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Preface

This monograph is addressed to anyone interested in the subject of restricted-
parameter-space estimation, and in particular to those who want to learn, or
bring their knowledge up to date, about (in)admissibility and minimaxity
problems for such parameter spaces.

The coverage starts in the early 1950s when the subject of inference for re-
stricted parameter spaces began to be studied and ends around the middle of
2004. It presents known, and also some new, results on (in)admissibility and
minimaxity for nonsequential point estimation problems in restricted finite-
dimensional parameter spaces. Relationships between various results are dis-
cussed and open problems are pointed out. Few complete proofs are given,
but outlines of proofs are often supplied. The reader is always referred to the
published papers and often results are clarified by presenting examples of the
kind of problems an author solves, or of problems that cannot be solved by a
particular result.

The monograph does not touch on the subject of testing hypotheses in re-
stricted parameter spaces. The latest books on that subject are by Robertson,
Wright and Dykstra (1988) and Akkerboom (1990), but many new results in
that area have been obtained since.

The monograph does have a chapter in which questions about the existence
of maximum likelihood estimators are discussed. Some of their properties are
also given there as well as some algorithms for computing them. Most of these
results cannot be found in the Robertson, Wright, Dykstra book.

The author’s long familiarity with the subject of this monograph combined
with her 14-year General Editorship of Statistical Theory and Method Ab-
stracts make it very unlikely that she missed any published results on the
subject.
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Introduction: Some history and some examples

Sometime in the early 1950s somebody came to the Statistical Consulting
Service of the Mathematical Center in Amsterdam with a practical problem
which led to the following theoretical question. Suppose Xi ∼ind Bin(ni, θi),
i = 1, 2, and suppose that it is known that θ1 ≤ θ2. How does one esti-
mate θ = (θ1, θ2)? The client was given the maximum likelihood estima-
tor (MLE) θ̂ = (θ̂1, θ̂2), where θ̂i = Xi/ni, i = 1, 2 if X1/n1 ≤ X2/n2 and
θ̂1 = θ̂2 = (X1 + X2)/(n1 + n2) if not.

This led to the study of the k-sample problem where Xi,j , j = 1, . . . , ni, i =
1, . . . , k, k ≥ 2, are independent random variables and, for i = 1, . . . , k, the
Xi,j have distribution function Fi(x; θi), θi ∈ R1. The parameter space Θ
for θ = (θ1, . . . , θk) was determined by inequalities among the θi and bounds
on them. The inequalities among them were either a simple ordering, i.e.,
Θ = {θ | θ1 ≤ . . . ≤ θk}, or an incomplete one such as, e.g., k = 3 and
Θ = {θ | θ1 ≤ θ2, θ1 ≤ θ3}. Conditions for the existence of the MLE of θ were
obtained as well as algorithms for finding MLEs (see van Eeden, 1956, 1957a
– c, 1958). The MLE for the simply ordered binomial case was also obtained
by Ayer, Brunk, Ewing, Reid and Silverman (1955). Further, Brunk (1955,
1958) considered the k-sample problem where the Xi,j have a one-parameter
exponential-family distribution.

Many of these and related results concerning MLEs for ordered parameters can
be found in Barlow, Bartholomew, Bremner and Brunk (1972) and in Robert-
son, Wright and Dykstra (1988). These books do not discuss properties like
admissibility or minimaxity. In fact, in the early days of the development of
restricted-parameter-space inference there does not seem to have been much
interest, if any, in the properties of the MLE, nor for that matter in looking
for other, possibly better, estimators. It seems that it was not known that
estimators which have “good” properties in unrestricted spaces lose many of
these properties when the parameter space is restricted. As an example, for
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X ∼ N (θ, 1) and squared error loss, the MLE of θ for the parameter space
{θ | − ∞ < θ < ∞} is unbiased, admissible, minimax and has a normal
distribution. For the parameter space {θ | θ ≥ 0} the MLE is biased and in-
admissible (see Sacks, 1960, 1963), but still minimax (see Katz, 1961). It does
not have a normal distribution and for θ = 0 it is, for a sample X1, . . . , Xn,
not even asymptotically normal. But, there are cases where the MLE does
not lose its admissibility property when the parameter space is restricted. For
example, when X ∼ Bin(n, θ) with θ ∈ [0, m] for some known m ∈ (0, 1) and
n ≥ 2, the MLE of θ is admissible for squared error loss when 0 < mn ≤ 2
(see Charras and van Eeden, 1991a).

Examples of other problems addressed in the restricted-parameter-space-
estimation literature are: (i) finding (admissible) dominators for inadmissi-
ble estimators, (ii) finding “good” estimators (admissible minimax, e.g.) and
(iii) when do “good” properties of an estimator of a vector parameter carry
over to its components? All of these properties depend, of course, on the loss
function used. Most authors use (scale-invariant) squared-error loss, but other
loss functions are being used and questions of universal admissibility (in the
sense of Hwang, 1985) are studied by some authors. Finally, problems with
nuisance parameters can give interesting and curious results. In such cases,
restrictions imposed among the nuisance parameters (or between the nuisance
parameters and the parameters of interest) can lead to improved estimation
of the parameters of interest.

As will be seen, not very much is known about the question of how much “bet-
ter” (risk-function-wise) dominators are than their inadmissible counterparts.
Nor is much known about the possible improvements which can be obtained
by restricting a parameter space. The numerical results on these two questions
indicate that gains in the minimax value from restricting the parameter space
can be very substantial when the restricted space is bounded. However, for
unbounded restricted parameter spaces, the minimax value for the restricted
space is often equal to the one for the unrestricted one. As far as gains from
dominators is concerned, any gain one finds for a particular problem is only a
lower bound on possible gains for that problem, unless one can show that there
is no “better” dominator. And the obtained results on these lower bounds are
very model dependent.

In this monograph, known (as well as some new) results on the above-
mentioned aspects of estimation in restricted parameter spaces are described
and discussed for the case of non-sequential point estimation in Rk. Relation-
ships between the results of various authors, as well as open problems, are
pointed out. Essential errors are reported on.

A general statement of the problem, as well as the notation and some defini-
tions, are given in Chapter 2. Chapters 3 and 4 contain, respectively, results on
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admissibility and minimaxity when the problem does not contain any nuisance
parameters. Results for the case where nuisance parameters are present are
presented in Chapter 5 and results for the linear model are given in Chapter
6. Several other properties of and questions about restricted-parameter-space
estimators, such as, e.g., robustness to misspecification of the parameter space
and unbiasedness can be found in Chapter 7. Also given in that chapter are
relationships with Hu and Zidek’s weighted likelihood estimation (see F. Hu,
1994, 1997 and Hu and Zidek, 2002).

The last chapter, Chapter 8, contains existence results for maximum likeli-
hood estimators under order-restrictions on the parameters as well as some of
their properties and some algorithms to compute them. It is hoped that these
results will help the reader better understand some of the presented results
concerning maximum likelihood estimators in restricted parameter spaces.

An extensive bibliography concludes the monograph.
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A statement of the problem, the notation and
some definitions

Consider a probability space (X ,A), a family of distributions

Po = {Pθ,λ, θ = (θ1, . . . , θM ), λ = (λ1, . . . , λK−M ), (θ, λ) ∈ Ωo ⊂ RK}
defined over it and a random vector X ∈ Rn defined on it, where M ≥ 1,
K − M ≥ 0 and Ωo is closed and convex with a non-empty interior. Assume
that Pθ,λ has a density, pθ,λ, with respect to a σ-finite measure ν. Then the
problem considered in this monograph is the estimation, based on X, of θ
when it is known that (θ, λ) ∈ Ω, where Ω is a known closed, convex proper
subset of Ωo with a non-empty interior. When K − M ≥ 1, λ is a vector of
nuisance parameters.

Let
Θo = {θ ∈ RM | (θ, λ) ∈ Ωo for some λ ∈ RK−M}

Θ = {θ ∈ RM | (θ, λ) ∈ Ω for some λ ∈ RK−M}.

⎫⎬
⎭ (2.1)

Then the set Θ is a known closed, convex subset of Θo with a non-empty
interior.

For a definition of what, in this monograph, is considered to be an estimator
of θ and to see its relationship to definitions used by other authors, first look
at the case where

the support of Pθ,λ is independent of (θ, λ) for (θ, λ) ∈ Ωo. (2.2)

Then estimators δ of θ based on X satisfy

Pθ,λ(δ(X) ∈ Θ) = 1 for all (θ, λ) ∈ Ω. (2.3)

This class of estimators is denoted by

D = {δ | (2.3) is satisfied }. (2.4)
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As examples of this kind of model, let X1 and X2 be independent random
variables with X1 ∼ N (θ, 1) and X2 ∼ N (λ, 1). Suppose θ and λ are un-
known, but it is known that θ ≤ λ ≤ 1. Then K = 2, M = 1, Ωo = R2,
Ω = {(θ, λ) | θ ≤ λ ≤ 1}, Θo = R1 and Θ = {θ | θ ≤ 1}. In this case
the problem is the estimation of θ based on X = (X1, X2) by an estima-
tor δ(X) satisfying Pθ,λ(δ(X) ≤ 1) = 1 for all (θ, λ) ∈ Ω. For the case
where Xi ∼ind N (θi, 1), i = 1, 2, with θ1 and θ2 unknown and θ1 ≤ θ2,
K = M = 2 and θ = (θ1, θ2) is to be estimated based on X = (X1, X2).
Here Θo = Ωo = R2, Θ = Ω = {θ | θ1 ≤ θ2} and estimators δ(X) =
(δ1(X), δ2(X)) satisfy Pθ(δ1(X) ≤ δ2(X)) = 1 for all θ ∈ Θ. As another ex-
ample, let Xi ∼ind N (θ, λi), i = 1, . . . , k with all parameters unknown and
0 < λ1 ≤ . . . ≤ λk. Then θ is to be estimated based on X = (X1, . . . , Xk). Here
K = k+1, M = 1, Ωo = {(θ, λ1, . . . , λk) |−∞ < θ < ∞, λi > 0, i = 1, . . . , k},
Ω = {(θ, λ1, . . . , λk) | −∞ < θ < ∞, 0 < λ1 ≤ . . . ≤ λk}, and Θo = Θ = R1.

Not every author on the subject of estimation in restricted parameter spaces
restricts his estimators of θ to those satisfying (2.3). Some authors ask, for
some or all of their estimators, only that they satisfy

Pθ,λ(δ(X) ∈ Θo) = 1 for all (θ, λ) ∈ Ω. (2.5)

Others do not say what they consider to be an estimator, but their definition
can sometimes be obtained from the properties they prove their estimators to
have. A summary of opinions on whether estimators should satisfy (2.3) can
be found in Blyth (1993). Here I only quote Hoeffding (1983) on the subject
of restricting estimators of θ to those in D. He calls such estimators “range-
preserving” and says “The property of being range-preserving is an essential
property of an estimator, a sine qua non. Other properties, such as unbiased-
ness, may be desirable in some situations, but an unbiased estimator that is
not range-preserving should be ruled out as an estimator.” – a statement with
which I agree.

Let L(d, θ) be the loss incurred when d ∈ Θ is used to estimate θ and θ ∈ Θ
is the true value of the parameter to be estimated. It is assumed that L is of
the form

L(d, θ) =
M∑
i=1

Li(di, θi), (2.6)

where, for each i = 1, . . . , M , all y = (y1, . . . , yM ) ∈ Θ and all (θ1, . . . , θM ) ∈
Θ,

i) Li(yi, θi) is bowl-shaped in θi,

ii) Li(yi, θi) ≥ 0 and Li(θi, θi) = 0,

iii) Li(yi, θi) is convex in yi.

⎫⎪⎪⎬
⎪⎪⎭ (2.7)
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These properties of the loss function, together with the convexity of Θ,
imply that the class of non-randomized estimators is essentially complete
in the class of all estimators with respect to Ω in the sense that, for ev-
ery randomized estimator δ, there exists a non-randomized one δ′ with
Eθ,λL(δ′(X), θ) ≤ L(δ(X), θ) for all (θ, λ) ∈ Ω. So one can restrict oneself
to non-randomized estimators.

Examples of loss functions of the form (2.6) with the properties (2.7) are

1) the class of weighted pth-power loss functions where

L(d, θ) =
M∑
i=1

|di − θi|pwi(θ).

Here p ≥ 1 and the wi(θ) are known functions of θ which are, for each
i = 1, . . . , M , strictly positive on Θ. Special cases of this loss function are
(i) squared-error loss with p = 2 and wi(θ) = 1 for all i = 1, . . . , M and (ii)
scale-invariant squared-error loss with p = 2 and wi(θ) = 1/θ2

i , which can
be used when θi > 0 for all θ ∈ Θ, as is, e.g., the case in scale-parameter
estimation problems;

2) the class of linex loss functions where

L(d, θ) =
M∑
i=1

(
ewi(θ)(di − θi) − wi(θ)(di − θi) − 1

)
.

Here the wi(θ) are known functions of θ with, for each i = 1, . . . , M ,
wi(θ) �= 0 for all θ ∈ Θ.

In problems with M ≥ 2 quadratic loss is sometimes used. It generalizes
squared-error loss and is given by

L(d, θ) = (d − θ)′A(d − θ), (2.8)

where A is a known M × M positive definite matrix. For instance, when
X ∼ NM (θ, Σ), Σ known and positive definite, with the vector θ to be esti-
mated, taking A = Σ−1 is equivalent to estimating the vector Σ−1/2θ with
squared-error loss based on Y = Σ−1/2X.

The risk function of an estimator δ of θ is, for (θ, λ) ∈ Ω, given by
R(δ, (θ, λ)) = Eθ,λL(δ(X), θ) and estimators are compared by comparing their
risk functions. An estimator δ is called inadmissible in a class C of estimators
for estimating θ if there exists an estimator δ′ ∈ C dominating it on Ω, i.e., if
there exists an estimator δ′ ∈ C with

R(δ′, (θ, λ)) ≤ R(δ, (θ, λ)) for all (θ, λ) ∈ Ω and

R(δ′, (θ, λ)) < R(δ, (θ, λ)) for some (θ, λ) ∈ Ω
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and an estimator δ is admissible when it is not inadmissible. Further, an esti-
mator δ of θ is called minimax in a class C of estimators of θ if it minimizes,
among estimators δ′ ∈ C, sup(θ,λ)∈Ω R(δ′, (θ, λ)).

In the literature on estimation in restricted parameter spaces two definitions
of admissibility and minimaxity are used. In each of the definitions the risk
functions of estimators of θ are compared on Ω. However, in one definition the
estimators under consideration (i.e., the above class C) are those in D, while
in the other definition the estimators are those in Do = {δ | (2.5) is satisfied}.
Or, to say this another way, by the first definition an estimator δ (∈ D) is
inadmissible when there exists an estimator δ′ ∈ D which dominates δ on Ω.
And an estimator δ (∈ D) is minimax when it minimizes, among estimators
in D, sup{R(δ, (θ, λ)) | (θ, λ) ∈ Ω}. By the second definition, an estimator δ
(∈ Do) is inadmissible if there exists an estimator δ′ ∈ Do which dominates
it on Ω. And an estimator δ (∈ Do) is minimax if it minimizes, among the
estimators in Do, sup{R(δ, (θ, λ)) | (θ, λ) ∈ Ω}. It is hereby assumed, for the
second pair of definitions, that the loss function (2.6)

i) is defined for θ ∈ Θ and d ∈ Θo

ii) satisfies (2.7) with θ ∈ Θ and (y1, . . . , yM ) ∈ Θo.

}
(2.9)

These two notions of admissibility and minimaxity will be called, respectively,
(D, Ω)- and (Do, Ω)-admissibility and minimaxity and the corresponding es-
timation problems will be called, respectively, the (D, Ω)- and the (Do, Ω)-
problems. In this monograph estimators satisfy (unless specifically stated oth-
erwise) (2.3) and admissibility and minimaxity mean (D, Ω)-admissibility and
minimaxity.

The following relationships exist between (D, Ω)- and (Do, Ω)-admissibility
and minimaxity:

δ ∈ D, δ is (Do, Ω)-admissible =⇒ δ is (D, Ω)-admissible. (2.10)

Further,

δ ∈ D, δ is (Do, Ω)-minimax =⇒
{

δ is (D, Ω)-minimax,

M(D, Ω) = M(Do, Ω),
(2.11)

where M(D, Ω) and M(Do, Ω) are the minimax values for the classes D and
Do and the parameter space Ω.

Now note that, for weighted squared-error loss, the class of estimators D is
essentially complete in Do with respect to the parameter space Ω in the sense
that, for every δ ∈ Do, δ /∈ D there exists a δ′ ∈ D dominating it on Ω.
This dominator is obtained by minimizing, for each x ∈ X , L(δ(x), θ) in θ for
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θ ∈ Θ. This essential completeness also holds for a rectangular Θ when the
loss function is given by (2.6) and satisfies (2.9). Further, one can dominate
δ by using what Stahlecker, Knautz and Trenkler (1996) call the “minimax
adjustment technique”. Their dominator – δ′, say – is obtained by minimizing,
for each x ∈ X ,

H(d) = sup
θ∈Θ

(L(d, θ) − L(δ(x), θ))

for d ∈ Θ. When δ(x) ∈ Θ, H(d) ≥ 0 because

i) H(δ(x)) = 0, so infd∈Θ H(d) ≤ 0;
ii) infd∈Θ H(d) < 0 contradicts the fact that, for each d ∈ Θ,

H(d) = sup
θ∈Θ

(L(d, θ) − L(δ(x), θ))

≥ L(d, δ(x)) − L(δ(x), δ(x)) = L(d, δ(x)) ≥ 0.

So, when δ(x) ∈ Θ, d = δ(x) is a minimizer of H(d). When δ(x) is not in Θ,
assume that a minimizer exists. Then we have, for all θ ∈ Θ and all x ∈ X ,

L(δ′(x), θ) − L(δ(x), θ) =

infd∈Θ supθ∈Θ(L(d, θ) − L(δ(x), θ)) =

supθ∈Θ infd∈Θ(L(d, θ) − L(δ(x), θ)) =

supθ∈Θ(−L(δ(x), θ)) = − infθ∈Θ L(δ(x), θ) ≤ 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.12)

where it is assumed that inf and sup can be interchanged.

Essential completeness of D in Do with respect to Ω, together with (2.10)
gives

δ is (D, Ω)-admissible ⇐⇒ δ ∈ D, δ is (Do, Ω)-admissible. (2.13)

Further, using (2.11) and the essential completeness of D in Do with respect
to Ω, one obtains

δ is (D, Ω)-minimax ⇔ δ ∈ D, δ is (Do, Ω)-minimax.

M(D, Ω) = M(Do, Ω).

}
(2.14)

From (2.13) and (2.14) it is seen that studying the (Do, Ω)-problem can be
very helpful for finding admissibility and minimaxity results for the (D, Ω)-
problem.
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Another problem whose admissibility and minimaxity results can be helpful
for our problem is the “unrestricted problem” where estimators of θ are re-
stricted to Θo and compared on Ωo. Then we have (still assuming that (2.2)
holds)

δ ∈ Do =⇒ Pθ,λ(δ(X) ∈ Θo) = 1 for all (θ, λ) ∈ Ωo,

so that this estimation problem can, and will, be called the (Do, Ωo)-problem.
Obviously,

δ ∈ Do, δ is (Do, Ω)-admisible =⇒ δ ∈ Do, δ is (Do, Ωo)-admissible. (2.15)

Also, because Ω ⊂ Ωo,

M(Do, Ω) ≤ M(Do, Ωo) (2.16)

which, together with (2.14), gives

M(D, Ω) = M(Do, Ω) ≤ M(Do, Ωo). (2.17)

One can now ask the question: when does

M(Do, Ω) = M(Do, Ωo) (2.18)

or, equivalently,
M(D, Ω) = M(Do, Ωo) (2.19)

or, equivalently
M(D, Ω) = M(Do, Ω) = M(Do, Ωo) (2.20)

hold? Or – are there cases where restricting the parameter space does not
reduce the minimax value of the problem?

Examples where (2.2) and (2.20) hold can be found in Chapter 4, sections
4.2, 4.3 and 4.4. Those in the sections 4.3 and 4.4 are examples where either
all the θi are lower-bounded or Θ = {θ | θ1 ≤ . . . ,≤ θk}. In the example in
Section 4.2, X ∼ Bin (n, θ) with θ ∈ [m, 1−m] for a small known m ∈ (0, 1/2).

An example where (2.2) is satisfied but (2.20) does not hold is the estima-
tion of a bounded normal mean with Θo = (−∞,∞), squared-error loss and
known variance. When Θ = [−m, m] for some positive known m, Casella and
Strawderman (1981) give the values of M(D, Ω) for several values of m. For
example, for m = .1, .5, 1 and a normal distribution with variance 1, the min-
imax risks are, respectively .010, .199, .450, while, of course, M(Do, Ωo) = 1,
showing that restricting the parameter space to a compact set can give very
substantial reductions in the minimax value of the problem. These results are
discussed in Chapter 4, Section 4.2 together with other cases where the three
minimax values are not equal.
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As already noted, the above relationships between admissibility and minimax-
ity results for the (D, Ω)- and (Do, Ω)-problems show that solving a (Do, Ω)-
problem can be very helpful toward finding a solution to the corresponding
(D, Ω)-problem. But authors who publish results on a (Do, Ω)-problem are not
always clear about why they do so. Is it as a help for solving the correspond-
ing (D, Ω)-problem, or do they consider statistics not satisfying (2.3) to be
estimators and are not really interested in the corresponding (D, Ω)-problem?
In this monograph some papers are included which look at (Do, Ω)-problems.
Their results are clearly identified as such, but their relationship to the cor-
responding (D, Ω)-problems is not always commented on.

Remark 2.1. Note that, when δ ∈ Do is (Do, Ωo)-minimax and δ′ ∈ D dom-
inates δ on Ω, one cannot conclude that δ′ is (D, Ω)-minimax. But Dykstra
(1990) seems, in his Example 3, to draw this conclusion.

Remark 2.2. The above definition of the minimax adjustment technique is not
the one used by Stahlecker, Knautz and Trenkler (1996). They minimize, for
each x ∈ X , H(d) for d ∈ Rk. Such a minimizer is not necessarily constrained
to Θ. But assuming they meant to minimze over Θ, their reasoning is incor-
rect.

In most papers on restricted-parameter-space estimation the models consid-
ered satisfy (2.2), but several models where this condition is not satisfied
are rather extensively studied. Three examples are the k-sample problems
where Xi,1, . . . , Xi,ni

, i = 1, . . . , k, are independent and Xi,j , j = 1, . . . , ni

have either a U(0, θi) distribution or a U(θi − 1, θi + 1) distribution or an
exponential distribution on (θi,∞). Suppose, in the first uniform case, that
θ = (θ1, . . . , θk) is to be estimated when θ ∈ Θ, where Θ is a closed convex
subset of Rk

+ with a non-empty interior. Then M = k = K, Ωo = Θo = Rk
+

and Ω = Θ. Given that we know for sure, i.e., with Pθ = 1 for all θ ∈ Rk
+,

that Yi = max1≤j≤ni
Xi,j ≤ θi, i = 1, . . . , k, estimators δ of θ “should”, in ad-

dition to being restricted to Θ, satisfy the “extra” restriction that δi(Y ) ≥ Yi,
i = 1, . . . , k, where Y = (Y1, . . . , Yk). To say it more precisely, δ should satisfy

Pθ(δ(Y ) ∈ ΘY ) = 1 for all θ ∈ Θ, (2.21)

where
ΘY = {θ ∈ Θ | θi ≥ Yi, i = 1, . . . , k}.

Let D′ be the class of estimators satisfying (2.21) and let the (D′, Θ)-problem
be the problem where estimators are in D′ and are compared on Θ. The
unrestricted problem in this case is the problem where estimators satisfy

Pθ(δ(Y ) ∈ Θo,Y ) = 1 for all θ ∈ Rk
+, (2.22)

where
Θo,Y = {θ ∈ Rk

+ | θi ≥ Yi, i = 1, . . . , k}
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and estimators are compared on Rk
+. Call this problem the (D′

o, R
k
+)-problem.

And then there is the problem studied by those who do not insist that their
estimators are restricted to Θ, i.e., the (D′

o, Θ)-problem where estimators sat-
isfy (2.22) and are compared on Θ.

From the above definitions it follows that ΘY ⊂ Θo,Y with Pθ = 1 for all
θ ∈ Θ and that ΘY and Θo,Y are both closed and convex with a non-empty
interior. So, D′ ⊂ D′

o and, under the same conditions on the loss function as
before, D′ is essentially complete in D′

o with respect to Θ. This shows that
(2.13) and (2.14) hold with D (resp. Do) replaced by D′ (resp. D′

o). With these
same replacements, (2.15) holds for the (D′

o, R
k
+)- and the (D′

o, Θ)-problems
so that (see (2.17)),

M(D′, Θ) = M(D′
o, Θ) ≤ M(D′

o, R
k
+). (2.23)

An example where these three minimax values are equal is given in Chapter
4, Section 4.3.

Similar remarks and results hold for the other uniform case and for the expo-
nential case, as well as for cases with nuissance parameters.

In order to simplify the notation, (D, Ω), (Do, Ω) and (Do, Ωo) are used for
the three problems (with the Ω’s replaced by Θ’s in case there are no nuis-
sance parameters), whether (2.2) is satisfied or not: i.e., the primes are left off
for cases like the uniform and exponentail ones above. And “δ satisfies (2.3)”
stands for “δ satisfies (2.3) or (2.21)”, as the case may be.

Quite a number of papers on such uniform and exponential models are dis-
cussed in this monograph. In most of them the “extra” restriction is taken
into account but, as will be seen in Chapter 5, Sections 5.2 and 5.3, in two
cases authors propose and study estimators which do not satisfy it.

Two more remarks about admissibility and minimaxity for the three prob-
lems: (i) if δ is (D, Ω)-inadmissible as well as (D, Ω)-minimax, then every
δ′ ∈ D which dominates δ on Ω is also (D, Ω)-minimax. This also holds with
(D, Ω) replaced by (Do, Ω) as well with (D, Ω) replaced by (Do, Ωo); (ii) if
δ is (Do, Ω)-minimax and D is essentially complete in Do with respect to Ω
then there exists a δ′ ∈ D which is (D, Ω)-minimax, because the essential
completeness implies that M(D, Ω) = M(Do, Ω).

Universal domination is another criterion for comparing estimators. It was
introduced by Hwang (1985) for the case where Θ = Ω = Rk and by this cri-
terion an estimator δ′ universally dominates an estimator δ on the parameter
space Θ with respect to a class C of loss functions L if

EθL(δ′(X), θ) ≤ EθL(δ(X), θ) for all θ ∈ Θ and all L ∈ C
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and, for a particular loss function ∈ C, the risk functions are not identical. An
estimator δ is called universally admissible if no such δ′ exists.

Hwang (1985) takes the class C to be the class of all nondecreasing functions
of the generalized Euclidean distance |d − θ|D = ((d − θ)′D(d − θ))1/2 where
D is a given non-negative definite matrix. This implies, as he shows, that δ′

universally dominates δ if and only if δ′ stochastically dominates δ, i.e. if and
only if

Pθ(|δ′(X) − θ|D ≥ c) ≤ Pθ(|δ(X) − θ|D ≥ c) for all c > 0 and all θ ∈ Θ

Pθ(|δ′(X) − θ|D ≥ c) < Pθ(|δ(X) − θ|D ≥ c) for some (c, θ), c > 0, θ ∈ Θ.

He further shows that, if δ is admissible with respect to a particular loss
function Lo which is a strictly increasing function of |d − θ|D and the risk
function of δ for this loss function is finite for all θ ∈ Θ, then δ is universally
admissible for this D and Θ. Equivalently, if δ is universally inadmissible with
respect to a D and Θ, then δ is inadmissible under any strictly increasing loss
Lo(|d − θ|D) with a risk which is finite for all θ ∈ Θ.

Still another criterion for comparing estimators is Pitman closeness (also called
Pitman nearness). For two estimators δ1 and δ2 of θ ∈ Θ ⊂ R1, Pitman (1937)
defines, for cases where K = M , their closeness by

Pθ(|δ1(X) − θ| < |δ2(X) − θ|) θ ∈ Θ. (2.24)

Then, assuming that Pθ(|δ1(X) − θ| = |δ2(X) − θ|) = 0 for all θ ∈ Θ, δ1 is
Pitman-closer to θ than δ2 when (2.24) is ≥ 1/2. Pitman (1937) notes that Pit-
man closeness comparisons are not necessarily transitive. For three estimators
δi, i = 1, 2, 3, one can have δ1 Pitman-closer to θ than δ2, δ2 Pitman-closer
to θ than δ3 and δ3 Pitman-closer to θ than δ1. It is also well-known that
Pitman-closeness comparisons do not necessarily agree with risk-function com-
parisons. One can have, e.g., δ1 Pitman-closer to θ than δ2 while δ2 dominates
δ1 for squared-error loss. In Chapter 5, Section 5.3, several Pitman-closeness
comparisons in restricted parameter spaces are presented and compared with
risk-function comparisons. Much more on Pitman closeness, in particular on
its generalization to k ≥ 2, can be found in Keating, Mason and Sen (1993).

One of the various estimators discussed in this monograph is the so-called
Pitman estimator. The name comes from Pitman (1939). He proposes and
studies Bayes estimators with respect to a uniform prior. His parameters are
either location parameters θ ∈ Θo = (−∞,∞), for which he uses squared-
error loss and a uniform prior on Θ, or scale parameters θ ∈ Θo = (0,∞),
for which he uses scale-invariant-squared-error loss and a uniform prior for
log θ on (−∞,∞). But the name “Pitman estimator” is now used by many
authors, and is used in this monograph, for any Bayes estimator with respect
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to a uniform prior for θ or for a function h(θ) for θ ∈ Θ or Θo. Some of the
properties of the original Pitman estimators are summarized in Chapter 4,
Section 4.1.

In many restricted-parameter-space estimation problems considered in the
literature the problem does not contain any nuisance parameters, the problem
is a k-sample problem with independent samples from distributions Fi(x, θi),
i = 1, . . . , k and Θ (= Ω) is determined by inequalities among the components
θi of θ. The most common examples are the simple-order restriction where
Θ = {θ | θ1 ≤ . . . ≤ θk}, the simple-tree-order restriction with Θ = {θ | θ1 ≤
θi, i = 2, . . . , k}, the umbrella-order restriction with Θ = {θ | for some io, 1 <
io < k, θi ≤ θio

for all i �= io} and the loop-order restriction with, for k = 4
e.g., Θ = {θ | θ1 ≤ θ2 ≤ θ4, θ1 ≤ θ3 ≤ θ4}. The simple-tree-order restriction
is a special case of the rooted-tree-order restriction where each θi, except one
of them (θ1, say, the root), has exactly one immediate predecessor and the
root has none. Here, θj is an immediate predecessor of θi (i �= j) when θ ∈ Θ
implies θj ≤ θi but there does not exist an l, l �= i, l �= j, with θj ≤ θl ≤ θi. So,
the simple-tree order is a tree order where all θi have the root as their unique
immediate predecessor. Another Θ for which results have been obtained is the
upper-star-shaped restriction, also called the increasing-in-weighted-average
restriction, where

Θ = {θ | θ1 ≤ θ̄2 ≤ . . . ≤ θ̄k},
with θ̄i =

∑i
j=1 wjθj/

∑i
j=1 wj for given positive weights wi. Note that this

Θ is equivalent to

Θ = {θ | θ̄i ≤ θi+1, i = 1, . . . , k − 1}.

Finally, when θ1, . . . , θk are order-restricted, θi is a node when, for each j �= i,
θj ≤ θi or θj ≥ θi. For instance, when k = 5 and

Θ = {θ | θj ≤ θ3, j = 1, 2, θl ≥ θ3, l = 4, 5},

θ3 is the only node and when

Θ = {θ | θj ≤ θ3, j = 1, 2, θ3 ≤ θ4 ≤ θ5}

then θ3, θ4 and θ5 are nodes, but θ1 and θ2 are not. Nodes are important for
some estimation problems presented in Chapter 5.
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(In)admissibility and dominators

In this chapter results are presented on (in)admissibility of estimators of θ
(satisfying (2.3)) for the case where the problem does not contain any nui-
sance parameters. So, in the notation of Chapter 2, M = K, Ωo = Θo and
Ω = Θ and the notation M for the number of parameters to be estimated
is changed to k. Some of these results give sufficient conditions for inadmis-
sibility of estimators of θ for a particular family of distributions. For exam-
ple, when is an estimator of the expectation parameter in a one-dimensional
exponential-family distribution inadmissible, when Θ is a closed, convex sub-
set of the (open) natural parameter space and the loss is squared error? Other
results are for particular estimators: e.g., is the MLE of θ, when X has a
logistic distribution with mean θ, inadmissible for squared error loss when
Θ = {θ | m1 ≤ θ ≤ m2} for known m1 and m2 with −∞ < m1 < m2 < ∞?
Dominators for some of the inadmissible estimators are given.

3.1 Results for the exponential family

We start with what is possibly the earliest result on inadmissiblity in restricted
parameter spaces. It can be found in Hodges and Lehmann (1950). Let X ∼
Bin(1, θ) with 1/3 ≤ θ ≤ 2/3 and let the loss be squared error. Then Hodges
and Lehmann show that the MLE of θ is inadmissible and dominated by
every estimator δ satisfying 1/3 ≤ δ(0) ≤ δ(1) = 1 − δ(0) ≤ 2/3. Another
early result can be found in Sacks (1960, 1963 (p. 767)). Let X ∼ N (θ, 1),
where we know that θ ≥ 0 and let the loss for estimating θ be squared error.
Then the MLE (= max(0, X)) is inadmissible. This result is a special case of
a much more general result proved by Sacks . The same kind of result can be
found in Brown (1986, Theorem 4.23) and we will state it in the form Brown
gives it. The setting is a one-parameter exponential family with density

pξ(x) = C(ξ) exp(x ξ), (3.1)
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with respect to a σ-finite measure ν. The natural parameter space N is open,
the loss is squared error and the expectation parameter θ = η(ξ) = EξX is to
be estimated. Brown shows that, when ξ is restricted to Ξ, a closed convex
subset of the natural parameter space, then an admissible estimator δ of θ is
non-decreasing. Further, if

Iδ =

{x | ν({y | y > x, δ(y) ∈ So}) > 0, ν({y | y < x, δ(y) ∈ So}) > 0} ,

}
(3.2)

where So is the interior of S, the closed convex support of ν, and δ is admis-
sible, then there exists a finite measure V on Ξ such that, for all x ∈ Iδ,

δ(x) =

∫
η(ξ)

1 + |η(ξ)| ex ξ dV (ξ)∫
1

1 + |η(ξ)| ex ξ dV (ξ)
. (3.3)

Obviously, Sack’s (1963) result for the lower-bounded normal mean follows
from this result of Brown.

There are many other cases where Brown’s Theorem 4.23 can be used to
prove inadmissibility of estimators for restricted-parameter-space problems.
Some examples are:

i) X ∼ N (θ, 1) with θ = ξ, N = {ξ | −∞ < ξ < ∞} and Θ = {θ | m1 ≤ θ ≤
m2}, −∞ < m1 < m2 < ∞;

ii) X ∼ Γ (α, θ) for known α > 0, ξ = θ−1, α θ = Eα,θX, N = {ξ | ξ > 0} and
Θ = {θ | m1 ≤ θ ≤ m2} with 0 < m1 < m2 ≤ ∞;

iii) X ∼ Bin(n, θ) with ξ = log(θ/(1 − θ)), N = {ξ | − ∞ < ξ < ∞} and
Θ = {θ | m1 ≤ θ ≤ m2} for 0 < m1 < m2 < 1.

In each of these cases m1 and m2 are known, the loss is squared error and
the expectation parameter is to be estimated. Then the MLE is an example
of an estimator which is “not smooth enough” to satisfy Brown’s necessary
condition for admissibilty, but there are of course many others.

Further, any of these results can be extended to the case where X1, . . . , Xk are
independent and, for i = 1, . . . , k, Xi has density (3.1) with ξ replaced by ξi.
Restricting (ξ1, . . . , ξk) to a closed rectangular subset of Nk and using squared-
error loss, the inadmissibility of, e.g., the MLE of the vector of the expectation
parameters then follows from Brown’s Theorem 4.23. This theorem of Brown
cannot be applied when Θ is not a rectangle, but for the case where, e.g.,
X ∼ Nk(ξ, I) with ξ restricted to a closed, convex subset of Rk and squared-
error loss, inadmissibility of the MLE of the vector ξ follows from Theorem
4.16 of Brown (1986). In this theorem Brown gives necessary conditions for
the admissibility of an estimator of the canonical parameter of a k-parameter
exponential family with density
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pξ(x1, . . . , xk) = C1(ξ) exp

(
k∑

i=1

xi ξi

)
, (3.4)

where ξ = (ξ1, . . . , ξk). He shows that δ is an admissible estimator of ξ when
ξ is restricted to Ξ, a closed convex subset of N̄ , only if there exits a measure
H on Ξ such that

δ(x) =
∫

ξ ex ξdH(ξ)∫
ex ξdH(ξ)

for x ∈ So a.e. ν, (3.5)

where x = (x1, . . . , xk). An example of this normal-mean result is the case
where X1, . . . , Xk are independent with Xi ∼ N (ξi, 1), i = 1, . . . , k and
ξ1 ≤ . . . ≤ ξk.

There are cases within the exponential family where Brown’s Theorem 4.23
can not be used, but where (in)admissibility results have been obtained. For
instance:

1) The case where X1, . . . , Xk, k ≥ 2, are independent with, for i = 1, . . . , k,
Xi ∼ Bin(ni, θi) and Θ = {θ | θ1 ≤ . . . ≤ θk}, where θ = (θ1, . . . , θk).
Sackrowitz and Strawderman (1974) show that, for squared-error loss, the
MLE of θ is admissible if and only if

k∑
i=1

ni < 7 or (k = 2, ni = 1 for some i ∈ {1, 2}) or (k = 3, n1 = n3 = 1).

They also have results for weighted squared-error loss;
2) As already mentioned in the Introduction, Charras and van Eeden (1991a)

show that, for X ∼ Bin(n, θ) with θ ∈ [0, m] for some known m ∈ (0, 1)
and squared-error loss, the MLE of θ is admissible when n ≥ 2 and 0 <
nm ≤ 2. Funo (1991, Theorem 3.1) shows inadmissibility of the MLE when
nm > 2. Funo also has results for the estimation of restricted multinomial
parameters. He bases his proofs on a complete class theorem of Brown
(1981) which is concerned with inference problems when the sample space
is finite and the parameter space might be restricted;

3) For the case where X has a Poisson distribution with mean θ ∈ [0, m],
0 < m < ∞, Charras and van Eeden (1991a) show, among other things,
that an estimator δ with

δ(0) = 0 < δ(1) ≤ m and δ(x) = m for x ≥ 2

is admissible for estimating θ with squared error loss;
4) Shao and Strawderman (1994) consider the estimation, for squared-error

loss, of the mean of a power-series distribution under restrictions on the
parameter space. They give admissibility results for the MLE and note
that some of the above-given results of Charras and van Eeden (1991a) for
the binomial and Poisson cases overlap with theirs.
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In the first example above, Brown’s Theorem 4.23 does not apply because
k ≥ 2 and Θ is not a rectangle. In each of the examples in 2) - 4) this theorem
of Brown does not apply because Θ is not a closed convex subset of the (open)
natural parameter space.

Remark 3.1. The phenomenon seen in 1) and 2) above that an estimator is
admissible for small sample sizes and inadmissible for larger ones also occurs
in unrestricted parameter spaces. Brown, Chow and Fong (1992), for example,
show that, for X ∼ Bin(n, θ), the MLE of θ(1 − θ) is, for squared-error loss,
admissible for n ≤ 5 and inadmissible for n ≥ 6.

Remark 3.2. My above statements of Brown’s theorems 4.23 and 4.16 are not
identical to Brown’s in that I added the condition that the parameter space is
a closed, convex subset of N for Theorem 4.23 and of N̄ for Theorem 4.16 –
conditions Brown uses in his proofs, but apparently forgot to mention in the
statements of his theorems.
Further, Brown’s proofs – in particular his proof of his Theorem 4.23 – are
not complete and need more precision in some places. But, at the moment, I
am convinced that they can be fixed and that these theorems as I state them
are correct.

3.2 Results of Moors

Moors (1981, 1985) considers the general problem as described at the begin-
ning of Chapter 2. He estimates h(θ) for a given h taking values in Rk. His
results are presented here for the special case where h(θ) = θ for all θ ∈ Θo.

Moors uses squared-error loss and assumes that the problem of estimating θ
is invariant with respect to a finite group of transformations from X to X . He
also assumes that the induced group G̃ satisfies

g̃(αd1 + βd2) = αg̃(d1) + βg̃(d2) for all α, β ∈ R, all d1, d2 ∈ Θ, all g̃ ∈ G̃,

that all g ∈ G are measure-preserving (i.e., ν(g−1(A)) = ν(A) for all A ∈ A
and all g ∈ G) and that G̃ is commutative. He then gives sufficient conditions
for estimators δ of θ to be inadmissible. He does this by explicitely construct-
ing, for each x ∈ X , a closed, convex subset Θx of Θ such that

[Pθ (δ(X) /∈ ΘX) > 0 for some θ ∈ Θ] =⇒ [δ is inadmissible].

Further, he shows that the estimator δo defined, for each x, as the projection
of δ(x) unto Θx dominates δ. Of course, when Θx = Θ for all x ∈ X nothing
can be concluded concerning the (in)admissibility of δ.

The sets Θx are defined as follows. Let G = (g1, . . . , gp) and let, for x ∈ X
and θ ∈ Θ (see Moors, 1985, p. 43),
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α(x, ḡj(θ)) =
pḡj(θ)(x)
S(x; θ)

, j = 1, . . . , p,

when S(x; θ) =
∑p

i=1 pḡi(θ)(x) > 0. Further, let

tx(θ) =

⎧⎨
⎩
∑p

i=1 α(x, ḡi(θ))g̃i(θ) when S(x; θ) > 0

θ when S(x; θ) = 0.

Then Θx is the convex closure of the range of tx(θ).

Moors gives examples of estimation problems in randomized response mod-
els, in the simple linear regression problem with a restriction on the slope
parameter as well as in the estimation of a restricted binomial parameter. To
illustrate Moors’ results, let X ∼ Bin(1, θ) with Θ = [m, 1−m] for some known
m ∈ (0, 1/2). This problem is invariant with respect to the group G = (g1, g2),
where g1(x) = x and g2(x) = 1 − x. The sets Θx are given by

Θx =

⎧⎪⎪⎨
⎪⎪⎩

[
1 − φ

2
, 1/2] when x = 0

[1/2,
1 + φ

2
] when x = 1,

where φ = (2m − 1)2. This means that any estimator δ for which

δ(0) /∈ [2m(1 − m), 1/2] or δ(1) /∈ [1/2, 1 − 2m(1 − m)] (3.6)

is inadmissible and dominated by its projection on the interval [2m(1−m), 1−
2m(1 − m)]. A particular case of such an inadmissible estimator is the MLE,
which is given by

MLE(X) =

{
m when X = 0

1 − m when X = 1.

Of course, this inadmissibility result, but not the dominators, can be obtained
from Brown’s (1986) Theorem 4.23. Another example where Moors (1985, p.
94-96) shows inadmissibility for a large class of estimators (with dominators)
is the case of Simmons’ unrelated-question randomized-response model (see
Greenberg, Abul-Ela, Simmons and Horvitz, 1969). In this case X1 and X2

are independent with Xi ∼ Bin(ni, θi), i = 1, 2 and

θi = (1 − mi)πA + miπY , i = 1, 2 (3.7)

for known mi ∈ (0, 1), i = 1, 2. The vector (πA, πY ) is to be estimated under
the restrictions imposed by (3.7). In this case Brown does not apply, because
the parameter space is not a closed rectanglar subset of the natural parameter
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space (0, 1) × (0, 1).

As a third example, let X ∼ N (θ, 1) with θ ∈ [−m, m]. This problem is
invariant with respect to the group G = (g1, g2), where g1(x) = x and g2(x) =
−x. The sets Θx are given by

Θx = {θ | − m tanh(m|x|) < θ < m tanh(m|x|)}

So, any δ satisfying

Pθ(δ(X) ∈ ΘX) < 1 for some θ ∈ [−m, m]

is inadmissible and dominated by its projection unto ΘX . The MLE is of
course such an estimator.

Kumar and Sharma (1992) show that Moors’ results hold under weaker con-
ditions on the group G than those of Moors. It does not need to be finite –
locally compact is sufficient. Moors and van Houwelingen (1993) further ex-
tend Moors’ (1981, 1985) results. They consider the linear model X = Zθ+ε,
where X = (X1, . . . , Xn)′ with the Xi independent normal with known vari-
ances and Z an n × k known matrix and show that G̃ does not need to be
commutative and that g does not need to be measure-preserving. The restric-
tions on the unknown k × 1 vector of parameters θ are either of the form
m1 ≤ Aθ ≤ m2 for known k × 1 vectors m1 and m2 and known k × k matrix
A and with the inequalities componentwise, or of the form θ′Bθ ≤ m for a
known diagonal k×k matrix B and a known positive m. More on these Moors
and van Houwelingen results can be found in Chapter 6, Section 6.3.

3.3 Results of Charras and van Eeden

Charras and van Eeden (1991a,b, 1994) consider, like Moors (1981, 1985), the
general case as described at the beginning of Chapter 2. Their loss is squared
error and Θ is closed and convex. These authors give sufficient conditions for
inadmissibility of so-called ”boundary estimators” (terminology introduced by
Moors (1985)), i.e., estimators satisfying

there exists Ao ∈ A such that

⎧⎨
⎩

i) δ(Ao) ⊂ B(Θ)

ii) ν(Ao) > 0,

(3.8)

where B(Θ) is the boundary of Θ and δ(Ao) = {δ(x) | x ∈ Ao}.

The first of their results (Charras and van Eeden, 1991a) holds for compact
parameter spaces. They use Wald’s (1950, Theorem 5.9) condition
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lim
θ→θo

∫
X
|pθ(x) − pθo

(x)| dν(x) = 0 for all θo ∈ Θ. (3.9)

Under this condition, admissible estimators are Bayes when the parameter
space is compact. So, sufficient conditions for an estimator δ to be non-Bayes
are then sufficient conditions for δ to be inadmissible.

We first illustrate their results by means of some examples. Let X have a
logistic distribution with density

pθ(x) =
exp(−(x − θ))

(1 + exp(−(x − θ))2
−∞ < x < ∞

and let θ ∈ [m1, m2] with −∞ < m1 < m2 < ∞. Let δ1 be an estimator of
θ such that there exists measurable sets A1 and A2 with ν(Ai) > 0, i = 1, 2,
A1 ⊂ (−∞, m1), A2 ⊂ (m2,∞), δ1(A1) = m1 and δ1(A2) = m2. The MLE
is an example of such an estimator. If this δ1 is Bayes with respect to some
prior on the interval [m1, m2], the posterior distribution has support {m1}
when x ∈ A1 and support {m2} when x ∈ A2. But the posterior and the prior
distributions have the same support, so this δ1 can not be Bayes. Another
estimator of the mean of a logistic distribution which is inadmissible is given
by

δ2(x) =

{
m1 when x ≤ m1

δ(x) ∈ [m1 + ε, m2 − ε] when x > m1,

where 0 < ε < (m2 −m1)/2. For this case, note that, for x ∈ A1, the support
of the posterior, and therefore of the prior, is {m1}. But this contradicts the
fact that, for x ∈ A2, δ2 ≥ m1 + ε. These results for the logistic distribution
can not be obtained from Brown’s (1986) Theorem 4.23 nor from his Theorem
4.16 because the logistic is not an exponential-family distribution.

As a second example of the results of Charras and van Eeden (1991a), let X ∼
Bin(n, θ) with 0 ≤ θ ≤ m for some m ∈ (0, 1). Let n ≥ 2 and let δ3 be the
following boundary estimator{

δ3(0) = 0 < δ3(1)

δ3(x) = m for x ≥ 2.
(3.10)

This estimator is the MLE of θ when (1 ≤ nm ≤ 2, nδ3(1) = 1) or
(nm < 1, δ3(1) = m) and, as already noted above, Charras and van Eeden
(1991a) show that this MLE is admissible. In the more general case where δ3

is not necessarily the MLE, it is easy to see that (3.10) is (non-unique) Bayes
with respect to the prior with support {0}, which tells us nothing about its
admissibility. But Charras and van Eeden (1991a, p. 128) show that this δ3 is
admissible, which shows that not every boundary estimator is inadmissible.
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The above two examples are special cases of the following general results of
Charras and van Eeden (1991a, Theorems 3.1 – 3.3). Let δ be a boundary
estimator and let, for x such that δ(x) ∈ B(Θ),

G(x) = face(δ(x)) ∪ {θ ∈ Θ|pθ(x) = 0} (3.11)

and let
Θ∗ = {θ ∈ Θ|θ ∈ G(x) for ν-almost all x ∈ Ao}, (3.12)

where Ao is defined in (3.8) and, for θ ∈ B(Θ), face(θ) is the intersection of
Θ with the intersection of all its tangent planes at θ. Then, if δ is Bayes the
support of its prior is contained in Θ∗. From this it follows that a boundary
estimator for which Θ∗ is empty is inadmissible. The above estimator δ1 of
the logistic mean is an example of such a boundary estimator.

Further, Charras and van Eeden (1991a) prove that, if Θ∗ is not empty and
there exists A∗ ∈ A such that⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

i) ν(A∗) > 0

ii) δ(A∗) ∩ co(Θ∗) is empty

iii) pθ(x) > 0, for all x ∈ A∗, and all θ ∈ Θ∗,

(3.13)

where co(Θ∗) is the convex hull of Θ∗, then δ is again inadmissible. The esti-
mator δ2 in the above logistic example satisfies these conditions.

A second result of Charras and van Eeden can be found in their (1991b) paper.
It is concerned with inadmissibility of boundary estimators when Θ ⊂ Rk is
closed and convex, but not necessarily compact and k ≥ 2. The authors put
conditions on the shape of the boundary of Θ as well as some (rather weak)
ones on the family of densities. Examples of when these conditions are sati-
fied are the case where Θ is strictly convex, X1, . . . , Xk are independent and,
for i = 1, . . . , k, Xi has density pθi(x) which is positive for each x ∈ X and
θ ∈ Θ and bounded on Θ for each x ∈ X . The authors give conditions on
the estimators under which they are inadmissible. This result can be used,
e.g., to show that, when k = 2 and the Xi have logistic distributions with
means θi, the MLE of θ = (θ1, θ2) when these parameters are restricted to
Θ = {θ | θ2 ≥ c θ2

1} for a known c > 0 is inadmissible.

A third result of Charras and van Eeden, to be found in their 1994 paper, is
concerned with the inadmissibility of boundary estimators when Θ = {θ | θ ≥
m1} for some m1 < ∞. The authors suppose that the estimators δ are such
that there exists sets A1 and A2 in A and an m2 > m1 with
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i) δ(x) = m1 when x ∈ A1

ii) δ(x) ≥ m2 when x ∈ A2

iii) 0 < ν(Ai) < ∞, i = 1, 2.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.14)

They show that their further conditions, which are non-trivial conditions on
the family of distributions, are satisfied for gamma and logistic scale families.
That these conditions are also satisfied for a scale family of F distributions
was proved by van Eeden and Zidek (1994a,b). Examples of estimators which
satisfy (3.14) for these three families of distributions are the MLE of θp, p > 0.

3.4 Dominators

In this section dominators are presented for estimators which are inadmissible
but satisfy (2.3).The dominators do not necessarily satisfy (2.3).

As already said above, for each one of Moors’ (1981, 1985) inadmissible esti-
mators, dominators are known, because Moors proves inadmissibility by con-
structing dominators – and his dominators satisfy (2.3).

Charras and van Eeden (1991a), using squared-error loss, give two classes of
dominators for some of their inadmissible boundary estimators. They suppose
that Θ = {θ | m1 ≤ θ ≤ m2}, −∞ < m1 < m2 < ∞, and that δ is such that
both Pθ(δ(X) = m1) and Pθ(δ(X) = m2) are positive for all θ ∈ [m1, m2].
One of these classes of dominators of an inadmissible estimator δ consists of
estimators of the form

δ∗(X) =

⎧⎪⎪⎨
⎪⎪⎩

m1 + ε1 when δ(X) = m1

δ(X) when m1 < δ(X) < m2

m2 − ε2 when δ(X) = m2,

(3.15)

where ε1 + ε2 < m2 − m1. This dominator was proposed by a referee of their
(1991a) paper and his proof goes as follows. Let, for t ∈ [m1, m2],

p1(t) = min{Pθ(δ(X) = t) | m1 ≤ θ ≤ m2}
p2(t) = max{Pθ(δ(X) = t) | m1 ≤ θ ≤ m2}.

Then the following three cases are possible:

ε1p2(m1) < ε2p1(m2);
ε1p2(m1) ≥ ε2p1(m2) and ε1p1(m1) ≤ ε2p2(m2);
ε1p1(m1) > ε2p2(m2)
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and, in each of these three cases, it can easily be seen that there exist ε1 and
ε2 such that the estimator (3.15) dominates δ. Note that δ∗ is, in general,
not monotone and, if not monotone, inadmisible when X has an exponential-
family distribution with mean θ. (see Brown, 1986, Theorem 4.23).

The other class of dominators of van Eeden and Charras (1991a) is of the
form

δ∗∗(X) =

⎧⎪⎪⎨
⎪⎪⎩

m′
1 when δ(X) < m′

1

δ(X) when m′
1 ≤ δ(X) ≤ m′

2

m′
2 when δ(X) > m′

2,

(3.16)

where m1 < m′
1 < m′

2 < m2. The proof that there exist m′
1 and m′

2 for which
δ∗∗ dominates δ can be found in Charras (1979). His proof goes as follows:
Let a(t) and b(t) be two functions defined on [0, 1] with a(0) = m1, b(0) =
m2, a(1) = b(1), a(t) non-decreasing and b(t) non-increasing. Then under reg-
ularity conditions on a(t), b(t) and the distribution of δ, he shows that there
exist to ∈ (0, 1) such that δ∗∗ with m′

1 = m1 + a(to) and m′
2 = m2 − b(to)

dominates δ.

Note that the estimator (3.16) is, often, the MLE of θ for the parameter space
[m′

1, m
′
2].

As an example of the dominators (3.15), consider the case where X ∼
Bin(n, θ), m ≤ θ ≤ 1−m, ε1 = ε2 = ε and n = 1 or 2. Then the Charras–van
Eeden (1991a) conditions on m and ε to dominate the MLE become

0 < ε ≤ min
(

2m(1 − 2m),
1 − 2m

2

)
when n = 1 (3.17)

and

0 < ε ≤ min
(

2m2(1 − 2m)
2m2 − 2m + 1

,
1 − 2m

2

)
when n = 2. (3.18)

When m ≥ 1/4 and n = 1, the condition (3.17) gives m < δ∗(0) ≤ 1/2, imply-
ing that every symmetric estimator dominates the MLE. As already mentioned
above, Hodges and Lehmann (1950) proved this for the case where m = 1/3.
When m < 1/4 the condition (3.17) gives m < δ∗(0) < m(3 − 4m) implying
that, as expected, the MLE can not be improved upon very much when m
is close to zero. These classes of Charras–van Eeden dominators of the MLE
for this binomial example are not those of Moors. When n = 1 and m < 1/4,
e.g., Moors’ dominator, δM say, satisfies (see (3.6)) m < δM (0) ≤ 2m(1−2m).
Given that 2m(1 − 2m) < m(3 − 4m) when 0 < m < 1/2, the Charras–van
Eeden class is larger than than the Moors class.
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Still for this binomial example with n = 1 or n = 2 and with ε1 = ε2 =
ε > 0 satisfying (3.17) when n = 1 and (3.18) when n = 2, Marchand and
MacGibbon (2000) show, in their Theorem 4.2, that the dominators (3.15)
are, for squared-error loss, unique Bayes with respect to a symmetric prior
on [m, 1 − m]. This implies that they are admissible. Further, Marchand and
MacGibbon (2000, p. 144) state that dominators of the form (3.15) may not be
admissible, but they do not relate this statement to the consequences of their
Theorem 4.2. What is happening here is that the dominators (3.15) are not
necessarily monotone and, when they are not monotone, they are inadmissible
in the exponential-family setting of Brown (1986, Theorem 4.23). But for the
above binomial cases – where Brown’s theorem does apply – the dominators
of the form (3.15) are monotone, so there is no contradiction.

Remark 3.3. Marchand and MacGibbon (2000, Theorem 4.2) forgot to men-
tion a necessary condition on (m, ε), namely, m + ε ≤ 1/2.

More about dominators when X ∼ Bin(n, θ) with m ≤ θ ≤ 1 − m for a
known m ∈ (0, 1/2) can be found in Perron (2003). He uses squared-error
loss and gives sufficient conditions for an estimator to dominate the MLE.
For Moors’ (1985) dominator of the MLE Perron shows that it is the Bayes
estimator with respect to a symmetric prior om {m, 1 − m} if and only if
1 − 2m is ≤ 1/

√
n when n is odd and ≤ 1/(

√
n − 1) when n is even. For the

Charras–van Eeden dominators (3.16) of the MLE Perron gives an algorithm
for finding (m′

1, m
′
2) when m′

1 + m′
2 = 1. He also proposes a new estimator,

namely the Bayes estimator with respect to a prior proportional to (θ(1−θ))−1

and shows that it dominates the MLE for some n, but not for all. For Perron’s
graphical comparisons between these estimators, see Section 3.6.

Remark 3.4. Ali and Woo (1998) also look at the case where θ is to be esti-
mated with squared-error loss when X ∼ Bin(n, θ) with m ≤ θ ≤ 1 − m for a
known m ∈ (0, 1/2). They have four estimators, namely, θ̌ = (1−2m)X/n+m,
the MLE θ̂ and two Bayes estimators each with a truncated beta prior, θ̃ with
squared-error loss and θ∗ with a linex loss function.
Some of their results are incorrect. For instance, their statement that the MSE
of θ̌ is strictly increasing in m as m increases from 1/(2(1 +

√
n) to 1/2.

Further, they make comparisons between the risk functions only numerically
for very small numbers of values of n, θ, m and the parameters of the priors,
but conclude, e.g., (on the basis of one such set of values) that θ̂ is worse than
θ̌ in the sense of MSE.
And finally, in comparing θ̃ with θ∗, they use squared-error loss for θ̃ and linex
loss L(θ∗, θ) = eθ∗−θ − (θ∗ − θ) − 1 for θ∗, i.e., the loss function used for the
Bayes estimator θ∗. But the same Bayes estimator would have been obtained
from the loss function cL(θ∗, θ) for any positive c with a different comparison
result.

Other cases where dominators are known are, for example,
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1) The case studied by Sackrowitz and Strawderman (1974) where X1, . . . , Xk,
k ≥ 2, are independent with, for i = 1, . . . , k, Xi ∼ Bin(ni, θi), Θ =
{θ | θ1 ≤ . . . ≤ θk} and the loss function is of the form

∑k
i=1 W (|di − θi|)

with W strictly convex. Sackrowitz (1982) obtains dominators for the in-
admissible MLE’s;

2) The case of the lower-bounded mean of a normal distribution, as well as
the case of a lower-bounded scale parameter of a gamma distribution. For
each of these cases Shao and Strawderman (1996a,b) give a class dom-
inators when the loss is squared error. For the normal-mean case they
dominate the MLE and say they believe, but have not proved, that some
of their dominators are admissible. For the gamma-scale case they dom-
inate truncated linear estimators. Among their results is the interesting
case of an estimator which is admissible for the non-restricted parameter
space, takes values in the restricted space only and is inadmissible for the
restricted parameter space;

3) Shao and Strawderman (1994), among their already earlier mentioned
power series distribution results, give dominators for squared-error loss
for the MLE of the mean when the parameter space is restricted;

4) And lastly in this list of results on dominators, the case of the multivariate
normal mean (and, more generally, the multivariate location problem). For
X ∼ Nk(θ, I) it is well known from Stein (1956) that, for squared-error
loss, X is inadmissible as an estimator of θ when k ≥ 3 and Θ = Rk.
Dominators are known, the James–Stein (1961) estimator, for instance.
For restricted spaces (and I am restricting myself here, as in the rest of
this monograph, to closed convex subsets of Rk) quite a number of domi-
nators have been obtained for various inadmissible estimators.

Chang (1991) looks at X = (X1,1, X1,2, . . . , Xk,1, Xk,2) ∼ N2k(θ, I) where

θ = (θ1,1, θ1,2, . . . , θk,1, θk,2)

satisfies θi,1 ≤ θi,2, i = 1, . . . , k. He estimates θ under squared-error
loss. For this case it is known that, for estimating θi = (θi,1, θi,2) based
on Xi = (Xi,1, Xi,2) alone, the Pitman estimator (i.e., the Bayes esti-
mator with respect to the uniform prior on Θi = {(θi,1, θi,2) | θi,1 ≤
θi,2}) is admissible (see Chapter 4, Section 4.4). Chang (1991) shows
that, analogous to Stein’s (1956) result, the vector of these Pitman es-
timators is inadmissible for estimating θ when k ≥ 2. One of his two
classes of James–Stein-type dominators is given by (1− c/S)δP (X), where
δP (X) = (δP,1(X1), . . . , δP,k(Xk)) is the vector of Pitman estimators,
S =

∑k
i=1(δP,i(Xi))2 and 0 < c ≤ 4(k − 1). He has a second class of

dominators for the case where k ≥ 3.

Chang (1982) looks at the case where Θ = {θ | θi ≥ 0, i = 1, . . . , k} with
squared error loss and X ∼ Nk(θ, I). Here, as we have seen, the MLE
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of θi based on Xi alone is inadmissible (and minimax) for estimating θi

and, as will be seen in Chapter 4, Section 4.3, Katz’s estimator δK,i(Xi) =
Xi + φ(Xi)/Φ(Xi) is admissible for estimating θi, where φ and Φ are,
respectively, the standard normal density and distribution function. Chang
(1982) shows that, again analogous to Stein (1956), the vector of Katz
estimators is inadmissible for estimating θ when k ≥ 3. One of his classes
of James–Stein-type dominators is given by δ(X) = (δ1(X), . . . , δk(X)),
with, for i = 1, . . . , k,

δi(X) =

⎧⎪⎨
⎪⎩

δK,i(Xi) − cXi∑k
j=1 X2

j

when Xl ≥ 0, l = 1, . . . , k

δK,i(Xi) otherwise,

with 0 < c < 2(k − 2). A second class is given by

δ∗i (X) = δK,i(Xi) − cδK,i(Xi)∑k
j=1 δ2

K,j(Xj)
, i = 1, . . . , k,

again with 0 < c < 2(k − 2). Chang (1982) also shows that replacing,
in these dominators, δK,i by the MLE of θi based on Xi alone gives a
dominator of the vector of MLEs. Chang (1981), again using squared-
error loss, dominates the MLE of θ when X ∼ Nk(θ, I), Θ = {θ | Aθ ≥ 0}
for a known p×k matrix A of rank k, p ≤ k, k ≥ 3 and Aθ ≥ 0 denotes the
componentwise inequalities. An example of his dominators is the James–
Stein-type estimator

δ(X) =

⎧⎪⎪⎨
⎪⎪⎩

(
1 − c∑k

i=1 X2
i

)
X when AX ≥ 0

the MLE of θ otherwise,

(3.19)

where 0 < c < 2(k − 2).

Sengupta and Sen (1991) consider X ∼ Nk(θ, Σ) with Σ positive defi-
nite, known or unknown, k ≥ 3, θ restricted to a closed, convex subset
of Rk and loss function (d − θ)′Σ−1(d − θ). In particular, they consider
the suborthant model where Θ = Θ+

k1
= {θ | θi ≥ 0, i = 1, . . . , k1} for

some k1 ∈ {1, . . . , k}. They define restricted Stein–rule MLEs θ̂RS and
positive restricted Stein–rule MLEs θ̂PRS of θ for θ ∈ Θ+

k1
. One of their

results states that θ̂PRS dominates θ̂RS which dominates the (restricted)
MLE. On the relationship of their work with that of Chang (1981, 1982)
Sengupta and Sen say that the full impact of shrinkage has not been incor-
porated in the estimators considered by Chang and they give dominators
of Chang’s (1982) dominators.
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Still for this multivariate location problem, Kuriki and Takemura (2000,
Section 3.3) weaken the conditions on Θ for one of Sengupta and Sen’s
(1991) domination results and Ouassou and Strawderman (2002) and Four-
drinier, Ouassou and Strawderman (2003) generalize and extend the Chang
(1981, 1982) and Sengupta and Sen (1991) results to spherically symmetric
distributions.

In none of the above-quoted papers concerning multivariate location prob-
lems do the authors mention the question of whether their dominators
satisfy (2.3). Those of Chang (1981, 1982, 1991) do not, nor do Sengupta
and Sen’s (1991) dominators of Chang’s (1982) dominators. As far as the
other results are concerned, I do not know whether their dominators sat-
isfy (2.3). But (see Chapter 2), given that the class of estimators D is
essentially complete in the class Do with respect to Θ, an estimator which
does not satisfy (2.3) can be replaced by one which does satisfy (2.3) and
dominates it on Θ.

Sengupta and Sen (1991) give two examples of models which can be
reduced to their suborthant model: namely, the ordered model where
Xi,j ∼ind N (θi, σ

2), j = 1, . . . , ni, i = 1, . . . , k with Θ = {θ | θ1 ≤ . . . , θr}
for some r ∈ {2, . . . , k} and the two-way layout where Xi,j = µi +θj +εi,j ,
j = 1, . . . , n, i = 1, . . . , n, εi,j ∼ind N (0, σ2) and the same Θ as for the
ordered alternative model. They also note that each of these are particular
cases of some linear model. More on (normal) linear models with restricted
parameter spaces can be found in Chapter 6.

Remark 3.5. Some of the James–Stein dominators presented above only
hold for the case where σ2 = 1. Of course, when σ2 is known, one can,
without loss of generality, take it to be = 1. However, this might lead to
mistakes if somebody whose σ2 is �= 1 uses the results without realizing
that σ2 = 1 is assumed in deriving the results. So, in (3.19), e.g., I would
prefer to write cσ2 (with 0 < cσ2 < 2(k − 2)) instead of c.

A multivariate location problem with constraints on the norm can be found
in Marchand and Perron (2001). Let X1, . . . , Xk be independent with Xi ∼
N (θi, 1), i = 1, . . . , k, and

∑k
i=1 θ2

i ≤ m2 for a known, positive constant m.
Marchand and Perron (2001) consider the problem of finding dominators
for the MLE of θ for squared-error loss. One of their results says that
the Bayes estimator with respect to the uniform prior on the boundary of
Θ dominates the MLE when m ≤ √

k. Casella and Strawderman (1981)
prove this for k = 1. A generalization of their results to spherical symmetric
distributions, in particular to the multivariate student distribution, can be
found in Marchand and Perron (2005).

Remark 3.6. Chang (1982) quotes and uses Katz’s (1961) unproven results
concerning admissible estimators for the lower-bounded scale parameter of a
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gamma distribution, as well as those for a lower-bounded mean of a Poisson
distribution. Katz’s proofs are incorrect for these cases (see Remark 4.4).

Remark 3.7. The three papers by Charras and van Eeden (1991a,b, 1994), as
well as a fourth one (Charras and van Eeden, 1992) not discussed in this
monograph, are based on results obtained by Charras in his 1979 PhD thesis.

3.5 Universal domination and universal admissibility

Hwang’s (1985) universal domination and universal admissibility have been
applied, mostly with D = I, to various problems in restricted-parameter-space
estimation. An example of the kind of results that have been obtained can be
found in Cohen and Kushary (1998). They show the universal admissibility of
the MLE of θ for, e.g., (i) the case where X ∼ Nk(θ, I), k ≥ 2, θ is restricted
to a polyhedral cone and the class of estimators consists of those which are
nonrandomized and continuous; (ii) the case where X has a discrete (possibly
multivariate) distribution and the MLE is unique and takes a finite number
of values; (iii) the bounded normal mean case with known variance. In this
last case, the universal admissibility of the MLE also follows from Hwang’s
(1985) results and the fact that the MLE of θ is admissible for absolute error
loss, as was shown by Iwasa and Moritani (1997).

Further results on universal domination and universal admissibility in re-
stricted parameter spaces are presented in later chapters.

3.6 Discussion and open problems

As seen above, although the three main results on inadmissibility of estima-
tors δ ∈ D – those of Brown, of Moors and of Charras and van Eeden – cover
quite a lot of situations, many questions remain open. Moreover, almost all
known results are only for squared-error loss.

What would be a great help in filling the gaps in our knowledge would be an
extension of Brown’s (1986) Theorem 4.23 to k (k ≥ 1) dimensions and Θ an
arbitrary closed convex subset of Nk. That would solve many inadmissibility
questions for the exponential family. An example of an open problem of this
kind is the question of whether, for squared-error loss, the MLE of the largest
of k ≥ 3 ordered scale parameters of a gamma distributions is admissible.
Another open problem for restricted exponential-family parameters is the one
mentioned in Hoferkamp and Peddada (2002). They have X ∼ Nk(θ, Σ) with
Σ diagonal, θ1 ≤ . . . ≤ θk and σ2

1 ≤ . . . ≤ σ2
k and note that it seems to be

unknown whether the MLE of (θ1, . . . , θk, σ2
1 , . . . , σ2

k) is admissible. Another
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very useful addition would be a version of the results of Charras and van Ee-
den (1991a,b, 1994) with weaker conditions on the parameter space.

A problem not touched upon in this chapter is the question of “how inadmissi-
ble” the inadmissible estimators are, i.e., how large (or small) is the improve-
ment of a dominator (preferably an admissible dominator) over the estimator
it dominates. For some models numerical results have been obtained. Exam-
ples of such results can be found in Shao and Strawderman (1996b), as well
as in Perron (2003). Shao–Strawderman’s tables on the improvement of their
dominators over the MLE for a lower-bounded normal mean give a maximum
improvement of ≈ .0044σ. This is not much of an improvement over the risk
function of the MLE, which varies from σ/2 to σ over the interval [0,∞).
For the binomial case where X ∼ Bin(n, θ) with θ ∈ [m, 1 − m], Perron gives
graphs of the risk functions of the MLE, of its Charras–van Eeden dominator
(3.16), of its Moors’ dominators and of (see Section 3.4) Perron’s Bayes esti-
mator with respect to a prior proportional to (θ(1− θ))−1. From these graphs
one can get an (approximate) idea of the absolute as well as the relative im-
provements over the MLE of these dominators. For n = 10 (for which Perron’s
Bayes estimator does dominate the MLE) and m = .40, e.g., the maximum
improvements vary, for the three dominators, from ≈ .005 to ≈ .007. The cor-
responding relative improvements are (again approximately) 75%, 68% and
95% for, respectively, the Charras–van Eeden, the Moors and the Perron dom-
inator. For m = .4 and n = 25 and 100, e.g., Perron finds not only that his
Bayes estimator dominates the MLE on almost the whole parameter space
(in fact on ≈ (.42 ≤ θ ≤ .58)), but that, for these same θ’s, it dominates
both Moors’ and Charras and van Eeden’s dominator (3.16) of the MLE. (In
the caption of Perron’s Figure 3, the n = 10 should be n = 1000). Further,
for n = 1000, there is, essentially, no difference between the risk functions of
the MLE, Moors’s dominator and Charras and van Eeden’s dominator (3.16),
while Perron’s Bayes estimator dominates these three on ≈ (.41 ≤ θ ≤ .59).
So, for the binomial case with m ≤ θ ≤ 1−m, much “better” dominators are
available than for the lower bounded normal mean case.

More such numerical results are presented in Chapter 7, Section 7.2 .

Finding dominators is clearly a very difficult problem. Look at the time it took
– from the early 1960s until 1996 – to find a dominator for the MLE of a lower-
bounded normal mean. And look at how few cases have been solved, other
than under the (rather restrictive) conditions of Moors (1981, 1985). Further,
very few admissible dominators have been found. One example, estimating
θ ∈ [m, 1−m] with squared-error loss when X ∼ Bin (n, θ) with n = 1 or = 2,
is mentioned above. More examples of admissible estimators (not necessarily
dominators) can be found in later chapters, in particular in Chapter 4, Section
4.4, where (admissible) minimax estimators are presented. One very special
case where an admissible dominator has been obtained can be found in Parsian
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and Sanjari Farsipour (1997). They consider estimating θ on the basis of
a sample X1, . . . , Xn from a distribution with density e−(x−θ)/σ/σ, x > θ,
with known σ and the restriction θ ≤ 0. They use the linex loss function
L(d, θ) = ea(d−θ) − a(d − θ) − 1 for a known nonzero constant a < n/σ. For
the unrestricted case, the Pitman estimator is given by (see Parsian, Sanjari
Farsipour and Nematollahi, 1993) min(X1, . . . , Xn) − log(n/(n − aσ))/a and
Parsian and Sanjari Farsipour (1997) show that replacing min(X1, . . . , Xn)
by min(c,min(X1, . . . , Xn)) gives the Pitman estimator for the restricted θ.
This estimator clearly satisfies (2.3) and the authors show it to be admissible.
Whether this estimator is minimax seems to be unknown (see Chapter 4,
Section 4.3). Note that neither estimator is scale-equivariant, unless aσ = a∗

for some nonzero constant a∗ < n.
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Minimax estimators and their admissibility

In this chapter, results on minimax estimation of θ in restricted parameter
spaces are given for the case where the problem does not contain any nuisance
parameters, i.e., (in the notation of Chapter 2): K = M , Ωo = Θo and Ω = Θ
and we change the notation M for the number of parameters to be estimated to
k. The results are presented in the sections 4.2, 4.3 and 4.4, where, respectively,
Θ is bounded, Θ is not bounded with k = 1 and Θ is not bounded with k > 1.
In the introductory Section 4.1 some known results which are useful for solving
minimax problems are given. Most of these results apply to restricted as well
as to unrestricted parameter spaces. The last section of this chapter contains
some comments and open problems.

4.1 Some helpful results

The lemmas 4.1 and 4.2 can be found, e.g., in Lehmann (1983, pp. 249 and
256), in Lehmann and Casella (1998, pp. 310 and 316) and in Berger (1985,
p. 350):

Lemma 4.1 Suppose that πo is a prior for θ ∈ Θ such that, for a given loss
function, the Bayes risk rπo

of the Bayes rule δπo
satisfies

rπo
= sup

θ∈Θ
R(δπo

, θ).

Then, for that loss function, δπo
is minimax and, if δπo

is unique Bayes, it
is unique minimax. Finally, the prior πo is least favourable, i.e., rπo

≥ rπ for
all priors π on Θ.

The conditions of Lemma 4.1 imply that the statistical problem has a value,
i.e.,

sup
π

inf
δ

rπ(δ) = inf
δ

sup
θ

R(δ, θ), (4.1)

or, equivalently
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rπo = inf
δ

sup
θ

R(δ, θ),

which says that the maximum Bayes risk equals the minimax value.

Lemma 4.2 Let πn, n = 1, 2, . . ., be a sequence of priors for θ ∈ Θ and let,
for a given loss function, rπn

→ r as n → ∞. Further suppose that there exists
an estimator δ such that

sup
θ∈Θ

R(δ, θ) = r.

Then, for that loss function, δ is minimax and the sequence πn is least
favourable, i.e., it satisfies

r ≥
∫

Θ

R(δπ, θ)dπ(θ) for all priors π on Θ.

The following lemma can be helpful for obtaining minimax estimators of a
vector when minimax extimators of its components are known. The proof is
obvious and omitted.

Lemma 4.3 Let Xi ∼ind Fi(x; θi), i = 1, . . . , k and let Θ = {θ | mi,1 ≤
θi, ≤ mi,2, i = 1, . . . , k} for known constants (mi,1, mi,2), −∞ ≤ mi,1 <
mi,2 ≤ ∞, i = 1, . . . , k. Then, if for i = 1, . . . , k, πn,i, n = 1, 2, . . ., is a
least-favourable sequence of piors for estimating θi ∈ [mi,1, mi,2] based on Xi

with a loss function Li(d, θi),
∏k

i=1 πn,i, n = 1, 2, . . ., is a least-favourable
sequence of priors for estimating θ = (θ1, . . . , θk) ∈∏k

i=1[mi,1, mi,2] based on
(X1, . . . , Xk) with the loss function

∑k
i=1 Li(di, θi).

A further useful result on minimax estimation can be found in Blumenthal
and Cohen (1968b). Before stating their results, more needs to be said about
the Pitman (1939) estimator of location mentioned in Chapter 2. This is an
estimator of the parameter θ ∈ R1 based on a sample X1, . . . , Xn from a dis-
tribution with Lebesgue density f(x − θ). When it has a finite risk function,
it is the minimum-risk-equivariant estimator of θ for squared-error loss, as
well as the Bayes estimator for squared-error loss with respect to the uniform
distribution on (−∞,∞). An explicit expression for the estimator is (see Pit-
man, 1939; Lehmann, 1983, p. 160; Lehmann and Casella, 1998, p. 154; or
Berger, 1985, p. 400)

δP (X1, . . . , Xn) =

∫∞
−∞ u

∏n
i=1 f(xi − u)du∫∞

−∞
∏n

i=1 f(xi − u)du
. (4.2)

For the case of estimating a vector θ of location parameters based on indepen-
dent samples Xi,1, . . . , Xi,n, i = 1, . . . , k, from distributions with Lebesgue
densities f(x − θi), define the Pitman estimator δP of θ = (θ1, . . . , θk) as
the Bayes estimator of θ for squared error loss with respect to the uniform
prior on Rk. Then the i-th element, i = 1, . . . , k, of the vector δP is the Pit-
man estimator of θi based on the i-th sample. Further, for any k ≥ 1 and
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squared-error loss, the Pitman estimator of θ is minimax if its components
have finite risk functions. A proof of this minimaxity for k = 1 can be found
in Lehmann (1983, pp. 282–284) and in Lehmann and Casella (1998, pp. 340–
342). These authors use a sequence of priors with uniform densities on (−n, n),
n = 1, 2, . . ., and show it to be a least-favourable sequence of priors for esti-
mating θ. They then use Lemma 4.2 to prove minimaxity. The minimaxity of
the Pitman estimator when k > 1 follows from Lemma 4.3.

We are now ready to state the Blumenthal–Cohen results.

Lemma 4.4 For k ≥ 1 independent samples of equal size from distributions
with Lebesgue densities f(x − θi), i = 1, . . . , k, consider the estimation of
θ = (θ1, . . . , θk) ∈ Θ ⊂ Rk with squared-error loss. Let Θ be such that there
exists a sequence of k-tuples of numbers {an,1, . . . , an,k}, n = 1, 2, . . . for which

lim inf
n→∞ {θ | (θ1 + an,1, . . . , θk + an,k) ∈ Θ} = Rk. (4.3)

Let δo be an estimator of θ for θ ∈ Rk and satisfying

R(δo, θ) ≤ M for all θ ∈ Θ, (4.4)

where M is the constant risk (assumed to be finite) of the Pitman estimator
of θ for θ ∈ Rk. Then

sup
θ∈Θ

R(δo, θ) = M.

What this result tells us is that, under the stated conditions, M(Do, Θ) =
M(Do, Θo). This implies (by (2.17)) that M(D, Θ) = M(Do, Θo), i.e., the
minimax values for the restricted and the unrestricted estimation of θ are
equal and equal to the risk of the unrestricted Pitman estimator.

Blumenthal and Cohen (1968b) state and prove Lemma 4.4 for the special
case where k = 2 but remark that a generalization to k dimensions is obvi-
ous – and it is. Kumar and Sharma (1988), apparently not having seen this
Blumenthal–Cohen remark, state the generalization as a theorem.

A result similar to the Blumenthal-Cohen result holds for scale parameter
estimation when Xi,j , j = 1, . . . , ni, i = 1, . . . , k are independent and the
Xi,j , j = 1, . . . , ni have Lebesgue density f(x/θi)/θi, i = 1, . . . , k. Using scale-
invariant squared-error loss, the Pitman estimator of θ = (θ1, . . . , θk) ∈ Rk

+

is, when it has a finite risk function, the minimum-risk-equivariant estimator
and also the Bayes estimator for the uniform prior for log θ on (−∞,∞)k. The
i-th element, i = 1, . . . , k, of this Pitman estimator is the Pitman estimator
of θi based on Xi,1, . . . , Xi,ni which is given by (see, e.g., Lehmann, 1983, p.
177; or Lehmann and Casella, 1998, p. 170)

δi(X1,i, . . . , Xi,ni
) =

∫∞
0

tni
∏ni

j=1 f(tXi,j)dt∫∞
0

tni+1
∏ni

j=1 f(tXi,j)dt
. (4.5)
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This estimator, being scale-equivariant, has a constant risk function. It is
minimax for estimating θ ∈ Rk

+ with scale-invariant squared-error loss. By
Lemma 4.3 it is sufficient to show that this minimaxity holds for k = 1. And
for this case the method of proof used by Lehmann (1983, pp. 282–284) and
by Lehmann and Casella (1998, pp. 340–342) for the minimaxity in location
problems with squared-error loss can easily be adapted to the scale-estimation
case. The only condition is that the estimator has a finite risk function.

The analogue for scale estimation of the Blumenthal–Cohen result for location
estimation is contained in the following lemma.

Lemma 4.5 For k ≥ 1 independent samples of equal size from distributions
with Lebesgue densities f(x/θi)/θi, θi > 0, i = 1, . . . , k, consider the esti-
mation of θ = (θ1, . . . , θk) with scale-invariant squared-error loss when θ is
restricted to Θ ⊂ Rk

+. Assume Θ is such that there exists a sequence of k-tuples
of positive numbers {a1,n, . . . , ak,n} with

lim inf
n→∞ {θ ∈ Rk

+ | (a1,nθ1 . . . , ak,nθk) ∈ Θ} = Rk
+.

Then, if δo is an estimator of θ for θ ∈ Rk
+ and satisfying

R(δo, θ) ≤ M for all θ ∈ Θ, (4.6)

where M is the constant risk of the Pitman estimator (assumed to be finite)
for estimating θ ∈ Rk

+, then

sup
θ∈Θ

R(δo, θ) = M.

Proof. We have not been able to find this result in the literature, but it follows
easily from the scale-equivariance and minimaxity of the Pitman estimator
and the techniques used by Blumenthal and Cohen (1968b) in their proof for
the location case. ♥
As in the location case, this result proves that, under the stated conditions,
M(D, Θ) = M(Do, Θo), i.e., the minimax values for the restricted and un-
restricted cases are equal and equal to the risk of the unrestricted Pitman
estimator.

If the estimators δo of Lemma 4.4 satisfy (2.3), they are minimax for the
restricted problem. In case they do not satisfy (2.3), they can (by the essential
completeness of D in Do with respect to Θ) be dominated on Θ by an estimator
which does satisfy it. Such a dominator is then minimax for the restricted
problem. The same remark holds for the estimator δo of Lemma 4.5. This
proves the following corollary to the lemmas 4.4 and 4.5.

Corollary 4.1 Under the conditions of Lemma 4.4, as well as under the con-
ditions of Lemma 4.5, there exists, by the essential completeness of D in Do

with respect to Θ, a minimax estimator for estimating θ for θ ∈ Θ.
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Another useful result can be found in Hartigan (2004). For X ∼ Nk(θ, I), Θ
a closed, convex proper subset of Rk with a non-empty interior and squared-
error loss, he shows that the Pitman estimator δP of θ satisfies R(δP , θ) ≤ k
with equality if and only if θ is an apex of Θ, i.e., any θ ∈ Θ with the property
that all tangent hyperplanes to Θ contain it. This result implies, e.g., that for
estimating θ when k = 1 and Θ = [−m, m], the minimax value for squared-
error loss, is less than 1.

Another set of useful results for solving problems of (admissible) minimax
estimation consists of using lower bounds for the risk function of the problem.
We mention some general results here. An example of how such bounds can
be used in particular cases is described in Section 4.3.

A well-known lower bound for the risk function of an estimator δ can, when θ ∈
R1 and h(θ) is to be estimated, be obtained from the information inequality
which says that, under regularity conditions (see, e.g., Lehmann, 1983, p. 122;
or Lehmann and Casella, 1998, pp. 120–123),

Eθ(δ(X) − h(θ))2 ≥ b2
δ(θ) +

(h′(θ) + b′δ(θ))
2

I(θ)
, (4.7)

where bδ(θ) = Eθ(δ(X) − h(θ)) is the bias of the estimator δ of h(θ), I(θ) is
the Fisher information

I(θ) = Eθ

(
∂

∂θ
log pθ(X)

)2

and the primes denote derivatives with respect to θ.

For the case where Θ = {θ | m ≤ θ < ∞}, Gajek and Ka�luszka (1995, Section
3) present a class of lower bounds for the risk function of estimators of h(θ)
with loss function L(d, θ) = (d − h(θ))2w(θ), where 0 < w(θ) < ∞ for all
θ ∈ Θ. The estimator is based on X ∈ R with Lebesgue density fθ(x) and their
estimators are not necessarily restricted to H = {h(θ) | θ ∈ Θ}. They suppose
h to be a diffeomorphism and show that, for any function H(x, θ) and under
the condition that H(x, θ)fθ(x) is, almost everywhere ν, absolutely continuous
in θ on finite intervals (the authors ask only for continously differentiable
which is not enough for their proof to work)

supθ≥m Eθ(δ(X) − h(θ))2w(θ)

≥
[
limθ→∞ h′(θ)

∫∞
−∞ H(x, θ)fθ(x)dx

]2
limθ→∞{w(θ)}−1

∫ ∞

−∞

[
∂
∂θ (H(θ, x)fθ(x))

]2
fθ(x)

dx

,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.8)
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provided the limits in the right-hand side exist.

Note that this bound does not depend on the estimator and is independent
of m.

The special case where H(x, θ) is independent of x gives

sup
θ≥m

Eθ(δ(X) − h(θ))2w(θ) ≥ lim
θ→∞

w(θ)
(h′(θ)g(θ))2

I(θ)g2(θ) + (g′(θ))2
, (4.9)

where g(θ) = H(x, θ). This inequality generalizes the following one which was
proved by Gajek (1987)

sup
θ≥m

Eθ(δ(X) − h(θ))2w(θ) ≥ lim
θ→∞

(h(θ))2w(θ)
(h′(θ))2

I(θ)h2(θ) + ((h′(θ))2
, (4.10)

obtained by taking g(θ) = h(θ).

For the case where h(θ) = θ and w(θ) = 1 for all θ ∈ Θ, (4.10) gives

sup
θ≥m

Eθ(δ(X) − θ)2 ≥ lim
θ→∞

1
I(θ) + θ−2

= lim
θ→∞

1
I(θ)

,

a result which can also be found in Sato and Akahira (1995).

Gajek and Ka�luszka (1995) say that, when fθ(x) = f(x − θ) as well as when
fθ(x) = f(x/θ)/θ, their bounds are attainable. They prove this result for the
case where h(θ) = θ with w(θ) = 1 for the location case and w(θ) = θ−2 for
the scale case. For the location case this gives (see their page 118)

sup
θ≥m

Eθ(δ(X) − θ)2 ≥
∫ ∞

−∞
(x − θ̄)2f(x)dx, (4.11)

where θ̄ =
∫∞
−∞ xf(x)dx. Their conditions reduce in this case to existence of

the second moment of X and the absolute continuity of f(x). For the scale
case their inequality becomes (see their page 121)

sup
θ≥m

Eθ

(
δ(X)

θ
− 1
)2

≥ 1 −
(∫∞

0
xf(x)dx

)2∫∞
0

x2f(x)dx
, (4.12)

where their conditions reduce to existence of∫ ∞

0

(∫ y

0
z(za1/a2 − 1)f(z)dz

)2
y4f(y)

dy

and absolute continuity of xf(x), where as =
∫∞
0

xsf(x)dx. These lower
bounds are attained by, respectively,
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δL(x) = x and δS(x) = x

∫∞
0

yf(y)dy∫∞
0

y2f(y)dy
.

But, δL and δS are the Pitman estimators for estimating location and scale,
respectively, when the parameter space is not restricted (see (4.2) and (4.5)).
Note also that the Θ’s satisfy the conditions of Lemma 4.4 and Lemma 4.5,
respectively, implying that the restricted and unrestricted minimax values are
equal. So, the inequalities (4.11) and (4.12) can also be obtained from these
lemmas, but for these lemmas the only condition needed is the finiteness of
the risk function of the Pitman estimator.

There are also lower bounds Bπ, say, for the Bayes risk for estimating h(θ)
with respect to a prior π on Θ. Such bounds imply that the minimax value
for the problem is at least Bπ for all π for which the bound holds. One lower-
bound for the Bayes risk is the van Trees inequality (van Trees, 1968; see
also, e.g., Gill and Levit, 1995 and Ruymgaart, 1996) which says that, under
regularity conditions,

E(δ(X) − h(θ))2 ≥ (Eh′(θ))2

EI(θ) + I(π)
, (4.13)

where E stands for expectation with respect to the joint distribution of X
and θ and I(π) = E (π′(θ)/π(θ)), with π(θ) the Lebesgue density of the prior.
Other lower bounds for the Bayes risk can, e.g., be found in Borovkov and
Sakhanienko (1980), in Brown and Gajek (1990), in Vidakovic and DasGupta
(1995) and in Sato and Akahira (1996). Sato and Akahira (1995) use the
Borovkov and Sakhanienko (1980) and the Brown and Gajek (1990) results
to obtain lower bounds for the minimax value.

Further, Hodges and Lehmann (1951) use the information inequality to prove
(for the special case where h(θ) = θ for all θ) the following result, where
CRBδ(θ) denotes the right-hand side of (4.7).

Lemma 4.6 For squared-error loss, if δo is an estimator of θ with equality
in (4.7), if (4.7) holds for all estimators δ, then, if

{CRBδ(θ) ≤ CRBδo
(θ) for all θ ∈ Θ} =⇒ {bδ(θ) ≡ bδo

(θ)}

the estimator δo is admissible. If, moreover, δo has a constant risk function
then it is minimax.

In restricted parameter spaces, minimax estimators do, typically, not have
a constant risk function. So, Lemma 4.6 does not really help if one wants
to check the minimaxity of a given estimator δo. However, in cases where
M(Do, Θo) = M(D, Θ) and δo is an estimator satisfying (2.5) with a constant
risk function on Θo, Lemma 4.6 can help find the minimax value. The same
kind of comment applies to the corollary to Lemma 4.1 which implies that, if
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a Bayes estimator has a constant risk function, then it is minimax.

A result which can be useful for proving the admissibility of a(n) (minimax)
estimator is Blyth’s (1951) method, which can be formulated as follows (see,
e.g., Lehmann, 1983, pp. 265–266; Lehmann and Casella, 1998, p. 380; or
Berger, 1985, pp. 547–548).

Lemma 4.7 Suppose that, for each estimator δ, the risk function R(δ, θ) is
continuous in θ for θ ∈ Θ. Then an estimator δo is admissible if there exists
a sequence πn of (possibly improper) measures on Θ such that

a) rπn
(δo) < ∞ for all n;

b) for any non-empty convex set Θ∗ ⊂ Θ, there exists a constant C > 0 and
an integer N such that∫

Θ∗
dπn(θ) ≥ C for all n ≥ N ;

c) rπn
(δo) − rπn

(δn) → 0 as n → ∞.

Finally, note that if δo is inadmissible minimax, then all of its dominators are
minimax.

4.2 Minimax results when Θ is bounded

Minimax problems in restricted parameter spaces are difficult to solve – even
more difficult than in unrestricted spaces and particularly when Θ is bounded.
One reason for this is that, as already mentioned in Section 4.1, mimimax es-
timators in restricted parameter spaces, typically, do not have a constant risk
function. So, looking for a Bayes estimator with a constant risk function very
seldom helps. Further, for bounded Θ (restricted or not), there exists (see
Wald (1950, Theorem 5.3)) a least favourable prior on Θ with finite support
and a minimax estimator which is Bayes with respect to this prior. The num-
ber of points in this support increases with the “size” of Θ. The problem
of finding these points and the prior probabilities can only seldom be solved
analytically. As will be seen below, when k = 1 and θ = [m1, m2], analyti-
cal results have been obtained for small values of m2 − m1 or (m2/m1) − 1
for particular cases. For other particular cases, numerical results are available.

Concerning the result of Wald (1950, Theorem 5.3) quoted above, note that
least favourable priors are not necessarily unique, i.e., a unique minimax es-
timator can be Bayes with respect to more than one least favourable prior.
This will be shown in an example later in the present chapter, where a unique
minimax estimator has an infinity of least favourable priors, some of which
have finite support and some a Lesbegue density. So, Wald’s result says that,
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under his conditions, at least one of the priors must have finite support.

The following result (see, e.g., Robert, 1997, pp. 60–61; Berger, 1985, p.353;
or Kempthorne, 1987) sheds light on the relationship between constancy of
the risk function of a Bayes estimator and the finiteness of the support of the
priors.

Lemma 4.8 Under the conditions of Lemma 4.1, if Θ ⊂ R1 is compact and
the risk function of the minimax estimator δπo

is an analytic function of θ,
either the least favourable prior πo has finite support or the risk function of
δπo

is constant.

This lemma needs, in my opinion, to be reworded. Given that least favourable
priors are not necessarily unique, “the least favourable prior” needs to be re-
placed by “all least favourable priors”. Then the lemma implies that, if the
conditions of Lemma 4.1 are satisfied, if Θ ⊂ R1 is compact and δπo

does
have an analytic risk function which is not constant, then all least favourable
priors have finite support.

The first minimax estimator for a bounded parameter space when Θo =
(−∞,∞) was, it seems, obtained by Zinzius (1979, 1981) and Casella and
Strawderman (1981). They consider (for squared-error loss) the case where
X ∼ N (θ, 1) with θ ∈ [−m, m] for some known m > 0. They show that there
exists an mo > 0, such that, when m ≤ mo,

δm(X) = m tanh(mX)

is a unique minimax estimator of θ and it is admissible.

They prove this result by taking a prior for θ with support {−m, m} and
choosing this prior in such a way that the corresponding Bayes estimator δm

of θ satisfies R(δm,−m) = R(δm, m). This prior puts equal mass on {−m} and
{m}. In order for δm to be minimax, and thus the prior to be least favourable,
it is sufficient (see Lemma 4.1) that

R(δm, θ) ≤ R(δm, m) for all θ ∈ [−m, m].

Casella and Strawderman first show that

max
θ∈[−m,m]

R(δm, θ) = max(R(δm, 0), R(δm, m)).

They then study the function g(m) = R(δm, 0) − R(δm, m) and show, using
Karlin’s (1957) Theorem 3 and Corollary 2, that g(m) changes sign only once
when m moves from 0 to ∞. This change of sign is from negative to positive,
which implies that there exists a unique mo > 0 such that g(m) ≤ 0 when
m ≤ mo. And this proves their result. Numerically they find mo ≈ 1.056742.
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They also show that, for m > mo, the estimator δm is not minimax.

Zinzius studies the second derivative of the risk function of δm and finds
an mo > 0 such that a lower bound for this derivative is positive for all
θ ∈ [−m, m] when m ≤ mo. This gives him, numerically, 2mo ≈ 1.20. So,
Zinzius’s mo is not best possible in the sense that there are m’s larger than
his mo for which his Bayes estimator is minimax. Zinzius also has numerical
results for 2m ≤ 2.1, i.e., for values of m less than the 1.056742 of Casella
and Strawderman. An improvement on the Zinzius result was obtained by
Eichenauer, Kirschgarth and Lehn (1988), but their result is weaker than the
Casella–Strawderman one, i.e., also not best-possible.

These same two techniques were later used to solve many other mimimax
problems for the case where Θ is a “small” closed convex subset of Rk. The
minimax estimators are Bayes with respect to a prior for θ whose support is
contained in the boundary B(Θ) of Θ. It is chosen in such a way that this
Bayes estimator, δm, has a risk function which is constant on B(Θ). Then it
is shown that, for “small enough” Θ, the risk function of δm attains its max-
imum value on Θ for (a) value(s) of θ ∈ B(Θ). In most cases the maximum
“size” of Θ can only be obtained by numerical methods. The techniques used
are, in most cases, the one used by Zinzius and in those cases the mo obtained
is not best possible.

We will not discuss these results in detail, but list them and make comments
on some of them.

1) The bounded normal mean problem where −m ≤ θ ≤ m for a given
m > 0 was generalized by using the loss function |d − θ|p by Bischoff
and Fieger (1992) for p ≥ 2 and by Eichenauer-Herrmann and Ickstadt
(1992) for p > 1. For the special case where p = 2, their result is weaker
than the Casella–Strawderman one, but an improvement over the one of
Zinzius. This can be seen from the results of computations of their mo(p)
(results which can also be found in Bischoff and Fieger, 1992). Eichenauer-
Herrmann and Ickstadt (1992) study the problem of finding the minimax
estimator also numerically and find, up to numerical accuracy, the best
possible mo(p). For p = 2 these numerical results give the (best-possible)
result of Casella–Strawderman.

Extensions to general location problems where X has Lebesgue density
f(x−θ) with the loss function |θ−d|p, p > 1 can be found in Eichenauer-
Herrmann and Ickstadt (1992). They also show there that, when p = 1,
no two-point prior can be least favourable for this problem.

Results for the normal mean problem with X ∼ N (θ, σ2), σ2 known, θ ∈
[−m, m], and the linex loss function ea(d−θ)/σ−a(d−θ)/σ−1, where a �= 0
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is a known constant, can be found in Bischoff, Fieger and Wulfert (1995).
They show that, when 0 < m/σ ≤ mo = min{a(

√
3 + 1)/2, log 3/(2a)},

there exists a unique two-point prior with mass π on {−m} and 1 − π on
{m} for which the Bayes estimator is minimax. This estimator is given by

δm(X) =
σ

a
log

gm(X)
gm(X − aσ)

,

where gm(x) = πe−mx/σ2
+(1−π)emx/σ2

. That this mo is not best-possible
can be seen from their proof as well as from their numerical results where
they give (among other things) the maximum value of m for which δm is
minimax. For a = .5 and σ = 1, e.g., this maximum value is 1.0664, while
mo = .1830. (There is a misprint in the author’s formula for mo. They
give mo = min{a(

√
3 − 1)/2, log 3/(2a)});

2) The above-mentioned result of Bischoff, Fieger and Wulfert (1995) has
been extended to the general case of a sample X1, . . . , Xn from a distribu-
tion Pθ, θ ∈ [m1, m2], m1 < m2, by Wan, Zou and Lee (2000). They apply
their results to minimax estimation of a Poisson mean θ when θ ∈ [0, m]
and L(d, θ) = ea(d−θ) −a(d− θ)−1 for a known constant a �= 0. They give
an mo > 0 such that, when 0 < m < mo, there exists a two-point prior
with mass π on {0} and mass 1−π on {m} which is least favourable. The
Bayes estimator with respect to this prior is then a minimax estimator. It
is given by

δ(X1, . . . , Xn) =

⎧⎪⎨
⎪⎩

1
a

log
π + (1 − π)e−nm

π + (1 − π)e−(n+a)m
when

∑n
i=1 Xi = 0

m when Σn
i=1Xi > 0.

This result is not best-possible;
3) The exponential location problem where X has density e−(x−θ), x > θ

and θ is to be estimated with squared-error loss was solved by Eichenauer
(1986). For the parameter interval [0, m], he proves that m ≤ mo, where
mo ≈ .913, is necessary and sufficient for the two-point prior with

mass
1

1 + e−m/2
on {0} and mass

e−m/2

1 + e−m/2
on {m}

to be least favourable. The minimax estimator is then given by

δm(X) =
m

1 + e−m/2
I(X ≥ m).

As Eichenauer notes, his result can be extended to the case where a sample
X1, . . . , Xn is available. In that case X = min(X1, . . . , Xn) is sufficient for
θ and has density ne−n(x−θ)I(x > θ). This Eichenauer (1986) result can
also be found in Berry (1993);
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4) For a sample from a distribution with a Lebesgue density with support
[θ, θ+1], θ ∈ [0, m], and with a convex loss function, Eichenauer-Herrmann
and Fieger (1992) give sufficient conditions on the loss function, on m and
on the two-point prior on {0, m} to be least favourable. As an example of
their results they take L(d, θ) = |d − θ| and X1, . . . , Xn a sample form a
uniform distribution on [θ, θ + 1]. They show that, for each n ≥ 1, there
exists an m∗

n ∈ (0, 1) such that, for 0 < m < m∗
n, the Bayes estimator with

respect to the uniform prior on {0, m} is minimax. This estimator is given
by

δm(X) =

⎧⎪⎪⎨
⎪⎪⎩

0 when X ∈ [0, 1]n\[m, 1]n

m when X ∈ [m, m + 1]n\[m, 1]n

m/2 otherwise,

where X = (X1, . . . , Xn). They also provide a table giving the values of
m∗

n for several values of n. As a second example they mention the case
where the Xi have density (e − 1)eθ+1−xI(θ ≤ x ≤ θ + 1);

5) For a sample X1, . . . , Xn from a uniform distribution on the interval
[−α θγ , β θγ ], where α, β and γ are known with α, β ≥ 0 and α+β, γ > 0,
Chen and Eichenauer (1988) use squared-error loss for estimating θ when it
is restricted to the interval [c, cm] with c > 0 and m > 1. They show that,
given α, β, γ, c, and n, there exists an m∗ > 1 such that, for 1 < m < m∗,
the Bayes estimator of θ with respect to the two-point prior with

mass
1

1 + mγn/2
on {c} and mass

mγn/2

1 + mγn/2
on {cm}

is minimax. This estimator is given by

δm(X) =

⎧⎪⎨
⎪⎩

c
mγn/2 + m

mγn/2 + 1
when X ∈ [−αcγ , βcγ ]n

cm otherwise,

where X = (X1, . . . , Xn);
6) Several papers study the estimation of h(θ) when X has Lebesgue density

f(x/θ)/θ with θ restricted to the interval [c, cm], for c > 0 and m > 1.
Eichenauer-Herrmann and Fieger (1989) use squared-error loss and sup-
pose h to be twice continuously differentiable with h′(θ) �= 0 for θ ≥ c.
Bischoff (1992) uses the loss function |d − h(θ)|p with p ≥ 2. He supposes
h to be strictly monotone. For estimating θ, van Eeden and Zidek (1999)
use scale-invariant squared-error loss. Each of these papers gives sufficient
conditions for the Bayes estimator with respect to a prior on the boundary
of Θ to be minimax. In van Eeden and Zidek (1994b) the (at that date
still unpublished) results of van Eeden and Zidek (1999) are used for the
special case of the F distribution;
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7) Several results have been obtained for the case where X is Nk(θ, I). Berry
(1990) takes Θ to be a sphere or a rectangle and uses squared-error loss
to estimate θ. For the case of a rectangle he remarks, as is also remarked
above, that the minimax estimator of the vector is the vector of minimax
estimators of the components. So for this case the results of Zinzius (1979,
1981) and of Casella and Strawderman (1981) can be used to obtain mini-
max estimators of the vector parameter when the rectangle is “small”. For
the case of a sphere of radius m, Berry (1990) shows that there exists an
mo(k) > 0 such that, when 0 < m ≤ mo(k), the Bayes estimator δm with
respect to the uniform distribution on the boundary of Θ is minimax. For
k ∈ {2, 3}, he obtains explicit expressions for the minimax estimator. Nu-
merically he finds mo(2) ≈ 1.53499 and mo(3) ≈ 1.90799. Berry’s results
are, like the ones of Casella and Strawderman, best-possible, i.e., his esti-
mators are not minimax when m > mo(k). Marchand and Perron (2002)
generalize the Berry (1990) results for the sphere to k (k ≥ 4) dimensions
and show that mo(k) ≥ √

k. This result then implies that mo(k) ≥ √
k for

all k ≥ 1. Bischoff, Fieger and Ochtrop (1995) take k = 2, squared error
loss and θ restricted to an equilateral triangle. Their result that for a small
enough triangle there exists a unique minimax estimator of the vector θ is
not best-possible;

8) In a very general setting, Bischoff and Fieger (1993) investigate whether,
for absolute-error loss, there exists a two-point least favourable prior on the
boundary of Θ. They give examples of existence as well as of non-existence
of such priors;

9) Another example where minimax estimators for “small” parameter spaces
have been obtained is the case where X ∼ Bin(n, θ) with θ ∈ [m1, m2] with
0 ≤ m1 < m2 < 1). Marchand and MacGibbon (2000) use squared-error
loss as well as the normalized loss function (d − θ)2/(θ(1 − θ)) and give
necessary and sufficient conditions on m1 and m2 for the Bayes estimator
with respect to a prior on {m1, m2} to be minimax. For normalized loss
they also have results for “moderate” values of m;

10)DasGupta (1985) considers, in a very general setting, the estimation, under
squared-error loss, of a vector h(θ) when θ is restricted to a small bounded
convex subset Θ of Rk. He gives sufficient conditions under which the Bayes
estimator with respect to the least favourable prior on the boundary of Θ
is minimax for estimating h(θ). In one of his examples he gives minimax
estimators of θ for the case where X ∼ U(θ − 1/2, θ + 1/2), θ ∈ [−m, m],
m ≤ 1/4 and for the case where X ∼ U(0, θ), θ ∈ [m1, m2], m2/m1 ≤
2/(

√
5 − 1). Two other examples are X ∼ N (θ, 1) with |θ| ≤ m and

X ∼ Bin(n, θ) with |θ − 1/2| ≤ m for a known m < 1/2. The above-
mentioned results on the existence of a minimax estimator for “small” Θ
when the loss is squared error can be obtained from DasGupta’s (1985)
results and most authors do refer to him. Chen and Eichenauer (1988)
note that DasGupta’s result for the U(0, θ) distribution is the special case
of their result with α = 0 and β = γ = n = 1. Further, the minimax
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estimator obtained by Eichenauer-Herrmann and Fieger (1992, p. 34) for
estimating a bounded θ with absolute-error loss when X ∼ U(θ, θ + 1) is,
for n = 1, the same as the minimax estimator DasGupta obtains for the
same X with squared-error loss and the maximum sizes of Θ for which
their results hold are also the same. For the bounded-normal-mean case
DasGupta finds that m ≤ .643 is sufficient for the Bayes estimator with
respect to a uniform prior on the boundary of Θ to be minimax. This
result is slightly better than Zinzius’s (1979, 1981) result. For his binomial
example DasGupta finds that for any Θ no larger than [.147, .853] the
Bayes estimator with respect to a uniform prior on the boundary of Θ is
minimax;

11)A result unifying many of the above ones can be found in Bader and
Bischoff (2003). They have X with Lesbegue density f(x; θ), θ ∈ [m1, m2]
and a loss function of the form L(d, θ) = l(d − θ). They then give condi-
tions on l and the densities for a two-point prior on {m1, m2} to be least
favourable.

Remark 4.1. Most of the above scale-parameter results, i.e., those in 5), 6)
and 10), are derived for loss functions which are not scale-invariant. The
only exception is the result of van Eeden and Zidek (1994b). They use scale-
invariant squared-error loss.

Remark 4.2. It can easily be seen that, in each of the above problems where
the support of the distribution of X depends on θ (i.e., those in 3) - 5) and
the uniform cases of DasGupta), the estimator of θ satisfies (see Chapter 2)
the “extra” restriction that the probability that X is in its estimated support
equals 1 for each θ ∈ Θ.

For a binomial parameter restricted to the interval [m, 1−m], as well as for a
Poisson mean restricted to the interval [0, m], analytical as well as numerical
results have been obtained for abitrary m.

For the case where X has a Bin(n, θ) distribution and θ ∈ [m, 1 − m],
0 < m < 1/2, Moors (1985) gives the minimax estimator and all its least
favourable priors for n = 1, 2 and 3 for squared-error as well as for normalized
loss. For larger values of n, up to 16, he has numerical results. Moors also
shows, for squared-error loss, that there exists a least favourable prior with
≤ [(n + 3)/4] + 1 points in its support.

Berry (1989), using an approach different from the one of Moors, gives the
minimax estimators and least favourable priors for squared-error loss for
n = 1, 2, . . . , 6. However, for n = 5, 6, Berry’s results hold only for small
m.

In the special case where n = 1 the results of Moors (1985) and Berry (1989)
imply that, when (2 − √

2)/4 ≤ m < 1/2, the estimator δ(0) = 2m(1 − m),
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δ(1) = 1−δ(0) is minimax. This result was also obtained by DasGupta (1985).
The complete results for n = 1 and n = 2 can also be found in Zou (1993).
(This article by Zou is written in Chinese. My thanks to (Xiaogang) Steven
Wang for the translation.)

An interesting result, mentioned by Moors and by Berry as well as by Zou,
is that for small enough m, the unique mimimax estimator for the parameter
space [0, 1] is minimax for the parameter space [m, 1−m]. A sufficient condi-
tion for this result to hold is (as Moors shows) that (n+

√
n/2)(n+

√
n) ≤ 1−m

and that there exists a prior on [m, 1 − m] whose moments µi satisfy

µi+1 =
i +

√
n/2

i +
√

n
µi i = 0, 1, . . . , n.

Zubrzycki (1966) mentions that Dzo-i (1961) has this same result. It is an
example of a case where a minimax estimator for a restricted parameter space
has a constant risk function. It is also an example where the least favourable
distribution is not unique, because, given that it is minimax for θ ∈ [0, 1], it
is Bayes with respect to the Beta ((

√
n)/2, (

√
n)/2) prior on [0, 1] and, given

that it is minimax for θ ∈ [m, 1 − m], it is Bayes with respect to some prior
on [m, 1 − m], which, of course, is a prior on [0, 1]. For n = 1, e.g., Moors
shows that, when m ≤ (2 −√

2)/4, there exist two symmetric discrete priors
on [m, 1−m], each giving the same Bayes estimator which is minimax for the
parameter space [m, 1 − m] as well as for the parameter space [0, 1]. These
priors are given by

π1 with mass
1
2

on each of
2 ±√

2
4

and

π2 with mass
1

4(2m − 1)2
on each of m and 1 − m

and the rest of the mass on 1/2.

The Bayes estimator takes the values 1/4 for x = 0 and 3/4 for x = 1 and
this estimator is also Bayes with respect to the Beta (1/2, 1/2) prior. This
example with the prior π1 can also be found in Berry (1989).

The fact that, for the binomial case with squared-error loss, the least favourable
prior is not necessarily unique is not surprising given that (see Moors, 1985,
Section 5.5) the Bayes risk for a given prior is determined by the first n of its
moments.

For X a random variable with a Poisson distribution with mean θ ∈ [0, m],
Johnstone and MacGibbon (1992) use the loss function (d − θ)2/θ and give
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minimax estimators and least favourable priors for 0 < m ≤ mo, where
mo ≈ 1.27. For m ≤ m1, where m1 ≈ .57 the least favourable prior has
{0} as its support and for m1 < m ≤ mo the prior is a two-point prior with
support {0, m}. They use numerical methods to obtain the minimax estima-
tor and least favourable priors for selected values of m between .100 and 11.5.
As already mentioned above, Wan, Zou and Lee (2000) consider this Poisson
problem with the linex loss function.

For X ∼ N (θ, 1) with |θ| ≤ m for a known positive m, Zeytinoglu and Mintz
(1984) obtain an admissible minimax estimator δm of θ for the loss function

L(d, θ) = I(|d − θ| > e), (4.14)

where e > 0 is known and m > e. For the case where e < m ≤ 2e, e.g., they
show the estimator

δm(X) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−(m − e) when X ≤ −(m − e)

X when −(m − e) < X < m − e

m − e when X ≥ m − e

to be admissible minimax for estimating θ when θ is restricted to the in-
terval [−m, m]. It is Bayes with respect to the (least favourable) prior
I(θ ∈ [−m, m − 2e) ∪ (2e − m, m])(m − e)/4. It is also the MLE of θ when θ
is restricted to the interval [−(m − e), m − e].

Finally, some remarks on a paper by Towhidi and Behboodian (2002). They
claim to have a minimax estimator of a bounded normal mean under the
so-called reflected-normal loss function which is given by

L(d, θ) = 1 − e−(d − θ)2/(2γ2),

where γ is known and −m ≤ θ ≤ m. They start with a prior on {−m, m} and
find that, when γ > 2m, the Bayes estimator δ of θ based on X ∼ N (θ, 1) is
the solution to the equation

(m − δ(x))p(x)e2mδ(x)/γ2
= (m + δ(x))(1 − p(x), (4.15)

where p(x) = P (θ = m | X = x). However, they do not say anything about
the number of roots to (4.15). This problem with their results can, however,
be solved. It is not difficult to see that (4.15) has exactly one solution and
that this solution is the Bayes estimator when γ > 2m. A much more serious
problem with this paper of Towhidi and Behboodian is that their proof that
this Bayes estimator is minimax is incorrect. In fact, they incorrectly apply
Karlin’s (1957) theorem on the relationship between the number of changes
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of sign of an integral and the number of changes of sign of its integrand. I do
not know how to correct this mistake and extensive correspondence with the
authors about this problem has not resolved it. The proofs of their theorems
concerning the analogous problem of minimax estimation of a bounded scale
parameter contain the same errors.

Remark 4.3. Ka�luszka (1986) has results for minimax estimation, with scale-
invariant squared-error loss, of the scale parameter θ of a gamma distribution
when θ ∈ (0, m] for a known positive m. These results are presented in Section
4.3 together with his results for the case where θ ≥ m for a known positive
m.

4.3 Minimax results when k = 1 and Θ is not bounded

In this section we look at the problem of minimax estimation of θ when
Θo = [m′,∞) and Θ = [m,∞) with −∞ ≤ m′ < m.

There are few results for this case and, among these, many only give estimators
for the (Do, Θ) problem. Of course, as mentioned before, such estimators can
(when D is complete in Do) be replaced by estimators satisfying (2.3) which
dominate them on Θ. Such dominators are minimax for the (D, Θ) problem.

Further, when the risk function of a (Do, Θo)-minimax estimator is constant
on Θo, this estimator is (Do, Θ)-minimax, making the (Do, Θ)-minimax prob-
lem trivial if the only purpose is to find a minimax estimator. However, a
careful study of the minimax problems for (Do, Θo) and (Do, Θ), might still
be useful because it might provide a class of (Do, Θ)-minimax estimators some
of which are (D, Θ)-minimax. As we will see below, for the case of a lower-
bounded scale parameter of a gamma distribution, several authors have ob-
tained (D, Θ)-minimax estimators this way, although none of them explicitely
states which minimax problem they are solving, nor do they indicate which
of their estimators satisfy (2.3).

Below known results and (outlines of) their proofs on (admissible) minimax
estimation with Θo and Θ as given above are presented for the case where
(i) θ is a normal mean; (ii) θ is a scale parameter of a gamma distribution, a
transformed χ2-distribution (as introduced by Rahman and Gupta, 1993), or
an F-distribution; (iii) θ is a location parameter of a uniform distribution; (iv)
θ is a scale parameter of a uniform distribution and (v) θ is an exponential
location parameter. For this last case, results for the case where θ is upper-
bounded are also presented. Finally, some new results for a lower-bounded
mean of a Poisson distribution are given.

First, let X ∼ N (θ, 1) with θ ≥ 0 and squared-error loss. The earliest result
for this case is by Katz (1961), who gives
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δK(X) = X +
φ(X)
Φ(X)

as an admissible minimax estimator of θ, where φ and Φ are, respectively,
the density and distribution function of X − θ. This estimator is easily seen
to be the Pitman estimator of θ under the restriction θ ≥ 0, i.e. the Bayes
estimator of θ for the uniform prior on [0,∞). For a proof of the minimaxity
of his estimator Katz uses Lemma 4.2 with

λn(θ) =
1
n

e−θ/nI(θ ≥ 0) θ ≥ 0, n = 1, 2, . . . ,

as the sequence of prior densities for θ. He then needs to prove that R(δK , θ) ≤
r for all θ ≥ 0, where r is the limit of the sequence of Bayes risks. He shows
that r = 1 and what then needs to be shown is that

Eθ(δK(X) − θ)2 ≤ 1 for all θ ≥ 0. (4.16)

His proof of (4.16) is not correct. However, simple, somewhat lenghty, algebra
shows that

2Eθ(X − θ)
φ(X)
Φ(X)

+ Eθ

(
φ(X)
Φ(X)

)2

= −θ

∫ ∞

−∞

φ(x)
Φ(x)

φ(x − θ)dx ≤ 0 for θ ≥ 0,

from which the result follows. Note that Katz’s result also shows that
M(Do, Θo) = M(D, Θ) and that their common value is 1.

There is however an easier way to prove the minimaxity of δK . First note
that X, the Pitman estimator of the unrestricted θ, has a risk function which
is constant on Θo. So, by Lemma 4.4 it is sufficient to prove only (4.16)
and no sequence of priors needs to be guessed at. A very simple proof of
(4.16) can be obtained by using Kubokawa’s (1994b) integral-expression-of-
risk method. This method, applied to location problems, gives sufficient con-
ditions for δ(X) = X + ψ(X) to dominate X. Assuming ψ to be absolutely
continuous with ψ(x) → 0 as x → ∞, he writes

(x − θ)2 − (x − θ + ψ(x))2 = −1
2

∫ ∞

x

(x − θ + ψ(t))ψ′(t)dt.

This gives

Eθ(X−θ)2−Eθ(X−θ+ψ(X))2 = −1
2

∫ ∞

−∞
ψ′(t)

∫ t

−∞
(x−θ+ψ(t))f(x−θ)dx,

where f(x − θ) is the density of X. Then, assuming ψ to be nonincreasing, a
sufficient condition for δ to dominate X on [0,∞) is that∫ t−θ

−∞
(x + ψ(t))f(x)dx ≤ 0 for all t and all θ ≥ 0,
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which is equivalent to

ψ(t)
∫ t−θ

−∞
f(x)dx ≥ −

∫ t−θ

−∞
xf(x)dx for all t and all θ ≥ 0.

For our normal means case this condition becomes

ψ(t) ≥ φ(t)
Φ(t)

for all t,

which proves (4.16), because φ(t)/Φ(t) satisfies the conditions imposed on ψ.

A possibly still easier way to show that δK is minimax is to use Lemma 4.4 and
Hartigan (2004) as follows. Because the risk function of X (the unrestricted
Pitman estimator) equals 1, Lemma 4.4 tells us that it is sufficient to show
that R(δK , θ) < 1 for θ > 0 and = 1 for θ = 0. And that is exactly what
Hartigan (2004) shows.

But, of course, neither the Blumenthal–Cohen, the Kubokawa, nor the Harti-
gan results were available to Katz.

Katz (1961) proves the admissibility of δK by using Blyth’s (1951) method
(Lemma 4.7).

Remark 4.4. We note here that Katz’s (1961) paper also contains results on
admissible minimax estimation of a lower-bounded expectation parameter for
the more general case of an exponential-family distribution. However, he does
not verify whether his Bayes estimators have finite Bayes risk and, in fact,
in general they do not. So, for such cases, his proofs are incorrect. (See van
Eeden, 1995, for a specific example.) As already mentioned in Remark 3.6,
Chang (1982) also quotes and uses, without any comments, the possibly in-
correct admissibility results of Katz (1961) for a lower-bounded gamma scale
parameter, as well as for a lower-bounded mean of a Poisson distribution.

Still for the lower-bounded normal mean case with squared-error loss, the
MLE of θ is the projection of X unto Θ = [0,∞). So the MLE dominates X
on Θ and the fact that M(Do, Θo) = M(D, Θ), then implies that the MLE is
minimax. As already seen in Chapter 3, Section 3.1, the MLE for the lower-
bounded normal mean is inadmissible for squared-error loss. Its minimaxity
then implies that all its dominators, e.g., the ones obtained by Shao and
Strawderman (1996b), are also minimax.

The next case we look at is the minimax estimation of a lower-bounded scale
parameter of a gamma distribution. Let X have density

fθ(x) =
1

θαΓ (α)
xα−1e−x/θ x > 0,
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where α > 0 is known and θ ≥ m or θ ∈ (0, m] for a known m > 0. The loss
function is scale-invariant squared-error loss, i.e., L(d, θ) = ((d/θ) − 1)2.

Minimax estimators as well as admissible estimators have been obtained for
this case by Ka�luszka (1986, 1988). He estimates θρ for a given ρ �= 0 when
θ ≥ m, as well as when θ ∈ (0, m], for a given m > 0. Going through his
proofs, it can be seen that he solves the (Do, Θ)-problem, i.e. his estimators
do not satisfy (2.3) and he compares them on Θ. He first shows that, when
−ρ < α/2, ρ �= 0,

Vρ = 1 − Γ 2(α + ρ)
Γ (α)Γ (α + ρ)

is an upper bound on the (Do, Θ)-minimax values for these two problems. He
obtains this result by using Lemma 4.2 with truncated generalized gamma
densities for a sequence of priors for θρ. Then, by obtaining estimators whose
minimax risk equals Vρ, he shows that Vρ is the minimax value for each of the
two problems. By the essential completeness of D in Do with respect to Θ, Vρ

is also the minimax value for the (D, Θ)-problem.

His minimax estimators are given by

δ(X) =
Γ (α + ρ)
Γ (α + 2ρ)

Xρ + b,

where b = 0 when 0 < θ ≤ m, ρ > 0 and also when θ ≥ m, 0 < −ρ < α/2.
These estimators clearly do not satisfy (2.3). However, when 0 < θ ≤ m,
0 < −ρ < α/2 and also when θ ≥ m, ρ > 0, the condition on b for δ to be
minimax becomes

0 ≤ b ≤ 2mρ

(
1 − Γ 2(α + ρ)

Γ (α)Γ (α + 2ρ)

)

and then, if Γ 2(α + ρ)/(Γ (α)Γ (α + 2ρ)) ≤ 1/2, there exist b such that δ is
minimax and is in D. However this condition is rather restrictive. For ρ = 1,
e.g., we are estimating θ and the condition on α becomes 2 < α ≤ 3.

Ka�luszka (1986) does not say anything about the admissibility of his minimax
estimators other than to give conditions under which they are admissible (for
squared-error loss) among estimators of the form aXρ + b.

Ka�luszka (1986) also gives admissible estimators for each of his problems.
These estimators satisfy (2.3). This is difficult to see from their formulas.
It follows, however, directly from the fact that they are admissible, because
(given that D is essentially complete in Do with respect to Θ) estimators
which do not satisfy (2.3) are inadmissible for the (D, Θ) problem.
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Ka�luszka does not say whether his admissible estimators are minimax or not.
Ka�luszla’s (1988) generalizes his results to the problem of minimax estimation
of functions h(θ).

For the special cases where ρ = 1 and ρ = −1, Zubrzycki (1966) has Ka�luszla’s
(1986) minimax results. Further, Ghosh and Singh (1970) take ρ = −1, α = 3
and have results for 0 < θ ≤ m as well as for θ ≥ m. They solve the (Do, Θ)
estimation problem with scale-invariant squared-error loss for these Θ’s. This
gives them the minimax value M(D, Θ) (=M(Do, Θ)). Their minimax estima-
tor does not satisfy (2.3), but any dominator of it which is in D is a minimax
estimator for the (D, Θ) problem.

For the case where ρ = 1 and θ ≥ m > 0, van Eeden (1995) gives an admissi-
ble minimax estimator for scale-invariant squared-error loss. Her results were
obtained independently of those of Ka�luszka (1986, 1988), but her estimator
is a special case of his admissible estimators, of which (as already said) he
does not prove minimaxity. This admissible minimax estimator is given by

δvE(X) =
X

α + 1

(
1 +

gα+2(X/m)
Gα+2(X/m)

)
,

where gβ(x) = xβ−1e−x and Gβ(x) =
∫ x

0
tβ−1e−tdt. This estimator is easily

seen to be the Pitman estimator δP of θ under the restriction θ ≥ m, i.e. the
Bayes estimator of θ with respect to a uniform prior for log θ on [log m,∞).
For the proof of the minimaxity of δvE , van Eeden uses Lemma 4.2 with a
sequence of priors with densities m1/n/(nθ1+(1/n)), θ ≥ m, n = 1, 2, . . .. She
proves the admissibility of her estimator by using Blyth’s (1951) method (see
Lemma 4.7).

Note that van Eeden (1995) could have proved the minimaxity of her estima-
tor by using Lemma 4.5 which says that the minimax value of the restricted
problem equals the one for the unrestricted problem which equals 1/(1 + α).
So, all that needs to be shown is that supθ≥θo

R(δP , θ) = 1/(1 + α) and no
sequence of priors needs to be guessed at.

I do not know whether any of Ka�luska’s other admissible estimators are min-
imax, nor whether any of his minimax estimators are admissible.

Jafari Jozani, Nematollahi and Shafie (2002) extend the results of van Eeden
(1995) to the following exponential-family setting. Let X = (X1, . . . , Xn)′

have Lebesgue density

pθ(x) = c(x, n)τ−rρeT (x)/τr

(xi > 0, i = 1, . . . , n), (4.17)

where x = (x1, . . . , xn), ρ > 0 and r �= 0 are known and T (x) is a suf-
ficient statistic for θ = τ r with a Γ (ρ, θ) distribution. The family (4.17)
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is a scale parameter family of distributions when T (ax) = arT (x) and
c(ax, n) = arρ−nc(x, n) for all a > 0 and all x. The authors show that, for
estimating θ under the restriction θ ≥ m with scale-invariant squared-error
loss, van Eeden’s proofs can be adapted to their case and that

δ(X) =
T (x)
ρ + 1

⎛
⎜⎜⎜⎝1 +

(
T (X)

m

)ρ+1

e−T (X)/m

∫ T (X)/m

0

xρ+1e−xdx

⎞
⎟⎟⎟⎠

is an admissible minimax estimator of θ. They note that their results solve
this minimax problem for scale parameter estimation in a lognormal, an ex-
ponenial, a Rayleigh, a Pareto, a Weibull, a Maxwell and an inverse normal
distribution. Here too, minimaxity can be proved by using Lemma 4.5 and
showing that the risk function of δ is, for θ ∈ Θ, upper-bounded by the mini-
max value for the unrestricted problem.

The problem of minimax estimation of a lower-bounded scale parameter of an
F distribution was considered by van Eeden and Zidek (1994a,b) and by van
Eeden (2000). Let X have density

fθ(x) =
Γ (α + n − 1)
Γ (n)Γ (α − 1)

θα−1xn−1

(θ + x)(α+n−1)
x > 0,

where n > 0 and α > 3 are given constants and where θ ≥ m for a given m > 0.
Among many other things, van Eeden and Zidek show that the estimator

δvEZ(X) = max
{

α − 3
n + 1

X, m

}

is the unique minimax estimator of θ in the class of truncated linear estima-
tors C = {δ|δ(X) = max{aX, m}}. They also show that the minimax value
for this class is given by (α + n − 2)/((α − 2)(n + 1)). That this estimator is
also minimax among all estimators was shown by van Eeden (2000). She used
the results of Gajek and Ka�luszka (1995, Section 3) discussed in Section 4.1,
to obtain the minimax value for the problem. However, as already mentioned
above in the discusssion of these Gajek and Ka�luszka results, the minimax
value for estimating a lower-bounded scale parameter can be obtained from
Lemma 4.5. What is needed is that the Pitman estimator of the unrestricted
scale parameter has finite (constant) risk M and that there exists an estimator
of θ ∈ R1

+ with a risk function ≤ M for all θ ≥ m. Now, it can easily be seen
that this Pitman estimator equals ((α− 3)/(n + 1))X and that its (constant)
risk function equals (α+n− 2)/((α− 2)(n+1)). This method of proof avoids
having to check the Gajek–Ka�luszka condition on the density fθ.

This estimator does not solve the minimaxity problem for the lower-bounded
scale parameter of an F distribution in a satisfactory manner in the sense
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that our minimax estimator is inadmissible. This inadmissibility was proved
by van Eeden and Zidek (1994a,b) by using results of Charras and van Eeden
(1994). I do not know of any result giving an admissible minimax estimator
for this case.

Now look at the case where Xi ∼ind U(θ − 1, θ + 1), i = 1, . . . , n, with θ ≥
1 and squared-error loss. Then the unrestricted Pitman estimator δo for
estimating θ ∈ R1 is given by (Y1 + Y2)/2, where Y1 = min1≤i≤n Xi and
Y2 = max1≤i≤n Xi. Its risk function is independent of θ and is given by
2/((n + 1)(n + 2)). It is minimax for the unrestricted problem. The Pitman
estimator is

δP (Y ) =

∫ Y1+1

max(Y2−1,1)

tdt

∫ Y1+1

max(Y2−1,1)

dt

=

⎧⎨
⎩

1
2 (Y1 + Y2) when Y2 ≥ 2

1
2 (Y1 + 2) when Y2 < 2,

where Y = (Y1, Y2). By Lemma 4.4, the minimax values for the restricted and
the unrestricted problems are equal. Further, note that Pθ(δo(Y ) = δP (Y )) =
1 for θ ≥ 3, so for those θ the estimators have the same risk. When 1 ≤ θ < 3,

R(δo, θ) − R(δP , θ) =
(3 − θ)n+2

2n(n + 1)(n + 2)
≥ 0,

which shows the minimaxity of the Pitman estimator for the restricted prob-
lem.

For the uniform distribution where Xi ∼ind U(0, θ), i = 1, . . . , n, n > 1,
with θ ≥ 1 and scale-invariant squared-error loss, the unrestricted Pitman
estimator δo is nY/(n − 1), where Y = max1≤i≤n Xi. It is minimax for the
parameter space θ > 0 and its risk function is given by (n2−n+2)/(n−1)2(n+
1)(n+2). The Pitman estimator is easily seen to be given by n max(1, Y )/(n−
1). It is minimax for the restricted problem because

R(δo, θ) − R(δP , θ) =
n

θn

(
1

n + 2
− 2θ

n + 1
+

sθ − 1
n

)

=
2
θn

(
θ

n + 1
− 1

n + 2

)
≥ 0 ⇐⇒ θ ≥ n + 1

n + 2
.

Two more problems for which admissible minimax estimators are known are
the case of a lower-bounded and of an upper-bounded location parameter of
an exponential distribution. Let X have density

fθ(x) = e−(x−θ) x > θ,
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where θ ≤ 0 or θ ≥ 0. Berry (1993) obtains admissible minimax estimators of
θ for squared error loss for these problems. For the case where θ ≤ 0, he uses
Lemma 4.2 with the sequence of prior densities eθ/ν/n, θ ≤ 0, ν = 1, 2, . . . to
show that min{0, x}− 1 is minimax. He notes that it is Bayes with respect to
the uniform prior on (−∞, 0], i.e. it is the Pitman estimator. The risk func-
tion is given by 1 + 2θeθ ≤ 1 with strict inequality if and only if θ < 0. Berry
uses Farrell’s (1964) Theorem 7 for its admissibility. When θ ≥ 0, Berry uses
Farrell’s (1964) theorems 6 and 7 with the uniform prior on (0,∞) to conclude
that x/(1−e−x)−1 is admissible minimax. Note that each of these estimators
satisfies (2.3).

These results of Berry (1993) can easily be extended to the case of a sample
X1, . . . , Xn from their distribution because Y = min1≤i≤n Xi is sufficient for
θ and has density e−(y−θ)/n/n, y > θ. Further, the minimax values for these
two problems are known from Lemma 4.4, which says that they are equal to
the minimax value for the unrestricted problem. So, here again, all that needs
to be shown is that risk functions of the estimators are upper-bounded on Θ
by the minimax values for the unrestricted problems.

For this problem of estimating an upper-bounded location parameter of an
exponential distribution, based on a sample X1, . . . , Xn, Parsian and Sanjari
Farsipour (1997) use the linex loss function ea(d−θ) − a(d− θ)− 1 with a < n,
a �= 0 and θ ≤ 0. They show (see Chapter 3, Section 3.6) that, with respect
to this loss function, the Pitman estimator δP of θ is admissible. They also
show that the risk function of the unrestricted Pitman estimator δo (still with
respect to their loss function) is a constant and that R(δP , θ) ≤ R(δo, θ) with
equality if and only if θ = 0. But this does not prove that δP is minimax:
Lemma 4.4 does not apply here because the loss function is not squared-error.

The theorems of Farrell (1964) used by Berry (1993) are concerned with
minimaxity and admissibility of generalized Bayes estimators of location pa-
rameters when X1, . . . , Xn are independent with common Lebesgue density
f(x − θ). Farrell’s loss functions are strictly convex. In particular he looks at
the case where θ ≥ 0 and thus gets Katz’s (1961) result for a lower-bounded
normal mean as a special case. Another example he mentions is the case where,
for m an even integer ≥ 4,

f(x) =
m − 1
xm

I(x ≤ −1). (4.18)

He notes that, when θ ≥ 0, the Pitman estimator δP with respect to squared-
error loss has a surprising property. It is, for n = 1, given by

δP (x) =

⎧⎪⎪⎨
⎪⎪⎩

−x

m − 2
when x ≤ −1

x +
m − 1
m − 2

when x > −1,
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i.e., according to Farrell’s (1964) theorems 7 and 8 this Pitman estimator is
admissible and minimax, but it is also non-monotone.

A special case of the density (4.18), namely the case where m = 4, is considered
by Blumenthal and Cohen (1968b) for the case of two independent samples
with ordered location parameters. They have (see Section 4.4) numerical ev-
idence that for squared-error loss the Pitman estimator of the vector is, for
that distribution, not minimax.

Remark 4.5. Note that, for each of the above two uniform cases, as well as
for the exponential location case and for Farrell’s density (4.18), the Pitman
estimator satisfies the “extra” restriction (see Chapter 2), i.e., the probability
that X is in its estimated support is 1 for all θ ∈ Θ.

Finally, suppose that X has a Poisson distribution with mean θ where θ ≥ m
for a known m > 0 and that we use the loss function (d − θ)2/θ. Then the
minimax value for the unrestricted problem is well known to be equal to 1
and the minimax estimator for that case is X. This estimator has a constant
risk function. In this case neither Lemma 4.4 nor Lemma 4.5 applies because
θ is neither a location parameter, nor a scale parameter. Moreover, X does
not have a Lebesgue density. In Theorem 4.1 the information inequality (4.7)
is used to show that X is (Do, Θ)-miminax. The proof of this theorem is
analogous to the one given by Lehmann (1983, pp. 267–268) (see also Lehmann
and Casella, 1998, p. 327) for the case of a lower-bounded mean of a normal
distribution.

Theorem 4.1 For estimating a Poisson mean θ when θ ≥ m for a known
m > 0 with loss function (d − θ)2/θ the unrestricted maximum likelihood
estimator is (Do, Θ)-minimax.

Proof. Suppose that X is not (Do, Θ)-minimax. Then there exists a statistic
δ(X) and an ε ∈ (0, 1) such that

Eθ
(δ(X) − θ)2

θ
≤ 1 − ε for all θ ≥ m. (4.19)

From (4.7) and (4.19) it follows that there exists an ε ∈ (0, 1) such that

b2(θ)
θ

+ (b′(θ) + 1)2 ≤ 1 − ε for all θ ≥ m,

which implies that, for all θ ≥ m,

−√
1 − ε − 1 ≤ b′(θ) ≤ √

1 − ε − 1;

−√θ(1 − ε) ≤ b(θ) ≤√θ(1 − ε).
(4.20)

Further, the first inequality in (4.20) gives
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d

dθ

(
b(θ) +

√
θ(1 − ε)

)
= b′(θ) +

√
1 − ε

2
√

θ
≤

√
1 − ε − 1 +

√
1 − ε

2
√

θ
for all θ ≥ m.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.21)

Now let θ∗ satisfy

θ∗ > max
(

m,

√
1 − ε

1 −√
1 − ε

)
,

then, by (4.21),

d

dθ

(
b(θ) +

√
θ(1 − ε)

)
<

− (1 −√
1 − ε

)
+

1 −√
1 − ε

2
= −1 −√

1 − ε

2
> 0 for all θ > θ∗.

But this contradicts (see the second line of (4.20)) the fact that

b(θ) +
√

θ(1 − ε) ≥ 0 for all θ ≥ m.

So X is (Do, Θ)-minimax and the minimax value for this (Do, Θ) estimation
problem equals 1. ♥
This theorem has the following corollary.

Corollary 4.2 The minimax value for estimating a lower-bounded mean θ of
a Poisson distribution with loss function (d−θ)2/θ equals 1 and the restricted
maximum likelihood estimator max{X, θo} is an inadmissible minimax esti-
mator.

Proof. From Theorem 4.1 it follows that M(Do, Θo) = M(Do, Θ) = 1. Further,
by the completeness of D in Do with respect to Θ, M(Do, Θ) = M(D, Θ),
proving the first result. That max{X, θo} is minimax then follows from the
fact that max{X, θo}dominates X on θ and the inadmissibility of max{X, θo}
follows from Brown (1986, Theorem 4.23). ♥
This leaves us, once again, with only an inadmissible minimax estimator. It
seemed to me that the Bayes estimator with respect to the uniform prior on
[m,∞) might be an admissible minimax estimator. The reason behind this
idea is that I thought that what works for the lower-bounded normal mean
and for the lower-bounded gamma scale parameter, would also work for the
lower-bounded Poisson mean. That is, using the truncated version of the prior
which gives the unique minimax estimator for the case when θ is not restricted
gives a minimax estimator for the restricted case. However, this is not the case
as is shown by the following reasoning of Strawderman (1999). First note that
the Bayes estimator with respect to the uniform prior on [m,∞) is given
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by δ(X) =
(Eθ−1|X)−1, where the expectation is taken with respect to the

posterior distribution of θ. This gives

δ(X) = X +
mXe−X∫∞

m
tX−1e−tdt

= X + ψ(X),

where

ψ(x) =
mxe−m∫∞

m
tx−1e−tdt

=
1∫∞

1
tx−1e−m(t−1)dt

.

In order to show that this estimator is not minimax, we need to show that
there exists a θ ≥ m for which ∆R(θ) = Eθ (δ(X) − θ)2 − Eθ(X − θ)2 > 0.
Now note that ψ(x) → 0 as x → ∞. So, using Kubokawa’s (1994b) intergral-
expression-of-risk method, gives, for t an integer ≥ 0,

(X − θ + ψ(t))2 − (X − θ)2 =

−
∞∑
i=t

[
(X − θ + ψ(i + 1))2 − (X − θ + ψ(i))2

]
=

−2
∞∑
i=t

(ψ(i + 1) − ψ(i))
(

X − θ +
ψ(i + 1) + ψ(i)

2

)
.

This gives

∆R(θ) = −2
∞∑

x=0

e−θθx

x!

∞∑
i=x

(ψ(i + 1) − ψ(i))
(

x − θ +
ψ(i + 1) + ψ(i)

2

)

= −2
∞∑

i=0

(ψ(i + 1) − ψ(i))
i∑

x=0

e−θθx

x!

(
x − θ +

ψ(i + 1) + ψ(i)
2

)
,

where, because ψ(x) is strictly decreasing in x, ψ(i + 1) − ψ(i) < 0 for all
i = 1, 2, . . .. Further, for θ = m,

ψ(i + 1) + ψ(i)
2

> ψ(i+1) =
mi+1e−θo∫∞
m

tie−tdt
>

mi+1e−m

i!
= −

i∑
x=0

mxe−m

x!
(x−m),

which shows that ∆R(θo) > 0 and thus that δ(X) is not minimax.

4.4 Minimax results when k > 1 and Θ is not bounded

Very few minimaxity results have been obtained for the case where k > 1 and
Θ is not bounded. Of course, minimaxity results for estimating θ = (θ1, . . . , θk)
when the θi are lower- or upper-bounded can be obtained from Lemma 4.3
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when minimax estimators of the components of θ based on independent sam-
ples are known. Otherwise, the only results I have been able to find are for
the case where the loss is squared error and

i) the θi are location parameters, k = 2 and Θ = {θ | θ1 ≤ θ2};
ii) Xi ∼ N (θi, σ

2
i ), i = 1, . . . , k, with the σ2

i ’s known but not necessarily equal
and Θ = {θ | θ1 ≤ . . . ≤ θk};

iii) Xi ∼ind N (θi, 1), i = 1, . . . , k and Θ is a closed, convex subset of Rk with
an apex;

iv) Xi ∼ind N (θi, σ
2
i ), i = 1, 2, Θ = {θ | |θ2 − θ1| ≤ c} for a given positive

constant c and known σ2
i .

Results concerning point i) have been obtained by Blumenthal and Cohen
(1968b) for the case where Xi, i = 1, 2 are independent and Xi has Lebesgue
density f(x− θi), i = 1, 2. This is a case where the conditions of Θ of Lemma
4.4 are satisfied, so the restricted and unrestricted mimimax values are equal.
They give sufficient conditions on f for the Pitman estimator to be minimax.
The normal, uniform and exponential densities satisfy these conditions. Their
sufficient conditions for the Pitman estimator to be admissible are satisfied by
the normal and exponential densities. And for the density f(x) = (3/x4)I(x ≤
−1) they have numerical evidence that the Pitman estimator is not minimax.
The Blumenthal–Cohen (1968b) proofs, which are rather complicated, are
based on results of Blumenthal and Cohen (1968a), Farrell (1964) and James
and Stein (1961).

Remark 4.6. The density f(x) = (3/x4)I(x ≤ −1) is a member of the fam-
ily (4.18) for which Farrell (1964) finds (see Section 4.3) that, for squared-
error loss, the Pitman estimator of a lower-bounded location parameter is
non-monotone, admissible and minimax.

Results concerning point ii) above have been obtained by Kumar and Sharma
(1988, 1989, 1993). Most of their results hold for the case where Xi ∼ N (θi, 1),
i = 1, . . . , k, k ≥ 2, squared-error loss and θ1 ≤ . . . ≤ θk. This is again a case
where the conditions on Θ of Lemma 4.4 are satisfied and they show the
Pitman estimator to be minimax. Further, for k = 2, they define so-called
mixed estimators, which are given by

δ(X1, X2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
X1

X2

)
when X1 ≤ X2

(
αX1 + (1 − α)X2

(1 − α)X1 + αX2

)
when X1 > X2,

where 0 ≤ α ≤ 1. These estimators are in D if and only if α ≤ 1/2. Kumar
and Sharma, in their 1988 paper, show those for α ≤ 1/2 to be admissible
among themselves. They claim to show that the mixed estimators are inad-
missible by showing that they are not generalized Bayes, but in fact they only
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show that they are not generalized Bayes with respect to a prior which has
a Lebesgue density. Kumar and Sharma also consider the case where the Xi

are normal but do not necessarily have the same variance, as well as the more
general case where the densities of the Xi do not necessarily have the same
shape. In their (1993) paper they state (see their p. 233) that the Pitman
estimator is inadmissible. But Blumenthal and Cohen (1968b) show it to be
admissible when k = 2. Maybe Kumar and Sharma (1988) forgot to say k ≥ 3.

For the normal-mean case with k = 2 and θ1 ≤ θ2, Katz (1963) gives proofs
of the admissibility and minimaxity of the Pitman estimator of (θ1, θ2). But,
as both Blumenthal and Cohen (1968b) and Kumar and Sharma (1988) note,
these proofs are “inadequate” – a statement with which I agree.

Concerning point iii) above, Hartigan (2004) shows that, for X ∼ Nk(θ, I)
and squared-error loss, the Pitman estimator δP satisfies R(δP , θ) ≤ k for all
θ ∈ Θ with equality if and only if θ is an apex of Θ. Then, if the conditions
on Θ of Lemma 4.4 are satisfied, δP is minimax. And the parameter spaces of
Blumenthal–Cohen and Kumar–Sharma do have an apex, so their minimaxity
results for Xi ∼ind N (θi, 1), i = 1, . . . , k follow from this Hartigan result.

Concerning point iv) above, a new result on minimax estimation of restricted
normal means is contained in the following theorem. It is a case where the
conditions of Lemma 4.4 are not satisfied.

Theorem 4.2 Let X1 and X2 be independent random variables with, for
i = 1, 2, Xi ∼ N (θi, σ

2
i ) where the σi are known and |θ2 − θ1| ≤ c for

a known c > 0 satisfying c ≤ mo

√
σ2

1 + σ2
2, where mo ≈ 1.056742 is the

Casella–Strawderman constant. Then, for squared-error loss, a minimax esti-
mator δ(X1, X2) = (δ1(X1, X2), δ2(X1, X2)) of the vector θ = (θ1, θ2) is given
by

δ1(X1, X2) =
1

1 + τ

(
τX1 + X2 − c tanh

( c

σ2
(X2 − X1)

))

δ2(X1, X2) =
1

1 + τ

(
τX1 + X2 + τc tanh

( c

σ2
(X2 − X1)

))
,

where τ = σ2
2/σ2

1 and σ2 = σ2
1 + σ2

2.

The minimax value for the problem is given by

2σ2
1σ2

2

σ2
+
(

1 +
σ4

2

σ4
1

)
σ4

1

σ2
sup

|∆|≤m

E (m tanhmZ − ∆)2 ,

where Z ∼ N (∆, 1) and m = c/σ. Note that, from Hartigan (2004), we know
that when σ2

1 = σ2
2 = λ2, this minimax value is < 2λ2.
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Proof. The proof presented here uses a technique used by van Eeden and Zidek
(2004). They study the problem of estimating θ1 based on (X1, X2) when
|θ2 − θ1| ≤ c. As will be seen in the next chapter, they obtain for this model
an estimator of θ1 based on (X1, X2), which is admissible and minimax. In
their proof they use the following rotation technique of Blumenthal and Cohen
(1968a) (see also Cohen and Sackrowitz, 1970). Let

Y1 =
τX1 + X2

1 + τ
Y2 =

−X1 + X2

1 + τ

µ1 = EθY1 =
τθ1 + θ2

1 + τ
µ2 = EθY2 =

−θ1 + θ2

1 + τ
.

(4.22)

Then |θ2−θ1| ≤ c if and only if |µ2| ≤ c/(1+τ) and µ1 is unrestricted. Further
note that

X1 = Y1 − Y2 X2 = Y1 + τY2

θ1 = µ1 − µ2 θ2 = µ1 + τµ2

(4.23)

and that Y1 and Y2 are independent normal random variables. So, finding a
minimax estimator of θ based on (X1, X2) under the restriction |θ2 − θ1| ≤ c
is equivalent to finding a minimax estimator of (µ1 − µ2, µ1 + τµ2) based on
(Y1, Y2) under the restriction |µ2| ≤ c/(1 + τ). To solve this problem, take a
sequence λn, n = 1, 2, . . ., of priors for µ = (µ1, µ2) where, for each n, µ1 and
µ2 are independent, with µ1 ∼ N (0, n) and the prior for µ2 with mass 1/2
on each of ±c/(1 + τ). The independence of µ1 and µ2 combined with the
conditional, given µ, independence of Y1 and Y2 implies that, for i = 1, 2, the
Bayes estimator δn,i(Y1, Y2) of µi depends on Yi only and

δn,1(Y1, Y2) = δn,1(Y1) =
Y1

1 + (γ2/n)

δn,2(Y1, Y2) = δ2(Y2) =
c

1 + τ
tanh

(
c

σ2
1

Y2

)
,

where γ2 = V ar(Y1) = σ2
1σ2

2/σ2. The components δn,B,i(Y1, Y2), i = 1, 2, of
the Bayes estimator δn,B(Y1, Y2) of (µ1 −µ2, µ1 + τµ2) are then given by (see
4.23)

δn,B,1(Y1, Y2) =
Y1

1 + (γ2/n)
− c

1 + τ
tanh

(
c

σ2
1

Y2

)
and

δn,B,2(Y1, Y2) =
Y1

1 + (γ2/n)
+

τ

1 + τ
c tanh

(
c

σ2
1

Y2

)
.

Because of the independence of the Yi, the MSE of δn,B as an estimator of
(µ1 − µ2, µ1 + τµ2) is given by is given by

2
(

2σ2
1σ2

2/σ2

(1 + (γ2/n))2
+ µ2

1

γ4

(γ2 + n)2

)
+ (1 + τ2)Eµ2(δ2(Y2) − µ2)2. (4.24)
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By Casella and Strawderman (1981) we know that, when c ≤ moσ, the
Bayes risk of δ2(Y2) as an estimator of µ2 based on Y2 under the restric-
tion |µ2| ≤ c/(1 + τ) equals sup(Eµ2(δ2(Y2)−µ2)2| |µ2| ≤ c/(1 + τ)). Further,
given that the prior for µ1 is N (0, n), the Bayes risk of the second factor in the
first term of (4.24) converges, as n → ∞, to σ2

1σ2
2/σ2, which is the (constant)

risk function of Y1. The minimaxity then follows from Lemma 4.2 and (4.22).

From (4.24) the minimax value for the problem is found to be

2
σ2

1σ2
2

σ2
+ (1 + τ2)r2,

where

r2 = sup

(
Eµ2

(
c

1 + τ
tanh

(
c

σ2
1

Y2

)
− µ2

)2

| |µ2| ≤ c/(1 + τ)

)

= sup
|θ2−θ1|≤c

Eθ

(
c

1 + τ
tanh

c

σ2
(X2 − X1) − θ2 − θ1

1 + τ

)2

=
σ4

1

σ2
sup

|∆|≤c/σ

E
( c

σ
tanh

( c

σ
Z
)
− ∆

)2

,

where Z ∼ N (∆, 1). This proves the result concerning the minimax value.
♥
Remark 4.7. For X ∼ Nk(θ, Σ) with θi ≥ 0, i = 1, . . . , k, Sengupta and Sen
(1991, Theorem 4.2) seem to say that the MLE of θ is minimax. I do agree
with this when Σ is diagonal (see Lemma 4.3). However, I do not see why this
is true when Σ is not diagonal.

4.5 Discussion and open problems

It is clear from the above that (admissible) minimax estimators have been
found only for relatively few cases of restricted parameter spaces and mostly
only for (scale-invariant) squared-error loss. When Θ is bounded, most results
hold only for “small” parameter spaces. When Θ is not bounded, the known
minimax estimators are often inadmissible.

Given how difficult it is to find minimax estimators, one wonders whether
they are “worth the trouble”: i.e., can one with less effort find estimators
which are “almost as good”? Some, mostly numerical, results have been ob-
tained to help answer this question. For the bounded-normal-mean problem
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with X ∼ N (θ, 1) and −m ≤ θ ≤ m, Gatsonis, MacGibbon and Strawderman
(1987) compare, among other things, the Casella–Strawderman–Zinzius min-
imax estimator of θ with the (admissible) Pitman estimator δP . For m = .5,
e.g., the minimax value for the problem is ∼ .199 (see Casella and Strawder-
man, 1981; or Brown and Low, 1991), while from their graphs one sees that the
maximum difference between the two risk functions is ∼ .05. Similar results
hold for the other two values of m they have results for, namely, m = .75 and
m = 1.5. Further, in each of these three cases, numerical results show that δP

dominates the minimax estimator over a large part of the interval [−m, m],
while the authors show that the MLE dominates the minimax estimator over
an interval of the form [−m∗, m∗] with numerical evidence that m∗ ≈ .75 m.
They moreover show that the risk function of the Pitman estimator is ≤ 1, the
minimax value M(Do, Θo) for the unrestricted problem, a result that is gener-
alized by Hartigan (2004) to k ≥ 1 with Θ a closed, convex subset of Rkwith
a non-empty interior. He shows (as already mentioned in Section 4.1) that for
that case equality holds if and only if θ is an apex of Θ. Note that all the
above risk-function values from the Gatsonis, MacGibbon and Strawderman
(1987) paper have been read off their graphs and are thus very approximate.

A class of “nearly minimax” estimators considered for the bounded-normal-
mean problem with X ∼ N (θ, 1), −m ≤ θ ≤ m and squared-error loss, is the
class of linear minimax estimators, i.e., estimators which are minimax among
linear estimators. Results for this problem have been obtained by Donoho,
Liu and MacGibbon (1990). They show that the linear minimax estimator is
given by δL(X) = (m2/(m2 + 1))X and that the minimax linear risk is given
by ρL(m) = m2/(m2 +1). They study the properties of λ(m) = ρL(m)/ρ(m),
where ρ(m) is the minimax value for the problem. One of their (many) results
says that λ(m) ≤ 1.25 for all m and they quote numerical results of Feldman
from his unpublished thesis stating that 1.246 ≤ λ(m) ≤ 1.247. Further, Gour-
din, Jaumard and MacGibbon (1990) show that λ(m) ∈ [1.246408, 1, 246805].
So, risk-function-wise this estimator is not a bad alternative to the mini-
max estimator. Donoho, Liu and MacGibbon (1990) also study the estima-
tor δ∗(X) = XI(m ≥ 1), which has sup−m≤θ≤m R(δ∗, θ) = min(m2, 1) and
maxm>0(min(m2, 1))/ρ(m) ≈ 2.22. So, risk-function-wise, δL is to be pre-
ferred over δ∗. The authors also have many results for the case where k ≥ 2
for various Θ.

Another class of “nearly minimax” estimators for the above bounded-normal-
mean problem can be found in Vidakovic and DasGupta (1996). They consider
so-called Γ -minimax linear estimators. In the Γ -minimax approach one spec-
ifies a class Γ of priors (in this case the authors took all symmetric unimodal
ones on Θ). Then a Γ -minimax estimator minimizes supγ∈Γ rγ(δ), where rγ(δ)
is the Bayes risk of the estimator δ for the prior γ – all of this of course for a
given loss function which in the present case is squared-error. For more on this
Γ -minimax approach, see, e.g., Berger (1984). Vidakovic and DasGupta (1996)
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use this approach but restrict themselves to linear estimators and show that
δ∗L(X) = (m2/(m2 + 3))X with corresponding Γ -minimax risk m2/(m2 + 3).
This Γ -minimax risk satisfies ρL(m)/ρ(m) ≤ 1.074, showing that δ∗ is better
that δL in the minimax sense. The difference is surprising, given how close
the estimators are for large m. These authors also have results for k ≥ 2.

Linear minimax estimators have also been studied for the case where X ∼
Poisson with mean θ, θ ∈ [0, m] and loss function L(d, θ) = (d − θ)2/θ.
Johnstone and MacGibbon (1992) show that this estimator is given by
δ∗∗(X) = (m/(m+1))X with linear minimax value m/(m+1). From numerical
results they find that λ(m) ≤ 1.251, while Gourdin, Jaumard and MacGib-
bon (1990) show that λ ∈ [1.250726, 1.250926]. Johnstone and MacGibbon
(1992) comment on the surprising similarity of these bounds with those for
the bounded-normal-mean case.

Marchand and MacGibbon (2000) make comparisons between various estima-
tors for the binomial case with θ ∈ [m, 1 − m] for 0 < m < 1/2, as well as
with θ ∈ [0, b] with 0 < b < 1. For estimating θ they have results for squared-
error loss and for the loss function (θ − d)2/(θ(1 − θ)). One of the estimators
they consider is the linear minimax estimator. Their numerical results are
presented in the form of graphs of the risk function.

Remark 4.8. The above linear minimax estimators are not estimators in the
sense of this monograph – they do not satisfy (2.3). The only comment I have
been able to find about this is in Vidakovic and DasGupta (1996). They give,
for the bouded-normal-mean problem, numerical values of the infimum over Θ
of the probability that their estimator is in Θ. For k = 1, e.g., they find ≈ .84
for m = 3 and ≈ .52 for m = 50. They also derive estimators of the form
δ(X) = cX for which this infimum is ≥ 1 − α for a given α. But none of the
above proposers of linear minimax estimators seem to look at the properties
of dominators of their linear estimators which satisfy (2.3).

On the question of how much can be gained minimax-wise: as has been seen
already, nothing can be gained when k = 1 and θ is a lower-bounded loca-
tion or scale parameter and, more generally, when k > 1 and Θ satisfies the
conditions of Lemma 4.4 or of Lemma 4.5. Another case where the two mini-
max values are equal is a symmetrically truncated binomial parameter when
the difference between Θo and Θ is small. Note that these two situations are
very different. In the case of location and scale parameters, the two minimax
estimators δo and δ of θ for, respectively, the parameter spaces Θo and Θ are
different but have supθ∈Θo

R(δo, θ) = supθ∈Θ R(δ, θ). In the binomial case, the
minimax estimator for (Do, Θo) satisfies (2.3) and has a constant risk function
so that it is also (D, Θ)-minimax.

On the question of how different M(Do, Θo) and M(D, Θ) are when they are
not equal, numerical results have been obtained for the bounded-normal-mean
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problem as well as for a symmetrically restricted binomial probability.

For X ∼ Nk(θ, I) with squared-error loss and Θ = {θ | ∑k
i=1 θ2

i ≤ m2},
minimax values have been obtained by Casella and Strawderman (1981) and
by Brown and Low (1991) for k = 1. Their results are summarized in Tab 4.1.

Table 4.1. Minimax values, X ∼ N (θ, 1), |θ| ≤ m.

m .100 .200 .300 .400 .500 .600 .700

M(D, Θ) .010 .038 .083 .138 .199 .262 .321

m .800 .900 1.00 2.00 3.00 .500 10.0

M(D, Θ) .374 .417 .450 .645 .751 .857 .945

Results from Berry (1990) for this normal-mean problem for k = 2 and for
k = 3 are given in Tab 4.2 and Tab 4.3, respectively. The starred values in the
Berry tables are (approximately) the largest m for which the Bayes estimator
with respect to the uniform prior on the boundary of Θ is minimax and the
value .260 for k = 3 and m = .800 might well be incorrect.

Table 4.2. Minimax values, X ∼ Nk(θ, 1),
∑k

i=1
θ2

i ≤ m2, k = 2.

m .200 .400 .600 .800 1.00 1.20 1.40 1.53499∗

M(D, Θ) .039 .148 .305 .482 .655 .806 .927 .989

Table 4.3. Minimax values, X ∼ Nk(θ, I),
∑k

i=1
θ2

i ≤ m2, k = 3.

m .200 .400 .600 .800 1.00 1.20 1.40 1.60 1.80 1.90799∗

M(D, Θ) .039 .152 .321 .260 .746 .961 1.158 1.330 1.473 1.538

All values in these three tables are of course < k and, for fixed k, increasing in
m. Further, the relative gain in minimax value from restricting the parameter
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space increases in k for fixed m. Clearly, substantial gains can be made.

For X ∼ Nk(θ, I) with Θ = {θ | θi ∈ [−mi, mi], i = 1, . . . , k}, the minimax
value equals the sum of the minimax values for the component problems. This
implies, e.g., that the relative gain in minimax value for such Θ is independent
of k when mi is independent of i.

Brown and Low (1991) also give lower bounds for M(D, Θ). One of these
bounds says that M(D, Θ) ≥ (1 + (π2/m2))−1, a bound which was earlier
obtained by Klaassen (1989) from his spread-inequality.

For the binomial case many minimax values have been obtained, for squared-
error loss as well as for the normalized loss function (d − θ)2/(θ(1 − θ)).
Tab 4.4 contains some of those values for squared-error loss, Θo = [0, 1] and
m ≤ θ ≤ 1 − m. They are taken from Moors (1985).

Table 4.4. Minimax values, X ∼ Bin(n, θ), m ≤ θ ≤ 1 − m.

m .35 .15 .05 .00

n = 3 .0173 .0329 .0335 .0335

n = 10 .0104 .0143 .0144 .0144

n = 15 .0078 .0104 .0105 .0105

For each of the values of n in Tab 4.4 we have (n+
√

n/2)/(n+
√

n) ≤ 1−m for
m = .05, implying, as already mentioned above, that the minimax value for
this value of m equals the minimax value for m = 0, namely, (4(1 +

√
n)2)−1.

That is, for this case the minimax value reaches its maximum over m for a Θ,
which is smaller than Θo. For n and m such that (n+

√
n/2)/(n+

√
n) > 1−m,

the minimax value is strictly decreasing in m and in n and the gain in minimax
value as a percentage of M(Do, Θo) increases in m and decreases in n – all
this in accord with intuition.
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Presence of nuisance parameters

In this chapter results are presented on (in)admissibility and minimaxity when
nuisance parameters are present. In almost all of the published results on
this problem the following models are considered. Let Xi,j , j = 1, . . . , ni, i =
1, . . . , k, be independent random variables where, for i = 1, . . . , k, the Xi,j

are identically distributed with distribution function Fi(x; µi, νi). Then the
estimation problem is one of the following:

i) ν = (ν1, . . . , νk) is known, µ = (µ1, . . . , µk) is unknown, restrictions are
imposed on µ and, for a given io ∈ {1, . . . , k}, θ1 = µio

is to be estimated
with λ = (µi, i �= io) as a vector of nuisance parameters. In the notation
of Chapter 2, M = 1 and K = k;

ii) µ and ν are both unknown, restrictions are imposed on µ and, for a given
io ∈ {1, . . . , k}, θ1 = µio

is to be estimated with λ = (ν, µi, i �= io) as a
vector of nuisance parameters. In the notation of Chapter 2, M = 1 and
K = 2k;

iii) µ and ν are both unknown, restrictions are imposed on (µ, ν) and, for a
given io ∈ {1, . . . , k}, (µio , νio) is to be estimated with λ = ((µi, νi), i �= io)
as a vector of nuisance parameters. In the notation of Chapter 2, M = 2
and K = 2k.

In some cases where the above models are studied, a linear combination of the
parameters of interest is the estimand. Various other variations on the above
models are also studied.

In all cases, the resulting parameter space is denoted by Ω, Θ is defined as
in (2.1), estimators are based on X = {Xi,j , j = 1, . . . , ni, i = 1, . . . , k} and
satisfy (2.3).

For the models described in i) - iii), many results have been obtained on com-
parisons between estimators based on X∗ = {Xi,j | j = 1, . . . , ni, i = io}
and those based on X. As will be seen, it is often possible to find estimators
based on X which dominate a “best” one based on X∗. For instance, when
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Xi ∼ind N (µi, 1), i = 1, 2, with µ1 ≤ µ2 and squared-error loss is used to
estimate θ1 = µ1 with µ2 as a nuisance parameter, the MLE of µ1 based
on X = (X1, X2) (i.e., the first component of the MLE of (µ1, µ2) under
the restriction µ1 ≤ µ2) dominates X∗ = X1 on Ω = {(µ1, µ2) | µ1 ≤ µ2}.
So, using both X1 and X2 to estimate µ1 ∈ Θ = R1 leads to an improved
estimator of the parameter of interest. As a second example, suppose that
the Xi,j are N (µ, ν2

i ) with µ the parameter of interest and the ν2
i unknown

and satisfying ν2
1 ≤ . . . ≤ ν2

k . Then, as will be seen later, the so-called
Graybill-Deal estimator of µ ∈ Θ = R1 is universally inadmissible (with
respect to the class of loss functions which are nondecreasing in |d − µ|) on
Ω = {µ, ν2

1 , . . . , ν2
k | − ∞ < µ < ∞, ν2

1 ≤ . . . ≤ ν2
k}. This is an example of

a case where putting restrictions only on the nuisance parameters makes it
possible to improve on the estimation of the parameter of interest. In each of
these two examples Θ is the real line.

Another question that is considered for this kind of problem is whether the
improved estimators are themselves admissible and, if not, are (admissible,
minimax) dominators available?

For solving the above-described kinds of problems, some authors use the tech-
niques of Brewster and Zidek (1974). These techniques can be described
as follows. Under very general conditions on the family of distributions
F = {Fγ | γ ∈ Γ} of an observable random vector X and for a strictly
bowl-shaped loss function, Brewster and Zidek give three ways of obtaining
dominators of an equivariant estimator δ of (a subvector of) γ. In their first
method they condition on an appropriately chosen statistic T = T (X) and
obtain dominators by studying Eγ [Eγ(L(δ, γ) | T )] as a function of δ and γ for
γ ∈ Γ . Their second method consists of taking the limit of an appropriately
chosen sequence of testimators, while their third method is a modification of
their second method as described on page 34 (lines -8 to -5) of their paper.
Brewster and Zidek (1974) give several examples of their techniques, among
which are two where Γ is a restricted parameter space. Both examples are
concerned with simply-tree-ordered parameters. In the first of these examples
these parameters are normal means; in the second one they are normal vari-
ances. Later in this chapter, these Brewster–Zidek dominators are compared
with results of other authors for these two problems and, as will be seen, some
authors obtain the Brewster–Zidek dominators by a different method, but do
not refer to the Brewster–Zidek results.

For several of the above-described problems, authors only consider the (Do, Ω)-
case, implying that some their “estimators” satisfy (2.5), but not (2.3), while
they compare their “estimators” on Ω. Solutions to such problems are pre-
sented in this chapter because, as already noted earlier, such results are often
useful for solving related (D, Ω)-problems.
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Results for the case where ν = (ν1, . . . , νk) is known are given in Section
5.1 for location problems and in Section 5.2 for scale problems. Those for
the case where ν is unknown can be found in Section 5.3. In each of these
three sections Ω is, with a few exceptions, defined by inequalities among the
parameters. Section 5.4 contains results for restrictions in the form of more
general cones, in particular polygonal cones, orthant cones and circular cones.
Some (admissible) minimax estimators are given in Section 5.5.

5.1 Location parameter estimation with known ν

In this section we suppose that ν = (ν1, . . . , νk) is known and location param-
eters are to be estimated.

We first consider the case where Xi ∼ind N (µi, ν
2
i ) with known ν2

i ’s, Ω =
{µ | µ1 ≤ . . . ≤ µk} and squared-error loss. Let, for some given i ∈ {1, . . . , k},
θ1 = µi be the parameter of interest. Then Θ = R1 and for squared-error loss
the best estimator based on Xi alone is of course Xi. But, as Lee (1981) shows,
the MLE µ̂i of µi (i.e., the i-th component of the MLE µ̂ = (µ̂1, . . . , µ̂k) of
µ) dominates Xi. A stronger result was obtained by Kelly (1989). He shows
that, with respect to the class of loss functions which are non-constant and
non-decreasing in |d−µi|, µ̂i universally dominates Xi and this result was, for
k = 2, proved by Kushary and Cohen (1989) for more general location families.
However (see Garren, 2000), the Kelly result does not hold when the ν2

i ’s are
unknown and, in the MLE of µi, ν2

1 , . . . , ν2
k are replaced by their unrestricted

MLEs. In fact, Garren shows that Xi and this “plug-in” estimator are non-
comparable for squared-error loss. But Hwang and Peddada (1994) show that
when the ν2

i = ν2, i = 1, . . . , k with ν2 unknown, then Kelly’s universal
domination result still holds when, in the MLE of µi, ν2 is replaced by its usual
pooled estimator. Also, Lee’s result does not imply that c′µ̂ dominates c′X as
an estimator of c′µ for vectors c �= (0, . . . , 0, 1, 0, . . . , 0). In fact, Fernández,
Rueda and Salvador (1999) show that, when c is the so-called central direction
of the cone Ω, then, for large enough k, c′X has a smaller mean-squared error
than c′µ̂ when µ1 = . . . = µk = 0. This central direction of a cone (see Abelson
and Tukey, 1963) is the direction which minimizes the maximum angle with
the directions in the cone. Further, Gupta and Singh (1992) show that, when
k = 2 and ν1 = ν2, µ̂i dominates Xi, for i = 1, 2, also by the Pitman-closeness
criterion.

Remark 5.1. For k = 2, Lee’s (1981) result, as well as Kelly’s (1989) result
for loss functions which are strictly increasing in |d− µi|, are special cases of
Brewster and Zidek’s (1974) Theorem 2.2.1. Neither Lee nor Kelly seems to
have been aware of this Brewster–Zidek result.

The above results of Lee and Kelly for simply ordered normal means do not
necessarily hold for incomplete orderings like, e.g., the simple-tree ordering
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given by µ1 ≤ µi, i = 1, . . . , k. For this ordering Lee (1988) considers the
case where Xi ∼ind N (µi, ν

2
i ), i = 1, . . . , k with squared-error loss and the ν2

i

known. He compares Xi with the MLE µ̂i of µi and shows that, for i ≥ 2, µ̂i

dominates Xi on Ω = {µ | µ1 ≤ µi, i = 2, . . . , k} when ν1 ≤ νi, i = 2, . . . , k.
However, for estimating µ1, Lee shows that, when µi and νi are, respectively,
upper- and lower-bounded as k → ∞, X1 has a smaller MSE than µ̂1 for k
large enough, whereas for µ1, . . . , µk and ν2, . . . , νk fixed, µ̂1 has a smaller MSE
than X1 for small enough ν2

1 . A related result for this normal-mean problem
can be found in Fernández, Rueda and Salvador (1999). For the simple-tree
order, e.g., they show that when ν1 = . . . = νk and the µi are bounded as
k → ∞, c′X has a smaller MSE than c′µ̂ for sufficiently large k when c is the
central direction of the cone Ω, i.e. c = (−(k − 1), 1, . . . , 1) (see, e.g., Robert-
son, Wright and Dykstra, 1988, p. 181).

Three other examples (none of them a location problem) where a component
of the restricted MLE does not dominate the corresponding component of
the unrestricted one, are Poisson, uniform and binomial cases with a simple
ordering of the parameters and k = 2.

Kushary and Cohen (1991) obtain results for Xi ∼ind Poisson(µi), i = 1, 2,
with 0 < µ1 ≤ µ2 and squared-error loss. They show that for estimating
µ1, X1 is dominated by the MLE of µ1, whereas for estimating µ2, if δ(X2)
is admissible among estimators based on X2 alone, it is admissible among
estimators based on (X1, X2). Parsian and Nematollahi (1995) show that this
Kushary–Cohen result concerning the estimation of µ2 holds for the more gen-
eral case of a strictly convex loss function. For the estimation of µ1 Parsian
and Nematollahi show that, for the entropy loss function L(d, µ), which for
estimating a Poison mean µ, satisfies µL(d, µ) = d/µ − log(d/µ) − 1, X1 + 1
(which is admissible for estimating µ1 when X2 is not observed) is inadmissi-
ble when X2 is observed.

For the case where Xi,j ∼ind U(0, µi), j = 1, . . . , ni, i = 1, 2, µ1 ≤ µ2, the
restricted and unrestricted MLEs of µ1 are equal, while, for estimating µ2,
the restricted MLE dominates the unrestricted one (see Section 5.2).

For the binomial case with Xi ∼ind Bin(ni, µi), i = 1, 2 and µ1 ≤ µ2, Hen-
gartner (1999) shows that, for estimating µ2, X2/n2 and the MLE µ̂2 are
noncomparable for squared-error loss. For n1 = 1, e.g., he shows that

Eµ

(
X2

n2
− µ2

)2

> Eµ (µ̂2 − µ2)
2 ⇐⇒ n2

3n2 + 1
< µ2 < 1.

Remark 5.2. Sampson, Singh and Whitaker (2003) say (their p. 300) that
Kushary and Cohen (1991) establish that Lee’s (1981) result holds for es-



5.1 Location parameter estimation with known ν 73

timating ordered Poisson means. They correct this statement in their 2006
correction note.

However, there are many cases where Lee–Kelly-like results do hold and we
present them below, starting with location parameter cases in this section and
scale parameter ones in the next section.

First we go back to the Lee (1988) result for normal means. As seen above,
he shows that, for the simple-tree order, the MLE µ̂i of µi dominates Xi for
squared-error loss when i �= 1 and ν1 ≤ νi for i ≥ 2. This result has been
generalized by Fernández, Rueda and Salvador (1998). They suppose that
X = (X1, . . . , Xk) has an elliptically symmetric density defined by

f(x − µ) = g
(
(x − µ)′Σ−1(x − µ)

)
, (5.1)

with g(u) is non-increasing in u. Then, for Σ known and diagonal, they show
that, for the simple-tree order with µ1 ≤ µi, i = 2, . . . , k,

Pµ(|Xi−µi| ≤ ti, i = 1, . . . , k) ≤ Pµ(|µ̂i−µi| ≤ ti, i = 1, . . . , k) for all µ ∈ Ω

provided 0 ≤ ti ≤ t1, i = 2, . . . , k. This result implies that, for i �= 1,
Pµ(|Xi − µi| ≤ t) ≤ Pµ(µ̂i − µi| ≤ t) for all t > 0 and all µ ∈ Ω, which
implies that, for i �= 1, µ̂i universally dominates Xi with respect to the class
of loss functions which are non-decreasing in |d − µi|. Fernández, Rueda and
Salvador (1998) obtain this result from their more general result, which says
that, when Ω is such that there does not exist an i �= 1 with µi ≤ µ1, µ̂i

universally dominates Xi for i �= 1.

Next, let Xi,1, . . . , Xi,ni
, i = 1, . . . , k, be independent with densities

1
νi

e−(x − µi)/νi x > µi,

where the νi are known. Then, based on the ith sample alone, Xi =
min(Xi,1 . . . , Xi,ni) is sufficient for µi and its density is given by

ni

νi
e−ni(x − µi)/νi x > µi.

Using squared-error loss, the best (i.e., minimum-risk location-equivariant)
estimator (MRE) of µi based on Xi alone is Xi − νi/ni, i = 1, . . . , k. This is
a case where estimators δi of µi should (see Chapter 2) satisfy the “extra”
restriction that, for each i = 1, . . . , k, δi(X) ≤ Xi with probability 1 for all
µ ∈ Ω. As will be seen, not all of the estimators proposed in the literature
satisfy this restriction. In cases where it is not satisfied this will be explicitely
mentioned.
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Vijayasree, Misra and Singh (1995) assume that µ1 ≤ . . . ≤ µk and consider,
for a given i ∈ {1, . . . , k}, estimators of θ1 = µi. These estimators are of the
form µ̂i,φi

(X) = Xi−νi/ni+φi(Yi), with Yi = (Yi,1 . . . , Yi,i−1, Yi,i+1, . . . , Yi,k),
Yi,j = Xi−Xj , i �= j. They use squared-error loss and Brewster–Zidek’s (1974)
first method to obtain explicit dominators of µ̂i,φi

(X). As an example of their
results, they show that Xi − νi/ni, as an estimator of µi, is dominated by

δi(X) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
(

Xi − νi

ni
, µ̂i(X) − 1

q

)
when i = 1, . . . , k − 1

max
(

Xk − νk

nk
, µ̂i(X) − 1

q

)
when i = k,

(5.2)

where q =
∑k

j=1(nj/νi) and µ̂i(X) = min(Xi, . . . , Xk) is the MLE of µi.
Garren (2000) shows that, for i = 1, the estimator (5.2) even universally
dominates (with respect to the class of loss functions which are non-decreasing
in |d − θi|) the MRE on the larger space defined by the simple tree ordering.
Further, from the results of Vijayasree, Misra and Singh (1995) it also follows
that the MLE µ̂i of µi is dominated by µ̂∗

i (X) = min(Xi, . . . , Xk)−1/q. Garren
(2000) generalizes this result to arbitrary orderings among the parameters as
follows. As described in Chapter 8, Section 8.1, an arbitrary ordering among
the parameters µ1, . . . , µk can be defined by

Ω = {µ | αi,j(µi − µj) ≤ 0, 1 ≤ i < j ≤ k}, (5.3)

where the αi,j are either 0 or 1 and αi,h = αh,j = 1 for some h with i <
h < j implies that αi,j = 1. Then, for µ ∈ Ω, the MLE of µi is, for this
exponential location problem given by µ̂i(X) = min{Xj | j ∈ Ui}, where
Ui = {i} ∪ {j | αi,j = 1} and Garren (2000) proves that, when µi is a node,
µ̂i(X)−(1/q) dominates µ̂i(X) for squared-error loss, but does not universally
dominate it.

For the particular case where k = 2 and µ1 ≤ µ2, Pal and Kushary (1992)
also obtain dominators of the MREs of µ1 and µ2 for squared-error loss. For
example, for estimating µ1 they show that

δ1(X) =

⎧⎪⎨
⎪⎩

X1 − ν1

n1
when X1 − X2 ≤ β

X2 − γ when X1 − X2 > β,

where β and γ are constants satisfying β ≥ (ν1/n1) − γ ≥ 0 and(
β + γ − ν1

n1

)2

+ 2(β + γ)
(

ν1

n1
− γ +

ν1ν2

n1ν1 + n2ν2

)
≥ 0,

dominates the MRE of µ1 based on X1 alone, i.e. X1 − (ν1/n1). Vijayasree,
Misra and Singh (1995) note that, for i = 1 and k = 2, (5.2) is a member of
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this Pal–Kushary class of dominators. Further, Kushary and Cohen’s (1989)
dominator for squared-error loss of X1 − (ν1/n1) as an estimator of µ1 is also
a member of this class.

An example of Pal and Kushary’s dominators of X2 − ν2/n2 as estimators of
µ2 is given by ⎧⎨

⎩X2 − ν2

n2
when X2 − X1 ≥ β

X1 − γ when X2 − X1 < β,

where β and γ satisfy β ≥ ν2/n2 − γ > 0 and

2
((

βo − ν1

n1

)
en1βo/ν1 +

ν1

n1

)((
n1

ν1
+

n2

ν2

)−1

+
(

ν1

n1
− ν2

n2

))

− β2
oen1βo/ν1 ≥ 0,

where βo = β−ν2/n2 +γ. This dominator does not satisfy the condition that
it is less than X2 with probability 1 for all µ ∈ Ω. But the author’s dominator
of X2 − ν2/n2 as an estimator of µ2 given by⎧⎨

⎩X2 − ν2

n2
when X2 − X1 ≥ β

X2 − γ when X2 − X1 < β

with β ≥ 0 and γ satisfying

2
(

γ − ν2

n2

)(
n1

ν1
+

n2

ν2

)−1

−
(

γ2 − ν2
2

n2
2

)
> 0

does satisfy this condition when γ ≥ 0. The authors note that the optimal γ
is γopt = (n1/ν1 + n2/ν2)

−1.

A class of so-called mixed estimators of µi when k = 2 and µ1 ≤ µ2 is
considered by Misra and Singh (1994). For i = 1 these are given by

δ1,α(X) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X1 − ν1

n1
when X1 − ν1

n1
< X2 − ν2

n2

α

(
X1 − ν1

n1

)
+ (1 − α)

(
X2 − ν2

n2

)
when X1 − ν1

n1
≥ X2 − ν2

n2
.

For squared-error loss these authors show that, when p = ν2n1/(ν1n2) ≤ 1,
δ1,α dominates δ1,α′ when α∗ ≤ α < α′, where α∗ = p2/(2(p + 1))(≤ .25). For
p > 1 they show that δ1,α dominates δ1,α′ when α∗∗ ≤ α < α′ where
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α∗∗ = 1 −
1 − p2

(1 + p)2
e(1−p)/p

1 + p2 − 2p3

1 + p
e(1−p)/p

(< 1).

Given that, for all µ ∈ Ω,

Pµ(δ1,α(X) ≤ X1)

{
= 1 when α ≤ 1

< 1 when α > 1,

these conditions should be changed to α∗ ≤ α < α′ ≤ 1 and α∗∗ ≤ α < α′ ≤ 1,
respectively.

The authors also have results for estimating µ2 by the mixed estimator

δ2,β(X) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X2 − ν2

n2
when X1 − ν1

n1
< X2 − ν2

n2

(1 − β)
(

X1 − ν1

n1

)
+ β

(
X2 − ν2

n2

)
when X1 − ν1

n1
≥ X2 − ν2

n2
.

For this case they show that, when p ≤ 1, δ2,β∗ dominates δ2,β when β �= β∗,
where β∗ = (2p + 2 − p2)/(2(p + 1))(< 1); and for p > 1 they show that δ2,β

dominates δ2,β′ when β′ < β ≤ β∗ as well as when β∗∗ ≤ β < β′, where

β∗∗ = 1 − p2

1 +
1 − 2p − 2p2

(1 + p)2
e(1−p)/p

1 + p2 − 2p3

1 + p
e(1−p)/p

(< 1).

However, for all µ ∈ Ω,

Pµ(δ2,β(X) ≤ X2)

{
= 1 when β ≥ 1

< 1 when β < 1,

so, within the class of mixed dominators of the MRE which satisfy the “ex-
tra” restriction, the best one is the unrestricted MRE.

Misra and Singh (1994) also give numerical values for the MSE of δ1,α for sev-
eral values of α, inclusive α∗. For δ2,β they have MSE values only for β = β∗.
These numerical results are presented in Chapter 7, Section 7.2.

The linex loss function has also been considered for the problem of estimat-
ing ordered exponential location parameters. Parsian and Sanjari Farsipour
(1997) take k = 2 and estimate µ1 with L(d, µ1) = ea(d−µ1) − a(d − µ1) − 1
where a �= 0. For the unrestricted case with known ν1, the best (minimum
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risk) location-equivariant estimator of µ1 based on X1 alone is (see Parsian,
Sanjari Farsipour and Nematollahi, 1993) given by X1−log(n1/(n1−aν1))/a,
provided a < n1/ν1. Parsian and Sanjari Farsipour (1997) show that this es-
timator is improved upon by replacing X1 by min(X1, X2). These estimators
are not scale-equivariant unless a = a∗/ν1 for some nonzero constant a∗.

Kubokawa and Saleh (1994) consider the more general problem of estimating
location parameters when X1, . . . , Xk are independent with density fi(x −
µi), i = 1, . . . , k, the µi are simply-tree-ordered and µ1 is the parameter of
interest. The densities have strict monotone likelihood ratio in x and the loss
function satisfies L(d, µ1) = W (d − µ1), where W (y) is strictly bowl-shaped
and absolutely continuous. Using Kubokawa’s (1994b) integral-expression-of-
risk method, they give conditions on ϕ under which estimators of the form
µ̂ϕ(X) = X1 − ϕ(X2 − X1, . . . , Xk − X1) dominate X1 − c, the MRE of θ1

based on X1 alone. Examples of their dominators are the generalized Bayes
estimators with respect to the prior dµ1dµI(µ > µ1)I(µ2 = . . . = µk = µ)
and, for the case where Xi ∼ind N (µi, ν

2
i ), i = 1, . . . , k with the ν2

i known,
the estimator

δ(X) = min

(
X1,

∑k
i=1 Xi/ν2

i∑k
i=1 1/ν2

i

)
. (5.4)

For k = 2 but not for k ≥ 3, this δ is the MLE µ̂1 of µ1. As already noted, Lee
(1988) shows that, for k ≥ 3, the MLE of µ1 does not necessarily dominate
X1 for this normal-mean problem.

An example where the Kubokawa and Saleh (1994) condition of strict mono-
tone likelihood ratio is not satisfied is the exponential location problem of
Vijayasree, Misra and Singh (1995). For k = 2 and squared-error loss, the
Kubokawa–Saleh dominator X1 − ϕS(X2 − X1) of X1 − ν1/n1 gives, as is
easily seen, X1 − ν1/n1 itself.

The Kubokawa–Saleh (1994) class of estimators is studied by van Eeden and
Zidek (2001, 2002, 2004) for the case where k = 2 with the Xi ∼ N (µi, ν

2
i ),

known ν2
i and squared-error loss. They consider the case where µ1 ≤ µ2 as well

as the case where |µ2−µ1| ≤ c for a known positive constant c. They compare
several estimators of µ1 of the form X1 + ϕ(Z), where Z = X2 − X1. As will
be seen in Chapter 7, Section 7.1, they view these estimators as adaptively
weighted likelihood estimators. Particular cases are the MLE µ̂1 with

ϕ(Z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min(0, Z)
1 + τ

for µ1 ≤ µ2

(Z − c)I(Z > c) + (Z + c)I(Z < −c)
1 + τ

for |µ2 − µ1| ≤ c,

(5.5)

the Pitman estimator δP (i.e., the first component of the generalized Bayes
estimator with respect to the uniform prior on Ω) with
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ϕ(Z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−ν2
1

ν

φ (Z/ν)
Φ (Z/ν)

for θ1 ≤ θ2

ν2
1

ν

φ ((Z − c)/ν) − φ ((Z + c)/ν)
Φ ((Z + c)/ν) − Φ ((Z − c)/ν)

for |θ2 − θ1| ≤ c

(5.6)

and the estimator δWLE with

ϕ(Z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Zν2
1

ν2 + (max(0, Z))2
for µ1 ≤ µ2

Zν2
1

ν2 + min(Z2, c2)
for |µ2 − µ1| ≤ c,

(5.7)

where τ = ν2
2/ν2

1 and ν2 = ν2
1 +ν2

2 . They study and compare these estimators
analytically as well as numerically. They show, e.g., that, in both cases, µ̂1

and δP dominate X1. Further (again in both cases), µ̂1 and δWLE are, among
estimators based on (X1, X2), inadmissible, while δP is admissible in this
class of estimators. Dominators for some of these inadmissible estimators as
well as minimax estimators and (references to) proofs of the admissibility
of δP are, for both cases, presented in Section 5.5. The authors’ numerical
results concerning the MSEs of their estimators as well as their robustness
with respect to misspecification of Ω, are discussed in Chapter 7, Section 7.2.

Remark 5.3. For the case where Xi ∼ind N (µi, ν
2
i ), i = 1, . . . , k, with simply-

tree-ordered µi, known ν2
i ’s and squared-error loss, the above-given Kubokawa–

Saleh (1994) dominator (5.4) of X1 is identical to the one Brewster and Zidek
(1974) obtain by their first method (see Brewster and Zidek, 1974, formula
(2.2.2)). Also, for the same problem but with k = 2, the generalized Bayes
estimator of Kubokawa and Saleh is the same as the one Brewster and Zidek
obtain by their third method – both are generalized Bayes with respect to a uni-
form prior on Ω. For k > 2, these generalized Bayes estimators are not the
same. Kubokawa and Saleh do not mention this overlap of their results with
those of Brewster and Zidek other than (see Kubokawa and Saleh, 1994, p. 41,
lines -9 to -7) the fact that Brewster and Zidek (and others) have demonstrated
that the ordinary estimator is improved on by using the restriction. Nor do
Kubokawa and Saleh explore whether, for problems other than the simply-tree-
ordered normal-mean problem, some of their results could have been obtained
by using one of the Brewster–Zidek methods.

And van Eeden and Zidek (2002), for the ordered normal-mean problem with
k = 2, apparently forgot that for two of their estimators, namely, the MLE
and the Pitman estimator, Brewster–Zidek (1974) already proved that they
dominate X1.

Results for general location problems can also be found in Hwang and Ped-
dada (1994). One of their results is concerned with the i-th component,
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µ̂so
i (X), of the MLE of µ under the simple-order restriction. They assume

that X = (X1, . . . , Xk) has an elliptically symmetric density defined by (5.1)
and show that, when Σ is known and diagonal, this estimator universally dom-
inates Xi (with respect to the class of loss functions which are nondecreasing
in |d−µi|), for any parameter space Ω defined by inequalities among the com-
ponents of µ when µi is a node. Clearly, the Lee–Kelly result for the normal-
mean problem with Ω = {µ | µ1 ≤ . . . ≤ µk} and known variances is a special
case of this Hwang–Peddada result. It also implies, for the density (5.1) with
known diagonal Σ, that µ̂SO

1 (X) = mint≥1(
∑t

i=1 Xi/ν2
i /
∑t

i=1 1/ν2
i ) univer-

sally dominates X1 when the µi are tree-ordered, but I do not know whether
µ̂so

1 and (5.4), the Brewster–Zidek (1974) (Kubokawa–Saleh, 1994) dominator
of X1 for the simple tree-ordered normal-mean problem, are comparable for
squared-error loss. Hwang and Peddada (1994) also have results for the case
where Σ is not diagonal.

Remark 5.4. Hwang and Peddada (1994) state their results in terms of the
isotonic regression estimator of µ with weights wi > 0, i = 1, . . . , k, with
respect to the given ordering of the µi. This estimator minimizes (see Chapter
8, Section 8.2), for µ ∈ Ω,

∑k
i=1(Xi − µi)2wi and is thus the MLE of µ

when X has density (5.1) with diagonal known Σ and the wi are the diagonal
elements of Σ−1.

Iliopoulos (2000) uses the Kubokawa and Saleh (1994) results to obtain a
dominator for the MRE, X2 − c, based on X2 alone of the middle one of three
simply-ordered location parameters. Under the distributional assumptions of
Kubokawa and Saleh (1994) and for a strictly convex loss function, he first
finds a dominator µφ(X2, X3) = X2 − φ(X3 − X2) for X2 − c when µ2 ≤ µ3.
Then he finds ψ such that δψ(X1, X2) = X2 − ψ(X1 − X2) dominates X2 − c
when µ1 ≤ µ2. He then shows that X2 −ψ(X1 −X2)− φ(X3 −X2) + c domi-
nates X2 − c when the µ1 ≤ µ2 ≤ µ3. For the normal-mean case Ilioupoulos
also gives numerical values for the percent risk improvement of his estimator
relative to the unrestricted MRE of µ2. Some of these are presented in Chap-
ter 7, Section 7.2.

Finally, another case of restrictions other than inequalities among the param-
eters. Let Xi ∼ind N (µi, 1), i = 1, . . . , k and Ω = {µ | ∑k

i=1 µ2
i ≤ m2} for

some known m > 0 and let the loss be squared-error. Then the MLE of µi is
given by

µ̂i =

⎧⎨
⎩

Xi when |X| ≤ m

mXi/|X| when |X| > m,

where |X|2 =
∑k

i=1 X2
i . Hwang and Peddada (1993) show, as a special case of

a more general result, that µ̂1 dominates X1 when m ≤ 1, but that for m > 1
and large enough k, µ̂1 fails to dominate X1.
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5.2 Scale parameter estimation with known ν

In this section we present Lee–Kelly-like results when scale parameters are to
be estimated and ν = (ν1, . . . , νk) is known.

Misra and Dhariyal (1995) consider the case where the Xi,j are U(0, µi) with
0 < µ1 ≤ . . . ≤ µk and scale-invariant squared-error loss. Let, for i = 1, . . . , k,
Yi = max1≤j≤ni

Xi,j , Y ∗
i = max(Y1, . . . , Yi) and Y = (Y1, . . . , Yk). Then Yi

(the unrestricted MLE of µi) is sufficient for µi, i = 1, . . . , k and the best (i.e.,
minimum-risk scale-equivariant estimator (MRE)) of µi based on Yi alone is
(ni+2)Yi/(ni+1). This is, again, a case where the estimators δi(Y ) of µi should
satisfy an extra restriction, namely, that, for each i = 1, . . . , k, δi(Y ) ≥ Yi with
probability 1 for all µ ∈ Ω. The authors use Brewster and Zidek’s (1974) first
method to show that (ni + 2)Yi/(ni + 1) is inadmissible as an estimator of µi

and is dominated by δi, where

δ1(Y ) = min
{

n1 + 2
n1 + 1

Y1,
n + 2
n + 1

Y ∗
k

}

δi(Y ) = max
{

ni + 2
ni + 1

Yi,
n + 2
n + 1

Y ∗
i

}
, i = 2, . . . , k,

(5.8)

with n =
∑k

j=1 nj . More generally, they give dominators for estimators of
the form µ̂i,φi

(Y ) = Y1φi(Z), where Z = (Y2/Y1, . . . , Yk/Y1). But Lillo and
Mart́ın (2000) show, for k = 2, that δ2 is inadmissible for squared-error loss
as an estimator of µ2 and dominated by δ∗2(Y ) given by

δ∗2(Y ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δ2(Y ) when Y2 ≥ n + 2
n + 1

n2 + 1
n2 + 2

Y1

n + 2
n + 1

Y 2
1

Y2
otherwise.

It is not difficult to see that each of the estimators δi, i = 1, . . . , k, as well as
the estimator δ∗2 satisfy the extra restrictions with probability 1 for all µ ∈ Ω.

For this ordered uniform-scale-parameter problem with k = 2 and squared-
error loss, Joorel and Hooda (2002) show that Y ∗

2 = max(Y1, Y2), the MLE of
µ2, dominates Y2, the unrestricted MLE of µ2, while, for estimating µ1, they
claim that the MLE is dominated by Y1 not realizing that Y1 is the MLE and
not (as they say) min(Y1, Y2). These authors also consider estimators of µ1 of
the form δ(Y1, Y2) = cY1I(Y1 ≤ Y2) + dY1I(Y1 > Y2) and show that such an
estimator dominates the unrestricted MLE (and thus the MLE) when

1 ≤ c ≤ n + 3
n + 1

and 4(n + 1)/(2n + 1) − c ≤ d ≤ c

or
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1 ≤ c ≤ n + 3
n + 1

and c ≤ d ≤ 4(n + 1)
2n + 1

− c.

They give similar results for estimating µ2.

Joorel and Hooda (2002) also give what they call “optimal estimators” of µ1

and µ2. For estimating µ1 these estimators are of the form c min(Y1, Y2) and
they find that the MSE of this estimator is minimized for

c =
n + 2
2n + 1

(
2n + 1 − (µ1/µ2)n

n + 1 − (µ1/µ2)n

)
. (5.9)

But this of course does not help, because this c depends on the µ’s. In their
2005 (submitted) correction note they add the condition that µ1/µ2 is known
and then of course the c in (5.9) gives an optimal estimator of µ1 among those
of the form c min(Y1, Y2). But there is another problem with this estimator
of µ1: it does not satisfy the “extra” restriction that c min(Y1, Y2) > Y1 with
probability 1 for all µ ∈ Ω. Similar results for optimally estimating µ2 by
c max(Y1, Y2) (again adding the condition that µ1/µ2 is known) give

c =
n + 2
2n + 1

(
2n + 1 + (µ1/µ2)n+1

n + 1 + (µ1/µ2)n+2

)
.

This estimator does satisfy the condition of being larger than Y2 with
probability 1 for all µ ∈ Ω. But note that, when µ1/µ2 = r ∈ (0, 1]
is known, the problem is not anymore a problem in restricted-parameter-
space estimation. In fact, there is only one unknown parameter, µ2 say,
and X1,1/r, . . . , X1,n/r, X2,1, . . . , X2,n are independent U(0, µ2) so that (2n+
2) max(Y1/r, Y2)/(2n + 1) has minimum-risk among scale-invariant estima-
tors of µ2. Of course, the Joorel–Hooda estimator c max(Y1, Y2) is also scale-
invariant, but has a larger MSE because it minimizes the MSE over a smaller
class of estimators.

Remark 5.5. In their 2005 (submitted) correction note, Joorel and Hooda cor-
rect most of the misprints in their 2002 paper. However, not all of the mistakes
in their paper are corrected in that note. Their reasoning in their Section 3
that there does not exist a function of (Y1, Y2) which is unbiased for estimating
µ1 and µ2 is incorrect. They do not mention this in their correction note.

More results for this uniform scale parameter problem can be found in
Fernández, Rueda and Salvador (1997). Their parameter space is defined by
an arbitrary ordering among the µi which can (see (5.3)) be described by

Ω = {µ | αi,j(µi − µj) ≤ 0, 1 ≤ i < j ≤ k},
where the αi,j are either 0 or 1 and αi,h = αh,j = 1 for some h with i < h < j
implies that αi,j = 1. Let Li = {i} ∪ {j < i | αj,i = 1}, then (see Chap-
ter 8, Section 8.2), the MLE of µi is µ̂i = maxj∈Li Yj . Fernández, Rueda
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and Salvador then show that, when Li �= i, µ̂i universally dominates Yi (the
unrestricted MLE of µi) with respect to the class of loss functions which are
nondecreasing in |d−µi|. Note that, when i = 1, Li = {i} and maxj∈Li

Yl = Y1

so that for i = 1, µ̂1 = Y1. For the simple tree order, these authors also show
that, depending on k, c and the ni, c′µ̂ and c′Y can be noncomparable as
estimators of c′µ.

Another scale-parameter problem is the case where the Xi,j , j = 1, . . . , ni,
have density

f(x; µi) =
1
µi

e−(x/µi), x > 0, µi > 0, i = 1, . . . , k.

The sufficient statistic for µi is Xi =
∑ni

j=1 Xi,j , its density is given by

1
Γ (ni) µni

i

xni − 1e−x/µi , x > 0, (5.10)

the unrestricted MLE of µi is X̄i = Xi/ni and its MRE for scale-invariant
squared-error loss based on Xi alone is Xi/(ni + 1). For the simple or-
der, Vijayasree, Misra and Singh (1995) consider estimators of µi of the
form µ̂i,φi

(X) = Xiφi(Zi), where, with Zj,i = Xj/Xi, j �= i, i = 1, . . . , k,
Zi = (Z1,i, . . . , Zi−1,i, Zi+1;i, . . . , Zk,i). In the same way as for their location
parameter results, they use Brewster–Zidek’s (1974) first method to obtain
explicit dominators of the of these estimators. They show, e.g., that

δi(X) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min

(
X1

n1 + 1
,

∑k
j=1 Xj

1 + p

)
when i = 1

max

(
Xi

ni + 1
,

∑i
j=1 Xi

1 + p

)
when i ≥ 2,

where p =
∑k

j=1 nj , dominates Xi/(ni + 1) as an estimator of µi. These
authors also give the following dominator of the MLE µ̂i of µi, i = 1, . . . , k−1,

δ∗i (X) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

min

⎛
⎝µ̂1,

X1

1 + p
(1 +

k∑
j=2

Zj,1

⎞
⎠ when i = 1

max

⎛
⎝µ̂i,

Xi

1 + p
(1 +

i−1∑
j=1

Zj,i

⎞
⎠ when i = 2, . . . , k − 1.

Kaur and Singh (1991) consider the special case where k = 2 and n1 = n2 = n.
They show that, for estimating µi, i = 1, 2, the MLE of µ1 dominates X1/n
and the MLE of µ2 dominates X2/n when n ≥ 2. Further, Vijayasree and
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Singh (1993) show, also for k = 2, that X1/n1, as an estimator of µ1, is dom-
inated by the so-called mixed estimator δ1,α(X) = min(X1/n1, α(X1/n1) +
(1−α)(X2/n2)) when α1 = n1/(n1 +n2 +1) ≤ α < 1. This mixed estimator is
the MLE of µ1 when α = n1/(n1 +n2) and it equals X1/n1 when α = 0. This
result implies that the MLE dominates X1/n1. For estimating µ2, the authors
use the mixed estimator δ2,α(X) = max(X2/n2, αX1/n1 +(1−α)X2/n2) and
show that, for 0 < α ≤ n1(2n1 +n2)/((n1 +n2)(n1 +n2 +1)) = α2, δ2,α dom-
inates X2/n2. This mixed estimator is the MLE of µ2 when α = n1/(n1 +n2)
implying that the MLE dominates X2/n2. They further show that, for
α∗ = (1/2) − (1/2)2n

(
2n−1

n

)
, δ2,α∗ dominates δ2,α for α ∈ [0, α∗). These

results imply, of course, that (δ1,α(X), δ2,α(X)) as an estimators of (µ1, µ2)
dominates (X1/n1, X2/n2) for the sum of the squared-error losses. But Vi-
jayasree and Singh (1991) (a paper Vijayasree and Singh (1993) do not refer
to) show that this domination of (X1/n1, X2/n2) holds for all α ∈ (0, 1). Vi-
jayasree and Singh (1993) also give numerical comparisons of their estimators.
Some of those results are presented in Chapter 7, Section 7.2.

Remark 5.6. Using the first method of Brewster and Zidek (1974) does not
give a dominator for the MLE µ̂k of µk and it seems to be unknown whether
it is admissible. Another unknown seems to be whether µ̂k and Xk/nk are
comparable, except (as noted above from the results of Vijayasree and Singh
(1993) and Kaur and Singh (1991)) for the case where k = 2.

More results for k = 2 for this gamma-scale problem, still with scale-invariant
squared-error loss, can be found in Misra, Choudhary, Dhariyal and Kundu
(2002). They note that Vijayasree, Misra and Singh’s (1995) dominators be-
ing “non-smooth” might well be inadmissible and they, therefore, look for
“smooth” dominators. The estimators they dominate are the MREs of µ1 and
µ2. For estimating µ1 (with similar results for estimating µ2) they start with
a class of non-smooth estimators of the form

φ1(c, r, T ) =

⎧⎪⎨
⎪⎩

X1

n1 + 1
if Z ≥ r

cX1 if Z < r,

where T = (X1, X2), Z = X2/X1 and r and c are fixed positive constants.
Note that, for all r > 0, φ1(1/(n1 + 1), r, T ) = X1/(n1 + 1), the MRE of µ1.
The authors then study the risk function of φ1(c, r, T ) as a function of c for
fixed r and find that, for each r > 0, φ1(c(r), r, T ) dominates X1/(n1 + 1),
where

c(r) =
1

n1 + 1

⎛
⎜⎜⎝1 −

∫ 1

0

xn1+n2

(1 + rx)n1+n2+2
dx∫ 1

0

xn2−1

(1 + rx)n1+n2+2
dx

⎞
⎟⎟⎠ .

The authors then consider, for 0 < r′ < r, the class of (again non-smooth)
estimators
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φ2(c, r′, r, T ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

X1

n1 + 1
if Z ≥ r

c(r)X1 if r′ ≤ Z < r

cX1 if Z < r′

and show that φ1(c(r), r, T ) is dominated by φ2(c(r′), r′, r, T ). Then, using
Brewster and Zidek’s (1974) third method, the authors select, for each l =
1, 2, . . ., a finite partition of [0,∞) represented by 0 = rl,0 < rl,1 < . . . , rl,Nl

=
∞ and a corresponding estimator defined by

φl(T ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X1

n1 + 1
when Z ≥ rl,Nl−1

c(rl,Nl−1)X1 when rl,Nl−2 ≤ Z < rl,Nl−1

...

c(rl,2)X1 when rl,1 ≤ Z < rl,2

c(rl,1)X1 when Z < rl,1.

The authors then show that this sequence of estimators converges pointwise
to X1c(S) provided

max
j

|rl,j − rl,j−1| → 0 and rl,N1−1 → ∞ as l → ∞.

In the final step of their proof they show that X1c(Z) dominates X1/(n1+1).
As a further property, the authors show that this dominator X1c(Z) is the first
component of the Bayes estimator of (µ1, µ2) with respect to the uniform prior
for (log µ1, log µ2) on {µ | µ1 ≤ µ2}, i.e., the Pitman estimator. Misra, Choud-
hary, Dhariyal and Kundu (2002) also show that their dominator X1c(Z) of
X1/(n1 + 1) can be written in the form

X1

n1 + 1

In2,n1+1

(
Z

Z + 1

)

In2,n1+2

(
Z

Z + 1

) , (5.11)

where, for β > 0, γ > 0 and 0 < x < 1,

Iβ,γ(x) =
Γ (β + γ)
Γ (β)Γ (γ)

∫ x

0

yβ−1(1 − y)γ−1dy.

Then using the fact that, for positive γ and β,∫ x

0

yβ−1

(1 + y)γ+β
dy =

Γ (β)Γ (γ)
Γ (γ + β)

Iβ,γ

(
x

x + 1

)
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it follows that (5.11) can also be written in the form

X1

n1 + n2 + 1

∫ Z

0

yn2−1

(1 + y)n1+n2+1
dy∫ Z

0

yn2−1

(1 + y)n1+n2+2
dy

,

which is the dominator of X1/(n1 + 1) of Kubokawa and Saleh (1994) for the
same problem. This Kubokawa–Saleh dominator can be found on their page
50, line -6, where it is given for the (equivalent) case of scale parameters of
χ2 distributions. So, the Misra, Choudhary, Dhariyal and Kundu (2002) dom-
inator is not new, but the authors do not give any credit to Kubokawa–Saleh
for this result. What is new in the Misra–Choudhari–Dhariyal–Kundu paper
is that they show that Brewster–Zidek’s (1974) third method applied to two
ordered gamma-scale parameters and scale-invariant squared-error loss gives
the generalized Bayes estimator with respect to the uniform distribution for
(log µ1, log µ2) for µ ∈ Ω, i.e. the Pitman estimator.

Misra, Choudhary, Dhariyal and Kundu’s (2002) dominator of X2/(n2 + 1) is
given by

X2

n2 + 1

In2+1,n1

(
Z

Z + 1

)

In2+2,n1

(
Z

Z + 1

) . (5.12)

Misra, Choudhary, Dhariyal and Kundu (2002) do not say anything about
the (in)admissibility of their dominators, but they present Monte-Carlo com-
parisons of their dominator with, for estimating µ1, the unrestricted MRE
X1/(n1+1), the (restricted) MLE and the Vijayasree, Misra and Singh (1995)
dominator min(X1/(n1 + 1), (X1 + X2)/(n1 + n2 + 1)) for several values of
(n1, n2). These numerical results are presented and discussed in Chapter 7,
Section 7.2.

Of course, the above gamma-scale results apply to the problem of estimating
ordered normal variances with known means as well as with estimated means
when k ≥ 2 samples are available. Kushary and Cohen (1989) and Kourouklis
(2000) have results for the problem in this normal-variance form when k = 2,
but Kourouklis (2000) does not refer to Kushary and Cohen (1989), nor does
he refer to Vijayasree, Misra and Singh (1995).

Results for a very general scale problem can be found in Kubokawa and Saleh
(1994). They have X1, . . . , Xk independent with densities fi(x/µi)/µi, i =
1, . . . , k, x > 0, with strict monotone likelihood ratio in x. The µi are simply-
tree-ordered, µ1 is to be estimated and the loss function L(d, µ1) = W (d/µ1),
where W is bowl-shaped and absolutely continuous with W (1) = 0. They look
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at a class of estimators of the form δ(X) = X1φ(X1/X1, . . . , Xk/X1) and give
sufficient conditions on φ for δ(X) to dominate the MRE of µ1 based on X1

alone. In one of their examples δ(X) is the generalized Bayes estimator of µ1

with respect to the prior (dµ1/µ1)(dµ/µ)I(µ > µ1)I(µ1 = . . . = µk = µ). For
the particular case where k = 2, some of the Kubokawa–Saleh (1994) results
can also be found in Kubokawa (1994a). This last paper also contains results
for the estimation of µ2. And, as already mentioned above, Misra, Choudhary,
Dhariyal and Kundu (2002) show that, for k = 2, this generalized Bayes esti-
mator can be obtained by Brewster and Zidek’s (1974) third method.

More results on scale-parameter estimation can be found in Hwang and Ped-
dada (1994). They consider, for squared-error loss, the estimation of µ1 and
of µk when Xi , i = 1, . . . , k are independent with density (5.10). For the
estimation of µi they use the i-th component µ̂so

i of the isotonic regression
µ̂so of µ with respect to the ordering µ1 ≤ . . . ≤ µk and with weights ni.
This isotonic regression estimator minimizes (see Chapter 8, Section 8.2)∑k

i=1(Xi/ni − µi)2ni for µ ∈ Ω. The estimator µ̂so is, for this gamma-scale
case, also its MLE for µ ∈ Ω. They show that µ̂so

1 universally dominates the
unrestricted MLE based on X1 alone, i.e., X1/n1, when Ω is such that µi ≥ µ1

for all i = 1, . . . , k. Further, they claim (in their Theorem 4.6, part ii)) that
for general scale families µ̂so

k does not universally dominate Xk/nk when µ is
such that µi ≤ µk for all i = 1, . . . , k. However, as Garren (2000) remarks,
the Hwang–Peddada results are based on the assumption that the support of
the Xi as well as of the unrestricted estimator are either unbounded or else
totally bounded. Further, it can easily be seen from Hwang and Peddada’s
proof of their Theorem 4.6, part ii), that their proof does not work for the
case where independent Xi,j , j = 1, . . . , ni, are U(0, µi), i = 1, . . . , k. For this
case Fernández, Rueda and Salvador (1997) show (as already noted) that the
MLE of µk universally dominates the unrestricted MLE and these authors
remark that, therefore, the Hwang–Peddada result for general scale families
is wrong. But this reasoning does not work, because Hwang and Peddada
do not make any claims about the MLE. They only consider isotonic regres-
sion estimators, which for the gamma-scale case are the MLE, but not for the
uniform-scale case. A similar remark holds for the results in Hwang–Peddada’s
Theorem 4.7 concerning the tree-ordered case.

To compare some of the above results, take the particular case where the
Xi are independent with density (5.10), k = 2, n1 = n2 = n and the loss is
squared error. With Z = X2/X1, the dominators of X1/(n+1) as an estimator
of µ1 become
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δ1(X) =
X1

n + 1
min

(
1,

2
3
(Z + 1)

)
for n ≥ 3 by Kushary and Cohen (1989);

δ2(X) =
X1

n + 1
min

(
1,

n + 1
2n − 1

(Z + 1)
)

by Kourouklis (2000);

δ3(X) =
X1

n + 1
min

(
1,

n + 1
2n + 1

(Z + 1)
)
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

by Kubokawa and Saleh (1994),
by Kubokawa (1994a)
and
by Vijayasree, Misra
and Singh (1995);

and

δ4(X) =
X1

n + 1

⎛
⎜⎜⎝1 −

∫ 1

0

x2n

(1 + Zx)2n+2
dx∫ 1

0

xn−1

(1 + Zx)2n+2
dx

⎞
⎟⎟⎠

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

by Kubokawa and Saleh
(1994) and
by Misra, Choudhary,
Dhariyal and Kundu
(2002).

Now, from Theorem 2.1(b) of Vijayasree, Misra and Singh (1995), we know
that, when Pθ(X1φ(X2/X1) > (X1 + X2)/(2n + 1)) > 0 for all θ1 ≤
θ2, X1φ(X2/X1) is dominated by min (X1φ(X2/X1), (X1 + X2)/(2n + 1)).
Using this result shows that δ3 dominates both δ1 and δ2. Further, by
Kourouklis (2000), min (X1φ(X2/X1), (X1 + X2)/(2n − 1)) is a dominator of
X1φ(X2/X1) when Pθ(X1φ(X2/X1) �= (X1+X2)/(2n+1)) > 0 for all θ1 ≤ θ2.
From this result we see that δ2 dominates δ1 when n ≥ 6, while δ1 ≡ δ2 when
n = 5. (Note that Kourouklis (2000) claims that δ2 dominates δ1 for all n ≥ 3).
For dominators of X1/n for this gamma-distribution setting, the results of
Kaur and Singh (1991) as well as those of Hwang and Peddada (1994) give
min(X1/n, (X1 + X2)/(2n), which, by Vijayasree, Misra and Singh (1995), is
dominated by min (X1/n, (X1 + X2)/(2n + 1)). Whether δ4 and/or δ5 domi-
nate or are dominated by one or more of δ1, δ2 and δ3 seems to be unknown.

Still for the density (5.10), Chang and Shinozaki (2002) give, for k = 2,
conditions on c1 and c2 for

∑2
i=1 ciµ̂i to dominate

∑2
i=1 ciXi/ni, as well as

conditions for
∑2

i=1 ciµ̂i to dominate
∑2

i=1 ciXi/(ni + 1) as estimators of∑2
i=1 ciµi. The two special cases c1 = 0 and c2 = 0 each give results which

overlap with some of the results of Kaur and Singh (1991).

Remark 5.7. Both Kushary and Cohen (1989) and Kourouklis (2000) assume
that the shape parameters in their gamma distributions are integers when mul-
tiplied by 2. Further, Kaur and Singh (1991), Vijayasree and Singh (1993) and
Vijayasree, Misra and Singh (1995) assume that these parameters are inte-
gers. However, only Kaur and Singh (1991) and Vijayasree and Singh (1993)
make use of this assumption in their proofs.
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5.3 Unknown ν

We now look at results for the case where ν = (ν1, . . . , νk) is unknown and
start with the following problem. Let Xi,1, . . . , Xi,ni

, i = 1, . . . , k be indepen-
dent with Xi,j ∼ N (µ, ν2

i ). The parameter to be estimated is µ and for this
problem Graybill and Deal (1959) propose the use of

µ̂GD(X) =
∑k

i=1(niX̄i)/S2
i∑k

i=1 ni/S2
i

,

where niX̄i =
∑ni

j=1 Xi,j and the S2
1 , . . . , S2

k are independent and independent
of the Xi,j with, for i = 1, . . . , k, miS

2
i /ν2

i ∼ χ2
mi

for some mi ≥ 1. Note that
µ̂GD(X) can also be written in the form

µ̂GD(X) = X̄1 +
k∑

i=2

(X̄i − X̄1)φi = X̄1

(
1 −

k∑
i=2

φi

)
+

k∑
i=2

X̄iφi,

where φi = ni/S2
i /(
∑k

j=1 nj/S2
j ). Of course, one can take (ni − 1)S2

i =∑ni

j=1(Xi,j − X̄i)2. One then needs ni ≥ 2.

Now suppose that we know that, for some k1 ∈ {2, . . . , k}, 0 < ν2
1 ≤ ν2

i for
i = 2, . . . , k1 and ν2

i > 0 for i = k1 + 1, . . . , k. Then Sinha (1979) shows
that, when ni = n, i = 1, . . . , k, µ̂GD is, on this restricted parameter space,
inadmissible as an estimator of µ for the loss function L(d, µ) = W (d−µ) with
W (y) = W (−y) for all y, W (y) strictly increasing and

∫∞
0

W (cy)φ(y)dy < ∞
for all c > 0 and he gives the following dominator

µ̂S(X) = X̄1

(
1 −

k∑
i=k1+1

φi −
k1∑

i=2

φ∗
i

)
+

k∑
i=k1+1

X̄iφi +
k1∑

i=2

X̄iφ
∗
i ,

where φ∗
i = min(φi, 1/2).

For k = 2 this dominator becomes⎧⎪⎨
⎪⎩

µ̂GD(X) when S2
1 ≤ S2

2

X̄1 + X̄2

2
when S2

1 > S2
2 .

For the particular case where k = 2, Elfessi and Pal (1992) show that the
Graybill–Deal estimator is universally inadmissible and give two dominators,
one for equal sample sizes and one for possibly unequal ones. Their estimator
for equal sample sizes is⎧⎪⎨

⎪⎩
µ̂GD(X) when S2

1 ≤ S2
2

S2
1X̄1 + S2

2X̄2

S2
1 + S2

2

when S2
1 > S2

2 ,
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which is not Sinha’s dominator for k = 2 (and n1 = n2). For the case when
the sample sizes are not necessarily equal, Elfessi and Pal give the dominator⎧⎪⎨

⎪⎩
µ̂GD(X) when S2

1 ≤ S2
2

n1X̄1 + n2X̄2

n2 + n2
when S2

1 > S2
2 ,

which is, when n1 = n2, Sinha’s dominator.

Further results on this problem can be found in Misra and van der Meulen
(2005). They consider the case where, for some k1 ∈ {2, . . . , k}, 0 < ν1 ≤
. . . ≤ νk1 and νi > 0 for i = k1 + 1, . . . , k. They show that the Graybill-Deal
estimator is, for their restricted parameter space, universally inadmissible and
give a dominator. This dominator is obtained by replacing, in the Graybill-
Deal estimator, 1/S2

i by Vk1−i+1 for i = 1, . . . , k1, where V1 ≤ . . . ≤ Vk1

is a “monotonized version” of 1/S2
k1

, . . . , 1/S2
1 . Specifically, the authors took

(V1, . . . , Vk1) to be the minimizer, in τ1, . . . , τk1 , of

k1∑
i=1

nk1−i+1

(
1

S2
k1−i+1

− τi

)2

under the restriction τ1 ≤ . . . ≤ τk1 . Or, to say it another way, (V1, . . . , Vk1) is
the isotonic regression of (1/S2

k1
, . . . , 1/S2

1) with weights nk1 , . . . , n1 and (see,
e.g., Barlow, Bartholomew, Bremner and Brunk, 1972, p. 19; or Robertson,
Wright and Dykstra, 1988, p. 24; or Chapter 8, Section 8.2) is given by

Vi = min
i≤t≤k1

max
1≤s≤i

t∑
r=s

nk1−r+1

S2
k1−r+1

t∑
r=s

nk1−r+1

, i = 1, . . . , k1.

For k = 2 and n1 = n2, this Misra–van der Meulen dominator coincides with
the Sinha (1979) dominator and thus with the dominator Elfessi and Pal pro-
posed for possibly unequal sample sizes. Further, for the particular case where
k1 = k, the Misra–van der Meulen (2005) results can also be found in Misra
and van der Meulen (1997).

Elfessi and Pal (1992), Misra and van der Meulen (1997) and Misra and van
der Meulen (2005) also show that their universal dominators of the Graybill–
Deal estimator dominate it by the Pitman closeness criterion.

Finally, on this Graybill–Deal problem, some earlier results on this prob-
lem can be found in Mehta and Gurland (1969). They compare, for k = 2
and equal sample sizes, three generalizations of the Graybill–Deal estima-
tor for Ω = {(µ, ν2

1 , ν2
2) | − ∞ < µ < ∞, ν2

1 ≥ ν2
2} as well as for
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Ω = {(µ, ν2
1 , ν2

2) | − ∞ < µ < ∞, ν2
1 ≤ ν2

2}. These estimators are of the
form ϕ(F )X̄1 + (1 − ϕ(F ))X̄2, where F = S2

2/S2
1 .

Another example where order restrictions on the nuisance parameters make
it possible to improve on the estimation of the parameter of interest can
be found in Gupta and Singh (1992). They study the case where Xi,j ∼ind

N (µi, ν
2), j = 1, . . . , ni, i = 1, 2. The paramter of interest is ν and the

nuissance parameters µi satisfy µ1 ≤ µ2. The MLE of ν is given by

ν̂ = σ̂2 +
n1n2

(n1 + n2)2
(X̄1 − X̄2)2I

(
X̄1 > X̄2

)
,

where X̄i =
∑k

j=1 Xi,j/ni, i = 1, 2 and σ̂2 is the unrestricted MLE of ν. They
show that, for squared-error loss, ν̂ dominates σ̂2.

That using restrictions on the nuissance parameters does not necessarily lead
to improved properties of estimators of the parameters of interest is shown by
results of Singh, Gupta and Misra (1993). They consider a sample X1, . . . , Xn

from a population with density e−(x−µ)/ν , x > µ and estimate µ as well as
ν under the restriction µ ≤ c for a known c and squared-error loss. When
estimating ν when µ is unknown they find that the unrestricted best (i.e.,
minimum-risk) affine-equivariant estimator (ν̂1, say) and the unrestricted
MLE (ν̂2, say) are equal. They further show that the restricted MLE (ν̂3,
say) and ν̂1 (= ν̂2) have the same risk function. So, by the MSE criterion,
these three estimators are equivalent and using the information that µ ≤ c
in MLE estimation of ν does not improve on the unrestricted MLE (= unre-
stricted best affine-equivariant).

We now present results on estimating location or scale parameters for k
(k ≥ 2) exponential distributions when all parameters are unknown. Let
Xi,1, . . . , Xi,ni be independent with density

1
νi

e−(x − µi)/νi x > µi , i = 1, . . . , k.

Then the sufficient statistic for (µi, νi) based on (Xi, Ti) is (Xi, Ti), with
Xi = minj=1,...,ni

Xi,j and Ti =
∑ni

i=1(Xi,j − Xi). The best location-scale
equivariant estimator of µi based on (Xi, Ti) is δo

i (Xi) = Xi − (Ti/n2
i ), while

the one of νi is Ti/ni and this last estimator is also the unrestricted MLE of
νi. Further (see Chapter 8, Section 8.2), when ν1 ≤ . . . ≤ νk, the MLE of νi

is given by

ν̂MLE,i(X) = min
t≥i

max
s≤i

∑t
r=s Tr∑t
r=s nr

i = 1, . . . , k, (5.13)

and the MLE of µi under the restriction µ1 ≤ . . . ≤ µk is µ̂MLE,i(X) =
min(Xi, . . . , Xk). Vijayasree, Misra and Singh (1995), Singh, Gupta and Misra
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(1993), Pal and Kushary (1992), as well as Parsian and Sanjari Farsipour
(1997) obtain results for the estimation of µi and/or νi when restrictions are
imposed on either the µi or the νi and all these parameters are unknown. The
estimators for which they obtain dominators are (mostly) the best (for their
loss function) affine-equivariant ones and the MLEs based on (Xi, Ti) alone.
The latter three papers all have k = 2, the first three use squared-error loss
while the last one uses linex loss.

As an example of this set of results, let the µi be simply ordered with the νi

unknown and unrestricted. Then, when k = 2 and the loss is squared-error,
δ0
1(X1) = X1 − (T1/n2

1) is an inadmissible estimator of µ1 and it is dominated
by

min(X1 − T1/n2
1, µ̂MLE,1) by Vijayasree, Misra and Singh (1995)

by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X1 − T1

n2
1

when X1 ≤ X2

X2 − 1
n2

2

n1∑
j=1

(X1,j − X2) when X1 > X2 by Singh, Gupta and Misra (1993)

and by⎧⎨
⎩X1 − T1

n2
i

when X1 − X2 ≤ (T1/n2
1)

X2 when X1 − X2 > (T1/n2
1) by Pal and Kushary (1992).

Pal and Kushary (1992) also look at the case where ν1 = ν2 = ν is unknown
and µ1 ≤ µ2. They dominate, for i = 1, 2, the estimator

µ̂i,c = Xi − T1 + T2

n1(n1 + n2 − 1)
,

which is the minimum-risk-equivariant estimator for estimating µi when
µi ≤ µ2 and ν1 = ν2 based on (Xi, T1, T2). For i = 2, an example of these
dominators is given by⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
X2 − T1 + T2

n2(n1 + n2 − 1)

)
when X2 − X1 ≥ β(T1 + T2)

(
X1 − γ(T1 + T2)

n2(n1 + n2 − 1)

)
when X2 − X1 < β(T1 + T2),

where β = (n1−n2γ)/(n1n2(n1+n2−1)) > 0. This dominator does not satisfy
the condition that it is less than or equal to X2 with probabilty 1 for all θ ∈ Ω.



92 5 Presence of nuisance parameters

Further, by Parsian and Sanjari Farsipour (1997), the best location-equivariant
estimator of µ1 based on (X1, T1) alone is given by (see Parsian, Sanjari Far-
sipour and Nematollahi, 1993)

X1 − 1
a

((
n1

n1 − a

)(1/n1)

− 1

)
T1,

when the loss function L(d, (µ1, ν1)) = ea(d−µ1)/ν1 − a(d − µ1)/ν1 − 1 is used
and a < n1, a �= 0. This estimator is, when k = 2 and µ1 ≤ µ2, dominated by

µ̂MLE,1(X) − 1
a

((
n1

n1 − a

)(1/n1)

− 1

)
2∑

j=1

(X1,j − µ̂MLE,1(X)).

Results for this exponential location-scale case for estimating νi when ν1 ≤
. . . ≤ νk can be found in Vijayasree, Misra and Singh (1995), while both Par-
sian and Sanjari Farsipour (1997) (for linex loss) and Singh, Gupta and Misra
(1993) (for squared-error loss) look at estimating νi when k = 2 and µ1 ≤ µ2.
Singh, Gupta and Misra(1993) also use Pitman closeness to compare their
estimators and give several examples where a Pitman-closeness comparison
of two estimators does not agree with their MSE comparison. For instance,
the MLE of ν1 dominates its unrestricted version by Pitman closeness, but
these two estimators are MSE-equivalent. They also have a reversal: for their
two MSE-dominators, say, δ1 and δ2, of the MLE of ν1, the MLE dominates
δ1 as well as δ2 by Pitman closeness. The authors call this non-agreement
“paradoxical”, but (as noted in Chapter 2) it is known that such reversals
occur. Similar results are obtained by Sanjari Farsipour (2002). She looks at
the domination results of Parsian and Sanjari Farsipour (1997) and presents
pairs of estimators (δ1, δ2) for which δ1 dominates δ2 by the linex loss function,
while by Pitman closeness they are either non-comparable or δ2 dominates δ1.

Also, still for this exponential location-scale case, the related problems of
estimating (µ1, µ2) under the restriction µ1 ≤ µ2 and under the restriction
ν1/n1 ≤ ν2/n2 are treated by Jin and Pal (1991). They find dominators for
the best location-scale-equivariant estimator (δo

1 , δo
2). They show, e.g., that,

for 0 < α ≤ 1/2, the mixed estimator

(δ1,α, δ2,α) = (min(δo
1 , αδo

1 + (1 − α)δo
2), max(δo

2 , (1 − α)δo
1 + αδo

2)) (5.14)

dominates (δo
1 , δo

2) when µ1 ≤ µ2, while

(X1 − ψ1,α(T1, T2), X2 − ψ2,α(T1, T2))

dominates (δo
1 , δo

2) when ν1/n1 ≤ ν2/n2, where

ψ1,α(T1, T2) = min
(

T1

n2
1

, α
T1

n2
1

+ (1 − α)
T2

n2
2

)
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ψ2,α(T1, T2) = max
(

T2

n2
2

, (1 − α)
T1

n2
1

+ α
T2

n2
2

)
.

Note that the estimator max(δo
2 , (1−α)δo

2) of µ2 does not satisfy the condition
that it is, with probability 1 for all (µ1, µ2, ν1, ν2) with µ1 ≤ µ2, less than X2.

Jin and Pal (1991) also have estimators of (µ1, µ2) for the case where
Ω = {(µ1, µ2, ν1, ν2) | µ1 ≤ µ2, ν1 ≤ ν2} as well as for the case where
Ω = {(µ1, µ2, ν1, ν2) | µ1 ≤ µ2, ν2 ≤ ν1}. Here again, their estimators of
µ2 do not satisfy the condition that they are less than X2 with probability 1
for all µ ∈ Ω.

The results of Jin and Pal (1991) are related to those of Misra and Singh
(1994). Each set of authors estimates, for k = 2, ordered location parameters
of exponential distributions and uses mixed estimators for dominators. These
dominators are mixtures of best unrestricted location-scale-equivariant esti-
mators. The difference between the two sets of results is that Misra and Singh
have known scale parameters, while Jin and Pal’s are unknown. A further
difference is that Misra and Singh are interested in the component problem
while Jin and Pal are interested in the vector problem. Misra and Singh (1994)
do not refer to Jin and Pal (1991).

For Jin and Pal’s numerical results, comparing their dominators with (δo
1 , δo

2),
see Chapter 7, Section 7.2.

Results on estimating the ratio of the squares of two ordered scale parameters
can be found in Kubokawa (1994a). He considers a very general setting of
four independent random variables, S1, S2, T1, T2, where Si/νi, i = 1, 2, have
a known distribution, whereas the distributions of Ti/ν2

i , i = 1, 2, contain
a nuissance parameter. He considers the question of whether an estimator
of θ = ν2

2/ν2
1 based on (S1, S2) can, for scale-invariant squared-error loss be

improved upon by an estimator based on (S1, S2, T1, T2). He looks at this
question for the unrestricted case, for the case where θ ≥ 1 and for the case
where θ ≤ 1. For the case where θ ≥ 1, e.g., he starts out with estimators of
the form δϕ(S1, S2) = ϕ(S2/S1)S2/S1 and improves upon them by estimators
of the form

δϕ,ψ(S1, S2, T2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
ϕ

(
S2

S1

)
+ ψ

(
T2

S2

))
S2

S1
when T2 > 0

ϕ

(
S2

S1

)
S2

S1
when T2 ≤ 0.

(5.15)

One of the functions ϕ satisfying his conditions satisfies ϕ(y) ≥ 1/y, y > 0
which guarantees that δφ is in D. However, it is not clear to me that there exist
(ϕ, ψ) such that δϕ,ψ is in D and Kubokawa does not say anything about this
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question. But in a personal communication to me, he states that, in general,
his estimators (5.15) are not in D. Further, and more importantly, it seems
to me that the functions ψ he gives below his Theorem 3.2 do not satisfy the
conditions of this theorem.

Finally in this section, we look at some results on estimating the smallest
variance among k = 2 variances based on Yi,j ∼ind N (µi, νi), j = 1, . . . , ni,
i = 1, 2 with the µi as well as the νi unknown, ν1 ≤ ν2 and scale-invariant
squared-error loss. Let Ȳi =

∑ni

j=1 Yi,j/ni and Xi =
∑ni

i=1(Yi,j − Ȳi)2, ni > 1,
i = 1, 2. We already saw, in Chapter 5, Section 5.2, that δ(X1) = X1/(n1 +
1) is the MRE of ν1 based on X1 alone and several dominators based on
(X1, X2) were presented there – mostly in the form of estimating ordered
scale parameters of gamma distributions. Ghosh and Sarkar (1994) note that
δ(X1) can be improved upon by several estimators based on (X1, W ) of the
form (1−φ(W ))X1/(n1+1), where W = n1Ȳ

2
1 /X1 and they give the following

examples of such dominators:

1) Stein (1964, p. 157) has, essentially, a model with S/θ ∼ χ2
N , T =

∑k
j=1 V 2

j

where Vj ∼ind N (ηj , θ), j = 1, . . . , k and S and T independent. Stein
shows, e.g., that for estimating θ in this setting

min
(

S

N + 2
,

S + T

N + k + 2

)

dominates S/(N+2). Using this result of Stein in the Ghosh–Sarkar setting
with N = n1 − 1, k = 1, S = X1 and T = n1Ȳ

2
1 , Stein’s conditions are

satisfied and his result gives that

min
(

X1

n1 + 1
,
X1 + n1Ȳ

2
1

n1 + 2

)

dominates X1/(n1 + 1). Note that, with W = n1Ȳ
2
1 /X1, this dominator

can be written in the form (1 − φ(W ))X1/(n1 + 1) by taking

φ(w) = max
(

0,
1 − (n1 + 1)w

n1 + 2

)
,

the form used by Ghosh and Sarkar (1994, formula (2.4));
2) Strawderman (1974) has the Ghosh and Sarkar (1994) model with k = 1

and considers a class of estimators of να
1 based on (X1, Ȳ1). For α = 1

these estimators are of the form (see Strawderman, 1974, formula (2.1))

ψ

(
X1

X1 + n1Ȳ 2
1

)
(X1 + n1Ȳ

2
1 )

and he shows, e.g., that this estimator with

ψ(u) =
u

n1 + 1
(
1 − ε(u)uδ

)
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dominates X1/(n1+1) as an estimator of ν1 provided ε(u) is non-decreasing
and 0 ≤ ε(u) ≤ D(δ), where D(δ) is defined in Strawderman (1974, formula
(2.4)). Ghosh and Sarkar (1994) take the special case where δ = 1 and
ε(u) = ε > 0. This gives (see Ghosh and Sarkar, 1994, formula (2.5))

X1

n1 + 1

(
1 − εX1

X1 + n1Ȳ 2
1

)
0 < ε ≤ 4(n1 + 6)

(n1 + 2)(n1 + 3)(n1 + 5)

as a dominator of X1/(n1 +1) for estimating ν1. Note that this dominator
can also be written in the form (1 − φ(W ))X1/(n1 + 1) with

φ(w) =
ε

1 + w
0 < ε ≤ 4(n1 + 6)

(n1 + 2)(n1 + 3)(n1 + 5)
; (5.16)

3) Kubokawa (1994b) gives, as a special case of more general results, a class of
dominators of X1/(n1 + 1) based on (X1, Ȳ1) for the Ghosh–Sarkar model
with k = 1. These estimators are of the form (1−φ(W ))X1/(n1 +1) with
φ any continuously differentiable function satisfying

0 < φ(w) ≤ 1 − E (F1(wχ2
n1+1)

)
E (F1(wχ2

n1+)
) ,

where F1 is the distribution function of a χ2 random variable with 1 degree
of freedom. This Kubokawa class of dominators contains the generalized
Bayes estimators of Brewster and Zidek (1974, Theorem 2.1.4).

The above dominators of X1/(n1 + 1) as an estimator of ν1 are all based on
(X1, W ) only, i.e., on the first sample only. Ghosh and Sarkar (1994) men-
tion several estimators based on (X1, V ), with V = X2/X1, which dominate
X1/(n1 + 1) on Ω = {(µ1, µ2, ν1, ν2) | ν1 ≤ ν2}. These dominators are of
the form (1 − φ(V ))X1/(n1 + 1) and an example of this class is the class of
Strawderman-type dominators of Mathew, Sinha and Sutradhar (1992) with

φ(v) =
ε

1 + v
0 < ε ≤ 4(n2 − 1)

(n1 + 3)(n1 + n2)
. (5.17)

Ghosh and Sarkar show that this result can be strengthened to

0 < ε ≤ min
(

1,
4(n2 − 1)(n1 + n2 + 4)

(n1 + 3)(n1 + 5)(n1 + n2)

)
. (5.18)

They also give the following class of dominators of (1 − φ(V ))X1/(n1 + 1)
based on (X1, W, V )

min
(

1 − φ(V ),
(n1 + 1)(1 + W + V )

n1 + n2 + 1

)
X1

n1 + 1
(5.19)

and the following class of estimators, also based on (X1, W, V ), dominating
(1 − φ(W ))X1/(n1 + 1)
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min
(

1 − φ(W ),
(n1 + 1)(1 + W + V )

n1 + n2 + 1

)
X1

n1 + 1
(5.20)

and raise, but do not solve, the question of the existence of an estima-
tor, based on (X1, W, V ), dominating both (1 − φ(W ))X1/(n1 + 1) and
(1−φ∗(V ))X1/(n1 +1). Ghosh and Sarkar also mention the Stein-type domi-
nators of Klotz, Milton and Zacks (1969) and Mathew, Sinha and Sutradhar
(1992) and they strengthen a result of Mathew, Sinha and Sutradhar for the
simple-tree-ordered case with k > 2.

Ghosh and Sarkar also give numerical values for the percent decrease in MSE
of their estimators relative to the unrestricted MRE of ν1. Some of these
results can be found in Chapter 7, Section 7.2.

5.4 Polygonal, orthant and circular cones

In this section we consider parameter spaces defined by restrictions in the form
of more general cones than those defined by inequality restrictions among the
parameters.

There are several results on comparing the MLE c′µ̂(X) of c′µ with c′X when
Xi ∼ind N (µi, ν

2
i ), i = 1, . . . , k, the ν2

i known and Ω is a polygonal cone.

Rueda and Salvador (1995) consider the cone Ω = {µ | a′µ ≥ 0, b′µ ≥ 0},
where a and b are known k-dimensional, linearly independent unit vectors. For
k = 2 they show that, as an estimator of c′µ, c′µ̂(X) universally dominates
c′X for all c. This of course implies that, for all c,

Eµ(c′(µ̂(X) − µ))2 ≤ Eµ(c′(X − µ))2 for all µ ∈ Ω, (5.21)

i.e., µ̂(X) is more concentrated about µ than X in the sense of Lehmann
(1983, p. 291). For k > 2, they do not show universal domination of c′µ̂ over
c′X, but they do show that (5.21) holds for all c.

For the cone Ω = {µ | a′µ ≥ 0}, where a is a known k-dimensional unit vector,
Rueda and Salvador (1995) show that, here too, c′µ̂(X) universally dominates
c′X as an estimator of c′µ for all c and all µ ∈ Ω. For this same cone, but
now with ai �= 0 for all i = 1, . . . , k, Rueda, Salvador and Fernández (1997b)
compare the distributions of (|µ̂i(X) − µi|, i = 1, . . . , k) and (|Xi − µi|, i =

1, . . . , k). They show that, for all ti > 0 and all µ ∈ Ω,

Pθ(|Xi − θi| ≤ ti, i = 1, . . . , k) ≤ Pµ(|µ̂i(X) − µi| ≤ ti, i = 1, . . . , k). (5.22)

And this implies that, for each i = 1, . . . , k, µ̂i universally dominates Xi as
an estimator of µi, which is Kelly’s (1989) result when k = 2. For the normal
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linear model X = Zµ + ε with ε ∼ Nk(0, I), Rueda, Salvador and Fernández
(1997a), still for Ω = {µ | a′µ ≥ 0}, generalize (5.22) to

for all convex A, symmetric around zero

Pµ(|µ̂(X) − µ| ∈ A) ≥ Pµ(|X − µ| ∈ A) for all µ ∈ Ω,

}
(5.23)

while, for Z = I, Iwasa and Moritani (2002) show that, when k = 2, (5.23)
holds for Ω convex and closed. Iwasa and Moritani also give generalizations
of their result to the case where k ≥ 3, as well as, for k ≥ 4, examples where
(5.23) does not hold.

A related result for Xi ∼ind N (µi, 1), i = 1, . . . , k, can be found in Shinozaki
and Chang (1999). They have Ω = {µ | µi ≥ 0} and show that

Eµ(c′(µ̂(X) − µ))2 ≤ Eµ(c′(X − µ))2 for all µ ∈ Ω (5.24)

if and only if, for l = 1, 2,

(π + 1)
∑
i∈S

c2
i −
(∑

i∈S

ci

)2

≥ 0 for any S ⊂ Kl, (5.25)

where K1 = {i | ci > 0} and K2 = {i | ci ≤ 0}. The condition (5.25) is
satisfied for all c if and only if k ≥ 4.

The Rueda–Salvador, Rueda–Salvador–Fernández and Shinozaki–Chang re-
sults have been further generalized by Fernández, Rueda and Salvador (2000).
They consider X = (X1, . . . , Xk) with a unimodal symmetric density with
mean µ and finite variance and the parameter space Ω = {µ | µi ≥ 0, i =
1, . . . , k}. They extend the above-mentioned Shinozaki–Chang result to this
class of distributions and show that, for (5.24) to hold for all c, it is suffi-
cient for it to hold for µ = 0 and c the central direction of the cone, i.e.
for c a vector of ones. For independent samples from N (µi, ν

2) distributions,
they generalize their results to general orthants and, as one of their exam-
ples, give the “increasing-in-average” cone Ω = {µ | µ1 ≤ (µ1 +µ2)/2 ≤ . . . ≤
(µ1 + . . .+µk)/k} for which µ̂(X) is more concentrated about µ than X if and
only if k ≤ 5. They give similar results for Xi ∼ind Poisson (µi), i = 1, . . . , k
with µ restricted to the cone Ω = {µ | µi ≥ a, i = 1, . . . , k} and a > 0 known.
Finally, for circular cones and Xi ∼ind N (µi, 1), Fernández, Rueda and Sal-
vador (1999) compare c′µ̂(X) with c′X. They find that, for any axial angle
of the cone, there exists a k such that c′X dominates c′µ̂(X) at µ = 0 when
c is the central direction of the cone. On the other hand, for k < 4, e.g., c′µ̂
dominates c′X at µ = 0 for all angles and all c.

None of the above results for Ω a polygonal cone says anything about the
universal admissibility of the MLE itself. The only results I have been able to
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find about this problem is the one by Cohen and Kushary (1998) mentioned
in Chapter 3, Section 3.5. They show that, for X ∼ N (µ, I) with µ restricted
to a polygonal cone, the MLE is universally admissible.

5.5 (Admissible) minimax estimators

In this section we report on the (very few) cases where (admissible) minimax
estimators are known for restricted estimation problems with nuissance pa-
rameters.

Let Xi ∼ind N (µi, ν
2
i ), i = 1, 2, where the νi are known and Ω = {µ | µ1 ≤

µ2}. The parameter to be estimated is µ1 and squared-error loss is used. As
already seen, the MLE dominates X1. However, this MLE is inadmissible. This
follows from van Eeden and Zidek (2002), who show that µ̂1 is dominated by

τX1 + X2

1 + τ
− δ

(
Z

1 + τ

)
,

where Z = X2 − X1, τ = ν2
2/ν2

1 and δ is a dominator of the MLE of a non-
negative normal mean based on a single observation with unit variance. Such
dominators can (see Chapter 3, Section 3.4) be found in Shao and Strawder-
man (1996b).

About minimaxity for this problem: Cohen and Sackrowitz (1970) show that
the Pitman estimator of µ1 (given by δP (X) = X1 + ϕ(Z) with Z = X2 −X1

and ϕ as in the first line of (5.6)) is admissible and minimax and the minimax
value is ν2

1 , i.e. the same value as for the unrestricted case. A simpler proof of
this minimaxity result can be found in Kumar and Sharma (1988, Theorem
2.3) and a simpler proof of the admissibility is given by van Eeden and Zidek
(2002). The fact that δP dominates X1 can also be seen from the following
formula for the MSE of δP :

Eµ(δP − µ1)2 = ν2
1 − ν4

1

σ3
(µ2 − µ1) Eµ

φ (Z/ν)
Φ (Z/ν)

,

where ν2 = ν2
1 +ν2

2 . This formula for the MSE of δP was proved by Kumar and
Sharma (1993) as well as by Al-Saleh (1997) for the case where σ2

1 = σ2
2 = 1.

The generalization for abitrary variances is given by van Eeden and Zidek
(2002).

We also see from the above that X1 and the MLE are inadmissible minimax,
implying that all dominators of them are minimax.

For the normal-mean case with equal known variances and k = 3, Kumar
and Sharma (1989) show that the first (and thus the third) component of
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the Pitman estimator of the corresponding components of µ are not minimax
when Ω = {µ | µ1 ≤ µ2 ≤ µ3}.
Remark 5.8. Note that Cohen and Sackrowitz’s results for the Pitman estima-
tor only hold for the special case they consider, namely the case where σ2

2 = 1.

Another case where admissible, as well as minimax estimators, are known is
the above normal-mean problem with Ω = {µ | |µ2 − µ1| ≤ c} for a known
c > 0. Results for this case have been obtained by van Eeden and Zidek (2001,
2004). They show that the Pitman estimator of µ1, which in this case is given
by δ∗P (X) = X1 +ϕ(Z) with Z = X2−X1 and ϕ is in the second line of (5.6),
is admissible and dominates X1. They also show that X1 and the MLE, given
by

µ̂1(X1, X2) = X1 +
(Z − c)I(Z > c) − (Z + c)I(Z < −c)

1 + τ
,

are inadmissible and that µ̂1 dominates X1. A dominator for the MLE is given
by

τX1 + X2

1 + τ
− δ(Z),

where δ(Z) is the projection of

ZI(−c < Z < c) + c(I(Z > c) − I(Z < −c))
1 + τ

onto the interval[
− c

1 + τ
tanh

(
c|Z|
σ2

)
,

c

1 + τ
tanh

(
c|Z|
σ2

)]
.

This dominator is obtained by using results of Moors (1981, 1985).

A minimax estimator of µ1 when c is small is also obtained by van Eeden and
Zidek (2004) . They show that, when c ≤ moσ,

δmM (X1, X2) =
τX1 + X2

1 + τ
− c

1 + τ
tanh

(
cZ

σ2

)
,

is minimax for estimating µ1. The minimax value is given by

σ2
1ν2

2

ν4
+

ν4
1

ν2
sup

|α|≤m

Eα(m tanh(mY ) − α)2,

where m = c/σ, Y is a N (ν, 1) random variable and mo ≈ 1.056742 is the
Casella–Strawderman (1981) constant. Their method of proof is given in The-
orem 4.2, where it is used to obtain a minimax estimator of (µ1, µ2) when
|µ2 − µ1| ≤ c.
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5.6 Discussion and open problems

In this chapter we looked at questions of admissibility and minimaxity when
nuisance parameters are present. Most of the models considered are of the
following form: Xi,j , j = 1, . . . , ni, i = 1, . . . , k are independent random vari-
ables with distribution function Fi(x; µi, νi) for the Xi,j , j = 1, . . . , ni. The µi

are all unknown, the νi are either all known or all unknown and a subvector
of the vector (µ, ν) is the parameter of interest, with the rest of the unknown
parameters as nuisance parameters.

Most of the questions we looked at are of the form: if, for a given S ⊂
{1, . . . , k}, µS = {µi | i ∈ S} (or (µ, ν)S = {(µi, νi) | i ∈ S}) is the (vec-
tor) parameter of interest, can – and if so how – {Xi,j , j = 1, . . . , ni, i /∈ S}
help improve on a ”good” estimator based on {Xi,j , j = 1, . . . , ni, i ∈ S}?
Another question is: if δ is a “good” estimator of µS when the νi are unre-
stricted, can δ be improved upon on a subset of Ω defined by restrictions on
the νi? As we have seen, the answers to these questions depend on Ω, Θ, k
and the Fi – and, as we have seen, few results have been obtained, even for
the relatively simple case of location-scale problems.

A question not touched upon is the relationship between (in)admissibility
properties of estimators δi(X) of the components µi of µ and these same
properties, as an estimator of µ, of the vector (δ1(X), . . . , δk(X)). In a more
formal setting: let, for i = 1, . . . , k, Θi be the projection of Θ onto the µi-axis
and let the loss function for estimating µ be the sum of the loss functions for
the µi (i.e. L(d, µ) =

∑k
i=1 Li(di, µi)). Then, if for each i = 1, . . . , k, δo,i(X)

and δi(X) are estimators of µi for µi ∈ Θi with δo,i(X) dominating δi(X) on
Ω, then the vector δ(X) = (δ1(X), . . . , δk(X)) dominates, on Ω, the vector
δo(X) = (δo,1(X), . . . , δo,k(X)) as an estimator of µ provided both δ and δo

are estimators, i.e., they satisfy

Pµ,ν(δ(X) ∈ Θ) = Pµ,ν(δo(X) ∈ Θ) = 1 for all (µ, ν) ∈ Ω.

On the other hand, the fact that an estimator δ of µ ∈ Θ is admissible does
not imply that its components are admissible as estimators of the correspond-
ing component of µ, but it does imply that at least one of them is admissible.

A related question is: when do estimators δo,i(X) which dominate, for each
i = 1, . . . , k, δi(X) as an estimator of µi ∈ Θi give us an estimator
δ(X) = (δo,1(X), . . . , δo,k(X)) of the vector µ which satisfies (2.3) when k ≥ 2?
A sufficient condition is of course that Θ =

∏k
i=1 Θi. But in most cases where

dominating δo,i have been obtained, the resulting δo does not satisfy (2.3).
And, why should they? Each δo,i has been individually constructed to dom-
inate δi. Examples of when δo is an estimator of µ ( and when it is not)
can be found in Vijayasree, Misra and Singh (1995). For instance, for the
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estimation of completely ordered location parameters µ1, . . . , µk of exponen-
tial distributions with known scale parameters, Vijayasree, Misra and Singh
show that their dominators δi,o of the MRE of µi (based on Xi alone), sat-
isfy δo,1(X1) ≤ δo,k(Xk) with probability 1 for all parameter values, while for
(i, j) �= (1, k), i < j, δo,i(Xi) ≤ δo,j(Xj) holds with probability < 1 for some
parameter values. This result of course implies that, when k = 2, their δo

satisfies (2.3). On the other hand, the Vijayasree–Misra–Singh dominator of
the restricted MLE of µi does satisfy (2.3) for all k. Of course, if one is really
only interested in estimating a component of µ, one would want the class of
estimators to choose from to be as large as possible, i.e., one would not want
it to be restricted by the requirement that it, together with dominators of the
other components (those one is not interested in), leads to an estimator of the
vector.



6

The linear model

There are a large number of papers which are concerned with estimation
problems in restricted parameter spaces for the linear model

X = Zθ + ε, (6.1)

where X is an n × 1 vector of observables, Z is a given nonstochastic n × k
matrix of rank k, θ is a k × 1 vector of unknown parameters and ε is a n × 1
vector of random variables with Eε = 0 and cov(ε) = Σ, known or unknown.
In the latter case Σ is either a matrix of nuisance parameters, or it is esti-
mated and this estimator is then used in the estimation of θ. The problem
considered in such papers is the estimation of θ, or a subvector of θ with the
other components as nuisance parameters, when θ is restricted to a closed
convex subset of Rk. The estimators are often linear estimators, i.e. they are
of the form θ̂(X) = AX +b. Such estimators generally do not satisfy (2.3), i.e.
the authors consider (see Chapter 2) the (Do, Θ)-problem and not the (D, Θ)-
problem. Papers on this subject which are (almost) exclusively concerned
with (Do, Θ)-problems are not discussed, but the ones I have found are listed
in the references and indicated with an asterisk before the first author’s name.

Results for (D, Θ)-problems for the model (6.1) with Θ = {θ | b′θ ≥ r} for
a given k × 1 vector b and a given constant r can be found in Section 6.1.
In Section 6.2 two kinds of restrictions on θ are considered, namely, the case
where r1 ≤ b′ θ ≤ r2, as well as the case where k = 2 and θi ≥ 0, i = 1, 2.
Section 6.3 presents results of Moors and van Houwelingen (1993) for simul-
taneous interval restrictions on the components of Aθ, where A is a known
k × k positive definite matrix, as well as for ellipsoidal restrictions. Most of
the results in this chapter hold for squared-error loss and MSE will stand for
mean-squared-error.

We note that several of the results presented in Section 6.1 are related to, and
sometimes overlap with, those of Chang (1981, 1982), Sengupta and Sen (1991)
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and Kuriki and Takemura (2000) – results which are presented in Chapter 3,
Section 3.4.

6.1 One linear inequality restriction

For the model (6.1) and Θ = {θ | b′θ ≥ r}, Lovell and Prescott (1970)
as well as Thomson and Schmidt (1982) consider the special case where
b′ = (1, 0, . . . , 0), Σ = σ2I and (without loss of generality) r = 0. Their
estimators of θ are the least-squares estimators (LSE), i.e., their estimators
θ̂(X) minimize, for θ ∈ Θ,

∑n
i=1(Xi −

∑k
j=1 zi,jθj)2. If δ∗(X) denotes the

unrestricted least-squares estimator (URLSE) of θ then θ̂(X) = δ∗(X) when
δ∗1(X) ≥ 0 and θ̂(X) is the URLSE for the model (6.1) with θ replaced by
(0, θ2, . . . , θk) when δ∗1(X) < 0. The authors compare, for i = 1, . . . , k, θ̂i with
δ∗i for squared-error loss. Obviously, θ̂1 dominates δ∗1 unless Pθ(δ∗1(X) < 0) = 0
for all θ with θ1 ≥ 0. However, as Lovell and Prescott show, θ̂i does not nec-
essarily dominate δ∗i for i ≥ 2. They give, for k = 2, an example of a matrix
Z and a distribution for ε for which δ∗2 dominates θ̂2. But they also show,
using explicit formulas for the MSE’s, that θ̂i dominates δ∗i on {θ | θ1 ≥ 0} for
i = 1, . . . , k when ε ∼ Nn(0, σ2I). Thomson and Schmidt generalize this last
result of Lovell and Prescott. They note that Lovell and Prescott’s formula
(4.4) for the MSE of θ̂i when ε ∼ Nn(0, σ2I), can be written in the form

MSE(θ̂i) = σ2
i + ρ2

i,1σ
2
i ((c2 − 1)Φ(c) + cφ(c)) i = 1, . . . , k, (6.2)

where σ2
i is the variance of δ∗i , ρi,1 is the correlation coefficient between δ∗i and

δ∗1 , Φ and φ are, respectively, the standard normal distribution function and
density and c = −θ1/σ1. This then shows that, for ε ∼ N (0, σ2I), θ̂i domi-
nates δ∗i on the larger space {θ | θ1 ≥ −.84σ1} because Φ(c)(c2 − 1) + cφ(c)
is positive for c > .84 and negative for c < .84. It also shows that the MSE’s
depend on θ only through θ1.

More results for the case where Θ = {θ | b′θ ≥ r} can be found in Judge,
Yancey, Bock and Bohrer (1984), Wan (1994b), Ohtani and Wan (1998)
and Wan and Ohtani (2000). Each of these four sets of authors assume
ε ∼ Nn(0, σ2I) and follow Judge and Yancey (1981) in reparametrizing the
problem as follows. Let V = Z(Z ′Z)−1/2Q where Q is an orthogonal ma-
trix such that b′(Z ′Z)−1/2Q = (1, 0, . . . , 0) and let β = Q′(Z ′Z)1/2θ. Then
X = V β + ε and the parameter space becomes {β | β1 ≥ r}, which they take,
without loss of generality, to be {β | β1 ≥ 0}. Further, the equality-restricted
least-squares estimator of θ, i.e., the least-squares estimator of θ under the
restriction b′θ = 0, is given by (see Judge and Yancey, 1981)

θ̂ER(X) = δ∗(X) − (Z ′Z)−1b(b′(Z ′Z)−1b)−1b′δ∗(X),
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where δ∗(X) is the unrestricted least-squares estimator of θ. Now, using the
fact that b′(Z ′Z)−1b = b′(Z ′Z)−1/2QQ′(Z ′Z)−1/2b = 1 gives

θ̂ER(X) = δ∗(X) − (Z ′Z)−1bb′δ∗(X).

Further, the unrestricted least-squares estimator δ(X) of β is given by

δ(X) = (V ′V )−1V ′X = V ′X,

so the equality-restricted least-squares estimator of β = Q′(Z ′Z)1/2θ is given
by

β̂ER(X) = δ(X) − Q′(Z ′Z)−1/2bb′δ∗(X)

= δ(X) − Q′(Z ′Z)−1/2bb′(Z ′Z)−1/2Qδ(X)

= (0, δ2(X), . . . , δk(X))′,

because

δ∗(X) = (Z ′Z)−1/2Qδ(X) and b′(Z ′Z)−1/2Q = (1, 0, . . . , 0).

The inequality-restricted least-squares estimator, β̂(X), of β then becomes

β̂(X) =

⎧⎪⎪⎨
⎪⎪⎩

(
0

δ(k−1)(X)

)
when δ1(X) < 0

δ(X) when δ1(X) ≥ 0,

(6.3)

where δ(k−1)(X) = (δ2(X), . . . , δk(X))′. Of course, when ε ∼ Nn(0, σ2I), the
above least-squares estimator are the corresponding MLE’s.

Judge, Yancey, Bock and Bohrer (1984), assuming ε ∼ Nn(0, σ2I) and σ2

known, estimate β and, for squared-error loss, present several estimators domi-
nating its MLE β̂ under the restriction β1 ≥ 0. An example of their dominators
is the Stein inequality-restricted estimator β̂SIR obtained from β̂ (see (6.3))
by replacing δ(k−1) and δ by appropriate James–Stein dominators. This gives
the following expression for β̂SIR(X):⎛

⎜⎜⎝ 0(
1 − c1σ

2

δ′(k−1)(X)δ(k−1)(X)

)
δ(k−1)(X)

⎞
⎟⎟⎠ when δ1(X) < 0

(
1 − c2σ

2

δ′(X)δ(X)

)
δ(X) when δ1(X) ≥ 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.4)
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where k ≥ 4, 0 < c1 < 2(k − 3) and 0 < c2 < 2(k − 2). The choice of (c1, c2)
minimizing the risk function of β̂SIR is c1 = k − 3, c2 = k − 2. A second
example of their dominators is a positive Stein inequality-restricted estimator
given by

β̂PSIR(X) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
0

β̂PS,(k−1)(X)

)
when δ1(X) < 0

β̂PS(X) when δ1(X) ≥ 0,

(6.5)

where β̂PS(X) = (1 − cσ2/(δ′(X)δ(X)))I(δ′(X)δ(X) > cσ2)δ(X) is the (un-
restricted) positive Stein estimator, 0 < c < 2(k − 2) and β̂PS,(k−1)(X) =
(β̂PS,2(X), . . . , β̂PS,k(X)). This β̂PSIR also dominates β̂SIR. As a third domi-
nator of β̂ they have a mixed MLE-Stein inequality-restricted estimator given
by

β̂MLES(X) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
0

δ(k−1)(X)

)
when δ1(X) < 0

(
1 − cσ2

δ′(X)δ(X)

)
δ(X) when δ1(X) ≥ 0,

(6.6)

with 0 < c < 2(k − 2). The authors give MSE-formulas for the vectors β̂ and
β̂SIR, but not for their components. However, formulas for the other vectors
and all components can easily be obtained by the authors’ methods. For β̂,
e.g., they show that

MSE(β̂) = MSE(δ) + σ2Eβ

(
β2

1

σ2
−
(

δ1(X) − β1

σ

)2
)

I(δ1(X) < 0),

with MSE(δ) = kσ2 because δi(X) ∼ind N (βi, σ
2), i = 1, . . . , k. From this

formula and the definition (6.3) of β̂, it follows that

MSE(β̂1)
σ2

= 1 + E
(

β2
1

σ2
−
(

δ1(X) − β1

σ

)2
)

I(δ1(X) < 0),

and
MSEβ(β̂i)

σ2
= 1 i = 2, . . . , k,

with Eβ

(
β2

1

σ2
−
(

δ1(X) − β1

σ

)2
)

I(δ1(X) < 0) = (c2 − 1)Φ(c) + cφ(c) and

c = −β1/σ. This of course gives the Lovell–Prescott–Thomson–Schmidt for-
mula (6.2) for MSE(β̂1) for the case where Z ′Z = I.

For the difference between the risk functions of β̂SIR and β̂ they find
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MSE(β̂SIR, β) − MSE(β̂, β) =

c1(c1 − 2(k − 3))Pβ(δ1(X) < 0)E 1
χ2

k−1,λ

+

c2(c2 − 2(k − 2))EβI(δ1(X) > 0)
1

δ′(X)δ(X)
,

where χ2
k−1,λ is a χ2 random variable with k − 1 degrees of freedom and

non-centrality parameter λ = β′
(k−1)β(k−1)/2. So, β̂SIR dominates β̂ when

0 < c1 < 2(k − 3) and 0 < c2 < 2(k − 2). The authors also show that β̂MLES

dominates β̂.

The model of Judge, Yancey, Bock and Bohrer (1984) is a special case of the
one of Chang (1981), but there does not seem to be any overlap between their
classes of dominators. There is, however, an overlap of their results with those
of Sengupta and Sen (1991).

Wan (1994b), assuming ε ∼ Nn(0, σ2I) and β1 ≥ 0, estimates β by its MLE β̂

as well as by an inequality-restricted pretest estimator β̂IPT , say. This pretest
uses (X − V δ(X))′(X − V δ(X))/(n − k) as an estimator of σ2. To compare
these estimators he uses the so-called balanced loss function given by

L(d, β) = w(X − V d)′(X − V d) + (1 − w)(d − β)′(d − β),

where w ∈ [0, 1] is a given number. The first term in L(d, β) is a measure of
goodness-of-fit of the model, while the second term is a weighted squared-error
loss for an estimator of β.

Wan gives explicit expressions for the expected losses of his estimators and
graphically illustrates comparisons between β̂, β̂IPT and δ as a function of
β1/σ for n = 30, k = 5 and w = 0.0, 0.3 and 0.5. In each graph with w < 1/2,
β̂ dominates β̂IPT and β̂IPT dominates δ. From these graphs it can also be
seen (analogous to the results of Lovell–Prescott–Thomson–Schmidt model)
that the domination results hold on a space larger than {β | β1 ≥ 0}. For
w = 1/2, β̂ and β̂IPT are about equivalent and dominate δ, while for w > 1/2,
δ dominates β̂IPT which dominates β̂ on a space larger than {β | β1 ≥ 0}, but
on a large part of {β | β1 ≥ 0} there is no difference between the three. Judge,
Yancey, Bock and Bohrer (1984) have a graph of the risks of their estimators
as a function of β1/σ for k = 4 and β = (1, 0, 0, 0)′. Here too, the domination
results hold on a space larger than {β | β1 ≥ 0}.

Ohtani and Wan (1998), assuming ε ∼ Nn(0, σ2I), estimate β when σ2 is
unknown and β1 ≥ 0. They start with the estimator (6.4) and, for δ1(X) ≥ 0,
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replace σ2 by its Stein (1964) variance estimator given by

σ̃2
S = min

(
e′(X)e(X)
n − k + 2

,
X ′X
n + 2

)
,

where e(X) = X − V δ(X). For δ1(X) < 0 they replace σ2 by its equality-
restricted (i.e., assuming β1 = 0) Stein variance estimator given by

σ̂2
S =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e′(X)e(X) + δ2
1(X)

n − k + 3
when

δ′(X)δ(X)
k − 1

≥ ẽ′(X)ẽ(X)
n − k + 3

X ′X
n + 2

when
δ′(X)δ(X)

k − 1
<

ẽ′(X)ẽ(X)
n − k + 3

,

where ẽ(X) = X − V (0, δ′(k−1))
′. They justify these estimators through a

pretest argument and give results of numerical comparisons, using scaled
squared-error loss (=MSE/σ2), of their estimator with the estimator β̂SIR

for n = 20, k = 5, 10, 15, β′
(k−1)β(k−1)/σ2 = .1, 1.0, 6.0 and β1/σ =

−3.0, −2.5, . . . , 3.0. For each combination of these values of β′
(k−1)β(k−1)/σ2,

β1/σ and k, they find that their estimator has a smaller risk than does β̂SIR.
They do not have an analytical comparison of these estimators, but show ana-
lytically that both risks converge to ∞ as β1 → −∞ and both risks converge to
k, the constant risk of δ, when β1 → ∞. For the unrestricted case Berry (1994)
shows that, for estimating a multivariate normal mean, the James–Stein es-
timator can be improved upon by incorporating the Stein (1964) variance
estimator.

Wan and Ohtani (2000) study an adaptive estimator of β when β1 ≥ 0. They
start out with the class of (unrestricted) adaptive estimators given by

δF (X) =
δ′(X)δ(X)

d1e′(X)e(X) + δ′(X)δ(X)
δ(X).

Farebrother (1975) and Ohtani (1996) each study special cases of these esti-
mators with, respectively, d1 = 1/(n−k) and d1 = k/(n−k). Wan and Ohtani
then propose an inequality-restricted version of δF (X) given by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δF (X) when δ1(X) ≥ 0

(
0,

δ′(X)δ(X)
d2(e′(X)e(X) + δ2

1(X)) + δ′(k−1)δ(k−1)(X)
δ′(k−1)

)′
when δ1(X) < 0.

Using scaled squared-error loss, the authors give an explicit expression for
the risk function of their estimator and give analytical comparisons as well
as numerical ones with the MLE β̂ and the Judge, Yancey, Bock and Bohrer
estimator (6.4). Analytically they find that MSE(β̂F , β) ≤ MSE(β̂, β) for all
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β1 ≤ 0 when d1 ≥ 0, d2 ≥ 0 and β′
(k−1)β(k−1) ≤ (k−1)σ2/2. So their estimator

does, relative to the MLE, better outside the parameter space than inside
it. The authors also have numerical comparisons for various combinations
of values of n, k, β1/σ and β′

(k−1)β(k−1)/σ2 between the MLE β̂, β̂SIR and

two special cases of their estimator: namely, β̂F,1 with d1 = 1/(n − k) and
d2 = 1/(n−k +1) and β̂F,2 with d1 = k/(n−k) and d2 = (k− 1)/(n−k +1).
These results indicate that, for β1 ≥ 0, (i) when k = 2 (where β̂SIR is not
available) with n = 15 as well as with n = 40, there is not much difference
between β̂F,1 and β̂F,2 and the best of the three estimators is β̂F,2; (ii) when
k = 8 with n = 15 as well as with n = 40, β̂F,2 is clearly preferable over β̂F,1

as well as over β̂SIR; (iii) When k = 25 with n = 40 as well as with n = 100,
β̂F,2 is again preferrred over β̂F,1, but the best is β̂SIR.

6.2 Interval and quadrant restrictions

Escobar and Skarpness (1987) and Wan (1994a) start with the model (6.1)
with ε ∼ N (0, σ2I) and σ2 known. They restrict θ to r1 ≤ b′θ ≤ r2 for a
given k × 1 vector b and given numbers r1 < r2 and transform the model as
follows. Let D be a k × (k − 1) matrix such that B′ = (b, D) is non-singular
and let V = ZB−1. Then the model X = Zθ + ε becomes X = V β + ε with
β = Bθ and the restricted parameter space becomes {β | r1 ≤ β1 ≤ r2}.
Let, as before, δ(X) = (V ′V )−1V ′X be the unrestricted MLE of β. Then (see
Klemm and Sposito, 1980) the restricted MLE β̂ of β is given by

β̂(X) = δ(X) + γ(β̂1(X) − δ1(X))

where γ = (V ′V )−1u/(u′(V ′V )−1u), u′ = (1, 0, . . . , 0)′ and

β̂1(X) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r1 when δ1(X) < r1

δ1(X) when r1 ≤ δ1(X) ≤ r2,

r2 when δi(X) > r2.

Now, write V = (V1, V2) and γ′ = (γ1, Γ
′
2) where V1 is an n×1 vector, V2 is an

n× (k − 1) matrix, γ1 = 1 is the first element of the k × 1 vector γ and Γ2 =
(γ2, . . . , γk)′ = −(V ′

2V2)−1V ′
2V1. Then, with β̂(X) = (β̂1(X), β̂′

(k−1)(X))′, Es-

cobar and Skarpness show that β̂(k−1)(X) can also be written in the form

β̂(k−1)(X) = δ(k−1)(X) + γ2(β̂1(X) − δ1(X)). (6.7)

Remark 6.1. The transformation of the model (6.1) used by Escobar and
Skarpness (1987) is not necessarily the Judge and Yancey (1981) one. So,
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the Escobar–Skarpness parameter β is not necessarily the one obtained by
using the Judge–Yancey transformation. They are the same parameter (and
thus have, under the same restrictions on θ, the same least-squares estima-
tor) when V ′V = I. And in that case γ = (1, 0, . . . , 0)′ and this implies that
β̂(k−1)(X) = δ(k−1)(X).

Escobar and Skarpness (1987) compare β̂ with δ using squared-error loss.
Obviously, as for the Lovell–Prescott (1970) model, β̂1 dominates δ1 on
{β | r1 ≤ β1 ≤ r2} unless Pβ(r1 ≤ δ1(X) ≤ r2) = 1 for all β with β1 ∈ [r1, r2].
The authors’ robustness results with respect to misspecification of Θ are pre-
sented in Chapter 7, Section 7.2.

For the comparison of β̂i with δi for i = 2, . . . , k, Escobar and Skarpness show
that

MSE(δi) − MSE(β̂i) = γ2
i (MSE(δ1) − MSE(β̂1))

and note that in the proof of this result the normality assumption of the residu-
als plays a central role. So, what these authors show is that, for ε ∼ Nn(0, σ2I)
and all β with r1 ≤ β1 ≤ r2, MSE(β̂i) < MSE(δi) for any i = 2, . . . , k for
which γi �= 0. And, from (6.7), that β̂i(X) = δi(X) with probability 1 for all
β with r1 ≤ β1 ≤ r2 for any i ≥ 2 with γi = 0. Escobar and Skarpness do not
have an example, like Lovell and Prescott (1970) do, of a distribution for ε

for which δi dominates β̂i for some i ≥ 2.

The Escobar–Skarpness model and transformation, but then with a multi-
variate t distribution for ε, is considered by Ohtani (1991). He gives explicit
expressions, as well as graphs, for both the bias and the MSE of the least-
squares estimator of β1.

More results for the model (6.1) with ε ∼ Nn(0, σ2I), known σ2 and r1 ≤
b′θ ≤ r2 can be found in Wan (1994a). He uses the Judge and Yancey (1981)
transformation and compares, for squared-error loss, several estimators of β1:
namely, the unrestricted MLE, the MLE, a pretest estimator of Hasegawa
(1991) (who compares it with the MLE) and several “Stein-adjusted” version
of them which are analogues of the Judge–Yancey–Bock–Bohrer estimators
(6.4)–(6.6). For some of these estimators he has analytical results, for all of
them he gives graphs of their risks as a function of β1 for several combinations
of values of k ≥ 4, (r2 − r1)/σ, the α of the pretest and β′

(k−1)β(k−1)/σ2. For
several of the comparisons the domination result holds on a space larger than
{β | β1 ≥ 0}.

Thomson (1982) considers the model (6.1), where Z = (Z1, Z2) with, for
i = 1, 2, Zi an n× 1 vector. The 2× 1 vector θ is restricted to θi ≥ 0, i = 1, 2
and he supposes ε ∼ Nn(0, σ2I). The estimators of θ he considers are (in the
notation used above for the Lovell–Prescott–Thomson–Schmidt model) the
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unrestricted MLE δ∗, the MLE θ̂ and the equality-restricted MLE θ̂ER under
the restrictions θ1 = θ2 = 0. Thomson studies the bias and the MSE of these
three estimators analytically as well as graphically.

For the MSE of θ̂1 he finds

MSE(θ̂1)
σ2

1

= c2
1 + (1 − c2

1)Fρ(−c1,−c2) + c1φ(c1)Φ(d2)

+ ρ2c2φ(c2)Φ(d1) + ρ

√
1 − ρ2

2π
φ

(√
c2
1 − 2ρc1c2 + c2

2

1 − ρ2

)

+ (1 − ρ2 − c2
1 + ρ2c2

2)Φ(c2)Φ(d1) +
√

1 − ρ2(c1 + ρc2)φ(d1)Φ(c2),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.8)

where d1 = (ρc2−c1)/
√

1 − ρ2, d2 = (ρc1−c2)/
√

1 − ρ2, ci = −θi/σi, i = 1, 2,
σ2

i is the variance of δ∗i , i = 1, 2, ρ is the correlation coefficient of δ∗1 and δ∗2
and Fρ is the distribution function of the standard two-dimensional normal
distribution with correlation coefficient ρ.

For the special case where ρ = 0, i.e., where Z ′
1Z2 = 0, this gives

MSE(θ̂1)
σ2

1

= 1 + (c2
1 − 1)Φ(c1) + c1φ(c1),

which is the Lovell–Prescott–Thomson–Schmidt formula (6.2) with i = 1 for
the case of exactly one constraint (namely, θ1 ≥ 0). So, as Thomson notes,
when ρ = 0, the MLE of θ1 under the double constraint (θ1 ≥ 0, θ2 ≥ 0) has
the same MSE as the MLE of θ1 under the single constraint θ1 ≥ 0. And using
the Thomson–Schmidt result, we then see that under the single constraint the
MLE θ̂1 of θ1 dominates δ∗1 for all (θ1, θ2) with c1 ≥ −.84 when when ρ = 0.
Further, using Thomson’s formula for the bias of θ̂1, we see that, when ρ = 0,

Eθ θ̂1 − θ1 = (c1 + φ(c1) − c1Φ(−c1)) σ1

which is the formula for the bias of θ̂1 in the Lovell–Prescott–Thomson–
Schmidt single-constraint model, because in that model θ̂1 = max(0, δ∗1(X)).
So, when ρ = 0, the MLE’s of θ1 in these two models have the same distribu-
tion.

When ρ �= 0 the problem of comparing the estimators is much more compli-
cated. In fact, as can be seen from (6.8), the MSE of θ̂1/σ1 depends on θ1/σ1,
θ2/σ2 and ρ. The author makes graphical comparisons between the MSEs of
his estimators. In each one of these graphs, θ̂1 dominates δ∗1 on a set larger
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than Θ = {θ | θ1 ≥ 0, θ2 ≥ 0}, but he does not say anything about whether
this dominance holds in general. For the more general case where k > 2 and
θi ≥ 0 for i = 1, . . . , k the problem gets of course even more difficult.

6.3 Results of Moors and van Houwelingen for
polyhedral and ellipsoidal restrictions

As already mentioned in Chapter 3, Section 3.2, Moors and van Houwelin-
gen (1993) apply Moors’ (1981, 1985) results to the linear model (6.1) with
ε ∼ Nn(0, σ2I).

They consider two parameter spaces:

1) Θ = {θ | a ≤ Aθ ≤ b}, where a = (a1, . . . , ak) and b = (b1, . . . , bk) are
known k × 1 vectors, A is a known k × k positive definite matrix and the
inequalities are component-wise inequalities. When −∞ < ai < bi < ∞,
the authors suppose, without loss of generality, that ai = −bi and, when
ai = −∞ < bi < ∞ (resp. −∞ < ai < bi = ∞), they suppose, without loss
of generality, that bi = 0 (resp. ai = 0). Putting β = Aθ and V = ZA−1,
their model becomes X = V β + ε and their parameter space becomes
C = {β |ai ≤ βi ≤ bi, i = 1, . . . , k};

2) Θ = {θ | θ′Aθ ≤ b}, where A is a known k×k positive definite matrix and
b > 0 is a known scalar. Here they transform the problem by supposing,
without loss of generality, that A is symmetric so that A = P ′DP with D
diagonal and P orthogonal. Then, with V = ZP ′ and β = Pθ, the model
becomes X = V β + ε with β restricted to C = {β | β′Dβ ≤ b}.

They then apply Moors (1981, 1985) to estimate β using squared-error loss,
i.e., they find, for each x, a convex subset Cx of C with the properties that

Pβ(δ(X) not in CX) > 0 for some β ∈ C =⇒ δ(X) is inadmissible

and the projection of δ(X) unto CX dominates δ(X). They also show that
Cx is the convex closure of the range of hx(β), β ∈ C, where hx(β) =
β tanh(x′V β).

When k = 1 both problems reduce to the case where X ∼ N (β, σ2) with β re-
stricted to an interval. The Moors–van Houwelingen results are then identical
to those of Moors (1981, 1985) presented in Chapter 3, Section 3.2.

6.4 Discussion and open problems

None of the above authors touches upon the question of whether their domina-
tors (and other estimators) satisfy (2.3), but the following can be said about it.
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In the first place, all equality- and inequality-restricted estimators do satisfy
(2.3). Further the Moors–van Houwelingen dominators are projections onto
Θ and thus satisfy it. But, of the Judge–Yancey–Bock–Bohrer dominators
(6.4)–(6.6), only (6.5) satisfies (2.3). This means that the dominators (6.4)
and (6.6) of β̂ can be improved upon by projection onto {β | β ≥ 0}. Another
dominator which does not satisfy (2.3) is the Ohtani–Wan (1998) dominator.
These authors start with the Judge–Yancy–Bock–Bohrer dominator (6.4) and
replace σ2 by an estimator of it. Another question not mentioned by any of
the above authors is concerned with their loss functions. All, except Wan
(1994b), use squared-error loss, but those who transform the model (6.1) do
not say anything about what this loss function implies for estimating θ. For
the Judge–Yancey transformation the relationship between β and θ is given
by β = Q′(Z ′Z)1/2θ so that

β′β = θ′(Z ′Z)1/2QQ′(Z ′Z)1/2θ = θ′Z ′Zθ.

So their loss function for estimating θ becomes (d − θ)′Z ′Z(d − θ).

Escobar and Skarpness (1987) and Wan (1994a) have r1 ≤ b′θ ≤ r2 and take
β = Bθ with B = (b, D) for a non-singular k × (k − 1) matrix D. So here
β′β = θ′B′Bθ.

For the Moors–van Houwelingen results with Θ = {θ | a ≤ Aθ ≤ b}, the
transformation gives β = Aθ so that β′β = θ′A′Aθ, while for the case where
Θ = {θ | θ′Bθ ≤ b} they have β = Pθ with B = P ′DP with D diagonal and
P orthogonal. So here β′β = θ′P ′Pθ = θ′θ.

Finally, comparisons between the various dominators are not mentioned in any
of the above-quoted papers. For instance, how do the Moors–van Houwelingen
dominators for the case where β1 ≥ 0 compare with the Judge–Yancey–Bock–
Bohrer dominator (6.5)?
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Other properties

In this chapter several properties of restricted-parameter-space estimators
which have not, or have barely, been touched upon up to now are presented.
In Section 7.1 ideas of and results in weighted likelihood inference are applied
to two restricted-normal-mean problems. Section 7.2 contains some (more) re-
sults, mostly numerical, on how robust restricted-parameter-space results are
to misspecification of Θ; on how much one gains in risk function from restrict-
ing the parameter space; and, for one case, on how much bias this introduces.

7.1 Ideas from weighted likelihood estimation

As mentioned in Chapter 5, Section 5.1, van Eeden and Zidek (2002, 2004)
study a class of estimators of µ1 when Xi ∼ind N (µi, ν

2
i ), i = 1, 2, with known

ν2
i ’s for the case where µ1 ≤ µ2 as well as for the case where |µ2 − µ1| ≤ c

for a known c > 0. In constructing these two classes of estimators the authors
use ideas and results from weighted likelihood. These ideas are the following:
suppose Π1 is the population of interest and data, X, say, from that popula-
tion are available. Suppose that, in addition to the data X one has data, Y ,
say, from a population Π2 which is “close” to Π1. Then Y might well contain
information which could be used to improve the precision of inference proce-
dures based on X concerning Π1.

Such data sets occur, e.g., in small-area estimation problems where one might
have data from areas adjoining the area of interest. In such a case, by judi-
ciously using Y together with X, one could “borrow strength from one’s neigh-
bours”. Another example of such data occurs in regression analysis. Smoothing
procedures, e.g., use data at nearby values of the independent variable(s) to
improve on the estimate of the regression curve. In the case of the normal-
mean problems of van Eeden and Zidek, when |µ2−µ1| ≤ c for a small c, one
should be able to use X2 together with X1 to improve on the best estimator
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of µ1 based on X1 alone. But, of course, by using Y one introduces bias in
one’s estimators and one has to decide on how much bias one wants to trade
for how much increase in precision.

So, how does one go about using Y together with X for inference procedures
concerning Π1? In their 2002 and 2004 papers, van Eeden and Zidek use F.
Hu’s (1994, 1997) and Hu and Zidek’s (2001, 2002) (relevance-)weighted likeli-
hood method, which can be described as follows. Let independent observations
Xi,j , j = 1, . . . , ni from a populations Πi be available, i = 1, . . . , k, and sup-
pose that Π1 is the population of interest. Let fi and Fi be the density and
distribution function of Xi,j , j = 1, . . . , ni, i = 1, . . . , k, and suppose a predic-
tive density, g, say, of X1,1 must be found to maximize

∫
log g(x)dF1(x), i.e.

the authors use Akaike’s entropy maximization principle. This maximization
is done under the restriction that Π1 is “close” to Π2, . . . , Πk, i.e., under the
restriction that

∫
log g(x)dFi(x) > ci, i = 2, . . . , k for given c2, . . . , ck. In the

parametric case where fi(x) = fi(x | θi) this leads to finding λi,j maximizing

k∏
i=1

ni∏
j=1

f
λi,j/ni

i (xi,j | θi).

Hu (1994) in his relevance-weighted likelihood requires λi,j ≥ 0, but van Eeden
and Zidek (2002, 2004) noticed that many known estimators can be derived
from weighted likelihood (WL) by allowing negative weights. Wang (2001), in
his PhD thesis, dropped the non-negativity condition when looking for opti-
mum weights.

Applying WL to the case of Xi ∼ind N (µi, ν
2
i ), i = 1, 2, with known ν2

i ’s
we have k = 2 and n1 = n2 = 1. Putting λi,1 = λi, i = 1, 2, the
weighted likelihood estimator (WLE) of µ1 can be shown to be given by
δWLE(X1, X2) = X1 + Zα, where Z = X2 − X1 and α is obtained from the
weights by

λ2

λ1
=

ν2
2

ν2
1

α

1 − α
.

The maximization criterion here leads to minimization of the MSE and the
optimal choice, in case ∆ = µ2 − µ1 is known, is given by

αopt =
ν2
1

ν2
1 + ν2

2 + ∆2
.

Since ∆ is unknown, it must be estimated and van Eeden and Zidek (2002,
2004) propose to replace ∆ by its MLE, so that the adaptively weighted
likelihood estimators of µ1 become (see (5.7))

δWLE(X1, X2) = X1 + Z
ν2
1

ν2
1 + ν2

2 + (max(0, Z))2
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when µ1 ≤ µ2 and

δWLE(X1, X2) = X1 + Z
ν2
1

ν2
1 + ν2

2 + (min(Z2, c2))

when |µ2 − µ1| ≤ c.

As seen in Chapter 5, Section 5.1, van Eeden and Zidek (2002, 2004) do not
study only δWLE , but a class of estimators of µ1 of the form X1 + ϕ(Z). Two
examples of members of that class are its MLE (see (5.5)) and its Pitman
estimator (see (5.6)). Other examples studied by van Eeden and Zidek are,
for µ1 ≤ µ2,

δmin(X1, X2) = X1 + min(0, Z)

and, for |µ2 − µ1| ≤ c,

δm(X1, X2) = X1 + Z
ν2
1

ν2
1 + ν2

2 + c2

and

δM (X1, X2) = X1 + Z
ν2
1

ν2
1 + ν2

2 + min(Z2, c∗2)

where c∗ = c tanh(c|Z|/(ν2
1 + ν2

2)). The estimator δm is a kind of minimax
estimator. It maximizes (over α) the minimum (over ∆2 ≤ c2) improvement
in MSE of X1 +αZ = (1−α)X1 +αX2 over X1. The estimator δM is obtained
by replacing, in δWLE , the MLE of ∆ by Moors’ dominator of it (see Chapter
3, Section 3.2).

Formulas for the MSE’s of these estimators, as well as graphs of their biases
and MSE’s can be found in van Eeden and Zidek (2002, 2004).

7.2 Robustness, gains in risk function and bias

In this section robustness results with respect to missspecification of the pa-
rameter space are presented. These results are of the form: δ1 dominates δ2

not only on Ω but on the larger space Ω′ ⊃ Ω. Some results of this kind are
mentioned in Chapter 6, where the linear model X = Zθ+ε is considered with
X an n× 1 vector of observables, Z an n×k nonstochastic matrix, ε an n× 1
vector of random variables with Eε = 0 and cov(ε) = Σ and squared-error
loss. For ε ∼ Nn(0, σ2I), as seen in Chapter 6, Section 6.1, Thomson and
Schmidt (1982) show that, when Θ = {θ | θ1 ≥ 0}, the MLE of θi dominates
its unrestricted MLE δ∗i on Θ′ = {θ | θ1 ≥ −.84σ1}, where σ2

1 is the variance
of δ∗1 , and this result holds for all i = 1, . . . , k.
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Still for the linear model, Escobar and Skarpness (1987) (for the notation
see Chapter 6, Section 6.2) compare, for squared-error loss, the restricted
MLE β̂ of β with its unrestricted one δ in the model X = V β + ε when
r1 ≤ β1 ≤ r2 and ε ∼ Nn(0, σ2I). As already noted there, they show that,
when β1 ∈ [r1, r2], β̂1 dominates δ1. But they also show that for i = 1 this
domination holds on a larger interval I ⊃ [r1, r2]. Their proof goes as follows.
They first show that

∆(β1) =
MSEβ1(δ1) − MSEβ1(β̂1)

σ2
1

= −soφ(so) + (1 − s2
o)Φ(so) + s1φ(s1) + (1 − s2

1)Φ(−s1),

where so = (r1−β1)/σ1, s1 = (r2−β1)/σ1, σ2
1 is the variance of δ1 and φ and Φ

are, respectively, the density and distribution function of the standard normal
distribution. Using the fact that, for r1 ≤ β1 ≤ r2, so ≤ 0 and s1 ≥ 0 and the
fact that φ(c) > c(1−Φ(c)) for c ≥ 0, it follows that ∆(β1) > 0 on [r1, r2] and
thus > 0 on a larger interval I ⊃ [r1, r2]. The authors give graphs of ∆(β1) as
a function of β1 for two values of d = s1 − so and describe their features. But
Ohtani (1987) looks at the same problem. He notes that one may, without
loss of generality, suppose that r1 = −r2 and he gives graphs of 1−∆(β1) for
five values of d. Both sets of authors note that 1−∆(β1) = MSEβ1 β̂1/σ2

1 has,
for β1 ∈ [−r2, r2], its minimum at β1 = 0 when d is small and its maximum
at β1 = 0 when d is large. From Ohtani’s graphs it seems, as he notes, that
d ≈ 1.5 is the “turning” point. As an example of these author’s robustness
results: for d = 1, β̂1 dominates δ1 for β1/σ1 ∈ ≈ (−1.8, 1.8), while for d = 3,
β̂1 dominates δ1 for β1/σ1 ∈ ≈ (−2.25, 2.25).

Similar results for the linear model, mostly based on graphical comparisons of
risk functions, can (as mentioned in Chapter 6) be found in Thomson(1982),
Judge, Yancey, Bock and Bohrer (1984) and Wan (1994a,b).

Two other examples of this kind of robustness can be found in van Eeden and
Zidek (2002, 2004). As already mentioned in Chapter 5, Section 5.1, these
authors consider several estimators of µ1 when Xi ∼ind N (µi, ν

2
i ), i = 1, 2

with known ν2
i ’s and either µ1 ≤ µ2 or |µ2 − µ1| ≤ c for a known c > 0

with squared-error loss. For each of these two cases they give dominators for
some of their inadmissible estimators as well as formulas for and graphs of
the risk functions of these estimators. These results show, for the case where
|µ2 − µ1| ≤ c, that the domination results hold strictly on the whole interval
[−c, c] and thus on a larger interval. For the case with Θ = {µ | µ1 ≤ µ2}, the
Pitman estimator δP (X1, X2) and the estimator δmin(X1, X2) = min(X1, X2)
dominate X1. However, their MSE’s are equal to ν2

1 when ∆ = µ2 − µ1 = 0
and each MSE has a strictly negative derivative (with respect to ∆) at ∆ = 0
implying that these domination results do not hold for ∆ < 0. But for this
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case the authors also show that the MLE strictly dominates X1 on [0,∞) so
that for that case the domination holds on an interval (−C,∞) for some C > 0.

In their 2004 paper van Eeden and Zidek also propose and study robust Bayes
estimators. Given that c might not be known exactly, that a small c is desirable
for maximizing the benefit of a restricted space, but that a c too small (so that
in fact |µ2−µ1| might be larger than c), would lead to an underreporting of the
risk of the estimator, they propose the following hierarchical Bayes estimator.
At the first stage of the analysis assume that µi ∼ind N (ξi, γ

2
i ), i = 1, 2 and at

the second stage suppose that |ξ2 − ξ1| ≤ c. Then, conditionally on (X1, X2),
µi ∼ind N (ηiXi + (1 − ηi)ξi, ν

2
i γ2

i /λ2
i ), i = 1, 2, where λ2

i = ν2
i + γ2

i and
ηi = γ2

i /λ2
i and, for an estimator µ̂1(X1, X2) of µ1,

E ((µ̂1(X1, X2) − µ1)2|X1, X2

)
=

(µ̂1(X1, X2) − (η1X1 + (1 − η1)ξ1))
2 +

ν2
1γ2

1

λ2
1

.

⎫⎪⎪⎬
⎪⎪⎭ (7.1)

(There is a misprint in the authors’ formula (6) for this MSE.)

Now use the fact that, marginally, Xi ∼ind N (ξi, λ
2
i ) and estimate ξ1 by its

Pitman estimator under the restriction |ξ2 − ξ1| ≤ c given by (see the second
line of (5.6))

X1 +
λ2

1

λ

φ ((Z − c)/λ) − φ ((Z + c)/λ)
Φ ((Z + c)/λ) − Φ ((Z − c)/λ)

,

where λ2 = λ2
1 + λ2

2 and Z = X2 − X1. Then the robust Bayes estimator,
obtained by substituting this Pitman estimator of ξ1 into (see (7.1)) η1X1 +
(1 − η1)ξ1, becomes

δrb(X1, X2) = X1 +
ν2
1

λ

φ ((Z − c)/λ) − φ ((Z + c)/λ)
Φ ((Z + c)/λ) − Φ ((Z − c)/λ)

.

Taking γ2
1 = γ2

2 = .35 in δrb, the authors compare it, graphically, with the
Pitman estimator δP as well as with one of their other estimators of µ1,
namely,

δWLE(X) = X1 + Z
ν2
1

ν2
1 + ν2

2 + min(Z2, c2)
.

Their Figure 9 shows that this δrb and δWLE have almost identical risk func-
tions and their Figure 8 then shows that this δrb is more robust to misspeci-
fication of c than is δP .

Of course, these robustness results are not all that surprising because: sup-
pose δ1 dominates δ2 on Θ and suppose their risk functions are continuous on
Θ′ ⊃ Θ, then if R(δ1, θ) < R(δ2, θ) at a boundary point, θo, say, of Θ which
is not a boundary point of Θ′, then there is an open subset of Θ′ containing
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θo on which with R(δ1, θ) − R(δ2, θ) < 0.

For the estimation of a positive normal mean based on X ∼ N (θ, 1), Katz
(1961) showed admissibility and minimaxity of the Pitman estimator δK for
squared-error loss (see Chapter 4, Section 4.3). Maruyama and Iwasaki (2005)
study the robustness properties of these results to misspecification of the vari-
ance σ2 of X. They show that, when σ2 �= 1, δK is minimax if and only if
σ2 > 1. Concerning the admissibility when σ2 �= 1 they show that δK is ad-
missible if and only if σ−2 is a positive integer. This is an example of extreme
non-robustness. No matter how close σ2 < 1 is to 1, δK is not minimax. And
admissibility happens “almost never”.

On questions of how much can be gained, risk-function-wise, several results
have already been mentioned in earlier chapters:

1) In Chapter 3, for the case of a lower-bounded normal mean as well as
for the case of a symmetricaly restricted binomial parameter, numerical
evidence is presented on by how much known dominators of the MLE lower
its risk function;

2) In Chapter 4, numerical as well as theoretical evidence is given on by how
much restricting the parameter space can lower the minimax value for the
problem;

3) In Chapter 6 graphs are mentioned in which various estimators of θ are
compared for the model X = Zθ + ε with restrictions on θ.

More numerical and graphical comparisons between estimators for the re-
stricted problem as well as between “best” ones for the unrestricted case and
“good” ones for the restricted case are presented in this section.

Some early results are those of Mudholkar, Subbaiah and George (1977). They
consider the MLEs of two Poisson means µ1 and µ2 with µ1 ≤ µ2 based on
independent X1, X2. For the MLE µ̂1 of µ1 they show that its bias BMLE,1

of is given by

BMLE,1 =
−µ1(1 − F (2µ2; 2, 2µ1)) + µ2F (2µ1; 4, 2µ1)

2
, (7.2)

where F (a; b, c) is the distribution function of a non-central χ2 random vari-
able with b degrees of freedom and non-centrality parameter c, evaluated at
a. For the second moment of µ̂1 they find

4Eµµ̂2
1 = µ2

1 + µ1 + 3µ2
1F (2µ2; 4, 2µ1) + 3µ1F (2µ2; 2, 2µ1)

+ µ2
2F (2µ1; 6, 2µ2) + µ2F (2µ1; 4, 2µ2) + 2µ1µ2F (2µ1; 2, 2µ2)

and they use (7.2) to show that (as is intuitively obvious) BMLE,1 < 0 and,
for each µ1 > 0, converges to zero as µ2 → ∞. They have similar formulas
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for the bias and second moment of µ̂2 and, for i = 1 as well as for i = 2,
they give numerical values of BMLE,i and Eµ(µ̂i−µi)2 for µ2 = 10(10)50 and,
for each µ2, for five values of µ1 ≤ µ2. An example of these results is given
in Tab 7.1. This table gives the MSE of µ̂2 when µ2 = 20 and we see that
MSE(µ̂2) < µ2=MSE (X2) for all µ1.

Table 7.1. Xi ∼ind Poisson(µi), i = 1, 2, µ1 ≤ µ2 = 20.

µ1 8 10 12 16 20

MSE(µ̂2) 19.86 19.55 18.92 16.83 15.63

All their other numerical results for the MSE’s show the same pattern:
MSE(µ̂i) < µi= MSE (Xi) for i = 1, 2 for all the values of µ1 ≤ µ2 for
which they present results. From these results (combined with results on the
bias of the estimators) they conclude (their p. 93): “µ̂1 and µ̂2 are biased but
their MSE’s are less than respectively µ1 and µ2, the MSE’s of X1 and X2.”
But, as we saw in Chapter 5, Section 5.1, Kushary and Cohen (1991) show
that, if δ(X2) is, for squared-error loss, admissible for estimating µ2 based on
X2 alone, then it is admissible for estimating µ2 based on (X1, X2). So, the
question is: “For what values of (µ1, µ2) with µ1 ≤ µ2 is MSE(X2) = µ2 <
MSE(µ̂2)?”. The answer is in the following lemma. My thanks to Arthur Co-
hen for pointing out that the answer should be : “For small values of µ1.”.

Lemma 7.1 For Xi ∼ind Poisson (µi), i = 1, 2, with µ1 ≤ µ2,

MSE (µ̂2) > µ2 for 0 < µ1 ≤ µ2 < .25,

where µ̂2 = max(X2, (X1 + X2)/2) is the MLE of µ2.

Proof. The MSE of µ̂2 is given by

MSE (µ̂2) =
∞∑

i=0

∞∑
j=0

(
max

(
i + j

2
, j

)
− µ2

)2
e−µ1µi

1

i!
e−µ2µj

2

j!
.

So, for each µ2,
lim

µ1→0
MSE (µ̂2) = µ2. (7.3)

Further
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d

dµ1
MSE (µ̂2) =

−∑∞
j=0

(
max

(
j

2
, j

)
− µ2

)2
e−µ2µj

2

j!
e−µ1+

∑∞
i=1

∑∞
j=0

(
max

(
i + j

2
, j

)
− µ2

)2

×
(

e−µ1µi−1
1

(i − 1)!
− e−µ1µi

1

i!

)
e−µ2µj

2

j!
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.4)

From (7.4) it follows that

d

dµ1
MSE (µ̂2)|µ1=0 = −µ2 +

∞∑
j=0

(
max

(
1 + j

2
, j

)
− µ2

)2
e−µ2µj

2

j!

= −µ2 +
(

1
2
− µ2

)2

e−µ2 +
∞∑

j=1

(j − µ2)2
e−µ2µj

2

j!

=
(

1
2
− µ2

)2

e−µ2 − µ2
2e

−µ2 =
(

1
4
− µ2

)
e−µ2 ,

which, together with (7.3), proves the result. ♥
This result shows how careful one should be with drawing conclusions from
numerical results.

How much one gains risk-function-wise and how much bias is introduced when
restricting a parameter space: it rather heavily depends on the model and,
given a model, it rather heavily depends on the estimand. But, of course, any
improvement result gives only a lower bound on the possible improvements.
Here are some examples (note that many of the quoted numerical values are
obtained from graphs or from ratios of numerical (Monte-Carlo) results and
then are only approximate values):

For the van Eeden and Zidek (2002) normal-mean problem with k = 2 and
µ1 ≤ µ2, their estimator of µ1 given by (see (5.7))

δWLE(X1, X2) = X1 +
ν2
1(X2 − X1)

ν2
1 + ν2

2 + (max(0, (X2 − X1)))2
,

gives, when ν1 = ν2 = 1, an approximately 20–40% decrease in MSE over
X1 when ∆ = µ2 − µ1 ≤ .1, a larger decrease than any of their other three
estimators, the MLE, δmin(X1, X2) = min(X1, X2) and the Pitman estimator
δP (X1, X2), give in that same interval. Still for ν1 = ν2 = 1, the estimator
δWLE also has (see their Figure 1) the smallest absolute bias among these
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estimators in the same interval. But, for larger ∆ (∆ > 2, or so), its MSE is
> 1, the MSE of X1 and its bias there is the largest among the four estima-
tors. The estimators δmin(X1, X2) and δP have their maximum gain in risk
function (≈ 20%) for ∆ in the interval (1, 2), but these estimators do not gain
anything at ∆ = 0. For all ∆ ≥ 0 their absolute biases are the largest for those
among the four estimators. The MLE might look like a good compromise: not
too badly biased relative to the other three and a 25% gain in MSE at ∆ = 0.
But, the MLE is inadmissible. The authors do give a class of dominators for
each of their inadmissible estimators, but no graphs comparing inadmissible
estimators with dominators. Whether δWLE is admisible is unknown, but it
is a smooth estimator, which the MLE is not. And it dominates the MLE for
0 ≤ ∆ ≤ A, where A is slightly less than 2. The 2002 paper of van Eeden
and Zidek also contains graphs of the MSE’s of their estimators for cases with
ν2
1 �= ν2

2 .

Some of the above-mentioned properties of δP , δmin and the MLE for the
ordered-normal-mean problem with ν2

1 = ν2
2 = 1 can also be obtained from

numerical results of Al-Saleh (1997) and Iliopoulos (2000). Al-Saleh gives nu-
merical values for the MSE of δP as well as of δmin for ∆ = 0(.2)4(1)6 and 10
and for the MLE such values (in the form of % decrease in MSE over X1) can
be found in the last line of Iliopoulos’ (2000) Table 1. Iliopoulos (see Chap-
ter 5, Section 5.1) has results for the normal-mean problem with k = 3 and
µ1 ≤ µ2 ≤ µ3. He estimates µ2 and taking µ1 = −∞ in his results gives the
MLE of the smaller one of two ordered normal means. Iliopoulos (2000) also
has numerical results for comparing his estimator with the middle one of his
three ordered normal means by the linex loss function. Tab 7.2 contains some
of the numerical values obtained by Al-Saleh (1997) and Iliopoulos (2000).

Table 7.2. % MSE improvement over X1, normal means.

µ2 − µ1 ≥ 0 0 .20 .40 .50 .60 .80 1.00 1.40 1.60 2.00 4.00

δmin 0 9 15 - 19 20 20 17 15 10 0

δP 0 6 11 - 14 17 19 21 21 10 6

MLE 25.0 - - 22.5 - - 17 - - 6.5 .2

Al-Saleh (1997) also has numerical results for the bias of δP and δmin. His
results are summarized in Tab 7.3. A formula for the bias of the MLE of µ1 can
be obtained from van Eeden and Zidek’s (2002) Lemma A.3, while Sampson,
Singh and Whitaker (2003) give formulas for the biases of the MLEs of µ1

and µ2.
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Table 7.3. Biases, normal means, estimate µ1.

µ2 − µ1 ≥ 0 0 .20 .40 .60 .80 1.00 1.40 1.60 2.00 4.00

δmin .56 .47 .39 .31 .25 .20 .12 .09 .05 .00

δP .66 .58 .53 .47 .42 .38 .30 .26 .20 .03

From Tab 7.2 and Tab 7.3, as well as from van Eeden and Zidek (2002), one
sees that neither one of δmin and δP is very good as an estimator of µ1 when
∆ is close to zero: they do not improve much over X1 and both are very biased.

For the normal-mean problem with k = 2, ν2
1 = ν2

2 = 1 and ∆ = |µ2−µ1| ≤ c,
van Eeden and Zidek (2004) give graphs of the MSE of the four estimators
defined in Section 7.1 for c = 1 and −2 ≤ ∆ ≤ 2. Each of these estimators
gives an MSE reduction (relative to X1) of more than 40% in the middle of the
interval (−c, c), while over the whole interval (−c, c) this reduction is at least
30%. The authors do not give any bias results for this case, but for several
inadmissible estimators and their dominators they give graphs of their MSEs.
For the MLE for instance, which has an MSE which is almost constant at
about .67 on most of the interval (−c, c), this dominator’s MSE varies from
about .57 at ∆ = 0 to about .67 at the endpoints of the interval (−c, c). How-
ever, the dominator is much less robust to misspecification of Θ than is the
MLE. As in their 2002 paper, van Eeden and Zidek (2004) also give graphs of
MSE’s of their estimators for cases where the variances are not equal.

Vijayasree, Misra and Singh (1995) present, for squared-error loss, several ta-
bles with numerical comparisons of risk functions for pairs of estimators of
location or scale parameters of exponential distributions when k = 2 (see
Chapter 5, Sections 5.1 – 5.3). In their Table 1, e.g., they compare, for esti-
mating the smaller scale parameter when the location parameters are known,
their dominator ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

X1

n1 + 1
when

X1

n1 + 1
≤ X2

n2

X1 + X2

n1 + n2 + 1
when

X1

n1 + 1
>

X2

n2

of X1/(n1 + 1) with their dominator⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X1

n1
when

X1

n1
≤ X2

n1 + 1

X1 + X2

n1 + n2 + 1
when

X1

n1
>

X2

n1 + 1
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of the MLE. Such results do not give any information on how much the dom-
inators improve, risk-function-wise, on the dominated estimators. Nor do any
of the other eight tables in their paper give such information.

Misra and Singh (1994), using squared-error loss, look at the estimation of
two ordered exponential location parameters when the scale parameters are
known (see Chapter 5, Section 5.1). For the special case where ν2n1 = ν1n2,
their best (mixed) dominator δ1,α of the unrestricted MRE, X1 − ν1/n1, of
the smaller location parameter has α = α∗ = .25 as its mixing parameter,
while their best mixed dominator δ2,β of X2 − ν2/n2 as an estimator of the
larger parameter has β = β∗ = .75. The authors give the following formulas
for the MSEs of these dominators

MSE∆(δ1,α) = 1 − (1 − α)(∆ + α + 1/2)e−∆

MSE∆(δ2,β) = 1 − (1 − β)(β − 1/2)e−∆,

where ∆ = µ2 −µ1. Using these formulas and the author’s Table 1 and Table
2 gives the percent risk improvements presented in Tab 7.4. The third line of
the table gives the % risk improvements of (δ1,α∗ , δ2,β∗) over (X1−ν1/n1, X2−
ν2/n2) when the loss function is the sum of the squared errors. Given that,
when ν2n1 = ν1n2, the MRE’s of µ1 and µ2 have the same (constant) risk
function, the numbers in the third line in Tab 7.4 are the averages of the
corresponding ones in the first and second lines.

Table 7.4. % MSE improvement over the MRE, exponential location.

µ2 − µ1 ≥ 0 0.00 0.05 0.10 0.20 0.25 0.50 0.75 1.00 3.00 5.00 6.00

δ1,α∗ 56 56 58 58 58 57 53 48 14 3 1

δ2,β∗ 6.2 5.9 5.7 5,1 4.9 3.8 3.0 2.3 0.0 0.0 0.00

(δ1,α∗ , δ2,β∗) 31 31 32 32 32 30 28 25 7 2 1

So, for small values of ∆, δ1,α∗ substantially improves on X1 − ν1/n1. But
δ2,β∗ ’s improvements are very small. Moreover, as remarked on in Chapter 5,
Section 5.1, δ2,β∗ > X2 with positive probability for all parameter values.

Jin and Pal (1991) also have results for estimating two exponential location
parameters under restrictions on the parameter space (see Chapter 5, Section
5.3). Their scale parameters are unknown and they dominate, for squared-
error loss, the vector (X1 −T1/n2

1, X2 −T2/n2
2), where Ti =

∑ni

j=1(Xi,j −Xi),
i = 1, 2. They give Monte-Carlo estimators of percent improvements in risk
function for each of their dominators for several values of the parameters and
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the sample sizes. Tabs 7.5 and 7.6 contain examples of these Monte-Carlo
results for the case where the parameters are restricted by µ1 ≤ µ2. Here
their dominators are mixed estimators and the dominator of X2 − T2/n2

2 is
> X2 with positive probability for all parameter values.

Table 7.5. % MSE improvement of the α-mixed estimator (5.14)
of (µ1, µ2) over its MRE, ordered exponential location, µ1 = 0.0,
µ2 = 0.1, ν1 = 1.0, ν2 = 1.1.

α 0.0 0.1 0.2 0.3 0.4 0.50

n1 = n2 = 3 12.82 17.72 21.32 23.64 24.67 24.67

n1 = 5, n2 = 10 22.64 27.69 31.18 33.11 33.47 33.47

n1 = n2 = 10 18.35 19.72 20.41 20.41 19.78 19.78

Table 7.6. % MSE improvement of the α-mixed estimator (5.14)
of (µ1, µ2) over its MRE, ordered exponential location, µ1 = 0.0,
µ2 = 0.5, ν1 = 1.0, ν2 = 1.1.

α 0.0 0.1 0.2 0.3 0.4 0.50

n1 = n2 = 3 18.13 18.55 18.56 18.16 17.34 17.34

n1 = 5, n2 = 10 15.81 15.41 14.80 13.99 12.97 12.97

n1 = n2 = 10 3.33 3.22 3.11 2.98 2.84 2.84

From these tables it is seen that the optimal α of the dominating mixed es-
timator depends upon the unknown parameters. One needs a larger α for a
smaller difference ∆ = µ2 − µ1. But, intuitively, for a given α and a given ∆,
the improvement should decrease with increasing sample sizes. It does in Tab
7.6, but it does not in Tab 7.5. Also, for a given α and given sample sizes, the
improvement “should” decrease with ∆. It does for n1 = 5, n2 = 10 and for
n1 = n2 = 10, but not for n1 = n2 = 3. Is something possibly wrong with the
entries in the first line of Tab 7.5?

For estimating, with squared-error loss, ordered scale parameters µ1 ≤ µ2

of exponential distributions, Vijayasree and Singh (1993) study (see Chapter
5, Section 5.2) a class of mixed estimators of each of the components of µ.
They give numerical values for the efficiency of these estimators relative to the
unrestricted MLE (UMLE). Tabs 7.7 and 7.8 give the percent improvements
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of these mixed estimators over the UMLE obtained from the authors’ results.
In both tables the results hold for equal sample sizes, n1 = n2 = n. Tab
7.7 gives these improvements for estimating µ1 and the mixing parameter
α1 = n1/(n1 +n2 +1), while Tab 7.8 gives these improvements for estimating
µ2 and mixing parameter α∗ = 1/2 − (1/2)2n

(
2n−1

n

)
.

Table 7.7. % MSE improvement over X1/n1 of the α1-mixed
estimator of µ1 with α1 = n1/(n1 + n2 + 1), gamma scale.

µ2/µ1 ≥ 1 1.0 1.3 1.5 2.0 3.0

n1 = n2 = 5 38 32 27 17 7

n1 = n2 = 10 34 25 18 8 1

n1 = n2 = 50 29 9 2 0 0

Table 7.8. % MSE improvement over X2/n2 of the α∗-mixed
estimator of µ2 with α∗ = 1/2− (1/2)2n

(
2n−1

n

)
, gamma scale.

µ2/µ1 ≥ 1 1.0 1.3 1.5 2.0 3.0

n1 = n2 = 5 14 12 10 5 1

n1 = n2 = 10 17 13 9 3 0

n1 = n2 = 50 21 6 1 0 0

More numerical comparisons between estimators of ordered scale parameters
of gamma distributions can (see Chapter 5, Section 5.2) be found in Misra,
Choudhary, Dhariyal and Kundu (2002). They give MSEs for each of the com-
ponents of the unrestricted MRE, of the MLE and of one of the estimators of
Vijayasree, Misra and Singh (1995) as well as for their own estimators (5.11)
and (5.12). They have tables for equal sample sizes n1 = n2 = 1, 5, 10, 20
and four pairs of unequal ones, each combined with ten values of µ2/µ1. Tab
7.9 (respectively, Tab 7.10) gives percent improvements of (5.11) (respectively,
(5.12)) over the unrestricted MLE for estimating µ1 (respectively µ2) obtained
from the Misra, Choudhary, Dhariyal and Kundu (2002) tables.

Comparing the results in Tab 7.9 (resp. Tab 7.10) with those in Tab 7.7 (resp.
Tab 7.8), one sees that
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Table 7.9. % MSE improvement over X1/n1 of (5.11), gamma scale.

µ2/µ1 ≥ 1 1.00 1.25 1.67 2.00 2.50 3.33

n1 = n2 = 5 18 21 24 26 25 24

n1 = n2 = 10 9 18 20 20 18 14

n1 = n2 = 20 6 16 18 14 8 6

a) For estimating µ1 with µ2/µ1 ≤ d, the α1-mixed estimator of Vijayas-
ree and Singh is better than the Misra, Choudhary, Dhariyal and Kundu
(2002) estimator, where d depends on the common sample size n. Further,
as also seen in earlier tables, the improvement decreases with increasing
n;

b) for estimating µ2, the Misra, Choudhary, Dhariyal and Kundu (2002) es-
timator does much better than the α∗-mixed estimator of Vijayasree and
Singh for µ2/µ1 not close to 1.

Table 7.10. % MSE improvement over X2/n2 of (5.12), gamma scale.

µ2/µ1 ≥ 1 1.00 1.25 1.67 2.00 2.50 3.33

n1 = n2 = 5 16 34 40 38 34 29

n1 = n2 = 10 9 29 32 29 22 15

n1 = n2 = 20 4 26 22 18 10 6

Ghosh and Sarkar (1994) estimate (see Chapter 5, Section 5.3) the smaller one
of two ordered normal variances based on Yi,j ∼ind N (µi, νi), j = 1, . . . , ni,
i = 1, 2, with ν1 ≤ ν2. They give Monte-Carlo estimates of the percent de-
crease in MSE of their dominators of X1/(n1 + 1), the MRE based on the
first sample alone. Tabs 7.11 and 7.12 contain these results for two of their
dominators, namely:

1) Their dominator T4, which is the estimator (5.20) with φ(W ) as (5.16). It
dominates (1 − φ(W ))X1/(n1 + 1) for this same φ and thus X1/(n1 + 1).
The value of ε used in this table is .02;

2) Their dominator T8, which is the estimator (5.19) with φ as in (5.17). It
dominates (1 − φ(V ))X1/(n1 + 1) for this same φ and thus X1/(n1 + 1).
In this table ε = .01 is used.
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Table 7.11. % MSE improvement over X1/(n1 + 1) of (5.20) with φ as in
(5.16), ε = .02 and µ1 = 0, normal variances.

ν2/ν1 ≥ 1 1.00 1.25 1.50 2.00 2.50

n1 = n2 = 5 7.480 6.599 4.855 2.714 1.492

n1 = 10, n2 = 5 6.184 5.821 4.221 2.093 1.299

n1 = 5, n2 = 10 10.41 8.105 5.001 1.426 0.557

n1 = n2 = 10 10.13 7.726 4.824 1.273 0.248

Table 7.12. % MSE improvement over X1/(n1 + 1) of (5.19) with φ as in
(5.17), ε = .01 and µ1 = 0, normal variances.

ν2/ν1 ≥ 1 1.00 1.25 1.50 2.00 2.50

n1 = n2 = 5 8.153 7.241 5.403 3.023 1.579

n1 = 10, n2 = 5 7.194 6.808 5.065 2.720 1.737

n1 = 5, n2 = 10 11.36 8.910 5.562 1.621 0.526

n1 = n2 = 10 11.60 8.748 5.618 1.652 0.421

Remark 7.1. There is a misprint in the Ghosh–Sarkar tables. They have ν1/ν2

instead of ν2/ν1 in the heading of the second column of their table.

From the complete tables of Ghosh and Sarkar one sees that (for the values
of the parameters used in those table): of the nine estimators in Ghosh and
Sarkar’s tables, none dominates any of the other ones. But T8 does, for ν2/ν1 ≤
1.5, better than all the other ones. But, even for T8, the improvements are
small and, given that these are the best improvements possible (better than
those for µ1 �= 0), numerical results for other values of µ1 would be a very
helpful addition to the study of the properties of these dominators.
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Existence of MLEs and algorithms to compute
them

For the case where there are no nuisance parameters and Θ is determined
by order restrictions among and bound restrictions on the parameters, this
chapter gives, in Section 8.1, conditions for the existence of the MLE θ̂ =
(θ̂1, . . . , θ̂k) of θ = (θ1, . . . , θk) and, in Section 8.2, algorithms for computing it.
The existence conditions are those of van Eeden (1956, 1957a,b, 1958) and we
compare them with those of Brunk (1955), as well as with those of Robertson
and Waltman (1968). The algorithms are those of van Eeden (1957a, 1958) and
they are compared with some of the ones appearing in Barlow, Bartholomew,
Bremner and Brunk (1972), in Robertson, Wright and Dykstra (1988) or in
publications appearing after the Robertson–Wright–Dykstra book. Section 8.3
contains some results on norm-reducing properties of the MLE, while in Sec-
tion 8.4 some algorithms for multivariate problems are presented.

The algorithms presented here do not apply to, e.g., star-shape-restricted θi.
Algorithms for such Θ are described or referred to in Robertson, Wright and
Dykstra (1988).

8.1 The model and the conditions

Let, for i = 1, . . . , k, Xi,1, . . . , Xi,ni be independent samples and let fi(x; θi),
x ∈ R1, θi ∈ Ji, be the density of Xi,1 with respect to a σ-finite measure ν
where Ji is an interval and is the set of all θi for which

∫
R1 fi(x; θi)dν(x) = 1.

Suppose that we know that θ ∈ Θ, where

Θ = {θ | αi,j(θi − θj) ≤ 0, 1 ≤ i < j ≤ k; θi ∈ Ii, i = 1, . . . , k}. (8.1)

Here Ii = [ai, bi] with ai < bi, i = 1, . . . , k, is a known subset of Ji. Further,
the αi,j , 1 ≤ i < j ≤ k, are known with αi,j = 1 if there exists an h such that
αi,h = αh,j = 1. Otherwise αi,j takes the value 0 or 1 and we suppose that Θ

is not empty and �=∏k
i=1 Ii.
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For θi ∈ Ii, i = 1, . . . , k, the log-likelihood function is given by

l(θ) =
k∑

i=1

li(θi), (8.2)

where li(θi) =
∑ni

j=1 log fi(xi,j ; θi), i = 1, . . . , k.

Suppose that l satisfies the following condition:

Condition A. For each M ⊂ {1, . . . , k} for which IM = ∩i∈MIi is not empty,

lM (θ) =
∑
i∈M

li(θ) θ ∈ IM (8.3)

is strictly unimodal.

Here strictly unimodal means that there is a vM ∈ IM such that, for
θ ∈ IM , lM (θ) is strictly increasing for θ < vM and strictly decreasing
for θ > vM . Note that vM is the MLE of µ based on Xi,j , j = 1, . . . , ni,
i ∈ IM under the condition that θi = µ for all i ∈ M . Further note that
the setfunction vM , M ⊂ {1, . . . , k}, satisfies the so-called Cauchy mean-
value (CMV) property (see Robertson, Wright and Dykstra, 1988, p. 24),
i.e., for each pair of subsets M1 and M2 of {1, . . . , k} with M1 ∩ M2 = ∅,
min(vM1 , vM2) ≤ vM1∪M2 ≤ max(vM1 , vM2). However, it does not necessarily
have the strict CMV property which says that vM1∪M2 is strictly between vM1

and vM2 (see Robertson, Wright and Dykstra, 1988, p. 390). An example of
this non-strictness is the case where Xi,1, . . . , Xi,ni are U(0, θi), i = 1, . . . , k.
For this case vi = max1≤j≤ni

Xi,j , i = 1, . . . , k, while for M ⊂ {1, . . . , k},
vM = maxi∈M vi.

A proof that Condition A is sufficient for the existence and uniqueness of the
MLE of θ under the restriction θ ∈ Θ can be found in van Eeden (1957a, 1958).

The above model is more general than the one considered by Brunk (1955). He
supposes that the Xi,1, i = 1, . . . , k, have an exponential-family distribution
with density f(x; θi) and θi = Eθi

Xi,j . Further, his Ii = J , the natural pa-
rameter space of that family. He shows that the MLE of θ exists and is unique
and gives explicit formulas, the so-called max-min formulas (see Section 8.2)
for it. It is easily verified that Condition A is satisfied under Brunk’s (1955)
conditions and that in his case vM has the strict CMV property.

An example where Brunk’s (1955) conditions are not satisfied but Condition A
is, is the case where the Xi,1 are U(0, θi). Robertson and Waltman (1968) sup-
pose, among other things, that the likelihoood is unimodal, but not strictly
unimodal, i.e., the mode is not unique. An example where their conditions
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are satisfied, but neither Brunk’s (1955) nor van Eeden’s (1957a, 1958) are, is
the double-exponential distribution. On the other hand, Robertson and Walt-
man’s (1968) conditions are not satified for the above-mentioned uniform case.

Ayer, Brunk, Ewing, Reid and Silverman (1955) consider the special case
where Xi,j ∼ Bin(1, θi) and the θi are simply ordered, i.e., they satisfy θ1 ≤
. . . ≤ θk. They give an algorithm for computing the MLE of θ, which later
came to be known as the PAVA (pool-adjacent-violators-algorithm). For the
binomial case it says that θ̂i = θ̂i+1 when Xi/ni > Xi+1/ni+1, where Xi =∑ni

j=1 Xi,j . This reduces the k-dimensional problem to a (k - 1)-dimensional
one and repeated application of the algorithm will give θ̂.

8.2 Algorithms

In this section we give, for the model as described in Section 8.1 and assuming
that Condition A is satisfied, several algorithms for computing the MLE of θ
and make some comparisons among algorithms.

We start with four theorems of van Eeden (1957a, 1958) and explain ways
to use them to compute MLEs. We first need more notation. The MLE of
θ when θ is restricted to Θ∗ = {θ | θi ∈ Ii, i = 1, . . . , k} will be denoted
by v = (v1, . . . , vk). That MLE exists by Condition A and the MLE for θ
restricted to Θ will be expressed in terms of these vi.

First of all note that, when αi,j(vi − vj) ≤ 0 for all i < j, then v =
(v1, . . . , vk) ∈ Θ, implying that θ̂ = v in that case. So, in the sequel we
suppose that there exists a pair (i, j) with i < j and αi,j(vi − vj) > 0. Now
suppose that {1, . . . , k} = M1 ∪ M2 with M1 ∩ M2 = ∅ and, for i1 ∈ M1 and
i2 ∈ M2, αi1,i2 = 0 when i1 < i2 and αi2,i1 = 0 when i2 < i1. Then the MLE
of θ can be obtained by separately maximizing

∑
i∈M1

li(θ) and
∑

i∈M2
li(θ).

So, in the sequel we suppose that such (M1, M2) do not exist.

Theorem 8.1 If for some pair (i1, i2) with i1 < i2, we have αi1,i2(vi1−vi2) >
0 and

αi1,h = αh,i2 = 0 for all h between i1 and i2

αh,i1 = αh,i2 for all h < i1

αi1,h = αi2,h for all h > i2,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(8.4)

then θ̂i1 = θ̂i2 .

This theorem says that, under its conditions, the problem of maximizing l(θ)
for θ ∈ Θ can be reduced to maximizing l(θ) for θ ∈ Θ1 = {θ ∈ Θ | θi1 =
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θi2}. That for this new (k-1)-dimensional parameter space Condition A is
satisfied follows from (8.4). Note that, for the simple order, (8.4) is satisfied
for each (i1, i2) with i2 = i1 + 1. So the algorithm based on Theorem 8.1 is a
generalization of the PAVA, which says that, for simply ordered θi, θ̂i = θ̂i+1

when vi > vi+1.

Theorem 8.2 If, for a pair (i1, i2), vi1 ≤ vi2 and

αi1,i2 = 0

αh,i1 ≤ αh,i2 for all h < i1, h �= i2

αi1,h ≥ αi2,h or all h > i2, h �= i1,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(8.5)

then θ̂i1 ≤ θ̂i2 .

By this theorem one can, when its conditions are satisfied, add the restriction
θi1 ≤ θi2 , i.e., the problem can be reduced to maximizing l(θ) for θ ∈ Θ2 =
{θ ∈ Θ | θi1 ≤ θi2}. Obviously, Condition A is satisfied for Θ2. An example
where this theorem is very useful is the simple-tree order where α1,i = 1,
i = 2, . . . , k and αi,j = 0 for 2 ≤ i < j ≤ k. According to the theorem one can
renumber the θi, i = 2, . . . , k, in increasing order of their value of vi and then
solve the simple-order problem for those renumbered θi, for which the PAVA
gives a simple solution. Thompson (1962) (see also Barlow, Bartholomew,
Bremner and Brunk, 1972, p. 73–74 and Robertson, Wright and Dykstra,
1988, p. 57) gives the so-called minimum-violators algorithm for the rooted-
tree order. For the simple-tree order, Thompson’s (1962) algorithm reduces
to the one of van Eeden (1957a, 1958). Another algorithm for the simple-tree-
order case can be found in Qian (1996). He minimzes

∑k
i=1 |gi − θi| for given

g1, . . . , gk, but his algorithm is less efficient than the one of van Eeden (1957a,
1958) based on Theorem 8.2.

Theorem 8.3 Let, for a pair (i1, i2), αi1,i2 = 0 and let Θ3 = {θ ∈ Θ | θi1 ≤
θi2}. Further, let θ̂∗ maximize l(θ) for θ ∈ Θ3. Then θ̂i = θ̂∗, i = 1, . . . , k

when θ̂∗i1 < θ̂∗i2 and θ̂∗i1 = θ̂∗i2 when θ̂∗i1 ≥ θ̂∗i2 .

This theorem, like the foregoing one, changes the problem into one with more
restrictions than Θ. It generalizes Theorem 8.2. But one needs to know θ̂i for
at least i = i1 and i = i2 in order to be able to use it, whereas for Theorem
8.2 one only needs to know vi for i = i1 and i = i2. On the other hand,
Theorem 8.3 always applies no matter what the αi,j are, while Theorem 8.2
only applies when the αi,j satisfy (8.5)

There is a fourth theorem which, like Theorem 8.3, applies no matter what the
αi,j are. To state that theorem we need to define the so-called “essential re-
strictions” defining Θ. Those are restrictions θi1 ≤ θi2 satisfying αi1,hαh,i2 = 0
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for all h between i1 and i2. We denote them by R1, . . . , Rs. Each λ ∈ {1, . . . , s}
corresponds to exactly one pair (i1, i2) which we denote by (iλ,1, iλ,2). Then
(R1, . . . , Rs) and (αi,j(θi − θj) ≤ 0, 1 ≤ i ≤ j ≤ k) define the same subset of
Rk.

Theorem 8.4 If θ̂′ = (θ̂′1, . . . , θ̂
′
k) maximizes l under the restrictions

(R1, . . . , Rλ−1, Rλ+1, . . . , Rs; θi ∈ Ii, i = 1, . . . , k),

then θ̂ = θ̂′ when θ̂′iλ,1
≤ θ̂′iλ,2

. Further, θ̂iλ,1 = θ̂iλ,2 when θ̂′iλ,1
> θ̂′iλ,2

.

With this theorem one reduces the number of restrictions by taking out one
of the essential ones. If one can solve that problem, one either has found θ̂ or
one has reduced the problem to that of maximizing l in a lower-dimensional
space obtained from Θ by replacing an essential restriction by an equality.
However, one needs to find at least θ̂iλ,1 and θ̂iλ,2 in order to be able to apply
it.

As an example take the case where

α1,2 = 1, α1,4 = 1, α2,3 = 1, α3,4 = 0.

Suppose v1 ≤ v2, v3 ≤ v4 and v1 > v4. Then neither Theorem 8.1 nor Theorem
8.2 apply. But both Theorem 8.3 and Theorem 8.4 can be used to find the
MLE. We first use Theorem 8.4 by taking out the essential restriction θ1 ≤ θ4.
This new problem is easily solved by using the PAVA on each of θ1 ≤ θ2 and
θ3 ≤ θ4. If this gives a θ̂′ satisfying θ̂′1 ≤ θ̂′4, then θ̂ = θ̂′. In case θ̂′1 > θ̂′4, θ̂
maximizes l under the restrictions θ3 ≤ θ1 = θ4 ≤ θ2, a problem easily solved
by the PAVA. Using Theorem 8.3 with i1 = 3 and i2 = 4, the PAVA can be
used to find θ̂∗. This either solves the problem (namely, when θ̂∗3 < θ̂∗4), or the
problem with θ1 ≤ θ2 = θ3 ≤ θ4 needs to be solved. But that can be done by
the PAVA.

Remark 8.1. Although each of the above theorems 8.2–8.4 can be found in van
Eeden (1957a) as well as in van Eeden (1958), authors often refer to these
van Eeden papers for what they call “van Eeden’s algorithm” without specifying
which one they mean. In fact they mean the one based on Theorem 8.4 and
they comment on its efficiency. For example, Barlow, Bartholomew, Bremner
and Brunk (1972, pp. 90–91) call it “rather complicated” and Dykstra (1981)
calls it “inefficient” and suggests an improvement. Another improvement can
be found in Gebhardt (1970). Further, Lee (1983) finds it “suitable for small
problems” and finds it inefficient for large ones. I agree with Lee’s (1983)
statement and the example above shows it to be very handy for such small
problems.

Brunk (1955) gives max-min formulas. For these, the following definitions are
needed. A subset L of {1, . . . , k} is called a lower set if
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(i ∈ L, αj,i = 1) ⇒ j ∈ L

and a subset U of {1, . . . , k} is called an upper set if

(i ∈ U, αi,j = 1) ⇒ j ∈ U.

Further, let L be the class of lower sets and U the class of upper sets. Then,
for i = 1, . . . , k, Brunk (1955) (see also Barlow, Bartholomew, Bremner and
Brunk, 1972, p.80) shows that, under his conditions,

θ̂i = maxU∈U minL∈L(vL∩U | i ∈ L ∩ U)

= minL∈L maxU∈U (vL∩U | i ∈ U ∩ L)

= maxU∈U minL∈L(vL∩U | i ∈ U, U ∩ L �= ∅)

= minL∈L maxU∈U (vL∩U | i ∈ L, U ∩ L �= ∅).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.6)

Robertson and Waltman (1968) prove (8.6) under their condition and show
that, for the double–exponental case, one needs to define the median of a sam-
ple of even size as the average of the middle two of the ordered observations
for their conditions to hold. Further, van Eeden (1957a, 1958) proves that the
first one of the four formulas (8.6) holds under Condition A, but it can easily
be seen that the other three of the formulas (8.6) also hold under Condition A.

Before presenting and comparing more algorithms for computing MLEs for
the model and conditions described in Section 8.1, something needs to be
said about the notion of “isotonic regression”, a notion much used in order-
restricted inference. It is discussed in Barlow, Bartholomew, Bremner and
Brunk (1972). More can be found in Robertson, Wright and Dykstra (1988).

To introduce the notion here, suppose (in the model introduced in Section
8.1) that the Xi,j are normally distributed with mean θi and variance 1. Then
the MLE of θ = (θ1, . . . , θk) minimizes, for θ ∈ Θ,

lN (θ) =
k∑

i=1

ni∑
j=1

(Xi,j − θi)2 =
k∑

i=1

ni(X̄i − θi)2 +
k∑

i=1

ni∑
j=1

(Xi,j − X̄i)2,

where niX̄i =
∑ni

i=1 Xi,j , i = 1, . . . , k. So, in this case, the MLE of θ for
θ ∈ Θ minimizes the weighted squared distance between X̄ = (X̄1, . . . , X̄k)
and Θ. This MLE is called the (weighted) isotonic (least-squares) regression
of X̄ with respect to the ordering of the θi implied by θ ∈ Θ.

Now look at the case where the Xi,j have the double-exponential density
e−|x−θi|/2, −∞ < x < ∞. Then the MLE of θ for θ ∈ Θ minimizes
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lDE(θ) =
∑k

i=1

∑ni

j=1 |Xi,j − θi|. Some authors call this MLE the “isotonic
median regression” of the Xi,j with respect to the ordering of the θi im-
plied by θ ∈ Θ (see, e.g., Menéndez and Salvador, 1987, and Chakravarti,
1989). Note, however, that minimizing lDE is not equivalent to minimizing∑k

i=1 |Mi − θi|, nor to minimizing
∑k

i=1 ni|Mi − θi|, where Mi is the me-
dian of Xi,j , j = 1, . . . , ni. So, here the MLE is not the closest θ ∈ Θ (in the
least-absolute-deviation (LAD) sense) to (M1, . . . , Mk). Some authors call the
regression minimizing

∑k
i=1 |Mi −θi| the “isotonic LAD regression” (see, e.g.,

Qian (1994a), who claims this estimator to be the MLE in case of double-
exponential observations); others call it the “isotonic median regression” (see,
e.g., Cryer, Robertson, Wright and Casady, 1972). I will call the θ minimizing∑k

i=1

∑ni

j=1 |Xi,j − θi| the isotonic median regresion and the one minimizing∑k
i=1 |Mi − θi| the isotonic LAD regression.

The isotonic LAD regression has been generalized to the “isotonic percentile
regression” by Casady and Cryer (1976). It minimizes

∑k
i=1 |α̂i − θi|, where,

for i = 1, . . . , k, and a given α ∈ (0, 1), α̂i is the 100α-th percentile of
Xi,1, . . . , Xi,ni .

Note that, for defining estimators of θ ∈ Θ, the function l(θ) does not have to
be the likelihood function of the Xi,j . One can maximize any function l∗(θ)
defined on

∏k
i=1 Ji and satisfying Condition A. However, these estimators are

not necessarily the MLE of θ for θ ∈ Θ, a fact that, particularly when l is a
weighted sum of squares, does not seem to be generally known. An example
is the case where Xi,j ∼ind U(0, θi), j = 1, . . . , ni, i = 1, . . . , k. For this case
Gupta and Leu (1986) claim that the isotonic least-squares regression gives the
MLE, which is clearly not true. Further, Jewel and Kalbfleisch (2004, p. 303)
state, in part, that ”In one dimension maximum likelihood is equivalent to
least-squares . . .”. But maybe these authors mean that this equivalence holds
for the one-dimensional version of their problem, i.e., the estimation of a re-
stricted θ based on Xi ∼ind Bin (ni, θi), i = 1, . . . , k. For that case, maximum
likelihood is equivalent to weighted least-squares with weights n1, . . . , nk. I
will, however, keep using the notation θ̂ for the maximizer of a function sat-
isfying Condition A, even when this maximizer is not the MLE.

A recursion formula for isotonic least-squares regression can be found in Puri
and Singh (1990). They show that the minimizer of

∑k
i=1(gi−θi)2wi for given

numbers gi, i = 1, . . . , k, and given positive numbers wi, i = 1, . . . , k, is given
by

θ̂1 = min
1≤i≤k

Gi

Wi
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θ̂j = min
j≤i≤k

Gi −
∑j−1

r=1 wr θ̂r∑i
r=j wr

, j = 2, . . . , k,

where, for j = 1, . . . , k, Gj =
∑j

i=1 giwi and Wj =
∑j

i=1 wi. They prove
this result by relying on the so-called greatest convex minorant algorithm (see
Barlow, Bartholomew, Bremner and Brunk, 1972, pp. 9–13). Their proof is
correct, but they do not seem to know that the greatest convex minorant al-
gorithm only holds for simply ordered θi.

An algorithm not yet mentioned is the so-called “minimum lower sets algo-
rithm”. For least-squares isotonic regression it is given by Brunk (1955) and
Brunk, Ewing and Utz (1957) (see also Barlow, Bartholomew, Bremner and
Brunk, 1972, pp. 76–77, and Robertson, Wright and Dykstra, 1988, pp. 24–
25). But it holds more generally. In fact, it gives the maximizer of l(θ) when
l satisfies Condition A and has the strict CMV property. It works as follows.
Find a lower set L satisfying vL ≤ vL′ for all lower sets L′. If there is more
than one such lower set, take their union. Call this union L1. Then θ̂i = vL1

for i ∈ L1. Now repeat this process of finding such minimum lower sets by
next looking at {i ∈ {1, . . . , k} | i ∈ Lc

1} and continue until all θ̂i have been
found. There is, of course, also a maximum upper set algorithm.

Robertson and Wright (1973) use this minimum lower sets algorithm for iso-
tonic median regression, where l does not have the strict CMV property. But
they correct this mistake in Robertson and Wright (1980) where they give a
minimum lower sets algorithm for the case where l has the CMV property,
but not necessarily the strict CMV property.

Neither one of these minimum lower sets algorithms is very efficient, because
finding the largest minimum lower set can be quite cumbersome. Qian (1992)
improves on each of the above minimum lower set algorithms. He finds that
the largest minimum lower set can be replaced by any minimum lower set.

In Strömberg (1991) an algorithm is given for finding all isotonic monotone
regressions obtained by minimizing

∑k
i=1

∑ni

j=1 d(Xi,j − θi) under the restric-
tion θ1 ≤ . . . ,≤ θk. He supposes the distance function d to be convex and
shows that if the function d is strictly convex, the minimizer is unique. Note
here that, in case of strict convexity, l∗(θi) = −∑ni

j=1 d(Xi,j − θi) satisfies
Condition A and the unicity of the minimizer then follows from the results of
van Eeden (1957a, 1958).

Park (1998) gives, for given positive numbers wi,j and given xi,j , the minimizer
(in θi,j) of

k∑
j=1

2∑
i=1

wi,j(xi,j − θi,j)2
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under the restriction that the ∆j = θ1,j−θ2,j , j = 1, . . . , k are simply ordered.
He finds, for the minimizer (∆̂1, . . . , ∆̂k, θ̂2,1, . . . , θ̂2,k), that (∆̂1, . . . , ∆̂k) is
the weighted (with weights ci,j = w1,jw2,j/(w1,j +w2,j)) isotonic least-squares
regression of the x1,j − x2,j with respect to the ordering of the ∆j , while
θ̂2,j = (w1,j(x1,j − ∆̂j) + w2,jx2,j)/(w1,j + w2,j), j = 1, . . . , k. He applies his
result to the problem of maximum likelihood estimation of the µi,j and the
∆j = µ1,j − µ2,j in the model

Yi,j,l = µi,j + εi,j,l, l = 1, . . . , ni,j , j = 1, . . . , k, i = 1, 2,

where εi,j,l ∼ind N (0, σ2), µi,j = µ+αi +βj +γi,j with
∑2

i=1 αi =
∑k

j=1 βj =∑2
i=1 γi,j =

∑k
j=1 γi,j = 0 and γ1,1 ≤ . . . ≤ γ1,k. His algorithm applies here

because the restriction on the γi,j is equivalent to ∆1 ≤ . . . ≤ ∆k and isotonic
least-squares regression with wi,j = ni,j is equivalent to maximum likelihood
because the Yi,j,l are independent N (µi,j , σ

2), l = 1, . . . , ni,j .

One last remark on algorithms. Both Chakravarti (1989) and X. Hu (1997)
present algorithms for cases where Ii �= Ji for some i ∈ {1, . . . , k}. Chakravarti
(1989, p. 136) does not seem to be aware of the fact that van Eeden’s (1957a,
1958) algorithms for such cases apply to more than weighted squared-error
loss. The algorithm of X. Hu (1997) is different from van Eeden’s. He first
finds the maximizer θ̂∗ of l for θ in the larger space Θ∗ = {θ | αi,j(θi − θj) ≤
0, 1 ≤ i < j ≤ k} and then finds θ̂ from θ̂∗. The van Eeden algorithm first
maximizes l for θ ∈∏k

i=1 Ii and then obtains θ̂ from that maximizer – which
seems to me to be the more efficient way of doing things.

8.3 Norm-reducing properties of MLEs

For the problem of estimating simply ordered probabilities, i.e., for the case
where the Xi,j ∼ Bin(1, θi), i = 1, . . . , k, Ayer, Brunk, Ewing, Reid and
Silverman (1955) note that, for all θ ∈ Θ,

k∑
i=1

(
Xi

ni
− θi

)2

ni ≥
k∑

i=1

(θ̂i − θi)2ni +
k∑

i=1

(
Xi

ni
− θ̂i

)2

ni,

where Xi =
∑ni

j=1 Xi,j , i = 1, . . . , k and θ̂ = (θ̂1, . . . , θ̂k) is the MLE of θ. This

shows that this MLE minimizes
∑k

i=1((Xi/ni) − θi)2ni and that θ̂ is, in this
weighted least-squares sense, closer to Θ than is the unrestricted MLE. Or,
to say it another way, the MLE of θ is the weighted isotonic (least-squares)
regression of (X1/n1, . . . , Xk/nk) with respect to the simple order of the θi’s.
These authors implicitely assume that Ii = Ji for all i ∈ {1, . . . , k}.
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A more general result can be found in van Eeden (1957c). She considers the
model as described in Section 8.1. She does not need Ii = Ji, i = 1, . . . , k and
assumes that Condition A is satisfied. She gives sufficient conditions for the
MLE to be the minimizer of

Q(θ1, . . . , θk) =
k∑

i=1

wi(θi − v∗
i )2,

where, for i = 1, . . . , k, v∗i is the MLE of θi under the condition that θi ∈ Ji.
Further, the wi are positive numbers satisfying the following condition. Let
Eo be the set of all i ∈ {1, . . . , k} for which θ̂i �= vi and let Mo be a subset of
Eo for which

θ̂i = θ̂j for all i, j ∈ Mo. (8.7)

Then the condition on the wi is that∑
i∈Mo

wi(v∗Mo
− v∗

i ) = 0 for all Mo ⊂ {1, . . . , k} satifying (8.7). (8.8)

Of course, these wi need to be independent of the v∗i . In van Eeden (1957c)
several examples are given where wi satisfying the above conditions exist and
can be explicitely obtained. The examples she mentions are

a) Xi,j ∼ N (θi, σ
2
i ) with known variances σ2

i , where v∗
i = X̄i and wi = ni/σ2

i ;
b) Xi,j ∼ Bin(1, θi), where v∗

i = Xi/ni and wi = ni;
c) Xi,j ∼ N (0, θi), where v∗

i =
∑ni

j=1 X2
i,j/ni and wi = ni;

d) Xi,j , j = 1, . . . , ni have an exponential distribution with density e−x/θi/θi

on (0,∞) where v∗
i =

∑ni

i=1 Xi,j/ni and wi = ni.

Note that a sufficient condition for (8.8) to hold is that
∑

i∈M wi(v∗M −v∗i ) = 0
for all M ⊂ {1, . . . , k}. This last condition is the one given by Qian (1994b)
in his Theorem 2.1, but he seems to suppose that Ii = Ji for all i = 1, . . . , k.

Robertson, Wright and Dykstra (1988, Theorem 1.5.2) give an explicit condi-
tion for the MLE to be the isotonic least-squares regression of the v∗

i . They
suppose that Xi,j , j = 1, . . . , ni, i = 1, . . . , k are independent samples from
exponential-family distributions with densities (with respect to a σ-finite mea-
sure ν) f(x; θi, τi), where

f(x; θ, τ) = exp{p1(θ)p2(τ)K(x; τ) + S(x; τ) + q(θ, τ)}.

Here, τ is a nuissance parameter taking values in T and θ ∈ J , the natural
parameter space of the family, is the parameter of interest. Under regularity
conditions on p1, p2 and q and assuming that

d

dθ
q(θ, τ) = −θ

d

dθ
p1(θ) p2(τ) for all θ ∈ N, τ ∈ T,
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they show that, when Ii = J for all i = 1, . . . , k, the MLE θ̂ of θ minimizes,
for θ ∈ Θ,

k∑
i=1

nip2(τ)(v∗i − θi)2.

Note that, for each of the examples a) – d) above, these conditions are satisfied
with p2(τi) = σ−2

i for the N (θi, σi) distribution and with p2(τi) = 1 in the
other cases. But van Eeden (1957c) does not need Ii = Ji for all i = 1, . . . , k.

Further, X. Hu (1997) shows that the Robertson–Wright–Dykstra result also
holds when when Ii = I ⊂ J , I �= J , i = 1, . . . , k.

And, finally, note that for Xi,j ∼ N (0, θ2
i ), neither the conditions of Robert-

son, Wright and Dykstra (1988, Theorem 1.5.2) nor the condition (8.8) of
van Eeden (1957c) is satisfied. These conditions are also not satisfied for
Xi,j ∼ U(0, θi). However, a “random” version of (8.8) (more precisely of
its sufficient condition

∑
i∈M wi(v∗M − v∗

i ) = 0 for all M ⊂ {1, . . . , k}) is
satisfied for this uniform case. Take, e.g., k = 2, Ii = Ji, i = 1, 2 and let
Θ = {θ | θ1 ≤ θ2}. Then we only need to look at the case where M = {1, 2}
and in that case the likelihood function needs to be maximized over the ran-
dom set {θ | v∗

1 ≤ θ1 ≤ θ2, v
∗
2 ≤ θ2} when v∗

1 ≤ v∗2 and over the random set
{θ | v∗

1 ≤ θ1 ≤ θ2} when v∗
2 < v∗1 . Clearly, this is equivalent to minimizing∑2

i=1(θi − v∗
i )2 over these sets.

8.4 Algorithms for multivariate problems

Sasabuchi, Inutsuka and Kulatunga (1983) consider the case where, for i =
1, . . . , k, θi = (θ1,i, . . . , θp,i)′ for some p ≥ 2. Their parameter space is defined
by

Θ = {(θ1, . . . , θk) | αi,j(θν,i − θν,j) ≤ 0, ν = 1, . . . , p, 1 ≤ i < j ≤ k}

where the αi,j are independent of ν and satisfy the conditions of Section
8.1. Then, for positive definite p × p matrices Λ1, . . . , Λk and a p × k matrix
X = (X1, . . . , Xk), they define θ̂ = (θ̂1, . . . , θ̂k) to be the p-variate isotonic
regression of X with respect to the weights Λ−1

1 , . . . , Λ−1
k if θ̂ minimizes, for

θ ∈ Θ,
k∑

i=1

(Xi − θi)′Λ−1
i (Xi − θi).

They give an algorithm for computing θ̂ for the case when p = 2. It consists
of iterative applications of univariate isotonic regressions. They also indicate
how this algorithm can be extended to the case p > 2. Of course, when all the
Λi are the identity matrix, θ̂ can be obtained by finding, for each ν = 1, . . . , p,
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the isotonic regression of (Xν,1, . . . , Xν,k) with respect to equal weights. As an
example they look at the case where Xi ∼ind Np(θi, Λi), i = 1, . . . , k, p ≥ 2.
In this case θ̂ is, of course, the MLE of θ based on X under the restriction
θ ∈ Θ.

Another multivariate case can be found in Jewel and Kalbfleisch (2004). They
consider the case where X1, . . . , Xk are independent and, for i = 1, . . . , k, Xi

has a multinomial distribution with parameters ni and θi = (θ1,i, . . . , θp,i),
where, for i = 1, . . . , k,

∑p
ν=1 θν,i = 1. The parameter space is restricted by

the inequalities θν,1 ≤ . . . ,≤ θν,k for each ν ∈ {1, . . . , p− 1} and they give an
algorithm for finding the MLE. For the case where p = 2, i.e., when Xi ∼ind

Bin(ni, θi), i = 1, . . . , k with θ1 ≤ . . . ≤ θk, their algorithm reduces to the
PAVA.



Bibliography1

ABELSON, R.P. and TUKEY, J.W. (1963). Efficient utilization of non-
numerical information in quantitative analysis: General theory and the
case of simple order. Ann. Math. Statist., 34, 1347–1369.

AKKERBOOM, J.C. (1990). Testing Problems with Linear and Angular In-
equality Constraints. Lecture Notes in Statistics, Vol. 62. Springer-Verlag.

ALI, M.M. and WOO, J. (1998). Bayes estimation of Bernoulli parameter in
restricted parameter space. J. Statist. Res., 32, 81–87.

AL-SALEH, M.F. (1997). Estimating the mean of a normal population uti-
lizing some available information: A bayesian approach. J. Information &
Optimization Sciences, 18, 1–7.

∗ALSON, P. (1988). Minimax properties for linear estimators of the location
parameter of a linear model. Statistics, 19, 163–171. (Gaffke, Heiligers
(1991) show that Theorem 2.2 in this paper is incorrect.)

∗ALSON, P. (1993a). Linear minimaxity and admissibility for centered bounded
or unbounded ellipsoids. Rebrape, 7, 201–217.

∗ALSON, P. (1993b). Centered ellipsoids for which an admissible linear esti-
mator is the minimax linear estimator. Statistics, 24, 85–94.

AYER, M., BRUNK, H.D., EWING, G.M., REID, W.T. and SILVERMAN,
E. (1955). An empirical distribution function for sampling with incomplete
information. Ann. Math. Statist., 26, 641–647.

BADER, G. and BISCHOFF, W. (2003). Old and new aspects of minimax
estimation of a bounded parameter. In Mathematical Statistics and Ap-
plications: Festschrift for Constance van Eeden (M. Moore, S. Froda and
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KARLIN, S. (1957). Pólya type distributions, II. Ann. Math. Statist., 28,
281–308.

KATZ, M.W. (1961). Admissible and minimax estimates of parameters in
truncated spaces. Ann. Math. Statist., 32, 136–142.

KATZ, M.W. (1963). Estimating ordered probabilities. Ann. Math. Statist.,
34, 967–972.

KAUR, A. and SINGH, H. (1991). On the estimation of ordered means of
two exponential populations. Ann. Inst. Statist. Math., 43, 347–356.

KEATING, J.P., MASON, R.L. and SEN, P.K. (1993). Pitman’s Measure of
Closeness, SIAM, Philadelphia, Pennsylvania, USA.

KELLY, R.E. (1989). Stochastic reduction of loss in estimating normal means
by isotonic regression. Ann. Statist., 17, 937–940.

KEMPTHORNE, P.J. (1987). Numerical specification of discrete least favor-
able prior distributions. SIAM J. Sci. Statist. Comput., 8, 171–184.

KLAASSEN, C.A.J. (1989). The asymptotic spread of estimators. J. Statist.
Plann. Inference, 23, 267–285.

KLEMM, R.J. and SPOSITO, V.A. (1980). Least squares solutions over in-
terval restrictions. Comm. Statist. Simulation Comput., 9, 423–425.



Bibliography 151

KLOTZ, J.H., MILTON, R.C. and ZACKS, S. (1969). Mean square efficiency
of estimators of variance components. J. Amer. Statist. Assoc., 64, 1383–
1402.

∗KNAUTZ, H. (1996). Linear plus quadratic (LPQ) quasiminimax estimation
in the linear regression model. Acta Appl. Math., 43, 97–111.

KOUROUKLIS, S. (2000). Estimating the smallest scale parameter: Universal
domination results. In Probability and Statistical Models with Applications
(C.A. Charalambides, M.V. Koutras, N. Balahrishnan, eds.), Chapman
and Hall/CRC.
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VIJAYASREE, G., MISRA, N. and SINGH, H. (1995). Componentwise esti-
mation of ordered parameters of k (≥ 2) exponential populations. Ann.
Inst. Statist. Math., 47, 287–307.

VIJAYASREE, G. and SINGH, H. (1991). Simultaneous estimation of two or-
dered exponential parameters. Comm. Statist. Theory Methods, 20, 2559–
2576.

VIJAYASREE, G. and SINGH, H. (1993). Mixed estimators of two ordered
exponential means. J. Statist. Plann. Inference, 35, 47–53.

WALD, A. (1950). Statistical Decision Functions, John Wiley.
WAN, A.T.K. (1994a). The non-optimality of interval restricted and pre-test

estimators under squared error loss. Comm. Statist. Theory Methods, 23,
2231–2252.

WAN, A.T.K. (1994b). Risk comparison of the inequality constrained least
squares and other related estimators under balanced loss. Econom. Lett.,
46, 203–210.

WAN, A.T.K. and OHTANI, K. (2000). Minimum mean-squared error esti-
mation in linear regression with an inequality constraint. J. Statist. Plann.
Inference, 86, 157–173.



Bibliography 159

WAN, A.T.K., ZOU, G. and LEE, A.H. (2000). Minimax and Γ -minimax esti-
mation for the Poisson distribution under LINEX loss when the parameter
space is restricted. Statist. Probab. Lett., 50, 23–32.

WANG, S. (2001). The maximum weighted likelihood estimator. PhD thesis,
Department of Statistics, The University of British Columbia, Vancouver,
Canada.

ZEYTINOGLU, M. and MINTZ, M. (1984). Optimal fixed size confidence
procedures for a restricted parameter space. Ann. Statist., 12, 945–957.

ZINZIUS, E. (1979). Beitrage zur Theorie der Nichtsequentiellen Parameter-
schätzprobleme. PhD thesis, University of Karlsruhe, Karlsruhe, Germany.

ZINZIUS, E. (1981). Minimaxschätzer für den Mittelwert ϑ einer normalverteil-
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Strömberg, U., 138
Strawderman, W.E., 10, 17, 26, 28,

30, 41, 45, 51, 58, 63, 64, 66, 94,
95, 98, 99

Subbaiah, P., 120
Sutradhar, B.C., 95, 96

Takemura, A., 28, 104
Thompson, W.A., 134
Thomson, M., 104, 110, 117, 118
Towhidi, M., 48
Trenkler, G., 9, 11
Tukey, J.W., 71

Utz, W.R., 138

van der Meulen, E.C., 89
van Eeden, C., 1, 2, 17, 20–25, 29, 30,

44, 46, 51, 53–55, 62, 77, 78, 98,
99, 115–119, 122–124, 131–136,
138–141

van Houwelingen, J.C., 20, 103, 112,
113

van Trees, H.L., 39
Vidakovic, B., 39, 64, 65
Vijayasree, G., 74, 77, 82, 83, 85, 87,

90–92, 100, 124, 126, 127

Wald, A., 20, 40
Waltman, P., 131–133, 136
Wan, A.T.K., 43, 48, 104, 107–110,

113, 118
Wang, S., 47, 116
Whitaker, L.R., 72, 123
Woo, J., 25
Wright, F.T., vii, 1, 72, 89, 131, 132,

134, 136–138, 140, 141
Wulfert, S., 43

Yancey, T.A., 104, 105, 107–110, 118

Zacks, S., 96
Zeytinoglu, M., 48



164 Author Index

Zidek, J.V., viii, 3, 23, 44, 46, 54, 55,
62, 70, 71, 74, 77–80, 82–86, 95,
98, 99, 115–119, 122–124

Zinzius, E., 41, 42, 45, 46

Zou, G., 43, 48

Zou, G.-H., 47

Zubrzycki, S., 47, 53



Subject Index

(D, Ω)-
admissibility, 8, 9, 10
minimaxity, 8, 9–11
problem, 8, 9–11

(Do, Ω)-
admissibility, 8, 9, 10
minimaxity, 8, 9–11
problem, 8, 9–11

(Do, Ωo)-
admissibility, 10
minimaxity, 10, 11
problem, 10

Admissibility, 7, 8
binomial probability, 15–17, 19, 21,

24–26, 72
exponential family mean, 16
exponential location, 31, 73–76, 91–93
F-distribution scale, 23
gamma scale, 16, 23, 29, 82–85, 90, 91
least-squares estimator, 104
location, 77–79
logistic mean, 21, 22
logistic scale, 23
normal mean, 2, 15, 16, 20, 71, 77–79,

88, 89, 96–98
normal variance, 94–96
Poisson mean, 17, 72
power-series distribution mean, 17
scale, 85, 86
uniform scale, 80, 81

Algorithms
for multivariate problems, 141, 142

greatest-convex-minorant, 138
max-min formula, 135, 136
minimum-lower-sets, 138
minimum-violators, 134
pool-adjacent-violators-algorithm

PAVA, 133, 134
van Eeden’s algorithm, 135

Binomial probability
bounded, 15, 16, 19, 24, 25, 45–47
ordered, 1, 17, 26, 72
upper-bounded, 17, 21

Boundary estimator, 20, 21

Cauchy-mean-value property, 132, 138
Central direction of a cone, 71, 97
CMV, see Cauchy-mean-value property
Complete class, 7, 8

Dominators, 7
binomial probability, 24–26
elliptically symmetric distribution, 79
exponential location, 74–76, 91–93
gamma scale, 26, 82–87
least-squares estimator, 104
location, 77–79
normal mean, 26–28, 71, 78
normal variance, 94–96
Poisson mean, 72
power-series-distribution mean, 26
scale, 85, 86
spherically symmetric distribution, 28
uniform scale, 80–82



166 Subject Index

Essential completeness, see Complete
class

Estimator
definition, 5, 6
non-randomized, 7
randomized, 7

Exponential family, 15–17, 132
Exponential location

bounded, 43
lower-bounded, 55
ordered, 73–76, 90–93
upper-bounded, 31, 55, 56

Extra restriction, 11, 46, 57, 73, 75, 76,
80, 81, 91, 93

F distribution scale
bounded, 44
lower-bounded, 23, 54

Gain in minimax value, 65–67
Gain in risk function, 120–129
Gamma scale

bounded, 16
lower-bounded, 23, 26, 51–53
ordered, 29, 82–87

Graybill-Deal estimator, 70, 88, 89
Group of transformations, 18

commutative, 18
finite, 18
measure-preserving, 18

Immediate predecessor, 14
Integral-expression-of-risk method, 50,

59
Isotonic regression, 136

(weighted) least-squares, 136
least-absolute deviation, 137
median, 137
monotone, 138
percentile, 137
recursion for, 137

Least favourable priors, 33, 34
non-uniqueness, 40, 46, 47

Location problems
bounded, 42
ordered, 78, 79
tree-ordered, 77

Logistic mean

bounded, 21
restricted, 22

Logistic scale
lower-bounded, 23

Loss function, 7
linex loss, 7
quadratic loss, 7
reflected normal loss, 48
scale-invariant squared-error loss, 7
squared-error loss, 7
weighted-pth-power loss, 7
weighted-squared-error loss, 8

Lower bounds
Bayes risk, 39
minimax value, 39
risk function, 37–39, 57

Lower set, 135

Max-min formula, 135, 136
Maximum likelihood estimation, see

MLE
Minimax adjustment technique, 9, 11
Minimaxity, 8

binomial probability, 45–47
exponential location, 43, 55, 56
F distribution scale, 44, 54
gamma scale, 51–53
linear estimators, 64, 65
location, 42
nearly minimax, 64
normal mean, 2, 41, 42, 45, 48–51, 60,

61, 63
Pitman estimator, 50, 51, 53, 55, 57,

60, 98, 99
Poisson mean, 43, 47, 57–59
uniform location, 44, 45, 55
uniform scale, 44, 45, 55

MLE
algorithms for computing, 133–139,

141, 142
binomial probability, 1, 15–17, 19,

24–26, 72
elliptically symmetric density, 73
existence, 131–133
exponential location, 74, 90, 91
gamma scale, 16, 23, 82, 83, 85, 86
logistic mean, 21, 22
max-min formula, 135, 136
norm-reducing property, 131, 139–141



Subject Index 167

normal mean, 2, 20, 26–28, 70, 77, 98
Poisson mean, 72
power-series-distribution mean, 17,

26
uniform scale, 72, 80, 81, 86

Node, 14, 74, 79
Normal mean

bounded, 16, 20, 28, 41, 42, 45, 48,
64, 79

bounded difference, 61, 99
cone-restricted, 96, 97
Graybill-Deal, 88, 89
lower-bounded, 2, 15, 26, 27, 49–51
ordered, 60, 61, 71, 98
tree-ordered, 77, 78

Normal variance
ordered, 94–96

Numerical results
bias, 123
gain in minimax value, 66, 67
gain in risk function, 121, 123,

125–129

Order restrictions, 14
increasing-in-weighted-average, 14
loop, 14
rooted-tree, 14
simple, 14
simple-tree, 14
umbrella, 14
upper-star-shaped, 14

PAVA, see Algorithms
Pitman closeness, 13, 89, 92
Pitman estimator, 13, 34–37, 39, 50,

51, 53–56, 60, 64, 84, 85, 98, 99,
118, 119, 122

Poisson mean
bounded, 43
lower-bounded, 57–59
ordered, 72
upper-bounded, 17, 47

Randomized response models, 19
Range-preserving, 6
Risk function, 7
Robustness, 117–120

Scale problems
ordered, 86
tree-ordered, 85

Uniform location
bounded, 44, 45
lower-bounded, 55

Uniform scale
bounded, 44, 45
lower-bounded, 55
ordered, 72, 80–82, 86

Universal domination, 2, 12, 13, 29, 71,
73, 74, 89, 96, 97

Unrestricted problem, 10
Upper set, 136

Weighted likelihood, 115, 116



Lecture Notes in Statistics
For information about Volumes 1 to 133,
please contact Springer-Verlag

134: Yu. A. Kutoyants, Statistical Inference
For Spatial Poisson Processes. vii, 284 pp.,
1998.

135: Christian P. Robert, Discretization and
MCMC Convergence Assessment. x, 192
pp., 1998.

136: Gregory C. Reinsel, Raja P. Velu,
Multivariate Reduced-Rank Regression. xiii,
272 pp., 1998.

137: V. Seshadri, The Inverse Gaussian
Distribution: Statistical Theory and
Applications. xii, 360 pp., 1998.

138: Peter Hellekalek and Gerhard Larcher
(Editors), Random and Quasi-Random
Point Sets. xi, 352 pp., 1998.

139: Roger B. Nelsen, An Introduction to
Copulas. xi, 232 pp., 1999.

140: Constantine Gatsonis, Robert E. Kass,
Bradley Carlin, Alicia Carriquiry, Andrew
Gelman, Isabella Verdinelli, and Mike West
(Editors), Case Studies in Bayesian
Statistics, Volume IV. xvi, 456 pp., 1999.

141: Peter Müller and Brani Vidakovic
(Editors), Bayesian Inference in Wavelet
Based Models. xiii, 394 pp., 1999.

142: György Terdik, Bilinear Stochastic
Models and Related Problems of Nonlinear
Time Series Analysis: A Frequency Domain
Approach. xi, 258 pp., 1999.

143: Russell Barton, Graphical Methods 
for the Design of Experiments. x, 208 pp.,
1999.

144: L. Mark Berliner, Douglas Nychka,
and Timothy Hoar (Editors), Case Studies
in Statistics and the Atmospheric Sciences.
x, 208 pp., 2000.

145: James H. Matis and Thomas R. Kiffe,
Stochastic Population Models. viii, 220 pp.,
2000.

146: Wim Schoutens, Stochastic Processes 
and Orthogonal Polynomials. xiv, 163 pp.,
2000.

147: Jürgen Franke, Wolfgang Härdle, and
Gerhard Stahl, Measuring Risk in Complex
Stochastic Systems. xvi, 272 pp., 2000.

148: S.E. Ahmed and Nancy Reid, Empirical
Bayes and Likelihood Inference. x, 200 pp.,
2000.

149: D. Bosq, Linear Processes in Function
Spaces: Theory and Applications. xv, 296
pp., 2000.

150: Tadeusz Caliński and Sanpei
Kageyama, Block Designs: A
Randomization Approach, Volume I:
Analysis. ix, 313 pp., 2000.

151: Håkan Andersson and Tom Britton,
Stochastic Epidemic Models and Their
Statistical Analysis. ix, 152 pp., 2000.

152: David Rios Insua and Fabrizio Ruggeri,
Robust Bayesian Analysis. xiii, 435 pp., 2000.

153: Parimal Mukhopadhyay, Topics in
Survey Sampling. x, 303 pp., 2000.

154: Regina Kaiser and Agustín Maravall,
Measuring Business Cycles in Economic
Time Series. vi, 190 pp., 2000.

155: Leon Willenborg and Ton de Waal,
Elements of Statistical Disclosure Control.
xvii, 289 pp., 2000.

156: Gordon Willmot and X. Sheldon Lin,
Lundberg Approximations for Compound
Distributions with Insurance Applications.
xi, 272 pp., 2000.

157: Anne Boomsma, Marijtje A.J. van
Duijn, and Tom A.B. Snijders (Editors),
Essays on Item Response Theory. xv, 448
pp., 2000.

158: Dominique Ladiray and Benoît
Quenneville, Seasonal Adjustment with the
X-11 Method. xxii, 220 pp., 2001.

159: Marc Moore (Editor), Spatial Statistics:
Methodological Aspects and Some
Applications. xvi, 282 pp., 2001.

160: Tomasz Rychlik, Projecting Statistical
Functionals. viii, 184 pp., 2001.

161: Maarten Jansen, Noise Reduction by
Wavelet Thresholding. xxii, 224 pp., 2001.



162: Constantine Gatsonis, Bradley Carlin,
Alicia Carriquiry, Andrew Gelman, Robert
E. Kass Isabella Verdinelli, and Mike West
(Editors), Case Studies in Bayesian
Statistics, Volume V. xiv, 448 pp., 2001.

163: Erkki P. Liski, Nripes K. Mandal,
Kirti R. Shah, and Bikas K. Sinha, Topics in
Optimal Design. xii, 164 pp., 2002.

164: Peter Goos, The Optimal Design of
Blocked and Split-Plot Experiments. xiv, 244
pp., 2002.

165: Karl Mosler, Multivariate Dispersion,
Central Regions and Depth: The Lift
Zonoid Approach. xii, 280 pp., 2002.

166: Hira L. Koul, Weighted Empirical
Processes in Dynamic Nonlinear Models,
Second Edition. xiii, 425 pp., 2002.

167: Constantine Gatsonis, Alicia Carriquiry,
Andrew Gelman, David Higdon, Robert E.
Kass, Donna Pauler, and Isabella Verdinelli
(Editors), Case Studies in Bayesian Statistics,
Volume VI. xiv, 376 pp., 2002.

168: Susanne Rässler, Statistical Matching:
A Frequentist Theory, Practical
Applications and Alternative Bayesian
Approaches. xviii, 238 pp., 2002.

169: Yu. I. Ingster and Irina A. Suslina,
Nonparametric Goodness-of-Fit Testing
Under Gaussian Models. xiv, 453 pp., 2003.

170: Tadeusz Caliński and Sanpei
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