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Dedicated to Marvin ZELEN



Preface

On September 23, 2003 Marvin Zelen was awarded the title of Docteur Honoris
Causa de l’Université Victor Segalen Bordeaux 2, Bordeaux, France. Professor
Zelen was the third biostatistician to receive this title after David Cox (1999)
and Norman Breslow (2001). To mark the occasion and the importance of
the contribution of Professor Zelen in development of biostatistics in public
health and especially in the War on Cancer, a special symposium, Probabilités,
Statistics and Modelling in Public Health, was organized in Marvin’s honor
by Daniel Commenges and Mikhail Nikulin. This workshop took place on
September 22-23, 2003, in Bordeaux. Several well known biostatisticians from
Europe and America were invited. A special issue of Lifetime Data Analysis
was published (Volume 10, No 4), gathering some of the works discussed at this
symposium. This volume gathers a larger number of papers, some of them
being extended versions of papers published in the Lifetime Data Analysis
issue, others being new. We present below several details of the biography of
Professor Zelen.

Marvin Zelen is Professor of Statistics at the Harvard School of Public
Health in Boston. He is one of the major researchers in the field of statistical
methods in public health.

Since 1960, Professor Zelen constantly worked in several fields of applied
statistics, specifically in biology and epidemiology of cancer. He is very well
known for his work on clinical trials in oncology, on survival analysis, reliabil-
ity and planning of experiments and prevention. His papers have now become
classics among epidemiologists and biostatisticians who work in the field of
cancer.

Since 1967, Professor Zelen was involved in different scientific groups such
as the Eastern Cooperative Oncology Group, the Veteran’s Administration
Lung Cancer Group, the Gastrointestinal Tumor Study Group, and the Ra-
diation Therapy Oncology Group to do statistical research in cancer clinical
trials in the USA. Professor Zelen made also significant contributions to re-
liability theory and random processes, mainly Markov and semi-Markov pro-
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cesses, in biostatistics and epidemiology. Professor Zelen is famous all over
the world for the development of the Biostatistics Department in the Harvard
School of Public Health. He received several awards for his contributions to
statistical methodology in the biomedical field. Among them, in 1967, the
Annual Award, Washington Academy of Science, for Distinguished Work in
Mathematics, in 1992, the Statistician of the Year award of Boston Chapter
of the American Statistical Association, and, in 1996, the Morse Award for
Cancer Research.

We thank all participants of the workshop in Bordeaux and all colleagues
and friends of Marvin for supporting us in the organization of the meeting in
Bordeaux and for their contributions in preparation of this volume. Especially
we thank Thelma Zelen, Mei-Ling Ting Lee, Stephen Lagakos, Dave Harring-
ton, Bernard Begaud, Roger Salamon, Valia Nikouline, Elizabeth Cure and
the participants of the European Seminar Mathematical Methods for Reliabil-
ity, Survival Analysis and Quality of Life for their help in organization of the
meeting and preparation of the proceedings. We thank also l’IFR-99 "Santé
Publique" for financial support of our project.

We sincerely hope that this volume will serve as a valuable reference for
statisticians.

Mikhail Nikulin, Daniel Commenges and Catherine Huber, editors
March, 2005, Bordeaux
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Forward and Backward Recurrence Times and
Length Biased Sampling: Age Specific Models

Marvin Zelen1

Harvard School of Public Health and the Dana-Farber Cancer Institute
Boston, MA 02115, U.S.A. name@email.address

Summary. Consider a chronic disease process which is beginning to be observed
at a point in chronological time. The backward recurrence and forward recurrence
times are defined for prevalent cases as the time with disease and the time to leave
the disease state respectively, where the reference point is the point in time at which
the disease process is being observed. In this setting the incidence of disease affects
the recurrence time distributions. In addition, the survival of prevalent cases will
tend to be greater than the population with disease due to length biased sampling.
A similar problem arises in models for the early detection of disease. In this case the
backward recurrence time is how long an individual has had disease before detection
and the forward recurrence time is the time gained by early diagnosis; i.e. until the
disease becomes clinical by exhibiting signs or symptoms. In these examples the
incidence of disease may be age related resulting in a non-stationary process . The
resulting recurrence time distributions are derived as well as some generalization of
length-biased sampling.

1 Introduction

Consider a sequence of events occuring over time in which the probability
distribution between events is stationary. Consider a randomly chosen interval
having endpoints which are events and select at random a time point in the
interval. The forward recurrence time is defined as the time from the random
time point to the next event; the backward recurrence time is the time from
the time point to the previous event; cf. Cox and Miller [CM65].

An example illustrating these recurrence times is the so-called “waiting
time paradox”; cf. Feller [FEL71]. Suppose the events are defined as bus
arrivals at a particular location. A person arriving at the bus stop has a
waiting time until the next bus arrives. The waiting time is the forward
recurrence time. The backward recurrence time is how long the person missed
the previous bus.

Backward and forward recurrence times play an important role in several
biomedical applications. However in many instances the distribution of events



2 Marvin Zelen

may have a distribution which changes with time. Furthermore time may be
chronological or age. In some applications it may be necessary to consider
two time scales incorporating both chronological time and age.

In addition, a closely related topic is length biased sampling . Referring
to the bus waiting problem, when the individual arrives at the bus stop, she
is intersecting a time interval having endpoints consisting of the previous bus
arrival and the next arrival. Implicitly these intervals are chosen so that the
larger the interval, the greater the probability of selecting it. The selection
phenomena is called length bias sampling.

We will consider two motivating examples for generalizing the recurrence
time distributions and length biased sampling. One example deals with a
model of the natural history of a chronic disease . The other example refers
to modeling the early detection of disease . The mathematics of the examples
are the same. However, they are both important in applications and we
use both to motivate our investigation. This paper is organized as follows.
Section 2 describes the two motivating examples and summarizes results for
stationary processes. Section 3 develops the model for the chronic disease
example; section 4 indicates the necessary changes for the early detection
example. The paper concludes with a discussion in section 5.

2 Motivating Problems and Preliminary Results

2.1 Chronic Disease Modeling

Consider a population and a chronic disease such that at any point in time a
person may be disease free (S0), alive with disease (Sa) or may have died of the
specific disease (Sd). The natural history of the disease will be S0 → Sa → Sd.
The transitions S0 → Sa corresponds to the (point) incidence of the disease
and Sa → Sd describes the (point) mortality.

Of course an individual may die of other causes or may be cured by treat-
ment. Our interest is in disease specific mortality. Hence an individual who
dies of other causes while in Sa is regarded as being censored for the particular
disease. An individual who is cured of a disease will still be regarded as being
in Sa and eventual death due to other causes will be viewed as a censored
observation. This model is a progressive disease model and is especially ap-
plicable for many chronic diseases — especially some cancers, cardiovascular
disease and diabetes.

Consider a study where at some point in time, say, t0 this population will
be studied. At this point in time some individuals will be disease free (S0)
while others will be alive with disease (Sa). Those in Sa are prevalent cases.
The backward recurrence time is how long a prevalent case has had disease
up to the time t0. The forward recurrence time refers to the eventual time of
death of the prevalent cases using t0 as the origin. The sum of the backward
and forward recurrence times is the total survival of prevalent cases.
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2.2 Early Detection Modeling

Consider a population in which at any point in time a person may be in one
of three states: disease free (S0), pre-clinical (Sp), or clinical (Sc). The pre-
clinical state refers to individuals who have disease, but there are no signs or
symptoms. The individual is unaware of having disease. The clinical state
refers to the clinical diagnosis of the disease when the disease interferes with
the functioning of an organ system or causes pain resulting in the individual
seeking medical help leading to the clinical diagnosis of the disease. The
natural history of the disease is assumed to be S0 → Sp → Sc. Note that the
transition from S0 → Sp is never observed. The transition Sp → Sc describes
the disease incidence. The aim of an early detection program is to diagnose
individuals in the pre-clinical state using a special examination. If indeed, the
early detection special examination does diagnose disease in the pre-clinical
state, the disease will be treated and the natural history of the disease will
be interrupted. As a result, the transition Sp → Sc will never be observed.
The time gained by earlier diagnosis is the forward recurrence time and the
time a person has been in the pre-clinical state before early diagnosis is the
backward recurrence time. If t0 is the time (either age or chronological time)
in which the disease is detected, we then have an almost identical model as
the chronic disease model simply by renaming the states.

2.3 Preliminary Results

Consider a non-negative random variable T having the probability density
function q(t). A length biased sampling process chooses units with a prob-
ability proportional to t (t < T ≤ t + dt). Samples of T are drawn from a
length biased process. Suppose the random variable is randomly split into
two parts (U, V ) so that T = U + V . The random variable U and V are the
backward and forward recurrence times. The model assumes that for fixed
T = t (t < T ≤ t+ dt) a point u is chosen according to a uniform distribution
over the interval (0, t). Then if qf (v) and qb(u) are the probability density
functions of the forward and backward recurrence times it is well known that
with length biased sampling for selecting T ; cf. Cox and Miller [CM65].

qf (t) = qb(t) = Q(t)/m, t > 0 (1)

where Q(t) =
∫ ∞

t

q(x)dx and m =
∫ ∞

0

Q(x)dx.

Also the p.d.f. of T is

f(t) = tq(t)/m. (2)

Note that the first moments of these distributions are:
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0

tQ(t)
m

dt = m
2 (1 + C2),

∫ ∞

0

t2q(t)
m

dt = m(1 + C2) (3)

where C = σ/m is the coefficient of variation associated with q(t). If q(t) is the
exponential distribution with mean m, the forward and backward recurrence
times have the same exponential distribution as q(t) and C = 1.

A reviewer suggested that a simpler way to discuss these results is to
initially assume that the joint distribution of (U, V ) is f(u, v) = q(u+v)I(u ≥
0, v ≥ 0)/m.. Then all the results above are readily derived. Implication in
this assumption is f(u/T ) = 1/t and length biased sampling.

3 Development of the Chronic Disease Model

In this section we will investigate generalizations of the distribution of the
backward and forward recurrence times using the chronic disease model as
a motivating example. We remark that for the chronic disease model, the
process may have been going on for a long time before being observed at time
t0.

Suppose at chronological time t0 the disease process is being observed. The
prevalent cases at time t0 will have an age distribution denoted by b(z|t0). We
will initially consider the prevalent cases who have age z. Later by weighting
by the age distribution for the whole population we will derive properties of
the prevalent cases for the population. The prevalent cases could be regarded
as conditional on the time t0 when observations began. Another model is
that the prevalent cases could be assumed to have arisen by sampling the
population at a random point in time which is t0. We shall consider both
situations.

Define

a(z|t0) =

⎧⎨⎩1 if individual of age z is in Sa at time t0.
0 if individual of age z is not in Sa at time t0,

but was incident with disease before age z.

a(t0) =

⎧⎨⎩1 if individual is in Sa at time t0.
0 if individual is not in Sa at time t0,

but was incident with disease before time t0.

P (z|t0) = P{a(z|t0) = 1}, P0 = P{a(t0) = 1} =
∫ t0

0

P (z|t0)b(z|t0)dz(4)

Note that someone with disease at time t0 having age z was born in the
year v = t0 − z. Hence the probability distribution of ages at time t0 is
equivalent to the distribution of birth cohorts at time t0.
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3.1 Forward Recurrence Time Distribution

Define
Tf = Forward recurrence time random variable

qf (t|z)dt = P{t < Tf ≤ t + dt | a(z|t0) = 1}
Qf (t|z) = P{Tf > t | a(z|t0) = 1}
I(τ)dτ = P{S0 → Sa during τ, τ + dτ}

where τ refers to the age of incidence. Consider the probability of being in
Sa at time t0 and having age z. If an individual becomes incident at age τ ,
then P{a(z|t0) = 1|τ} = P{T > z − τ} = Q(z − τ). Multiplying by I(τ)dτ
and integrating over the possible values of τ (0 < τ ≤ z) results in

P{a(z|t0) = 1} =
∫ z

0

I(τ)Q(z − τ)dτ (5)

This probability applies to the birth cohort year v = t0 − z; i.e. an individual
born in year v who is prevalent at time t0 having age z.

Consider the joint distribution of an individual having age z at time t0
and staying in Sa for at least an additional t time units. If τ is the age of
entering Sa, then

P (z|t0, τ)Qf (t|z, τ) = P{T > z − τ + t} = Q(z − τ + t)

and multiplying by I(τ)dτ and integrating over (0, z) gives

P (z|t0)Qf (t|z) =
∫ z

0

I(τ)Q(z − τ + t)dτ (6)

In the above it is assumed that the time entering Sa (τ) is not known, requiring
integration over possible values of (τ). Consequently the p.d.f. of the forward
recurrence time is

qf (t|z) = − d

dt
Qf (t|z) =

∫ z

0

I(τ)q(z − τ + t)dτ/P (z|t0) (7)

Suppose the incidence is constant, I(τ) = I then

qf (t|z) = [Q(t) −Q(t + z)]/
∫ z

0

Q(y)dy. (8)

If Q(z) is negligible, then

qf (t|z) ∼ Q(t)/m

which is the usual forward recurrence time distribution for a stationary pro-
cess.
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Define qf (t|t0) as the forward recurrence time averaged over the popula-
tion. By definition we can write

P (a(t0) = 1)qf (t|t0) =
∫ t0

0

P (z|t0)qf (b|z)b(z|t0)dz (9)

When the age distribution is uniform so that b(z|t0) = b then it can be
shown, cf. Zelen and Feinleib [ZF69]∫ ∞

0

qf (t|t0)P (a|t0) = 1)dt0/
∫ ∞

0

P (a(t0) = 1)dt0 = Q(t)/m.

Thus if the sampling point is regarded as a random point in time, the forward
recurrence time distribution as t0 → ∞ is the same as the stationary forward
recurrence time distribution.

3.2 Backward Recurrence Time Distribution

The backward recurrence time refers to the time in Sa up to time t0 (or age
z). Let Tb be the backward recurrence time random variable and qb(t|z) be
the conditional p.d.f. with Qb(t|z) =

∫ z

t
qb(y|z)dy. Note that 0 < t ≤ z.

Then using the same reasoning as in deriving the forward recurrence time
distribution we have

P{Tb > t, a(z|t0) = 1} = P (z|t0)Qb(t|z) =
∫ z−t

0

I(τ)Q(z − τ)dτ (10)

which allows the calculation of qb(t|z); i.e.,

qb(t|z) = I(z − t)Q(t)/P (z|t0), 0 < t ≤ z (11)

When I(τ) = I, qb(t|z) = Q(t)/
∫ z

0
Q(y)dy.

Finally the average backward recurrence time distribution is

qb(t|t0) = Q(t)
∫ t0

t

I(z − t)b(z|t0)dz/P0 (12)

Note the distinction between qb(t|z) and qb(t|t0). The former refers to individ-
uals having age z at time t0 whereas the latter refers to the weighted average
over age for prevalent cases at time t0. When b(z|t0) = b, we can integrate over
t0 and show that the backward recurrence time averaged over t0 is Q(t)/m.

3.3 Length Biased Sampling and the Survival of Prevalent Cases

As pointed out earlier, the prevalence cases are not a random sample of cases,
but represent a length biased sample. In this section, we investigate the
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consequences of length biased sampling when disease incidence is age-related.
We also derive the survival of prevalent cases.

Define T = Tb + Tf which is the time in which prevalent cases are in
Sa. This is the survival of prevalent cases from the time when they become
incident with disease. We will derive f(t|z), the pdf of the time in Sa for
prevalent cases who have age z at chronological time t0. Since the age z is
fixed at time t0, it is necessary to consider t > z and t ≤ z separately. If t
is fixed and t > z, then P{a(z|t0) = 1 | t > z} =

∫ z

0
I(τ)dτ . Similarly, if t

is fixed and t < z, in order to be prevalent at time t0 and be of age z, it is
necessary that z − t < τ < z. Thus, we have for fixed t (t < T ≤ t + dt)

P{a(z|t0) = 1 | t < T ≤ t + dt} =

⎧⎨⎩
∫ z

0
I(τ)dτ, if t > z∫ z

z−t
I(τ)dτ, if t ≤ z

(13)

Note that
∫ t

z−t
I(τ)dτ is an increasing function of t. Consequently, indi-

viduals with long sojourn times in Sa have a greater probability of being in
Sa at time t0. Our development is a generalization of the usual considera-
tions of length biased sampling as we have shown how length biased sampling
is affected by the transition into Sa. The usual specification of length bi-
ased sampling is to assume P{a(z) = 1 | t < T ≤ t + dt} ∝ t, which
in our case would be true if I(τ) = I and t ≤ z. We also remark that
P{a(z|t0) = 0 | t < T ≤ t + dt} =

∫ z−t

0
I(τ)dτ refers to individuals, condi-

tional on having survival t < T ≤ t+dt, who entered Sa and died before time
t0, but would have been age z at time t0 if they had lived. Another interpre-
tation of this probability is that a birth cohort born in v = z− t was incident
with disease but died before reaching age z. Using (13) the joint distribution
of a(z|t0) and T is

P{a(z|t0) = 1, t < T ≤ t + dt} =

⎧⎨⎩ q(t)dt
∫ z

0
I(τ)dτ, if t > z

q(t)dt
∫ z

z−t
I(τ)dτ, if t ≤ z.

(14)

Therefore, the time in Sa for cases prevalent at t0 and having age z is

f(t|z)dt =
P{a(z|t0) = 1, t < T ≤ t + dt}

P (z)
. (15)

Some simplifications occur if I(τ) = I. Then

f(t|z) =

{
zq(t)/

∫ z

0
Q(x)dx if t > z

tq(t)/
∫ z

0
Q(x)dx if t ≤ z

(16)

If q(t) is negligible in the neighborhood of z, and t ≤ z, then f(t|z) � tq(t)/m
which is the usual distribution for the sum if the forward and backward re-
currence time random variables.
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Using the same development, we can calculate f(t|a(z|t0) = 0) which refers
to the survival of individuals who died before t0, but would have been age z
at time t0. Since

P{a(z|t0) = 0, t < T ≤ t + dt} =
[∫ z−t

0

I(τ)dτ
]
q(t)dt, t ≤ z

and

P (a(z|t0) = 0) =
∫ z

0

[∫ z−t

0

I(τ)dτ
]
q(t)dt

we have

f(t|a(z|t0) = 0) =

[∫ z−t

0
I(τ)dτ

]
q(t)

P (a(z|t0) = 0)
if t ≤ z (17)

which is the distribution of those who died before time t0, but would have
been age z at t0 if they had lived. If I(z) = I, the distribution is

f(t|a(z|t0) = 0) =
(1 − t

z )q(t)∫ z

0
(1 − t

z )q(t)dt
for t ≤ z. (18)

Note that if z → ∞, then

f(t|a(z|t0) = 0) = q(t)

which is the population survival pdf.

3.4 Chronological Time Modeling

Suppose that the incidence is a function of chronological time rather than age.
Also, in some cases, t0 may be regarded as far removed from the origin as the
disease process has been going on a long time. Then the equations for the
forward and backward times may be modified by replacing z by t0. Therefore,
we have

qf (t|t0) =
∫ t0

0

I(τ)q(t0 − τ + t)dt/P (t0)

qb(t|t0) = I(t0 − t)Q(t)/P (t0) (19)

f(t|t0) =

⎧⎨⎩ q(t)
∫ t0
0

I(τ)dτ if t > t0

q(t)
∫ t0

t0−t
I(τ)dτ if t ≤ t0

f(t|a(t0) = 0) = q(t)
∫ t0−t

0

I(τ)dτ/P{a(t0) = 0} for t ≤ t0

with P (t0) = P{a(t0) = 1} =
∫ t0
0

I(τ)Q(t0 − τ)dτ.
If I(τ) = I then
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qf (t|t0) = [Q(t) −Q(t + t0)]/
∫ t0

0

Q(y)dy

qb(t|t0) = Q(t)/
∫ t0

0

Q(y)dy, 0 < t ≤ t0 (20)

f(t|t0) =

⎧⎨⎩ t0q(t)/
∫ t0
0

Q(y)dy if t > t0

tq(t)/
∫ t0
0

Q(y)dy if t ≤ t0

f(t|a(t0) = 0) = q(t)(1 − t

t0
)/
∫ t0

0

(1 − y

t0
)q(y)dy, t ≤ t0.

Consequently, if t0 → ∞

lim
t0→∞

qf (t|t0) = lim
t0→∞

qb(t|t0) = Q(t)/m

lim
t0→∞

f(t|t0) = tq(t)/m (21)

lim
t0→∞

f(t|a(t0) = 0) = q(t).

4 Early Detection Disease Model

In this section, the results of the chronic disease model will be adapted to the
early detection model. The states for this model are S0, Sp and Sc having
the natural history S0 → Sp → Sc. Define the probability of the transition
S0 → Sp during (τ, τ + dτ) by w(τ)dτ where τ refers to age. The point
incidence refers to the transition Sp → Sc. The relation between w(z) and
I(z) is

I(z) =
∫ z

0

w(τ)q(z − τ)dτ (22)

where q(t) is the pdf of the sojourn time in the pre-clinical state. Assume
that at time t0 the disease is detected early and the age at which the disease
is detected is z. Then the expression for the forward and backward recurrence
time distribution are

P (z)Qf (t|z) =
∫ z

0

w(τ)Q(z − τ + t)dτ

P (z)Qb(t|z) =
∫ z−t

0

w(τ)Q(z − τ)dτ, 0 < t ≤ z (23)

where P (z) =
∫ z

0
w(τ)Q(z − τ)dτ .

Equation (23) enables the calculation of the pdf’s of the forward and
backward recurrence time distribution. Note that aside from definitions the
only change is the substitution of w(τ) for I(τ) in (4) and (6).

Similarly, the distribution of the time in the pre-clinical state T = Tb +Tf

is
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f(t|z) =

⎧⎨⎩ q(t)
∫ z

0
w(τ)dτ/P (z) if t > z

q(t)
∫ z

z−t
w(τ)dτ/P (z) if t ≤ z

(24)

If w(τ) = w,

Qf (t|z) =
∫ z+t

t

Q(y)/
∫ z

0

Q(y)

Qb(t|z) =
∫ z

t

Q(y)dy/
∫ z

0

Q(y)dy, 0 < t ≤ z (25)

f(t|z) =

{
zq(t)/

∫ z

0
Q(y)dy if t > z

tq(t)/
∫ z

0
Q(y)dy if t ≤ z

and as z → ∞, the usual results for stationary processes hold.

5 Discussion

Backward and forward recurrence time distributions play an important role
in modeling human disease. Two examples are presented which make use of
recurrence times; i.e. modeling both the progressive chronic disease and the
early disease detection processes. In these examples, the process is influenced
by disease incidence which is usually age related. As a result, the recurrence
time distributions are generalized to be functions of disease incidence. A
characteristic of the progressive chronic disease model is that the process may
have been going on for a long time relative to when the process is beginning
to be studied at time t0. As a result, it may be convenient to consider t0 to
be far removed from the origin.

A closely related topic is the role of disease incidence in length biased
sampling. We have generalized the length biased process to take account of
incidence. In our general development, we have also derived the distribution of
the “complement” of length biased sampling which may be called “anti-length
biased sampling.” Our setting is that at time t0 the process is being observed
and individuals who are alive with disease are characterized by being length
biased and tend to have longer time in the state in which they are observed at
this time. However, individuals who entered and exited the state before time
t0 will tend to have a shorter stay in that particular state. In the progressive
disease modeling example, those who died of disease before time t0 will tend
to have shorter survival times than those in the disease state at t0.

One can envision a study in which observations are taken within the
chronological time period (t0, t1). We have considered the situation where
t0 is the beginning of a study. However, if t1 represents the time point at
which the study stops, observations may be right censored at that time. The
conventional approach is to have a model which incorporates a censoring dis-
tribution and the observation is the minimum of the censoring distribution
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and the distribution in that state. However, another formulation is that the
time in the state up to t1 is a backward recurrence time. Consequently, the
likelihood function will be different than the usual formulation for right cen-
sored observations.

More generally, the results presented here are applicable when a stochastic
process has discrete (or countable) states and is initially being observed. The
sojourn times for those observations in the initially observed states are forward
recurrence times. Consequently, any modeling of the process using the initial
observations must incorporate these forward recurrence times.
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Summary. Age patterns of male and female cancer incidence rate do not look
similar. This is because of the biologically based difference in susceptibility to cancer
of different sites. This argument, however, does not clarify how age patterns of male
and female cancer incidence rate must look like. The analysis of epidemiological data
on cancer in different countries and in different years shows that male and female
cancer incidence rates intersect around the age of female climacteric. We explain the
observed pattern using the difference in ontogenetic components of aging between
males and females. The explanation requires a new model of carcinogenesis, which
takes this difference into account. Application to data on cancer incidence in Japan
(Miyagi prefecture) illustrates the model.

Key words: cancer , model, incidence , ontogenesis

1 Introduction

The analysis of epidemiological data on cancer in different countries and at
different time periods reveals common age patterns and universal time-trends
in cancer incidence rates. Some of these features have been observed and
discussed before. These include an increase of cancer incidence rate over
time, both for males and females, and an increase, a leveling-off, and then a
decline of the age pattern of this rate. Note that a consensus among cancer
epidemiologists has not been arrived at concerning the explanation of these
phenomena.

The new interesting feature is related to the joint pattern of cancer inci-
dence rate for males and females. The data show strange regularity in relative
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behavior of male and female cancer incidence rates. In all countries and time
periods, these curves intersect at the interval of ages near female climacteric.
For all investigated countries at different time periods, the total cancer inci-
dence rates for females are higher than those for males up to middle age (near
the age of female climacteric). After that the incidence rates for females be-
come lower than for males. The growth of incidence rates over age is much
more rapid for males than for females. In the latter case the growth is nearly
linear (Fig. 1). Similar effects are also observed in cohort data (Fig. 2).
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Fig. 1. Typical patterns of intersection between male and female overall cancer
incidence rates: Denmark (1988–1992), India (Bombay, 1988–1992), USA (Con-
necticut, 1960–1962 and 1988–1992), and Japan (Miyagi prefecture, 1962–1964 and
1988–1992). ’M’ – males, ’F’ – females; data source: [3]–[9].

Common sense suggests that male and female age patterns of overall cancer
incidence rate must differ because of biologically-based differences in specific
cancer sites (such as breast, ovarian cancers for females and prostate cancer
for males). However, the differing age-pattern, and its relative stability over
time and place, cannot be predicted from such a consideration.

The differences in mechanisms involved in cancer initiation and develop-
ment for males and females would be better understood if one could explain
forces shaping the age-trajectories of cancer incidence rates, evaluate the role
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Fig. 2. Female and male “cohort" cancer incidence rates in Japan (Miyagi prefec-
ture), 1929 ”cohort" and in USA (New York State), 1920 ”cohort". Data source: [3]–
[9].

of gender in this process, as well as factors responsible for observed time-
trends of these rates. Below, we describe the approach, which has the capa-
bility to explain the relative stability of the age pattern of cancer incidence
and mortality rates for males and females, as well as their change over time.
The approach explores the possibility to represent cancer incidence rate in
terms of age-related processes. This involves a new mathematical model of
carcinogenesis . This model represents cancer incidence rate as a sum of
two components reflecting basic types of age-related changes in an organism
(see [15]). We show that in contrast to traditional models of carcinogenesis,
the new model, which we call the ontogenetic model, captures main features
of the age pattern and time-trend of cancer incidence rates. It also explains
the relative stability of the intersection pattern of male and female cancer
incidence rates. We illustrate this model by the application to data on overall
cancer incidence rates in Japan (Miyagi prefecture) (data source: [3]–[9]).

2 Data

We apply our model to data on female and male cancer incidence rates in
Japan (Miyagi prefecture). The International Agency for Research on Cancer
(IARC) provides the data on cancer incidence in different countries, in seven
volumes ([3]–[9]). Each volume covers a time period of several years (usually
3–5 years) for each country (or province and/or ethnic group). The periods
vary for different countries. In each volume, female and male average annual
cancer incidence per 100000 over the corresponding time period are given for
the specific country (province and/or ethnic group), in five-year age groups
up to age 85+ (for some countries the first group 0–4 is separated into 0 and
1–4). The data are given for separate sites and for all sites combined. Not all
countries are presented in each volume. The longest time series are available
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for Japan (Miyagi prefecture). Each of the seven volumes contains the data
on cancer incidence in this territory over different time periods. This data set
is the foremost one to analyze time trends in cancer incidence rates over time,
and is used in this study.

3 Three Components of the Individual Aging Process

Ukraintseva and Yashin [15] suggested studying individual aging by analyzing
three internal biological processes that have different age-related dynamics.
These include basal, ontogenetic, and exposure-related components. These
processes also affect the shape of cancer incidence rate. We assume that any
observed age pattern of this rate is the result of the combined influence of
these three age-related processes.

The main characteristic of the basal component is the age-related decline
in the individual rate of living (i.e., in the metabolic and information pro-
cessing rates). This component is responsible for the deceleration of change
in many physiological parameters of an organism with advanced age. It can
be responsible for the leveling-off of the morbidity rate at old ages, observed
for many chronic diseases (see [15]). This component may also contribute
towards the acceleration in rates of onset of acute health disorders leading to
death (due to deceleration in the potency to recover, and hence due to the
progressive decline in individual stress resistance at old ages).

The term ontogenetic refers to the developmental history of an organism.
The ontogenetic component of aging represents effects of metabolic switches
accompanying changes in stages of ontogenesis during life (e.g., in infancy, in
the reproductive period and at the climacteric). This component of individ-
ual aging can be responsible for non-monotonic change in vulnerability of an
organism to stress and diseases due to a variation in hormonal balance in an
organism. The exposure-related component is responsible for long-term accu-
mulation of specific lesions in an organism, which contribute to an increase in
the morbidity rate.

A properly balanced combination of all these components may be used
for an explanation of age-specific morbidity and mortality patterns in human
populations, including cancer morbidity. The obvious advantage of such an
approach is that by dividing individual aging into the processes with different
age-related dynamics, one has an opportunity to use information from differ-
ent studies focused on specific aspects of individual aging. For example, the
age pattern of ontogenetic vulnerability used in the respective component of
cancer incidence rate in our study was obtained from asthma studies (see [12]).
A similar pattern is also produced in the studies of other chronic diseases, as
shown in [11]. The limitations of this approach are associated with the large
amounts of data required for identification of model parameters.
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4 The Incorporated Ontogenetic Model of Cancer

To capture the age pattern, time-trends, as well as the intersection of age-
specific incidence rates for males and females, we incorporate the three-
component model of individual aging [15] into the tumor latency model of
carcinogenesis [18]. We specify patterns of age-dependence for different com-
ponents in the oldest cohort, and set a rule of changing these components from
one cohort to the next to construct the corresponding period rates. Following
this idea we define cancer incidence rates as

µi (x) =

x∫
0

hi (x− t) dF (t), (1)

where i = 1 . . . n stands for a cohort, hi (x) is an age-specific intensity of
unrepaired lesion formation in ith cohort, and F (t) is a cumulative probability
distribution function of progression times. We suppose that progression times
are gamma distributed with fixed shape and scale parameters k and λ and
the functions F (t) are the same for all cohorts.

We also assume that the age-specific intensity of unrepaired lesion forma-
tion hi(x) is a result of the combined influence of age-related processes in an
organism which are represented by the basal, ontogenetic and exposure-related
components described above.

The part of the hazard rate, associated with the basal component, should
be increasing with the declining rate with age. Respectively, the part of the
hazard rate, associated with the exposure-related component, should exhibit
accelerated increase with age by definition of this component. For the sake
of simplicity, we combine the exposure-related and basal effects and specify
one general pattern of hazard rate for these components (referred to as time-
component). We denote this general component htime

i (x), where index i is
associated with the birth year of the cohort, and x is an individual’s age.
Thus, the exposure-related lesions in an organism accumulate with age, on
the grounds of a basal deceleration in the individual rate of living (e.g., due
to general deceleration in information processing) in an organism.

The ontogenetic component has a wave-like shape for both males and fe-
males, with peaks at early ages and around ages of climacterics for females,
and between ages 55 and 65 for males. The peaks correspond to the ages of
hormonal imbalance where this component largely influences risks of morbid-
ity and mortality. A similar pattern of morbidity is observed for many human
chronic diseases (see [11], [12], [13], [14]). In principle, one can use these pat-
terns to model the ontogenetic component. However, these rates, in essence,
reflect not only the ontogenetic changes, but also the other factors responsible
for the manifestation of the disease. Thus, to model the ontogenetic changes
at advanced ages influencing unrepaired lesion formation, we use the function
with a pronounced peak around some specific age, and zero otherwise. The
peak is around the age of menopause for females, and the pattern is shifted
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to the right for males (see Fig. 3). We ignore the peak at early ages for the
sake of simplicity. This component is the same for all cohorts.

Denote hont (x) the value of the ontogenetic component of hazard rate at
age x and let htime

0 (x) be the value of the general component (combined from
exposure-related and basal effects) at age x for the oldest cohort. We suppose
that the last component may change for different cohorts due to an increasing
influence of harmful factors on an organism. The dynamics of this component
for ith cohort, i = 1 . . . n is described as

htime
i (x) = (1 + i d)htime

0 (x) , (2)

where parameter d characterizes the growth rate of the hazard rate over time.
The introduced values hont (x) and htime

i (x) are used to define the age-specific
intensity of unrepaired lesion formation for ith cohort, i = 1 . . . n, as a sum of
these two components,

hi (x) = hont (x) + htime
i (x) . (3)

5 Application of the Ontogenetic Model to Data on
Cancer Incidence Rate by Sex

We apply the model to data on cancer incidence in Japan (Miyagi prefecture)
(data source: [3]–[9]). The parameters of the model are fixed at d = 0.2,
k = 25, and λ = 1. The patterns of the ontogenetic component (hont (x)) and
the time-dependent component in the oldest cohort (htime

0 (x)), for both males
and females, are shown in Fig. 3. The trajectories of htime

0 (x) were assumed
piecewise constant and were estimated using Matlab’s least-square routine.

The observed and estimated male and female incidence rates are shown in
Fig. 3.2. Table 1 illustrates the fit of the model. Note that for the sake of
simplicity, we used a rather straightforward pattern of htime

i (x) and a number
of fixed parameters of the model. A more elaborated specification of htime

i (x)
and an estimation of all the parameters would likely provide a better fit to
the data. However, the message here is that this model captures all the
features of the observed cancer incidence rates mentioned above. It describes
an increase of the rates over time, the deceleration and decline of the rates
at the oldest old ages, and the intersection of male and female incidence
rate curves near the age of female climacteric. Increasing htime

i (x) in cohorts
gives an increase of the period incidence rates over time. The specification
of a cumulative probability distribution function of progression times and
difference in ontogenetic component for males and females produces a decline
of the rates at oldest old ages and the intersection of the male and female
rates.
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Fig. 3. The ontogenetic model of cancer applied to data on overall cancer inci-
dence rates in Japan (Miyagi prefecture): curves of the combined exposure-related
and basal component (”time component") in the oldest cohort and the ontogenetic
component for males and females. Data source: [3]–[9].

Table 1. The ontogenetic model of cancer applied to data on overall female and male
cancer incidence rates in Japan (Miyagi prefecture): norm of differences (columns
’Norm’) and correlation (columns ’Corr’) between modeled and observed incidence
rates. Data source: [3]–[9].

Period Norm (Females) Corr (Females) Norm (Males) Corr (Males)

1959–1960 436.105 0.972 384.487 0.990
1962–1964 285.894 0.982 614.039 0.973
1968–1971 211.032 0.993 198.371 0.998
1973–1977 200.417 0.995 502.704 0.994
1978–1981 233.626 0.998 452.061 0.999
1983–1987 94.588 0.999 196.311 0.999
1988–1992 165.258 0.999 201.993 0.999
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Fig. 4. The ontogenetic model of cancer applied to data on overall cancer incidence
rates in Japan (Miyagi prefecture): male and female observed and modeled rates for
different time periods. Data source: [3]–[9].
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6 Conclusion

The analysis of epidemiological data on cancer shows that cancer became the
leading cause of death in most productive ages of human life. The range of
ages where cancer maintains its leading role tends to increase with years. In
many developed countries the overall cancer incidence rate still tends to in-
crease. Many factors associated with the economic progress could be mainly
responsible for the increase in cancer incidence rate. Among those are the
improved cancer diagnostics, elevated exposure to external carcinogens such
as car exhaust pollution, and factors associated with a Western-like life style
(such as dietary habits, new medicines and home-use chemicals). This increase
is not likely to be explained by the improvement in cancer diagnostics alone.
The survival of cancer patients differs in different countries, despite contin-
uing efforts in sharing medical information on efficiency of cancer treatment
procedures and respective drugs.

Different models of carcinogenesis can explain some of the observed phe-
nomena of human cancer incidence rates. The literature on cancer modeling
is extensive. The list of classical models includes the multistage model of
cancer by Armitage-Doll (AD model), the two-event model by Moolgavkar-
Venzon-Knudson (MVK model), and the tumor latency model by Yakovlev
and Tsodikov. These models describe biological mechanisms involved in can-
cer initiation and development, and derive mathematical representation for
cancer incidence rate. This representation can then be used in the statisti-
cal estimation procedures to test hypotheses about regularities of respective
mechanisms and the validity of basic assumptions. The multi-stage model
of carcinogenesis [2] explains the increase of the rates over age, but does not
describe the entire age-trajectory of cancer incidence rate and does not ex-
plain the intersection of male and female incidence rates. The two-mutation
model [10], as well as the tumor latency model (see [16], [17]), is capable of
describing the entire age-trajectory of cancer incidence rate. However, they
cannot explain the stable intersection pattern of male and female cancer in-
cidence rates.

It is clear that the overall cancer incidence rates for males and females do
have different age patterns. This conclusion stems from the basic biological
knowledge about the difference between male and female organisms. This
difference is responsible for the different susceptibility to cancer of certain
sites (e.g., breast cancer). The exposure to hazardous materials can also
be different for males and females because of their difference in social and
economic life. There is, however, neither a theory nor a mathematical model
that predicts how age-trajectories of cancer incidence rates will behave, and
to what extent these trajectories are affected by environmental and living
conditions experienced by populations in different countries.

In this paper we show that the relative difference in age patterns of male
and female cancer incidence rates may be explained by the difference in onto-
genetic curves of age-dependent susceptibility to cancer for males and females.
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This is because the peak of hormonal imbalance in females is between ages 45
and 55, when the reproductive system ultimately stops functioning. In males
this peak is shifted to the right (between 55 and 65). The age pattern of can-
cer incidence rate reflects the contribution of the ontogenetic component of
age-related processes in an organism. The heterogeneity in individual frailty
may also have a substantial contribution. The ontogenetic model is capable
of describing the time trends and the stable pattern of intersection in the
male and female incidence rates. In our recent paper [1], we pointed out that
the universal pattern of male/female cancer incidence rates might also be a
result of different strategies of resource allocation between “fighting" against
external stresses and “fighting" against physiological aging used by male and
female organisms. This effect needs further explanation, from both biological
and mathematical perspectives. The availability of molecular-biological and
epidemiological data on stress resistance (e.g., cellular sensitivity to oxidative
stress) would allow for the development of more sophisticated mathematical
models of such mechanisms. New models are also needed to explain age pat-
tern and time-trends in male/female cancer mortality rates. These models
should include information on cancer incidence rates as well as on survival of
cancer patients.
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1 Introduction

Classical reliability theory and survival analysis parts give methods for anal-
ysis of failure time data.

An important part of modern reliability theory and survival analysis is
modelling and statistical analysis of ageing , wearing, damage accumulation,
degradation processes of technical units or systems, living organisms ([ME98],
[WK04], [BN02]).

Lately, methods for simultaneous degradation-failure time data analysis
are being developed ([BN01], [WT97], [BBK04]).

Some degradation processes are not non-reversible and degradation pro-
cesses may be renewed. For example, the degradation of pancreas and thyroid
can be defined by the quantities of secreted insulin and thyroidal hormone,
respectively. By injection of insulin the degradation process of pancreas is
(indirectly) renewed. By injection of thyroxine (case of hyperthyroid) or car-
bimazole (case of hypothyroid) the degradation process of thyroid is (indi-
rectly) renewed. If the value of hormone (for example, insulin) approaches a
critical value, the risk of failure increases quickly.

In reliability, a simple example is a tire with renewable protector. The
risk of failure depends on the level of protector wear .

We consider relatively simple linear (or loglinear) degradation process. On
the other side, we consider rather complicated situation of non-parametric
estimation when units are renewable and the failure intensities depend on
degradation level of the unit.

We consider nonparametric estimation of degradation and failure process
characteristics using degradation and failure time data with renewals. See
also the paper [L04] who considers parametric estimation in similar context.
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2 Model

For j ≥ 1, let Sj denote the moment of the jth renewal (we assume S1 = 0)
and Aj be the inverse to the degradation rate in the interval (Sj ;Sj+1].

Assume that the random variables A1, A2, . . . are independent and iden-
tically distributed according to some cumulative distribution function π (or
only independent with the cumulative distribution functions π1, π2, . . . ).

Denote by Z(t) the value of the degradation process at the moment t.
Degradation process model:

Z(t) = (t− Sj)/Aj for Sj < t ≤ Sj+1, (1)

where Sj+1 =
∑j

i=1 Aiz0.
Let T denote the moment of a traumatic failure.
Failure model:

P (T > t | Z(s), 0 ≤ s ≤ t) = exp
{
−
∫ t

0

λ
(
Z(s)

)
ds

}
, (2)

λ being a positive function.
Denote

m(t) = j, if t ∈ (Sj ;Sj+1] (j ≥ 1), m = m(T ). (3)

The failure occurs in the interval (Sm, Sm+1].
The data (for one unit) can be defined as the following vector of a random

length: (
S1, . . . , Sm, T, Z(T )

)
.

Remark 1. The conditional distribution of T (with respect to the σ-algebra
A generated by the random variables A1, A2, . . . ) can be defined in another
way, which is more convenient for computer simulations.

Firstly, define recursively conditionally independent random variables ∆T1,
∆T2, . . . such that

PA(∆Tj > t) = e−
∫ t
0 λ(s/Aj)ds

(here PA denotes the conditional probability with respect to A). Secondly,
set

T̃ =
{

S1 + ∆T1, if ∆T1 ≤ A1z0;
S2 + ∆T2, if ∆T1 > A1z0, ∆T2 ≤ A2z0;

Then conditional distribution of T̃ coincides with that of T .
Indeed, if t ∈ (Sj , Sj+1] then

PA{T̃ > t} = PA{∆T1 > A1z0, . . . ,∆Tj−1 > Aj−1z0,∆Tj > t− Sj}

= PA{∆T1 > A1z0} · · ·PA{∆Tj−1 > Aj−1z0}PA{∆Tj > t− Sj}
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= e−
∫ A1z0
0 λ(s/A1)ds · · · e−

∫ Aj−1z0
0 λ(s/Aj−1)dse−

∫ t−Sj
0 λ(s/Aj)ds

= e−
∫ S2

S1
λ((s−S1)/A1)ds · · · e−

∫ Sj
Sj−1

λ((s−Sj−1)/Aj−1)ds
e
−
∫ t

Sj
λ((s−Sj)/Aj)ds

= e−
∫ t
0 λ̃(s)ds.

Set
Λ(z) =

∫ z

0

λ(y)dy.

We suppose that the distribution function π and the cumulative intensity
function Λ are completely unknown.

We are interested in the probability

pj(z) = P (T > Sj + zAj | T > Sj)

to attain the level of degradation z (0 ≤ z ≤ z0) before a failure occurs given
that an unit had been renewed j − 1 times (j = 1, 2, . . . ).

The considered model implies that

pj(z) =
∫ ∞

0

exp {−aΛ(z)} dπj(a).

3 Decomposition of a counting process associated with
Z(T )

For z ∈ [0; z0) set
N(z) = 1{Z(T )≤z} (4)

and let Fz denote the σ-algebra generated by the following collections of
events:

{A1 ≤ a1, . . . , Aj ≤ aj} ∩ {m = j} (5)

and
{A1 ≤ a1, . . . , Aj ≤ aj} ∩ {m = j} ∩ {Z(T ) ≤ y}; (6)

here j ≥ 1, a1, . . . , aj > 0 and y ≤ z.

Theorem 1. The process N(z) can be written as the sum

N(z) =
∫ z

0

Y (y)dΛ(y) + M(z), (7)

where M(z) is a martingale with respect to the filtration (Fz | 0 ≤ z < z0)
and

Y (y) =
Am1{Z(T )≥y}

1 − e−Am(Λ(z0)−Λ(y))
. (8)
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Proof. Fix y < z, j ≥ 1 and denote by X = 1{A1≤a1,...,Aj≤aj}. Then

E
[
X1{m=j}

(
N(z) −N(y)

)]
= E

[
X1{Sj+Ajy<T≤Sj+Ajz}

]
= E

[
X
(
e−
∫ Sj+Ajz

0 λ(Z(s))ds−e−
∫ Sj+Ajy

0 λ(Z(s))ds
)]

= E
[
X

∫z
y

e−
∫ Sj+Ajx

0 λ(Z(s))dsAj

]
dΛ(x)

=
∫ z

y

E
[
Xe−

∫ Sj+Ajx

0 λ(Z(s))dsAjdΛ(x)
]

=
∫ z

y

E
[
XAj

1{Sj+Ajx<T≤Sj+1}

1 − e
−
∫ Sj+1

Sj+Ajx λ(Z(s))ds

]
dΛ(x)

=
∫ z

y

E
[
X1{m=j,Z(T )≥x}

Aj

1 − e−Aj(Λ(z0)−Λ(x))

]
dΛ(x) = E

[
X1{m=j}

∫ z

y

Y (x)dΛ(x)
]
.

Moreover, for each y′ ≤ y,

E
[
X1{m=j,Z(T )≤y′}

(
N(z) − Ñ(y)

)]
= 0

and
E
[
X1{m=j,Z(T )≤y′}

∫ z

y

Y (x)dΛ(x)
]

= 0

(because 1{Z(T )≤y′}Y (x) = 0 for all x > y). Since the union of collections
(5) and (6) is closed with respect to finite intersections of events, obtained
equalities mean, by the Monotone Class Theorem, that

E
[
N(z) −

∫ z

0

Y (x)dΛ(x)
∣∣ Fy

]
= N(y) −

∫ y

0

Y (x)dΛ(x).

Hence the process M(z) is a martingale.
The proof is complete.
Note that we can not use the Nelson–Aalen estimator based on the ob-

tained decomposition because the function Y (y) depends on the values of Λ
in the point z0 > y. On the other hand, the decomposition is useful for
demonstration of asymptotic properties of estimators.

Let us consider another decomposition of the process N(z). Set

N∗(t) = 1{T≤t}, Y ∗(t) = 1{T≥t}.

Denote by F∗
t the σ-algebra generated by N∗(s), Y ∗(s), 0 ≤ s ≤ t. Then

N∗(t) =
∫ t

0

λ(Z(u))Y ∗(u)du + M∗(u), (9)

where M∗(u) is a martingale with respect to the filtration (F∗
t | t ≥ 0).

Set
Z = Z(T ), Zj =

{
z0, if j < m;
Z, if j = m. (10)
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Theorem 2. The process N(z) can be written as the sum

N(z) =
∫ z

0

Y ∗∗(y)dΛ(y) + M∗∗(z), (11)

where

Y ∗∗(y) =
m∑

j=1

Aj1{Zj≥y}, M∗∗(z) =
∫ ∞

0

1{Z(u)≤z}dM
∗(u). (12)

Proof.

N(z) = 1{Z(T )≤z} =
∫ ∞

0

1{Z(u)≤z}dN
∗(u) =

∫ ∞

0

1{Z(u)≤z}λ(Z(u))Y ∗(u)du

+
∫ ∞

0

1{Z(u)≤z}dM
∗(u) =

∫ T

0

1{Z(u)≤z}

∞∑
j=1

λ

(
u− Sj

Aj

)
1{Sj<u≤Sj+1}du+M∗∗

=
m−1∑
j=1

∫ Sj+1

Sj

1{ u−Sj
Aj

≤z
}λ
(
u− Sj

Aj

)
du+

∫ T

Sm

1{u−Sm
Am

≤z}λ
(
u− Sm

Am

)
du+M∗∗ =

m−1∑
j=1

∫ Sj+1−Sj
Aj

0

1{v≤z}λ (v)Ajdv +
∫ T−Sm

Am

0

1{v≤z}λ (v)Amdv + M∗∗ =

m∑
j=1

∫ Zj

0

1{v≤z}AjdΛ(v) + M∗∗ =
m∑

j=1

Aj

∫ z

0

1{v≤Zj}dΛ(v) + M∗∗.

4 Estimation

4.1 The data

Suppose that n units are on test and, for ith unit, denote by Sij (j ≥ 1)
the moment of jth renewal, by Aij the inverse to the degradation rate in the
interval (Sij ;Si,j+1], by Zi(t) the degradation process and by Ti the moment
of its failure.

Set ∆Sij = Si,j+1−Sij and define mi as in the case of one unit writing (for
the ith unit) Sij and Ti instead of Sj and T . Denote Zi = Zi(Ti). Then the
data can be defined as the following collection of vectors of a random length:

(Si1, . . . , Simi
, Ti, Zi), i = 1, . . . , n.

Define the processes Ni(z), Yi(y) and Mi(z) as in Theorem 1, with Z(T ), Am,
Sm replaced by Zi(Ti), Simi

, Aimi
. Set
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N̄(z) =
n∑

i=1

Ni(z), Ȳ (y) =
n∑

i=1

Yi(y), M̄(z) =
n∑

i=1

Mi(z)

and let F̄z denote the σ-algebra, generated by the events of the form given just
before Theorem 1 with Aj , m, Z(T ) replaced by Aij , mi, Zi(Ti) (i = 1, . . . , n).
Then Theorem 1 implies that

N̄(z) =
∫ z

0

Ȳ (y)dΛ(y) + M̄(z), (13)

and M̄(z) is a martingale with respect to the filtration (F̄z).
Theorem 2 implies another decomposition:

N̄(z) =
∫ z

0

Ỹ (y)dΛ(y) + M̃(z), (14)

where

Ỹ (y) =
n∑

i=1

mi∑
j=1

Aij1{Zij≥y},

M̃(z) =
n∑

i=1

∫ ∞

0

1{Zi(u)≤z}dM
∗
i (u);

here M∗
i is a martingale with respect to the filtration (F∗

it | t ≥ 0), where

F∗
it = σ(N∗

i (s), Y ∗
i (s), 0 ≤ s ≤ t), N∗

i (t) = 1{Ti≤t}, Y
∗
i (t) = 1{Ti≥t}.

4.2 Estimation of Λ

Consider the problem of non-parametric estimation of Λ. Note that we can
not use the Nelson–Aalen estimator based on the decomposition (13) because
the function Ȳ (y) depends on the values of the function Λ in the interval
[y, z0].

The decomposition (14) implies the estimator

Λ̂(z) =
∫ z

0

dN̄(y)
Ỹ (y)

. (15)

We shall show that this estimator can be obtained by other way, considering
the non-parametric model as the limit of a sequence of parametric models.

Consider some parametric family (λθ | θ ∈ Θ ⊂ Rp) of intensity functions
λ and find the maximum likelihood estimators θ̂ of unknown parameter θ.

Let Θ = (0;∞)p and for θ = (θ1, . . . , θp) set

λθ(z) =

⎧⎪⎨⎪⎩
θ1, for z(0) < z ≤ z(1);

...
θp, for z(p−1) < z ≤ z(p);
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here 0 = z(0) < z(1) < · · · < z(p−1) < z(p) = z0 are fixed cut points.
A natural container of the data vectors

Ui = (Ai1, . . . , Aimi
, Zi(Ti)) (16)

is the space E =
∐∞

j=1 Ej , where Ej = (0;∞)j+1 and
∐

stands for the direct
sum of topological spaces. Define the Borel measure ν on E by setting, for
each Borel subset C ⊂ E,

ν(C) = νj(C ∩ Ej);

here dνj(a1, . . . , aj , z) = dπ(a1) · · · dπ(aj)dz. Then the probability density
function p(u) of the random element (16) (with respect to the measure ν) is
given by the equalities

p(u) = e−Λ̃(sj+ajz)aj λ̃(sj + ajz) for u = (a1, . . . , aj , z) ∈ Ej ;

here sj = (a1 + · · · + aj−1)z0, λ̃(t) = λ(Z(t)), Λ̃(t) =
∫ t

0
λ̃(s)ds. Indeed, if

C ∩ Ej = (0; a∗1] × · · · × (0; a∗j ] × (0; z∗], then

P{Ui ∈ C} =
∞∑

j=1

P{Ui ∈ C ∩ Ej}

=
∞∑

j=1

P{mi = j, Ai1 ≤ a∗1, . . . , Aij ≤ a∗j , Zi(Ti) ≤ z∗}

=
∞∑

j=1

P{Ai1 ≤ a∗1, . . . , Aij ≤ a∗j , Sij < Ti ≤ Sij + Aijz
∗}

=
∞∑

j=1

∫ a∗
1

0

dπ(a1) · · ·
∫ a∗

j

0

dπ(aj)
[
e−Λ̃(sj) − e−Λ̃(sj+ajz∗)

]
=

∞∑
j=1

∫ a∗
1

0

dπ(a1) · · ·
∫ a∗

j

0

dπ(aj)
∫ z∗

0

e−Λ̃(sj+ajz)aj λ̃(sj + ajz)dz

=
∫

C

p(u)dν(u).

The log-likelihood equals

L(θ) =
n∑

i=1

[
−Λ̃(Simi

+ Aimi
Zimi

) + log(Aimi
) + log λ̃(Simi

+ Aimi
Zimi

)
]

=
n∑

i=1

[
−

mi∑
j=1

∫ Sij+AijZij

Sij

λθ((s− Sij)/Aij)ds + log λθ(Zimi
) + const

]
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=
n∑

i=1

[
−

mi∑
j=1

Aij

∫ Zij

0

λθ(z)dz + log λθ(Zimi)
]

+ const

= −
n∑

i=1

mi∑
j=1

p∑
k=1

Aij

∫ z(k)

z(k−1)

θk1{Zij≥z}dz+
n∑

i=1

p∑
k=1

log θk1{z(k−1)<Zimi
≤z(k)}+const.

The maximum likelihood estimators satisfy the equations

−
n∑

i=1

mi∑
j=1

Aij

∫ z(k)

z(k−1)

1{Zij≥z}dz +
1
θk

n∑
i=1

1{z(k−1)<Zimi
≤z(k)} = 0,

i.e.

θ̂k =

∑n
i=1 1{z(k−1)<Zimi

≤z(k)}∑n
i=1

∑mi

j=1 Aij

∫ z(k)

z(k−1)
1{Zij≥z}dz

.

Now formally take p = n and z(k) = Z(k), where Z(1), . . . , Z(n) are the
values Zimi

in ascending order. Then 1{Zij≥z} = 1{Zij≥Z(k)} for each
z ∈ (Z(k−1);Z(k)] and therefore

λ̂(Z(k)) =
1∑n

i=1

∑mi

j=1 Aij1{Zij≥Z(k)}(Z(k) − Z(k−1))
.

The cumulative intensity function at point Z(k) then can be estimated by

k∑
l=1

(Z(l) − Z(l−1))λ̂(Z(l)).

We get the following estimator:

Λ̂(z) =
∑

Z(l)≤z

1
Ỹ (Z(l))

=
∫ z

0

dN̄(y)
Ỹ (y)

.

4.3 Large sample properties of Λ̂

Proposition 1. The process Λ̂ is a semi-martingale with the characteristics
(Bh, Ch, ν), where

Bh(z) =
∫ z

0

h
(
Ỹ −1(y)

)
Ȳ (y)dΛ(y),

Ch(z) =
∫ z

0

h2
(
Ỹ −1(y)

)
Ȳ (y)dΛ(y),

ν(dy, du) = Ȳ (y)dΛ(y)εỸ −1(y)(du),

where εu denotes the Dirac measure concentrated at point u, h : R → R is
a continuous function with compact support, which equals u for u in some
neighborhood of 0.
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Let us find the first characteristic, Bh, of the process Λ̂. We have

∆Λ̂(z) = Λ̂(z) − Λ̂(z−) =
∆N̄(z)
Ỹ (z)

=
n∑

i=1

1{Zimi
=z}

Ỹ (Zimi)
,

∑
y≤z

∆Λ̂(y) =
n∑

i=1

∑
y≤z

1{Zimi
=z}

Ỹ (Zimi)
=

n∑
i=1

1{Zimi
≤z}

Ỹ (Zimi
)

=
∫ z

0

dN̄(y)
Ỹ (y)

= Λ̂(z),

∑
y≤z

h(∆Λ̂(y)) =
n∑

i=1

1{Zimi
≤z}h

(
Ỹ −1(Zimi

)
)
.

So
Λ̂h(z) = Λ(z) +

∑
y≤z

[
h(∆Λ(y)) −∆Λ(y)

]
=

n∑
i=1

1{Zimi
≤z}h

(
Ỹ −1(Zimi)

)
=
∫ z

0

h
(
Ỹ −1(y)

)
dN̄(y).

By (13),

Λ̂h(z) =
∫ z

0

h
(
Ỹ −1(y)

)
Ȳ (y)dΛ(y) +

∫ z

0

h
(
Ỹ −1(y)

)
dM̄(y).

Since the process Ỹ is left-continuous, the second term in the right-hand side
is a martingale. The first term is continuous and therefore predictable. Hence
it equals Bh(z).

The second characteristic, Ch, is a compensator of the process (Λ̂h−Bh)2.
By the well-known formula for predictable variation of stochastic integrals,

Ch(z) =
〈∫

h(Ỹ −1)dM̄
〉
(z)

=
∫ z

0

h2
(
Ỹ −1(y)

)
d〈M̄〉(y) =

∫ z

0

h2
(
Ỹ −1(y)

)
Ȳ (y)dΛ(y).

The third characteristic, ν, is a compensator of the jump measure ρ of the
process Λ̂. Obviously,

ρ(dy, du) =
∑
y≥0

1{∆Λ̂(y) �=0}ε(y,∆Λ̃(y)(dy, dx)

=
n∑

i=1

ε(Zi·,Ỹ −1(Zimi
))(dy, dx).

If U(y) is a continuous adapted process and f(u) is a deterministic continuous
function, then
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0

∫
R

U(y)f(u)ρ(dy, du) =
n∑

i=1

U(Zimi
)f
(
Ỹ −1(Zimi

)
)
1{Zimi

≤z}

=
∫ z

0

U(y)f
(
Ỹ −1

)
dN̄(y) =

∫ z

0

U(y)f
(
Ỹ −1

)
Ȳ (y)dΛ(y)+

∫ z

0

U(y)f
(
Ỹ −1

)
dM̄(y).

The first term in the right-hand side is continuous and therefore predictable.
The second term is a martingale. The first term can be written∫ z

0

∫
R

U(y)f
(
x
)
Ȳ (y)dΛ(y)εỸ −1(dx) =

∫ z

0

∫
R

U(y)f
(
x
)
ν(dy, du).

The proof is completed.
To formulate the conditions under which the estimator Λ̂ is consistent, we

need the following notation:

b(z) = n−1EȲ (z) = E
[ Am1{Z(T )≥z}

1 − e−Am(Λ(z0)−Λ(y))

]
.

Direct calculations show that EỸ (z) also equals nb(z). Indeed, Z(T ) = (T −
Sj)/Aj for Sj < T ≤ Sj+1, so

b(z) =
∞∑

k=1

E
[Ak1{Sk+Akz<T≤Sk+1}

1 − e−Am(Λ(z0)−Λ(y))

]

=
∞∑

k=1

E
[ Ak

1 − e−Am(Λ(z0)−Λ(y))

(
e−Λ̃(Sk+Akz) − e−Λ̃(Sk+1)

)]

=
∞∑

k=1

E
[
Ake

−Λ̃(Sk+Akz)
]

=
∞∑

k=1

E
[
Ak1{T≥Sk+Akz}

]
= E

m∑
k=1

[
Ak1{T≥Sk+Akz}

]

= E
m∑

k=1

[
Ak1{Zk≥z}

]
= n−1EỸ (z).

Theorem 3. Suppose that
(i) infz≤z0 b(z) > 0, supz≤z0

b(z) < ∞,

(ii) supz≤z0
| n−1Ȳ (z) − b(z) | P→ 0, supz≤z0

| n−1Ỹ (z) − b(z) | P→ 0, as
n → ∞.
Then the estimator Λ̂ is uniformly consistent, i.e.

sup
z≤z0

| Λ̂(z) − Λ(z) | P→ 0,

as n → ∞.



Non-parametric estimation in degradation-renewal-failure models 33

Proof. By Theorem VIII.2.17 of [1] and Proposition1 it suffices to prove the
following:

1) supz≤z0
| Bh(y)−Λ(z) |= supz≤z0

|
∫ z

0
h
(
Ỹ −1(y)

)
Ȳ (y)dΛ(y)−Λ(z) | P→

0;
2) supz≤z0

| Ch(y) |=
∫ z0

0
h2
(
Ỹ −1(z)

)
Ȳ (z)dΛ(z) P→ 0;

3) for each bounded continuous non-negative function g, which equals 0
in some neighborhood of 0,

sup
z≤z0

|
∫ z

0

∫
R

g(x)ν(dy, dx) |=
∫ z0

0

g
(
Ỹ −1(z)

)
Ȳ (z)dΛ(z) P→ 0.

Set c1 = infz≤z0 b(z), c2 = supz≤z0
b(z) and suppose g(u) = 0 for | u |≤ c.

Then, for n ≥ 2/(cc1),

P
{∫ z0

0

g
(
Ỹ −1(z)

)
Ȳ (z)dΛ(z) > ε

}
= P

{
∃z ≤ z0 : Ỹ −1(z) > c,

∫
g
(
Ỹ −1(z)

)
>c

g
(
Ỹ −1(z)

)
Ȳ (z)dΛ(z) > ε

}
≤ P

{
∃z ≤ z0 : Ỹ −1(z) > c

}
≤ P

{
∃z ≤ z0 : n−1Ỹ (z) <

1
nc

}
≤ P

{
∃z ≤ z0 : n−1Ỹ (z) < c1/2

}
≤ P

{
∃z ≤ z0 : n−1Ỹ (z) < c1/2+b(z)−c1

}
≤ P

{
sup
z≤z0

| n−1Ỹ (z) − b(z) |> c1/2
}
→ 0,

which gives 3).
Now suppose that h(u) = u for | u |≤ c. Similarly as above

P
{∫ z0

0

h2
(
Ỹ −1(z)

)
Ȳ (z)1{Ỹ −1(z)>c}dΛ(z) > ε

}
≤ P

{
∃z ≤ z0 : Ỹ −1(z) > c

}
→ 0.

Moreover, for n sufficiently large,

P
{∫ z0

0

h2
(
Ỹ −1(z)

)
Ȳ (z)1{Ỹ −1(z)≤c}dΛ(z) > ε

}
≤ P

{∫ z0

0

Ỹ −2(z)Ȳ (z)dΛ(z) > ε
}

≤ P
{
∃z ≤ z0 : Ỹ −2(z)Ȳ (z) > ε/Λ(z0)

}
≤ P

{
supz n

−1Ȳ (z)
infz n−2Ỹ 2(z)

>
n1/2ε

n−1/2Λ(z0)

}
≤ P (sup

z
n−1Ȳ (z) > n1/2ε) + P (inf

z
n−2Ỹ 2(z) < n−1/2Λ(z0))

= P
{
∃z ≤ z0 : n−1Ȳ (z) > n1/2ε

}
+ P

{
∃z ≤ z0 : n−2Ỹ 2(z) < n−1/2Λ(z0)

}
≤ P

{
∃z ≤ z0 : n−1Ȳ (z) > 2c2) + P

{
∃z ≤ z0 : n−1Ỹ (z) < c1/2

}}
≤ P

{
sup
z≤z0

| n−1Ȳ (z) − b(z) |> c2
}

+ P
{

sup
z≤z0

| n−1Ỹ (z) − b(z) |> c1/2
}
→ 0.
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This yields 2).
Relation 1) will be proved if we show that

sup
z≤z0

| h
(
Ỹ −1(z)

)
Ȳ (z) − 1 | P→ 0.

Similarly as above we get

P

{
sup
z≤z0

| h
(
Ỹ −1(z)

)
Ȳ (z) − 1 | 1{n−1Ỹ (z)<c1/2} > ε

}
≤ P

{
∃z ≤ z0 : n−1Ỹ (z) < c1/2

}
→ 0.

On the other hand, for n sufficiently large

sup
z≤z0

| h
(
Ỹ −1(z)

)
Ȳ (z) − 1 | 1{n−1Ỹ (z)>c1/2} =

sup
z≤z0

| Ỹ −1(z)Ȳ (z) − 1 | 1{n−1Ỹ (z)>c1/2} = sup
z≤z0

| Ȳ (z) − Ỹ (z)
Ỹ (z)

| 1{ 1
Ỹ (z)

< 2
nc1

}

≤ 2
nc1

sup
z≤z0

| Ȳ (z) − Ỹ (z) |= 2
c1

sup
z≤z0

| n−1Ȳ (z) − n−1Ỹ (z) |

≤ 2
c1

sup
z≤z0

| n−1Ȳ (z) − b(z) | +
2
c1

sup
z≤z0

| n−1Ỹ (z) − b(z) |→ 0.

The proof is complete.

Theorem 4. Suppose that the conditions of Theorem 3 are satisfied, E(A) <
∞. Then the random function

√
n(Λ̂− Λ)

tends in distribution in the space D[0, z0] to the mean zero Gaussian process
V with the covariance function

σ(z1, z2) = cov(V (z1), V (z2)) =

E

∫ z1

0

∫ z2

0

m∑
k=1

A2
k

eΛ̃(Sk+1) − eΛ̃(Sk+Ak(u∧v))

dΛ(u)dΛ(v)
b(u)b(v)

+
∫ z1∧z2

0

dΛ(y)
b(y)

.

Proof. The asymptotic distribution of the estimator Λ̂ can be found using the
martingale decomposition of N̄ , i.e. using the equality

n1/2(Λ̂(z) − Λ(z)) = n1/2

∫ z

0

(
Ȳ (y)
Ỹ (y)

− 1
)
dΛ(y) + n1/2

∫ z

0

dM̄(y)
Ỹ (y)
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= n−1/2

∫ z

0

Ȳ (y) − Ỹ (y)
b(y)

dΛ(y)+n−1/2

∫ z

0

(
n

Ỹ (y)
− 1

b(y)

)
(Ȳ (y)−Ỹ (y)) dΛ(y)

+n−1/2

∫ z

0

dM̄(y)
Ỹ (y)

= ∆1(z) + ∆2(z) + ∆3(z).

Let us find the mean and the covariance function of the first term. The
equality EỸ (y) = EȲ (y) implies that

E∆1(z) = En−1/2

∫ z

0

Ȳ (y) − Ỹ (y)
b(y)

dΛ(y) = 0.

Let us find the covariance function: for z1 ≤ z2 ≤ z0

cov(∆1(z1),∆1(z2))

= n−1

∫ z1

0

∫ z2

0

1
b(u)

1
b(v)

E(Ȳ (u) − Ỹ (u))(Ȳ (v) − Ỹ (v))dΛ(u)dΛ(v),

where
n−1E(Ȳ (u) − Ỹ (u))(Ȳ (v) − Ỹ (v))

= E
m∑

k=1

A2
k

[ 1{Sk+Aku<T≤Sk+1}

1 − e−Am(Λ(z0)−Λ(u))
− 1{Ti≥Sik+Aiku}

]
×

[ 1{Sk+Akv<T≤Sk+1}

1 − e−Am(Λ(z0)−Λ(v))
− 1{Ti≥Sik+Aikv}

]
= E

m∑
k=1

A2
k

eΛ̃(Sk+1) − eΛ̃(Sk+Ak(u∧v))
.

The second term converges in probability to zero uniformly on [0, z0]. The
first and the third terms are asymptotically independent. The asymptotic dis-
tribution of the third term is obtained similarly as the asymptotic distribution
of the Nelson-Aalen estimator.

It tends in distribution in the space D[0; z0] to the zero mean Gaussian
process W with the covariance function

E{W (z)W (z′)} = σ2
k(z ∧ z′), (17)

where
σ2

k(z) =
∫ z

0

dΛ(y)
b(y)

. (18)

4.4 Estimation of the probability pj(z)

If πi = π then the probability

pj(z) = P (T > Sj + zAj | T > Sj)

to attain the level of degradation z (0 ≤ z ≤ z0) before a failure occurs given
that an unit had been renewed j − 1 times (j = 1, 2, . . . ) is estimated by the
statistic
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p̂j(z) =
∫ ∞

0

exp
{
−aΛ̂(z)

}
dπ̂(a) =

1
m

n∑
i=1

mi∑
j=1

exp

⎧⎨⎩−Aij

∑
Zk,mk
≤ z

1/Ỹ (Zk,mk
)

⎫⎬⎭ ,

because

π̂(a) =
1
m

n∑
i=1

mi∑
j=1

1{Aij≤a}, m =
n∑

i=1

mi.

Otherwise, the estimator is

p̂j(z) =
∫ ∞

0

exp
{
−aΛ̂(z)

}
dπ̂j(a) =

1
m(j)

∑
mi≥j

exp

⎧⎨⎩−Aij

∑
zk,mk

≤z

1/Ỹ (Zk,mk
)

⎫⎬⎭ ,

where

π̂j(a) =
∑n

i=1 1{Aij≤a,mi≥j}

m(j)
, m(j) =

n∑
i=1

1{j≤mi}.
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Summary. The paper considers the analysis of disablement process of the elderly
using the general path model with noise. The impact of dementia and sex on
degradation is analysed. These joint model for survival and longitudinal data is
discussed.
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1 Introduction

Aging of the French population, which included 21.3% persons aged 60 and
over at the 1999 census, is the result of the decrease of the number of births
and the increase of life expectancy. This phenomenon raises the problem of
the management by the health care system and the society of age-related
diseases and their consequences.

The World Health Organisation (WHO) proposed the International Clas-
sification of Impairment, Disability and Handicap to conceptualise the con-
sequences of disease [WHO80]. Disability is defined as the reduction of the
capacity to accomplish daily activities, in a way normal for a given age and
gender. These activities include basic Activities of Daily Living (ADL), such
as bathing, dressing or eating, and more complex activities including house-
hold activities called Instrumental Activities of Daily Living (IADL). Activ-
ities performed outside, often referred to "mobility", correspond to an even
higher level of difficulty. There is a hierarchical relationship between these
three domains of disability. We showed that an indicator combining mobil-
ity disability, assessed by the Rosow scale [RB66], IADL disability assessed
by the Lawton scale [LB69] and ADL disability assessed by five items of
the Katz scale [KDCG70] was an almost perfect four grade Guttman scale
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[B-GRLD00]. These four grades correspond to four degrees of increasing dis-
ability, from full functional independence to severe disability. Transitions
observed over time between these disability grades may be progressions to a
more severe grade (called increasing degradation) but also regressions to a less
severe grade (called decreasing degradation) are possible. Transition to death
may be observed from any disability grade. Thus the degradation process
may be modelled by a five state model, including an absorbing state: death.
Markov models have been used to estimate the transition intensities between
these states, function of covariates [B-GVP01]. Other models may be used,
which model the degradation process as a continuum from full independence
to the most severe disability, including phases of recovery and different slopes
of decline, function of the characteristics of the subject. Disability at older
ages results from lifelong disabling diseases and living conditions, in addition
to specific age-associated diseases such as dementia . Thus the degradation
process will be modified by covariates, in particular socio-demographic fac-
tors. Age is a major factor to be taken into account since the risk of death
strongly increases with age, but also because age is the main risk factor of
age-associated diseases. In particular, oldest old persons, those aged 80 and
over, often suffer from several pathologies in addition to the proper effect of
physiological aging. Women have a longer life expectancy than men, and they
experience living conditions and disease different from those of men. Dementia
is a major disabling disease in the elderly. Thus all these factors are expected
to impact the degradation process and the risk of death. The objective of this
research was to describe the degradation process in elderly persons aged 65
and over function of their socio-demographic characteristics and the diagnosis
of dementia, using the general path model of degradation with noise.

1.1 Data

The data come from the PAQUID (Personnes Agées QUID) epidemiologi-
cal study which aims to study cerebral aging and disability in elderly people.
PAQUID is a prospective cohort study in which 3777 community dwellers
aged 65 and over were included in 1988-89. The participants were randomly
selected from electoral rolls of 75 parishes in Gironde and Dordogne, in south-
western France. The initial participation rate was 68% and the sample was
representative in terms of age and sex of the local aged population. The
participants were visited at home by a psychologist for the baseline interview,
and then visited again one, three, five, eight, ten and thirteen years afterwards
in the same manner. Disability was recorded at each follow-up with the fol-
lowing instruments: - Five activities from the Katz ADL scale [KDCG70]:
bathing, dressing, toileting, transferring, and feeding. For each activity the
subject was rated on a three grade scale : independent, needs partial help,
dependent. We considered a subject as dependent for ADL if he was depen-
dent for at least one of the five activities according to the threshold defined
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by Katz for each activity. - Five IADL from the Lawton scale [LB69] com-
mon to both sexes: using the telephone, means of transportation, shopping,
responsibility for medication and budget management. Three activities were
added when assessing women: meals preparation, housekeeping and doing the
laundry. For each item a threshold for dependence was defined by Lawton and
we considered that a subject was dependent for IADL if he was dependent
for at least one in five (for men) or in eight (for women) of these activities.
- Mobility was assessed on the Rosow and Breslau scale which includes three
activities : doing heavy housework, climbing stairs, and walking between 500
m and 1 km. Subjects were considered as dependent if they were unable to
perform at least one of these activities.

A four grade hierarchical disability indicator was built as follows
[B-GRLD00] :

Grade 0: fully independent subject for the three domains of disability.
Grade 1: subjects dependent only for the mobility scale, but independent for
IADL and ADL.

Grade 2: subjects dependent for mobility and IADL but independent for
ADL.

Grade 3: subjects dependent for each of the three domains. This indica-
tor classified 99.3% of the subjects at baseline with a scalability coefficient
of 0.98 [B-GRLD00]. In a second step a hierarchy was also identified within
each of the three disability categories. The mobility disabled subjects (grade
1 disability) were divided into two subgroups : those dependent only for doing
heavy housework and those also dependent for climbing stairs or walking. For
IADL disability three groups of progressively increasing disability were identi-
fied : disability for shopping and/or using means of transportation, disability
for managing medication and/or budget in addition to the previous category,
and disability for using the telephone in addition to the two previous cate-
gories. For ADL disability three subgroups were identified : those dependent
only for bathing and/or dressing, those also dependent for toileting and/or
transferring, and those also dependent for feeding. Thus the number of dis-
ability items was reduced to eight levels of increasing disability. A score was
built as follows.

Among the 3777 participants in the PAQUID cohort at baseline, 3642 had
all the relevant disability variables recorded and at least one follow-up visit
or deceased. This sample included 1530 men (42%) and 2112 women (58%).
The distribution of the score in this sample is given in table 1. Older subjects
had higher disability scores. In each age group women tended to have higher
disability scores than men. Only 2864 subjects (1183 men and1681 women)
with at least two measures of the score could be used for modelisation. In this
sample 403 subjects (14.1%) had a diagnosis of dementia at any time of the
follow-up. The sample included 929 subjects (32.4%) who had not achieved
the "Cetrificat d’Etudes Primaires (CEP) corresponding to about seven years
of schooling. These subjects were considered as "low educated", in opposition
to the 1935 "high educated" who had at least reached this level.
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Zdorova-Cheminade [Z-C03] studied by simulation the considered model
as statistical degradation model of disablement in the elderly to verify that a
hierarchical relationship exists between the concepts of Activities Daily Liv-
ing, Instrumental Activities of Daily Living and mobility and to use this model
to study the evolution of disability. The cumulative disability scale was used
to describe the degradation process in time. In longitudinal analysis an addi-
tional level was considered to the disability index to take death into account.
It is evident that this approach can be used in many other medical studies
where a degradation is observed, especially in oncology.

Each of the 13 initial activities was given a rating between 0 and 1 :

• - 0 corresponds to the ability to perform the activity without help;
• - 1 corresponds to full dependency for this activity;
• - a step 1/(m − 1) was added for each intermediate level of ability, m

being the number of degrees on each activity in its original version [RB66]
– [KDCG70]. m varied between 3 and 5, function of the activity.

Each of the eight disability levels was then given a rating between 0 and
1 :

• - if the level corresponded to a single activity, the rating was that of the
activity;

• - if the level was a combination of several activities, the rating was the
mean of the ratings of each activity.

A score was built by summing up the eight ratings corresponding to each
disability level. This score varies between 0 and 8. The score increases with
increasing disability.

The time scale was age, starting at age 65 to model the process

Z(t) = score + 1

2 Degradation model

Let us consider the degradation model with the noise:

Z(t) = g(t, A) U(t), t ≥ 0,

here A = (A1, A2) is a random vector with the distribution function FA, g is
a continuously differentiable function, U(t), t > 0 is the noise. We suppose
that

V (t) = lnU(t) = σW (ln(1 + t)),

W is the standard Wiener process independent on A. The component g(t, A)
explains the interior degradation process, different for each individual, the
noise U explains the complementary influence on the obtained disability score
by such factors as temporary disability, desease, low spirits, breaked leg, etc.
Note that for any t > 0 the median of the the random variable U(t) is 1.

If σ = 0 then we have the General Path Model [MEL98].
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3 Estimation of the mean degradation

Assume that the c.d.f. FA of A and the function g are unknown.
Fix the degradation measurement moments ti,1, . . . , ti,mi

of the i th in-
dividual (i = 1 . . . , n). If the death time τi of this individual occurs in the
interval [ti,ji

, ti,ji+1) (ji = 1, . . . ,mi; tmi+1 = ∞) then the values Zi1, . . . , Zi,ji

of the degradation process Zi of the ith individual are observed at the time
moments ti1, . . . , ti,ji .

The PAQUID data has the following properties:

1. number of measurements per individual is small;
2. the time of follow-up tiji − ti1 is short for each individual i;
3. there are important differences in intervals [ti1; tiji

] for different individ-
uals, for example [60; 65] and [90, 95], etc.

In each short time interval [ti1; tiji
] we model the real degradation Zr(t)

by the loglinear model

g(t, Ai) = eAi1(1 + t)Ai2 ,

where Ai = (Ai1, Ai1), and A1, . . . , An are n independent replicates of the
random vector A.

To have stable estimators of the mean degradation attained at the moment
t we use the degradation values of individuals with indices s such that

s ∈ D(t) = {i : t ∈ [ti1; tiji
], ji ≥ 2} .

Set
Yij = lnZij , Yi = (Yi1, . . . , Yiji)

T .

Then given Ai = ai, ji
Yi ∼ N(µi, σ

2Σi),

where

µi = (µi1, . . . , µi,ji)
T , µij = µij(ai) = ln g(tij , ai), Σi =|| sikl ||ji×ji ,

sikl = cik ∧ cil, cij = ln(1 + tij).

Denote by bikl the elements of the inverse matrix Σ−1
i , and by N the number

of individuals such that ji ≥ 2.
The predictors Âi of the random vectors Ai for the ith individual are found

minimizing with respect to a1, . . . , aN the quadratic form

Q(Y, a) =
N∑

i=1

(Yi − µi(ai))T Σ−1
i (Yi − µi(ai)). (1)
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Denote by m =
∑N

i=1 ji the total number of measures over all of individuals.
The estimator σ̂2 of the parameter σ2 is found maximizing with respect to σ2

the conditional likelihood function

L(σ2 | Â1, . . . , ÂN ) =

1
(2π)m/2σm

N∏
i=1

| Σi |−1/2 exp

{
− 1

2σ2

N∑
i=1

(Yi − µi(Âi))T Σ−1
i (Yi − µi(Âi))

}
.

The minimization of the quadratic form (1) and the maximization of the
conditional likelihood function gives the following equations to compute σ̂2

and Âi:

Âi1 =
cidi − eifi

c2i − biei
, Âi2 =

cifi − bidi

c2i − biei

where
bi = 1TΣ−1

i 1, ci = CT
i Σ

−1
i 1, di = Y T

i Σ−1
i Ci,

ei = CT
i Σ

−1
i Ci, fi = Y T

i Σ−1
i 1, gi = Y T

i Σ−1
i Yim

1 = (1, . . . , 1)T
ji
, Ci = (ci1, . . . , ci,ji)

T ,

and
σ̂2 =

ĉ

m
,

where

ĉ = Q(Y, Â) =
N∑

i=1

(gi + biÂ
2
1i + eiÂ

2
2i + 2ciÂ1iÂ2i − 2fiÂ1i − 2diÂ2i).

The conditional mean of the estimator σ̂2 given N and ji is:

E(σ̂2 | ji, i = 1, . . . , N) =
m + 2
m

σ2,

so σ̂2 is a consistent estimator of σ2.
A consistent estimator of the mean degradation m(t) = E(Z(t)) is

m̂(t) = e
1
2 σ̂2 ln(1+t)

∑
i∈D(t) g(t, Âi)∑n

i∈D(t) exp{ 1
2 [σ̂2

i1 + 2σ̂i1σ̂i2ρ̂i ln(1 + t) + σ̂2
i2 ln2(1 + t)]}

,

where
σ̂2

i1 =
ei

biei − c2i
σ̂2, σ̂2

i2 =
bi

biei − c2i
σ̂2, ρ̂i = − ci√

biei

.
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4 Application to the PAQUID data

4.1 The estimated mean of the disablement process in men and
women

The estimator of the parameter σ2 is σ̂2 = 0.57 for women and σ̂2 = 0.69
for men. So the noise is large.

The mean disablement processes are represented in figure 1 for women
and men. The score is always higher in women, and the magnitude of the
difference increases after age 75.
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Figure 1
Many studies have found a similar difference between older women and

men, women being generally more disabled than men of the same age
[SKCC92]–[REG02]. In particular, Verret [VER99] showed the influence of
sex on mild and moderate disability in the PAQUID cohort. Using a five state
Markov model with piecewise constant transition intensities on the same data,
Regnault [REG02] confirmed that women were at higher risk at the beginning
of the disablement process. The model of degradation shows that women are
more disabled than men, but also that the difference increases with aging.
The degradation process is faster in women.

4.2 The estimated mean of the disablement process in demented
and non-demented subjects

The estimator of the parameter σ2 is σ̂2 = 0.79 for demented subjects and
σ̂2 = 0.51 for the non demented. The noise is large.
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The mean degradation processes in demented and non-demented subjects
are represented in figure 2.

The difference between these two groups of subjects is large. Subjects
who will be diagnosed as demented at follow-up were more disabled at any
age, even at entry in the cohort at age 65 before the diagnosis of dementia
was made. This study confirms the strong impact of dementia on the dis-
ablement process. Future demented subjects were more disabled even before
the clinical diagnosis of dementia was made and they had a higher speed of
degradation. The model with time dependent covariates developed by Bag-
donavicius and Nikulin [BN04] could be used to take the pre-clinical phase into
account. Dementia is major cause of disablement in older persons [REG02],
[DB-GG91]–[DGM91]. So the individual degradation curve of a non-demented
individual is an important predictive factor of dementia in the future.

The five state Markov model with piecewise constant transition intensities
used by Regnault [REG02] on the same data showed similar results : dementia
was associated with progression from mild to moderate disability and then to
severe disability.
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4.3 The estimated mean of the disablement process in demented
and non-demented men

The mean degradation processes in demented and non-demented men are
represented in figure 3.
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The difference between these two groups of men is large. Men who will
be diagnosed as demented at follow-up were more disabled at any age, even
at entry in the cohort at age 65 before the diagnosis of dementia was made.
Future demented subjects were more disabled even before the clinical diagnosis
of dementia was made and they had a higher speed of degradation.
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4.4 The estimated mean of the disablement process in demented
and non-demented women

The mean degradation processes in demented and non-demented men are
represented in figure 4.

As in the case of men, the difference between demented and non-demented
women is large. Future demented women were more disabled even before
the clinical diagnosis of dementia was made and they had a higher speed of
degradation.
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4.5 The estimated mean of the disablement process in demented
men and women

The mean degradation processes in demented men and women are repre-
sented in figure 5.

For the men and women who will be diagnosed as demented at follow-
up the degradation process develops similarly. So the difference between the
degradation of older women and men is observed only for non-demented indi-
viduals.
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4.6 The estimated mean of the disablement process in
non-demented men and women

The mean degradation processes in non-demented men and women are
represented in figure 6.

For the men and women who will be diagnosed as demented at follow-
up the degradation process develops differently. The disablement process
develops quicker in women then in men.
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4.7 The estimated mean of the disablement process in high and
low educated subjects

The mean degradation processes in high (primary education present )and
low educated (primary education absent ) subjects are represented in figure
7.

The disablement process develops quicker in low educated subjects.
More about the influence of the level of education on the aging-degradation

process one can see in Barberger-Gateau et al [B-GVP01], Dartigues et al
[DB-GG91], etc.
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5 Joint model for degradation-failure time data

Joint degradation and failure time data may be analized using the following
model. We call a failure of an individual natural if the degradation process
attains a critical level z0. Denote by T 0 the moment of non-traumatic failure,
i.e. the moment when the degradation attains some critical value z0:

T 0 = sup {t : Z(t) ≤ z < z0}

We denote T the time to death. In this case the observed failure moment
is

τ = T 0 ∧ T.

We shall consider the model when the hazard rate depends on degradation.
Following [BN04] let us consider the joint degradation model according

to which the conditional survival of T given the degradation process has the
form:

ST (t | A) = P{T > t | Z(s)), 0 ≤ s ≤ t} = exp
{
−
∫ t

0

λ0(s, α)λ
(
g(s,A)

)
ds
}
,

where λ is the unknown intensity function, λ0(s, α) being from a parametric
family of hazard functions.
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Note that the function λ is defined on the set of degradation values, not
on the time scale.

The model states [BN04] that the conditional hazard rate λT (t | A) at the
moment t given the degradation g(s,A), 0 ≤ s ≤ t, has the form

λT (t | A) = λ0(t, α)λ(g(t, A)).

The term λ(g(t, A)) shows the influence of degradation on the hazard rate,
the term λ0(t, α) shows the-influence of time on the hazard rate not explained
by degradation. If, for example,

λ0(t, α) = (1 + t)α, eαt,

then α = 0 corresponds to the case when the hazard rate at any moment t is
a function of the degradation level at this moment.

Wulfsohn and Tsiatis [WT97] considered the so called joint model for sur-
vival and longitudinal data measured with error, given by

λT (t | A) = λ0(t)eβ(A1+A2t)

with bivariate normal distribution of of (A1, A2). The difference: in our model
the function λ, characterizing the influence of degradation on the hazard rate,
is non-parametric, in the Wulfsohn-Tsiatis model this function is parametric.
On the other hand, the baseline hazard rate λ0 (it is proportional to the
hazard rate which should be observed if the degradation would be absent) is
parametric in our model and non-parametric in Wulfsohn-Tsiatis model.

The analysis of the PAQUID data using the joint model see in Zdorova-
Cheminade [Z-C03].
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Summary. We consider a semi-Markov chain, with a finite state space. Taking a
censored history, we obtain empirical estimators for the discrete semi-Markov kernel,
renewal function and semi-Markov transition function. We propose estimators for
two different failure rate functions: the usual failure rate, BMP-failure rate, defined
by [BMP63], and the new introduced failure rate, RG-failure rate, proposed by
[RG92]. We study the strong consistency and the asymptotic normality for each
estimator and we construct the confidence intervals. We illustrate our results by a
numerical example.
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BMP-failure rate , RG-failure rate , nonparametric estimation , asymptotic proper-
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1 Introduction

Continuous time semi-Markov systems are important framework for reliability
studies, cf. [LO99, LO01]. Estimation of reliability and related measures for
semi-Markov systems can be found in [LO03], [OL99].

As compared to the attention given to the continuous time semi-Markov
processes and related reliability matters, the discrete time semi-Markov pro-
cesses (DTSMP ) are less studied. This is rather surprising, because consid-
ering a discrete time semi-Markov system instead of a continuous one offers
important advantages, especially for applications. Indeed, a semi-Markov
chain makes only a finite number of transitions in a finite time interval and
the Markov renewal function can be expressed as a finite sum, which is not
the case for a continuous semi-Markov process. Consequently, the related nu-
merical computations for a discrete time semi-Markov process are much faster
and more accurate than for a continuous one.



54 Vlad Barbu and Nikolaos Limnios

An introduction to discrete time Markov renewal processes can be found
in [How71], [MS00], [BBL04]. For the discrete time semi-Markov model for
reliability see [Cse02], [BBL04]. Estimators of the kernel, transition matrix,
renewal function, reliability, availability of a discrete time semi-Markov system
and their asymptotic properties are given in [BL04a] and [BL04b].

The aim of this paper is to construct estimators for failure rate functions of
a discrete time semi-Markov process and to give their properties. We consider
two different failure rate functions: the usual failure rate, BMP -failure rate,
defined by [BMP63, BP75], and the new introduced failure rate, RG-failure
rate, proposed by [RG92]. The reasons for introducing this new definition of
a failure rate for discrete time models are given in [Bra01, BGX01].

The estimator of the classical failure rate for a continuous time semi-
Markov system have been studied in [OL98]. Statistical estimation and
asymptotic properties for RG-failure rate and BMP -failure rate of a discrete
time homogeneous Markov system are presented in [SL02].

The present paper is organized as follows. In Section 2 we give some def-
initions and recall some previously obtained results concerning discrete time
semi-Markov processes and the associated reliability metrics (see [BBL04],
[BL04a, BL04b]). In Section 3 we construct empirical estimators for failure
rates and we study the strong consistency and the asymptotic normality for
the proposed estimators. Asymptotic confidence intervals are also given. All
the above results are proved in Section 4. In Section 5 we illustrate our results
by a numerical example of a three state discrete time semi-Markov system.

2 Preliminaries

2.1 The Discrete Time semi-Markov Model

Let us consider:

• E, the state space. We suppose E to be finite, say E = {1, . . . , s}.
• The stochastic process J = (Jn; n ∈ N) with state space E for the system

state at the n-th jump.
• The stochastic process S = (Sn; n ∈ N) with state space N for the n-th

jump of the process. We suppose S0 = 0 and 0 < S1 < S2 < . . . < Sn <
Sn+1 < . . ..

• The stochastic process X = (Xn; n ∈ N∗) with state space N∗ for the
sojourn time Xn in state Jn−1 before the n-th jump. Thus, we have for
all n ∈ N∗

Xn = Sn − Sn−1.

We denote by ME the set of non negative matrices on E × E and by
ME(N), the set of matrix-valued functions : N → ME .
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Definition 1. The stochastic process (J, S) = ((Jn, Sn); n ∈ N) is said to be
a discrete time Markov renewal process (DTMRP) if for all n ∈ N, for all
i, j ∈ E and for all k ∈ N it almost surely satisfies

P(Jn+1 = j, Sn+1−Sn = k | J0, . . . , Jn;S0, . . . , Sn) = P(Jn+1 = j, Sn+1−Sn = k | Jn).
(1)

Moreover, if (1) is independent of n, (J, S) is said to be homogeneous, with
discrete semi-Markov kernel q(k) = (qij(k); i, j ∈ E) ∈ ME defined by

qij(k) := P(Jn+1 = j,Xn+1 = k | Jn = i).

Definition 2. The transition function of the embedded Markov chain
(Jn; n ∈ N) is the matrix-valued function V ∈ ME defined by

V = (pij)i,j∈E , pij := P(Jn+1 = j | Jn = i), i, j ∈ E, n ∈ N. (2)

Definition 3. For all i, j ∈ E such that pij �= 0, let us denote by:

1. fij(·), the conditional distribution of the sojourn time in state i before
going to state j :

fij(k) = P(Xn+1 = k | Jn = i, Jn+1 = j), k ∈ N, (3)

2. hi(·), the sojourn time distribution in state i:

hi(k) = P(Xn+1 = k | Jn = i) =
∑
l∈E

qil(k), k ∈ N∗,

3. Hi(·), the sojourn time cumulative distribution function in state i :

Hi(k) = P(Xn+1 ≤ k | Jn = i) =
k∑

l≥1

hi(l), k ∈ N∗.

Obviously, for all i, j ∈ E such that pij �= 0 and for all k ∈ N, we have

qij(k) = pijfij(k). (4)

Let us give some definitions and results from [BBL04], which will be useful
for the estimation presented in this paper.

Definition 4. (discrete time convolution product) Let A,B ∈ ME(N) be two
matrix-valued functions. The matrix convolution product A ∗B is the matrix-
valued function C ∈ ME(N) defined by

Cij(k) :=
∑
k∈E

k∑
l=0

Aik(k − l)Bkj(l), i, j ∈ E, k ∈ N.
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Lemma 1. Let δI = (dij(k); i, j ∈ E) ∈ ME(N) be the matrix-valued func-
tion defined by

dij(k) :=
{

1 if i = j and k = 0
0 elsewhere.

Then, δI is the neutral element for the discrete time matrix convolution prod-
uct, i.e., δI satisfies

δI ∗A = A ∗ δI = A, A ∈ ME(N).

Definition 5. Let A ∈ ME(N) be a matrix-valued function. If there exists
some B ∈ ME(N) such that

B ∗A = δI, (5)

then B is called the left inverse of A in the convolution sense and it is denoted
by A(−1).

We stress the fact that the left inverse of A is not always defined. The
next proposition gives a sufficient condition for the existence and uniqueness
of the left inverse.

Proposition 1. Let A ∈ ME(N) be a matrix-valued function. If detA(0) �=
0, then the left inverse of A exists and is unique.

Definition 6. (discrete time n-fold convolution) Let A ∈ ME(N) be a matrix-
valued function and n ∈ N. The n-fold convolution A(n) is the matrix function
C ∈ ME(N) defined recursively by:

A
(0)
ij (k) :=

{
1 if k = 0 and i = j
0 else ,

A
(1)
ij (k) := Aij(k)

and

A
(n)
ij (k) :=

∑
l∈E

k∑
s=0

A
(n−1)
lj (k − s)Ail(s), n ≥ 2, k ≥ 1.

For a DTMRP (J, S), the n-fold convolution of the semi-Markov kernel
can be expressed as follows.

Proposition 2. For all i, j ∈ E, for all n and k ∈ N, we have

q
(n)
ij (k) = P(Jn = j, Sn = k | J0 = i). (6)

Let us consider the matrix-valued functions Q = (Q(k); k ∈ N) ∈ ME(N),
defined by

Qij(k) := P(Jn+1 = j,Xn+1 ≤ k | Jn = i) =
k∑

l=1

qij(l), i, j ∈ E, k ∈ N (7)
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and ψ = (ψ(k); k ∈ N) ∈ ME(N), defined by

ψij(k) :=
k∑

n=0

q
(n)
ij (k), i, j ∈ E, k ∈ N. (8)

Proposition 3. The matrix-valued function ψ = (ψ(k); k ∈ N) is given by:

ψ(k) = (δI − q)(−1)(k), (9)

where (δI − q)(−1) denotes the left convolution inverse of the matrix function
(δI − q) and is computed using the following forward algorithm{

(δI − q)(−1)(k) = IE if k = 0
(δI − q)(−1)(k) = −

∑k−1
s=0 (δI − q)(−1)(s) (δI − q)(k − s) if k ∈ N∗.

(10)

Definition 7. The matrix renewal function Ψ = (Ψ(k); k ∈ N) ∈ ME(N) of
the DTMRP is defined by

Ψij(k) := Ei[Nj(k)], i, j ∈ E, k ∈ N, (11)

where Nj(k) is the number of visits to state j before time k.

The matrix renewal function can be expressed in the following form:

Ψij(k) =
k∑

n=0

Q
(n)
ij (k) =

k∑
l=0

ψij(l), i, j ∈ E, k ∈ N. (12)

Definition 8. A stochastic process Z = (Zk; k ∈ N) is called the discrete
time semi-Markov process associated with the DTMRP (J,S), if

Zk = JN(k), k ∈ N,

where N(k) := max{n ≥ 0;Sn ≤ k} is the discrete time counting process of
the number of jumps in [1, k] ⊂ N.

Thus, Zk gives the state of the process at time k. We have also Jn =
ZSn , n ∈ N.

Let us now define the discrete time semi-Markov transition matrix and
propose a computation procedure.

Definition 9. The transition matrix of the semi-Markov process Z is the
matrix-valued function P ∈ ME(N) defined by

Pij(k) := P(Zk = j | Z0 = i), i, j ∈ E, k ∈ N.
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The Markov renewal equation for the semi-Markov transition function P
is (see [BBL04])

P = I −H + q ∗ P, (13)
where H(k) := diag(Hi(k); i ∈ E).

Solving the Markov renewal equation (13) (see [BBL04]) we obtain that
the unique solution is

P (k) =
[
(δI − q)(−1) ∗ (I −H)

]
(k) =

[
ψ ∗ (I − diag(Q · 1))

]
(k), (14)

where 1 denotes the s-column vector whose all elements are 1.

2.2 Basic Results on semi-Markov Chains Estimation

We will give the following results for a MRP which satisfies some conditions.
Assumptions

1. The Markov chain (Jn; n ∈ N) is irreducible;
2. The mean sojourn times are finite, i.e.,

∑
k≥0 khi(k) < ∞ for any state

i ∈ E.
3. The DTMRP ((Jn, Sn); n ∈ N) is aperiodic.

Let us consider a history H (M) of the MRP ((Jn, Sn); n ∈ N), censored at
time M ∈ N,

H (M) := (J0, X1, . . . , JN(M)−1, XN(M), JN(M), UM ),

where we set N(M) := max{n | Sn ≤ M} and UM := M − SN(M).

Definition 10. For all i, j ∈ E and k ≤ M , we define:

1. Ni(M) :=
∑N(M)−1

n=0 1{Jn=i}, the number of visits to state i, up to time
M ;

2. Nij(M) :=
∑N(M)

n=1 1{Jn−1=i,Jn=j}, the number of transitions from i to j,
up to time M ;

3. Nij(k,M) :=
∑N(M)

n=1 1{Jn−1=i,Jn=j,Xn=k}, the number of transitions from
i to j, up to time M, with sojourn time in state i equal to k, 1 ≤ k ≤ M.

Taking a history H (M) of a discrete time MRP, for all i, j ∈ E and
k ∈ N, k ≤ M, we define the empirical estimators of the probability transition
function pij , sojourn conditioned time fij(k) and discrete semi-Markov kernel
qij(k) by

p̂ij(M) :=
Nij(M)
Ni(M)

, (15)

f̂ij(k,M) :=
Nij(k,M)
Nij(M)

=
1

Nij(M)

N(M)∑
n=1

1{Jn−1=i,Jn=j,Xn=k}, (16)

q̂ij(k,M) :=
Nij(k,M)
Ni(M)

=
1

Ni(M)

N(M)∑
n=1

1{Jn−1=i,Jn=j,Xn=k}. (17)
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Let us also set q̂(k,M) := (q̂ij(k,M); i, j ∈ E).

Remark The above empirical estimators are approached nonparametric
maximum likelihood estimators, i.e., they maximize an approached likelihood
function, obtained by neglecting the part corresponding to UM := M−SN(M).

Replacing q by its estimator in the expressions of Q,ψ, Ψ and P we obtain
the corresponding estimators:

Q̂(k,M) :=
k∑

l=1

q̂(l,M), ψ̂(k,M) :=
k∑

n=0

q̂(n)(k,M) (18)

Ψ̂(k,M) :=
k∑

l=0

ψ̂(l,M) =
k∑

l=0

l∑
n=0

q̂(n)(l,M) (19)

P̂ (k,M) :=
[(

δI − q̂(·,M)
)(−1)

∗
(
I − diag(Q̂(·,M) · 1)

)]
(k) (20)

=
[
ψ̂(·,M) ∗

(
I − diag(Q̂(·,M) · 1)

)]
(k), (21)

where q̂(n)(k,M) is the n-fold convolution of q̂(k,M) (see Definition 6).
We can prove the strong consistency for the proposed estimators and the

asymptotic normality of q̂ij(k,M), ψ̂ij(k,M), P̂ij(k,M) (see [BL04b]).

3 Failure Rates Estimation

The objective of this section is to construct empirical estimators for two failure
rate functions of a discrete time semi-Markov system.
Firstly, we give a method for computing the reliability of a discrete time
semi-Markov system and we propose an empirical estimator.

Let E be partitioned into two subsets U and D, respectively for the up
states and for the down states, where E = U ∪ D and U ∩ D = ∅. Without
loss of generality, we can suppose that

U = {1, . . . , s1} and D = {s1 + 1, . . . , s}, with 0 < s1 < s.

We will partition all vectors and matrix-valued functions according to this
partition. For instance, the transition matrix P of the semi-Markov process
and the initial distribution vector α can be written as follows:

U D

P (k) =
(
P11(k)
P21(k)

P12(k)
P22(k)

)
U
D

U D
α = (α1 α2)

For m,n ∈ N∗ such that m > n, let 1m,n denote the m-column vector
whose first n elements are 1 and the last m − n elements are 0; for m ∈ N∗,
let 1m denote the m-column vector whose all elements are 1.
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Let TD denotes the first passage time in the subset D, i.e., TD := inf{n ∈
N; Zn ∈ D}. The reliability at time k ∈ N is given by

R(k) := P(TD > k) = P(Zn ∈ U, n ∈ {0, . . . , k}).

We define a new semi-Markov process Y = (Yn; n ∈ N) with state space
EY = U ∪ {∆}, where ∆ is an absorbing state

Yn :=
{
Zn if n < TD

∆ if n ≥ TD
, n ∈ N.

The semi-Markov kernel of the process Y is

qY (k) =
[
q11(k) q12(k)1s−m

01m 0

]
, k ∈ N,

where 01m is an m-dimensional row vector whose all elements are 0. Let PY

denote the transition function of Y . Thus, for all k ∈ N, the reliability is
given by

R(k) = P(Yk ∈ U) =
∑
j∈U

∑
i∈U

P(Yk = j | Y0 = i) P(Y0 = i)

= [α1, 0]PY (k)1m+1,m = α1 · P11(k) · 1s1

= α1 ψ11 ∗ (I −H1)(k)1s1 = α1 ψ11 ∗ (I − diag(Q · 1)11)1s1 .

We propose the following estimator for the system reliability:

R̂(k,M) := α1 · P̂11(k,M) · 1s1

= α1

[
ψ̂11(·,M) ∗

(
I − diag(Q̂(·,M) · 1)11

)]
(k)1s1 , (22)

where the estimators ψ̂ and Q̂ are defined in (18).
All the results which follow are proved under Assumptions (1), (2) and

(3).

Theorem 1. ( see [BL04a]) The estimator of the reliability of a discrete time
semi-Markov system is strongly consistent, i.e.,

max
0≤k≤M

| R̂(k,M) −R(k) | a.s.−−−−→
M→∞

0.

Let us denote by T the discrete random variable describing the lifetime of
the system. We consider two different definitions of the failure rate function.

• BMP-failure rate function λ(k)
It is the usual failure rate, defined by [BMP63] as the conditional proba-

bility that the failure of the system occurs at time k, given that the system
has worked until time k− 1 (see also [BP75] and [SL02] in the case of Markov
chains).
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It is worth noticing that the failure rate in discrete case is a probability
function and not a general positive function as in continuous time case.

For any k ≥ 1

λ(k) := P(T = k | T ≥ k) =

{
P(T=k)
P(T≥k) , R(k − 1) �= 0
0, otherwise.

=

{
1 − R(k)

R(k−1) , R(k − 1) �= 0
0, otherwise

and
λ(0) := 1 −R(0).

• RG-failure rate function r(k)
A new definition of the discrete failure rate function is proposed in [RG92]

for solving some of the problems raised by the use of the usual failure rate
function λ(k) in discrete time. A detailed argument for the introduction of
the new definition of the failure rate function is given in [Bra01, BGX01].

r(k) :=

{
ln R(k−1)

R(k) , k ≥ 1
− lnR(0), k = 0

.

The two failure rate functions are related by

r(k) = − ln(1 − λ(k)).

We propose the following estimators for the failure rates:

λ̂(k,M) :=

{
1 − R̂(k,M)

R̂(k−1,M)
, R̂(k − 1,M) �= 0

0, otherwise

λ̂(0,M) := 1 − R̂(0,M)

and

r̂(k,M) :=

{
ln R̂(k−1,M)

R̂(k,M)
, k ≥ 1

− ln R̂(0,M), k = 0
.

The following results concern the uniform strong consistence and the
asymptotic normality of the empirical estimators of the failure rates.

Theorem 2. The estimators of the failure rates of a discrete time semi-
Markov system are strongly consistent, in the sense that

max
0≤k≤M

| λ̂(k,M) − λ(k) | a.s.−−−−→
M→∞

0

max
0≤k≤M

| r̂(k,M) − r(k) | a.s.−−−−→
M→∞

0.
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Notation: For a matrix function A ∈ ME(N), we denote by A+ ∈
ME(N) the matrix function defined by A+(k) := A(k + 1), k ∈ N.

Theorem 3. For any fixed k ∈ N we have the following convergence in dis-
tribution √

M [λ̂(k,M) − λ(k)] D−−−−→
M→∞

N (0, σ2
λ(k)),

where

σ2
λ(k) =

1
R4(k − 1)

σ2
1(k),

σ2
1(k) =

µ∗
jj

µjj

s∑
i=1

µ2
ii

µ∗
ii

{
R2(k)

s∑
j=1

[
DU

ij − 1{i∈U}
∑
t∈U

α(t)Ψti

]2
∗ qij(k − 1)

+R2(k − 1)
s∑

j=1

[
DU

ij − 1{i∈U}
∑
t∈U

α(t)Ψti

]2
∗ qij(k) − T 2

i (k)

+2R(k − 1)R(k)
s∑

j=1

[
1{i∈U}D

U
ij

∑
t∈U

α(t)Ψ+
ti + 1{i∈U}(DU

ij)
+
∑
t∈U

α(t)Ψti

− (DU
ij)

+DU
ij − 1{i∈U}

(∑
t∈U

α(t)Ψti

)(∑
t∈U

α(t)Ψ+
ti

)]
∗ qij(k − 1)

}
,(23)

where

Ti(k) :=
s∑

j=1

[
R(k)DU

ij ∗ qij(k − 1) −R(k − 1)DU
ij ∗ qij(k)

− R(k)1{i∈U}
∑
t∈U

α(t)ψti ∗Qij(k − 1) + R(k − 1)1{i∈U}
∑
t∈U

α(t)ψti ∗Qij(k)
]

DU
ij :=

∑
n∈U

∑
r∈U

α(n)ψni ∗ ψjr ∗
(
I − diag(Q · 1)

)
rr
,

µ∗
ii is the mean recurrence time of state i for the embedded Markov chain

((Jn); n ∈ N) and µii is the mean recurrence time of the state i for the
DTMRP (J, S).

Corollary 1. For any fixed k ∈ N,
√
M [r̂(k,M) − r(k)] converges in distri-

bution to a zero mean normal random variable with variance

σ2
r(k) =

1
(1 − λ(k))2

σ2
λ(k) =

1
R2(k − 1)R2(k)

σ2
1(k),

where σ2
1(k) is given in Equation (23).
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Asymptotic Confidence Intervals for Failure Rates

Let us now give the asymptotic confidence intervals for failure rates, using the
above asymptotic results.

For k ∈ N, k ≤ M, replacing q(k), Q(k), ψ(k), Ψ(k) respectevely by
q̂(k,M), Q̂(k,M), ψ̂(k,M), Ψ̂(k,M) in Equation (23), we obtain an estima-
tor σ̂2

λ(k) of the variance σ2
λ(k). From the strong consistency of the estimators

q̂(k,M), Q̂(k,M), ψ̂(k,M) and Ψ̂(k,M) (see [BL04b]), we obtain that σ̂2
λ(k)

converges almost surely to σ2
λ(k), as M tends to infinity.

For k ∈ N, k ≤ M, the estimated asymptotic confidence interval of BMP-
failure rate function λ(k) at level 100(1 − γ)%, γ ∈ (0, 1) , is given by

λ̂(k,M) − u1−γ/2
σ̂λ(k)√

M
≤ λ(k) ≤ λ̂(k,M) + u1−γ/2

σ̂λ(k)√
M

, (24)

where uγ is the γ− quantile of an N(0, 1)- distributed variable. In the same
way, we obtain the asymptotic confidence interval of RG-failure rate function.

4 Proofs

In order to prove the above results, we need the following lemmas.

Lemma 2. Let A ∈ ME(N) be a matrix function and let q be the semi-Markov
kernel of the DTMRP (J,S). For any fixed k ∈ N, i, j, l and r ∈ E, we have

1. (Aij ∗ 1{x=·})(k) =
{
Aij(k − x), x ≤ k
0, otherwise.

2. (Aij ∗ 1{x=·})2(k) =
{
A2

ij(k − x), x ≤ k
0, otherwise.

3.
∞∑

x=0

(Alr ∗ 1{x=·})(k)qij(x) = (Alr ∗ qij)(k).

4.
∞∑

x=0

(Alr ∗ 1{x=·})2(k)qij(x) = (A2
lr ∗ qij)(k).

Lemma 3. Let A,B ∈ ME(N) be two matrix functions. For any fixed k, y ∈
N, i, j, l, r, u and v ∈ E, we have
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1. Auv ∗ 1{y≤·}(k) =
{∑k−y

t=0 Auv(t), y ≤ k
0, otherwise

.

2.
∞∑

x=0

Auv ∗ 1{x≤·}(k)qij(x) = Auv ∗Qij(k).

3.
∞∑

x=0

(
Auv ∗ 1{x≤·}(k)

)2

qij(x) =
( ·∑

t=0

Auv(t)
)2

∗ qij(k).

4.
∞∑

x=0

Auv ∗ 1{x=·}(k)Blr ∗ 1{x≤·}(k)qij(x) =
[
Auv(·)

·∑
t=0

Blr(t)
]
∗ qij(k).

Lemma 4. Let A,B ∈ ME(N) be two matrix functions. For any fixed k ∈ N,
i, j, l, r, u and v ∈ E, we have

1.
∞∑

x=0

(Auv ∗ 1{x=·})(k)(Blr ∗ 1{x=·})(k − 1)qij(x) = (A+
uvBlr) ∗ qij(k − 1),

2.
∞∑

x=0

(Auv ∗ 1{x=·})(k)(Blr ∗ 1{x≤·})(k − 1)qij(x)

=
[
A+

uv(·)
·∑

t=0

Blr(t)
]
∗ qij(k − 1),

3.
∞∑

x=0

(Auv ∗ 1{x=·})(k − 1)(Blr ∗ 1{x≤·})(k)qij(x)

=
[
Auv(·)

( ·∑
t=0

Blr(t)
)+]

∗ qij(k − 1),

4.
∞∑

x=0

(Auv ∗ 1{x≤·})(k − 1)(Blr ∗ 1{x≤·})(k)qij(x)

=
[( ·∑

t=0

Auv(t)
)( ·∑

t=0

Blr(t)
)+]

∗ qij(k − 1).

In the sequel, we give the proofs of Theorem 2, 3 and Corollary 1.
All along this section, we will use the notation ∆qij(k,M) := q̂ij(k,M) −
qij(k), ∆Pij(k,M) := P̂ij(k,M) − Pij(k), etc. We will also omit the censor-
ing time M as an argument of the estimators; for instance, we write q̂ij(k)
instead of q̂ij(k,M).
Proof of Theorem 2. We have

max
0≤k≤M

| λ̂(k,M) − λ(k) |

≤ max
0≤k≤M

| R̂(k,M) −R(k) |
R̂(k − 1,M)

+ max
0≤k≤M

R(k)
R(k − 1)

| R̂(k − 1,M) −R(k − 1) |
R̂(k − 1,M)

.
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>From the uniform strong consistency of the reliability estimator we conclude
that the right-hand side term converges almost surely to zero, when M tends
to infinity.

Using the relation between the BMP-failure rate and the RG-failure rate

r(k) = − ln(1 − λ(k)),

we infer the consistency of the RG-failure rate. �

Proof of Theorem 3.
√
M [λ̂(k,M) − λ(k)]

=
√
M [R(k)(R̂(k − 1,M) −R(k − 1)) − (R̂(k,M) −R(k))R(k − 1)]

R̂(k − 1,M)R(k − 1)
.

>From the consistency of the reliability estimator (see Theorem 1), we have
R̂(k− 1,M) a.s.−−−−→

M→∞
R(k− 1), so, in order to obtain the asymptotic normality

for the BMP-failure rate, we need only to prove that
√
M
[
R(k)

(
R̂(k−1,M)−R(k−1)

)
−
(
R̂(k,M)−R(k)

)
R(k−1)

]
D−−−−→

M→∞
N (0, σ2

1(k)).

We obtain that
√
M
[
R(k)

(
R̂(k − 1,M) −R(k − 1)

)
−
(
R̂(k,M) −R(k)

)
R(k − 1)

]
has the same limit in distribution as

√
M

s∑
l,r=1

R(k)DU
rl ∗∆qrl(k − 1) −

√
M
∑
r∈U

s∑
l=1

R(k)
(∑

n∈U

α(n)ψnr

)
∗∆Qrl(k − 1)

−
√
M

s∑
l,r=1

R(k − 1)DU
rl ∗∆qrl(k) +

√
M
∑
r∈U

s∑
l=1

R(k − 1)
(∑

n∈U

α(n)ψnr

)
∗∆Qrl(k)

=
1√
M

N(M)∑
n=1

s∑
l,r=1

M

Nr(M)

[
R(k)DU

rl ∗
(
1{Jn−1=r,Jn=l,Xn=·} − qrl(·)1{Jn−1=r}

)
(k − 1)

−R(k)1{r∈U}

(∑
t∈U

α(t)ψtr

)
∗
(
1{Jn−1=r,Jn=l,Xn≤·} −Qrl(·)1{Jn−1=r}

)
(k − 1)

−R(k − 1)DU
rl ∗
(
1{Jn−1=r,Jn=l,Xn=·} − qrl(·)1{Jn−1=r}

)
(k)

−R(k − 1)1{r∈U}

(∑
t∈U

α(t)ψtr

)
∗
(
1{Jn−1=r,Jn=l,Xn≤·} −Qrl(·)1{Jn−1=r}

)
(k)
]

=
1√
M

N(M)∑
l=1

f(Jl−1, Jl, Xl),
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where we have defined the function f : E × E × N → R by

f(i, j, x) =
M

Ni(M)

[
R(k)DU

ij ∗ 1{x=·}(k − 1) −R(k − 1)DU
ij ∗ 1{x=·}(k)

−R(k)1{i∈U}

(∑
t∈U

α(t)ψti

)
∗ 1{x≤·}(k − 1)

+R(k − 1)1{i∈U}

(∑
t∈U

α(t)ψti

)
∗ 1{x≤·}(k) − Ti(k)

]
.

We will obtain the desired result from the Central limit theorem for discrete
time Markov renewal processes (see [PS64] and [MP68]).

Using Lemmas 2, 3 and 4, we obtain:

Aij :=
∞∑

x=1

f(i, j, x)qij(x)

=
M

Ni(M)

[
R(k)DU

ij ∗ qij(k − 1) −R(k − 1)DU
ij ∗ qij(k)

−R(k)1{i∈U}

(∑
t∈U

α(t)ψti

)
∗ qij(k − 1)

+R(k − 1)1{i∈U}

(∑
t∈U

α(t)ψti

)
∗ qij(k) − Ti(k)pij

]
.

Ai :=
s∑

j=1

Aij =
M

Ni(M)

[
Ti(k) − Ti(k)

s∑
j=1

pij

]
= 0.

>From Lemmas 3 and 4 we get
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Bij :=
∞∑

x=1

f2(i, j, x)qij(x)

=
( M

Ni(M)

)2{
R2(k)(DU

ij)
2 ∗ qij(k − 1) + R2(k − 1)(DU

ij)
2 ∗ qij(k)

+R2(k)1{i∈U}

( ·∑
l=0

∑
t∈U

α(t)ψti(l)
)2

∗ qij(k − 1)

+R2(k − 1)1{i∈U}

( ·∑
l=0

∑
t∈U

α(t)ψti(l)
)2

∗ qij(k) + T 2
i (k)pij

−2R(k − 1)R(k)
(
DU

ij(D
U
ij)

+
)
∗ qij(k − 1)

−2R2(k)
[
DU

ij(·)1{i∈U}

( ·∑
l=0

∑
t∈U

α(t)ψti(l)
)]

∗ qij(k − 1)

+2R(k − 1)R(k)
[
DU

ij(·)1{i∈U}

( ·∑
l=0

∑
t∈U

α(t)ψti(l)
)+]

∗ qij(k − 1)

+2R(k − 1)R(k)
[
(DU

ij)
+(·)1{i∈U}

( ·∑
l=0

∑
t∈U

α(t)ψti(l)
)]

∗ qij(k − 1)

−2R2(k − 1)
[
DU

ij(·)1{i∈U}

( ·∑
l=0

∑
t∈U

α(t)ψti(l)
)]

∗ qij(k)

−2R(k − 1)R(k)1{i∈U}

[( ·∑
l=0

∑
t∈U

α(t)ψti(l)
)( ·∑

l=0

∑
t∈U

α(t)ψti(l)
)+]

∗ qij(k − 1)

−2Ti(k)
[
R(k)DU

ij ∗ qij(k − 1) −R(k − 1)DU
ij ∗ qij(k)

−R(k)1{i∈U}

(∑
t∈U

α(t)ψti

)
∗Qij(k − 1)

+R(k − 1)1{i∈U}

(∑
t∈U

α(t)ψti

)
∗Qij(k)

]}
.



68 Vlad Barbu and Nikolaos Limnios

Bi :=
s∑

j=1

Bij

=
( M

Ni(M)

)2{
R2(k)

s∑
j=1

[
DU

ij − 1{i∈U}
∑
t∈U

α(t)Ψti

]2
∗ qij(k − 1)

+R2(k − 1)
s∑

j=1

[
DU

ij − 1{i∈U}
∑
t∈U

α(t)Ψti

]2
∗ qij(k) − T 2

i (k)

+2R(k − 1)R(k)
s∑

j=1

[
1{i∈U}D

U
ij

∑
t∈U

α(t)Ψ+
ti + 1{i∈U}(DU

ij)
+
∑
t∈U

α(t)Ψti

−(DU
ij)

+DU
ij − 1{i∈U}

(∑
t∈U

α(t)Ψti

)(∑
t∈U

α(t)Ψ+
ti

)]
∗ qij(k − 1)

}
.

Since Ni(M)/M a.s.−−−−→
M→∞

1/µii (see, e.g., [LO01] ), applying the central limit
theorem, we obtain the desired result. �

Proof of Corollary 1. The relation between the BMP-failure rate and the RG-
failure rate can be written in the form r(k) = φ(λ(k)), where φ is the function
defined by φ(x) := − ln(1 − x). Using delta method and the asymptotic nor-
mality of the BMP-failure rate (see Theorem 3), we obtain that the RG-failure
rate converges in distribution to a zero mean normal random variable with
the variance σ2

r(k), given by

σ2
r(k) =

(
φ′(λ(k))

)2

σ2
λ(k) =

1
(1 − λ(k))2

σ2
λ(k).

�

5 Numerical Example

In this section we apply the previous results to a three-state discrete time
semi-Markov process described in Figure 1.

Let us consider that the state space E = {1, 2, 3} is partitioned into the
up-state set U = {1, 2} and the down-state set D = {3}. The system is defined
by the initial distribution µ := (1 0 0), by the transition probability matrix
V of the embedded Markov chain (Jn; n ∈ N)

V :=

⎛⎝ 0 1 0
0.95 0 0.05
1 0 0

⎞⎠
and by the conditional distributions of the sojourn time
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1 2

3

Ge(p)

Wq1,b1

Wq3,b3
Wq2,b2

Fig. 1. A three-state discrete time semi-Markov system

f(k) :=

⎛⎝ 0 f12(k) 0
f21(k) 0 f23(k)
f31(k) 0 0

⎞⎠ , k ∈ N.

We consider the following distributions for the conditional sojourn time:

• f12 is a geometric distribution defined by

f12(0) := 0,
f12(k) := p(1 − p)k−1, k ≥ 1,

where we take p = 0.8.
• f21 := Wq1,b1 , f23 := Wq2,b2 and f31 := Wq3,b3 are discrete time, first type

Weibull distributions, defined by

Wq,b(0) := 0,

Wq,b(k) := q(k−1)b − qkb

, k ≥ 1,

where we take q1 = 0.5, b1 = 0.7, q2 = 0.6, b2 = 0.9, q3 = 0.5, b3 = 2 (for
discrete time Weibull distribution, see, e.g., [Bra01], [BGX01]).

The empirical estimator and confidence interval at level 95% for the BMP-
failure rate and the RG-failure rate of the system, for the total time of obser-
vation M = 5000, are given in Figure 2.

Figure 3 gives a comparison between failure rates estimators obtained for
different sample sizes. We see that, as M increases, the estimators approach
the true value. We also notice that the failure rates become constant as time
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Fig. 2. Failure rates estimators and confidence interval at level 95%

increases, that is the semi-Markov system approaches a Markov one as time
increases.
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Fig. 3. Failure rates estimators consistency

Figure 4 presents the failure rates variances estimators for some different
values of the sample size. As in Figure 3, we can note the consistency of
variances estimators.
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1 Introduction

Analyzing survival data is historically and classically based on a sample of n
real and non negative random variables (T1, ..., Tn) each measuring a individ-
ual time to event. This event can reflect a time of diagnosis, a death, a failure
time, a breakdown or every change in the status of an individual but whatever
the field of applications is, biostatistics, industrial statistics or econometrics,
modelling or making inference on the distribution of the random variable T
often requires additional data and precise definition of the sampling process.
Some well known fields of research are devoted to failure time regression data,
frailty models or competing risk models. Usually, one attempts to condition-
ally define the reliability characteristics such that the survival function, the
hazard rate or the cumulative hazard rate given some random covariate de-
scribing either the frailty of the item, or the environmental conditions.

For instance, conditionally on the random vector A, the famous Pro-
portional Hazard rate model by Cox specifies that the hazard rate verifies
λT (t|A) = λo(t)× eβT A where λo is a baseline hazard function and β is a vec-
tor of parameters. This model was first defined for constant in time covariate
but it is possible to allow a time-varying effect of the environment on the
survival of the item. [WT97] study the model λT (t|A) = λo(t) × eβ(A1+A2t)

where A = (A1, A2) is some random but fixed in time vector of coefficients.
Also, this unit-to-unit variability in the definition of the hazard rate can be
interpreted as an individual frailty, modelled by a stochastic process and re-
flecting an internal accumulation of wear called aging or degradation process.
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In fact an increasing hazard rate usually describes degradation in engineering
applications [FIN03]. [BN04] define the conditional hazard rate given the ran-
dom vector A as λ(t|A) = λo(t)×λ(g(t, A)) where g is a given non decreasing
function. Is is strongly related to the model of Wulfsohn and Tsiatis but the
assumptions made for estimation and inference are completely different. If we
consider that g(., A) is the degradation function with random coefficient A, we
obtain a model where the degradation is varying unit-to-unit and influences
the hazard rate of a so called traumatic failure time.

2 Joint models for degradation and failure time modeling

In this section, we are interested in defining the failure time due to wear
or aging. This point has been an interesting field of research for the last
twenty years. The most important probabilistic issue being to jointly model
the degradation process and the associated failure times. Some recent results
use the fact that when longitudinal data of degradation or markers of it can
be measured before the failure occurs, it is possible to estimate reliability
characteristics of the item. Numerous models exist now and we will present
some of the most important ones.

Two main joint models exist. The first one considers a failure time which
is directly defined by the degradation process, the second one considers that
the degradation process influences the hazard rate. Obviously some joints
models include both by considering multiple failure modes.

Let us assume that the degradation of an item is given by a real-valued
right continuous and left hand limited stochastic process Z(t), t ∈ I. Some
well known reliability characteristics will be defined conditionally on Z but
even without any information on Z, we assume that the life time T0 is in fact
the first time of crossing a ultimate threshold z0 (which can be random) for
Z(t)

T0 = inf{t ∈ I, Z(t) ≥ z0}, (1)

if the degradation process tends to increase with time (the definition can
obviously be reversed if Z models an anti-aging process). We shall define as
well the failure time T with the conditional survival function given the past
degradation process as

P (T > t|Z(s), 0 ≤ s ≤ t) = exp
(
−
∫ t

0

λT (s|Z(u), 0 ≤ s ≤ u)ds
)
. (2)

The failure time T0 is sometimes called soft failure (or failure directly due
to wear) because in most of industrial applications, z0 is fixed and the ex-
periment is voluntarily ceased at the time the degradation process reaches
the level z0. Even if the degradation process is completely unknown, it can



Some recent results on joint degradation and failure time modeling 75

be useful and meaningful to analyze the links between the assumed distribu-
tion function of T0 and the definition of the underlying degradation process
[AG01]. This issue is strongly related to the theory of hitting time of stochas-
tic processes.

In the following section, we recall some well known results dealing with
hitting times such that T0. The analysis of the traumatic failure time T is
related to accelerated life models and is postponed to Sect. 2.2.

2.1 Failure time as hitting times of stochastic processes

stochastic degradation defined as diffusion

The degradation process is often assumed to be defined as the solution of a
stochastic diffusion, for instance

dX(t) = µ(X(t))dt + σX(t)dγ(t),

where γ is often a Wiener process. The degradation path can also been given
directly as the sample path of a given stochastic process. The gaussian process
with positive drift

X(t) = a + bt + W (t),

can be easily defined in both manners. In these cases, it is possible to link
the distribution of the failure time T0 to the diffusion process and most of the
parametric choices for survival distributions have a stochastic justification
in terms of an unknown degradation process suitably defined. For instance,
[SIN95] recalls that if Z0 is fixed then a Wiener process which starts out at
a deterministic X0 will have a time to absorption with an inverse gaussian
distribution. According to [COX99] this fact has sometimes been used to sug-
gest the Inverse-Gaussian distribution as a good one for parametric analysis
of failure data but this simple case has deeper generalizations and we refer to
[SIN95] and [AG01] for further details.

Estimation procedures for degradation data based on Wiener processes
(eventually measured with errors) have extensively been studied by [WHI95],
[DN95], [WS97], [WCL98] and [PT04] among others. The mathematical prop-
erty of independency of the increments of degradation data is obviously used
to derive the likelihood functions needed for the estimation in such parametric
models.

Stochastic processes such that general Levy processes, gamma processes or
shock processes have also been studied as accumulative degradation processes.
All of these processes have non-decreasing sample paths what is meaningful
for the accumulation of wear.

A gamma process as degradation process

Following [BN01], the family of Gamma processes with right-continuous tra-
jectories ensures the growth of the paths and the fact that, denoting
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Z(t) = σ2γ(t) with γ(t) ∼ G(1, ν(t)) = G(1,
m(t)
σ2

),

where G(1, ν(t)) is a Gamma distribution with parameters 1 and ν(t), the
increment from t to t+∆t for ∆t > 0 lies in the same family of distributions
since Z(t + ∆t) − Z(t) = σ2∆γ(t) and

∆γ(t) = γ(t + ∆t) − γ(t) ∼ G(1,
∆m(t)
σ2

).

Then
EZ(t) = m(t) and E∆Z(t) = ∆m(t).

A useful property for estimation procedures is the independency of increments.
Parametric models include functions m(t) = m(t, θ) where θ is a random co-
efficient but semiparametric methods (where m is nonparametric) have also
been developed in [BN01]. Note that covariates describing some environmen-
tal stress are also considered and influence the degradation function as in an
accelerated failure time model. [COU04] has studied the numerical proper-
ties in both models for constant in time stresses. See Also [LC04] who have
recently used these methods to degradation data in a stressed environment
with random effects.

A marked point process as degradation

When the degradation consists in an accumulation of shocks, each of them
leading to a random increment of degradation, it is possible to model it by a
marked point process Φ = (Tn, Xn)n≥1 where Tn is the time of the n-th shock
and Xn is the size of the corresponding increment of degradation. Thus

Z(t) =
+∞∑
i=1

I(tn ≤ t)Xn =
N(t)∑
i=1

Xi

is the sample path of the degradation and Φ(t) =
∑+∞

i=1 I(tn ≤ t) is the
counting process associated to the marked point process.

In these models also, a failure time can be defined as first crossing time
of a level z0. Due to the piecewise constant shape of the degradation, the
failure time T0 is necessarily one of the times of shock. For a fixed level
z0, some parametric estimations and large sample results have recently been
provided in [WK04] under the multiplicative intensity assumption of Aalen. It
assumes that the stochastic intensity function of the point process (Tn)n≥1 is
the product of a random variable Y and a deterministic function η(t), t ∈ R+).
Hence, given Y = y, the point process Φ is a Poisson process with deterministic
intensity function y.η(.). The process Φ is called a doubly stochastic Poisson
process. It includes for different choices of the distribution function of Y and
η the mixed Poisson process and the non homogeneous Poisson process.
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In order to describe the distribution function of the soft failure T0, it is
necessary to jointly define the intensity function of the point process and the
distribution function of the marks. The simpler hypothesis is the indepen-
dency between Tn and Xn for all n ≥ 1. A dependent position distribution is
easily defined if we let Xn = Une

δTn where (Un)n≥1 is a i.i.d. sequence of ran-
dom variables. The condition δ > 0 allows increasing effects of shocks on the
degradation level and δ < 0 leads to absorbed shocks. [WK04] and [KW04]
discuss estimation procedures for inverse gaussian and gamma-type distribu-
tion of Y and different shapes of the function η (see also [BN02] chap.13).

A mixed regression as degradation process : the general path
model

The real degradation is defined by the sample path of the process

Z(t) = g(t, θ), (3)

where g is a deterministic non decreasing continuous function of the time
and of the random coefficient θ ∈ Rp. The distribution function Fθ of θ is
unknown. In this case, the hitting time of a given threshold z0 is easily found
by inverting g in its first parameter. There exists h such that

Z(T0, θ) = z0 ↔ T0 = h(z0, θ)

Thus, the distribution function of the failure time T0 can be written in terms
of z0, h and of the distribution function Fθ of θ.

For instance, [OC04] study linear degradation g(t, β1, β2) = β1 + β2t with
fixed β1 and random β2 following Weibull(α, γ) or log-normal(µ, σ2) distri-
butions. Hence T0 follows a reciprocal Weibull or log-normal distribution
respectively (see also [ME98]). In the case of noised degradation values, ran-
dom coefficients are estimated unit-to-unit and a pseudo-failure time T̂0 is
deduced from the degradation data. Finally classical survival analysis is ap-
plied to these pseudo failure times to analyze and estimate the real distribution
function of the failure time T0.

The observed degradation of the i-th item is often a partially and erroneous
version of the real degradation. It is defined by the the vector of the mi

measurements of the real degradation at given times ti1 < .. < timi

Zij = Z(tij) = g(tij , θi) + εij , (4)

where the εi are zero mean random variables. [BN04] have also assumed
multiplicative errors in (4). In this case, we assume

Zij = Z(tij) = g(tij , θi)εij (5)

and using Yij = lnZij = lnZ(tij) = ln g(tij , θi) + ln εij = g̃(tij , θi) + ε̃ij , as
transformed degradation data, estimation procedures with additive noise are
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available (with suitable assumptions on ε̃ij).

Numerous models are based on (3) and (4) or (5) and differ only by as-
sumptions made on the function g (or g̃) and the distributions of θ and ε (or
ε̃). [LM93] and [ME98] for instance use non linear mixed effect models in
which g has a specified shape, θ follows a multivariate gaussian distribution
and unknown parameters are estimated by maximizing the global likelihood
function. The distribution function of T0 is numerically estimated with Monte-
Carlo method. The method is illustrated on the famous Fatigue Crack Growth
Data by [BK85]. In the same framework and on the same data set, [RC00] use
bayesian approach to estimate the unknown reliability characteristics such the
failure time distribution of T0 and [GLJ03] propose an estimation procedure
based on artificial neural network.

A slightly different approach consists in supposing that the unit-to-unit
variability of the degradation paths has a part explained by the environmental
conditions, that is θ is a random parameter whose distribution depends on a
external covariate describing the stress. In a purely parametric model, [YU03]
and [YU04] study optimal designs of accelerated degradation experiments
where a transformed degradation function is g(t) = −βtα, α is fixed and
known, β follows a Log-Normal(µ, σ2) or a reciprocal-Weibull distribution
(with parameters varying with the stress) and the errors are gaussian.

Also [BBK04] study a linear degradation model with multiple failure
modes. The degradation process is Z(t) = t/θ and is observed without error.
This is a very simple path model but the complexity relies on the fact that no
parametric assumption is made on the distribution of θ and some competing
failure times are censoring the degradation process.

2.2 Failure times with degradation-dependent hazard rate

The failure time T0 defined above and named soft failure is directly due to
the evolution of the degradation because it is a crossing time. Another way
to model a link between the degradation and a failure time is to consider that
the degradation level is an internal covariate influencing the survival function
of a traumatic failure T , through the conditional definition

P (T > t|Z(s), 0 ≤ s ≤ t) = exp
(
−
∫ t

0

λT (s|Z(u), 0 ≤ s ≤ u)ds
)
.

[COX99] notes that the essential point is that given the degradation history
{Z(s), 0 < s < t}, the hazard rate λT does not depend on time and considers
as an example that λT (t|Z(u), 0 ≤ u ≤ t) = α + βZ(t).

Remark 1 : This definition is equivalent to assuming that T is the first
time a doubly stochastic Poisson process with intensity λT (s|Z(u), 0 ≤ s ≤ u)
jumps (see [BN02] chap.3).
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Remark 2 : This definition has an analogy with the hitting-time definition of
lifetime seen in Sect. 2.1. In fact for T0 defined as the first time the degradation
process reaches the threshold z0, we have

P (T0 > t|Z(s), 0 ≤ s ≤ t) = P (z0 > Z(t)|Z(s), 0 ≤ s ≤ t)
= G0(Z(t))

where G0 is the survival function of z0. Hence, if z0 is fixed then

G0(Z(t)) = 1{Z(t)<z0}

because G0 is the survival function of the dirac random variable whose real-
izations give z0 almost surely.

Definition (2) is related to some well known accelerated failure time model
with external time-varying covariate X(t), t > 0 satisfying

P (T > t|X(s), 0 < s < t) = G
(∫ t

0

ψ(X(s), β)ds
)

where G is a survival function and ψ is a positive function in the space of
covariate values sometimes called transfer function or ideal time scale ([BN97],
[DL00], [DL02]). Such conditional survival functions have also been studied
by [YM97].

2.3 The joint model : a mixed regression model with traumatic
censoring

Two failure mode are considered here. The failure time T0 is the first time
the unknown real degradation Z(t) = g(t, θ) reaches a given threshold z0. As
in Sect. 2.2, the traumatic failure time T is defined through its conditional
survival function given the past degradation

P (T > t|Z(s), 0 ≤ s ≤ t) = exp
(
−
∫ t

0

λT (s|Z(u), 0 ≤ s ≤ u)ds
)

Noting that Z is a parameterized degradation function with random pa-
rameter θ, we restrict ourself here to the following assumption for conditional
hazard rate λT .

λT (t|Z(u), 0 ≤ u ≤ t) = λT (t|θ) = λ(g(t, θ)) (6)

where λ is a nonparametric function in the degradation domain.

For the item i, define T i
0 the random variable defined as the hitting time of

the threshold degradation z0 and T i the failure time whose conditional hazard
rate is defined in (6). The last values of degradation can be censored either
by the failure time T0 due to degradation or the traumatic failure time T . If
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the failure is due to degradation, we define τ i ∈ {tij , i = 1..mi} such that the
degradation Zobs(τ i) at time τ i is the first degradation value strictly greater
than z0. fi is the number of degradation values and is such that tifi

= τi. If
the failure is due to traumatism, we define τ i ∈ {tij , i = 1..mi} such that τ i

is the last time of measurement before T. Then the data for the item i are the
date of failure U i = min(τ i, T i, timi

), a discrete variable δi giving the cause
of failure and the fi ≤ mi noised measures of degradation 0 < Zi1 < ... <
Zobs(τi) = Zifi

. These degradation data can follow a regression model like
(4) or (5). In the following, we develop such models. Note that [HA03] use
the same data to fit a purely parametric model (using Weibull distribution)
in a competing risks framework but they do not infer on the degradation
curve. The degradation distributions are only inferred at times t1, ..., tm but
the longitudinal aspect of the data is not considered.

3 Some recent results in semiparametric estimation in
the general path model

We assume here that the degradation evolves in the same manner an unknown
function g growths with time. The function g is a continuous parametrized
function with unit-to-unit dependent parameters. Hence the real unobserved
degradation of the i-th item is

Zreal(t) = g(t, θi) (7)

where θi ∈ Rp is random vector of parameters with unknown distribution.
In order to get explicit formulae, we first restrict ourself to functions g(., θ)

in (7) leading to a linearized problem of estimation. Nonlinear regression mod-
els are obviously useful in some applications but need numerical optimizations
which do not provide estimates in closed form.

3.1 Linear estimation

For each item i, i = 1..n, we assumed that we have at our disposal the
survival time Ui, the indicator δi and the degradation data as described in
Sect. 2.3. The model considered here assumes that there exists a function F
such that the fi available measurements Zi1, ..Zifi

at times ti = (ti1, .., t
i
fi

)′ of
the degradation level of the i-th item satisfy

Yij = F(Zij) = t̃iθ̃i + ε̃ij , j = 1..fi, (8)

where θ̃i ∈ Rp is a function of the random vector θi ∈ Rp and t̃i = (t̃i1, .., t̃
i
fi

)′

is a fi × p-design matrix whose j-th raw is the raw-vector t̃ij ∈ Rp function
of tij . Finally (ε̃ij)j=1,..,fi

is the vector of additive noises of the i-th item.
Thus the function F permits to get a linear expression of the degradation
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in a transformed scale of time and we denote by Y i the vector of measures
for the item i. For instance in [BN04], the real degradation of the i-th item,
i=1,..,n, is Z(t) = eai

1(1 + t)ai
2 , t ∈ R+ where (ai

1, a
i
2) = θi is a random

vector with unknown distribution function Fθ, and the data consist in
Zij = Z(tij)Uij , j = 1, .., fi, i = 1, .., n. In fact, taking Yij = lnZij , we
get that Yij = ai

1 + ai
2 ln(1 + tij) + ln εij and thus in that case θ̃i = θi,

t̃ij = (1, ln(1 + tij)) and ε̃ij = ln εij .
Three main assumptions are made for the correlation structure of the noises
namely

H1 (ε̃ij)j=1..fi
are i.i.d. random variables with

Eε̃ij = 0, cov[ε̃ij1 , ε̃
i
j2 ] = σ2

i 1{j1=j2}

H2 (ε̃ij)j=1..fi are identically distributed random variables with

Eε̃ij = 0, cov[ε̃ij1 , ε̃
i
j2 ] = σ2

i

(
c(tij1) ∧ c(tij2)

)
where c is a positive nondecreasing function.

H3 (ε̃ij)j=1..fi
are identically distributed random variables with

Eε̃ij = 0, cov[ε̃ij1 , ε̃
i
j2 ] = σ2

i φ
|ti

j1
−ti

j2
|

where 0 ≤ φ < 1.

If the errors are gaussian, under H3, ε̃ij = σ2W (c(tij)) where W is a brownian
motion. Under H2, if the times (tij)(j) are equidistant, the ε̃ij is a AR(1)
sequence of noises.

For item i, denote by σ2
i Σi the fi × fi-variance matrix of (ε̃ij)(j). Hence a

predictor for θi is found by generalized least square estimation

θ̂i = argmina∈Rp(Y i − t̃ia)′Σ−1
i (Y i − t̃ia) (9)

denoting X’ for the transposition of matrix X. We recall the following well
known results of generalized least square estimation

Proposition 1 : The predictor

θ̂i = (t̃i
′
Σ−1

i t̃i)−1 t̃i Σ−1
i Y i

is also the ordinary least square estimate of the transformed data

θ̂i = argmina∈Rp ||RiY i −Rit̃ia||,

where Ri = (U i′)−1 and U i satisfies Σi = U i′U i
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Proposition 2 :

under H1 we have R =Id,
under H2 diag(R) =

(
1, 1/

√
c(ti2) − c(ti1), ...,

√
c(tifi

) − c(tifi−1)
)
, Ri+1,i =

−Ri+1,i+1 and Rij = 0 elsewhere,
under H3 with equally spaced measures, diag(R) = (

√
1 − φ2, 1.., 1),

Ri+1,i = −φ and Ri,j = 0 elsewhere.

These results use the Cholesky decomposition of matrices and are valid
if the nuisance parameter Φ and c are known. If φ is unknown, it can be
estimated with two-step procedures or iterative estimation ([SW03], p. 279).
Interestingly, under H2 the estimation procedure involves only the standard-
ized increments (Y i

j − Y i
j−1)/

√
c(tij) − c(tij−1) and we have

Proposition 3 : In the model

Yij = θi
1 + θi

2f(tij) + ε̃ij ,

where f is any increasing function, under H2 we obtain

θi
1 =

c(ti1)
γ − c(ti1)

(
γYi1 − c(ti1)∆

′Y i
)

θi
2 =

c(ti1)
γ − c(ti1)

(
∆′Y i − Yi1

)
where, if we denote dl(tij) = l(tij+1) − l(tij) for any function l with dl(ti0) =
dl(tifi

) = 0 ,

γ =
fi−1∑
j=0

df(tij)
2/dc(tij)

and
∆ =

(
df(tij−1)/c(t

i
j−1) − df(tij)/c(t

i
j)
)
j=1..fi

The simple case f = c in found in [BN04] where f(t) = c(t) = ln(1 + t).
In this case the calculations reduce to(

θ̂i
1

θ̂i
2

)
=
(
Y i

1 − θ̂i
2c(t

i
1)

(Y i
fi

− Y i
1 )/(f(tifi

) − f(ti1))

)
,

and thus the estimate is not consistent in this case.

3.2 Nonlinear estimation

In the nonlinear case, whatever the hypothesis about the correlation of the
noises is, the predictor θ̂i of θi is found by least square minimization

θ̂i = argmina∈Rp(Y i − g(ti, a))′Σ−1
i (Y i − g(ti, a)) i = 1..n
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where g(ti, a) is the vector in Rfi of the values (g(tij , a))j=1..fi . Under H1,
[LM93] provide direct estimation of the distribution of the θi via a parametric
assumption θi ∼ N (β,Σ), i = 1..n and estimate β and Σ in a nonlinear
mixed effect model with maximum likelihood estimators. Here we do not
make such assumption. Thus we have to construct some predictor θ̂i of the
random coefficient θi and shall plug these predictors in some non parametric
estimate of Fθ in the next section. Closed form for these predictors are not
available but numerous numerical optimization procedures exist. We illustrate
two well known algorithms on the Fatigue crack size propagation Alloy-A data
([LM93]). These data represent the growth of cracks in metal for 21 test units
with a maximum of twelve equally spaced measurements. Testing was stopped
if the crack length exceeded 1.60 inches which defines the threshold z0. No
traumatic failure mode is defined in this example. The Paris growth curve

g(t,m,C) =
(
0.9

2−m
2 +

2 −m

2
C
√
π

m
t
) 2

2−m

with unit-to-unit coefficients θi = (mi, Ci) is fitted on each item. The
aim is thus to estimate the distribution function F(m,C) with the noised
measurements of degradation under hypothesis H1.
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Fig. 1. Fatigue Crack Size for Alloy-A and Nonlinear fitting of Paris curves with
nls and gnls

Under H1, We used a Gauss-Newton algorithm implemented by Bates
and DebRoy in nls function of Splus and R softwares ([BC92]). A similar
algorithm minimizing generalized least squares and allowing correlated errors
is obviously useful under H2 and H3. Thus we tested also the gnls function
by Pinheiro and Bates in R. Both methods give a very well fit to the data
but the predictions present some little difference as it is shown in figure 2.
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Fig. 2. E.c.d.f. of m with both methods

In fact we could compare the methods by calculating the empirical mean
square error. In this case, the mean square error of method nls in the lowest
(MSEGNLS = 0.0175, MSENLS = 0.0105).

3.3 Estimation of the reliability functions

If the θi where known, an estimate of the distribution function Fθ would be
the classical empirical distribution function F̂θ. If the predictions θ̂i of the
random coefficients θi are consistent then a nonparametric estimation of Fθ

is

ˆ̂
Fθ(a) =

1
n

n∑
i=1

1{θ̂i≤a}, a ∈ Rp

and when a traumatic failure mode exists we can plug the θ̂i’s in a Nelson-
Aalen type estimate of the cumulative hazard function in the degradation
space Λ(z) =

∫ s

0
λ(u)du to get

Λ̂(z) =
∑

Zi
fi

≤z,δi=1

1∑
j,Zj

fj
≥Zi

fi

h′(Zi
fi
, θ̂i)

For further details we refer to [BN04]. The overall survival function S of the
failure time U = min(T0, T ) is estimated by

Ŝ(t) =
∫ [

exp −
∫ g(t,a)

0

h′(z, a)dΛ̂(z)
]
1t<h(z0,a)d

ˆ̂
Fθ(a)

=
1
n

n∑
i=1

exp
[
−
∫ g(t,θ̂i)

0

h′(z, θ̂i)dΛ̂(z)
]
1t<h(z0,θ̂i).



Some recent results on joint degradation and failure time modeling 85

Example : As an illustration we consider three simulations of n=100
degradation curves Z(t, θ1, θ2) = eθ1(1 + t)θ2 , t ∈ [0, 12] with multiplicative
noise and traumatic failure times with a hazard rate in the degradation space
of Weibull-type λ(t) = β/α(x/α)β−1, α = 5, β = 2.5 and (θ1, θ2) is a gaussian
vector with mean (-2,2) and Varθ1 =Varθ2 = 0.12, Corr(θ1, θ2) = −0.7. In
this case the results of section 3.1 hold with Yij =lnZij and the additive errors
ε̃ follow H1 or H2 with Φ = 0.9 or H3 with c(t)=ln(1+t) and σi = 0.05 for all
i. The path i is censored by the minimum min(T i

0, T
i, 12) and the estimation

of the coefficients are carried out according to section 3.1.
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Fig. 3. 3 simulated path with CAR(1) and Wiener-type noises

The estimation behaves well under H1 and H2 but is less efficient under
H3 (see the right hand side of figure 4). In fact, figure 5 shows that under
H1 the distribution function of the random variable θ1 is well estimated both
by F̂θ1 and ˆ̂

Fθ1 but not under H3.
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Fig. 4. Estimation of Fθ1 under H1 and H3

Finally, we present an estimation of the cumulative hazard rate functuion
Λ in the degradation space under H1 and a Monte Carlo simulation giving a
95% empirical confidence band under H2.
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Summary. Markov chain proportional hazard regression model provides a powerful
tool for analysis of multiple event times. We discuss estimation in absorbing Markov
chains with missing covariates . We consider a MAR model assuming that the
missing data mechanism depends on the observed covariates, as well as the number
of events observed in a given time period, their types and times of their occurrence.
For estimation purposes we use a piecewise constant intensity regression model.

1 Introduction

Missing covariate measurements arise frequently in regression analyses of sur-
vival time data. The most common approach to handling such measurements
corresponds to the case deletion method. It consists of exclusion of subjects
with missing covariates and analysis of the data based on information col-
lected on the remaining subjects. This method can be highly inefficient, and
can lead to biased estimates, if complete cases do not form a random sample
of the original data (Little and Rubin, 1987).

Several authors have proposed methods for analysis of the proportional
hazard model with missing covariates. In particular, Zhou and Pepe (1995)
and Lin and Ying (1993) suggested methods for regression analysis in the case
of covariates missing completely at random (MCAR). This model assumes
that the distribution of the missing data mechanism does not depend on
the outcome variables. The approach taken by Zhou and Pepe and Lin and
Ying corresponds to estimation of regression coefficients based on modified
partial likelihoods obtained by approximating the conditional expectation of
a covariate Z(t) given the risk process based on subjects who have complete
measurements and remain at risk for failure at time t. Martinussen (1999) and
Chen and Little (1999) considered the more parsimonious model assuming
that covariates are missing at random (MAR). Under assumptions of this
model, the missing data mechanism may depend the observed data, but not
on the values of the missing covariates. Several methods for handling missing
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covariates in both proportional hazard model and parametric survival analysis
models were also proposed by Lipsitz and Ibrahim (1996, 1998), Chen and
Ibrahim (2001).

In this paper we consider estimation in a multivariate counting process cor-
responding to a finite state proportional hazard Markov chain model (Ander-
sen, et al. 1993, Andersen, Hansen and Keiding, 1992). As opposed to single
endpoint models, here inferences refer to a stochastic process {J(t), t ∈ [0, τ ]}
such that at time t, J(t) takes on values in a finite set E = {1, . . . , k} rep-
resenting possible events in the evolution of a disease. Along with a possibly
censored realization of the process J(t), we also observe a vector of time in-
dependent covariates Z. The model assumes that conditionally on Z, the
process J(t) forms an inhomogeneous Markov chain and intensities of tran-
sitions among adjacent states have proportional hazard form. In Section 2
we allow some components of the vector Z to be missing. We define a MAR
model, assuming that the missing data mechanism depends on the observed
covariates as well as the number of events observed during a specified period
of time, their types and times of the occurrence. We consider censoring corre-
sponding to the termination of the study at a fixed time point τ , and random
censoring representing an absorbing state of the observed model. For purposes
of estimation of the parameters of the Markov chain we use a modification
of Freedman’s (1982) approach to analysis of the proportional hazard model
with piecewise constant hazard rates. The method uses histogram approxima-
tion to the hazard rates and a piecewise linear approximation to cumulative
intensities.

In their analysis of MCAR and MAR models, Little and Rubin (1987, p.
90) showed that the likelihoods for estimation of the parameters of interest
are the same under assumptions of both models. More precisely, the likeli-
hoods differ only in the proportionality factors depending on the parameters
describing the missing data mechanism at hand. In the present setting, the
MCAR model allows for estimation of the unknown parameters as well as
estimation of a modified matrix of transition probabilities (Section 2.1). On
the other hand, the MAR condition depends on the sequence of states visited
and times of entrances into these states. Similarly to Little and Rubin (1987,
p. 90), the likelihood for estimation of the regression coefficients is the same
under the MAR and the MCAR model (up to proportionality factors), how-
ever, we show that the MAR model does not allow in general for estimation
of the transition probabilities among different states of the model.

For illustrative purposes in Section 3 we use data on 4141 patients di-
agnosed with malignant melanoma and treated at the John Wayne Cancer
Institute, Santa Monica (JWCI) and UCLA. The JWCI/UCLA database was
initiated over 30 years ago. This clinio-pathological demographic database
has been established in late 1970’s and identified as a national resource for
melanoma studies. The database has expanded in the number and type of
variables included as well as addition of clinical trials data developed by
JWCI. Data analyses of this database encountered the not uncommon sit-
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uation where observations on some important variables are missing. Thus for
example, depth of invasion of the primary tumor has not been observed in a
moderate number of cases.

2 The model and estimation

2.1 The model

Throughout we consider estimation in a finite state Markov chain process. We
assume that the chain {J(t) : t ∈ [0, τ ]} is observed over a finite time period
(τ < ∞) and its state space E = {1, . . . , k} can be partitioned into two
disjoint sets T ∪A = E, T ∩A = ∅, representing transient (T ) and absorbing
(A) states. A pair of distinct states (i, j) ∈ E × E, i �= j is called adjacent if
transition from state i to state j is possible in one step. The collection of all
such adjacent pairs is denoted by E0, E0 ⊂ E × E.

A Markov chain regression model can be specified in terms of two parame-
ters. They correspond to (i) the joint marginal distribution of the initial state
J0 and the covariates Z = (Z1, . . . , Zd); and (ii) the conditional cumulative
intensity matrix A(t; z) = [Aij(t; z)]i,j∈E . The entries of the matrix A(t; z)
are given by

Aij(t; z) =
∫ t

0

αij(u; z)du if i �= j ,

Aii(t; z) = −
∑
j �=i

Aij(t; z) if i = j .

For i �= j, the functions αij(u, z) represent conditional hazard rates of one-step
transitions among adjacent states of the model. The negative on-diagonal en-
tries form cumulative hazard functions accounting for the sojourn time in each
state of the model. The (i, j) entry of the conditional transition probability
matrix

P(s, t; z) = [Pij(s, t; z)]i,j=1,...,k = [Pr(J(t) = j|J(s) = i, Z = z)]i,j=1,...,k

provides the conditional probability that the process occupies state j at time
t, J(t) = j, given Z = z and given that that at time s, s < t the process is in
state i. The matrix P(s, t; z) forms solution to Kolmogorov equations

P(s, t; z) = I +
∫ t

s

P(s, u−; z)A(du; z) = I +
∫ t

s

A(du; z)P(u, t; z) ,
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where I is the identity matrix. Methods for its computation are discussed in
Chiang (1968), Aalen and Johansen (1978) and Andersen et al (1993), among
others.

Associated with the pair (Z, {J(t), t ∈ [0, τ ]}) is a marked point process
{Z, (Tm, Jm)m≥0}, where 0 = T0 < T1 < . . . < Tm < ... are times of consec-
utive entrances into the possible states of the model, and J0, J1, . . . , Jm, . . .
are states visited at these times. Let Wm = (T
, J
 : � = 0, . . . ,m),m ≥ 0,
be the first m pairs in the sequence (Tm, Jm)m≥0. The assumption that, con-
ditionally on the covariates, the process J(t) forms a Markov chain entails
that

Pr(Tm ≤ t, Jm = jm|Wm−1, Z) =
∫

(Tm−1,t]

f(u, jm|Tm−1, Jm−1, Z) ,

where

f(u, jm|tm−1, jm−1, Z) = 1(u > tm−1)F (u|tm−1, jm−1, z)αjm−1,jm
(u; z)

and

F (t|tm−1, jm−1, z) = exp[−
∑

l:(jm−1,l)∈E0

∫
(tm−1,t]

αjm−1,l(u; z)du]

if t > tm−1 ,

= 1 otherwise .

The function F (·|tm−1, jm−1, z) represents the conditional survival function
in state jm−1, that is

Pr(Tm > t|Wm−1, Z) = F (t|Tm−1, Jm−1, Z) .

Finally, the probability of one-step transition into state j at time Tm is given
by

Pr(Jm = j|Z, Tm = u,Wm−1) =
αjm−1,j(u; z)∑

l:(jm−1,
)∈E0
αjm−1,l(u; z)

.

From this it also follows that

lim
s↓0

1
s
Pr(Tm ∈ [t, t + s], Jm = j|Z, Tm ≥ t,Wm−1) =

1(Tm > t > Tm−1)1(Jm−1 = jm−1)αjm−1,j(t; z) .

If we denote by Nh(t) and Yh(t), h ∈ E0, the processes

Nh(t) =
∑
m≥1

Nhm(t) , Yh(t) =
∑
m≥1

Yhm(t) ,

where
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Nhm(t) = 1(Tm−1 < Tm ≤ t, Jm−1 = i, Jm = j) ,
Yhm(t) = 1(Tm ≥ t > Tm−1, Jm−1 = i) ,

then N(t) = {Nh(t) : t ∈ [0, τ ], h = (i, j) ∈ E0} is a multivariate counting
process whose components record transitions among adjacent states occurring
during the time interval [0, t]. Assuming that the process N(t) is defined on
a complete probability space (Ω,F ,Pr), its compensator Λ(t) = {Λh(t) :
t ∈ [0, τ ], h ∈ E0}, relative to the self-exciting filtration {G ⊗ Ft}t≤τ ,G =
σ(Z),Ft = σ{J0, Nh(s), Yh(s+) : s ≤ t, h ∈ E0} satisfies

Λh(dt) = E[Nh(dt)|G × Ft−] = Yh(t)αh(t;Z)dt .

The assumption that the process forms a proportional hazard Markov chain
corresponds to the choice

Λh(dt) = Yh(t)eβT Zhαh(t)dt ,

where α = [αh : h ∈ E0] are unknown baseline hazards, [Zh : h ∈ E0] is a
vector of transition specific covariates, and β = [βh : h ∈ E0] is a conformal
vector of regression coefficients. For any pair of adjacent states, h ∈ E0, the
vector Zh is either equal to the covariate Z, or else it represents a function
Zh = Θh(Z) derived from the covariate Z.

We assume now that the covariate Z can be partitioned into two non-
empty blocks, Z = (Z0, Z1) such that Z0 = (Z01, . . . , Z0q) and Z1 =
(Z11, . . . , Z1,d−q). We shall use the following regularity conditions.

Condition 2.1

(i) The conditional distribution of Z0 given (Z1, J0) has density gθ(z0|z1, j0)
with respect to a product dominating measure ⊗q

i=1µi and dependent on
a parameter θ ∈ Θ ⊂ Rq.

(ii) Conditionally on (Z0, Z1, J0), the sequence (Tm, Jm)m≥0 forms a propor-
tional hazard Markov chain model with parameters α = [αh : h ∈ E0] and
β = [βh : h ∈ E0].

(ii) The parameter θ is noninformative on (α, β).

We denote by ψ = (θ, α, β) the unknown parameters. In Appendix 2,
we give a recurrent formula for the conditional density of the the covariate
Z0 given the vector V , V = [N.(τ), (J
, T
)

N.(τ)

=0 , Z1]. We also show that

the "marginal" model, obtained by omitting the covariate Z0 forms a non-
Markovian counting process.

Here we assume that some components of this vector may be missing. Let
R = (R1, . . . , Rq) be a binary vector defined by

Rj = 1 if Z0j is observed
Rj = 0 if Z0j is unobserved .

Then for a subject whose missing data indicator R is equal to r = (r1, . . . , rq),
we observe the vector (V,Z0(r)), where V = [N.(τ), (T
, J
)

N.(τ)

=1 , Z1] and
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Z0(r) = (Z0j : rj = 1) .

We also denote by z0(r) = [z0j : rj = 0] a potential realization of the missing
covariate.

We shall treat the variable R as an extra covariate taking values in the
set R = {0, 1}q. Denoting the sample space of covariates Z0 and Z1 by Z0

and Z1, respectively, the unobserved model is defined on the probability space
(Ω′ ×Ω, {G′ ⊗ Ft}t≤τ , P r), where Ω′ = R × Z0 × Z1, G′ is the Borel σ–field
of Ω′ and ′′Pr′′ is defined in the condition (2.1) below. The observable model
corresponds to the transformation of this space according to the assignment
X(r, z0, z1, ω) = (r, z0(r), z1, ω), where r is the realization of the missing data
indicator, (z0(r), z1) is the realization of the observed covariate and ω is the
sequence of states visited and times of entrances into these states. Since the
number of events N.(τ) =

∑
h∈E0

Nh(τ) observed during the time period [0, τ ]
is random, we specify the MAR assumption by conditioning on the number
of events N.(τ) and type and time of their occurrence.

Condition 2.2.

(i) The conditional distribution of the missing data indicator satisfies

Pr(R = r|V,Z0) = ν(V,Z0(r)) ,

where V = [N.(τ), (Jl, Tl)
N.(τ)
l=0 , Z1] and ν is a proper conditional proba-

bility measure not dependent on missing covariates.
(ii) The parameters of the conditional distribution ν of the missing data in-

dicators are noninformative on the parameter ψ = (θ, α, β).

The MAR condition (i) is a type of conditional independence assump-
tion. It is satisfied for example, if the vectors R and Z0 are conditionally
independent given V . In the latter case, the probability distribution ν de-
pends only on the sequence V . The stronger MCAR condition assumes
that the function ν depends only on the pair (Z1, J0), but not on the vec-
tor V1 = [N.(τ), (Jl, Tl)

N.(τ)
l=0 ] or the observed covariates Z0(R). The MCAR

model is satisfied for example, if R and the sequence [Z0, (T
, J
)
≥0] are con-
ditionally independent given (Z1, J0).

The difference between these two models can be better understood in
the context of prediction. If parameters of the missing data mechanism are
noninformative on ψ and not estimated from the data, then the MAR and
the MCAR model lead to the same likelihoods and the same estimates of
the parameter ψ. In the case of the MCAR model, the resulting parameters
can be also used to estimate some parameters related to the prediction of
the survival status of a new patient based on his/her observed covariates and
follow-up history. For example, we can define an analogue of the transition
probability matrix by setting

Pr(J(t) = j|J(s) = i, Z0(R), Z1, J0 = �, R) = (1)

=
∫

Pij(t, s|Z0(R), z0(r), Z1)π(dz0(r)|i, �, s, Z1, Z0(R)) ,
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where π(·|i, �, s, Z1, Z0(R)) is the conditional density of the missing covariate
Z0(R) given the observed covariate (Z1, Z0(R)) and given that the states
occupied at times 0 and s are J(0) = � and J(s) = i, respectively. This
posterior density is given by

π(dz0(r)|i, �, s, Z1, Z0(R)) =

=
P
i(0, s|Z0(R), z0(r), Z1)gθ(Z0(r), z0(r)|Z1, �)µr(dz0(r))∫
P
i(0, s|Z0(R), z0(r), Z1)gθ(Z0(r), z0(r)|Z1, �)µr(dz0(r))

where µr = ⊗i:ri=0µi. Under the MCAR model, the matrix (1) can be esti-
mated using plug-in method.

However, under the weaker assumption of the MAR model, the transition
probabilities (1) depend in general on the conditional distribution of the miss-
ing data indicator, and hence its parameters must from the data. A "partial"
MAR model, assuming

Pr(R = r|V,Z0) = ν(J0, Z1, Z0(r)) (2)

instead of the condition 2.2 (i), is sufficient to ensure ignorability of the missing
data mechanism for the modified transition probability matrix (1). In sum,
although the MAR model forms an ignorable missing data mechanism for
estimation of the parameter ψ, this is not the case for estimation of transition
probabilities or other parameters related to prediction. At the same time,
the transition probabilities derived under the MCAR condition, or the partial
MAR model (2), are in general biased.

2.2 Example

Here we consider a four state illness model assuming that a healthy person
(state 0) can develop two forms of a disease: D1 or D2 (state 1 or state 2) and
subsequently die (state 3), or else he/she dies without developing the disease.

The matrix of baseline intensities is of the form

α(t) =

⎛⎜⎜⎝
−
∑3

j=1 α0j(t) α01(t) α02(t) α03(t)
0 −α13(t) 0 α13(t)
0 0 −α23(t) α23(t)
0 0 0 0

⎞⎟⎟⎠
The corresponding diagram of transitions is presented in Figure 2.1.
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death
state 3

D1
state 1

tx
state 0

D2
state 2

� �

�

� �

Figure 2.1. A four state illness model

The matrix of conditional transition probabilities P(s, t; z) =
[Pij(s, t; z)]i,j=0,...,3 has entries

P00(s, t; z) = Pr(T1 > t|T1 > s,Z = z) = F (t|s, 0, z) ,
Pii(s, t; z) = Pr(T2 > t|T2 > s > T1, J1 = i, Z = z) = F (t|s, i, z) , i = 1, 2 ,

P0i(s, t; z) = Pr(T1 ≤ t < T2, J1 = 1|T1 > s,Z = z) =

=
∫ t

s

P00(s, u−; z)α0i(du; z)Pii(u, t; z) , i = 1, 2 ,

Pi3(s, t; z) = Pr(T2 ≤ t <, J2 = 3|T1 < s < T2, J1 = i, Z = z) =

=
∫ t

s

Pii(s, u−; z)αi3(du; z) =
∫ t

s

f(u, 3|s, i, z)du , i = 1, 2 ,

P03(s, t;Z) = Pr(T1 ≤ t, J1 = 3|T1 > s,Z = z) + Pr(T2 ≤ t, J2 = 2|T1 > s,Z = z)

=
2∑

i=0

∫ t

s

P0i(s, u−; z)αi3(du; z) .

In addition, P33(s, t; z) = 1 and the remaining entries are 0.
In the case of complete covariates, the assumption that observations are

censored at a fixed time τ entails that the transition probability matrix can
be estimated only within the range 0 < s < t ≤ τ . Next suppose that the
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covariate vector is partitioned into two blocks Z = (Z0, Z1) and components
of the vector Z0 may be missing. To see that under the MAR condition, the
matrix of transition probabilities cannot be in general recovered, let us first
consider the term

Pr(J(t) = 0|J(s) = 0, Z0(R), Z1, J0 = 0, R) (3)
= Pr(T1 > t|T1 > s,Z0(R), Z1, R)

We have

Pr(T1 > t|T1 > s,Z0(r) = z0(r), Z1 = z1, R = r) =
γ(t, z0(r), z1, r)
γ(s, z0(r), z1, r)

,

where

γ(t, z0(r), z1, r) =
Pr(R = r, T1 > t|Z0(r) = z0(r), Z1 = z1)

Pr(R = r|Z0(r) = z0(r), Z1 = z1)
.

Moreover, γ(t, z0(r), z1, r) = γ′(t, z0(r), z1, r)/γ′(0, z0(r), z1, r), where

γ′(t, z0(r), z1, r) = (4)

=
2∑

j=0

∫
γj(t, z0(r), z0(r), z1, r)gθ(z0(r), z0(r)|z1, 0)µr(dz0(r))

and for z = (z0, z1),

γ0(t, z, r) = Pr(R = r|N.(τ) = 0, Z0(r) = z0(r), Z1 = z1)
× F (t ∨ τ |0, 0, z)

γ1(t, z, r) = 1(t < τ) ×
2∑

i=1

∫ τ

t

(
Pr(R = r|N.(τ) = 1, T1 = u, J1 = i, Z0(r) = z0(r), Z1 = z1)

× f(u, i|0, 0, z)F (τ |u, i, z)
)
du

+
∫ τ

t

Pr(R = r|N.(τ) = 1, T1 = u, J1 = 3, Z0(r) = z0(r), Z1 = z1)

× f(u, 3|0, 0, z)du

γ2(t, z0, z1, r) = 1(t < τ)
∫ τ

t

(∫ τ

u

Pr(R = r|N.(τ) = 2, T1 = u, J1 = i,

T2 = v, J2 = 3, Z0(r) = z0(r), Z1 = z1)

× f(v, 3|u, i, z)dv
)
f(u, i|0, 0, z)du .
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It is easy to see now that (3) depends in general on the distribution of the
missing data indicator. However, under the partial MAR model (2), this
distribution does not depend on the number of events observed in the interval
[0, τ ], or their types and times of the occurrence. In this case, the sum (4)
reduces to the product

2∑
j=0

γj(t, z0, z1, r) = Pr(R = r|Z0(r) = z0(r), Z1 = z1) ×

(
F (t ∨ τ |0, 0, z) + 1(t < τ)

[ 2∑
i=1

∫ τ

t

f(u, i|0, 0, z)F (τ |u, i, z)

+
2∑

i=1

∫ τ

t

f(u, i|0, 0, z)[1 − F (τ |u, i, z)] +
∫ τ

t

f(u, 3|0, 0, z)
])

=

= Pr(R = r|Z0(r) = z0(r), Z1 = z1) ×(
F (t ∨ τ |0, 0, z) + 1(t < τ)[F (t|0, 0, z) − F (τ |0, 0, z)]

)
= Pr(R = r|Z0(r) = z0(r), Z1 = z1)F (t|0, 0, z)

Hence (3) does not depend on the conditional distribution of the missing data
indicator. A similar algebra and Bayes theorem can be applied also to other
entries of the matrix (1).

2.3 Estimation

The MAR assumption 2.2 implies that the conditional density of the sequence
(R, V, Z0(R)) given (J0, Z1) is proportional to

p(R, V, Z0(R);ψ) = (5)∫ 2∏
q=1

Hq(V,Z0(R), z0(r);ψ)gθ(z0(r), Z0(R)|Z1, J0)µr(dz0(r)) ,

where µr = ⊗i:ri=0µi,

H1(V,Z0(R), z0(r);ψ) =

⎛⎝N.(τ)∏

=1

f(T
, J
|T
−1, J
−1, Z1, Z0(R), z0(r))

⎞⎠1(N.(τ)>0)

and

H2(V,Z0(R), z0(r);ψ) = [F (τ |TN.(τ), JN.(τ), Z1, Z0(R), z0(r))]1(JN.(τ)∈T ) .
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The right-hand side of (5) can also be represented as

p(R, V, Z0(R);ψ) =

⎛⎝N.(τ)∏

=1

αJ�−1,J�
(T
)

⎞⎠1(N.(τ)>0)

× (6)

∫
p(V,Z0(R), z0(r);ψ)gθ(z0(r), Z0(R)|Z1, J0)µr(dz0(r)) ,

where

p(V,Z0(R), z0(r);ψ) = exp[1(N.(τ) > 0)H3(V,Z0(R), z0(r);ψ)]
× exp[−1(JN.(τ) ∈ T )H4(V,Z0(R), z0(r), V ;ψ)] ,

and

H3(V,Z0(R), z0(r);ψ) =
N.(τ)∑

=1

βTZJ�−1,J�
−

∑
h=(J�−1,
)∈E0

eβT Zh [Ah(T
) −Ah(T
−1)] ,

H4(V,Z0(R), z0(r);ψ) =
∑

h=(JN.(τ),
)∈E0

eβT Zh [Ah(τ) −Ah(TN.(τ))]

In Appendix 2, we show that in analogy to the case of completely observable
covariates, the integral p(R, V, Z0(R);ψ) can be written in the form of a prod-
uct, evaluated over consecutive times of entrances into adjacent states of the
model. However, as opposed to the case of completely observable covariates
in Andersen et al. (1993), the factors share parameters in common. From
the point of view of parameter estimation, it is easier to work with integrals
(5)-(6).

By Bayes formula, for any measurable function Φ of the vector (V,Z0), its
conditional expectation given the data is

Eψ[Φ(V,Z0)|V,Z0(R), R] = Φ(V,Z0) if Rj = 1 for all j = 1, . . . , d

and

Eψ[Φ(V,Z0)|V,Z0(R), R] =∫
Φ(V,Z0(R), z0(r))p(V,Z0(R), z0(r);ψ)gθ(z0(r), Z0(r)|Z1, J0)µr(dz0(r))∫

p(V,Z0(R), z0(r);ψ)gθ(z0(r), Z0(r)|Z1, J0)µr(dz0(r))

if Rj = 0 for some j = 1, . . . , d .
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In the following, we denote this conditional expectation by ÊψΦ(V,Z0) for
short.

We assume now that (Rk, Vk, Z0,k(Rk)), k = 1, . . . , n is an iid sample of
the missing data indicators and vectors Vk = [N.,k(τ), (Tj,k, Jj,k)N.,k(τ)

j=1 , Z1,k],
then the log-likelihood function is given by

L(ψ) =
n∑

k=1

log p(Rk, Vk, Z0,k(Rk);ψ) ,

plus a term depends only on the conditional distribution of the missing data
indicators, but not on the parameter ψ. To estimate the unknown parameters,
we shall approximate the hazard rates αh using histogram estimates. For this
purpose let 0 = τ1 < τ2 < ... < τ
(n) = τ be a partition of the interval [0, τ ],
and define Ip = [τp−1, τp) for p = 2, . . . , �(n) and I
(n) = [τ
(n−1), τ
(n)]. We
assume that the number of partitioning points is either finite and independent
of n (l(n) = l), or else it grows to infinity with n, that is �(n) → ∞ as n → ∞.
Set

α̂h(t) =

(n)∑
p=1

I(t ∈ Ip)ahp

and let

Λ̂h,k(t) =
∫ t

0

Yh,k(u)α̂h(u)du =

(n)∑
p=1

Yh,k(Ip)ahp ,

where for any pair of adjacent states, h = (i, j) ∈ E0, we have

Yh,k(Ip) =
∫

Ip

Yh,k(u)du

=
∑
m≥1

1(Jm−1,k = i)max{0,min(Tm,k, τp) − max(Tm−1,k, τp−1)} .

Substitution of Λ̂hk into the likelihood function gives then an approximate
likelihood Ln(ψn), ψn = (θ, β, α̂ = [α̂h : h ∈ E0]). The estimate is obtained
by maximizing this function with respect to ψn.

In practice the function Ln(ψn) may be too difficult to handle directly, so
for purposes of estimation we can use EM algorithm. Define

Qn(ψ|ψ′) = Q1n(ψ|ψ′) + Q2n(ψ|ψ′) ,

Q1n(ψ|ψ′) =
n∑

k=1

Êψ′�1(Vk, Z0,k;β, α) ,

Q2n(ψ|ψ) =
n∑

k=1

Êψ′�2(Vk, Z0,k; θ) ,
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where

�1(Vk, Z0,k;α, β) =
∑

h∈E0

∫ τ

0

αh(t)Nh,k(dt) +
∑

h∈E0

βTZh,kNh,k(τ)

−
∑

h∈E0

eβT Zh,k

∫ τ

0

Yh,k(u)αh(u)du ,

�2(Vk, Z0,k; θ) = log gθ(Z0;k|Z1k, J0,k) .

Here Yh,k is the risk process corresponding to subject k, and Nh,k is the
corresponding process counting transitions of type h, h ∈ E0. The functions �1
and �2 represent the complete data log-likelihood functions for the parameters
(α, β) and θ respectively. If ψ̂q is the estimate of the parameter ψ obtained
at the q-th step of the algorithm, then the (q + 1) step consists of the E-step
in which we calculate the conditional expected

Qn(ψ|ψ̂q) = Q1n(ψ|ψ̂q) + Q2n(ψ|ψ̂q) ,

In the M-step we maximize Qn(ψ|ψ̂q) with respect to ψ = ψn = (θ, β, α̂ =
[α̂h : h ∈ E0]).

Let p1 be the dimension of the vector θ, and let p0 be the dimension of
the vector of regression coefficients. Denote by Sn an (p1 + p0 + |E0|l(n)) ×
(p1 + p0 + |E0|l(n)) the diagonal matrix with entries

Sii
n =

1
n

for i = 1, . . . , p1 + p2

=
k(n)
n

for i = p1 + p2 + 1, . . . , p1 + p2 + |E0|�(n)

where |E0| denotes the number of adjacent states in the model, and k(n) =
1, if �(n) = � does not depend on n, and k(n) = �(n), otherwise. The
normalized score equation for estimation of the parameter ψ = (θ, β, α) is
given by Sn∇Qn(ψ|ψ̂q) = 0. The vector ∇Qn(ψ|ψ̂m) has components

∇θQn(ψ|ψ̂q) =
n∑

k=1

Êψ̂q
[
ġθ

gθ
(Zk)] ,

∇βQn(ψ|ψ̂q) =
n∑

k=1

∑
h∈E0

[
Êψ̂q

(Zhk)Nhk(τ) − Êψ̂q
(Zhke

βT Zhk)Λ̂h,k(τ)
]
.

∇αQn(ψ|ψ̂q) =(
n∑

k=1

[
Nh,k(Ip)

ahp
− Êψq

(eβT Zh,k)Yh,k(Ip)
]

: p = 1, . . . , �(n), h ∈ E0

)
.
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Here for any pair of adjacent states, h = (i, j) ∈ E0, we have

Nh,k(Ip) =
∑
m≥1

1(Jm−1,k = i, Jm,k = j)1(Tm,k ∈ Ip) .

With η = (θ, β) parameters fixed, the equation ∇αQn(ψn|ψ̂q) = 0 can be
solved for ahp. The solution is given by

âhp,q(η) =
∑n

k=1 Nh,k(Ip)∑n
k=1 Yh,k(Ip)Êψ̂q

(eβT Zh,k)
1(

n∑
k=1

Yh,k(Ip) > 0)

Thus setting

α̂h,q+1(t, η) =

(n)∑
p=1

I(t ∈ Ip)âhp,q(η) ,

at step (q + 1) of the EM algorithm, we obtain a pseudo- estimate of the
hazard rate αh. Set

Λ̂hk,q+1(τ, η) =
∫ τ

0

Yh,k(u)α̂h,q+1(u, η)du =
l(n)∑
p=1

âhp,q(η)Yh,k(Ip) .

The profile likelihood score equation for the regression coefficients is

[∇βQn](θ, β, α̂q+1(η)|ψq) =
n∑

k=1

∑
h∈E0

[
Êψ̂q

ZhkNh(τ) − Êψ̂q
[Zhke

βT Zhk ]Λ̂hk,q+1(τ, β)
]
.

The score equation for the unknown θ parameter is

[∇θQ](θ, β, α̂q+1(β)|ψq) =
n∑

k=1

Êψ̂q
(
ġθ

gθ
)(Zk) .

Assuming that the density gθ is twice differentiable with respect to θ, the
parameters η = (θ, β) can be updated using e.g. Newton-Raphson algorithm,
by setting

ηq+1 = ηq + Hn(ηq, αq+1(ηq))−[∇ηQn](ηq, αq+1(ηq)|ψq) ,

where Hn(ψ)− is a generalized inverse of an estimate of the information matrix
for parameter η. We give its form in Appendix 1.

In practice the partitioning points must be taken to depend on the sample
size n. The rate of convergence of the histogram estimate depends in this case
on the recurrence properties of the chain. Using results of Freedman (1982)
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for the piecewise constant proportional hazard model, we can show that if the
total number of jumps of the process N is bounded by a fixed constant, and
the dimension of the covariate space is fixed, then the asymptotically optimal
choice of the binwidth corresponds to the choice

√
nb(n)2 → 0, nb(n) → ∞.

With this choice the regression coefficients can be estimated at
√
n rate.

In Section 3 we assume that the covariate vector Z0 is discrete, so that the
conditional expected can be evaluated as sums taken over possible missing co-
variate values z0(r). The analysis of continuous or mixed discrete-continuous
covariates is more difficult since the integrals with respect to the conditional
distribution of the missing covariates given the observable variables must eval-
uated numerically using e.g. MCEM (Wei and Tanner, 1990, Sinha, Tanner
and Hall, 1994).

2.4 Random censoring

So far we have assumed that data are subject to fixed censoring occurring at
the termination of the study at time τ . Here we consider a censoring model
in which the main finite state Markov chain model of interest has state space
E = {1, . . . , k}, whereas the observed marked point process has state space
enlarged by one extra absorbing state “c” representing a withdrawal due to
causes unrelated to the study. In particular, suppose that the censored data
analogue of the four state illness model of section 2.2 can be represented by
means of the following transition diagram.

death
state 3

D1
state 1

healthy
state 0

D2
state 2

censoring
state c

� �

�

�

� �

� �

Figure 2.2. The censored four state illness model
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Thus a healthy person may be observed either (i) to die without developing
either of the two disease types, or (ii) to develop one of the two disease types
and subsequently die, or (iii) to develop one of the two disease types and
subsequently be censored or (iv) to be censored without developing either of
the two disease types.

More generally, we assume that observed marked point process registers
events J1, . . . , Jm, ... at times T1 < T2 < . . . < Tm, according to the following
assumptions.

Condition 2.3

(i) Given that at time Tm−1 = tm−1 the process enters a transient state
Jm−1 = jm−1, the waiting time in state jm−1 has survival function

Pr(Tm > t|Z = z,Wm−1) =
= Gm(t, jm−1|Wm−1, Z = z)F (t|tm−1, jj−1, z) m ≥ 1

Moreover, the subdensities of the progression to an absorbing or transient
state of the model are given by

Pr(Tm ≤ t, Jm = j|Z = z,Wm−1) =

=
∫ t

Tm−1

Gm(u−, jm−1|Wm−1, z)f(u, jm|tm−1, jm−1, z)dt .

The probability of moving to the censoring state is given by

Pr(Tm ≤ t, Jm = c|Z = z,Wm−1) =

=
∫ t

Tm−1

Gm(du, jm−1|Wm−1, z)F (u, |tm−1, jm−1, z) ,

where Gm = 1 −Gm.
(ii) The parameters of the censoring survival functions Gm are noninformative

on ψ = (θ, α, β).

Denote by Ec
0 = E0 ∪ {(i, c) : i ∈ T }. As in section 2.1, let Nh(t) and

Yh(t), h ∈ Ec
0 be given by

Nh(t) =
∑
m≥1

Nhm(t) , Yh(t) =
∑
m≥1

Yhm(t) ,

where

Nhm(t) = 1(Tm−1 < Tm ≤ t, Jm−1 = i, Jm = j) ,
Yhm(t) = 1(Tm ≥ t > Tm−1, Jm−1 = i) .

Then N(t) = {Nh(t) : t ∈ [0, τ ], h = (i, j) ∈ Ec
0} is a multivariate counting

process whose compensator relative to the self–exciting filtration is given by
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Λh(t) =
∫ t

0

Yh(u)eβT Zhαh(u)du for h = (i, j) ∈ E0

=
∑
m≥0

∫
Yhm(u)

Gm(du, i|Wm−1, Z1, Z0)
Gm(u−, i|Wm−1, Z1, Z0)

for h = (i, c), i ∈ T .

In the case of the MAR model, we assume that the functions Gm do not
depend on the covariate Z0. Let

N.(τ) =
∑

h∈E0

Nh(τ) Ñ.(τ) =
∑

h∈Ec
0

Nh(τ) = N.(τ) +
∑
i∈T

Nic(τ)

Thus N.(τ) counts the the total number of events observed in [0, τ ], exclud-
ing withdrawals due to censoring, while Ñ.(τ) counts the total number of
withdrawals, including withdrawals due to censoring.

Condition 2.4.

(i) The conditional survival function Gm do not depend on the covariate Z0.
(ii) The conditional distribution of the missing data indicator satisfies

Pr(R = r|V,Z0) = ν(V,Z0(r)) ,

where V = [Ñ.(τ), (J
, T
)
Ñ.(τ)

=0 , Z1] and ν is a proper conditional proba-

bility measure not dependent on missing covariates.
(iii) The parameters of the conditional distribution ν of the missing data in-

dicators are non-informative on the parameter ψ = (θ, α, β) and on the
family {Gm : m ≥ 1}.
With this choice, the conditional density of the sequence (R, V, Z0(R))

given (J0, Z1) is proportional to (5) or (6), with functions H2 and H4 replaced
by

H2(V,Z0(R), z0(r);ψ) =
[F (TN.(τ)+1 ∧ τ |TN.(τ), JN.(τ), Z1, Z0(R), z0(r))]1(JN.(τ)∈T )

H4(V,Z0(R), z0(r), V ;ψ) =∑
h=(JN.(τ),
)∈E0

eβT Zh [Ah(TN.(τ)+1 ∧ τ) −Ah(TN.(τ))]

Estimation of the parameters can be carried out much in the same way as in
section 2.2 since the likelihood function is similar to the case of fixed censoring.

The assumption that the censoring distributions Gm do not depend on
the missing covariates is in general quite restrictive. One method to alleviate
this problem is to follow the approach of Fix and Neyman (1951) and Hoem
(1969) analysis of Markov chain models, that is include among the possible
states also states corresponding to possibly different forms of censoring. The
hypothetical model corresponding to removal of “censoring” from the model,
amounts then to evaluation of taboo probabilities of passage among states of
interest without entering into censoring states.
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3 A data example

For illustrative purposes we consider now data on 4144 patients treated for
malignant melanoma cancer at the John Wayne Cancer Institute (JWCI) in
Santa Monica. The data were collected during the time period 1980-1996.

The malignant melanoma neoplasm arises in the skin (state 0) from which
it may spread to the regional lymphnodes (state 1) or to distant sites (stage
3) directly or indirectly progress first to nodal metastasis and then to distant
metastatic sites (state 2). Distant metastasis is followed by death during a
relatively short period of time. The survival characteristics of each of these
stages are well known from natural history data in prospective databases
(Barth et al. 1995, Morton et al. 1997).

primary disease
state 0

lymphnode
metastasis
state 1

censoring
state c

distant
metastasis

state 2

lymphnode and
distant metastases

state 3
death
state 4

�� �

� �

�

�

�

�

Figure 3.1. Censored melanoma progression process.

For purposes of analysis we use 5 covariates representing age, gender, site
of primary tumor, its thickness and level of invasion. These covariates have
been shown to form important prognostic factors for survival and metastasis in
many clinical trials and database analyses. In the present study measurements
of depth were missing for approximately 30% of patients whereas Clark’s level
was missing for 16% of patients
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Since the remaining covariates were observed for all patients, their
marginal distribution was taken as unspecified, whereas the conditional dis-
tribution of tumor depth and level of invasion was adjusted using logistic
regression assuming that the cell probabilities satisfy

Pr(Z01 = �, Z02 = m|Z1) = g(�,m|Z1, θ)

=
eθT

l,mZ1

1 +
∑

i,j �=0,0 e
θT

ijZ1

for �,m = 0, 1, (�,m) �= (0, 0)

=
1

1 +
∑

i,j �=0,0 e
θT

ijZ1

for �,m = 0, 0 ,

The vector Z1 was chosen to consist of the covariates age, gender and site of
the primary tumor. Here g(�,m|Z1, θ) are the conditional joint probabilities of
Breslow’s depth (� = 0/1 if depth is larger/smaller than 1.5 mm) and Clark’s
level (m = 0/1 for level ≥/≤ III).

In the regression analysis we assumed that patients were randomly right
censored and that the missing data mechanism satisfies MAR conditions 2.4.
The corresponding baseline intensity matrix is given by

α(t) =

⎛⎜⎜⎜⎜⎝
−
∑

j=1,2 α0j(t) α01(t) α02(t) 0 0
0 −α13(t) 0 α13(t) 0
0 0 −α24(t) 0 α24(t)
0 0 0 −α34(t) α34(t)
0 0 0 0 0

⎞⎟⎟⎟⎟⎠
The intensities of the underlying Markov chain model of interest are of the

form

λ0j(t) = Y0j(t)α0j(t)eβT
0jZ0j for j = 1, 2

λ12(t) = Y12(t)α12(t)eβT
12Z12

λ24(t) = Y24(t)α24(t)eβT
24Z24

λ34(t) = Y34(t)α24(t)eβT
34Z34+ρ

The risk processes are defined by Y0j(t) = I(T1 ≥ t, J0 = 0), Y13(t) = I(T2 ≥
t > T1, J1 = 1), Y24(t) = I(T2 ≥ t > T1, J1 = 2) and Y34(t) = I(T3 ≥ t >
T2, J1 = 1, J2 = 3). In the regression analysis, the baseline hazard function
for transitions into the death state (4) originating from state 2 and 3 are were
taken to be the same, whereas the exponential part of the regression model
depends on whether or not distant metastasis was preceded by lymphnode
metastasis. The transition rates differ also in the risk processes Y24 and Y34.

The diagram implies that each subject may contribute to the sample
N.(τ) = 0, . . . , 3 events. For a completely observable covariate vector
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Z = (Z1, Z0) we have

p(V,Z0;ψ) = 1(N.(τ) = 0)F (T1 ∧ τ |T0, J0, Z)

+ 1(N.(τ) = 1)
2∑

j=1

1(J1 = j)F (T2 ∧ τ |T1, J1, Z)f(T1, J1|T0, J0, Z)

+ 1(N.(τ) = 2)1(J1 = 1, J2 = 3)F (T3 ∧ τ |T2, 3, Z)
∏

q=1,2

f(Tq, Jq|Tq−1, Jq−1, Z)

+ 1(N.(τ) = 2)1(J1 = 2, J2 = 4)
∏

q=1,2

f(Tq, Jq|Tq−1, Jq−1, Z)

+ 1(N.(τ) = 3)1(J1 = 1, J2 = 3, J3 = 4)
3∏

q=1

f(Tq, Jq|Tq−1, Jq−1, Z1, Z) ,

where

F (t|0, 0, z) = exp[−
2∑

q=1

eβT
0qzA0q(t)] ,

F (t|t1, 1, z) = exp[−eβT
13z[A13(t) −A13(t1)] ,

F (t|t1, 2, z) = exp[−eβT
24z[A24(t) −A24(t1)] ,

F (t|t2, 3, z) = exp[−eβT
34z+ρ[A34(t) −A34(t2)]

f(t, j|t0, j0, z) = α0j(t)eβT
0jzF (t|0, 0, z), j = 1, 3 ,

f(t, j|t1, j1, z) = αj1,j(t)eβT
j1,jzF (t|t1, j1, z), (j1, j) = (1, 3), (2, 4) ,

f(t, j|t2, j2, z) = αj2,j(t)eβT
j2,jz+ρF (t|t1, j2, z), (j2, j) = (3, 4) .

The first three terms of the density p(V,Z0, ψ) represent likelihood contribu-
tions corresponding subjects who are censored, whereas the last two terms
are likelihood contributions for subjects who died of melanoma.

For any measurable function Φ(V,Z), its conditional expected given the
data is

ÊψΦ(V,Z) = Φ(V,Z0) if R = (1, 1)

=

∑
m=0,1 Φ(V, �,m)eθlmZ1p(V, �,m, ψ)∑

m=0,1 e
θ�mZ1p(V, �,m, ψ)

if R = (1, 0), Z01 = l

=

∑

=0,1 Φ(V, �,m)eθT

�mZ1p(V, �,m, ψ)∑

=0,1 e

θT
�mZ1p(V, �,m;ψ)

if R = (0, 1), Z02 = m

=

∑

,m=0,1 Φ(V, �,m)eθT

�mZ1p(V, �,m;ψ)∑
l,m=0,1 e

θT
�mZ1p(V, �,m, ψ)

if R = (0, 0) ,

where θ00 = 0.
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In the EM algorithm, we replace the density p(V,Z0, ψ) by the function
p(V,Z0, ψ̂q), where ψ̂q is the estimate of the ψ parameter at the q-th step of the
algorithm. In particular, in the case of the completely observable covariates,
the score function for estimation of the θ parameter is given by

∇θ�m
�2(Z1, �,m) = Z1[1(Z01 = �, Z02 = m) − eθT

�mZ1

1 +
∑

(
′,m′) �=(0,0) e
θT

�′,m′Z1
]

for (�,m) �= 0. In the case of the missing covariates, the corresponding score
function is

∇θ�m
Q2(ψ|ψ̂) =

n∑
k=1

Z1,k [ĝ(�,m|Z1k, θ) − g(�,m|Z1k, θ)]

where

ĝ(�,m|Z1, θ) = 1(R = (0, 0))1(Z01 = �, Z0,2 = m)

+ 1(R = (1, 0))1(Z01 = �)
eθ�mZp(V, �,m, ψ̂)∑

m′=0,1 e
θ�m′Zp(V, �,m′, ψ̂)

+ 1(R = (0, 1))1(Z02 = m)
eθT

�mZp(V, �,m, ψ̂)∑

′=0,1 e

θT
�′m

Zp(V, �′,m, ψ̂)

+ 1(R = (0, 0))
eθT

�mZp(V, �,m, ψ̂)∑

′,m′=0,1 e

θT
�′m′Zp(V, �′,m′, ψ̂)

The conditional expected entering into the score function for the regression
coefficients β are also simple to evaluate.

Numerous studies have shown that females have better survival rates than
males. The primary reason for better performance of women is that their
melanomas tend to occur more frequently on extremities, which is a more
favorable location. Patients with melanomas located on extremities have in
general better survival rate than patients whose primary lesion is located on
trunk or head and neck. This is also shown by our results in Table 3.1. We
found that primary tumor located on the extremities decreased the risk of all
transitions. Positive site × gender interaction in the case of all transitions,
except 0 → 1, indicates that primary site (extremities) decreases the rate of
transitions among various states of the model but this effect is less marked
among men.

Further, age associated with increased risk of lymphnode and distant
metastases. Males experienced an increased risk of transition from state 0
to state 2, however, the negative (age) × (gender) interaction suggests that
this increased risk is less pronounced among older men. Among pathological
factors, Clark’s level of invasion > III and Breslow’s depth > 1.5 mm is asso-
ciated with increased risk of the transition from state 0 to both state 1 and
2.
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Table 3.1 compares results obtained from two regression analyses corre-
sponding to the MAR model and the “case deletion” model (parenthesized
regression coefficients and standard errors). In both cases we used partition
of the observed range of the transition times into 10 intervals corresponding
to a equidistant partition of the observed range of the transition times. The
range of the observed transition times was (0, 6.8) years for transition 0 → 1,
(0.93, 9.75) years for transition 0 → 2, (0.69, 8.34) years for transition 2 → 3,
and (1.39, 9.08) years from transition from state 3 → 4. In the case of transi-
tions between states 0 → 2, 2 → 3 and 3 → 4 the results from both analyses
are quite similar, though the standard errors of the estimates obtained based
on the MAR model are uniformly smaller as a result of the increased sample
size. On the other hand, in the case of the transition from state 0 to state
1, the results differ. The MAR model suggests that location of the primary
tumor and site × gender interaction are important risk factors for progression
from state 0 into state 1, whereas the “case deletion” model does not identify
these factors as significant.

Appendix 1

Let �̇θ and �̈θ denote the first and second derivatives of the density gθ with
respect to θ, and for k = 1, . . . , n, let Mh,k(t, ψ) = Nh,k(t) − eβT Zh,kΛh,k(t).
We use Louis (1982) formula to get observed information,

Σ̂n(ψ) = Sn[Σ̂1n(ψ) − Σ̂2n(ψ)] ,

where the first term in an estimate of the complete information and the second
is an estimate of the expected conditional covariance of the score function
given the data. The matrix Σ̂1n(ψ) is the negative Hessian of the Qn(ψ|ψ)
function with respect to the first argument. Similarly, Σ̂2n(ψ) is the negative
derivative of ∇Qn(ψ|ψ) with respect to the second argument. For q = 1, 2,
we have

Σ̂qn(ψ) =
(
Σ̂12;12

qn (ψ) Σ̂12;3
qn (ψ)

Σ̂3;12
qn (ψ) Σ̂3;3

qn (ψ)

)
.

For q = 1, we have

Σ̂12;12
1n (ψ) =

n∑
k=1

Êψ

(
−�̈θ(Zk) 0

0
∑m

h=1 Z
⊗2
h,ke

βT Zh,kΛh,k(τ)

)
,

Σ̂3;3
1n (ψ) = diag[

∑n
k=1 Nh,k(Ip)

a2
ph

: p = 1, . . . , �(n), h ∈ E0] ,

Σ̂3;12
1n (ψ) =

⎛⎝ 0[∑n
k=1 Yhk(Ip)Êψ[Zh,ke

βZh,k ]
]

p≤�(n)
h≤m

⎞⎠
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Table 1. Regression estimates in melanoma example

factor β se β se

state 0 → state 1 state 0 → state 2

Age 1.46 0.38 1.39 0.34
(1.31 0.46) (1.34 .41)

Gender 0.31 0.14
(male vs female) (0.42 0.18)

Clark 0.52 0.11 0.49 0.12
(> III vs ≤ III) (0.42 0.13) (0.42 0.15)

Depth 1.50 0.41 1.63 0.53
(> 1.5 mm vs ≤ 1.5 mm) (1.60 0.54) (1.67 0.60)

Site -0.47 0.14 -1.20 0.17
(extremities vs other) (-0.25 0.19) (-1.08 0.19)

age × gender -0.56 0.16
interaction (-.52 0.18)

site × gender 0.42 0.20 0.87 0.20
(0.41 0.24) (0.74 0.25 )

state 2 → state 3 state 3 → state 4

Age 1.53 0.50 -0.43 0.34
(1.70 0.59) ( -0.31 0.42)

Clark 0.58 0.96 0.35 0.43
(> III vs ≤ III) (0.66 1.09) (0.39 0.50)

Depth 0.6 0.73 0.8 0.91
(> 1.5 mm vs ≤ 1.5 mm) (0.69 0.82) (0.89 1.12)

Site -0.76 0.20 -0.17 0.10
(extremities vs other) (-0.82 0.25) ( -0.27 0.13)

Age × gender -0.34 0.18 0.29 0.10
( -0.45 0.23) (0.32 0.14)

Site × gender 1.08 0.25
(1.25 0.30)

prior lymphnode NA NA 0.25 0.09
metastasis NA NA (0.30 0.20)
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and Σ̂12;3
1n (ψ) = Σ̂3;12

1n (ψ)T . For q = 2,

Σ̂12;12
2n (ψ) =

n∑
k=1

ˆcovψ

(
�̇θ(Zk)∑

h∈E0

∫
[0,τ ]

Zh,kMh,k(du, ψ)

)
,

Σ̂3;12
2n (ψ) = −

n∑
k=1

ˆcovψ

((
�̇θ(Zk)∑

h∈E0

∫
[0,τ ]

Zh,kMh,k(du, ψ)

)
,

(
[Yh,k(Ip)eβT Zh,k ] p≤�(n),

h∈E0

))
,

Σ̂33
2n(ψ) =

n∑
k=1

[
Yh,k(Ip)Yh′,k(Ip′) ˆcovψ[eβT Zh,k , eβT Zh′,k ]

]
p,p′≤�(n)
h,h′∈E0

and Σ̂12;3
2n (ψ) = Σ̂3;12

2n (ψ). To update the η = (θ, β) coefficients, we use(
θq+1

βq+1

)
=
(
θq

βq

)
+ Hn(ηq, α̂q+1(ηq))−[∇η]Q(ηq, α̂q+1(ηq)|ψ̂q) .

Here at the q-th step, we set

Hn(ψ) = [Σ̂12;12
n (ψ) − Σ̂12;3

n (ψ)[Σ̂3;3
n (ψ)]−Σ̂3;12

n (ψ)] ,

where Σ̂p;r
n (ψ) = Σp;r

1n (ψ) − Σp;r
2n (ψ), with conditional expectations and co-

variances evaluated at point ψ̂q.

Appendix 2

The following recurrent formulas can be easily verified using Bayes theorem.
We first consider the case of completely observable covariates and assume

that Z is partitioned into two disjoint blocks Z = (Z0, Z1). For m ≥ 1, let
(j0, j1, . . . , jm) be a possible path in the model connecting the initial state j0
with a transient or an absorbing state jm and such that (j0, j1, . . . , jm−1) ⊂
T . Let (t0 = 0, t1, . . . , tm) be an ordered sequence 0 = t0 < t1 . . . < tm
of potential times of entrances into states given by the sequence {j
, � =
0, . . . ,m}. For m ≥ 0, put Wm = (T
, J
)m


=0, wm = (t
, j
)m

=0. Under

assumptions of condition 2.1, the posterior distribution of the covariate Z0 is
of the form

Pr(Z0 ∈ B|N.(τ) = m,Wm = wm, Z1 = z1) =

=
∫

B

µm(dz0|wm, z1) if jm ∈ A, tm ≤ τ,m ≥ 1

=
∫

B

µ̃m(dz0, τ |wm, z1) if jm ∈ T , tm ≤ τ < tm+1,m ≥ 0 ,

where µ0(dz0|j0, z1) is the conditional distribution of the covariate Z0 given
the initial state J0 = j0 and the covariate Z1 = z1. For m ≥ 1
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µm(dz0|wm, , z1) = (7)
f(jm, tm|jm−1, tm−1, (z1, z0))µm−1(dz0|wm−1, z1)

Em−1f(jm, tm|jm−1, tm−1, (z1, z0))
,

where Em−1 denotes conditional expectation with respect to
µm−1(dz0|wm−1, z1). In addition, for m ≥ 0

µ̃m(dz0, s|wm, z1) =
F (s|(jm, tm), (z1, z0))µm(dz0|wm, z1)

EmF (s|(jm, tm), (z1, z0))
. (8)

Next we collect parameters of the marginal model obtained by integrating
out the covariate Z0 from the model. If the covariate vector Z = (Z0, Z1) is
taken to assume values in the Cartesian product Z0×Z1 of a q and d-q dimen-
sional Euclidean space, then the marginal model represents transformation X
of the original probability space space (Z0×Z1×Ω, (G⊗Ft),Pr) into the space
(Z1, (G1 ⊗ Ft),PrX) corresponding to the assignment X(z0, z1, ω) = (z1, ω).
Thus the marginal model is adapted to the marginal self-exciting filtration,
generated by G1 ⊗ Ft = σ(Z1) ⊗ σ(J0, Nh(s), Yh(s+) : s ≤ τ). The probabil-
ity PrX is the induced marginal probability, obtained by integrating out the
covariate Z0 from the model. In the following we write “Pr” for the induced
probability PrX , to simplify the notation.

For m ≥ 1, let (j0, . . . , jm−1) be a sequence of transient states. Set

F̃m(t, jm−1|wm−1, z1) = Em−1F (t, |tm−1, jm−1, z1, Z0) ,

f̃m(t, jm|wm−1, z1) = Em−1f(t, jm|tm−1, jm−1, z1, Z0) ,

α̃m(t, jm|wm−1, z1) =
f̃m(t, jm|wm−1, z1)

F̃m(t, |wm−1, z1)
,

qm(jm|t, wm−1, z1) =
α̃m(t, jm|wm−1, z1)∑

h=(jm−1,l)∈E0
α̃m(t, jm|wm−1, z1)

,

where Em−1 is the conditional expectation of Z0 with respect to
µm−1(dz0|wm−1, z1). Under the assumption of the proportional hazard model,
we have

Pr(Tm > t|Z1,Wm−1) = F̃m(t, Jm−1|Wm−1, Z1)

= Em−1

⎡⎣exp−
∑

h:h=(Jm−1,l)∈E0

eβT Zh

∫
(Tm−1,t]

αh(u)du

⎤⎦ .

In addition

Pr[Jm = j|Tm = t,Wm−1, Z1] = qm(j|Tm = t,Wm−1, Z1)

=
αJm−1,j(t)Em−1[eβT ZJm−1,j |Tm ≥ t,Wm−1, Z1]∑
l αJm−1,l(t)Em−1[eβT ZJm−1,l |Tm ≥ t,Wm−1, Z1]
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and

α̃m(t, jm|Wm−1, Z1) = lim
s↓0

1
s
Pr(Tm ∈ [t, t + s], Jm = j|Tm = t,Wm−1, Z1]

= 1(Tm ≥ t > Tm−1)αJm−1,j(t)Em−1[eβT ZJm−1,j |Tm ≥ t,Wm−1, Z1]

The cumulative intensity of the process [Nh(t) : h ∈ E0] with respect to the
marginal filtration σ(Z1) ⊗Ft is given by

Λh(t) =
∑
m≥1

∫
[0,t]

Yhm(u)α̃m(u, j|Wm−1, Z1)du for h = (i, j) ∈ E0

Thus marginal process has a compensator of a different form than the original
process.

Next we consider the MAR condition 2.2. It is equivalent to the following
two conditions.

(i) For m ≥ 0, the conditional distribution of the missing data indicator
satisfies

Pr(R = r|N.(τ) = m,Wm = wm, Z = z)
= νm(r|wm, z(r)) if jm ∈ A, tm ≤ τ,m ≥ 1
= ν̃m(r, τ |wm, z(r)) if jm ∈ T , tm ≤ τ < τm+1,m ≥ 0

for some functions (νm, ν̃m) depending only on the sequence wm and the
observed covariate z(r) = (z0(r), z1), but not the missing covariates. In
addition, ∑

r

νm(r|wmz(r)) = 1 ,
∑

r

ν̃m(r, τ |wmz(r)) = 1 , (9)

where the sums extend over possible values of the missing data indicators.
(ii) The parameters of the conditional distribution of the missing data indi-

cators, (νm, ν̃m ≥ 0) are non-informative on the parameters of the under-
lying model of interest.

The joint density of the vector (V,Z0(R), R), V = [N.(τ), (J
, T
)
N.(τ)

=0 , Z1]

is given by

νm(r|wm, z(r))pm(wm|z(r))µ0(dz0(r)|z1, j0)
if jm ∈ A, tm ≤ τ,N.(τ) = m ≥ 1

ν̃m(r, τ |wm, z(r))p̃m(τ, wm|z(r))µ0(dz0(r)|z1, j0)
if jm ∈ T , tm ≤ τ < tm+1, N.(τ) = m ≥ 0 .

Here µ0(dz0(r)|z1, j0) is the marginal conditional distributions of the covariate
Z0(r) given (Z1, J0). In addition, z(r) = (z0(r), z1) and for any sequence
0 = t0 < t1 < t2 . . . < tm, we have
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pm(wm|z(r)) =
m∏

l=1

f̃l(tl, jl|wl−1, z(r)) if jm ∈ A, tm ≤ τ,m ≥ 1

p̃m(τ, wm|z(r)) = F̃m+1(τ, jm|wm, z(r))
m∏

l=1

f̃l(tl, jl|wl−1, z(r))

if jm ∈ T , tm ≤ τ < tm+1,m ≥ 1

= F̃1(τ, j0|w0, z(r)) if τ < t1,m = 0 .

The function pm(wm|z(r)) is the joint conditional subdensity density of a
sequence Wm = ((T
, J
) : � = 0, . . . ,m) terminating in an absorbing state,
and evaluated conditionally on the initial state and the covariate z(r) in the
marginal model obtained by integrating out the covariate z(r). Similarly,
the function p̃m(τ, wm|z(r)) is the joint marginal conditional subdensity of
survival in a transient state.

If parameters of the functions νm, ν̃m do not depend on the Euclidean
parameter ϕ of the Markov chain model, then in Section 2.3, the complete
data likelihood is of the form

Lik(ν, ψ) =
n∏

k=1

ν(Vk, Z0,k(Rk))p(Rk, Vk, Z0,k(Rk);ψ) . (10)

For each subject, Z(R) = (Z0(R), Z1),

ν(V,Z0(R)) =
(
νN.(τ)(R|WN.(τ), Z(R))

)1(JN.(τ)∈A)

×
(
ν̃N.(τ)(R, τ |WN.(τ), Z(R))

)1(JN.(τ)∈T )

and

p(R, V, Z0(R);ψ) =

⎛⎝N.(τ)∏

=1

f̃
(T
, J
;ψ|W
, Z(R))

⎞⎠1(N.(τ)>0)

×
(
F̃N.(τ)+1(τ, JN.(τ);ψ|WN.(τ), Z(R))

)1(JN.(τ)∈T )

× g̃θ(Z0(R)|Z1, J0) ,

where g̃θ(·|Z1, J0) is the marginal conditional density of Z0(R) given (Z1, J0).
In the case of randomly censored data, the likelihood factorization (10)

can be derived in an analogous fashion. We omit the details.
Acknowledgement. Research supported by the National Cancer Insti-

tute grant 1-R01-96-CA65595-02.
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Summary. Let Z = Z1, . . . , Zn be an i.i.d. sample from the distribution F (z) =
P (Z ≤ z) and density f(z) = d

dz
F (z). Let Z1,n < . . . < Zn,n be the or-

der statistics generated by Z1, . . . , Zn. Let Z0,n = a = inf{z : F (z) > 0} and
Zn+1,n = b = sup{z : F (z) < 1} denote the end-points of the common distribu-
tion of these observations, and assume that f is continuous and positive on (a, b).
We establish the asymptotic normality of the sum of logarithms of the spacings
Zi,n − Zi−1,n, for i = 1, . . . , n + 1, under minimal additional conditions on f . Our
results largely extend previous results in the literature due to Blumenthal [Blu68]
and other authors.

1 Introduction and Main Results.

1.1 Introduction.

Let Z = Z1, Z2, . . . be independent and identically distributed [i.i.d.] random
variables with distribution function F (z) = P(Z ≤ z) and density f(z), as-
sumed throughout to be continuous and positive on (a, b) for −∞ ≤ a <
b ≤ ∞, and equal to 0 otherwise. Here, a = inf{z : F (z) > 0} and
b = sup{z : F (z) < 1} denote the distribution end-points. For each n ≥ 1,
denote by a < Z1,n < . . . < Zn,n < b the order statistics of Z1, . . . , Zn, and
set, for convenience, Z0,n = a and Zn+1,n = b, with F (Z0,n) = F (a) = 0 and
F (Zn+1,n) = F (b) = 1, for n ≥ 0. Denote by

Di,n = Zi,n−1 − Zi−1,n−1 for i = 1, . . . , n, (1)

the spacings of order n ≥ 1 based upon {Zi,n−1 : 1 ≤ i ≤ n}. Darling [Dar53]
introduced the class of statistics

Tn = Tn(p, q) =
n−q+1∑

i=p

{
− log(nDi,n)

}
= log

(
nn−p−q+2

n−q+1∏
i=p

Di,n

)
, (2)

to test the null hypothesis (when −∞ < a < b < ∞)
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(H.0) f(z) = (b− a)−11I(a,b)(z) for a < z < b,

against the alternative (H.1) that f is arbitrary on (a, b). In (2), p and q
are fixed integers such that 1 ≤ p ≤ n − q + 1 ≤ n. When the distribution
endpoints a and b are finite and known, a standard choice for p and q is
given by p = q = 1. On the other hand, when a (resp. b) is unknown
(or possibly infinite), D1,n (resp. Dn,n) is unknown (or possibly infinite),
so it is more appropriate to choose p ≥ 2 (resp. q ≥ 2), otherwise Tn(p, q)
becomes meaningless. The aim of the present paper is to investigate the
limiting behavior of Tn = Tn(p, q) as n → ∞. It will become obvious later on
that the results we shall obtain are essentially independent of the choices of
p, q, subject to the restrictions that

p ≥ p0 =

{
1 when a > −∞,

2 when a = −∞,
and q ≥ q0 =

{
1 when b < ∞,

2 when b = ∞.
(3)

Because of this, we will use throughout the notation Tn = Tn(p, q), and specify
the values of p, q only in case of need.

Under rather strenuous regularity assumptions on f (assuming, in particular
that f is twice differentiable on (a, b), see, e.g., (2.3a) in [Blu68]), imply-
ing finiteness of Var(log f(Z)), Blumenthal [Blu68] (see also Cressie [Cre76])
showed that, as n → ∞,

n−1/2
{
Tn − nγ − nE(log f(Z))

}
d→ N

(
0, ζ(2) − 1 + Var(log f(Z))

)
, (4)

where " d→" denotes weak convergence. In (4), ζ(·) and γ denote, respectively,
the Riemann zeta function and Euler’s constant, conveniently defined by

ζ(r) =
1

Γ (r)

∫ ∞

0

tr−1dt

et − 1
=

∞∑
j=1

1
jr

for r > 1, (5)

ζ(2) =
π2

6
, γ =

∫ ∞

0

(− log t)e−tdt = lim
r↓1

{
ζ(r) − 1

r − 1

}
= lim

n→∞

{ n−1∑
j=1

1
j
− log n

}
= 0.577215 . . . ,

(see, e.g., Spanier and Oldham [SO87]). Here, Γ (·) stands for Euler’s Gamma
function, namely

Γ (r) =
∫ ∞

0

tr−1e−t for r > 0. (6)

One of the purposes on the present paper is to give simple conditions implying
the validity of (4). Our main result concerning this problem is stated in the
following theorem.
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Theorem 1.1 Assume that

E
(
(log f(Z))2

)
< ∞, (7)

and either

(i) f is continuous and bounded away from 0 on [a, b]; or

(ii) f is monotone in a right neighborhood of a, and monotone in a left
neighborhood of b.

Then, for each p ≥ p0 and q ≥ p0, we have

n−1/2
{
Tn(p, q) − nγ − nE(log f(Z))

}
d→ N

(
0, ζ(2) − 1 + Var(log f(Z))

)
. (8)

1.2 Some Relations with the Kullback-Leibler Information .

The limiting result in (8) is related to the Kullback-Leibler information in
the following way. In general, for any two random variables Y0 and Y1 with
densities g0 and g1 on R, with respect to the Lebesgue measure, the Kullback-
Leibler information K(g1, g0) of g1 with respect to g0 is defined by (with the
convention 0/0 = 1)

K(g1, g0) = E

(
log
{g1(Y1)
g0(Y1)

})
=
∫

R

log
{g1(y)
g0(y)

}
g1(y)dy, (9)

when g1(y)dy � g0(y)dy (which we denote by g1 � g0), and

K(g1, g0) = ∞ otherwise. (10)

The well-known property that

K(g1, g0) ≥ 0, (11)

with equality if and only if g1 = g0 a.e., follows from the fact that the function

h(x) =

⎧⎪⎨⎪⎩
x log x− x + 1 for x > 0,
1 for x = 0,
∞ for x < 0,

(12)

fulfills h(x) ≥ 0 with equality if and only if x = 1. This, in turn, implies that

K(g1, g0) =
∫

R

h
{g1(y)
g0(y)

}
g0(y)dy ≥ 0, (13)

with equality if and only if g1 = g0 a.e. (with g1 � g0). The inequality
(13) also holds when g1 �� g0, since then, by definition, K(g1, g0) = ∞. By
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applying (13) to g1 = f and g0 = (b− a)−11I(a,b) when −∞ < a < b < ∞, we
see that

K
(
f, (b− a)−11I(a,b)

)
=
∫ b

a

f(z) log f(z)dz + log(b− a) (14)

= E(log f(Z)) + log(b− a) ≥ 0, (15)

with equality if and only (H.0) holds, namely, when f(t) = (b − a)−1 a.e.
on (a, b). When the constants a and b are unknown (but finite), we may
estimate these quantities by Z1,n and Zn,n, respectively. Under (H.0), it is
straightforward that, as n → ∞,

Z1,n = a + OP(1/n) > a and Zn,n = b + OP(1/n) < b. (16)

By (16), the test rejecting (H.0) when either (for a and b specified)

Tn ≥ c∗n,α := nγ − n log(b− a) + n1/2να

{π2

6
− 1
}1/2

, (17)

or (for a and b unspecified)

Tn ≥ c∗∗n,α := nγ − n log(Zn,n − Z1,n) + n1/2να

{π2

6
− 1
}1/2

, (18)

where να denotes the upper quantile of order α ∈ (0, 1) of the normal N(0, 1)
law, is asymptotically consistent, with size tending to α as n → ∞, against
all alternatives for which (4) is satisfied. Moreover, the obvious inequality
Zn,n − Zn,n < b− a implies that c∗∗n,α > c∗n,α, so that we have always

Tn ≥ c∗∗n,α ⇒ Tn ≥ c∗n,α. (19)

The exact critical value cn,α = c∗n,α + o
(
n1/2

)
= c∗∗n,α + o

(
n1/2

)
defined by

P

(
Tn ≥ cn,α

∣∣ (H.0)
)

= α, (20)

can be computed, making use of the methods of Deheuvels and Derzko [DD03],
who described several methods to evaluate numerically the distribution of Tn

under (H.0). In particular, they gave a simple proof of the fact that, under
(H.0), with a = 0, b = 1 and p = q = 1,

E
(
exp(sTn)

)
= Γ (1 − s)n

{ n−nsΓ (n)
Γ
(
n(1 − s)

)} for s < 1. (21)

We note that a version of (21) was obtained originally by Darling [Dar53] by
different methods.

Unfortunately, the consistency of tests of the form (17)–(18), rejecting (H.0)
for values of Tn exceeding c∗n,α or c∗∗n,α, is known to hold only for the rather
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narrow alternative class of density functions f(·) described in [Blu68] as suffi-
cient to imply (4). One of the purposes of the present paper is to overcome this
drawback by extending the validity of (4) to a more wider class of distribu-
tions. The just-given Theorem 1.1 provides this result by givien a new proof of
(4), under much weaker conditions that that imposed by Blumenthal [Blu68],
and Cressie [Cre76]. In the sequel, we will limit ourselves, unless otherwise
specified, to gives details of the proof in the case where −∞ < a < b < ∞,
and we will then set a = 0 and b = 1 without loss of generality. The following
proposition, which will turn out to be an easy consequence of Theorem 1.1,
gives an example of how these results apply in the present framework.

Proposition 1.1 Let f be continuous and positive on (a, b), and either:

(i) continuous and bounded away from 0 on [a, b];

(ii) monotone in a right neighborhood of a, monotone in a left neighborhood
of b, and such that, for some ε > 0,

log f(x) = O
[ 1
(F (x))

1
2+ε

]
as x ↓ 0, (22)

and
log f(x) = O

[ 1
(1 − F (x))

1
2+ε

]
as x ↑ 1. (23)

Then, as n → ∞,

n−1/2
{
Tn − nγ − ne(log f(X))

}
d→ N

(
0, ζ(2) − 1 + Var(log f(X))

)
. (24)

Proof. We observe that the conditions (23), (22) and (24) readily imply that
E((log f(Z))2) < ∞. Therefore, the proposition is a direct consequence of
Theorem 1.1.��
Example 1.1 Let F (x) = 1/(log(e/x))r for 0 < x ≤ 1 and r > 0. Obviously,
f(x) = r/(x(log(e/x))r+1) and log f(x) = (1 + o(1)) log(e/x) as x ↓ 0. Thus,

E((log f(X))2) < ∞ ⇔ r > 2

⇔ | log f(x)| = O
[ 1
(F (x))

1
2+ε

]
for some ε > 0.

This show the sharpness of the conditions in Proposition 1.1, since the finite-
ness of E((log f(X))2) < ∞ is a minimal requirement for (24) to hold.
The arguments used in our proofs, given in the next section, mix the methods
of Deheuvels and Derzko [DD03], with classical empirical process arguments.
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2 Proofs.

2.1 A useful Theorem.

We start by proving the following useful theorem, of independent interest.

Theorem 2.1 Assume that E
(
(log f(Z))2

)
< ∞. Then, for each p ≥ p0 and

q ≥ p0, we have, as n → ∞,

n−1/2

n−q+1∑
i=p

[
− log

{n(F (Zi,n) − F (Zi−1,n))
f(Zi,n)

}
− γ − E

(
log f(Z)

)]
d→ N

(
0, ζ(2) − 1 + Var

(
log f(Z)

))
. (25)

Remark 2.1 It will become obvious from the arguments given later on that
the conclusion (25) of Theorem 1 remains valid when we replace formally in
(25), F (Zi,n) − F (Zi−1,n) by F (Zi+1,n) − F (Zi,n).

The remainder of the present sub-section is devoted to proving Theorem 1
in the case p = 2 and q = 1. The proof for arbitrary p ≥ p0 and q ≥ q0 is
very similar, and left to the reader. We will show later on how Theorem 1
may be applied to prove Theorem 1.1. Below, the following notation will be
in force. We will set U0,n = F (Z0,n) = 0 and Un+1,n = F (Zn+1,n) = 1, for
each n ≥ 0, and let 0 < U1,n = F (Z1,n) < . . . < Un,n = F (Zn,n) < 1 denote
the order statistics of the first n ≥ 1 observations from the i.i.d. sequence
U1 = F (Z1), U2 = F (Z2), . . ., of uniform (0, 1) random variables, defined on
the probability space (Ω,A,P) on which sit Z1, Z2, . . ., as given in §1.

We set Yn = − log(1 − Un) = − log(1 − F (Zn)) for n = 1, 2, . . ., and observe
that these random variables form an i.i.d. sequence of exponentially dis-
tributed random variables. Moreover, setting Y0,n = − log(1 − F (Z0,n)) = 0
for n ≥ 0, the order statistics

Y0,n = 0 < Y1,n = − log(1 − F (Z1,n)) < . . . < Yn,n = − log(1 − F (Zn,n)),
(26)

of Y1, . . . , Yn fulfill, for n ≥ 1, the equalities

Yi,n = − log(1 − Ui,n) = − log(1 − F (Zi,n)) for 0 ≤ i ≤ n. (27)

Set now ωi,n = (n− i + 1)(Yi,n − Yi−1,n) for 1 ≤ i ≤ n, so that

Yi,n =
i∑

j=1

ωj,n

n− j + 1
i = 0, . . . , n. (28)

In (28) and elsewhere, we use the convention that
∑

∅(·) := 0. It is notewor-
thy (refer to Sukhatme [Suk37], see, e.g., Malmquist [Mal50] and pp. 20-21
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in David [Dav81]) that, for each n ≥ 1, {ωi,n : 1 ≤ i ≤ n} is a sequence of in-
dependent and exponentially distributed random variables. For convenience,
we denote below by ω

d= ωi,n, i = 1, . . . , n, a standard exponential random
variable, fulfilling P(ω > y) = e−y for y ≥ 0.

Let g(·) be a measurable function on R+ = [0,∞). Below, we will assume that
g ∈ G, where G = L2

(
R+, e

−udu
)

denotes the Banach space, with respect to
the norm ‖ · ‖2 of all such functions for which

‖g‖2
2 := E(g2(ω)) =

∫ ∞

0

g2(u)e−udu < ∞. (29)

For each g ∈ G, we will set

µg = E(g(ω)) =
∫ ∞

0

g(u)e−udu, (30)

σ2
g = Var(g(ω)) =

∫ ∞

0

g2(u)e−udu− µ2
g. (31)

Moreover, for each 0 ≤ i ≤ n, we set

Yi,n(g) =
i∑

j=1

{
− logωj,n − γ + (ωj,n − 1)

}
+

i∑
j=1

{
g(Yj,n) − µg

}
=: ξi,n + ζi,n(g), (32)

where, for i = 0, . . . , n,

ξi,n :=
i∑

j=1

{
− logωj,n − γ +

(
ωj,n − 1

)}
, (33)

and

ζi,n(g) :=
i∑

j=1

{
g(Yj,n) − µg

}
. (34)

We note for further use that the following inequalities hold for all g1, g2 ∈ G
such that µg1 = µg2 . We have,

E

(
|Yn,n(g1) − Yn,n(g2)|2

)
= E

(
|ζn,n(g1) − ζn,n(g2)|2

)
= E

{∣∣∣ n∑
j=1

(
g1(Yj) − g2(Yj)

)∣∣∣2} = nVar
(
g1(Y1) − g2(Y1)

)
= n‖g1 − g2‖2

2. (35)

Lemma 2.1 We have, as n → ∞,
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ξn,n =
n∑

i=1

{
− logωi,n − γ + (ωi,n − 1)

}
,

=
n∑

i=1

{
− log

(
n(Ui,n − Ui−1,n)

)
− γ
}

+ OP(log n). (36)

Proof. We will make use of the following inequalities (see, e.g., 8.368, p.947
in Gradshteyn and Ryzhik [GR65]). We have, for each n ≥ 1,

− 1
2n

− 1
12n2

≤
n−1∑
k=1

1
k

− logn− γ ≤ − 1
2n

− 1
12n2

+
1

120n4
, (37)

1
2n

− 1
12n2

≤
n∑

k=1

1
k

− log n− γ ≤ 1
2n

− 1
12n2

+
1

120n4
, (38)

which readily yield the following rough inequality. For each 1 ≤ i ≤ n,∣∣∣ i∑
j=1

1
n− j + 1

− log
{ n

n− i + 1

}∣∣∣ ≤ 1
n

+
1

n− i + 1
. (39)

Next, we write, via (27) and Taylor’s formula, for 1 ≤ i ≤ n,

Ui,n − Ui−1,n = exp
(
− Yi−1,n) − exp(−Yi,n

)
=
(
Yi,n − Yi−1,n

)
exp
(
− {Yi,n − ρi,n(Yi,n − Yi−1,n)}

)
, (40)

where ρi,n fulfills 0 < ρi,n < 1. By combining (28) with (40), we obtain
readily that, as n → ∞,

n∑
i=1

{
− log

(
n(Ui,n − Ui−1,n)

)}
= −

n∑
i=1

log
(
Yi,n − Yi−1,n

)
− n logn

+
n∑

i=1

{
Yi,n − ρi,n(Yi,n − Yi−1,n)

}
= −

n∑
i=1

{
logωi,n + log

{ n

n− i + 1

}}
+

n∑
i=1

{ i∑
j=1

ωj,n − 1
n− j + 1

}
+

n∑
i=1

{ i∑
j=1

1
n− j + 1

}
−

n∑
i=1

{
ρi,n(Yi,n − Yi−1,n)

}

=
n∑

i=1

{
ωi,n − 1 − logωi,n

}
+

n∑
i=1

{ i∑
j=1

1
n− j + 1

− log
{ n

n− i + 1

}}
−

n∑
i=1

{
ρi,n(Yi,n − Yi−1,n)

}
.

Observe that

0 ≤
n∑

i=1

{
ρi,n(Yi,n − Yi−1,n)

}
≤

n∑
i=1

{
Yi,n − Yi−1,n

}
= Yn,n.
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Now, it is easily checked that, for each choice of c > 1, as n → ∞,

P
(
Yn,n ≥ c log n

)
≤

n∑
i=1

P
(
Y1 ≥ c logn

)
= ne−c log n = n1−c → 0,

so that Yn,n = OP(log n) as n → ∞. Moreover, by (2), we have, as n → ∞,

n∑
i=1

∣∣∣ i∑
j=1

1
n− j + 1

− log
{ n

n− i + 1

}∣∣∣ ≤ n∑
i=1

{ 1
n

+
1

n− i + 1

}
= 1 +

n∑
i=1

1
i

= O(log n). (41)

Therefore, as n → ∞,

n∑
i=1

{
− log

(
n(Ui,n − Ui−1,n)

)}
=

n∑
i=1

{
ωi,n − 1 − logωi,n

}
+ OP(log n).

By substracting nγ to the left- and right-hand side of the above equality, we
obtain (36), as sought.��
Introduce now the following notation and facts. For each n ≥ 1 and 0 ≤ t ≤ 1,
denote, respectively by

Un(t) = n−1#
{
Ui ≤ t : 1 ≤ i ≤ n

}
,

and
Vn(t) = inf

{
s ≥ 0 : Un(s) ≥ t

}
, (42)

the uniform empirical and quantile functions based upon U1, . . . , Un. Here and
elsewhere, #A stands for the cardinality of A. The corresponding empirical
and quantile processes are given, respectively, by

αn(t) = n1/2
{
Un(t) − t

}
and βn(t) = n1/2

{
Vn(t) − t

}
. (43)

Fact 1 below is due to Kiefer [Kie67] (see, e.g., Deheuvels and Mason [DM90]).

Fact 1 For each specified 0 ≤ t0 ≤ 1, we have, almost surely,

lim sup
n→∞

n1/4(loglog n)−3/4|αn(t0) + βn(t0)| = 25/43−3/4{t0(1 − t0)}1/4.(44)

The next fact, stated below, is Lemma 3.1 of Deheuvels and Derzko [DD03]
(see also Pyke [Pyk65], and Proposition 8.2.1 in Shorack and Wellner [SW86]).

Fact 2 Let Sn+1 denote a random variable, independent of U1, . . . , Un, and
following a Γ (n + 1) distribution, with density

h(s) =
sn

n!
e−s for s > 0, h(s) = 0 for s ≤ 0.
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Then, the random variables

θi,n = Sn+1

{
Ui,n − Ui−1,n

}
, i = 1, . . . , n + 1, (45)

are independent, exponentially distributed with unit mean, and such that

Sn+1 =
n+1∑
i=1

θi,n. (46)

In view of the above notation, letting {θi,n : 1 ≤ i ≤ n+1} be as in (46), Fact
3 below follows from Theorems 3.1-3.2 of Deheuvels and Derzko [DD03].

Fact 3 We have, as n → ∞,

sup
0≤j≤n+1

∣∣∣ j∑
i=1

{
− log

(
n(Ui,n − Ui−1,n)

)
− γ
}

−
j∑

i=1

{
− log θi,n − γ + (θi,n − 1)

}∣∣∣ = OP(1). (47)

We have now all the tools in hand to prove the following intermediary result
of independent interest.

Theorem 2.2 For each g ∈ G, we have, as n → ∞

n−1/2Yn,n(g) d→ N
(
0, ζ(2) − 1 + σ2

g

)
. (48)

Proof. Step 1. Recall the notation (32)–(33)–(34). To illustrate the argu-
ments of our proof, we start by considering the simple case where g(u) = a+bu
is an affine function. Under this assumption, we infer from (30)–(31) that
µg = a + b and σ2

g = b2. Thus, by (28) and (34), we obtain that

ζn,n(g) =
n∑

i=1

{
g(Yj,n) − µg

}
= b

n∑
i=1

{ i∑
j=1

ωj,n − 1
n− j + 1

}
= b

n∑
i=1

{
ωi,n − 1

}
. (49)

This, in turn, shows that

Yn,n(g) = ξn,n + ζn,n(g)

=
n∑

i=1

{
− logωi,n − γ + (ωi,n − 1)

}
+ b

n∑
i=1

{
ωi,n − 1

}
, (50)

is the partial sum of order n of an i.i.d. sequence of random variables. Setting
ω = ω1,n, an easy calculus (see the Appendix in the sequel) shows that
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E

(
− logω − γ + (ω − 1)

)
= e
(
ω − 1

)
= 0, (51)

E

({
− logω − γ + (ω − 1)

}2)
= ζ(2) − 1, (52)

E

({
− logω − γ + (ω − 1)

}{
ω − 1

})
= 0, (53)

E

({
ω − 1

}2)
= 1. (54)

We readily infer from the above equalities that

Var
{(

− logω−γ+(ω−1)
)
+ b
(
ω−1

)}
= ζ(2)−1+ b2 = ζ(2)−1+σ2

g . (55)

Given (50) and (55), the proof of (48) for the particular choice of g(u) = a+bu
is a simple consequence of the central limit theorem.

Step 2. In this step, we consider the setup where g is proportional to the
indicator function of an interval, namely of the form

g(u) = λ1I(c,d](u) =

⎧⎪⎨⎪⎩
0 for 0 ≤ u ≤ c,

λ for c < u ≤ d,

0 for u > d,

(56)

where λ ∈ R, c and d are specified constants fulfilling 0 < c < d < ∞. We
will set, for convenience, C = 1 − e−c and D = 1 − e−d, and observe that the
constants C,D are such that 0 < C < D < 1. An easy calculus based upon
(30)–(31) shows that, under (56),

µg =
∫ d

c

λe−udu = λ(D − C) and σ2
g = λ2(D − C)(1 −D + C). (57)

Letting g ∈ G be as in (56), we infer from (34), (42) and (43), in combination
with Fact 1, that, almost surely as n → ∞,

ζn,n(g) =
n∑

i=1

{
g(Yi) − λ(D − C)

}
=

n∑
i=1

{
1I(c,d]

(
− log(1 − Ui)

)
− λ(D − C)

}
= λ#

{
− log(1 − Ui) ∈ (c, d] : 1 ≤ i ≤ n

}
− nλ(D − C)

= n1/2λ
{
αn(D) − αn(C)

}
= −n1/2λ

{
βn(D) − βn(C)

}
+ OP

(
n1/4(log n)3/4

)
. (58)

Denote by  u! ≥ u >  u! − 1 the upper integer part of u. Then, by (42),
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βn(t) = n1/2(Vn(t) − t) = n1/2(Unt�,n − t) for 0 < t ≤ 1. (59)

We readily infer from (58) and (59) that, almost surely as n → ∞,

ζn,n(g) = −λ
{
nUnD�,n − nUnC�,n − ( nD! −  nC!)

}
+OP

(
n1/4(log n)3/4

)
. (60)

Now, making use of (46), we may write

nUnD�,n − nUnC�,n − ( nD! −  nC!)

=
{

1 +
[ n

Sn+1
− 1
]} nD�∑

i=nC�+1

{
θi,n − 1

}
+
[ n

Sn+1
− 1
]
( nD! −  nC!).

An application of the central limit theorem shows, in turn, that, as n → ∞,

Sn+1

n
= 1 +

1
n

+
1
n

n+1∑
i=1

{
θi,n − 1

}
= 1 + OP(n−1/2).

Likewise, we have, as n → ∞,
nD�∑

i=nC�+1

{
θi,n − 1

}
= OP(n1/2).

Therefore, we obtain that, as n → ∞,

n

Sn+1
− 1 =

1
n

n+1∑
i=1

{
θi,n − 1

}
+ OP(n−1) = OP(n−1/2).

By all this, it follows that

nUnD�,n − nUnC�,n − ( nD! −  nC!)

=
nD�∑

i=nC�+1

{
θi,n − 1

}
− (D − C)

nD�∑
i=nC�+1

{
θi,n − 1

}
+ OP(1),

This, when combined with (60), entails that

ζn,n(g) = −λ

nD�∑
i=nC�+1

{
θi,n − 1

}

+λ(D − C)
n+1∑
i=1

{
θi,n − 1

}
+ OP

(
n1/4(logn)3/4

)
. (61)

Set now, in view of (61),
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ζ∗n,n(g) = −λ

nD�∑
i=nC�+1

{
θi,n − 1

}
+ a(D − C)

n+1∑
i=1

{
θi,n − 1

}
,

and, in view of (47),

ξ∗n,n = −
j∑

i=1

{
− log θi,n − γ + (θi,n − 1)

}
A direct application of (53) and (57) shows that, as n → ∞,

Var
(
ξ∗n,n + ζ∗n,n(g)

)
= Var

(
ξ∗n,n

)
+ Var

(
ζ∗n,n(g)

)
= n
(
ζ(2) − 1)

)
+ λ2

{
(D − C)2( nC! + (n + 1 −  nD!))

+(D − C − 1)2( nD! −  nC!)
}

= (1 + o(1))nλ2(D − C)(1 −D + C) = (1 + o(1))σ2
g . (62)

Now, in view of (61), given that ξ∗n,n + ζ∗n,n(g) is a linear combination of three
partial sums of i.i.d. centered random variables, an application of the central
limit theorem shows that, as n → ∞

n−1/2
{
ξn,n + ζn,n(g)

}
= n−1/2

{
ξ∗n,n + ζ∗n,n(g)

}
+ OP(n−1/4(log n)3/4)

d→ N(0, σ2
g).

In view of (32), (33) and (34), we thus obtain (48) in this particular case.

Step 3. We are now ready to establish the most general version of our
theorem. In the first place, we consider the case where gL ∈ G is a step-
function, of the form

gL(u) =
L∑


=1

λ
1I(c�,d�](u), (63)

where a1, . . . , aL and 0 < c1 < d1 < . . . < cL < dL < 1 are specified constants.
By repeating the arguments of Step 2 in this case, we readily obtain that the
weak convergence

n−1/2Yn,n(gL) d→ N
(
0, ζ(2) − 1 + σ2

gL

)
, (64)

holds. Now, if g ∈ G = L2(R+, e
−udu) is arbitrary, for each ε > 0, we may

select L ≥ 1, together with λ1, . . . , λL and 0 < c1 < d1 < . . . < cL < dL < 1,
such that µg = µgL

and

‖g − gL‖2
2 = E

(
|g(ω) − gL(ω)|2

)
≤ ε. (65)
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By combining (35) with (64)–(65), we see that

E

(∣∣∣n−1/2Yn,n(g) − n−1/2Yn,n(gL)
∣∣∣2) ≤ ε. (66)

Since ε > 0 in (65)–(66) may be chosen arbitrarily small, we conclude to the
validity of (48) by routine arguments.��
Proof of Theorem 1. Our assumptions imply that F (Zi,n) = Ui,n for
i = 1, . . . , n. Therefore, we infer readily (25) from (48), by setting in this last
relation

g(y) = f(Q(1 − e−y)) for y > 0,

and making use of Lemma 2.1.��
Proof of Theorem 1.1. Denote by Q(t) = inf{z : F (z) ≥ t}, for 0 < t < 1,
the quantile function pertaining to F . Our assumptions imply that Q has a
continuous derivative on (0, 1) given by

Q′(t) = 1/f(Q(t)).

By Taylor’s formula, we obtain readily that

− log
{
n(Zi,n − Zi−1,n)

}
= − log

{
n(Q(F (Zi,n)) −Q(F (Zi−1,n)))

}
= − log

{n(F (Zi,n) − F (Zi−1,n))
f(Z∗

i,n)

}
, (67)

where Z∗
i,n lies within the interval (Zi−1,n, Zi,n). We now make use of the

following well-known fact (see, e.g. Csörgő, Haeusler and Mason [CsHM88],
and the references therein). Let V1, . . . , Vn be an i.i.d. sequence of replicæof
a random variable V with finite expectation µ = E(V ) and variance 0 < σ2 =
Var(V ) < ∞. Denote by V1,n ≤ . . . ≤ Vn,n the order statistics of V1, . . . , Vn.
Then, independently of the fixed integers p ≥ 1 and q ≥ 1, we have

n−1/2

n−q+1∑
i=p

{
Vi,n − µ

} d→ N(0, σ2). (68)

Moreover, we have, for each ε > 0

lim
r↓0

{
lim sup

n→∞
P

(
n−1/2

∣∣∣ n−nr�+1∑
i=nr�+1

{
Vi,n − µ

}
−

n∑
i=1

{
Vi − µ

}∣∣∣ ≥ ε
)}

= 0. (69)
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Let us now assume, for the sake of simplicity, that f is nonincreasing on (a, b).
In this case, we see that

S′
n := −

n∑
i=2

log f(Zi−1,n) ≤ Rn := −
n∑

i=2

log f(Z∗
i,n)

≤ S′′
n := −

n∑
i=2

log f(Zi,n).

Set µ = E(log f(Z)) and σ2 = Var(log f(Z)). In view of (68)–(69), we have,
for each t ∈ R,

lim
n→∞

P

(
n−1/2(S′

n − nµ) ≤ t
)

≤ P

(
n−1/2(Rn − nµ) ≤ t

)
≤ P

(
n−1/2(S′

n − nµ) ≤ t
)

= Φ(t),

where Φ(t) is the N(0, 1) distribution function. Thus, we may apply Theorem
1 in combination with Remark 2.1 to obtain (8). The proof of this result when
f is monotone only in the neighborhood of the end-points is very similar,
and obtained by splitting the range of Z into three component intervals, in
combination with an application of (69). We omit details.��

2.2 Appendix.

Let ω denote a unit exponential random variable. The present sub-section is
devoted to the computation of some moments of interest of slected functions
of ω. We first observe that, for each s ∈ R such that s < 1,

E

(
exp
(
− s logω

))
=
∫ ∞

0

ω−se−sds = Γ (1 − s). (70)

Recalling the expansion (see, e.g. Abramowitz and Stegun [AS70])

logΓ (1 − s) = γs +
∞∑

k=2

ζ(k)
k

sk for |s| < 1, (71)

we obtain readily that the k-th cumulant κk of − logω is given by κ1 = γ and
κk = (k − 1)!ζ(k) for k ≥ 2, whence

E(− logω) =
∫ ∞

0

(− log s)e−sds = κ1 = γ, (72)

Var(logω) =
∫ ∞

0

(log s)2e−sds− γ2 = κ2 = ζ(2) =
π2

6
. (73)

Let now ω1 and ω2 denote two independent unit exponential random variables.
The following result, of independent interest, has potential applications in
two-sample tests. This problem will be considered elsewhere.
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Lemma 2.2 The random variable R = log(ω1/ω2) follows a logistic law, with
distribution and moments given by

P
(
R ≤ t

)
=

1
1 + e−t

for t ∈ R, (74)

the moment-generating function of R is given by

E
(
exp(sR)

)
= Γ (1 − s)Γ (1 + s) for |s| < 1, (75)

and the k-th cumulant of R is given by

κk =

{
0 fork = 1, 3, . . . , 2p + 1, . . . ,
2(k − 1)!ζ(k) fork = 2, 4, . . . , 2p, . . . .

(76)

In particular, we get

E(R) = 0 and Var(R) = 2ζ(2) =
π2

3
. (77)

An easy calculus yields

E(ω logω) =
∫ ∞

0

(s log s− s)e−sds +
∫ ∞

0

se−sds

=
[
−(x log x− x)e−x

]x=∞
x=0

+
∫ ∞

0

(log s)e−sds + 1 = −γ + 1. (78)

Likewise, we get

E
(
ω(logω)2

)
=
∫ ∞

0

s(log s)2e−sds

=
[
−x(log x)2e−x

]x=∞
x=0

+
∫ ∞

0

(log s)2e−sds + 2
∫ ∞

0

(log s)e−sds

= ζ(2) + γ2 − 2γ + 2, (79)

and

E
(
ω2(logω)2

)
=
∫ ∞

0

s2(log s)2e−sds

=
[
−x2(log x)2e−x

]x=∞
x=0

+ 2
∫ ∞

0

s(log s)2e−sds + 2
∫ ∞

0

s(log s)e−sds

= 2
(
ζ(2) + γ2 − 2γ + 2

)
+ 2
(
− γ + 1

)
(80)

= 2
(
ζ(2) + γ2 − 3γ + 3

)
. (81)



Tests of Fit based on Products of Spacings 135

References

[AS70] Abramowitz, M, Stegun, I. A.: Handbook of Mathematical Func-
tions, Dover, New York (1970)

[Blu68] Blumenthal, S.: Logarithms of sample spacings. S.I.A.M. J. Appl.
Math., 16, 1184-1191 (1968)

[Cre76] Cressie, N.: On the logarithms of high-order spacings. Biometrika,
2, 343-355 (1976)

[CsHM88] Csörgő, S., Haeusler, E., Mason, D. M.: A probabilistic approach
to the asymptotic distribution of sums of independent identically
distributed random variables. Advances in Appl. Probab. 9, 259-333
(1988)

[Dar53] Darling, D. A.: On a class of problems related to the random division
of an interval. Ann. Math. Statist., 24, 239-253 (1953).

[Dav81] David, H. A.: Order Statistics. 2nd Ed., Wiley, New York (1981)
[DM90] Deheuvels, P. and Mason, D. M.: Bahadur-Kiefer-type processes.

Ann. Probab., 18, 669-697 (1990)
[Kie67] Kiefer, J.: On Bahadur’s representation of sample quantiles. Ann.

Math. Statist., 38, 1323-1342 (1967)
[DD03] Deheuvels, P. and Derzko, G.: Exact laws for products of uniform

spacings. Austrian J. Statist. 1-2, 29-47 (2003)
[GR65] Gradshteyn, I. S., Ryzhik, I. M.: Tables of Integrals, Series and

Products. Academic Press, New York (1965)
[Mal50] Malmquist, S.: On a property of order statistics from a rectangular

distribution. Skand. Aktuarietidskr. 33, 214-222 (1950)
[Pyk65] Pyke, R.: Spacings. J. Royal Statist. Soc. B. 27, 395-436, and Dis-

cussion 437-449 (1965)
[SW86] Shorack, G. R. and Wellner, J. A.: Empirical Processes with Appli-

cations to Statistics. Wiley, New York (1986)
[SO87] Spanier, J. and Oldham, K. B.: An Atlas of Functions. Hemisphere

Publ. Co., Washington (1987)
[Suk37] Sukhatme, P. V.: Tests of significance for samples of the χ2 popu-

lation with two degrees of freedom. Ann. Eugen., 8, 52-56 (1937)



A Survival Model With Change-Point in Both
Hazard and Regression Parameters

Dupuy Jean-François

Laboratoire de Statistique et Probabilités, Université Paul Sabatier,
118, route de Narbonne, 31062 Toulouse cedex 4, France
dupuy@math.ups-tlse.fr

1 Introduction

In this paper, we consider a parametric survival regression model with a
change-point in both hazard and regression parameters. Change-point oc-
curs at an unknown time point. Estimators of the change-point, hazard and
regression parameters are proposed and shown to be consistent.

Let T be a random failure time variable. The distribution of T is usually
specified by the hazard function λ = f/1 − F where f and F are the density
and distribution functions of T respectively. Change in hazard at an unknown
time point has been extensively studied. Such a change may occur in medical
studies after a major operation (e.g. bone marrow transplant) or in reliability
(e.g. change of failure rate following temperature increase). Several authors
have considered the following change-point hazard model:

λ(t) = α + θ1{t>τ}, (1)

with α > 0, α + θ > 0, and where τ > 0 is an unknown change-point time
assumed to lie in a known interval [τ1, τ2] such that 0 < τ1 < τ2 < ∞ (see
[CCH94], [MFP85], [MW94], [NRW84], [PN90]).
Wu et al. (2003) [WZW03] extend (1) to the hazard model

λ(t) = (α + θ1{t>τ})λ0(t; γ), (2)

where λ0(·; γ) is a baseline hazard function depending on an unknown param-
eter γ. This model allows hazard to be nonconstant anterior or posterior to
change-point. In this paper, we extend (1) in a different way: we allow λ(·)
to vary among individuals by incorporating covariates in the change-point
model (1). Moreover, since the effect of covariates (e.g. age of a patient)
may also change at the unknown time point τ , we allow for change in the
regression parameter at τ (e.g. the risk of death of elderlies compared to
young patients may increase after a major surgical operation). We specify
the following hazard model:
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λ(t|Z) = (α + θ1{t>τ}) exp{(β + γ1{t>τ})TZ}, (3)

where α > 0, α+ θ > 0, τ is an unknown change-point time, β and γ are un-
known regression coefficients. Previous work on change-point regression mod-
els has mainly focused on linear models (we refer to [CK94], [Hor95], [HHS97],
[Jar03], [KQS03]). A detailed treatment and numerous references can be found
in [CH97]. Gurevich and Vexler [GV05] consider change-point problem in the
logistic regression model. Luo et al. [LTC97] and Pons ([Pon02], [Pon03])
consider a Cox model involving a change-point in the regression parameter.

In Section 2, we give a brief review of recent results on model (2), and
we construct estimators for model (3). In Section 3, we prove that these
estimators are consistent. Technical details are given in appendix.

2 Notations and construction of the estimators

2.1 Preliminaries

We consider a sample of n subjects observed in the time interval [0, ζ]. Let
T 0

i be the survival time of the ith individual and Zi be the related covariate.
Zi is assumed to be a q-dimensional random variable. Suppose that Zi is
bounded and var(Zi) > 0. We assume that T 0

i may be right censored at
a noninformative censoring time Ci such that Ci and T 0

i are independent
conditionally on Zi. For individual i, let Ti = T 0

i ∧ Ci be the observed time
and ∆i = 1{T 0

i ≤Ci} be the censoring indicator.
The data consist of n independent triplets Xi = (Ti,∆i, Zi), i = 1, . . . , n.

For model (2), which has no covariates, [WZW03] follow [CCH94] and
define Yn(t) as

Yn(t) =

[
Λ̂NA(ξ) − Λ̂NA(t)
Λ̂0(ξ) − Λ̂0(t)

− Λ̂NA(t)
Λ̂0(t)

] [
Λ̂0(t)(Λ̂0(ξ) − Λ̂0(t))

]p
,

where 0 ≤ p ≤ 1, and Λ̂NA(t) is the Nelson-Aalen estimator of Λ(t) =∫ t

0
λ(s) ds, Λ̂0(t) =

∫ t

0
λ0(s; γ̂n) ds estimates Λ0(t) =

∫ t

0
λ0(s; γ0) ds, γ̂n is a

consistent estimator of the true γ0, and ξ > τ2 is a finite time point such that
P (T > ξ) > 0. The asymptotic version of Yn is

Y (t) =
[

Λ(ξ) − Λ(t)
Λ0(ξ) − Λ0(t)

− Λ(t)
Λ0(t)

]
[Λ0(t)(Λ0(ξ) − Λ0(t))]

p
.

Wu et al. [WZW03] remark that if the true θ0 is strictly positive, then Y (t)
is increasing on [0, τ ] and decreasing on [τ, ξ], hence they define an estimator
τ̂n of τ by

τ̂n = inf
{
t ∈]τ1, τ2[: Yn(t±) = sup

τ1<u<τ2

Yn(u)
}
, (4)
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where Yn(t±) is the right or left-hand limit of Yn(·) at t. If θ0 < 0, Y (t) is
decreasing on [0, τ ] and increasing on [τ, ξ]. In this case, Wu et al. (2003)
define

τ̂n = inf
{
t ∈]τ1, τ2[: Yn(t±) = inf

τ1<u<τ2
Yn(u)

}
. (5)

Wu et al. [WZW03] show the following theorems under some regularity con-
ditions:

Theorem 1. The estimator τ̂n of τ defined in (4) or (5) is consistent.

Let ln(α, θ, τ, γ) denote the loglikelihood based on (Ti,∆i) (i = 1, . . . , n), and
α̂n(τ, γ) and θ̂n(τ, γ) be respectively the solutions of ∂ln(α, θ, τ, γ)/∂α = 0
and ∂ln(α, θ, τ, γ)/∂θ = 0 for given (τ, γ).

Theorem 2. α̂n(τ̂n, γ̂n) and θ̂n(τ̂n, γ̂n) are consistent estimators of α and θ
respectively.

In this paper, a different approach is taken to prove consistency of estimators
in the model (3). It relies on modern empirical process theory as exposed in
[Van98] and [VW96].

2.2 The estimators

We consider the statistical model defined by the family of densities

pϕ(X) =
{
αeβT Z

}∆

exp
(
−αeβT ZT

)
1{T≤τ} +

{
(α + θ)e(β+γ)T Z

}∆

× exp
(
−αeβT Zτ − (α + θ)e(β+γ)T Z(T − τ)

)
1{T>τ},

where ϕ = (τ, ξT )T , with ξ = (α, θ, βT , γT )T . Here α, θ, and the regression
parameters β and γ belong respectively to bounded subsets A ⊂ R+\{0},
B ⊂ R\{0}, C ⊂ Rq, and D ⊂ Rq\{0}. The change-point τ is a parameter
lying in the open interval ]0, ζ[. Let ϕ0 = (τ0, ξT

0 )T be the true parameter
value, lying in Φ =]0, ζ[×A × B × C × D. We suppose that ϕ0 is such that
θ0 �= 0 and γ0 �= 0, so that a change-point actually occurs. We suppose also
that α0 + θ0 > 0.
Under the true parameter values, we denote P0 ≡ Pϕ0 the probability dis-
tribution of the variables (T 0

i , Ci, Zi) and E0 the expectation of the random
variables.

The log-likelihood function based on the observations Xi (i = 1, . . . , n) is

ln(ϕ) =
∑
i≤n

{
Ni(τ)[lnα + βTZi] − 1{Ti≤τ}αe

βT ZiTi + [Ni(∞) −Ni(τ)]

×[ln(α + θ) + (β + γ)TZi] − 1{Ti>τ}

[
αeβT Ziτ

+(α + θ)e(β+γ)T Zi(Ti − τ)
]}

,
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where Ni(t) = ∆i1{Ti≤t} is the counting process for death of individual i. The
estimator ϕ̂n is obtained as follows: for a fixed τ , we let ξ̂n(τ) be the value of
ξ which maximizes the log-likelihood ln(ϕ). Then τ0 is estimated by τ̂n which
satisfies the relationship

τ̂n = inf

{
τ ∈]0, ζ[: max(ln(τ, ξ̂n(τ)), ln(τ+, ξ̂n(τ+))) = sup

τ∈]0,ζ[

ln(τ, ξ̂n(τ))

}
,

where ln(τ+, ξ̂n(τ+)) is the right-hand limit of ln at τ . Then the maximum
likelihood estimator of ξ is obtained as ξ̂n = ξ̂n(τ̂n).

For a given τ , we estimate α, θ, β and γ by considering the following
score functions:

∂ln(ϕ)
∂α

=
∑
i≤n

{
Ni(τ)
α

− 1{Ti≤τ}e
βT ZiTi +

Ni(∞) −Ni(τ)
α + θ

−1{Ti>τ}

[
eβT Ziτ + e(β+γ)T Zi(Ti − τ)

]}
,

∂ln(ϕ)
∂θ

=
∑
i≤n

{
Ni(∞) −Ni(τ)

α + θ
− 1{Ti>τ}e

(β+γ)T Zi(Ti − τ)
}
,

∂ln(ϕ)
∂β

=
∑
i≤n

{
Ni(∞)Zi − 1{Ti≤τ}αZie

βT ZiTi

−1{Ti>τ}

[
αZie

βT Ziτ + (α + θ)Zie
(β+γ)T Zi(Ti − τ)

]}
,

∂ln(ϕ)
∂γ

=∑
i≤n

{
[Ni(∞) −Ni(τ)]Zi − 1{Ti>τ}(α + θ)Zie

(β+γ)T Zi(Ti − τ)
}
.

3 Convergence of the estimators

Our main result is

Theorem 3. The estimators τ̂n and ξ̂n converge in probability to τ0 and ξ0.

Proof. The proof of consistency is based on the uniform convergence of
Xn(ϕ) = n−1(ln(ϕ) − ln(ϕ0)) to a function having a unique maximum at ϕ0.
Two lemmas will be needed, their proofs are given in appendix. By some
rearranging, the process Xn = n−1(ln − ln(ϕ0)) can be written as a sum
Xn = X1,n + X2,n + X3,n + X4,n according to the sign of τ − τ0, with
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X1,n(ϕ) = n−1
∑
i≤n

∆i1{Ti≤τ∧τ0}

{
ln

α

α0
+ (β − β0)TZi

}
,

X2,n(ϕ) = n−1
∑
i≤n

∆i1{Ti>τ∨τ0}

{
ln

α + θ

α0 + θ0
+ (β + γ − β0 − γ0)TZi

}
,

X3,n(ϕ) = n−1
∑
i≤n

∆i1{τ<Ti≤τ0}

{
ln

α + θ

α0
+ (β + γ − β0)TZi

}

+n−1
∑
i≤n

∆i1{τ0<Ti≤τ}

{
ln

α

α0 + θ0
+ (β − β0 − γ0)TZi

}
,

X4,n(ϕ) = n−1
∑
i≤n

{
1{Ti≤τ0}α0e

βT
0 ZiTi − 1{Ti≤τ}αe

βT ZiTi

−1{Ti>τ}

[
(α + θ)e(β+γ)T Zi(Ti − τ) + αeβT Ziτ

]
+1{Ti>τ0}

[
(α0 + θ0)e(β0+γ0)

T Zi(Ti − τ0) + α0e
βT
0 Ziτ0

]}
.

Let X∞ be the function defined as X∞(ϕ) = X1,∞(ϕ)+X2,∞(ϕ)+X3,∞(ϕ)+
X4,∞(ϕ), where

X1,∞(ϕ) = E0

[
∆1{T≤τ∧τ0}

{
ln

α

α0
+ (β − β0)TZ

}]
,

X2,∞(ϕ) = E0

[
∆1{T>τ∨τ0}

{
ln

α + θ

α0 + θ0
+ (β + γ − β0 − γ0)TZ

}]
,

X3,∞(ϕ) = E0

[
∆1{τ<T≤τ0}

{
ln

α + θ

α0
+ (β + γ − β0)TZ

}
+∆1{τ0<T≤τ}

{
ln

α

α0 + θ0
+ (β − β0 − γ0)TZ

}]
,

X4,∞(ϕ) = E0

[
1{T≤τ0}α0e

βT
0 ZT − 1{T≤τ}αe

βT ZT

−1{T>τ}

[
(α + θ)e(β+γ)T Z(T − τ) + αeβT Zτ

]
+1{T>τ0}

[
(α0 + θ0)e(β0+γ0)

T Z(T − τ0) + α0e
βT
0 Zτ0

]]
.

The first lemma asserts uniform convergence of Xn to X∞.

Lemma 1. supϕ∈Φ |Xn(ϕ)−X∞(ϕ)| converges in probability to 0 as n → ∞.

Uniqueness of ϕ0 as a maximizer of X∞ comes from the following lemma,
which asserts that the model is identifiable.

Lemma 2. pϕ(x) = pϕ0(x) a.s. implies ϕ = ϕ0.

Note that X∞(ϕ) is minus the Kullback-Leibler divergence of pϕ and pϕ0 .
Since X∞(ϕ0) = 0, ϕ0 is a point of maximum of X∞. Moreover, it is a unique
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point of maximum since ϕ0 is identifiable (Lemma 2). As Xn converges
uniformly to X∞ (Lemma 1), it follows that ϕ̂n converges in probability to ϕ0.

Remark The hazard function (3) specifies a multiplicative hazard model.
An alternative formulation for the association between covariates and
time-to-event is the additive hazard model, where λ(t|Z) = α + βTZ (a
semiparametric form may be specified by letting α be an unknown function
of time). The results obtained for model (3) can be shown to hold for the
additive change-point hazard regression model

λ(t|Z) = (α + θ1{t>τ}) + (β + γ1{t>τ})TZ.

Proofs proceed along the same line as described above.

Appendix

Proof of Lemma 1. Writing Xn(ϕ) as Xn(ϕ) = n−1
∑

i≤n fϕ(Xi), the uni-
form convergence stated by this lemma is equivalent to the class of functions
F = {fϕ : ϕ ∈ Φ} being Glivenko-Cantelli (we refer the reader to [Van98] and
[VW96] for definition of Glivenko-Cantelli and Donsker classes, and for many
useful results on these classes).
Since every Donsker class is also Glivenko-Cantelli, we show that F is Donsker
by using results from empirical process theory [VW96].
To demonstrate how it works, we shall show that{

gϕ(T,∆,Z) = 1{T>τ}(α + θ)e(β+γ)T ZT : ϕ ∈ Φ
}

is Donsker. The set of all indicators functions 1{(τ,∞)} is Donsker.
From Theorem 2.10.1 of [VW96], {1{(τ,∞)} : τ ∈]0, ζ[} is Donsker.
The function hϕ : (T,∆,Z) #→ T is bounded, which implies that
{1{(τ,∞)}T : τ ∈]0, ζ[} is Donsker (see Exemple 2.10.10 of [VW96]). The class
{α + θ : α ∈ A, θ ∈ B} is Donsker. By multiplying two Donsker classes, we
get that {1{(τ,∞)}(α + θ)T : τ ∈]0, ζ[, α ∈ A, θ ∈ B} is Donsker. Similarly,
boundedness of Z implies that {(β + γ)TZ : β ∈ C, γ ∈ D} is Donsker. The
exponential function is Lipschitz on compact sets of the real line, then we
get from [VW96] (Theorem 2.10.6) that the class {e(β+γ)T Z : β ∈ C, γ ∈ D}
is Donsker. Again, by multiplication of two Donsker classes, we get that{
gϕ(T,∆,Z) = 1{T>τ}(α + θ)e(β+γ)T ZT : ϕ ∈ Φ

}
is Donsker.

Using similar arguments and the fact that the sum of two Donsker classes is
Donsker, we finally get that F is Donsker, and hence Glivenko-Cantelli.

Proof of Lemma 2. Considering the densities pϕ(x) = pϕ0(x) on
δ = 0, we see that
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exp(−αeβT zt)1{t≤τ} + exp(−αeβT zτ

−(α + θ)e(β+γ)T z(t− τ))1{t>τ} =

exp(−α0e
βT
0 zt)1{t≤τ0} + exp(−α0e

βT
0 zτ0

−(α0 + θ0)e(β0+γ0)
T z(t− τ0))1{t>τ0} (6)

for almost all (t, z). Suppose that τ �= τ0 (we suppose that τ < τ0, the
symetric case τ > τ0 can be treated similarly).
Let Ωz be the set of t ∈ (τ, τ0] such that (t, z) does not satisfy (6). Then,
for almost all z (i.e. outside an exceptional zero-measure set Z), P0(Ωz) = 0.
Given that z1 �= z2 and that neither is in Z, (t, z1) and (t, z2) satisfy the
above relation for almost all t ∈ (τ, τ0]. In particular, let t1 �= t2 be two such
values.
Evaluated at (t1, z1), (6) becomes

exp(−αeβT z1τ − (α + θ)e(β+γ)T z1(t1 − τ)) = exp(−α0e
βT
0 z1t1),

which is equivalent to αeβT z1τ + (α + θ)e(β+γ)T z1(t1 − τ) = α0e
βT
0 z1t1. Sim-

ilarly, for (t2, z1) we obtain αeβT z1τ + (α + θ)e(β+γ)T z1(t2 − τ) = α0e
βT
0 z1t2.

By substracting these last two equalites, we obtain (α+θ)e(β+γ)T z1(t2− t1) =
α0e

βT
0 z1(t2 − t1), which implies

(α + θ)e(β+γ)T z1 = α0e
βT
0 z1 (7)

since t1 �= t2. The same reasonment for the couples (t1, z2), (t2, z2) yields

(α + θ)e(β+γ)T z2 = α0e
βT
0 z2 . (8)

Since α + θ �= 0 and α0 �= 0, we can calculate the ratio (8)/(7):
e(β+γ)T (z2−z1) = eβT

0 (z2−z1), which implies (β + γ − β0)T (z2 − z1) = 0. Note
that the assumption var(Z) > 0 is necessary to achieve identifiability. If
var(Z) = 0, then for any q-dimensional vector a �= 0, var(aTZ) = 0. There-
fore aT (z1 − z2) = 0 does not imply that a = 0. Consider all q-vectors that
are orthogonal to z1 − z2, and select a pair (z3, z4) such that neither is in
the zero-measure set Z. Then we get (β + γ − β0)T (z4 − z3) = 0. In this
way, we can select q pairs of z such that none of the pairs is in Z, and the
differences of the pairs are linearly independent. Thus β + γ − β0 = 0 and
finally β + γ = β0. It follows from (8) that α + θ = α0.
Now, from (6), αeβT z1τ + α0e

βT
0 z1(t1 − τ) = α0e

βT
0 z1t1, which implies

αeβT z1τ = α0e
βT
0 z1τ . Similarly, for the couple (t1, z2), αeβT z2τ = α0e

βT
0 z2τ .

By taking the ratio of these two equalities, we obtain eβT (z1−z2) = eβT
0 (z1−z2),

which implies (β − β0)T (z1 − z2) = 0. By the same reasonment as above,
β = β0, and hence γ = 0. This is a contradiction, hence τ �< τ0. Similarly, we
can show that τ �> τ0. Hence if (6) holds, then τ = τ0.
Using similar arguments, it is now easy to complete the proof and to show
that ξ = ξ0.
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Summary. An impact of environment on mortality, similar to survival analysis, is
often modelled by the proportional hazards model, which assumes the corresponding
comparison with a baseline environment. This model describes the memory-less
property, when the mortality rate at a given instant of time depends only on the
environment at this instant of time and does not depend on the history. In the
presence of degradation the assumption of this kind is usually unrealistic and history-
dependent models should be considered. The simplest stochastic degradation model
is the accelerated life model. We discuss these models for the cohort setting and
apply the developed approach to the period setting for the case when environment
(stress) is modelled by the functions with switching points (jumps in the level of the
stress).

1 Introduction

The process of human aging is a process of accumulation of damage of some
kind (e.g., accumulation of deleterious mutations). It is natural to model
it via some stochastic process. Death of an organism uniquely defines the
corresponding lifetime random variable in a cohort setting. We are interested
in an impact of varying environment on the mortality rate, which is defined
for a cohort via the lifetime distribution function in a standard way. There are
two major possibilities. The first one is plasticity: a memory-less property,
which says that mortality rate does not depend on the past trajectory of
an environment and depends only on its current value. This is the unique
property in some sense and a widely used proportional hazards (PH) model is
a conventional tool for modelling plasticity. On the other hand, dependence
on history is more natural for the hazard (mortality) rate of degrading objects,
as it seems reasonable that the chance to fail in some small interval of time
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is higher for objects with higher level of accumulated degradation. There
are various ways of modelling this dependence. The simplest one is via the
accelerated life model (ALM), which performs the scale transformation in the
lifetime distribution function. The ALM can be equivalently defined via the
mortality rates as well (see Section 1).

These two models and their generalizations were thoroughly investigated in
reliability and survival analysis studies (Bagdonavičius and Nikulin [BN02]),
where the cohort setting is a natural one for defining the corresponding life-
time random variables. In Section 2 we discuss some traditional and new
results for a cohort setting. In demography, however, period mortality rates
play a crucial role, whereas defining ‘proper’ lifetime random variables is not
straightforward and needs additional assumptions on a population structure.
We mostly focus on the case when environment has switching points: jumps in
severity from one level to another but the situation without switching points
is also discussed. Generalization of the PH model to the period case is quite
natural, whereas the corresponding generalization of the ALM needs careful
reasoning. We perform this operation explicitly for the case of the linear ALM
and discuss the idea how it can be generalized to the time-dependent scale
transformation.

2 Damage accumulation and plasticity

2.1 Proportional hazards

Denote by X a cohort lifetime random variable (age at death) and by µ(x)
and l(x) the corresponding mortality rate and the survival probability, respec-
tively. Then:

F (x) ≡ l(x) = exp
{
−
∫ x

0

µ(u)du
}
, (1)

where F (x) is the cumulative lifetime distribution function (Cdf) and F (x) =
1 − F (x).

Let z(x), x ≥ 0 be an explanatory variable, which for simplicity is assumed
to be a scalar one. The function z(x) describes environment or stress. We
want to model an impact of a stress (environment) on X. Consider two stress
functions: z0(x) and z(x) - the baseline and the current, respectively. The
stress z0(x) is an arbitrary function from a family of all admissible stresses A.
The stress z0(x) ∈ A is usually a fixed function. Denote the mortality rate
and the Cdf under the baseline stress by µ0(x) and F0(x), respectively, and
under the current stress, as in equation (1), by µ(x) and F (x), respectively.

The most popular way to model a stress impact is via the PH model:

µ(x) = wP (z(x))µ0(x), (2)

where wP (z(x)) is a positive, strictly monotone, function (usually unknown),
the sub-script "P" stands for "proportional" and wP (z0(x)) ≡ 1.
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Consider now a step stress with switching from the baseline to the current
stress at some xs > 0. Several switching points can be considered similarly.
This step stress models the abrupt change in environment (e.g., the develop-
ment of a new critical for the healthcare drug, or the dramatic change in the
lifestyle):

zs(x) =

{
z0(x), 0 ≤ x < xs

z(x), xs ≤ x < ∞
(3)

In accordance with definition (2), the mortality rate µs(t) for the stress zs(x)
is:

µs(x) =

{
µ0(x), 0 ≤ x < xs

µ(x), xs ≤ x < ∞
(4)

Therefore, the change point in a stress results in the corresponding change
point in µs(t) : instantaneous jump to the level µ(x).

Definition (2) and properties (3)-(4) show that a plastic, memory-less re-
action of the mortality rate on the changes in the stress function takes place.
Denote by Fs(x) the Cdf, which corresponds to the mortality rate µs(t). The
remaining lifetime also does not depend on the mortality rate history in [0, xs),
as clearly follows from the equation for the remaining lifetime Cdf Frs(x|xs):

F rs(x|xs) ≡ F s(x + xs)
F s(xs)

= exp
{
−
∫ x+xs

xs

µ(u)du
}
. (5)

The PH model is usually not suitable for modelling an impact of stress
on degrading (aging) objects, as it means that the stress in [0, x) does not
influence the degradation process in (x,∞). This assumption usually does
not hold, as the past changes in stress affect the history of the degradation
process, changing its current value. These considerations, of course, are valid
for any memory-less model (see the next section).

Mortality rates of humans are increasing in age x (for adults) as the con-
sequence of biological degradation processes. However, there is at least one
but a very important for the topic of our paper case, which shows that the
PH model can be used for the human cohort mortality rate modelling as well.
In this case the notion of stress has a more general meaning.

Example 1. Lifesaving. Describe the mortality environment for a pop-
ulation via the quality of a healthcare. Let µ0(x), as previously, denote the
mortality rate for some baseline, standard level of healthcare. Suppose that
the better level of health care had been achieved, which usually results in
lifesaving (Vaupel and Yashin [VY87]): each life, characterized by the initial
mortality rate µ0(x) is saved (cured) at each event of death with probabil-
ity 1 − θ(x), 0 < θ(x) ≤ 1 (or, equivalently, this proportion of individuals
who would have died are now resuscitated and given another chance). Those
who are saved, experience the minimal repair. The minimal repair is defined
(Finkelstein [Fink00]), as the repair that brings an object back to the state
it had just prior to the failure (death). It is clear that the new healthcare
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environment defined in such a way does not change the process of individ-
ual aging. If θ(x) = 0, the lifetime is infinite and ’virtual deaths’ form a
memory-less nonhomogenous Poisson process. It can be proved (Vaupel and
Yashin [VY87], Finkelstein [Fink99]) that under given assumptions the new
mortality rate is given by:

µ(x) = θ(x)µ0(x), (6)

which is the specific form of the PH model (2). The case, when there is
no cure (θ(x) = 1), corresponds to the baseline mortality rate µ0(x) and
switching from the "stress" θ(x) = 1 to the stress 0 < θ(x) < 1 at age xs

results in the plasticity property given by equation (4).
Note, that the baseline mortality rate µ0(x) can also model a possibility

of lifesaving. In this case µ(x) defines the larger probability of lifesaving.
Formally, the hypothetical mortality rate without lifesaving µh(x) should be
then defined:

µ0(x) = θh(x)µh(x), 1 − θh(x) < 1 − θ(x), x > 0.

The switching point in lifesaving, in fact, means that at a certain age xs

a switch from one probability of lifesaving to another is performed.

2.2 Accelerated life model

Another popular model describing an impact of a stress on X is the accelerated
life model (ALM) (Cox and Oakes [CO84], Finkelstein [Fink99]). It performs
the stress-dependent scale transformation of the baseline Cdf

F0(x) = 1 − exp
{
−
∫ x

0

µ0(u)du
}

in the following way:

F (x) = F0

(∫ x

0

wA(z(u))du
)

≡ F0(WA(x)), (7)

where the subscript "A" stands for "accelerated", and notation∫ x

0

wA(z(u))du = WA(x)

is used for convenience. As previously, we assume that wA(z0(x)) ≡ 1. Note
that wA(z(x)) is unknown but can be estimated from the data.

This model is usually more appropriate for modelling additive degradation
(accumulation of damage), as the effect of higher stress with wA(z(x)) > 1,
for instance, results in facilitation of degradation processes. The function
wA(z(x)) can be interpreted as a rate of degradation, whereas WA(x) is the
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accumulated damage in this case. We shall also assume in this model that
mortality rates are increasing, as monotone degradation usually can be de-
scribed by IFR (increasing failure rate) lifetime distributions. The mortality
rate is obtained from equation (7) as (compare with equation (2)):

µ(x) = wA(z(x))µ0(WA(x)). (8)

Similar to equation (5) the survival function for the remaining lifetime is:

F r(x|a) ≡ F (x + a)
F (a)

=
F 0(WA(x + a))
F 0(WA(a))

=
F 0

(
WA(a) +

∫ x

0
wA(z(u + a))du

)
F 0(WA(a))

, a > 0, (9)

where an important for the model additivity property is used:∫ x+a

0

wA(z(u)du = WA(a) +
∫ x+a

a

wA(z(u))du.

Unlike equation (5)), the remaining lifetime already depends on the mor-
tality rate history in [0, a), but this dependence is only on the simple aggre-
gated history characteristic WA(x).

Let the true biological age x be defined for the baseline stress z0(x), then
the virtual age in the baseline environment of an organism that had survived
time x under the current stress z(x) , in accordance with ALM, is defined as
(Finkelstein [Fink92], Kijima [Kij89]):

xV = WA(x), (10)

and the corresponding difference between these two ages is:

$V ≡ xV − x.

Therefore, the ALM gives a simple and effective way for age correspondence
under different stresses. If an organism had survived time x under the baseline
stress, his virtual age under the current stress is W−1

A (x). Note that for the
PH model the virtual age is equal to the calendar one.

If wA(z(x)) > x, ∀x > 0, then WA(x) > x and the stress z(x) is more
severe than the baseline one, which in accordance with equation (10) means
that xV > x. Additionally, the corresponding mortality rates are ordered in
this case as:

µ0(x) < µ(x), ∀x > 0, (11)

which for increasing µ0(x) immediately follows from equation (8).
Definition (7) reads:

exp
{
−
∫ x

0

µ(u)du
}

= exp

{
−
∫ WA(x)

0

µ0(u)du

}
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and ∫ x

0

µ(u)du =
∫ WA(x)

0

µ0(u)du. (12)

Therefore, given the mortality rates under two stresses in [0,∞), the function
WA(x) can be obtained.

Similar to the previous subsection, consider now the stress zs(x) defined
by equation (3) and assume for the definiteness that z(x) is more severe than
z0(x). The corresponding Cdf Fs(x) for this stress is:

Fs(x) =

{
F0(x), 0 ≤ x < xs

F0

(
xs +

∫ x

xs
wA(z(u))du

)
, xs ≤ x < ∞.

(13)

Transforming the second row in equation (13):

F0

(
xs +

∫ x

xs

wA(z(u))du
)

= F0

(∫ x

xs−τ

wA(z(u))du
)

= F0(WA(x) −WA(xs − τ)), (14)

where τ is uniquely defined from the equation:

xs =
∫ xs

xs−τ

wA(z(u))du. (15)

Thus, the virtual age under the stress z(x) (in other words, the re-calculated
for the more severe stress the baseline age xs) just after the switching is
xs−τ . Equation (15) defines an interval [xs−τ, xs) in which the accumulated
degradation under the stress z(x) is equal to the accumulated degradation xs

under the stress z0(x) in the interval [0, xs).
A jump in the stress at xs leads to a jump in mortality rate, which can be

clearly seen by comparing equation (8) with

µs(x) =

{
µ0(x), 0 ≤ x < xs

wA(z(x))µ0

(
xs +

∫ x

xs
wA(z(u))du

)
, xs ≤ x < ∞

as for increasing µ0(x) and for wA(z(x)) > 1, x ∈ [xs,∞):

µ0(x) < wA(z(x))µ0

(
xs +

∫ x

xs

wA(z(u))du
)

< wA(z(x))µ0

(∫ x

0

wA(z(u))du
)

= wA(z(x))µ0(WA(x)) = µ(x). (16)

Inequality (16) is a special case of inequality (11), obtained for a more
severe stress zs(x).
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It is important to note that, as follows from relations (7) and (14), for the
general case F0

(
xs +

∫ x

xs
wA(z(u))du

)
is not a segment of F (x) for x ≥ xs

(and the corresponding mortality rate is not a segment of µ(x)), but for the
specific linear case WA(x) = wAx it can be transformed to a segment:

F0(wA · (x− xs + τ)) = F (x− xs + τ),

where τ is obtained from a simplified equation:

xs =
∫ xs

xs−τ

wAdu =
∫ τ

0

wAdu ⇒ τ =
xs

wA
, wA > 1 (17)

and, finally, only for this specific linear case the Cdf (13) can be defined in
the way usually referred to in the literature (Nelson, 1993):

Fs(x) =

{
F0(x), 0 ≤ x < xs

F (x− xs + τ), xs ≤ x < ∞

Sometimes this equation written in terms of mortality rates:

µs(x) =

{
µ0(x), 0 ≤ x < xs

µ(x− xs + τ), xs ≤ x < ∞
(18)

is called the ‘Sedjakin principle’, although Sedjakin [Sed66] defined it in a
more general way as the dependence on history only via the accumulated
mortality rate. As wA = const, µ(x) is also an increasing function. Taking
into account that τ < xs:

µs(x) = µ(x− xs + τ) < µ(x), xs ≤ x < ∞, (19)

which is a specific case of inequality (16).

2.3 Other models

There are not so many other candidates for memory-less models, the additive
hazard (AH) model being probably the only one, which is widely used in
applied statistical analysis:

µ(x) = µ0(x) + wAD(z(x)), (20)

where wAD(x) is a positive function (wAD(z0(x)) ≡ 1) and the subscript "AD"
stands for "additive". It is clear that the plasticity property (4), defined for
the stress given by equation (3), holds also for this case. Similar to the PH
model the stress in [0, x) does not influence the degradation process in (x,∞),
but, probably, the AH model is more suitable when, for instance, the baseline
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µ0(x) describes some ‘inherent’ degradation process which is not influenced
by the environment.

The memory-less property is a rather unique feature, whereas the de-
pendence on a history can be modelled in numerous ways. Most of these
generalizations are based on different extensions of the ALM or of the PH
model (Bagdonavičius and Nikulin [BN02]). For instance, equation (8) can
be generalized to:

µ(x) = G (z(x), wA(z(x),WA(x))) ,

where G(·) is a positive function. The advanced statistical methods of an-
alyzing the data via the chosen model also can be found in Bagdonavičius
and Nikulin [BN02]. Our goal in this paper is, however, to discuss plasticity
versus accumulated damage modelling for mortality rates in the cohort and
period settings. The ALM is just a tractable example, which can be used for
degradation modelling.

Let, as previously, µ0(x) and µ(x) be two mortality rates for populations
at baseline and current stresses, respectively. Assume that the rates are given
or observed and this is the only information at hand. It is clear that without
additional information on the degradation process or on the possible memory-
lees property the ‘proper’ model for the stress influence is non-identifiable,
as different models can result in the same. Indeed, by letting wP (z(x)) =
µ(x)/µ0(x) we arrive at the PH model (2), and by obtaining WA(x) from
equation (12), which is always possible, results in the ALM (7). The following
simple illustrative example will be also helpful for the reasoning of the next
section.

Example 2. The Gompertz curve
Let

µ0(x) = a exp{bx}, a, b > 0 (21)
µ(x) = wPµ0(x), wP > 0 (22)

Therefore, equations (21) and (22) formally describe the PH model with a
constant in age factor wP . On the other hand, assuming the ALM defined by
equation (7), the function WA(x) can be obtained from equation (12):∫ x

0

µ(u)du =
∫ WA(x)

0

µ0(x)du ⇒ wP (exp{bx} − 1) = exp{bWA(x)} − 1.

In accordance with the contemporary mortality data for the developed
countries (Boongaarts and Feeney [BF02]) parameter b is approximately es-
timated as 0.1. Equation (22) can be simply approximately solved with a
sufficient accuracy for x > 30 (when aging starts and the Gompertz curve is
suitable for modelling):

WA(x) ≈ lnwP

b
+ x. (23)
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If wP < 1, condition: x > 30 in combination with real values of parameters
guarantees that WA(x) > 0. Therefore, the ALM defined by relation (23) can
formally explain equations (21) and (22), although it is not clear how to
explain that the difference between the virtual and baseline ages $V , defined
by equation (11), is approximately constant for this model. An explanation
via the PH model seems much more natural.

If there is no sufficient information on the ‘physical’ processes of degrada-
tion in our objects, the simplest way to distinguish between the memory-less
and accumulation of degradation models is to conduct an experiment and to
apply the stress zs(x), defined by equation (3), to our cohort. If the resulting
mortality rate µs(x) is obtained in the form, defined by equation (4), then we
arrive at a memory-less property, which means that our object is ‘degradation
free’. The other option is that there is no dependence on the history of this
degradation like in the lifesaving model or the degradation described by the
baseline µ0(x) does not depend on the environment. The latter possibility
was already mentioned while discussing the AH model. On the other hand, if
there is a dependence on the degradation history, then the resulting mortality
rate should be

µs(x) =

{
µ0(xs), 0 ≤ x < xs

µ̃(xs), xs ≤ x < ∞
(24)

where the mortality rate µ̃(x), e.g., for the ALM, as follows from inequality
(16), is contained between baseline and ‘current’ mortality rates:

µ0(x) < µ̃(x) < µ(x), xs ≤ x < ∞. (25)

For a general case, if accumulated degradation in [0, xs) under the stress z0(x)
is smaller than under the stress z(x), inequality (25) should be considered as
a reasonable assumption.

Inequality (16) defines a jump in mortality rate, which corresponds to a
jump in the stress. For a general case the reaction in mortality rate should
not be necessarily in the form of the jump: it can be some smooth function,
showing some ‘inertia’ in the degradation process.

In simple electronic devices without degradation the failure rate pattern
usually follows the stress pattern. In the lifesaving PH model, however, it is
not often the case, as environmental changes are usually rather smooth which
results in the smooth change in the probability of lifesaving. An important
feature is that after some delay the mortality rate µs(x), x > xs reaches the
level of µ(x). (Alternatively this delay can be modelled in the degradation
framework with a short-term memory of the history of the degradation pro-
cess).

The relevant example is the convergence of mortality rates of ‘old cohorts’
after unification of east and West Germany at xs = 1990. ((Vaupel et al
[VCC03]). This, of course is the consequence of a direct (better healthcare)
and of an indirect (better environment eliminates some causes of death) life-
saving.
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Another memory-less example, which is more likely to be modelled by the
AH model, is the dietary restriction in Drosophila (Mair et al [MGPP03]).
The results of this paper show practically absolute plasticity: the age-specific
mortality of the flies with dietary restriction depends only on their age and
their current nutritional status, with past nutrition having no detectable ef-
fect.

2.4 Damage accumulation and plasticity. Period Setting

The detailed modelling of previous subsections is helpful for considering the
PH model and the ALM for the period setting. As far as we know, this topic
was not considered in the literature. Denote by N(x, t) a population density
(age-specific population size) at time t - a number of persons of age x. See
Keding [Kei90] and Arthur and Vaupel [AV84] for discussion of this quantity.
We shall call N(x, t), x ≥ 0 a population age structure at time t. Let µ(x, t)
denote the mortality rate as a function of age x and time t for a population
with the age structure N(x, t), x ≥ 0:

µ(x, t) = lim
δ→0

(N(x + δ, t + δ) −N(x, t)) /dδ
N(x, t)

. (26)

On the other hand, it is clear that, as µ(x, t)dδ is a local risk of death, it, in
fact, does not depend on N(x, t), x ≥ 0. This means that for defining the PH
model we do not need to define the corresponding lifetime variable. The stress
now is a function of time: z(t), and the cohort PH model (2) is generalized
to:

µ(x, t) = wP (z(t), x)µ0(x, t). (27)

If the stress (environment) is constant, the mortality rate does not depend
on time and the population is stationary with additional assumptions that it
is closed to migration and experience a constant birth rate. Consider now a
step function in time t, which is a special case of the stress (3):

z̃(t) =

{
z0, 0 ≤ t < ts

z, ts ≤ t < ∞
.

Assuming the constant in age x PH model, the mortality rate for this
stress is given by (compare with equations (2), (3) and (4)):

µs(x, t) =

{
µ0(x), 0 ≤ t < ts; x ≥ 0
wP (z)µ0(x), ts ≤ t < ∞; x ≥ 0

. (28)

Therefore, the baseline mortality rate after the change point is multiplied by
wP (z) for all ages and not for the interval of ages as in equation (4). This is
an important distinction from the step stress modelling in the cohort setting.
The other important ‘negative’ feature of the period setting is that now the
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experiment with a step stress without analyzing concrete cohorts (see later)
cannot indicate the memory-less property (if any) in a way it did for the
purely cohort setting. (Note, that similar to (28), the AH model results for
t ≥ ts in the mortality rate µ0(x) + wAD(z)).

A period ALM at time t should be applied to each cohort with varying
age x (0 ≤ x < ∞), and we must assume, as previously, that our population
is closed to migration and experience a constant birth rate. In this case the
corresponding lifetime random variable for each cohort is properly defined
and the population is stationary before the change point and after it as well.
We shall illustrate the construction of the period ALM for the step stress (3),
where, as previously, the stress z is a more severe than the stress z0. The
opposite ordering of stresses is considered in the same way. Due to piecewise
constant stress, the linear ALM with a constant rate wA can be used and the
mortality rate is defined via equation similar to equation (18) but with the
age and time-dependent shift τ(x, t):

µs(x, t) =

{
µ0(x), 0 ≤ t < ts; x ≥ 0
µ(x + τ(x, t)), ts ≤ t < ∞; x ≥ 0

, (29)

where τ(x, t) is obtained from equation similar to equation (17):

x− I(t− ts) =
∫ x

x−τ(x,t)

wAdu, wA > 1, (30)

where I(t− ts) is an indicator:

I(t− ts) =

{
0, 0 ≤ t < ts

1, ts ≤ t < ∞
.

Equation (30) has the following solution:

τ(x, t) =

{
x−(t−ts)+(t−ts)wA

wA
, x > (t− ts)

0, x ≤ (t− ts).
(31)

Specifically, when t = ts similar to equation (17): τ(x, ts) = x/wA, but now
this solution is valid for all ages x. Therefore, for each t > ts the recalculation
of initial age τ(x, ts) is performed for each cohort. Specifically, if the age of the
cohort is less than t− ts and therefore this cohort was born after the change
point tS and ‘does not re-member’ the previous stress z0. All possibilities are
incorporated by equation (29). An importance of the switching strategy is
again in the fact that, if we look at concrete cohorts in the period framework,
we are still able to detect the memory-less property or the absence of it.

A cumbersome generalization of this approach to the general time-depen-
dent stress can be also performed using the similar considerations: at each
time t the initial age τ(x, t) is obtained using the following expression for the
age structure of a closed to migration population:
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N(x, t) = B(t− x) exp
{
−
∫ x

0

µ(u, t− x + u)du
}
. (32)

where B(t− x) is the birth rate at time (t− x).
Considering the time-dependent stress for the PH model, however, is much

simpler. For the case with a switching point equations (27) and (28) is gen-
eralized to:

µs(x, t) =

{
µ0(x, t), 0 ≤ t < ts; x ≥ 0
wP (z(t), x)µ0(x, t), ts ≤ t < ∞; x ≥ 0

, (33)

where the multiplier already depends on the stress at time t and on the age
x.

Different environments can be defined not necessarily by the switching
point or by considering changing in time stresses. Let the stress z0(t0) be a
baseline stress at a baseline (fixed) time instant t0. Denote the corresponding
mortality rate, as previously, by µ0(x, t0). Then the stress z(t) and the mor-
tality rate µ(x, t) characterize the current instant of time t. Note that in this
approach populations can be different and t− t0 can be reasonably large (e.g.,
10 or 20 years). The PH model for this case is naturally defined as (compare
with (27) )

µ(x, t) = wP (z(t), x)µ0(x, t0), x ≥ 0, t > t0, (34)

where µ0(x, t0) plays the role of a baseline mortality rate. The analogue of the
ALM, however, is not straightforward, as there should be a pair wise compar-
ison between the corresponding cohorts of the same age x, using expression
(32) for both instants of time. This topic needs further study.

Example 3. Gompertz shift model. As stated in Bongaarts and
Feeney [BF02], the mortality rate in contemporary populations with high
level of life expectancy tends to improve over time by a similar factor at all
adult ages which results in our notation in the following Gompertz shift model
(similar to equations (21) and (22)):

µ0(x, t0) = a exp{bx}, a, b > 0, (35)
µ(x, t) = wP (z(t))µ0(x, t0), wP > 0, (36)

This model was verified using contemporary data for different developed coun-
tries. Equations (35) and (36) define formally the age independent PH model.
We do not have a switching in stress here which could help in verifying plas-
ticity.

Most researchers agree that the process of human aging is the process of
accumulation of damage of some kind (e.g., accumulation of deleterious mu-
tations). Given the reasoning of the previous sections it means that the PH
model (35), (36) is not suitable for this case unless it describes the lifesaving
model. On the other hand, as it was stated in Example 2, it is really un-
natural trying to explain (35)-(36) via some degradation model. Therefore,
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if the linear trend takes place (or, equivalently, the logarithms of mortality
rates at different time instants are practically parallel), this can be explained
by lifesaving in a general sense and not by slowing down the degradation pro-
cesses, for instance. In other words: lifesaving is likely to be the main source
of lifespan extension at present time. In fact, it is not a strict statement, but
just a reasoning that seems to be true.

3 Concluding remarks

The most popular models that account for an impact of environment on a
lifetime are the PH model and the ALM. The first one is the simplest way
to describe the memory-less property, whereas the second describes the sim-
plest dependence on a history in a form of accumulated damage. Various
generalizations of these models are considered in Bagdonavičius and Nikulin
[BN02]. In survival analysis these models were traditionally defined for the
cohort setting.

The conventional demographic definition of the observed in a period (from
t to t + $t) age-specific and time-dependent mortality rate is given by
equation(26). The generalization of the cohort PH model to this case is given
by equations (27) and (28). The corresponding generalization of the ALM is
explicitly performed for a specific case of the step stress z̃s. Therefore, the
cohort ALM is applied to each cohort with varying age x (0 ≤ x < ∞) at
time t, which results in equations (29)-(31) defining the age specific mortality
rate.

Although human aging is definitely a process of damage accumulation, the
contemporary demographic data supports the Gompertz shift model (33)-(34),
which is, at least formally, the PH model. In line with our reasoning of the
previous section this means that lifesaving (versus the decrease in the rate of
degradation) can explain the decrease in mortality rates with time.
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Abstract: In many survival studies one is interested not only in the duration
time to some terminal event, but also in repeated measurements made on a
time-dependent covariate. In these studies, subjects often drop out of the
study before the occurrence of the terminal event and the problem of interest
then becomes modelling the relationship between the time to dropout and
the internal covariate. Dupuy and Mesbah (2002) (DM) proposed a model
that described this relationship when the value of the covariate at the dropout
time is unobserved. This model combined a first-order Markov model for the
longitudinally measured covariate with a time-dependent Cox model for the
dropout process. Parameters were estimated using the EM algorithm and
shown to be consistent and asymptotically normal. In this paper, we propose
a test statistic to test the validity of Dupuy and Mesbah’s model. Using the
techniques developed by Lin (1991), we develop a class of estimators of the
regression parameters using weight functions. The test statistic is a function
of the standard maximum likelihood estimators and the estimators based on
the weight function. Its asymptotic distribution and some related results are
presented.

1 Introduction and Preliminaries

In survival studies; for each individual under study; one often makes repeated
observations on covariates (possibly time dependent) until the occurrence of
some terminal event. The survival time T in such situations is often modeled
by the Cox Regression Model (Cox, 1972) which assumes that its hazard
function has the proportional form:
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λ(t|Z) = λ0(t)exp{βTZ(t)} (1)

In the above, t denotes the time to an event, λ0(t) denotes the baseline
hazard function and Z denotes the vector of covariates. If the covariates
are time dependent, we distinguish between two main types: external and
internal. An external covariate is one that is directly related to the failure
mechanism. An internal covariate is generated by the individual under study
and therefore can be observed only as long as the individual in the study.

The survival times themselves may be censored on the right by a censoring
variable C, so that what one observes is X = min (T,C) and the censoring
indicator ∆ = I{T ≤ C}, where I is the indicator function and conditional
on Z, T and C are assumed to be independent.

The first step in making any inferences about the survival time is the esti-
mation of the baseline hazard λ0 and the vector β0. When all the covariates
are observed and are external (if they are time dependent), one estimates the
parameter vector β0 by maximizing the following partial likelihood function
(see Cox, 1972 for details):

L(β) =
n∏

i=1

⎡⎢⎢⎣ exp
{
βTZi(Xi)

}
n∑

j=1

Yj(Xi) exp { βTZj(Xi)}

⎤⎥⎥⎦ (2)

where (Xi, ∆i, Zi), 1 ≤ i ≤ n, is a random sample of the data and the variable
Yj(t) = 1 if Xj ≥ t and 0 otherwise. Given the MLE β̂ of β, the estimator of
the cumulative hazard function Breslow (1972, 1974) is the one obtained by
linear interpolation between failure times of the following function:

Λ̂(τ) =
∑

Xi≤τ

∆ι
n∑

j=1

Yj(Xi)exp { βTZj(Xi)}
(3)

In case of internal covariates, however, as noted before, the observed value
of the covariate carries information about the survival time of the correspond-
ing individual and thus such covariates must be handled a little differently.
For internal covariates, Kalbfleisch and Prentice (1980) define the hazard of
the survival time t as:

λ(t, Z(t))dt = P{T ∈ [t, t + dt)|Z(t), T ≥ t} (4)

where Z(t) denotes the history of the covariate up to time t. Thus the
hazard rate conditions on the covariate only up to time t, but no further. As
pointed out by Dupuy and Mesbah (2002) fitting the Cox model with internal
covariates can lead to several problems. The inclusion of a covariate whose
path is directly affected by the individual can mask treatment effects when
comparing two treatments. Similarly inferences about the survival time T
will require integration over the distribution of Z(t) or a model for failure
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time in which Z is suppressed. Several authors have dealt with the problem
of fitting a Cox model involving internal covariates (see for example Tsiatis
et. al. (1995), Wulfsohn and Tsiatis (1997), Dafni and Tsiatis (1998) etc. )

We focus here on the model developed by Dupuy and Mesbah (2002) who
considered experiments where it was assumed that each subject leaves the
study at a random time T ≥ 0 called the dropout time and objective of the
paper was to model the relationship between time to dropout and the longitu-
dinally measured covariate. The work of Dupuy and Mesbah was motivated by
a data set concerning quality of life (Qol) of subjects involved in a cancer clin-
ical trial. The Qol values formed the covariate of interest. However, patients
were likely to drop out of the study before disease progression and for such
patients then, the value of the covariate was unobserved at the time of disease
progression. Following the approach of Diggle and Kenward (1994), Dupuy
and Mesbah (2002) fit a joint model to describe the relationship between the
covariate and the time to dropout. Their model combined a first-order Markov
model for the longitudinally measured covariate with a time-dependent Cox
model for the dropout process, while Diggle and Kenward (1994) specified a
logistic regression model for the dropout process. In this paper, we propose
a test statistic to validate the model proposed by Dupuy and Mesbah (2002).

In Section II, we describe the various types of dropout processes which can
be observed and the methods of dealing with them. The work of Dupuy and
Mesbah (2002, 2004) is described in Section III. In Section IV, we develop the
test statistic and study its properties.

2 The Dropout Process

Little and Rubin (1987) identify three main classifications of the drop-out
process in longitudinal studies:

i) Completely Random (CRD): A drop-out process is said to be com-
pletely random when the drop out is independent of both the observed and
the unobserved measurements.

ii) Random Drop-Out (RD): Here the drop-out process is dependent on
the observed measurements, but is independent of the unobserved ones.

iii) Informative (or Non Ignorable) Dropout (ID): A drop-out process is
noningnorable when it depends on the unobserved measurements, that is those
that would have been observed if the unit had not dropped out.

Under the completely random drop-out process, drop-outs are equivalent
to randomly missing values and so the data can be analyzed without requir-
ing any special methods. In the random drop-out case, provided there are no
parameters in common between the measurements and the drop-outs or any
functional relationship between them, the longitudinal process can be com-
pletely ignored for the purpose of making likelihood based inference about
the time to drop-out model. However, special methods are needed for the
nonignorable case.
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A number of authors have considered analysis under the ID model. Wu
and Carroll (1988) considered informative drop-out in a random effects model
where the experimental units follow a linear time trend whose slope and inter-
cept vary according to a bivariate Gaussian distribution. Wang et. al. (1995)
report on a simulation study to compare different methods of estimation un-
der different assumptions about the drop-out process. Diggle and Kenward
(1994) combined a multivariate linear model for the drop-out process with a
logistic regression model for the drop-out. Molenberghs et. al. (1997) adopted
a similar approach for repeated categorical data to handle informative drop-
out, amongst others (see for example, Little, 1995, Hogan and Laird, 1997,
Troxel et. al., 1998, Verbeke and Molenberghs, 2000 etc.)

In the setting of Dupuy and Mesbah (2002), the value of the covariate at
drop-out is unobserved and since drop-out is assumed to depend on quality of
life of the individual, the drop-out may be treated as nonignorable. The model
suggested by them is a generalization of the model by Diggle and Kenward
(1994), since as opposed to Diggle and Kenward, Dupuy and Mesbah (2002)
allow censoring in their model. Next, we describe their model.

3 The Model of Dupuy and Mesbah (2002)

Assume that n subjects are to be observed at a set of fixed times tj , j = 0,
1, 2, . . ., such that t0 = 0 < . . . < tj−1 < tj < . . . < ∞ and 0
< ε0 ≤ ∆t = tj – tj−1 < ε1 < ∞ (times of measurement are
fixed by study design). Let Z denote the internal covariate and Zi(t) denote
the value of Z at time t for the ith individual under study (i = 1, 2, . .
., n). Repeated measurements of Z are taken on each subject at common
fixed times tj, j = 1, 2, . . . (t0 = 0). Let Zi,j denote the response for the
ith subject in (tj , tj+1]. The time to dropout model proposed by Dupuy and
Mesbah (2002) assumes that the hazard of dropout is related to the covariate
by the time dependent Cox model:

λ(t | z(t)) = λ(t) exp(r(z(t), β)), t ≥ 0 (5)

where λ(.) is the unspecified baseline hazard function and r(z(t), β)
is a functional of the covariate history up to time t. The functionals
r(z(t), β) as considered by Dupuy and Mesbah (2004) are of the form
β1(z(t − ∆t)) + β2 z(t) and β3(z(t) − z(t − ∆t)). The reason for using
these functionals is the intuitive meaning behind them; in the first functional,
we assume that the probability that T belongs to (tj−1, tj ] depends on the
current unobserved covariate at the time of the dropout and on the last ob-
served covariate value before t, Z(t – ∆t). In this setting, the covariate Z(t)
is referred to as nonignorable missing data. The second form for r is used
when the interest is in studying whether the increase or decrease in the value
of Z between the times t – ∆t and t influences dropout. As a result, equation
(1.5) is reformulated as
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λ(t | z(t)) = λ(t) exp(βTw(t)), t ≥ 0 (6)

where w(t) = (z(t – ∆t), z(t))T and β = (β1, β2)T or β = (-β3, β3)T .
Once again, the dropout times are assumed to be censored on the right by

the random variable C. In addition, the following conditions are assumed:

• i- The covariate vector Z is assumed to have the uniformly bounded con-
tinuous density f(z , α), z= (z0, z1, z2, . . .) ∈ R∞ depending on an
unknown parameter α.

• ii- The censoring time C is assumed to have the continuous distribution
function GC(u) on the R+ = (0, ∞).

• iii- The censoring distribution is assumed to be independent of the unob-
served covariate, and of the parameters α, β and Λ.

Now, let τ denote a finite time point at which any individual who has not
dropped out is censored, assume that P(X ≥ τ) > 0 and let at−1 = j if t ∈
(tj , tj+1]. With this notation, w(t) can be rewritten as (zat−1 , z(t))T . We
observe n independent replicates of X = min (T, C), ∆ and Z represented
by the vector y = (x, δ, z 0,. . . .,zax−1

). The problem of interest is to
estimate via maximum likelihood, the true regression parameters, denoted

by α0, β0 and the baseline hazard function Λ0=
t∫
0

λ0(u)du The probability

measure induced by the observed y will be denoted by Pθ(dy) = f Y (y;θ)dy,
where θ = (α, β, Λ).

The first step in the problem of maximum likelihood estimation is the
development of the likelihood function. The likelihood fY (y; θ) for the vector
of observations y = (x, δ, z 0,. . . .,zax−1

) was obtained by Dupuy, and
Mesbah (2002) by first writing the density of (y, z) for some value of z on
(tax−1, tax

] and then by integrating over z. This gives the partial likelihood
function as:

L(θ) =∫
�

[λ(x)]δ exp

⎡⎣δβTw(x) −
x∫

0

λ(u) eβT w(u)
du

⎤⎦ f(z0, ..., zax−1 , z;α)dz (7)

where w(t) = ( zax−1 , z)
T if t ∈ ( tax−1 , tax

). To estimate the parameters,
especially the hazard function, Dupuy and Mesbah (2002) use the well-known
method of sieves. The method consists of replacing the original parameter
space Θ of the parameters (α, β, Λ) by an approximating space Θn, called the
sieve. More precisely, instead of considering the hazard function, Λ = Λ(t),
one considers increasing step wise versions Λn,i = Λn(T(i)), at the points T(i),
i = 1, 2,. . ., p(n), where T(1) ≤ T (2) ≤ . . . ≤ T p(n) are the order statistics
corresponding to the distinct dropout times T1 ≤ T 2 ≤ . . . ≤ T p(n) Hence
the approximating sieve is Θn = {θ = (α, β, Λn): α ∈ Rp, β ∈ R2 ,
Λn,1 ≤ Λn,2 ≤ . . . ≤ Λn,p(n)}. The estimates of the parameters α and
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β and the values Λn,i are obtained by maximizing the likelihood in (1.7) over
the space Θn, in other words, one maximizes the pseudo-likelihood

Ln(θ) =
n∏

i=1

L(i)(θ) (8)

The above is obtained by multiplying over the subjects i (i = 1, . . ., n), the
following individual contributions:

L(i)(θ) =∫
�

⎡⎣ p(n)∏
k=1

∆Λ
δi1

′
T(k)=xi}

n,k

⎤⎦ exp

⎡⎣δi β
Twi(xi) −

∑
k:T(k)≤xi

∆Λn,ke
βT wi(T(k))

⎤⎦
×f ( zi,0, . ., zi,axi−1 , z; α) dz (9)

The semiparametric maximum likelihood estimator θ̂n = (α̂n, β̂n, Λ̂n) of
the parameter space is obtained by using the EM algorithm. The method
is an iterative method, which iterates between an E-step where the expected
loglikelihood of the complete data conditional on the observed data and the
current estimate of the parameters is computed and an M-step where the
parameter estimates are updated by maximizing the expected loglikelihood.
Dupuy, Grama and Mesbah (2003) and Dupuy and Mesbah, 2004) have shown
that the estimator θ̂n is identifiable and converges to a Gaussian process with
a covariance that can be consistently estimated.

The purpose of this project is to validate the model in (1.7). In order to do
so, we propose a method developed by Lin (1991) for the general Cox model.
The method involves a class of weighted parameter estimates and works on
the following idea: Parameter estimates for the standard Cox model are ob-
tained by maximizing the score function, which assigns an equal weight to all
the failures. The weighted parameter estimates are calculated by maximizing
a weighted score function where different observations get different weights
depending on their times of occurrence. Since both the weighted and the
unweighted estimators are consistent, the rationale is that if there is no mis-
specification in the model, then they should be close to each other. However,
in case of model misspecification, the two estimators will tend to be different.
We propose the use of this method to validate the model of Dupuy et al (2002)
to test model validity.

The proposed test statistic is studied and developed in the next section.

4 The Test of Goodness of Fit

As mentioned earlier, the results in this section are based on the methods
of Lin (1991). To verify the model in (1.7), first define a class of weighted
pseudo-likelihood functions (for a random weight function, WG(.)) as follows:
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WLn(θ) =
n∏

i=1

WL(i)(θ) (10)

where WL(i)(θ) =
∫
�

⎡⎣ p(n)∏
k=1

∆Λ
WG(xi)δi1

′
T(k)=xi}

n,k

⎤⎦
× exp

⎡⎣WG(xi)δi β
Twi(xi) −

∑
k:T(k)≤xi

WG(xi)∆Λn,ke
βT wi(T(k))

⎤⎦
×f ( zi,0, . ., zi,axi−1 , z; α) dz (11)

The random weight function, WG(t) is a predictable stochastic process,
which converges uniformly in probability to a nonnegative bounded function
on (0, ∞). Note that when WG(t) = 1, we have the likelihood function in
(1.7). Typically, for right censored data, WG(t) = F̂ (t), the left continuous
version of the Kaplan Meier estimator of the survival function.

Now define θ̂W, n = (α̂W,n, β̂W,n, Λ̂W,n) to be the maximizer of WLn(θ)
over θ ∈ Θn. This estimator is obtained by following the steps of the EM
algorithm of Dupuy and Mesbah. (2002) for the non-weighted likelihood func-
tion. Note that the weights themselves do not depend on the parameters, thus
ensuring that all the steps for the EM algorithm for the weighted likelihood
function go through as for they do for the non-weighted likelihood function.

Since the test statistic is a function of β̂W,n, we first present the following
asymptotic results for the weighted parameter β̂W,n:

Theorem 1. Under the model (1.7), the vector
√
n (β̂W,n − β0)converges in

distribution to a bivariate normal distribution with zero mean and a covariance

matrix Σ−1
W,0 where ΣW,0 = Eθ0

[
X∫
0

WG(X)W (u)W (u)T eβT
0 W (u)dΛ0(u)

]
.

The proof of this theorem is similar to the proof of normality for the un-
weighted parameter β̂n as presented in Dupuy, Grama and Mesbah (2003)
and therefore will be omitted.

Hence once again, if model (1.7) is correct, β̂W,n and β̂n will be close to
each other since the estimators are consistent. However, if model (1.7) is
not correct, then the two estimators will differ from each other. This idea is
reiterated in the following conjecture:

Theorem 2. Under the model (1.7), the vector
√
n (β̂W,n − β̂n)converges in

distribution to a bivariate normal distribution with zero mean and a covariance

matrix DW = Σ−1
W,0 −Σ−1

0 where Σ0 = Eθ0

[
X∫
0

W (u)W (u)T eβT
0 W (u)dΛ0(u)

]
and Σ−1

0 is the variance-covariance matrix for the random vector
√
n (β̂n −

β0) as presented in Dupuy and Mesbah (2004).
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The proof of the above theorem is straightforward, even if technically cum-
bersome. The steps in proving it are similar to the proof of Theorem 1. It in-
volve showing that the score functions associated with the likelihoods defined
in (1.7) and (4.1) are asymptotically jointly normal. This can be achieved
by extending the steps of the proof of the asymptotic normality for the score
function for the likelihood in (1.7).

Now, let D̂W be the consistent estimator of the matrix DW . Note that this
estimator exists for Σ−1

0 as shown by Dupuy and Mesbah (2002) and therefore
naturally exists for Σ−1

W,0 and DW . Hence, we propose a test statistic to test
the model (1.7) is as:

QW = n (β̂W,n − β̂n)T D̂−1
W (β̂W,n − β̂n). (12)

>From theorem 2, under the null hypothesis of a correct model, QW will
have an asymptotic chi squared distribution with 2 degrees of freedom. Hence
we can reject the model (1.7) for large values of the test statistic.

5 Conclusion

Testing the goodness of fit of a model involving nonignorable missing data
is a first step, that cannot be overlooked. Of course, it is impossible to get
a goodness of fit test for the process of missingness, as it is only partially
observed. So applying a goodness of fit test to the marginal model (which
include the process of missingness) is a necessary preliminary step. If the null
hypothesis is rejected, then we can suspect an incorrect specification of i) the
missingness process or of ii) the main statistical model for the data. But,
if the null hypothesis is not rejected, we can go ahead, as usual, in similar
situations.

If the null hypothesis is rejected, and if we have a strong belief that our
main statistical model is correct, then we can suspect the missingness process.
Building a test for the missingness process itself is not mathematically possible
with similar data.
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1 Introduction

Estimates of disease-specific incidence, prevalence and mortality specified by
age are important information factors for estimating the burden of disease.
Publications on prevalence estimates from the population-based registry gen-
erally consider all people with a past diagnosis of cancer as prevalent cases
without taking into account the possibility of getting better. But today, many
cancer patients are actually cured of the disease. It is therefore important to
take recovery into account in the estimates of prevalence.

In this work three methods of estimating age-specific prevalence are pre-
sented, two of which allow us to estimate age-specific prevalence of non re-
covery. On the one hand, thanks to a four-state stochastic model and Poisson
process, expressions of age-specific prevalence and non recovery prevalence
can be built. From these expressions and using an actuarial method of esti-
mation, this leads to the Transition Rate Method (TRM) (the first approach).
Moreover, assuming the rare disease and using a parametric method of estima-
tion, this leads to the Parametric Model (PM) (the second approach). On the
other hand, the Counting Method (CM) is presented. Contrary to the other
method, transition rate estimates are not required. The Counting Method
counts all subjects who are known to have survived for a certain calendar
time t and adds an estimate of the number of survivors among those who
were alive or lost from follow-up before t.

In section 1, the concept of recovery is defined. The definitions of age-
specific prevalence and non recovery prevalence are also outlined. One ap-
proach is to use data from disease registries to estimate various intensity
functions. A second approach [CD97] is to use data from disease registries
to estimate age-specific incidence and relative survival. In both approaches,



170 C.Gras, J.P.Daurès and B.Tretarre

prevalence and non recovery prevalence are thus determined. A third ap-
proach the counting method [GKMS99] [FKMN86], estimates the number of
disease survivors in the population. These methods are described in section 2.
In section 3, the application of these models is illustrated using data from the
Surveillance, Epidemiology, and End Results [SEERD03] colorectal Cancer
Registry in Connecticut. Colorectal cancer is the second most common cancer
in developed countries.

2 Definitions

The notion of recovery has to be defined. The purest definition of recov-
ery would be based on complete eradication of the disease in the individual.
Unfortunately, it is not possible to determine it for disease such as cancer,
indeed people who appear to be cured by clinical criteria often have recur-
rences. That’s why the concept of recovery requires careful definition. The
statistical definition of recovery rely on the excess mortality risk becoming
zero [VDCSMGB98] that can be revealed by the fact that the relative sur-
vival function tends to a value greater than zero

lim
d→∞

Sr (d) = p, p > 0. (1)

p is called the probability of recovery. This kind of relative sur-
vival function can be modelled by a mixture survival model [G84], [G90],
[VDCSMGB98], [DCHSV99] and [MZ96].

Sr (d) = p + (1 − p)S∗
r (d) , (2)

in which S∗
r (t) is the non cure relative survival.

The population of cancer patients may be considered as being composed
of two different groups that have different risk of dying from the disease. The
first one represents the ”non recovered” patients: they should have an excess of
mortality with respect to the general population. The second one represents
the ”recovery” patients: they should have an excess of risk parallel to the one
of general population.

The probability of being cured given the individual has survived for a time
d > 0 is defined as follows

p (d) =
p

p + (1 − p)S∗
r (d)

. (3)

Moreover, it is also interesting to specify a time prior to which disease is
present with certainty (the active period of treatment) and after which disease
is present with some probability such as equation 3. This time is called the
time to cure, noted by Tc.
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Then following [MZ96], a probability of recovering from cancer given cur-
rently elapsed survival time can be attributed to each individual of the cancer
registry database.

In this paper, time- and age-specific total prevalence refers to all persons in
a given population diagnosed in the past with cancer and alive on a determined
date. The time- and age-specific L-year partial prevalence at time t, age
z, including all persons who have developed the disease in the age interval
[z, z − L), π (z, L), is therefore formulated as follows

π (z, L) =
P (a subject at age z is diseased, diagnosed in [z, z − L))

P (a subject at age z is alive at time t)
. (4)

The notion of time-, age-specific non recovery L-year partial prevalence,
πNR (t, z, L), that is defined as, on a determined date, the proportion of people
alive who have been diagnosed with the disease, have not been cured and have
developed the disease in the age interval [z, z − L). This prevalence at time t
and age z is therefore formulated as follows

πNR (z, L) = (5)

P (a subject at age z is diseased and non cured, diagnosed in [z, z − L))
P (a subject at age z is alive at time t)

.

3 Three approaches for estimating prevalences

3.1 Transition Rate Method

The Transition Rates Method allows us to estimate not only age-specific preva-
lence but also age-specific non recovery prevalence.

Method

Let us assume that life history of the individual can be modelled by a stochas-
tic process with four states (Alive and disease free, Alive with the disease and
non recovery, Alive considered as cured, Dead). Let us consider the compart-
ment model of Figure 1 with two life states. Denote the healthy state by H,
the disease by I, the cure by C and death by D. Assume that the disease is
reversible, i.e. that each person who has cancer can recover from the disease.

A subject, at calendar time s, in the healthy state H, may transit to
the disease I with intensity α (x) which depends age x. Alternatively, the
individual may die directly from state H with intensity µ (x). A subject in
the disease I may transit to state C with the intensity λ (x, d) which depends
on age x and duration of the disease d. A person in state I is at risk of
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death with intensity ν (x, d) which depends on duration of the disease d as
well as calendar age x (Figure 1). These intensities allow us to establish the
age-specific non recovery prevalence of a chronic disease. In order to obtain
the expression of the age-specific prevalence, the probabilities of being in the
various states of the process are required. Following [B86] and [K91], these
numbers are obtained.

Fig. 1. Four-state stochastic model with state 0 : Alive and disease free, state 1:
Alive with the disease and non recovery, state 2 : Alive considered as cured and
state 3 : Dead

The probability of being alive with disease (i.e. in state I) at age z is
expected by

PI (z, L) = P (a subject at age z is diseased and non cured, diagnosed in [z, z − L)) ,

=
∫ z

z−L
exp
{
−
∫ y

0

(µ + α) (u) du
}

︸ ︷︷ ︸
(i)

α (y)︸ ︷︷ ︸
(ii)

exp
{
−
∫ z

y

(ν + λ) (u, u− y) du
}

︸ ︷︷ ︸
(iii)

dy.

(6)
The justification for equation 6 is as follows.
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(i) represents the probability of surviving disease-free up to age y,
(ii) represents the conditional ”probability” of disease onset at age y,
(iii) represents is the conditional probability of surviving and not being cured

to age z given that the individual is diagnosed with disease at age y.

The probability of being alive without disease (i.e. in state H) at age z is
expected by

PH (z) = P (a subject at age z is alive) ,
= exp

{
−
∫ y

0
µ (u) du

}
exp
{
−
∫ y

0
α (u) du

}
.

(7)

and the probability of being alive in the cure state at age z is expected by

PC (z) = P (a subject at age z is cured, in state C ) ,
=
∫ z

0

∫ w

0

[
exp
{
−
∫ y

0
(µ (u) + α (u)) du

}
α (y)

× exp
{
−
∫ w

y
(ν + λ) (u, u− y) du

}
λ (w,w − y) exp

{
−
∫ z

w
µ (u) du

}
dydw.

(8)
Then, at time t, the probability that an individual is alive at age z is given
by

P (subject alive at age z) = PI (z) + PC (z) + PH (z) . (9)

So, thanks to the definition in Section 2, the non recovery L-year partial
prevalence of the disease, π (z, L), can be formulated as

πNR (z, L) = (10)∫ z

z−L
exp
{
−
∫ y

0
(µ + α) (u) du

}
α (y) exp

{
−
∫ z

y
(ν + λ) (u, u− y) du

}
dy

PI (z) + PC (z) + PH (z)
.

It should be noted that assuming

λ (x, d) = 0 (11)

.i.e there is no transition from state I to state C, we therefore find the illness-
death model [K91]. This model does not admit the possibility of recovery but
allows us to estimate age-specific L-year partial prevalence as follows

π (z, L) =

∫ z

z−L
exp
{
−
∫ y

0
(µ + α) (u) du

}
α (y) exp

{
−
∫ z

y
ν (u, u− y) du

}
dy

PI (z) + PC (z) + PH (z)
.

(12)
At this point, it is necessary to note that equations 3.1 and 12 give the

more general expression prevalences.
In the following, the probability that an individual is alive at age z is

assumed to be approximated by S∗ (z), the overall survival of the population
at age z provided by vital statistics.

P (subject alive at age z) = PI (z) + PC (z) + PH (z) ,
= S∗ (z) . (13)
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Model specifications

In order to use equations provided by the section 3.1.1, a number of parameters
and quantities must be specified. As regards the model specification, following
[GKMS99], a semi-parametric model is used.

Mortality rates

Age-specific mortality rates for all causes of death, written as µ∗ (x), is used
to estimate S∗ (x). They are provided by vital statistics and assumed to be
without error. S∗ (x) is computed as

S∗ (x) = exp

{
−µ∗

j (x− gj−1) −
j−1∑
k=1

µ∗
g (gk − gk−1)

}
. (14)

The probability of not dying of other causes than cancer to age x is computed
exactly as for S∗ (x); however, instead of using the overall mortality rates
µ∗ (x), we set µ (x) equal to the mortality rate from all causes of death except
the cause which interests us.

Incidence rates

A finite partition of the age axis is constructed, 0 < g1 < ... < gJ with
gJ > yi for all i = 1, 2, ..., n. Thus, we obtain the J intervals (0, g1], (g1, g2],...,
(gJ−1, gJ ]. We thus assume that the hazard is equal to αj for the jth interval,
j = 1, 2, ..., J , leading to

α̂j =

∑t
s=so

Iis∑t
s=so

N (i, s)
. (15)

Iis cases are diagnosed in the disease state at the age interval i the year s
and N (i, s) is the corresponding number at risk of an incident cancer in the
population.

Transition rates from the disease

For the survival function for the ”illness” population, we construct a finite
partition of the age incidence axis 0 < g1 < ... < gJ with gJ > yi for all
i = 1, 2, ..., n and a finite partition of the duration in the disease axis 0 < r1 <
... < rK with rK > di for all i = 1, 2, ..., n. J × K intervals (0, g1] × (0, r1],
(g1, g2] × (0, r1],..., (gJ−1, gJ ] × (rK−1, rK ] are therefore obtained. We thus
assume that the hazards are equal to λ̂i

j leading to

λ̂i
j = − ln

(
1 − Cij

Rij − 0.5Lij

)
, (16)



Three approaches for estimating prevalence with reversibility 175

in which Cij cases transit from the disease to cure in the jth year following
cancer diagnosis among those who were in age interval i at time of diagnosis
and in which Rij and Lij are respectively the corresponding number at risk
of transiting to death at the beginning of interval j and the number of those
who were lost from follow-up in this interval.

The number of cases that transit from the disease to cure is determined
using the definition of recovery described in section 2. The cure proportion
is estimated according to the age at diagnosis. Then following [MZ96] a
probability of recovering from cancer given currently elapsed survival time
is attributed to each individual of the cancer registry database. A binary
variable of recovery is built using a Bernoulli framework, a time of recovery
is therefore generated for each recovered individual. This technic allows us
to simulate the event cure, because it is impossible to diagnose recovery by
clinical exams or by the information available in registries.

Likewise ν (., .) is assumed to be piecewise constant in age at diagnosis
and in duration of the disease. νi

j is the hazard of death in year j following
diagnosis of cancer for individuals diagnosed at any age in the age interval i.

Age-specific non recovery prevalence estimates

The estimated age-specific non recovery partial prevalence π̂NR (z, L) is ob-
tained from equation 3.1 using α̂ (x), λ̂ (x, d) and ν̂ (x, d) described in section
4.1 and using µ (x) and µ∗ (x) assumed as known without error.

π̂NR (z, L) =
Q2∑

i=Q1

π̂i
NR (z) , (17)

in which z = gQ2+1, z − L = gQ1 and π̂i is the prevalence of people who
were diagnosed in state I in the interval age [gi, gi+1) and who have not been
cured,

π̂i
NR (z) = (18)∫

[gi,gi+1)
exp
{
−
∫ y

0
(µ̂ + α̂) (u) du

}
α̂ (y) exp

{
−
∫ z

y

(
ν̂ + λ̂

)
(u, u− y) du

}
dy

Ŝ∗ (z)
.

Analytical expressions of the integral over [gi, gi+1) are provided in the ap-
pendix A.

3.2 A parametric model [CD97]

The model developed by [CD97] allows us to estimate age-specific prevalence
and age-specific non recovery prevalence using a parametric model.
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Method

Let µ∗ (x) represent the general mortality rates at age x. Let α (x) be the
incidence rate at age x. Let ν (x, x− y)also be the death rates at age x for
people who had a cancer diagnosed at age y. Let Sr (x, x− y) be the relative
survival

Sr (x, x− y) = exp
{
−
∫ x

y

ν (u, u− y) du−
∫ x

0

µ∗ (u) du
}
. (19)

Let 1 − k (d) be the probability of being cured given that an individual has
survived for a time d in the disease. The age-specific prevalence provided by
[CD97] is therefore expressed as

π (z, L) =
∫ z

z−L

α (x) k (d)Sr (x, d) dx (20)

in which k (d) specifies the hypotheses made on disease reversibility. If k (d) =
0, π (z, L) is the partial prevalence of the disease, if k (d) > 0, π (z, L) is the
partial non recovery prevalence of the disease.

The equation 20 has to be compared to expressions built by the Transition
Rate Method 3.1 and 12. Indeed, assuming that

• the disease is rare i.e. the incidence rate is low

α � 1 =⇒ e−
∫ u
0 α(y)dy � 1, (21)

• the mortality rate of non diseased people µ (x) is approximated by the
mortality rate of the general population µ∗ (x) i.e. µ (x) ≡ µ∗ (x) ,

• the probability that an individual is alive at age zis approximated by S∗ (z)

P (subject alive at age z) = PI (z) + PC (z) + PH (z) ,
= S∗ (z) . (22)

age-specific L-year partial prevalence (cf equation 3.1) can be reformulated
as follows

πNR (z, L) =

∫z
z−L

exp
{
−
∫y
0
µ∗ (y) dy

}
α (y) exp

{
−
∫z

y
(ν + λ) (u, u− y) du

}
dy

S∗ (z)
.

(23)
Leading to

πNR (z, L) =
∫ z

z−L

α (y) exp
{
−
∫ x

y

λ (u, u− y) du
}
Sr (x− y) dy, (24)

in which exp
{
−
∫ x

y
λ (u, u− y) du

}
is the probability of surviving from

the event ”recovery”, then it corresponds to the probability of not being cured
given that an individual has survived for a time d in the disease k (d).
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Model specifications

In order to use equations provided by the previous section, incidence rate and
relative survival must be specified.

The incidence rate is modelled by

α (x) = axb, (25)

this exponential shape has been validated for a quite general class of cancers.
The relative survival function is parametrized by a mixture model

[DCHSV99] as follows

Sr (x, x− y) = p + (1 − p) exp (−λ (x− y)) , (26)

p represents the cure proportion and an exponential model is used for the non
cure relative survival S∗

r .

If k (d) = 1, both cured and non cured cases contribute to estimate preva-
lence

π (z, L) =
∫ z

z−L

axb {p + (1 − p) exp (−λd)} dx. (27)

If k (d) =

{
1 for d ≤ Tc
(1−p) exp(−λd)

S(x,d) for d > Tc
, prior to the survival time Tc, dis-

ease is present with certainty so that the probability of being prevalent case
is one, and after Tc the probability of being prevalent cases depends on the
cure proportion and on the non cure survival. The non recovery prevalence
could be expressed as follows

πNR (z, L) = p

∫ z

min(z−L,z−Tc)

axbdx + (1 − p)
∫ z

z−L

axb exp (−λd) dx. (28)

These prevalences can be computed numerically and variance estimates
are obtained by the Delta method [DFSW88].

3.3 Counting Method estimates

The Counting method was developed by [GKMS99]. The notations used are
the following

• let Xi be the exact age at cancer incidence for the ith case of a cancer
registry,

• let Ti be the exact calendar time of cancer incidence for that member,
• let Yi be the exact time of death,
• let Ui be the exact time of loss from follow-up.
• let S (d, x, t) be the probability that a person who develops cancer at age x

and date t will survive beyond duration d after cancer incidence. Ŝ (d, x, t)
is an estimates of S (d, x, t) obtained by actuarial methods
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The probability that an individual who is alive at calendar time t and is
in the age group [z, z + 1) and has disease incidence in the age interval [c1, c2)
with c2 ≤ z is estimated by

π̂ (z, z − L, t)
= 1

N(z,t) [
∑

I (z − L ≤ Xi < z, Yi ≥ t, Ui ≥ t, z ≤ Xi + s− Ti < z + 1)

+
∑

I (z − L ≤ Xi < z, Yi > Ui, Ui < t, z ≤ Xi + t− Ti < z + 1) Ŝ(t−Ti,Xi,Ti)

Ŝ(Ui−Ti,Xi,Ti)

]
(29)

the summations are overall disease cases in the registry and I (.) is an indicator
function equaling one when the argument is true and zero otherwise.

The justification for equation 29 is as follows.

(i) the first summation represents cancer cases known to have survived up to
age z,

(ii) the second summation represents cancer cases who were lost from follow-
up before age z.

This method was implemented by the SEER program [SEERD03], then in
order to obtain the estimates of partial prevalence, the SEER*Stat Software
is used.

For the estimate of the variance, they used a method based on a Poisson
approximation proposed by [CGF02].

4 Results

Previous methods were applied to colorectal cancer. Data were collected by
the SEER Program [SEERD03] during the 1990-1999 period. The material
consists of 23334 cases that were followed until the end of 1999. The follow-up
cut-off date for this analysis was 31 December 1999. Survival time was defined
as the time from diagnosis to death if prior to 1999 or to the end of 1999 .
Overall status was defined as unity if the subject was dead before the end
of 1999, and zero otherwise. The population used for calculating prevalence
rates was provided by SEER program [SEERD03], as well as the U.S mortality
rates for the population [SEERM03] and the size of population [SEERP03].
Mortality rates are published in 5-year age intervals.

Table 1 shows the age-specific incidence of colorectal cancer in Connecticut
between 1990 and 1999 used for estimating age-specific prevalences by the
Transition Rate Method.

For the parametric model, estimates of the parameters of incidence are b
equals 5 and a equal 1.51−12. The estimates of the proportion of cured cases
and the parameter of survival of uncured cases were performed using S-plus
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Table 1. Table 1 : Colorectal cancer observed incidence rates by age in Connecticut
between 1990 and 1999. Rates are per 100,000.

Age range Rate (SE)
40-44 13.7 (0.7)
45-49 28.9 (1.1)
50-54 53.6 (1.6)
55-59 97.1 (2.5)
60-64 163.2 (3.5)
65-69 247.8 (4.4)
70-74 327.9 (5.3)

function (nlminb in order to minimize the negative of the log of the likelihood
function). The estimate of proportion of cure is about 63% corresponding to
the standard error of 0.028 and the parameter of the exponential survival is
about 0.56 year−1 corresponding to the standard error of 0.026.

The age-specific prevalence for people diagnosed between 1990 and 1999
are presented in table 2. The Transition Rates Method estimate of age-specific
10-year partial prevalence of colorectal cancer for people in the 55-59 age
range is 466.6 per 100,000. The estimated standard error, 11.1, corresponds
to a coefficient of variation of 2.3% [D93]. The parametric method and the
counting method yield prevalence estimates in people aged 55-59 of 427.8 and
419.2, respectively, with corresponding standard errors of 11.8 and 15.5 and
corresponding coefficients of variation of 2,7% and 3.7%.

Table 2. Colorectal cancer estimates 10-year partial prevalence by age in Connecti-
cut in 1999 using the Transition Rate Method, the Parametric Method and the
Counting Method. Rates are per 100,000.

Age range TRM (SE) PM (SE) CM (SE)
40-44 61.1 (3.2) 82.9 (1.9) 52.7 (4.3)
45-49 127.7 (4.8) 152.3 (3.8) 121.1 (6.7)
50-54 253.2 (7.4) 262.1 (6.9) 212.7 (9.7)
55-59 466.6 (11.1) 427.8 (11.8) 419.2 (15.5)
60-64 790.1 (15.1) 668.9 (19.1) 734.1 (23.6)
65-69 1223.6 (19.4) 1008.2 (29.9) 1192.9 (31.8)
70-74 1664.6 (22.5) 1473.6 (45.3) 1673.9 (38.24)

As regards the age-specific prevalence of non-recovery, the time required
to be cured is assumed to be 5 years. Table 3 presents the estimates of non re-
covery 10-year partial prevalence of colorectal cancer with the corresponding
standard error. The Transition Rate and parametric methods yield estimates
of non recovery prevalence in the age range 55-59 of 225.9 and 188.1, re-



180 C.Gras, J.P.Daurès and B.Tretarre

spectively, with corresponding standard errors 6.7 and 5.9. The coefficient of
variation are, respectively 2.9% and 3.1%.

Table 3. Colorectal cancer estimates non recovery 10-year prevalence by age in
Connecticut in 1999 using the Transition Rate Method and the Parametric Method.
Rates are per 100,000.

Age range Estimated non cure prevalence
TRM PM

40-44 29.4 (2) 45.9 (1.2)
45-49 63 (2.7) 77.7 (2.1)
50-54 125.2 (4.6) 123.9 (3.7)
55-59 225.9 (6.7) 188.1 (5.9)
60-64 375.9 (9.4) 274.7 (9.4)
65-69 571.7 (11.4) 388.4 (14.1)
70-74 761.7 (12.7) 534.3 (20.6)

Figure 2 shows the estimates of prevalence and non recovery prevalence
using all previous methods. For the under sixties, the estimates of 10-year
partial prevalence are similar and for the over sixties, the Parametric Method
provides estimates lower than using the two other methods. As regards the
non recovery 10-year partial prevalence estimates, the same trend is noted, the
Transition rate method provides estimates higher than using the parametric
method.

Using the TRM and the parametric method, the non recovery 10-year
prevalence represents around 45% of the prevalence (Figure 3). This point is
consistent with the estimate of the proportion of cure (63%).

5 Discussion

This paper presents three procedures for estimating age-specific prevalence :
the Counting Method [GKMS99], the Transition Rate Method [GKMS99]
[FKMN86] and a parametric method [CD97]. We have also developed a
method to estimate age-specific non recovery prevalence using a transition
rate model. The variances of these prevalences are estimated using the Delta-
Method [DFSW88].

The Counting Method was developed by [GKMS99] [FKMN86] and is used
to estimate prevalence based on tumor registry data. The estimates of the
standard error for the Counting Method are based on the Poisson method
[CGF02]. This method is implemented by the SEER*Stat software developed
by the Statistical Research and Applications Branch.

Generally, publications about prevalence assume that the disease is irre-
versible, no return to the healthy state is allowed [MCFM00], [VC89]. But
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Fig. 2. (a) Age-specific prevalence of colorectal cancer in 1999 estimated by the
Transition Rate Method (TRM), the Counting Method (CM) and the Parametric
Method (PM).(b)Age-specific prevalence of non recovery of colorectal cancer in 1999
estimated by the Transition Rate Method (TRM) and the Parametric Method PM).
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Fig. 3. (a) Estimates of age-specific prevalence and prevalence of non recovery using
the Transition Rate Method (TRM). (b) Estimates of age-specific prevalence and
prevalence of non recovery using the Parametric Method (PM).
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today, thanks to improvements of treatment, the word ”cure” can be used for
certain cancers. So, in order to better understand the burden of cancer on
the population, it is important to estimate non recovery prevalence. Indeed,
a subject considered as ”cured” requires fewer health resources than a subject
who is not cured. [CD97] provides models of prevalence with the hypothesis
of disease reversibility. Both reports estimate cancer prevalence using mix-
ture models for cancer survival. They model the relative survival function by
a mixture model without covariates and an exponential distribution for non
recovery survival. It is the parametric method which is presented here. This
method requires a choice of model and programming with statistical software.

In our report, in order to estimate prevalence and non recovery prevalence,
we proposed a transition rate estimate method. The added plus represents
estimates of variance using the Delta-Method [DFSW88]. As regards rates
estimates, these are estimated according to actuarial intervals. In order to
use this method, we have developed a software called SSPIR [GDT04] that
implements the Transition Rate Method. The Counting Method and the
Transition Rate Method are therefore easy to use.

Table 4. Comparison of the three approaches.

TRM PM CM
Type of database Cancer Registry Cancer Registry Cancer Registry

+ Vital statistics + Vital statistics
Cancer Registry Exhaustive Exhaustive Exhaustive
Closed Population Yes Yes No
Estimation Method Actuarial Parametric Non Parametric
Non recovery prevalence Yes Yes No
Estimation Model
Incidence Rate
No diseased mortality rate
Diseased mortality rate
Cure rate

Observed incidence
All other mortality
Vital tables method
Vital tables method

Exponential shape
No

Relative Survival
Mixture model

No
No

Survival of losts
No

Software SSPIR No SEER*Stat

As regards the estimates of age-specific prevalence, we note that the esti-
mates of using the three methods are close. But the variances of the Transition
Rate Method are smaller than the variance of the Counting Method and the
Parametric Method estimates. Moreover, the estimates of the Transition Rate
Method are slightly higher than the estimates of the Parametric Method. The
estimates of age-specific non recovery prevalence are slightly higher using the
Transition Rate Method compared to using the parametric method. We can
also note that the coefficients of variation are equivalent to the one of the para-
metric method. This parametric model seems to be well adapted to colorectal
cancer but it may not be the case for other diseases.
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We described three methods of estimating prevalence, two of which are
non parametric methods. These are both attractive since they are easy to
use and robust. The parametric method requires, when it is possible, to find
the model which is best adapted to data. This point directly raises the well
known problem of choice between parametric and non parametric methods.

APPENDIX A : Expression of non cure prevalence

π̂i
NR (z) =

∫
[gi,gi+1)

ŜH (y) Ŝo (y) α̂ (y) ŜD (y, z − y) ŜR (y, z − y) dy

Ŝ∗ (z)
. (30)

Assuming that z − y ∈ [eh, eh+1[

1. If λi
h + νi

h − αi − µi �= 0 :

π̂i
NR (z) =

1

Ŝ∗ (z)
exp
{
−
∫ gi

0

α (u) du
}

exp
{
−
∫ gi

0

µ (u) du
}

× αi exp
{
−
∫ eh

0

λi (u) + νi (u) du
}

×
exp
{
− (z − gi+1 − eh)

(
λi

h + νi
h

)}
λi

h + νi
h − αi − µi

× exp
{
−(gi+1 − gi)

(
αi + µi

)}
− exp

{
− (gi+1 − gi)

(
λi

h + νi
h

)}
.

2. If λi
h + νi

h − αi − µi = 0 :

π̂i
NR (z) =

1

Ŝ∗ (z)
exp
{
−
∫ gi

0

α (u) du
}

exp
{
−
∫ gi

0

µ (u) du
}

× αi exp
{
−
∫ eh

0

λi (u) + νi (u) du
}

exp
{
gi

(
αi + µi

)}
× exp

{
− (z − eh)

(
λi

h + νi
h

)}
(gi+1 − gi) .
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On statistics of inverse gamma process as a
model of wear

B.P. Harlamov1

Institute of Problems of Mechanical Engineering, Russian Academy of Sciences,
Saint-Petersburg, harlamov@random.ipme.ru

Summary. Some aspects of statistics of inverse gamma process as a model of wear
are considered. Formulae for finite-dimensional distribution densities of the process
are given. Partial derivatives with respect to parameters of one-dimensional densities
of both the direct, and inverse processes with independent positive increments are
derived. Methods for estimation of parameters of the inverse gamma process are
investigated.

1 Introduction

In the present work we continue to investigate the wear process which has
been considered in papers [har02, har04a, har04b, har04d]. In these works
there were proposed inverse processes with independent positive increments
as models of wear processes. For brevity we will call such a process as I-
process. A partial case of such a process is gamma process [har04b], which
has some advantages comparatively with other I-processes. Varying a wear
diagnostic parameter under law of I-process seams to be completely justified,
because the sense of this assumption reduces to the condition for times of
wearing of non-overlapping portions of material to be independent random
values. Such a model combines two necessary properties of a practical model:
"good" features of the process realizations (continuity, monotonicity), and
sufficiently simple mathematical apparat. Advantages of the model explicitly
appears for non-standard registration of wear data.

In this work two ways for gathering information about I-processes are in-
vestigated. The first one is the classical (direct) way, when an observer can
measure (random) portions of material which had been worn during deter-
minate time intervals. And the second one is the inverse way, when he finds
(random) time intervals having been spent by determinate portions of worn
material. Both ways have technical and organizational base and their sphere
of application.
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In the recent time there arises possibility to record practically the whole
continuous wear curve, for example, the acoustical method (see [fad04]). In
this case the statistical analysis option depends only on computation possi-
bility of the observer.

For the first variant of data gathering in works [har04b, har04c] there were
derived formulae for both one-dimensional, and multi-dimensional distribution
densities, which can be used for determination of maximum likelihood esti-
mates and criterions. In the present work we revise and supplement results
of these works.

In the second variant we propose for the time increment distributions
to be known to within finite number of parameters, and for the increments
themselves to be mutually independent. Thus one can use methods of classical
mathematical statistics.

Under recording a continuous trajectory of wear it seems to be reasonable
to quantize date in the second manner. Under this choice the problem arises
how one should split all the interval of wear for obtaining corresponding family
of wearing time increments which possesses optimal statistical properties. In
the work we discuss the optimal choice of partition fineness with regard to
variance of estimate and computation expenditure.

2 Inverse process with independent positive increments

Initial definitions

Let Φ be set of all continuous non-decreasing functions ξ : R+ #→ R+, such
that ξ(t) → ∞ (t → ∞); (Px) (x ≥ 0) be consistent semi-Markov family of
probability measures on (Φ,F), where F is Borel sigma-algebra of subsets of
the set Φ, generated by topology of homogeneous convergency on all bounded
intervals. Let us denote τx(ξ) the first exit time of the process from the
interval [0, x) (x ≥ 0).

A random process ξ, determined by the family of measures (Px), is said
to be an inverse process with independent positive increments (I-process for
brevity), if the random function τx(ξ) as a function of x is a (proper) process
with independent positive increments. The natural characteristic of the I-
process is its the first exit time distribution which is assumed to be absolutely
continuous: Px(τy ∈ dt) = fy(t|x) dt, where x < y and for x0 < x1 < x2 the
following equation holds

fx1+x2(t|x0) =
∫ t

0

fx1(s|x0)fx2(t− s|x1) ds.

It is well known that for Laplace image of this density Lévy formula is true
(see [sko64, har01])

Px(exp(−λ τy)) = exp(−b(λ, x, y)) (y > x > 0),
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where

b(λ, x, y) = λa([x, y)) +
∫ ∞

0+
(1 − e−λ u)n(du× [x, y)) −

∑
x≤xi<y

logPx(e−λ τi);

a(dx) is a locally finite measure on the half line R+; n(du × dx) is a locally
finite measure on the quadrant (0,∞)× [0,∞) (it is so called Lévy measure);
(xi, τi) is a sequence of pairs, where (xi) (xi > 0) is determinate sequence,
describing space points of temporary stops of the process, (τi) is a sequence
of independent positive random values, determining intervals of constancy
(durations of temporary stops) at the corresponding space points of the tra-
jectory. In the neighborhood of the line {0} × [0,∞) Lévy measure can be
infinite, however it satisfies the conditions∫ 1

0+

un(du× [0, x)) < ∞, n([1,∞) × [0, x)) < ∞.

We will assume that the process (τx) (x ∈ R+) is stochastically continuous,
thus the third member of exponent power in Lévy formula is absent. Besides
we consider the case, when measures a and n are absolutely continuous in their
domains with respect to Lebesgue measures. In this case for some positive
functions α and ν the following representations hold

a([0, x)) =
∫ x

0

α(s) ds, n([u1, u2)×[x, y)) =
∫ y

x

∫ u2

u1

ν(u, s) du ds (u1 > 0).

Because of positiveness of increments of the process τx (P0-almost sure) the
following property is true: if the function α ≡ 0 then for any x ν(u, x) → ∞
as u → 0.

A typical I-process is not Markov. According to our terminology (see
[har01]) it is monotone continuous semi-Markov process. Violation of the
Markov property is connected with intervals of constancy, which either do not
have fixed position in the space, or are distributed with respect to an arbitrary
law (not necessary exponential). For intervals of constancy one can easier find
a reasonable physical interpretation than that for point of jumps. But the
main merit of I-process is its analytical form permitting simple evaluation of
reliability functionals for degradation problems (see [har04d]).

Moments of the first exit time distributions

Moments of distribution of the random value τx can be find from Lévy formula
by means of differentiating it with respect to λ as λ = 0. So we have

A1(x) ≡ E0(τx) ≡
∫ ∞

0

t P0(τx ∈ dt) = − ∂

∂λ
E0(e−λτx)

∣∣∣
λ=0

=
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= a([0, x)) +
∫ ∞

0+

un(du× [0, x)), (1)

M2(x) ≡ σ2(x) ≡ E0(τx −A1(x))2 =
∫ ∞

0+

u2n(du× [0, x)), (2)

M3(x) ≡ E0(τx −A1(x))3 =
∫ ∞

0+

u3n(du× [0, x)), (3)

M4(x) ≡ E0(τx −A1(x))4 =
∫ ∞

0+

u4n(du× [0, x)) + 3M2
2 (x). (4)

It is not difficult to evaluate other moments.

Inverse gamma process

In the works [har04a, har04d] and others we gave arguments justifying I-
process to be used in reliability problems. We showed examples, where I-
process analytical properties are useful in optimization problems of prophy-
laxis and reservation. For practical aim one should consider more narrow
class of the processes with a finite number of parameters. In [har04b, har04c]
such processes were shown. Now we consider such a process, namely gamma
process, in more details.

Inverse (homogeneous) gamma process is an I-process where the function
τx is distributed according to gamma distribution: Px(τy ∈ dt) = fy(t|x) dt
(x < y), where fy(t|x) = fy−x(t| 0) ≡ fy−x(t) and

fx(t) =
γ

Γ (xδ)
(γ t)xδ−1e−γt (x > 0),

Γ (·) is the gamma function (Γ (x) =
∫∞
0

tx−1e−t dt) , δ > 0 is a form param-
eter, and γ > 0 is a scale parameter. Evidently,

fx(t) ≡ fx(t; γ, δ) = γfδ x(γ t; 1, 1) ≡ γf0
δ x(γ t),

where
f0

x(t) =
1

Γ (x)
tx−1e−t.

The Lévy exponent of the gamma process is of the form xδ ln(γ + λ)/γ. The
view of its Lévy measure follows from the formula

ln
γ + λ

γ
=
∫ ∞

0

(1 − e−λu)
e−γ u

u
du (5)

(see [har01]). Thus the density of Lévy measure has representation:

ν(u, x) = δe−γu/u.

In applications they consider more general class of inverse gamma pro-
cesses when parameters γ and δ depend on position x. This class of I-processes
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seems to be naturally called as class of generalized inverse gamma processes in
spite of the distribution of the value τx in this case is not gamma distribution.
The generating function of the first exit time of such a more general process
has the form

E0(e−λ τx) = exp
(
−
∫ x

0

δ(y) ln
γ(y) + λ

γ(y)
dy

)
,

which implies formulae for moments:

A1(x) =
∫ x

0

δ(y)
γ(y)

dy, M2(x) ≡ σ2(x) =
∫ x

0

δ(y)
γ2(y)

dy,

M3(x) =
∫ x

0

2δ(y)
γ3(y)

dy, M4(x) =
∫ x

0

6δ(y)
γ4(y)

dy + 3M2
2 (x).

The main advantage of the inverse gamma process comparatively with other I-
processes are both its simplicity, and flexibility due to its two parameters. For
a fixed wear level the gamma distribution is used for description of a random
failure time in work [gk66]. In work [bn01] the direct (proper) gamma process
had been considered as a model of wear.

In work [har04b] we show how a continuous strictly increasing function can
be approximated by I-processes (partially, gamma processes). This property
of I-processes permits to deny the determinate component in Lévy representa-
tion in any case when such a component does not have explicit interpretation.
In turn the denial of the determinate component makes more simple using of
absolute continuous property for I-processes (see [sko64]) and analysis of its
finite-dimensional densities.

One-dimensional distribution

Let us consider I-process without determinate component. For such a process

b(λ, x, y) =
∫ y

x

∫ ∞

0

(1 − e−λu) ν(u, s) du ds. (6)

Lemma 1. If condition (6) is fulfilled, and functions fy(t|x) and ν(t, x) are
continuous in their arguments, and

∫∞
0

u ν(u, x) du < ∞, then for any t > 0

1
y − x

fy(t|x) → ν(t, x) (y ↓ x),

besides for any continuous bounded function ϕ

1
y − x

∞∫
0

ϕ(t) t fy(t|x) dx →
∞∫
0

ϕ(t) t ν(t, x) dx (y ↓ x)
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Proof. We have

Px(e−λτy ) = exp(−
∫ y

x

∫ ∞

0

(1 − e−λu) ν(u, s) du ds).

From here it follows that for any λ0 > 0 uniformly for all λ < λ0

Lc(λ, x) ≡ 1
c

∫ ∞

0

(1 − e−λu) fx+c(u|x) du ≡ 1
c

(1 − Ex(e−λτx+c)) =

=
1
c

(
1 − exp(−

∫ x+c

x

∫ ∞

0

(1 − e−λu) ν(u, s) du ds)
)

→

→
∫ ∞

0

(1 − e−λu) ν(u, x) du ≡ L0(λ, x) (c → 0).

Derivatives with respect to λ of the functions L0(λ, x) and Lc(λ, x) are con-
tinuous in λ and decrease. It follows L′

c(λ, x) → L′
0(λ, x). Actually,

1
h

(Lc(λ, x) − Lc(λ− h, x)) > L′
c(λ, x) >

1
h

(Lc(λ + h, x) − Lc(λ, x)),

1
h

(L0(λ, x) − L0(λ− h, x)) > L′
0(λ, x) >

1
h

(L0(λ + h, x) − L0(λ, x)).

Hence

L′
c(λ, x)−L′

0(λ, x) ≤ 1
h

(Lc(λ, x)−Lc(λ−h, x))− 1
h

(L0(λ+h, x)−L0(λ, x)),

L′
0(λ, x)−L′

c(λ, x) ≤ 1
h

(L0(λ, x)−L0(λ−h, x))− 1
h

(Lc(λ+h, x)−Lc(λ, x))

and consequently,

|L′
c(λ, x)−L′

0(λ, x)| ≤ 1
h

(L0(λ, x)−L0(λ−h, x))− 1
h

(L0(λ+h, x)−L0(λ, x))+

+
1
h
|Lc(λ, x) − L0(λ, x)| + 1

h
|Lc(λ− h, x) − L0(λ− h, x)|+

+
1
h
|Lc(λ + h, x) − L0(λ + h, x)| = εh + εc(h),

wher εh → 0 as h → 0 and for any h > 0 εc(h) → 0 as c → 0.
Consequently, uniformly in λ < λ0∫ ∞

0

u e−λu fy(u|x)
y − x

du →
∫ ∞

0

u e−λu ν(u, x) du.

From here according to the theorem about continuous correspondence between
image and preimage of Laplace transformation (see [fel67]) we obtain that
the distribution Fy(·|x) (dFy(u|x) = u

fy(u| x)
y−x du) converges weakly to the

distribution F0(·|x) (dF0(u|x) = u ν(u, x) du). Lemma is proved.
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Example 1

For inverse gamma process with parameters γ and δ we have ν(t, x) =
ν(t, 0) ≡ ν(t):

1
x
fx(t) =

δγ

δxΓ (δx)
e−γt(γt)δx−1 =

=
δγ

Γ (δx + 1)
e−γt(γt)δx−1 → δ e−γt

t
= ν(t) (x → 0).

Example 2

For the process of records of standard Wiener process (see [har01]) we have:

fx(t) =
x e−

x2
2t

√
2πt3

,
1
x
fx(t) =

e−
x2
2t

√
2πt3

→ 1√
2πt3

= ν(t).

Corollary 1. If conditions of lemma 1 are fulfilled, and the function fy(t|x)
is differentiable with respect to t, then

lim
h↓0

1
h

(fy+h(t|x) − fy(t|x)) =

=
∫ t

0

(fy(t− s|x) − fy(t|x)) ν(s, y) ds− fy(t|x)
∫ ∞

0

ν(s, y) ds. (7)

Proof. We have for h > 0

1
h

(fy+h(t|x) − fy(t|x)) =
1
h

(∫ t

0

fy(t− s|x) fy+h(s| y) ds− fy(t|x)
)

=

=
1
h

(∫ t

0

fy(t− s|x) − fy(t|x)) fy+h(s| y) ds− fy(t|x)
∫ ∞

t

fy+h(s| y) ds
)

→

→
∫ t

0

(fy(t− s|x) − fy(t|x)) ν(s, y) ds− fy(t|x)
∫ ∞

t

ν(s, y) ds (h → 0)

because both the function (fy(t− s|x) − fy(t|x))/s in the first integral, and
1/s in the second integral are continuous and bounded. Corollary is proved.

Let us find the density gt(y|x) of the one-dimensional distribution of I-
process, where Px(ξ(t) ∈ dy) = gt(y|x) dy. We have

gt(y|x) = lim
h→0

1
h
Px(τy < t, τy+h ≥ t),

and also

Px(τy < t, τy+h ≥ t) =
∫ t

0

fy(s|x)
∫ ∞

t−s

fy+h(u| y) du ds.
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From here
1
h

∫ t

0

fy(s|x)
∫ ∞

t−s

fy+h(u| y) du ds =

=
1
h

(∫ t

0

fy+h(u| y)
∫ t

t−u

fy(s|x) ds du +
∫ ∞

t

fy+h(u| y)
∫ t

0

fy(s|x) ds du
)

→

→
∫ t

0

ν(u, y)
∫ t

t−u

fy(s|x) ds du +
∫ ∞

t

ν(u, y)
∫ t

0

fy(s|x) ds du (h → 0)

because both the functions
∫ t

t−u
fy(s|x) ds/u in the first integral, and∫ t

0
fy(s|x) ds/u in the second integral are continuous and bounded. Conse-

quently, if the conditions of lemma 1 are fulfilled, then

gt(y|x) =
∫ t

0

fy(s|x)
∫ ∞

t−s

ν(u, y) du ds. (8)

Theorem 1. If condition (6) is fulfilled, and the functions fy(t|x), ν(t, x) are
continuous in their arguments, besides fy(t|x) is differentiable with respect to
t, and

∫∞
0

u ν(u, x) du < ∞, then

∂

∂y
fy(t|x) = − ∂

∂t
gt(y|x), (9)

where

∂

∂y
fy(t|x) =

∫ t

0

(fy(t−s|x)−fy(t|x)) ν(s, y) ds−fy(t|x)
∫ ∞

0

ν(s, y) ds. (10)

Proof. Let us note that for any point (t, x) (t, x > 0) we have

P0(τx ≤ t) + P0(ξ(t) < x) = 1.

This identity is valid for any non-decreasing process, beginning from the point
(0, 0). Moreover, for 0 < t1 < t and 0 < x1 < x we have

0 = P0(τx ≤ t) + P0(ξ(t) < x) − (P0(τx ≤ t1) + P0(ξ(t1) < x))−

−(P0(τx1 ≤ t) + P0(ξ(t) < x1)) + 1 =

= (P0(τx ≤ t) − P0(τx ≤ t1)) + (P0(ξ(t) < x) − P0(ξ(t) < x1))−
−P0(ξ(t1) < x) − P0(τx1 ≤ t) + 1 =

=
∫ t

t1

fx(s) ds +
∫ x

x1

gt(y) dy −
∫ x

0

gt1(y) dy −
∫ t

0

fx1(s) ds + 1,

where for brevity we write fx(t| 0) ≡ fx(t) and gt(x| 0) ≡ gt(x). If
(1/h)(fx(s|0) − fx−h(s|0)) tends uniformly with respect to s ∈ (t1, t] to cor-
responding partial derivative as h → 0, we have



On statistics of inverse gamma process as a model of wear 195

0 =
∫ t

t1

∂

∂x
fx(s) ds + gt(x) − gt1(x).

Consequently, if ∂fx(s)/∂x is continuous at the point t we obtain

0 =
∂

∂x
fx(t) +

∂

∂t
gt(x).

We continue our proof for non-uniform case. Let fx(t) satisfy Lipschitz con-
dition in some neighborhood of the point t1. We have for t1 < t2

gt2(x)−gt1(x) =
∫ t2

0

fx(s)
∫ ∞

t2−s

ν(u, x) du ds−
∫ t1

0

fx(s)
∫ ∞

t1−s

ν(u, x) du ds =

=
∫ t2

t1

fx(s)
∫ ∞

t2−s

ν(u, x) du ds−
∫ t1

0

fx(s)
∫ t2−s

t1−s

ν(u, x) du ds =

=
∫ t2

t1

fx(s)
∫ ∞

t1

ν(u, x) du ds +
∫ t2

t1

fx(s)
∫ t1

t2−t1

ν(u, x) du ds+

+
∫ t2

t1

fx(s)
∫ t1

t2−s

ν(u, x) du ds−
∫ t2−t1

0

fx(s)
∫ t2−s

t1

ν(u, x) du ds−

−
∫ t1

t2−t1

ν(u, x)
∫ t2−u

t1−u

fx(s) ds du−
∫ t2−t1

0

ν(u, x)
∫ t1

t1−u

fx(s) ds du.

the first member in this sum has an order

(t2 − t1)fx(t1)
∫ ∞

t1

ν(u, x)du + o(t2 − t1).

The sum of the second and fifth members can be represented as follows∫ t1

t2−t1

ν(u, x)
∫ t2

t1

(fx(s) − fx(s− u)) ds du =

= (t2 − t1)
∫ t1

0

(fx(t1) − fx(t1 − u)) ν(u, x) du + o(t2 − t1)

because the ratio (fx(s)−fx(s−u))/u is uniformly bounded on the integration
domain. The sum of the third and sixth members has the form∫ t2−t1

0

ν(u, x)
∫ t2

t2−u

(fx(s) − fx(s− t2 + t1)) ds du =

= (t2−t1)
∫ t2−t1

0

ν(u, x)
∫ t2

t2−u

(fx(s)−fx(s−t2+t1))/(t2−t1) ds du = o(t2−t1),

due to the Lipschitz condition and integrability of the function u ν(u, x) in
the neighborhood of zero. The fourth member is estimated as
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0

fx(s)
∫ t2−s

t1

ν(u, x) du ds ≤

≤ max(ν(u, x) : u ∈ (t1, t2)) (t2 − t1)
∫ t2−t1

0

fx(s) ds = o(t2 − t1)

due to integrability of the density fx(s). So we obtain the formula

∂

∂t
gt(x) =

∫ t

0

(fx(t) − fx(t− s)) ν(s, x) ds + fx(t)
∫ ∞

t

ν(s, x) ds. (11)

Evidently, this formula is true for any other initial point x0 (0 ≤ x0 < x).
Comparing this formula with (11), we obtain proof of the theorem.

Multi-dimensional distribution

Let us show that under conditions of lemma 1 there exists a multi-dimensional
distribution density of I-process. Let t0 < t1 < . . . , tn, x0 < x1 < . . . , xn and
0 < hi < xi+1 − xi (xn+1 = ∞). Then we have

gt1,...,tn(x1, . . . , xn|x0) =

= lim
h1→0,...,hn→0

1
h1 . . . hn

Px0((τx1 < t1, τx1+h1 ≥ t1), . . . , (τxn < tn, τxn+hn ≥ tn)),

and also

Px0((τx1 < t1, τx1+h1 ≥ t1), . . . , (τxn
< tn, τxn+hn

≥ tn)) =

=
∫ t1

0

fx1(s|x0)
∫ t2−s

t1−s

fh1(u|x1)×

×Px1+h1((τx2 < t′2, τx2+h2 ≥ t′2), . . . , (τxn
< t′n, τxn+hn

≥ t′n)) du ds,

where t′i = ti − s− u. From here the formula follows

gt1,...,tn
(x1, . . . , xn|x0) =

=
∫ t1

0

fx1(s|x0)
∫ t2−s

t1−s

ν(u, x1) gt′2,...,t′n(x2, . . . , xn|x1) du ds.

So we obtain

gt1,...,tn(x1, . . . , xn|x0) =
∫

∆n

n∏
k=1

Axk
(tk − uk−1, uk − uk−1|xk−1) duk, (12)

where ∆n = (t1, t2) × · · · × (tn−1, tn) × (tn,∞), u0 = 0,

Ay(t, u|x) =
∫ t

0

fy(s|x) ν(u− s, y) ds.
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3 Estimation of parameters

Testing of hypophysis about independence of wear times for non-overlapping
parts of an experimental specimen relates to the set of non-parametric statis-
tics problems, which operate with infinitely many properties of the sample.
That is why statistical verifying of this hypophysis is impossible for any large
value of experimental data. The independence hypophysis is usually the ob-
ject of believe until a case of its essential contradiction.

The direct way of data gathering

Traditional testing of wear at fixed time epochs sometimes is the uniquely
possible under exploitation conditions of the technical product. Taking into
account this fact, we investigate the problem of estimating the process param-
eters starting from the table of data, where random observation correspond
to a priori fixed time epochs. In this connection we can meet two variants of
data gathering: with restoration of the initial conditions (statical method),
and without of such a restoration (dynamical method). Under the statical
method one can consider values of wear in every circle of measurement as
independent random values. For example, the testing device stops after a
determinate time. The tested specimen is being taken out and weighted for
determining of wear value, and then it is being established again for new test-
ing and so on. In this case the one-dimensional distribution corresponding to
a fixed time epoch contains all the information about the sample distribution.
Some complications can arise for different time intervals between measure-
ments because it gives not identical distributed members of the sample.

For the inverse gamma process, beginning at the point (0, 0), the one-
dimensional density can be found from formula (8). Thus for a space homo-
geneous process we have

gt(x; γ, δ) = γδ

∫ t

0

e−γ s(γ s)δ x−1

Γ (δ x)

∫ ∞

t−s

e−γu

u
du ds. (13)

After not difficult transformations we obtain identity

gt(x; γ, δ) = δ gγ t(δ x; 1, 1) ≡ δgγ t(δ x).

For independent testing the likelihood function is equal to product of these
densities

L(x1, . . . , xn; γ, δ) = δn
n∏

k=1

gγ tk
(δ xk).

For to obtain maximum likelihood estimates one can search the maximum of
this function by something suitable evaluating method. The analytical search
of maximum is being reduced to search of roots of a system of two equations
arising as a result of partial differentiating of the function with respect to its
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parameters. For evaluating the partial derivative of gγ t(δ x) with respect to
parameter δ one can use formula (7), which can be rewritten as

∂

∂y
fy(t|x) =

∫ ∞

0

(fy(t− s|x) − fy(t|x)) ν(s, y) ds,

taking into account that fy(t|x) = 0 as t < 0. For evaluating the partial
derivative of gγ t(δ x) with respect to parameter γ one can use theorem 1,
because analytical representation of fx(t) is considerably simpler than that of
gt(x).

Approximate maximum likelihood estimates

Essential difficulties arise under dynamical method of registration of wear
data. In this case increments of wear values are not independent. Hence
the likelihood function represents the whole multi-dimensional joint density
(12) for values of the process at the fixed time epochs. Operation time for
evaluating this 2n-dimension integral increases exponentially as n increases.
Apparently it is impossible to use this formula for obtaining maximum like-
lihood estimates with reasonable precise. That is why some approximate
methods for parameters estimation deserves attention, in partial, construct-
ing an approximate likelihood function. For this aim one can use the property
of decreasing of dependency for increments of the process on time intervals
separated by sufficiently long time gaps.

It is well-known (see for example [har01]) that trajectories of inverse
gamma process consists of intervals of constancy almost wholly. Therefore
for any t > 0 (non-random) the trajectory ξ is constant on some interval con-
taining t. It implies dependence of increments of the process ξ. The nearest
regenerative point of the process (the process has Markov property with re-
spect to the point) is the right edge of this interval. From ergodic theory it
follows there exists the limit distribution of right parts of such intervals. Let
Pst be the stationary distribution of an embedded regenerative process, and
R+

t be length of the right part of the interval covering the point t. Then

Pst(R+
t > r) = γ

∫ ∞

r

(u− r)
e−γ u

u
du

(see [har01, c.368]). One have to take into account this interval when eval-
uating stationary distribution of the increment of the process on given time
interval. Hence Pst(ξ(t) − ξ(0) ∈ dx) = gt(x) dx, where

gt(x) =
∫ t

0

pst(r)gt−r(x) dr,

and

pst(r) = γ

∫ t

r

e−v

v
dv.
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If a statistician has observations on N "small" intervals with lengths ti sep-
arated by "large" gaps with lengths Ti he can search approximate maximum
likelihood estimates as a point of maximum of the product of stationary den-
sities

g̃t1,...,tN (x1, . . . , xN ) =
N∏

k=1

gtk
(xk).

The obtained estimate the more precise, the more values Ti.
For I-processes the rate of convergence to the stationary distribution can

be derived from general ergodic theorems. In our case this rate can be esti-
mated more precisely using special properties of gamma-process. Let

E(t) = e−t

∫ ∞

0

tx−1

Γ (x)
dx.

Existence of the limit

lim
t→∞

E(t) = lim
λ→0

λ/ ln(1 + λ) = 1.

follows from Tauberian theorem (see [fel67, c.513]). In work [har04b] it has
been shown that convergency rate of E(t) to its limit determines the value of
mistake when we substitute the product of one-dimensional stationary densi-
ties instead of the proper likelihood function.

Inverse way of data gathering

In this case we propose there exists a table of fixed wear levels and corre-
sponding increments of hitting times for these levels. In frames of the theory
of inverse gamma processes for to find reasonable estimates of two its pa-
rameters it is sufficient to know two first distribution moments. Consistent
estimates can be obtain by the method of moments. More precise estimates
can be obtain with the help of maximum likelihood method. Let, for exam-
ple, levels of wear be (x1, x2, . . . , xn) fixed and their corresponding hitting
times be measured. Taking into account independence along the time axis we
construct likelihood function, i.e. the joint density with unknown parameters:

L(t1, . . . , tn; γ, δ) ≡
n∏

k=1

fyi
(si; γ, δ) = γn

n∏
k=1

e−γ sk(γ sk)δ yk−1

Γ (δ yk)
,

where sk = tk − tk−1, yk = xk − xk−1 (t0 = 0, x0 = 0). The maximum
likelihood estimates one can obtain either by standard analytical method, or
with the help of computer.

Inverse way of data gathering when dealing with a continuous wear curve

In accordance with non-contact (non-stop) methods of wear registration,
which recently have increasing expansion (see [fad04]), the problem arises
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how to estimate parameters when dealing with continuous trajectory of the
process. Reducing the continuous record ξ(t) (0 ≤ t ≤ T ) to a finite
sample of n independent and identically distributed random values can be
obtain by splitting the realized wear interval (0, x) on n equal parts by
points (x/n, 2x/n, . . . , x(n − 1)/n) and determining n the first hitting times
(t1, t2, . . . , tn−1, tn) of the boundaries of these intervals, where tk = τxk/n(ξ).
The first problem is to choose the number n in a reasonable way. In the case
of inverse gamma process the random value tk−tk−1 has distribution with the
density fx(t; γ, δ). Thus E0τx = x δ/γ, D0(τx) ≡ E0(τx − E0τx)2 = x δ/γ2.
It serves base for application of the method of moments for estimating both
the ratio δ/γ, and δ/γ2, and corresponding parameters of the process with
accordance to formulae

δ̂

γ̂
=

n

x
τx/n,

δ̂

γ̂2
=

n

x
S2,

where

τx/n =
1
n

n∑
k=1

(tk − tk−1) =
T

n
, S2 =

1
n

n∑
k=1

(tk − tk−1 − τx/n)2.

As follows from these formulae, the estimate of the ratio δ̂/γ̂ does not depend
on n. For reasonable choice of n we have to find variance of the estimate δ̂/γ̂2:

D0(δ̂/γ̂2) = D0(nS2/x) =
n2

x2
D0(S2).

By the way of not-difficult but awkward transformations we obtain the formula

D0(S2) = M4(x/n)
(n− 1)2

n3
− σ4(x/n)

(n− 1)(n− 3)
n3

,

which implies the formula for a homogeneous I-process:

D0(S2) = (xm4/n + 3σ4(x/n))
(n− 1)2

n3
− σ4(x/n)

(n− 1)(n− 3)
n3

=

= xm4
(n− 1)2

n4
+ 2σ4(x/n)

n− 1
n2

=

= xm4
(n− 1)2

n4
+ 2x2m2

2

n− 1
n4

,

where mk =
∫∞
0

uk ν(u) du (k ≥ 1). From here we obtain

D0(δ̂/γ̂2) =
n2

x2

(
xm4

(n− 1)2

n4
+ 2x2m2

2

n− 1
n4

)
=

1
x
m4

(n− 1)2

n2
+2m2

2

n− 1
n2

.

Analysis of this function of n shows that it can have a local maximum in the
neighborhood of the point n = 2 (for x > m4/m

2
2), and after this point it

decreases monotonically till the meaning m4/x. Because the gain in precise is
negligible when n rises, one should take into account another considerations,
for example, rate of computing, which is the more, the less n.
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Soft ware

In Laboratory of Reliability Analysis Methods of Institute of Problems of
Mechanical Engineering of Russian Academy of Sciences there are programs
permitting to find estimates of parameters of inverse gamma processes for
different methods wear data gathering.
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Abstract. It is often of interest to effectively use the information on a large
number of covariates in predicting response or outcome. Various statistical
tools have been developed to overcome the difficulties caused by the high-
dimensionality of the covariate space in the setting of a linear regression model.
This paper focuses on the situation where the outcomes of interest are sub-
jected to right censoring. We implement the extended partial least squares
method along with other commonly used approaches for analyzing the high
dimensional covariates to a data set from AIDS clinical trials (ACTG333).
Predictions were computed on the covariate effect and the response for a fu-
ture subject with a set of covariates. Simulation studies were conducted to
compare our proposed methods with other prediction procedures for different
numbers of covariates, different correlations among the covariates and different
failure time distributions. Mean squared prediction error and mean absolute
distance were used to measure the accuracy of prediction on the covariate
effect and the response, respectively. We also compared the prediction per-
formance of different approaches using numerical studies. The results show
that the Buckley-James based partial least squares, stepwise subset model
selection and principal components regression have similar predictive power
and the partial least squares method has several advantages in terms of inter-
pretability and numerical computation.

Keywords: Dimension reduction, partial least squares, accelerative fail-
ure time model, cross-validation, prediction
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1 Introduction

In the study of chronic diseases such as HIV infection and cancer, the rapid
improvement in the technology of measuring disease characteristics at the
molecular or genetic level makes it possible to collect large amounts of data
on potential predictors of outcome. In cancer, these data often include mea-
surements of gene or protein expression in the tumor; in HIV, the data may
include characterizations of genetic mutations in the HIV-1 virus that lead
to amino acid substitutions in the protease gene at specified codons. In ei-
ther situation, the existing knowledge of the biology of the disease may not
be sufficient to guide a study team to a definitive (or at least plausible) set
of predictor variables for outcome. When used judiciously, data-dependent
methods for variable selection or dimension reduction can be a useful part of
exploratory analyses.

This paper examines methods for finding low-dimensional predictors of
outcome when the response variable is a potentially censored measurement of
change in HIV viral load (HIV-1 RNA response) and the predictors include
both traditional prognostic measures, such as the history of prior treatment,
and patient-specific biomarkers of mutations at specified locations in the HIV-
1 virus. More specifically, we use the data to cluster subjects into groups with
predicted good or poor response. We use the data from the AIDS Clinical
Trials Group (ACTG) randomized trial 333 [PG00]. The primary outcome
for the trial was the change in HIV-1 RNA level (log10 copies/mL) measured
at randomization (considered baseline) compared to times during the course
of therapy (weeks 2, 4, 6, 8, 16 and 24). The assay used to quantify levels
of HIV-1 RNA was unable to detect virus present in blood plasma at lower
than 500 (2.70 log10) copies/mL. For patients whose HIV-1 RNA level could
be measured at baseline (all patients in this analysis), the change between
baseline and later time points was right-censored when the RNA level was
below the limit of quantification. This paper uses a particular method of
dimension reduction (partial least squares) for a detailed analysis of this data
set. The operation of the method used here is examined in more detail in
[HH05].

Methods for right-censored data can be used to estimate the association
of potential prognostic variables or treatment with RNA levels. Because the
censored data are incomplete observations on laboratory parameters and not
event times, linear models for censored data, rather than the more common
proportional hazards model, can sometimes be easier to interpret. In [PG00],
parametric linear regression models with normally distributed errors are used
to model the dependence between changes in RNA levels and treatment or
other patient level characteristics. The justification for using these models
in studies of HIV is discussed in [Mar99]. Clinical response was defined in
the study as the change in viral RNA between randomization and week 8, so
the study report emphasizes linear models for this change, although changes
at weeks 4 and 6 are also analyzed. In this paper, we focus on methods for
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predicting the changes from baseline to week 8, using semiparametric models
for censored data in linear models, so-called accelerated failure time model
(AFT). We then use the predicted changes to construct prognostic subgroups.

Some authors [Hug99, JT00] have investigated the use of linear mixed
models [LW82] for the longitudinal measurements of RNA levels. The time-
dependent RNA levels are left-censored when they fall below the limit of
quantification for the assay, so linear mixed models must be extended to allow
for partially observed measurements. We do not use the longitudinal model
approach here.

Polymerase chain reaction (PCR) was used in ACTG 333 to amplify genes
in the HIV-1 RNA extracted from patient plasma at baseline. The HIV-
1 protease gene was fully sequenced, enabling the detection of mutations
to the wild-type of this gene and amino acid substitutions at 99 protease
residues. [PG00] describes in detail the association of substitutions at 12 se-
lected residues with the change in viral RNA between baseline and week 8.
These substitutions had been implicated in previous literature with resistance
of the virus to the treatments used in this trial. The data for the trial present
an opportunity to explore the value of the additional mutation data, along
with clinical measurements, in predicting week 8 viral response. The data
set analyzed here contained mutation data on 25 residues, or codon positions,
and 10 clinical variables for 60 patients (details in Section 4). The large num-
ber of covariates compared to the number of subjects emphasizes the need for
dimension reduction in the covariate space. We examine the behavior of step-
wise regression (Step-AFT) in this context as well as extensions of principal
component regression (PCR) and partial least squares (PLS).

This paper gives a more extended treatment of partial least squares with
censored data than can be found in the companion paper [HH04] published in
Lifetime Data Analysis. In Section 2, we have added the use of the conditional
median of the estimated error distribution to predict the response for a future
subject with a given set of covariates. Extensive simulation studies show the
small and moderate sample size properties of partial least squares. These
simulation results are discussed in a new Section 3 and sections 3 and 4 from
[HH04] have been moved to sections 4 and 5 accordingly. In Section 5 the data
analysis for the HIV data set, we have added analysis showing the prediction
of the response for a future subject and the use of resampling to examine the
leave-two-out cross validation method.

2 Analysis Methods

Let Y be an n× 1 column vector of responses for n subjects and Z an n× p
predictor matrix of p−dimensional covariate vectors. Some of the methods
discussed in the paper are not scale-invariant, that is, they may yield differ-
ent results when response and/or covariates are rescaled. In this paper, the
columns of Z will always be centered to have mean zero and scaled to have
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variance one, even for binary covariates. The notation Z is used for the covari-
ate matrix to emphasize that point. We denote row i of Z by Zi. We assume
temporarily that the responses are not censored. When Z is singular or nearly
so in the linear model Y = β′

0Z + ε, ordinary least squares (OLS) estimates
of the p × 1 parameter vector β0 are not estimable or may be numerically
unstable. Data analysts commonly use two classes of methods to mitigate the
effect of collinearity in the predictor matrix. One set of methods selects a
subset of the original predictors, and numerous subset selection methods are
available [DS81, Hoc76, Mil90]. The other set of methods are based on biased
(typically shrinkage) estimators of regression coefficients which may reduce
mean-squared estimation or prediction error by reducing the variance of the
estimators. These shrinkage methods include well known methods such as
ridge regression, principal components regression, partial least squares, and
some newer methods, such as the LASSO [Tib96]. Both sets of methods are
sometimes used when Z is of full rank as well.

Stepwise regression methods are widely used, in part because software for
stepwise model selection is available in nearly all standard statistical software
packages. There is an extensive literature on efficient numerical algorithms for
stepwise fitting of regression models, for incorporating penalty terms such as
the AIC or Schwarz criterion (BIC) to reduce the likelihood of over-fitting, and
to reduce the potential bias in estimates of coefficients for variables selected.
For linear models, the recent monograph by [Mil90] contains an account of
both the benefits and drawbacks of stepwise selection techniques for linear
regression.

[Hot33] originally proposed principal component analysis to reduce the col-
umn dimension of a data matrix of highly correlated variables while retaining
a large portion of the variation in the data. Let λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 be the
eigenvalues of Z ′Z, with corresponding orthogonal eigenvectors v1,v2, . . .vp.
The vectors Zvj are called the principal components of Z ′Z. Let r be the
rank of Z ′Z. Principal component regression (PCR) replaces the columns
in original predictor matrix by the K ≤ r vectors Zv1, . . .ZvK and fits a
regression model using the new predictor matrix. When K < r, the new vec-
tors do not span the column space of Z, and the estimated parameters will
not be unbiased estimates of β0. In addition, there is no theoretical basis for
the new predictors satisfying any statistical optimality criteria when K < r.
Nevertheless, the approach has some appeal, primarily because the new pre-
dictor matrix will have orthogonal columns and the fit will be numerically
more stable. In addition, v1 has largest variance among the vi, v2 the second
largest variance, etc, so that the first few principal components may account
for a substantial proportion of the variation in the original covariates. There
are a variety of suggestions in the literature for choosing K [Jol86], includ-
ing minimizing a cross-validated error sums of squares or choosing K so that∑K

1 λj/
∑r

1 λj is large.
Unlike PCR, PLS uses both response and predictor values to construct

transformations of the covariates to be used as new predictors. The method
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of PLS was first proposed by [Wol66, Wol76] for modeling information-scarce
situations in social sciences. It has also been used in chemometrics, for in-
stance, to predict a chemical composition from a near infrared reflectance
spectrum [Gou96]. [WM03] provide a detailed comparison of the use of PCR
and PLS in chemometrics. The original development of PLS was motivated
by a heuristically appealing representation of both the vector of responses Y
and the predictor matrix Z as linear combinations (with error) of a common
set of latent variables, so that

Z = t1p
′
1 + t2p

′
2 + · · · + tKp′

K + �K+1

and
Y = t1q1 + t2q2 + · · · + tKqK + εK+1.

The N × 1 vectors ti are the latent variables, the p × 1 vectors pi are called
the loading vectors, and the scalars qi are called loading scores. Wold’s origi-
nal algorithm for computing the latent variables and their loadings has been
discussed in [Hel88] and [SB90]. We have adopted Helland’s notation here;
interested readers should see that paper for a heuristic motivation of the al-
gorithm.

[Wol84] gives the following algorithm for partial least squares on data
{(Yi,Zi)} with a fixed number K << min(p, n) latent variables:

1. Initialize �0 = Z and ε0 = Y − n−111′Y .
2. For k = 1 to K, compute the kth

(1) weight vector wk = �′
k−1εk−1 and latent variable tk = �k−1wk;

(2) loading score qk = (t′ktk)−1t′kεk−1 = (t′ktk)−1t′kY and loading vector
pk = (t′ktk)−1t′k�k−1 = (t′ktk)−1t′kZ;

(3) residuals εk = εk−1 − qktk and �k = �k−1 − tkp′
k.

3. The predicted value of the response is Ŷ = n−111′Y +
∑K

k=1 qktk.

The small data set in ACTG 333 makes model checking difficult, so in the
analysis presented here we use extensions of the methods presented above to
semiparametric linear models for right censored data, called the accelerated
failure time (AFT) model in the time to event literature. In the AFT model,
no assumption is made about the form of the error distribution. As usual,
right-censored data is denoted by {(Ti∧Ci, δi,Zi), i = 1, . . . , n}, where Ti ≥ 0
is the response variable, Ci ≥ 0 is the censoring variable, δi = I{Ti≤Ci}, Zi is
a p × 1 covariate vector, A ∧ B is the minimum of A and B. The indicator
I{A} assumes value 1 if the A occurs and 0 otherwise. We take Ti and Ci to
be conditionally independent given Zi. The p× 1 regression coefficient β0 in
the AFT model satisfies

g(Ti) = β′
0Zi + εi,

where {εi} are independent, identically distributed with finite variance and an
unspecified distribution function Fε. Since the intercept is not specified in the
model, ε may have non-zero mean. The known monotone transformation g(·)
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is usually chosen to be the identity function or a logarithm transformation.
Because of the presence of censoring, we do leave the response variable T ,
equivalently Y = g(T ), in its original measurement scale.

To estimate the coefficients in the semiparametric AFT, Buckley and
James, (1979) used the transformation ϕ(·) on the observed response
Y o

i =g(Ti) ∧ g(Ci), where ϕ(Y o
i ) = δiY

o
i + (1 − δi)E{Yi|Yi ≥ Y o

i ,Zi}. If ϕ(·)
were known, E{ϕ(Y o

i )|Zi} = E(εi) + β′
0Zi, and ordinary least squares could

be used with the transformed responses {ϕ(Y o
i )}. The Buckley-James esti-

mating algorithm simultaneously updates {ϕ̂(Y o
i )} and β̂ at each step and

proceeds iteratively:

1. Select an initial estimator β(0), and let Ỹ = Zβ(0).
2. Compute the residuals ε = Y o − Ỹ and the estimated transformation

ϕ̂(Y o
i ) = δiY

o
i + (1 − δi)Ê(Yi|Yi ≥ Y o

i ,Zi)

= δiY
o
i + (1 − δi)

[
Ỹ o

i − {Ŝε(εi)}−1

∫ ∞

εi

sdŜε(s)
]
, i = 1, · · · , n,

where Ŝε(·) is the Kaplan-Meier estimator of the survival function 1−Fε
using the censored residuals {εi, δi}.

3. Apply ordinary least squares (OLS) to {(ϕ̂(Y o
i ),Zi)}. Update Ỹ = β̂

′
Z.

4. Stop if Ỹ converges or oscillates. Otherwise, return to step 2.

Incorporating PCR into the Buckley-James algorithm is straightforward,
since the calculation of the principal components uses only the matrix of co-
variates and is done before any regression models are estimated. A forward
stepwise regression using Wald tests (Step-AFT) to enter new variables re-
quires only parameter estimates and standard errors. As described below,
we used a nonparametric bootstrap to estimate standard errors of regression
parameters estimated using the Buckley-James algorithm. We did not incor-
porate a penalty term (e.g., AIC or BIC) in the stepwise regression since no
theory has been worked out for these penalties in the AFT model.

Incorporating partial least squares into the AFT is more difficult. In
[HH05], we have studied replacing step 3 in the algorithm with the partial
least squares algorithm originally proposed by [Wol76], leading to an iterative
partial least squares algorithm (BJ-PLS). The modified step 3 is:

3. Apply partial least squares with a fixed number K of latent variables on
the transformed data {ϕ̂(Y o

i ),Zi} with initial values �0 = Z and ε0 =
ϕ̂(Y o) − n−111′ϕ̂(Y o). For k = 1 to K, compute qk and tk. Update
Ỹ =

∑K
k=1 qktk.

We used a method of cross validation to select the number of latent vari-
ables in the PLS. A detailed evaluation of the particular cross validation we
used reported elsewhere (Huang and Harrington, 2004), and is summarized
here. In the semiparametric AFT, the intercept is a nuisance parameter that
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is absorbed into the error distribution and not directly estimated. The esti-
mated model provides information only on how subjects differ from the overall
mean response. Our main objective for the analysis of the ACTG 333 HIV
data is to rank the subjects according to their reduction of HIV-1 RNA levels
from baseline to week 8, which can be achieved by estimating or predicting
the difference (Yi − Yj) between two subjects. Specifically, suppose β̂ is an
estimate of the model coefficients and temporarily assume that the nuisance
intercept α0 is known. The error in estimating the response difference is

(Yi − Yj) − {(α0 + β̂
′
Zi) − (α0 + β̂

′
Zj)} = (Yi − Yj) − (β̂

′
Zi − β̂

′
Zj),

which does not involves the intercept. Therefore, there is no need to estimate
the intercept in the regression model for our purpose. While the traditional
leave-one-out cross validation evaluates model performance in predicting the
mean response and involves the estimation of the intercept, our proposed
leave-two-out cross validation procedure estimates the error in predicting re-
sponse difference and leaves the intercept as a nuisance parameter.

The leave-two-out cross validation uses each pair of observations as a val-
idation sample, with the remaining data serving as a training sample. In

the training sample that excludes subjects i and j, let ϕ̂k
−(i,j)(·),

̂
βk
−(i,j)

′
Zi

and ̂
βk
−(i,j)

′
Zj be the partial least squares estimates of ϕ(·), β′

0Zi and β′
0Zj

with k latent variables, respectively. If these estimates are recomputed for
all n(n− 1)/2 possible pairs (i, j), the mean-squared prediction error for the
response difference between two cases with k latent variables can be estimated
by C(k) =

2{n(n−1)}−1
∑

1≤i<j≤n

{
ϕ̂k
−(i,j)(Y

o
i )−ϕ̂k

−(i,j)(Y
o
j )−(

̂
βk
−(i,j)

′
Zi−

̂
βk
−(i,j)

′
Zj)

}2

.

For any k, C(k) requires O(n2) partial least squares model estimates, so we
recommend using a stochastic estimate C∗(k) of C(k). The most natural es-
timate is the observed mean-squared prediction error over randomly selected
training samples. The number of training samples should be chosen so that
the estimated standard error for C∗(k) is no larger than 10% of C∗(k). The
number of latent variables K is selected to minimize C∗(k).

In the linear regression model, the response of a future subject with a set of
covariates is usually predicted by its conditional expectation given the covari-
ates. However, in right-censored data, there is generally no unbiased estimator
of the conditional mean of the response. Often the conditional median of the
response can be well estimated if the censoring proportion is not too large.
In those cases, the conditional median can be used to predict the response of
a future subject in the accelerated failure time model, which corresponds to
minimizing the mean absolute difference loss function. Another advantage of
using the conditional median is that the median of T , the response variable



Operating Characteristics of Partial Least Squares 209

of our primary interest, can be obtained easily from the monotone transfor-
mation function T = g−1(Y ). This method is similar to that of [YWL92] for
predicting the response of future subjects.

For a future subject with a covariate vector Zf , the predicted response
based on the estimated conditional median of Y is given by β̂

′
Zf + Ŝ−1

ε (0.5),
where β̂ is the partial least squares parameter estimate from the observed
data set {(Yi, δi,Zi)} and Ŝε(·) is the Kaplan-Meier estimator of the survival
function of the residuals using the empirical residuals {(Yi − β̂

′
Zi, δi)}. The

corresponding prediction for T is g−1(β̂
′
Zf + Ŝ−1

ε (0.5)).
The next section shows the simulation studies exploring the predictive

power of the accelerated failure time model using partial least squares and
the Buckley-James fitting algorithm.

3 Simulation studies

We used simulation studies to explore the predictive power of the accelerated
failure time model using partial least squares and the Buckley-James fitting
algorithm. Mean squared prediction error was used to measure how well the
covariate effect was predicted, and mean absolute prediction error was used
to measure how well the response was predicted. Simulations were done using
different numbers of explanatory variables (p = 10, 25, 40, 50, and 100), with
different correlations among the covariates (ρ = 0 and 0.3), and for different
underlying error distributions. The simulation design modeled a situation
where many variables have moderate effects, a difficult situation for model
fitting when sample sizes are not sufficiently large.

The simulations used the model

log(Ti) = β′
0Zi + εi, i = 1, · · · , n,

where Zi ∼ Np

(
0, σ2[(1 − ρ)I + ρ11′]

)
, and {εi} were independent and iden-

tically distributed. The initial parameter vector β0 was selected using inde-
pendent draws from a uniform distribution on (-0.2, 0.2) to reflect a setting
where all variables have moderate effect. We generated {εi} from two differ-
ent distributions. The first was an extreme value distribution (Table 1) with
the survival function Sε(x) = exp(− exp(x/σ)), with σ = 0.5, corresponding
to an increasing hazard over time. This resulted in a Weibull distribution for
the response variable. The other error distribution was a normal distribution
(Table 2) with variance σ2

0 = 0.4, which produces a similar variance for log(Ti)
as the chosen extreme value error distribution. The censoring times were gen-
erated from a uniform distribution U(0, c) and c was chosen to produce an
average censoring proportion of 20%.

Fixing the sample size n (= 50), design matrix Z = (Z1, · · · ,Zn)′

and parameter vector β0, we generated a training sample
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{(min{Ti, Ci}, 1{Ti<Ci},Zi), i = 1, · · · , n} and a validation sample
{(T ∗

i ,Z
∗
i ), i = 1, · · · ,m}, where m = 100 and {(T ∗

i ,Z
∗
i )} had the same

distribution as (T,Z). The true covariate effect for subject i in the validation
sample was given by β′

0Z
∗
i .

To obtain the mean squared prediction error of the covariate effects, we fit
an accelerated failure time model on the training sample using the Buckley-
James algorithm with all covariates in the model (when p < n) and with
partial least squares, then used the resulting parameter estimates to predict
the covariate effects for subjects in the validation sample. We computed mean
squared prediction error m−1

∑m
i=1(β̂

′
Z∗

i −β′
0Z

∗
i )

2 for various numbers of la-
tent variables and repeated this process for B1 = 50 times. We calculated the
average of the mean squared prediction error over the B1 validation samples
for different numbers of latent variables and compared the performance of
partial least squares and the Buckley-James method (Table 1 and Table 2).
Table 1 also appears in [HH05] and is listed here for convenience.

In linear regression with censored data, when the number of explanatory
variables is close to the number of uncensored observations, some dimension
reduction technique would very likely be used on the covariates before fitting
a linear model with the Buckley-James algorithm. Because no such dimension
reduction techniques have been widely studied for the accelerated failure time
model, we chose to compare the performance of model estimates using partial
least squares with models using all of the data.

The “optimal” mean squared prediction error and number of latent vari-
ables were computed, respectively, by averaging over the minimum mean
squared prediction error and the corresponding number of latent variables
over the validation samples.

The “dominant” number of latent variables was defined as the number of
latent variables that provided the minimum average mean squared prediction
error over all the validation samples, and the corresponding mean squared
prediction error was called the “dominant” mean squared prediction error.

Leave-two-out cross-validation (CV) method was applied to each valida-
tion sample to select the number of the latent variables for the partial least
squares method. The CV mean squared prediction error was the average of
the mean squared prediction error given by the cross-validated number of la-
tent variables, and the corresponding average of the number of latent variables
gave the CV number of latent variables.

Across all the simulations, the mean squared prediction errors of the co-
variate effects from the partial least squares method using leave-two-out cross-
validation to select the number of latent variables are close to that from the
partial least squares method using the optimal number of latent variables. The
mean squared prediction error of covariate effects from partial least squares
was 50% or less of that from a model fit with the Buckley-James algorithm
when p < n. The mean squared prediction error using the cross-validated
number of latent variables is comparable to the optimal mean squared pre-
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diction error, even when the number of predictors p is twice the sample size
n. This suggests that the leave-two-out cross validation method efficiently
identifies the number of latent variables.

Number Mean Squared Prediction Error of Covariate Effects
of correlation ρ = 0 correlation ρ = 0.3

covariates BJa Optimalb Dominantc CVd BJ Optimal Dominant CV
p 10 1.2 1 1.2 10 1.9 2 1.7

10 MSE 0.103 0.060 0.060 0.063 0.135 0.069 0.082 0.093
(SE) (0.008) (0.004) (0.004) (0.004) (0.011) (0.004) (0.006) (0.006)

p 25 1.4 1 1.2 25 1.8 1 1.5
25 MSE 0.487 0.187 0.195 0.204 0.590 0.181 0.191 0.223

(SE) (0.030) (0.008) (0.007) (0.010) (0.057) (0.004) (0.001) (0.009)

p 40 1.5 1 1.2 40 1.9 2 1.6
40 MSE 2.298 0.222 0.235 0.243 3.242 0.288 0.307 0.326

(SE) (0.209) (0.010) (0.009) (0.011) (0.350) (0.007) (0.013) (0.011)

p 2.4 2 1.6 1.9 2 1.8
50 MSE N/A 0.452 0.517 0.542 N/A 0.298 0.301 0.373

(SE) (0.014) (0.021) (0.022) (0.009) (0.009) (0.018)

p 3.6 3 2.1 3.6 3 5.4
100 MSE N/A 1.136 1.176 1.287 N/A 0.738 0.749 0.912

(SE) (0.026) (0.028) (0.027) (0.016) (0.016) (0.028)

a The Buckley-James algorithm.
b The optimal number of latent variables used at each run.
c The same number of latent variables used for all runs.
d The cross-validated number of latent variables used at each run.

Table 1. Comparison of mean squared prediction error of covariate effects from the
Buckley-James algorithm and partial least squares given n = 50 and approximately
20% censoring, assuming an extreme value error distribution.

We used the conditional median to predict the response of a future subject
and mean absolute prediction error to measure the accuracy of the response
prediction:

MAE = m−1
m∑

i=1

|W ∗
i − Ŵ ∗

i |,

where W ∗
i = log(T ∗

i ) and Ŵ ∗
i = β̂

′
Z∗

i + Ŝ−1
ε (0.5), i = 1, · · · ,m were the

true and predicted responses, respectively. Note that Ŝε(0.5) was the median
of the Kaplan-Meier estimate of the survival function for the error term and
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{(T ∗
i ,Z

∗
i )} gave a set of true responses and covariate vectors for m future

subjects.

Number Mean Squared Prediction Error of Covariate Effects
of correlation ρ = 0 correlation ρ = 0.3

covariates BJa Optimalb Dominantc CVd BJ Optimal Dominant CV
p 10 1.1 1 1.1 10 1.7 2 1.6

10 MSE 0.110 0.062 0.062 0.065 0.132 0.067 0.074 0.086
(SE) (0.008) (0.005) (0.005) (0.005) (0.009) (0.005) (0.005) (0.006)

p 25 1.9 1 1.2 25 2.3 2 1.7
25 MSE 0.431 0.190 0.207 0.209 0.493 0.202 0.219 0.264

(SE) (0.029) (0.007) (0.006) (0.008) (0.026) (0.009) (0.010) (0.015)

p 40 1.8 2 1.4 40 2 2 1.3
40 MSE 3.088 0.344 0.360 0.378 2.897 0.306 0.324 0.363

(SE) (0.355) (0.013) (0.015) (0.013) (0.273) (0.008) (0.011) (0.006)

p 1.7 2 1.4 2.08 2 1.9
50 MSE N/A 0.344 0.368 0.417 N/A 0.240 0.243 0.336

(SE) (0.009) (0.020) (0.033) (0.008) (0.016) (0.020)

p 2.9 1 3.4 2.2 1 2.4
100 MSE N/A 0.914 0.987 1.053 N/A 0.599 0.628 0.706

(SE) (0.017) (0.027) (0.026) (0.007) (0.015) (0.029)

a The Buckley-James algorithm.
b The optimal number of latent variables used at each run.
c The same number of latent variables used for all runs.
d The cross-validated number of latent variables used at each run.

Table 2. Comparison of mean squared prediction error of covariate effects from the
Buckley-James algorithm and partial least squares given n = 50 and approximately
20% censoring, assuming a normal error distribution.

We constructed the mean absolute prediction error of responses over a
sample of size m = 100 with different covariate numbers (p = 25, 40, 50, 100)
and different correlations in the covariate space (ρ = 0, 0.3) for extreme value
(Table 3) or normal (Table 4) error distribution of variance σ2 = 0.2, 0.4, 0.6.
The responses were predicted in two ways. The first method assumed that
the true covariate effects β′

0Z
∗
i , i = 1, · · · ,m were known and the predicted

responses were computed by Ŵ ∗
i = β′

0Z
∗
i + Ŝ−1

ε (0.5), i = 1, · · · ,m. The
estimated prediction error was thus due to the estimation of the median of
the error distribution and the variation of the future subjects and not errors in
estimating the regression coefficients. The other method estimated covariate
effects using the partial least squares with the cross-validated number of latent
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variables, and estimated the median of the error term from the empirical error
distribution. The predicted responses from the PLS prediction were computed
by Ŵ ∗

i = β̂
′
Z∗

i +Ŝ−1
ε (0.5), i = 1, · · · ,m. The first method would of course not

be available to a data analyst in practice, and was used simply for comparison
purpose.

For both error distributions, when the percentage of censoring was small
(20%), partial least squares appeared to give an accurate prediction of the
response for a future subject with a set of covariates. The prediction was
better when the covariates were moderately correlated and when the variance
of the error distribution was moderately small. Increasing the number of
parameters reduced the accuracy of the response prediction. The optimal
mean absolute mean error stayed around 0.36.

Number of Error Variance Mean Absolute Predicted Error of Responses
Covariates correlation ρ = 0 correlation ρ = 0.3

Method I Method II Method I Method II
0.2 0.32 0.39 0.33 0.39

10 0.4 0.45 0.51 0.44 0.52
0.6 0.56 0.60 0.55 0.62
0.2 0.31 0.47 0.31 0.52

25 0.4 0.46 0.64 0.44 0.52
0.6 0.53 0.75 0.53 0.75
0.2 0.32 0.56 0.31 0.66

40 0.4 0.40 0.64 0.44 0.67
0.6 0.55 0.81 0.53 0.76
0.2 0.32 0.69 0.30 0.71

50 0.4 0.47 0.68 0.44 0.68
0.6 0.51 0.86 0.51 0.74
0.2 0.32 0.87 0.31 0.83

100 0.4 0.43 0.95 0.46 0.86
0.6 0.53 1.19 0.55 0.96

Table 3. Comparison of the mean absolute prediction error of responses from meth-
ods I and II, assuming an extreme value error distribution.

The next section describes the data set from ACTG 333 in more detail
and presents an analysis of that data.

4 A Description of the Data

ACTG 333 was a randomized trial with a primary objective of determining
whether substituting hard capsule saquinavir (SQVhc) with indivinar (IDV)
or soft gelatin capsule saquinvir (SQVsgc) would show a greater decrease
plasma HIV-1 RNA levels for patients with a previous prolonged (more than
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Number of Error Variance Mean Absolute Predicted Error of Responses
Covariates correlation ρ = 0 correlation ρ = 0.3

Method I Method II Method I Method II
0.2 0.38 0.43 0.37 0.42

10 0.4 0.50 0.59 0.52 0.59
0.6 0.68 0.74 0.62 0.66
0.2 0.37 0.47 0.37 0.53

25 0.4 0.54 0.68 0.52 0.62
0.6 0.64 0.74 0.62 0.70
0.2 0.35 0.64 0.37 0.54

40 0.4 0.53 0.76 0.49 0.65
0.6 0.64 0.80 0.61 0.81
0.2 0.37 0.69 0.38 0.64

50 0.4 0.52 0.83 0.51 0.68
0.6 0.61 0.86 0.59 0.76
0.2 0.36 1.00 0.36 0.73

100 0.4 0.53 1.12 0.52 0.83
0.6 0.66 1.16 0.63 0.95

Table 4. Comparison of the mean absolute prediction error of responses from meth-
ods I and II, assuming a normal error distribution.

one year) use of SQVhc. A secondary objective was to assess the predictive
power of mutations in the protease gene at baseline for the in vivo anti-viral
response. The mutant strains of the virus were conjectured to have developed
during the prior exposure to SQVhc and could confer drug resistance. Study
participants were randomized to one of the three treatment arms: 8 weeks of
SQVhc, followed by IDV; 8 weeks of SQVsgc, followed by crossover to IDV if
no HIV-1 RNA response; or 8 weeks of IDV, followed by crossover to SQVsgc
if no HIV-1 RNA response. There were two stratification factors, one is viral
load at screening (≥ 50, 000 or < 50, 000 RNA copies/mL) and the other is
the number of nucleoside reverse-transcriptase (RT) inhibitors in the anti-
retroviral drug regimen (0-1 or ≥ 2) at study entry. The original enrollment
goal of the trial called for 144 participants, but the trial was stopped by the
ACTG and its review board after eighty-nine subjects had been enrolled when
an interim analysis demonstrated the superiority of the IDV arm.

Increased drug resistance in HIV disease has been observed with mutations
leading to amino acid substitutions in the protease gene at codons 10, 46, 48, 82
and 84 [CC96, JHO96, VIS99] and with the accumulation of multiple muta-
tions [CS95, CH96]. Although the HIV-1 protease gene was fully sequenced in
this study, only amino acid substitutions at the 12 selected protease residues
10, 20, 24, 46, 48, 54, 71, 73, 82, 84, 88, and 90 were analyzed in the study
report, because of their recognized association with resistance to SQV and/or
IDV [PG00]. We explore here the use of as much as possible of baseline
protease genotype, along with the treatment assignment and other baseline
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clinical measurements, in predicting the in vivo anti-viral response measured
by the reductions in HIV−1 RNA level from baseline to week 8.

Sixty-five study subjects had measurements on HIV-1 RNA protease gene
sequence. After the deletion of 5 subjects with missing CD4 measurements
or detectable HIV-1 RNA level at baseline, the data set used here consisted
of 60 patients who had information on protease sequence, treatment assign-
ment, baseline clinical measurements (HIV-1 RNA viral load, the percentage
of white cells that are CD4 positive (called CD4 percentile), CD4 cell counts
(measured in cells/mm3), CD8 percentile, CD8 counts, prior experience with
SQVhc (measured in number of weeks of therapy), and the two stratification
factors. Response was defined as the reduction of HIV-1 RNA level (log10

copies/mL) from baseline to week 8; a negative reduction indicated a rise
in HIV-1 RNA from baseline. If the patient’s RNA viral load at week 8
dropped below the quantification limit of 500 copies/mL, the corresponding
observation would be right-censored. Out of the 60 observations, 12 (20%)
were censored. The potential censoring value for each change in log10RNA
is the difference between baseline log10RNA and log10(500). Large poten-
tial censoring values correspond to subjects with high initial viral load who,
because of disease burden, might respond poorly to treatment, leading to a
potential dependence between censoring and response. We assume, as others
have in similar situations, that including the baseline viral RNA load among
the covariates mitigates this possible dependence. The analysis depends more
heavily on the conditional independence of censoring and response, given the
covariates, than is often the case in the analysis of censored event times from
clinical trials.

Table 6 shows the distribution of the protease gene mutations among 60
subjects. One patient had no mutation, 3 had 1 mutation and the remainder
had at least 2 mutations. Seventy-four codon positions had no more than 2 pa-
tients with mutations at those positions and thus were deleted as explanatory
variables.

Table 5 gives the list of codon positions with at least 3 mutations. As
a result, the analysis presented here used a data set of 60 subjects with 35
covariates (including 25 variables for 25 codon positions with mutations).

5 The Data Analysis

In chronic diseases such as cancer or HIV, statistical models are more often
used to identify groups with predicted good or poor response to treatment
than to predict individual outcomes. This approach is consistent with semi-
parametric models such as the proportional hazards model [Cox72] and the
AFT, where baseline failure rates and mean response values (the intercept
in the linear model) are not included in the estimating equations. The goal
of the analysis presented here was to find low dimensional predictors to rank
subjects according to predicted outcome using stepwise regression, principal
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Number of mutations Codon positions
3 69, 73∗, 82∗

4 12, 48∗, 74
5 16, 19, 20∗, 72
6 13
7 14, 41
9 36
10 10∗

11 62
12 15, 35
15 64, 77
19 71∗

21 37
23 93
27 90∗

50 63
∗These are the 7 out of 12 codon positions at which mutations are
known to have association with resistance to SQV and/or IDV.
Codons 24, 46, 54, 84, and 88 are left out since no more than
two subjects with mutation at these positions.

Table 5. Codons for which 3 or more patient samples indicated mutations

Number of mutations 0 1 2 3 4 5 6 7 8 9
Number of patients 1 3 7 8 4 16 9 4 6 2

Table 6. Distribution of mutations

component regression (PCR) and partial least squares, all adapted to the
Buckley-James algorithm for fitting the AFT. The information for ranking
is contained in values estimated for β′Zi; in the proportional hazards model
for right-censored event times, these values denote log relative risk, and are
sometimes called risk scores. In the AFT, positive values of the covariate
effect β′Zi denote changes in viral load that are larger than the mean change
of the group, so in this setting, we call the value β′Zi a “beneficial score”.

Fitting the AFT model with the Buckley-James algorithm presents sev-
eral computational challenges. The algorithm sometimes fails to converge, and
variances of parameter estimates can be difficult to estimate. With this data
set, we did not encounter convergence problems, even though the Buckley-
James algorithm had to be repeated many times for both the stepwise fitting
and partial least squares. We used a non-parametric bootstrap to estimate
the standard errors of parameter estimates, drawing 500 bootstrap samples
with replacement from the 60 observations and re-estimating regression coef-
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ficients using Buckley-James algorithm. We then used the empirical variance
of the estimated regression coefficients based on these bootstrap samples to
approximate the variance of the estimated regression coefficients. Empirically,
we have found that the inference results changed little with more than 500
bootstrap samples, which implies the sufficiency of 500 bootstrap samples. We
did not use the [Tsi90] estimating equations based on the marginal likelihood
of the ranks of the observed failure times because those equations are also
difficult to solve numerically, and we did not use the recent iterative linear
programming approach by [JLW03] because it was not easily adapted to the
ideas of PLS.

Because of the large number of covariates, the forward stepwise regression
with the AFT was preceded by bootstrap-based Wald tests of significance
for association between change in log10 RNA and the covariates in univariate
regression models. Nine covariates were statistically significant at 0.1 level
(Table 7).

In the last column of the table, we reported the proportion of reaching con-
vergence within 50 iterations in the 500 bootstrap samples for each univariate
regression, where the convergence of Buckley-James algorithm is reached when
the relative change of the consecutive estimated coefficients is smaller than
1%. We have found that the proportions of reaching convergence are fairly
high and the algorithm is often settled with few closed stable points when
the convergence is not reached. The proportion of reaching convergence of
Buckley-James algorithm for multivariate case is similarly high.

The final model from the stepwise forward procedure includes mutation
in codon 19 and 69, the number of RT inhibitors and the number of weeks
of prior saquinavir with respective point estimates (standard errors) for the
centered and scaled covariates -0.112(0.033), -0.113(0.018), -0.228(0.064) and
-0.192(0.083). In this setting, positive values of the regression coefficient indi-
cate reductions in RNA levels between baseline and week 8, so the mutation at
codon 19, 69, more RT inhibitors and longer time of prior saquinavir predict
for a poor response. Because of the need to conduct the Buckley-James algo-
rithm on 500 bootstrap samples for every model encountered in the stepwise
subset selection procedure, this approach was computationally intensive.

With principal component regression, we made the somewhat arbitrary
choice to include the first seven principal components as predictors since they
explained 52% of the variation in the covariate space. The low proportion
of explained variation by the first 7 principal components indicates a lack of
correlation structure in the covariate space. The point estimates (standard er-
rors) for these 7 components were -0.080 (0.045), 0.102 (0.048), -0.018 (0.053),
0.088 (0.050), 0.096 (0.053), 0.029 (0.054), and -0.024 (0.052). Only the esti-
mated regression coefficient for the second principal component is statistically
significant at 0.05 level.

The BJ-PLS approach using the leave-two-out cross validation produces
a model which has one latent variable with point estimate (standard error)
0.262 (0.058). The single latent variable selected in BJ-PLS had the largest
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Covariates coef. se. p-value % of conv.∗

codon10 -0.195 0.273 0.476 97%
codon12 0.218 0.224 0.330 82%
codon13 -0.126 0.334 0.707 70%
codon14 0.227 0.243 0.351 85%
codon15 0.140 0.206 0.495 85%
codon16 0.309 0.299 0.302 93%
codon19 -0.366 0.166 0.027 86%
codon20 -0.103 0.195 0.598 97%
codon35 -0.033 0.182 0.856 89%
codon36 -0.128 0.173 0.460 96%
codon37 0.162 0.213 0.446 91%
codon41 -0.062 0.189 0.741 89%
codon48 0.456 0.308 0.139 99%
codon62 -0.110 0.236 0.642 99%
codon63 -0.325 0.241 0.176 85%
codon64 0.014 0.180 0.937 87%
codon69 -0.528 0.134 0.000 100%
codon71 0.027 0.211 0.899 91%
codon72 0.377 0.472 0.425 89%
codon73 -0.178 0.289 0.538 89%
codon74 -0.086 0.257 0.739 99%
codon77 -0.005 0.194 0.978 90%
codon82 0.137 0.261 0.599 98%
codon90 -0.369 0.201 0.067 98%
codon93 -0.258 0.185 0.162 99%
wks. prior Saq. -0.005 0.002 0.055 99%
CD4 percent 0.023 0.012 0.053 96%
CD4 count 0.001 0.001 0.032 90%
CD8 percent -0.009 0.007 0.234 97%
CD8 count 0.000 0.000 0.593 86%
screening viral load 0.024 0.197 0.904 90%
Num. RT inhibitors -0.479 0.148 0.001 100%
baseline log rna -0.185 0.106 0.081 93%
SQVsqc -0.050 0.145 0.730 91%
IDV 0.580 0.200 0.004 100%
∗ percentages of convergence reached in 500 bootstrap samples
within 50 iterations to obtain the standard error estimates.

Table 7. Univariate analysis with AFT model
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observed z-score among all original or transformed variables. The loadings
for the original 35 covariates are given in Figure 1, with the covariates listed
in the caption in the order in which they appear along the horizontal axis.
The latent variable is linear combination of the original covariates, and the
loadings are the weights for the covariates in the combination. The loadings
can be viewed as a measure of the contribution from the individual covariate
to the latent variable. A closer look at the loadings for these data reveals that
BJ-PLS and stepwise regression provide similar and somewhat complementary
information.
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Fig. 1. Loadings for the standardized covariates. The covariates along the hor-
izontal axis are, from right to left, (1) number of RT inhibitors, (2) number of
weeks of prior saquinavir, (3) baseline log 10 viral RNA, (4) codon90, (5) CD8 per-
centile, (6) codon93, (7) codon63, (8) codon69, (9) codon10, (10) CD8 cell count,
(11) randomization to SQVsgc (12) codon19, (13) codon20, (14) codon62, (15)
codon36, (16) codon74, (17) codon77, (18) codon71, (19) codon73, (20) codon13,
(21) codon41, (22) codon64, (23) codon82, (24) codon35, (25) screening viral
load, (26) codon72, (27) codon15, (28) codon48, (29) codon16, (30) codon37, (31)
codon14, (32) codon12, (33) CD4 cell count, (34) CD4 percentile, (35) randomiza-
tion to IDV
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The two of the four estimated coefficients of the covariates chosen by the
stepwise model fitting (number of RT inhibitors and the number of weeks of
prior saquinavir) lie at the extreme ends of the loading values and all have the
same signs as the loadings in BJ-PLS. The loadings present a more detailed
picture, however, suggesting a smooth transition in effect of variables from
those that adversely effect response (number of RT inhibitors, number of
weeks of prior saquinavir, baseline HIV-1 RNA level and mutations in codon
90) to those that strongly predict good response (mutations in codon 12, CD4
percentile and cell counts, and randomizations to IDV). The middle grouping
of loadings (consisting largely of mutations in codons such as 13, 41, 71, 73,
etc) seem to have little association with response. Seven of the twelve codons
that have previously been associated with drug resistance are marked in Table
1; the remaining 5 of those 12 codons were dropped since fewer than three
patients harbored virus with mutations in those positions. None of these 7
codons have loadings in the group with largest absolute value. Finally, the
primary conclusion of ACTG 333 was that randomization to IDV significantly
improved response, and that variable has the largest positive loading. Even
in the presence of the information in the 35 covariates, treatment remains an
important predictor in this data set.

The objective of our analysis was to use baseline clinical measurements
and HIV virus mutation information to classify future subjects into poten-
tially “good” or “poor” responders. We computed estimated beneficial scores
β′Zi for all patients based on one latent variable estimated in BJ-PLS, the
four variables selected in the stepwise approach to the AFT, and the first
7 principal components. All patients were divided into two groups accord-
ing to whether or not their estimated beneficial scores were above or below
the median score. The two groups were compared using the non-parametric
Kaplan-Meier estimates of their distribution functions (Figure 2). For the
groups constructed using PLS, the median reduction of HIV RNA from base-
line was 0.64 log10 copies/mL (4.32 fold reduction) in the potentially good
responders and -0.001 log10 copies (essentially, no reduction) in the other
groups. Because of the data dependent way in which the groups were con-
structed, any p-value comparing these two groups would not be valid. We
also divided the subjects into potentially good and poor responders using the
fitted model from Step-AFT and PCR, with Kaplan-Meier estimates for the
distributions of beneficial scores in two groups also shown in Figure 2. The
pairs of survival curves are all similar; each method seems to adequately iden-
tify the cases whose response is in the right tail of the distribution of changes
in RNA value. The principal components are least able to discriminate be-
tween individuals whose change in viral load is in the left tail (increases in
viral load). The BJ-PLS and Step-AFT generated curves appear similar, but
there are differences. There are 20 subjects who are placed in different groups
by Step-AFT and by BJ-PLS. To examine the detailed ordering of the 20
subjects, the predictions from Step-AFT and BJ-PLS for all subjects were
plotted in Figure 3. All the subjects that were inconsistently grouped were
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marked in the figure. Evidently, most subjects with inconsistent grouping
by the two methods have relatively small estimated covariate effects by both
methods and do not contradict the general trend of consistency between the
two. The only exception is that the two methods made quite different predic-
tion for one censored subject with change in viral load of at least 1.1 fold. One
possible reason of the discrepancy is that the subject has high CD4 count and
CD4 percentile whose beneficial effects are not reflected in the prediction of
Step-AFT where the final model does not include CD4 count and percentile.
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Fig. 2. Kaplan-Meier estimates for distributions of change in log10 RNA for good
and poor risk groups estimated by BJ-PLS, Step-AFT and PCR

For a future subject with a covariate vector Zf , we can compute the
predicted covariate effect by β̂

′
Zf and the predicted response, the reduction

in HIV−1 RNA level (log10 copies/mL) from baseline to week 8, by β̂
′
Zf +

0.365, where β̂ is the partial least squares estimate of the covariate coefficients
with one latent variable and 0.365 is the estimated median of the error term,
obtained by inverting the Kaplan-Meier estimate of the survival function of
the empirical residuals.

We used a resampling experiment with these data to examine the ability
of the leave-two-out cross validation method to prevent over-fitting. We ran-
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Fig. 3. Scatter plot of predictions for covariate effects made by Step-AFT and
BJ-PLS (subjects with inconsistent grouping are marked with cross)

domly divided the original data set into a training sample and a validation
sample with sample sizes of 32 and 31, respectively. We then fit an accel-
erated failure time model to the training sample using partial least squares
with different numbers of latent variables (k = 1, 3, 5, and 7) and used the
resulting parameter estimates to predict the beneficial scores on the subjects
in the validation sample. The validation sample was then divided into two
groups using the median of the predicted beneficial scores as the cutoff point
(high versus low). The difference between the two groups in RNA reduction
was compared using the log rank test and the p-values were computed. We
repeated this process for B2 = 100 times. Figure 4 gives the Q-Q plots of the
p-values obtained from using different numbers of latent variables (k = 1, 3, 5,
and 7) against the uniform distribution U(0,1). If the partial least squares es-
timates do not have much predictive power, the p-values should be uniformly
distributed between 0 and 1. The observed pattern of the p-values using one
latent variable differed the most from a uniform distribution.

To examine the reproducibility of predictions from these methods, we
conducted two resampling experiments. The first, labeled CV I (for cross-
validation I) took the models arrived at in the whole data sets from the three
methods as fixed, then examined how well coefficients for these models pre-
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Fig. 4. Distribution of p-values

dicted outcome in validation samples when the coefficients were re-estimated
in training samples. The second, CV II, re-estimated the model (including
the model selection process) in each training sample then used a validation
sample for predictions. In the CV II, we randomly split the data into train-
ing and validation samples with equal sizes. Then we estimated AFT, PCR
and PLS model coefficients for the models arrived at earlier using the training
sample; the parameter estimates were then used to split the validation sample
into high and low beneficial score groups. We used a logrank test to assess
the association between HIV-1 RNA change from baseline to week 8 with the
two groups. A small p-value indicated a good separation between the groups.
We repeated the cross-validation procedure B3 = 200 times. Models with less
predictive ability will produce p-values in these 200 replicates that are closer
to the uniform distribution. Models with more predictive ability will have
p-values clustered near 0. Table 8 summarizes the empirical distributions of
the observed p-values.

Overall, the model selected from BJ-PLS gave the smallest p-values, while
the model from PCR seemed to have almost no predictive power. The differ-
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Methods Min 1st Q. Median 3rd Q. Max Min 1st Q. Median 3rd Q. Max
CV I CV II

BJ-PLS 0.000 0.002 0.009 0.035 0.971 0.000 0.094 0.227 0.485 0.978
Step-AFT 0.000 0.005 0.016 0.059 0.975 0.000 0.085 0.251 0.585 0.988
PCR 0.000 0.200 0.419 0.720 0.993

Table 8. Summary of the empirical distribution of p-values from cross-validation
procedures for BJ-PLS, Step-AFT and PCR

ences between the modeling techniques were smaller in this experiment, most
likely because the small training samples made the models chosen less reliable.

Since the PLS method led to a single latent variable, it is possible to use
relatively simple methods for model checking. With one latent variable, the
model reduces to a simple linear regression of the response variable on the
latent variable. The Buckley-James algorithm replaces a censored response
with an imputed value, an estimated conditional mean ϕ̂(Y o) = Ê(Y |Y ≥
Y o). The appropriateness of the single latent variable in PLS can be checked
in scatter plots of response by the latent variable, where censored responses
are replaced by their imputed values, and by residual plots. These two plots
are shown in Figure 5 and Figure 6. The least squares and lowess lines on the
first of these plots show a strong linear relationship between the latent and
response variables. Here, we used the lowess function in R (version 1.6.2) with
the default smoother span of 2/3. The slope of the least squares line is 0.263,
the same as the coefficient of the latent variable in PLS. The intercept (0.361)
of the line can be used as an estimate of the mean of the error distribution,
and is interpreted as the average RNA response across the subjects. The
lowess line fit to the residual plot also suggests a strong linear relationship
between the RNA response and the latent variable.

Figure 7 shows the estimated density of the values of β̂
′
Zi from the latent

variable, estimated from the observed values using BJ-PLS. The beneficial
scores appear approximately normally distributed, supporting breaking the
group of patients into two groups using the median score. Smaller groups
could be constructed using the quartiles of this distribution.

6 Summary and Discussion

Partial least squares algorithm has been extended to the proportional hazards
model to analyze right censored data [NR02, PT02]. Though proportional
hazards model is very popular to analyze right censored survival data, the
accelerated failure time model is more interpretable under certain circum-
stances. The approach described in this paper extends principal component
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Fig. 5. Scatter plot of change in log10 RNA versus the BJ-PLS latent variable
(censored responses are replaced by imputed values)

regression (PCR) and partial least squares (PLS) to the accelerated failure
time model(AFT), and compares the exploratory analysis of an HIV data
set using these methods to more traditional stepwise regression. Even in
the simplest setting of linear regression, model selection and prediction can
present difficulties, and those difficulties are amplified in the presence of cen-
sored data. Nonparametric estimates of a mean response with censored data
are well-known to be biased and estimating the intercept in the AFT model
presents the same issues. We have chosen to absorb the intercept as an un-
modeled term in the error distribution, treating the covariate effect β′Zi as
the main quantity of interest. Because of the unknown intercept and the
incomplete observation of censored responses, we use the leave-two-out cross
validation described in section 2, which relies only on predicted covariate effect
for cases dropped from the training data set, instead of the usual prediction
error sum of squares. The leave-two-out cross-validation suits the primary
objective of the analysis, i.e., grouping subjects according to prognosis. In
such an analysis, the error in minimizing the difference in response between
two subjects should be minimized.

Principal component analysis performed poorly with this data set. The
empirical experience with principal component analysis [WM03] suggests that
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Fig. 6. Residuals from the least squares fit of the response variable on the BJ-PLS
latent variable (censored residuals are replaced by imputed values)

it often leads to a larger number of latent variables than partial least squares to
achieve the same prediction error, so it is possible that more than 7 principal
components were necessary in this data set. We are reporting elsewhere the
results of detailed simulations comparing PCR and PLS. Those simulations
also show that PCR in the AFT with censored data also leads to more latent
variables when the number of latent variables is chosen by cross-validation.

The proposed BJ-PLS method takes advantage of the fact that every it-
erative step of Buckley-James algorithm is an ordinary least squares fit and
replaces the regular least squares fitting with the PLS fitting. Since the ma-
jor computational burden of BJ-PLS is on the PLS algorithms performed at
each iteration step, it is expected that the BJ-PLS shares similar scalability
of PLS, which is known to be numerically adaptive to high-dimensional data
sets.
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1 Introduction

The motivation for this paper is the analysis of a cohort of patients where not
only the survival time of the patients but also a finite number of life states
are under study. The behavior of the process is assumed to be semi-Markov
in order to weaken the very often used, and often too restrictive, Markov
assumption. The behavior of such a process is defined through the initial
probabilities on the set of possible states, and the transition functions defined
as the probabilities, starting from any specified state, to reach another state
within a certain amount of time. In order to define this behavior, the set of
the transition functions may be replaced by two sets. The first one is the set
of direct transition probabilities pjj′ from any state j to any other state j′.
The second one is the set of the sojourn times distributions F|jj′ as functions
of the actual state j and the state j′ reached from there at the end of the
sojourn (section 2).

The most usual model in this framework is the so-called competing risk
model. This model may be viewed as one where, starting in a specific state j,
all states that may be reached directly from j are in competition: the state
j′ with the smallest random time Wjj′ to reach it from j will be the one. It
is well known that the joint distribution and the marginal distribution of the
latent sojourn times Wjj′ is not identifiable in a general competing risk model
[TSI75]. In a semi-Markov model as well as in a competing risk model, only
the sub-distribution functions Fj′|j = pjj′F|jj′ are identifiable and it is always
possible to define an independent competing risk (ICR) model by assuming
that the variables Wjj′ , j′ = 1, . . . ,m, are independent with distributions
F|jj′ = Fj′|j/Fj′|j(∞). Without an assumption about their dependence, their
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joint distribution is not identifiable and a test of an ICR model against an
alternative of a general competing risk model is not possible. Similarly, there
is always a representation of any general semi-Markov model as a competing
risk model with possibly dependent Wjj′ but it is not uniquely defined. When
the random variables Wjj′ , j′ ∈ J(j), are assumed to be independent, the
semi-Markov model simplifies : the transition probabilities can be deduced
from the laws of the sojourn times Wjj′ (section 3). As the term "competing
risk" is also used in case of dependence of the Wjj′ , we shall emphasize the
independence we always assume in a competing risk model, by denoting it
the ICR model (Independent Competing Risk model).

For a general right-censored semi-Markov process, Lagakos, Sommer and
Zelen [LSZ78] proposed a maximum likelihood estimator for the direct tran-
sition probabilities and the distribution functions of the sojourn times, under
the assumption of a discrete function with a finite number of jumps. In non-
parametric models for censored counting processes, Gill [GILL80], Voelkel
and Crowley [VC84] considered estimators of the sub-distribution functions
Fj′|j = pjj′F|jj′ and they studied their asymptotic behavior. Here, we con-
sider maximum likelihood estimation for the general semi-parametric model
defined by the probabilities pjj′ and the hazard functions related to the dis-
tribution functions F|jj′ (section 4). If the mean number of transitions by
an individual tends to infinity, then, the maximum likelihood estimators are
asymptotically equivalent to those of the uncensored case. In section 5, we
present new estimators defined for the case of a right-censored process with
a bounded number of transitions [PONS04]. The difficulty comes from the
fact that we do not observe the next state after a right-censored duration in
a state.

Under the ICR assumption, specific estimators of the distribution func-
tions F|jj′ and of the direct transition probabilities pjj′ are deduced from
Gill’s estimator of the transition functions Fj′|j . A comparison of those esti-
mators to the estimators for a general semi-Markov process leads to tests for
an ICR model against the semi-Markov alternative (section 6).

2 Framework

For each individual i, i = 1, · · · , n, we observe, during a period of time ti, the
successive states J(i) = (J0(i), J1(i), · · · , JK(i)(i)), where J0(i) is the initial
state, JK(i)(i) the final state after K(i) transitions. The total number of
possible states is assumed to be finite and equal to m. The successive observed
sojourn times are denoted X(i) = (X1(i), X2(i), · · · , XK(i)(i)), where Xk(i)
is the sojourn time i spent in state Jk−1(i) after (k − 1) transitions, and the
cumulative sojourn times are Tk = Σk


=1X
.
One must notice that, if i changes state K(i) times, the sojourn time i spent
in the last state JK(i) is generally right censored by ti − TK(i)(i), where ti is
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the total period of observation for subject i. We simplify the rather heavy
notation for this last duration, and the last state JK(i)(i) as

X∗(i) ≡ ti − TK(i)(i), J∗(i) ≡ JK(i)(i).

The subjects are assumed independent and the probability distribution
of the sojourn times absolutely continuous. The two models we propose for
the process describing the states of the patient are renewal semi-Markov
processes. Their behavior is defined through the following quantities:

1. The initial law ρ = (ρ1, ρ2, · · · , ρm):

ρj = P (J0 = j), j ∈ {1, 2, · · · ,m},∑
j∈{1,2,··· ,m}

ρj = 1. (1)

2. The transition functions Fj′|j(t) :

Fj′|j(t) = P (Jk = j′, Xk ≤ t|Jk−1 = j) , j, j′ ∈ {1, 2, · · · ,m}. (2)

Equivalent to the set of the transition functions Fj′|j , is the set of the
transition probabilities, p = {pjj′ , j, j′ ∈ {1, 2, · · · ,m}, together with the
set of the distribution functions F|jj′ of the sojourn times in each state
conditional on the final state as defined below

1. The direct transition probabilities from a state j to another state j′ :

pjj′ = P (Jk = j′|Jk−1 = j), (3)

2. The law of the sojourn time between two states j and j′ defined by its
distribution function:

F|jj′(t) = P (Xk ≤ t|Jk−1 = j, Jk = j′), (4)

where
m∑

j′=1

pjj′ = 1 , pjj′ ≥ 0 , j, j′ ∈ {1, 2, · · · ,m}. (5)

We notice that the distribution functions F|jj′ conditional on states (j, j′) do
not depend on the value of k, the rank of the state reached by the patient
along the process, which is a characteristic of a renewal process. We can
define the hazard rate conditional on the present state and the next one,

λ|jj′(t) = lim
dt−→0

P (t ≤ Xk ≤ t + dt|Xk ≥ t, Jk−1 = j, Jk = j′)
dt

, (6)

as well as the cumulative conditional hazard
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Λ|jj′(t) =
∫ t

0

λ|jj′(u)du. (7)

Let Wj be a sojourn time in state j when no censoring is involved, Fj its
distribution function, and F j ≡ 1 − Fj its survival function, such that

F j(x) ≡ P (Wj > x) =
m∑

j′=1

pjj′F |jj′(x). (8)

The potential sojourn time in state j may be right censored by a random
variable Cj having distribution function Gj , density gj and survival function
Gj . The observed sojourn time in state j is Wj ∧ Cj .
A general notation will be F for the survival function corresponding to a
distribution function F , so that, for example, F |jj′ = 1 − F|jj′ and similarly,
for the transition functions, F j′|j = pjj′ − Fj′|j .

3 Independent Competing Risks Model

We assume now that, starting from a state j, the potential sojourn times Wjj′

until reaching each of the states j′ directly reachable from j are independent
random variables having distribution functions defined through (4). The final
state is the one for which the duration is the smallest. One can thus say that
all other durations are right censored by this one. Without restriction of the
generality, we assume that the subject is experiencing the kth transition. The
competing risks model is defined by

Xk = min
j′=1,...,m

Wjj′ ,

Jk = j′ such that Wjj′ < Wjj” , j” �= j′, (9)

where Wjj′ has the distribution function F|jj′ .
In this simple case, independence, both of the subjects and of the potential

sojourn times in a given state, allows us to write down the likelihood as
a product of factors dealing separately with the time elapsed between two
specific states (j, j′). For the Independent Competing Risk model, one derives
from (6), (8) and(9) that

Fj′|j(t) = P (Jk = j′, Xk ≤ t|Jk−1 = j)

=
∫ t

0

{
∏

j” �=j′
F |jj”(u) } dF|jj′(u) (10)

=
∫ t

0

λ|jj′(u)e−
∑

j” Λ|jj” (u)du.

A consequence is that the direct transition probabilities pjj′ defined in (3)
may be derived from the probabilities defined in (4),
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pjj′ = P (Jk+1 = j′|Jk = j) =
∫ ∞

0

λ|jj′(u)e−
∑

j” Λ|jj” (u)du. (11)

In this special case, the likelihood is fully determined by the initial ρj and
the functions λ|jj′ defined in (6). The likelihood Lrc,n for the independent
competing risks is proportional to

Lrc,n =
n∏

i=1

ρJ0(i)

K(i)∏
k=1

λ|Jk−1(i),Jk(i)(Xk(i))

×e−
∑

j” ΛJk−1(i),j”(Xk(i))e−
∑

j” Λ|J∗(i),j”(X
∗(i)) . (12)

It can be decomposed into the product of terms each of which is relative to
an initial state j and a final state j′. When gathering the terms in Lrc,n that
are relative to a same hazard rate λ|jj′ or else Λ|jj′ , one observes that the
hazard rates appear separately in the likelihood for each pair (j, j′)

Lrc,n =
{ n∏

i=1

ρJ0(i)

}∏
j

m∏
j′=1

Lrc,n(j, j′),

Lrc,n(j, j′) =
n∏

i=1

K(i)∏
k=1

[λ|jj′(Xk(i))e−Λ|jj′ (Xk(i))]1{Jk−1(i)=j, Jk(i)=j′}

×
[
e−Λ|jj′ (Xk(i))

]1{Jk−1(i)=j, Jk(i) �=j′} (13)

×
[
e−Λ|jj′ (X

∗(i))
]1{J∗(i)=j}

.

This problem may be treated as m parallel and independent problems of right
censored survival analysis. The only link between them is the derivation of
the direct transition probabilities using (11).

4 General Model

The patients are assumed to be independent, while the potential times for a
given subject are no longer assumed to be independent. We model separately
the hazard rate and the transition functions ρj , pjj′ and λ|jj′ defined as in
(1), (3) and (6). The direct transition probabilities pjj′ can no longer be
derived from the hazard rates.They are now free, except for the constraints
(5). The distributions of the time elapsed between two successive states j and
j′ and those of the censoring are assumed to be absolutely continuous. The
likelihood Ln is proportional to
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Ln =
n∏

i=1

ρJ0(i)

K(i)∏
k=1

GJk−1(i)(Xk(i))pJk−1(i),Jk(i)λ|Jk−1(i),Jk(i)(Xk(i))

×e−Λ|Jk−1(i),Jk(i)(Xk(i))
gJ∗(i)(X∗(i))

×
{ m∑

j′=1

pJ∗(i),j′e−Λ|J∗(i),j′ (X
∗(i))
}

=
n∏

i=1

m∏
j=1

ρ
1{J0(i)=j}
j

K(i)∏
k=1

m∏
j′=1

[pjj′λ|jj′(Xk(i))e−Λ|jj′ (Xk(i))

×Gj(Xk(i))]1{Jk−1(i)=j,Jk(i)=j′}

×
{
gj(X∗(i))

m∑
j′=1

pjj′e−Λ|jj′ (X
∗(i))
}1{J∗(i)=j}

.

This likelihood may be written as a product of terms each of which implies
sojourn times exclusively in one specific state j, Ln =

∏m
j=1 Ln(j).

For each subject i, and for each k ∈ {1, 2, · · · ,K(i)}, we denote 1 − δk(i) the
censoring indicator of its sojourn time in the kth visited state, Jk−1(i), with
the convention that δ0(i) ≡ 1 for every i. If j′ is an absorbing state, and if
Jk(i) = j′, then j′ is he last state observed for subject i, k ≡ K(i), and we
denote it X∗(i) = 0 and δK(i)+1(i) = 1.
Another convention is that subject i is censored, when the last visited state
J∗(i) is not absorbing and the sojourn time in this state X∗(i) is strictly
positive and we denote 1 − δi the censoring indicator. In all other cases, in
particular if the last visited state is absorbing or if the sojourn time there is
equal to 0, we say that the subject is not censored and we thus have δi = 1.
We can then write

δk(i) =
k∏

k′=1

δk′(i), δi = 1{X∗(i) = 0}.

For each state j of {1, 2, · · · ,m}, we define the following counts where k
varies, for each subject i, between 1 and K(i), i ∈ {1, 2, · · · , n}, and x ≥ 0,

Ni,k(x, j, j′) = 1{Jk−1(i) = j, Jk(i) = j′}1{Xk(i) ≤ x},
Yi,k(x, j, j′) = 1{Jk−1(i) = j, Jk(i) = j′}1{Xk(i) ≥ x},

N c
i (x, j) = (1 − δi)1{J∗(i) = j}1{X∗(i) ≤ x},

Y c
i (x, j) = (1 − δi)1{J∗(i) = j}1{X∗(i) ≥ x}.

By summation of the counts thus defined on the indices j′, i, or k, we get
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N(x, j, j′, n) =
n∑

i=1

K(i)∑
k=1

Ni,k(x, j, j′), (14)

Nnc(x, j) =
m∑

j′=1

N(x, j, j′, n),

N(x, j, n) =
n∑

i=1

Nnc
i (x, j) + Nnc(x, j),

Y nc(x, j, j′, n) =
n∑

i=1

K(i)∑
k=1

Yi,k(x, j, j′),

Y (x, j, n) =
m∑

j′=1

Y nc(x, j, j′, n) +
n∑

i=1

Y c
i (x, j).

By taking for x the limiting value ∞ we define Ni,k(j, j′) = Ni,k(∞, j, j′),
N c

i (j) = N c
i (∞, j), N(j, j′, n) = N(∞, j, j′, n), Nnc(j, n) = Nnc(∞, j, n), so

that N(j, j′, n) is the number of direct transitions from j to j′ that are fully
observed,N(j, n) is the number of sojourn times in state j, whose Nnc(j, n)
(nc for not censored) are fully observed and N c(j, n) (c for censored) are
censored. For x = 0, we denote Y c

i (j) = Y c
i (0, j). The number of individuals

initially in state j is N0(j, n) =
∑n

i=1 1{J0(i) = j}.
The true parameter values are denoted ρ0

j and p0
jj′ , and the true functions

of the model are F
0

j′|j , F
0

|jj′ , F
0

j , G
0

j and Λ0
|jj′ .

Let ln = log(Ln) and ln(j) = log(Ln(j)). The log-likelihood relative to
state j is proportional to

ln(j) = log ρjN
0(j, n) +

m∑
j′=1

N(j, j′, n) log(pjj′)

+
n∑

i=1

K(i)∑
k=1

m∑
j′=1

Ni,k(j, j′)[log(λ|jj′(Xk(i))) − Λ|jj′(Xk(i))]

+
n∑

i=1

N c
i (j)[log{

m∑
j′=1

pjj′e−Λ|jj′ (X
∗(i))}] (15)

= l0n(j) + lnc
n (j) + lcn(j),

Among the sum of four terms giving (15), let l0n be the first term relative to
the initial state, lnc

n (nc for non censored) the sum of the second and third
terms, which involve exclusively fully observed sojourn times in state j, and
finally lcn (c for censored) the last term which deals with censored sojourn
times in state j.

We denote Kn = maxi=1,2··· ,n K(i) and nKn =
∑n

i=1 K(i) respectively
the maximum number of transitions and the total number of transitions for
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the n subjects. We consider two different designs of experiments, whether or
not observations are stopped after a fixed amount K of direct transitions.

It is obvious that if the densities fj of the sojourn times, without censoring,
for every state j, are strictly positive on ]0; t0[ for some t0 > 0, and if the
distribution functions Gj of the censoring times are such that Gj(t) < 1 for
all t > 0, the maximal number Kn = maxi K(i) of transitions experienced by
a subject tends to infinity when n grows. If moreover the mean number of
transitions Kn goes also to infinity, then the term relative to censored times
lcn(j) is the sum of terms of order n while the term lnc

n (j) is a sum of terms
of order nKn. Therefore

Proposition 1. If Kn → ∞ and if Nnc(j, n)(nKn)−1 converges to a strictly
positive number for every j ∈ {1, 2, · · · ,m}, then

lim
n−→∞

ln(j)
nKn

= lim
n−→∞

lnc
n (j)
nKn

and the maximum likelihood estimators of pjj′ , Λ|jj′ and F |jj′ are asymptot-
ically equivalent to

p̂jj′ =
N(j, j′, n)
Nnc(j, n)

,

Λ̂|jj′(x) =
∫ x

0

dN(s, j, j′, n)
Y nc(s, j, j′, n)

,

F̂ |jj′(x) =
n∏

i=1

K(i)∏
k=1

{
1 − Ni,k(x, j, j′)

Y nc(Xk(i), j, j′, n)

}
.

5 Case of a bounded number of transitions

We now assume that the number of transitions is bounded by a finite
number K. For each subject i = 1, · · · , n, the observation ends at time
ti =

∑K(i)
k=1 Xk(i) if K(i) = K or if JK(i) is an absorbing state, and at time ti

where there is a right censoring in the K(i)th visited state, K(i) < K.

Using notations in (14), the likelihood term relative to the initial state j
may be written

l0n(j) = N0(j, n) log(ρj),

the terms relative to the fully observed sojourn times in state j is

lnc
n (j) =

m∑
j′=1

{
N(j, j′, n) log(pjj′)

+
n∑

i=1

K∑
k=1

Ni,k(j, j′)[log(λ|jj′(Xk(i))) − Λ|jj′(Xk(i))]
}
,
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and the term relative to the censored sojourn times in state j is

lcn(j) =
n∑

i=1

N c
i (j)[log{

m∑
j′=1

pjj′e−Λ|jj′ (X
∗(i))}].

The score equations for pjj′ and Λjj′ do not lead to explicit solutions be-
cause they involve the survival function F j and the transition function F j′|j .
We define estimators p̂n,jj′ and Λ̂n,|jj′ by plugging in the score equations
the Kaplan-Meier estimator of F j and the estimator of Fj′|j given by Gill
[GILL80],

F̂n,j(x) =
n∏

i=1

K(i)∏
k=1

{
1 −

Nnc
i,k(x, j)

Y (Xk(i), j, n)

}
=
∏
y≤x

{
1 − dN(y, j, n)

Y (y, j, n)

}
, (16)

F̂n,j′|j(x) =
n∑

i=1

K(i)∑
k=1

F̂n,j(X−
k (i))

Ni,k(x, j, j′)
Y (Xk(i), j, n)

=
∫ x

0

F̂n,j(y−)
dN(y, j, j′, n)
Y (y, j, n)

. (17)

We obtain the estimators

ρ̂n,j =
N0(j, n)

n
,

p̂n,jj′ =
N(j, j′, n) + N̂ c(j, j′, n)
Nnc(j, n) + N c(j, n)

, (18)

Λ̂n,|jj′(x) =
∫ x

0

dN(y, j, j′, n)

Y nc(y, j, j′, n) + Ŷ c(y, j, j′, n)
,

with

Ŷ c(y, j, j′, n) =
n∑

i=1

Y c
i (y, j)

F̂n,j′|j(X∗(i))

F̂n,j(X∗(i))
,

N̂ c(j, j′, n) =
n∑

i=1

N c
i (j)

F̂n,j′|j(X∗(i))

F̂n,j(X∗(i))
.

The variable (n1/2(p̂n,jj′ − p0
jj′))j′ and the process (n1/2(Λ̂n,|jj′ −

Λ0
|jj′))j′ are asymptotically Gaussian, on every interval [0, τ ] such that∫ τ

0
(F

0

j′|jG
0

j )−1 dΛ0
j′|j is finite [PONS04].

6 A Test of the Hypothesis of Independent Competing
Risks.

In the ICR case, the initial probabilities jointly with the survival functions
F |jj′ of the sojourn times conditional on states on both ends, are sufficient to
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determine completely the law of the process. In the general case, however, the
two sets of parameters pjj′ and F |jj′ are independent and may be modeled
separately. Our aim is to derive a test of the hypothesis of Independent
Competing Risks (ICR):

H0 : The process is ICR
H1 : The process is not ICR

The Kaplan-Meier estimator F̂n,j of F j , given in (16), and the estimator
F̂n,j′|j of Fj′|j , given in (17), are consistent and asymptotically Gaussian both
under H0 and under H1. It is also true for the straightforward estimator ρ̂n,j

of the initial probabilities. From those estimators, one may derive general
estimators of the transition probability pjj′ and of the survival function F |jj′

of the time elapsed between two successive jumps in states j and j′. For these
estimators, we shall use the same notations as the estimators of pjj′ and F |jj′

defined in section 5, though they are now given by

p̂n,jj′ = max
t

F̂n,j′|j(t) (19)

F̂n,|jj′(t) = 1 −
F̂n,j′|j(t)
p̂n,jj′

. (20)

In the independent competing risk model, the transition probability Fj′|j
satisfies (10) and thus may be estimated as

F̂RC
n,j′|j(t) = −

∫ t

0

∏
j” �=j′

F̂n,|jj”(s) dF̂n,|jj′(s) (21)

=
1∏

j” p̂n,jj”

∫ t

0

∏
j” �=j′

F̂n,j”|j(s) F̂n,j(s−) dΛ̂n,j′|j(s),

where

Λ̂n,j′|j(t) =
∫ t

0

1{Y (s, j, n) > 0}dN(s, j, j′, n)
Y (s, j, n)

(22)

is the estimator of the cumulative hazard function Λn,j′|j in the general model.
A competitor to p̂n,jj′ is deduced as

p̂RC
n,jj′ = max

t
F̂RC

n,j′|j(t). (23)

Let π0
j be the mean number of sojourn times in state j for subject i.

Proposition 2. If p0
jj′ > 0 and

∫∞
0

{G0

j (s)F
0

j (s)}−1 dΛ0
j (s) < ∞, then√

n(p̂n,jj′ −p0
jj′) is asymptotically distributed as a normal random vector with

mean 0, variances and covariances
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σ2
jj′ =

1
π0

j

∫ ∞

0

1

G
0

j (s)F
0

j (s)
[(F

0

j′|j(s) − p0
j′|j)

2
dF 0

j (s)

F
0

j (s)

+{F 0

j (s) + 2(F
0

j′|j(s) − p0
j′|j)} dF

0

j′|j(s)],

σ2
jj′j” =

1
π0

j

∫ ∞

0

1

G
0

j (s)F
0

j (s)
[(F

0

j′|j(s) − p0
j′|j)(F

0

j”|j(s) − p0
j”|j)

dF 0
j (s)

F
0

j (s)

+(F
0

j′|j(s) − p0
j′|j} dF

0

j”|j(s) + (F
0

j”|j(s) − p0
j”|j)} dF

0

j′|j(s)].

Moreover,
√
n(p̂RC

n,jj′ − p0
jj′) is asymptotically distributed as a centered Gaus-

sian variable.

Estimators of the asymptotic variance and covariances of (p̂n,jj′)j′∈J(j)

may be obtained by replacing the functions F
0

j , F 0
j′|j and Λ0

j′|j by their es-
timators in the general model, (16), (17) and (22). Due to their intricate
formulas, it seems difficult to use an empirical estimator of the asymptotic
variance of p̂RC

n,jj′ and a bootstrap estimator should be preferred. Asymptotic
confidence intervals for p0

jj′ at the level α are deduced from the (1 − α/2)-
quantile cα of their boostrap distributions, In,jj′(α) in the general case and
IRC
n,jj′(α) under the null hypothesis of Independent Competing Risks.

A test of the Independent Competing Risks hypothesis may be defined by
rejecting H0 if In,jj′(α) and IRC

n,jj′(α) are not overlapping for some j′. As the
estimators of the parameters p0

jj′ are not independent, the level α∗ of this test
with critical region

Rnj(α) = ∩m
j′=1Rnjj′(α), where Rnjj′(α) = {In,jj′(α) ∩ IRC

n,jj′(α) �= ∅},

satisfies α∗ ≥ 1 − (1 − α)m.

7 Proofs

Proof of Proposition 2.
Let τn,j = arg maxt F̂n,j(t). The asymptotic behavior of p̂n,jj′ is derived from
theorem 3 in Gill [GILL80] which states the weak convergence of the process

(
√
n(F̂n,j′|j(t∧τn,j)−F 0

j′|j(t∧τn,j))j′∈J(j),
√
n(F̂n,j(t∧τn,j)−F

0

j (t∧τn,j))t≥0

to a Gaussian process defined, for continuous transition functions F 0
j′|j , as{∫ t

0

F
0

j′|j(s) dVjj′(s)
EYi(s, j)

− F
0

j′|j(t)
∫ t

0

dVj(s)
EYi(s, j)

+
∫ t

0

F
0

j′|j(s) dVj(s)
EYi(s, j)

,

F
0

j (t)
∫ t

0

dVj(s)
EYi(s, j)

}
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where Vjj′ , j, j′ ∈ {1, 2, · · · ,m} is a multivariate Gaussian process with inde-
pendent increments, having mean 0 and covariances

var(Vjj′(t)) =
∫ t

0

EYi(s, j)
dF

0

j′|j(s)

F
0

j (s)
,

cov(Vjj′(t), Vjj”(t)) = 0 if j′ �= j” and cov(Vjj′(t), Vj1j′
1
(t1)) = 0 if j1 �= j or

t1 �= t, and Vj =
∑

j′ Vjj′ .

As EYi(s, j) = π0
jG

0

j (s)F
0

j (s), it follows that
√
n(p̂n,jj′ − p0

jj′) is asymp-
totically distributed as∫ ∞

0

dVjj′(s)

π0
jG

0

j (s)
− p0

jj′

∫ ∞

0

dVj(s)

π0
jG

0

j (s)F
0

j (s)
+
∫ ∞

0

F
0

j′|j(s)
dVj(s)

π0
jG

0

j (s)F
0

j (s)
.

Denoting this limit as A−B + C, we have

var(A) =
1
π0

j

∫ ∞

0

1

G
0

j (s)
dF

0

j′|j(s)

var(B) =
p2

jj′

π0
j

∫ ∞

0

1

G
0

j (s)F
0

j (s)
2 dF 0

j (s)

var(C) =
1
π0

j

∫ ∞

0

F
0

j′|j(s)
2

G
0

j (s)F
0

j (s)
2 dF 0

j (s)

cov(A,B) =
p0

jj′

π0
j

∫ ∞

0

1

G
0

j (s)F
0

j (s)
dF

0

j′|j(s)

cov(A,C) =
1
π0

j

∫ ∞

0

F
0

j′|j(s)

G
0

j (s)F
0

j (s)
dF

0

j′|j(s)

cov(B,C) =
p0

jj′

π0
j

∫ ∞

0

F
0

j′|j(s)

G
0

j (s)F
0

j (s)
2 dF

0
j (s),

and σ2
jj′ is the variance of A − B + C. The covariance σ2

jj′j” is obtained
by similar calculations, but the covariance between the corresponding terms
A(jj′) and A(jj”) is zero.

From (21), the asymptotic Gaussian distribution of
√
n(p̂RC

n,jj′ − p0
jj′) is a

consequence of the asymptotic behavior of the estimators F̂n,j and F̂n,j′|j and
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of the estimator Λ̂n,j′|j given by (22), using again theorem 3 in Gill [GILL80].

Limiting covariances.
The limiting covariance of

√
n(p̂RC

n,jj′ − p0
jj′) may be calculated using the fol-

lowing expressions

σ2
jj′(t) =

1
π0

j

∫ t

0

1

G
0

j (s)F
0

j (s)

{
(F

0

j′|j(s) − F
0

j′|j(t))
2
dF 0

j (s)

F
0

j (s)

+{F 0

j (s) + 2(F
0

j′|j(s) − F
0

j′|j(t))} dF
0

j′|j(s)
}
,

σ2
jj′j”(t) =

1
π0

j

∫ t

0

1

G
0

j (s)F
0

j (s)

{
(F

0

j′|j(s) − F
0

j′|j(t))(F
0

j”|j(s) − F
0

j”|j(t))
dF 0

j (s)

F
0

j (s)

+(F
0

j′|j(s) − F
0

j′|j(t)) dF
0

j”|j(s) + (F
0

j”|j(s) − F
0

j”|j(t)) dF
0

j′|j(s)
}
,

c
(1)
jj′(t) = lim

n
Cov{

√
n(F̂n,j(t) − F

0

j (t)),
√
n(F̂n,j′|j(t) − F

0

j′|j(t))}

= F
0

j (t)Bigl{
∫ t

0

F
0

j′|j

G
0

j (F
0

j )2
(dF 0

j′|j + dF 0
j ) − F

0

j′|j(t)
∫ t

0

dF 0
j

G
0

j (F
0

j )2

}
,

v
(1)
jj′ (t) ≡ lim

n
Var

√
n{F̂n,j(t−)

∏
j1 �=j′

F̂n,j1|j(t) − F
0

j (t
−)
∏

j1 �=j′
F

0

j1|j(t)}

= lim
n

{
∏

j1 �=j′
F̂n,j1|j(t)}2

[∑
j2 �=j′

Var
√
n{F̂n,j2|j(t) − F

0

j2|j(t)}{
F

0

j (t)

F
0

j2|j(t)
}2

+Var
√
n{F̂n,j(t−) − F

0

j (t)} +
∑

j2 �=j′

∑
j3 �=j′,j2

(F
0

j (t))
2

F
0

j2|j(t)F
0

j3|j(t)

×Cov{
√
n(F̂n,j2|j(t) − F

0

j2|j(t)),
√
n(F̂n,j3|j(t) − F

0

j3|j(t))}

+
∑

j2 �=j′

F
0

j (t)

F
0

j2|j(t)
Cov{

√
n(F̂n,j(t−) − F

0

j (t)),
√
n(F̂n,j2|j(t) − F

0

j2|j(t))}
]

= {F 0

j (t)
∏

j1 �=j′
F̂n,j1|j(t)}2

[∑
j2 �=j′

σ2
jj2

(t)

(F
0

j2|j(t))
2

+
∫ ∞

0

dF 0
j (s)

π0
jG

0

j (s)(F
0

j )2(s)

+
∑

j2 �=j′

∑
j3 �=j′,j2

σ2
jj2j3

F
0

j2|j(t)F
0

j3|j(t)
+
∑

j2 �=j′

c
(1)
jj2

(t)

F
0

j2|j(t)

]
.

and, for any sequence Anj converging to Aj ,
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lim
n

Var
√
n(
∏
j

Anj −
∏
j

Aj) =
∑

j

∏
j′ �=j

A2
j′ lim

n
nVar(Anj −Aj)

+
∑

j

∑
j′ �=j

AjAj′
∏

j′,j” �=j

A2
j” lim

n
nCov(Anj −Aj , Anj′ −Aj).

Thus
(σRC

jj′ )2 =
1

{
∏

j” p
0
jj”}2

{v(2)
jj′ + v

(3)
jj′ − 2c(2)jj′}

with

v
(2)
jj′ ≡ lim

n
Var

√
n
{∫ ∞

0

F̂n,j(s−)
∏

j” �=j′
F̂n,j”|j(s) dΛ̂n,j′|j(s) − p0

jj′
∏
j”

p0
jj”}

=
∫ ∞

0

lim
n

Var
√
n{F̂n,j(s−)

∏
j” �=j′

F̂n,j”|j(s) − F
0

j (s)
∏

j” �=j′
F

0

j”|j(s)} dΛ0
j′|j(s)

+
∫ ∞

0

{F 0

j (s)
∏

j” �=j′
F

0

j”|j(s)}2 lim
n

Var
√
n(dΛ̂n,j′|j(s) − dΛ0

j′|j(s))

=
∫ ∞

0

v
(1)
jj′ (s) dΛ0

j′|j(s) +
∫ ∞

0

{F 0

j (s)
∏

j” �=j′
F

0

j”|j(s)}2
dF 0

j (s)

π0
jG

0

j (s)(F
0

j′|j)2(s)
,

v
(3)
jj′ = lim

n
Var

√
n
{∏

j′
p̂n,jj′ −

∏
j′

p0
jj′}

=
∑
j1

σ2
jj1{

∏
j2 �=j1

p0
jj2}

2 +
∑
j1

∑
j2 �=j1

p0
jj1p

0
jj2(

∏
j3 �=j1,j2

p0
jj3)

2σ2
jj1j2 ,

and similar calculations give the expression of

c
(2)
jj′ ≡ lim

n
Cov
[√

n{
∫ ∞

0

F̂n,j(s−)
∏

j” �=j′
F̂n,j”|j(s) dΛ̂n,j′|j(s) − p0

jj′
∏
j”

p0
jj”,

√
n{
∏
j′”

p̂n,jj” −
∏
j”

p0
jj”}}.
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Summary. We consider survival data that are both interval censored and trun-
cated. Turnbull [Tur76] proposed in 1976 a nice method for nonparametric maxi-
mum likelihood estimation of the distribution function in this case, which has been
used since by many authors. But, to our knowledge, the consistency of the resulting
estimate was never proved. We prove here the consistency of Turnbull’s NPMLE un-
der appropriate conditions on the involved distributions: the censoring, truncation
and survival distributions.

Key words: incomplete observations, censored and truncated data, non-
parametric maximum likelihood estimation, consistency.

1 Introduction.

Very often in practice, survival data are both interval censored and truncated,
as observation of the process is not continuous in time and is done through a
window of time which could exclude totally some individuals from the sample.
For example, the time of onset of a disease in a patient, like HIV infection or
toxicity of a treatment, is not exactly known, but it is usually known to have
taken place between two dates t1 and t2; this occurs in particular when the
event of interest results in an irreversible change of state of the individual:
at time t1, the individual is in state one, while at time t2, he is in state two.
Moreover, some people can escape the sample if they are observed during a
period of time not including some pair of dates t1 , t2 having the above prop-
erty. Turnbull [Tur76] proposed a nice method for nonparametric maximum

2 The research of the second author was supported by grants RFBR 02-01-00262,
grant RFBR-DFG 04-01-04000
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likelihood estimation of the distribution function in this case. His method,
slightly corrected by Frydman [Fry94], has been used extensively since by sev-
eral authors, and extended to semi-parametric cases (Alioum and Commenges
[ACo96], Huber-Carol and Vonta, [HbV04]). But, to our knowledge, the con-
sistency of the resulting estimates was never proved, even in the simple totally
nonparametric case. We give here conditions on the involved distributions,
the censoring, truncation and survival distributions, implying the consistency
of Turnbull’s estimate. The proofs use results of Sara Van de Geer [VdG93],
Xiatong Shen [Sh97], Wing Hung Wong and Xiatong Shen [WSh95], Lucien
Birgé and Pascal Massart [BiM98], Luc Devroye and Gabor Lugosi [DeL01],
Nikulin and Solev [NiS02], [NiS04], on non-parametric estimation.
In section two, we give a representation of the censoring and truncation mech-
anisms. As it is due to a non continuous observation of the survival process,
the censoring mechanism is represented as a denumerable partition of the
total interval of observation time (a, b). Then a truncation is added to the
censoring, conditioning the observations both of the survival and the censor-
ing processes. The particular case of right truncation is considered.
In the next three sections, three distributions are successively studied, each
being conditional on fixed values which become random in the next section.
In section three, the distribution associated with a random covering, which
is a censoring set conditional on a fixed value x of the survival process. It is
considered as the sum of a denumerable number of elementary probabilities,
and it is proved to have a density with respect to a baseline probability.
In section four, we define the joint distribution of a pair of intervals, a censor-
ing L(x), R(x) and a truncating one L(z), R(z), conditional on fixed values x
and z respectively of the survival X and the right truncation Z.
Finally, in section five, we consider the distribution of the incomplete obser-
vation of X: L(X), R(X), L(z), R(z), conditional on the truncating variable
Z = z.
In section six, the non parametric maximum likelihood estimate of the density
of the survival is defined in the presence of the nuisance infinite dimensional
parameters introduced by the censoring and the truncation laws, using Kull-
back and Hellinger distances.
Finally, in the last section, conditions are found on the sets of probabilities
that govern the survival process and the censoring and truncation processes
that lead to consistency of the NPMLE of the density of the survival process.

2 Partitioning the total observation time

2.1 Random covering.

Let ϑ(x) = (L(x), R(x)], x ∈ (a, b) ⊂ R be a random covering of interval (a, b).
That is ϑ(x) is a process, indexed by x ∈ (a, b), which values are intervals,
and such that with probability one
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x ∈ (L(x), R(x)] ⊂ (a, b),
⋃

x∈(a,b)

ϑ(x) = (a, b).

When it is clear from the context, we shall identify process ϑ(x) with vector
valued process υ(x) = (L(x), R(x)), whose coordinates are the left and right
ends of interval ϑ(x).

In the special case of a random covering ϑ(x) generated by a random
partition, for any x, y ∈ (a, b), with probability one

ϑ(x) = ϑ(y), or ϑ(x) ∩ ϑ(y) = ∅ . (1)

Conversely, let us assume that condition (1) is true. Then, with probability
one, the random function R(x) is a left continuous step function. Therefore,
there exists a partition τ

τ = {(Yj , Yj+1], j = 0,±1, . . .} ,

a < . . . < Y−m < . . . < Y0 < . . . < Yn . . . < b,
⋃
j

(Yj , Yj+1] = (a, b), (2)

such that
ϑ(x) =

(
Yk(x), Yk(x)+1

]
, x ∈ (a, b). (3)

Here
k = k(x) = inf {j : x ≤ Yj+1} . (4)

From now on we assume that the random covering ϑ(x) = (L(x), R(x)], x ∈
(a, b), satisfies condition (1) and hence may be generated by a partition τ
defined in (2) – (4). Such a random covering will be called a simple random
covering. For simplicity we suppose that a = −∞, b = ∞

2.2 Short-cut covering.

Let ϑ(x) = (L(x), R(x)], x ∈ R, be a simple random covering, τ be the parti-
tion associated with ϑ(x),

τ = {(Yj , Yj+1], j = 0,±1, . . .} ,

. . . < Y−m < . . . < Y0 < . . . < Yn . . .

and � = (z1, z2] be an interval, and z = (z1, z2), z1 ≤ z2
For a fixed value of τ = t,

t = {(yj , yj+1], j = 0,±1, . . .} ,

. . . < y−m < . . . < y0 < . . . < yn . . . ,

define functions
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κ1 = κ1(t, z1) = inf {k : yk ≥ z1} z1 = z1(t, z1) = Yκ1

κ2 = κ2(t, z2) = sup {k : yk ≤ z2} z2 = z2(t, z2) = Yκ2

The short-cut covering ϑ�(x) = (L�(x), R�(x)], x ∈ �, is defined below.
The short-cut covering ϑ�(x) is trivial: ϑ�(x) = (z1, z2], if

z1(t, z1) > z2(t, z2),

else

(L�(x), R�(x)] =

⎧⎨⎩ (L(x), R(x)], if x ∈ (z1, z2]
(z1, z1], if x ∈ (z1, z1]
(z2, z2], if x ∈ (z2, z2]

In the special case when

� = (−∞, z]

we shall use notations for corresponding short-cut covering ϑ�(x), x ∈ �, and
connected objects

ϑz(x) = ϑ�(x),
κz = κ(t, z) = sup {k : yk ≤ z} , zz = z(t, z) = Yκ2

Lz(x) = L�(x), Rz(x) = R�(x)
(5)

2.3 The mechanism of truncation and censoring

The mechanism of censoring and truncating of a random variable X is defined
as follows. Let X be a random variable, ∆ = (Z1, Z2] be a random interval,
ϑ(x) = (L(x), R(x)], x ∈ R, be a random covering , generated by a partition
τ

τ = {(Yj , Yj+1], j = 0,±1, . . .} ,

. . . < Y−m < . . . < Y0 < . . . < Yn . . . .

We denote
Λ = Λ(τ) = {Yj , , j = 0,±1, . . .}

We suppose that random covering ϑ(·), random variable X and random
interval ∆ are independent, but we have not complete observations. More
precisely, we suppose that random vector (X,Z1, Z2) is partly observable only
in the case when (L(X), R(X)] ⊂ ∆:

Z1 ≤ L(X) < R(X) ≤ Z2.

In that case the available observations are the interval (L(X), R(X)] of the
covering ϑ(·), which contains X, and random interval ∆∗ = (R(Z1), L(Z2)].



250 Catherine Huber, Valentin Solev, and Filia Vonta

When (L(X), R(X)] �⊂ ∆ we have not any observation.

We have to think that

1) Conditionally on a fixed value t of τ the random interval ∆ is taken from
the truncated distribution

Pt {A} = P {∆ ∈ A | the interval [Z1, Z2] contains at least two points of Λ} .

In other words, conditionally on fixed values of τ = t the random vector
Z = (Z1, Z2) is taken from the truncated distribution

Pt {B} = P {Z ∈ B |z1(t, Z1) < z2(t, Z2)} ;

2) Conditionally on a fixed value of τ = t and ∆ = � = (z1, z2], the random
variable X is taken from truncated distribution

P� {A} = P {X ∈ A |X ∈ (R(z1), L(z2)]} .

In other words conditionally on fixed values of τ = t and Z1 = z1, Z2 = z2
the random variable X is taken from truncated distribution

P {A | t, z1, z2} = P {X ∈ A |X ∈ (z1(t, z1), z2(t, z2)]} .

We consider the simple case when for a random variable Z random interval
∆ = (−∞, Z], and use the notations that were given in (5). We denote Z the
random variable

Z = z(τ, Z).

We have to think that

1) The random covering ϑ(·) and the random variable Z are independent.

2) Conditionally on a fixed value of Z = z, the random variable X is taken
from the truncated distribution

Pz {A} = P {X ∈ A |X ≤ z} .

In other words, conditionally on fixed values of τ = t and Z = z the random
variable X is taken from the truncated distribution

P {A|t, z} = P {X ∈ A |X ≤ z(t, z)} .

3 The distribution associated with random covering.

Let ϑ(x) = (L(x), R(x)], x ∈ R, be a simple random covering. The distribu-
tion Px of random vector υ(x) = (L(x), R(x)) will be called the distribution,
associated with random covering ϑ(x).
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We assume that for all x the distribution Px has density with respect to
Lebesgue measure λ2 on the plane R2,

rx(u, v) =
dPx

dλ2
,

and plan to prove in this case, that there exists a nonnegative function r(u, v)
such that for all x

rx(u, v) = r(u, v)1I(u, v](x) (a.s.)

Function r(u, v) will be called the baseline density of simple random covering
ϑ(x). It is clear that function r(u, v) is the density of a σ-finite measure, but,
for all x, function r(u, v)1I(u, v](x) is the density of a probability measure.

It is clear that for all x

rx(u, v) = rx(u, v)1I(u,v](x).

For positive x < y and nonnegative measurable function ψ(u, v) such that

ψ(u, v) = 0, if u < x ≤ v < y or x ≤ u < y ≤ v. (6)

Condition (6) is equivalent to the condition (on function ψ)

ψ(u, v)1I(u,v](x) = ψ(u, v)1I(u,v](y).

Therefore

Eψ(L(x), R(x)) = Eψ(L(x), R(x))
∑

k

1I(Yk, Yk+1](x) =

=
∑

k

Eψ(Yj , Yj+1)1I(Yj , Yj+1](x) =
∑

k

Eψ(Yj , Yj+1)1I(Yj , Yj+1](y) =

= Eψ(L(x), R(x))
∑

k

1I(Yk, Yk+1](y) = Eψ(L(y), R(y)).

Thus, under condition (6) on function ψ∫∫
u<v

ψ(u, v)rx(u, v) dudv) =
∫∫
u<v

ψ(u, v)ry(u, v) dudv,

and we obtain for all u < x ≤ y ≤ v

rx(u, v) = ry(u, v). (7)

From (7) we conclude that there exists a nonnegative function r(u, v), whose
support is the set {(u, v) : u < v}, and such that for x

rx(u, v) = r(u, v)1I(u, v](x) (a.s.)
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It is easy to see that the baseline density r(u, v) depends only on the joint
distributions of vectors (Yj , Yj+1).

Now we prove that measure Px is absolutely continuous with respect to
the Lebesgue measure for all x if and only if

(i) for all j the distribution of vector (Yj , Yj+1) has density rj(u, v) with
respect to the Lebesgue measure,

(ii) the series
∑
j

rj(u, v) converges a.s. to a function r(u, v),

(iii) the function r(u,v) satisfies the following condition:
for all x

rx(u, v) = r(u, v)1I(u, v](x).

Indeed, suppose that for all x the distribution Px has density rx(u, v). Let
ψ(u, v) be a nonnegative function, then for all j

Eψ(Yj , Yj+1)1I(Yj , Yj+1](x) ≤ Eψ(L(x), R(x)) =

=
∫∫

ψ(u, v)r(u, v)1I(u, v](x) dudv.

Therefore, for all x the distribution of vector (Yj , Yj+1)1I(Yj , Yj+1](x) has a
density. Hence, the distribution of vector (Yj , Yj+1) also has a density rj(u, v).

We have

Eψ(L(x), R(x)) =
∑

j

Eψ(Yj , Yj+1)1I(Yj , Yj+1](x) =

=
∑

j

∫∫
ψ(u, v)rj(u, v)1I(u, v](x) dudv =

=
∫∫

ψ(u, v)

⎧⎨⎩∑
j

rj(u, v)1I(u, v](x)

⎫⎬⎭ dudv.

So, we obtain
r(u, v) =

∑
j

rj(u, v) (a.s.).

Now suppose that (i), (ii) are fulfilled. Then we obtain for a nonnegative
measurable function ψ(u, v) (by the same way as above)

Eψ(L(x), R(x)) =

=
∫∫

ψ(u, v)

⎧⎨⎩∑
j

rj(u, v)

⎫⎬⎭1I(u, v](x) dudv.
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From this equality we conclude that series

r(u, v) =
∑

j

rj(u, v) < ∞ (a.s.),

and
rx(u, v) = r(u, v)1I(u, v](x).

4 The distribution of random vector
(L(x), R(x), L(z), R(z)).

Now for x < z we denote by Px,z the distribution of random vector
(L(x), R(x), L(z), R(z)). Denote by λn the Lebesgue measure on Rn. The
distribution Px,z is not absolutely continuous with respect to the measure on
λ4. Denote by ν the measure, which is defined for continuous nonnegative
functions ψ(s) = ψ(s1, s2, s3, s4) by the relation∫∫∫∫

ψ(s) dν =
∫∫

ψ(s1, s2, s1, s2) ds1ds2+

+
∫∫∫

ψ(s1, s2, s2, s4) ds1ds2ds4 +
∫∫∫∫

ψ(s1, s2, s3, s4) ds1ds2ds3ds4.

We suppose that the distribution Px,z is absolutely continuous with respect
to the measure ν and denote its density qx, z(s):

qx, z(s) = qx, z(s1, s2, s3, s4) =
dPx,z

dν

We suppose that for all n,m > 0 the random vector (Y−m, . . . , Yn) has a
density with respect to the corresponding Lebesgue measure. For i + 1 < j,
let function

ri,j(y1, y2, y3, y4) be the density of random vector (Yi, Yi+1, Yj , Yj+1),

rj(y1, y2, y3) be the density of random vector (Yj−1, Yj , Yj+1),

rj(y1, y2) be the density of the random vector (Yj , Yj+1).

We assume that

d4(y1, y2, y3, y4) =
∑
i, j:

i+1<j

ri j(y1, y2, y3, y4) < ∞ (λ4-a.s.),



254 Catherine Huber, Valentin Solev, and Filia Vonta

d3(s1, s2, s3) =
∑

j

rj(s) < ∞ (λ3-a.s.),

and
d2(y1, y2) =

∑
j

rj(y1, y2) < ∞ (λ2-a.s.).

For a nonnegative function ψ(x), x = (x1, x2, x3, x4) and x < z we have

Eψ(L(x), R(x), L(z), R(z)) =

= E
∑
i,j

ψ(Yi, Yi+1, Yj , Yj+1)1I(Yi,Yi+1](x)1I(Yj ,Yj+1](z) =

=
∑

j

Eψ(Yj , Yj+1, Yj , Yj+1)1I(Yj ,Yj+1](x)1I(Yj ,Yj+1](z)+

+
∑

j

Eψ(Yj−1, Yj , Yj , Yj+1)1I(Yj−1,Yj ](x)1I(Yj ,Yj+1](z)+

+
∑
i, j:

i+1<j

Eψ(Yi, Yi+1, Yj , Yj+1)1I(Yi,Yi+1](x)1I(Yj ,Yj+1](z).

Thus,

Eψ(L(x), R(x), L(z), R(z)) =

+
∫∫

ψ(s1, s2, s1, s2)d2(s1, s2)1I(s1,s2](x)1I(s1,s2](z) ds1ds2+

+
∫∫∫

ψ(s1, s2, s2, s3)d3(s1, s2, s3)1I(s1,s2](x)1I(s2,s3](z) ds1ds2ds3+

+
∫∫∫∫

ψ(s1, s2, s3, s4)×

d4(s1, s2, s3, s4)1I(s1,s2](x)1I(s3,s4](z) ds1ds2ds3ds4.

If we define ν−measurable function d(s|x, z), s = (s1, s2, s3, s4), by

d(s|x, z) = 1I(s1,s2](x)d∗(s|z),

where

d∗(s | z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2(s1, s2)1I(s1,s2](z), if s1 = s3 < s2 = s4

d3(s1, s2, s3)1I(s2,s3](z), if s1 < s2 = s3 < s4

d4(s1, s2, s3, s4)1I(s3,s4](z), if s1 < s2 < s3 < s4

0, else

(8)

then we obtain for x < z



Estimation Of Density For Arbitrarily Censored And Truncated Data 255

Eψ(L(x), R(x), L(z), R(z)) =
∫∫∫∫

ψ(s)d(s |x, z) dν,

and therefore

qx, z(s1, s2, s3, s4) = 1I(s1,s2](x)d∗(s1, s2, s3, s4 | z). (9)

5 The distribution of random vector
(L(X), R(X), L(Z), R(Z)).

For the right truncated density function f(x) we shall use the following nota-
tion

fa(x) =
f(x)∫

u≤a

f(u) du
1I(−∞, a](x).

Now we suppose that for fixed z and fixed value of τ = t, random variable X is
taken from the truncated distribution with density fz(x). Here z = z(t, z) =
L(z). It follows from (9) that in that case the distribution Pz of random
vector (L(X), R(X), L(z), R(z)) has density (with respect to the measure ν)
q(s1, s2, s3, s4 | z),

q(s1, s2, u, v | z) =
∫

qx, z(s1, s2, u, v) fu(x) dx,

and (see (8))

q(s1, s2, u, v | z) =

s2∫
s1

fu(x) dx × d∗(s1, s2, s3, s4 | z),

where for s = (s1, s2, s3, s4)

d∗(s|z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d3(s1, s2, s3)1I(s2,s3](z), if s1 < s2 = s3 < s4

d4(s1, s2, s3, s4)1I(s3,s4](z), if s1 < s2 < s3 < s4

0, else

Therefore the distribution Pz is absolutely continuous with respect to the
measure ν∗, which is defined for continuous nonnegative functions ψ(s) by
the relation ∫∫∫∫

ψ(s) dν∗ =

=
∫∫∫

ψ(s1, s2, s2, s4) ds1ds2ds4 +
∫∫∫∫

ψ(s1, s2, s3, s4) ds1ds2ds3ds4,

and
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dPz

dν∗
= q(s | z).

Now suppose that Z is a random variable with density g, which is inde-
pendent from the random covering ϑ(·). For fixed values Z = z and τ = t,
random variable X is taken from the truncated distribution with density
fz(x), z = z(t, z) = L(z). Denote by P∗ the distribution of random vector
(L(X), R(X), L(Z), R(Z)). It is clear that the distribution P∗ has density
q(s) with respect to the measure ν∗,

q(s1, s2, u, s4) =

s2∫
s1

fu(x) dx ×
∫

d∗(s1, s2, u, s4 | z)g(z) dz =

=
s2∫
s1

fu(x) dx × d(s1, s2, u, s4).

Now consider the random vector W = (L(X), R(X), L(Z)). Let µ be the
measure on R3, defined for continuous nonnegative functions ψ by∫∫∫

ψ(s1, s2, s3) dµ =

=
∫∫

ψ(s1, s2, s2) ds1ds2 +
∫∫∫

ψ(s1, s2, s3) ds1ds2ds3,

It is clear that the distribution PW of random vector W is absolutely contin-
uous with respect to the measure µ and

p(y) = p(y1, y2, y3) =
dPz

dµ
=
∫

q(y1, y2, y3, u)du, .

Therefore,

p(u, v, z) =

v∫
u

fz(x) dx × r(u, v, z),

where
r(u, v, z) =

∫
d(u, v, z, x) dx.

6 Maximum likelihood estimators.

Let W,W1, . . . ,Wn be i.i.d. random vectors, W = (L(X), R(X), L(Z)), with
unknown density
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p(u, v, z) = r(u, v, z) ×

v∫
u

f(x) dx∫
x≤z

f(x) dx

We assume that the baseline density r and density f belong to given sets G
and F correspondingly, and specify these sets later. We set

ϕ(f ;u, v, z) =

v∫
u

f(x) dx∫
x≤z

f(x) dx
,

L = {p : p = r ϕ(f ; ·), (r, f) ∈ G × F}
Denote by Pn the empirical measure,

Pn {A} =
1
n

n∑
j=1

1IA(Wj).

Consider the maximum likelihood estimator p̂n for unknown p ∈ L,∫
ln p̂n dPn = max

q∈L

∫
ln q dPn.

It is clear, that p̂n = r̂n × ϕ(f̂n; ·), where r̂n and f̂n are maximum likelihood
estimators for r and f,∫

ln ϕ(f̂n; ·) dPn = max
q∈F

∫
ln ϕ(q; ·) dPn,∫

ln r̂n dPn = max
q∈G

∫
ln q dPn.

The estimator f̂n in general situation was suggested by Turnbull B.W. [Tur76],
see also Finkelstein, D.M., Moore, D.F., Schoenfeld D.A. [FMD93].

6.1 The bracketing Hellinger ε−entropy

Let
(
Y ,B, µ

)
be a measurable space and Y1, . . . , Yn be i.i.d. random elements

of Y with common distribution P ∈ P and density f ,

f(y) =
dP

dµ
(y), f ∈ F =

{
f : f =

dP

dµ
, for some P ∈ P

}
.

For nonnegative f, g let h(f, g) be the Hellinger distance,

h2(f, g) =
1
2

∫
Y

(√
f −√

g
)2

dµ.
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For a pair of nonnegative functions gL ≤ gR denote by V (gL, gR) the set

V (gL, gR) =
{
g : gL ≤ g ≤ gR

}
.

Denote by N(ε,F ) the smallest value of m such that

F ⊂
m⋃

j=1

V (gL
j , g

R
j ), where h(gL

j , g
R
j ) ≤ ε, j = 1, . . . ,m.

The bracketing Hellinger ε−entropy H(ε,F ) is defined as:

H(ε,F ) = lnN(ε,F ).

We assume that for a constant c
ε∫

ε2

H1/2(s,F ) ds ≤ cε2
√
n. (10)

Theorem 1 (W.H.Wong and X.Shen). Suppose that f(x) is the true den-
sity. Then under condition (10), there exist positive constants c1, c2, C such
that

P

⎧⎪⎪⎨⎪⎪⎩ sup
h(g, f)≥ε,

g∈F

n∏
j=1

g(Yj)
f(Yj)

≥ exp{−c1nε
2}

⎫⎪⎪⎬⎪⎪⎭ ≤ C exp{−c2nε
2}. (11)

Now suppose that qn = qn(y;x) is a nonnegative function
qn : Y n × Y → R1, such that∫

Y

qn(y;x)µ(dx) = 1 (µn−a.s. on y).

Here y = (y1 . . . , yn) ∈ Y n, x ∈ Y , µn = µ× . . .× µ︸ ︷︷ ︸
n−times

. We assume that

qn(y; ·) ∈ F (µn−a.s. on y). (12)

So, the random function f̃n(x) = qn(Y1, . . . , Yn;x) may be considered as an
estimator for f .

Suppose that f(x) is the true density, and that function qn(y; ·) satisfies
the condition

n∏
j=1

qn(y; yj)
f(yj)

≥ exp
{
−c1nε

2
}

(µn−a.s. on y). (13)

Here y = (y1, . . . , yn).
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Lemma 1. Suppose that f(x) is the true density, f̃n(x) is an estimator for f
with values in F . Then under conditions (11),(13) for some positive constants
c, C

P
{
h(f̃n, f) ≥ ε

}
≤ C exp{−cnε2}. (14)

Proof. Let f̃n(·) = qn(Y1, . . . , Yn; ·). We may assume that qn(y; ·) ∈ Y .
Denote by d(y) the Hellinger distance between qn(y; ·) and f(·),

d2(y) =
1
2

∫
Y

(√
qn(y;x) −

√
f(x)

)2

µ(dx).

It is clear that

{y : d(y) ≥ ε, } ⊂

⎧⎪⎪⎨⎪⎪⎩y : sup
h(g, f)≥ε,

g∈F

n∏
j=1

g(yj)
f(yj)

≥ exp
{
−c1nε

2
}⎫⎪⎪⎬⎪⎪⎭ .

Therefore,

P
{
h(f̃n, f) ≥ ε

}
≤ P

⎧⎪⎪⎨⎪⎪⎩ sup
h(g, f)≥ε,

g∈F

n∏
j=1

g(Yj)
f(Yj)

≥ exp
{
−c1nε

2
}⎫⎪⎪⎬⎪⎪⎭ ,

and (14) follows from (11).

6.2 Hellinger and Kullback-Leibler distances.

Let P and Q be two measures both dominated by a σ−finite measure µ,
H2(P,Q) be the Hellinger distance between P and Q,

H2(P,Q) = h2(f, q) =
1
2

∫ (√
dP

dµ
−

√
dQ

dµ

)2

dµ.

Here
f =

dP

dµ
, q =

dQ

dµ
.

Consider the Kullback-Leibler distance

K(f, q) =
∫

f>0

[ln (f/q)] f dµ =
∫

f>0

ln (f/q) dP.
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Here P is the probability distribution with density f with respect to the
measure µ.

Let X1, . . . , Xn be i.i.d random variables with the common distribution
P ∈ P and density f ∈ F , Pn be the empirical distribution

Pn{A} =
n∑

j=1

δXj
{A}, where δXj

{A} =
{

1, if Xj ∈ A
0, if Xj /∈ A

Suppose we have to estimate the unknown density f ∈ F on the observa-
tions X1, . . . , Xn, . . . with common distribution P ∈ P. R. Fisher suggested
to minimize the functional K(·, f) on empirical data to choose estimator f̂n.
Namely, we put

Kn(f, g) =
∫

f>0

ln (f/g) dPn.

Here f is the true density. Let f̂n be a point of F which minimizes the
functional Kn(·, f):∫

f>0

ln
(
f/f̂n

)
dPn ≤

∫
f>0

ln (f/g) dPn for all g ∈ F . (15)

The estimator f̂n of f which is defined in (15), is called the maximum like-
lihood estimator since f̂n is a point of maximum, on F , for the likelihood
function L (function of g)

L(g |X1, . . . , Xn) =
n∏

j=1

g(Xj).

Let S and D be two classes of nonnegative functions, such that for any
s ∈ S and g ∈ G ∫

s(x) g(x) dµ = 1.

We suppose that

F = {f : f = s g, for some s ∈ S and g ∈ G } .

We denote by P (f) the distribution with density f .
Now suppose we have to estimate unknown function s ∈ S on the ob-

servations X1, . . . , Xn, . . . with common distribution P ∈ P and density
f = s g ∈ F . The maximum likelihood estimator ŝn of s is defined by
the relation ∫

ln (s/ŝn) dPn ≤
∫

ln (s/g) dPn, g ∈ S . (16)
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Lemma 2. Suppose that P is the true distribution with density f = s g, then

0 ≤
∫

f>0

ln
s

ŝn
dP ≤

∫
f>0

ln
ŝn

s
d
(
Pn − P

)
.

Proof. It is clear that it is sufficient to prove that∫
f>0

ln
ŝn

s
dPn ≥ 0.

It follows from (16).

Lemma 3. Suppose that g̃n is a nonnegative random function, such that∫
ŝn g̃n dµ =

∫
s g̃n dµ = 1,

P (s g̃n) is the distribution with density s g̃n, then

0 ≤
∫

f>0

ln
s

ŝn
dP (s g̃n) ≤

∫
f>0

ln
ŝn

s
d
(
Pn − P (s g̃n)

)
.

Proof. Lemma 4 can be proved in the same way as lemma 2.

Denote ĝn the maximum likelihood estimator of g,∫
ln (g/ĝn) dPn ≤

∫
ln (g/h) dPn, h ∈ G .

Corollary 1. Let P (s ĝn) be the distribution with density s ĝn, then

0 ≤
∫

f>0

ln
s

ŝn
dP (s ĝn) ≤

∫
f>0

ln
ŝn

s
d
(
Pn − P (s ĝn)

)
.

Corollary 2. Let P (s ĝn) be the distribution with density s ĝn, then∫
|s− ŝn| ĝn dµ ≤

√√√√2
∫

f>0

ln
ŝn

s
d
(
Pn − P (s ĝn)

)
.

Proof. Corollary 1 follows from lemma 4 if we take g̃n = ĝn.
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Lemma 4 (Sara van de Geer). Let P be the true distribution with density
f ∈ F, and f̂n be the maximum likelihood estimator for f , then

h2(f̂n, f) ≤
∫

f>0

⎛⎝√ f̂n

f
− 1

⎞⎠ d
(
Pn − P

)
.

Lemma 5. Suppose that g̃n is a nonnegative random function, such that∫
s g̃n dµ = 1,

P (s g̃n) is the distribution with density s g̃n, then

1
2

∫
f>0

(√
s−
√
ŝn

)2

g̃ dµ ≤
∫

f>0

(√
ŝn

s
− 1

)
d
(
Pn − P (s g̃n)

)
. (17)

Proof. We rewrite the proof of Sara van de Geer [VdG93].

0 ≤ 1
2

∫
f>0

ln
ŝn

s
dPn ≤

∫
f>0

(√
ŝn

s
− 1

)
dPn =

=
∫

f>0

(√
ŝn

s
− 1

)
d(Pn − P (s g̃n)) +

∫
f>0

(√
ŝn

s
− 1

)
dP (s g̃n).

Since ∫
f>0

(
1 −
√

ŝn

s

)
dP (s g̃n) =

1
2

∫
f>0

(√
s−
√
ŝn

)2

g̃ dµ,

we obtain (17).

Corollary 3. Let P (s ĝn) be the distribution with density s ĝn, then

1
2

∫
f>0

(√
s−
√
ŝn

)2

ĝn dµ ≤
∫

f>0

(√
ŝn

s
− 1

)
d
(
Pn − P (s ĝn)

)
.

6.3 Estimation in the presence of a nuisance parameter

Now we consider the following case

F = {f : f(x) = fs, g(x) = s(x) g(x), for some s ∈ S and g ∈ G } .
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Here s is the parameter of interest, g is the nuisance parameter. Let ρ be a
metric on S . Denote

δ(ε) = inf
s,s∗,g

h(fs, g, fs∗, g), (18)

where inf is taken on all g ∈ D and all s, s∗ ∈ S such that ρ(s, s∗) ≥ ε. It is
clear that if

h(fs, g, fs∗, g) < δ(ε),

then
ρ(s, s∗) < ε.

So, if for any ε > 0 the value
δ(ε) > 0, (19)

then from
h(fs, g, fsn, g) → 0

follows
ρ(s, sn) → 0.

But condition (19) is never carried out. Therefore we need to assume that inf
in (18) is taken over all

g ∈ D such that g ∈ V (g∗)

and all
s, s∗ ∈ S such that ρ(s, s∗) ≥ ε.

Here g∗ is a known point of D , V (g∗) is a neighborhood of g∗. It is clear that
function δ(ε) depends on V (g∗).

We denote Pf the distribution with density f .

Lemma 6. Let sn, gn be estimators of s, g, and V (gn) a neighborhood of gn

such that
inf

f=fs, g∈F
Pf {g ∈ V (gn)} → 1, as n → ∞,

and for any ε > 0

δ(ε) = inf
ρ(s,sn)≥ε, g∈V (gn)

h(fs, g, fs∗, g) > 0.

If for any ε > 0

sup
f=fs, g∈F

Pf {h(fs, g, fsn, gn) > ε} → 0, as n → ∞,

Then
sup

f=fs, g∈F
Pf {ρ(s, sn) > ε} → 0, as n → ∞.
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Let W,W1, . . . ,Wn be i.i.d. random vectors, W = (L(X), R(X), L(Z)), with
unknown density

p(u, v, z) = pr, f (u, v, z) = r(u, v, z) ×

v∫
u

f(x) dx∫
x≤z

f(x) dx

We use notation f̂n for maximum likelihood estimator of f .
We suppose that the baseline density r and density f belong to given sets

G and F correspondingly. And denote

P =
{
p : p = pr, f , r ∈ G, f ∈ F

}
.

We assume that the parametric set P is totally bounded in the Hellinger
metric. Moreover, for a constant C = CP and ε > 0 there exist finite coverings

V (ε) =
{
V (fL

i , f
R
i ), i = 1, . . . ,m

}
and W (ε) =

{
W (rL

j , r
R
j ), j = 1, . . . , k

}
of sets F and G:

F ⊂
m⋃

i=1

V (fL
i , f

R
i ), G ⊂

k⋃
j=1

W (rL
j , r

R
j );

and finite covering

U(ε) =
{
U(pL

i,j , p
R
i,j), i = 1, . . . ,m; j = 1, . . . , k

}
,

of the set P : P ⊂
⋃
i,j

U(pL
i,j , p

R
i,j), such that

C1

{
p : p = pr, f , for some r ∈ W (rL

j , r
R
j ), f ∈ V (fL

i , f
R
i )
}
⊂ Ui,j = U(pL

i,j , p
R
i,j);

C2 h(pL
i,j , p

R
i,j) ≤ ε, h(fL

i , f
R
i ) ≤ ε;

C3

∫
pR

i,j dµ < CP ,
∫
fR

i dx < CP ;

C4 for any ε > 0, z0 > 0

inf
p∈Ui,j

∫
v−u≤ε, z≥z0

p(u, v, z) dµ > 0;

Theorem 2 (consistency of the Non Parametric Maximum Likeli-
hood estimate of f). Under conditions C1 – C4 for any ε > 0

sup
p = pr, f ∈P

P
{
h
(
f̂n, f

)
> ε
}

→ 0, as n → ∞.
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Statistical Analysis of Some Parametric
Degradation Models �

Waltraud Kahle and Heide Wendt

Otto-von-Guericke-University, Faculty of Mathematics,
D-39016 Magdeburg, Germany
waltraud.kahle@mathematik.uni-magdeburg.de

Summary. The applicability of purely lifetime based statistical analysis is limited
due to several reasons. If the random event is the result of an underlying observable
degradation process then it is possible to estimate the parameters of the resulting
lifetime from observations of these process. In this paper we describe the degradation
by a position-dependent marked doubly stochastic Poisson process. The intensity
of such processes is a product of a deterministic function and a random variable
Y which leads to an individual intensity for each realization. Our main interest
consists in estimating the parameters of the distribution of Y under the assumption
that the realization of Y is not observable.

1 Introduction

One of the simplest models for describing degradation is the Wiener process
with linear drift. The design of the mathematical model is based on the as-
sumption of an additive accumulation of degradation without any variation
in the tendency of the degradation intensity. Some of such models and their
parameter estimations are described in [KaL98]. A similar model and its ap-
plication in medicine is described in [DoN96]. Several generalizations of this
model were given. It is possible to include measurement errors [Whi95], or to
transform the time scale [WhS97]. Some more general models have been de-
veloped in [BaN01] and [BBK02]. The advantages of using the Wiener process
and its generalizations for describing the damage process are its simple form
(at least for the univariate Wiener process) and, secondly, that a statistical
analysis can be carried out for observations at any discrete time points. But
these models have also disadvantages: It is possible that the damage is de-
creasing in any interval, which is difficult to interpret in practical applications.
The second disadvantage is that these models become very complicated if a
nonlinear drift is assumed. But for many products we can expect an increasing
damage which becomes faster over time.

�This research was supported by DFG # Ka 1011/3-1
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Actually, we consider a degradation process (Zt) whose paths are mono-
tone increasing step functions. For modeling it, we use marked point processes
Φ = ((Tn, Xn))n≥1, presented in detail e.g. in [LaB95] or [ABG93]. The cu-
mulative process (Zt) is assumed to be generated by a position–dependent
marking of a doubly stochastic Poisson process (Tn). The doubly stochastic
Poisson process was introduced by Cox [Cox55]. Cramer [Cra66] applied it in
risk theory, and Grandell [Gra91] gave a detailed discussion of these processes
and their impact on risk theory. Further applications of the doubly stochastic
Poisson process (Tn) may be found in reliability theory, medicine and queuing
theory [Bre81], [ABG93], [Gra97]. Our aim is to describe suitable models for
degradation accumulation. In section 2 the model is described. In section
1 and 4 maximum likelihood and moment estimates are found for the (in
our view) most interesting parameters of the model. Section 5 contains some
results of a simulation study.

2 A Degradation Model

We consider a shock model which is well known in reliability. The random
variable Tn (n ≥ 1) is the time of the n–th shock. We suppose

Tn < Tn+1 if Tn < ∞ and Tn = Tn+1 = ∞ otherwise .

Every shock causes an random increment of degradation. The size of the n–
th increment of the cumulative degradation process (Z(t))t≥0 is given by a
nonnegative random variable Xn (n ≥ 1). Thus,

Z(t) =
∞∑

n=1

I(Tn ≤ t) ·Xn

where I(Tn ≤ t) is an indicator function:

I(Tn ≤ t) =
{

1 if Tn ≤ t
0 if otherwise

describes the total amount of degradation at time t. The sequence Φ =
((Tn, Xn)) is called a marked point process, and Φ(t) is defined as the random
variable representing the number of events occurred up to time t. Frequently,
it is of interest to discuss the first passage problem that the process (Zt)
exceeds a pre–specified constant threshold level h > 0 for the first time. This
first passage time is the random lifetime of the item. It is also possible to
regard a (random) state of first X0 at time T0 := 0. Then the corresponding
first passage time Zh is given as

Zh = inf{t :
∞∑

n=0

I(Tn ≤ t) ·Xn ≥ h} (1)
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Let us mention Zh coincide with some Tm for m ∈ N.

Now we make some assumptions to specify the degradation model.

2.1 The distribution of (Tn)

The cumulated stochastic intensity ν(t) of (Tn) is assumed to be given by
ν(t) = Y ·η(t), where η(t) is a deterministic function with derivative ξ(t) ≥ 0.
Hence, given the outcome Y = y the random number Φ(t) of shocks up to time
t is Poisson distributed with mean y ·η(t). Each realization of the degradation
process has its own individual intensity. Consequently, it is possible to model
different environmental conditions or different frailties for each individual.
The unconditional distribution of Φ(t) is given by

pk(t) = P (Φ(t) = k) = E

[
[Y η(t)]k

k!
exp(−Y η(t))

]
=
∫ ∞

0

[yη(t)]k

k!
e−yη(t)dFY (y) , k = 0, 1, . . . . (2)

The sequence (Tn) is called a doubly stochastic Poisson process. Special cases
of this process are the mixed Poisson process where η(t) = t and the non
homogeneous Poisson process where P (Y = y0) = 1.

The following types belong to the most common models for η:

1. Weibull type: η(t) = tα+1 (α > −1)
2. log–linear type: η(t) = t · eαtγ

(α ≥ 0, γ ≥ 0)
3. logistic type: η(t) = t · [1 + ln(1 + αtγ)] (α ≥ 0, γ > −1) .

The frailty variable Y is a nonnegative random variable which can be specified,
too:

1. Y is rectangular distributed in [a, b] with 0 ≤ a < b. Then we get from
equation (2) for η(t) > 0 by partial integration and with the convention
00 := 1

pk(t) =
1

η(t) (b− a)

k∑
u=0

[
[a η(t)]u

u!
e−a η(t) − [b η(t)]u

u!
e−b η(t)

]
. (3)

2. Let Y − y0 be Gamma distributed with parameters c > 0 and b > 0 and
pdf

fY (y) = I(y ≥ y0)
cb

Γ (b)
(y − y0)b−1e−c(y−y0) .

Using
∫∞

y0

[c+η(t)]k−u+b

Γ (k−u+b) (y − y0)k−u+b−1e−[c+η(t)]·(y−y0)dy = 1 we get

pk(t) =
k∑

u=0

Γ (k − u + b)
Γ (b)Γ (k + 1)

(
k

u

)[
c

c + η(t)

]b [
η(t)

c + η(t)

]k

×

× (y0 [c + η(t)])u
e−y0 η(t) , (4)
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If we use the notations

q(t) :=
c

c + η(t)
=

cη−1(t)
cη−1(t) + 1

and
y0[c + η(t)] = y0η(t)[cη−1(t) + 1]

then we get

pk(t) =
k∑

u=0

(
[y0η(t)]u

u!
e−y0η(t)

)
×

×
(

Γ (k − u + b)
Γ (b)Γ (k − u + 1)

q(t)b (1 − q(t))k−u

)
. (5)

Hence, pk(t) are the probabilities of the Delaport distribution with pa-
rameters c

η(t) , b and y0 ·η(t). From (5) the random number of shocks Φ(t)
can be interpreted as a sum of two independent random variables W1(t)
and W2(t) where W1(t) is Poisson distributed with expectation y0η(t) and
W2(t) is negative binomial distributed with parameters q(t) ∈ (0, 1) and
b > 0. In the special case of y0 = 0 Φ(t) = W2(t) is negative binomial dis-
tributed and if Y is exponential distributed (b = 1) we get the geometrical
distribution for W2(t) in Φ(t) = W1(t) + W2(t).

3. Let Y be inverse Gaussian distributed with pdf

fY (y) = I(y ≥ 0)

√
β

2π y3
exp
(
−1

2
β(y − µ)2

µ2 y

)
.

From (2) we get

pk(t) =
∫ ∞

0

(yη(t))k

k!

√
β

2π y3
e
− β [y

√
1+2η(t)µ2/β−µ]2

2 µ2 y dy ×

×e−
β
µ (
√

1+2η(t)µ2/β−1)

= e−
β
µ (
√

1+2η(t)µ2/β−1) η(t)k

k!
√

(1 + 2η(t)µ2/β)k
· E[W k] .

The moments of order k of the inverse Gaussian distribution are given by

E[W k] = µk
k−1∑
u=0

(k − 1 + u)!
(k − 1 − u)!u!

[
µ

2β
√

1 + 2η(t)µ2/β

]u

.

Finally we get

pk(t) = exp
(
−β

µ
(
√

1 + 2η(t)µ2/β − 1)
) [

µ η(t)√
1 + 2η(t)µ2/β

]k
1
k!

×

×
k−1∑
u=0

(k − 1 + u)!
(k − 1 − u)!u!

[
µ

2β
√

1 + 2η(t)µ2/β

]u

. (6)
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2.2 Marking the sequence (Tn)

Next we consider a marking of the sequence (Tn). At every time point Tn a
shock causes a random degradation. We describe the degradation increment
at Tn by the mark Xn. Φ = ((Tn, Xn)) is said to be a position–dependent
G–marking of (Tn) if X1, X2, . . . are conditionally independent given (Tn):

P (Xn ∈ B | (Tn)) = G(Tn, B) . (7)

Moreover, we assume that each mark Xn and Y are conditionally independent
given (Tn), i.e. P (Xn ∈ B | (Tn) , Y ) = P (Xn ∈ B | (Tn)). Note that the
distribution of the n− th degradation increment Xn depends on the random
time of the n-th shock. With a position-dependent-marking it is possible
to describe degradation processes where the degradation becomes faster (or
slower) with increasing time. We want to give two simple examples.

1. Let t0 ≥ 0 be a fixed time and let (Un), (Vn) be two sequences of iid
random variables with cdf FU and FV , respectively. The sequence of
degradation increments (Xn) is defined by

Xn := I(Tn ≤ t0)Un + I(Tn > t0)Vn

and G(t, [0, x]) is given by

G(t, [0, x]) = I(t ≤ t0)FU (x) + I(t > t0)FV (x) . (8)

That means that at time t0 the distribution of degradation increments is
changing. For t0 = 0 we get the independent marking.

2. Let (Un) be a sequence of non–negative iid random variables with the
density fU and let δ be a real number. We assume that the sequence (Un)
is independent on (Tn). The sequence (Xn) is defined by Xn = Un · eδTn .
That means we get damage increments which tend to be increasing (δ > 0)
or decreasing (δ < 0). The stochastic kernel G is given by

G(t, B) =
∫

B

fU (x · e−δt) · e−δtdx .

Again, for δ = 0 we have the special case of independent marking. In this
case G defines a probability measure which is independent on the time t.

Last we have to specify the distribution of the marks. This can be any dis-
tribution law with nonnegative realizations, such as the exponential, gamma,
Weibull, lognormal or Pareto.

For practical applications it is necessary to estimate the parameters of all
considered distributions. That can be done or by likelihood theory or by the
method of moments. The likelihood function for such degradation models and
parameter estimates are given in detail in [WeK04]. Some characteristics of
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the process such as the cumulative degradation at any time t, the moments
of the counting process, and others, are developed. Here we will restrict us
to the estimation of the distribution parameters of Y by maximum likelihood
and moment methods. We can have different levels of information observing
the degradation process:

1. All random variables, Y , (Tn), and (Xn) are observable. Then the likeli-
hood function is a product of three densities and the parameters can be
estimated independently for each random variable. This case is not very
realistic.

2. More interesting is the the assumption that we can observe each time
point of a shock and each increment of degradation but cannot observe
the random variable Y . This is a more realistic assumption because Y is
a variable which describes the individual shock intensity for each item, a
frailty variable.

3. In many situations it might be possible that a failure is the result of an
degradation process but we cannot observe the underlying degradation.
By the maximum likelihood method it is possible to estimate all param-
eters in the model because the distribution of the the first passage time
contains all these parameters.

3 Maximum Likelihood Estimates

Let θ be given as θ = (θY , θT , θX) ∈ Rp with p = u+v+w. Here, θY ∈ Ru is a
parameter of the distribution function FY of Y , θT ∈ Rv denotes a parameter
of the deterministic terms η and its derivative ξ, respectively. And θX ∈ Rw

represents a parameter of the distribution of degradation increments. Under
the assumptions of section 2 we get the following stochastic intensity of the
marked point process Φ = ((Tn, Xn))

λ(t, B; θ) = Y · ξ(t; θT ) ·G(t, B; θX) , B ∈ B+ .

If we have the full information about the degradation process then it can be
shown that the likelihood function consists of three independent parts, each
of them contains the full information about θY , θT , and θX , respectively. If
we want to estimate θY , then we have the classical problem of estimating
parameters from a sample of m iid observations [Wen99].
In [WeK04] it is shown that in the second case (Y is not observable) the
intensity λ̃ is given by

λ̃(t, B; θ) = ξ(t; θT )G(t, B; θX)

∞∫
0

yΦ(t−)+1e−y η(t;θT )FY (dy; θY )

∞∫
0

yΦ(t−)e−y η(t;θT )FY (dy; θY )
. (9)
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The essential part for estimating the parameter θY is the last term

λ∗ =

∞∫
0

yΦ(t−)+1e−y η(t;θT )FY (dy; θY )

∞∫
0

yΦ(t−)e−y η(t;θT )FY (dy; θY )

which can be interpreted as the conditional expectation of Y given the history
of observation. It is easy to see that this term depends only on θY and θT .
Our aim is to determine an estimator of θY based on m ≥ 1 independent
copies of the process Φ. Let Φi(t) be the observed number of shocks in the
i–th copy (i = 1, . . . ,m). For the three special distributions of Y introduced
in section 2 we get the following essential parts of the process intensity and
resulting maximum likelihood estimates:

1. If Y is rectangular distributed in [a, b]:

λ∗ =
Φ(t−) + 1
η(t; θT )

·

Φ(t−)+1∑
u=0

(
[b η(t;θT )]u

u! e−b η(t;θT ) − [a η(t;θT )]u

u! e−a η(t;θT )
)

Φ(t−)∑
u=0

(
[b η(t;θT )]u

u! e−b η(t;θT ) − [a η(t;θT )]u

u! e−a η(t;θT )
) .

For this distribution we get two likelihood equations which are linear
dependent and which both leads to

1
m

m∑
i=1

Φi(t) =
â + b̂

2
· η(t; θ̂T ) .

Consequently, it is not possible to estimate both parameters a and b.
2. If (Y − y0) is gamma distributed:

λ∗ =
Φ(t−) + 1
c + η(t; θT )

·

Φ(t−)+1∑
u=0

Γ (Φ(t−)+1−u+b)
u! (Φ(t−)+1−u)! [y0 (c + η(t; θT ))]u

Φ(t−)∑
u=0

Γ (Φ(t−)−u+b)
u! (Φ(t−)−u)! [y0 (c + η(t; θT ))]u

(00 := 1) .

The likelihood equations can be found to be

0 =
m∑

i=1

{
b̂

ĉ
− Φi(t) + b̂

ĉ + η(t; θ̂T )
+ ŷ0

Ui(Φi(t) − 1 )
Ui(Φi(t) )

}
(10)

0 =
m∑

i=1

{
−η(t; θ̂T ) + (ĉ + η(t; θ̂T ))

Ui(Φi(t) − 1 )
Ui(Φi(t) )

}
(11)

0 =
m∑

i=1

{
ln(ĉ) − ln(ĉ + η(t; θ̂T ))

+
Ui(Φi(t) − 1 )

Ui(Φi(t))
(ŷ0 [ĉ + η(t; θ̂T )])l

Φi(t)−l∑
n=1

1
n− 1 + b̂

}
(12)



Statistical Analysis of Some Parametric Degradation Models 273

where

Ui(n) =
n∑

l=0

Γ (n− l + b̂)
Γ (n− l + 1) l!

·
(
ŷ0 [ĉ + η(t; θ̂T )]

)l

.

These equations must be solved numerically. For the special case of b = 1
(two parametric exponential distribution) the two equations (10) and (11)

have to be solved with b̂ = 1 and Ui(n) =
∑n

l=0
(ŷ0 [ĉ + η(t; θ̂T )])l

l! . In the
case of a two parametric Gamma distribution (y0 = 0) we must consider
the equations (10) and (12) ŷ0 = 0 and Ui(n) = Γ (n+b̂)

n! .
3. If Y is inverse Gaussian distributed:

λ∗ =
µ√

1 + 2µ2η(t; θT )/β
·

Φ(t−)∑
u=0

(Φ(t−)+u)!
(Φ(t−)−u)! u!

[
µ

2 β
√

1+2µ2η(t;θT )/β

]u

Φ(t−)−1∑
u=0

(Φ(t−)−1+u)!
(Φ(t−)−1−u)! u!

[
µ

2 β
√

1+2µ2η(t;θT )/β

]u .

The parameter µ can be found from

µ̂ =
1

m · η(t; θ̂T )

m∑
i=1

Φi(t)

and β is the solution of

0 =
m∑

i=1

{
1
µ̂

(
1 − 1 + η(t; θ̂T ) µ̂2/β̂√

1 + 2η(t; θ̂T ) µ̂2/β̂

)
+

Φi(t) · η(t; θ̂T ) µ̂2/β̂2

1 + 2η(t; θ̂T ) µ̂2/β̂

−Hi ·
µ̂ · (1 + η(t; θ̂T ) µ̂2/β̂)

2β̂2 (1 + 2η(t; θ̂T ) µ̂2/β̂)1.5

}

where

Hi :=

Φi(t)−2∑
k=0

(Φi(t) + k)!
(Φi(t) − 2 − k)! k!

(
µ̂

2β̂
√

1 + 2η(t; θ̂T ) µ̂2/β̂

)k

Φi(t)−1∑
k=0

(Φi(t) − 1 + k)!
(Φi(t) − 1 − k)! k!

(
µ̂

2β̂
√

1 + 2η(t; θ̂T ) µ̂2/β̂

)k

The further restriction of information from observation to the knowledge of
only failure times makes the problem more complicated. First it is necessary
to find the distribution of the first passage time Zh of the degradation process:

Zh = inf
{
t :

∞∑
n=0

I(Tn ≤ t) ·Xn ≥ h
}

= inf
{
t : Z(t) ≥ h−X0

}
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where X0 is a (possible random) state at time T0 := 0. The explicit calculation
is possible only for some special cases. Further, this distribution contains all
parameters we considered and it is nearly impossible to find explicit estimates
except for very simple assumptions. Nevertheless, the problem can be solved
numerically.

4 Moment Estimates

Let us consider again the case of observable counting process and unobservable
frailty variable Y . Let gk(W ) and zk(W ) be the empirical ordinary and central
moments, respectively, of a random variable W :

gk(W ) =
1
m

m∑
i=1

W k
i and zk(W ) =

1
m

m∑
i=1

[Wi − g1(W )]k . (13)

According to (2) we can express the k–th ordinary and central moments of Φ(t)
as linear combinations of moments of Y multiplied by powers of the determin-
istic function η(t). Actually, let S(k, u) denote the Stirling numbers of second
kind where S(k, u) can be recursively determined

S(k, u) = S(k−1, u−1)+u·S(k−1, u), 1 ≤ u ≤ k, S(0, 0) := 1, S(0, u) = 0.

We make use of

nk =
k∑

u=1

S(k, u)n (n− 1) · . . . · (n− u + 1)

and we consider the factorial moments of a Poisson distributed random vari-
able with mean y η(t). Some elementary calculations yield

E[Φ(t)k] =
∫ ∞

0

∞∑
n=0

nk [yη(t)]n

n!
e−yη(t)dFY (y)

=
k∑

u=1

S(k, u) · E[Y u] · η(t)u . (14)

In particular, we find

Eθ[Φ(t)] = Eθ[Y ] · η(t; θT )
µθ

2(Φ(t)) = Eθ[Y ] · η(t; θT ) + µθ
2(Y ) · η(t; θT )2

µθ
3(Φ(t)) = Eθ[Y ] · η(t; θT ) + 3µθ

2(Y ) · η(t; θT )2 + µθ
3(Y ) · η(t; θT )3 .

where µk(·) denotes the k–th central moment of a random variable. Let us
further assume that the deterministic function η(t) is known and that we
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are interested only in estimating the parameters of distribution of Y . The
moments at the left hand site are replaced by its empirical moments. Further,
the moments of Y can be expressed in dependence of the moments of Φ(t)
and the function η:

Eθ[Y ] = η(t; θT )−1 · Eθ[Φ(t)] (15)

µθ
2(Y ) = η(t; θT )−2

{
µθ

2(Φ(t)) − Eθ[Φ(t)]
}

(16)

µθ
3(Y ) = η(t; θT )−3

{
µθ

3(Φ(t)) − 3µθ
2(Φ(t)) + 2Eθ[Φ(t)]

}
. (17)

Now it is possible to find moment estimates for all parameters of the distri-
bution of Y . Let us consider again the three previous examples:

1. If Y is rectangular distributed in [a, b] we get from (15) and (16) and
taking into account 0 ≤ a < b

â =
g1(Φ(t))
η(t; θ̂T )

−
√

3D2 , b̂ =
g1(Φ(t))
η(t; θ̂T )

+
√

3D2

with
D2 :=

z2(Φ(t)) − g1(Φ(t))
η(t; θ̂T )2

.

In difference to the maximum likelihood method an unique admissible
estimator exists if â ≥ 0 and D2 > 0. The assumption D2 > 0 is fulfilled
for sufficient large values of m because D2 is a consistent estimate of the
variance µθ

2(Y ) of Y .
2. If Y − y0 is gamma distributed than it has the first three moments

Eθ[Y ] =
b

c
+ y0 , µθ

2(Y ) =
b

c2
and µθ

3(Y ) = 2
b

c3
.

From (15), (16) and (17) we get the unique moment estimators

ĉ = 2
z2(Φ(t)) − g1(Φ(t))

J η(t; θ̂T )

ŷ0 =
g1(Φ(t))
η(t; θ̂T )

− 2

[
z2(Φ(t)) − g1(Φ(t))

]2
J · η(t; θ̂T )

b̂ = 4

[
z2(Φ(t)) − g1(Φ(t))

]3
J 2

with
J = z3(Φ(t)) − 3 z2(Φ(t)) + 2 g1(Φ(t)) .

3. For an inverse Gaussian distributed Y with Eθ[Y ] = µ and µθ
2(Y ) = µ3/b

the equations (15) and (16) gives the unique estimators
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µ̂ =
g1(Φ(t))

η(t; θ̂T )
and β̂ =

g1(Φ(t))3

η(t; θ̂T ) · [z2(Φ(t)) − g1(Φ(t))]
.

For this distribution we get the same µ̂ from the moment method as from
the maximum likelihood method in section 1.

The advantages of moment estimators in comparison to maximum likelihood
estimators are its simple form and the fact that they can be found explicitely.
But it is well known that in general maximum likelihood estimates have better
properties. In the next section we compare the two methods concerning to its
bias and variance.

5 Comparison of Maximum Likelihood and Moment
Estimates

Let Y − y0 Gamma distributed and let η be Weibull, it is η(t;α) = tα+1 with
α > −1. We have considered sample sizes of m = 50, m = 100, m = 250
and m = 500. For each realization a path of the degradation process was
simulated with true parameter θY = (c, y0, b) = (2.4, .5, 1.2). The observation
is assumed to continue up to time t = 10. We have considered three different
values of the parameter α in the deterministic part η(t;α). For α = −.3 the
derivative of η(t;α) is a decreasing function. The expected number of jumps
up to time t = 10 is 5.01. If α = 0 then we get a linear cumulative intensity
or a constant hazard and expected number of jumps up to time t = 10 is
10. Last, for α = .3 the derivative of η(t;α) is increasing and the expected
number of jumps up to time t = 10 is 19.95. Such a simulation was repeated
750 times and from these 750 parameter estimates the mean and the variance
of the estimator where calculated. The results are shown in table 1.

If the parameter α in the deterministic part is unknown, too, then it can
be estimated by

α̂ =
∑m

i=1 Φi(t)

ln(t) ·
∑m

i=1 Φi(t) −
∑m

i=1

∑Φi(t)
n=1 ln(Tn,i)

− 1 .

α̂ is a maximum likelihood estimator which does not contain other parameters
[WeK04]. In table 2 the results of the same simulation are shown with the
difference that now α is unknown and has to be estimated.

>From the simulation we get the following results:

1. Influence of α:
In both cases we can see that for α = 0.3 the variances of the estimator
ŷ0 (in both cases, MLE and ME) are smaller than for α = 0 or α = −0.3.
The variances of the moment estimators for b̂ and ĉ are also smaller for
α = 0.3 than for α = 0 or α = −0.3, while α does not influence the
variances of the maximum likelihood estimators.
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Table 1. Empirical moments of maximum likelihood (MLE) and moment (ME)
estimators (θY

0 = (2.4, 0.5, 1.2))

m = 50 m = 100 m = 250 m = 500
Mean Variance Mean Variance Mean Variance Mean Variance

α = −0.3
MLE c 2.614 1.798 2.435 0.762 2.386 0.302 2.401 0.140

y0 0.599 0.018 0.561 0.016 0.520 0.008 0.508 0.004
b 0.861 0.184 0.975 0.190 1.119 0.110 1.171 0.062

ME c 2.910 3.902 2.824 2.208 2.826 1.475 2.758 0.893
y0 0.480 0.047 0.458 0.041 0.436 0.031 0.444 0.023
b 1.680 2.552 1.708 2.026 1.754 1.507 1.650 1.052

α = 0.0
MLE c 2.197 0.694 2.205 0.435 2.351 0.262 2.339 0.149

y0 0.574 0.013 0.560 0.010 0.532 0.005 0.536 0.003
b 0.977 0.249 1.034 0.198 1.154 0.146 1.125 0.078

ME c 3.189 2.533 2.846 1.325 2.771 0.876 2.613 0.427
y0 0.431 0.037 0.457 0.027 0.466 0.019 0.489 0.010
b 1.982 2.030 1.716 1.257 1.621 0.855 1.431 0.375

α = 0.3
MLE c 2.497 0.706 2.484 0.573 2.392 0.268 2.446 0.143

y0 0.521 0.010 0.519 0.007 0.523 0.004 0.497 0.002
b 1.282 0.404 1.270 0.336 1.198 0.147 1.231 0.079

ME c 3.361 2.066 3.133 1.399 2.758 0.672 2.602 0.347
y0 0.388 0.030 0.418 0.024 0.464 0.013 0.470 0.007
b 2.276 2.110 2.004 1.457 1.596 0.625 1.417 0.279

2. The variances of the moment estimators are 2-4 times larger than the
variances of the maximum likelihood estimators .

3. Both, bias and variance are particularly visible smaller if the parameter
θT is known (with the exception of the independent of η moment estimate
b̂). The ratio of the variances of the maximum likelihood estimators and
moment estimators, however, is the same for known and for unknown θT .

6 Conclusion

In the paper we have shown the advantages and disadvantages of maximum
likelihood and moment estimators. The moment estimates are easy to calcu-
late, where in many cases it is difficult to find maximum likelihood estimates.
Moreover, there are problems, in which the maximum likelihood estimate of
the parameters does not exist.

On the other hand the maximum likelihood estimators have a noticeable
smaller variance as moment estimators. The ratio of the variances of the
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Table 2. Empirical moments of maximum likelihood (MLE) and moment (ME)
estimators (θY

0 = (2.4, 0.5, 1.2))

m = 50 m = 100 m = 250 m = 500
Mean Variance Mean Variance Mean Variance Mean Variance

α = −0.3
MLE c 2.187 3.217 2.000 0.913 2.125 0.481 2.197 0.407

y0 0.683 0.040 0.666 0.040 0.623 0.027 0.607 0.024
b 0.818 0.157 0.891 0.141 1.026 0.084 1.072 0.054
α -0.328 0.011 -0.337 0.010 -0.337 0.009 -0.333 0.009

ME c 2.801 3.942 2.729 3.067 2.641 1.622 2.607 1.144
y0 0.548 0.066 0.533 0.066 0.523 0.049 0.527 0.041
b 1.621 2.179 1.739 2.357 1.669 1.410 1.572 0.916

α = 0.0
MLE c 2.194 1.156 2.177 0.695 2.209 0.625 2.299 0.403

y0 0.594 0.029 0.594 0.028 0.602 0.028 0.592 0.019
b 1.072 0.304 1.157 0.207 1.194 0.147 1.137 0.084
α -0.031 0.014 -0.040 0.014 -0.048 0.012 -0.036 0.010

ME c 3.128 3.691 2.800 1.645 2.660 1.400 2.503 0.678
y0 0.438 0.051 0.471 0.041 0.516 0.038 0.532 0.025
b 2.082 2.271 1.885 1.264 1.721 0.826 1.485 0.394

α = 0.3
MLE c 2.571 0.924 2.652 1.001 2.394 0.495 2.363 0.286

y0 0.510 0.014 0.520 0.014 0.546 0.011 0.552 0.010
b 1.424 0.516 1.455 0.378 1.269 0.148 1.160 0.059
α 0.286 0.010 0.280 0.009 0.277 0.007 0.278 0.006

ME c 3.324 2.478 3.234 1.748 2.687 0.900 2.494 0.497
y0 0.394 0.038 0.421 0.032 0.489 0.020 0.517 0.015
b 2.297 1.926 2.171 1.535 1.639 0.703 1.409 0.250

maximum likelihood estimators and moment estimators becomes smaller with
increasing sample size.
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Use of statistical modelling methods in clinical
practice

Klyuzhev V.M., Ardashev V.N., Mamchich N.G., Barsov M.I.,Glukhova S.I.

Burdenko Main Military Clinical Hospital, Moscow, Russia name@email.address

1 Introduction

The necessity to generalize the great amount of information concerning the
investigated physiological systems, the possibility to predict the body func-
tional reserves have lead to the wide use of statistical modelling methods in
the medical practice. The present paper based on the experience of collab-
orative work of medical specialists and statisticians is devoted to the review
of some methods of multivariate statistics used in medicine. The statistical
analysis of correlation matrices allowing to carry out the systemic approach
to the phenomena under discussion underlies these methods. The data pro-
cessing using factor and cluster analysis allows to gather the signs into groups
identical to the concept of disease syndrome, to obtain the patient grouping,
to reveal the connections between the signs, and, according to it, to form the
new hypotheses about the revealed causes of dependence. At the stage of
diagnostic decision the regression and discriminant analysis can be used.

2 Methods of statistical modelling

The main statistical methods used in diagnosis and prediction according to
the problems and their clinical significance are shown in Table 1. Not dwelling
upon the well-known Student t-test, Walsh t-test and Hotelling T2-test as they
are discussed in the available literature, we shortly describe the multivari-
ate statistical methods. More about these and other statistical methods one
can see, for example, in [BS83], [GN96],[VN93],[VN96],[BR04],[KK02],[Zac71],
etc...
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Problem Method Purpose and Model

Comparison of statistically Student t-test Testing of statistical
significant difference Walsh t-test significance of changes
between the separate

signs
Comparison of statistically Hotelling T2-test Testing of statistical

significant difference significance of multi-
by sign population variate measurements

Syndrome approach
model

Unification of signs into Factor and cluster Analysis of connections
groups identical to analyses between the signs.

the concept of Hypothesis forming
disease ńsyndromeż

Classification and
diagnosis model

Hierarchical patient Cluster and Diagnosis and
classification factor analyses prediction model

Evaluation of signs for Regression analysis
diagnosis and prediction Differential diagnosis

and prediction model
Differential evaluation Discriminant analysis

of sign population Appropriate therapy choice
for diagnosis and model

prediction
Scheme of medicament Logical programming

choice

Table 1. The main methods

3 Results

Factor analysis is based on the general idea according to which the values
of all analyzed symptoms are under the influence of a rather small set of
factors. These factors cannot be measured directly and that is why they are
called latent. To a certain extent, the factors play the part of causes and the
observed symptoms act as the consequences. As the number of latent factors
is significantly lower than the number of analyzed signs the aim of factor
analysis is to reduce the dimensionality of sign space.

The first factor accumulates maximal information about symptom inter-
connections and reveals the most distinct signs of the phenomenon under
investigation. The second and the subsequent factors comprise the signs that
supplement this information by giving some additional significant and indi-
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vidual disease features. The factors are not correlated and ordered according
to the variance decrease (the highest is in the first one). It allows to gather the
different clinical signs into groups similar to the concept of disease syndrome
and to rank them according to significance degree.

The main information about the investigated phenomenon can be pre-
sented graphically as vectors in space, the axes of which are the values of
first, second and subsequent factors. The use of factor analysis method allows
to establish the connection between the diseases, to reveal the signs having
no direct connection (or having slight connection) with the given disease.

We give the examples of statistical processing of the material in patient
group with different variants of a coronary disease (CHD).

The clinical signs included in the factor which we named cardiorrhexis
during myocardial infarction are presented in Table 2.

Signs Factor load

The first myocardial infarction 0,8
Female sex 0,7

History of hypertensive disease 0,7
Severe, sometimes intolerable cardiac pain 0,5

Pain syndrome lasts more than 4 h, pain relapse 0,6
Arterial hypertension 0,7

Trinomial cardiac rhythm 0,6
Systolic murmur above the whole cardiac surface 0,5

Leukocytosis 0,5
Increase in sialic acid level 0,4

High activity of creatine phosphokinase 0,4

Table 2. The results of factor analysis in patients with acute
myocardial infarction complicated by cardiorrhexis

One can see that these signs have factor loads ranging from 0,4 to 0,8.
They show the acuity of disease manifestation and allow us to formulate the
hypothesis of mechanical incompetence of myocardial connective stroma. Car-
diorrhexis occurs during the first myocardial infarction with a background of
pre-existent hypertensive disease. Pain severity, high fermentative activity,
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increased level of sialic acids, high leukocytosis reflect the severity of patho-
logical process and probable myocardial stroma destruction.

So, with the help of factor analysis, it is possible to order the system
volumes according to the levels and to create the hierarchical classification of
the phenomenon under investigation.

The aim of cluster analysis is to partition a set of objects into preset
or unknown number of classes based on a certain mathematical criterion of
classification quality (a cluster is a group of elements characterized by any
general feature). It can be used for disease class detection, patient attribu-
tion to appropriate groups and classification of disease symptoms. Based on
the measurement of similarity and differences between the patterns (clinical
profile) the clusters or groups of subjects investigated are selected. The se-
lected clusters are compared with disease actual outcomes. Depending on
their concurrence or difference the problem whether the clinical profile of the
disease corresponds to the actual outcomes is solved. Such grouping based on
the simple diagnostic principle, i.e. the similarity of one patient with another
is the mathematical model of classification. The use of clinical signs allowed
us to divide the investigated subjects into 4 groups. Each group corresponds
to a disease functional class. The accuracy of classification obtained is 95%.

The most successful model of differential diagnosis is discriminant anal-
ysis [OW61]. Its aim is to include the subject (according to a certain rule) in
one of the classes (k) depending on the parameters observed (p). This problem
is solved with the help of step discriminant analysis. At every step the vari-
able exercising the most significant influence on group division is entered into
discriminant equation. As a result the following evaluation of discriminant
function for i population is obtained

di = ai1x1 + ai2x2 + ... + aip
xp + ci,

where i = 1, ..., k.
When k equals 2 (two populations) the investigated subject belongs to

group 1 if the following condition is carried out:

p∑
i=1

ajxj > c2 − c1, aj = a1j + a2j , j = 1, ..., p.

So the method based on the analysis of multiple correlation allows to re-
veal the most significant differential diagnostic signs and to obtain the decision
rule of differential diagnosis. The discriminant analysis is successfully used
in prediction of insult outcome when different methods of its treatment were
used. It can also predict the patient survivability when operated for renal
cancer and to determine the survival time for patients with renal cancer hav-
ing metastases in different organs [For88]. The accuracy is within the range
from 68-73% (with survivability prognosis) to 90% (with operation outcome
prognosis).
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There are cases in diagnosis when relying upon the number of indirect
signs it is necessary to evaluate the most important sign to detect which
is very difficult. It can be done with the use of regression analysis. Such
approach helps to determine the degree of anatomical lesion based on the
indirect diagnostic signs, to evaluate the complication probability, survival
time, biological age.

The discriminant and regression analyses are based on the assumption
that the statistical data correspond to the normal distribution law. Mean-
while there is a great number of data that either cannot be subjected to the
analysis with the help of normal distribution curve or do not satisfy the main
prerequisites necessary for its use. To analyze such data the multi-modal dis-
tribution laws [CZ85] and mathematical apparatus of catastrophe theory can
be used allowing to reveal the most significant factors of multivariate popu-
lation of statistical data and to detect geometrically the critical region where
the qualitative changes in the investigated objects occur.

The process of penetration of mathematical methods into theory and prac-
tice of medicine is natural. The analysis of literature published during the
last decades shows that the number of works devoted to this problem is still
increasing. The wide and methodologically substantiated application of math-
ematical methods in different fields of health service makes it possible to put
the medical information processing on principally new basis.

The most significant are information systems based on the principle of
gathering the multiple case records into the large database. The database
means the system of information storage, processing and analysis consisted
of sign population among certain patients. For example, in CHD patients,
the first stage for creating such a base provides the signs collection in the
patient according to the formalized case record and input of this information
into computer. The second stage is the information analysis with the help of
mathematical techniques and sampling of decision rule of differential diagno-
sis, disease prognosis and patient treatment. The third stage is the decision
making based on the created decision rules in CHD patient and diagnosis
making with recommendations concerning the methods of adequate therapy.
The fourth stage is the storage and updating of database in computer.

The result of database formation is the construction of mathematical meth-
ods capable to reflect the patient specific state. It is usually directed towards
development of individual therapy and creation of algorithm of patient treat-
ment methods and rehabilitation.
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Summary. This paper deals with the joint modeling and simultaneous analysis of
failure time data and degradation and covariate data. Many failure mechanisms
can be traced to an underlying degradation process and stochastically changing
covariates. We consider a general class of reliability models in which failure is due
to the competing causes of degradation and trauma and express the failure time
in terms of degradation and covariates. We compute the survival function of the
resulting failure time and derive the likelihood function for the joint observation of
failure time data and degradation data at discrete times.

Key words: Degradation process; degradation-threshold-shock model; dts-
model; traumatic event; threshold; first passage time

1 Introduction

This paper deals with the joint modeling and simultaneous analysis of failure
time data and covariate data like internal degradation and external environ-
mental processes. Many failure mechanisms in engineering, medical, social,
and economic settings can be traced to an underlying degradation process and
stochastically changing covariates that may influence degradation and failure.

Most items under study degrade physically over time and a measurable
physical deterioration almost always precedes failure. The level of deterio-
ration of an item is represented by a degradation process. In engineering
applications, degradation may involve chemical changes brought about by
corrosion and electro-migration or physical changes due to wearing out and
fracturing, whereas degradation may be characterized by markers of health
status and quality of life data in medical settings. Frequently, an item is
regarded as failed and switched off when degradation first reaches a critical
threshold level.
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Moreover, in most practical applications items or systems operate in het-
erogeneous environments and loads, environmental stresses, and other dynam-
ically changing environmental factors may influence their failure rate.

When it is possible to measure degradation as well as covariates, an alter-
native approach to reliability and survival analysis is the modeling of degra-
dation and environmental factors by stochastic processes and their failure-
generating mechanisms. This stochastic-process-based approach shows great
flexibility and can give rise to new or alternative time-to-failure distributions
defined by the degradation model. It provides additional information to fail-
ure time observations and is particularly useful when the application of tradi-
tional reliability models based only on failure and survival data is limited due
to rare failures of highly reliable items or due to items operating in dynamic
environments.

Two relevant stochastic models relating failure to degradation and other
covariates have evolved in the theoretical and applied literature, threshold-
models and shock-models. A threshold-model supposes that the item or system
fails whenever its degradation level reaches a certain critical deterministic or
random threshold. In a shock-model the item or system is subjected to exter-
nal shocks which may be survived or which lead to failure. The shocks usually
occur according to a Poisson process whose intensity depends on degradation
and environmental factors. It appears that Lemoine and Wenocur [LW85]
may have been the first to combine both approaches by considering two com-
peting causes of failure: degradation reaching a threshold, and occurrence of
a traumatic event like a shock of large magnitude severe enough to destroy
the item. So, the failure time of an item is the minimum of the moment
when degradation first reaches a critical threshold and the moment when a
censoring traumatic event occurs.

We call this class of reliability models which consider failure due to the
competing causes of degradation and trauma degradation-threshold-shock-
models (DTS-models). Singpurwalla [Sin95] and Cox [Cox99] give detailed
reviews on stochastic-process-based reliability models including DTS-models.

In this paper, we derive an expression for the survival function of the failure
time in a general DTS-model and consider certain classes of submodels. For
the joint observation of failure time data and degradation data at discrete
times the likelihood function is given.

The intension of this paper is to give a general framework for dealing with
DTS-models. To apply the DTS-model to real data situations it is of course
neccessary to specify the degradation and covariate processes. In applied liter-
ature degradation processes are frequently described by a general path model,
i.e., by a stochastic process that depends only on a finite dimensional random
variable (see [ME98]), or by a univariate process with stationary independent
increments. In the context of DTS-models, Bagdonavičius, Haghighi and
Nikulin [BHN05] consider a general path model with time dependent covari-
ates and multiple traumatic event modes. Several processes with stationary
independent increments have been used in degradation models. Frequently
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degradation is related to external covariates through a random time scale
describing slowing or accelerating degradation in real time. The time scale
and the intensity of traumatic events may depend on possibly time-varying
covariates, for instance on different stress levels, to model the influence on fail-
ure of a dynamic operating environment of the item and to cover non-linear
degradation behavior.

Wiener diffusion processes have found application in Doksum and Hoyland
[DH92], Doksum and Normand [DN95], Lawless, Lu and Cao [LHC95], Whit-
more [Whi95], Whitmore and Schenkelberg [WS97] and Whitmore, Crowder
and Lawless [WCL98]. Degradation models based on the gamma process were
considered by Wenocur [Wen89] and, in the context of a DTS-model, by Bag-
donavičius and Nikulin [BN01] together with a random time scale depending
on covariates. Lehmann [Leh04] considers a DTS-model with a Lévy degra-
dation process and a random time scale and extends this DTS-model to the
case of repairable items by a marked point process approach.

2 Degradation-Threshold-Shock-Models

Suppose that the degradation level of some item is described by a stochastic
process X = {X(t) : t ∈ R+}, defined on a fixed probability space (Ω,F ,P).
Let Xt = {X(s) : 0 ≤ s ≤ t} denote the path of X on [0, t] and FX

t = σ(Xt)
the history of all paths of X up to time t. For simplicity, we do not consider
an external covariate process for the present.

An item is regarded as failed when the degradation process reaches a
critical threshold level X∗ which is possibly random but independent of X.
Additionally to failures which are immediately related to degradation, an
item can also fail when a traumatic event like a shock of large magnitude
occurs although the degradation process has not yet reached the threshold.
We model such a censoring traumatic event as the first point of a doubly
stochastic Poisson process Ψ = {Ψ(t) : t ∈ R+} with a stochastic intensity
κ(t,X(t)) that may depend on time t and on the degradation level X(t).
That means, given a known path x(·) of X, Ψ is an nonhomogeneous Poisson
process with intensity κ(t, x(t)). Hence, the failure time of an item is defined
as the minimum

T = min(D,C), (1)

of the nontraumatic failure time D = inf{t ≥ 0 : X(t) ≥ X∗} caused by
degradation and the traumatic failure time C = inf{t ≥ 0 : Ψ(t) = 1} caused
by a traumatic event. Given the degradation path Xt up to time t, the
conditional survival function of C is

P(C > t |Xt) = exp
(
−
∫ t

0

κ(s,X(s)) ds
)
. (2)

Thus, the survival funtion of T is
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P(T > t) = E
[
1(D > t) exp

(
−
∫ t

0

κ(s,X(s)) ds
)]

, (3)

where 1(D > t) denotes the indicator function of the event {D > t}.
We call this model degradation-threshold-shock-model (DTS-model). Sup-

posed that D has a failure rate λ(t) and that C has a deterministic intensity
κ(t), (3) simplifies to

P(T > t) = exp
(
−
∫ t

0

κ(s) ds
)

P(D > t) = exp
(
−
∫ t

0

(κ(s) + λ(s)) ds
)
.

To find an expression of the survival function and the failure rate of T in the
general case we use a theorem given by Yashin and Manton [YM97]:

Theorem 1 (Yashin, Manton). Let ζ and ξ be stochastic processes in-
fluencing a failure rate α(t, ζ, ξ) and satisfying measurability conditions such
that, for t ≥ 0

E
∫ t

0

α(u, ζ, ξ) du < ∞,

and let T be related to ζt and ξt by

P(T > t | ζt, ξt) = exp
(
−
∫ t

0

α(u, ζ, ξ) du
)
. (4)

If the trajectories of ζ are observed up to t, then

P(T > t | ζt) = exp
(
−
∫ t

0

α(u, ζu) du
)
,

where
α(t, ζt) = E[α(t, ζ, ξ) | ζt, T > t].

The random failure rate α(t, ζ, ξ) may depend on either the current values
ζ(t) and ξ(t) or on the trajectories ζt and ξt up to t. If the covariate process ζ
does not appear in (4), i.e. α = α(t, ξ), the statement of Theorem 1 obviously
reads

P(T > t) = exp
(
−
∫ t

0

E[α(u, ξ) |T > u] du
)

(5)

(see [Yas85]). Although we observe that

P(T > t |Xt) = E[1(D > t)1(C > t) |Xt] = 1(D > t)P(C > t |Xt)

is not of the form (4), Theorem 1 can be used to compute P(T > t).

Theorem 2. Let the traumatic failure time C has the stochastic failure rate
κ(t,X(t)) with E

∫ t

0
κ(s,X(s)) ds < ∞ for all t ≥ 0 and assume that, given

X∗ = x∗, the nontraumatic failure time D have the conditional failure rate
λ(t, x∗) with E

∫ t

0
λ(s,X∗) ds < ∞ for all t ≥ 0. Then,
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P(C > t) = exp
(
−
∫ t

0

κ̌(s) ds
)

and

P(D > t) = exp
(
−
∫ t

0

λ(s) ds
)
,

where the failure rates κ̌ and λ are given by κ̌(t) = E[κ(t,X(t)) |C > t] and
λ(t) = E[λ(t,X∗) |D > t]. The survival function of T can be expressed as

P(T > t) = exp
(
−
∫ t

0

(κ(s) + λ(s)) ds
)
,

where κ(t) = E[κ(t,X(t)) |T > t] is the failure rate of a traumatic event if a
nontraumatic event has not occurred.

Proof. Let H(t) = 1(D ≤ t) and Ht = {H(s) : 0 ≤ s ≤ t}. Since D is a
FX

t -stopping time we have σ(Ht) ⊆ FX
t for all t ≥ 0 and, therefore,

P(C > t |Ht, Xt) = P(C > t |Xt) = exp
(
−
∫ t

0

κ(s,X(s)) ds
)
. (6)

First, apply (5) with ξt = Xt to the second equation of (6) to get the survival
function P(C > t) = exp

(
−
∫ t

0
κ̌(s) ds

)
and then, with ξt = X∗, to P(D >

t |X∗) = exp
(
−
∫ t

0
λ(s,X∗) ds

)
to show P(D > t) = exp

(
−
∫ t

0
λ(s) ds

)
.

Moreover, applying Theorem 1 with ζt = Ht and ξt = Xt to (6) we obtain

P(C > t |Ht) = exp
(
−
∫ t

0

κ∗(s,Hs) ds
)

where
κ∗(t,Ht) = E[κ(t,X(t)) |Ht, C > t].

Obviously, on {D > t}, we have κ∗(t,Ht) = κ(t) and

P(C > t |D > t) = exp
(
−
∫ t

0

κ(s) ds
)
.

Thus, we conclude

P(T > t) = P(C > t |D > t) P(D > t) = exp
(
−
∫ t

0

(κ(s) + λ(s)) ds
)
.

��
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In the following theorem an expression is derived for the density of the
degradation process X(t) conditioned on the event that no failure has oc-
curred up to the moment t. We assume that X(t) possesses a density fX(t)

with respect to some dominating measure ν, usually the Lebesgue measure
or the counting measure. However, in the following we will write dx in-
stead of ν(dx) regardless of the nature of ν. Further, we assume that for
all t ≥ 0 and tk = (t0, . . . , tk) ∈ Rk+1 with 0 ≤ t0 < . . . < tk ≤ t and
xk = (x0, . . . , xk) ∈ Rk+1 the conditional joint density g(t, tk,xk;x∗) with

P(D > t,Xk ∈ dxk |X∗ = x∗) = g(t, tk,xk;x∗) dxk (7)

and Xk = (X(t0), . . . , X(tk)) is known.
Of course, g must satisfy g(t, tk,xk;x∗) = 0 if min(x0, . . . , xk) ≥ x∗. If

the paths of X are increasing then, obviously,

g(t, tk,xk;x∗) = fXk
(xk) P(X(t) < x∗ |Xk = xk).

for x0 ≤ . . . ≤ xk < x∗ and g(t, tk,xk;x∗) = 0 otherwise.
If X is a Wiener process with drift with drift coefficient µ, variance coef-

ficient σ and initial value X(0) = 0, then

g(t, tk,xk;x∗) =
k∏

j=1

g0(tj − tj−1, xj − xj−1;x∗)F0(t− tk, x
∗ − xk)

for min(x1, . . . , xk) < x∗ where t0 = x0 = 0 and

g0(t, x;x∗) = 1(x∗ > x)
1

σ
√
t
ϕ

(
x− µt

σ
√
t

)[
1 − exp

(
−2x∗(x∗ − x)

σ2t

)]
for all t > 0 (see [KL98]). The function F0 is the survival function of an
Inverse Gaussian distribution, i.e.,

F0(t, x) = N

[
x− µt

σ
√
t

]
− e(2µσ−2x) N

[
−x− µt

σ
√
t

]
where ϕ and N denote the pdf and the cdf of a standard normal random
variable.

Theorem 3. Let the traumatic failure time C has the stochastic failure rate
κ(t,X(t)) with E

∫ t

0
κ(s,X(s)) ds < ∞ for all t ≥ 0 and assume (7) for all

t ≥ 0, tk = (t0, . . . , tk) ∈ Rk+1 with 0 ≤ t0 < . . . < tk ≤ t and xk =
(x0, . . . , xk) ∈ Rk+1. Then,

P(T > t,Xk ∈ dxk) = exp
(
−
∫ t

0

κ(s,xk(s)) ds
)
g(t, tk,xk) dxk,

where κ(s,xk(s)) = E[κ(s,X(s)) |T > s,Xk(s) = xk(s)] with k(s) = max{j ≥
0 : tj ≤ s} for 0 ≤ s ≤ t and g(t, tk,xk) = E[g(t, tk,xk;X∗)].
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Proof. For all u ≥ 0, let H(u) = 1(D ≤ u) and Hu = {H(s) : 0 ≤ s ≤ u}. Set
tk+1 = ∞ and let X∆(t) =

∑k
j=0 1(tj ≤ t < tj+1)X(tj) denote the process of

discrete observations of X Defining ζu = (Hu, X
∆
u ) = {(H(s), X∆(s)) : 0 ≤

s ≤ u} we have

P(C > t | ζt, Xt) = P(C > t |Xt) = exp
(
−
∫ t

0

κ(s,X(s)) ds
)

(8)

since σ(ζt) ⊆ FX
t . Applying Theorem 1 with ξt = Xt to (8) we obtain

P(C > t | ζt) = P(C > t |Ht, X
∆
t ) = exp

(
−
∫ t

0

κ∗(s,Hs, X
∆
s ) ds

)
where

κ∗(s,Hs, X
∆
s ) = E[κ(s,X(s)) |Hs, X

∆
s , C > s].

for all 0 ≤ s ≤ t. Since κ∗(s,Hs, X
∆
s ) = κ(s,Xk(s)) on {D > t}, we finally

conclude
P(T > t,Xk ∈ dxk) = P(C > t |D > t,Xk = xk) P(D > t,Xk ∈ dxk)

= exp
(
−
∫ t

0

κ(s,xk(s)) ds
)

E[g(t, tk,xk;X∗)] dx.

��
The class of DTS-models contains two important subclasses, degradation-
threshold-models (DT-models) and degradation-shock-models (DS-models).

2.1 Degradation-Threshold-Models

In a degradation-threshold-model only nontraumatic failures can occur, i.e.,
the traumatic event intensity κ is equal to zero and the failure time T = D =
inf{t ≥ 0 : X(t) ≥ x∗} is the first passage time of X to the threshold x∗,
which is assumed to be nonrandom in this subsection.

If degradation is modeled by a one dimensional Wiener process with drift
X(t) = x + µt + σW (t) where W denotes a standard Brownian motion, then
it is well known, that T ∼ IG

(
x∗−x

µ , (x∗−x)2

σ2

)
is Inverse Gaussian distributed

if x < x∗. In general, T has an upside bathtub failure rate, but it has an
essentially increasing failure rate (IFR) if (x∗ − x)/σ ( 1 and a decreasing
failure rate (DRF) if (x∗ − x)/σ � 1 (see Fig. 1).

For an increasing degradation process X the survival function of T is given
by P(T > t) = P(X(t) < x∗). If, for instance, X is a homogeneous Poisson
process with rate λ > 0 then T ∼ Ga([x∗], λ) follows a gamma distribution,
which has an increasing failure rate. If X is an increasing jump process, then
T has always increasing failure rate average (see [SS88]):
Theorem 4 (Shaked, Shantikumar). If X is an increasing jump process,
then T has increasing failure rate average (IFRA). If X is an increasing Lévy
process with a Lévy measure ν which has a decreasing density, then T has
increasing failure rate (IFR).
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Fig. 1. Failure rates of Inverse Gaussian distribution (x∗ = h)

2.2 Degradation-Shock-Models

The class of degradation-shock-models is characterized by the absence of a
critical threshold X∗ which can be described formally by X∗ = ∞. Here the
failure time is given by T = C = inf{t ≥ 0 : Ψ(t) = 1}, i.e., only traumatic
failures can occur. Hence, by Theorem 2 we have

P(T > t) = E
[

exp
(
−
∫ t

0

κ(s,X(s)) ds
)]

= exp
(
−
∫ t

0

κ(s) ds
)
.

with κ(t) = κ̌(t) = E [κ(s,X(s)) |C > t]. For a positive increasing Lévy
degradation process X with Lévy measure ν and drift rate µ and an inten-
sity κ(t,X(t)) = γX(t) that depends proportionally on degradation, Kebir
[Keb91] proved

P(T > t) = E
[
exp
(
−γ

∫ t

0

X(s) ds
)]

= exp
(
−µγt2

2
− γ

∫ t

0

∫ ∞

0

[1 − e−sx] ν(dx)ds
)
,

i.e., T has the increasing failure rate κ(t) = γ(µt +
∫∞
0

[1 − e−tx] ν(dx)).
Applying Kebirs formula to a homogeneous Poisson process with rate

λ > 0 we see that T follows a Makeham distribution with the survival function

P(T > t) = exp(−λγt + λ(1 − e−γt))
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and the failure rate κ(t) = λγ(1 − e−γt).
For a DS-model with degradation modeled by a Wiener process with drift

X(t) = x + µt + σ√
2
W (t) and a quadratic intensity κ(t,X(t)) = (X(t))2,

Wenocur [Wen86] computed the survival function of T as

P(T > t) = E
[
exp
(
−
∫ t

0

(X(s))2 ds
)]

= exp
{

− µ2

σ2
t +
(
µ2

σ3
− x2

σ

)
tanh(σt) + 2

xµ

σ2
(sech(σt) − 1)

}√
sech(σt).

(9)

Some failure rates of T are shown in Fig. 2. If σ tends to zero the distribution

Fig. 2. Failure rates of the distribution (9)

of T converges to a “generalized” Weibull distribution with form parameter
three:

P(T > t)
σ↓0−→ exp

(
−(µ2/3)t3 − xµt2 − x2t

)
.

3 Maximum Likelihood Estimation

Suppose that n independent items are observed in [0, t∗] with identically dis-
tributed degradation processes Xi, traumatic event processes Ψi, failure times
Ti and thresholds X∗

i . We assume that X∗
i and (Xi, Ψi) are independent

for all i = 1, . . . , n. The ith item is observed at planned inspection times
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0 ≤ ti0 < ti1 < . . . until t∗. Let xij = Xi(tij) denote the observed degrada-
tion levels. If a failure occurs in [0, t∗], the observation of Xi will be stopped
after this event. That means, in each interval (tij−1, tij ] we observe either
a failure at ti ∈ (tij−1, tij ] and the degradation level Xi(ti) or we observe
the degradation level xij = Xi(tij) at tij (and xi = Xi(t∗) at t∗) under the
condition that degradation has not yet exceeded the threshold. For the ith
item let

li = li(t∗) = max{j ≥ 0 : tij < min(Ti, t
∗)},

i.e., li + 1 is the number of observed degradation levels without failure in
[0, t∗). Further, let T̃i = min(Ti, t

∗) be the observable censored failure time
and

Vi = Vi(t∗) =

⎧⎨⎩ 0, if Ti > t∗ (no failure in [0, t∗])
1, if Di < Ci, Di ≤ t∗ (nontraumatic failure in [0, t∗])

−1, if Ci ≤ min(Di, t
∗) (traumatic failure in [0, t∗])

,

an observable failure mode indicator.
Hence, the data for the ith item in [0, t∗] is

(t̃i = T̃i, vi = Vi,xil = Xil, xi = Xi(t̃i))

with Xil = (Xi(ti0), . . . , Xi(tili)). For ki = li + 1 set tiki = t̃i, xiki = xi and
Xik = (Xil, Xi(t̃i)). By fD(t | tl,xl;x∗) we denote the conditional density of
the nontraumatic failure time given {X∗ = x∗} and given l + 1 observations
of the degradation process without reaching the threshold up to tl < t:

fD(t | tl,xl;x∗) dt = P(D ∈ dt |D > tl,Xtl
= xl;X∗ = x∗)

and by fX∗ the density of the random threshold X∗. Dropping the subscript
i the likelihood of the data is according to Theorem 3

P(T̃ ∈ dt, v = 0,Xk ∈ dxk) = 1(t = t∗) P(T > t∗,Xk ∈ dxk)

= 1(t = t∗) exp

(
−
∫ t∗

0

κ(s,xk(s)) ds

)
g(t∗, tk,xk) dxk,

if no failure has occured in [0, t∗],

P(T̃ ∈ dt, v = 1,Xk ∈ dxk) = P(C > t,D ∈ dt,Xk ∈ dxk)
= P(C > t |D = t,Xk = xk) P(D ∈ dt,Xk ∈ dxk)

with

P(C > t |D = t,Xk = xk) = P(C > t |D = t,Xk = xk, X
∗ = xk)

= P(C > t |D ≥ t,Xk = xk)

= exp
(
−
∫ t

0

κ(s,xk(s)) ds
)
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and

P(D ∈ dt,Xk ∈ dxk) = P(D ∈ dt |D > tl,Xl = xl, X
∗ = xk)

P(D > tl,Xl ∈ dxl |X∗ = xk) P(X∗ ∈ dxk)
= fD(t | tl,xl;xk)dt g(tl, tl,xl;xk)dxl fX∗(xk)dxk,

if a nontraumatic failure has occured first in [0, t∗], and, finally,

P(T̃ ∈ dt, v = −1,Xk ∈ dxk)
= P(C ∈ dt |D > t,Xk = xk) P(D > t,Xk ∈ dxk)

= κ(t,xk) exp
(
−
∫ t

0

κ(s,xk(s)) ds
)

dt g(t, tk,xk)dxk,

if a traumatic failure has occured first in [0, t∗].
Thus, the complete likelihood function for the observation of n indepen-

dent items in [0, t∗] is given by

Lt∗(t̃i, vi,Xik) =
n∏

i=1

⎧⎨⎩
(
g(t̃i, tik,xik)

)1{vi<1}

×
(
fD(t̃i | til,xil;xi) g(tili , til,xil;xi) fX∗(xi)

)1{vi=1}

× κ(t̃i,xik)1{vi=−1} exp

(
−
∫ t̃i

0

κ(s,xik(s)) ds

)}
.

Based on this complex likelihood structure the Maximum Likelihood estima-
tors of model parameters have to be found numerically in general. Explicit
estimators of the degradation parameters in a special DT-model based on the
Wiener process were given in Lehmann [Leh01].

4 Concluding remarks

The DTS-model can be easily extended to the case that m different modes of
traumatic events are considered such that traumatic failures of mode i occur
due to a point process Ψi. If all these point processes are doubly stochastic
Poisson processes conditionally independent given the degradation path X(·)
and adapted to appropriate filtrations with intensities κi(t,X(t)), then the
Theorems 2 and 3 remain valid if we replace κ(·) by

∑m
i=1 κi(·)

Additionally to the degradation process, which is an internal covariate,
one can consider an external covariate process Z = {Z(t) : t ∈ R+} which
describes the dynamic environment and may influence degradation and the in-
tensity of traumatic events. Since such covariate processes like loads, stresses
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or usage measures can often be completely observed, one is interested in the
conditional distribution of degradation and failure time given the covariate
history Zt = {Z(s) : 0 ≤ s ≤ t} up to some time t. If the failure rate
λ(t, Zt, X

∗) of D depends on the covariate Z and the threshold X∗ and if the
intensity of traumatic events κ(t, Z(t), X(t)) depends on the environment and
on the degradation level, all concerned theorems and formulas remain valid
if all probabilities and expectations are additionally conditioned on Zt. For
instance, the survival function of T given in Theorem 2, but conditioned on
Zt now, is

P(T > t |Zt) = exp
(
−
∫ t

0

(κ(s, Zs) + λ(s, Zs)) ds
)

with conditional failure rates κ(t, Zt) = E[κ(t, Z(t), X(t)) |Zt, T > t] and
λ(t, Zt) = E[λ(t, Zt, X

∗) |Zt, D > t].
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Summary. We investigate the properties of several statistical tests for comparing
treatment groups with respect to multivariate survival data, based on the marginal
analysis approach introduced by Wei, Lin and Weissfeld [WLW89]. We consider
two types of directional tests, based on a constrained maximization and on linear
combinations of the unconstrained maximizer of the working likelihood function,
and the omnibus test arising from the same working likelihood. The directional
tests are members of a larger class of tests, from which an asymptotically optimal
test can be found. We compare the asymptotic powers of the tests under general
contiguous alternatives for a variety of settings, and also consider the choice of the
number of survival times to include in the multivariate outcome. We illustrate the
results with two simulations and with the results from a clinical trial examining
recurring opportunistic infections in persons with HIV.

Key words: Directional tests; Marginal model; Multivariate survival data; Om-
nibus test; Recurring events

1 Introduction

In some comparative clinical trials, each subject is followed for K failure-time
events, each of which can be right censored. One example is recurring event
data, where the K outcomes represent the times from the start of the trial
until the occurrence of K clinical/biological events, such as recurring seizures
or recurring opportunistic infections [HRL98]. Another is the repeated as-
sessment, under different experimental conditions, of an infectious disease,
as measured, for example, by the inhibitory concentration of drug needed to
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achieve a particular effect on the amount of virus [RGL90]. In the former
example the K survival times for an individual are necessarily ordered in
magnitude, but in the latter example they do not need to be.

Given the multivariate nature of these data, it is tempting to employ mul-
tivariate methods when comparing two treatment groups in the hope that
this could provide a more meaningful assessment of their relative efficacy, or a
more powerful statistical test than would be available from a univariate anal-
ysis, such as when examining the first survival time. Several semi-parametric
approaches have been proposed for multivariate failure time data [PWP81],
[AG81], [WLW89], [LW92], [LSC93], [CLN96], [CP95]. These methods each
make certain assumptions, and their relative power characteristics are not
well understood. In practice, however, these and other multivariate failure
time methods do not appear to be used very often, and in most cases more
familiar methods, such as the logrank test and Cox’s proportional hazards
model [COX72], are employed. One reason for this might be concerns about
the additional assumptions that need to be made when employing most mul-
tivariate failure time methods, and lack of knowledge about the consequences
of their violation. Another may be the lack of easily accessible software.

The goal of this paper is to assess the properties of statistical tests for
comparing treatment groups based on the most popular of these approaches
– the marginal analysis proposed by Wei, Lin, and Weissfeld (WLW). The
WLW method derives its appeal from its avoidance of assumptions about the
dependencies among an individual’s K failure times and its simple computa-
tional aspects. However, use of the WLW method requires the choice from
among several directional or omnibus tests whose relative performance are
not fully understood. Additionally, in settings such as the first example of
recurring events, one must also choose the number of outcomes, K, on which
to base a test, and very little has been done to provide insight into the trade-
offs that arise. By investigating these issues, we aim to provide the analyst
with guidelines on how best to utilize multivariate failure time data with this
approach when comparing treatment groups.

The properties of the WLW method have also been examined by Hughes
[HUG97], who approximated the power of the directional test and omnibus
test proposed by WLW under a proportional hazards alternative to the null
hypothesis of no treatment effect. Hughes uses the approximate power for-
mulae to assess when a test based on K = 1 event is more or less powerful
than an omnibus K df test based on K events, with special attention given
to the comparison of using K = 1 versus K = 2 events. We build upon these
initial results in several ways. In Section 3 we derive the asymptotic power of
the two directional and one omnibus test that have been proposed by WLW
and Lin [LIN94] under general alternative to the null hypothesis. In Section
4 we show that one of the directional tests proposed for the case of an equal
treatment effects across the K failure times is, in general, inefficient relative
to the other, and we derive the optimal directional test for an arbitrary al-
ternative to the null hypothesis. We also provide a simple expression for the
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loss in power of the omnibus K df test relative to the optimal 1 df directional
test. In Section 5 we consider the choice of K. When the treatment effect
is homogeneous across the K failure times, we show that the power of the
directional test proposed by WLW is increasing with K, and describe the rel-
ative efficiency of the omnibus test relative to this directional test. We also
conduct simulations to examine the relative performance of the omnibus and
directional tests for non-recurrent events with proportional hazards and recur-
rent events with non-proportional hazards alternative to the null hypothesis.
We illustrate the methods in Section 6 using data from a HIV trial. Technical
details are deferred to the Appendices. We note that a shorter version of this
paper with fewer simulation results appears in [LL04].

2 The WLW Method and Definitions of Test Statistics

In this section, we describe the WLW approach, including the three statistics
that have been proposed for comparing treatment groups.

Assume that each subject is followed for the occurrence of K survival
times, denoted T1, T2, · · · , TK . The marginal hazard function associated with
Tk is denoted by λk(t|Z), where Z is a covariate which for simplicity we take
to be binary, denoting treatment group. The null hypothesis that treatment
group is not associated with any of the K failure times is given by

H0 : λk(t|Z = 0) = λk(t|Z = 1)

where t ≥ 0, k = 1, 2, ...,K. The WLW method is derived from the assumption
that the marginal distributions for the two treatment groups have proportional
hazard functions; that is, λk(t|Z) = λk(t)exp(βkZ) , for k = 1, · · · ,K , where
β1, β2, · · · , βK are unknown parameters. The null hypothesis thus reduces to
H0 : β1 = β2 = · · · = βK = 0.

When the K survival times are not necessarily ordered, it is straight-
forward to show that there are proper 2K dimensional joint distributions
which admit the K proportional hazards relationships represented above.
Yang and Ying [YY01] show the existence of such joint distributions when
T1, T2, · · · , TK are ordered, as in the example of recurring events.

WLW allow noninformative right censoring of each Tk by introducing
i.i.d. potential censoring times C1, C2, · · · , CK , which are assumed to be
independent from the Tk. That is, the observation for a subject consists of
(Xk, ∆k), k = 1, 2, . . . ,K, where Xk = min{Tk, Ck} is the observed por-
tion of Tk and ∆k is an indicator of whether Tk is uncensored (∆k = 1)
or right censored (∆k = 0). Suppose that the data consist of n inde-
pendent copies of (Z,X1,∆1, · · · , XK ,∆K), the ith of which we denote by
(Zi, X1i,∆1i, · · · , XKi,∆Ki). Then if Lk(β) denotes Cox’s partial likelihood
function based on the data (Zi, Xki,∆ki) for i = 1, · · · , n, WLW propose that
the vector β = (β1, β2, · · · , βK)′ be estimated by maximizing the working
likelihood function
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L(β) =
K∏

k=1

Lk(βk) (1)

Denote the solution to this working likelihood by β̂ = (β̂1, β̂2, · · · , β̂K). WLW
show that when λk(t|Z) = λk(t)exp(βkZ), β̂ is consistent and asymptotically
normal as n → ∞; that is,β̂ p−→ β and

√
n(β̂ − β) L−→ N(0, Σ), where

Σ = V −1
D V V −1

D , V is a K-dimensional matrix obtained from the working
likelihood (see Appendix 1), and VD is the diagonal matrix with the same
diagonal elements as V . WLW also provide a consistent sandwich estimate of
Σ, which we denote by Σ̂.

WLW propose a directional and omnibus test of H0, which we denote by
Q2 and Q3, respectively. Specifically,

Q2 =
n(c′2β̂)2

c′2Σc2
=

n(1′Σ̂−1β̂)2

1′Σ̂−11
,

where c2 = Σ̂−11
1′

Σ̂−11 and 1 is a vector with elements all equal to 1, and

Q3 = nβ̂
′
Σ̂−1β̂.

Because of the asymptotic normality of β̂, it follows that under H0, Q2
L−→

χ2
1 and Q3

L−→ χ2
K as n → ∞. Q2 is proposed by WLW for situations where

it is felt that the components of β are approximately equal, whereas Q3 is
intended to be an omnibus test.

Another test of H0, proposed by Lin [LIN94], arises from maximization of
(1) under the constraint that β1 = β2 = · · · = βK = β; i.e., by maximizing

L(β) =
K∏

k=1

Lk(β) . (2)

If β̂ denotes the maximizing value of β, Lin [LIN94] shows that the test
statistic

Q1 = n(
β̂

σ̂
)2

is asymptotically χ2
1 under H0, where σ̂2 is the estimate of σ2 = 1′

V 1
(1′

VD1)2

obtained by replacing V and VD by the same estimators of these used by
WLW to estimate Σ. Li [LI97] proves that Q1 is asymptotically equivalent
under H0 (and under HA defined below) to a test, Q∗

1, defined in the same way
as Q2, but with weight c1 = VD1

1′
VD1 . Thus, in studying the relative properties

of directional tests of H0, we restrict attention to those based on an arbitrary
linear combination of β̂, say Qc = n(c′β)2

c′Σc . It is easy to see that under H0,

Qc
L−→ χ2

1 as n → ∞.
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3 Asymptotic Properties of the Test Statistics under
Contiguous Alternatives

In this section we derive the asymptotic distributions of the test statistics
Q1, Q2, Q3 and Qc under a sequence of arbitrary contiguous alternatives to
H0. The results indicate the alternatives for which each test is asymptotically
optimal, and provide the basis for their comparison in sections 5 and 6. Since
Q1 is asymptotically equivalent to the linear combination test Q∗

1, these tests
are used interchangeably in this section.

The test statistics Q2 and Q3 introduced in the previous section were
derived under the proportional hazard assumption λk(t|Z) = λk(t)eβkZ for
k = 1, 2, · · · ,K. We now consider their behavior under an arbitrary alterna-
tive to H0. Consider the following sequence of alternatives to H0:

HA : λk(t|Z) = λk(t)exp(αkgk(t)Z), (3)

for k = 1, 2, · · · ,K. For simplicity we assume that the functions gk(t) are
bounded and, without loss of generality, take supt∈[0,∞]|gk(t)| = 1. We fur-
ther assume that the family of alternatives HA is contiguous to H0 by taking√
nαk → δk, where δ1, δ2, · · · , δK are fixed constants, where we suppress the

dependency of αk on n for simplicity of notation. The special case of propor-
tional hazards alternatives is obtained by taking gk(t) ≡ 1, in which case δk

represents the limiting treatment group hazard ratio for the kth failure time.
Consider the estimator β̂, which arises from model (2). The asymp-

totic distribution of β̂ under HA is shown in Appendix I to be
√
nβ̂

L−→
N(µ, (

∑K
k=1 v2

k)−21′V 1), where

µ =
∑K

k=1 δk

∫∞
0

gk(t)vk(0, t)s(0)k (0, t)λk(t)dt∑K
k=1

∫∞
0

vk(0, t)s(0)
k (0, t)λk(t)dt

, (4)

and where vk(0, t) and s
(0)
k (0, t) are defined in Appendix 1. It follows that

under HA, Q1
L−→ χ2

1(ξ1) as n → ∞, where the noncentrality parameter ξ1
is given by ξ1 = µ2(

∑K
k=1 v2

k)2/1′V 1. For proportional hazards alternatives,
µ is seen to reduce to a linear combination of the δk, and ξ1 reduces to
(1′VDδ)2/1′V 1, where δ = (δ1, δ2, · · · , δK)′.

Next consider the vector estimator β̂ which arises from the model (1).
The asymptotic distribution of β̂ under HA is shown in Appendix I to satisfy
√
nβ̂

L−→ N(µ, Σ), where µ = (µ1, µ2, · · · , µK), and

µk =
δk

∫∞
0

gk(t)vk(0, t)s(0)
k (0, t)λk(t)dt∫∞

0
vk(0, t)s(0)

k (0, t)λk(t)dt
. (5)

It follows that Q2
L−→ χ2

1(ξ2) as n → ∞, where ξ2 = (1′
Σ−1µ)2

1′
Σ−11 , and that

Q3
L−→ χ2

K(ξ3) as n → ∞, where ξ3 = µ′Σ−1µ . For proportional hazards
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alternatives, µk reduces to δk and the non-centrality parameters for Q2 and
Q3 simplify to ξ2 = (1′

Σ−1δ)2

1′
Σ−11 and ξ3 = δ′Σ−1δ.

Finally, consider the arbitrary linear combination test Qc. It follows from
the asymptotic normality of β̂ that Qc converges to χ2

1(ξc), where ξc = (c′µ)2

c′Σc .
The optimal test in this class, say Qopt, is thus the one using the weight
copt = Σ−1µ

1′
Σ−1µ , and has non-centrality parameter ξopt = µ′Σ−1µ. Note the

non-centrality parameter Qopt is the same as that of the K df test Q3. Fur-
thermore, by comparing the optimal weight of copt with the weights form-
ing Q1 and Q2, it is not hard to see that Q2 is the optimal test when
µ1 = µ2 = · · · = µK , and Q1 is the optimal test when µ is proportional
to ΣVD1 = V −1

D V 1. We return to these results below.

4 Comparisons of Test Statistics

We now use the results of Section 3 to assess the relative power of Q1, Q2, Q3,
and Qopt under variety of settings corresponding to homogeneous or heteroge-
neous treatment effects across failure times, and for special correlation struc-
tures among the failure times.

4.1 Equal µ1, µ2, · · · , µK

Suppose that the components of the mean of the asymptotic distribution of√
nβ̂ under HA are equal, i.e., µ1 = µ2 = · · · = µK = µ0. This will result

when the treatment groups have a common proportional hazards ratio for
each k; that is, g1(t) ≡ · · · ≡ gk(t) = 1 and δ1 = · · · = δK . However, this can
also arise when non-proportional hazards relationships exist for various k,
but in a way that the mean of the resulting asymptotic distribution of

√
nβ̂

has equal components. As seen in Section 3, the non-centrality parameters of
Q1, Q2, Q3, and Qopt are ξ1 = µ2

0
(1′

VD1)2

1′
V 1 , and ξ2 = ξ3 = ξopt = µ2

01
′Σ−11.

Thus, Q2 is the optimal 1 df directional test for this setting and has the same
non-centrality parameter as the K df omnibus test Q3. It also follows that
Q2 has greater asymptotic power than Q3 for all K > 1.

Figure 1 displays the asymptotic power of the directional test Qopt and the
omnibus test Q3, based on a Type I error of 0.05, different values of ξ, and for
K = 2, 3, 4, 5, 6. When µ1 = · · · = µK , Q2 = Qopt. Here we use this figure to
discuss the choice of Q2 and Q3. The range of ξ was chosen to yield powers for
Q2 that range from 0.05 when ξ = 0(H0) to 0.95. The successive lines beneath
the top line represent the powers of Q3 for K = 2, 3, 4, 5, 6. For example,
when the power of Q2 is 0.80, the power of Q3 is .71, .65, .60, .56, .52 for K =
2, 3, 4, 5, 6. Thus with K = 2 failure times, the omnibus test Q3 maintains
reasonably good power against the Q2, the optimal directional test when
the treatment effects are homogeneous across failure times. This is consistent
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with the results found by Hughes [HUG97]. The relative power of the omnibus
test remains relatively high when K = 3. For large K, however, the power
advantage of using Q2 becomes substantial. This potential advantage must
be weighed against the possibility that the true alternative to H0 may not
correspond to homogeneity of treatment effects across failure times. For an
arbitrary alternative, the asymptotic relative efficiency of Q2 to Q3 can be
determined from ξ2 and ξ3, and K, and can be substantially lower than 1 for
some alternatives, such as when one treatment is better for some K but worse
for other K.

Because Q1 and Q2 each have 1 df, we can assess their relative powers by
examining their asymptotic relative efficiency of Q1 to Q2, given by

ARE[Q1, Q2] =
ξ1
ξ2

=
(1′VD1)2

(1′V 1)(1′Σ−11)
.

Let ID denote the diagonal matrix for which IDID = VD and let C denote the
corresponding correlation matrix, so that V = IDCID and Σ−1 = IDC−1ID.
Then

ARE[Q1, Q2] =
(1′IDID1)2

(1′IDCID1)(1′IDC−1ID1)
.

From this representation, it can be seen that ARE[Q1, Q2] ≤ 1, with equality
when V is diagonal or of the form aI + bJ , where J is the KxK matrix of
1s. Thus, Q1 can be as good as the optimal test Q2 when µ1 = µ2 = · · · =
µK , provided that correlation structure of T1, · · · , TK leads to an asymptotic
covariance matrix for

√
nβ̂ for which V has this form. This would arise, for

example, when the Tk are uncorrelated.
For other correlation structures, however, the ARE of Q1 to Q2 can be

very low. For example, suppose that K = 4 and that the survival times have
the same variance and the correlation matrix⎛⎜⎜⎝

1 0.7 0.7 0.4
0.7 1 0.1 0.1
0.7 0.1 1 0.1
0.4 0.1 0.1 1

⎞⎟⎟⎠ ,

then the asymptotic relative efficiency ARE[Q1, Q2] = 0.20, despite the ho-
mogeneity of treatment effects across strata. The fact that Q1 can be sub-
stantially less efficient than Q2 when the treatment hazard ratios are equal
may seem counter-intuitive since Q1 is derived from model (2), which assumes
the βk are equal. However, the working likelihood function (2) is created as
if the failure times were uncorrelated. While this still leads to a consistent
estimator of β, the inefficient form of this working likelihood leads to an
inefficient estimator. This can be seen analytically by noting that the asymp-
totically equivalent linear combination test corresponding to Q1 does not use
the optimal inverse-weighting that Q2 uses when µ1 = µ2 = · · · = µK .
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4.2 Unequal µ1, µ2, · · · , µK .

When the µk are not equal, the asymptotic expressions derived in Section 3
are not analytically difficult. However, because the relative efficiencies of the
test statistics depend on the correlation structure among the Tk, the amount
of censoring, and the magnitude of the treatment differences, the formula do
not lend themselves to simple practical interpretations when the treatment
differences are not homogeneous across failure times.

Since the optimal statistic Qopt depends on the unknown parameter µ,
use of Qopt in practice is generally not feasible. However, when viewed as a
“gold standard”, this test provides insight into the choice and formation of test
statistics. Because the noncentrality parameter of the 1 df optimal directional
test is identical to that for Q3, the top line in Figure 1 also represents the power
of the optimal directional test for an arbitrary alternative to H0. Thus, the
power of the the omnibus test Q3 for a particular choice of K can be compared
to the maximum power achievable by a directional test. When K = 2 or 3,
the power of Q3 is surprisingly high compared to that achieved by the optimal
directional test. Thus, one may not need to resort to a directional test when
K is small. However, as K increases, the advantage of Qopt to Q3 increases
substantially, so that the use of a directional test becomes more desirable
when there is some confidence about the nature of the alternative to H0. For
example, if there is reason to believe that one treatment is uniformly superior
to the other, but that the magnitude of benefit may decrease with k, then
one may consider the weight c = Σ−1eK

1′
Σ−1eK

, where e′K = (1, 1
2 , · · · ,

1
K ). Such

a directional test would be more powerful than Q3 for alternatives that are
reasonably approximated by µk ∝ 1/k for k = 1, 2, · · · ,K.

4.3 Special Correlation Structures

Regardless of whether the treatment effect is homogeneous across failure
times, the relative efficiency of Q1 and Q2 depends on the correlation struc-
ture of T1, T2, · · · , TK . Here we note two special cases for which Q1 and
Q2 are equivalent. When the Tk are uncorrelated, we have V = VD and
hence Σ = V −1

D , from which it follows that Q1 and Q2 are equivalent with

ξ1 = ξ2 = (1′
VDµ)2

1′
VD1 . In this case, ξopt = ξ3=µ′VDµ, and thus the ARE of Q1

or Q2 to Qopt is given by (1′
VDµ)2

(1′
VD1)(µ′VDµ)

.

Another special covariance structure V is of the form v2((1 − ρ)I + ρJ),
where I is identity matrix and J = 11′ , i.e., all the marginal survival
times have the same variance and the correlation between any two types
of events are the same. It can be shown (see Appendix II) in this case
that Q1 and Q2 are equivalent, with ξ1 = ξ2 = v2∑K

k=1 δ2
k

K+ρ(K−1)K , and that

ξopt = ξ3 = v2
(

µ′µ
1−ρ − ρ(1′µ)2

(1+(K−1)ρ)(1−ρ) )
)
.
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5 Determining Sample Size and K

The focus of the previous section was a comparison of the test statistics for a
particular choice of K. However, the design of a study also involves the choice
of K, the number of failure times to analyze, and the sample size n. Suppose
first that K and a test statistic have been selected for use and it is desired to
determine the sample size or power for the study. Then the asymptotic results
in Section 3 can be directly applied. To illustrate, suppose that we wish to
use Q2 and assume that the treatment groups have proportional hazards for
each of the K failure times. That is, gk(t) = 1 for each k. Then upon
replacing δk by

√
nαk, equation (5) reduces to µk =

√
nαk. Once a form

for the censoring distribution is assumed, one can evaluate Σ and thus the
noncentrality parameter ξ2. Standard formula can then be used to determine
the necessary sample size based on assuming that Q2 has the 1 df chi-square
distribution with noncentrality parameter ξ2 under the alternative. Similar
techniques can be applied to any of the other test statistics.

The choice of K can be complicated because the power of any test de-
pends on the length of follow-up of subjects, the nature and magnitude of
the treatment difference for the different failure times, and the correlation
of the failure times. The asymptotic formula in Section 3 could be assessed
to compare the relative powers of any particular test for various choices of
K. However, one may not know enough about the amount of censoring of
each failure time and of the relative treatment effects across failure times to
evaluate these expressions before doing a trial.

In general, increasing K does not necessarily increase power of a test.
One exception to this is the use of the directional test Q2 when µ1 = µ2 =
· · · = µK . Denote this test by Q2(K), and consider the use of the same
statistic, say Q2(K ′) based on K ′ < K failure times. Since Q2(K) is the
optimal directional test in this setting, and Q2(K ′) can be expressed as a
linear combination test based on the K-vector β̂, it follows that the asymptotic
power of Q2(K) is at least as great as that of Q2(K ′) for any K ′ < K. That
is, when µ1 = µ2 = · · · = µK , the power of Q2 increases with K regardless
of the censoring distributions or the correlation structure of the failure time.
The magnitude of the power gained with increasing K depends on censoring
and the correlation structure, however, and in some cases could be small.

Similarly, the power of the optimal test Qopt will increase with K for any
alternative to H0, any censoring pattern, and any correlation structure among
the failure times. However, this result is of little practical value because one
rarely is certain about the direction and magnitude of the treatment difference
for each K. In contrast, the power of the omnibus test Q3 need not increase
with K. As we see below, while the noncentrality parameter of Q3 increases
with K, the increasing degrees of freedom can offset this and lead to less
power as more failure times are included.

Hughes [HUG97] investigates in detail the choice between K = 1 (in which
case the directional and omnibus tests are equivalent) and the use of the
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omnibus test when K = 2 in the setting of proportional hazards alternatives
in which one treatment is superior to the other for each K. He shows that
the more powerful of these tests depends on the amount of censoring as well
as the correlation of the two failure times, and that the test based on a single
failure time (K = 1) often is as or more powerful to the omnibus test with
K = 2.

To get a practical sense of the trade-offs involved in choosing K for
more complex settings, we conducted a simulation study. We generated
T1, T2 −T1, T3 −T2, · · · , TK −TK−1 to be K independent exponential random
variables, the kth with intensity hk. Thus, the gap times between events are
independent. Tj is the sum of j independent exponentials, so that the covari-
ance between Tj and Tk for j ≤ k is just the variance of Tj . Two treatment
groups are generated, each having a sample size of 200. For the first treatment
group, we take hk = 1 for all k, so that Tj has the Gamma distribution with
parameters 1 and j. For the second treatment group, we use various choices
for h1, h2, · · · , hK . We chose the hk to be increasing, constant, decreasing, or
non-monotone. The potential censoring time is taken to be an independent
uniform (0, τ) random variable with τ chosen to give the desired censoring
percentage. Each simulation is repeated 1000 times. Despite this simple cor-
relation structure, the resulting failure time Tk for the treatment groups does
not have a proportional hazard relationship for k = 1, 2, · · · ,K.

Table 1 displays the power of Q2, Q3 and Qc, for c = Σ−1eK

1′
Σ−1eK

with eK =
(1, 2, ...,K) or (K,K−1, ..., 1), when choosing a univariate analysis (K = 1) or
when analyzing K = 2, 3, or 4 events. The choice of eK might be made when
one expects the treatment difference to increase (eK = 1, 2, ...,K) or decrease
(c = K,K − 1, ..., 1) with successive failure times. In these simulations we
used τ = 4, which leads to heavy censoring occurred in later events. The first
column corresponds to gap time hazard ratios of (h1, h2, h3, h4) = (1, .8, .6, .4),
corresponding to strongly decreasing hk with successive failure times. Since
h1 = 1, the univariate tests have power equal to the Type I error. In this case,
the gain in power for K > 1 is evident for most of the test statistics, especially
Q3 and Qc with increasing weight eK = (1, 2, ...K), despite of the increased
rate of censoring of the second, third, and fourth failure times. Q2 and the
directional test based on the weight eK = (4, 3, 2, 1) do poorly here. The
second column in Table 1 gives the power when the hk equal 0.8 for each k.
Here the power of the directional tests with weight eK = (1, 2, 3, 4) increases
with K but the power of the omnibus test Q3 does not, indicating that any
gains in information from examining more survival times is more than offset
by the increased censoring and degrees of freedom. The 3rd column of Table
1 gives the power of the tests for different K when the hk increase slowly.
None of the tests showed power gains by analyzing more events. This is not
surprising as the treatment difference no longer exists for the third and fourth
gap times. The last column gives the hazard rates of an inconsistent treatment
effect among the gap time. The treatment effect of the first and the fourth
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gap time is just the opposite of the second and the third gap time. Here none
of the directional tests are oriented towards such treatment differences and
thus none perform well in comparison to Q3.

We conducted another simulation study with K = 2, 3, and 4 unordered
events and proportional hazards realtionships between the treatment groups.
To do so, we extended Gumbel’s bivariate exponential distribution [GUM60]
to four exponential variables T1, T2, T3, and T4 with joint cumulative distri-
bution:

F (t1, t2, t3, t4) = (1 − e−h1t1)(1 − e−h2t2)(1 − e−h3t3)(1 − e−h4t4)

(1 + α12e
−h1t1−h2t2)(1 + α13e

−h1t1−h3t3)(1 + α14e
−h1t1−h4t4)

(1 + α23e
−h2t2−h3t3)(1 + α24e

−h2t2−h4t4)(1 + α34e
−h3t3−h4t4)

where hi > 0 (i = 1, 2, 3, 4) and −1 ≤ αij ≤ 1 (1 ≤ i < j ≤ 4). The values of
αij determine the correlations between Ti and Tj . For one treatment group,
we set h1 = h2 = h3 = h4 = 1. We choose various values of hi for the second
treatment group. It follows that the treatment hazard ratio for survival time
Ti is hi. The potential censoring time is taken to have the uniform distribution
on (0,4). For each simulation setting, we generate a sample size of 100 for
each treatment group, and generate 1000 repetitions.

Four sets of αij values are used in these simulations, representing differ-
ent correlation structures. For each set of αij value, three sets of hazard
(h1, h2, h3, h4) are examined. Table 2 lists the power of Q2 and Q3 for K = 2
(the first 2 events), 3 (the first three events), and 4. When the marginal haz-
ard ratios are the same for all the four survival times (hi = 1.25, i = 1, 2, 3, 4),
it confirms that Q2 is always superior to Q3 for a given K, the power of Q2

increases as K increases, and the power of Q2 is about 10% higher than that
of Q3 when K = 2 and about 15% higher than that of Q3 when K = 3. When
the marginal hazard ratios are h1 = 1.67, h2 = 1, h3 = 1.67, and h4 = 1, there
is no treatment group difference for T2 and T4. Here Q2 has poorer power
than Q3 for almost all the correlation structures and choice of K in Table 2.
Additionally, the power for Q3 does not always increase with K. The power
for Q3 when K = 3 is similar to that when K = 4. It is interesting to see that
there are not much power loss for Q3 by adding the survival time T4, which
has no treatment difference. For one correlation structure, α11 = α12 = α13 =
α23 = α24 = α34 = 1, the power Q3 when K = 4 is slightly greater compared
to that when K = 3. In these simulations, the correlation structure has a
greater impact on the power of Q2 than on that for Q3. When the marginal
hazard ratios are h1 = 1.25, h2 = 0.8, h3 = 0.8, and h4 = 1.25, the second
treatment group has a higher hazard than the first one for T1 and T4 but a
lower hazard for T2 and T3. In this case, Q2 has almost no power to detect
treatment differece irrespect of the correlation structures and the choices of
K. This is merely because the treatment differences are in the opposit direc-
tions for the four survival times. Q3 has better power than Q2 and the power
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increases as K increases. The power does not change greatly for different
correlation structures.

6 Example: Recurring Opportunistic Infections in
HIV/AIDS

To illustrate the results presented in this paper, we consider an example from
two companion AIDS clinical trials [DAF95], [KLR92]. Patients were followed
for opportunistic infections, which could occur repeatedly, and for mortality.
The primary endpoint in the trial was the time until a patient’s first OI or
death, whichever came first. A total of 1530 patients were randomized to
receive either AZT (n=512) or ddI (1008). We exclude 10 patients due to
missing or incorrect information about the times of subsequent events. Define
Tj to be the time from randomization until the jth OI or death, whichever
comes first, for j = 1, · · · ,K. Thus, if K=3 and a patient has 3 OIs, T1, T2, and
T3 will denote the elapsed times from randomization to these OIs. However, if
a patient has 1 OI and then dies, T1, T2, T3 are the time until the OI, the time
until death, and the time until death, respectively. Extension of the primary
endpoint in this way induces a correlation among the failure times.

In the ddI (AZT) group, the number of patients experiencing 1, 2, 3, and
4 distinct OIs were 342(204), 119(80), 26(15), and 4(1). A total of 199 and
95 patients died in the ddI and AZT groups, respectively. The percent of jth

events that were censored for the ddI (AZT) group was 59(55), 74(72), 79(80)
and 80(81). We define Z = 1 for the ddI group, so that βj denotes the log
relative hazard of ddI to AZT for Tj . The resulting estimates are

β̂1 = 0.163, β̂2 = 0.106, β̂3 = −0.022, β̂4 = −0.069 ;

the corresponding estimated covariance matrix is⎛⎜⎜⎝
0.0068 0.0061 0.0058 0.0057
0.0061 0.0107 0.0102 0.0101
0.0058 0.0102 0.0142 0.0140
0.0057 0.0101 0.0140 0.0151

⎞⎟⎟⎠ .

The estimators of the common β derived from (2) and used in Q1 are
0.141, 0.104, and 0.073, for K = 2, 3, and 4, respectively. The correspond-
ing standard errors are 0.084, 0.087, and 0.090.

Table 2 gives the p-values corresponding to Q1, Q
∗
1, Q2, and Q3 for K =

1, 2, 3, 4. As expected, the results for Q1 and Q∗
1 are very similar. Note

that the estimated regression coefficients steadily decrease, suggesting that
the initial advantage for the ddI group is only transient. Not surprisingly, the
estimate of β, the common hazard ratio, also decreases but does not become
negative, and the p-value corresponding to Q2 steadily increases from 0.05
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when analyzing just one event (K = 1) to 0.079 when analyzing all four.
Despite the increased rate of censoring, the omnibus test Q3 better detects a
treatment difference than Q2 when K = 3 or 4, but does less well when only
analyzing the first (K = 1) or first two (K = 2) events. Q1 and its asymptotic
equivalent Q∗

1 give the least significant p-values when K = 3 or 4.

7 Discussion

A goal of this paper was to build upon earlier work of Wei, Lin & Weissfeld
[WLW89], Lin [LIN94], Hughes [HUG97], and shed light on whether and how
to use the marginal analysis approach of WLW method for the analysis of
multivariate survival data. We did so primarily by deriving and evaluating
the asymptotic behavior of two directional tests, Q1 and Q2, and the omnibus
test Q3 that have been previously proposed, as well as a more general class
of linear combination tests. Q1 derives from solving a constrained working
likelihood that assumes that the treatment group hazard ratios are the same
across the K survival times. Q2 is also motivated by the same assumption,
but instead is based on a specific linear combination of the unconstrained
estimators of the treatment hazard ratios. One noteworthy finding is that
Q2 is the optimal linear combination test under this assumption, and in
general is asymptotically more powerful than Q1, sometimes by a substantial
amount. This stems from the fact that the working likelihood function used
by WLW is inefficient, and as a result constrained estimators obtained from
it are in general inefficient. We thus discourage the use of Q1 and recommend
Q2 when it is believed that the marginal treatment effects are approximately
equal for all events.

One can easily describe the power gains from using the optimal directional
test as opposed to the omnibus test based on(Figure 1). These can be sub-
stantial when K is large, but are modest for K = 2 or 3. For K = 2, 3 the
power of the omnibus test is often close to the maximal power achievable by
a directional test, which suggests that the omnibus test should be considered
when there is not a good sense of the alternatives to H0 that are likely to
occur.

When the treatment hazard ratios vary among the K survival times and
the data are censored, the analytic formula for the asymptotic power of these
tests do not lend themselves to simple guidelines on whether to use the om-
nibus test Q3, the directional test Q2, or some other directional test, say
Qc. The censoring settings we evaluated in simulations assumed a common
censoring variable for all K survival times, as would commonly occur in a
clinical trial when the survival times corresponded to recurring events. Here
the amount of censoring necessarily increases with successive survival times,
thus limiting the amount of information gained by analyzing larger K. In
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some instances, this along with the additional degrees of freedom on Q3 with
increasing K offset any gains in information.

In the HIV/AIDS example, the beneficial effect of the ddI treatment over
AZT decreased with successive survival times. As a result, the omnibus test
gave the smallest p-values when using K = 3 or 4 events. However, if K = 1
or K = 2 events had been analyzed, the directional test Q2 would have given a
more significant result. On the other hand, had the treatment effect increased
with successive failure times, as illustrated in the simulation, use of larger
K can increase power of a directional test. In many, if not most, settings,
analysts would not know in advance how the treatment hazard ratio varies
with successive failure times. If one expected a attenuated effect, as was
seen in the HIV/AIDS example, then a univariate analysis may prove best,
especially when later survival times are heavily censored. Alternatively, one
might choose the linear combination test Qc with weights c selected to reflect
the suspected trend. On the other hand, if one expects treatment hazard
ratios that are approximately equal, then use of Q2 with K > 1 is justified.
Exactly how to choose K is not simple, but if one had a sense of the degree
of censoring, the noncentrality parameter ξ ∝ 1′Σ−11 could be evaluated to
approximate the power of Q2 for various choices for K.
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Table 1. Asymptotic Power from a Simulation Study Using Independent Gap-time
Exponential Distributions

h1, h2, h3, h4

K Test(ek) 1, .8, .6, .4 .8, .8, .8, .8 .8, .8, 1, 1 1.25, .8, .8, 1.25

1 Q2 = Q3 5.20 45.00 45.00 52.50

2 Q2 6.10 57.30 57.30 30.40
Q3 25.00 55.30 55.30 61.10

Qc(1, 2) 22.00 63.40 63.40 5.40

3 Q2 8.00 62.20 56.70 24.60
Q3 68.50 58.00 49.10 65.30

Qc(1, 2, 3) 62.90 71.60 47.30 10.70

4 Q2 9.30 62.40 56.80 26.00
Q3 91.80 56.20 44.10 63.30

Qc(1, 2, 3, 4) 85.70 75.10 41.00 5.80
Qc(4, 3, 2, 1) 8.30 33.00 44.00 47.70
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Table 2. Asymptotic Power from a Simulation Study for Unordered Events Using
Joint Distributions of Four Exponential Variables.

h1, h2, h3, h4

Correlation K Test 1.67, 1, 1.67, 1 1.25, 1.25, 1.25, 1.25 1.25, .8, .8, 1.25

α12 = 1 2 Q2 53.2 44.5 4.0
α13 = 1 Q3 84.8 34.4 43.9
α14 = 1 3 Q2 85.3 47.1 9.2
α23 = 1 Q3 95.1 33.5 56.1
α24 = 1 4 Q2 62.8 54.0 3.9
α34 = 1 Q3 97.0 33.8 74.2

α12 = 0.5 2 Q2 58.5 47.5 4.8
α13 = 0.5 Q3 83.8 38.0 40.8
α13 = 0.5 3 Q2 92.7 55.0 8.0
α23 = 0.5 Q3 96.0 40.5 49.7
α24 = 0.5 4 Q2 76.1 62.8 4.2
α34 = 0.5 Q3 95.4 44.7 60.7

α12 = −0.5 2 Q2 66.7 54.5 4.6
α13 = −0.5 Q3 83.3 45.3 38.5
α14 = −0.5 3 Q2 98.5 72.9 8.1
α23 = 0.5 Q3 99.0 53.4 43.7
α24 = 0.5 4 Q2 95.3 81.8 8.10
α34 = 0.5 Q3 98.8 62.3 62.8
α12 = −1 2 Q2 70.2 59.8 5.0
α13 = −1 Q3 83.5 51.3 38.9
α14 = −1 3 Q2 99.6 78.6 7.5
α23 = 1 Q3 99.4 62.1 41.4
α24 = 1 4 Q2 98.7 87.5 10.8
α34 = 1 Q3 99.3 68.2 72.5

Table 3. P-values for Different Test Statistics for HIV/AIDS Example

K Q1 Q∗
1 Q2 Q3

1 0.048 0.048 0.048 0.048
2 0.093 0.093 0.057 0.120
3 0.230 0.232 0.073 0.055
4 0.413 0.419 0.079 0.051
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Fig. 1. Power of Qopt versus Q3 for Different K
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Appendix I Asymptotic Normality of WLW Method
under General Contiguous Alternatives

Let Yki(t) = 1(Xki ≥ t) and Nki(t) = 1(Xki ≤ t,∆ki = 1), and define the
functions S(r)

k (β, t), Vk(β, t), s(r)
k (β, t) and vk(β, t) for r = 0, 1, 2 by
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S
(r)
k (β, t) = 1

n

∑n
j=1 Ykj(t)Zr

j exp(βZj) Vk(β, t) = S
(2)
k (β,t)

S
(0)
k (β,t)

− (S
(1)
k (β,t)

S
(0)
k (β,t)

)2

s
(r)
k (β, t) = E[S(r)

k (β, t)] vk(β, t) = s
(2)
k (β,t)

s
(0)
k (β,t)

− ( s
(1)
k (β,t)

s
(0)
k (β,t)

)2 .

Define the martingale Mki(t) as

Mki(t) = Nki(t) −
∫ t

0

Yki(τ)λk(τ |Zi)dτ .

First consider β̂, the maximizing solution of equation (2). Under the
regularity conditions, it can be shown that β̂ converges to β, the solution of
the following equation:

K∑
k=1

∫ ∞

0

{s(1)
k (αkgk(t), t) − s

(1)
k (β, t)

s
(0)
k (β, t)

s
(0)
k (αkgk(t), t)}λk(t)dt = 0.

Under contiguous alternatives, the above equation becomes

K∑
k=1

∫ ∞

0

{s(1)
k (0, t) − s

(1)
k (β, t)

s
(0)
k (β, t)

s
(0)
k (0, t)}λk(t)dt = 0,

which has its solution at β = 0. Let β̂(n) denote the estimate of β when
the alternatives are the sequence of general contiguous alternatives defined
in Section 3. Using the above argument, it also follows that β̂(n) p−→ 0 as
n → ∞.

To determine the asymptotic distribution of
√
nβ̂(n) under the general

contiguous alternative, we first derive the asymptotic distribution of the score
statistic U(β(n)), where

β(n) =
∑K

k=1 αk

∫∞
0

gk(t)vk(0, t)s(0)
k (0, t)λk(t)dt∑K

k=1

∫∞
0

vk(0, t)s(0)
k (0, t)λk(t)dt

.

Rewriting U(β(n)), we have

n− 1
2U(β(n)) = n− 1

2

K∑
k=1

n∑
i=1

∫ ∞

0

{zi −
S

(1)
k (β(n), t)

S
(0)
k (β(n), t)

}dNki(t)

= n− 1
2

K∑
k=1

n∑
i=1

∫ ∞

0

{zi −
S

(1)
k (αkgk(t), t)

S
(0)
k (αkgk(t), t)

}dNki(t)

+ n− 1
2

K∑
k=1

n∑
i=1

∫ ∞

0

{S
(1)
k (αkgk(t), t)

S
(0)
k (αkgk(t), t)

− S
(1)
k (β(n), t)

S
(0)
k (β(n), t)

}dNki(t)

The first term of right hand side of the second equal sign is martingale.
It can be shown that this term converges to the N(0,1′V 1) distribution and
that the second term converge to 0 in probability as n → ∞. Thus, as n → ∞,
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n− 1
2U(β(n)) −→ N(0,1′V 1) ,

where V is the KxK matrix with (k, k) element

v2
k(βk) =

∫ ∞

0

vk(βk, t)s
(0)
k (βk, t)λk(t)dt,

and with (k,w) element (k� = w)

vkw(βk, βw) = E[
∫ ∞

0

{zi−
s
(1)
k (βk, t)

s
(0)
k (βk, t)

}dMki][
∫ ∞

0

{zi−
s
(1)
w (βw, t)

s
(0)
w (βw, t)

}dMwi] (k �= w).

Thus, as n → ∞

√
n(β̂ − β(n)) L−→ N(0, (

K∑
k=1

v2
k)−21′V 1).

Letting

µ =
∑K

k=1 δk

∫∞
0

gk(t)vk(0, t)s(0)
k (0, t)λk(t)dt∑K

k=1

∫∞
0

vk(0, t)s(0)
k (0, t)λk(t)dt

,

and noting that β(n) → 0, it follows that

√
nβ̂

L−→ N(µ, (
K∑

k=1

v2
k)−21′V 1)

as n → ∞.
Next, consider the estimator β̂

(n)
arising from (1). Under the sequence of

general contiguous alternatives, an approach similar to that for β̂(n) can be
applied, resulting in √

nβ̂
L−→ N(µ, Σ)

as n → ∞, where µ = (µ1, µ2, · · · , µK)′, and

µk =

∫∞
0

{δkgk(t)vk(0, t)s(0)
k (0, t)}λk(t)dt∫∞

0
vk(0, t)s(0)

k (αkgk(t), t)λk(t)dt
.

Appendix II Equivalence of Q∗
1 and Q2 under the

covariance structure V = σ2[(1 − ρ)I + ρJ ]

Let

γ̂1 =
1′VDβ̂

1′VD1
and γ̂2 =

1′Σ−1β̂

1′Σ−11

denote the linear combinations of β̂ on which Q∗
1 and Q2 are based.
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When V = σ2(1 − ρ)I + σ2ρJ , γ̂1 simplifies to

1′VDβ̂

1′VD1
=
∑K

k=1 β̂k

K

Since V −1 = 1
σ2 (aI + bJ), where

a = 1
1−ρ b = −ρ

(1+(K−1)ρ)(1−ρ) ,

γ̂2 simplifies to

1′Σ−1β̂

1′Σ−11
=

1′V −1β̂

1′V −11
=
∑K

k=1 β̂k

K
= γ̂1.

It follows that Q∗
1 and Q2 are equivalent, and hence that Q1 and Q2 are

equivalent.

This article has appeared in the December 2004 issue of Lifetime
Data Analysis
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The aim of this paper is to demonstrate that nonparametric smoothing meth-
ods for estimating functions can be an useful tool in the analysis of life time
data. After stating some basic notations we will present a data example.
Applying standard parametric methods to these data we will see that this
approach fails - basic features of the underlying functions are not reflected
by their estimates. Our proposal is to use nonparametric estimation meth-
ods. These methods are explained in section 2. Nonparametric approaches
are better in the sense that they are more flexible, and misspecifications of
the model are avoided. But, parametric models have the advantage that the
parameters can be interpreted. So, finally, we will formulate a test procedure
to check whether a parametric or a nonparametric model is appropriate.

1 Stating the Problem

We consider life or failure times of individuals or objects belonging to a cer-
tain group, the so-called population of interest. Examples are: survival times
of patients in a clinical trial, lifetimes of machine components in industrial
reliability or times taken by subjects to complete specified tasks in psycho-
logical tests. We assume that these life times can be modelled by a random
variable Y with a distribution F , that is, we assume that the probability that
an individual of the underlying population dies (fails) before time point t can
be expressed in the form

P(Y ≤ t) = F (t).

The probability that the individual survives the time point t is given by the
survival function

S(t) = P(Y > t) = 1 − F (t).

Other functions of interest are the density f(t) = F ′(t) and the hazard or
failure rate
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λ(t) = lim
s↓0

1
s

P(t < Y ≤ t + s|Y ≥ t)

describing the immediate risk attaching to an individual known to be alive at
time point t.

Now, suppose that we have obtained data from the underlying population.
How we can use these data to estimate the survival function or the hazard
rate?

Assuming a parametric model for the distribution the survival times we
have to estimate parameters. It is well-known, that the maximum likelihood
method provides good estimates.

For example, if we assume that our data are realizations of exponential
distributed random variables Y1, . . . , Yn, that is, the survival function is given
by

S(t) = exp(−tβ),

with parameter β > 0, then the problem of estimating the function S is simply
the problem of estimating the parameter β. And the maximum likelihood
estimator (m.l.e.) is given by

β̂ =
1
n

n∑
i=1

Yi.

Assuming a Weibull distribution with parameters β and ν, i.e

S(t) = P(Y > t) = exp(−(t/β)ν),

we obtain that the m.l.e. of the two-dimensional parameter is a solution of

β̂ν̂ =
1
n

n∑
i=1

Y ν̂
i∑n

i=1 Y
ν̂
i log Yi

β̂ν̂
=

n

ν̂
+

n∑
i=1

log Yi. (1)

If the assumed parametric model is a good description of the of the under-
lying population, then parametric estimators and test procedures based on
these estimators provide good results. But if the parametric model is not
appropriate such an approach can lead to wrong conclusions. This is demon-
strated in the following: Suppose that a mixture of two Weibull distributions
is considered. The first group is characterized by parameters β1, ν1 and the
second with β2, ν2, and let p be the portion of the first group. Then the
survival function is given by

S∗(t) = (1 − p) exp(−(t/β1)ν1) + p exp(−(t/β2)ν2) (2)

For β1 = 1, β2 = 4, ν1 = 2, ν2 = 4 and p = 0.05 Figure 1 shows S∗, the
density f∗ and the hazard rate λ∗ of the mixture (solid line). Further the
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Fig. 1. (a) Survival functions, (b) Densities, (c) Hazard rates, for the main compo-
nent (dashed line), for the mixture (thin solid line), in (c) the hazard rate for the
minor component (bold solid line)

main part of the mixture, i.e. exp(−(t/β1)ν1 is given in (a), in (b) and (c)
you see not only this term of the mixture but also the minor one.
In such a case with a small p one can interprete the first Weibull distribution as
a disturbation of the second one and one would hope that the fit with a single
Weibull distribution is sufficiently well. Simulated data with 100 observations
from the disturbed Weibull model were used to estimate the parameters β
and ν in a single Weibull model with

S(t) = exp(−(t/β)ν) and λ(t) =
tν−1

βν
,

which was assumed neglecting the inhomogenity of the population.
The maximum likelihood estimates, computed according to (1), are:

β̂ = 1.057 and ν̂ = 1.422. Replacing these estimates into the functions S
and λ we get Figure 2.
We see: The estimators using the single Weibull model are wrong estimators.
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Fig. 2. a) Survival functions, (b) Hazard rates, (c) Densities, for the estimated
single Weibull model (bold dashed line), for the mixture (thin solid line)

This model is unable to detect the features of the underlying functions!
Such a mixed distribution one meets if the underlying population is not ho-
mogenous. A latent factor, which is not observed divides the population into
(for simplicity) two groups. Further, assume that both groups can be char-
acterized by a Weibull distribution: the first with parameters β1, ν1 and the
second with β2, ν2, and let p be the portion of the first group. Latent factors
can be: a not observed underlying disease (depression), different litter in an
animal experiment or different producer of a technical component.

2 Nonparametric Estimators

2.1 Model with censoring

Very often, in practical applications the life times Yi’s are subject to random
right censoring, i.e. some individuals may not be observed for the full time
to failure. Thus, our observations are values of r. v.’s Ti which are censored



Nonparametric Estimation in Survival Models 323

or uncensored. Here we assume a random censoring scheme characterized by
i.i.d. r. v.’s Ci which are independent of the Y - sequence. Thus, we observe
(Ti, δi), i = 1, . . . , n with

Ti = min(Yi, Ci) and δi = 1(Yi ≤ Ci).

The distribution of the observations is described by the distribution func-
tion and the subdistribution function of the uncensored observations

H(t) := P(Ti ≤ t) and HU (t) := P(Ti ≤ t, δi = 1).

2.2 The Nelson-Aalen estimator for the cumulative hazard
function

Starting point of the construction of an estimator for the hazard function
λ and the survival function S is an estimator for Λ, the cumulative hazard
function defined by

Λ(t) =
∫ t

0

λ(s) ds.

Using standard transformations we can write this estimator in the follow-
ing form

Λ(t) =
∫ t

0

dF (y)
S(y)

=
∫ t

0

dHU (y)
1 −H(y)

. (3)

The idea for the estimation of Λ goes back to [B81]. He proposed to replace
the functions H and HU in (3)by their empirical versions

ĤU
n (t) =

1
n

n∑
i=1

1(Ti ≤ t, δi = 1), Ĥn(t) =
1
n

n∑
i=1

1(Ti ≤ t). (4)

The resulting estimator is the so-called Nelson-Aalen type estimator

Λ̂n(t) :=
∫ t

0

dĤU
n (s)

1 − Ĥn(s−)
.

The explicit formula of Λ̂n is given by

Λ̂n(t) =
n∑

i=1

1(T(i) ≤ t)δ[i]
n− i + 1

.

Here T(1) ≤ · · · ≤ T(n) is the order statistic, and δ[i] = δj if Tj = T(i).
From this estimator we get the well-known Kaplan-Meier product limit

estimator by the transformation

F̂n(t) = 1 − exp(−Λ̂n(t)).

Asymptotic properties of these estimators were investigated by several au-
thors, for example by [H81], [LS86] and [MR88].
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2.3 A kernel estimator for the hazard function

The hazard function λ is the derivative of the cumulative hazard Λ. But the
estimator Λ̂n is not differentiable. So, we follow the same line as in the case
of nonparametric density estimation. Let us estimate λ at point t. Consider
a small interval [t− b, t + b) of length 2b around t. We can approximate λ(t)
in the following way:

λ(t) ∼

t+b∫
t−b

λ(s) ds

2b
=

Λ(t + b) − Λ(t− b)
2b

∼ Λ̂n(t + b) − Λ̂n(t− b)
2b

. (5)

The last term in (5) can be written in the form

1
b

n∑
i=1

K∗
(
t− T(i)

b

)
δ(i)

n− i + 1
,

where
K∗(u) =

{
1
2 for −1 ≤ u ≤ 1
0 otherwise .

The first approximation step in (5) yields a systematic error, which be-
comes small if the length of the interval is small. At the other hand, if b is
small, then the second approximation error, the stochastic error, is large, be-
cause we have not enough observations for stability. To take these tendencies
into account, we have to choose b depending on the sample size n, b = bn,
such that

bn → 0 and nbn → ∞. (6)

Further, it is useful to take instead of the function K∗ a more general function
K, a function giving small weights to observations T(i) far away from the
point t and large weights to observations very near to the point, at which
we estimate. This is realized, for example, by taking a symmetric density
function for K. So, finally we arrive at the following definition:

λ̂n(t) =
1
bn

n∑
i=1

K

(
t− T(i)

bn

)
δ(i)

n− i + 1
. (7)

Here K : R → R is the kernel function and {bn} the sequence of bandwidths
satisfying (6). The estimator (7) can be written shortly as

λ̂n(t) =
1
bn

∫
K

(
t− s

bn

)
dΛ̂n(s).

Several properties of this estimator are known. Let us mention here papers
[SW83], [TW83] and the results in [DS86]. In these papers conditions for con-
sistency are derived and asymptotic expressions for the bias and the variance
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are given. Diehl and Stute considered an approximation for the difference be-
tween the estimator λ̂n and a smoothed hazard rate by a sum of i.i.d. r.v.’s.
On the basis of such a representation limit theorems can be derived.

The following picture shows a nonparametric kernel estimate for the data
generated in the simulated model (2). Here the kernel function is the Gaussian
kernel, the bandwidth is bn = 0.6. We see, that this estimate reflects the
features of the underlying hazard function much better than the parametric
estimator.

0

0.5

1

1.5

2

1 2 3 4 5
t

Fig. 3. True underlying hazard rate (thin) and nonparametric estimate (bold)

3 Testing the Hazard Rate

Nonparametric estimators of a curve are an appropriate tool in the analysis
of data. But, sometimes in practical situations it seems to be useful to have a
parametric model. The advantage of a parametric model is that the parame-
ters have a some meaning, very often they can be interpreted. Of course, this
holds only, if the chosen parametric model is appropriate. Thus, the question
arises, whether the choice of a certain parametric model can be justified by
the data. In this section we propose a test procedure for checking whether a
hypothetical model fits the data, that is we consider the following hypothesis

H : λ ∈ L vs. K : λ �∈ L,
where L is the class of parametric hazard functions

L = {λ(·;ϑ) |ϑ ∈ Θ ⊂ Rk}

An example for such an parametric class L is the set of all Weibull hazards.
Further parametric models are given in the book [BN02]. At the first view one
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would choose as test statistic the deviation of the nonparametric estimator λ̂n,
which is a good estimator under the alternative, from a hypothetical hazard
with estimated parameter ϑ̂, i.e. from λ(t; ϑ̂). Here ϑ̂ is an appropriate
estimator of the unknown parameter. But the nonparametric λ̂n is a result of
smoothing procedure. Remember formulae (5) - it is an unbiased estimator
of

1
bn

∫
K

(
t− z

bn

)
λ(z) dz,

and not unbiased for the underlying hazard rate. So, it seems to be natural
to compare λ̂n, which smoothes the data, with a smoothed version of the
hypothesis. Thus, we will take the difference between λ̂n and λ̃n defined by

λ̃n(t; ϑ̂) =
1
bn

∫
K

(
t− z

bn

)
λ(z; ϑ̂) dz.

Generally speaking, one can take as deviation measures Lp-distances for
functions. Here we will consider a L2-type distance, namely

Qn =
∫ (

λ̂n(t) − λ̃n(t; ϑ̂)
)2

a(t) dt

The function a is a known weight function, it is introduced to control the
region of integration.

3.1 An asymptotic α-test

To formulate a test based on this statistic we have to derive the distribution
of Qn, or at least the limiting distribution under the hypothesis. The theory
about the asymptotical distributional behavior of quadratic forms yields the
following limit statement. Under

- regularity conditions on the kernel K and the bandwidth bn,
- smoothness of the functions Hand HU

- conditions on the function a such that the integrals given below exist and
- conditions ensuring that the estimator ϑ̂n is

√
n-consistent

the distribution of the standardized Qn converges to the standard normal
distribution, that is

nb
1/2
n

σ
(Qn − µn) D−→N(0, 1)

where
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µn = (nbn)−1 κ1

∫
λ(t; ϑ̂n)
1 −H(t)

a(t) dt

σ2 = 2κ2

∫ (
λ(t; ϑ̂n)
1 −H(t)

)2

a2(t) dt (8)

with κ1 =
∫
K2(x) dx and κ2 =

∫
(K ∗K)2(x) dx and ”∗” denotes the convo-

lution.
The only unknown term in this limit statement is the distribution H of

the observations. Replacing this by the empirical distribution Ĥn we obtain
the following asymptotic α-test: Reject H, iff

Qn ≥ zα σ̂n

nb
1/2
n

+ µ̂n. (9)

Here zα is the (1 − α)-quantile of the standard normal distribution and µ̂n

and σ̂2
n are defined as in (8), where H is replaced by Ĥn. Note that one has

to choose the function a such that regions where the kernel estimator of the
hazard rate has a large variance are excluded.

3.2 Application to the example

Now, let us apply the proposed test to the example considered in Section
1. The nonparametric estimator of the hazard rate in the Weibull mixture
model and the smoothed hypothetical hazard function, that is a hazard rate
in a Weibull model with parameter ϑ̂ = (1.057, 1.422), are given in Figure 4.
We compute the integrated quadratic distance over the interval [0, 4]. and get
the following values for the test statistic and the standardizing terms

Qn = 2.8161
µ̂n = 1.461
σ̂2

n = 1853.717

With these values the test procedure yields for α = 0.05: Reject H. The
p-value is 0.0025.

Conclusions

1. There are two possible points of view. The first is to consider the minor
part of the mixture as a disturbation. That is, one is interested in the main
part, for which the parametric model is justified. Then the nonparametric
estimate of the hazard rate shows that the population is not homogenous,
or in other words, our data are not appropriate for the estimation of both
parameters. Further, we see that the hazard rate reflects this deviation
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Fig. 4. (a) Densities, (b) Hazard rates. Hypothetical single Weibull model (dashed
line), nonparametric estimate (bold solid line), in (b) true underlying mixture model
(thin solid line)

much better then the survival function. Hence, in this case the application
of a nonparametric estimator for the hazard rate is helpful for detecting
outliers.

2. A second point of view is, that one is interested in the distribution of
the population, that is the data are correct in the sense, that they are
represent the population we are interested in. Then our nonparametric
approach shows that the chosen parametric model is not appropriate.
Thus, the nonparametric estimator can be helpful for stating a better
parametric model. Of course a parametric mixture model with unknown
parameter p is a complicated matter.

3. In both cases we see that the hazard rate is more sensitive. The deviation
of a hazard rate from a hypothetical one, which can be seen very clearly,
is smoothed away when we consider the corresponding survival functions.

4 Some further remarks

1. The proposed test is consistent, that is, if the distribution of the data does
not belong to the hypothetical class, then the probability that the test
rejects the hypothesis tends to one. This is not a very strong property.
So, it seems to be useful to consider the power of the test under so-
called local alternatives. For testing a density function nonparametrically
such considerations were done in [LLK98]. The results for the hazard
rate are similar. Roughly speaking one obtains, that the test is sensitive
against alternatives tending to the hypothetical hazard function at the

rate
√
nb

1/2
n .

2. The problem of the application of the nonparametric estimator and the
test is the choice of the bandwidth bn. If the bandwidth is chosen large,
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the systematic error becomes large. At the first view this is not crucial,
because we compare the smooth nonparametric estimator λ̂n with the
smoothed hypothetical function λ̃n. But the approximation of the distri-
bution of the standardized test statistic Qn by the normal distribution
is worse for large bn. Simulation results show that in this case the test
has the tendency to accept the hypothesis. At the other hand, if bn is
chosen to small, then the resulting estimator is wiggly, and the power of
the becomes worse.

5 About the Extension to the Model with Covariates

The approach described above can be generalized to the model with covariates.
In applications often we observe in addition to the life times some covariates.
These covariates can be e.g. the dosis of a drug, the temperature or other
factors of influence. That is, we have observations (Ti, Xi, δi), where Xi is
the covariate taking values in R or more general in Rk. We can consider
these covariates as fixed design points, or as random values. In both cases
we are interested in statistical inference about the survival function S(t|x),
the density f(t|x) = − dS(t|x)

dt and the hazard function λ(t|x) = f(t|x)
S(t|x) . Here

S(t|x) is the probability that an individuum or item survives the time point
t given the covariate takes the value x. We do not want to go into further
details, the basic idea is to estimate the distribution functions H(·|x) and
HU (·|x) not by the emprirical distribution functions given in (4), but by
weighted empirical distribution functions

ĤU
n (t) =

n∑
i=1

wni(X,x;hn)1(Ti ≤ t, δi = 1) Ĥn(t) =
n∑

i=1

wni(X,x;hn)1(Ti ≤ t).

Here, the weights wnj(X,x) depend on the observed covariates X =
(X1, . . . , Xn), on x and on a smoothing parameter hn. We assume∑n

i=1 wni(X,x;hn) = 1. They are chosen such that the Tj gets a large weight
in counting all the Ti’s, which are smaller or equal t, if the corresponding co-
variate Xj is near x. Appropriate weights are kernel weights of Gasser-Müller
type for fixed covariates or Nadaraya-Watson kernel weights for random Xi’s.
The resulting estimator of the hazard rate has then the following form

λ̂n(t|x) =
1
bn

n∑
i=1

K

(
t− T(i)

bn

)
δ[i]wn[i](X,x;hn)

1 −
∑i−1

j=1 wn[j](X,x;hn)
.

Properties of nonparametric estimators for the hazard rate, the cumula-
tive hazard function and the survival functions for models with covariates
are derived, for example, in papers [GMCS96] and [VKVN97], [VKVN01],
[VKVN02].
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For testing the hypothesis that λ(·|x) is equal to a given hazard function
λ∗(·|x) we propose (for fixed covariates) the following test statistic

Sn =
1
n

n∑
k=1

∫ (
λ̂n(t|xk) − λ̃∗

n(t|xk)
)2

a(t) dt

Here λ̃∗
n(·|xk) is the smoothed hypothetical hazard function at fixed covariate

xk. In [L03a] it is shown that under certain conditions on K, bn, the weights
wni and hn and on the smoothness of the underlying distribution functions
that the (appropriate standardized) Sn is asymptotically normally distributed.
Based on this limit statement a test procedure can be derived. Moreover, for
testing the hypothesis, that λ(·|x) lies in a prespecified parametric class a test
statistic with estimated parameters can be applied.

Appendix: Formulation of the Limit Theorem

This theorem is formulated not only for the behavior under the null hypothesis, but
for general hazard rate λ. We define

λ̃n(t) :=

∫
Kbn(t − s) λ(s) ds.

Qn =

∫ (
λ̂n(t) − λ̃n(t)

)2

a(t) dt

Further, let TH be the right end point of the distribution H.

Theorem 1. Suppose that

(i) K is a continuous density function vanishing outside the interval [−L, L] for
some L > 0.

(ii) λ and H are Lipschitz continuous.
(iii)The function a is continuous and a(t) ≡ 0 for all t > TH and the integrals

defined below are finite.
(iv) bn → 0 and nb2

n → ∞.
Then for n → ∞

nb
1/2
n

σ
(Qn − µn)

D−→ N(0, 1) (10)

where

µn = (nbn)−1

∫
λ(t)

1 − H(t)
a(t) dt κ1 σ2 = 2

∫ (
λ(t)

1 − H(t)

)2

a2(t) dt κ2

The proof of this theorem is given in [L03b].
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A criterion for choosing an estimator in a family of semi-parametric estima-
tors from incomplete data is proposed. This criterion is the expected observed
log-likelihood (ELL). Adapted versions of this criterion in case of censored
data and in presence of explanatory variables are exhibited. We show that
likelihood cross-validation (LCV) is an estimator of ELL and we exhibit
three bootstrap estimators. A simulation study considering both families of
kernel and penalized likelihood estimators of the hazard function (indexed on
a smoothing parameter) demonstrates good results of LCV and a bootstrap
estimator called ELLbboot. When using penalized likelihood an approximated
version of LCV also performs very well. The use of these estimators of ELL
is exemplified on the more complex problem of choosing between stratified
and unstratified proportional hazards models. An example is given for mod-
eling the effect of sex and educational level on the risk of developing dementia.

Key words: bootstrap, cross-validation, Kullback-Leibler information,
proportional hazard model, semi-parametric, smoothing.

1 Introduction

The problem of model choice is obviously one of the most important in statis-
tics. Probably one of the first solution to a model choice problem was given
by Mallows [Mal73] who proposed a criterion (Cp) for selecting explanatory
variables in linear regression problems. This problem of selection of variables
was studied by many authors in more general regression models ([Cop83];
[Mil02]). The celebrated Akaike criterion [Aka74] brought a solution to the
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problem of parametric model selection. This criterion called AIC (An In-
formation Criterion or Akaike Information Criterion) was based on an ap-
proximation of the Kullback-Leibler distance [Aka73]. Criterions improving
AIC for small samples have been proposed: AICc [HT89] and EIC which is a
bootstrap estimation [ISK97]. Finally in the case of missing data, Cavanaugh
and Shumway [CS98] proposed a variant of AIC. A closely related, but more
difficult problem, is that of choice of a smoothing parameter in smoothed
semi-(or non-) parametric estimation of functions. These functions may be
density function [Sil86], effect functions of an explanatory variable [HT90]
or hazard functions ([O’S88], [JCL98]). Smoothing methods are in particu-
lar kernel smoothing methods and penalized likelihood. In simple regression
problems, versions of AIC and AICc are available [HST98] and simple versions
of the cross-validation criterion have been proposed: CV, GCV [CW79]. How-
ever in general problems only the likelihood cross-validation criterion (LCV)
[O’S88] and bootstrap techniques, in particular, extension of EIC [LSC03] are
available. In some problems approximations of the mean integrated square
error (MISE) are available ([RH83], [MP87], [Fer99]).

Liquet et al. [LSC03] have introduced a general point of view which is to
choose an estimator among parametric or semi-parametric families of estima-
tors according to a criterion which is an approximation of the Kullback-Leibler
distance; they have shown on some simulation studies that the best criterions
were EIC and LCV. They treated a general multivariate regression problem.
The aim of this paper is to extend this point of view to the case where in-
complete data are observed. The data may be incomplete because of right
or interval-censoring for instance. This is not a trivial extension: indeed, it
becomes clear that for using relatively simply the bootstrap approach, the
theoretical criterion to be estimated must be changed. The proposed crite-
rion is the expectation of the (observed) log-likelihood (ELL) rather than the
Kullback-Leibler distance. This paper uses much of the material of Liquet and
Commenges [LC04] and applies the approach to the choice between stratified
and unstratified proportional hazards models.

We define the ELL criterion in section 2 and give useful versions of it for use
with right-censored data and with explanatory variables (where partial and
conditional likelihood respectively are used). In section 3 we exhibit three
bootstrap estimators of ELL and show that LCV also estimates ELL. Section
4 presents simulation studies for comparing the four estimators together with
the Ramlau-Hansen approach for hazard functions using kernel smoothing
methods or penalized likelihood.
In section 5, we show an application of these criterions to a more complex
problem, which is to compare stratified and unstratified proportional hazards
models. Our particular application is modeling onset of dementia as a function
of sex and education level (coded as a binary variable). We could consider
a proportional hazard for both variables or stratified models on one variable,
or making four strata. No method has been proposed to our knowledge to
compare such different semi-parametric models. We propose to compare them
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using the ELL criterion, in practice using LCV or a bootstrap estimator, and
apply these methods to the data of the PAQUID study, a large cohort study
on dementia [LCDBG94].

2 The expected log-likelihood as theoretical criterion

2.1 Definitions and notations

Let T be the time of the events of interest. Let f and F be the density function
and the cumulative distribution function of T . The hazard function is defined
by λ(t) = f(t)

S(t) where S = 1 − F is the survival function of T . However, we
do not observe the realizations of T but only a sample W = {W1, . . . ,Wn} of
independent and identically distributed (i.i.d.) variables which bring informa-
tion on the variable T . For instance, in the case of right-censored observations,
the Wi’s are copies of the random variable W = (T̃ , δ) where T̃ = min(T,C)
and δ = I[T≤C] where C is a censoring variable independent of T . In the
sequel, we denote by fC the probability density functions and SC the survival
functions of C. Other cases of censoring are left and interval censoring. We
denote by λ̂W

h (·) a family of estimators of λ(·), where h most often represents
a smoothing parameter. To any particular estimator λ̂W

h (·) corresponds an
estimator f̂W

h (·) = λ̂W
h (·)exp(−

∫
λ̂W

h (u)du). Our aim is to propose an infor-
mation criterion to choose the smoothing parameter for a family of estimators
and also to choose between different families of estimators.

2.2 The expected log-likelihood

For uncensored data, the useful part of the Kullback-Leibler information cri-
terion, measuring the distance between f̂T

h (·) and f , is the conditional expec-
tation of the log-likelihood of a future observation T

′
given T

KL(T ) = E
{

log f̂T
h (T

′
)|T
}

(1)

where T = (T1, . . . , Tn) and T
′
an additional observation having the distribu-

tion F and being independent of the sample T . Based on KL, Akaike [Aka74]
(see also DeLeeuw, [DeL92]), in a parametric framework for complete data,
defined the popular criterion AIC (−2 logL+2p; when L is the likelihood and
p is the number of estimated parameter) as an estimator of the expectation
of the Kullback-Leibler information EKL=E [KL(T )]. In presence of incom-
plete data, even EKL is difficult to estimate. In particular, because T is not
observed, it is not possible to directly estimate the different expectations by
bootstrap.
Instead, we define a criterion as the expectation of the observed log-likelihood
of a new sample which is a copy of the original sample, given the original
sample:
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ELL(λ̂h) = E
{

logLλ̂W
h (W ′

)
}
. (2)

This criterion does not depend on W and judges a procedure of estimation λ̂h

that can be applied to any W of same distribution. Thus the criterion that
we propose is, in accordance with the pinciple of Akaike (see also DeLeeuw
[DeL92]), the non-conditional expectation of the log-likelihood, ELL; ELL
can be considered as equivalent to the expectation of the Kullback-Leibler
information for observed data. Indeed it is relatively easy to show that for
a parametric model, AIC defined as −2 logL + 2p (p being the number of
parameters) is an estimator of ELL (more precisely of -2ELL) (see Cavanaugh
and Shumway [CS98].

2.3 Case of right-censored data

In presence of right-censored data as defined in section 2.1, the likelihood
Lλ̂W

h (W ′
) is:

Lλ̂W
h (W ′

) =
n∏

i=1

{f̂W
h (T̃

′
i )}δ

′
i{ŜW

h (T̃
′
i )}1−δ

′
i{fC(T̃

′
i )}1−δ

′
i{SC(T̃

′
i )}δ

′
i

where f̂W
h (·) and ŜW

h (·), the estimators of f and S are deduced from λ̂W
h (·).

The criterion defined in (2) can be decomposed in two parts:

ELL(λ̂h) = ELLp(λ̂h) + E{ϕ(fC , SC ,W
′
)} (3)

where
ELLp(λ̂h) = E

{
logLλ̂W

h
p (W ′

)
}

and

Lλ̂W
h

p (W ′
) =

n∏
i=1

{f̂W
h (T̃

′
i )}δ

′
i{ŜW

h (T̃
′
i )}1−δ

′
i

which is the partial likelihood (in the sense of Andersen et al. [ABGK93]).
The second term in (3) does not depend on λ̂h; thus maximizing ELL is
equivalent to maximize ELLp. Finally our criterion is:

ELLp(λ̂h) = E
{

logLλ̂W
h

p (W ′
)
}

that is the ELL criterion applied to the partial likelihood; this is very fortunate
because this avoids estimating the distribution of the censoring variable. Note
however that the ELL criterion cannot be applied to the Cox partial likelihood,
at least not directly: we need a smooth estimate of the hazard function to
apply our criterion. Any non-smooth estimate has a value −∞ and is rejected.
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2.4 Case of explanatory variable

We consider the case of presence of explanatory variables. We note Wi =
(Ti, Xi) with Ti the survival time and Xi a vector of covariates for the ith
individual. It is assumed that Ti has conditional density function f(·|xi)
given Xi = xi. Our aim is to estimate λ(·|·) the corresponding conditional
hazard function. We note this estimator λ̂W

h (·|·) and f̂W
h (·|·) the corresponding

density. The likelihood Lλ̂W
h (W ′

) is:

Lλ̂W
h (W ′

) =
n∏

i=1

{f̂W
h (T

′
i |X

′
i)}{fX(X

′
i)}

where f̂X(·) is the marginal density of Xi. With the same reasoning as in 2.3,
the criterion in (2) can be decomposed in two parts:

ELL(λ̂h) = ELLc(λ̂h) + E{ϕ(fX ,X
′
)} (4)

where X
′
= (X

′
1, . . . , X

′
n),

ELLc(λ̂h) = E
{

logLλ̂W
h

c (W ′
)
}

and

Lλ̂W
h

c (W ′
) =

n∏
i=1

{f̂W
h (T

′
i |X

′
i)}

which is the conditionnal likelihood. The second term of (9) does not depend
on λ̂h; thus maximizing ELL is equivalent to maximizing ELLc. Finally our
criterion is:

ELLc = E
{

logLλ̂W
h

c (W ′
)
}

that is the ELL criterion applied to the conditionnal likelihood; this is very
fortunate because this avoids estimating the distribution of the explanatory
variable. Both tricks can be applied when there are both explanatory variables
and censoring.

3 Estimation of ELL

In order to obtain practical selection criteria, it is necessary to estimate ELL.
Several estimators may be considered.

3.1 Likelihood cross-validation : LCV

Throughout this subsection, we index the sample W by its size n and thus
use the notation Wn. We recall that the likelihood cross-validation is defined
as:
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LCV(Wn) =
n∑

i=1

logLλ̂W−i

h (Wi)

where Lλ̂W−i

h (Wi) is the likelihood contribution of Wi for the estimator defined
on the sample W−i in which Wi is removed. The LCV choice for λ̂W

h is the
estimator which maximizes LCV. An important property of LCV is that the
expectation of LCV is approximatively equal to ELL and it is shown in Liquet
and Commenges (2004) that when n −→ ∞,

E [LCV(Wn)]

ELL(λ̂h(n))
−→ 1,

where λ̂h(n) is an estimator applied to a sample of size n. If n is large, the
computation of LCV is intensive. An approximation based on a first-order
expansion of logLλ̂W−i

h (Wi) around logLλ̂W
h (Wi) can be used. This leads to

an expression of the form

LCVa(Wn) =
n∑

i=1

logLλ̂W
h (Wi) −mdf,

where the term mdf can be interpreted as the model degrees of freedom,
and this expression is analogous to an AIC criterion. For instance, in the
spline approximation of the penalized likelihood, we have mdf = trace([Ĥ −
2hΩ]−1Ĥ) where Ĥ is the converged Hessian matrix of the log-likelihood,
and Ω is the penalized part of the converged Hessian matrix, see Joly et al.
[JCL98] for more details.

3.2 Direct bootstrap method for estimating ELL (ELLboot and
ELLiboot)

We can directly estimate by bootstrap the expectation of the log-likelihood
(ELL). We define this bootstrap estimator as

ELLboot = E∗

{
logLλ̂W∗

h (W ′∗)
}

where W∗ = (W ∗
1 , . . . ,W

∗
n) , W ∗

j ∼ F̂W , W ′∗ = (W
′∗
1 , . . . ,W

′∗
n ) and W

′∗
j ∼

F̂W , F̂W being the empirical distribution of Wi based on W. We use the
notation E∗ to remind that the expectation is taken relatively to the estimated
distribution F̂W . In practice, the expectation is approximated by a mean of
B repetitions of bootstrap samples (Wj d= W ′j d= W∗)

ELLboot � 1
B

B∑
j=1

logLλ̂Wj

h (W ′j)
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To improve this criterion, we can iterate the bootstrap method [Hal92]. We
define this new estimator as:

ELLiboot = E∗∗

{
logLλ̂W∗∗

h (W ′∗∗)
}

where W∗∗ = (W ∗∗
1 , . . . ,W ∗∗

n ) , W ∗∗
j ∼ F̂W∗ , W ′∗∗ = (W

′∗∗
1 , . . . ,W

′∗∗
n ) and

W
′∗∗
j ∼ F̂W∗ , F̂W∗ being the empirical distribution of W ∗

i based on W∗. E∗∗

is calculated with respect to the distribution F̂W∗ . The expectation is also
approximated by a mean of B repetitions of bootstrap samples (Wj d= W ′j d=
W∗∗)

ELLiboot � 1
B

B∑
j=1

logLλ̂Wj

h (W ′j)

More explicitly, for each j, we take a bootstrap sample from W∗ from W,
then we take Wj a bootstrap sample from W∗; we obtain W ′j by the same
way; λ̂Wj

h is the estimator of λ for fixed h based on Wj .

3.3 Bias corrected bootstrap estimators

To construct this estimator, we first propose the log-likelihood as naive es-
timator of the ELL criterion and then correct it by estimating its bias by
bootstrap [Hal92]. This approach is similar to that used for deriving the EIC
[LSC03] criterion available for complete data.
Our corrected estimator of ELL is:

ELLbboot = logLλ̂W
h (W) − b̂(W). (5)

where b̂(W) � 1
B

B∑
j=1

{
logLλ̂Wj

h (Wj) − logLλ̂Wj

h (W)
}

is the bootstrap esti-

mate of the bias (bias = E{logLλ̂W
h (W)}−ELL), B is the number of bootstrap

sample Wj taken at random from the distribution of W∗. For more details
see Liquet and Commenges (2004).
Remark : for all the bootstrap methods when treating right-censored obser-
vations the bootstrap expectations have to be conditionned on having at least
one uncensored observation because the estimator are not defined otherwise.

4 Simulation

We have compared ELLboot, ELLiboot, ELLbboot and LCV using both families
of kernel and penalized likelihood estimators of hazard functions. We have
included the Ramlau-Hansen method when using kernels, a popular method
for estimating hazard functions [ABGK93]. We compare the criteria when
using kernel smoothing in 4.1 and penalized likelihood in 4.2.
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4.1 Kernel estimator

The smoothed Nelson-Aalen estimator is

λ̂(t) =
1
h

∫
K

(
t− u

h

)
dÂ(u)

where K(·) is a kernel function, Â(·) is the Nelson-Aalen estimator of A(·),
the cumulative hazard function, and h is the bandwith parameter. Ramlau-
Hansen [RH83] has proposed an estimator of the MISE (mean integrated
square error) based on an approximated cross-validation method for estimat-
ing h; we call it the RH method. We apply gaussian kernels to allow the use
of the different criteria. Indeed, if we used a kernel with compact support,
we risk for small h to have LCV criteria equal to −∞. For the criteria based
on bootstrap, kernels with compact support are prohibited since the boot-
strap expectations are theoretically equal to −∞ for bandwidth lower than
the range of the observed event times. We consider problems where the den-
sity near zero is very low so there is no edge effect near zero.
The data were generated from a mixture of gamma distributions. We gener-
ated random samples T1, ..., Tn of i.i.d. failure times and C1, ..., Cn of i.i.d.
censoring times; the Ci were independent of the Ti. So the observed samples
were (T̃1, δ1), ..., (T̃n, δn) where T̃1 = min(Ti, Ci) and δi = I[Ti≤Ci]. The den-
sity of T was a a mixture of Gamma {0.4Γ (t; 40, 1) + 0.6Γ (t; 80, 1)}, with the
probability density functions Γ (t;α, γ) = αγtγ−1e−αt

Γ (γ) . The probability density
function of Ci was a simple Gamma: Γ (t; 90, 1), Γ (t; 90, 1.1) and Γ (t; 90, 1.3)
corresponding to a percentage of censoring around 15%, 25% and 50% re-
spectively. Samples of sizes 30, 50 and 100 were generated. Figure 1 displays
the smoothed Nelson-Aalen estimate chosen by ELLbboot and the true hazard
function for one simulated example from a mixture of gamma.

Each bootstrap estimator was computed using B=400 samples. Each sim-
ulation involved 100 replications. For each replication we computed the useful
part of the Kullback-Leibler information (KL) between the true density func-
tion f and the estimators chosen by each criterion

KL(f ; f̂W
h ) =

∫
J

log f̂W
h (t)f(t)dt

where J =]0;Tmax]. We do not take Tmax equal to +∞, because for large
times t when there is censoring, we do not have enough information to deter-
mine f̂W

h (t). Tmax was chosen for each simulation such as

Pr {E(nTmax
) ≥ 1} = 0.95

where nTmax represents the risk set at time Tmax. We computed, for each
simulation presented, the average of KL and its standard error. Since KL
generally takes negative values we give in tables 1, 2, 4 the values of -KL: low
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Fig. 1. True hazard function (solid line), smoothed Nelson-Aalen estimator (dashed
line) and penalized likelihood estimate (dotted line) chosen by ELLbboot for a simu-
lated example. The sample size is 50, with 15% right-censored observations.

values then correspond to estimators close to the true distribution. First we
present in table 1 the results of the simulation comparing the optimal criterion
KL and the new criterion ELL. The two theoretical criteria give practically the
same results. We note some differences only when there is little information
(small sample size and high censoring level). The average of -KL obtained for
the pratical criteria are given in table 2. These averages can be compared to
an optimal value, the value of KL when estimators are chosen using the true
ELL.

We may note that RH yielded in all cases much higher (worse) values
of -KL than the other criteria. The ELLboot criterion, although better than
RH, had in pratically all the cases higher values than the other criteria. The
differences were very small between LCV, ELLiboot and ELLbboot although for
high censoring level and small sample sizes, LCV tended to perform not as
well as the bootstrap methods. For all the simulations, the three competitive
criteria had values of KL quite close to the values given by ELL. Although
the simulations were based on only 100 replications some differences were
large comparatively to the standard errors. To make the comparisons more
rigorous we performed paired t-tests for comparing the criteria in the case
of 25% of censoring. All the tests (except one) of ELLboot and RH versus
LCV, ELLiboot and ELLbboot were significant at the 0.001 level; the three
tests comparing ELLboot with RH were also significant. This confirms that
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Table 1. Average Kullback-Leibler information −KL(λ̂W
h ) for the kernel estima-

tor for estimating the hazard function of the mixture of gamma (0.4Γ (t, a, b) +
0.6Γ (t, c, d)) for bandwith chosen by ELL and KL, based on 100 replications. Stan-
dard errors are given in parentheses.

−KL(λ̂W
h ) for kernel estimators

n KL ELL
15% censoring
30 3.96(0.005) 3.96(0.005)
50 3.98(0.003) 3.99(0.003)
100 4.01(0.002) 4.01(0.002)

25% censoring
30 3.89(0.004) 3.91(0.005)
50 3.93(0.004) 3.93(0.004)
100 3.95(0.002) 3.95(0.002)

50% censoring
30 3.81(0.02) 3.92(0.04)
50 3.80(0.009) 3.84(0.02)
100 3.80(0.005) 3.80(0.005)

Table 2. Average Kullback-Leibler information −KL(λ̂W
h ) for the kernel estima-

tor for estimating the hazard function of the mixture of gamma {0.4Γ (t, a, b) +
0.6Γ (t, c, d)} for each criterion based on 100 replications. Standard errors are given
in parentheses.

−KL(λ̂W
h ) for kernel estimators

n ELL ELLbboot LCV ELLiboot ELLboot RH
15% censoring
30 3.96(0.005) 4.00(0.009) 4.01(0.02) 3.98(0.005) 4.04(0.01) 4.19(0.06)
50 3.99(0.003) 4.00(0.006) 4.00(0.008) 4.00(0.005) 4.04(0.01) 4.22(0.06)
100 4.01(0.002) 4.02(0.002) 4.02(0.002) 4.02(0.002) 4.05(0.005) 4.12(0.02)

25% censoring
30 3.91(0.005) 3.94(0.009) 3.96(0.01) 3.92(0.006) 3.98(0.01) 4.26(0.08)
50 3.93(0.004) 3.95(0.007) 3.96(0.01) 3.94(0.006) 3.99(0.01) 4.2(0.06)
100 3.95(0.002) 3.96(0.002) 3.96(0.002) 3.96(0.002) 3.99(0.007) 4.10(0.03)

50% censoring
30 3.92(0.04) 3.99(0.07) 4.04(0.07) 4.01(0.07) 4.02(0.08) 4.36(0.1)
50 3.84(0.02) 3.85(0.02) 3.91(0.03) 3.85(0.02) 3.88(0.03) 4.18(0.09)
100 3.80(0.005) 3.81(0.005) 3.83(0.02) 3.80(0.005) 3.84(0.008) 3.95(0.03)
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the criteria can be classified in three groups ordered from best to worst : 1)
LCV, ELLiboot and ELLbboot; 2) ELLboot; 3) RH.

We also compared the different criteria in term of MISE (mean integrated
squared error). The result of this simulation are summarized in table 3. Al-
though the RH criterion was based on minimizing the MISE, it gave the worst
result. Since Marron and Padgett [MP87] proved an optimality property of
cross-validation for bandwidth choice, this may be due to the approximation
done for obtaining the RH criterion.

Table 3. Comparison of the criteria by the MISE distance for the kernel estima-
tor for estimating the hazard function of the mixture of gamma {0.4Γ (t, a, b) +
0.6Γ (t, c, d)} based on 100 replications. Standard errors are given in parentheses.

MISE for kernel estimators
n ELLbboot LCV ELLiboot ELLboot RH
25% censoring
30 0.039(0.005) 0.044(0.008) 0.034(0.004) 0.043(0.006) 0.095(0.02)
50 0.038(0.004) 0.039(0.005) 0.035(0.004) 0.041(0.006) 0.110(0.02)
100 0.034(0.004) 0.033(0.004) 0.034(0.004) 0.046(0.004) 0.073(0.012)

4.2 Penalized likelihood estimator

Another approach to estimate the hazard function is to use penalized likeli-
hood:

pLh(W) = logLλ
p(W) − h

∫
λ

′′2
(u)du (6)

where LλW
p is the partial log-likelihood (in the sense of section 2.3) and h

is a positive smoothing parameter which controls the tradeoff between the
fit of the data and the smoothness of the function. Maximization of (6)
over the desired class of functions defines the maximum penalized likelihood
estimator (MPLE) λ̂W

h . The solution is then approximated on a basis of
splines. The main advantage of the penalized likelihood approach over the
kernel smoothing method is that there is no edge problem; the drawback is
that it is more computationally demanding. The method of likelihood cross-
validation (LCV) may be used to select h. To circumvent the computational
burden of the LCV a one-step Newton-Raphson expansion has been proposed
by O’Sullivan [O’S88] and adapted by Joly et al. [JCL98]; we denote this
approximation by LCVa.
ELLbboot and ELLiboot are also applicable to select the smoothing parameter
for penalized likelihood estimators. Figure 1 displays the penalized likelihood
estimate chosen by ELLbboot and the true hazard function for one simulated
example. We have compared LCVa, LCV, ELLbboot and ELLiboot to ELL in
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a short simulation study (penalized likelihood estimators require more com-
putation than kernel estimators). We used the sample with size n = 50,
generated in section 4.1. The results of the simulation are summarized in ta-
ble 4. For penalized likelihood estimators, the differences were small between
LCV, LCVa and ELLbboot; ELLiboot seemed to be less satisfactory.

Table 4. Average Kullback-Leibler information −KL(λ̂W
h ) for penalized likelihood

estimator for each criterion. Standard errors are given in parentheses.

−KL(λ̂W
h )

n=50 and 15% censoring
ELL 3.99(0.003)
LCV 4.00(0.005)
LCVa 4.00(0.005)
ELLbboot 4.00(0.006)
ELLiboot 4.06(0.01)

n=50 and 25% censoring
ELL 3.93(0.006)
LCV 3.98(0.006)
LCVa 3.99(0.009)
ELLbboot 4.01(0.02)
ELLiboot 4.08(0.02)

n=50 and 50% censoring
ELL 3.96(0.008)
LCV 4.00(0.02)
LCVa 4.07(0.03)
ELLbboot 4.06(0.03)
ELLiboot 4.32(0.06)

5 Choosing between stratified and unstratified survival
models

5.1 Method

The estimators of ELL can be used to choose between stratified and unstrat-
ified survival models. Consider right-censored data as defined in section 2.1
and let X = (X1, . . . , Xn) a vector of binary variable (coded 0/1). Finally, we
note W = (W1, . . . ,Wn) with Wi = (T̃i, δi, Xi) the observed data. We propose
to use the ELLbboot or the LCVa criteria, to choose between a proportional
hazards model and a stratified model. We define by
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λ(t|Xi) = λ0(t) expβXi i = 1, . . . , n

the proportional hazards model ([COX72]) and by

λ(t|Xi) =
{
λ0(t) if Xi = 0
λ1(t) if Xi = 1

the stratified model. To estimate these two models, we may use the penalized
likelihood approach. In the proportional hazards regression model, λ̂0

h(·) and
β̂ maximize the penalized log-likelihood:

pLh(W) = logLλ0,β
p (W) − h

∫
λ0

′′2
(u)du

In the stratified model, λ̂0
h(·) and λ̂1

h(·) maximize:

pLh(W) = logLλ0,λ1

p (W) − h

∫ {
λ0

′′2
(u) + λ1

′′2
(u)
}
du

= logLλ0

p (W0) − h

∫
λ0

′′2
(u)du + logLλ1

p (W1) − h

∫
λ1

′′2
(u)du

where W0 = (W 0
1 , . . . ,W

0
n0

) with W 0
i = (T̃i, δi, Xi = 0) and W1 =

(W 1
1 , . . . ,W

1
n1

) with W 1
i = (T̃i, δi, Xi = 1). We can remark that, we do

not estimate separately λ0(·) and λ1(·) on the sample W0 and W1. λ0(·) and
λ1(·) are estimated using the same smoothing parameter; thus the family of
estimators λ̂h(·|·) of the proportional hazards model and the family of esti-
mator λ̂h(·|·) of the stratified model have both just one hyper-parameter h.
Therefore, we can discriminate between these two models (we return on this
theoretical issue in the discussion). The LCVa criterion could be applied to
select h in the two models and thus to choose between them. It is appealing
to apply in addition to the condition of the remark of section 3.3, the stronger
condition

∑
X

′
i = n1. This has the advantage on conditioning on an ancillary

statistic (the sample sizes in the strata, which does not carry information)
and to yield the addition formula (7) below. The conditional criterion is thus:

ELLc(λ̂h) = E
[
logLλ̂W

h
p (W ′

)|
∑

X
′
i = n1

]
.

where W ′ d= W ,W ′
= (W

′
1, . . . ,W

′
n) with W

′
i = (T̃

′
i , δ

′
i, X

′
i).

To calculate ELLc(λ̂h) we use ELLbboot defined in (5) with each bootstrap
sample j that satisfies the condition

∑n
i=1 X

j
i = n1. For the stratified esti-

mator, we note that:

ELLc(λ̂h) = ELL(λ̂0
h) + ELL(λ̂1

h) (7)

So, in practice for each h we estimated ELL(λ̂0
h) and ELL(λ̂1

h) by (5) applied
separately to W0 and W1 then computed ELLc(λ̂h) by (7). To minimize the
different selection criteria we use a golden section search.
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5.2 Example

We analysed data from the Paquid study [LCDBG94], a prospective cohort
study of mental and physical aging that evaluates social environment and
healh status. The Paquid study is based on a large cohort randomly selected
in a population of subjects aged 65 years or more, living at home in two de-
partments of southwest France (Gironde and Dordogne). There were 3675 non
demented subjects at entry in the cohort and each subject has been visited
six times or less, between 1988 and 2000; 431 incident cases of dementia were
observed during the folow up. The risk of developing dementia was modeled
as a function of age. As prevalent cases of dementia were excluded, data were
left-truncated and the truncation variable was the age at entry in the cohort
(for more details see Commenges et al., [CLJ+98]). Two explanatory variables
were considered: sex (noted S) and educational level (noted E). In the sam-
ple, there were 2133 women and 1542 men. Educational level was classified
into two categories: no primary school diploma and primary school diploma
[LGC+99]. The pattern of observations involved interval censoring and left
truncation. It is straightfoward to extent the theory described above to that
case. For the sake of simplicity, we kept here the survival data framework,
treating death as censoring rather than the more adapted multistate frame-
work (Commenges ,2002). We were first interested in the effect of sex. The
penalized likelihood estimate was used to compare the risk of dementia for
men and women with a stratified model (model A) (figure 2) using ELLbboot

for choosing the smoothing parameter.
The penalized likelihood estimate using the LCVa criterion was very close

to the one obtained with ELLbboot. It appears that women tend to have a
lower risk of dementia than men before 78 years and a higher risk above that
age and shows a non proportional hazard model. Indeed the proportional
hazards model (model B) had lower value for both LCVa and ELLbboot than
the stratified model (table 5).
Another important risk factor for dementia is educational level. As the pro-
portional hazards assumption does not hold, we performed several analyses
on the educational level stratified on sex. We considered three models. The
stratified proportional hazards model (model C):

λ(t|Si, Ei) =
{
λ0

h(t) expβEi if Si = 0 (women)
λ1

h(t) expβEi if Si = 1(men)

the proportional hazard model performed separately (model D):

λ(t|Si, Ei) =
{
λ0

h(t) expβ0Ei if Si = 0 (women)
λ1

h(t) expβ1Ei if Si = 1(men)

the model stratified on both sex and educational level (model E):
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Fig. 2. Estimates of the hazard function of dementia for male (solid line) and
female (dotted line) chosen by ELLbboot criterion.

λ(t|Si, Ei) =

⎧⎪⎪⎨⎪⎪⎩
λ0,0

h (t) if Si = 0 and Ei = 0
λ1,0

h (t) if Si = 1 and Ei = 0
λ0,1

h (t) if Si = 0 and Ei = 1
λ1,1

h (t) if Si = 1 and Ei = 1

Table 5 presents the results of the different models. The two criteria give
the same conclusion: the best model is the stratified proportional hazard
model (highest values; model C). Subjects with no primary school diploma
have an increased risk of dementia. For this model (model C), the estimated
relative risk for educational level is equal to 1.97; the corresponding 95%
confidence interval is [1.63; 2.37].

6 Conclusion

We have presented a general criterion for selection of semi-parametric models
from incomplete observations. This theoretical criterion, the expectation of
the observed log-likelihood (ELL) performs nearly as well as the optimal KL
distance (which is very difficult to estimate in this setting) as soon as there
is enough information. We have shown that LCV estimates ELL. LCV and
two proposed bootstrap estimators yield nearly equivalent results; ELLbboot

seems the best bootstrap estimator. The approximate version of LCV (for
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Table 5. Comparison of the stratified and proportional hazards models according
ELLbboot and LCVa criterion; A and B: unstratified and stratified models on sex; C,
D, E: 3 models stratified on sex with educational level as new covariable (see text).

ELLbboot LCVa

model A -1515.61 -1517.45
model B -1517.71 -1519.92
model C -1492.61 -1496.28
model D -1493.51 -1497.18
model E -1495.48 -1498.42

penalized likelihood) also performs very well and thus appears as the method
of choice for this problem, due to the short computation time it requires.
When no approximation of LCV is available, bootstrap estimators such as
ELLbboot are competitive because the amount of computation can be more
flexibly tuned than for LCV.
ELL can be used for choosing a model in semi-parametric families. An
important example is the choice beetween stratified and unstratified survival
models. We have shown that this could be done using LCV or a bootstrap
estimator of ELL in the case where all the models are indexed by a single
hyper-parameter. This raises a completely new problem which is how to
compare families of models of different complexities, i.e indexed by a different
number of hyper-parameters. For instance this problem would arise if we
compared a proportionnal hazards model (1 hyper-parameter) to a stratified
model with one hyper-parameter for each stratum. We conjecture that there
is a principle of parsimony at the hyper-parameter level, similar to that
known for the ordinary parameters.
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We consider estimation of linear functionals of the joint law of regression
models in which responses are missing at random. The usual approach is to
work with the fully observed data, and to replace unobserved quantities by
estimators of appropriate conditional expectations. Another approach is to
replace all quantities by such estimators. We show that the second method is
usually better than the first.

1 Introduction

Let (X,Y ) be a random vector. We want to estimate E[h(X,Y )], the ex-
pectation of some known square-integrable function h. If we are able to
sample from (X,Y ), we can use the empirical estimator 1

n

∑n
i=1 h(Xi, Yi).

If nothing is known about the distribution of (X,Y ), this estimator is effi-
cient. We are interested in the situation where we always observe X, but Y
only if some indicator Z equals one. We assume that Z and Y are condition-
ally independent given X. Then one says that Y is missing at random. In
this case the empirical estimator is not available unless all Zi are one. Let
π(X) = E(Z | X) = P (Z = 1 | X). If π is known and positive, we could use
the estimator 1

n

∑n
i=1 Zih(Xi, Yi)/π(Xi). If π is unknown, one could replace

π by an estimator π̂, resulting in

1
n

n∑
i=1

Zi

π̂(Xi)
h(Xi, Yi). (1)

Surprisingly, even if π is known, replacing π by an estimator can decrease
the asymptotic variance. Such an improvement is given by Schisterman and
Rotnitzky [SR01]. A similar result, on average treatment effects, is in Hirano,
Imbens and Ridder [HIR03]. Another estimator for E[h(X,Y )] is the partially
imputed estimator
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1
n

n∑
i=1

(
Zih(Xi, Yi) + (1 − Zi)χ̂(Xi)

)
, (2)

where χ̂(Xi) is an estimator of the conditional expectation

χ(Xi) = E(h(Xi, Yi) | Xi).

An alternative to the partially imputed estimator is the fully imputed estima-
tor

1
n

n∑
i=1

χ̂(Xi). (3)

An extreme case would be that the conditional distribution of Y given X is
known. It is easy to see that then the fully imputed estimator 1

n

∑n
i=1 χ(Xi) is

at least as good as the partially imputed estimator, and strictly better unless
Z(h(X,Y ) − χ(X)) is zero almost surely.

We show that the fully imputed estimator (3) is usually better than the
partially imputed estimator (2). We restrict attention to the situation where
π is bounded away from zero but otherwise completely unknown. We also
impose no structural assumptions on the covariate distribution. We consider
four different models for the conditional distribution of Y given X.

Suppose first that the conditional distribution Q(X, dy) of Y given X is
completely unknown. For the case h(X,Y ) = Y , Cheng [Che94] shows that
the partially and fully imputed estimators are asymptotically equivalent, and
obtains their asymptotic distribution. He estimates E(Y | X) by a truncated
kernel estimator. Wang and Rao [WR02] obtain a similar result with a dif-
ferently truncated kernel estimator. Cheng and Chu [CC96] study estimation
of the response distribution function and quantiles. We generalize Cheng’s
result to arbitrary functions h and prove efficiency.

Suppose now that we have a parametric model Qϑ(X, dy) for the condi-
tional distribution of Y given X. In this case the conditional expectation is
of the form χϑ(x) =

∫
h(x, y)Qϑ(x, dy). This suggests estimating χϑ by χϑ̂.

The natural estimator for ϑ is the conditional maximum likelihood estimator.
We show that the fully imputed estimator 1

n

∑n
i=1 χϑ̂(Xi) is efficient, and bet-

ter than the corresponding partially imputed estimator except in degenerate
cases. This is related to Tamhane [Tam78] who assumes a parametric model
for the joint distribution of X and Y . Then E[h(X,Y )] is a smooth function
of ϑ; hence it can be estimated efficiently by plugging in an efficient estimator,
such as the maximum likelihood estimator.

Next we consider a model between the fully nonparametric and parametric
ones for Q, a linear regression model with covariates and errors independent.
For simplicity we take Y = ϑX + ε. We do not assume that ε has mean zero
but require X to have positive variance for identifiability. Here Q(x, dy) =
f(y − ϑx) dy, where f is the (unknown) density of the errors. Then χ(x) =∫
h(x, ϑx + u)f(u) du. Exploiting this representation, we estimate χ(x) by∑n
j=1 Zjh(x, ϑ̂x+Yj − ϑ̂Xj)/

∑n
j=1 Zj . We show that the corresponding fully
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imputed estimator is efficient if an efficient estimator for ϑ is used. Again the
partially imputed estimator will not be efficient in general, even if an efficient
estimator for ϑ is used.

Finally we consider a linear regression model without assuming indepen-
dence between covariates and errors. For simplicity we take Y = ϑX + ε
with E(ε | X) = 0. This can be written as a constraint on the conditional
distribution of Y given X, namely

∫
y Q(X, dy) = ϑX. For h(X,Y ) = Y this

suggests the estimator ϑ̂ 1
n

∑n
i=1 Xi, which happens to be the fully imputed

estimator. Matloff [Mat81] has shown that such an estimator improves upon
the partially imputed estimator for his choice of ϑ̂. We show that the fully
imputed estimator of E[h(X,Y )] for general h is efficient if an appropriate
estimator for χ is used. This requires an efficient estimator ϑ̂ for ϑ and a
correction term to the nonparametric estimator of χ. An efficient estimator
of ϑ can be obtained as a weighted least squares estimator with estimated
optimal weights, based on the fully observed pairs. Efficient estimation of ϑ
for more general regression models and various models for π has been studied
in Robins, Rotnitzky and Zhao [RRZ94], Robins and Rotnitzky [RbRt95], and
Rotnitzky and Robins [RtRb95], among others. Efficient score functions for ϑ
are calculated by Nan, Emond and Wellner [NEW04] and Yu and Nan [YN03].
The partially imputed estimator will not be efficient, in general. In view of
this, partially imputed estimators such as the one by Wang, Härdle and Lin-
ton [WHL04] for E[Y ] in a partly linear model are not efficient.

The paper is organized as follows. In Section 2 we characterize efficient
estimators for linear functionals of arbitrary regression models with responses
missing at random; in particular for the four cases above. Our results show
that the model is adaptive in the sense that we can estimate E[h(X,Y )] as
well not knowing π as knowing π. In Section 3 we construct efficient fully
imputed estimators of E[h(X,Y )] in these four models.

2 Efficient influence functions

In this section we calculate the efficient influence function for estimating the
expected value E[h(X,Y )] with observations (X,ZY,Z) as described in the
Introduction. The joint distribution P (dx, dy, dz) of the observations depends
on the marginal distribution G(dx) of X, the conditional probability π(x) of
Z = 1 given X = x, and the conditional distribution Q(x, dy) of Y given
X = x. More precisely, we have

P (dx, dy, dz) = G(dx)Bπ(x)(dz)
(
zQ(x, dy) + (1 − z)δ0(dy)

)
,

where Bp = pδ1 +(1−p)δ0 denotes the Bernoulli distribution with parameter
p and δt the Dirac measure at t. Consider perturbations Gnu, Qnv and πnw

of G, Q and π that are Hellinger differentiable in the following sense:
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n1/2

(
dG1/2

nu − dG1/2
)
− 1

2
u dG1/2

)2

→ 0,∫∫ (
n1/2

(
dQ1/2

nv (x, ·) − dQ1/2(x, ·)
)
− 1

2
v(x, ·)dQ1/2(x, ·)

)2

G(dx) → 0,∫∫ (
n1/2

(
dB

1/2
πnw(x) − dB

1/2
π(x)

)
− 1

2
(· − π(x))w(x)dB1/2

π(x)

)2

G(dx) → 0.

This requires that u belongs to

L2,0(G) = {u ∈ L2(G) :
∫

u dG = 0};

that v belongs to

V0 = {v ∈ L2(M) :
∫

v(x, y)Q(x, dy) = 0}

with M(dx, dy) = Q(x, dy)G(dx); and that w belongs to L2(Gπ), where
Gπ(dx) = π(x)(1 − π(x))G(dx).

We have local asymptotic normality : With Pnuvw denoting the joint distri-
bution of the observations (X,ZY,Z) under the perturbed parameters Gnu,
Qnv and πnw,

n∑
i=1

log
dPnuvw

dP
(Xi, ZiYi, Zi) = n−1/2

n∑
i=1

tuvw(Xi, ZiYi, Zi)

− 1
2
E[t2uvw(X,ZY,Z)] + op(1),

where tuvw(X,ZY,Z) = u(X) + Zv(X,Y ) + (Z − π(X))w(X) and

E[t2uvw(X,ZY,Z)] = E[u2(X)] + E[Zv2(X,Y )] + E[(Z − π(X))2w2(X)]

=
∫

u2 dG +
∫∫

π(x)v2(x, y)Q(x, dy)G(dx) +
∫

w2 dGπ.

If we have models for the parameters G, Q and π, then, in order for the
perturbations Gnu, Qnv and πnw to be within these models, the functions u, v
and w must be restricted to subsets U of L2,0(G), V of V0, and W of L2(Gπ).
The choices U = L2,0(G) and V = V0 correspond to fully nonparametric mod-
els for G and Q. Parametric models for G and Q result in finite-dimensional
U and V . In what follows the spaces U , V and W will be assumed to be
closed and linear.

Let now κ be a functional of G, Q and π. The functional is differentiable
with gradient g ∈ L2(P ) if, for all u ∈ U , v ∈ V and w ∈ W ,

n1/2
(
κ(Gnu, Qnv, πnw) − κ(G,Q, π)

)
→ E[g(X,ZY,Z)tuvw(X,ZY,Z)].

The gradient g is not unique. The canonical gradient is g∗, where g∗(X,ZY,Z)
is the projection of g(X,ZY,Z) onto the tangent space
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T = {tuvw(X,ZY,Z) : u ∈ U, v ∈ V,w ∈ W}.

Since T is a sum of orthogonal spaces

T1 = {u(X) : u ∈ U},
T2 = {Zv(X,Y ) : v ∈ V },
T3 = {(Z − π(X))w(X) : w ∈ W},

the random variable g∗(X,ZY,Z) is the sum

g∗(X,ZY,Z) = u∗(X) + Zv∗(X,Y ) + (Z − π(X))w∗(X),

where u∗(X), Zv∗(X,Y ) and (Z − π(X))w∗(X) are the projections of the
random variable g(X,ZY,Z) onto T1, T2 and T3, respectively. We assume
that E[g2

∗(X,ZY,Z)] is positive.
An estimator κ̂ for κ is regular with limit L if L is a random variable such

that, for all u ∈ U , v ∈ V and w ∈ W ,

n1/2
(
κ̂− κ(Gnu, Qnv, πnw)

)
⇒ L under Pnuvw.

The Hájek–Le Cam convolution theorem says that L is distributed as the sum
of a normal random variable with mean zero and variance E[g2

∗(X,ZY,Z)]
and some independent random variable. This justifies calling an estimator κ̂
efficient if it is regular with limit such a normal random variable.

An estimator κ̂ for κ is asymptotically linear with influence function ψ ∈
L2,0(P ) if

n1/2
(
κ̂− κ(G,Q, π)

)
= n−1/2

n∑
i=1

ψ(Xi, ZiYi, Zi) + op(1).

As a consequence of the convolution theorem, a regular estimator is efficient if
and only if it is asymptotically linear with influence function g∗. A reference
for the convolution theorem and the characterization is Bickel, Klaassen, Ritov
and Wellner [BKRW98].

We are interested in estimating

κ(G,Q, π) = E[h(X,Y )] =
∫∫

h(x, y)Q(x, dy)G(dx) =
∫

h dM.

Let Mnuv(dx, dy) = Qnv(x, dy)Gnu(dx). Then Mnuv is Hellinger differen-
tiable in the following sense:∫ (

n1/2
(
dM1/2

nuv − dM1/2
)
− 1

2
t dM1/2

)2

→ 0

with t(x, y) = u(x)+v(x, y). If Mnuv satisfies lim supn

∫
h2 dMnuv < ∞, then

n1/2
(∫

h dMnuv −
∫

h dM
)
→ E

[
h(X,Y )

(
u(X) + v(X,Y )

)]
;
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see e.g. Ibragimov and Has’minski˘ i [IH81], p. 67, Lemma 7.2.
Thus the canonical gradient of E[h(X,Y )] is determined by

E[u∗(X)u(X)] + E[Zv∗(X,Y )v(X,Y )] + E[(Z − π(X))2w∗(X)w(X)]

= E
[
h(X,Y )

(
u(X) + v(X,Y )

)]
for all u ∈ U , v ∈ V and w ∈ W . Setting first u = 0 and v = 0, we
see that w∗ = 0. Setting v = 0, we see that u∗(X) is the projection of
h(X,Y ) onto T1. Taking u = 0, we see that the projection of Zv∗(X,Y ) onto
Ṽ = {v(X,Y ) : v ∈ V } must equal the projection of h(X,Y ) onto Ṽ .

We are mainly interested in a fully nonparametric model for G, for which
U = L2,0(G). Then u∗(X) = χ(X) − E[χ(X)]. We now give explicit for-
mulas for v∗, and hence for the canonical gradient of E[h(X,Y )], in four
cases: fully nonparametric conditional distribution, with V = V0; parametric
conditional distribution, with V finite-dimensional; and two semiparametric
models, namely linear regression with and without independence of covariate
and error.

1. Nonparametric conditional distribution. If V = V0, then the projec-
tions of h(X,Y ) and Zv∗(X,Y ) onto Ṽ are h(X,Y )−χ(X) and π(X)v∗(X,Y ).
Thus

v∗(X,Y ) =
h(X,Y ) − χ(X)

π(X)
.

Hence, if U = L2,0(G), the canonical gradient of E[h(X,Y )] is

ψnp(X,ZY,Z) = χ(X) − E[χ(X)] +
Z

π(X)
(h(X,Y ) − χ(X)).

For the important special case h(X,Y ) = Y we obtain

ψnp(X,ZY,Z) = E(Y | X) − E[Y ] +
Z

π(X)
(Y − E(Y | X)).

2. Parametric conditional distribution. Let Q(x, dy) = qϑ(x, y) dy,
where ϑ is an m-dimensional parameter. In this case, V will be the span
of the components of the score function �ϑ, the Hellinger derivative of the
parametric model qϑ at ϑ:∫∫ (

q
1/2
ϑ+t(x, y) − q

1/2
ϑ (x, y) − 1

2
t��ϑ(x, y)q1/2

ϑ (x, y)
)2

dy G(dx) = o(t2).

We also assume that E[Z�ϑ(X,Y )�ϑ(X,Y )�] is positive definite. If qϑ is dif-
ferentiable in ϑ, then �ϑ = q̇ϑ/qϑ, where q̇ϑ is the derivative of qϑ with respect
to ϑ. If we set L = �ϑ(X,Y ), then Ṽ = {c�L : c ∈ Rm}. Thus v∗ is of the form
c�∗ L. Since the projections of h(X,Y ) and Zv∗(X,Y ) onto Ṽ are a�L and
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b�L with a = (E[LL�])−1E[Lh(X,Y )] and b = (E[LL�])−1E[ZLL�] c∗, we
obtain c∗ = (E[ZLL�])−1E[Lh(X,Y )]. Thus, if U = L2,0(G), the canonical
gradient of E[h(X,Y )] is

ψp(X,ZY,Z) = χ(X) − E[χ(X)] + Zc�∗ �ϑ(X,Y ).

3. Linear regression with independence. We consider the linear regres-
sion model Y = ϑX + ε with ε and X independent. We assume that ε has an
unknown density f with finite Fisher information J for location and X has
finite and positive variance. We do not assume that ε has mean zero. In this
model, Q(x, dy) = f(y − ϑx) dy. Write F for the distribution function of f .
As shown in Bickel [Bic82],

Ṽ = {αX�(ε) + β(ε) : α ∈ R, β ∈ L2,0(F )}.

Here � denotes the score function �(y) = −f ′(y)/f(y) for location. The space
Ṽ can be written as the orthogonal sum of the spaces Ṽ1 = {αξ : α ∈ R} with

ξ = (X − E[X])�(ε),

and Ṽ2 = {β(ε) : β ∈ L2,0(F )}. The projection of h(X,Y ) onto Ṽ1 is chξ/E[ξ2]
with ch = E[h(X,Y )ξ], and the projection of h(X,Y ) onto Ṽ2 is h(ε)−E[h(ε)]
with h(ε) = E(h(X,Y ) | ε). For b ∈ L2(F ), the projection of Zb(ε) onto Ṽ1

is cξ/E[ξ2] with

c = E[Zb(ε)ξ] = E[Z](E(X|Z = 1) − E[X])E[b(ε)�(ε)],

and the projection of Zb(ε) onto Ṽ2 is E[Z](b(ε) −E[b(ε)]). Let

ξ∗ =
(
X − E(X | Z = 1)

)
�(ε).

Then Zξ∗ is orthogonal to Ṽ2, and its projection onto Ṽ1 is a∗ξ/E[ξ2] with
a∗ = E[Zξ∗ξ] = E[Zξ2

∗ ]. Since

ch = E[h(X,Y )ξ] = E[h(X,Y )ξ∗] + (E(X|Z = 1) − E[X])E[h(X,Y )�(ε)],

it follows that

v∗(X,Y ) =
E[h(X,Y )ξ∗]

E[Zξ2
∗ ]

ξ∗ +
1

E[Z]
(
h(ε) − E[h(ε)]

)
.

Thus, if U = L2,0(G), the canonical gradient of E[h(X,Y )] is

ψI(X,ZY,Z) = χ(X)−E[χ(X)]+Z
(E[h(X,Y )ξ∗]

E[Zξ2
∗ ]

ξ∗+
1

E[Z]
(
h(ε)−E[h(ε)]

))
.

For h(X,Y ) = Y we can use the identity E[ε�(ε)] = 1 to simplify the canonical
gradient to
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ϑ(X − E[X]) +
Z(E[X] − E(X|Z = 1))

E[Zξ2
∗ ]

ξ∗ +
Z(ε− E[ε])

E[Z]
.

4. Linear regression without independence. Now we consider the linear
regression model Y = ϑX+ε with E(ε | X) = 0. We write σ2(X) = E(ε2 | X)
and ρh(X) = E(h(X,Y )ε | X). In this model, we have only the constraint∫
y Q(x, dy) = ϑx on the transition distribution Q. In this case, the space Ṽ

is the sum of the two orthogonal spaces

Ṽ1 = {aσ−2(X)Xε : a ∈ R},
Ṽ2 = {v(X,Y ) : v ∈ V0, E(v(X,Y )ε | X) = 0}.

For details see Müller, Schick and Wefelmeyer [MSW04]. The projection of
h(X,Y ) onto Ṽ1 is ahσ

−2(X)Xε with

ah = E[h(X,Y )σ−2(X)Xε]/E[σ−2(X)X2],

while the projection onto Ṽ2 is h̃2 = h(X,Y ) − χ(X) − E[ρh(X)]σ−2(X)ε.
It is now easy to check that v∗(X,Y ) = a∗σ

−2(X)Xε + h̃2/π(X). Thus, if
U = L2,0(G), the canonical gradient of E[h(X,Y )] is

ψII(X,ZY,Z) = χ(X) − E[χ(X)] +
Z

π(X)
(h(X,Y ) − χ(X))

− Zε

σ2(X)

(ρh(X)
π(X)

− a∗X
)
.

Note that ψII = ψnp − ψ∗
II with

ψ∗
II(X,ZY,Z) =

Zε

σ2(X)

(ρh(X)
π(X)

− a∗X
)
.

3 Efficient estimators

In this section we indicate that the fully imputed estimators are efficient in
the four models discussed at the end of Section 2. Throughout we assume
that we have no structural information on the covariate distribution G.

1. Nonparametric conditional distribution. In this model, Q is com-
pletely unspecified. The usual partially imputed estimators for E[h(X,Y )]
are of the form

Ĥ1 =
1
n

n∑
i=1

(
Zih(Xi, Yi) + (1 − Zi)χ̂(Xi)

)
,
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where χ̂ is a nonparametric estimator for χ of the form

χ̂(Xi) =
n∑

j=1

WijZjh(Xj , Yj)

with weights Wij depending on X1, . . . , Xn, Z1, . . . , Zn only. This includes
kernel-type estimators and linear smoothers. Under appropriate smoothness
conditions on χ and π, and for properly chosen weights Wij , the estimator
Ĥ1 has the stochastic expansion

Ĥ1 =
1
n

n∑
i=1

χ(Xi) +
1
n

n∑
i=1

Zi

π(Xi)
(h(Xi, Yi) − χ(Xi)) + op(n−1/2). (4)

In the case h(X,Y ) = Y , such conditions are given by Cheng [Che94] and
Wang and Rao [WR02]. These authors use weights Wij corresponding to
truncated kernel estimators. Cheng [Che94] also shows that Ĥ1 is asymptoti-
cally equivalent to the fully imputed Ĥ2 = 1

n

∑n
i=1 χ̂(Xi). It follows from (4)

that Ĥ1 and Ĥ2 have influence function ψ = ψnp and are therefore efficient
by Section 2.

2. Parametric conditional distribution. In this model, Q = Qϑ, with ϑ
an m-dimensional parameter. Then

χ(x) = χϑ(x) =
∫

h(x, y)Qϑ(x, dy).

Here we use an estimator ϑ̂ of ϑ and obtain for E[h(X,Y )] the partially and
fully imputed estimators

Ĥ3 =
1
n

n∑
i=1

(
Zih(Xi, Yi) + (1 − Zi)χϑ̂(Xi)

)
and Ĥ4 =

1
n

n∑
i=1

χϑ̂(Xi).

For the following discussion, we assume again Hellinger differentiability of
Qϑ as in Section 2 and write �ϑ for the score function. A natural esti-
mator for ϑ is the conditional maximum likelihood estimator, which solves
1
n

∑n
i=1 Zi�ϑ(Xi, Yi) = 0. Under some additional regularity conditions, this

estimator has the expansion

ϑ̂ = ϑ + I−1
ϑ

1
n

n∑
i=1

Zi�ϑ(Xi, Yi) + op(n−1/2)

with Iϑ = E
[
π(X)�ϑ(X,Y )�ϑ(X,Y )�

]
. One can show that ϑ̂ is efficient

for ϑ = κ(G,Qϑ, π). Moreover, under regularity conditions, for any n1/2-
consistent ϑ̂,
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1
n

n∑
i=1

Ziχϑ̂(Xi) =
1
n

n∑
i=1

Ziχϑ(Xi) + D�
1 (ϑ̂− ϑ) + op(n−1/2),

1
n

n∑
i=1

(1 − Zi)χϑ̂(Xi) =
1
n

n∑
i=1

(1 − Zi)χϑ(Xi) + D�
0 (ϑ̂− ϑ) + op(n−1/2),

where

D1 = E[Zh(X,Y )�ϑ(X,Y )] and D0 = E[(1 − Z)h(X,Y )�ϑ(X,Y )].

Thus, if we use the conditional maximum likelihood estimator for ϑ, we have
the expansions

Ĥ3 =
1
n

n∑
i=1

(
Zih(Xi, Yi) + (1 − Zi)χϑ(Xi) + D�

0 I
−1
ϑ Zi�ϑ(Xi, Yi)

)
+ op(n−1/2),

Ĥ4 =
1
n

n∑
i=1

(
χϑ(Xi) + (D0 + D1)�I−1

ϑ Zi�ϑ(Xi, Yi)
)

+ op(n−1/2).

Since D0 + D1 = E[h(X,Y )�ϑ(X,Y )], we see that Ĥ4 has influence function
ψ = ψp and is therefore efficient. The difference between the estimators is

Ĥ3 − Ĥ4 =
1
n

n∑
i=1

Zi

(
h(Xi, Yi) − χϑ(Xi) −D�

1 I
−1
ϑ �ϑ(Xi, Yi)

)
+ op(n−1/2).

Hence Ĥ3 is asymptotically equivalent to Ĥ4, and therefore also efficient, if
and only if Z

(
h(X,Y )−χϑ(X)−D�

1 I
−1
ϑ �ϑ(X,Y )

)
is zero almost surely. Since

this is usually not the case, the partially imputed estimator Ĥ3 is typically
inefficient.

3. Linear regression with independence. In this model, Q(x, dy) =
Qϑ,f (x, dy) = f(y − ϑx) dy. We assume that f has finite Fisher information
J for location and X has finite and positive variance. Now

χ(x) = χ(x, ϑ, f) =
∫

h(x, ϑx + u)f(u) du.

This suggests the estimator

χ̂(x, ϑ̂) =
1
n

∑n
j=1 Zjh(x, ϑ̂x + Yj − ϑ̂Xj)

Z
,

where Z = 1
n

∑n
j=1 Zj . Then the partially and fully imputed estimators for

E[h(X,Y ] are
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Ĥ5 =
1
n

n∑
i=1

(
Zih(Xi, Yi) + (1 − Zi)χ̂(Xi, ϑ̂)

)
and Ĥ6 =

1
n

n∑
i=1

χ̂(Xi, ϑ̂).

Let

S =
1
n2

n∑
i=1

n∑
j=1

Zj

E[Z]
h(Xi, ϑXi + εj).

Then E[S] = E[h(X,Y )] = κ. By the Hoeffding decomposition,

S = κ +
1
n

n∑
i=1

(
χ(Xi) − κ

)
+

1
n

n∑
j=1

(Zjh(εj)
E[Z]

− κ
)

with h(ε) = E(h(X,Y ) | ε). Using this we obtain

1
n

n∑
i=1

χ̂(Xi, ϑ) =
E[Z]
Z

S = S − Z − E[Z]
E[Z]

κ + op(n−1/2)

=
1
n

n∑
i=1

χ(Xi) +
1
n

n∑
j=1

Zj

E[Z]
(h(εj) − κ) + op(n−1/2).

Under additional assumptions,

Ĥ6 =
1
n2

n∑
i=1

n∑
j=1

Zj

Z
h
(
Xi, ϑXi + εj + (ϑ̂− ϑ)(Xi −Xj)

)
=

1
n2

n∑
i=1

n∑
j=1

Zj

Z
h(Xi, ϑXi + εj) + D(ϑ̂− ϑ) + op(n−1/2)

with
D =

1
E[Z]

E
[
h(X1, X1 + ε2)Z2(X1 −X2)�(ε2)

]
= E

[
h(X,Y )(X − E(X|Z = 1))�(ε)

]
.

In the linear regression model without missing responses, efficient estimators
for ϑ have been constructed by Bickel [Bic82], Koul and Susarla [KS83], and
Schick [Sch87, Sch93]. Their influence function is ξ/E[ξ2] with ξ = (X −
E[X])�(ε). An analogous construction based on the observations (Xi, Yi)
with Zi = 1 yields an estimator for ϑ with influence function Zξ∗/E[Zξ2

∗ ]
with ξ∗ =

(
X − E(X | Z = 1)

)
�(ε). One can show that ϑ̂ is efficient for

ϑ = κ(G,Qϑ,f , π). If we use an estimator ϑ̂ with this influence function, then
Ĥ6 has the stochastic expansion

Ĥ6 =
1
n

n∑
i=1

(
χ(Xi) +

Zi

E[Z]
(h(εi) − κ)

+
D

E[Zξ2
∗ ]
Zi

(
Xi − E(X | Z = 1)

)
�(εi)

)
+ op(n−1/2).
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Thus this estimator has influence function ψ = ψI and is therefore efficient
by Section 2. Note that in general the partially imputed estimator Ĥ5 is
different from Ĥ6 and therefore inefficient. If h(X,Y ) = Y , our estimator
becomes ϑ̂X + 1

n

∑n
i=1 Zi(Yi − ϑ̂Xi)/Z.

4. Linear regression without independence. In this model, Q satisfies
the constraint

∫
y Q(x, dy) = ϑx. We estimate ϑ by a weighted least squares

estimator based on (Xi, Yi) with Zi = 1,

ϑ̂ =
∑n

i=1 Ziσ̂
−2(Xi)XiYi∑n

i=1 Ziσ̂−2(Xi)X2
i

,

with σ̂2(x) an estimator of σ2(x) = E(ε2 | X = x). Such estimators have
been studied without missing responses by Carroll [Car82], Müller and Stadt-
müller [MS87], Robinson [Rob87], and Schick [Sch87]. In view of their results,
we get under appropriate conditions that

ϑ̂ = ϑ +
1
n

∑n
i=1 Ziσ

−2(Xi)Xiεi

E[Zσ−2(X)X2]
+ op(n−1/2).

This estimator can be shown to be efficient for ϑ.
A possible estimator for χ is the nonparametric estimator χ̂ introduced

above for the nonparametric model. Here, however, we have the constraint∫
y Q(x, dy) = ϑx and use the estimator

χ̂II(Xi) =
n∑

i=1

WijZjh(Xj , Yj) − ĉ

with

ĉ =
1
n

n∑
i=1

Ziρ̂h(Xi)
π̂(Xi)σ̂2(Xi)

(Yi − ϑ̂Xi),

where π̂(x) and ρ̂h(x) are nonparametric estimators of π(x) and ρh(x) =
E(h(X,Y )ε | X = x). Note that ĉ is of order n−1/2. Hence χ̂II(x) is asymp-
totically equivalent to the nonparametric estimator χ̂. Nevertheless, it leads
to a better estimator for E[h(X,Y )]. Under appropriate assumptions, ĉ has
the expansion

ĉ =
1
n

n∑
i=1

Ziρh(Xi)
π(Xi)σ2(Xi)

εi − d(ϑ̂− ϑ) + op(n−1/2)

with d = E[Zρh(X)X/π(X)σ2(X)] = E[h(X,Y )σ−2(X)Xε]. Using the ex-
pansion for the weighted least squares estimator ϑ̂, we see that

ĉ =
1
n

n∑
i=1

Ziεi

σ2(Xi)

(ρh(Xi)
π(Xi)

− dXi

E[Zσ−2(X)X2]

)
+ op(n−1/2)

=
1
n

n∑
i=1

ψ∗
II(Xi, ZiYi, Zi) + op(n−1/2).
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Using this and the stochastic expansion of the nonparametric estimator χ̂, we
obtain that the estimators Ĥ1− ĉ and Ĥ2− ĉ have influence functions ψ = ψII

and are therefore efficient by Section 2. Of course, Ĥ2 − ĉ is the fully imputed
estimator based on χ̂II . Both Ĥ1 − ĉ and Ĥ2 − ĉ are better than the partially
imputed estimators Ĥ1 based on the estimator χ̂, and Ĥ1 − (1 − Z)ĉ based
on the estimator χ̂II .

Simpler estimators are possible for certain functions h, such as h(x, y) = y,
which is the function usually treated in the literature. Since E(Y | X) = ϑX,
we can use the fully imputed estimator ϑ̂X, with X = 1

n

∑n
i=1 Xi. As smooth

function of the two efficient estimators ϑ̂ and X, the estimator ϑ̂X is efficient
for E(Y | X). Matloff [Mat81] has recommended an estimator of this form,
but with a simpler, in general inefficient, estimator for ϑ.
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Summary. Models are developed for decision making where a system’s evolution
is described by a general stochastic process. The general structure of the problem
includes many statistical tests such as treatment comparisons, regression models and
likelihood ratio tests. The process is monitored and decisions are made in response to
the observed system state. The decision process is simplified by using an associated
process as well as the underlying state as decision variables; in many situations a
functional of the underlying process defines a statistic. The approach is motivated by
the idea of a performance metric based on the system state. The bivariate approach
allows a wide class of models to be considered and can incorporate long term memory
within a simple probability structure. The decisions in this study are based on an
average cost and a life-cycle cost. The approach can deal with decisions that entail
restarting the process as new or continuing the process after an intervention which
changes the system state. The resulting optimization problem solved either by a
renewal-reward argument or by a dynamic programming formulation.

Key words: Wiener process; Lévy process; regenerative process; renewal-reward;
dynamic programming; statistical testing; health monitoring

1 Introduction

We consider the problem of inspecting and controlling a system. The system
can be physiological, medical, technological, or an experiment such a clinical
trial. The system state is described by a stochastic process Xt. The argu-
ments are developed with few restrictions on the process. The arguments
allow systems with monotone or non-monotone trajectories to be analyzed.
The trajectories can be status measurements from clinical trials where the de-
cision may be to stop the trial, choose between competing treatments [Bet98],
or to change the treatment regimes. For an individual whose health status
is being monitored the decision may be to make an intervention or to adjust
the treatment regime. Typically if a status indicator crosses a critical level
an intervention will be required. The extent of the intervention determines
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the future development of the system. We address the problem with two
tools, firstly, the standard method of seeking the regeneration points of the
stochastic process, secondly, by considering an associated stochastic real val-
ued process. We thus begin with the underlying process Xt and work with a
bivariate process (Xt, Yt).

The process Yt is generally constructed by applying a functional to the
basic process, Yt = A(Xt), examples are the construction of a statistic or
making a measurement. Within the models Yt can also describe a covariate
process, an imperfectly observed version of Xt, or a associated process used as
a surrogate. The advantages of the approach are that decisions can be based
the entry of the pair (Xt, Yt) into a critical region, or on the associated process
Yt alone. The model structure allows Xt to be unobservable. Depending on
the context of the problem, either of Xt or Yt can be integrated out of the
final results to give any desired marginal distribution.

The aim of the article is to show how optimal policies for a system de-
scribed by the stochastic process Xt. Initially we make no strong assump-
tions about the process, only that it has the properties required to allow the
necessary computations. The properties of the process are made explicit in
particular examples. Examples arise in many ways, from the construction of
statistics, for example to assist treatment comparisons [Bet98]; the consider-
ation of marker processes in HIV infected patients [JK96]; in risk analysis for
engineering projects [Noo96]; fatigue crack growth [Sob87, New91, New98].
The approach in this paper differs through the use of the bivariate process
(Xt, Yt) motivated by an extension of the methodology in an earlier paper
[New04]. The process can be monotone where the state is the level of a drug
in the blood, whereas a measurement such as heart rate or blood pressure will
be non-monotone. A simple example of the use of the maximum process is
provided by temperature or blood pressure monitoring. It is a compromise
between continuous monitoring and monitoring only at certain times. The
associated process is frequently defined by a functional of the underlying pro-
cess, namely Yt = A(Xt). Decision making is simplified if the process Yt has
monotone sample paths; the map from Xt to Yt may be in two stages, the first
an aggregation followed by taking the maximum of the aggregated process to
guarantee monotonicity. Natural examples of an associated process are:

(a) The maximum process, Yt = sup
0≤s≤t

Xs;

(b) in a multivariate process Yt = ‖Xt‖;
(c) an accumulation process Yt =

∫
0≤s≤t

Xsds;

(d) a usage measure Yt =
∫

0≤s≤t

‖Xs‖ds;

(e) errors in measurement, a distribution FYt|Xt
describes the dependence of

the observed process on the true process;
(f) covariate processes, a distribution FXt |Yt

describes the dependence of Xt

on covariate Yt.
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When the underlying process Xt is a Wiener process (a) above is well known,
(b) is a Bessel process, and (c) is the Kolmogorov diffusion [McK63] which
arises in a regression model [GJW99].

2 The Structure of the Model

The bivariate process (Xt, Yt) is defined on a product space Ω × R, the state
transitions are described by a transition density fx,y

t (u,w) where

fx,y
t (u,w)dudw = vecP [Xt ∈ (u, u + du), Yt ∈ (w,w + dw) |X0 = x, Y0 = y ] .

The development of this transition density is the key to adapting the general
approach to particular cases.

The system stops when the basic process Xt enters a critical set, that is the
system continues if Xt ∈ G and stops at time t, the time of first entry into Gc;
t = inf {t ≥ 0 |Xt ∈ Gc}. By using the bivariate model more possibilities are
available. The times at which the system stops are defined by the excursions of
the bivariate process(Xt, Yt) ∈ Ω× R. Decisions can be made by partitioning
the state space. For example define the partitions Ω = A0 ∪{∪i=1..mAj}∪A�

and R = B0∪{∪j=1..nBi}∪B� where A0 and B0 indicate perfect condition and
A� and B� are critical sets. Inspection reveals the system state as (Xt, Yt) ∈
Ai×Bj and this determines the action. With each action there is an associated
cost. The cost can represent a true cost or another measure of the benefit or
harm incurred as a result of the chosen action.

3 Inspection Policies

The decision maker inspects the system according to a policy Π. The policy is
a list of inspection epochs Π = {τ1, τ2, . . . , τn} and we assume for the moment
that inspection is perfect. The decision chooses an action determined by the
system state (Xt, Yt) which may change the system state. The actions are
assumed to be instantaneous. We consider two cases, a renewal approach
where the system is returned to its original state at each intervention, and
one where the intervention returns to system to an arbitrary state [SZ91,
SZ92]. In the renewal approach if the revealed state on inspection, (Xt, Yt),
falls in an interval Ai ×Bj , the system is completely restored to the original
state with cost Ci,j . In the context of this chapter the renewal approach
corresponds to changing, starting, or stopping a treatment and restoring the
system to its initial state; the restoration to an arbitrary state corresponds to
bringing the system to some state between the current state and the initial
state. The system found with state (Xt− , Yt−) = (x, y) is restored to the
state (Xt+ , Yt+) = (x′, y′) with (x′, y′) = D(x, y). The function D describes
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the decision maker’s action. Usually the new state lies somewhere between
the original state and the present state so that 0 ≤ |x′| ≤ |x|. In most cases
y′ = 0 because the decision variable will be reset; in the case when Yt is the
maximum y′ = x′. Clearly x′ = 0 corresponds to restoration to the initial
state and x′ = x implies no change. The planned inspection period ends
normally with the planned inspection or is terminated by the entry into a
critical set.

The hitting time of the critical set, starting from (Xt, Yt) = (x, y), is T x,y.
Candidates for the hitting times are:

T x,y
Ω×R

= inf {t | (Xt, Yt) ∈ A� ×B�};

T x,y
R

= inf {t |Yt ∈ B�};

T x,y
Ω = inf {t |Xt ∈ A�}.

where A� and B� are critical sets. We shall write the hitting distribution
starting from (x, y) as Gx,y(t) and assume it possesses a density gx,y(t).

The state probabilities are

px,y
i,j = vecP [(Xt, Yt) ∈ Ai ×Bj ] = vecE

[
vec1{(Xt,Yt)∈Ai×Bj}

]
=
∫
Ai

∫
Bj

fx,y
t (u,w)dudv

and the hitting time distribution

px,y
F = Gx,y(t) .

4 The Inspection Cycle

The inspection and actions are assumed to occur at the beginning of each
interval. This choice allows linking of the chain of decisions required in the
dynamic programming solutions later.

4.1 System Renewal

The policies are determined by the intervals between inspections. We consider
first the the simplest case in which after inspection or entry into a critical set
the system is restored to the original state. Consider a single cycle where the
policy is the time to the next inspection, τ . The decision makers actions are:

1. do nothing if the system is in a “good" state, (Xt, Yt) ∈ A0 ×B0;
2. the system state is Ai×Bj , the probability of this state is pi,j , restoration

to the initial state costs Ci,j ;
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3. the system enters the critical state with probability px,y
F and is restored

with cost CF .

The expected cost of the planned and unplanned actions is

cτ (x, y) =
∑
i,j

Ci,jp
x,y
i,j + CF p

x,y
F .

Considering the whole cycle, if the total cost starting in state (x, y) is V x,y
τ

then

vecE [V x,y
τ ] = vecE

[
V x,y

τ vec1{Xt,Yt)∈A0×B0}
]
+ cτ (x, y)

where the term vecE
[
V x,y

τ vec1{Xt,Yt)∈A0×B0}
]
arises because the system state

is left unchanged when the system is found in the “good" state A0 × B0.
Writing vτ (x, y) = vecE [V x,y

τ ] it is clear that

vτ (x, y) = cτ (x, y) +
∫
A0

∫
B0

vτ (u,w)fx,y
τ (u,w)dudw .

4.2 Arbitrary Restoration

The state space is subdivided more simply, there are now only two states,
“non-critical" and “critical" and the decision maker acts to change the state
to D(x, y) on finding the system in state (x, y), D(x, y) #→ (x′, y′). The cost
of this repair is c(D(x, y)).

Using a similar argument to above, it is clear that

vτ (x, y) =c(D(x, y)) + {vτ (0, 0) + CF } pD(x,y)
F · · ·

· · · +
∫
A0

∫
B0

vτ (u,w)fD(x,y)
τ (u,w)dudw

where vτ (0, 0) arises from the restoration to the initial state.

5 Optimal Policies

The interval costs and the expected length of an interval can be used to
construct an optimal average cost solution for a fixed maintenance interval
with policy Π = {kτ |k = 1, 2, . . . , n}.
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5.1 Average Cost Criterion

If we take a fixed policy with Π = {kτ |k = 1, 2, . . . , n} the sequence of entries
into the critical set defines an embedded renewal process and the average cost
per cycle can be obtained using the renewal-reward theorem. For this we
need the expected length of an interval. For perfect restoration the expected
interval length satisfies

�τ (x, y) =

τ∫
0

[1 −Gx,y(s)] ds +
∫
A0

∫
B0

�τ (u,w)fx,y
τ (u,w)dudw

=

τ∫
0

sgx,y(s)ds +
∫
A0

∫
B0

�τ (u,w)fx,y
τ (u,w)dudw

and for partial restoration

�τ (x, y) =

τ∫
0

[
1 −GD(x,y)(s)

]
ds +

∫
A0

∫
B0

�τ (u,w)fD(x,y)
τ (u,w)dudw

�τ (x, y) =

τ∫
0

sgD(x,y)(s)ds +
∫
A0

∫
B0

�τ (u,w)fD(x,y)
τ (u,w)dudw

where 1 −GD(x,y)(s) is the interval survival function.
On applying the renewal-reward theorem [Bat00], the average cost per

unit time is

C(x, τ) =
vτ (x, y)
�τ (x, y)

.

The optimum policy for a system starting in state X0 = x can then be
determined as

τ� = argmin
τ

{C(x, τ)} .

5.2 Total Cost Criterion

If the inspection intervals are allowed to change with the evolution of the
system state, a non-periodic policy Π = {τ1, τ2, . . . , τn} can be defined. The
construction of the interval cost functions with the inspection and action at
the beginning, makes the step from one interval to the next straightforward.
With this construction the function vτ (x, y) is the value function for a dynamic
programming problem [Bat00]. The optimality equation for the perfect repair
version is
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vτ (x, y) = inf
τ>0

⎧⎨⎩cτ (x, y) +
∫
A0

∫
B0

vτ (u,w)fx,y
τ (u,w)dudw

⎫⎬⎭ .

For partial restoration the programming problem becomes

vτ (x, y) = inf
τ>0

⎧⎪⎪⎨⎪⎪⎩
c(D(x, y)) + {vτ (0, 0) + CF } pD(x,y)

F . . .

. . . +
∫

A0

∫
B0

vτ (u,w)fD(x,y)
τ (u,w)du

⎫⎪⎪⎬⎪⎪⎭ .

If costs are discounted with rate r the value function is modified and the
dynamic programming problem becomes

vτ (x, y) = inf
τ>0

⎧⎪⎪⎨⎪⎪⎩
e−rτ c(D(x, y)) + {vτ (0, 0) + CF } pD(x,y)

r,F . . .

. . . +
∫

A0

∫
B0

e−ru vτ (u,w)fD(x,y)
τ (u,w) dudw

⎫⎪⎪⎬⎪⎪⎭
where

pu,w
r,F =

∫
B0

e−rsgu,w(s)ds .

5.3 Obtaining Solutions

The optimization problems above contain integral equations of the Volterra
type so that discretization of the state space and application of quadrature
rules produce equivalent matrix equations with the general form

vecv = vecc + vecMv

which are readily solved numerically as long as care is taken in dealing with
singularities [PTVF92]. The dynamic programming problems translate in the
same way and allow a policy improvement algorithm [Bat00] to be applied to
develop the optimal policy. Convergence proofs for the algorithms are given
by Dagg in his thesis [Dag00].

6 Lévy Processes as Degradation Models

Many degradation models are based on the concept of accumulated damage.
Noortwijk [Noo96] points out that in systems subject to shocks, the order
in which the damage (i.e. the shocks) occurs is often immaterial so that
the random deterioration incurred in equal time intervals forms a set of ex-
changeable random variables [BS92]. This also implies that the distribution
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of the degradation incurred is independent of the time scale, i.e. the process
has stationary increments. Exchangeable and stationary increments are sim-
ilar to the stronger properties of stationary and independent increments of
Lévy processes [Bre68].

The restriction to stationary increments is outweighed by the analytical
advantages of using Lévy processes. Amongst Lévy processes are compound
Poisson process, the Wiener process and the gamma process, shot noise pro-
cess, for which many results are readily available. The Lévy-Khinchine decom-
position [Bre68, Ch 9,14] expresses any Lévy process as the sum of a Wiener
process and a jump process with the consequence that any degradation model
based on Lévy process is either a Wiener process, a jump process or the sum of
these two processes. The Wiener process is the only Lévy process with contin-
uous sample paths. Thus by insisting that a system whose degradation is con-
tinuous is modelled by a Lévy process with continuous sample paths restricts
the choice to the Wiener process. Similarly, insisting on monotonicity allows
only the jump processes within the class of Lévy processes [RW94]. Lehmann
[Leh04, Leh01] develops a bivariate approach based on the Lévy-Khinchine
decomposition. Diffusions also arise naturally [Sob87, New91, New98] from
the stochastic analogue of the simplest growth laws

x′(t) = αx(t)λ+1 ,

namely,

dXt = αXλ+1
t dt + βdBt .

7 Examples

The models depend on obtaining the joint transition density fu,w
t (x, y) of the

process starting from X0 = u and Y0 = v. The examples give some instances
of the way in which they can be derived.

7.1 Maximum Process

An illustration of the bivariate process is obtained by taking a basic process
Xt and constructing the bivariate process (Xt, Yt) with the maximum process
Yt = sup{Xs | 0 ≤ s ≤ t}. A non-monotonic process with continuous sample
paths is defined by the Wiener process Xt = σBt+µt with drift µ and variance
parameter σ and where Bt is a standard Brownian motion. The state space
is Ω = R and is divided into intervals at points −∞ < s1 < . . . , sj , . . . , sn

so that Yt ≥ sn or Xt ≥ sn indicate entry into the critical set. The required
densities and distributions can be deduced from results in [RW94]; the joint
density of the process and its maximum with X0 = u is
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fu
τ (x, y) =

2 (2y − x− u)√
2πσ6τ3

exp

{
− (x− u− µ τ)2

2σ2τ

}
exp
{
−2 (y − u) (y − x)

σ2τ

}
.

The marginal distribution of Yτ is

Fu
τ (y) = Φ

(
y − u− µ τ

σ
√
τ

)
− exp

{
2µ(y − u)

σ2

}
Φ

(
−y + u− µ τ

σ
√
τ

)
which gives an inverse Gaussian distribution [CF89] as the hitting time dis-
tribution.

7.2 The Integrated Process

When the underlying process Xt is a Wiener the two dimensional Kolmogorov
diffusion (Xt, Yt) arises on setting Yt =

∫
0≤s≤t

Xsds. For a Brownian motion
Bt the transition density of

(
Bt,
∫
Bsds

)
starting from (u,w) is [McK63]

fu,w
t (x, y, t) =

√
3

πt2
exp
(
−6

(v − y − tu)2

t3
+ 6

(x− v)(y − v − tu)
t2

− 2
(u− y)2

t

)
.

The linearity of the integral shows that Yt is also Gaussian and its moments
are easily obtained. When the basic process Xt has drift µ and volatility σ
the derived moments are

vecE [Yt] = 1
2µt

2 vecV [Yt] = 1
3σ

2t3

allowing the joint density to be written

f0,0
t (x, y) =

√
3

πσ2t2
exp
(
−6

(y − 1
2µt

2)2

σ2t3
+ 6

(x− µt)(y − 1
2µt

2)
σ2t2

− 2
(x− µt)2

σ2t

)
.

7.3 The Absolute Value

For the one dimensional Wiener process, Xt, the distribution of the absolute
value of the process, Yt = |Xt|, is relatively easy and mimics the arguments
for the maximum value. The distribution is clearly

FYt
(y) = P [|X| ≤ y] = P [−y ≤ X ≤ y]

= Φ
(
y − µt

σ
√
t

)
− Φ

(
−y − µt

σ
√
t

)
.

The moments are

vecE [Yt, ] = 2σ
√
tϕ

(
µ
√
t

σ

)
+ µt

{
2Φ
(
µ
√
t

σ

)
− 1
}

,

vecE
[
Y 2

t

]
= µ2t2 + σ2t .
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7.4 Bessel Processes

Betensky [Bet98] uses Bessel processes in the comparison of treatment
regimes. The Bessel process can be used directly, but in many cases the
squared Bessel process allows simpler decision making and produces equiva-
lent decisions. The squared Bessel processes are handled effectively through
the well known properties of chi-squared and Wishart distributions.

The simplest approach is illustrated by the norm functional Yt = ‖Xt‖
which generates a Bessel process from a multivariate Wiener process. The
basic process is based on an N -dimensional Brownian motion,

vecBt = [B1(t), B1(t), . . . , Bδ(t)] .

The process Yt = ||vecBt|| or more explicitly

Yt =

[
n∑

i=1

B2
i (t)

] 1
2

is a Bessel process. For simplicity, the squared Bessel process

Zt = Y 2
t = ‖vecBt‖2 =

n∑
i=1

B2
i (t)

is also used. The excursions of the two processes produce equivalent decision
rules, and the second is simpler to handle. The Bessel process is a diffusion
[Oks00] and Zt, a squared Bessel process denoted BESQδ

x0
, [RY99], is a

solution of

Zt = z0 + δt + 2
∫ t

0

√
|Zs|dBs

with δ ≥ 0 and z0 ≥ 0. If δ ≥ 2, the process never reaches 0 for t > 0.
The squared Bessel process, is the square of the Euclidean norm of a

δ-dimensional Brownian motion. Because the distributions of the Bi(t) are
normal, the probability density function is a chi-squared distribution

if z0 = 0 and δ > 0 the density is the chi-square

fδ
t (0, z) =

z
δ
2−1

(2t)
δ
2 Γ( δ

2 )
e−

z
2t vec1{z>0}

with δ degrees of freedom.
if z0 �= 0 and δ > 0, the density is a non-central chisquare written in terms

of modified Bessel functions of the first kind [AS72, result 9.6.7 ]

fδ
t (z0, z) =

1
2t

(
z

z0

)ν
2
e−

z0+z
2t Iν

(√
z0z

t

)
vec1{z>0}
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The model is more realistic if the Brownian motion is replaced by a Wiener
process with drift

vecW t = [W1(t),W2(t), . . . ,Wδ(t)] , Wi(t) = µit + σiBt

The distribution of vecW t is N(vecM t,Σt) where vecM t is the vector of means
and Σt is the covariance matrix; St = (vecW t−vecM t)T(vecW t−vecM t) thus
has a Wishart distribution with parameters δ/2 and (1/2)Σt. The distribution
of the “non-standard" squared Bessel process

Y δ
t =

δ∑
i=1

W 2
i (t) .

can thus be obtained.

7.5 Models for Imperfect Inspection

Imperfect inspection provides another example of associated processes. In
this case Yt is simply the observed level of degradation subject to error. The
simplest model of imperfect inspection is when the system degradation Xt

is observable, but with error. here a simple independent additive error is
assumed

Yt = Xt + εt

where εt represents the error.
The increments and the error are distributed

Xtj
−Xti

∼ G(xj − xi) ,

and
εt ∼ H(ε) ∀ t .

The distributions G and H have densities g and h, and assume that h is
symmetrical about zero.

Since Yt −Xt = εt it is clear that

fYt|Xt
(y|x) = h(y − x)

and by symmetry
fXt|Yt

(x|y) = h(y − x) .

From the definition of the process

fXt|X0(x|u) = G(x− u) .

These results combine to give the joint distribution of the future observed
and true values of the degradation
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fYt,Xt|X0(y, x|u) = fYt|X0,Xt
(y|u, x)fXt|X0(x|u) = fYt|Xt

(y|x)fXt|X0(x|u)
= h(y − x)g(x− u) .

To be specific assume here that the εt ∼ N(0, σ2) and that underlying
process is the Gamma process with increments [Abd75]

Xtj −Xti ∼ Ga(α(tj − ti), β ) .

Plugging in the densities yields the joint density of the observed and true
level of degradation, conditional on the true initial level of degradation,

fu
τ (y, x) =

1
σ
√

2π
exp
{
− 1

2σ2
(y − x)2

}
βα τ (x− u)α τ−1 exp { −β(x− u)}

Γ(α τ)
.

It follows from the monotonicity of the gamma process that the distri-
bution of the hitting time of the critical set from an initial degradation u
is

px
F = P (Tu

c < h) =
Γ(αh, β(c− u))

Γ(αh)
.

8 Summary

The models proposed have developed a unified structure for decision making
where the degradation is described by a process Xt has an associated process
Yt that is given or is constructed. The models require a bivariate transition
density and some simple examples have been given. The formulation of the
models depends on identifying the instants of perfect repair or replacement
where the probability laws are reset to time zero. The construction of the
intervals also allows the sequential version of the models to be formulated as
a dynamic programming problem.
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Summary. We focus on the two group comparison when subjects of the sample
may experience multiple distinct events, possibly censored. Because of the corre-
lation arising between failure times, the sum of the marginal test statistics is not
accurate. We propose a multivariate version of weighted logrank tests derived from
the marginal logrank statistics, and we study their asymptotic distribution under
null hypothesis; we construct a consistent estimator of their covariance using martin-
gales properties. We present a simulation study and an application of this method
to a study aimed to prove the association between retinopathy and diabetes.

Key words: Censoring; Correlated failure times; Martingales; Weighted logrank
test statistics

1 Introduction and notations

It is often of high interest to study simultaneously the times to several events;
for example, in breast cancer, one can be interested in studying the time
until a tumor appears for both breasts, and in this case, the times to failure
for a female patient are correlated. Suppose that the sample of size n is
composed of two groups, A and B, with respective sizes nA and nB , and
that each subject may experience K > 1 events, possibly censored. For an
easier understanding, let K = 2, but generalization to K > 2 is immediate.
For k = 1, 2 and j = A,B, let Λj

k be the cumulative hazard function for
event k in group j. The null hypothesis

{
ΛA

k = ΛB
k

}
can be tested with rank

tests when there is no censoring, or with weighted logrank statistics in the
censored case ([GEH65]; [MAN66]; [COX72]; [PETO72]; [PRE78]; [HF82]).
But these test statistics can not be used if we are interested in testing H0 :{
ΛA

1 = ΛB
1 , ΛA

2 = ΛB
2

}
because of the dependence between the failure times.

In 1984 Wei, L. J. and Lachin, J. M. [WL84] proposed a test statistic of H0

based on the marginal weighted logrank statistics, say LRk, for k = 1, 2; they
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proved that the vector (LR1, LR2)
′ converges in distribution under H0 to a

normal law, with null expectation and with a variance covariance matrix for
which they constructed a consistent estimator. But their simulations study
showed a rather high first type error rate. In 1987, Pocock [PGT87] developed
a family of tests for treatment comparison with multiple endpoints, including
failure times, in this latter case using Wei and Lachin covariance estimator
found in [WL84]. Then Wei, L. J., Lin, D. Y. and Weissfeld, L. [WLW89]
extended in 1989 this marginal approach to construct proportional hazards
model for multiple events, their method allowing multiple hypotheses testing
on regression parameter estimates with Wald test statistics.
We aimed to propose an improvement of weighted logrank test statistics for
multiple events, by constructing a consistent estimator of the variance co-
variance matrix of (LR1, LR2)

′ using martingales properties. We study the
asymptotic distribution of the vector (LR1, LR2)

′ under H0; then we pro-
duce the results of a simulations study performed to compare the observed
first type error rate of our test statistic to those of [WL84] and [WLW89].
The last section reports the application of our method to data from a clinical
trial studying efficacy of laser treatment on retinopathy depending on type of
diabetes (juvenile or adult).

In group j (j = A,B), let (T1ji, T2ji) be the times to failure for subject i,
independent and identically distributed for i = 1, ..., nj with joint survival
function F

j
where F

j
(x1, x2) = Pr {T1ji ≥ x1, T2ji ≥ x2}, and with density

f j . For k and j fixed, we also suppose the random variables Tkji indepen-
dent and identically distributed, with marginal survival function F

j

k and with
cumulative hazard function Λj

k.
Let (C1ji, C2ji) be the censoring times, independent of the failure times
(T1ji, T2ji), independent and identically distributed with joint survival func-
tion G and with marginal survival function Gk equal in both groups A and
B.
Then, for subject i, we only observe (X1ji, X2ji, δ1ji, δ2ji) where for k = 1, 2
Xkji = (Tkji ∧ Ckji) and δkji = I{Tkji < Ckji}.

Let

Ykji(x) = I{Xkji ≥ x},
Nkji(x) = I{Tkji < Ckji, Tkji ≤ x},

and
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Y kj(x) =
nj∑
i=1

Ykji(x),

Y k(x) = Y kA(x) + Y kB(x),

Nkj(x) =
nj∑
i=1

Nkji(x),

Nk(x) = NkA(x) + NkB(x).

The maximum follow-up time is τ < ∞, such that Y kA(τ) > 0, Y kB(τ) > 0.

The means n−1
A Y kA, n−1

B Y kB and n−1Y k converge uniformly to ykA = F
A

k Gk,
ykB = F

B

k Gk and yk = ρAykA +ρBykB respectively, where ρA and ρB are the
limits of nA/n and nB/n.

For k = 1, 2, consider the weighted logrank test statistic for event k

LRk = n−1/2

∫ τ

0

Wk(u)
Y kAY kB

Y k

(u)
{
dNkA

Y kA

− dNkB

Y kB

}
(u), (1)

where Wk is a weight function that converges uniformly to a function wk on
[0, τ ] (for example Wk constant and equals to 1 represents the logrank test,
and Wk(x) = Y k(x) the Gehan test statistic).

2 Asymptotic distribution of (LR1, LR2)
′ under H0 in a

copula model

In this section, we assume that the joint survival function of the vari-
ables {(T1ji, T2ji) , i = 1, ..., nj} is formulated by a copula model, that is
F

j
(x1, x2) = Cα(F

j

1(x1), F
j

2(x2)) for any (x1, x2) ∈ [0, τ ]2.
The null hypothesis H0 we wish to test is equality in both groups of the
marginal survival distributions, that is H0 :

{
ΛA

1 = ΛB
1 = Λ1, ΛA

2 = ΛB
2 = Λ2

on [0, τ ]}.
Then, under H0, the {Tkji, i = 1, ..., nj} have marginal survival function F k

and cumulative hazard function Λk for k = 1, 2, and the couples {(T1ji, T2ji) ,
i = 1, ..., nj} have joint survival function F and density f .

We introduce the following martingales, for k = 1, 2, j = A,B and i =
1, ..., nj :
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Mkji(x) = Nkji(x) −
∫ x

0

Ykji(u)dΛk(u),

Mkj(x) =
nj∑
i=1

Mkji(x),

Mk(x) = MkA(x) + MkB(x).

Under H0, (1) is equal to

LRk = n−1/2

∫ τ

0

Wk(u)
{
Y kB

Y k

dMkA − Y kA

Y k

dMkB

}
(u), (2)

and the asymptotic distribution of the vector (LR1, LR2)
′ will be derived from

the asymptotic properties of the martingales vector (n−1/2
A M1A, n

−1/2
B M1B ,

n
−1/2
A M2A, n

−1/2
B M2B)′.

2.1 Preliminary results for the martingales under H0

Rebolledo’s theorem ensures the convergence of the vector (n−1/2
A M1A,

n
−1/2
B M1B , n

−1/2
A M2A, n

−1/2
B M2B)′ to a Gaussian process (m1A,m1B ,m2A,

m2B)′, with null expectation and with variances vkj(x) where

vkj(x) = lim
nj→∞

E
{
n−1

j M
2

kj(x)
}

= lim
nj→∞

E

{
n−1

j

∫ x

0

Y kj(u)dΛk(u)
}

=
∫ x

0

ykj(u)dΛk(u).

The covariance between mkA and mkB is null because subjects in group A
are independent of those in group B. But we have to express the covariance
between m1j and m2j for j = A,B. Let

v12j(x1, x2) = E {m1j(x1)m2j(x2)} .

By definition,

v12j(x1, x2) = lim
nj→∞

E
{
n−1

j M1j(x1)M2j(x2)
}

=
∫ x1

0

∫ x2

0

lim
nj→∞

E

{
n−1

j

nj∑
i=1

dM1ji(u)dM2ji(v)

}

=
∫ x1

0

∫ x2

0

E {dM1ji(u)dM2ji(v)} .
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A development of dM1ji(u)dM2ji(v) shows that E {dM1ji(u)dM2ji(v)} is
equal to

E {dN1ji(u)dN2ji(v)} − dΛ1(u)E {Y1ji(u)dN2ji(v)}
−dΛ2(v)E {Y2ji(v)dN1ji(u)} + dΛ1(u)dΛ2(v)E {Y1ji(u)Y2ji(v)} .

The first term is

Pr {T1ji ∈ [u, u + du], T2ji ∈ [v, v + dv], C1ji > T1ji, C2ji > T2ji} ,
that is equal to f(u, v)G(u, v)dudv.

The second term is

−dΛ1(u)Pr {T1ji ≥ u,C1ji ≥ u, T2ji ∈ [v, v + dv], C2ji > T2ji}
that equals G(u, v)F (u, dv)dΛ1(u), and symmetrically the third term equals
G(u, v)F (du, v)dΛ2(v).

The last term is simply G(u, v)dΛ1(u)dΛ2(v)F (u, v).

Finally,

E {dM1ji(u)dM2ji(v)} = G(u, v) × (3){
f(u, v)dudv + dΛ1(u)F (u, dv)
+dΛ2(v)F (du, v) + dΛ1(u)dΛ2(v)F (u, v)

}
.

Let π(u, v) = F (u, v)G(u, v) = E {Y1ji(u)Y2ji(v)}. Then (3) can be written
as

E {Y1ji(u)Y2ji(v)} ×
{

f(u,v)G(u,v)dudv
π(u,v) + dΛ1(u)F (u,dv)G(u,v)

π(u,v)

+dΛ2(v)
F (du,v)G(u,v)

π(u,v) + dΛ1(u)dΛ2(v)

}
,

that allows to establish a consistent estimator of each fraction in the above
expression. The first numerator can be consistently estimated by

n−1
B∑

j=A

nj∑
i=1

dN1ji(u)dN2ji(v);

an estimator of the second one is

−n−1
B∑

j=A

nj∑
i=1

Y1ji(u)dN2ji(v),

and symmetrically F (du, v)G(u, v) has for consistent estimator

−n−1
B∑

j=A

nj∑
i=1

Y2ji(v)dN1ji(u);
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last, the denominator can be estimated by

n−1
B∑

j=A

nj∑
i=1

Y1ji(u)Y2ji(v) = n−1r(u, v).

Finally, noticing that dM1ji(u)dM2ji(v) is null if subject i is not at risk in u
for event 1 and in v for event 2, a consistent estimator of (3) is

Ê {dM1ji(u)dM2ji(v)}

=
Y1ji(u)Y2ji(v)

r(u, v)

B∑
j=A

nj∑
l=1

{
dN1jl(u)dN2jl(v) − dΛ̂1(u)Y1jl(u)dN2jl(v)
−dΛ̂2(v)Y2jl(v)dN1jl(u) + dΛ̂1(u)dΛ̂2(v)r(u, v)

}
,

with Λ̂k the Nelson-Aalen estimate ([NEL69], [AAL78]) of the common cu-
mulative hazard function for event k, k = 1, 2:

Λ̂k(x) =
∫ x

0

dNk(u)
Y k(u)

.

Introducing the martingale residuals

M̂kjl(x) = Nkjl(x) −
∫ x

0

Ykjl(u)dΛ̂k(u), (4)

the above estimator is simply

Ê {dM1ji(u)dM2ji(v)} =
Y1ji(u)Y2ji(v)

r(u, v)

B∑
j=A

nj∑
l=1

dM̂1jl(u)dM̂2jl(v).

Consequently, an appealing estimator of v12j(du, dv) is

v̂12j(du, dv) = n−1
j

nj∑
i=1

Ê {dM1ji(u)dM2ji(v)} (5)

= n−1
j

rj(u, v)
r(u, v)

B∑
j=A

nj∑
l=1

dM̂1jl(u)dM̂2jl(v),

where

rj(u, v) =
nj∑
i=1

Y1ji(u)Y2ji(v).



384 C. Pinçon and O. Pons

2.2 Asymptotic distribution of (LR1, LR2)
′ under H0

The above results will help us to establish the asymptotic distribution of the
vector (LR1, LR2)

′ under H0, and more particularly to express the covariance
between its two components. But first consider

LR∗
k = n−1/2

∫ τ

0

wk

{
ρB

ykB

yk

dMkA − ρA
ykA

yk

dMkB

}
;

under H0, LR∗
k is an asymptotic equivalent to (2) because of the convergence

in distribution of the martingales to Gaussian processes, and because of uni-
form convergence of WkY

−1

k Y kj −wkρjy
−1
k ykj to 0 for k = 1, 2 and j = A,B.

Then the asymptotic distribution of (LR1, LR2)
′ will be the asymptotic dis-

tribution of (LR∗
1, LR

∗
2)

′, which is easier to derive because the only random
terms in LR∗

1 and LR∗
2 are the martingales.

LR∗
k can be written∫ τ

0

wk

{
ρB

(nA

n

)1/2 ykB

yk

n
−1/2
A dMkA − ρA

(nB

n

)1/2 ykA

yk

n
−1/2
B dMkB

}
.

Since (n−1/2
A M1A, n

−1/2
B M1B , n

−1/2
A M2A, n

−1/2
B M2B)′ converges in distribu-

tion to the Gaussian process (m1A,m1B ,m2A,m2B)′ previously defined,
and since nA/n and nB/n have limits ρA and ρB , we can conclude that
(LR∗

1, LR
∗
2)

′ converges in distribution to the Gaussian vector⎛⎝∫ τ

0
w1

{
ρBρ

1/2
A

y1B

y1
dm1A − ρAρ

1/2
B

y1A

y1
dm1B

}
∫ τ

0
w2

{
ρBρ

1/2
A

y2B

y2
dm2A − ρAρ

1/2
B

y2A

y2
dm2B

}⎞⎠ .

This vector has null expectation because (mkA,mkB)′ is centered for k = 1, 2.

Let Σ∗ = (σ∗
kk′), k = 1, 2, k′ = 1, 2, be the variance covariance matrix of

(LR∗
1, LR

∗
2)

′. The variance of LR∗
k is:

σ∗
kk =

∫ τ

0

w2
k

{
ρ2

BρA
y2

kB

y2
k

dvkA + ρ2
AρB

y2
kA

y2
k

dvkB

}
=
∫ τ

0

w2
k

{
ρ2

BρA
y2

kB

y2
k

ykAdΛk + ρ2
AρB

y2
kA

y2
k

ykBdΛk

}
=
∫ τ

0

w2
kρAρB

ykAykB

y2
k

{ρBykB + ρAykA} dΛk

=
∫ τ

0

w2
kρAρB

ykAykB

yk

dΛk.
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The covariance between LR∗
1 and LR∗

2 is:

σ∗
12 =

∫ τ

0

∫ τ

0

w1(u)w2(v)ρ2
BρA

y1B

y1

(u)
y2B

y2

(v)v12A(du, dv) (6)

+
∫ τ

0

∫ τ

0

w1(u)w2(v)ρ2
AρB

y1A

y1

(u)
y2A

y2

(v)v12B(du, dv).

So the asymptotic distribution of the vector (LR∗
1, LR

∗
2)

′ is a Gaussian law,
with null expectation and with variance covariance matrix Σ∗. A consistent
estimator of the variance σ∗

kk is simply

σ̂kk = n−1

∫ τ

0

W 2
k (u)

Y kAY kB

Y k

dΛ̂k(u),

which is the classical marginal variance estimator of the logrank statistic. And
inserting (5) into (6), we obtain a consistent estimator of σ∗

12:

σ̂12 =
nA

n

∫ τ

0

∫ τ

0

W1(u)W2(v)
Y 1B

Y 1

(u)
Y 2B

Y 2

(v)v̂12A(du, dv)

+
nB

n

∫ τ

0

∫ τ

0

W1(u)W2(v)
Y 1A

Y 1

(u)
Y 2A

Y 2

(v)v̂12B(du, dv)

= n−1

∫ τ

0

∫ τ

0

{
W1(u)W2(v)

Y 1(u)Y 2(v)

∑B
j=A

∑nj
l=1 dM̂1jl(u)dM̂2jl(v)

r(u,v) ×[
Y 1B(u)Y 2B(v)rA(u, v) + Y 1A(u)Y 2A(v)rB(u, v)

]
}
.

Notice that the above formula allows to find the variance estimator σ̂kk.
Actually, write σ̂kk′ as

n−1

∫ τ

0

∫ τ

0

{
Wk(u)Wk′ (v)

Y k(u)Y k′ (v)

∑B
j=A

∑nj
l=1 dM̂kjl(u)dM̂k′jl(v)

r(u,v) ×[
Y kB(u)Y k′B(v)rA(u, v) + Y kA(u)Y k′A(v)rB(u, v)

]
}

(7)

and let k = k′; in this case,
∑B

j=A

∑nj

l=1 dM̂kjl(u)dM̂kjl(v) is null unless u = v,
and then rj(u, u) = Y kj(u) and r(u, u) = Y k(u). So

σ̂kk = n−1

∫ τ

0

W 2
k

Y
2

k

{
Y

2

kBY kA + Y
2

kAY kB

} ∑B
j=A

∑nj

l=1 dM̂
2
kjl

Y k

.

Since
B∑

j=A

nj∑
l=1

dM̂2
kjl = Y kdΛ̂k

{
1 − dΛ̂k

}
,
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we obtain

σ̂kk = n−1

∫ τ

0

W 2
k

Y
2

k

{
Y

2

kBY kA + Y
2

kAY kB

}
dΛ̂k

{
1 − dΛ̂k

}
(8)

� n−1

∫ τ

0

W 2
k

Y kAY kB

Y k

dΛ̂k,

as we supposed Λk continuous on [0, τ ].

Therefore, the asymptotic distribution of the vector (LR1, LR2)
′ is a Gaussian

law, with null expectation and with variance covariance matrix consistently
estimated by Σ̂ = (σ̂kk′), k = 1, 2, k′ = 1, 2, where σ̂kk′ is defined by (7).
A test statistic for H0 :

{
ΛA

1 = ΛB
1 = Λ1, ΛA

2 = ΛB
2 = Λ2 on [0, τ ]

}
is then

K = (LR1, LR2) Σ̂−1 (LR1, LR2)
′ , (9)

which asymptotically follows under H0 a chi-square distribution with two
degrees of freedom.

2.3 What if the joint censoring distributions or the joint survival
functions differ in groups A and B under H0 ?

If one suspects that the censoring distribution in group A differs from the
one in group B, or that a copula model for the joint survival function is
not appropriate, the above results have to be modified. For j = A,B, let
F

j
and G

j
be the joint survival functions of {(T1ji, T2ji), i = 1, ..., nj} and

{(C1ji, C2ji), i = 1, ..., nj} respectively, and let F
j

k and G
j

k be the respective
marginal survival function of {Tkji, i = 1, ..., nj} and {Ckji, i = 1, ..., nj} for
event k. Let also f j denote the density function of {(T1ji, T2ji), i = 1, ..., nj}.
Then (n−1/2

A M1A, n
−1/2
B M1B , n

−1/2
A M2A, n

−1/2
B M2B)′ converges in distribu-

tion to a centered Gaussian process with variances

vkj(x) =
∫ x

0

ykj(u)dΛk(u),

and with covariance between n
−1/2
j Mkj and n

−1/2
j Mk′j for k = 1, 2 and j =

A,B now equal to

v12j(x1, x2) =
∫ x1

0

∫ x2

0

E {dM1ji(u)dM2ji(v)}

=
∫ x1

0

∫ x2

0

G
j
(s, u)

{
f j(s, u)dsdu + dΛ1(s)F

j
(s, du)

+dΛ2(u)F
j
(ds, u) + dΛ1(s)dΛ2(u)F

j
(s, u)

}
.
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Estimating consistently E {dM1ji(u)dM2ji(v)} by

Ê {dM1ji(u)dM2ji(v)} =
Y1ji(u)Y2ji(v)

rj(u, v)

nj∑
l=1

dM̂1jl(u)dM̂2jl(v),

a consistent estimator of v12j(du, dv) is now

v̂12j(du, dv) = n−1
j

nj∑
i=1

Y1ji(u)Y2ji(v)
rj(u, v)

nj∑
l=1

dM̂1jl(u)dM̂2jl(v)

= n−1
j

nj∑
l=1

dM̂1jl(u)dM̂2jl(v),

with the martingale residuals M̂kjl defined by (4).

Then the vector (LR1, LR2)
′ converges in distribution to a Gaussian law, with

null expectation and with variance covariance matrix Σ = (σkk′), k = 1, 2,
k′ = 1, 2, being consistently estimated by Σ̂ = (σ̂kk′), k = 1, 2, k′ = 1, 2, with
σ̂kk′ now expressed as

n−1

∫ τ

0

∫ τ

0

Wk(u)Wk′(v)
Y k(u)Y k′(v)

{
Y kB(u)Y k′B(v)

∑nA

i=1 dM̂kAi(u)dM̂k′Ai(v)
+Y kA(u)Y k′A(v)

∑nB

i=1 dM̂kBi(u)dM̂k′Bi(v)

}
.

Notice that for k = k′,
∑nj

i=1 dM̂kji(u)dM̂k′ji(v) is no more equal to zero if
u �= v; more precisely, for u < v, it equals

nj∑
i=1

dM̂kji(u)dM̂k′ji(v) = dΛ̂k(u)Y kj(v)
{
dΛ̂k(v) − dΛ̂kj(v)

}
where

Λ̂kj(x) =
∫ x

0

dNkj(u)
Y kj(u)

is the Nelson-Aalen estimate of the cumulative hazard function Λj
k in group

j for event k. Then, with finite sample size, σ̂kk is not the classical variance
estimator (8); nevertheless, since, under H0, for j = A,B, Λ̂kj converges in
probability to Λk as does Λ̂k, we can conclude that σ̂kk converges in probability
to σ∗

kk.

A test statistic for H0 :
{
ΛA

1 = ΛB
1 = Λ1, ΛA

2 = ΛB
2 = Λ2 on [0, τ ]

}
is

(LR1, LR2) Σ̂−1 (LR1, LR2)
′ ,

whose asymptotic distribution under H0 is a chi-square distribution with two
degrees of freedom.
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3 Simulations study

We performed simulations to study the first type error rate of the test statistic
K and to compare it to those of the statistics developed by Wei and Lachin
([WL84]) and of the Wald test statistic proposed by Wei, Lin and Weissfeld
([WLW89]) in their generalization of the proportional hazards model for mul-
tivariate failure time data. 10000 samples were generated as following: we first
created a dummy variable z with value 1 for group B and with value 0 other-
wise; the sample sizes were either equal (nA = nB = 50) or unequal (nA = 25,
nB = 75). The marginal distributions of failure times were supposed to have
the same exponential survival function in both groups. Dependence between
the two failure times was governed by a Clayton-Oakes model for a strong
correlation and by a Gumbel model for a slight correlation; in the first case,
the joint survival distribution was

Pr {T1 > t1, T2 > t2} =
{
F 1(t1)1−α + F 2(t2)1−α − 1

} 1
1−α ,

with α > 1, and where α → 1 leads to independence between the two events.
We chose α = 5.
In the Gumbel model, the joint survival distribution was

Pr {T1 > t1, T2 > t2} = F 1(t1)F 2(t2) {1 + αF1(t1)F2(t2)} ,

for α ∈ [−1; 1], and we let α = −1.
We then generated one single censoring time, that means C1 = C2, from
an uniform distribution on [0; τ ], with τ being chosen to obtain the desired
censoring proportion.

For a weak dependence between events (Table 1), we remark that the sum of
the marginal logrank statistics has a first type error rates close to 5%. The
Wei and Lachin’s test shows the highest first type error rate, specially in case
of unequal size groups; the Wald test proposed by Wei, Lin and Weissfeld and
the proposed test (9) have similar results for equal groups sizes, but the test
statistic (9) resists better to imbalance between groups sizes.
For a strong dependence between events (Table 2), the sum of the marginal
logrank statistics is no more suitable, as expected. In case of equal size groups,
Wei and Lachin’s test first type error rate is higher than Wei, Lin and Weiss-
feld’s and the proposed test’s, that have similar results, with first type error
rates close to 5%. In case of unequal size groups, Wei and Lachin’s test is
the one with the first type error rate the more distant from 5%; the first type
error rates of Wei, Lin and Weissfeld’s test and of test (9) are similar with
heavy censoring, but the proposed test (9) is more appropriate with no or few
censoring.
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Table 1. First type error rate (in %) for the two group comparison with nominal
level 5% in a Gumbel model with slightly negative dependence; sample is composed
of two groups A and B either with equal sizes or unequal sizes. LR: sum of the
marginal logrank test statistics; WL: Wei and Lachin’s test statistic; WLW: Wei,
Lin and Weissfeld’ Wald test statistic; K: the proposed test statistic (9).

Groups with equal sizes Groups with unequal sizes
LR WL WLW K LR WL WLW K

No censoring 5.61 6.27 5.82 5.94 6.09 7.51 7.63 6.40
25% censoring 5.53 6.16 5.74 5.69 5.60 7.20 6.94 5.78
50% censoring 5.41 5.88 5.61 5.70 5.47 7.37 6.79 5.80
75% censoring 5.33 5.40 5.03 5.11 5.75 7.19 6.06 5.65

Table 2. First type error rate (in %) for the two group comparison with nominal
level 5% in a Clayton-Oakes model with strong positive dependence; sample is com-
posed of two groups A and B either with equal sizes or unequal sizes. LR: sum
of the marginal logrank test statistics; WL: Wei and Lachin’s test statistic; WLW:
Wei, Lin and Weissfeld’ Wald test statistic; K: the proposed test statistic (9).

Groups with equal sizes Groups with unequal sizes
LR WL WLW K LR WL WLW K

No censoring 8.02 5.69 4.94 5.04 8.53 6.19 6.28 5.83
25% censoring 7.22 4.77 4.52 4.52 8.16 5.89 5.78 5.35
50% censoring 7.01 5.35 5.11 5.10 7.60 6.30 5.49 5.57
75% censoring 6.50 4.81 4.38 4.78 6.62 7.08 4.97 5.40

4 Application

Data issue from a study concerned by the association between diabetes and
retinopathy ([DRSRG76]). For each of the 197 diabetic patients, one eye was
subject to a laser treatment, the other one remaining untreated, and time
to retinopathy was recorded for both eyes, so that two events were studied:
retinopathy for the treated eye, and retinopathy for the untreated eye. The
patient type of diabetes was furthermore known as juvenile if detected before
age of 20 and adult otherwise. Censoring rates according type of diabetes for
each event are described in Table (3).

We wished to compare types of diabetes. Let T1 and T2 be the time to
blindness for the treated eye and the untreated eye, with respective marginal
survival function F 1j and F 2j in group j (j =juvenile diabetes or adult dia-
betes). The null tested hypothesis is:

H0 :

{
F 1,juvenile = F 1,adult
F 2,juvenile = F 2,adult

.

Results of H0 testing against an unspecified alternative are produced in Table
(4).
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Table 3. Description of the sample of 197 diabetic patients - sizes and censoring
proportions according type of diabetes and eye treatment.

n Censoring in %
Treated eye Adult diabetes 83 78.3

Juvenile diabetes 114 68.4
All 197 72.6

Untreated eye Adult diabetes 83 39.8
Juvenile diabetes 114 55.3

All 197 48.7

Table 4. Test of comparison of marginal survival functions for treated and untreated
eyes according type of diabetes with nominal level 5%. p-values are expressed in %;
LR: sum of the marginal logrank test statistics; WL: Wei and Lachin’s test statistic;
WLW: Wei, Lin and Weissfeld’ Wald test statistic; K: the proposed test statistic
(9).

LR WL WLW K

Test statistic value 5.953 8.146 8.089 7.141
p-value 0.051 0.017 0.018 0.028

We observe that the sum of the marginal logrank statistics p-value is close to
5%, that could question about not rejecting H0; Wei and Lachin’s and Wei,
Lin and Weissfeld’s test statistics values are equal, and greater than the value
of the test statistic (9), as noticed with the simulations study.

5 Discussion

The proposed method is based on martingales properties. Our results for
estimating the martingales covariance under null hypothesis are similar to
those of [PRE92] when there is no censoring, but differ in the censored
case, because their estimator is expressed with an estimator of the joint sur-
vival function of the two times to failure. In particular, their estimator of
E {dMkji(u)dMk′ji(v)} for k = k′ leads to

Ê
{
dM2

ki(u)
}

= F̂ k(u)dΛ̂k(u),

that tends to under-estimate the classical variance of a martingale as the
survival function estimate for event k is necessarily lower than 1.
We also would like to point out that the Wei and Lachin variance covariance
matrix estimator of vector (LR1, LR2)′ under null hypothesis does not use
the fact that under H0 the marginal survival functions are equal in groups A
and B, since their estimator is derived from averaging martingale residuals
over subjects in each group and not over the whole sample.
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1 Introduction

One of the purposes of a multivariate regression analysis is to determine co-
variates of importance for the outcome of interest. When the estimated effect
of a covariate is highly statistically significant it is easy to be lead to the con-
clusion that such a covariate has a substantial effect on the outcome under
study. However, this might not necessarily be the case. Quantities assessing
the extent to which the covariates actually determine the outcome are needed
to avoid overinterpretation of the effect. Another purpose of a multivariate
regression analysis is to enable prediction of the outcome of interest and in
this case a quantity assessing the accuracy of the predictions based on the
regression model is needed.

Measures of explained variation and predictive accuracy can be used to
address these questions. We carefully distinguish between the two concepts.
Korn and Simon [KS91] provide a general framework and their approach is
adopted and elaborated here. To asses the importance of the covariates,
the explained variation is defined on a population level. This quantity is also
related to the chosen class of regression models and if the model is misspecified,
it cannot necessarily be considered as a measure of the ability of the covariates
to determine the outcome. To quantify the ability of the covariates and the
regression model to determine or rather predict the outcome the predictive
accuracy is defined on a population level. A high predictive accuracy requires
a useful prediction rule as well as informative covariates. Whether the model
is misspecified or not, the predictive accuracy is a meaningful quantity.

In the linear normal model, the estimator of the explained variation is
asymptotically equal to the estimator of the predictive accuracy and is better
known as the R2-statistic or the coefficient of determination. This statistic
has become standard output from the statistical software packages. Outside
of the linear model the estimators of the explained variation and the predictive
accuracy usually differ and due to the possibility of the model being misspeci-
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fied, the predictive accuracy has often been preferred instead of the explained
variation. However, there seems to be some confusion in the literature on
the distinction between the two measures and how they are actually affected
by misspecification of the regression model. We here provide a more detailed
discussion. In our exposition we put more weight on explicitly formulating
the various underlying statistical models than in most of the literature in the
area. We only consider parametric models.

Our interest is motivated by the use of explained variation and predic-
tive accuracy in failure time models since here the estimation becomes com-
plicated due to censoring of the outcome of interest. There is no unique
generalization of the R2-statistic to survival data and several authors have
proposed other measures and estimators in the simple failure time model,
see e.g. Schemper and Stare [SS96], O’Quigley and Xu [QX01], Graf et al.
[GSSS99] and Schemper and Henderson [SH00]. Some authors, e.g. Graf et
al. and Schemper and Henderson, are inspired by the approach of Korn and
Simon whereas others have different approaches, of which some are only de-
fined in the Cox regression model. So far none of the measures have been
widely accepted.

Section 2 contains an introduction to the approach of Korn and Simon
including a detailed discussion of consistency of the estimators. In Section
3 the concept of model misspecification is introduced and the effect of mis-
specification on the estimators is discussed. Furthermore, the simple failure
time model is discussed shortly in Section 4, namely the estimation proce-
dures proposed by Graf et al. and Schemper and Henderson. We do not give
a detailed introduction to their work but only present their ideas. Finally we
provide in Section 5 some concluding remarks.

2 Measures of explained variation

Suppose (Z, Y ) is a random variable, Z being a q-dimensional vector of covari-
ates and Y being a p-dimensional response variable. A parametric regression
model indexed by a finite dimensional parameter θ ∈ Θ ⊆ Rd is proposed for
the conditional distribution of Y given Z. The distribution of the vector of
covariates is assumed not to depend on the parameter θ and left completely
unspecified. Expectations with respect to the conditional distribution of Y
given Z determined by θ, the marginal distribution of Z and the marginal
distribution of Y determined by the parameter θ will be denoted by Eθ

[
· | Z

]
,

E
[
·
]

and Eθ

[
·
]

= E
[
Eθ

[
· | Z

]]
, respectively. As a starting point it is assumed

that the true distribution of Y conditional on Z belongs to the model, that is
the existence of a true parameter θ0 ∈ Θ is required.
Let V denote the variable of interest. It is assumed that V is a one-dimensional
transformation of the response variable Y , i.e. V = f(Y ) for some function
f : Rp → R. Unless coarsened data is considered (see Section 4 on survival
analysis below), f is usually the identity function. Using the regression model,
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our two purposes are to determine how much of the variation in V is explained
by the covariates and to make accurate predictions of V .

2.1 Definition of the explained variation

Following the loss function approach as proposed by Korn and Simon [KS91]
a loss function L has to be defined. Then, L(v, v̂) denotes the loss incurred
when making the prediction v̂ of an observation v of the variable of interest
V . The loss function L is assumed to be bounded below by 0 and to attain
the value 0 when the correct value v̂ = v of v is predicted. Quadratic loss
L(v, v̂) = (v − v̂)2, absolute loss L(v, v̂) = |v − v̂| and entropy loss L(v, v̂) =
−(v log v̂+(1− v) log(1− v̂)) are the most commonly used loss functions (the
latter only when predicting binary variables), see e.g. Korn and Simon [KS90]
and Korn and Simon [KS91].

A prediction of the variable of interest V based on the vector of covariates
Z can be defined by any function v̂ : Rq → R (z #→ v̂(z)), since such a function
determines a prediction rule. For every θ ∈ Θ, a measure of the ability of the
covariates and the prediction rule v̂ to predict the variable of interest V is
the prediction error defined as the expected loss E[Eθ

[
L(V, v̂(Z)) | Z

]
]. Since

interest is in making accurate predictions, the focus will be on the prediction
rules giving rise to the smallest possible prediction error: For every θ ∈ Θ the
θ-optimal prediction rule is defined as the prediction rule v̂θ minimising the
prediction error, i.e.

E[Eθ

[
L(V, v̂θ(Z)) | Z

]
] ≤ E[Eθ

[
L(V, v̂(Z)) | Z

]
] for all v̂ : Rq → R.

Note that the θ-optimal prediction rule indeed depends on the choice of loss
function: Using quadratic, absolute and entropy loss the θ-optimal prediction
rules are given by the means, the medians and the means, respectively, of the
conditional distributions of V = f(Y ) given Z = z ∈ Rq determined by the
parameter θ.
The prediction error corresponding to the θ-optimal prediction rule will be
denoted πθ in the following, i.e. πθ = E[Eθ

[
L(V, v̂θ(Z)) | Z

]
].

Since the prediction error is a positive number, it is difficult to deter-
mine whether it is small or large corresponding to whether the covariates and
the prediction rule are good or bad in predicting the variable of interest. It
may here be helpful to compare it to the prediction error based on a predic-
tion rule not depending on the covariate values. Thus, consider a prediction
rule of the form z #→ v̂0 for a fixed v̂0 ∈ R. Such a prediction rule will be
termed a marginal prediction rule. In this case the marginal prediction error
is Eθ[L(V, v̂0)]. The θ-optimal marginal prediction rule is similarly defined as
the prediction rule (z #→ v̂0

θ) minimising the marginal prediction error, i.e.

Eθ[L(V, v̂0
θ)] ≤ Eθ[L(V, v̂0)] for all v̂0 ∈ R.
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The prediction error corresponding to the θ-optimal marginal prediction rule
is denoted π0

θ , i.e. π0
θ = Eθ[L(V, v̂0

θ)].

When considering the θ-optimal prediction rules the prediction error based
on the covariates and the marginal prediction error might be compared by the
explained variation

Vθ = 1 −
E[Eθ

[
L(V, v̂θ(Z)) | Z

]
]

Eθ[L(V, v̂0
θ)]

= 1 − πθ

π0
θ

(1)

for every θ ∈ Θ. This quantity attains values between zero and one. Val-
ues close to zero correspond to the prediction errors being almost equal, i.e.
that the covariates and the prediction rule do not determine the variable of
interest particularly accurately since the marginal prediction rule is almost as
accurate. Values close to one on the other hand correspond to the covariates
and the prediction rule determining the variable of interest to a large extent.
Since the explained variation compares the best possible rules of prediction
it becomes a measure of the degree to which the covariates determine the
variable of interest.

When squared error loss is considered, Vθ reduces to the variance of the
conditional mean divided by the marginal variance of the variable of interest:
Vθ = VarEθ(V |Z)/Varθ(Y ). In this case it thus measures the reduction in
the variance of the variable of interest when the information on the covariates
is included in the model.

In this context the explained variation Vθ is the quantity of interest.
However, another quantity measuring the accuracy of a non-optimal predic-
tion rule based on the covariates turns out to be of interest too. We postpone
the introduction of this quantity, the population concept of predictive
accuracy, until we have discussed estimation of the explained variation and
misspecification of the model.

2.2 Estimation of the explained variation

Suppose (Z1, Y1), . . . , (Zn, Yn) is a sample of independent random variables
distributed as (Z, Y ). Based on this sample, the distribution of Y conditional
on Z is estimated by a parameter θ̂n whereas the marginal distribution of the
vector of covariates Z is estimated by the empirical distribution of Z1, . . . , Zn.

Korn and Simon [KS91] suggest two estimators of the explained variation.
Obviously, the explained variation of the estimated model might be used as
an estimator, that is

Vθ̂n
= 1 −

1
n

∑n
i=1Eθ̂n

(
L(V, v̂θ̂n

(Z)) | Z = Zi

)
Eθ̂n

L(V, v̂0
θ̂n

)
= 1 −

πθ̂n

π0
θ̂n

(2)
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This estimator is termed the estimated explained variation. Note that the
estimated explained variation indeed is based on the estimated model since
it is a function of the expected losses in the distribution determined by θ̂n

whereas it only depends on the values of the sample through the estimated
parameter θ̂n and the covariate values Z1, . . . , Zn.

Korn and Simon [KS91] also consider the explained residual variation,

V̂θ̂n
= 1 −

∑n
i=1L(Vi, v̂θ̂n

(Zi))∑n
i=1L(Vi, v̂0

θ̂n
)

. (3)

This estimator only depends on the model through the θ̂n-optimal prediction
rules z #→ v̂θ̂n

(z) and z #→ v̂0
θ̂n

. In the numerator, the values of the variable of
interest are compared to the predicted values based on the covariates by the
loss function L. Similarly, the values of the variable of interest are compared
to the marginal predicted value v̂0

θ̂n
in the denominator. The explained

residual variation is therefore, besides being a measure of explained variation,
also a measure of how accurate the predictions based on the θ̂n-optimal
prediction rule and the covariates actually are compared to the θ̂n-optimal
marginal prediction rule.

Korn and Simon [KS91] do not formulate conditions under which the two
estimators are to be considered as consistent estimators of the explained
variation Vθ0 of the true model. In the Appendix we provide a theorem
stating sufficient conditions. This theorem ensures that it is possible to
obtain consistent estimators by averaging terms which are dependent through
their common dependence on the estimated parameter θ̂n as is the case for
the numerators and the denominators of the above estimators. How the
theorem is used to guarantee the consistency of the two estimators above is
also demonstrated in the Appendix.

When considering quadratic loss in the normal linear regression model,
the explained variation is equal to the squared multiple correlation coeffi-
cient. The two estimators of the explained variation, the estimated explained
variation and the explained residual variation, are almost identical. Tradition-
ally the explained residual variation is used as the estimator of the explained
variation (for reasons to be described below in Section 3 on misspecification
of the model) and is probably better known as the R2-statistic. However, it
is well known that this estimator for small samples has a positive bias as an
estimator of the explained variation and therefore the adjusted R2-statistic
R2

adj is used instead (Helland [Hel87]):

R2
adj = 1 −

1
n−q−1

∑n
i=1(Vi − v̂θ̂n

(Zi))2

1
n−1

∑n
i=1(Vi − v̂0

θ̂n
)2

.
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In the normal linear model, the adjusted R2-statistic is exactly the estimated
explained variation. Also in other regression models, the explained resid-
ual variation might be an inflated estimator of the explained variation when
small samples are considered. Mittlböck and Waldhör [MW00] propose a sim-
ilar adjustment of the explained residual variation for the Poisson regression
model whereas Mittlböck and Schemper [MS02] propose similar and other
adjustments for the logistic regression model.

3 Misspecification and definition of the predictive
accuracy

The model is said to be misspecified if the true distribution of the response
Y conditional on the covariate vector Z does not belong to the proposed
regression model indexed by θ ∈ Θ. That is, a true θ0 ∈ Θ does not exist.
In the case of the model being misspecified it is not possible to consider
the estimated explained variation and the explained residual variation as
estimators of the explained variation, namely the degree to which the
covariates determine the value of the variable of interest. It is however, by
appropriate use of the theorem provided in the Appendix, possible to state
which quantities the two estimators estimate consistently.

White [Whi89] proves that the maximum likelihood estimator in a
misspecified model indexed by a finite dimensional parameter θ ∈ Θ under
appropriate regularity conditions is a consistent estimator of the parameter
θ∗ ∈ Θ minimising the Kullback-Leibler divergence. For every θ ∈ Θ, the
Kullback-Leibler divergence is a measure of the distance from the true
unknown density to the density determined by the parameter θ. In this
sense, the maximum likelihood estimator suggests the distribution among the
proposed distributions that agrees best with the true distribution and the
parameter θ∗ is therefore termed the least false or most fitting parameter.

By appropriate use of the theorem in the Appendix it then follows, when
the prescribed conditions are fulfilled, that the estimated explained variation
is a consistent estimator of Vθ∗ . This quantity is a measure of the degree
to which the actual covariates would determine the value of the variable of
interest, if the distribution of this variable were described by the distribution
determined by θ∗.

The explained residual variation is similarly, under appropriate conditions,
a consistent estimator of

Wθ∗ = 1 − E[L(V, v̂θ∗(Z))]
E[L(V, v̂0

θ∗)]
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where the mean in the numerator is with respect to the true unknown
distribution of (V,Z) = (f(Y ), Z) whereas the mean in the denominator is
with respect to the true distribution of V . The numerator is the prediction
error of the prediction rule z #→ v̂θ∗(z) in the true distribution of (Z, Y )
whereas the denominator is the marginal prediction error corresponding to
the marginal prediction rule (z #→ v̂0

θ∗). Thus, Wθ∗ is the predictive accuracy
of the predictions based on the least false model and the covariates compared
to the marginal predictions based on the least false model.
Some authors define the above quantity as the explained variation. Since
it is based on a non-optimal prediction rule we prefer to think of it as the
predictive accuracy instead.

From the above it follows that both estimators of the explained variation
might be biased estimators of the true explained variation in case of the
model being misspecified. The explained variation of the least false model
estimated by the estimated explained variation is a measure related to the
chosen, misspecified model and the covariates whereas the predictive accuracy
estimated by the explained residual variation is a measure of the ability of
the model and the covariates to describe, namely predict, the values of the
variable of interest. According to the interpretation of these two quantities,
the explained residual variation appears to be the most rational estimator
since it still has a relevant interpretation when the model is misspecified.
This is probably the reason why most papers on explained variation for
uncoarsened data do not even consider the estimated explained variation as
an estimator of the explained variation, e.g. Mittlböck and Waldhör [MW00]
and Mittlböck and Schemper [MS02]. Others argue that an estimator of the
explained variation should compare the observed and the predicted values
directly as is the case for the explained residual variation but not always for
the estimated explained variation.
It is our experience however that there will only be small, if any, differences
between the quantities estimated by the two estimators and that these
quantities will be rather close to the true explained variation. Korn and
Simon [KS91] claim the opposite, namely that there might be considerable
differences between the population measures estimated by the two estimators
if the model is ’grossly’ misspecified. We found that this is usually not the
case provided the proposed regression model is defined in a sensible way,
namely that the parameter space Θ is not unnecessarily restricted. Korn and
Simon [KS91] base their statement on an example of a misspecified regression
model for which the parameter space Θ consists of one point θ, i.e. Θ = {θ}.
In this case the least false parameter θ∗ equals θ. Using this distribution,
they determine the explained variation Vθ∗ and the predictive accuracy Wθ∗ .
The difference between these two quantities turns out to be considerable as
well as they both differ considerably from the true explained variation of
the model considered. However, it must be obvious that it is not reasonable
to pick an arbitrary distribution, determine the explained variation and the
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predictive accuracy in the true distribution of (Z, Y ) of this distribution and
then expect these two quantities to be equal as well as equal to the true
explained variation. If instead the parameter space Θ is allowed to be large
as possible, the explained variation Vθ∗ and the predictive accuracy Wθ∗ of
the least false model are equal and close to the true explained variation. The
example of Korn and Simon [KS91] is given below:

Consider the logistic regression model where the true distribution of the
binary response Y conditional on the covariate Z is Bernoulli with parameter
p(Z) where logit p(Z) = Z and Z is uniform on {−1.5,−1,−0.5, 0.5, 1, 1.5}.
Using a quadratic loss function, the explained variation of this distribution,
the true model, is 0.2256.

The model is misspecified by assuming Y conditional on Z to be Bernoulli
with parameter p̃(Z) = 0.1I(Z < 0) + 0.9I(Z > 0). The distribution of
the covariate Z remains unchanged. The proposed model is indexed by the
single parameter θ ∈ Θ = {(0.1, 0.9)} and has an explained variation of
Vθ = 0.64. On the other hand, the predictive accuracy of this model in the
true distribution of (Z, Y ) is Wθ = 0.0758. On the basis of this example
they conclude that there might be large differences between the quantities
estimated by the estimated explained variation and the explained residual
variation. However, if instead the parameter space is allowed to be as large as
possible, i.e. Θ = (0, 1)2, then θ∗ = (0.2763, 0.7237) resulting in an explained
variation of Vθ∗ = 0.2002 and a predictive accuracy of Wθ∗ = 0.2002, that is
the two quantities are equal.

We have furthermore considered examples of misspecification of the linear
predictor in the normal and the logistic regression model but did not succeed
in finding examples for which the explained variation and the predictive ac-
curacy differed appreciably. These examples were examined analytically and
by simulation studies.

4 The failure time model

In failure time analysis the response variable Y is a failure time. Measures
of explained variation and predictive accuracy may be defined as above
but when censoring occurs, as is usual in survival analysis, the estimation
procedure gets complicated: The explained residual variation cannot be
determined because the loss corresponding to a censored failure time is
unavailable. Since the estimated explained variation has not been accepted
as an estimator of the explained variation other estimation methods are
needed. Graf et al. [GSSS99] and Schemper and Henderson [SH00] have
proposed estimators of the explained variation in the failure time model. Graf
et al. base their estimator on inverse probability weighting of the available
losses whereas Schemper and Henderson use the proposed regression model
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to determine a loss for the unavailable failure times too. Both estimators
can be considered as generalizations of the explained residual variation and
coincide with the explained residual variation in the case of no censoring.
How the estimators of Graf et al. and Schemper and Henderson are defined
is not described in detail here. Graf et al. consider a model consisting of
one parameter θ ∈ Θ = {θ} and estimate the predictive accuracy Wθ of this
model in the true distribution of (Z, Y ) and Schemper and Henderson focus
on the Cox regression model. However, it is not complicated to generalize
their estimators to the above setting. We here shortly discuss the choice
of the variable of interest and the properties of the estimation procedures
proposed by these authors.

As noted in several papers on explained variation and predictive accuracy
in failure time models, e.g. Korn and Simon [KS90] and Henderson [Hen95],
the variable of interest is not necessarily the failure time Y . This is due to
the nature of failure time data. From a medical point of view other variables
of interest arise but the censoring mechanism may also influence the choice
of variable of interest: If the individuals are followed until time point t it is
not relevant to focus on how long they will survive further.
In many cases, when considering the failure time of a patient, the actual
failure time is important for patients who are expected to die soon whereas
the actual failure time for long-term survivors is of less interest than the
fact that they will live for a long time. If long-term survivors are defined as
the individuals surviving a specified time point t, this leads to the at time
point t censored failure time as the variable of interest, i.e. V = min{Y, t}.
A prediction of v̂ = t corresponds to the long-term prediction ’survival
greater than or equal to t’ and is to be considered successful if the individual
survives time point t. No loss should be incurred in this case. When the
predictions used attain the same values as the variable of interest, i.e. belong
to the interval [0, t], standard loss function like quadratic and absolute
loss incorporate this feature. See Henderson [Hen95] for a more elaborate
discussion of the choice of loss functions.
In some cases focus is on whether an individual is alive at a specified time
point t. This may be the case if a patient can be considered cured if the
patient survives this time point. Thus focus is on whether the patient will
be cured or not and the variable of interest therefore becomes the survival
status at time point t, i.e. V = I(Y ≤ t) where I(·) denotes the indicator
function. In this case the variable of interest is binary and the standard loss
functions are applicable.
A possible generalization of the survival status at time point t as the variable
of interest can be obtained by considering the survival status as a process,
i.e.

(
I(y ≤ s) : s ∈ [0, t]

)
. In this case the prediction is also a process

and a loss can be determined by averaging the loss for each time point in
[0, t]. The average may be constructed by integration on [0, t] with respect
to the Lebesgue measure or another suitable measure (see e.g. Graf and
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Schumacher [GS95], Graf et al. [GSSS99] or Schemper and Henderson
[SH00]). The concept of explained variation and predictive accuracy can be
defined in the same manner as above. However, it is not straightforward to
prove consistency of the estimators when integrating the losses of the survival
status process.
Note that when considering these variables of interest, the loss becomes
available for some of the censored failure times: If a failure time is censored
after time point t, the at time point t censored survival time is min{Y, t} = t
whereas the survival status is I(Y ≤ t) = 0.

The estimator proposed by Graf et al. is constructed using inverse proba-
bility weighting where the weights are based on the Kaplan-Meier estimator of
the censoring distribution. Their estimator therefore resembles the explained
residual variation in the sense that it estimates the predictive accuracy in
case of model misspecification. The estimator of Schemper and Henderson is
instead based on the proposed model and in case of model misspecification,
it can neither be interpreted as the predictive accuracy nor the explained
variation of the least false model but is rather an estimator of a quantity in
between these two measures.
We have compared the three available estimation procedures available for
survival data in simulation studies: The estimated explained variation, the
estimator based on Graf et al. and the estimator based on Schemper and Hen-
derson. We studied the exponential failure time model using survival status
as the variable of interest and a quadratic loss function. We first considered
the case where the model is not misspecified in order to study the efficiency.
Here the estimator of Graf et al. turned out to be the least efficient whereas
the estimated explained variation wass the most efficient estimator of the ex-
plained variation. Misspecifying the model (by leaving out covariates and still
using an exponential model), we did not succed in finding examples where the
quantities estimated by the three estimators differed appreciably.

5 Which estimation method to choose - model based or
not?

When uncoarsened data are considered, there are two available estimators
of the explained variation. Traditionally, the explained residual variation is
preferred due to the nice interpretation as an estimator of predictive accuracy
in the case of model misspecification. However, we have not been able to
demonstrate considerable differences in the quantities estimated by the two
estimators and therefore we do not consider the question of misspecification
as a big problem as is the case in part of the literature on this area.

When considering survival data, the explained residual variation is
undefined due to censoring and therefore other estimation procedures have
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been proposed by Graf et al. [GSSS99] and Schemper and Henderson [SH00].
When choosing one of the estimators in preference to the other two, the
efficiency may be compared to the potential bias of the estimators in case
of model misspecification. Since the model based estimators have a higher
efficiency and the bias of these estimators is not necessarily large in case of
model misspecification, we are tempted to prefer the model based approaches.
Another criterion might also influence the choice of estimator: The estimated
explained variation is, at least when quadratic loss is used, very simple to
determine. The estimator based on the method of Graf et al. is also rather
simple to calculate whereas the calculation of the estimator based on the
method of Schemper and Henderson requires a bit more programming.

We have studied the issue of misspecification by several examples. It is
possible however, that there exist examples for which the bias in misspecified
models is more pronounced than for our examples.
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7 Appendix

The following result on consistency is easily proved using Lemma 2.8 and
Lemma 2.13 of Pakes and Pollard [PP89].

Let (Z1, Y1), · · · , (Zn, Yn) be a sample of n independent random variables
with the same distribution as the random variable (Z, Y ) taking values in
Rq × Rp.

Theorem 1. Assume θ̂n → θ ∈ Θ when n tends to infinity, the convergence
being almost sure or in probability. Let {hθ : Rq × Rp → R | θ ∈ Θ} be a
family of functions with E|hθ(Z, Y )| < ∞ for all θ belonging to a bounded
neighborhood of θ (E denoting expectation with respect to the true distribution
of (Z, Y )).
Assume further that there exists an α > 0 and a nonnegative function ϕ :
Rq × Rp → R with Eϕ(Z, Y ) < ∞ for which

|hθ(z, y) − hθ′(z, y)| ≤ ϕ(z, y)‖θ − θ′‖α

for some norm ‖ · ‖ on Θ, all (z, y) and all θ, θ′ belonging to the bounded
neighborhood of θ. Then
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1
n

n∑
i=1

hθ̂n
(Zi, Yi) → Ehθ(Z, Y ) (4)

for n → ∞, → being the same convergence as above.

Note that the conditions are fulfilled if the functions θ → hθ(z, y) are
continously differentiable for every (z, y), hθ and the derivatives of hθ with
respect to θ are integrable with respect to the true distribution of (z, y) in a
bounded neighbourhood of θ. This will usually be the case for quadratic and
entropy loss.

According to the theorem, the numerator of the estimated explained vari-
ation (2) is a consistent estimator of πθ0 if θ̂n converges to θ0 in probability
or almost surely and the functions θ #→ Eθ(L(V, v̂θ(Z)) | Z = z) fulfill the
prescribed conditions for all z and θ in a bounded neighborhood of θ0.
Similarly the numerator of the explained residual variation (3) is a consistent
estimator of πθ0 if θ̂n converges to θ0 in probability or almost surely and the
functions θ #→ L(v, v̂θ(z)) = L(f(y), v̂θ(z)) fulfill the conditions for all (z, y)
and θ in a bounded neighborhood of θ0.

The theorem cannot be applied directly to the denominators of the two
estimators to ensure that these are consistent estimators of the marginal pre-
diction error π0

θ0
. The marginal prediction rule (z → v̂0

θ0
) is usually a simple

function of the observed values (Zi, Yi), i = 1, . . . , n, rather than a function
of the estimated parameter θ̂n. That is, v̂0

θ̂n
= g((Z1, Y1), · · · , (Zn, Yn)) for

some function g : R2n → R. If for example quadratic or entropy loss is used,
g determines the average of Vi = f(Yi), i = 1, . . . , n.
The denominator of the estimated explained variation (2) cannot typically be
written as an average but is often a simple function of the marginal prediction
v̂0

θ̂n
(see e.g. Korn and Simon [KS91] for some examples). Since it is often

possible to use Theorem 1 or even simpler methods (for example the law of
large numbers) to guarantee that v̂0

θ̂n
is a consistent estimator of v̂0

θ0
, the con-

sistency of the denominator can be obtained.
The denominator of the explained residual variation (3) has the form∑n

i=1L(Vi, v̂
0
θ̂n

) =
∑n

i=1L
(
Vi, g((Z1, Y1), · · · , (Zn, Yn))

)
and hence does not

have a form as the average in (4). It is however often possible to rewrite the
denominator into a form for which it is possible to use Theorem 1 or simpler
methods to guarantee the consistency.
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Abstract

Mathematical models and decision analyses based on microsimula-
tions have been shown to be useful in evaluating relative merits of
various screening strategies in terms of cost and mortality reduction.
Most investigations regarding the balance between mortality reduc-
tion and costs have focused on a single modality, mammography. A
systematic evaluation of the relative expenses and projected benefit
of combining clinical breast examination and mammograpphy is not
at present available. The purpose of this report is to provide method-
ologic details including assumptions and data used in the process of
modeling for complex decision analyses, when searching for optimal
breast cancer screening strategies with the multiple screening modali-
ties. To systematic evaluate the relative expenses and projected bene-
fit of screening programmes that combine the two modalities, we build
a simulation model incorporating age-specific incidence of the disease,
age-specific pre-clinical duration of the disease, age-specific sensitivi-
ties of the two screening modalities, and competing causes of mortal-
ity. Using decision models, we can integrate information from different
sources into the modeling processes, and assess the cost-effectiveness
of a variety of screening strategies while incorporating uncertainties.

1 Introduction

Breast cancer is the most frequently diagnosed cancer among women. Its
rate of incidence in the United States has continued to increase since 1986



406 Yu Shen and Giovanni Parmigiani

[WTHR03], while breast cancer mortality has decreased overall in the United
States, Canada and the United Kingdom [SEER98, IARC99, WTHR03].
Plausible explanations for this decrease in mortality include progress in treat-
ment, as well as widespread participation in early detection programs that
contribute to increased cure rates and reduced disease-specific mortality.
Many studies have indicated that early detection through screening can lead
to more advantageous treatment options, and often leads to an increase in
survival rates and improvement in the quality of life for women who de-
velop breast cancer [FE03, Wan03]. The development of new technologies
and further improvement of the existing modalities for disease detection may
increasingly make screening for cancer a routine part of secondary prevention.

The goals of early detection are to reduce breast cancer morbidity and mor-
tality. Optimal screening strategies are expected to carefully balance these
goals against the associated burden to women and cost to health care systems.
Several issues regarding the optimal choice of breast cancer screening strate-
gies remain open. For example, debate surrounds the question of whether
regular mammographies are beneficial to women in their forties. Evidence
of benefit varies across the relevant randomized clinical trials [Ber9], and
there is controversy on the relevance of the suggested benefits for individual
women. Consensus panels [GBC97, CTF01] who reviewed the evidence did
not find it sufficiently strong to make general recommendations, emphasizing
that “women should be informed of the potential benefits and risks of screen-
ing mammography and assisted in deciding at what age they wish to initiate
the manoeuvre” [CTF01]. In addition to the issue of the appropriate age at
which screening should begin, complex open issues include the appropriate
frequency of screening examinations; whether women who are at increased
risk of breast cancer would benefit from more frequent screening; and what
would be the impact of combining multiple screening modalities.

Evaluating alternative screening strategies is difficult because the benefits
of screening depend on complex interaction among several factors, including
the ability of various screening tests to detect cancer sufficiently early; the
time window during which such detection can take place, and its relation
to the interval between screening exams; the relative advantage of an early
detection compared to waiting for symptoms to arise; the age distribution of
onset of pre–symptomatic cancer; competing causes of mortality; and others.

Simulation-based decision models have proved to be an effective way to
evaluate health care interventions whose consequences are complex and de-
pend on the interaction of many factors. They can provide a formal structure
for supporting optimal choice of screening strategies, cost–effectiveness analy-
sis of specific interventions, and formal optimization of utility functions of in-
terest. These models often generate simulated individual histories by drawing
evidence from several sources, including epidemiology and genetic risk factors,
relevant clinical trials of secondary prevention and treatment, and studies of
tumor growth. A decision model can also support realistic assessments of
uncertainty about the relative merits of alternative choices, an aspect that is
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often underappreciated in policy making [Par02]. The literature on model-
based evaluation of screening strategies is now extensive [VBH95, PARM02].

In this article we consider the model by Parmgiani [Par93, Par02], and gen-
eralize it by incorporating the possibility of using two breast cancer screening
modalities in concert: mammography (MM) and clinical breast examination
(CBE). We also update the model inputs to reflect recent contributions to
the literature. Existing investigations regarding the balance between mortal-
ity reduction and costs have focused on mammography only, and have paid less
attention to the combined use of periodic mammography with clinical breast
examination. [Dek00, LR95, Bro92, MF92, VVD93, Bro92, BF93, Eli91,
Cla92, PK93, EHM89, CGV93, SKP97, BBE01, Fet01, YRP03, KSR03]. Re-
cent studies have shown that periodic clinical breast examinations combined
with mammograms improve the overall sensitivity of the screening exam com-
pared with mammography alone, [BHF99, BMB99, BLT00, SZ01], and can
be particularly valuable among younger women for whom the sensitivity of
mammography alone is relatively low. Logistically, a regular clinical breast
examination is easy to administer as part of a routine physical examination,
and is less expensive compared to mammography.

To promote more efficient and cost-effective breast cancer early detection
programs, we will explore optimal screening strategies in terms of the costs
and the quality-adjusted years of life saved. The analyses focus on strategies
that combine the use of both mammography and clinical breast examination.
The other factors we investigate include age group and screening interval.
The primary objectives of this article are to discuss modeling issues arising in
optimization of screening strategies with multiple modalities, and to provide
methodologic justifications for models and sources of data used in the analyses
reported Shen and Parmigiani [SP05].

The results from our investigation will help in the design of more efficient
and near optimal early detection programs, thereby maximizing the survival
benefit for breast cancer patients while also considering the associated societal
costs. This study focuses on breast cancer, but the methods are also applicable
to early detection programs for other types of cancer. The proposed research
will provide a basis to guide health policy makers in designing optimal and
cost-effective screening programs, and in extending such benefits to a large
population.

2 Model

2.1 Natural History of Breast Cancer

The basis of our investigation of optimal combinations of screening modalities
is a simulation model that can generate individual health histories. It is
useful to distinguish the natural history model, which refers to the health
histories of women without early detection screening, from the intervention
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model, which refers to the effects of screening. For a patient with preclinical
disease, the natural history model provides a way of simulating age of onset
and preclinical sojourn time, or, equivalently, growth rate. Conditional on
these, it then simulates the age of the woman and the tumor size at the time of
diagnosis. These variables can then be used in turn as covariates in predicting
a woman’s survival and quality adjusted survival. This multi-stage prediction
can be repeated for various screening strategies, by superimposing a history
of examinations to the natural history, appropriately simulating results of
screening tests based on assumed sensitivity, and appropriately adjusting age
and size at detection when early detection takes place. Thus, given women’s
risk factors, a decision model using Monte Carlo simulations can be employed
to jointly model the disease histories and screening interventions, and predict
the outcomes of interest.

In the natural history model, breast cancer events are simulated according
to the age-specific incidence of preclinical disease and mortality from other
causes. For a woman with breast cancer, the natural history model also
provides a way of generating her history of disease over time. The natural
history of the disease over time requires a description of the transition between
different states of the disease. Using the same notation as in Parmigiani
[PARM02], we assume that there are four relevant states: H, women who
are either disease-free or asymptomatic; P , women who have detectable pre-
clinical disease; C, women with clinical manifestation of the disease; and D,
women who have died. For women in the cohort who have breast cancer, we
generate their ages at the onset of pre-clinical breast cancer, P , ages at the
onset of clinical breast cancer, C, via tumor growth, and ages at death D
according to corresponding models.

Because the age-specific incidence of pre-clinical disease cannot be directly
observed, we have to estimate such a quantity from the sojourn time distri-
bution and age-specific incidence of the clinical disease. Specifically, we can
derive the incidence of pre-clinical breast cancer backward from the following
deconvolution formula:

Ic(y) =
∫ y

0

whp(t)wpc(y − t|t)dt, (1)

where Ic(y) is the age-specific incidence of clinical breast cancer, whp is the
instantaneous probability of making a transition from H to P, and wpc is
age-specific sojourn time density.

Note that the age-specific incidence of clinical breast cancer can be ob-
served and is often well documented in cancer registries or from the control
arms of early detection trials. We use the age-cohort-specific breast cancer
incidence estimates developed by Moolgavkar et al. [MSL79]. With a given
distribution for the sojourn time of the pre-clinical disease state, the age-
specific incidence of pre-clinical breast cancer (whp) can be estimated using
the method of Parmigiani and Skates [PS01].
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Fig. 1. Summary of states, possible transitions, and transition densities for the
natural history model. This scheme describes the progress of breast cancer in the
absence of screening. All instantaneous probabilities of transition are indicated next
to the corresponding transition. The two subscripts correspond to the origin and
destination states, respectively.

However, the estimation of the sojourn time distribution is not straightfor-
ward in general [AGL78, DW84, BDM86, ES97, SPV97, SZ99]. In this study,
we focus on three commonly used parametric distributions for the sojourn
time of the preclinical disease state, which are further modified to incorporate
the effect of age at the onset of the preclinical disease.

We first consider a smoothed age-specific exponential sojourn time distri-
bution:

wpc(x|λ(t)) = λ−1(t) exp(−λ−1(t)x),

where the mean sojourn time λ(t) depends on the woman’s age. To incorpo-
rate the uncertainty of the parameter into the model, we introduce an inverse
gamma prior to the parameter λ, where the two parameters of the inverse
gamma distribution are age-specific and are chosen to match the mean and
standard deviation of sojourn times estimated from the Canadian National
Breast Screening Studies (CNBSS) trials in Shen and Zelen [SZ01].

An alternative assumption for the sojourn time distribution is the log-
normal assumption. We consider a modified version taking into account the
womanŠs age at the onset of the preclinical disease, while generalizing the
model by Spratt et al [SGH86]:

wpc(x|t) =
1√

2πσ(t)x
exp
{
− 1

2σ2
(log(x) − µ(t))2

}
,

where the logarithm of the mean, µ(t) is specified to be a linear function
of the womanŠs age, t. An inverse gamma prior is used to incorporate the
uncertainty for the variance, which does not show an age effect [PARM02].
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The parameters of the inverse gamma are chosen to match the moments of
the reported age-specific variances in [SGH86].

A modified tumor growth distribution of Peer et al [PVH93, PVS96] is also
used in our simulation for sensitivity analyses. Specifically, the sojourn time of
the preclinical duration is modeled by the tumor growth rate or, equivalently,
by the tumor doubling time. In particular, the relationship between sojourn
time and tumor doubling time can be expressed as

X = ln(Vp/Vc)DT/ ln(2),

where X is the sojourn time, DT is the tumor doubling time, and Vp and Vc are
the volumes of a tumor at onset of detectable preclinical disease and at onset of
clinical disease, respectively. We assume that the smallest tumor detectable
by screening exam is 5mm, and that the average diameter at which breast
cancer manifests is 20 mm [PARM02]. Tumor doubling times are assumed
to follow an age-dependent log-normal distribution. Note that there is a
direct relationship between the tumor growth rate (or doubling time) and the
sojourn time in the preclinical duration. The parameters in the sojourn time
distribution are estimated to match with the median and 95% quantile of the
tumor doubling time based on findings from the Nijmegen trial [PVH93].

2.2 Survival Distributions and Mortality

One primary interest of the study is to evaluate the length of survival after
diagnosis of breast cancer with various screening strategies. The survival
distribution for women with breast cancer is determined by their age and
tumor characteristics at diagnosis, and by the treatment they receive following
diagnosis. Women in the cohort who receive periodic screenings are more
likely to have breast tumors detected early and thus are more likely to have
better prognoses than women who do not receive such screening. However, due
to imperfect screening sensitivities and heterogeneity in pre-clinical durations,
some breast cancer may still be clinically diagnosed between exams (interval
cases). The survival distribution depends on screening only through the tumor
characteristics and age at diagnosis.

Based on the natural history model, the tumor size and age at diagnosis are
generated for a woman diagnosed to have breast cancer in the cohort. It is well
known that lymph node involvement (nodal status) and the estogen receptor
(ER) status of the tumor (positive or negative) are also important risk factors,
and are related to treatment options and survival. To estimate the number
of positive nodes at diagnosis, a predictive model was developed using the
data of a womanŠs age and tumor size at diagnosis from the SEER registries
[PARM02, SEER98]. A constraint via the truncated Poisson distribution is
given to ensure that the number of positive nodes for a screening- detected
breast tumor is less than or equal to that for the same woman if her tumor
is clinically detected. Without enough evidence to connect ER status with
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other risk factors, the ER status of a womanŠs breast tumor is simulated
independently of the other risk factors, but according to the distribution for
the general population. It is estimated that roughly 70% of breast tumors are
ER positive [NIH02].

As expected, the tumor characteristics at diagnosis will determine the
treatment received thereafter. We assume that women in the cohort are
treated according to the guidelines established by the NIH Consensus Con-
ference on Early Breast Cancer (1991), given their risk factors including age,
tumor ER status, tumor size, and nodal status at diagnosis. Whether a
woman receives tamoxifen depends on her age and tumor ER status. The
survival distribution for length with quality of life adjustment after diagnosis
of breast cancer is estimated using a Cox regression model with covariates of
treatment, age, tumor ER status, primary tumor size, and number of nodes
involved. The predictive survival model was established based on a combined
analysis of four CALGB trials [PARM02, WWT85, PNK96, WBK94], as de-
scribed in [PBW99].

For a woman in the cohort, her age-specific mortality due to causes other
than breast cancer is obtained from actuarial tables, using a 1960 birth cohort
from the census database. If the breast-cancer-specific survival time for a
woman is shorter than her simulated natural lifetime, then we assume that
she died from breast cancer and contributed to the breast cancer mortality.
Otherwise, we assume that she died from a competing cause.

2.3 Sensitivities of Mammography and Clinical Breast
Examinations

The sensitivity of a screening program for the early detection of breast can-
cer plays a critical role in its potential for the reduction of disease-specific
mortality. When a screening program involves more than one modality, it is
important to obtain the sensitivity of each individual screening modality and
the dependence structure among the multiple diagnostic tests [SZ99, SWZ01].
This knowledge provides a basis to guide health policy makers in designing
optimal and cost-effective screening programs.

Some recent studies reveal that the sensitivity of a screening exam is likely
to depend on tumor size and age at the time of diagnosis [PVS96, SZ01].
Based on literature in the area of breast cancer screening and the estimates of
screening sensitivities for both MM and CBE, we consider a model to relate the
sensitivity of each modality with age and tumor size at diagnosis, respectively
[PARM02, SZ01]. In particular, a logit function is employed to model the
effects of age and tumor size at diagnosis on the sensitivities of mammography
and clinical breast exam, respectively. We assume the sensitivity of each
modality satisfying the following equation:

βk(t, d) =
exp{αk0 + αk1(t− 45) + αk2(d− 2)}

1 + exp{αk0 + αk1(t− 45) + αk2(d− 2)} ,
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where t is the age at diagnosis, d is the diameter in centimeters of the primary
tumor at diagnosis, k = 1 corresponds to mammography, and 2 is for CBE.

The coefficients in the logit models are determined based on the corre-
sponding sensitivity estimates from the CNBSS trials [SZ01] as follows. A
sensitivity of mammography of 0.61 corresponds to a woman at age 45 with
a tumor diameter of 2cm; a sensitivity of 0.1 corresponds to a woman at the
same age but with a tumor size of 0.1 cm; and a sensitivity of 0.66 corre-
sponds to a woman of age 55 with a tumor size of 2cm: β1(45, 2) = 0.61,
β1(45, 0.05) = 0.1 and β1(55, 2) = 0.66. Thus, the coefficients in the logit
model are solved to be, α10 = 0.447, α11 = 0.216 and α12 = 1.36 for mam-
mography. In the same vein, we can solve the coefficients for the sensitivity
of CBE: α20 = 0.364, α21 = −0.077 and α22 = 1.31. Moreover, because the
sensitivity can vary from subject to subject even when given the same age
and tumor size [KGB98], we use a beta distribution to reflect such a random
variation for each sensitivity, while matching the corresponding mean and
variance for the estimated sensitivity from the CNBSS trials, as reported in
Shen and Zelen [SZ01].

The Health Insurance Plan of Greater New York (HIP) trial and the
CNBSS both offered independent annual clinical breast exams and mammo-
grams to women in their study arms, which gave us an opportunity to assess
the dependence between the two screening modalities. The analyses based on
data from these trials indicate that mammography and clinical breast exam-
inations contribute independently to the detection of breast cancer [SWZ01].
Therefore, given the sensitivity of each individual screening modality, the
overall sensitivity of a screening program using both MM and CBE is as fol-
lows:

β(t, d) = β1(t, d) + β2(t, d) − β1(t, d)β2(t, d),

when the two modalities are independent to each other.

2.4 Costs of Screening Programs

As expected in screening practices, the primary costs of a screening program
is proportional to the total number of mammograms and clinical breast ex-
aminations given. Although there are additional costs related to follow-up
confirmative tests such as a biopsy, and costs for the treatment of breast can-
cer at various stages after diagnosis, we will focus only on the cost of screening
examinations in the current study. On its website, the National Cancer In-
stitute lists the estimated cost of mammography in 2002 at $100-200, and
acknowledges that the cost can vary widely among different centers and hos-
pitals. Since it is frequently part of a routine physical examination, the cost of
a CBE is often less than that of mammography. In a public website promoting
cancer prevention, the estimated cost for an annual CBE is $45-55, whereas
the cost of MM is $75-150 [PRE02]. In the decision analysis, it is clear that
the cost ratio of MM and CBE determines the results in the comparison of
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different screening strategies. Therefore, we investigate the effects of two cost
ratios (1.5 and 2) between MM and CBE, and allow the cost for a CBE to
be $100. For simplification, we will not adjust for the type of currency, or for
inflation over the years.

3 Optimization of Screening Strategies and Sensitivity
Analyses

The focus of this investigation is to compare the effects of different breast
cancer screening policies and the costs directly related to these policies, based
on the models introduced in the last sections. The health outcome of interest
is the expected gain in quality-adjusted survival. We interpret this quality
adjustment to be relative to a typical health history rather than that of a
state of perfect health [PBW99]. Quality adjustments are important because
they allow, with certain limitations, to account for the effects of medical in-
tervention on morbidity as well as mortality. In screening this is especially
important becasue of the so-called overdiagnosis problem. While beneficial
to many women, screening leads to discovering cancer that would have not
otherwise affected certain womens health. While lenght of life may be un-
affected, this is a considerable loss of quality of life. Also, early detection
can prolong the portion of one’s life spent as a cancer survivor. The specific
quality adjustments used in our model are the same as Parmigiani [PARM02].

The marginal effectiveness for each screening strategy is calculated based
on the difference between the expected quality-adjusted life in years for women
in a cohort undergoing screening versus the same cohort of women without
screening. The summaries of interest are the expected gain in quality life years
(QALYS) and the expected total monetary cost for each screening strategy.
Marginal cost is the difference in total cost between the screened and un-
screened cohorts. The marginal effectiveness for each screening strategy is
the difference between the expected QALYS in the screened and unscreened
cohorts. The ratio is marginal cost per year of quality-adjusted life saved
(MCYQLS).

Three important issues to consider for screening policies are the age at
which a woman should start a screening program, the screening frequency,
and what screening modalities are to be used. In this study, we will evaluate
a total of 48 screening strategies with the following combinations:

• The age to begin and end periodic screening: 40-79, 45-79, and 50-79
years;

• The interval between consecutive examinations: 0.5, 1, 1.5 and 2 year(s);
• The combined use of MM and CBE: whether mammogram or CBE is given

for every one or every two exams.

Using the model described earlier, we generate a cohort of women and their
natural histories of disease, and assess how the screening strategies interact
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Table 1. Balance sheet for two alternative screening strategies: annual MM and
CBE screening and biennial MM and annual CBE. In both cases screening starts at
40 years of age and stops at age 79. Values are increments compared to no screening
for a cohort of 10000 breast cancer women.

Screening Strategy
MM/1,CBE/1 MM/2,CBE/1

Additional number of MM per woman 33 17
Additional number of CBE per woman 33 33
Additional number of false positives per woman 5.2 4.3
Additional years of life saved per woman 0.144 0.124
Additional women detected in preclinical state 867 810
Women treated unnecessarily 55 51

with the disease process and the survival after diagnosis. The quantities of
interest are estimated using 100,000 Monte Carlo replicates, for each of the
screening strategies.

In summary, we simulate a birth cohort of 100,000 women and follow them
through the years. A fraction of them will develop breast cancer according to
the age-specific incidence of pre-clinical breast cancer. For those women, we
generate the natural histories of their disease, which include their ages at the
onset of the preclinical disease, the pre-clinical durations (via tumor growth
rates), and ages at the clinical onset of the disease. When a screening strategy
is provided to a woman during a pre-clinical disease state, the probability that
her cancer will be detected by this screening strategy is generated using the
equations in Section 2.3, based on her age and tumor size at the time of the
exam. If the diagnosis is missed during the exam, her breast cancer may
be detected at her next scheduled exam or it may clinically manifest before
the next exam depending on the sojourn time of her preclinical disease state.
Once a woman is diagnosed to have breast cancer, we obtain her tumor size
and age at the time of detection. The information is then used to predict
the woman’s survival and quality-adjusted survival after the detection using
models developed in Section 2.2. The expected cost is estimated based on the
average cost of screening exams from the 100,000 women for each screening
strategy in the simulation.

A balance sheet is a summary of the expected benefits and harms of an
intervention. Its goal is to inform decision makers, and enable them to weigh
benefits and harms according to their individual values [MS99, BIG99]. Ta-
ble 1 is a balance sheet for evaluating two alternative screening strategies,
based on the model of this chapter. We consider annual MM and CBE screen-
ing (denoted by MM/1, CBS/1) and biennial MM and annual CBE (MM/2,
CBE/1). Differences between the two columns can inform decision makers
about whether annual or biennial MM are to be preferred once annual CBE is
planned. Elmore and colleagues [EBM98] collected data on a retrospective co-
hort study of breast cancer screening and diagnostic evaluations among 2400
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women who were 40 to 69 years old at study entry. False positive results oc-
curred in 6.5% of the mammograms, an estimate that was used here to trans-
late the estimated number of additional tests into estimated false positives. In
addition we assume that positive CBE’s would be followed by a mammogra-
phy, that 10% of CBE are false positive, and the two tests are independent of
each other. Then the overall false positive number per woman for the 1st strat-
egy is: (0.065+0.1−0.1∗0.065)∗33 = 5.2; and the overall false positive number
per woman for the 2nd strategy is 0.065 ∗ 17+0.1 ∗ 33− 0.1 ∗ 0.065 ∗ 17 = 4.3.

In Section 2.1, three model specification are discussed for the distribution
of sojourn times in the preclinical state of the disease. It is of interest to
investigate how these different models may impact the QALYs and expected
cost of each screening strategy reported by [SP05]. We find that the analyses
are fairly robust for the three model assumptions. The marginal QALYS is
slightly higher (about 1-2%) for the lognormal model than for the exponential
model for a given screening strategy. The relative marginal costs and QALYS
among the screening strategies under evaluation are similar for the three model
choices.

4 Discussion

Much attention has been focused on the early detection capabilities of new
breast cancer screening technologies, including advances in mammography
and MRI. The importance of clinical breast examination in breast cancer
screening programs seems to be unclear. Even though some recent studies
have indicated that regular CBE in addition to MM can be important in the
early detection of breast cancer, few studies have investigated the optimal use
of both mammography and clinical breast exam to reduce the mortality of
breast cancer while balancing the associated burdens and costs to women and
to the health care system.

Developing early detection guidelines and making public health policy re-
quires careful consideration of the long-term benefits, costs, and feasibility
associated with the screening strategies. In Shen and Parmigiani [SP05], we
explore the trade-off between the QALYS and costs related to each screening
strategy among several combinations of starting ages of screening, frequencies
of screening, and the use of two screening modalities. The study indicates that
starting from 40 years of age, a biennial mammogram is often cost-effective for
women who undergo annual clinical breast exams. Given the cost to women
who are already receiving care for other health issues or regular check-ups in
a clinic, an annual CBE as part of their routine examination should not add
much burden. Our analyses also indicate that CBE alone cannot replace reg-
ular mammography in screening practice, but can be used complementarily
or alternatively in a screening program.

The decision analysis methodology and simulation techniques developed
for this study can be directly applied to investigate other screening strategies,
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and even to other chronic diseases with certain modifications to the models.
We have modeled screening sensitivity for MM and CBE, respectively, through
age and tumor size at diagnosis. We have also introduced random variations
for the parameters to incorporate uncertainty of data input and population
heterogeneity. We have considered various models and parameters, and have
derived them based on data from the large randomized breast cancer screening
trials of the HIP [Sha97], CNBSS [MTB97], and the Nijmegen Trial [PVH93].
We have performed sensitivity analyses to assess the robustness of the patterns
of benefit and cost with the alternative models.

Our study has several limitations. The cost of a biopsy following a CBE or
MM that is positive for breast cancer has not been considered in the analysis.
Moreover, we have not included the potential costs of false-positive exams,
such as the anxiety, fear and discomfort that are associated with a biopsy. In
fact, it is often difficult to convert these factors into dollar amounts [EBM98].
In addition, we have not included important cost components, which are the
costs of follow-up procedures undertaken after the detection of breast cancer.
This is in part due to the great variation in treatment protocols and in the
cost of treating breast cancer that has existed over the years. Finally, we
have used a hypothetical birth cohort of women with 100% compliance in the
simulations for each screening strategy. In reality, it is rare to have 100%
compliance for any screening program, and a real cohort would be dynamic,
which would include changes in the cohort due to migration.
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Summary. Early stopping of clinical trials either in case of beneficial or deleterious
effect of treatment on quality of life (QoL) is an important issue. QoL is usually
evaluated using self-assessment questionnaires and responses to the items are com-
bined into scores assumed to be normally distributed (which is rarely the case). An
alternative is to use item response theory (IRT) models such as the Rasch model for
binary items which takes into account the categorical nature of the items.

Sequential analysis and mixed Rasch models (MRM) were combined in the con-
text of phaseII non-comparative trials. The statistical properties of the Sequential
Probability Ratio Test (SPRT) and of the Triangular Test (TT) were compared using
MRM and traditional average scores methods (ASM) by means of simulations.

The type I error of the SPRT and TT was correctly maintained for both methods.
While remaining a bit underpowered, MRM displayed higher power than the ASM
for both sequential tests. Both methods allowed substantial reductions in average
sample numbers as compared with fixed sample designs (about 60%).

The use of IRT models in sequential analysis of QoL endpoints is promising
and should provide a more powerful method to detect therapeutic effects than the
traditional ASM.

Key words: Quality of life; Item Response Theory; Rasch models; Sequential Prob-
ability Ratio Test; Triangular Test; Clinical Trials

1 Introduction

Clinical trials usually focus on endpoints that traditionally are biomedical
measures such as disease progression or survival for cancer trials, survival or
hospitalization for heart failure trials. However, such endpoints do not reflect
patient’s perception of his or her well-being and satisfaction with therapy.
Health-Related Quality of Life (QoL) which refers to "the extent to which
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one’s usual or expected physical, emotional and social well-being are affected
by a medical condition or its treatment" is an important health outcome
(Cella and Bonomi, 1995; Fairclough, 2002).

Non-comparative phase II trials, which are commonly designed to eval-
uate therapeutic efficacy as well as further investigation of the side-effects
and potential risks associated with therapy, often use QoL endpoints. Early
stopping of such trials either in case of beneficial or deleterious effect of the
treatment on QoL is an important matter (Cannistra, 2004). Ethical concerns
and economic reasons for the use of early stopping rules include the fact that
patients are recruited sequentially in a trial and that data from early recruited
patients are available for analysis while later patients are still being included
in the trial. Such a framework offers the possibility of using the emerging
evidence to stop the study as soon as the treatment effect on QoL becomes
clear. Early stopping of a trial can occur either for efficacy (when the trial
seems to show clear treatment advantage), safety (when the trial seems to
show clear treatment harm) or futility reasons (when the trial no longer has
much chance of showing any treatment benefit). However, it is well-known
that multiple looks at data result in inflation of the type I error α and in
the risk of over-interpretation of interim results. Thus, specific early termina-
tion procedures have been developed to allow for repeated statistical analyses
on accumulating data and for stopping a trial as soon as the information is
sufficient to conclude. Among the sequential methods that have been devel-
oped over the last few decades (Pocock, 1977; O’Brien and Fleming, 1979;
Lan and De Mets, 1983), the Sequential Probability Ratio Test (SPRT) and
the Triangular Test (TT), which were initially developed by Wald (Wald,
1947) and Anderson (Anderson, 1960) and later extended by Whitehead to
allow for sequential analyses on groups of patients (Whitehead and Jones,
1979; Whitehead and Stratton, 1983) have some of the interesting following
features. They allow for: (i) early stopping under H0 or under H1, (ii) the
analysis of quantitative, qualitative or censored endpoints, (iii) type I and II
errors to be correctly maintained at their desired planning phase values, (iv)
substantial sample size reductions as compared with the single-stage design
(of about 30% reductions can often be achieved).

Patient’s QoL is usually evaluated using self-assessment questionnaires
which consist of a set of questions often called items (which can be dichoto-
mous or polytomous) which are frequently combined to give scores for scales
or subscales. The common practice is to work on average scores which are
generally assumed to be normally distributed. However, these average scores
are rarely normally distributed and usually do not satisfy a number of basic
measurement properties including sufficiency, unidimensionality, or reliability.

More important, these scores are often used, knowingly or not, as a reduc-
tion of a bigger amount of data (each score is a “sufficient statistic” for a given
set of observed categorical items, and then is used as a surrogate for this set
of items), without indroducing clearly the mechanism of such reduction in the
likelihood.
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In Educational Sciences framework, or more generally in psychometry or
sociometry, models relating a set of observed items to a hidden latent con-
cept are called measurement models. Otherwise, models relating concepts
(directly observed or latent) are called analysis models. Item Response The-
ory (IRT), which was first mostly developed in educational testing, takes into
account the multiplicity and categorical nature of the items by introducing an
underlying response model (Fisher and Molenaar, 1995) relating those items
to a latent parameter having the nice property to be interpreted as the true
individual QoL. In this framework, the probability of response of a patient
on an item depends upon two different parameters: the "ability level" of the
person (which reflects his/her current QoL) and the "difficulty" of the item
(which reflects somehow the capacity of that specific item in discriminating
between good and bad QoL). IRT models are specific generalized linear mod-
els which were more developed from a ”measurement” point of view than from
an “analysis” one. However, an equivalent modeling framework could be re-
peated measures logistic regression since IRT modeling deals with repeated
items aimed at measuring an unobserved latent trait. IRT modeling, as a tool
for scientific measurement, is not quite well established in the clinical trial
framework despite a number of advantages offered by IRT to analyze clinical
trial data including: helpful solutions to missing data problems, the possibility
to determine whether items are biased against certain subgroups, an appro-
priate tool for dealing with ceiling and floor effects (Holman et al., 2003a).
Moreover, it has been suggested that IRT modeling offers a more accurate
measurement of health status and thus should be more powerful to detect
treatment effects (McHorney et al., 1997; Kosinski et al., 2003). Hence, IRT
modeling could be an interesting alternative to traditional sequential analysis
of QoL endpoints based only on average scores. Thus, we tried to evaluate
the benefit of combining sequential analysis and IRT methodologies in the
context of phase II non-comparative trials. We performed sequential analysis
of QoL endpoints (obtained from the observed data) using IRT modeling and
we compared the use of IRT modeling methods with the traditional use of
average scores methods.

2 Methods

2.1 IRT models

The basic assumption for IRT models is the unidimensionality property stat-
ing that all items of a questionnaire should measure the same underlying
concept (e.g., QoL) often called latent trait and noted θ. Another impor-
tant assumption of IRT models, which is closely related to the former, is the
concept of local independence meaning that items should be conditionally in-
dependent given the latent trait θ. It can be expressed mathematically by
writing the joint probability of a response pattern given the latent trait θ as
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a product of marginal probabilities. Let Xij be the answer for subject i to
item j and let θi be the unobserved latent variable (also called the ability, in
our context, we call it the QoL) for subject i (i = 1, . . . , N; j = 1, ..., k).

P (Xi1 = xi1, Xi2 = xi2, ..., Xik = xik/θi) =
k∏

j=1

P (Xij = xij/θi)

where (Xi1, Xi2, . . . , Xik) are a set of items (either dichotomous or polyto-
mous). In other words, the person’s ability or the person’s QoL should be the
only variable affecting individual item response. For any person i, or more ac-
curately for any given θi, the correponding response values Xijto the various
items j (j=1 to k) are independent as they were choosen randomly.

2.2 The Rasch Model

For binary items, one of the most commonly used IRT model is the Rasch
model, sometimes called the one parameter logistic model (Rasch, 1960). The
Rasch model specifies the conditional probability of a patient’s response xij

given the latent variable θind the item parameters βj :

P (Xij = xij/θi, βj) = f (xij/θi;βj) =
e(θi−βj) xij

1 + e(θi−βj)
,

where βj is called the difficulty parameter for item j (j = 1, . . . , k). Con-
trasting with other IRT models, in the Rasch model, a subject’s total score,

Si =
k∑

j=1

Xij is a sufficient statistic for a specific latent trait or ability θi.

Thus, when the total score of a questionnaire with binary items is used as a
measure of QoL, it is “knowingly or not” assumed that the Rasch model is the
true underlying model.

2.3 Estimation of the parameters

Several methods are available for estimating the parameters (the θs and βs)
in the Rasch model (Hamon, and Mesbah, 2002) including: joint maximum
likelihood (JML), conditional maximum likelihood (CML), and marginal max-
imum likelihood (MML). JML is used when person and item parameters are
considered as unknown fixed parameters. However, this method gives asymp-
totically biased and inconsistent estimates (Haberman, 1977). The second
method CML consists in maximizing the conditional likelihood given the total
score in order to obtain the items parameters estimates. The person parame-
ters are then estimated by maximizing the likelihood using the previous items
parameters estimates. This method has been shown to give consistent and
asymptotically normally distributed estimates of item parameters (Andersen,
1970). The last method MML is used when the Rasch model is interpreted
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as a mixed model with θ as a random effect having distribution h(θ, ζ) with
unknown parameters ζ. The distribution h is often assumed to belong to some
family distribution (often Gaussian) and its parameters are jointly estimated
with the item parameters. As with the CML method, the MML estimators
for the item parameters are asymptotically efficient (Thissen, 1982). Further-
more, since MML does not presume existence of a sufficient statistic (unlike
CML), it is applicable to virtually any type of IRT model.

2.4 Sequential Analysis

Traditional Sequential Analysis

In the traditional framework of sequential analysis (Wald, 1947; Whitehead,
1997; Jennison and Turnbull, 1999), θi is assumed to be observed (not to
be a latent value) and the observed score Si is used as a “surrogate” of the
true latent trait θi. In that setting, we generally assume that θ1, θ2, . . . , θN

are N independent variables following distribution f(θ1), f(θ2), . . . , f(θN ) with
unknown individual parameters ϕi and ϕi (i = 1, ..., N). We shall assume
that those individual parameters are the same, i.e., that ∀i (i = 1, ..., N),
ϕi = ϕ (parameter of interest) and ϕi = ϕ (vector of nuisance parameters),
and that the trial involves the comparison of the two following hypotheses:
H0: ϕ < 0 against H1: ϕ > 0, In that classical setting, the decision is based
on the likelihood of the data, i.e. on:

L (θ1, θ2, ..., θN/ϕ, ϕ) = fϕ,ϕ (θ1) · fϕ,ϕ (θ2) ...fϕ,ϕ (θN )

Values ϕ0 < ϕ1 are chosen and the following continuation region is used for
the sequential test for suitable values of Bα,β < 1 < Aα,β (Wald, 1947):

L (θ1, θ2, ..., θN/ϕ1, ϕ̂ (ϕ1))
L (θ1, θ2, ..., θN/ϕ0, ϕ̂ (ϕ0))

∈ (Bα,β , Aα,β)

where ϕ̂ (ϕ0) (ϕ̂ (ϕ1)) denotes the maximum likelihood estimate of ϕ for ϕ =
ϕ0 (ϕ = ϕ1).

If the terminal value of the likelihood ratio is below Bα,β , then H0 is no
rejected, if it is above Aα,β , then H0 is rejected. It is well-known that if ϕ0

and ϕ1 are assumed to be small (Whitehead, 1997), the log likelihood function
l (ϕ, ϕ̂ (ϕ)) can be approximated using Taylor expansion up to quadratic terms
in ϕ for ϕ = ϕ0 or ϕ = ϕ1. Thus, the continuation region can be simplified in
the following way:

Z (S) ∈
(

log B

ϕ1 − ϕ0
+

1
2

(ϕ1 + ϕ0) · V (S) ,
log A

ϕ1 − ϕ0
+

1
2

(ϕ1 + ϕ0) · V (S)
)

where the Z(S) statistic is the efficient score for ϕ depending on the observed
scores S, and the V(S) statistic is Fisher’s information for ϕ.
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More precisely: Z (S) = lϕ (0, ϕ̂ (0)) and V (S) = −{ lϕϕ (0, ϕ̂ (0)) }−1

where:
- lϕ (0, ϕ̂ (0)) denotes the first partial derivative of l (ϕ,ϕ) with respect to

ϕ, evaluated at (0, ϕ̂ (0)),
- the leading element of the inverse of the matrix of second derivatives is

denoted by lϕϕ (ϕ,ϕ), that is:

{ lϕϕ (ϕ,ϕ) }−1 = lϕϕ (ϕ,ϕ) − { lϕϕ (ϕ,ϕ) }
′
{ lϕϕ (ϕ,ϕ) }−1

lϕϕ (ϕ,ϕ)

where lϕϕ (0, ϕ̂ (0)) denotes the second partial derivative of l (ϕ,ϕ) with re-
spect to ϕ, evaluated at (0, ϕ̂ (0)), and lϕϕ (0, ϕ̂ (0)) denotes the mixed deriva-
tive.

Asymptotic distributional results have shown that for large samples and
small ϕ, Z(S) follows a normal distribution: Z(S) ∼ N( ϕV(S), V(S) ). More
precisely, let a sequential study with up to K analyses produce the sequence
of test statistics (Z1(S), Z2(S), . . . , ZK(S)). The sequence (Z1(S), Z2(S),
. . . , ZK(S)) is multivariate normal with: Zk(S) ∼ N(ϕVk(S), Vk(S)) and
Cov(Zk1(S), Zk2(S)) = Vk1(S) for k = 1, 2, . . . , K and 1 ≤ k1 ≤ k2 ≤ K
(Whitehead, 1997; Jennison and Turnbull, 1999).

Sequential Analysis based on Rasch measurements

We shall now be interested in the latent case, i.e., the case where θi is un-
observed. Thus, the likelihood will be different, because the likelihood is
traditionally a function of the observations, not of the unobserved variables.
The following steps will be used in order to obtain the likelihood that we need
for sequential testing.

1. The Rasch model specifies the conditional distribution of item response
given the latent variable θi and item parameters βj :

f (xij/θi;βj) =
e(θi−βj) xij

1 + e(θi−βj)
= fβj

(xij/θi)

2. We can then write:

fβj (xij/θi) =
fβj ,ϕ,ϕ (xij , θi)

fϕ,ϕ (θi)

and get the joint distribution of the observed xij and the latent variable
θi:

fβj ,ϕ,ϕ (xij , θi) = fϕ,ϕ (θi) · fβj
(xij/θi)

3. The likelihood is obtained after marginalizing over the unobserved latent
variable θi:

fβj ,ϕ,ϕ (xij , .) =
∫

fϕ,ϕ (θi) fβj
(xij/θi) dθi
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4. Local independence of items allows us to derive the likelihood of a subject:

fβ1,β2,...,βk,ϕ,ϕ (xi1, xi2, ..., xik) =
∫

fϕ,ϕ (θi)
∏
j

fβj (xij/θi) dθi

5. Finally, independence of subjects allows us to obtain the likelihood:∏
i

fβ1,β2,...,βk,ϕ,ϕ (xi1, xi2, ..., xik) =
∏

i

∫
fϕ,ϕ (θi)

∏
j

fβj
(xij/θi) dθi

Using the notation η = (β1, β2, . . . , βk, ϕ), we can write:

L (θ1, θ2, ..., θN ;ϕ, η (ϕ)) =
∏

i

∫
fϕ,ϕ (θi)

∏
j

fβj
(xij/θi) dθi

or, more precisely:

L (θ1, θ2, ..., θN ;ϕ, η (ϕ)) =
∏

i

∫
fϕ,ϕ (θi)

∏
j

e(θi−βj) xij

1 + e(θi−βj)
dθi (1)

Estimation of parameters

We assumed that the latent trait θ followed a normal distribution ∼ N(µ,
σ2) and that we are testing: H0: µ = µ0 = 0 against H1: µ > 0. In
this framework, the parameters of interest is µ and the vector of nuisance
parameters is η = (β1, β2, . . . , βk, σ).

>From (1), the log likelihood is:

l (θ1, θ2, ..., θN ;µ, η (µ)) =
∑

i

log

⎧⎨⎩
∫

1
σ
√

2π
e−

1
2σ2 (θi−µ)2

∏
j

e(θi−βj) xij

1 + e(θi−βj)
dθi

⎫⎬⎭
Let ξi = (θi − µ)/σ, then:

l(ξ1, ξ2, . . . , ξN ; µ, η(µ)) =
∑
i

log

{∫ ∏
j

e(σξi+µ−βj) xij

1+e(σξi+µ−βj)
· g (ξi) dξi

}
where g is the density of the standard normal distribution.

Z and V statistics

The statistic Z which was previously defined and noted Z(S) will be depending
this time on X, the responses to the items, which contain all the information
on the items: Z(X) = lµ(0,η̂ (0)) where η̂ (0) is the MLE of η under H0 (µ =
µ0 = 0), and η̂ (0) = η∗= (β∗

1 , β∗
2 , . . . , β∗

k , σ∗), with β∗ = β̂1 (0), . . . ,
σ∗ = σ̂ (0). Then, we can write: Z(X) = lµ(0, β0

1 , β0
2 , . . . , β0

k, σ0). We
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assumed that the β0
1 , β0

2 , . . . , β0
k were known and we computed the MLE of

σ under the null hypothesis in order to further estimate the Z(X) and V(X)
statistics. More details are given in Appendix 1. Estimation of the statistics
Z(X) and V(X) was done by maximising the marginal likelihood, obtained
from integrating out the random effects. Numerical integration methods had
to be used because it is not possible to provide an analytical solution. We
used the well-known adaptive Gauss-Hermite quadrature to obtain numerical
approximations (Pinheiro and Bates, 1995).

2.5 The Sequential Probability Ratio Test and the Triangular Test

The statistics Z and V were noted Z(S) and V(S) in the case of traditional
sequential analysis based on sufficient scores and Z(X) and V(X) in the case
of a joint sequential and Rasch analysis based directly on observed items.
However, for the ease of the general presentation of the tests we shall use
the notations Z and V here. The SPRT and the TT tests use a sequential
plan defined by two perpendicular axes, the horizontal axis corresponds to
Fisher’s information V, and the vertical axis corresponds to the efficient score
Z which represents the benefit as compared with H0. The TT appears on figure
1.1. For a one-sided test, the boundaries of the test, delineate a continuation
region (situated between these lines), from the regions of non rejection of H0

(situated beneath the bottom line) and of rejection of H0 (situated above
the top line). The boundaries depend on the statistical hypotheses (values
of the expected treatment benefit, α and β and on the number of subjects
included between two analyses. They can be adapted at each analysis when
this number varies from one analysis to the other, using the “Christmas tree”
correction (Siegmund, 1979). The expressions of the boundaries for one-sided
tests (Sébille and Bellissant, 2001) are given in Appendix 2. At each analysis,
the values of the two statistics Z and V are computed and Z is plotted against
V, thus forming a sample path as the trial goes on. The trial is continued
as long as the sample path remains in the continuation region. A conclusion
is reached as soon as the sample path crosses one of the boundaries of the
test: non rejection of H0 if the sample path crosses the lower boundary, and
rejection of H0 if it crosses the upper boundary.

2.6 Study framework

We simulated 1000 non-comparative clinical trials with patient’s item re-
sponses generated according to a Rasch model. The latent trait θi was as-
sumed to follow a normal distribution with mean µ and variance σ2= 1 and
the trial we considered involved the comparison of the two hypotheses: H0:
µ = µ0 = 0 against H1: µ > 0. The minimum clinically relevant differ-
ence (a difference worth detecting) often computed as an effect size (ratio of
the minimum clinically relevant difference to the standard deviation) is often
measured as µ−µ0

σ in clinical trial practice. Since µ0 = 0 and the standard



Sequential Analysis of QoL Rasch Measurements 429

Fig. 1. Stopping boundaries based on the Triangular Test (TT) for α = β = 0.05
with an effect size (ES) of 0.5.

deviation of θ is equal to one, the effect size will be equal to µ in our case.
In practice, effect sizes of interest seen in published research range from 0.2
(small) to 0.8 (large) but the magnitude of effect size primarily depends on
the subject matter. Indeed, in medical research effect sizes of 0.5 or 0.6 may
be considered as large effect sizes. To our knowledge, there are no well-known
conventional values for the effect size that could be most appropriate for QoL
endpoints since they closely depend on the medical context under considera-
tion. However, it seems that effect sizes ranging from 0.4 to 0.6 could be of
interest (Lacasse et al., 1996). We assumed that the items under consideration
formed part of a calibrated item bank, meaning that items parameters were
assumed to be known (Holman et al., 2003b). The items parameters were
uniformly distributed in the interval (-2, 2) and

∑
j

βj = 0. The average score

methods simply used the sum of item scores S for each patient, assuming a
normal distribution and the Z(S) and V(S) statistics were computed within the
well-known framework of normally distributed endpoints (Whitehead, 1997).

We compared in the context of sequential analysis of QoL endpoints the
use of Rasch modelling methods with traditional average scores methods. The
statistical properties of the SPRT and of the TT were studied in the setting of
one-sided non-comparative trials. We studied the type I error (α), power (1-
β), average sample number (ASN) and 90th percentile (P90) of the number of
patients required to reach a conclusion using simulations. The sequential tests
were compared with the traditional method using the SPRT or TT based on
the averages of patient’s scores. We investigated scales with 10 or 20 items,
3 �= expected effect sizes (0.4, 0.5 and 0.6), and sequential analyses were
performed every 20 included patients. The SAS PROC NLMIXED allowed
Quasi-Newton procedures to maximise the likelihood and adaptive Gaussian
quadrature was used to integrate out the random effects. The sequential tests
were all programmed in C++ language.
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3 Results

Table 1.1 shows the type I error for different values of the effect size, number
of items and nominal power for the TT using either the average scores or the
Rasch modelling method. The significance level was close to the target value
of 0.05 for the average scores method but slightly increased when a 10 items
scale was used as compared with a 20 items scale. The significance level was
always lower than the target value of 0.05 for the Rasch modeling method for
all effect sizes, number of items used, and nominal power values. Moreover,
the significance level seemed to decrease as the effect size increased.

Table 1. Type I error for the Triangular Test using either the average scores method
or the Rasch modelling method for different values of the effect size, number of items
and power (nominal α = 0.05). Data are 	

α (standard errors).

Effect size Nb of
items

Average scores Rasch model

Power 0.90 0.95 0.90 0.95
0.4 10 0.056

(0.007)
0.062
(0.008)

0.033
(0.006)

0.035
(0.006)

0.4 20 0.049
(0.007)

0.049
(0.007)

0.036
(0.006)

0.034
(0.006)

0.5 10 0.057
(0.007)

0.055
(0.007)

0.027
(0.005)

0.033
(0.006)

0.5 20 0.050
(0.007)

0.044
(0.006)

0.020
(0.004)

0.033
(0.006)

0.6 10 0.052
(0.007)

0.053
(0.007)

0.020
(0.004)

0.028
(0.005)

0.6 20 0.049
(0.007)

0.046
(0.007)

0.014
(0.004)

0.018
(0.004)

Table 1.2 shows the power for different values of the effect size, number
of items and nominal power for the TT using either the average scores or the
Rasch modelling method. The TT was underpowered especially when using
the averages scores method as compared with the Rasch modelling method.
For instance, as compared with the target power value of 0.95, there were
decreases in power of approximately 12% and 7% with 10 and 20 items, re-
spectively for the averages scores method. By contrast, the decrease in power
was of about only 5% for the Rasch modelling method, whatever the num-
ber of items used. Moreover, the power seemed to decrease as the effect size
increased.

Table 1.3 shows the ASN of the number of patients required to reach a
conclusion under H0 and H1 for different values of the effect size, number
of items and nominal power for the TT using either the average scores or
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Table 2. Power for the Triangular Test using either the average scores method or
the Rasch modelling method for different values of the effect size, number of items
and power (nominal α = 0.05). Data are β̂ (standard errors).

Effect size Nb of
items

Average scores Rasch model

Power 0.90 0.95 0.90 0.95
0.4 10 0.723

(0.014)
0.821
(0.012)

0.848
(0.011)

0.927
(0.008)

0.4 20 0.812
(0.012)

0.869
(0.011)

0.852
(0.011)

0.919
(0.009)

0.5 10 0.769
(0.013)

0.837
(0.012)

0.831
(0.012)

0.907
(0.009)

0.5 20 0.825
(0.012)

0.902
(0.009)

0.812
(0.012)

0.910
(0.009)

0.6 10 0.782
(0.013)

0.846
(0.011)

0.807
(0.012)

0.898
(0.010)

0.6 20 0.834
(0.012)

0.891
(0.010)

0.772
(0.013)

0.874
(0.010)

the Rasch modelling method. We also computed for comparison purposes
the approximate number of patients required by a single-stage design (SSD)
using IRT modelling from the results published in a recent paper (Holman
et al., 2003a). As expected, the ASNs all decreased as the expected effect
sizes increased whatever the method used. The ASNs under H0 and H1 were
always much smaller for both methods based either on averages scores or
Rasch modelling than for the SSD for whatever values of effect size, number
of items or nominal power considered. The decreases in the ASNs were a
bit larger for the averages scores method followed by the Rasch modelling
method. For instance, under H0 (H1) as compared with the SSD, there were
decreases of approximately 70% (65%) and 60% (55%) in sample size for the
averages scores and the Rasch modelling method, respectively.

Table 1.4 shows the P90 of the number of patients required to reach a
conclusion under H0 and H1 for different values of the effect size, number of
items and nominal power for the TT using either the average scores or the
Rasch modelling method. In most cases, the P90 values of the sample size
distribution under H0 and H1were of the same order of magnitude for the
average scores and the Rasch modelling method. Moreover, the P90 always
remained lower for both methods based either on averages scores or Rasch
modelling than for the SSD whatever values of effect size or number of items
considered.

The operating characteristic (OC) function (figure 1.2), which is the prob-
ability of accepting H0, was computed for the SPRT using either the average
scores or the Rasch modelling method under H0 (where it should be equal
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Table 3. ASN required to reach a conclusion under H0 for the Triangular Test using
either the average scores method or the Rasch modelling method for different values
of the effect size, number of items and power (nominal α = 0.05).(* When using
IRT: approximate number of subjects required in a single-stage design (SSD)).

Effect
size

Nb of
items.

IRT* Average
scores

Rasch model

Power 0.90 0.95 0.90
H0 / H1

0.95
H0 / H1

0.90
H0 / H1

0.95
H0 / H1

0.4 10 ∼ 75 ∼ 125 34.24 /
42.58

41.50 /
50.70

49.70 /
62.62

60.78 /
71.44

0.4 20 ∼ 70 ∼ 120 34.30 /
40.62

42.42 /
46.86

42.10 /
52.50

51.44 /
59.16

0.5 10 ∼ 60 ∼ 100 24.74 /
29.10

29.04 /
33.84

33.72 /
43.10

41.34 /
48.60

0.5 20 ∼ 55 ∼ 95 24.46 /
28.50

29.02 /
33.06

29.68 /
37.16

35.02 /
42.52

0.6 10 ∼ 45 ∼ 80 21.24 /
22.78

23.16 /
25.60

26.24 /
32.46

30.38 /
36.88

0.6 20 ∼ 45 ∼ 80 21.20 /
22.78

22.96 /
24.98

23.38 /
27.64

26.92 /
31.52

Table 4. P90 of the number of patients required to reach a conclusion under H0 for
the Triangular Test using either the average scores method or the Rasch modelling
method for different values of the effect size, number of items and power (nominal
α = 0.05).(* When using IRT: approximate number of subjects required in a single-
stage design (SSD)).

Effect
size

Nb of
items

*IRT Average
scores

Rasch model

Power 0.90 0.95 0.90
H0 / H1

0.95
H0 / H1

0.90
H0 / H1

0.95
H0 / H1

0.4 10 ∼ 75 ∼ 125 60 / 60 60 / 80 80 / 100 100 / 100
0.4 20 ∼ 70 ∼ 120 60 / 60 60 / 80 60 / 80 80 / 100
0.5 10 ∼ 60 ∼ 100 40 / 40 40 / 60 60 / 60 60 / 80
0.5 20 ∼ 55 ∼ 95 40 / 40 40 / 60 40 / 60 60 / 60
0.6 10 ∼ 45 ∼ 80 20 / 40 40 / 40 40 / 40 40 / 60
0.6 20 ∼ 45 ∼ 80 20 / 40 40 / 40 40 / 40 40 / 40
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Fig. 2. Operating characteristic (OC) function (probability of accepting H0) com-
puted for the Sequential Probability Ratio Test (SPRT) using either the average
scores or the Rasch modelling method under H0 and under H1 with an effect size of
0.5 and a nominal power of 0.95.

Fig. 3. Average Sample Number (ASN) under H0 and H1 (effect size of 0.5) for
the Sequential Probability Ratio Test (SPRT) using the average scores or the Rasch
modelling method and approximate sample size required by the SSD using IRT
modelling (SSD_IRT).

to 0.95) and under H1 with an effect size of 0.5 and a nominal power of 0.95
(where it should be equal to 0.05). As observed with the TT, we can see that
the OC functions of the SPRT are quite similar under H0 for both methods
whereas under H1, the Rasch modelling method seems more accurate, that is
closer to the nominal value of 0.05 than the average scores method which is
higher. Figure 1.3 shows the ASNs under H0 and H1 (effect size of 0.5) for the
SPRT using the average scores or the Rasch modelling method as well as the
approximate sample size required by the SSD using IRT modelling. As with
the TT, the ASNs were always much lower using either the average scores or
the Rasch modelling method as compared with the sample size required by
the SSD. Moreover, we observed that the ASN of the SPRT was a bit higher
using the Rasch model as compared with the average scores method.
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Table 5. Distributions of the Z(S), V(S), Z(X), and V(X) statistics under H0 esti-
mated with the average scores (A) or the Rasch modeling (R) method. *: Number
of Patients is Cumulated number of included patients since the beginning of the
trial. Data are: Z (S) , V (S) , Z (X), and V (X) : sample means; (Var): variance of
Ẑ (S) or Ẑ (X) §: p (Kolmogorov-Smirnov)=0.005.

Method A Method R
Number
of pa-
tients*

Number
of
items

Z (S)
(Var)

V (S) Z (X)
(Var)

V (X)

40 10 0.087§
(38.897)

39.514 0.070
(23.158)

27.457

20 -0.007
(39.135)

39.511 0.015
(31.456)

33.362

60 10 0.076
(61.188)

59.491 -0.056
(35.628)

39.923

20 -0.060
(56.238)

59.532 0.102
(44.488)

48.598

100 10 -0.179
(104.283)

99.479 -0.262
(62.286)

65.186

20 -0.381
(96.579)

99.517 -0.247
(76.248)

79.193

4 Discussion

We evaluated the benefit of combining sequential analysis and IRT method-
ologies in the context of phase II non-comparative clinical trials with QoL
endpoints. We studied and compared the statistical properties of the SPRT
and of the TT using either a Rasch modeling method or the traditional aver-
age scores method. Simulation studies showed that: (i) the type I error α was
correctly maintained but seemed to be lower for the Rasch modeling method
as compared with the average scores method, (ii) both methods seemed to be
underpowered, especially the average scores method, the power being higher
when using the Rasch modeling method, (iii) as expected using sequential
analysis, both methods allowed substantial reductions in ASNs as compared
with the SSD, the average scores method allowing smaller ASNs than the
Rasch modeling method.

The fact that the Rasch modeling method seemed to be more conserva-
tive than the average scores method in terms of significance level might be
partly explained by looking at the distributions of the Z(S), V(S), Z(X), and
V(X) statistics under H0 (table 1.5) under different conditions. According
to asymptotic distributional results, we might expect the sequences of test
statistics (Z1(S), Z2(S), . . . , ZK(S)) and (Z1(X), Z2(X), . . . , ZK(X)) to be
multivariate normal with: Zk(S) ∼ N(0, Vk(S)) and Zk(X) ∼ N(0, Vk(X)),
respectively, under H0 for k = 1, 2, . . . , K analyses (Whitehead, 1997; Jen-
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nison and Turnbull, 1999). The normality assumption was not rejected using
a Kolmogorov-Smirnov test, except for the average scores method with a 10-
items scale when Z(S) was estimated on only 40 patients (corresponding to
the second interim analysis). Moreover, the variance of Ẑ (S) and of Ẑ (X)
were quite close to V (S) and V (X), respectively, in most cases. However,
the variance of Ẑ was always lower when the estimation was performed us-
ing the Rasch modeling method (Ẑ (X)) as compared with the average scores
method (Ẑ (S), p < 0.001, for all cases), suggesting that the estimator of Z
using Rasch modeling might be more efficient. The same feature was observed
under H1 (data not shown) except for the normality assumption which did
not hold when a 20-items scale was used for both methods. This might ex-
plain why the SPRT and TT were underpowered, especially when using the
average scores method. However, a more thoughtful theoretical study of the
distributions of the statistics Z(S), Z(X) and V(S), V(X) which were obtained
using both methods would be worth investigating.

Several limitations to our study are worth being mentioned. Firstly, we
assumed all items parameters to be known which is unrealistic (at least for
most scales). An option could be to investigate 2-stage estimation (Andersen,
1977) using item parameters estimates as known constants. However, prob-
lems with small sample sizes might occur especially in the context of sequential
analysis of clinical trials where interim analyses are often performed on less
than 50 patients and further work is needed. Secondly, some further sensi-
tivity analyses could be worthwhile such as investigating the effects on the
results of: (i) changing the number of items (either <10 or >20), (ii) looking
at smaller or larger effects sizes than the ones investigated, and (iii) evaluating
the potential effects of changing the frequency of the sequential analyses ( �=
20 patients). Other types of investigations could also be interesting, such as:
applying these combined methodologies to comparative clinical trials (phase
III trials), evaluating the impact on the statistical properties of the sequential
tests of the amount of missing data (often encountered in practice) and miss-
ing data mechanisms (missing completely at random, missing at random, non
ignorable missing data). In addition, other group sequential methods could
also be investigated such as spending functions (Lan and De Mets, 1983), and
Bayesian sequential methods (Grossman et al., 1994) for instance. Finally, we
only worked on binary items and polytomous items more frequently appear
in health-related QoL scales used in clinical trial practice. Other IRT models
such as the Partial Credit Model or the Rating Scale Model (Andrich, 1978;
Masters, 1982) would certainly be more appropriate in this context and are
currently being investigated (work in progress).

5 Conclusion

Item response theory usually provides more accurate assessment of health
status as compared with summation methods (McHorney et al., 1997; Kosinski
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et al., 2003). The use of IRT methods in the context of sequential analysis
of QoL endpoints seems to be promising and might provide a more powerful
method to detect therapeutic effects than the traditional summation method.
Even though the number of subjects required to reach a conclusion seemed
to be a bit higher using IRT (one more sequential analysis was needed), the
trade-off between small ASN versus a satisfying precision of the estimation of
treatment effect is an open question.

Finally, there are a number of challenges for medical statisticians using IRT
that may be worth to mention: IRT was originally developed in educational
research using samples of thousands or even ten thousands. Such large sample
sizes are very rarely (almost never) attained in medical research where medical
interventions are often assessed using less than 200 patients. The problem is
even more crucial in the sequential analysis framework where the first interim
analysis is often performed on fewer patients. Moreover, IRT and associated
estimation procedures are conceptually more difficult than the summation
methods often used in medical research. Perhaps one of the biggest chal-
lenges for medical statisticians will be to explain these methods well enough
so that clinical researchers will accept them and use them. As in all clinical
research but maybe even more in this context, there is a real need for good
communication and collaboration between clinicians and statisticians.

6 References

Andersen, E. B. (1970) Asymptotic properties of conditional maximum like-
lihood estimators. J. R. Statist. Soc. B, 32, 283-301.

Andersen, E. B. (1977) Estimating the parameters of the latent population
distribution. Psychometrika, 42, 357-374.

Anderson, T. W. (1960) A modification of the sequential probability ratio
test to reduce the sample size. Ann. Math. Stat., 31, 165-197.

Andrich, D. (1978) A rating formulation for ordered response categories.
Psychometrika, 43, 561-573.

Cannistra, S. A. (2004) The ethics of early stopping rules: who is protect-
ing whom? J. Clin. Oncol., 22, 1542-1545.

Cella, D. F. and Bonomi, A. E. (1995) Measuring quality of life: 1995
update. Oncology, 9, 47-60.

Fairclough, D. L. (2002) Design and analysis of quality of life studies in
clinical trials. Boca Raton: Chapman & Hall/CRC.

Fisher, G.H. and Molenaar, I.W. (1995) Rasch Models, Foundations, Re-
cent Developments, and Applications. New-York: Springer-Verlag.

Grossman, J., Parmar, M. K., Spiegelhalter, D. J., Freedman, L. S. (1994)
A unified method for monitoring and analysing controlled trials. Statist.
Med., 13, 1815-1826.

Haberman, S. J. (1977) Maximum likelihood estimates in exponential re-
sponse models. Ann. Statist., 5, 815-841.



Sequential Analysis of QoL Rasch Measurements 437

Hamon, A. and Mesbah, M. (2002) Questionnaire reliability under the
Rasch model. In Mesbah, M., Cole, B. F., Lee, M. L. T. (eds.) Statistical
Methods for Quality of Life Studies: Design, Measurements and Analysis.
Amsterdam: Kluwer.

Holman, R., Glas, C. A., and de Haan, R. J. (2003a) Power analysis
in randomized clinical trials based on item response theory. Control. Clin.
Trials, 24, 390-410.

Holman, R., Lindeboom, R., Glas, C. A. W., Vermeulen M., and de Haan,
R. J. (2003b) Constructing an item bank using item response theory: the
AMC linear disability score project. Health. Serv. Out. Res. Meth., 4,
19-33.

Jennison, C. and Turnbull, B. W. (1999) Group Sequential Methods with
Applications to Clinical Trials. Boca Raton: Chapman & Hall/CRC.

Kosinski, M., Bjorner, J. B., Ware, J. E. Jr, Batenhorst, A., and Cady R.
K. (2003) The responsiveness of headache impact scales scored using ’classical’
and ’modern’ psychometric methods: a re-analysis of three clinical trials.
Qual. Life. Res., 12, 903-912.

Lacasse, Y., Wong, E., Guyatt, G. H., King, D., Cook, D. J., and Goldstein
R. S. (1996) Meta-analysis of respiratory rehabilitation in chronic obstructive
pulmonary disease. Lancet, 348, 115-1119.

Lan, K. K. G. and De Mets, D. L. (1983) Discrete sequential boundaries
for clinical trials. Biometrika, 70, 659-663.

Masters, G. N. (1982) A Rasch model for partial credit scoring. Psychome-
trika, 47, 149-174.

McHorney, C. A., Haley, S. M., and Ware, J.E. Jr. (1997) Evaluation of the
MOS SF-36 Physical Functioning Scale (PF-10): II. Comparison of relative
precision using Likert and Rasch scoring methods. J. Clin. Epidemiol., 50,
451-461.

O’Brien, P. C. and Fleming, T. R. (1979) A multiple testing procedure for
clinical trials. Biometrics, 35, 549-556.

Pinheiro, J. C. and Bates, D. M. (1995) Approximations to the Log-
likelihood Function in the Nonlinear Mixed-effects Model. J. Comput. Graph.
Statist., 4, 12-35.

Pocock, S. J. (1977) Group sequential methods in the design and analysis
of clinical trials. Biometrika, 64, 191-199.

Rasch, G. (1960) Probabilistisc models for some intelligence and attain-
ment tests. Copenhagen, D.K.:Nielsen & Lydiche. [Expanded edition, 1980,
Chicago: The University of Chicago Press].

Sébille, V. and Bellissant, E. (2001) Comparison of the two-sided single
triangular test to the double triangular test. Control. Clin. Trials, 22, 503-
514.

Siegmund, D. (1979) Corrected diffusion approximations in certain random
walk problems Adv. Appl. Probab., 11, 701-719.

Thissen, D. (1982) Marginal maximum likelihood estimation for the one-
parameter logistic model. Psychometrika, 47, 175-186.



438 V.Sebille and M.Mesbah

Wald, A. (1947). Sequential Analysis. New York, U.S.A.: Wiley.
Whitehead, J. and Jones, D. R. (1979) The analysis of sequential clinical

trials. Biometrika, 66, 443-452.
Whitehead, J. and Stratton, I. (1983) Group sequential clinical trials with

triangular continuation regions. Biometrics, 39, 227-236.
Whitehead, J. (1997) The Design and Analysis of Sequential Clinical Tri-

als, revised 2nd edition. Chichester, U.K.:Wiley.

7 Appendix 1

7.1 1. MLE of σ under H0(µ = µ0 = 0)

The first derivative of the log likelihood with respect to σ is:
lσ(ξ1, ξ2, . . . , ξn; µ, σ) = ∂l(ξ1,ξ2,...,ξn;µ,σ)

∂σ =∑
i

∂
∂σ log

{∫ ∏
j

[
e(σξi+µ−βj) xij

1+e(σξi+µ−βj)

]
· g (ξi) dξi

}
We have to solve, for σ, the following equation to get σ̂ (0) = σ∗:

lσ(ξ1, ξ2, . . . , ξn; 0, σ) =
∑
i

∂
∂σ log

{∫ ∏
j

[
e(σξi−βj) xij

1+e(σξi−βj)

]
· g (ξi) dξi

}
= 0

7.2 2. Efficient score: Z(X) statistic under H0(µ = µ0 = 0)

The first derivative of the log likelihood with respect to µ is:
The first derivative of the log likelihood with respect to µ is:
lµ(ξ1, ξ2, . . . , ξn; µ, σ) = ∂l(ξ1,ξ2,...,ξn;µ,σ)

∂µ =∑
i

∂
∂µ log

{∫ ∏
j

e(σξi+µ−βj) xij

1+e(σξi+µ−βj)
· g (ξi) dξi

}

Z(X) = lµ(ξ1, ξ2, . . . , ξn; 0, σ∗) =
∑
i

∂
∂µ log

{∫ ∏
j

e(σ∗ξi−βj) xij

1+e(σ∗ξi−βj)
· g (ξi) dξi

}

7.3 3. Fisher’s information: V(X) statistic under H0(µ = µ0 = 0)

Fisher’s information V(X) will be: V (X) = −{ lµµ (0, σ∗) }−1 with:

{ lµµ (0, σ∗) }−1 = lµµ (0, σ∗) − { lµσ (0, σ∗) }
′
{ lσσ (0, σ∗) }−1

lµσ (0, σ∗)
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8 Appendix 2

8.1 Stopping boundaries for the one-sided SPRT and TT

The stopping boundaries, allowing to detect an effect size (ES) with working
significance level α and power 1-β (with β = α), are:

Z = -a + bV (lower boundary) and Z = a + bV (upper boundary) for the
one-sided SPRT,

Z = -a + 3cV (lower boundary) and Z = a + cV (upper boundary) for the
one-sided TT,

with a = a′ − 0.583
√
I, b = 1

2 · ES, c = 1
4 · ES and I = Vi − Vi−1 where

Vi is the information available at inspection i (V0= 0) for both tests, and
a′ = 1

ES log
(

1−α
α

)
for the one-sided SPRT, and a′ = 2

ES log
(

1
2α

)
for the

one-sided TT.
The correction 0.583

√
I is used to adjust for the discrete monitoring of the

data (Siegmund, 1979). When β �= α, a corrected value of the effect size ES
must be used to compute the equations of the boundaries. In this case, the
boundaries of the tests are computed from an exact formula.
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Summary. Not doubts that measures of short-term treatment effects (remission or
response rates) are presenting great interest to provide more efficient treatments.
However, for all diseases with unfavorable prognosis, to which pertains hemoblasto-
sis, life expectancy is the most important feature. The irrevocable decision about the
choice between two different treatment options is usually based on survival functions
comparison. Unfortunately, this analysis is not able to reveal critical periods in dis-
ease course with distinct maximum mortality rates. Clearly, this information is very
important for clinicians efforts to distinguish time intervals when patients should be
specially carefully monitored. A retrospective study of the overall survival function
among patients with multiple myeloma (MM), acute nonlymphoblastic leukemia
(ANLL) and chronic myeloprolypherative disorders (CMPD), treated in our hos-
pital, was performed. These data were complemented with results for the hazard
function estimations for each form of hemoblastosis. We found different types of
hazard function curves, and we expect that it would be better for treatment results
evaluation to use together both survival and hazard function analysis.

1 Patients and method

163 MM patients (120 male and 43 female), 125 ANLL patients (102 male
and 23 female) and 106 patients with CMPD (79 male and 27 female) were
registered. Age of MM and CMPD patients has demonstrated typically el-
derly patients predominance. Three fourth of those patients were more than
50 years old. However, ANLL patients age was atypical as three fourth of
those patients were less than 50 years old [OLS99]. MM patient age ranged
from 33 to 83, with a median of 66. ANLL patient age ranged from 18 to 86,
with a median of 34. CMPD patient age varied from 26 to 84 with a median
of 60. One may notice that all cohorts had an abnormally high male rate.
Female fraction varied from 17,5% in ANLL patients to 26,4% in MM. This
is a consequence of peculiar properties of contingent supervised in military
hospital. Among patients with ANLL M0 leukemia subvariant was diagnosed
in 3 patients, M1 - in 12, M2 - in 28, M3 - in 15, M4 - in 20, M4eos - in 5, M5
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- in 6 and M7 - in 1 patient. Both lymphoid and myeloid antigen coexpres-
sion was revealed in 2 ANLL patients. In the CMPD structure, idiopathic
myelofibrosis dominated (n = 71), then came polycythemia vera (n = 29) and
essential trombocythemia was on the third place (n = 6). Diagnosis was de-
fined according to standard criteria for each hemoblastosis form. All patients
admitted to the hospital were included, without any exclusion. Patients were
treated according to the standard options accepted in our clinic. Particu-
larity of treatment methods have non been registered. Follow-up period for
each patients was the time interval between the date of disease morphologic
verification and the date of death or the date of last contact (according to
the data obtained in January 2004). For analysis of the survival function,
Kaplan-Meier method was used [KM58]. Overall survival was computed from
diagnosis to death or last follow-up. STATISTICA 5.5 (StatSoft) software
were used.

2 Results

In MM patients 75th survival percentile was 14,5 months (95% CI 8,8 - 20,2),
median - 34,6 months (95% CI 27,5 - 41,7), 25th percentile - 68,0 months
(95% CI 49, - 87,4). 12-month survival in MM patients was 0,78 (95% CI
0,72 - 0,85), 24-month survival - 0,63 (95% CI 0,55 - 0,71), 36-month survival
- 0,49 (95% CI 0,41 - 0,58), 48-month survival - 0,37 (95% CI 0,29 - 0,46).
5-year survival was 0,29 (95% CI 0,21 - 0,38), 10-year survival - 0,10 (95% CI
0,04 - 0,17). MM survival curve shown on Fig. 1. Mean follow-up of MM
patients who where alive was 38,6 months.
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Figure 1. Overall survival curve of multiple myeloma patients

Fig 2. Estimated survival function of ANLL patients. 25th survival per-
centile was 2,9 months (95% CI 1,14 - 4,58), median - 14,6 months (95% CI
7,7 - 21,5). 12-month survival in ANLL patients was 0,54 (95% CI 0,44 -
0,64), 24-month survival - 0,38 (95% CI 0,27 - 0,49), 36-month survival - 0,32
(95% CI 0,21 - 0,43). 5-year survival was 0,27 (95% CI 0,13 - 0,40). Mean
follow-up of ANLL patients who where alive was 17,8 months.

In CMPD patients 75th survival percentile was 65,0 months (95% CI 46,0
- 84,0), median - 142,0 months (95% CI 103,3 - 180,7), 25th percentile - 225,0
months (95% CI 200,5 - 249,5). 12-month survival in CMPD patients was 0,95
(95% CI 0,91 - 1,00), 24-month survival - 0,93 (95% CI 0,88 - 0,98), 36-month
survival - 0,88 (95% CI 0,81 - 0,95), 48-month survival - 0,83 (95% CI 0,74 -
0,91). 5-year survival was 0,80 (95% CI 0,71 - 0,89), 10-year survival - 0,57
(95% CI 0,45 - 0,69). Mean follow-up of CMPD patients who where alive was
62,0 months. CMPD survival curve shown on Fig. 3.

Figure 2. Overall survival curve for acute nonlymphoblastic leukemia patients
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Figure 3. Overall survival curve of chronic myeloprolyphetative disorders patients

Average probability of death within the month in MM patients was 0,02;
in ANLL - 0,05 and in CMPD - 0,005. It was shown that in MM the hazard
function remained comparatively constant for the whole follow-up period (Fig.
4).
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Figure 4. Hazard function of death in patients with multiple myeloma

ANLL course was described by "U"-formed hazard function curve. Mor-
tality rate was maximal at the initial period (death probability within month
was 0,05) with tenfold reduction to 36th month. Then it increased again (Fig.
5). In CMPD, hazard function showed linear death probability increase from
0,003 (during the first 12 months) to 0,02 at time of observation cessation
(Fig. 6).

Thereby, three types of hazard function curves in different hemoblastosis
have been estimated. MM course was characterized by comparatively con-
stant death risk. In ANLL, mortality rate is the highest at first months after
diagnostics, it decreased to minimum by 36 month and then increased. In
CMPD patients death hazard constantly increases during the disease. We
suggest that hazard function is important characteristic, describing the dis-
ease course. We recommend using this function with survival function in
hematology and oncology practice for evaluation of treatment results.

Figure 5. Hazard function of death in patients with acute nonlymphoblastic leukemia
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Figure 2. Hazard function of death in patients with chronic myeloprolyphetative disorders

References

[KM58] Kaplan, E.L., Meier, P. : Non-parametric estimation from incom-
plete observation. J. Am. Stat. Assoc., 53, 457–481 (1958)

[OLS99] Olsen, J.H. : Epidemiology. In : Degos L., et al. (eds) The Textbook
of malignant hematology. Martin Dunitz, London (1999)



On the Analysis of Fuzzy Life Times and
Quality of Life Data

Reinhard Viertl

Vienna University of Technology, 1040 Wien, Austria R.Viertl@tuwien.ac.at

Summary. Life times, health data, and general quality of life data are often not
adequately represented by precise numbers or classes. Such data are called non-
precise or fuzzy, because their quantitative characterization is possible by so-called
non-precise numbers. To analyze such data a more general concept than fuzzy
numbers from the theory of fuzzy sets is necessary. A suitable concept are so-called
non-precise numbers. Generalized methods to analyze such data are available, and
basic methods for that are described in the paper.

1 Introduction

Life times of systems are frequently not adequately characterized by precise
time values. Therefore precise numbers are not always suitable to describe
life times. Generally all results of measurements of continuous quantities are
not precise numbers. For details compare [Vie02]. Even more uncertainty is
connected with recovering times from illness.

Quality of life is a complex task and several approaches to measure it
are possible. There are different methodological difficulties, for example the
necessity of aggregating variables. But at the beginning of the analysis pro-
cess, data quality considerations are indispensable in order to avoid unrealistic
results of analyses.

There are different kinds of uncertainty in life time data: Variability, er-
rors, and imprecision. It is important to note that imprecision is the kind of
uncertainty inherent in single measurement results. Imprecision should not
be confused with errors. Errors can be modeled with probability distribu-
tions, but imprecision cannot be modeled adequately in this way, because
imprecision is another kind of uncertainty.

The best up-to-date description of imprecision is - in case of one-
dimensional quantities - by so-called non-precise numbers which are special
fuzzy subsets of the set R of real numbers. Therefore such data are also called
fuzzy data.
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In the paper generalized methods for the description and analysis of fuzzy
data are explained.

2 Fuzzy data

Quantitative data which cannot be characterized by precise numbers have to
be characterized mathematically in a suitable way. This leads to so-called
non-precise numbers which are defined by characterizing functions.

Definition 1. A characterizing function ξ(·) is a real function ξ : R −→ [0, 1]
for which the so-called δ-cuts Cδ

[
ξ(·)
]
,

Cδ

[
ξ(·)
]

:= {x ∈ R : ξ(x) ≥ δ}

are non-empty finite unions of bounded closed intervals, i. e.

Cδ

[
ξ(·)
]

=
nδ⋃

j=1

[
aj,δ, bj,δ

]
∀ δ ∈ (0, 1].

Remark 1. Characterizing functions are special membership functions from
the theory of fuzzy sets. But non-precise numbers are more general than
so-called fuzzy numbers. This is necessary to characterize fuzzy data, for
example data obtained from color intensity pictures, especially X-ray data.
Examples of characterizing functions are given in Figure 1.

�

�

�����

�

�����

�

�

�

�����

�

�

�������������
����

��

Fig. 1. Characterizing functions
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Remark 2. The one-point indicator function I{x0}(·) is the characterizing func-
tion of a precise data point x0 ∈ R. Therefore the analysis of fuzzy data
contains standard statistical procedures as special case.

A main problem is the determination of the characterizing function of a
fuzzy data point x�. In case of color intensities this is possible in the following
way:

Let h(·) be the light intensity of a fuzzy light point on a screen. Then the
characterizing function ξ(·) is given by its values

ξ(x) =
h(x)

max
x∈R

h(x)
∀ x ∈ R.

For life time data t� the characterizing function ξ(·) can be obtained from
measurements of characteristic quantities which describe the degree of ful-
filment of its objectives. Let f(·) be the function describing the degree of
fulfilment of the characteristic quantity depending on the time t, then the
characterizing function ξ(·) of the fuzzy life time is given by its values

ξ(t) =
d
dtf(t)

max
t≥0

d
dtf(t)

∀ t ∈ R.

For t ≤ 0 the value of ξ(t) ≡ 0.
In case of quality of life data, which are fuzzy by nature, these data usually

contain subjectivity. Therefore also the corresponding characterizing func-
tions are subjective to a certain degree. But still they contain important
information for statistical analysis.

3 Empirical reliability functions for fuzzy life times

Real life time data consist of a finite sample x�
1, · · · , x�

n of non-precise numbers
with corresponding characterizing functions ξ1(·), · · · , ξn(·).

The standard empirical reliability function R̂n(·) for precise data
x1, · · · , xn , defined by its values

R̂n(x) =
1
n

n∑
i=1

I(x,∞)(xi) ∀ x ≥ 0,

is generalized in the following way:
Assuming all characterizing functions ξi(·) to be integrable, the generalized

empirical reliability function R̂�
n(·) is defined by

R̂�
n(x) =

1
n

n∑
i=1

∞∫
x

ξi(t)dt

∞∫
0

ξi(t)dt
∀ x ≥ 0.
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Remark 3. The generalized estimate R̂�(·) is a continuous function which is
more realistic in case of continuous underlying life time distributions.

An example of fuzzy life times and the corresponding generalized empirical
reliability function is given in Figure 2.

�
� � 	

�

�

������

�
� � 	

�

�

������


Fig. 2. Generalized empirical reliability function

4 Generalized classical statistical inference for fuzzy data

Statistical estimation of derived indicators of quality of life, based on fuzzy
data is possible in the following way: Let x1, · · · , xn be classical pseudo-precise
data and

I = f (x1, · · · , xn ;w1, · · · , wn)

be an indicator based on data x1, · · · , xn and weights w1, · · · , wn. For stan-
dard data the indicator is a real number.

In case of fuzzy data x�
1, · · · , x�

n with corresponding characterizing func-
tions ξ1(·), · · · , ξn(·) the resulting value of the indicator becomes non-precise.
In order to obtain the characterizing function η(·) of the non-precise value

I� = f (x�
1, · · · , x�

n ;w1, · · · , wn) ,

the so-called extension principle from fuzzy set theory is applied. The values
η(x) for all x ∈ R of the characterizing function are defined by
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η(x) =

⎧⎪⎨⎪⎩
sup
{

min{ξ1(x1), · · · ξn(xn)}
}

if f (x1, · · · , xn ;w1, · · · , wn) = x

0 if ∃/ (x1, · · · , xn ) : f (x1, · · · , xn ;w1, · · · , wn) = x

⎫⎪⎬⎪⎭ .

The resulting non-precise value I� of the indicator is a non-precise number
in the sense of section 2.

Remark 4. Although the generalized indicators are non-precise they represent
valuable information concerning the considered topic.

Moreover different statistical inference procedures can be generalized to
the situation of non-precise date. These methods are described in the book
[Vie96].

Recent work on the generalization of the concept of p-values is published
in the paper [FV04].

5 Generalized Bayesian inference in case of fuzzy
information

The generalization of Bayes’ theorem by application of the extension principle
from fuzzy set theory is not reasonable, because it is not keeping the sequential
updating procedure of Bayesian inference. Therefore another method was de-
veloped which takes care of imprecision of a-priori distributions and fuzziness
of data as well. This is presented in the paper [VH04].

It is important to note that a more general concept of probability dis-
tributions, so-called fuzzy probability distributions, is necessary to describe
imprecision of a-priori distributions.

A fuzzy probability distribution P �, defined on a sigma field A of subsets
of an observation space M , is defined in the following way:

Definition 2. A fuzzy number is defined by a specialized characterizing func-
tion from section 2, for which all δ-cuts are non-empty compact intervals.

Definition 3. A fuzzy probability distribution P � assigns to every event
A ∈ A a fuzzy number whose support is a subset of [0, 1] and which obeys:

1. P �(∅) = 0 and P �(M) = 1,
i.e. the extreme events have precise probabilities

2. For any sequence A1, A2, · · · of pairwise disjoint events from A, and for
all δ-cuts Cδ

[
P �
(
Ai

)]
=
[
P δ

(
Ai

)
, P δ

(
Ai

)]
, δ ∈ (0, 1], the following has

to be valid:

P δ

( ∞⋃
i=1

Ai

)
≤

∞∑
i=1

P δ

(
Ai

)
and

P δ

( ∞⋃
i=1

Ai

)
≥

∞∑
i=1

P δ

(
Ai

)
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3. Fuzzy monotony: For A ⊆ B it follows P �(A) is fuzzy smaller than
P �(B), i. e. for the δ-cuts Cδ

[
P �(A)

]
=
[
P δ(A), P δ(A)

]
and Cδ

[
P �(B)

]
=
[
P δ(B), P δ(B)

]
the following has to be fulfilled:

P δ(A) ≤ P δ(B) and P δ(A) ≤ P δ(B) ∀ δ ∈ (0, 1]

More details can be found in the paper [TH04].

Remark 5. Special fuzzy probability distributions are obtained by so-called
fuzzy density functions, which are also explained in [TH04].

6 Conclusion

Especially for quality of life data non-precise numbers are a more realistic de-
scription of quantitative data than precise real numbers. Generalized statis-
tical analysis methods for this kind of data are available and provide valuable
information in order to support well founded decisions.
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Statistical Inference for Two-Sample and
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Summary. Heterogeneity effect is an important issue in the analysis of clinical
trials, survival data, and epidemiological cohort studies. This article reviews the
works of inference for heterogeneity effect from a series of works by Hsieh who used
the empirical process approach, and relevant works by Bagdonavičius, Nikulin, and
coworkers. This includes two-sample models and Cox-type relative risk regression
models. Heterogeneity property over the covariate space as well as non-constancy
property are discussed for several models. In survival analysis, the log-relative risk
as a function of time and of the covariates are plotted to present the heterogeneity
property of Hsieh’s and Bagdonavičius and Nikulin’s hazards regression models.

Key words: Heterogeneity, two-sample problem, location-scale model, transforma-
tion model, Cox model, Hsieh model, Bagdonavičius-Nikulin model

1 Introduction

This article reviews the works of inference for heterogeneity effect from a series
of works, mainly by Hsieh, and relevant works by Bagdonavičius, Nikulin, and
coworkers. Before starting our discussion, the meaning of ’heterogeneity’ is
briefly defined. Concerning a measure of ’effect’ and a set of subpopulations
indexed by a variable W, if the effect is fixed over W, we say there is a
homogeneity effect; otherwise, there is heterogeneity. In some situations,
heterogeneity can be dealt with by stratified analysis, or by random effect
analysis. By this, however, it is often assumed that there is unobserved or
unmeasured factors according to which the effect heterogeneity exists and will
be averaged or eliminated. The work of Hsieh proposed another possibility
that the heterogeneity is a result of observable variables, and the impact of
these variable ’should be’ (and ’can be’) estimated. A simple example of
location-scale model can be used for an illustrative purpose. Consider the
case of logistic regression: Let X ∼ FX(x)=Logistic(a1, b1) = ea1+b1x

1+ea1+b1x and
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Y ∼ GY (x)=Logistic(a2, b2) = ea2+b2x

1+ea2+b2x , F (·) and G(·) are cdfs. For ordinary
2× 2 table analysis, a possibly unknown cutoff value x0 is assumed such that
the odds of the first (F ) and second (G) groups are

oddsF (x0) =
Pr(X < x0)

1 − Pr(X < x0)
and oddsG(x0) =

Pr(Y < x0)
1 − Pr(Y < x0)

,

respectively, which results in the odds ratio (OR) of G-group versus F -group:

OR =
ea2+b2x0

ea1+b1x0
.

The above two-sample problem can be simplified when the two distributions
have an identical ’dispersion’ (or ’scale’), that is b1 = b2. In that case,
OR=ea2−a1 . The situation of ’identical dispersion’ can be extended to the
ordinary logistic regression if aj is suitably modeled by a set of covariates
z = (1, z1, . . . , zp)T , for example,

aj = β0 + β1z1j + . . . + βpzpj .

However, when the dispersions are not identical (referred to as a case of ’het-
erogeneity’), the odds ratio is (with two-sample setting):

OR = e(a2−a1)+x0(b2−b1).

Without loss of generality, we can set a1 = 0, a2 = a, and b1 = 1, b2 = b. Then
OR=ea+x0(b−1), which depends on the location difference a, as well as on the
scale parameter b and the cutoff value x0. The phenomenon of heterogeneity
becomes more apparent if the dispersion parameter b(> 0) is further expressed
as a regression setting eγT z through the same set of covariates z.

There are, of course, other indices to be used as a measure of effect. If the
variable indexes different locations (0 vs. a) will also index different scales
(1 vs. b), the heterogeneity effect is said to be ’from the observable variable
itself’. It is particularly important when the variable (say X) is continuous,
and heterogeneity effect cannot be stratified out even by grouping the X-
variable, because the ’effect’ of X is to be estimated. This point will become
more clear in a later context concerning a regression model with heterogeneity.
To make reliable inference, the heterogeneity parameter needs to be estimated
explicitly. This is very different from the other heterogeneity models in which
the variable resulting in individual or cluster heterogeneity is not observed.
So the heterogeneity discussed in this paper is not of the same type and not
at the same level with, for example, the random effect models.

2 Two-Sample Models

Two-sample problem plays important role in the development of statistical
inference. In clinical trials or epidemiological cohort studies, for example,



454 Hong-Dar Isaac Wu

data collected prospectively according to two treatments or retrospectively to
diseased and healthy groups are analyzed to assess the effect of a treatment
or the association between an exposure and the disease of concern. In what
follows, we briefly refer to the measure of interest as ’treatment effect’ or
simply ’effect’. If the two-sample relation is described by a location-scale
model and the goal is to make inference about the treatment effect, it is
necessary to estimate with precision both of the location and scale parameters
simultaneously. Ignoring the scale parameter (dispersion) leads to biased
effect estimate. In this section, we introduce Hsieh’s work on two-sample
problems through the empirical process approach (EPA).

2.1 Two-sample location-scale model

The two-sample location-scale model studied in Hsieh [HSI95, HSI96a] as-
sumes two distributions, say F (·) and G(·), satisfying

G(x) = F (
x− µ

σ
) or G−1(t) = µ + σF−1(t), 0 < t < 1,

and two sets of samples X1, . . . , Xm ∼ F ,Y1, . . . , Yn ∼ G. Let u =
(u1, . . . , uJ)T be a set of grid (or cutoff) points, 0 < u1 < . . . < uJ < 1,
and J depends on n: J = J(n). The EPA of Hsieh builds up the following
regression-type setting for the specified points u1, . . . , uJ :

G−1
n (u) ∼= µ + σF−1

m (u) + σDKm,n(u), (1)

where D =diag(. . . , 1/f(F−1(uj)), . . .), G−1
n (·) and F−1

m (·) are the empirical
quantile processes (Csörgő [CS83]). The process Km,n(u) is different for com-
plete (no-censoring) and censored data problems. For complete two-sample
data, Km,n(u) is a linear combination of two independent Brownian bridge
process pertaining to the strong approximations of the two quantile processes
respectively; for right censored data, Km,n(u) is a combination of two inde-
pendent generalized Kiefer processes.

To estimate θ = (µ, σ)T , equation (1) is treated (at u) as a regres-
sion setting and least squares method is used. However, the covariance
matrix of DKm,n(u) may involve unknown µ and σ, a generalized least
squares (GLS) estimate is then adopted. Let X̃J×2 = (1J×1, F

−1
m (u)), where

1J×1 = (1, . . . , 1)T is a J × 1 column vector; further define Σe = DΣKD,
where ΣK is the covariance matrix of the K(·)-process. Then we have the
GLS estimate of θ:

θ̂GLS = (X̃T Σ̂−1
e X̃)−1X̃T Σ̂−1

e {G−1
n (u)}.

For which if a reweighted procedure is needed, Hsieh suggested a ’one-step’
iteration only. Further, f(F−1(uk)) can be substituted by its kernel-smoothed
estimate. The estimation has the same spirit of minimum chi-square method
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and, as a companion result, a testing statistic for overall model checking is
rendered. In addition to the convenience of implementation, Hsieh’s GLS
estimate for the location-scale model has an important feature: It achieves
the semiparametric Fisher information bound (Bickel et al. [BKRW93]) for
large samples, and is thus asymptotically efficient.

2.2 Two-sample transformation model

Now suppose that the two populations have relationship FG−1(u) = Ψ(µ +
σΨ−1(u))(0 < u < 1) for a specified transformation Ψ . For complete data,
Hsieh [HSI95] proposed an EPA estimation procedure based on a strong ap-
proximation of the empirical receiver’s operating characteristic (ROC) curve
Fm(G−1

n (u)) to the true curve F (G−1(u)):

Fm(G−1
n (u)) ∼= F (G−1(u)) + Km,n(u). (2)

Here Km,n(u) is a combination of two independent Brownian bridges. See
also Hsieh [HSI96b] for the problem of ROC curve estimation. According to
(2), for a set of points u = (u1, . . . , uJ)T ,

√
n{FmG−1

n (u) − FG−1(u)} −→D N(0, ΣK), (3)

where ΣK is the covariance matrix of
√
nKm,n(·). The following asymptotic

distribution can be obtained by δ-method and the derivative of a inverse
function:

√
n{Ψ−1(FmG−1

n (u)) − (µ + σΨ−1(u))} −→D N(0, CΣKC), (4)

where C =diag(. . . , 1/ψ(µ+σΨ−1(uj)), . . .), ψ(·) is the derivative of Ψ(·). The
previous formula implies

Ψ−1(FmG−1
n (u)) = µ + σΨ−1(u) + ε, (5)

in which the covariance of ε is σ2
ε = (1/n)CΣKC ≡ Σe. In view of this, a

regression setting is built up. The case of Ψ = Φ, the cumulative standard
normal distribution, is studied in Hsieh [HSI96b]. For censored data, a similar
setting was derived in Hsieh [HSI96c]:

Ψ−1(Ŝ1,m(Ŝ−1
0,n(u))) = µ + σΨ−1(u) + Km,n(u), (6)

where Ŝ1,m and Ŝ0,n are Kaplan-Meier survival estimators for the two true sur-
vivor functions, and Km,n(u) is again a combination of two independent gen-
eralized Kiefer processes. For unified exposition, we still denote the covariance
of Km,n(·) in (6) as Σe. Note that the regression settings of (5) and (6) lead to
the following least squares type estimation: For complete data, let R̂OC(u) =
FmG−1

n (u); for right censored data, R̂OC(u) = Ŝ1,m(Ŝ−1
0,n(u)). Further de-

fine D(u) = Ψ−1(R̂OC(u))− (µ+ σΨ−1(u)). Then, because of the normality
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property of ε and Km,n(·), the (log-) likelihood comprises the quadratic form
{D(u)}TΣ−1

e {D(u)} plus a remainder term. Also note that the information
of θ = (µ, σ)T contained in the remainder is asymptotically negligible com-
pared to that contained in the quadratic term (Hsieh [HSI95, HSI96c]), taking
derivatives of the quadratic term results in the estimating equation

{∂D(u)
∂θ

}TΣ−1
e D(u) = 0. (7)

This equation is convenient to use because, like the situation in linear regres-
sion with normal errors, a generalized least squares (GLS) estimate can be
obtained by

θ̂GLS = {(∂D(u)
∂θ

)T Σ̂−1
e (

∂D(u)
∂θ

)}−1(
∂D(u)
∂θ

)T Σ̂−1
e {Ψ−1(R̂OC(u))}, (8)

where Σ̂e is a consistent estimator of Σe.
The above estimation procedure has the following merits: it combines

the estimation and hypothesis testing problems in a unified quadratic form,
which is asymptotically chi-square distributed. This resembles the spirit of
minimum chi-square inference. To elucidate, note that the quantity ∆ =
{Dθ(u)}T Σ̂−1

e {Dθ(u)} ∼ χ2
2J . The quadratic term ∆ can be decomposed as

∆ = {Dθ̂(u)}T Σ̂−1
e {Dθ̂(u)}+(θ̂−θ)T {(∂D(u)

∂θ
)T Σ̂−1

e (
∂D(u)
∂θ

)}θ̂(θ̂−θ)+op(1),

where Qg ≡ {Dθ̂(u)}T Σ̂−1
e {Dθ̂(u)} ∼ χ2

2J−2 is used as a statis-
tic for testing the global model goodness-of-fit; and Ql ≡ (θ̂ −
θ)T {(∂D(u)

∂θ )T Σ̂−1
e (∂D(u)

∂θ )}θ̂(θ̂ − θ) ∼ χ2
2 can be used to test for a local hy-

pothesis such as H0 : θ = θ0 vs. Ha : θ �= θ0 (for some specified θ0) if
under the validity of the global model. This issue will also be explored in the
following discussion on hazards regression model.

3 Hazards Regression

The two-sample transformation model can be viewed as a special case of the
linear transformation model: H(T ) = −βz+σε, or, after reparameterization,
σH(T ) = −βz + ε. Taking H(t) = logΛ(t) and Fε(t) = 1 − e−et

results in
the ’σ-proportional hazards model’ (Hsieh [HSI96c]):

Λ1(t) = {Λ0(t)}σµ. (9)

When µ and σ are further expressed as µ =exp(βT z) and σ =exp(γT x) for
two sets of p- and q-vectors z and x, model (9) evolves into

Λ(t; z,x) = {Λ0(t)}eγT x

eβT z, (10)
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in terms of the cumulative hazard; or (when z and x are time-fixed)

λ(t; z,x) = λ0(t){Λ0(t)}eγT x−1eβT z+γT x, (11)

in terms of hazard function. When γ = 0, (11) reduces to the Cox’s propor-
tional hazards (PH) model (Cox [COX72]). The covariates in model (11) can
be made time dependent:

λ(t; z,x) = λ0(t){Λ0(t)}eγT x(t)−1eβT z(t)+γT x(t). (12)

The specific transformation model (12) are termed in Hsieh [HSI01] as the
heteroscedastic hazards regression model, and will be called hereafter the
Hsieh model. Different specific models corresponding to different transforms
are listed in Hsieh [HSI95, page 741].

The heterogeneity property investigated in this paper can be explored
through model (11) for x = z: Taking the one-dimensional case as an example,
the log-relative risk (≡logRR(t)) between strata zj versus zi (zj − zi = 1) is

log{RR(t)} = (eγzj − eγzi)logΛ0(t) + (β + γ). (13)

This one-dimensional case illustrates the ordinary interpretation that: for a
multiple regression setting, the coefficient of Z corresponds to a unit-change
of ’log-hazard’ in Z while the other covariates remains fixed. If logRR(t)
is the ’effect’ of concern, (13) implies the effect is not only time-dependent,
but also depends on the z-value. The ’time-dependence’ is preferred to be
called as nonconstancy, and the dependence on z-value to be as heterogeneity,
which has the same meaning explained in the logistic regression example in-
troduced in Section 1. The coexistence of nonconstancy and heterogeneity can
be viewed as an ’interaction’ between the heteroscedasticity component and
the underlying hazard. Figure 1 gives examples of (13) in which the noncon-
stancy and heterogeneity properties of the Hsieh model is explored by plots of
logRR(t) for the spectrum of zj = −5,−4, . . . , 5, and γ = 0.1 (Fig.1(a)), 0.2
(Fig.1(b)), 0.3 (Fig.1(c)), and 0.5 (Fig.1(d)); β = 1 for all cases. When the
heteroscedasticity parameter is small (γ = 0.1, Fig.1(a)), the log-relative risk
basically looks like a constant in time and they also coincide for much of the
time t ∈ (0, 2). From Figures 1(a) to (d), only z = 5 is plotted by a solid line
to present the trend of log(RR)-plot in z. For larger γ, time-dependence of
logRR(t) is clearer; moreover, for a fixed t, the ’effect’ is different for different
z’s, which reveals larger heterogeneity. The selection of covariate vectors x
and z is quite flexible: they can have a shared subset of variables (Wu, Hsieh,
and Chen [WHC02]).

Estimation procedures proposed in Hsieh [HSI01] starts with a construc-
tion of the estimating equations. Let (Ti, δi,Zi,Xi) be independent samples
of failure time, censoring indicator, and covariate vectors, i = 1, . . . , n, where
(without loss of generality) T1 < . . . < Tn be failure or right-censored times.
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Fig 1(a):Hsieh model,  gamma=0.1
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Fig. 1. Heterogeneous log-relative risks in the Hsieh model.

We denote Ni(t) = 1{Ti≤t,δi=1} and Yi(t) to be the counting process and at-
risk indicator of individual i. Further let Vi(t) = Xi(t){1 + eγT Xi logΛ0(t)}
,θ = (β, γ)T , and

SK(t;Λ0, θ) = (1/n)
n∑

i=1

Yi(t)Ki(t)eβT Zi+γT Xi{Λ0(t)}eγT Xi−1,

where Ki(t) = 1,Zi(t), or Vi(t). The estimating equation processes con-
structed in Hsieh [HSI01] are

M1(t) =
∑∫ t

0

{ dNi(u)
S1(u;Λ0, θ)

− λ0(u)du}, (14)

M2(t) =
∑∫ t

0

{Zi −
SZ(u;Λ0, θ)
S1(u;Λ0, θ)

}dNi(u), (15)

M3(t) =
∑∫ t

0

{Vi −
SV(u;Λ0, θ)
S1(u;Λ0, θ)

}dNi(u), (16)
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where t ∈ (0, uJ), for a maximal truncation time uJ (defined below). Setting
M1(t)=0 leads to

Λ0(t) =
∑∫ t

0

dNi(u)∑
Yi(u)eβT Zi+γT Xi{Λ0(u)}eγT Xi−1

. (17)

Define the elements of the 3× 3 matrix of covariation process A as

Aik = lim(1/n)
∑∫

E{dMi(u)}{dMk(u)}du.

Under several regularity conditions, Hsieh [HSI01] have the following property
of (M1,M2,M3)(t)T . (I) The process M1 is orthogonal to M2 and M3 in the
sense that the covariation process < M1,M2 >t=< M1,M3 >t= 0. (II) The
system of martingales M(t) = (M1,M2,M3)T (t) converge weakly to W (t) =
(W1,W2,W3)T (t), which is a system of Gaussian processes with independent
increments. The components of covariance of W (t) are Aik(t), i, k = 1, 2, 3.
Moreover, by (I), < W1,W2 >t=< W1,W3 >t= 0. Conventional notations
about the counting process model can be found in Andersen et al. [ABGK93]

The above limiting process W (t) leads to the construction of an approxi-
mated likelihood: Let G(t) be a stochastic process and ∆(J)G(u) = (G(u1) −
G(u0), G(u2) −G(u1), . . . , G(uJ ) −G(uJ−1))T , where G(u0) = G(0) = 0 and
G(uJ) = G(tn). Also, denotes ∆iG = G(ui) − G(ui−1). By choosing suit-
able cutoff points u = (u1, u2, . . . , uJ )T , an approximation of the likelihood
due to the independent-increment property of W (t) can be obtained: log-
likelihood∼= − 1

2

∑J
1 (∆iM)T (∆iA)−1(∆iM) ≡ L(J). Note that, by the or-

thogonality of W1 and (W2,W3)T , (∆iA)−1 = diag((∆iA11)−1, (∆iA(11))−1),
where A(11) is the submatrix of A deleting the first column and the first
row. One can make statistical inference for θ and Λ0 based on the approxi-
mated likelihood. Before doing this, Hsieh [HSI01] also introduces a piecewise-
constant approximation to Λ0(t): Λ

(J)
0 (t) =

∫ t

0

∑J
1 αi1{ui−1<u≤ui}du, where

0 < αi < ∞ and J = O(n
1
3 ). The score functions of parameters θ and

α = (α1, . . . , αJ)T are: Eβ = ∂
∂βL

(J), Eγ = ∂
∂γL

(J), and Eα = ∂
∂αL

(J). The
estimated parameters of interest have the asymptotics:

√
n(θ̂ − θ) −→D N(0, {lim[Σθθ −ΣθαΣ

−1
ααΣθα]}−1), (18)

where Σ{·}’s are the information matrices pertaining to the associated param-
eters. In addition, Λ̂(J)

0 can have a
√
n- weak convergence. If the heteroscedas-

ticity part, γT x, is neglected, the estimate of β will be biased. (Wu [WU04a]).
The quadratic L(J) (omitting ’− 1

2 ’) can be further decomposed as: L(J) =
L

(J)
1 + L

(J)
2 , where

L
(J)
1 =

∑
(∆iM1)(∆iA11)−1(∆iM1),

and
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L
(J)
2 =

∑
(∆iM2,∆iM3)(∆iA(11))−1(∆iM2,∆iM3)T .

The part L(J)
2 contains much of the information of the parameters of interest β

and γ, and can be viewed as a projection of L(J) onto the space of (βT z, γT x).
Similar to the expression in Section 2.2, let L(J)

2 = Qg + Ql, where

Qg =
∑

(∆iM̂2,∆iM̂3)(∆iÂ(11))−1(∆iM̂2,∆iM̂3)T ∼ χ2
(p+q)(J−1)

can be used as a test statistic for global model validity (i.e. the Hsieh model),
and

Ql =
∑

{∆i(M2−M̂2,M3−M̂3)}(∆iÂ(11))−1{∆i(M2−M̂2,M3−M̂3)}T ∼ χ2
p+q

is used to test for a local hypothesis: H0 : θ = θ0. For examples, the pro-
portional hazards (PH) assumption can be checked under the nested family
of the PH model (H0 : γ = 0) within the Hsieh model (Ha : γ �= 0) (Wu et
al. [WHC02]); or, the equal-distribution null hypothesis (H0 : β = γ = 0) can
also be tested within the Hsieh model (Ha : β �= 0 or γ �= 0) (Wu [WU04b]).

4 Non-proportional Hazards Model

Non-proportional hazards modeling has been widely studied in the past
decades. In this section, the Bagdonavičius and Nikulin’s [BN99] general-
ized proportional hazards model and its variant are introduced, which also
can deal with nonconstancy as well as heterogeneity. Before the discussion,
several nonproportional hazards models are reviewed.

First consider a parametric model like the Weibull regression taking
the cumulative hazard function as (see, for example, Gore, Pocock, and
Kerr [GPK84, page 185] for a survivor-function expression):

Λ(t) = tbeβ0+β1z1+...+βpzp ≡ tbeβT z,

which can be viewed as a Weibull-class with universal shape parameter b, but
with different scales indexed by βT z. By this, the Hsieh model of Section 3
have a parametric (Weibull) regression model as a special case:

Λ(t) = te
γT x

eβT z, for γT x = γ0 + γ1x1 + . . . + γqxq.

There are also several nonproportional hazards model studied in Gore at
al. [GPK84] Among them, a Cox-type model with ’varying-proportionality
hazards’ is of interest:

λ(t; z) = λ0(t)eθ(z,t), (19)

where θ(z, t) is a smooth function of covariate z and time variable t.
Model (19) is capable of modeling heterogeneity plus nonconstancy. Be-
cause the time dependence is described simultaneously by λ0(t) and θ(·, t),
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the form of θ(z, t) should be ’pre-specified’ to make the setting identifi-
able. For modeling only the heterogeneity over the covariate space, a very
flexible partly linear setting can be imposed on the relative risk function:
λ(t;x, z) = λ0(t) exp{βT x + g(z)}; see Sasieni [SAS92a], Nielsen, Linton, and
Bickel [NLB98], and Heller [HEL01]. When z is categorical, the partly lin-
ear model reduces to the stratified proportional hazards model, by which the
heterogeneity effect over z is further stratified out by putting a number of un-
known baseline hazards. Moreover, a continuously stratified Cox model intro-
duced in Sasieni [SAS92b]) and the ’time-varying’ coefficients Cox model stud-
ied by Murphy and Sen [MS91], Murphy [MUR93] and Martinussen, Scheike,
and Skovgaard [MSS01] (among others) are important works on the Cox-type
relative risk modeling for heterogeneity and/or nonconstancy.

An alternative Cox-type model (other than the Hsieh model) which can
deal with heterogeneity and nonconstancy together is the generalized PH
model proposed by Bagdonavičius and Nikulin [BN99], see also Bagdonav-
ičius and Nikulin [BN02] for more related works and models. The generalized
proportional hazards model has the following form, in terms of hazard func-
tion,

λ(t; z) = λ0(t)g{z(t), Λz, θ}, (20)

where g(·) is a positive function, z(t) is a set of time-dependent covariate, and
Λz is the corresponding cumulative hazard. A special form of (20) derived in
Bagdonavičius, Hafdi, and Nikulin [BHN04] is

λ(t; z) = λ0(t)eβT z{1 + e(β+γ)T zΛ0(t)}e−γT z−1, (21)

where Λ0(t) =
∫ t

0
λ0(u)du is the baseline cumulative hazard function. Model

(21) is called hereafter the Bagdonavičius-Nikulin model. Similar to the Hsieh
model, the Bagdonavičius-Nikulin model also gives cross-effect for the cumu-
lative hazards, but not necessarily for the hazard functions. When the log-
relative risk is the effect of concern, the main differences between the Hsieh
and the Bagdonavičius-Nikulin models are: (i) the former assumes the rela-
tive risk between groups to be possibly very large when t approaches 0, the
model design of the latter relaxes this assumption; and (ii) relative risk of the
Hsieh model is increasing or decreasing according to the relative direction of
the heteroscedasticity part γTx, the Bagdonavičius-Nikulin model has more
complex situation which depends on the configurations of β and γ in (21).
Figure 2 gives a similar illustration to Figure 1 and corresponds to part of the
configurations listed in Bagdonavičius et al. [BNLZ05]. When γ is large (0.5
or −0.5), the dependence of log-relative risks (LRR) on time is more signifi-
cant. Also for larger γ, difference of LRRs in different z’s is apparent, showing
heterogeneity effect over the covariate-space. In Figure 2, the LRR also has
an order in z (for z = −5, . . . , 5), so only z = 5 is plotted by a solid line; for
all cases, β = 1 and 0 < t < 2. The estimation of the Bagdonavičius-Nikulin
model depends on iteratively solving the score equations derived from the
’partial likelihood’ and a Breslow-type estimating equation for the baseline
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Fig. 2(a): Bagdonavicius-Nikulin model, gamma=0.1
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Fig. 2. Heterogeneous log-relative risks in the Bagdonavičius-Nikulin model.

cumulative hazard. With contrast to the score-type tests derived from the
Hsieh model, the Bagdonavičius-Nikulin model can also be used as the alter-
native hypothesis and thus testing for homogeneity of survival distributions
can be implemented (Bagdonavičius et al. [BNLZ05]).

5 Extensions and Brief Discussion

There are numerous papers targeting at heterogeneity and associated statisti-
cal inference. This paper is not intended to review the entire development, but
only to focus on heterogeneity effect that can be modeled through collected
samples.

The early works of Hsieh [HSI95, HSI96a, HSI96b, HSI96c] make statisti-
cal inferences on location-shift and scale-change parameters through EPA for
two-sample models with complete or right-censored data. In Hsieh [HSI01],
however, hazards regression is discussed and estimation and testing prob-
lems are solved with slightly different manner, though with similar spirit to
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the EPA method. The Hsieh model and the later introduced Bagdonavičius-
Nikulin model allow for cross-effect modeling. Cross-effect or nonproportional
hazards problem still is an important issue for future researches. In actual
data analysis of follow-up data, multiple cross-effect may exist and extensions
to these two models are of interests. First, consider the Hsieh model equipped
with varying coefficients (in terms of hazard function):

λ(t; z,x) = λ0(t){Λ0(t)}eγ(t)T x−1eβ(t)T z+γ(t)T x, (22)

where β(t) and γ(t) are two sets of varying coefficients. Model (22) can
be viewed as dealing with the ’time-heteroscedasticity interaction’. In prac-
tice, the same set of time-partition for a piecewise-constant approximation
can be applied to λ0(t), β(t) and γ(t), and estimating equations similar to
(15) and (16) while taking account the approximation can be used (Wu and
Hsieh [WH04]). By suitably choosing the cutoff points which constitute the
piecewise-constant intervals, multiple crossings among cumulative hazards ac-
cording to different groups can be modeled. Second, a variant of model (21)
is recently proposed by Bagdonavičius and Nikulin [BN04] by which at least
two crossings can be properly captured:

λ(t; z) = λ0(t)eβT z(t){1 + γT z(t)Λ0(t) + δT z(t)Λ2
0(t)}, (23)

where γ and δ are two sets of parameters to be estimated.
Diagnostics for a hazards regression model is important for model validity

and goodness-of-fit problem. By simply plotting the estimated (log-) relative
risks versus time or the important covariates, time-constancy and effect homo-
geneity/heterogeneity can be checked. For example, Valsecchi, Silvestri, and
Sasieni [VSS96] used the plot to check nonconstancy as well as proportionality
for various explanatory variables of ovarian cancer patient’s survival. Further
applications of plotting the (estimated) relative risk as a model discrimination
and diagnostics tool for the Hsieh and the Bagdonavičius-Nikulin models is
interesting for future researches.
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1 Introduction

In a recent paper [Z04] distributions of failure times due to random cumula-
tive damage process were investigated. In particular the previous study was
focused on random damage processes driven by non-homogeneous compound
Poisson process, with a Weibull intensity function and exponential damage in
each occurrence. The present paper generalizes the previous results to damage
processes, which are driven by compound renewal processes and general dam-
age distributions. The failure time is the first instant at which the cumulative
damage crosses the system’s threshold. In Section 2 we present the cumu-
lative damage process as a general compound renewal process. The density
function of the associated failure distribution is given, as well as its moments.
In Section 3 we consider the special case of a homogeneous compound Poisson
damage process (CCDP) with exponentially distributed jumps. The density of
failure times, when the intensity λ of the CCDP is random (doubly stochastic
Poisson process) is derived for λ having a Gamma distribution. The hazard
function for this doubly stochastic case is illustrated in Figure 2. The results of
Section 3 are extended in Section 4 to Erlang damage size distributions. The
reader is referred to the book of Bogdanoff and Kozin [BK85] for illustrations
of random cumulative damage processes. They used a discrete homogeneous
Markov Chain to model the extent of damage and failure times (phase-type
distributions). The reader is referred also to the book of Bogdanovicius and
Nikulin [BN02], and the papers of Wilson [W00], Kahle and Wendt [KW00],
Aalen and Gjessing [AG03].
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2 The General Compound Renewal Damage Process,
and The Associated Failure Distribution

Consider a renewal process, with renewal epochs 0 < τ1 < τ2 < . . . < τn < . . ..
Let Ti = τi − τ0 (i = 1, 2, . . . , τ0 ≡ 0) be the interarrival times. T1, T2, . . .
is a sequence of independent identically distributed (i.i.d.) random variables,
having a common distribution F . We assume in this paper that F is absolutely
continuous, with density function f , and F (0) = 0. Let N(t) denote the
number of arrivals in the time interval (0, t], with N(0) ≡ 0, i.e.,

N(t) = max{n ≥ 0 : τn ≤ t}. (1)

It is well known [K97] that

P{N(t) = n} = F (n)(t) − F (n+1)(t), n = 0, 1, . . . (2)

where F (0)(t) = 1, all t ≥ 0, F (1)(t) = F (t), and for n ≥ 2

F (n)(t) =
∫ t

0

f(x)F (n−1)(t− x)dx. (3)

That is, F (n) is the n-fold convolution of F . Let f (n) denote the corresponding
n-fold convolution of the density f .

We model the cumulative damage (C.D.) process by the compound renewal
process

Y (t) =
N(t)∑
n=0

Yn, (4)

where Y0 ≡ 0, Y1, Y2, . . . are i.i.d. positive random variables having a com-
mon absolutely continuous distribution G, with density g, and {Yn, n ≥ 1} is
independent of {N(t), t ≥ 0}. The distribution function of Y (t), at time t, is

D(y; t) =
∞∑

n=0

(F (n)(t) − F (n+1)(t))G(n)(y), (5)

where G(n) is the n-fold convolution of G.
Notice that D has a jump point (atom) at y = 0, and D(0; t) = 1−F (t) ≡

F (t). The density of Y (t) on (0,∞) is

d(y; t) =
∞∑

n=1

(F (n)(t) − F (n)(t))g(n)(t), (6)

where g(n) is the n-fold convolution of g. Let β, 0 < β < ∞, be a threshold
value such that the system fails as soon as Y (t) ≥ β. Thus, we define the
stopping time

T (β) = inf{t ≥ 0 : Y (t) ≥ β}. (7)
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Since Y (t) ↑ ∞ a.s. as t → ∞, P{T (β) < ∞} = 1 for all 0 < β < ∞.
Moreover,

P{T (β) > t} = D(β; t), 0 ≤ t < ∞. (8)

This is the reliability function of the system, which is obviously decreasing
function of t, with lim

t→∞
D(β; t) = 0. The density function of T (β) as obtained

from (5), is given by

pT (t;β) = f(t)G(β) +
∞∑

n=2

f (n)(t)(G(n−1)(β) −G(n)(β)). (9)

Let Sn =
n∑

i=0

Yi, n ≥ 0, and let

N∗(t) = max{n ≥ 0 : Sn ≤ t}. (10)

{N∗(t), t ≥ 0} is the renewal process associated with {Y0, Y1, Y2, . . .}. Accord-
ingly, the density of T (β) can be written as

pT (t;β) =
∞∑

n=1

f (n)(t)P{N∗(β) = n− 1}. (11)

Theorem 1 If the interarrival time T1 has a moment of order m, µm (m ≥ 1)
then

E{T (m)(β)} =
∞∑

n=1

Mn,mP{N∗(β) = n− 1}, (12)

where

Mn,m = E

{(
n∑

i=1

Ti

)m}
. (13)

Proof. According to (11),

E{T (m)(β)} =
∫ ∞

0

tmpT (t;β)dt

=
∞∑

n=0

(∫ ∞

0

tmf (n)(t)dt
)
P{N∗(β) = n− 1}.

Moreover, ∫ ∞

0

tmf (n)(t)dt = Mn,m.

Thus, if E{T1} = µ1 then

E{T (β)} = µ1

∞∑
n=1

nP{N∗(β) = n− 1}

= µ1(1 + E{N∗(β)}).
(14)
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If µ2 = E{T 2
1 } then

E{T 2(β)} = µ2

∞∑
n=1

nP{N∗(β) = n− 1} + µ2
1

∞∑
n=1

n(n− 1)P{N∗(β) = n− 1}

= µ2(1 + E{N∗(β)} + µ2
1(E{(N∗(β))2} + E{N∗(β)}).

(15)
>From (14)-(15) we obtain the following formula for the variance of T (β),
namely

V {T (β)} = σ2(1 + E{N∗(β)}) + µ2
1V {N∗(β)}, (16)

where σ2 = V {T1}.
In a similar fashion one can obtain formulae for higher moments of T (β).

3 Compound Poisson With Exponential Damage

The process {Y (t), t ≥ 0} is a homogeneous compound Poisson process if
F (t) = 1 − e−λt, t ≥ 0.

In this case the damage distribution is

D(y; t) =
∞∑

n=0

p(n;λt)G(n)(y), (17)

where p(n;λt) = e−λt (λt)
n

n!
is the probability function of the Poisson distri-

bution with mean λt. We consider the special case where Y1, Y2, . . . have a
common exponential distribution, i.e., G(y) = 1 − e−µy, y ≥ 0. In this case
G(n)(y) is the cdf of the Erlang distribution, and we have

G(n)(y) = 1 − P (n− 1;µy), n ≥ 1, (18)

where P (·;µy) is the cdf of the Poisson distribution with mean µy. Accord-
ing to (8), (17) and (18) we obtain that the reliability function R(t;λ, ζ) =
P (T (β) > t), where ζ = µβ, is

Theorem 2 For a Compound Poisson damage process, with G(y) = 1−e−µy,
the reliability function is

R(t;λ, ζ) =
∞∑

j=0

p(j; ζ)P (j;λt). (19)

Proof.

R(t;λ, ζ) =
∞∑

n=0

p(n;λt)(1 − P (n− 1; ζ))

= 1 −
∞∑

n=1

p(n;λt)P (n− 1; ζ)
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By changing order of summation we obtain

R(t;λ, ζ) = 1 −
∞∑

j=0

p(j; ζ)
∞∑

n=j+1

p(n;λt).

This implies (19).

>From the definition of T (β), it is obvious that ζ #→ R(t;λ; ζ) is an in-
creasing function. This follows also from (19), by applying Karlin’s Lemma
[K57]. The density of the failure times is, in this special case,

fT (t;λ, ζ) = λ
∞∑

n=0

p(n; ζ)p(n;λt), t ≥ 0. (20)

Indeed,
∂

∂t
P (j;λt) = −λp(j;λt)

and
fT (t;λ, ζ) = − ∂

∂t
R(t;λ, ζ).

The expected value and variance of T (β) are, in this special case,

E{T (β)} =
1 + ζ

λ
, (21)

and
V {T (β)} =

1 + 2ζ
λ2

. (22)

Indeed, in the present case µ1 = 1
λ and E{N∗(β)} = µβ = ζ. Similarly

V {N∗(β)} = ζ and σ2 = 1
λ2 . Equation (22) follows immediately from (16).

The hazard function corresponding to (19)-(20) is

h(t;λ, ζ) = λ

∞∑
j=0

p(j; ζ)p(j;λt)

∞∑
j=0

p(j; ζ)P (j;λt)

. (23)

As proven in Zacks [Z04], h(0;λ, ζ) = λe−ζ and lim
t→∞

h(t;λ, ζ) = λ. Moreover,
one can show that t #→ h(t;λ, ζ) is strictly increasing.

In Figure 1 we present the hazard function (23).
Wilson [W00] discusses the double stochastic Poisson process, in which

the intensity parameter λ, of the Compound Poisson process is integrated
with respect to some Lebesgue density. If we consider λ a gamma random
variable with shape parameter ν and scale parameter 1/λ∗, we obtain that
the reliability function is
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Fig. 1. Hazard Function, λ = 1, ζ = 5.

R∗(t;λ∗, ζ, ν) =
∞∑

j=0

p(j; ζ)NB

(
j;

t

λ∗ + t
, ν

)
, (24)

where NB(j;ψ, ν) is the c.d.f. of the negative-binomial distribution

NB(j;ψ, ν) =
j∑

i=0

Γ (ν + i)
i!Γ (ν)

ψi(1 − ψ)ν . (25)

Notice that in (24) ψ = t/(λ∗+t). Also, R∗(t;λ∗, ζ, ν) is an increasing function
of t, from ν

λ∗ e
−β to ν/λ∗.

The density function corresponding to (24) is

f∗
T (t;λ∗, ζ, ν) =

∞∑
j=0

p(j; ζ)
ν + j

t + λ∗nb

(
j;

t

t + λ∗ , ν

)
(26)

where nb

(
j;

t

t + λ∗ , ν

)
is the probability function corresponding to

NB

(
j;

t

t + λ∗ , ν

)
.
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The density function (26) is equivalent to

f∗
T (t;λ∗, ζ, ν) =

ν

t + λ∗

∞∑
j=0

p(j; ζ)nb
(
j;

t

t + λ∗ , ν

)

+
ζ

t + λ∗

∞∑
j=0

p(j; ζ)nb
(
j + 1;

t

t + λ∗ , ν

)
.

(27)

The expected value and variance of the failure time under this double stochas-
tic model is

E{T (β)} =
(1 + ζ)λ∗

ν − 1
, ν > 1 (28)

and

V {T (β)} =
λ∗2

(ν − 1)(ν − 2)

(
1 + 2ζ +

(1 + ζ)2

ν − 1

)
, ν > 2. (29)

In Figure 2 we present the hazard function for the case of λ∗ = 1, ζ = 5 and
ν = 1.
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Fig. 2. Hazard Function for λ∗ = 1, ζ = 5, ν = 1.



Failure Distributions 473

4 Compound Poisson With Erlang Damage

Suppose now that the amount of damage in each occurrence is a random
variable having an Erlang (µ, k) distribution, k ≥ 2. In this case the reliability
function is

R(t;λ, ζ, k) =
∞∑

j=0

p(j;λt)(1 − P (jk − 1; ζ)), (30)

where ζ = µβ. Changing the order of summation yields

R(t;λ, ζ, k) =
∞∑

j=0

p(j; ζ)P
([

j

k

]
;λt
)
, (31)

where [α] is the maximal integer not exceeding α.
The corresponding pdf of T (β) is

pT (t;λ, ζ, k) = λ
∞∑

j=0

p(j; ζ)p
([

j

k

]
;λt
)
. (32)

Define the probability weights

∆j(k; ζ) = P ((j + 1)k − 1; ζ) − P (jk − 1; ζ), (33)

j = 0, 1, . . . where P (−1; ζ) ≡ 0.

Notice that ∆j(k, ζ) > 0 for all j = 0, 1, . . . and
∞∑

j=0

∆j(k; ζ) = 1. One can

write

R(t;λ, ζ, k) =
∞∑

j=0

∆j(k; ζ)P (j;λt) (34)

and

pT (t;λ, ζ, k) = λ
∞∑

j=0

∆j(k; ζ)p(j;λt). (35)

The hazard function is the ratio of (35) over (34). As in Zacks [Z04] one can
prove that

lim
t→∞

h(t;λ, ζ, k) = λ

lim
t→0

h(t;λ, ζ, k) = λ∆0(k; ζ) = λP (k − 1; ζ).

The moments of T (β) are given by

E{Tm(β)} =
1
λm

∞∑
j=0

∆j(k; ζ)
m∏

i=1

(j + i). (36)

Thus,
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E{T (β)} =
1
λ

⎛⎝1 +
∞∑

j=1

j∆j(k; ζ)

⎞⎠ (37)

and

E{T 2(β)} =
1
λ2

⎛⎝2 + 3
∞∑

j=1

j∆j(k; ζ) +
∞∑

j=1

j2∆j(k; ζ)

⎞⎠ . (38)

Thus

V {T (β)} =
1
λ2

⎛⎜⎝1 +
∞∑

j=1

j∆j(k; ζ) +

⎛⎜⎝ ∞∑
j=1

j2∆j(k; ζ) −

⎛⎝ ∞∑
j=1

j∆j(k; ζ)

⎞⎠2
⎞⎟⎠
⎞⎟⎠ .

(39)
Moreover, the increase of h(t;λ, ζ, k) from λP (k − 1; ζ) to λ is monotone.

In the double stochastic case, where λ is distributed like Gamma(λ∗, ν),
the reliability function and p∗T (t;λ∗, ζ, k, ν) is as in (24) and (26) in which
p(j; ζ) is replaced by ∆j(k; ζ).
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