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Preface

Multiscale problems naturally pose severe challenges for computational science and
engineering. The smaller scales must be well resolved over the range of the larger
scales. Multiscale objects must therefore typically be described by a very large set
of unknowns. The larger the ranges of scales, the more unknowns are needed and
the higher the computational cost. It has been possible to meet many of these chal-
lenges by the recent progress in multiscale computational techniques coupled to the
capability of the latest generation of computer systems.

This recent progress was presented at the conference Multiscale Methods in Sci-
ence and Engineering, which was held in Uppsala, Sweden on January 26–28, 2004.
More than 55 participants from six countries discussed the issues presented in the
papers of this proceeding. The conference was sponsored by he Swedish Foundation
for Strategic Research (SSF) and by the Swedish Agency for Innovation Systems,
Vinnova via the Parallel and Scientific Computing Institute (PSCI).

Challenging multiscale problems are very common. One example can be aver-
age airflow, which typically depends on the details of small swirling eddies, which
in turn depend on the interaction of molecules on much smaller scales in space and
time. One can go further and see how the forces between the molecules depend on
the electrons. Typically, a narrow range of scales is modeled by effective equations
for that particular range. Turbulence models would then describe the coarsest scales
of the phenomena mentioned above. The finer scales could be approximated by the
Navies–Stokes equations, the Boltzmann equation and the Schrödinger equation re-
spectively.

When such effective equations for a narrow range of scales can be derived the
numerical approximations can be greatly facilitated. These equations should include
the influence from other scales in the original multiscale problem. Techniques of
this type are presented in this proceeding. In the contributions by Berlyand et al.
and Svanstedt and Wellander, new variants of the homogenization technique are
described and analyzed. Stochastic differential equations are increasingly common
models for multiscale phenomena. New adaptive techniques for stochastic equations
are developed by Dzougoutov et al. Stochastic models are also part of the systems
studied by Jourdain et al. Sometimes there exist well performing equations for most
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of the computational domain but a small subdomain contains microscales that are
difficult to represent by the numerical method. Special subgrid models need to be
developed. Edelvik derives such models for thin wires and slots in electromagnetic
simulations. Thin filaments or fibers in fluids are approximated in the contribution
by Tornberg. The latter simulations can also be seen as a way of numerically de-
riving effective equations for suspensions of filaments in fluids. The multiscale dis-
continuous Galerkin method studied by Aarnes and Heimsund uses multiscale basis
functions and is based on homogenization theory.

An important preprocessing step for all numerical multiscale computations is the
choice of unknowns. The number of these unknowns should be kept to a minimum.
In the two contributions by Larson and collaborators this is achieved by adaptive
grid generation based on realistic a posteriori estimates. Runborg uses a wavelet like
technique that allows for a hierarchical and efficient representation of geometrical
structures.

Computational multiscale methods are of two types. In the more established class
of methods the full multiscale problem is discretized and highly efficient numerical
methods are then applied to accurately compute the full range of scales. Multigrid,
and the fast multipole method are very successful examples of such technique. These
algorithms rely on special properties of the solution operator in order to achieve
their optimal computational complexity. The smoothing by elliptic operators is one
such example. Eberhard and Wittum presents a multigrid method for flow in het-
erogeneous porous media and a multipole method for electromagnetic scattering is
described by Nilsson and Lötstedt.

In the second and more recent class of computational multiscale methods only
a fraction of the microscale space is included in order to reduce the number of un-
knowns. The microscales and the macroscales are coupled in the same simulation
exploiting special properties in the original problem, for example, scale separation.
The simulation over a wide range of scales can be based on first principles even
if effective equations are not known. The techniques discussed by E and Engquist,
Jourdain et al., Samaey et al. and Sharp et al. in this proceeding are examples of this
type of methods.

There are several active areas of development at the present time for tackling the
multiscale challenge and many of the important ones were presented at this confer-
ence. The progress will have importance on the whole field of computational science
and engineering. Multiscale modeling is emerging as a new computational paradigm.

Stockholm and Uppsala Björn Engquist
April 2005 Per Lötstedt

Olof Runborg
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Multiscale Discontinuous Galerkin Methods for
Elliptic Problems with Multiple Scales

Jørg Aarnes1 and Bjørn–Ove Heimsund2

1 SINTEF Applied Mathematics, PB. 124, 0314 Oslo, Norway.
Jorg.Aarnes@sintef.no

2 University of Bergen, Allégaten 41, 5007 Bergen, Norway.
Bjorn-Ove.Heimsund@cipr.uib.no

Summary. We introduce a new class of discontinuous Galerkin (DG) methods for solving
elliptic problems with multiple scales arising from e.g., composite materials and flows in
porous media. The proposed methods may be seen as a generalization of the multiscale fi-
nite element (FE) methods. In fact, the proposed DG methods are derived by combining the
approximation spaces for the multiscale FE methods and relaxing the continuity constraints
at the inter-element interfaces. We demonstrate the performance of the proposed DG methods
through numerical comparisons with the multiscale FE methods for elliptic problems in two
dimensions.

Key words: multiscale methods, discontinuous Galerkin methods, elliptic partial differential
equations

1 Introduction

We consider solving the second-order elliptic equation⎧⎨⎩
−∇ · (a(x)∇u) = f, in Ω ⊂ Rd,

u = 0, on ΓD ⊂ ∂Ω,
−a(x)∇u · n = 0, on ΓN = ∂Ω\ΓD,

(1)

where Ω is bounded, ∂Ω is Lipschitz, n is the outward unit normal on ∂Ω and
a(x) = (aij(x)) is a symmetric positive definite tensor with uniform upper and
lower bounds:

0 < α|y|2 ≤ yTa(x)y ≤ β|y|2 <∞, ∀x ∈ Ω, ∀y ∈ Rd, y �= 0.

We will interpret the variable u as the (flow) potential and q as the (flow) velocity.
The homogeneous boundary conditions are chosen for presentational brevity. Gen-
eral boundary conditions can be handled without difficulty.

Equation (1) may represent incompressible single-phase porous media flow or
steady state heat conduction through a composite material. In single-phase flow, u
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is the flow potential, q = −a(x)∇u is the Darcy filtration velocity and a(x) is the
(rock) permeability of the porous medium. For heat conduction in composite materi-
als, u, q and a(x) represents temperature, heat flow density, and thermal conductivity
respectively. These are typical examples of problems where a(x) can be highly os-
cillatory and the solution of (1) displays a multiscale structure. This leads to some
fundamental difficulties in the development of robust and reliable numerical models.

In this paper we introduce a new class of DG methods for solving this particu-
lar type of multiscale elliptic problems. Until recently, DG methods have been used
mainly for solving partial differential equations of hyperbolic type, see e.g. [10] for a
comprehensive survey of DG methods for convection dominated problems. Indeed,
whereas DG methods for hyperbolic problems have been subject to active research
since the early seventies, it is only during the last decade or so that DG methods have
been applied to purely elliptic problems, cf. [5] and the references therein. The pri-
mary motivation for applying DG methods to elliptic problems is perhaps their flex-
ibility in approximating rough solutions that may occur in elliptic problems arising
from heterogeneous and anisotropic materials. However, to our knowledge, previous
research on DG methods for elliptic problems has been confined to solving elliptic
partial differential equations with smooth coefficients.

DG methods approximate the solution to partial differential equations in finite
dimensional spaces spanned by piecewise polynomial base functions. As such, they
resemble the FE methods, but, unlike the FE methods, no continuity constraints are
explicitly imposed at the inter-element interfaces. This implies that the weak formu-
lation subject to discretization must include jump terms across interfaces and that
some artificial penalty terms must be added to control the jump terms. On the other
hand, the weak continuity constraints give DG methods a flexibility which allows
a simple treatment of, e.g., unstructured meshes, curved boundaries and h- and p-
adaptivity. Another key feature with DG methods is their natural ability to impose
mass conservation locally. Moreover, the “local” formulation of the discrete equa-
tions allows us us to use grid cells of arbitrary shapes without difficulty. We may
therefore choose the gridlines to be aligned with sharp contrasts in, for instance,
underlying heterogeneous materials.

The multiscale FE methods (MsFEMs) introduced in [9, 12] have been success-
fully applied to multiscale elliptic problems, but their accuracy is to some degree
sensitive to the selection of the boundary conditions that determine the FE base
functions. If, for instance, strong heterogeneous features penetrate the inter-cell in-
terfaces, then simple, e.g. linear, boundary conditions may be inadequate. In such
situations, oversampling strategies or other techniques for the generation of adaptive
boundary conditions must be used to recover the desired order of accuracy. This sen-
sitivity to the selection of boundary conditions is partly due to the strong continuity
requirements at the inter-element interfaces implicit in the FE methods.

Here we propose a class of multiscale DG methods (MsDGMs) for solving el-
liptic problems with multiple scales. One of the primary motives for developing Ms-
DGMs is to generate multiscale methods that are less sensitive to the selection of
boundary conditions for the base functions than is the case for the MsFEMs. An-
other nice feature with MsDGMs is that they produce solutions for both the potential
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variable (e.g. pressure or temperature) and the velocity variable (e.g. phase velocity
or thermal flux density) that reflect important subgrid variations in the elliptic coef-
ficients. We will demonstrate the benefit of using multiscale methods in comparison
with ordinary monoscale numerical methods and perform numerical experiments to
display the performance of the MsDGMs relative to the original and mixed Ms-
FEMs. We therefore attempt to reveal that there is a need for multiscale methods,
and to demonstrate under what circumstances it may be advantageous to relax the
inter-element continuity assumptions implicit in the MsFEMs.

The paper is organized as follows. We give the general mathematical setting for
the DG methods in Sect. 2 and show how they are related to the more familiar FE
methods. In particular we show that both standard and mixed FE methods may be
viewed as special DG methods. This observation allows us to extend this type of
FE methods to corresponding DG methods. In Sect. 3 we outline the MsFEMs in-
troduced in [12] and [9] and exploit the relationship between FE methods and DG
methods to derive a corresponding class of MsDGMs. Finally, Sect. 4 contains the
numerical experiments and we conclude with a discussion of the results in Sect. 5.

2 Mathematical Formulations

In Sect. 2.1 we give the mathematical formulation of the DG methods for (1) and
discuss the selection of the so-called numerical fluxes that are used to force weak
continuity of the solution across inter-element interfaces. In Sect. 2.2 we show how
the conforming and mixed FE methods may be viewed as special DG methods, and
describe how such FE methods can be extended to corresponding DG methods.

2.1 Discontinuous Galerkin Methods

To define the DG methods we split (1) into the first order system,

q = −a(x)∇u, in Ω,
∇ · q = f, in Ω,

u = 0, on ΓD,
q · n = 0, on ΓN.

Furthermore, define the following approximation spaces:

QN = {p ∈ (H1(Ω))d : p · n = 0 on ΓN},
UD = {v ∈ H1(Ω) : v = 0 on ΓD}.

Upon integration by parts, we now deduce the weak formulation: Find q ∈ QN and
u ∈ UD such that ∫

Ω
a−1q · pdx =

∫
Ω
u∇ · pdx ∀p ∈ QN ,∫

Ω
q · ∇v dx = −

∫
Ω
fv dx ∀v ∈ UD.
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In the DG methods, a similar set of equations is derived for each grid cell. How-
ever, for the grid cell equations it is not natural to impose homogeneous boundary
conditions. The boundary conditions are therefore approximated from neighboring
values of the unknown solution. Essentially we want to ensure that the potential u
and the velocity q are “almost” continuous at the interfaces. Since we do not want
to enforce continuity by imposing constraints on the approximation spaces as the FE
methods do, we have to penalize the deviation from continuity by introducing an arti-
ficial penalty term. To understand the mechanism behind the penalty term, we digress
for a moment in order to consider an example that illustrates the basic principle.

Example: Consider the Poisson equation with Dirichlet data,{
−∆u = f, in Ω,

u = g, on ∂Ω,

and for each ε > 0, let uε ∈ H1(Ω) be the solution to the regularized problem∫
Ω

∇uε · ∇v dx+
∫

∂Ω

1
ε
(uε − g)v ds =

∫
Ω

fv dx ∀v ∈ H1(Ω). (2)

Here ds denotes the surface area measure. This problem corresponds to perturbing
the boundary data so that instead of u = g we have u + ε∇u · n = g on ∂Ω. One
can show that (2) is well posed and that uε → u ∈ H1

0 (Ω) as ε → 0 [14]. Hence,
we see that the extra penalty term is added in order to force, in the limit ε → 0, the
satisfaction of the boundary conditions.

Just as the satisfaction of the Dirichlet boundary data was imposed weakly in
(2), so can inter-element continuity be attained in a similar fashion. It was this ob-
servation that originally led to the development of the interior penalty (IP) methods
[4, 11, 16]. Arnold et al. [5] recently recognized that the IP methods, along with
several other methods with discontinuous approximation spaces, can be classified as
DG methods. These methods differ in the flux approximating schemes used to force
continuity at the inter element interfaces. We now describe the general framework
for the DG methods with respect to the elliptic problem (1).

Let T (Ω) = {T ∈ T } be a family of elements in a partitioning of Ω and define
∂T = ∪{∂T : T ∈ T }, Γ = ∂T \∂Ω and Γij = ∂Ti ∩ ∂Tj , Ti, Tj ∈ T . Next,
introduce an approximation space Qh × Uh ⊂ (H1(T ))d ×H1(T ) where

Hk(T ) = {w ∈ L2(Ω) : w ∈ Hk(T ),∀T ∈ T }.

The DG method then seeks qh ∈ Qh
N = Qh ∩QN and uh ∈ Uh

D = Uh ∩ UD such
that ∫

T

a−1qh · pdx =
∫

T

uh∇ · pdx−
∫

∂T

ū p · nT ds ∀p ∈ Qh
N , (3)∫

T

qh · ∇v dx = −
∫

T

fv dx+
∫

∂T

v q̄ · nT ds ∀v ∈ Uh
D, (4)

for all T ∈ T . Here nT is the outward unit normal on ∂T and (q̄, ū) are the so called
numerical fluxes which represent an approximation to (q, u) on ∂T .
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The Numerical Fluxes

The perhaps simplest and most natural choice of numerical fluxes is to set

(q̄, ū) =
1
2
[
(qh, uh)|Ti

+ (qh, uh)|Tj

]
on Γij.

We see that this option, which was considered by Bassi and Rebay in [6], does not
involve a penalty term and simply computes the fluxes by taking the average of the
functional limits on each side of the inter-element interfaces Γij . Though this option
seems attractive, the lack of a penalty term renders the method unstable and may
lead to a singular discretization matrix on certain grids. It is therefore clear that the
stabilization of the DG methods via the inclusion of a penalty term is crucial. In fact,
without it, not only stability is affected, but convergence is degraded or lost [5].

To define the numerical fluxes that will be used in this paper, it is convenient to
introduce, for q ∈ Qh, u ∈ Uh, and x ∈ Γij , the mean value operators

{u}(x) =
1
2
(ui(x) + uj(x)),

{q}(x) =
1
2
(qi(x) + qj(x)),

and the associated jump operators

[u] (x) =
1
2
(ui(x)− uj(x))nij ,

[q] (x) =
1
2
(qi(x)− qj(x)) · nij .

Here (qk, uk) = (q, u)|Tk
and nij is the unit normal on Γij pointing from Ti to Tj .

We shall employ the numerical fluxes associated with the method of Brezzi et al. [7],
which are

ū = {uh}, q̄ = {qh} − η[uh]. (5)

These numerical fluxes have been analyzed in [8] in the wider context of LDG (Local
Discontinuous Galerkin) methods, and gives a stable, convergent method when η =
O(1/h). While there are many other numerical fluxes that has been proposed for
DG methods, see e.g., [5], we have chosen to use the Brezzi fluxes (5) because they
are simple, stable, and consistent, and give the same rate of convergence (at least for
elliptic problems with smooth coefficients) as more elaborate DG methods.

The Primal Formulation

The need to construct approximation spaces for both the potential variable and the
velocity variable leads to a relatively large number of degrees of freedom per ele-
ment. However, it is standard procedure in the literature on DG methods to eliminate
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the velocity variable from the discretized equations. This elimination leads to the
primal formulation:

Bh(uh, v) =
∫

Ω

fv dx, ∀v ∈ Uh, (6)

where the primal form Bh(·, ·) is defined by

Bh(uh, v) :=
∫

Ω
∇uh · a∇v dx+

∫
∂T ([ū− uh] · {a∇v}+ {q̄} · [v]) ds

+
∫

∂T \∂Ω
({ū− uh}[a∇v] + [q̄]{v}) ds,

(7)

and q̄ = q̄(uh, qh) is defined with the understanding that qh satisfies

−
∫

Ω
a−1qh · pdx =

∫
Ω
∇uh · pdx +

∫
∂T [ū− uh] · {p}ds

+
∫

∂T \∂Ω
{ū− uh}[p] ds.

(8)

If the unknowns associated with the velocity variable qh are numbered sequentially,
element by element, then the matrix block that stems from the term on the left hand
side of (8) becomes block diagonal. This allows us to perform a Schur-elimination
of the discretization matrix to give the reduced form corresponding to Bh(·, ·) at a
low cost. Thus, to compute uh using the primal formulation, we eliminate first the
velocity variable by Schur-elimination. The next step is to solve (6) for uh. Finally
one obtains an explicit expression for the fluxes by back-solving for qh in (8).

For the numerical fluxes considered in this paper, we have ū =
{
uh

}
. Thus, since

q̄ is conservative, i.e., unit valued on ∂T , the integral over ∂T \∂Ω in Bh(uh, v)
vanishes, and the primal form reduces to

Bh(uh, v) :=
∫

Ω

∇uh · a∇v dx−
∫

∂T
([uh] · {a∇v} − {q̄} · [v]) ds. (9)

Finally, inserting q̄ = {qh} − η[uh] into (9) gives

Bh(uh, v) =
∫

Ω

∇uh · a∇v dx−
∫

∂T
[uh] · {a∇v} − ({qh} − η[uh]) · [v] ds. (10)

A rigorous analysis of the primal form (10) in the case of polynomial elements can
be found in [5]. There it was shown that the bilinear form (10) is bounded and stable,
provided that the stabilizing coefficient η is chosen sufficiently large. Hence, the
same type of constraint applies to η either we formulate the DG method using the
mixed formulation (3)–(4) or the primal formulation (6) and (8) using the primal
form (10).

2.2 Finite Element Methods vs. Discontinuous Galerkin Methods

The standard conforming FE discretization of (1) approximates the solution in a finite
dimensional subspace V h of H1(Ω). Though H1(Ω) is not in general embedded in
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C(Ω̄), the discrete FE approximation spaces are. This implies in particular that the
corresponding FE methods approximates a possible irregular solution with a con-
tinuous one. This continuity assumption can be relaxed, as the non-conforming FE
methods do, but they still restrain the solution by putting explicit restrictions on the
approximation space. This is in a sense the main difference between FE methods and
the DG methods which impose continuity implicitly in a weak sense.

In order to clarify the differences, or perhaps rather the similarities, between
FE methods and DG methods for equation (1), we first review the concept behind
FE methods. In the standard FE formulation of (1) we define a finite dimensional
subspace Uh ⊂ H1(Ω) ∩ C(Ω̄) and seek u ∈ Uh

D(Ω) = {u ∈ Uh : u = 0 on ΓD}
such that ∫

Ω

(∇uh)Ta∇v dx =
∫

Ω

fv dx ∀v ∈ Uh
D.

Now, since Uh ⊂ C(Ω̄) we know that uh is continuous. Hence, it makes sense to let
ū = uh in (7). We then deduce that the primal form (7) reduces to

Bh(uh, v) =
∫

Ω

(∇uh)Ta∇v dx+
∫

∂T \Ω

[q̄]{v}. (11)

Thus, if the numerical flux q̄ is conservative, i.e. if q̄ is single valued on ∂T \Ω, then
the last term on the right hand side of (11) vanishes. Thus, for any approximation
space Qh, the primal formulation of DG methods with a conservative numerical flux
for the velocity variable and an approximation space Uh ⊂ C(Ω̄) reduces to the
standard FE variational formulation.

Similarly, in mixed FE methods one seeks a solution (qh, uh) of the elliptic prob-
lem (1) in a finite dimensional subspace Qh

N ×Uh
D of H(div,Ω)× L2(Ω). The sub-

scripts N and D indicate that functions in Qh
N and Uh

D satisfy the homogeneous
Neumann and Dirichlet conditions on ΓN and ΓD respectively. The mixed FE solu-
tion is defined by the following mixed formulation:∫

Ω

a−1qh · p dx =
∫

Ω

uh∇ · p dx, ∀p ∈ Qh
N ,∫

Ω

∇ · qhv dx =
∫

Ω

fv dx, ∀v ∈ Uh,

where n is the outward unit normal on ∂Ω.
For many standard mixed FE methods for equation (1), such as the Raviart–

Thomas method [15], the approximation space for the velocity consists of functions
that are continuous across the interfaces Γij in the direction of the coordinate unit
normal nij . For this type of methods we have

∫
Γij

[q]ds = 0 for all Γij ⊂ Γ and

q ∈ Qh. Thus, by setting q̄ = qh on Γ and q̄ · n = 0 on ΓN we find that the second
equation above transforms, upon integration by parts, to equation (4). Moreover, if
the numerical flux ū for the potential is single-valued on Γ , then the first equation in
the mixed formulation coincides with equation (3). This shows that also mixed FE
methods for equation (1) can be viewed as special DG methods for which the numer-
ical fluxes are determined by continuity conditions imposed on the approximation
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spaces. We may therefore view the DG methods as special FE methods that impose
weak continuity of the numerical solution without putting explicit constraints on the
approximation space.

3 Multiscale Methods for Elliptic Problems

Many areas of science and engineering face the problem of unresolvable scales. For
instance, in porous media flows the permeability of the porous medium is rapidly
oscillatory and can span across many orders of magnitude across short distances. By
elementary considerations it is impossible to do large scale numerical simulations
on models that resolve all pertinent scales down to, e.g., the scale of the pores. The
standard way of resolving the issue of unresolvable scales is to build coarse scale
numerical models in which small scale variations in the coefficients of the governing
differential equations are homogenized and upscaled to the size of the grid blocks.
Thus, in this approach small scale variations in the coefficients are replaced with
some kind of effective properties in regions that correspond to a grid block in the
numerical model.

Multiscale methods have a different derivation and interpretation. In these meth-
ods one tries to derive coarse scale equations that incorporate the small scale varia-
tions in a more consistent manner. Here we present three different types of multiscale
methods; the multiscale FE method (MsFEM) developed by Hou and Wu [12], the
mixed MsFEM developed by Chen and Hou [9], and a new class of multiscale DG
methods (MsDGM). In these multiscale methods one does not alter the differential
coefficients, but instead one constructs coarse scale approximation spaces that re-
flect subgrid structures in a way which is consistent with the local property of the
differential operator. They are therefore more amenable to mathematical analysis,
and provides a more flexible approach to solving partial differential equations with
multiple scales.

One of the motives for using multiscale methods is reduced complexity. Hence,
by introducing a rigorous mathematical formalism where one derives a coarse grid
model in which subgrid oscillations in the elliptic coefficients are handled in a math-
ematical consistent manner, one aims toward a reward in terms of computational effi-
ciency. The computational complexity of the methods proposed below scales linearly
with the number of cells in the subgrid model. Hence, the complexity is comparable
to the (theoretical) complexity of solving the full system of equations at the subgrid
level using an efficient multigrid method. Thus, for these methods it appears that we
do not gain much. However, for multiscale problems there are additional considera-
tions.

First, in equations of the form (1) that arise from flows in porous media, the
elliptic coefficient function a(x) can vary more than 10 orders of magnitude across
short distances. With this extreme span of scales it can be very difficult to obtain
linear complexity, or even convergence, using multigrid methods, in particular for
linear systems that arise from mixed FE methods. In multiscale methods, like the
MsFEM, variations in the coefficients that occur on a subgrid scale appear in the
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corresponding linear system only as quantities that are integrated over coarse grid
blocks. This implies that the impact of the oscillating coefficients on the condition
number of the linear system is less severe than for the associated linear system at the
subgrid level. In other words, by using a multiscale method we are implicitly doing a
preconditioning of the system of subgrid equations. As a consequence, the proposed
multiscale methods can be used to obtain quite accurate solutions at the subgrid level
for elliptic problems with a range of scales that push the limits, or go beyond the
capabilities of multigrid methods.

Another arena where the multiscale methods outlined below can prove useful,
also from a computational complexity point of view, is multiphase flow simulation.
In a sequential IMPES (IMplicit Pressure Explicit Saturation) formulation of the
equations governing incompressible flows in porous media, the pressure equation is
basically elliptic, and is non-linearly coupled with a set of (fluid) transport equations.
This implies that the pressure equation must be solved repeatedly during a multiphase
flow simulation. Fortunately, when simulating fluid flows, for instance flow of oil and
water in a heterogeneous oil reservoir, the pressure equation is only weakly coupled
to the transport equations. This means that the flow velocity field varies slowly in
time away from the propagating saturation front. In such situations the base functions
for the proposed multiscale methods need only be generated once, or perhaps a few
times during the simulation [1]. In other words, all computations at the subgrid level
become part of an initial preprocessing step.

3.1 The Multiscale Finite Element Method

We associate with each element T a set of functions µk
T ∈ H1/2(∂T ) that play the

role of Dirichlet boundary conditions. We then define corresponding multiscale base
functions φk

T by ∫
T

∇φk
T · a∇v dx = 0, ∀v ∈ H1

0 (T ), (12)

and the associated boundary conditions

φk
T = µk

T , on ∂T\∂Ω,

φk
T = 0, on ΓD ∩ ∂T,

−a∇φk
T · n = 0, on ΓN ∩ ∂T.

To ensure that the base functions are continuous, and hence belong to H1(Ω), we
require that µk

Ti
= µk

Tj
on all non-degenerate interfaces Γij . The MsFEM now seeks

ums ∈ Ums = span{φk : φk =
∑

T φ
k
T} such that∫

Ω

∇ums · a∇v dx =
∫

Ω

fv dx ∀v ∈ Ums. (13)

Since the base functions are determined by the homogeneous equation (12), it is clear
that the properties of the approximation space Ums, and hence of the accuracy of the
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multiscale solution ums, is determined by the boundary data µk
T for the multiscale

base functions φk
T .

In [12, 13] it was shown using homogenization theory that for elliptic problems
in two dimensions with two-scale periodic coefficients, the solution ums tends to the
correct homogenized solution in the limit as the scale of periodicity tends to zero,
ε→ 0. For a positive scale of periodicity, a relation between ε and the discretization
scale h was established for linear boundary conditions. Moreover, using multiscale
expansion of the base functions they showed that with linear boundary conditions
µk

T at the interfaces, the resulting solution exhibits a boundary layer near the cell
boundaries and satisfies

‖u− ums‖L2(Ω) = O(h2 + ε/h).

This shows that when ε and h are of the same order, a large resonance error is in-
troduced. To reduce the resonance effect, which is caused by improper boundary
conditions, Hou and Wu introduced also an oversampling technique motivated by
the observation that the boundary layer has a finite thickness of order O(ε). How-
ever, for further details about this oversampling technique we refer the reader to the
article by Hou and Wu [12].

3.2 The Mixed Multiscale Finite Element Method

For each interface Γij , define a Neumann boundary condition νij ∈ H−1/2(Γij) with∫
Γij

νij ds = 1. Furthermore, for each interface let the corresponding base function
ψij for the mixed MsFEM be defined by

ψij = −a∇φij , in Ti ∪ Tj,

∇ · ψij =
{
|Ti|−1 in Ti,
−|Tj |−1 in Tj,

(14)

and the following boundary conditions:

ψij · nij = νij , on Γij,

φij = 0, on ∂(Ti ∪ Tj) ∩ ΓD,

ψij · n = 0, on ∂(Ti ∪ Tj)\(Γij ∪ ΓD).

Here nij is the coordinate unit normal to Γij pointing from Ti to Tj and n is the
outward unit normal on ∂(Ti∪Γij∪Tj). We now define Qms = span{ψij : Γij ⊂ Γ}
and seek (qms, u) ∈ Qms × P0(T ) which solves∫

Ω

a−1qms · pdx =
∫

Ω

u∇ · pdx, ∀p ∈ Qms,∫
Ω

v∇ · qms dx =
∫

Ω

fv dx, ∀v ∈ P0(T ).

Again we see that the method is determined by the local boundary conditions for the
base functions.
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It is also possible to choose the right hand side of the equations (14) differently,
and in some cases it would be natural not to do so. For instance, in reservoir simula-
tion the right hand side of equation (1) represent wells and wells give rise to source
terms that are nearly singular. For simulation purposes it is important that the veloc-
ity field is mass conservative. To this end, the right hand side of equation (14) in the
well blocks must be replaced with a scaled source term at the well location, see [1]
for further details.

A rigorous convergence analysis for the mixed MsFEM has been carried out in
[9] for the case of two-scale periodic coefficients using results from homogenization
theory. There it was shown that

‖q − qms‖H(div,Ω) + ‖u− ums‖L2(Ω) = O
(
h+

√
ε/h

)
.

Hence, again we see that a large resonance error is introduced when ε/h = O(1).
As for the MsFEM method, the possibility of using oversampling as a remedy for
resonance errors was explored, and it was shown that oversampling can indeed be
used to reduce resonance errors caused by improper boundary conditions. The need
for oversampling strategies to reduce resonance errors is, however, a drawback with
the MsFEMs since oversampling leads to additional computational complexity.

3.3 A Multiscale Discontinuous Galerkin Method

We now exploit the relationship between DG methods and FE methods that was es-
tablished in Sect. 2.2. To derive the MsDGM proposed below, we “merge” first the
approximation spaces constructed in the original and mixed MsFEMs to create a pair
of approximation spaces for the MsDGM. Thus, select suitable boundary conditions
µk

T ∈ H1/2(∂T ) and νij ∈ H−1/2(Γij) and define base functions φk
T and ψij by

(12) and (14) respectively. The approximation spaces for the MsDGM are then de-
fined by

Ums = span{φk : φk =
∑
T

φk
T} and Qms = span{ψij : Γij ⊂ Γ}.

Thus, the corresponding DG method, henceforth called the MsDGM, reads:
Find (qms, ums) ∈ Qms × Ums so that for each T ∈ T we have∫

T

a−1qms · pdx =
∫

T

ums∇ · pdx−
∫

∂T

ūp · nT ds, ∀p ∈ Qms, (15)∫
T

qms · ∇v dx = −
∫

T

fv dx+
∫

∂T

vq̄ · nT ds, ∀v ∈ Ums. (16)

In addition to the selection of boundary conditions for the base functions, this method
is determined by the choice of numerical fluxes. As indicated in Sect. 2.1 we limit
our study to the numerical fluxes (5) of Brezzi et al.

We observe that MsDGMs have much in common with the mortar FE methods.
Indeed, here as in the mortar methods, we construct the base functions locally in a
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manner which corresponds to the underlying partial differential equation, and glue
the pieces together using a weak formulation at the interfaces. The new element
here is that we derive the above formulation directly from the original and mixed
MsFEMs.

Apart for imposing inter-element continuity weakly, the MsDGMs differ from
the MsFEMs by using multiscale approximation spaces for both the velocity vari-
able and the potential variable. Another motive for introducing a new multiscale
method for elliptic problems is that the accuracy of MsFEMs solutions can be sen-
sitive to the boundary conditions for the base functions. Indeed, previous numerical
experience [1, 2] shows that the MsFEMs with simple boundary conditions may pro-
duce solutions with poor accuracy when strong heterogeneous features penetrate the
inter-element interfaces. Thus, by introducing a MsDGM we aim toward a class of
multiscale methods that are less sensitive to resonance errors caused by improper
boundary conditions for the multiscale basis functions.

3.4 On the Selection of Boundary Conditions for the MsFEM

Consider the following homogeneous boundary value problem,

(a(x)ux)x = f, in Ω = (0, 1),
u = 0, on ∂Ω = {0, 1}. (17)

and let x = {xi : 0 = x0 < x1 < . . . < xN = 1} be a corresponding set of finite
element nodal points. Now let V = H1

0 (Ω\x) and define

U = {u ∈ H1
0 (Ω) : (a(x)ux)x = 0 weakly on Ω\x, u = 0 on ∂Ω}.

Then it is easy to see that H1
0 (Ω) = U + V and that U and V are orthogonal with

respect to the energy norm, i.e.,

a(u, v) :=
∫

Ω

a(x)uxvx dx = 0 ∀u ∈ U, ∀v ∈ V.

Thus, since Ums coincides with U , it follows from the projection property of the FE
method that ums = uI where uI is the interpolant of the exact solution u on x in
Ums = U . This property is due to the fact that there is no resonance error caused
by improper boundary conditions and implies that the conforming MsFEM induces
an ideal domain decomposition preconditioner for elliptic problems in one spatial
dimension.

In higher dimensions the choice of boundary conditions is no longer insignificant.
In fact, the MsFEM may be viewed as an extension operator acting on Γ . Hence, the
restriction of the solution ums to Γ must lie in the space spanned by the boundary
conditions for the base functions. To clarify the relation between the approximation
properties for the MsFEM and the selection of boundary conditions, we consider the
following homogeneous boundary value problem: Find u ∈ H1

0 (Ω) such that

a(u, v) :=
∫

Ω

∇u · a(x)∇v dx =
∫

Ω

fv dx, ∀v ∈ H1
0 (Ω).
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Now, let M = H1
0 (Ω)|Γ and define the following extension operator

H : M → H1
0 (Ω), a(Hµ, v) = 0, ∀v ∈ H1

0 (Ω\Γ ). (18)

This extension operator induces a norm on M defined by ‖µ‖2M = a(Hµ,Hµ).
Clearly, by definition we find that Ums is a subspace of W = H(M), the space of
generalized harmonic functions. In fact, if Mms = span{µk

T}, then Mms ⊂ M and
Ums = H(Mms). Thus, since ums in (13) is the orthogonal projection of the exact
solution u onto Ums with respect to a(·, ·)1/2, it follows that µms = ums|Γ is the
orthogonal projection of µ = u|Γ onto Mms with respect to ‖ · ‖M . This shows
that the MsFEM also defines an orthogonal projection onto the space of interface
variables with respect to the relevant norm ‖ · ‖M , and hence induces an optimal
coarse solver for non overlapping domain decomposition methods. The properties of
the MsFEM as a coarse solver in domain decomposition methods has been further
analyzed in [2, 3].

4 Numerical Results

Let Ω = (0, 1) × (0, 1) be the computational domain. A uniform finite element
mesh T is constructed by dividing Ω into N × N squares. The multiscale methods
further subdivide each element into M ×M square elements. A reference solution
is computed on the full resolved NM ×NM mesh. The global boundary conditions
are specified by setting ΓD = ∂Ω and ΓN = ∅.

We will test six methods, three monoscale numerical methods and three multi-
scale methods. The first monoscale method is the FE method (FEM) on quadrilateral
grids with bilinear basis functions. The second method is the Raviart–Thomas mixed
FEM [15] (MFEM) of lowest order on regular quadrilateral grids. This method uses
piecewise constant basis functions for the potential and piecewise linear basis func-
tions for the velocity. The last monoscale method is the DG method (DGM) which
uses bilinear basis functions for potential and linear basis functions for the velocity.
These monoscale methods will be compared with their multiscale variants defined in
Sect. 3, i.e., with the MsFEM, the mixed MsFEM (MsMFEM), and the MsDGM. For
these multiscale methods we use the FEM with bilinear basis functions to compute
the base functions that span the approximation space Ums for the potential variable
u and the Raviart–Thomas mixed FEM to compute the basis functions that span the
approximation space Qms for the velocity variable q. Finally, the reference solution
is computed using the Raviart–Thomas mixed FEM. We assess the accuracy of the
tested methods with the weighted error measures

E(uh) =
‖uh − ur‖2
‖ur‖2

, E(qh) =
1
2

(‖qx
h − qx

r ‖2
‖qx

r ‖2
+
‖qy

h − qy
r‖2

‖qy
r‖2

)
.

Here ‖ · ‖2 is the L2(Ω)-norm, the subscript h denotes computed solutions, the sub-
script r refers to the reference solution and the superscripts x and y signifies velocity
components. When comparing velocity fields we do not include the FEMs since these
methods are not conservative.
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4.1 Subscale Oscillations

We apply the methods to equations (1) with

a(x, y) =
2 + P sin(2πx/ε)
2 + P sin(2πy/ε)

+
2 + P sin(2πy/ε)
2 + P cos(2πx/ε)

,

f(x, y) = 2π2 cos(πx) cos(πy).

This type of coefficients a(x, y) give rise to spurious oscillations in the velocity
field, and the source term f(x, y) exerts a low frequent force. We shall fix P = 1.8,
NM = 512 and ε = 1/64 for our numerical test cases. We thus get significant
subgrid variation for N < 64 while the resonance is greatest at N = 64. When
N > 64 the characteristic scale of variation is resolved by the coarse mesh and the
use of multiscale methods are no longer necessary.

Table 1. Potential errors for oscillatory coefficients. For the DGM and the MsDGM, the num-
bers presented correspond to the choice of η that gave the smallest error

N M FEM MFEM DGM MsFEM MsMFEM MsDGM

8 64 0.9355 1.150 0.6905 0.1161 0.3243 0.08239
16 32 1.043 1.100 0.5674 0.03845 0.1733 0.03776
32 16 1.072 1.086 0.4998 0.02862 0.1127 0.06817
64 8 0.7119 0.712 0.7117 0.04422 0.1508 0.1269

Table 2. Relative velocity errors for oscillatory coefficients. For the DG methods the numbers
presented correspond to the choice of η that gave the smallest error

N M MFEM DGM MsMFEM MsDGM

8 64 0.5533 0.6183 0.2985 0.4291
16 32 0.5189 0.5388 0.2333 0.2842
32 16 0.5093 0.5144 0.2377 0.2579
64 8 0.5058 0.5079 0.2866 0.3177

Table 1 shows errors E(uh) in the potential for all the methods. We see that none
of the monoscale methods perform particularly well, as they cannot pick up sub-
grid variations in the coefficients, but the DGM is somewhat more accurate than the
other methods. The multiscale methods, on the other hand, generate quite accurate
potential fields. The MsFEM is most accurate here, but MsDGM is nearly as accu-
rate, and for very coarse meshes it is the most accurate method. The least accurate
multiscale method is the MsMFEM. This is probably due to the fact that piecewise
constant functions are used to approximate the potential. The results shown in Ta-
ble 2 demonstrate that the monoscale methods tend to give more accurate velocity
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fields than potential fields, but we still see that the multiscale methods give much
higher accuracy. We observe also that for this test case the MsMFEM gives more
accurate velocity fields than the MsDGM.

The accuracy of the DG methods depend on the parameter η in (5). The results
in Table 1 and Table 2 correspond to the value of η = η∗ that produced the best
solutions. Since we do not know a priori what η∗ is, it is natural to ask how the error
behaves as a function of η, and, in particular, how sensitive the DG methods are to
the penalty parameter η. We have therefore plotted E(uh) and E(qh) for both the
DG method and the MsDGM in Figs. 1 and 2 as functions of η. We see that the DG
method only converges for a succinct choice of η, except for N = 64. In contrast,
the MsDGM converges with good accuracy for sufficiently large η. These plots thus
demonstrate that; (1): for elliptic problems with oscillating coefficients the MsDGM
is less sensitive to η than the monoscale DG methods, and (2): the convergence be-
havior for the MsDGM seem to be in accordance with the convergence theory for
DG methods for elliptic problems with smooth coefficients.

4.2 Random Coefficients

In the second experiment the elliptic coefficient function a(x, y) take random values
in the interval (0, 1). Thus, for each grid cell in the fine mesh the value of a is
selected at random from this interval. We now only consider the multiscale methods,
and compare the MsDGM with the MsFEM and the MsMFEM. The corresponding
errors are shown in Table 3. We observe that for this test case the MsDGM generates
the by far most accurate potential field, in fact, by almost an order of magnitude. The
MsMFEM still produces the most accurate velocity field, but the MsDGM produces
a velocity field with comparable accuracy. These results are representative for the
results we obtained for a variety of different random coefficient functions. Again the
parameter η for the MsDGM numerical flux function q̄ was attempted optimized in
order to give best results.

Table 3. Potential errors E(uh) (left) and Velocity errors E(qh) (right) for an elliptic problem
with random coefficients

N M MsFEM MsMFEM MsDGM MsMFEM MsDGM

8 64 0.4458 0.3290 0.1394 0.3375 0.4849
16 32 0.3827 0.1839 0.07163 0.2851 0.3716
32 16 0.3589 0.1510 0.03766 0.2941 0.3472
64 8 0.3335 0.2074 0.02539 0.3346 0.3624

The results in Table 3 indicate that the MsDGM may be more robust than the
MsFEM. Unfortunately, for this case the MsDGM was more sensitive to η than what
we observed in Sect. 4.1, and choosing η too large can deteriorate the convergence,
see Fig. 3. However, the optimal η for potential (∼ 13, ∼ 34, ∼ 83 and ∼ 188 for
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Fig. 1. Errors induced by the DG method as functions of η. The solid line is the potential error,
and the dashed line is the velocity error
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Fig. 2. Errors induced by the MsDGM as functions of η. The solid line is the potential error,
and the dashed line is the velocity error. Note that the error decreases monotonically as η
increases, and that the method converges for η > O(1/h)
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Fig. 3. Logarithmic plot of errors for the MsDGM for random coefficients. The plots should
be compared with the results depicted in Fig. 2

h = 8, 16, 32 and 64 respectively) still scales like O(1/h). This suggest that good
accuracy should be obtained by choosing η ∼ α/h for some fixed α ∼ O(1).

5 Concluding Remarks

In this paper, we have used approximation spaces for two different multiscale finite
element methods in order to develop a multiscale discontinuous Galerkin method
for elliptic problems with multiple scale coefficients. Unlike the multiscale finite
element methods, the multiscale discontinuous Galerkin method introduced in this
paper provides detailed solutions for both velocity and potential that reflect fine
scale structures in the elliptic coefficients. This makes the multiscale discontinuous
Galerkin method an attractive tool for solving, for instance, pressure equations that
arise from compressible flows in heterogeneous porous media. Indeed, in compress-
ible flow simulations it is not sufficient to resolve the velocity field well, an accurate
pressure field is also needed.

Numerical comparisons with both monoscale- and multiscale methods have been
given. The results show that monoscale numerical methods are inadequate when it
comes to solving elliptic problems with multiple scale solutions. We have further
demonstrated that the multiscale discontinuous Galerkin method produce solutions
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with comparable or higher accuracy than solutions produced by corresponding mul-
tiscale finite element methods. To summarize the results for the multiscale methods,
we plot errors for all the multiscale methods in Fig. 4. This figure shows that the
velocity solutions obtained with the multiscale discontinuous Galerkin method have
comparable accuracy with the velocity solutions obtained with the corresponding
mixed multiscale finite element method. The potential solutions produced by the
multiscale discontinuous Galerkin method, on the other hand, are equally or more
accurate than the potential solutions obtained with both of the multiscale finite ele-
ment methods.

8 16 32 64
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10
−1

10
0

8 16 32 64
10

−1

10
0

8 16 32 64
10
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10
−1

10
0

8 16 32 64
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0

MsFEM

MsMFEM

MsDGM

MsDGM

MsDGM

MsDGM

MsMFEM

MsMFEM

MsMFEM

MsFEM

Fig. 4. Plot of the errors as functions of grid size for oscillatory (top) and random coefficients
(bottom) respectively. The left figures show potential errors, and the right figures show the ve-
locity errors. The MsDGM is the solid line, the MsMFEM is the dashed line, and the MsFEM
is the dashed and dotted line

In the present paper we have not provided any convergence theory, but it is likely
that convergence results can be obtained using results from homogenization theory in
conjunction with the convergence theory for discontinuous Galerkin methods for el-
liptic problems with smooth coefficients. However, since the discontinuous Galerkin
methods appear to give comparable accuracy to the multiscale mixed finite element
methods for which error estimates based on the homogenization theory have been es-
tablished, one can expect the discontinuous Galerkin methods to enjoy similar error
estimates. We have also shown that the multiscale discontinuous Galerkin method ap-
pears to converge for values of the penalty parameter η in the numerical flux function
that is in accordance with the convergence theory for Galerkin methods for elliptic
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problems with smooth coefficients. A rigorous convergence analysis of the multi-
scale discontinuous Galerkin methods is a topic for further research.
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Summary. We introduce a discrete network approximation to the problem of the effective
conductivity of a high contrast, densely packed composite in three dimensions. The inclusions
are irregularly (randomly) distributed in a host medium. For this class of arrays of inclusions
we derive a discrete network approximation for effective conductivity and obtain a priori error
estimates. We use a variational duality approach to provide rigorous mathematical justification
for the approximation and its error estimate.

Key words: effective conductivity, discrete network, error estimate, variational bounds

1 Introduction

We study composites of highly-conducting identical spherical inclusions embedded
into a matrix (host medium) of finite conductivity. Our main objective is to obtain the
dependence of the effective conductivity on the irregular (non-periodic or random)
geometry of a dense spatial array of inclusions.

Periodic arrays of highly conducting inclusions were analyzed in [12] (for other
references see e.g. [6]). For non-periodic arrays of inclusions the geometric connec-
tivity patterns may lead to physical effects, which are not seen in the periodic case.
For example, the percolation effects may appear. This issue was addressed in [6] for
an analogous two-dimensional problem, where a discrete network approximation for
the effective conductivity was developed for irregularly distributed disks (see e.g.
[6, 7, 8, 3] for references on other discrete network models). In subsequent work [7]
the error estimates of this approximation were obtained. In particular, it was shown
there that the approximation and error estimates are valid in the homogenization limit
as the radius of the disks tends to zero. The key ingredient in the construction of the
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error estimates is the δ −N close packing condition, where N is the number of in-
clusions in the perimeter of a “hole” in the conducting spanning cluster of inclusions
[7]. Such “holes” correspond to so-called void spaces in a particulate composite.
Loosely speaking, this condition allows for “holes” of sizeN in the cluster.

In the present work we further develop the discrete network approach, intro-
duced in [6, 7] for the two dimensional problem, to study the effective conductivity
Â in three dimensions. Note that the geometry of the three dimensional connectivity
patterns is much more complex than in two dimensions. This phenomenon mani-
fests itself in various ways. For example, while the uniqueness of the percolating
spanning cluster in two dimensions is immediate, the analogous uniqueness result in
three dimensions was a major advance in the early stages of developing mathematical
percolation theory [1]. The close packing problem for spheres provides another ex-
ample. While the periodic array of disks with maximal packing density is unique in
two dimensions (hexagonal), there exist two periodic arrays of identical spheres with
maximal density (face-centered cubic and hexagonal) in three dimensions [9, 15].

We develop a discrete approximation I for the effective conductivity Â and study
the approximation error

Error = |Â− I|.
This work contains two main results. The first result concerns an asymptotic

relation between the effective conductivity Â and the discrete approximation I. We
show that Â and I satisfy the following asymptotic relation (Theorem 3):

Â = I +O(1), as δ → 0, (1)

where the relative interparticle distance δ [7] is, roughly speaking, a dimensionless
characteristic distance between inclusions in the conducting spanning cluster and
I = O(| ln δ|). The second result involves the relative error estimates of the discrete
network approximation. In Theorem 4 we prove that

|Â− I|
I ≤ C(D)R

| ln δ| , (2)

for δ−D connected distributions of inclusions, whereR is the radius of the inclusion.
D is, loosely speaking, the typical relative diameter of a void space or a hole in the
conducting cluster if the radius of inclusion is rescaled to be 1 (see Fig. 1). Here
the standard definition of a conducting spanning cluster from percolation theory was
used with the connectivity defined as follows: two inclusions are connected if the
distance between them is less or equal than δR. C(D) is a constant depending on D
for which we obtain an upper bound as an explicit function of D.

The justification of the approximation and its error estimates is based on the
variational upper and lower bounds for the effective conductivity Â. These bounds
are obtained by an explicit construction of trial functions for the direct and the dual
variational problems. The trial functions are obtained by decomposing the part of the
domain complementary to the inclusions (occupied by the conducting matrix) into
simple geometric figures: tetrahedra, prisms and hoses. This decomposition is based
on a central projection partition, introduced in Sect. 3.2.
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Fig. 1. Holes of the diameter DR in a composite and 2D cross-section of the part of the
composite having a hole

The paper is organized as follows. In Sect. 2 we present a mathematical formula-
tion of the problem. The variational bounds for the effective conductivity Â are also
given. In Sect. 3 we construct the three dimensional discrete network. In particular,
the central projection partition is introduced in Sect. 3.2 and the δ-D connectedness
property of the discrete network is defined in Sect. 3.4. The variational error esti-
mates for the effective conductivity Â are then derived in Sect. 4. The trial functions
for the lower and upper variational bounds are constructed in Sects. 4.1 and 4.2, re-
spectively. The main results (1) and (2) are proved in Sect. 4.3. In Sect. 5 we present
the results of a numerical simulation that show the dependence of Â on the volume
fraction of the void spaces in a composite. Finally, various technical calculations are
included in the Appendices.

2 Formulation of the Problem

Consider a three-dimensional model of a two-phase composite that consists of a ma-
trix of finite conductivity in which a large number of identical, perfectly conducting
spherical inclusions are randomly distributed. The composite is modeled by a par-
allelepiped Y = [−L1, L1] × [−L2, L2] × [−1, 1]. The inclusions are modeled by
identical non-overlapping ballsBi, i = 1, . . . N , of radiusR, whereN is the number
of inclusions. We are concerned with the high concentration regime, that is, the case
when the characteristic distance between two neighboring balls is much smaller than
their radii. The perforated domain

Q = Y \
N⋃

i=1

Bi (3)

models the matrix of the composite. Let ∂Q± =
{

x = (x, y, z) ∈ R3 : z = ±1
}

be the upper/lower boundary of the domain Q and ∂Qlat = ∂Y \ (∂Q− ∪ ∂Q+) be
the lateral boundary of Q.

Let the potential u(x) = u(x, y, z), x ∈ R3, be a function from H1(Q). Intro-
duce the space:
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V =
{
u ∈ H1(Q) : u(x) = ti on ∂Bi, u(x) = ±1 on ∂Q±} (4)

where ti (i = 1 . . . N ) are real numbers to be determined in the course of solving the
problem, and define a functional:

I[u] =
1

2|Y |

∫
Q

|∇u|2dx =
1

16L1L2

∫
Q

|∇u|2dx, u ∈ H1(Q), (5)

where |Y | = 8L1L2 is the volume of the box Y .
Suppose the function u solves the variational minimization problem:

min
ũ∈V

I[ũ] =: I[u]. (6)

Then the potential u inside the matrix Q satisfies the Euler-Lagrange equation of (6):

(a) �u = 0, in Q

(b) u(x) = ti, on ∂Bi, i = 1, . . . , N

(c) u(x) = ±1, on ∂Q±

(d)
∫

∂Bi

∂u

∂n
dx = 0, i = 1, . . . , N

(e)
∂u

∂n
= 0, on ∂Qlat.

(7)

The effective conductivity â of the composite is defined as the minimum of the
functional (5), (6), over the class V given by (4), that is:

â = I[u] =
1

2|Y |

∫
Q

|∇u|2dx, (8)

(see e.g. [4, 5, 11, 13]).
Applying Green’s formula to (5) and taking into account (7) we notice that â can

also be defined as the total flux per unit length through a horizontal cross-section

of the domain. Integrating
∫

Q

�u dx by parts and using (7a) indicates that the total

fluxes through the horizontal boundaries ∂Q− and ∂Q+ are equal:∫
∂Q+

∂u

∂n
dx = −

∫
∂Q−

∂u

∂n
dx. (9)

The integration by parts of
∫

Q

u�u dx yields

∫
∂Q+

∂u

∂n
dx =

1
2

∫
Q

|∇u|2dx.

Therefore for an equivalent definition of the effective conductivity we can take,
for example, the total flux through the boundary ∂Q+ per unit length defined by
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â =
1
|Y |

∫
∂Q+

∂u

∂n
dx =

1
|Y |

∫
∂Q+

∂u

∂z
dx. (10)

For simplicity, we use a rescaled quantity Â = â |Y | = 8L1L2â =
∫

∂Q+

∂u

∂z
dx.

Our goal is to use a variational approach to investigate Â when inclusions are
close to touching. Besides the direct variational problem (5), (6), (4) we consider a
dual variational problem in which Â is equivalently defined [10] as a maximum of
the functional J :

Â = max
ṽ∈W

J [̃v] =: J [v], (11)

where

J [v] = −1
2

∫
Q

v2dx +
∫

∂Q+
v · n dx−

∫
∂Q−

v · n dx, (12)

and the class of all fluxes W is given by:

W =
{

v ∈ L2(Q) : v(x) · n = 0 on ∂Qlat,

∫
∂Bi

v · n dx = 0, div v = 0 in Q

}
.

(13)
The details of the derivation of (11), (12) and (13) can be found for example in [10].

Thus, for any u ∈ V and v ∈W we obtain the following bounds on the effective
conductivity Â:

−1
2

∫
Q

v2dx +
∫

∂Q+
v · n dx−

∫
∂Q−

v · n dx ≤ Â ≤ 1
2

∫
Q

|∇u|2dx. (14)

The equality in (14) is achieved when v = ∇u.

3 Discrete Network

In this section we construct a discrete network (graph) approximating the continuum
problem (10). We use here Keller’s observation [12] that the dominant contribution to
the effective conductivity comes from the thin gaps (hoses) between closely spaced
neighboring inclusions, so that the flux outside of these gaps does not change the
asymptotics of Â. We define the notions of neighboring balls and hoses connecting
them, in Sect. 3.1. Next we define an algebraic quadratic form:

I =
1
2

∑
Πij

gij(ti − tj)2, (15)

where ti is the value of the potential in the ballBi, (i = 1, . . . , N ) and the number gij

is a specific flux defined in Sect. 3.3. The sum in (15) is taken over the hoses, defined
in Sect. 3.2, connecting the neighboring inclusions. Note that there are hoses con-
necting inclusions Bi inside the composite with the boundaries of Q. The quadratic
form (15) is our discrete network approximation to effective conductivity (8): Â ∼ I.
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In order to determine ti, i = 1, . . . , N in (15) we set up a discrete minimization
problem supplemented with appropriate boundary conditions. The obtained mini-
mization problem amounts to solving a system of linear algebraic equations, making
it numerically tractable.

Our error estimates of the discrete network rely on the variational bounds (14).
Upper and lower trial fields for (14) are constructed using our decomposition of
the domain Q into simple geometric regions. This decomposition is obtained by the
central projection partition which we introduce in Sect. 3.2. Finally, we give useful
properties of the discrete network approximation in Sect. 3.4.

3.1 Construction of the Network

Neighbors and necks of the discrete network can be defined using the notion of the
Voronoi diagram [2] of the domain Q. For the centers of the balls Bi:

P = {xi ∈ R3, i = 1, . . . , N}, (16)

the Voronoi diagram is the partition of the domain Q into non-overlapping Voronoi
cells V (xi). Each V (xi) is the set of all points in R3 that are closer to xi than to any
other site from P .

Fig. 2. The Voronoi cell V (xi)

The Voronoi diagram in R3 can also be defined as follows. Introduce the bisector
of two sites xi, xj ∈ P , which is the perpendicular plane through the midpoint of
the line segment xixj . The region V (xi) of a site xi ∈ P is the intersection of half-
spaces bounded by bisectors, therefore it is a 3-dimensional convex polyhedron (Fig.
2). The boundary of V (xi) consists of faces, which are the convex polygons, edges,
which are the line segments formed by intersections of faces, and vertices, which are
intersections of edges.

Hereafter we assume that P is in general position [2], that is, no 5 points lie
on a common sphere and no 4 points are cocircular and on a common plane. This
assumption implies that each face/edge/vertex is shared by exactly two/three/four
Voronoi cells, respectively.

Neighbors are defined to be the balls centered at sites whose Voronoi cells share
a common face.
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Fig. 3. Balls and hoses are identified with the graph G

For a given array of the balls Bi centered at xi, i = 1, . . . , N , the discrete
network is the (Delaunay) graph G = (X, E), with vertices X = {xi : i =
1, . . . ,K, K ≥ N} and edges E = {eij : i, j = 1, . . . ,K}, connecting each
pair of neighbors (see Fig. 3). In addition, if one of the Voronoi faces of some site xk

lies on the boundary of the domain Q, then we connect xk with this boundary by the
perpendicular line segment ekk′′ , obtaining a new vertex xk′′ on the boundary.

Note that K ≥ N , where N is the number of inclusions, since the graph G
contains the extra vertices xk′′ .

3.2 Central Projection Partition

The central projection partition is an elegant algorithm to decompose the domain Q
into three types of solids: hoses, prisms and tetrahedra.

(a) πi(F), the projection of the Voronoi
face F

(b) The bases, πi(F) and πj(F), of the hose
Πij (left). The hose Πij (right)

Fig. 4.

Definition 1. The central projection is the collection {πi, i = 1, . . . , N} of maps
πi : ∂V (xi)→ ∂Bi given by

πi(x) = R
x− xi

|x− xi|
.

Every projection πi partitions the sphere ∂Bi into non-overlapping curvilinear
polygons {πi(F)}, where F is a face of the Voronoi cell V (xi).
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For each Voronoi face F there are two projections πi(F) and πj(F) (one of
them is depicted in Fig. 4(a)) onto neighboring spheres ∂Bi and ∂Bj , respectively.
These projections πi(F) and πj(F) are the (nonflat) bases of a hose Πij (Fig. 4(b)),
a (generalized) cylinder. We remark here that with this construction the edges of a
hose are always parallel.

Similarly, the central projections of Voronoi edges and Voronoi vertices give rise
to prisms and tetrahedra, respectively.

(a) the prism (b) the tetrahedron
Fig. 5.

In fact, for every Voronoi edge E there are three projections πi(E), πj(E) and
πk(E), which are arcs on the spheres ∂Bi, ∂Bj and ∂Bk, respectively. Connecting
the endpoints of the corresponding arcs, we obtain a figure, referred to as a prism,
shown in Fig. 5(a).

For every Voronoi vertex V there are four projections πi(V), πj(V), πk(V) and
πm(V), which are four points on spheres ∂Bi, ∂Bj , ∂Bk and ∂Bm, respectively.
Connecting these points yields a tetrahedron (Fig. 5(b)).

The central projection partition of Q can alternatively be constructed using four-
wise neighbors. We give this alternative construction in Appendix 6.1.

For consistency of the presentation, we introduce the notion of a quasi-ball, when
we construct the discrete network at the boundary. Suppose that three balls Bm, Bn,
Bq, centered at xm, xn and xq, respectively, lie near the upper boundary ∂Q+ (see
Fig. 6). In order to construct a hose connecting, for example, the ball Bm with ∂Q+,
we consider the reflectionBm′ , centered at xm′ , of the ball Bm along the plane z = 1
and repeat the central projection construction for 4 neighbors Bm, Bn, Bq and Bm′ .
The intersection of the hose Πmm′ , connecting the balls Bm and Bm′ , with the
upper boundary ∂Q+ is a curvilinear polygon on ∂Q+, referred to as a quasi-ball.
The quasi-ball is centered at the intersection of the line segment emm′ , connecting
xm and xm′ , with ∂Q+, and denoted by xm′′ . We assume that the quasi-ball has a
radius equal to infinity. We assign +1 as the value of the potential on this quasi-ball,
because it lies on the upper boundary of the composite Q. Prisms Pmnm′ , Pm′mq,
Pm′nq and tetrahedron ∆m′mnq intersected with ∂Q+ yield the truncated prisms and
tetrahedron (which can be obtained by an auxiliary constriction [7]), that we still call
the prisms and tetrahedron, respectively, with the values +1 of the potential on their
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Fig. 6. Auxiliary construction near the upper boundary of Q

upper boundaries (such a tetrahedron and one of the prisms are shown in Fig. 6). The
constructions of the quasi-balls on the other boundaries of Q are analogous.

3.3 Discrete Minimization Problem

Using the central projection partition of the matrix Q, it is possible to decompose
the value of Â (8) into the sum of the Dirichlet’s integrals over hoses, prisms and
tetrahedra, that is

Â =
1
2

⎛⎝∑
Πij

∫
Πij

|∇u|2dx +
∑
Pijk

∫
Pijk

|∇u|2dx +
∑

∆ijkm

∫
∆ijkm

|∇u|2dx

⎞⎠ .

The asymptotic derivation of the discrete minimization problem is based on three
main observations.

First, using [6, 7]:
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Pijk

∫
Pijk

|∇u|2dx �
∑
Πij

∫
Πij

|∇u|2dx,

∑
∆ijkm

∫
∆ijkm

|∇u|2dx �
∑
Πij

∫
Πij

|∇u|2dx,
(17)

the total Dirichlet integral is approximately the integral over the hoses:

Â ∼ 1
2

∑
Πij

∫
Πij

|∇u|2dx. (18)

Second, inside the hoses the potential u is well approximated by the linear in-
terpolation [12, 6, 7] between the values of the potentials on the neighboring balls
Bi and Bj . Now we introduce the local system of coordinate (x, y) with origin at
xi + xj

2
and y-axis directed along the line segment connecting points xi and xj .

Thus, in this coordinate system the local flux in the hose Πij is approximated by

∇u ∼
(

0, 0,
ti − tj

Hij(x, y)

)
, (19)

where

Hij(x, y) =

⎧⎨⎩
|xi − xj | − 2

√
R2 − x2 − y2, when xi, xj are centers of balls,

|xi − xj | −
√
R2 − x2 − y2, either xi or xj is a center of a

quasi-ball,
(20)

is the distance between the inclusions and |xi−xj | is the Euclidean distance between
xi and xj . Hence,∫

Πij

|∇u|2dx = (ti − tj)2
∫

Πij

dx
H2

ij

= gij(ti − tj)2, (21)

where the specific flux gij in the hose Πij is defined by

gij =
∫

Πij

dx
H2

ij

=
∫

πi(F)

dxdy
Hij(x, y)

, (22)

and πi(F) is the base of the common Voronoi face of two sites xi and xj lying on
the sphere ∂Bi (shown in Fig. 4(a),(b)). If xi and xj are not neighbors (that is, they
are not connected by a common hose Πij) then gij = 0.

Finally, the specific fluxes gij are asymptotically large [12] when inclusions Bi

and Bj are close to touching:

gij = πR |ln δij |+O(1), as δij → 0, (23)

where the relative interparticle distance is a dimensionless parameter given by
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δij =

⎧⎪⎨⎪⎩
|xi − xj |

R
− 2, when both xi and xj are centers of balls,

|xi − xj |
R

− 1, one of xi, xj is a center of a quasi-ball.
(24)

Combining (17), (21), (22), (23) we have

Â ∼ 1
2

∑
Πij

gij(ti − tj)2.

This asymptotic derivation, however, does not imply

Â ∼ 1
2

min
(t̃1,...,t̃N )

∑
Πij

gij(t̃i − t̃j)2, (25)

because t̄ = (t̄1, . . . , ¯tN ), the minimizer of the quadratic form

I(t̃) =
1
2

∑
Πij

gij(t̃i − t̃j)2, (26)

with t̃ = (t̃1, ..., t̃N ) and appropriate boundary conditions (defined below), may
be different from the values t1, . . . , tN of the potentials on the balls B1, . . . , BN ,
defined by (7). The value of I(t̄) (26), defined on the minimizer t̄,

I(t̄) = min
t̃
I(t̃) (27)

is called [6, 7] the energy of the discrete system.
To prescribe the boundary condition for the discrete network approximation on

the horizontal boundaries we consider sets S± of the centers of the balls that cross
or touch boundaries ∂Q± and quasi-balls lying on ∂Q±. Then we define the values
of the discrete potentials t̃i on S± by

t̃i = ±1, when xi ∈ S±. (28)

Then the set I of the "interior" sites of the discrete system is defined by I = {xi, i =
1, . . . , K} \ {S+ ∪ S−}.

If xi′′ /∈ I ∪ (S− ∪ S+), then it is a center of a quasi-ball that lies on the lateral
boundary ∂Qlat. The set of such vertices is denoted by Slat. For xi′′ ∈ Slat we assign
the value of the discrete potential equal to the potential of the site xi connected with
xi′′ by the edge eii′′ :

t̃i′′ = t̃i, for xi′′ ∈ Slat, xi ∈ I. (29)

We comment that the potentials ti′′ for xi′′ ∈ Slat do not participate in (25) and
can be found after solving the problem by using the equality (29). Note that the lateral
boundary condition (7e) for the discrete network can be interpreted as follows:
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Πi′′j ,i′′ fixed

gi′′j(ti′′ − tj) = gi′′i(ti′′ − ti) = 0, for xi ∈ Slat. (30)

Let us define the discrete fluxes through the boundaries S+ and S− in the fol-
lowing way:

P+ =
∑

Πij , xi∈S+

gij(ti − tj); P− =
∑

Πij , xi∈S−
gij(ti − tj). (31)

Then similarly to (10) we have

I(t) =
1
2

∑
Πij

gij(ti − tj)2 =
1
2
(
P+ − P−) . (32)

The derivation of (32) is similar to the two-dimensional case of [7].

3.4 Properties of the Discrete Network

Here we collect some properties of the discrete network approximation, which we
use for the variational error estimates presented in Sect. 4.3. Since the effective con-
ductivity Â is approximated by the fluxes in the hoses between closely spaced inclu-
sions (18), we define a notion of a δ-subgraph that corresponds to some collection of
the densely packed balls in the composite. Then we introduce a so-called δ-D par-
tition {Λδ} of Q into polyhedra with δ-short edges and triangles as faces. D can be
thought of as the relative diameter of “holes” in the composite. The error estimates
for our discrete network approximation are determined in terms of the characteristic
parameters δ and D.

The discrete minimization problem (27)-(29) amounts to solving a linear alge-
braic system whose solutions are the discrete potentials ti at the interior vertices as
indicated in the following lemma.

Lemma 1. There is a unique solution t = {ti : xi ∈ I } to the discrete minimization
problem (27)-(29), which satisfies the discrete Euler-Lagrange equations:

K∑
j=1

gij(ti − tj) = 0, for fixed xi ∈ I. (33)

The proofs of Lemma 1 and the following Lemma 2 are identical to the two dimen-
sional case [7].

For any graph G and δ > 0 we obtain the δ-subgraph Gδ by discarding edges eij

if the corresponding δij > δ, that is the length of each edge of Gδ is not greater than
2R + δR. For a given δ > 0, consider the set of small triangles such that all of their
edges belong to the δ-subgraph Gδ:

{ triangle � xixjxk : eij , ejk, eki ∈ Gδ } . (34)
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Fig. 7. The two dimensional “hole” and the corresponding polygon

Now we note that not all inclusions are closely spaced, that is, the distance be-
tween two neighbors might be of order O(R). In a real composite this situation
corresponds to a “hole” or void space (see Fig. 1). Such a “hole” corresponds to an
interior of some solid, polyhedron, whose edges are not longer than 2R + δR in our
discrete network. To clarify this idea let us consider a two dimensional “hole” shown
in Fig. 7. The centers of disks located at distance less than δR from each other form
a polygon in the corresponding graph. The length of each edge of the polygon is less
than 2R + δR. Similarly, a three dimensional “hole” (see Fig. 1) provides a polyhe-
dron in the corresponding graph whose edges are shorter than 2R + δR. Note that
due to Delauney tetrahedralization each face of such a polyhedron is a triangle (Fig.
8). Below we define the polyhedron and call it a δ-polyhedron.

Fig. 8. The δ-polyhedron

We assume that for any given δ > 0 we can partition the domain Y into polyhedra
{Λδ}, called δ-polyhedra, whose edges are shorter than 2R + δR. Thus

⋃
Λδ = Y

and ∂Λδ ∈ Gδ .
Let the diameter of any Λδ be not greater than DR, where R is the radius of

inclusion. Then D is called the relative diameter of δ-polyhedra of {Λδ}. If the
distance between two points xi and xj exceeds DR then they belong to two different
δ-polyhedra Λi

δ and Λj
δ. Thus, if we construct any path connecting xi and xj this path

will contain at least one vertex of some δ-polyhedra Λδ and, consequently, a vertex
of the δ-subgraph Gδ . This fact we accept as the definition of a δ-D partition.

Definition 2. We say that the δ-subgraph Gδ induces the δ-D partition {Λδ} of Y if
for any two vertices xi, xj ∈ G, satisfying |xi − xj | > DR, any path in G connect-
ing them contains at least one vertex of the subgraph Gδ . The partition {Λδ} is the



34 Leonid Berlyand, Yuliya Gorb, and Alexei Novikov

set of non-overlapping δ-polyhedra Λδ which are three dimensional solids, whose
boundaries consist of small triangles (34).

Definition 3. The distribution of balls is δ-D connected if a δ-D partition {Λδ} of Y
exists.

The main use of the δ-D partition is the following maximum principle.

Lemma 2. (The Discrete Maximum Principle).
Suppose t = {t1, t2, . . . , tM} is the solution to the discrete problem (33). Denote by

tmax = max
xi∈∂Λδ

ti, tmin = min
xi∈∂Λδ

ti (35)

the maximal and minimal values of the potential on the boundary of any δ-polyhedron
Λδ. Then the value of the potential tk at any vertex xk in the interior of this δ-
polyhedron (xk ∈ Λδ) is bounded:

tmin ≤ tk ≤ tmax.

An immediate consequence of the maximum principle is a bound on the potential
difference of the vertices inside Λδ in terms of the potentials of the vertices on ∂Λδ.

Lemma 3. Suppose Λδ is any δ-polyhedron of the δ-D partition. The values of the
potential on any given vertices xk, xl ∈ IntΛδ are bounded as follows:

(tk − tl)2 ≤
(D + 2)3

8

∑
Πij∈∂Λδ

(ti − tj)2. (36)

Proof. The formula (36) can be proved by applying the discrete maximum principle
(35) and the triangle inequality for the values ti on xi ∈ Λδ:

(tk − tl)2 ≤ (tmax − tmin)2 ≤ n
∑

Πij∈∂Λδ

(ti − tj)2,

where n is the number of vertices of ∂Λδ . This number is less than the number M of
balls of radius R that can be placed inside the sphere of diameter DR. The number

M is bounded by M ≤ (D + 2)3

8
. Hence, we obtain (36). ��

The numbers of the hoses, prisms and tetrahedra inside any Λδ of the δ-D parti-
tion of Y can be bounded in terms of the parameter D as follows.

Lemma 4. For any Λδ of the δ-D partition of Y the number of tetrahedra #�Λδ
,

the number of prisms #PΛδ
and the number of hoses #ΠΛδ

in Λδ satisfy:

(a) #�Λδ
≤ K1D3, (37)

(b) #PΛδ
≤ K2D3, (38)

(c) #ΠΛδ
≤ K3D3. (39)

where constants Ki, i = 1, 2, 3, are universal.

The derivation of (37) and the values of the corresponding constants can be found
in Appendix 6.2.
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4 Variational Error Estimates

Our approach to variational error estimates is to construct trial fields for (14), that
give rise to tight upper and lower bounds (constructed in Sects. 4.1 and 4.2, respec-
tively), when inclusions are close to touching. For both lower and upper bounds in
(14) the trial functions u ∈ V and v ∈ W are constructed in the hoses, prisms
and tetrahedra determined by the central projection partition of the matrix Q. The
piecewise-differentiable trial function u ∈ V is chosen to be linear in the hose, a lin-
ear interpolation in the tetrahedron, and a linear interpolation in every cross-section
of the prism, and so that it takes values ±1 on ∂Q±. The trial field v ∈ W is chosen
so that it is equal to zero everywhere except in the hoses. In the hoses it is equal to
the local flux defined by (19), where ti are determined as solutions of the discrete
minimization problem (27)-(29).

Our goal is to investigate when the discrete energy I (27) is a good approxi-
mation for Â. For this purpose in Sect. 4.3 the difference between upper and lower
bounds is estimated in terms of the parameters δ, D and I, and the error is obtained.

4.1 Lower Bound

The construction, derivation and justification of the lower bound is identical to that
found in [7], where the technical details of this construction can be found.

Theorem 1. The lower bound on the effective conductivity Â is given by

I(t) ≤ Â (40)

where I(t) is defined by (27), t = (t1, . . . tN ) are the solutions of the minimization
problem (27)-(29) (or equivalently (33)) and the specific fluxes gij are defined by
(22).

Proof. Consider two neighboring balls Bi and Bj centered at xi and xj , and the
values of the potentials ti and tj , respectively. The hose Πij connects them. We
choose

v = vij =

⎧⎨⎩
(

0, 0,
ti − tj

Hij(x, y)

)
, in Πij , i, j = 1, . . . ,K

(0, 0, 0) , otherwise
(41)

where the distance between two neighboring balls Hij(x, y) is defined by (20). Note
that this function is divergence-free since its normal components match along the
discontinuity. The potentials ti and tj on the balls Bi and Bj satisfy the linear system

(33). Then the integral condition
∫

∂Bi

v · n dx = 0, in the definition of the class W ,

is satisfied, so v ∈W .
Now we calculate J [v] defined by (12). First, evaluate the integral

1
2

∫
Q

v2dx =
1
2

∑
Πij

gij(ti − tj)2
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by the definition of the specific flux gij and by the choice of the function v. Also we
note that the fluxes through the boundaries ∂Q± are equal to the discrete fluxes P±

defined by (31). Then

J [v] = −1
2

∫
Q

v2dx +
∫

∂Q+
v · n dx−

∫
∂Q−

v · n dx

= −1
2

∑
Πij

gij(ti − tj)2 +
(
P+ − P−) = I(t).

(42)

Then from (14) we obtain (40). ��

4.2 Upper Bound

The upper bound on the effective conductivity is given by the following theorem.

Theorem 2. For any δ-D connected distribution of balls, the upper bound on the
effective conductivity Â is

Â ≤ I(t) + ĈR
∑
Πij

(ti − tj)2, (43)

where t = (t1, . . . , tN ) is the solution to the discrete minimization problem (27)-
(29), and the constant Ĉ depends on the relative diameter D only:

Ĉ ≤ C0D4.

The proof of this theorem relies on the following more general variational upper
bound given by Lemma 5. In finite element methods [14] for a given distribution of

points xi and Delaunay tetrahedralization {T}, the quotient γ =
ρ

�
, where ρ is the

radius of the circumsphere (circumradius) and � is the length of the shortest edge
of the tetrahedron T , is called a mesh quality measure. Similarly, we use here a
parameter

γ0 = max
T∈{T}

γ (44)

to measure the regularity of our (Delaunay) graph G or, equivalently, the Delaunay
tetrahedralization {T} induced by G.

Lemma 5. For any distribution of balls, the upper bound on the effective conductiv-
ity Â is

Â ≤ 1
2

∑
T∈{T}

⎛⎝ ∑
Π′

ij⊂T

[gij + CΠ ] (ti − tj)2

+
∑

P ′
ijk⊂T

CP

{
(ti − tj)2 + (ti − tk)2

}
+

∑
�ijkm⊂T

C�
{
(ti − tm)2 + (tj − tm)2 + (tk − tm)2

}⎞⎠ ,

(45)
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where Π ′
ij is the part of the hose Πij lying inside the tetrahedron T , analogously,

P ′
ijk is the part of the prism Pijk lying inside T ,

CΠ =

⎧⎪⎪⎨⎪⎪⎩
2πR ln 2γ0 + 4πR

(
1− 1

2γ0

)
, for inner hose,

πR ln 2γ0 + 2πR
(

1− 1
2γ0

)
, for boundary hose,

CP =

{
8γ0R, for inner prism,

16γ0R, for boundary prism,

C� =

⎧⎨⎩
4
3
γ3
0ρ, for inner tetrahedron,

γ3
0ρ, for boundary tetrahedron,

(46)

γ0 is the the measure of regularity of G, given by (44) and ρ is the circumradius of
the tetrahedron T ∈ {T}.

We call the hose, prism and tetrahedron the boundary hose, prism and tetrahe-
dron, respectively, if they belong to a tetrahedron T ∈ {T} which has at least one
vertex in a quasi-ball. Otherwise we call them inner hose, prism and tetrahedron,
respectively. Note that inside every inner tetrahedron T , that is, none of its vertices
belongs to a quasi-ball, there are six hoses, four prisms and one tetrahedron (in this
case the last sum in (45) contains only one term).

Proof of Lemma 5. The trial function u ∈ V is piecewise differentiable. Its con-
struction will be done in the hose Πij , prism Pijk and tetrahedron�ijkm.

First, let us consider the hose Πij . We choose the local coordinate system so
the z-axis is directed along the edge connecting two neighbors, as shown in Fig. 9
(points AB and BA are the points of the intersection of the line segment connecting
the two centers xi and xj with the spheres ∂Bi and ∂Bj , respectively), and the origin

is in
xi + xj

2
.

Fig. 9. The hose Πij

We take a trial function u in Πij to be linear in z and inversely proportional to
the distance Hij(x, y), defined by (20), so that u takes the values ti and tj on the
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spheres ∂Bi and ∂Bj , respectively. Thus in the hose Πij

u(x) = u(x, y, z) =
ti − tj

Hij(x, y)
z +

ti + tj
2

, z ∈
(
−Hij(x, y)

2
,
Hij(x, y)

2

)
.

(47)
Then the Dirichlet integral of the function u defined by (47) over the hose Πij is

bounded (see details in Appendix 6.3, Lemma 7) as follows:∫
Π′

ij

|∇u|2dx ≤
∫

Πij

|∇u|2dx ≤
(
gij − πR ln

(
�

2ρ

)
+ πR

(
1− �

2ρ

))
(ti−tj)2

(48)
where ρ is the circumradius and � is the length of the shortest edge of T .

Next we construct the trial function u in the prism Pijk. Consider the prism
Pijk = A′B′C ′C∗B∗A∗ shown in Fig. 10 and the part of this prism P ′

ijk =
A′B′C ′C ′′B′′A′′ lying in the tetrahedron T shown in Fig. 15(b). We choose the
local coordinate system so that the triangle �A′B′C ′ lies on the xz plane and the
y-axis is directed along the altitude of this prism (Fig. 10).

Fig. 10. The prism Pijk = A′B′C′C∗B∗A∗

For any cross-section, �ÃB̃C̃, perpendicular to the y-axis, the trial function u
is a linear function taking values ti, tj , tk on the arcs A′A∗, B′B∗, C ′C∗, respec-
tively. Let h be the length of the altitude of the prism A′B′C ′C∗B∗A∗: h ≤ 2R.
Note that for such a choice of the coordinate system, for some y = y0 ∈ (0, h) we
have u(x1, y0, z1) = u(x2, y0, z2), ∀x1, x2, z1, z2.

The central projection partition construction provides the congruence of the
cross-section�ÃB̃C̃ and�A′B′C ′ to�ABC. To see this one can take a view from
the top at prism Pijk depicted in Fig. 11. The concentric circles are the cross-sections
of the spheres Bi, Bj , and Bk centered at the points A, B, and C respectively. Points
Ã and A′ are intersections with the sphere Bi of line segments that connect the point
A with the point O, which is an intersection of bisectors to AB, BC, and CA (see
sections 3.2 and 6.1 for details). Points B̃, B′ and C̃, C ′ are defined similarly. Obvi-
ously, both�A′B′C ′ and�ÃB̃C̃ is congruent to�ABC.

Hence, we get the following estimate
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Fig. 11. The prism Pijk from the top

∫
P ′

ijk

|∇u|2dx ≤
∫

Pijk

|∇u|2dx ≤
∫ h

0

dy
∫
�ÃB̃C̃

|∇u|2 dxdz

=
∫ h

0

dy
∫
�A′B′C′

|∇u|2 dxdz ≤ 2R
∫
�A′B′C′

|∇u|2 dxdz.
(49)

The proof of equality of the integrals over�ÃB̃C̃ and�A′B′C ′ in (49) is given in
Appendix 6.6.

For constructing the gradient of u in the triangle�A′B′C ′, we use the procedure
given in [7], which yields the following bound:∫

Pijk

|∇u|2dx ≤ 4R
sin θ

{
(ti − tj)2 + (ti − tk)2

}
, (50)

where θ is the smallest angle in the triangle�A′B′C ′
(
θ ≤ π

3

)
.

The right hand side of the formula (50) can be expressed in terms of the quotient

γ =
ρ

�
as follows:

sin θ ≥ 1
2γ

, (51)

(see details in Appendix 6.4). Now from (50) and (51) we obtain the following esti-
mate in the prism P ′

ijk:∫
P ′

ijk

|∇u|2dx ≤ 8γR
{
(ti − tj)2 + (ti − tk)2

}
. (52)

Finally, we construct the trial function u in the tetrahedron�ijkm = A′B′C ′D′,
see Fig. 15(a). Inside the tetrahedron the trial function u is a linear function, taking
values ti, tj , tk and tm at the points A′, B′, C ′ and D′ respectively. The Dirichlet
integral of such a function over�ijkm is bounded as follows:
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�ijkm

|∇u|2dx ≤ 1
3 |A′B′C ′D′|

{
1
4

∣∣∣−−−→D′B′ ×
−−−→
D′C ′

∣∣∣2 (ti − tm)2

+
1
4

∣∣∣−−−→D′C ′ ×
−−−→
D′A′

∣∣∣2 (tj − tm)2 +
1
4

∣∣∣−−−→D′A′ ×
−−−→
D′B′

∣∣∣2 (tk − tm)2
}
,

(for the details of the construction of u and evaluating its Dirichlet integral see Ap-
pendix 6.5, Lemma 8).

Note that since the tetrahedron∆ijkm is similar to the tetrahedron T = ABCD ∈
{T} (see Fig. 15(a)) then:

ρ′

�′
=

ρ

�
= γ,

where ρ′ is the radius of the circumsphere and �′ is the length of the shortest edge of
the tetrahedron ∆ijkm.

Recall that
1
2

∣∣∣−−−→D′B′ ×
−−−→
D′C ′

∣∣∣ is the area of the triangle made of the vectors
−−−→
D′B′

and
−−−→
D′C ′. The length of a side of a triangle is less than the diameter of the circum-

circle, and since the radius of the circumcircle of any face is less than the radius of

the circumsphere ρ ′ of the tetrahedron, we have
1
2

∣∣∣−−−→D′B′ ×
−−−→
D′C ′

∣∣∣ ≤ 2ρ′2 (the same

is true for the other cross products). Since |A′B′C ′D′| = det
[−−−→
D′A′,

−−−→
D′B′,

−−−→
D′C ′

]
is the volume of the parallelepiped made of the vectors

−−−→
D′A′,

−−−→
D′B′ and

−−−→
D′C ′, we

have det
[−−−→
D′A′,

−−−→
D′B′,

−−−→
D′C ′

]
≥ �′3. Hence we obtain the following bound:

∫
�ijkm

|∇u|2dx ≤ 4 ρ′4

3 �′3
{

(ti − tm)2 + (tj − tm)2 + (tk − tm)2
}

≤ 4
3
γ3ρ′

{
(ti − tm)2 + (tj − tm)2 + (tk − tm)2

}
≤ 4

3
γ3ρ

{
(ti − tm)2 + (tj − tm)2 + (tk − tm)2

}
.

(53)

(a) the boundary prism (b) the boundary tetrahedron
Fig. 12.

The construction the trial function u in hoses, prisms and tetrahedra connecting
the balls and quasi-balls near the upper boundary of Q requires an auxiliary con-
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struction (Fig. 6). The construction of u in the hose Πmm′ is the same as (47), taking
into account that tm′ = 1. Then similar to (48) we have∫

Π′
mm′
|∇u|2dx ≤

∫
Πmm′

|∇u|2dx

≤
(
gmm′ + πR ln

2ρ
�

+ 2πR
(

1− �

2ρ

))
(tm − tm′)2,

(54)

where ρ is the circumradius and � is the shortest edge of the tetrahedron MM ′NQ

(here we used the fact that Hmm′ = δmm′R +R−
√
R2 − x2 − y2).

In the boundary tetrahedron MM ′NQ (Fig. 6) there are four prisms: Pmm′n,
Pm′nq , Pmm′q and Pmnq. The construction of the trial function u in Pmnq is the
same as for the inner case; for the estimate of the Dirichlet integral over Pmnq one
can use (52).

To construct the trial function u in the prism Pmm′n, for example, we divide it
into two parts P1 and P1 (P1 = EFC ′D′DC, P2 = EFC ′D′E′F ′ in Fig. 12(a))
so that the base of one of prism is the right triangle. Then we construct u in each and
estimate the Dirichlet integrals over them using (52). From this we obtain∫

P ′
mm′n

|∇u|2dx ≤
∫

Pmm′n

|∇u|2dx =
∫

P1

|∇u|2dx +
∫

P2

|∇u|2dx

≤ 4R
sin θ1

{
(tm − tm′)2 + (tm′ − tm′)2

}
+

4R
sin θ2

{
(tn − tm′)2 + (tm − tm′)2

}
, (55)

where θ1 and θ2 are the smallest angles of the triangles �DE′D′ and �DE′E,

respectively. Then sin θ1 ≥
�/2
ρ

, similar to the case of the inner prism.

In order to estimate sin θ2 we note that if the sphere centered at the point N (Fig.
6) intersects the boundary ∂Q+ then tn = 1 and all potentials at the vertices of
�DE′E are equal to one. If the sphere centered at N does not intersect ∂Q+ (tn is

not necessarily 1) then in �DE′E so we have sin θ2 ≥
�

2ρ
again analogous to the

inner prism case. Then continuing (55) we get:∫
Pmm′n

|∇u|2dx ≤ 8Rρ
�

(tm − tm′)2 +
8Rρ
�

{
(tn − tm′)2 + (tm − tm′)2

}
≤ 16Rρ

�

{
(tn − tm′)2 + (tm − tm′)2

}
(56)

≤ 16Rγ
{
(tn − tm′)2 + (tm − tm′)2

}
.

In order to construct the trial function u in the tetrahedron �mm′nq we de-
compose this truncated tetrahedron into three tetrahedra �i, i = 1, 2, 3 (�1 =
CC ′G′H ′, �2 = CHH ′G′, �3 = CHGG′ in Fig. 12(b)) and choose u to be a
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linear function in each. Then one can use the estimate (82) in Appendix 6.5 for each
tetrahedron�i:∫

�mm′nq

|∇u|2dx =
∫
�1

|∇u|2dx +
∫
�2

|∇u|2dx +
∫
�3

|∇u|2dx

≤ 3
4γ3ρ

3
{
(tm − tm′)2 + (tn − tm′)2 + (tq − tm′)2

}
,

(57)

where tm′ = 1.
Thus the estimates (48), (52), (53) together with (54), (56) and (57) yield (45).

��
Now we prove Theorem 2 using the above lemma.
Proof of Theorem 2. The key observation here is that all constants in (45), de-

pending on the radius R of inclusions and the parameter γ0, can be expressed in
terms of D only. First, we note that for any tetrahedron T the length of its shortest
edge � is greater than 2R: � > 2R. Note that the circumsphere of any T does not
contain vertices of other tetrahedra, and by Definition 3, the diameter 2ρ of this cir-
cumsphere is bounded as follows: 2ρ ≤ DR, for boundary tetrahedron ρ ≤ DR.

This means that γ0 <
D
4

, and for boundary tetrahedron γ0 <
D
2

. Thus, every con-

stant in (46) is bounded from above by some constant depending on D which is a
multiple of the radius of the inclusion R:

CΠ := 2πR ln (2γ0) + 4πR
(

1− 1
2γ0

)
≤ C11R lnD + C12R

(
1− 2

D

)
,

CP := 16γ0R ≤ C2RD,

C� := 4γ3
0ρ ≤ C3RD4,

where constants C11, C12, C2 and C3 are universal. Thus, all constants CΠ , CP ,
and C� bounded from above by C0D4R, where C0 is universal (that is, does not
depend on R, γ0 or δ). Hence, we have (43). ��

4.3 Error Estimate

Here we give two theorems. Theorem 3 is about the leading term of the asymptotics
of the effective conductivity Â as δ → 0. This leading term is defined by the discrete
energy I (27), which is of order | ln δ| for small δ. In Theorem 4 we obtain the
relative error of approximation of the effective conductivity by the discrete energy
(27) provided that the discrete network approximating the continuum problem is δ-D
connected (Definition 3).

We assume that there exists at least one δ-path connecting the upper boundary
∂Q+ with the lower boundary ∂Q−, where the δ-path is a path such that the maxi-
mum relative interparticle distance between balls centered at its vertices is bounded
by δ. Then the following theorem holds.
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Theorem 3. If there exists at least one δ-path connecting the upper and lower bound-
aries of Q then the effective conductivity Â (8)

Â =
1
2

∫
Q

|∇u|2dx

satisfies the following inequality:

|Â− I(t)| < C, I(t) > K| ln δ|, as δ → 0, (58)

where t = (t1, . . . , tN ) is a solution of the discrete minimization problem (33) and
gij are defined by (22)

gij =
∫

Πij

dx
H2

ij

∼ πR| ln δij |, as δij → 0.

The constant C in (58) depends on the measure of regularity γ0 and the number
of inclusions N , but is independent of δ. The constant K in (58) depends on the
number of inclusions N , the radius R and their locations, but not on δ.

Proof. By Theorem 2 we find that

|Â− I(t)| ≤
∑
Πij

ĈR(ti − tj)2, (59)

where the constant Ĉ depends on the measure of the regularity of the ball distribution
γ0. By the maximum principle we have |ti− tj | ≤ 2, for any i, j. Then from (59) we
have

|Â− I(t)| ≤ 4NRĈ(γ0), (60)

which yields the first inequality in (58).
In order to prove the second inequality (58) we assume that there is a δ-path

connecting the upper and lower boundaries of length k (the number of vertices in the
path) and consider

I(t) ≥ π
∑

short Πij

R |ln δij | (ti − tj)2 ≥ πR| ln δ|
∑

short Πij

(ti − tj)2

≥ πR| ln δ|
∑

δ−path

(ti − tj)2 ≥ πR| ln δ|min
t̃

∑
δ−path

(t̃i − t̃j)2

≥ πR| ln δ|1
k
> K| ln δ|,

where “short Πij” means the hose Πij corresponding relative interparticle distance
δij of which is less or equal than δ.

This gives (58). ��

The next issue we would like to address here is how large is the constant C in
(58). In the following Theorem 4 we obtain an upper bound on this constant C in
terms of the relative D defined in section 3.4 and the radius of inclusion R, provided
the discrete network G of (7) is δ-D connected.
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Theorem 4. If the discrete network G for the continuum problem (7) is δ-D con-
nected, the relative error for the effective conductivity Â is∣∣∣Â− I(t)∣∣∣

I(t) ≤ CRD
10

| ln δ| , (61)

where I(t) is the discrete energy defined by (27), and the constant C does not depend
on δ.

Proof. The idea of the proof is to “absorb” all the O(1) terms in (43) as “smaller
order corrections” into the O(| ln δ|) terms and derive the estimate

I(t) ≤ Â ≤ I(t)
(

1 +
CRD10

| ln δ|

)
. (62)

Then (61) immediately follows from (62).
If the distributions of balls is δ-D connected, then from Theorems 1 and 2 we

obtain the following bounds on the effective conductivity:

I(t) ≤ Â ≤ 1
2

⎛⎝∑
Πij

(gij + C1)(ti − tj)2 +
∑
Pijk

C2[(ti − tk)2 + (tj − tk)2]

+
∑

�ijkm

C3[(ti − tm)2 + (tj − tm)2 + (tk − tm)2]

⎞⎠ .

where the constants C1, C2, C3 depend on R, γ0 but do not depend on δ and can be
bounded from above by C0D4R (see the proof of Theorem 2). Applying this bound
we have:

I(t) ≤ Â ≤ 1
2

⎛⎝ ∑
Πij /∈∂Λδ

gij(ti − tj)2 +
∑

Πij∈∂Λδ

gij(ti − tj)2

+C0D4R

⎧⎨⎩∑
Πij

(ti − tj)2 +
∑
Pijk

[(ti − tk)2 + (tj − tk)2]

+
∑

�ijkm

[(ti − tm)2 + (tj − tm)2 + (tk − tm)2]

⎫⎬⎭
⎞⎠ ,

(63)

where Πij ∈ ∂Λδ means that we consider only the hoses along the edges of some
δ-polyhedra Λδ of the δ-D partition of Y . Now we use (36) to get estimates in Πij ∈
∂Λδ only and Lemma 4 for the upper bounds on numbers of vertices, edges and faces
of δ-polyhedron. Thus, continuing (63) we obtain

I(t) ≤ Â ≤ 1
2

⎛⎝ ∑
Πij /∈∂Λδ

gij(ti − tj)2 +
∑

Πij∈∂Λδ

gij(ti − tj)2

+C0D4R
(D + 2)3

8
[#ΠΛδ

+ 2#PΛδ
+ 3#�Λδ

]
∑

Πij∈∂Λδ

(ti − tj)2

⎞⎠
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≤ 1
2

⎛⎝ ∑
Πij /∈∂Λδ

gij(ti − tj)2 +
∑

Πij∈∂Λδ

gij(ti − tj)2

+C1D7R [K1 + 2K2 + 3K3]D3
∑

Πij∈∂Λδ

(ti − tj)2

⎞⎠
≤ 1

2

⎛⎝ ∑
Πij /∈∂Λδ

gij(ti − tj)2 +
∑

Πij∈∂Λδ

(gij + CD10R)(ti − tj)2

⎞⎠
≤ 1

2

[
1 +

CRD10

| ln δ|

]∑
Πij

gij(ti − tj)2 =
[
1 +

CRD10

| ln δ|

]
I(t).

Hence, combining all the bounds we obtain (62):

I(t) ≤ Â ≤
[
1 +

CRD10

| ln δ|

]
I(t).

��

Note that the difference between last two theorems is in the following. The hy-
pothesis of Theorem 4 (that is, the δ-D connectedness of the graph G) is much
stronger than one of Theorem 3 therewith it provides stronger results which are as
follows. The existence of the δ-D partition {Λδ} of Y implies an existence of the
spanning cluster. While Theorem 3 gives only an order of magnitude of an error of
the discrete network approximation (which is of order | ln δ|), Theorem 4 provides
an explicit error estimate. It states that the leading term of the asymptotics of Â is
equal to the discrete energy I for any number of inclusions N in the composite. Fur-
thermore, this theorem provides a finite error in the limiting case as N → ∞, while
in Theorem 3 the error grows together with N .

5 Numerical Illustration

We now apply the discrete network approximation (27)-(29) to show numerically
that for a fixed volume fraction the sparsity (presence of void spaces) increases the
effective conductivity in the densely packed composites. We compare the effective
conductivities of two types of composites with same volume fraction of inclusions.
The first type corresponds to the periodic arrays of inclusions. The second type cor-
responds to irregular (non-periodic) arrays with void spaces (holes).

Our numerical experiment is designed for the face centered cubic packing (FCC-
packing) of spheres (see Fig. 13), which is known to have the densest possible pack-
ing of identical spheres in 3D [9]. First we describe such a periodic array.

Consider a cube and let its vertices and the centers of its faces be centers of 14
spheres, packed as shown in Fig. 13 where the periodicity cell for such a construction
is presented. This cubic cell contains eight 1/8-spheres, centered at each cube vertex,
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Fig. 13. Periodicity cell for the face-centered cubic array of spheres

and six hemispheres, centered at each center of the cube face. In such an arrangement
of spheres the third layer repeats the first layer in the following sense. Consider two
plane lattices formed by the centers of the spheres in the first and third layers, re-
spectively. Then the perpendicular projections of these lattices on a horizontal plane
are the same.

The FCC-packing is a solution to a close packing problem of finding the dens-
est packing of spheres in three dimensions. The packing density of this type is

f =
π

3
√

2
≈ 0.7405 [15], that is, the volume fraction of inclusions when they are

touching.
We choose the minimal relative interparticle distance for this case to be δ =

5 · 10−8 and the radius of the spheres to be R = 0.2 (the corresponding minimal
distance between two neighboring spheres in the FCC-packing is d = 10−8). Note
that the minimal interparticle distance for the FCC-packing is attained between diag-
onally placed inclusions. For example, neighboring inclusions 1 and 2 are diagonally
placed and distance between them is d, whereas neighboring inclusions 2 and 3 in
Fig. 13 are not diagonally placed and distance between them is larger than d. Fur-
thermore, d and f are related as follows:

d = 2R
(

3

√
π

3
√

2f
− 1

)
. (64)

Now we are going to describe a model example which illustrates our main point
that for highly packed composites, sparsity leads to a very significant increase in the
effective conductivity.

We run two sets of experiments.
E1. For the periodic FCC-packing of spheres of R = 0.2 in the box Y = [−2, 2] ×
[−2, 2] × [−1, 1] with volume fraction f varying from 0.46 to 0.74 with step 0.02,
we compute the effective conductivity using the discrete approximation:

Â � I(t),

where t is the solution of the discrete minimization problem (27)-(29). For this ex-
periment the effective conductivity is denoted by A1 and depicted as Plot 1 in Fig.
14.

E2. (a) For the given relative interparticle distance δ =
d

R
= 5 · 10−8, we compute

the volume fraction f0 of the periodic FCC-packing of inclusions from (64).
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(b) Here we want to remove inclusions from the periodic FCC-packing of step E2(a),
randomly choosing inclusions to remove. We start from the volume fraction f0 ≥
f and remove at random inclusions so that the total volume fraction of removed
inclusions is fr. We choose fr so that the total volume fraction of the remaining
inclusions f = f0 − fr is the same as in the previous experiment (E1). Thus we
obtain irregular (non-periodic, with holes) array of inclusions with the same volume
fraction as the periodic array. Then we can estimate the effective conductivity due to
sparsity (non-periodicity). For the random removal of inclusions we use the Matlab R©

Fig. 14. Comparison of the effective conductivity A1 for FCC, uniform, packing of inclu-
sions, with the effective conductivity A2 of composites with void spaces (non-uniform array
of inclusions)

function randperm(N ) (“random permutation”) that changes randomly the number
of an inclusion in a sequence of numbers of inclusions, where N is the number of
inclusions in this experiment. Then we remove inclusions of the volume fraction fr.
Our objective is to compare the effective conductivity A1 for the periodic FCC-array
of inclusions at volume fraction f = 0.46 . . . 0.74 with the effective conductivity for
the non-periodic array, denoted by A2, when f varies in the same interval.

For each fixed fr we make at least 40 “removal” experiments to collect statistics.
For each of 40 configurations we compute the effective conductivity. The average
of these values is the effective conductivity A2 of a non-uniform composite. A2 is
given by Plot 2 in Fig. 14. Notice that the range of the volume fraction f from 0.46 to
0.74 is exactly the same as in the set of experiments E1. In the set of experiments E2
the relative interparticle distance δ between neighbors is either very small or greater
than 1, whereas in the experiment E1 the distance between the inclusions is always
the same (less than 1) for every fixed volume fraction f . Also note that that the
configurations obtained in the “removal” experiments are non-uniform in the sense
that they contain holes, described in Introduction (see Fig. 1).
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Even though the total volume fraction in periodic and non-uniform configurations
are the same the effective conductivity A2 is approximately 3 times larger than A1.
We also estimate the error (2) of our approximation (27)-(29) by using the upper and
lower bounds for both A1 and A2. Our preliminary results show that the error for A2

of the sparse (non-periodic) configuration is larger than for A1. At the same time the
errors for both A1 and A2 are significantly smaller than the corresponding error in
the analogous two-dimensional problem of randomly distributed disks, estimated in
[7]. We are currently working on understanding this observation.

6 Appendices

6.1 Appendix A

Here we present an alternative construction of the hoses, prisms and tetrahedra using
four pairwise neighbors xi, xj , xk and xm, depicted in Fig. 15, 16. The vertices
xi = A, xj = B, xk = C and xm = D being connected form a tetrahedron T =
ABCD. The point O is an intersection of the bisector planes to the edges of the
tetrahedron. This point O is the Voronoi vertex V . The projections of O on four
corresponding spheres are: πi(V) = A′, πj(V) = B′, πk(V) = C ′, πm(V) = D′.
They form a tetrahedron A′B′C ′D′ which is one of the tetrahedra in the central
projection partition of the domain Q, denoted by ∆ijkm.

(a) the tetrahedron A′B′C′D′ (b) the prism A′B′C′C′′B′′A′′

Fig. 15. The tetrahedron ∆ijkm and the part of a prism P ′
ijk

Each prism contains two parts. To obtain one of them, for instance, the prism
P ′

ijk between three neighbors centered at xi, xj , xk (A, B, C), lying inside T and
shown in Fig. 15(b), we consider the Voronoi edge E that intersects �ABC at the
point O1. The line segment OO1 is the part of E lying inside T . The point O1 is
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the intersection of the bisectors to the edges of the triangle�ABC. The arcs A′A′′,
B′B′′, and C ′C ′′ are the projections of OO1 on the corresponding spheres ∂Bi, ∂Bj

and ∂Bk. The figure A′B′C ′C ′′B′′A′′ obtained is the part of the prism Pijk that lies
inside of T .

Fig. 16. The part of the hose Π ′
ij = A′A′′ABA′′′B′′′BAB′′B′

Finally, we construct as an example, the hoseΠij , connecting two neighbors cen-
tered at xi and xj (A and B in Fig. 16). The points AB and BA are the intersections
of the line segment connecting A and B with corresponding spheres ∂Bi and ∂Bj .
Similar to the point O1, the point O2 is the intersection of the bisectors to the edges
of the triangle �ABD, and the points A′′′ and B′′′ (Fig. 16) are the intersections
of O2A and O2B with the corresponding spheres ∂Bi, ∂Bj . The obtained figure
A′A′′ABA

′′′B′′′BAB
′′B′ is then the part of the hose Π ′

ij that lies inside of T .

6.2 Appendix B

Here we estimate the number of the tetrahedra, prisms, and hoses in Λδ in terms of
the parameter D.

Lemma 6. For any δ-polyhedron Λδ of the δ-D partition of Y of the δ-subgraph Gδ ,
the number of tetrahedra #�Λδ

, the number of prisms #PΛδ
, the number of hoses

#ΠΛδ
in IntΛδ satisfy:

(a) #�Λδ
≤ 3

2
D3,

(b) #PΛδ
≤ 3D3,

(c) #ΠΛδ
≤ 3

2
D3.

(65)
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Proof. By the 3D Euler formula:

#xΛδ
−#ΠΛδ

+ #PΛδ
−#�Λδ

= 1, (66)

where #xΛδ
is the number of vertices xi in Λδ . Since each tetrahedron has 4 faces

and each face belongs to at most two tetrahedra we have the following bound:

#PΛδ
≥ 2#�Λδ

.

Since each edge has 2 vertices and each vertex can belong to not more than 12 edges
(due to the "kissing" number in 3D [9]) we obtain:

#xΛδ
≥ #ΠΛδ

6
.

From (66) we have

#xΛδ
+ #PΛδ

= #�Λδ
+ #ΠΛδ

+ 1 ≤ #PΛδ

2
+ 6#xΛδ

+ 1,

which implies
#PΛδ

2
≥ 5#xΛδ

+ 1 < 6#xΛδ
.

Thus, we obtain

#ΠΛδ
≤ 6#xΛδ

, #PΛδ
≤ 12#xΛδ

, and #�Λδ
≤ 6#xΛδ

.

The volume of Λδ is bounded from above by the volume of the ball of diameter
DR. Let M be the number of balls of radius R that can be placed into this ball. Then
4
3
MπR3 ≤ π

3
D3R3, from which we find #xΛδ

≤ M ≤ D
3

4
. Then from the above

bounds on the number of tetrahedra, prisms and hoses we obtain (65). ��

6.3 Appendix C

Here we give the estimates on the Dirichlet integral of the function u defined by (47).

Lemma 7. Let the function u be given by (47). Then the Dirichlet integral of this
function over the hose Πij is bounded by∫

Πij

|∇u|2dx ≤
(
gij − 2πR ln

(
�

2ρ

)
+ 4πR

(
1− �

2ρ

))
(ti − tj)2. (67)

Proof. If u is given by (47) then its gradient is

∇u(x) =
(
∂u

∂x
,
∂u

∂y
,
∂u

∂z

)
= (ti − tj)

(
−z(Hij)x

H2
ij

, −z(Hij)y

H2
ij

,
1
Hij

)
. (68)
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We need to estimate the Dirichlet integral of u over the hose Πij . Let πj(F)
be the lower base of the hose Πij (see Fig. 9). Recall that the base of the hose is a
convex curvilinear polygon (the projection of the convex polygon on the sphere). Let
S be the projection on the xy-plane of the longest line segment connecting the point
BA with all the vertices of this curvilinear polygon, referred to as the half-width of
the hose (in Fig. 9 the longest line segment connecting BA with other vertices of
πj(F) is BABO, and its projection on xy-plane is equal to S). Then we obtain the
following estimate:

(ti − tj)2
∫

Πij

(
∂u

∂z

)2

dx = (ti − tj)2
∫

Πij

1
(Hij)2

dx

= (ti − tj)2
∫

πj(F)

dxdy
Hij

= gij(ti − tj)2,
(69)

using the formula (22).
Next consider

(ti − tj)2
∫

Πij

[(
∂u

∂x

)2

+
(
∂u

∂y

)2
]

dx

= (ti − tj)2
(∫

Πij

z2(Hij)2x
(Hij)4

dx +
∫

Πij

z2(Hij)2y
(Hij)4

dx

)

≤ (ti − tj)2

4

(∫
πj(F)

[
(Hij)2x
Hij

+
(Hij)2y
Hij

]
dxdy

)
.

(70)

Here we used the fact that z2 ≤
H2

ij

4
since z ∈

(
−Hij

2
,
Hij

2

)
.

Also,

(Hij)2x =
16x2

R2 − x2 − y2
,

so

(Hij)2x
Hij

=
16x2

R2 − x2 − y2

1

δijR + 2R− 2
√
R2 − x2 − y2

≤ 8x2

R2 − x2 − y2

1

R−
√
R2 − x2 − y2

=
8x2

R2 − x2 − y2

R +
√
R2 − x2 − y2

x2 + y2
.

The estimate for
(Hij)2y
Hij

can be obtained Similarly. Continuing (70), we get
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(ti − tj)2
∫

Πij

[(
∂u

∂x

)2

+
(
∂u

∂y

)2
]

dx

≤ (ti − tj)2

4

∫
πj(F)

8x2 + 8y2

R2 − x2 − y2

R +
√
R2 − x2 − y2

x2 + y2
dxdy

= 2(ti − tj)2
∫

πj(F)

R +
√
R2 − x2 − y2

R2 − x2 − y2
dxdy

≤ 2(ti − tj)2
∫

Cj

R +
√
R2 − x2 − y2

R2 − x2 − y2
dxdy,

where Cj is a spherical cap of the sphere ∂Bj centered at BA, the radius of which
equals the half-width S of the hose Πij . Then

(ti − tj)2
∫

Πij

[(
∂u

∂x

)2

+
(
∂u

∂y

)2
]

dx

≤ 4π(ti − tj)2
∫ S

0

R +
√
R2 − r2

R2 − r2
r dr

=

[
−2πR ln

(
1− S2

R2

)
+ 4πR

(
1−

√
1− S2

R2

)]
(ti − tj)2.

(71)

Now our goal is to express the right hand side of the formula (71) in terms of the quo-

Fig. 17. The construction in the triangle �BB′B̃

tient
ρ

�
. Recall that the z-axis is directed along AB. Then the projection B′B̃ (Fig.

17) of the line segment B′BA on the xy-plane is less or equal to S. We consider a
hose in which the length of B′B̃ is exactly S. In the triangle�BB′B̃ the circumra-

dius ρ of the tetrahedron ABCD can be written as ρ = |BO| = |BM |
cos ∠OBM , where

M is the midpoint of AB. From�BB′B̃ we have:

|BB′| = R, |B′B̃| = S; and
S

R
= sin ∠OBM,
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so √
1− S2

R2
= cos ∠OBM =

|BM |
ρ

.

Since |BM | ≥ �

2
, where � is the smallest edge of the tetrahedron ABCD, we obtain

from (71)

−2πR ln
(

1− S2

R2

)
+4πR

(
1−

√
1− S2

R2

)
≤−2πR ln

(
�2

4ρ2

)
+4πR

(
1− �

2ρ

)
.

Hence∫
Πij

|∇u|2dx ≤
(
gij + 2πR ln

(
2ρ
�

)
+ 4πR

(
1− �

2ρ

))
(ti − tj)2. (72)

��

6.4 Appendix D

Here we prove the bound (51).

Proof. Denote by θ the smallest angle in the triangle A′B′C ′. Note that the triangle
A′B′C ′ is similar to the triangle ABC, which is one of the faces of the tetrahedron
T ∈ {T} (see Fig. 15). So we find the estimate for sin θ from the triangle ABC.
Thus θ is the smallest angle of�ABC (∠CAB = θ in Fig. 18). Let θ = θ1 + θ2 =
∠CAO1 + ∠BAO1. Recall that the point O1 is the point of the intersection of the

bisectors of�ABC. Denote ∠CBO1 by θ3, and we see that θ1 + θ2 + θ3 =
π

2
.

Fig. 18. The triangle ABC

From�CBO1:

cos θ3 = sin(θ1 + θ2) = sin θ =
|BC|

2|BO1|
.

Note that |BO1| ≤ ρ then sin θ ≥ |BC|
2ρ

. Since |BC| ≥ �, we get sin θ ≥ 1
2γ

, where

γ =
ρ

�
. Hence, the formula (51) is proved. ��
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6.5 Appendix E

Lemma 8. Let four different points Ai, i = 1, . . . , 4 form a tetrahedron T ′. Let u be
a linear function, taking values ti at Ai, respectively, i = 1, . . . , 4. Then its Dirichlet
integral over T ′ is bounded as follows:∫

T ′
|∇u|2dx ≤ 1

12 |T ′|
{
|A2 × A3|2 (t1 − t4)2 + |A3 × A1|2 (t2 − t4)2

+ |A1 × A2|2 (t3 − t4)2
}
,

(73)

where |T ′| is the volume of the tetrahedron T ′.

Proof. Consider the tetrahedron T ′ = A1A2A3A4 (see Fig. 19) with values of the
potentials ti at the points Ai (i = 1, . . . , 4). We choose a coordinate system so that
the point A4 is the origin.

Fig. 19. The tetrahedron T ′

Inside the tetrahedron T ′ the trial function u(x, y, z) is linear, that is, u(x, y, z) =
ax + by + cz + d, where the constants a, b, c and d are to be determined. If we de-
note K = (a, b, c) and X = (x, y, z) then the function u = K · X + d. Since
u(0, 0, 0) = t4 then d = t4 and

K · Ai + t4 = ti, where Ai = (xi, yi, zi), i = 1, 2, 3.

If we denote

τi = ti − t4 (i = 1, 2, 3), τ4 = 0 then K · Ai = τi, i = 1, 2, 3. (74)

From what we find

K · (τ2A1 − τ1A2) = 0 and K · (τ3A2 − τ2A3) = 0. (75)

The formula (75) implies that K‖ (τ2A1 − τ1A2)× (τ3A2 − τ2A3) or

(τ2A1 − τ1A2)× (τ3A2 − τ2A3) = αK, (76)

where α is some constant to be determined. From equation (76) we have
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K =
τ2τ3A1 × A2 + τ2

2 A3 × A1 + τ1τ2A2 × A3

α
. (77)

Now substitute (77) into, for example, K · A1 = τ1 we get

τ2τ3A1 × A2 + τ2
2 A3 × A1 + τ1τ2A2 × A3

α
· A1 = τ1. (78)

We make the definition detA := det [A1 A2 A3], then simplifying (78) we find that

α = τ2 A1 · A2 × A3 = τ2 detA.

Hence

K =
τ3A1 × A2 + τ1A2 × A3 + τ2A3 × A1

detA = (a, b, c). (79)

Recall that our goal here is to calculate the Dirichlet integral of the function
u = K · X + t4 over the tetrahedron T ′. Then we need to consider |∇u|2 = |K|2:

|K|2 =
|τ3A1 × A2 + τ1A2 × A3 + τ2A3 × A1|2

|detA|2
. (80)

For any real x, y, z, the following inequality holds: (x+y+z)2 ≤ 3x2 +3y2 +3z2.
Continue formula (80) with this inequality gives

|K|2 ≤ 3
|detA|2

(
τ2
3 |A1 × A2|2 + τ2

1 |A2 × A3|2 + τ2
2 |A3 × A1|2

)
.

Now we obtain the estimate for the Dirichlet integral of the trial function u in the
tetrahedron T ′:∫

T ′
|∇u|2dx ≤ 3

|detA|2
|T ′|

(
τ2
3 |A1 × A2|2 + τ2

1 |A2 × A3|2 + τ2
2 |A3 × A1|2

)
.

(81)

Note that the volume of the tetrahedron is |T ′| = 1
6

detA, which yields (81):∫
T ′
|∇u|2dx ≤ 1

2 |detA|
(
τ2
3 |A1 × A2|2 + τ2

1 |A2 × A3|2 + τ2
2 |A3 × A1|2

)
,

(82)
and using (82) and the definition of τi (74), formula (73) follows. ��

6.6 Appendix F

Here we prove that two integrals over�A′B′C ′ and over�ÃB̃C̃ in (49) are equal.
Since the potential function is linear in x and z in every cross-section we will con-
struct it in both�ÃB̃C̃ and�A′B′C ′ and compare the Dirichlet integrals of it over
these triangles. Let u = αx+βz+γ in�ÃB̃C̃ and u′ = ax′+bz′+c in�A′B′C ′.
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The function u takes values ti, tj , tk at points Ã = (xi, yi, zi), B̃ = (xj , yj , zj),
C̃ = (xk, yk, zk), respectively, that is,

ti = αxi + βzi + γ, tj = αxj + βzj + γ, tk = αxk + βzk + γ.

Analogously, u′ takes values ti, tj , tk at points A′ = (x′i, y
′
i, z

′
i), B

′ =
(x′j , y

′
j , z

′
j), C

′ = (x′k, y
′
k, z

′
k), respectively, that is,

ti = ax′i + bz′i + c, tj = ax′j + bz′j + c, tk = ax′k + bz′k + c.

Then one can find the coefficients α, β, a and b :

α =
ti(zj − zk) + tj(zk − zi) + tk(zi − zj)
xi(zj − zk) + xj(zk − zi) + xk(zi − zj)

,

β =
ti(xj − xk) + tj(xk − xi) + tk(xi − xj)
xi(zj − zk) + xj(zk − zi) + xk(zi − zj)

,

γ =
ti(zkxj − xkzj) + tj(zixk − xizk) + tk(xizj − xjzi)

xi(zj − zk) + xj(zk − zi) + xk(zi − zj)
,

and

a =
ti(z′j − z′k) + tj(z′k − z′i) + tk(z′i − z′j)
x′i(z

′
j − z′k) + x′j(z

′
k − z′i) + x′k(z′i − z′j)

,

b =
ti(x′j − x′k) + tj(x′k − x′i) + tk(x′i − x′j)
x′i(z

′
j − z′k) + x′j(z

′
k − z′i) + x′k(z′i − z′j)

,

c =
ti(z′kx

′
j − x′kz

′
j) + tj(z′ix

′
k − x′iz

′
k) + tk(x′iz

′
j − x′jz

′
i)

x′i(z
′
j − z′k) + x′j(z

′
k − z′i) + x′k(z′i − z′j)

.

Therefore, when x =
x′

k
and z =

z′

k
we get α = ak and β = bk. Thus, u =

akx′ + bkz′ + c and ∇u = k∇u′. Since�A′B′C ′ and�ÃB̃C̃ are congruent then

|ÃB̃| = |A
′B′|
k

, |B̃C̃| = |B
′C ′|
k

, and, |�ÃB̃C̃| = |�A
′B′C ′|
k2

.

Hence we obtain∫
Pijk

|∇u|2dx =
∫ h

0

dy
∫
�ÃB̃C̃

|∇u|2dxdz

=
∫ h

0

dy
∫
�A′B′C′

|∇u′|2k2 dx′

k

dz′

k
=

∫ h

0

dy

∫
�A′B′C′

|∇u′|2dx′ dz′. ��
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Summary. We present adaptive algorithms for weak approximation of stopped diffusion us-
ing the Monte Carlo Euler method. The goal is to compute an expected value E[g(X(τ), τ)]
of a given function g depending on the solution X of an Itô stochastic differential equation
and on the first exit time τ from a given domain. The adaptive algorithms are based on an
extension of an error expansion with computable leading order term, for the approximation of
E[g(X(T ))] with a fixed final time T > 0 and diffusion processes X in R

d, introduced in
[17] using stochastic flows and dual backward solutions. The main steps in the extension to
stopped diffusion processes are to use a conditional probability to estimate the first exit time
error and introduce difference quotients to approximate the initial data of the dual solutions.
Numerical results show that the adaptive algorithms achieve the time discretization error of
order N−1 with N adaptive time steps, while the error is of order N−1/2 for a method with
N uniform time steps.

Key words: adaptive mesh refinement algorithm, diffusion with boundary, barrier option,
Monte Carlo method, weak approximation

1 Introduction

In this paper, we compute adaptive approximations of an expected value

E[g(X(τ), τ)] (1)

of a given function, g : D × [0, T ] → R, where the stochastic process X solves an
Itô stochastic differential equation (SDE)
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dXi(t) = ai(X(t)) dt+
l0∑

l=1

bli(X(t)) dW l(t) , i = 1, 2, . . . , d, t > 0 (2)

and τ is the first exit time

τ := inf{0 < t : (X(t), t) �∈ D × (0, T )} (3)

from a given open domain D × (0, T ) ⊂ R
d × (0, T ). The functions a : R

d → R
d

and bl : R
d → R

d for l = 1, 2, . . . , l0, are given drift and diffusion fluxes and
W l(t;ω) for l = 1, 2, . . . , l0, are independent Wiener processes. Such problems arise
in physics and finance, for instance when computing the value of barrier options.

In the case when the dimension of the problem is large or when the related par-
tial differential equation is difficult to formulate or to solve, the Monte Carlo Euler
method is used to compute the expected value. The main difficulty in the approxi-
mation of the stopped (or killed) diffusion on the boundary ∂D is that a continuous
sample path may exit the given domain D even though a discrete approximate solu-
tion does not cross the boundary of D. This hitting of the boundary makes the time
discretization error N−1/2 for the Monte Carlo Euler method with N uniform time
steps, see [7], while the discretization error is of order N−1 without stopping bound-
ary in R

d × [0, T ). The work [13] and [9] reduce the large N−1/2 first exit error to
N−1. The idea is to generate a uniformly distributed random variable in (0, 1) for
each time step and compare it with a known exit probability to decide if the con-
tinuous path exits the domain during this time interval. A similar method with N
uniform time steps in a domain with smooth boundary is proved to converge with the
rateN−1 under some appropriate assumptions in [8]. Different Monte Carlo methods
for stopped diffusions are compared computationally in [5]. To use these methods,
the exit probability needs to be computed accurately.

Inspired by Petersen and Buchmann [16], this work uses the alternative to re-
duce the computational error by choosing adaptively the size of the time steps near
the boundary, which has the advantage that the exit probability does not need to be
computed accurately. Section 2 derives an expansion of the error with computable
leading order term. Section 3 presents an adaptive algorithm based on the error esti-
mate where the time discretization error is of order N−1 with N adaptive time steps.

Using the Monte Carlo Euler method, the expected value (1) can be approxi-
mated by a sample average of g(X(τ), τ), where (X, τ) is an Euler approximation
of (X, τ). The global error can then be split into time discretization error and statis-
tical error,

E[g(X(τ), τ)]− 1
M

M∑
j=1

g(X(τ ;ωj), τ)

=
(
E[g(X(τ), τ)− g(X(τ), τ)]

)
+

⎛⎝E[g(X(τ), τ)]− 1
M

M∑
j=1

g(X(τ ;ωj), τ)

⎞⎠
=: ET + ES (4)
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where M is the number of realizations. The statistical error, ES in (4), is asymptoti-
cally bounded by c0σ/

√
M using the Central Limit Theorem, where σ is the sample

average of the standard deviation of g(X(τ), τ) and c0 is a positive constant for a
confidence interval, see Sect. 3.1.

Talay and Tubaro [18] and Bally and Talay [4] prove an a priori error expan-
sion of E[g(X(T )) − g(X(T ))] for the case without stopping boundary, i.e. for
diffusion processes in R

d × [0, T ]. In the same setting without a stopping bound-
ary, the work [17] proves an expansion of the error with computable leading order

term, error � E
[∑N

n=1 rn

]
, using an error density, ρ = rn/∆t

2
n, which depends

on computable discrete primal and dual solutions. Given this error estimate, consider
an algorithm which for each realization refines the solution, X , by the adaptive time
stepping:

for all time steps n = 1, . . . , N

if
(
rn ≥

TOLT

E[N ]

)
then

divide ∆tn into 2 equal substeps, and generate

the intermediate value of W by the Brownian bridge (5),

else let the new step be the same as the old

endif

endfor,

with the stopping criterion:

if
(

max
1≤n≤N

rn < S
TOLT

E[N ]

)
then stop.

The intermediate sample points from W are constructed by the Brownian bridge,
cf. [10],

W l

(
tn + tn+1

2

)
=

1
2
(
W l(tn) +W l(tn+1)

)
+ zl

n (5)

where zl
n are independent random variables in N(0, (tn+1 − tn)/4), i.e. they are

normally distributed with mean 0 and variance (tn+1 − tn)/4, independent also of
previous W l(tj). Letting c0 be the confidence interval parameter, related to the sta-
tistical error c0σ/

√
M � TOLS , in (4), with TOL = 3TOLT = 3TOLS/2, and

assuming S > C are constants such that C−1 ≤ ρparent

ρchild
≤ C, the work [15] proves

that the algorithm stops with asymptotically optimal expected number of time steps
and the error asymptotically bounded by TOL with large probability (up to problem
independent factors):

E[N ] � 4CE[Noptimal] and P (
error
TOL

≤ S

3
+

2
3
) � (2π)−1/2

∫ c0

−c0

e−x2/2dx .
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In Sect. 2, we approximate the time discretization error, ET in (4), in computable
form by extending the error estimate in [17] to weak approximation of stopped dif-
fusion. As in [18] and [17], the first step to derive an error estimate is to introduce a
continuous Euler path. Then the error between the exact and continuous Euler path
is approximated using stochastic flows and dual backward solutions in Sect. 2.3. The
main idea in this extension is to use difference quotients to replace the stochastic
flows that do not exist at the boundary. The approximate error between the continu-
ous and the discrete Euler path is derived by a conditional probability using Brownian
bridges in Sect. 2.2. Note that the exit probability is used here only to decide the time
steps, not to approximate the expected values directly. Therefore the accuracy of the
approximation of the exit probability is not crucial.

The computation of the dual solutions may be costly in high dimension. A sim-
plified variant of the algorithm based on the local error is obtained by replacing the
dual solutions by 1.

The paper is organized as follows. The computable error estimate for stopped
diffusions is derived in the next section and based on this error estimate we develop
adaptive algorithms in Sect. 3. Finally some numerical results of adaptive refine-
ments in one and two space dimension are given in Sect.4. This paper is an extension
of the preprint paper 5 in [14] where stopped diffusion in one dimension is studied.

2 Error Expansion

Consider a domain D ⊂ R
d and assume that the initial position X(0) = X0 lies in

D. The goal is to compute the expected value E[g(X(τ), τ)] of a given function g
which depends on the stochastic process X and the first exit time τ defined in (3).

First discretize the time interval [0, T ] into N subintervals 0 = t0 < t1 < . . . <
tN = T and let X denote the Euler approximation of the process X; start with
X(0) = X0 and compute X(tn+1) for n = 0, 1, . . . , N − 1 by

Xi(tn+1) = Xi(tn) + ai(X(tn))∆tn +
l0∑

l=1

bli(X(tn))∆W l
n, i = 1, 2, . . . , d,

(6)

where ∆tn := tn+1− tn denote time increments and ∆W l
n := W l(tn+1)−W l(tn)

denote Wiener increments. Approximate the first exit time τ with

τ := min
1≤n≤N

{tn : (X(tn), tn) �∈ D × [0, T )} (7)

using the Euler approximation path X instead of the exact path X .
Introduce, for theoretical purposes only, a continuous Euler path X(t) by

Xi(t) = Xi(tn) +
∫ t

tn

ai(X(tn)) dt+
l0∑

l=1

∫ t

tn

bli(X(tn)) dW l
t, i = 1, 2, . . . , d,

(8)
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for t ∈ [tn, tn+1) and denote by

τ̃ := inf{0 < t : (X(t), t) �∈ D × [0, T )} (9)

the exit time of the continuous Euler path. Then the time discretization error of the
Euler approximation can be split in two parts:

E[g(X(τ), τ)− g(X(τ), τ)]

= E[g(X(τ), τ)− g(X(τ̃), τ̃)] +E[g(X(τ̃), τ̃)− g(X(τ), τ)]
=: EC + ED.

(10)

In [7], Gobet proves the following a priori error estimate with N uniform time steps:

E[f(X(τ), τ)− f(X(τ), τ)] = O(N−1/2). (11)

In order to improve the convergence rate in (11), we adaptively refine the mesh ac-
cording to computable error estimates. Error estimates for ED and EC are derived in
Theorem 1 and Theorem 2 respectively.

2.1 Notation

In this paper, ∂i denotes the derivative with respect to xi, i.e. ∂i := ∂/∂xi, and
similarly for ∂ij and ∂ijk. If same subscript appears twice in a term, the term denotes
the sum over the range of this subscript, e.g., cik∂kbj :=

∑
k cik∂kbj . We use Xt :=

X(t) and Xt := X(t) for the continuous cases and X
n

:= X(tn) for the discrete
case. The piecewise constant mesh function ∆t is defined by

∆t(s) := ∆tn for s ∈ [tn, tn+1) and n = 0, 1, . . . , N − 1 (12)

and
∆tmax := max

n,ω
∆tn(ω).

We let 1A denote the indicator function, i.e. 1A(y) = 1 if y ∈ A, otherwise 1A(y) =
0.

2.2 Expansion of Exiting Error using Probability

Consider the time discretization error between the continuous and the discrete Euler
path, denoted by ED in (10). In the case when the continuous Euler path ends at time
t = T , i.e. τ̃ = T = τ , there is no time discretization error between two Euler paths
since E[g(X τ̃ , τ̃)1τ̃=T ] = E[g(Xτ , τ)1τ=T ]. On the other hand, if the continuous
Euler path is stopped at τ̃ < T then it is possible that τ̃ < τ . Figure 1 shows an
illustrative Monte Carlo trajectory where the continuous Euler path X(t) ∈ R exits
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X(t)
X(t

n
)

t
τ = T 

x = λ
0

x

τ~

T

Fig. 1. An illustrative Euler Monte Carlo trajectory when τ̃ < τ

the domain D = (−∞, λ) at t = τ̃ < T , but the discrete Euler process X
n

does not
stop until much later, τ = T .

Taking the above effect into account, ED can be estimated using the probability
of the continuous Euler path exiting in a time interval (tn, tn+1) conditioned on the

values of X
n

and X
n+1

in the discrete Euler process. Consider the particular case
of a half space D = {x ∈ R

d : 〈v, x〉Rd < λ} for a constant λ and a constant unit
vector v. The probability PX,n of X(t) exiting at some t ∈ (tn, tn+1) has an explicit
expression, see e.g. [12], [1],

PX,n := P

[
max

t∈[tn,tn+1]
〈v,Xt〉Rd ≥ λ

∣∣∣∣Xn
= z1,X

n+1
= z2

]
= exp

(
−2

(λ− 〈v, z1〉Rd)(λ− 〈v, z2〉Rd)
σ2∆tn

)
(13)

where 〈v, z1〉Rd < λ and 〈v, z2〉Rd < λ and σ2 = vib(X
n
)
ib(X

n
)
jvj . The work [3]

studies estimates for the exit probability of the Brownian bridge in general cases of
one dimension, e.g. with time dependent lower and upper boundaries. For a family
of non degenerate SDEs in high dimension, including the half space case, the exit
probabilities are expressed as asymptotic series in [6], [2]. In the more general case,
we can approximate D locally near the boundary by its tangent half space and use
the approximation of the exit probability for the half space case, see [7], [8].

We have the following error representation for ED, formulated for the case D =
{x ∈ R

d : x1 < λ} :

Theorem 1. Let X(t) and X(tn) be the continuous and discrete Euler approxi-
mations defined in (8) and (6) respectively. Let χ be the σ-algebra generated by
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{Xn
: n = 0, 1, . . . , N}. Then the error ED has the representation

E[g(X τ̃ , τ̃)− g(Xτ , τ)] = E

[
N−1∑
n=0

(
g(Xξn

, ξn)− g(Xτ , τ)
)
P̂X,n

]
(14)

for ξn ∈ (tn, tn+1), Xξn
= (λ,X2,ξn

, . . . ,Xd,ξn
) satisfying

g(Xξn
, ξn) = E

[
g(X τ̃ , τ̃)

∣∣ χ, τ̃ ∈ [tn, tn+1)
]

and where P̂X,n are conditional first exit probabilities defined by

P̂X,n = PX,n

n−1∏
k=0

(1− PX,k), n = 1, 2, . . . , N − 1, (15)

P̂X,0 = PX,0,

using the conditional exit probabilities from (13).

Proof. Since E[(g(X τ̃ , τ̃)− g(Xτ , τ))1τ̃=T ] = 0 and 1τ̃<T =
∑N−1

n=0 1τ̃∈[tn,tn+1)

we obtain

E[g(X τ̃ , τ̃)− g(Xτ , τ)] = E

[
N−1∑
n=0

(g(X τ̃ , τ̃)− g(Xτ , τ))1τ̃∈[tn,tn+1)

]
,

and after smoothing with the σ-algebra χ generated by {Xn
: n = 0, 1, . . . , N}

E[g(X τ̃ , τ̃)− g(Xτ , τ)] = E

[
N−1∑
n=0

E
[(
g(X τ̃ , τ̃)− g(Xτ , τ)

)
1τ̃∈[tn,tn+1)

∣∣χ]].
(16)

In the right hand side we have

E[g(Xτ , τ)1τ̃∈[tn,tn+1)

∣∣ χ] = g(Xτ , τ) P[τ̃ ∈ [tn, tn+1)|χ] (17)

since g(Xτ , τ) ∈ χ, and, using the independence of the different coordinate direc-
tions in the Brownian bridge and the mean value theorem for integration

E[g(X τ̃ , τ̃)1τ̃∈[tn,tn+1)

∣∣χ] = E
[
g(X τ̃ , τ̃)

∣∣χ, τ̃ ∈ [tn, tn+1)
]
P[τ̃ ∈ [tn, tn+1) |χ]

= g(Xξn
, ξn)P[τ̃ ∈ [tn, tn+1) | χ], (18)

for some ξn ∈ (tn, tn+1), Xξn
= (λ,X2,ξn

, . . . ,Xd,ξn
). Inserting (17) and (18)

into (16) we get

E[g(X τ̃ , τ̃)− g(Xτ , τ)]=E

[
N−1∑
n=0

(
g(Xξn

, ξn)− g(Xτ , τ)
)

P[τ̃ ∈ [tn, tn+1) |χ]

]
.

(19)
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To compute the probability in (19), we observe that the event {τ̃ ∈ [tn, tn+1)} is
equivalent to{

Xt∈[t0,t1) ∈ D, . . . ,Xt∈[tn−1,tn) ∈ D, and Xt∈[tn,tn+1) �∈ D
}

and that the events
{
Xt∈[tn,tn+1) ∈ D

}
, for n = 0, 1, . . . , N − 1, are independent

with respect to χ. Thus, using the conditional exit probabilities PX,k, we obtain

P̂X,n := P[τ̃ ∈ [tn, tn+1) | χ] = PX,n

n−1∏
k=0

(1− PX,k)

and

P̂X,0 := P[τ̃ ∈ [t0, t1) | χ] = PX,0,

which together with (19) proves (14).

Remark 1. For uniform time steps we know from [7] that
E[g(X τ̃ , τ̃) − g(Xτ , τ)] = O(

√
∆t). To obtain a computable approximation of

E
[
g(X τ̃ , τ̃)

∣∣ χ, τ̃ ∈ [tn, tn+1)
]

approximate by a linear function

g(X τ̃ , τ̃) = g(X(tn), tn) +B(X τ̃ −X(tn)) +O(|X τ̃ −X(tn)|2 + |τ̃ − tn|).

The last two terms have expected value E[. . . |χ, τ̃ ∈ [tn, tn+1)] = O(∆t)
and Xξn

= (λ,X2,ξn
, . . . ,Xd,ξn

) is based on pinned Brownian motions Y :=
(X2, . . . ,Xd) independent of τ̃ . Hence the expected value E[Y |χ, τ̃ ∈ [tn, tn+1)] is

Y (tn) + (Y (tn+1 − Y (tn))
E[τ̃ |χ, τ̃ ∈ [tn, tn+1)]− tn

tn+1 − tn
.

The expected value E[τ̃ |χ, τ̃ ∈ [tn, tn+1)] can be calculated from the explicit prob-
ability distribution of the exit time for Brownian bridges in [1].

2.3 Error Expansion Using Dual Solutions

In this subsection, we derive a computable error estimate between the exact and the
continuous Euler path, i.e. EC in (10). The main result is stated in Theorem 2 and the
proof is presented afterwards.

The error estimate uses the discrete dual functions ϕ(tn), ϕ′(tn) and ϕ′′(tn),
taking values in R

d, R
d2

and R
d3

respectively, defined as follows. For simplicity we
describe the case when D is the half space {x : x1 < λ}; see Remark 2. Introduce
the notation

ci(tn, x) = xi +∆tnai(x) + bli(x)∆W l
n, i = 1, 2, . . . , d,

βij(x) =
1
2
bli(x)blj(x), i, j = 1, 2, . . . , d.
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Then the function ϕ is defined by the dual backward problem

ϕi(tn) = ∂icj(tn,X
n
)ϕj(tn+1), tn < τ, i = 1, 2, . . . , d, (20)

ϕi(τ) =

⎧⎪⎨⎪⎩
∂ig(Xτ , τ), if τ = T , i = 1, 2, . . . , d, or

if τ < T and i = 2, . . . , d,

−(g(X̂ τ̂ , τ̂)− g(Xτ , τ))/∆x, if τ < T and i = 1;

(21)

since ∂1g(Xτ , τ) does not exist if τ < T we have introduced the restarted Euler

approximation X̂(tn) for tn ∈ [τ , τ̂ ] with initial value X̂(τ) = X(τ) + γ∆x, where
γ is an inward unit normal vector, ∆x is a small positive number and τ̂ denotes the

first exit time of X̂ , i.e. τ̂ := min{tn : τ < tn and X̂
n

�∈ D}. The first variation ϕ′

satisfies, cf. [17],

ϕ′
ik(tn) = ∂icj(tn,X

n
)∂kcm(tn,X

n
)ϕ′

jm(tn+1)

+ ∂2
ikcj(tn,X

n
)ϕj(tn+1), tn < τ, (22)

ϕ′
ik(τ) = δ2

ikg(Xτ , τ), (23)

where we interpret δ2
ikg(Xτ , τ) as the corresponding second derivatives when pos-

sible and make use of difference quotients otherwise. If no simplifying property of
the domain D and the drift bli is present we may use additional restarted processes,

similar to X̂ , and difference quotients to define the initial values of ϕ′ and ϕ′′. Inter-
preting δ3

ikpg(Xτ , τ) analogously to δ2
ikg(Xτ , τ), the second variation ϕ′′ satisfies

ϕ′
ikp(tn) = ∂icj(tn,X

n
)∂kcm(tn,X

n
)∂pcr(tn,X

n
)ϕ′′

jmr(tn+1)

+ ∂2
ipcj(tn,X

n
)∂kcm(tn,X

n
)ϕ′

jm(tn+1)

+ ∂icj(tn,X
n
)∂2

kpcm(tn,X
n
)ϕ′

jm(tn+1)

+ ∂2
ikcj(tn,X

n
)∂pcm(tn,X

n
)ϕ′

jm(tn+1)

+ ∂3
ikpcj(tn,X

n
)ϕj(tn+1), tn < τ, (24)

ϕ′′
ikr(τ) = δ3

ikpg(Xτ , τ). (25)

Remark 2. For more general domains we may approximate ∂D with the tangent
plane at the stopping point (Xτ , τ), compute derivatives of g in the directions of
the tangent plane and use difference quotients in the normal direction and then trans-
form back to the original coordinate directions.

The time discretization error EC in (10) has the following error expansion:

Theorem 2. Let X(t), X(t) and X(tn) be the exact, the continuous Euler and the
discrete Euler path defined in (2), (8) and (6) respectively. Assume that the functions
a, b and g are bounded in C6(D) and C6(D × [0, T ]) respectively. Then the time
discretization error EC has the error expansion
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E[g(Xτ , τ)− g(X τ̃ , τ̃)] = E

[
N−1∑
n=0

1tn+1≤τρn∆t
2
n

]
(26)

+O
(
∆x+

√
∆tmax +

√
∆tmax

∆xk

)
E

[
N−1∑
n=0

∆t2n

]

where ∆x is a small positive constant and k ∈ {1, 2, 3} is the highest order of
difference quotient used in (20)–(25) to define ϕ, ϕ′, ϕ′′, and

ρn =
1
2
(∂tak + aj∂jak + βij∂

2
ijak)(X

n
)ϕk(tn+1)

+
1
2
(
∂tβkm + 2βjm∂jak + aj∂jβkm + βij∂

2
ijβkm

)
(X

n
)ϕ′

km(tn+1) (27)

+ (βjr∂jβkm)(X
n
)ϕ′′

kmr(tn+1).

Remark 3. If we do not solve the backward dual problems (20)–(25), but instead set
ϕ ≡ ϕ′ ≡ ϕ′′ ≡ 1 we obtain adaptivity based on the local error.

The proof of Theorem 2 has several steps and we present them by following three
lemmas. Let us first introduce a solution u of the Kolmogorov backward equation

∂tu+ ai∂iu+ βij∂
2
iju = 0, (x, t) ∈ D × [0, T ), (28)

u(x, T ) = g(x, T ), x ∈ D,

u(x, t) = g(x, t), (x, t) ∈ ∂D × [0, T ].

Then by the Feynman-Kac formula u can be represented by the expectation

u(x, t) = E[g(Xτ , τ) | X(t) = x]. (29)

Let ai and bi be the piecewise constant functions defined by ai(t) = ai(X
n
) and

bi(t) = bi(X
n
) for t ∈ [tn, tn+1). Similarly define βij = 1

2b
l
ib

l
j . Then the time

discretization error EC has the following representation :

Lemma 1. Let X(t) and X(t) be the exact and the continuous Euler path defined by
(2) and (8) respectively and let the function u be defined by (29). Suppose that the
assumptions in Theorem 2 hold. Then the time discretization error between these two
paths has the representation

E[g(Xτ , τ)− g(X τ̃ , τ̃)] = E

[∫ τ̃

0

(
(ai − ai)∂iu+ (βij − βij)∂2

iju
)
(Xt, t) dt

]
.

(30)

Proof. Apply the Itô formula to the function u in (29) to get

du(Xt, t) =
(
∂tu+ ai∂iu+ βij∂

2
iju

)
(Xt, t) dt+ bli∂iu(Xt, t) dW l

t.
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Here the definition of the continuous Euler scheme in (8) is used, i.e. dXi(t) =
ai dt + bli dW l

t for t ∈ [tn, tn+1). Integrate both sides from 0 to τ̃ and take the
expectation to obtain

E[u(X τ̃ , τ̃)− u(X0, 0)] = E

[∫ τ̃

0

(∂tu+ ai∂iu+ βij∂
2
iju)(Xt, t) dt

]

+ E

[∫ τ̃

0

bli∂iu(Xt, t) dW l
t

]
.

(31)

Note that the Itô integral in (31) is not adapted to the standard filtration gen-
erated by W alone. Instead consider the filtration Gt, the σ-algebra generated by
{W l(s),∆t(s) : s ≤ t, l = 1, 2, . . . , l0}. Then from Lemma 4.2 in [15] the Itô
integral in (31) is a martingale with respect to Gt and since τ̃ is a stopping time, we
therefore have

E

[∫ τ̃

0

bli∂iu(Xt, t)dW l
t

]
= 0.

In the left hand side of (31) we use the boundary conditions in (28)

E[u(X τ̃ , τ̃)] = E[g(X τ̃ , τ̃)],

and the Feynman-Kac formula (29)

u(X0, 0) = E[g(Xτ , τ) | X0 = X0] = E[g(Xτ , τ)].

Finally we use the Kolmogorov backward equation (28) to eliminate ∂tu in the first
expectation of the right hand side in (31) and conclude (30).

Using the discrete time steps, the error representation (30) can be written

E[g(Xτ , τ)− g(X τ̃ , τ̃)]

= E

[
N−1∑
n=0

∫ tn+1

tn

1t≤τ̃

(
(ai − ai)∂iu+ (βij − βij)∂2

iju
)
(Xt, t) dt

]
. (32)

Lemma 2. Let X(t) and X(t) be the exact path and the continuous Euler path de-
fined in (2) and (8) respectively and assume that the assumptions in Theorem 2 hold.
Then the time discretization error between these two paths has the following expan-
sion

E[g(Xτ , τ)−g(X τ̃ , τ̃)]=E

[
N−1∑
n=0

1tn+1≤τ ρ̃n∆t
2
n

]
+O(

√
∆tmax)E

[
N−1∑
n=0

O(∆t2n)

]
(33)

where
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ρ̃n =
1
2
(∂tak + aj∂jak + βij∂

2
ijak)(X

n
)∂ku(X

n+1
, tn+1)

+
1
2
(
∂tβkm + 2βjm∂jak + aj∂jβkm + βij∂

2
ijβkm

)
(X

n
)∂2

kmu(X
n+1

, tn+1)

+ (βjr∂jβkm)(X
n
)∂3

kmru(X
n+1

, tn+1). (34)

Proof. Apply the Itô formula to each term in (32) to get

ai(Xt)− ai(Xt) = ai(Xt)− ai(Xn)

=
∫ t

tn

(
∂sai + ak∂kai + βjk∂

2
jkai

)
(Xs) ds

+
∫ t

tn

blj∂jai(Xs) dW l
s,

and similarly

βij(Xt)− βij(Xt)

=
∫ t

tn

(
∂sβij + ak∂kβij + βkm∂

2
kmβij

)
(Xs) ds+

∫ t

tn

blk∂kβij(Xs) dW l
s.

Substitute the above integrals in (32) and use Malliavin derivatives, see [17], for
example

E

[
N−1∑
n=0

∫ tn+1

tn

1t≤τ̃

∫ t

tn

blj∂jai(Xs)∂iu(Xt, t) dW l
s dt

]

= E

[
N−1∑
n=0

∫ tn+1

tn

1t≤τ̃

∫ t

tn

2βjm∂jai(Xs)∂2
imu(Xt, t) ds dt

]
to get

E[g(Xτ , τ)− g(X τ̃ , τ̃)]

= E

[
N−1∑
n=0

∫ tn+1

tn

1t≤τ̃

(∫ t

tn

(
∂sai + ak∂kai + βjk∂

2
jkai

)
(Xs) ds ∂iu(Xt, t)

+
∫ t

tn

(
∂sβkm + 2βjm∂jak + aj∂jβkm + βij∂

2
ijβkm

)
(Xs) ds ∂2

kmu(Xt, t)

+
∫ t

tn

2βjr∂jβkm(Xs) ds ∂3
kmru(Xt, t)

)
dt
]
. (35)

Each term in (35) has the form

E

[
N−1∑
n=0

∫ tn+1

tn

∫ t

tn

1t≤τ̃f(Xs) h(Xt, t) dsdt

]
(36)
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where f is a function of ai, βij and their derivatives representing the local error and
h is a function of the derivatives of u. Finally apply the a priori error estimate (11)
to the expected value (36) to conclude

E

[
N−1∑
n=0

∫ tn+1

tn

∫ t

tn

1t≤τ̃f(Xs) h(Xt, t) dsdt

]

= E

[
N−1∑
n=0

1
2
1tn+1≤τf(X

n
)h(X

n+1
, tn+1)∆t2n

]
+O(

√
∆tmax)E

[
N−1∑
n=0

∆t2n

]
which proves (33).

Note that the quantities ∂iu, ∂
2
iju and ∂3

ijku in (34) not are computable. The adap-
tive algorithms will use the computable approximations (20)-(25) for these functions.
From the construction of u we have

∂ku(x, t) = E[∂iu(Xτ , τ)X ′
ik(τ ; t) | X ′

ij(t) = δij , X(t) = x], (37)

where δij denotes the Kronecker δ–function and X ′
ij(s; t) := ∂Xi(s;X(t) =

x)/∂xj is the first variation of X(s) with respect to a perturbation in the initial
location at time t, i.e. it satisfies

dX ′
ij(s) = ∂kai(X(s))X ′

kj(s) ds+ ∂kb
l
i(X(s))X ′

kj(s) dW l(s), t < s < τ,

(38)

X ′
ij(t) = δij .

The goal is to approximate ∂ku(X
n
, tn) in (34) by conditional expected values of

the computable quantities ϕk defined in (20)-(21) and similarly to approximate ∂2
iju

and ∂3
ijku by expected values of ϕ′

ij and ϕ′′
ijk in (22)-(23) and (24)-(25) respectively.

Note that if the continuous exact path finishes at τ = T then by the definition of
u, we have ∂ku(XT , T ) = ∂kg(XT , T ) so that

E[∂iu(Xτ , τ)X ′
ik(τ ; t)1τ=T | X ′

ij(t) = δij , X(t) = x]

= E[∂ig(XT , T )X ′
ik(T ; t)1τ=T | X ′

ij(t) = δij , X(t) = x]. (39)

However, for τ < T the first variation ∂ig(Xτ , τ) exists only in the directions tangent
to the boundary ∂D, i = 2, . . . , d. In the direction normal to ∂D we approximate
∂1u(Xτ , τ) in (37) by the expected value of a difference quotient of g and remove
this second expected value. To do this we introduce a small positive constant ∆x.
Once the continuous exact path crosses the boundary, we start a new realization X̂
with the initial value

X̂(τ) = X(τ) + γ∆x ∈ D,

where γ denotes an inward unit normal vector. The new realization X̂t evolves by
(2) for τ < t < τ̂ until it stops with the first exit time τ̂ ∈ (τ, T ]. Then by the Taylor
expansion we have
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∂1u(Xτ , τ) = −u(X̂τ , τ)− u(Xτ , τ)
∆x

+O(∆x)

and the Feynman-Kac formula (29) gives

∂1u(Xτ , τ) = −E[g(X̂τ̂ , τ̂)− g(Xτ , τ)|Gτ ]
∆x

+O(∆x)

where Gt is the σ-algebra generated by {W l(s),∆t(s) : s ≤ t, l = 1, 2, . . . , l0}.
Use the measurability of X ′

ik(τ ; t)1τ<T ∈ Gτ to get

E
[
∂1u (Xτ , τ)X ′

1k(τ ; t)1τ<T | X ′
ij(t) = δij , X(t) = x

]
=E

[
E

[
g(X̂τ̂ , τ̂)− g(Xτ , τ)

−∆x

∣∣∣∣∣ Gτ

]
X ′

1k(τ ; t)1τ<T

∣∣∣∣∣ X ′
ij(t) = δij , X(t) = x,

X̂τ = Xτ + γ∆x

]
+O(∆x)

=E

[
E

[
g(X̂τ̂ , τ̂)− g(Xτ , τ)

−∆x X ′
1k(τ ; t)1τ<T

∣∣∣∣∣ Gτ

] ∣∣∣∣∣ X ′
ij(t) = δij , X(t) = x,

X̂τ = Xτ + γ∆x

]
+O(∆x)

=E

[
g(X̂τ̂ , τ̂)− g(Xτ , τ)

−∆x X ′
1k(τ ; t)1τ<T

∣∣∣∣∣ X ′
ij(t) = δij , X(t) = x,

X̂τ = Xτ + γ∆x

]
+O(∆x),

and thus

E[∂iu(Xτ , τ)X ′
ik(τ ; t)1τ<T | X ′

ij(t) = δij , X(t) = x]

= E

[
−g(X̂τ̂ , τ̂)− g(Xτ , τ)

∆x
X ′

1k(τ ; t)1τ<T

∣∣∣∣∣ X ′
ij(t) = δij , X(t) = x,

X̂τ = Xτ + γ∆x

]

+ E

[
d∑

i=2

∂ig(Xτ , τ)X ′
ik(τ ; t)1τ<T

∣∣∣∣∣ X ′
ij(t) = δij , X(t) = x

]
+O(∆x). (40)

The expected values in the right hand sides of (39) and (40) can be approximated
using Euler approximations and the error in doing so is estimated by repeated use of

the a priori error estimate (11). Let thus (X̂, τ̂) be the Euler approximation of (X̂, τ̂)
and gather all Xi, Xij in a stochastic process Yt, taking values in R

d+d2
. Then Yt

satisfies the system of SDEs, (2) and (38), which we write

dY (t) = A(Y (t)) dt+Bl(Y (t)) dW l(t), t > t0, Y (t0) = Y0. (41)

Similarly define the corresponding Euler approximation Y of Y as the solution of

Y (tn+1) = Y (tn) +A(Y (tn))∆tn +Bl(Y (tn))∆W l
n, n ≥ 0, Y (t0) = Y0.

(42)
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Consider first the case τ = T ; apply the a priori error estimate (11) to the functions
f̌(Yτ , τ) = ∂ig(Xτ , τ)X ′

ik(τ ; t)1τ=T , for k = 1, 2, . . . , d, to get

E[f̌(Yτ , τ)− f̌(Y τ , τ)] = O(
√
∆tmax).

When τ < T , the second expected value in the right hand side of (40) is treated
similarly as when τ = T . For the first expected value in the right hand side
in (40), extend Yt to Yt containing also the d-dimensional process X̂t, which
solves (2) for τ < t < τ̂ . Then Yt has two exit times θ = (τ, τ̂)T. Denote by
Y and θ the corresponding Euler approximations and apply (11) to the functions

f̌(Yθ, θ) = − g(X̂τ̂ ,τ̂)−g(Xτ ,τ)
∆x X ′

1k(τ ; t)1τ<T , for k = 1, 2, . . . , d, to obtain

E[f̌(Yθ, θ)− f̌(Yθ, θ)] = O
(√

∆tmax

∆x

)
and consequently

∂ku(x, t) = E[∂ig(Xτ , τ)X ′
ik(τ ; t)1τ=T | X

′
ij(t) = δij , X(t) = x]

+ E

[
g(X̂ τ̂ , τ̂)− g(Xτ , τ)

−∆x X
′
1k(τ ; t)1τ<T

∣∣∣∣∣ X
′
ij(t) = δij ,X(t) = x,

X̂τ = Xτ + γ∆x

]

+ E

[
d∑

i=2

∂ig(Xτ , τ)X
′
ik(τ ; t)1τ<T

∣∣∣∣∣X ′
ij(t) = δij ,X(t) = x

]

+O
(
∆x+

√
∆tmax +

√
∆tmax

∆x

)
. (43)

This is an expansion of the expected value of ϕk defined in (20)-(21). The higher
derivatives ∂2

iju and ∂3
ijku can be computed in a similar way and we have the error

expansion:

Lemma 3. Suppose the assumptions in Theorem 2 hold. Then the function u defined
by (29) and the dual functions ϕ, ϕ′ and ϕ′′ defined by (20)-(25) satisfy, for α =
1, 2, 3,

∂αu(X(tn), tn)− E[ϕα(tn) | Fn] = O
(
∆x+

√
∆tmax +

√
∆tmax

∆xα

)
(44)

where Fn denotes the σ-algebras generated by {W l(s),∆t(s) : s ≤ tn, l =
1, 2, . . . , l0}, ϕ1 = ϕi, ϕ2 = ϕ′

ij and ϕ3 = ϕ′′
ijk for some i, j, k and ∂αu is

the corresponding α:th order derivative of u.

Proof. For α = 1, the approximation (43) and the definition (20)-(21) yield (44).
Following [17] extend Y to be (X,X ′, X ′′, X ′′′)T satisfying the SDE similar

to (41) with Y (t0) = (x, I, 0, 0)T where I is the d × d-identity matrix. Here the
first variation X ′ of X is defined in (38) and the other higher variations are defined
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similarly by taking the derivatives to the right hand side of (38). Introduce the corre-
sponding Euler approximate Y = (X,X

′
,X

′′
,X

′′′
)T satisfying the SDE similar to

(42) and let (X
′
,X

′′
,X

′′′
) denote the Euler approximations of (X ′, X ′′, X ′′′). For

the case when τ = T and α = 2 or 3, we use the a priori error estimate (11) for the
extended systems Y and Y with

f̌(Yτ , τ) =
(
∂igX

′′
ikn + ∂2

irgX
′
ikX

′
rn

)
1τ=T if α = 2,

f̌(Yτ , τ) =(∂igX
′′′

iknm + ∂2
irgX

′
ikX

′′
rnm

+ ∂2
irgX

′
inX

′′
rkm + ∂2

irgX
′
imX

′′
rkn

+ ∂3
irvgX

′
ikX

′
rnX

′
vm)1τ=T if α = 3,

where f̌(Yτ , τ) in the case α = 2 derives from

∂knu(x, t) = E [∂iu(Xτ , τ)X ′′
ikn(τ) + ∂iru(Xτ , τ)X ′

ik(τ)X ′
rn(τ) |

X ′′
ikn(t) = 0, X ′

ij(t) = δij , X(t) = x
]

with u(Xτ , τ) = g(Xτ , τ) if τ = T and similarly for α = 3. The extension to the
case τ < T is similar to the first order derivative treated above; this time second
and third order difference quotients appear leading to terms O(

√
∆tmax/∆x

2) and
O(
√
∆tmax/∆x

3) respectively.

Proof of Theorem 2. The measurability of the function fn depending on the deriv-
atives of a and β, e.g. fn = 1tn+1≤τ (∂tak + aj∂jak +βij∂

2
ijak)(X

n
)∆t2n ∈ Fn+1,

proves

E

[
N−1∑
n=0

fnE[ϕk(tn+1)|Fn+1]

]
= E

[
E

[
N−1∑
n=0

fnϕk(tn+1)

∣∣∣∣∣Fn+1

]]

= E

[
N−1∑
n=0

fnϕk(tn+1)

]
. (45)

Similar representations hold for the other terms in (34). Consequently, the combina-
tion of Lemma 2-3 and the removal of the second expectation (45) prove (26). �

Remark 4. In the case of only first order difference quotients, the optimal size of
the constant ∆x for the difference quotient in (44) is O((∆tmax)1/4) and ∆x =
TOL1/4

T is used for the adaptive algorithm in Sect. 3 where TOLT is a given time
discretization error tolerance. In the one dimensional example in Sect. 4 we use the
Kolmogorov equation to replace higher order derivatives on the boundary with lower
order terms. For instance ϕ′(τ) = −β−1(∂tg(Xτ , τ) + a(Xτ )ϕ(τ)) and ϕ′′′(τ) =
β−1((∂tg(X̂ τ̂ , τ̂)− ∂tg(Xτ , τ))/∆x+ ∂xa(Xτ )ϕ(τ) + (a+ ∂xβ)(Xτ )ϕ′(τ)).
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3 Adaptive Algorithms for Stopped Diffusion

This section presents adaptive algorithms for the stopped diffusion problems. As de-
scribed in Sect. 2, the computational error is separated into the following three terms :
the time discretization error between the exact and the continuous Euler path EC , the
time discretization error between the continuous and discrete Euler approximation
ED, and the statistical error ES , i.e.

E[g(X(τ), τ)]− 1
M

M∑
j=1

g(X(τ ;ωj), τ)

= E[g(X(τ), τ)− g(X(τ̃), τ̃)] +E[g(X(τ̃), τ̃)− g(X(τ), τ)]

+

⎛⎝E[g(X(τ), τ)]− 1
M

M∑
j=1

g(X(τ ;ωj), τ)

⎞⎠
=: EC + ED + ES . (46)

For a given error tolerance TOL, the goal is to minimize the computational work,
which is roughlyO(M ·N) = O(TOL−2

S TOL−1
T ) where TOLS and TOLT denote

a statistical tolerance and a time discretization tolerance respectively. Thus we obtain

TOLS =
2
3
TOL and TOLT =

1
3
TOL (47)

by solving

min TOL−2
S TOL−1

T subject to TOLS + TOLT = TOL.

3.1 Control of the Statistical Error

Let us first introduce some notation. Define the sample average A(Y ;M) and the
sample standard deviation σ(Y ;M) of Y by

A(Y ;M) :=
1
M

M∑
j=1

Y (ωj), σ(Y ;M) :=
(
A(Y 2;M)− (A(Y ;M))2

) 1
2 .

Then from the Central Limit Theorem, the statistical error ES in (46) satisfies

|ES | ≤ ES(Y ;M) := c0
σ(Y ;M)√

M
(48)

with probability close to one asymptotically, where Y = g(Xτ , τ) and c0 is a con-
stant corresponding to a confidence interval. For example, c0 ≥ 1.65 gives asymp-
totically the probability greater than 0.90.
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3.2 Control of the Time Discretization Error

In this subsection, we present two refinement strategies to control the time discretiza-
tion error. For a given partition 0 = t0 < t1 < . . . < tN = T , the piecewise constant
mesh function ∆t is defined by (12) and the corresponding number N(∆t) of steps
is

N(∆t) :=
∫ T

0

1
∆t(s)

ds .

Then the optimal choice of the time steps is formulated by minimizing the computa-
tional work E[N(∆t)] such that ∆t ∈ K subject to given accuracy constraints. The
feasible set K for the mesh function ∆t is defined by

K := {∆t : ∆t is stochastic, positive and piecewise constant on

[0, T ] for each realization }.

Total Time Discretization Error

The goal is to make the total time discretization error, ET = EC + ED defined in (4),
bounded by a given time discretization error tolerance TOLT in (47). Therefore the
accuracy constraint is

E

[
N−1∑
n=0

rn

]
≤ TOLT (49)

where the error indicators rn are defined for n = 0, 1, . . . , N − 1, by

rn :=
∣∣∣1tn+1≤τρn∆t

2
n

+
(
g
(
proj∂D

1
2
(X(tn) +X(tn+1)),

1
2
(tn + tn+1)

)
− g(Xτ , τ)

)
P̂X,n

∣∣∣ (50)

with ρn in (27) and P̂X,n in (15) and proj∂D the orthogonal projection to ∂D.
To have as few time steps as possible, we try to make

rn(ω) = constant, ∀n and ∀ω

and by (49) the natural choice of the constant is then

rn(ω) =
TOLT

E[N ]
, ∀n and ∀ω. (51)

The choice (51) is optimal in the case without stopping boundary, see [15], [17],
i.e. without the second term in (50). Numerical tests on one dimensional processes
show that the error ED in (46), corresponding the second term in (50), converges
exponentially fast as the number of adaptive steps is increased. Therefore an over-
refinement in this part of the error does not seem to cost much. Note that in practice
the quantity E[N ] is not known and we can only estimate it by the sample average
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N [j] := A(N ;M [j]) of the final number of time steps in the jth batch of M [j]
numbers of realizations. Then the statistical error, |E[N ] − N [j]|, is bounded by
ES(N ;M [j]), with probability close to one, by the same argument as in (48).

To achieve (51), start with an initial mesh ∆t[1] and then specify iteratively a
new partition ∆t[k + 1] from ∆t[k], using the following refinement strategy: for
each realization in the mth batch and for all time steps n = 0, 1, . . . , N [k]− 1,

if
(
rn[k] ≥ TOLT

N [m− 1]

)
then (52)

divide ∆tn[k] into 2 equal substeps, and

generate the intermediate value of W by Brownian bridges (5)

else let the new step be the same as the old

endif,

with the stopping criterion: for each realization of the mth batch

if
(

max
1≤n≤N [k]

rn[k] < S
TOLT

N [m− 1]

)
then stop. (53)

Here S is a given constant, motivated as follows: we want the maximal error indicator
to decay quickly to the stopping level STOLT /N , but when almost all rn satisfy
rn ≤ TOLT /N , the reduction of the error may be slow. The constant S is introduced
to cure this slow reduction.

Splitting of the Time Discretization Error

Let us compare the adaptive algorithm (52)-(53) with the following ad hoc refine-
ment algorithm. First we split the time discretization tolerance TOLT = TOLC +
TOLD by TOLC = TOLD = TOLT /2 and define the error indicators rC

n and rD
n

by

rC
n := 1tn+1≤τ |ρn|∆t2n (54)

rD
n :=

∣∣∣∣g(proj∂D

1
2
(X(tn) +X(tn+1)),

1
2
(tn + tn+1)

)
− g(Xτ , τ)

∣∣∣∣ P̂X,n

with ρn in (27) and P̂X,n in (15). This alternative refinement strategy is to take into
account the computational observation that only a few time intervals for each realiza-
tion have large error indicators rD

n compared to the others, see Fig. 2, an illustrative
Monte Carlo realization of rD

n for Example 1 in Sect. 4.
Start the algorithm with an initial mesh ∆t[1] and then specify iteratively a new

partition ∆t[k+1] from ∆t[k] using following refinement strategy: for each realiza-
tion in the mth batch and for all time step n = 0, 1, . . . , N [k]− 1,
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Fig. 2. Example 1: An illustrative Monte Carlo realization of rD
n with TOL = 0.1

if
(
rC
n [k] ≥ TOLC

N [m− 1]
or rD

n [k] ≥ TOLD

)
then, (55)

divide ∆tn[k] into 2 equal substeps

else let the new step be the same as the old one

endif.

until the following stopping criteria is fulfilled: for each realization of the mth batch

if
(

max
1≤n≤N [k]

rC
n [k] < SC

TOLC

N [m− 1]
and max

1≤n≤N [k]
rD
n [k] < SDTOLD

)
(56)

then stop.

Here SC and SD are given constants to cure the slow reduction when almost all rC
n

or rD
n satisfy rC

n ≤ TOLC/N or rD
n ≤ TOLD.

3.3 The Adaptive Algorithms

The adaptive stochastic time stepping algorithms have structures similar to a basic
Monte Carlo algorithm, with an additional inner loop for individual mesh refinement
for each realization of a Brownian motion. First we split the specified error tolerance
by (47): the outer loop computes the batches of realizations of X , until an estimate
for the statistical error (48) is below the tolerance, TOLS ; then in the inner loop, for
each realization, we apply our refinement strategy (52) or (55) to a given initial mesh
iteratively until the error indicators satisfy the stopping criteria (53) or (56) with a
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given time discretization tolerance TOLT . This procedure, in the inner loop, needs to
sample the Wiener process W on finer partitions, given its values on coarser, which
is accomplished by Brownian bridge refinements (5).

The adaptive algorithm based on the refinement (52) and the stopping (53) is
called Algorithm A and the algorithm based on the refinement (55) and the stop-
ping (56) is called Algorithm B. We first describe Algorithm A in detail and
define the additional changes for Algorithm B afterwards.

Algorithm A

Initialization
Choose:

1. an error tolerance, TOL ≡ TOLS + TOLT ,
2. a number N [1] of initial uniform steps ∆t[1] for [0, T ], with TOLN [1] bounded

from above and below by positive constants, and set N [0] = N [1],
3. a number M [1] of initial realizations, with TOL2 M [1] bounded from above and

below by positive constants,
4. the stopping constant S in (53),
5. a positive constant c0 for a confidence interval and an integer MCH≥ 2 to deter-

mine the number of realizations in (58),
6. a constant ∆x for the difference quotient in (43), see Remark 4.

Set the iteration counter for realization batches m = 1 and the stochastic error to
ES [m] = +∞.

Do while ( ES [m] > TOLS )
For realizations j = 1, . . . ,M [m]

Set the number of time levels for realization j to k = 1 and set the error
indicator to r[k] = +∞.
Start with the initial partition ∆t[k] and generate ∆W [k].
Compute for realization j, g(X(T ))[J ] and N [J ] by calling
routine Control-Time-Error where k = J is the number of
final time levels for an accurate mesh of this realization.

end-for
Compute the sample average Eg ≡ A

(
g(X(T ));M [m]

)
, the sample stan-

dard deviation S[m] ≡ S(g(X(T ));M [m]) and the a posteriori bound for
the statistical error ES [m] ≡ ES(g(X(T ));M [m]) in (48).
if ( ES [m] > TOLS )

Discard all old M [m] realizations and determine a larger M [m + 1] by
changeM (M [m], S[m], TOLS ; M [m+ 1]), in (58), and update
N = A (N [J ];M [m]), where the random variable N [J ] is the final num-
ber of time steps on each realization.

end-if
Increase m by 1.

end-do
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Accept Eg as an approximation of E[g(X(T ))], since the estimate of the computa-
tional error is bounded by TOL.

routine Control-Time-Error
(
∆t[k],∆W [k], r[k], N [m− 1];
g(X(T ))[J ], N [J ]

)
Do while ( r[k] violates the stopping (53) )

Compute the Euler approximation X[k] in (6) and the error indicator r[k] in
(50) on ∆t[k] with the known Wiener increments ∆W [k].
if ( r[k] violates the stopping (53) )

Do the refinement process (52) to compute ∆t[k + 1] from ∆t[k] and
compute ∆W [k + 1] from ∆W [k] using Brownian bridges (57).

end-if
Increase k by 1.

end-do
Set the number of the final level J = k − 1.

end of Control-Time-Error

At the new time steps t′i ≡ (ti[k]+ ti+1[k])/2, on level k+1, the new sample points
from W are constructed by the Brownian bridge, cf. [10],

W (t′i) =
1
2
(
W (ti[k]) +W (ti+1[k])

)
+ z

i (57)

where z
i are independent random variables, also independent of W (tj [k]) for all i,

j and �, and each component z
i is normal distributed with mean zero and variance

(ti+1[k]− ti[k])/4.

routine changeM (Min, Sin, TOLS ; Mout)

M∗ = min
{

integer part
(

c0 Sin

TOLS

)2

, MCH×Min

}
n = integer part (log2 M

∗) + 1
Mout = 2n.

(58)

end of changeM

Here MCH ≥ 2 is a positive integer parameter introduced to avoid a large new
number of realizations in the next batch due to a possibly inaccurate sample standard
deviation σ[m]. Indeed, M [m+ 1] cannot be greater than MCH×M [m].

Algorithm B

In addition to the Initialization of Algorithm A, choose the error tolerances
TOLT = TOLC +TOLD and the stopping constants SC and SD in (56). Inside the
Do while loop of Algorithm A, use (rC [k], rD[k]) in (54) instead of r[k] and the
refinement (55) and stopping (56).
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4 Numerical Experiments

This section presents numerical results from a one dimensional problem with a C++
implementation of Algorithm A and Algorithm B described in Sect. 3 and for
a two dimensional problem with a corner singularity with Matlab implementation.
The numerical results in 1D are obtained using the pseudo-random number generator,
drand48(), in standard C library functions. The Box-Muller method is used to
generate standard Gaussian random variable from the uniformly distributed pseudo-
random numbers, see for example [11].

4.1 A One Dimensional Domain

In all computations, the following constants are chosen for the initialization of both
Algorithm A and Algorithm B: the number of time steps in the initial parti-
tion, ∆t[1], of [0, T ] is N [1] = 4; the initial number of realizations is M [1] = 128;
the stopping constant S = 4 is used in (53) and SC = 4, SD = 1 in (56); the con-
stants to determine the number of realizations in (58) are c0 = 1.65 andMCH = 16,
and the constant ∆x = TOL1/4

T is used for the difference quotient in (43).
To describe the behavior of the adaptive algorithm, let us first define some no-

tation. The index Q, which is the ratio between the approximate error and the exact
error, is defined by

Q :=
Eapprox

Eexact
:=

ES + |ET |∣∣E[g(Xτ , τ)]−A(g(Xτ , τ);M)
∣∣ . (59)

Here the statistical error ES is defined by (48) and the time discretization error ET is
defined by

ET := A
(

N−1∑
n=0

1tn+1≤τρn∆t
2
n +

(
g(λ,

1
2
(tn + tn+1))− g(Xτ , τ)

)
P̂X,n;M

)
,

where λ defines the domain D = (−∞, λ).

Example 1. Consider (2) with d = 1,

a(t, x) =
11
36
x, b(t, x) =

1
6
x, t ∈ [0, T ], x ∈ (−∞, 2)

and the initial condition X(0) = 1.6 and T = 2. For g(x, t) = x3e−t with x ∈ R,
this problem has the exact solution E[g(Xτ , τ)] = u(X(0), 0) = X(0)3, where the
solution u of the Kolmogorov backward equation (28) is u(x, t) = x3e−t.

To check the behavior of the error expansion described in Sect. 2, Example 1
is constructed such that most of the realizations exit at τ < T , for instance, with
TOL = 0.01, 99% of the paths exit at τ < T and A(τ ;M) � 0.77.
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Table 1. Example 1: Comparisons of the final number of the realizations, M , the sample
average of the final number of steps, A(N ; M), the sample standard deviation of the final
number of steps, σ(N ; M), and the exact error, Eexact for different error tolerances, TOL

Algorithm A Algorithm B

TOL M A(N ; M) σ(N ; M) Eexact A(N ; M) σ(N ; M) Eexact

0.5 27 27 11.7 0.028 24 6.9 0.02
0.1 211 81 30.6 0.024 84 25.8 0.06
0.05 213 126 44.0 0.015 158 54.2 0.02
0.01 218 453 170.7 0.003 700 287.7 0.005

Table 1 shows the comparisons between Algorithm A and Algorithm B
for the computational results of Example 1. As the error tolerance TOL decreases,
Eexact decreases and is bounded by a given TOL. The sample standard deviation
of the number of time steps is around 35% of the average of the number of time
steps. The histogram in Fig. 5 indeed shows that highly varying step sizes are used
for individual realizations.
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Fig. 3. Example 1: Comparison of the convergence rates with uniform and adaptive meshes.
The convergence rate of the adaptive method is of order N−1 with N adaptive time steps,
while the rate for the uniform method is of order N−1/2 with N uniform time steps

To check the accuracy of the error estimate in Sect. 2, choose the number of
realizations M sufficiently large so that the total statistical error is small compared
to the time discretization error. Here we use M = 222 = 4, 194, 304, which makes
the statistical error approximately 0.001. Then the comparison of the convergence
between the uniform and the adaptive method is shown in Fig. 3. The x-axis denotes
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the number of time steps for the uniform method and the sample average of the final
number of steps for the adaptive method. The y-axis is the exact error Eexact defined
by (59). The number of steps N = 2k, k = 3, 4, . . . , 10 are used for the uniform
method and for adaptive method the tolerances TOL = 0.5, 0.1, 0.05 and 0.01 are
used. Figure 3 shows that the convergence rate of the adaptive method is of order
N−1 with N adaptive time steps, while the uniform method converges with the rate
N−1/2 with N uniform time steps.
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Fig. 4. Example 1: The ratio of the approximate and exact error on adaptive mesh. The ratio
tends to 1 as the number of time steps increases

Figure 4 shows the convergence of the ratio Q between the approximate and
the exact error in (59), still with M = 222 so that the statistical error is negligible.
As predicted by Theorem 1 and 2, Fig. 4 shows that the ratio Q tends to 1 as N
increases. From Fig. 3 and 4, Algorithm B seems more stable than Algorithm
A for Example 1, on the other hand Algorithm A achieves smaller exact error for
the same number of time steps.

Figure 5 shows the histogram of the step sizes depending on the distance from
the boundary with TOL = 0.05 and M = 222 realizations of Algorithm A.
The histogram of Algorithm B also has a similar appearance. The x-axis denotes
base 2 log-scale of the step size, ranging from 2−35 to 2−5, the y-axis denotes base 2
log-scale of the distance from the boundary, ranging from 2−20 to 1, and the z-axis
denotes base 2 log-scale of the number of steps. To compensate the large error near
the boundary, relatively small step sizes are used close to the boundary compared to
further away from the boundary.
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Fig. 5. Example 1: The histogram of the step sizes depending on the distance from the bound-
ary using Algorithm A. Relatively small step sizes are used close to the boundary to im-
prove the accuracy

4.2 A Two Dimensional Domain

The methods described in the previous sections are implemented for a two dimen-
sional domain, with a corner, which does not satisfy the conditions of smoothness
required in [7]. The idea is to find out if the adaptive method can give some improve-
ments to the standard Euler algorithm even though the approximations of the exit
probabilities are somewhat incorrect. The known methods for improving the time
discretization error rely on the possibility to locally approximate the boundary by its
tangent plane. This is obviously difficult in the case for domains with sharp corners.

The method used by Gobet [7] is strictly dependent on the value of the exit prob-
ability of the continuous Euler process between two time levels. When dealing with
domains with non smooth boundary, for example corners, this method may give large
errors, since it makes use of the assumption that the boundary can be locally approxi-
mated by its tangent plane. A domain with a sharp corner, however, cannot be locally
well approximated as a tangent plane.

A prerequisite for any adaptive method is some sort of error estimate to decide
which regions need refining and which do not. However, one of the advantages of
adaptive methods in general is that they do not require a great deal of exactness in
this error estimate in order to function in a satisfactory manner. In fact, it is often
enough to check that the behavior of the error estimate is qualitatively similar to the
real error, i.e. that the estimate increases and decreases similarly as the actual error.

The domain D for our test problem is chosen to be the one shown in Fig. 6 and
in this domain we consider the problem
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Fig. 6. The computational domain D with a corner at the origin

ut +
1
2
∆u = 0, t < T

u(·, T ) = g(·, T )
u(x, t) = g(x, t), x ∈ ∂D (60)

which is solved by the expectation u(x, t) = E[F (Xτ , τ) | Xt = x] for a pure
Brownian motion dXj(t) = dW j(t), j = 1, 2, where F = g(·, τ) if the process X
exited D first at time τ before T , and F = g(·, T ) if no exit occurred before T .

The boundary condition is chosen so that the behavior of the process W near
the corner has a much greater impact than the behavior near the arc. Therefore, the

boundary condition is chosen as g(x, t) = 10e−
√

x2+y2−0.1t and we let the process
start within D, near the corner at the origin. We also choose a large enough radius,
R = 10, of the arc boundary and short enough time interval, T = 1, so it be-
comes highly unlikely for the process to reach the arc. The goal is to approximate
u(−0.209, 0.249, 0) = 0.544.

The algorithm for this type of domain differs from the one for smooth domains
only in the approximation of the exit probabilities Pi. To apply the algorithms for-
mally, it is assumed that the corner is slightly ’rounded’. In the quadrant x1 < 0 and
x2 > 0 it can then be imagined that the corner is a circular arc with infinitely small
radius, in which case an inward pointing normal vector from the boundary to a point
Xt is simply given by Xt itself. The tangent plane must then be orthogonal to Xt

and pass through the corner at the origin. By proceeding in this way the tangent plane
is quite easy to find, but it is obviously not a good approximation of the boundary
near the corner. Using this crude estimate for the tangent plane it becomes easy to
calculate distances to the tangent planes of the points in the Euler path, and thereby
to calculate rough estimates of the exit probabilities. Near the corner, these estimates
of the exit probabilities will, however, be quite far from correct. In all three quadrants
the algorithm will over-estimate the exit probabilities.
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The adaptive algorithm proceeds as described in the previous sections but now
using the exit probabilities Pi as described above and

ri =
(
g
(
proj∂D

(1
2
(Xti

+Xti+1)
)
,
ti + ti+1

2
)
− g(Xτ , τ)

)
P̂i,

where proj∂D is the orthogonal projection to the boundary ∂D. A dilemma arises
when trying to calculate the error estimate for the case when the discrete process
crosses the ’tangent plane’ but does not exit the domain D. An example of this is
shown in Fig. 7. When calculating the exit probability for such a step, Mannella’s
and Gobet’s method would proceed as earlier, and consider that the process indeed
has exited the domain. For the adaptive method however, this seems an unnecessarily
erroneous way to proceed, and the exit probability is calculated by reflecting the point
which has exited back onto the other side of the tangent plane. This procedure results
in a completely incorrect exit probability for some steps, but as this does not occur
too often, it seems to be an acceptable way of testing the convergence properties
of the adaptive algorithm. It is important to note that it is necessary to limit the
refinement, for example by limiting the length of the time steps so that the incorrect
behavior of the exit probabilities for these few steps will not cause the algorithm to
refine indefinitely.

Fig. 7. The discrete process has crossed the ’tangent plane’ but is still within D

The solution u of (60) has large derivatives near the corner. This resulted in an
even slower convergence rate than O(N1/2) for the standard Euler algorithm, see
Fig. 8. Even so, a considerable improvement in the convergence was achieved by
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using the adaptive algorithm for stochastic differential equations, resulting in a con-
vergence rate which is better than O( 1

N ) and maybe even an exponential rate for this
case with dX = dW , see Fig. 9. As seen in Fig. 9, our implementation of Mannella’s
and Gobet’s method in the corner case gave only a slight improvement to the stan-
dard Euler method and was not as effective as the adaptive algorithm. The number of
realizations, M , was chosen so that the statistical error was negligible as compared
to the time discretization error. For this purpose, M = 222 proved sufficient.
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Summary. The heterogeneous multi-scale method, a general framework for efficient numer-
ical modeling of problems with multi-scales [15], is applied to a large variety of homoge-
nization problems. These problems can be either linear or nonlinear, periodic or non-periodic,
stationary or dynamic. Stability and accuracy issues are analyzed along the lines of the gen-
eral principles outlined in [15]. Strategies for obtaining the microstructural information are
discussed.

Key words: multiscale problems, homogenization, heterogeneous multiscale method

1 Introduction

The heterogeneous multi-scale method (HMM) introduced in [15] is a general
methodology for efficient numerical computation of problems with multiple scales
and/or multi-levels of physics. When explicit models for macroscale quantities are
unavailable or cease to be valid in some part of the computational domain, HMM
provides a general, efficient and stable strategy for supplementing the incomplete
macroscale model by an explicitly given microscale model. Since its inception, the
method has already been applied with encouraging results to several classes of prob-
lems, including homogenization problems [3, 15, 18], time scale problems [21], cou-
pling molecular dynamics with linear elasticity [16] as well as general nonlinear
thermoelasticity [29], coupling molecular dynamics and hydrodynamics models for
complex fluids [39], and stochastic differential equations with multiple scales [17].
Aside from these new developments, HMM also provides a general framework for
unifying and extending several important existing multi-scale methods, such as the
gas-kinetic scheme [47] and the quasi-continuum method [43].

The purpose of this paper is to discuss thoroughly the application of HMM to ho-
mogenization problems. There are two reasons for doing this. One is that a large va-
riety of multi-scale problems are homogenization problems. The other is that we can
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use homogenization problems as examples for discussing general aspects of HMM,
such as its efficiency and accuracy. There is already an extensive literature on the
analytical studies of homogenization problems [7, 45]. Building upon this literature,
we will carry out analysis of HMM when applied to these problems. In particular,
we will discuss how naive application of multiscale methods can fail to approximate
the right quantity in some cases.

General homogenization problems can be expressed as

L
(
x,
x

ε

)
uε(x) = f(x), x ∈ Ω ⊂ Rd, (1)

together with some initial and/or boundary conditions, and where L is a linear or
nonlinear differential operator. Problems of this type arise in the modeling of prop-
erties of a strongly heterogeneous medium such as composite materials, polycrystals
and porous medium, where ε is the ratio between the scale of the medium and the
scale of the microstructures in the medium. We commonly refer to y = x

ε as the fast
variable. Dependence on y is sometimes assumed to be periodic, but this is unneces-
sary for most of the numerical techniques we will discuss. What is important is that
there is scale separation between the microstructures and the system size.

From a numerical point of view, resolving the microscopic details of (1) using
typical numerical methods would require a cost of O(ε−d) or more. This often be-
comes prohibitively expensive since ε � 1. One way of avoiding this is to solve
instead the homogenized equation

L̄(x)U(x) = f(x) (2)

uε → U as ε → 0. Indeed in many cases, this is a satisfactory approach. However,
quite often it is difficult to obtain an explicit homogenized equation in the form
of (2). In addition, the homogenized equation may neglect crucial microstructural
information that are important for the applications. Therefore it is highly desirable
to design numerical methods that are based on the original microscale model (1), but
capture the large scale behavior and microscale statistics efficiently.

Numerical computation for homogenization problems was pioneered by Babuska
[4] for elliptic problems and in [19] for hyperbolic problems. For the linear varia-
tional homogenization problem (see (3)) in one dimension, Babuska proposed to use
a finite element method on a macroscale grid but with modified basis functions that
are obtained from solving (3) with f = 0 and nodal boundary conditions [4, 6]. In
this way the finite element trial functions are endowed with the correct microstruc-
ture. Babuska’s idea was extended to higher dimensions in [25]. Other ideas based on
modifying basis functions are found in [26, 8]. These methods require an overhead
of O(ε−d) operations for constructing the basis functions, a cost that is comparable
to that of solving the original problem on a fine grid by an efficient standard method.
Engquist and Runborg proposed to process the matrix obtained from fine-grid dis-
cretization of the microscale operator using wavelet basis and obtain effective opera-
tors for the macroscale properties of the solutions [20]. Schwab and co-workers make
use of the analytical tool of multi-scale test functions developed by Nguetseng, E and
Allaire [35, 14, 1], and analyzed finite element methods that use such test functions
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[42]. The cost of this method is independent of ε but at the present time it is limited to
problems for which the microstructure is periodic. For dynamic problems, Engquist
proposed the idea of sampling in order to capture the effect of microscale statistics
on the macroscale using a coarse grid [19]. See also [40] for related discussion on
these issues.

Each of these techniques seems to be limited to a particular class of problems. In
contrast, HMM is a general technique that can handle a large variety of homogeniza-
tion problems, linear or nonlinear, periodic or non-periodic, stationary or dynamic.
It also accomplishes this with minimum cost and complexity.

We end this introduction with a brief summary of HMM for homogenization
problems. HMM takes a top-down approach for dealing with multiscale problems,
namely it pretends that the macroscale model is known and uses a conventional
macroscale numerical method as the starting point. In the process of implementing
this macroscale numerical method, HMM replaces function evaluations that involve
unknown quantities, due to the fact that the macroscale model is not really explicitly
known, by measurements from numerical experiments using the microscale model.
This is a key new idea in HMM. It is a general principle that applies to a large class
of problems.

In more concrete terms, there are two main components in HMM: An overall
macroscopic scheme for U and estimating the missing macroscopic data from the
microscopic model. The right overall macroscopic scheme depends on the nature
of the problem and typically there are more than one choice. For variational prob-
lems, we can use the standard finite element method. For dynamic problems that
are conservative, we may use finite volume type of methods that take advantage
of the conservative nature of the problem. Examples include the Godunov scheme,
Lax-Friedrichs scheme, and the discontinuous Galerkin method [28]. For dynamic
problems that are non-conservative, we can simply use a standard ODE solver, such
as the forward Euler or the Runge-Kutta method, and estimate the forcing term at the
right hand side of the equation using the microscale model.

The key to the efficiency of HMM is in the data estimation. For problems with
scale separation, the needed macroscale data can be estimated to satisfactory ac-
curacy by solving the microscale problem on domains of microscopic sizes. In the
following we will discuss how this can be done and what the pitfalls are for doing
this.

2 Variational Problems

Consider the variational problem

min
u∈H1

0 (D)

⎧⎨⎩1
2

∫
D

∑
i,j

ai,j

(
x,
x

ε

) ∂u

∂xi

∂u

∂xj
dx−

∫
D

f(x)u(x)dx

⎫⎬⎭ (3)

where a(x, y) is smooth and periodic in y with period I = [− 1
2 ,

1
2 ]d, f is smooth.

This is the standard problem considered in homogenization theory. The methods that
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we will describe, however, applies also to the case when the coefficient is of a more
general form aε(x).

To construct a HMM finite element method, we choose as the macroscale solver
the conventional finite element method. As an example, we will use the standard C0

piecewise linear element, on a triangulation TH where H denotes the element size.
We will denote by XH the finite element space.

The data that need to be estimated from the microscale model is the effective
stiffness matrix on TH :

A = (Aij) (4)

where

Aij =
∫

D

(∇Φi(x))TAH(x)∇Φj(x) dx (5)

and AH(x) is the effective coefficient (say conductivity) at the scale H and {Φi(x)}
are the basis functions for XH . Had we known AH(x), we could have evaluated
(Aij) by numerical quadrature. Let fij(x) = (∇Φi(x))TAH(x) · ∇Φj(x), then

Aij =
∫

D

fij(x)dx �
∑

K∈TH

|K|
∑

x�∈K

wfij(x) (6)

where {x} and {w} are the quadrature points and weights respectively, |K| is the
volume of the element K. Therefore our problem reduces to the approximation of
{fij(x)}. This will be done by solving the original microscale model locally around
each quadrature point {x}.

Let us first discuss the case when i = j. Our formulation of the local microscale
problem is motivated by the following general principle. Given an arbitrary mi-
croscale variational problem minu e(u),

min
u

e(u) = min
U

E(U) (7)

where
E(U) = min

u:Qu=U
e(u) (8)

Here Q is some compression operator. Using this, computing Aii is equivalent to
computing E(Φi).

Let Iδ(x) be a cube of size δ. On each cell Iδ(x), we define Q as follows:
Qu = U if

1
δd

∫
Iδ(x�)

u(x) dx = U(x) (9)

1
δd

∫
Iδ(x�)

∇u(x) dx = ∇U(x) (10)

With these, we can define the microscale problem to be solved in Iδ(x). Let ϕε
i be

the solution of the following problem



The Heterogeneous Multi-Scale Method for Homogenization Problems 93

min
Qu=Φi

∫
Iδ(x�)

(∇u(x))T aε(x)∇u(x)dx, (11)

we approximate fii(x) by

fii(x) �
1
δd

∫
Iδ(x�)

(∇ϕε
i (x))T aε(x)∇ϕε

i (x) dx (12)

Similarly we approximate fij(x) by

fij(x) �
1
δd

∫
Iδ(x�)

(∇ϕε
i (x))T aε(x)∇ϕε

j(x) dx (13)

Knowing {fij(x)}, we obtain the stiffness matrix A by (6).
(11) is equivalent to solving

−div(aε(x)∇u(x)) = 0 on Iδ(x) (14)

with boundary condition

aε(x)
∂u

∂n
= λT n̂ on ∂Iδ(x) (15)

where λ is the Lagrange multiplier for the constraints that 1
δd

∫
Iδ(x�)

∇u dx =
(∇Φi)(x), n̂ is the outward normal on ∂Iδ(x). Sometimes it is more convenient
to consider the boundary condition that u(x)−Φi(x) is periodic with period Iδ(x).
Other boundary conditions might also be contemplated. Overall, the effect of bound-
ary conditions for the microscale solver is still an issue that needs systematic inves-
tigation.

The savings compared with solving the full fine scale problem comes from the
fact that we can choose Iδ(x) to be smaller than K. The size of Iδ(x) is determined
by many factors, including the accuracy and cost requirement, the degree of scale
separation, and the microstructure in a ε(x). One purpose for the error estimates that
we present in [18] is to give guidelines on how to select Iδ(x). If a ε(x) = a(x, x/ε)
and a(x, y) is periodic in y, we can simply choose Iδ(x) to be x + εI , i.e., δ = ε.
If a(x, y) is random, then δ should be a few times larger than the local correlation
length of aε. In the former case, the total cost is independent of ε. In the latter case,
the total cost depends only weakly on ε (see [33]).

The numerical performance of HMM including comparison with other methods
is discussed in [33].

It is interesting to compare the philosophy of HMM with the methods based on
modified basis functions [6, 25, 31]. HMM uses standard finite element spaces at the
macroscale, but approximate directly the effective macroscale operator by solving the
microscale problem on a small subset of each element. The computational complex-
ity of HMM does not increase as ε is decreased. The flexibility is comparable to that
of the macroscale finite element method. Indeed, as we show below, HMM extends
easily to nonlinear and time-dependent problems. In contrast the method proposed
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K

Fig. 1. Illustration of HMM. The dots are the quadrature points. The little squares are the
microcell

in [25] was based on the idea of replacing the standard finite element basis functions
with functions having the correct microstructures. This has the disadvantage that the
basis functions are expensive to compute. In fact the overhead of solving for the basis
functions is already comparable to the cost of solving the original microscale prob-
lem. It is also difficult to extend such methods to nonlinear problems, or problems
for which the microstructure evolves in time.

It is also of interest to compare HMM with the approach of solving directly the
homogenized equation. An interesting variant of this approach is to compute the
homogenized coefficient matrix by solving the microscale problem on a block of
suitable size and then use the result to compute the homogenized equation [12, 37].
For the model problem discussed here, this approach bears some similarity with that
of HMM. In fact, the micro-cell problem solved in HMM is an analog of the cell
problem for the homogenized equation. However, there is an important difference,
namely that HMM does not assume any specific form of the homogenized equation.
This flexibility makes it possible to extend to a wider class of problems.

Having the HMM solution UHMM, one can obtain locally the microstructural in-
formation using an idea in [37]. Assume that we are interested in recovering uε and
∇uε only in the subdomain D. Consider the following auxiliary problem:{

−div(aε(x)∇ũ(x)) = f(x) x ∈ Dη,

ũ(x) = UHMM(x) x ∈ ∂Dη,
(16)

where Dη satisfies D ⊂ Dη ⊂ Ω and dist(∂D, ∂Dη) = η. We then have: There
exists a constant C such that(

1
|D|

∫
D

|∇(uε − ũ)|2dx
)1/2

≤ C

η
(‖uε − UHMM‖L∞(Dη) + ‖uε − uε‖L∞(Dη)).

(17)
where |D| is the volume of D.
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We turn our attention now to nonlinear problems.
Consider a problem of the type

min
u∈H1

0 (D)

∫
D

W
(
x,
x

ε
, u,∇u

)
dx (18)

W has to satisfy certain conditions in order to guarantee that this problem has a
solution. The homogenized problem takes the form [34]

min
U∈H1

0 (D)

∫
D

W̄ (x,U,∇U)dx

In general it is quite difficult to find analytically or numerically W̄ , and we will
assume that we do not have explicit knowledge of W̄ .

To apply HMM to this problem, we will select the standard piecewise linear finite
element method as the macro scheme. The macroscale data that we need to estimate
areE(U) =

∫
D
W̄ (x,U,∇U)dx forU ∈ VH and the variational derivative ofE(U).

To estimate
∫

D
W̄ (x,U,∇U), we proceed as before, namely for each U ∈ VH ,

K ∈ TH , and each quadrature point xK ∈ K, we let

F̃ (U)(xK) = min
1
εd

∫
xK+εI

W
(
x,
x

ε
, u,∇u

)
dx (19)

subject to the condition that u(x) − U(x) is periodic with period εI . We will use
this value in the numerical quadrature for approximating E(U) in the same way as
before, e.g.

Ẽ(U) =
∑
K

|K|F̃ (U)(xK) (20)

To compute the variational derivative of Ẽ(U), we let U, V ∈ VH , and denote by
uU the minimizer of (19). We then have

Lemma 1. (
δF̃ (U)(xK)

δU
, V

)
=

∫
xK+εI

δW

δu
(uU )V dx

This lemma says that we do not need to worry about the variation caused by the
dependence of the boundary condition in (19) on U . It therefore gives us a very con-
venient way of computing the variational derivative – the effective Euler-Lagrange
operator. As we will see in the proof, the lemma is applicable to general variational
problems.

Proof. For simplicity of notation, for δ > 0, denote by uδ the minimizer of (19)
corresponding to U + δV . Then uU = u0. For δ � 1
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F̃ (U + δV )(xK)− F̃ (U)(xK) =

=
∫

xK+εI

(
W

(
x,
x

ε
, uδ,∇uδ

)
−W

(
x,
x

ε
, u0,∇u0

))
dx

=
∫

xK+εI

δW

δu
(u0)(uδ − u0)dx+O(δ2)

=
∫

xK+εI

δW

δu
(u0)(uδ − u0 − δV )dx+ δ

∫
xK+εI

δW

δu
(u0)V dx+O(δ2) .

Since uδ − (u0 + δV ) is periodic on xK + εI , the first term on the right hand side
vanishes as a consequence of the optimality condition for u0. This proves the lemma.

With this, HMM proceeds in the same way as for solving standard single scale
nonlinear variational problems using the finite element method.

It is important to note that HMM also allows us to recover microscale informa-
tion, for example, point-wise approximation to ∇uε where uε is the exact solution
of (18). This is similar to the linear problem.

For extension of this method to general Galerkin formulation, we refer to [15].
For extension to higher order finite element together with error analysis, we refer to
[18].

3 Dynamic Problems

3.1 The Parabolic Homogenization Problem

The same basic principle applies to dynamic problems. Consider for example

∂tu
ε = ∇ ·

(
a
(
x,
x

ε
, t
)
∇uε

)
(21)

Our purpose is to compute locally averaged quantities of uε. Since the problem is ob-
viously conservative, we can choose standard finite volume method as the macroscale
scheme. For this purpose we work with a macroscale grid with sizes (∆x,∆t). The
data that need to be estimated are the macroscale fluxes.

In order to estimate the macroscale fluxes at cell boundaries, we set up numer-
ical experiments based on the microscale model (21) using a generalized Godunov
procedure. Knowing {Un

j }, the numerical approximation to the cell averages of uε

at time t = tn, we compute the approximation to the cell averages of uε at the next
time step by the following steps.

Step 1. Reconstruction. From {Un
j }, construct a piecewise polynomial Un(x). For

example, we can use the piecewise linear reconstruction. In one-dimension,
this is

RU(x) = Uj +
Uj+1 − Uj

∆x
(x− xj)

for x ∈ [j∆x, (j + 1)∆x].
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Step 2. At each macroscopic cell boundary xj+ 1
2

, solve (21) on xj+ 1
2

+ εI subject
to the boundary condition that u(x, t) − Un(x) is periodic with period εI ,
for n∆t < t < τ + n∆t for some suitably chosen τ .

Step 3. Let Jn
j+ 1

2
be the average of the microscale flux jε = a(x, x

ε )∇uε(x, τ +
n∆t) over xj+ 1

2
+ εI .

Step 4. Compute {Un+1
j } using the finite volume method:

Un+1
j − Un

j

∆t
+
Jn

j+ 1
2
− Jn

j− 1
2

∆x
= 0 (22)

However, an additional issue is present for dynamic problems with regard to time
scales. There are two obvious time scales in our problem. The first is the macro time
scale of interest. The second is the microscopic relaxation time, which for the present
problem is the time needed for the solution to develop the correct microstructure that
matches the macroscale behavior. This time scale is estimated to be of O(ε2) [7].
This micro time scale is brought into the problem since we are using the microscale
model to estimate the macroscale flux. It is obviously a source of inefficiency com-
pared with the situation when we had an explicit macroscale model to use. However,
the fact that the two time scales are separated can be exploited to effectively elimi-
nate this source of inefficiency. As an illustration we plot in Fig. 2 a typical behavior
of the microscopic flux jε(x, t) = a

(
x, x

ε

)
∇uε(x, t) at a cell boundary over the

time interval [tn, tn +∆t] as a function of the micro time steps. It is quite clear that
jε(x, t) quickly settles down (after about 35 micro time steps) to a quasi-stationary
value after a rapid transient. We obtain an efficient numerical scheme if we select
this value as the macroscopic flux and use that to evolve U over a much larger time
step ∆t. This is the principle we use to choose the value of τ discussed earlier. For
further results, see [3].

Similar ideas have been used in the literature, for example for stiff ODEs [2,
24, 27], for kinetic Monte Carlo simulations with disparate rates [36], for stochastic
ODEs with small noise [46] and for multi-scale problems in [23].

Another interesting point for HMM in this application is the computation of Jn

once the microscale data is obtained. In general this involves appropriate spatial and
temporal averages of the microscale data. For the present problem, temporal averag-
ing is unnecessary since the microscale flux does not fluctuate, as seen in Fig. 22.
Next we discuss an example for which the microscale flux does fluctuate.

3.2 The Convection Problem

Consider the advection homogenization problem

uε
t +∇ ·

(
a
(
x,
x

ε
, t
)
uε

)
= 0 (23)

in one-dimension. Let us assume a(x, y, t) > a0 > 0. We can proceed as before
for the parabolic problem, except that we may take a piecewise constant reconstruc-
tion. In contrast to the previous example, the temporal oscillations in the solutions
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Fig. 2. Computed flux τε(x, t) = a
(
x, x

ε

)∇uε(x, t) as a function of the micro time step
over one typical macro time step, for the parabolic homogenization a

(
x, x

ε

)
= 2 + sin 2π x

ε
.

The bottom figure is a detailed view of the top figure for small time steps. Notice that jε(x, t)
quickly settles down (after about 35 micro time steps) to a quasi-stationary value after a rapid
transient

of (23) do not die out. This is reflected in Fig. 3 where we plot the microscopic flux
jε(x, t) = a

(
x, x

ε

)
uε(x, t) over the time interval [tn, tn + ∆t] as a function of the

microscale time steps. jε remains oscillatory throughout the time interval. Neverthe-
less, if we plot the time average

j̄(x, t) =
1
t

∫ tn+t

tn

K
(
1− τ

t

)
jε(x, τ)dτ, K(τ) = 1− cos 2πτ (24)

as shown in the bottom of Fig. 3, we see that it settles down to a quasi-stationary
value on a time scale of O(ε). This value is then used in the macroscale finite volume
method.

These two dynamic examples illustrate how HMM takes advantage of the time
scale separation in a very natural way. More sophisticated applications and conver-
gence theorems are found in [21, 29, 39].

3.3 Hamilton–Jacobi Equation

In this subsection, we consider the homogenization problem for the Hamilton–Jacobi
equation

ut +H
(x
ε
,∇u

)
= 0 (25)

More general forms of Hamiltonian can be considered. But it is convenient to restrict
our attention to (25). Equations of this type can arise in front propagation and control
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Fig. 3. Top figure: Computed flux jε(x, t) = a
(
x, x

ε

)
uε as a function of the micro time step

over one macro time step for the convection homogenization problem (23). Bottom figure:
Time averaged flux j̄(x, t) as a function of the micro time step

problems in inhomogeneous medium. Details of the work reported here can be found
in [9]. See also [10]

Homogenized equation for (25) was derived in the fundamental but unpublished
paper of Lions, Papanicolaou and Varadhan [30]. See also related work in [13, 22].
The homogenized equation takes the form

Ut + H̄(∇U) = 0 (26)

The homogenized Hamiltonian H̄ has very interesting properties, one of which is
flattening in some regions [30]. Computing H̄(·) is not an easy task. Therefore it is
worthwhile to design efficient numerical methods that are based on (25) instead of
(26).

To discuss the application of HMM to (25), we will first consider the one-
dimensional case and explore the connection of (25) with nonlinear conservation
laws. Higher dimensional case will be considered later.

In one-dimension, let v = ux, then (25) is equivalent to considering entropic
solutions of

∂v

∂t
+

∂

∂x
H

(x
ε
, v

)
= 0 (27)

Again we are interested in computing cell averages of v on a macro grid. For that
purposes, we pick the finite volume scheme as our macroscopic scheme.

V n+1
j = V n

j −
∆t

∆x

(
Jn

j+ 1
2
− Jn

j− 1
2

)
(28)

where {V n
j } is the approximation to the cell averages of v at macro time tn.
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Next we need to estimate {Jn
j+ 1

2
}. This is done again via a Godunov procedure.

Step 1. From {V n
j }, reconstruct a function vn(x) such that the cell averages of

vn(x) satisfies
1
|Ij |

∫
Ij

vn(x)dx = V n
j (29)

where Ij = [xj− 1
2
, xj+ 1

2
] is the j-th macro cell, xj+ 1

2
is the location of the

cell boundary between Ij and Ij+1.
Step 2. Solve for t ∈ [n�t, n�t+α�t] equation (27) on the interval Iε

j = [xj+ 1
2
−

1
2ε, xj+ 1

2
+ 1

2ε] subject to the boundary condition that v(x, t) − vn(x) is
periodic on Iε

j with period ε.
Step 3. Let

Jn
j+ 1

2
(α) =

1
ε

∫
Iε

j

H
(x
ε
, v(x, n�t+ α�t)

)
dx (30)

The efficiency of this algorithm comes from the fact that the microscale problems
are solved on intervals of size ε and that Jn

j+ 1
2
(α) quickly converges to a station-

ary value after a few microscale time steps. The rate of convergence is O
(

ε
α�t

)
if

H(x, p) is strictly convex in p [13]. Therefore we can stop the microscale sub-step
at α�t for some α such that ε

�t � α� 1.
On the other hand, even though Jn

j+ 1
2
(α) converges to a value that depends only

on V n
j , there is no simple way to recover the microstructural behavior. One reason is

that stationary solutions to
vt +H(y, v)y = 0 (31)

with periodic boundary conditions are not necessarily uniquely determined by their
average v̄ =

∫ 1

0
v(y, t)dy. Given v̄, there can be more than one steady state solu-

tions to (31) with average v̄, all of which give rise to the same average Hamiltonian
H̄ =

∫ 1

0
H(y, v(y))dy (see [13] for a detailed discussion). Consequently knowing

the macroscale approximations {V n
j }, there is no simple way to construct accurate

approximations to the microscale solution, in contrast to the linear problems dis-
cussed earlier and in Sect. 4.

The same strategy can be applied to multi-dimensional problems. Even though
there is no conservation form in high dimensions, the basic principle can still be used.
The main difference is that the needed data, the values of the effective Hamiltonian,
are estimated by looking at the linear growth rate of the microscopic solutions in
micro time scale. For the macroscale scheme, we can use the ENO-type methods
developed in [38]. The ENO-Lax-Friedrichs type of schemes seem to be the best
candidate since the amount of macroscale data that need to be estimated seem to be
minimized with the ENO-Lax-Friedrichs schemes. The data estimation proceeds in
the same way, and we also expect to have the same rate of convergence, i.e. O( ε

α∆t )
toward the correct macroscale Hamiltonian if the microscale Hamiltonian H(y, p) is
strictly convex in p.



The Heterogeneous Multi-Scale Method for Homogenization Problems 101

4 Stability and Accuracy

The basic principle, established in [15], is that if an associated macroscale scheme,
called the Generalized Godunov Scheme (GGS) is stable, then HMM is stable and
the error can be decomposed into two parts: the usual discretization error for the GGS
and the error in the approximation of the macro data. For simplicity, we will restrict
ourselves to the dynamic periodic homogenization problem and we will assume that
the microscale problem is solved exactly. Results on more general problems can be
found in [32].

Let us write HMM symbolically as

Un+1
j = Un

j +∆tFn
j (Un) (32)

In order to study its stability and accuracy properties we can compare it to a
macroscale scheme which is consistent with the effective macroscale equation

Ūn+1
j = Ūn

j +∆tF̄n
j (Ūn) (33)

As long as (33) is stable, it can be shown that [15]

max
j
|Un

j − Ūn
j | ≤ C max

k≤n,j,U
|F k

j (U)− F̄ k
j (U)| (34)

Here U belongs to certain class of functions, discussed in [15]. In principle we can
choose any macroscale scheme that maximizes the stability and accuracy property.
In practice, it seems most convenient to choose (33) as the so-called generalized Go-
dunov scheme (GGS), obtained by following the HMM procedure, except that in the
data estimation step, we replace the microscale solver by the macroscale solver. We
emphasize that the macroscale solver is used here only for the purpose of analysis,
not in actual computation.

Let us consider the example of the parabolic homogenization problem (23), and
consider the following HMM

Un+1
j = Un

j −
�t
�x (Jn

j+ 1
2
(Un)− Jn

j− 1
2
(Un))

where {Jn
j+ 1

2
} is given by

Jn
j+ 1

2
(Un) = jε(xj+ 1

2
, tn + α�t)

where jε(x, t) = a
(
x, x

ε

)
∇uε(x, t), and uε(x, t) is the solution of (23) on [xj+ 1

2
−

1
2ε, xj+ 1

2
+ 1

2ε] with the boundary condition that u(x, t) − (RUn)(x) is periodic
with period ε and initial condition

uε(x, tn) = (RUn)(x)

We take R to be the piecewise linear reconstruction
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RUn(x) =
1
2
(Un

j + Un
j+1) +

Un
j+1 − Un

j

�x (x− xj+ 1
2
)

for x ∈ (xj , xj+1]. The GGS is then given by

Ūn+1
j = Ūn

j −
�t
�x (J̄n

j+ 1
2
(Ūn)− J̄n

j− 1
2
(Ūn))

where
J̄n

j+ 1
2
(Ūn) = A(xj+ 1

2
)∇Uj(xj+ 1

2
, tn + α�t)

Here A(x) is the homogenized coefficient, and Uj(x, t) is the solution of

∂tUj = ∇ · (A∇Uj)

with initial condition
Uj(x, tn) = (RŪn)(x),

for x ∈ [xj+ 1
2
− 1

2ε, xj+ 1
2
+ 1

2ε], and the boundary condition that Uj(x, t)−RŪn(x)
is periodic with period ε. To study the stability of GGS, without loss of generality
we may assume that A(x) is a constant.

Lemma 2. The GGS is stable if

A
�t

(�x)2
<

1
2

Proof. It is easy to check that Uj(x, t) = RŪn(x). Hence the GGS is nothing but
the classical finite difference scheme for the heat equation

Ūn+1
j = Ūn

j −A
�t

(�x)2
(Ūn

j+1 − 2Ūn
j + Ūn

j−1)

The lemma then follows.

To study the accuracy of HMM, let

Fn
j (U) =

1
�x (Jn

j+ 1
2
(U)− Jn

j− 1
2
U))

F̄n
j (U) =

1
�x (J̄n

j+ 1
2
(U)− J̄n

j− 1
2
(U))

We would like to estimate Jn
j+ 1

2
(U)− J̄n

j+ 1
2
(U). For simplicity, we take a

(
x, x

ε

)
=

a(x
ε ). The microscale problem⎧⎨⎩

uε
t (x, t) = ∇ ·

(
a(x

ε )∇uε(x, t)
)

uε(x, 0) = RU(x), x ∈ (xj+ 1
2
− 1

2ε, xj+ 1
2

+ 1
2ε)

uε(x, t)−RU(x) is periodic with period ε
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relaxes to the “local equilibrium state”

ũε(x) = RU(x) + εu1(x)

ε∂xu1(x) = sj

(
A

a
(

x
ε

) − 1

)

where sj = Uj+1−Uj

�x , A = (
∫ 1

0
1

a(y)dy)
−1. The relaxation time is of order ε2.

|uε(x, t)− ũε(x)| ≤ ‖RU‖
(
C1e−λ t

ε2 + C2ε
)

|uε
x(x, t)− ũε

x(x)| ≤ ‖RU‖
(
C1e−λ t

ε2 + C2ε
)

where ‖RU‖ = |sj |+ |Uj |+ |Uj+1|, λ is some positive constant. Hence we have

|Jn
j+ 1

2
(U)− J̄n

j+ 1
2
(U)| =

∣∣∣∣a(xj+ 1
2

ε

)
uε

x(xj+ 1
2
, α�t)−A

Uj+1 − Uj

�x

∣∣∣∣
≤ a(

xj+ 1
2

ε
)|uε

x(x, α�t)− ũε
x(x)|

≤ ‖RU‖(C1e−λ α�t

ε2 + C2ε).

Using this and the general stability theorem for HMM we obtain

|Un
j − Ūn

j | ≤
C

�x
(
C1e−λ α�t

ε2 + C2ε
)
.

Here we have used the estimate that

‖RU‖ ≤ C

∆x

if U is bounded.
Next we consider an example of the advection problem

uε
t + a

(x
ε

)
uε

x = 0 (35)

We will use the following version of HMM. For the macroscale scheme, we will
simply use the forward Euler method, i.e. we will think of the macroscale model in
the form

Ut = F (U)

and use
Un+1

j = Un
j +�tFn

j (Un)

To estimate Fn
j (Un), we take a piecewise linear reconstruction

RUn(x) = Un
j +

Un
j+1 − Un

j−1

2�x (x− xj)
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for x ∈ [xj− 1
2
, xj+ 1

2
]. Let uε(x, t) be the solution of (35) with initial condition

uε(x, tn) = RUn(x), for x ∈ [xj − 1
2ε, xj + 1

2ε] and the boundary condition that
uε(x, t)− RUn(x) is periodic with period ε. Let f(t) = a

(xj

ε

)
uε

x(xj , t
n + t). We

will use

Fn
j (Un) =

1
τ

∫ τ

0

ϕ

(
τ − s

τ

)
f(s)ds

where ϕ is a suitably chosen filter, τ ≤ �t is a suitably chosen time duration.
Even though this may seem like a perfectly reasonable numerical procedure. It

suffers from stability problems. This can be seen from the stability of the correspond-
ing GGS, which is given by

Ūn+1
j = Ūn

j +�tF̄n
j (Ūn)

where

F̄n
j (Ūn) =

1
τ

∫ τ

0

ϕ

(
τ − s

τ

)
F̄ (s)ds

F̄ (s) = A∂xUj(xj , t
n + s)

Here Uj is the solution of
∂tUj +A∂xUj = 0

with initial condition
Uj(x, tn) = RŪn(x)

for x ∈ [xj− 1
2
, xj+ 1

2
], and boundary condition that Uj(x, t) − RŪn(x) in periodic

with period ε.
We will assume that a > 0. Hence A > 0. It is easy to see that this is nothing but

Ūn+1
j = Ūn

j −A
�t
�x (Ūn

j+1 − Ūn
j−1)

which is the notorious Richardson’s scheme. This scheme is stable only if �t =
O(�x2) which is too restrictive for an advection equation.

To fix this, we modify the reconstruction to

RUn(x) = Un
j +

Un
j − Un

j−1

�x (x− xj)

The GGS then changes to the upwind scheme

Ūn+1
j = Ūn

j −A
�t
�x (Ūn

j − Ūn
j−1) (36)

which is stable if

A
�t
�x ≤ 1.

To analyze the accuracy of the HMM, we estimate Fn
j (U) − F̄n

j (U). Observe
that
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Lemma 3. Assume that ϕ satisfies ϕ(0) = ϕ(1) = 0,
∫ 1

0
|ϕx|dx < +∞, and let f

be a continuous periodic function with period 1. Then∣∣∣∣1τ
∫ τ

0

ϕ
(
1− s

τ

)
f
(s
ε

)
ds− f̄

∣∣∣∣ ≤ C
ε

τ

where f̄ =
∫ 1

0
f(s)ds is the average of f .

Proof. This is a classical result.

Lemma 4. The solution to the microscale problem described above satisfies

uε(x, t) = Bt+ sjx+ v

(
x

ε
,
t

ε

)
where v is a space-time periodic function, sj = Un

j −Un
j−1

�x and B is some constant.
Moreover

fε(t) = a
(xj

ε

)
∂xu

ε(xj , t)

is periodic in t with period Tε = O(ε). f̄ε = Asj .

Proof. This is a trivial consequence of the observation that the microscale problem
is equivalent to solving (35) over the whole space with initial data

uε(x, tn) = RUn(x) = Un
j + sj(x− xj) .

Combining these two lemmas, we arrive at

Lemma 5. Assume that ϕ satisfies the condition in Lemma 3. Then

|Fn
j (U)− F̄n

j (U)| ≤ C max
j
|sj |

ε

τ
.

From this, we obtain

Lemma 6.
|Un

j − Ūn
j | ≤ C max

j
|sj |

ε

τ
.

5 How Can HMM Fail?

Even though HMM is a very general tool, it also has some pitfalls, just as any other
advanced numerical techniques. Understanding the limitations of HMM is important
for further improving the methodology. Here we list some ways by which HMM fail
to approximate the right quantities.

While detailed knowledge of the macro model is not necessary for the success
of HMM, some information about the macroscale model is crucial. Without them, a



106 Weinan E and Björn Engquist

blind application of HMM can give wrong results. We will illustrate this with some
examples.

The first example concerns the averaging operator we use in estimating the
forces/fluxes from the microscale data. Consider the HMM discussed in Sect. 3.1.
If, for the flux estimator, we take

Jn
j+ 1

2
= aε(xj+ 1

2
)∇uε(xj+ 1

2
, n�t+ α�t), (37)

where α is chosen so that the right hand side of (37) has reached a quasi-stationary
value. At a first sight, this may seem like a perfectly reasonable method, and it can be
shown that it does approximate the right quantity for one-dimensional problems. But
a closer inspection reveals that this method fails in higher dimensions. The reason
is because that in higher dimensions, aε(x)∇uε(x, t) = jε(x, t) is in general an

oscillatory quantity as a function of x. Therefore
Jn

j+ 1
2
−Jn

j− 1
2

�x computed using (37) is
a poor approximation to Jx. Explicit examples were discussed in [15].

The reason that HMM fails in this case is that we chose a poor averaging operator,
namely the evaluation operator, which does not smooth out the small scale spatial
oscillations in jε(x, t) = aε(x)∇uε(x, t). This is easily fixed by spatially averaging
the microscale fluxes over the cell Iε

j and use the averaged values as the macroscale
data. For more discussions on this issue, see [3].

Our second example concerns the a priori knowledge of the macroscale model. A
crucial advantage of HMM, as we emphasized throughout this paper, is that it does
not need explicit knowledge of the macroscale model. But some knowledge about
the macroscale model is important, as we now illustrate. Consider the problem

ut +∇ · (b
(x
ε

)
u) = ∇ · (a

(x
ε

)
∇u) , (38)

where b and a are smooth periodic functions with period 1. The homogenized equa-
tion for (38) is given by

Ut +∇ · (b̄U) = ∇ · (A∇U) , (39)

where A is the homogenized coefficient matrix for the case when b = 0, b̄ is the
average of b over its period. Without knowing that the large scale model is a second
order differential equation and the macroscale flux depends on the derivative of the
macroscale variable U , we might use HMM as in Sect. 3 but with piecewise constant
reconstruction. In this case, the estimated flux will only contain the part that approx-
imates b̄U , not the part that approximates A∇U . This results in an O(1) error for the
macroscale quantities.

The failure in this case is due to the reconstruction and the associated constraints
we put on the microscale solver, which does not allow HMM to probe macroscale
fluxes caused by∇U . This can of course be fixed by changing the piecewise constant
reconstruction to piecewise linear reconstruction.

In general, even though we do not need to know the detailed macroscale model,
we do need to have an idea about the order of the effective macroscale equation so
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that we can design a reconstruction operator that probes all relevant forces and/or
fluxes. It is often possible to determine either analytically or by numerical experi-
ments on the microscale model the correct order of the homogenized operator.

Our third example is the advection of a passive scaler by an oscillatory shear flow

ut + ∂x1

(
a
(x2

ε

)
u
)

= 0. (40)

The homogenized equation for this problem is

Ut + ā∂x1U = ∂2
x1

∫ α

−α

dω(γ)
∫ t

0

dsU(x1 + γ(t− s), x2, s) (41)

[44] and it is memory dependent. Here ω is some kernel that depends on a, ā is the
average of a over its period.

HMM can be straightforwardly applied to (40). For example we can take the
macroscale scheme to be the finite volume method. For the micro sub-step, we
can use piecewise constant reconstruction. The fluxes at the cell boundaries do not
change in time if we assume that the microscale model is solved exactly. Therefore
HMM would suggest stopping the microscale evolution at arbitrarily small times and
use the fluxes to advance with macro time-steps. It is easy to check that in this way
the computed macroscale behavior approximates

Ut + ā∂x1U = 0

which is clearly incorrect.
The failure in this case comes from the fact that even though the fluxes across the

cell boundaries are constant in time, the solution to the microscale problem does not
reach local equilibrium.

In the framework of the general stability and accuracy theory discussed in the
last subsection, in the first example the failure is due to the large difference between
F k

j and F̄ k
j . In the second and last example, the failure is due to the inconsistency

between GGS and the correct macroscale model.

6 Conclusion

In summary, we have seen that HMM does provide an ideal framework for the nu-
merical computation of a large variety of homogenization problems. In most cases,
HMM not only gives information on the macroscale properties, but can also be used
to extract microstructural information. The general HMM convergence theory pro-
vides guidance for rational choice of macro- and micro- algorithms.

Further work in this direction includes exploring the application of HMM-based
ideas for problems that are strongly inhomogeneous. These problems occur in a va-
riety of applications such as transport through a porous medium that contains cracks
of different scales.
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Summary. This paper focuses on multigrid methods for flow in heterogeneous porous me-
dia. We consider Darcy flow and the local permeability K(x) being a stationary random field
of lognormal distribution. We apply the recently developed coarse graining method for the
numerical upscaling of permeability, and develop a new multigrid method which applies this
technique to obtain the coarse grid operators. The coarse grid operators are adjusted to the
scale-dependent behaviour of the system as it incorporates only fluctuations of K on larger
scales. This kind of action is essential for an efficient interplay with simple smoothers. We in-
vestigate important properties of the new multigrid method such as dependence on the bound-
ary conditions and on grid refinement for the coarse graining and dependence on the mesh size.
We compare the resulting method with the algebraic method of Ruge and Stüben, a Schur-
complement method, and matrix-dependent multigrid methods by solving the flow equation
with K being random realizations as well as periodic media. The numerical convergence rates
show that the new method is as efficient as the algebraic methods for variances σ2

f ≤ 3 of K.

Key words: multigrid method, porous media, upscaling, heterogeneity

1 Introduction

Multigrid methods are among the fastest solvers for large systems of linear equations
which come from discretization of partial differential equations. They belong to the
class of iterative solvers. They are based on the idea to handle long wave and short
wave error components of an approximation by two different ways, namely error
smoothing for the high frequency components and coarse grid correction for the
low frequency components. This procedure is recursively applied to the error on
the coarser grids until the resulting equations can be solved directly. Hence, one
obtains an iterative solver which usually reduces the total error spectrum equally. It
is essential that in many cases the convergence of multigrid methods does not depend
on the number of unknowns in contrast to classical iterative solvers such as Gauss-
Seidel or SOR smoothers. A detailed introduction to multigrid methods can be found
e.g. in the textbooks [8, 19].
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In this paper we consider multigrid methods for solving the flow equation in
heterogeneous porous media, as found e.g. in groundwater aquifers. Due to the het-
erogeneity the local permeability varies over many length scales and exhibits large
jumps. For solving this type of problems the suitable choice of the multigrid compo-
nents is important to get an efficient method. This was already pointed out by Brandt
in [3]. A possible remedy is to determine coarse grid operators which represent suf-
ficiently well the scale-dependent behaviour of the system on the coarser grids. If
the operators are given by discretizations on these grids one has to use informations
of the scale dependency of the problem to construct appropriate operators. Such in-
formations can be incorporated by upscaling the permeability in the case of the flow
equation.

Another possibility is to apply matrix-dependent transfers to obtain appropri-
ate coarse grid operators, see e.g. [1, 5, 21]. The enhancement of this notion led
to the algebraic multigrid methods (AMG), for instance the method of Ruge and
Stüben [16], which show an improvement of convergence and robustness, see [17].
Algebraic methods try to ensure an efficient interplay between smoother and coarse
grid correction by an appropriate construction of coarser grids. The approach nor-
mally avoids to rely on geometric information and extracts the information for grid
constructions and matrix-dependent transfers out of the given matrix. This results
in so-called “black-box” solvers [5]. There are so-called algebraically defined or
element-based algebraic methods as well, see e.g. [4, 12, 10]. These methods in-
volve some geometric information about the elements of the generated grids or apply
a fixed hierarchy of grids.

We present a new multigrid method for solving flow in porous media which
is based on upscaling of the permeability. We apply a numerical upscaling called
coarse graining to determine the coarse grid operators [2, 6, 7]. The upscaling yields
a scale-dependent permeability field which includes only fluctuations varying on
length scales larger than a given scale. Taking the upscaled field as the basis for
the computation of the coarse grid operator, the latter corrects large-scale error com-
ponents which cannot be reduced by smoothing. We also develop new grid transfers
which take advantage of the numerical coarse graining method. Compared to alge-
braic methods and methods which apply matrix-dependent transfers the new method
works very efficiently for permeability fields where the variances are not greater than
three.

The structure of the paper is the following. The next section introduces the flow
equation which is the basis for our computations. Further, we describe the multigrid
algorithm and the model problem. Section 3 is devoted to the coarse graining method
and the numerical upscaling. In Sect. 4 we introduce the new method based on the
numerical coarse graining, which is called Coarsening multigrid. In Sect. 5, we com-
pare various multigrid methods for solving the model problem. We conclude with a
summary.



Coarsening Multigrid for Flow in Porous Media 113

2 Mathematical Statement and Definitions

2.1 Flow Equation

We consider the flow of an incompressible fluid in a porous medium that is governed
by q(x) = −K(x)∇u(x) (Darcy’s law) and∇ · q = � (continuity) for x ∈ Ω where
q is Darcy’s velocity, � is a source or sink term, u is the piezometric head, and Ω is
the flow domain. The expressions lead to the flow equation

−∇ ·K(x)∇u(x) = � for x ∈ Ω (1)

where the local permeability K(x) is a symmetric, positive definite matrix. We con-
sider K as a stationary random field of lognormal distribution. So, the medium is of
random and stationary f(x) := lnK(x), of normal f with mean f = f(x) = lnKg ,
variance σ2

f , and two-point covariance

cov
(
f(x), f(x′)

)
:=

(
f(x)− f(x)

)(
f(x′)− f(x′)

)
,

which depends on the distance vector: cov
(
f(x), f(x′)

)
=: w(x−x′) for x, x′ ∈ R

d.

The over-bar (·) denotes the ensemble average, and Kg denotes the geometric mean.
Analogously, we splitK(x) into its mean and the fluctuations:K(x) = K+k(x),

with k(x) ≡ 0. For the correlation function we choose

w(x− x′) := σ2
f exp

(
−

d∑
i=1

(xi − x′i)
2

2l2i

)
,

with correlation lengths li, i = 1, . . . , d, in the direction of xi and variance σ2
f of

f(x). For an isotropic-correlated field the lengths li are equally denoted by l0. In that
case, the correlation function merely depends on the distance |x− x′|. Exploiting
the statistical properties of lnK(x) one derives for the mean and the variance σ2

K

of K(x): K(x) = K = Kg exp
(
σ2

f/2
)

and σ2
K := k(x) k(x) = K2

g

(
exp(2σ2

f ) −
exp(σ2

f )
)
.

For the generation of realizations of the random field f(x) we use a numerical
spectral method which is based on a superposition of many randomly chosen cosine
modes, see [14, 6]. For the numerical experiments in Sect. 5 we always choose f = 0.

2.2 Discretization

The flow equation describes a second-order elliptic boundary value problem. We
discretize it by a bilinear finite element method, see e.g. [9]. We assume Ω ⊂ R

2

to be an open square and consider (1) with boundary conditions u(x) = uD(x) for
x ∈ ∂ΩD and n(x) ·

(
K(x)∇u(x)

)
= 0 for x ∈ ∂ΩN , where ∂ΩD ∪ ∂ΩN =

∂Ω. n(x) denotes the outer normal unit vector on ∂Ω. Further we assume K(x) ∈(
W 1,∞(Ω)

)2×2
. The variational formulation of (1) reads:
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Problem 1. For � ∈ L2(Ω) and uD ∈ H1(Ω) we seek u ∈ H1(Ω) so that

a(u,w) = l(w) for all w ∈ H1
D(Ω) , u|∂ΩD

= uD|∂ΩD
,

whereH1
D(Ω) := {w ∈ H1(Ω)| w = 0 on ∂ΩD}, a(u,w) :=

∫
Ω
∇w ·(K∇u)d2x,

and l(w) :=
∫

Ω
�wd2x.

Defining and substituting v := u− uD ∈ H1
D(Ω) and l(w)← l(w) + a(uD, w) the

variational formulation is given by:

Problem 2. Seek v ∈ V := H1
D(Ω) such that a(v, w) = l(w) for all w ∈ H1

D(Ω).

Replacing the Sobolev function space V by a finite element subspace Vh ⊂ V we
end up with a system of linear equations.

For the discretization we consider structured grids of quadratic elements. We
define the partition τi := τhi

=
{
T

(i)
j

}
of Ω which consists of the smallest quadratic

elements T (i)
j of length hi > 0 given by the grid

Ωhi
:=

{
(x1, x2) ∈ Ω |x1 = lhi, x2 = mhi, l,m ∈ Z

}
(2)

with mesh size hi. The midpoint of an element Tj is denoted by x̃(Tj). We assume

that the boundary ∂ΩD is resolved by elements T (0)
i of τ0, i.e. ∂ΩD =

⋃
I

(
T

(0)
i ∩

∂Ω
)

with an appropriate index set I . Further we define the subspace Vi := Vhi
⊂ V

based on the partition τi by

Vhi
:=

{
v ∈ C

(
Ω
)
| v|

T
(i)
j

∈ Q(1) ∀j, v|∂ΩD
= 0

}
where Q(t) :=

{
u(x1, x2) =

∑
0≤i,k≤t cik x

i
1x

k
2

}
is the set of polynomials. For the

implementation we choose the standard basis
{
ψ

(i)
j

}
1≤j≤Ni

of Vi which is given on

the grid Ωhi
by ψ(i)

j

(
x(k)

)
= δjk.

The linear Problem 2 in V0 is then equivalent to the system of linear equations

Av = b where A :=
(
a
(
ψ

(0)
j , ψ

(0)
i

))N0

i,j=1
and b :=

(
l
(
ψ

(0)
i

))N0

i=1
. The solution

is given by the vector v = (vi)N0
i=1 due to v0(x) =

∑N0
i=1 vi ψ

(0)
i (x). The stiffness

matrix A and the right-hand side b explicitly read

Aij = a
(
ψ

(0)
j , ψ

(0)
i

)
=

∫
Ω

∇ψ(0)
i ·

(
K∇ψ(0)

j

)
d2x ,

bi = l
(
ψ

(0)
i

)
=

∫
Ω

�ψ
(0)
i d2x+

∫
Ω

∇ψ(0)
i · (K∇uD) d2x .

2.3 Multigrid Methods

We briefly state the algorithm of a multigrid method for the notations. One step to
improve an approximation for v0 for solving the system of equations A0 v0 = b0,
where the components are given by Aij =

(
A0 ψ

(0)
j

)(
ψ

(0)
i

)
and bi = b0

(
ψ

(0)
i

)
,

reads
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Algorithm 1 (Multigrid cycle MGC(k, vk, bk)).

If k = J return vJ := A−1
J bJ .

Else Pre-Smoothing: vk := Sν1
k (vk, bk)

Defect: dk := Ak vk − bk
Restriction: dk+1 := rk+1

k dk

Coarse grid correction ek+1 := 0: Loop 1, . . . , γ:
ek+1 := MGC(k + 1, ek+1, dk+1)

Prolongation: vk := vk − pk
k+1ek+1

Post-Smoothing: vk := Sν2
k (vk, bk)

Return vk.

We denote prolongations by pk−1
k : Vk → Vk−1, restrictions by rk

k−1 : V ′
k−1 → V ′

k ,
coarse grid operators by Ak : Vk → V ′

k for k = 1, . . . , J , and smoothers by Sk :
Vk×V ′

k → Vk for k = 0, . . . , J , where Sν
k (vk, bk) denotes the result of ν smoothing

steps. Very often the Galerkin product

Ak+1 := rk+1
k Akp

k
k+1 , k ≥ 0 , (3)

is applied to get the coarse grid operators. In the Galerkin case the prolongation
and restriction is given by the injection j : Vk ↪→ Vk−1 and the adjoint operator
j∗ : V ′

k−1 ↪→ V ′
k . The canonical prolongation pk−1

k : R
Nk → R

Nk−1 reads for
bilinear finite elements using stencil notation

pk−1
k =

⎡⎣1/4 1/2 1/4
1/2 1 1/2
1/4 1/2 1/4

⎤⎦ ,
which is identical to a bilinear interpolation. The canonical restriction is defined by
the adjoint: rk

k−1 =
(
pk−1

k

)∗
. We refer to them as standard transfers.

To apply a geometric multigrid method we define a hierarchy of grids by succes-
sive geometric coarsening, i.e. starting from the finest grid we merge four adjacent
elements to an element of the next coarser grid, see Fig. 1. Thus, we can deduce
partitions τh0 , τh1 , . . . , τhJ

, hk = 2hk−1, which are assigned to the finite element
spaces Vk with the property V0 ⊂ V1 ⊂ · · · ⊂ VJ . The hierarchy of grids is defined
by Ωk := Ωhk

for k = 0, . . . , J with mesh sizes hk = hk+1/2. For the definition of
multigrid transfers in Sect. 4, we split the grid Ωk in four disjoint grids (k ≥ 0):

Ω00
k := {(x1, x2) ∈ Ωk|x1 = 2ihk, x2 = 2jhk, i, j ∈ Z} = Ωk+1

Ω10
k := {(x1, x2) ∈ Ωk|x1 = (2i+ 1)hk, x2 = 2jhk, i, j ∈ Z}

Ω01
k := {(x1, x2) ∈ Ωk|x1 = 2ihk, x2 = (2j + 1)hk, i, j ∈ Z}

Ω11
k := {(x1, x2) ∈ Ωk|x1 = (2i+ 1)hk, x2 = (2j + 1)hk, i, j ∈ Z} .

Unlike geometric multigrid methods algebraic methods try to match the multigrid
components adapted to the problem to reduce the total error spectrum by smoothing
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Fig. 1. Geometric coarsening

and coarse grid correction. This can be done using robust smoothers like ILUβ , see
e.g. [20]. However, in the past 15 years algebraic methods tended to adjust the coarse
grid correction and to apply a simple smoothing. As a consequence, the transfer oper-
ators must be adjusted when computing the coarse grid operators Ak by the Galerkin
product. The construction of suitable transfers pk

k+1, rk+1
k can be made by preserv-

ing continuous quantities such as flux when transferring the defect dk or correction
ek between the grids. In Sect. 5, we apply matrix-dependent grid transfers proposed
by Alcouffe et al., see [1, 5]. They make use of the operators Ak to construct the
prolongations and to guarantee the continuity of the flux. These grid transfers proved
useful for solving diffusion problems by multigrid methods for media with jump-
ing coefficients, periodic and random media, and media with inclusions, as shown
in [1, 21, 13, 15]. For purely algebraic methods, such as the method of Ruge and
Stüben (MG-RS) [17] and the Schur-complement method (MG-SC), see [18], ro-
bustness is also proved in practical cases, see [17, 18]. The method of Ruge and
Stüben applies an appropriate coarsening algorithm to construct the grids adapted to
the problem. MG-SC applies the geometric coarsening.

2.4 Model Problem

For the numerical experiments we solve the flow equation (1) in the domain Ω =
[0, 1]2 with vanishing source term �(x) ≡ 0. For the discretization of (1) the fine-
scale permeability K(x) within an element T (0)

j is set to the value at the midpoint

x̃
(
T

(0)
j

)
of the element, that is, K(x) is defined by

K(x) := K
(
x̃(T (0)

j )
)

for all x ∈ T
(0)
j .

By the geometric coarsening we obtain the hierarchy τi, i > 0, associated with the
grids Ωhi

on Ω, see (2). The boundary conditions are:

u(x) = 1 for x1 = 0 , x2 ∈ [0, 1] ,
u(x) = 0 for x1 = 1 , x2 ∈ [0, 1] ,

and n(x) ·
(
K(x)∇u(x)

)
= 0 otherwise. The parameters for the multigrid cycle

are always chosen to be ν1 = ν2 = 1 and γ = 1 (V-cycle). The smoother S is a
symmetric Gauss-Seidel smoother (SGS), and the initial vector is the zero vector.
On the coarsest grid level J , we also apply SGS as solver.

The convergence of the multigrid methods is determined by the averaged conver-

gence rate ρ =
(
||d(m)||/||d(0)||

)1/m
, if m iteration steps are necessary to reduce the
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euclidean norm of the initial defect ||d(0)|| by 10 orders of magnitude for instance.
We fix the stopping criterion of the methods to a relative reduction of 10−10 or 80
as a maximum of iterations. In our terminology an iterative solver qualifies as fast or
optimal if its speed of convergence is best.

3 Numerical Coarse Graining

We briefly describe the coarse graining method for the upscaling of the flow equa-
tion. The concept of coarse graining for flow in porous media was developed in [6, 7].
It models the flow equation on larger scales starting from the equation with the fine-
scale permeability K(x). The result is an upscaled flow equation, which does not
model the fine-scale heterogeneity up to an arbitrary length scale λ explicitly. The
influences of subscale fluctuations are modeled by a scale-dependent effective per-
meability Keff which incorporates the impact of the unresolved fine-scale fluctua-
tions.

In the following, we denote the coarser length scale by λ and apply Einstein’s
sum convention. The Fourier transform is defined by

f̂(q) :=
∫

f(x) exp(−ix · q)ddx .

3.1 Coarse Graining of the Flow Equation

The coarse graining is guided by the idea to smooth a function for local volumes
of magnitude λd to get a function on a coarser resolution scale. The smoothing of
the function is done in Fourier space, i.e. high oscillatory modes are eliminated by
cutting off the function values of the Fourier transform û for large wave vectors. The
starting point is the flow equation (1) with a permeability Kij(x) = Kij + kij(x),
i, j = 1, . . . , d, where Kij(x) ∈ W 1,∞(Rd) is a realization of a scalar, lognormally
distributed random field with mean Kij and fluctuations kij(x). As boundary con-
ditions we choose zero boundary conditions at infinity and assume u(x) ∈ H2(Rd).
The flow equation in Fourier space then reads

−iqi Kijiqj û(q)− iqi

∫
k̂ij(q − q′) iq′j û(q′) ddq′ = �̂(q) , (4)

and we define projections for cutting off high and low frequency modes in Fourier
space:

P+
λ,q

(
û(q)

)
:=

{
û(q) if |qi| > as/λ for an i ∈ {1, . . . , d}
0 otherwise,

P−
λ,q

(
û(q)

)
:=

{
û(q) if |qi| ≤ as/λ for all i ∈ {1, . . . , d}
0 otherwise,
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where P+
λ,q

(
P+

λ,q(û(q))
)

= P+
λ,q

(
û(q)

)
and as ≥ 1 is a constant. The idea is to

split û by the projections, that is, û(q) = P−
λ

(
û(q)

)
+ P+

λ

(
û(q)

)
, and to project

equation (4) onto high and low frequencies. Substituting the result for P+
λ

(
û(q)

)
into the equation for P−

λ

(
û(q)

)
, one deduces a closed expression for P−

λ

(
û(q)

)
. As

shown in [6], this procedure leads to an upscaled flow equation for an arbitrary scale
λ based on the equation for P−

λ

(
û(q)

)
:

P−
λ,q

(
qiK

eff
ij (λ)qj û(q)− iqi

∫
k̂ij(q − q′)iq′jP

−
λ,q′

(
û(q′)

)
ddq′

)
= P−

λ,q

(
�̂(q)

)
.

(5)
Equation (5) includes the effective permeability tensor

Keff
ij (λ) := Kij +

∫
k̂il(−q)iql P

+
λ,q

(
P+

λ,q′
(
Ĝ(q,−q′)

)
iq′mk̂mj(q′)

) ddq′ddq

(2π)2d
(6)

where Ĝ(q, q′) is Green’s function of the flow equation (4) in Fourier space. Ap-
plying a perturbation theory and a Renormalization group analysis Keff(λ) can be
analyzed, and explicit results can be calculated, see [6]. According to (5) the up-
scaled flow equation reads in real space:

−div
(
Keff(λ) + k(x)|λ

)
∇uλ(x) = �(x)|λ ,

where k(x)|λ and �(x)|λ are the upscaled quantities, and uλ(x) is the solution on
the scale λ.

3.2 Numerically Upscaled Effective Permeability

The coarse graining method can be extended to a numerical upscaling technique. Lo-
cal effective permeability coefficients are constructed by deriving an upscaled coef-
ficient for a given realization. This leads to a numerically upscaled coefficient which
depends on x. As a result, a varying effective permeability field is obtained, and by
iteration, a hierarchy of fields can be established which successively corresponds to
larger scales.

The effective permeability (6) leads to the approximate effective tensor

Keff
ij (λ) ≈ Kij +

∫
kil(x) ∂xl

(∫
E

(x)
λ

G(x, x′) ∂x′
m
kmj(x′) ddx′

)
ddx

in real space, as shown in [6].G(x, x′) denotes Green’s function of the flow equation,
andE(x)

λ defines the d-dimensional cubeE(x)
λ :=

∏d
i=1[xi−λ/as, xi+λ/as] around

x. The upscaled permeability tensor for a single realization is then defined by

K real
ij (λ) := Kij +

∫
kil(x) ∂xl

∫
E

(x)
λ

G(x, x′) ∂x′
m
kmj(x′) ddx′ddx .
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Further, Green’s function G(x, x′) in K real is replaced by a Green’s function
G(x)(x′, x′′) for E(x)

λ which fulfills1

−div
(
K + k(x′)

)
∇G(x)(x′, x′′) = δ(x′ − x′′)

in E(x)
λ , x ∈ R

d fixed. Using

δKnum
ij (x′, λ) := kil(x′) ∂x′

l

∫
E

(x)
λ

G(x)(x′, x′′) ∂x′′
m
kmj(x′′) ddx′′ for x′ ∈ E

(x)
λ ,

an upscaled permeability coefficient for x can be determined by

Kij +
∫

E
(x)
λ

δKnum
ij (x′, λ) ddx′ .

We introduce the function

χ
(x)
j (x′) :=

∫
E

(x)
λ

G(x)(x′, x′′) ∂x′′
m
kmj(x′′) ddx′′ , x′ ∈ E

(x)
λ ,

which fulfills for fixed x the differential equation

divK(x′)∇
(
χ

(x)
j (x′) + x′j

)
= 0 for x′ ∈ E

(x)
λ , (7)

and appropriate boundary conditions. Now, the definition for the numerically up-
scaled permeability coefficient, which depends on x for E(x)

λ , is given by:

Definition 1 (Numerically upscaled permeability).

Knum
ij (x, λ) := Kij+

∫
E

(x)
λ

δKnum
ij (x′, λ) ddx′ = Kij+

∫
E

(x)
λ

kil(x′) ∂x′
l
χ

(x)
j (x′) ddx′ .

Theorem 1. If Kij(x) is diagonal and positive definite, then Knum
ij is symmetric

and positive definite in the limit λ → ∞. Moreover, by the substitution Kij →∫
E

(x)
λ

Kij(x′) ddx′ we get for finite length scales λ that∫
E

(x)
λ

Kij(x′) ddx′ +
∫

E
(x)
λ

kil(x′) ∂x′
l
χ

(x)
j (x′) ddx′

is symmetric, positive definite, if the function χ(x)
j fulfills one of the following bound-

ary condition on ∂E(x)
λ : i) Dirichlet-zero boundary conditions, ii) periodic boundary

conditions if K is periodic with period 2λ/as, or iii) below defined NZF-boundary

conditions, and
∫

E
(x)
λ

Kil∂x′
l
χ

(x)
j (x′)ddx′ = 0.

Proof. See [6].

1The superscript x in G(x) is regarded as an index.
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Definition 2 (NZF-boundary conditions). The NZF-boundary conditions2 consist
of mixed boundary conditions for χ(x)

j on ∂E
(x)
λ . They are for x and j = 1, . . . , d

fixed:

χ
(x)
j (x′) = 0 if x′j = xj − λ/as or x′j = xj + λ/as ,

n(x′) ·
(
K(x′)∇χ(x)

j (x′)
)

= 0 otherwise,

with x′ ∈ ∂E
(x)
λ . n(x′) denotes the outer unit normal vector of E(x)

λ in x′.

As proved in [6], the auxiliary equation (7) corresponds to the cell problem in the
method of homogenization in the case of periodic permeability fields.

3.3 Numerical Computation of Upscaled Fields

We consider the unit square Ω and a finest partition τ0 =
{
T

(0)
j

}
1≤j≤N

given by the
grid Ω0 with mesh size h0, as described in Sect. 2. The permeability field K(x) is
generated as a realization of the lognormally distributed random field and is given by
K(x) := K

(
x̃(T (0)

j )
)

for all x ∈ T
(0)
j on the uniform grid of rectangles, analogously

to Sect. 2.4. By geometric coarsening we obtain the hierarchy τi =
{
T

(i)
j

}
, i > 0,

associated with the grids Ωi, see (2), with sizes hi = 2ih0. For the computation of
the upscaled permeability for a given element T (i)

j ∈ τi, i > 0, we set E(x)
λ = T

(i)
j

with x = x̃
(
T

(i)
j

)
. Definition 1 leads to

Knum
lm (x, λ) = Klm +

∫
T

(i)
j

kln(x′) ∂x′
n
χ(x)

m (x′) d2x′ (8)

for x = x̃(T (i)
j ), λ = hi, and Klm =

∫
Ω
Klm(x)d2x. We define this coefficient as

the upscaled permeability for all x ∈ T
(i)
j :

Knum(x, λ) := Knum
(
x̃(T (i)

j ), λ
)

for all x ∈ T
(i)
j , λ = hi .

So, the numerically upscaled permeability field on the scale λ = hi is given by
K(x)|λ := Knum

(
x̃(T (i)

j ), λ
)

+ k
(
x)

∣∣
λ

for all x ∈ T
(i)
j , where the upscaled fluctu-

ations k(x)|λ are computed by

klm(x)|λ :=
1∫

T
(i)
j

d2x′

∫
T

(i)
j

klm(x′) d2x′ for x ∈ T
(i)
j . (9)

The solution for χ(x)
m (x′) of the differential equation (7) in E(x)

λ = T
(i)
j is com-

puted for Knum(x, λ) by the bilinear finite element method using SGS as a solver.
We select the partition τT for discretizing (7) on T (i)

j for all j and i ≥ 0 so fine, so

2NZF stands for Dirichlet zero (null) and zero flux.
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that K(x) is constant on each element of τT , and that we can apply the midpoint rule
for the computations. As a stop criterion for the solver we choose the relative error
being reduced to 10−10 or the absolute error being reduced to 10−15.

As a result of the discretization Knum depends on the mesh size hT of the chosen
grid τT for T and on the boundary conditions for χ(x)

m (x′). As shown in [6, 7], the
numerically upscaled permeability converges very fast to the asymptotic value for
grids with hT /h0 < 1/8. Consequently, we choose the mesh size for the computation
of Knum to hT /h0 ≤ 1

32 l0/λ.

Iterative Upscaling of the Fields

Since we consider a hierarchy of partitions τi we are able to perform an iterative
upscaling by successive coarse graining from the field of the previous coarse graining
step. The advantage is that the mesh size hT for the computation of Knum for λ/l0 ≥
1/8 must not be chosen as fine as in the case of upscaling from the fine-scale field.

We define K(x)|λ0 := K(x) and take λ0 < λ1 < . . . < λJ with λi = hi as
given scales. Under the assumption that the field K(x)|λi

on λi, i ≥ 0, exists, the
field K(x)|λi+1 can be computed by

K(x)|λi+1 := Knum
(
x̃(T (i+1)

j ), λi+1

)
+ k(x, λi)|λi+1 ,

for x ∈ T
(i+1)
j , λi+1 = hi+1 = 2λi, and

Knum
lm

(
x̃(T (i+1)

j ), λi+1

)
= Klm(x)|λi

+
∫

T
(i+1)
j

kln(x′)|λi
∂x′

n
χ(x)

m (x′) d2x′ ,

and k(x, λi) := K(x)|λi
−K(x)|λi

.

4 Coarsening Multigrid Method

The Coarsening multigrid method (CN-MG) is an algebraically defined multigrid
method which benefits from the numerical upscaling by the coarse graining. It uses
the iterative upscaling of the permeability field to determine the coarse grid operators
Al := A(l) by discretizing the flow equation on these fields. As the upscaled fields
K(x)|λ=hl

include only long wave fluctuations varying on scales larger than the
scale λ, the so-defined coarse grid operators reduce the low frequency error spectrum
and can efficiently interplay with the smoother.

The coarse grid operator on grid level l of CN-MG is defined by the entries of
the stiffness matrix

A
(l)
ij :=

2∑
m,n=1

∫
Ω

KCN
mn(x)|λl

∂xn
ψ

(l)
j (x) ∂xm

ψ
(l)
i (x) d2x , (10)
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where λl = hl for the partition τl. To ensure that the iteratively upscaled field
K(x)|λl

is symmetric and positive definite for x ∈ Ω, which can be violated in
cases of high variances σ2

f , we apply the following modifications: We choose the
upscaled permeability field in CN-MG as

KCN(x)|λl+1 =

{
K(x)|λl+1 +

(
K(x)|λl+1 −Knum(x, λl+1)

)∣∣
λl+1

for λ/l0 < θ

K(x)|λl+1 otherwise,

where the corrector field
(
K(x)|λl

− Knum(x, λl)
)∣∣

λl+1
is given by a simple arith-

metic smoothing, analogous to the smoothed fluctuations k(x, λl)|λl+1 in (9). To
avoid choosing θ depending on x, we substitute the field KCN(x)|λl+1 where it still
violates the positiveness by

1
h2

l+1

∫
T

(l+1)
j

KCN(x)|λl
d2x for x ∈ T

(l+1)
j . (11)

The parameter θ is chosen as θ(σ2
f ) = 1/8 for σ2

f ≥ 1, and θ(σ2
f ) = 0 otherwise. In

all cases where K(x) does not rely on a realization of the random field we set θ = 0.

4.1 Setup Phase of CN–MG

The setup phase for the Coarsening multigrid method is as follows.

1. Iterative upscaling of the permeability fields, starting with K(x)|λ0 = K(x),
using geometric coarsening to get the hierarchy τl := τhl

, l > 0.

• The cell problem div K(x′)|λl
∇
(
χ

(x)
i (x′) + x′i

)
= 0, λl = hl, has to be

solved on each T (l)
j with given boundary conditions. Due to (8), Knum(x, λl)

for T (l)
j is computed via χ(x)

i .
• Symmetrizing of Knum: Knum

mn (x, λl) := 1
2

(
Knum

12 (x, λl) + Knum
21 (x, λl)

)
for

m �= n.
• Computation of KCN(x)|λl

including the modifications due to (11). There-

fore, the coefficients Knum(x, λl) and Knum(x, λl−1) for T
(l)
j , and the

smoothed fluctuations k(x, λl−1)|λl
are used.

2. Discretizing the differential operator div KCN(x)|λl
∇u(x). According to (10),

the discretization yields the operator Al on the grid level l.

The cell problems are solved by SGS, and the stopping criterion is given by the
relative or absolute reduction of the initial defect to 10−10 or 10−15, or by 60 iteration
steps.

4.2 Transfer Operators for CN–MG

The idea for the construction of appropriate grid transfers for the Coarsening multi-
grid method is taken from the method of homogenization. In the homogenization the-
ory, the fine-scale solution is well approximated by the homogenized solution plus a
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correction including the solution to the cell problem, see e.g. [11]. Since problem (7)
is similar to the cell problem on each element T (l)

j ∈ τl, we exploit the solutions

χ
(x)
i of the cell problems in a similar fashion for the definition of the prolongation p

of a correction el(x), see [6]:

el−1(x) =
(
pl−1

l el

)
(x) := el(x) +

hl−1

hl

2∑
i=1

χ
(x̃(T

(l)
j ))

i (x) ∂xi
el(x)

for x ∈ T
(l)
j ∩

(
Ωl−1 \Ωl

)
. Due to the fact that for adjacent elements T (l)

j1
and T (l)

j2

the solutions χ(x̃(T
(l)
j1

)) and χ(x̃(T
(l)
j2

)) are usually not identical, the prolongation is
not unique in grid points Ω10

l−1 ∪ Ω01
l−1 which do not lie on the boundary ∂Ω. Thus,

we define the prolongation by:

Definition 3 (CN-Prolongation). In fine grid points Ω00
l−1 = Ωl, the prolongation is

defined by the identical mapping:

el−1(x) =
(
pl−1

l el

)
(x) := el(x) for x ∈ Ω00

l−1 .

In grid points Ωl−1 \Ω00
l−1, the prolongation is defined by:

el−1(x) =
(
pl−1

l el

)
(x) := el(x)

+
hl−1

hl

∑
T (l) with x∈T (l) 1

2∑
i=1

( ∑
T (l) with x∈T (l)

χ
(x̃(T (l)))
i (x) ∂xi

el(x)

)
.

The CN-restriction is defined by the adjoint operator of the CN-prolongation.

5 Numerical Results

5.1 Numerical Test of Convergence of CN–MG

We investigate the numerical convergence of different variants of the Coarsening
multigrid method. These variants arise from employing different grid transfers and
different boundary conditions for solving the cell problems in CN-MG. We fix the
following notations:

• CN-ST: Coarsening multigrid with standard transfers.
• CN-M: Coarsening multigrid with matrix-dependent transfers as given by Al-

couffe et al. [1].
• CN-CP: Coarsening multigrid with CN-prolongation and CN-restriction.

For the comparisons we compute the arithmetic mean of the convergence rates ρ
for 10 realizations of K(x) with correlation length l0 = 1/16, and variances σ2

f = 1
and σ2

f = 2. The mesh size of the finest grid is h0 = 2−8. In addition, we vary the
mesh size hT /hl+1 of the partition τT for the elements of τl+1 for solving the cell
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Table 1. For variance σ2
f = 1: Averaged convergence rates for 10 isotropic realizations for

CN-MG. hT /h0 is the mesh size of the grids for the cell problems, and ZBC and NZF de-
note Dirichlet zero boundary conditions and NZF-boundary conditions for the cell problems,
respectively

CN-ST CN-M CN-CP CN-ST CN-M CN-CP
hT /h0

ZBC ZBC ZBC NZF NZF NZF

1/2 0.182 0.134 0.180 0.090 0.068 0.063
1/4 0.164 0.118 0.163 0.088 0.074 0.066
1/8 0.159 0.113 0.159 0.089 0.083 0.071
1/16 0.157 0.112 0.156 0.094 0.119 0.080

Table 2. For variance σ2
f = 2: Averaged convergence rates for 10 isotropic realizations for

CN-MG

CN-ST CN-M CN-CP CN-ST CN-M CN-CP
hT /h0

ZBC ZBC ZBC NZF NZF NZF

1/2 0.415 0.304 0.413 0.207 0.262 0.183
1/4 0.388 0.264 0.389 0.177 0.322 0.143
1/8 0.377 0.251 0.378 0.161 0.318 0.123
1/16 0.374 0.247 0.375 0.170 0.271 0.130

problems in CN-MG. We always choose hT /hl+1 independent of the grid level l,
i.e. hT is proportional to hl+1. For simplicity, we denote hT /hl+1 by hT /h0 in the
following.

As can be seen from Table 1 and 2, the method CN-CP (NZF) performs best for
nearly all test cases. CN-M is best among the variants using Dirichlet zero boundary
conditions for the cell problems. The rates for CN-ST and CN-CP hardly differ from
each other in the case of Dirichlet zero boundary conditions (ZBC). This is due to
the fact that the standard prolongation and CN-prolongation merely differ in grid
points Ω11

l ⊂ Ωl in the ZBC case. For the case of NZF-boundary conditions the
method CN-CP is optimal. Compared with CN-ST (ZBC) and CN-M (ZBC) the
CN-CP (NZF) variant is more than 48.7% faster.

The numerical results also demonstrate clearly that the convergence of CN-MG
depends on hT /h0. However, for CN-CP (NZF) and the methods with zero boundary
conditions the rates improve for decreasing hT in the range of hT /h0 ≥ 1/8.

In the following, we consider only the Coarsening multigrid variants CN-CP
(NZF) and CN-M (ZBC) which we simply denote by CN-CP and CN-M without
indicating the boundary conditions for the cell problems. Further, we choose the
mesh size for the cell problems in both methods to be hT /h0 = 1/8.

h-dependence of CN–MG

The dependence of the convergence on the finest mesh size h0 is shown in Table 3 for
the Coarsening methods. The table displays the rates ρ for three isotropic realizations



Coarsening Multigrid for Flow in Porous Media 125

with growing variance σ2
f . Since the heterogeneity of the fine-scale permeability

K(x) are resolved better for smaller h0, the rates improve for decreasing mesh size.
So, the convergence rates clearly show that CN-MG gets more efficient for increasing
the resolution of the fine-scale fluctuations of the permeability.

Table 3. Convergence rates for CN-M and CN-CP, and their dependence on the mesh size h0

of the finest partition for three different realizations

Number of Variance σ2
f = 1 Variance σ2

f = 2 Variance σ2
f = 3

grid points
h0

CN-M CN-CP CN-M CN-CP CN-M CN-CP

1089 2−5 0.169 0.107 0.243 0.130 0.533 0.272
4225 2−6 0.158 0.093 0.229 0.119 0.512 0.457
16641 2−7 0.141 0.084 0.212 0.077 0.490 0.229
66049 2−8 0.130 0.071 0.192 0.116 0.468 0.231
263169 2−9 0.112 0.064 0.179 0.099 0.444 0.203
1050625 2−10 0.094 0.052 0.158 0.089 0.418 0.184

5.2 Numerical Comparison of Multigrid Methods

In this section we test various multigrid methods for solving the model problem as
given in Sect. 2.4. We compare the multigrid solvers on the basis of their numer-
ical convergence rates. In addition to the method of Ruge and Stüben (MG-RS),
the Schur-complement method (MG-SC), and the Coarsening methods, we check
multigrid methods applying simple upscaling methods to determine the coarse grid
operators in combination with matrix-dependent transfers.

For simple upscaling schemes such as arithmetic or geometric averaging, we
define the upscaled permeability fields and the coarse grid operator Al similar to
the Coarsening method in the previous section. On grid level l we define analogous
to (10)

A
(l)
ij :=

2∑
m,n=1

∫
Ω

Kups
mn(x)|l ∂xn

ψ
(l)
j (x) ∂xm

ψ
(l)
i (x) d2x . (12)

The upscaled field Kups(x)|l stems from iterative upscaling of Kups(x)|l−1 on the
partition τl−1 applying simple upscaling of the permeability over elements T (l−1)

j

which belong to one element T (l) of τl. For l = 0 we define Kups(x)|0 ≡ K(x). We
indicate the different computation of the coarse grid operators by:

• MGA: Computation due to (12) where Kups(x)|l is given by arithmetic averag-
ing.

• MGG: Computation due to (12) where Kups(x)|l is given by geometric averag-
ing.

• GAP: Computation by the Galerkin product, see (3).
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For the grid transfers we define the following notations: ST: standard transfers, M:
matrix-dependent transfers due to Alcouffe et al. [1], and CP: CN-prolongation and
CN-restriction. For CN-MG, we fix the parameter θ(σ2

f ) to

θ(σ2
f ) =

⎧⎪⎨⎪⎩
1/2 for σ2

f ≥ 2
1/8 for 1 ≤ σ2

f < 2
0 for σ2

f < 1

which proved suitable for all configurations of the medium.

Comparison for an Ensemble of Realizations

We consider the model problem for fields K(x) being realizations of the random
field. Table 4 shows the arithmetic averaged convergence rates for 10 isotropic real-
izations and varying variance σ2

f . The Tables 5 and 6 consist of the rates for 10 re-
alizations which show an anisotropic correlation, where the correlation lengths are:
(l1, l2) = (2l0, l0/2) and (l1, l2) = (8l0, l0/2), l0 = 1/16. The mesh size for the
finest partition τ0 is set to h0 = 2−8.

The numbers in brackets in the tables count the realizations where the method
does not converge. In that case, the rate is the arithmetic average of the rates of the
convergent realizations.

Table 4. Convergence rates for different multigrid methods for 10 realization of isotropic
correlation for increasing variance σ2

f of the fields

σ2
f MGA-ST MGA-M MGG-ST GAP-ST GAP-M CN-M CN-CP MG-SC MG-RS

0.1 0.057 0.051 0.051 0.056 0.050 0.050 0.050 0.075 0.119
1 0.261 0.202 0.108 0.259 0.064 0.114 0.070 0.130 0.137
2 0.503 0.433 0.201 0.508 0.124 0.260 0.122 0.228 0.177
3 0.658 0.576 0.300 0.657 0.121 0.380 0.188 0.352 0.213
4 0.759 0.710 0.379 [1] 0.765 0.198 0.527 0.352 0.514 0.174
5 0.781 0.737 0.439 0.781 0.193 0.553 0.361 0.471 0.200

The numerical results for the convergence in Table 4 in the isotropic case show
that the Galerkin product method GAP-M is the fastest in most cases. The Coarsening
method CN-CP also shows very fast convergence but shows slower convergence than
GAP-M for variances σ2

f ≥ 3. However, CN-CP is faster than MG-SC and MG-RS
for σ2

f ≤ 3, whereas the method of Ruge and Stüben is very fast for high variances.
The rates of CN-M are similar to the results for MG-SC. The multigrid methods that
take simple upscaling for computation of the coarse grid operator and the standard
method GAP-ST perform worse but for very small variances σ2

f ≤ 1.
The numerical convergence results for anisotropic media are similar to the

isotropic case. Here GAP-M is even faster compared with the other methods, see
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Table 5. Convergence rates for 10 realizations with anisotropic correlation, (l1, l2) =
(2l0, l0/2), for increasing σ2

f

σ2
f MGA-ST MGA-M MGG-ST GAP-ST GAP-M CN-M CN-CP MG-SC MG-RS

0.1 0.055 0.052 0.051 0.053 0.049 0.051 0.051 0.069 0.123
1 0.270 0.189 0.303 0.267 0.053 0.107 0.099 0.153 0.160
2 0.495 0.419 0.594 [1] 0.488 0.076 0.268 0.135 0.251 0.170
3 0.606 0.519 – [10] 0.608 0.127 0.350 0.237 0.320 0.178
4 0.670 0.615 – 0.659 0.149 0.444 0.331 0.411 0.205
5 0.781 0.736 – 0.788 0.211 0.586 0.403 0.536 0.190

Table 6. Convergence rates for 10 realizations with anisotropic correlation, (l1, l2) =
(8l0, l0/2), for increasing σ2

f

σ2
f MGA-ST MGA-M MGG-ST GAP-ST GAP-M CN-M CN-CP MG-SC MG-RS

0.1 0.053 0.050 0.050 0.052 0.049 0.050 0.050 0.068 0.116
1 0.258 0.221 0.272 0.256 0.050 0.135 0.073 0.081 0.156
2 0.383 0.348 0.755 [3] 0.395 0.050 0.242 0.151 0.122 0.181
3 0.531 0.477 – [10] 0.539 0.058 0.341 0.403 0.163 0.178
4 0.633 0.592 – 0.635 0.097 0.427 0.475 0.258 0.208
5 0.668 0.622 – 0.670 0.110 0.491 0.437 0.269 0.190

Table 5 and 6. The growth of the rates for increasing variance σ2
f is smallest for MG-

RS and the Galerkin product methods. It is also remarkable that the rates of GAP-M
only vary between 0.049 and 0.110 for the anisotropic case in Table 6.

Comparison for a Single Realization

Table 7 reports the numerical convergence results for a single isotropic realization
which is different for each value of the variance. The mesh size of the finest partition
is set to h0 = 2−8. For small variances σ2

f ≤ 1 all methods yield good results.
For σ2

f ≥ 2, the variants GAP-M, CN-CP, and MG-RS are the best methods. For
increasing σ2

f the rates of GAP-M and CN-CP deteriorates slightly but they are still
satisfactory for σ2

f = 5, whereas MG-RS does not show any dependence on σ2
f .

Comparisons for Periodic Media

In the following we investigate the numerical convergence of the multigrid methods
solving the model problem for periodic permeability fields K(x). We denote the
mesh size of the finest partition τ0 by h0, which is 2−7 for all computations of the
remainder of the section.
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Table 7. Convergence rates for a single realization with isotropic correlation for different
values of the variance σ2

f

σ2
f MGA-ST MGG-ST GAP-M CN-CP MG-SC MG-RS

0.1 0.051 0.049 0.050 0.049 0.089 0.137
1 0.224 0.091 0.052 0.051 0.093 0.121
2 0.525 0.192 0.092 0.117 0.230 0.154
3 0.624 0.376 0.142 0.121 0.309 0.188
4 0.667 0.228 0.155 0.210 0.341 0.169
5 0.788 0.930 0.321 0.344 0.574 0.158

Fig. 2. (a) Periodic layered medium and (b) medium with periodic symmetric inclusions and
its periodicity cell

Periodic Layered Medium

First, we consider a periodic medium consisting of two layers as shown in Fig. 2 (a).
The width of the layers is 1/16 which corresponds to 8h0, and the permeabilityK(x)
is given by:

K(x) =

{
v1 I for x ∈ Ω1

v2 I for x ∈ Ω2 ,

where Ω1 denotes the white layers, Ω2 the black ones in Fig. 2 (a). I is the identity
matrix, and we fix v1 = 1. Table 8 lists the convergence rates for varying rate of
v2/v1.

The rates in Table 8 show that the Galerkin product method GAP-M and the alge-
braic method MG-RS are best, where the method of Ruge and Stüben is optimal for
v2 ≥ 102. The Schur-complement method exhibits convergence rates always smaller
than 0.5. But all the other methods including the Coarsening multigrid yield accept-
able results only in the range of 10−1 ≤ v2 ≤ 10. For v2 ≥ 102 the convergence of
CN-CP is at least two times slower compared to the Galerkin product method.

Medium with Periodic Inclusions

Second, we consider a medium with periodic symmetric inclusions as shown in
Fig. 2 (b). The length of the periodicity cell is 1/16, that is 8h0. The permeabil-
ity field is set to K = v2I in the black area and K = v1I in the white area for
the periodicity cell. We obtain the convergence rates given by Table 9. For v2 ≤ 1,
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Table 8. Convergence rates for a periodic layered medium for K(x) as shown in Fig. 2 (a)

v2/v1 MGA-M GAP-ST GAP-M CN-M CN-CP MG-SC MG-RS

10−3 0.719 0.749 0.146 0.665 0.460 0.346 0.214
10−2 0.609 0.645 0.118 0.533 0.334 0.211 0.190
10−1 0.270 0.290 0.050 0.192 0.119 0.074 0.214
1 0.051 0.051 0.051 0.051 0.051 0.065 0.107
101 0.315 0.310 0.066 0.229 0.175 0.073 0.179
102 0.692 0.696 0.215 0.623 0.728 0.243 0.190
103 0.799 0.798 0.375 0.767 0.905 0.407 0.192

all methods work well. Especially the method GAP-M, the Coarsening and Schur-
complement method are very good. Whereas for stiff inclusions, that is v2 > 10, the
Galerkin product method is optimal with ρ < 0.16. The Coarsening methods do not
show satisfactory convergence for these values of v2.

Table 9. Convergence rates for the medium with inclusions as permeability field K(x) as
shown in Fig. 2 (b)

v2/v1 MGA-M GAP-ST GAP-M CN-M CN-CP MG-SC MG-RS

10−3 0.190 0.209 0.072 0.099 0.092 0.092 0.193
10−2 0.185 0.204 0.071 0.098 0.090 0.091 0.202
10−1 0.136 0.155 0.064 0.083 0.048 0.076 0.210
1 0.051 0.051 0.051 0.051 0.051 0.065 0.107
101 0.458 0.478 0.069 0.289 0.067 0.108 0.231
102 0.885 0.896 0.108 0.811 0.762 0.142 0.246
103 0.960 0.964 0.161 0.941 0.948 0.236 0.287

Chess Board Medium and Medium with Cross Layers

For a chess board medium as in Fig. 3 (a) with block width 1/16, where K(x) has
value v2I in the black zones and v1I in the white zones, we obtain the rates given
in Table 10. Compared with the other periodic test cases, they are worse for almost
all multigrid methods. All methods except of MG-RS show good convergence only
for v2/v1 = 10−1 and v2/v1 = 10. Whereas the method of Ruge and Stüben is
robust for all ratios v2/v1. The convergence rate of MG-RS is 0.21 < ρ < 0.24. The
optimal convergence of MG-RS for the chess board medium can be deduced by its
adjusted grid coarsening strategy, as shown for instance in [6].

The permeability field K(x) for the cross layered medium, Fig. 3 (b), is again
given by v2I in the black area and v1I in the white area. For moderate numbers
of v2/v1 between 10−1 and 10, all multigrid methods converge fast, see Table 11.
The Schur-complement method and GAP-M are optimal for small v2/v1 ≤ 10−1.
However, for the total range of v2/v1 the only method which is robust is MG-RS.
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Fig. 3. (a) Chess board medium, (b) medium with periodic cross layers and its periodicity cell.

Table 10. Convergence rates for different multigrid method for a chess board medium

v2/v1 MGA-M GAP-ST GAP-M CN-M CN-CP MG-SC MG-RS

10−3 0.532 0.531 0.507 0.448 0.421 0.543 0.213
10−2 0.503 0.502 0.480 0.418 0.392 0.516 0.221
10−1 0.303 0.303 0.284 0.229 0.221 0.328 0.235
101 0.346 0.347 0.326 0.273 0.262 0.362 0.227
102 0.583 0.583 0.561 0.499 0.478 0.591 0.211
103 0.640 0.640 0.620 0.562 0.540 0.647 0.233

Table 11. Convergence rates for the medium with cross layers as plotted in Fig. 3 (b)

v2/v1 MGA-M GAP-M CN-M CN-CP MG-SC MG-RS

10−3 0.527 0.182 0.445 0.543 0.136 0.191
10−2 0.457 0.159 0.367 0.472 0.146 0.202
10−1 0.162 0.098 0.109 0.095 0.113 0.183
101 0.278 0.116 0.202 0.140 0.176 0.175
102 0.676 0.322 0.601 0.684 0.397 0.274
103 0.786 0.480 0.729 0.791 0.464 0.228

6 Summary

We focus on multigrid methods for flow in heterogeneous porous media where the
local permeability is given by a stationary random field of lognormal distribution or
by a periodic medium. We consider the coarse graining method for the numerical
upscaling of the permeability, see [2, 7], and we develop a new multigrid method
which applies the upscaling concept to obtain the coarse grid operator. Thus the
coarse grid operators of the Coarsening multigrid method (CN-MG) are adjusted to
the scale-dependent fluctuations of the permeability which is important for an effi-
cient interplay with simple smoothing. As a result the Coarsening multigrid method
is adapted to the particular flow problem.

The investigation of important properties of the new method proves numerically
the success of the combination of smoothing and coarse grid correction owing to
the coarse graining. By a qualified choice of the boundary conditions for the cell
problem and of the grid transfers we attain an improvement of the convergence of
48% for one of the new multigrid variants.
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We compare the Coarsening multigrid method to algebraic methods. The con-
vergence rates show that the variant CN-CP of the Coarsening method is as efficient
as the Galerkin product and Ruge and Stüben methods for variances σ2

f ≤ 3 which
are by far sufficient for practical applications. For anisotropic and periodic media the
rates of CN-CP are worse compared to GAP-M for large σ2

f in almost all cases. For
large fluctuations in the field, MG-RS always yields good convergence or is optimal.
For the medium with cross layers and the chess board it is the fastest method.

The comparison to the algebraic multigrid methods indicates that the concept of
matrix-dependent transfers and an adaptive grid coarsening algorithm is indispens-
able for solving flow in highly heterogeneous media. In future work, we will combine
the Coarsening multigrid method with adaptive coarsening strategies to improve the
robustness.
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Summary. The ability to model features that are small relative to the cell size is often impor-
tant in electromagnetic simulations. In this paper we develop subcell models for thin wires and
thin slots in the finite-element time-domain (FETD) method. The current along the wires is de-
scribed by a modified telegraphers equation and for the slots a dual equation for the magnetic
current is used. Therefore, a unified approach for modeling thin wires and thin slots is possi-
ble. Stability proofs show that the full time-continuous field-wire-slot system is stable and that
the fully discrete system is unconditionally stable. The proposed method is demonstrated for
a dipole and a circular loop antenna, and scattering from a circular slot in an infinite, perfectly
conducting wall.

Key words: Maxwell’s equations, finite element methods, subcell models, thin wires, thin
slots

1 Introduction

Transient finite-element methods based on Whitney elements represent powerful
techniques for solution of the Maxwell equations, see e.g. [10] and references
therein. The ability to model features that are small relative to the cell size is often
important in electromagnetic simulations. In principle, an unstructured grid could be
used to resolve these small features. However, in practice, the number of unknowns
can be prohibitive. Thus, the development of accurate models that characterize the
physics of the feature without the need for a highly resolved grid is essential. In this
paper models for thin wires and thin slots and their incorporation in the finite-element
time-domain (FETD) method are addressed.

Thin wires are often important parts of electromagnetic compatibility and an-
tenna problems. A subcell model for thin wires in the finite-difference time-domain
(FDTD) method using modified telegraphers equations has been developed by Hol-
land et al. [8]. These equations are driven by the electric field along the wire, whereas
the current on the wire is a source term in the Maxwell equations. In [14] this model
is used for grid aligned wires in the FETD method. However, stability problems
might occur due to the non-symmetric coupling between field and wires.
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Practical systems possess narrow cracks and gaps that can be challenging to in-
clude in an analysis. Therefore, subcell modeling techniques have been proposed
for thin slots. Riley has proposed a differential equation based method for modeling
grid aligned thin slots in FETD [14], where both the slot width and the slot depth
are parameters. The slot model is based on a dual formulation to thin wires. Since
the coupling between field and slot in [14] is non-symmetric the resulting field-slot
system might exhibit instabilities.

We show that a consistent discretization of the wire and slot equations using
nodal basis functions and the use of a radial weighting function result in a symmet-
ric spatial coupling between field and wire, and field and slot. We prove using the
energy method that this yields a stable time-continuous field-wire-slot system and
that the fully discrete field-wire-slot system is unconditionally stable if the second-
order accurate Newmark–Beta scheme is used for time-discretization. Furthermore,
neither the wires nor the slots have to follow edges in the volume grid. This gives
considerable modeling flexibility when including these subcellular features in the
simulations.

The outline of the rest of the paper is as follows: In the next section we introduce
the equations. In the following section we show how to incorporate wires and slots in
the FETD method, in particular how the coupling between field, and wires and slots
is performed. In Sect. 4 we prove that the time-continuous field-wire-slot system
is stable and that the fully discrete system is unconditionally stable. In the results
section the proposed method is applied to a dipole and a circular loop antenna as
well as scattering from a circular slot in an infinite, perfectly conducting wall. The
summary and conclusions are given in Sect. 6.

2 Governing Equations

The Maxwell equations for linear, isotropic and non-dispersive media are given by

∂B
∂t

+∇×E = −Jm , (1)

ε
∂E
∂t
−∇× 1

µ
B = −σE− J , (2)

where E is the electric field, B is the magnetic flux density, J is the electric current
density, Jm is the magnetic current density, ε is the electric permittivity, µ is the
magnetic permeability and σ is the electric conductivity.

To derive the wire equation we follow Holland et al. [8] and study an infinitely
long cylinder of radius a running in the z-direction, see Fig. 1. To simplify the deriva-
tion we assume that σ = 0 in the neighborhood of the wire. In cylindrical coordinates
with the assumption that the electromagnetic fields, Er and Hθ, are proportional to
1/r close to a thin wire we obtain [8]

L
∂2I

∂t2
+R

∂I

∂t
− L

µε

∂2I

∂z2
=

∂Ez

∂t
+
∂Ṽ inc

∂t
, (3)
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where I is the wire current, Ṽ inc is a voltage source per unit length, R is the wire
resistance per unit length and L is the wire inductance per unit length given by

L =
µ

2π
log

r0 + a

2a
, (4)

where r0 is a grid dependent radial distance from the wire. It is defined as r0 =
1.7∆av , where ∆av is an average edge length in the unstructured grid local to the
wire, and (r0 + a)/2 is an average distance from the wire to the surrounding electric
fields used to drive the wire. Note that L is positive as long as r0 > a, which is
necessary in order to have a well posed problem. The current vanishes at an open
termination, whereas the spatial derivative of the current vanishes when the wire
terminates on a large perfect electric conductor.

The subcell slot model is based on a dual formulation to thin wires. A thin slot
with length L, width w and depth d, in a wall is shown in Fig. 2. It is assumed that
L � w, and w and d are electrically small. All fields in the wall are set to zero and
the slot is modeled through the following equation [14] (see [16] for corresponding
frequency-domain equations):

Cs
∂2Vs

∂t2
− Cs

µε

∂2Vs

∂ξ2
=

∂Hdiff
ξ

∂t
. (5)

where Vs is the magnetic current (voltage across slot width), Hdiff
ξ is the difference

in the ξ-component of the magnetic field on opposite sides of the slot wall (ξ̂ = ŷ in
Fig. 2), and Cs is the slot capacitance per unit length. It is given by

Cs =
2
π
ε log

r0 + as

2as
, (6)

where as = w
4 exp (−πd/(2w)) is an equivalent antenna radius [15]. The magnetic

current vanishes at the end-points of the slot.

ẑ r̂

θ̂

Ij+2Ij+1

Ij

Ij−1

Fig. 1. Three segments of a discretized wire
in cylindrical coordinates

Region 1

Region 2

x

y

z

ds

Lw

Fig. 2. Thin slot in a wall
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3 Modeling Wires and Slots in FETD

Due to the fact that the source term in the slot equation is the difference in the
magnetic field on opposite sides of the slot wall we have chosen to discretize the
Maxwell equations on a tetrahedral grid using Edge/Facet Whitney elements [10]. It
was pointed out by Bossavit et al. [1] that in solving Maxwell’s equations, Whitney
1-forms (edge elements) should be used to approximate fields, whereas Whitney 2-
forms (face elements) should be used to approximate fluxes. Therefore, the electric
field, E, is expanded in edge elements, φj , as

E =
∑

j

Ejφj , (7)

where the unknowns are the circulation of the electric field along the edges. The
magnetic flux density, B, and the magnetic current density, Jm, on the other hand
are expanded in face elements, ψk, as

B =
∑

k

Bk ψk , Jm =
∑

k

Jmk ψk . (8)

where the unknowns are the fluxes across the facets.
The Whitney 1-forms and Whitney 2-forms are related such that

∇×W 1 ⊂W 2 , (9)

where W 1 and W 2 are the vector spaces generated by the respective forms [1]. From
the properties of Whitney 1-forms and 2-forms it follows that the curl of an edge
element is a linear combination of the face elements whose faces contain that edge.
Faraday’s law can therefore be trivially discretized as

dB

dt
= −CE − Jm , (10)

where C is the circulation matrix whose entries are zero or ±1 and the vectors B, E
and Jm contain the expansion coefficients of B, E and Jm, respectively. Application
of Galerkin’s method for Ampère’s law, where we multiply by φk and integrate over
the domain of interest, yields the weak formulation: Find E ∈ W 1 and B ∈ W 2

such that∫
V

(
ε
dE
dt

+ σE
)
· φk dV =

∫
V

1
µ
B · (∇× φk) dV

+
∮

Γ

[
n× 1

µ
B
]
· φk dΓ−

∫
V

J · φk dV ,

(11)

∀φk ∈W 1, where Γ is the boundary of V . In matrix form (11) can be written as [18]

Mε
dE

dt
+Mσ E = CTMµ−1B + f , (12)
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where

Mε|jk =
∫

V

εφj · φk dV , Mσ|jk =
∫

V

σφj · φk dV ,

Mµ−1 |jk =
∫

V

1
µ

ψj ·ψk dV , fk = −
∫

V

J · φk dV .

(13)

It is interesting to note the close correspondence with the Finite Integration Tech-
nique (FIT) [17] in (10) and (12). These systems of equations are also obtained for
FIT, where the mass matrices are diagonal operators on orthogonal hexahedral grids.
If we now eliminate B from (12) using (10) we get

Mε
d2E

dt2
+Mσ

dE

dt
+ CTMµ−1CE = −CTMµ−1Jm +

∂f

∂t
. (14)

For constant or piecewise constant µ the CTMµ−1C matrix is identically equal to
the stiffness matrix

Sjk =
∫

V

1
µ

(
∇× φj

)
· (∇× φk) dV , (15)

which is obtained when the ∇ × ∇×-operator is discretized using edge elements.
This follows directly from property (9), which implies that the curl of the edge el-
ements are related to the face elements through the matrix CT . Substitution of this
relationship into (15) yields the desired result. Note that the elimination of B is done
with the aim of developing an unconditionally stable solver. An alternative would be
to keep the coupled curl formulation and develop a conditionally stable solver, see
e.g. [12] and references therein.

The current I along the wire can be expanded in basis functions as

I(z) =
∑

j

IjΦj(z) , (16)

where Φj is the standard linear nodal basis function in 1D, and Ij is the unknown
current at wire node j. The current density J is now expressed as

J(r, z) = I(z) g(r)ẑ =
∑

j

IjΦj(z) g(r)ẑ , (17)

where r is the radial distance from the wire and g(r) is a weighting function satisfy-
ing ∫

r≥a

g(r) 2πr dr = 1 , (18)

and thus has dimension
[
m−2

]
. Furthermore, it is important that this function de-

creases with r and equals zero for r ≥ r0, which gives a compact support. The
function used in this paper is defined as
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g(r) =

⎧⎪⎪⎨⎪⎪⎩
0 , r < a ,

1+cos
(

π r
r0

)
π(r2

0−a2)+ 2r2
0

π

(
−1−cos πa

r0
−πa

r0
sin πa

r0

) , a ≤ r ≤ r0 ,

0 , r > r0 .

(19)

If we multiply both sides of (3) by g(r)Φj(z) and integrate over all space we
obtain [3]

Mw
d2I

dt2
+MR

dI

dt
+ SwI = P

dE

dt
+

dV inc

dt
, (20)

where I is the vector of nodal current unknowns. The mass and stiffness matrices for
the wire equation, the interpolation operator, and the voltage source are given by

Mw|jk =
∫

z

LΦjΦk dz , (21)

MR|jk =
∫

z

RΦjΦk dz , (22)

Sw|jk =
∫

z

L

εµ

dΦj

dz
dΦk

dz
dz , (23)

Pjk =
∫

V

ẑ · φk g(r)Φj(z) dV , (24)

V inc
j =

∫
z

Ṽ inc(z)Φj(z) dz . (25)

By inserting (17) into the current density term (11) we obtain (cf. (24))

−
∫

V

∂J
∂t
· φk dV = −

∑
j

dIj

dt

∫
V

ẑ · φkΦj(z) g(r) dV = −
∑

j

Pjk
dIj

dt
. (26)

For the slots we proceed similarly and the slot voltage V is expanded in basis
functions as

Vs(ξ) =
∑

j

Vs,jΦj(ξ) , (27)

where Φj as before is the standard linear nodal basis function in 1D, and Vs,j is the
unknown voltage at slot node j. In addition we define another weighting function as
g̃(r) = ±2g(r) with a plus sign for region 2 and a minus sign for region 1, where
the regions denote different sides of the slot wall (see Fig. 2).

Multiplying both sides of (5) by g(r)Φj(ξ) and integrating over the domain of
interest yield [4]

Ms
d2V s

dt2
+ SsV s = Ps

dB

dt
= Ps (−CE − Jm) , (28)

where V s is the vector of nodal voltage unknowns and (10) is inserted to get the last
equality. The mass and stiffness matrices for the slot equation, and the interpolation
operator are given by
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Ms|jk =
∫

ξ

Cs ΦjΦk dξ , (29)

Ss|jk =
∫

ξ

Cs

µε

dΦj

dξ
dΦk

dξ
dξ , (30)

Ps|jk =
∫

V

1
µ
g̃(r)Φj(ξ)ψk · ξ̂ dV . (31)

The magnetic current density is calculated from the slot voltage and is expressed
as

Jm(r, ξ) = Vs(ξ) g̃(r)ξ̂ =
∑

j

Vs,jΦj(ξ) g̃(r)ξ̂ , (32)

where r is the radial distance from the slot. The change of sign in Jm through g̃(r)
reflects the different normal directions on opposite sides of the slot wall. The two
expressions (32) and (8) for Jm are put equal in a weak sense by multiplying both
with ψi/µ and integrating over the domain of interest. This results in∫

V

1
µ

∑
j

Vs,jΦj(ξ)g̃(r)ξ̂ ·ψi dV =
∫

V

1
µ

∑
k

Jmk ψk ·ψi dV . (33)

According to (13) and (31) this is on matrix form given by

PT
s V s = Mµ−1Jm , (34)

which implies
Jm = M−1

µ−1P
T
s V s . (35)

Inserting (35) and (26) in (14), together with (20) and (28) yield the following
time-continuous field-wire-slot system to solve:⎛⎜⎜⎝

Mε 0 0

0 Mw 0

0 0 Ms

⎞⎟⎟⎠
⎛⎜⎜⎝

Ë

Ï

V̈ s

⎞⎟⎟⎠ +

⎛⎜⎜⎝
Mσ PT 0

−P MR 0

0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝

Ė

İ

V̇ s

⎞⎟⎟⎠

+

⎛⎜⎜⎝
S 0 CTPT

s

0 Sw 0

PsC 0 Ss + PsM
−1
µ−1P

T
s

⎞⎟⎟⎠
⎛⎜⎜⎝

E

I

V s

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0

V̇
inc

0

⎞⎟⎟⎠ . (36)

For a more compact notation the time derivative of a vector X has been denoted Ẋ .
The field-wire-slot system (36) is discretized in time by the second-order accurate,
unconditionally stable Newmark–Beta scheme [9, 6]⎛⎝ Ae 2∆tPT ∆t2CTPT

s

−2∆tP Aw 0
∆t2PsC 0 As

⎞⎠⎛⎝En+1

In+1

V n+1
s

⎞⎠ =

⎛⎝ b
bw

bs

⎞⎠ , (37)
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where

Ae = 4Mε + 2∆tMσ + ∆t2S , (38)

Aw = 4Mw + 2∆tMR + ∆t2Sw , (39)

As = 4Ms + ∆t2
(
Ss + PsM

−1
µ−1P

T
s

)
, (40)

b =
(
8Mε − 2∆t2S

)
En − 2∆t2CTPT

s V n
s (41)

−
(
4Mε − 2∆tMσ + ∆t2S

)
En−1 + 2∆tPT In−1 −∆t2CTPT

s V n−1
s ,

bw = 4∆t2V̇
inc|t=n∆t +

(
8Mw − 2∆t2Sw

)
In − 2∆tPEn−1 (42)

−
(
4Mw − 2∆tMR + ∆t2Sw

)
In−1 ,

bs = −2∆t2PsCEn +
(
8Ms − 2∆t2

(
Ss + PsM

−1
µ−1P

T
s

))
V n

s (43)

−∆t2PsCEn−1 −
(
4Ms + ∆t2

(
Ss + PsM

−1
µ−1P

T
s

))
V n−1

s .

To solve (37) we use the fact that Aw is a tridiagonal matrix (or tridiagonal cir-
culant matrix for a wire loop). Hence, the wire part of the system can be solved as

In+1 = A−1
w

(
bw + 2∆tPEn+1

)
. (44)

By substituting this into (37) we obtain(
Ae + 4∆t2PTA−1

w P ∆t2CTPT
s

∆t2PsC As

)(
En+1

V n+1
s

)
=

(
b− 2∆tPTA−1

w bw

bs

)
. (45)

The symmetry and positive definiteness of the matrix in (45) can now be easily ver-
ified through the symmetry and definiteness properties of the respective mass and
stiffness matrices. Hence, we can apply a preconditioned conjugate gradient (PCG)
method to solve (45) at each time step. An incomplete Cholesky factorization is used
for preconditioning. The wire currents are finally given by (44).

The operator in (24) is used to calculate the electric field along the wire at each
wire node. Due to the compact support of the nodal basis function Φj and the weight-
ing function g only edge projected fields in a neighborhood of the wire node con-
tributes. To be more specific, each wire node is surrounded by an interpolation cylin-
der of radius r0 and length equal to the sum of the two wire beams sharing the
node. The integral in (24) is calculated using a sixth-degree Gaussian quadrature for
tetrahedral elements [11]. In order to have a smooth interpolation cylinder following
the wire some small modifications are necessary for bent wires as explained in detail
in [3]. Furthermore, in certain cases the interpolation radius might have to be reduced
to avoid that other parts of the geometry fall within the interpolation cylinder.

The interpolation between field and slots is almost identical to the interpolation
between field and wires. The only differences are that the interpolation involves face
elements for slots but edge elements for wires and the change of sign in the radial
weighting function, g̃, on opposite sides of the slot wall.
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The extra memory requirements for wires and slots include the storage of the
wire current and slot voltage unknowns, their mass and stiffness matrices, and the
interpolation operators P and Ps. Since the wires and slots are 1D features and the
interpolation operators are compact and only nonzero close to wires and slots it fol-
lows that the extra memory requirements are negligible compared to the field matri-
ces. The application of these operators requires for the same reason a small amount
of extra arithmetic operations. What may look like a significant extra cost is the so-
lution of (35). However, since PT V is only nonzero close to the slot it is therefore
not necessary to solve this equation using the full Mµ−1 matrix. Instead this equation
is solved iteratively using a PCG method for a shrunk Mµ−1 matrix including only
the rows and columns affected by the slot. Hence, the extra work for including wires
and slots is in general small.

4 Stability Analysis

In this section we analyze the stability of the time-continuous field-wire-slot sys-
tem (36) and the fully discrete field-wire-slot system (37). The matrices Mε, Mw,
Ms, S(= CTMµ−1C), Sw, and Ss are all symmetric, Mε, Mw and Ms are posi-
tive definite, whereas S, Sw and Ss are positive semi-definite. For simplicity we put
σ = 0 and R = 0, which implies that Mσ = 0 and MR = 0. A nonzero σ and/or R
would mean that we have a loss of electromagnetic energy and this is straightforward
to include in the proofs. Source terms do not effect stability [7] and are therefore not
included in the analysis.

Let Sw = GGT , Ss = FFT , Ḃ = −CE − M−1
µ−1P

T
s V s, V̇ = GT I and

İs = FT V s, and define the block-matrices

M =

⎛⎜⎜⎜⎜⎜⎜⎝
Mε 0 0 0 0 0
0 Mµ−1 0 0 0 0
0 0 Mw 0 0 0
0 0 0 I 0 0
0 0 0 0 Ms 0
0 0 0 0 0 I

⎞⎟⎟⎟⎟⎟⎟⎠ (46)

Q =

⎛⎜⎜⎜⎜⎜⎜⎝
0 −CTMµ−1 PT 0 0 0

Mµ−1C 0 0 0 PT
s 0

−P 0 0 G 0 0
0 0 −GT 0 0 0
0 −Ps 0 0 0 F
0 0 0 0 −FT 0

⎞⎟⎟⎟⎟⎟⎟⎠ (47)

and the row vector W T = (ET BT IT V T V T
s IT

s ). The total electromagnetic
energy of the field-wire-slot system is then defined by

E(t) =
1
2

Ẇ
T
MẆ . (48)

Then we have
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Theorem 1. The time-continuous field-wire-slot system (36) is stable in the following
sense: The energy E(t) in (48) is preserved.

Proof. By using the newly defined vectors and matrices we can write the system (36)
as

MẄ +QẆ = 0 . (49)

Since the Q-matrix is skew-symmetric multiplying from the left by Ẇ
T

yields

Ẇ
T
MẄ = 0 . (50)

Hence, from (50) it follows that
dE
dt

= 0 , (51)

which implies that the total electromagnetic energy is preserved and the time-
continuous problem is stable. ��

For the fully discrete case we let Sw = GGT , Ss = FFT , Bn = −CEn −
M−1

µ−1P
T
s V n

s , V n = GT In and In
s = FT V n

s ∀n. The following operators applied
to a vector X are also used for a more compact notation:

δ+Xn =
Xn+1 −Xn

∆t
, δ−Xn =

Xn −Xn−1

∆t
,

µ+Xn =
Xn+1 + Xn

2
, µ−Xn =

Xn + Xn−1

2
.

(52)

The total electromagnetic energy at time step n+ 1 is given by

En+1 =
1
2

(
(δ+En)T

Mε (δ+En) + (µ+Bn)T
Mµ−1 (µ+Bn)

+ (δ+In)T
Mw (δ+In) + (µ+V n)T (µ+V n)

+ (δ+V n
s )T

Ms (δ+V n
s ) + (µ+In

s )T (µ+In
s )
)
.

(53)

For the discrete energy we have

Theorem 2. The fully discrete field-wire-slot system (37) is unconditionally stable in
the following sense:

En+1 = En, n = 0, 1, . . . .

Proof. We will use a similar strategy as in the time-continuous case to prove that the
fully discrete system is stable. Using the newly defined variables and operators we
can rewrite the system (37) as
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M

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ+−δ−
∆t En

µ+−µ−
∆t Bn

δ+−δ−
∆t In

µ+−µ−
∆t V n

δ+−δ−
∆t V n

s

µ+−µ−
∆t In

s

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+Q

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ++δ−
2 En

µ++µ−
2 Bn

δ++δ−
2 In

µ++µ−
2 V n

δ++δ−
2 V n

s

µ++µ−
2 In

s

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0 . (54)

We proceed in exactly the same manner as in the time-continuous case and multiply
from the left by the vector in the second part, which yields⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ++δ−
2 En

µ++µ−
2 Bn

δ++δ−
2 In

µ++µ−
2 V n

δ++δ−
2 V n

s

µ++µ−
2 In

s

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

M

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ+−δ−
∆t En

µ+−µ−
∆t Bn

δ+−δ−
∆t In

µ+−µ−
∆t V n

δ+−δ−
∆t V n

s

µ+−µ−
∆t In

s

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
En+1 − En

∆t
= 0 , (55)

due to the skew-symmetry of the Q-matrix and the definition of the fully discrete
energy in (53). Hence, En+1 = En = . . . = E0, and our fully discrete system is
unconditionally stable. ��

Note that the key property for the stability of the field-wire-slot system is that we
have a symmetric coupling between field and wire, and field and slot.

5 Numerical Results

In this section we apply the proposed methods to a few cases where measurements,
analytical results or numerical results obtained by other methods are available for
comparison. All simulations are performed using a hybrid FDTD-FETD solver[2].
Generation of the plane waves using Huygens’ surfaces as well as the truncation of
the grids using the U-PML [5] absorbing boundary condition are therefore performed
in the FDTD region. The wires and slots are entirely located in the unstructured
FETD region.

5.1 Transmitting Dipole Antenna

In this section we simulate a dipole antenna in transmitting mode. The dipole is
20 cm long and its radius is 0.05 µm. It is discretized using 40 wire segments and
located arbitrarily in an unstructured grid with average edge length ∆ = 5.8 mm. A
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few layers of Cartesian cells with edge lengths ∆ = 5 mm surround the unstructured
grid. The antenna is excited at the midpoint using a voltage source. We register the
current at the midpoint and calculate the input impedance and input admittance as

Z21(f) =
V̂ inc

21 (f)
Î21(f)

, Y21(f) =
1

Z21(f)
. (56)

The real and imaginary parts of the impedance are resistance and reactance, respec-
tively. For the admittance they are conductance and susceptance, respectively. In
Figs. 3 and 4 we compare the input resistance and input conductance with results
obtained by the method of moments (MoM) solver NEC. NEC is considered to be
state-of-the art for thin wires and is therefore suitable for validation of our thin wire
method. As seen in the figures a very good agreement is obtained. The frequency and
resistance at half wavelength resonance are given in Table 1.

Table 1. The frequency and resistance at half wavelength resonance for a 20 cm long dipole
antenna

f [MHz] �e(Z) [Ω]

FETD 736.9 71.9
NEC 735.0 72.0
Theory 750.0 73.0
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Fig. 3. The input resistance for a 20 cm dipole antenna
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Fig. 4. The input conductance for a 20 cm dipole antenna

5.2 Transmitting Circular Loop Antenna

The proposed wire algorithm is not limited to straight wires and therefore this section
is devoted to simulation of a circular loop antenna in transmitting mode. The loop
diameter is 1 m and the wire radius is 1 mm. It is discretized using 50 wire segments
and located arbitrary in an unstructured grid with average edge length ∆ = 7.7 cm.
The surrounding Cartesian cells have edge lengths ∆ = 6.25 cm. One of the wire
nodes is excited with a voltage source with the shape of a differentiated Gaussian
pulse. We register the current at this particular wire node and calculate the input
resistance and input conductance as in (56). In Figs. 5 and 6 we compare with results
obtained by NEC. The frequency and resistance at half wavelength resonance are
98.8 MHz and 133.4Ω for FETD, and 98.85 MHz and 137.2Ω for NEC. The overall
correspondence is good also in this case.

5.3 Scattering from a Circular Slot in an Infinite PEC Wall

Scattering from a circular slot in an infinite, perfectly electric conducting (PEC) wall
has been studied in [13]. The slot has radius 5 cm, width 0.5 mm and no depth.
It is discretized with 60 straight segments of length ∆ξ ≈ 5.15 mm that are not
aligned with the unstructured grid. The unstructured grid has average edge length
∆ = 6.4 mm and the surrounding Cartesian cells have edge lengths ∆ = 5 mm.
A finer grid where the volume grid as well as the slot are refined with a factor two
is also used. A normally incident plane wave illuminates the slot wall and the fre-
quency response in the shadow region (ds = 5 cm in Fig. 2) is shown in Fig. 7. The
resonance at about 1 GHz corresponds to the first half wavelength resonance of the
circular slot. The agreement with the experimental data is remarkably good for both
grids and clearly shows that our proposed algorithm is able to model curved slots
accurately. The small differences between the measured and numerical results are
very similar to the ones observed for the integral equations solutions in [13].
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6 Conclusions

We have presented stable subcell models for accurate modeling of thin wires and
slots in FETD. The slot model being a dual formulation to thin wires makes a unified
treatment of slots and wires possible. Allowing the wires and slots to run arbitrar-
ily and not aligned with the grid edges give considerable modeling flexibility when
including these subcellular structures in the simulations. Traditionally subcell slot
models have suffered from instability problem. A symmetric coupling between field
and wires, and field and slots, makes it possible to prove that our resulting time-
continuous field-wire-slot system is stable. Using a Newmark–Beta scheme for time
discretization a similar proof shows that the fully discrete system is unconditionally
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Fig. 7. Frequency response of the electric field on the shadow side of a PEC wall with a circular
slot for a normally incident plane wave

stable. Results of good accuracy have been presented for a dipole and a circular loop
antenna as well for scattering from a circular slot in a conducting wall.
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Summary. We present an overview of models which couple a partial differential equation
with a stochastic differential equation posed at each point of the physical space. Such systems
in particular arise in multiscale models of complex fluids, but also in the modeling of emis-
sion and transport of photons for example. For each case, we mention the mathematical and
numerical issues and indicate the main results obtained so far.

Key words: multiscale models, coupled systems, stochastic differential equation, partial dif-
ferential equation, Fokker–Planck equation, particle systems, Monte Carlo method

1 A Prototypical System

We would like to address here various mathematical and foremost numerical issues
raised by the simulation of systems featuring a Partial Differential Equation (PDE)
together with a Stochastic Differential Equation (SDE). For such a class of systems,
that we henceforth called hybrid systems, we choose as a prototypical system the
following one:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
(t, y)− ∂2u

∂y2
(t, y) =

∂f

∂y
(t, y)

∀ y,

⎧⎨⎩
f(t, y) = IE

(
ϕ(Xt(y))

)
dXt(y) = g(u(t, y), Xt(y), t) dt + σ(t,Xt(y)) dW t

(1)

Here, the PDE of the first line is supposed to hold, say, for the space-variable y
varying in a one-dimensional interval [0, L], while time t varies from 0 to T . With
respect to the unknown scalar field u, it is of the form of the heat equation, with a
right-hand side somehow unusual, though. For any y ∈ [0, L], we then have the last
two lines of (1). The second line rules the coupling between the PDE and the SDE:
the solution Xt(y) (varying in IR) of the SDE is used to evaluate an expectation
value which provides the PDE with a right-hand side (that is a force term). The last
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line consists in an SDE, that is parameterized in y, and by the solution u(t, y) of
the PDE. The data are the functions ϕ, g, σ. System (1) is at this stage formulated
somewhat vaguely, but the mathematical sense of the PDE and the SDE can be made
precise, as well as the regularity of the data involved, and the initial conditions (1)
is supplied with. The reason why such a system is not only a toy-system convenient
for an expository survey, but meaningful and relevant from the application viewpoint
will be made clear below.

The main feature we wish to already emphasize and discuss is the nature of sys-
tem (1). For this purpose, let us at once mention that such a system stands at the
intersection of various families

• that of systems coupling a continuous description with a discrete description,
as is the case for instance when coupling a PDE and an Ordinary Differential
Equation (ODE): a case of interest is e.g. that where the method of characteristics
is used in addition to, or in replacement of, the solution of an advection equation;
the same could apply to the use of particle methods; from the physical standpoint,
the same could also apply to systems coupling different physical modelings, as
is the case when an atomistic description of matter is coupled to a continuum
description in material sciences;

• that of systems coupling deterministic techniques with Monte Carlo type tech-
niques for solving one, or many, PDE(s); here we could have chosen to replace
the third line of (1) by the associated Fokker–Planck equation, since what is only
needed is the law of Xt to compute f(t, y), and nothing else, but for computa-
tional purposes in the high dimensional case, we have preferred the simulation
of the SDE;

• that of systems coupling different scales, where the effective coefficients involved
in one equation are computed from another one, like is the case when homoge-
nization techniques, or more generally averaging techniques, are resorted to: here
the right-hand side f can be thought of as the averaged response of a finer scale
(described by the internal variable Xt) subject to the solicitation u(t, y).

The above problem is in some sense a superposition of all the previous contexts: it
is a hybrid system in the continuous/discrete sense, in the deterministic/stochastic
sense, in the multiscale sense. In a somewhat provocative way, we could tentatively
say that system (1) is a multiphysics, multimathematics, multiscale system !

As we have just underlined the similarity with various classes of systems, let us
now mention what system (1) is not:

• there are situations when a PDE and a SDE are simulated separately on differ-
ent domains, and the coupling only holds in terms of boundary or compatibility
conditions at the common interface (see [5] e.g.); such a coupling often holds for
computational purposes (solving a PDE rather than a SDE can be cheaper on one
zone, while the converse might be true on another zone); this is not the case here
as one SDE holds at each point where the PDE is set;

• the deterministic equation and the stochastic equation can be coupled through the
time variable, as is the case for mixed ODE/SDE systems in chemical kinetics,
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e.g.; here we assume that the time variable is alike in the two equations, and that
the difference of scales lies in the space variable;

• in some context, the stochastic nature comes as a perturbation of a determinis-
tic equation, as is the case for a PDE with stochastic coefficients (see e.g. the
Stochastic Navier–Stokes equation [36]); here two equations are at play.

Each of the above family of systems could equally justify a work in the spirit of the
present one, but this is not our aim here.

In the following, we shall as announced concentrate on system (1). Our interest in
such a system originates from a particular context, that of the simulation of polymeric
fluid flows, which we shall introduce in the next section. We will review there the
main results on the mathematical analysis and numerical analysis that are available
in the literature to date, and mention some implementation issues. In doing this,
as this is the main purpose of the present article, we will as much as possible try
to emphasize the general facts and trends that seem to us to be valid outside the
necessarily limited scope of the context under examination. Next, in Sect. 3, we
shall see other situations, still in the general context of fluid flow simulations, where
systems in the spirit of (1) are relevant. Sect. 4 will aim at showing one example, in
a context far from fluid mechanics, also involving systems of the same type as (1).

Let us conclude this introductory section by emphasizing that simulating a hybrid
system such as (1) of course requires up-to-date techniques for either of the two
equations, for the PDE on the one hand, and for the SDE on the other hand. Our goal
is not to present a state-of-the-art survey of either class of techniques separately, but
rather to see how some representative techniques of either category interact with the
other camp. Nevertheless, while our main focus is the back and forth interaction
between the two equations, we shall allow us to review also some works when the
SDE can be considered as parameterized by the solution of the PDE, the latter being
considered as known (see Sects. 2.2 and 3.3).

2 Modeling Dilute Solutions of Flexible Polymers

The numerical simulation of incompressible viscous non-Newtonian fluids typically
requires the simulation of systems of the type⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂u
∂t

+ (u · ∇)u−∆u +∇p− div τ p = f ext,

div u = 0
Dτ p

Dt
= G(τ p,∇u),

(2)

where the first line is the equation of conservation of momentum, the second one
translates the incompressibility constraint and the third one is a differential equation
ruling the evolution of the non-Newtonian part τ p of the stress tensor. In the above
equations, u of course stands for the velocity of the fluid, p for its pressure, while
f ext is some external force. On purpose, we have omitted in the above system (and
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we will continue to do so throughout this article) all the physical parameters and
constants, setting them to unity. The third line is often called a constitutive law or a
closure equation and aims at providing a closed relation between the stress τ p and

the velocity field u: there,
D

Dt
stands for a convective derivative, while the right-hand

side G symbolically stands for an intricate function of the fields involved. One of the
most famous instance of such a system is that for Oldroyd-B fluids, where the third
equation precisely reads

τ p +
∂τ p

∂t
+ u · ∇τ p − τ p(∇u)T −∇u τ p = ∇u +∇uT . (3)

Alternately, one can replace the differential form of the third line of (2) by an equa-
tion in the integral form. We refer to [27, 43] for a general introduction to the me-
chanical context and the standard numerical tools to simulate systems of the form
(2).

The well established commonly used strategy in fluid mechanics consists in
derivating on the basis of mechanical arguments adequate differential (or integral)
equations, i.e. forms for G, and next solving system (2). Apart from this mainstream,
an emerging field in non-Newtonian fluid mechanics, still mostly unexplored from
the standpoint of mathematical analysis, was born in the early 1990s. It relies upon
the introduction of a kinetic description of the fluid, at a finer scale, with a view to
modeling the very phenomena from which the non-Newtonian feature of the fluid
stems. A successful instance of this alternative track concerns the modeling of poly-
meric fluids. For such fluids, the key issue is to adequately simulate the evolution
of the microstructures present at each macroscopic point of the fluid flow, that is
the evolution of the polymeric chains wiggling in the fluid. A complete theory, ini-
tiated by the works of Doi and Edwards has given rise to a numerical approach, the
so-called micromacro approach: see the reference treatises [14], [13], [3, 4] for the
physical background, [42], [43] for the simulation techniques, and the recent review
article [28]. The idea is to keep the first two equations of (2), but replace the third line
of (2), i.e. the effective description of the evolution of τ p, by the following two-step
procedure: the expression of τ p reads

τ p(t,x) =
∫

(r⊗ F (r))ψ(t,x, r) dr (4)

and is an averaged response of all the possible configurations of a representative
polymer chain subject to the constraints in the flow, the latter being described by the
Fokker–Planck equation

∂ψ(t,x, r)
∂t

+ u · ∇xψ(t,x, r)

= −divr

(
(∇x ur− F (r))ψ(t,x, r)

)
+

1
2
∆rψ(t,x, r). (5)

The distribution function ψ(t,x, r) describes the probability to find at time t
(in [0, T ]), and at the macro point x (in the computational domain D), the polymer
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chain in the configuration r, the latter variable typically varying in IRN . Equation (5)
will be considered henceforth as a prototypical Fokker–Planck type equation. In-
deed analogous equations, more involved technically but of the same type formally,
would hold when the configuration of the polymer chain is more in details described
in a configuration space IRN of large dimension. Equation (5) is here written in the
dumbbell case (see Sect. 2.1) for which N is equal to the dimension of the ambient
space D, i.e. 2 or 3. As N might be very large, depending on the degree of accuracy
employed to describe the configuration of the chain, the simulation of the partial dif-
ferential equation (5) in ψ might not be tractable numerically. Let us nevertheless
mention that some groups are making huge efforts and progress in this direction,
see [31, 46], and that this validates the need for mathematical studies of the coupled
system with the Fokker–Planck equation: see [44] or [29] for a local-in-time exis-
tence result of regular solutions. An alternative possibility is to simulate the SDE
underlying this PDE, and the approach summarizes as the simulation of the system⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{
∂u
∂t

+ (u · ∇)u−∆u +∇p− div τ p = f ext,

div u = 0,⎧⎨⎩
τ p(t,x) = IE

(
Rt(x)⊗ F (Rt(x))

)
,

dRt(x) + u · ∇Rt(x) = (∇uRt(x)− F (Rt(x))) dt+ dWt.

(6)

At this stage, the reader may understand much of the relevance of our toy system (1).

To give a synthetic view of the micromacro approach and comparing it to the
more conventional purely macroscopic approach, a concise statement is to say that
system (2), of the form ⎧⎪⎪⎨⎪⎪⎩

Du
Dt

= F(τ p,u),

Dτ p

Dt
= G(τ p,u),

(7)

is replaced by (6) of the form ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Du
Dt

= F(τ p,u),

τ p = τ p(Σ)

DΣ

Dt
= Gµ(Σ,u),

(8)

where Σ stands for an internal variable describing the state of the microstructure.
The micromacro approach (8) essentially consists in increasing the number of scalar
unknowns, and therefore is intrinsically more costly (in term of CPU time and mem-
ory requirements) than the macroscopic approach (7). In the present state-of-the-art,
the micromacro approach (8) is still in its infancy and cannot compete in terms of
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computational efficiency with the standard and much more mature purely macro-
scopic approach (7). Nevertheless, it provides with a systematic track for improving
closure relations, or at least fitting parameters of those, and already reveals as an ef-
ficient backroom strategy for such a purpose. This, and the hope it generates, suffices
to justify a mathematical investment in such systems. In addition to this, it must be
emphasized that, when simulating system (8), the numerical treatment of the Fokker–
Planck equation by deterministic techniques is definitely more efficient than that of
the associated SDE. Nevertheless, due to the dimension of the space where Σ varies,
the latter techniques are not always tractable. Unless a deterministic technique can
be applied, the stochastic simulation at the SDE level remains the method of choice,
and this calls for a numerical analysis of the approach. In the present state-of-the-art,
the latter will be performed in a low dimensional space, but with a view to applying
to the large dimension case.

2.1 The Simplest Possible Model

The simplest occurrence of a system such as (6) is obtained a) when coarse-graining
the description of the polymer chain into a single dumbbell, that is one spring be-
tween two beads, b) when the (purely entropic) force between the two beads simply
reads as the Hookean force F (r) = 1

2r, and c) when the ambient flow considered is
a Couette flow. Then system (6) simplifies into⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
(t, y)− ∂2u

∂y2
(t, y) =

∂τ

∂y
(t, y) + fext(t, y),

∀ y,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
τ = IE (Xy

t Yt) ,⎧⎪⎨⎪⎩
dXy

t = (−1
2
Xy

t +
∂u

∂y
(t, y)Yt) dt+ dVt,

dYt = −1
2
Yt dt+ dW t.

(9)

where u denotes the component along the x axis of the velocity u depending only
on y, while τ denotes the off-diagonal term of the extra stress tensor τ p, the only
relevant component in view of the simple geometry. On the other hand, (Xt, Yt)
denotes the two components of Rt, and (Vt,Wt) is a two dimensional Brownian
motion. In the dumbbell case, the vector Rt represents the length and the orientation
of the polymer chains, at point y.

The model is typically relevant for a polymeric flow in a rheometer. The radius
of the inner cylinder is almost the same as that of the outer cylinder, both are large,
and the streamlines are expected to be cylinders as well: this justifies geometrically
the approximation by a one dimensional flow. Therefore the model is not only math-
ematically convenient, but also rather close to an experimental device indeed utilized
in practice in Mechanics.

In comparison to the “general” system (6), system (9) is simplified in two re-
spects. First, because we consider a shear flow, the SDE is not a stochastic partial
differential equation: the transport term u · ∇Rt vanishes for geometrical reasons.
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Therefore the coupling between two processes Rt(x) = (Xy
t , Y

y
t ) at different x

boils down into the simple coupling term
∂u

∂y
Y y

t , i.e. via the macroscopic flow. This

significantly simplifies both the analysis (see [34] for a more general mathematical
work) and the implementation. Second, because we consider Hookean dumbbells in

a shear flow, the nonlinear term∇uRt(x) reduces here to the term
∂u

∂y
Yt, which is

linear since Yt can be computed independently from u and Xy
t (and therefore does

not depend on y, thus the notation Yt). It is thus rather easy to prove the existence
and uniqueness of a global-in-time weak solution (see [22]). In fact, it is to be noted
that the Hookean dumbbell model as written in (9) in the Couette case, is indeed
equivalent to the Oldroyd-B model, for the stress tensor calculated from (9) indeed
satisfies the simplest one-dimensional form of the Oldroyd-B equation (3). In this
respect, the Hookean dumbbell appears as a test situation for mathematical analysis,
numerical analysis, and also algorithmic techniques, and no more than that.

System (9) is typically discretized as follows: the equation of conservation of mo-
mentum is discretized by finite difference in the time variable, and by finite elements
for the space variable. P1 finite elements for the velocity, and P0 finite elements for
the stress tensor are both easy to manipulate and convenient. The Galerkin formula-
tion of the macroscopic equation therefore reads:

1
∆t

∫
D

(un+1
h − un

h)v +
∫
D

∂un+1
h

∂y

∂v

∂y
= −

∫
D
Sh,n

∂v

∂y
+

∫
fext(tn, y)v, (10)

for P1 test functions v, where the superscript n stands for the time discretization,
while the subscript h stands for the space discretization. Regarding the SDEs, they
are discretized by an Euler explicit scheme in time, and of course by a Monte Carlo
sampling (M realizations of each random process)1:⎧⎪⎨⎪⎩X

j

h,n+1 −X
j

h,n =
(
−1

2
X

j

h,n +
∂un+1

h

∂y
Y

j

n

)
∆t+

(
V j

tn+1
− V j

tn

)
,

Y
j

n+1 − Y
j

n = − 1
2 Y

j

n ∆t+ (W j
tn+1

−W j
tn

).
(11)

This then provides

Sh,n+1 =
1
M

M∑
j=1

X
j

h,n+1Y
j

n+1, (12)

which is to be inserted in the right-hand side of (10) at the next timestep. The crucial
point to make, and that applies to all the models we refer to in this section, is that
unlike the continuous level where the velocity u is a deterministic quantity, the fully
discretized equations involve a velocity un

h that is indeed a random variable, since the
empirical mean (12) is inserted in (10), in lieu of the expectation τ = IE (Xy

t Yt). The
three-fold discretization (discretization in time, discretization in space, discretization

1We omit here a cut-off procedure on the process Yt that is unbounded, and refer to [22]
for this technical detail.
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in Monte Carlo) is a highly unusual feature, that in some sense characterizes the
family of problems we are dealing with here. Correspondingly, this translates in the
error estimate that has been first established in [22] (see [15] for an independent
work), that is∣∣∣∣∣∣∣∣u(tn)−un

h

∣∣∣∣∣∣∣∣
L2

y(L2
ω)

+
∣∣∣∣∣∣∣∣IE(Xtn

Ytn
)− 1

M

M∑
j=1

X
j

h,nY
j

n

∣∣∣∣∣∣∣∣
L1

y(L1
ω)

≤ C

(
h+∆t+

1√
M

)
,

for a constant C independent of h and ∆t ≤ 1
2 , but dependent on the data.

Note the occurrence of Lp
ω norms in the left-hand side, in order to account for the

random nature of the objects manipulated. The orders of convergence in the right-
hand side are as expected: ∆t in time because of the Euler scheme (used twice),

1√
M

for the Monte Carlo sampling, while the rate h stands here because of the P0

finite element approximation for the stress (while it can be shown, see [33], that the
error in L2 norm for the velocity itself scales as h2, again as expected for P1 finite
element).

2.2 Non Hookean Models

Less simple models than the Hookean model have been introduced, with a view
to accounting for various physical phenomena of importance. In this respect, one
important step is to account for the finite extensibility of the polymer chains, a fact
that was ignored in the simple Hookean dumbbell model where Xt and Yt were
unbounded processes.

The FENE Model

Still in the context of a Couette flow, the FENE model (this acronym standing for
Finite Extensible Nonlinear Elastic) reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
(t, y)− ∂2u

∂y2
(t, y) =

∂τ

∂y
(t, y) + fext(t, y),

τ = IE
(

Xy
t Y y

t

1− (X
y
t )2+(Y

y
t )2

b

)
,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dXy
t =

(
−1

2
Xy

t

1− (Xy
t )2+(Y y

t )2

b

+
∂u

∂y
(t, y)Y y

t

)
dt+ dVt,

dY y
t =

(
−1

2
Y y

t

1− (Xy
t )2+(Y y

t )2

b

)
dt+ dW t.

(13)

where the parameter b stands for the maximum (squared) length of the polymer chain.
Contrary to (9), due to the fact that Y y

t here depends on Xy
t , the system (13) is

fully nonlinear through the term
∂u

∂y
(t, y)Y y

t , and its mathematical analysis is one

order of magnitude more difficult than that of (9).
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Mathematically, only a small-in-time existence and uniqueness result for system
(13) has been established to date. It can be established either in Sobolev spaces (see
[23]) or in Hölder spaces (see [16]), the former aiming at giving a sound ground
to the numerical simulations. Regarding the SDE itself, the proof of the existence
of a strong global-in-time solution falls in four steps, by a standard sequence of
arguments in stochastic analysis: first, proof of existence of strong solution to the

SDE without the shear term
∂u

∂y
Y y

t , second, proof of existence of a weak solution

by the use of a Girsanov transform to account for the shear term, third, proof of
trajectorial uniqueness, and fourth, application of the Yamada-Watanabe Theorem.
An alternative direct proof of existence of strong solutions is also possible by using
the notion of multivalued SDEs (see [9, 25]). Nevertheless, the introduction of the
notion of weak solutions is useful for establishing the regularity of the stress τ with
a view to proving the existence for the coupled system. For the latter, only a local-
in-time result has been proved. All efforts to improve this local-in-time result into a
global one have failed to date2. In particular, the mathematical study of the Cauchy
problem for such a nonlinear system cannot be expected to be, by any means, simpler
than purely nonlinear macroscopic system of the type (2), which requires huge efforts
mathematically, see [35, 17].

This difficulty encountered at the very mathematical level gives us the opportu-
nity to make a few remarks, that we believe to be valid generally. In the absence of a
transport term in the SDE (a fact due, we recall it, to the simplicity of the geometry of
the Couette flow), and in the absence of any dependence of the diffusion coefficient
upon the stochastic processes (Xy

t , Y
y
t ) (we will see an opposite situation for rod-

like models in Sect. 3.1), the only difficulty in analyzing the SDE lies in the possible
singular character of the drift coefficient. Of course, the lack of regularity of the drift
term might be circumvented by dealing with weak solutions of the SDE rather than
strong solutions3.

Concerning the existence of solution for the SDE, if
∂u

∂y
has a meaning pointwise

in y, the natural idea is to also give a sense to the SDE pointwise in y. (If u is not

regular enough to define its derivative
∂u

∂y
pointwise in y, our approach collapses,

and one would need to build a “variational” definition of the solution of the SDEs.)
Then the stress τ has also a meaning pointwise in y, which is, one should notice
it, precisely what is done for models with a macroscopic constitutive law (2), see
the review article [17]. We then concentrate on the regularity in time of the drift
coefficient. This coefficient is a combination of two terms which are very different in

nature: the entropic force term
(Xy

t , Y
y
t )

1− (Xy
t )2+(Y y

t )2

b

and the shear term
∂u

∂y
Y y

t . Due to

2J.W. Barrett, C. Schwab and E. Süli have recently published in [2] a proof of existence of
a global weak solution for the FENE model with a regularized velocity.

3Recall that for a weak solution, the driving Brownian motion, the probability space and
the filtration are altogether part of the solution, while they are considered given for a strong
solution.
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physical reasons, the force term often derives from a convex potential and is more an
advantage than a difficulty for the analysis. On the other hand, the regularity in time
of the shear term is typically bootstrapped from the macroscopic equation itself.

The solution of the SDE is used for the computation of the stress τ . Since all what
is needed is the expectation value τ that only depends on the law, it seems it is enough
to concentrate on the existence of weak solutions. However, this does not seem to be
enough to provide the regularity needed for defining the stress. Fortunately, as the
singularity of the function in the expression of the stress tensor is the same as that in
the drift term of the SDE, the analysis turns out to be possible.

As far as the numerical analysis of system (13) is concerned, a bottleneck that
has not been circumvented nor overcome so far, is the lack of a numerical analysis
concerning the convergence of a singular function of the Euler discretized process
associated with an SDE involving a drift coefficient with a related singularity. It is
indeed possible to prove the weak convergence of the Euler scheme, even in the
presence of a singular drift coefficient of the explosive form of (13) (see [20]), but
the convergence of the stress τ remains an open problem. In the absence of such an
analysis, it has not been possible to date to address that of the coupled system (13).

The FENE–P Model

A slight modification of the above FENE model proceeds from the wish to obtain
an equivalent purely macroscopic model (a property that the FENE model does not
enjoy, to the best of common knowledge) while keeping track in the modeling of the
finite extensibility of the polymer chain. This modification consists in replacing the
squared length of the chain in the denominators of (13) by its expectation value. The
model obtained this way is called FENE-P (the P standing for Peterlin):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
− ∂2u

∂y2
=

∂τ

∂y
+ fext,

τ = IE

⎛⎝ Xy
t Y y

t

1−
IE

(
(X

y
t )2+(Y

y
t )2

)
b

⎞⎠ ,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
dXy

t =

⎛⎝−1
2

Xy
t

1− IE
(
(Xy

t )2+(Y y
t )2

)
b

+
∂u

∂y
Y y

t

⎞⎠ dt+ dVt,

dY y
t =

⎛⎝−1
2

Y y
t

1− IE
(
(Xy

t )2+(Y y
t )2

)
b

⎞⎠ dt+ dW t.

(14)

It should be remarked that the SDE is now nonlinear in the sense of MacKean, pre-
cisely because of the presence of the expectation value in the drift coefficient.

In [26], the well-posedness of the SDE, together with the convergence of the
stress tensor, when the expectation values in the SDEs and in the expression of the
stress are replaced by empirical means, toward the exact stress tensor are proved.
Both proofs are performed for a more general geometry than that of a Couette flow,
however in the context where the flow u is supposed to be known and regular enough.
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2.3 Variance Reduction Issues

Needless to say, noise reduction issues are crucial in the numerical simulation of
systems such as (1). Again, we do concentrate on the peculiarity of this question in
the presence of a coupling and not on the general question of noise reduction. As a
pedagogic case study, let us come back to the simulation of the simplest system (9)
and mention the following practical observation. Two numerical experiments can be
performed: the simulation of (9) as such and the simulation of (9) when the Brownian
motion Vt is assumed to also depend on the space variable y (or more precisely on
its discrete counterpart):

dXy
t =

(
−1

2
Xy

t +
∂u

∂y
(t, y)Yt

)
dt+ dV y

t .

It is intuitive that in the latter case, as the noise inserted in the system is more impor-
tant, the variance on the result is higher. It is indeed the case, and this observation is
valid beyond the simple one-dimensional simulation considered here, that the vari-
ance on the velocity u increases. However, and this is a highly counterintuitive fact,
the variance on the stress tensor τp diminishes. In [24], the phenomenon was ana-
lyzed in details, which is possible precisely because of the simplicity of the situation
at hand. It was demonstrated how a coupling between the SDEs and the PDE makes
possible such an observation. Notably, it was shown that in the absence of the cou-

pling, that is when the term
∂u

∂y
is given extrinsically, the counterintuitive diminution

of the variance of the stress is replaced by a growth in the variance, as is the case for
the velocity !

Related to this observation on the crucial impact that the coupling may have on
the variance of the results is the following one. As we pointed out, the velocity field
u and the stress τ are both, once fully discretized, random variables. Therefore, the
relevant output of a simulation is the averaged result over many simulations, carried
out independently. Apart from the discretization parameters h, ∆t and M mentioned
above, a fourth relevant parameter is thus Ne, the number of numerical experiments
carried out. In the absence of a coupling, the result is insensitive to each ofM andNe,
only the product of the two being meaningful. But, because of the coupling between

various realizations of the SDE via the macroscopic term
∂u

∂y
, there is an intricate

non trivial interplay between M and Ne. On system (9), it can be again explained
which is the most efficient choice for M and Ne (see [24]).

3 Modeling Various Fluids

3.1 Liquid Crystals

In Sect. 2, we have considered dilute solutions of flexible polymers. Some other poly-
mers behave more like rigid rods, and this introduces some anisotropy in the system.
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Solutions of such rigid polymers are called polymeric liquid crystals. One of the main
aspect to take into account in the modeling of solutions of rodlike polymers is that
the interaction of the polymers becomes important at much a lower concentration
than with flexible polymers.

One model is the Doi model (see [14, 42]), which describes the evolution for a
configuration vector Rt by a stochastic differential equation:

dRt + u · ∇Rt dt

=
(

Id− Rt ⊗Rt

||Rt||2
)((

∇uRt −
1
2
B2∇V (Rt)

)
dt+BdWt

)

−d− 1
2

B2 Rt

||Rt||2
dt, (15)

where B is a positive constant and d = 2 or 3 is the dimension of the ambient space.
Notice that B may also be a function B(Rt) in some models (with then an additional
term involving∇(B2) in the drift term). Notice also that we assume that all the initial
conditions R0(x) have a fixed length L so that ∀(t,x), ||Rt(x)|| = ||R0(x)|| = L.
The potentiel V accounts for the mean-field interaction between the polymers. For
example, the Maier–Saupe potential is:

V (R) = − 1
L4

IE(Rt ⊗Rt) : R⊗R. (16)

The stress tensor is then given by:

τ p(t) = IE(Ut ⊗Ut) + IE
(
Ut ⊗

(
(Id−Ut ⊗Ut)∇V (Ut)

))
− Id (17)

where Ut =
Rt

L
is the rod orientation. We have neglected the viscous contribution

in (17). The fully coupled system then consists in the first two equations of (6) with
(15)–(17), thus again giving a system of type (1). Notice that the main differences
with system (6) are the nonlinearity in the sense of MacKean due to the presence of
the expectation value in the potential V and the fact that the diffusion term depends
on the process Rt.

For an analysis of the fully coupled system in the special case of a shear flow,
we refer to [47] which deals with the Fokker–Planck version of (15)–(17) and [30]
which also gives an error estimate for a finite difference-Monte Carlo hybrid numeri-
cal scheme. The longtime behaviour of the Fokker–Planck equation has been studied
in [10] (see also [11]). Some numerical methods to solve the stochastic differential
equation (15) are proposed in [42]. On the other hand, we are not aware of any rig-
orous numerical analysis of numerical methods to solve this system without closure
approximation.

3.2 Concentrated Suspensions

Let us now slightly change the context. For concentrated suspensions (such as muds
or clays), one model available in the literature is the Hebraud-Lequeux model [21].
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This model describes the rheology of the fluid in terms of a Fokker–Planck equation
ruling the evolution in time of the probability of finding, at each point, the fluid in
a given state of stress. In a one-dimensional setting such as, again, the Couette flow,
the stress at the point y and at time t is determined by one scalar variable σ:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂p

∂t
(t, y, σ) = −∂u

∂y
(t, y)

∂p

∂σ
(t, y, σ) +D(p)

∂2p

∂σ2
(t, y, σ)

−H(|σ| − 1)p(t, y, σ) +D(p)δ0,

D(p) =
∫
|σ|≥1

p(t, y, σ) dσ.

(18)

In the above system, where we have again on purpose omitted all physical constants,
the function H denotes the Heaviside function. It aims at modeling the presence of
a threshold constraint (here set to one): when the constraint is above the threshold,
the stress relaxes to zero, which translates into the two last terms of the Fokker–
Planck equation. The diffusion in the stress space is also influenced nonlinearly by
the complete state of stress, as indicated by the definition of D(p). On the other

hand, the function
∂u

∂y
(t, y) accounts for a shear rate term, here provided by the

macroscopic flow. The contribution to the stress at the point y under consideration is
then given by the average

τ(t, y) =
∫

IR

σ p(t, y, σ) dσ. (19)

The fully coupled system consisting of the Fokker–Planck equation (18), the ex-
pression (19) of the stress tensor, and the macroscopic equation for the Couette flow
(first line of (9)) has been studied mathematically in a series of work [6, 7, 8].

Alternately to a direct attack of the Fokker–Planck equation (18), one might wish
to simulate the associated SDE with jumps that reads

dσt =
∂u

∂y
dt +

√
2IP(|σt| ≥ 1) dW t − 1{|σt− |≥1}σt− dNt, (20)

where Wt is a Brownian motion and Nt is an independent Poisson process with unit
intensity. Note that, in addition to the jumps, equation (20) is nonlinear in the sense
of MacKean, as the diffusion coefficient depends on the marginal law of the solution
at time t.

The coupled system to simulate then reads in the form of a system of type (1)
(note the SDE has jumps, though)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂u

∂t
(t, u)− ∂2u

∂y2
(t, y) =

∂τ

∂y
(t, y)

∀y,

⎧⎨⎩ τ(t, y) = IE(σt(y))

dσt(y) =
∂u

∂y
dt +

√
2IP(|σt(y)| ≥ 1) dW t − 1{|σt− (y)|≥1}σt−(y) dNt.

(21)
Numerical simulations of this system have been carried out successfully (see [19]),
but in the absence of any numerical analysis to date.
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3.3 Coupling PDEs and SDEs for the Simulation of Dispersed Two-Phase
Flows

Dispersed two-phase flows are characterized by the presence of one phase (either
solid, liquid or vapour) as separate inclusions called particles in the other phase called
fluid. In both the following examples, the evolution of particles is modeled by a SDE
(or the associated Fokker–Planck equation) while fluid equations are written for the
other phase. In the example of dispersed turbulent two-phase flows, there is only a
one-way coupling : the particles motion is influenced by the drag force of the fluid.
In the example of sprays, the reverse coupling also holds : the drag force appears as
a driving force in the equation for the conservation of the momentum of the fluid.

Dispersed Turbulent Two-Phase Flows

In the approach proposed by [37], the fluid phase is described by a classical turbu-
lence model such as the k−ε model. It gives at each time t and each point x the mean
velocity of the fluid 〈Uf 〉, the covariance matrix of the velocity, the mean pressure
〈P 〉 and the mean dissipation rate of energy 〈ε〉. On the other hand, the particles are
described by a Lagrangian approach. An extension of Kolmogorov theory suggests
that the acceleration of the fluid velocity Us seen by particles is a fast variable which
can be modeled by a SDE driven by a d-dimensional Brownian motionW . This leads
to the following evolution for the position X , the velocity Up and the fluid velocity
seen by particles Us

dX(t) = Up(t)dt (22)

dUp(t) =
1
τp

(Us(t)− Up(t))dt+ gdt (23)

dU i
s(t) =

( d∑
j=1

(〈U j
p 〉 − 〈U j

s 〉)
∂〈U i

f 〉
∂xj

− 1
ρf

∂〈P 〉
∂xi

− U i
s(t)− 〈U i

s〉
T ∗

L,i

)
(t,X(t))dt

+
√
C∗

0 〈ε〉(t,X(t)) dW i
t, i ≤ d, (24)

where g denotes the gravity and ρf the fluid density. On the other hand, the quan-
tities τp, T ∗

L,i and C∗
0 depend on Up, Us and on the mean fields representing the

fluid in a very intricate manner that is made precise in [37]. Function 〈Up〉(t, x)
(resp. 〈Us〉(t, x)) stands for the conditional expectation IE(Up(t)|X(t) = x) (resp.
IE(Us(t)|X(t) = x)). The full coupled system then reads:⎧⎨⎩

k − ε model giving 〈Uf 〉, 〈P 〉, 〈ε〉
and (together with Up and Us) τp, T ∗

L,i and C∗
0 ,

(22)–(23)–(24).

When (X(t), Up(t), Us(t)) admits a density p(t, x, u, v) with respect to the
Lebesgue measure, one has
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〈Up〉(t, x) =

∫
IR2d

up(t, x, u, v)dudv∫
IR2d

p(t, x, u, v)dudv
and 〈Us〉(t, x) =

∫
IR2d

vp(t, x, u, v)dudv∫
IR2d

p(t, x, u, v)dudv
.

Because of the presence of these functions in the right-hand side of (24), the SDE
(22)–(24) is nonlinear in the sense of MacKean with an ill-behaved nonlinearity. As a
consequence, a rigorous study of existence and uniqueness is an open issue probably
of outstanding difficulty.
The numerical approach proposed in [39] is a particle-mesh method. The mean quan-
tities are evaluated at the grid points either from the k − ε fluid model (〈Uf 〉, 〈P 〉
and 〈ε〉) or from the particle data (〈Up〉 and 〈Us〉). These values are projected on the
particles positions to integrate forward in time (22)–(24). Last, 〈Up〉 and 〈Us〉 are
averaged at the grid points from the new positions and velocities of the particles.

Modeling of Sprays in a Fluid Phase

According to [12], a spray can be modeled by a kinetic equation, usually a variant
of the Boltzmann equation in which a force acting on the particles is due to the sur-
rounding fluid. It describes the evolution of the particle density function f(t, x, v, r)
which gives the density of particles in the spray with position x, velocity v and radius
r at time t. In a simple form, it writes

∂tf + v.∇xf +∇v.(Ff) = Q(f), (25)

where Q is a kernel modeling the effects of collisions, coalescences and breakups of
the particles and the drag force F of the fluid on the particles is given by

F (t, x, v, r) = −4
3
πr3∇xp(t, x)−D(v − u(t, x)), (26)

p and u being the pressure and the velocity fields of the fluid and D a drag coef-
ficient. This equation can be considered as the Fokker–Planck equation associated
with a stochastic process with jumps, at least in the absence of the coalescence and

breakup phenomena which may modify the total amount of particles
∫

fdxdvdr.

The ambient fluid is described by a set of Euler equations, relative to the density ρ
and the velocity u multiplied by the volume fraction α = 1−

∫
4
3πr

3fdvdr:⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂(αρ)
∂t

+∇x.(αρu) = 0,
∂(αρu)
∂t

+∇x.(αρu⊗ u) +∇xp =
∫
−Ff dvdr,

p = p(ρ).

(27)

The full coupled system of type (1) is then (27)–(25).
From a numerical point of view, the fluid equations (27) are usually solved by

standard deterministic methods (finite volume techniques for instance). As the phase



164 Benjamin Jourdain, Claude Le Bris, and Tony Lelièvre

space dimension is 7, equation (25) is discretized by a particle method involving a
stochastic treatment of the right-hand side like for the standard Boltzmann equation
[1]. Only few mathematical studies concerning the derivation of the above equations
or the existence and behaviour of solutions seem to exist (see the references in [12]).

4 An Example Outside Fluid Mechanics: Photon Transport

Hot enough matter (such as plasma) spontaneously emits photons. The photons travel
in the spatial domain D and can be emitted, scattered by the electrons or absorbed
by the matter. A simple model reads as follows:

λ(θ)
∂θ

∂t
(t, x) + q(x)θ(t, x) =

q(x)
4π

∫
S2

f(t, x, w)dw, (28)

∂f

∂t
(t, x, v) + v.∇xf(t, x, v) + σ(x)

(
f(t, x, v)− 1

4π

∫
S2

f(t, x, w)dw
)

+ q(x)f(t, x, v) = q(x)θ(t, x), (29)

where the unknowns are the photon density (or radiative intensity) f(t, x, v) (here
supposed not to depend on the frequency of the photons) and the fourth power θ(t, x)
of the temperature. The space variable is x ∈ D and v denotes the velocity which
belongs here to the unit sphere S2. Equation (28) is the energy balance equation,
while (29) rules the motion of the photons. In equations (28)–(29), λ(θ) denotes
the heat capacity of the matter multiplied by θ3/4, and q and σ are respectively the
opacity of the matter and the Thomson scattering coefficient. We assume that the
nonnegative function σ is bounded from above by the constant σ̄.

As in previous cases (see e.g. Sect. 3.2), one can use a stochastic process to
represent solutions to (29). More precisely, when q ≡ 0, (29) is the Fokker–Planck
equation associated with the following SDE with jumps (see [32]):⎧⎨⎩

dXx,v
r = V x,v

r dr,
dV x,v

r = 1{σ̄UNr≤σ(Xx,v

r− )}
(
VNr

− V x,v
r−

)
dNr,

(Xx,v
0 , V x,v

0 ) = (x, v),
(30)

where (Nr)r≥0 is a Poisson process with intensity σ̄ independent from the sequence
(Uk,Vk)k≥1 of independent vectors uniformly distributed on [0, 1] × S2. Using the
process (Xx,v

r , V x,v
r ), the solution of (29) can be expressed for a general opacity q

as the solution of the following variational formulation: for any test function ϕ on
D × S2, ∀t ≥ s,∫

D×S2

ϕ(x, v)f(t, x, v)dxdv

=
∫
D×S2

IE
(
ϕ(Xx,v

t−s, V
x,v
t−s)e

−
∫ t−s
0 q(Xx,v

τ )dτ
)
f(s, x, v) dxdv

+
∫ t

s

∫
D×S2

IE
(
ϕ(Xx,v

t−r, V
x,v
t−r)e

−
∫ t−r
0 q(Xx,v

τ )dτ
)
q(x)θ(r, x) dxdvdr. (31)
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From a numerical point of view, the difficulty in the discretization of (28)–(29)
comes from the right-hand side of (28). It is needed to build a discretization scheme
which allows for an implicit treatment of the dependence of

∫
S2
f(t, x, w)dw upon θ,

in order to get the most stable scheme. The so-called Symbolic Monte Carlo method
(see [45]) consists in computing f as a function of θ from (29) in order to get a closed
implicit equation (see (32) below) for θ (see also [18] for another approach).

Let us introduce a spatial mesh {Mi, i ∈ I} and a time-step ∆t > 0. The
numerical procedure consists in approximating θ by space-time functions, piecewise
constant on the cells [n∆t, (n+ 1)∆t]×Mi:

θn =
∑
i∈I

θn
i 1Mi

(x)

and f by a sum of (weighted) Dirac masses:

fn =
νn∑

k=1

wn
k δ(Xn

k ,V n
k ),

where νn denotes the number of Dirac masses, wn
k the weights and (Xn

k , V
n
k ) some

random variables associated with a discretization of (30). Equation (28) is then dis-
cretized by a classical implicit Euler and finite element scheme, while one uses (31)
with ϕ(x, v) = 1Mi

(x) to implicitly compute the right-hand side of (28).
We thus obtain the following algorithm: knowing (θn, fn), θn+1 is obtained as

the solution (obtained by a Newton method) of:

λ(θn+1
i )

θn+1
i − θn

i

∆t
+ qiθ

n+1
i =

qi

4π|Mi|∆t

⎛⎝An
i +

∑
j∈J

Wi,jθ
n+1
j

⎞⎠ , i ∈ I (32)

where An
i and Wi,j are defined by:

An
i =

∫
D×S2

IE

(∫ ∆t

0

1Mi
(Xx,v

s )e−
∫ s
0 q(Xx,v

τ )dτds

)
fn(dx,dv),

Wi,j =
∫

Mj×S2

IE

(∫ ∆t

0

(∆t− s)1Mi
(Xx,v

s )e−
∫ s
0 q(Xx,v

τ )dτ ds

)
q(x) dxdv.

Notice that the matrix W does not depend on time and can be precomputed off-
line by a Monte Carlo method. The vector An is also computed by a Monte Carlo
method, using an ensemble of processes obtained by a time-discretization of (30).
These processes are then used to compute fn+1, together with an appropriate up-
dating of the weights and of the number of particles, to account for the opacity q
in (29).
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Summary. Submodeling is a procedure for local enhancement of the resolution of a coarse
global finite element solution by solving a local problem on a subdomain containing an area
of particular interest. We focus on linear elasticity and computation of local stress levels de-
termined by the local geometry of the domain. We derive a posteriori error estimates for the
submodeling procedure using duality techniques. Based on these estimates we propose an
adaptive procedure for automatic choice of the resolution and size of the submodel. The pro-
cedure is illustrated for problems of industrial interest.

Key words: adaptive multiscale method, a posteriori error estimate, finite element, meshre-
finement

1 Introduction

1.1 Submodeling

In many industrial engineering applications simulation technology must deal with
very complex geometries with details on many different scales. See Fig. 1 for a typ-
ical example of a gearbox casing with detailed geometry. Often one first removes
very small geometric details and then create a mesh based on the simplified model.
Even this simplified mesh is often large due to the complexity of the geometry of the
problem. Such large initial grids make it difficult to apply standard automatic adap-
tive procedures based on a posteriori error estimates since in only a few refinement
steps may result in a very large mesh. Nevertheless local mesh refinement may often
be necessary to compute accurate local values of the stress field. In such situations
submodeling is an attractive alternative.

Submodeling is based on solving a local problem on a subdomain of the global
domain containing an area of particular interest, for instance an area with high stress
levels in the coarse grid solution, with improved resolution. Boundary conditions are
obtained from the coarse grid solution. Submodeling may be viewed as a basic multi-
scale algorithm in the sense that small scale features of the solution are resolved using
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a localized problem with higher resolution in contrast to standard adaptive finite ele-
ments where one solves a global problem on a locally refined grid. The submodeling
procedure may also be iterated resulting in a multiscale zooming algorithm. The size
of the submodel problem may be much smaller than the global coarse grid and may
thus be solved in a short amount of time, sometimes close to real time. In complex
engineering applications such a technique opens up the possibility of interactive sim-
ulation and optimization of local design changes. Another important application is
simulation of the effect of small features, for instance holes, which are not present in
the coarse global mesh. Removing small scale features from the CAD data in order
to simplify meshing is common practice in industrial computations.

(a) Gearbox casing (b) Zoom of gearbox casing

Fig. 1. Example of the complex geometry of a gearbox casing illustrating the presence of large
and small geometric details

1.2 Contributions

In this paper we consider a submodeling procedure for linear elasticity based on
displacement boundary conditions. We develop a posteriori error estimates for the
submodeling procedure. The error in the submodel solution depends on the size of
the submodel, the resolution of the fine submodel grid, and the resolution of the
coarse grid. Our a posteriori error estimates captures these dependencies and are
based on error representation formulas derived using duality techniques. We also
propose adaptive algorithms for automatic tuning of the submodel resolution and
size. We focus on applications of industrial interest where the local geometry of the
domain in the problem determines local stress levels. We illustrate the submodeling
procedure on test problems of industrial interest. For an extensive treatment we refer
to [2].
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1.3 Related Work

The idea of submodeling is old and is a common technique in industrial finite element
computations. Recently submodeling has been exploited by Oden and Venmanganti
in [10] and [12] for simulation of problems with local microstructure. Here the mate-
rial model in the submodel is different from the global coarse problem where homog-
enized material parameters are used. We also mention the work by Xu and Zhou [13]
where submodeling is used as a parallel algorithm and a priori and a posteriori error
estimates are presented for the Poisson equation. Submodeling is also closely related
to local error estimates for the finite element method, see Wahlbin and Schatz [11].
Estep, Holst, and Larson [4] presents a posteriori error estimates based on duality re-
lated to our estimates with application to a kind of domain decomposition algorithms.
In the recent work of Larson and Målqvist [8, 9] an adaptive variational multiscale
algorithm, see Hughes [6] and [7], based on parallel submodel approximation of the
fine scale solution and a posteriori error estimates is proposed.

1.4 Outline

In Sect. 2 we formulate the linear elasticity equations and the finite element method.
In Sect. 3 we define the submodeling procedure, derive a posteriori error estimates,
and formulate an adaptive algorithm. We also present several numerical examples.
Finally, in Sect. 4 we draw some conclusions of our work.

2 Linear Elasticity and Finite Element Method

2.1 Linear Elasticity

We consider the equations of linear elasticity in d = 3 dimensions: find the displace-
ment u = [ui]

d
i=1 such that

−∇ · σ = f in Ω, (1)

σ = 2µε(u) + λ∇ · uI in Ω, (2)

u = gD on ∂ΩD, (3)

σ · n = gN on ∂ΩN, (4)

where σ = [σij ]
d
i,j=1 is the symmetric stress tensor; ε (u) = [εij(u)]di,j=1 is the

strain tensor with components

εij(u) =
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
; (5)

∇ · σ =
[∑d

j=1 ∂σij/∂xj

]d

i=1
; I = [δij ]

d
i,j=1 with δij = 1 if i = j and δij = 0

if i �= j; Ω is a closed subset of Rd with boundary ∂Ω = ∂ΩD ∪ ∂ΩN , where
∂ΩD is closed and nonempty; f and gN are given loads; gD is a given boundary
displacement; and n is the exterior unit normal to ∂Ω. Parameters λ and µ are the
Lamé parameters and satisfy 0 < µ1 < µ < µ2 and 0 < λ <∞.
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2.2 Finite Element Method

To define the finite element method we introduce a partition KH = {K} of Ω into
shape regular tetrahedra K of size HK . We let VH be the space of continuous piece-
wise vector polynomials of local degree pK , in other words

VH = {v ∈ [H1(Ω)]d : v|K = [PpK
(K)]d}, (6)

where Pq(K) denotes the space of piecewise polynomials of degree q defined on
element K.

The finite element method reads: find uH ∈ VH such that

a(uH ,v) = l(v) for all v ∈ VH , (7)

where

a(u,v) =
∫

Ω

σ(u) : ε(v) dx, (8)

l(v) =
∫

Ω

f · v dx+
∫

∂ΓN

gN · v ds. (9)

3 Adaptive Submodeling

3.1 The Submodeling Procedure

Submodeling is a technique for local enhancement of the accuracy of the finite ele-
ment solution in a subdomain ω0 of Ω based on solution of a finite element problem
with a refined mesh on a slightly larger subdomain ω of Ω, see Fig. 2. More pre-
cisely we let ω be the union of a subset KH,ω of elements containing the domain ω0

of interest, i.e.,

Ω

ω
ω0

∂ω

∂Ω

Fig. 2. Basic submodel geometry: ω0 the domain of interest, ω the submodel with boundary
∂ω, and the global domain Ω with boundary ∂Ω. Note that the submodel may also intersect
the global boundary ∂Ω
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ω0 ⊂ ω =
⋃

K∈KH,ω

K. (10)

The precise size and shape of ω is variable and can be determined in an adaptive
fashion.

We let Kh
ω be a partition of the submodel ω into elements K of size hK . Next we

introduce the submodel finite element space

Vh
g (ω) = {v ∈ [H1(ω)]d : v|K = [PpK

(K)]d,v|∂ω\∂ΩN
= g|∂ω\∂ΩN

}, (11)

and the submodel problem: find uh ∈ Vh
uH

(ω) such that

a(uh,v) = l(v) for all v ∈ Vh
0 (ω). (12)

We define the enhanced global solution uh
H as the combination

uh
H =

{
uH in Ω \ ω,
uh in ω.

(13)

In Fig. 3 we illustrate the submodeling procedure on the mechanical part (a). A point
load acts on the inside of the geometry and creates an area of high stress levels.
We define a submodel containing the area of interest (b). Using mesh refinement a
refined model is created (c), and von Mises effective stresses are computed in (d).

3.2 An Error Representation Formula

The error in the submodeling process has three main sources:

• Error caused by the coarse scale solution.
• Error caused by the numerical solution of the local subdomain problem.
• Error caused by restriction to a submodel problem.

We now wish to develop an a posteriori estimate of the error in a linear functional

m(u)−m(uh
H) = m(e) = (e,ψ), (14)

where e = u− uh
H is the error and ψ is a given distribution supported in the region

of interest ω0. To represent the error in the linear functional m(e) we introduce the
global dual problem: find φ = [φi]

d
i=1 such that

−∇ · σ = ψ in Ω, (15)

σ = 2µε(φ) + λ∇ · φI in Ω, (16)

φ = 0 on ∂ΩD, (17)

σn = 0 on ∂ΩN. (18)

Multiplying (15) with the error e and using Green’s formula we get
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(a) Mechanical part (b) Submodel mesh

(c) Refined submodel mesh (d) Von Mises effective stresses on sub-
model

Fig. 3. Example of the submodeling procedure. A point load acts on the inside of the geometry
and creates an area of high stress levels. We identify the area of interest in the mechanical part
(a) and define a submodel (b) the mesh in the submodel is refined (c) and the von Mises
effective stresses are computed in (d)

(e,ψ) = a(e,φ) (19)

= a(e,φ− πh
Hφ) + a(e,πh

Hφ) (20)

= l(φ− πh
Hφ)− a(uh

H ,φ− πh
Hφ)︸ ︷︷ ︸

I

+ l(πh
Hφ)− a(uh

H ,π
h
Hφ)︸ ︷︷ ︸

II

. (21)

Here we subtracted and added the interpolant πh
Hφ defined by
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πh
Hφ =

{
πHφ in Ω \ ω,
πhφ in ω,

(22)

where πH is the Scott–Zhang interpolation operator and πh is the Scott–Zhang in-
terpolation operator satisfying Dirichlet boundary conditions πhφ = πHφ on ∂ω
see [3]; and finally we used the fact that u is the exact solution to (1).

The first term I can be written

I =
∑

K∈Kh
ω

(RK(uh),φ− πhφ) +
∑

K∈KH\KH,ω

(RK(uH),φ− πHφ), (23)

where the element residual RK(v) ∈ H−1(K) is defined by

(RK(v),w) = (f +∇ · σ(v),w)K (24)

+ ([σ(v) · n]/2,w)∂K\∂Ω + (gN − σ(v) · n,w)∂K∩∂ΩN
,

for all w ∈ H1(K). Here [v(x)] = limε→0+ v(x + εn) − v(x − εn) denotes the
jump over element interfaces in function v.

The second term II can be interpreted as the jump in the variationally consistent
flux Σn, see [5], on the submodel boundary

II = l(πh
Hφ)− a(uh

H ,π
h
Hφ) (25)

= (Σn(uh)−Σn(uH),πh
Hφ)∂ω. (26)

Collecting these expressions we obtain the error representation formula

(e,ψ)ω =
∑

K∈Kh
ω

(RK(uh),φ− πhφ) (27)

+ (Σn(uh)−Σn(uH),πh
Hφ)∂ω

+
∑

K∈KH\KH,ω

(RK(uH),φ− πHφ).

Here the first term accounts for the approximation of the submodel problem, the
second the effect of the size of the submodel, and the third the error from the coarse
grid solution.

3.3 Dual Weighted Residual A Posteriori Error Estimates

Starting from (27) and estimating the right hand side using the triangle inequality
followed by the Cauchy–Schwarz inequality on an element level we obtain the fol-
lowing dual weighted residual estimate of the error
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|(e,ψ)ω| ≤
∑

K∈Kh

RK(uh)WK(φ) (28)

+R∂ω(uh
H)W∂ω(φ)

+
∑

K∈KH\KH,ω

RK(uH)WK(φ)

= ρ1 + ρ2 + ρ3. (29)

Here

R∂ω(uh
H) = ‖Σn(uh)−Σn(uH)‖∂ω\∂ΩN

, (30)

W∂ω(φ) = ‖πh
Hφ‖∂ω\∂ΩN

, (31)

and the element residual RK(·) and the weightWK(·) are estimates of the residual
and the local interpolation error in the solution φ to the dual problem defined by

R2
K(v) = ‖f +∇ · σ(v)‖2K + h−1

K ‖[σ(v) · n]‖2∂K\∂Ω (32)

+ h−1
K ‖gN − σ(v) · n‖2∂K∩∂ΩN

,

W2
K(φ) = ‖φ− πh

Hφ‖2K + hK‖φ− πh
Hφ‖2∂K\∂ΩD

, (33)

where we scaled the edge residuals and weights by suitable powers of the local mesh
size hK in order for all contributions to the residual and weight to have the same
dependence of hK .

3.4 Simplified A Posteriori Error Estimates

Using interpolation theory, see [3], the weights can be estimated in terms of the local
sizes of derivatives of the dual problem

WK(φ) ≤ Chα
K |φ|N (K),α, (34)

whereN (K) denotes the set of elements neighboringK. If ψ ∈ H−1(ω0) we expect
φ|ω ∈ H1(ω) and if the boundary of Ω is smooth we expect φ|Ω\ω ∈ H2(Ω). With
these assumptions we obtain the simplified estimate

|(e,ψ)ω0 | ≤ C

( ∑
K∈Kh

ω

hKRK(uh)+R∂ω(uh
H)+

∑
K∈KH\KH,ω

H2
KRK(uH)

)
,

(35)

which can be used as a basis for an adaptive algorithm if an approximation of the
dual problem is not available. Note that there are no powers of the meshsize mul-
tiplying R∂ω(uh

H) since this residual measures the deviation from global Galerkin
orthogonality.

There are of course many variants of these estimates and we have chosen to
present two of the most basic approaches. We refer to [1] for an introduction to the
dual weighted residuals method.
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3.5 Representation of Errors in Stresses and Strains

The data ψ to the dual problem (15) defines the measure of the error. In solid me-
chanics one is often interested in different localized measures of the stresses or the
strains. We let

δx,γ (36)

denote a continuous approximation of the Dirac delta function at x with regulariza-
tion parameter γ. We then have (∂je, δx,γ) = (e,−∂jδx,γ). Letting {ξi}3i=1 be the
standard orthogonal coordinate system in R3 we see that with

ψεij
= −(ξi∂jδx,γ + ξj∂jδx,γ)/2, (37)

we obtain the representation formula

(εij(u)− εij(uh
H), δx,γ) = (e,ψεij

), (38)

for the error in the strains. To achieve error estimates for the elements in the stress
tensor we recall the constitutive relation σij = 2µεij + λtr(ε)δij . Setting

ψσij
= 2µψεij

+ λ
( 3∑

k=1

ψεkk

)
δij , (39)

we obtain the representation formula

(σij(u)− σij(uh
H), δx,γ) = (e,ψσij

), (40)

for the error in stresses. Furthermore, the principal stresses σi satisfies the identity
ηi · σηi = σi with ηi the principal stress unit vectors. Setting

ψσi
=

3∑
j,k=1

ψσjk
ηi,jηi,k, (41)

we obtain the linearized error representation formula

(σi(u)− σi(uh
H), δx,γ) ≈ (e,ψσij

). (42)

In practice we use the numerical approximations of the unit principal stress vec-
tors. Using the representation formulas for the principal stresses together with lin-
earization we can derive similar representation formulas for the von Mises effective
stresses.

In Figs. 4 and 5 we show the element weights for the dual solution corresponding
to control of a localized mean value of the principal stress σ1.

We have chosen to scale the weights with h−2
K to get a quantity which is more

independent of the meshsize hK , see the discussion on the simplified a posteriori
error estimate (35) above. Note, in particular, the small area where the weight is
large indicating that submodeling can be successful.
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Fig. 4. The scaled dual element weights WK/h2
K

3.6 An Adaptive Submodeling Algorithm

Based on the a posteriori error estimate (29), we propose the following algorithm for
adaptive choice of the meshsize in the subdomain and the size of the subdomain ω.

Algorithm:

Given a coarse grid global approximation uH of the displacement field u and a
subdomain ω0 ⊂ Ω of interest:

• Compute an initial approximation of the subdomain ω.
• Solve the subdomain dual problem.
• If ρ1 > ρ3/2 refine the submodel mesh using a standard adaptive mesh refine-

ment algorithm.
• If ρ2 > ρ3/2 increase the size of the subdomain ω.
• Repeat until ρ1 + ρ2 ≤ ρ3 or the submodel problem is too large.

In practice we can of course not solve the global dual problem, instead a localized
approximation is computed on the submodel or a slightly larger patch using homo-
geneous Dirichlet conditions on the boundary, see [2] for further details.

4 Conclusions

We have described the submodeling procedure for local enhancement of the accu-
racy in finite element stress computations. The error in the submodel stresses can be
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Fig. 5. Zoom of the scaled dual element weights WK/h2
K

estimated using a posteriori error estimates which are used as a basis for design of
adaptive algorithms for tuning of critical parameters such as the size of the subdo-
main and the resolution of the submodel mesh size. Submodeling is a fundamental
building block in the construction of multiscale algorithms where information from
the submodel solution is fed back to the coarse grid to account for fine scale effects.
Such algorithms are currently under investigation.

Acknowledgment

This work has been supported by EC-project ViSiCADE.

References

1. Wolfgang Bangerth and Rolf Rannacher. Adaptive finite element methods for differential
equations. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2003.

2. Mats G. Larson, Fredrik Bengzon and August Johansson. Adaptive submodeling for
elasticity. Preprint to appear 2005, Chalmers Finite Element Center, Göteborg, Sweden,
www.phi.chalmers.se

3. Susanne C. Brenner and L. Ridgway Scott. The mathematical theory of finite element
methods, volume 15 of Texts in Applied Mathematics. Springer-Verlag, New York, second
edition, 2002.

4. Donald Estep, Michael Holst, and Mats G. Larson. Generalized Greens functions and the
effective domain of influence. Preprint 10, Chalmers Finite Element Center, Göteborg,
Sweden, 2003. to appear in SIAM J. Sci. Comp.



180 Mats G. Larson, Fredrik Bengzon, and August Johansson

5. Thomas J. R. Hughes, Gerald Engel, Luca Mazzei, and Mats G. Larson. The continuous
Galerkin method is locally conservative. J. Comput. Phys., 163(2):467–488, 2000.

6. Thomas J. R. Hughes, Gonzalo R. Feijóo, Luca Mazzei, and Jean-Baptiste Quincy. The
variational multiscale method—a paradigm for computational mechanics. Comput. Meth-
ods Appl. Mech. Engrg., 166(1-2):3–24, 1998.

7. Thomas J. R. Hughes and Assad A. Oberai. The variational multiscale formulation of
LES with application to turbulent channel flows. In Geometry, mechanics, and dynamics,
pages 223–239. Springer, New York, 2002.

8. Mats G. Larson and Axel Målqvist. Adaptive variational multiscale methods based on a
posteriori error estimation: energy norm estimates for elliptic problems. Preprint 2004–
18, Chalmers Finite Element Center, Göteborg, Sweden, www.phi.chalmers.se

9. Mats G. Larson and Axel Målqvist. Adaptive variational multiscale methods based on
a posteriori error estimation. Proceedings of ECCOMAS 2004 conference, Jyväskylä,
Finland.

10. J. Tinsley Oden and Kumar S. Vemaganti. Estimation of local modeling error and goal-
oriented adaptive modeling of heterogeneous materials. I. Error estimates and adaptive
algorithms. J. Comput. Phys., 164(1):22–47, 2000.

11. A. H. Schatz and L. B. Wahlbin. Interior maximum-norm estimates for finite element
methods. II. Math. Comp., 64(211):907–928, 1995.

12. Kumar S. Vemaganti and J. Tinsley Oden. Estimation of local modeling error and goal-
oriented adaptive modeling of heterogeneous materials. II. A computational environment
for adaptive modeling of heterogeneous elastic solids. Comput. Methods Appl. Mech.
Engrg., 190(46-47):6089–6124, 2001.

13. Jinchao Xu and Aihui Zhou. Local and parallel finite element algorithms based on two-
grid discretizations. Math. Comp., 69(231):881–909, 2000.



Adaptive Variational Multiscale Methods Based
on A Posteriori Error Estimation: Duality Techniques
for Elliptic Problems

Mats G. Larson1 and Axel Målqvist2

1 Department of Mathematics, Umeå University, 90187 Umeå, Sweden
mats.larson@math.umu.se

2 Department of Mathematics, Chalmers University of Technology, S-412 96, Göteborg,
Sweden
axel@math.chalmers.se

Summary. The variational multiscale method (VMM) provides a general framework for con-
struction of multiscale finite element methods. In this paper we propose a method for parallel
solution of the fine scale problem based on localized Dirichlet problems which are solved nu-
merically. Next we present a posteriori error representation formulas for VMM which relates
the error in linear functionals to the discretization errors, resolution and size of patches in the
localized problems, in the fine scale approximation. These formulas are derived by using dual-
ity techniques. Based on the a posteriori error representation formula we propose an adaptive
VMM with automatic tuning of the critical parameters. We primarily study elliptic second or-
der partial differential equations with highly oscillating coefficients or localized singularities.

Key words: variational multiscale method, a posteriori error estimation, duality techniques,
finite element method, elliptic problems

1 Introduction

Many problems in science and engineering involve models of physical systems on
many scales. For instance, models of materials with microstructure such as compos-
ites and flow in porous media. In such problems it is in general not feasible to seek
for a numerical solution which resolves all scales. Instead we may seek to develop
algorithms based on a suitable combination with a global problem capturing the main
features of the solution and localized problems which resolves the fine scales. Since
the fine scale problems are localized the computation on the fine scales is parallel in
nature.

Previous Work

The Variational Multiscale Method (VMM) is a general framework for derivation of
basic multiscale method in a variational context, see Hughes [7] and [9]. The basic
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idea is to decompose the solution into fine and coarse scale contributions, solve the
fine scale equation in terms of the residual of the coarse scale solution, and finally
eliminate the fine scale solution from the coarse scale equation. This procedure leads
to a modified coarse scale equation where the modification accounts for the effect
of fine scale behavior on the coarse scales. In practice it is necessary to approximate
the fine scale equation to make the method realistic. In several works various ways
of analytical modeling are investigated often based on bubbles or element Green’s
functions, see Oberai and Pinsky, [11] and Arbogast [1]. In [6] Hou and Wu present
a different approach. Here the fine scale equations are solved numerically on a finer
mesh. The fine scale equations are solved inside coarse elements and are thus totally
decoupled.

New Contributions

In this work we present a simple technique for numerical approximation of the
fine scale equation in the variational multiscale method. The basic idea is to split
the fine scale residual into localized contributions using a partition of unity and
solving corresponding decoupled localized problems on patches with homogeneous
Dirichlet boundary conditions. The fine scale solution is approximated by the sum
Uf =

∑
i Uf,i of the solutions Uf,i to the localized problems. The accuracy of Uf

depends on the fine scale mesh size h and the size of the patches. We note that the
fine scale computation is naturally parallel.

To optimize performance we seek to construct an adaptive algorithm for auto-
matic control of the coarse mesh size H , the fine mesh size h, and the size of
patches. Our algorithm is based on the following a posteriori estimate of the error
e = u− Uc − Uf for the Poisson equation with variable coefficients a:

(e, ψ) =
∑
i∈C

(ϕiR(Uc), φf ) +
∑
i∈F

((ϕiR(Uc), φf )ωi
− a(Uf,i, φf )) , (1)

where ψ ∈ H−1(Ω), C refers to nodes where no local problems have been solved,
F to nodes where local problems are solved, Uc is the coarse scale solution, U =
Uc +Uf , R(U) = f+∇·a∇U is the residual, {ϕi}i∈C∪F are coarse base functions,
and φf is the fine scale part of a dual solution driven by ψ.

If no fine scale equations are solved we only obtain the first term in the estimate.
The second term relates the fine scale mesh parameter h to the patch size ωi on
which the local problems are solved. We have derived a similar estimate for the error
in energy norm, see [10].

The framework is fairly general and may be extended to other types of multiscale
methods, for instance, based on localized Neumann problems.

Outline.

First we introduce the model problem and the variational multiscale formulation of
this problem, we also discuss the split of the coarse and fine scale spaces. In the fol-
lowing section we present a posteriori estimates of the error. These results leads to an
adaptive algorithm. We present numerical results and finally we present concluding
remarks and suggestions on future work.
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2 The Variational Multiscale Method

2.1 Model Problem

We study the Poisson equation with a highly oscillating coefficient a and homoge-
neous Dirichlet boundary conditions: find u ∈ H1

0 (Ω) such that

−∇ · a∇u = f in Ω, (2)

whereΩ is a polygonal domain in Rd, d = 1, 2, or 3 with boundary Γ , f ∈ H−1(Ω),
and a ∈ L∞(Ω) such that a(x) ≥ α0 > 0 for all x ∈ Ω. The variational form of (2)
reads: find u ∈ V = H1

0 (Ω) such that

a(u, v) = (f, v) for all v ∈ V, (3)

with the bilinear form
a(u, v) = (a∇u,∇v) (4)

for all u, v ∈ V .

2.2 The Variational Multiscale Method

We employ the variational multiscale scale formulation, proposed by Hughes see
[7, 9] for an overview, and introduce a coarse and a fine scale in the problem. We
choose two spaces Vc ⊂ V and Vf ⊂ V such that

V = Vc ⊕ Vf . (5)

Then we may pose (3) in the following way: find uc ∈ Vc and uf ∈ Vf such that

a(uc, vc) + a(uf , vc) = (f, vc) for all vc ∈ Vc,
a(uc, vf ) + a(uf , vf ) = (f, vf ) for all vf ∈ Vf .

(6)

Introducing the residual R : V → V ′ defined by

(R(v), w) = (f, w)− a(v, w) for all w ∈ V, (7)

the fine scale equation takes the form: find uf ∈ Vf such that

a(uf , vf ) = (R(uc), vf ) for all vf ∈ Vf . (8)

Thus the fine scale solution is driven by the residual of the coarse scale solution.
Denoting the solution uf to (8) by uf = TR(uc) we get the modified coarse scale
problem

a(uc, vc) + a(TR(uc), vc) = (f, vc) for all vc ∈ Vc. (9)

Here the second term on the left hand side accounts for the effects of fine scales on
the coarse scales.
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2.3 A VMM Based on Localized Dirichlet Problems

We introduce a partition K = {K} of the domain Ω into shape regular elements K
of diameter HK and we let N be the set of nodes. Further we let Vc be the space of
continuous piecewise polynomials of degree p defined on K.

We shall now construct an algorithm which approximates the fine scale equation
by a set of decoupled localized problems. We begin by writing uf =

∑
i∈N uf,i

where
a(uf,i, vf ) = (ϕiR(uc), vf ) for all vf ∈ Vf , (10)

and {ϕi}i∈N is the set of Lagrange basis functions in Vc. Note that {ϕi}i∈N is a
partition of unity with support on the elements sharing the node i. We call the set
of elements with one corner in node i a mesh star in node i and denote it Si

1. Thus
functions uf,i correspond to the fine scale effects created by the localized residuals
ϕiR(uc). Introduce this expansion of uf in the right hand side of the fine scale
equation (6) and get: find uc ∈ Vc and uf =

∑
i∈N uf,i ∈ Vf such that

a(uc, vc) + a(uf , vc) = (f, vc) for all vc ∈ Vc,
a(uf,i, vf ) = (ϕiR(uc), vf ) for all vf ∈ Vf and i ∈ N .

(11)

We use this fact to construct a finite element method for solving (11) approximately
in two steps.

• For each coarse node we define a patch ωi such that supp(ϕi) ⊂ ωi ⊂ Ω. We
denote the boundary of ωi by ∂ωi.

• On these patches we define piecewise polynomial spaces Vh
f (ωi) with respect

to a fine mesh with mesh function h = h(x) defined as a piecewise constant
function on the fine mesh. Functions in Vh

f (ωi) are equal to zero on ∂ωi.

The resulting method reads: find Uc ∈ Vc and Uf =
∑n

i Uf,i where Uf,i ∈ Vh
f (ωi)

such that

a(Uc, vc) + a(Uf , vc) = (f, vc) for all vc ∈ Vc,
a(Uf,i, vf ) = (ϕiR(Uc), vf ) for all vf ∈ Vh

f (ωi) and i ∈ N .
(12)

Since the functions in the local finite element spaces Vh
f (ωi) are equal to zero on

∂ωi, Uf and therefore U = Uc + Uf will be continuous.

Remark 1. For problems with multiscale phenomena on a part of the domain it is not
necessary to solve local problems for all coarse nodes. We let C ⊂ N refer to nodes
where no local problems are solved and F ⊂ N refer to nodes where local problems
are solved. Obviously C ∪ F = N . We let Uf,i = 0 for i ∈ C.

Remark 2. The choice of the subdomains ωi is crucial for the method. We introduce
a notation for extended stars of many layers of coarse elements recursively in the
following way. The extended mesh star Si

L = ∪j∈Si
L−1

Sj
1 for L > 1. We refer to L

as layers, see Fig. 1.
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Fig. 2. The fine scale solution Uf,i for different patches

In Fig. 2 we plot solutions to localized fine scale problems Uf,i on different patches.
We note how Uf,i decays rapidly outside the support of ϕi. It appears to be enough to
use two layers in this example to capture the true behaviour of the fine scale solution.
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2.4 Subspaces

The choice of the fine scale space Vf can be done in different ways. In a paper by
Aksoylu and Holst [4] three suggestions are made.

Hierarchical Basis Method

The first and perhaps easiest approach is to let Vf = {v ∈ V : v(xj) = 0, j = N},
where {xi}i∈N are the coarse mesh nodes. When Vf is discretized by the standard
piecewise polynomials on the fine mesh this means that the fine scale base functions
will have support on fine scale stars.

BPX Preconditioner

The second approach is to let Vf be L2(Ω) orthogonal to Vc. In this case we will
have global support for the fine scale base functions but for the discretized space we
have rapid decay outside fine mesh stars.

Wavelet Modified Hierarchical Basis Method

The third choice is a mix of the other two. The fine scale space Vf is defined as
an approximate L2(Ω) orthogonal version of the Hierarchical basis method. We let
Qa

cv ∈ Vc be an approximate solution (a small number of Jacobi iterations) to

(Qa
cv, w) = (v, w), for all w ∈ Vc. (13)

and define the Wavelet modified hierarchical basis function associated with the hier-
archical basis function ϕHB to be,

ϕWHB = (I −Qa
c )ϕHB , (14)

see Fig. 3.
For an extended description of these methods see [3, 4, 2]. In this paper we focus

on the WHB method.
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3 A Posteriori Error Estimates

3.1 The Dual Problem

To derive a posteriori error estimates of the error in a given linear functional (e, ψ)
with e = u− U and ψ ∈ H−1(Ω) a given weight. We introduce the following dual
problem: find φ ∈ V such that

a(v, φ) = (v, ψ) for all v ∈ V. (15)

In the VMM setting this yields: find φc ∈ Vc and φf ∈ Vf such that

a(vc, φc) + a(vc, φf ) = (vc, ψ), for all vc ∈ Vc,
a(vf , φf ) + a(vf , φc) = (vf,ψ), for all vf ∈ Vf .

(16)

3.2 Error Representation Formula

We now derive an error representation formula involving both the coarse scale error
ec = uc − Uc and the fine scale error ef =

∑
i∈N ef,i :=

∑
i∈N (uf,i − Uf,i) that

arises from using our finite element method (12).
We use the dual problem (16) to derive an a posteriori error estimate for a linear

functional of the error e = ec + ef . If we subtract the coarse part of equation (12)
from the coarse part of equation (11) we get the Galerkin orthogonality,

a(ec, vc) + a(ef , vc) = 0 for all vc ∈ Vc. (17)

The same argument on the fine scale equation gives for i ∈ F ,

a(ef,i, vf ) = −a(ec, ϕivf ), for all vf ∈ Vh
f (ωi). (18)

We are now ready to state an error representation formula.

Theorem 1. If ψ ∈ H−1(Ω) then,

(e, ψ) =
∑
i∈C

(ϕiR(Uc), φf ) +
∑
i∈F

((ϕiR(Uc), φf )ωi
− a(Uf,i, φf )) . (19)

Proof. Starting from the definition of the dual problem and letting v = e = u−Uc−
Uf we get

(e, ψ) = a(e, φ) (20)

= a(e, φf ) (21)

= a(u− Uc, φf )− a(Uf , φf ) (22)

= (R(Uc), φf )− a(Uf , φf ) (23)

= (R(Uc), φf )−
∑
i∈F

a(Uf,i, φf ) (24)

=
∑
i∈C

(ϕiR(Uc), φf ) +
∑
i∈F

(ϕiR(Uc), φf )− a(Uf,i, φf ). (25)

which proves the theorem.
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Since equation (12) holds we can subtract functions vh
f,i ∈ Vh

f (ωi) where i ∈ F
from equation (25). For example we choose vh

f,i = πh,iφf , where πh,iφf is the
Scott–Zhang interpolant, see [5], of φf onto Vh

f (ωi) to get

(e, ψ) =
∑
i∈C

(ϕiR(Uc), φf ) (26)

+
∑
i∈F

((ϕiR(Uc), φf − πh,iφf )ωi
− a(Uf,i, φf − πh,iφf )) .

Remark 3. Since the dual problem defined in equation (16) is equally hard to solve as
the primal problem we need to solve it numerically as well. Normally it would not be
sufficient to solve the dual problem with the same accuracy as the primal due to the
Galerkin Orthogonality. However in this setting things are a bit different. Calculating
φf with minimum refinement (one time) on the local problems for i ∈ N will not
result in an error (e, ψ) equal to zero. The important thing is to only store the part
of φf with support on ωi when calculating term i in the sum of equation (19). The
entire function φf might be hard to store in the memory of the computer.

4 Adaptive Algorithm

We use the error representation formula in Theorem 1 to construct an adaptive algo-
rithm. We remember the result,

(e, ψ) =
∑
i∈C

(ϕiR(Uc), φf ) +
∑
i∈F

((ϕiR(Uc), φf )ωi
− a(Uf,i, φf )) . (27)

The first sum of the error representation formula is very similar to what we would
get from using standard Galerkin on the coarse mesh. The function φf = φ− φc ∼
H∇φ which is exactly what we would expect. For the second sum we have an extra
orthogonality namely that from equation (26). We have φf − πh,iφf ∼ h∇φ if the
patches ωi = Ω i.e. we get the fine scale convergence. But in practice the patches are
much smaller so we end up somewhere in between h and H convergence. To sum up
this discussion there are three parameters of interest that need to be considered in an
adaptive algorithm, H , h, and the size of the patches.

Adaptive Algorithm.

1. Start with no nodes in F .
2. Calculate the primal Uc.
3. Calculate the dual solution locally φf with low accuracy for all coarse nodes.

(φf does not need to be solved very accurately to point out the correct nodes for
local calculations.)

4. Calculate the contributions to the error for each coarse node,Ci = (ϕiR(Uc), φf ).
5. Solve local problems where Ci is large to get a new Uc.
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6. Calculate Ci and Fi = ((ϕiR(Uc), φf )ωi
− a(Uf,i, φf )), for large values in Ci

solve more local problems and for large values in Fi either increase the number
of layers or decrease the fine scale mesh size h for local problem i. Stop if the
desired tolerance is reached or go to 2.

5 Numerical Examples

We solve two dimensional model problems with linear base functions defined on a
uniform triangular mesh.

Example 1.

In this example we demonstrate how we can get highly improved accuracy in one
part of the domain by choosing the load in the dual problem ψ equal to the indicator
function for this domain. We consider the unit square with a crack in the form of a
plus sign on which the solution is forced to be zero, see Fig. 4 (left). We let ψ be
equal to one in the lower left quadrant (marked with a thin lattice in the figure) and
zero in the rest of the domain. To the right in Fig. 4 we see a reference solution to the
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Fig. 4. Geometry (left) and Reference solution (right)

Poisson equation with a = f = 1 and homogeneous Dirichlet boundary conditions
on this geometry. The idea is to use the adaptive algorithm to choose which areas
that needs to be solved with higher accuracy. In Fig. 5 we plot the dual solution, with
ψ chosen as described above, to the left and the fine scale part of the dual solution
to the right. After two iterations in the adaptive algorithm we see clearly that local
problems have only nodes in the lower left corner. In Fig. 6 the small circles refer
to fine scale problems solved with two layer stars and the bigger circles refer to
fine scale problems solved with three layer stars. The improvement in the solution
after two iterations in the adaptive algorithm is very clear. In Fig. 7 we compare the
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standard Galerkin solution and the adaptive solution to a reference solution. We see
how the error in the lower left quadrant is much smaller but the error in the rest of
the domain is very similar to the standard Galerkin error.

Example 2.

Next we turn our attention to a model problem with oscillating coefficient a in a
part of the domain, see Fig. 8. In this example we choose f = ψ = 1 which makes
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Fig. 8. The coefficient a = 1 on the white parts and a = 0.05 on the lattice (left) and reference
solution on this geometry (right)

the primal and the dual equivalent. In Fig. 9 we note that the adaptive algorithm
automatically picks nodes in the left part of the domain for local problems to increase
accuracy. In the first example we want to refine a certain part of the domain and
therefore we choose ψ in order to do so, here we want good accuracy on the whole
domain and the adaptive algorithm chooses where to refine automatically. Again we
compare standard Galerkin and our solution to a reference solution calculated on
a finer mesh. The result can be seen in Fig. 10. Again we see a nice improvement
compared to the standard Galerkin error. The choice ψ = 1 indicates control of the
mean of the error over the domain.

6 Conclusions and Future Work

We have presented a method for parallel solution of the fine scale equations in the
variational multiscale method based on solution of localized Dirichlet problems on
patches and developed an a posteriori error analysis for the method. Based on the
estimates we design a basic adaptive algorithm for automatic tuning of the critical
parameters: resolution and size of patches in the fine scale problems. It is also pos-
sible to decide whether a fine scale computation is necessary or not and thus the
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proposed scheme may be combined with a standard adaptive algorithm on the coarse
scales. The method is thus very general in nature and may be applied to any problem
where adaptivity is needed.

In this paper we have focused on two scales in two spatial dimensions. A natural
extension would be to solve three dimensional problems with multiple scales. It is
also natural to extend this theory to other equations modeling for instance flow and
materials. We also intend to study non-linear and time dependent equations using
this approach.
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Summary. The electromagnetic scattering problem is solved with incoming plane waves
from many directions with different frequencies. The solution of the Maxwell equations in
integral form in the frequency domain is computed by a Galerkin discretization and multipole
expansion. After discretization, systems of linear equations with many right hand sides and
variable system matrix have to be solved. A minimal residual interpolation method reduces
the computational work with at least an order of magnitude compared to a straightforward
method. A numerical example with about 65000 unknowns and 15300 right hand sides illus-
trates the method.

Key words: multipole method, Maxwell’s equations, scattering problem, right hand sides,
interpolation

1 Introduction

We are interested in computing the time-harmonic electromagnetic scattering from
a perfect electric conductor (PEC). An example of such a problem is the calcula-
tion of the radar cross section (RCS) of an airplane. The preferred method for these
applications in the frequency domain is the method of moments where an integral
equation is solved for the currents on the surface of the object. After discretization
of the integral equation, a system of linear equations with a dense system matrix has
to be solved. The solution of this system is often computed by a Krylov method. A
Krylov method requires at least one matrix–vector multiplication in each iterative
step [5]. A very efficient method in terms of computational complexity for this mul-
tiplication is the fast multipole method (FMM) [3, 4]. Suppose that the system has N
unknowns. The work for one matrix–vector multiplication with the multilevel multi-
pole algorithm is of O(N logN) compared to O(N2) for the standard method. This
difference leads to significant savings in computational work for large N and also in
memory requirements, since there is no need to store the whole matrix.
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In RCS computations, a planar incident wave from a given direction with a given
frequency is reflected by the object and the scattered signal is measured far away
from the object. The waves usually have many different distinct frequencies fi and
come from many different angles φj . The angles generate many right hand sides
in the system of linear equations and the system matrix depends on the frequency.
Let L be the number of frequencies fi and M be the number of angles φj . With
Gaussian elimination, the computational work is of O(LN3), since the matrix has
to be factorized for each frequency, and the work grows like O(LMN2) to back-
substitute for each angle and frequency. Iterative solution with K iterations in a
Krylov method for each solution and FMM for matrix–vector multiplication requires
O(KLMN logN) operations in a straightforward application to solve for the LM
different cases. For small N , Gaussian elimination with LU -factorization may be the
best alternative, especially if M is large, since the constant in front of the scaling of
the work for FMM is quite large, but for large N the LU -factorization is impossible
because of the cubic growth in the number of operations and the quadratic growth in
storage. We will show how the number LM of iterative solutions of systems of equa-
tions using FMM can be reduced substantially by utilizing the smooth dependence
of the system matrix on f and the right hand sides on f and φ.

The Combined Field Integral Equation (CFIE) in variational form to be solved
for the surface current J on the surface Γ of the scatterer is

α

∫
Γ

∫
Γ

G (x,x′)
(
J · J′ − 1

κ2
∇Γ · J∇Γ · J′

)
dΓdΓ

+ (1− α)
i
κ

∫
Γ

n̂×
∫

Γ

∇x′G (x,x′)× J · J′dΓdΓ

= −α 1
iκZ

∫
Γ

Ea · J′dΓ + (1− α)
i
κ

∫
Γ

n̂×Ha · J′dΓ.

(1)

In (1), J′ is the test current, κ = 2πf/c is the wavenumber, c is the speed of light,
Z is the impedance in free space, n̂ is the unit normal pointing outward from Γ , and
i =
√
−1. The function G (x,x′) is the free-space Green’s function for Helmholtz’

equation. The parameter α can vary between 0, when we have the Magnetic Field
Integral Equation (MFIE), and 1, when we have the Electric Field Integral Equa-
tion (EFIE). The right hand side depends on κ (and f ) and the applied electric and
magnetic fields, Ea(φ) and Ha(φ), and the left hand side depends on κ.

The equations are discretized with the Galerkin method and the rooftop or Rao–
Wilton–Glisson basis functions [3]. The resulting system of equations has a dense,
complex system matrix and the solution is the coefficients of the basis functions for
the current. The monostatic RCS σ is defined by the quotient between the scattered
far field Es(φ) in the same direction φ as the direction of propagation of the incident
field Ea(φ)

σ(φ) = lim
r→∞

4πr2
|Es(φ)|2
|Ea(φ)|2 , (2)

where r is the distance to the object.
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An efficient parallel implementation of FMM is found in [7]. The interpolation
between different levels of the multilevel algorithm is improved, memory is saved
when the translation operator is evaluated, and the size of the boxes in FMM is
chosen to reduce the memory requirements. The parallelization with OpenMP for a
shared memory computer is performed over the boxes or over the quadrature points
depending on the level in the multilevel FMM.

The method to reduce the work for many fi and φj is described in the next
section. The algorithm is not restricted to electromagnetic problems in the frequency
domain but can be applied successfully to all systems of linear equations with a
smooth dependence on parameters. The method is applied in the last section to the
computation of the RCS in the wing plane of an aircraft model for L = 17 at about
f = 6 GHz and for all angles with M = 900. Another example with L = 1 and
f = 1.5 GHz is found in [6].

2 Minimal Residual Interpolation (MRI)

The systems of linear equations to be solved are

Aix̃ij = bij , i = 1 . . . L, j = 1 . . .M, Ai ∈ C
N×N , x̃ij ,bij ∈ C

N . (3)

The system matrix depends on a parameter f so that Ai = A(fi) and the right hand
side depends on f and φ so that bij = b(fi, φj). The residual for the approximate
solution xij is

rij = bij −Aixij .

The equations are solved with an iterative method such that rij satisfies a conver-
gence criterion in the Euclidean vector norm ‖rij‖ ≤ ε for some given tolerance
ε.

2.1 Solution for a Fixed f

Assume that the solutions to m right hand sides are known for fixed fi and Ai to
some precision given by the residual and that the solutions are linearly independent.
The initial guess x(0)

i,m+1 for an iterative method applied to the solution of

Aix̃i,m+1 = bi,m+1 (4)

is generated by a linear combination of old solutions

x(0)
i,m+1 =

m∑
j=1

yjxij ,

where yj is chosen so that

bi,m+1 ≈
m∑

j=1

yjbij , (5)
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implying that Aix
(0)
i,m+1 ≈

∑m
j=1 yjbij if we assume that ‖rij‖ � ‖bij‖. The

coefficients yj are taken to be the linear least squares approximation of (5).
Introduce the following definitions:

sj ≡ Aixij = bij − rij , j = 1 . . .m,
Xim = [xi1 xi2 . . . xim] , Sm = [s1 s2 . . . sm] . (6)

The QR-decomposition [1] of Sm is

AiXim = Sm = QmRm, Qm ∈ C
N×m, Rm ∈ C

m×m. (7)

The linear least squares solution of

‖r(0)
i,m+1‖ = ‖bi,m+1 −Aix

(0)
i,m+1‖ = ‖bi,m+1 −AiXimym‖

= ‖bi,m+1 − Smym‖ = ‖bi,m+1 −QmRmym‖
(8)

yields ym = R−1
m QH

mbi,m+1 and the initial guess is

x(0)
i,m+1 = XimR−1

m QH
mbi,m+1. (9)

If ‖r(0)
i,m+1‖ ≤ ε in (8), then a satisfactory solution x(0)

i,m+1 is obtained without any
iterations. This is the usual case if the right hand side has a slow variation with φ and
the difference ∆φ = φj+1 − φj is small.

The residual for the initial guess x(0)
i,m+1 in (9) is

r(0)
i,m+1 = bi,m+1 −AiXimym = bi,m+1 − SmR−1

m QH
mbi,m+1

= (I−QmQH
m)bi,m+1.

(10)

This is an expression for r(0)
i,m+1 which is cheap to evaluate since m � N and

QH
mbi,m+1 is already computed in (9). The residual is small if bi,m+1 is almost

spanned by the previous sj .

If ‖r(0)
i,m+1‖ > ε then xi,m+1 has to be improved by the iterative method. The

method in our numerical experiments in Sect. 3 is the GMRES algorithm [5]. Let the
k:th iteration of xi,m+1 be x(k)

i,m+1 with its residual r(k)
i,m+1. Then

s(k)
m+1 = bi,m+1 − r(k)

i,m+1 = Smym + r(0)
i,m+1 − r(k)

i,m+1.

If ‖r(k)
i,m+1‖ ≤ εI for an εI ≤ ε then the iterations are interrupted and s(k)

m+1 is
included in the basis Sm if

‖(I−QmQH
m)s(k)

m+1‖ = ‖(I−QmQH
m)(r(0)

i,m+1 − r(k)
i,m+1)‖ > εs, (11)

where εs > ε + εI . The tolerances εI and ε are chosen equal in the next section.
Otherwise, s(k)

m+1 is almost linearly dependent of the columns of Sm and Rm+1

would be ill-conditioned. This is particularly the case when xi,m+1 = x(0)
i,m+1 and

no iterations are necessary.
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Once the solution is found and (11) is satisfied we can construct Xi,m+1 =
[Xim xi,m+1] and Sm+1 = [Sm sm+1]. In our case, one of the columns in Sm and
Rm is dropped when a new one is introduced. The strategy for choosing which col-
umn to drop can be first in, first out. An alternative is to pick the column correspond-
ing to the smallest diagonal element in Rm.

The QR-decomposition of Sm is updated after solution of (4) when a column is
appended to and deleted from Sm, see [1].

2.2 Solution for a Fixed φ

Assume that φ is constant in (3) and that the system matrix Ai and bij depend
smoothly on f . Then the equations to solve are

Aixij = bij , i = 1 . . . L. (12)

The solutions are known for l matrices and we wish to solve for the (l+1):th matrix
Al+1. The initial guess x(0)

l+1,j for the (l + 1):th linear system can be interpolated in
the same manner as in Sect. 2.1. Let

si = Al+1xij = bij − rij + (Al+1 −Ai)xij , i = 1 . . . l,

and define Sl as in (6) and Xlj by

Xlj = [x1j x2j . . . xlj ] . (13)

The linear combination of xij is chosen to minimize the initial residual

r(0)
l+1,j = bl+1,j −Al+1Xljyl = bl+1,j − Slyl = bl+1,j −QlRlyl, (14)

in the linear least squares sense as in (8). The calculation of Sl is more expensive
here than in (6) since we have to multiply Xlj by the new matrix Al+1. Note that in
certain cases Al+1 −Ai is easily obtained, for instance if Ai = A + fiI.

2.3 Multilevel Interpolation

The right hand sides and φj in (3) are partitioned into different levels with 2 + 1
angles at level � as in Fig. 1. Then the distance between the angles at two levels is
∆φ = ∆φ−1/2. The solution is computed first at level 1 for the 3 angles there.
Then from level � − 1 to level � the 2−1 new intermediate values are interpolated
using adjacent known data. If the residual ‖r(0)

ij ‖ there is sufficiently small, then no
GMRES iterations are necessary at level l. Otherwise, (3) is solved with GMRES.
It is possible to show [6] that the number of angles for which GMRES iteration is
necessary is bounded independent of the number of right hand sidesM under general
conditions. The interpolation in the frequency in Sect. 2.2 is carried out in the same
fashion.

The following theorem is a combination of two theorems proved in [6] and [7].
The solutions for many parameters fi and φj are computed as above with interpola-
tion in the φ-direction with f constant or in the f -direction with φ constant.
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Fig. 1. The angle distribution at the different levels �. The solutions at angles • are either
obtained by interpolation or interpolation and iteration. The solutions at angles ◦ are known
from a lower level

Theorem 1. Assume that the components in the matrices Ai = A(fi) and the right
hand side vectors bij = b(fi, φj) have p continuous derivatives in f ∈ [fmin, fmax]
and φ ∈ [φmin, φmax], respectively. Furthermore, assume that the residuals satisfy
‖rij‖ ≤ εI and that det(A(f)) ≥ C > 0 for all f ∈ [fmin, fmax].

An approximation to bi,m+1 at φm+1 at level � is computed by the minimization
(8)

min
y

∥∥∥∥∥bi,m+1 −
p∑

i=1

siyi

∥∥∥∥∥ .
Then∥∥∥∥∥bi,m+1 −

p∑
i=1

siyi

∥∥∥∥∥ ≤ min(
√
Nb(p)

max∆φ
p
l−1 +

√
pmax

k
‖lk‖εI , ‖bi,m+1‖), (15)

where b(p)
max = maxj maxφ |b(p)

j (fi, φ)|, b(p)
j is the p:th derivative of the j:th compo-

nent of bi,m+1 with respect to φ, and lk consists of the coefficients of the Lagrange
interpolation polynomial of (b(fi, φ))k at the point φm+1.

An approximation to bl+1,j at fl+1 at level � is computed by minimization of (14)

min
y

∥∥∥∥∥bl+1,j −
p∑

i=1

siyi

∥∥∥∥∥ .
Then∥∥∥∥∥bl+1,j −

p∑
i=1

siyi

∥∥∥∥∥ ≤ min(
√
Na

(p)
max∆f

p
l−1

+
√
pmaxk ‖lk‖‖Al+1‖maxi ‖A−1

i ‖εI , ‖bl+1,j‖),
(16)

where
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a
(p)
max = maxi maxf |

∑N
k=1(Al+1)ikx̃

(p)
k (f, φj)| <∞,

x̃(f, φj) = A−1(f)b(f, φj), x̃
(p)
k = ∂px̃k(f, φj)/∂fp,

and lk consists of the coefficients of the Lagrange interpolation polynomial of
(Al+1x̃(f, φj))k at the point fl+1.

Proof. The linear least squares fit in ‖ · ‖ has a smaller error than Lagrange in-
terpolation. The error in componentwise Lagrange interpolation is bounded by the
derivatives of the approximated function and ∆φp and ∆fp as in [2]. The inverse of
Ai is computed by Cramer’s rule and with det(Ai) > 0 this inverse and its deriva-
tives exist and a(p)

max is bounded. Then the claims in the theorem follow in the same
manner as in [6] and [7]. ��

The performance of the method depends on the smoothness of A and the right
hand sides and that A is not close to singular in the parameter interval. We find that
if εI is negligible then the higher the level � is, the smaller ∆f or ∆φ are and the
smaller the minimal residual interpolation error is depending on the number of points
p in the interpolation. The chances increase that no iteration is necessary the larger
� and p are. The bounds (15) and (16) are confirmed in numerical experiments in
[6] and [7]. Sharper bounds depending on (κR∆φ)p, where R is the radius of the
smallest sphere surrounding the object, are derived in [6] for the case with variable
φ.

3 Numerical Results

The monostatic radar cross section (2) for many incident waves from different an-
gles φj and with different frequencies fi is computed using the minimal residual
interpolation from the previous section. The RCS is computed in the wing plane of
an aircraft model RUND. The model is represented with triangles with 64959 edges.
A coarser triangulation of the surface of RUND with about 4000 edges is found in
Fig. 2. The incident angle φ is in the interval Iφ = [0◦, 360◦] with φ = 90◦ at the
nose of the model and the frequency f is in If = [5.9, 6.1] GHz. The RCS is mea-
sured in dB and computed at (fi, φj) in Fig. 3 and the difference between the angles
is ∆φ = 0.4◦ and between the frequencies ∆f = 0.0125. The dependence on f is
relatively smooth while there are many troughs and peaks in the angular direction.

In Fig. 4, the relative residual ‖r(0)‖/‖b‖ of the initial guess after interpolation of
x(0) is depicted for all the different combinations of φ and f . About 150 solutions are
first computed with GMRES-iterations at each of the frequencies f = 5.9, 6.0, 6.1.
These are the points with peaks in Fig. 4. For the solutions at the intermediate angular
and frequency values, sufficient accuracy is achieved by only interpolating between
the previous solutions without invoking GMRES.

The expensive part in the GMRES-iterations is the matrix–vector multiplication
by FMM. The number of matrix–vector multiplications to solve for all 15300 angle–
frequency combinations is 13341 with full interpolation in both angle and frequency.
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Fig. 2. The aircraft model RUND and its triangulation
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Fig. 3. The radar cross section depending on the incident angle φ and the frequency f

If interpolation is restricted to the angular direction as in Sect. 2.1 then 41310 matrix–
vector multiplications are needed. Without MRI the estimated number of matrix–
vector multiplications is 275000. The dominant part of the computational work is
reduced by more than a factor 6 by introducing interpolation in the angle. By inter-
polating in both the angle and the frequency directions the work is reduced by more
than a factor of 20.
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Fig. 4. The residuals of the initial guess after one interpolation in the angle–frequency plane
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Introduction to Normal Multiresolution
Approximation

Olof Runborg

Department of Numerical Analysis and Computer Science, KTH, S–100 44 Stockholm,
Sweden
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Summary. A multiresolution analysis of a curve is normal if each wavelet detail vector with
respect to a certain subdivision scheme lies in the local normal direction. In this paper we
give an introduction to the analysis of normal approximations in [3]. We define the normal
approximation in its basic form and show simplified proofs of the method’s convergence,
approximation quality and stability. We also explain how higher order approximations can be
constructed using subdivision operators and give a brief summary of the corresponding results
for these more general schemes.

Key words: subdivision, wavelet, normal mesh, normal multiresolution

1 Introduction

Finding representations of three-dimensional geometric data that allow for efficient
computational processing have become an increasingly important problem, spurred
by recent advances in shape acquisition technology such as laser scanners. It is now
possible to sample real world three-dimensional objects with a very high level of
detail; scanners can generate huge amounts of data typically in the form of triangu-
lar meshes with complex topology, [13]. The irregular format makes processing like
compression, denoising, filtering and texturing, difficult. New ways of describing
three-dimensional objects can lead to significantly improved compression algorithms
and facilitate other processing. In addition, it is often desirable to support progres-
sive reconstruction: a coarse version of the object is first quickly reconstructed and
additional levels of detail are added as the reconstruction continues. This is useful
for instance in streaming applications in networked environments.

Of particular interest for progressive reconstruction are multiresolution meshes,
where the object is described through an hierarchy of increasingly detailed meshes.
Each new mesh level is computed from the previous one by first predicting a new
point, for instance by subdivision schemes like Butterfly or Loop [4, 14], and then
correcting the predicted point by a wavelet (or detail) vector. Only the wavelet vec-
tors need to be stored and because of the surface smoothness most wavelet vectors
will be small, lending the representation well to compression.



206 Olof Runborg

The mathematical properties of wavelets are well understood in the so-called
“functional setting”, i.e., for the approximation of functions of one or more vari-
ables, which is the setting for image and sound processing. However, for the case
of 1-D curves in the plane, or 2-D surfaces in 3-space, much less is known. Typi-
cally one takes a parameterization of the original curve or surface and ends up using
wavelet analysis in each of the two or three components. This means the wavelet
coefficients now become 2- or 3-vectors. It is important to choose an appropriate co-
ordinate frame to describe these wavelet vectors. It is known that using an absolute
coordinate frame for the wavelet or detail vectors leads to undesirable effects when
editing curves; using a local coordinate frame defined by the normal works much
better, as shown in [5, 6, 7, 15, 17].

In [8] the notion of normal approximation for curves or surfaces was introduced.
A multiresolution approximation of a curve or surface is normal if all the wavelet
vectors perfectly align with a locally defined normal direction which only depends
on the coarser levels. Note that by the normal direction we mean a normal onto an ap-
proximation of the curve or surface. Given that this normal direction only depends on
coarser levels, only a single scalar coefficient needs to be stored instead of the stan-
dard 2- or 3-vector. This is clearly extremely useful for compression applications, see
[10, 11, 12]. In addition, [8] gives an algorithm to build normal mesh approximations
of large complex scanned geometry.

Because they depend on the computation of a normal, these approximations lead
to non-linear representations for which there is no general theory. However, a de-
tailed study of the mathematical properties, such as convergence, regularity, and
stability of normal multiresolution approximation for curves were made in [3]. In
particular it was shown that these properties critically depend on the underlying sub-
division scheme and that in general the convergence of the normal approximation of
smooth curves equals the convergence of the subdivision scheme. See also [9] for
the case of nonsmooth surfaces.

This paper is based on [3]. Here we give an introduction to the analysis of normal
approximations in that article. In Sect. 2 we define the normal approximation in its
basic form and show simplified proofs of the method’s convergence, approximation
quality and stability. In Sect. 3 we explain how higher order approximations can be
constructed using subdivision operators and give a brief summary of the correspond-
ing results for these more general schemes.

2 Basic Normal Multiresolution Analysis

2.1 Definitions and Notation

Fig. 1 illustrates the main idea from [8] in the case of a normal approximation based
on midpoint subdivision. The original curve Γ is described by successively finer
approximations, which are organized in different multiresolution layers indexed by
j. We assume that Γ is a continuous, non intersecting curve in the plane, whose
endpoints we shall take to be the zeroth level multiresolution points v0,0 and v0,1.
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Curve Γ

v0,0
v0,1

Γ and Γ
1

v0,0
v0,1

v1,1

v*
1,1

Γ and Γ
2

Γ and Γ
3

Fig. 1. Example of the normal mesh algorithm using the mean value of adjacent points as
predictor

To construct the vertices at level (j + 1), we first set vj+1,2k = vj,k; this is what
makes the construction interpolating. We also compute new points vj+1,2k+1; each
vj+1,2k+1 lies in between the two old points vj,k and vj,k+1. This is done by first
computing a predicted or base point as the mean value of the old points, v∗j+1,2k+1 =
(vj,k + vj,k+1)/2. We next draw a line from v∗j+1,2k+1 in the direction orthogonal
to the line segment (vj,k, vj,k+1). This line is guaranteed to cross the curve segment
between vj,k and vj,k+1 at least once and we call one of those points vj+1,2k+1. As
this procedure continues, the polyline Γj , i.e. the piecewise linear curve connecting
the points vj,k comes closer and closer to Γ . We can now think of this as a wavelet
transformation similar to the notion of lifting [16]. Think of v∗j+1,2k+1 as a prediction
of the real point vj+1,2k+1 computed based only on coarser information. Then the
difference v∗j+1,2k+1 − vj+1,2k+1 is a wavelet vector. Given that this vector points
in a direction normal to a segment that again only depends on coarser data, we only
need to store the length and one sign bit for this normal component to characterize it
completely.

Before we go on to analyze this scheme, let us introduce some more notation. The
norm || · || will always represent the euclidean norm in R

2. We define the differences
between breakpoints on Γj as ∆Γj,k = vj,k+1−vj,k. We will always assume Γ (s) is
the arc length parameterization of Γ . This defines the corresponding breakpoints sj,k

in parameter space: Γ (sj,k) = vj,k for all j, k. The length along the curve between
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breakpoints is denoted ∆sj,k = sj,k+1 − sj,k > 0. We also let Ij,k be the interval
[sj,k, sj,k+1]. Finally, we introduce the arc length ratio at which the scheme cuts the
curve at each interval, βj,k = ∆sj+1,2k/∆sj,k.

Throughout the analysis we assume that Γ (s) is twice continuously differentiable
with bounded curvature. It can then be Taylor expanded

Γ (t)− Γ (s) = (t− s)Γ ′(s) +
1
2
(t− s)2R(t, s) , (1)

where the restterm is uniformly bounded in its arguments,

sup
s,t
||R(t, s)|| ≤ cγ . (2)

Most of the results are true with some modification also for less regular curves and
we make a comment on this at the end of the section. For that case we introduce the
Hölder spaces Cr; when r = p+ κ, p ∈ Z and 0 < κ < 1 we define Cr as the set of
functions f ∈ Cp for which the p-th derivative is Hölder continuous with exponent
κ, i.e. |f (p)(t)− f (p)(s)| × |t− s|−κ is bounded for all t, s.

2.2 Convergence

The construction of the normal scheme immediately begs the following question:
how good an approximation to Γ is the polyline Γj? In particular, does the distance
between Γ and the j-th level polyline decay to zero as j tends to ∞? In order to
measure the distance between Γ and Γj we define the following parameterization
for Γj ,

Γj(s) =
(s− sj,k)
∆sj,k

vj,k+1 +
(sj,k+1 − s)

∆sj,k
vj,k , s ∈ Ij,k . (3)

With this parameterization we can prove uniform convergence Γj → Γ . Before
doing this, however, we need a lemma showing that the distance along the curve
between the breakpoints vj,k on Γj decays exponentially to zero with j and that, in
the limit, points at the next level will be added precisely in between points on the
previous level.

Lemma 1. Let Γ (s) ∈ C2([0, 1]; R
2) and ||Γ ′(s)|| = 1. Also assume that Γ (s) does

not cross itself. Then there are constants c1 and c2, independent of j, such that

sup
k
∆sj,k ≤ c12−j . (4)

and ∣∣∣∣βj,k −
1
2

∣∣∣∣ ≤ c2∆sj,k . (5)

Proof. The proof is made in four steps.



Introduction to Normal Multiresolution Approximation 209

1. Estimate difference between ||Γ (s+∆s)− Γ (s)|| and ∆s.
Let 0 ≤ s < s+∆s ≤ 1. Using (1, 2) we get

0 ≤ ∆s− ||Γ (s)− Γ (s+∆s)|| = ∆s||Γ ′(s)|| − ||Γ (s)− Γ (s+∆s)||

≤ ||Γ (s+∆s)− Γ (s)−∆sΓ ′(s)|| = 1
2
(∆s)2||R(s+∆s, s)|| ≤ 1

2
cγ(∆s)2.

2. Show that Γ−1 is Lipschitz.
First, suppose ∆s ≤ 1/cγ . Then by the previous result,

||Γ (s+∆s)− Γ (s)|| ≥ ∆s− 1
2
cγ(∆s)2 ≥ ∆s

2
.

Second, for 1 ≥ ∆s ≥ 1/cγ ,

||Γ (s+∆s)− Γ (s)|| ≥ inf
r≥1/cγ

0≤s≤s+r≤1

||Γ (s+ r)− Γ (s)|| ≡ c ≥ c∆s .

Since Γ is continuous and does not cross itself, c > 0. In conclusion,

||Γ (s+∆s)− Γ (s)|| ≥ q∆s , (6)

where q = min(c, 1/2) > 0.
3. Estimate deviation of βj,k from 1/2.

Since by the scheme’s definition ||∆Γj+1,2k|| = ||∆Γj+1,2k+1||, we have∣∣∣∣βj,k −
1
2

∣∣∣∣ =
∣∣∣∣ ∆sj+1,2k

∆sj+1,2k +∆sj+1,2k+1
− 1

2

∣∣∣∣
=

1
2

∣∣∣∣∆sj+1,2k − ||∆Γj+1,2k|| −∆sj+1,2k+1 + ||∆Γj+1,2k+1||
∆sj,k

∣∣∣∣
≤ 1

4
cγ

(∆sj+1,2k)2 + (∆sj+1,2k+1)2

∆sj,k
≤ 1

2
cγ∆sj,k .

This shows (5). We also derive another estimate of this difference. Through (6)
we get a lower bound on βj,k,

βj,k =
∆sj+1,2k

∆sj,k
≥ ||∆Γj,k||

2∆sj,k
≥ q

2
.

In the same way we get (1− βj,k) ≥ q/2. Together, this yields∣∣∣∣βj,k −
1
2

∣∣∣∣ ≤ 1− q

2
. (7)

4. Show the convergence rate of ∆sj,k.
We start by using (7),
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sup
k
∆sj+1,k = sup

k
max(βj,k∆sj,k, (1− βj,k)∆sj,k)

≤
(

1
2

+
∣∣∣∣βj,k −

1
2

∣∣∣∣) sup
k
∆sj,k ≤

(
1− q

2

)
sup

k
∆sj,k .

This shows that supk ∆sj,k ≤ δj where δ = 1− q/2. Next, we use (5),

sup
k
∆sj+1,k = sup

k
max(βj,k∆sj,k, (1− βj,k)∆sj,k)

≤ sup
k

(
1
2
∆sj,k +

1
2
cγ(∆sj,k)2

)
.

Together with the exponential convergence, we get

2j sup
k
∆sj,k ≤ 2j sup

k
∆sj−1,k

(
1
2

+
1
2
cγδ

j−1

)
≤ 2j∆s0

j−1∏
i=0

(
1
2

+
1
2
cγδ

i

)
=

j−1∏
i=0

(
1 + cγδ

i
)

≤
j−1∏
i=0

exp
(
cγδ

i
)

= exp

(
cγ

j−1∑
i=0

δi

)
≤ exp

(
cγ

1− δ

)
.

The estimate (4) follows. ��
We can now easily prove convergence.

Theorem 1. Under the assumptions of Lemma 1 the normal approximation con-
verges,

lim
j→∞

sup
0≤s≤1

||Γj(s)− Γ (s)|| = 0 . (8)

Proof. Consider first the interval Ij,k. Taylor expand and use (1, 2),

sup
s∈Ij,k

||Γ (s)− Γj(s)||

= sup
s∈Ij,k

∥∥∥∥s− sj,k

∆sj,k
[Γ (sj,k+1)− Γ (s)] +

sj,k+1 − s

∆sj,k
[Γ (sj,k)− Γ (s)]

∥∥∥∥
= sup

s∈Ij,k

∥∥∥∥ (s− sj,k)(s− sj,k+1)2

2∆sj,k
R(s, sj,k+1)

+
(sj,k+1 − s)(s− sj,k)2

2∆sj,k
R(s, sj,k)

∥∥∥∥
≤ cγ(∆sj,k)2 .

Consequently, by Lemma 1,

sup
0≤s≤1

||Γ (s)− Γj(s)|| ≤ cγ sup
k

(∆sj,k)2 ≤ c 2−2j ,

and (8) follows. ��
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2.3 Decay of Wavelet Coefficients

One of the important features of a normal multiresolution is the decay of the offsets
in each of the normal directions, defined as

wj,k = ||vj+1,2k+1 − v∗j+1,2k+1|| .

We will refer to these as wavelet coefficients. Fast decay of those coefficients together
with stability means that efficient compression schemes can be devised. We show
here that they decay as 2−2j .

Theorem 2. Under the assumptions of Lemma 1 then

wj,k ≤ cγ(∆sj,k)2 (9)

with cγ as in (2). Moreover, there is a constant c independent of j such that

sup
k
wj,k ≤ c 2−2j . (10)

Proof. As above, consider the interval Ij,k and note that sj+1,2k+1 ∈ Ij,k is the point
where the constructed normal pierces the curve, Γ (sj+1,2k+1) = vj+1,2k+1. Denote
the offset vector by u,

u = Γ (sj+1,2k+1)−
1
2
(Γ (sj,k) + Γ (sj,k+1)) ,

There exists η ∈ Ij,k such that Γ ′(η) is parallel to ∆Γj,k. We Taylor expand around
η and using (1, 2) we get

u =
1
2
(2sj+1,2k+1 − sj,k − sj,k+1)Γ ′(η) +

(sj+1,2k+1 − η)2

2
R(sj+1,2k+1, η)

− (sj,k − η)2

4
R(sj,k, η)−

(sj,k+1 − η)2

4
R(sj,k+1, η) .

Let n̂ be the vector normal to Γ ′(η) and to ∆Γj,k. Then,

wj,k = ||u|| = |n̂ · u| ≤ 2(sj+1,2k+1 − η)2 + (sj,k − η)2 + (sj,k+1 − η)2

4
cγ

≤ cγ(∆sj,k)2 ,

which is (9). The decay rate for ∆sj,k established in Lemma 1 finally gives (10). ��

2.4 Normal Parameterization

Normal multiresolution induces a parameterization of the curve Γ , as exemplified
in Fig. 2. Analytically, this parameterization is described as follows: We define, at
every level j, sj : [0, 1] �→ R to be the piecewise affine map with breakpoints at the
tj,k = 2−jk, k = 0, . . . , 2j , and for which Γ (sj(tj,k)) = vj,k, i.e. sj(tj,k) = sj,k,
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Γ(s(0))
Γ(s(1))

Γ(s(1/2))
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Fig. 2. Example of how the normal multiresolution induces a parameterization
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Fig. 3. Example of a curve with non smooth normal parameterization

see Fig. 2. If the node points on Γj approach each other when j → ∞, i.e. if
supk ∆sj,k → 0 then sj(t) converges uniformly to a function s(t). The parame-
terization of the curve Γ induced by the normal multiresolution then maps t ∈ [0, 1]
to Γ (s(t)); we shall call this the normal parameterization of the curve Γ .

The regularity of the normal parameterization is related to the decay of the
wavelet coefficients which directly determines the approximation quality. It can,
however, also be significant independently, for instance when the normal scheme
is used to generate meshes for computational purposes; the accuracy and stability
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of a numerical scheme is affected by the smoothness of the map from the compu-
tational to the physical domain. It should therefore be noted that the normal para-
meterization need not be smooth, even if Γ is. Consider the normal multiresolution
as applied to the curve in Fig. 3, which consists of a 180◦ circle arc and a straight,
tangent line segment with length equal to the diameter of the circle. At level zero,
we have v0,0 = (0, 1) = Γ (s(0)) and v0,1 = (1, 0) = Γ (s(1)). Because of the
special construction of Γ , the first inserted point v1,1 coincides with the origin,
(0, 0) = Γ (s(1/2)). After that, the normal multiresolution will induce a parame-
terization that corresponds to arc length for both the right and the left piece of the
curve:

Γ (s(t)) =

{
1
2 (− sin(2tπ), 1 + cos(2tπ)), 0 ≤ t < 1

2 ,

(2t− 1, 0), 1
2 ≤ t ≤ 1 .

However, the two pieces have different lengths, so the parameterization must have a
discontinuity in its gradient, indeed∥∥∥∥dΓ (s(t))

dt

∥∥∥∥ =

{
π, 0 ≤ t < 1

2 ,

2, 1
2 < t ≤ 1 .

In this case the curve Γ (s) is almost C2 (its gradient Γ ′(s) is Lipschitz), yet its
normal parameterization is only Lipschitz. This is because the regularity of the para-
meterization turns out to be limited not only by the smoothness of the curve, but also
by the way the predicted point v∗j,k is computed as shown by the following argument.
By definition,(
Γ (s(t+ h))− Γ (s(t− h))

)
·
(
Γ (s(t+ h))− 2Γ (s(t)) + Γ (s(t− h))

)
= 0 ,

at odd dyadic points (t = (2k + 1)2−j , h = 2−j), where ’ · ’ stands for the R
2 inner

product, (u, v) · (u′, v′) = uu′ + vv′. Now if the parameterization were C4+ε, with
ε > 0, then we could Taylor expand Γ (s(t± h)) around t and obtain

d
dt

∥∥∥∥dΓ (s(t))
dt

∥∥∥∥2

+
h2

12

(
d3

dt3

∥∥∥∥dΓ (s(t))
dt

∥∥∥∥2

− d
dt

∥∥∥∥d2Γ (s(t))
dt2

∥∥∥∥2
)

= O(h4) ,

at odd dyadic points; if Γ (s(t)) ∈ C4+ε, then this equation extends to all t, h. By
letting h→ 0 we see that we must have both |Γ ′| and |Γ ′′| constant for this to hold,
i.e. the curve Γ must be either a straight line or a circle segment, which is obviously
not the case for general smooth curves Γ . In fact, typically the parameterization is
not even piecewise smooth; the derivative is discontinuous at every dyadic point. We
can, however, prove that it is always Lipschitz:

Theorem 3. Under the assumptions of Lemma 1 there exists a Lipschitz continuous
limit s(t)

lim
j→∞

sup
0≤t≤1

|sj(t)− s(t)| = 0 . (11)
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Proof. Using Lemma 1 we get

|sj+1(t)− sj(t)| ≤ sup
k

∣∣∣∣βj,k −
1
2

∣∣∣∣∆sj,k ≤ c sup
k

(∆sj,k)2 ≤ c′4−j .

Hence, if m < n

|sn(t)− sm(t)| ≤
n−1∑
j=m

|sj+1(t)− sj(t)| ≤ c′
n−1∑
j=m

4−j ≤ c′4−m+1

3
,

which tends to zero with m. Therefore {sj(t)} is Cauchy in sup norm and there
exists a continuous limit s(t) satisfying (11). Finally, by Lemma 1,

|s(t1)−s(t2)| = lim
j→∞

|sj(t1)−sj(t2)| ≤ lim
j→∞

sup
k

2j |∆sj,k||t1− t2| ≤ c|t1− t2| ,

which shows that s(t) is Lipschitz. ��

2.5 Stability

Finally, we look at the stability of normal multiresolution. We assume that the initial
points on the curve as well as the wavelet coefficients have some error or round-
offs. The curve is then reconstructed as if they were exact. The result is a perturbed
sequence of points ṽj,k and polylines Γ̃j . We show here that this perturbation remains
close to the exact curve Γ if the initial perturbations are small.

Let the errors in initial data be bounded as

sup
k
||v0,k − ṽ0,k|| = Eγ .

Since the wavelet coefficients rapidly decay with j we cannot expect stability unless
the absolute error in the coefficients also decays. We therefore assume

sup
k
|wj,k − w̃j,k| = Ew2−jν , ν > 0 .

We can then show

Theorem 4. Under the assumptions of Lemma 1 and with the definition of the per-
turbations above there is a constant c depending on ν, but independent of j, Eγ and
Ew such that

sup
k
||vj,k − ṽj,k|| ≤ c(Eγ + Ew) . (12)

Proof. This proof consists of two points.

1. Estimate of error in one reconstruction step.
We start from a fixed level j and consider how the error

εj := sup
k
||vj,k − ṽj,k||
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is amplified in level j + 1. Since the even points in level j + 1 are the same as
the points in level j the error in those points does not change. We therefore only
need to investigate the odd points. For simplicity we consider fixed indices j, k
and drop all indices in the notation, so that v = vj,k, s = sj,k, ∆s = ∆sj,k, etc.
We also call the new odd points v∗ = vj+1,2k+1 and ṽ∗ = ṽj+1,2k+1. Finally,
we let n̂ and ˜̂n be the normal and perturbed normal respectively at the indices j,
k. The error in the new value v∗ can then be estimated,

||v∗ − ṽ∗|| =
∥∥∥∥∥Γ (s) + Γ (s+∆s)

2
+ wn̂− Γ̃ (s) + Γ̃ (s+∆s)

2
− w̃ ˜̂n

∥∥∥∥∥
≤ εj + ||w(˜̂n− n̂)||+ |w − w̃| ≤ εj + Ew2−jν + w||˜̂n− n̂|| .

Moreover, if ||∆Γ −∆Γ̃ || ≥ ||∆Γ ||,

||˜̂n− n̂|| ≤ 2 ≤ 2
||∆Γ −∆Γ̃ ||
||∆Γ || ≤ 4εj

||∆Γ || .

On the other hand, if ||∆Γ −∆Γ̃ || < ||∆Γ ||,

||˜̂n− n̂|| =

∥∥∥∆Γ ||∆Γ̃ || − ||∆Γ ||∆Γ̃∥∥∥
|∆Γ̃ |||∆Γ ||

≤

∣∣∣||∆Γ̃ || − ||∆Γ ||∣∣∣ + ||∆Γ −∆Γ̃ ||
||∆Γ ||

≤ 2||∆Γ −∆Γ̃ ||
||∆Γ || ≤ 4εj

||∆Γ ||

These estimates together with (6, 9) then gives

||ṽ∗ − v∗|| ≤ εj + Ew2−jν + 4
wεj

||∆Γ || ≤ εj + Ew2−jν + 4εjcγ
(∆s)2

||∆Γ ||

≤ εj

(
1 +

4cγ
q
∆s

)
+ Ew2−jν ,

which implies that

εj+1 ≤ εj

(
1 +

4cγ
q

sup
k
∆sj,k

)
+ Ew2−jν ≤ εj(1 + c2−j) + Ew2−jν . (13)

2. Stability.
Let us define the sequence {aj}∞j=1 as,

a1 = Eγ(1 + c) + Ew, aj+1 = aj(1 + c2−j) + Ew2−jν , (14)

and set b = min(2, 2ν) > 1. Clearly aj is increasing. We then get
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aj+1 ≤ aj

(
1 + b−j

(
c+

Ew

a1

))
≤ aj(1 + b−j(c+ 1))

≤ a1

j∏
i=1

(1 + b−i(c+ 1)) ≤ a1

j∏
i=0

exp(b−i(c+ 1))

= a1 exp

(
(c+ 1)

j∑
i=0

b−i

)
≤ a1 exp

(
b(c+ 1)
b− 1

)
.

Moreover, since ε0 = Eγ , induction on (13) and (14) shows that εj ≤ aj for all
j. Consequently,

εj ≤ aj ≤ ca1 ≤ c′(Eγ +Ew) .

This shows (12). ��
Remark 1. The result in Theorem 4 demonstrates that a compression scheme based
on thresholding wavelet coefficients is stable. Suppose that we set

w̃j,k =

{
wj,k, |wj,k| ≥ ε ,

0, |wj,k| < ε .

We then have |wj,k−w̃j,k| ≤ ε for all j, k, as well as |wj,k−w̃j,k| ≤ |wj,k| ≤ c2−2j .
It follows that, for 0 ≤ κ ≤ 1,

|wj,k − w̃j,k| ≤ ε1−κcκ2−2jκ .

If ṽ0,k = v0,k and κ > 0, then we obtain from Theorem 4 that

sup
k
||ṽj,k − vj,k|| ≤ c′ cκε1−κ , κ > 0 ,

where c′ depends on κ. To compare the perturbed polyline Γ̃j with Γj we need to
consider their normal parameterizations,

Γj(t) = 2j(t− tj,k)vj,k+1 + 2j(tj,k+1 − t)vj,k , tj,k ≤ t ≤ tj,k+1 ,

and similarly for Γ̃j . Then, clearly,

sup
0≤t≤1

||Γj(t)− Γ̃j(t)|| ≤ c′ cκε1−κ , (15)

We note that after a finite number of refinement levels the perturbed wavelet coef-
ficients will all be zero by the decay estimate (10). This implies that there is a well
defined limit Γ̃j → Γ̃ as j →∞. It then follows from (15) that

sup
0≤t≤1

||Γ (s(t))− Γ̃ (t)|| ≤ c′ cκε1−κ .

A similiar, simpler, argument can be made when wavelet coefficients w̃j,k are set to
zero beyond a certain level J . It leads to the estimate

sup
0≤t≤1

||Γ (s(t))− Γ̃ (t)|| ≤ c2−2J .
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Remark 2. When Γ is not in C2 the proofs of the theorems above become more
complicated, but the main results are still true. As long as Γ ∈ Cr with 1 < r < 2
Lemma 1 and Theorem 1 to Theorem 4 all hold, although the decay rates in (5), (9)
and (10) go down to (∆sj,k)r−1, (∆sj,k)r and 2−jr respectively. In fact, Theorem 1
and (4) hold also for Lipschitz continuous Γ and Theorem 1 even for Γ ∈ Cr with
0 < r < 1. In the latter case the decay in (4) is just algebraic however, supk ∆sj,k ≤
c/(1 + jr/(1−r)). There is no improvement in decay rates when Γ is smoother than
C2. See [3] for these proofs.

3 Higher Order Generalizations

3.1 Definitions and Notation

We shall be interested in using more general methods, which will lead to higher
quality approximation for smooth curves. As illustrated in Fig. 4, the same ba-
sic plan is followed: we still set vj+1,2k = vj,k. However, the predicted point
v∗j+1,2k+1 is now defined via a subdivision scheme S (see below), and vj+1,2k+1

is an intersection point between vj,k and vj,k+1 of Γ with the normal through
v∗j+1,2k+1 to the segment (vj,k, vj,k+1). We still define the wavelet coefficient as
wj,k = ||vj+1,2k+1 − v∗j+1,2k+1||. The results now also depend on S. In short, con-
vergence requires additional assumptions but regularity and wavelet decay can be
much improved.

(x
j,k

, y
j,k

)=v
j,k

=v
j+1,2k

v*
j+1,2k+1

 = ((S x)
j+1,2k+1

, (S y)
j+1,2k+1

)

v
j,k+2

v
j,k−1

v
j+1,2k+1

=(x
j+1,2k+1

, y
j+1,2k+1

)
(x

j,k+1
, y

j,k+1
)=v

j,k+1
=v

j+1,2k+2

Fig. 4. Notation for the higher order normal scheme
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To simplify notation we introduce infinite sequences. Sequences will be written
in bold face, and elements of sequences in normal font, x := (xk). We define the
difference operator ∆ as

(∆x)k = xk+1 − xk .

Often a sequence itself is indexed by the refinement level j; then we use the conven-
tion that xj := (xj,k). We use the usual sup-norm for sequences, |x|∞ = supk |xk|.

A local, stationary subdivision scheme is characterized by a bounded linear op-
erator S, defined by a sequence a as follows

(Sx)k =
∑



ak−2x ,

where the number of non-zero elements in a, and consequently also the sum, is finite.
Given a starting sequence x0 we can apply S iteratively and define, for all j ≥ 0,

xj+1 = Sxj . (16)

The sequence x0 can be viewed as a coarse approximation of a function, on the
integer grid; the sequences xj then give successively finer approximations of the
function on grids with spacing 2−j . We are interested in the case when this process
converges to a smooth limit function as j increases. A subdivision scheme is inter-
polating if s2l = δl,0, implying xj+1,2k = xj,k for all j, k; in this case the xj,k can
be interpreted as function values of the limit function f(x) with xj,k = f(2−jk).

Let vj be a two-dimensional sequence, vj = (xj ,yj) and define Svj =
(Sxj , Syj). The iteration corresponding to (16) for the normal scheme can then
be written

vj+1 = Svj + wj · n̂j ,

where n̂j is the two-dimensional sequence of normals and the last product is taken
elementwise. Since the wj sequences decay rapidly to zero we can therefore view
the normal scheme as a non-linear perturbation of the underlying linear subdivision
scheme S.

Examples of interpolating subdivision schemes are given by the so-called La-
grange interpolation subdivision schemes. For those the new odd-indexed points are
defined as the values taken by a polynomial determined by several neighboring old
points. We shall denote the 2�-point scheme by S2. For instance, in the two-point
scheme, xj+1,2k+1 is given the value at t = 1/2 of the linear polynomial that takes
the values xj,k at t = 0 and xj,k+1 at t = 1; in other words,

(S2x)2k+1 := xj+1,2k+1 =
1
2
(xj,k + xj,k+1) .

This is hence the scheme that was used in the basic normal approximation in Sect. 2.
The construction strategy generalizes to higher order and in the four-point scheme,
xj+1,2k+1 is given the value at t = 1/2 of the cubic that takes the values xj,k−1,
xj,k, xj,k+1 and xj,k+2 at t = −1, 0, 1, 2 respectively, leading to
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(S4x)2k+1 := xj+1,2k+1 =
9
16

(xj,k + xj,k+1)−
1
16

(xj,k−1 + xj,k+2) .

In general, the 2�-point scheme gives xj+1,2k+1 the value at t = 1/2 of the (2� −
1)-degree polynomial that takes the values xj,k+m at t = m, where m = −� +
1, . . . , �. Since these are all interpolating schemes, we have of course (S2xj)2k =
(S4xj)2k = (S2xj)2k = xj,k .

We assume that the curve Γ is at least C2([0, 1],R2). This means that it can
always be broken up into adjacent finite length pieces, possibly overlapping, that
can be well parameterized by the x-coordinate (with, say, |dy/dx| ≤ 2) or by the
y-coordinate (with, say, |dx/dy| ≤ 2). For technical reasons we shall also assume
that it can be broken up in this way in a finite number of pieces. Then the theorems
below follow directly from the theorems in [3], since in each piece we would have
either

|∆xj,k| ≤ |∆sj,k| ≤
√

5|∆xj,k| or |∆yj,k| ≤ |∆sj,k| ≤
√

5|∆yj,k| .

3.2 Convergence

When a general subdivision scheme is used to determine the predicted point there is
no longer any guarantee that the normal cuts the curve in between the previous two
points. This makes the convergence analysis more complicated. To have a proper pa-
rameterization, we need to ensure that all sj sequences are increasing, i.e., ∆sj > 0,
given that the initial sequence s0 is increasing. In general there are very few sub-
division schemes that preserve increasing sequences. In our case, the sj sequences
are obtained by a nonlinear perturbation of subdivision so the situation is even more
complex. Fortunately, there are conditions on both the subdivision scheme and the
initial sequence that guarantee that the sj will be increasing. The following theo-
rem introduces a non-uniformity measure N of a sequence which is the maximal
ratio of the length of two neighboring intervals; it states that if the non-uniformity
of the initial sequence is bounded and the subdivision scheme preserves this bound,
the sequences sj generated by the normal scheme will be increasing and converge
exponentially, provided the initial sequence also resolves the curve well enough.

Theorem 5. Let S be an interpolating subdivision scheme. Let the non-uniformity
N (x) be defined by

N (x) := sup
k

max
( |(∆x)k|
|(∆x)k+1|

,
|(∆x)k+1|
|(∆x)k|

)
. (17)

Suppose there is an R such that for every strictly increasing x with N (x) ≤ R, Sx
is strictly increasing as well, and satisfies N (Sx) ≤ N (x). Suppose s0 is strictly
increasing,N (s0) < R and that |∆s0|∞ is sufficiently small. If Γ ∈ C2([0, 1]; R2),
then the normal approximation converges,

lim
j→∞

sup
0≤s≤1

||Γj(s)− Γ (s)|| = 0 ,
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where Γj is defined in (3). Moreover, sj is strictly increasing for all j, withN (sj) ≤
R for all j, and the sj converge exponentially, i.e., there is a δ < 1 so that

|∆sj |∞ ≤ c δj |∆s0|∞ , ∀j .

Examples of subdivision schemes that meet the requirements in the theorem are, for
instance, the first Lagrange interpolation schemes introduced above.

Remark 3. As was seen in Sect. 2, when S = S2 the smallness assumptions on
|∆s0|∞ and N (s0) are not necessary and exponential convergence follows when
Γ is merely Lipschitz continuous.

3.3 Wavelet Decay, Regularity and Stability

To characterize the approximation quality and stability of the higher order normal
scheme we need to introduce two additional subdivision concepts: the order of the
operator and the derived operators.

The order of a subdivision scheme S is the largest degree for which it leaves
the corresponding space of monic polynomials invariant. More precisely, let k be
the sequence for which the k-th entry is k itself and denote the order of S by P .
Then P is the largest integer such that for all p-degree monic polynomials P with
0 ≤ p < P , a p-degree monic polynomial Q exists so that SP (k) = Q(k/2),
where the polynomials are applied elementwise to generate new sequences. If S is
interpolating, then SP (k) = P (k/2). For example, S2 is of order two and S2k =
k/2. In general the 2�-point Lagrange interpolation scheme is of order 2�. We always
assume that P is at least one so that for a constant sequence 1 we have S1 = 1.

The derived subdivision schemes are defined as

S[0] = S, S[p] = 2∆S[p−1]∆−1, p > 0 .

The significance of those schemes is that if the sequences {xj} are generated by (16)
then the divided differences of those sequences are generated by the corresponding
derived schemes,

x
[p]
j+1 = S[p]x

[p]
j ,

where
x

[p]
j = Dp

j xj , (Djx)k = 2j(xk+1 − xk) .

Note that S[p] is well-defined as long as S[p−1] has at least order one, and that the
order of S[p] is one less than the order of S[p−1]. Thus S[p] is defined for p ≤ P .
The derived schemes can easily be written down explicitly for a given subdivision
scheme. For example, the first derived scheme for the four-point scheme is

(S[1]
4 x)2k =

1
8
(xk−1+8xk−xk+1) , (S[1]

4 x)2k+1 =
1
8
(−xk−1+8xk+xk+1) .

Note that derived schemes are typically not interpolating even if the base scheme is.
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We are now ready to state a theorem that corresponds to Theorem 3, Theorem 2
and Theorem 4 in Sect. 2. We use the same definitions and notation. Furthermore,
we introduce in (18) a growth rate µ that characterizes a derived operator S[p]. The
value of µ can in particular be chosen as log2 |S[p]|∞. If the �∞-spectral radius σp of
S[p] is strictly smaller, a more precise choice can be made: µ = log2 σp + ε for any

ε > 0. (This follows from the well-known identity σp = limj→∞ |S[p]j |1/j
∞ .)

The results in this higher order case depend on the smoothness of S, determined
via P , p and µ, and on the regularity r of the curve Γ . For sufficiently regular Γ and
high order S, i.e. for r and P large enough, the regularity of s(t) is almost Cp−µ

while the wavelet decay is one order higher, 2−j(p−µ+1). The best bound one can get
from this theorem is thus obtained for that combination of p and µ where p − µ is
maximal. This maximum need not be reached at p = P .

Note that the exponential decay rate of |∆sj |∞ in (19) is, for example, estab-
lished by Theorem 5.

Theorem 6. Let S be the P-th order interpolating subdivision scheme used in the
normal scheme. Assume that there are positive real numbers C, µ and integer p ≤ P
such that ∣∣∣S[p]j

∣∣∣
∞
≤ C2µj , ∀j ≥ 0 , µ ≤ p− 1 , (18)

that there is a δ < 1 so that
|∆sj |∞ ≤ Cδj (19)

and that Γ ∈ Cr([0, 1]; R2) with r ≥ 2 satisfies the hypothesis given in Sect. 3.1.
Then

1. Decay of wavelet coefficients.
For all ε > 0 there is a constant Cε such that

|wj |∞ ≤ Cε2−j(Q−ε) , Q := min(p− µ+ 1, r,P) .

2. Regularity of normal parameterization.
There is a limit function s(t) such that

lim
j→∞

sup
0≤t≤1

|sj(t)− s(t)| = 0 .

The limit s(t) belongs to CQ′−ε([0, 1]), for all ε > 0, and Q′ := min(p− µ, r).
3. Stability.

If p− µ > 1 when p > 1 there is a constant c depending on ν, but independent
of j, Eγ and Ew such that

sup
k
||vj,k − ṽj,k|| ≤ c(Eγ + Ew) .

Remark 4. The regularity of the normal parameterization is the same regularity that
we get for the limit function of the pure predictor subdivision scheme S when we use
the same method of proof. If we take the very special case Γ (s) = (s, 0) for all s,
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then the normal multiresolution scheme gives sj+1 = Ssj . In this case wj = 0, and
we no longer have a curve approximation problem. However, we can define sj(t)
as before, and the convergence of sj(t) still holds, as a special case of the theorem.
Theorem 6 can thus be viewed as an extension, without loss in the strength of the
estimates, of standard convergence results for linear subdivision, see e.g. [1, 2].

We conclude with some examples where we apply Theorem 6 to the first La-
grangian interpolating subdivision predictors S2l. A numerical illustration is pre-
sented in Fig. 5. In the two-point case we simply have∣∣∣S[1]

2 x
[1]
j

∣∣∣
∞

=
∣∣∣x[1]

j

∣∣∣
∞
.

Hence we can take µ = 0 and p = 1. Since P = 2 we get Q = 2 and Q′ = 1 if
Γ ∈ C2. Then s ∈ C1−ε and |wj | ≤ c2−(2−ε)j , agreeing with the results in Sect. 2.
For the four-point operator we start from the estimate∣∣∣S[3]

4 x
[3]
j

∣∣∣
∞
≤ 2

∣∣∣x[3]
j

∣∣∣
∞
.

Here we thus take µ = 1, p = 3 and with P = 4 we get Q = 3, Q′ = 2 when
Γ ∈ C3. Thus, s(t) is almost C2 and wj decay, almost, as 2−3j . For S6 and S8 it is
more difficult to get estimates of the optimal pair p, µ. Empirically the wavelet decay
is consistent with what is obtained for pure subdivision, where the limit functions of
the S6-scheme belong to C2.83 and S8 generates C3.55 functions; the corresponding
wavelet decay in the normal scheme is 3.83 and 4.55 respectively.
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Summary. An important class of problems exhibits macroscopically smooth behaviour in
space and time, while only a microscopic evolution law is known, which describes effects
on fine space and time scales. A simulation of the full microscopic problem in the whole
space-time domain can therefore be prohibitively expensive. In the absence of a simplified
model, we can approximate the macroscopic behaviour by performing appropriately initialized
simulations of the available microscopic model in a number of small spatial domains (“boxes”)
over a relatively short time interval. Here, we show how to obtain such a scheme, called “patch
dynamics,” by combining the gap-tooth scheme with projective integration. The gap-tooth
scheme approximates the evolution of an unavailable (in closed form) macroscopic equation
in a macroscopic domain using simulations of the available microscopic model in a number of
small boxes. The projective integration scheme accelerates the simulation of a problem with
multiple time scales by taking a number of small steps, followed by a large extrapolation step.
We illustrate this approach for a reaction-diffusion homogenization problem, and comment on
the accuracy and efficiency of the method.

Key words: equation-free multiscale computation, gap-tooth scheme, patch dynamics, ho-
mogenization

1 Introduction

For an important class of multiscale problems, a separation of scales exists be-
tween the (microscopic, detailed) level of description of the available model, and
the (macroscopic, continuum) level at which one would like to observe the system.
Consider, for example, a kinetic Monte Carlo model of bacterial chemotaxis [24]. A
stochastic biased random walk model describes the probability of an individual bac-
terium to run or “tumble,” based on the rotation of its flagella. Technically, it would
be possible to run the detailed model in the whole space-time domain, and observe
the macroscopic variables of interest, but this could be prohibitively expensive. It
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is known, however, that, under certain conditions, the evolution of concentration of
the bacteria as a function of space and time obeys a deterministic evolution law on
macroscopic scales sufficiently well; only, in general this evolution law cannot be
written down explicitly in closed form.

The recently proposed equation-free framework [14, 25] can then be used to con-
fine the use of stochastic time integration to a small fraction of the space-time do-
main. This framework is built around the central idea of a coarse time-stepper, which
consists of the following steps: (1) lifting, i.e. the creation of appropriate initial con-
ditions for the microscopic model, conditioned upon the prescribed initial conditions
for the macroscopic (coarse) variables; (2) evolution, using the microscopic model
and (possibly) some constraints for a time δt; and (3) restriction, i.e. the projection
of the detailed solution to the macroscopic “observation” variables. This procedure
amounts to a time-δt map from coarse variables to coarse variables. This coarse
time-stepper can subsequently be used as “input” for time-stepper based algorithms
performing macroscopic numerical analysis tasks. These include, for example, time-
stepper based bifurcation codes to perform bifurcation analysis for the unavailable
macroscopic equation [26, 25, 18, 19]. A coarse time-stepper can also be used in
conjunction with a projective integration method to increase efficiency of time inte-
gration in the presence of time scale separation [6, 7].

When dealing with systems that would be described by (in our case, unavailable)
partial differential equations, one may also be able to reduce the spatial complex-
ity. For systems with one space dimension, the gap-tooth scheme [14, 22, 21] was
proposed; it can be generalized in several space dimensions. A number of small
intervals, separated by large gaps, are introduced; they qualitatively correspond to
mesh points for a traditional, continuum solution of the unavailable equation. In
higher space dimensions, these intervals would become boxes around the coarse
mesh points, a term that we will also use throughout this paper. We construct a coarse
time-δt map as follows. We first choose a number of macroscopic grid points. Then,
we choose a small interval around each grid point; initialize the fine scale, micro-
scopic solver within each interval consistently with the macroscopic initial condition
profiles (lift); and provide each box with appropriate boundary conditions. Subse-
quently, we use the microscopic model in each interval to simulate until time δt
(run), and obtain macroscopic information (restrict, e.g. by computing the average
density in each box) at time δt. This amounts to a coarse time-δt map.

The gap-tooth scheme was analyzed for pure diffusion [14] and reaction-diffusion
homogenization problems [22], where it was shown to be close to a finite difference
space discretization for the effective equation, combined with an explicit Euler step
in time. For this problem, the “microscopic” model is a partial differential equation
with rapidly oscillating coefficients. The macroscopic model is the effective equation
that describes the evolution of the average behaviour. In the limit, when the period
of the oscillations becomes zero, this effective equation is the classical homogenized
equation. The goal of the gap-tooth scheme is to approximate the effective equation
by using only the microscopic problem inside the small boxes. A related numeri-
cal approach to obtain the effective equation was presented in [20]. There, however,
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the simulations were performed over the full spatial domain, instead of a number of
small boxes.

Generally, a given microscopic code allows us to run with a set of pre-defined
boundary conditions. It is highly non-trivial to impose macroscopically inspired
boundary conditions on such microscopic codes, see e.g. [17] for a control-based
strategy. This can be circumvented by introducing buffer regions at the boundary of
each small box, which shield the short-time dynamics within the computational do-
main of interest from boundary effects. One then uses the microscopic code with its
built-in boundary conditions. The gap-tooth scheme with buffers was introduced in
[21, 22]. In this paper, we illustrate the relation between buffer size, time-step and
accuracy numerically. More detail will be given in [23].

Since the gap-tooth time-stepper is a time-δt map from coarse variables to coarse
variables, we can combine it with projective integration. The resulting scheme is
called patch dynamics [14]. It advances the macroscopic variables on macroscopic
space and time scales, using only simulations in small portions of the space-time
domain. To this end, the projective integration scheme takes a few gap-tooth steps
of size δt, and extrapolates the obtained macroscopic states using a (large) step size
∆t. Here, we will show how to implement these ideas in the context of numerical
homogenization. We will use the gap-tooth scheme with buffers as a coarse time-
stepper, and combine this with a projective forward Euler step.

In their recent work, inspired by our equation-free approach, E and Engquist and
collaborators address the same problem of simulating only the macroscopic behav-
iour of a multiscale model, see e.g. [3]. In what they call the heterogeneous multi-
scale method, a macroscale solver is combined with an estimator for quantities that
are unknown because the macroscopic equation is not available. This estimator con-
sequently uses appropriately constrained runs of the microscopic model [3]. It should
be clear that patch dynamics does exactly this: by taking one gap-tooth step, we es-
timate the time derivative of the unknown effective equation, and give this as input
to an ODE solver, such as projective integration. The elements of the gap-tooth step
itself are based on an explicit in time macroscopic finite difference solver (the initial
conditions within a box and the boundary conditions for each box are designed based
on what a macroscopic finite difference scheme effectively approximates). The dif-
ference in their work is that, for conservation laws, the macro-field time derivative is
estimated from the flux of the conserved quantity; the generalized Godunov scheme
is based on this principle. Perhaps the most important difference in implementation,
which also affects the numerical analysis, is the fact that we try to minimize changes
to a given microscopic simulator. In this context, imposing the constraints required
by the specific implementation proposed in [3] may be impractical (e.g. if there are
constraints on macroscopic quantities that have to be estimated), undesirable (e.g. if
the development of the code is expensive and time-consuming) or even impossible
(e.g. if the microscopic code is a legacy code). Due to the use of buffers such prob-
lem are to some extent mitigated in our implementation (at the cost of simulating in
larger patches).

Here, we investigate the behaviour of the patch dynamics scheme (with buffers)
for a homogenization reaction-diffusion problem. The paper is organized as follows.
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In Sect. 2, we formally state the problem that we want to solve. Subsequently, we
summarize earlier results on the gap-tooth scheme in Sect. 3, and we describe the
full patch dynamics scheme in Sect. 4. We discuss convergence in Sect. 5 and we
conclude in Sect. 6.

2 Problem Statement

As a model problem, we consider the following parabolic partial differential equa-
tion,

∂

∂t
uε(x, t) =

∂

∂x

(
a
(x
ε

) ∂

∂x
uε(x, t)

)
+ g(uε(x, t)), (1)

with initial condition uε(x, 0) = u0(x) and suitable boundary conditions. In this
equation, a(y) = a

(
x
ε

)
is periodic in y and ε is a small parameter.

Consider equation (1) with Dirichlet boundary conditions uε(0, t) = v0 and
uε(1, t) = v1. According to classical homogenization theory [1], the solution to
(1) can be written as an asymptotic expansion in ε,

uε(x, t) = u0(x, t) +
∞∑

i=1

εiui(x,
x

ε
, t), (2)

where the functions ui(x, y, t) ≡ ui(x, x
ε , t), i = 1, 2, . . . are periodic in y. Here,

u0(x, t) is the solution of the homogenized equation

∂

∂t
u0(x, t) =

∂

∂x

(
a∗

∂

∂x
u0(x, t)

)
+ g(u0(x, t)) (3)

with initial condition u0(x, 0) = u0(x) and Dirichlet boundary conditions u0(0, t) =
v0 and u0(1, t) = v1; a∗ is the constant effective diffusion coefficient, given by

a∗ =
∫ 1

0

a(y)
(

1− d
dy

χ(y)
)

dy, (4)

and χ(y) is the periodic solution of

d
dy

(
a(y)

d
dy

χ(y)
)

=
d
dy

a(y), (5)

the so-called cell problem. The solution of (5) is only defined up to an additive con-
stant, so we impose the extra condition∫ 1

0

χ(y)dy = 0. (6)

From this cell problem, we can derive u1(x, y, t) = ∂u0
∂x χ(y).
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These asymptotic expansions have been rigorously justified in the classical book
[1]. Under appropriate smoothness assumptions, one can obtain pointwise conver-
gence of uε to u0 as ε→ 0. Therefore, we can write

‖uε(x, t)− u0(x, t)‖ ≤ C0ε, (7)

where ‖f(x)‖ ≡ ‖f(x)‖∞ = maxx |f(x)| denotes the ∞-norm of f . Throughout
this text, whenever we use ‖·‖, we mean the∞-norm.

For u(x, t) sufficiently smooth, the averaged function

U(x, t) = Sh(u)(x, t) :=
1
h

∫ x+ h
2

x−h
2

u(ξ, t)dξ

can be asymptotically expanded in h as follows,

U(x, t) = u(x, t) +
∞∑

l=1

(
h

2

)2l 1
(2l + 1)!

∂2l

∂2lξ
u(ξ, t)

∣∣∣∣
ξ=x

.

The difference between the homogenized solution u0(x, t) and the averaged solution

U(x, t) = h−1
∫ x+ h

2

x−h
2
uε(ξ, t)dξ is bounded by

‖U(x, t)− u0(x, t)‖ ≤ C1h
2 + C2ε.

Therefore, the averaged solution is a good approximation of the homogenized
solution for sufficiently small box width h.

The goal of the gap-tooth scheme is to approximate the solution U(x, t), while
only making use of the detailed model (1). Moreover, we assume that a time integra-
tion code for (1) has already been written and is available with a number of standard
boundary conditions, such as no-flux or Dirichlet.

3 The Gap-Tooth Scheme

We briefly revise the gap-tooth algorithm as it was introduced in [21, 22]. Suppose
we want to obtain the solution of the unknown equation (3) on the interval [0, 1],
using an equidistant, macroscopic mesh Π(∆x) := {0 = x0 < x1 = x0 + ∆x <
. . . < xN = 1}. To this end, consider a small interval (tooth, “inner” box) of length
h� ∆x centered around each mesh point, as well as an interval of size H > h (the
buffer box). (See Fig. 1.) To perform time integration using the microscopic model
(1) in each box, we provide each box with initial and boundary conditions as follows.

Initial Condition

We define the initial condition by constructing a polynomial, based on the (given)
box averages Un

i , i = 1, . . . , N ,
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ũi(x, tn) ≈ pd
i (x; tn), x ∈ [xi −

H

2
, xi +

H

2
], (8)

where pd
i (x; tn) denotes a polynomial of (even) degree d, and H denotes the size of

the buffer. We require that the approximating polynomial has the same box averages
as the initial condition in box i and in d

2 boxes to the left and to the right. This gives
us

1
h

∫ xi+j+
h
2

xi+j−h
2

pd
i (ξ; tn)dξ = Un

i+j , j = −d
2
, . . . ,

d

2
. (9)

The box averages are computed over the inner box of width h. One can easily check
that

Sh(pd
i )(x, tn) =

d
2∑

j=− d
2

Un
i+jL

d
i,j(x), Ld

i,j(x) =

d
2∏

l=− d
2

l �=j

(x− xi+l)
(xi+j − xi+l)

(10)

where Ld
i,j(x) denotes a Lagrange polynomial of degree d.

Boundary Conditions

The time integration of the microscopic model in each box should provide informa-
tion on the evolution of the global problem at that location in space. It is therefore
crucial that the boundary conditions are chosen such that the solution inside each
box evolves as if it were embedded in a larger domain. We already mentioned that,
in many cases, it is not possible or convenient to impose macroscopically-inspired
constraints on the microscopic model (e.g. as boundary conditions). However, we can
introduce a larger box of size H � h around each macroscopic mesh point, but still
only use (for macro-purposes) the evolution over the smaller, inner box. The simu-
lation can subsequently be performed using any of the built-in boundary conditions
of the microscopic code. Lifting and evolution (using arbitrary available boundary
conditions) are performed in the larger box; yet the restriction is done by process-
ing the solution (here taking its average) over the inner, small box only. The goal
of the additional computational domains, the buffers, is to buffer the solution inside
the small box from the artificial disturbance caused by the boundary conditions. This
can be accomplished over short enough times, provided the buffers are large enough;
analyzing the method is tantamount to making these statements quantitative.

The idea of using a buffer region was also used in the multiscale finite element
method (oversampling) of Hou [12] to eliminate the boundary layer effect; also Had-
jiconstantinou makes use of overlap regions to couple a particle simulator with a
continuum code [11]. If the microscopic code allows a choice of different types of
microscopic boundary conditions, selecting the size of the buffer may also depend
on this choice.

The Algorithm

The complete gap-tooth algorithm to proceed from tn to tn+1 = tn + δt is given
below:
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xix xi 1+i 1-... ...
∆x

h
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h

Fig. 1. A schematic representation of a gap-tooth time step with buffer boxes. We choose
a number of boxes of size h around each macroscopic mesh point xi and interpolate the
initial averages (dots) in a number of boxes around xi. This polynomial is taken as the initial
condition around xi, and simulation is performed in boxes of size H

1. At time tn, construct the initial condition ũi(x, tn), i = 0, . . . , N , using the box
averages Un

j (j = 0, . . . , N ), as defined in (8-9).
2. Compute ũi(x, t) by solving the equation (1) in the interval [xi−H

2 , xi+ H
2 ] until

time tn+1 = t + δt with some boundary conditions. The boundary conditions
can be anything that the time integration routine allows.

3. Compute the box average Un+1
i at time tn+1.

It is clear that this amounts to a map of the macroscopic variables Un ≈ U(nδt)
at time tn, to the macroscopic variables Un+1 at time tn+1 = tn + δt, i. e. a “coarse
to coarse” time-δt map. We write this map as follows,

Un+1 = Sd(Un; tn + δt), (11)

where S represents the numerical time-stepping scheme for the macroscopic (coarse)
variables and d denotes the degree of the interpolating polynomial. Here, U(t) is the
exact solution of a system of ordinary differential equations that represent a method
of lines semi-discretization of the effective equation, while Un ≈ U(nδt) represents
a numerical approximation to this solution.

Microscopic Simulators

Above, we have assumed that the microscopic model is a partial differential equa-
tion. However, some microscopic simulators are of a different nature, e.g. kinetic
Monte Carlo or molecular dynamics codes. In fact, this is the case where we expect
our method to be most useful. In this case, several complications arise. First of all,
the choice of the box width h becomes important, since there will generally exist
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a trade-off between statistical accuracy (e.g. enough sampled particles) and spatial
resolution.

Second, the lifting step, i.e. the construction of box initial conditions, also be-
comes more involved. In general, the microscopic model will have many more de-
grees of freedom, the higher order moments of the evolving distribution. These will
quickly become slaved to the governing moments (the ones where the lifting is con-
ditioned upon), see e.g. [14, 18], but it might be better to do a “constrained” run
before initialization to create “mature” initial conditions [13, 8, 15, 4, 2].

Finally, determining which and how many neighbouring boxes are needed for the
interpolation polynomial is a delicate issue. The degree of the interpolation polyno-
mial determines how many spatial derivatives are initialized consistently in each box.
This is related with the order of the partial differential equation, i.e. the order of the
highest spatial derivative. A systematic way to estimate this order, without having
the macroscopic equation, is given in [16].

Numerical experiments with the gap-tooth scheme using a kinetic Monte Carlo
microscopic model are presented in [10, 5].

4 Patch Dynamics

Once we have constructed a coarse time-stepper that exploits the spatial scale sepa-
ration, we can combine it with the projective integration scheme [6] to exploit time
scale separation. The crucial idea is that one can estimate the time derivative of the
macroscopic system using the gap-tooth scheme, and perform a large extrapolation
step.

We will briefly summarize the projective integration scheme as it was presented
in [14, 6], and subsequently show how to combine it with the gap-tooth scheme.

The Projective Integration Scheme

Let ∆t � δt be a large time step (commensurate with the slow dynamics), and
denote the numerical approximations of the coarse solution U(t) as Un ≈ U(n∆t).
Suppose we are given a (coarse) time-stepper that permits to compute

Uα,n = S(U0,n, tn + αδt), (12)

for α ∈ [0, 1]. Here, Uα,n ≈ U(n∆t+ αδt), and therefore we have U0,n = Un by
consistency.

We cannot afford to compute Un+1 ≈ U((n+1)∆t) this way, because ∆t� δt.
Instead, we compute Un+1 by extrapolation, using a coarse projective scheme of the
type

Un+1 = Uα,n + (∆t− αδt)F̃ (Uk,n), (13)

where we approximate the time derivative by

F̃ (Uα,n) =
U1,n − Uα,n

(1− α)δt
(14)
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for some α in [0, 1), which has to be chosen large enough to ensure that lifting
errors have been removed by the microscopic simulation. (The higher order moments
are then slaved to the lower order ones.) Here, assuming that lifting errors can be
neglected, we choose α = 0. As discussed in Sect. 3, techniques to minimize lifting
errors can be devised, and therefore the choice α = 0 is not that artificial. The time
step ∆t has to be chosen such that the resulting macroscopic time-stepper is stable.
In order to increase the stability region, one could take k > 1 gap-tooth steps before
performing the extrapolation, see [14, 9] for more details.

Patch Dynamics for the Homogenization Problem

It is clear that the gap-tooth time-stepper, constructed in Sect. 3, can be considered as
a coarse time-stepper for the projective integration scheme. Here, for simplicity, we
take one gap-tooth step with α = 0 for the projective integration. (Taking k > 1 gap-
tooth steps might lead to an increased stability region [6].) This gives the following
algorithm (Fig. 2).

1. At time tn, take one gap-tooth step,

U1,n = Sd(Un, tn + δt)

2. Compute the approximate effective time derivative as

F̃ (Un) =
U1,n − U0,n

δt

3. Perform a projective forward Euler step, using this approximate time derivative.

Un+1 = Un +∆tF̃ (Un)

5 Convergence Results

Theoretical Results

We can easily obtain a convergence result for patch dynamics taking advantage of a
theorem from [3].

If we would have the macroscopic equation (3), we could obtain a method of
lines semi-discretization by replacing the spatial derivatives by finite differences of
order d, yielding a system of ordinary differential equations of the form

U̇ = F (U). (15)

Consider as a macroscopic solver a standard forward Euler scheme

Un+1 = Un +∆tF (Un). (16)



234 Giovanni Samaey, Dirk Roose, and Ioannis G. Kevrekidis

Box initialization

Integrate 

Restrict

Project

Lift

Combined patch-dynamics scheme 

Space

Time

Solution

Fig. 2. A schematic representation of a patch dynamics scheme. After a gap-tooth step, we
extrapolate over a large time step

Because the macroscopic equation is not available, we need to estimate F (Un), by
taking a gap-tooth step,

Un+1 = Un +∆tF̃ (Un), F̃ (Un) =
U1,n − U0,n

δt
. (17)

Then, under appropriate assumptions on F and U , we can state that [3]

Theorem 1. Patch dynamics is stable if the forward Euler scheme is stable. More-
over, the total discretization error is bounded by

‖Un − U(tn)‖ ≤ C(∆t+ max
0≤k≤ tn

∆t

‖F (Uk)− F̃ (Uk)‖),

where U(tn) is the exact solution of the semi-discrete system (15).

Thus, what remains is to estimate ‖F (Uk) − F̃ (Uk)‖. We mention a theorem
that shows the error that is made in the estimation of the time derivative.

Theorem 2. Consider the model problem (1). When performing one gap-tooth step
with Dirichlet boundary conditions,

U1,n = Sd(Un, tn + δt),

we can bound the error

‖F̃ (Un)− F (Un)‖ ≤ C
(
h2 +

ε

δt
+ δt2 + E(δt,H)

)
, (18)
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where F (Un) is the time derivative as defined by (15) for (3) and

lim
H→∞

E(δt,H) = lim
δt→0

E(δt,H) = 0

In this theorem, E(δt,H) represents the error term that is due to the buffers. We
see that this term can be made arbitrarily small by choosing H large enough and
δt small enough. A heuristic to make this error term comparable in size with the
others is given in [23], where this theorem is proved. Also, due to the term ε

δt , it is
impossible to obtain convergence when the small scale ε is fixed. In this context, the
theorem has to be seen as a bound for optimal error.

Numerical Results

Consider the following model problem,

∂

∂t
uε(x, t) =

∂

∂x

(
a(
x

ε
)
∂

∂x
uε(x, t)

)
, a(

x

ε
) = 1.1 + sin(2π

x

ε
) (19)

with ε = 1 · 10−5, x ∈ [0, 1], initial conditions uε(x, 0) = 1 − 4(x − 0.5)2, and
Dirichlet boundary conditions uε(0, t) = uε(1, t) = 0. We choose ε = 1 · 10−5. To
solve the microscopic problem, we use a standard finite difference discretization in
space and a variable step/variable order time integration method (ode23s in Mat-
lab), with mesh width δx = 1 · 10−7. The corresponding homogenized equation is
given by

∂

∂x

(
a∗

∂

∂x
u0(x, t)

)
, a∗ ≈ 0.45825686. (20)

We first investigate the error in the time derivative estimator (18) as a function of
buffer size and time step. To this end, we take a gap-tooth step with ∆x = 0.1 and
h = 2 · 10−3. We let the buffer size H vary from 2 · 10−3 to 3 · 10−2, and the time
step from 1 · 10−7 to 5 · 10−6. Inside each box, we use the microscopic solver with
Dirichlet boundary conditions. For the lifting step, we use quadratic interpolation,
which is equivalent to a standard second order finite difference approximation of the
diffusion term [22]. Figure 3 shows the evolution of the error as a function of buffer
width and time step. The error is measured as the difference of (18) with respect to
the second order finite difference discretization of the homogenized equation (3),

F (Un
j ) = a∗

Un
j+1 − 2Un

j + Un
j−1

∆x2

The leftmost picture shows the error as a function of buffer size for a fixed time step.
We see that the error decreases exponentially with the buffer size. We see that the
smaller the time step, the faster the initial decay of the error, but the optimal error
that can be obtained is larger. This is due to the term ε

δt in (18). This is made clear
in the rightmost picture, which shows the error as a function of time step, for a fixed
buffer size. We expect that for a fixed buffer size, the error decreases with decreasing
time step, and the optimal error curve has a slope 1

δt . This is visible only for very
small δt, due to interference with the time integration error of the microscopic solver.
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Fig. 3. Left: Error of gap-tooth time derivative estimate in function of buffer size for the given
values of the time step δt. Right: Error of gap-tooth time derivative estimate in function of
time step for the given values of the buffer size

In order to show the convergence in the absence of this term, we performed the
same experiment, but we replaced the microscopic solver with a finite difference
discretization of the homogenized equation. The result is shown in Fig. 4. We see that
we have convergence up to 8 digits. The remaining digits are lost due to cancellation
errors in estimating the derivative.
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Fig. 4. Left: Error of gap-tooth time derivative estimate in function of buffer size for a the give
values of the time step δt, using the homogenized equation as a microscopic solver. Right:
Error of gap-tooth time derivative estimate in function of time step for the given value of the
buffer size H

Next, we use patch dynamics to integrate this system until t = 1. We choose
∆t = 1 · 10−3. In this case ν = ∆t

∆x2 = 0.1, so the macroscopic scheme is certainly
stable. Based on the previous tests, we choose a buffer size of H = 7 · 10−3 and
δt = 1 · 10−6. Figure 5 shows the results. We depict the error with respect to the
finite difference scheme on the homogenized equation in the accompanying table.
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We see that the scheme has the ability of computing the solution to the unavailable
homogenized equation with 3 correct digits, using simulations on only 7% of the
spatial domain and 0.1% of the time domain (a gap-tooth time step of 10−6 versus a
macroscopic time step of 10−3).
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0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

u(
x,

t)

time error
5 · 10−2 6.4683 · 10−4

1 · 10−1 1.9202 · 10−3

1.5 · 10−1 8.3803 · 10−4

2 · 10−1 1.2133 · 10−3

2.5 · 10−1 9.8365 · 10−4

3 · 10−1 1.2383 · 10−3

3.5 · 10−1 1.0178 · 10−3

4 · 10−1 7.4551 · 10−4

4.5 · 10−1 7.5973 · 10−4

5 · 10−1 5.6377 · 10−4

Fig. 5. Left: Solution of the unavailable homogenized equation using patch dynamics, at t =
0, 5 · 10−2, 1 · 10−1, 1.5 · 10−1 . . . , 5 · 10−1. Right: Error in maximum norm with respect to
the finite difference comparison scheme for the homogenized equation

6 Conclusions

We described a patch dynamics algorithm for the numerical simulation of multi-
scale problems. This scheme simulates the macroscopic behaviour over a macro-
scopic domain when only a microscopic model is explicitly available; it only uses
appropriately initialized short simulations over small sub-domains. We numerically
illustrated convergence properties of this scheme for a parabolic homogenization
problem, and related these properties to theoretical results that were obtained in [3].

We showed that our method approximates a finite difference scheme for the ho-
mogenized equation when the buffer regions are chosen large enough with respect to
the gap-tooth time step. Our analysis revealed that the presence of microscopic scales
introduces errors that can be made small, but not arbitrarily small. In this sense, there
is an optimal accuracy that can be reached with these methods.

Numerical simulations on a model problem show that it is possible to obtain
simulation results over large space-time domains, using only a fraction of the com-
putational complexity that would be needed by a full microscopic simulation.
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Summary. In this article, we study a class of numerical ODE schemes that use a time filtering
strategy and operate in two time scales. The algorithms follow the framework of the hetero-
geneous multiscale methods (HMM) [1]. We apply the methods to compute the averaged path
of the inverted pendulum under a highly oscillatory vertical forcing on the pivot. The aver-
aged equation for related problems has been studied analytically in [9]. We prove and show
numerically that the proposed methods approximate the averaged equation and thus compute
the average path of the inverted pendulum.

Key words: multiscale, ordinary differential equation, averaging

1 Introduction

The focus of this paper is the application of numerical methods for dynamical sys-
tems whose solutions oscillate around a slow manifold. We assume that the oscil-
lations take place on a much faster time scale than the rate of change of the slow
manifold with respect to time. More precisely, we hypothesize that the wavelength
of the fast oscillations is proportional to a positive constant ε, and that in an O(ε)
time interval the slow manifold changes by at most O(ε). This is the case in the in-
verted pendulum problem with highly oscillatory forcing, and we will show that our
methods yield consistent approximations to the averaged equations.

We consider the inverted pendulum example, in which the pivot of a rigid pen-
dulum with length l is attached to a strong periodic forcing, vibrating above the
horizontal axis with amplitude ε and frequency Cε−1. The system has one degree of
freedom, and can be described by the angle, θ, between the pendulum arm and the
upward vertical direction, as shown in Fig. 1. The motion is determined by

lθ̈ =
(
g +

1
ε

sin
(

2π
t

ε

))
sin(θ), (1)
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with initial conditions θ(0) = θ0, θ̇(0) = ω0. When ε−1 is sufficiently large, and θ0
and ω0 are sufficiently close to 0, the pendulum will oscillate slowly back and forth
with displacement θ < θmax. The period of the oscillation is “independent” of the
forcing frequency Cε−1, and in addition to this slow motion, the trajectory of θ also
exhibits fast oscillations with amplitude and period proportional to ε. The behavior
of this system and other generalizations are analyzed analytically in [9]. In short, the
governing second order equation for these stiff problems take the general form

ẍ = ε−1a

(
t

ε

)
f(x), x(0) = x0, ẋ(0) = y0; (2)

where a is a smooth, 1-periodic function, 0 < ε � 1, and f is a bounded smooth
function. It will be convenient to consider (2) as a system of first-order equations
where dx/dt = y and dy/dt = ε−1a(t/ε)f(x).

Fig. 1. The inverted pendulum. A mass is connected to an arm of length l which makes an
angle θ with the vertical axes

Typically, the computational difficulties in solving the above system stem from
the short wavelength in the periodic function a(t/ε). If explicit time stepping meth-
ods are employed to solve such a system, the corresponding stability condition re-
quires the step size ∆t to be proportional to ε, and if the solution is needed in an
interval with length independent of ε, the computation would require O(ε−1) opera-
tions, rendering the solution method unusable if ε is very small. On the other hand,
implicit schemes with larger time steps typically damp out the oscillations or rep-
resent them inaccurately. There is also the problem of inverting the corresponding
nonlinear system.

In many situations, one is interested in a set of quantities X that are derived from
the solution of the given stiff system. Typically, these quantities change slowly in
time. A pedagogical example, pointed out to the authors by G. Dahlquist, is the drift
path of a mechanical alarm clock due to its shaking and rattling when it is set off
on a hard surface. If the slowly changing quantities X depend only locally in time
on the fast oscillations, it is then reasonable to devise a scheme that tracks the slow
quantities by measuring the effects of the fast solutions only locally in time. Herein
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lies the possibility of reducing the computational complexity. Under this context,
and recasting (2) as a first-order system, it is natural to look for an explicit numerical
method that appears in the general form:

Xn+1 = QH(F̃ [xn(t)], Xn, Xn−1, · · · ) X(0) = X0, (3)

where H = tn+1 − tn denotes the slow time scale step size, h denotes the fast time
scale step size, xn(t) is the microscopic data, and QH and F̃ denote some suitable
operators; we will make precise all of these in the following. The functional F̃ relates
x, the solution to the stiff problem, to the slowly changing quantities X .

In our specific problem with model (2), x(t) is θ(t), and X(t) is the average over

the period [t− ε/2, t+ ε/2], X(t) = 〈x〉 = 1
ε

∫ t+ε/2

t−ε/2
x(s/ε)ds, and as shown in [9],

it satisfies the averaged effective equation

Ẍ = 〈a〉 f(X)−
〈
v2

〉
f(X)f ′(X) + E, X(0) = X0. (4)

The “velocity”, v is a function of the “acceleration” a,

v(t) =
∫ t

s0

(
a( s

ε )− 〈a〉
)
ds (5)

and s0 is selected so that 〈v〉 = 0. The error in (4) is small, E ∼ O (
√
ε), [9].

Many existing methods can be cast into the above form (3,4), with X directly
related to either the strong or weak limit of the original variable x. For example, in
the methods proposed in [5] and [10] for oscillatory ODEs, X is the envelope of
x. The given stiff system is then integrated from current state Xn for some integer
number of periods η = Cε, fully resolving the oscillation with step size h. The
method then estimates and returns the time derivative of the envelop, and finally QH

corresponds to the discrete solution operator of the macroscopic scheme.
In [1], the general framework of Heterogeneous Multiscale Methods (HMM) was

proposed. Under this framework approximation schemes can be conveniently con-
structed and analyzed for general problems involving multiple separated temporal
and spatial scales. In [3], under the HMM framework, we proposed and analyzed a
class of HMM ODE schemes that operate in two time scales. There, the operator F̃
plays the role of approximating the average force by time filtering the microscopic
evolution in the time interval [tn − η/2, tn + η/2], using convolution with a suitable
kernel. If the forward Euler scheme is adopted in QH , then the schemes appear to be

Xn+1 = Xn +H · F̃ [xn(t)].

The equations considered in [3] are of the form{
d
dtx = A( t

ε )x+ f(x, y)
d
dty = g(x, y)

.

It is proved there that if f does not depend on the phase of x, i.e. if f(eiθx, y) =
f(x, y) for any θ ∈ [0, 2π), the constructed approximations converges to the solution
of the averaged equation, and the averaged equation is of the following form:



244 Richard Sharp, Yen-Hsi Tsai, and Björn Engquist{
d
dt x̄ = 1

2π

∫ 2π

0
e−iφf(eiφx̄, ȳ)dφ

d
dt ȳ = 1

2π

∫ 2π

0
g(eiφx̄, ȳ)dφ

The class of second order equations under consideration in this paper, i.e. (2),
written as first order systems, do not fall into the category considered in [3]. However,
it turns out that with some modifications to the schemes developed in [3], we can
show that the modified HMM schemes approximate the averaged equations analyzed
in [9]. This is the main purpose of our paper.

There has been much development of methods for special Hamiltonian systems
H(p, q) = 1

2p
TM−1p + W (q). These methods typically either assume an explicit

separate grouping of solution components that change rapidly (fast modes) from the
slow modes, or they assume that the potential W is the sum of a strong one and a
weak one. Correspondingly, in the first case, slow and fast modes are solved sepa-
rately in the whole interval [tn, tn +H], and in the second case, a splitting approach
is adopted to solve alternately the whole system with only the strong potential or the
weak potential. They are called multirate methods and impulse method respectively.
Please refer to [4], [6], [8], and more generally [7] for details. Even though these
types of methods also use time averaging and appear to share certain resemblance to
the HMM methods, it is important to point out that there is a fundamental difference.
In the multirate or the impulse methods, the stiff part of the system, being either the
fast modes or the split equations with strong potentials, is really solved globally in
time, thus the high computational cost that results from the stiffness still remains.
Whereas in the HMM methods, as we alluded earlier, the stiff system is solved only
rarely for very short period of time. The macroscopic step size H is independent of
ε and the overall number of operations is lower than ε−1.

For a given ε > 0, all well known methods will converge as the step-size H → 0,
and there is no difference between stiff and nonstiff problems. We define what we
mean by convergence such that it makes sense for very stiff problems (ε � H) by
the following error:

E = max
n

( lim
H→0

( sup
0<ε<ε0(H)

|X(tn)−Xn|)). (6)

Here, ε0(H) is a positive function of H , serving as an upper bound for the range of
ε that we consider. With this notion, it is clear that a sensible multiscale method has
to utilize the slow varying property of X and generate accurate approximation with
a complexity sublinear to ε−1.

The structure of the paper is as follows. In Sect. 2, we describe the HMM strate-
gies of [1] in the context of building ODE schemes for problems with different time
scales. In Sect. 3, we apply these types of schemes to compute average trajectories of
an inverted pendulum. We then show in Sect. 4 the convergence of this scheme that
is suggested by our numerical study. Finally, we summarize our results in Sect. 5.

2 HMM Strategy

Given a stiff system
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d
dt
u = fε(u, t), (7)

an HMM method integrates an effective system

d
dt
U = f̄(U),

whose force f̄ is evaluated using many short time integrations of (7) with suitable ini-
tial data. So a generic HMM method is described by 1) the scheme used to integrate
the (macro) system for U , 2) its accompanying scheme for the integration of (7), the
microscopic system, and 3) the data transfer between the macro and micro systems.
A microscopic evolution of the system is invoked only when the effective force at
certain time, tn, is needed by the macro-scheme. At that time, (7) is solved accu-
rately on the corresponding micro-grid, with the initial condition determined from
U , for a duration of time, η, to resolve the transient or the oscillations. The resulting
microscale data, including the time history of microscale variables and the force, is
then averaged by a suitable kernel K to evaluate the effective force and, in some
cases, also a modified macroscopic variable U , at the appropriate time. We will use
K

p,q to denote the kernel space discussed in this paper. K ∈ K
p,q(I) if K ∈ Cq

c (R)
with supp(K) = I , and ∫

R

K(t)trdt =
{

1, r = 0;
0, 1 ≤ r ≤ p.

Furthermore, we will use Kη(t) to denote the scaling of K: Kη(t) := η−1K(t/η).
Hence we may present the above procedures algorithmically as follows:

1. Force estimation:
a) Reconstruction: at T = tn, R(Un) �→ un.
b) Solve for the micro variables: un(t), for t ∈ [tn− η

2 , tn + η
2 ], with un(tn) =

un.
c) Compression: U∗ = Q[un].
d) Estimate force: f̄(t∗) = F̃ [un] = Kη ∗ un(t∗).

2. Evolve the macro variables: {Un}
⋃{U∗} −→ Un+1, T = tn+1.

3. Repeat

The reconstruction operator and the compression operator should satisfy a compati-
bility condition:

Q(R(U)) = U.

An essential feature in this paper is the introduction of a reconstruction operatorR so
that the average of the fast modes in u is preserved in each microscopic evolution, and
correspondingly, the compression operator Q that prepares the macroscopic variable
in the suitable form.

We also notice that the number of micro-time steps needed depends on the nature
of the problem. For example, for stiff problems with fast transients, we only need to
evolve the micro variables until the transients vanish; in molecular dynamics, e.g.
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[2], the micro variables are evolved until equilibrium and then some further time to
estimate the effective flux. We shall see that it also depends on the method used to
estimate the effective force.

Figure 2 depicts schematics of the HMM ODE solvers. In these images, the top
axis represents the macro grid used, and the bottom axis contains the microgrids es-
tablished in a neighborhood of each macrogrid for microscale simulations. The arrow
pointing from each macro grid point down to a micro grid denotes the action taken
in step 1a, while the arrows pointing from each micro grid up toward the macro axis
represent steps 1c and 1d. The effective force is estimated either at some new time
t∗ which is laid down to be a new macroscale grid point, or the original macroscale
grid point tn, depending on the macroscale scheme used (see Fig. 2). The advantage
of schemes depicted in Fig. 2 is that f̄ can be evaluated on a uniform grid, and thus
facilitate the implementation of linear multistep methods on the macro-grid. In the
upper image in Fig. 2, a non-symmetric kernel is needed to perform the force evalua-
tion, and in the problems with transients, the macrogrid variables are projected to the
invariant manifolds. The lower scheme in Fig. 2 can be applied to reversible systems
that have no transients. The advantage is the possibility of using symmetric kernels
in force estimation.

We will call a method HMMpq-X-y, if X-method is used in step 2, y-method
is used in Step 1b, and a kernel K ∈ K

p,q is used in Step 1d. Most of the time,
we will suppress the parameters pq. Therefore, HMM-FE-rk4 is a method that uses
forward Euler for macroscale evolution, and a fourth order Runge-Kutta method for
microscale integrator. In Sect. 3, we will present a few standard HMM schemes and
their stability in more detail. The structure of the HMM-X-y schemes presented are
illustrated by Fig. 2.

3 Main Example

In this section, we propose three HMM ODE schemes to solve for the slow peri-
odic motion of the inverted pendulum. Recall the original equation of motion for the
pendulum,

lθ̈ =
(
g +

1
ε

sin
(

2π
t

ε

))
sin θ, (8)

where θ is the angle between the pendulum and the upward vertical position, l is the
length of the pendulum, and g is the gravitational constant. This takes the form of
the model equation (2) where,

1
ε
a(x) = aε(x) :=

1
l

(
g +

1
ε

sin(2πx)
)
.

We will compare our approximations to the solution of the averaged equation,

lΘ̈ = g sinΘ − 1
8π2l

sinΘ cosΘ, (9)

where Θ = 〈θ〉.
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Fig. 2. Schematic pictures of the interaction between the macro (upper lines) and micro (lower
lines) scale computational domains for use with non-symmetric (top) and symmetric (bottom)
kernels

In this case, depending on the initial condition, the inverted pendulum can reach
a maximum angle θmax = cos−1(gl/〈v2〉), subject to the stability criterion. In the
examples below g = 0.1 and l = 0.05 making θmax ≈ 1.16, although under the initial
conditions θ0 = 0, θ̇0 = −0.4, the pendulum will sweep out a more conservative
angle θδ ≈ 0.23.

We use un(t) = (θn(t), ωn(t)) to denote the solution of the first order system
corresponding to equation (8), for |t − tn| ≤ η/2 with un(tn) = (θn(tn), ωn(tn))
given. The function θn(t) represents the angle, and ωn(t) = θ̇n(t) is the angular ve-
locity. Similarly, U(t) = (Θ(t), Ω(t)) denotes the solution to the averaged equation
(9) for t ≥ t0 with U(t0) = (Θ(t0), Ω(t0)) given, and Ω(t) = Θ̇(t). Discretize
the averaged equation with time-step size H, tn = t0 + nH, n = 1, 2, 3, . . . and
Un = U(tn).

Assume that the HMM strategy described in the previous section does discretize
the average equation (9) by solving (8) locally near every tn. This assumption im-
poses a compatibility condition on the reconstruction step. We need to reconstruct
u0

n = (θ0
n, ω

0
n) = R(Θn, Ωn) such that 〈θn(t)〉 ≈ Θn and 〈ωn(t)〉 ≈ Ωn if

θn(tn) = θ0
n and ωn(tn) = ω0

n. It is shown that |Θ(t)− θ(t)| ∼ O(ε) for t ∈ (t0, T ]
in [9], so taking θ0

n = Θn insures that Θn ≈ 〈θn(t)〉. Writing Ωn as the force acting
on Θ at tn gives,
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Ωn ≈ 〈ωn(t)〉 = ω0
n +

〈∫ t

tn

aε(
s

ε
) sin(θn(s))ds

〉
.

Hence, we can set,

ω0
n = Ωn −

〈∫ t

tn

aε(
s

ε
) sin(θn(s))ds

〉
≈ Ωn − sin(Θn)

cos(2π tn

ε )
2πl

,

(in the second step we note that sin(θ(s)) varies slowly where s ∈ [tn−ε/2, tn+ε/2])
to ensure Ωn ≈ 〈ωn(t)〉.

The force estimator should yield an approximation to the force of the averaged
equation,

F̃ [un(·)] =
(
F̃(1)[un(·)]
F̃(2)[un(·)]

)
≈

(
Ωn

g sinΘn − 1
(8π2)l sinΘn cosΘn

)
. (10)

Given a kernel K ∈ K
p,q as described in the previous section, let

F̃ [un(·)] =
(

K ∗ ωn(·)
K ∗ (g + 1

ε sin(2π (·)
ε )) sin(θ(·))

)
, (11)

with initial conditions,

u0
n =

(
Θn

Ωn − sinΘn
cos(2πtn/ε)

2πl

)
.

The convolution K ∗ g(·) is defined as

(K ∗ f)(t) =
∫ tn+ η

2

tn− η
2

Kη(t− s)g(s)ds .

Using this estimated force, it will be possible to prove (in Sect. 4) that F̃ [un(·)]
approximates (10).

We present three HMM schemes and related numerical results for the inverted
pendulum. The first order macroscopic Forward Euler schemes HMM-FE-* can be
presented as follows:

Algorithm 1 HMM-FE-*
Given U0 = (Θ0, Ω0), for n = 0, 1, 2, ...

Θn+1 = Θn +H · F̃(1)[ωn(·)],
Ωn+1 = Ωn +H · F̃(2)[θn(·)],

where F̃ [un(·)] is defined by (11).
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Provided that Ωn is sufficiently accurate, one may directly replace F̃(1)[un(·)] with
Ωn. This is done in practice to reduce computation, and in this case there is no
explicit need to calculate ωn.

Next, a semi-implicit first order HMM-IFE-* scheme is,

Algorithm 2 HMM-IFE-*
Given U0 = (Θ0, Ω0), for n = 0, 1, 2, ...

Ωn+1 = Ωn +H · F̃(2)[θn(·)]
Θn+1 = Θn +H ·Ωn+1

In this case Ωn+1 is found using the explicit forward Euler step and then used to find
Θn+1.

The final algorithm is a second order HMM-Verlet-* scheme,

Algorithm 3 HMM-Verlet-*
Given Un = (Θn, Ωn), for n = 0, 1, 2, ...

Ωn+ 1
2

= Ωn +
H

2
· F̃(2)[θn(·)],

Θn+1 = Θn +H ·Ωn+ 1
2
,

Ωn+1 = Ωn+ 1
2

+
H

2
· F̃(2)[θn+1(·)],

where θn+1 = Θn+1 is used to initialize the final force estimation.

This final method requires twice the computational effort per macroscale step as the
first order schemes, but the total operation count is still much smaller than that of a
direct calculation (η/ε� T/ε).

Several numerical simulations were completed using the parameters in Table 1.
In each calculation, either the standard Verlet method (v) or fourth order Runge-
Kutta (rk4) was used to solve the microscopic equations. In all cases, the exponential
kernel,

Table 1. The parameters used for the numerical examples include ε, the initial condition
(Θ0, Ω0), the time interval from t0 to tf , H (intervals indicate the range of values used for
separate calculations to determine error behavior), h, and η (both fixed and scaled with respect
to H; r, s, and q in row three are the orders of the macroscale and microscale schemes, and the
smoothness of the kernel respectively, and αh and αη are constants), the exponential kernel
K described in equation (12), the gravitational acceleration g, and the length of the pendulum
arm l

[t0, T ] H η h

[0.0, 50.0] 0.01 10ε ε/10
[0.0, 12.0] [0.001, 1.0] 50ε ε/50

[0.0, 12.0] [0.001, 1.0] αηH−s/qε1−1/q αhHs/rε1+2/rη−1/r
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Kη

(
t

η

)
=

422.11
η

exp

⎡⎣5

(
4 (t− tn)2

η2
− 1

)−1
⎤⎦ , (12)

is used (K ∈ K
1,∞) and ε = 10−6, (Θ0, Ω0) = (0.0,−0.4), g = 0.1, l = 0.05.

Figure 3 shows the macroscale behavior of the system over the period from t0 =
0 to T = 50. The parameters used in the calculations are in the first row of Table 1.
The HMM schemes HMM-FE-v and HMM-IFE-v are compared to the solution of
the averaged equation (4). At the microscale, the resolution gives about 10 grid points
per oscillation, and the convolution with K is a domain containing about 10 cycles.
This is relatively coarse compared to later calculations. The computational savings,
measured by the total number of times the force is evaluated and compared to a
traditional first order method using the same step-size h, is on the order of 108. More
importantly, fully resolved traditional methods cannot maintain sufficient accuracy
to carry the calculation to T = 50.

The force estimation error for HMM is EHMM = Emicro + EK + Equad [1, 3] and
the local error of the HMM scheme is
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Fig. 3. The HMM solution to equation (1); the top graph plots the angle Θ(t) and the lower
graph gives Ω(t). In this case the first order methods HMM-FE-v and HMM-IFE-v were used
to approximate the average motion of the pendulum over a long time interval. The solution of
the averaged equation (4) is also shown for comparison. The parameters used to produce the
graph are those in the first row of Table 1. Six orders of magnitude (ε = 10−6) separate the
period of the slow oscillation apparent in the graphs from the fast oscillation at the microscale
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En = EH + EHMM .

EH denotes the local truncation error of the macroscopic scheme, and in many cases,
EH dominates and determines the order of En. The convergence of various HMM
schemes as H → 0 was confirmed using the error metric,

E = max
n

√
(Θn −Θ(tn))2 + (Ωn −Ω(tn))2 (13)

where Θ(t) and Ω(t) are values of the solution of the averaged equation. Error calcu-
lations were carried out over the time period [0, 12], corresponding to roughly three
oscillations on the macroscale. Figure 4 shows error as a function of 1/H for the
first order methods HMM-FE-* and HMM-IFE-*. The calculations correspond to
row two of Table 1. In all cases η and h are fixed with respect to H , and O(H)
convergence is achieved. In the HMM-IFE-v method however, approximation error
associated with the microscale calculation and convolution dominates the contribu-
tion from EH , for small H .

 0.0001

 0.001

 0.01

 0.1

 1

 10

 10  100  1000

O(H)
fixed fe-v-exp

fixed fe-rk4-exp
fixed ife-v-exp

fixed ife-rk4-exp

Fig. 4. The error as a function of 1/H for the first order schemes HMM-X-y, where X is FE
or IFE and y is v or rk4. The width of the microscale domain and the step-size h are fixed with
respect to H . The parameters used are listed in row two of Table 1. The slopes of the solid
lines indicate decrease at first order in H

Figure 5 shows the analogous cases for the second order methods HMM-V-*. As
previously, the HMM-X-v method levels off due to other contributions to the overall
error, while HMM-X-rk4 is able to maintain its performance for small H .

Notice that some of the curves in Figs. 4 and 5 eventually flatten out as 1/H
increases. These are the situations in which the error EHMM finally dominates the
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Fig. 5. The error as a function of 1/H for the second order schemes HMM-V-y, where y is
v or rk4. The width of the microscale domain and the step-size h are fixed with respect to
H . The parameters used are listed in row two of Table 1. The slope of the solid line indicates
decrease at second order in H

global error of the computations. It is possible to overcome the flattening of the
HMM-X-v cases by scaling the parameters η and h with H . See [3] for more de-
tail. By setting η = αηH

−s/qε1−1/q and h = αhH
s/rε1+2/rη−1/r, where r, s, p,

and q are the orders of the macroscale and microscale schemes, and the number of
vanishing moments and smoothness of the kernel respectively, and αh and αη are
constants, the HMM-V-v scheme is able to maintain second order behavior as shown
in Fig. 6. The drawback to scaling is that the constants αh and αη need to be chosen
carefully to place η and h in reasonable ranges.

HMM-V-rk4 maintains its second order performance as H decreases in the case
of fixed η and h. This performance is matched when η and h are scaled as described
above as shown in Fig. 7.

4 Generalizations

It is clear from the HMM structure that the stability of an HMM scheme requires that
both the macroscopic and microscopic schemes be stable. However, one must also
establish the consistency of the estimated force in (11). The notion of consistency
can be defined as in (6). Consider the general case,

ẍ = aε

(
t

ε

)
f(x), x(0) = x0, ẋ(0) = y0 (14)
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fixed v-v-exp
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scaled v-v-exp 2

Fig. 6. A comparison of the error, as a function of 1/H , for the second order schemes HMM-
V-v for fixed and scaled microscale domains and step-sizes. The parameters and scaling used
are listed in rows two and three of Table 1. The slope of the solid line indicates decrease at
second order in H . In the cases where η and h are scaled with respect to H , the method is
able to maintain second order performance, despite the leveling off seen in the fixed case. The
constants αh and αη were chosen such that the scaled and fixed versions of the calculation
would match at H = 0.1 and H = 1. The lines labeled “scaled v-v-exp 1” and “scaled v-v-
exp 2” illustrate this recalibration. The constants were reset at these values of H so that the
ratio of η to h would remain reasonable as H decreases

and the associated averaged equation,

Ẍ = 〈aε〉f(X)− 〈v2〉f(X)f ′(X) + C
√
ε. (15)

The basic assumption is that aε(t) is an ε-periodic smooth function satisfying
〈aε(t)〉 ≤ C, and f ∈ Cp with its derivatives uniformly bounded, i.e. ||f (k)||∞ < C0

for k = 0, · · · , p. Note that ||aε||∞ can still be of O(ε−1), even if 〈aε(t)〉 ≤ C.
These assumptions hold for the inverted pendulum. In this case aε = aε(t/ε),

〈aε(t)〉 = g/l, ||x||∞ ≤ xmax ∼ O(1), f(x) ≈ f(X), and ||ẋ||∞ ≤ Ey =√
2(E0 − g)/l ∼ O(1). The constants xmax and E0 are determined by the given

parameters and initial conditions. They may be calculated by considering the ef-
fective potential implied by (9), V (x) = g cos(x) + sin2 x/16π2l, and the energy
E0 = ly2

0/2 + V (x0).

Lemma 1. The following results can be found in [3]

1. If g ∈ C(R) is an α-periodic function with zero average, then for any K ∈ K
p,q

and ε > 0, there exists a positive constant Ĉ such that
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Fig. 7. A comparison of the error, as a function of 1/H , for the second order schemes HMM-
V-rk4 for fixed and scaled microscale domains and step-sizes. The parameters and scaling
used are listed in rows two and three of Table 1. The slope of the solid line indicates decrease
at second order in H . In the case where η and h are scaled with respect to H , the method
is able to match the second order performance of the fixed method. The lines labeled "scaled
v-rk4-exp 1" and "scaled v-rk4-exp 2" illustrate the recalibration of αh and αη as in Fig. 6

|Kη ∗ g(·/ε)(t)| ≤ Ĉ · αq

(
ε

η

)q

||K||W 1,q . (16)

2. Let fε(t) = f(t, t/ε), where f(t, s) is 1-periodic in the second variable and
∂rf(t, s)/∂tr is continuous for r = 0, . . . , p− 1, for any K ∈ K

p,q . Then there
exist constants C1 and C2, independent of ε and η, such that

|Kη ∗ fε(t)− f̄(t)| ≤ C1η
p + C2

(
ε

η

)q

. (17)

In the discussion which follows we will make use of the velocity

v
(s
ε

)
=

∫ s

sn

(
aε

(σ
ε

)
− 〈aε〉

)
dσ, s ∈

[
tn −

η

2
, tn +

η

2

]
where sn is chosen so that 〈v〉 = 0 and |sn− tn| ≤ ε. The velocity is related to ẋ and
likewise the scaling of aε implies that ||v||∞ ∼ O(1). Another useful term will be
∆x = x(s)−Xn, where s ∈ [tn − η/2, tn + η/2]. Provided that ||ẋ||∞ is bounded
as shown above, ∆x is small.

Lemma 2. (∆x is small) ∆x = x(s)−Xn, for s ∈ [tn − η/2, tn + η/2]

|∆x| ≤ C1ε+ C2η
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Proof. From [9] we have |x(tn)−Xn| ≤ Cε.

|x(s)−Xn| ≤ |x(tn)−Xn|+
∣∣∣∣∫ s

tn

ẋ(τ)dτ
∣∣∣∣

≤ Cε+
η

2
||ẋ||∞.

A more explicit description of ẋ(s) will also be needed in addition to its bounded-
ness.

Lemma 3. (Expression for ẋ(s))

ẋ(s) = f(Xn)v
(s
ε

)
+ ẋ(sn) + f(Xn)〈a〉(s− sn) +

∫ s

sn

aε

(σ
ε

)
f ′(z)∆xdσ,

where f ′(z) is the remainder term of a Taylor expansion.

Proof. By definition

ẋ(s) = ẋ(sn) +
∫ s

sn

aε

(σ
ε

)
f(x(σ))dσ

= ẋ(sn) + f(Xn)〈aε〉(s− sn) + f(Xn)
∫ s

sn

(
a
(σ
ε

)
− 〈a〉

)
dσ

+
∫ s

sn

a
(σ
ε

)
f ′(z)∆xdσ

= ẋ(sn) + f(Xn)〈aε〉(s− sn) + f(Xn)v
(s
ε

)
+

∫ s

sn

a
(σ
ε

)
f ′(z)∆xdσ .

In the previous section, the problem is recast as a first order system of equations, and
the average force is estimated by using the microscale solution with suitable initial
data. Setting y = ẋ and Yn = 〈y〉, the force(

F̃(1)

F̃(2)

)
=

(
K ∗ y
K ∗ ẍ

)
,

given the initial data(
xn

yn

)
=

(
Xn

Yn − f(Xn)〈
∫ s

tn
aε

(
σ
ε

)
dσ〉

)
,

accurately estimates the average force of (15). The accuracy of the force estimator
F̃(1) may be quickly shown given the initial value yn above.

Theorem 1. (Consistency of F̃(1)) Given F̃(1) = K ∗ y, K ∈ K
p,q ,

|F̃(1) − Y (tn)| ≤ C1
η2

ε
+ C2

(
ε

η

)q
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Proof. By definition,

K ∗ y =
∫ tn+ η

2

tn− η
2

Kη(tn − s)y(s)ds

=
∫ tn+ η

2

tn− η
2

Kη(tn − s)
[
yn + f(Xn)

∫ s

tn

aε

(σ
ε

)
dσ

+
∫ s

tn

aε

(σ
ε

)
f ′(z)∆xdσ

]
ds

= Yn

∫ tn+ η
2

tn− η
2

Kη(tn − s)ds+ f(Xn)
∫ tn+ η

2

tn− η
2

Kη(tn − s)
[∫ s

tn

aε

(σ
ε

)
dσ

−
〈∫ s

tn

aε

(σ
ε

)
dσ

〉
+

∫ s

tn

aε

(σ
ε

)
f ′(z)∆xdσ

]
ds

= Yn +O
((

ε

η

)q

,
η

ε
||∆x||∞

)
,

where f ′(z) is the remainder term from the expansion of f . Using the last part of
Lemma 1, the second term in the third line above reduces to O(( ε

η )q) but is dom-
inated by a simple error estimate of the last term of line three. The final result is
reached by recalling Lemma 2.

We now prove our main result, that the force estimator F̃(2) provides a good approx-
imation of the averaged force Ẍ .

Theorem 2. (Consistency of F̃(2)) Given F̃(2) = K ∗ g, K ∈ K
p,q , and g(t) =

aε(t/ε)f(x(t)), then∣∣∣F̃(2) − Ẍ(tn)
∣∣∣ ≤ O(

η2

ε
,
ε

η
,
εq−1

ηq
, η,
√
ε

)
Proof. Let

G(t) = 〈aε〉 f(X)−
〈
v2

〉
f(X)f ′(X). (18)

We show that K ∗ g ∼ G.

K ∗ g =
∫ tn+ η

2

tn− η
2

Kη(tn − s)aε

(s
ε

)
f(x(s))ds

= f(Xn)
∫ tn+ η

2

tn− η
2

Kη(tn − s)aε

(s
ε

)
ds

+ f ′(Xn)
∫ tn+ η

2

tn− η
2

Kη(tn − s)aε

(s
ε

)
∆xds

+
∫ tn+ η

2

tn− η
2

Kη(tn − s)aε

(s
ε

)
f ′′(z)

∆x2

2
ds

= I1 + I2 + I3,
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where f ′′(z) is the remainder term from the expansion of f .
Consider I3,

|I3| ≤
1
2
||aε||∞ · ||f ′′||∞ · ||∆x||2∞

∫ tn+ η
2

tn− η
2

|Kη(tn − s)|ds

∼ O(||∆x||2∞/ε).

Using Lemma 1, we may estimate I1,

I1 = 〈aε〉f(Xn) + f(Xn)
∫ tn+ η

2

tn− η
2

K(tn − s)
(
aε

(s
ε

)
− 〈aε〉

)
ds

≤ 〈aε〉f(Xn) + ||f ||∞ · ||aε||∞
(
ε

η

)q

≤ 〈aε〉f(Xn) + C

(
εq−1

ηq

)
The estimate of I2 relies again on Lemma 1

I2 = 〈aε〉f ′(Xn)
∫ tn+ η

2

tn− η
2

Kη(tn − s)∆xds

+ f ′(Xn)
∫ tn+ η

2

tn− η
2

Kη(tn − s)
(
aε

(s
ε

)
− 〈aε〉

)
∆xds

= 〈aε〉f ′(Xn)
∫ tn+ η

2

tn− η
2

Kη(tn − s)∆xds

+ f ′(Xn)
∫ tn+ η

2

tn− η
2

K ′
η(tn − s)v

(s
ε

)
∆xds

− f ′(Xn)
∫ tn+ η

2

tn− η
2

Kη(tn − s)v
(s
ε

)
ẋ(s)ds

where we have integrated by parts and v(s/ε) =
∫ s

s0
(aε(σ/ε)−〈aε〉)dσ, and 〈v〉 = 0.

Using Lemma 3 to replace ẋ(s), the last term in the expression above for I2
yields the final part of the average force,
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−f ′(Xn)
∫ tn+ η

2

tn− η
2

K ′
η(tn − s)v

(s
ε

)
ẋ(s)ds =

−f ′(Xn)ẋ(sn)
∫ tn+ η

2

tn− η
2

Kη(tn − s)v
(s
ε

)
ds

−f ′(Xn)f(Xn)〈aε〉
∫ tn+ η

2

tn− η
2

Kη(tn − s)v
(s
ε

)
(s− sn)ds

−f ′(Xn)f(Xn)
∫ tn+ η

2

tn− η
2

Kη(tn − s)v2
(s
ε

)
ds

−f ′(Xn)
∫ tn+ η

2

tn− η
2

Kη(tn − s)v
(s
ε

)∫ s

sn

aε

(σ
ε

)
f ′(z)∆xdσds)

= −f ′(Xn)f(Xn)〈v2〉+O
(
εq−1

ηq
,
η2

ε

)

All that remains is to show that the terms of I2 that are not part of G are small.

I2 = −f ′(Xn)f(Xn)〈v2〉+ f ′(Xn)〈aε〉
∫ tn+ η

2

tn− η
2

Kη(tn − s)∆xds

+f ′(Xn)
∫ tn+ η

2

tn− η
2

K ′
η(tn − s)v

(s
ε

)
∆xds+O

(
η2

ε
,
εq−1

ηq

)

In this expression, the first term is the term of interest and appropriate estimates will
reduce the remaining terms to some small order. Most of these terms are reduced by
a direct application of Hölder’s inequality or the Lemma 1, but the estimate of the
final term, involving K ′

η(tn − s), is more involved. First define,

� =
∫ tn+ η

2

tn− η
2

K ′
η(tn − s)v

(s
ε

)
∆x(s)ds

By expanding ∆x(s) and applying Lemma 1, |�| becomes,

|�| ≤
∣∣∣∣∣
∫ tn+ η

2

tn− η
2

K ′
η(tn − s)v

(s
ε

)
x(s)ds

∣∣∣∣∣
+ |〈Xn〉| ·

∣∣∣∣∣
∫ tn+ η

2

tn− η
2

K ′
η(tn − s)v

(s
ε

)
ds

∣∣∣∣∣
≤ |�1|+ |〈Xn〉| · C1

(
εq−1

ηq

)

Integrate (2) twice and replace x(s) in �1 to give,
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|�1| ≤
∣∣∣∣∣
∫ tn+ η

2

tn− η
2

K ′
η(tn − s)v

(s
ε

)∫ s

tn

∫ σ

tn

1
ε
a
(γ
ε

)
f̃(γ)dγdσds

∣∣∣∣∣ +∣∣∣∣∣
∫ tn+ η

2

tn− η
2

K ′
η(tn − s)v

(s
ε

)
(C2s+ C3) ds

∣∣∣∣∣
≤ |�2|+ C4

(
εq−1

ηq

)
,

again calling on Lemma 1 in the final step. Observe that 1
εa

(
s
ε

)
= 〈aε〉 + 1

ε b
(

s
ε

)
where ‖b‖∞ ∼ O(1), b(s+ 1) = b(s), and 〈b〉 = 0, and define,

a[1](s) ≡
∫ s

tn

1
εa

(
σ
ε

)
dσ = 〈aε〉(s− tn) + β(s)

where β(s + ε) = β(s) and ‖β‖∞ ≤ ‖b‖∞. It will be important to note that
‖a[1]‖∞ ∼ O(1). With these definitions (and again Lemma 1) estimate |�2|,

|�2| ≤
∣∣∣∣∣
∫ tn+ η

2

tn− η
2

K ′
η(tn − s)v

(s
ε

)∫ s

tn

∫ σ

tn

a[1](γ) ˙̃
f(γ)dγdσds

∣∣∣∣∣ +∣∣∣∣∣
∫ tn+ η

2

tn− η
2

K ′
η(tn − s)v

(s
ε

)∫ s

tn

a[1](σ)f̃(σ)dσds

∣∣∣∣∣ +

∣∣∣a[1](tn)f̃(tn)
∣∣∣ · ∣∣∣∣∣

∫ tn+ η
2

tn− η
2

K ′
η(tn − s)v

(s
ε

)
(s− tn)ds

∣∣∣∣∣
≤ |�3|+ |�4|+

(
‖a[1]‖∞ · ‖f̃‖∞

)
C5

(
εq−1

ηq

)

�3 may be quickly reduced,

|�3| ≤
(
‖K̇‖∞ · ‖v‖∞ · ‖a[1]‖∞ · ‖ḟ‖∞ · ‖ẋ‖∞

)
η

In similar fashion to the treatment of a[1], break β(s) into a constant part equal to
〈β〉 and an oscillating part with mean 0. Then

a[2](s) =
∫ s

tn
a[1](σ)dσ =

〈aε〉(s− tn)2

2
+ 〈β〉(s− tn) + εΛ(s)

where Λ(s+ ε) = Λ(s) and ‖Λ‖∞ ∼ O(1). After expanding f̃(s) about tn,
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|�4| =
∣∣∣∣∣
∫ tn+ η

2

tn− η
2

K ′
η(tn − s)v

(s
ε

)∫ s

tn

a[1](σ)
(
f̃(tn) + ˙̃

f(z(σ))∆x(σ)
)

dσds

∣∣∣∣∣
≤

∣∣∣f̃(tn)
∣∣∣ · ∣∣∣∣∣

∫ tn+ η
2

tn− η
2

K ′
η(tn − s)v

(s
ε

)
a[2](s)ds

∣∣∣∣∣ + |�5|

≤ ‖f̃‖∞ ·
∣∣∣∣∣
∫ tn+ η

2

tn− η
2

K ′
η(tn − s)v

(s
ε

)( 〈aε〉(s− tn)2

2
+ 〈β〉(s− tn)

)
ds

∣∣∣∣∣
+‖f̃‖∞ ·

∣∣∣∣∣
∫ tn+ η

2

tn− η
2

K ′
η(tn − s)v

(s
ε

)
Λ(s)ds

∣∣∣∣∣ + |�5|

≤
(
‖f̃‖∞

)
C6

(
εq−1

ηq

)
+

(
‖f̃‖∞ · ‖K̇‖∞ · ‖v‖∞ · ‖Λ‖∞

) ε

η
+ |�5|

where Lemma 1 is used in the last step. Finally, a straightforward estimate shows,

|�5| =
∣∣∣∣∣
∫ tn+ η

2

tn− η
2

K ′
η(tn − s)v

(s
ε

)∫ s

tn

a[1](σ)f̃(z(σ))∆x(σ)dσds

∣∣∣∣∣
≤

(
‖K̇‖∞ · ‖v‖∞ · ‖a[1]‖∞ · ‖f̃‖∞

)
‖∆x‖∞

Combining all of the estimates and Lemma 2,

|�| ∼ O
(
εq−1

ηq
,
ε

η
, η

)
and

I2 = −f ′(Xn)f(Xn)〈v2〉+O
(
εq−1

ηq
, η

)
.

Combining the results for I1, I2, and I3 yields the complete estimate,

|K ∗ g − Ẍ(tn)| = |K ∗ g −G+ C
√
ε|

∼ O(
η2

ε
,
ε

η
,
εq−1

ηq
, η,
√
ε),

where G is defined in (18).

5 Conclusion

The inverted pendulum exhibits stable slow oscillation due to rapid microscale oscil-
latory forcing. This macroscale behavior is captured very well by a set of HMM algo-
rithms for which the computational complexity is much lower than that of standard
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numerical methods. The HMM approach requires only O(T/H · η/ε) operations,
which lead to a computational savings ofO(H/η) or about 103 for the parameters in
our numerical experiments compared to standard numerical methods. Notably, stan-
dard methods lack sufficient accuracy to solve the model problem here with ε = 10−6

for macroscopic time scales.
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Summary. The incompressible Navier–Stokes equation is studied. By using multiscale ex-
pansion methods we obtain local and homogenized Navier–Stokes equations. We then derive
a homogenization based eddy viscosity model.

Key words: multiscale expansion, Navier–Stokes equation, homogenization

1 Introduction

The starting point in our study is the incompressible Navier–Stokes equation. In a
recent work [5] we prove the existence of a two-scale limit of the incompressible
stationary Navier–Stokes equation.

In the present work we introduce a slow time scale (of order
√
εt) where t is the

normal time scale. The slow time scale allows us to derive the global behaviour, (i.e.,
the slow time–large scale asymptotics) of the flow. This will be referred to as the
homogenized Navier–Stokes equation.

A motivation for the two-scale asymptotics is the separation of scales in cellular
flow as Rayleigh–Bénard convection [3] and in flow in porous media [11]. The classi-
cal derivation of Darcy’s law by Tartar in the appendix of Sanchez-Palencia [14] has
been a starting point for various further developments, see e.g. the survey article [11]
by Mikelic or our recent paper [5]. In order to adequately model more complex flows
we first need to understand the simplest convective flow, Rayleigh–Bénard convec-
tion, which is driven by unstable buoyancy forces caused by a large enough temper-
ature difference between two parallel plates. In fact fluid motion driven by thermal
convection is a common and important phenomenon in nature. It is the major feature
of the dynamics of the oceans, atmosphere and the interior of stars and planets. Con-
vection is also an important phenomena in numerous industrial processes. In [3] and
[4] the Rayleigh–Bénard convection problem is studied in the Boussinesq approxi-
mation and local equations are derived for the coupled Navier–Stokes and heat equa-
tions. We also prove existence and uniqueness in the large aspect ratio regime (small
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boyancy forcing). We also prove existence of strong attractors. It is well known that
a turbulent flow exhibits an extensive range of temporal and spatial scales, see [6].
The transfer of energy between the motion on the different scales is complex. In re-
cent years it has been modeled by multiple scales techniques. In the present study we
present a simple multiple scales homogenization for the derivation of the local and
homogenized effective equations for the incompressible Navier–Stokes equations in
a periodic porous medium. The advantage of such a derivation is that it gives sim-
ple equations which describe the coupling between the dynamics at different scales.
Up to the authors knowledge the slow-time large-scale Navier–Stokes equation (6)
has not been in the literature before. For rigorous results concerning the conver-
gence process in the derivation of the asymptotic homogenization limits we refer to
[5] where a general compensated compactness theorem is proved in the context of
two-scale convergence. We use the homogenized Navier–Stokes equation to define
a subgrid tensor and construct a Large Eddy Simulation model based on this tensor.
An advantage by such a framework is that it takes into account the contribution from
finer scales to the subgrid model. For numerical simulations using this approach we
refer to [7] and [8]. The paper is organized as follows: In Sect. 2 we expand the
velocity field and the pressure of a scaled Navier–Stokes system in a power series
with multiple scales in the terms. We use standard multiple scales homogenization
techniques to derive the system describing the local behaviour and the large scale
(homogenized) system, respectively. In Sect. 3 we propose a Large Eddy Simulation
model based on the homogenized Navier–Stokes system derived in Sect. 2. In Sect. 4
we present a homogenization result for the 3D stationary Navier–Stokes system in an
application to flow in periodic porous media. We here review the results from [5] and
refer to [5] for a full exposition with proofs of the statements. The proof in Sect. 4
is based on a new compensated compactness result (Theorem 5) and a new div-curl
lemma (Corollary 3) which are stated in the Appendix (Sect. 5) together with the ba-
sic results of Nguetseng’s two-scale convergence. Also here we refer to [5] for a full
exposition. Concerning notations and exact meaning of function spaces for smooth
oscillating test functions we refer to [13].

2 Scaling and Expansions

We start with the incompressible Navier–Stokes equation{
∂u

∂s
+ (u · ∇)u− ν∆u+∇p = f,

div u = 0
x ∈ Ω, s ∈ (0, S). (1)

A multiple scales analysis together with the a priori estimates gives us the small
spatial scaling y = x/ε. Here ε is the typical pore size in porous media or the size of
a cell in cellular flow. The multiple scales analysis also motivates a renormalization
of time t :=

√
εs. We introduce the fast temporal scaling τ := t/ε associated to the

renormalized time. This gives us a scaled Navier–Stokes equation:
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ε1/2 ∂uε

∂t
+ (uε · ∇)uε − ε3/2ν∆uε +∇pε = fε,

div uε = 0.
x ∈ Ω, t ∈ (0, T ). (2)

We equip (2) with the initial data uε(x, 0) = u0
ε(x) which is assumed to be bounded

in L2(Ω). We will throughout the paper assume that the forcing is of the form

fε(x, t) = f0

(
x, t, x/ε,

t

ε

)
+ εf1

(
x, t, x/ε,

t

ε

)
+ . . . ,

where fε ∈ L2(0, T ;L2(Ω; Rn)) and where fi, i = 0, 1, .., are regular enough to
permit the above scaling. A typical situation is the case of periodic cellular flow like
in Rayleigh–Bénard convection see [3].

In this section we expand the functions uε = uε(x, t) and pε = pε(x, t) in
multiple scales power series in order to find the leading order systems in terms of
small scale and large scale spatial variables and fast time and slow time variables,
respectively. Our goal is to find a scaling which preserves the structure of the original
system, at least to the leading order approximation.

We assume in a standard fashion that the functions uε = uε(x, t) and pε =
pε(x, t) admit multiple scales expansions on the forms

uε(x, t) = ε1/2
∞∑

i=0

εiui

(
x, t,

x

ε
,
t

ε

)
, (3)

pε(x, t) =
∞∑

i=0

εipi

(
x, t,

x

ε
,
t

ε

)
, (4)

where the ui’s and the pi’s are all assumed to be Y -periodic with respect to y ∈ R
n,

n = 2, 3 and 1-periodic in the fast time variable τ . For simplicity we assume that
Y is the unit cube in R

n. If we formally put y = x/ε and τ = t/ε, the chain rule
transforms the differential operators as

∂

∂t
�→ ∂

∂t
+

1
ε

∂

∂τ
,

∂

∂x
�→ ∂

∂x
+

1
ε

∂

∂y
.

The divergence, gradient, curl and Laplace operators transform accordingly and we
denote differentiation with repect to x and y by subscript x and y, respectively. In a
standard way we now insert the series (3)-(4) into the system (2). By employing the
chain rule we can list a hierarchy of equations in increasing orders of powers of ε.
For the first equation in (2) we obtain:

ε0 :
∂u0

∂τ
+ (u0 · ∇y)u0 − ν∆yyu0 +∇yp1 = f0 −∇xp0;

ε1 :
∂u0

∂t
+
∂u1

∂τ
+ (u0 · ∇x)u0 + (u1 · ∇y)u0 + (u0 · ∇y)u1

− ν∆yyu1 − νdivx∇yu0 − νdivy∇xu0 +∇yp2 = f1 −∇xp1.
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The second equation in (2) yields:(
divx +

1
ε
divy

)
(ε1/2u0 + ε3/2u1 + ...) = 0,

i.e.,

ε−1/2 : divy u0 = 0;

ε1/2 : divx u0 + divy u1 = 0.

The fast time - small scale system corresponding to (2) is given by:{
∂u0

∂τ
+ (u0 · ∇y)u0 − ν∆yyu0 +∇yp1 = f0 −∇xp0

divyu0 = 0.
(5)

The existence of the stationary version of the system (5) is rigorously derived by the
help of a general two-scale compensated compactness theorem recently proved in
[5]. In Sect. 4 we review the result for the readers convenience.

The corresponding slow time - large scale system derived above reads:⎧⎪⎨⎪⎩
∂u0

∂t
+
∂u1

∂τ
+ (u0 · ∇x)u0 + (u1 · ∇y)u0 + (u0 · ∇y)u1

−ν∆yyu1 − νdivx∇yu0 − νdivy∇xu0 +∇yp2 = f1 −∇xp1,
divx u0 + divy u1 = 0.

An averaging (denoted overbar) of the fast time and small scale, i.e., over (0, 1)
in τ and Y in y gives the (homogenized system), i.e., the slow time - large scale
asymptotics: {

∂u0

∂t
+ (u0 · ∇x)u0 = f1 −∇xp1,

divxu0 = 0.
(6)

Here we have used the integration by parts formula. The local inertial terms (involv-
ing ∇y) vanish by local periodicity and incompressibility, respectively, c.f. [3] pp.
164–165.

3 Reynolds Stress Tensor and Eddy Viscosity

Let us consider again the homogenized system (6):{
∂u0

∂t
+ (u0 · ∇x)u0 = f1 −∇xp1,

divxu0 = 0.

Let us also consider the system
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∂u0

∂t
+ (u0 · ∇x)u0 + F (u0) = f1 −∇xp1,

divxu0 = 0.

If we write the function F (u0) = divxσ(u0) we can define the Reynolds stress
tensor

σ(u0) = u0 ⊗ u0 − u0 ⊗ u0.

The procedure of averaging the Navier–Stokes equations over a certain scale is re-
ferred to as Large Eddy Simulation LES. See e.g. [7] or [8], where a homogenization
based LES method is developed and compared numerically to traditional LES mod-
els. Other related recent subgrid models for incompressible multiscale flow can be
found in [10] and [9], where a dynamic subgrid model based on self similarity and a
multiresolution Haar-base wavelet analysis is developed. The main difficulty is how
to model F in terms of u0. The simplest and most commonly used subgrid models
are so called eddy viscosity models, where the effect of the Reynolds stress tensor
is modeled as an extra viscosity. In conventional eddy viscosity based LES models
the eddy viscosity has been considered too dissipative. For the recent homogeniza-
tion based LES models the eddy viscosity comes from a rigorous derivation of the
equations describing the microstructure of the flow and is therefore balanced to the
global viscosity, see [7] and [8] or the book [6] by Frisch. In linear homogenization
the separation of scales allows a decoupling of the form

U(x, y) = u0(x) +
∑

i

χi(y)
∂u0

∂xi
(x)

where χi solves a classical cell problem, where F = 0:{
−∆yyχi = F in Y,
χi ∈ H1

per(Y ).

In the case of separated scales as in Rayleigh–Bénard convection or jet engine flow
this motivates a simple homogenization based eddy viscosity model where one as-
sumes that near the mean field the flow can be approximated as:

u0(x, t, y, τ) = u0(x, t) +∇u0(x, t) : ξ(y, τ),

where ξ = ξij is a 3 × 3-matrix function in the local variables with ξij = 0. For
rotating jet engine flow the eddy viscosity tensor is explicitly derived in [2] and
for the Navier–Stokes equation the details can be found in [7] and [8] under this
assumption. These calculations will not be repeated here but the consequence of this
approximation is that we can write the global equation as:{

∂u0

∂t
+ (u0 · ∇x)u0 − divx(A : ∇x)u0 = f1 −∇xp1,

divxu0 = 0.

where A is the eddy viscosity tensor. In practice A is computed approximately for a
given local random forcing. In [7] the forcing in the local Navier–Stokes equation is
chosen to be a Wiener process where the Fourier components are chosen in such a
way that the Kolmogorov inertial range 5/3-power-law scaling is satisfied.
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4 Stationary Flow in Porous Media, Homogenization
of the Navier–Stokes Equations

In this section we consider a periodic porous medium in three dimensions, for sim-
plicity, let us assume the domain being a periodic repetition of ]0, L[3= Ω. We set
periodic boundary conditions on the outer boundary ∂Ω which will somewhat sim-
plify the a priori estimates. Following [11] we define the unit cell Y =]0, 1[3, and let
YS , the solid part, be a closed subset of Ȳ and YF = Y ¬YS be the fluid part. Further
we make a periodic repetition of YS all over R

3 and set Y k
S = YS + k, k ∈ Z

3. The
set ES =

⋃
k∈Z3 Y k

S is a closed subset of R
3 and EF = R

3¬ES is an open set in
R

3. We will assume that YF is an open connected set of strictly positive measure,
with a Lipschitz boundary, YS has a strictly positive measure in Ȳ , EF and the inte-
rior of ES are open sets with the boundary of class C0,1, which are locally located
on one side of their boundary and that EF is connected. Let Ω be covered with a
regular mesh of size ε, each cell being an εY -cube, Y ε

i , 1 ≤ i ≤ N(ε). Each Y ε
i is

homeomorphic to Y , by linear homeomorphism Πε
i .

Define Y ε
Si

= (Πε
i )−1(YS) and Y ε

Fi
= (Πε

i )−1(YF ). For sufficiently small ε > 0
we consider the set Tε = {k ∈ Z

3|Y ε
Sk
∈ Ω} and define Oε =

⋃
k∈Tε

Y ε
Sk

, Sε =
∂Oε and Ωε = Ω¬Oε = Ω

⋂
εEF . We have ∂Ωε = ∂Ω

⋃
Sε. The domains Oε and

Ωε represents the solid and fluid parts of the porous medium Ω. Obviously there is
a characteristic length L and a microscopic length l. The ratio between these length
scales yields a small parameter ε = l/L, which is assumed to be an even integer.

The fluid flow in a porous medium with the appropriate scaling can be modelled
by the following incompressible stationary Navier–Stokes equations:⎧⎨⎩ (uε ·  )uε − ε3/2ν � uε +∇pε = fε

div uε = 0
uε|∂Ωε

= 0,
(7)

almost everywhere in Ωε. Here uε is the velocity vector field, pε is the pressure and ν
is the kinematic viscosity of the fluid. We assume the forcing fε two-scale converges
weakly to f0 in L2(Ω × Y ; R3),

∫
Y
f0(x, y) dy = 0. The fluid-solid boundary is

denoted by ∂Ωε. The scaling exponent 3/2 for the viscosity is carried out in [3]
for cellular flows and it is the critical exponent which preserves the Navier–Stokes
structure on a local scale also in the porous media case. This scaling is previously
used in e.g. [14] and Mikelic [11].

The existence of weak (Leray) solutions of (7) can be found in e.g. Mikelic [11].
We note that the solutions, uε, only exist in-between the solid part of Ω, i.e., in
Ωε ⊂ Ω. When ε is decreasing it corresponds to smaller and smaller cells (ε − Y -
cells), with smaller and smaller channels.

There is a vast literature on fluid flow in porous media. Here we refer to the
survey article [11] by Mikelic where both the existence of solution to (7) and ho-
mogenization problem for (7) are considered. Indeed [11] is a nice introduction to
filtration and fluid flow in porous media.
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4.1 A Priori Estimates

To prove a priori estimates we need the following improved Poincaré inequality, see
e.g. Tartar’s proof in the appendix of [14].

Lemma 1. Let uε
i ∈ H1(Ωε) and assume that we have a non-slip boundary condi-

tion somewhere in the unit cube Y , then∫
Ωε

|uε(x)|2dx ≤ ε2C

∫
Ωε

|∇uε(x)|2dx.

The basic estimate is the following.

Lemma 2. Assume fε ∈ L2(Ωε; R3), with a uniform bound and let uε and pε be
solutions of (7). Then

ε−1/2‖uε‖L2(Ωε;R3) ≤ C,

and
ε1/2‖∇uε‖L2(Ωε;R32 ) ≤ C.

Proof. See [5].

We can extend smoothly the solutions, uε, by zero to the solid part, such that the a
priori estimates become valid on the constant domain Ω. Hence

Lemma 3.
ε−1/2‖uε‖L2(Ω;R3) ≤ C,

ε1/2‖∇uε‖L2(Ω;R32 ) ≤ C.

By Schwarz inequality we also have the following estimate for the convective
term:

Corollary 1.
‖(uε · ∇)uε‖L1(Ω;R3) ≤ C,

Proof. See [5].

For the estimate of the remaining terms we need the following function spaces

H = {u ∈ L2(Ω; R3),∇ · u = 0, uε|∂Ω = 0},

Let P be the projection onto the orthogonal complement of H , denoted by H⊥.

Corollary 2.
‖∇pε − ε3/2P∆uε‖L1(Ω;R3) ≤ C.

Proof. See [5].
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4.2 Homogenization

We recognize two spatial scales, the global x and the local (pore level) of order
ε−1x. We introduce a local spatial scale y = ε−1x. In order to capture oscillations
in the flow by two-scale convergence this means that we use test functions φε(x) =
φ
(
x, x

ε

)
, where φ ∈ C∞

0 (Ω;C∞(Y )). We do not have a priori estimates to be able
to identify the global equations but we can prove convergence for the local equations.

Theorem 1. Let uε and pε be solutions of (7). Then, ε−1/2uε two-scale converges
weakly to u0 and ∇pε two-scale converges in the distributional sense to ∇yp

1, the
solutions of the local stationary Navier–Stokes equation,⎧⎨⎩

(
u0 · ∇y

)
u0 − ν �yy u

0 = −∇yp
1 + f0

divy u
0 = 0

u0(x, ·)|∂Ys
= 0,

(8)

where ∂Ys is the fluid-solid boundary of Y.

Proof. The proof uses Corollary 3 below. For a proof, see [5].

Remark 1. Of course, the solutions of (8) may be more regular than the spaces where
the convergence takes place. With more regular initial data and forcing one can also
prove compensated compactness for the time-dependent Navier–Stokes equation.
The corresponding rigorous convergence analysis for the homogenized problem (6)
is a more delicate problem which is open.

5 Appendix: Two-Scale Compensated Compactness

Below we review some classical and new results concering compacness of oscillation
sequences. In 1989 G. Nguetseng came up with a new concept of weak convergence
(two-scale convergence) using periodically oscillating test functions (period ε) with
vanishing period as ε tends to zero.

Definition 1. A sequence {uε} in L2(Ω) is said to two-scale converge weakly to a
function u0 = u0(x, y) in L2(Ω × Y ) if

lim
ε→0

∫
Ω

uε(x)ϕ
(
x,
x

ε

)
dx =

∫
Ω

∫
Y

u0(x, y)ϕ(x, y) dydx,

for all test functions ϕ ∈ L2(Ω;C∞(Y )).

The basic compactness result with respect to two-scale convergence is due to
Nguetseng [13] and reads

Theorem 2. For every bounded sequence {uε} in L2(Ω) there exist a subsequence
and a function u0 in L2(Ω × Y ) such that uε two-scale converges weakly to u0.
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A fundamental result for applications to homogenization problems is the characteri-
zation of two-scale limits of functions in H1(Ω) and their gradients is, see [13]:

Theorem 3. Assume that {uε} is a bounded sequence in H1(Ω). Then

lim
ε→0

∫
Ω

uε(x)ϕ
(
x,
x

ε

)
dx =

∫
Ω

∫
Y

u(x)ϕ(x, y) dydx,

for all ϕ ∈ L2(Ω;C∞(Y )) and

lim
ε→0

∫
Ω

∇uε(x) · ψ
(
x,
x

ε

)
dx =

∫
Ω

∫
Y

(∇xu(x) +∇yu1(x, y)) · ψ(x, y) dydx,

for all ψ ∈ H1(Ω;C∞(Y ; Rn)), where u is the weak L2(Ω)-limit and u1 =
u1(x, y) ∈ L2(Ω;H1(Y )).

By the Rellich theorem, u is of course the strong L2-limit of {uε}.
Remark 2. In [1] it is proven that the splitting of the gradient as in Theorem 3 is
true in the sense of Radon measures if uε belongs to BV (Ω), which is the space of
L1(Ω) functions whose distributional gradients are in an R

n-valued Radon measure
with bounded total variation in Ω. We refer to [1] for the details. An observation
is that if uε ∈ L1(Ω) and the gradients belongs to L1(Ω; Rn) then uε belongs to
BV (Ω).

A decade earlier F. Murat and L. Tartar developed a theory (compensated com-
pactness) which opened the way to study the asymptotic behaviour of products of
weakly compact sequences. They proved the div-curl lemma:

Lemma 4. Suppose that {uε} and {vε} are two uniformly bounded sequences in
L2(Ω; Rn), with weak limits u and v, respectively. Suppose further that {div uε} is a
compact set of H−1(Ω) and {curl vε} is a compact set of H−1(Ω; Rn), respectively.
Then, for every test function ϕ ∈ C∞

0 (Ω), we have∫
Ω

uε(x) · vε(x)ϕ(x) dx→
∫

Ω

u(x) · v(x)ϕ(x) dx.

They also proved a more general Compensated-Compactness Theorem from
which the div-curl lemma follows as a special case.

Theorem 4 (Compensated compactness). Let Q be a quadratic form on R
p. If

(i) {uε} converges weakly to u ∈ L2(Ω; Rp)
(ii) {∑p

j=1

∑n
l=1 aijl

∂uε
j

∂xl
} belongs to a compact set of H−1

loc (Ω), for i = 1, . . . , q,

then
Q(uε)⇀l0 ∈ L1(Ω) (or in the sense of measures),

and the following holds true:

(i) If Q(λ) ≥ 0 for all λ ∈ Λ then, l0(x) ≥ Q (u(x)) .
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(ii) If Q(λ) = 0 for all λ ∈ Λ then l0(x) = Q (u(x)) .

Here the characteristic set Λ is defined by

Λ =

⎧⎨⎩λ ∈ R
p :

p∑
j=1

n∑
l=1

aijlλjξl = 0 for some ξ ∈ R
n¬{0}

⎫⎬⎭ .

For a proof of Lemma 4, Theorem 4 and related results we refer to [12] and [15] and
the references therein.

A result of compensated compactness type for the method of two-scale conver-
gence has been missing in the theory which has put restrictions on the applicability
of two-scale convergence. For instance the identification of the two-scale limit of the
nonlinear inertial term in the Navier–Stokes equation has been hard, see [11].

This was a strong motivation for the study in [5]. In this paper the results of
Murat and Tartar are extended to the context of two-scale convergence. We prove:

Theorem 5 (Two-scale compensated compactness). Let {ε} be a
sequence of positive numbers which tends to zero such that 1/ε is an even integer, let
the characteristic set Λ be defined by

Λ =

⎧⎨⎩λ ∈ R
p :

p∑
j=1

n∑
l=1

aijlλjξl = 0 for some ξ ∈ R
n¬{0}

⎫⎬⎭
and let Q be a quadratic form on R

p. If

(i) {uε} two-scale converges weakly to u0 ∈ L2(Ω × Y ; Rp)
(ii) {

∑p
j=1

∑n
l=1 aijl

∂uε
j

∂xl
} is bounded in L2(Ω) for i = 1, . . . , q,

then
Q(uε) two-scale converges weakly to l0 ∈ L1(Ω × Y )

(or in the sense of measures) and the following holds true:

(i) If Q(λ) ≥ 0 for all λ ∈ Λ then, l0 ≥ Q (u0) .
(ii) If Q(λ) = 0 for all λ ∈ Λ then l0 = Q (u0) .

As in the usual compensated compactness setting we get as a corollary a two-
scale div-curl lemma. This result is used in the proof of the homogenization of the
Navier–Stokes system (8) in Sect. 4.

Corollary 3 (Two-scale div-curl lemma). Let {ε} be a sequence of positive num-
bers which tends to zero such that 1/ε is an even integer and assume that

(i) {uε, vε} two-scale converges weakly to {u0, v0} ∈ L2(Ω × Y ; R6)
(ii) {div uε, curl vε} is bounded in L2(Ω; R4).
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Then

lim
ε→0

∫
Ω

uε(x)φ
(
x,
x

ε

)
· vε(x)φ

(
x,
x

ε

)
dx =∫

Ω

∫
Y

u0(x, y)φ(x, y) · v0(x, y)φ(x, y) dydx,

for all φ ∈ C∞
0 (Ω;C∞(Y )).
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Summary. The dynamics of flexible fibers or filaments immersed in a fluid are important
to understanding many interesting problems arising in biology, engineering, and physics. For
most applications, the flows are at very low Reynolds numbers, and the fibers can have aspect
ratios of length to radius from a few tens to several thousands.

This class of problems is difficult to solve accurately to a reasonable cost with grid based
methods, partly due to the different scales in length and radius of the fibers and the fact that
elastic equations must be solved within the fibers.

Making explicit use both of the fact that we are considering Stokes flow, as well as of
the slenderness of the fibers, we have designed a cost-effective method to simulate multiple
interacting elastic fibers in a three dimensional Stokes flow. The key points are that for Stokes
flow, boundary integral methods can be employed to reduce the three-dimensional dynamics to
the dynamics of the two-dimensional fiber surfaces, and that using slender body asymptotics,
this can be further reduced to the dynamics of the one-dimensional fiber center-lines. The
resulting integral equations include both the effect of the fibers on the flow field, as well as the
interactions of fibers, as mediated by the flow.

We have developed a numerical method based on this theory that allows for simulating
multiple interacting highly flexible fibers. Considering the efficiency of the method, another
important fact is that the framework is suitable for introducing a semi-implicit time-stepping
scheme, eliminating the severe constraint on the time-step size arising from the elasticity.
Our numerical approach is based on second-order divided differences for spatial derivatives,
combined with special product integration methods that reflect the nearly singular nature of
the integral operators.

Key words: fluid-structure interaction, boundary integral method, slender body approxima-
tion, flexible fibers

1 Background and Introduction

Flows in nature and engineering often acquire their interesting aspects by the pres-
ence in and interaction of the fluid with immersed elastic objects. Fish, tree leaves,
flagella, and rigid polymers all come to mind. A very important special case is when
the elastic bodies are microscopic and filamentary. For example, flexible fibers make
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up the micro-structure of suspensions that show strongly non-Newtonian bulk be-
havior, such as elasticity, shear-thinning, and normal stresses in shear flow [4, 9].
Moreover, micro-organisms utilize for locomotion the anisotropic drag properties of
their long flexible flagella [2]. The dynamics of flexible filaments are also relevant
to understanding soft materials. Liquid crystal phase transitions for example lead to
the study of “soft” growing filaments in a smectic-A phase, [12, 16]. In all these
problems, the filaments have large aspect ratios (length over radius), ranging from
order ten to a thousand for natural to synthetic fibers, and up to many thousands in
biological settings.

In the listed examples, the flows are at very low Reynolds numbers, for which the
fluid dynamics is described by the Stokes equations. The Stokes equations are linear,
and time enters only as a parameter, thus leading to its celebrated reversibility. How-
ever, this reversibility is broken by surface forces such as those induced by bending
rigidity, and simple forcing flows can lead to very nontrivial dynamics.

Consider a plane shear flow. A rigid straight fiber placed in this flow will rotate
and translate with the fluid. However, the dynamics can be very different when the
fiber is flexible. As the strength of the shear flow increases relative to the bending
rigidity of the fiber, there is a sharp bifurcation beyond which the fiber is unstable to
buckling [1, 19] and small shape perturbations can grow into substantial bending of
the filament. This stores elastic energy in the fiber which can later be released back
to the system as the fiber is extended. This is related to the anomalous stresses that
elastic fluids can develop, such as normal stress differences that push apart bounding
walls in linear shear experiments [9]. The first normal stress difference is zero in
the absence of the fiber, and is zero in temporal mean for a rigid fiber. For a fiber
that bends, the symmetry of the first normal stress difference that holds for a straight
fiber is broken, and the integrated normal stress difference now yields a positive net
contribution [1, 19].

Thus, the dynamics show a surprising richness even for a single fiber, and for
suspensions there is much that is still not well understood. It is worth noting that
while experiments capture such sharp changes in fluidic response, continuum theo-
ries generally do not.

There are multiple scales present in this problem. First, at the level of individual
fibers, the radius is much smaller than the length. Further, considering suspensions
with a large number of fibers, the macroscopic dimensions of the suspension are
much larger than the microscopic dimensions of the fibers. Ultimately, one would
like to have a macroscopic model for such suspensions, and eliminate the need of
computer simulations to resolve the micro-structure. However, a greater understand-
ing of these flows is needed in order to develop such models, and this requires both
experiments and numerical simulations.The main challenge for a numerical method
lies in its ability to include many fibers in the simulation, at a reasonable cost, while
maintaining accuracy.

Given the scales of the problem – many fibers, slenderness, complicated indi-
vidual dynamics – several approximate methods have been developed. One such
class is the so-called bead-models, in which a flexible fiber is modeled as a chain
of linked rigid bodies, such as spherical beads [7, 21], elliptical solids [15] or cylin-
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ders [11, 18]. The number of building blocks in each fiber is typically moderate, with
the dynamics based upon moment and force balances between them. In general, the
nonlocal effects, induced by fluid incompressibility, of a fiber upon itself, or upon
other fibers in the flow, are neglected [7, 11, 15, 18, 21].

The immersed boundary method [13] has also been applied to this class of prob-
lems. In this method, an elastic boundary is discretized with connected Lagrangian
markers, and its relative displacements by fluid motion are used to calculate the
boundary’s elastic responses. These elastic forces are then distributed onto a back-
ground grid covering the computational domain, and used as forces acting upon the
fluid, thereby modifying the surrounding fluid flow. For example, Stockie [17] used
an immersed boundary method (at moderate Reynolds number) to simulate a single
“filament” (modeled as an infinitesimally thin elastic boundary) buckling in a two-
dimensional linear shear-flow. To add a physical width to the fiber, a fiber structure
must be constructed from a bundle of intertwined immersed elastic boundaries. Lim
and Peskin [10] used such a construction to study the so-called whirling instability
[20] of one fiber at low Reynolds number. While this method has the advantage that
flows at finite Reynolds numbers can be simulated, being fundamentally grid based,
it would be very difficult to use this method to simulate a large number of high aspect
ratio fibers.

As a different starting point, we have developed a numerical approach based on a
formulation of the problem where we make explicit use both of the Stokes equations,
and of the slenderness of the fibers. The key points are that for Stokes flow, boundary
integral methods can be employed to reduce the three-dimensional dynamics to the
dynamics of the two-dimensional fiber surfaces, [14], and by using slender body
asymptotics, this can be further reduced to the dynamics of the one-dimensional
fiber center-lines. The resulting integral equations capture the nonlocal interaction
of the fiber with itself, as well as with any other structures within the fluid, such as
other fibers.

We present first the formulation of the problem and the nonlocal slender body
theory in Sect. 2. In Sect. 3, we describe numerical methods that we have developed
based on the slender body formulation. In Sect. 4, we show and discuss some results
from simulations, including multiple interacting, highly flexible fibers.

2 Mathematical Formulation

LetΩ denote the fluid domain in lR3, external to the fiber. Consider a Newtonian fluid
of viscosity µ, with velocity field u(x), and pressure p(x), where x = (x, y, z) ∈
lR3. Assuming that fluid inertia is negligible, u and p satisfy the Stokes equations:

∇p− µ∆u = 0 & ∇ · u = 0 inΩ.

Let Γ denote the surface of the fiber and uΓ its surface velocity. We impose the no-
slip condition on Γ and require that far away u(x) is equal to a background velocity
U0(x), also a solution to the Stokes equations. Hence,
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u = uΓ on Γ, u→ U0 for ‖x‖ → ∞.

In the case of several fibers this can be generalized by considering the union of all
fiber surfaces, and imposing no-slip conditions thereon.

A full boundary integral formulation for this problem would yield integral equa-
tions on the surfaces of the fibers relating surface stress and surface velocity [14].
For long, slender fibers, such a formulation would be very expensive to solve nu-
merically. Instead we use the fiber slenderness to reduce the integral equations to the
fiber center-lines.

2.1 Non-Local Slender Body Approximation

Consider a slender fiber; that is ε = a/L � 1, where a is the fiber radius, and
L is its length. A nonlocal slender body approximation can be derived by placing
fundamental solutions to the Stokes equations (Stokeslets and doublets) on the fiber
center-line, then applying the technique of matched asymptotics to derive the approx-
imate equation. Such an approximation was derived by Keller and Rubinow in 1976
[8]. Their derivation yields an integral equation with a modified Stokeslet kernel on
the fiber center-line and relates the fiber forces to the velocity of the center-line.
Johnson [6] added a more detailed analysis and a modified formulation that included
accurate treatment of the fiber’s free ends, yielding an equation that is asymptotically
accurate to O(ε2 log ε) if the fiber ends are tapered.

This integral expression for a single fiber includes the nonlocal interaction of the
fiber with itself, as mediated by the surrounding incompressible fluid. Götz [5] gives
an integral expression for the fluid velocity U(x) at any point x outside the fiber.
If there are multiple fibers, their contributions simply add due to the superposition
principle of Stokes flow. Hence, to the integral equation derived for one single fiber,
one can add the contributions from multiple fibers.

In this manner, we obtain a coupled system of integral equations relating the ve-
locities of fiber center-lines to the forces acting upon the fibers. Here we assume that
the fiber forces can be described by Euler-Bernoulli elasticity. Assuming the back-
ground flow to be a shear flow of strength γ̇, we make the problem non-dimensional
using a typical fiber length L̃, flow time-scale γ̇−1, and the force F = E/L̃2, where
E is the rigidity of the fiber.

Denote the fibers by Γl, l = 1, . . . ,M . Let the center-line of each fiber be para-
meterized by arclength s ∈ [0, L], where L is the non-dimensional length of the fiber
and let xl(s, t) be the coordinates of the fiber center-line. The fibers are assumed
inextensible, and therefore the range of the arclength s will not change, nor will the
arclength value at any point along the fiber. Hence, s is the material parameter for the
fiber, and can be taken as an independent variable. We assume that each fiber exerts
a force per unit length, fl(s, t), upon the fluid. For fiber Γl, we have
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µ̄

(
∂xl(s, t)

∂t
−U0(xl, t)

)
=− Λl[fl](s)−Kl, δ [fl] (s)

−
M∑

k=1,k �=l

[
Vk(xl(s)) +

ε2

2
Wk(xl(s))

]
,

(1)

where the sum is over the contributions from all other fibers to the velocity of fiber l,
and U0(x, t) is the undisturbed background velocity. The non-dimensional parame-
ters are the effective viscosity µ̄ = 8πµγ̇L2/(E/L2), representing a ratio between
characteristic fluid drag and the fiber elastic force, and the asymptotic parameter
c = log(ε2e), where the radius of the fiber is r(s) = 2ε

√
(s(L− s)) [6] and e is the

natural logarithmic base.
The local operator Λl is given by

Λl[f ](s) = [−c (I + ŝ(s)ŝ(s)) + 2(I− ŝ(s)ŝ(s))] f(s), (2)

and the integral operator Kl, δ [f ] (s) by

Kl, δ [f ] (s) =
∫

Γl

(
I + R̂(s, s′)R̂(s, s′)√
|R(s, s′)|2 + δ(s)2

f(s′)− I + ŝ(s)ŝ(s)√
|s− s′|2 + δ(s)2

f(s)

)
ds′.

(3)
Here, R(s, s′) = xl(s) − xl(s′), R̂ = R/|R| is the normalized R-vector, and ŝ(s)
is the unit tangent vector at xl(s). R̂ R̂ and ŝŝ are dyadic products, i.e. (R̂R̂)ij =
R̂iR̂j . Note that these two operators depend on the shape of the fiber (given by
xl(s, t)).

In the original slender-body formulations [8, 6, 5], the regularization parameter δ
in (3) is zero. An analysis of the straight fiber case shows that these original slender
body formulations are not suitable for numerical computations, due to high wave
number instabilities at length-scales not accurately described by slender-body theory
[16, 19]. The regularization introduced can remove this instability while retaining
the same asymptotic accuracy as the original formulation of Johnson. In particular,
we use δ(s) = δ0φ(s), where δ0 = mε, m >

√
2, and φ(s) ∈ C1(s) is given by

φ(s) =

⎧⎨⎩
ν(s/γ) 0 ≤ s < γ,

1 γ ≤ s ≤ 1− γ,
ν((1− s)/γ) 1− γ < s ≤ 1,

(4)

where ν(ξ) = ξ2(3− 2ξ).
The Stokeslet and doublet contributions from the other fibers are given by

Vk(x̄) =
∫

Γk

[
I + R̂k(s′)R̂k(s′)

|Rk(s′)|

]
fk(s′) ds′, (5)

Wk(x̄) =
∫

Γk

[
I− 3R̂k(s′)R̂k(s′)

|Rk(s′)|3

]
fk(s′) ds′, (6)

where Rk(s′) = x̄− xk(s′), and R̂ is the normalized R-vector.
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For periodic boundary conditions, the sum in (1) must be extended to include
contributions from all the periodic images of all fibers. Assuming the domain is pe-
riodic in the êj direction with period length dj , the sum in (1) becomes

Πper
l (s) =

M∑
k = 1,
k �= l

∑
p,

p �= 0

[
Vp

k(xl(s)) +
ε2

2
Wp

k(xl(s))
]

(7)

where Vp
k(x̄) is defined as Vk(x̄) in (5), with Rk replaced by Rp

k(s′) = x̄ −
xk(s′)+ p dj êj . Note that V0

k(x̄) = Vk(x̄). Similarly, Wp
k(x̄) is defined as Wk(x̄)

in (6) with Rk(s′) replaced by Rp
k(s′). The extension to more periodic directions is

straightforward.

2.2 Force Definition

The integral equation (1) relates the velocity of fiber l to the forces acting upon the
fiber, as well as to the forces acting on the other fibers. Here we assume that fiber
forces are described by Euler-Bernoulli elasticity, and for a fiber given by x(s) the
non-dimensional force (per unit length) is given by

f(s) = −(T (s)xs )s + xssss, (8)

where derivatives with respect to arclength are denoted by a subscript s. The first
term in (8) is the fiber tensile force, with T the tension, that resists compression and
extension. The second term represents bending forces. Twist elasticity is neglected
[3]. The ends of the fiber are considered “free”, that is, no forces or moments are
exerted upon them, so that xss|s=0,L = xsss|s=0,L = 0 and T |s=0,L = 0. Note that
f(s) = d

dsF(s), where F(s) = −T (s)xs + xsss, and so F(0) = F(L) = 0.
Using these facts, and integrating by parts, Vk(x̄) as defined in (5) can be rewrit-

ten as

Vk(x̄) = −
∫

Γk

(R̂k · (xk)s)(I+3R̂kR̂k)− ((xk)sR̂k + R̂k(xk)s)
|Rk|2

Fk(s′) ds′,

(9)
where again Rk(s′) = x̄− xk(s′), and R̂ is the normalized R-vector. This formula
for Vk(x̄) shows explicitly the 1/|R|2 decay of the interaction terms.

Similarly, integration by parts of Wk(x̄) gives,

Wk(x̄) = −
∫

Γk

3(R̂k · (xk)s)(I−5R̂kR̂k) + 3((xk)sR̂k + R̂k(xk)s)
|Rk|4

Fk(s′) ds′,

(10)
which shows explicitly its 1/|R|4 decay.

For the periodic sum in (7), using this formulation, one can show that for large
p, |V−p

k (xl(s)) + Vp
k(xl(s))| ∼ (p dj)−3, and hence, by rearranging the sum, these

terms can be shown to decay as 1/|R|3, and similarly for Wp
k(x̄), as 1/|R|5.
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2.3 Completing the Formulation

Now, consider the assumption of inextensibility. This condition will determine the
line tensions in the fibers. We have that

∂t((xl)s · (xl)s) = 0 ⇒ (xl)s · (xl)ts = 0. (11)

This condition can be combined with (1) to derive a system of integro-differential
equations for the line tensions. The line tensions Tl(s) will then act as Lagrangian
multipliers, constraining the motion of the fibers to obey the inextensibility condi-
tion. This will work as long as the fibers are exactly the correct length, and hence
(xl)s · (xl)s = 1 for all s. However, if there is a small length error present, this error
will not be corrected. On the contrary, the computed line tension can, depending on
the configuration, even act so as to increase this error. Hence, we stabilize the con-
straint, by replacing the inextensibility condition in (11) with 1

2 ∂t((xl)s · (xl)s) =
(xl)s · (xl)ts = µ̄β(1− (xl)s · (xl)s), which is equivalent to the original condition
when (xl)s · (xl)s = 1, and which acts to dynamically remove length errors if they
are present (β is the penalization parameter, typically set to be of order O(10)).

With this, a system of equations for the line tensions Tl(s) l = 1, . . . ,M , can be
derived. First, use the definition of the force (8) and insert it into the time-dependent
equation (1). Then differentiate this equation once with respect to s, so that an equa-
tion for (xl)ts is obtained. Then take a scalar product with (xl)s and apply the
penalized inextensibility condition. Finally, the resulting equation can be simpli-
fied using a ladder of differential identities, derived by successive differentiations
of (xl)s · (xl)s = 1.

The integro-differential equation for the line tensions Tl(s) for fiber l, l =
1, . . . ,M , is then given by

Ll,s[Tl,xl] = Jl[xl,U0]−
M∑

k=1,k �=l

(xl)s ·
∂

∂s

[
Vk(xl(s)) +

ε2

2
Wk(xl(s))

]
, (12)

with

Ll,s[T,x] = 2cTss + (2− c)T (xss · xss)− xs ·
∂

∂s
Kl, δ [(Txs)s]

Jl[x,U0] = µ̄xs ·
∂

∂s
U0 + (2− 7c)(xss · xsss)− 6c(xsss · xsss)

− xs ·
∂

∂s
Kl, δ [xssss]− µ̄β(1− xs · xs),

(13)

together with the boundary condition T = 0 at s = 0, 1.
In summary, for fiber Γl, l = 1, . . . ,M , the evolution equation is given by (1),

where fl = −(Tl(xl)s)s + (xl)ssss. The local operator Λl[f ](s) is given in (2) and
the integral operator Kl, δ [f ] (s) in (3). The integrals for Vk(x̄) and Wk(x̄) in (9)-
(10) contain the integrated force Fk = −Tk(xk)s + (xk)sss. The auxiliary equation
in (12) determines the line-tension for each fiber, completing the formulation of the
problem.
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3 The Numerical Method

In this section, we briefly describe the current numerical method used to evolve these
equations. More details can be found in [19].

3.1 Temporal Discretization

An explicit treatment of all terms in the time-dependent equation (1) would yield a
very strict fourth-order stability constraint upon the time-step ∆t. This arises basi-
cally from the large number of derivatives in the bending term. To avoid this, we treat
all occurrences of xssss implicitly, and combine this with a second-order backward
differentiation formula. Schematically, we write

xt = F(x,xssss) + G(x), (14)

where x(s, t) are the coordinates of fiber number l, and where the dependence on
U0 and xk, k �= l is not explicitly described. Neither is the dependence on the lower
s derivatives of x(s, t), since they will be treated as x(s, t) itself. The fourth order
s-derivative of x(s, t) (xssss) is treated implicitly, and all other terms are treated
explicitly.

We approximate this decomposition by

1
2∆t

(
3xn+1−4xn+xn−1

)
= F(2xn−xn−1,xn+1

ssss) + 2G(xn)−G(xn−1), (15)

where tn = n∆t. We find that this scheme yields only a first-order constraint on ∆t
(i.e. proportional to the spatial grid size).

The dynamics of multiple fibers are coupled to each other through the summation
in (1). We treat this coupling term explicitly, that is, as part of G(x) in (15). In the
resulting linear system for xn+1

l (s), l = 1, . . . ,M , the contribution from the other
fibers will therefore be in the right hand side, and so the big system decouples into
separate linear systems for xn+1

l (s), l = 1, . . . ,M .
The equation for the line tensions Tl(s), l = 1, . . . ,M is given in (12). This is a

system of coupled integro-differential equations for the corresponding line tensions
that must be solved at every time. To avoid solving one very large linear system for
the line tensions on all the fibers, we introduce a fixed point iteration, in which we
use the newest updates of the Tk’s available (k �= l), when computing Tl(s).

3.2 Spatial Discretization

The fiber center-lines are discretized uniformly in arclength s, with N intervals of
step size h = 1/N . The discrete points are denoted sj = j h, j = 0, . . . , N , and
the values fj = f(sj). Second-order divided differences are used to approximate
spatial derivatives. Standard centered operators are used whenever possible, but at
boundaries skew operators are applied.
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For the integral operator K in (3), both terms in the integrand are singular at
s′ = s for δ = 0, and the integral is only well defined for the difference of these
two terms. For the regularized operator, the terms are still nearly singular, and the
numerical scheme must be designed with care to accurately treat the difference of
these terms.

To do this, we subtract off a term from the first part of the integral, and add the
same term to the second part, and write the integral operator (3) as

Kδ[g](s) =
∫ 1

0

G(s, s′)g(s′)√
(s− s′)2 + δ(s)2

ds′ + (I + ŝ ŝ)
∫ 1

0

g(s′)− g(s)√
(s− s′)2 + δ(s)2

ds′

(16)
where G(s, s′) is given by

G(s, s′) =

√
(s− s′)2 + δ(s)2

|R|2 + δ(s)2
(I + R̂ R̂) − (I + ŝ ŝ). (17)

We then treat each part separately, by approximating the argument to the operator,
as well as G(s, s′) by piecewise polynomials. These are all smooth, well behaved
functions.

In the end, we need to evaluate integrals of the form∫ sj+1

sj

(s′ − sj)p√
|s− s′|2 + δ(s)2

ds′ =
∫ h

0

αp√
α2 + bα+ c+ δ(s)2

dα

where b = 2(sj − s) and c = (sj − s)2, and p = 0, . . . , 4. These integrals have
analytical formulas, becoming somewhat lengthy as p increases. By evaluating these
integrals analytically, the rapidly changing part where s′ is close to s can be treated
exactly.

In the line tension equation (12), terms like xs · ∂
∂sKδ [g] appear. These differ-

entiated integral terms are approximated to second order by

∂

∂s
Kδ [g] (s)|s=si

≈ 1
h

[
Kδ [g] (sj+1/2)−Kδ [g] (sj−1/2)

]
. (18)

This compact centered approximation of the derivative is important to achieve a sta-
ble numerical approximation of the line tension equation.

3.3 The Interaction Terms

In the case of periodicity, we need to compute a sum over p for the contribution from
each fiber, as indicated in (7). This infinite sum over all the periodic images of a fiber
is approximated by including Vp

k for the three closest images, and approximations to
Vp

k for 2(Q−1) more images. We have typically used Q = 20. With the justification
that as |Rp

k| gets large, Rp
k(s′) will not vary much in the integrand for Vp

k(x̄), an
approximation is made by replacing Rp

k(s′) with Rp
k(1/2). This is then a constant
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vector, which can be moved out of the integral. We will then only need to integrate
one symmetric dyadic product, ∫

Γk

(xk)s Fk(s′)ds′. (19)

Once we have the 6 independent components of this integral, and Rp
k(1/2) for any

p, we can for any x̄ compute the approximation Ṽp
k(x̄) to Vp

k(x̄). Including these
approximate terms in the periodic sum gives a substantial improvement when com-
pared to simply truncating the sum, and it can be done at very small extra cost.

To evaluate the integrals Vk(xl(s)) and Wk(xl(s)) we simply use the trape-
zoidal rule. This is a second-order method and it is accurate so long as |R| is not
too small. If two fibers come within very close proximity of each other, a refined
calculation is made. At a first stage, it is done by simply subdividing intervals in the
integral, to achieve a better approximation of the 1/|R|2 and 1/|R|4-terms. If the
fibers are within an ε-scale away from each other, an interpolation is done between
the velocity computed from this integral and the velocity on the fiber center-line as
given by (1).

4 The Dynamics of Fiber Suspensions

As was noted in the introduction, a straight fiber placed in a plane shear flow will
become unstable to buckling as the strength of the shear flow increases relative to the
bending rigidity of the filament. This means that small shape perturbations can grow
into substantial bending of the filament. Also, perturbations in the flow field, such as
the disturbance from other fibers in the flow can trigger such a buckling.

In Fig. 1, the rotation of one single fiber placed in an oscillatory background
shear flow is shown in a sequence of plots. The fiber is of unit length, and we set
µ̄ = 5 · 105 and ε = 10−3. We use N = 100 points to discretize the fiber, and time-
step ∆t = 0.0128. The background shear flow is given by U0 = (sin(2πωt)y, 0, 0),
where ω = (2000∆t)−1, so that one period is 2000 time-steps, i.e 25.6 time units.

The results are plotted at different times within the second period of the shear
flow, and show simply a straight fiber rotating and translating in the shear flow. At
this high µ̄ for this value of ε, the buckling instability is however very strong, and it
is only in a very clean case - no perturbations in the flow, no shape perturbation of
the fiber - that it will stay straight. Once the fiber bends, it can bend in many different
ways, depending on the perturbation.

In Fig. 2, results are shown for a simulation where we initialize this one fiber
exactly as before (plotted in black), but this time, we also include three other fibers
in the simulation (plotted in gray). We impose periodic boundary conditions in the
streamwise (x) direction, with a period twice the filament length. All the fibers are
initially straight.

The results are shown at the same times as in Fig. 1, i.e. at different times within
the second period. To be able to compare Figs. 1 and 2, the plots in Fig. 1, are plotted
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t = 0.0 t = 28.16 t = 34.56

t = 40.96 t = 46.08 t = 49.92

Fig. 1. One single fiber translating and rotating in an oscillatory background shear flow. The
results are plotted at times within the second period of this flow (one period is 25.6 time
units). The velocity profile of the background flow is indicated in each plot. The fiber is shifted
periodically within the plotted box when needed for it to fall inside the box

t = 0.0 t = 28.16 t = 34.56

t = 40.96 t = 46.08 t = 49.92

Fig. 2. Four fibers (initially straight) in an oscillatory background shear flow. Fiber initialized
as in Fig. 1 is plotted in black. Times for plots etc. as in Fig. 1
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as if the domain was periodic as described above, i.e. the fiber is periodically shifted
into this domain.

The domain of the computations for the single fiber was however not periodic.
The disturbances from periodic images of the fiber itself could also induce a buck-
ling. Actually, with these parameters, and therefore such a strong instability, numer-
ical errors could potentially also initiate a buckling if the simulation is continued
over a longer time. However, perturbations arising from other fibers in the flow are
naturally much larger than those from numerical errors, and will hence when such
are present, trigger the instability at a much earlier time, as shown in the figures.

As the fibers bend, they store elastic energy, that will later be released back to
the system. The elastic energy is defined as Eel =

∑
l

∫
κ2

l (s)ds, where κl is the
pointwise curvature of fiber l, and will hence directly depend on how substantial
bending that occurs.

A fiber is susceptible to bending when it is under compression. In the case of
this oscillatory background shear flow, whether a fiber is under compression or ex-
tension at a certain instant depends on the angle of the fiber in the plane of the shear,
relative to the flow direction. As the flow reverses direction, a fiber that was under
compression will then be under extension.

In general, a fiber must be under compression for some time before buckling oc-
curs. On the other hand, a fiber that is bent at one instant, will become more straight
the longer it is under extension. Therefore, a suspension of fibers will behave some-
what differently depending on the period of the oscillating flow. For example, the
maximum elastic energy stored by the fibers over one period will differ.

In Figs. 3-4, results from simulations of 30 interacting fibers are shown for
N = 50, ∆t = 0.0256, ε = 10−3, µ̄ = 3 · 105. The domain is the periodic
in the streamwise direction with a period twice the fiber length. The background

Fig. 3. The fiber configurations at times t = 53.76 and t = 62.72 (run A). These are the times
of minimum and maximum elastic energy within the fifth period of the flow
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shear flow is given by U0 = (sin(2πωt)y, 0, 0), where for the results in Fig. 3,
ω = (500∆t)−1, so that one period is 500 time-steps, i.e 12.8 time units (run A). In
Fig. 4, we have ω = (1000∆t)−1, so that one period is 25.6 time units (run B).

Fig. 4. The fiber configurations at times t = 117.76 and t = 124.15 (run B). These are the
times of minimum and maximum elastic energy within the fifth period of the flow

In Figs. 5-6, the elastic energies for the two simulations are plotted as functions
of time, for eight periods of the background flow. The maximum energy for run A,

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Fig. 5. Elastic energy plotted versus time t for run A. (Instant fiber configurations plotted in
Fig. 3). Dashed lines indicate each half period, i.e. times when a change in flow direction
occurs

over all of the eight periods is 68.64. The elastic energy for the configurations in
Fig. 3 are 0.35 and 65.01, respectively. For run B, the maximum energy over all of
the eight periods is 155.03. The elastic energy for the configurations in Fig. 4 are
0.27 and 122.94, respectively. While the peak value of the elastic energy within a
period increases over the eight periods simulated for run A, it initially decreases for
run B, where after we see a slight increase.
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0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

Fig. 6. Elastic energy plotted versus time t for run B. (Instant fiber configurations plotted
in Fig. 4). Dashed lines indicate each half period, i.e. times when a change in flow direction
occurs

These two runs have the same initial configuration of fibers, and all the physical
parameters, except the frequency of the oscillating background shear flow, are the
same. We however get a much larger maximum energy for the background flow with
the longer period, and the two simulations show a different pattern in the develop-
ment of the elastic energy.

Hence, the simulations we can perform offer a wealth of phenomena to study,
and many interesting observations can be made. However, the results still depend on
the specific initial configuration of the fibers, and simulations of a larger number of
fibers is desirable to compute representative quantities. We are currently working to
increase the number of fibers that can be simulated, by parallelizing the code and by
employing a fast summation method to compute the fiber-fiber interactions.

5 Concluding Remarks

In this paper, we have considered the challenging problem of simulating multiple,
highly flexible and slender fibers in a Stokesian fluid.

We have developed a formulation for this three dimensional problem that is based
on slender body asymptotics, and an efficient numerical method based on this formu-
lation. The mathematical description takes the form of a coupled system of integral
equations along the center-lines of the fibers. This is a formulation that takes into
account both fluid-fiber and fiber-fiber interactions, as mediated by the fluid. The
numerical method is based on finite differences to compute derivatives in space and
time, implicit time-stepping, and product integration to treat the integral terms. Spe-
cial care has been taken in the quadrature algorithm to ensure proper cancellation of
nearly singular terms.

The possibility to perform these simulations opens up a range of phenomena
to study. Quantities like elastic energy and normal stress differences can easily be
computed, and we can now start to address the onset of the non-Newtonian effects
seen as flexible fibers are added to a Newtonian solvent.
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