independent variable, but the wavelength λf of a full cycle duration of
the disturbance in the thread. It is connected with the disturbance frequency
f and the thread output velocity vom according to the relation

f =
vom

λf
(5.22)

Comparable to this is also the equivalent Eq. 4.57.

The nomogram Fig. 5.5 should be inserted at this point. It allows the
conversion of the single quantities into each other and it can be used because
it is generally valid for other interests of the same kind which are presented
for instance in the Sects. 4.3.3, 4.4.2, 4.4.3 and the Sect. 4.5.

The amplitude frequency response of Eq. 5.20 and the delay thread length
Ld are represented in Figs. 5.6 and 5.7 depending upon the disturbance fre-
quency f and of the correlated thread length (in connection with the thread
output velocity), which represents a full disturbance oscillation. The corre-
sponding dependences are epitomised presented for the following process and
product variables (only for vim=100 m/min) relating to the model arrange-
ment in Fig. 5.4:

T tim = 3.4 tex
T tom = 3.3 tex
Dm = 0.1 m, 0.2 m
αm = 0 (thread goes out the delay thread line directly)
αm = 2π, 6π, 10π (≡ 1, 3, 5 wraps round the godet)
lm = 0.5 m, 1.0 m, 2.0 m
vim = 100 m/min, 500 m/min, 1000 m/min
vom = 103 m/min, 515 m/min, 1030 m/min

The following statements are to be derived also concerning the not pre-
sented results of the higher thread velocities:

a) The amplitude frequency responses (Fig. 5.6) show that the amplitude
of the output fineness change ˜ΔT to (caused by an input disturbance of the
velocity Δ̃vi) is independent on it, if a dead time thread line of any length
follows to the delay thread line or not. The result means that the imprinted
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example: vom = 58 m/min
f = 0.75 Hz
λf   = 1.29 m

Fig. 5.5. Nomogram to the estimation of the relationship between the thread
velocity vom, the disturbance frequency f and the disturbance wavelength λf

thread fineness changes ˜ΔT to along a godet line with more or less wraps will
neither decrease nor increase. They appear at the output unchanged and are
only delayed by the pure transport time (see definition of the dead time in
the Sect. 5.1.3).

b) Disturbances of the input velocity Δ̃vi of ≥ 50 m/min (according to
a frequency of the disturbance f of ≤ 3.3 · 10−2 Hz at vim = 100 m/min
or ≤ 3.3 · 10−1 Hz at vim = 1000 m/min) will be transmitted practically
undamped to the output thread fineness T to.

c) A practical complete dampening is reached if the disturbance is ≤ 50
mm (according to a frequency of the disturbance f of ≥ 33 Hz at vim = 100
m/min or ≥ 330 Hz at vim = 1000 m/min). It is furthermore to read that
the dampening effect is already put in at smaller frequencies the greater the
length of the delay line.
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Fig. 5.6. Normalised amplitude frequency responses of fineness changes ˜ΔT to
caused by input velocity changes Δ̃vi after the thread line arrangement Fig. 5.4,
input velocity vim = 100 m/min

de
la

y 
fi

br
e 

le
ng

th
 L

d

10-2

10-1

100

10-3

10-4

m

10-2 10-1 100 101 102

disturbance wavelength λf

m

αm= 10π; Dm= 0.2 m
αm= 10π; Dm= 0.1 m
αm=   6π; Dm= 0.2 m
αm=   6π; Dm= 0.1 m
αm=   2π; Dm= 0.2 m
αm=   2π; Dm= 0.1 m
αm=   0

Fig. 5.7. Delay fibre length Ld, length of the delay thread line lm = 0.5 m, thread
line arrangement after Fig. 5.4



5.1 Dynamics of the Fibre Transport 221

d) It is furthermore remarkable that a variation of the delay thread line
length lowers or raises the critical frequencies in a similar ratio. From this it
is derivable that the dampening of such input velocity disturbances is better
the longer the line can be selected from the thread unwinding point to the
machine input. Such disturbances happen for instance at the twisting, draw
twisting or knitting in form of so-called “thread plucks” or also in longer pe-
riodic unwinding fluctuations by means of oil fluctuations on the thread. An
extension of this line alone must also work for thread break behaviour, be-
cause the thread break is an extreme case of fineness change (ΔT t = −T tm).
Each measurement must effect diminishing, to the thread breaks, which fine-
ness changes damp or dismantle, indifferent of which cause is produced.

e) The knowledge of the delay thread length Ld is also important for the
cause research of unevennesses (Fig. 5.7). The dead times (caused by different
roll wraps and diameters) are of decisive influence on Ld (contrary to the am-
plitude frequency response) specifically in the disturbance wavelength range
≤ 1 m. Whereas the delay thread length Ld with missing dead time (αm = 0)
line increases very strongly with increasing disturbance wavelength λf (ac-
cording to decreasing disturbance frequency f , notice the double logarithm
axes in Fig. 5.7) the dependence on the disturbance wavelength decreases
with the increasing dead time line. The delay thread length Ld approaches a
limit value versus the disturbance wavelength λf which is exactly equivalent
to the length of the delay thread line lm. This behaviour means practically
that Ld is determined for λf ≤ 1 m (according to great disturbance frequen-
cies f) almost fully by the dead time thread line, whereas the influence of the
delay thread line (according to the length of this) will be relatively stronger
for great disturbance wavelengths λf ≥ 5 m (according to small disturbance
frequencies f).

f) The relationships show that specific short-time disturbances of high
frequencies (with short and shortest wavelengths) in the thread (they influ-
ence the thread break behaviour especially drasticly) are very difficult to
characterise only by their cause-effect relationship. The reason is that their
amplitudes are probably strongly dampened (specifically for long delay lines)
and because (specifically for short delay lines) the delay thread length Ld can
amount to the multiple of the disturbance wavelength λf .

It is absolutely necessary that dynamic model investigations be carried out
for such practical interesting cases to the design of unique relationships out of
dynamic measurements. It can also be necessary that the interpretation of the
measuring results be found by cross-correlation analysis of the disturbance
time functions and their effects to the thread fineness (see to this Chap. 6).
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Fibre Influence at Fixed Thread Guides (Friction Thread Lines)

The thread line at fixed thread guides (thread deflection elements, thread
guides, friction brakes) has been defined as the friction line. The already
used scheme of the thread guidance around a fixed friction element (Fig. 5.3)
will be investigated quantitatively in the following more throughly. The used
symbols of the dynamic model Eq. 5.16 and their meaning should be given
as:

T tzm, vzm mean values of the thread fineness or velocity
of the tensionless thread

T tim, vim mean values of the thread fineness or velocity
at the input into the friction thread line

T tom, vom mean values of the thread fineness or velocity
at the output of the friction thread line

Dm diameter of the fixed (friction) thread guide
αm mean value of the angle of wrap of the thread

around the fixed (friction) thread guide (in ra-
dian measure)

μm mean value of the friction coefficient thread-
thread guide

ΔT ti, ΔT to,
Δvi, Δvo,
Δμm, Δαm, ΔD

⎫⎬⎭ changes of the adequate sizes around their
mean values

It is assumed according to Eq. 5.16 that D, T tz, vz, vo and α are constant
(the appropriate possible changes ΔD, ΔT tz, Δvz, Δvo and Δα are assumed
to be zero). Equation 5.16 is simplified appropriately then.

It is investigated in the following how the fineness change ΔT to acts if
either the velocity at the input of the friction thread line vi or the friction
coefficient μ fluctuate. The fineness of the thread at the input should be con-
stant (ΔT ti = 0).

The amplitude frequency responses for the named disturbances are:

|G(jf)| =

⏐⏐⏐⏐⏐ ˜ΔT to

Δ̃vi

⏐⏐⏐⏐⏐ =
T tim · Aa√

A2
a · B2

a + (2πf · Ca)2
(5.23)

|G(jf)| =

⏐⏐⏐⏐⏐ ˜ΔT to

Δ̃μ

⏐⏐⏐⏐⏐ =
2πf · Ea√

A2
a · B2

a + (2πf · Ca)2
(5.24)

with the abbreviations

Aa = [2μm(T tzm − T tom) · exp(−μm · αm) + T tom]2

Ba = vom
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Ca = 2T t2zm · Dm · μm · exp(−μm · αm)[1 − exp(−μm · αm)]

Ea = 2T tzm · T tom · Dm · exp(−μm · αm)
· {(T tzm − T tom) · [1 − μmαm − exp(−μm · αm)] − T tom · αm/2}

The correlated phase frequency responses for the disturbance Δ̃vi are:

ϕ(f) = arc tan
[
−2πf · Ca

Aa · Ba

]
(5.25)

and for the disturbance Δ̃μ:

ϕ(f) = arc tan
[

Aa · Ba

2πf · Ca

]
(5.26)

By means of Eqs.+5.25, 5.26 and 2.50 it is possible to give the delay
thread lines Ldv (for a velocity disturbance Δvi) or Ldμ (for a friction co-
efficient disturbance Δμ) as a quantity for the thread length which passes
the transport system between the cause imprinting and the effect reaction of
periodic disturbances. Considering Eq. 5.22 it is also possible to give here a
result presentation versus the disturbance wavelength λf which is free of the
output velocity vom.

Before a quantitative analysis can be done it is necessary to calculate
the sizes vim, vzm, T tim and T tom from the given sizes vom and T tzm. If a
preelongation of 0.3% is assumed in the input thread then T tim = T tzm/1.003
follows according to the continuity equation. Equation 5.10 was valid between
input and output fineness of the thread along the friction line. With this it is
also possible to calculate the velocities vim and vzm if the continuity equation
T tim · vim = const. is considered additionally.

Equations 5.23 to 5.26 have been analysed for the following combinations
of process and product variables:

T tzm = 3.4 tex
αm = π/2 (1/4 wrap)

= 2π (1 wrap)
T tim = 3.3898 tex
T tom = 3.384 tex (for αm = π/2)

= 3.334 tex (for αm = 2π)
vom = 100 m/min, 500 m/min, 1000 m/min
vzm(α = π/2) = 99.54 m/min, 497.76 m/min, 995.72 m/min
vzm(α = 2π) = 98.10 m/min, 490.41 m/min, 980.82 m/min
vim(α = π/2) = 99.84 m/min, 499.26 m/min, 998.52 m/min
vim(α = 2π) = 98.40 m/min, 491.94 m/min, 983.82 m/min
Dm = 2 mm, 5 mm
μm = 0.3
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Fig. 5.8. Normalised amplitude frequency responses of fineness changes ˜ΔT to
caused by input velocity changes Δ̃vi of a friction thread line after Fig. 5.3, output
velocity vom = 100 m/min

The results of the quantitative calculations are partly shown (for vom =
100 m/min only) in Figs. 5.8 to 5.11. The following statements are also to
be derived concerning the not presented results of the higher thread velocities:

a) ˜ΔT to will be smaller so the disturbance frequency f will be greater if
a disturbance Δ̃vi effects. The reason for this is the dampening effect of the
friction thread guide line (Fig. 5.8). This dampening effect starts at smaller
frequencies the thicker the friction thread guide and the smaller the wrap an-
gles are. It does not occur unless the disturbed thread lengths (disturbance
wavelengths λf) are smaller than the wrap line on the thread guide.

b) A practically complete dampening of an input velocity disturbance
occurs only at disturbance wavelengths in the thread of λf < 0.15 mm (ac-
cording to influence times of the disturbance of < 0.1 ms!). Because all dy-
namic disturbances have as a rule a much longer influence time it is to be
stated that all Δvi disturbances at the input of a friction thread line will
be transmitted greatly proportionally in the same ΔT to changes at the out-
put (under the most suitable conditions of a constant output thread velocity).

c) The friction thread line effects (only for high frequency disturbances)
a better disturbance decrease the greater its diameter and the smaller its
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Fig. 5.9. Normalised amplitude frequency responses of fineness changes ˜ΔT to
caused by friction coefficient changes Δ̃μ of a friction thread line after Fig. 5.3,
output velocity vom = 100 m/min
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wrap angle is. This result suggests the following recommendation: To the
realisation of an appointed mean thread tensile force at the input of a pro-
cessing machine it is better to arrange serially several friction lines with large
diameters and in each case small thread wrap angles (for instance a lattice
brake) than only one friction thread line with a small diameter and a great
wrap angle. If the use of only one friction thread line is possible then a great
diameter is in its turn more favourable than a smaller on the same wrap angle.

d) The effect of friction coefficient changes or oscillations Δ̃μ to the fine-
ness T to are shown in Fig. 5.9. The relationships are valid for the case that
the thread which runs into the friction thread line is braked with a constant
brake force and it is constantly elongated (here 0.3%). Further it should be
as valid as before: vo = vom = const.
Disturbances with a frequency of < 1 Hz (consequently all quasi steady state
changes of the friction coefficient too) will not be of influence on the fineness.
The fineness changes reach only less than 0.01% in this range for instance
if the friction coefficient changes by 1%. The effect of the disturbances with
the same dimensions is here (in opposite to the case of a input velocity dis-
turbance discussed before) the greater in the rest of the frequency range the
thicker the friction thread guide and the greater the thread wrap angle are.
The amplitude frequency response of the model variants approximated be-
fore always to zero for high disturbance frequencies. In the present case of
a friction coefficient disturbance the amplitude frequency response reaches a
constant value (dependent on the thread line velocity; Fig. 5.9 only shows the
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output velocity vom = 100 m/min) for disturbance frequencies of > 5 · 103

to > 5 · 104 Hz. It is the question here of a differential action which follows
from the amplitude frequency response (5.24). Friction coefficient changes of
1% effect in this range even 2% (for α = π/2) to 3% (for α = 2π) fineness
changes. However, this range is not effective because the according distur-
bance wavelengths in the thread are < 1 mm, that means below the length of
the wrap or friction line. This amounts to, for the selected model relations,
between 1.6 mm (for Dm = 2 mm and α = π/2) and 15.7 mm (for Dm = 5
mm and α = 2π). A disturbance dampening occurs for such short disturbance
wavelengths because a mean value of the friction coefficient can only effect
along a thread part which just passes the friction line.

e) The delay thread line Ldv always amounts to < 0.12 mm in the entire
interesting disturbance wavelength range > 1 mm (Fig. 5.10). These only
insignificant delays (compared to the disturbance wavelengths) are of com-
pletely no account for dynamic measurements of threads which are running
about fixed friction elements due to their smallness.

f) The relations are similar for disturbances of the friction coefficient
(Fig. 5.11). The amplitude frequency response (see Fig. 5.9) is so small for
disturbance wavelengths > 10 cm (the delay thread length Ldμ could amount
here to more than 1 to 3 cm) that a nearly complete disturbance dampening
exists. The delay thread lengths Ldμ are already insignificantly small again
(< 0.3 mm) at disturbance wavelengths below 2 to 3 mm if the amplitude
frequency response reaches its full value.

Possibilities to the Dampening of Tensile Force and Tensile Elon-
gation Variations in Thread Input Lines

In Sect. 5.1.5 it has been hinted that a skillful designing of delay lines can
effect dampening to input velocity disturbances and their effects to fineness
unevennesses. Such delay lines are found in many machines of thread or fibre
processing. The thread is unwound normally from fixed or rotating supported,
but not actively driven, supply bobbins by means of the machine taking-in el-
ements. The so-called axial “over end unwinding” is predominant here. But,
the radial thread unwinding from rotating supported supply bobbins can
also be found. Numerous examples can be given as to the spinning, draw-
ing, twisting, winding, texturing, warping, sectional warping, and knitting.
Such thread input lines (Fig. 5.12) are more or less significant (according to
process step and material kind) under the view point of the cause research
to process disturbances or thread and fabrics unevennesses. The reason for
this is that each uncontrolled thread input (which is realised in the described
manner) is connected to thread tensile force and thread elongation changes.
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Such changes can be the cause for changes of appointed textile-physical qual-
ity characteristics of the thread which will only be formed in the following
process steps or will be optically visible displaced to the fabric possibly. But,
they can “only” be responsible for an increased thread break frequency. In
the following, possibilities and their efficiency to an effective dampening of
thread tensile force and thread elongation changes without the use of spe-
cial devices (for instance automatic controlled thread brakes) in connection
with [296] and [297] will be discussed. These investigations are independent
of the causing factors for such thread tensile force and thread elongation
changes for instance hooked and plastered up threads on the supply bobbins,
periodic changes of the unwinding geometry at threads which are unwinded
radially from rotating supported supply bobbins.

lm (+lext)

input element
of the machine

yarn take-off point
of the bobbin 

vim, Δvi,

Ttim, ΔTti

vom, Δvo,

Ttom, ΔTto, Δε

Fig. 5.12. Technological scheme of a thread input line

Input velocity changes Δvi according to Fig. 5.12 are the most frequent
cause for fineness changes ΔT to (and by this elongation and force changes Δε
and ΔF , as will be demonstrated later in Sect. 6.2). Therefore the starting
point of our views is the known dynamic transfer function of a delay line,
which is derived from DEq. 5.1:

G(p) =
ΔT to
Δvi

=
T tom
vim

· 1

1 + p · lm
vom

(5.27)

The elongation ε of a thread with the fineness T ti in the unloaded state and
the fineness T to in the elongated state is

ε =
T ti
T to

− 1 (5.28)
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The partial differentiation of Eq. 5.28 to the three variables, which can be
changeable, results in

Δε =
1

T to
· ΔT ti − T tim

T t2om
· ΔT to (5.29)

We will not consider fineness changes of the input thread T ti in the present
case (ΔT ti = 0). Equation 5.29 is simplified then to

Δε = − T tim
T t2om

· ΔT to (5.30)

ΔT to from Eq. 5.30 introduced into Eq. 5.27 results to the amplitude frequency
response

|G(jf)| =

⏐⏐⏐⏐⏐ Δ̃ε

Δ̃vi/vim

⏐⏐⏐⏐⏐ = (−)
T tim
T tom

[
1 +

(
2πf · lm

vom

)2
]−1/2

(5.31)

The amplitude frequency response of Eq. 5.31 is shown versus the length of
the input line lm for different frequencies of the disturbance ṽi in Fig. 5.13.
The diagram is related to an experimental investigation of a twister. The
velocity vom amounted to 58 m/min.
Thread input velocity oscillations Δ̃vi should only effect small Δ̃ε oscilla-
tions in a stable process. That means, the amplitude frequency response
should be as small as possible or even zero. A relatively simple technological-
constructive method insists on the extension of the thread input (delay) line
as long as possible (compare Fig. 5.13). A further modified quantitative analy-
sis of the solution equation for the dynamic mathematical model can be given
as follows.
Dependent on
- the length lm of any existing thread input line on a machine,
- the thread transport velocity vom,
- the frequency f of the thread tensile force and the thread elongation changes
an exactly quantitative predetermined extension of the input line lext can be
calculated, in which the existing amplitudes of the thread tensile force and
thread elongation oscillations are reduced by a wished reduction factor R.
This reduction factor R is defined as

R = 1 − |G(jf)| (input line (lm + lext))
|G(jf)| (input line lm)

(5.32)

Equation 5.32 inserted into Eq. 5.31 yields:

R = 1 −

√√√√√√√√
1 +

(
2πf · lm

vom

)2

1 +
[
2πf · (lm + lext)

vom

]2 (5.33)
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Fig. 5.13. Normalised amplitude transfer coefficients for changes of thread elon-

gations Δ̃ε caused by changes of the thread input velocity Δ̃vi of a thread input
line

Equation 5.33 dissolved to lext results in the condition for the necessary
extension of the thread input line at the wished reduction factor R

lext =

√
R · v2

om · (2 − R) + (120π · f · lm)2

120π · f · (1 − R)
− lm (5.34)

The following dimensions are used:

lm, lext m
vom m/min
f Hz
R dimensionless, possible range from 0 (no reduction of disturbances)

until 1 (full dampening of disturbances)

The necessary input line extension lext can also be appointed by means of
a simplified approximation relation 5.35 (the basis for this is also Eq. 5.34),
if a reduction of the thread tensile force and thread elongation changes have
reached the half according to those by an unextended input line (reduction
factor R = 0.5). This is much better to handle, but it requires somewhat
greater lext-values for high thread line velocities (vom > 500 m/min) and
simultaneously small disturbance frequencies (f < 5 Hz). These lext-values
are concerning the desired effect.

lext ≈ 15 · vom/f + lm (valid for R=0.5) (5.35)
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The following dimensions are used:

lm, lext m
vom m/s
f min−1

Quantitative data to the choice of input line extensions under concrete
technological conditions can be taken away in Fig. 5.14.
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Fig. 5.14. Necessary extension factor lext/lm dependent upon the disturbance fre-
quency ratio f/fc and on the reduction factor R

The use is the following:
One appoints the critical frequency fc of the input line by means of Eq. 2.49
or Fig. 4.7 on the basis of the already present input line length lm and winding
up thread or input velocity into the machine vom. It is also possible to find
out the extension factor lext/lm according to the already present input line
lm, which is to be realised for a dampening of the changes with the appointed
reduction factor R.
If the necessary input line extension cannot be realised in a straight line on
the machine then the whole length can be realised by means of thread deflec-
tion elements. However, the latter must be thread guide elements with light
running rolls to reach the full dampening effect [297].
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The efficiency of an input line extension (calculated on the basis of the
developed theoretical fundamentals) should be demonstrated finally using
variation coefficients derived from the experimentally measured thread ten-
sile force time functions in the input line of a ring twister (Fig. 5.15).
The normal input line amounted to lm = 0.42 m, and the thread input ve-
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Fig. 5.15. Variation coefficients of tensile force time functions on a Mouliné-twister
for different input line extensions lext, fibre material: PET 11 tex (20), texturised,
vom = 58 m/min

locity to vom = 58 m/min (fc = 0.37 Hz). It was to observed through this
condition that a main frequency of the thread tensile force changes (and with
this also of the thread elongation) of 0.75 Hz caused by a radially unround
thread backing-off from a rotating supported supply bobbin. The tensile force
changes amount nevertheless to ±50% around the mean value of 75 mN and
result in a variation coefficient of 35.15% (lext = 0). These led to the induced
elongation changes of the same relative quantity to distinct shade distur-
bances of the manufactured plied threads which consisted of two such supply
threads of different fundamental colours. Input line extensions of lext = 0.45
m led to a variation coefficient of 13.34% and the disturbed quality deficien-
cies were removed at the input line extensions lext ≥ 1.6 m. The variation
coefficients of the tensile force time functions decrease then to < 9% (see also
Sect. 6.4.2 and Fig. 5.15 again).
This technological example shows that an undisturbed thread run can be re-
alised throughout without greater additional expense, if the dynamic trans-
mission regularities are strictly used.
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Fibre Influence by Means of Dynamics of Thread Traverse Motion
at Winders

A further interesting application of the dynamic model of a delay thread line
(applied to a concrete technological situation) is the analysis of the fineness
influence caused by the periodic thread traverse motion at the winders. The
characteristics of the appropriate extensive investigations [298] and some re-
sults are presented as follows. First, a few remarks to the motive of such
investigations:

a) The traverse motion system permanently imprints the thread periodic
property changes along its length axis which can be recorded as elongation
and fineness changes. Such changes can evoke considerable molecular struc-
ture changes of the threads, particularly at the spinning machines for man-
made fibres, because these changes are imprinted during the decisive phase
of the structure development [299].

b) Already periodic elongation and fineness changes of 1% (!) can be the
cause for visible dyeing defects in special products of man-made fibres [300].

c) A well-defined relationship exists between the quantity of the thread
breaks at special processing processes and the fineness fluctuation amplitudes
imprinted by the thread traverse motion process at the man-made fibre spin-
ning machine.

d) Elongation and thread tensile force fluctuations caused by the traverse
motion can involve deviations of the reel body from the desired cylindrical
shape which leads to local different mill work particularly at the friction roll
drives as a consequence of different contact pressures.

The thread line between the delivery godet and the wind-up bobbin can
be taken in as a delay thread line (Fig. 5.16) which also includes the common
case of an asymmetric traverse motion triangle (Fig. 5.17).

The basis for the derivation of the dynamic model is therefore the com-
mon linearised DEq. for a delay line. The cause variable of the fineness dis-
turbances ΔT to of the winded thread are the periodically enforced changes of
the length Δl of the delay line. The short friction lines on the thread guides at
the top of the traverse motion triangle and of the traverse motion are itself
neglected in the following. The dynamic model DEq. derives from Eq. 4.7
and is changed to:

(vom + p · lm) · ΔT to + p · T tom · Δl = 0 (5.36)
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Fig. 5.16. Technological scheme of the thread traverse motion, case a

The symbols in Figs. 5.16, 5.17 and Eq. 5.36 mean:

T tom mean value of the fineness of thread at the bobbin wind-
up point approaching from the traverse motion triangle

lm mean value of the thread length between godet and wind-
up point of the bobbin

vom mean value of the velocity of thread which the bobbin
winds up (output or wind-up velocity)

lh height of the traverse motion triangle
vtm mean value of the linear velocity of traverse motion

thread guide
lb length of the bobbin
fts frequency of the traverse motion thread guide for the

operation of one twice stroke, that means its motion from
the left bobbin edge to the right and back

e asymmetry parameter
p differential operator d/dt
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Fig. 5.17. Technological scheme of the thread traverse motion, case b

The resolution of the DEq. 5.36 for impulse-like Δl-disturbances (it is
equivalent to the first derivation of the step response Eq. 4.36) is

ΔT to⊥Δl = Δl · T tom · vom

l2m
· exp

(
−vom

lm
· t

)
(5.37)

If the change Δl caused by the traverse motion is impulse-like then the effected
fineness change can already be calculated by means of Eq. 5.37. However, the
time function of the change Δl is to be derived from the root laws of the
rectangular triangle (see Figs. 5.16, 5.17). This can be derived after several
intermediate steps (not further described here) and simplifications:
Forward motion (thread guide goes from the left bobbin edge to the right
with the linear velocity vtm = 2 · lb · fts)

Δl(t) = Ab · t2 + Bb · t (5.38)

Backward motion (thread guide goes from the right bobbin edge to the left
with the linear velocity vtm = 2 · lb · fts)

Δl(t) = Ab · t2 + Cb · t (5.39)
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The abbreviations Ab, Bb and Cb mean:

Ab = 8f2
ts ·

[√
l2h + (e + 0.5 · lb)2 +

√
l2h + (e − 0.5 · lb)2 − 2

√
l2h + e2

]

Bb = 2fts ·
[
4
√

l2h + e2 − 3
√

l2h + (e − 0.5 · lb)2 −
√

l2h + (e + 0.5 · lb)2
]

Cb = 2fts ·
[
4
√

l2h + e2 − 3
√

l2h + (e + 0.5 · lb)2 −
√

l2h + (e − 0.5 · lb)2
]

Figure 5.18 shows the resulting percent thread length shifts in the traverse
motion triangle versus the bobbin length axis for different geometrical con-
ditions.
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Fig. 5.18. Per cent thread length shifts in the traverse motion triangle caused by
the traverse motion

In the next step, the resolution of the DEq. 5.36 for the time courses of the
disturbances Δl defined by Eqs. 5.38 and 5.39 has to be found. The Laplace-
transformation makes a resolution algorithm available for any time course by
means of the convolution integral (see for instance [13]). The integral applied
to the present case can be read as:

ΔT to/Δl =
∫ t

0

Δl(τ) · T tom · vom

l2m
· exp

(
− t − τ

l
· vom

)
dτ (5.40)

The integrand consists of the product of the disturbance time function (here
Δl(τ), the time variable t is to be substituted by the integration variable τ –
Eqs. 5.38 and 5.39 are to be inserted practically) and the impulse response
function of the wanted goal variable (here ΔT to) for the same cause variable
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(here Δl, that means Eq. 5.37). The time variable is to be substituted finally
by shifting the term t − τ .
After the integrations, one gets the following related time functions of the
percent fineness changes caused by the traverse motion thread guide:
Forward motion

ΔT to
T tom

=
100
vom

〈(
2Ab · lm

vom
− Bb

)[
1 − exp

(
−vom

lm
· t

)]
− 2Ab · t

〉
(5.41)

Backward motion

ΔT to
T tom

=
100
vom

〈(
2Ab · lm

vom
− Cb

)[
1 − exp

(
−vom

lm
· t

)]
− 2Ab · t

〉
(5.42)

The mathematical basis is now given for quantitative investigations by means
of Eqs. 5.41 and 5.42. The changes ΔT to are completely calculable only for a
single stroke of the traverse motion thread guide, because the time functions
Δl(t) are also not informable close too (the derivations are not defined at the
turning back points of the bobbin edges and should be taken from one equa-
tion to the other). The destination of the steady state oscillation state is only
possible by repeatedly modified joinings of Eqs. 5.41 and 5.42. It should be
observed when the change time functions of two successive double strokes of
the traverse motion thread guide do not distinguish themselves. It is also only
possible to calculate the steady state oscillation state iteratively as a sequence
of mathematical completely calculable single time courses of the thread fine-
ness changes which partly depend on each other. Closed resolutions have
become known (these develop the periodic, not continuous Δl(t)-course into
a Fourier -row and only use the first element for further calculations [299]),
but only with greater mistakes at the turning back points. However, the Δl(t)-
course possesses the greatest gradation at only this points.

Extensive quantitative investigations have been carried out which in-
cluded variations of the wind-up velocity vom (1000...6000 m/min), the height
of the traverse motion triangle lh (0.3...1 m), the length of the bobbin lb
(0.135...0.205 m), the twice stroke frequency of the traverse motion thread
guide fts (500...1500 min−1), and the asymmetry of the top of the traverse
motion triangle e (0...2 · lb). Some selected result diagrams are shown in
Figs. 5.19 (transient oscillations of the percent fineness shifts), 5.20 (percent
maximal spans of the fineness shifts), and 5.21 (percent fineness shifts on the
bobbin edges). The valid technological conditions should be learned from the
signatures of the figures in each case.
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Fig. 5.19. Transient oscillations of percent fineness shift caused by the thread
traverse motion; lm = 1.0 m, lh = 0.5 m, vom = 4000 m/min, fts = 1000 min−1
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The following statements and conclusions can be given on the basis of all
calculation results (also those which are not shown in the figures):

a) The fineness change course shows (for < 0.5 · lb) twice the frequency
compared to systems with > 0.5 · lb (see Fig. 5.19) at symmetric and little
asymmetric traverse motion triangles.

b) The amplitudes of the shifts are smaller than ±1% for symmetric and
slightly asymmetric traverse motion triangles and the so-called technologi-
cal operating point ranges. They increase more for large asymmetries of the
traverse motion triangle. If e increases from 0 to 0.5 · lb (triangle top is sit-
uated above the bobbin edge) then the fineness shift will nearly quadruple
(see Fig. 5.20).

c) A strong ascent of the fineness shifts can be observed if the top of
the traverse motion triangle moves nearer to the bobbin. The fineness shift
is nearly doubled in the investigated operation range if lh is halved (see
Fig. 5.20).
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motion; lm = 1.0 m, lb = 0.205 m, vom = 4000 m/min

d) The fineness shifts also increase with longer bobbins (see Fig. 5.19).

e) High wind-up velocities dampen the fineness shifts. This is then the
special case if they are connected with small double stroke frequencies of the
traverse motion thread guide, because the thread will be transported faster
out of the traverse motion field for these cases the fineness shift is then im-
printed by the Δl-lengthening or -shortening.

f) The influence of the traverse motion frequency is quantitatively dif-
ferent. In principle high frequencies effect greater fineness shifts, but their
influence is strongly dependent upon the selected wind-up velocity. The in-
fluence is weakly stamped for small wind-up velocities and strongly stamped
for high wind-up velocities (see Fig. 5.20).

g) Symmetric traverse motion systems produce a symmetric bobbin struc-
ture in which fineness minima appear at the bobbin edges. These are double
the size of the fineness maxima in the middle of the bobbin (not presented
here). Bale-shaped bobbins with reduced bobbin edges will arise always with
this (see Fig. 5.21).

h) Asymmetric traverse motion triangles produce in principle greater fine-
ness shifts. But, the bobbin structure is also seemingly unsymmetric for such
systems: The one bobbin edge will be built up stronger and corresponds to
the mean value of the fineness, the other will then be provided with the
maximum negative fineness shifts. It does not appear bale-shaped or barrel-
shaped, but leads to conical bobbins (see Fig. 5.21).
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i) The following constructive and technological conditions can be proposed
which allow for the smallest fineness shifts (caused by the traverse motion):
- symmetric structure of the traverse motion system (e = 0)
- greatest possible height of the traverse motion triangle (lh > 0.5 m)
- as short as possible bobbins (manifold wind-up technology is ideal if each
single bobbin can get its own symmetric traverse motion triangle!)
- lowest possible traverse motion velocity, that means small double stroke
frequency.

The fineness shifts or changes (caused by the traverse motion system)
can be held constant under these conditions at smaller than ±0.2% without
special resources (for instance stress compensation rolls).

5.2 Dynamics of the Twist Transfer at the False Twist
Texturing

5.2.1 Task

The majority of the PET and PA fine yarns manufactured today is texturised.
The preferred process is the false twist (or FT-) texturing which realises more
than 90% of all texturised fine yarns.
A twisting element gives the yarn torsional twists which are strongly im-
printed (fixed) on this by means of consecutive heating and cooling. The
imprinted so-called false twists will be dissolved after passing the twisting
element and the texturised (equipped with a strong fixed curling) yarn is
wound up. One distinguishes the magnetic spindle and the friction disk prin-
ciples according to the kind of twist generation by means of the different false
twist spindles. Both principles should generate torsional, or false twists, to
the yarn on an only limited, usually short distance of the yarn length axis by
means of quickly rotating machine elements. The torsion twist is to be gen-
erated by an intensive, as slip poor, as possible friction transmission through
the yarn surface. It is not the task of this section to discuss the different ad-
vantages and disadvantages of the different basic principles of the false twist
texturing. A lot of special literature is available concerning this.
However, some dynamic cause-effect relations of this process should be ex-
plained which regard the effect or goal variable twist density TD of the tex-
turised yarn in the texturing and setting zone. The expert knows from a-priori
knowledge (one should once again recall to Sect. 2.5.1 - proposed steps for
the working out the dynamic model) that texturing mistakes (that means,
changes of the curling intensity along the texturised yarn) are caused mainly
by dynamic changes of the product variable twist density TD which only ex-
ists during the running process.
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It is therefore obvious to elaborate a dynamic model of this product vari-
able which theoretically founds the relationship of the different process and
product variables. This should help to clear up the process analytical relation-
ships between the disturbances of the variable TD and the product quality.
In the past, investigations have been done for either the steady state process
only or the experimental results of measured twist densities and (also partly)
for their changes (see [301] until [310]).

Nevertheless, it is to be remarked that simplifications and approximations
(more than in other sections of the book) have been necessary for the follow-
ing demonstrated investigations because of the complicated structure of the
exact physical-analytical relationships. This necessity aims at presenting ex-
plicit resolution equations which should be usable without any further special
knowledge. This should allow for qualitatively correct tendency statements
in their proportions between each other on the one hand, but on the other is
only restricted quantitative exactness connected with this.

5.2.2 Mathematic-Dynamic Model

Differential Equation of the Twist Density and its Solutions

The development of the DEq. for the twist density of the yarn in the tex-
turing and setting zone TD enforces some previous considerations and results
which were informed in Sect. 5.1 (as a-priori knowledges to be declared now).
The earlier recommended registration and sorting of all process and product
variables, which are involveded in the process and are probably connected
with each other via cause-effect relations (see Sect. 2.5.1) should be carried
out here only verbally. The basis is the Fig. 5.22 which shows the necessary
process and product variables of the thread course of a false twist texturing
process with magnetic spindle twist element(magnetic false twist spindle) in
a strongly simplified form.

It is irrelevant, by the way, whether the twists are generated by a friction
spindle element or by a magnetic spindle. One can imagine that the several,
short in series operating twists transmitting yarn touch points of a friction
spindle are collected only in one integral effectual point. This one point then
carries out a sum of effectual friction on the yarn. An explanation of this will
be given at the end of this section.

The twist density TD, as the quantity of twists referred to the thread
length, (measured in the twisted state) obviously depends on

- the speed of the false twist spindle ns,
- the present velocity of the twisted thread in the texturing and setting zone

vi, and
- the thread fineness T t.
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Fig. 5.22. Technological scheme of the false twist texturing process with magnetic
twist spindle

The velocity of the twisted thread vi (simultaneously equal to the input
velocity of the twisted thread into the false twist spindle) finally turns up
dependent upon

- the input velocity of the untwisted thread into the input rolls vz,
- the thread output velocity vo,
- the rope friction factor eμαm ,
- the thread fineness T t, and
- the speed of the false twist spindle ns.

Changes of the thermic process and product variables (for instance thread
temperatures) and their effects on the thread properties (for instance changes
of the E-moduli and the following changes of the thread tensile force rela-
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tions before and after the twisting element) will be neglected, simultaneous
to a draw texturing process which imprints the thread additionally a greater
plastic longitudinal orientation elongation. Some explanatory remarks will be
given to the latter at the end of this section.

If the texturing and setting zone lm is taken as a store and exchange line
of the yarn torsional twists per time unit, then the dynamic basic Eq. 2.23
(applied to the present case in a modified form) can be formulated as follows:

twists inflow
time

=
twists discharge

time
+

changes of twists
time

(5.43)

It is to be put in as:

twists inflow/time = ns (where no slip is assumed at the twisting element)
twists discharge/time = TD · vi

changes of twists/time = ṪD · lm
(in which the same mean value of the twist density is assumed through the
whole line lm)

The DEq. of the twist density can be written then as:

ns = TD · vi + p · TD · lm (5.44)

where p =
d
dt

is the well-known Laplace-operator.

The steady state relation for the twist density TD = ns/vi follows for ṪD = 0
of course unrestricted.
Equation 5.44 contains the independent not-freely-adjustable process variable
vi which must be expressed by means of technological independent process
and product variables. The shortening factor Ks which represents the ratio
of the twisted length lt to the stretched, untwisted length lu of one twist of
the same in each case unloaded yarn piece must first of all be defined:

Ks = lt/lu (5.45)

Obviously it is also valid:

Ks = vi/vz (5.46)

The thread length of one twist lt is

lt = lm/z (5.47)

where z is the number of the total twists in the zone lm, that means:

z =
ns · lm

vi
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consequently

lt =
vi

ns
=

Ks · vz

ns
(5.48)

The stretched, untwisted length lu, of the same yarn piece, is calculated
from the periphery of the cross sectional area of the multifilament (twisted)
yarn which we will formally introduce as π · Dy (Dy is in this aspect the
diameter of the multifilament (twisted) yarn).
The stretched, untwisted length of one yarn twist finally results as the length
of the line of a screw with the diameter Dy and with the ascent height lu to:

lu =

√
(π · Dy)2 +

v2
i

n2
s

(5.49)

vi is determined in the real process by vo (caused by the output rolls) which
effects the friction body of the twisting element into the process line lm.

We assume that the yarn along the whole friction thread line will be
twisted on the twisting element and the false twists will be immediately
dissolved in turn, if the twisted yarn leaves the friction body down to the
output. In this peel-off moment in the twisted state, the yarn should possess
the velocity v′o and, immediately afterwards (after dissolving of the twists),
the output velocity vo. This is valid as:

vo =
v′o
Ks

(5.50)

The already deviated relationships of the thread transport along a friction
thread line (see Sect. 5.1.4) must be validated to the estimation of the velocity
transition from vi to v′o. The desired relation can be derived from Eq. 5.10
considering the continuity equation of a transported yarn without losses T ti ·
vi = const. It is read as, using the symbols of our problem:

v′o
v′z

=
(

vi

v′z
− 1

)
· exp(μ · αm) + 1 (5.51)

The independent given yarn input velocity vi is to be inserted into Eq. 5.51
in its reduced form

v′z = vz · Ks (5.52)

because the twisted yarn is this aspect on the friction body.
Finally vi is to be now written by using the Eqs. 5.45 and 5.48 to 5.52

vi =
√

[(vo − vz) · exp(−μαm) + vz]2 − (π · Dy · ns)2 (5.53)
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Before the final DEq. of the twist density TD will be formulated, the yarn
diameter Dy shall be expressed depending on the yarn fineness T t in the
following form:

Dy = Kp ·
√

T t (5.54)

Kp is a polymer-specific constant. The yarn diameter Dy will be reached in
the unit of m, if T t is set in tex and for Kp the following values are set at:

Kp = 33.3 · 10−6 for the fibre material PA (density = 1.12 g/cm3)
Kp = 30 · 10−6 for the fibre material PET (density = 1.38 g/cm3)

The final mathematic-dynamic model equation of the twist density TD can
be calculated now on the basis of DEq. 5.44 and under the consideration of
the Eqs. 5.53 and 5.54 as follows:

Φ = ns−TD ·
√

[(vo − vz) · exp(−μαm) + vz]2 − T t(πKp · ns)2−p·TD ·lm = 0

(5.55)

Differential equation 5.55 can be partially derived (for the purpose of its
linearisation) from the potentially changeable variables TD, ns, vz, vo, T t
and μ according to the already often demonstrated manner:

∂Φ

∂TD
· ΔTD +

∂Φ

∂ns
· Δns +

∂Φ

∂vz
· Δvz +

∂Φ

∂vo
· Δvo +

∂Φ

∂T t
· ΔT t +

∂Φ

∂μ
· Δμ = 0

If the partial differentiations are carried out then one gets the linearised DEq.
of the twist density TD as follows. It should be considered through this that
TDm = nDm/Wa[

W 2
a

nsm
+ T tm · nsm(πKp)2

]
· Δns − 〈Na[1 − exp(−μmαm)]〉 · Δvz

−Na · exp(−μmαm) · Δvo + 0.5 · (πKp · nsm)2 · ΔT t

+[αm · Na(vom − vzm) · exp(−μmαm)] · Δμ − W 2
a

nsm
[Wa + p · lm] · ΔTD = 0

(5.56)

The abbreviations Wa and Na mean:

Wa =
√

[(vom − vzm) · exp(−μmαm) + vzm]2 − T tm(πKp · nsm)2 (5.57)

Na = (vom − vzm) · exp(−μmαm) + vzm (5.58)

Equation 5.56 can be used now to calculate the dynamic transfer functions,
which inform about the influence of Δns-, Δvz-, Δvo-, ΔT t-, or Δμ- changes to
changes of the twist density ΔTD:
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G1(p) =
ΔTD

Δns
=

W 2
a

nsm
+ T tm · nsm(πKp)2

W 2
a

nsm
(Wa + p · lm)

(5.59)

G2(p) =
ΔTD

Δvz
= −Na[1 − exp(−μmαm)]

W 2
a

nsm
(Wa + p · lm)

(5.60)

G3(p) =
ΔTD

Δvo
= −Na · exp(−μmαm)

W 2
a

nsm
(Wa + p · lm)

(5.61)

G4(p) =
ΔTD

ΔT t
=

0.5(πKp · nsm)2

W 2
a

nsm
(Wa + p · lm)

(5.62)

G5(p) =
ΔTD

Δμ
=

αm · Na(vom − vzm) · exp(−μmαm)
W 2

a

nsm
(Wa + p · lm)

(5.63)

The corresponding normalised amplitude frequency responses of these transfer
functions (all of them show proportional action with delay of first order) are
the following:

|G1(jf)| =

∣∣∣∣∣ Δ̃TD/TDm

Δ̃ns/nsm

∣∣∣∣∣ =
W 2

a + T tm(πKp · nsm)2

Wa

√
W 2

a + (2πf · lm)2
(5.64)

|G2(jf)| =

∣∣∣∣∣ Δ̃TD/TDm

Δ̃vz/vzm

∣∣∣∣∣ = (−)
vzm · Na[1 − exp(−μmαm)]

Wa

√
W 2

a + (2πf · lm)2
(5.65)

|G3(jf)| =

∣∣∣∣∣ Δ̃TD/TDm

Δ̃vo/vom

∣∣∣∣∣ = (−)
vom · Na · exp(−μmαm)
Wa

√
W 2

a + (2πf · lm)2
(5.66)

|G4(jf)| =

∣∣∣∣∣ Δ̃TD/TDm

Δ̃T t/T tm

∣∣∣∣∣ =
0.5 · T tm(πKp · nsm)2

Wa

√
W 2

a + (2πf · lm)2
(5.67)

|G5(jf)| =

∣∣∣∣∣ Δ̃TD/TDm

Δ̃μ/μm

∣∣∣∣∣ =
μm · αm · Na(vom − vzm) · exp(−μmαm)

Wa

√
W 2

a + (2πf · lm)2
(5.68)

The corresponding phase frequency response of the complex frequency re-
sponses G1(jf), G4(jf) and G5(jf) are uniformly:

ϕ(f) = arc tan
[
−2πf · lm

Wa

]
(5.69)
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The corresponding phase frequency response of the complex frequency re-
sponses G2(jf) and G3(jf) are:

ϕ(f) = arc tan
[
−2πf · lm

Wa

]
− π (5.70)

An incidental evaluation of the achieved equations should be undertaken at
this point before we can discuss a quantitative result presentation of a tech-
nological process example:

a) In each case, the amplitude transmission factors of Eqs. 5.64 to 5.68
do not only depend on the disturbance frequency f but also, strongly, on
the mean values of the independent process and product variables which de-
fine the viewed technological operation point. This is an expression for the
declared complexity of the investigated general problem in spite of the sim-
plifications and neglects made in the statements.

b) The time constant Tc and the critical frequency fc of the process line
are qualitatively the same for all kinds of viewed disturbances and depend
likewise on the mean values of all independent process and product variables.
They can be best written from the phase frequency response Eq. 5.70 (see to
this Sect. 4.2.1):

1
2πfc

= Tc =
lm
Wa

(5.71)

The abbreviation Wa (see Eq. 5.57) is identical with the yarn velocity in the
texturing and setting zone.

c) The parameter Wa allows the data of a limit condition. This is not al-
lowed to be exceeded if a proper thread line (that really means the carrying
out of the process) should be reached. This deals with the yarn tensile stress,
yarn velocity and yarn twist density relations. This limited condition can be
defined as maximum eligible speed of the false twist spindle nsm dependent
upon the other free eligible process and product variables. They can be de-
rived from the trivial condition that the radicand of the root (Eq. 5.57) is
not allowed to be negative. It must always be fulfilled as:

nsm ≤ (vom − vzm) · exp(−μmαm) + vzm

π · Kp · √T tm
(5.72)

The following dimensions are to be inserted in Eqs. 5.53 to 5.72 for quanti-
tative calculations:
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vom, vzm numerical values to put in m/min
nsm numerical values to put in min−1

lm numerical values to put in m
T tm numerical values to put in tex
f numerical values to put in min−1 or 60Hz
Kp numerical values to put in as described in Eq. 5.54
αm numerical values to put in the radian measure (dimensionless)
μm coefficient of friction (dimensionless)

Technological Application and Analysis

At first Fig. 5.23 shows the limit curves of the eligible revolutions per minute
of the false twist spindle nsm for the fine yarn range (2 until 20 tex) and
dependent upon different velocity and angle of wrap levels for the fibre mate-
rials PA and PET. These correspond to the further investigated technological
variants which are collected in Table 5.1.

The curves confirm the practical experiences that the eligible (and also
necessary to reach an appointed twist density TDm) speed of the false twist
spindle nsm increases if the fineness T tm decreases and the yarn take-up
velocity vom increases. It is to be remarked that the results have the correct
size. The latter is moreover an indirect proof for the exactness for the principle
of the selected model idea.

Relating to practice, variants of the process realisation have been selected
for detailed analysis by means of the developed model equations. They have
been collected in Table 5.1 considering the preliminary investigations. The
last two columns contain the time constants Tc and the critical frequencies
fc of the texturing and setting zone which roughly characterise the dynamic
transmission behaviour.

The time constants Tc amount to about 2.50 s for the velocity level
100 m/min and about 1.65 s for the velocity level 200 m/min (indeed with
an assumed increased length of lm = 4 m). It can be concluded from this
that aperiodic disturbances of the viewed process and product variables will
effect undefined bulkiness properties along a thread length of about 12 m
in the first case (vom = 100 m/min) and of about 17 m in the second case
(vom = 200 m/min).

The small critical frequencies fc of about 0.065 Hz at vom = 100 m/min
and of about 0.1 Hz at vom = 200 m/min mean that periodic disturbances of
only relatively small frequency will have a considerable influence on the twist
density Δ̃TD. Frequencies > 0.5 Hz will already have a sufficient dampening
in each case. The following figures also show this.

The normalised amplitude frequency responses |G1(jf)| to |G5(jf)| are
presented in Figs. 5.24 to 5.28 for all technological variants according to
Table 5.1.
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Fig. 5.23. Limit curves of eligible revolutions per minute of the false twist spin-
dle nsm dependent upon different technological conditions according to Eq. 5.72.
Further data see Table 5.1

Comparing the study of the figures leads to the following general conclu-
sions for the disturbance estimation:

a) Speed changes of the twisting element Δ̃ns have the greatest effect on
the twist density TD (|G1(jf)|, Fig. 5.24). Relative amplification factors of
1.0 to 2.0 will be reached in the disturbance frequency range f < fc. This
means that Δ̃ns-changes of 1% can effect Δ̃TD-changes from 1 to 2%. The
finenesses of the texturised thread T tm are of only small influence, in which
the coarser thread will be influenced more (specifically at the quasi steady
state disturbances – f nearly 0 Hz) than the finer. The usual variations of
the thread input velocity vz relative to the thread output velocity vo (present
lags are assumed from –2% to –6%) and number of wraps around the pin of
the twisting element (assumed 1 or 2 wraps) practically have no influence on
the start height of the curves and their further courses. On the other hand, a
PA-thread will be influenced more strongly than a PET-thread of the same
fineness.
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Table 5.1. Technological variants of the investigated FT-texturing process

Process vom vzm TDm nsm αm μm Kp Ttm lm Tc fc

variant in in in in in in in in

m/min m/min m−1 m−1 tex m s Hz

PA-fibres

1 100 98 4300 325348 2π 0.3 33.3 · 10−6 3.4 3.0 2.38 0.067

2 100 94 4300 314120 2π 0.3 33.3 · 10−6 3.4 3.0 2.46 0.065

3 100 98 4300 324496 4π 0.3 33.3 · 10−6 3.4 3.0 2.39 0.067

4 100 94 4300 311562 4π 0.3 33.3 · 10−6 3.4 3.0 2.48 0.064

PA-fibres

5 100 98 3000 221776 2π 0.3 33.3 · 10−6 7.8 3.0 2.43 0.065

6 100 94 3000 214122 2π 0.3 33.3 · 10−6 7.8 3.0 2.52 0.063

7 100 98 3000 221195 4π 0.3 33.3 · 10−6 7.8 3.0 2.44 0.065

8 100 94 3000 212379 4π 0.3 33.3 · 10−6 7.8 3.0 2.54 0.063

PET-fibres

9 100 98 3000 232598 2π 0.3 30.0 · 10−6 7.6 3.0 2.32 0.069

10 100 94 3000 224570 2π 0.3 30.0 · 10−6 7.6 3.0 2.40 0.066

11 100 98 3000 231988 4π 0.3 30.0 · 10−6 7.6 3.0 2.33 0.068

12 100 94 3000 222742 4π 0.3 30.0 · 10−6 7.6 3.0 2.42 0.066

PET-fibres

13 100 98 2300 169244 2π 0.3 30.0 · 10−6 16.7 3.0 2.45 0.065

14 100 94 2300 163403 2π 0.3 30.0 · 10−6 16.7 3.0 2.53 0.063

15 100 98 2300 168800 4π 0.3 30.0 · 10−6 16.7 3.0 2.45 0.065

16 100 94 2300 162072 4π 0.3 30.0 · 10−6 16.7 3.0 2.55 0.062

PA-fibres

17 200 196 4300 650696 2π 0.3 33.3 · 10−6 3.4 4.0 1.59 0.100

18 200 188 4300 628240 2π 0.3 33.3 · 10−6 3.4 4.0 1.64 0.097

19 200 196 4300 648992 4π 0.3 33.3 · 10−6 3.4 4.0 1.59 0.100

20 200 188 4300 623125 4π 0.3 33.3 · 10−6 3.4 4.0 1.66 0.096

PA-fibres

21 200 196 3000 443552 2π 0.3 33.3 · 10−6 7.8 4.0 1.62 0.098

22 200 188 3000 428244 2π 0.3 33.3 · 10−6 7.8 4.0 1.68 0.095

23 200 196 3000 442390 4π 0.3 33.3 · 10−6 7.8 4.0 1.63 0.098

24 200 188 3000 424757 4π 0.3 33.3 · 10−6 7.8 4.0 1.70 0.094

PET-fibres

25 200 196 3000 465196 2π 0.3 30.0 · 10−6 7.6 4.0 1.55 0.103

26 200 188 3000 449141 2π 0.3 30.0 · 10−6 7.6 4.0 1.60 0.099

27 200 196 3000 463977 4π 0.3 30.0 · 10−6 7.6 4.0 1.55 0.103

28 200 188 3000 445484 4π 0.3 30.0 · 10−6 7.6 4.0 1.62 0.098

PET-fibres

29 200 196 2300 338487 2π 0.3 30.0 · 10−6 16.7 4.0 1.63 0.098

30 200 188 2300 326806 2π 0.3 30.0 · 10−6 16.7 4.0 1.69 0.094

31 200 196 2300 337600 4π 0.3 30.0 · 10−6 16.7 4.0 1.64 0.097

32 200 188 2300 324145 4π 0.3 30.0 · 10−6 16.7 4.0 1.70 0.093

b) Changes Δ̃vz effect changes Δ̃TD quantitatively in the same manner
(|G2(jf)|, Fig. 5.25). Amplification factors of 1.0 to 1.9 are also to be ob-
served in the frequency range f < fc for such disturbances.
Smaller differences are given as follows: The coarser thread and the thread
with the greater number of wraps around the pin of the twisting element will
be disturbed relatively stronger than the finer thread and the thread with
only one wrap around the pin (αm = 2π). PA-threads are more disturbance
endangered than PET-threads. The influence of the lag of vzm is relatively
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Fig. 5.24. Normalised amplitude frequency responses of twist density changes Δ̃TD

caused by changes of the false twist spindle speed Δ̃ns at the FT-texturing process.
Further data see Table 5.1

insignificant; the variants with –6% lag have only somewhat lower amplitude
frequency response curves than those with –2% lag.

c) The output velocity vo clearly influences the goal variable Δ̃TD less than
the process variables ns and vz, named under a) and b) (|G3(jf)|, Fig. 5.26).
Changes Δ̃vo reach relative amplitude amplification factors of < 0.32, that
means a more than 3% periodic change of Δ̃vo around its mean value vom will
effect a 1% periodic change of the twist density Δ̃TD in an appropriately small
frequency range. A clear separation of the curves dependent on the angle of
wrap αm appears as well. The amplification factors nearly reach 0.32 (PA 6)
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Fig. 5.25. Normalised amplitude frequency responses of twist density changes Δ̃TD

caused by changes of the input velocity Δ̃vz at the FT-texturing process. Further
data see Table 5.1

for 1 wrap around the pin of the twisting element and they only reach in-
significant values of 0.05 for 2 wraps. Smaller insignificant differences can be
observed as follows: The process with the greater lag of vzm opposite vom and
the coarser threads show somewhat greater disturbance transmission factors.
PA is to be assessed again more unfavourably than PET.
This total result is also physical-obviously plausible so far, as output veloc-
ity changes must be transmitted into the texturing and setting zone of the
friction wrap line at first which effects dampening in this case. The output
velocity changes are effective only indirectly to the change Δ̃TD of the influ-
ence of the real velocity pertaining to the twisted thread vi (see Eq. 5.57,
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Fig. 5.26. Normalised amplitude frequency responses of twist density changes Δ̃TD

caused by changes of the output velocity Δ̃vo at the FT-texturing process. Further
data see Table 5.1

abbreviation Wa is identical with vim). It is intelligible that a lengthening of
this dampening friction thread line additionally degrades the influence of Δ̃vo

to Δ̃TD drastically.

d) Also the fineness of the texturising thread T t and its changes Δ̃T t effect
changes of the twist density Δ̃TD only with a maximum amplitude transmis-
sion factor of 0.3 to 0.5 (|G4(jf)|, Fig. 5.27). The curves obviously show the
larger, more unfavourable, values for coarser threads and (frequently pointed
out previously) for PA compared to PET.
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Fig. 5.27. Normalised amplitude frequency responses of twist density changes Δ̃TD

caused by changes of the thread fineness Δ̃T t at the FT-texturing process. Further
data see Table 5.1

e) The system behaviour regarding to changes Δ̃μ and their effect on
changes Δ̃TD (|G5(jf)|) is demonstrated in Fig. 5.28. The amplitude trans-
mission factors are extremely small with ≤ 0.04 for which a great angle of
wrap and/or a small vz-lag causes a further drastic decrease. Changes Δ̃μ of
about 30 to 40% would be necessary to effect a 1% change Δ̃TD. This is to be
practically excluded. But, it is to be remarked additionelly, that the present
model comprises changes Δ̃μ which only effect twist density changes by means
of velocity changes Δ̃vi of the texturised thread. Effects are not included, on
the other hand, which twist slip appearences at the pin of the twisting ele-
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Fig. 5.28. Normalised amplitude frequency responses of twist density changes Δ̃TD

caused by changes of the friction coefficient Δ̃μ at the FT-texturing process. Further
data see Table 5.1

ment (missing friction adhesion) evoked by means of great changes to Δ̃μ. Of
course, these twist slip appearences possibly effect much greater twist density
changes but they are not covered by the chosen model.

The common valid phase frequency response curves for the dynamic trans-
mission functions G1(p) to G5(p) (Eqs. 5.69 and 5.69) are shown in Fig. 5.29
for all technological variants according to Table 5.1. The delay thread length
Ld can be calculated by means of these because this has been demonstrated
in Sect. 5.1.5 (see also Eq. 2.50). The length Ld represented in the present
example which thread length leaves the texturing and setting zone before a
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Fig. 5.29. Phase frequency responses of twist density changes Δ̃TD caused by
changes of all regarded disturbance quantities at the FT-texturing process. Further
data see Table 5.1

change Δ̃ns, Δ̃vo, Δ̃vz, Δ̃T t or Δ̃μ will or can be visible in the output thread as
changes Δ̃TD. It has already been mentioned before that certain correlations
exist here with the time constant Tc or the critical frequency fc.

Two remarks should be given at the end of this subsection to the transmis-
sion of the presented model to other process realisations of the FT-texturing:

1. All model equations should also be transmittable to the friction textur-
ing process considering the developed imaginations and derivations in Sects.
5.1.4 and 5.1.5, if

a) the angle of wrap αm is interpreted as the sum of single angles which
are imprinted repeatedly to the thread by means of the friction disk. The
friction unit is assumed to be a collected effect at this point.

b) the efficiency of the twist transmission from the twisting element to the
thread1 is considered in the DEqs. 5.44 or 5.56 to be in the form of 0.7 · TD,
0.7 · TDm or 0.7 · ΔTD. The normalised results of Eqs. 5.64 to 5.68 are then
applicable in the same manner.

1 It is usually realised for the magnetic spindle principle with 100%; the efficiency
is only ≤ 70% for the friction principle
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2. The model seems to be more problematic to transmit to a simultaneous
draw-texturing process because twist generation and drawing are superim-
posed here. It should additionally be considered that the heating of the thread
(not considered until here) well-known decreases the mechanical draw energy
in the thread. Much harder conceivable relations are already given under pure
steady state view.
A coarse approximation of the real situation for the dynamic model could be
that one modifies Eqs. 5.53 and 5.57 as follows:

a) The input velocity of the partial else to drawing thread vz is to be cor-
rected by multiplying it with the draw ratio which is realised in the texturing
and setting zone. This product, named vzc, is then (instead of vz) the basis
for the calculation of the velocity vi which appoints the twist density.

b) It is generally to be inserted in the fineness and the diameter of the
drawn thread only.

5.3 Dynamics of Fibre Heating and Cooling

5.3.1 Task

The mathematical description of lapses of thermic proceedings is of impor-
tance in the modelling of appointed fibre formation and processing processes.
This becomes true specifically for process stages of manufacturing and pro-
cessing processes of polymer threads. The fibre formation of melts, the draw
process (if thermic energy is induced), and the texturing are examples of this.
Heating as well as cooling processes are to be described for the modelling of
the temperature-time-courses in the thread.

Thread heating and cooling processes are effected by means of heat spread-
ing processes which are due to three different basic principles:

a) Heat conduction which is to be described as heat spreading in solid,
resting fluid and resting gaseous bodies from points of higher temperature to
points of lower temperature.

b) Heat convection or heat transfer which is to be described as heat trans-
port by means of flowing fluids or flowing gases which is to be distinguished
between the enforced convection (flow separately generated) and the free con-
vection (flow arises from itself by means of density or pressure differences).

c) Heat radiation which is to be described as heat transfer between bodies
by means of electro-magnetic waves of the infrared spectral range without
the co-operation of a transmission medium.

All three principles are effective for the thread heating depending on the
process stage, for the thread cooling essentially only the principles a) and b).
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The convection or the heat transfer is of essential importance to the cal-
culation – and with this the modelling – of heating and cooling processes of
running threads in fibre formation lines of melt spinning processes, around
the heated or unheated godet systems and in texturing heaters.

Questions relating to such dynamic models can be for instance:

a) At which distance from the spinneret and under which conditions a
melt spun thread will be solidified?

b) How many thread wraps around a heated godet or a system of such
godets are necessary (for appointed boundary conditions, for instance thread
fineness, thread velocity, godet geometry), that a maximum possible thread
temperature can be reached?

c) How high is the reached mean thread temperature (under given bound-
ary conditions) in relation to the godet temperature?

d) How large are the fluctuations of the thread temperature of the mean
value which the thread suffers at one wrap around the godet system.

The answer to those questions is necessary for an optimal process opera-
tion as well as to the design of machine elements. In the following a simplified
description of the heat transfer between a thread and its surrounding which
enables process applied calculations with sufficient exactness as a rule will be
given. The heat transfer between threads and metallic surfaces and between
threads and air is theoretically explained in more detail in the additional
literature [311] to [313] considering heat transfer and heat equalise proceed-
ings in a monofilament thread on the one hand and multifilament threads on
the other. However, the study shows that appropriate results and methods
are not applicable enough for engineers in practice and are also difficult to
handle.

5.3.2 Differential Equation for the Description of Heat Transfer
at Fibres

Starting point of the view is the common DEq. of the heat exchange processes
on the surface of a cylindrical body, and without consideration of the heat
conduction inside the body. The last assumption means an equal temperature
across the whole thread cross section2. In other words, there is no temperature
2 This assumption is fulfilled not in any practical case because an utter heating

or cooling of the thread (general body) assumes a heat flow (being due to the
heat conduction principle) from the surface to the core or vice versa. Neverthe-
less, temperature differences are just the impulse for this. But, these differences
amount only to a few Kelvin for threads with their big surface-volume-ratios
(for coarse threads more unfavourable than for fine) and they are very small
compared to the normally imprinted mean temperature changes. Therefore this
assumption does not involve aggravating mistakes.
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difference between core and surface of the radial symmetric thread cross
section. If the heat balance is viewed on a small disk of a cylindrical thread
piece according to Fig. 5.30 then for heating [314] is valid

c · dm · dTy = α · dSy · (Th − Ty) · dt (5.73)

the left side of Eq. 5.73: absorbed heat quantity
the right side of Eq. 5.73: about the surface transmitted heat

quantity

dm, ρ, c

dSy, α, Ty

Dy

dl

Fig. 5.30. Cylindrical thread piece

In Fig. 5.30 and Eq. 5.73 the symbols mean:

dSy surface of the disk-shaped thread piece
which takes part in the heat exchange

Dy diameter of the thread piece
dl length of the thread piece
dm mass of the thread piece
� density of the thread material
c specific heat capacity of the thread material
α coefficient of the heat transfer
Ty temperature of the thread piece
Th temperature of the heat medium
dt time interval for the heat exchange
dTy temperature change of the thread piece

The following mass-surface-ratio is valid for the cylindrical- or disk-shaped
thread piece

dm

dSy
=

π · D2
y · � · dl

4 · π · Dy · dl
=

Dy · �
4

(5.74)

The DEq. 5.73 can be simply integrated considering Eq. 5.74
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Ty∫
Tb

dTy

Th − Ty
=

t∫
0

4 · α
c · � · Dy

· dt (5.75)

The equation for the fibre heating results from Eq. 5.75 to

Ty = Th − (Th − Tb) · exp
(
− 4 · α

c · � · Dy
· t

)
(5.76)

Tb is the thread temperature at the beginning of the heat exchange, that
means to the time t = 0.

The DEq. 5.73 can be similarly solved for the thread cooling from the
temperature at the beginning of the heat exchange Tb in a surrounding cool
medium with the temperature Tr.

The equation for the fibre cooling can be read as:

Ty = Tr + (Tb − Tr) · exp
(
− 4 · α

c · � · Dy
· t

)
(5.77)

Eqations 5.76 and 5.77 describe the thread heating and cooling as a dynamic
transfer process (in the form of the step response function) in a approximated,
but simplified manner. The practical use and the application of these equa-
tions to monofilament as well as multifilament man-made yarns are shown
in the following: The thread diameter Dy of a multifilament yarn is to be
calculated from its fineness (not from the fineness of the single filament!) as
the equivalent diameter which would have a monofilament yarn of the same
fineness [315]. This equivalent diameter (which has been proven correct for
the heat transfer) is:

Dy =

√
4 · T t

� · π · 109
(5.78)

The following dimensions are to be inputted:

fineness of the whole thread T t in tex
density of the fibre material � in g/cm3

The equivalent diameter of the whole thread Dy will be obtained in m.

Equation 5.78 has already been used in Sect. 5.2.2 as a numerical value
equation. All numerical constants for the fibre materials PA and PET (in-
cluding the densities �) have been collected to the numerical constants Kp

(see Eq. 5.54).



262 5. Dynamics of Fibre Processing Processes

For user friendly style of writing of the Eqs. 5.76 and 5.77 it is recom-
mended here that the material specific constants c and �, as well as all nu-
merical constants in the exponent of the e-functions (which remain after the
substitution of the diameter Dy by the fineness T t according to Eq. 5.78),
are collected to a material specific constant for the heat transfer Kh.

The equations can now be read as follows:

For the fibre heating:

Ty = Th − (Th − Tb) · exp
(
− Kh√

T t
· α · t

)
(5.79)

For the fibre cooling:

Ty = Tr + (Tb − Tr) · exp
(
− Kh√

T t
· α · t

)
(5.80)

The following dimensions are to be inputted:

Ty, Th, Tr, Tb in K or
T t in tex
α in W/(m2 · K)
t in s
Kh as numerical value 5.9 · 10−2 for PA

as numerical value 7.6 · 10−2 for PET

The value of 1.12 g/cm3 (for PA) resp. 1.38 g/cm3 (for PET) for the mate-
rial density �, and the value of 1.884 kJ/(kg·K) (for PA) resp. 1.256 kJ/(kg·K)
(for PET) for the specific heat capacity c have been used for the cal-
culation of Kh. The latter is almost valid in the temperature range of
40 ≤ Ty ≤ 100 .

The data of the heat transfer coefficient α presents a certain problem
for practical calculations. This depends strongly on the surrounding medium
which participates in the heat transfer (for threads normally resting or mov-
ing air or metallic surfaces), on the surface quality of the thread and the
metallic contact areas, on the thread velocity, on the thread fineness and
at last also on the mean temperature level at which the heat transfer takes
place. An (but not without any difficulties) experimental estimation is indis-
pensable for more detailed investigations of special process stages [315].

From the literature and on the basis of own investigations it is possible
to use the following ranges which are valid for PA and PET threads for cal-
culations with a good exactness:

For the heat transfer in air:
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α = 50...200 W/(m2 · K)

For the heat transfer on metallic surfaces (for instance godets):

α = 450...600 W/(m2 · K)

Greater values are valid in the tendency for finer threads and for higher ve-
locities.

The velocity dependence of the heat transfer coefficient for the heat ex-
change between thread and air can also be given a relationship which is
presented in [316]. This has been investigated experimentally as “air streams
alongside of even, rough metallic surfaces” which is valid for velocities of
v > 5 m/s and which also gives useful results for threads in an air stream
too. The relationship has been used also in the technological example for
Sect. 5.3.3 and to the calculation of the time constants and critical frequen-
cies of Table 5.2. It is read as (converted into SI-units):

α = 7.52 · v0.78 (5.81)

If v is inserted in m/s then α will be obtained in W/(m2 · K).

The time constant Tch and the critical frequency fch which describe the
heat transfer dynamic of a thread can be read from the exponent of the
exponential function in Eqs. 5.79 and 5.80:

Tch =
√

T t

α · Kh
(5.82)

fch =
α · Kh

2π
√

T t
(5.83)

The appropriate numerical values are collected for the used PA- and PET-
threads of the technological application example in Sect. 5.3.3. The heat
transfer coefficient for the heat transfer thread-metallic surface was taken as
a basis of α = 530 W/(m2 · K).

The heat transfer coefficient α for the heat transfer moved thread-air has
been selected depending on the velocity according to Eq. 5.81 and Kh for PA
and PET according to the data of Eqs. 5.79 and 5.80.

Qualitative conclusions to the dynamic transmission behaviour are possi-
ble by aid of the general explanations in Sect. 4.2.1 (specifically statements
dealing with Eq. 4.41). Each heat area- or air-contact with another temper-
ature than Ty means an imprinting step for the thread. The explanations to
the dynamic transfer functions with proportional action and delay of first
order are analogously valid here.
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Table 5.2. Time constants Tch and critical frequencies fch of PA- and PET-threads
corresponding to Eqs. 5.82 and 5.83

Material Fineness Velocity Time constant Critical frequency
T t [tex] v [m/min] Tch [s] fch [Hz]

Heating or cooling of the thread in contact with a metallic surface:
PA 5 7.53 · 10−2 2.11
PA 10 1.07 · 10−1 1.49
PA 20 1.51 · 10−1 1.06

PET 5 5.55 · 10−2 2.87
PET 10 7.85 · 10−2 2.03
PET 20 1.11 · 10−1 1.43

Heating or cooling of the thread in contact with surrounded air:
PA 5 500 1.02 1.57 · 10−1

PA 5 1000 5.92 · 10−1 2.69 · 10−1

PA 5 2000 3.45 · 10−1 4.62 · 10−1

PA 5 3000 2.51 · 10−1 6.34 · 10−1

PA 5 4000 2.01 · 10−1 7.93 · 10−1

PA 10 500 1.44 1.11 · 10−1

PA 10 1000 8.37 · 10−1 1.90 · 10−1

PA 10 2000 4.87 · 10−1 3.27 · 10−1

PA 10 3000 3.55 · 10−1 4.48 · 10−1

PA 10 4000 2.84 · 10−1 5.61 · 10−1

PA 20 500 2.03 7.83 · 10−2

PA 20 1000 1.18 1.35 · 10−1

PA 20 2000 6.89 · 10−1 2.31 · 10−1

PA 20 3000 5.02 · 10−1 3.17 · 10−1

PA 20 4000 4.01 · 10−1 3.97 · 10−1

PET 5 500 7.49 · 10−1 2.13 · 10−1

PET 5 1000 4.36 · 10−1 3.65 · 10−1

PET 5 2000 2.54 · 10−1 6.27 · 10−1

PET 5 3000 1.85 · 10−1 8.60 · 10−1

PET 5 4000 1.48 · 10−1 1.08

PET 10 500 1.06 1.50 · 10−1

PET 10 1000 6.16 · 10−1 2.58 · 10−1

PET 10 2000 3.59 · 10−1 4.43 · 10−1

PET 10 3000 2.62 · 10−1 6.08 · 10−1

PET 10 4000 2.09 · 10−1 7.61 · 10−1

PET 20 500 1.50 1.06 · 10−1

PET 20 1000 8.72 · 10−1 1.83 · 10−1

PET 20 2000 5.08 · 10−1 3.13 · 10−1

PET 20 3000 3.70 · 10−1 4.30 · 10−1

PET 20 4000 2.96 · 10−1 5.38 · 10−1
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5.3.3 Technological Application Examples

Dynamics of Fibre Heating of Man-Made Fibres at Heated Godet
Systems

The presented technological schemes of a heated godet roll duo (arrange-
ment I, following abbreviated with A I) and a heated godet roll with un-
heated temple pulley (arrangement II, following abbreviated with A II) are
taken as the basis for the following investigations (see Fig. 5.31). These ar-
rangements could be realised for instance at the spin-draw-winding process
(SDW-process). The example rests essentially upon already published results
of a formerly revised paper ( [317]).

Th

AB

DC

l3

l1

l 2l 2

Tr

Th

A B

D C

l1

l1

l 2l 2

arrangement A I:
godet roll duo

arrangement A II:
godet roll with
temple pulleyl1 = 0.314 m

l2 = 0.250 m l1 = 0.401 m
l2 = 0.157 m
l3 = 0.057 m

Fig. 5.31. Arrangements of heated godets

The following short signs have been chosen corresponding to Sect. 5.3.2:

Tb thread temperature at the input into the godet arrangement
Tr temperature of the cool medium, that means both the

surrounding air temperature and the temperature of the
unheated temple pulley corresponding to A II

Th temperature of the heated godet surface
T1, T2, ...Tn thread temperatures
Ty after passing the single heating and cooling lines
α1 heat transfer coefficient between metallic surface and thread

(for heating and cooling assumed of the same quantity)
α2 heat transfer coefficient between air and thread
l1 contact line of the thread with the heated godet surface
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(for A I and A II differently long corresponding to the
different geometry of the thread way around the godet
arrangements, see Fig. 5.31)

l2 air line of the thread (for A I and A II differently long
corresponding to the different geometry of the thread way
around the godet

l3 contact line of the thread with the surface of the
unheated temple pulley

T t thread fineness
Kh thread material specific constant for the heat transfer

(definition see Sect. 5.3.2)
v thread velocity
z number of thread wraps around the geometric arrangement

(one wrap = length of the way ABCDA)

The basis for the calculation is the common DEq. for the heat transfer 5.73
and its solutions 5.79 and 5.80 (step responses) for heating and cooling. The
equation system reads for a full thread wrap around the godet arrangement
A I (heated godet roll duo) corresponding to these derived basic equations
(l1...l3 are to be put in m, v is to be put in m/s, the other quantities are to
be put in as upper defined):

T1 = Th − (Th − Tb) · exp
(
−Kh · l1 · α1

v · √T t

)
(5.84)

T2 = Tr + (T1 − Tr) · exp
(
−Kh · l2 · α2

v · √T t

)
(5.85)

T3 = Th − (Th − T2) · exp
(
−Kh · l1 · α1

v · √T t

)
(5.86)

T4 = Tr + (T3 − Tr) · exp
(
−Kh · l2 · α2

v · √T t

)
(5.87)

The equation system reads for a full thread wrap around the godet arrange-
ment A II (heated godet with unheated temple pulley) as:

T1 = Th − (Th − Tb) · exp
(
−Kh · l1 · α1

v · √T t

)
(5.88)

T2 = Tr + (T1 − Tr) · exp
(
−Kh · l2 · α2

v · √T t

)
(5.89)

T3 = Tr + (T2 − Tr) · exp
(
−Kh · l3 · α1

v · √T t

)
(5.90)

T4 = Tr + (T3 − Tr) · exp
(
−Kh · l2 · α2

v · √T t

)
(5.91)
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The heating process similarly pursues the 2nd, 3rd, ... , nth-wrap. The, in
each case, actual thread temperatures T1, T2, ..., Tn are only to be taken over
in the next following exponential equations which describe the next heating
or cooling line of the thread.

In principle Fig. 5.32 shows the course of the heating process for both
arrangements A I and A II. The end values of the e-functions (which the
thread temperature Ty passes through the single thread lines) are connected
simply by straight lines. The thread way ly corresponds to the sizes of the
geometrical godet arrangements which were the basis for the investigations.
This thread way ly is of course proportional to the running time t if the
thread velocity is constant.
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Fig. 5.32. Course of principle of thread heating on heated godet arrangements
corresponding to Fig. 5.31
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It can be seen by using the Eqs. 5.84 to 5.91 that the total heating pro-
cess is only reproducible by means of a system of inputting each other and
dependent on each other e-functions. It appears that the system behaviour
can be described sufficiently by means of the following four aim quantities:

a) minimum number of thread wraps z
The quantity z is the minimum number of thread wraps which is necessary
to reach the steady state condition of the heating and cooling process at a
determined technological variant (Fig. 5.33). This has been defined in the
calculation program by means of a breaking off criterion. The steady state
condition is reached accordingly if the difference of the yarn temperatures at
the end of both last calculated heating sections falls below which is a limit
value, occurring for the first time, and which is given odds at your conve-
nience. One K has been chosen as the limit value in the following numerical
examples.

b) mean value of the thread temperature Tym

Tym means the mean value of the yarn temperature Ty (Fig. 5.34). The latter
oscillates around Tym after the steady state condition has been reached:

Tym =
Tn + Tn−1

2
(5.92)

Tn is on this occasion the yarn temperature at the end of the last heating
section at which the breaking off criterion has been reached, occurring for
the first time.

c) relative thread temperature oscillations ΔTy/Tym

The relative thread temperature oscillation ΔTy/Tym is the percent oscilla-
tion range (as the ± quantity) of the thread temperature referring to its mean
value Tym (Fig. 5.35).

ΔTy

Tym
· 100% =

Tn − Tn−1

Tn + Tn+1
· 100% (5.93)

d) heating yield ηh

ηh represents the ratio of the thread temperature mean value Tym to the
temperature of the godet surface Th (Fig. 5.36).

ηh =
Tym

Th
· 100% (5.94)

ηh is also a measurement for the approximation of the yarn temperature to the
theoretical maximum possible quantity Th. The latter could only be reached
by a sufficiently large number of yarn wraps if the cooling lines would be
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reduced to zero. ηh is not in this respect a yield in the energy sense. Further-
more it is of course to be remarked that this quantity possesses only relative
comparing character in case the temperatures are given (as usually) in .

Calculation results are presented following for the aim sizes previously
defined in a choice of diagrams (Figs. 5.33 to 5.36) for the yarn materials PA
and PET with the finenesses T t = 5, 10 and 20 tex. Temperatures of the
heated godets in each case of Th = 70 and 100 are assumed for both
geometrical arrangements A I and A II according to Fig. 5.31. Heat transfer
coefficients are taken as the basis as follows:

yarn - metallic surface: α1 = 530 W/(m2 · K),
yarn - air: according to Eq. 5.81.

The systems have been investigated in the yarn velocity range of 500 to
4000 m/min (time constants and critical frequencies of these cases regarding
heating and cooling see Table 5.2).

The following fundamental statements can be learned from the Figs. 5.33
to 5.36:

a) The minimum number of thread wraps z (which is necessary to reach
the steady state yarn temperature state Tym) is shown in Fig. 5.33. It must
be higher, the higher the yarn velocity v, the coarser the heating yarn and
the higher the godet temperature Th. The arrangement A II enforces roughly
1.5 times more wraps than the arrangement A I, where PA enforces, on the
average, a somewhat higher number of wraps than PET. It is remarkable that
more than 10 wraps are necessary to reach the mean yarn temperature Tym

if coarser yarns are to be heated at higher velocities.

b) The mean yarn temperature Tym (see Fig. 5.34) depends on the yarn
velocity. Tym decreases according to the expectation of higher velocity. This
decrease amounts in the simulated range (dependent on the yarn fineness and
the godet temperature) 15 ... 25 ! The reached temperatures at smaller ve-
locities (v < 1000 m/min for PA, v < 1500 m/min for PET) are significantly
higher at the arrangement A I (godet roll duo) than at the arrangement A
II. This tendency is obliterated at higher velocities (v > 2000 m/min) in
so-far as (dependent upon the yarn fineness) the A II (godet roll with a tem-
ple pulley) can produce the somewhat higher mean yarn temperatures. The
fineness influence comes forth clearly at higher velocities for both arrange-
ments: Coarser yarns can be heated to a lower mean temperature compared
to finer yarns. The difference can amount to v = 4000 m/min at 10 (5 tex
compared with 20 tex). It is also remarkable that PET-yarns can be heated
to higher temperature (especially at higher yarn velocities) on the average
than PA-yarns under the same technological boundary conditions and despite
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Fig. 5.33. Necessary numbers of thread wraps z around heated godet arrangements
A I and A II, corresponding to Fig. 5.32
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the same godet temperatures. Nevertheless, the relative dependences are the
same for both yarn materials.

It is quantitatively shown with these calculations that in principle the
mean yarn temperatures cannot reach the temperature of the heated godet
surface at such godet arrangements: The used godet temperatures will fail in
the yarn (at v = 4000 m/min) for instance between 20 and 40 for PA and
between 15 and 30 for PET. A difference of 5 to 15 can be seen even at
v = 500 m/min to the theoretically possible value Th.

c) A very important aim quantity is the relative yarn temperature oscilla-
tions ΔTy/Tym about the mean yarn temperature Tym which the yarn suffers
at each full wrap around the godet systems (see Fig. 5.35). This enormous
temperature change stress is imprinted onto the yarn in the investigated ve-
locity range nevertheless between 15 and 110 times/s, also with a disturbance
frequency of 15 to 110 Hz!

The following tendencies can be read as:
The temperature change stress decreases with increasing velocity, coarser
yarns and decreasing temperature of the heated godets. The arrangement A
II strains the yarn more than the arrangement A I. Change stresses up to
±5 can be awaited specifically in the range of small velocities (< 1000
m/min) for finer yarns at the higher godet temperature (Th = 100 ). The
dampening effect (which is correlated with the critical frequency of the sys-
tem “to heating or to cooling thread”) is effective in higher degrees (f > fch)
for the higher velocities, this means for higher disturbance frequencies. The
temperature change stress of the yarn decreases to uncritical values of < 2%
(see also time constants and critical frequencies in Table 5.2). The yarn ma-
terial PET is exposed to a somewhat greater temperature change stress than
the yarn mateial PA under the same technological conditions.

d) If one looks at the heating yield ηh (see Fig. 5.36) then a clear decrease
is to be noticed above all with increasing yarn velocity. The tendencies are
confirmed which are named under a): A I is more favourable, on the average,
according to the heat transfer (two heated godets are necessary, compared
to only one at A II!). But, this is no longer valid for coarser yarns (which
generally have the worse heat transfer conditions) at high yarn velocities.
PET-yarns can be heated with a higher heating yield ηh than PA-yarns.

Fibre Cooling in the Melt Spinning of Polymers (simplified)

Extensive investigations to the modelling and the complex proceedings in the
fibre formation distance have been described in detail in Sects. 3.1. and 3.2.
One of the most important product variables is the temperature of the melt
stream Tf which withdraws from the spinning die and solidifies along the
spinning way ls in the last amount of time to the filament with the fineness
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T tf . This problem is not able to be solved by means of the developed equations
in Sect. 5.3.2, but it is also pronounced as a problem of the thread cooling
dynamic. In the following it should be made clear that calculation results
describe the cooling process in a modified manner. These are based on the
application of a simple to handle basic equation which has been developed
in a formerly restricted paper the modelling of the fibre formation in melt
spinning [280]. It is taken into account at this occasion that the heat transfer
conditions and the heat capacity c of the solidifying polymer melt is subjected
to greater temperature depending changes. The following result (based on the
concentration of experimental data) is explained in [280]: The quotient of the
specific heat capacity c and the Nusselt-number3 is roughly constant along
the whole spinning way ls. An analytical equation can be derived on the basis
of this knowledge (after some intermediate steps which are not performed
here) for the temperature course of the formated filament is as follows:

Tf = Tr + (Ts − Tr) · exp(ls/x0) (5.95)

The length measurement x0 can be calculated as follows:

x0 = 1.5 · KW1 · (qo)0.79 · (vs)−0.05 (5.96)

or

x0 = 1.5 · KW2 · (T tf)0.79 · (vs)0.74 (5.97)

The single sizes and their dimensions in Eqs. 5.95 to 5.97 mean:

Tf filament temperature in or K
Tr temperature of the cooling medium (surrounding air) in or K
Ts temperature of the spinneret = melt temperature

at the spinneret output in or K
ls distance from the spinneret = spinning way in m
x0 length measurement corresponding to Eqs. 5.96 or 5.97,

dimension reads in m
qo throughput of one orifice in the spinneret = filament throughput

in g/min
T tf fineness of the filament
vs spinning velocity in m/min
KW1 polymer-specific constant in Eq. 5.96

KW1=0.81 for PA
KW1=0.57 for PET
KW1=0.91 for PP

3 The Nusselt-number is a dimensionless quantity to the description of the heat
transfer which arises from the heat transfer coefficient α, the heat conductivity λ
of the surrounding medium and a characteristic length measurement d as follows:
Nu = α · d/λ.
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KW2 polymer-specific constant in Eq. 5.97
KW2 = 3.44 · 10−3 for PA
KW2 = 2.42 · 10−3 for PET
KW2 = 3.89 · 10−3 for PP

Equation 5.95 also describes the filament temperature course depending
on the distance from the spinneret, that means on the spinning way ls. The
knowledge of this dependence is specifically important for the best design of
the spinning tube length or for the placing of filament treatment elements in
the filament line (for instance preparation disk or preparation finger).

Some typical filament temperature courses are shown in Fig. 5.37 for the
most important spinning materials PA and PET. Spinning velocities vs of
1000, 4000 and 6000 m/min and finenesses of the spun filaments T tf of 1
and 0.3 tex for both materials have been chosen. The spinneret tempera-
ture Ts has been set at 280 for PA and 300 for PET. The temperature
of the cooling medium (surrounding air) Tr = 20 and the diameter of the
orifice do = 0.25 mm (which is not of any effect) have been constantly chosen.

Quantitative tendencies of the cooling behaviour and conclusions in differ-
ent directions can be easily learned using the single curves from this diagram.
It can be seen as a quantitative completion of Sect. 3.1.7.
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Fig. 5.37. Filament temperature courses Tf dependent upon the spinning way ls
in the melt spinning of polymers



6. Dynamics of the Tensile Force and its

Importance for Process Stability

6.1 Task

Since the textile fibre formation and fibre processing processes have been car-
ried out the special attention has been aimed at the reaction force of the yarn
to an induced longitudinal deformation or elongation. The number of papers
on the problem of yarn tensile force has increased meanwhile to probably
more than a thousand. At first the steady state or dynamic measurements
of the yarn tensile force (its mean value or the statistical description of its
fluctuation parts) were, in the textile test lab, a sign of quality and use fit-
ness of the threads. Yarn tensile force measurements have been carried out
after the thread line on most different production machines in various man-
ners. The measured signal courses have been analyzed by means of simple
or also pretentious algorithms of the signal analysis or signal concentration.
It is not the task of this chapter to sort and evaluate this specific textile-
technological literature. Rather a row of universal regularities and hints to
the measuring-methodical and analytic-technical practice which are worth
mentioning should be given. These come from the theory of dynamic mea-
surements as well as from own experimental results and they are not collected
(to the knowledge of the authors) in this manner anywhere else.

The following specifics and problems are to be mentioned in connection
with the product variable yarn tensile force:

a) Each fibre formation and yarn transport process is connected to a yarn
elongation (see Sect. 5.1 - dynamics of the fibre transport). The so-called
yarn tensile force therefore appears because each elongated yarn counteracts
the elongation, a reaction force which is generally (as time function of the
yarn tensile force) an expression for dynamic process reactions.
The mechanism of this appearance comes from the force-elongation diagram
of the yarn (Fig. 6.1); each elongation ε (for instance ε1, ε2) is correlated
with a yarn tensile force F (for instance F1, F2).

b) The yarn tensile force is a product variable which only exists during
the process run. It provides information unlike any other process or product
variable (measurable directly during the process) to the following points:
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Fig. 6.1. Force-elongation diagram of a yarn (in principle)

- unevennesses of the force-elongation-behaviour of the threads (problem of
the “inner unevennesses”).
- unevennesses of the yarn transport (irregularities at the passing of the yarn
transport lines which are necessary for carrying out the fibre formation and
yarn processing processes).

c) The yarn tensile force is a complex effect quantity. Most of the different
causes are reflected to it in the strongest superposed manner.

d) As a rule, only a visual analysis of recorded yarn tensile force signals
does not allow an unambiguous research of disturbance causes.

e) The yarn tensile force is the cause of effected structural changes in
man-made fibres (for instance orientation changes of the macromolecules).
The yarn tensile force is because of that an essential cause quantity to the
stress strain properties.

f) The time function of the yarn tensile force can be seen as an indicator
of the process stability. High mean values of the yarn tensile force near the
breakage limit lead similarly to increased yarn breakages and decrease of the
productivity as great changes of the yarn tensile force at its low mean value.
It is noticed that the breakage limit itself is not a constant value (see Fig. 6.2).
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g) The measurement of the yarn tensile force is in most cases without
contact. Reactions to the thread line are therefore not excluded.

h) yarn tensile force measuring sensors must have a sufficiently high crit-
ical frequency because the time function of the yarn tensile force reflects the
dynamics of most of the different disturbance causes (see Sect. 6.3).
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6.2 Connection Between Fibre Fineness and Fibre
Tensile Force Variations

The derived dynamic functions of fibre formation and yarn transport lines (see
Sect. 4.2.1 and Sect. 5.1) place several cause-effect relations for the product
variable yarn fineness into the center of view.

All derived dynamic time transient functions, complex frequency re-
sponses, amplitude frequency responses and phase frequency response are
valid for effected yarn tensile force changes similarly, but, only if the same
disturbance causes (as described in Sect. 4.2.1 and Sect. 5.1) take place and
if the following developed mathematical relationships between yarn fineness
and yarn tensile force will be put into the model equations.

Tt0

l0

l1

Tt1, ε, R
F

unloaded
state: F = 0

loaded
state: F > 0

Fig. 6.3. Elongation

The well-known relations are valid between the unloaded (T t0, l0) and
the yarn (T t1, l1, ε, Ry) loaded by means of the tensile force F according to
Fig. 6.3:

Ry = Ey · ε (6.1)

Ry tensile stress = F/T t1
ε yarn elongation
Ey elastic modulus

Equation 6.1 can be written as:

F = Ey · T t1 · ε (6.2)

The fineness of the loaded yarn T t1 is inserted into Eqs. 6.1 and 6.2 only
because this mediates the approach to the tensile stress (fineness related ten-
sile force) which the material will suffer from physically. This differs from the
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practice of yarn testing in a lab, where for the tensile stress (fineness related
tensile force), the fineness of the unloaded yarn is in general use.

The elongation ε can be read as:

ε =
l1 − l0

l0
=

T t0 − T t1
T t1

(6.3)

Eq. 6.3 put into Eq. 6.2 results in:

F = Ey · (T t0 − T t1) (6.4)

If we take F and T t1 as variable sizes which consist of a mean value part
Fm and T t1m as well as a change part ΔF and ΔT t then Eq. 6.4 can also be
written as:

Fm + ΔF = Ey · [T t0m − (T t1m + ΔT t1)] (6.5)

The fineness of the unloaded yarn T t0 should apply to this constantly
and designated (formal following the same agreement) with T t0m. Equation
6.5 now represents the conversion relations between the yarn fineness under
elongation load and the appearing yarn tensile force:

Fm = Ey · (T t0m − T t1m) (6.6)

The change sizes are obtained through the relationship:

ΔF = −Ey · ΔT t1 (6.7)

It is also valid for the interesting output fineness (T to, T tom, ΔT to) of the
yarn which leaves the process line according to the generally used relationship
in Sect. 4.2.1 and Sect. 5.1:

Fm = Ey · (T t0m − T tom) (6.8)

ΔF = −Ey · ΔT to (6.9)

All dynamic functions which the yarn fineness change contains as effect
variable can be converted immediately into the effect variable yarn tensile
force by use of the conversion relationship of Eq. 6.9.
The formal procedure should be demonstrated using the dynamic transfer
function (see Eq. 4.9) which the relationship represented between a change
of the output velocity Δvo and yarn fineness change ΔT to effected by this.
Equation 4.9 in Sect. 4.2 can be read as:

G(p) =
ΔT ts
Δvs

= −T tsm
vsm

· 1

1 + p · lm
vsm
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The effect variable ΔT to is to be substituted by the new effect variable ΔF
according to Eq. 6.9:

G(p) =
ΔF

Δvs
= −Ey · T tsm

vsm
· 1

1 + p · lm
vsm

(6.10)

The step response of the yarn tensile force change ΔF owing to a step of the
output velocity Δvo also comes from the step response of the yarn fineness
change (Eq. 4.13) similarly:

ΔF |Δvs = Δvs · Ey · T tsm
vsm

[
1 − exp

(
−vsm

lm
· t

)]
(6.11)

The elastic modulus Ey of the elongation-loaded transported yarn also ap-
pears as the conversion factor with the dimension mN/tex. All diagram rep-
resentations (for instance Figs. 2.13, 2.14 to 2.16, 4.4 to 4.6, 5.6, 5.8, 5.9,
5.20, 5.21) are usable in principle if the presented conversion relations are
used. The appropriate ordinate measure is to be converted from ΔT to to ΔF
according to the conversion relation. The normalised representation of ordi-
nate measures (Figs. 4.4 to 4.6) do not cause again normalised (relative effect
change referred to relative disturbance change) representations after the con-

version from ΔT to to ΔF ! The normalised amplitude ratio
Δ̃T to/T tom

Δ̃vo/vom

will

be converted into − Δ̃F/(Ey · T tom)

Δ̃vo/vom

and not to − Δ̃F/Fm

Δ̃vo/vom

because of the

simple conversion relation Fm = −Ey ·T tom is not valid according to Eq. 6.8.

6.3 Dynamic Properties of Tensile Force Measuring
Sensors and its Importance for Experimental Process
Analytical Investigations

It is useful to remember some general theoretical knowledge of oscillation
science and the measuring of dynamics before the evaluation of time functions
from the yarn tensile force can be described.

Yarn tensile force measuring sensors are oscillatable elements related to
the tools which are turned toward the yarn (usually bend-stiff elastic, one-
sided chucked steel tongues are used for force transmission). Therefore, the
yarn tensile force changes can only be transmitted up to an appointed upper
frequency (the well-known critical frequency) without an amplitude falsifica-
tion of the measured tensile force change course. Tensile force fluctuations
above the critical frequency of the measuring sensor will be reflected damped,
that means the amplitudes will either be reflected on a small scale or not even
noticeable.
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The demand for a measuring quantity transmission without any mistakes is:

critical frequency of the measuring sensor ≥ the greatest
occurring oscillation frequency in the time function of the
concerned process or product variable

(6.12)

However, the relation 6.12 is only one necessary prerequisite. A further im-
portant prerequisite is an optimum dampening of the force transmitting,
oscillatable bending tongue. Only then is it possible to fully treat the critical
frequency fc of a measuring sensor. Optimum dampening means that the
amplitude frequency response of the (sinusoidal) bending tongue shift Δ̃w
is almost constant in the frequency range 0 ≤ f ≤ fc by means of a sinu-
soidal imprinted tensile force at the free end of the bending tongue which is
equipped with a yarn guiding element. The optimum dampening is realised
by means of special design arrangements either as pure air dampening or as
oil dampening (for instance with an oil filling of suitable viscosity between
the bending tongue and the fixed sensor case).

Figure 6.4 shows an example of a one-sided chucked measurement sensor
bending tongue which’s bending way Δ̃w is measured by means of two induc-
tive way sensors (capacitive measurement is likewise possible). The necessary
dampening is reached by oil which is filled into the slit between the induc-
tive way sensors and the bending tongue. Such a design solution (here only
outlined schematically) is described in [318].

In principle the dynamic transfer properties and the possible amplitude
frequency responses are shown in the diagram in Fig. 6.4 for such a system
with differently strong dampening of the bending tongue.

The curves are based upon the generally known amplitude frequency re-
sponse equation of a mass-spring-dampening system which can be found for
instance in [5]. For the case of our system:

|G(jf)| =

∣∣∣∣∣ Δ̃w

Δ̃F

∣∣∣∣∣ = KN ·
[(

1 − f2

f2
n

)2

+ 4d2
f

f2

f2
n

]−1/2

(6.13)

The symbols mean:
Δ̃F amplitude of the induced sinus-like force oscillations at the

bending tongue
Δ̃w amplitude of the sinus-like shifts at the bending tongue
KN normalising factor
f frequency of the induced sinus-like force oscillations
fn natural frequency of the bending tongue
df dampening factor

A dampening factor that is too small (df < 0.6) as well as a dampening
factor that is too large (df > 0.6) is unsuitable for a measuring signal trans-
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mission without mistakes. Strong raised shifts of the bending tongue (caused
always by steady exciting force amplitude at the bending tongue) will be
recorded in the first case in a large frequency range. These already start near
the steady state load (f/fn → 0) and they decrease quickly to insignificant
shifts above the natural frequency of the bending tongue. Such a measuring
sensor would only be suitable for the measuring of quasi steady state or very
slow yarn tensile force changes. All other frequencies are transmitted with
amplitudes that are either too small or too large.

If the dampening is chosen too large then an exact amplitude reproduction
is possible only likewise for quasi steady state changes of the yarn tensile force
whereas amplitudes that are too small are measured in whole other frequency
range.
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A nearly exact amplitude measuring in the frequency range 0 ≤ f ≤ fn is
possible if the dampening is optimally adjusted to df = 0.6. The amplitude
frequency response curve is nearly constant in the named frequency range.
About 0.8 times of the natural frequency fn of the freely oscillating, un-
dampened bending tongue can be stated as critical frequency fc for such a
measurement system which should satisfy higher exactness pretensions. If the
measuring sensor is used beyond this, then 20% of the decreasing amplitude
(referring to the imprinted signal) appears already for f = fn.

Today offered yarn tensile force measuring sensors have critical frequen-
cies in the range of fc ≤ 500 Hz (in special cases also above it) and they
fulfill virtually all wishes regarding the dynamic transmission properties. It
is indeed problematic to fulfill the demands of a small reaction to the running
yarn for narrow yarn tensile forces and for high yarn transport velocities. The
latter is evident in high-speed spinning processes of the man-made fibre in-
dustry. Yarn guide rolls with light-motionable ball bearings are recommended
for such tensile force measuring sensors. The named relations and regularities
(collected here for the special case of the yarn tensile force measuring sen-
sors) are of course valid for measuring sensors which measure signal courses
of other process and product variables if the signal-recording element is a
mass-spring-dampening-system.

6.4 Evaluation of the Tensile Force Time Function

6.4.1 Stationary Evaluation

It is surely correct that still today most recorded yarn tensile force courses
are submitted to a steady state evaluation only, although in most cases pow-
erful electronic computers are available. This is a contradiction in so far as
just the time function of any process and product variables is an expression
of the process dynamic. A pure steady state evaluation of a naturally dy-
namic measuring quantity gives away a considerable part of the information
substance which it contains.

An assumed time course according to Fig. 6.5 is estimated normally to
the following quantities:

a) mean value Fm results from

Fm =
1
n
·

n∑
i=1

Fi (6.14)

b) maximum amplitude shift ΔFmax
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Fig. 6.5. Scanned time function of an assumed tensile force course; scan interval
Δt = 0.1 s. Fm = 150 mN, dq = 56 mN, vc = 37%, ΔFmax = 210 mN

c) quadratic dispersion (variance), standard deviation or coefficient of varia-
tion as summary data for the fluctuation range of the time function course
around the mean value. These quantities are calculated according to the fol-
lowing algorithms:

quadratic dispersion (variance) d2
q

d2
q =

n∑
i=1

(Fi − Fm)2

n − 1
(6.15)

standard deviation dq

dq =

√√√√√√
n∑

i=1

(Fi − Fm)2

n − 1
(6.16)

coefficient of variation vc

vc =
1

Fm
·

√√√√√√
n∑

i=1

(Fi − Fm)2

n − 1
· 100% (6.17)

The single signs mean:
Fi discontinuous value of time function F (t), taken in steps of Δt
Fm mean value of the time function F (t) in the range F1...Fi

n maximum number of available single values Fi

i running index
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6.4.2 Dynamic Evaluation; Auto Correlation and Auto Power
Density Spectrum Functions

Fundamentals

The steady state analysis does not give any data about the time behaviour of
the recorded time functions, this means no data is given about the frequencies
of a fluctuation course. Essentially three possibilities are given in order to get
such related data:

a) Visual estimation of the time function. It is possible in exceptional cases
to only recognise strong outstanding frequencies because many fluctua-
tion courses are a mixture of frequencies.

b) Calculation of the auto-correlation function of the recorded time function.
c) Calculation of the auto-power density spectrum function of the recorded

time function.

Calculation algorithms

The general calculation algorithms for the auto-correlation (ACF) and the
auto-power density spectrum functions (APSF) have already been given in
Sect. 2.4.4 (see Eqs. 2.16, 2.17, 2.20 to 2.22 and Fig. 2.9). The special equa-
tions can be read in the present case of the time function of the yarn tensile
force as:

ACF, Integral representation:

KF(τ) = lim
T→∞

1
T

∫ T

0

[F (t) − Fm][F (t + τ) − Fm]dt (6.18)

ACF, Sum representation:

KF(k · Δt) =
1

n − k

n−k∑
i=1

(Fi − Fm)(Fi+k − Fm) (6.19)

Boundary condition: kmax ≤ n

5
, with k = 0, 1, 2, 3, . . . kmax.

APSF, Integral representation:

SF(f) = lim
T→∞

1
T

{ [∫ T

0

(F (t) − Fm) cos(2π · f · t)dt

]2

+

[∫ T

0

(F (t) − Fm) sin(2π · f · t)dt

]2 } (6.20)
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APSF, Sum representation:

SF(f) =
1
n

{ [
n∑

i=1

(F (t) − Fm) cos(2π · f · i · Δt)

]2

+

[
n∑

i=1

(F (t) − Fm) sin(2π · f · i · Δt)

]2 } (6.21)

Boundary condition:
5

n · Δt
≤ f ≤ 1

2 · Δt

APSF, calculated from KF(k · Δt):

SF(f) = 2Δt

m∑
k=1

KF(k · Δt) · cos(2π · f · k · Δt) (6.22)

Boundary condition:
1

m · Δt
≤ f ≤ 1

2 · Δt

F (t) time function of the tensile force
Fm mean value of the time function of tensile force,

evaluation range 0 ≤ t ≤ T or 0 ≤ k · Δt ≤ n − k
Fi discontinuous value of time function F (t),

taken in steps of Δt
T time period of the integration range
τ, k · Δt time shift
k, m, n running (sequence) indices
KF(τ), KF(k · Δt) single values of the ACF of time function

F (t) for τ or k · Δt
SF(f) single values of the APSF of time function F (t) for f

It has been previously referred to the use and the expanded assertion
possibilities of these analysis procedures regarding the fineness unevenness
analysis of threads and spun yarns [319]. Nevertheless, various applications
have not been induced, because electronic computers were not yet available.

Calculation Example; Estimation Rules; Necessary Measurement
and Evaluation Scopes

The formation of the ACF of an arbitrary given yarn tensile force course
according to Eq. 6.19 will be demonstrated in the following. This time func-
tion is reduced to 44 equidistant values Fi which are keyed into the distance
Δt (Fig. 6.5). The result are 10 single ACF-values KF(k ·Δt) for k = 0, 1, ... 9.

The calculation of these few values for the ACF (based on the underlied
time function) is as you can see already very expensive. With this it is to be
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remarked, that an ACF-calculation, which fulfills a useful dynamic analysis
requirement, supposes at least 1000 single values Fi (better more) from which
200 functional values KF(k · Δt) can be calculated.

The expenses for the calculation of the APSF can be much larger because
the according equations prescribe a continuous multiplication with sin- and
cos-functions of changing frequency. Automatised measuring data recording
of the time functions (and their processing) by means of computers are also
an absolute prerequisite to an effective use of these methods.

From our simple, roughly divided function F (t) (Fig.6.5) can be read,
after the statistic estimation, as:
Fm = 150 mN; ΔFmax = 210 mN; d2

q = 3098 mN2; dq = 56 mN; vc = 37%.
The 10 single values of the ACF according to Table 6.1 are drawn versus

the related time shift k · Δt in the Fig. 6.6.
The question is now, how is the ACF and/or the APSF to be evaluated
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Fig. 6.6. Auto-correlation function (ACF) of the time function corresponding to
Fig. 6.5 and Table 6.1

or to be discussed with respect to a deepened time function analysis. Some
simplified estimation rules will be given for this, in the following, for different
courses of the ACF and APSF which also allow a classification of our arbi-
traril chosen tensile force course according to Fig. 6.5.

a) Periodical parts of the time function appear in the ACF as pure,
unadulterated oscillations with the same cycle duration (measured in the
units of the time shift τ or k · Δt) which appears (mostly in a not exact dis-
cernible form) in the time function itself.
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Table 6.1. Development of the ACF KF(k · Δt) of the time function F (t) corre-
sponding to Fig. 6.5

(Fi − Fm)(Fi+k − Fm) for
i Fi Fi − Fm k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9

[mN] [mN] [mN2] [mN2] [mN2] [mN2] [mN2] [mN2] [mN2] [mN2] [mN2] [mN2]

1 190 40 1600 0 -1200 -3200 -2000 3200 1200 1200 4400 -2800
2 150 0 0 0 0 0 0 0 0 0 0 0
3 120 -30 900 2400 1500 -2400 -900 -900 -3300 2100 0 600
4 70 -80 6400 4000 -6400 -2400 -2400 -8800 5600 0 1600 -3200
5 100 -50 2500 -4000 -1500 -1500 -5500 3500 0 1000 -2000 5000
6 230 80 6400 2400 2400 8800 -5600 0 -1600 3200 -8000 -4800
7 180 30 900 900 3300 -2100 0 -600 1200 -3000 -1800 -1800
8 180 30 900 3300 -2100 0 -600 1200 -3000 -1800 -1800 600
9 260 110 12100 -7700 0 -2200 4400 -11000 -6600 -6600 2200 1100

10 80 -70 4900 0 1400 -2800 7000 4200 4200 -1400 -700 -6300
11 150 0 0 0 0 0 0 0 0 0 0 0
12 130 -20 400 -800 2000 1200 1200 -400 -200 -1800 -400 -600
13 190 40 1600 -4000 -2400 -2400 800 400 3600 800 1200 -1200
14 50 -100 10000 6000 6000 -2000 -1000 -9000 -2000 -3000 3000 -4000
15 90 -60 3600 3600 -1200 -600 -5400 -1200 -1800 1800 -2400 0
16 90 -60 3600 -1200 -600 -5400 -1200 -1800 1800 -2400 0 1800
17 170 20 400 200 1800 400 600 -600 800 0 -600 -1600
18 160 10 100 900 200 300 -300 400 0 -300 -800 -500
19 240 90 8100 1800 2700 -2700 3600 0 -2700 -7200 -4500 7200
20 170 20 400 600 -600 800 0 -600 -1600 -1000 1600 600
21 180 30 900 -900 1200 0 -900 -2400 -1500 2400 900 900
22 120 -30 900 -1200 0 900 2400 1500 -2400 -900 -900 -3300
23 190 40 1600 0 -1200 -3200 -2000 3200 1200 1200 4400 -2800
24 150 0 0 0 0 0 0 0 0 0 0 0
25 120 -30 900 2400 1500 -2400 -900 -900 -3300 2100 0 600
26 70 -80 6400 4000 -6400 -2400 -2400 -8800 5600 0 1600 -3200
27 100 -50 2500 -4000 -1500 -1500 -5500 3500 0 1000 -2000 5000
28 230 80 6400 2400 2400 8800 -5600 0 -1600 3200 -8000 -4800
29 180 30 900 900 3300 -2100 0 -600 1200 -3000 -1800 -1800
30 180 30 900 3300 -2100 0 -600 1200 -3000 -1800 -1800 600
31 260 110 12100 -7700 0 -2200 4400 -11000 -6600 -6600 2200 1100
32 80 -70 4900 0 1400 -2800 7000 4200 4200 -1400 -700 -6300
33 150 0 0 0 0 0 0 0 0 0 0 0
34 130 -20 400 -800 2000 1200 1200 -400 -200 -1800 -400 -600
35 190 40 1600 -4000 -2400 -2400 800 400 3600 800 1200 -1200
36 50 -100 10000 6000 6000 -2000 -1000 -9000 -2000 -3000 3000
37 90 -60 3600 3600 -1200 -600 -5400 -1200 -1800 1800
38 90 -60 3600 -1200 -600 -5400 -1200 -1800 1800
39 170 20 400 200 1800 400 600 -600
40 160 10 100 900 200 300 -300
41 240 90 8100 1800 2700 -2700
42 170 20 400 600 -600
43 180 30 900 -900
44 120 -30 900

Sum [mN2] 133200 13800 11800 -36300 -16700 -44700 -9200 -24400 -11300 -25700
n − k 44 43 42 41 40 39 38 37 36 35

KF(k · Δt) [mN2] 3027 321 281 -885 -418 -1146 -242 -659 -314 -734

Periodical parts of the time function appear in the APSF as a maximum
at these frequencies which the periodic parts themselfs possess in the time
function.
The appropriate analysis situation is shown in Fig. 6.7. If the time function
shows strict periodical oscillations then the ACF does not die-away to zero
with increasing τ but it will monotonously oscillate like the time function
itself. If the time function shows strict periodical oscillations then the APSF
shows a narrow high maximum.

b) If the time function only has stochastic (statistic) parts then the ACF
does continuously die-away like an exponential function and will be zero in
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Fig. 6.7. Auto-correlation and auto-power density spectrum functions of a time
function with a pure periodic (sinusoidal) change; TP cycle duration of the change,
fP frequency of the change

the end. The APSF does not have any sort of maximum but it shows a more
or less equalised (in the ideal case a constant) course (see Fig. 6.8).

c) If the time function has superimposed, periodic and statistic parts then
these appear in good separated form in the ACF and APSF appropriate to
the given criteria under a) and b). Figures 6.9 and 6.10 show two (separate)
examples for the superposition of statistic and 1- or 2-times periodic parts in
the basic time function.

The time function of the yarn tensile force Fig. 6.5 is to be characterised by
means of its ACF (Fig. 6.6) as a function which consists of statistic parts and
a one-time periodic part. Nevertheless, such an assertion would be supported
more exactly by means of a longer analysis interval, an essentially greater
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Fig. 6.8. Auto-correlation and auto-power density spectrum functions of a time
function with pure stochastic changes

number of single tensile force values and a more extensive ACF-analysis.
The necessary measuring and estimation volume to the calculation of the
ACFs and APSFs (from more intensive analyzing time functions) can be
fixed according to the following rules of thumb. Some likeness exists about
the problem of the necessary measuring and gauge length of threads for the
purpose of analysis of dynamic disturbances (see Sect. 4.5).

It is necessary to estimate the probable highest and lowest occurring fre-
quencies fmax and fmin (by means of test records or a-priori knowledges)
before appointing a measuring and analysis strategy, because the time func-
tions of the product variable yarn tensile force can consist of high- as well as
low-frequency fluctuation parts in proportion to the process step.

The necessary maximum analysis time TA of the time function (and with
it the measuring time for the complete recorded function) results from the
condition that also a low frequency periodic change (fmin) could be run at
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least 5-times. The condition for TA is therefore:

TA ≤ 5
fmin

(6.23)

If the calculation of the ACF and/or the APSF are realised according to
the sum equations (Eqs. 6.19, 6.21) then the number n of equidistant taken
single values Fi of the time function F (t) can be derived from the following
condition. A periodic change which runs with fmax should take at least 5
equidistant single values. This means that the taken interval Δt must be:

Δt ≤ 1
5 · fmax

(6.24)

The necessary number of single values nmin results with this to:
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nmin ≥ TA

Δt
= 25 · fmax

fmin
(6.25)

A maximum possible time shift τmax can be recommended for the ACF-
calculation as follows:

τmax ≤ TA

5
=

1
fmin

(6.26)

If this condition is observed then the slowest can also occur.
It is easy to estimate according to Eq. 6.25 that the number of single

values nmin must be more than 1000, if the ratio is fmax/fmin = 40 (for
instance fmax = 4 Hz, fmin = 0.1 Hz).



6.4 Evaluation of the Tensile Force Time Function 295

Technological Example

The preceding statements will be demonstrated once more by means of the
concentration of five yarn tensile force courses to their auto-correlation and
auto-power density spectrum functions. We choose, in retrospect, five mea-
sured time functions of the yarn tensile force in the input line according to
Fig. 5.15 in Sect. 5.1.5. The technological situation of this yarn input line has
already been discussed in detail. It is a characteristic of this that extremely
different, but overlookable time functions, can be submitted to the ACF- and
APSF-calculation. The five time functions F (t) have been characterised by
an input line length lm = 0.42 m in the first case, an extended input line of
lext = 0.45 m in the second case, an extended input line of lext = 1.60 m in
the third case, an extended input line of lext = 4.80 m in the fourth case,
and an extended input line of lext = 6.40 m in the fifth case, all according to
the technological scheme of Fig. 5.12. The analyzed time functions and the,
in each case attached, ACFs and APSFs are shown in Figs. 6.11 to 6.15.

The following conclud statements which confirm the discussion in Sect.
5.1.5 can be made:

a) The ACF of the undamped yarn tensile force course clearly has a strong
periodic character with a main disturbance frequency of f = 0.75 Hz (equiv-
alent yarn length of 1.3 m; see Fig. 6.11). It is equivalent with that to the
basic type, outlined in Fig. 6.7. A second disturbance frequency (f = 4.65 Hz,
equivalent yarn length 0.21 m) appears clearer with the increasing dampening
of this main disturbance frequency. This can only be made visible by a dras-
tic changed ordinate measure of the ACF-diagrams (see Figs. 6.12 to 6.15),
because the main disturbance frequency in the undamped case (Fig. 6.11)
dominates and covers all the other. This second disturbance frequency also
correlated with the periphery of a small eccentric running input godet of the
twister. The ACF passes over from the basic type of the one periodic dis-
turbance to that of two periodic disturbances without discernible stochastic
parts (compare Figs. 6.11 to 6.15 with Fig. 6.10).

The strong different ordinate measures of the ACFs (and APSFs) in the
Figs. 6.11 to 6.15 demonstrate, in another way, the utmost effective calming
of the tensile force course. It is to be remarked at this point that the start
value of the ACF (for τ = 0) corresponds to the well-known quadratic dis-
persion (variance).

b) The same interpretation is valid for the APSFs (S(f)-values) of the five
time function courses. The Figs. 6.11 and 6.12 show the main disturbance fre-
quency of 0.75 Hz clearly and independently, Fig. 6.13 also shows the second
disturbance frequency of 4.65 Hz clearly, and in Figs. 6.14 to 6.15 (greatest
dampening) show the second disturbance frequency only independently. One
also notes here the different ordinate measures!
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Fig. 6.14. Auto-correlation and auto-power density spectrum functions of the time
function F (t), extension of the input line lext = 4.80 m corresponding to Fig. 5.12
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Fig. 6.15. Auto-correlation and auto-power density spectrum functions of the time
function F (t), extension of the input line lext = 6.40 m corresponding to Fig. 5.12
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The overswing of the S(f)-curves to negative values near the main maxi-
mum (which theoretically should not occur) is caused by mistakes which arise
from a too coarsely taken interval (Δt = 1/30 s), from the small number of
single values for the time functions (n = 600), and from the small number of
single values for the correlation function (m = 150). The limits of the used
sum represent the APSF by means of Eq. 6.22. Nevertheless, the general
statement is not even called into question in the presented case.

6.5 Combination Measurements and Evaluations

6.5.1 Task and Measurements

The dynamic behaviour of a process is normally distinguished not only by
the time functions of one process or product variable. Several time functions
and their mutual influence are to be analysed. The combined measurement
and analysis of the time functions of

- the yarn tensile force F (t),
- the yarn fineness T to(t),
- the tensile stress σ(t) = F (t)/T to(t)

have hardly been used in the past with respect to the research of dynamic
cause-effect relations in the beginning and the transmission of inner and outer
yarn unevennesses and their relationships. A related analytical method has
been presented until now only in just a few (own) papers [320,321]. The fol-
lowing statements are essentially a brief conclusion of these.

The following two possibilities are practically given to the measurement
recording of the named time functions:

a) Two channel synchronous measuring signal records of F (t) and T to(t)
in which the third time function σ(t) = F (t)/T to(t) is simultaneously cal-
culated as the tensile stress (fineness related tensile force) by means of a
quotient computer.

b) Two channel synchronous measuring signal records of F (t) and T to(t)
in which the time function of the tensile stress σ(t) is calculated after the
measuring signal records, point by point, by means of the division for each
temporal related values. This calculation can be carried out either “by hand”
or – better – also by means of a quotient computer.

It is an advantage for both methods, the primary records of the time func-
tions of the yarn tensile force F (t) and the yarn fineness T to(t), that they
can be to stored by means of a two channel measuring magnetic tape device
or of a quick external computer memory. It is then possible to temporally
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Fig. 6.16. Technological scheme of a combination measurement of yarn tensile
force, yarn fineness and tensile stress in the drawing process with correlation eval-
uation

and locally separate the measuring signal records on the machine and the
analysis in the lab. In this way, it is possible to carry out later the measuring
process at any time to repeat in the slow or fast motion manner or the quo-
tient calculation to the time function of the tensile stress σ(t). It is possible
in the same way to produce a data memory of the time functions which is
available to the further described analysis as follows.

Figure 6.16 shows a conventionally designed variant which proposes a
storage of the measuring values by means of a measuring magnetic tape
device which the time function can be submitted to in a (cross-)correlation
evaluation.
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6.5.2 Dynamic Evaluation and Cross-Correlation Functions (CCF)

Fundamentals

First of all several synchronously determined time function courses of different
process and product variables can also be evaluated visually, similarly as to
Sect. 6.4 for the evaluation and analysis of the time function course of the
yarn tensile force independently. This can take place, for instance, to observe
whether changes of the F (t)-, T to(t)- and σ(t)-courses correspond to each
other and whether this correlation will be positive or negative.

Further analytical statements can give the cross-correlation function
(CCF) or to the cross-power density spectrum function (CPSF) for the mu-
tual dependences or the dynamic relationship of time functions of two process
or product variables.

The calculation rules for the CCF of two time functions in the integral and
sum representation has been already described in Sect. 2.4.4 (see Eqs. 2.18
and 2.19). We will only regard the CCF in the following. The interested
reader can inquire as to the numerical more expensive formation rules and
the (until now only little used) statement possibilities of the cross-power
density spectrum function in [8] and [9].

Cross-correlation functions (CCF) of yarn tensile force, yarn fine-
ness and tensile stress in the draw process

The following three cross-correlation functions can be formated (in each case
in the integral and the sum representation) from the time functions of the
yarn tensile force F (t), the yarn fineness T to(t) and the tensile stress σ(t):

CCF of the yarn tensile force and the yarn fineness

KFTto(τ) = lim
T→∞

1
T

T∫
0

[F (t) − Fm][T to(t + τ) − T tom]dt (6.27)

KFTto(k · Δt) =
1

n − k

n−k∑
i=1

(Fi − Fm)(T to(i+k) − T tom) (6.28)

Boundary condition: m = kmax ≤ n

5
, which k = 0, 1, 2, 3, ...m

CCF of the yarn tensile force and the tensile stress

KFσ(τ) = lim
T→∞

1
T

T∫
0

[F (t) − Fm][σ(t + τ) − σm]dt (6.29)



304 6. Dynamics of the Tensile Force and Process Stability

KFσ(k · Δt) =
1

n − k

n−k∑
i=1

(Fi − Fm)(σi+k − σm) (6.30)

Boundary condition: m = kmax ≤ n

5
, which k = 0, 1, 2, 3, ...m

CCF of the yarn fineness and the tensile stress

KTtoσ(τ) = lim
T→∞

1
T

T∫
0

[T to(t) − T tom][σ(t + τ) − σm]dt (6.31)

KTtoσ(k · Δt) =
1

n − k

n−k∑
i=1

(T toi − T tom)(σi+k − σm) (6.32)

Boundary condition: m = kmax ≤ n

5
, which k = 0, 1, 2, 3, ...m

The signs and symbols in Eqs. 6.27 to 6.30 mean:

F (t), T to(t), time functions of the tensile force, yarn fineness,
σ(t) tensile stress
Fm, T tom, mean values of the tensile force, yarn fineness,
σm tensile stress in the range of

0 ≤ t ≤ T or 0 ≤ k · Δt ≤ n − k
T toi, T to(i+k), discontinuous values of the time functions
Fi, σi+k F (t), T to(t), σ(t), taken in steps of Δt
T length of the integration range
τ, k · Δt time shift
k, m, n running (sequence) indices
KFTto(τ),
KFσ(τ),
KTtoσ(τ),
KFTto(k · Δt),
KFσ(k · Δt), single values of the CCF of the time functions
KTtoσ(k · Δt) F (t), T to(t) and σ(t) for τ or k · Δt

The CCFs practically express the interconnected dispersion of the single
time functions among one another and not only in the simple known manner
for τ = 0. This is enabled by means of the continuously or step-like realised
time shift τ or k ·Δt (change values of the one time function are related to the
temporal with τ or k · Δt shifted change values of the other time function).
The CCFs also enable an estimation of the statistical relationship between
the values of the one time function and values of the other time function
which are more or less distantly temporal.
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The methods of combination measurements and evaluations of time func-
tions have been applied extensively in the past to the draw process of poly-
mer yarns. This process imprints on the yarn drastic fineness and E-modulus
changes (consequently quality changes) which are effected by yarn tensile
force. The following statements and ideas are not only applicable to the draw
deformation but also to all fibre formation and fibre deformation processes
which are similar to the draw process. Examples are the yarn deformation
processes of classical melt spinning, of high speed spinning, but also of si-
multaneous or sequential draw texturing. It has already been hinted to the
sharpened analysis situation at yarn deformation processes in a first extensive
paper [321]. Through this it has been given that the effecting quantities for F
and T to can be correlated (temporal stable or instable) among one another
in different manners with a more or less phase shift and that the changes of
the secondary product variable tensile stress σ(t) must be generated by an
additional quotient calculation of F (t) and T to(t).

The following dependences on other process and product variables can be
formally formulated for the primary quantities F and T to which generate the
tensile stress σ (see also Fig. 2.1 in Sect. 2.1.1):

T to = f(T ti, vo/vi, l, Eyi)

F = f(T ti, Eyi, vo/vi, vo, l, Ty)

The difficulties from these mutual interweavings will be distinctly special if
the characterising yarn quantity Eyo at the output of the drawing zone is
included into the estimation of the inner yarn unevenness:

Eyo = f(Eyi, vo/vi, vo, l, T ti, T to, F )

The combined measurement and estimation of time functions of yarn ten-
sile force F (t) and yarn fineness T to(t) can give answers to the following
questions:

a) Did induced fluctuate fineness changes to the yarn during the elongation
or deformation process? Which quantity exists at the process input?

b) Did induced fluctuate substance property changes (E-modulus, tensile
stress, plastic deformation part) on the yarn during the elongation or
deformation process?

c) Which relation exists between form changes and reaction stresses? Which
process influences are causally responsible for these changes?

d) Is a change of the yarn tensile force (which is marked often wrongly as
yarn stress, though of no sort cross section relation exists) the effect of
a change of the imprinted elongation or the effect of a change of the
momentary yarn elasticity (which again depends on the cross section or
the fineness as well as on the E-modulus of the yarn)?
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Tendencies of disturbance transmission in the drawing process are com-
piled in Table 6.2. These come from theoretical considerations and exper-
imental investigations for different combinations of possible process input
disturbances. We should remember: Fineness changes ΔT ti/T tim are an ex-
pression of outer, of elastic modulus ΔEyi/Eyim are an expression of inner
unevennesses of the input yarn. The following conclusions can be deduced
which emphasise the necessity of a detailed time function analysis:

a) Tensile force changes of the yarn in the drawing zone do not allow, in
any case, for an unambiguous assertion about the situation of disturbance
causes at the process input. The direction of the tensile force changes can be
predicted when at least one input size or both input sizes change in the same
direction. If fineness and E-modulus change turn out to contradict then the
change dimensions of the one input size compared to the change dimensions of
the other input size are responsible for the direction of the output disturbance.
The absence of some reaction is imaginable, in the special case, if the contrary
imprinted inner and outer unevennesses of the yarn at the drawing zone input
are just canceled.

Table 6.2. Tendencies of disturbance transmission in the drawing process

Yarn disturbances at the process Yarn disturbances at the process output

input: (length of the disturbance

< length of drawing zone)

Fineness E-modulus Tensile force Fineness E-modulus

ΔT ti/T tim ΔEyi/Eyim ΔF/Fm ΔT to/T tom ΔEyo/Eyom

0 + + ↑ ↓
0 − − ↑ ↓
+ 0 + ↑ ↑
− 0 − ↑ ↑
+ + + ↑ ↓
− − − ↑ ↓
+ − +,−,0 ↑,↓ ↑,↓
− + +,−,0 ↑,↓ ↑,↓

↑ increasing unevenness
↓ decreasing unevenness
+ positive deviation to the mean value
− negative deviation to the mean value
0 no deviation to the mean value

b) The calculation of the quotient of the (draw-)yarn tensile force to the
yarn fineness (the real fineness related draw yarn tensile force) is a necessary
but is not a sufficient prerequisite to the desirable separation of geometrical
and material influences to the yarn reaction (outer and inner unevenness).
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Identification Matrix to the Unevenness Analysis of Man Made
Fibres in the Draw Process

An identification matrix of the unevenness analysis of man-made fibres in the
draw process has been developed from the authors in the past which is based
on physical-analytical and mathematical-logical ideas. This identification ma-
trix allows a secure general valid assertion conclusion to the unevenness cause
structure of the relative unoriented yarn at the drawing zone input and the
oriented yarn at the drawing zone output. It has been tested in a row of
simulation calculations for the start values (that means for τ = k · Δt = 0)
of the three CCFs (Eqs. 6.27 to 6.32) which allow for a conclusion to the
constellation of the unevenness causes of the investigated yarns.

These investigations have been carried out according to the signal scheme
of Fig. 6.16 and included step-like (aperiodic) as well as rectangular and
sinusoidal periodic changes of the fineness in the input yarn ΔT ti and/or
changes of its E-modulus ΔEyi.1

The identification matrix is shown in Table 6.3. Disturbance constella-
tions of the E-modulus and of the fineness of the yarn at the drawing zone
input are indicated symbolically in the left columns, in which positive and
negative disturbances of both product variables as well as positive and neg-
ative disturbances of only one product variable have been assumed. In the
three right-hand columns the awaiting start value constellation of the three
possible CCFs is inscribed according to the disturbance constellation. Com-
plex composed and superimposed primary measurement signals of the yarn
tensile force and the yarn fineness can be decoded with this (occurring for
the first time) by means of the third measurement size tensile stress and with
concentration on their three CCFs. A decoded disturbance cause description
is similarly possible.

The identification matrix shows that disturbances and their combinations
lead to the same start value constellations if they only differ in the sign of
1 The following is to be remarked at this point: The calculation of the CCFs from

the recorded time functions of the yarn tensile force, the yarn fineness and the
tensile stress must be secure. This means only real, each other physical attached
value of the yarn tensile force and the yarn fineness, will be related one upon
another for the calculation of the tensile stress. This means (see Fig. 6.16) that
the measuring value of the fineness at the drawing zone output correlates with
the measuring value of the tensile force when this yarn piece has passed the
position of the tensile force measuring sensor in the drawing zone. It is the
moment (t − Δt1) according to the chosen draw conditions (output velocity vo,
draw ratio DR, distance of measurement place a), which Δt1 can be signified
as the necessary phase shift between the time functions of the tensile force and
the fineness for the continuous quotient calculation to the tensile stress (see
Fig. 6.16).
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Table 6.3. Identification matrix to the unevenness analysis in the draw process

Disturbance in the yarn

Variant of at the process input Start value of the cross

disturbance (length of the disturbance correlation function (τ = 0)

<length of drawing zone)

Fineness E-modulus

ΔT ti ΔEyi KFTto(0) KFσ(0) KTtoσ(0)

1 + 0 + + −
2 − 0 + + −
3 + + − + −
4 − − − + −
5 − + + −(0, +) −
6 + − + −(0, +) −
7 0 + − + −
8 0 − − + −

+ positive deviation to the mean value; start value of the CCF positive
− negative deviation to the mean value; start value of the CCF negative

the disturbance (see Table 6.3, applicable to disturbance variants 1 and 2, 3
and 4, 5 and 6, 7 and 8). The following secure statements can be submitted
from the named simulation calculations:

a) Disturbance variants 1 and 2 always result for disturbance lengths > 4
mm and any formed ΔT ti

KFTto(0) > 0, KFσ(0) < 0, KTtoσ(0) < 0

A characteristic influence of the sign of the disturbance does not equate to
the values of CCFs(0).

b) Disturbance variants 7 and 8 always result for any disturbances and
any formed ΔEyi

KFTto(0) < 0, KFσ(0) > 0, KTtoσ(0) < 0

The sign of the disturbance is also not provable here by the values of the
CCFs(0).

c) The rectified synchronous disturbance of the E-modulus Eyi and the
fineness T ti according to the disturbance variants 3 and 4 leads at the start
values of the CCFs to the same results as with the disturbance variants 7 and
8. However, the variants 3 and 4 on the one hand and 7 and 8 on the other
do further differ in the course of the CCFs by increasing τ -values. The sign
of the KFσ(τ) changes from + to – with the unique Eyi-disturbance, whereas
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the function KFσ(τ) is positive (and for a larger τ nearly zero) for rectified
synchronous Eyi- and T ti-disturbances. This example shows that the whole
function course of the CCFs (beyond the start values) can be nevertheless
necessary for a detailed analysis of mistake causes for the draw process in the
particular case.

d) Different effects superimpose themselves due to contrary synchronous
Eyi- and T ti-disturbances depending on the disturbance parameters.
KFTto(0) > 0 and KTtoσ(0) < 0 is valid when disturbances are contradictary.
The sign changes for KFσ(0) depending on the length of the disturbance.
KFσ(0) is negative for disturbances longer than 12 mm. If the disturbance is
shorter then the KFσ(0) will be positive or zero.

The preceding informed investigations demonstrated problems of the sig-
nal analysis and their process-analytic importance contrary to most of the
other dealt with questions of this book. It is obvious that the presented
method of the qualitative unevenness analysis of man-made fibres in the
classical draw process is not only valid for this process stage but in principle
it is also transferable to analysis situations of the same kind on other contin-
uous realised thread deformation processes during the thread formation and
thread processing.

Finally, an idea for a device realisation for the described measuring and
evaluation method should be developed. It is imaginable by means of the
microelectronic tools available today that the electrical measuring signals
(coming from both measuring sensors for the yarn fineness and the yarn
tensile force) will be supplied by a specifically designed and appropriately
programmed micro processor system, in which

- the calculation of the fineness related thread tensile force and the CCF-
calculation repeatingly (appropriate selected integration times) can be re-
alised,

- the appropriate results to the presented (or an expanded) identification
matrix can be evaluated, and

- for instance the number of the identified disturbance variant (and if neces-
sary, other intermediate results) displays as total result on a small digital
screen.

Such a procedure of intelligent measuring value concentration would be
serviceable not only for simplified handling but also for broader applications
of the presented method [320].



References

1. G. Brack: Dynamische Modelle verfahrenstechnischer Prozesse. In: Reihe Au-
tomatisierungstechnik (Verlag Technik, Berlin 1971) Band 115

2. W. Weller: Anwendung der Mikroelektronik in der Prozeßautomatisierung. In:
Reihe Automatisierungstechnik (Verlag Technik, Berlin 1981) Band 187

3. R. Beyreuther: Dynamik von Fadenbildungs- und Fadenverarbeitungsprozes-
sen, 1. Aufl. (Fachbuchverlag, Leipzig 1986)

4. H. Strobel: Experimentelle Systemanalyse (Akademie-Verlag, Berlin 1975)
5. E.-G. Woschni: Meßdynamik: Eine Einführung in die Theorie dynamischer
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ultra-fine PEEK-filaments. J. Mater. Sci. 38, 2149–2153 (2003)

152. S. Kase: Simulation of melt spinning. Sen-i Gakkaishi 38, P418–P426 (1982)
153. K. Toriumi, A. Konda, J. Shimizu: Dynamic simulation of melt spinning pro-

cess. Sen-i Gakkaishi 38, 31–42, T49–T60 (1982)
154. J. C. Chang, M. M. Denn, S. Kase: Dynamic simulation of melt spinning at

low speed. IEC Ind. Chem. Fundam. 21, 13–17 (1982)
155. J. H. Bheda: Mathematical modelling and experimental study of dynamics on

structure development during high speed melt spinning of nylon-6. PhD thesis,
Univ. of Tennessee, Knoxville (1987)

156. J. H. Bheda, J. E. Spruiell: Dynamics and structure development during high
speed melt spinning of nylon 6. I. On-line experimental measurements. J. Appl.
Polym. Sci. 39, 447–463 (1990)

157. Y. C. Bhuvanesh, V. B. Gupta: Computer simulation of melt spinning of
poly(ethylene terephthalate) using a steady-state model. Indian J. Fibre Text.
Res. 15, 145–153 (1990)

158. Y. C. Bhuvanesh, V. B. Gupta: Computer simulation of melt spinning of
polypropylene fibers using a steady-state model. J. Appl. Polym. Sci. 58, 663–
674 (1995)

159. Z. Ding, J. E. Spruiell: An improved mathematical model of melt spinning
process. Polym. Mater. Sci. Eng. 73, 550–551 (1995)

160. M.-G. Yoon: Modeling of high speed spinning of nylon 6. Han’guk Somyu
Konghakhoechi 31, 310–316 (1994)

161. V. Rauschenberger: Recursive modeling of the fiber spinning process. Chem.
Fibers Int. 47, 192–194 (1997)

162. V. Rauschenberger, H. M. Laun: A recursive model for rheotens tests. J. Rheol.
41, 719–723 (1997)

163. A. J. McHugh, A. K. Doufas: Simulation of fiber spinning including flow-
induced crystallization. Proc. Int. Congr. Rheol., 13th 3, 386–388 (2000)

164. E. Mitsoulis, M. Beaulne: Numerical simulation of rheological effects in fiber
spinning. Adv. Polym. Technol. 19, 155–172 (2000)

165. H. Rave, H. Tiemeier, T. Gotz, D. Reinel-Bitzer, K. Steiner: Simulation of the
fiber spinning process. Chem. Fibers Int. 51, 427–428, 430–431 (2001)

166. L. Jarecki: Computer modeling of fiber spinning from a crystallizing polymer
melt. I. Mathematical model. Polimery 46, 335–343 (2001)

167. L. Jarecki: Computer modeling of fiber spinning from a crystallization polymer
melt. part II. Use of the model. Polimery 46, 420–427 (2001)



References 319

168. A. K. Doufas, A. J. McHugh: Two-dimensional simulation of melt spinning
with a microstructural model for flow-induced crystallization. J. Rheol. 45,
855–879 (2001)

169. A. K. Doufas, A. J. McHugh: Simulation of melt spinning including flow-
induced crystallization. Part III. Quantitative comparisons with PET spinline
data. J. Rheol. 45, 403–420 (2001)

170. G. Allan, R. Yang, A. Fotheringham, R. Mather: Neural modelling of
polypropylene fibre processing: predicting the structure and properties and iden-
tifying the control parameters for specified fibres. J. Mater. Sci. 36, 3113–3118
(2001)

171. M. L. Ottone, J. A. Deiber: A numerical method for the viscoelastic melt-
spinning model with radial resolutions of temperature and stress fields. Indus-
trial & Engineering Chemistry Research 41, 6345–6353 (2002)

172. Y. L. Joo, J. Sun, M. D. Smith, R. C. Armstrong, R. A. Brown, R. A. Ross:
Two-dimensional numerical analysis of non-isothermal melt spinning with and
without phase transition. J. Non-Newtonian Fluid Mech. 102, 37–70 (2002)

173. P. H. Herrmans, P. Platzek: Kolloid. Z. 88, 68 (1939)
174. R. S. Stein, F. H. Norris: J. Polym. Sci. 21, 381 (1956)
175. P. Sajkiewicz, A. Ziabicki, L. Jarecki: Effects of structure and formation con-

ditions on mechanical properties of polyethylene terephthalate (PET) fibers.
Fibres & Textiles in Eastern Europe 6, 44–51 (1998)

176. J. F. Spruiell and J. L. White: Structural development during fiber processing.
I. Kinetics and morphology of crystallization during melt spinning. SPE 33rd
Ann. Tech. Conf., ANTEC 75, Atlanta, 188–192 (1975)

177. J. L. White and Y. Ide: Rheology and dynamic of fiber formation from polymer
melts. J. Appl. Polym. Sci.: Appl. Polym. Symp. 27, 61–102 (1975)

178. W. Sattler, H. Dawcynski, W. Weiß, H. Henkel, R. Wagner, and H. Dittmann:
Untersuchungen zum Fadenbildungsvorgang von Polyamidseide bei hohen
Spinngeschwindigkeiten. Faserforsch. u. Textiltechnik 27, 327–331 (1976)

179. V. G. Bankar, J. E. Spruiell, and J. L. White: Melt spinning of nylon 6. I.
Melt-spinning dynamics and rheological properties of nylon 6. J. Appl. Polym.
Sci. 21, 2135–2155 (1977)

180. S. Kaufmann: Zur Entstehung der Orientierung bei der Fadenbildung von
Schmelzspinnpolymeren. Faserforsch. u. Textiltechnik 28, 83–84 (1977)

181. J. L. White: Dynamic and structure development in melt spinning of fibers. J.
Rheol. 22, 215 (1978)

182. Y. D. Kwon and D. C. Prevorsek: Melt spinning of fibers: Effect of air drag.
J. Appl. Polym. Sci. 23, 3105–3122 (1979)

183. A. Ziabicki: Dynamics of multifilament vs. monofilament spinning. In:
F. Happey (Ed.): Applied Fibre Science, Vol 3 Chapt. 6, A. Ziabicki: Fun-
damental studies of fibres. (1979)

184. A. Ziabicki, H. Kawai (Eds.): High Speed Fiber Spinning, Science and Engi-
neering Aspects, (John Wiley & Sons, New York 1985).

185. W. Kast, O. Kirscher, H. Reinecke, K. Wintermantel: Konvektive Wärme- und
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Chemieseidenfäden an beheizten Galetten. Faserforschung und Textiltech-
nik/Zeitschrift für Polymerforschung 25 11, 483–489 (1974)

318. R. Barthel, H. Hofmann: Fadenzugkraftmessung in der Webereivorbereitung
und Weberei. Deutsche Textiltechnik 14 5, 267–273 (1964)

319. H. Giesekus: Die statistische Analyse der Garn- und Fadenungleichmäßigkeit:
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List of Symbols

Symbol Description

a distance of measurement place

c specific heat capacity of thread material
cair specific heat capacity of air
cf air friction coefficient
cp specific heat capacity of polymer

d diameter of capillary hole of spinneret
df dampening factor
dq standard deviation
d2
q quadratic dispersion (variance)

ddr draw down ratio

d
dx

,
d
dt

derivatives in ordinary DEs

du

dtu
uth derivative to the time, Laplacian p

dx, dt, dtu, infinitesimal quantity of the appropriate size
dl, dm, dp, infinitesimal quantity of the appropriate size
dT to, dT , dTy infinitesimal quantity of the appropriate size
dM , dSy infinitesimal quantity of the appropriate size
dα infinitesimal quantity of the appropriate size

e asymmetry parameter
eμα, eμαm , eμmαm rope friction factor
ejϕ(ω) factor of the phase shift between cause- and effect os-

cillation in the complex plane

f Herrman’s orientation factor (Chap. 3)
f disturbance frequency, frequency in the dimension Hz
fam amorphous orientation factor
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continuation

Symbol Description

fcr crystalline orientation factor
fc critical frequency
fch critical frequency of heat transfer dynamic
fc1, fc2 critical frequencies of drafting zones 1 and 2
fm mains frequency
Δfm mains frequency change
fP, fP1, fP2 frequencies of the changes
fts frequency of traverse motion thread guide
Δ̃fm sinusoidal mains frequency change
f(t) time dependent function
fx, fy components of external force density, cartesian coor-

dinates

g gravitational acceleration
g(y) reduced stream function, cartesian coordinates

h glass level
hm glass level, mean value
Δh glass level change
h(r) reduced stream function, radial coordinates

i running (sequence) index
i · Δt time shift (power density spectrum)
j imaginary unit j2 = −1

k running (sequence) index
k Boltzmann constant (Chap. 3)
k transfer factor of heating transformer (Chap. 4)
k(y) force density function
k · Δt time shift (correlation function)

l length of the appropriate zone or roll setting
lm length of the appropriate zone or roll setting, mean

value
Δl length change of the appropriate zone or roll setting
Δ̃l sinusoidal length change of the appropriate zone or

roll setting
lb length of bobbin
lext input line extension
lext/lm extension factor
lf middle staple length of fibres
lh high of traverse motion triangle
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ls distance from spinneret
lt thread length of one twist
lu streched, untwisted length of one twist
l0 length of unloaded fibre/yarn/thread
l1 length of F loaded fibre/yarn/thread
l1, l2, l3 lengths of heated godet systems
l1 length of the roll setting zone 1
l1m length of the roll setting zone 1, mean value
Δl1 length change of the roll setting zone 1
l2 length of the roll setting zone 2
l2m length of the roll setting zone 2, mean value
Δl2 length change of the roll setting zone 2
lTg distance spinneret-glass transition point

m running (sequence) index

n running (sequence) index
n Avrami exponent (crystallisation rate, Chap. 3)
nb revolution number of bobbin motor
nbm revolution number of bobbin motor, mean value
Δnb, Δnb1, Δnb2 revolution number changes of bobbin motor
Δ̃n sinusoidal revolution number change of bobbin motor
nb revolution number of bobbin
ni revolution number of input drawing godet
no revolution number of output drawing godet
np revolution number of motor spinning pump
ns revolution number of false twist spindle
nsm revolution number of false twist spindle, mean value
Δns revolution number change of false twist spindle
Δ̃ns sinusoidal revolution number change of false twist

spindle

pe pressure of melt from extruder
ps pressure of melt before the spinneret

pu=
du

dtu
Laplacian

pν zero value of the integrand of Eq. 2.42
p,x, p,y components of pressure gradient, cartesian coordi-

nates

q number of worker-angle-stripper pairs (roller top card,
Chap. 4)
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qi cross section of capillary hole
qim cross section of capillary hole, mean value
Δqi cross section change of capillary hole
Δ̃qi sinusoidal cross section change of capillary hole
qo throughput of one single filament
qs cross section of ready formated fibre
qsm cross section of ready formated fibre, mean value
Δqs cross section change of ready formated fibre
Δ̃qs sinusoidal cross section change of of ready formated

fibre
q̇s derivative of qs to t
qx, qy components of heat flow
rg gear ratio

s length of capillary hole of spinneret

t running time
Δt time interval
Δt1 necessary time shift between time functions of tensile

force and fineness to continuous quotient calculation
to fineness related yarn tensile force (Fig. 6.16)

t0 time to the start point zero
tma amplitude of traverse motion at winder
tmf frequency of traverse motion at winder

u order of the Laplacian

v fibre/yarn/thread velocity
v0 extrusion velocity
va velocity of quenching air
Δva velocity change of quenching air
Δva velocity change of quenching air
vair air velocity
vc coefficient of variation (Chap. 6)
vi velocity of input fibre/yarn/thread or godet or present

velocity of twisted thread in texturing zone
vinput velocity of input fibre mass
vim velocity of input fibre/yarn/thread or godet or present

velocity of twisted thread in texturing zone, mean val-
ues
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Δvi velocity change of input fibre/yarn/thread or godet or
present velocity change of twisted thread the texturing
zone

Δ̃vi sinusoidal velocity change of input fibre/yarn/thread
vi(t) velocity of input fibre/yarn/thread or godet, time

function
vi1(t) velocity of input fibre/yarn/thread, level 1, time func-

tion
vi2(t) velocity of input fibre/yarn/thread, level 2, time func-

tion
vo velocity of output or take-down velocity of fi-

bre/yarn/thread or godet
voutput velocity of output fibre mass
vom velocity of output fibre/yarn/thread or godet, mean

value
Δvo velocity change of output fibre/yarn/thread or godet
Δ̃vo sinusoidal velocity change of ouput fibre/yarn/thread

or godet
v′o velocity of twisted thread in the peel off moment
vo(t) velocity of output fibre/yarn/thread or godet, time

function
vo1(t) velocity of output fibre/yarn/thread, level 1, time

function
vo2(t) velocity of output fibre/yarn/thread, level 2, time

function
vs take-down (spinning) velocity of formated fibre
vsm take-down (spinning) velocity of formated fibre, mean

value
Δvs, Δvs1, Δvs2 take-down (spinning) velocity changes of formated fi-

bre
Δ̃vs sinusoidal take-down (spinning) velocity change of for-

mated fibre
vtm linear velocity of traverse motion thread guide, mean

value
v0, vB (initial) quenching air velocity
vL take-up velocity
vx, vy velocity components of air, cartesian coordinates
vx, vr velocity components of air, radial coordinates
vz velocity of middle drafting godet or input velocity of

untwisted thread in texturing zone
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vzm velocity of middle drafting godet or velocity of in-
put dead time line or velocity of the tensionless fi-
bre/yarn/thread or input velocity of untwisted thread
in texturing zone, mean values

Δvz velocity change of middle drafting godet or velocity
change of input dead time line or input velocity change
of untwisted thread in texturing zone

Δ̃vz sinusoidal velocity change of untwisted thread in tex-
turing zone

v′z velocity of twisted thread in texturing zone
v||, v⊥ axial and cross air velocity

w bending tongue shift
wm bending tongue shift, mean value
Δw bending tongue shift change
Δ̃w sinusoidal bending tongue shift change

x coordinate in fibre direction, distance from spinneret
(Chap. 3)

x(t) time function (Chap. 2)
x̄ mean value of the time function (Chap. 2)
Δx cause variable (Chap. 2)
x0 length measurement corresponding to Eqs. 5.96, 5.97
x1, ..., xn, discrete values of the time function x(t) (Chap. 2)
xi, xi+k

xi input fibre mass/time (carding engines, Figs. 4.15,
4.18)

xim input fibre mass/time (carding engines), mean value
Δxi input fibre mass/time change (carding engines, Figs.

4.16, 4.18)
Δ̃xi sinusoidal input fibre mass/time change (carding en-

gines)
Δx, Δx1, ..., Δxn, partial fibre mass/time changes (roller top card, Figs.
Δxi1, Δxi2 4.16, 4.17)
xo output fibre mass/time (carding engines, Figs. 4.15,

4.18)
xom output fibre mass/time (carding engines), mean value
Δxo output fibre mass/time change (carding engines, Figs.

4.16, 4.18)
Δ̃xo sinusoidal output fibre mass/time change (carding en-

gines)
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Δxo2 partial fibre mass/time change (roller top card, Fig.
4.16)

xs distance to solidification point
Δ̃x(ω) vector of the sinusoidal disturbance of the independent

cause variable

y(t) time function (Chap. 2)
y1, ..., yn, yi+k discrete values of the time function y(t) (Chap. 2)
ȳ mean value of the time function (Chap. 2)
Δy effect variable (Chap. 2)
Δy1, Δy2, ..., Δyn partial fibre mass/time changes (roller top card, Figs.

4.16, 4.17)
Δ̃y(ω) vector of the sinusoidal disturbance of the dependent

response (effect) variable
Δ̃y(ω0) vector of the sinusoidal disturbance of the dependent

response (effect) variable for ω0

Δ̃y(ω1) vector of the sinusoidal disturbance of the dependent
response (effect) variable for ω1

Δ̃y(ω2) vector of the sinusoidal disturbance of the dependent
response (effect) variable for ω2

Δ̃y(ω3) vector of the sinusoidal disturbance of the dependent
response (effect) variable for ω3

z number of capillary holes of spinneret or number of
total twists in the zone lm or number of thread wraps
around heated godets

zi number of fibres in cross section of coming in sliver
zim number of fibres in cross section of coming in sliver,

mean value
Δzi change of number of fibres in cross section of coming

in sliver
Δ̃zi sinusoidal change of number of fibres in cross section

of coming in sliver
zo number of fibres in cross section of coming out sliver
zom number of fibres in cross section of coming out sliver,

mean value
zz number of fibres in cross section of coming out/in

sliver from/to drafting zones 1/2
zzm number of fibres in cross section of coming out/in

sliver from/to drafting zones 1/2, mean value
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Δzz change of number of fibres in cross section of coming
out/in sliver from/to drafting zones 1/2

A actuator device
A filament cross section
Aa, Ba, Ca, Ea abbreviation factors in the Eqs. 5.23, 5.24
Ab, Bb, Cb abbreviation factors in the Eqs. 5.38, 5.39
As surface of glass melt
Azm to the fineness related rise of the force-elongation-

curve of fibre/yarn/thread
ACF auto-correlation function
APSF auto-power density spectrum function

B width of filament bundle in multifilament spinning,
quenching air direction

C1, C2, C3 constants
CAC coordination automatic controller
CC coordination controller
CCF cross-correlation function
CPCD connection programmed controller device
CV coefficient of variation (Chap. 3)

D filament diameter (Chap. 3)
D wind-up/godet diameter
Dm wind-up/godet/friction element diameter, mean value
ΔD wind-up/godet diameter change
Δ̃D sinusoidal wind-up diameter change
D0 diameter of capillary hole
Di diameter of input godet
Do diameter of output godet
DL filament diameter at take-up distance L (Chap. 3)
Dy fibre/yarn/thread diameter
De Deborah number
DE differential equation
DR draw ratio
DMCC digital multi channel controller
DPP data processing peripherals

E elongational elastic modulus (melt)
Ey elastic modulus of fibre/yarn/thread
Eyi elastic modulus of input fibre/yarn/thread
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Eyim elastic modulus of input fibre/yarn/thread, mean
value

Eyo elastic modulus of output fibre/yarn/thread
Eyom elastic modulus of output fibre/yarn/thread, mean

value
Ea activation energy (Arrhenius)
EDPS electronic data processing system

F , F1, F2 tensile forces of fibre/yarn/thread
Fm tensile force of fibre/yarn/thread, mean value
ΔF tensile force change of fibre/yarn/thread
Δ̃F sinusoidal tensile force change of fibre/yarn/thread
ΔF1 tensile force change (amplitude) of fibre/yarn/thread
F (t) tensile force of fibre/yarn/thread, time function
Fm mean value of F (t)
Fi discontinuous value of time function F (t)
F1(t) tensile force of fibre/yarn/thread, level 1, time func-

tion
F2(t) tensile force of fibre/yarn/thread, level 2, time func-

tion
Fb tensile force at break of fibre/yarn/thread
FTg tensile force of fibre/yarn/thread at the glass transi-

tion temperature Tg

Fi discontinuous value of time function F (t) (Chap. 6)
Fi tensile force of fibre/yarn/thread at friction thread

line input
Fo tensile force of fibre/yarn/thread at friction thread

line output
F0 initial force (at capillary)
Fdrag air drag tensile force
Finert inertial tensile force
Fgrav gravitational tensile force
Fsurf surface tensile force
Frheo (rheological) fibre force
FL take-up force at distance L
Fy yarn tensile force (drawing process)
FT false twist

G modulus (upper convected Maxwell model)
G(p) dynamic transfer function
G1(p) dynamic transfer function drafting zone 1
G2(p) dynamic transfer function drafting zone 2
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GD(p) dynamic transfer function of two steps drafting pro-
cess

G1(p)...G5(p) dynamic transfer functions of FT-texturing process
|G1(jf)|...|G5(jf)| normalized amplitude frequency responses of FT-

texturing process
Gfc(p) dynamic transfer function of stationary flat card
Gfc(jω) complex frequency response of stationary flat card
|Gfc(jω)| amplitude frequency response of stationary flat card
|Gfc(jλo)| amplitude frequency response of stationary flat card

(Fig. 4.19)
Grc(p) dynamic transfer function of roller top card
GW1(p)...GWq(p) dynamic transfer functions of worker-angle-stripper-

pairs
G(jω) complex frequency response
|G(jω)| amplitude frequency response
G(jf) complex frequency response
|G(jf)| amplitude frequency response
|G[j(f/fc)]| normalized amplitude frequency response
GD(jω) complex frequency response of two steps drafting pro-

cess
|GD(jω)| amplitude frequency response of two steps drafting

process
Gi abbreviation for dynamic transfer function Gi(p)
G1...G18 single transfer elements of functional block diagram

according to Fig. 4.12 and Table 4.2, abbrev. for dy-
namic transfer functions G1(p)...G18(p)

Gz1...Gz9 disturbance transfer functions (Table 4.3), abbrev. for
dynamic transfer functions Gz1(p)...Gz9(p)

|Gz1|...|Gz9| disturbance amplitude frequency responses (Table 4.3,
Fig. 4.13), abbrev. for amplitude frequency responses
|Gz1(jf)|...|Gz9(jf)|

Gr Grashof number

ΔH heat of fusion

Ih heating current
Ihm heating current, mean value
ΔIh heating current change
Im(ω) imaginary part of complex frequency response

K fibre mass distribution coefficient (roller top card,
Fig. 4.17)
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Ka fibre mass distribution coefficient (roller top card,
Fig. 4.16)

KF(τ), KF(k · Δt) single values of ACF of time function F (t) for τ or
k · Δt

Kh polymer specific constant for the heat transfer
Kp polymer specific constant for conversion fibre/yarn/

thread fineness to diameter
K(T, σ) crystallisation rate
Kmax crystallisation rate constant
K(τ) auto- or cross-correlation function, integral represen-

tation
K(k · Δt) auto- or cross-correlation function, sum representation
KFTto(τ) cross-correlation function of F (t) and T to(t)
KFTto(0) start value of KFTto(τ) for τ = 0
KFσ(τ) cross-correlation function of F (t) and σ(t)
KFσ(0) start value of KFσ(τ) for τ = 0
KTtoσ(τ) cross-correlation function of T to(t) and σ(t)
KTtoσ(0) start value of KTtoσ(τ) for τ = 0
Ks shortening factor (false twist texturing process)
KS amplification factor of transfer element G4

KS amplification factor of transfer element G8

KK(T0) amplification factor of transfer element G9

KK amplification factor of transfer element G12

KU amplification factor of transfer element G13

KW1, KW2 polymer specific constants in Eqs. 5.96, 5.97
KU amplification factor of transfer element G14

L Laplace-transformation
L−1 Laplace-retransformation
L take-up distance, length of take-up channel (Chap. 3)
Lc cooling length
Lcl necessary cutting length of fibre/yarn/thread
Ld delay thread length
Ldv delay thread length for a velocity disturbance Δvi

Ldμ delay thread length for a velocity disturbance Δμ
Lgl necessary gauge length of fibre/yarn/thread
M measuring device
M molecular weight (Chap. 3)
M fibre/yarn/thread mass at the friction element

(Chap. 5)
MC micro computer
MP micro processor
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MPC micro processor controller
MVC measuring value computer
MVCO measuring value concentrator

N number of filaments in fibre bundle
N(Θ) orientational distribution function
Na abbreviation factor in Eq. 5.56
Nh heating power
Nhm heating power, mean value
ΔNh heating power change
Nu Nusselt number

PA poly(amide)
PET poly(ethylene terephthalate)
PP poly(propylene)
PCD programmable controller device
Pi Legendre polynomials
Pr Prandtl number

Q mass throughput of polymer
Qair (mass) flow rate of air
Qi glass mass inflow
ΔQi, ΔQi1, ΔQi2 glass mass inflow changes
˜ΔQi1 sinusoidal glass mass inflow change
Qs throughput through the spinneret
ΔQs throughput change through the spinneret
Δ̃Qs sinusoidal throughput change through the spinneret
Qsm throughput through the spinneret, mean value
ΔQs, ΔQs1, ΔQs2 throughput changes through the spinneret
Qp throughput through the spinning pump

R gas constant (Chap. 3)
R filament (fibre) radius (Chap. 3)
R reduction factor (Chap. 5)
Ry fineness related tensile force F/T t1
R0 radius of capillary hole, initial filament radius
R1, R2 inner and outer radius of radially symmetric filament

bundle
Re, Re||, Re⊥ Reynolds number, related to v||, v⊥
RTg fineness related tensile force of fibre/yarn/thread at

the glass transition temperature Tg
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ΔRTg fineness related tensile force change of fibre/yarn/
thread at the glass transition temperature Tg

Re(ω) real part of frequency response
Rh heating resistance
Rhm heating resistance, mean value
ΔRh heating resistance change
Rs flow resistance of spinneret holes
Res[S(p)] residue of S(p)

Sy surface of disc-shaped pice
S(ω), S(f) power density spectrum function
SF(f) single value of the APSF of time function F (t) for f
S(p) abbreviation of the integrand of Eq. 2.42

T temperature or time period of the integration range
TA necessary maximum analysis time
T1, T2, ..., Tn thread temperatures Ty after pass of single heating

and cooling lines
T0 extrusion temperature, initial temperature
Ta, Tair temperature of air
Tb temperature at beginning of heat transfer
Tbf bobbin formation time
Tc time constant
Tch time constant of heat transfer dynamic
Tc1, Tc2 time constants (stationary flat card)
Tcd1, Tcd2 time constants of drafting zones 1 and 2
Td, Td1, Td2 dead (transport) times
TH time constant of transfer element G4

TH time constant of transfer element G7

Th time constant of transfer element G9

TK1, TK2 time constants of transfer element G12

TU time constant of transfer elements G13, G14

Te temperature of melt from extruder
Tf temperature of filament
Tg glass transition temperature
Tg temperature of glass melt
Tgm temperature of glass melt, mean value
ΔTg temperature change of glass melt
Δ̃Tg sinusoidal temperature change of glass melt
Th temperature of heat medium
Thg temperature of heated godet
Tm melt temperature



340 List of Symbols

continuation

Symbol Description

TD twist density
TDm twist density, mean value
ΔTD twist density change
Δ̃TD sinusoidal twist density change
ṪD derivative of TD to t
TP cycle duration
TP1 cycle duration, correlating to circuit frequency ω1

TP2 cycle duration, correlating to circuit frequency ω2

Tr temperature of cool medium
Ts temperature of the spinneret
Tsm temperature of the spinneret, mean value
ΔTs, ΔTs1, ΔTs2 temperature changes of the spinneret
Δ̃Ts sinusoidal temperature change of the spinneret
Ty temperature of fibre/yarn/thread
Tym temperature of fibre/yarn/thread, mean value
ΔTy temperature change of fibre/yarn/thread
TN tenacity of fibre/yarn/thread
T t fineness (titre) of fibre/yarn/thread
T tm fineness (titre) of fibre/yarn/thread, mean value
ΔT t fineness (titre) change of fibre/yarn/thread
Δ̃T t sinusoidal fineness (titre) change of fibre/yarn/thread
T tf fineness of single fibre
T tfm fineness of single fibre, mean value
ΔT tf fineness change of single fibre
˜ΔT tf sinusoidal fineness change of single fibre
T ti fineness of input fibre/yarn/thread
T tii fineness of input fibre/yarn/thread before the ith elon-

gation step
T tim fineness of input fibre/yarn/thread, mean value
T to fineness of output fibre/yarn/thread
T tom fineness of output fibre/yarn/thread, mean value
ΔT to fineness change of output fibre/yarn/thread
˜ΔT to sinusoidal fineness change of output fibre/yarn/thread
Ṫ to derivative of T to to t

Ṫ tom derivative of T tom to t

ΔṪ to derivative of ΔT to to t
˜ΔT to(ω) vector of sinusoidal disturbances of the effect variable

T to for ω
T to(t) fineness of fibre/yarn/thread, time function
T tom mean value of T to(t)
T toi, T to(i+k) discontinuous values of time function T to(t)
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T toi fineness of output fibre/yarn/thread after the ith elon-
gation step

T t0 fineness of unloaded fibre/yarn/thread
T t0m fineness of unloaded fibre/yarn/thread, mean value
ΔT t0 fineness change of unloaded fibre/yarn/thread
T t1 fineness of F loaded fibre/yarn/thread
T t1m fineness of loaded fibre/yarn/thread, mean value
ΔT t1 fineness change of loaded fibre/yarn/thread
T tL filament fineness at take-up distance L
T ts fineness of ready formated fibre
T tsm fineness of ready formated fibre, mean value
ΔT ts, ΔT ts1, ΔT ts2 fineness changes of ready formated fibre
˜ΔT ts sinusoidal fineness change of ready formated fibre
Ṫ ts derivative of T ts to t
T tz sliver fineness at output/input of drafting zones 1/2
T tzm sliver fineness at output/input of drafting zones 1/2

or fineness of the tensionless fibre/yarn/thread or
fibre/yarn/thread fineness of dead time line input,
mean values

ΔT tz sliver fineness change at output/input of drafting
zones 1/2 or fibre/yarn/thread fineness change of dead
time line input

U∗ activation energy for segment motion
Uh heating voltage
Uhm heating voltage, mean value
ΔUh heating voltage change
Δ̃Uh sinusoidal heating voltage change
Um mains voltage
ΔUm mains voltage change
˜ΔUm sinusoidal mains voltage change

V draft of sliver
V1 draft of sliver drafting zone 1
V2 draft of sliver drafting zone 2

W width of filament bundle in multifilament spinning,
perpendicular to quenching direction

Wa abbreviation factor in Eq. 5.56

Xc crystallinity
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α heat transfer coefficient
α1 heat transfer coefficient thread/metallic surface
α2 heat transfer coefficient thread/surrounding air
αrt resistance-temperature coefficient of the Pt-Rh-

spinneret oven
α angle of wrap
αm angle of wrap, mean value
Δα angle of wrap change

β parameter (to force density) in multifilament theory

γ parameter (to force density) in multifilament theory

Δn (total) birefringence
Δnam amorphous birefringence
Δncr crystalline birefringence
Δi birefringence of input fibre/yarn/thread
Δo birefringence of output fibre/yarn/thread

∂

∂x
,

∂

∂y
derivatives in partial DEs

∂

∂z
,

∂

∂t
derivatives in partial DEs

∂Φ

∂vs
,

∂Φ

∂vi
,

∂Φ

∂l
partial derivatives from Φ to the appropriate sizes

∂Φ

∂qs
,

∂Φ

∂qi
,

∂Φ

∂�
partial derivatives from Φ to the appropriate sizes

∂Φ

∂TD
,

∂Φ

∂ns
,

∂Φ

∂μ
partial derivatives from Φ to the appropriate sizes

∂Φ

∂vz
,

∂Φ

∂vo
,

∂Φ

∂T t
partial derivatives from Φ to the appropriate sizes

ε, ε elongation of fibre/yarn/thread (in %, resp. logarith-
mic (Hencky) measure)

Δε elongation change of fibre/yarn/thread (in %)
εb elongation at break of fibre/yarn/thread (in %)
εo elastic (orientational) part of elongational deforma-

tion (Hencky measure)
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εoi reached orientation elongation of fibre/yarn/thread in
the ith elongation step (Hencky measure)

εo1 reached orientation elongation of fibre/yarn/thread at
the glass transition point (Hencky measure)

Δεo1 reached orientation elongation change of fi-
bre/yarn/thread at the glass transition point
(Hencky measure)

εomax maximum orientation elongation of fibre/yarn/thread
(Hencky measure)

εv viscous part of elongational deformation (Hencky

measure)
ε̇v viscous elongational deformation rate (Hencky mea-

sure)
ε(t) elongation of fibre/yarn/thread, time function
ε1, ε2 elongations (in %) correlated with F1 and F2

εm emissivity (heat radiation)

η elongational viscosity
ηapp apparent elongational viscosity
ηair dynamic viscosity of air
ηe viscosity of melt from extruder
ηs viscosity of melt in the spinneret
ηh heating yield

θ angle

λ relaxation time
λair heat conductivity of air
λf wavelength of disturbance
λi wavelength of disturbance effect in an input web
λo wavelength of disturbance effect in an output web

μ coefficient of friction between fibre/yarn/thread and
fixed friction guide or false twist spindle

μm coefficient of friction between fibre/yarn/thread and
fixed friction guide or false twist spindle, mean values

Δμ change of coefficient of friction between fi-
bre/yarn/thread and fixed friction guide or false
twist spindle

Δ̃μ sinusoidal change of coefficient of friction between fi-
bre/yarn/thread and fixed friction guide or false twist
spindle
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νair kinematic viscosity of air

�air density of air
� density of polymer or thread material
�m density of polymer, mean value
Δ� density change of polymer
Δ̃� sinusoidal density change of polymer
�am mass density of amorphous polymer
�cr mass density of crystalline polymer
�m mass density of glass
�p mass density of polymer

σ filament stress
σ(t) fineness related tensile force of fibre/yarn/thread,

time function
σm mean value of σ(t)
σi+k discontinuous value of time function σ(t)
σTg tension FTg/T ts of fibre/yarn/thread at the glass

transition point
σSB Stephan-Boltzmann constant
σsurf surface tension (specific surface energy)

τ time shift (correlation function)
τf shear stress at filament surface

ϕ phase shift angle
ϕa humidity of quenching air
ϕ1 phase shift angle, correlating to circuit frequency ω1

ϕ2 phase shift angle, correlating to circuit frequency ω2

ϕ3 phase shift angle, correlating to circuit frequency ω3

ϕ(ω), ϕ(f) phase frequency responses
Φ fluidity
Φ symbol for a nonlinear differential equation
Φ(x, r) potential flow function, radial coordinates

Ψ(x, y) potential flow function, cartesian coordinates

ω circular/excitation frequency
ω0 circular/excitation frequency, level 0
ω1 circular/excitation frequency, level 1
ω2 circular/excitation frequency, level 2
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ω3 circular/excitation frequency, level 3
ωc critical (circular) frequency

step
⊥ impulse



Index

A-priori knowledge, 16, 27, 166, 172,
184, 241, 242, 292

Acceleration force
– melt spinning process, 167, 168
Air
– properties, 80
– quenching profile, effect on fibre

formation, 87, 92, 117
Air friction force
– melt spinning process, 167, 168
Air friction, coefficient, 56
– definition, 52
– examples, 57
– friction forced take-up, 124
– limitation to fineness, 136
– minimise, 137
– model of fibre formation, 80
– multifilament model, 103
Amplification factor
– FT-texturing process
– – twist density, 250–252
– generally, 206
– melt spinning process
– – orientation elongation, 169
– steady state, 169
– step response (function), 160, 163
Amplitude frequency response
– definition, 19–21, 27, 33, 34, 38
– drafting process (one step), 191
– – estimation, 192, 193

– – oscillations ˜ΔT tf , 192

– – oscillations Δ̃vi, 192

– – oscillations Δ̃vo, 191

– – oscillations Δ̃zi, 192
– drafting process (two steps), 201
– – estimation, 196, 197, 199, 201

– – oscillations Δ̃vz, 201, 202

– – oscillations Δ̃zi, 195
– drawing process

– – oscillations Δ̃vi, 38, 39, 41

– fibre/yarn/thread formation distance
– – common normalised, 158–160, 163
– – estimation, 157, 158, 166

– – normalised oscillations ˜ΔT ts/Δ̃l,
163

– – oscillations Δ̃l, 156

– – oscillations Δ̃qi, 154

– – oscillations Δ̃vi, 153

– – oscillations Δ̃vs, 152

– – oscillations Δ̃�, 155
– fibre/yarn/thread input line

– – oscillations Δ̃vi/vim, 229
– fibre/yarn/thread tensile force, 280
– – measuring sensor, 283, 284
– fibre/yarn/thread transport process
– – dead time thread line, 213
– – friction thread line, 215
– friction thread line
– – estimation, 226, 227

– – oscillations Δ̃vi, 222, 224

– – oscillations Δ̃μ, 225
– FT-texturing process
– – estimation, 252

– – twist density oscillations Δ̃TD/TDm,
247, 249, 252–256

– generally, 9
– glass fibre spinning process
– – fineness disturbance causes,

178–180
– measuring and estimation volume
– – disturbance estimation, 204
– series of delay and dead time thread

lines
– – estimation, 218, 221

– – oscillations Δ̃vi, 217, 218, 220
– stationary flat card, 188, 189
Amplitude ratio, 19, 21, 38, 41, 173,

282
Amplitude shift, maximum, 285
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Amplitude spectrum, 25
Amplitude vector, 19
Analysis
– generally, 1, 2
– process dynamics, 1
Auto-correlation function, ACF, 23–25,

287–295
– estimation rules, 289–294
– fibre/yarn/thread tensile force time

function, 288–300
Auto-power density spectrum function,

APSF, 24, 25, 287–301
Automatic control, 3, 4, 18, 31, 149,

177, 180, 182, 183, 190, 212, 228

Balance equations
– energy (heat), 47, 95, 105, 106
– mass, 45
– model of fibre formation, 79
– momentum, 50, 95, 96, 103
Behaviour
– dynamic
– – carding engines, 182
– – differential equation, DEq., 28
– – drafting process, 189, 190, 192, 199,

200
– – drawing process, 31, 38, 41
– – fibre/yarn/thread formation

distance, 152, 157, 158, 162
– – fibre/yarn/thread heating/cooling,

263, 268, 276
– – fibre/yarn/thread transport

process, 210, 221
– – frequency-depending, 18, 21
– – FT-texturing process, 249, 255
– – generally, 33, 36, 38
– – glass fibre spinning process, 173
– – melt spinning process, 168
– – necessary measuring and gauge

lengths, 206
– – spun yarn spinning process, 182
– – stationary flat card, 183, 188
– – technological process, 7, 9, 15, 16
– – tensile force/fineness measurement,

301
– – test signals, 27
– – time-depending, 17
– force-elongation of fibre/yarn/thread,

145, 210, 221, 278
– material, 10, 11
– rheological, 10
– time, 287
Birefringence

– amorphous, 67
– crystalline, 67
– definition, 67
– fibre/yarn/thread drawing process, 6
– melt spun fibre/yarn/thread, 166
– model of fibre formation, 80
– stress-optical law, 67
Bobbin structure
– traverse motion influence, 240
Breaking elongation
– drawn fibre/yarn/thread, 6
– melt spun fibre/yarn/thread, 166
Breaking force
– drawn fibre/yarn/thread, 6
– melt spun fibre/yarn/thread, 166

Carrier frequency, 204
Cause disturbance, 17, 206
Cause oscillation, 18–20, 38, 41, 161
Cause quantity, 9, 173, 278
Cause variable
– delay line length
– – traverse motion at winder, 233, 236
– generally, 17
– input velocity
– – drawing process, 31
– melt spinning process, 146–149
– periodic, 17
– possible test signals, 27
– several
– – fibre/yarn/thread formation

distance, 157, 158
– – glass fibre spinning process, 181
– – spun yarn spinning process, 182
– sinusoidal, 18, 19, 21, 33
– spinneret temperature
– – glass fibre spinning process, 171
– step-like, 17, 33, 37
– stochastic, 21
Cause vector, 19
Cause-effect relation(s)
– drawing process, 5
– fibre/yarn/thread tensile force, 280,

301
– fibre/yarn/thread transport process
– – delay and dead time thread lines,

217, 221
– generally, 1, 2, 7, 13–16, 23, 27, 41,

149, 157
– glass fibre spinning process
– – fibre/yarn/thread fineness, 173
– melt spinning process
– – fibre/yarn/thread fineness, 146, 149
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Cause-effect-blocks, 27
Cause-effect-scheme
– generally, 27, 149
– glass fibre spinning process
– – fibre/yarn/thread fineness, 170–172
– melt spinning process, 146, 168
– – fibre/yarn/thread orientation, 166,

167, 169
Change of stored mass
– drawing process, 30
– fibre/yarn/thread formation, 292
– fibre/yarn/thread formation distance,

150
Change(s)/fluctuation(s)
– aperiodic, 17
– continuous, 26
– course, temporal, 9
– determined, 5
– example drawing process, 30
– generally, 9, 10, 13, 15, 21, 31, 33
– non determined, stochastic, 22
– periodic, sinusoidal, 9, 41
Circular frequency, 9
Coefficient of variation, 205, 206, 286
Combination evaluation, 301–309
– F (t), T to(t), σ(t), 301
– identification matrix, 308
Combination measurement, 301–309
– technological scheme, 302
Complex frequency response
– drafting process
– – one step, 191, 192
– – two steps, 195–197, 200–202
– fibre/yarn/thread tensile force, 280
– fibre/yarn/thread transport process
– – dead time thread line, 213
– – friction thread line, 215
– FT-texturing process
– – twist density oscillations, 247, 248
– generally, 9, 17–21, 27, 28, 33
– glass fibre spinning process
– – fibre/yarn/thread fineness, 177
– imaginary part, 18
– Laplace-transformation, 34
– melt spinning process
– – fibre/yarn/thread formation

distance, 152–159, 163, 165, 166
– real part, 18
– roller top card, 186
– stationary flat card, 188
Complex function, 18
Complex number
– absolute value, 19

– vector addition, 166
Complex plane, 18
Condition
– dynamic measurement
– – fibre/yarn/thread tensile force,

292–294
– fibre/yarn/thread breakage, 279
– fibre/yarn/thread input line
– – fibre/yarn/thread tensile force

dampening, 230, 232
Constant, material specific
– conversion diameter/fineness of

fibre/yarn/thread, 246
– glass fibre spinning process, 175
– heating/cooling polymer fi-

bre/yarn/thread, 275, 276
Constant, material-specific
– heating/cooling polymer fi-

bre/yarn/thread, 262
Constitutive equations, 59
– Maxwell model, 82
– Phan-Tien-Tanner model, 82
– Maxwell model, 62
– Newton model, 60
– Phan-Tien-Tanner model, 64
– model of fibre formation, 79
– upper convected Maxwell model,

63
Continuity equation, 11, 30, 45
Correlation function, 21–24
Critical frequency
– drawing process, 41
– fibre/yarn/thread heating/cooling,

263
– – heated godets, 269, 274
– – PA and PET, 264
– fibre/yarn/thread input line, 231
– fibre/yarn/thread tensile

force/measuring sensor, 279,
282, 283, 285

– fineness changes, 206
– – drafting processes, 193, 196
– – fibre/yarn/thread formation

distance, 162–164
– – fibre/yarn/thread forma-

tion/processing processes,
165, 208

– – traverse motion at winder, 161, 164
– FT-texturing process
– – texturing/setting zone, 249, 257
– generally, 40, 41, 204, 206, 208
– melt spinning process
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– – fibre/yarn/thread formation
distance, 158, 160

– twist density changes
– – FT-texturing process, 248
Cross section area
– FT-texturing process
– – twisted yarn, 245
Cross-correlation function, CCF, 24,

303, 304, 307–309
Cross-power density spectrum function,

CPSF, 24, 303
Crystallinity
– fibre/yarn/thread drawing process, 6
– two-phase model, mass density, 69
Crystallisation
– Avrami approximation, 69
– crystallinity, 68
– model of fibre formation, 79
– rate, 68
– – dependence on stress, 68
Cut length, necessary, see Fi-

bre/yarn/thread measuring and
gauge lengths

Cycle duration
– of carrier frequency oscillation, 204
– of disturbance oscillations, 186, 204,

218
– of periodic change, 289, 291, 293, 294

Dampening
– drafting process (one step)
– – fineness changes ΔT to, 193
– drafting process (two steps)
– – fineness changes ΔT to, 199, 204
– drawing process
– – fineness changes ΔT to, 41
– extended input line
– – fibre/yarn/thread tensile force, 295
– fibre/yarn/thread input line
– – tensile force and elongation

changes, 227–232
– friction thread guide lines

– – fineness changes ˜ΔT to, 224, 227
– FT-texturing process

– – twist density oscillations Δ̃TD/TDm,
249, 253, 254

– heated godets
– – fibre/yarn/thread temperature

changes, 274
– measurement conditions, 204
– measuring sensor
– – fibre/yarn/thread tensile force,

283–285

– series of delay and dead time thread
lines

– – fineness changes ˜ΔT to, 219, 221
Dampening factor
– measuring sensor, 283, 284
Dead time behaviour
– carding engines, 182
– stationary flat card, 188
Dead time thread line
– fibre/yarn/thread transport process,

210–213, 216–218, 221
Deborah-number
– definition, 139
Deformation
– Hencky measure, 59
– network deformation concept, 74
– standard models, 60
– visco-elastic, 62
– viscous, 60
Delay of first order
– definition, 157
– differential action, 161, 164, 206
– – generally, 158
– proportional action, 192, 206, 247,

263
– – generally, 157
Delay thread length, 41, 218, 227
Delay thread line
– fibre/yarn/thread transport process,

210, 211, 216–218, 220, 221, 223, 227,
233

Density
– fibre/yarn/thread material, 149, 190,

260, 261
– glass, 175
– influence to fibre/yarn/thread

fineness, 155
– PA, 246, 262
– PET, 246, 262
Diameter
– bobbin
– – glass fibre spinning process, 173,

175, 177, 178, 181
– – melt spinning process, 148
– fibre/yarn/thread
– – conversion to fineness, 261
– – heating/cooling process, 260–262
– filament
– – melt spinning process, 150
– friction element
– – friction thread line, 214, 222, 224,

226
– godet
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– – dead time thread line, 216, 221
– godets
– – drawing process, 6
– roller
– – roller top card, 187
– transport godet
– – dead time thread line, 212
– twisted yarn
– – conversion to fineness, 246
– – FT-texturing process, 245, 246, 258
Die, see Spinneret, spinning die
Differential
– temporal, 15, 16
Differential action
– drafting process (two steps), 200
– fibre/yarn/thread formation distance
– – disturbance Δl, 158, 160, 161, 163,

164
– frequency condition, 206
– friction thread line, 227
Differential equation, DEq.
– analysis, 32
– drafting process, 190
– drafting zone, 189
– drawing process, 30
– – fibre/yarn/thread fineness, 15
– – linearised, 31
– – methodical, 31
– – solution, 16, 31–33, 35
– dynamic model, 15, 16, 34
– fibre mass exchange processes, 151,

190
– fibre/yarn/thread heating/cooling,

12
– fibre/yarn/thread transport process
– – dead time thread line, 212
– – delay thread line, 210, 228, 233
– – friction thread line, 215
– – generally, 210
– – thread traverse motion at winder,

233, 235, 236
– FT-texturing process
– – twist density, 242, 244, 246, 257
– generally, 15, 16, 26, 28
– – solution, 17
– heat transfer to fibre/yarn/thread,

259–261
– – heated godets, 266
– homogeneous, 32
– melt spinning process
– – fibre/yarn/thread formation

distance, 149, 151–153, 155–157,
165, 182

– – methodical, 149
– methodical, 27, 28, 30
– ordinary, 26
– partial, 26
– solution
– – Laplace-transformation, 151
– – methodical, 16, 17, 27, 28, 33
– – sinusoidal disturbance, 18, 21
Disturbance
– amplitude, 22
– analysis, 22, 37, 40, 41
– – drawing process, 302
– aperiodic, 9, 17
– cause variable, 17
– circular frequency, 10
– dampening, 38, 41
– determined, 21, 22
– effect variable, 17
– evaluation
– – identification matrix, 307–309
– frequency, 41, 160, 162, 180, 186–188,

205, 206, 218, 219, 221, 224, 231, 248,
250, 274, 295

– impulse-like, 17
– periodic, 9, 10, 17, 39, 40
– process interruption, 14
– signal, 17
– sinusoidal, 9, 18, 21
– step response, 16
– step-like, 8, 9
– stochastic, 7, 17, 21
– transfer, 41
– – carding engines, 183
– – delay and dead time thread lines,

218, 219, 221
– – drafting process, 189, 191–194, 196,

199–201, 204
– – drawing process, 41, 306, 308
– – fibre/yarn/thread E-modulus, 282
– – fibre/yarn/thread formation

distance, 152–155, 157–166
– – fibre/yarn/thread input line, 227,

229–232
– – fibre/yarn/thread tensile force,

278–280, 295
– – friction thread guide, 223, 224, 226,

227
– – friction thread line, 222, 223
– – FT-texturing process, 242, 248–251,

253, 257
– – glass fibre spinning process, 172,

173, 178–181
– – heated godets, 274
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– – melt spinning process, 149, 152–156,
168, 169

– – necessary measuring and gauge
lengths, 204–207, 292

– – roller top card, 184, 186, 187
– – stationary flat card, 188, 189
– – traverse motion, 156, 161, 233, 235,

236
Drafting process, see Sliver drafting

process
Drafting zone, 190, 192–194, 196, 199,

200, 204
– length, 194, 199
Draw down ratio, 43, 142, 143
Draw ratio
– machine draw ratio, 75
– network deformation concept, 74
Drawing process, 5
– dynamic model, 7, 9, 15, 30, 31, 36,

39–41
– fineness/tensile force correlation

evaluation, 302, 306
– hot, 6
– periodic disturbance, 10
– step-like disturbance, 8
– technological scheme, 6
Drawing tensile force, see Fi-

bre/yarn/thread tensile force
Drawing zone, 6, 30, 31, 37, 38, 41, 42,

190, 216, 305–308
– length, 6, 30, 31
Dynamic characteristic function, 28
Dynamic transfer function, see

Complex frequency response

E-modulus
– melt, 73, 140
Effect disturbance, 17
Effect oscillation, 18–20, 38, 40, 161
Effect quantity, 9, 278
Effect variable, 27, 31, 33, 37, 38, 41,

146, 157, 158, 206, 213, 281, 282
Effect vector, 19
Elastic modulus, E-modulus
– fibre/yarn/thread tensile force
– – combination measurements,

305–308
– – connection to fineness, 280, 282
– inner fibre/yarn/thread unevenness,

145
Elongation to break
– maximum possible, 75
Energy balance

– fibre/yarn/thread formation process,
11

– mathematical model, 16, 27
Energy equation, 47
Energy transfer
– drawing process, 258
– process, 13
Evenness power
– carding engines, 183
– drafting process, 193, 196, 199, 204
– roller top card, 186, 187
– stationary flat card, 188, 189
Excitation
– step-like, 32, 33
Excitation frequency
– amplitude frequency response, 19
– phase frequency response, 20
– sinusoidal, 33, 38
– steady state, 38, 40
– transfer locus, 18, 19
Experiment
– actively, 17, 27, 28
Extension factor
– fibre/yarn/thread input line, 231

False twist texturing process, 241–258
– amplitude frequency responses, 247,

249–255
– differential equation, DEq., 246
– dynamic transfer functions, 246
– dynamics of twist generation, 241
– phase frequency responses, 247, 256
– technological scheme, 242
– twist density, 244
Fibre/yarn/thread
– generally, 1, 2, 145, 182, 193
Fibre/yarn/thread birefringence, 6
Fibre/yarn/thread break
– breakage limit, 278
– condition, 279
– elongation, 6
– – melt spinning process, 166
– force, 6
– frequency, 228
– generally, 13, 221, 233
– tensile force
– – melt spinning process, 166
Fibre/yarn/thread elongation, 6
Fibre/yarn/thread fineness
– connection to elongation, 280, 281
– connection to fineness, 280
– connection to tensile force, 280–282
– drawing process, 15, 30, 36, 37
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– maximum possible, 132
– melt spinning process, 146, 147, 160
– minimum possible, 134
Fibre/yarn/thread formation, 1–5, 10,

11, 42
– balance equations, 45
– crystallisation, 68
– definition, 43
– deformation models, 59
– heat transfer, 53
– model equations, 78
– momentum transfer, 56
– orientation, 65
– simulation
– – diameter vs. distance, 85
– – draw ratio, 88
– – elongation to break, 84, 87
– – stress tension vs. distance, 85, 86
– – temperatur vs. distance, 86, 87
– – temperature vs. distance, 85
– – velocity vs. distance, 83, 85–87
– solidification, 65
– structure development, 65
– velocity vs. distance, 82, 92
Fibre/yarn/thread formation distance
– time constants/critical frequencies,

162
Fibre/yarn/thread formation process
– formation and processing lines
– – time constants and critical

frequencies, 206
– spun yarn spinning process, 182
– – generally, 182
– – roller top card, 182
– – stationary flat card, 182
– time constants/critical frequencies,

165
Fibre/yarn/thread guide elements
– fibre/yarn/thread transport process,

209
– – friction thread line, 213, 222–227
Fibre/yarn/thread heating/cooling
– differential equation, DEq., 261–263
– dynamic model, 259, 260, 262
– fineness
– – generally, 261
– generally, 11, 258, 259, 263
– heated godets, 259, 265–275
– melt spinning process, 259
– PA-threads, 262–264
– PET-threads, 262–264
– time constants/critical frequencies,

264

Fibre/yarn/thread measuring and
gauge lengths

– generally, 204, 205
– necessary cut length, 204, 205, 207
– – melt spinning processes, 207
– necessary gauge length, 204, 205, 207
– – melt spinning processes, 207
– necessary gauge lengths, 205
– – melt spinning processes, 207
– necessary measuring length, 204
Fibre/yarn/thread nomogram
– relation veloc-

ity/wavelength/disturbance
frequency, 219

Fibre/yarn/thread orientation
– melt spinning process, 146
Fibre/yarn/thread processing, 1–5, 42
– time constants/critical frequencies,

165
Fibre/yarn/thread properties, 3, 7, 10,

145
– bulkiness
– – FT-texturing process, 249
– drawing process, 8, 9, 36
– E-modulus, 305
– – FT-texturing process, 243
– elongation, 233
– elongation to break, 74
– fineness, 233
– – drafting process, 190
– – glass fibre spinning process, 172
– – melt spinning process, 204
– melt spinning process, 146
– model of fibre formation, 80
– orientation, 166, 169
– – melt spinning process, 169
– stress strain, 278
– tenacity, 76
– unevenness, 112
Fibre/yarn/thread tensile force
– analysis, 278
– – time function, 301
– combination measurements
– – analysis, 303
– – evaluation, 301
– connection to elongation, 277
– connection to fineness, 280–282, 302
– correlation functions
– – analysis, 303–307, 309
– dampening
– – fibre/yarn/thread input line

extension, 229, 232
– drawing process, 8, 9
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– fibre/yarn/thread breakage, 278, 279
– fibre/yarn/thread elongation,

227–230
– FT-texturing process, 243
– generally, 277–279
– indicator process stability, 278
– man-made fibres structure, 278
– measurements, 277, 279
– measuring sensors, 282, 284, 285
– process dynamics, 277, 278
– thread friction line, 226
– time function
– – evaluation, 285, 287, 288, 292, 295
– traverse motion at winder, 233
Fibre/yarn/thread tensile stress
– combination measurements
– – drawing process, 302–304
– – evaluation, 301, 302
– connection to tensile force, 280
– correlation functions
– – analysis, 303, 305, 307
– FT-texturing process, 248
– general, 280, 281
– melt spinning process, 167, 168
– synchronous calculation, 301
Fibre/yarn/thread tensile testing, 166
Fibre/yarn/thread transport lines
– dead time thread line, 210–213
– delay and dead time thread lines,

215–221
– delay thread line, 210, 211
– differential equation, DEq., 210
– fibre/yarn/thread transport process,

210
– friction thread line, 210, 213–215
– generally, 209, 210, 277, 278, 280
– tensile force/elongation dampening
– – generally, 227, 228, 232
– – input line extension, 228–232
Fibre/yarn/thread traverse motion
– melt spinning process, 156
Fibre/yarn/thread unevenness, 221
– combination measurements
– – correlation function analysis, 305,

306
– – drawing process, 301–306
– – evaluation, 301, 302
– – identification matrix, 307–309
– drafting process, 182, 183
– E-modulus, 145, 169
– fineness, 145
– – carding engines, 182, 183
– – drafting process, 190, 191, 193

– – drawing process, 30, 31, 37, 38, 41
– – fibre/yarn/thread transport

process, 227
– – generally, 288
– – glass fibre spinning process, 180,

181
– – measurements, 25
– – traverse motion at winder, 233–240
– measuring, 210
– molecular structure
– – melt spinning process, 233
– roving
– – stationary flat card, 182
– sliver fineness
– – drafting process, 199
– tensile force
– – fibre/yarn/thread elongation, 227,

278, 301, 306
– – fibre/yarn/thread transport

process, 209, 210
– twist density, 254
– – FT-texturing process, 241–246,

248–251, 253–258
– – PA-threads, 251, 253
– – PET-threads, 251, 253
Filament
– drawing process, 30
– melt spinning process, 11, 146, 276
– – cooling, 11, 12, 275, 276
– – fineness, 11, 274–276
– – throughput, 275
Fineness, see Fibre/yarn/thread

fineness
– definition, 46
Flow resistance
– capillary hole spinneret, 148, 172
Fluctuation range, 286
Fluctuation(s), see

Change(s)/fluctuation(s)
Fluidity
– definition, 61
Forces
– acting on fibre, balance, 50
– air drag, friction, 52
– gravitation, 51
– inertia, 51
– rheological, 59
– surface tension, 50
Frequency, 17, 27, 33
– complex, 34
Frequency condition
– for dynamic measurements, 283
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– for undamped disturbance transfer,
206

Frequency range, 16–18, 20, 28, 29, 34,
38, 40, 166, 180, 181, 199, 205, 215,
226, 250–252, 284, 285

Friction coefficient
– fibre/yarn/thread transport process
– – thread guide, 222, 223, 225–227
– FT-texturing process
– – magnetic spindle, 256
Friction thread line
– fibre/yarn/thread transport process,

210, 213–215, 222, 224–226
– FT-texturing process, 245, 254
FT-texturing process, see False twist

texturing process
Functional block diagram
– generally, 149
– glass fibre spinning process
– – fibre/yarn/thread fineness,

172–174, 176, 177
– roller top card
– – fibre mass, 185
– worker-angle-stripper-pair
– – fibre mass, 184, 185

Gauge length, necessary, see Fi-
bre/yarn/thread measuring and
gauge lengths

Glass fibre spinning process, 170–181
– amplitude frequency responses, 179
– cause-effect-scheme, 172
– disturbance causes, disturbance

frequencies, disturbance wavelengths,
207

– dynamic disturbance transfer
functions, 178

– dynamic transfer functions, 176
– functional block diagram, 174
– technological scheme, 171
Glass level, 170, 172, 174, 175, 177, 178,

180
Glass transition temperature, 65, 167,

168
– PA 6, 167
– PET, 167
Godets, heated
– fibre/yarn/thread temperature

oscillations, 268, 272, 274
– heating yield, 268, 273, 274
– mean value of fibre/yarn/thread

temperature, 268, 269, 271
– minimal fibre/yarn/thread wraps,

270

– minimum fibre/yarn/thread wraps,
268, 269

– time transient function of fi-
bre/yarn/thread temperature, 266,
267

Grashof number
– definition, 53

Hagen-Poiseuille-law, 148, 171
Heat balance, 260
Heat capacity
– specific, 260, 262, 275
– temperature dependence, 71
Heat coefficient, 263
Heat conduction, 258, 259
Heat conductivity, 275
Heat convection, 11, 258, 259
Heat exchange, 259–261, 263
Heat radiation, 258
Heat transfer, 53
– Nusselt number, 54
– – definition, 48
– – examples, 56
– conduction, 49, 106
– convection, 11
– – forced, 54, 106
– – free, 53
– differential equation, DEq., 259, 266
– example, 12
– fibre/yarn/thread diameter, 261
– fibre/yarn/thread heating/cooling,

11, 262, 263
– fibre/yarn/thread melt spinning, 275
– fibre/yarn/thread-heated godet, 259,

274
– heat transfer coefficient, 48
– radiation, 49, 53
– specific constant, 266
– time constant, 263
Heat transfer coefficient, 260, 262, 269,

275
– fibre/yarn/thread-air, 263, 265
– fibre/yarn/thread-metallic surface,

263, 265
Heat transport, 258
Heating yield
– heat transfer to fibre/yarn/thread
– – heated godets, 268, 273, 274
Hencky measure
– definition, 59
High speed
– melt spinning process, 156, 166
– – correlation analysis, 305
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– – forces, 167
– – orientation elongation, 169
– – tensile force measurement, 285
– – time constants/critical frequencies,

206
Hole diameter
– spinneret
– – melt spinning process, 148, 154
Hole temperature
– spinneret
– – glass fibre spinning process, 171

Identification matrix to the unevenness
analysis, 307–309

Impulse response (function), 17, 236
Information technique, 13
Injection velocity, 149
Input cross sectional area
– drafting process, 190, 194
Input size
– drawing process
– – combination measurements, 306
– glass fibre spinning process, 177
Input velocity
– drafting process, 190, 192, 194
– – disturbance, 199
– drawing process, 8, 9, 16, 30, 36, 37,

39–41
– fibre/yarn/thread input line
– – disturbance dampening, 231, 232
– – fibre/yarn/thread elongation, 230
– fibre/yarn/thread transport process
– – dampening disturbances, 227, 229
– – disturbance, 219–221, 224, 226
– – friction thread line, 224
– FT-texturing process, 243, 245, 250,

253, 258
– melt spinning process, 169
– – disturbance, 154
– – injection velocity, 149, 154

Know-how
– process, 1, 2
Know-why
– process, 1

Laplace-retransformation, 29, 34
Laplace-transformation, 29, 34, 151
– convolution integral, 236
– Laplacian (Laplace-operator), 34,

151, 157, 244
– residue theorem, 35, 213
Legendre polynomials, 66

Length of the fibre/yarn/thread
formation distance, 156–157

– influence to the fibre/yarn/thread
fineness, 162, 164

Magnetic spindle speed (FT-texturing)
– influence to twist density, 242, 243,

252
– maximum eligible, 248–250
Man-made fibres
– heating/cooling
– – heated godets, 265
Mass balance
– dynamic equation, 15, 30
– melt spinning process, 11
Mass density
– amorphous, crystalline, 69
– temperature dependence, 70
Mass discharge/time
– drawing process, 30
– fibre/yarn/thread formation, 150
Mass inflow/time
– drawing process, 30
– fibre/yarn/thread formation, 150
Mass storage
– drawing process, 30
– fibre/yarn/thread formation, 150
Material properties
– elongational viscosity, 71
– heat capacity, 71
– mass density, 70
– model of fibre formation, 80
Mean value
– angle of wrap, 222
– cross-correlation coefficient, 308
– fibre/yarn/thread E-modulus, 306,

308
– fibre/yarn/thread fineness, 15, 199,

201, 216, 222, 234, 240, 281, 304, 306,
308

– fibre/yarn/thread length, 234
– fibre/yarn/thread temperature, 259,

268
– fibre/yarn/thread tensile force, 232,

277, 278, 281, 285, 286, 288, 304, 306
– fibre/yarn/thread velocity, 216, 222,

234, 252
– friction coefficient, 222, 227
– generally, 7, 9, 13, 15, 17, 22, 31, 33,

150, 151, 188, 205, 206
– godet diameter, 222
– roll setting, 191
– thread guide velocity, 234
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– twist density, 248
Measurement
– combination
– – fibre/yarn/thread tensile force and

fineness, 301, 305
– dynamic, 221
– – fibre/yarn/thread tensile force, 277
– fibre/yarn/thread tensile force

unevenness, 25
– generally, 27, 204
Measuring and estimation volume,

necessary
– auto-correlation and power density

spectrum functions, 292–294
– melt spinning processes, 204–207
Measuring length, necessary, see

Fibre/yarn/thread measuring and
gauge lengths

Measuring sensor
– fibre/yarn/thread fineness, 282, 309
– fibre/yarn/thread tensile force, 209,

279, 282, 285, 307, 309
Measuring size, 204
Melt spinning process, 146–170
– disturbance causes, disturbance

frequencies, disturbance wavelengths,
207

– fibre/yarn/thread formation distance
– – time constants Tc and critical

frequencies fc, 165
– fibre/yarn/thread formation distance

(simplified), 150
– – differential equation, DEq., 151
– technological scheme, 147
Melt spinning process, target quantity

fineness
– cause-effect-scheme, 148
– disturbance Δl, 156
– – amplitude frequency response, 156
– – complex frequency response, 156
– – dynamic transfer function, 156
– – phase frequency response, 157
– – step response, 157
– disturbance Δqi, 154
– – amplitude frequency response, 154
– – complex frequency response, 154
– – dynamic transfer function, 154
– – phase frequency response, 155
– – step response, 155
– disturbance Δvi, 153
– – amplitude frequency response, 153
– – complex frequency response, 153
– – dynamic transfer function, 153

– – phase frequency response, 153
– – step response, 153
– disturbance Δvs, 152
– – amplitude frequency response, 152
– – complex frequency response, 152
– – dynamic transfer function, 152
– – phase frequency response, 152
– – step response, 152
– disturbance Δ�, 155
– – amplitude frequency response, 155
– – complex frequency response, 155
– – dynamic transfer function, 155
– – phase frequency response, 156
– – step response, 156
– fibre/yarn/thread formation distance
– – disturbance evaluation, 157–166
– normalised amplitude frequency

responses, 158, 159
– normalised complex frequency

responses, 158
– normalised phase frequency response,

163
– normalised step responses, 159, 161,

163
– normalised transfer locus, 159
Melt spinning process, target quantity

orientation
– cause-effect-scheme, 166, 169
– estimation disturbance transfer, 168
– solidification point, 168
Methodology
– process analysis, 22
– – approach, 16, 22, 26
– – dynamic model, 26
– – experimental, 26
– – mixed, 26
– – steady state model, 26
– – theoretical, 26
Model of single fibre formation
– boundary conditions, 80
– set of equations, 78
– shooting procedure, 81
Modelling, model, 78, 80
– definition, 5, 10, 13–15
– – dynamic mathematical model, 16
– – dynamic model, 15
– – mathematical model, 15, 16, 18
– – steady state model, 15
– drafting process, 190
– drawing process
– – application, 36
– – example, 30, 31
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– fibre/yarn/thread formation
processes, 3, 11

– – fibre/yarn/thread cooling, 11
– – thermoplastic polymers, 3
– fibre/yarn/thread heating/cooling,

258, 259
– – melt spinning process, 274, 275
– fibre/yarn/thread processing

processes, 3
– fibre/yarn/thread tensile force, 280
– fibre/yarn/thread transport process,

209, 210
– – application, 217, 218
– – dead time thread line, 211, 212
– – delay and dead time thread lines,

215, 221
– – delay thread line, 210
– – fibre/yarn/thread input line, 229
– – friction thread line, 213, 215, 222,

226, 227
– – traverse motion at winder, 233
– FT-texturing process, 241
– – twist density, 242, 246, 249, 255–258
– generally, 1–3, 9
– glass fibre spinning process
– – fibre/yarn/thread fineness, 173
– goal, 10
– melt spinning process, 146
– – fibre/yarn/thread fineness, 146, 149
– – fibre/yarn/thread formation

distance, 150, 151, 154, 156,
162–164

– process analysis
– – methodical, 26–29
– stationary flat card, 188
Momentum balance, 11, 16, 27
Multifilament melt spinning
– geometry, 91
– model
– – boundary conditions, 107
– – cell method, 94
– – continuum method, 95
– – minimum selfsucking air, 100
– – principle, 93
– peculiarities, 90
– simulation
– – adapted mass throughput, 119
– – elongation to break, 116
– – quenching air profile, 117
– – retarded cooling, 121
– – solidification distance, 115, 123
– – temperature vs. distance, 115
– – uneven fibre properties, 112, 114

– spunbonded nonwoven process, 124

Natural frequency
– tensile force measuring sensor,

283–285
Network deformation concept
– elongation to break, 74
– independent deformation steps, 76
– master curve, 78
Nusselt number
– definition, 48, 275
– examples, 54
– model of fibre formation, 80

Operating point, 7, 30
– technological, 8, 9, 17, 22, 151, 162,

204, 239
– – glass fibre spinning process, 175
Orientation
– birefringence, 67
– distribution function, 66
– Herrman’s orientation factor, 66
– Legendre polynomials, 66
Orientation elongation, 166–169, 244
Orifice diameter
– spinneret
– – melt spinning process, 276
Orifice throughput
– spinneret
– – melt spinning process, 275
Output size
– glass fibre spinning process, 177
Output velocity
– drafting process, 190, 191, 194
– drawing process, 6, 8, 10, 30, 31, 36,

38
– fibre/yarn/thread forma-

tion/processing processes, 206
– fibre/yarn/thread tensile force
– – connection to fineness, 281, 282,

307
– fibre/yarn/thread transport process,

218, 223–225
– FT-texturing process, 243, 245, 250,

252–254
– melt spinning process, 149
– web of stationary flat card, 188

Parameter
– asymmetry traverse motion triangle,

234
– disturbances, 309
– drawing process, 5
– mathematical, 12, 26–28, 37
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– process, 2, 4, 10
Partial differentiation
– differential equation, DEq., 26
– fibre/yarn/thread input line, 229
– friction thread line, 215
– FT-texturing process, 246, 258
– generally, 151
Phase frequency response, 20, 42
– definition, 20, 21, 27, 34, 38
– delay fibre/yarn/thread length, 41
– drafting process (one step), 191
– – estimation, 192
– drafting process (two steps), 201
– – estimation, 196
– drawing process

– – oscillations Δ̃vi, 38, 40
– fibre/yarn/thread formation distance
– – common normalised, 159, 160
– – estimation, 157, 158, 161, 162, 164,

166
– – normalised ˜ΔT ts/Δ̃l changes, 163

– – normalised oscillations ˜ΔT ts/Δ̃l,
163

– – oscillations Δ̃l, 157

– – oscillations Δ̃qi, 155

– – oscillations Δ̃vi, 153

– – oscillations Δ̃vs, 152

– – oscillations Δ̃�, 156
– fibre/yarn/thread tensile force, 280
– fibre/yarn/thread transport process
– – dead time thread line, 213
– – friction thread line, 215
– FT-texturing process
– – estimation, 248, 256, 257
– – twist density oscillations, 247, 248
– generally, 9
– glass fibre spinning process
– – fibre/yarn/thread fineness, 178
– series of delay and dead time thread

lines
– – oscillations Δ̃vi, 217
– stationary flat card, 188
Phase shift, 9, 18, 19, 173, 305, 307
Phase shift angle
– calculation, 20
– drawing process
– – estimation, 38
– – fibre/yarn/thread tensile force, 9
– fibre/yarn/thread formation distance
– – estimation, 161, 162, 164
– generally, 10, 17, 18, 20, 21, 40

– series of delay and dead time thread
lines

– – oscillations Δ̃vi, 218
Physical-analytical relationship, 28, 242
Power density spectrum function, 21,

22, 24, 25
Power density value, 291–294
Process
– automatic control, 3
– automation, 2
– control
– – generally, 1
– dynamic behaviour, 2, 9, 16–25
– efficiency, 2
– fibre/yarn/thread tensile force
– – generally, 277
– model
– – generally, 1
– quality, 2
– stability
– – cause tensile force, 277–309
– steady state behaviour, 2
– technological, 2, 241
– – analytic model, 2
– – carding engines, 182–189
– – definition, 5, 13
– – drafting, 182, 183, 189–204
– – drawing, 5–10, 15, 16, 30, 31, 36,

38–41, 165, 189
– – dynamics, 7, 16
– – fibre/yarn/thread formation, 145,

166, 170
– – fibre/yarn/thread heating/cooling,

258–276
– – fibre/yarn/thread processing,

209–258
– – fibre/yarn/thread transport, 209
– – FT-texturing, 241–258
– – generally, 6, 7, 13, 30
– – glass fibre spinning, 170–181
– – melt spinning, 145–170
– – roller top card, 183–187
– – spun yarn spinning, 182–204
– – stationary flat card, 187–189
Process analysis
– combination measurements tensile

force & fineness, 309
– combination measurements tensile

force and fineness, 301
– dampening tensile force in input

lines, 232
– dynamic, 1, 28, 29
– dynamic model, 26
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– evaluation of tensile force time
function, 285–301

– fibre/yarn/thread heating/cooling,
258–276

– fibre/yarn/thread transport process,
209, 210, 215

– – dampening tensile force in input
lines, 227

– – dead time thread line, 211–213
– – delay and dead time thread lines,

216–221
– – delay thread line, 210–211
– – fibre/yarn/thread guide elements,

222–227
– – friction thread line, 213–215
– fibre/yarn/thread unevenness
– – measuring and test conditions,

204–206
– FT-texturing, 241–258
– generally, 1, 2, 13, 14, 17, 21, 22, 26
– introduction example melt spinning,

10–12
– mathematical description, 1
– methodical, 2, 15, 26, 27, 29
– modelling, 15
– motive, 1, 14
– steady state model, 26
– tensile force measuring sensors,

282–285
– traverse motion at winder, 233–241
Process characteristic, 6, 7
Process dynamics
– definition, 7
Process thinking, 4
Process variable
– drafting process, 190, 196
– evaluation, 303
– fibre/yarn/thread transport process

lines, 209, 218, 223
– FT-texturing process, 242–244, 248,

249, 252
– generally, 6, 7, 10, 13–16, 22, 27,

29–31, 36, 145, 285, 305
– glass fibre spinning process, 171, 177,

178, 181
– measurement, 285
– melt spinning process, 146, 147, 149,

157, 164, 166, 168
Process, technological
– melt spinning, 10, 11
Processing mode
– dynamic, 16, 30
– steady state, 16

Product characteristic, 6, 7
Product quality, 2, 6, 7, 228, 232, 242,

277, 305
Product variable
– drafting process, 190, 194, 196
– evaluation, 303, 307
– fibre/yarn/thread fineness
– – connection to tensile force, 280
– fibre/yarn/thread tensile force, 292
– – measurement, 277
– fibre/yarn/thread transport process

lines, 209, 210, 218, 223
– FT-texturing process, 241–244, 248,

249
– generally, 6, 7, 13–16, 22, 27, 29–31,

36, 145, 204, 206, 285, 301, 305, 307
– glass fibre spinning process, 172, 173
– measurement, 285
– melt spinning process, 146, 147, 149,

157, 164, 166, 167, 170, 274
Proportional action
– drafting process, 192
– fibre/yarn/thread formation distance,

157
– fibre/yarn/thread heating/cooling,

263
– FT-texturing process, 247
– generally, 182, 206

Quadratic dispersion (variance), 205,
286, 295

Reduction factor
– fibre/yarn/thread tensile

force/elongation
– – fibre/yarn/thread input line,

229–231
Residue
– Laplace-transformation, 35
Residue theorem
– Laplace-transformation, 35
Resistance
– flow in capillary holes, 148
– flow in spinneret (glass fibre

spinning), 171
– Ohm’s heating, 149, 170, 173, 175,

177
Reynolds number
– definition, 52
Rheology
– Maxwell model, 62
– Newton model, 60
– Phan-Tien-Tanner model, 64
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– upper convected Maxwell model,
63

Ring twister
– fibre/yarn/thread input line

extension, 232
Roller top card, 182–187
– dynamic transfer function, 184, 186
– dynamic transfer properties, 183, 186
– functional block diagram, 185
– – worker-angle-stripper pair, 185
– technological scheme, 184
Rope friction factor
– friction thread line, 213
– FT-texturing process, 243

Shortening factor
– FT-texturing process, 244
Signal
– analysis, 9, 13
– – auto-correlation function, 14,

21–25, 295–301
– – cross-correlation function, 303–309
– – fibre/yarn/thread tensile force time

function, 295–301
– – generally, 149, 277
– – glass fibre spinning process, 173
– – melt spinning process, 149
– – power density spectrum function,

14, 21–25, 295–301
– disturbance, 17
– information content, 13, 31
– – fibre/yarn/thread fineness, 25
– measurement
– – fibre/yarn/thread fineness, 307, 309
– – fibre/yarn/thread tensile force, 278,

307, 309
– – frequency condition, 204
– – generally, 277
– measuring sensor
– – critical frequency, 285
– – transmission properties, 285
– process, 14
– process analysis, 13
– process definition, 13
– synchronous measuring, 301, 302, 307
– test, 27
– – aperiodic determined, 27
– – classification, 28
– – disturbance, 17
– – periodic determined, 27, 28
– – sinusoidal, 27
– – stochastic, 27, 28
– transmission, 283

Sliver drafting process, 189–204
– amplitude frequency responses, 191,

192, 195, 201, 202
– complex frequency responses, 195,

201
– differential equation, DEq., 191
– dynamic transfer functions, 194, 195,

200
– phase frequency responses, 195, 198,

201, 203
– step response functions, 192, 195,

198, 201, 203
– technological scheme, 191, 193
– transfer locuses, 197, 202
Solidification
– distance, 47, 58, 62, 83, 84, 92, 115,

123
– temperature, 65
Span, maximal, 237, 239
Spectral analysis method, 27
Spectrograph, 25
Speed
– drawing process
– – godets, 6
– fibre/yarn/thread transport process
– – godets, 217
– FT-texturing process
– – false twist spindle, 242, 243,

248–250, 252
– glass fibre spinning process
– – bobbin, 175, 177, 178, 180
– melt spinning process
– – bobbin, 147
– – spinning pump, 148
– roller top card
– – roller, 187
Spinnability
– capillary break, 138
– failure behaviour, 135, 138, 141
– melt fracture, 134
Spinneret distance
– melt spinning process, 259, 275, 276
– – fibre orientation, 168
Spinneret, spinning die
– glass fibre spinning process
– – example, 175
– – generally, 170, 172, 173
– – temperature, 171–175, 177, 178
– – throughput, 170–172, 175, 207
– melt spinning process, 11, 149
– – fibre/yarn/thread formation

distance, 167, 170, 259, 275, 276
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– – fibre/yarn/thread heating/cooling,
274

– – generally, 146–148
– – hole diameter, 154
– – temperature, 148, 167, 275, 276
– – throughput, 146, 149, 167, 169, 275
Spinning die, see Spinneret, spinning

die
Spinning velocity
– glass fibre spinning process, 172, 175,

177, 180
– melt spinning process, 149, 167–169,

275
Spinning way, 274–276
Standard deviation, 286
Standard function
– dynamic, 9
Stationary flat card, 182, 183, 187–189
– amplitude frequency response, 188,

189
– dynamic model, 188
– dynamic transfer function, 187
– dynamic transfer properties, 183
– pertinent wavelength, 189
– technological scheme, 187
– time constant, 188
Statistic characteristic function, 22, 24
Step response (function), time transient

function
– definition, 16, 17, 27, 29
– drafting process (one step), 191
– – estimation, 192
– – step ΔT tf , 192
– – step Δvi, 192
– – step Δvo, 191
– – step Δzi, 192
– drafting process (two steps)
– – estimation, 196, 200, 201
– – step Δvz, 201, 203
– – step Δzi, 195, 198
– drawing process
– – fibre/yarn/thread tensile force, 9
– – fineness ΔT to, 32, 36
– fibre/yarn/thread formation distance
– – common normalised, 159–161
– – estimation, 157, 158, 160, 165
– – generally, 165
– – normalised, step Δl, 163
– – step Δl, 157
– – step Δqi, 155
– – step Δvi, 153
– – step Δvs, 152
– – step Δ�, 156

– fibre/yarn/thread heating/cooling
– – basic equation, 261
– fibre/yarn/thread tensile force
– – calculation, 280, 282
– fibre/yarn/thread transport process
– – dead time thread line, 213
– – fibre/yarn/thread traverse motion,

235
– glass fibre spinning process
– – fibre/yarn/thread fineness, 173,

177, 178
– Laplace-transformation, 34
– spun yarn spinning process
– – generally, 182
Step-like disturbance, 8, 9, 16, 162, 165,

201
Structure
– system, 27
System
– analysis, 9, 13, 21, 22, 27, 33
– – dynamic, 22, 26
– – experimental, 26
– – generally, 16, 17
– – heated godets, 259, 265, 268, 269,

274
– – methodical, 26, 27
– – mixed, 26
– – steady state, 26
– – theoretical, 26
– – traverse motion at winder, 239, 240
– automatic control, 3, 18
– data processing, 3
– drafting process, 182, 183, 189–191,

193, 199
– – dynamic transfer function, 191
– – mass storage, 190
– – one step, 191, 199
– – time constant, 193
– – two steps, 193, 195–199, 201–204
– drafting process (two steps), 201
– drawing process, 38
– dynamic, 18
– dynamic behaviour, 18, 21, 27, 38,

41, 193
– – fibre/yarn/thread formation

distance, 157, 158
– – spun yarn spinning process, 182
– dynamic model, 16
– dynamic properties, 16, 27, 40
– fibre/yarn/thread transport process
– – delay thread length, 218, 223, 233
– FT-texturing process
– – twist density changes, 255
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– generally, 9, 16, 41
– heat inertia
– – glass fibre spinning process, 180
– heating/cooling of fibres/yarns, 274
– investigation
– – experimental, 27
– – stochastic, 22
– measuring sensor
– – fibre/yarn/thread tensile force, 283
– – generally, 283, 285, 309
– melt spinning process
– – analysis, 149
– process analysis, 13, 14
– resonance frequency
– – glass fibre spinning process, 180
– roller top card, 182
– structure, 27
– technological
– – definition, 13, 30
– time constant, 204
– – fibre/yarn/thread formation

distance, 158, 160, 162–164
– transfer properties, 204
– traverse motion at winder, 160, 164
– – fibre/yarn/thread fineness changes,

241

Take-down velocity, 147, 152, 153, 205,
207

Take-up velocity, 146, 162, 164, 249
Target quantity
– fibre/yarn/thread fineness, 171
– – drawing process, 15
– – glass fibre spinning process, 172,

174, 181
– – melt spinning process, 146, 148
– fibre/yarn/thread orientation, 167
Technical mechanics, 4, 7
Technological scheme
– combination measurement in drawing

process, 302
– dead time thread line, 212
– delay thread line, 211
– drawing process, 6, 8
– fibre/yarn/thread input line, 228
– friction thread line, 213, 214
– FT-texturing process, 243
– glass fibre spinning process, 170, 171
– heated godet roll systems, 265
– melt spinning process, 146, 147, 167
– one step sliver drafting process, 191
– roller top card, 183, 184
– stationary flat card, 187

– traverse motion at winder, 234, 235
– two steps sliver drafting process, 193
Temperature
– fibre/yarn/thread, 6, 167
– – cooling, 12, 258, 261, 275, 276
– – heating, 259–262, 265, 267–269,

271, 272, 274
– glass melt, 173–175, 177
– glass transition, 167, 168
– godet, 6, 259, 265, 268, 269, 274
– heat conduction, 258
– heat medium, 260
– melt, 12, 207, 274, 275
– oven (glass melt), 170
– spinneret, 148, 167, 171–173, 175,

177, 178, 275, 276
– surrounding air, 12, 265
– surrounding medium, 261, 263, 265,

275, 276
– texturised yarn, 243
Tensile force, see Fibre/yarn/thread

tensile force
Tensile stress, see Fibre/yarn/thread

tensile stress
Test signal, 27
– aperiodic determined, 27
– classification, 28
– periodic, 28
– periodic determined, 27
– stochastic, 28
Textile technology, 4
Textile testing, 4
Texturing, see False twist texturing

process
Thread, see Fibre/yarn/thread ...
Time behaviour, 16, 17, 287
– dead time, 182, 188
Time constant
– drafting process, 193, 196
– drawing zone, 38, 41
– fibre/yarn/thread formation distance,

157, 158, 160, 162–164
– fibre/yarn/thread formation process,

168
– fibre/yarn/thread forma-

tion/processing processes, 165,
206, 208

– fibre/yarn/thread heating/cooling,
263, 264, 269, 274

– FT-texturing process, 248, 249, 257
– glass fibre spinning process, 173, 175
– stationary flat card, 187, 188
– system, 37, 38, 204
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Time expense, 28
Time function
– analysis
– – auto-correlation function, 22, 23
– – correlation/power density spectrum

functions, 292
– – cross-correlation function, 23, 24,

221
– – fibre/yarn/thread tensile force, 232,

282, 295–301
– – generally, 287
– – power density spectrum function,

24, 25
– combination measurements
– – fibre/yarn/thread tensile force and

fineness, 301–307
– definition, 13, 17
– fibre/yarn/thread tensile force,

277–279, 283, 285
– – evaluation, 285–294
– generally, 13, 16, 17
– measuring, 289
– response function, 27
– – impulse response, 17
– – step response, 17
– stochastic, 22
– traverse motion at winder
– – change Δl, 235–237
Time range, 16–18, 24, 28, 29, 34, 165,

210
Time shift
– correlation function, 22–24, 288, 289,

294, 304
– generally, 165
– short time, 204
Time transient function, see Step

response (function), time transient
function

Transfer locus
– drafting process (two steps)
– – evaluation, 196, 197, 201, 202
– drawing process
– – fibre/yarn/thread fineness, 38–40
– generally, 18–21
– melt spinning process
– – fibre/yarn/thread fineness, 159, 163
Transfer properties, dynamic, 30
– drafting process, 195
– melt spinning process, 149
– roller top card, 183
– tensile force measuring sensor, 283
Transition behaviour, dynamic, 7, 9
Transition time, 37

Transport time, 182, 183, 185–187, 219
Traverse motion triangle
– asymmetric, 233, 239
– eccentricity, 237
– fibre/yarn/thread length shifts, 236
– height, 234, 237
– symmetric, 241
– thread guide, 234
– – frequency, 234
Twist density TD

– FT-texturing process

– – changes Δ̃ns, 252

– – changes Δ̃T t, 255

– – changes Δ̃vo, 254

– – changes Δ̃vz, 253

– – changes Δ̃μ, 256
– – dampening, 249
– – differential equation, DEq., 242,

244, 246
– – dynamic transfer function, 246
– – evaluation, 250, 252, 254–256
– – generally, 241, 242, 258
– – limit condition, 248, 249
– – phase frequency responses, 257
– – steady state relation, 244
Twists per time unit
– FT-texturing process, 244

Unevenness
– analysis
– – combination measurements, 305,

306
– – fibre/yarn/thread fineness, 288
– – identification matrix, 306–309
– fibre/yarn/thread, 145, 221
– fibre/yarn/thread E-modulus, 169
– fibre/yarn/thread fineness
– – glass fibre spinning process, 181
– – transport process, 227
– roving fineness
– – carding engines, 182, 183
– – stationary flat card, 182
– sliver fineness
– – drafting process, 199
– tensile force
– – fibre/yarn/thread elongation, 227,

278, 301, 306
– – fibre/yarn/thread transport

process, 209, 210
Uniformity (evenness) tester, 25

Variance, see Quadratic dispersion
(variance)
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Viscosity, elongational
– apparent, 139–141
– dependence on crystallinity, 72
– dependence on molecular weight, 72
– temperature dependence, 71

Wavelength
– disturbance of fibre/yarn/thread,

205, 207, 218, 219, 221, 223, 224, 227

– disturbance of sliver, 189
– output web, 188
Worker-angle-stripper-pair, 183–187
– dynamic transfer function, 185
– functional block diagram, 184, 185

Yarn, see Fibre/yarn/thread ...
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