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Preface
Many optimization questions arise in economics and finance; an important

example of this is the society’s choice of the optimum state of the economy
(which we call a social choice problem). This book,

Optimization in Economics and Finance,

extends and improves the usual optimization techniques, in a form that may
be adopted for modelling optimal social choice problems, and other related
applicastions discussed in section 1.2, concerning new3 economics. These types
of optimization models, based on welfare economics, are appropriate, since they
allow an explicit incorporation of social value judgments and the characteristics
of the underlying socio-economic organization in economic and finance models,
and provide realistic welfare maximizing optimal resource allocation and social
choices, and decisions consistent with the reality of the economy under study.
The methodological questions discussed include:

• when is an optimum reached, and when is it unique?
• relaxation of the conventional convex (or concave) assumptions on an
economic or financial model,
• associated mathematical concepts such as invex (relaxing convex) and
quasimax (relaxing maximum),
• multiobjective optimal control models, and
• related computational methods and programs.
These techniques are applied to models of economic gropwth and develop-

ment, including
• small stochastic perturbations,
• finance and financial investment models (and the interaction between
financial and production variables),
• modelling sustainability over long time horizons,
• boundary (transversality) conditions, and
• models with several conflicting objectives.

Although the applications are general and illustrative, the models in this
book provide examples of possible models for a society’s social choice for an
allocation that maximizes welfare and utilization of resources. As well as us-
ing existing computer programs for optimization of models, a new computer
program, named SCOM, is presented in this book for computing social choice
models by optimal control.

This book contains material both unpuhlished and previously published
by the authors, now rearranged in a unified framework, to show the relations
between the topics and methods, and their applicability to questions of social
chnoice and decision making.

This book provides a rigorous study on the interfaces between mathemat-
ics, computer programming, finance and economics. The book is suitable as a
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reference book for researchers, academics, and doctoral students in the area of
mathematics, finance, and economics.

The models and methods presented in this book will have academic and
profesional application to a wide range of areas in economics, finance, and
applied mathematics, including optimal social choice and policy planning, use
of optimal models for forecasting, market simulation, developmenjt planning,
and sensitivity analysis.

Since this is an interdisciplinary study involving mathematics, economics,
finance and computer programming, readers of this book are expected to have
some familiarity with the following subjects: Mathematical Analysis, Optimal
Control, Mathematical Finance, Mathematical Economics, Mathematical Pro-
gramming, Growth Economics, Economic Planning, Environmental Economics,
Economics of Uncertainty, Welfare Economics, and Computational Economics.

The various SCOM computer programs listed in this book may also be
downloaded from the web site: http://bdc.customer.netspace.net.au .

The authors thank Margarita Kumnick for valuable proof-reading and
checking. The authors also thank the Publishing Editor of Kluwer, Mrs Cathe-
lijne van Herwaarden, and a referee, for their cooperation and support in the
completion of this book.

B. D. Craven S. M. N. Islam 1 September 2004
Dept. of Mathematics Centre for Strategic
& Statistics Economic Studies
University of Melbourne Victoria University, Melbourne
Australia Australia

The authors

Dr. B. D. Craven was (until retirement) a Reader in Math-
ematics at University of Melbourne, Australia, where he taught Mathematics
and various topics in Operations Research for over 35 years. He holds a D.Sc.
degree from University of Melbourne. His research interests include continuous
optimization, nonlinear and multiobjective optimization, and optimal control
and their applications. He has published five books, including two on mathe-
matical programming and optimal control, and many papers in international
journals. He is a member of Australian Society for Operations Research and
INFORMS.

Prof. Sardar M. N. Islam is Professor of Welfare
and Environmental Economics at Victoria University, Australia. He is also as-
sociated with the Financial Modelling Program, and the Law and Economics
Program there. He has published 11 books and monographs and more than 150
technical papers in Economics (Mathematical Economics, Applied Welfare Eco-
nomics, Optimal Growth), Corporate Governance, Finance, and E-Commerce.
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Chapter 1
Introduction :

Optimal Models for
Economics and Finance

1.1. Introduction
This book is concerned with applied quantitative welfare economics, and

describes methods for specification, analysis, optimization and computation for
economic and financial models, capable of addressing normative social choice
and policy formulation problems. Here social choice refers to the optimal in-
tertemporal allocation of aggregate and disaggregate resources. The institu-
tional and organizational aspects of achieving such allocation in a society are
not discussed here. Zahedi (2001) has surveyed other methods for social choice.
The book aims to provide some extensions and improvements to the traditional
methods of optimization, as applied to economics and finance, which could be
adopted for social decision making (social choice) and related applications.
The mathematical techniques include nonlinear programming, optimal control,
stochastic modelling, and multicriteria optimization.

Many questions of optimization and optimal control arise in economics and
finance. An optimum (maximum or minimum) is sought for some objective
function, subject to constraints (equalities or inequalities) on the values of the
variables. The functions describing the system are often nonlinear. For a time-
dependent system, the variables become functions of time, and this leads to
an optimal control problem. A control function describes a quantity (such as
consumption, or investment) that can be controlled, within some bounds. A
state function (such as capital accumulation) takes values determined by the
control function(s) and the dynamic equation(s) of the system.

Some recent developments in the mathematics of optimization, including
the concepts of invexity and quasimax, have not previously been applied to
models of economic growth, and to finance and investment. Their applications
to these areas are shown in this book. Some results are presented concerning
when an optimal control model has a unique optimum, what happens when
the usual convexity assumptions are weakened or absent, and stability to small
disturbances of the model or its parameters. A new computational package
called SCOM, for solving optimal control problems on MATLAB, is introduced.
It facilitates computational experiments, in which there are changes to model
features or parameters.

These developments are applied, in particular, to:
• models of optimal (welfare maximizing) intertemporal allocation of
resources.
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• economic growth models with a small stochastic perturbation.
• models for finance and investment, including some stochastic elements,
and especially considering the interaction between financial and production
variables.
• modelling sustainability over a long (perhaps infinite) time horizon.
• models with several conflicting objectives.
• boundary (transversality) conditions.
These extended results can be usefully applied to various questions in

economics and finance, including social decision making and policy analysis,
forecasting, market simulation, sensitivity analysis, comparative static and dy-
namic analysis, planning, mechanism design, and empirical investigations. If
an economic system behaves so as to optimize some objective, then a computed
optimum of a model may be used for forecasting some way into the future. How-
ever, the book is focussed on optimal social decision making (social choice).

1.2. Welfare economics and social choice: Modelling and Applica-
tions

A central issue in economics and finance, concerning welfare economics,
is to find a normative framework and methodology for social decision-making,
so as to choose the socially desirable (multi-agent or even aggregate) state of
the economy, a task popularly known as ”social choice”. Optimisation methods
based on welfare economics can aid such social decision making ((Islam 2001a).

The optimisation models of economics and finance can, therefore, be in-
terpreted as models for normative social choice which specify optimal social
welfare in the economy and financial sector satisfying the static and dynamic
constraints of the economy since these models can generate a set of aggregative
and disaggregstive optimal decisions. choices or allocation of resources for the
society. This approach is in the line of arguments advanced in the paradigm
of new3 welfare economics (Islam 2001b; Clarke and Islam, 2004). It has the
following main elements: 1) the possibility perspective of social choice theory;
2) measurability of social welfare based on subjective or objective measures;
3) the extended welfare criteria; 4) operationalisation of welfare economics
and social choice (which was the original motivation of classical economists for
developing the discipline of welfare economics), and 5) a multi-disciplinary sys-
tem approach incorporating welfaristic and non-welfaristic elements of social
welfare.

Any welfare economic analysis of issues in economics and financial policies
involves the application of the following multidisciplinary criteria of moral phi-
losophy and welfare economics: efficiency, rationality, equity, liberty, freedom,
capabilities and functioning (see Hausman and McPherson, 1996) for a survey
of these criteria). This framework of new3 welfare economies provides the scope
for evaluating economic outcomes in terms of social welfare (and efficiency, util-
ity) as well as other criteria of welfare economics and moral philosophy such as
rights, liberty, morality, etc. (see Hausman and McPherson, 1996 for a survey
of the concepts and issues and their economic implications).
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The incorporation of this approach in optimisation modelling is possible
through the choice of the social discount rate, the objective function (extended
welfare criteria incorporating welfaristic and non-welfaristic elements of social
welfare), terminal conditions, time horizon, and the modelling structure.

In making such an application of optimisation models, several conceptual
and methodological issues in social choice theory and welfare economics (which
have dominated the controversy about the possibility of social choice) needs to
be resolved including the following (Islam 2001b):

• The nature value judgment about the nature of individual well-being or
welfare (such as in utilitarianism or welfarism, capability,) etc.
• Possibilities for measurability of utility and welfare (cardinality or
ordinality).
• Interpersonal comparability of utility and welfare.
• The nature of marginal utility of income (constancy or variability).
• The role of distributional concerns in welfare judgment (the intensity of
preferences).
• The choice of a measurement and accounting method (nature of
preference indexing, numerical calculations, etc.).
• The extent of informational requirements for decision making.
These issues can be considered from the impossibility (Arrow, 1951) or

possibility perspectives (Sen, 1970). The possibility perspective approach re-
quires a set of axioms including cardinality, intertemporal comparability, and
the relevance of the intensity of preferences. In this possibility approach (see
Sen 1999), there is an urge for the need for, amongst others, finding a suit-
able method and information broadening for developing an optimistic social
choice theory for useful social welfare analysis and judgment. This can be ac-
complished by developing an operational approach to social choice. This is
an especially immediate task in applied welfare economics, although work in
this area has not progressed far. In Islam (2001a, 2001b) and Clarke and Is-
lam (2004), a paradigm has been developed for new3 welfare economics, for
normative operational social choices based on the possibility perspective.

The choice of the elements for a social norm is controversial, since each
specification relates to some form of value judgment in a welfare economics
choice model, and a choice significantly affects the pattern and level of social
welfare. A specification of the the elements of a social choice should be based
within the framework of some paradigm of welfare economics. The new3 welfare
economics paradigm adopts the following set of assumptions and elements of
an operational approach to social choice aqnd decision making:

• Definition of well-being and welfare: the social welfaristic approach
(Islam 2001a and 2001b) - economic activities, which improve net social
welfare, are justified.
• The possibility of the specification of aggregate social welfare criteria
and index: the possibility theorem perspective.
• Time preference: different discounting approaches for intertemporal
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equity - depending on the preference of the society.
• Units of measurement; market and shadow prices of goods and services
• Methods for modelling: efficient allocation or optimisation modelling.
• Institutions: various alternative institutions can be assumed such as
competitive market economy, mixed economy, or planning - depending on
the underlying social organization.
The main argument of this book is that mathematical models can be de-

veloped, incorporating the above elements of new3 welfare economics; they can
provide useful information to understand social choice in relevant economic, so-
cial, environmental and financial issues, and formulating appropriate policies.

The general structure of an optimisation model in economics and finance,
containing the above elements, and suitable for normative social choice or de-
cision making (see Craven 1995; Islam 2001a; Laffont, 1988) is as follows:

W = f(y) subject to g(y) ∈ S,

where: I = [a, b];
W is an indicator of social welfare;
V is the space of functions;
f(y) is a scalar or vector valued social welfare functional of society.
y is a vector of variables or functions of economic and financial
sub-systems;
g(y) is a constraint function (including economic and financial
factors);
S is a convex cone, describing a feasible set of the economy; and
Rn is Euclidian space of n dimensions.
In the above social welfare model, a social welfare function of the Bergson-

Samuelson form is specified to embed social welfare judgments about alterna-
tive states of resource allocation in the economy. (For further details, see Islam,
2001a.) Social welfare, and factors affecting it, are assumed to be measurable
and quantifiable. The problem of normative social choice in decision making is
represented by the optimization model, based on the possibility perspective of
social choice. It is operational, since it may be applied to real life conditions,
for finding optimal decisions in society. The model can represent the economic
organization of a competitive market or planning system (the selection of a
system of social organization depends on the social preferences assumed in the
model). A model, containing an objective function, constraints and boundary
conditions, can represent the socio-economic factors relevant for decision mak-
ing. These general assumptions are made for the various models in this book;
specific assumptions for each model are discussed in the relevant cases.

The optimal solution to the welfare optimisation social choice problem
exists (i.e., an optimal decision, choice, or policy exits) if the problem satisfies
the Weierstrass theorem; and if the objective function is convex, x* is a global
solution.
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The set S represents the static or dynamic economic and financial sys-
tems. The objective function f(x) is the social welfare functional embedding
social choice criteria. Different value judgements and different theories of wel-
fare economics and social choice, and various sub-systems of the economy can
be incorporated in this social choice program by making different assumptions
about different functions, parameters and the structure of the above model.
The above control model can embed and address the issues of welfare eco-
nomics and social choice discussed above if it is based on a proper specification
of the method for aggregation of individual welfare, welfare criteria, cost benefit
consideration, and institutional mechanisms assumed for society. The results
of the model can specify the optimal choices regarding optimal dynamic welfare
and resource allocation and price structure, the optimal rate and valuation of
consumption, capital accumulation, and other economic activities, and optimal
institutional and mechanism design. Further discussion on construction of wel-
fare economic modelling is given in Islam (2001a), Heal (1973), Chakravarty
(1969), and Fox, Sengupta and Thorbecke (1973).

The above social choice model is a finite horizon free terminal time con-
tinuous optimisation problem and it is deterministic, and open loop with social
welfare maximization criteria. Other possible forms of social choice models
include dynamic game models and with other types of end points and transver-
sality conditions; overtaking, catching up and Rawlsian optimality criteria; with
different types of constraints, discontinuities and jumps; and with uncertainty.
These social choice models may also represent equilibrium and disequilibrium
economic systems, adaptive dynamics, social learning, chaotic behaviour, arti-
ficial intelligence and genetic algorithm.

In such an optimisation model of social choice, the following set of elements
should be specified:

• an economic model (including social, financial, and environmental
constraints;
• the length of the planning horizon;
• the choice of an optimality criterion or an intertemporal utility function;
• the discount rate, representing the rate of time preference; and
• the terminal or transversality conditions.
The specification of the elements is a political economic exercise involving

substantial value judgment on the part of the modeller. Depending on the value
judgment of the modeller, a particular form of each element can be specified.

1.3. The objectives
The objective of this book is to provide extensions to the existing methods

for optimisation in economics and finance which can be appropriately used for
normative social choice, based on the possibility perspective of social choice
and the other elements of new3 welfare economics discussed above, as well as
for other exercises such as sensitivity analysis, simulation of market behaviour,
forecasting, and comparative static and dynamic analysis. The focus of the
book is on the methods for optimisation, not on the social choice issues in
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optimisation models, in economics and finance. This book has not taken any
particular perspective in social value judgments, and therefore the details of
the choice of the elements are not provided here. We have left the specification
of various elements of welfare economics and optimisation modelling in a pos-
sible general form. A modeller can choose a set of specific elements according
to his/her value judgment (see also Islam, 2001a), to develop a model for a
particular economy.

Although a variety of models and computation approaches are developed
and implemented in this book, they may all describe social choices, concerning
the maximization of social welfare, intertemporal allocation, and utilization of
resources, in relation to the social value judgement expressed in the models.

1.4. An example of an optimal control model
A large part of this book is concerned with optimal control models for

economic questions. Such models are generally of the form:

MAXx(.),u(.) F 0(x, u) :=
∫ 1

0

∫∫
f(x(t), u(t), t)dt + Φ(x(1))

subject to x(0) = a, ẋ(r) = m(x(t), u(t), t), q(t) ≤ u(t) ≤ r(t) 0 ≤ t ≤ 1).

Here the state function x(t) could describe capital, the control function u(t)
could describe consumption; an objective (an integral over a time period, plus
an endpoint term) describes a utility to be maximized, subject to a dynamic
equation, a differential equation determining the state.

A special case is a model for economic growth and development, of which
the following is an example. The well known Kendrick-Taylor model for eco-
nomic growth (Kendrick and Taylor, 1971) describes the change of capital stock
k(t) and consumption c(t) with time t by a dynamic differential equation for
the time derivative k̇(t), and seeks to maximize a discounted utility function of
consumption, integrated over a time period [0, T ]. The model is expressed as:

MAX
∫ T

0

∫∫
e−ρtc(t)τdt subject to k(0) = k0,

k̇(t) = ζeqtk(t)β − σk(t) − c(t), k(T ) = kT .

No explicit bounds are stated for k(t) and c(t). However, both the formu-
las and their interpretation requires that both k(t) and c(t) remain positive.
However, with some values of u(t), the differential equation for k(t) can bring
k(t) down to zero. The capital is the state function of this optimal control
formulation, and the consumption is the control function. In general the con-
trol function is to be varied, subject to any stated bounds, in order to achieve
the maximum. This model includes the standard features, namely an optimal-
ity criterion contained in an objective function which consists of the discounted
sums of the utilities provided by consumption at every period, a finite planning
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horizon T , a positive discount rate, boundary conditions, namely initial values
of the variables, and parameters and the terminal conditions on the state.

1.5. The structure of the book
Chapter 2 presents the relevant mathematics of optimization, and espe-

cially optimal control, including the formulation of dynamic economic and fi-
nance models as optimal control problems. Questions discussed include the
following:

• When is an optimum reached, and when is it unique?
• Relaxing of convex assumptions, and of maximum to quasimax.
• Multiobjective optimal control, and the Pontryagin conditions for
optimality for single-objective and multiobjective problems.
Some qualitatively different effects may occur with nonconvex models, such

as non-unique optima, and jumps in the consumption function, which have
economic significance.

In Chapter 3, algorithms for computing optimal control are discussed,
with reasons for preferring a direct optimization approach, and step- function
approximations. A computer package SCOM is described, developed by the
present authors, for solving a class of optimal control problems in continuous
time, using the MATLAB system, but in a different way from the RIOTS 95
package (Schwartz, 1996), which also uses MATLAB. As in the MISER (Jen-
nings et al., 1998) and OCIM (Craven et al., 1998) packages, the control is
parametrised as a step-function, and MATLAB’s constr package for constrained
optimization is used as a subroutine. End-point conditions are simply handled
using penalty terms. Much programming is made unnecessary by the matrix
features built into MATLAB. Some economic models present computational
difficulties because of implicit constraints, and there is some advantage using
finite difference approximations for gradients. The Kendrick-Taylor model of
economic growth is computed as an example.

Chapter 4 discusses the use of optimal control methods for computing
some non-linear continuous optimal welfare, development, and growth mod-
els. Results are reported for computing the Kendrick-Taylor optimal-growth
model using RIOTS 95 and SCOM programs based on the discretisation ap-
proach. Comparisons are made to the computational experiments with OCIM,
and MISER. The results are used to compare and evaluate mathematical and
economic properties, and computing criteria. While several computer packages
are available for optimal control problems, they are not always suitable for par-
ticular classes of control problems, including some economic growth models.

Chapter 5 presents some proposed extensions for dynamic optimization
modelling in finance, for characterizing optimal intertemporal allocation of
financial and physical resources, adapted from developments in other areas
of economics and mathematics. The extensions discussed concern (a) the el-
ements of a dynamic optimization model, (b) an improved model including
physical capital, (c) some computational experiments. It is sought to model,
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although approximately, the interaction between financial and production vari-
ables. Some computed results from simulations are presented and discussed;
much more remains to be done.

Chapter 6 develops mathematical models and computational methods for
formulating sustainable development and social welfare programs, and discusses
approaches to computing the models. Computer experiments on modifica-
tions of the Kendrick-Taylor growth model, using the optimal control packages
SCOM (Craven & Islam, 2001) and RIOTS 95 (Schwartz 1989), analyse the
effects of changing the discount factor, time scale, and growth factor. These
packages enable an economist to experiment, using his own computer, on the
results of changing parameters and model details.

Chapter 7 presents a non-linear optimal welfare, development, and growth
model under uncertainty, when the stochastic elements are not too large. Meth-
ods of describing the stochastic aspect of a growth model are reviewed, and com-
putational and growth implications are analysed. The Kendrick-Taylor model
is modified to a stochastic optimal control problem, and results are computed
with various parameters. The model results have implications concerning the
structure of optimal growth, resource allocation, and welfare under uncertainty.
They show that the stochastic growth can be modelled fairly simply, if the vari-
ance is small enough not to dominate the deterministic terms.

Chapter 8 discusses a number of welfare models, both for static models
(not time-dependent) and for dynamic models (evolving in time). The models
include welfare models where each user gives some weight to the welfare of other
users, cooperative game models, and several multiobjective optimal control
models, for resource allocation, development, growth, and planning. Questions
of stability to perturbation are discussed, also computational approaches.

Chapter 9 extends the existing literature on transversality conditions for
infinite-horizon optimal control models of social choice in economics and fi-
nance. In optimal control models with infinite horizon in economics and fi-
nance, the role and validity of the boundary condition for the costate function
(called the transversality condition) has been much discussed. This chapter
derives such conditions, and proves their validity, under various assumptions,
including the cases: (i) where the state and control functions tend to limits
(“steady state”), and some gradient conditions hold, (ii) when the state and
control tend sufficiently rapidly to limits, and (iii) where there is no steady
state, but the model may be normalized to allow for a growth rate. Shadow
price interpretations are discussed, also sufficient conditions for optimality. A
nonlinear time transformation, and a normalization of the state and control
functions, are used to convert the problem to a standard optimal control prob-
lem on a finite time interval. As well as establishing transversality conditions,
this approach gives a computational method for infinite-horizon models of op-
timal social choice and decision making n economics and finance.

Chapter 10 presents the conclusions and findings of this research project.



Chapter 2
Mathematics of Optimal Control
2.1. Optimization and optimal control models1

This chapter discusses mathematical ideas and techniques relevant to op-
timization questions in economics and related areas, and particularly relevant
for construction and application of social choice models, based on the assump-
tions of new3 economics discussed in chapter 1. First considered is a static
model, optimising over a vector variable z, typically with a finite number of
components. When the variable z is not static, but describes some variation
over time, an optimal control model may be required, where the objective is
typically an integral over a time horizon, say [0, T ]), with perhaps an additional
term at the final time T, and the evolution over time is described by a dynamic
equation, typically a differential equation. This leads to an optimal control
model, where z becomes a function of time t. In each case, a minimum may
be described by necessary Karush-Kuhn-Tucker (KKT) conditions, involving
Lagrange multipliers. When the time t is a continuous variable, a related set
of necessary Pontryagin conditions often apply (see section 2.2).

There are also discrete-time models, where the integration is replaced by
summation over a discrete time variable, say t = 0, 1, 2, ..., T, and the dynamic
equation is a difference equation. For discrete time, the KKT conditions apply,
but not all the Pontryagin theory.

Questions arise of existence (thus, when is a maximum or minimum
reached?), uniqueness (when is there exactly one optimum?), relaxation of the
usual assumption of convex functions, and what happens to a dual problem
(in which the variables are the Lagrange multipliers) in the absence of con-
vex assumptions? These are discussed in sections 2.3 through 2.7. Further
issues arise when there are several conflicting objectives; these are discussed in
sections 2.8 through 2.14.

Consider first a mathematical programming model (e.g a model for a nor-
mative social choice problem in economics and finance):

MIN f(z) subject to g(x) ≤ 0, k(z) = 0,

in which an objective function f(·) is maximized, with the state variable z
constrained by inequality and equality constraints. The functions f, g and h
are assumed differentiable. Note that a maximization problem, MAX f(z), may
be considered as minimization by MIN −f(z). Assume that a local minimum
is reached at a point z = p (local means that f(z) reaches a minimum in
some region around p, but not necessarily over all values of z satisfying the

1 See also sections 4.2, 4.5, 6.3, 9.4.
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constraints.) Assume that z has n components, g(z) has m components, and
k(z) has r components. The gradients f ′(p), g′(p), k′(p) are respectively 1 ×
n, m × n, r × n matrices.

Define the Lagrangian L(z) := f(a) + ρg(z) + σk(z). The Karush-Kuhn-
Tucker necessary conditions (KKT):T

L′(p) = 0, ρ ≥ 0, ρg(p) = 0

then hold at the minimum point p, for some Lagrange multipliers ρ and σ, pro-
vided that some constraint qualification holds, to ensure that the boundary of
the feasible region (satisfying the constraints) does not behave too badly). The
multipliers are written as row vectors, with respectively m and r components.
These necessary KKT conditions are not generally sufficient for a minimum.
In order for (KKT) at a feasible point p to imply a minimum, some further re-
quirement on the functions must be fulfilled. It is enough if f and g are convex
functions, and k is linear. Less restrictively, invex functions may be assumed -
see section 2.4.

Consider now an optimal control problem, of the form:

MINx(.),u(.) F 0(x, u) :=
∫ 1

0

∫∫
f(x(t), u(t), t)dt + Φ(x(1))

subject to x(0) = a, ẋ(r) = m(x(t), u(t), t), q(t) ≤ u(t) ≤ r(t) 0 ≤ t ≤ 1).

(This problem can represent the problem of optimizimg the intertemporal wel-
fare in an economics or finance model.) Here the state function x(.), assumed
piecewise smooth, and the control function u(.), assumed piecewise continuous,
are, in general, vector-valued; the inequalities are pointwise. A substantial
class of optimal control problems can (see Craven, 199/5); Craven, de Haas
and Wettenhall, 1998) be put into this form; and, in many cases, the control
function can be sufficiently approximated by a step-function. A terminal con-
straint σ(x(1)) = b can be handled by replacing it by a penalty term added to
F 0(x, u); thus the objective becomes:

F (x, u) := F 0(x, u) + 1
2µ‖σ(x(1)) − b∗‖2,

where µ is a positive parameter, and k approximates to b. In the augmented
Lagrangian algorithm (see e.g. Craven, 1978), constraints are thus replaced by
penalty terms; µ is finite, and typically need not be large; here b∗ = b + θ/µ,
where θ is a Lagrange multiplier. If there are few constraints (or one, as here),
the problem may be considered as one of parametric optimization, varying b∗,
without computing the multipliers. Here T is finite and fixed; the endpoint
constraint q(x(T )) = 0 is not always present; constraints on the control u(t)
are not always explicitly stated, although an implicit constraint u(t) ≥ 0 is
commonly assumed. If q(.) or Φ(.) are absent from the model, they are replaced
by zero.



Mathematics of Optimal Control 11

In a model for some economic or financial question of maximizing welfare,
the state x(.) commonly describes capital accumulation, and the control u(.)
commonly describes consumption. Both are often vector functions.

The differential equation, with initial condition, determines x(.) from u(.);
denote this by x(t) = Q(u)(t); then the objective becomes:

J(u) = F 0(Q(u), u) + 1
2µ‖σ(Q(u)(1)) − b∗‖2,

Necessary Pontryagin conditions for a minimum of this model have been
derived in many ways. In Craven (1995), the control problem is reformulated
in mathematical programming form, in terms of a Lagrangian:

∫ T

0

∫∫
[e−δtf(x(t), u(t)) + λ(t)m(x(t), u(t), t) − λ(t)ẋ(t) + α(t)(q(t) − u(t))

+β(t)(u(t) − r(t) +
1
2
µ[Φ(x(t) − µ−1ρ]2+ +

1
2
µ[q(x(T ) − µ−1ν]δ(t − T )] dt.

with the costate λ(t), and also α(t) and β(t), representing Lagrange multipliers,
µ a weighting constant, ρ and ν are Lagrange multipliers, and δ(t−T ) is a Dirac
delta-function. Here, the terminal constraint on the state, and the endpoint
term Φ(x(T )) in the objective, have been replaced by penalty cost terms in
the integrand; the multipliers ρ and ν have meanings as shadow costs. (This
has also computational significance − see section 3.1. The solution of a two-
point boundary value problem, when x(T ) is constrained, has been replaced by
a minimization.) The state and control functions must be in suitable spaces
of functions. Often u(.) is assumed piecewise continuous (thus, continuous,
except for a finite number of jumps), and x(.) is assumed piecewise smooth
(the integral of a piecewise continuous function.)

The adjoint differential equation is obtained in the form:

−λ̇(t) = e−δtfxff (x(t), u(t)) + λ(t)mx(x(t), u(t), t),

where fxff and mx denote partial derivatives with respect to x(t), together with
a boundary condition (see Craven, 1995):

λ(T ) = Φx(x(T )) + κqx(x(T )),

in which Φx and qx denote derivatives with respect to x(T ), and κ is a Lagrange
multiplier, representing a shadow cost attached to the constraint q(x(T )) = 0.
The value of κ is determined by the constraint that q(x(T ) = 0. If x(T ) is free,
thus with no terminal condition, and Φ is absent, then the boundary condition
is λ(T ) = 0 . Note that x(T ) may be partly specified, e.g. by a linear constraint
σT x(T ) = b (or ≥ b), describing perhaps an aggregated requirement for several
kinds of capital. In that case, the terminal constraint differs from λ(T ) = 0.
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A diversity of terminal conditions for λ(T ) have been given in the eco-
nomics literature (e.g. Sethi and Thompson, 2000); they are particular cases of
the formula given above. For the constraint q(x(T )) ≥ 0, the multiplier κ ≥ 0.

From the standard theory, the gradient J ′(u) is given by:

J ′(u)z =
∫ 1

0

∫∫
(f + λ(t)m)u(x(t), u(t), t)dt,

where the costate λ(.) satisfies the adjoint differential equation:

−λ̇(t) = (f + λ(t)m)x(x(t), u(t), t), λ(1) = µ(σ(x(1)) − b∗) + Φ′(x(1));

(.)x denotes partial derivative. A constraint such as
∫ 1

0

∫∫
θ(u(t))dt ≤ 0, which

involves controls at different times, can be handled by adjoining an additional
state component y0(.), satisfying y0(0) = 0, ẏ0(t) = θ(u(t)), and imposing the
state constraint y0(1) ≤ 0.The latter generates a penalty term 1

2µ‖y0(1))−c‖2
+,

where c ≈ 0 and [.]+ replaces negative components by zeros. (See an example
of such a model in section 1.4).

2.2. Outline of the Pontryagin theory2

This section gives an outline derivation of the Pontryagin necessary con-
ditions for an optimal control problem in continuous time, with a finite time
horizon T . In particular, it is indicated how the boundary conditions for the
costate arise; they are critical in applications. Comments at the end of this sec-
tion i indicate what may happen with there is an infinite time horizon (T = ∞).
That discussion is continued in Chapter 9.

Consider now an optimal control problem:

MIN F (z, u) :=
∫ T

0

∫∫
f(x(t), u(t), t)dt subject to

ẋ(t) = m(x(t), u(t), t), x(0) = x0, g(u(t), t) ≤ 0 (0 ≤ t ≤ T ).

Here the vector variable z is replaced by a pair of functions, the state function
(or trajectory) x(·) and the control function u(·). This problem can be written
formally as:

MIN F (x, u) subject to Dx = M(x, u), G(u) ≤ 0.

Here D maps the trajectory x(.) onto its gradient (thus the whole graph of
ẋ(t) (0 ≤ t ≤ T ). Consider the Lagrangian function :

L(x, u; θ, ζ) := F + θ(−Dx + M) + ζG =

2 See also sections 4.2, 5.7, 6.3.3, 6.5.2.
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∫ T

0

∫∫
(f + λm)dt −

∫ T

0

∫∫
λ(t)ẋ(t)dt +

∫ T

0

∫∫
µ(t)g(u(t), t)dt,

in which the multiplier θ is represented by a costate function λ(t), described
by θw =

∫ T

0

∫∫
λ(t)w(t)dt for each continuous function w, and ζ is similarly rep-

resented by a function µ(.). Note that the Hamiltonian function:

h(x(t), u(t), t, λ(t)) := f(x(t), u(t), t) + λ(t)m(x(t)u(t), t)

occurs in the integrand. An integration by parts replaces the second integral
by:

λ(T )x(T ) − λ(0)x(0) +
∫ T

0

∫∫
λ̇(t)x(t),

in which λ(0)x(0) may be disregarded, because of the initial condition on the
state, x(0) = x0.

If the control problem reaches a minimum, and certain regularity restric-
tions are satisfied, then necessary KKT conditions also hold for this problem,
namely:

Lx = 0, Lu = 0, ζ ≥ 0, ζG = 0,

where suffixes x and u denote partial derivatives. The following is an outline
of how the Pontryagin theory can be deduced, using (KKT). For a detailed ac-
count of this approach, especially including the (serious) assumptions required
for its validity, see e.g. Craven (1995).

From Lx = 0 in (KKT), the adjoint differential equation:

−λ̇(t) = hx(x(t), λ(T )x(T ) = 0

may be deduced, using the endpoint boundary condition λ(T )x(T ) = 0 to
eliminate the integrated part. The rest of (KKT) gives necessary conditions
for minimization of the Hamiltonian with respect to the control only, subject to
the constraints on the control. While they do not generally imply a minimum,
they do in restrictive circumstances, leading to Pontryagin’s principle, which
states that the optimal control minimizes the Hamiltonian with respect to the
control u(t), subject to the given constraints on the control, while holding the
state x(t) and costate λ(t) at their optimal values. The restrictions include the
following:

• The control problem reaches a local minimum, with respect to the norm

‖u‖1 :=
∫ T

0

∫∫
|u(t)|dt.

• The constraints on the control hold for each time t separately (so that
constraints involving a combination of two or more times are excluded).
• Existence and boundedness of first and second derivatives of f and m.



14 Chapter 2

The necessary Pontryagin conditions for a minimum of the control problem
hence comprise:

• The dynamic equation for the state, with initial condition.
• The adjoint equation for the costate, with terminal condition.
• The Pontryagin principle.
If a terminal condition is omitted, then the system is not definitely defined,

and generally uniqueness is lost. If the state has r components, then r terminal
conditions are required. If xi(T ) is not specified, then λi(T ) = 0; if, however,
xi(T ) is fixed, then λi(T ) is free (not specified.)

This discussion has assumed a fixed finite time horizon T . If an infinite
horizon is required, as in some economic models, then serious difficulties arise.
It is not obvious that any minimum is reached. The objective F (x, u) may be
infinite, unless the function f includes a discount factor, such as e−δt. The con-
ditions on derivatives are not generally satisfied, over an infinite time domain,
unless the state and control are assumed to converge sufficiently fast to limits
as t → ∞. The conjectured boundary condition limt→∞λ(t)x(t) = 0 does not
necessarily hold. Some circumstances where this boundary condition does hold
are analysed in Chapter 9, with assumptions on convergence rates.

If the control problem is truncated to a finite planning interval [0, T ], with
a terminal condition fixing x(T ) at the assumed optimal value for the infinite-
horizon problem, then this gives the necessary conditions for the infinite-horizon
problem, except that the terminal condition for the costate is omitted. So the
system of conditions is not definitely defined, and often allows some additional,
though spurious, solution. Various authors have adjoined a boundary condition
(called transversality condition arbitrarily, to exclude the additional solutions.
But it is preferable to obtain the correct boundary condition from a complete
set of necessary conditions for a minimum (see Craven (2003) and Chapter 9.)

2.3. When is an optimum reached?
Questions arise of (i) existence of a maximum point x*, (ii) necessary con-

ditions for a minimum, (iii) sufficient conditions for a maximum, (iv) unique-
ness, (v) descriptions by dual variables (which interpret Lagrange multipliers
as prices).

Consider first the maximization of an objective f(x) over x ∈ Rn. Con-
cerning existence, if x is in Rn, f and each gi are continuous functions, and
if the feasible set E of those x satisfying the constraints gi(x) ≥ 0 is compact,
then at least one maximum point x* exists.

However, in an optimal control model in continuous time, the compactness
property is usually not available. (If there are only a finite number of variables,
then a set is compact if it is closed and bounded; but that does not hold for an
infinite number of variables, as for example for a continuous state function.)
Sometimes convex, or invex, assumptions can be used to show that an optimum
is reached - see section 2.4.

Assuming that a maximum is reached for f(x), subject to the inequal-



Mathematics of Optimal Control 15

ity constraint g(x) ≥ 0, then necessary conditions for p to be a minimum
are that a Lagrange multiplier vector ρ∗ ≥ 0 exists, so that the Lagrangian
L(x, µ) := f(x)+ρg(x) satisfies the Karush-Kuhn-Tucker conditions (KKT) or
the saddlepoint condition (SP):

(KKT): Lx(p, ρ∗) = 0, ρ∗ ≥ 0, ρ∗g(p) = 0, g(p) ≥ 0;

(SP): L(p, ρ) ≥ L(p, µ∗) ≥ L(x, ρ∗) for all x, and all ρ ≥ 0.

The conditions often assumed for (KKT) are that f and each component
gi are differentiable functions. If there is also an equality constraint k(x) = 0,
then a term σk(x) is added to the Lagrangian, and a regularity assumption
is required, e.g. that the gradients of the active constraints (those g′i(p) for
which gip) = 0 , together with all the h′

j(p)) are linearly independent vectors.
The conditions often assumed for (SP) (with k absent) are that f and each gi

are convex functions (which need not be differentiable), together with Slater’s
condition, that g(z) > 0 for some feasible point z. Then (SP) is a sufficient
condition for a minimum (even without assuming convexity). However, (KKT)
is not sufficient for a maximum; (KKT) implies a maximum if also f and each
gi are convex functions; this maximum point is unique if f is strictly convex.

If the functions f, g, k also contain a parameter q, then the optimal value
of f(p) also depends on q; denote this function by V (q). Under some regularity
conditions (see e.g. Fiacco and McCormick, 1968; Craven, 1995), the gradient
V ′(0) equals the gradient Lq(p, ρ∗, σ∗).

For a maximization problem, the inequalities for L in (SP) are reversed,
and convexity applies to −f and −g.

For the problem with f and g convex functions, and k a linear function,
there is associated a dual problem:

MAX f(y) + vg(y) + wk(y) subject to v ≥ 0, f ′(y) + vg′(y) + wk′(y) = 0.

Assume that the given problem reaches a minimum at p, and that KKT holds
with Lagrange multipliers ρ and σ. Then two properties relate the given primal
problem and the dual problem:

• Weak Duality If x satisfies the constraints of the primal problem, and
y, v, w satisfy the constraints of the dual problem, then:

f(x) ≥ f(y) + vg(y) + wh(y);

• Zero Duality Gap (ZDG) The dual problem reaches a maximum when
(y, v, w) = (p, ρ, σ). Thus, the Lagrange multipliers are themselves the
solutions of an optimization problem.
These duality properties are well known for convex problems. However,

they also hold (see Craven, 1995) when (f, g, k) satisfies a weaker, invex prop-
erty, described in section 2.4. This property holds for some economic and
finance models, which are not convex.
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2.4. Relaxing the convex assumptions3

Convex assumptions are often not satisfied in real-world economic models
(see Arrow and Intriligator, 1985). It can happen, however, that a global
maximum is known to exist, and there is a unique KKT point; then that KKT
point must be the maximum. This happens for a considerable class of economic
models − see section 2.5. Otherwise, the necessary KKT conditions imply a
maximum under some weaker conditions than convexity. It suffices if f is
pseudoconvex, and each gj is pseudoconcave, or less restrictively if the vector
−(f, g1, . . . , gm ) is invex . (Here k is assumed absent or linear).

A vector function h is invex at the point p (see Hanson, 1980; Craven,
1995) if, for some scale function η :

h(x) − h(p) ≥ h′(p)η(x, p).

(The ≥ is replaced by = for a component of k corresponding to an equality
constraint.) Note that h is convex at p if η(x, p) = x − p; but invex occurs in
other cases as well.

From Hanson (1980), a KKT point p is a minimum, provided that
(f, g1, . . . , gm ) is invex at p.

If inactive constraints are omitted then (Craven, 2002) this invex property
holds exactly when the Lagrangian L(x, µ) = f(x) + µT g(x) satisfies the sad-
dlepoint condition L(p, µ) ≥ L(p, µ∗) ≥ L(z, µ∗) for all z and all µ ≥ 0. If the
problem is transformed by x = ϕ(y), where ϕ is invertible and differentiable,
then h is invex exactly when h0ϕ is invex (with a different scale function).
(Thus, the invex property is invariant to such transformations ϕ; then name
invex derives from invariant convex . ) If a ϕ can be found such that h0ϕ is con-
vex, then it follows that h is invex. (This happens e.g, for the Kendrick-Taylor
growth model - see Islam and Craven, 2001a).

For the problem: MAX f(x) subject to g(x) ≥ 0, where the vector func-
tion (−f,−g) is assumed invex, a local minimum is a global minimum; if there
are several local minima, they have the same values of f(x). Under the further
assumption of strict invexity for f at a minimum point p where (KKT) holds
(with multiplier µ∗), namely that f(x) − f(p) > f ′(p)η(x, p) whenever x 	=		 p,
a minimum point p is unique. For, with L(x) = f(x) + µ∗g(x), L(.) is then
strictly invex, hence:

f(x) − f(p) ≥ L(x) − L(p) > L′(p)η(x, p) = 0.

For optimal control, as in section 2.2, the spaces are infinite dimensional;
however KKT conditions (equivalent to Pontryagin, conditions), quasimax (see
section 2.7), invexity, and related results apply without change. However, in-
vexity may be difficult to verify for a control model, because the dynamic
equation for ẋ(t) is an equality constraint; thus convexity assumptions would
require the dynamic equation to be linear.

3 See also sections 4.4 and 8.6.
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Invexity can sometimes be established for a control problem by a suit-
able transformation of the functions, assuming however that constraints on the
control function are not active. Consider a model for optimal growth, (see In-
triligator, 1971; Chiang, 1992), in which u(t) = c(t) is consumption, x(t) = k(t)
is capital, f(x(t), u(t)) = U(c(t)) where the social welfare function U(.) is pos-
itive increasing concave, and:

m(x(t), u(t), t) = ϕ(k(t)) − c(t) − rk(t).

Consider now a dynamic equation k̇(t) = b(t)θ(k(t)) − c(t), where b(t) > 0 is
given . The transformation x(t) = ψ(k(t)) leads to the differential equation:

ẋ(t) = ψ′(ψ−1(x(t))[bϕ(ψ−1(x(t)) − c(t))].

This assumes that the function ψ(.) is strictly increasing, hence invertible,
as well as differentiable. If ψ can be chosen so that ψ′(.)ϕ(.) = 1, then the
differential equation becomes: ẋ(t) = b(t)−u(t), where u(t) := ψ′(ψ−1(x(t))c(t)
is a new control function. Then one may ask whether the integrand:

−e−rtU(u(t)/ψ′(ψ−1(x(t))

happens to be a convex function of (x(t), u(t)) ? If it is, then the problem was
invex, since it could be transformed into a convex problem.

A similar approach was followed by Islam and Craven (2001a) for the
Kendrick-Taylor model, defined in section 1.4. Here ẋ(t) = ζeqtk(t)β −σk(t)−
c(t) and the integrand is c(t)τ , with β = 0.6 and τ = 0.1. The transformation
x(t) = (k(t)eσt)1−β , followed by c(t) = x(t)θu(t) for suitable θ, reduces the
dynamic equation to the form:

ẋ(t) = (1 − β)ζert − (1 − β)eσtu(t).

The integrand of the objective function becomes a function of (x(t), u(t)), which
is concave if its matrix of second derivatives is negative definite. This holds for
the given values of β and τ.

The approach of the previous paragraph seems to work a little more gen-
erally. However, there are difficulties if x(t) has more than one component;
and it must be assumed that any constraints on the control, such the con-
straint 0 ≤ c(t) ≤ ϕ(k(t)) in Chiang (1992), are not active, since these will not
transform to anything tractable.

The invex property can sometimes be used to establish existence.

MIN f(x) subject to g(x) ≤ 0, k(x) = 0,

satisfies convex, or invex, assumptions on the functions f, g, h. Without assum-
ing that a minimum is reached, suppose that the necessary KKT conditions at a
point p satisfying the constraints, with some Lagrange multipliers ρ and σ, can
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be solved for p, ρ, and σ. Define the Lagrangian: L(x) := f(x)+ρg(x)+σk(x).
If x satisfies the constraints, then:

f(x) − f(p) ≥ L(x) − L(p ≥ L′(p)η(x,p) = 0.

Thus the problem reaches a global minimum at p. This approach is not re-
stricted to a finite number of variables, so it may be applied to optimal control.

It is well known (Mangasarian, 1969) that KKT conditions remain suffi-
cient for an optimum if the convexity assumptions are weakened to −f pseu-
doconvex x and each −gi quasiconvex. The definitions are as follows. The
function f is quasiconcave at p if f(x) ≥ f(p) => f ′(p)(x − p) ≥ 0, pseudon-
cave at p if f(x) > f(p) => f ′(p)(x − p) > 0. If f is pseudoconcave, and each
gi is quasiconcave, then a KKT point is a maximum. If the function n(.) is
concave and positive, and d(.) is convex and positive, then the ratio n(.)/d(.)
is pseudoconcave. Apart from this case (fractional programming), quasi- and
pseudo-concave are more often assumed than verified. These assumptions can
be further weakened as follows. The function h is quasiinvex at p if h(x) ≥
h(p) => h′(p)η(x, p) ≥ 0, pseudoinvex at p if h(x) > h(p) => h′(p)η(x, p) > 0.
As above, the scale function η must be the same for all the functions describ-
ing the problem. Then −f pseudoinvex and each −gi quasiinvex also make a
KKT point a maximum. If n(.) > 0 is concave, and d(.) > 0 is convex, then a
transformed function −n◦ϕ(.)/d◦ϕ(.) is pseudoinvex, when ϕ is differentiable
and invertible.

2.5. Can there be several optima?4

Many nonlinear programs have local optima that are not global. The
evolution in time, in an optimal control model, puts some restrictions on what
may happen with such a problem. The following discussion, from Islam and
Craven (2004), gives conditions when an optimum is unique, or otherwise. Two
classes of control problem often occur:

(a) When f and m are linear in u(.), then bang-bang control often occurs,
with u(.) switching between its bounds, plus perhaps a singular arc. The
optimum is essentially defined by the switching times; and the bounds on u(.)
are needed, for an optimum to be reached. Some such problems have several
local optima, with different numbers of switching times.

(b) When f and m are nonlinear, and the controls on the constraints are
inactive, then the Pontryagin necessary conditions for an optimum requires
that:

(i) As well as the dynamic equation, the costate λ (.) satisfies the differ-
ential equation :

−λ̇(t) = e−ρtfxff (x(t), u(t)) + λ(t)mx(x(t), u(t), t), λ(T ) = −Φ′(x(T )),

4 See also section 5.6.
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or, for the Kendrick-Taylor example (see section 2.4):

−λ̇(t) = e−ρtU ′(c(t)) + λ(t)b(t)θ′(k(t)), λ(T ) = −Φ′(k(T ));

setting z(t) = (k(t), λ(t)), the two differential equations combine into one of
the form:

ż(t) = ζ(z(t), u(t), t), z(0) = z0;

(the λ part of z0 is a parameter, varied to satisfy the λ(T ) condition ).
(ii) From Pontryagin’s principle,

e−ρtf(x(t), u(t)) + λ(t)Pm(x(t), u(t), t)

is maximized over u(t); or, for the example, e−ρtU(c(t))−λ(t)c(t) is maximized
over c(t) at the optimal c(t) ; for this (in the absence of constraints on c(t)) it
is necessary (but not sufficient) that the gradient e−ρtU ′(c(t)) − λ(t) = 0.

If (I) the gradient equation in (ii) can be solved uniquely, and globally, for
u(t), say as

u(t) = p(λ(t), t),

then substitution into the ż(t) equation gives n

ż(t) = Z(z(t), t) ≡ ζ(z(t), p(λ(t), t), t), z(0) = z0.

Assume additionally (II) that Z(., t) satisfies a Lipschitz condition, uniformly
in t. Then the differential equation has a unique solution z(t). In these circum-
stances, the control problem has a unique optimum. (Note that (I) excludes
any jumps in u(.).)

Assumption (I) holds if the utility U.) is concave and strictly increasing. In
other cases, there may be several solutions for u(t). In Figures 1 and 2, U(.) is
quasiconcave , and if U ′(u) lies in a certain range there are three solutions for u.
However, the optimum control u(t) may still be unique. A simple example, for a
pseudoconcave objective (which implies quasiconcave) and a linear differential
equation, is given in section 2.8.

In Kurz (1968), a class of optimal control models for economic growth are
analysed using the Pontryagin theory. There is a unique optimum if certain
concavity conditions are fulfilled. If they are not, then multiple optima may
occur. Kurz gives numerical examples of multiple optima when the welfare
function U(.) depends on the state k(.) as well as the control u(.).
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Figure 1

Figure 2

2.6. Jump behaviour with a pseudoconcave objective

An optimal control problem whose objective is pseudoconcave, but not con-
cave, may show jump behaviour in the control, not associated with a boundary
of a feasible region. A simple example is proposed in Islam and Craven (2004);
it is given here, with numerical results.
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Consider the simple example:

MAX
∫ T

0

∫∫
U(u(t))dt subject to:

x(0) = x0 , ẋ(t) = γx(t) − u(t) (0 ≤ t ≤ T ), x(T ) = xT .

The control u(.) may be unconstrained, or there may be a lower bound

(∀t)u(t) ≥ ulb.

The horizon T is taken as 10, and the growth factor γ = 1. The quasiconcave
(not concave) utility function U(.) is given by:

U(u) = u − 0.5u2(0 < u < a),

U(u) = p + (1 − a)(u − a) + 0.5d(u − a)2(a < u < b),

U(u) = q + (1 + c)(u − b) 0.5(u2 − b2 ) (u > b) ,

with parameters chosen to display the jump effect:

a = 0.30, b = 0.35, c = 0.10, p = a − 0.5a2, d = −1 + c/(b − a),

q = p + (1 − a)(b − a) + 0.5d(b − a)2.

This utility function U(u) is constructed from U(0) = 0, and U ′(u) =
1 − u, 1 − a + d(u − a), 1 + b − u in the three intervals. The increase in slope
makes the function U nonconcave. With these numbers, the nonconcavity of
U is only just visible on its graph.

In this example x(t) may represent capital, and u(t) may represent con-
sumption, But, when no lower bound is imposed on u(t), negative values for
u(t) may be obtained. The model provides substantial capital growth, and it
may be advantageous to borrow money to pay for consumption during the early
part of the planning period. To model this better, a cost of borrowing :

C(u) = κ(u − δ) when u < δ, C(u) = 0 when u ≥ δ,

may be subtracted from U(u). This replaces an explicit lower bound on u(t).
(Here, δ = 0.2 and κ = 1.3 were considered.) Also, the dynamic equation for
ẋ(t) is taken here as linear, to enable an analytic solution to the control prob-
lem. A more realistic model would replace γx(t) by some increasing concave
function of x(t).

From the theory of Section 2.2, the costate λ(t) = −σe−γt , with some
constant σ depending on the terminal condition for x(T ); and then U ′(u(t)) =
σe−γt ; hence u(t) increases as t increases. Depending on the initial and ter-
minal conditions and the growth factor γ, the range of variation of the optimal
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Figure 3 Utility function U(u)

Figure 4 Control in jump regime
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Figure 5 The state

Figure 6 Change of objective with growth factor



24 Chapter 2

u(t) may include the region where there are three possible solutions for u(t).
Thus, there are two possible solution regimes, one where this region is not
entered, so u(t) varies smoothly, and the second where u(t) jumps from the
leftmost part of the U ′(t) curve to the rightmost part, at some level of u(t)
depending on the parameters mentioned.

Computations with the SCOM optimal control package, described in chap-
ter 3 (also Craven and Islam, 2001) confirm this conclusion. Figure 3 shows
the utility function, including the borrowing term. Figure 4 shows the optimal
control u(t), and the value of the utility U(u(t)), for one set of parameters
(γ = 0.10, x0 = 5.0, xT = 5.80). In the computation, uj(t) was approximated
by a step-function with 40 subintervals; the theoretical solution would be a
smooth curve, except for the jump at t = 2.3.

Figure 5 shows the state x(t); note the change in slope at t = 2, 3, where
u(t) jumps.

Figure 6 shows the change in the optimal objective as the growth factor γ
changes, other parameters being the same. Note that the control u(t) changes
smoothly when γ ≤ 0.13, whereas u(t) has a jump when γ > 0.13; the graph
in Figure 6 changes slope at this level of γ.

2.7. Generalized duality
While duality requires convexity, or some weaker property such as invex,

there are relaxed versions of maximum for which quasiduality holds, giving an
analog of ZDG, but not weak duality. A point p is a quasimax of f(x), subject
to g(x) ≤ 0, if (Craven, 1977)

f(x) − f(p) ≤ o(‖x − p‖) whenever g(x) ≤ 0.

Here a function q(x) = o(‖x − p‖) when q(x)/‖x − p‖ → 0 when‖x − p‖ → 0.
A function f has a quasimin at p if −f has a quasimax at p. If f and g
are differentiable functions, and a constraint qualification holds, then (Craven,
1997) p is a KKT point exactly when p is a quasimax.

Attach to the problem:

QUASIMAXxf(x) subject to g(x) ≤ 0

the quasidual problem:

QUASIMINu,vf(u) + vg(u) subject to v ≥ 0, f ′(u) + vg′(u) = 0.

Then (Craven, 1977, 1995) there hold the properties:
• ZDG If x∗ is a quasimax of the primal (quasimax) problem, then
there is a quasimin point (u∗, v∗) of the quasidual problem for which
f(x∗) = f(u∗) + v∗gf(u∗), thus the objective functions are equal.
• perturbations if V (b) = QUASIMAXf(x) subject to g(x) ≥ 0,
with the quasimax for b = 0 occurring at x = x∗, and if (u∗, v∗) are the
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optimal quasidual variables for which ZDG hold with f(x∗), then the
quasi-shadow price vector V ′(0) = v∗.

There are several quasimax points with related quasimin points, and they
correspond in pairs. These quasi properties reduce to the usual ones if −f
and −g are invex with respect to the same scale function η(·). However, for an
equality constraint k(x) = 0, the required invex property has = instead of ≥.

Simple examples of quasimax and quasidual are as follows.
Example 1: (Craven, 1977) The quasidual of the problem:

QUASIMAXx − x +
1
2
x2 subject to x ≥ 0,

is:

QUASIMINu,v − u +
1
2
u2 + vu subject to − 1 + u + v = 0, v ≥ 0,

which reduces to the quasidual : QUASIMINu − 1
2u2 subject to u ≤ 1. The

primal problem has a quasimax at x = 0, with objective value 0, and a quasimin
at x = 1, with objective value − 1

2 . The quasidual has a quasimin at u = 0
with objective value 0, and a quasimin at u = 1 with objective value − 1

2 .

Example 2: Here, the quadratic objective may be a utility function for
social welfare, not necessarily concave, to be maximized, subject to linear con-
straints. The quasidual vectors are shadow prices. For given vectors c and s,
and matrices A and R, suppose that the problem:

QUASIMAXz∈Rn F (z) := −cT z + (1/2)zT Az subject to z ≥ 0, Rz ≥ s,

reaches a quasimax at a point p where the constraint z ≥ 0 is inactive, and the
constraint Rz ≤ s is active. Then KKT conditions give Ap+RT λ = c, Rp = s,
with multiplier λ ≥ 0. Setting z = p + v, F (z)− F (p) = −λT Rv − (1/2)vT Av
with Rv ≥ 0. So −λT Rv ≤ 0, and F (z)−F (p) may take either sign, depending
on the matrix A, so p is generally a quasimax, not a maximum. The associated
quasidual problem is:

QUASIMINu,v − cT u + (1/2)uT Au − vT (Tu − s) subject to

c − Au − RT v = 0, v ≥ 0.

However, the main applicability of quasimax is when the primal maxi-
mization problem has several local maxima, as is likely to happen when the
objective function is far from concave. To each local maximum corresponds
a quasimin of the quasidual, with the ZDG property, and quasidual variables,
giving shadow prices. Thus the shadow price, for each local maximum, is an
optimum point of a quasimin problem.
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When there are equality constraints, the invex property takes a different
form. In general, a vector function F is invex with respect to a convex cone Q
at a point p if:

(∀x) F (x) − F (p) ∈ F ′(p)η(x, p)

holds for some scale function η(., .). If some component h(x) of F (x) belongs
to an equality constraint h(x) = 0, then the related part of Q is the zero point
{0}; hence invex requires an equality:

(∀x) h(x) − h(p) = h′(p)η(x, p).

2.8. Multiobjective (Pareto) optimization5

When two or more objectives are to be maximized, they usually conflict,
so they cannot all be optimal. This is commonly the case with social welfare
models. Usually Pareto maxima are considered, where moving away from such
a point decreases all the objectives. If two objectives F 1 and F 2 should be
maximized over a set Γ, define the vector F (x) := (F 1(x), F 2(x). Denote by
W the set of points w ∈ R2 for which w1 > 0 and w > 0 do not both hold; W
is shown in the right diagram. Then p is a Pareto maximum if, for each x ∈ Γ,
F(x) −F (p) ∈ V , where V is the set indicated in the left diagram, namely the
interior of W , together with 0. The point p is a weak maximum if, for each
x ∈ Γ, F(x) −F (p) does not lie in W . The weak maximum points include all
the Pareto maximum points, and some additional boundary points, excluded
from V. For r > 2 objectives, Rr replaces R2.

More generally, consider the “maximization” of a vector objective function
F (.) subject to the constraint g(.) ≥ 0, relative to an order cone Q in the space

5 See sections 6.4 and 8.4.
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into which F maps. Denote by U the complement of the interior of Q. A
point p is a weak quasimax of F (.), subject to g(.) ≥ 0, if for some function
q(x) = o(||x − p||), there holds:

F (x) − F (p) − q(x) ∈ U whenever g(x) ≥ 0.

(Note that weak maximum is the special case q(.) = 0.) Replacing U by the
union of 0 with the interior of U gives the slightly more restrictive Pareto
maximum; a weak maximum may include a few additional boundary points.
A weak quasimin of a vector function H is a weak quasimax of -H . If F
has r components, then usually Q is taken as the orthant Rr.

+ The following
diagram (see Craven, 1981) illustrates the definition, for the case when F has
two components, so that the order cone Q is a sector, but not always the non-
negative orthant R2

+. Such an ordering is appropriate when the consumers are
not isolated, as is discussed in section 8.2.

From Craven (1995), a (maximizing) weak Karush-Kuhn-Tucker point
(WKKT) p satisfies:

τF ′(p) + λg′(p) = 0, λg(p) = 0, λ ≥ 0 τ ≥ 0, τe = 1.

Here τ is a row vector, e is a column vector of ones. The statement τ ≥ 0
means, more precisely, that τ lies in the dual cone Q∗ of Q, defined by q∗(q) ≥ 0
whenever q∗ ∈ Q∗ and q ∈ Q, If Q = Rr

+ then each component of τ is non-
negative. There are many WKKT points, corresponding to different values of
τ.

Analogously to section 2.7 (and see Craven, 1990), the weak quasidual to
the (primal) problem:

WEAK QUASIMAXxF (x) subject to g(x) ≥ 0

has the form:

WEAK QUASIMINu,V F (u) + V g(u) subject to
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V (Rm
+ ) ⊂ Q, (F ′(u) + V g′(u))(X) ⊂ U,

where the space X = Rn is the domain of F and g, and V is a r × m matrix
variable. The linearized problem about the point p:

QUASIMAX F ′(p)(x − p) subject to g(p) + g′(p)(x − p) ≥ 0

If a constraint qualification holds, and without any convex or invex as-
sumption, there hold (Craven, 1989, 1990):

• p is a WKKT point exactly when p is a weak quasimin.
• ZDG If x∗ is a weak quasimax point of the primal, with multipliers
τ, λ, then there there is a weak quasimax point (u, V ) = (x∗, V ∗) of the
weak quasidual problem, with τV ∗ = λ, and equal optimal objectives:

F (x∗) = F (u∗) + V ∗g(u∗).

Proof Let x and u, V be feasible for the respective problems. Then (using
quasidual constraints):

[F (u) + V g(u)] − [F (x∗) + V ∗g(x∗)) ∈ Q + [F (u) + V ∗g(u)]

−[F (x∗) + V ∗g(x∗) + (V − V ∗)(g(u) − g(x∗)}
= Q + (F + V g)′(x∗)(u − x∗) + o(‖u − x∗‖) + (o(‖u − x∗‖) + o(‖V − V ∗‖)),

⊂ U + o(‖u − x∗‖ + ‖V − V ∗‖).
• Linearization The linearized problem about p reaches a weak maximum
at p.
• Shadow prices If x∗ is a weak quasimax of the primal, then x∗ is also
a quasimax of τ∗F (x); so the shadow prices for τ∗F are optimal for:

QUASIMAX F ′(p)(x − p) subject to g(p) + g′(p)(x − p) ≥ 0

• Multilinear problem (Bolinteanu and Craven, 1992) If F is linear, and
g is linear (plus a constant), then p is stable to small perturbations, and
there is a shadow price for F for perturbations that do not change the
list of active constraints.

Example 3 - Vector quasimax and quasidual

WEAK QUASIMAXz∈Rn {FiFF (z)}r
i=1 := {−cT

i z + (1/2)zT Aiiz}r
i=1,

subject to Rz ≥ s,

for given vectors ci, d, s and matrices Ai, R; here {FiFF (z)}r
i=1 specifies a vector

objective by its components. For each multiplier τ ≥ 0, with eT τ = 1, where e
is a vector of ones, there corresponds a quasimax z = z(τ), with:

AT z(τ) + RT
0 λ(τ) = c, R0z(τ) = s0,
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in which Roz ≥ s0 describes the constraints active at z(τ), c =
∑

τiττ ci, A =∑
τiττ Ai, As in example 2, this quasimax becomes a maximum if the matrix A is

restricted, e.g. to be negative definite in feasible directions. This problem may
describe e.g. conflicting objectives of output and envoronmental quality for
sustainable development, and requiring nonlinear functions to describe them.
The vector quasidual is then:

WEAK QUASIMAXu,V {−ci + uT Ai}r
i=1 + V R)(Rn) ⊂ U, V ≥ 0,

where U = Rr\ int Rr
+; each component of V is ≥ 0.

While a quasimax is not generally a maximum, the quasi properties reduce
to the standard properties if an additional assumption, such as convex or invex,
is made. Consider the problem of weak maximization of F (x) < with respect
to the order cone Q, subject to constraints g(x) ≥ 0 and k(x) = 0. In weak
KKT, a term σk′(p) is added to λg′(p), where the multiplier σ is not restricted
in sign. The invex property stated in section 3.2 (see Hanson, 1980; Craven,
1981; Craven, 1995) now takes the form:

−F (x) + F (p) + F ′(p)η(x, p) ∈ Q,

g(x) − g(p) ≤ g′(p)η(x, p),

k(x) − k(p) = k′(p)η(x, p),

for the same scale function η(x, p) in each case. (The inequalities derive from
a cone-invex property H(x)−H(p)−H ′(p)η(x, p) ∈ Q×Rm

+ ×{0} for a vector
function H = −(F, g, k) (see Craven 1995).

In particular, if all components of F and g are concave, and all compo-
nents of k are affine (constant plus linear), then invexity holds with η (x, p)
= x−p, and the necessary conditions weak KKT, or equivalentlyTT weak quasimax,
become also sufficient for a maximum. But these assumptions are often not ful-
filled in applications. Some conditions when invexity holds are given in Craven
(1995, 2000). A transformation x = ϕ (y) of the domain, where ϕ is invertible,
with both ϕ and ϕ−1 differentiable, preserves the invex property, although the
scale function is changed. The name invex derives (Craven, 1981) from invari-
ant convex ; thus if a function H is convex, then the transformed function H◦ϕ
is invex (though not every invex function is of this form). However, for an
equality constraint k( x ) = 0, k(.) is invex at p if k(x) − k(p) = k′(p)η (x, p),
For KKT to be sufficient for an optimum, this invex property is only required
for those x where k(x) = 0. So the requirement reduces to the reduced invex
(rinvex) property: k(x) = 0 = k′(p)η(x, p).

A multiobjective analog of saddlepoint was given in Craven (1990), and
the results are summarized here. The point p is a weak saddlepoint (WSP) (see
Craven, 1990) if:

τT F (p) + vT g(p) ≥ τT F (p) + λT g(p) ≥ τT F (x) + λT g(x)
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holds for all x, and all v ≥ 0. The multiplier τ (where 0 	=		 τ ≥ 0) depends on
p. The point p is a weak quasisaddlepoint if (given τ ):

(∀x,∀µ ≥ 0)τF (p) + µg(p) ≥ τF (p) + λg(p) ≥ τF (x) + λg(x) + o(‖x − p‖).

The following relations hold (Craven, 1995) for the vector function F on E and
p ∈ E:

p is a Pareto maximum ⇒ p is a weak maximum

⇒ p is a weak quasimax

⇔ p is a weak KKT point (assuming regularity of the constraint)

⇔ p is a weak quasisaddlepoint .

Weak maximum (and weak quasimax) points may include some boundary
points which lack a desired stability property. The statement that 0 = τ =
(τ1, . . . , τrττ ) ≥ 0 means that all components τiττ ≥ 0, and they are not all zero. If
τ > 0, namely if all τiττ > 0, then (Craven, 1990): weak KKT & τ > 0 ⇔ locally
proper weak quasimax , where locally proper means that ratios of deviations of
the different Fi from Fip) are bounded (inequalities of Geoffrion, 1968) when
x is near p. These ratios represent tradeoffs between the objective components.
They are approximated by the corresponding ratios of the τiττ . Thus a proper
quasimax occurs exactly when all the multipliers τiττ for the objectives are strictly
positive. This property does not require the Lagrange multipliers to be stated.
As motivation, note that the stationary points of a real function f are the point
p where the gradient f ′(p) = 0; and maximum points are sought among the
stationary points, If there are constraints, then constrained maximum points
are among the KKT points instead of stationary points, A quasimax point p
is a maximum point of the linear program, obtained by linearizing the given
problem about the point p.

2.9. Multiobjective optimal control
For an optimal control problem with a single objective, the KKT condi-

tions are essentially equivalent to an adjoint differential equation for a costate
function, together with Pontryagin’s principle. This extends to multiobjective
control problems.

Consider an optimal control problem, to find Pareto maximum points of
a vector objective F (x, u), subject to a dynamic equation that determines the
state x in terms of the control u, and other constraints. By substituting for x
in terms of u, the problem takes the form:

PMAX J(u) subject to u ∈ U,

where PMAX denotes Pareto maximum, and the feasible set U is a closed
bounded subset of some vector space V . Suppose that u ∈ U ⇔ G(u) ≤ 0,
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for some function G. If a Pareto maximum point û is reached, then (under
restrictions usually satisfied), multipliers τ and ρ exist such that Karush-Kuhn-
Tucker (KKT) conditions hold:

τJ′(û) + ρG′(û) = 0, 0 	=		 τ ≥ 0, ρ ≥ 0, ρG(û) = 0.

If −J and G satisfy some relaxed version of convexity, such as invexity (see
Craven, 1995), then the KKT conditions, in turn, imply a Pareto maximum,
and also that τJ(u) is maximized, subject to G(u) ≤ 0, at û. Then each τ
corresponds to one or more Pareto maximum points, and each Pareto max-
imum point corresponds to one or more multipliers τ. If minimum points of
τJ(.), subject to G(u) ≤ 0, exist for each τ ≥ 0, then the existence of Pareto
maximum points is established.

For an optimal control problem in continuous time, the vector space V is
infinite dimensional, so compactness properties of U are not generally available,
so a Pareto maximum of a continuous vector function is not always reached.
For each given τ, assume that J(u) := τJ(u) has a finite lower bound over U .
If J(u) has the form

∫ T

0

∫∫
f(x(t), u(t), t)dt, with a coercivity assumption on the

integrand f, that:

(∀x, u, t)f(x, u, t) ≥ g(u) , where g(u)/|u| → ∞ as |u| → ∞,

together with convexity of a set: ∪u∈U{ (z, y) : z = m(x, u, t)y ≥ f(x, u, t),
where U is the closed set of values allowed to u(t), then a maximum for J(u)
exists (see Fleming and Rishel, 1975, Theorem 4.1). But these assumptions are
often not satisfied for an economic growth model.

Suppose, however, that u = p is a solution of the KKT necessary con-
ditions for a maximum of J(u) (or equivalently of the Pontryagin conditions
− see section 2.2). Additional assumptions are needed, to ensure that p is a
maximum. Suppose that S1 ⊂ S2 ⊂ . . . ⊂ Sn ⊂ . . . is an increasing sequence of
finite-dimensional subspaces of V , and that p is a limit point of their union.
Suppose also that each Sn ∩ U is bounded (in a finite dimension); then J(u)
reaches a maximum, say at u = pn , over Sn ∩ U . Then J(pn) → J(p), and
p is a maximum point for J. (See Craven (1999b) for an example for a control
model where bang-bang control is optimal.)

Otherwise, if u = p satisfies the Pontryagin conditions, and if the functions
of the problem satisfy invex conditions (see Craven 1995), then p is a maximum.
In particular, it suffices if the integrand f of the objective is concave, and
the dynamic differential equation for the state is linear. Less restrictively, a
function ϕ is invex at p if :

ϕ(u) − ϕ(p) ≥ ϕ′(p)η(u, p),

where the scale function η must be the same for the several functions (-f and
constraint functions) describing the problem. But this is often not the case for
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a given dynamic equation. However, the control problem has a local maximum
at p if −f is invex, under lesser restrictions on the differential equation (see
section 8.6.)

The maximum point p for J(u) is unique if the Pontryagin conditions
have a unique solution. This may happen, in particular (see Islam and Craven,
2001b) when there are no control constraints, so that the Pontryagin maximum
condition reduces to a gradient equation, fuff +λmu = 0. If this equation defines
u as a unique function of λ, and some Lipschitz conditions hold for f,m,mx

and mu , then the differential equations for ẋ and λ̇ (substituting for u) have
unique solutions.

For a multiobjective problem, the maximum point cannot be unique, but
the set of Pareto maximum points is unique, if one of the above criteria applies.

2.10. Multiobjective Pontryagin conditions6

Consider an optimal control problem, to find a Pareto (or weak) maximum
for two objective functions over a time interval [0, T] :

PMAX {
∫ T

0

∫∫
f1(x(t), u(t), t)dt + Φ1(x(T )),

∫ T

0

∫∫
f2(x(t), u(t), t)dt + Φ2(x(T ))}

subject to:

x(0) = x0, ẋ(t) = m(x(t), u(t), t) (0 ≤ t ≤ T ),

a(t) ≤ u(t) ≤ b(t) (0 ≤ t ≤ T ).

Here the state function x(.) and control function u(.) can be scalar or vector
valued; PMAX denotes Pareto maximum; there may be endpoint contributions
Φ1,Φ2. Note that a Pareto minimum of {F 1, F 2} is a Pareto maximum of
{−F 1,−F 2}. There can be more than two objectives.

The relevance of such models to economic growth, decentralization, social
choice, and sustainable growth is discussed in chapters 5, 6 and 8. In particular,
components of u(.) may represent consumption, and components of x(.) may
represent capital stock, with a dynamic differential equation describing eco-
nomic growth. Questions of existence and uniqueness are discussed in sections
2.3 and 2.5.

The above optimal control model can be described by a Hamiltonian :

h(x(t), u(t), t; τ, λ(t)) :=

6 See section 8.4.
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∑

i

τiττ [f i(x(t), u(t), t) + δ(t − T )Φi(x(T ))] + λ(t)m(x(t), u(t), t)

Here λ(.) is the costate function ; τiττ are nonnegative multipliers; and the end-
point terms Φi(x(T )) have been replaced by terms δ(t − T )Φi(x(T )) added to
the integrands; δ(.) is Dirac’s delta-function.

The analysis in Craven (1999a) uses a Lagrangian L(.) = h(.) + λ̇(t)x(t).
The optimum is then described by the necessary Karush-Kuhn-Tucker

(KKT) conditions. From this is deduced, under some regularity assumptions,
a (weak) adjoint differential equation:

λ̇(t) = τT fxff (x(t), u(t), t) + λ(t)mx(x(t), u(t), t), λ(T ) = τT Φ′(x(T )),

(where fxff denotes (∂/∂x)f, etc.), together with the Pontryagin principle:

h(x(t), ., t; τ, λ(t)) → MAX over [a(t), b(t)] at the optimal u(t).

There are many Pareto (or weak) optimal points, corresponding to various
values of τ, where 0 	=		 τ ≥ 0. If the constraints on the controls are inactive,
then MAX h implies:

hu(x(t), u(t), t; τ, λ(t)) = 0

at the optimal x(t), u(t), λ(t). (Note that this does not imply MAX h.)
The costate function λ(t) represents a shadow price for the differential

equation. Thus, if the dynamic differential equation is perturbed to:

x(0) = x0, ẋ(t) = m(x(t), u(t), t) − β(t),

where β(.) is a continuous function of small norm, then the change in the
optimal value of τf(.) is approximated by

∫ T

0

∫∫
λ(t)β(t)dt.

An alternative description uses a vector Hamiltonian :

H(x(t), u(t), t; Λ(t)) :=

f(x(t), u(t), t) + δ(t − T )Φ(x(T )) + Λ(t)m(x(t), u(t), t),

in which f is the vector of f i,Φ is the vector of ϕi , and Λ(t) is a matrix valued
function instead of the vector function λ(.). The vector adjoint equation is then:

Λ̇(t) = fxff (x(t), u(t), t) + Λ(t)mx(x(t), u(t), t),Λ(T ) = Φ′(x(T )).

Corresponding to Pontryagin’s principle, there is a Pareto (or weak) optimum
of the vector Hamiltonian, thus:

H(x(t), ., t; Λ(t)) → PMAX over [a(t), b(t)] at the optimal u(t).
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The maximum in Pontryagin’s principle becomes here a Pareto maximum.
If the constraints on the controls are inactive, then optimizing the vector Hamil-
tonion implies (for two objectives) that:

(∃τ ≥ 0, τ = 0)		 τHu(x(t), u(t), t; Λ(t)) = 0,

at the optimal x(t), u(t),Λ(t). (Note that this does not imply PMAX.)
If multipliers τ and λ are known, then Λ(t) may be constructed from

τT Λ(t) = λ(t).



Chapter 3
Computing Optimal Control :

The SCOM package

3.1. Formulation and Computational Approach
This chapter discusses computational approaches to optimal control in

economics and finance, in particular for modelling social choice and public
decision making. For the mathematical background, refer to sections 2.1 and
2.2. A computing package called SCOM has been developed by the present
authors, using MATLAB (see sections 3.3 and 3.4, and Craven and Islam,
2001). Some applications are given in sections 3.6 and 3.7.

Consider an optimal control problem, of the form:

MINx(.),u(.) F 0(x, u) :=
∫ 1

0

∫∫
f(x(t), u(t), t)dt + Φ(x(1))

subject to x(0) = a, ẋ(r) = m(x(t), u(t), t), q(t) ≤ u(t) ≤ r(t) 0 ≤ t ≤ 1).

Here the state function x(.), assumed piecewise smooth, and the control func-
tion u(.), assumed piecewise continuous, are, in general, vector-valued; the
inequalities are pointwise. A substantial class of optimal control problems can
(see Teo et al., 1991; Craven, 1998) be put into this form; and, in many cases,
the control function can be sufficiently approximated by a step-function. A
terminal constraint σ(x(1)) = b can be handled by replacing it by a penalty
term added to F 0(x, u); thus the objective becomes:

F (x, u) := F 0(x, u) + 1
2µ‖σ(x(1)) − b∗‖2,

where µ is a positive parameter, and b∗ approximates to b.
In the augmented Lagrangian algorithm (see e.g. Craven, 1995), con-

straints are thus replaced by penalty terms; µ is finite, and typically need not
be large; here b∗ = b + θ/µ, where θ is a Lagrange multiplier. If there are
few constraints (or one, as here), the problem may be considered as one of
parametric optimization, varying b∗, without computing the multipliers.

The differential equation, with initial condition, determines x(.) from u(.);
denote this by x(t) = Q(u)(t); then the objective becomes:

J(u) = F 0(Q(u), u) + 1
2µ‖σ(Q(u)(1)) − b∗‖2,

For the formula to compute the gradient J ′(u) of the objective, refer to section
2.1.
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A diversity of algorithms have been proposed for computing optimal con-
trol. Algorithms for optimal control (Mufti, 1970, Teo et al., 1991) have been
variously based on: (i) dynamic programming; (ii) solving first-order necessary
conditions of the Pontryagin theory; (iii) applying some approximation meth-
ods (steady state solution, numerical methods based on approximation and
perturbation, and method of simulation); (iv) approximating the control; and
(v) applying mathematical programming algorithms to a discretized version of
the control problem.

Many of these methods (especially methods (i) to (iii)) are based on the
first order maximization conditions of a control problem, which Schwartz (1996)
has called indirect methods. About the suitability of these methods for comput-
ing optimal control, Schwartz (1996, p. 1) has made the following statement:

The main drawback to indirect methods is their extreme lack of robustness:
the iterations of an indirect method must start close, sometimes very close,
to a local solution in order to solve the two-point boundary value subproblems.
Additionally, since first order optimality conditions are satisfied by maximisers
and saddle points as well as minimizers there is no reason, in general, to expect
solutions obtained by indirect methods to be minimizers.

Against these indirect methods, he has advocated the superiority of the
direct methods, the principles of which, according to him are as follows (p. 1):

Direct methods obtain solutions through the direct minimization of the ob-
jective function (subject to constraints) of the optimal control problem. In this
way the optimal control problem is treated as an infinite dimensional mathe-
matical programming problem.

The superiority of this direct method or the control discretisation method
has also been advocated and implemented increasingly by others in recent years
(Craven, 1998 ; Teo et al., 1991). The direct method considers an optimal con-
trol problem as an mathematical programming problem in infinite dimensions
(see e.g. Tabak and Kuo, 1971), and then discretizes to permit computation.

The discretisation method has also several advantages: relatively large-
scale and complicated optimal control problems can be solved by this approach
and the method is relatively accurate and efficient compared to the indirect
methods.

For the above reasons, we have adopted the discretisation (step function
and spline) approach in this book. The two computer programs, SCOM and
RIOTS 95, used in this chapter for numerical computation are also based on
this approach.

The problem must be put into the above standard form, for convenience
scaling the time interval to [0, 1].. As described in Craven, de Haas, and Wet-
tenhall (1998), a nonlinear scaling of time is sometimes appropriate, to get
good accuracy when the horizon T is large, without excessive computation.

For SCOM, the interval [0, 1] is now divided into N equal subintervals,
and u(t) the successive subintervals. Thus, the discretization is achieved by
restricting u(.) to such a step-function, and the optimization is over the values
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u1, u2, . . . , uN . Then, from the differential equation, x(.) is a polygonal function,
determined by its values x0, x1, . . . , xN at the gridpoints t = 0, 1/N, 2/N, . . . , 1.
Since, because of the jumps at gridpoints, the right hand side of the dynamic
differential equation is now not a smooth function of t the differential equation
solver chosen must be suitable for such functions. From the standard theory,
the gradient J ′(u) is given by:

J ′(u)z =
∫ 1

0

∫∫
(f + λ(t)m)u(x(t), u(t), t)z(t)dt,

where the costate function λ(.) satisfies the adjoint differential equation:

−λ̇(t) = (f + λ(t)m)x(x(t), u(t), t), |λ(1) = µ(x(1) − b∗).

(Here suffixes x and u denote gradients with respect to x(.) and u(.).

3.2. Computational requirements
The computer package SCOM is compared with another computer pack-

age, RIOTS 95, which is also based on MATLAB. The algorithmic steps for
these two packages may be summarized as follows:

• SCOM: approximation based on a step function, a differential equation
solution based on Runge-Kutta method and optimisation based on a
onjugate gradient search method.
• RIOTS: package uses various spline approximations to do this, and solves
the differential equations by Runge Kutta methods and the optimisation
problem by projected descent.
In solving the adjoint differential equation , interpolation is required, to

estimate values of x(t) at times t between gridpoints. (In SCOM, linear inter-MM
polation was used.) Similarly,

∂J(u)/∂uj =
∫ (j+1)/N

j/N

∫∫
(f + λ(t)m)u(x(t), u(t), t)

requires either interpolation of x(t) and λ(t), or an Euler approximation of
the integral. (SCOM uses the latter; it may be too approximate for some
problems.) Of course, the number N of subintervals can be increased, to get
better precision.

The differential equation solver must handle discontinuities at gridpoints.
Many standard solvers do not. For example, MATLAB 5.2 includes six ordinary
differential equation (ODE) solvers, of which only one – designated for stiff
differential equations – is useful for solving ẋ(t) = u(t) when u(.) is a step-
function. A better approach is to modify slightly the well-known fourth order
Runge-Kutta method. If t is in the subinterval [j/N, (j+1)/N ], then u(t) must
take the appropriate value uj , and not (for example) uj+1 when t = (j +1)/N .
This is easily achieved by recording j as well as t. With this approach, there
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is no need to further divide the subintervals, in order to integrate. If more
precision is required, the number N of subintervals may be increased. Note
that the given differential equation is solved forwards (starting at t = 0), and
the adjoint differential equation is solved backwards (starting at t = 1). In
solving the adjoint equation, x(t) must be interpolated between gridpoints; in
computing J ′(u), both x(t) and λ(t) must be interpolated; in both cases, linear
interpolation was used. More precision can be got by increasing N .

Once the differential equation for x(.) is solved, the objective J(u) becomes
a function J̃(u1, u2, . . . , uN ) of N variables. The optimization may be done,
either:

• by computing objective values, but not gradients; or
• by also computing gradients, using the adjoint differential equation.

In either case, the computing package is required to optimize the objective,
subject to simple bounds. (Bounds could also be handled using penalty terms.)

When as in some economic models (see e.g. Kendrick and Taylor, 1971),
fractional powers of the functions occur, e.g. with the term x(t)β included
in m(x(t), u(t), t) with 0(β < 1, then the differential equation (2) will bring
x(t) < 0 for some choices of u(.), causing the solver to crash. Of course, only
positive values of x(t) have meaning in such models. Even without explicit
constraints on u(.), the requirement x(.) > 0 forms an implicit constraint,
which does not have a simple form. In such a case, it may be better to use
finite-difference approximations to gradients, since they may be valid, as useful
approximations, over a wider domain.

Every algorithm for numerical computation of such an optimal control
model requires some approximation of the control function u(t) by a vector on
some vector space of finite dimension (n say). For comparison, the RIOTS 95
package uses various spline approximations to do this (Schwartz, 1996), and
solves the differential equations by projected descent methods. A simpler ap-
proach, followed by the MISER3 package for optimal control (Jennings et al.,
1998), approximates the control function by a step-function, then solves the dif-
ferential equations by sequential quadratic programming. Conjugate gradient
methods may also be used. e.g. with OCIM (Craven, de Haas and Wetten-
hall, 1998). Different implementations may behave differently, in particular
if the function is only defined on a restricted domain, since an optimization
method may want to search outside that domain. While a step-function is
apparently a crude approximation, it has been shown in various instances (see
Teo et al., 1991) to produce accurate results. The reason is that integrating
the dynamic equation ẋ(t) = . . . to obtain x(t) is a smoothing operation, which
attenuates high-frequency oscillations. It is pointed out in Craven (1995) that,
if this attenuation is sufficiently rapid, the result of step-function approxima-
tions converges to the exact optimum as N → ∞.. Some assumption of this
qualitative kind is in any case necessary, in order to ensure that the chosen fi-
nite dimensional approximations shall allow a good approximation to the exact
optimum.



Computing Optimal Control : The SCOM package 39

Computer programs which can be used for a wide variety of continuous
control problems have become available only recently (Amman, Kendrick, and
Rust, 1996; Cesar, 1994; Tapiero, 1998; Teo et al., 1991). There are some pack-
ages which are well known to economists such as DUAL, MATHEMATICA,
etc.; see references in Amman, Kendrick and Rust (1996). Craven (1995) covers
the theory and algorithm for optimal control with a list of possible computer
programs including the OCIM program. Cesar (1994) also has references to
some other computer programs. A recent survey of optimal control packages
is also given in Tapiero (1998). RIOTS is developed by Schwartz, Polak and
Chen (1997).

The various optimisation algorithms that some of the optimal control pro-
grams encode are as follows:

• sequential quadratic programming (MISER, Jennings et al. 1991),
MATLABś optimiser´ constr (MATLAB, 1997), and SCOM);
• projected descent methods (RIOTS 95, Schwartz 1996).
They can behave differently, in particular if the function is only defined on

a restricted domain, since an optimisation method may want to search outside
that domain. For example, the RIOTS 95 package uses various spline approx-
imations to do this, and solves the differential equations by projected descent
methods. A simpler approach, followed by the MISER3 package for optimal
control, approximates the control function by a step-function, then solves the
differential equations by sequential quadratic programming. Conjugate gradi-
ent methods may also be used (as in OCIM). Different implementations may
behave differently, in particular if the function is only defined over a restricted
domain, since an optimisation method may want to search outside that domain.
While a step-function is apparently a crude approximation, it has been shown
in various instances (e.g. Craven 1995; Teo et al. 1991) to produce accurate
results. The reason is that integrating the dynamic equation (ẋ(t) = . . .) to
obtain x(t) is a smoothing operation, which attenuates high-frequency oscilla-
tions. It is pointed out in Craven (1995) that if this attenuation is sufficiently
rapid, the result of step-function approximations converges to the exact op-
timum as N → ∞. Some assumption of this qualitative kind is in any case
necessary, in order to ensure that the chosen finite dimensional approximations
shall allow a good approximation to the exact optimum.

From the alternatives discussed above, RIOTS and SCOM were chosen,
because:

• these two programs can solve, easily and conveniently, a large class of
optimal control problems with various types of objective functionals,
differential equations, constraints on the state and control functions, and
terminal conditions (such as bang bang, minmax, and optimal time control
problems; see for the theory Sengupta and Fanchon, 1969; Teo, Goh and
Wong, 1991) ,
• they are based on a widely used mathematical package MATLAB, and
• RIOTS is commercially available for research in this area.
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3.3. Using the SCOM package
The details of SCOM are given in the next section 3.4. It was written to

use MATLAB version 5.2, and implemented on a Macintosh computer. Since
MATLAB is designed for matrix computations, vector and matrix operations
require very little programming. MATLAB’s Optimization Toolbox includes
a constrained optimizer,constr , based on a sequential quadratic programming
method. Moreover, constr will use gradients if supplied, otherwise will estimate
gradients by finite differences. The major part of the calculation is to solve
differential equations, in order to obtain function values, and gradients if used.

Some results from SCOM for the Kendrick-Taylor model (see section 1.4,
and section 3.6 for computational details) are presented as follows.

The graphs show:
• The state (Fig. 1) and the control (Fig. 2) for N = 10 and 20; for the
state, the points x are from N = 10.
• In Fig. 3, the effect of increasing the number of subdivisions from N = 10
to N = 20; for comparison, the points x were obtained using RIOTS 95.

Fig. 1

Fig. 2
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Fig. 3

3.4. Detailed account of the SCOM package

3.4.1. Preamble
SCOM is a computer package, using the constr program in MATLAB’s Op-

timization Toolbox, for solving optimal control problems in continuous time.
The user must supply a calling program, and user subroutines for the functions
in the problem. There is a choice whether or not gradient subroutines are sup-
plied. To supply them requires more mathematics and coding, gets much faster
computation, but does not work with some control problems, if the functions
are only defined in a restricted domain. If gradients are not supplied, then
constr can estimate them, but with less precision.

The MATLAB facilities make experimentation easy, since MATLAB does
much of the “housekeeping” (looping, matrix calculations, passing variables)
that must be coded explicitly in some other languages.

3.4.2. Format of problem

Optimization is with respect to state x(t) and control u(t).

MINx(.),u(.)

∫ 1

0

∫∫
f(x(t), u(t), t)dt + Φ(x(1)) subject to
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x(0) = x0, (d/dt)x(t) = m(x(t), u(t), t)(0 ≤ t ≤ 1) Dynamic equation

a ≤ u(t) ≤ b, g(u(t)) ≤ 0 (0 ≤ t ≤ 1) Control constraints

The time interval is scaled to [0,1]. If there is a constraint x(1) ≤ k, this
is handled by adding a penalty term 1

2µ[x(t) − k − µ−1ρ]+2 to the objective
function; usually ρ is determined by x(1) = k.

The control function approximates the control function u(.) by a step-
function, dividing [0,1] into nn equal subintervals. (Because the dynamic equa-
tion has a smoothing effect, set-function controls are usually a sufficient approx-
imation.) Function values (and often also gradients with respect to control) for
the objective function are obtained by solving differential equations. They are
then supplied to the optimization program constr in MATLAB’s Optimization
Toolbox. The computation is considerably faster if gradients are supplied, but
this is not suitable for some problems, especially if the functions are not well
behaved outside the feasible region of the problem. If gradients are used, then
the adjoint differential equation is required:

(d/dt)λ(t) = −(∂/∂x)[f(x(t), u(t), t) + λ(t)m(x(t), u(t), t)], λ(1) = Φ′(x(1)).

If a constraint x(1) ≥ k is required then

µ[x(1) − k − µ−1ρ]+ = Φ′(x(1)) + ρ if x(1) = k

is added to λ(1);µ is a positive penalty parameter.
The user must supply a calling program (defining all parameters), and user

subroutines for the functions of the given control problem.
This use of MATLAB minimizes the amount of programming required for a

given control problem, since MATLAB handles matrix calculations and passing
of parameters very effectively. ( But another programming language may be
preferred for a large control problem, if faster computation is needed.)

The acronym SCOM stands for step-function control optimization on Mac-
intosh, since the intention was to compute optimal control on a desktop com-
puter, rather than on a mainframe or workstation. Note that MATLAB on a
Windows computer does the same job.

3.4.3. The SCOM codes - the user does not alter them

The constr package may be used in two modes, either with codes supplied
for gradients, or without code for gradients, so then constr estimates gradients
by finite differences. For some problems, the latter is more robust. There
are two corresponding versions of SCOM for the two cases. For the first case,
subroutines in3f and in3g supply the input function values and gradients to
constr; test problem 1, in section 3.5, describes this situation. For the second
case, the subroutine intf supplies function values to constr; test problem 2 (an
economics model)— describes this case.
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% Get function values for constr - no gradient
[f,g]=intf(uu,ps,q,xinit)
[a,b,c]=ocf(uu,ps,q,xinit);
f=a; g=b;

% Solve differential equations - no gradients
function [f,g,xm,f0]=ocf(um,ps,q,xinit)
nx=ps(1);nu=ps(2);nn=ps(3);
x0=xinit;
xm=zeros(nx,nn+1); xm(:,1)=x0;
ma=nx;t=0;it=1;hs=1/nn;
px=char(q(1));
xm=fnc(px,nx,nu,nn,xm,ma,t,it,hs,um,xm); %compute state
ma=1;t=0;it=1;hs=1/nn;
zz=zeros(1,nn+1); zz(1)=0; pj=char(q(2));
jm=fnc(pj,nx,nu,nn,zz,ma,t,it,hs,um,xm);%compute integral
xf=xm(:,nn+1) ; pf=char(q(3));
f=jm(nn+1) + feval(pf,xf); %objective
pc=char(q(4));
for ii=1:nn
g(ii)=feval(pc,ii,hs,um,xm); % Control constraint
end
f0=jm(nn+1);f0;

% Organize steps for Runge-Kutta integration - no gradients case
function xk=fnc(pd,nx,nu,nn,fil,ma,t,it,hs,um,xm)
yin=fil(:,1);
xk(:,1)=yin;
while it ¡ nn+1
y=rk4(pd,ma,t,it,hs,yin,nx,nu,nn,um,xm);
xk(:,it+1)=y(1)’;
it=y(2);t=y(3); yin=y(1);
end

% Runge-Kutta increments
function y=rk4(pd,ma,t,it,hs,yin,nx,nu,nn,um,xm)
fp=zeros(1,ma);
tt=zeros(1,ma); p=0; q=1;
tz=ic2(pd,ma,t,it,hs,p,q,fp,yin,tt,um,xm);
tt=tz(1); fp=tz(2);
p=0.5;q=2;
t=t+0.5*hs;
tz=ic2(pd,ma,t,it,hs,p,q,fp,yin,tt,um,xm);
tt=tz(1);
fp=tz(2);
tz=ic2(pd,ma,t,it,hs,p,q,fp,yin,tt,um,xm);
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tt=tz(1);
fp=tz(2);
t=t+0.5*hs;p=1;q=1;
tz=ic2(pd,ma,t,it,hs,p,q,fp,yin,tt,um,xm);
tt=tz(1);
=tz(2);
it=it+sign(hs);
y=[yin+tt/6;it;t];

% Runge-Kutta - get function values
function tz=ic2(pd,ma,t,it,hs,p,q,fp,yin,tt,um,xm)
z=yin+p*hs*fp;
ff=feval(pd,t,it,z,yin,hs,um,xm);
fp=ff;
tz=[tt+q*hs*fp;fp] ;

% Forward interpolation
function ix=li3(vv,hh,xi)
nn=length(vv)-1; nz=1/hh;
fr=nz*mod(xi,hh); bb=floor(xi*nz)+1;
if bb < nn, vu=vv(bb+1);
else vu=vv(nn);end
ix=(1-fr)*vv(bb) + fr*vu;

% Backward interpolation (for adjoint DE)
function ix=lil3(vv,hh,xi)
global um xm jm
nn=length(vv)-1; nz=-1/hh;
if xi < 0, xi = 0; end
fr=-nz*mod(xi,hh); bb=ceil(xi*nz)+1;
if bb > 1, vw=vv(bb-1);
else vw=vv(1);
end
ix=(1-fr)*vv(bb) + fr*vw;

% Get function values for constr - gradients supplied
function [f,g]=in3f(uu,par,subs,xinit)
[a1,a2,a3,a4,a5,a6]=ocf4(uu,par,subs,xinit); f=a1; g=a2;

% Get gradients for constr
function [df,dg]=in3g(uu,par,subs,xinit)
[a1,a2,a3,a4,a5,a6]=ocf4(uu,par,subs,xinit);
df=a6; nn=par(3);
pk=char(subs(5));
dg=feval(pk,uu,nn);

% Solve differential equations - gradients supplied
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function [f,g,xm,f0,lm,gr]=ocf4(um,ps,q,xinit)
nx=ps(1);nu=ps(2);nn=ps(3);x0=xinit;
xm=zeros(nx,nn+1); xm(:,1)=x0;
ma=nx;t=0;it=1;hs=1/nn;
px=char(q(1));
xm=fnc(px,nx,nu,nn,xm,ma,t,it,hs,um,xm);
ma=1;t=0;it=1;hs=1/nn;
zz=zeros(1,nn+1); zz(1)=0;
pj=char(q(2));
jm=fnc(pj,nx,nu,nn,zz,ma,t,it,hs,um,xm);
xf=xm(:,nn+1) ;
pf=char(q(3));
f=jm(nn+1) + feval(pf,xf);
pc=char(q(4));
for ii=1:nn
g(ii)=feval(pc,ii,hs,um,xm);
end
f0=jm(nn+1);
ma=nx;t=1;it=nn;hs=-1/nn;pa=char(q(8));pq=char(q(6));
lm(nn+1,:)=feval(pa,nn,xf,um,xm);
lm=fnl3(pq,nx,nu,nn,lm,ma,t,it,hs,um,xm);
hs=1/nn;
pg=char(q(7));
for ii=1:nn
gr(ii,:)=hs*feval(pg,ii,hs,um,xm,lm,nn);
end

% Organize steps for RK integration - for adjoint DE
function xk=fnl3(pd,nx,nu,nn,fil,ma,t,it,hs,um,xm)
yin=fil(nn+1,:);
xk(nn+1,:)=yin;
while it ¿ 0
y=rk4(pd,ma,t,it,hs,yin,nx,nu,nn,um,xm);
xk(it,:)=y(1);
it=y(2);t=y(3);
yin=y(1);
end

Note that linear interpolation of the state is required in integrating the
objective function, and in solving the adjoint differential equation. The latter
is solved backwards in tine t, so needs backwards interpolation.
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3.5. The first test problem
The following example has two controls and one state, and gradients are

calculated.

MIN
∫ 1

0

∫∫
[(u1(t) − 1)x(t) + 0.25u2(t)]dt subject to

x(0) = 0.5, (d/dt)x(t) = x(t)u1(t) + u2(t),

0 ≤ u1 (t), 0 ≤ u2(t), u1(t) + u2(t) − 1 ≤ 0 (0 ≤ t ≤ 1).

The adjoint differential equation is:

(d/dt)λ(t) = −(1 + λ(t))u1(t) + 1, λ(1) = 0

The gradient of the objective with respect to the controls is obtained by inte-
grating [λ(t)x(t) + x(t), λ(t) + 0.25]; this is the gradient of the Hamiltonian:

(u1(t) − 1)x(t) + 0.25u2(t) + λ(t)[x(t)u1(t) + u2(t)]

with respect to the controls.
Note that the constraints on the control are handled separately, since the

optimizer constr handles such constraints. This example has a switching time
of exactly t = 0.75. This is only approximated with N = 10 subdivisions; some
other initial control u gave a positive u(t) in subinterval 8. While N = 20
subintervals happens to give an exact solution, in general the switching time
would have to be made a parameter, to be optimized over.

Calling program for first test problem
%run3.m
format compact
subs=cell(1,9);
subs=’t3x’,’t3j’,’t3f’,’t3c’,’t3k’,’t3l’,’t3g’,’t3a’;
par = [1 2 10];
xinit=[0.5];
u0 = zeros(10,2); ul = zeros(10,2); uu = ones(10,2);
Control=constr(’in3f’,u0,[],ul,uu,’in3g’,par,subs, xinit)
[Obj, Con,State,Int,Costate,ObjGrad]=ocf4(Control,par,subs,xinit);
State,Obj,Int,Costate,ObjGrad

For this problem, the subs line lists also the subroutines (here t3k.m, t3l.m,
63g.m, t3a.m describing gradient of constraint, right hand side of adjoint
differential equation, gradient of objective (with respect to control), and costate
boundary condition (at time t = 1.)

% The following lines plot one state component against another, and plot
two control components, which are step-functions, against time
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plot(State(:,1), State(:,2),’x-’)
xlabel(’State(1’)
ylabel(’State(2’)
figure
t2=[0:0.001:0.999];
plot(t2, Control(floor(nn∗t2)+1,1),’r’)
hold on
plot(t2, Control(floor(nn∗t2)+1,2),’g’)

The function subroutines are as follows:

% Right hand side of differential equation
function yy=t3x(t,it,z,yin,hs,um,xm)
yy(1)=z(1)*um(floor(it),1)+um(floor(it),2);

% Integrand of objective function
function ff=t3j(t,it,z,yin,hs,um,xm)
ff(1)=(um(floor(it),1)-1)*li3(xm,hs,t);
ff(1)=ff(1)+0.25*um(floor(it),2);

% Objective endpoint term
function ff=t3f(xf,um,xm)
ff(1)=0;

% Control constraint
function gg=t3c(ii,hs,um,xm)
gg=um(ii,1) + um(ii,1) - 1;

% Gradient of constraint
function dg=t3k(um,nn)
dg=[eye(nn);eye(nn)];

% RHS of adjoint equation
function yy=t3l(t,it,z,yin,hs,um,xm)
yy=-(1+z(1))*um(floor(it),1) +1;

% Gradient of objective
function yy=t3g(t,hs,um,xm,lm,nn)
temp= 0.5*(lm(t,1)+lm(t+1,1)); t2=t/nn;
yy=[(1+temp)*li3(xm,hs,t2), 0.25+temp];

% Costate boundary condition
function yy=t3a(nn,xf,um,xm)
yy=0;

3.6. The second test problem
This version of the Kendrick-Taylor model for economic growth (see

Kendrick and Taylor, 1971) has one state and one control. This problem has
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implicit constraints, and a computation with gradient formulas supplied failed.
(The dynamic equation ran x(t) into negative values, yet fractional powers
of x(t) were required.) An optimum was computed using constr to estimate
gradients by finite differences.

With capital stock at time t as state function, and rate of consumption at
time t as the control function, this model has the form:

MAX

∫ T

0

∫∫
e−ρtu(t)τdt subject to

x(0) = k0, ẋ(t) = ζeδtx(t)β − σx(t) − u(t), x(T ) = kT .

To allow comparison with numerical results in Kendrick and Taylor (1971), the
following numerical values were used:

T = 10, τ = 0.1, k0 = 15.0, ζ = 0.842, β = 0.6, σ = 0.05, kT = 24.7.

Although this model states no explicit bounds for x(t) and u(t), both the for-
mulas and their interpretation requires that both x(t) and u(t) remain positive.
But with some values of u(.), the differential equation for ẋ(t) can bring x(t)
down to zero; so there are implicit constraints.

This example was computed as a minimization problem, with N = 10 and
N = 20 subdivisions (the latter required reduced termination tolerance and
more iterations). The different computations differed very little in the optimum
objective value. Evidently, the optimum objective here is fairly insensitive to
small changes in the control. The convergence to an optimum objective value
is fast, but the convergence to an optimal control is slow. There is some scope
here for adjusting, within constr, the termination tolerances for gradient and
for satisfying constraints. Because of a difficulty with the fractional powers, this
problem was computed with gradients obtained by constr from finite differences,
instead of using gradients from the costate equation.

Calling program for second test problem
%kt2run.m
format compact
subs=cell(1,4); subs=’kx’,’kj’,’kf’,’kc’;
par=[1 1 10 15]; % 1 state, 1 control, 10 subintervale,
ul=ones(10,1); % control lower bound is 1.0
uh=10*ones(10,1); % control upper bound is 10.0
xinit=[15]; % Initial state
u0=ones(1,10);
Control=constr(’intf’,u0,[],ul,uh,[],par,subs,xinit)
[Objective, Constraint, State, Integral]=ocf(Control,par,subs,xinit);
Objective, State, Integral

Note that the subroutines (kx.m, kj,m, kf.m, kc.m) for the functions spec-
ifying the problem, namely the right hand side of the differential equation,
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the integrand and the endpoint term of the (minimizing) objective function,
and the control constraint (absent here) are listed in the subs line. These sub-
routines are specific to tbe particular problem being solved. Upper and lower
bounds for the control are specified by the vectors uu and ul; they may depend
on time. The initial condition for the state is given as xinit. The vector par
may have additional parameters added, if required, to be passed to the function
subroutines.

% Right hand side of differential equation
function yy=kx(t,it,z,yin,hs,um,xm)
yy=0.842*exp(0.2*t)*z(1)∧0.6 - um(floor(it)) - 0.05*z(1); yy=10*yy;

% Integrand of objective function
function ff=kj(t,it,z,yin,hs,um,xm)
ff=-10*exp(-0.3*t)*um(floor(it)∧0.1;

% Objective endpoint term
function ff=kf(xf,um,xm)
ff=10*(xf-24.7)∧2;

% Control constraint
function gg=kc(ii,hs,um,xm)
gg=0;

3.7. The third test problem

The Davis-Elzinga Investment Model (Davis and Elzinga, 1972) considers
the optimal policy for dividends and stock issues for a utility company.

The model:
At time t, P (t) is the market price of a share of stock, and E(t) is the equity

per share of outstanding common stock. This leads to an optimal control model:

MAX
∫ 1

0

∫∫
e−ρt(1 − ur )rETdt − e−ρT P (T )

subject to dynamic equations:

Ṗ = cT [)1 − ur)rE − ρP ] , Ė = rTE[ur + us(1 − E/((10δ)P )] ,

and initial conditions P (0) and E(0), and constraints ur ≥ 0, us ≥ 0,

ur + us ≤ b.

The multiplier T is required to convert the time scale from [0, T] to [0,1]
for computation. The computation calls MATLAB’s constr package for con-
strained minimization.

Calling program
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% dn2 run.m The calling program, setting the parameters
subs=cell(1,9);
subs={’dnx’,’dnj’,’dnf’,’dnc’};
par=[2, 2, 20, 0, 0, 1, 6, 0.2, 0.1, 0.1, 0.75]; % Parameters
% nx, nu, nn, npa, grad, c, T, r, p, d, b=k/r
xinit=[2 1]; nn=par(3);
u0=zeros(nn,2);
ul=zeros(nn,2);
uu=ones(nn,2); figure
Control=constr(’fqq’,u0,[],ul,uu,[],par,subs,xinit)
[Objective,Constraint,State,Integral]= cqq(Control,par,subs,xinit)
plot(State(:,1),State(:,2),’x-’) % Graph outputs
xlabel(’State 1’)
ylabel(’State 2’)
figure
t2=[0:.001:0.999];
plot(t2,Control(floor(nn*t2)+1,1),’r’)
hold on
plot(t2,Control(floor(nn*t2)+1,2),’g’)

User subroutines

function ff= dnx(t,it,z,yin,hs,um,xm,ps)
% The right hand sides of the DEs

c=ps(6);T=ps(7);r=ps(8);p=ps(9);d=ps(10);b=ps(11);
ff(1)=c*T*((1-um(floor(it),1))*r*z(2)-p*z(1));
temp=um(floor(it),2)*(1-z(2)/((1-d)*z(1)));
ff(2)=r*T*z(2)*(um(floor(it),1)+temp);

function ff= dnj(t,it,z,yin,hs,um,xm,ps) % The integrand
c=ps(6);T=ps(7);r=ps(8);p=ps(9);d=ps(10);b=ps(11);
temp=iqq(xm,hs,t);ww=temp(2);
ff(1)=-(1-um(floor(it),1))*r*T*ww*exp(-p*T*t);

function gg= dnc(ii,hs,um,xm,ps) % The constraints on the control
c=ps(6);T=ps(7);r=ps(8);p=ps(9);d=ps(10);b=ps(11);
gg(1) = um(floor(ii),1)+um(floor(ii),2)-b;

function ff= dnf(xf,um,xm,ps) % Endpoint term of objective
c=ps(6);T=ps(7);r=ps(8);p=ps(9);d=ps(10);b=ps(11);
ff(1)=-xf(1)*exp(-p*T);

Computed output, showing the effect of initial conditions on P and E
Note that the theoretical solution is bang-bang control , thus the control

vector (ur, us ) switches between three régimes´ A = (0, 0), B = (b, 0), C =
(0, b).), which are the vertices of the triangular region to which (ur, us) is
restricted. From the theory, the optimum switches from B to A if P (T )/E(T ) <
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1.467, or from B to C if P (T )/E(T ) > 1.467. The switching may not be
observed unless the planning horizon T is large enough.

Three computed results are presented, with different initial conditions for
the states P and E.

Initial state is [0.2 1]
Control =
0.7500 0
0.7500 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

Thus regime B, then A´
Objective = 1.4615
State =
0.2000 1.0000
0.2092 1.0460
0.2188 1.0942
0.2770 1.0942
0.3335 1.0942
0.3883 1.0942
0.4415 1.0942
0.4932 1.0942
0.5433 1.0942
0.5919 1.0942
0.6391 1.0942
0.6849 1.0942
0.7293 1.0942
0.7724 1.0942
0.8143 1.0942
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0.8549 .0942
0.8943 .0942
0.9325 1.0942
0.9696 1.0942
1.0057 1.0942
1.0406 1.0942
Integral = 0.8904; P(T)/E(T)=0.952

Initial state is [0.5 1]
Control =
0.7500 0
0.7500 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0.0294

Thus regime B , then A´
Objective = 1.5518
State =
0.5000 1.0000
0.5003 1.0460
0.5014 1.0942
0.5512 1.0942
0.5996 1.0942
0.6466 1.0942
0.6921 1.0942
0.7363 1.0942
0.7793 1.0942
0.8209 1.0942
0.8613 1.0942
0.9005 1.0942
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0.9386 1.0942
0.9755 1.0942
1.0114 1.0942
1.0462 1.0942
1.0799 1.0942
1.1127 1.0942
1.1445 1.0942
1.1753 1.0942
1.2053 1.0941
Integral = 0.8904; P(T)/E(T)=1.112

Initial state is [2 1]
Control =
-0.0000 0.7500
0.0000 0.7500
0 0.7500
0 0.7500
0 0.7500
0 0.7500
-0.0000 0.7500
0 0.7500
-0.0000 0.7500
0 0.7500
0 0.7500
0 0.7500
0 0.7500
-0.0000 0.7500
0 0.7500
-0.0000 0.7500
-0.0000 0.7500
-0.0000 0.7500
-0.0000 0.7500
-0.0000 0.7500

Thus regime C always´
Objective = 2.2621
State =
2.0000 1.0000
2.0006 1.0199
2.0023 1.0398
2.0052 1.0595
2.0092 1.0792
2.0142 1.0987
2.0201 1.1181
2.0271 1.1374
2.0350 1.1567
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2.0438 1.1758
2.0535 1.1948
2.0640 1.2138
2.0753 1.2327
2.0874 1.2515
2.1002 1.2703
2.1138 1.2890
2.1281 1.3077
2.1430 1.3264
2.1586 1.3450
2.1749 1.3636
2.1918 1.3822
Integral =1.0592; P(T)/E(T)=1.586

Regime B, then A R´´ egime B then A R´´ egime C always´

(From theory, there are two régimes, depending on whether´ P (T )/E(T ) < or
> 1.467 ; so the prediction is:

B then A, B then A B then C (if T is large enough )



Chapter 4
Computing Optimal Growth
and Development Models

4.1. Introduction
Methods and models for optimal growth and development are often for-

mulated as optimal control problems. They can represent a classical example
of a social choice problem in an economy. Such models may describe intertem-
poral allocation of resources, so as to maximize social welfare, determined on
the basis of the underlying social preferences and value judgements. They may
describe a national economy, with state functions being vector valued, since
various commodities are involved. The consumption may be varied, within
some limits, to optimise some utility functional, which may involve both state
and control functions over a planning period. In these models, there are in
general explicit bounds (such as floor to consumption, or a ceiling to capital
or pollution), as well as discontinuous control functions. These social choice
models for optimal growth and development can be specified, and mumerically
implemented, following the assumptions of new3 welfare economics, discussed
in chapter 1.

Analytic solutions are available for some of the simpler models. Often
some sort of steady state has been studied, but not the rate of approach to
the steady state from given initial conditions, or the transition to give terminal
conditions (such as, for example, a stated minimum for terminal capital, so
that a process may continue). It is noted that the available data are necessarily
in discrete time (i.e. annual or quarterly data). While discrete-time optimal
control models can of course be computed, a continuous-time model may give a
more intelligible picture of what is happening. Also, the Pontryagin theory for
optimal control applies to optimal control in continuous time, but only under
serious restrictions to optimal control in discrete time. This chapter will hence
consider continuous-time models.

A computer package allows exploration of sensitivity to parameter changes,
and of the domains of the various parameters for which optimal solutions exist.
Some recently developed computer packages, coding different algorithms for
continuous optimal control, such as RIOTS, MISER and OCIM, (which use
MATLAB), have current applications to other areas of control, but have not
yet been used for computing optimal growth models. The objective of this
chapter is to demonstrate the applications of these algorithms and computer
programs to the computation of optimal growth models. The MATLAB pack-
age SCOM, described in chapter 3, is used to study the Kendrick and TaylorMM
model (Kendrick & Taylor, 1971). The computational results are consistent
with the economic conclusions obtained by these authors, and by Chakravarty
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(1969), and also with results computed with another package. With this com-
putational simulation, it is easy to study the sensitivity of the results to changes
in model parameters.

In addition, the optimum obtained has been proved to be the global opti-
mum, using invexity properties (see section 2.4). The global optimality of the
model results is also proved in this chapter.

The chapter is organised as follows. Section 2 presents a Ramsey type
(Ramsey, 1928), optimal growth model developed by Kendrick and Taylor
(1971) and its optimal control specification. Section 3 discusses different al-
gorithms and computer programs for solving optimal control models, while
Section 4 discusses the Kendrick-Taylor model and numerical implementation
by some computer programs. Mathematical properties of the model results and
the sensitivity studies are reported in Section 5 respectively. Section 6 refers to
the experiences for computing optimal growth models by computer programs,
such as OCIM and MISER. Section 7 contains the conclusion.

4.2. The Kendrick-Taylor Growth Model7

The well known Kendrick-Taylor model for economic growth and develop-
ment (Kendrick and Taylor, 1971) has been used as a test problem for compu-
tational approaches. With capital stock k(t) at time t as the state function,
and rate of consumption c(t) at time t as the control function, this model has
the form:

MAX
∫ T

0

∫∫
e−ρtc(t)τdt subject to:

k(0) = k0, k̇(t) = ζeqtk(t)β − σk(t) − c(t), k(T ) = kT .

This model does not state any explicit bounds for k(t) and c(t). However,
both the formulas and their interpretation requires that both k(t) and c(t)
remain positive. However, with some values of u(t), the differential equation
for k(t) can bring k(t) down to zero.

Consistent with the mainstream practice in modelling optimal growth,
development and welfare economics, the numerical optimal growth programs
in this chapter are specified within the framework of the elements of an optimal
growth program of the following form: an optimality criterion contained in an
objective function which consists of the discounted sums of the utilities provided
by consumption at every period; the finite planning horizon; a positive discount
rate; and the boundary conditions given by the initial values of the variables
and parameters and by the terminal conditions.

This model can be expressed by a standard kind of optimal control model,
which may be written as follows:

MINk(.),c(.)

∫ T

0

∫∫
f(k(t), c(t), t)dt + Φ(k(T )) subject to

7 See also section 2.1.
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k(0) = k0, k̇(t) = m(k(t), c(t), t), kL(t) ≤ k(t) ≤ kU (t) (0 ≤ t ≤ T ).

Here:
f(k(t), c(t), t) = −e−ρtc(t); Φ(k(T )) = µ(k(T ) − k∗)2,

(with a minus sign on f to convert to a minimization problem), and:

m(k(t), (̧((t), t) = ζeδtk(t)β − σk(t) − c(t).

The terminal constraint for k(T ) has been replaced by a penalty cost term
Φ(k(T )), with a parameter k∗ (approximately kT , but may need adjustment),
and a sufficiently large coefficient µ. In general (though not for the present
instance), k(t) and c(t) are vector valued.

The relevant mathematical issues that are investigated in the context of an
optimal growth model are the following: existence, uniqueness and globality
of the optimal policy solution, and stability of the dynamic system in the
equilibrium or steady state position (Intriligator 1971).

The control issues of analytical and policy importance in control models
are stated by Sengupta and Fanchon (1997) as: estimability, controllability,
reachability, and observability. As these characteristics of control models relate
to models with linear dynamics, but not to nonlinear systems, they are not
investigated here. However, some numerical data relating to controllability are
given in Section 4.4.

The Kendrick-Taylor model was numerically implemented by Kendrick
and Taylor (1971) by several algorithms such as search and quasi- linearisation
methods based on the discrete Pontryagin maximum principle. In another ex-
periment, Keller and Sengupta (1974) solved the model by conjugate search and
Davidson algorithm based on the continuous Pontryagin maximum principle.
While these algorithms were implemented by some special purpose computer
programs, a GAMS version (a general purpose commercially available program)
of the Kendrick-Taylor model is also available.

4.3. The Kendrick-Taylor Model Implementation
To allow comparison with numerical results in Kendrick and Taylor (1971),

the following numerical values were used:

T = 10, τ = 0.1, ζ = 0.842, β = 0.6, σ = 0.05, kT = b = 24.7.

The Kendrick-Taylor model, with the parameter values listed above, has
been computed using the RIOTS 95 package on a Pentium, and also with some
of the parameters varied, as listed below. For comparison, the model has also
been computed using the SCOM package on an iMac computer. The latter
package also uses MATLAB (version 5.2) and the constrained optimisation
solver constr from MATLAB’s Optimisation Toolbox, but none of the differ-
ential equation software used by RIOTS 95. Thus both computations share
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MATLAB’s basic arithmetic and display software, but the implementations
are otherwise independent.

The result of the computed optimum growth paths of aggregate variables
and ratios (the great ratios of economics (see Fox et al., 1973)) that show the
empirical process of growth and trends of the economy are reported in Figure
1. The Kendrick-Taylor model was solved for 10 periods, for a total time of 10
years, using RIOTS 95.

Figure 1a. Alternative Model Runs with RIOTS : Consumption

For sensitivity analysis, the following set of alternative values of the pa-
rameters of the model was adopted in six model runs, shown in the following
Table.

Run ρ δ kT ζ
1 0.03 0.02 24.7 0.842
2 0.01 0.02 24.7 0.842
3 0.03 0.01 24.7 0.842
4 0.03 0.02 23.7 0.842
5 0.03 0.02 24.7 0.822
6 0.01 0.01 24.7 0.842
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Figure 1b. Alternative Model Runs with RIOTS : Capital

Figure 2. Effect of Number of Subdivisions
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These results of the Kendrick-Taylor model show the following numerical
characteristics of optimum growth of the economy: (1) the growth paths of
the major factors that determine growth rate and process of the economy;
(2) an optimum composition of GDP consisting of consumption, saving and
investment; (3) the evolution of dynamic rental price path that satisfies the
given historical conditions and ensures the attainment of terminal capital stock;
(4) a growth rate of the economy that provides a net rate of return of the
economy equal to the social time preference rate; and (5) the growth path
of the economy that generate highest level of social welfare for the economy,
obtained with the three computations.

Figure 2 shows the control (consumption) for N = 10, compared with N =
20, as computed by SCOM. For comparison, the control points shown x were
obtained with RIOTS 95. The state is the same, to graphical accuracy, in the
three computations.

4.4. Mathematical and Economic Properties of the Results
The results of these models describe the optimal social choice regarding

intertemporal allocation of resources, for an economy satisfying the underlying
social preferences and value judgements embedded in the model specification
and implementation.

The significant properties of the optimally growing economy characterised
by the trajectories of the Kendrick-Taylor model computed here numerically
are that the economy grows along a unique equilibrium path, and along this
path the society’s saving (which is equal to investment) and consumption are
optimal and the work force is employed at the full employment level. The values
of the costate variable in the Kendrick-Taylor model at different time periods
are the shadow prices along the dynamic equilibrium path of the economy and
provide the dynamic valuation or pricing system of the economy.

Mathematical properties such as existence, uniqueness, stability and other
properties of a steady state solution of the Kendrick-Taylor model are impor-
tant in deriving and understanding the above stated economic implications of
the growth model.

The first issue is the existence of an optimal growth trajectory of the model.
Consider first a discrete-time version of the Kendrick-Taylor model, in which
the control u is a n-dimensional vector. Suppose that lower and upper bounds
are imposed on u(.). Then the set U(n) of feasible controls is bounded, as well as
closed; hence the objective function, being continuous, reaches its extremum at
a point of U(n) thus, the optimum is attained. Now computing an optimum for
the continuous-time version of the model involves the tacit assumption that its
optimum is a limit of the optima for suitable finite-dimensional approximations.
Assuming this, the attainment of the continuous-time optimum would follow as
a limiting case. However, the attainment and uniqueness of the optimum can
be deduced in another way. The Pontryagin theory gives first-order necessary
conditions for an optimum, and these conditions have a solution. If the model
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were a convex problem, then the first order necessary conditions would also be
sufficient for an optimum, thus proving its existence. But convexity is lacking,
in particular because the equality constraint (the differential equation) is not
linear. However, it is shown below that there is a transformation of the model
into a convex problem; hence the solution is a global optimum.

Is there a transformation of the variables k(t), c(t) to some new variables
x(t), u(t), so that the transformed problem is a convex problem? If there is such
a transformation, then the original problem has a property called invex (Craven
1995); and it follows then that a local optimum is also a global optimum. The
following calculation shows that the Kendrick-Taylor model, with the param-
eters stated above (from Kendrick and Taylor, 1971), is transformable to a
convex problem. This will also hold with various other values of the parame-
ters. For this purpose, the Kendrick-Taylor problem may be considered as a
minimisation problem, to minimise the negative of the given objective function.

First define K(t) := k(t)eσt. Then:

K̇(t) = ζertK(t)β − eσtc(t),

where r = δ + (1 − β)σ. This gets rid of the the σk(t) term in the differential
equation.

Next, define a new state function x(t) = K(t)γ , where γ = 1 − β will be
assumed later. Denote also θ = (1 − γ)/γ. Then:

ẋ(t) = γζertx(t)(β+γ−1)/γ − γeσtx(t)−θc(t)

The further substitution c(t) = x(t)θu(t) reduces the differential equation to
the linear form :

ẋ(t) = γζert − γeσtu(t)

What becomes of the integrand −e−ρtc(t)τ in the objective function? It
becomes −e−ρtx(t)κu(t)τ , where κ = θτ . Note that with the numerical values
cited for τ and θ, κ = 0.15, and κ + τ < 1. Since c(t) and k(t) must be
positive, the domain of (x(t), u(t) is a subset of R2

+, depending however on t.
The Hessian matrix of −xκuτ is then:

(−κ(κ − 1)xκ−2uτ −κτxκ−1uτ−1

−κτxκ−1uτ−1 −τ(τ − 1)xκuτ−2

)

Since 0 < κ < 1 and 0 < τ < 1, the diagonal elements of the Hessian are
positive. The determinant is calculated as:

x2κ−2u2τ−2κτ(1 − κ − τ)

which is positive if κ + τ < 1.
Values λ = 0.1 and β = 0.6 have been used in some economics references.

Invexity, and consequent global optimization, is thus shown for these values,
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and also for other values near them. Thus, global optimization still holds when
the exponents β and q and the decay coefficient σ differ substantially from the
values computed here.

The optimum curves do not, however, approach a steady state as time
increases, because the model contains the exponential terms e−ρt and eqt, and
the coefficient σ which leads to an exponential term eσt. The optimum curves
are, however, fairly insensitive to a small change in the endpoint condition
k(t) = kT .

For the dynamic systems, stability of the system can be determined by the
characteristic roots of the Jacobian matrix formed by linearizing the differential
equations of the variables and evaluated at the steady state point.

The results in Figure 1 show the RIOTS results of how changes in ρ, δ, kT ,
and ζ affect the optimum growth trajectories. Figure 1 shows that changes in ρ
and kT (terminal capital) have relatively higher impact on the dynamic path of
capital accumulation compared to the changes in the rate of technical progress
and the elasticity of marginal utility with respect to changes in income. In
regard to the value of optimal control (the optimal level of consumption), the
impacts are similar. The optimal control variable is relatively more sensitive
(see Figure 1a) to changes in the discount rate and the terminal level of capital.
These sensitivity experiments suggest that the social time preference and the
terminal conditions are significant determinants of the structure of optimal
growth paths of an economy.

RIOTS was also used to examine the sensitivity of the Kendrick/Taylor
model to some other changes in the data. Figure 3 shows the trajectory of the
capital when the initial capital is varied from 15.0 to 14.0 or 16.0, though not
changing the terminal constraint on the capital. Figure 4 shows the trajectory
of the capital with the initial value fixed at 15.0, but the terminal value varied
from 24.7 to 27.0 and 22.4. The time scale here is 0 to 10; the turnpike effect
noted by Kendrick and Taylor is only apparent on a longer time scale, say 0
to 50. Figure 5 shows the effect of varying the exponent β in the dynamic
equation from its given value of 0.6. The upper curve has β = 0.5, compared
with the middle curve for β = .6. The lower curve is what RIOTS gives when
β = 0.7 but with the warning that no feasible point was found; a computation
with SCOM confirms that the model is not feasible for this case.) This graph is
included, to point out that when the constraints cannot be satisfied, a computer
output need not be any sort of approximation to a solution. In this instance,
an implicit constraint is violated, since both state and control run negative.

RIOTS computed an optimal solution to the Kendrick-Taylor model in
20 iterations. The speed is due in part to the user by RIOTS of C code -
although the functions defining the problem were entered as M-files (requiring
however some computer jargon for switching). SCOM was slower - fairly rapid
convergence to the optimum objective value, but much slower convergence to
the optimal control function. Some more development is needed here with
terminating tolerances for gradient and constraints.
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The computing experience in this chapter is largely similar to the previous
computing experiences with the Kendrick-Taylor model (Kendrick and Taylor
(1971)).

Fig. 3 Effect of initial capital

Fig. 4 Effect of terminal condition
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Fig. 5 Effect of changing exponent beta

4.5. Computation by other computer programs
While the Kendrick-Taylor model was not computed with MISER, some

related economic models were attempted, without success because sufficient
accuracy was not obtained for the gradients of the functions. The experience
with SCOM suggests that the fractional-power terms in the model may lead to
computational difficulty, since some values for the control function may lead
to negative values for the state function, for which the fractional powers are
undefined.

4.6. Conclusions
Algorithms and computer packages for solving a class of optimal control

problems in continuous time, in the form of optimal growth, development and
finance models (see chapters 3, 4 and 5), using the MATLAB system, but in
a different way from the RIOTS 95 package which also uses MATLAB and
the RIOTS system, have produced plausible economic results. In the SCOM
approach as in the MISER and OCIM packages, the control is parameterised
as a step-function, and SCOM uses MATLAB’s constr package for constrained
optimization as a subroutine. End-point conditions are simply handled using
penalty terms. Much programming is made unnecessary by the matrix features
built into MATLAB. Some economic models present computational difficulties
because of implicit constraints, and there is some advantage using finite differ-
ence approximations for gradients. The RIOTS system has the discretisation
approach. It can produce however a set of results close to these produced by
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the SCOM approach. While several computer packages are available for opti-
mal control problems, they are not always suitable for a wide class of control
problems. The MATLAB based RIOTS and SCOM, however, offer good op-
portunities for computing continuous optimal-growth models. Optimal growth
modellers may find these algorithms and computer programs suitable to their
work.



Chapter 5
Modelling Financial Investment

with Growth
5.1. Introduction

There are many models for financial investment, assuming that a pro-
ductive economy is available to invest in. There are many economic models,
commonly assuming that investment is a given quantity. However, questions
arise as to the mutual interaction of these two areas, especially the positive feed-
back which may drive price changes. This chapter seeks to model some aspects
of this interaction, without assuming that the financial investors or planners
always behave (or should behave) according to optimal economic principles.
These models, like the other models in this book, assume new3 economics,
and may be applied to social choice for an optimal intertemporal allocation of
financial and physical resources in the economy.

Should such a model be in discrete or continuous time? Models in con-
tinuous time usually assume a Brownian motion as the basis of the stochastic
contribution, carrying with it a questionable assumption of independent contri-
butions from non-overlapping time intervals, however short. A discrete- time
model assumes less, and relates better to data which are available at discrete
times. Hence a discrete-time model is adopted here, including a stochastic
increment at each discrete time. If these increments are not too large, the
results can be adequately described by the evolution of the mean (or expecta-
tion) and the variance. Thus, more complicated calculations about probability
distributions may be avoided.

When an objective function is to be maximized, for such a model, it is
expedient to approximate the dynamic difference equations for the mean and
variance by differential equations, in order to use available computer packages
for optimal control. However, the results still relate to the discrete- time model.

The present approach makes some use of recent mathematics in optimiza-
tion, which has been applied to some economic models (see e.g. Islam, 2001a;
Chakravarty, 1979; Leonard and Long, 1992))

Some further discussion is given of multiple steady states in such dynamic
models, and also of sensitivity questions, especially when the planning horizon
is large, or infinite.

5.2. Some Related Literature
The essential elements of a dynamic optimisation model for investment

with growth (Islam, 2001a):
i) the length of the planning horizon,
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ii) an optimization criterion,
iii) the form of intertemporal time preference or discounting,
iv) the structure of dynamic systems under modelling,
iv) the initial and terminal conditions.
There is extensive literature on methodology and practice for economic

areas such as optimal growth (see e.g. Islam, 2001a; Chakravarty, 1979), and
on investment models (see e.g. Campbell and Viceira, 2002 for a recent account,
also Karatzas, 1996 for modelling in continuous time, and dynamic optimisation
modelling in Taperio, 1998; Sengupta and Fanchon, 1997; Vickson and Ziemba,
1975) ), some questions remain concerning the mutual interaction of these areas.

Dutta (1993) provides an up to date survey of results concerning the el-
ements listed. The element (i) concerns the length of the planning horizon,
the associated choice of a final period capital stock, and the possible choice
of an infinite horizon. Dutta (1993) cites some results of Brock (1997), Mitra
(1983), and Mitra and Ray (1984), that establish, under some assumptions
including the continuity, convexity, etc. mentioned above, the insensitivity
to horizon length, and the existence of a finite-horizon plan close to a given
infinite-horizon plan. But this closeness does not always hold; there are counter-
examples. Significant questions are whether a finite-horizon investment plan is
relatively insensitive to the exact choice of horizon length, and whether each
finite-horizon optimal plan is close to some infinite-horizon optimum?

In (ii), optimization requires some objective function to be maximized (or
minimized). Often, a utility function of consumption alone is chosen, usually
satisfying properties of continuity, monotonicity, and concavity. However, it
may be appropriate to consider several objectives (see discussion in section 4b),
and to relax the concavity requirement. Other optimality criteria, not often
used for financial modelling include overtaking criterion, catching-up criterion,
maximum criterion, etc. (Leonard and Long, 1992); there is some discussion
in section 5.4.

For (iii), an infinite horizon generally requires some discount factor, but
not necessarily the usual exponential factor, since this assigns negligible value to
the far future. Alternative discount factors (see Heal 1998, Islam and Craven,
2001b) may be considered, For (iv), terminal conditions are often given by
transversality conditions the value of the terminal year capital stock is specified,
perhaps as zero (see Leonard and Long, 1998 for a survey).

The next paragraphs outline a number of specific financial models, dis-
cussed in the literature. A recent discussion of computation of optimal port-
folio choice problems may be seen in Islam and Oh (2003), and Oh and Islam
(2001).

In more general financial models (see Sengupta and Fanchon 1997), the
growth of wealth wt at times t = 0, 1, 2, . . . . is described by a dynamic
equation wt+1 = rt(wt − ct), in which ct is consumption at time t, and rt is a
stochastic term, perhaps described by a first order Markov process. They use
a logarithmic utility function, and maximize the present value:

∑
ρtlog(ut).
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In the model of Hakansson (1975), there are M investment opportunities
i = 1, 2, . . . , M. A dynamic equation, in discrete times t = 1, 2, . . . , relates
capital xt at the start of period t to the amount invested by:

xt+1 =
∑

i

(βi − 1 − ρ)zit + (1 + ρ)(xt − ct) + yt ,

where ρ is interest rate (Hakansson’s quantity r = −1 + ρ);βi is the stochastic
factor which multiplies capital for investment i; yt = income from non-capital
sources; ct represents consumption; some assumptions are made on the βi . An
objective function:

∑
t

αtu(
∑

i

((βi − 1 − ρ)zit(1 + ρ)(xt − ct) + yt =
∑

t

αtu(xt+1)

is to be maximized, presumably with respect to variables zij . But it is not
clear what bounds are placed on the zij ; and the costs of investment capi-
tal are not explicit. Hakansson obtained an analytic optimum using dynamic
programming.

The asset pricing model of Lucas (1978) was summarized in Judd (1998).
In this model, a single asset pays dividends according to the ( AR(1) ) stochastic
model yt+1 = ryt + et+1 , with independent identically distributed random
variables et . The present value of utilities u(ct ) is maximized. The equilibrium
prices pt satisfy:

u′(yt)pt = bE{u′(yt+1)(yt+1 + pt+1|pt},

where b is a discount factor. This leads to an integral equation for the prices
pt . The dividends yt perhaps represent the consumption ct .

In another version of the model (see Gourieroux and Janiak, 2001), the
present value of utility functions of consumption is maximized, subject to a
“budget constraint”:

qtCtCC + atpt = Rt + at+1pt,

where qt denotes price of the (single) consumption good, at denotes a vector of
allocation of investment, CtCC denotes consumption, Rt denotes external income,
pt is (presumably) the market price (vector) of the investments at time t. An
unconstrained optimum was sought, by setting the gradient to zero.

Malliaris and Brock (1982) describe Merton’s model, in which the share
prices are described by a stochastic process in continuous time. Consumption
and amount of new investment are decided by current prices. The objective to
be optimized is an integral of utility of consumption over the planning period,
plus a function of wealth at the end time. All income is supposed to come
from capital gains. A solution is obtained by stochastic dynamic program-
ming. Malliaris and Brock also discuss an asset pricing model , based on Lucas
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(1978), which assumes the hypothesis of rational expectations (a hypothesis on
investors’ behaviour), and involves stochastic terms. The existing dynamic fi-
nancial models (including the ones discussed above) are not specified with an
explicit discussion of a set of the elements of a dynamic economic model. The
above set of elements are chosen on an ad hoc basis in the existing literature.

5.3. Some Approaches
For such stochastic models in continuous time, dynamic programming is

a useful theoretical technique, but it presents difficulties for numerical compu-
tation. From a methodological viewpoint, a computation would require dis-
cretization of both time and levels of prices, and arguably one might as well
start with a discrete model. However, it may be questioned whether investors,
or markets, indeed behave rationally according to Lucas’s model, or any other.
Moreover, the growth factors, such as Hakansson’s βi , are extrinsic to the
models, and are thus not analysed. But growth rate should depend on physical
capital, as discussed below in section 5.4, and investment, and so may be more
specifically modeled. A distinction is necessary between physical capital and
its current (and fluctuating) market value.

These dynamic models have an inherent multiobjective character. One
may wish to maximize both consumption and capital growth, both for the near
future and the more distant future. These objectives are in conflict, and an
improvement on one may not compensate for a deterioration in another. A
model may include several parameters, specifying the relative weight given
to the conflicting factors, Thus, for example, a model could maximize the
capital at a horizon time, plus a proportion σ1 of an estimated future growth,
subject to a floor on consumption, thus consumption ≥ σ2 at all times. The
result of varying the parameters σ1 and σ2 would then need study, usually
computationally.

Suppose there are objective functions fiff (z) (i = 1, 2, . . .) to be maximized,
subject to constraints gj(z) ≥ 0 (j = 1, 2, . . . ,m). Some of the fjf could be end-
point terms, describing the far-future. As well as a Pareto maximum problem
for the vector objective f = (f1, f2ff , . . . .), other versions of the problem would
turn one or more objectives into constraints, such as fjff (z) ≥ σj . (For the
present, the parameter σj is absorbed into fjf , so fjf (z) ≥ 0 is written). For all
of these related problems, the Lagrangian:

L =
∑

τiττ fiff (z) +
∑

λjgj (z)

is the same, and the Karush-Kuhn-Tucker (KKT) necessary conditions for an
optimum at z = p are the same, except that the multipliers τiττ and λj may take
different values. If hypotheses are assumed that make the KKT conditions also
sufficient for an optimum, then all of these problems are optimized at different
Pareto points of the Pareto maximum problem for f . The hypotheses could be
that all the −fiff and −gj are invex with respect to the same scale function, or
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that all the fiff and gj are pseudoconcave . Equivalently, the vector function Q,
whose components are all the −fiff and −gj , is invex if, for all x and p:

Q(x) − Q(p) ≥ Q′(p)η(x, p)

for some scale function η. Convexity is the case where η(x, p) = x − p. How-
ever, invexity is enough to ensure that the necessary KKT conditions are also
sufficient for an optimum (see e.g. Craven, 1998).

However, invex may be difficult to verify for an optimal control problem,
because the dynamic equation, an equality constraint, presents difficulties (see
Craven, 1998).

5.4.1. A proposed model for interqction between financial invest-
ment and physical capital

An increase in share price does not directly increase productivity. Indi-
rectly (and after some time delay) it may do so, by allowing additional capital
to be raised by a share or bond issue. The present model considers produc-
tivity to depend on the physical capital (which is unchanged by a fluctuation
in share price), plus additional investment, which may be explicitly modelled.
The latter are of two general kinds, namely internal investment (that part of
the profits which is used to increase physical capital, including raw materials,
etc.), and external investment (from share issues, etc.)

How does physical capital affect the share price, and how does the share
price affect external investment . If these aspects are to be modelled (instead
of putting some unexamined growth factor into the model), then some assump-
tions must be made. Some simple assumptions are the following. The share
price could be assumed to follow a random walk, say jumping up or down by
an amount d with probability q for each jump, with d and q adjusted to match
an observed variance of share price. But the share price should tend to increase
somewhat with an increase (or positive rate of increase) of the physical capital.
Perhaps the probability of jumping up by d should depend on the physical cap-
ital? The external investment , it could be assumed to increase as share price
increases (or perhaps when its rate of increase gets over a threshold?) Note
that this is a positive feedback path, hence tending to instability, and unlikely
to follow a linear law. These actual phenomena seem to fall outside the usual
market model assumptions, but they may still be modelled.

Consider investment opportunities j = 0, 1, . . . , n, where j = 0 is ”risk-
free” (i.e. a bank account, whose balance may be positive or negative). At time
t = 0, 1, 2, . . . , T, let ktj = physical capital (measured by historical investment,
in constant dollars); let mtj =market price; so “wealth” consists of terms mtjktj

. Instead of assuming an exogenous growth term, growth will be modelled, by:

kt+1,j = (1 − d)[ktj + g(bktj − ctj + ytj ],

where ctj = consumption (or sales, exports, etc.), ytj denotes new investment
(e.g. from a share issue), g is an increasing concave function, describing a law
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of diminishing returns, d is a depreciation factor, and b(< 1) describes the
fraction of capital that is available for growth. (This model is crude, since
physical capital is of several kinds.)

The wealth at time t consists of terms mtjktj . Fluctuations in the market
prices mtj do not directly change the physical capital, on which growth de-
pends, but they will affect the investment term ytj (which requires modelling
in terms of the increase in wealth at a somewhat earlier time). The function g
is analogous to the concave utility functions used by other authors, but is here
applied to the capital available for growth. The bank account (j = 0) allows for
additional investment (subject to paying interest), or for selling assets without
reinvesting them. If ztj units of investment j are held at time t, and vtj are
purchased during the period (t, t + 1) (with vtj < 0 for a sale), then:

vt0 + mt1vt1 + . . . + mtnvtn = 0 ;

zt+1,j = ztj + vtj (j = 1, 2, . . . , n);

zt+1,0 = [zt0 + mt1qt1 + . . . + mtnqtn ]

Here qtj describes any dividend or interest, or repayment of a bond.
Consider first a simple model for market prices:

mt+1,i = mt,i + et,i + ζ[kt,i − kt−1,i],

in which the mt,i(t = 0, 1, 2, . . . ) are independent identically distributed ran-
dom variables with a given variance σ2, and ζ is a small positive constant.
Thus, the price is modelled as a random walk, with an additional small feed-
back term depending on the change of physical capital. This feedback may
produce instability − but note that market prices are, in fact, often unstable.
The different investments j are considered here as independent, though this
assumption may need modification.

The new investment term ytj may be modelled as:

ytj = ζ ′[mtjktj − mt−1,jkt−1,j ]+ ,

where ζ ′ is a small parameter, and [w]+ := w if w ≥ 0, 0 if w < 0. Note that
the time lag, here one interval, is another parameter that may be changed.

As well as this dynamic model, appropriate objective function and con-
straints must be specified. One specification is to maximize the expectation of
the wealth at the horizon time T :

E
∑

j

mTjkTj ,

subject to a constraint on consumption:

ctj ≥ bj + b′jt (t = 0, 1, . . . , T ; j = 1, 2, . . . , n) .
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There might also be a cost term
∑

t,j µ[c∗−ctj ] subtracted from the objective, to
describe a penalty cost imposed when the consumption is allowed to fall below
some target level c∗. This formulation assumes that the far future (after time
T ) is accounted for by maximizing the wealth at time T . For each investment
j, there is a floor under consumption, which increases with time, at a rate given
by the parameters b′j .

Another specification maximizes a consumption objective:
∑

j

rtU(ctj) +
∑

j

σ1jU(cjT )rT /(1 − r) ,

in which U(.) is a (concave increasing) utility function, subject to the above
floor on consumption, and to a terminal constraint on wealth:

E
∑

j

mTjkTj ≥ σ3.

Here the parameters σ1j relate to the balance between short term and far-
future, and σ3 relates to the balance between consumption and capital.

For the discrete-time optimal-control financial models considered here, the
existence of an optimum is automatic, since the feasible region is bounded, and
continuous functions are involved. This existence result does not hold for a
continuous-time optimal control financial model, since infinite dimensions are
involved. However, if the necessary Pontryagin conditions are solvable (as is
the case for all the continuous-time models considered in this chapter), then
that solution is the optimum if either the solution is unique, or if a generalized-
convexity condition such as invexity (see section 3b) holds as in many models
of finance (and also economic growth), but uniqueness does not generally hold.

5.5. A computed model with small stochastic term
In this section, a financial model is developed and implemented, incorpo-

rating explicit relations between physical and financial capital, and so allows
the extent of dependence of these two to be analysed.

For discrete time t = 0, 1, 2, . . . , denote kt = physical capital, ct = con-
sumption, qt = external investment, c∗ = consumption target, mt = market
price for shares, ρ = depreciation rate, and ϕ(s) = a(1− e−bs) is a concave in-
creasing growth function. Consider the following dynamic equations for physical
capital (which may include knowledge and human capital) and market price:

∆kt = −ρkt + ϕ(kt − ct + qt), k0 given

∆mt = θmt + µ∆kt + ξt, m0 given.

Here the coefficients θ, and µ > 0, describe a market price trend and an in-
fluence of observed physical capital on market price; the ξt are i.i.d. random
variables with mean zero. (A more complicated, Markovian, model could also
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be considered.) In particular, if the random terms are negligible and if θ = 0,
then:

mt = m0 + µ(kt − k0).

The interaction between financial capital, namely the market value mtkt, and
external investment qt is assumed to have the form qt = ε[∆(mt−1kt−1)]+ .
Here ε is a small positive coefficient, and [.]+ makes only increases in market
value have an effect. There is a time lag, here of one unit. (This model does
not discuss speculative investment.) Denote the expectation k̄t := Ekt, also
yt := kt − k̄t , and m̄t := Emt.

Substitution of qt into the equation for ∆kt gives:

kt+1 = (1 − ρ)kt + ϕ(kt − ct + ε[∆(mt−1kt−1)]+).

The contribution of yt to the right side of this equation contains linear terms,
whose expectation is 0, and a quadratic term, approximated by 1

2ϕ”(k̄t −
ct)θ3m̄ty

2
t . Hence, denoting νt := sgn∆(m̄t−1k̄t−1 ) ,

k̄t+1 ≈ (1 − ρ)k̄t + ϕ(k̄t − ct + ε[∆(m̄t−1k̄t−1)]+)

+
1
2
εϕ̄”(k̄t − ct)m̄tνt var kt,

Approximating the contribution to yt+1 from ξt by the linear term

(1 − ρ)ξt + ϕ′(k̄t − ct)(ξt + εk̄tξt−1)

gives:

varkt+1 ≈ (1 − ρ + ϕ′(k̄t − ct)) var kt + νt[εϕ′(k̄t − ct)k̄t]2 var mt.

These approximations may be appropriate when ε is small.
The interactions described by µ (effect of physical capital on market price)

and ε (effect of market price on external investment) represent a feedback pro-
cess, whereby an increase of physical capital tends to produce a further such
increase.

The objective function to be maximized is taken as:

k̄T+1 − ω
T∑

t=0

[c∗ − ct]2,

The elements of this model are (i) the finite planning horizon T, (ii) the ob-
jective function, a utility function involving terminal capital and consumption,
with a penalty when consumption falls too low (ω is a weighting factor), and
(iii) boundary conditions, as upper and lower bounds on consumption.
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For a computed example, consider the numerical values:

T = 20, ρ = 0.1, a = 4.0, b = 0.1, c = 0.4, ω = 0.5, ε = 3.0, θ = 0.

The cases with s := var mt = 0.0, 0.3, and 0.6 were computed, each with the
parameter µ as either zero (no influence of physical capital on market price, or
µ = 0.02 (physical capital having a small positive influence on market price).
The parameters for the several computations are tabulated as follows (ıthe
captions to the figures refer to the computer run numbers):

Parameters for Figures 1 to 6
κ = 100µ, where µ is the feedback factor; ω = 0.5 throughout.
Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14
s .0 .3 .6 .0 .3 .6 .3 .3 .3 .3 .6 .6 .6 .6
κ 2 2 2 0 0 0 2 5 10 50 2 5 10 50

Figure 1 shows the growth of expectation of physical capital with time,
with the different levels of variance s distinguished by solid, dashed, and dotted
lines, and the plotted points with θ2 > 0 marked by + signs. Also shown are
the standard deviation

√
(var kt) of physical capital. Figure 2 shows the con-

sumption, with the same convention of plotting. Figure 3 shows expectations
of financial capital and physical capital, for the case s = 0.3 and θ2 = 0.02.

In Figure 1, an increase of the variance of the market price increases the
physical capital, and decreases its standard deviation. The positive feedback,
when µ is positive, increases the physical capital (Figure 1), and also the fi-
nancial capital (Figure 3), as well as the consumption (Figure 2). For these
assumed parameters, the expected market price m̄t = m0 +µ(k̄t−k0) increases
by 40% over the time period considered. Note also also that financial capital
mtkt has more random variation than physical capital kt .

Figures 4,5 and 6 show in more detail the results of the feedback factor µ
(with ε constant at 0.3) and the variance of the price mt . As µ increases, the
expectation of physical capital increases (Figure 4), the consumption increases
(Figure 5), but the variability of physical capital, as measured by its Standard
Deviation, decreases. In Figures 4 and 5, the curves for s = 0.3 and s = 0.6
have been separated by moving the latter curves down.
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Fig. 1 - Physical Capital and its Standard Deviation
From top: Capital 1,4,2,5,3,6.
Standard deviation 6,3,5,2 ; 1 and 4 are zero.

Fig. 2 - Consumption
From top: Consumption 4,1,2,5,3,6.
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Fig. 3 - Financial and Physical Capital
The graph of Financial Capital lies above that of Physical Capital.

Fig. 4 - Effect of Feedback on Physical Capital
From top: Physical Capital 10,9,8,7, then 14,13,12,11.
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Fig. 5 - Effect of Feedback on Consumption
From top: Consumption 14, 13, 12, 11, then 10, 9, 8, 7 with 0.1 subtracted.

Fig. 6 - Effect of Feedback on Variability of Capital
From top: Standard Deviations 11, 12, 13, 14,
then 7, 8, 9, 10 with 1.0 subtracted.



78 Chapter 5

The final capital kT increases with increase of the initial slope ϕ′(0) of the
growth function, as shown by the sample figures (computed with ε = 0.1 and
zero stochastic term):

ρ k0 a b ab c0 cT kT+1

0.1 10 4.0 0.1 0.4 .941 .985 33.49

0.1 10 4.0 0.2 0.8 .975 .999 36.09

0.2 10 4.0 0.1 0.4 .970 .879 14.62

0.1 10 3.0 0.01 0.03 .293 .271 2.21

0.1 5 3.0 0.01 0.03 .293 .270 1.07

Numerical values for parameters were chosen to exhibit the possible be-
haviours. No empirical data is available for some of the parameters, especially
µ and ε.

These results demonstrate the interdependence of physical and financial
capital, in terms of accumulation and dynamics. It is observed that increased
uncertainty reduces the level of consumption.

The feedback interactions lead to higher levels of both capital and con-
sumption, and also tend to smooth consumption profiles over time. In some
circumstances the consumption is reduced to its lower bound, for part of the
planning period, in order to achieve the target for terminal capital.

5.6. Multiple steady states in a dynamic financial model8

An optimal control model need not be very complicated before (unlike
the simpler economic models) there may be more than one stationary solution.
The following is a mathematical example to illustrate this. A continuous-time
(deterministic) model is given here, to simplify formulas. Results would be
qualitatively similar for a discrete-time model, obtained by discretizing the
time interval [0, T ] into suitable subintervals. In the example, the state x(t)
might describe capital stock, and the control u(t) might describe the fraction
of capital stock to be given for consumption. If some parameter of the model
were varied (presumably at a slower rate than the model tends to a steady
state), then this might result in a jump from one solution to another. There is
a possibility here to model discontinuities in the real world.
Consider an optimal control financial model in continuous time:

MIN
∫ T

0

∫∫
e−ρtf(x(t), u(t)dt subject to x(0) = x0, ẋ(t) = m(x(t), u(t)).

8 See also section 2.5.
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As with various economic growth models, no active constraints are assumed
for the control u(t). The time horizon T is assumed to be fairly large. But the
discount factor e−ρt prevents a steady state being reached. The Hamiltonian
is e−ρtf(x(t), u(t))+λ(t)m(x(t), u(t). In terms of the steady state Hamiltonian
f(x(t), u(t)) + Λ(t)m(x(t), u(t)), where Λ(t) = eρtλ(t), the adjoint differential
equation becomes:

−Λ̇(t) = fxff (x(t), u(t)) + Λ(t)mx(x(t), u(t)) − ρΛ(t)

(with no boundary condition), and Pontryagin’s principle (in the absence of
active control constraints) requires that fuff (x(t), u(t))+Λ(t)mu(x(t), u(t)) = 0.
A steady state, in which x(t), u(t) and Λ(t) take constant values, may be sought
by equating ẋ(t) and Λ̇(t) to 0.

Can fairly simple functions f and m give rise to multiple steady states?
Consider, in particular, m(x, u) = Φ(x)− ux, where Φ is a cubic, say Φ(x) =
a + (3/2)x2 − x3 (assuming some scaling for x). Then Φ(x) − ux = 0 when a
−ux + (3/2)x2 − x3 = 0, and this cubic will have three real roots x = x(u), for
an interval of values of u, In particular, if a = 0, then:

x(u) = 0 or (1/2)(3 ±
√

(9 − 16u)), with u < 9/16.

Consider, in particular,

f(x, u) = (1/2)(x2 + u2).

Then the steady state (if it exists) requires that:

Φ(x) − ux = 0;x + Λ(Φ′(x) − u − ρ) = 0;u + Λ(−x) = 0.

Hence x depends on u as discussed above, Λ = u/x, and

0 = x + (u/x)(3x − 3x2 − u − ρ) = 0.

Hence x must satisfy the equation:

0 = x2 + (Φ(x)/x)(3x − 3x2 − ρ) − Φ(x)2/x.

If, in particular, a = 0, and ρ = 0 (no discounting), then x satisfies a cubic
equation, so that x = 0 or x satisfies:

1 + (3/2 − x)(3 − 3x) − x(3/2 − x)2 = 0.

Another instance of multiple steady states is given in Islam and Craven (2001).
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5.7. Sensitivity questions, concerning infinite horizons
Consider first a single-objective financial optimization problem:

MAXzF (z, q)) subject to g(z, q) ≤ 0, k(z, q) = 0,

where q is a perturbation parameter, and suppose that, when q = 0, a strict
maximum is reached at z = z̄(0). This means that, for small enough r > 0 :

[g(z, 0) ≤ 0, k(z, 0) = 0, ‖q‖ = r ] ⇒ F (z) ≤ F (¯(0)) − δ(r)

for some δ(r) > 0. Given also a continuity condition,, the strict maximum
implies that, for sufficiently small ‖q‖ , the perturbed problem reaches a local
maximum at ¯(q) close to ¯(0), thus ¯(q) → z(0) as q → 0. Clearly, this does
not usually happen for a maximum that is not strict,

The additional conditions required for this result (see Craven, 1994) are
that (F, g, k) is uniformly continuous in a local region around the point (z, q) =
(¯(0), 0), there are feasible solutions to the perturbed constraints, and, when
q 	= 0		 , F (., q) reaches a minimum on each closed bounded set (this last would
usually be assumed on economic grounds).

For an optimal control problem with state x(t) and control u(t), the dy-
namic equation:

x(0) = x0 , ẋ(t) = m(x(t), u(t), t) (t ≥ 0)

is assumed to determine x(.) as a function of u(.). So an objective function:

∫ T

0

∫∫
f(x(t), u(t), t)dt + Φ(x(T ))

may be expressed as J(u(.)), to be maximized subject to constraints on u(.).
The horizon T will be written as 1/q, where the perturbation parameter q = 0
for an infinite horizon.

The uniform continuity condition is then not automatic. It is fulfilled (see
section 5.10) if f is quadratic, and high-frequency oscillations of the control
u(t) are suitably small.

Assume now that an optimum is reached at z(t) ≡ (x(t), u(t) = p(t).
Several cases arise for the infinite horizon.

Case J(p) finite. This is only likely if f includes a discount term. If z(t)
tends to a limit, q say, as t tends to infinity, f(q) will sometimes (depending
on the rate of convergence) be the dominating factor in J(p). Under some
(substantial) boundedness conditions, a suitable time transformation t = k(s)
(with k(.) increasing and k(0) = 0) maps the infinite time interval to [0,1], but
may produce an unbounded integrand. If f(z(t), t) tends fast enough to zero
as t → ∞, an equivalent control problem is obtained, over a finite interval of
transformed time s, and the Pontryagin theory applies to it. If the maximum
for the infinite horizon is strict, and the uniform continuity condition holds,
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then the optimum objective for horizon T will be close to the optimal objective
for infinite horizon, provided that T is sufficiently large.

Periodic case. For some finite T, impose the boundary condition that
z(T ) = z(0). Assume no discount factor. Then the problem may be optimized
over [0, T], then it effectively starts again at t = T for a new interval [T, 2T ],
and so on.

Case J(p) infinite, other than the periodic case. Since maximizing J(z) is
now meaningless, suppose that T−1

∫ T

0

∫∫
f(z(t), t)dt → b as T → ∞ , and then

seek to maximize b(z). Can one maximize Q(T ) := T−1
∫ T

0

∫∫
f(z(t), t)dt for some

large enough fixed T, and derive from this some approximation to the required
maximum b? For this purpose, assume that the given problem reaches a strict
maximum of b∗ at z = p. Assuming also the uniform continuity condition, then
1/T may be regarded as a perturbation parameter, applied to Q(T ) instead of
J(T ), leading to a maximum of Q(T ) at some point p(T ) close to p∗.

Catching up criterion. Under this criterion, p(t) = (x̄(t), ū(t)) is optimum
if:

limsupT→∞

∫ T

0

∫∫
[f(z(t), t) − f(p(t), t)]dt ≤ 0,

for feasible plans (x(t), u(t)). Equivalently, T−1
∫ T

0

∫∫
f(z(t), t)dt may be dis-

cussed, though a limit as T → ∞ is not necessarily assumed.
However, the question of how large T must be, in order to closely approx-

imate the infinite horizon case, calls for further study.
While these sensitivity results are stated for continuous-time optimal con-

trol models, the ideas also apply to discrete-time control models, such as the
dynamic model of section 5.5 with a consumption objective.

5.8. Some conclusions
Dynamic optimization models in finance can be usefully extended in several

directions, leading to a more integrated and operational approach. The aspects
considered include a systematic analysis of the elements of the model, the role
of physical capital, as distinct from fluctuating market value, some attempts to
model investment, sensitivity to time horizons, possible multiple steady states,
and some numerical calculations. A dynamic optimization model requires a
specification of a standard set of elements for a growth model.

While an infinite time horizon may not be thought relevant to financial
modelling, a long horizon may be, when a continuing enterprise is considered.
Computation of a simple model, showing the interaction between physical cap-
ital, financial capital, and investment, have led to several qualitative conclu-
sions, detailed above.

Some issues remaining are to relate the model to empirical data, and to
explore the relevance of mathematical concepts such as generalized convexity
(particularly invexity ) to these financial models.

A financial model of a different kind is the model by Davis and Elzinga



82 Chapter 5

(1972) for dividends and investment in a utility company. A computation of
this model using the SCOM package is given in section 3.7; a stochastic version
is considered in Craven (2002).

The usefulness of MATLAB packages for such computations is not speed,
but rather a great facility in changing model details and parameters, with-
out needing extensive programming. The step-function approximations used
here have been shown to be adequate, both theoretically (Craven, 1995) and
computationally (Teo, Goh and Wang, 1990).

5.9. The MATLAB codes
These are the MATLAB codes used for the discrete-time optimal control

mode, including a small stochastic contribution. For purpose of computation,
the difference equations have been approximated by differential equations, en-
abling continuous-time optimal control software to be used.

The time scale: t = 0, 1, 2, . . . , n translates to t = 1, 2, . . . , nn + 1 in
MATLAB M-code. The MATLAB package constr is called to optimize, given
the functions from the following subroutines. The endpoint condition on the
state (capital) is computed as a penalty term. The parameters ω and µ in the
model appear in these codes as mu and fb respectively.

% fqs run.m % Calling program
subs=cell(1,9);
subs={’fqsx’,’fqj’,’fqf’,’fqc’};
par=[4, 1, 20, 0,0 ,20, 0.1, 3.0, 4.0, 0.1, 0.4, 0.5, 0.6, 1, 0.02];
% nx nu nn 0 0 T rho eps a b c omega s switch mu
% nx = n umber of states, nu = number of controls, nn = number of
% intervals
nn=par(3); nu=par(2); nx=par(1);
xinit=[10.0, 10.0, 0.0, 0.0]; % Initial conditions for states
u0=0.2*ones(nn,nu); ul=0.2*ones(nn,nu);
%ul=zeros(nn,nu);
uu=10*ones(nn,nu);
Control=constr(’fqd’,u0,[],ul,uu,[],par,subs,xinit)
[jf,g,state]=feval(’fqd’,Control,par,subs,xinit);
state
jf
y1=Control; y2=state(:,1); y3=sqrt(state(:,4));

function [f,g,state] = fqd(um, par, subs, xinit) % Organize computation
nx=par(1); nu=par(2); nn=par(3);b=par(6);
ıpd=char(subs(1));
xm=zeros(nn+1,nx); xm(1,3́a)=xinit;´
for tc=1 : nn
ff=feval(pd,tc,um,xm,par);
xm(tc+1,3́a) = xm(tc,:) + ff;´
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end
% compute objective function
jf=0; pd=char(subs(2));
for tc=1 : nn
ff=feval(pd,tc,um,xm,par);
jf=jf+ff;
end
pd=char(subs(3));
jf=jf+feval(pd,tc,um,xm,par);
pd=char(subs(4));
for tc=13́ann
g(tc)=feval(pd,tc,um,xm,par);
end
f=jf;
state=xm;

function ff=fqsx(t,um,xm,par) % RHS of dynamic equations
nn=par(3);T=par(6); hh=T/nn; cc=par(11);mu=par(12); fb=par(15);
del=par(7);eps=par(8);aa=par(9);bb=par(10);sig2=par(13);
mt=1.0+fb*(xm(t,1)-xm(1,1));mm=mt+fb*xm(t,2);
temp=xm(t,1)-um(t,1)+eps*mm*max(xm(t,1)-xm(t,2),0);
swit=par(14);
ph1=aa*bb*exp(-bb*temp);
ph2=-bb*ph1;
temp2=eps*ph1*xm(t,1);
ff(1)=(-del)*xm(t,1)-aa*(exp(-bb*temp)-1)

+swit*eps*mt*ph2*xm(t,4); % Capital
ff(2)=xm(t,1)-xm(t,2); % Relates to differences of Capital
ff(3)=max(cc-um(t,1),0)2; cc-um(t,1);
ff(4)=(-del+ph1)*(-del+ph1)*xm(t,4)+swit*temp2* temp2*sig2;

function ff=fqj(t,um,xm,par) % Objective integrand
nn=par(3);T=par(6); hh=T/nn; cc=par(11);
del=par(7);eps=par(8);aa=par(9);bb=par(10);
ff=0;

function ff=fqf(t,um,xm,par) % Objective endpoint term
nn=par(3);T=par(6); hh=T/nn; cc=par(11);
del=par(7);eps=par(8);aa=par(9);bb=par(10);
mu=par(12);
ff=-xm(nn+1,1)+mu*xm(nn+1,3);
xm(nn+1,3);

5.10. Continuity requirement for stability
For a control problem on an infinite time domain, assume that the control u(t)
satisfies ‖u‖2 = [

∫ ∞
0

∫∫ |u(t)|2dt < ∞. Denote by Qu(s) the Fourier transform of
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u(.). Now assume, more restrictively, that ‖b(.)Qu(.)‖2 is finite, for a region
around the optimal u(.), where the weighting function b(s) is positive, and
b(s) → ∞ as s → ∞. This places a serious restriction on high-frequency oscil-
lations of u(t). Assuming this, the uniform continuity requirement for the sen-
sitivity result follows for functions f which are linear or quadratic (see Craven,
1994), and hence for some other functions whose growth rate is no more rapid
than these.



Chapter 6
Modelling Sustainable Development
6.1. Introduction

The issues of sustainability of growth, and social welfare that ensures in-
tergenerational equity, are controversial, and form an important area of study
in social welfare and social choice in contemporary models. In recent litera-
ture, Hamiltonian-based measures of social welfare have been used to define
the concept of sustainable growth In the mainstream economic interpretation,
where social welfare is measured in terms of pure economic variables such as
income or consumption, sustainable growth relates to economic conditions of
non-declining consumption or capital (whether man-made, natural, or environ-
mental) over time. Sustainable growth has been formalised in different ways.
In the optimal growth literature, sustainable consumption is characterized by
the golden age, representing the maximum consumption possible without re-
ducing the potential for the same level of consumption in the future. Given the
numerical orientation of this study, the objective function here has cardinality,
measurability and intergenerational utility and welfare comparability implica-
tions. Several other definitions of sustainability have been given (Faucheux,
Pearce and Proops, 1996). Conceptual and theoretical studies of sustainabil-
ity are well advanced. In spite of several operational numerical studies of this
issue (e.g. Islam, 2001a), there is still a strong need for operational methods
for sustainability modelling. This chapter presents several operational models
and methods for sustainable growth and welfare, in order to explore a range of
optimal control models in welfare economics.

6.2. Welfare measures and models for sustainability9

Various theoretical articles (Heal, 1998; Faucheux, Pearce and Proops,
1996; Smulders, 1994) have incorporated sustainability in optimal growth mod-
els. In terms of optimal control theory, sustainable consumption or welfare for
an autonomous infinite-horizon problem have been described by a Hamiltonian
function (see Leonard and Long, 1992; and Heal, 1998.)

Consider an infinite-horizon model, formulated as an optimal control model
for social choice and optimal development:

V(a, b) := MAX
∫ ∞

a

∫∫
e−ρtf(x(t), u(t))dt subject to:

x(a) = b, ẋ(t) = m(x(t), u(t)) .

Here x(t) is the state function (e.g. capital), u(t) is the control function (e.g.
consumption), and u(t) is unconstrained. Denote by λ(t) the costate function,

9 See also section 2.1.
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and by Λ(t) = λ(t)eρτ the current-value costate function. The current-value
Hamiltonian is:

h(x(t), u(t),Λ(t)) = f(x(t), u(t)) + Λ(t)m(x(t), u(t)).

Denote the optimal functions by x∗(t), u∗(t),Λ∗(t). Under some restrictions (see
Section 3.3), including the requirement (usually fulfilled) that λ(t) = O(e−βt)
as t → ∞ for some β > 0, and no constraints on the control u(t), it may be
shown that:

h(x∗(t), u∗(t),Λ ∗ (t)) = −ρV (t, x∗(t)) = −ρe−ρτV (0, x∗(t) → 0 as t → ∞.

The proofs in Weitzman (1976), Leonard and Long (1992) and Heal (1998) are
incomplete, and do not state some necessary restrictions. Although the two
functions:

h(x∗(t), u∗(t),Λ ∗ (t)) and δ−1

∫ ∞

t

∫∫
f(x∗(τ), u∗(τ)e−δ(τ−t)dτ

satisfy the same first-order differential equation, their equality only follows if
they satisfy a common boundary condition, namely both → 0 as t → ∞ , which
follows from h(x∗(t), u∗(t),Λ ∗ (t)) → 0.

Weitzman (1976) and subsequent authors have interpreted V (t, x∗(t)) as
the stock of total wealth , and also h(x∗(t), u∗(t),Λ∗(t)) as the interest on total
wealth , which may be taken as a measure of sustainable income, utility or
social welfare.

There are many criticisms of this approach to measurement of sustainable
welfare and sustainability (Arronsson, Johanssson and Lofgren, 1997,; Brekke,
1997; Heal, 1998; and Land Economics, 1997). The Hamiltonian approach as-
sumes very restrictive and unrealistic conditions, including (i) constant discount
rate, technology, and terms of trade, (ii) time autonomous dynamic systems
in continuous time, (iii) no constraints on the control or state functions, (iv)
positive social time preferences, and (v) convex optimal control models (so that
necessary optimality conditions are also sufficient.) The assumption of a sin-
gle capital good may not be necessary. Some aspects of this approach need
more attention, including transversality conditions, and conditions when the
Hamiltonian approaches zero for large times. Overtime and intercounting com-
parisons are not possible; the consumption path has a single peak, and this is
not sustained; and the dictatorship of the present is embedded in the model. If
non-autonomous dynamics are considered, thus assuming ẋ(t) = m(x(t), u(t), t)
where m(.) depends explicitly on t, then x(t) and u(t) will not generally tend to
limits x(∞ ) and u(∞) as t tends to infinity; this is the case with the Kendrick-
Taylor model considered in Section 5. For an autonomous model, the limits (if
they exist) must satisfy 0 = m(x(∞), u(∞)).
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Work on computational models and methods for sustainable growth is
generally less advanced, although some simple approaches have been tried (see
Cesar, 1992; Smulders, 1994; and the journal issue Land Economics, 1997).
The object of the present chapter is to develop some mathematical and compu-
tational models and methods for sustainable growth, within the framework of
welfare economics (Arrow et al., 2003). They include the elements of an opti-
mal growth program (Islam, 2001) such as an objective function, time horizon,
time preference and terminal constraints.

There are several ways to embed sustainability into mathematical formula-
tions of a computable optimal growth and development models. These include
the following:

(a) Including environmental factors and consequences in the model, e.g. by
dynamic equations, or suitable constraints, for resource supply and exhaustion,
pollution generation, etc. (see Heal, 1998; Cesar, 1994). See section 6.5.1.

(b) Appropriate specification of the objective function, to express the prin-
ciples or criteria for sustainable growth (see section 6.3.1)

(c) Modelling intergenerational equity, reflected in social time preference,
by suitably modified discount factors (see section 6.3.2)

(d) Considering a long-term planning horizon, or an infinite horizon in an
optimal growth model, so as give suitable weight to the long-term future, as
well as to the short-term, e.g. by Rawls (1972) or Chichilnisky (1977). (See
sections 6.3.2 and 6.3.3).

The chapter is structured as follows. In sections 6.3 and 6.4, some math-
ematical models and methods are provided, for including sustainability in an
optimal growth model. The Kendrick-Taylor model is modified in Section 6.5
to incorporate sustainability criteria. The results of computational experiments
are presented in Section 6.6. Conclusions and computational recommendations
are given in section 6.7.

6.3. Modelling sustainability

6.3.1. Description by objective function with parameters
Sustainability should be studied within a social choice framework. The

present discussion assumes the possibility of a social choice by a social welfare
function (objective function). This function may contain utilitarian and non-
welfaristic elements of social choice. It must incorporate, in some suitable
form, the concerns for sustainability. If a description using a single objective is
sought, that of Chichilnisky (1996) is as plausible as any available. It includes
a parameter α, which must be chosen to set the balance between short-term
and long-term. This objective function may be written:

α

∫ ∞

0

∫∫
U(c(t), k(t), t)e−ρtdt + (1 − α)limt→∞U(c(t), k(t), t) ,

perhaps with some replacement for the discount factor (see Section 4.2). This
model assumes that limits exist (so excluding any oscillatory models,) and it is
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not computable as it stands, because of the infinite time range. As remarked in
Section 2, the assumed limits as t → ∞ will normally require that the function
m in the dynamic equation, and also the utility U, do not depend explicitly
on t. Moreover, some bounds on the variables should be adjoined, (compare
Rawls, 1972,) and some lower bound on consumption (thus introducing a fur-
ther parameter.) Note that capital k(t) and consumption rate c(t) are vector
functions − though scalar functions may be considered first to simplify the dis-
cussion. Note that environmental factors may enter as components of capital;
for example, if p(t) is some measure of environmental degradation, then −p(t)
could be a component of k(t).

However, a model with a single objective may not represent important
aspects of the system being modelled. An alternative approach adjoins con-
straints, containing parameters. For example, consider a growth model with
consumption u(t) and capital stock k(t), and with some floor specified for the
consumption. This may relate to a minimum consumption as a function of
time, or among various consumers. Some simple examples are as follows.

(a) MAXu,xΦ(x(T )) subject to (∀t)u(t) ≥ b1,

x(0) = x0, ẋ(t) = m(x(t), u(t), t)(t ∈ [0, T ].

Here the parameter b describes the minimum consumption level allowed.

(b) MAXu,x,b b subject to (∀t)u(t) ≥ b1,

x(0) = x0, ẋ(t) = m(x(t), u(t), t)(t ∈ [0, T ],Φ(x(T )) ≥ Φ0.

Minimum consumption is maximized, subject to a minimum level for the final
capital. A simple special case, with x(t) ∈ R and u(t) ∈ R, is:

MAXu,x,b b subject to (∀t)u(t) ≥ b1,

x(0) = x0, ẋ(t) = αx(t) − u(t)(t ∈ [0, T ], x(T ) ≥ xT ,

at which the optimum (supposing the constraints to be feasible) is evidently at
u(.) = b1.

(c) Denoting Pareto maximum by PMAX, consider:

PMAXx,u,b {b,Φ(x, T ))} subject to (∀t) u(t) ≥ b, b ≥ b0,

x(0) = x0, ẋ(t) = m(x(t), u(t), t)(t ∈ [0, T ] . Φ(x(T )) ≥ Φ0.

(d) A variant of (a) considers a bound on average consumption:

T−1

∫ T

0

∫∫
c(t)dt ≥ b2



Modelling Sustainable Development 89

(with b2 > b1 in (a)). This constraint may be included as a penalty cost, by
introducing a new state variable y(t) :=

∫ t

0

∫∫
T−1c(s)ds, and then the constraint

y(T ) ≥ b2 enters as a penalty cost of the form µ[−y(T ) + b3]+ added to the
total cost to be minimized. (Here [.]+ replaces negative vector components by
zeros, and b3 ≈ b2.)

Note that examples (a) and (b) will give single elements of the set of Pareto
maxima. Several values of the parameter b might be considered, in order to
discuss a tradeoff between consumption and capital. A similar remark applies
to the parameter α in the Chichilnisky model.

Some other Pareto maxima may be obtained by maximizing a weighted
combination ωT

1 b + ω2Φ(T ) . While this is often proposed, some criterion for
choosing the weights would be required. It may be more meaningful to consider
a parameter such as b instead.

6.3.2. Modified discounting for long-term modelling
A model must maintain a suitable balance between short-term and long-

term utility. Consider an optimal control model with a state x(.) (e.g. a capital
function) and a control u(.) (e.g. a consumption function), and a time horizon
T, with an objective of the form:

∫ T

0

∫∫
e−δtf(x(t), u(t))dt + Φ(x(T )).

A variant considers
∫ ∞
0

∫∫
and limt→∞Φ(x(T ). The traditional discount factor

e−δt gives negligible value to the far future, so this is not a sustainable model.
If the discount factor is omitted, then the model may not be comparable with
models for alternative investment of resources, since it does not allow for pos-
sible growth when profits are reinvested.

The e−δt discount factor assumes that money can be invested so as to grow
at a compound-interest rate eδt. But such real growth can only happen over a
fairly short time horizon, during which suitable investments may be available,
perhaps with some limit on the amount invested. The continued exponential
growth shown in some datasets for longer time periods merely describes mon-
etary inflation. A continued exponential growth in real terms will soon meet
resource constraints (e.g. Forrester, 1971,) or social constraints (e.g. a financial
collapse). When a particular activity, or enterprise, is modelled, there is always
assumed some background of other activities (in the sector, industry, etc.), that
is not being described in detail, but rather in some aggregated way. Without
a background to invest money in, discounting has no meaning

A more realistic discount factor would not assume an indefinite real growth;
instead, some saturation effect would appear. A better description is required
for background growth, meaning the growth available in the larger system, of
which the model being studied forms a part. If g(t) describes the background
growth, then a possible description is given by: ġ(t) = δg(t)/(1 + ρt)2. This
growth starts as exponential, but later approaches saturation. For this growth
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rate, g(t) = g(0) exp(δt/(1 + ρt). Thus g(t)/g(0) → eδ/ρ as t → ∞; qualita-
tively, saturation starts to matter at about time 1/ρ. The discount factor is
then σ(t) = 1/g(t). Of course, there are other functions than this one with the
desired qualitative properties. But, lacking numerical data on saturation, it is
appropriate to choose a simple function.

Another possible description for background growth assumes a maximum
level for capital, and a logistic function for its growth rate, thus:

ġ(t) = δg(t)[1 − βg(t)], g(0) = g0.

This integrates to:

g(t) = aeδt/[1 + βaeδt] where g0 = a/(1 + βa), a = g0/(1 − βg0).

Thus, as t → ∞, g(t) → 1/β, the assumed maximum level. This model may be
more plausible than the previous one where the saturation is a given function
of time t. The discount factor is then σ(t) := 1/g(t) = e−δt + βa . Thus it
tends to a positive constant value for large times.

Heal (1998, page 98) considers a class of discount factors ∆(t) satisfying
∆′(t)/∆(t) → 0 as t → ∞ , for which the term limt→∞Φ(x(T ) does not affect
the optimum. The classical exponential discount factor does not satisfy this
condition; the modified discount factor 1/g(t)given above satisfies it. Then
Heal’s criterion is satisfied for both the functions σ (.) proposed here, since:

σ̇(t)/σ(t) = −δ/(1 + ρt) + δρ/(1 + ρt)2or − δ/(1 + βaeδt,

and each of these → 0 as t → ∞.
The Strotz phenomenon (see Chakravarty 1969, page 41) shows that only

with an exponential discount factor can a certain balance be achieved between
an optimum path starting at time 0 and an optimum path starting at a later
time. Unfortunately this is incompatible with giving proper weight to the more
distant future.

6.3.3. Infinite horizon model10

Optimal control models of the form:

MINu(.),x(.)F (x, u) :=
∫ ∞

0

∫∫
e−ρtf(x(t), u(t), t)dt subject to:

x(0) = x0, ẋ(t) = m(x(t), u(t), t), a(t) ≤ u(t) ≤ b(t)(t ≥ 0),

have often been considered in recent economic literature (sometimes as MAX
F (x, u) ⇔ MIN −F (x, u)), often without explicit bounds on the control u(t),
and often with e−ρt as the only explicit dependence on t. However, for the

10 See also Section 2 2 and chapter 9.
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infinite horizon, it may not be obvious whether a minimum, or maximum, is
reached; and the Pontryagin theory of optimal control is commonly presented
only for a finite time horizon, since some assumptions about uniform approxi-
mation over the whole time domain are involved. For an infinite horizon, some
further restrictions are required for validity. The present discussion assumes
limiting behaviour as t → ∞, which ensures that the infinite-horizon problem
is closely approximated by a problem with finite horizon T. Consequently, any
weight attached to the distant future must be expressed by a separate term in
the objective, as e.g. in the Chichilnisky model.

Assume that a minimum is reached, at (x∗(t), u∗(t)). The discount factor
e−ρt is needed, so that F (x, u) is finite. Following the approach in Craven
(1995), the differential equation with initial condition is expressed in abstract
form as Dx = M(x, u); the Hamiltonian is:

h(x(t), u(t), t, λ(t) := e−ρtf(x(t), u(t), t) + λ(t)m(x(t), u(t), t),

and the integral of the Hamiltonian equals H(x, u, θ) := F (x, u) + θM(x, u),
where θ is a Lagrange multiplier vector, and λ(t) is a function representing θ.

Assume that x∗(t), u∗(t), and λ ∗ (t) (from the adjoint equation below)
tend to limits as t → ∞ , with λ∗ (t) = O(e−βt) as t → ∞; f(., ., .) and m(., ., .)
are twice differentiable functions, such that the second derivatives:

fxxff (x(t), u(t), t),mxx(x(t), u(t), t), fxuff (x(t), u(t), t),mxu(x(t), u(t), t)

are bounded in t, whenever (x(t), u(t)) are near to (x∗(t), u∗(t)).
Note that an oscillatory optimum control is thus excluded; and the expo-

nential decay terms mean that the infinite horizon is closely approximated by
problem over (0, T), for some suitable finite T.

The steps in the proof, based on (Craven, 1995) are as follows; only the
significant changes for an infinite horizon need be detailed.

(a) Obtain first-order necessary conditions.

(b) From (a), deduce the adjoint differential equation:

−λ̇(t) = (∂/∂x)h(x(t), u(t), t, λ(t)) , λ(t) → 0 as t → ∞.

Here λ(t) is assumed to represent θ, subject to verification that the differential
equation obtained is solvable; the calculation using integration by parts is valid,
under the assumptions on limits as t → ∞.

(c) A linear approximation:

H(x, u, θ) − H(x∗, u, θ) = HxH (x∗, u∗, θ∗)(x − x∗) + o(‖u − u∗‖)
holds, given the bounded second derivatives, noting that a term e−ρt is present
in FxFF , and e−βt in θMxMM ; here ‖u − u∗‖ =

∫ ∞
0

∫∫ |u(t) − u∗(t)|dt. The quasimin
property follows:
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H(x, u∗, θ) − H(x∗, u∗, θ) ≥ o(‖u − u∗‖).

(d) Assume that control constraints, if present, are a constraint on u(t)
for each time separately. If h(x∗(t), . , t, λ ∗ (t)) is not minimized at u∗(t)
(possibly except for a set E of t for which

∫
E

∫∫
dt = 0), then a standard proof

(not depending on the domain of t) shows that the quasimin is contradicted.
Suppose now that an endpoint term limT→∞v(x(T )) is added to the ob-

jective function. This has the effect of adding v(x(t))δ(t−T ) to f, then letting
T → ∞. In consequence, the boundary condition for the adjoint equation be-
comes:

λ(t) − v′(x(t)) = O(e−βt) as t → ∞.

If x(t) tends to a limit as t → ∞ (which implicitly assumes that f and m do not
explicitly contain t), and v(.) is continuous, then the limit of v(x(T )) exists.
This remark applies to the Chichilnisky criterion in Section 6.4.2.

6.4. Approaches that might be computed

6.4.1. Computing for a large time horizon
As discussed in Section 3.1, it is appropriate to discuss optimization models

with parameters − required to take account of the several conflicting objectives
that exist − and the question of what happens to the optima when these
parameters are varied provides a further stage of exploration. However, the
model must be somewhat recast, in order that a computer package can handle
it, whether RIOTS 95 (Schwarz, 1996) or any other. Assuming that the limits
as t → ∞ exist, a nonlinear time transformation t = ψ(τ) may be applied, so
as to compress the time scale for large times t (when little is changing). A
computation requires a discretization of the time interval into finitely many
subintervals, and such a transformation considerably reduces the number of
subintervals required (see Craven, 1995).

6.4.2. The Chichilnisky criterion with a long time horizon
If a discount factor e−ρt is retained, then the Chichilnisky model may be

approximated, for some large T, by:

MAXα

∫ T

0

∫∫
e−ρtU(c(t), k(t))dt + αU(c(T ), k(T ))ρ−1e−ρT

+(1 − α)V (k(T ))

subject to k(0) = k0; k̇(t) = m(c(t),

k(t)), cU ≥ c(t) ≤ cL(0 ≤ t ≤ T ); k(T ) ≥ kT .
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The second term is an estimate of the contribution for times beyond T; a
similar estimate is the salvage value cited in (Chakravarty, 1969). The following
assumptions are made:

• the utility U(., .) and the dynamics function m(., .) have no explicit
dependence on time t;

• T is assumed large enough that c(T ) and k(T ) approximate their limits
as → ∞ ;

• the term in e−ρt estimates the integral from T to ∞;

• the lower bound cL on consumption is assumed constant (achievable by
scaling c(t);

• the upper bound cU is included to bound the region where an algorithm
must search;

• the utility V applicable at time T may, but need not, be the same as U .

Note that the utility V depends on the final capital k(T ), but not on the
final consumption u(T ), since u(T ) is not of significance, but rather the whole
curve of consumption versus time.

The constraint k(∞) ≥ kT may be replaced by a penalty term:

1
2
µ[k(∞) − kT + µ−1ε]2+ ,

where µ is a positive parameter, and [ ]+ replaces negative components by zero;
ε ≥ 0 will be adjusted, so as to fulfil the constraint exactly. According to the
theory of augmented Lagrangians (see the discussion in Craven, 1978), ε relates
to a Lagrange multiplier. If c(t) does not meet its bounds, then the inactive
constraints on c(.) can be omitted. According to the Pontryagin theory, with
some regularity assumptions because of the infinite domain (notably that the
limits exist), an optimum satisfies the differential equation for k̇(t), the adjoint
differential equation:

−λ̇(t) = −e−ρtUkU (c(t), k(t)) + λ(t)mk (c(t), k(t), t),

λ(∞) = µ[k(∞) − kT + µ−1ε]+ − (1 − A)VkVV (k(∞);

and (from the Pontryagin principle):

−αe−ρtUcUU (c(t), k(t)) + λ(t)mk(c(t), k(t), t)(0 ≤ t < T ).

The adjoint differential equation is required for computing the gradient of the
objective.

When T is large, and the only explicit time dependence is the discount
factor, it may be useful to transform the time scale nonlinearly by:

t = ψ(τ) := −ρ−1log(1 − βτ), where β = 1 − e−ρT ;
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this maps τ ∈ [0,1] to t ∈ [0, T]; dt/dτ = (β/ρ)(1−βτ)−1 = (β/ρ)eρt. Denoting
u(τ) := c(ψ(τ)) and x(t) := k(ψ(τ)), the problem is transformed to:

MAXJ(u) := α

∫ 1

0

∫∫
U(u(τ), x(τ))dτ + αU(u(1), x(1))ρ−1e−ρT

+(1 − α)V (u(1), x(1))

= α

∫ 1[

0

∫∫
U(u(τ), x(τ)) + δ(τ − 1)W (u(τ), x(τ)]dτ

where W (u(τ), x(τ) := U(u(τ), x(τ)ρ−1e−ρT + α−1(1 − α)V (x(τ))

subject to: x(0) = k0;

ẋ(τ) = (β/ρ)m(u(τ), x(τ), ψ(τ))/(1 − βτ)(0 ≤ t ≤ T ),

cU ≥ u(t) ≥ cL(0 ≤ τ ≤ 1); x(1) ≥ kT .

Here ẋ(τ) means (d/dτ)x(τ).
The adjoint differential equation is then:

−λ̇(t) = −αUxUU (u(τ).x(τ)) + (β/ρ)mx(u(τ), x(τ), ψ(τ))/(1 − βτ);

λ(1) = −(α/ρ)e−ρT UxUU (u(1), x(1)) − (1 − α)VxVV (u(1), x(1)) + µ[k(T ) − kT

+µ−1ε]+

The gradient of the objective is then computed (when z(1) = 0) from :

J ′(u)z = −α

∫ T

0

∫∫
[UuUU (x(τ), u(τ)) + (β/ρ)λ(τ)mu(u(τ), x(τ))/(1 − βτ)]z(τ)dτ

6.4.3. Chichilnisky model compared with penalty term model
In the approximated Chichilnisky model considered in Section 6.4.2, the

second term with e−ρT estimates
∫ ∞

T

∫∫
e−ρt U(c(t), k(t))dt, in the case when

c(T ) and k(T ) are close to limiting values. (For the Kendrick-Taylor model
discussed below in Section 5, there are no limiting values.) The comparison for
a discount rate ρ = 0.03 and horizon T = 20 years):

∫ T

0

∫∫
e−ρtdt = ρ−1(1 − e−ρT ) ≈ 0.55 with e−ρT ≈ 15.04

shows that the term is unimportant, if U and V are of comparable size.
Neglecting it, the objective reduces to:

α{
∫ T

0

∫∫
e−ρtU(c(t), k(t))dt + α−1(1 − α)V (k(T ))}.
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If k(.) has only one component, then a reasonable choice for V (k(T )) would be:

−ξ[k(T ) − k#]2 or − ξ[k(T ) − k∗]2+ ,

where µ is a suitable positive parameter. (Of course, another form than
quadratic could be chosen; the quadratic is convenient to compute). The two
versions describe attainment of a target, or perhaps exceeding it. Then the
objective becomes:

α{
∫ T

0

∫∫
e−ρtU(c(t), k(t))dt +

1
2
µ[k(T ) − k#]2},

with µ = 2ξα−1)1 − α), and perhaps [ ] replaced by [ ]+.
This may be compared with adding to the integral a penalty term, to

represent an endpoint constraint k(T ) = kT (or k(T ) ≥ kT ). The penalty term
has the same form, with k* differing a little from kT , the difference depending
on µ and on a Lagrange multiplier in the optimization. In fact, the SCOM
package handles an endpoint constraint in exactly this way.

It follows that the modified Chichilnisky model may be studied as a para-
metric problem, with µ and k* as parameters.

6.4.4. Pareto optimum and intergenerational equity
Intergenerational equity (and also sustainability) can be interpreted in

terms of Pareto optimality. Consider now two objective functions, say:

F 1(x, u) :=
∫ T

0

∫∫
e−ρtf(x(t), u(t))dt and F 2)x, u) := Φ(x(T ))

to describe, in some sense, utilities for the present generation and a future
generation, where x(t) denotes rate of consumption, and k(t) denotes capital
(both may be vectors). Assume that these functions are constrained by a dy-
namic equation for (d/dt)x(t), and bounds on u(t). Suppose that (x∗, u∗) is a
Pareto maximum point of this model. Then (assuming some regularity of the
constraint system), Karush-Kuhn-Tucker necessary conditions, or equivalent
Pontryagin conditions, hold for (x∗, u∗) exactly when these conditions hold for
a single objective function τ1F

1(.) + τ2ττ F 2(.) , for some nonnegative multipli-
ers τ1, τ2ττ , not both zero. Different points in the (large) set of Pareto optima
correspond to different choices of the multipliers. For the two-objective prob-
lem, the costate becomes a matrix function Λ(t), and the Pontryagin maximum
principle considers a Pareto maximum of a vector Hamiltonian:

(F 1(x, u), F 2(x, u)) + Λ(t)(RHS of dynamic equation )

with respect to u(t) (see Craven, 1999).
This may be compared with the parametric version of Chichilnisky’s cri-

terion:

αF 1(x, u) + (1 − α)F 2(x, u) = α[F 1(x, u) + βF 2(x, u)], β = α−1(1 − α).
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Each choice of α, or β, gives a different Pareto maximum point.

6.4.5. Computing with a modified discount factor
If the discount factor is modified to e−ρt + κ , then integration over an

infinite time domain will give infinite values. Instead, the following model may
be considered:

MAX α

∫ T

0

∫∫
[e−ρt + κ]U(c(t), k(t))dt + (1 − α)V (k(T ))

subject to k(0) = k0; k̇(t) = m(c(t), k(t), t), cU ≥ c(t) ≥ cL(0 ≤ t ≤ T );k(T ) ≥
kT .

Here, κ > 0, and some finite time horizon T must replace ∞. With the
same time transformation as above (for computation), the transformed problem
becomes:

MAX α
∫ 1

0

∫∫
(1 + κ(1 − βτ)−1)U(u(τ), x(τ))dτ + (1 − α)V (u(1), x(1))

= α

∫ 1

0

∫∫
(1 + κ(1 − βτ)−1)U(u(τ), x(τ)) + δ(τ − 1)α−1(1 − α)V (x(τ))]dτ

subject to x(0) = k0; ẋ(τ) = (β/ρ)m(u(τ), x(τ), ψ(τ))/(1 − βτ)(0 ≤ τ ≤ 1).

6.5. Computation of the Kendrick-Taylor model

6.5.1. The Kendrick-Taylor model
The Kendrick-Taylor model for economic growth (Kendrick and Taylor,

1971), which is a Ramsey type (Ramsey, 1928) model, has the form:

MAXc(.),k(.)

∫
T
0 ae−ρtc(t)θ dt subject to

k(0) = k0, k̇(t) = ζeδtk(t)β − σk(t) − c(t), k(T ) = kT .

Here c(t) denotes consumption, and k(t) denotes capital (including man-made,
natural, and environmental, and human). Some computational results for this
model are given in Craven and Islam (2001) and Islam and Craven (2001).

Since the model includes a growth factor eδt , it may be appropriate (see
Chakravarty, 1969) to choose the terminal value kT to increase exponentially
with T . If k(t) = k0e

ωt and c(t) = c0e
ωt , then the dynamic equation is satisfied

only when ω = δ/(1−β) and k0ω = kβ
0 −σk0−c0 . Then the objective function

remains finite as T → ∞ when ρ > θω, thus when ρ > θδ/(1−β). (An analogous
criterion is given by Chakravarty (1969, page 99) for a different model, only
partly described.) Since the growth of c(t) is dominated by the discount factor,
the optimal objective tends to a limit as T → ∞. So here an infinite-horizon
model may be approximated by a finite-horizon model; but it does not describe
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sustainable growth over an infinite horizon, since the exogenous growth factor
eδtcan only be sustained for a limited time.

6.5.2. Extending the Kendrick-Taylor model to include a long time
horizon. 11

This model is now modified to use the modified discount factor from section
6.3.2. This gives the formulation:

MAXc(.),k(.)

∫ T

0

∫∫
a[e−ρt + κ]c(t)θ dt subject to

k(0) = k0, k̇(t) = ζeδtk(t)β − σk(t) − c(t), k(T ) = kT .

This formulation differs from the model in Kendrick-Taylor (1971) only by the
inclusion of the positive parameter κ . In order to compare with previous
results, the following numerical values are considered:

a = 10, T = 10, ρ = 0.03, θ = 0.1, f10k0 = 15.0, ζ = 0.842,

β = 0.6, σ = 0.05, kT = 24.7.

However, larger values of the horizon T become relevant. The parameter κ
depends on the relative weighting to be given to the longer-term in relation to
the short-term. Since e−ρt is small when t ≥ 2/ρ, the ratio of the two could be
taken as: ∫ T

2

∫∫
/ρ

κdt /
∫ 2/ρ

0

∫∫
e−ρτdt ≈ κρT.

A possible value for this parameter would be 0.5. Otherwise:

∫ T

0

∫∫
κdt =

∫ T

0

∫∫
e−ρtdt

when κ ≈ 0.86.
In a more general model, c(t) and k(t) would take vector values; however,

single components for c(t) and k(t) will be considered here.
With the modified discount factor e−ρt + κ , integration over an infinite

time domain will give infinite values. So the horizon T must here be finite
(though it may be large). An alternative to the terminal constraint k(T ) = kT

is a terminal objective term, giving an objective function:

∫ T

0

∫∫
a[e−ρt + κ]c(t)θdt + ϕ(c(T )).

11 See also section 2.2 and chapter 9.
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With the same time transformation as in section 6.4.2, and writing (̃τ) = c(t)
and k̃(τ) = k(t), the objective function and dynamic equation become:

(β/τ)
∫ 1

0

∫∫
a[1 + κ/(1 − βτ)] (̃τ)θdτ + ϕ( (̃1))

k̃(0) = k0,
˙̃
k(τ) = (β/ρ)[ζeδtk̃(τ)β − σk̃(t) − c̃(t)]/(1 − βτ).

6.5.3. Chichilnisky variant of Kendrick-Taylor
The Chichilnisky formulation does not directly apply to the Kendrick-

Taylor model, because limt→∞x(t) is not available. However, the modified
version of Section 4.2, with e−ρt discount and some large horizon T, may be
considered for the Kendrick-Taylor model. If the endpoint constraint is re-
placed by a penalty cost V (x(T )) := [x(T ) − kT ]2, then the nonlinear time
transformation leads to:

U(u(τ), x(ρ)) = u(τ)θ;W (u(τ), x(τ)) = u(τ)θρ−1e−ρT

+α−1(1 − α)[x(t) − kT ]2;

x(0) = k0, ẋ(τ) = (β/ρ)[ζ(1 − βτ)−δ/ρx(τ)β − σx(τ) − u(τ)]/(1 − βτ).

However, because of the growth term eδt in the dynamic equation, there is no
infinite-horizon version of the Kendrick-Taylor model, and the time transfor-
mation was not obviously useful here. Computations omitting this growth term
may be of interest - see Section 6.6.4.

6.5.4. Transformation of the Kendrick-Taylor model
In view of some numerical instability encountered when computing the

Kendrick-Taylor model for time horizons T > 10, the following transformation
(see Islam and Craven, 1995) of the model to an equivalent, more computable,
form may be used. Set q(t) = eσtk(t) and θ = σ + δ − βσ; then:

q̇(t) = eσt(ζeδtk(t)β − σk(t) − u(t) + σk(t));

ẋ(t) = γζeθt(x(t))(β+γ−1)/γ − γu(t),

where u(t) = eσtq(t)γ−1c(t) = eσt(x(t))(γ−1)/γc(t).

Choosing γ = 1 − β, the problem in the new functions x(t) and u(t) becomes:

MIN
∫ T

0

∫∫
ae−νtu(t)εx(t)µdt subject to:

ẋ(t) = γζeθt − γu(t) , x(0) = kγ
0 , x(T ) = kγ

T ,
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where ν = ρ + εσ and µ = ε(1 − γ)/γ.The dynamic equation now does not
involve fractional powers. Note that this transformation does not preserve any
bounds on c(t).

Using the data from section 6.5.2, with k()) = 15.0,

γ = 0.4, ν = 0.035, µ = 0.15, x(0) = 2.9542, θ = 0.04

If T = 10, k(0) = 15.0, k(T ) = 24.7, then x(T ) = 4.4049. If T = 20 then k(T )
may be considered as 15.0 + 2(24.7 − 15 − 0) = 34.4, then x(T ) = 6.1424.

6.6. Computer packages and results of computation of models

6.6.1. Packages used
Optimal solutions for these sustainable growth models may be computed,

using appropriate computer packages for optimal control. The packages used
were SCOM (Craven and Islam, 2001), and also RIOTS 95 (Schwartz et al.,
1997), to validate the SCOM results by comparison with another package. In
the SCOM package, the control function is approximated by a step-function,
constant on each of N subintervals of the time period, with e.g. N = 20; this is
known (Craven, 1995) to be an adequate approximation. Function values and
gradients are computed, by solving differential equations; then the MATLAB
constr package for mathematical programming is used to compute the optimum.
For the models considered here, the gradients given by the theory were not
useful (see discussion in Section 8), and finite-difference approximations were
provided by constr. Another suitable package for optimal control is OCIM (see
Craven, de Haas and Wettenhall, 1998).

For analysing the results of all model computations, we have followed the
common practice in economic growth economics, where the arbitrary effects of
terminal constraints are avoided by ignoring the results of the last time periods,
thus from when the variables start to tend towards the terminal constraints (see
for example Land Economics Journal, 1997)

6.6.2. Results: comparison of the basic model solution with results
for modified discount factor.

The following computations were done with various modifications of the
Kendrick-Taylor model.

Results computed with the SCOM package were obtained for the discount
factor e−ρt + κ for capital (upper graph of Figure 1) and consumption (lower
graph), for a ten-year time horizon, for the three cases:

(a) κ = 0.00 Objective = 98.1 ;
(b) κ = 0.86 Objective = 196.0 ; and
(c) κ = 1.72 Objective = 243.9.
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Fig. 1a

Fig. 1b

Within each graph, (a) is the lowest curve, and (c) is the highest. Note that
the objective values are not comparable, since the different discount factors
measure utility on different scales.

In order to assess the accuracy of these computations, Fig. 2 compares the
computed consumptions computed by the SCOM and the RIOTS 95 packages.
The following values were obtained for for objective functions:

κ = .0 0.1 0.8639 1.7278
RIOTS 95 calculation 98.08 109.46 196.41 294.74
SCOM calculation 98.08 195.96 293.85
The results for the two packages are in substantial agreement. As remarked

in Craven and Islam (2001a), the optimal curve of capital is insensitive to small
rapid fluctuations in the consumption (the control function), so a step-function
approximation to the control is sufficient. Increasing the parameter kappa in
the modified discount factor, so as to give more weight to later times, decreases
the consumption for earlier times and increases it for later times, and also
increases the rate of capital growth.
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Fig. 2

6.6.3. Results: Effect of increasing the horizon T12

Figures 3 and 4, computed by SCOM using the transformation of the
Kendrick-Taylor model from section 5.4, show capital and consumption for
a horizon of T increases from 10 to 20 years, and with the final capital value
k(T ) increased from k(10) = 24.7 to k(20) = 34.4 (obtained from k(0)+2(24.7−
k(0)). For comparison, results from RIOTS 95 are also plotted.

Consider the numerical values:

a = 10, ρ = 0.03, ε = 0.1, ζ = 0.842, δ = 0.02,

σ = 0.05, k0 = 15, 0, T = 20, kT = 34.4.

Then:

γ = 0.4, ν = 0.035, µ = 0.15, x(0) = 2.9542, x(T ) = 4.1174 , θ = 0.04 .

12 See also section 5.7.
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Fig. 3

Fig. 4
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Figures 5 and 6 (computed with RIOTS 95) show the result of increasing
the parameter κ in the modified discount factor. As with a ten year horizon, the
consumption is decreased for earlier times and increased for later times. The
capital growth is increased, then brought down to the target of k(20) = 34.4 .

6.6.4. Results: Effect of omitting the growth term in the dynamic
equation.

The result of making δ = 0 in the growth term eδt is shown in Figures 7
and 8.

As a check on accuracy, Figures 9 and 10 show the result of increasing the
number N of subdivisions from 20 to 40 (for the case κ = 0, T = 20, k(T ) =
34.4, growth term present). The calculations agree closely.

Fig. 5

6.6.5. Results: Parametric approach13

Figures 11 and 12 show the effect of changing the parameter k(T ), the
specified capital at the final time T = 20 of the calculation. The discount
parameter κ was kept as 0. The final capital k(T ) could be brought up to 55,
with some loss in consumption.

The effect of changing the exponent β in the dynamic equation was studied
in Islam and Craven (2001a).

13 For parametric approach, see also section 6.4.2.
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Fig. 6

Fig. 7
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Fig. 8

Fig. 9
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Fig. 10

Fig. 11
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Fig. 12

Fig. 13
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Fig. 14

6.6.6. Results: the modified Chichilnisky approach
The modified Chichilnisky approach of Sections 4.2 and 4.3, with a large but
finite horizon T, may be applied to the Kendrick-Taylor model. As discussed
in 4.3, the second term of the objective may be neglected. So this modified
Chichilnisky problem may be studied as a parametric problem, with µ and k*
as parameters. Figures 13 and 14 show consumption and capital, computed
by SCOM for the Kendrick-Taylor model with horizon T = 20 years (and the
discount parameter κ = 0), with the endpoint term included, and the target
k(T ) = 34.4. The three cases are:

µ = 10 (lower graph:); µ = 0.1 (middle graph); µ = 0.02 (upper graph).

The case µ = 10 was used previously in SCOM to reach the target k(20) = 34.4
accurately.

Clearly, decreased weight for the endpoint term reduces capital, and in-
creases consumption.

6.7. Existence, uniqueness and global optimality
In an optimal control model for an economic growth problem, there is

usually no way to prove existence in advance. The following procedure deals
with this question.
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Assuming (for the moment) that an optimum exists, one may first con-
struct Pontryagin necessary conditions, then find a solution to these necessary
conditions. This solution is not always an optimum; however it is an optimum
if the problem satisfies convex, or invex, conditions (See Craven, 1995). The
Kendrick-Taylor model is certainly not convex, but does satisfy invex conditions
(see Islam & Craven, 2001). Therefore the solution obtained to the Pontryagin
conditions is indeed an optimum.

6.8. Conclusions
Several social choice models of sustainability in optimal growth models

are described, with computational methods. Two optimal control packages
were used, Schwarz’s RIOTS 95 and Craven’s SCOM, to test and validate the
results. The model results have a turnpike property, as shown in (Islam and
Craven, 2001). The computed results show time paths of economic variables
which show relatively higher values of consumption or welfare during the later
part of the planning horizon. The results for the two computing packages were
in good agreement.

Computations with versions of the Kendrick-Taylor growth model pre-
sented some difficulties, because of implicit constraints in the model (see Craven
and Islam, 2001). An optimization calculation must compare various consump-
tion functions, and some produce negative values for capital, so an optimum is
not reached. This difficulty arose for a 20-year horizon, and was avoided with
the RIOTS 95 package by computing using finite differences for gradients, and
with SCOM by a mathematical transformation of the model to an equivalent
and more stable form.

From a comparison of the original form of the Kendrick-Taylor model with
other, more sustainable, forms, there are some implications as to sustainable
growth. Effects of changing the discount factor to give more weight to the dis-
tant future, of omitting the exogenous growth factor in the dynamic equation,
and of varying the target for endpoint capital, are presented in the graphs.
While the Chichilnisky model is not directly computable because it involves
an infinite time horizon, a modified version with a large finite horizon can be
computed. This version is equivalent to attaching a penalty cost when a capital
target is not reached. The solutions so obtained are Pareto maxima of a two-
objective problem, considering both a short-term objective and a long-term
objective.

The computational experiments in this chapter, using several different
models for optimal growth, show that sustainability of growth and social wel-
fare can conveniently be modelled empirically for policy analysis, and which
specify growth paths that are sustainable and ensure intergenerational equity,
altruism and fairness.
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6.9 User function programs for the transformed Kendrick-Taylor
model for sustainable growth

% (Gradients not supplied)
function ff=yj(t,it,z,yin,hs,um,xm)

% Integrand 20e-.75tu(t)0.1x(t)0.15
ff=-20.0*exp(-0.705*t)*(um(floor(it),1)0̂.1)*(iqq(xm,hs,t)0̂.15);
function ff=yx(t,it,z,yin,hs,um,xm)

% (d/dt)x(t) = 20(0.842e0.8t - 0.4u(t)
ff=20*(0.842*0.4*exp(0.8*t) - 0.4*um(floor(it),1));
function ff=yf(xf,um,xm) % Penalty term 10(x(1) - 6.124)∧2
ff=10*(xf-6.1424)∧2;
function gg=yc(ii,hs,um,xm)
gg=0;



Chapter 7
Modelling and Computing a

Stochastic Growth Model
7.1. Introduction

An economy progresses in an environment that is characterised by uncer-
tain static and dynamic forces and processes. Uncertain factors which underlie
the dynamic growth processes correspond to market prices, ecosystem, tech-
nical progress, population growth, fluctuations in output, exports, imports,
exchange rates, and economic and social factors. Social choice in an uncer-
tain environment is more problematic and controversial than in a certain en-
vironment (Islam, 2001). Models which incorporate these uncertain factors
in economic growth and development are useful for understanding uncertain
processes of economic dynamics. A suitably specified stochastic model can be
used to discuss social choice in uncertain conditions. This requires specifica-
tion of a decision criterion, and an appropriate mathematical description of the
uncertainty. This is feasible and plausible with the assumptions of new3 wel-
fare economics. An earlier work on modeling stochastic growth is by Haavelmo
(1954). Other contributions include Aoki (1989), Kendrick (1981), Tintner and
Sengupta (1969), and Sengupta and Fanchon (1997). Taylor and Uhlig (1990)
provide an up to date exposition of methods for modeling non-linear stochastic
optimal growth economics, applied to a particular computational model. Other
references related to stochastic optimization in economics include Arrow (1951,
1971), Islam (1999, 2001a), Kelly and Kolstad (1997), Radner (1982), Tapiero
(1998).

Economic models including stochastic elements have been studied either
(a) in continuous time, or (b) in discrete time. For continuous time, the stochas-
tic elements are usually described by a Wiener process, for which the stochas-
tic contributions from nonoverlapping time intervals are independent, however
short the intervals. This may not happen in the real world. A discrete-time
model, say with time intervals δ > 0, avoids this assumption, but may require
extensive calculations of probability distributions, e.g. for a Markov chain.
However, if the stochastic elements are not too large, it may be enough to
compute the mean and variance, instead of the whole distributions.

A continuous-time deterministic model for economic growth and develop-
ment may be approximated by a discrete-time model, by discretizing the time.
If small stochastic terms are then added to this discrete-time model, dynamic
(difference) equations may be obtained for the mean and variance. These lead,
in turn, to continuous-time dynamic equations for mean and variance. They
relate to the original model, with small stochastic terms added, but now only
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assuming independence for contributions over non-overlapping time intervals
of length δ.

To explore this approach, a small stochastic term is added to the classi-
cal (deterministic) Kendrick-Taylor model for economic growth (Kendrick and
Taylor, 1971; Kendrick, 1981), considered as an optimal control model for
computation (see Islam and Craven, 2000). Other classical growth models (see
Chakravarty, 1969; Fox, Sengupta and Thorbecke, 1973) could be similarly
modified by adding a stochastic element. The computations were done using
the RIOTS 95 package (see Schwartz, Polak and Chen, 1997), using MATLAB
(see MATLAB, 1997). Other optimal control packages that might have been
used include SCOM (Islam and Craven, 2000), and MISER3 (Jennings, Fisher,
Teo and Goh, 1991).

7.2. Modelling Stochastic Growth
Consider a dynamic model in continuous time, described by:

x(0) = x0, ẋ(t) = m(x(t), u(t), t) + θ(t) (0 ≤ t ≤ T ),

with a stochastic term θ(t). Assume only that the stochastic contributions for
successive time intervals (jδ, (j + 1)δ), j = 1, 2, . . . are independent. Here x(·)
is the state function, whose components may include capital, and terms de-
scribing resource utilization and environmental factors, and u(·) is the control
function, which may describe consumption. Note that θ(·) is not assumed to be
a Wiener process. Also, the stochastic terms can, in practice, be only known
approximately; in particular, the distribution is never known precisely, and usu-
ally only an approximate variance. So it may suffice to calculate the stochastic
term rather approximately, while the expectation (= mean) is calculated more
precisely.

Now discretize the time, with time intervals δ, to obtain an approximating
discrete-time process for z(j) := x(δj and v(j) := v(δj as:

z(j + 1) − z(j) = m(z(j), v(j), δj) + ξ(j),

where the stochastic terms ξ(j) are now assumed independent. If the ξ(j) are
not too large, the mean and variance of z(j) can be sufficiently described by
difference equations. For convenient computation, the difference equations may
be approximated by differential equations in continuous time t. The result is
a good approximation to the mean of x(t), and a useful approximation to the
variance of x(t), for the model described.

Other authors have considered approximating such models by discretizing
in various ways the state space or the time. Taylor and Uhlig (1990) have
surveyed a number of such approaches for a discrete-time model of the form:

xt = ρxt−1 + εt,
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where the random variables εt are uncorrelated normal with mean zero and
constant variance. The approaches include a value-function grid, where time
and the state variables are discretized, quadrature value-function grid, which
differs by using a quadrature rule to discretize the state space, approximation
by linear-quadratic control problems, a method involving first-order conditions
and conditional expectations, and an Euler-equation grid. Haavelmo (1964) (see
also Fox, Sengupta and Thorbecke (1973)) has also considered the model (3),
and has given conditions for the variance of the state variable to tend to infinity,
or to tend to a limiting value. These are special cases of the discrete-time
stochastic model of Amir (1997), where the distribution of xt is described by a
transition probability, satisfying certain convex or nondecreasing requirements.
The optimum is described by a functional equation of dynamic programming
type. If the contributions εt are assumed independent, then the process is
Markovian, and could be described by a probability distribution for each time
t. For the case where the stochastic contributions are relatively small compared
to the deterministic terms, these distributions could be approximated, at each
time t, by computing only their mean and variance.

7.3. Calculating mean and variance
Consider the Kendrick-Taylor dynamic model:

x(0) = x0, ẋ(t) = 0.842e.02tx(t)0.6 − u(t) − 0.05x(t) ≡ ψ(x(t), u(t))

over time horizon t ∈ [0, T ], with T = 10 and x0 = 15.0 Subdivide [0, T ] into
N equal subintervals, say with N = 20. A discrete-time approximation is given
by:

x((j + 1)T/N) ≈ x(jT/N) + ψ(x(jT/N), u(jT/N)) ≡ ϕ(x(jT/N), u(jT/N))

in which u(jT/N) means u((jT/N) + 0) if u has a jump at jT/N. Consider
then the model:

x((j + 1)T/N) = ϕ(x(jT/N), u(jT/N)) + y(j),

where y(j) is a stochastic variable with mean 0 and variance v, with y(j)
independent of x(j), and y(1), y(2), . . . distributed independently.

For given u(.), approximate φ(.) by k +ax(.)+ bx(.)2 over a suitable range
of x(.), say [15, 25] for the numbers used in (1). Note that a and b do not
depend on u(.). Suitable values are a = 0.2541 and b = −0.0018 .Then the
expectation x1(.) and variance x2(.) of x(.) are described by:

x1((j + 1)T/N) = ϕ(x1(jT/N) + bx2(jT/N);

x2((j + 1)T/N) ≈ (a2 + 4abx1(jT/N)x2(jT/N) + v.
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The equation for expectation is approximate, but may be sufficiently accurate
when the stochastic terms are small. It is based on the following calculation.
If X and Y are stochastic variables, and Z = k + aX + bX2, then Z has
expectation and variance given by :

EZ = k + aEX + b(EX)2 + bvarX;

varZ = varY + (a2 + 5b2(EX)2 + 4abEX))varX

+(4b2EX + 2ab)E(X3) + b2var(X2).

Then the equation for ẋ2(t) is obtained by omitting some small terms, assuming
b is not too large. Note that, as j increases, the variance x2(.) is increased by
the successive addition of terms v = varY , and also decreased because the
power 0.6, reflected in the negative coefficient b, reduces the contribution of
varx(t)

These difference equations are now replaced by differential equations (in
continuous time):

ẋ(t) = ψ(x1(t), u(t)) + (N/T )bx2(t);

ẋ2(t) = (Nv/T ) + (N/T )(a2 − 1 + 4abx1(t))x2(t).

The rough approximation used here only affects the stochastic terms, whereas
the calculation of expectation is more precise. The objective function to be
maximized is:

J(u) =
∫ 10

0

∫∫
10.0(e−0.03t + κ)u(t)0.1 dt,

where κ is zero for the original Kendrick-Taylor model, and positive if greater
weight is given to the more distant future. The state function x(.) does not
enter this objective function, so it is not necessary to consider its expectation.

This optimal stochastic growth model requires specification of a number of
parameters, including the rate of time discounting, the parameter κ describing
the weight to be given to the more distant future, the time horizon (taken here
as T = 10 years), the endpoint condition for the capital x(T ), and the variance
parameter v.

7.4. Computed results for stochastic growth
The computed results demonstrate the intertemporal optimal allocation

of resources in uncertain conditions (stochastic social choice). The following
diagrams show the expected capital (Figure 1), the variance of the capital
(Figure 2), and the consumption (Figure 3), as functions of time, with different
values of the parameter v, describing the variance of the stochastic term added
to the dynamic equation, and also when the endpoint constraint on the capital
at the end time T is changed. Here κ = 0.0, as in the original Kendrick-
Taylor model. Figures 4,5,6 show comparable results when κ = 0.8639, a value
considered to describe greater weight given to times after the horizon T = 10.
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When the variance parameter v is changed, the expected capital will
change slightly, but this change is too small to show on the graphs. Com-
parison of Figure 1 with Figure 4 shows, as expected, that the capital rises
higher when a greater weight is given to the future. The variance of the capital
(Figure 2) increases considerably as v increases. For later times, the variance is
strongly influenced by the endpoint condition imposed on the expected capital
x(T ) at time T . Thus, a turnpike effect is not apparent on this time scale;
it may appear with a larger time horizon. The effect of endpoint is greater
when the future has more weight (Figure 5). When the endpoint condition
is x(T ) = 45, the computed variance in Fig. 5 runs slightly negative; the
approximation in the model is not quite adequate here.

The graphs of consumption (Figure 3 and Figure 6) show very little effect
of the variance parameter v, within the range considered. As expected, the
consumption decreases somewhat when the endpoint condition x(T ) increases.
When the future has more weight (Figure 6), the consumption is generally
higher at later times.

Figures 7,8 and 9 show what happens to capital, variance of capital, and
consumption when the variance parameter v is increased over a greater range.
Such an increase (from v = 0, thus the deterministic model, up to v = 40)
increases the expected capital (Figure 7) a little (except near the horizon T = 10
years where the expected capital is fixed by an endpoint condition), increases
the variance of capital considerably (Fig. 8), and decreases the consumption
a little (Figure 9). The changes are continuous as the variance parameter v
increases up from zero. The growth of capital may be visualized by a band:

Expected Capital ± 2
√

(Variance of Capital),

containing about 95% of the probability distribution, instead of just a curve.
The objective function for this model happens to depend on the control

function (consumption), but not on the state function (capital); so there is no
need to consider here the expectation of the capital.

The results are consistent with the consensus in the literature (see Smul-
ders, 1994) on the effects of uncertainty on economic growth.

Over the range of parameters considered here, the consumption and the
expectation of capital are not greatly influenced by stochastic terms. The
expected capital, its variance, and consumption change continuously as the
small stochastic term increases from zero; the graphs include the deterministic
case (no added stochastic term), for comparison. The expectation of capital
grows along a unique stable path. For the tine horizon (10 years) considered,
the endpoint condition on the expectation of capital has a strong effect.

In Islam and Craven (2003c), the existence and global uniqueness of the
optimum for the Kendrick-Taylor model were established, using a mathematical
transformation that converts the problem to an equivalent convex formulation
(see also Islam, 1999). This transformation does not extend to the stochastic
model studied here. However, the (deterministic) Kendrick-Taylor model has a
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strictly stable optimum, and the stochastic model considered is a small pertur-
bation of the deterministic model. Hence, by Craven (1995), Theorem 4.7.1,
an optimum exists for the stochastic model. However, this is not quite enough
to prove uniqueness, though this is likely.

Fig. 1

7.5. Requirements for RIOTS 95 M-files
Compared with the usual (deterministic) Kendrick-Taylor model, the num-

ber of states is increased from 1 to 2. The M-files sys h for the right hand side
of the dynamic equation, and sys dh for its gradient, take the following forms:

xdot = [0.842 ∗ exp(0.02 ∗ t) ∗ x(1) ∧ 0.6 − u(1) − 0.05 ∗ x(1) . . .

−2.0 ∗ 0.0028 ∗ x(2); . . .

2.0 − 2.0 ∗ (0.9354 + 0.00183 ∗ x(1)) ∗ x(2)];

(Here . . . is MATLAB’s code for “continued next line”. )
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Fig. 2

Fig. 3
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Fig. 4

Fig. 5
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Fig. 6

Fig. 7
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Fig. 8

Fig. 9
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The code in sys dh (for gradients of rhs of dynamic equations) becomes:

hx = [0.842 ∗ exp(0.02 ∗ t) ∗ 0.6 ∗ x(1) ∧ (−0.4) − 0.05 − 0.0036;

. . . − 2 ∗ 0.00183 ∗ x(2) − 2 ∗ 0.00183 ∗ x(1)]; hu = [−1; 0];

Here N/T = 2.0; the bold term 2.0 is stated for v = 1, so is changed if the
variance parameter v is changed.

The RIOTS 95 M-files for this stochastic growth model are as follows:

Calling program runKstoc.m
path(path, ’c:\ riots 95’)
cd c:\ riots 95\ systems
! copy KendStoc\sys ∗.m
clear simulate
N=20;
T=10;
u0=zeros(1,N+2-1);
t=[0:20/N:20];
x0=[15.0; 0.0];
format compact
[u,x,f]=riots(x0,u0,t,0.2,15.0,[],[400,.1,1],2)

Parameters function neq = sys init(params)
if params == [],
neq = [1 2 ; 2 1 ; 8 1 ; 12 1];
else global sys params
sys params = params;
end

RHS of dynamic equations KendStoc\sys h.m
function xdot = sys h(neq,t,x,u)
global sys params
xdot = [0.842*exp(0.02*t)*x(1)∧0.6-u(1)-0.05*x(1)-2.0*0.0018*x(2) ...

8.0-2.0*(0.9354+0.00183*x(1))*x(2)];
% The term 8.0 above describes 2.0*variance parameter
% It is 0.0 for the deterministic model.
xdot = [0.842*exp(0.02*t)*x(1)∧0.6-u(1)-0.05*x(1)-2.0*0.0018*x(2) ...

0.0-2.0*(0.9354+0.00183*x(1))*x(2)];
% The next line relates to the original Kendrick model
% xdot = [0.842*x(1)∧0.6 - u(1) - 0.05*x(1)];

Endpoint Constraint KendStoc\sys g.m
function J = sys g(neq,t,x0,xf)
global sys params
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F NUM = neq(5);
if F NUM == 1
J = 0;
elseif F NUM == 2
J = xf(1) - 40.0;
end

Integrand of Objective Function KendStoc\sys l.m
function z = sys l(neq,t,x,u)
global sys params
F NUM = neq(5);
if F NUM == 1
z = -10.0*(exp(-0.03*t)+0.86394)*u(1)0̂.1;

% The parameter 0.86394 gives weight to future
% The following line describes the original Kendrick model

% z = -10.0*(exp(-0.03*t)+0.0)*u(1)∧0̂.1;
else
z = -x(1) + 0.3;
end

Gradients for dynamic equation KendStoc\sys dh.m
function [h x,h u] = sys Dh(neq,t,x,u)
global sys params
h x = [0.842*exp(0.02*t)*0.6*x(1)∧(-0.4)-0.05 -0.0036; ...

-2.0*0.00183*x(2) -2.0*0.00183*x(1)];
h u = [-1 0];

Constraint Gradients KendStoc\sys dg.m
function [J x0,J xf,J t] = sys Dg(neq,t,x0,xf)
global sys params
F NUM = neq(5);
J x0 = [0 0 0]; J xf = [0 0 0];
if F NUM == 1
J x0(1) = 0;
elseif F NUM == 2
J xf(1) = 1;
end

Gradients of Integrand KendStoc\sys dl.m
function [l x,l u,l t] = sys Dl(neq,t,x,u)
global sys params
l x = 0;
l u = -(exp(-0.03*t)+0.86394)*u(1)∧(-0.9);
% The parameter 0.86394 gives weight to the future
% The following line describes the original Kendrick model
% l u = -(exp(-0.03*t)+0.0)*u(1)∧(-0.9);
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Optimization in Welfare Economics
8.1. Static and dynamic optimization

Optimal social welfare is generally defined with Pareto’s mathematical
definition of optimality of a vector objective function (see section 2.8). The
analysis of social welfare and social choice (see Arrow and Reynaud, 1986;
Arrow, Sen and Susumura, 2003; Schulz, 1988) also depend on vector opti-
mization. Economic developments of these ideas are presented e.g in Sengupta
and Fox (1969), Ehrgott (2000). In Islam (2001a), such ideas are applioed to
decentralized and to centrally planned economies. Social welfare cannot always
be measured by summing individual utilities, and a vector of utilities must be
studied, with appropriate vector ordering (see e.g. Arrow and Scitovsski, 1969;
Arrow and Intriligator, 1985; Sen, 1969). An economic model may maximize (in
Pareto’s sense) several competing welfare criteria or utilities ui(·), or maximize
some welfare function W (u1(·), u2(·), . . .), subject to constraints gi(x) ≥ 0, and
perhaps also equality constraints. The classical economic assumptions of non-
satiety of utility, and convexity of preference and production sets, are usually
made here, but may be relaxed (see Schulz, 1988) for discussion of some non-
classical models). The ui(·) could be utilities of individual agents. While the
welfare function is often taken as a weighted sum of individual utilities, the
implied assumption that one agent’s misfortune is compensated by another’s
good fortune is open to doubt. The usual assumption of convexity, under
which a local optimun is a global optimum, is not always appropriate. When
it fails, there may be multiple optima (see section 2.5). However, the methods
of section 2, and such concepts as invex, relaxing convex, still apply.

An economic model may be static, thus not time-dependent, or it may be
dynamic, thus evolving in time. Dynamic models’ typically lead to optimal con-
trol formulations. For the basic formulations, refer to sections 1.2, 2.1, 2.8 and
2.13. Such models typically arise in optimal growth models, such as with al-
location and social choice, sustainable resource management, intergenerational
equity, and economic planning. They contain conflicting economic objectives,
such as consumption utility maximization, achieving full employment, inter-
generational economic equity, sustainability, and environmental requirements.
The models considered include economic growth, decentralized planning, col-
lective utility, and resource depletion. A multiobjective optimum consists of a
set of Pareto points, among which a choice must eventually be made by other
criteria (see Bolintineanu, 1993).

8.2. Some static welfare models
A number of models have been given in Islam and Craven (2001b), and

are summarized here. The maximization of W (u1(·), u2(·), . . .), or the vector
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(Pareto) maximization of a vector objective {u1(·), u2(·), . . .),, may be restricted
by additional constraints, which put a floor below which no individual utility
may fall. This adds extra terms to the Lagrangian condition (WKKT) for
optimality, so that the optimum is no longer a Pareto maximum for the original
model. The non-satiety property does not always apply. The utility for user i
may be extended to:

u#
i (x) := ui(x) +

∑
j �=�� i

αijuj(x),

to give some weight, depending on the coefficients αij , to the welfare of other
users. Denote the vector of these new utilities by MU(x), where U(x) :=
{u1(x), u2(x), . . . , un(x)), and M is a matrix made from the coefficients αij .
The Pareto maximization of MU(x) is equivalent to the Pareto maximization
of U(x) with respect to a different order cone:

Q = M−1(Rn
+);

see section 2.8.
A welfare function W may give a good description only in some central

region, thus excluding outlying regions where some utility falls below a floor. A
secondary objective function, that need not be only a function of the objective
components, may be used to optimize over the set of Pareto optimum points
(see Bolinteanu, 1993a, b), and this will determine a set of weights for the
objective components. This may bear on the question of impossibility (Arrow,
1951; Arrow and Reynaud, 1996) or possibility (Sen, 1970).

In a cooperative game model described by Cesar (1994), agent i has his
own objective function J i(.), and a weighted payoff function

∑
wiJ

i (x) is to
be maximized, subject to the state vector x in a suitable feasible region X. This
gives one of the Pareto maxima of the vector function:

J(.) := (J1(, ), J2(.), . . .)

over X, depending on the choice of weights wi.
However, there are other game models to which invexity and related ideas

may be applied. A zero-sum competitive game for two players leads to a mini-
max model, where there is a single objective function J(u1, u2 ), which player
1 maximizes with respect to u1 , and player 2 minimizes with respect to u2 ,
subject to constraints g(u1 ) ≤ 0 and k(u2 ) ≤ 0. Define a Lagrangian function
as:

L(u1, u2; v1, v2) := J(u1, u2) : −v1g(u1) + v2k(u2).

Under some (non-trivial) regularity assumptions (Craven, 1988), it is necessary
for a minimax that the gradient of this Lagrangian with respect to (u1, u2)
is zero, for some non-negative multipliers v1, v2 , together with v1g(x1) =
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0, v2k(x2) = 0. These conditions are sufficient for a minimax under appropriate
invexity assumptions (Craven, 1988).

A welfare model, described in Leonard and Long (1992) and Schulz (1988)
has I individuals, G goods, R resources, and amount YrYY available of resource
r. In terms of the state variables xi

g = amount of good g used by individual i
and yrg = amount of resource r used to make good g, a welfare function:

W (U1(x1
1, . . . , x

1
G), . . . , U I(xI

1, . . . , xI
G )) ≡ W (U1(x1), . . . , U I(xI)),

is maximized, subject to nonnegative variables and constraints:

aix
i
g = FgFF (y1g, . . . , yRg ) ≡ FgFF (yg) (g = 1, 2, . . . , G)

∑
g

cgyrg = br (i = 1, 2, . . . , R).

The Lagrangian is:

L(.) = W (U1(x1), . . . , U I(xI)) +
∑

g

πg[FgFF (byg)−
∑

i

aix
i
g]

+
∑

r

λr[br −
∑

g

cgyrg]

So necessary KKT conditions for a maximum are:

(∂W/∂U i)(∂U i/∂xgi) − πgai = 0(i = 1, 2, . . . , I).

If these conditions are sufficient, which happens if −W (U1(·), . . . , U I(·)) and
the constraint functions are invex with the same scale factor, then equilibrium
conditions follow, thus under weaker assumptions than the usual ]convex W and
linear constraints. Otherwise, a quasimax of the welfare function is obtained,
or a vector quasimax of the vector optimization problem.

A multiobjective optimum consists of a set of Pareto points, among which a
choice must eentually be made by other criteria (see Bolintineanu, 1993). In the
models discussed here, some changes in the model, such as adding “unselfish”
utility terms, result in moving from one Pareto point of the original model to
another. While each set of positive weights for the objectives determines one
or more Pareto points, and each Pareto point determines one or more sets of
weights, the weights are not an a priori choice by a decision maker, but may
change during computation (see section 8.5). Moreover, a point satisfying the
Karush-Kuhn-Tucker (KKT) conditions (or equivalent Pontryagin conditions
for optimal control) is not necessarily a maximum.

8.3. Perturbations and stability
The extended welfare model of section 8.2 with utilities u#

i (x) may be
considered as Pareto maximizing the original utilities ui(x) with respect to a
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different (larger) order cone, and so the optima occur with some different values
of the weights for the objectives, specified by the multiplier τ in WKKT.

A Pareto optimum p is locally proper (Craven, 1990) if the ratios of differ-
ence of objectives, (uj(x) − ui(x)), are bounded when x is in some neighbour-
hood of p. (For comparison, Geoffrion’s proper Pareto maximum (Geoffrion
1968) considers all x.) Then (Craven, 1990) a Pareto maximum p is locally
proper exactly when the multiplier τ > 0, thus when each component τiττ > 0.
This dsescribes a sort of stability of the objective components near a proper
Pareto maximum; there is a bound to how fast they change. There is an
equivalent stability property also for weak quasisaddlepoint (see section 2.9),
described in Craven (1990).

Consider now a linearization of the welfare model with utilities ui(x)
around a Pareto maximum p, and approximate the extended welfare model.
with αij replaced by εαij , by a perturbation of this linearized model, with a
small parameter ε. The model is then a multi-objective linear program MLP,
including a parameter ε. For a chosen set of weights for the objective compo-
nents, specified by τ , there results a linear program, with a small perturbation
applied to the objective, but not to the constraints. A standard theory applies
here. The point p is generally a vertex of the (polyhedral) fceasible region
(satisfying the constraints), and p is not moved by the perturbation if ε is suf-
ficiently small. Thus a standard welfare model will give some (small) weight to
the welfare of other users.

8.4. Some multiobjective optimal control models
Craven and Islam (2003) give a multiobjective version of the decentralized

resource allocation model of Arrow and Hurwicz (1960) (also Sengupta and Fox,
1969, page 62). If there are n producers, and now n objective functions, then
a Pareto maximum of the vector function

{f1(x1), f2ff (x2), . . . , fnff (xn)}
may be considered, instead of a maximum of the sum of these components. The
effect is to maximize

∑
τiττ fiff (x) subject to constraints xi ∈ Xi,

∑
gi(xi) ≤ b,

with non-negative weights τiττ which sum to one. Different Pareto maxima arise
from different choice of τ . If τ is fixed, and a convex problem is assumed, then
there is a dual problem:

MINv

∑
i

(mi(v) + vb/n),

where v is a price attached to resource usage, and

mi(v) = MAX(τiττ fiff (xi) − vgi(x) subject to (∀i) xi ∈ Xi.

However, the convex assumption may be reduced to invex; thus, if xi ∈ Xi ⇔
ξi(x) ≤ 0, and if all the functions −fiff , ξi, g are invex with the same scale
function.
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Craven and Islam (2003) also presented an economic growth model involv-
ing two conmumption (control) variables, and one capital (state) variable k(t).
This model is now extended to r consumption variables cj(t). Motivated by the
Kendrick-Taylor model (see section 4.2), consider the dynamic equation:

k(0) = k0, k̇(t) = b(t)ξ(k(t)) −
∑

ci(t) (0 ≤ t ≤ T ),

and a vector objective to be maximized, with components:

F i
iFF (k, c) =

∫ T

0

∫∫
e−ρtU i(k(t), c(t), t)dt − Qi(k(T )),

with c(t) := (c1(t), . . . , cr(t)) and utilities

U i(k(t), c(t)) = ci(t)σ + α
∑
q �=�� i

cq(t)σ,

in which (as in section 2) each user allows some weight to the welfare of other
users. For this model, the Hamiltonian is:

∑
τiττ {e−ρtU i(k(t), c(t), t)} − λ(t)(ξ(k(t)) −

∑
ci(t)).

So the adjoint differential equation for the costate λ(t) is:

−λ̇(t) = λ(t)ξ′(k(t)), λ(T ) = µ(k(T ) − k∗),

with a weight µ and a constant k∗ chosen so that a given terminal constraint
on k(T ) is satisfied (see section 2.1). If the controls ci(t) are not subject to
any active constraints, then Pontgryagin’s principle requires that the gradient
of the Hamiltonian with respect to the controls is zero. This gives:

e−ρtτ∗
iττ σ(ci(t))σ−1 + λ(t) = 0,

where τ∗
iττ := τiττ +

∑
q �=�� i ατqττ is a modified multiplier for FiFF . So here again the

result of giving weight to the welfare of other users is to modify the multipliers
attached to the objective components.

The behaviour is similar for a collective utility or welfare moldel, where
the objectives to be maximized are:

∫ T

0

∫∫
e−rhot

∑
q

MiqMM U((cq(t))),

where U(·) is a utility function, ci(t) is consumption for user i,, k(t) is capi-
tal stock, and thne matrix M of non-negative components MiqMM describes the
weighting each user gives to the others. This model may describe an altruistic
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social welfare planning model. As before, if there are no active constraints on
the controls, then the multiplier vector τ when M is the identity matrix is
shifted to MT τ .

8.5. Computation of multiobjective optima
If weights τiττ are chosen for the objectives multiobjective problem, then a

scalar objectine
∑

τiττ FiFF (·) may be optimized, by the methods usual for the con-
strained optimization of a single objective. For dynamic problems, differential
equations must then be solved (see chapter 3.) But since the correct weights
are seldom known a priori, it is usual to supply a decision maker (DM) with
tradeoff information on the effects of changing the balance between the sev-
eral objectives, so that the DM may prescribe a direction in which to change
the weights. Often goal programming is used, this minimizing a weighted sum
of deviations from goals, or targets (see e.g. Rustem, 1998). However, this
weighting depends implicitly on the chosen scales of measurement for the sev-
eral objectives.

Since Pareto optimal points are many, every opportunity should be taken
to reduce the region to be searched. This may be done by placing bounds (e.g.
floors) on some quantities, or on ratios of some objectives, where appropriate.

A secondary objective function may be optimized over the Pareto set (see
Bolintineanu and Craven, 1992). This process is, to some extent, modelling the
decision maker.

The choice of parameters, which may be varied in a secondary optimiza-
tion, whether by a decision maker or by a computer model, may be critical to
the understanding of a complicated multi-dimensional situation. If there are
several objectives to be optimized, say F1FF (x), F2FF (x), F3FF (x) over some region
E, then it may be appropriate to choose one objective, say F1FF (x), as of first
importance, and then to maximize the single objective F1FF (x) over E, subject to
additional inequality constraints, such as F2FF (x) ≥ p1, F3FF (x) ≥ p2, on the other
objectives. There remains a secondary optimization over suitable values of the
parameters p1 and p2. However, these are likely to have a more direct meaning,
say in a busines situation, than would the tradeoffs between objectives.

All these details are relevant, both for computing a static problem, and
for computing a dynamic problem. For a static problem, any of the standard
codes for constrained nonlinear optimization (or for linear programming, if the
problem is linear) may be used. For a dynamic problem, the evaluation of
function values and gradients requires the solution of differential equations (for
a problem in continuous time), or of difference equations (for a problem in
discrete time). The computational aspects for a problem in continuous time
are described in chapter 3.

Furthermore, for a dynamic (optimal control) model, there are several
additional kinds of parametric constraints that may be appropriate. If some
quantity v(t) is to be constrained, then the possibilities include:

• a pointwise bound: (∀t) v(t) ≥ p;
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• an average bound:
∫ T

0

∫∫
w(t)v(t)dt ≥ p with some weighting function

w(t);
• in the case of stochastic optimal control (see chapter 7, and the portfolio
models described in Sengupta and Fanchon, 1997; Tapiero, 1996, Ziemba
and Vickson, 1975, for examples), some probabilistic bound may be
appropriate, such as

Prob{(∀t)v(t) ≥ p} ≥ 0.9;

With some of these bounds (when behaviour at several times is combined),
the Pontryagin principle does not apply; however KKT conditions are still
applicable.

8.6. Some conditions for invexity
An optimal control problem has an equality constraint, the dynamic equa-

tion. Consider the problem (with a single objective F ):

MIN F (z) subject to G(z) ≤ 0,K(z) = 0.

Let p be a KKT point, with multipliers λ and µ. Assume the following version
(Type I) of invexity (Hanson and Mond, 1987):II

(∀z)F (z) − F (p) ≥ F ′(pη(z, p); −G(p) ≥ G′(p)η(z, p); 0 = K ′(p)η(z, p).

If z satisfies the constraints, then:

F (z)−F (p) ≥ F ′(p)η(z, p) = −λG′(p)η(z, p)−µK ′(p)η(z, p) ≥ λG(p)+ 0 = 0,

so a minimum is reached. If instead F is vector valued, then F is replaced by
τF , and τ(F (z) − F (p)) ≥ 0 follows, proving that p is a weak minimum.

In an optimal control problem, z is replaced by the state and control (x, u),
and p by a point (x̄, ū) satisfying the Pontryagin conditions. If the problem is
written (see section 2.2) as:

MINF (x, u), subject to Dx = M(x, u), G(x, u) ≡ G(u) ≤ 0,

then the required invexity takes the form:

F (x, u) − F (x̄, ū) ≥ FxFF α + Guβ, G(ū) ≥ Guβ, 0 = (D+MxMM )α + MuMM β,

in which the two components α(x, u; x̄, ū) and β(x, u; x̄, ū) replace η(z, p), and
FxFF , etc. denote partial derivatives at (x̄, ū).

A composite function f(g(.)), where g : Rn → Rm
+ and f : Rm

+ → R are
differentiable, is invex at p if g is invex, f is convex at q (where q = g(p))
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and f ′(q) has positive components, since (Craven and Islam, 2003), setting
F (z) := f(q + z) − f(q), g(x) − g(p) ≥ g′(p)η(x, p), hence:

f(g(x)) − f(z(p)) = F (q + g(x) − g(p)) = F (q + g(x) − g(p)) − F (0)

≥ F ′(0)(g(x) − g(p)) = f ′(q)(g(x) − g(p) ≥ f ′(q)g′(p)η(x, p).

It is sometimes possible to replace an equality constraint by an inequal-
ity constraint. One example is an economic growth model, with a terminal
constraint k(T ) = kT on the capital k(t). If the model maximizes some utility
depending on consumption, then the terminal constraint may often be replaced
by an inequality k(T ) ≥ kT , since the maximization tends to reduce k(T ). In
such a case, the sign of the Lagrange multiplier for this terminal constraint is
already determined by the inequality.

8.7. Discussion
While welfare economic models are usually based on convex assumptions,

some relaxation to generalized convexity is possible (see e.g. Schaible and
Ziemba, 1981.) The less restrictive invex assumption allows various non-
classical economic situations to be modelled. The quasimax concept provides a
description of a stationary point, without specifying the Lagrange multipliers
for the constraints. The discussion of shadow prices is related to a quasidual
problem also not requiring convex assumptions.

The weights for objective components, in a vector optimization model, are
not assigned a priori, but arise in the theory as multipliers. They are related
to the stability of the model to perturbations, and they may change during a
computation.



Chapter 9
Transversality Conditions for

Infinite Horizon
9.1. Introduction

Economic and finance models for dynamic optimisation, expressed as op-
timal control over an infinite time horizon, have been much discussed by
economists, since many issues in social choices have everlasting implications.
However, there has been controversy about the form and validity of terminal
costate conditions (transversality conditions) as time tends to infinity. In this
chapter, such terminal conditions are proved: (i) when state and control tend
to finite limits, and some likely assumptions about signs of gradients hold, (ii)
when state and control tend to limits, with a restriction on the rate of conver-
gence, and (iii) for growth models, when normalization by dividing by a growth
factor leads to a model of type (ii). These cases cover many of the economic
and finance models of interest. Some of these have definite social choice ap-
plications in the context of new3 welfare economics. The analysis leads to a
discussion of shadow prices, conditions sufficient for an optimum, and possible
computational approaches for infinite-horizon models.

9.2. Critical literature survey and extensions
Economic models, especially for optimal growth and development, or for

behaviour in time of a financial process, often lead to optimal control problems,
over a finite time interval [0, T], or an infinite time interval [0,∞). Typically,
the model is described by a state function x(t) (usually vector-valued), de-
scribing e.g. capital accumulation, and a control function u(t), describing .e.g.
consumption. An objective, expressed as an integral involving the state and
control, is optimized, subject to a dynamic differential equation, and constraints
on the control. Under some standard assumptions, conditions necessary for a
maximum or minimum of such a model over [0, T] consist of the following:

(i) the dynamic differential equation for a state function x(t), with an
initial condition for x(0), and perhaps a terminal condition for x(T );
(ii) an adjoint differential equation for a costate function λ(t), with a
terminal condition on λ(T ); and
(iii) Pontryagin’s maximum (or minimum) principle, that a Hamiltonian
function is optimized, with respect to the control function u(t), at the
optimal control.
Note that the standard assumptions include the restriction that any con-

straints on the control function apply to each time separately, thus excluding
any restriction on the rate of change of the control, or any compensation be-
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tween controls at different times. If (as with some economic models) the control
is not constrained, then (iii) may be replaced by a weaker requirement, that
the gradient of the Hamiltonian with respect to control is zero, and the as-
sumptions are less stringent. The costate function, in an economic model, has
the significance of a shadow price or a shadow cost.

The necessary conditions (i), (ii) and (iii) are not generally enough to imply
an optimum. They become also sufficient conditions for a global optimum if
the functions defining the control problem possess suitable convex properties,
or (less restrictively) invex properties. This does not work if the terminal
condition on λ(T ) is omitted, since the system then is not completely defined,
except in the special case when the terminal state x(T ) is completely specified
(with T fixed), for then λ(T ) is free. This terminal condition on λ(T ) has often
been called a transversality condition, for historical reasons deriving from time-
optimal problems, where the (variable) time T to reach a target is minimized. In
that situation, the transversality condition appears as a description of how the
optimal path crosses a terminal line (graphing state against T, as in Chiang
(1992). Sethi and Thompson (2000) have presented λ(T ), for various cases
when T is finite. (Some more general cases are also possible; see section 9.4.)

Transversality conditions have been much discussed (e.g. Leonard and
Long, 1992; Burmeister and Dobell, 1970; Sengupta and Fanchon, 1997) for
economic and financial models. Agenor and Montiel (1996) cited a modified´
transversality condition for infinite horizon (see section 4). Cuthbertson (1996)
has reported another sort of transversality condition for a financial model with
constant expected returns. However, a transversality condition is not signifi-
cant on its own, but only as part of a complete set of necessary (and perhaps
also sufficient) conditions. Judd (1998) discusses some economic models where
the Euler equation (equivalent to the adjoint differential equation) without its
terminal condition allows solutions which contradict economic requirements,
so that a terminal condition is needed. (But it is already part of the neces-
sary conditions). Moreover, the form of a transversality condition depends on
features of the model, namely the terminal condition (if present) on the state
function, and the endpoint term (if present) in the objective function. It is
pertinent to consider how these two features affect such questions as stability
of the model. Islam and Craven (2003b) have considered dynamic optimization
models in finance, including cases of multiple steady states.

The role of the transversality conditions in economic and finance models
has been summarized by Sengupta and Fanchon (1997, page 240), as:

“These conditions, often stated in terms of the adjoint (also called costate)
variables, or the Lagrange multipliers associated with the dynamic equations of
motion, seek to guarantee three things: uniqueness of the optimal trajectory,
stability in the sense of convergence of the optimal path, and a condition of
perfect foresight of the future.”

It is remarked that uniqueness does not always occur for a non-convex
model (Blanchard and Fischer, 1989), and that in the case of an infinite horizon
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T (see section 3), some assumption about convergence of the optimal path is
required to derive the transversality conditions. For such growth and finance
models for an infinite horizon without a discount factor, the objective function
is generally infinite. Following Ramsey (1928), this difficulty is avoided by
considering a modified objective

∫ ∞
0

∫∫
[f(x(t), u(t))−B}dt, where the bliss point

B is a limiting value as time t → ∞. But this modified objective will also diverge
to an infinite value, unless the state and control are supposed to converge
sufficiently fast (e.g. as e−βt) to limiting values. Thus some assumption on
convergence rates is already implicit in standard economic models. However,
any analysis of uniqueness and stability for a dynamic model in economics and
finance must include the correct transversality conditions.

Blitzer, Clarke and Taylor (1975) consider a model for finite horizon, whose
objective is a utility function of consumption, plus an endpoint term depend-
ing on final capital. Several terminal conditions (at the finite horizon) are
discussed, including a linear relation between final capital and consumption
rate, and a lower bound for the final capital (thus attaching a value to capital
after the horizon time). Versions of such conditions might also be applied to
infinite-horizon problems.

Models with an infinite time domain [0,∞) are of economic significance.
The standard Pontryagin theory does not immediately apply to an infinite
time domain. Some authors (e.g. Leonard and Long, 1992) have applied the
standard theory to a problem truncated to [0, T], with a terminal condition
that λ(T ) equals the value of the costate at T for the infinite-domain problem.
This obtains (ii) and (iii) for finite times t, but not a terminal condition on
λ(t) as t tends to infinity. Some authors have postulated such a condition
(without adequate proof), since it is required to obtain sufficient conditions for
an optimum.

Michel (1982) analysed an infinite-horizon model, with no terminal con-
straint on the state (trajectory), and obtained the transversality condition
λ(t) → 0 as t → ∞ under some restrictions (non-negative objective integrand,
optimal state contained in a suitable neighbourhood of feasible solutions). How-
ever, these (and other) assumptions “depend on properties of the optimal tra-
jectory to be determined”. Janin (1979) showed that λ(t) → 0 at an exponential
rate (|λ(t)| ≤ const e−αt ) for a class of growth models with infinite horizon, no
terminal constraint on the state, a restriction (a coercivity constraint) on the
dynamic equation, and a discount rate not too small. Although transversality
does not always hold, the counter-examples of Halkin (1974) and Shell (1969)
are (see Chiang, 1992) of an untypical character (the objective depends only on
the terminal state and control). However, the derivation of transversality con-
ditions for infinite horizon, including more general cases such as λ(t)x(t) → 0,
requires more analysis than “let T tend to infinity” in various authors. Michel
(citing Janin, 1979) mentions requirements of “fast convergence”; sometimes
these are implied by the assumption that an optimum is reached with a finite
objective. In some financial models (see Cuthbertson, 1996), where an assump-
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tion that “expected returns are constant” replaces an optimization, a terminal
condition is obtained, that a function of dividends tends to zero as time tends
to infinity; this is also called “transversality”.

Some economists have considered the case when the state and the control
each tend to limits as t tends to infinity (see e.g. the discussion in Judd,
1998). But this does not generally happen for infinite-horizon models, especially
if there are growth factors. The values of these limits need not be initially
specified; an optimization calculation will find them. In this case, one may
consider (see section 4) a nonlinear transformation of time t in [0,∞) to scaled
time τ in [0,1], constructing τ by a suitable increasing function of t. Because
of the assumed limits, τ = 1 is in the domain of the problem (whereas t = ∞
is not). However, the transformed functions corresponding to m and f may
become unboundedly large, as t tends to 1, upsetting the calculation. This
situation is avoided if x(t) and u(t) converge sufficiently fast to their respective
limits, as t tends to infinity. This leads to the expected (if not always proved)
terminal conditions.

This chapter extends the literature in this area, by presenting three ap-
proaches to terminal (transversality) conditions for the costate function, for
infinite horizon. These are listed as follows:

(a) There is a substantial class of infinite-horizon models, discussed in
section 4, with the final state unrestricted, for which the terminal condition
λ(t) → 0 as t → ∞ is a consequence of some assumptions about signs of
gradients, and the assumed attainment (existence) of a finite optimum for the
infinite horizon. However, the condition λ(t)x(t) → 0 does not necessarily
follow. An example is given where the state is unbounded, tending to no limit,
and λ(t) → 0 is not enough to determine a unique costate λ(.). Applying
the method of section 9.4 to problems where control and state tend to finite
(unconstrained) limits, gives a large class of models where it is proved that the
costate tends to zero, and this is the correct transversality condition to show
sufficiency, under e.g. convexity or uniqueness assumptions.

(b) When terminal conditions on the state are imposed, involving the
assumption that state and control tend to some limits as t → ∞, then terminal
conditions for λ(t) as t → ∞ are obtained in section 9.5, assuming that the
convergence to these limits is not too slow (it must be fast enough that certain
integrals have finite values).

(c) For some growth models, where limits are not reached, the state and
control may be normalized (see section 9.6) by dividing by some growth factor
(e.g. an exponential growth, or a power of t), so that case (b) applies to the
normalized state and control. This approach solves the example cited in (a).

The economic interpretation of the costate λ(t), and other multipliers
which occur, in terms of shadow prices is discussed in section 9.7. Sufficient
conditions for a (global) optimum, involving generalized convex (invex) as-
sumptions, relaxing the usual convex assumptions, are discussed in section 9.8.
Dynamic modelling under non-convex assumptions has been studied (see e.g.
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Islam and Craven, 2004 ), but some questions remain to be answered.
The nonlinear time transformation has computational consequences (see

section 9.9). If x(t) and u(t) tend to limits, then the functions in the problem
(the right side of the dynamic equation, and the integrand of the objective func-
tion to be optimized) are changing only slowly when t is large. A description
using scaled time τ can have the rates of change more uniform over τ in [0,1],
than is possible over t in [0,∞). Consequently, a computation using scaled time
may be practicable, perhaps only needing a moderate number of subintervals
for the discretization, when a direct computation using original time t may be
impracticable (see Craven, de Haas and Wettenhall, 1998).

Section 9.10 gives some discussion of special aspects of financial models.

9.3. Standard optimal control model for economic growth and finan-
cial dynamics14

Consider the following model, with a state function x(t) (e.g. capital stock)
and a control function u(t) (e.g. consumption):

MAX
∫ T

0

∫∫
e−δtf(x(t), u(t))dt + Φ(x(T ))

subject to:
x(0) = x0, ẋ(t) = m(x(t), u(t), t), q(x(T ) = 0,

a(t) ≤ u(t) ≤ b(t) (0 ≤ t ≤ T).

Here T is finite and fixed; the endpoint constraint q(x(T )) = 0 is not always
present; constraints on the control u(t) are not always explicitly stated, al-
though an implicit constraint u(t) ≥ 0 is commonly assumed. If q(.) or Φ(.)
are absent from the model, they are replaced by zero.

Necessary Pontryagin conditions for a minimum of this model have been
derived in many ways. In Craven (1995), the control problem is reformulated
in mathematical programming form, in terms of a Lagrangian:

∫ T

0

∫∫
[e−δtf(x(t), u(t)) + λ(t)m(x(t), u(t), t) − λ(t)ẋ(t) − α(t)(a(t) − u(t))

−β(t)(u(t) − b(t) − 1
2
µ[Φ(x(t) − µ−1ρ]2+ − 1

2
µ[q(x(T ) − µ−1ν]δ(t − T )] dt.

with the costate λ(t), and also α(t) and β(t), representing Lagrange multipliers,
µ a weighting constant, ρ and ν are Lagrange multipliers, and δ(t−T ) is a Dirac
delta-function. Here, the terminal constraint on the state, and the endpoint
term Φ(x(T )) in the objective, have been replaced by penalty cost terms in the

14 See also sections 2.2, 6.3.3, and 6.5.2.
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integrand; the multipliers ρ and ν have meanings as shadow costs. (This has
also computational significance − see section 8. The solution of a two-point
boundary value problem, when x(T ) is constrained, has been replaced by a
minimization.)

Then necessary Karush-Kuhn-Tucker (KKT) conditions follow. The ad-
joint differential equation (ii) follows from one part of KKT (the Lagrangian
function has zero gradient with respect to x), integrating the term λ(t)ẋ(t)
by parts; an integrated term λ(T )x(T ) arises, leading to a terminal condition
λ(T ) = 0 in case x(T ) is free (thus, unconstrained). Other contributions to
λ(T ) come from q(.) and Φ(.), integrating the delta-function. The Pontryagin
principle (iii) follows eventually, under some assumptions (such as bounded
second derivatives of the functions f and g) from the other part of KKT (zero
gradient of the Lagrangian with respect to x). Note that the proof requires
a finite horizon T, and that the control constraints apply to each time t sep-
arately. The requirement of bounded second derivatives can be weakened to
require that they are majorised by some function with finite integral.

The adjoint differential equation is obtained in the form:

−λ̇(t) = e−δtfxff (x(t), u(t)) + λ(t)mx(x(t), u(t), t),

where fxff and mx denote partial derivatives with respect to x(t), together with
a boundary condition (see Craven, 1995):

λ(T ) = Φx(x(T )) + κqx(x(T )),

in which Φx and qx denote derivatives with respect to x(T ), and κ is a Lagrange
multiplier, representing a shadow cost attached to the constraint q(x(T )) = 0.
The value of κ is determined by the constraint that q(x(T ) = 0. If x(T ) is free,
thus with no terminal condition, and Φ is absent, then the boundary condition
is λ(T ) = 0 . Note that x(T ) may be partly specified, e.g. by a linear constraint
σT x(T ) = b (or ≥ b), describing perhaps an aggregated requirement for several
kinds of capital. In that case, the terminal constraint differs from λ(T ) = 0.

A diversity of terminal conditions for λ(T ) have been given in the eco-
nomics literature (e.g. Sethi and Thompson, 2000); they are particular cases of
the formula given above. For the constraint q(x(T )) ≥ 0, the multiplier κ ≥ 0.

9.4. Gradient conditions for transversality
There is a class of optimal control problems over infinite time, including

some economic growth and dynamic finance models, where the boundary con-
dition λ(t) → 0 for costate follows without special assumption, supposing that
an optimum is reached. Assume that the optimal control problem:

MAX
∫ ∞

0

∫∫
f(x(t), u(t), t)dt subject to

x(0) = 0, ẋ(t) = m(x(t), u(t), t), g(u(t)) ≥ 0 (0 ≤ t < ∞),
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where f (.,.,.), m(., ., .) and g(.) are differentiable functions, reaches an optimum
at the point (x(.), u(.)) = (x∗(.), u∗(.)). (Usually this requires a discount factor
e−δt included in f.) Then the truncated problem, for finite T:

x(0) = 0, ẋ(t) m(x(t), u(t), t), g(u(t)) ≥ 0 (0 ≤ t < ∞),

reaches an optimum when (x(t), u(t)) = (x∗(t), u∗(t)) for t < T. Assuming that
u∗(.) > 0, and that a constraint qualification, necessary Lagrangian conditions
hold, in terms of a costate function λ(.):

−λ̇(t) = fxff (x∗(t), u∗(t), t) + ψ(t)mx(x∗(t), u∗(t), t),

0 ≥ −θ(t)gu(u(t)) = fuff (x∗(t), u∗(t), t) + λ(t)mu(x∗(t), u∗(t), t) ,

assuming gu(u(t)) ≥ 0; the multiplier θ(t) ≥ 0. (Further hypotheses, such as
bounded second derivatives of f and m, appropriate to proving Pontryagin’s
principle, are not needed here.)

Assume now that constants b1 > 0, b2 > 0, b3 > 0 and b4 > 0 exist, such
that, for all t ≥ 0:

fxff (x(t), u(t), t) ≥ b1, fuff (x(t), u(t), t) ≥ b2,

mx(x(t), u(t), t) ≥ b3,mu(x(t), u(t), t) ≤ −b4.

(Note that these are appropriate for an economic model in which the ob-
jective increases when the capital x(t) and the consumption u(t) each in-
crease, and when the rate of growth of capital increases as existing capital
increases, and decreases as consumption increases.) Assume that (x(.), u(.))
is in a neighbourhood N of (x∗(.), u∗(.)). For given (x(.), u(.), denote ρ(t) :=∫ t

0

∫∫
mx(x(t), u(t), t)dt. From the equation for ψ̇(t),

(d/dt)(λ(t)e−ρ(t)) = −fxff (x(t), u(t), t),

hence:

λ(t) = ψ(0)e−ρ(t) − e−ρ(t)

∫ t

0

∫∫
fxff (x(s), u(s), s)e−ρ(s) ds,

in which the integral is > 0 since fxff (.) ≥ b1 > 0, and ρ(t) ≥ b3t → ∞ as
t → ∞. So λ(t) ≤ ψ(0)e−ρ(t) → 0 as t → ∞. Also, if λ(t) < 0 for some t, then:

fuff (x∗t(t), u∗(t), t) + ψ(t)mu(x∗(t), u∗(t), t)) ≥ b2 + (−ψ(t))b4 > 0,

so cannot be ≤ 0. Hence λ(t) ≥ 0 for all t. Hence, for all t:

0 ≤ λ(t) ≤ λ(0)e−ρ(t) → 0 as t → ∞.

Thus, for this class of optimal control model, the costate λ(.) satisfies the
terminal condition ψ(t) → 0 as t → ∞. It was not assumed that the state x(t)



138 Chapter 9

tends to some limit as t → ∞. Note that this does not work if an upper bound
is imposed on u(t).

However, a constraint x(t) ≥ b when t is sufficiently large could be ad-
joined. This is done by adding to the integrand f(.) a penalty term of;

−1
2
µ[x(t) − b − µ−1σ(t)]2−,

where [·]− means negative part, and σ(t) is a non-negative multiplier. The
result is to add a term −σ(t)χE(t) to the right side of the equation for −λ̇(t),
and to fxff (.) in the integral expression for ψ(t), where E is the set of t where
the bound x(t) = b is reached. Thus λ̇(t) + λ(t)m(.) ≥ −fxff (.), with equality
for t /∈// E. In this case, λ(t) may tend to a limit λ(∞) > 0 as t → ∞.

If the above gradient conditions hold, and if also the state and control
tend to finite (unconstrained) limits are t → ∞, then the terminal condition
λ(t) → 0 as t → ∞ is the precise requirement for a unique costate, and (under
e.g. convexity or uniqueness assumptions) for sufficiency conditions for an
optimum.

Consider now the example of a growth model:

MAX
∫ ∞

0

∫∫
e−δt[u(t)γ + ζx(t)}dt

subject to x(0) = x0 > 0, ẋ(t) = αx(t) − u(t) (t ≥ 0),

where δ > α > 0 (to ensure the objective is finite), 0 < γ < 1 (e.g. γ = 1
2 ).

There are implicit constraints x(.) > 0 and u(.) > 0. The standard the-
ory gives −λ̇(t) = −ζe−δt + αλ(t) and −γe−δtu(t)γ−1 − λ(t) = 0. Hence
λ(t) = (a + κ)e−αt − κe−δt , where a = λ(0) and κ = ζ/(δ −α), so λ(t) → 0 as
t → ∞, without any assumption on lim t→∞λ(t), but the parameter a is unde-
termined. However, the normalizing transformation X(t) := e−αtx(t), U(t) :=
e−αtu(t),Λ(t) := eαtλ(t) leads to a unique normalized costate Λ(t) = Λ(0) +
κ(1− e−(δ−α)t) = −κe−(δ−α)t after applying the condition Λ(t) → 0 as t → ∞.
(Hence λ(t) = −κe−δt.) Then U(t) is determined by γe−(δ−α)tU(t)γ−1 =
−Λ(t) > 0. This normalizing approach is pursued in section 9.6. Also, if the infi-
nite horizon is replaced by a finite horizon T, then Λ(t) = κe−(δ−α)T −e−(δ−α)t,
which tends to the value for infinite horizon as T → ∞. Thus this problem is
stable to truncation of the infinite horizon to a large finite horizon T. (For a
general discussion of such stability, see Craven (2003).) In contrast, a model
in Judd (1998) is, in present notation:

MAX
∫ ∞

0

∫∫
e−δtU(u(t))dt subject to x(0) = x0, ẋ(t) = F (x(t) − u(t),

assuming that x(t) tends to a finite limit. But under what restrictions on U and
F does such steady state exist? If, instead, the objective includes (as above)
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a state term, then growth models with no steady state can occur. Agénor and´
Montiel (1996) cite an infinite-horizon model with a transversality condition
(in present notation) e−δtx(t) → 0 as t → ∞, thus apparently not requiring
the state to be bounded.

9.5. The model with infinite horizon
The model with finite T replaced by ∞ (and Φ(x(T )) omitted), may be

reduced to a control model of standard form by a a nonlinear transformation
of time t in [0,∞) to scaled time τ in [0,1]. (A possible such transformation is
given by τ = [e2κt − 1]/[e2κt + 1], with some scale parameter κ. Note that τ
is an increasing function of t, with τ → 1 as t → ∞.) Define x̂(τ) = x(t), and
û(τ) = u(t). If x(t) and u(t) are assumed to tend to finite limits as t → ∞,
then x̂(τ) and û(τ) are defined (and continuous) at τ = 1. Thus τ = 1 is in the
domain of definition for the problem (although t = ∞ is not). The result is a
transformed problem, which is of the standard form for optimal control, except
that some functions (such as the right hand side of the dynamic equation) may
become unboundedly large as τ → 1. That situation is avoided if x(t) and u(t)
are supposed to converge sufficiently fast to their limits, as t → ∞.

Denote x(∞) := limt→∞x(t), u(∞) := limt→∞u(t), and (if it exists) the
limit λ(∞) := limt→∞λ(t). Assume that, for some positive exponent β :

|x(t) − x(∞)| ≤ const e−βt and |u(t) − u(∞)| ≤ const e−βt

Then (Craven, 2003) |x̂(t) − x̂(1)| and |û(t) − û(1)| are sufficiently small, as
t → 1, that the second derivatives of f and m, while perhaps unbounded, are
majorised by a function with finite integral. The theory of section 9.3 then
applies to the problem with scaled time, and then λ(1) = κq(x(1)). Hence,
for the given problem: λ(∞) = κq(x(∞)). In particular, q(x(T )) might have a
form bT x(T )− r, so that a constraint q(x(T )) = 0 (or ≥ 0) would set a bound,
or a lower bound, to the capital at the terminal time. It is not obvious whether
an objective endpoint term Φ(x(∞)) would have meaning in this context.

9.6. Normalizing a growth model with infinite horizon
As stated in section 1, some different behaviours occur when the state does

not tend to a steady state as t → ∞, and may be unbounded. Consider then
an optimal control problem, describing a growth model and financial dynamics:

MAX F (x, u) :=
∫ ∞

0

∫∫
e−δtf(x(t), u(t))dt subject to:

x(0) = x0, ẋ(t) = m(x(t), u(t), t), a ≤ u(t) ≤ b (0 ≤ t < ∞).

Instead of assuming that the state x(t) and the control u(.) tend to finite limits
as time t → ∞, assume instead that x(t) = µ(t)X(t), and u(t) = µ(t)U(t),



140 Chapter 9

where µ(.) is a growth factor, such as a power of t, and X(t) and U(t) each
tend to limits as t → ∞.

Consider in particular a dynamic equation:

ẋ(t) = ax(t)β − u(t),

where 0 < β < 1. If u(.) = 0 then x(t) is proportional to (c + t)γ , where c is
constant, and γ = 1/(1 − β). Assume therefore µ(t) = (c + t)γ . Then:

Ẋ(t) = (c + t)−1[−γX(t) + aX(t)β ] − U(t).

Suppose that U(t) → 0, and X(t) is bounded. Then Ẋ(t) → 0, and X(t) tends
to a limit, as t → ∞. If also f(x(t), u(t)) has the form x(t)ξu(t)ζ , then the
integrand is e−δtX(t)ξU(t)ζµ(t)ξ+ζ , and the integral is finite, under the above
assumptions.

Consider now the further replacement of the coefficient a by aeρt, thus
introducing an exogenous growth factor into the dynamic equation. Let µ(t) =
e−σt , where σ = ρ/(1−β). In this case, the bounds on the control are reduced
to just u(t) ≥ 0 for all t. Then

Ẋ(t) = −σX(t) + aX(t)β − U(t).

The integrand becomes:

e−(δ−σξ−σζ)tX(t)ξU(t)ζ

so the integral is finite provided that the discount rate:

δ > α(ξ + ζ)/(1 − β)

Integrating x(t)−β ẋ(t) = aeρt − eρtz(t), where z(t) := e−ρtu(t)x(t)−β :

(1 − β)x(t)1−β = k1 + aρ−1eρt − z∗ρ−1(eρt − 1) −
∫ t

0

∫∫
eρs[z(s) − z∗]ds,

assuming z(t) → z∗ > 0 as t → ∞, |z(s) − z∗| < k2e
−κt(t ≥ 0), 0 < κ < ρ.

Then e−ρt| ∫ t

0

∫∫
eρs[z(s) − z∗]ds| ≤ (k2/(ρ − κ))e−ρt[e(ρ−κ)t − 1]. Hence:

(1 − β)x(t)1−β = (a − z∗)ρ−1eρt + e−ρtr(t) where r(t) → 0 as t → ∞.

Thus X(t) → k3 as t → ∞, with σ = ρ(1 − β)−1, k1−β
3 = (a − z∗)ρ−1, since:

x(t) ∼ k3e
σt (t → ∞).

Under these stated conditions, the convergence rate requirements of section 9.5
are satisfied for the reformulated problem:
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MAX
∫ ∞

0

∫∫
e−(δ−σξ−σζ)tX(t)ξU(t)ζdt subject to:

X(0) = x0, Ẋ(t) = −σX(t) + aX(t)β − U(t), U(t) ≥ 0 (0 ≤ t < ∞).

The corresponding adjoint differential equation is:

−Λ̇(t) = ξe−(δ−σξ−σζ)tX(t)ξ−1U(t)ζ + Λ(t)(−σX(t) + aX(t)β − U(t)),

where this new costate function Λ(t) satisfies (from section 5) the terminal
condition:

Λ(∞) = κq(X(∞)).

Under these discussed conditions, the state x(t) grows at an exponential
rate, and a normalized state (divided by an exponential factor) tends to a finite
limit. Agenor and Montiel (1996) discuss cases where this limit is zero.´

9.7.1. Shadow prices
For a mathematical program with differentiable functions:

MAXz F (z, q) subject to G(z, q) ≥ 0, K(z, q) = 0,

assume that an optimum is reached when z = z̄(q), when the perturbation
parameter q is small. Denote by V (q) := F (¯(q), q) the value of the perturbed
objective function. Define the Lagrangian:

L(z; ρ, σ; q) := F (z, q) + πG(z, q) + σK(z, q).

Under some standard assumptions (e.g. Craven 1995), the gradient:

V ′(0) = Lq(¯(0); π̄, σ̄; 0),

where π̄ and σ̄ are the Lagrange multipliers corresponding to q = 0; they have
the interpretation of shadow prices.

This may be applied to the optimal control problem in section 3, assuming
that f and m also depend on a parameter q. Then:

V ′(0) =
∫ ∞

0

∫∫
[fqff (x̄(t), ū(t), t, 0) + λ̄(t)mq(x̄(t), ū(t), t, 0)

−α(t)aq(0) + β(t)bq(0)]dt,

where x̄(t), ū(t), λ̄(t) denote the unperturbed optimal solution.
In particular, if the only perturbation is of the dynamic equation, to:
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ẋ(t) = m(x(t), u(t), t) + q(t),

then, if q is small:

V (q) − V (0) ≈
∫ ∞

0

∫∫
λ̄(t)q(t)dt.

Thus, λ̄(t) is not precisely a shadow price, but defines one by this integral.
The model is only stable to such small perturbations q if they are such that
this integral is finite. If the transversality condition is λ(t) → 0 as t → ∞, with
|λ(t)| ≤ const e−αt , then q(t) should be bounded. If instead λ(t) → λ∗ 	= 0		
as t → ∞, then qt) must tend to 0 sufficiently fast as t → ∞, to make the
integral converge. Thus the transversality condition, which itself depends on
the terminal condition for the state, specifies the kind of perturbation of the
dynamic equation for which the model is stable.

Introduce now an endpoint condition x(T ) ≥ ζ, or x(t) → ζ as t → ∞ for
an infinite horizon. Similarly to section 2, this adds a term of:

−1
2
µ[−x(t) + ζ + q2 + µ−1ρ]2+

to the integrand, where q2 is a perturbation. The result (for T = ∞) is:

V (q, q2) − V(0,0) ≈
∫ ∞

0

∫∫
λ̄(t)q(t)dt + ρq2 .

The Lagrange multiplier ρ is determined by the constraint that x(T ) = ζ, or
x(t) → ζ as t → ∞.

9.8. Sufficiency conditions
Karush-Kuhn-Tucker (KKT) conditions (or equivalent Pontryagin condi-

tions), including the boundary condition for costate, are generally necessary,
but not sufficient, for an optimum. Thus:

Optimum exists ⇒ KKT conditions ⇒? Optimum is reached,
(& some regularity) (including boundary conditions)

where ⇒? means “implies, but only under further conditions to be stated”.
These further conditions could be:

(I): An optimum is otherwise known to exist, and a unique solution exists
to KKT. Then this solution is the optimum.
or (II): the Hamiltonian f(.)+ψm(.) is concave in (x(.), u(.)) (see e.g. Leonard
and Long, 1992). But, since in general the components of λ(t), which relates to
an equality constraint, can take either sign (see e.g. Leonard and Long, 1992)
this criterion is seldom applicable, unless m(.) is linear in x(.) and u(.). (Arrow
(1970) seems to assume that λ(t) ≥ 0).
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(III): Invex hypotheses hold (convex is a special case) − see Craven, 1995;
Islam and Craven, 2003).

The constraints of the problem:

MAX F (z) subject to G(z) ≤ 0, K(z) = 0,

may be combined as Q(z) ∈ -S, where S is a convex cone; then “invex at z∗”
requires that, for all z and some scale function η(., .) :

−F (z) + F (z∗) ≥ (−F ′(z∗))η(z, z∗);

Q(z) − Q(z∗) − Q′(z∗)η(z, z∗) ∈ S.

Hence G(z) − G(z∗) ≥ G′(z∗)η(z.z∗) and K(z) − K(z∗) = K ′(z∗)η(z, z∗).
For the convex case, where η(z.z∗) = z − z∗,K must then be linear. Since

K(z) = 0 = K(z∗), it suffices to have 0 = ΘK ′(z∗)η(z, z∗), where Θ is the
Lagrange multiplier.

Consider now a control problem with z = (x(.), u(.)), and mz = (mx,mu).
Since:

ΘK(z) =
∫ T

0

∫∫
λ(t)[−ẋ(t) + m(x(t), u(t), t)]dt

=
∫ T

0

∫∫
{λ̇(t)x(t) + m(x(t), u(t), t)}dt,

ΘK ′(z)ξ =
∫ T

0

∫∫
[λ̇(t) + λ(t)mz]ξ(t)dt =

∫
0

∫∫
T

λ(t)[−ξ̇(t) + mzξ(t)]dt,

here using the boundary condition λ(T ) = 0 (or x(T ) fixed) in two integra-
tions by parts. Hence ξ(t) := η((x(t), u(t)), (x∗(t), u∗(t)), for the considered
(x(t), u(t)), must satisfy the differential equation:

−ξ̇(t) + mz(x∗(t), u∗(t), t)ξ(t).

It is sometimes possible to transform the variables from (x(.), u(.)) to other
variables (X(.), U(.)), so as to produce a linear differential equation for Ẋ(t).
This happens e.g. for the Kendrick-Taylor model for economic growth, for
which the transformed objective also is concave (see Islam and Craven, 2003a).

9.9. Computational approaches for infinite horizon models
A optimal control model in economics and finance may have an infinite

time horizon to describe the future interest of society. Several methods have
been proposed for computing infinite horizon models in economics and finance
so that the results show the future interest of society for an infinite time period.
They include the following (Chakravarty, 1969; Islam, 2001a; Islam and Craven,
2003a):
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• Including infinite time issues by a salvage value term in the objective
function or by terminal constraints or transversality conditions (see
Chichilnisky, 1996 ; Islam and Craven, 2003c).
• Computation of models with conditions so that each finite horizon result
coincides with the relevant segment of an infinite horizon model. (Note
that this gives theoretical results, but to compute one would also need
some endpoint condition for the costate.)
• Computation of steady state equations, with a transversality condition
at a truncated horizon. (Note that this assumes that the state and control
tend to steady states, as e.g. in Judd (1998). This approach does not deal
with the approach to the steady state.)
• Computation of models with sufficiently long horizon so any increase in
time after that will not seriously change the optimal solution. (This
assumes that the infinite-horizon optimum is well approximated by a
sufficiently long finite horizon. But this is sometimes the theoretical point
in question.)
• Computation of a bang-bang model which can generate steady state
results within finite time periods.

The first three methods for specifying the terminal constraint (transver-
sality condition) in a finite-horizon computational model are those usually con-
sidered for infinite-horizon models in economics and finance.

The nonlinear time transformation described in section 4, when applica-
ble, gives a further computational method. The control problem with infinite
horizon is reduced to a standard control problem on a finite time domain [0,1].
Given the assumption of (sufficiently) “fast convergence rate”, the transformed
problem has well-behaved functions for the integrand of the objective, and the
right side of the dynamic equation.

For the models usually considered, the dynamic equation for the state is
stable to small perturbations (as may arise in computation) when computed
with time increasing from zero; and then the adjoint equation is only sta-
ble when computed with time decreasing from the horizon, which requires a
transversality condition as initial point.

Consider the dynamic equation:

x(0) = x0, ẋ(t) = m(x(t), u(t), t) (t ≥ 0),

with m(., ., .) continuous. For a given u(.), write ẋ(t) = ϕ(x(t), t)(t ≥ 0).
Assume that x(t) tends to a finite limit x̄ as t → ∞, then (from continuity)
ẋ(t) → 0 as t → ∞; then assume also that:

|ϕ(x(t), t)| ≤ ω(t), where
∫ ∞

0

∫∫
ω(t)dt is finite.

Change the time scale (as in section 5) by t = σ(τ), τ = ρ(t) := σ−1 (t), where
σ(.) is increasing differentiable, σ(0) = 0, σ(1) = ∞. Let X(τ) := x(σ(τ)).
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Then:

(d/dτ)X(τ) = ϕ(X(τ), σ(τ))σ′(τ), X(0) = x0(0 ≤ τ ≤ 1).

In order to solve this differential equation numerically, the right side needs to be
bounded as τ → 1, otherwise the computation will be inaccurate, and perhaps
unstable. The right side is bounded if ω(σ(τ))σ′(τ) is bounded, or equivalently
if ω(t)/ρ′(t) is bounded as t → ∞. In particular, if ω(t) = ae−αt for positive
a, α, then the bounded requirement is fulfilled if ρ′(t) ≥ αe−αt, thus if ρ(t) = 1−
e−αt, satisfying ρ(0) = 0 and ρ(t) → 1 as t → ∞. Then σ(τ) = −α−1ln(1− τ),
so σ′(τ) = (1 − τ)−1, hence σ′(ρ(t)) = (1 − (1 − e−αt))−1 = eαt = a/ω(t).

However, this construction assumes that x(t) tends to a limit, so will not
apply to a growth model, unless the variables are changed as in section 9.5.

The adjoint differential equation for the control problem is:

−λ̇(t) = e−δtfxff (x(t), u(t)) + λ(t)mx(x(t), u(t), t),

with a boundary condition for λ(∞). Assume the growth restrictions (for
a1, a2 > 0) :

|m(x(t), u(t), t)| ≤ a1ω(t), |mx(x(t), u(t), t)| ≤ a2ω(t),
∫ ∞

0

∫∫
ω(t)dt < ∞.

This must hold when (x(.), u(.)) is in a neighbourhood of the optimal solu-
tion. Let Λ(τ) := λ(σ(τ)) and U(τ) := u(σ(τ)). Then the adjoint differential
equation transforms to:

−(d/dτ)Λ(τ) = [Λ(τ)mx(X(τ), U(τ), σ(τ))σ′(τ)

+e−δσ(τ)fxff (X(τ), U(τ)]σ′(τ).

Here the assumption with ω(.) ensure that the coefficient of Λ(τ) is bounded
as τ → 1.

Consequently, one of the usual computing packages for optimal control
may be used, and a moderate number of subdivisions of scaled time may suffice,
instead of a large number, when errors may accumulate. In case (a), when the
state tends to a limit (or, more generally, remains bounded), and the growth
restrictions hold, then a scaled computation can cover the whole time horizon,
up to infinity. In case (b), the state is unbounded, and then a truncated interval
[0, T] for large T, with some endpoint term at T, can be mapped to scaled time
[0,1] for computation. (For an example of such an optimal control computation
with scaled time and a large horizon T, see Craven, de Haas and Wettenhall
(1998).) However, when the state and control can be normalised, as in section
6, to new variables that tend to finite limits, then case (a) may be applied.

The growth model from section 9.4, with a known solution, may illustrate
the computational issues involved. If e−αtx(t) and e−αtu(t) are taken as new
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state and control functions, thus dividing by a growth factor eαt, then the
problem becomes:

MAX
∫ ∞

0

∫∫
[e−(δ−αγ)tu(t)γ + e−(δ−α)tx(t)]dt

subject to: x(0) = x0, ẋ(t) = −u(t) (t ≥ 0).

The optimum is u(t) = αbe−αt, x(t) = x0− b(1 −e−αt ), where b is constant.
The time transformation t = −σ−1ln(1 − τ), dt/dτ = (1 − τ)−1 , with X(τ) =
x(t) and U(τ)(1 − τ) = u(t), converts the problem to the computable form:

MAX
∫ 1

0

∫∫
[(1 − τ)−1+γ+(δ−α)/σU(τ)γ + ζ(1 − τ)−1+δ/σX(τ)]dτ,

X(0) = x0, (d/dτ)X(τ) = U(τ) (0 ≤ τ ≤ 1.

9.10. Optimal control models in finance: special considerations
While the transversality conditions derived above apply also to financial

models, some special features may apply to financial models. Financial systems
are arguably less stable, because a speculative aspect enters. It is not so obvious
that an infinite horizon is so relevant to a financial model. It is perhaps relevant
to consider a periodic model, where the horizon T is finite (and perhaps not
too large), and there are end conditions at time T, which must provide initial
conditions for a re-run of the system for a further interval of length T. An
economist’s assumption that capital has no value after the horizon T cannot
apply here.

9.11. Conclusions
It has been argued that transversality conditions are needed in dynamic

economic and finance models. Their role and validity have been extensively dis-
cussed for infinite-horizon economic and finance models. This chapter has been
able to show that the models in the existing literature are seriously restricted,
generally assuming steady states (though a growth model need not have one),
and requiring unstated assumptions about the convergence rate. The models
in the literature have been extended, and transversality conditions for infinite
horizon have been established for a large class of applicable models, including
some growth models. A mathematical approach has been established, suggest-
ing methods for computation over an infinite horizon. The extensions have
provided an improved framework for treating the transversality conditions in
optimal growth, development, and financial models.



Chapter 10
Conclusions

The objective of tbis book is to develop optimization models for economics
and finance, which can be applied to characterize and make social choices about
the optimal welfare state of the economy, and to other uses as discussed in sec-
tion 1.2, on the basis of the principles of new3 welfare economics. These types
of optimization models, based on welfare economics, are appropriate, since they
allow an explicit incorporation of social value judgments and the characteristics
of the underlying socio-economic organization in economic and finance models,
and provide realistic welfare maximizing optimal resource allocation and social
choices, and decisions consistent with the reality of the economy under study.
For this purpose, a variety of models have bveen developed in different chapters
of the book, including the following types of models:

• models for optimal growth and development,
• small stochastic perturbations),
• finance and financial investment models (and the interaction between
financial and production variables),
• modelling sustainability over long time horizons,
• boundary (transversality) conditions, and
• models with several conflicting objectives.
Both analytic and computational models concerning the aggregate and

multi-agent economy have been studied in the preceding chapters. They relate
to different economic and financial conditions, including deterministic macroe-
conomic dynamics, optimal economic growth and development, financial dy-
namics, sustainable growth, models with some uncertainty, cooperative games,
and infinite-horizon programming. These questions have been approached us-
ing mathematical and computational techniques for optimization, including
some extensions to current methods for optimization. The topics include the
following:

• when is an optimum reached, and when it it unique?,
• relaxation of the conventional convex (or concave) assumptions on an
economic or financial model,
• associated mathematical concepts such as invex (relaxing convex) and
quasimax (relaxing maximum), and the circumstances when these apply,
• multiobjective optimal control models, and the related Pontryagin
theory,
• related computational methods and programs,
• sensitivity and stability,
• discontinuous (jump) behaviours,
• optimization with an infinite horizon, related to the rate of approach to
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a steady state.
To show the potential of these approaches, this book has emphasized al-

gorithms and computations, including a new MATLAB package called SCOM,
for optimal control.

The implications of the results from these models, concerning resource
allocations that maximize welfare, have been briefly discussed. They show the
plausibility of this optimization approach, and give some support to its validity.
The mathematical extensions to traditional methods for economic and financial
modelling offer scope for further research. The different chapters have offered
modelling approaches to many aspects of optimal social choice, forecasting
using optimal models, optimal policy choice, market simulation, and planning.
These have potential for future research and practical applications.
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