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Preface

After the discovery of a solitary wave by J.S. Russel almost one and
half century ago and later implementation of the soliton conception into
the modern physics by Zabusky and Kruskal in 1967, the topic continues
to be intensively investigated. Initially the main interest in the soliton
theory was related to the hydrodynamics, then to plasma physics and to
nonlinear optics. Now the focus is shifted toward the condensed matter
physics and biophysics. One of the latest intriguing subjects of the
nonlinear science is a theory of nonlinear waves in the Bose-Einstein
condensates (BEC’s).

The soliton theory is an interdisciplinary topic, where many ideas
from mathematical physics, statistical mechanics, nonlinear optics, solid
state physics and quantum theory mutually benefit each others. Many
of applications of the theory in different areas are based on similar model
equations and thus allow unified theoretical approaches. Since the most
of the systems are intrinsically quantum, like in linear physics, the non-
linear phenomena have two well pronounced levels of description: classi-
cal (or mean filed) one and quantum one. There are also other common
features of practical applications of the soliton theory to different sys-
tems. They are inevitable presence of noise or thermal fluctuations, ef-
fect of disorder, interplay among different physical phenomena including
nonlinearity, dispersion, and periodicity or discreteness, etc.

The Estoril Workshop “Nonlinear Waves: Classical and Quantum As-
pects” (July 13-17, 2003) was focused on various aspects of the nonlinear
wave theory and its particular applications. The topics discussed on the
Workshop are related to the BEC theory, nonlinear optical phenomena,
and discrete nonlinear systems.

The main objective was to explore analogies between the problems
occurring in the different areas. Probably the most important example
is given by the mean field Gross-Pitaevskii (GP) equation which has
a form of the multidimensional nonlinear Schrödinger (NLS) equation
with a trap potential, and as such is similar to standard models of the
nonlinear optics of the Kerr media. On the other hand, in a number

xv
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of cases (in the so-called tight-biding approximation) the GP equation
is reduced to a discrete NLS equation (which is a differential-difference
equation, also called lattice). Thus, experience acquired on the earlier
stages of the development of the nonlinear optics and the lattice theory
appears to be very useful for the analysis of the BEC problems.

The first part of the book contains contributions having interdisci-
plinary character or devoted mainly to mathematical aspects of the
nonlinear evolution equations. It starts with the algebro-geometric in-
tegration of the GP equation (Enolski) and an analytical method for
describing N-soliton interactions (Gerdjikov). Next, different mecha-
nisms of the dynamical stabilization of nonlinear waves by periodic in
time modulations of a trap potential, nonlinearity, and dispersion, as
well their applications to the nonlinear optics and BEC problems, are
analyzed (Abdullaev). A new concept of the nonlinear physics, referred
to as dissipative solitons, is described by Akhmediev, Soto-Crespo and
Ankiewicz. In the subsequent contributions a large variety of remark-
able structures – solitons and vortices – which are relevant to the mean-
filed theory of BEC’s are presented for cases of a periodic (Baizakov,
Malomed and Salerno) and harmonic (Crasovan et. al.) potentials.
Bia�lynicki-Birula and Sowiński describe a model, the logarithmic non-
linear Schrödinger equation, allowing a number of exact results, a rather
rear event in the nonlinear science. An issue of recent interest, the ef-
fect of geometry on wave propagation with applications to the theory of
photonic crystals is discussed by Gaididei et al. Next, the effect of non-
locality on the dynamics of breathers and kinks (Alfimov, Pierantozzi
and Vázquez) and new phenomena described in terms of the fractional
calculus (Vázquez) are presented. The dynamical behavior of matter
coupled to gravity is considered in the contribution by Christodoulakis
et al. De Lillo and Sanchini discuss various stochastic effects which can
be obtained within the framework of the Eckhaus equation. Grecu and
Visinescu study various aspects of the modulational instability of non-
linear systems. Collisions between nonlinear Schrödinger solitons and
bound quantum states in localized one-dimensional potentials are inves-
tigated by Ludu. The study of oscillator-wave interaction is presented
in the article by Damgov and Trenchev.

The second part is devoted to a number of latest experimental and
theoretical results in the physics of BEC’s, a field which received a great
deal of attention during the last years. The chapter begins with a brief
review on unified approach to BEC from the point of view of the nonlin-
ear quantum mechanics with main emphasis on fundamental problems
of superfluidity and BEC in optical lattices (Pitaevskii), and with basics
of statistical mechanics of quantum integrable systems within the frame-
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work of the approximation of a hard core Bose-gas (Wadati, Kato and
Iida). Next, a number of exciting experimental results on BEC’s in opti-
cal lattices obtained in the Florence (Fort and Fallani) and Pisa (Morsch
and Arimondo) experimental groups are reported. Superfluid-insulator
transition, expansion of BEC’s in moving optical lattices, Landau-Zener
tunneling and instabilities are some of them. Theoretical investigations
of BEC’s embedded in optical lattices, presented in this chapter, deal
with the problem of quantum bound states and matter waves delocal-
ization (Salerno), with the use of Feschbach resonance for generation
of soliton trains (Brazhnyi and Konotop), and with nonlinear periodic
waves in two-component BEC’s (Kostov et al). Finally, a study of cre-
ation and evolution of shock waves in BEC’s is reported (Kamchatnov,
Gammal and Kraenkel).

The third part is devoted to propagation of electromagnetic waves
in different physical systems. As it was already mentioned, the related
problems have many similarities with the dynamics of matter waves in
BEC systems. Here a waveguide structure plays the role of a trap, while
the Kerr nonlinearity plays the role of the effective nonlinearity induced
by elastic interactions between two atoms. Nonlinear photonics and
BEC in optical lattices also share many common properties. The chap-
ter starts with the study of light propagation in 2D nonlinear photonic
structures with defects (Aceves and Dohnal), in quantum dot ensembles
(Maimistov), and in surface polaritonic crystals (Darmanyan, Nevière
and Zayats). Light propagation in the media with cubic-quintic non-
linearities, including generation of sophisticated coherent structures like
pulsed beams, vortices and vortex solitons, as well as instabilities, are
presented by Michinel, Paz-Alonso and Salgueiro and by Skarka, Aleksic
and Berezhiani. This part of the book contains also reports on propaga-
tion of extremely short pulses on the basis of Maxwell-Duffing equations
(Kazantzeva), various aspects of statistics of soliton propagation in opti-
cal fibers (Boscolo, Derevyanko and Turitsyn; Villarroel), some exactly
solvable models for the nonlinear electrodynamics (Shvartsburg).

In the last part of the book classical and quantum aspects of dynamics
of anharmonic lattices are are discussed. Consideration is focused on the
topics as follows: the quantum breathers in a Hubbard model (Eilbeck
and Palmero); the relation between the energy localization in solids and
molecules and the first order phase transition (Takeno and Suzuki); prop-
agation of discrete solitons in long disordered Ablowitz-Ladik and Toda
chains (Garnier); ultrafast electron transfer in different systems (Aubry).
Also the chapter contains recent experimental results demonstrating that
self-trapping is a common feature in hydrogen bonded systems (Edler
and Hamm); discussion of a concept of quantum anharmonic phonons
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and their properties for the Fermi-Pasta-Ulam chain (Szeftel); new re-
sults on the perturbation theory for discrete solitons of the perturbed
Ablowitz-Ladik model (Doktorov, Matsuka and Rothos); analysis of pos-
sibility of the existence of traveling waves in the discrete sine-Gordon
and Klein-Gordon equations (Rothos and Feckan; Zolotaryuk); solitary
wave dynamics in perturbed ladder lattices (Vakhnenko); application of
discrete solitons to the array of BEC’s with varying atomic scattering
length (Tsoy et al); new exact results on functional presentation of the
Volterra hierarchy (Vekslerchik) and on Heisenberg chains (Serikbaev et
al; Rahimov et al).

In conclusion the book contains a panoramic view of rapidly develop-
ing areas of the nonlinear science – physics of matter waves, nonlinear
optics and photonics, and nonlinear discrete systems. The review char-
acter of a number of contributions make this book to be interesting
for postgraduate students starting a research while the original results
reported will be of interest for experts working in the respective fields.
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and Departamento de F́ısica for permanent support and help with tech-
nical arrangements. We also acknowledge Camara Municipal de Cascais
for the help in organization the workshop. Special thanks goes to V.A.
Brazhnyi and A. Spire for their assistance in local organization which
significantly contributed to the success of the workshop, and to the staff
of Kluwer Academic Publishers for technical help in preparation of this
volue. One of the editors (VVK) is particularly grateful to his wife
S. Konotop for indispensable permanent help during the organization of
the workshop and the completion of the Proceedings.

FATKHULLA ABDULLAEV, TASHKENT, JANUARY 31, 2004

VLADIMIR KONOTOP, LISBON, JANUARY 31, 2004



Contributing Authors

Abdullaev, F. Kh.
Physical-Technical Institute, Uzbek Academy of Sciences, Mavlyanova
str. 2-b, 700084 Tashkent, Uzbekistan.

Aceves, A. B.
Department of Mathematics, University of New Mexico, Albuquerque,
NM 87131, USA

Akhmediev, N.
Optical Sciences Centre, Research School of Physical Sciences and Engi-
neering, The Australian National University, Canberra ACT 0200, Aus-
tralia

Aleksic, N. B.
Laboratoire POMA, UMR 6136 CNRS, Universite d’Angers, 49045 An-
gers, France

Alfimov, G. L.
Lukin’s Research Institute of Physical Problems, Zelenograd, Moscow,
103460, Russia

Ankiewicz, A.
Applied Photonics Group, Research School of Physical Sciences and
Engineering, The Australian National University, Canberra ACT 0200,
Australia

Aubry, S.
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Abstract We are discussing various possibilities to construct algebro-geometric
solutions of the Gross-Pitaevskii equation on the basis of application of
the apparatus of completely integrable systems and theory of Abelian
functions. In this context algebro-geometric solutions of Schrödinger
equation with finite-gap potential were considered as well the solutions
in trigonal Abelian functions of the two-component Vector Nonlinear
Schrödinger Equation (or Manakov system).

Keywords: integrable partial differential equations, Scrödinger equation, finite-gap
potentials, vector non-linear Schrödinger equation, Manakov system

1. Introduction
The discovery of Bose-Einstein condensation (BEC) in alkali gases

“can be considered as one of the most beautiful results of experimental
physics in our century” [18]. It is understood now that all the low
temperature properties of BEC (see e.g. [8]) are well described by the
Gross-Pitaevskii equation [11, 17]. However this equation is nonlinear
and only for special classes of potentials certain exact solutions have
been found (see, for example, in the same volume [13]). The aim of
this communication is to discuss possibilities to enlarge the set of exact
solutions of the Gross-Pitaevskii equation on the basis of application of
the apparatus of completely integrable systems and theory of Abelian
functions (see e.g. [3]). The main idea is to apply to the problem the well
known algebro-geometric solutions of Schrödinger equation with finite-
gap potential and solutions in trigonal Abelian functions of the two-
component Vector Nonlinear Schrödinger Equation (or Manakov system)

3
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which were recently found. The results reported are based on articles
[4] and [10].

2. Utilization of the Schrödinger equation
The Gross-Pitaevskii equation with potential V (x, y, z, t) has the form

i
∂Ψ
∂t

= −∆3Ψ + V (x, y, z, t)Ψ + g|Ψ|2Ψ,

where ∆3 is 3-dimensional Laplace operator and g is a constant. To find a
simplest family of solutions to the equation we consider one-dimensional
Schrödinger equation

i
∂Ψ
∂t

= −∂2
xΨ + U(x, t)Ψ =

= −∂2
xΨ + (U(x, t) − g|Ψ|2)Ψ + g|Ψ|2Ψ.

Therefore if the potential is of the form

V (x, t) = U(x, t) − g|Ψ(x, t)|2,
then the Gross-Pitaevskii equation has a solution Ψ(x, t).

Let us consider further two one-dimensional Schrödinger equations

i
∂

∂t
Ψ1 = −∂2

xΨ1 + U1(x, t)Ψ1,

i
∂

∂t
Ψ2 = −∂2

yΨ2 + U2(y, t)Ψ2.

The function
Ψ(x, y, t) = Ψ1(x, t)Ψ2(y, t)

satisfies the equation

i
∂Ψ
∂t

= −∆2Ψ + V (x, y, t)Ψ + g|Ψ|2Ψ,

where

V (x, y, t) = U1(x, t) + U2(y, t) − g|Ψ1(x, t)|2|Ψ2(y, t)|2.
Therefore if the potential is of the form

V (x, y, t) = U1(x, t) + U2(y, t) − g|Ψ1(x, t)|2|Ψ2(y, t)|2,
then the two-dimensional Gross-Pitaevskii equation has a solution

Ψ(x, y, t) = Ψ(x, t)Ψ2(y, t).
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D-dimensional solutions of the Gross-Pitaevskii equation can be con-
structed in a similar way.

This elementary result allows us to use the well known finite-gap po-
tentials and appropriate eigenfunctions of the Schrödinger operators in
order to build for the Gross-Pitaevskii equation a large family of solu-
tions in terms of the Abelian functions. These Abelian functions depend
on the moduli of the appropriate Riemann surface which we consider as
the parameters of our solutions. We hope that the set of parameters
is big enough to describe many physically interesting situations of the
BEC phenomenon.

3. Solutions in terms of hyperelliptic functions
In this section we describe algebro-geometric solutions to the one di-

mensional Schrödinger equation with finite-gap potentials, for more de-
tails, see e.g. [3].

Let X be the hyperelliptic curve given by the equation

µ2 =
2g+1∑
i=0

aiλ
i = 4

2g+1∏
k=1

(λ − ek), (1)

realized as a two sheeted covering over the Riemann sphere branched
in the points (ek, 0), k ∈ G = {1, . . . , 2g + 1}, with ej �= ek for j �= k,
and at infinity, e2g+2 = ∞. Notice we do not require the ek to be
real. However, when they are real, we find it convenient to order them
according to e1 < e2 < . . . < e2g+1, i. e., in the opposite way as compared
to the Weierstrass ordering, see Fig. 1.

Given a canonical homology basis (a1, . . . , ag; b1, . . . , bg) as shown in
Fig. 1. Denote holomorphic differentials (first kind) dut= (du1, . . . ,dug),
where duk = λk−1/µ and their a and b-periods as

A =
(∮

ak

dui

)
i,k=1,...,g

, B =
(∮

bk

dui

)
i,k=1,...,g

. (2)

Let Hg = {τ t = τ, Im τ ≥ 0} be the Siegel half space of degree g,
where τ = A−1B is the period matrix. The hyperelliptic θ–function,
θ : Jac(V ) × Hg → C, with characteristics

[ε] =
[

ε′t

εt

]
=
[ ε′1 . . . ε′g

ε1 . . . εg

]
∈ R2g

is defined as the Fourier series

θ[ε](v|τ) =
∑

m∈Zg

exp πi
{
(m + ε′)tτ(m + ε′) + 2(v + ε)t(m + ε′)

}
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Figure 1. A homology basis on a Riemann surface of the hyperelliptic curve of
genus g with real branching points e1, . . . , e2g+2 = ∞ (upper sheet). The cuts are
drawn from e2i−1 to e2i for i = 1, . . . , g + 1. The b-cycles are completed on the lower
sheet (the picture on lower sheet is just flipped horizontally).

and has the periodicity properties

θ[ε](v + n + τn′|τ) =

exp
{−2 i πn′t(v +

1
2
τn′)

}
exp

{
2 i π(ntε′ − n′tε)

}
θ[ε](v|τ).

We are considering here only half-integer characteristics, ε′k, εl = 0 or 1
2

for any k, l = 1, . . . , g. Even characteristic [ε] is nonsingular if θ[ε](0) �=
0. Odd characteristic is nonsingular if the gradient ∂

∂vk
θ(v)

∣∣
z=0

has non-
zero components.

The remarkable role of θ-functions in the spectral theory of the Schrö-
dinger equation was discovered by Its and Matveev, 1975 [12]. Consider
the spectral problem

{
∂2

∂x2
− u(x)

}
Ψ(x; λ) = λΨ(x; λ),

where u(x) is smooth and real potential, Ψ(x; λ) is an eigenfunction,
and λ is the spectral parameter. Suppose that the spectrum consists of
n+1 continuous segments [λ1, λ2], . . . , [λ2n+1,∞]. Then the smooth and
real potential and the corresponding eigenfunction Ψ(x; λ, µ) are given
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by the formulae

u(x) = −2
d2

dx2
log θ( iUx|τ) + c (3)

Ψ(x; λ, µ) = C

θ

(
(λ,µ)∫

(∞,∞)

dv + iUx
∣∣τ)

θ
(
i Ux

∣∣τ) exp

⎧⎪⎨⎪⎩ i x

(λ,µ)∫
(λ0,µ0)

dΩ(λ, µ)

⎫⎪⎬⎪⎭ , (4)

where the constant C is chosen to provide the normalization condition,

|Ψ(x, λ)|2 = 1,

while the constant c is expressible in terms of periods of certain mero-
morphic differentials of the Riemann surface X. The real function of
λ

k(λ) =

(λ,µ)∫
(λ0,µ0)

dΩ(λ, µ),

has a sense of quasi-momentum.
The θ-functional expressions for the potential and of the Gross-Pitaev-

skii equation takes the form

U(x) = −2
d2

dx2
logθ( iUx|τ) − gC2

∣∣∣∣∣∣∣∣∣∣
θ

(
(λ,µ)∫

(∞,∞)

dv + iUx
∣∣τ)

θ
(
U2x + U0

∣∣τ)
∣∣∣∣∣∣∣∣∣∣

2

,

while the solution coincides with the Bloch function (4).
A special interest for the problem present a superposition of two ellip-

tic solitons. To this end we consider a genus two hyperelliptic curve with
two zones almost contracted, but one is much larger then another. A
typical form of potential u(x), where the more contracted zone is below
the of less contracted one is shown on the Fig. 2. We remark that this
plot was computed in terms of 2-dimensional θ-functions in conditions
of slow convergence of complete hyperelliptic integrals. To improve con-
vergence we were using the method of arithmetic-geometric mean for
the genus two hyperelliptic integrals the interest to which was recently
renewed [5]. Solutions of this kind was also obtained earlier in [15] by
dressing method.
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–2000

–1500

–1000

–500

–1.5 –1 –0.5 0.5 1 1.5
x

Figure 2. Hyperelliptic two-gap potentials with two contracted zones. A zone
being contracted with accuracy to 10−8 is placed below zone which is contracted with
accuracy to 10−2. The boundaries of zone are −13 − 10−8,−13,−8.01. − 8, 16.

We are working to show that parameters in (4) can be chosen in such
a way that the train of peaks with bigger period will be canceled and
certain periodic part will remains. The remaining periodic function U

can be interpreted as a periodic potential of the Gross-Pitaevskii equa-
tion, while the Bloch function of the Schrödinger equation will present
the solution itself. The work is in progress [4].
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4. Two component Gross-Pitaevskii equation
and the Manakov system

In this section we shall discuss a derivation of the algebro-geometric
solution for the two-component Gross-Pitaevskii equation with the po-
tential U(x)

i
∂Ψ1

∂t
+

∂2Ψ1

∂x2
+ 2

(|Ψ1|2 + |Ψ2|2
)
Ψ1 + U(x)Ψ1 = 0,

i
∂Ψ2

∂t
+

∂2Ψ2

∂x2
+ 2

(|Ψ1|2 + |Ψ2|2
)
Ψ2 + U(x)Ψ2 = 0.

To do that we shall use special solutions of the Vector Nonlinear Schrödinger
equation

i
∂Ψ1

∂t
+

∂2Ψ1

∂x2
+ 2

(|Ψ1|2 + |Ψ2|2
)
Ψ1 = 0,

i
∂Ψ2

∂t
+

∂2Ψ2

∂x2
+ 2

(|Ψ1|2 + |Ψ2|2
)
Ψ2 = 0.

(5)

It was proven by Manakov [16] that this system is completely integrable
and, in consequence, the equations (5) are now known as the Manakov
system.

Periodic and quasi-periodic solutions of the Manakov system expressed
in terms of explicit θ-functional formulae have been quoted by several
authors [14, 1], while the special case of reduction to a dynamical system
with two degree of freedom was studied in [7].

Recently a general class of periodic and quasi-periodic solutions of
this equation was derived in [10]. The formulae obtained are well algo-
rithmized and reduce the whole calculation to θ-functions, holomorphic
differentials and integrals. That is of importance for applications be-
cause in the case considered the solution is parametrized by a class of
trigonal curves, which is not well studied.

The procedure to compute algebro-geometric solutions described in
[10] is described below. On the all stages one can use Maple software
“algcurves” written on the base of [9] and no additional programming is
needed to construct the solution.

Fix positive integer n ∈ {2, 3, . . .} and a polynomial in two variables
or algebraic curve X

f(z, w) = (w +
i
2

(2z)n)(w − i
2

(2z)n)2

+ (w − i
2

(2z)n)Pn−1(z) + iPn−2(z) = 0,
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with arbitrary real polynomials Pn−2(z) and Pn−1(z) of variable z of
degrees n − 2 and n − 1 correspondingly.

The geometric genus g of the curve X when the polynomials Pn−2

and Pn−1 are in general position be g = 2n − 3. The curve X can
be realized as a 3-sheeted covering of the extended complex plane with
regular points at infinities. Therefore there are 3 infinities ∞1,∞2,∞3,
and the curve X is not branched at these infinities.

The homology basis of the curve can be represented for arbitrary genus
as the set of vertical cuts connected different sheets and a-cycles going
around the cuts. The cuts connect pair-wisely branch points which are
found as zeros of the discriminant of the curve. It can be shown that
all zeros of the discriminant are simple and therefore the ramification
index be 1/2 for this class of curves. For the case g = 3 the homology
basis is shown in Fig. 3; here, the solid, dashed and dash-dotted lines
connecting points e1 to e2 etc. are cuts connecting the first to second,
second to third and third to first sheets respectively. See caption for
further comments. The homology basis for higher genera can be plotted
analogously.

b
1

b
2

b
3

a
1

a
2

a
3

e
1

e
3

e
5

e
7

e
9

e
2

e
4 e

6

e
8

e
10

Figure 3. Basis of cycles of the curve X of genus 3. The solid, dashed and dash-
dotted lines denote paths on the first, second and third sheets respectively. Corre-
spondingly the solid to dashed line, dashed to dot-dashed line, and dot-dashed to
solid lines illustrate trajectories passing through these cuts. The cuts are similarly
encoded for clarity.
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12 23 31

Figure 4. Contours passing from sheet 1 to sheet 2, from sheet 2 to sheet 3 and
from sheet 3 to sheet 1.

For the next step compute the vector of holomorphic differentials
du(Q) = (du1(Q), . . . ,dug(Q))T .

dui(Q) =
zi

∂
∂wf(z, w)

dz, i = 0, . . . , n − 3,

duj(Q) =
zn−2−j

(
w − i

2 (2z)n
)

∂
∂wf(z, w)

dz, j = n − 2, . . . , 2n − 3.

Compute further the vector of normalized holomorphic differentials

dv(Q) = A−1du(Q),

where A is the matrix of a-periods like in (2).
Compute auxiliary winding vectors V (i), W (i), Z(i), i = 1, 2, 3 from

expansions of holomorphic integrals at infinities:

P∫
Q

dv

∣∣∣∣∣∣∣
P→∞i

= O(1) + V (i)ξ + W (i)ξ2 + Z(i)ξ3 + . . . , i = 1, 2, 3.

Then set for main winding vectors

V = iV (1) − i V (2) − i V (3), W = 4 iW (1) − 4 i W (2) − 4 i W (3).

Compute vectors r2,3

r2,3 =

∞2,3∫
∞1

dv,

which are non-complete holomorphic integrals and therefore no problems
with convergence appear.

Introduce θ-functions as in the case of hyperelliptic curve.



12 NONLINEAR WAVES: CLASSICAL AND QUANTUM ASPECTS

Compute the following 6 constants. They all are expressible in terms
of winding vectors and θ-functions and their derivatives in special points
r2,3 which are already defined. Namely we have

E1,2 = i (∂V (1) − ∂V (2,3)) lnθ[ε](r2,3)

− i ∂V (3,2) ln [θ[ε](r3,2)θ[ε](r2,3 − r3,2)] − i c(2,3)
1 − i c(1)

1 ,

N1,2 = 4 i (∂W(1) − ∂W(2,3)) lnθ[ε](r2,3)
− 4 i ∂W(3,2) ln [θ[ε](r3,2)θ[ε](r2,3 − r3,2)]

− 2 i
(
∂2

V (1),V (2,3) − ∂2
V (2,3),V (1)

)
lnθ[ε](r2,3)

+ 2 i ∂2
V (3,2),V (2,3) ln

[
θ[ε](r3,2)

θ[ε](r2,3 − r3,2)

]
− i c(2,3)

2 − i c(1)
2 ,

δ2,3 =
i

θ[ε](r2,3)

√
∂V (2,3)θ[ε](0)

√
∂V (1)θ[ε](0),

where [ε] be non-singular odd characteristic, for example,[
1/2 . . . 0
1/2 . . . 0

]
,

∂V , ∂W and ∂Z are directional derivatives,

∂V =
g∑

k=1

Vk
∂

∂vk
, ∂2

V ,W =
g∑

k=1

g∑
l=1

VkWl
∂2

∂vk∂vl
, etc.

and

c
(i)
1 = −∂W(i)θ[ε](0)

∂V (i)θ[ε](0)
,

c
(i)
2 = −

(
∂W(i)θ[ε](0)
∂V (i)θ[ε](0)

)2

+
1
3

∂3
V (i)θ[ε](0)

∂V (i)θ[ε](0)
+

∂Z(i)θ[ε](0)
∂V (i)θ[ε](0)

,

where i = 1, 2, 3.
We remark that the above 6 constants are fundamental: expression for

the constants c
(i)
2 coincide with accuracy to a trivial multiplier with val-

ues of the holomorphic projective connection at infinities. The first and
second logarithmic derivatives can be expressed in terms of multidimen-
sional Kleinian ζ and ℘-function which classical and modern treatment
of hyperelliptic case can be found in [2] and [6] correspondingly.

The algebro-geometric solution is of the form

Ψ1,2(x, t) = 2 iα1,2
θ (V x + W t − D + r2,3|τ)

θ (V x + W t|τ)
exp {−E1,2x + N1,2t} ,

α1,2 = δ2,3exp
{

i arg
(

θ(D|τ)
θ(r2,3 − D|τ)

)}
,

where D is arbitrary vector satisfying condition θ(D|τ) �= 0.
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The strategy of application of algebro-geometric solution of the Man-
akov system given above to the Gross-Pitaevskii equation could be the
same as in the case of Schrödinger equation already described. The
quantity U = |Ψ1|2 + |Ψ2|2 can be considered as a potential. Then the
solution obtained has the following property: when the underlying al-
gebraic curve X is of the genus one, which corresponds to n = 2 then
the solution is independent in time and can considered as x-dependent
potential. This potential which can be made elliptic periodic at certain
values of the parameters of the solution. Then we consider a curve of
higher genus, g ≥ 3 which yield quasi-periodic solutions of the back-
ground of the background of the elliptic periodic solution. Such solution
of the Manakov system can be interpreted as a solution of the Gross-
Pitaevskii equation with periodic potential. The work is in progress.
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ON MODELING ADIABATIC N-SOLITON
INTERACTIONS

Effects of perturbations

V.S. Gerdjikov
Department of Physics “E. R. Caianiello”, University of Salerno, I-84081 Baronissi
(SA), Italy and Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy
of Sciences, 1784 Sofia, Bulgaria
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Abstract The complex Toda chain (CTC) is known to describe the N -soliton
train interactions in adiabatic approximation for several nonlinear evo-
lution equations: the nonlinear Schrödinger equation (NLS), the modi-
fied NLS, higher NLS. We briefly review and extend the results in order
to treat several types of perturbations of the above-mentioned equa-
tions. In particular we consider analytically the effects of quadratic and
periodic external potentials as perturbations. We also briefly analyze
the Hamiltonian properties of the CTC.

Keywords: Soliton interactions, nonlinear waves, Hamiltonian mechanics

1. Introduction
Starting with the pioneer paper [1] the analytical and numerical meth-

ods for studying soliton interactions substantially developed. Most at-
tention was paid to the N -soliton train interactions for the nonlinear
Schrödinger equation (NLS) and its perturbed versions, see [2, 3, 4, 5]
and the references therein:

iut +
1
2
uxx + |u|2u(x, t) = iεR[u]. (1)

Several other nonlinear evolution equations (NLEE) were also studied,
among them the modified NLS (MNLS) equation [6, 7, 8, 9, 10]:

iut +
1
2
uxx + iα(|u|2u(x, t))x + |u|2u(x, t) = iR[u]; (2)

15
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one of the higher NLS (HNLS) equations [11]:

iut +
1
2
uxx + |u|2u(x, t) +

iε3
2

(uxxx + 6|u|2ux) = iR[u]; (3)

Here ε3 is a (small) constant and by R[u] we have denoted possible
perturbation terms, specific for each of the above equations.

By N -soliton train we mean a solution fixed up by the initial condition:

u(x, t = 0) =
N∑

k=1

u1s
k (x, t = 0), (4)

where u1s
k (x, t) is a generic one-soliton solution of the corresponding

NLEE; for the NLS-type equations the k-th soliton is parametrized by
four parameters: amplitude νk, velocity µk, center of mass position ξk

and phase δk. The adiabatic approximation uses as small parameter
ε0 � 1 the soliton overlap; in our cases this overlap falls off exponen-
tially with the distance between the solitons. Then the soliton parame-
ters must satisfy [1]:

|νk − ν0| � ν0, |µk − µ0| � µ0, |νk − ν0||ξk+1,0 − ξk,0| � 1, (5)

where ν0 = 1
N

∑N
k=1 νk, and µ0 = 1

N

∑N
k=1 µk are the average amplitude

and velocity respectively. In fact we have two different scales:

|νk − ν0| � ε
1/2
0 , |µk − µ0| � ε

1/2
0 , |ξk+1,0 − ξk,0| � ε−1

0 .

One can expect that the approximation holds only for such times t for
which the set of 4N parameters of the soliton train satisfy (5).

The equations (1) – (3) have several points in common. First of all
they all find a number of applications to nonlinear optics. Second, for
R[u] ≡ 0 they are all integrable via the inverse scattering method, see
[12, 13]. Therefore they allow exact N -soliton solutions. Thirdly, for
all of them the corresponding N -soliton train dynamics in the adiabatic
approximation is modelled by a complex generalization of the Toda chain
(TC) [14]:

d2Qj

dt2
= 16ν2

0f2
0

(
eQj+1−Qj − eQj−Qj−1

)
, j = 1, . . . , N, (6)

where Qj and the constant f0 for the HNLS are defined in eqs. (10),
(11) below; for the MNLS case f0 = 1 and Qj is as in eq. (14). Like
for the free-end TC we assume that e−Q0 ≡ eQN+1 ≡ 0; however the
dynamical variables Qj are complex-valued expressions of the soliton
variables which justifies the name of complex Toda chain (CTC).

It is important to note that the N -soliton train is not an N -soliton
solution evaluated for t = 0; if one tries to describe the spectral data of
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the corresponding Lax operator L he will find also nontrivial data related
to the continuous spectrum of L. Thus the analytical results from the
soliton theory can not be applied. Another reasons for which we will
apply the adiabatic approximation rather than the precise analytical
methods are due to the fact that we want to treat solitons moving with
equal velocities and the effects of possible nonintegrable perturbations
R[u]. The present paper briefly reviews and extends the results of several
previous ones: see Refs. [2, 3, 4, 5, 10, 11, 15] for the NLS and HNLS and
Refs. [8, 9] for the MNLS. Recently with the studies of Bose-Einstein
condensates it became important to study NLS equation with additional
potential term iR[u] = V (x)u(x, t), see [16]. We derive a perturbed CTC
model describing the adiabatic N -soliton interactions in the presence of
quadratic and periodic potentials V (x).

2. N-soliton trains of the NLS and HNLS
equations

Here we remind the results for the soliton solutions and N -soliton
trains of the NLS and HNLS equations. The dispersion law for the
HNLS eq. (3) we analyze below is fHN = λ2 − 2ε3λ

3 where ε3 is a
(small) constant. The reason for our choice is that eq. (3) also has
applications to nonlinear optics [6]. The 1-soliton solution of eq. (3) is:

u1s
k (x, t) =

2νke
iφk

cosh zk
,

zk(x, t) = 2νk(x − ξk(t)), ξk(t) = Vkt + ξk,0 (7)

φk(x, t) =
vk

νk
zk + δk(t), δk(t) = Wkt + δk,0, (8)

Vk =
f0,k

νk
, Wk =

2
νk

(µkf1,k − νkf0,k), (9)

where f0,k and f1,k are related to the dispersion law evaluated at λk by
f(λk) ≡ f(µk + iνk) = f0,k + if1,k. For the HNLS f(λ) = fHN(λ) and:

Vk = µk − ε3(3µ2
k − ν2

k), Wk = 2(1 − 4ε3µk)(µ2
k + ν2

k).

The analog of Karpman-Solov’iev equations was derived in [11]. Gen-
eralized to N -soliton case we again get a CTC of the form:

Qk(t) = 2iλ0ξk(t) + 2k ln(2ν0) + i(kπ − δk(t) − δ0), (10)

f0 =
i

2ν0

(
Im f(λ0)

ν0
− df

dλ

)∣∣∣∣
λ=λ0

= 1 − 6ε3µ0 − 2iε3ν0 = |f0|eiα0 (11)
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where µ0 = 1/N
∑N

k=1 µk, ν0 = 1/N
∑N

k=1 νk, δ0 = 1/N
∑N

k=1 δk and
λ0 = µ0 + iν0.

Remark 1 For ε3 = 0, f0 = 1 we obtain the results for the NLS case.
The factor 16ν2

0 in (6) can be absorbed away by rescaling the time: t →
τ = 4ν0t. If ε3 �= 0 then the constant f2

0 is complex. It can be absorbed
by redefining Qk as follows: Qk → Q̃k = Qk + 2k ln f0. Obviously the
argument α0 of f0 will play role in determining the conditions on soliton
parameters, responsible for the different dynamical regimes, see Sect. 5
below.

3. N-soliton trains of the MNLS equation
The MNLS eq. (2) is solvable by applying the inverse scattering

method to the so-called quadratic bundle [7]. The appropriate tech-
nique allowing to apply the Karpman-Solov’ev method to the quadratic
bundle was developed in [8]. The one-soliton solution is (λk = µk + iνk):

u1s
k (z, t) = i

νk

α

λke
−zk + λ̄ke

zk

(λezk + λ̄ke−zk)2
eiφk , φk =

µk

νk
zk + δk(t), (12)

zk = −νk

α

(
x +

µk

α
t − ξk,0

)
, δk(t) =

1
2α2

(µ2
k + ν2

k)t + δk,0,(13)

where we have used the parametrization as in [9]. The CTC model is
given by eq. (6) with f0 = 1 where Qk are expressed in terms of the
soliton parameters by [9]:

Qk = −ν0

α
ξk + 4k ln(ν0

√
2/α) − i

[
kπ +

µ0

α
ξk + δk + δ0 + 4Sk

]
, (14)

Sk = 2
k−1∑
j=1

sj + sk, sk(t) =
1
2

arctan
νk

1 + µk
, δ0 =

1
N

N∑
j=1

δj. (15)

Note that Qk depends on the soliton phases in a more complicated way.
The effects of perturbations to the MNLS eq. will be considered else-
where.

4. The importance of the CTC model
The fact [14] that the CTC, like the (real) Toda chain (RTC), is a

completely integrable Hamiltonian system allows one to analyze analyt-
ically the asymptotic behavior of the N -soliton trains. However unlike
the RTC, the CTC has richer variety of dynamical regimes [17] such as:

asymptotically free motion if vj �= vk for j �= k; this is the only
dynamical regime possible for RTC;
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N -s bound state if v1 = · · · = vN but ζk �= ζj for k �= j

various intermediate (mixed) regimes; e.g., if v1 = v2 > · · · > vN

but ζk �= ζj for k �= j then we will have a bound state of the first
two solitons while all the others will be asymptotically free;

singular and degenerate regimes if two or more of the eigenvalues
of L become equal, e.g., ζ1 = ζ2 . . . and ζj �= ζk for 2 < j �= k.

By ζk = vk + iwk above we have denoted the eigenvalues of the Lax
matrix L in the Lax representation Lτ = [M, L] of the CTC where:

L =
N∑

k=1

bkEkk +
N−1∑
k=1

ak(Ek,k+1 + Ek+1,k), (16)

bk ≡ −1
2

dQ̃k

dτ
=

1
2
f0(µk + iνk), ak =

1
2
f0 exp((Qk+1 − Qk)/2).

The eigenvalues ζk of L are time independent. Since now the dynamical
variables Qk are complex-valued, so are ζk and the first components
ηk = �z

(k)
1 of the normalized eigenvectors of L:

L�z(k) = ζk�z
(k), (�z(k), �z(m)) = δkm. (17)

The set of real and imaginary parts of ζk = vk + iwk and ηk = σk + iθk

are natural candidates for the set of action-angle variables of the CTC.
Using the CTC model one can determine the asymptotic regime [2, 5]

of the N -soliton train given its initial parameters µk(0), νk(0), ξk(0),
δk(0). Indeed, from these parameters it is easy to calculate the matrix
elements bk and ak of L at t = 0. Then it is a matter of solving an
algebraic equation (the characteristic equation for L|t=0) to determine
the eigenvalues ζk and to find out the set of asymptotic velocities 2vk =
2Re ζk.

One can use the CTC model also in another way [2, 5]. One can
solve the characteristic equation for L|t=0 and impose on its roots ζk to
be all purely imaginary, i.e. all vk = 0. In this way we will find a set
of conditions on the initial soliton parameters µk(0), νk(0), ξk(0), δk(0)
which characterize the region in the soliton parameter space responsible
for the N -soliton bound states. Obviously, the problem of describing the
sets of soliton parameters responsible for each of the dynamical regimes
reduces to solving a set of algebraic equations. Using this method in
[5] we have described the set of parameters responsible for the quasi-
equidistant propagation. In this regime all N -solitons form a bound
state in which the distance between any two neighboring solitons is

ξk+1(t) − ξk(t) � r0 � const



20 NONLINEAR WAVES: CLASSICAL AND QUANTUM ASPECTS

with a very good precision [5]. Such propagation is important for soliton-
based fiber optics communications.

We finish this section by showing that the CTC can be considered as a
standard real Hamiltonian system (see [18]) with 2N degrees of freedom.
For convenience we first absorb away the factor 16ν2

0f2
0 (see remark 1).

Then the Hamiltonian and the Poisson brackets are given by:

HCTC =
1
2

N∑
k=1

(
(pk,0)2 − (pk,1)2

)
+

N−1∑
k=1

exp
(
Q̃k+1,0 − Q̃k,0

)
cos

(
Q̃k+1,1 − Q̃k,1

)
, (18)

{pk,0, Q̃j,0} = −{pk,1, Q̃j,1} = δkj, (19)

where

Q̃k ≡ Qk + 2k ln f0 = Q̃k,0 + iQ̃k,1, pk,0 + ipk,1 = dQ̃k/dτ.

One can check that the equations of motion which follow from (17) and
(19) coincide with the real and imaginary parts of (6) with the factor
16ν2

0f2
0 absorbed.

5. Dynamical regimes of the HNLS soliton trains
One of the consequences of this formulation is that the Hamiltonian

H coincides with 2Re tr L2. We can express it in terms of the initial
soliton parameters and evaluate the energy of the corresponding CTC
state. In terms of the scattering data of L the Hamiltonian (17) takes
the form:

HCTC = 2Re tr (L)2 = 2
n∑

k=1

(v2
k − w2

k). (20)

Let us choose the initial soliton parameters so that we have an N -
soliton bound state at rest; then vk = 0 and the energy of such N -soliton
train is negative EBSR = −∑N

k=1 w2
k < 0. This fact may be used as an

argument for the stability of such N -soliton bound states. For the other
dynamical regimes vk are not all equal to zero which allows them to have
positive energies.

Let us illustrate our methods for the simplest nontrivial case N = 2.
One way to study the dynamical regimes is to make use of the explicit
solution of the CTC. Such solutions for the RTC are well known for all
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N , see [17] and the references therein. For N = 2 the solution is:

Q1(t) = Q1(0) − (ζ1 + ζ2)t + ln(2r1r2) + ln coshZ(t),
Q2(t) = Q1(0) − (ζ1 + ζ2)t + ln(2r1r2) + 2 ln(ζ1 − ζ2) − ln cosh Z(t),
Z(t) = (ζ1 − ζ2)t − ln(r1/r2), r2

1 + r2
2 = 1, (21)

where ζ1, ζ2 are the eigenvalues of L for N = 2. For the RTC both the
eigenvalues ζk, Q1(0) and the parameters rk are real and ζ1 �= ζ2. Each
Qk describes the motion of ‘particle’ with one degree of freedom. From
(21) we can derive the asymptotic behavior of Qk:

lim
t→∞(Qk(t) + 2ζ3−kt) = Q1(0) + ln r2

3−k + βk,

lim
t→−∞(Qk(t) + 2ζkt) = Q1(0) + ln r2

k + βk, (22)

β1 = 0, β2 = ln 4(ζ1 − ζ2)2, ζ1 > ζ2.

The two particles always have different asymptotic velocities, which
means that the RTC allows only asymptotically free dynamical regime.

Let us now consider the CTC. The first substantial difference with
RTC is that now Qk become complex, i.e. they describe ‘particle’ with
two degrees of freedom (like the NLS solitons). From eq. (10) it follows
that the center of mass of the k-th particle (soliton) ξk(t) is determined
by the real part of Qk through ξk(t) = (2k ln(2ν0) − Re Qk(t))/(2ν0).
The second degree of freedom of the k-th ‘particle’ (soliton) is an internal
one and it is described by the phase δk(t) which is determined through
Im Qk(t). Formally the solution to the N = 2 CTC is provided by
formula (21); however now the parameters ζk, Q1(0) and rk are complex-
valued. The condition ζ1 �= ζ2 may be also dropped giving rise to singular
and degenerate solutions, but in what follows we will keep it.

In order to determine the asymptotic dynamics of CTC we need to
evaluate the asymptotics of Re Qk(t) for t → ±∞. The result is:

lim
t→∞(Re Qk(t) + 2v3−kt) = ReQ1(0) + ln |r3−k|2 + Reβk,

lim
t→−∞(Re Qk(t) + 2vkt) = ReQ1(0) + ln |rk|2 + Reβk, (23)

where βk are expressed through ζk as in (21). Therefore the asymptotic
velocities are 2vk = 2Re ζk. If these asymptotic velocities are not equal
we find the asymptotically free dynamical regime, just like for RTC; in
it the distance between both ‘particles’ grows linearly in time.

However we have also another option in which v1 = v2 and w1 �= w2,
so that ζ1 �= ζ2. Inserting this into eq. (21) we find:

Q1(t) − Q2(t) = 2 ln
(
cos(Z̃(t))

)
− iπ − ln(w1 − w2)2. (24)



22 NONLINEAR WAVES: CLASSICAL AND QUANTUM ASPECTS

where Z̃(t) = (ω1 − ω2)t + i ln(r1/r2); i.e., the distance between the
particles is a bounded function of t. In other words the particles do not
separate asymptotically but form a bound state.

One can also describe analytically the set of soliton parameters re-
sponsible for each of the dynamical regimes. We will show how this
can be done for the BSR of the two-soliton trains. From the discussion
above these sets of parameters are such that Re (ζ1 − ζ2) = 0 where the
eigenvalues are the roots of the characteristic equation of L0 = L|t=0:

det(L0 − ζ) = ζ2 − (b1 + b2)ζ + b1b2 − a2
1 = 0. (25)

What one should do now is to solve (25) and express ζ1 − ζ2 in terms of
bk and a1. The BSR is obtained provided the discriminant D of (25) is
negative:

D = (b1 − b2)2 + 4a2
1 < 0. (26)

Now we insert eqs. (10), (11) and (16) into (26) and after some calcula-
tions find that (26) is satisfied in the following cases:

i) γ0 = α0 and δ2 − δ1 = 2(µ0r0 − α0), where

γ0 = arctan
∆µ

∆ν
, α0 = − arctan

2ε3ν0

1 − 6ε3µ0
, ∆ν �= 0. (27)

and ∆µ = µ1 − µ2, ∆ν = ν1 − ν2.
ii) γ0 = α0 and δ2−δ1 = 2(µ0r0−α0)+π, provided (∆µ)2 +(∆ν)2 >

4ν2
0e−2ν0r0 , where r0 is the distance between the solitons at t = 0.
This idea can be worked out, just like for the NLS case [2, 5], also

for N > 2. The analyses there becomes more complicated, but always
reduces to a set of algebraic constraints on the soliton parameters. In
particular, given the initial soliton parameters we can always calculate
(at least numerically) the corresponding eigenvalues ζk of L0 which im-
mediately determines the asymptotic regime of the N -soliton train.

Note also that the condition γ0 = α0 requires ∆µ �= 0 whenever
ε3 �= 0. For ε3 = 0 this condition simplifies to ∆µ = 0 and reproduces
the results for the NLS soliton trains, see [5].

6. The perturbed NLS and perturbed CTC
From now on for simplicity we will consider the perturbed NLS equa-

tion, i.e. we assume ε3 = 0 and f0 = 1. We will consider several specific
choices R(p)[u] of perturbations, p = 1, 2, . . . in (1). In the adiabatic ap-
proximation the dynamics of the soliton parameters can be determined
by the system, see [1] for N = 2 and [2, 5] for N > 2:



On modeling adiabatic N -soliton interactions 23

dλk

dt
= −4ν0

(
eQk+1−Qk − eQk−Qk−1

)
+ M

(p)
k + iN

(p)
k , (28)

dξk

dt
= 2µk + Ξ(p)

k ,
dδk

dt
= 2(µ2

k + ν2
k) + X

(p)
k , (29)

where λk = µk + iνk and X
(p)
k = 2µkΞ

(p)
k + D

(p)
k . The right hand sides

of Eqs. (28)–(29) are determined by R
(p)
k [u] through:

N
(p)
k =

1
2

∫ ∞

−∞
dzk

cosh zk
Re

(
R

(p)
k [u]e−iφk

)
, (30)

M
(p)
k =

1
2

∫ ∞

−∞

dzk sinh zk

cosh2 zk

Im
(
R

(p)
k [u]e−iφk

)
, (31)

Ξ(p)
k =

1
4ν2

k

∫ ∞

−∞
dzk zk

cosh zk
Re

(
R

(p)
k [u]e−iφk

)
, (32)

D
(p)
k =

1
2νk

∫ ∞

−∞
dzk (1 − zk tanh zk)

cosh zk
Im

(
R

(p)
k [u]e−iφk

)
. (33)

Inserting (28), (29) into (10) we derive:

dQk

dt
= −4ν0λk +

2k

ν0
N

(p)
0 + 2iξk

(
M

(p)
0 + iN

(p)
0

)
+ i

(
2λ0Ξ

(p)
k − X

(p)
k − X

(p)
0

)
, (34)

where

N
(p)
0 =

1
N

N∑
j=1

N
(p)
j , M

(p)
0 =

1
N

N∑
j=1

M
(p)
j , X

(p)
0 =

1
N

N∑
j=1

X
(p)
j .

Deriving eq. (34) we have kept terms of the order ∆νk � O(
√

ε0) and
neglected terms of the order O(ε0). The perturbations result in that ν0

and µ0 may become time-dependent. Indeed, from (28) we get:

dµ0

dt
= M

(p)
0 ,

dν0

dt
= N

(p)
0 . (35)

Brief exposition of the approximations used follows. We first will
relate the small parameter ε0 with the initial distance r0 = |ξ2 − ξ1|t=0

between the two solitons. Assuming ν1,2 � ν0 we find:

ε0 =
∫ ∞

−∞
dx

∣∣u1s
1 (x, 0)u1s

2 (x, 0)
∣∣ � 8ν0r0e

−2ν0r0 . (36)

In particular, (36) means that ε0 � 0.01 for r0 � 8 and ν0 = 1/2.
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It is important to note that only the nearest neighbor interactions
are to be taken into account. Indeed, we can assume that initially the
solitons are ordered in such a way that ξk+1 − ξk � r0. One can check
[3, 10] that N

(p)
k � M

(p)
k � exp(−2ν0|k−p|r0). Therefore the interaction

terms between the k-th and k±1-st solitons will be of the order of e−2ν0r0 ;
the interactions between k-th and k ± 2-nd soliton will of the order of
e−4ν0r0 � e−2ν0r0 .

The terms Ξ(0)
k , X

(0)
k are of the order of ra

0 exp(−2ν0r0), where a = 0
or 1. However they can be neglected as compare to µ̃k and ν̃k, where

µ̃k = µk − µ0 � √
ε0, ν̃k = νk − ν0 � √

ε0. (37)

It is easy to see that the corrections to N
(p)
k , . . . , coming from the

terms linear in u which may be present in iR(p)[u] depend only on the
parameters of the k-th soliton; i.e., they are ‘local’ in k. The nonlinear
in u terms present in iR(p)[u] produce also ‘non-local’ in k terms in
N

(p)
k , . . . . For example, assume that iR(p)[u] contains cubic term like

|u|2u. We have to insert in it the ansatz (4) and then evaluate the right
hand sides of eqs. (30)–(33). Doing this we encounter terms of the form
uku

∗
sup and u∗

kusup where s and p may take any values between 1 and
N . One can check, that the corresponding, rather complicated integrals
will be of the order of ra

0 exp(−2ν0(|k− s|+ |k− p|)r0), where a is either
0 or 1. In the adiabatic approximation we keep track only of the leading
terms ra

0 exp(−2ν0rj0). This is possible if: i) s = p = k and then we get
‘local’ in k terms; ii) s = k and p = k ± 1 or iii) s = k ± 1 and p = k.
The cases ii) and iii) give rise to ‘non-local’ in k terms corresponding to
nearest neighbor interaction. All other choices for the triple k, s, p leads
to higher order terms and are neglected.

In the next subsections we briefly analyze specific types of perturba-
tions, see [3]. In most cases this leads to a perturbed version of the
CTC.

6.1 Second order dispersion and nonlinear gain
Consider the NLS eq. (1) with

R[u] = c0u + c2uxx + d0|u|2u, (38)

where c0, c2 and d0 are real constants, see [10].
Another important factor is the order of magnitude of the perturba-

tion coefficients c0, c2 and d0 in (38). If we take them to be of the order
of ε0 we find that the N -soliton train evolves according to:

d2Qk

dt2
= U00 + 16ν2

0

(
eQk+1−Qk − eQk−Qk−1

)
, (39)
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where for µ0 = 0 we get U00 = −8iν2
0

3

(
3c0 + 8ν2

0d0 − 4c2ν
2
0

)
. This form

of perturbed CTC (39) can be solved exactly:

Qk(t) =
1
2
U00t

2 + V00t + Q
(0)
k (t),

where Q
(0)
k (t) is a solution of the unperturbed CTC and V00 is an ar-

bitrary constant. In this cases the effect of the perturbation will be an
overall motion of the center of mass of the N -soliton train. The relative
motion of the solitons will remain the same!

The situation when the coefficients c0, c2 and d0 become larger, e.g.,
of the order of

√
ε0 the corresponding dynamical system becomes more

complicated and has to be treated separately.

6.2 Quadratic and periodic potentials
Let iR[u] = V (x)u(x, t). Our first choice for V (x) is a quadratic one:

V1(x) = v2x
2 + v1x + v0. (40)

Skipping the details we get the results:

N
(1)
k = 0, M

(1)
k = −v2ξk − v1

2
, (41a)

Ξ(1)
k = 0, D

(1)
k = v2

(
π2

48ν2
k

− ξ2
k

)
− v1ξk − v0, (41b)

and X
(1)
k = D

(1)
k . As a result the corresponding PCTC takes the form:

d(µk + iνk)
dt

= −4ν0

(
eQk+1−Qk − eQk−Qk−1

)− v2ξk − v1

2
, (42)

dQk

dt
= −4ν0(µk + iνk) − iD

(1)
k − i

N

N∑
j=1

D
(1)
j . (43)

If we now differentiate (43) and make use of (42) we get:

d2Qk

dt2
= 16ν2

0

(
eQk+1−Qk − eQk−Qk−1

)
+ 4ν0

(
v2ξk +

v1

2

)
− i

dD
(1)
k

dt
− i

N

N∑
j=1

dD
(1)
j

dt
. (44)

It is reasonable to assume that v2 � O(ε0/N); this ensures the possibility
to have the N -soliton train ‘inside’ the potential. It also means that
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both the exponential terms and the correction terms M
(1)
k are of the

same order of magnitude.
From eqs. (42) and (43) there follows that dν0/dt = 0 and:

dµ0

dt
= −v2ξ0 − v1

2
,

dξ0

dt
= 2µ0, (45)

where µ0 is the average velocity and ξ0 = 1
N

∑N
j=1 ξj, is the center of

mass of the N -soliton train. The system of equations (45) for v2 > 0 has
a simple solution

µ0(t) = µ00 cos(Φ(t)), ξ0(t) =
√

2
v2

µ00 sin(Φ(t)) − v1

2v2
, (46)

where Φ(t) =
√

2v2t + Φ0, and µ00 and Φ0 are constants of integration.
Therefore the overall effect of such quadratic potential will be to induce
a slow periodic motion of the train as a whole.

Another important choice is the periodic potential

V2(x) = V(0) sin2(ωx + ω0), (47)

where V(0), ω and ω0 are appropriately chosen constants. NLS equa-
tion with such potentials appear in a natural way in the study of Bose-
Einstein condensates, see [16]. The corresponding integrals for Nk, Mk,
Ξk and Dk can be evaluated with the result:

N
(2)
k = 0, M

(2)
k = −ωV(0)

2
sin(2ωξk + 2ω0)

Zk

sinhZk
, (48)

Ξ(2)
k = 0, D

(2)
k =

V(0)

2
cos(2ωξk + 2ω0)

Z2
k cosh Zk

sinh2 Zk

− V(0)

2
.(49)

where Zk = πω/(2νk). These results allow one to derive the correspond-
ing perturbed CTC models. Again we find that dν0/dt = 0.

7. Analysis of the Perturbed CTC
Next step will be to analyze each of the perturbed systems above and

to see to what extent it allows analytical treatment. The idea is to look
for the solutions of PCTC in the form:

Qk(t) = Q
(0)
k (t) + s0(t) + sk(t), (50)

where Q
(0)
k (t) is a solution of the unperturbed CTC; s0(t) describes the

center of mass motion – i.e. it may depend on t but not on k. Finally,
sk(t) describes the effect of the perturbation on the relative motion of
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neighboring solitons. Note that s0(t) may not be small, but this is the
global driving effect of the potential on the Toda chain. One may be
able to solve explicitly for s0(t). For quadratic potential this was done
above.

The real-valued potentials do not change the right hand side of the
CTC equations for νk and ξk. The terms sk(t) are generically small and
can be considered as first nontrivial corrections.

The perturbed CTC allows one to study the simultaneous effect of
several perturbations by just taking the sum over the relevant values of
p in the right hand sides of eqs. (28), (29).

8. Discussion
Like any other model, the predictions of the CTC should be compared

with the numerical solutions of the corresponding NLEE. Such compari-
son for the NLS has been done thoroughly in [2, 3, 5] and excellent match
has been found for all dynamical regimes. For the MNLS eq. such com-
parison has been performed in [9] with a good agreement. For the HNLS
and SG equations up to now no such check has been performed.

Thus we have established that the CTC describes the adiabatic N -
soliton interactions for several NLEE and

is valid for NLEE with different dispersion laws f(λ);

is valid for NLEE solvable with substantially different Lax opera-
tors.

Analogous perturbed versions of CTC describe the N -soliton train
interactions also for the perturbed MNLS and HNLS equations.

Recently it was shown [19] that the N -soliton interaction for the
Ablowitz-Ladik system can also be modelled by the CTC.

This supports our hypothesis that the CTC is an universal model for
describing the adiabatic N -soliton interactions. The exponential terms
in CTC are related to the exponential decay of solitons. Other aspects
of the Hamiltonian formulation of CTC are analyzed in [18].
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DYNAMICAL STABILIZATION OF
NONLINEAR WAVES

Fatkhulla Abdullaev
Physical-Technical Institute, Uzbek Academy of Sciences, Mavlyanova str. 2-b, 700084
Tashkent, Uzbekistan
fatkh@physic.uzsci.net

Abstract Dynamics of solitons in the nonlinear media with rapidly varying param-
eters are investigated. One-dimensonal and two-dimensional nonlinear
Schrödinger equations with a periodic modulation in time of the dis-
persion, the nonlinearity and the linear potential, are considered. As
physical applications we study problems: 1) the stabilization of atomic
matter soliton in Bose-Einstein condensate (BEC) with a rapidly vary-
ing trap potential; 2) the dynamical stabilization of bright soliton in
two dimensional BEC by rapidly oscillating atomic scattering length;
(the Feshbach resonance or nonlinearity management), 3)the existence
of stable two dimensional dispersion-managed soliton.

Keywords: Stabilization of Townes soliton, periodic dispersion, nonlinearity, oscil-
lating trap, nonlinear matter waves, rapid perturbations, Bose-Einstein
condensate.

1. Introduction
Recently bright matter wave solitons have been observed in a Bose-

Einstein condensate (BEC) [1, 2]. In the experiment described in Ref.
[1] propagation in an anisotropic BEC of cigar type geometry was con-
sidered. In Ref. [2] the soliton was monitored by projecting the bound
state of approximately 5000 atoms into expulsive harmonic potential.
The soliton was observed to propagate without changing in its form for
distances of order of ∼ 1mm [1]. The expulsive harmonic trap used in
the experiment, corresponds to an unstable potential for the GP equa-
tion and a soliton can exist only as a metastable state in BEC [3, 4]. It
is of interest to investigate the dynamics of a bright matter wave soliton
in inhomogeneous time dependent systems, in particular possible sta-
bilization of unstable dynamics or complicated dynamics of solitons in
BEC.

29
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An interesting example of such a trap is an optical trap which is
rapidly varied in time indeed. We will call such scheme as follows:

a) The management of potential.
Such management of potential is realized for instance for a condensate

in a dipole trap formed by a strong off-resonant laser field [5]. A typical
model is a trap formed by a harmonic potential with different frequencies
which is cut at some energy Vc. Numerical simulations of the condensate
dynamics in 1D BEC with a positive scattering length under periodically
shaken trap performed in Ref.[5] show existence of splittings of the con-
densate. The same form of wave equation governs propagation of spatial
solitons in periodically modulated parabolic waveguides. This problem
appears in investigation of intense light beams in a nonlinear waveg-
uide with inhomogeneous distribution of a transverse refractive index.
A typical distribution can be approximated by a quadratic profile. The
rapid variation of this profile along the longitudinal direction leads to a
rapidly varying quadratic potential in the nonlinear Schrödinger (NLS)
equation. Here we will consider the evolution under rapidly varying in
time trap potential [6].

The general mathematical problem is to investigate localized states
for the nonlinear wave equation with cubic nonlinearity and with rapidly
varying (not small) potential of the form V0 = f(x)α(t/ε), ε � 1. Also
it is of interest to investigate possibilities of stabilization of a soliton by
rapid perturbations. For multi dimensional NLS equation under rapidly
varying in space periodic potential such a problem is discussed in [7].
We derive the averaged equation and show that the dynamics can be
described by the effective potential equal to unperturbed potential plus
second order corrections of new functional form.

Another possibilities for the 2D soliton stabilization are open due the
possibilities of periodic variations of nonlinearity or dispersion coeffi-
cients in the 2D Gross-Pitaevskii (GP) equation - i.e. a nonlinearity and
a dispersion management schemes.

b) Nonlinearity management for 2D solitons.
The coefficient in front of the cubic termin the GP equation, pro-

portional to the collision scattering length, may be both positive and
negative, which corresponds, respectively, to repulsive and attractive
interactions between the atoms [8]. In the case of an attractive inter-
action, a soliton may be formed in an effectively one-dimensional (1D)
condensate; however, in 2D and 3D cases the attraction results in the
collapse of the condensate (weak and strong collapse, respectively [9]) if
the number of atoms exceeds a critical value [8].

Recently developed experimental techniques [10] make it possible to
effectively control the sign of the scattering length using an external
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magnetic field because the interaction constant can be changed through
the Feshbach resonance [11]. This technique makes it possible to quickly
reverse (in time) the sign of the interaction from repulsion to attraction,
which gives rise, via the onset of collapse, to an abrupt shrinking of the
condensate, followed by a burst of emitted atoms and the formation of
a stable residual condensate [10].

A natural generalization of this approach for controlling the strength
and sign of the interaction between atoms and, thus, the coefficient in
front of the cubic term in the corresponding GP equation, is the applica-
tion of a magnetic field resonantly coupled to the atoms and consisting,
in the general case of dc and ac components. The dynamical behavior of
2D and 3D condensates in this case is then an issue of straightforward
physical interest, as it may be readily implemented in experiments. It
is noteworthy that, in the 2D case, this issue is similar to a problem
which was recently considered in nonlinear optics for (2+1)D spatial
solitons (i.e., self-confined cylindrical light beams) propagating across a
nonlinear bulk medium with a layered structure, so that the size [12]
and, possibly, the sign [13] of the Kerr (nonlinear) coefficient are sub-
ject to a periodic variation along the propagation distance (it plays the
role of the evolutional variable, instead of time, in the description of
optical spatial solitons). The same optical model makes also sense in
the (3+1)D case, because it applies to the propagation of “light bullets”
(3D spatiotemporal solitons [14]) through the layered medium [13]. We
will demonstrate below that the results obtained for the BEC dynamics
in the GP equation involving both a dc and ac nonlinearity are indeed
similar to findings reported in the framework of the above-mentioned
optical model [15, 16, 17, 18].

c)Dispersion management for 2D solitons.
Nonlinear wave propagation in media with periodically varying dis-

persion is attracting huge interest over the recent years. A prominent
example is a dispersion-managed (DM) optical soliton, which is consid-
ered to become the major concept in future soliton-based communica-
tion systems. It was shown theoretically and experimentally that the
strong DM regime provides the undisturbed propagation of pulses over
very long distances. DM solitons are robust to the Gordon-Haus timing
jitter, which makes them favorable against the standard solitons [19, 20].

Although well studied in the 1D case, the two and three dimensional
extensions of this problem are far less explored. The major difference
here is that, contrary to the 1D case, the NLS equation in two and three
dimensions is unstable against collapse. From the analysis of the nonlin-
earity management, these one can reasonably expect that the dispersion-
management can play balancing role also in the 2D case, and the stable
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2D DM soliton can exist. Such a possibility has recently been consid-
ered in Ref.[21] by construction of the ground state for the periodic 2D
NLS equation based on the averaged variational principle and the tech-
niques of integral inequalities - i.e. the proof of the existence theorem
for DM soliton was presented. Analytical and numerical treatment of
the problem, however, has not been addressed so far.

Here we derive the analytical expressions for the parameters of a DM
soliton in two dimensions [22]. We consider a 2D NLS equation with
cubic nonlinearity and periodically varying dispersion coefficient. The
time-dependent variational approach (VA) will be used to derive the set
of ODEs for soliton parameters. The analytical expressions for the fixed
points of VA equations will be derived and the stability of these fixed
points will be analyzed.

2. Dynamics of solitons in BEC with rapidly
oscillating trap

The dynamics of BEC is described by the time dependent GP equation

iψτ = − �2

2m
∆ψ + Vtr(r, t)ψ + g0|ψ|2ψ, (1)

where m is the atom mass, g = 4π�2as/m and as is the atomic scatter-
ing length. as > 0 corresponds to the BEC with repulsive interaction
between atoms and as〈0 to the attractive interaction. The trap poten-
tial is given by Vtr = mω2(y2 + z2)/2 + α(t)(mω2

1x
2/2 + V1(x, t)), where

V1(x, t) is a bounded potential or the optical lattice potential, α(t) de-
scribes the time dependence of the potential. We will specify the form
of V1 later. Below we will consider the condensate of cigar type with
ω2 � ω2

1. Within such restrictions we can look for the solution of eq.(1)
of the form ψ(x, y, z, t) = R(y, z)φ(x, t), where R satisfies the equation

− �2

2m
∆R +

mω2

2
(y2 + z2)R = λρR, λ = �ω.

Averaging over the transverse mode R(i.e. multiplying by R∗,

|R0|2 =
mω

π�
exp(−mω

�
ρ2),

and integrating over ρ) we obtain the quasi 1D GP for φ [23]

i�φτ = − �2

2m
φxx + α(τ)

(
mω2

1x
2

2
+ V1(x, τ)

)
φ + G|φ|2φ, (2)
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where G = g
∫ |R|4dxdy/

∫ |R|2dxdy = (2�|as|ω). In the dimensionless
variables

t = ωτ/2, x = x/l, l =

√
�

mω
, u =

√
2|as|φ,

we have the governing equation

iut + βuxx + 2σ|u|2u = α(t)f(x)u. (3)

where we will suppose a periodic modulation of the trap

α(t) = α0 + α1 sin(Ωt). (4)

For example for Vtr = mω2
1x

2/2 we have α0f(x) = (ω1/ω)2x2. We in-
troduced the parameter β = ±1 in order to have opportunity to use
the results obtained for optical beam propagation. For the BEC system
β = 1. As well as σ = ±1 corresponds to the attractive and repulsive
two body interactions respectively.

The field u(x, t) can be represented in the form of sum of slowly and
rapidly varying parts U(x, t) and ξ(x, t)

u(x, t) = U(x, t) + ξ(x, t). (5)

For obtaining the equation for an averaged field we will apply the
asymptotic procedure suggested in [7], namely we will present the rapidly
varying part of the field as expansion on Fourier series

ξ = A sin(Ωt) + B cos(Ωt) + C sin(2Ωt) + D cos(2Ωt) + ... (6)

where A, B, C, D are functions of (x,t) that are slowly varying in the
scale O(1) functions. By substituting the equations (5),(6) into (3) we
obtain the next set of equations for the slowly varying field and the
coefficients of the expansion for the rapidly varying component

iUt + βUxx + 2|U |2U + U∗(A2 + B2 + C2 + D2) + +2U(|A|2 +
|B|2 + |C|2 + |D|2) + (BCA∗ − |A|2D + ACB∗ + |B|2D +

+ABC∗ +
A2D∗

2
= αf(x)U +

α1

2
f(x)A (7)

iAt − iΩB + βAxx + 4|U |2A + 2U∗(BC − AD) + 2U2A∗ + ...

= α1f(x)U − α1

2
f(x)D, (8)
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iΩA + iBt + βBxx + 4|U |2B + 2U2B∗ + 2U∗(AC + BD) + ...

=
α1

2
f(x)C, (9)

iCt − 2iΩD + βCxx + 4|U |2C + 2U∗AB + ... =
α1

2
f(x)B, (10)

2iΩC + iDt + βDxx + 4|U |2D + U∗(B2 − A2) + ... = −α1

2
f(x)A. (11)

The parameters α1, Ω are assumed � 1. As we can find from this
system, the coefficients can be represented in the form of expansion

A =
a1

Ω2
+

a2

Ω4
, B =

b1

Ω
+

b2

Ω3
,

C =
c1

Ω3
+

c2

Ω5
, D =

d1

Ω2
+

d2

Ω4
. (12)

For the coefficients of expansion we have the expressions

a1 = −iα1f(x)Ut − α1(f(x)U)xx) − 2α1f(x)|U |2U
+α0α1f

2(x)U,

b1 = iα1f(x)U, d1 =
α2

1f(x)2

4
U, c1 = .... (13)

From (6),(11),(12) we obtain the averaged equation for U

iUt + βUxx + 2|U |2U = α0f(x)U − i
ε2

2
f2(x)Ut

−β
ε2

2
f(x)(f(x)U)xx − 2ε2f2(x)|U |2U +

ε2α0

2
f2(x)U. (14)

Here ε = α1/Ω.
This equation has the conserved quantity - the number of atoms∫ ∞

−∞
dx

(
1 +

ε2f2(x)
2

)
|U |2 = const. (15)

So, it is useful to introduce the new field V by

V =
(

1 +
ε2f2(x)

2

)1/2

U. (16)
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Substituting (16) into (13) and keeping the terms of order ε2 we obtain
the equation

iVt + βVxx + 2|V |2V = (α0f(x) +
ε2

2
β[fx(x)]2)V + O(ε4). (17)

The averaged equation has the form of a modified NLS equation with a
slowly varying potential

W (x) = α0f(x) +
ε2

2
β[fx(x)]2. (18)

This result shows that the soliton dynamics can have more compli-
cated character than in the case of BEC with slowly varying parameters.
We can expect here the stabilization of the unstable dynamics of a soli-
ton by rapidly varying perturbation. It is a direct analogy with the
stabilization of systems with a few degrees of freedom under rapidly
oscillating perturbation [24].

3. Stable two dimensional bright soliton under
Feschbach resonance management

In the case of a high-frequency modulation, there is a possibility to
apply the averaging method directly to the 2D Gross-Pitaevskii equa-
tion, without using the VA. Note that direct averaging was applied to
the 2D nonlinear Schrödinger equation (NLS) with a potential rapidly
varying in space, rather than in time, in Ref. [7], where the main re-
sults were a renormalization of the parameters of the 2D NLS equation
and a shift of the collapse threshold. As we will see below, a rapid
temporal modulation of the nonlinear term in the GP equation leads
to new effects, which do not reduce to a renormalization. Namely, new
nonlinear-dispersive and higher-order nonlinear terms will appear in the
corresponding effective NLS equation [see Eq. (23) below]. These terms
essentially affect the dynamics of the collapsing condensate.

Assuming that the ac frequency ω is large, we rewrite the 2D GP
equation in a more general form,

i∂ψ/∂t + ∆ψ + λ(ωt)|ψ|2ψ = 0, (19)

where ∆ is the 2D Laplacian. To derive an equation governing the
slow variations of the field, we use the multiscale approach, writing the
solution as an expansion in powers of ε = 1/ω and introducing the slow
temporal variables, Tk ≡ ω−kt, k = 0, 1, 2... , while the fast time is
ζ ≡ ωt. Thus, the solution is sought for as

ψ(r, t) = A(r, Tk) + ω−1u1(ζ, A) + ω−2u2(ζ, A) + ..., (20)
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with 〈uk〉 = 0, where 〈...〉 stands for the average over the period of the
rapid modulation, and we assume that λ0 = +1 (i.e., the dc part of the
nonlinear coefficient corresponds to attraction between the atoms).

Following a procedure developed, for a similar problem, in Ref. [25],
we first find the first and second corrections,

u1 = −i[µ1 − 〈µ1〉]|A|2A, (21)
u2 = [µ2 − 〈µ2〉][2i|A|2At + iA2A∗

t + ∆(|A|2A)] −
|A|4A

[
1
2
[(µ1 − 〈µ1〉)2 − 2M ] + 〈λ〉 (µ2 − 〈µ2〉)

]
. (22)

Here

µ2 =
∫ ζ

0
(µ1 − 〈µ1〉)ds, µ1 ≡

∫ ζ

0
[λ(τ) − 〈λ1〉] dτ

M = (1/2)(〈µ2
1〉 − 〈µ1〉2) = (1/2)(〈λ2〉 − 1)

(recall we have set |λ0| = 1). Using these results, we obtain the following
evolution equation for the slowly varying field A(x, T0), derived at the
order ω−2:

i
∂A

∂t
+ ∆A + |A|2A + 2M

( ε

ω

)2
[|A|6A −

3|A|4∆A + 2|A|2∆(|A|2A) + A2∆(|A|2A∗)] = 0. (23)

We stress that Eq. (23) is valid in both 2D and 3D cases. In either case,
it can be represented in the quasi-Hamiltonian form,[

1 + 6M
( ε

ω

)2 |A|4
]

∂A

∂t
= −i

δHq

δA∗ , (24)

Hq =
∫

dV

[
|∇A|2 − 2M

( ε

ω

)2 |A|8 − 1
2
|A|4

+ 4M
( ε

ω

)2 ∣∣∣∇(
|A|2 A

)∣∣∣2 ], (25)

where dV is the infinitesimal volume in the 2D or 3D space. To cast this
result in a canonical Hamiltonian representation, one needs to prop-
erly define the corresponding symplectic structure (Poisson’s brackets),
which is not our aim here. However, we notice that, as it immediately
follows from Eq. (24) and the reality of the (quasi-)Hamiltonian (25),
Hq is an integral of motion, i.e., dHq/dt = 0.
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For a further analysis of the 2D case, we apply a modulation theory
developed in Ref. [26]. According to this theory, the solution is searched
for in the form of a modulated Townes soliton. The (above-mentioned)
Townes soliton is a solution to the 2D NLS equation in the form ψ(r, t) =
eitRT(r), where the function RT(r) satisfies the boundary value problem

R′′
T + r−1R′

T − RT + R3
T = 0, R′

T(0) = 0, RT(∞) = 0. (26)

For this solution, the norm N and the Hamiltonian H take the well-
known values, NT = 1.862, HT = 0.

The averaged variational equation (23) indicates an increase of the
critical number of atoms for the collapse, as opposed to the classical
value NT . Using the relation (20), we find

Ncrit =
∫ ∞

0
|ψ|2rdr = NT + 2M

( ε

ω

)2
I6,

where I6 = 11.178. This increase in the critical number of atoms is
similar to the well-known energy enhancement of dispersion-managed
solitons in optical fibers with periodically modulated dispersion.

Another nontrivial perturbative effect is the appearance of a nonzero
value of the phase chirp inside the stationary soliton. We define the
mean value of the chirp as

b =

∫∞
0 Im

(
∂ψ
∂r ψ∗

)
rdr∫∞

0 r2dr|ψ|2 .

Making use of the expression (21) for the first correction, we find

b = − ε

ω
BM (µ1 − 〈µ1〉) ,

B ≡ 3

∫ +∞
0 rdrR2(R′)2 − (0.25)

∫ +∞
0 drR4∫ +∞

0 r2drR2
= 0.596.

To develop a general analysis, we assume that the solution with the
number of atoms close to the critical value may be approximated as a
modulated Townes soliton, i.e.

A(r, t) ≈ [a(t)]−1 RT(r/a(t))eiS, S = σ(t) +
ȧr2

4a
, σ̇ = a−2 (27)

with some function a(t) (where the overdot stands for d/dt). If the initial
power is close to the critical value, i.e., when |N − Nc| � Nc and the
perturbation is conservative,i.e.

Im
∫

dV [A∗F (A)] = 0
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as in our case, a method worked out in Ref. [26] makes it possible
to derive an evolution equation for the function a(t), starting from the
approximation (27). The equation of modulation theory for width is

a3att = −β0 +
ε2

4M0ω2
f1(t), (28)

where

β0 = β(0) − ε2f1(0)
4M0ω2

, β(0) =
(N − Nc)

M0
,

and M0 ≡ (1/4)
∫∞
0 r3drR2

T ≈ 0.55. The auxiliary function is given by

f1(t) = 2a(t)Re
[

1
2π

∫
dxdyF (AT)e−iS(RT + ρ∇RT(ρ))

]
. (29)

In the lowest-order approximation, the equation takes the form (for the
harmonic modulation)

d2a

dt2
= −Λ1

a3
+

Cε2

ω2a7
, (30)

where Λ1 = (N − Nc)/M0 − Cε2/(ω2a4
0) and C is

C ≡ 3
M0

∫ ∞

0
dρ

[
2ρR4

T(R′
T)2 − ρ2R3

T(R′
T)3 − 1

8
ρR8

T

]
≈ 39. (31)

Thus the averaged equation predicts the arrest of collapse by the rapid
modulations of the nonlinear term in the 2D GP equation.

Let us estimate the value of the fixed point for the numerical simula-
tions performed in Ref.[15]. In this work the stable propagation of soliton
has been observed for two step modulation of the nonlinear coefficient in
2D NLSE. The modulation of the nonlinear coefficient was λ = 1 + ε if
T > t > 0, and λ = 1− ε for 2T > t > T . The parameters in the numer-
ical simulations has been taken as T = ε = 0.1, N/(2π) = 11.726/(2π),
with the critical number as Nc = 11.68/(2π). The map strength M is
M = ε2T 2/24. For this values we have ac = 0.49, that agreed with the
value ac ≈ 0.56 following from the numerical experiment.

4. Stable two dimensional dispersion-managed
soliton

The field dynamics is governed by the 2D NLS equation with period-
ically varying dispersion [21, 22]

iut + d(t)∆u + |u|2u = 0, (32)
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where d(t) = d0 + d1(t) is a periodic function of time, In the strong
dispersion-management case it is assumed that d(t) ∼ (1/ε)d(t/ε), ε � 1
and the dispersion averaged over the period is 〈d(t)〉 = d0. The case
d0 > 0 corresponds to the negative dispersion, while d0 < 0 to the
positive dispersion.

This equation appears at the consideration of two types of problems:
the beam propagation in 2D waveguide arrays with periodically variable
coupling between waveguides [27, 28] and the nonlinear matter waves in
the Bose-Einstein condensates in 2D optical lattices.

Below we consider the axially symmetric case when ∆ = ∂2/∂r2 +
(1/r)(∂/∂r), and apply the harmonic modulation for the dispersion-
management: d(t) = d0 + d1 sin(Ωt).

The following analysis of the pulse dynamics under the management
of dispersion is based on the variational approach [20, 29]. According
to this method a space averaged Lagrangian L̄ is derived adopting a
suitable ansatz. We use a Gaussian ansatz to calculate L̄ =

∫
Ldr̄

u(r, t) = A(t) exp
(
− r2

2a2
+ i

b(t)r2

2
+ iφ(t)

)
, (33)

where A, a, b, φ are the amplitude, width, chirp and linear phase respec-
tively. The equations for the pulse parameters are then derived from the
Euler-Lagrange equations for L̄

at = 2d(t)β, βt =
2d(t) − E

a3
, (34)

where β = ab, and E =
∫∞
0 |u|2dr̄ is the energy.

Let us consider the evolution of a pulse (beam) using the division on
the fast and slow time scales [30, 31, 32, 33]. The width and chirp of
the pulse are then represented as a(t) = ā + a1, β(t) = β̄ + β1, where
ā, β̄ are slowly varying functions on the scale 1/ε and a1, β1 are rapidly
varying functions. The solutions for a1, β1 are

a1 = − 4d0d1

ā3(ω2
0 + Ω2)

sin(Ωt) − 2Ωd1β̄

ω2
0 + Ω2

cos(Ωt), (35)

β1 =
6σd1β̄

ā4(ω2
0 + Ω2)

sin(Ωt) − 2d1Ω
ā3(ω2

0 + Ω2)
cos(Ωt), (36)

where ω2
0 = −6σ/ā4, σ = 2d0 − E. Note that σ < 0 for over-critical

energy for collapse E > Ecr = 2, at d0 = 1 given by the VA. The exact
value, corresponding to the so called “Townes soliton” is Ecr = 1.862
[12]. Considering the limit of high frequencies Ω2 � ω2

0 ∼ 1, for the
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averaged parameters of the system we finally get

āt = 2β̄
(

d0 +
3d2

1σ

Ω2ā4

)
, (37)

β̄t =
σ

ā3
+

12d2
1d0

Ω2ā7
+

12σd2
1β̄

2

Ω2ā5
. (38)

This system has the Hamiltonian

H =
σ

2ā2
+

2Λ2d0

ā6
+ β̄2

(
d0 +

3Λ2σ

ā4

)
, Λ =

d1

Ω
, (39)

and the equations of motion are āt = ∂H/∂β̄, β̄t = −∂H/∂ā. It fol-
lows from this Hamiltonian that the mechanism for collapse suppression
originates from the repulsive potential near the small values of width
∼ 1/ā6, which counteracts to the attractive force induced by the non-
linearity ∼ 1/ā2. The exact balance between these forces gives rise to
a stable state. This state is oscillatory with the frequency which will
be defined later. The stabilization mechanism of a 2D NLSE soliton is
similar to that of the inverted pendulum with oscillating pivot point [24].
We should note that averaged dynamics is not potential - a velocity de-
pendent term appears in the interaction potential (see 4th term in (39)).
Although this term doesn’t contribute to the fixed point, it is important
for the description of oscillatory dynamics of 2D DM solitons.

The system (37),(38) has the fixed points

β̄ = 0, āc =
(
−12d0Λ2

σ

)1/4

. (40)

Note that Λ is proportional to the strength of the dispersion map D =
2πd1/Ω, therefore āc ∼ √

D in analogy with the estimate for a DM
soliton in 1D case. There exists one solution with a stationary width for
the anomalous residual dispersion d0 > 0, E > 2d0.

Let us analyze the stability of fixed points for the anomalous residual
dispersion d0 > 0.

We assume a = ac + εa1, β = εβ1. Substituting into Eq.(37) and
Eq.(38), and collecting terms of order ε we find

a1,t =
(

2d0 +
6Λ2σ

a4

)
β1 = Mβ1, (41)

β1,t = −
(

3σ

a4
+

84Λ2d0

a8

)
a1 = −Sa1. (42)

The oscillations of the width and chirp near the fixed points are stable if
MS > 0, which is always satisfied for d0 > 0, E > 2d0. The frequency of
secondary slow oscillations of a 2D DM soliton is proportional to

√
MS.
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The numerical simulations can be performed by two-dimensional fast
Fourier transform [34]. The dispersion map has parameters d0 = 1, d1 =
3.5, Ω = 50. This choice of parameters corresponds to moderate
dispersion-management (D � 0.45). The axial section profile of the
wave function |u(r, t)|2 as obtained by direct numerical solution of the
PDE (32) is presented in Fig.1. As can be seen, rather stable quasi-
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Figure 1. Evolution of a 2D DM soliton according to numerical solution of the
equation (32). The wave function is normalized to N = 2πg0 with g0 = 2.3034, and
the dispersion map is d0 = 1, d1 = 3.5, Ω = 50.

periodic dynamics is realized for a selected parameter settings. Note
that would the periodic modulation of the dispersion had not been ap-
plied, the initial waveform would have collapsed within t ∼ 3. The
dispersion-management stabilizes the pulse against the collapse or de-
cay, providing undisturbed propagation over very long distances. The
agreement between the predictions of the variational equations (34) for
the width of a 2D DM soliton and the corresponding result from the full
PDE simulations is reported in Fig.2. As can be observed from this fig-
ure, the width of a 2D DM soliton performs quasi-periodic motion with
the average width of ā � 0.8 according to variational equations, while
the PDE simulation yields ā � 0.7. The fixed point for the above set of
parameter values, according to eq.(40) is āc = 0.6635. The frequencies
of slow dynamics given by the VA equations and PDE are also in well
agreement (Fig.2). The estimate for the frequency of slow oscillations
from Eq.(41) yields ωa =

√
MS = 3.5, therefore the period is Ta = 1.9.

The direct gauge from the Fig.2 shows that Ta � 2.2, in reasonable
agreement with the above VA estimate.

Let us estimate the value of these parameters for the 2D BEC in the
optical lattice [35]. For example, transitions between the 1st and 2nd
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Figure 2. Stable quasi-periodic dynamics of the width of a 2D DM soliton. Solid line
- variational equations (34) solved for E = N/2π = 2.3034, and the initial conditions
a(0) = 1, β(0) = 0. Dashed line - full PDE simulations of the equation (32).

bands (at the band edges) in the optical lattice of strength V0 = 2.4Erec

( where Erec = �2k2
0/2m is the recoil energy, k0 = 2π/λ0, λ0 is the laser

wavelength), leads to variation of the dispersion coefficient in the range
d(t) = (−2.5 ÷ 4.5) as considered above.

5. Conclusions
We have investigated the propagation of bright matter wave soliton in

the Bose-Einstein condensate with trap potential rapidly varying in time.
The cases of periodically modulated in time quadratic, bounded and pe-
riodic trap potentials have been analyzed. For the repulsive (unstable)
trap potential it is shown that there exists a critical value of modulation
parameter, when the matter wave soliton is stabilized. Analogous phe-
nomenon of stabilization of unstable fixed points is found for the motion
under spatial periodic modulations (optical lattices). For the bounded
trap potential it is shown that the effective trap potential can bifurcate
from the one well to the triple-well structure; and so, may give rise to
the splitting of single attractive BEC into three parts.

We have analytically and numerically studied the dynamical stabiliza-
tion of two dimensional solitons by means of the Feschbach resonance
and dispersion managements.

In this work, we have studied the dynamics of 2D and 3D Bose-
Einstein condensates in the case when the scattering length in the Gross-
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Pitaevskii equation contains constant and time-variable parts. This may
be achieved in the experiment by means of a resonantly tuned ac mag-
netic field. Using the variational approximation (VA), simulating the GP
equation directly, and applying the averaging procedure to the GP equa-
tion without the use of VA, we have demonstrated that, in the 2D case,
the ac component of the nonlinearity makes it possible to maintain the
condensate in a stable self-confined state without external traps, which
qualitatively agrees with recent results reported for spatial solitons in
nonlinear optics.

We also have demonstrated the possibility to stabilize the 2D soli-
ton with over-critical energy (E > Ecr) by applying the dispersion-
management. The developed theory based on the variational approxi-
mation successfully describes the long term evolution of a 2D DM soliton,
which is confirmed by direct PDE simulations. We discussed the possi-
ble experimental realization of a stable 2D dispersion-managed soliton
in Bose-Einsten condensates confined to optical lattices.
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Abstract We present a detailed study of exploding solitons of the complex cubic-
quintic Ginzburg-Landau equation. We show that exploding solitons
occur in a vast regions of the parameter space. These are related to the
areas where eigenvalues in the linear stability analysis for the ground-
state stationary solitons have positive real parts. We also show that
this behavior is universal, and that it occurs when we use models with
parameter management or add new terms (such as third-order disper-
sion). The stationary soliton appears to be unstable in these regions and
it explodes intermittently, but it attracts the chaotic localized structures
around it, thus acting as a ‘strange attractor’.

1. Introduction
Solitons in dissipative systems reveal some unusual properties that are

unknown for solitons in conservative systems. One well-studied model
for dissipative solitons is the cubic-quintic complex Ginzburg-Landau
equation (CGLE). This equation contains the basic terms describing
the most important physical phenomena occurring in passively mode-
locked lasers [1]. The CGLE also serves as a generic equation describing
systems near sub-critical bifurcations [2, 3]. It relates to a wide range
of dissipative phenomena in physics, such as binary fluid convection [4],
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electro-convection in nematic liquid crystals [5], patterns near electrodes
in gas discharges [6] and oscillatory chemical reactions [7].

One of the most recent discoveries related to this model is that of
the so-called ‘exploding solitons’. These were found in numerical simu-
lations [8, 9] and their existence has been experimentally confirmed in
a passively mode-locked solid state laser [10]. These solitons possess
the interesting property of exploding at a certain point, breaking down
into multiple pieces, and subsequently recovering their original shape.
As noted above, exploding solitons can, in principle, be observed in a
variety of applications.

Already in the first work on exploding (erupting) solitons [8], it was
found that these localized objects exist over a wide range of the system
parameters (see Fig. 5 of [8]). A quick comparison with the results of
[11] shows that this range of parameters is, if not larger, then at least
comparable with the range where stable stationary solitons exist. On
the one hand, this remarkable property should make their observation
a relatively easy task. On the other hand, we need to find the reasons
why it happens.

Some explanations for the existence of exploding solitons and their
unusual dynamics have been presented in Ref. [12]. Namely, the sta-
bility of the soliton in the laminar stage of evolution, i.e. in the state
when the soliton enters its stationary regime of propagation, has been
investigated in detail. This study revealed the structure of eigenvalues
and eigenfunctions of the stationary soliton that causes the soliton to
explode and then return to the same state afterwards.

In this work, we continue these efforts in order to understand, in more
detail, the unique behavior and wide range of existence for these explod-
ing solitons. In particular, we find, numerically, the eigenvalues and
eigenfunctions of the stationary solitons that have the feature of explod-
ing for a wide interval of values of the parameter ε where explosions can
occur. Here, we present results showing soliton propagation for parame-
ter values across that range, and show that the qualitative features of the
solitons are the same everywhere in that region. The localized solutions
of the CGLE can take many forms. Some of them are chaotic, in the
sense that the soliton profile changes chaotically in time. Among these
chaotic solitons, one class has smooth profiles and does not reveal any
drastic changes during evolution [9]. Moreover, the profile stays within
certain limits defined by the parameters of the system. Other partic-
ular initial conditions that are beyond those limits have a tendency to
converge to the chaotic soliton.

Exploding solitons belong to another class of solitons. These change
their shapes intermittently and drastically, but return to the laminar
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stage after those changes have converted their shapes to irregular pro-
files. The whole dynamic motion in this case can be considered chaotic.
Nevertheless, initial conditions which are beyond the limits of the soli-
ton dynamics again have the tendency to converge to this state. There-
fore, those chaotic solitons serve as attractors in the infinite-dimensional
phase space, and we can indeed consider them as “strange” attractors.

2. Master equation
The cubic-quintic complex Ginzburg-Landau equation can be written:

iψz +
D

2
ψtt + |ψ|2ψ + ν|ψ|4ψ = iδψ + iε|ψ|2ψ + iβψtt + iµ|ψ|4ψ. (1)

When used to describe passively mode-locked lasers, z is the cavity
round-trip number, t is the retarded time, ψ is the normalized envelope
of the field, D is the group velocity dispersion coefficient, with D = ±1,
depending on whether the group velocity dispersion (GVD) is anoma-
lous or normal, respectively, δ is the linear gain-loss coefficient, iβψtt

accounts for spectral filtering (β > 0),ε|ψ|2ψ represents the nonlinear
gain (which arises,e.g., from saturable absorption), the term with µ rep-
resents, if negative, the saturation of the nonlinear gain, while the one
with ν corresponds, also if negative, to the saturation of the nonlinear
refractive index.

Within a certain range of parameters, equation (1) has soliton solu-
tions that are stationary and stable [15]. Beyond that range, solitons
also exist but they are either unstable or have more complicated behav-
ior, and can show pulsating, chaotic or creeping effects [9]. In particular,
we found a new soliton instability, of explosive nature, and it is shown
in Fig.1. This solution has intervals of almost stationary propagation,
but, periodically, the instability develops, producing explosions. The
essential features of explosions, observed both theoretically [8, 9] and
experimentally [10], are:

1. Explosions occur intermittently. In the continuous model, they
happen more or less regularly, but the period changes dramatically with
a change of parameters.

2. The explosions have similar features, but are not identical.
3. Explosions happen spontaneously, but additional perturbations can

trigger them.
4. One of the basic features of this solution is that the recurrence is

back to the soliton solution that is close to the stationary soliton.
Careful study shows that there can be several stationary solutions

for the same set of parameters. Exact solutions for them can be found
only for a limited range of parameters. In the majority of cases, exact
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solutions are unknown but the profiles can be found numerically. Re-
currence of an exploding soliton occurs for the soliton which we can call
the“ground state”. This is the solution with the lowest energy and with
a plain “bell-shaped” profile. There could be various reasons for the
explosions. If the solution is close to one of the stationary solutions in
the laminar regime, then it seems natural to study the stability of that
solution. We will study the stability using the technique given below.
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Figure 1. Example of an exploding soliton.

3. Stationary solution and its stability
Let us suppose that the stationary soliton solution of the CGLE is:

ψ(z, t) = ψ0(t)eiqz, where ψ0(t) is a complex function of t with exponen-
tially decaying tails, and that q, its propagation constant, is real. This
function can be easily calculated numerically. A technique for finding
it has been described, for example, in Ref.[16]. The stationary solution
is a singular point of this dynamical system in an infinite-dimensional
phase space. Then, the evolution of the solution in the vicinity of this
singular point can be described by

ψ(z, t) = [ψ0(t) + f(t)eλz + g(t)eλ∗z]eiqz, (2)

where f(t) and g(t) are small perturbation functions(we assume |f, g| �
|ψ0| for any t), and λ is the associated perturbation growth rate. In
general, all λ’s are complex numbers and f and g are complex functions.
For the soliton solutions of the CGLE, when the dissipative and higher-
order terms are small, the stability analysis can be done analytically
[13, 14]. However, when the dissipative terms are not small, the analytic
approach becomes problematic. Hence, at this stage, we can only rely
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on numerical calculations for the eigenvalues and eigenfunctions of the
linearized problem. Substituting (2) into the CGLE (1), we obtain:

(iλ − iδ − q)feλz + (iλ∗ − iδ − q)geλ∗z + (D/2 − iβ) ftte
λz

+ (D/2 − iβ) gtte
λ∗z + 3(ν − iµ)|ψ0|4(feλz + geλ∗z)
+2(ν − iµ)|ψ0|2ψ2

0(f
∗eλ∗z + g∗eλz)

+2(1 − iε)|ψ0|2(feλz + geλ∗z) + (1 − iε)ψ2
0(f

∗eλ∗z + g∗eλz) = 0 . (3)

Separating terms with different functional dependencies on z, we ob-
tain the following two coupled ordinary differential equations:

Af + Bftt + Cg∗ = λf,

A∗g∗ + B∗g∗tt + C∗f = λg∗, (4)

where A = δ−iq+2(ε+i)|ψ0|2+3(µ+iν)|ψ0|4, B = β+iD
2 and C =[

ε + i + 2(µ + iν)|ψ0|2
]
ψ2

0.
The technique for solving equations (4) numerically has been de-

scribed in [12]. Here, we use the following parameters for the CGLE:
µ = −0.1, ν = −0.5, β = 0.15 and δ = −0.1, while ε varies from 0.3
to 1.7. This interval shows that explosions occur for a wide range of
parameters. Higher values of ε produce stable soliton solutions, but for
lower values, at first fronts dominate and then any solution vanishes on
propagation. These parameters are different from those we used in the
work [8]. This indicates that not only ε, but also other parameters, can
change over a wide range and the explosions can still occur.
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Figure 2. The spectrum of eigenvalues in the complex plane for an exploding soliton.

The complex plane, with the eigenvalues obtained as described in [12],
is shown in Fig.2. The total spectrum consists of two complex conjugate
eigenvalues with positive real part and a continuous spectrum of complex
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conjugate eigenvalues, all with negative real parts. We have also found
that the two complex conjugate eigenvalues with positive real part turn
out to be degenerate. There are two eigenfunctions corresponding to
the same eigenvalue, one is an even function of t and one is odd. The
eigenvalue at the origin of the complex plane always exists, but it does
not influence any dynamics.
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Figure 3. (a) Real and (b) imaginary parts of the discrete eigenvalues (solid lines).
At least one eigenvalue has a positive real part throughout the interval 0.3 < ε < 1.7.
Additional eigenvalues of the discrete spectrum appear when ε < 0.6. Vertical dashed
lines show the values of ε in the numerical examples below.

This spectrum does not change qualitatively when we change the pa-
rameters of the system in the vicinity of the chosen point. The real
and imaginary parts of the discrete eigenvalue are shown in Fig.3a and
3b respectively as functions of ε. The real part is much smaller than
|Im(λ)| when ε > 0.6. We can see that, when ε ≈ 1, the real part has a
maximum, and no other eigenvalues appear around this point. The sec-
ond eigenvalue only appears when ε is below 0.6. Hence, we expect that
the qualitative behaviour will be the same over a wide range of values
of ε, from 0.6 to 1.7, where this eigenvalue moves to the left half of the
complex plane. Exploding solitons also exist when 0.3 < ε < 0.6, but
their behavior is more complicated in the explosive part of the solution
due to the simultaneous existence of several eigenvalues with positive
real part.

The whole continuous spectrum of eigenvalues is located on the left
half of the complex plane. The corresponding eigenfunctions are much
broader than the soliton width. These eigenfunctions are basically con-
tinuous waves, of different frequencies and wavenumbers, which are per-
turbed in the central zone by the soliton. In absence of the soliton, small
amplitude radiation waves decay due to δ being negative. This corre-
sponds to the pair of eigenvalues on the r.h.s. edge of the continuous
spectrum with real part exactly equal to −0.1. All other eigenvalues of
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the continuous spectrum have real parts below −0.1 (i.e. larger than 0.1
in absolute value), due to the influence of spectral filtering on radiation
waves of different central frequencies.

An important feature of the spectrum is that each eigenvalue is dupli-
cated, or at least they coincide within the accuracy of our calculations,
and on the scale of Fig.2, are completely superimposed. The eigenfunc-
tions corresponding to these eigenvalues are, respectively, even and odd
functions of t. For those with positive real part, their corresponding
eigenfunctions are shown in Fig.4. Each of these functions is non-zero
mainly in the wings of the soliton, where the total gain is positive. These
eigenvalues are responsible for the instability of the soliton.
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Figure 4. Real (dotted line) and imaginary (dashed line)parts of (a) the even and
(b) odd perturbation functions. The solid lines in (a) and (b) show the amplitude of
the soliton itself.

4. Dynamics beyond the linear regime
In the presence of eigenvalues with positive real parts, the soliton

evolution undergoes the following transformation. Suppose, initially, we
have the stationary solution with small perturbations. We note that the
real parts of the eigenvalues are relatively small, so that perturbations
grow slowly. The imaginary parts of the eigenvalues result in oscillations
simultaneously with an increase in the size of the perturbations. We also
note that the soliton center is not influenced by this instability, because
the eigenfunctions are almost zero in the central part of the soliton.

After the initial linear growth of the perturbation, its amplitude be-
comes comparable with the soliton amplitude, and the dynamics be-
comes strongly nonlinear. The nonlinearity mixes all perturbations, cre-
ating radiative waves. The amplitudes of radiative waves increase at the
expense of the initial perturbation. Consequently, the fraction of the
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initial perturbation within them becomes small. The solution at this
stage appears to be completely chaotic. However, the solution remains
localized, both in amplitude and in width, due to the choice of the sys-
tem parameters. In particular, the maximum field amplitude is limited
due to the fact that µ is negative. In addition, a positive β ensures that
the total width in the frequency domain also stays finite, provided that
other parameters are within certain ranges. It is also important that the
stationary soliton shape is fixed, thus providing the point of return.

As all radiative waves have eigenvalues with negative real parts,they
decay and quickly disappear, since the eigenvalues for most of them
have much larger negative real parts than the initial perturbation. This
means that the solution returns to the state of a stationary soliton with
a small perturbation that has an eigenvalue with positive real part. As
the real part of the discrete eigenvalue is relatively small, the instability
develops again later, thus repeating the whole period of the evolution
described above. This process is repeated indefinitely along the z axis.

Figure 5. One cycle of evolution of an exploding soliton in an infinite-dimensional
phase space.

One cycle of this evolution is shown, schematically, in Fig.5. The
fixed point, shown by a black dot in this figure, corresponds to the
stationary soliton solution. It can be classified as a stable-unstable focus,
because all the eigenvalues in the stability analysis appear as complex-
conjugate pairs. We stress here that our system has an infinite number of
degrees of freedom, and that the evolution actually occurs in an infinite-
dimensional phase space. It cannot be reduced to a finite-dimensional
problem, as all the eigenvalues play essential roles in the dynamics. As
the fixed point is unstable, the trajectory leaves it in the direction in
the phase space defined by the discrete eigenvalues. This motion is
exponential as well as oscillatory. After complicated dynamics in the
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whole phase space, the trajectory, being homoclinic, returns to the same
fixed point but along a different route, as defined by the continuous
spectrum. This return is also accompanied by oscillations, as all the
eigenvalues in this problem are complex.

This scenario has common features with the one described by Shil’ni-
kov’s theorem [17, 18, 19]. The latter is usually applied to a third-order
dissipative system or to a higher-order one that can be reduced to a
third-order system. In a third-order dissipative dynamical system, the
stability of the singular points is described by three eigenvalues. Suppose
that a given singular point is a saddle-focus. Then this set of eigenvalues
has two complex conjugate eigenvalues with positive real parts and one
real negative eigenvalue that is larger in absolute value than the real
parts of the other two eigenvalues. We also suppose that there is a
homoclinic orbit based on this singular point. Then the evolution of the
system close to this homoclinic orbit will be chaotic and will periodically
leave and return to this singular point.

Though there is this similarity, the dynamics of an exploding soliton
is more involved. Obviously, our system, having an infinite number of
degrees of freedom, is much more complicated than any system with
three degrees of freedom. Correspondingly, the number of eigenvalues in
our case is infinite, rather than just three, and all of them play essential
roles in the dynamics. The singular point in our case is a stable - unstable
focus rather than saddle-focus. Nevertheless, we have only two identical
pairs of eigenvalues with positive real parts responsible for the instability
in our system, while the rest of the eigenvalues ensure a quick return to
the original state. Besides, the complete phase space in our system is
also bounded. As a result, the solution always remains localized, and
our system qualitatively behaves the same way as a system described by
Shil’nikov’s theorem. Specifically, we have a homoclinic orbit that starts
and ends at the singular point defined by the exploding soliton, and all
nearby trajectories are chaotic.

5. Dynamics over a wide range of parameter ε
variations

In order to confirm that this explanation is valid in the whole range
of positive real part of λ in Fig.3, we investigate, numerically, the soli-
ton evolution in the range of parameters 0.4 < ε < 1.68. At ε = 1.68,
the eigenvalue of the perturbation has a large imaginary part that dom-
inates,and the soliton evolves by pulsating periodically, thus repeating
its shape and the total energy. This evolution is shown in Fig.5. There
are no explosions. Essentially the behaviour is the same when above the
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value ε = 1.68. At some ε above the value 1.7, the real part of the eigen-
value becomes negative. At around ε ≈ 1.8 the soliton solution becomes
stable and any oscillations around the soliton disappear.
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Figure 6. (a) Transition (z ≈ 150) from stationary to pulsating regime of unstable
soliton. The inset shows, on a much-magnified scale,the periodic changes of the soliton
energy. (b) Pulsating evolution of the soliton profile during a period, marked in the
inset by the co-ordinate axis, and the dashed vertical line.
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Figure 7. (a) Energy bursts of the soliton at ε = 1.67. (b) Explosive evolution of
the soliton profile. The dashed vertical lines in (a) correspond to the boundaries of
the evolution shown in (b).

A slight change in ε, from 1.68 to 1.67, causes drastic changes in the
behavior of the soliton. It starts to explode. These explosions occur
intermittently, with the distance between the explosions defined by the
real part of the eigenvalue. In this particular case, the distance is around
∆z ≈ 100. The energy bursts for these explosions are shown in Fig.7a,
while one explosion in the soliton profile is shown in Fig.7b. Perturba-



Solitons as strange attractors 55

tions start in the soliton wings, since the perturbation function itself is
non-zero mainly in the wings. At the final stage, the whole soliton ex-
plodes into many pieces, but recovers its shape after the explosion. This
behaviour is qualitatively the same at lower values of ε. As the real part
of the eigenvalue increases up to the point ε = 1.0, the distance between
the explosions decreases.
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Figure 8. (a) Energy of exploding soliton at ε = 1.0. (b) Evolution of the soliton
profile for one of the explosions bounded by the vertical lines in (a).

The instability growth rate reaches its maximum at around ε = 1.0,
as we can see from Fig.3. As a result, the explosions are well-established
at this value of ε. The frequency of their appearance is also higher
because the growth rate is higher, and therefore the instability develops
faster. The energy versus z plot for this case is shown in Fig.8a. The
input is the unperturbed stationary solution, so, initially it takes a long
distance for small perturbations to grow from intrinsic numerical noise.
However, after the first explosion, the perturbations are relatively large.
Afterwards, explosions occur quite regularly, with the “period” being
around ∆z ≈ 10. The first explosion is shown separately in Fig.8b. We
can clearly see the perturbations and the fact that they do not completely
disappear after the explosion, thus causing the process to repeat again.

A further decrease of ε to 0.4 results in the appearance of additional
discrete eigenvalues with positive real part. We can then expect explo-
sions with more complicated behavior compared with cases involving a
single eigenvalue. In addition, for this range of parameters, fronts, rather
than pulse solitons, are the dominant structures. The evolution of a soli-
ton for this case is shown in Fig.9. Due to the instability related to the
positive velocity of the fronts, the soliton becomes wider and transforms
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into fronts with non-zero velocities. These move away from the center
of the soliton with constant speed.

The fronts also have instabilities that periodically disturb their smooth
profiles. As the eigenfunctions are mainly non-zero on the slopes of the
soliton, they have the same structure as half of the eigenfunctions in
Fig.4 for each of the fronts. Therefore, the fronts tends to recover in the
same way as the exploding solitons. The CW solution that appears be-
tween the fronts is stable and its range of its existence increases linearly
with z.
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Figure 9. Soliton evolution in the range of parameters where fronts dominate.

Analyzing this last simulation, we can see that the front velocity
changes its sign somewhere around ε = 0.44. Negative front veloci-
ties at higher values of ε prevent conversion of the soliton sides into two
separating fronts, and also prevent the expansion of the pieces of the
soliton explosion. Thus, a localized solution remains localized for all z,
even though it is chaotic. This latter effect is an additional reason why
exploding solitons serve as strange attractors.

6. Universality of the phenomenon
We now adjust our model to make it closer to the experimental con-

ditions of passively mode-locked lasers. Namely, we take the parameters
of the CGLE to be step-wise functions of z, rather than constants, in
order to approximate the discreteness of the cavity parameters in the
experiment. In the fiber optics field, the dispersion is very often the
sole parameter which changes periodically – this situation, where pieces
of fiber with various values of dispersion are spliced together, is called
‘dispersion management’. It can be used to reduce overall dispersion in
a communication link. As we allow all the parameters in the equation,
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rather than just the dispersion, to be step-wise functions, we can de-
scribe it as a model with ‘parameter management’. Numerical results
show explosions even in this model with parameter jumps, and they have
very similar characteristics to those in the model with constant parame-
ters. Preliminary results are presented in [10]. We also add a new term
to the CGLE to account for third-order dispersion, as it is always present
in real systems. The latter results in asymmetric explosions, as would
be expected. Numerical results for this case are shown in Fig.10.

The existence of explosions in the assorted models that we use in
our simulations shows that this phenomenon is not a rarity but is a
universal phenomenon. It does appear for a wide range of parameters
and for different models of the dissipative system.
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Figure 10. (a) Spectral evolution for a single soliton explosion in the CGLE model
with parameter management and third-order dispersion. (b) The product of the
widths in the time and frequency domains versus z for this explosion. (c) Energy
versus z for the same explosion. The two vertical lines in (c) show the boundaries of
evolution given in (a).

We cannot make a direct comparison with similar phenomena that ex-
ist in low-dimensional nonlinear dissipative systems. Nonetheless, some
analogies can be established. In particular, for one-dimensional maps,
there is a phenomenon called intermittency [20, 21]. The iterations for
this case show orbits close to being periodic for a longtime (the laminar
region), interrupted by bursts of complicated chaotic motion and return-
ing to the laminar regime afterwards. Although there is a resemblance,
there are many differences of course, and these relate to the fact that
ours is an infinite-dimensional system. Intermittency in low-dimensional
systems exists over a small range of parameters close to a saddle-node
bifurcation. In our case, explosions exist over a wide range of parameters
even far from bifurcations. Hence the explanations must be different.
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Another close similarity is a strange attractor in the three-dimensional
Lorentz model. The latter is a localized area in the phase space that
attracts trajectories from its vicinity. Our exploding soliton is glob-
ally chaotic, since each explosion is unique and is not a repetition of a
previous one. However, it attracts nearby trajectories in the infinite-
dimensional phase space. A great variety of localized initial conditions
converge to the exploding soliton solution during evolution. Therefore,
the exploding soliton is an attractor similar to a strange attractor in the
Lorentz model.

No doubt, the phenomenon of exploding solitons requires further in-
vestigation. The most common tool in nonlinear dynamics is a reduction
of the dimensionality of the system. This does not seem promising in
our case, as we have to operate with the infinite-dimensional system,
and such a reduction would qualitatively change the dynamics. As the
exploding soliton is close to one of the stationary soliton solutions, and
is fundamentally based on it, we apply linear stability analysis to make
certain conclusions about the behaviour of exploding solitons. This ap-
proach turns out to be successful to some extent, as we can see from the
results of this work. Clearly, more studies using other techniques would
be desirable.

7. Conclusions
In conclusion, we have presented a study of exploding solitons of the

complex cubic-quintic Ginzburg-Landau (CGLE) equation. Linear sta-
bility analysis of a stationary solution,which appears in the laminar
regime, shows a pair of complex conjugate eigenvalues, with positive
real parts, that is responsible for the explosive instability. This pair of
eigenvalues exists over a wide range of the parameter ε, corresponding
to the cubic gain in the system, and this is also true for the explosive
instability. We have found that explosions occur, not only in the con-
tinuous CGLE model, but also in cases of ‘parameter management’, i.e.
when the equation parameters are step-wise functions of the evolution
variable, z. Although the soliton appears to be unstable in these models
and explodes intermittently, it attracts the chaotic localized structures
around it, acting as a strange attractor.
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Abstract The existence of stable solitons and localized vortices in two- and three-
dimensional (2D and 3D) media governed by the cubic nonlinear Schrö-
dinger equation with a periodic potential is demonstrated by means of
the variational approximation (VA) and in direct simulations. In the 2D
case, multi-mode (hexagonal, triangular, and quasi-periodic) potentials
are considered (including search for vortex solitons in them), along with
the usual square potential. In the 2D and 3D cases, low-dimensional (re-
spectively, quasi-1D and quasi-2D) potentials are considered too. Fam-
ilies of solitons include single- and multi-peaked ones. Solitons of the
former type and their stability are well predicted by VA. Collisions of
multidimensional solitons in a low-dimensional periodic potential are
also studied. Head-on collisions of in-phase solitons lead to their fusion
into a collapsing pulse. Solitons colliding in adjacent lattice-induced
channels may form a bound state (BS), which then relaxes to a stable
asymmetric form. An initially unstable soliton splits into a three-soliton
BS. The results apply to Bose-Einstein condensates (BECs) in optical
lattices (OLs), and to spatial or spatiotemporal solitons in layered op-
tical media.

Keywords: Soliton, vortex, Bose-Einstein condensate, optical lattice.

1. Introduction
Solitons in multidimensional nonlinear Schrödinger (NLS) equations

with a periodic potential have recently attracted considerable interest.
In particular, self-trapping of spatial beams in nonlinear photonic crys-
tals is described by a two-dimensional (2D) equation of that type. In this
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case, despite the possibility of collapse [1], simulations reveal robust 2D
solitons in the self-focusing model [2]. A similar medium can be created
by a grid of laser beams illuminating a photorefractive sample [3].

Similar 2D and 3D models with a periodic potential describe a Bose-
Einstein condensate (BEC) trapped in an optical lattice (OL) [4]; in
that case, the models are based on the Gross-Pitaevskii (GP) equation,
which is quite similar to the NLS one. The application to the BEC
in OLs is relevant, as experimental techniques for loading BECs into
multidimensional OLs were recently developed [5]. Stable solitons can
be supported by an OL even in self-repulsive BECs [6, 7]. In the case of
self-attraction, 2D and 3D solitons (including 2D vortices) are stable in
the self-focusing model with the OL potential [8], despite the possibility
of the collapse.

In the absence of the external potential, stationary soliton solutions
to the corresponding self-focusing NLS equation can be easily found, but
they are unstable due to the, respectively, weak and strong collapse in
the 2D and 3D cases [1]. Alongside the fundamental 2D soliton, in the
absence of the OL one can also construct vortex solitons, in the form of

u = U(r) exp (−iµt + iSθ) , (1)

where u, t and µ are the wave function, time, and chemical potential
in the case of the BEC, or local amplitude of the electromagnetic wave,
propagation distance, and (minus) the wavenumber in optics, r and θ are
the polar coordinates, S > 0 is an integer vorticity (“spin”), and U(r) is
a real function, which exponentially decays as r → ∞ and vanishes ∼ rS

as r → 0. As well as the fundamental (S = 0) soliton, the vortices are
unstable in the usual 2D NLS equation (not only against the collapse, but
also against perturbations breaking the axial symmetry of the solution).
Stable fundamental solitons and vortices have been found in 2D (see
reviews [9]) and 3D [10] optical models with non-Kerr nonlinearities,
stability conditions for vortex solitons being much tougher than for their
fundamental counterparts. On the other hand, it was demonstrated [11]
that stable vortices exist in the discrete version of the usual cubic 2D
NLS equation (which describes a bundle of nonlinear optical waveguides
[3], or BEC trapped in a strong OL field [12]. Note that, unlike the
isotropic NLS model, in ones with the axial symmetry broken by the
lattice the vorticity is not a dynamical invariant, hence the very existence
of such solutions is a nontrivial issue [11].

In the present paper we demonstrate that periodic potentials of the
OL type can stabilize 2D and 3D solitons of various types (in particular,
both fundamental and vortex solitons are found to be stable in the 2D
case). We will investigate the solitons and their stability, using both a
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semi-analytical variational approach (VA) and direct numerical meth-
ods. In the 2D case we will consider, besides the usual square lattice,
also multi-mode ones, i.e., hexagonal, triangular, and quasi-crystallic
(quasi-periodic) lattices. The existence of stable vortex solitons will be
demonstrated, for the first time, in the self-repulsive medium equipped
with the 2D lattice.

Of particular interest are stable 2D and 3D solitons in the self- attrac-
tive Gross-Pitaevskii (GP) equation with a low-dimensional potential,
which is uniform in one direction and periodic in the others. Such poten-
tials, capable to support stable fully localized solitons, can be induced by
a quasi-1D OL in the 2D case, and by a quasi-2D lattice in the 3D case
(however, quasi-1D potentials cannot stabilize 3D solitons). A unique
peculiarity of the solitons supported by the low-dimensional potential is
their motility, as they can move freely in the unconfined direction, which
also makes it possible to study collisions between them. We demonstrate
that head-on collisions of in-phase solitons lead to their fusion into a col-
lapsing pulse, unless the collision velocity is very large. Solitons colliding
in adjacent channels induced by the low-dimensional potential may form
a bound state (BS), which initially has a symmetric form. However, the
symmetric BS turns out to be unstable, and it relaxes into a stable
asymmetric state.

The rest of the paper is organized as follows. The model and varia-
tional approximation for the 2D and 3D lattices and solitons in them are
introduced in Section 2. New results for solitons in multi-mode lattices
are presented in Section 3. The existence of stable vortex solitons in
the 2D medium with repulsion, in the presence of the square lattice, is
shown in Section 4. Solitons in the low-dimensional potentials, includ-
ing their stability, collisions between moving solitons, and formation of
their bound states, are described in detail in section 5. Conclusion are
formulated in Section 6.

2. Basic equations and the variational approach
The rescaled GP equation for the BEC mean-field wave function u(r, t)

is well known [13]:

iut +
[∇2 + V (r) + |u|2]u = 0 (2)

(in optical models, it is the NLS equation, t being the propagation dis-
tance). The external potential V (r) combines the parabolic-trap and
OL terms,

V (r) =
(
ω2/2

)
r2 + ε[cos(2x) + cos(2y) + cos(2z)], r ≡ {x, y, z} , (3)
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and similar in the 2D case; the OL period is normalized to be π. In op-
tics, the 2D version of the model (without the parabolic trap) describes
spatial evolution of a beam in the bulk medium with periodic transverse
modulation of the refractive index. Equation (2) conserves two dynami-
cal invariants: the norm (number of atoms in BEC, or the beam’s power
in the optical model), N =

∫ |u(r)|2dr, and the Hamiltonian.
Stationary soliton solutions to Eq. (2) are sought for as

u(r, t) = exp (−iµt)U(r) (4)

with a negative chemical potential µ, cf. Eq. (1). This leads to the
stationary counterpart of Eq. (2),

µU +
[∇2 + V (r) + U2

]
U = 0. (5)

Analytical predictions for solitons can be produced by the variational ap-
proximation (VA), which was developed in nonlinear optics (see a review
[14]), and successfully applied to BECs too [15, 16, 17], including BECs
trapped in OL [12] (VA in the 1D version of this model was earlier elabo-
rated for the above-mentioned model of the nonlinear optical waveguide
with the transversely modulated refractive index [18]). Following these
works, we adopt the Gaussian ansatz for fundamental solitons,

U(r) = A exp
(−ar2/2

)
, (6)

with variational parameters a > 0 and A. Note that we set ε > 0 in Eq.
(3), hence the central point of the ansatz must be chosen at the minimum
of an effective potential, r = 0, that is why we do not introduce an extra
parameter for the coordinate of the soliton’s center.

Substituting the ansatz (6) into the Lagrangian L corresponding to
Eq. (5), we perform spatial integration, and derive equations for a and
A in the form of ∂L/∂a = ∂L/∂

(
A2

)
= 0. Below, we display variational

results, setting ω = 0 in the expression for the potential (3), which
implies that the soliton has a size much smaller than that imposed by
the parabolic trap.

In the 2D case, the ansatz (6) produces the expression N = πA2/a
for the norm, which is used to eliminate A2. With regard to this, the
variational procedure ends up with an equation which determines a in
terms of the norm, and another equation that yields the chemical po-
tential/propagation constant:

N = 4π
(
1 − 2εa−2e−1/a

)
, µ = 2ε

(
2a−1 − 1

)
e−1/a − a. (7)

Note that, if ε = 0, the first equation in this set yields N = 4π. In the
present notation, it is nothing else but a known variational prediction
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for the critical norm in the 2D NLS equation, which simultaneously is
a universal value of the norm corresponding to the unstable 2D soliton
(Townes soliton [1, 24]). With ε �= 0, Eq. (7) shows that the norm
attains a minimum (threshold) value,

Nthr = 4π
(
1 − 8e−2ε

)
, (8)

at a = 1/2 and
µ = µthr ≡

(
12e−2ε − 1

)
/2 . (9)

This means that there is a threshold value of the norm which is necessary
to create the 2D soliton; however, the threshold really exists only if it is
positive. According to Eq. (8), the threshold exists for a relatively weak
lattice, and it vanishes if ε exceeds the value

ε0 = e2/8 ≈ 0. 92 (10)

(see Fig. 1a). However, the vanishing of Nthr is an unphysical feature, as
N → 0 corresponds to the linear limit of the GP equation (2), in which,
obviously, no localized state is possible in the absence of the parabolic
trap.

In fact, at still smaller values of the OL strength, e2/12 < ε < e2/8,
Eq. (9) formally predicts that the threshold is attained at positive values
of µ, when the soliton cannot exist in reality. Thus, the predictions of
the VA for ε > e2/12 ≡ (2/3)ε0 ≈ 0.62, which, according to Eq. (8),
correspond to Nthr < 4π/3 ≡ Ncr/3, are unphysical. This is explained
by inapplicability of the simple ansatz (6) in the case of small N . In fact,
the soliton is multi-humped in that case, on the contrary to the simple
single-humped structure implied by the expression (6), see below.

It also follows from Eq. (7) that the norm cannot exceed the above-
mentioned critical value, Ncr = 4π, which means that VA predicts a
family of fundamental 2D solitons in the interval

Nthr = 4π
(
1 − 8e−2ε

)
< N < Ncr ≡ 4π, (11)

as depicted in Fig. 1(a). Numerical simulations of the GP equation (2)
reveal a finite threshold at all values of ε, as should be expected, see Fig.
1(a). Pulses with an under-threshold value of the norm disintegrate into
delocalized quasi-linear Bloch states [19].

The VA make it possible to predict stability of the solitons on the
basis of the Vakhitov-Kolokolov (VK) criterion [21], which applies if
the solution to Eqs. (7) is obtained in the form of µ = µ(N): the
necessary stability condition is dµ/dN < 0 (of course, the criterion may
also be applied to the numerically found family of solitons solutions). A
numerical solution of the variational equations (7) produces two different
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branches of the dependence µ(N), see a typical example in Fig. 1(b).
An analytical consideration of the near-critical case, 1 − N/4π → +0,
also yields two different solutions:

µ1(N) ≈ −
(√

2ε

1 − N/4π
+ 2ε

)
, µ2(N) ≈

[
ln
(

1 − N/4π

2ε

)]−1

.

(12)
Both the numerical and analytical solutions demonstrate that one branch
[µ1(N) in Eq. (12)] satisfies the VK criterion, and the other one [µ2(N)
in Eq. (12)] does not. Direct simulations confirm that the variational
ansatz satisfying the VK criterion indeed gives rise to a stable soliton,
whose form is quite close to the predicted one.
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Figure 1. (a) The existence region of 2D solitons in the square lattice, with V (x, y) =
ε[cos(2x)+cos(2y)], as predicted by the variational approximation (dashed lines), and
as found from direct simulations of Eq. (2) (squares). The upper border found from
the numerical simulations is virtually identical to that predicted by the variational
approximation, N = Ncr ≡ 4π. As explained in the text, the variational results for
N < Ncr/3 are unphysical. (b) A numerical solution to the variational equations ( 7)
for ε = 0.4 and ε = ε0 = 0.92, the latter one being defined by Eq. ( 10).

Qualitatively, the appearance of the family of stable solitons in the
interval Nthr < N < Ncr in the presence of the lattice can be explained
by the fact that it actually creates a nontrivial band (in terms of the
corresponding values of µ), where the solitons may be stable (in the
limit of ε → 0, the band shrinks to a single point). Note that a band of
stable 2D solitons was also found in the OL-supported model with the
positive scattering length [6].

As it was mentioned above, the ansatz (6) does not take into regard
distortion of the soliton’s shape by the periodic potential; for this reason,
the VA is expected to be accurate if the soliton’s size is not essentially
larger than the lattice period, which is confirmed by comparison with
numerical findings. An example of a single-peak soliton which occupies,
essentially, a single cell of the OL is displayed in Fig. 2(a). For such
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solitons, the VA accurately predicts their shape and parameters, which
is illustrated by Fig. 2(b) showing the soliton’s amplitude versus its
norm in the square lattice. The variational prediction is almost exact
up to N = Nthr, while pulses with N < Nthr disintegrate.
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Figure 2. (a) A typical example of the stable 2D soliton (with the norm N = 3π in
the square lattice of strength ε = 0.25), whose shape is close to that predicted by the
variational approximation. (b) The dashed curve is the amplitude of the soliton vs. its
norm, as predicted by the variational aproximation. The solid curve is the amplitude
of the waveform at the end of direct numerical simulations of the GP equation (2),
starting with the initial configuration predicted by the variational approximation to
be the soliton. The lattice strength is ε = ε0 = 0.92, see Eq. (10). At N = 4.8, which
is the threshold norm Nthr for this value of ε [see Fig. 1(b)], the soliton ceases to
exist, the drop in A(N) meaning a transition to a delocalized Bloch state [19].

3. Solitons in multi-mode (hexagonal,
triangular, and quasi-periodic) optical lattices

In the case of hexagonal or quasi-crystallic OL potential, the 2D sta-
tionary GP equation (5) with self-attraction takes the form

µU = −1
2
∇2U − ε

⎡⎣ n∑
j=1

cos (kjr)

⎤⎦U − U3. (13)

Here, {kj} is a set of n basis vectors with a common length k (which we
again normalize to be 2), and equal angles α between them: α = 2π/n if
n is odd, and α = π/n if n is even. The earlier studied case of the square
lattice corresponds to n = 2; for the hexagons, n = 3, for the Penrose
tiling, n = 5, etc. The amplitude in front of the periodic or quasi-
periodic potential in Eq. (13) is chosen to be negative (with ε > 0);
then, the minimum of the potential is located at r = 0.
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In the case of the triangular-lattice potential, Eq. (13) is replaced by

µU = −1
2
∇2U + ε

⎡⎣ 3∑
j=1

sin (kjr)

⎤⎦U − U3. (14)

In this case, it is more convenient to choose the positive amplitude in
front of the potential, which is implied in Eq. (14), on the contrary to Eq.
(13). It is easy to see that the minimum of the potential corresponding
to the triangular lattice, Utri (r) ≡

∑n
j=1 sin (kjr), is located at a point

r0 ≡ (x0 = 2π/3, y0 = 0) , (15)

where the potential attains the value

(Utri)min = −3
(√

3/2
)

, (16)

instead of (Uhex)min = −3 at r0 = 0 in the case of the potential Uhex (r) ≡
−∑n

j=1 cos (knr) corresponding to the hexagonal lattice in Eq. (13).
The stationary equation (13) is derived from the Lagrangian

L =
1
2

∫
dr

⎡⎣µU2 − 1
2

(∇U)2 +
1
2
U4 + U2

n∑
j=1

cos (kjr)

⎤⎦ . (17)

We adopt, as before, the simplest isotropic ansatz [cf. Eq. (6)],

U = A exp
(−ρR2/2

)
, (18)

where A and ρ > 0 are the variational parameters.
Substituting the ansatz (18) into Eq. (17), it is easy to calculate the

effective Lagrangian for any value of n:

Leff

(
A2, ρ

)
=

π

2

[
µ

ρ
A2 − 1

2
A2 +

ε

4ρ
A4 +

n

ρ
A2 exp

(
−1

ρ

)]
. (19)

For the triangular-lattice potential, we should use, instead of (18), the
ansatz

φtri = A exp
(
−ρ |r − r0|2 /2

)
,

where r0 is taken from Eq. (15). After simple manipulations, in the
latter case we arrive again at the expression (19) for the effective La-
grangian, with a formal substitution n = ntri ≡ 3

(√
3/2

)
, cf. Eq. (16).

The variational equations, ∂Leff/∂ρ = ∂Leff/∂
(
A2

)
= 0, following

from the effective Lagrangian, take the following form:

εA2 = ρ − 2µ − 2n exp (−1/ρ) , (20)
µ = − (ρ/2) − n (1 − 2/ρ) exp (−1/ρ) . (21)
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An additional equation fixes the number of atoms, which for the ansatz
(18) is N ≡ ∫

drφ2 (r) = πA2/ρ. The substitution of the latter expres-
sion into Eq. (20) leads to the final variational equation,

εN = 2π
[
1 − 2

(
n/ρ2

)
exp (−1/ρ)

]
, (22)

from which it is necessary to find ρ(N) for fixed n and ε.
Numerical simulations of the GP equation (2) with the initial wave-

forms whose parameters satisfy the variational equation (22) confirm
the existence of stable 2D solitons, both fundamental and vortex ones,
in hexagonal, triangular and quasi-crystallic potentials, which resemble
stable fundamental and vortex solitons in the 2D discrete NLS equation
on triangular and hexagonal (“honeycomb”) models, reported in Ref.
[22]. Typical examples of the solitons in the hexagonal lattice, found in
the present model, are displayed in Fig. 3.
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Figure 3. Typical examples of a 2D single-humped fundamental soliton (a) and
vortex with S = 1 (b), in the hexagonal lattice with ε = 1.5. The norm of both
solitons is N = 2π.

4. Vortex solitons in the repulsive model
The OL potentials can also support stable multidimensional solitons

and vortices in the self-repulsive case, the corresponding model being
based on the GP equation (2) with the opposite sign in front of the
nonlinear term. If the Gaussian waveform with a suitable norm is used to
launch direct simulation of this equation, it readily self-traps into a stable
soliton, shedding some amount of linear radiation which is absorbed at
boundaries of the integration domain.

In fact, the corresponding results for the fundamental 2D solitons
were already reported in Ref. [6]. A new result which is presented here
is the formation of stable vortex solitons in the repulsive model. To this
end, we simulated the 2D version of Eq. (2) with the initial condition
u0(r, θ) = ArS exp(−ar2) exp(iSθ) [cf. Eq. (1)], trying various values
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of A and a. Stable vortices with S ≥ 2 could never be created (the
pulse would quickly spread out); however, the initial configurations with
S = 1 do self-trap into a stable vortex, which features a complex multi-
cell organization, see Fig. 4(b); in this figure, a fundamental soliton with
the same norm is shown for comparison.
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Figure 4. A stable 2D fundamental soliton (a) and vortex with S = 1 (b), in the
self-repulsive GP equation (2) with the square-lattice potential of the strength ε = 4.0.
The initial norm is N = 4π.

All the above results were obtained for ω = 0 in Eq. (3), i.e., without
the parabolic trap. Simulations with ω �= 0 have demonstrated that the
external trap does not affect the 2D and 3D solitons in any conspicu-
ous way, provided that the corresponding harmonic-oscillator length is
essentially larger than the lattice period.

5. Solitons in low-dimensional potentials

5.1 The model
The multidimensional solitons considered above were pinned by the

lattice. A similar mechanism may stabilize partly mobile solitons in
the self-attractive medium equipped with periodic potentials of a lower
dimension, viz., quasi-1D (Q1D) and Q2D lattices in the 2D and 3D
cases, respectively.

In optics, the corresponding 2D equation in the spatial domain gov-
erns the beam propagation in a layered bulk medium along the layers,
which is an extension of the 1D multichannel system introduced in Ref.
[18], where the potential was induced by transverse modulation of the
refractive index (RI). In the temporal domain, the 2D and 3D equations
with the Q1D and Q2D potential govern, respectively, the longitudinal
propagation of spatiotemporal optical solitons in a layered planar waveg-
uide, or in a bulk medium with the RI periodically modulated in both
transverse directions.
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The 2D and 3D equations with the low-dimensional potential directly
apply to BECs loaded in a Q1D or Q2D lattice. The physical significance
of this setting is two-fold: first, in the experiment it is much easier to
create a lower-dimensional lattice than a full-dimensional one, both in
BECs and in optics, hence the use of such lattices is the most straight-
forward way to create multidimensional solitons in these media. Second,
the solitons created this way can freely move in the unconfined direction,
which also suggests a possibility to study their collisions, and to look for
their bound states (BSs). As yet, no other way to create multidimen-
sional mobile solitons in BECs and their BSs has been proposed. In
optics, solitons of this type suggest new applications. Indeed, in optical
media with the full-dimensional lattice potential, transfer of a trapped
beam from one position to another is difficult, as the necessary external
push strongly disturbs the beam [18]. In the lower-dimensional poten-
tial, the beam can slide along the free direction, making the transfer
easy. In BECs confined by a low-dimensional OL, matter-wave solitons
can be driven in the free direction by a weak laser beam.

The normalized form of the self-focusing 2D NLS equation with a Q1D
periodic potential of the strength ε is

iut + uxx + uyy + [ε cos(2x) + χ|u|2]u = 0, (23)

where χ = ±1 in the case of the self-attraction/repulsion. In BECs,
t is time, while in optics it is the propagation distance [cf. Eq. (2)].
For BECs or spatial optical solitons, x and y are transverse coordinates;
for spatiotemporal optical solitons in the 2D waveguide with anomalous
chromatic dispersion, y is a temporal variable. The 3D version of Eq.
(23) is

iut + uxx + uyy + uzz +
{
ε [cos(2x) + cos(2y)] + χ|u|2}u = 0. (24)

Besides the Hamiltonian and the norm (the number of atoms in the
BEC, or total power/energy of the spatial/spatiotemporal optical soli-
ton), Eqs. (23) and (24) conserve also the momentum along the free
direction. The equations are normalized the same way as Eq. (3), so
that the period of the potential is π, free parameters being again ε and
N .

5.2 The variational approximation
Stationary solutions to Eq. (23) are looked in the form (4), which

yields
µU + Uxx + Uyy +

[
ε cos(2x) + χU2

]
U = 0 (25)
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[cf. Eq. (5)], and similar in the 3D case. To apply the VA (variational
approximation) to Eq. (25), we adopt the ansatz

U = A exp
[− (

ax2 + by2
)
/2
]
, (26)

or, in the 3D case,

U = A exp
[− (

a(x2 + y2) + bz2
)
/2
]
. (27)

The corresponding norms are

N2D = πA2/
√

ab, and N3D = π3/2A2/(a
√

b).

Following the procedure of the application of VA to multidimensional
solitons [14], we derive variational equations from the Lagrangian of Eq.
(25). In the 2D case, they are

Nχ = (4π/a)
√

a2 − 2εe−1/a, µ = −a − εe−1/a(1 − 3/a), (28)

and in the 3D case,

Nχ = 2 (2π/a)3/2
√

a2 − 2εe−1/a, µ = −a/2 − ε (2 − 3/a) e−1/a; (29)

in both cases, b =
(
a2 − 2εe−1/a

)
/a. Evidently, solutions are possible

only if χ > 0 (self-attraction).
The 3D solution can be found from Eqs. (29) for any N . On the

contrary to this, the 2D solutions exist in the interval [cf. Eq. (11)]

Nthr ≡ 4π
√

1 − ε/ε0 < N < Nmax ≡ 4π (30)

[see Fig. 5(a)], where ε0 = e2/8 is the same as in Eq. (10), and (formally)
Nthr = 0 if ε > ε0. As well as in the case of the square OL considered
above, the value Nthr is attained at a = 1/2, while the corresponding
value of the chemical potential is

µ = µ
(Q1D)
thr ≡ (

10e−2ε − 1
)
/2, (31)

cf. Eq. (9). Thus, with the increase of ε, the variational solution be-
comes unphysical even before Nthr vanishes, namely, when the expression
(31) becomes positive. Recall that in the case of the square lattice this
happened at ε = e2/12 ≡ (2/3)ε0. In the present case, this happens at a
somewhat larger value of the OL strength, ε = e2/10 ≡ (4/5)ε0. Direct
numerical solutions for stable 2D solitons in the Q1D lattice, displayed
in Fig. 5(a), clearly show that, similar to the case of the square lat-
tice [cf. Fig. 1(a)], the actual minimum (threshold) value of the norm
necessary for the existence of the solitons is always finite.
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Figure 5. The panel (a) shows the existence limits for stable 2D solitons in the
quasi-1D lattice, as predicted by the variational approximation (dashed lines), and
as found from direct simulations of the GP equation (23) (squares). The upper limit
found from the simulations is virtually identical to that predicted by the variational
approximation. The panels (b) and (c) show dependences µ(N) for 2D and 3D solitons
in the quasi-1D and quasi-2D lattices, respectively, as predicted by the variatonal
approximation. These dependences determine the stability of the solitons as per the
VK criterion.

The results produced by the VA can also be used to predict the stabil-
ity of the solitons in the present case on the basis of the VK criterion. It
follows from Eqs. (28) and (29), and is also evident in Figs. 5(b,c), that
the 2D solitons are stable in the existence interval (30). As for the 3D
solitons, the criterion shows that, at small ε, they are unstable for any
N . Further consideration of the equation (29) predicts that a stability

interval of a width ∆N ∼
√

ε − ε
(3D)
cr appears around N

(3D)
cr ≈ 10.1π3/2

if ε exceeds the value ε
(3D)
cr ≈ 0.242.

5.3 Numerical results
In numerical simulations of the model with the low-dimensional OL

potential, solitons were generated by the imaginary-time-evolution method
[23], starting with the VA-predicted waveforms. Stability was verified by
direct simulations of perturbed solitons in real time. Typical examples of
the thus found stable 2D and 3D solitons are displayed in Figs. 6 and 7,
the 3D ones being nearly isotropic in the (x, y) plane and elongated in the
free direction z. As it was already shown above in Fig. 5(a), the existence
limits for the stable 2D solitons are essentially different from the VA pre-
diction if N is small; in that case, the discrepancy is due to the fact that
the soliton develops a multi-peaked structure [see Fig. 6(b)], which is not
accounted for by the simple ansätze (26) and (27) adopted above. The
ansätze can be generalized accordingly; in particular, in the 2D case



74 NONLINEAR WAVES: CLASSICAL AND QUANTUM ASPECTS

this can be done by setting U = (A + B cos x) exp
[− (

ax2 + by2
)
/2
]
,

but the final result is then quite messy.
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Figure 6. Panels (a) and (b) show typical examples of single- and multi-peaked
stable 2D solitons in the quasi-1D potential with ε = 2. The norm of the soliton is
N = 2π (a) and N = 1.5π (b).

The VA predicts that, in the 3D case with the Q1D (rather than Q2D)
lattice, all the solitons are VK-unstable. Accordingly, simulations never
produced stable solitons in this case. This feature can be explained by
the fact that, in the free 2D subspace, the soliton is essentially tanta-
mount to the unstable Townes soliton [1, 24].

Another relevant remark is that, as it was discussed in detail above,
the 2D GP equation (2) with the square lattice gives rise, besides stable
fundamental solitons, also to stable vortices [8]. Vortices were found in
the present 2D model too, but they always turn out to be unstable.
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Figure 7. A typical example of a stable single-peaked 3D soliton in the quasi-2D
potential (N = 2π, ε = 5.0) is shown through its z = 0 (a) and y = 0 (b) cross
sections.

We have also investigated the case of self-repulsion (χ = −1) in the
underlying GP equations (23) and (24), when the low-dimensional lattice
potential cannot support a completely localized pulse. However, adding
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the usual parabolic trap, the same as in Eq. (3), readily gives rise
to stable states. Actually, these ones are solitons across the lattice and
Thomas-Fermi states along the free direction. It is noteworthy that, with
χ < 0, these states assume a multi-peaked or single-peaked shape under
the action of a weaker or stronger OL potential, respectively, which is
opposite to what was reported above for the self-attraction case (χ > 0),
see Fig. 6. An explanation to this feature is that, in the case of the
self-repulsion and ε = 0, no solitons exist at all (even unstable ones, like
the above-mentioned Townes soliton).

The influence of the parabolic trap was checked too in the case of
χ = +1. If the 2D or 3D soliton is displaced from the central position, it
then performs harmonic oscillations along the free direction, completely
preserving its integrity. Actually, the mobility in the free direction is the
most essential difference of these multidimensional solitons from those
predicted in other BEC models [6, 7, 8].

5.4 Collisions between solitons, and formation of
bound states

It is natural to consider collisions between the solitons which can
move freely in the unconfined direction of the low-dimensional lattice
potential. Simulations demonstrate that 2D and 3D in-phase solitons
colliding head-on with velocities ±v, which are below a critical value
vcr, merge into a single pulse, whose norm exceeds the critical value
Nmax [see Eq. (30)], hence it quickly collapses as shown in Fig. 8(a).
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Figure 8. (a) A head-on collision between in-phase 2D solitons results in their
merger into a collapsing pulse. In this case, ε = 0.92, k = 2, χ = 1, and before the
collision the solitons were taken with parameters prescribed by the VA: A = 2.07, a =
1.68, b = 1.07 for N/4π = 0.8. (b) Multiple elastic collisions of π out-of-phase solitons
in the presence of the weak confining potential, −βy2, with β = 0.005.

If v > vcr, the solitons pass through each other (for instance, vcr = 8.5
for ε = 2.0 if the norm of each 2D soliton is N = 2.5π), which is
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explained by the fact that the collision time, ∼ 1/v, is then smaller
than the collapse time, ∼ 1/N . Head-on collisions of π-out-of-phase
solitons always results in their bounce. Moreover, two such solitons,
placed inside the parabolic trap, perform stable oscillations with periodic
elastic collisions, see Fig. 8(b).

In the low-dimensional potential, collisions are also possible between
solitons moving in adjacent “tracks” (channels). In that case, they pass
each other quasi-elastically if the collision velocity is large. If it is not
too large, each soliton captures a small “satellite” in the other channel,
see Fig. 9(b).

If the velocity falls below another critical value for given ε, the out-
come of the collision in adjacent tracks is altogether different: two soli-
tons form a quiescent symmetric bound state (BS), see Fig. 10(a). Later,
the symmetric BS develops an intrinsic instability, spontaneously rear-
ranging itself into a stable asymmetric BS [Fig. 10(b)]. This behav-
ior resembles the symmetry-breaking instability of optical solitons in
dual-core fibers [25] and the macroscopic quantum-self-trapping effect
in BECs confined to a double-well potential [26]. In fact, this result is
the first prediction of a stable BS of two solitons in BECs.

Formation of more complex stable BSs of 2D and 3D solitons in
the low-dimensional lattices also occurs in a different way: simulations
demonstrate that, in both the 2D and 3D cases, VK-unstable waveforms
predicted by the VA undergo violent evolution, shedding � 50% of their
norm and eventually forming a BS of three solitons, with a narrow tall
one in the middle, and small-amplitude broad satellites in the adjacent
channels [see Fig. 10].

-10 -5 0 5 10
-10

-5
0

5
10

0

1

|u|2

y

x t = 7t = 0 t = 8 t = 12

Figure 9. Left panel: a bound state of three solitons developed from the VK-
unstable 2D soliton with parameters A = 0.63, a = b = 0.1, and ε = 10. Half of the
initial norm is lost during the formation of the bound state. Right panel: contour
plots of 2D solitons colliding at moderate velocities v = ±0.3 in adjacent tracks of
the quasi-1D potential, with the strength ε = 1.5.
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Figure 10. (a) A symmetric bound state (BS) of 2D in-phase solitons formed in
adjacent tracks of the quasi-1D lattice, with ε = 3, as a result of the collision between
them. (b) Subsequent spontaneous rearrangement of the unstable symmetric BS into
a stable asymmetric one. The initial norm and velocities of the solitons are N = 2π
and v = ±0.1. In the 3D case, the scenario is quite similar.

6. Conclusion
We have demonstrated that the GP/NLS equation with the cubic

nonlinearity and periodic potential, which describes BECs trapped in a
2D or 3D optical lattice (OL), and (in the 2D case) an optical beam in
the Kerr medium with a transverse periodic modulation of the refrac-
tive index, gives rise to stable solitons. In moderately weak and strong
lattices, single-cell and multi-cell solitons were found, the former ones
being accurately predicted by the variational approximation. A neces-
sary condition for the formation of 2D solitons is that the initial norm of
the field must exceed a minimum (threshold) value (but it must also be
smaller than the critical value beyond which the weak collapse sets in).
Similar results have been demonstrated for 2D solitons in hexagonal,
triangular, and quasi-crystallic lattices. Stable 2D vortex solitons with
S = 1 were found too, in the cases of both self-attraction (including the
hexagonal lattice) and self-repulsion.

We have also shown that the periodic potential whose dimension is
smaller by 1 than the full spatial dimension readily supports stable
single- and multi-peaked solitons in 2D and 3D self-focusing media (al-
though the quasi-1D potential cannot stabilize 3D solitons), which sug-
gests new settings for experimental search of multidimensional solitons.
In this case, stable 2D solitons exist in a finite interval of the values of
the norm, while 3D solitons are stable if the lattice strength exceeds a
minimum value. In the case of self-repulsion with a parabolic trap, sta-
ble localized states are found too. The dependence of their structure on
the lattice strength is opposite to that in the case of the self-attraction:



78 NONLINEAR WAVES: CLASSICAL AND QUANTUM ASPECTS

with the increase of the strength, a single-peaked state is changed by a
multi-peaked one.

These solitons are the first example of mobile multi-dimensional
pulses in BECs. Head-on collisions between in-phase solitons may lead
to their fusion and collapse, while out-of-phase solitons can collide elas-
tically indefinitely many times. Collision between solitons in adjacent
tracks may create a bound state (BS), which then relaxes to an asym-
metric stable shape. Three-soliton BSs are created as a result of the
evolution of initially unstable solitons.

Finally, we address experimental perspectives. First, an initial pulse
occupying a single lattice cell can be created by means of the recently
developed technique for patterned loading of BEC into OLs [28], which
provides for control over the placement of atoms in lattice sites. On
the other hand, an initial waveform spread over multiple cells can be
prepared by imposing an OL upon a condensate of a suitable size in the
magnetic trap, with subsequent switching off the magnetic field. Varying
the norm of the wave function, as supposed in the theory and numerical
simulations, can be implemented by variation of the s-wave scattering
length via the Feshbach resonance.

Strengths of the OLs necessary to realize the above settings are in
the experimentally relevant range [27], ε = 0 ÷ 20 in units of the recoil
energy, Erec = �2k2

L/(2m), where kL = 2π/λ, and m and λ are the
atomic mass and laser wavelength. Relevant units of length and time
are, respectively, the cell’s size d ≡ λ/2 = 0.425 µm, and the time
�/Erec = 2m/(�k2

L) = 50 µs (for 85Rb atoms and far detuned laser with
λ = 850 nm). Experiments can be performed with 7Li or 85Rb atoms
featuring the negative scattering length in the ground state, which is
amenable to large variations through the Feshbach resonance.
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Abstract
We show the existence of a rich variety of fully stationary vortex

structures made of an increasing number of vortices nested in paraxial
wave fields confined by symmetric and asymmetric harmonic trapping
potentials in both static and rotating reference frames. In the static
reference frame the clusters are built by means of Hermite-Gauss func-
tions, being termed H-clusters, whereas in the rotating frame they are
generated by using the Laguerre-Gauss functions, being thus termed
L-clusters. These complex vortex-structures consist of globally linked
vortices, rather than independent vortices and, in symmetric traps, they
feature monopolar global wave front. Nonstationary or flipping circular
vortex-clusters can be built in symmetric traps and they feature multi-
polar phase front. In asymmetric traps, the existing stationary vortex
clusters can feature multipolar wave fronts, depending on the ratio of the
trap frequencies. In the nonlinear case, corresponding to nonrotating
Bose-Einstein condensates, the stationary vortex clusters also exist and
some of these highly excited collective states display dynamical stability.

1. Introduction
Singular wave structures, that contain topological wave front dis-

locations [1], are ubiquitous in many branches of classical and quan-
tum science. Screw dislocations, or vortices, are a common dislocation
type. They are spiral phase-ramps around a singularity where the wave
phase is undefined and its amplitude vanishes or, in a mathematical
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language, they are zeros of complex functions with a nonzero phase cir-
culation around them. Wave packets with nested vortices find applica-
tions in fields as diverse as cosmology, biosciences, or solid state physics
[2, 3, 4, 5]. As striking examples, they are at the heart of schemes to
generate engineered quNits in quantum information systems in higher
dimensional Hilbert spaces [6, 7], are believed to be essential for the on-
set of superfluidity in Bose-Einstein condensates (BECs) [8, 9, 10, 11],
or allow tracking the motion of a single atom [12].

A recent study of the motion of vortex lines governed by both linear
and nonlinear Schrödinger equations describing the dynamics of atoms
in harmonic traps revealed that the topological features of vortex dy-
namics are to large extent universal [13]. The dynamics of the vortices
nested on localized wave packets depends on the evolution of the host
beam, and on the interferences and interactions between the vortices
[14]. Multiple vortices nested on the same host typically follow dynami-
cal evolutions which might include large vortex-drifts that destroy their
initial arrangement, and vortex-pair annihilations that destroy the vor-
tices themselves. Vortex evolutions are particularly complex in strongly
nonlinear media, such as BEC, where the vortices can interact with each
other. Therefore, a fundamental question arises about whether station-
ary or quasi-stationary vortex clusters or lattices [16], made of vortices
with equal and with opposite topological charges exist. To isolate the
pure vortex features from the dynamics solely induced by the evolution
of the host wave packet, it is convenient to study wave fields confined
by suitable potentials, as in weakly-interacting trapped BEC.

We find that a rich variety of fully stationary vortex clusters made of
an increasing number of vortices do exist. The important point we put
forward is that these clusters are globally linked, rather than products
of independent vortices. Also, they feature a monopolar global wave
front. We also show that the clusters exist and are robust in nonlinear
systems such as interacting BEC. By contrast, we show that vortex
clusters with multipolar global wave fronts nested in wave fields confined
by trapping potentials are non-stationary, when the number of vortices
and their location are not constant during dynamical evolution, or at
best flipping, when the vortices periodically flip their topological charges
through extremely sharp Berry trajectories [17]. In the former case,
multiple vortex revivals mediated by Freund stationary point bundles
[18], that carry the necessary Poincaré-Hopf indices [19], can occur.

The chapter is organized in four parts as follows: Introduction, model
and equations, vortex clusters in the non-interacting case and vortex
clusters in the interacting case.
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Figure 1. (a) Intensity distribution of a field hosting unit vortices. (b) Interference
fringes for the unit positive topological charge and (c) for the vortex with unit negative
topological charge.

2. Model and equations
We thus address the slowly-varying evolution of generic wave functions

governed by the paraxial wave equation

iAz = LA + N(A), (1)

where A is a complex field, L is a two-dimensional linear differential
operator containing a trapping potential and N(A) takes care of any
nonlinear contribution. We assume the trapping potential to be har-
monic thus L = −1/2

(
∂2

x + ∂2
y

)
+
(
nxx2 + nyy

2
)

+ ΩLz. The last term

appears in rotating reference frames, Lz = i
(
x ∂

∂y − y ∂
∂x

)
being the an-

gular momentum operator and Ω the angular velocity of the rotating
frame. The case of a nonrotating frame will correspond to Ω = 0.

To be specific, when N(A) ∼ |A|2A, this equation models the propa-
gation of a light beam guided in a Kerr nonlinear graded-index medium
and the mean-field evolution of a two-dimensional trapped BEC at zero-
temperature (where nx,y are proportional to the trap frequencies in ap-
propriate units). When referring to matter-wave phenomena the equa-
tion (1) is also termed as the Gross-Pitaevskii (GP) equation.

For convenience, from now on we will split

A(x, y; z) = F (x, y; z)V (x, y; z)

taking the host packet F as given by the fundamental mode of the trap-
ping potential

F (x, y; z) = exp
[
−
(√

nx

2
x2 +

√
ny

2
y2

)]
exp

[
−i

(√
nx

2
+
√

ny

2

)
z

]
.

In the linear case, the function V (x, y; z) carries all the essential informa-
tion about the solutions and in particular about vortex dynamics. The
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simplest vortex function describing the unit vortices with positive and
negative topological charges reads V (x, y, z = 0) = (x ± iy) exp(−x2 −
y2). The intensity distribution and the interference patters for these
fields hosting vortices are given in Fig. 1. A characteristic feature of the
interference pattern is the existence of a fork-like bifurcation of a fringe.
The difference in the number of arms before and after the bifurcation
gives us the topological charge of the vortex nested in the bifurcation
point. The topological charge tells us the number of multiple of 2π the
phase will face on a closed loop around the vortex core. Vortices of op-
posite charges display bifurcations in different senses when making the
interference with the same plane wave.

In what follows we will consider the evolution of polynomial initial
data for V corresponding to (multi)vortex solutions of Eq. (1). Such
solutions can be expressed as finite series and, as will be clear later, all
of them must be periodic or stationary.

3. Vortex clusters in the noninteracting case

3.1 Clusters of product vortices
Let us first consider the linear (N(A) = 0) evolution of vortex-clusters

built as products of n independent single-charge vortices: V (x, y; z =
0) =

∏n
k=1[x − xk + iσk(y − yk)], where (xk, yk) are the locations in the

vortex cores in the transverse plane, and σk = ±1. None of the above
product-vortex clusters is found to be dynamically stationary. On the
contrary, the number of vortices and their location is found to vary
during evolution, so that the initial vortex structure is destroyed. These
results can be illustrated by examining the evolution of the 4-vortex
cluster: V (z = 0) = (x+a+iy)(x−a+iy)(x−iy−ia)(x−iy+ia), which
contains two vortices with positive topological charge and two vortices
with negative charge in a symmetrical geometry. This cluster features a
quadrupolar global wave front, as is revealed by calculating the gradient
of the wave front Φ far from the cluster core, to obtain |∇Φ| ∼ 1/ρ3,
where ρ is the polar coordinate, similar to the corresponding electrostatic
multipole [20]. Substitution into (1) yields

V (x, y; z) = [(x2 + y2)(x2 + y2 + 2e4iz − 2)]e−8iz

+4ia2xye−4iz + 1/2(1 − e−4iz)2 − a4. (2)

One finds three different regimes of evolution, as shown in Fig. 2: Vortex
drifts, and vortex-pair annihilations and revivals take place, so that de-
pending on the value of the geometrical parameter a, the total number
of vortices, n, hosted in the wave field during propagation can oscillate
between: (i) 4 and 8 [see Fig. 2(a)]; (ii) 4, 0 and 8 [see Fig. 2(b)]; (iii)
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Figure 2. Evolution of a vortex quadrupole, constructed as the product of four
single-charge vortices. Upper row: Number of vortices n as a function of z, for
different values of the initial quadrupole size. (a) a = 0.5, (b) a = 1.1 and (c) a = 1.2.
Bottom row: Intensity snapshots corresponding to points labeled A, B and C in (c).
Black-filled circles: positive vortices; white-filled circles: negative vortices.

4 and 0 [see Fig. 2(c)]. When n = 0, it is understood that all vor-
tices have annihilated each other. Analogous evolutions were found for
octupoles and higher-order multipoles built as product of independent
vortices. Only dipoles can be made quasi-stationary, but flipping, when
the corresponding vortex twins periodically flip their topological charges
[21]. We will show, in the next section, that the vortex dipoles belong
to a family of circular quasistationary vortex clusters, for which the con-
stituent vortices periodically flipp the charge. Thus, the main conclusion
reached is that the interference between the constituent vortices of all
the product-clusters produces beatings between the normal modes of the
system, rendering the clusters non-stationary.

3.2 Flipping vortex clusters in symmetric
traping potentials

As mentioned above, in symmetric nonrotating traping potentials, one
can generate families of circular quasistationary vortex clusters. These
vortices of these necklaces are located at the intersection between the
circle x2+y2−a2 = 0, where �e(V ) = 0, and the lines y±tan(2kπ/n)x =
0, k ∈ N, where �m(V ) = 0. We can write specific vortex functions for
clusters built with n = 4, 8, 12, . . . vortices (n = 4k, k ∈ N) or for the
vortex necklaces with n = 2, 6, 10, . . . vortices (n = 2(2k + 1), k ∈ N).
The evolution of the vortex function for the n = 4k-circular vortex
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Figure 3. Evolution of the flipping n = 8 circular vortex-necklace. Upper row:
intensity distribution; lower row: interference fringes.

clusters is given by:

V (x, y, z) = (x2 + y2 − 1/2) exp(−4iz) +

ixy

(n−4)/4∏
j=1

(y ± tan 2jπ/n) exp(−2inz) + (a2 − 1/2), (3)

whereas for the n = 2(2k + 1) vortex clusters it is:

V (x, y, z) = (x2 + y2 − 1/2) exp(−4iz) +

iy

(n−2)/4∏
j=1

(y ± tan 2jπ/n) exp(−2inz) + (a2 − 1/2). (4)

Once again, the vortices forming the necklace are intimately linked
and do not exhibit a multipolar wave front.

We have chosen, for illustration, the circular vortex cluster with n = 8,
belonging to the family given by Eq. (3) and a vortex cluster with n = 6
belonging to the family built as per Eq. (4). Their field distributions
along with the interference fringes at three stages of the evolution are
shown in Figs. 3 and 4, respectively. For each case the first and the last
frame have the same intensity distribution but different phase portraits.
The vortices have flipped the charge through very sharp edge dislocations
shown in the middle panel. The charge flipping of the vortices takes place
periodically during propagation and, as mentioned above, it is dictated
by the beatings between the frequencies of the first two terms in Eqs.
(3) and (4).
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Figure 4. The same as in Fig. 3 but for a n = 6 vortex cluster.

3.3 Globally linked vortex-clusters in
symmetric traps

(i) The nonrotating case
The key insight we put forward in this paper is that such beatings

are not associated to the intrinsic or local properties of the individual
vortices, but to the very way the vortices are globally linked in the host
wave packet. As an example, let us consider the evolution of

V (x, y; z = 0) = x2 + y2 − a2 + 2ixy, (5)

which contains four vortices located at the same positions and having
the same charges as those of the vortex-quadrupole considered above [see
Fig. 4(b)]. However, in this cluster the vortices are intimately linked to
each other, rather than individually nested in the host F . This fact
manifests itself in the global wave front of the cluster, which behaves
as |∇Φ| ∼ cos(2φ)/ρ + O(1/ρ3), and thus features a monopolar decay
almost everywhere. In this case, the vortex evolution is given by

V (x, y; z) = (x2 + y2 − 1/2 + 2ixy)e−4iz + 1/2 − a2, (6)

an evolution that when the cluster is constructed with a = 1/
√

2 does
become fully stationary.

The above 4-vortex cluster is not an isolated case, but rather an ex-
ample of whole existing families of fully stationary vortex structures
made of globally linked vortices. In fact, the solutions of Eq. (1) with
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(a) (b) (c)

(f)(e)(d)

Figure 5. H-cluster zoology. Shown are several examples of stationary vortex ma-
trices and vortex arrays that can be constructed. See text for details. Lines show
zero crossings of �e(V ) (full lines) and �m(V ) (dashed). Features as in Fig. 2.

N(A) = 0 have the form:

A(x, y; z) =
∞∑

k,l=0

CklHk(x
√

2)Hl(y
√

2)e−x2−y2
e−2i(k+l+1)z, (7)

where Hj are the Hermite polynomials. Therefore, the evolution of initial
data of the form V (x, y; z = 0) =

∑n
k=0 CkHk(ξ)Hn−k(η) for any Ck ∈ C

and ξ = x
√

2, η = y
√

2, is given by

V (x, y; z) = e−2inz
n∑

k=0

CkHk(ξ)Hn−k(η). (8)

On physical grounds, this simple mathematical result shows that all the
stationary clusters are made of globally-linked vortices. Equation (8)
allows us to build a variety of structures, to be termed Hermite, or H-
clusters, whose key features we discuss in what follows.

Perhaps the simplest type of H-clusters are those with a n×n matrix
geometry thus containing n2 vortices. These clusters can be generated
by using as initial data, for example, Vn×n(x, y; z = 0) = Hn(ξ)+iHn(η).
In this function the vortex charges alternate throughout the matrix and
the vortex locations are dictated by the zeroes of the particular Hermite
polynomials involved. In general these vortex matrices are not regular,
the distance between vortices varying along the matrix. However, in
the particular cases with n = 2 and n = 3 the matrix is regular. The
n = 3 case is shown in Fig. 5(a). Notice that a 2 × 2 matrix cluster
can be generated either with V (x, y; z = 0) = H2(ξ) + iH2(η), or with
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V (x, y; z = 0) = H2(ξ) + H2(η) + iH1(ξ)H1(η). Actually, this latter
possibility generates the stationary 4-vortex cluster discussed earlier [see
Fig. 5(b)].

One can also build m × n (m �= n) stationary vortex matrices. A
possible choice for the vortex function generating such a vortex-matrix is
Vm×n(x, y; z = 0) = Hm(ξ) + iH|m−n|(ξ)Hn(η). As an example we show
the 4 × 2 vortex matrix in Fig. 5(c). In contrast to the n × n matrices,
in the general case the topological charges carried by the vortices of
the m × n matrices do not alternate sign throughout the matrix. An
important subclass of the m× n vortex matrices are the m× 1 cases, to
be termed vortex arrays. They consist in m co-linearly displaced vortices
of the same topological charge. Figures 5(d) and 5(e) show illustrative
examples. The simplest array is the vortex-twin shown in Fig. 5(d): A
pair of identical vortices that, contrary to the vortex dipole which either
undergoes periodic annihilations and revivals or charge flip-flops, can be
made fully stationary.

The n × n matrices are either chargeless for even n, or carry a single
net charge for odd values of n, while the m × 1 arrays carry a m total
topological charge. In any case, the wave front of all the H-clusters is
found to feature a monopolar decay (∼ 1/ρ) almost everywhere.

More complex H-clusters also exist, and a full classification of all the
possibilities falls beyond the scope of this paper. However, an example of
one of such exotic H-clusters is displayed in Fig. 5(f), which corresponds
to the cluster built with V (x, y; z = 0) = H3(η)+i(H3(ξ)+H1(η)H2(ξ)).
The rich variety of possibilities contained in Eq. (8) is clearly apparent.

(ii) Vortex clusters in rotating reference frame: Spider webs of vortices
The aim of this section is to discuss another type of multivortex config-

urations in matter and optical waves. Contrary to the case of H-clusters
which are rectangular systems of vortices here we deal with the axially
symmetric solutions of the GP equation. Such geometry is in some sense
more natural in a wide range of situations, as, for example, the case of
rotating condensates. To demonstrate the key features of these solutions
we will restrict our analytical studies to the linear case leaving analysis
of full GP equation to numerical simulations.

Let’s rewrite the general GP equation 1 for the interaction-free case
in a frame rotating around z-axis with the angular velocity Ω can be
written as

iΨt = −1
2
∆Ψ +

1
2
ω2r2Ψ + ΩLzΨ (9)

where ∆ = ∂2
x + ∂2

y and we have assumed that the trap is axially sym-
metric, i.e. nx = ny = ω2/2. This model describes the dynamics of
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Bose-Einstein condensates stirred by a laser beam rotating with the an-
gular velocity Ω [25].

The main idea is again, as in the case of H-clusters, to use super-
positions of stationary solutions of the equation (9). The stationary
solutions,

Ψ (t, �r) = exp (−iµt) Ψ (�r) (10)

can be found from the eigenvalue problem which, after separating the
gaussian envelope

Ψ (�r) = exp
(
−ωr2

2

)
Φ(�r) (11)

can be written as

µΦ = −1
2
∆Φ + ωrΦr + iΩΦθ + ωΦr. (12)

A standard analysis of this equation gives the following result: the eigen-
values of our problem (i.e. the values of µ for which Ψ ∈ L2

(
R2

)
) are

given by
µ = µn,m = (2n + 1)ω + m(ω − Ω) (13)

where m and n are arbitrary integers. In this case Φ possesses the
following structure:

Φ (�r) = Fm,n(r)(x + iy)m, �r = (x, y), r = |�r| (14)

where Fm,n is a polynomial in r2,

F = Lm
n (4ωr2), (15)

and Lm
n are generalized Laguerre polynomials which solve the equation

ξ
d2F

dξ2
+ (m + 1 − ξ)

dF

dξ
+ nF = 0. (16)

Now we can use these stationary solutions to construct ones which
describe multivortex configurations of the field. To this end one can
use linear combinations of these solutions. Let us consider the simplest
linear combination that involves only two such terms:

Ψ = exp
(
−ωr2

2

) 2∑
a=1

fa(r) exp (−iµat + imaθ) (17)

where
fa(r) = rmaLma

na

(
4ωr2

)
, (18)
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µa = (2na + 1)ω + ma(ω − Ω) (19)

and study its zeroes (which correspond to vortices). The complex equa-
tion Ψ = 0 can be split in two real ones

f1 − σf2 = 0, σ = ±1 (20)

and
(m1 − m2) θ = π(ν + 2�) + (µ1 − µ2) t. (21)

Here

� = 1, ..., |m1 − m2| , ν =

{
0 σ = +1
1 σ = −1

(22)

The right-hand side of (20) is a polynomial in r. So, equation (20)
gives us a finite number of values of r. This means that the zeroes
of Ψ are located on a few concentric circles. The phase equation (21)
shows that at a given moment of time there are |m1 − m2| zeroes on
each circle. To summarize, the set of zeroes can be described as one
m-th order zero at the centrum, with m = min (m1, m2), and 2N rings,
N = max (n1 + m1, n2 + m2), each consisting of |m1 − m2| points (like
the nodes of a spider web) rotating with the angular velocity

2
n1 − n2

m1 − m2
ω + ω − Ω. (23)

Of course, these solutions are not stationary in the strict sense of this
word (i.e. the field intensity changes in time) but they represent stable
patterns undergoing rotation (and periodic changes of their fine struc-
ture) that can be seen in experiments and can be viewed as some gener-
alized stationary states. Moreover, in principle, there can be situations
when zeroes do not move, but only in the commensurate case, when

Ω
ω

=
integer
integer

(24)

which is similar to the GP with anisotropic trap, where the degeneracy
of the energy levels occurs only if the trap frequencies are are equal or,
more generally, commensurate.

We expect that stationary (in the general sense) rotating spider webs
of vortices discussed above will have correspondent stationary solutions
in the interacting case and that those solutions are robust (as it is the
case of the H-clusters) and we hope that further numerical studies of the
full GP equation will confirm this claim.
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3.4 Vortex clusters in asymmetric traps
In this section we will present some results concerning the existence

of stationary vortex clusters in asymmetric traps. The asymmetric trap-
ping potentials, i.e. those with nx �= ny, present more degrees of freedom
as comparing to the symmetric ones. As concerning the experimental
accessibility to such potentials, at least in the Bose-Einstein conden-
sates, the tuning of the trap frequencies is currently used in order to
achieve cigar shaped or pancake shaped condensates. We will consider
here the nonintercating case and the results will be compared with those
obtained for the symmetric traps in the previous chapters.

The general expression of a stationary solution of Eq. (1) in the
nonrotating Ω = 0 and noninteracting limit N(A) = 0 reads:

A(x, y; z) =
∞∑
k,l

CklHk[(2nx)1/4x]Hl[(2ny)1/4y]

×e
−
(√

nx
2

x2+
√

ny
2

y2

)
e−iEk,lz, (25)

provided that all the terms in this sum have the same eigenvalue Ek,l =√
2nx(k + 1/2) +

√
2ny(l + 1/2). Here, as in the previous sections Hj,

j ∈ N are the Hermite polynomials and Ck,l are complex coefficients.
Analyzing the above condition one can see that such stationary states
can be built only in traps with the frequencies fulfilling r =

√
ny

nx
∈ Q. A

few representative cases of stationary vortex clusters in asymmetric traps
are presented in Fig. 6. As can be seen from this figure, a stationary
vortex dipole can be built in a trap with nx : ny = 1 : 4 (r = 2). The
complex field hosting this vortex dipole is

A(x, y, z) = [H2(x) + iH1(
√

2y)] exp (−x2/2 − y2) exp (−7iz/2)

for nx = 1/2 and ny = 2. Moreover, the phase gradient of this field
decays at infinity as |∇Φ| ∼ 1/ρ2, being thus similar to the electrostatic
dipole.

This behavior is different from that of the globally-linked vortex clus-
ters existing in symmetric traps and displaying a monopolar phase front.
Another interesting case of stationary vortex ensembles shown in the
same Fig. 6 is the mirrored vortex dipole, i.e. two parallel vortex dipoles.
This structure exists in asymmetric traps with r = 2 and for nx = 1/2
it is hosted by the complex field

A(x, y, z) = [H2(x)H1(y) + iH2(
√

2y)] exp (−x2/2 − y2) exp (−11iz/2).

In asymmetric traps, tuning the ratio of the trap frequencies, one can
acquire vortex arrays. i.e. n vortices of alternating topological charges
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Figure 6. Vortex clusters in asymmetric traps. Shown are the vortex arrays for
r = 2 (vortex dipole), r = 3 and r = 4, respectively and the parallel vortex dipoles
existing in the r = 2 traps.

(+,−, +, . . .) displaced on a line. The general expression for such vortex
arrays in a traps with r = n, n ∈ N and nx = 1/2 is

An(x, y, z) = [Hn(x)+iH1(
√

ny)] exp (−x2/2 − ny2/2) exp [−(3n + 1)iz/2].

In Fig. 6 we have shown the (+,−, +) vortex array existing for r = 3
and the (+,−, +,−) vortex array existing in the case r = 4.

4. Vortex clusters in the interacting case
An interesting issue is the existence and stability of vortex-clusters

in the presence of nonlinear cubic interactions such as those appearing
in the propagation of beams in Kerr media or in the dynamics of BEC.
To ease the comparison with BEC literature we choose now nx = ny =
1/2 and N(A) = U |A|2A [26]. In this context the evolution variable is
denoted by t instead of z. With this choice of parameters the range
of U values experimentally accessible for the two-dimensional case is
0 < U < 102 − 103 [27].

We have studied several particular examples to verify that these struc-
tures indeed exist and are stable in the nonlinear regime. We have taken
as initial data several linear configurations such as a single vortex, dipole
systems and the 4-vortex cluster given by Eq. (5) and evolved them for
UN = 10 (N =

∫ |A|2dx is the wave function norm) using an standard
split-step integrator.

It is found that, although the background performs oscillations and
the vortex locations oscillate around their equilibrium positions, the vor-
tex clusters remain stable (see Fig. 7). We have also searched for sta-
tionary solutions of Eq. (1), of the form A(x, y; t) = eiλtψ(x, y). To do
so we have used a steepest descent method to minimize the functional
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t=0 t=40 t=80

Figure 7. Stable evolution of initial data given by Eq. (5) for UN = 10. Upper
row: Intensity plots; bottom row: Interference fringes. Spatial region spanned is
[−4, 4] × [−4, 4].
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Figure 8. Linear 4-vortex cluster [Eq. (5)] vs. its nonlinear stationary version for
U = 100, λ = 8. (a) Plots of |ψ(x, y = 0)|2 for the linear (dashed line) and nonlinear
(solid line) cases. (b,c) Surface plots of |ψ(x, y)|2 for (b) the linear and (c) nonlinear
situations. The vortex locations and topological charges are indicated by plus and
minus signs.
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Figure 9. (a) The λ(N) and (b) the E(N) dependences for the vortex-quadrupole
(labelled here VQ) and the ground state (GS) solutions for U = 10.

[28]:

F (ψ) =

∫
ψ∗ (−∆ − λ + r2 + U |ψ|2)ψdx∫ |ψ|2dx , (26)

whose minima (except for ψ = 0) coincide with the stationary solutions
of Eq. (1) for a given value of λ. For instance, taking as initial data for
the minimization process the linear 4-vortex cluster and setting λ = 8.0
and U = 100, we found a stationary 4-vortex cluster solution (see Fig. 8)
with norm N =

∫ |ψ|2dx � 1.6005 (thus the product UN � 160 which
lies into the fully nonlinear regime).

In Fig. 9 we have plotted the chemical potential λ versus the number
of atoms N and the energy E versus N for the one-parametric fam-
ily of vortex quadrupoles along with the corresponding dependences for
the ground state solutions. This curves indicate, as expected, that the
vortex-quadrupole is an excited state of the atomic ensemble, its energy
exceeding always the energy of the ground state (bell-shaped vortex-free
state).

These vortex quadrupoles existing in BEC are highly excited collective
states of the condensed atoms and, in contrast with their equivalents in
optics (spatiotemporal soliton molecules or soliton necklaces) which are
highly unstable [29] or, at best metastable [30]-[31], they are very robust
under time evolution when small perturbations are added.

These evidences show that the existence of H-clusters in a BEC should
be experimentally accessible, at least from the dynamical point of view.
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5. Conclusions
In conclusion we have comparatively presented the stationary and

flipping vortex clusters existing in trapped wave fields in both nonin-
teracting and interacting limits. For the noninteracting case we have
shown that in the nonrotating frame the vortices forming the stationary
H-cluster are globally linked, rather than product of independent vortices.
Similar, in the rotating frames, a rich variety of L-clusters do exist. For
commensurate ratios of the trap frequency and the angular velocity of
the rotating frame the vortex spider-web is stationary in the rotating
reference frame. We have also pointed out that nonsymmetric trapping
potentials open new possibilities for building exotic stationary vortex
ensembles that cannot be built in symmetric traps. The stationary vor-
tex clusters found in the linear limit have, as a rule, correspondents in
the interacting case and the family of nonlinear vortex quadrupoles was
investigated in detail, these solutions displaying a remarkable stability
on evolution. Following this idea it is possible to generate a variety of
additional novel structures with fascinating properties. The exploitation
of such intrinsic linking might open new opportunities in classical and
quantum systems based on topological light and matter waves. The first
challenge is the demonstration of the generation of the clusters, by suit-
able computer-generated holograms [32] in Optics and phase-imprinting
techniques in BEC [33].
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SOLUTIONS OF THE LOGARITHMIC
SCHRÖDINGER EQUATION IN A
ROTATING HARMONIC TRAP
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Abstract We study the influence of the nonlinearity in the Schrödinger equation
on the motion of quantum particles in a harmonic trap. In order to
obtain exact analytic solutions, we have chosen the logarithmic non-
linearity. The unexpected result of our study is the existence in the
presence of nonlinearity of two or even three coexisting Gaussian solu-
tions.

Keywords: nonlinear Schrödinger equation, rotating harmonic trap, logarithmic
Schrödinger equation, exact solutions of a nonlinear Schrödinger equa-
tion

1. Introduction
The nonlinear Schrödinger equation with the logarithmic nonlinearity

(we use the units � = 1 and m = 1)

i∂tψ(r, t) =
(
−1

2
∆ + V (r, t) − b log(|ψ(r, t)|2/a3)

)
ψ(r, t) (1)

was introduced [1] long time ago to seek possible departures of quan-
tum mechanics from the linear regime. The parameter b measures the
strength of the nonlinear interaction (positive b means attraction) and
a is needed to make the argument of the logarithm dimensionless — it
plays no significant role since the change of a results only in an additive
constant to the potential. In what follows, we shall absorb the parameter
a into the wave function that amounts effectively to putting a = 1.

It has been proven in beautiful experiments with neutron beams [14,
15, 9] that the nonlinear effects in quantum mechanics, if they exist
at all, are extremely small. The upper limit for the constant b was
determined to be 3.3 10−15 eV. Thus, the applicability of the logarithmic
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Schrödinger equation to the time evolution of wave functions seems to
have been ruled out. Nevertheless this equation, owing to its unique
mathematical properties, has been used in many branches of physics to
model the nonlinear behavior of various phenomena. It has been applied
in the study of dissipative systems [11], in nuclear physics [10], in optics
[12, 5], and even in geophysics [7]. In contrast to the properties of
other nonlinear equations, the logarithmic Schrödinger equation in any
number of dimensions possesses analytic solutions, called Gaussons in
[2]. Gaussons represent localized nonspreading solutions of the Gaussian
shape. The internal structure of the Gaussons may also change in time.
The existence of these analytic solutions enables one to study in detail
the influence of nonlinearities. In this paper we focus our attention on
the behavior of the solutions of the logarithmic Schrödinger equation
in a rotating harmonic trap. The aim of our study was to see to what
extent the nonlinear interaction may change the dynamics and affect the
stability of solutions. Perhaps, our results will help to better understand
the behavior of the Bose-Einstein condensate in a rotating trap. Previous
studies of these problems (for example, [13] and [6]) were often based on
the hydrodynamic equations and we plan in the future to express our
results in terms of the hydrodynamic variables.

2. Formulation of the problem
The logarithmic Schrödinger equation in a rotating trap has the form

i∂tψ(r, t) =
(
−1

2
∆ +

1
2
r·V̂ (t)·r − b log(|ψ(r, t)|2)

)
ψ(r, t), (2)

where the symmetric 3×3 matrix V̂ (t) depends on time due to rotation.
In order to simplify the analysis of stability, we assume that the trap is
subjected to a uniform rotation and we shall use the coordinate system
co-rotating with the trap. In this manner the potential becomes time-
independent but due to rotation there appears an additional term in the
equation.

i∂tψ(r, t) =
(
−1

2
∆ +

1
2
r·V̂ ·r − b log(|ψ(r, t)|2) − Ω·M

)
ψ(r, t), (3)

where Ω is the vector of angular velocity and M = r×p is the operator
of angular momentum. We shall seek the solutions of Eq. (3) in the
Gaussian form

ψ(r, t) = N(t)eif(t) exp
(
−1

2
r̃·(Â(t) + iB̂(t))·r̃(t) + iπ(t)·r

)
, (4)
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where r̃ = r − ξ(t). The time-dependent vectors ξ(t) and π(t) specify
the position and momentum of the center of mass of the Gaussian wave
packet and the time-dependent real symmetric matrices Â(t) and B̂(t)
specify the shape and the internal motion of the wave packet, respec-
tively. The two real functions N(t) and f(t) define the normalization
and the overall phase of the Gausson. Substituting this Ansatz into
Eq. (3), we arrive at the following set of ordinary differential equations
for all the functions entering our formula (4)

dÂ(t)
dt

= B̂(t)Â(t) + Â(t)B̂(t) −
[
Ω̂, Â(t)

]
, (5)

dB̂(t)
dt

= B̂(t)2 − Â(t)2 + V̂ + 2bÂ(t) −
[
Ω̂, B̂(t)

]
, (6)

dξ(t)
dt

= π(t) − Ω × ξ(t), (7)

dπ(t)
dt

= −V̂ ·ξ(t) − Ω × π(t), (8)

dN(t)
dt

=
1
2
Tr{B̂(t)}N(t), (9)

df(t)
dt

= −1
2

(
Tr{Â(t)} + π(t)·π(t) − ξ(t)·V̂ ·ξ(t)

)
, (10)

where the antisymmetric matrix Ω̂ and the components of the angular
velocity vector Ω are related through the formula Ωij = εijkΩk. Note,
that the internal motion (described by Â(t) and B̂(t)) completely decou-
ples from the motion of the center of mass (described by ξ(t) and π(t)).
In turn, the equations for the normalization factor and the phase can
be integrated after the internal and the center of mass motion has been
determined. This decoupling follows from the general theorem [8] and
[4] stating that from every solution of a nonlinear Schrödinger equation
in a harmonic potential (including time-dependent potential) one may
obtain a solution displaced by a classical trajectory fully preserving the
shape of the wave function.

3. Solutions and their stability
In what follows, for simplicity, we shall assume that the trap rotates

along one of its principal axis. In this case the motion in the direction
perpendicular to the rotation plane decouples and we are left with a two-
dimensional problem. In the stationary state of our system the center of
mass motion must be absent (ξ(t) = 0, π(t) = 0) The stationary state
of the system is described by the wave function characterized by the
solution of the following two time-independent equations for two 2 × 2
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matrices A and B

0 = B̂Â + ÂB̂ −
[
Ω̂, Â

]
, (11)

0 = B̂2 − Â2 + V̂ + 2bÂ −
[
Ω̂, B̂

]
. (12)

We shall seek the solutions of these equations in the coordinate frame
in which the matrix V̂ is diagonal, V̂ = Diag{ω2

1, ω
2
2}. We assume, for

definitness, that ω1 < ω2. It follows from Eqs. (11–12) that in this frame
the matrix Â is also diagonal and the matrix B̂ is off-diagonal. Finally,
we are left with three equations for two matrix elements α1, α2 of Â and
one matrix element β of B̂

(α1 + α2)β − (α1 − α2)Ω = 0, (13)
β2 − α2

1 + ω2
1 + 2bα1 + 2βΩ = 0, (14)

β2 − α2
2 + ω2

2 + 2bα2 − 2βΩ = 0. (15)

It follows from Eq. (13) that in the absence of rotation β must vanish
and we obtain immediately two physically acceptable solutions of the
decoupled quadratic equations for the parameters α

α1 = (ω1

√
1 + b2/ω2

1 + b), (16)

α2 = (ω2

√
1 + b2/ω2

2 + b), (17)

β = 0. (18)

The two remaining solutions yield negative values of the α’s and must
be rejected. Thus, in the absence of rotation the nonlinearity modifies
only the size of the Gaussian wave function without introducing any
significant changes. Even for negative values of b (nonlinear repulsion),
stable solutions described by (16) and (17) always exist, no matter how
strong is the repulsion.

Simple analytic formulas can also be obtained in the presence of rota-
tion but without nonlinearity. The formulas for the Gausson parameters
read in this case

α1 =

√
ω2

1 + ω2
2 + 2Ω2 ± 2

√
(ω2

1 − Ω2)(ω2
2 − Ω2)

1 +
√

(ω2
2 − Ω2)/(ω2

1 − Ω2)
, (19)

α2 =

√
ω2

1 + ω2
2 + 2Ω2 ± 2

√
(ω2

1 − Ω2)(ω2
2 − Ω2)

1 +
√

(ω2
1 − Ω2)/(ω2

2 − Ω2)
, (20)

β = Ω
1 −

√
(ω2

2 − Ω2)/(ω2
1 − Ω2)

1 +
√

(ω2
2 − Ω2)/(ω2

1 − Ω2)
. (21)
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The values of α are real in the two regions of stability when Ω < ω1

(region 1) and Ω > ω2 (region 2). The same regions of stability were
obtained in the analysis of the characteristic frequencies in classical or
quantum-mechanical center-of-mass motion [4]. In the formulas (19) and
(20) the + and – sign is to be chosen for the region 1 and the region 2,
respectively.

In the presence of both rotation and nonlinearity the properties of so-
lutions change significantly. The most striking difference is the appear-
ance of additional stationary Gaussian solutions. This is an unexpected
result because in the linear theory a purely Gaussian shape always is
found for only one fundamental state of the system — all other states
have polynomial prefactors. We have not been able to find closed ex-
pressions for the parameters α and β, so we had to resort to numerical
analysis of the solutions of Eqs. (13–15). We present our results in three
plots showing the calculated values of the parameters α1 and α2 that
determine the shape of the Gaussian wave function. These values are
plotted as functions of the angular velocity Ω. In all plots we have fixed
the trap parameters to be ω1 =

√
2/3, ω2 =

√
4/3. We have chosen

three values of b to describe the following characteristic cases. In Fig. 1
we plot the values of α’s without the nonlinear interaction (b = 0). In
Fig. 2 we added the attractive nonlinear interaction (b = 1) and in Fig. 3
the repulsive nonlinear interaction (b = −1).

4. Conclusions
Knowing the exact analytic form of the solutions of our nonlinear

Schrödinger equation we were able determine the influence of rotation
and nonlinearity on the stability of solutions. The unexpected result
of our analysis is that the repulsive interaction expands the region of
stability. We have to admit, however, that this may be true only for the
special form of the nonlinearity: the logarithmic nonlinearity.
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Figure 3. This plot shows the values of α1 and α2 in the case of repulsive nonlinear
interaction. The upper region of stability is extended now downwards as compared
to the case without the nonlinear term. Moreover, there are two solutions (solid and
dashed lines) that coexist in the newly established region of stability.
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simulations of the nonlinear problem and localized excitations are found
to persist, as well as to have interesting relaxational dynamics.

Keywords: Curvature, Waveguides, Nonlinear Schrödinger Equation

1. Introduction
Localization phenomena are widely recognized as key to understand-

ing the excitation dynamics in many physical contexts such as light
propagation, charge and energy transport in condensed-matter physics
and biophysics, and Bose-Einstein condensation of dilute atomic gases
[1, 2]. Recent advances in micro-structuring technology have made it
possible to fabricate various low-dimensional systems with complicated
geometry. Examples are photonic crystals with embedded defect struc-
tures such as microcavities, waveguides and waveguide bends [2, 3, 4, 5],
narrow structures (quantum dots and channels) formed at semiconductor
heterostructures [6, 7, 8], magnetic nanodisks, dots and rings [9, 10, 11].

On the other hand, it is well known that the wave equation sub-
ject to Dirichlet boundary conditions has bound states in straight chan-
nels of variable width [12, 13, 14], and in curved channels of constant
cross-section [15, 16]. Spectral and transport characteristics of quantum
electron channels [17] and waveguides in photonic crystals [3] are in es-
sential ways modified by the existence of segments with finite curvature.
The two-dimensional Laplacian operator supported by an infinite curve
which is asymptotically straight has at least one bound state below the
threshold of the continuum spectrum, as was recently proved in [18].
The appearance of an effective attractive potential in the wave equation
is due to constraining quantum particles from higher to lower dimen-
sional manifolds [19, 20, 21]. Curvature induced bound-state energies
and corresponding wave functions were studied in [22].

Until recently there have been few theoretical and numerical studies of
the effect of curvature on properties of nonlinear excitations. Nonlinear
whispering gallery modes for a nonlinear Maxwell equation in microdisks
were investigated in [23]; the excitation of whispering-gallery-type elec-
tromagnetic modes by a moving fluxon in an annular Josephson junc-
tion was shown in [24]. Nonlinear localized modes in two-dimensional
photonic crystal waveguides were studied in [25]. A curved chain of
nonlinear oscillators was considered in [26] and it was shown that the
interplay of curvature and nonlinearity leads to a symmetry breaking
when an asymmetric stationary state becomes energetically more favor-
able than a symmetric stationary state. Propagation of Bose-Einstein
condensates in magnetic waveguides was experimentally demonstrated
recently in [27]; single-mode propagation was observed along homoge-
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neous segments of the waveguide, while geometric deformations of the
microfabricated wires led to strong transverse excitations.

Motivated by the experimental relevance of the above mentioned geo-
metric deformations, in the present work we aim at investigating nonlin-
ear excitations in a prototypical setup incorporating such phenomena.
As our case example, we will examine an infinitely narrow curved nonlin-
ear waveguide (channel) embedded in a two-dimensional linear medium
(idle region).

Our presentation will proceed as follows: in Section 2, we set up the
mathematical model of interest and examine its general properties and
equations of motion. In Section 3, we study the linear case and present
its explicit solutions for the bound states, as well as for the corresponding
eigenvalues. In section 4, we supplement our analysis with numerical
results for both the linear and the nonlinear case. Finally, in section 5,
we summarize our findings and present our conclusions.

2. Setup and Equations of Motion
Our model is described by the Hamiltonian

H =

∞∫
−∞

{|∇ψ|2 − ν (|ψ|2 − A
1
2
|ψ|4) δ(y − f(x))}dxdy, (1)

where ψ(�r, t) is the complex amplitude function, �r = (x, y), ∇2 = ∂2
x +

∂2
y, ν is the energy difference between the quantum channel and the

passive region (refractive index difference in the case of photonic crystals
and waveguides), the coefficient A characterizes the nonlinearity of the
medium, e.g., the nonlinear corrections to the refractive index of the
photonic band-gap materials, or self-interaction of the quasi-particles in
the quantum channel. The function y = f(x) determines the shape of
the channel. From the Hamiltonian, we obtain the equation of motion
in the form

i∂tψ(�r, t) + ∇2ψ + ν δ(y − f(x))F (|ψ|2)ψ = 0, (2)

where the function F (|ψ|2) is given by

F = 1 − A|ψ|2. (3)

Equation (2) has as integrals of motion the Hamiltonian (1) and the
(L2) norm (referred to e.g., as the number of atoms in BEC or power in
nonlinear optics)

N =

∞∫
−∞

|ψ|2 dxdy. (4)
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It is well known (see e.g., [28]) that if the edges of the Frénet trihedron
(the tangent, the principal normal and the binormal) at a given point
are considered as the axes of a Cartesian coordinate system, then the
equation of the curve in a neighbourhood of this point has the form

x = s + · · · , y =
κ

2
s2 + · · · , z = −κ τ

6
s3 + · · · (5)

where s is the arclength, κ is the curvature and τ is the torsion of the
curve at this point. Thus, if the curvature of the plane curve is not too
large one can represent it as a parabola

y =
κ

2
x2. (6)

In this case Eq. (2) takes the form

i∂tψ + ∇2ψ + ν δ(y − x2

2R
)F (|ψ|2)ψ = 0, (7)

where R = 1/κ is the maximum radius of curvature of the curve. It is
convenient to use the parabolic coordinates

x =
uv

R
, y =

R

2
+

1
2R

(u2 − v2). (8)

The coordinate lines are two orthogonal families of confocal parabolas,
with axes along the y axis. These lines are given by

R
x2

v2
= 2y − R + v2/R, R

x2

u2
= −2y + R + u2/R

or

u/
√

R = ±
√

y − R

2
+

√
(y − R

2
)2 + x2,

v/
√

R =

√
−y +

R

2
+

√
(y − R

2
)2 + x2. (9)

The variable u is allowed to range from −∞ to ∞, whereas v is positive.
Introducing Eqs. (8) into Eq. (7) and using the properties of parabolic
coordinates (see e.g., [29]), we obtain:

i
1

R2
(u2 + v2) ∂tψ +

(
∂2

u + ∂2
v

)
ψ + ν δ(v − R)F (|ψ|2)ψ = 0. (10)

Using the Fourier transform with respect to t,

ψ̄ =
1
2π

∞∫
−∞

eiωtψ(u, v, t) dt, (11)
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where the bars denote the Fourier transformed quantities, one can rep-
resent Eq. (10) in the form

− ω

R2
(u2 + v2) ψ̄ +

(
∂2

u + ∂2
v

)
ψ̄ + ν δ(v − R) F (|ψ|2)ψ(u, v) = 0. (12)

Equation (10) can, in turn, be expressed in the form of the integral
equation

ψ̄(u, v, ω) = ν

∞∫
−∞

du′
∞∫
0

dv′ G
(
u, v; u′, v′

)
δ(v′ − R) F (|ψ|2)ψ(u′, v′, ω),

(13)
where the Green’s function G (u, v; u′, v′) satisfies the equation

(
∂2

u + ∂2
v

)
G − ω

R2
(u2 + v2)G = −δ(u − u′) δ(v − v′), (14)

and has the form

G
(
u, v; u′, v′

)
=

√
π

2

∞∑
n=0

Fn(u)Fn(u′) {Vn(v)Un(v′) θ(v′ − v)

+Un(v)Vn(v′) θ(v − v′)}. (15)

Here

Fn(u) = an e−
√

ωu2/2R Hn

(
uω1/4 R−1/2

)
, n = 0, 1, 2, ..., (16)

where Hn (z) is the Hermite polynomial [30], an =
(

ω1/2

Rπ

)1/4
1

(2n n!)1/2 is
the normalization constant, and

Vn(v) = V

(
n +

1
2
, v

√
2 ω1/4 R−1/2

)
,

Un(v) = U

(
n +

1
2
, v

√
2 ω1/4 R−1/2

)
, (17)

with V (a, x) and U(a, x) being the Weber parabolic cylinder functions
[30].

It can then be seen from Eqs. (13) and (14) that the Fourier trans-
formed channel wave function

φ̄(u, ω) ≡ ψ̄(u, v, ω)
∣∣∣∣
v=R

, (18)
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satisfies the equation

φ̄(u, ω) = ν ω−1/4

√
π R

2

∞∑
n=0

∞∫
−∞

Fn(u)Fn(u′)

×Vn(R)Un(R)F (|φ|2)φ(u′, ω) du′, (19)

or equivalently the equation

ν ω−1/4

√
π R

2
F (|φ|2)φ(u, ω) =

∞∑
n=0

∞∫
−∞

Fn(u)Fn(u′)
Vn(R)Un(R)

φ̄(u′, ω) du′. (20)

The wave function ψ̄(u, v, ω) may be represented in terms of the chan-
nel wave function φ̄(u, ω) as follows:

ψ̄(u, v, ω) =
ω1/4

√
R

∞∫
−∞

du′ φ̄(u′, ω)
∞∑

n=0

Fn(u)Fn(u′)
Vn(v)
Vn(R)

(21)

for 0 < v < R and

ψ̄(u, v, ω) =
ω1/4

√
R

∞∫
−∞

du′ φ̄(u′, ω)
∞∑

n=0

Fn(u)Fn(u′)
Un(v)
Un(R)

(22)

for R < v.

3. Linear case: A = 0

In the linear case (A = 0), Eq. (20) assumes the form

ν ω−1/4

√
π R

2
φ(u, ω) =

∞∑
l=0

∞∫
−∞

Fl(u)Fl(u′)
Vl(R)Ul(R)

φ̄(u′, ω) du′. (23)

Taking into account that the set of functions Fn(u) is complete and
orthonormal, one can rewrite Eq.(23) as

∞∑
l=0

{ν ω−1/4

√
π R

2
Ul (R) Vl (R) − 1}φl = 0, (24)

where

φl =

∞∫
−∞

Fl(u)φ(u, ω) du. (25)
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Thus, we can conclude that the solution of the linear eigenvalue problem
can be presented in the form

φl = δkn Nn (26)

ν

√
R

λn
U

(
n +

1
2
,
√

2λnR

)
V

(
n +

1
2
,
√

2λnR

)
=

2√
π

. (27)

Eq. (27) determines the frequency (ωn = λ2
n) of the n-th eigenstate

and Eq. (26) with Nn being a normalization constant and δkn being the
Kronecker delta, yields its amplitude.

Introducing Eqs. (25) and (26) into Eqs. (21)-(22) we obtain that the
eigenfunction Φn(u, v) ≡ ψ̄(u, v, ωn), which corresponds to the eigen-
value given by Eq. (27), can be expressed as:

Φn(u, v) = Nn Fn(u)
(

Vn(v)
Vn(R)

θ(R − v) +
Un(v)
Un(R)

θ(v − R)
)

. (28)

For even values of n: n = 2m (m = 0, 1, 2, ..), Eq. (27) always has a
solution and for νR → 0 and the eigenvalue is given by

λ2m ≈
(

Γ(m + 1
2)

m!

)2
ν2R

4(1 + νR)2
. (29)

For n = 2m + 1, m = 0, 1, 2, ... the bound state exists only for νR ≥ 1
and near the lower bound the energy of the bound state is given by

λ2m+1 ≈
(

m!
2 Γ(m + 3

2)

)2
(ν R − 1)2

ν2 R3
. (30)

In the limit of large radius of curvature R and moderate n, i.e., νR �
n + 1

2 , we obtain from Eq. (27) that the eigenvalues λn are determined
by

λn =
ν

2

(
1 − 2n + 1

νR

)
. (31)

Thus the bound state energy decreases when the curvature of the chain
increases and in the limit R → ∞ we obtain the straight-line result:
λ = ν/2.

It is interesting to return to the Cartesian coordinates and to consider
the shape of the bound state wave function. Let us consider the case
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Figure 1 Bound state en-
ergy (−λ2

n) vs. curva-
ture (κ = 1/R): n = 0
(lower curve), n = 1 (upper
curve). The dependence of
the energy as a function of
the curvature is obtained
through the solution of Eq.
(27).

n = 0. It can be seen that

Φ0 = N0 e−λ0 y

(
erfc

(√
λ0R

)
θ

(
y − x2

2R

)

+erfc
(
v
√

λ0

)
θ

(
x2

2R
− y

))
, (32)

where the function v(x, y) is given by Eq. (8). When R → ∞ (straight
waveguide) the wave function is localized in the y-direction only. How-
ever, for finite R the function is localized both in x- and y-directions.
The localization length in the x-direction is proportional to R. The ex-
pression of Eq. (31) will also be used as a starting point in our direct
numerical simulations of Eq. (10); see section 4 below.

4. Numerical Results
We start by demonstrating the results of the linear case of Eqs. (27)

and (31). The eigenvalue (energy) of the linear case as a function of
curvature is shown in Fig. 1, while the lowest energy, bound state wave-
function of the linear problem is given in Fig. 2.

In order to demonstrate that this linear bound state persists in the
nonlinear limit we have performed full dynamical evolution simulations
of Eq. (7), with an initial condition of the form expressed in Eq. (31),
and demonstrated in Fig. 2. We note in passing that similar results have
been obtained with a variety of initial conditions. In particular, we show
typical numerical simulation results in Fig. 3 for R = 10, ν = A = 1.
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Figure 2 The wave func-
tion of the lowest bound
state of the linear problem
(A = 0) is shown in the fig-
ure for R = 10, ν = 1 (ob-
tained through Eq. (31)).

Notice that the δ function was represented as

δ(s) =

√
1
πε

exp
(
−s2

2ε

)
(33)

with ε = 0.05. The contour plot of Fig. 3 shows the result after a numer-
ical evolution of 100 time units of Eq. (7). The dynamical development
indicates that after an initial transient the original linear profile slightly
reshapes itself into the nonlinear solution depicted in Fig. 3. In the
process, some radiation waves (“phonons”) are shed, that are absorbed
by the absorbing boundary conditions used in a layer close to the end of
the domain (our computational box is of size 25 × 25).

Beyond the proof-of-principle simulations for various initial condi-
tions, we also attempted to examine the dynamics of the nonlinear ex-
citations of the channel. This was done using the following numerical
protocol: after obtaining a quasi-relaxed nonlinear localized mode for
the channel of the form y = x2/(2R), we moved the channel to a new
position, namely y = (x − 1)2/(2R). Notice that similar in spirit ex-
periments have recently been carried in Bose-Einstein condensates [31],
where the magnetic trap confining the condensate is displaced to a new
position and the ensuing dynamics of the condensate are observed. The
position of the center of mass of the initial condition profile was ap-
proximately obtained (using a trapezoidal approximation to the relevant
two-dimensional integrals) as (x(t = 0), y(t = 0)) = (0.178, 0.862). The
new bottom of the channel (hence the point to which the center of mass
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Figure 3. Contour plot of the solution of the partial differential equation of Eq. (7)
with f(x) = x2/(2R), R = 10, ν = A = 1 and initial condition given by the linear
profile of Eq. (31).

should approach) in this case is (x, y) = (1, 0). In Fig. 4, the process of
relaxation to this new equilibrium is shown as a function of time for a
very long dynamical simulation of t up to 1000 time units. In this run,
we observe (after an initial transient) a slow relaxation towards the new
minimum of the potential well. Notice that despite the Hamiltonian na-
ture of the model, the excitation of an “internal mode” of the nonlinear
wave [32] can be dissipated due to mechanisms of coupling to extended
wave, phonon modes, such as the ones reported in [33].

5. Summary
In summary, we have shown that:

In two-dimensional media with a curved infinitely thin waveguide
(quantum channel) there exist bound states for linear and nonlin-
ear self-interacting excitations;

The finite curvature of the waveguide provides a stabilizing effect
on otherwise unstable localized states of repelling excitations;

The binding energy of both linear and nonlinear localized excita-
tions decreases when the curvature of the waveguide increases.
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Such linear bound states as the ones found here persist in the
nonlinear dynamical problem as localized excitations. These have
been found to be robust for different initial conditions and are cen-
tered at the minimum (point of largest curvature) of the parabola.
When, the mode is initialized away from this minimum, it slowly
relaxes to it.

A number of future interesting and potentially relevant (e.g., to the
embedding of a waveguide in a two-dimensional photonic crystal) ques-
tions have arisen in this study that warrant future investigations. The
detailed numerical study of the stability of the nonlinear localized modes
identified here is, naturally, one such topic. Another direction that could
be of further interest is the examination of a case of a finite (rather than
infinitesimal) width channel [which can be computational achieved e.g.,
by allowing the parameter ε of Eq. (33) to vary towards larger values].
The examination of thresholds for genuinely two-dimensional instabili-
ties, such as e.g., the transverse or the snaking instability, would be of
particular relevance within the latter context.

Such studies are currently in progress and will be reported in future
publications.
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Abstract For the nonlocal sine-Gordon equation utt − Hux + sin u = 0, where
H is the Hilbert transform, a family of breather-like solutions is found
numerically. These objects are quite robust and even can be developed
from some bell-shaped initial data. Also it is shown that the interactions
between the elementary entities which describes this nonlocal equation
are not elastic, so it hardly can be integrable.

Keywords: Nonlocal equations, sine-Gordon, breathers.

1. Introduction
The nonlocal equation

utt − Hux + sinu = 0, (1)
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where H is the Hilbert transform

Hf(x) ≡ 1
π

v.p.
∫ ∞

−∞
f(x′)dx

x′ − x
,

appears in various physical applications (see e.g. [1, 2]) as a nonlocal
analogue of the classical sine-Gordon equation

utt − uxx + sin u = 0 (2)

It is well known that Eq.(2) is completely integrable and its exact solu-
tions can be constructed by means of some regular procedure. The two
important particular solutions of Eq.(2) are travelling 2π-kink (antikink)
solution

u(t, x) = 4 arctan exp
{
± c − ct√

1 − c2

}
, c2 < 1 (3)

and breather solution

uω(t, x) = 4 arctan
√

1 − ω2 cos ωt

ω cosh
√

1 − ω2x
, 0 < ω < 1 (4)

Eq.(1) is much less studied. The energy integral for Eq.(1) is

H =
∫ ∞

−∞

{
1
2
u2

t −
1
2
uHux + 1 − cos u

}
dx;

dH

dt
= 0; (5)

Also it is known that Eq.(1) admits some exact solutions. They are: the
steady-state 2π-kink (antikink) solution [1]

u(t, x) = π ± 2 arctan x, (6)

the travelling 4π-kink (antikink) solution [3]

u(t, x) = ±4 arctan(x ± t), (7)

and some periodic travelling structures [4]. Not all the exact solutions of
(1) have their counterparts among the solutions of (2) (an example is the
solution (7)). One should mention also that the steady-state solutions
of (1), ut(t, x) ≡ 0, are related to the solutions v(τ, ξ) of the so-called
sine-Hilbert equation [5]

1
π

v.p.
∫ ∞

−∞
vτ(τ, ξ′)dξ′

ξ′ − ξ
= sin v(τ, ξ) (8)

which also is completely integrable. For some of these solutions the
spectral stability problem can be solved, completely and explicitly [6].
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In this communication, we report on a new family of objects described
by Eq.(1) which are analogues of the breather solutions (4) of the sine-
Gordon equation (i.e. periodic in time and localized in space). However,
since our structures were obtained numerically, their periodicity and
localization cannot be claimed rigorously in the mathematical sense.
Anyway, we suppose that in physical applications these objects can be
treated as periodic in time and localized in space. It is important that
these entities are quite robust and can be developed as a result of evo-
lution of initial states of rather different shape.

2. The construction of the breathers
In order to construct the breather solutions we used the approach

called sometimes the rotating wave approximation [7]. It can be sketched
as follows. Let us suppose that the breather solution can be described
well by one temporal harmonics only i.e.

u(t, x) ∼ u0(x) cos ωt (9)

where ω (the parameter) is the temporal frequency of the solution. Sub-
stituting (9) into the equation (1) and collecting the terms corresponding
to cos ωt we obtain the following equation for the amplitude u0(x)

H
du0

dx
+ ω2u0 − 2J1(u0) = 0 (10)

where J1(ξ) is the Bessel function. Eq.(10) can be solved numerically.
The next step of the analysis consists in numerical simulations of Eq.(1)
starting with initial profile given by u0(x). If necessary, the approxima-
tion (9) can be improved by adding more terms, corresponding to cos 3t,
cos 5t etc.

Eq.(10) was solved using a numerical procedure based on inverse
power method algorithm [8]. Fig.1 represents some solutions of Eq.(10).
All of these solutions are even, positive, and have power-decay asymp-
totics as x → ∞ [9]:

u0(x) ∼ C/x2, x → ±∞ (11)

This contrasts with the situation which takes place in the local case
where the typical decay of breather profile is exponential but not alge-
braic. It worth noting that as ω tends to unity, the amplitude of u0(x)
tends to zero.

The second part of the investigation implies numerical simulations for
Eq.(1). Here the results can be summarized as follows:

(i) The solutions of Eq.(10) provide good approximations of the initial
profiles for periodic breather-like pulsations, if ω is reasonably close to
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Figure 1. The solutions of Eq.(10) for (i) ω = 0.6; (ii) ω = 0.8; (iii) ω = 0.95.

1. An example is shown in Fig.2. In this figure the evolution of the
initial data u(0, x) = u0(x), ut(0, x) = 0, where u0(x) is the solution of
Eq.(10) for ω = 0.8, is depicted.

(ii) These breather-like objects are quite robust. We suppose that
these objects are stable (at least within some range of ω), although we
did not study linear stability problem with time-dependent potential for
these solutions. Moreover, these breather-like objects even can emerge
from the initial data which have no relation with the structure appeared
(for example, sech-shaped or similar ones). Fig.3 represents evolution of
the initial data u(0, x) = 3/ cosh 0.2x, ut(0, x) = 0. The object which
appears in the simulation and is shown in this figure is close to the
breather from the family described above with the frequency ω ≈ 0.65.

(iii) There exists a minimum value of energy for the breather to be
generated. It corresponds to the limit ω → 1 when the amplitude of the
breather tends to zero. Asymptotic analysis of Eq.(10) for ω → 1 shows
that this value of energy is

H0 = 4
∫ ∞

−∞
U2(η)dη ≈ 9.876 (12)

where U(η) is the localized solution of the equation

HUη − U + U3 = 0 (13)

(see e.g.[10]). This statement was confirmed by numerical simulations:
no breather has emerged if the initial energy of the sech-shape pulse was
below this value.
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Figure 2. Evolution of the initial profile u0(x), the solution of Eq.(10), ω = 0.8.
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Figure 3. Evolution of initial data u(0, x) = 3/ cosh 0.2x, ut(0, x) = 0.
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Figure 4. Evolution of initial data u(0, x) = 2/ cosh 0.3x, ut(0, x) = 0.

(iv) Apart from the periodic breather-like structures, Eq.(1) covers
quasiperiodic localized structures. They can be described as “fast” pe-
riodic breather-like pulsations with slowly modulated envelope. The
period of the envelope modulation is considerably greater than the pe-
riod of the “fast” oscillations. One of these structures is shown in Fig.4.
The initial data in this case are u(0, x) = 2/ cosh 0.3x, ut(0, x) = 0. The
solutions with such a behavior can be regarded as analogues of exact
sine-Gordon quasiperiodic breathers.

3. Kink-antikink interactions
The presence of a number of exact solutions of Eq.(1) and the connec-

tions of Eq.(1) with integrable sine-Gordon and sine-Hilbert equations
bring up the question about the integrability of Eq.(1). It is known that
one of indirect indications to integrability of an equation is elastic char-
acter of interaction between entities which it describes. To clarify this
issue for Eq.(1) we performed numerical simulations of interaction be-
tween the travelling 4π-kink and antikink (7) (see Fig.5) and between the
4π-kink (7) and two steady-state 2π-antikinks (6) (see Fig.6). It follows
from these figures that the objects involved are destroyed in the course
of interactions and, correspondingly, Eq.(1) hardly can be integrable.
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Figure 5. The interaction between the 4π-kink and the 4π-antikink.

Figure 6. The interaction between the 4π-kink and two steady-state 2π-antikinks.
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Abstract The Fractional Calculus represents a natural instrument to model non-
local phenomena either in space or time. From Physics and Chemistry
to Biology, there are many processes that involve different space/time
scales. In many problems of the above context the dynamics of the sys-
tem can be formulated by fractional differential equations which include
the nonlocal effects. We give a panoramic view of the problem and show
some examples.

Keywords: Nonlocality, Fractional derivative, Diffunors, Diffusion process, Gener-
alized Dirac equation

1. Nonlocal Equations
In the context of the field theory, we have the local theories associated

to the local couplings where the interaction terms are built up from field
quantities referring to the same space-time point. On the other hand,
we have the nonlocal theories defined by nonlocal couplings where the
interaction takes place over a “region” of the space-time characterized
by a prescribed function [1].

Up to 1994 a very extensive review about the nonlinear nonlocal wave
equations with applications to hydrodynamics, magnetohydrodynamics
and plasma can be found in the book of Naumkin and Shishmarev [2].

As an illustration of the nonlocal effects, in [3]-[4] a nonlocal general-
ization of the standard sine-Gordon equation was studied

utt − uxx = 2 cos
u(x, t)

2

∫
dyf(x − y) sin

u(y, t)
2

(1)
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This equation can be associated with DNA models as well as the
Frenkel-Kontorova model including long–range interaction. When the
kernel defined by f(x − y) is the Dirac Delta we have the classical sine-
Gordon equation; thus it is difficult to analyze the nonlocal model using
a perturbative approach from the local case. The model (1) has static
solutions with zero topological charge that do not exist in the local limit.
They could be interpreted as frozen breathers originated by the space
averaging of the nonlocality. Other nonlocal wave equations had been
studied in [5]-[7].

2. Fractional Calculus
There are different definitions of the fractional derivatives but all of

them coincide in the integer case (see e.g. [8]-[10] and [15]). The frac-
tional derivative of a function is not determined by the behavior of the
function at a single point, but depends on the values of the function
over a entire interval. As an example, we have the following definitions
of time and space fractional derivatives:

Thetime fractional derivative of order α > 0 for a sufficiently well-
behaved causal function u(t) is defined as follows

dα

dtα
u(t) =

1
Γ(m − α)

∫ t

0
(t − τ)1−α−m u(m)(τ)dτ (2)

where m = 1, 2, ..., and 0 ≤ m − 1 < α ≤ m. This definition
requires the absolute integrability of the derivative of order m.

The symmetric space fractional derivative [10] of order α > 0 of
a sufficiently well-behaved function u(x), x ∈ R, is defined as the
pseudo-differential operator characterized in its Fourier represen-
tation by

dα

d | x |αu(x) −→ − | κ |α û(κ) (3)

being κ ∈ R.

3. Framework of Applications
The Fractional Calculus offers a unifying framework for different con-

texts according to the following basic remarks:

The freedom in the definition of fractional derivatives allow us to
incorporate different types of information.

The fractional derivatives show algebraic scale properties with non-
integer exponents what is relevant in the data analysis.
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A new formulation for the damped systems is possible by using the
fractional derivatives [11]-[12].

The fractional derivatives allow a natural interpolation among dif-
ferential equations of very different properties as the classical wave
and heat equations:

∂α

∂tα
Ψ − ∂2

∂x2
Ψ = 0 (4)

where 1 ≤ α ≤ 2.

The fractional derivative of a function is given by a definite inte-
gral, thus it depends on the values of the function over the entire
interval. In this context, the fractional derivatives are suitable
for the modelling of systems with long range interactions in space
and/or time (memory) and processes with many scales of space
ans/or time involved.

The applications range in a wide spectrum of areas [13]-[16]: ma-
terial sciences(viscoelasticity, polymers,..), circuits, diffusion processes,
Biology, Economy, Geology, Astrobiology, traffic problems, data analy-
sis,...etc

4. Internal Degrees of Freedom
It is well known the approach of Dirac to obtain his famous equation

from the Klein-Gordon equation [1]. The free Dirac equation can be
considered as the square root of the Klein-Gordon equation. In a more
general context Morinaga and Nono [17] analyzed the integer s-root of
the partial differential equations of the form

∑
|I|=s

aI
∂|I|

∂xI
φ = φ (5)

The s−root is the first order system

n∑
i=1

αi
∂Φ
∂xi

= Φ (6)

where α1, ...αn are matrices. From the physical point of view the αk

describe internal degrees of freedom of the associated system.
In the above context, a natural generalization is to consider the frac-

tional diffusion equations with internal degrees of freedom [18]-[19]. They
can be obtained as the s-roots of the standard scalar linear diffusion
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equation. Thus, we have a possible definition of the square root of the
standard diffusion equation (SDE) in one space dimension, ut−uxx = 0,
as follows: (

A
∂1/2

∂t1/2
+ B

∂

∂x

)
ψ(x, t) = 0 (7)

where A and B are matrices satisfying the conditions:

A2 = I , B2 = −I (8)
{A, B} ≡ AB + BA = 0. (9)

Here ψ(x, t) is a multicomponent function with at least two scalar space-
time components. Also, every scalar component satisfies the SDE. Such
solutions can be interpreted as probability distributions with internal
structure associated to internal degrees of freedom of the system. We
could name them diffunors in analogy with the spinors in Quantum
Mechanics.

We have two possible realizations of the above algebra in terms of real
matrices 2 × 2 associated to the Pauli matrices:

A =
(

1 0
0 −1

)
, B =

(
0 1
−1 0

)
(10)

and

A =
(

0 1
1 0

)
, B =

(
0 1
−1 0

)
(11)

Other realizations involving complex bi-dimensional matrices are pos-
sible, but taking into account the meaning of the reference diffusion
equation we only consider the real representations.

The solutions of (7) are related to the SDE in a simple way. As an
illustration, let us consider the representation (10), i.e.

ψ(x, t) =
(

ϕ(x, t)
χ(x, t)

)
such that χ(x, t) = ±ϕ(x, t). We have two general independent solutions
of (7):

ϕ(x, t)
(

1
1

)
and ϕ(x, t)

(
1
−1

)
(12)

where ϕ(x, t) is a solution of SDE. The solutions (12) represent two
possible probability distributions depending not only on the space and
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time coordinates, but also on the internal degrees of freedom. This effect
could model the diffusion of particles with internal structure.

The equation (7) is not time reversible but it is invariant under space
reflection as the underlying SDE. More precisely, in the representation
given by (10) a possible representation of the parity operator is P =
AP 0, such that P 0 : x −→ −x.

Acknowledgments
This work has been partially supported by the Ministerio de Ciencia
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Abstract We examine the dynamical behavior of matter coupled to gravity in
the context of a linear Klein-Gordon equation coupled to a Friedman-
Robertson-Walker metric. The resulting ordinary differential equations
can be decoupled, the effect of gravity being traced in rendering the
equation for the scalar field nonlinear. We obtain regular (in the mass-
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less case) and asymptotic (in the massive case) solutions for the result-
ing matter field and discuss their ensuing finite time blowup in the light
of earlier findings. Finally, some potentially interesting connections of
these blowups with features of focusing in the theory of nonlinear partial
differential equations are outlined, suggesting the potential relevance of
a nonlinear theory of quantum cosmology.

Keywords: Focusing, FRW metric, nonlinear ODEs

In the past two decades there has been an extensive interest in 3-
dimensional gravity, particular after the demonstration of the fact that
its quantum version is solvable [1] and that it contains black hole solu-
tions [2].

The idea of examining cosmological models in this context was, how-
ever, of interest before [3, 4, 5], as well as after [6, 7] these findings.
In most of these studies [3, 4, 5, 7, 8], the Friedman-Robertson-Walker
(FRW) metric was used and the resulting equations were ordinary dif-
ferential equation governing the time-evolution of the scale factor of the
relevant metric and the evolution of the matter and/or radiation field
coupled to it.

On a slightly different track, one can list the works of [6, 9, 10] (see
also references therein and the review of [11]), where the metric scale
factors were allowed to be temporally as well as spatially variable, and
the resulting partial-differential equations (PDEs) were studied to obtain
collapse type solutions.

In this brief report, we will restrict ourselves to the former type of
considerations but in a 3+1 dimensional setting. We believe that the
study of such simple models of ordinary differential equations of geom-
etry coupled with matter is a starting point that may be used to shed
light to more complicated cosmological models. From such simple play-
grounds, explicit solutions can be obtained and analyzed; these can then
be tested in more complex settings. In this view, our work can be con-
sidered as being in the same track as those of e.g., [4, 7, 8]. Moreover, we
consider the present work to be a first towards building a bridge between
conventional cosmology and nonlinear dynamical systems.

We start by fixing the spatial dependence of the metric tensor to be
of the FRW type (in co-moving coordinates and with a “cosmological”
time choice)

ds2 = −dt2 + a2(t)
(

1
1 − kr2

dr2 + r2dθ2 + r2 sin2 θdφ2

)
(1)

and coupling gravity to the simplest possible model for matter, namely
a linear Klein-Gordon (KG) type equation for a massive scalar. In the
metric of Eq. (1), a is the scale factor while k describes the curvature of
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the spatial slice and can be normalized to the values −1, 0, 1 in the hy-
perbolic, flat and elliptic case respectively. Previously such models were
examined in a more complicated setting (most often in 2+1 dimensions)
where either equations of state [7] or special scalar field potentials [4]
were used to obtain closed form solutions.

Here, we will examine the simplest possible (physically relevant) scalar
field potential V (φ) = m2φ2/2, which gives rise to a linear (in φ) equa-
tion for the scalar coupled to gravity. In particular the Einstein-Klein-
Gordon field equations in this case read:

−3
k + ȧ2

a2
+ ρφ = 0 (2)

k + ȧ2 + 2aä

a2
+ pφ = 0 (3)

φ̈ + m2φ +
3ȧ

a
φ̇ = 0 (4)

where the energy density and the pressure associated with the scalar
field are given respectively by (see e.g., [7])

ρφ =
1
2
(φ̇2 + m2φ2) ≡ 1

2
φ̇2 + V (φ), (5)

pφ =
1
2
(φ̇2 − m2φ2) ≡ 1

2
φ̇2 − V (φ). (6)

Note that the first is the quadratic constraint G0
0 = T 0

0 ; the second is
the only independent spatial equation G1

1 = T 1
1 while the last is the

dynamical equation for the scalar field, i.e., the Klein-Gordon equation.
G and T denote the Einstein curvature tensor and the energy-momentum
tensor respectively.

In the above equations the dot denotes temporal derivative. Naturally,
Eqs. (2)-(4) are not linearly independent as the linear combination of
the derivative of the first and of the second can be used to obtain the
third.

We first examine the spatially flat case of k = 0, and use it as a guide.
In this setting one immediately observes that from Eqs. (2) and (4), two
separate expressions for ȧ/a can be obtained, hence equating them, a
second-order ordinary differential equation (ODE) emerges for the scalar
field φ in the form:

3
2
φ̇2

(
m2φ2 + φ̇2

)
=
(
m2φ + φ̈

)2
. (7)

Notice that this is the only case (among the ones that we will examine)
in which the resulting ODE is of 2nd order. In the remaining cases,
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the ODE is of 3rd order. Moreover, it is worth commenting on the
nature of this ODE: in particular, the resulting equation is nonlinear.
Hence, even though the inclusion of matter is realized through a linear
dynamical equation, in the setting of even the simplest cosmological
models, the coupling of matter to gravity induces the emergence of a
nonlinear equation; it is as if the “trace” of gravity, when the equation
for the scalar field is decoupled from it, remains in the nonlinear self-
interaction of the resulting ODE for the matter field.

As the simplest possible case among the ones with k = 0, we examine
the massless case, i.e., m = 0. In the latter setting, we obtain the
solutions (up to a constant shift) of the form:

φ = ±
√

2
3

log (t� − t) (8)

which in turn results in a power law dependence of the scale factor of the
form a ∼ (t� − t)1/3. Hence, a blowup (focusing) type effect occurs at
t = t� in a logarithmic fashion for the scalar and the corresponding scale
factor shrinks to 0 with a power law dependence. Such dependencies are
reminiscent of the critical blowup in prototypical nonlinear PDEs with
focusing solutions (for a spatio-temporally dependent field ψ) such as
the nonlinear Schrödinger equation [12, 13, 14]

iψt = −∆ψ − |ψ|2σψ. (9)

∆ stands for the Laplacian and σ the power of the nonlinearity. For dσ <
2, no focusing solutions occur (d is the dimensionality of the Laplacian);
when dσ = 2, logarithmically slow focusing phenomena take place (in the
corresponding “proper time” see [12, 13, 14]), while when dσ > 2, the so-
called strong collapse occurs, where the focusing happens with a power
law dependence [13, 14]. Hence, the critical case of the nonlinear focusing
phenomena in equation (9) shares some of the collapse characteristics of
the present model.

We now turn to the massive case (still for k = 0). In the latter, we
can no longer solve the problem analytically. However, we can directly
observe that if we adopt a solution of logarithmic dependence of the
form of Eq. (8) in this case as well, the massive terms diverge much
more slowly (at worst as (log(t� − t))2/(t� − t)2, as opposed to the (t� −
t)−4 divergence of the dominant (massless) terms). This signifies that
asymptotic self-similarity will ensue from this case and the logarithmic
dependence will eventually set in and dominate the asymptotic behavior
leading to collapse. An example of this is shown in Fig. 1, where a
numerical simulation of Eq. (7) clearly indicates the logarithmic focusing
of the scalar field for as t → 1.38. This asymptotic type of self-similarity
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Figure 1. Logarithmic blowup of the scalar field as a function of time in the massive
case (for m = 1), starting with φ(0) = 1, φ̇(0) = 0. The blowup occurs for t ≈ 1.38.

occurs quite often in cosmology, as can be seen for example in [15] (and
references therein). Another comment worth making about this case is
that it appears as if the massive case is asymptoting to the results for the
massless one. It should be noted that this solution indicates, as it ought
to, a true curvature singularity of the system from a physical point of
view. Indeed, since the scale factor a(t) vanishes as t approaches t�, the
curvature scalar RλµνκRλµνκ blows up. It should also be noted that as
the collapse is approached, the matter density also tends to ∞ leading
to a matter-dominated universe.

We now turn to the case with k �= 0. In this case also, the reduction
that leads to an equation only for the scalar field can be performed.
However, due to the more complex nature of the equations, this reduc-
tion no longer leads to a second order ODE but rather to a third order
one. In particular, in this case the reduction (after differentiating (4)
and substituting the result, as well as (2) and (4), in (3)) results in

6
...
φφ̇ − 8φ̈2 − 10m2φφ̈ − 6φ̇4 + 6m2φ̇2 + 3m2φ2φ̇2 − 2m4φ2 = 0 (10)

It is interesting to note then that the massless case once again shares
the exact same, finite time blowup solutions of Eq. (8). One can then
once again use the same argument for the massive case to identify such
solutions as the dominant asymptotic behavior for m �= 0, since these
terms blowup as (t�−t)−4 in Eq. (10), while the rest of the terms diverge
with a rate of (at most) O(t� − t)−2. Numerical integration of Eq. (10)
for various initial conditions and various masses confirms the theoretical
prediction of finite time collapse. It appears however that the mass of
the scalar affects the time at which collapse will occur (t�) (see e.g., Fig.
2).
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Figure 2. Logarithmic blowup of the scalar field as a function of time in the massive
case (for m = 0.1), starting with φ(0) = 1, φ̇(0) = 0.5, φ̈(0) = 0 (top panel) and
φ(0) = 1, φ̇(0) = −0.5, φ̈(0) = 0 (middle panel). The blowup occurs for t ≈ 3 in these
cases. A case with a larger mass (m = 0.6) is shown in the bottom panel. In this
case, the blowup occurs at later times (in this case for t ≈ 20).
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It is also worth noting that in the context of Eq. (10), the steady
state φ = 0 appears to be linearly stable since for small perturbations
∼ ε exp(ωt), collecting the leading order behavior (O(ε2)), one obtains
the algebraic stability equation of the form:

(ω2 + m2)2 = 0. (11)

Eq. (11) has double imaginary roots:

ω = ±im (12)

which, in turn, denote marginal stability. Notice that the same sit-
uation occurs in the critical case of Eq. (9). However, the nonlin-
ear term of the form −6φ̇4 asymptotically dominates and gives rise to
a nonlinearity-induced instability leading to logarithmic blowup. This
(blowup), in fact, is to be expected since the incompleteness of geodesics
in 3+1-dimensional spacetimes [16], established using general techniques
of differential topology in [17, 18], has been shown under quite general
conditions [19] to lead to divergence of physically observable properties.

In conclusion, in this work, we have examined the coupling of 3 + 1-
dimensional gravity to a scalar field satisfying a linear Klein-Gordon
equation. We have found that it is possible to decouple the equation for
the massive scalar from the one for the scale factor of the FRW metric
used in this work at the “expense” of obtaining a nonlinear ordinary
differential equation for the scalar. The “memory” of the coupling to
gravity has been encapsulated in the nonlinear nature of the resulting
equation. Closed form solutions of the resulting equation can be ob-
tained in the massless case and exhibit logarithmic divergence of the
scalar field as a function of time (and power-law vanishing of the scale
factor). It is then observed that these solutions persist as dominant
asymptotic behavior in the case where m �= 0. These results are corrob-
orated by numerical integration of the nonlinear ODEs in the massive
case. Even though slightly different methods have been used for the
cases where the space is flat (k = 0) and when k �= 0, the same principal
conclusions have been drawn in all cases.

This phenomenon of decoupling persists even in the case of more gen-
eral, anisotropic Bianchi models [20]. In all these cases, special solutions
to the ensuing decoupled non-linear ODE exist and they also exhibit
blowup behavior.

Finally, we return to the analogy of the logarithmic focusing of the
solutions in this simple model (where spatial dependence was a priori
fixed in the metric) with the logarithmic blowup in the critical case of
a prototypical nonlinear partial differential equation, namely the non-
linear Schrödinger equation, that sustains focusing solutions. It would
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be particularly interesting to examine whether the inclusion of spatial
dependence can lead to an equation of this type (through appropriate
envelope wave expansions, given that NLS is the envelope equation for
nonlinear wave equations of the Klein-Gordon type). In particular, if,
in the presence of the spatial dependence, the reduction to a nonlinear
partial differential equation for the scalar field provides a nonlinear KG
equation, then it will be natural to expect that the reduction to NLS
and the ensuing focusing solutions will carry through. If such a program
succeeds, it may appear natural to consider the NLS as prototypical
model for a “nonlinear quantum cosmology”.
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Abstract The random-force driven Eckhaus equation is studied in the case of a
long range correlated noise. The ensemble average of the Kink solution
is obtained, and some relevant correlation functions are obtained.

Keywords: Eckhaus, Soliton, Kink.

1. Introduction
We study the statistical properties of the random-force-driven Eck-

haus PDE [1]

iψt + ψxx + 2(|ψ|2)xψ + |ψ|4ψ = if(t)ψx, ψ = ψ(x, t) (1)

where f(t) is a gaussian random noise. The right hand side of (1) is
a multiplicative external forcing term of the drift type. Due to the
random term, the system (1) experiences fluctuations; it is of interest to
study the statistical average 〈ψ(x, t)〉 and its long time behaviour. The
brackets 〈., .〉 denotes the average taken over all the possible realizations
of the random process f(t). The gaussian function f(t) is characterized
by the average 〈f(t)〉 = 0 and by the two time correlation function〈

f(t), f(t′)
〉

= µ(t − t′). (2)

It will be considered the case of a noise with a long–range correlation
(see [2]), defined by

µ = D
∣∣t − t′

∣∣−γ
,

∣∣t − t′
∣∣ ≥ d, with J =

∫ d

0
µ(|s|)ds < ∞ (3)
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where D > 0 is the noise intensity and γ > 0 is a positive constant (the
diffusion coefficient).

2. Solution
By the change of variables{

U (X, T ) = ψ (x, t)
X = x + W (t), W (t) =

∫ t
0 f(t′)dt′, T = t

(4)

equation (1) becomes the homogeneous Eckhaus equation [1]

iUt + Uxx + 2(|U |2)xU + |U |4U = 0. (5)

The function W (t) in (5) is also a Gaussian process, with zero average,
that is

〈W (t)〉 = 0 (6)

and with variance given by

σ2(t) = 〈W (t), W (t)〉 =
∫ t

0
dt′

∫ t

0
µ(t′ − t′′)dt′′ (7)

by using (3)we obtain:

σ2(t) =
2Dt2−γ

(γ − 1)(γ − 2)
> 0, γ < 1 or γ > 2, (8)

σ2(t)
∼=

t large 2Dt ln t, γ = 1 (9)

σ2(t)
∼=

t large 2
(

D

d
+ J

)
t, γ = 2 (10)

The above expressions imply that as t grows, σ2(t) is increasing more the
linearly in the region γ ≤ 1 and increasing linearly for γ = 2; it is instead
a decreasing function of t in the region γ > 2. The range 1 < γ < 2 is
excluded by our considerations since in this region the variance becomes
negative, thus lacking its physical sense. It is also worth noticing that
the case γ ≤ 1 is usually associated with anomalous diffusion [2]. The
case γ ≥ 2 is instead related to normal diffusion.

In our analysis we introduce, for simplicity, the function

G̃(k, t) = eikW(t) (11)

and its statistical average which, as a consequence of the Gaussian prop-
erty (6), is given by

〈G̃(k, t)〉 = exp
[
−1

2
k2σ2(t)

]
. (12)
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In order to study the statistical average of the original function 〈ψ(x, t)〉
we introduce the Fourier transform of ψ(x, t)

F̃ (k, t) =
∫

ψ(x, t)e−ikxdx, (13)

with

ψ(x, t) =
1
2π

∫
F̃ (k, t)eikxdk. (14)

Using (4) and (12), then (13) becomes

F̃ (k, t) =
∫

U(X, t)e−ikXeikW(t)dX = Ũ(k, t)G̃(k, t). (15)

Thus
〈F̃ (k, t)〉 = Ũ(k, t)〈G̃(k, t)〉, (16)

where Ũ(k, t) is the Fourier transform of U(X, t). From (14) and (16) we
get

〈ψ(x, t)〉 =
1
2π

∫ 〈
F̃ (k, t)

〉
eikxdk

=
1√

2πσ2(t)

∫
U(y, t) exp

(
−(x − y)2

2σ2(t)

)
dy (17)

valid for any Gaussian process f(t).

3. Statistical properties
Before considering any explicit solution of the Eckhaus equation, we

consider the correlation of the system with the noise

〈ψ(x, t1), f(t2)〉 =
1
2π

∫
dyU(x − y, t1)

∫
eiky〈eikW(t1), f(t2)〉dk, (18)

where (13), (16) and (11) have been used. In order to solve (18), we
study the term in brackets of the right hand side, namely

〈eikW(t1), f(t2)〉 = ik〈W (t1), f(t2)〉 exp
[
−1

2
k2σ2(t)

]
. (19)

Finally from (18) and (19) we get

〈ψ(x, t1), f(t2)〉 = C(t1, t2)
∫

∂

∂y
U(x − y, t1) exp

[
− y2

2σ2(t1)

]
dy, (20)
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where

C(t1, t2) =
〈W (t1), f(t2)〉√

2πσ2(t1)
. (21)

In order to evaluate (21) in our case we must compute the correlation
〈W (t1), f(t2)〉.

If t1 < t2 (γ �= 1), when γ < 1 and γ > 2, we have

〈W (t1), f(t2)〉 =
∫ t1

0

D

(t2 − t′)γ
dt′ =

D

γ − 1

[
t1−γ
2 − (t2 − t1)

1−γ
]
. (22)

If t1 > t2, when γ < 1 and γ > 2, we have

〈W (t1), f(t2)〉 =
∫ t2

0

D

(t2 − t′)γ
dt′ +

∫ t1

t2

D

(t′ − t2)γ
dt′

=
D

γ − 1

[
t1−γ
2 + (t1 − t2)

1−γ
]
. (23)

Eqs. (22) and (23) imply that the correlation (20) becomes negative
in the case γ < 1 (anomalous diffusion). We therefore concentrate our
attention on the normal diffusion case . Consequently, by (21),(22) and
(23) we get for t1 < t2,

C(t1, t2) =
1
2

√
D(γ − 2)
π(γ − 1)

t
γ
2
−1

1

[
t1−γ
2 − (t2 − t1)1−γ

]
, (24)

analogously for t1 > t2

C(t1, t2) =
1
2

√
D(γ − 2)
π(γ − 1)

t
γ
2
−1

1

[
t1−γ
2 + (t1 − t2)

1−γ
]
. (25)

(24) shows that for as t1 < t2, the correlation between the noise and the
field is negative, eventually approaching zero as t2 grows. The negative
value is understood as a violation of the causality principle: the value of
the noise at a given time (t2) cannot influence the field at a previous time
(t1). The correlation is instead increasing according to (25) as t1 grows
(t2 fixed)implying that the influence of the noise at a given time on the
system at a later time is growing due to the long range correlation of
the noise. These two different behaviours are shown in Fig. 1 and Fig. 2,
respectively.

In order to study the two time autocorrelation of system, it is con-
venient to work in the Fourier space, where the correlation function via
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(15) is given by〈
F̃ (k, t), F̃ (−k, t)

〉
=
∫

U(y, t)e−ikydy

∫
U(z, t + s)e−ikz

×
〈
eikW(t), e−ikW(t+s)

〉
dz = Φ(t, t + s)Ũ(k, t)Ũ(−k, t + s), (26)

with

Φ(t, t + s) = exp
{
−1

2
k2

[
σ2(t) + σ2(t + s) − 2 〈W (t), W (t + s〉]} .

(27)
After evaluating the product 〈W (t), W (t + s)〉 we finally get

Φ(t, t + s) = exp
{
− Dk2s2−γ

(γ − 1) (γ − 2)

}
, (28)

which shows a correlation exponentially vanishing as s grows. We now
consider the one-soliton (Kink) solution Us(X, t) of the Eckhaus equation
(5)

Us(X, t) =
p1/2 exp

[
1
2 iv(X − wt) + iα

]√
1 + exp [−2p(X − x0 − vt)]

. (29)

where p and v are real, positive parameters and is w = 1
2v−2p2/v. From

(20) and (29) we have the statistical average of the kink as

〈ψs(x, t)〉 =
1√
π

e−iα1teiα2x

∫ exp
[
−
(
z2 + iα2

√
2σ2(t)z

)]
dz[

1 + exp
(
−2p

(
x −√

2σ2(t)z − vt
))]1/2

.

(30)
with z = (x−y)√

2σ2(t)
and α1 = 1

2vw, α2 = 1
2v.

The results of analytical and numerical evaluations show that the
average 〈ψs(x, t)〉 is a growing function of the time which eventually
collapses as t −→ +∞ in the case of anomalous diffusion (γ < 1). In
the normal diffusion case (γ > 2), the average is instead decreasing
eventually, approaching zero as t −→ +∞. The two different behaviours
are shown in Figs. 3 and 4, respectively.
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Figure 1. Case t1 < t2 (with a fixed
value of t1 = 1) for γ = 3 (D = 5).

Figure 2. Case t1 > t2 (with a fixed
value of t2 = 1) for γ = 3 (D = 5).

Figure 3. The statistical average
〈|ψs(x, t)|2〉 for the Soliton of the first
kind for γ = 0.5.

Figure 4. The statistical average
〈|ψs(x, t)|2〉 for the Soliton of the first
kind for γ = 3.
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Abstract The statistical approach of the modulational instability is reviewed for
several nonlinear systems: the nonlinear Schrödinger equation, the dis-
crete self-trapping equation and the Manakov system. An integral sta-
bility equation is deduced from a linearized kinetic equation for the
two-point correlation function. This is solved for several choices of the
unperturbed initial spectral function.
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1. Introduction
Modulational instability (also known as the Benjamin-Feir instability)

is a general phenomenon which takes place when a quasi-monochromatic
wave is propagating in a dispersive and weakly nonlinear media. Dis-
covered in the middle of sixties by Lighthill [1], Benjamin and Feir [2]
and Bespalov and Talanov [3] is now a standard chapter of nonlinear
physics, being studied and observed in almost any domain (hydrody-
namics, nonlinear optics, plasma physics, condensed matter, etc.) (see
[4]-[7] where more references can be found). Two distinct ways to study
this phenomenon are possible. The first, the most common one, is a
deterministic approach in which small modulations of the amplitude of
a plane wave solution (a Stokes wave) are considered. Two side bands
around the carrier wave appear and they reinforce each other by non-
linear interaction. In the second a statistical approach is considered in
which the accent is on the wave-wave energy transfer due to weak nonlin-
ear couplings in a nearly homogeneous random media [8]-[9]. A kinetic
equation for a two-point correlation function is written down, and a
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linear stability analysis around an unperturbed initial condition (which
takes into account the correlation properties of the random medium) is
performed.

In the present paper we shall summarize some of our results concerning
the Statistical Approach of Modulational Instability (SAMI) for several
systems [10]-[12], namely:

- nonlinear Schrödinger (NLS) equation

i
∂A

∂t
+ λ

∂2A

∂x2
+ µ|A|2A = 0. (1)

- discrete self-trapping (DST) equation

i
dan

dt
− ω0an + λ(an+1 + an−1) + µ|an|2an = 0. (2)

- Manakov system (MS)

i
∂A

∂t
+ λ

∂2A

∂x2
+ µ(|A|2 + |B|2)A = 0

i
∂B

∂t
+ λ

∂2B

∂x2
+ µ(|A|2 + |B|2)B = 0. (3)

2. SAMI for NLS equation
We shall begin by discussing SAMI for NLS equation (1). The first

step is to find a kinetic equation for the two-point correlation function
ρ(x1, x2) =< A(x1)A∗(x2) > . Here < ... > denotes an ensemble aver-
age. Using a Gaussian approximation to decouple four-point correlation
functions we get

i
∂ρ

∂t
+ λ

(
∂2

∂x2
1

− ∂2

∂x2
2

)
ρ + 2µ

[
a2(x1) − a2(x2)

]
ρ(x1, x2) = 0, (4)

where a2(x) =< A(x)A∗(x) > is the average mean square amplitude.
The next step is to introduce the new coordinates X = x1+x2

2 and
x = x1 − x2 and the Fourier transform F (k, X) of ρ(x, X) with respect
to the relative coordinate x. The equation (4) becomes

∂F

∂t
+ 2λk

∂F

∂x
+ 4µ

∞∑
n=0

(−1)n

22n+1(2n + 1)!
∂2n+1F

∂k2n+1

∂2n+1a2

∂X2n+1
= 0. (5)

A linear stability analysis around an unperturbed solution F0(k), in-
dependent of X (F0(k) plays the same role as the Stokes wave in a
deterministic approach) will be done. We write

F (k, X) = F0(k) + εF1(k, X) a2(X) = a2
0 + εa2

1(X) (6)
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where a2
0 =

∫ +∞
−∞ F0(k)dk, a2

1 =
∫ +∞
−∞ F1(k, X)dk. Then a linear evo-

lution equation for F1(k, X, t) is found, namely

∂F1

∂t
+ 2λk

∂F1

∂x
+ 4µ

∞∑
n=0

(−1)n

22n+1(2n + 1)!
∂2n+1F0

∂k2n+1

∂2n+1a2
1

∂X2n+1
= 0. (7)

Looking for plane wave solutions

F1(k, X) = f1(k)ei(KX−Ωt) (8)

the following integral stability equation is easily obtained

1 +
ν

Kλ

∫ +∞

−∞

F0(k + K
2 ) − F0(k − K

2 )
k − iω

dk = 0, (9)

considering Ω purely imaginary (Ω = iΩi) and denoting ω = Ωi
2λK .

Different forms for the initial condition F0(k) can be considered. For
a δ-spectrum, F0(k) = a2

0δ(k), and from (9) we get

Ωi = 4λK

√
µ

λ
a2

0 −
K2

4
. (10)

An instability exists if both µ, λ have the same sign (the focusing case
of NLS equation), and if K < 2(µ

λa2
0)

1
2 , i.e. in the long wave-length

limit. This is an unphysical situation, but it represents an useful limit
to which all the other cases can be compared. From the point of view
of modulational instability it represents the most favorable case.

Other initial conditions were discussed in [12]. We give here the results

only for a Lorentzian spectrum F0(k) = a2
0

π
p

k2+p2 , with the following
result

Ωi = 2Kλ

(√
ν

λ
a2

0 −
K2

4
− p

)
. (11)

On this expression it if easily seen the effect of the statistical properties
of the medium on the development of the modulational instability. If p
is too large (larger than the square root) the instability is suppressed.
But large p corresponds to short-range correlations in the x-space. The
conclusion is that the modulational instability can develop in a medium
if and only if a certain long-range correlation exists.

3. SAMI for DST equation
For the DST equation (2) the same steps as for the NLS equation has

to be followed. We shall mention here only the differences between the
two cases, a full discussion being given in our recent paper [10].
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One considers a chain of N molecules with cyclic boundary conditions.
We introduce the new discrete variables M = 1

2(n1+n2), and m = n1−n2

and the Fourier transform F (k, M) where k is restricted to the first
Brillouin zone (−π, π). We see that F (k, M) is a periodic function of k,
with period 2π. The kinetic equation satisfied by F (k, M) is

i
∂F

∂t
+ 4λ sin k sinh

1
2

∂F

∂M
(12)

+4µ
∞∑

j=1

(−1)j−1

(2j − 1)!22j−1

(
∂2j−1a2

0(M)
∂M2j−1

)(
∂2j−1F (k, M)

∂k2j−1

)
= 0.

A linear stability analysis leads to the following integral stability eq.

1 +
µ

4πλ sin K
2

∫ π

−π

F0(k + K
2 ) − F0(k − K

2 )
sin k − Ω

4λsin K
2

dk = 0. (13)

For F0(k) a δ-spectrum we get (K > 0)

Ωi = 4λ sin
K

2

√
µ

λ
a2

0 − sin2 K

2
. (14)

For a Lorentzian like spectrum F0(k) = a2
0

p
√

1+p2

sin2 k
2
+p2

which satisfies the

periodicity condition, we obtain

Ωi = 4λ sin
K

2

(√
µ

λ
a2

0 − sin2 K

2
− 2p

1 + cos K
2 + cos K

1 + cos K
2

)
. (15)

4. SAMI for Manakov system
In this section preliminary results concerning SAMI for Manakov’s

system (3) will be presented. The calculations become more compli-
cated because we have to deal with four two-point correlation functions
ρAA, ρAB, ρBA, ρBB where ραβ =< α(x1)β∗(x2) >, α, β = A, B. As-
suming a Gaussian decoupling approximation, kinetic equations for these
correlation functions can be written down; for the diagonal ραα it writes

i
∂

∂t
ραα + λ

(
∂2

∂x2
1

− ∂2

∂x2
2

)
ραα + µ

[
αβ(x1)ρβα − βα(x2)ραβ

]
+

µ
[
2
(
α2(x1) − α2(x2)

)
+ (β2(x1) − β2(x2))

]
ραα = 0. (16)
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Here αβ(x) =< α(x)β∗(x) > . Next, Fourier transforming these equa-
tions with respect to the relative coordinate x = x1 − x2, kinetic equa-
tions for Fαβ(k, X, t) are obtained. For Fαα this is given by

i
∂

∂t
Fαα(k, X, t) + 2ikλ

∂

∂X
Fαα(k, X, t)+

iµ
∞∑

j=1

2(−1)j

22j+1(2j + 1)!

[
2
∂2j+1α2(X)

∂X2j+1
+

∂2j+1β2(X)
∂X2j+1

]
∂2j+1Fαα

∂k2j+1
(17)

+µ
∞∑

j=0

(i)j

2jj!

[
∂jαβ(X)

∂Xj

∂jFβα

∂kj
− (−1)j ∂jβα(X)

∂Xj

∂jFαβ

∂kj

]
= 0.

In a linear approximation.

Fαβ(k, X, t) = fαβ(k) + ε Fαβ(k, X, t) (18)

α2(X, t) = α2
0 + εα2

1(X, t)

where α2
0 =

∫ +∞
−∞ fαα(k)dk and α2

1(X, t) =
∫ +∞
−∞ Fαβ(k, X, t)dk. Linear

evolution equations for Fαβ are easily obtained. Looking for plane wave
solutions

Fαβ(k, X, t) = gαβ(k)ei(KX−Ωt) (19)

(αβ)1(X, t) = ei(KX−Ωt)

∫ +∞

−∞
gαβ(k)dk = Gαβei(KX−Ωt)

a linear homogeneous system for Gαβ is obtained. Even for a δ-spectrum
initial condition fαβ = (αβ)0δ(k) the compatibility condition of this
system is a 4x4 determinant, depending on four independent parameters
(αβ)0. Therefore we shall simplify the problem assuming (αβ)0 = a2

0
anyone α and β are (an “absolute democracy” assumption). Also we
shall take µ = 2λ = 1 (canonical form of Manakov system). Then the
homogeneous linear system takes the simpler form(

ω2 +
K2

4
− 2a2

0

)
− a2

0Gββ

−a2
0(i

ω

K
+

1
2
)Gαβ + a2

0(i
ω

K
− 1

2
)Gβα = 0 (20)(

ω2 +
K2

4
− a2

0

)
Gαβ = a2

0(i
ω

K
+

3
2
)Gαα − a2

0(i
ω

K
− 3

2
)Gββ

This is easily solved and the only acceptable solution is

Ωi = K

√
4a2

0 −
K2

4
. (21)
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Compared with the result obtained for NLS case we see that the region of
instability is larger in this case K < 4(a2

0)
1
2 . For a Lorentzian spectrum

with a similar assumption of “complete democracy” we get

Ωi = K

[√
4a2

0 −
K2

4
− p

]
. (22)

More details will be published elsewhere.
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SCATTERING OF NLS SOLITONS WITH
BOUND QUANTUM STATES

Andrei Ludu
Deptartment of Chemistry and Physics Northwestern State University,
Natchitoches, LA 71497 USA
ludua@nsula.edu.edu

Abstract Inelastic collision between NLS3 solitons and bound quantum states in
strong localized one-dimensional potentials are investigated.

1. Introduction
There are three basic microscopic models approaching nonlinear quan-

tum mechanics of compact systems, and all three converge towards the
same type of nonlinear dynamics described by the Gross-Pitaevski equa-
tion (GP). One model is provided by nonlinear extension of traditional
geometric collective models, that is introduction of large amplitude col-
lective excitation of the surface of the system as solitons. A second
model is provided by nonlinear Hamiltonian hydrodynamics in terms of
mass and current densities with nonlocal potential. The last approach is
provided by recent studies in BEC dynamics [1] with application in nu-
clear clusters and alpha resonances [2]. The one-dimensional toy-model
presented in this contribution analyzes the collision of NLS one- or many-
soliton states with bounded quantum states in a localized potential well
or barrier. Our hypothesis is that the overall dynamics of the system is
provided by the GP equation which describes a Bose gas with a two-body
attractive δ-function interaction. We consider the asymptotic states of
the free compound system outside the potential as being described by
the NLS equation for which we have analytic solutions in the form of
modulated solitons traveling with constant shape and constant speed.
The advantage of solitons compared to orthodox quantum wave packets
(or plane waves) is that such “quantized” solitons are bounded, square
integrable and stable in time. Inside the potential the same GP equation
is governing the system, but if the potential is deep (or high) enough,
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and if the excitation functions are small enough we can neglect the non-
linear term inside, and the GP equation reduces to standard Schrödinger
equation (SE) with exact time dependent, or stationary analytic solu-
tions. We match boundary condition at the ends of the potential region
and we normalize the whole wave function. In this way one can estimate
reflection and transmission coefficients for solitons in different reaction
channels, and we put into evidence adiabatic excitation of resonant states
inside the potential zone. Applications of such systems can be found in
BEC systems, α-particle nuclear matter, clusters, nonlinear dynamical
lattices, fiber optics with inclusions or defects, etc.

This nonlinear quantum model consists in the collision between a com-
pound quasi-classical system (the projectile) described by an incoming
NLS soliton, and a target in a bounded quantum state described by one
internal degree of freedom. Contrary to orthodox quantum mechanics
case [3] we consider the projectile to be a soliton and not a plane wave.
There are advantages (non dispersive effect of wavefunction, internal de-
grees of freedom of complex projectile and its coupling with the target
degrees of freedom, normed wave-functions, simpler calculations) as well
as disadvantages (not orthodox quantum mechanics approach: target is
a traditional quantum system, projectile is a quasi-classical condensate
approximation).

2. Quantized solitary waves
If we consider the projectile constructed by N identical particles inter-

acting via a δ-function potential, a quantization of the solitary wave solu-
tions to the second-quantized description reproduces the weak-coupling
limit of the known quantum mechanical result. The Hamiltonian

H[Φ] =
�2

2m
ΦxΦ∗

x + V (x)ΦΦ∗ − k

2
(ΦxΦ∗

x)2, (1)

can be expressed in terms of a complex scalar field Φ where k is a strength
parameter, and V (x) is the external potential. In a two-dimensional
theory, the Euler-Lagrange equation of motion for the “collective” wave
function Φ(x, t) is the GP equation

i�Φt = − �2

2m
Φxx + V (x)Φ − k(Φ∗Φ)Φ, (2)

where subscripts represent partial differentiation. Therefore, although
the underlying fundamental quantum mechanics is linear, the “macro-
scopic wavefunction” of the system, as emergent entity, is governed by
a nonlinear equation. In the following we consider the target to be
described by a very localized potential with compact support included
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in the interval x ∈ [−a
2 , a

2 ]. Consequently, outside of this domain the
potential V (x) is zero, and the GP Eq.(2) reduces to the NLS equation

i�Φt = − �2

2m
Φxx − k(Φ∗Φ)Φ, (3)

which describes the free asymptotic motion of the compound projectile.
For k > 0 this NLS admits a family of solitary waves solutions. The
one-soliton solution of Eq.(3) Φ1(x, t) depends on four independent pa-
rameters, namely amplitude A, phase velocity q, initial position x0, and
constant phase χ

Φ1 = Aei[p(x−x0)+qt+χ]sech
x − x0 − V t

L
, (4)

where the wave vector p, the group (soliton) velocity V and half-width
of the wavefunction L are given by

p =

√
m(A2k − 2q�)

�
, V =

√
A2k − 2q�

m
, L =

�

A
√

km
. (5)

We note that in order to have a soliton solution we need A2k > 2q�. One
particular feature of the NLS Eq.(4) is that both positive (soliton) or
negative amplitude (anti-soliton) can move in either directions. More-
over, there is no direct relation between the half-width of the soliton and
its velocity like in the KdV, or MKdV cases, since this soliton depends
on 3 free parameters. From Eq.(4) we obtain the norm of the wave-
function, which is related to the number of particles in the projectile
N

||Φ1||2 = N =
∫ ∞

−∞
ΦΦ∗dx =

√
2�|A|√

km
, (6)

which is constant in time. The NLS equation provides norm conservation
in time, so the quantum mechanical probabilistic formalism is preserved.
Identical solitons move with the same speed so they never collide, while
different solitons have different shapes (A, L) and travel with different
speeds. The energy of the Eq.(4) state is given by

E1 =
< Φ1|H|Φ1 >

< Φ1|Φ1 >
=
∫ ∞

−∞

(
�2

2m
Φ1xΦ∗

1x − k

2
(Φ1Φ∗

1)
2

)
dx =

A2k

3
− �q.

(7)
The first term in in the last result of Eq.(3) is soliton internal energy
of excitation, while the second one is its kinetic energy. In the linear
limit (k → 0) Eq.(3) approaches the SE equation, the wave function
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aproaches a plane wave with p0 =
√−2q0/�, the phase speed becomes

V → p0�/
√

m, the norm blows up to infinity, and the energy approaches
the linear wave kinetic energy, E1 → −�q0.

For the target system we consider the example of a finite symmet-
ric rectangular potential well/barrier of depth ±V0, and width a. In-
side this region, if the potential strength V0 is strong enough com-
pared to the amplitude of the wavefunction, we can neglect the non-
linear term and reduce eq.(3) to the orthodox Schrödinger equation
i�Ψb,t = − �2

2mΨb,xx + V (x)Ψb valid for x ∈ [−a/2, a/2] and |Eb| < |V0|,
with its general bounded solution

Ψb(x, t) =
∫ ∞

−V0

[C1(ε)ei
√

2m|V0−Eb|/�2x+C2(ε)e−i
√

2m|V0−Eb|/�2x]e−
iEbt

� dε,

(8)
The GP→SE approximation inside the potential region is now valid if
‖Ψb‖ � √

m
k

V0
�

which is automatically fulfilled if the target potential
intensity is large enough and/or the strength parameter of the field is
small. In order to solve the collision problem we need one more approx-
imation, namely the soliton velocity should be enough small to allow
the establishing equilibrium inside the potential zone, that is using the
adiabatic approximation inside the potential. From the uncertainty rela-
tions this happens if the necessary time for the soliton to cross the target,
L/V , is larger than ��Eb, that is the change in target’s energy. This
condition is accomplished if the constant phase shift of the Schrödinger
state in the potential zone is almost zero (that is if the wave function is
as asymmetric as possible) and/or if the kinetic energy of the incoming
soliton is of the same order of magnitude with its internal energy, namely
�q � A2k.

3. Inelastic soliton-resonant state collision
The soliton-bounded state collision problem can be solved for any

elastic or inelastic channel. For the elastic collision we have a total of 15
free parameter (4 from each soliton: incident, reflected, and transmit-
ted), and 3 parameters from the stationary state. We use 8 constrains:
4 boundary conditions for the continuity of the logarithmic derivative
of wave functions, 1 general normalizing condition over the whole axis,
and 3 equations from energy conservation. This situation still leaves
room for 7 free parameters which can be chosen for example as: energy
of the reaction, the 3 constant phases of solitons, and initial positions
of the solitons. However, the elastic collision channel is closed for the
stationary states of the particle in the well. The wavefunction inside
the well has exponential time variation at the ends, while the solitons
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boundary effects can never be reduced to sinusoidal variation. If one
needs to match soliton-type of boundary conditions one needs to work
in the adiabatic approximation, where the energy Eb(t) in the well has
a (slow) variation in time compared to the speed of solitons.

Consequently, we study this problem for the inelastic collision in the
adiabatic approximation. Because of space limitations we present here
only the reflectionless situation. In this case we have 11 parameters, and
7 equations, so we have 4 free parameters. We choose arbitrary position
for the incoming soliton, arbitrary initial energy and arbitrary phases,
so the problem is still underdetermined. We have to fulfill the follow-
ing boundary conditions: ‖Φin‖2 + ‖ΦT‖2 + ‖Ψ‖2 = 1, Φ(j)

in (−a/2, t) =
Ψ(j)(−a/2, t), and Φ(j)

T (a/2, t) = Ψ(j)(a/2, t) where j = 0, 1 represents
the matching of the wavefunction and its first derivative, and T repre-
sents the transmitted soliton, of parameters AT , qT , and x0,T . We intro-
duce the nonlinear transmission coefficient to be the transmitted soliton
wavefunction norm over the incoming soliton norm, calculated in the
asymptotic limit. The traditional transmission coefficient behavior for
a linear plane wave scattered by a rectangular barrier shows resonances
in the transmission coefficient at specific energies when the wavelength
of the wave function is a integer sub-multiple of the potential barrier
(or well) width. In the limit of high energies (very small wavelength)
the problem becomes quasi-classical and the transmission coefficient ap-
proaches asympotic the value 1 for all energies. In the case of the NLS
soliton the transmission coefficient has a different behavior. For width
of the soliton smaller or larger than the potential box we have very small
transmission coefficient, and we note that such a quasi-classical system
behaves rather like a band-pass filter for space scales. On the top of this
restricted window of transmission we obtained a fine structure of reso-
nances which are related to the radiation tail of the soliton-perturbation
collision [4].

In Fig. 1 we present analytic calculation of an example of a collision
between a left-incoming soliton and a potential well of very small width
compare to soliton width, a � L. During this collision new bounded
states are excited in the potential valley, and a transmitted soliton is
generated. After this collision, both solitons still have the same ampli-
tude and width, while the phase velocity of the transmitted soliton is
smaller on behalf of the lost energy in the collision. The excited states
inside the potential trap do not decay, and the total shift in the energy
of the bounded state is given by

�Eb =
�Atan(α)

a

√
k

m
, (9)
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Figure 1. Soliton in inelastic reflectionless collision with a stationary state in a
rectangular well. The final energy of the bounded state increases as a tanh function.

where α is the induced phase shift in the transmitted soliton. The energy
jump is related to topological soliton-like perturbation that leaves the
system excited. In the reflection case we use two-soliton solution for
the left part of the system, with the two peaks moving with opposite
velocities. The total momentum of the system is zero in this case. These
situations do not represent all scattering channels of the NLS soliton with
the potential box. We have analyzed collisions between wider solitons
and narrower potential well, and we obtained after the collision a series
of smaller emerging solitons are generated in both directions [4]. The
study of this type of interactions for other potential profiles (Morse,
Pöschel-Teller, etc.) as well as a possible algebraic scattering approach
based on q-deformed spaces for the nonlinear space of wave-functions
are the subject of a future study.
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“OSCILLATOR-WAVE” MODEL:
MULTIPLE ATTRACTORS AND
STRONG STABILITY
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Abstract A generalized model of an oscillator, subjected to the influence of an
external wave is considered. It is shown that the systems of diverse
physical background, which this model encompasses by their nature,
should belong to the broader, proposed in our previous works, class of
“kick-excited self-adaptive dynamical systems” [1,2,3]. The theoretical
treatment includes an analytic approach to the conditions for emer-
gence of small and large amplitudes, i.e. weak and strong non-linearity
of the system. Derived also are generalized conditions for the transi-
tion of systems of this “oscillator-wave” type to non-regular and chaotic
behaviour.

1. Introduction
The works [1-5] present the class of kick-excited self-adaptive dynami-

cal systems. In these works are provided numeric and analytic proofs for
the behavior and the principal properties of dynamic systems subjected
to the influence of an external non-linear exciting force. The consid-
erations are based on a generalized pendulum model the non-linearity
of the external influence being introduced through particularly selected
functional dependencies.

Here we consider the generalized “oscillator-wave” model and show
that the inhomogeneous external influence is realized naturally and does
not require any specific conditions. Systems covered by the “oscillation-
wave” model immanently belong to the generalized class of kick-excited
self-adaptive dynamical systems. Attempting maximal clarity of the se-
quence of presentation we consider the excitation of oscillations in a
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non-linear oscillator of the “pendulum” type under the influence of an
incoming (fall) wave. We will show that under certain condition in the
system will arise non-attenuated oscillations with a frequency close to
the system’s natural frequency and an amplitude which belongs to a
defined discrete spectrum of possible amplitudes. The model under con-
sideration is remarkable for the occurrence of the following objective
regularities: the phenomenon of “discrete” (“quantized”) oscillation ex-
citation in macro-dynamical systems having multiple branch attractors
and strong self-adaptive stability.

2. Model of the interaction of an oscillator with
an electromagnetic wave: approach applicable
for small amplitudes of the system oscillations

Let us consider the interaction of an electromagnetic wave with a
weakly dissipative non-linear oscillator. Let the electric charge q having
mass m oscillate along the x-axis under the influence of a non-linear
returning force around a certain fixed point. The electromagnetic wave
also propagates along the x-axis and has a longitudinal electric field
component E. The equation of motion for the charge interacting with
the wave can be represented as:

m(ẍ + 2δdẋ + ω2
o sin x) = Eq sin(νt − kx), (1)

where 2δd is the damping coefficient, ωo is the natural frequency of small
oscillations of the charge, ν is the wave frequency and k is the wave
number. The case considered is: ν � ωo.

We assume that the excitation of charge oscillations by the influence
of the wave does not perturb significantly the symmetry of the charge’s
motion around its equilibrium position and the coordinate of the charge
changes according to the law

x = a sin θ, θ = ωt + α, a = a(t), α = α(t) (2)

Substituting the solution (2) in the right hand side of Eq. (1) we
obtain

Eq sin(νt − ka sin θ) = Eq

∞∑
n=−∞

Jn(ka) sin(νt − nθ).
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Letting ẋ = aω cos θ, ȧ sin θ + α̇a cos θ = 0 in accordance with the
Krylov-Bogolyubov-Mitropolskii method [6] we obtain to first order:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

da

dt
= −2δda +

Fo

ω

∞∑
n=−∞

Jn(ka) sin(νt − nθ) cos θ

dα

dt
=

Ω2 − ω2

2ω
− Fo

ω

∞∑
n=−∞

Jn(ka) sin(νt − nθ) cos θ

(3)

where Ω is the frequency of free oscillations having an amplitude a,

Ω2 =
2J1(a)

a
ω2

o
∼= ω2

o

[
1 − a2

8
+ O(a4)

]
(4)

Jn(·) are Bessel functions of the first kind, Fo = Eq
m .

The excitation of continuous oscillations with a frequency ω = ωs close
to the oscillator’s natural frequency is only possible under the condition
2π
λ a > 1 where λ is the wavelength of the influencing wave. As result of
the interaction of the oscillator with the wave a frequency components
appears in the force spectrum that is close to its natural oscillation fre-
quency. Then the action of these spectral components becomes dominant
and the right-hand side of Eq. (1) attains the form:

Eq

m

∞∑
n=−∞

Jn(ka) sin(νt − nθ) = Fo

{
J v

ω
−1(ka)sin

[
ωt − (

ν

ω
− 1)α

]
−J ν

ω
+1(ka) sin

[
ωt + (

ν

ω
+ 1)α

]}
(5)

Under the condition ν > ω the resonance area of the nonlinear oscil-
lator can be entered by several spectral components of the exciting wave
each of which could excite the oscillator into stationary oscillations with
amplitude belonging to a discrete sequence of possible amplitudes. For
fixed parameters of the oscillator and the wave the excitation of os-
cillations with amplitude from the possible sequence of amplitudes is
determined by the initial conditions. In accordance with relation (4) the
values of the discrete sequence of stationary amplitudes can be calculated
by the formula:

as0 =

√
8
(

1 − ν2

s2ω2
o

)
∼= 4

√
1 − ν

sωo
, s = 1, 2, 3, ... (6)
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Averaging the right-hand side of Eqs. (3) and taking into account (5),
we determine:⎧⎪⎨⎪⎩

das

dt
= −δda +

Fo

2ωs
[Js−1(kas) + Js+1(kas)] sin(pt − γs)

dαs

dt
=

Ω2 − ω2
S

2ωs
− Fo

2ωsas
[Js−1(kas) − Js+1(kas)] cos(pt − γs)

(7)

where p = ν − ν
ωs

� ωs, γs = ν
ωs

αs, ωs = v
s .

In accordance with the familiar recurrence relations for Bessel func-
tions, Eqs. (7) can be represented in the form:⎧⎪⎨⎪⎩

das

dt
= −δdas − vFo

ω2
skas

Js(kas) sin(pt − γs)

dαs

dt
=

Ω2
s − ω2

s

2ωs
− Fo

ωsas
J ′

s(kas) cos(pt − γs)
(8)

In the case of stationary oscillations (das
dt = 0 and dαs

dt = 0) from Eqs.
(8) we find

tan γs =
2δdasω

2
sk

(Ω2
s − ω2

s)ν
J ′

s(kas)
Js(kas)

The connection between the intensity of the wave’s longitudinal com-
ponent and the amplitude of oscillations has the form:

F 2
o =

[
a2

soω
2
sδdk

vJs(kaso)

]2

+
[
aso(Ω2

s − ω2
s)

2J ′
s(kaso)

]2

(9)

For high intensities of the wave Eq. (9) can be represented as:

Fo
∼= a2

soω
2
s(as − aso)

8J ′
s(kas)

The first term in formula (9) represents the minimal threshold value
Fo of the wave’s intensity. If the intensity of the wave is smaller than this
threshold value only the excitation of forced oscillations with frequency
equal to the wave’s frequency is possible. For wave intensities above the
threshold value depending on the initial conditions, the oscillator’s mo-
tion is realized with one of the amplitudes from the discrete sequence (6).
When ν > ωo each amplitude is realized for oscillation frequency close
to the oscillator’s natural frequency Ωs. Using the approach, developed
in [3], it is not difficult to show that for fixed values of the frequency ν
and the amplitude Fo of the external force the oscillator’s motion with
amplitude from the discrete sequence (6) is stable.

The performed analysis shows that the continuous wave having a fre-
quency much larger than the frequency of a given oscillator can excite
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in it oscillations with a frequency close to its natural frequency and an
amplitude belonging to a discrete set of possible stable amplitudes.

The settling of certain particular amplitude depends on the initial
conditions. When the motion becomes stationary the amplitude’s value
practically does not depend on the wave’s intensity when the latter
changes over a significant range above a certain threshold value. This
is reminiscent of Einstein’s explanation of the photoelectric effect us-
ing Planck’s quantization hypothesis. In this case the absorption is also
independent of the incoming wave’s intensity. Besides, the absorbed
frequencies can be expressed as integer multiples of a certain basic fre-
quency reminding of resonance phenomena.

3. General conditions for transition to irregular
behavior in an oscillator under wave action

The model system under consideration is presented by the following
system of equations⎧⎨⎩

ẋ1 = x2

ẋ2 = − sin x1 + µ[Fo sin(θ − ρx1) − δdx2]
θ̇ = v

(10)

where [x1, x2, θ(t)] ∈ R3, the dot denotes an operation of differentiation
by the time t, Foand ν are correspondingly the amplitude and the fre-
quency parameter of the external acting wave, δd reflects the dissipation
in the system, 0 < µ � 1 is a small parameter.

Proceeding from the non-perturbed system (µ=0),

ẋ1 = x2, ẋ2 = − sin x1

i.e. from the system with Hamiltonian function H = x2
2
2 + 1 − cos x1,

the phase space divides into two domains and a separating boundary
(separatrix), where qualitatively different phenomena occur: I domain,
0 < H < 2; II separatrix, H = 2 and III domain (a regime of rotation),
H > 2.

The solution in the so outlined domains can be presented in the form
as follows.

I domain, notating κ = H
2 :{

x1 = 2 arcsin[κ sn(t − to, κ)], N = 0,±1,±2,±3, ...
x2 = 2κ cn(t − to, κ), to = const

and as well {
x1 = −2 arcsin[κ sn(t − to, κ)] + 2πN,
x2 = −2κ cn(t − to, κ),
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II separatrix: ⎧⎨⎩ x1 = 2 arcsin[tanh(t − to)] + 2πN,

x2 =
2

cosh(t − to)
,

and as well ⎧⎨⎩ x1 = −2 arcsin[tanh(t − to)] + 2πN,

x2 = − 2
cosh(t − to)

,

III domain (a regime with rotation), notating κ2 = 2
H :⎧⎪⎪⎨⎪⎪⎩

x1 = 2 arcsin
[
sn

(
t − to

κ
, κ

)]
+ 2πN,

x2 =
2
κ

dn
(

t − to
κ

, κ

)
,

and as well ⎧⎪⎪⎨⎪⎪⎩
x1 = −2 arcsin

[
sn

(
t − to

κ
, κ

)]
+ 2πN,

x2 = −2
κ

dn
(

t − to
κ

, κ

)
.

Let us consider the system dynamics in the domain of the separatrix
(the homoclinic trajectory). We work with the solution

xo =
(

xo1

xo2

)
=
(

2 arcsin[tanh(t − to)]
2/ cosh(t − to)

)
.

We can write

d

dt
x ≡

(
dx1/dt
dx2/dt

)
= fo(x) + µf1(x, t)

≡
(

x2

− sin xo1

)
+ µ

(
0

Fo sin(θ − ρx1) − δdx2

)
,

where in the right-hand side of the equation the initial approximation

stands xo =
(

xo1

xo2

)
for x1 =

(
x1

x2

)
. Hence

fo × f1 ≡ fo ∧ f1 =
(

xo2

− sin xo1

)
∧
(

0
Fo sin(θ − ρxo1) − δdxo2

)
=

2Fo

cosh(t − to)
sin {θ − 2ρ arcsin[tanh(t − to)]} − 4δd

cosh2(t − to)
.
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For the system under consideration the Melnikov distance [6] can be
expressed:

D(to, to) = −
∞∫

−∞
fo ∧ f1dt =

∞∫
−∞

{
2Fo

cosh(t − to)

× sin [θ−2ρ arcsin (tanh(t − to))] +
4δd

cosh2(t − to)

}
dt (11)

Irregular (chaotic) behaviour occurs for the areas where D(to, to) passes
through zero. For the practice the case of ρ = 1 is the most interesting.

Substituting θ as θ = νt+θo = ν(t−to)+(νto+θo), Eq. (11) becomes

D(to, to) =

∞∫
−∞

{
− 2Fo

cosh(t)
sin[νt + (νto + θo)][1 − 2 tanh2(t)]

+
2Fo

cosh(t)
cos[νt + (νto + θo)]

2 sinh(t)
cosh2(t)

+
4δd

cosh2(t)

}
dt

= −2Fo sin(νto + θo)

∞∫
−∞

cos ντ
(1 − sinh2 τ)

cosh3 τ
dτ

−2Fo sin(νto + θo)2
∞∫

−∞
sin ντ

sinh τ

cosh3 τ
dτ + 4δd

∞∫
−∞

dτ

cosh2 τ
(12)

The integrals in (12) are evaluated as follows:

∞∫
−∞

cos ντ
(1 − sinh2 τ)

cosh3 τ
dτ =

ν2π

cosh νπ
2

,

∞∫
−∞

sin ντ
sinh τ

cosh3 τ
dτ =

ν2π

2 sinh νπ
2

,

∞∫
−∞

dτ

cosh2 τ
=2

According to these expressions Eq. (12) is rewritten as

D(to, to) = −2πν2Fo

(
1

cosh νπ
2

+
1

sinh νπ
2

)
sin(νto + θo) + 8δd

or finally

D(to, to) = −4πν2Foe
ν π

2

sinh νπ
sin(νto + θo) + 8δd.
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Under the condition D(to, to) = 0 and taking into account that δd > 0
and |sin(νto + θo)| < 1, the general condition for transmission to irreg-
ular (chaotic) behaviour in nonlinear oscillator under the wave action
takes the form

2δd sinh(|ν|π) < πν2 |Fo| eν π
2 .

Obviously this condition is fulfilled in some domains of the space (δd, Fo,
ν).

It is necessary to note that the solution of Eq. (10) strongly depends
on the choice of initial conditions. Besides, the homoclinic bifurcation is
one of the first bifurcations that occur in the transition from regular to
irregular motion in the system under consideration. The latter is related
with the condition for overcoming the strong self-adaptive mechanism of
the system internal stability [1-3]. It is necessary also to emphasis that
the homoclinic tangency implies formation of a very complicated fractal
boundary for the basins of attraction [1, 5].

4. Conclusion
The analysis shows the following two essential features of the system

considered.
1. There exists a discrete set of possible stationary stable ampli-

tudes.
2. There exists a threshold value for the amplitude such that for

values above it the discrete states are stable.
Regardless of its simplicity, the “oscillator-wave” model obviously re-

flects a number of processes in the micro- and macroworld. The model
is manifested naturally in different material media and harmonizes with
the modern ideas about the world into and out of us as a totality of
particles and fields. Also, it takes into account the wide extension of
the oscillating processes in Nature. In the presence of particle flows and
fields of different nature, the model realizes (materializes) widely in Na-
ture in a very natural way. In one way or another, the model has been
considered by a number of authors, but the most essential feature of be-
haviour – the “quantization” phenomenon, has escaped their attention.
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Abstract The non-linear Gross-Pitaevskii (GP) equation plays an important role
in the mean-field theory of the Bose-Einstein condensation and has in-
teresting mathematical properties. In this lecture we consider two non-
trivial problems related to physical interpretation of the solutions of the
GP equation: the superfluidity of a BEC gas in an optical lattice and
the superfluidity of a 1D Bose-gas, with special attention to the role of
grey solitons.

1. Introduction
In this lecture we consider the behavior of Bose-Einstein condensates

(BEC) in external periodic potentials, created by light beams of laser
sources.

A quantum-mechanical description of particles in a periodic field was
developed many years ago by F. Bloch. Most of the experiments into
past, however, were done with fermions, i.e. electrons in the periodic
lattice of crystals.

In the case of condensates made of cold trapped atoms, the periodic
potential can be created by using light (laser) beams. With respect to
“natural” lattices, this “artificial” optical potential has many advan-
tages: its period is macroscopically large and can be varied, its intensity
can be varied and it has no defects, it is possible to create one- and
two-dimensional structures, which are difficult to build in solids.
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2. Optical lattice
Let us consider a condensate in a monochromatic electric field. One

can write the field in the form

E(r, t) = E0(r)e−iωt + c.c. . (1)

The averaged (with respect to time) force acting on an atom is

f(r) =
α(ω)

2
∇E2 = α(ω)∇|E0|2, (2)

where α(ω) - is the atomic polarizability and E2 is the time average
of E2. This equation is valid if the frequency ω is far enough from
the absorption line of the atom at frequency ω0. Then α(ω) is real.
On the other hand, it is profitable to work near enough to ω0, where
polarizability is large. Thus the frequency must satisfy the conditions

ω0 � |ω − ω0| � Γ, (3)

where Γ is the absorption line width. Notice, that BEC is convenient
from this point of view, because absorption lines in the condensate are
very narrow.

Under the condition (3) the polarizability can be approximately writ-
ten as

α(ω) ≈ A

ω0 − ω
, (4)

with A > 0. This means that for ω < ω0 (“red detuning”) atoms are
driven into strong field regions, while for ω > ω0 (“blue detuning”) they
attracted into low field regions.

The force (2) corresponds to the mean potential energy:

Uopt(r) = −α(ω)|E0|2. (5)

One can create a one-dimensional (1D) periodic potential by using a
standing laser wave. In such a wave |E0|2 ∼ sin2(qz), where q is the
wave vector. In this case one usually writes the potential energy as

Uopt(z) = sEr sin2(qz) , (6)

where s is a dimensionless parameter, proportional to the intensity of
the laser beam, and Er is the “recoil energy”, i.e. the energy acquired
by an atom of mass m after absorbing a photon with momentum �q:

Er =
�2q2

2m
. (7)
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In most of the recent experiments one has s < 20. The potential (6) is
periodic with period d = π/q. Correspondingly, the period of reciprocal
lattice is 2q. A three-dimensional optical lattice can be created by three
standing laser waves in the three directions of space:

Uopt(r) = sEr[sin2(qx) + sin2(qy) + sin2(qz)] . (8)

3. Bose-Einstein condensate in a periodic
lattice. Ground state

A Bose-Einstein condensed system is characterized by the presence of
a macroscopically large number of atoms in one quantum state. Let us
consider the second quantization operator of atoms ψ̂(r, t). Its quantum
properties are expressed by the commutation relation

ψ̂(r, t)ψ̂†(r′, t) − ψ̂†(r′, t)ψ̂(r, t) = δ
(
r − r′

)
. (9)

Let us separate from ψ̂(r, t) the part ψ̂0(r, t), which corresponds to an-
nihilation of atoms in the macroscopically occupied state, where the
condensation occurs. Matrix elements of ψ̂0 are macroscopically large.
This means that one can neglect the non-commutativity of ψ̂0 and ψ̂†

0

and replace ψ̂0 with a classical field ψ0(r, t). The function ψ0(r, t) is
called the order parameter or the wave function of the condensate. This
procedure has a deep physical meaning. In fact this replacement is anal-
ogous to the transition from quantum electrodynamics to the classical
description of electromagnetism. We know that this is justified if one has
a big number of photons in approximately the same quantum state. In
this case the non-commutativity of the field operators is not important
and one can describe the electromagnetic field using classical functions,
i.e. the electric and the magnetic fields, which obey the Maxwell equa-
tions. In our case the presence of a big number of atoms in a single state
(Bose-Einstein condensate) permits to introduce the classical function
ψ0(r, t). (We will omit the index “0” below.)

If the gas is dilute enough, it can be described with good accuracy
by the mean-field approximation. This corresponds to the lower order
approximation of the Bogoliubov theory of a uniform dilute Bose-gas [1].
In this approximation all atoms are in the condensate at T = 0. Thus
the gas density is

n(r, t) = |ψ(r, t)|2. (10)

The function ψ(r, t) satisfies the non-linear equation [2, 3]

i�
∂

∂t
ψ(r, t) =

(
−�2∇2

2m
+ Vext(r, t) + g | ψ(r, t) |2

)
ψ(r, t) . (11)
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The non-linear term in this equation describes the interaction between
of atoms of the condensate. The coupling constant g is fixed by the
s-wave scattering length a through:

g = 4π�2a/m . (12)

It is possible to say that the atom moves in a mean field, created by
other atoms, which is proportional to the density.

Equation (11) for the condensate wave function ψ plays a role analo-
gous to the Maxwell equations in classical electrodynamics. One can say
that the condensate wave function represents the classical limit of the
de Broglie wave , where the corpuscular aspect of matter is no longer
important. Still, differently from the Maxwell equations, Eq.(11) con-
tains the quantum constant � explicitly. The reason for this difference
is due to the different relation between energy ε and momentum p in the
case of photons and atoms, which implies a different relation between
the frequency ω = ε/� and the wave vector k = p/� of the corresponding
classical waves. For photons the relation ε = cp provides the classical
dispersion relation ω = ck. For atoms the relation ε = p2/2m instead
yields the dispersion law ω = �k2/2m, containing explicitly �. This
implies, in particular, that the coherence phenomena, like interference,
depend on the value of the Planck constant.

The condensate function is a complex one, ψ = |ψ| eiϕ, and its phase
ϕ defines the superfluid velocity:

vs =
�

m
∇ϕ. (13)

In a stationary state the wave function depends on time according to
ψ(r, t) = ψ(r) exp(−iµt/�), where µ is the chemical potential for a given
state.

In this paper we consider mainly the 1D potential (6). Thus we assume
that ψ has the form ψ(z) exp(−iµt/�). In real experiments, of course,
besides the periodic potential, there exists a magnetic trapping potential.
However, the trapping in the z-direction is weak and the size of the
condensate in this direction is large with compared to the lattice period
d. The trapping potential changes slowly on the distance d and we can
neglect this axial trapping in first approximation. On the contrary, the
“radial” trapping in x and y directions is tight and the radial degrees
of freedom are never excited. The wave function can be presented in
the form ψ(r, t) = ψr(r)ψ(z) exp(−iµt/�). We will choose ψr(r) in a
such way that |ψ(z)|2 = n(z) is the 1D atom density, i.e. the number of
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atoms per unit length. Then equation (11) for ψ(z) becomes(
− �2

2m

d2

dz2
+ sEr sin2(qz) + g1 | ψ(z) |2

)
ψ(z) = µψ(z) (14)

where g1 now is the new “one dimensional” coupling constant, which
is proportional to the “three-dimensional ”coupling constant g (see [4],
§ 17.2 for details).

The state,ground wave function is real and periodic, ψ0(z) = ψ0(z+d).
It can be expanded as a Fourier series:

ψ0(x) =
∞∑

l=−∞
ψ(l)eil2qz, ψ(l) = ψ(−l)∗ . (15)

Equation (15) is an expansion of the ground state with respect to states
with values of momenta pl = �2ql. This statement is well-known in the
theory of electrons in a crystal lattice. But it is difficult to check it
experimentally in a solid crystal. Conversely, in BEC equation (15) can
be checked in direct and relatively simple experiments. It is enough to
switch off both trapping and periodic potentials. Then atoms with l = 0
will stay at rest. Atoms with pl will move according to the law

zl(t) =
�l2q

m
t . (16)

Such an experiment is described in [5]. In Fig. 1 one can see the
central peak with l = 0 and “split” condensates with l = ±1. The
relative population of the P1 peaks according to (15) is |ψ(1)|2/|ψ(0)|2.
This ratio depends on the intensity s of the periodic potential and, due
to the interactions, on the gas density (see Fig. 2).

4. Quasi-momentum and current.
A system of interactive Bose-Einstein condensed bosons is superfluid.

It can move relative to the lattice without friction. The flow as a whole
can be described by the “Bloch-like” solutions of (14):

ψkb(z) = eikzukb(z) . (17)

Here �k is the quasi-momentum, b - the Bloch band index. The func-
tion ukb(z) is a complex periodic function of period d. Notice, that the
existence of solution of the form (17) of the non-linear equation (14) is
quite non-trivial. It is related to the gauge invariance of (14).

The chemical potential, corresponding to the solution (17), is also a
function of k and b: µ = µb(k). (We will omit the Bloch band index b
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Figure 1. The density profile for the
expanded array of condensates for s =
5 and t = 29.5 ms. From [5].

Figure 2. Experimental (solid cir-
cles) and theoretical (triangles) values
of the population of the l = 1 peak
with respect to l = 0 central peak.
From [5].

below.) The ground state energy can be calculated by using the wave
function (17). The energy per unit length is

E(k) =
1
L

∫ L

0

(
�2

2m

∣∣∣∣dψk

dz

∣∣∣∣2 + sEr sin2(qz) | ψk |2 +
g1

2
| ψk |4

)
dz ,

(18)
where µ(k) = ∂E(k)/∂n, n = N/L is the number of atoms per unit of
length, L is the lattice length, N is the total number of atoms. Instead
the energy E(k) it is sometimes convenient to use the grand canonical
energy

Eµ(k) = E(k) − µ(k)n = E(k) − µ(k)
∫ L

0
| ψk(z) |2 dz/L . (19)

Then n = −∂Eµ(k)/∂µ. One can obtain the GP equation (14) by min-
imizing either the functional E with respect ψ at constant n, or the
functional Eµ at constant µ.

Let recall that values of k differing by n2q, with n integer, are physi-
cally equivalent. This means that k can be restricted to the first Brillouin
zone: −q < k < q. However, it is convenient sometimes not to restrict k
to the first zone and to allow k to take arbitrary values by treating E(k)
(and j(k) below) as periodic functions with period 2q = 2π�/d.

The wave functions (17) describe stationary states of the system corre-
sponding to a moving condensate. The mass current associated with this
motion can be obtained from (11). It has the usual form, the non-linear
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term playing no role. In the 1D case one has:

j =
i�

2

(
ψ

dψ∗

dz
− ψ∗dψ

dz

)
. (20)

The current j is constant in a stationary state and does not depend on
t and z.

One can calculate j for the Bloch function (17), if one knows the
energy E(k). To this aim, let us replace in (14) and in the energy
functional (19) the operator d

dz with d
dz−iA, where A a constant “vector-

potential”. Then differentiation gives

−m

[
∂Eµ

∂�A

]
A=0,µ

=
i�

2L

∫ L

0

[
ψ

dψ∗

dz
− ψ∗dψ

dz

]
dz = j . (21)

It is important here that one needs not to differentiate wave function ψ.
The wave function depends on A, however the variation of the functional
with respect to ψ is equal to zero due to (14).

The constant term A in the equation does not change its periodic
properties and the modified wave function ψ(z, A) still has the Bloch
form. However, one can eliminate the constant A by a guage transfor-
mation:

ψ = eiAzψ′ . (22)

This means, that the modified equation has the same dispersion law
Eµ(k′), where �k′ is the quasi-momentum corresponding to ψ′. It is
obvious from (22) that ψ(z, A) has quasi-momentum �k = �(k′ + A).
Thus Eµ(k, A) = Eµ(k − A) and (21) gives for the current:

j(k) = m

(
∂Eµ

�∂k

)
µ

= m

(
∂E

�∂k

)
n

. (23)

This equation is well-known in the theory of metals. However its usual
derivation is based on the linear Schrödinger equation. It is not clear
in the linear theory if the mass current j is defined by E(k) or µ(k),
because in a such theory E = nµ. Therefore we presented here a dif-
ferent derivation, based on the gauge invariance of the Gross-Pitaevskii
equation (11). This derivation, of course, is valid also for the linear
Schrödinger equation.

It is useful to rewrite (23) in terms of the “group velocity”

vg(k) ≡ 1
ρ
j(k) =

1
n

(
∂E

∂�k

)
n

, (24)

where ρ = mn is the mean linear mass density. One can find examples
of calculations Eb(k) and vg(k) in [6] (see Fig. 3).
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Figure 3 (a) Energy
per atom ε = E(p)/N
as a function of quasi-
momentum p in the three
first Bloch bands for s = 3,
qB = π/d. (b) Group
velocity in the first Bloch
band. From [6].

Equation (23) defines the mass current in the coordinate frame of the
lattice. If the lattice moves with velocity vL, then the mass current in
the laboratory frame is given by the general Galileo’s transformation:

jlab = j(k) + ρvL . (25)

Let us consider now the condensate in the lattice in the presence of
a weak spatially uniform force F . In the r.h.s. of eq. (11) one must
add a term −Fzψ(z, t). Even at small F , this term strongly modifies
the solution because of its unrestricted increasing at large z. In order
to compensate this term, one can look for a solution of (11) in the form
of the Bloch function (17), but with a time-dependent quasi-momentum
�k. Then the term −�dk

dt zψ(z, t) will appear in the l.h.s. of eq. (11).
Both terms in eq. (11) proportional to z will cancel if

d�k

dt
= F . (26)
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Notice that one needs not to differentiate the periodic part ukr(z) of the
Bloch function (17), since the corresponding terms do not contain z and
are negligible at small F . Equation (26) again has the same form as in
the linear one-particle theory.

The above equations allow one to define the function vg(k) in a direct
experiment [7]. In the experiment, the lattice can be put into motion
by detunning the frequencies of two laser beams in the standing wave.
In the difference in frequencies is δω(t), then the lattice moves with the
time-dependent velocity vL(t) = δω(t)/q. In the coordinate frame of
the lattice the force of inertia F = −mdvL/dt acts on the condensate.
According to equation (26) the condensate acquires the quasi-momentum

�k = −mvL(t) . (27)

Then one can switch-off the trap and lattice potential and measure the
mean velocity of the condensate, which according to (25) is given by

vm ≡ jlab/ρ = vL − vg(mvL/�) . (28)

By repeating the experiment for different values of the final velocity vL,
one can extract the vg(k) function function (see Fig. 4).
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For small values k one can expand E(k) as

E(k) = E0 + n
�2k2

2m∗ . (29)

The quantity m∗ has the meaning of the effective mass of the condensate
in the lattice. Correspondingly one has

vg(k) =
�

m∗k . (30)

It is not difficult to show that m∗ > m in the first Bloch zone. In the
next section we will see , that m∗ defines the superfluid fraction of the
gas.

The chemical potential can be expanded analogously:

µ(k) = µ0 +
�2k2

2mµ
, (31)

where
µ0 =

∂E0

∂n
,

1
mµ

=
∂

∂n

n

m∗ . (32)

5. Superfluid density
According to the Landau theory of superfluidity [8], an uniform su-

perfluid at T = 0 is “completely superfluid”, i.e. the superfluid density
is equal to the total density: ρs = ρ. This is not true for a liquid in inho-
mogeneous external conditions, for example in the presence of impurities
or, as in our case, in the presence of a periodic potential. One has now
ρs < ρ even at T = 0. However, the meaning of this inequality at T = 0
is different from the finite temperature case. The normal part density
ρn = ρ − ρs is at rest with respect to the lattice. It is thus meaningless
to introduce the normal fluid velocity.

In the Landau theory, the superfluid part is “something that cannot
rotate”. This results in the following definition of the superfluid density.
Let the lattice be “twisted” in a ring of a large radius R. Let the ring
slowly rotate with the angular velocity Ω. Then the angular momentum
of a normal fluid would be M = ρ2πR2Ω. If the fluid is superfluid, then
only the normal part rotates and the angular momentum is

M = ρn2πR2Ω = (ρ − ρs)2πR2Ω . (33)

Notice that Andronikashvili measured the superfluid density of super-
fluid 4He just in the same type of experiment. In [9] ρs was measured by
this method in inhomogeneous systems of 4He films on Vycor substrate.
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To calculate ρs for a gas in a lattice we need the Galileo’s transfor-
mation of the condensate wave function. Let ψ (z, t) = ψk (z) e−iµt/� be
the wave function in the lattice frame. Then the wave function in the
laboratory frame, where the lattice moves with velocity vL, is

ψlab (z, t) = eimvLz/�ψ (z − vLt, t) e−imv2
Lt/2� (34)

(see [10], problem to §17). It is not difficult to check that function (34)
satisfies eq. (11) if ψk (z) is a solution of eq. (14).

Using equation (17) for ψk one finds

ψlab (z, t) = ei(k+mvL/�)zuk(z − vLt)e−i[µ(k)+�kvL+mv2
L/2]t/� . (35)

Now, let us twist the lattice in a ring. If the radius of the ring R is
large enough, one can use (35). In this case z is the coordinate along
the ring and vL = ΩR. To be single-valued, the wave function must be
periodic with respect to z:

ψlab (z, t) = ψlab (z + 2πR, t) . (36)

According to (34) this gives

(k + mvL/�) 2πR = 2πl, l = 0,±1, ... . (37)

In the absence of rotation l = 0. This condition must be satisfied also
at slow rotation. This gives �k = −mvL, analogously to (27). The mass
current can be calculated using (25). Thus at low speed of rotation one
has

jlab = mnvL +
m

�

[
∂E (k)

∂k

]
k=−mvL/�

≈ mnvL

(
1 − m

m∗
)

, (38)

and the angular momentum is

M = jlab2πR = mnΩ2πR2
(
1 − m

m∗
)

. (39)

The comparison with (33) finally gives the superfluid density

ρs = mn
m

m∗ = ρ
m

m∗ . (40)

Let us go back to the lattice frame. Equation ρs permits to define the
superfluid velocity through the formula j = ρsvs which yields

vs =
�

m
k . (41)
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Equation (40) for the superfluid density has been obtained in a differ-
ent way in [11] and [12], devoted to properties of superfluid 4He films.
However, the authors of the recent papers [13] and [14] claimed that
ρs = ρ in the absence of interaction. This contradicts (40), inasmuch
m∗ �= m also in the absence of interaction [15]. This disagreement mo-
tivated us to investigate the problem more carefully. Our result, as we
have already mentioned, coincides with [11] and [12]. The disagreement
with [13] and [14] is, in our opinion, a result of an arbitrary identification
the effective mass of the Bose-Habbard Hamiltonian with free particle
mass, made in these papers.

The first experimental confirmation of equation (40) was given in the
experiments [16]. The authors observed oscillations of the condensate,
confined in a harmonic magnetic trap in the presence of a periodic optical
potential. To describe this phenomenon one should develop the theory
a bit further.

The wave vector k in the solution (17) is constant. However, one can
consider an approximate solution of the form:

ψ(z, t) = eiφ(z,t)uk=dφ/dx(z) , (42)

where the phase φ(z, t) changes slowly on distances of the order of lattice
period d. Equation (41) for the superfluid velocity then the form

vs =
�

m

∂

∂z
φ . (43)

One can derive equations for the density ρ and the superfluid velocity vs

following the Landau considerations [8]. However, one should take into
account that in our case the velocity and entropy of the normal part are
equal to zero.

The continuity equation is

∂ρ

∂t
+

∂(ρsvs)
∂z

= 0 . (44)

We write the equation of motion for the superfluid part by assuming
that, besides the periodic potential, there is a slowly varying trapping
potential Uext(z). Then

∂vs

∂t
+

∂

∂z

[
m

mµ

v2
s

2
+ µ0(n) + Uext(z)

]
= 0 , (45)

where we neglected terms of order higher that v2
s.

With the help of these equations let us consider the oscillations of a
condensate as in the experiments [16]. The trapping potential is har-
monic, Uext(z) = mω2

zz
2/2. We assume that the effective mass m∗ does
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Figure 5. Frequency of the dipole oscillations as a function of the amplitude s
of the periodic potential. The solid circles and triangles are, correspondingly, the
experimental and theoretical data of [16]. The solid line is the calculations of [17].

not depend on density and therefore on coordinate and time. (In the
experiment these dependencies are not important indeed.) Then the lin-
earized system (44) - (45) has solution of the form ρ(z, t) = ρ0(z−z0(t)),
describing oscillations of the condensate as a whole with velocity dz0/dt.
Here ρ0(z) is the equilibrium density profile of the condensate. It satis-
fies the equation ∂

∂z [µ0[ρ0(z)] + Uext(z)] = 0. Equations (44) - (45) then
give

dz0

dt
=

m

m∗ vs ,
dvs

dt
= −mω2

zz0 . (46)

The first equation means that the condensate moves with group velocity
(m/m∗)vs = vg, and not with the superfluid velocity vs. The frequency
of these “dipole” oscillations according to (46) is [16]

ωD =
√

m

m∗ωz . (47)

Results of measurements [16] are reported in Fig. 5. The frequency
of the dipole oscillations is presented as a function of the amplitude s
of the periodic potential and compared with the prediction of equation
(47). The values of the effective mass have been calculated in [17].

Notice that, at the maximal value s = 9, the ratio m/m∗ is about
6. In these conditions atoms can only move by tunneling through the
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potential barriers, that separate the minima of the periodic potential.
Thus in the experiments the quantum tunneling of a macroscopical body
is observed.

The superfluid nature of the condensate is important here. The ther-
mal cloud can not oscillate in such conditions.

6. Solitons and superfluidity in a
one-dimensional Bose-gas

6.1 Grey solitons
Let us consider the one-dimensional (1D) GP equation in the absence

of periodic potential:(
− �2

2m

d2

dz2
+ g1 | ψ(z) |2

)
ψ(z) = µψ(z) . (48)

This equation has an important class of solutions, so called grey solitons,
that are localized regions of suppressed density moving with constant ve-
locity. Such solitons have been found by Tsuzuki [19]. The corresponding
wave function has the form

ψ (z − vt) =
√

n

(
i
v

c
+

√
1 − v2

c2
tanh

[
z − vt√

2ξ

√
1 − v2

c2

])
(49)

where the velocity v is a parameter defining the solution, c =
√

g1n/m

is the sound velocity and ξ = �/
(√

2mc
)

is the “healing length”. The
density has a minimum at z = vt corresponding to n0 = 1/

√
1 − v2/c

and tends to its equilibrium value n at z → ±∞. However, the phase
of the wave function undergoes a finite change

∆ϕ = 2 arccos (v/c) (50)

as z varies from −∞ to ∞. The energy of the soliton, calculated with
help of (19) is

ε =
4
3

�cn

(
1 − v2

c2

)3/2

. (51)

The problem of the soliton momentum is not trivial. The velocity of
soliton at rest should satisfy the canonical equation v = ∂ε/∂p. Inte-
grating this equation and assuming that p = 0 for a rested soliton, one
find

p =
∫ v

0

∂ε

∂v

d (v)
v

= −2�n
(v

c

√
1 − v2/c2 + arcsin (v/c)

)
. (52)
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This is a “canonical” momentum, which must be considered as the mo-
mentum of a soliton which is treated as an elementary excitation in the
Landau meaning. However, p does not coincide with the total momen-

tum of liquid, which is defined as p̃ =
∞∫

−∞
jdz with j given in (20). In

fact, one finds p̃ = −2�n(v/c)
√

1 − v2/c2[20]. For small v (52) gives
p ≈ −4�nv/c, while for v → ±c one obtains p ≈ ∓ (π�n − ε/c). Notice
that p runs over the interval

−π�n ≤ p ≤ π�n. (53)

The presence of a soliton violates superfluidity in the usual meaning
of word. Let us assume, as in section 5, that our 1D trap is twisted into
a ring. In the presence of a soliton the demand, that ψ is single valued,
results in the quantization condition

m

�

∮
vs · dl − ∆ϕ (v) = 2πl, l = 0,±1, ... (54)

Thus, in the presence of a soliton, the circulation of superfluid velocity
is not quantized and depends on the soliton velocity.

6.2 One-dimensional Bose gas
In previous sections we considered condensates which are finite in x

and y directions and unrestricted in the z-direction. Our investigations
were based on the mean-field theory. However, conditions for the ap-
plicability of such an approximation are by no means obvious and the
situation changes drastically when the radial size of the condensate be-
comes less then the average distance between particles.

Such a tight confinement can be reached in a optical lattice created by
two perpendicular standing waves [22]. In this geometry one has an ar-
ray of parallel elongated condensates, which practically have no overlap
and can be considered as independent. The length of each condensate
was about 15 µm and the diameter about 60 nm. so that they can be
considered as one-dimensional.

Strictly speaking, there is no BEC in 1D systems. The presence of
BEC means that the one-body density matrix exhibits the non-diagonal
long range order, i.e. n(1) (r) =

〈
Ψ̂†(r)Ψ̂(0)

〉
→ const when r → ∞.

In a 1D Bose-system at T = 0 the density matrix decays according to
an algebraic law, due to the divergence of long wave-length fluctuations:

n(1) (|z|) ∝ |z|−ν , ν =
mc

2π�n
. (55)
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where, as before, c is the velocity of sound and n is the linear density. The
mean-field theory is valid, when the decay is slow enough, that is when

ν =
mc

2π�n
� 1. (56)

This happens if the gas is dense enough. As a condition for the appli-
cability of mean-field theory this is the opposite of that for 3D systems.
Vice-versa, when the 1D gas is dilute, the atoms interact as impenetrable
particles with an infinitely high repulsive potential. Indeed, the scatter-
ing properties of two particles in 1D are determined by their reflection
probability. This tends to zero as the wave length of the scattering par-
ticles increases. But in the 1D dilute gas the relevant wave length is of
the order of 1/n, and tends to infinity when n → 0.

It was shown by Girardeau [23] that the ground state energy and the
spectrum of elementary excitations of a 1D Bose-gas of impenetrable
particles coincide with the ones of an ideal Fermi-gas. The repulsion of
Fermi particles due to their statistics imitates in this limit the interac-
tion between Bose-particles. Simple calculations give that in this case
c = π�n/m, so that ν = 1/2. The theory for a point interaction with
arbitrary strength was developed by Lieb and Liniger[24]. According
to this theory, elementary excitations in the system can be described
as creation of fermionic “particles” and “holes”. However for ν < 1/2
the excitations exhibit interactions similar to the one in a Fermi-liquid.
When ν decreases, the “particles” branch of excitations transforms into
the Bogoliubov phonon spectrum of an interacting Bose gas, and the
“holes” branch transforms into the soliton dispersion written in equa-
tions (49) and (52) [25, 26].

It is important that Fermionic spectra do not satisfy the Landau cri-
terion for superfluidity. According to this criterion a body can move in
the system without friction if its velocity V is less then the velocity of
sound. For a spectrum of fermionic type the body can always create a
particle-hole pair with a small energy ε near the Fermi surface with total
momentum 2pF . Notice that in our 1D spinless gas one has pF = π�n,
which just coincides with the maximum momentum of the solitons (53).
Thus the Landau condition for creation of excitations V > min (ε/p) can
be satisfied for any V .

One can estimate the drag force for small V . In paper [27] an im-
purity moving through the gas and interacting with the gas by a weak
potential was considered. The energy dissipation and the drag force can
be calculated using the dynamic form factor of the gas S (ω, k) . If the
potential is giδ(z − V t), the drag force is

FV = −g2
i n

�

∞∫
0

dk

2π
kS (kV, k) (57)
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The form-factor has been calculated by generalizing of the Haldane me-
thod [28] for the calculation of correlation functions in the case of time-
dependent correlations. S (ω, k) at small ω and finite k is different from
zero for ω > c |∆k| ≡ c |k − 2pF/�| . In this region

S (ω, k) = A
nc

�

(
�

mc2

)1/ν [
ω2 − (c∆k)2

] 1
2ν

−1
. (58)

One can calculate the coefficient A at ν = 2 and ν � 1. Integration
(57) gives the drag force

FV ∝ V ( 1
ν
−1). (59)

In the Girardeau limit ν = 2 one has the force FV ∝ V and the Bose
gas behaves, from the point of view of friction, as a normal fluid where
the drag force is proportional to the velocity. On the contrary, in the
mean-field limit the force is very small and the behavior of the system
is analogous to the one of a 3D superfluid. However, even in this limit,
the presence of the small drag force makes a great difference. Let us
imagine that our system is twisted in a ring and that the impurity rotates
around the ring with small angular velocity. If the system is superfluid,
in the common mean of words, the superfluid part must stay at rest.
The presence of a drag force, conversely, means that equilibrium will
be reached only when the gas as a whole will rotate with the angular
velocity of the impurity. From this point of view the superfluid part of
the 1D Bose gas is equal to zero even at T = 0.

Notice that the process of dissipation, which in the language of fermio-
nic excitations can be interpreted as the creation of a particle-hole pair,
corresponds in the mean-field limit to creation of a phonon and a low-
energy soliton. It seems that such a process cannot be described in the
mean-field approach.
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OF QUANTUM INTEGRABLE SYSTEMS
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University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Abstract Recent developments in statistical mechanics of quantum integrable sys-
tems are reviewed. Those studies are fundamental and have a renewed
interest related to newly developing fields such as atomic Bose-Einstein
condensations, photonic crystals and quantum computations. After a
brief summary of the basic concepts and methods, the following three
topics are discussed. First, by the thermal Bethe ansatz (TBA), a hard-
core Bose gas is exactly solved. The model includes fully the effect of
excluded volume and is identified to be a c = 1 conformal field theory.
Second, the cluster expansion method based on the periodic boundary
condition for the Bethe wavefunction, which we call the Bethe ansatz
cluster expansion (BACE) method, is developed for a δ-function gas
and the XXX Heisenberg chain. This directly proves the TBA and
reveals intrinsic properties of quantum integrable systems. Third, for
a δ-function gas, the integral equations for the distribution functions
of the quasi-momentum and the quasi-particle energy are solved in the
form of power series. In the weak coupling case, the results reproduce
those of Bogoliubov theory.

1. Introduction
We define integrable systems. A quantum system is said to be inte-

grable when the system has a sufficient number of independent conserved
operators Ij which commute each other:

[Ii, Ij] ≡ IiIj − IjIi = 0. (1)

This definition is a natural extension of the well-known Liouville theorem
in classical mechanics. In classical mechanics, a system with N degrees
of freedom is called to be completely integrable when there exist N
independent conserved quantities which are in involution with a proper
Poisson bracket, {Ii, Ij}P. B. = 0. For such a classical system, the initial
value problem can be solved by quadratures.
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One of our favorite models in the study of integrable system is the
nonlinear Schrödinger (NLS) model [1]:

iφt + φxx − 2c|φ|2φ = 0. (2)

It maintains solitons, that is, nonlinear waves with particle properties.
More rigorously, solitons are defined to be localized waves in completely
integrable systems. The model has been applied in various fields of
physics such as plasma physics, hydrodynamics and nonlinear optics. A
renewed interest in (2) comes from a fact that it is a one-dimensional
Gross-Pitaevskii equation which describes the Bose-Einstein condensate.
The corresponding quantum models, the first and second quantized ver-
sions, are also known to be integrable.

It is interesting that the classical soliton for the attractive case c < 0
arises in a limit of the quantum field theory. We denote by |n, X, t〉v
the n-particle bound state in the moving frame with the center of mass
X and by φs(x, t) a moving bright soliton. An explicit formula is given
by [2]

lim
n→∞v〈n, X ′, t|φ(x)|n + 1, X, t〉v (3)

=φs(x, t)
∣∣∣∣
x0=X

δ

(
X ′ − n + 1

n
X +

1
n

(x − vt)
)

, (4)

where, with κ = −c > 0,

φs(x, t) =2κ−1/2η exp
[−4i(ξ2 − η2)t − 2iξx + iθ0

]
× sech [2η(x − x0) + 8ξηt] . (5)

For the repulsive case c > 0, this kind of explicit formula which links
the macroscopic waveform with the microscopic quantum state has not
been found. This problem remains to be solved.

At zero temperature, the properties of quantum integrable systems
are analyzed by the Bethe ansatz method [3, 4]. Needless to mention
that it is not a hypothesis but is exact; the wavefunction form is assumed
and then proved. Such wavefunction is called Bethe wavefunction. As an
alternative approach, the inverse scattering method, which was originally
developed to solve classical soliton equations, has been extended to the
quantum theory. The quantum inverse scattering method provides us a
unified framework to treat quantum integrable systems in an algebraic
manner [5]. Therefore, it is called algebraic Bethe ansatz while the
original Bethe ansatz is referred to as coordinate Bethe ansatz.

For finite temperature, there are two eminent methods; the ther-
mal Bethe ansatz (TBA) method [6] and the quantum transfer matrix
(QTM) [7] method. In the former, a form of the entropy is assumed and
the equilibrium properties are determined by minimization of the free
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energy. The TBA is often called the Yang-Yang method. In the latter,
the equivalence of a 1-dimensional quantum system and a 2-dimensional
classical system is used. By exchanging “quantum” and “space” direc-
tions, we find that the free energy and the correlation length are obtained
only from the largest and the second largest eigenvalues of the transfer
matrix respectively. Both methods have been successfully applied to var-
ious models, but there should be further investigations on their validity
and physical significances.

2. Hard-core Bose gas
We begin with an application of the TBA. A simple but non-trivial

example of the quantum integrable particle system is given by a one-
dimensional hard-core Bose gas. The Hamiltonian for the N particles
is

H = −
N∑

j=1

�2

2m

∂2

∂x2
j

+
∑
i<j

v(xi − xj), (6)

with the inter-particle potential,

v(x) = ∞ for |x| < a,

= 0 for |x| > a. (7)

Hereafter, we choose � = 1 and 2m = 1 to simplify the expressions. The
potential (7) implies that a is the diameter of each “atom”.

A two-body problem is solved as follows. The momenta of particle 1
and 2 are written respectively as k1 and k2. Without loss of generality,
we set k1 > k2. The eigenfunctions before and after the collision are
ei(k1x1+k2x2) and ei(k1x2+k2x1)+i∆(k1−k2). The connection relation at x2 =
x1 + a determines the phase shift ∆(k) due to the collision,

∆(k) = −πs(k) − ak, k ≡ k1 − k2, (8)

where s(k) is the sign function, s(k) = 1 for k > 0 and s(k) = −1 for
k < 0. This information is enough for the TBA. Substituting a physical
phase shift (8) into the bosonic formulation [8], we obtain

p =
1

2πβ

∫
dk log

(
1 + e−β(k2−µ+ap)

)
, (9)

N

L
=

1
2π

(
1 − a

N

L

)∫
dk

1
eβ(k2−µ+ap) + 1

, (10)

E

L
=

1
2π

(
1 − a

N

L

)∫
dk k2 1

eβ(k2−µ+ap) + 1
, (11)
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where β = 1/kBT and L is a size of the box. Note that the pressure p
and the number density n ≡ N/L appear implicitly in the formulae. We
also note that the phase shift ∆(k) is related to the 2-particle scattering
matrix S(k) by S(k) = exp (i∆(k)).

2.1 Classical limit
In the limit of the classical statistical mechanics, that is, the Boltz-

mann statistics, (9) and (10) become

p =
1

2πβ

∫
dk e−β(k2−µ+ap), (12)

N

L
=

1
2π

(
1 − a

N

L

)∫
dk e−β(k2−µ+ap). (13)

The comparison of (12) and (13) readily leads to the equation of state,

pβ =
1

l − a
, l =

L

N
. (14)

This is known as the Tonks equation [9, 10], which is exact in classical
statistical mechanics. By the same reason, a one-dimensional hard-core
gas is sometimes called the Tonks gas. A derivation of this classic result
through the TBA is novel and amusing.

2.2 Low-temperature expansions
For further investigation, it is convenient to introduce the “shifted

variables”,

µ̂ = µ − ap, n̂ =
1

l − a
=

n

1 − an
. (15)

Physical meanings are the following: ap represents an energy required
to make a “space a” per particle against the pressure p. l − a is the
average space available for each particle. In terms of these variables, (9)
and (10) are

p =
1

2πβ

∫
dk log

(
1 + e

−β(k2−µ̂)

)
, (16)

n̂ =
1
2π

∫
dk

(
eβ(k2−µ̂) + 1

)−1
. (17)

To evaluate (16) and (17) at low temperatures, we apply the well-known
Sommerfeld formula. Solving them consistently, we obtain

p =
2
3π

(πn̂)3 +
π

6
(kBT )2

πn̂
+

π3

30
(kBT )4

(πn̂)5
+ · · · . (18)
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Note that the limit a → 0 (therefore, n̂ → n) is not the free bosons, but
the free fermions. Further, the chemical potential µ, the energy E and
the specific heat per unit length C are calculated as

µ = (πn̂)2
(

1 +
2
3
an̂

)
+

π2

12
(kBT )2

(πn̂)2
(1 + 2an̂)

+
π4

36
(kBT )4

(πn̂)6

(
1 +

6
5
an̂

)
+ · · · , (19)

E

L
=

1
2l

[
2
3

(πn̂)2 +
π2

6
(kBT )2

(πn̂)2
+

π4

30
(kBT )4

(πn̂)6
+ · · ·

]
, (20)

C =
k2

B

6ln̂2
T +

k4
B

15lπ2n̂6
T 3 + · · · . (21)

In the above expressions, the effects of excluded volume are seen clearly.
The conformal field theory has been invented to give a consistent

description of (1 + 1)-dimensional quantum systems at criticality. As a
consequence, it predicts that the linear specific heat has a form,

C =
π

3
k2

Bc

v
T, (22)

where c is the conformal charge (only in this section). The velocity v

in the formula (22) is calculated from (18) as v2 = 2∂p/∂n =
(
2πn̂2l

)2.
Then, a comparison of (21) and (22) leads to

c = 1. (23)

This concludes that the one-dimensional hard-core Bose gas obeys the
c = 1 conformal field theory at T = 0 [11].

3. Bethe ansatz cluster expansion method
In statistical mechanics, the cluster expansion method is the most

standard in dealing with interacting particle systems. The method was
developed to treat imperfect gases [12] and has been extended into the
quantum theory by many researchers [13]. In what follows, we formulate
the cluster expansion method for quantum integrable systems.

3.1 δ-function Bose gas
We first consider a one-dimensional system of bosons with repulsive

δ-function interaction. The Hamiltonian of the system is

HN = − �2

2m

N∑
j=1

∂2

∂x2
j

+ c
∑
j �=l

δ (xj − xl) . (24)
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The coupling constant c is assumed to be positive, and hereafter we
set � = 1 and 2m = 1. This many-particle system is a first quantized
version of the nonlinear Schrödinger model (2). While the case c = 0
is nothing but free bosons, the limit c = ∞ reduces to free fermions
(impenetrable gas) just as the a = 0 limit of the hard-core bosons in the
previous section. The correspondence of the impenetrable gas and the
hard-core Bose gas will be discussed in § 4.1.

We assume that the system is in a box of length L and satisfies the
periodic boundary condition. An important difference from the hard-
core bosons is that particles can pass through each other for a finite
c. The N -particle wavefunction (Bethe wavefunction) consists of linear
combinations of N single particle wavefunctions with the interchange
coefficients. The total energy E and the wavenumber (or, equivalently
the momentum) kj are determined by the following relations,

E =
∑

j

k2
j , (25)

kjL = 2πmj +
∑
l�=j

∆(kl − kj) . (26)

Here ∆(k) is the phase shift due to the two-particle scattering,

∆(k) = 2 arctan (k/c) , (27)

and mj are integers (half-integers) for N = odd (even) satisfying mj <
mj+1. The relation (26) is derived from the periodic boundary condition
imposed on the N -particle wavefunction and is referred to as the Bethe
ansatz (BA) equation.

We are interested in calculating the N -particle partition function,

ZN = Tr e−βHN , β = 1/kBT. (28)

The n-particle cluster integral bn is related to the partition function as

∑
n≥1

bnzn = log

⎛⎝∑
N≥0

ZNzN

⎞⎠ , z = eβµ. (29)

By definition, Z0 = 1.
It is remarkable that we can evaluate (28) and (29) explicitly. By

use of only the BA equation, the explicit forms of ZN and bn are ob-
tained [14]. As far as the authors know, all the cluster integrals {bn} for
an interacting system are given explicitly for the first time. An essential
step is the replacement of the summations over {mj} by the integrals
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over {kj} in the large L limit (the thermodynamic limit). Instead of writ-
ing those derivations and expressions, we emphasize two consequences:

(a) The cluster integrals {bn} consist of only a finite number of terms
with the effective interaction K(k) ≡ d∆(k)/dk = 2c/(k2 + c2).

(b) From the explicit forms of {bn}, the following nonlinear integral
equation (Yang-Yang integral equation) for the distribution function
of the quasi-particle energy, ε(k), is derived,

ε(k) = k2 − µ − 1
β

∫
dq

2π
K(k − q) log

(
1 + e−βε(q)

)
. (30)

This directly proves the thermal Bethe ansatz (TBA) method.

3.2 XXX Heisenberg model
We consider the spin-half XXX Heisenberg chain whose Hamiltonian

is

H = −J
L∑

j=1

(
Sx

j Sx
j+1 + Sy

j Sy
j+1 + Sz

j Sz
j+1

)
− h

L∑
j=1

Sz
j . (31)

Here Sα
j , α = x, y, z, are the Pauli matrices on the site j, L is the total

number of sites, J is the coupling constant and h expresses the external
magnetic field. We assume the periodic boundary condition and use a
unit which makes J = 1. Let M be the number of up-spins. Since M is
a conserved quantity, we can analyze the system with a fixed M . The
total energy E and Bethe ansatz equation (periodic boundary condition)
are respectively given by

E + Mh =
M∑

m=1

2
x2

m + 1
, (32)

(
xm + i

xm − i

)L

=
∏

m′ �=m

xm − xm′ + 2i
xm − xm′ − 2i

. (33)

From the viewpoint of the Bethe ansatz cluster expansion method, an
interesting aspect is that BA equation (33) has complex solutions which
correspond to bound states. Indeed, it is a motivation for studying here
the Heisenberg chain. This difficulty, known as the string hypothesis
among experts, is removed by a proper choice of the integral path or a
careful treatment of the sign of the Jacobian from {mj} to {xm}. Re-
mark that in the thermodynamic limit integers mj can be regarded as
continuous variables. Again, we simply write the results of the analy-
sis [15].
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(a) The partition function and the free energy are derived only from the
BA equation. Those agree with the results of TBA with the string
hypothesis.

(b) The following integral equation [16] for the free energy f is obtained,

ef ≡
(
Tr e−βH

)1/L
= u(0)z−1/2, z = e−2βh, (34)

u(x) = z + 1 +
∮

0+

⎡⎢⎢⎣exp
(
− 2Jβ

(y + i)2 + 1

)
x − y − 2i

+
exp

(
− 2Jβ

(y − i)2 + 1

)
x − y + 2i

⎤⎥⎥⎦
× z

u(y)
dy

2πi
. (35)

To conclude this section, we summarize the significances of the Bethe
ansatz cluster expansion (BACE) method. First, Tr e−βH can be cal-
culated only from the Bethe ansatz equation (periodic boundary condi-
tion). Second, the method gives a proof of TBA and is free from the
string hypothesis. Third, the BACE method captures some essential
features of quantum integrable systems. It is known that if all the S-
matrices (scattering matrices) are given we may express the partition
function and the cluster integrals in terms of them. This is a general
statement. The quantum integrable systems are characterized by fac-
torized S-matrices: N -particle S-matrix is expressed as a product of
N(N − 1)/2 2-particle S-matrices. Recall that the 2-particle scattering
matrix S(k) and the phase shift ∆(k) are related by S(k) = exp (i∆(k)).
This special feature of quantum integrable systems is the origin of a fact
that there exist only a finite number of terms in each cluster integral.

4. Solutions of the Lieb-Liniger integral equation
We again consider the δ-function Bose gas (24) for the repulsive case

c > 0. We like to investigate the ground state properties of the system.
For a set of momenta {kj}, define

f(kj) = 1/ [L (kj+1 − kj)] . (36)

The meaning of f(k) is that for a large system

Lf(k) dk = number of k’s in (k, k + dk). (37)

We call it the distribution function of the quasi-momentum. From (26)
with (27), we have

2c

∫ K

−K

f(p)
(p − k)2 + c2

dp = 2πf(k) − 1, (38)
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where K is the cut-off momentum. We introduce new variables

k = Kx, c = Kλ, f(Kx) = g(x), (39)

and change (38) into a dimensionless form,

1 + 2λ
∫ 1

−1

g(x)
λ2 + (x − y)2

dx = 2πg(y). (40)

We refer to (40) as the Lieb-Liniger (LL) integral equationLieb-Liniger
integral equation. To express the strength of the interaction, there exist
two parameters,

λ =
c

K
, γ =

c

ρ
. (41)

In this section, we write the number density as ρ = N/L. An interplay
of λ and γ turns out to be interesting, in particular, in the weak coupling
case.

Contrary to the intuition, the small c case is difficult. A naive discus-
sion leads to a contradiction: As λ → 0, the kernel 2λ/

[
λ2 + (x − y)2

]
becomes a representation of 2πδ(x − y) so that in this limit (40) reads
1+2πg(y) = 2πg(y). We should remark that c = 0 is a singular point of
the theory. We quote a sentence from Lieb-Liniger’s paper [4], “There
does not seem to be any simple way to get a systematic, reliable expan-
sion of g(x) as λ → 0.”

In terms of the distribution function g(x), the ground state energy is

E0 = Nρ2e(γ), ρ = N/L,

e(γ) =
γ3

λ3

∫ 1

−1
g(x)x2 dx, (42)

where the number of particle is fixed by

γ

∫ 1

−1
g(x) dx = λ. (43)
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A method of solutions has been proposed [17]. The method is simple
and direct. We substitute power series expansions,

g(y) =
∞∑

n=0

any2n, (44)

1
λ2 + (x − y)2

=
∞∑

m=0

∞∑
l=[(m+1)/2]

(−1)m−l

(
l

m − l

)

× (2x)2l−m

(λ2 + x2)l+1
ym, (45)

into (40). Then, the LL integral equation (40) reduces to a set of linear
algebraic equations for {an}. We analyze the set of equations for strong
and weak coupling cases.

4.1 Large γ (large λ)
This corresponds to the strong coupling case. The algebraic equations

for a0 and a1 are easily solved to obtain

g(x) = a0 + a1x
2, (46)

a0 =
(

2π − 4 arctan
1
λ

+
8

3πλ4

)−1

,

a1 = − 4
λ3

(
2π +

4
3

1
λ3

)−1

· a0. (47)

Using (46) with (49) in (43), we have

λ =
1
π

(
γ + 2 − 4π2

3
γ + 1

γ(γ + 2)2

)
. (48)

and therefore

a0 =
γ + 2
2πγ

(
1 − 2π2

3γ(γ + 2)

)
, a1 = − π

γ(γ + 2)
. (49)

Those improve the results of the previous work [4]. We considered only
a0 and a1, because the series (44) converges rapidly. It can be shown
that the leading term of ap is ap = (−1)p(2/π)λ−(2p+1)a0, p ≥ 1, for
large λ.

The ground state energy e(γ) is calculated from (42),

e(γ) =
π2

3

(
γ

γ + 2

)2 (
1 +

32π2

15(γ + 2)3

)
. (50)
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It is instructive to compare this result with (20) for the hard-core Bose
gas. The “physical” phase shift due to the two-particle scattering is

∆B(k) = −2 arctan(c/k). (51)

Remark that (27) is for the fermion counting and (51) is for the boson
counting. By equating (8) and (51) in the low energy limit k → 0, we
have

a = −2/c. (52)

We see that with the relation (52) the first terms of (20) and (50) are
exactly same. At first sight, it seems to be strange that the diameter a
is negative for the repulsive case c > 0. We may interpret this as follows.
Recall that, in contrast to the hard-core interaction, particles can pass
through each other in the δ-function interaction. This transparency
effect amounts to an effectively negative diameter a in the limits k → 0
and c → ∞. Many researchers discuss the equivalence of the a = 0
(Tonks-Girardeau gas) [18] and c = ∞ (impenetrable gas) cases. The
relation (52) explains such equivalence quantitatively.

4.2 Small γ (small λ)
As remarked before, this case is known to be difficult. We solve a set

of equations for a1, . . . , aN and take the limit N → ∞ in {an}. The
result is

a0 =
1

2πλ
+

1
4π

∞∑
m=0

[
(2m − 1)!!

(2m)!!

]2

, (53)

al = − 1
2πλ

(2l − 3)!!
(2l)!!

− 1
4π

∞∑
m=0

(2m + 1)!! (2m − 1)!! (2l − 1)!!
[(2m)!!]2 (2l)!! (2l − 2m − 1)

, (54)

and therefore we obtain

g(x) =
1

2πλ
(1 − x2)1/2 − 1

4π

∞∑
l=0

∞∑
m=0

(2m + 1)!! (2m − 1)!! (2l − 1)!!
[(2m)!!]2 (2l)!! (2l − 2m − 1)

x2l.

(55)
In contrast to the large λ case, all ap are in the same order of λ.

The physical quantities are finite in the expansion with respect to
γ (not with respect to λ). The divergent sums cancel out when λ is
replaced by γ through the relation (43). For instance, the ground state



204 NONLINEAR WAVES: CLASSICAL AND QUANTUM ASPECTS

energy and the chemical potential are respectively given by

e(γ) = γ − 4
3π

γ3/2, (56)

µ = ρ2

(
3e − γ

de

dγ

)
= 2ρ2

(
γ − 1

π
γ3/2

)
. (57)

The above results agree with those of the Bogoliubov theory. Remark
that the physical quantities are expressed in the power series of γ1/2 =
(c/ρ)1/2. This method can be applied to the Yang-Yang integral equation
at T = 0 [19].

An intriguing fact is that the LL integral equation appears in a com-
pletely different subject, the circular disk condenser [20, 21]. We consider
the condenser of the radius 1 whose two plates are separated by a dis-
tance λ. Coordinates are taken as follows: the radial distance from the
common axis of the disks is taken to be ρ, the distances from the disks
to be ζ, ζ ′, respectively. E. R. Love (1949) found that the potential φ
due to the disks is

φ(ρ, ζ, ζ ′) =
V0

π

∫ 1

−1

{[
ρ2 + (ζ + it)2

]−1/2 − [
ρ2 + (ζ ′ − it)2

]−1/2
}

× h(t) dt,

(58)

where h(t) is determined by

h(t) −
∫ 1

−1

ds

π

λ

λ + (s − t)2
h(s) = 1. (59)

The Love equation (59) is exactly the same form as the LL integral
equation; to be precise, h(x) in (59) corresponds to 2πg(x) in (40). For
small λ (small separation), the capacitance was calculated as [20]

C =
1
2π

∫ 1

−1
h(t) dt =

1
4λ

+
1
4π

log
16π

λe
+ o(1). (60)

This result is originally by G. Kirchhoff (1877).
On the other hand, the solution (55) gives∫ 1

−1
g(x) dx =

1
4λ

− 1
2π

+
1
4

∞∑
m=0

[
(2m − 1)!!

(2m)!!

]2

. (61)

We regularize the last term as follows. We set

F (k) ≡
∞∑

m=0

[
(2m − 1)!!

(2m)!!

]2

k2m =
2
π

K(k). (62)



Statistical mechanics of quantum integrable systems 205

The function K(k) is the complete elliptic integral of the first kind with
the modulus k. Since

K(k) =
1
2

log
(
16/(1 − k2)

)
as k2 → 1 − 0, (63)

if we choose 1 − k2 = λ/πe, we have∫ 1

−1
g(x) dx =

1
4λ

− 1
2π

+
1
4

2
π

lim
k2→1−0

K(k)

=
1
4λ

− 1
2π

+
1
4π

log
16πe

λ
, (64)

which agrees with the Kirchhoff formula (60). This kind of regularization
seems to be necessary in perturbative calculations. At the same time, a
mystery remains that the physical quantities in the power series of γ do
not contain the logarithmic terms as we observe in (56) and (57).

In this section, we have discussed only the ground state properties
of the δ-function gas. A more delicate problem which we meet in the
analysis at finite temperatures is that the T = 0 limit and the c = 0
limit do not commute, implying T = c = 0 is a singular point [22].
The authors believe that there are at least two regimes in c-T (or γ-T )
plane characterized by the sign of the chemical potential µ; the fermionic
regime (µ > 0) and the bosonic regime (µ < 0). Evaluation of correlation
functions may give an additional information on the classification of
the regimes [23, 24]. To summarize, for the δ-function Bose gas, TBA
describes well the fermionic properties in the strong coupling regime but
further investigations are required to clarify the bosonic properties in
the weak coupling regime.
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Abstract We report a series of experiments performed on the dynamics of a Bose-
Einstein condensate (BEC) in the presence of a periodic potential re-
alized by means of an optical lattice. BEC allows to finely investigate
properties of periodic potentials already known from the solid state
physics, but also opens the field of non-linear matter waves in periodi-
cal structure where interesting new effects are predicted as for instance
the dynamical instability.

Keywords: Bose-Einstein condensates, periodic structure

1. Introduction
The field of Bose-Einstein condensates (BECs) in optical lattices con-

sistently grew up in the last years starting from the first work by M.
Kasevich and coworkers on the macroscopic interference of atomic de
Broglie waves tunnelling from a vertical array of BECs [1]. Many results
have been then reported as the observation of squeezed states in a BEC
[2], the realization of a linear array of Josephson junctions [3] with BECs,
the observation of Bloch oscillations and Landau-Zener tunnelling [4, 5],
the study of the behaviour of atoms located within an optical periodic
potential whose amplitude is periodically or randomly modulated [6, 7],
and culminating with the observation of the quantum phase transition
from a superfluid to a Mott insulator [8]. Recently, the general interest
of this field has been extended to a careful study of the loading of BECs
in an optical lattice [9] and to the observation of collapse and revival of
the matter wave field of a BEC [10].
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In the second section of the paper we report experiments performed
in our laboratory on a magnetically trapped condensate moving in the
presence of a 1D optical lattice. Low lying collective modes were inves-
tigated in the regime of small amplitude oscillations where the system
behaves as a superfluid . When the amplitude of the dipole oscillations
becomes bigger than a critical value a dynamical transition from the
superfluid to an insulator have been observed that can be understood
in terms of dynamical instability occurring for a non-linear system in a
periodic potential.

The third section of the paper is devoted to the description of an
experiment where a BEC freely expands in the presence of a 1D opti-
cal lattice. We measured the velocity of the BEC in the lattice as a
function of its quasi-momentum finding a perfect agreement with the
Bloch theory of a particle in the periodic potential. From the measured
Bloch velocity we can extract the effective mass that also affects the
shape of the expanded condensate. In particular we access region of
negative effective mass where the condensate inside the optical lattice
contracts instead of expanding. In this region the mean field interaction
increases and the coupling between different expanding directions results
in a faster expansion perpendicularly to the optical lattice axis.

2. Dynamics of a BEC in a 1D optical lattice
driven by a harmonic potential

In a first series of experiments we have studied the properties of a
condensate produced in the combined potential of a harmonic magnetic
trap and a 1D optical lattice. BEC in a sample of dilute gas is ob-
tained by first laser cooling the thermal vapour and then by applying
an evaporative cooling stage in a magnetic trap [11]. Our 87Rb conden-
sate is produced in the F = 1, MF = −1 atomic state in a harmonic
magnetic potential with a cylindrical symmetry, characterized by fre-
quencies ωz = 2π × 9 Hz and ω⊥ = 2π × 90 Hz respectively along the
axial and the radial direction. The condensate contains ∼ 105 atoms.
During the evaporation of the atomic sample trapped in the magnetic
field we also switch on the periodic potential. The periodic potential is
produced with a far detuned laser beam shined along the axial direction
and retroreflected in order to realize a standing wave. The laser beam
is provided by a commercial Ti-Sa laser working at few nm on the blue
side of the D1 transition of Rb at 795 nm. In this way, the condensate
is produced in the of this combined potential: harmonic (magnetic) +
periodic in 1D (optical) [12] given by:
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V = Vmag + Vopt =
1
2
m(ω2

zz
2 + ω2

⊥(x2 + y2)) + sER cos2(kLz) (1)

where m is the atomic mass, ER = �2k2
L/2m is the recoil energy one

atoms acquires when it absorbs one lattice photon and s is a dimension-
less parameter.

Typically the condensate splits into ∼ 200 optical wells each contain-
ing ∼ 500 atoms. We have studied the dynamics of the condensate in
this potential by inducing low lying collective modes. In particular we
have studied the center-of-mass dipole oscillation of the cloud [3] and
the quadrupole and transverse breathing modes corresponding to shape
oscillation of the cloud and already extensively studied for a condensate
trapped in a pure harmonic potential [13]. In the regime of small ampli-
tude oscillation the system performs a superfluid motion and the char-
acteristic frequencies of the collective modes are shifted towards lower
values as a consequence of the presence of the periodic potential.

2.1 Superfluid regime
In this section we report the experimental results concerning the fre-

quencies of the low lying collective modes we investigated as a function
of the optical potential depth. In particular we investigate the dipole
mode, corresponding to the center-of-mass oscillation of the system, and
the quadrupole and transverse breathing modes corresponding to shape
oscillations.

We induce the dipole mode by suddenly displacing the minimum of
the magnetic harmonic potential along the axial direction. Then we al-
low the BEC to move in the combined trap and after a variable time
we switch off both the magnetic and the optical potential, let the cloud
expand for 28 ms and take an absorption image of the BEC. From the
expanded cloud picture we extract the center-of-mass position. For small
enough displacements of the magnetic potential minimum the BEC per-
forms a harmonic oscillation characterized by a frequency consistently
smaller than the frequency of the harmonic potential and depending on
the height of the optical potential. In Fig.1 we show the measured dipole
frequencies as a function of the lattice height: as the optical potential
is increased the frequency shifts down. The new frequencies can be ob-
tained introducing an effective mass as done in [14]. We remind here that
in the tight binding regime we also demonstrated that the dipole mo-
tion of an array of condensates in the presence of the periodic potential
can be described by coupled Josephson equations for the center-of-mass
position of the array and the relative phase of two condensates in two
adjacent optical wells [3].
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Figure 1. Measured dipole frequency of the condensate performing center-of-mass
oscillation in the harmonic magnetic potential in the presence of an optical lattice.
The frequency is reported as a function of the optical potential depth (in unit of
the recoil energy), the dashed line corresponds to the dipole frequency in the pure
harmonic trap while the solid line has been obtained taking into account the periodic
potential in order to calculate the effective mass [14].

The quadrupole and transverse breathing mode of the BEC in the
combined potential where excited by a resonant modulation of the radial
frequency of the trap. This procedure excites modes with zero angular
momentum along the symmetry axis of the trap. For an elliptical trap,
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Figure 2. a) Measured quadrupole frequency of the condensate trapped in the
combined potential (harmonic magnetic trap + 1D optical lattice). The frequency is
reported as a function of the optical potential depth (in unit of the recoil energy), the
dashed line corresponds to the quadrupole frequency in the pure harmonic trap while
the solid line has been obtained taking into account the periodic potential in order to
calculate the effective mass [14]. b) Frequency of the quadrupole mode as a function
of the dipole mode frequency measured for different values of the optical lattice depth
from 0ER to 3.7ER. The line represents a linear fit giving a slope of 1.57 ± 0.01.
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the lowest energy mode of this type corresponds to a deformation of the
condensate shape characterized by oscillations of the radial and axial
widths with the same frequency but with opposite phases (quadrupole
mode). Increasing the frequency another collective mode with zero an-
gular momentum along the symmetry axis can be excited which corre-
sponds to an oscillation of the radial and axial widths with the same
frequency and with the same phase (breathing mode). In the Thomas-
Fermi regime, for small amplitude oscillations and strongly elongated
traps, the two modes are characterized, respectively, by the frequencies√

(5/2)ωz and 2ω⊥ [16]. In this limit the two frequencies are quite dif-
ferent and the axial and radial excitations are almost decoupled. In the
quadrupole mode the axial width oscillates with a much larger ampli-
tude than the radial one. In the transverse breathing mode the situation
is reversed and the axial width oscillates with a much smaller amplitude
than the radial one. After exciting the collective mode, we let the cloud
evolve for a variable time t, then we switch off the combined trap, let the
BEC expand for 29 ms and take an absorption image of the expanded
cloud along one of the radial directions. From the image we extract the
radial and axial radii of the condensate as a function of time t. We use
a nonlinear least squares fit of the data with a sine function to obtain
the frequencies of the modes with their errors.

Only the quadrupole mode frequency is shifted by the presence of
the optical potential (Fig.2a) and scales in the same way as the dipole
frequency (Fig.2b), while the transverse breathing mode results unaf-
fected [15]. The experimental findings are consistent with the theoreti-
cal predictions of [14] where the modes frequencies have been obtained
by generalizing the hydrodynamic equation of superfluids for a weakly
interacting Bose gas to include the effects of a periodic potential.

2.2 Dynamical Superfluid-Insulator transition
A non-linear system, as an interacting Bose-Einstein condensate, mov-

ing in a periodic potential is expected to experience a dynamical insta-
bility when imaginary frequencies arise in its excitation spectrum [17].
The dynamical instability is due to an exponential growth of small per-
turbations that destroy the condensate. In the tight binding regime,
when the lattice height is large enough in order to obtain an array of
condensates trapped in the minima of the periodic potential, an ana-
lytical theoretical treatment becomes possible [18]. In this regime the
dynamical instability can be studied observing the dipole oscillation in
the combined trap (harmonic+periodic). The instability takes place
when the amplitude of the dipole oscillations or, equivalently, the veloc-
ity exceeds a critical value depending on the optical lattice depth. As a
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consequence of the transition the system loses the long range coherence
(dephasing among condensates trapped in different sites of the periodic
potential) and localizes far from the minimum of the magnetic harmonic
trap (the center-of-mass motion is inhibited). In this sense a transition
from a superfluid to an insulator is expected.

We investigated this transition varying the amplitude of the dipole
oscillation of an array of condensates for different values of the optical
lattice depth ranging from 3 to 14 ER [19]. In Fig.3a we show the center-
of-mass evolution of an array of condensates moving in a combined trap
where the optical lattice depth is 5 ER for two different displacements
of the harmonic trap minimum. For a “small” displacement of 30 µm
(open circle in the figure), the system performs a harmonic oscillation,
while for a “large” displacement of 120 µm (filled circles) the atomic
sample slowly moves towards the center of the magnetic potential.

The imaging of the array of BECs after some expansion directly gives
also information about the phase property of the system. The density
profile of the expanded cloud corresponds to the interference of the con-
densates [20, 21]. The interference of a coherent array of condensates
shows up in a clear structure of density peaks separated by a distance
d = (2�kL/m)texp where texp is the expansion time. In particular the
number of visible peaks in the interferogram, as in optics, depends on
the radii of the single condensates, and in our regime of parameter we
expect to observe only three peaks. On the contrary the interference
of condensates with relatively random phase is expected to be a cloud
that spreads out without any structure. In Fig.3b we report the data
points corresponding to the ratio between the radius of the central peak
(Rz) in the interferogram and the distance d taken for the experiments
corresponding to Fig.3a. The “small” displacement data (open circles)
correspond to a constant dimension of the central peak, actually all over
the dynamics the three peak structure remains clearly visible as shown
in the density profile shown on the right side of Fig.3b. On the con-
trary, the “large” displacement data (filled circles) show an increase in
the dimension of the central peak during the evolution of the system in
the combined trap. In this case the density profile rapidly spreads out
as shown in the right side of Fig.3b.

We systematically investigated different values of optical potential
depths and displacements in order to identify the critical values cor-
responding to the transition. In Fig.4 in the plane identified by the
optical potential depths versus displacements we report as open circles
situations corresponding to a clear harmonic oscillation of the conden-
sates, while the filled circles correspond to experimental observation of
the localization of the center-of mass of the atomic cloud. The dashed
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Figure 3. a) Position of the center-of-mass of the atomic cloud in the trap for
an optical potential height of 5 ER. Open circles: “small” displacement (30 µm);
filled circles: “large” displacement (120 µm). The dashed line is the fit to the small-
displacement data with a sine function. b) The axial width (Rz) of the interferogram
central peak normalized to the peak separation d as a function of time spent in the
combined trap after the magnetic trap displacement for an optical barrier height of
5 ER. Open circles correspond to the “small” displacement of 30 µm; filled circles
correspond to the “large’ displacement of 120 µm. In the right part of the figure we
show the observed density profile at t = 120 ms for the two different displacements.

line corresponds to theoretical predictions of the critical displacements
based on the model in [18] calculated for our experimental parameters
[22]. The theoretical line well distinguish between the two experimental
regions corresponding to superfluid/insulator regimes but the transition
observed in the experiment is not so sharp as predicted from the theo-
retical model in [18]. As a matter of fact, we are not able to measure
a critical displacement and, moreover the loss of phase coherence along
the array of condensates is much less than the predicted one. Close to
the transition, even if the center-of-mass no longer oscillates we still ob-
serve a residual long range coherence in the array that shows up as an
interferogram consisting in the three peak structure. In Fig.5 we show
the imaging of the expanded array corresponding to an optical potential
depth of 4.5 ER and a displacement of 50 µm, already in the critical
region (see Fig.3a). The interferogram is recognizable even if a struc-
ture inside the peaks shows up. This deviations from the 1-D theoretical
predictions of [18] can be understood extending to a 3-D theory. In the
experiments also the radial degrees of freedom can have a role, as a
matter of fact we expect that part of the energy goes into radial modes
instead of contributing to the growth of the perturbation causing the
superfluid-insulator transition associated to the dynamical instability.
On this point a complete 3D simulation can help in understanding the
observed behaviour and preliminary results [23] already show a qualita-
tive agreement with our observations.
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Figure 4. Filled circles represent coherent oscillations (with the three peaks in-
terferogram); empty circles denote pinned motions; the dashed line corresponds to
the theoretical value of the critical displacement [18] for the onset of the dynamical
instability in our system.

Figure 5. Picture of the expanded array corresponding to an optical potential
depth of 4.5 ER and a displacement of 50 µm. In this condition we do not observe
any oscillation of the array but still the system shows a long range phase coherence.

3. Expansion of a BEC in a moving optical
lattice

We now discuss a different experiment where we study the expansion
of a condensate inside a moving 1D optical lattice [24]. This experiment
allows us to load the condensate with different quasi-momenta q in the
periodic structure realized by the optical lattice. From the solid state
physics it is well known that in the presence of an infinite periodic po-
tential the energy spectrum of the free particle is modified and a band
structure arises [25]. In the rest frame of the lattice the eigen-energies
of the system are En(q), where q is the quasi-momentum and n the
band index. According to band theory, the velocity in the n-th band is
vn = �−1∂En/∂q and the effective mass is m∗ = �2(∂2En/∂q2)−1. The
effective mass can be negative for a range of quasi-momentum and this
has been recently recognized as a possibility to realize bright solitons in
BEC with repulsive interactions [26, 27].
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In this experiment we first produce the condensate in a pure harmonic
trap, then we switch off the magnetic harmonic potential let the BEC ex-
pand for 1 ms and we switch on a moving periodic potential. After 1 ms
of expansion the density of the condensate decreases enough to neglect
the non linear term in the Gross-Pitaevskii equation describing an inter-
acting BEC. This means that, as a first approximation, we are allowed
to consider the BEC as a linear probe of the periodic potential energy
spectrum. The moving periodic potential is created by the interference
of two counterpropagating laser beams with a slightly different frequency
and blue detuned 0.5 nm from the D2 resonance at 780 nm. The two
beams are obtained by the same laser and are controlled by two inde-
pendent acousto-optic modulators. The resulting light field is a standing
wave moving in the laboratory frame with a velocity vL = λ∆ν/2 where
∆ν is the frequency difference between the two laser beams. In our ex-
periment, we typically vary the optical lattice velocity between 0 and
2vR where vR = �kL/m is the recoil velocity of an atom absorbing one
lattice photon and kL corresponds, in the frame of the band theory, to
the limit of the Brillouin zone. We switch on the moving optical lat-
tice adiabatically by ramping the intensity of the two laser beams in
2 ms. This ensures we are loading the condensate in a Bloch state of
well-defined energy and quasimomentum [9]. We let the condensate ex-
pand in the lattice and after a total expansion time of 13 ms we take an
absorption image of the cloud along the radial horizontal direction look-
ing at the position and dimensions of the condensate inside the optical
lattice. From the position after the expansion, we extract the velocity
of the condensate inside the optical lattice. In particular we repeat the
experiment for different velocities of the lattice and compare the position
of the expanded condensate inside the lattice with the position of the
condensate expanded without the optical lattice. Let call this difference
in position along the axial direction ∆z, then the velocity of the BEC
inside the optical lattice is given by v = ∆z/∆t − vL where ∆t is the
expansion time inside the lattice.

In Fig.6 we show the results obtained for the velocity of the condensate
as a function of the quasimomentum q for two different values of the
lattice potential depth. The experimental data points are compared
with the theoretical results obtained from the band theory and show a
very good agreement. With an adequate sampling of the velocity we
can extract the effective mass values given by ∂v/∂q. The results for
an optical potential depth of 1.3 ER are shown in Fig.7. As we increase
the lattice velocity (corresponding to increasing the quasimomentum q)
the effective mass rapidly increases and between 0.7 q and 0.8 q it first
becomes infinite positive and then negative (qR = �kL).
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Figure 6. Velocity of the condensate inside the optical lattice as a function of
the quasimomentum q in units of the recoil momentum qR = �kL. The open circles
corresponds to data obtained with Vopt = 1.3ER and the filled circles to data obtained
with Vopt = 3.8ER. The dashed and dotted lines are the correspondent curves given
by the band theory.
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Figure 7. Effective mass of a condensate moving in an optical lattice of 1.3ER

as a function of the quasimomentum. The data points correspond to the values ex-
tracted from the measured velocity and the solid line is the corresponding theoretical
prediction of the band theory.

The consequence of the strong variation of the effective mass is ex-
pected to consistently modify the expansion of the condensate along the
axial direction [28]. As a matter of fact the effective mass enters the
diffusive (kinetic) term in the Gross-Pitaevskii equation.

In Fig.8 we report the radii of the condensate measured as a func-
tion of the quasimomentum after the expansion inside the optical lattice
compared to numerical predictions based on an effective 1D theoretical
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Figure 8. Axial and radial dimensions of the condensate after the expansion in
an optical lattice Vopt = 2.9ER. The experimental points (filled and open circles)
show the Thomas-Fermi radii of the cloud extracted from a 2D fit of the density
distribution. The dotted lines show the dimensions of the expanded condensate in
the absence of the optical lattice. The continuous and dashed lines are theoretical
calculations obtained from the 1D effective model [28, 24].

a) b) c)

Figure 9. Absorption images of the expanded condensate. From left to right: a)
normal expansion of the condensate without lattice; b) axial compression in a lattice
of 2.9 ER and vL = 0.9vR; c) enhanced axial expansion in a lattice of 2.9 ER and
vL = 1.1vR.

model [28]. The axial radius (filled circles in Fig.8) decreases until the
quasimomentum reaches qR, this is first due to the increase of the ef-
fective mass (causing a slower expansion) and then by the fact the the
effective mass becomes negative (causing a contraction of the axial di-
rection during the time spent in the optical lattice). When q ≥ qR the
effective mass becomes positive again but with a value smaller then the
real mass m. As a consequence the expansion becomes faster in this
region of quasimomenta. In Fig.8 we also report the measured values
of the radial dimension of the BEC. A deviation from the expansion
without optical lattice (dotted line) is observed also in this direction for
q < qR, even if this dimension is not directly affected by the presence of
the lattice. This is consistent with the theory (dashed line) and can be
explained in terms of a coupling between the axial and the radial dynam-
ics. For q < qR the compression along the lattice direction increases the
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mean-field energy and causes a faster radial expansion. Instead, when
the condensate is loaded with q > qR, the axial expansion is enhanced
(0 < m∗ < m) and the residual mean-field energy is further reduced,
causing a suppression of the non-linear coupling between the axial and
radial dynamics. This behaviour is evident in the absorption images
reported in Fig.9 where we show the shape of the condensate expanded
without optical lattice (image a)), and with an optical lattice of 2.9 ER

and respectively quasimomenta q < qR (b)) and q > qR (c)). In the
first case a contraction along the axial direction is accompanied by a
faster expansion along the radial direction, while in the second case the
condensate expands faster in the axial direction.

4. Summary
In this paper we have discussed different experiments devoted to the

characterization of the dynamics of a Bose-Einstein condensate in a pe-
riodic potential. We have first studied the collective modes of a trapped
condensate confined in the combined potential formed by adding to the
harmonic magnetic trap the periodic potential due to a 1D optical lattice.
The frequencies of collective modes characterized by a motion along the
lattice direction are consistently modified [3, 15]. The observed shift can
be interpreted in term of a rescaled mass (effective mass) [14]. We have
also observed the dynamical instability [19] in the dipole oscillation with
large enough amplitude. This phenomenon is peculiar of the interplay
between the non-linearity of a trapped condensate and the periodicity
introduced by the optical lattice and causes a transition between the
superfluid and the insulator regime. The last part of the paper has been
devoted to the discussion of an experiment where we have studied the
motion of an expanded condensate inside the optical lattice. During the
expansion performed by the condensate before switching on the lattice,
the mean field energy is mostly converted into kinetic energy allowing us
to consider the condensate a linear probe of the energy band structure
of the periodic potential. As a matter of fact we were able to measure
the velocity of the condensate and its effective mass as a function of the
quasi-momentum finding a very good agreement with the single-particle
band theory. The non-linear term increases again in the region of neg-
ative effective mass where the axial radius of the condensate contracts
inside the lattice. This causes a coupling between the axial and the ra-
dial direction that evidenced in a modified radial expansion. Loading
the condensate in a periodic potential with a negative effective mass is
regarded as a possible way to realize bright solitons in repulsive BEC as
recently demonstrated in [27].
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Abstract Bose-Einstein condensates in optical lattices are a valuable tool for in-
vestigating the nonlinear dynamics of matter waves in periodic poten-
tials. In this review, we present and discuss recent experiments on the
free expansion, nonlinear Landau-Zener tunneling and instabilities of
condensates in such potentials.

Keywords: Bose-Einstein condensate, nonlinearity, Landau-Zener tunneling, insta-
bility

1. Introduction
Research on Bose-Einstein condensates (BECs) has come a long way

since the first realization of BEC in dilute alkali gases in 1995. After
the initial - and very exciting - studies of collective modes and sound
propagation, the first observation of quantized vortices [1] gave rise to a
qualitatively new kind of research on BECs. Likewise, the first demon-
stration of a BEC loaded into the periodic potential [2] created by two or
more interfering laser beams - a so-called optical lattice - inspired a host
of theoretical and experimental work on this intriguing system, not least
because of its formal resemblance to electrons in a solid state crystal. In
this review paper, we will give a summary of recent experiments in Pisa
on Bose-Einstein condensates in optical lattices.
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The research field of optical lattices [3] was born shortly after the first
optical molasses and magneto-optical traps (MOTs) had been demon-
strated in the late 1980s [4, 5]. Initially, optical lattices in the dissipa-
tive regime were realized, i.e. on top of the periodic potential felt by the
atoms there was also spontaneous scattering of photons which resulted in
the Sisyphus cooling mechanism. Later on, Raman sideband-cooling was
used to cool the atoms to the vibrational ground states of the potential
wells making up the lattice, and in far-detuned lattices with negligible
photon scattering rate the dynamics of the atomic matter waves was
investigated.

The advent of Bose-Einstein condensates in 1995 opened up new pos-
sibilities for optical lattice research. Whilst in the early optical lattice
experiments the atoms had to be painstakingly cooled into the vibra-
tional ground states of the wells and the fraction of atoms actually oc-
cupying a well was on the order of a few percent, BECs changed all that.
Condensate densities exceeding 1014 cm−3 meant that a 3-dimensional
lattice with lattice spacing ≈ 400 nm could be easily loaded with several
atoms per lattice site. Since a condensate by definition occupies the
lowest quantum state of the magnetic trap in which it is created, by a
judicious choice of the loading procedure a BEC can be loaded directly
into the ground state of an optical lattice without the need for further
cooling.

Another consequence of the high atomic densities in condensates (com-
pared to non-condensed, ultra-cold samples) is the importance of atomic
collisions for the dynamics of the BEC. The effect of interactions is usu-
ally included into the mathematical description through a mean-field
term in the Schrödinger equation, resulting in the Gross-Pitaevskii equa-
tion [6]. Depending on the trap frequency and hence the density of the
BEC, the effect of this nonlinear term can be rather important with re-
spect to the energy scale of the optical lattice and can lead to new effects
in the evolution of the condensate inside the periodic potential. Some
of these we shall discuss here.

This paper is organized as follows. After a brief review of the basic
concepts and notations related to matter waves in periodic potentials
(Sec. 2), we describe the part of our experimental apparatus relevant for
the realization of 1D optical lattices (Sec. 3). In Section 4 we then discuss
some experiments on BECs in optical lattices in the nonlinear regime:
free expansion inside a 1D lattice (Sec. 4.1), nonlinear and asymmetric
Landau-Zener tunneling (Sec. 4.2) and instabilities (Sec. 4.3). Finally,
we present our conclusions and an outlook on future experiments in
Sec. 5.
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2. Matter waves in periodic potentials - basic
concepts

In order to set the scene for the rest of this paper, in this section we
shall briefly remind the reader of some of the basic concepts related to
waves in periodic potentials. At this stage, we will concentrate on the
linear treatment.

The time-independent Schrödinger equation for a particle of mass m
inside a periodic potential of depth V0 and periodicity d can be written
as follows:

− �2

2m

d2ψ

dx2
+ V0 sin2(πx/d)ψ = Eψ (1)

This is formally equivalent to the Mathieu equation, the eigenfunctions
of which correspond to energy bands characterized by a band index n
and a quasimomentum q [7]. For the purposes of the present article,
it will be sufficient to consider only the two lowest energy bands with
n = 0 and n = 1, which we will call ground state and first excited state,
respectively. The energy scale of the periodic potential is the lattice
energy,recoil Erec = �2π2/md2, in terms of which we will express the
lattice depth V0 in the following. For small depths V0/Erec, the energy
gap at q = 1 between the two lowest bands is ∆E ≈ V0/2.

Two well-known features of the quantum dynamics of particles inside
a periodic potential are Bloch oscillations and Landau-Zener tunneling.
The former arise when a force is applied to the particles, resulting in
a variation of the quasimomentum q. When q = 1, which corresponds
to the edge of the Brillouin zone, the particles undergo Bragg reflection
to q = −1 and thus the process of crossing the Brillouin zone starts
again. If the group velocity of the particles is measured, it is found that
rather than increasing at a constant rate as expected for free particles,
it oscillates around the expected straight line v = at with an amplitude
depending on the lattice depth.

Up to now, we have assumed that during the acceleration the particles
remain in the ground-state energy band of the lattice. If the acceleration
a exceeds a critical value ac = d

4�2 (∆E)2, though, the particles can no
longer adiabatically follow the ground state and can tunnel into the
first excited band when the edge of the Brillouin zone is crossed. The
probability r for this Landau-Zener tunneling in a linear model is given
by

r = exp(−ac/a). (2)

In the following we shall see that in the presence of a nonlinear term in
the Schrödinger equation, the tunneling behaviour can be substantially
altered.
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3. Experimental realization of BECs in periodic
potentials

In order to create a periodic potential, one can make use of the ac
Stark shift of a linearly polarized laser beam of intensity I detuned by
an amount ∆ from an atomic resonance. If two or more such laser
beams are superposed, a periodic potential landscape in one, two or
three dimensions can be realized. In particular, if two linearly polarized
beams with wavelength λ making an angle θ with each other are used,
the resulting one dimensional periodic potential is given by

V (x) = V0 sin2(πx/d), (3)

where the lattice spacing d = λ/(2 sin(θ/2)). The depth of the potential
V0 ∝ I

∆ can be calculated from the transition strength of the atomic
resonance and the intensity and detuning of the laser beam. In our
experiments, lattice spacings between d = 0.39 µm and d = 1.6 µm and
lattice depths up to 20Erec were used [8].

In practice, the two laser beams are derived from the same diode laser,
split up into two beams by a beam-splitter and then frequency shifted
by two acousto-optic modulators (AOMs). The latter are necessary for
fast and controlled switching of the lattice depth, but are also useful for
creating a moving or accelerated optical lattice in the following way: If a
frequency difference δν (usually on the order of a few kHz) is introduced
between the two AOMs, the resulting periodic potential will move at a
velocity vlat = dδν. By linearly chirping δν, an accelerated lattice with
alat = ddδν

δt can be realized.
Our protocol for preparing a BEC in an optical lattice is as follows.

After creating a BEC of around 104 atoms of 87Rb in a TOP-trap [9], we
adiabatically relax the magnetic trap frequency to between 20 Hz and
60 Hz. Thereafter, the intensities of the two laser beams forming the
optical lattice are ramped up from 0 to the desired value in 10−50 ms. In
this way, the lattice switch-on is adiabatic with respect to the chemical
potential [10] and hence the condensate is in the ground state of the
combined harmonic plus periodic potential.

4. Nonlinear effects of BECs in optical lattices
Collisions between the atoms of a BEC can be included into the

Schrödinger equation by adding a mean-field term depending on the
s-wave scattering length as (as = 5.4 nm for 87Rb), the mass m of
the bosons and the local condensate density |ψ|2. The resulting Gross-
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Pitaevskii equation for a condensate in a periodic potential then reads

i�
∂ψ

∂t
= − �2

2m

∂2ψ

∂x2
+ V0 sin2

(πx

d

)
ψ +

4π�2as

m
|ψ|2ψ. (4)

The relative importance of the nonlinear energy scale and the energy
scale of the lattice Erec can be expressed through a nonlinear parameter
C given by [11]

C =
πn0as

k2
L

, (5)

where kL = π/d is the lattice wavevector and n0 is the density of the
condensate. Depending on the lattice spacing, the number of condensate
atoms and the magnetic trap frequency, in our experiments we were able
to vary C between C ≈ 0.004 and C ≈ 0.1.

In the following we shall describe a number of experiments in which
the nonlinear term in the Gross-Pitaevskii equation played an important
role in the static and dynamic properties of the condensate inside the
optical lattice.

4.1 Free expansion and variation of the chemical
potential

The free expansion of a condensate released from a magnetic trap
was the subject of the first experiments on Bose-Einstein condensates.
In this way, clear evidence for condensation was obtained through the
asymmetric expansion of the BEC, and the rate of expansion also made
possible a measurement of the chemical potential µ which depends on
the nonlinear term in the Gross-Pitaevskii equation.

We conducted similar experiments with BECs expanding freely inside
a 1D optical lattice [13]. In these experiments, we loaded a BEC into
a lattice as described above. After that, only the magnetic trap was
switched off and the condensate was imaged after a variable time texp

of free expansion inside the optical lattice. The effect of a deep lat-
tice on the free expansion is clearly evident in the measurements of the
condensate dimensions along and perpendicular to the lattice direction
shown in Fig. 1. Whilst in the lattice direction the condensate does not
expand at all, the expansion in the direction perpendicular to the lattice
is noticeably enhanced with respect to the expansion of the condensate
in the absence of the optical lattice. The lack of expansion in the lattice
direction reflects the fact that the condensate has effectively been split
up into several smaller condensates confined in the individual lattice
wells, whereas the enhanced expansion in the perpendicular direction is
explained by the increase in the chemical potential when the lattice is
ramped up.
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Figure 1. Free expansion of a Bose-Einstein condensate with (full symbols) and
without (open symbols) a 1D optical lattice. Shown are the widths along (circles) and
perpendicular to the lattice direction (squares) as a function of time after switching
off the magnetic trap. When the lattice is present, there is no expansion in the lattice
direction, whereas the expansion in the perpendicular direction is enhanced. The
solid and dashed lines are theoretical predictions based on the model of [12].

For the central well of the optical lattice, Pedri and co-workers have
calculated [14] the (local) chemical potential to be

µlocal =
(π

2

)1/5
(

V0

Erec

)1/10

µ0, (6)

where µ0 is the chemical potential in the absence of the lattice. Measur-
ing the expansion of the condensate for various lattice depths, we were
able to deduce the effective chemical potential as a function of V0. Our
measured values agree well with Eqn. (6).

We also note here that in the limit of large lattice depths, our ex-
periments effectively realize an adiabatic transformation between a 3D
condensate and an array of 2D condensates. The condition µ3D < �ωlat

of Ref. [15] (where ωlat = 2(Erec/�)
√

V0/Erec is the harmonic approxi-
mation for the oscillation frequency in a lattice well) for the condensates
in each well to be in the 2D limit is always satisfied for the small num-
ber of atoms in a single well (≈ 103) present in our experiment. For an
array of 2D condensates obtained by creating the condensate in the com-
bined potential of the harmonic trap and the lattice, Burger et al. [16]
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have shown that in the case of their cigar-shaped condensate (with the
long axis along the lattice direction), the transition temperature T 2D

c

in the presence of the lattice is significantly lower than T 3D
c in the 3D

case (i.e. in the magnetic trap without the lattice). Calculating the
critical temperature T 2D

c along the same lines for our system, we find
that T 2D

c ≈ T 3D
c due to the larger number of atoms per lattice site in

our geometry, and hence we expect no significant change in the con-
densate fraction in the presence of the lattice. In fact, experimentally
we even find a consistently larger condensate fraction after ramping up
the lattice. This result indicates that, with an appropriate choice of
parameters, a 1D optical lattice could be used to investigate adiabatic
transformations between 3D and 2D condensates which could, e.g., be
exploited to create condensates from thermal clouds by changing the
dimensionality of the system.

4.2 Nonlinear and asymmetric Landau-Zener
tunneling

When accelerating a particle inside a periodic potential, Landau-Zener
tunneling between energy bands can occur if the critical acceleration for
adiabatic following of an energy band is exceeded. In our experiments,
we were able to exert a force on the condensate in the rest frame of
the lattice by accelerating the latter. In this way, we could study tun-
neling between the two lowest energy bands of the lattice in a variety
of situations. In particular, we were interested in the dependence of
the tunneling probability on the value of the nonlinear parameter C de-
fined above. Furthermore, we measured the tunneling rates between the
bands for tunneling in both directions and found that in the presence of
a strong enough nonlinear term, the two rates were different.

In order to measure the Landau-Zener tunneling rate, we first loaded
a Bose-Einstein condensate into our optical lattice and then accelerated
the lattice, thus changing the quasimomentum of the condensate. Af-
ter crossing the edge of the Brillouin zone, we measured the fraction of
atoms in the two lowest energy bands (details of this procedure will be
discussed later) and hence calculated the tunneling rate. The nonlinear
parameter C could be varied both by changing the density of the con-
densate through the magnetic trap frequency and by choosing different
angles between the lattice beams, thus changing the lattice wavevec-
tor kL. Tunneling in the two directions could be measured by either
loading the condensate into the lowest energy band, in which case the
lattice velocity vlat = 0 when the lattice was switched on, or into the
first excited band. In the latter case the lattice velocity was set at
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1.5 vrec when switching it on. In this way, in order to conserve energy
and momentum the condensate must populate the first excited band
at a quasi-momentum half-way between zero and the edge of the first
Brillouin zone.

Our results on nonlinear Landau-Zener tunneling from the ground
state are reported in [17]. Measuring the tunneling rate as a function
of the nonlinear parameter C, we found that when the nonlinearity was
large, Landau-Zener tunneling was significantly enhanced. Following
Choi and Niu [11], we interpreted our results in terms of an effective
potential Veff = V0/(1 + 4C). As C grows, Veff and hence the effective
band-gap ∆Eeff ≈ Veff/2 decreases, leading to an enhanced tunneling
rate. In an intuitive picture, this can be explained as the (repulsive)
interaction energy partially cancelling the potential energy of the pe-
riodic lattice as the condensate density is locally increased where the
lattice potential is low, leading to an apparently smaller periodic energy
modulation.

A more surprising result was obtained when comparing the tunnel-
ing rates from the ground state band to the first excited band and vice
versa. In the linear case one expects these two rates to be the same.
In the presence of a nonlinear term, however, this symmetry no longer
holds: Whilst the tunneling from the ground to the first excited band is
enhanced by the nonlinearity, the inverse is true for the opposite tunnel-
ing direction. The asymmetry in the tunneling transition probabilities
can be explained qualitatively as follows: The nonlinear term of the
Schrödinger equation acts as a perturbation whose strength is propor-
tional to the energy level occupation. If the initial state of the condensate
in the lattice corresponds to a filled lower level of the state model, then
the lower level is shifted upward in energy while the upper level is left
unaffected. This reduces the energy gap between the lower and upper
level and enhances the tunneling. On the contrary, if all atoms fill the
upper level then the energy of the upper level is increased while the lower
level remains unaffected. This enhances the energy gap and reduces the
tunneling.

Using a simple two-state model, we calculated the tunneling rates in
the two directions as a function of C and found a growing asymmetry
when C was increased [18]. We confirmed the presence of a tunneling
asymmetry by integrating directly the Gross-Pitaevskii equation (taking
into account the full experimental protocol described below), finding
qualitative agreement with the prediction of the two-state model.

Experimentally, we investigated the asymmetric tunneling using a pro-
cedure similar to the one employed for the measurement of the nonlinear
tunneling described above. Initially, the condensate is loaded adiabati-
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cally into one of the two bands. Subsequently, the lattice is accelerated
in such a way that the condensate crosses the edge of the Brillouin zone
once, resulting in a finite probability for tunneling into the other band
(higher-lying bands can be safely neglected as their energy separation
at the edge of the Brillouin zone is much larger than the band gap).
After the tunneling event, the two bands have populations reflecting the
Landau-Zener tunneling rate (assuming that, initially, the condensate
populated one band exclusively). In order to experimentally determine
the number of atoms in the two bands, we then increase the lattice
depth (from ≈ 2 Erec to ≈ 4 Erec) and decrease the acceleration (from
≈ 3 m s−2 to ≈ 2 m s−2). In this way, successive crossings of the band
edge will result in a much reduced Landau-Zener tunneling probability
(of order a few percent). The fraction of the condensate that after the
first tunneling event populated the ground state band will, therefore,
remain in that band, whereas the population of the first excited band
will undergo tunneling to the second excited band with a large prob-
ability (around 90 percent) as the relevant gap is smaller by a factor
≈ 5 for our parameters. Once the atoms have tunneled into the second
excited band, they essentially behave as free particles since higher-lying
band-gaps are smaller still, so they will no longer be accelerated by the
lattice. In summary, using this experimental sequence we selectively ac-
celerate that part of the condensate further that populates the ground
state band. In practice, in order to get a good separation between the
two condensate parts after a time-of-flight, we accelerate the lattice to
a final velocity of 4− 6 vrec and absorptively image the condensate after
22 ms.

In order to investigate tunneling from the ground state band to the
first excited band, we adiabatically ramped up the lattice depth with the
lattice at rest and then started the acceleration sequence. Thereafter,
the same acceleration sequence as described above is used. For both
tunneling directions, the tunneling rate is measured as

r =
Ntunnel

Ntot
, (7)

where Ntot is the total number of atoms measured from the absorption
picture. For the tunneling from the first excited band to the ground
band, Ntunnel is the number of atoms accelerated by the lattice, i.e.
those detected in the final velocity class 4 vrec, whereas for the inverse
tunneling direction, Ntunnel is the number of atoms detected in the v = 0
velocity class.

In a weak magnetic trap and hence a small value of the interaction
parameter C, the measured tunneling rates are the same in both di-
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rections and agree well with the linear Landau-Zener prediction. By
contrast, when C is increased, the two tunneling rates begin to differ.
Qualitatively we find agreement with the theoretical predictions of the
non-linear Landau-Zener model, whereas quantitatively there are sig-
nificant deviations. We believe these to be partly due to experimental
imperfections. In particular, the sloshing (dipolar oscillations) of the
condensate inside the magnetic trap can lead to the condensate not be-
ing prepared purely in one band due to non-adiabatic mixing of the bands
if the initial quasimomentum is too close to a band-gap. Furthermore, a
numerical simulation of the experiment shows that for large values of C,
for which the magnetic trap frequency was large, the measured tunnel-
ing rates are significantly modified by the presence of the trap. In order
to test our theory more quantitatively in BEC systems, the condensate
could be held in an optical dipole trap with a small longitudinal trap
frequency.

4.3 Instabilities
In our discussion of BECs in periodic potentials, up to now we have

tacitly assumed that the effect of the nonlinearity in the Gross-Pitaevskii
equation is to change the static and dynamic properties of the BEC in a
continuous way: the chemical potential increases with increasing lattice
depth, the tunneling rate from the ground state energy band increases
with increasing nonlinearity, and an asymmetry between the two tunnel-
ing directions arises. Essentially, all these phenomena can be accounted
for by rescaling in an appropriate way the system’s parameters, i.e. by
introducing an effective chemical potential or an (direction-dependent)
effective potential depth. In this section, however, we will turn to a dif-
ferent problem which qualitatively changes the condensate dynamics in
a drastic way.

When studying the properties of the Gross-Pitaevskii equation with a
periodic potential, one finds that its solutions are unstable in the vicin-
ity of the edge of the Brillouin zone [19]. These unstable modes grow
exponentially in time with a growth rate that depends on the nonlinear
parameter C and the lattice depth. In our experiment, we character-
ized the onset of the instability by observing the interference pattern
of the condensate released after acceleration to a quasimomentum q.
In practice, the time-of-flight interference pattern of the condensate re-
leased from the lattice then consists of a series of well-defined peaks
corresponding to the momentum classes (in multiples of the lattice mo-
mentum 2prec = 2�kL), as can be seen in Fig. 2. When the unstable
modes grow, the long-range coherence of the condensate is lost and the
interference pattern washes out.
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In our experiment [21], the time the condensate spends in the ‘criti-
cal region’ where unstable solutions exists is varied through the lattice
acceleration. Figure 2 shows typical integrated profiles of the interfer-
ence patterns for lattice accelerations a = 5 ms−2 and a = 0.3 m s−2.
In both cases, the condensate has reached the same point close to the
Brillouin zone edge, but because of the longer time it has spent in the
unstable region, the interference pattern is almost completely washed
out for a = 0.3 m s−2.
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Figure 2. Interference patterns of a condensate close to q = 1. The solid and dashed
lines correspond to accelerations a = 0.3m s−2 and a = 5 ms−2, respectively. One
clearly sees that for the large acceleration, the pattern is much less distinct than for
the large acceleration. The two patterns were re-scaled to give the same peak height
for ease of comparison.

In order to characterize our experimental findings more quantitatively,
we define two observables for the time-of-flight interference pattern. By
integrating the profile in a direction perpendicular to the optical lattice
direction, we obtain a two-peaked curve for which we can define a visi-
bility (in analogy to spectroscopy) reflecting the phase coherence of the
condensate (visibility close to 1 for perfect coherence, visibility −→ 0 for
an incoherent condensate). In order to avoid large fluctuations of the
visibility due to background noise and shot-to-shot variations of the in-
terference pattern, we have found that a useful definition of the visibility
is as follows:

visibility =
hpeak − hmiddle

hpeak + hmiddle
, (8)

where hpeak is the mean value of the two peaks (both averaged over
1/10 of their separation symmetrically about the positions of the peaks).
By averaging the longitudinal profile over 1/3 of the peak separation
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symmetrically about the midpoint between the peaks, we obtain hmiddle.
The second observable is the width of a Gaussian fit to the interference
pattern integrated along the lattice direction over the extent of one of
the peaks.

1.0

0.9

0.8

0.7

0.6

0.5

0.4

vi
si

bi
lit

y

1.41.21.00.80.60.40.20.0
quasimomentum

Figure 3. Visibility as a function of quasimomentum (in units of prec) for two
different accelerations. Instabilities close to quasimomentum 1 (corresponding to the
edge of the Brillouin zone) lead to a decrease in visibility for a = 0.3m s−2 (solid
symbols). For comparison, the dotted line represents a linear fit to the visibility for
the a = 5 ms−2 data (open symbols).

The results of our experiment are exemplified by the two visibility
curves in Fig. 3, showing clearly that for an acceleration of 5 m s−2, the
visibility of the interference pattern remains reasonably stable when the
edge of the Brillouin zone is crossed. In contrast, for a = 0.3 m s−2 one
clearly sees a drastic change as the quasimomentum approaches the value
1. For this acceleration, the condensate spends a sufficiently long time
in the unstable region of the Brillouin zone and hence loses its phase
coherence, resulting in a sharp drop of the visibility. At the same time,
the radial width of the interference pattern was observed to increase by a
factor between 1.5 and 1.7. This increase is evidence for an instability in
the transverse direction and may, for instance, be due to solitons in the
longitudinal direction decaying into vortices via a snake instability [20].
For the a = 0.3 m s−2 data, the interference patterns for quasimomenta
larger than 1 were so diffuse that it was not possible to measure the
visibility in a meaningful way.

The experimental results presented above demonstrate that at the
edge of the Brillouin zone, a BEC in an optical lattice exhibits unstable
behaviour. These instabilities are also reproduced in a 1-D numerical
simulation, and our experimental findings also agree qualitatively with
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recent 3-D simulations [20]. The fact that we observe a significant effect
of the instabilities below accelerations of ≈ 0.5 m s−2, for which the con-
densate spends more than 2 ms in the critical region around the edge of
the Brillouin zone (having an extension of around 1/10 of the BZ [19]),
indicates that the growth rate of the instability should be of the order of
500 s−1. This agrees reasonably well with a rough estimate of ≈ 300 s−1

derived from a recent work by Wu and Niu [19]. We note here that sim-
ilar instabilities have been predicted and observed also in other physical
systems, such as light propagating in nonlinear crystals [22].

5. Conclusions and outlook
Bose-Einstein condensates in optical lattices are a valuable tool for

investigating nonlinear effects of matter waves in periodic potentials.
Apart from the work presented in this paper, a number of theoretical and
experimental research groups are currently working on, e.g., dispersion
management and gap solitons [23]. In the future, one of the challenges
will be to make more quantitative measurements of some of the effects
presented in the present work. Another very promising line of research is
the extension of optical lattice experiments to fermions [24], Bose-Fermi
mixtures [25] and also to mixtures of more than one species or isotope
of bosons and / or fermions.
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Abstract We discuss localized ground states of the periodic Gross-Pitaevskii equa-
tion (GPE) in the framework of a quantum linear Schrödinger equation
with effective potential determined in self-consistent manner. We show
that depending on the interaction among the atoms being attractive or
repulsive, bound states of the linear self-consistent problem are formed
in the forbidden zones of the linear spectrum below or above the energy
bands. These bound states correspond to exact solitons of the GPE
equation. The implication of these results on delocalizing transitions of
multidimensional solitons of the GPE is also discussed. In particular we
show that the delocalizing transition corresponds to the threshold for
the existence of a single bound state in the effective potential.

1. Introduction
One of the most intriguing phenomena occurring in nonlinear systems

is the possibility to have stationary localized excitations which undergo
a delocalizing transition when the nonlinearity in the system is below a
critical threshold and the dimensionality d of the system is greater or
equal than a critical value dc [1, 2, 3] (for the cubic nonlinear Schrödinger
equation dc = 2). This phenomenon has been found in different discrete
nonlinear systems [1, 3] supporting discrete breathers or intrinsic local-
ized modes (ILM), as well as, in the theory of polaronic states of solids
[4]. The occurrence of a delocalizing transition for d ≥ dc is a conse-
quence of the existence of a lower bound in energy (or equivalently in
the norm), for a localized excitation to exist [1, 2], e.g. a finite threshold
in the electron-phonon coupling constant for polaron formation. This
contrasts with the one dimensional (1D) case for which these thresh-
olds do not exist. In this case, indeed, it is possible to transform in
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a reversible manner a small ILM/polaron (i.e. a solution extended on
a single lattice cell) into a large ILM/polaron (a solution extended on
many lattice cells), by continuously decreasing the nonlinearity in the
system (i.e. the electron-phonon constant for polarons). Very recently,
the same phenomenon has been found in the continuous multidimen-
sional nonlinear Schrödinger equation (NLS) with periodic potentials
[5].

The aim of the present paper is twofold. From one side we show that
localized excitations of the periodic nonlinear Schrödinger equation cor-
respond to macroscopic quantum bound states of the linear Schrödinger
problem in an effective potential which is determined by means of a self-
consistent (SC) procedure. From the other side, we provide a physical
interpretation and a theoretical investigation of the delocalizing transi-
tion for multidimensional solitons. These problems will be discussed on
the physical example of a Bose-Einstein condensate in an optical lat-
tice (OL) described, in the mean field approximation, by the following
normalized Gross-Pitaevskii equation [6]

iψt =
[−∇2 + Uol(x) + χ|ψ|2]ψ, (1)

where χ is the nonlinear parameter, x denotes three dimensional coor-
dinates and Uol(x) is a periodic potential representing the OL.

Solitonic properties of the GPE in optical lattices were also studied
in Refs. [7, 8] for the discrete (tight-binding) case and in Refs. [11]-
[14] for the continuous one. Self-consistent approaches were also used
as numerical tools to study discrete breathers of the discrete NLS [15]
and the stability of gap solitons [16]. The physical implications and the
potentiality of the SC approach, however, have not been so far investi-
gated.

The paper is organized as follows. In Section 2 we discuss localized
ground states of the periodic Gross-Pitaevskii equation in the framework
of a quantum linear Schrödinger equation with effective potential. The
effective potential is determined by mean of a self-consistent procedure
and the analysis is restricted to the 1D case. As a result, we show that
depending on the interaction among the atoms, bound states of the linear
self-consistent problem are formed in the forbidden zones of the linear
spectrum, below or above the energy bands. These eigenstates are found
to be exact solitons of the GPE equation by direct numerical simulations.
In Section 3 we discuss the implications of the bound state interpretation
on the delocalizing transition observed in higher dimensions [1, 3, 5]. In
particular, we consider the case of the GPE with a two-dimensional (2D)
optical lattice. Finally, in Section 4 we summarize the main results of
the paper.
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2. Matter waves as macroscopic quantum bound
states

To discuss bound state properties of the localized solutions of the
periodic GPE we restrict, for simplicity, to the 1D case (the approach
however is of general validity and can be applied to NLS type equations
in arbitrary dimensions). Our analysis is based on the simple observation
that the stationary localized ground states ψs(x, t) = ψ(x) exp(−iµt) of
the GPE (and more generally of any NLS-like equation) can be obtained
by solving in a self-consistent manner the following linear Schrödinger
problem [

−∇2 + V̂eff(x)
]
ψ = µψ (2)

with the effective potential

V̂eff = Ûol(x) + χ|ψ̂s(x)|2. (3)

Here µ is the chemical potential (also referred as E in the following),
Ûol ≡ ε cos(2x) is the OL and χ|ψ̂s(x)|2 represents the potential asso-
ciated with a given eigenstate of the quantum problem (2). For a self-
consistent solution, one starts with a trial wavefunction for ψs (typically
a Gaussian waveform) calculates the effective potential and solves the
corresponding eigenvalue problem (2). Then, one selects a given eigen-
state (for example the ground state but not necessarily) as new trial
function and iterates the procedure until convergence is reached. The
problem is thus reduced to the diagonalization of the quantum Hamil-
tonian

Ĥ = Ĥ0 + V̂eff(x) (4)

with Ĥ0 ≡ −∇2 the kinetic energy operator. This can be effectively
done by adopting a discrete coordinate space representation {xn = na},
n = 1, ..., N , with a = L/N the discretization constant, L the size of the
system and N the total number of points. A basis for this space is simply
a basis of RN, i.e. the set of N-component vectors of the type |n〉 =
(0, ...0, 1, 0, ..., 0), with the 1 in the position n. The effective potential is
obviously diagonal in this representation i.e. 〈n|V̂eff |n′〉 = Veff(na)δn,n′ ,
while Ĥ0 is diagonal in the reciprocal representation |kn〉, (kn = 2π/Ln,
the two representations being related by the Fourier transform (unitary
transformation). The matrix elements of the Hamiltonian Ĥ can then
be constructed as

〈n|Ĥ|n′〉 ≡ Hn,n′ = 〈n|F̂−1Ĥ0F̂ |n′〉 + Veff(na)δn,n′ (5)

where F̂ |n〉 denotes the Fourier transform of the vector |n〉. For an effec-
tive construction of these matrix elements one can use the fast Fourier
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Figure 1. Panel (a) Energy spectrum for the effective potential (3) with A = 3 and
χ = 0 (Mathieu equation). Full lines represent exact values of the band edges of the
Mathieu equation while dots are the eigenvalues obtained with the above procedure
on a lattice of length L = 40π, with N = 512 points. Panel (b) Lowest energy band
for the effective potential in Eq. (3) with ψs taken as the ground state of the system
and for χ = −1 (attractive case). Parameters are fixed as in panel (a). Panel (c)
The same as in panel (b) but for ε = −3. Panel (d) Transition from the metastable
IS mode to the OS ground state corresponding to the lower level of panel (c). The
optical lattice (scaled by a factor 3) is reported as an help to locate the symmetry
center of the solutions. Parameters are fixed as in panel (c).

transform while for the computation of the spectrum one can recourse
to standard numerical routines for the diagonalization of real symmet-
ric matrices. To check the method we consider first the linear case
(χ = 0) for which the effective potential is Veff = Uol and the eigen-
value problem (2) reduces to the well known Mathieu equation. In Fig.
1a we depict the lowest part of the spectrum from which we see the
appearance of the band structure with band edges which exactly corre-
spond to the values obtained for the Mathieu equation (for high energy
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Figure 2. Wavefunctions and corresponding effective potential for the bound states
below the lowest bands of Fig 1a for attractive interaction χ = −1. Panel (a). OS
mode and corresponding effective potential for E = −1.1667950 (ground state) and
ε = 3. The effective potential was scaled by a factor of 6 for graphical convenience.
Panel (b). Same as (a) for the IS mode at E = −1.0485745 and ε = −3. Panel
(c). Same as (a) for the OA mode. E = −0.999261. Panel (d). Same as (b) for
the IA mode. E = −0.9947127. (e) Energy levels of the OS, IS, OA, IA, modes
inside the gap between the first two bands. The continuous line denotes the lower
edge of the second band of Fig. 1a while the dotted lines denote the degenerate levels.
Parameters are fixed as for corresponding modes in panels a-d. (f). Wavefunctions
associated to the levels in panel e. For graphical convenience the IS mode was shifted
by -1.0 down while the IA and OS modes were shifted up by 0.5 and 1.0, respectively.
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bands to get good accuracy one needs to increase N). Here we are
mainly interested in the localized states associated with the lowest two
bands (i.e., the ones physically most relevant), for this case the choice
of N = 256 being adequate for most of the calculations. In Fig. 1b we
show how the lowest band of panel 1a is modified by the nonlinear po-
tential Veff(x) = ε cos(2x) + χ|ψ0|2, where ψ0 is taken to be the ground
state of the system, for the case χ < 0 (negative scattering length). A
bound state below the band, rapidly converging to a constant value, is
quite evident. Notice that the bound state forms from the lower edge of
the band and is accompanied by a rearrangement of the extended states
inside the band. The corresponding eigenvector is depicted in Fig.2a
together with its effective potential. Notice that the potential has an
attractive character (potential well) and the bound state is symmetric
around a minima of the OL, i.e., it resembles the onsite-symmetric in-
trinsic localized mode (ILM) of nonlinear lattices (NL) [17, 18]. In the
following we shall call it the onsite symmetric (OS) bound state. By
shifting the phase of the OL by π (i.e. by changing the sign of ε) one
obtains an eigenstate centered on maxima instead than on minima. This
bound state is depicted in Fig. 2b and in analogy with NL we shall call
it the intersite symmetric (IS) mode. The corresponding spectrum is
reported in Fig. 1c. Notice that the IS mode corresponds to the plateau
formed just before the decay into the OS mode occurs, as shown in panel
1d (also note the appearance of an intersite-symmetric (IA) excited level
in Fig. 1c which is absorbed into the band in correspondence of the IS-
OS decay). We have checked that these bound states coincide with the
ones obtained with the approach of Ref. [11] for the same values of en-
ergy. The stability of the OS mode and the decay of the IS mode into
the OS state was checked by direct numerical integrations of the GPE.
To obtain the onsite asymmetric (OA) mode one needs to take the first
excited state ψ1 as effective potential in the SC procedure. This indeed
produces an exact soliton solution of the GPE of type OA (see Fig. 2c).
Shifting the potential by π produces the intersite asymmetric (IA) mode
of Fig. 2d. These solutions have the same energies and are more unsta-
ble than the IS mode (they, however, do not decay into the ground state
but get mixed with the extended states in the band).

In general, the effective potentials can be taken of the form V̂eff =
V̂ol + χ|ψ̂n(x)| with ψn the n-th eigenstate of the eigenvalue problem
in (2). If the energy of ψn lies outside the bands a localized mode of
the type described above is produced, while if it lies inside a band,
extended states which are nonlinear analogues of the Bloch states [13],
are produced. From this we conclude that both localized and extended
solutions of the GPE are exact quantum eigenstates of the Schrödinger
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Figure 3. Energy spectrum in correspondence of the localized states above the
lowest band of Fig. 1a for repulsive interactions χ = 1. Panel (a). Spectrum
associated to the OS mode. Parameters are ε = −3, N = 256, L = 40π. Panel
(b). Same as panel (a) but for the IA mode with ε = 3. The continuous lines denote
exact band edges of the Mathieu equation.

equation with a suitable effective potential. From the above analysis
one expects that below each higher energy band eigenstates of the same
symmetry type as the ones found for the lowest band should exist. This
is precisely what we show in Fig.s 2e, 2f for the energy spectrum and the
corresponding eigenstates in the gap below the second band. Notice that
the OA and the IS eigenstates are degenerated (the same occurs also to
the OS and IA modes). The OA and IS bound states are both very
stable while the energy levels of the OA and IS modes, after establishing
a plateau similar to the one in Fig 1c, become unstable (the energy
oscillates between this level and the lower edge of the second band).
The instability of these modes can be understood as an hybridization
of the state (being very close to the band edge) with extended states of
the second band and is confirmed by direct numerical integration of the
PDE system. Similar localized modes can be found also for repulsive
interactions (χ > 0), the main difference with the previous case being
that now the states appear in the gap above the band edges instead than
below. This is shown in Fig. 3 for the lowest energy levels inside the first
gap. The corresponding eigenvectors are shown in Fig. 4 together with
their effective potentials. Notice that the potential has a local repulsive
character (it increases in correspondence of the states) so that these
bound states could not exist without the OL.
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Figure 4. Wavefunctions and effective potentials of the bound states levels of Fig.
4 a,b, for the repulsive case χ = 1. Panel (a). OS mode with corresponding effective
potential (thin line). Energy is E = −0.078355 and ε = −3. Panel (b). Same as in
Panel (a) for the IA mode. E = −0.376645, ε = 3. Panel (c). Same as in panel (a)
for the OA mode. E = −0.683070. Panel (d). Same in panel (b) for the IS mode.
E = −0.691676. Parameters are fixed as N = 256, L = 40π for panels (a), (b), and
N = 512, L = 40π for panels (c), (d). The effective potentials have been reduced by
a factor of 6 for graphical convenience.
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denote two eigenfunctions at the top of the first band. Panel (b). Time evolution
(modulo square) of the bound state in panel (a) taken as initial condition for the
integration of the full GPE.

We remark that localized modes similar to the ones described in this
paper were found also in atomic-molecular BEC using an approach based
on Wannier functions [19].

Besides localized and extended states, the SC procedure allows to
construct full nonlinear bands in reciprocal space. It is worth remarking
that more complicated set of solutions of the GPE can be constructed
with the SC procedure by taking as effective potentials linear combina-
tions of eigenstates. An example of this is shown in Fig. 5 for the case
of repulsive interaction. We see that a linear combination of two eigen-
states leads to a bound state with two humps which corresponds to a
multi-soliton solution of the GPE (see panel b). We believe this is a gen-
eral property and we conjecture that all solutions of the periodic GPE
(and more in general of the NLS-like equations with arbitrary potentials)
can be obtained with the SC method taking all possible combinations of
linear eigenstates as effective potentials.

3. Delocalizing transitions of matter waves
In this section we discuss the implications of the above bound state

interpretation of the soliton ground states of the GPE on the delocaliz-
ing transition observed in higher dimensions. The delocalizing transition
manifests as an irreversible transformation of a localized solution into
an extended state, which occurs for d ≥ 2, when the strength of the
OL, or the nonlinearity in the system, is decreased below some critical
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value. In the previous section we have shown that localized states cor-
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N/(4π)

Figure 6. Existence curves of single cell OS solitons as predicted by VA (full line)
and as obtained from PDE integrations (dotted line). Notice the existence of a delo-
calizing transition at N/4π ≈ 0.4.

respond to quantum bound state of the linear Schrödinger equation in
a self-consistent potential. Since any 1D potential (bounded from above
by and asymptotes to zero) support a bound state (even for an infinites-
imal depth of the well) [26] we have that the bound state interpretation
implies that no delocalizing transitions can occur in 1D, this being a fact
which is well known from numerical simulations. On the other hand, for
d ≥ 2 a finite depth of the well is always required for the formation of
a bound state so that a delocalizing transition can exist. According to
the above bound state interpretation, the delocalizing transition should
occur precisely at the value for which the effective potential becomes un-
able to support bound states. To check this idea, we consider the GPE
with a 2D optical lattice of the form Vol(x, y) = ε(cos(2x) + cos(2y)).
For simplicity, we also restrict to the case of attractive interaction χ < 0
(the analysis can be easily extended to the repulsive case). In this case,
localized solutions of the OS type can be easily constructed by means of
a variational analysis (VA) based on a Gaussian ansatz for the soliton
profile

ψ(x, y, t) = A exp
[
−a

2
(x2 + y2)

]
exp(−iµt), (6)

where µ is the chemical potential and A, a are the amplitude and width
of the solution, respectively. Notice that these parameters are related
to the total number of atoms in the condensate by the relation N =
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−∞ |ψ(x, y, t)|2dxdy = πA2/a. Following the standard procedure of the

VA [20, 21], we introduce the effective Lagrangian

L =
1
2

∫ ∞

∞

[|∇ψ|2 − µ|ψ|2 − Vol(x, y)|ψ|2 − 1
2
χ|ψ|4]dxdy (7)

and find parameter conditions for which δL = 0. Substituting the ansatz
(6) into the effective Lagrangian (7) and performing the spatial integra-
tion with subsequent minimization with respect to variables A and a,
we obtain the following variational equations relating the soliton param-
eters a, A, to the number of atoms, N , the strength of the OL and the
chemical potential

N =
4π

χ

(
1 − 2ε

a2
e−1/a

)
, µ =

2ε

a
(2 − a)e−1/a − a. (8)

From these equations it follows that the existence of solitons in 2D at-
tractive BEC is limited from above by the onset of collapse at the critical
norm Ncol = 4π [22]. We also see from Eq.(8) that for a fixed value of
the OL strength ε, there exists a minimal norm Nmin = 4π

χ (1 − 8εe−2)
attained at a = 1/2, below which the localized solutions do not exist. No-
tice, however, that the minimal norm vanishes if ε > εcr = e2/8 = 0.92.

In Fig. 6 we show the dependence of the pulse amplitude A versus the
number of atoms as predicted by the above VA equations and as obtained
from direct PDE simulations for the critical case εcr = 0.92. From this
Figure we see that the VA fails to predict the delocalizing transition
observed at lower values of N . In order to investigate the aforementioned
nature of the transition, we adopt an effective mass formalism [23, 24]
and approximate the original GPE equation with a linear Schrödinger
eigenvalue problem with the effective potential

Veff = −χ|ψdel(x, y, t)|2 (9)

where ψdel(x, y, t) denotes the solution of the nonlinear problem in pres-
ence of the optical lattice, evaluated at the delocalizing transition.

The problem then is to investigate the existence of states with negative
energy for the following Schrödinger equation

(−∇2 + Veff − µ)ψ(x, y, z) = 0. (10)

For the delocalizing transition reported in Fig. 6 we have that AD ≈
1.2, ND

4π ≈ 0.4, this giving a VA effective potential of the form

Veff = −A2
De−aD(x2+y2). (11)
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Figure 7. Effective potential of a single cell soliton. The continuous curve refer
to the variational potential in Eq. (11) while the dashed one to the Pöschl-Teller
potential in Eq. (12) . Parameters AD ≈ 1.2, aD ≈ 0.4, correspond to the delocalizing
transition of Fig. 6.

We could use numerical schemes for Eq. (10) to show that the effective
potential is just at the critical threshold for the existence of a single
bound state. In the following, however, we provide an analytical estima-
tion of the number of bound states by approximating the effective po-
tential with a solvable potential for which this number is exactly known.
To this end we use the following Pöschl-Teller potential [25]

VPT(r) = − A2
D

cosh(r
√

2aD log(2))2
, (12)

to approximate Veff at the delocalizing transition. The parametric form
of VPT has been fixed so that VPT has the same amplitude and the
same integral value: 2π

∫∞
0 rVeff(r)dr, as Veff . In Fig. 7 Veff and

its Pöschl-Teller approximation are depicted for the parameter values
corresponding to the delocalizing transition of Fig.6, for which we see
that the approximation is quite reasonable (this is true also for other
parameters). The number of bound states of the Pöschl-Teller potential
is then expressed, for the present parametrization, as [26]

n =

⎡⎣1
4

⎛⎝√
1 +

2A2
D

aD log(2)
+ 1

⎞⎠⎤⎦ (13)



Quantum bound states and matter waves delocalizations 249

with [z] denoting the integer part of z. From the above values of aD, AD,
we have that n = 1.09, i.e. the delocalizing transition of Fig. 6 is indeed
very close to the threshold of existence of a single bound state in the
effective potential. The same analysis holds true for other parameter
values (for details see Ref.[5]), this confirming the validity of the bound
state interpretation.

4. Conclusion
In this paper we have used a self-consistent approach to establish a

link between gap solitons of the GPE and quantum bound states of a
linear Schröedinger problem with effective potential. This approach has
been used to construct localized and extended states as well as more
general solutions corresponding to linear combinations of eigenstates, of
the GPE with OL. The method converges quite rapidly and provides
information also about the stability of the bound states. We remark
that this approach can be applicable to arbitrary potentials in arbitrary
dimensions d (for d > 1, however, the diagonalization problem becomes
computationally more expensive). The implications of the bound state
interpretation of the soliton solutions of the GPE on the delocalizing
transition observed in higher dimensions, have been discussed in detail.
In particular, we showed that the delocalizing transition of 2D GPE soli-
tons in OL corresponds to the threshold of existence of a single bound
state in the effective potential of the corresponding linear problem. We
remark that the connection between localized solutions of the NLS equa-
tion and quantum bound states is more general than the present context
and is likely to be true also for other physical systems. In particular we
mention that similar delocalizing behaviors were observed also for intrin-
sic localized modes in nonlinear lattices. In these systems, however, the
existence of a delocalizing threshold has been explained in mathematical
terms as the occurrence of a saddle node bifurcation in parameter space
[1]. Our interpretation in terms of bound states provides a complemen-
tary physical explanation of the phenomenon.

In a future publication we hope to discuss how to extend the above
analysis to the case of ILM solutions of the discrete NLS equation and
how to link the above theory to the one of polaronic states in solids.
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CONTROL OF MATTER WAVES IN
OPTICAL LATTICES BY FESHBACH
RESONANCE
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Complexo Interdisciplinar, Av. Prof. Gama Pinto 2, Lisbon 1649-003, Portugal
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Abstract Using the Feshbach resonance (FR) one can change a scattering length
of two-body interactions and thus affect nonlinear dynamics of exci-
tations in a Bose-Einstein condensate. The phenomenon is described
by the Gross-Pitaevskii (GP) equation with varying nonlinearity. In
this work we discuss the effect of variation of the nonlinearity on ex-
citations in a BEC placed in an optical lattice. More specifically, we
describe reductions of a three-dimensional (3D) GP equation to a 1D
perturbed nonlinear Schrödinger (NLS) equation for different relations
among parameters; discuss periodic solutions of the NLS equation; carry
out numerical study of the dynamics of the NLS equation with a pe-
riodic and parabolic trap potentials. Special attention is paid to the
process of generation of trains of bright and dark matter solitons from
initially periodic waves.

Keywords: Bose-Einstein condensate, matter waves, optical lattices, Feshbach res-
onance, cnoidal waves, solitons.

1. Introduction
The first experiments showed possibility for bosons to condensate in

the ground state at ultra-low temperatures [1] originated a large num-
ber of theoretical and experimental efforts forwarded to study of Bose-
Einstein condensates (BEC’s). Recently, realization of BEC’s embedded
in a periodic potential ([2, 3, 4]) has opened new possibilities to observe
and explore matter waves, including dark [5] and bright [6] solitons.

On the other hand it was shown theoretically [7] and confirmed in
recent experiments [6, 8] that by changing external magnetic field near
the resonant point one can control the magnitude (and even sign) of the
scattering length of inter-particle interactions – the so-called Feshbach
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resonance (FR). The obtained results gave origin to theoretical studies
of the influence of the varying nonlinearity on dynamics of the matter
waves. In particular, it was shown that FR can be employed to generate
trains of solitons starting with periodic wave [9], to obtain stable local-
ized solutions [10], and to be used for generation of shock waves [11] in
BEC’s.

In the present paper we consider dynamics of a BEC in an optical
lattice (OL) affected by FR. We start (Sec. 2) with introduction of the
mean-field approximation and parameters of the problem. In Sec. 3 we
present the listing the main one-dimensional (1D) reductions of the 3D
Gross-Pitaevskii (GP) equation depending on the particular choice of the
relation among the main scales of the system. In Sec. 4 we discuss the
choice of initial conditions and unperturbed periodic solutions describing
BEC in an OL. Sec. 5 is devoted to detail study of the effect of FR on
the dynamics of the condensate. In conclusion we briefly discuss the
results and provide estimates for the parameters allowing experimental
realization of the phenomenon.

2. Mean-field approximation and parameters of
the problem

The GP equation governing evolution of the wave function Ψ(r, t) de-
scribing a dilute BEC is obtained within the mean-field approximation.
It reads [12]

i�
∂Ψ
∂t

= − �2

2m
∆Ψ + V (r)Ψ + g0|Ψ|2Ψ . (1)

Here we use the standard notations: g0 = 4π�2as/m, as is the s-wave
scattering length, which can be either positive or negative, and m is
the atomic mass. The external potential, V (r), is given by V (r) =
Vtrap(r) + Vlatt(x) where Vtrap(r) = m

2

(
ω2
⊥r2

⊥ + ω2
0x

2
)

is the magnetic
trap potential, r⊥ = (y, z), ω⊥ and ω0 are the transverse and axial har-
monic oscillator frequencies, and Vlatt(x) = ERu(x) is a lattice poten-
tial (created by standing laser beams) normalized to the recoil energy,
ER = �2k2/2m, where k = 2π/L. Respectively, u(x) = u(x + L) is a
periodic dimensionless function with a period L. The wave function is
normalized to the total number of atoms, N :

∫ |Ψ|2dr = N.
We will deal with a cigar-shaped trap where the transverse linear os-

cillator length, a⊥ =
√

�/mω⊥, is much smaller than the longitudinal
one, a0 =

√
�/mω0: a⊥ � a0. Then it is natural to investigate possibil-

ities of reduction of the 3D GP equation to an effective 1D model. By
introducing the healing length ξ = (8πn|as|)−1/2, where n ≈ N/a2

⊥a0 is
a mean particle density, one collects four characteristic spatial scales of
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the problem at hand {a0, a⊥, L, ξ}, relations among which will define the
form of the effective 1D equation. More specifically, we concentrate on
the case where relation among these four characteristic lengths can be
defined by a small parameter of the system, ε, which in the next Section
will be used as a keystone of the multiple-scale expansion. The square
of the small parameter we define as a ratio between the energy density
of two-body interactions, ∼ 4π�2|as|n/m, and a density of the kinetic
energy of the transverse excitations, ∼ �2/2ma2

⊥:

ε2 =
a2
⊥

ξ2
∼ Nas

a0
. (2)

Considering relations among the characteristic scales, one can single out
four different cases which can be treated by means of the multiple-scale
expansion. They are summarized in Table 1. Below, following [13] we
consider one of these cases in detail and only outline other possible
reductions.

Table 1. Scaling, backgrounds and effective 1D equations describing matter waves
in OL’s. All variables in evolution equations are dimensionless (see the text).

Case Scaling φn(x0) Equation

1 a⊥ ∼ L ∼ εξ � ε2a0 ≈ Bloch function iψt = −(2M)−1ψxx + 2σ|ψ|2ψ

2 a⊥ ∼ L ∼ εξ ∼ εa0 = Bloch function
iψt = −(2M)−1ψxx + 2σ|ψ|2ψ

+ν2x2ψ

3 a⊥ ∼ εL ∼ εξ � ε2a0 = π−1/4e−νx2
0/2 iψt = −ψxx + 2σ|ψ|2ψ

+U(x)ψ

4 a⊥ ∼ εL ∼ εξ ∼ εa0 ≡ 1
iψt = −ψxx + 2σ|ψ|2ψ

+U(x)ψ + ν2x2ψ

3. Effective 1D equations

3.1 Long trap and rapidly varying OL
Let us consider the first case from Table 1, for which a⊥ ∼ L ∼

εξ � ε2a0. It corresponds to the situation when the condensate is rather
long and the periodicity modifies the spectrum of the underlying linear
system. To this end we introduce dimensionless independent variables
t̃ = ω⊥t/2, x̃ = x/a⊥, r̃⊥ = r⊥/a⊥, and a renormalized wave function
Ψ̃ = a⊥|as|1/2Ψ. Then Eq. (1) can be rewritten in the dimensionless



254 NONLINEAR WAVES: CLASSICAL AND QUANTUM ASPECTS

form

i
∂Ψ̃
∂t̃

=
(
L⊥ + L0 + 8πσ|Ψ̃|2

)
Ψ̃, (3)

L⊥ = −∆⊥ + r̃2
⊥, L0 = − ∂2

∂x̃2
+ ν2x̃2 + γ2U(γx̃). (4)

Here σ =sgn(as), ν = ω0/ω⊥ is an aspect ratio of the trap, U(γx̃) ≡
u(a⊥x̃) is the new dimensionless periodic function which is varying on a
unit scale, and

γ2 =
ER

�ω⊥
∼ a2

⊥
L2

. (5)

Let us consider linear eigenvalue problems associated to (3), (4)

L0 φnq(x̃) = Enq φnq(x̃), L⊥ ξl1,l2(r̃⊥) = El1,l2 ξl1,l2(r̃⊥). (6)

Here we introduce the indexes n and q for the number of a band and
wave vector inside the first Brillouin zone (BZ), and l1 and l2 for the
two transverse quantum numbers. Strictly speaking the operator L0 has
a discrete spectrum, which however approximates the band spectrum of
the first eigenvalue problem in (6) in the limit ν → 0 (a0 → ∞). In
this case the use of the “band” terminology is justified and φnq(x) is
approximated by the Bloch function of the respective periodic potential
(it will be considered bordering the edge of the first BZ where q = ±π/L,
and thus the abbreviated notation φn(x) ≡ φn±π/L(x) will be used).
All eigenfunctions are considered to be normalized to one. In what
follows however, we will be interested in the evolution of the background
state (l1 = l2 = 0) of the transverse component. Thus it will be taken
ξ0,0(r̃⊥) = π−1/2e−r̃2

⊥/2, and E0,0 = 2.
We look for a solution of Eq.(3) in a form of expansion

Ψ̃ = εψ1 + ε2ψ2 + ε3ψ3 + · · · , (7)

where ψj (j = 1, 2, . . .) are functions of r̃⊥ and scaled independent vari-
ables tα = εαt̃ and xα = εαx̃. Then the leading order of the solution
Eq.(7) can be searched in the form of a weakly modulated ground state

ψ1 =
1√
π

A(x1, t2)e−i(En+2)t0e−r̃2
⊥/2φn(x0). (8)

Here A(x1, t2) (as well as Bn(x1, t2) below) is a slowly varying enve-
lope amplitude, where by convention we indicate only the most rapid
variables, i.e. A(x1, t2) means that A depends on all {x1, x2, . . .} and
{t2, t3, . . .}.
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After substituting expansion (7) into (3), (4) one collects the terms
at each order of ε, what leads to a set of equations. The first three of
them read [M = i∂/∂t0 − (L0 + L⊥)]:

Mψ1 = 0, (9)

Mψ2 = 2
∂2ψ1

∂x0∂x1
, (10)

Mψ3 = −i
∂ψ1

∂t2
− i

∂ψ2

∂t1

−∂2ψ1

∂x2
1

− 2
∂2ψ2

∂x0∂x1
− ∂2ψ1

∂x0∂x2
+ 8πσ|ψ1|2ψ1. (11)

The first order equation (9) is satisfied by ground state solution (8). A
solution of the second order equation (10) is searched in the form

ψ2 =
1√
π

e−r̃2
⊥/2e−i(En+2)t0

∑
n′ �=n

Bn′n(x1, t1)φn′(x0). (12)

Applying
∫

dr̃⊥dx0φ̄nξ0,0 to Eq. (10) (hereafter an overbar stands for
complex conjugation), and taking into account that φn(x0) borders the
forbidden gap and thus is either even or odd, one computes ∂A/∂t1 = 0.
Thus A does not depend on t1, i.e. A ≡ A(x1, t2). Next, multiplying (10)
by φ̄n1ξ0,0 and integrating over x0 and r̃⊥ one obtains the coefficients
Bn1n for n1 �= n

Bn1n =
Γn1n

En1 − En

∂A

∂x1
, Γn1n = −2

∫ L

0
φ̄n1

d

dx0
φndx0. (13)

Finally, applying
∫

dr̃⊥dx0φ̄nξ0,0 to (11), we obtain

i
∂A

∂t2
+

1
2Mn

∂2A

∂x2
1

− χnσ|A|2A = 0, (14)

where

χn = 4
∫ L

0
|φn(x0)|4dx0,

1
2Mn

= 1 +
∑
n1 �=n

|Γnn1 |2
En1 − En

. (15)

By making substitution A → √
2/χnψ, t2 → t, x1 → x, and Mn → M

one obtains a dimensionless 1D nonlinear Schrödinger (NLS) equation

i
∂ψ

∂t
+

1
2M

∂2ψ

∂x2
− 2σ|ψ|2ψ = 0. (16)



256 NONLINEAR WAVES: CLASSICAL AND QUANTUM ASPECTS

We emphasize, that the final Eq.(16) does not contain explicitly the
parabolic trap potential and OL since they are included in the ground
state solution and thus in the coefficients of the obtained equation.

Finally we have to clarify the meaning of the coefficient M−1
n . This

can be done, by means of the so-called kp-method, known in the solid
state physics. Namely, it turns out that in the limit of the band spectrum
(i.e. when a0/a⊥ → ∞) one has M−1

n = d2En/dq2, i.e. Mn is nothing
but the effective mass (see [13]).

3.2 Short trap and rapidly varying OL
By considering another relation among the main parameters of the

system one arrives at a different form of the 1D NLS equation. Consider
the Case 2 from the Table 1, where a⊥ ∼ L ∼ εξ ∼ εa0 what corresponds
to the situation when the condensate size in the axial direction is not
large enough and effect of the boundaries on the soliton dynamics cannot
be neglected. Like in the first case, the periodicity is of the order of the
radial size and modifies the spectrum introducing the effective mass.
Mathematically this is expressed by the fact that now a0/a⊥ ∼ ε and
thus ν2x2 = ε2ν̃2x2

1, where ν = εν̃ and ν̃ is of unity order. Now one has
to redefine the problem (3), (4) as follows

i
∂Ψ̃
∂t̃

=
(
L⊥ + L0 + ε2ν̃2(εx̃)2 + 8πσ|Ψ̃|2

)
Ψ̃, (17)

L⊥ = −∆⊥ + r̃2
⊥, L0 = − ∂2

∂x̃2
+ γ2U(γx̃) (18)

Next one has to follow the steps described in the preceding subsection,
but now with a different operator L0. This naturally leads to a new
background, which is now a solution of a Hill equation and thus is a
Bloch function exactly (in the previous case it was only approximated
by the Bloch function). Respectively a new term, ν̃2x2

1, appears in the
resulting 1D equation:

iψt = −ψxx + ν2x2ψ + 2σ|ψ|2ψ (19)

where as before {ψ, t, x} stay for {A, t2, x1} (see [13, 14], for details).

3.3 Long trap and smooth OL
Let us turn to the next case from the Table 1, where a⊥ ∼ εL ∼ εξ �

ε2a0. The peculiarity now, is that period is of order of the healing length.
Thus excitations in a BEC may have scales compared with the lattice
period (notice that in this case we again have a potential wide enough,
to do not affect significantly wave dynamics). Mathematically this fact
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is expressed by the fact that now γ = εγ̃, where γ is defined by (5) and
γ̃ = (a⊥/L)(a0/Nas)1/2 is of order one. Then γ2U(γx̃) ≡ ε2Ũ(x1) where
Ũ(x1) ≡ γ̃2U(γ̃x1). The system (3), (4) takes the form

i
∂Ψ̃
∂t̃

=
(
L⊥ + L0 + ε2Ũ(εx̃) + 8πσ|Ψ̃|2

)
Ψ̃, (20)

L⊥ = −∆⊥ + r̃2
⊥, L0 = − ∂2

∂x̃2
+ ν2x̃2. (21)

Now the eigenvalue problem for L0 is solved explicitly giving the Gaus-
sian background φn(x0) = π−1/4 exp(−x2

0/2), and the final (i.e. already
in dimensionless units) 1D equation of motion reads

iψt = −ψxx + U(x)ψ + 2σ|ψ|2ψ. (22)

Thus as one could expect in the case at hand the periodic potential
appears in the evolution equation in an explicit form. This kind of NLS
equation was considered in Ref.[15].

3.4 Short trap and smooth OL
Finally, if one considers condensate not too long and a lattice having

the period of order of the healing length, i.e. the situation described
in Table 1 as Case 4: a⊥ ∼ εL ∼ εξ ∼ ε a0, the both lattice and trap
potentials will appear in the final equation of motion. The corresponding
problem is formulated now as follows

i
∂Ψ̃
∂t̃

=
(
L⊥ + L0 + ε2ν̃2(εx̃)2 + ε2Ũ(εx̃) + 8πσ|Ψ̃|2

)
Ψ̃, (23)

L⊥ = −∆⊥ + r̃2
⊥, L0 = − ∂2

∂x̃2
. (24)

The ground state becomes φn(x0) ≡ 1.
Skipping calculations, similar to ones presented in the Case 1, we

present the final form of the effective 1D equation

i
∂ψ

∂t
= −∂2ψ

∂x2
+ ν2x2ψ + U(x)ψ + 2σ|ψ|2ψ (25)

where as before the tildes are suppressed.

4. Stationary solution
The Case 1 considered above is the simplest one since it is reduced

to the unperturbed NLS equation (16). This allows one obtain rather
complete information about the wave function analytically using, say,
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the inverse scattering transform (IST), and even to solve the problem
explicitly for a number of specific initial conditions (see e.g. [9]). In other
cases numerical analysis has to be employed. This rises the problem
of a choice of initial conditions adequate to the physical problem one
wants to solve. In the present paper we consider effect of the FR, i.e.
varying nonlinearity, on a stationary background state. Thus, for the
next step we have to solve the problem of finding stationary background
distribution, i.e. stationary solutions of the above evolution problems at
constant nonlinearity. These last solutions at t = 0 will be considered as
initial condition for the problem with varying nonlinearity. Considering
the Case 2 where NLS equation has the form (19) one can find initial
distribution by solving stationary nonlinear problem numerically (see
e.g. [14]). The stationary solutions for Case 3 can be found analytically
in form of a periodic waves (see e.g. [16]).

In the present paper we are concerned with the Case 4 for which we
consider the choice of the stationary solutions in more details.

4.1 Background
In order to find a stationary solution of Eq.(25) we use the ansatz

ψ(x, t) = Φ(x, t)F (x)e−i(ωbg−2σA)t (26)

where F (x) is chosen to solve the nonlinear eigenvalue problem

Fxx + (ωbg − ν2x2)F − 2σAF 3 = 0, F (0) = 1, Fx(0) = 0, (27)

ωbg is a spectral parameter and A is a constant. Then Φ(x, t) solves the
equation

iΦt + Φxx − U(x)Φ − 2σ|Φ|2Φ = R[F, Φ] (28)

with

R[F, Φ] ≡ −2Φx(lnF )x + 2σΦ(|Φ|2 − A)(F 2 − 1). (29)

It is our aim now, to show, that for relatively small ν, the right hand
side of Eq.(28) can be considered as a small perturbation. To this end
we expand F (x) in the vicinity of the center of the trap potential:

F (x) = 1 +
2σA − ωbg

2
x2 + O(x4), νx � 1. (30)

Substituting (30) into (27) and taking into account only the terms of or-
der x2 one can obtain estimation for the eigenvalue ωbg ≈ 2σA+ν2/2σA,
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which in its turn allows us to rewrite (30) as F (x) ≈ 1 − ν2x2/(4σA).
Next we estimate: (ln F )x ∼ ν2x, (F 2 − 1) ∼ ν2x2, and rewrite (29) as

R[F, Φ] =
ν2

σA

[
Φxx − σΦ(|Φ|2 − A)x2

]
. (31)

Assuming that
√

A is of order of the amplitude of Φ, i.e. |Φ/
√

A| = O(1),
in the vicinity of the potential minima (νx � 1) we can neglect the r.h.s.
in Eq.(28) and approximate Φ(x, t) by a solution of the equation

iΦt + Φxx − U(x)Φ − 2σ|Φ|2Φ = 0. (32)

Formally, this result brings us back to the Case 3 from Table 1 (c.f.
(22)). There is however a difference from the point of view of dynamics.
Eq.(32) will be used to find the initial condition to (25) with varying
nonlinearity (see (37), below). It, of course, will not give us an exact
solution of the stationary problem, but will allow us to approximate a
solution on times less than the time of propagation of a perturbation
with the sound velocity along the condensate, τν. In our dimensionless
units τν ∼ 1/ν. Since our main goal is to study the effect of a FR on
dynamics, when the respective characteristic times are much less than
τν. In that case the initial condition found using (32) can be viewed as
an approximation good enough to model the wave dynamics.

4.2 Periodic solutions
Let us now discuss a stationary periodic solution of (32): Φ(x, t) =

eiωtϕ(x), where ω is a frequency and ϕ(x) = ϕ(x + L) is a real periodic
function satisfying the equation as follows

ϕxx = (ω + U(x) + 2σϕ2)ϕ. (33)

First of all we observe, that Eq.(33) allows one to construct the lat-
tice potential U(x) in an explicit form, when desired wave field ϕ(x) is
given apriori (a kind of “inverse engineering”). The only requirement
appearing in this way is regular behavior of ϕxx/ϕ. In particular, this
is the case of the Jacobi elliptic functions

ϕpq(x) =
√

A pq(κx, m), (34)

where we are using standard notations with p=c, d, s and q=n and,
hence, the case of the respective trigonometric functions appearing in
the limit m → 0. These solutions subject to the proper choice of σ
correspond to the lattice potential

U(x) = U0sn 2(κx, m). (35)
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They are summarized in the Table 2. Following Ref.[16], where such so-
lutions were studied in details, we refer to ϕpq as trivial-phase solutions.

Table 2. Solutions of type (34), σ must be chosen to make A > 0.

pq A ω

cn (U0/2 − κ2m)σ κ2(1 − 2m) + U0

dn (U0/2m − κ2)σ κ2(m − 2) + U0/m

sn (κ2m − U0/2)σ κ2(1 + m)

We point out that a general wave field of the form

ϕpq(x) =
(
A pqβ(κx, m) + B

)α
(36)

with B > A, α and β being real and pq(κx, m) being one of the elliptic
functions cn , dn or sn can be generated by the proper lattice potential.
Some particular case of (36) with α = 1/2 and β = 1 corresponding to
the lattice potential (35) were obtained and considered in [16].

5. BEC in OL controlled by FR
Let us now consider management of matter waves by means of FR.

In particular, we are interested in change of parameters of a periodic
wave transforming it into a sequence of highly localized pulses which
can be identified as dark or bright solitons. To this end one has to
perturb Eq.(25), however weakly enough in order to do not destroy the
periodic wave. This can be achieved by means of FR, i.e. by changing
the magnitude of the scattering length, as, due to varying magnetic field
B(t). A model simulating the process can be chosen as [6], as(t) =
as(0) et/τ , as(0) being the initial value of the scattering length far from
the resonance, and τ being a FR characteristic time. Assuming that
dependence of as(t) on time is slow enough (i.e. is governed by ε2t,
where ε is given by (2) and t is the real physical time) one can rewrite
Eq.(25) in the form

i
∂ψ

∂t
+

∂2ψ

∂x2
− ν2x2ψ − U0sn 2(κx, m)ψ − 2σet/τ |ψ|2ψ = 0. (37)

Recently the problem of the deformation of the exact solutions sub-
ject to the FR was addressed in literature. Model (37) without parabolic
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trap, ν = 0, was considered analytically in Ref.[18] and at ν = 0 and
U0 = 0 it was studied in Ref.[18]. It was found that by increasing
the strength of inter-particle interactions one can generate trains of
bright/dark solitons in BEC’s with negative/positive scattering length.
Analytically the process is described by means of the perturbation tech-
nique in the so-called adiabatic approximation. Since various aspects
of this technique described in [9, 18], here we concentrate on numerical
study of the system (37).

5.1 Deformation of a cn-wave
5.1.1 Evolution problem. First we consider deformation of an
cn-wave resulting in creation of a train of bright solitons in a BEC with
negative scattering length, σ = −1, embedded in the OL. Numerical
solution of Eq.(37) with initial condition taken in a form F (x)ϕcn (x),
where F (x) is a numerical solution of (27) and ϕcn (x) is a solution
given in the first line of Table 2, is presented in Fig.1. We studied two
subsequent regimes. In the time interval 0 ≤ t ≤ 2 the FR was switched
on and after that at 2 ≤ t ≤ 10 all potentials and FR were switched off,
and the condensate was allowed to expand freely, i.e. being governed by
the unperturbed NLS equation.
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Figure 1. Dynamics of the cn-wave. In the inset (a) thick and thin lines show initial
(t = 0) and intermediate (t = 2) profiles of the wave which are affected by RF and
in (b) the potential is shown. Parameters are ν = 0.002, τ = 0.2, κ = 2, m = 0.02.
They correspond to A = 0.001 and U0 = 0.16. In the inset (c) the number of solitons
is shown.

From inset (a) in Fig.1 one can see that growth of the scattering length
leads to sharpening of peaks of the initially smooth periodic distribution
and to increase of their amplitudes. At an intermediate moment of time
(here t = 2) we obtain strongly pronounced train of pulses, which can
be associated with bright solitons. Strictly speaking the concept of a
soliton is well defined in 1D integrable systems, like NLS equation (16).
There solitons are associated with the discrete spectrum of the associated
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linear spectral problem (see e.g. [19]). In the present paper we also
adopt the respective definition of the soliton. That is why, in order to
verify numerically, whether created picks of the atomic distribution can
be associated with solitons at t = 2 (and taking into account typical
experimental settings with BEC’s) we switch off all external factors. In
Fig.1 we can see that the condensate consists of a set of solitary pulses
propagating outwards the center without significant changes of their
shapes. This behavior supports the fact that we indeed generated train
of real bright solitons.

5.1.2 Calculation of the number of bright solitons. In
order to use mathematical definition of a soliton, we notice that after
switching off all external factors dynamics is governed by the NLS equa-
tion [Eq. (16) with M = 1/2] which is integrable by means of the IST.
Here we do not enter in details of the IST which can be found in numer-
ous monographs on soliton theory (see e.g. [19]). A point important for
our analysis is that the number of solitons in a pulse described by the
NLS equation coincide with a number of eigenvalues of the Zakharov-
Shabat (ZS) spectral problem which can be written as

fx = Uf , f =
(

f1

f2

)
U =

(
λ
2i

√
σψ̄√

σψ − λ
2i

)
, (38)

where constant λ is a spectral parameter.
To calculate a number of solitons we follow Ref. [20] and use piecewise-

constant discretization for the ZS spectral problem (see [19]). To this end
we truncate the wave function ψ(x, t) outside a sufficiently large (l � a0)
interval [−l, l]. On each elementary subinterval (xn−∆x/2, xn+∆x/2),
where a point xn is defined as xn = −l + n∆x, ∆x = l/K, and 2K + 1
is the total number of discretization points of the interval [−l, l], the
function ψ(x, t) is chosen to be equal to constant ψn = ψ(xn, t). By
direct integration of Eq.(38) on the each elementary subinterval one can
write the corresponding solution as follows

f(xn + ∆x, λ) = Tnf(xn, λ). (39)

Here the transfer matrix Tn(ψn, λ) has the following form [20]

Tn =(
cosh(kn∆x) + iλ

2kn
sinh(kn∆x) − i

kn
sinh(kn∆x)ψ̄n

− i
kn

sinh(kn∆x)ψn cosh(kn∆x) − iλ
2kn

sinh(kn∆x)

)

where k2
n = −|ψn|2 − λ2/4.
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In order to solve the scattering problem we have to propagate the so-
lution using the transfer matrix what gives the relation f(l−∆x/2, λ) =
S(λ)f(−l − ∆x/2, λ), where the scattering matrix S(λ) is defined by

S(λ) =
2K∏
n=1

T(ψn, λ). (40)

Then the number of zeros of the matrix element S11(λ) for definite ψn

proportional to the number of solitons generated by the pulse ψ(x).
Let us apply this technique to the case of dynamics of the cn-wave

shown in Fig.1. On each time step (∆t = 0.005) in the interval 0 < t ≤ 2
the function ψ(x, t) considered as an initial condition for the respective
NLS equation. In Fig.1c one can see that the initial cn-wave does not
have solitons while increasing the nonlinear coefficient with time results
in growth of the number of solitons.

It should be mentioned that at t = 2 the number of solitons calculated
by solving spectral problem exceeds the number of solitons visible in
Fig.1. This is explained by the fact that peaks in Fig.1 can present
bound states consisting of several solitons which move with the same
velocities, i.e. multisoliton pulses, and by the fact that small amplitudes
solitons cannot be viewed.

5.2 Deformation of a dn-wave
Now let us consider deformation of a dn-wave resulting in creation of

a train of bright matter solitons in a BEC with the negative scattering
length, σ = −1. We solve Eq.(37) with initial condition taken as a dn-
wave (the second row in Table 2) modulated by the background F (x).
The results are shown in Fig. 2.

Increasing the strength of the inter-particle interactions by means of
FR as in the previous case each peak starts to grow and becomes thinner.
This process gives origing to a train of the bright solitons (see the inset
in Fig.2).

In contrast to the previous case, however, in the case of the dn-wave
one can generate train of solitons which is less robust. This can be
checked by studying free expansion of the condensate after switching off
all potentials and fixing nonlinearity for t > 2.1. As it is shown in Fig.2
solitons start to move interacting with each other, and finally the train
is rapidly destroyed.

5.3 Deformation of a sn-wave
Finally we solve numerically Eq.(37) in the repulsive case σ = 1 of

BEC’s with initial condition taken in a form of a sn-wave given by the
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Figure 2. Dynamics of the dn-wave. Dynamics of the cn-wave. In the inset (a)
thick and thin lines show initial (t = 0) and intermediate (t = 2.1) profiles of the
wave which are affected by RF and in (b) the potential is shown. Parameters are
ν = 0.002, τ = 0.2, κ = 4, m = 0.2. They correspond to A = 0.001 and U0 = 6.4.

last row of Table 2, which is modulated by the background F (x) taken
as a numerical solution of (27). The initial and final shapes of the
condensate density affected by FR as well as the potential shape are
shown in Fig.3 a,b.

0

0 .0 0 0 6

0 .0 0 1 2

-4 -2 0 2 4

0

0 .1 6

|ψ|2

U

x

(a )

(b )
0

0 .0 0 0 1 2

-1 0 0 0 1 0 0
0

0 .0 0 0 2 5

|ψ|2

x

(c )

(d )

|ψ|2

Figure 3. (a) Initial (thin line) and final tfin = 2.2 (thick line) profiles of the
condensate and (b) potential. Parameters are ν = 0.002, τ = 0.2, κ = 2, m = 0.02.
They correspond to A = 0.001 and U0 = 0.16 Profiles of the condensate at t = 9 with
switching off FR, parabolic and periodic potentials (c) at t = 2.2 and (d) at t = 0.

Fig.3a shows sharpening of the atomic distribution around potential
minima. One also observes shifts of the density extrema outwards the
minimum of the magnetic trap what is stipulated by the expansion of
the condensate due to the grows of repulsive interactions between atoms.

Unfortunately, in this case generated train of excitations is not a se-
quence of real dark solitons. As in the previous cases this can be verified
by switching off FR as well as all potentials and making long time sim-
ulation. By fixing magnitude of the nonlinear coefficient at t = 2.2 and
switching off all potentials we allow condensate to expand freely. At
t = 9 one can observe (see Fig.3c) the dark solitons are transformed
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in an oscillating part of the solution which is located between conden-
sates moving outwards the center, while at the outside part of the new
created condensates one can observe formation of the shock waves (we
notice that possibility of existence of shock wave in lattices has been
reported in Ref. [21], while the use of the FR to generate them was
discussed in the recent work [11]). These effects are a consequence of
applying FR what can be checked by making simulation with the same
initial condition where FR and both potentials were switched off at ini-
tial time t = 0. A after time t = 9 (see Fig.3d) one can see splitting of
the condensate in two parts moving in opposite directions. By making
reverse experiment of collision of two condensates or living the parabolic
potential in the model what leads to oscillatory behavior of the conden-
sates one can observe that two initially separated condensates during
collision generate the periodic structure similar to what produced by
embedding condensate into the OL.

The fact that obtained sequence of excitations is not a train of real
dark solitons can be explained as follows. In the contrast to the process
of bright solitons formation the generation of dark solitons requires well
defined background which in its turn is strongly affected by both the FR
and by the condenstae expansion.

6. Discussion and conclusion
In order to link the above theoretical results with possible experimen-

tal settings we estimate the main parameters used in the theory. Let us
consider a condensate of N ≈ 104 atoms with initial scattering length
as(0) ≈ 1nm. The frequencies of the magnetic trap in the axial and
radial directions are ω0 ≈ 2π × 1 Hz, ω⊥ ≈ 2π × 300 Hz, what corre-
sponds to the cigar-shaped shape with axial size a0 ∼ 1 mm and radial
one a⊥ ∼ 10 µm. In this case aspect ratio ω0/ω⊥ ≡ ν ≈ 0.003 and
corresponding small parameter ε2 ≈ 0.01. By calculating the real time
step as ∆t = 2/ω⊥ε2 ≈ 100 ms one can obtain that experimental char-
acteristic time of the FR is about 20 ms, what corresponds to τ = 0.2,
and the characteristic time of the appearance of a train of solitons in di-
mensionless units is approximately 2 what corresponds to the real time
t ≈ 0.2 s.

Recent experimental studies [8] have shown that by approaching the
resonant point a number of atoms in the condensate start quickly de-
crease what imposes certain restrictions on the application of FR. This
means that the theory is applicable if FR is switched off far enough from
the resonant point to preserve the number of particles in the condensate.
Another restriction is related to the fact that the transverse Gaussian
distribution is also affected by the expansion of the condensate and by
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the FR, which are not take into consideration by the theory based on
weakly nonlinear expansion.

In conclusion we have investigated formation of the matter bright and
dark matter solitons in quasi-1D BEC’s embedded in OL by means of
FR technique. In particular, for cigar-shaped condensate we have con-
sidered the four types of reduction of the initially 3D GP equation to the
1D NLS equation where parabolic and periodic potentials are included
into the final NLS equation either explicitly or in the background solu-
tion. This was done by using multiple-scale expansion method. Special
attention has been paid to the 1D NLS equation in which both parabolic
and periodic potentials were included explicitly. It was shown that for
small aspect ratio of the condensate initial conditions can be searched
as a exact solution of the NLS equation with periodic potential which is
modulated by the solution of the NLS equation with only parabolic po-
tential. The general form of the periodic solution of the NLS equation in
OL was proposed. The process of formation of the trains of bright/dark
solitons by using FR in the presence of parabolic and periodic potentials
was studied numerically.
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Abstract Coupled nonlinear Schrödinger equations (CNLS) with an external el-
liptic function potential model a quasi one–dimensional interacting two-
component Bose-Einstein condensate trapped in a standing light wave.
New stationary solutions of the CNLS with a periodic potential are
derived and interpreted as exact Bloch states at the edge of the Bril-
louin zone. The modulationally unstable solutions lead to formation of
localized ground states of the coupled BEC system.

Keywords: Bose-Einstein condensate, optical lattices, modulational instability, soli-
ton generation.

1. Introduction
Recent experiments on dilute-gas Bose-Einstein condensates (BEC’s)

have generated great interest both from theoretical and experimental
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points of view [1]. At ultra-low temperatures the mean-field description
for the macroscopic BEC wave-function is constructed using Hartree-
Fock approximation and results in the Gross-Pitaevskii (GP) equation [1].
The latter one reduces to the one-dimensional (1D) nonlinear Schrödinger
(NLS) equation with an external potential, in particular, when the trans-
verse dimensions of the condensate are much less than its healing length
and its longitudinal dimension is of order or much longer than the heal-
ing length (see e.g. [2, 3]). This is termed the quasi-one dimensional
(quasi-1D) regime of the GP equation. In this regime BECs remain
phase–coherent, and the governing equations are one-dimensional. Sev-
eral families of stationary solutions for the cubic NLS with an elliptic
function potential were presented in Refs [4, 6]; their stability was ex-
amined using analytic and numerical methods [6, 7, 8, 9, 10].

The two-component BEC’s is described by GP equations, which in
the quasi-1D regime, reduce to coupled nonlinear Schrödinger (CNLS)
equations with an external potential [11, 12].

Below we study the stationary solutions of the CNLS with an external
potential. Several cases of explicit solutions in terms of elliptic functions
are analyzed and their stability properties are studied numerically. We
derive a set of stationary solutions with trivial and non trivial phases;
some of them were also analyzed independently in Ref. [13]. We extend
their results by investigating in more details the solutions of CNLS whose
components are expressed through different elliptic functions, see also
Section 6. We investigate the possibility that these solutions taken as
initial states, may generate localized matter waves (solitons).

2. Basic equations
At very low temperatures, when the mean field approximation is appli-

cable, the evolution of two interacting BEC’s is described by two coupled
GP equations:

i�
∂Ψj

∂t
=

⎡⎣− �2

2m
∇2 + Vj(r) +

4π�2

m

∑
l=1,2

ajl|Ψl|2
⎤⎦Ψj (1)

(j = 1, 2), see [11, 12]. Here atomic masses of both components are
assumed to be equal, Vj(r)’s are external trap potentials, and aij are the
scattering lengths of the respective atomic interactions (other notations
are standard). If Vj consist of superposition of a magnetic trap providing
cigar shape of the condensate (elongated, along the x-axis) and an optical
trap inducing a periodic lattice potential along the x-axes we have:

Vj(r) =
m

2
ω2

j [λ
2x2 + y2 + z2] + U(κx), U(κx) = U(κ(x + L)). (2)
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Here λ is the aspect ratio of the condensate, which is assumed to be
the same for both components. For cigar-shaped condensates λ � 1
with typical values 10−2 ÷ 10−4. Although we have assumed equality
of the optical potential for both components, in a general case one has
to distinguish the linear oscillator frequencies, ω1 and ω2, when con-
sidering the two components corresponding to the different magnetic
moments. For example, in the experimental settings of [14] with 87Rb
atoms Ω = ω2/ω1 =

√
2. This fact has natural implication on the result-

ing form of the effective system of coupled 1D NLS equations. Different
oscillator frequencies means that two components are located in two dif-
ferent parabolic potentials, and thus their effective densities are different
when the number of atoms is equal. Therefore, even at approximately
equal s-wave scattering lengths, i.e., for a11 ≈ a22, the two components
experience different nonlinearities, proportional to the atomic densities.

Another important fact is that a cigar-shaped BEC can be viewed
as a waveguide for matter waves. As such it is characterized by its
mode structure. As it is well known (c.f. with the nonlinear optical
waveguides [15]) the intrinsic nonlinearity of a BEC results in the mode
interaction (and thus energy distribution among modes). If however the
nonlinearity is weak enough, the main state of the condensate can be
considered as a weakly modulated ground state of the underline linear
system. As it is clear that for a two-component BEC the respective
small parameter is the ratio between the density energy of two-body
interactions, 4π�2Njajj

√
λ/(ma3

j) (here aj =
√

�/(mωj) is the linear
oscillator length and Nj =

∫ |Ψj|2dr is the number of atoms of the jth
component) to the density of the kinetic energy �2/(2ma2

j). Thus the
small parameter equals ε = 8πNa11

√
λ/a1 � 1, where N = N1 + N2 is

the total number of atoms. In this situation a self-consistent reduction
of the original 3D system (1) to the effective 1D system of the coupled
equations can be provided by means of the multiple-scale expansion.
Since the details of such a reduction are already known (see [3, 16] for
a single component BEC and [5] for the multicomponent case), here we
consider basic equations in reduced form and in dimensionless variables.

3. Stationary solutions with non-trivial phases
The rescaled system has the well known form of CNLS equations

i
∂Q1

∂t
+

∂2Q1

∂x2
+ (b1|Q1|2 + b0|Q2|2)Q1 − V0sn 2(αx, k)Q1 = 0, (3)

i
∂Q2

∂t
+

∂2Q2

∂x2
+ (b0|Q1|2 + b2|Q2|2)Q2 − V0sn 2(αx, k)Q2 = 0. (4)



272 NONLINEAR WAVES: CLASSICAL AND QUANTUM ASPECTS

They provide a general model with applications in nonlinear optics (see
e.g. [15]). We analyze the stationary solutions of these CNLS:

Qj(x, t) = qj(x) exp(−iωjt + iΘj(x) + iκ0,j), j = 1, 2, (5)

where κ0,j are constant phases. The real-valued functions qj and Θj(x)
are related by:

Θj(x) = Cj

∫ x

0

dx′

q2
j (x′)

, j = 1, 2, (6)

where Cj, are constants of integration.
Following [6] we refer to solutions in the cases Cj = 0 and Cj �= 0 as to

trivial and nontrivial phase solutions, respectively. The nontrivial phase
solutions imply nonzero current of the matter – it is proportional to
|qj(x)|2Θjx = Cj, for each of the components – along x-axis, and hence
seem to have no direct relation to present experimental setting for BECs
(remember that the condensate is confined to a parabolic trap).

An appropriate class of periodic potentials to model the quasi-1D
confinement produced by a standing light wave is given by

V (αx) = V0sn 2(αx, k), (7)

where sn (αx, k) denotes the Jacobian elliptic sine function with elliptic
modulus 0 ≤ k ≤ 1. Then, substituting the ansatz (5) in Eqs. (3), (4)
and assuming that q2

j , j = 1, 2 are quadratic functions of sn (αx, k):

q2
j = Ajsn 2(αx, k) + Bj, j = 1, 2. (8)

we find the following set of relations among the solution parameters ωj,
Cj, Aj and Bj and the characteristic of the optical lattice V0, α and k:

A1 =
(b2 − b0)W

∆
, A2 =

(b1 − b0)W
∆

, (9)

Bj = −βjAj, C2
j = α2A2

jβj(βj − 1)(1 − βjk
2), (10)

ωj = (1 + k2)α2 +
W

∆
[β1b1(b2 − b0)

−β2b0(b0 − b1)] − k2α2βj, (11)

where j = 1, 2 and

W = V0 − 2α2k2, ∆ = χ1χ2 − χ2 = b1b2 − b2
0. (12)

In order that our results (8)–(10) are consistent with the parametrization
(5), (6) we must ensure that both qj(x) and Θj(x) are real-valued; this
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means that C2
j ≥ 0 and q2

j (x) ≥ 0. This is true provided one of the
following pairs of conditions are satisfied:

a) Aj ≥ 0, βj ≤ 0, j = 1, 2; (13)

b) Aj ≤ 0, 1 ≤ βj ≤ 1
k2

, j = 1, 2; (14)

The solutions Qj in (5) are periodic in x provided the parameters satisfy
certain condition, see [5].

The solutions for two particular choices of b1, b2 and b0 can be viewed
as singular limits of the generic case considered above. The first one
b2
0 = b1b2, b1 �= b2 corresponds to the case (13); the solution is given by:

A2 = −b1

b0
A1, V0 = 2k2α2,

ω1 = (β1 − β2)b1A1 + (1 + k2)α2 − α2k2β1, (15)
ω2 = (β1 − β2)b0A2 + (1 + k2)α2 − α2k2β2,

C2
j = α2A2

jβj(βj − 1)(1 − βjk
2), Bj = −βjAj, j = 1, 2.

The second one b1 = b2 = b corresponds to the Manakov system:

ωj = b(β1A1 + β2A2) + (1 + k2)α2 − α2k2βj, (16)
C2

j = α2A2
jβj(βj − 1)(1 − βjk

2),

Bj = −βjAj, V0 = b(A1 + A2) + 2k2α2, j = 1, 2.

The constants b1, b2 and b0 in eqs. (3), (4) are assumed to be positive.
However our formulae are valid also for negative values of b1, b2 and b0.
We have also analyzed [5] the limits of this solution for k → 1 and k → 0.

4. Trivial phase solutions
In this section we consider solutions of (3), (4) with trivial phase, i.e.

C1 = C2 = 0:

Qj(x, t) = e−iωjt+iκ0,jqj(x), j = 1, 2, (17)

and we will look for different possible choices for the functions q1(x) and
q2(x). This type of solutions in certain cases survive reductions of the
constants b2

0 = b1b2 or the limit to the Manakov case: b1 = b2 = b0.
They are also relevant for processes in BEC and nonlinear optics [15].

In the following we shall consider the qi(x) to be expressed in terms
of Jacobi elliptic functions, i.e. we assume that qi(x) = γiJi(x), where
Ji(x), i = 1, 2 is one of the Jacobi elliptic function sn (αx, k), cn (αx, k)
or dn (αx, k) and γi specify the real amplitudes in (17). Note that the
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Table 1. Trivial phase solutions in the generic case: ∆ ≡ b1b2 − b2
0 �= 0. The

conditions ck, k = 1, . . . , 4 are listed in eq. (20).

1 q1 = γ1sn (αx, k) ω1 = b0Y1W + α2(k2 + 1) γ2
1 = Y2W c1

q2 = γ2cn (αx, k) ω2 = b2Y1W + α2 γ2
2 = −Y1W

2 q1 = γ1dn (αx, k) ω1 = b1Y2W/k2 + α2k2 γ2
1 = −Y2W/k2 c2

q2 = γ2sn (αx, k) ω2 = b0Y2W/k2 + α2(k2 + 1) γ2
2 = Y1W

3 q1 = γ1dn (αx, k) ω1 = (b0Y1 + b1Y2/k2)W + α2k2 γ2
1 = −Y2W/k2 c3

q2 = γ2cn (αx, k) ω2 = (b2Y1 + b0Y2/k2)W + α2 γ2
2 = −Y1W

4 q1 = γ1sn (αx, k) ω1 = ω2 = α2(k2 + 1) γ2
1 = Y2W c4

q2 = γ2sn (αx, k) γ2
2 = Y1W

5 q1 = γ1cn (αx, k) ω1 = ω2 = α2 + W γ2
1 = −Y2W c3

q2 = γ2cn (αx, k) γ2
2 = −Y1W

6 q1 = γ1dn (αx, k) ω1 = ω2 = α2k2 + W/k2 γ2
1 = −Y2W/k2 c3

q2 = γ2dn (αx, k) γ2
2 = −Y1W/k2

Table 2. Trivial phase solutions in the case: ∆ ≡ b1b2 − b2
0 = 0.

1 q1 = γ1sn (αx, k) ω1 = α2(k2 + 1) − b1γ
2
1 γ2

2 =
√

b1/b2γ
2
1 W = 0

q2 = γ2cn (αx, k) ω2 = α2 −√
b1b2γ

2
1

2 q1 = γ1dn (αx, k) ω1 = α2k2 − b1γ
2
1 γ2

2 = k2
√

b1/b2γ
2
1 W=0

q2 = γ2sn (αx, k) ω2 = α2(k2 + 1) −√
b1b2γ

2
1

Table 3. Trivial phase solutions in the case: b1 = b2 = b.

3 q1 = γ1dn (αx, k) ω1 = α2k2 + (b0 + b/k2)X γ2
1 = −X/k2 W < 0

q2 = γ2cn (αx, k) ω2 = α2 + (b + b0/k2)X γ2
2 = −X

4 q1 = γ1sn (αx, k) ω1 = ω2 = α2(k2 + 1) γ2
1 = γ2

2 = X W > 0
q2 = γ2sn (αx, k)

5 q1 = γ1cn (αx, k) ω1 = ω2 = α2 + W γ2
1 = γ2

2 = −X W < 0
q2 = γ2cn (αx, k)

6 q1 = γ1dn (αx, k) ω1 = ω2 = α2k2 + W/k2 γ2
1 = γ2

2 = −X/k2 W < 0
q2 = γ2dn (αx, k)

CNLS (3), (4) possesses the gauge invariance Qj → Qje
−iκ0,j . This

allows one to fix up the initial phases of both Qj(x); our choice is to
require that γ2

j > 0. We substitute the above ansatz into Eqs. (3), (4)
and get a set of algebraic equations for the parameters whose solutions
furnish exact ground states of the coupled BEC system.

To illustrate the details of the calculations we start with case 1 in
which: q1(x) = γ1sn (αx, k), q2(x) = γ2cn (αx, k). These functions are
solutions of (3) provided the constants satisfy the relations:

b1γ
2
1 − b0γ

2
2 − W = 0, b0γ

2
1 − b2γ

2
2 − W = 0,

b0γ
2
2 + ω1 − α2(k2 + 1) = 0, b2γ

2
2 + ω2 − α2 = 0.

(18)
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where W is defined in eq. (12). From this system we can determine 4
of the constants in terms of the others. Let us split these constants into
two groups. The first one, G1 � {b1, b2, b0, W, α} are constants deter-
mining the equations and the potential and we assume they are fixed.
The second group G2 � {ω1, ω2, γ1, γ2, } characterize the corresponding
solution. We solve (18) and express the constants G2 in terms of G1.

We have collected all the results for generic choices of b0, b1 and b2 in
the Table 1 below using the following notations:

Y1 =
b0 − b1

b2
0 − b1b2

, Y2 =
b0 − b2

b2
0 − b1b2

, X =
W

b0 + b
. (19)

and the conditions:

c1 = W > 0, Y2 > 0, Y1 < 0, or W < 0, Y2 < 0, Y1 > 0,

c2 = W > 0, Y2 < 0, Y1 > 0, or W < 0, Y2 > 0, Y1 < 0, (20)
c3 = W > 0, Y2 < 0, Y1 < 0, or W < 0, Y2 > 0, Y1 > 0,

c4 = W > 0, Y2 > 0, Y1 > 0, or W < 0, Y2 < 0, Y1 < 0,

which ensure that γ2
1 > 0 and γ2

2 > 0.
In the Tables 2 and 3 we treat special situations: i) b2

0 = b1b2 (Table 2
and ii) b1 = b2 = b (Table 3). The transition from the generic case to
i) is singular. The Manakov case is obtained for b0 = b1 = b2 = b and
follows easily from the results in Table 3.

5. Modulational instability of trivial phase
solutions and generation of localized matter
waves

In this section we discuss the stability of the above solutions from a
physical point of view. To this end we remark that all the trivial phase
solutions, are periodic functions of period twice the period of the lat-
tice (recall that the period a of potential in Eq. (7) is a = 2K(k2)/α,
where K(k2) is the complete elliptic integral of the first kind). The cor-
responding wave-number of these solutions is K = π/a which is just the
boundary of the Brillouin zone of the uncoupled periodic linear system.

One can check that each component qi(x) satisfy the Bloch condition

qi(x + Rn) = eiKRnqi(x), Rn = na, n ∈ N, i = 1, 2, (21)

i.e. the trivial phase solutions are exact nonlinear Bloch states (a nonlin-
ear Bloch state can be defined, in analogy with the linear case, as a state
for which Eq. (22) is satisfied). Although nonlinearity does not compro-
mise Bloch property (this being a direct consequence of the translation
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Figure 1. Initial profile of stable a
cn-cn solution plotted against the po-
tential profile (thick curve). The thin
curves denote the modulo square of q1

and q2. The parameters are fixed as:
k2 = 0.8, V0 = 1, α = 1, b0 = 0.5,
b1 = 1.0, b2 = 0.6. The initial ampli-
tudes are γ1 = 0.414039, γ2 = 0.92582
.

Figure 2. Prospective view of the
time evolution of the two components
cn-cn solution reported in Fig.1. To
check stability the solution was slightly
modulated in space with a profile of
the form 0.1 cos(0.2x). Parameters are
fixed as in Fig. 1.

invariance of the lattice), it can drastically influence the stability of the
states through a modulational instability mechanism.

The possibility that localized states of soliton type can be generated
from modulational instability of Bloch states at the edge of the Brillouin
zone was proved, both analytically and numerically, for a single compo-
nent BEC in optical lattice in the cases of one [3], two and three spatial
dimensions [16]. In order to explore the same possibility to occur also in
the present periodic two-components system we recourse to numerical
simulations. We have integrated Eqs. (3), (4) with an operator split-
ting method using fast Fourier transform, taking as initial conditions
the exact solutions derived above modulated by a long wavelength L
(2π/k � π/L) and small amplitude sinusoidal profile.

In Fig. 1 we depict the initial profiles of the two components cn-cn
solution plotted against the potential profile, while in Fig. 2 we show
the time evolution of this solution in presence of a small modulation.

From Fig. 1 we see that the profiles remain stable for long time for
both components, indicating that the cn-cn solution is stable against
small modulations. The main characteristic features of the modulational
instability in the case of small amplitudes, can be understood within the
framework of the approach developed in [3, 16]. We assume that the
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Figure 3. Panel a: Lowest two bands of the linear Schrödinger problem in Eq.
(22) in the reduced zone scheme. Panel b: Reciprocal effective masses of the first
(continuous curve) and second (dashed curve) band of panel a. The parameter values
of the potential are fixed as in Fig. (1). For these parameters the period of the
potential is 4.5144 and the edges of the Brillouin zone are ±0.696 .

perturbations of the nonlinear Bloch states have wavelength much larger
than the period of the potential in (3), (4). In analogy with Sec. II, one
can look for solutions in the form Qj = φj(x0)Q̃j(x1, t1), where φj(x0)
denote two chosen Bloch functions, φn,κ(x0), of the potential V (αx)

−d2φn,κ(x)
dx2

+ V (αx)φn,κ(x) = En(κ)φn,κ(x) (22)

with n and κ denoting the number of the zone and the wave vector
reduced to the first Brillouin zone, respectively (notice that we adopt
again scaled variables). The Bloch functions are chosen to be normalized
as follows

∫ a
0 |φj(x)|2dx = 1. One can then use these Bloch states as zero

order in a multiple scale expansion, in analogy to what done in Sec. II
and in Ref. [3]. Here we shall drop details and present just the final
system of equations for the amplitudes of the modulation field:

i
∂Q̃1

∂t
+

1
2M1

∂2Q̃1

∂x2
+ (b̃1|Q̃1|2 + b̃0|Q̃2|2)Q̃1 = 0 (23)

i
∂Q̃2

∂t
+

1
2M2

∂2Q̃2

∂x2
+ (b̃0|Q̃1|2 + b̃2|Q̃2|2)Q̃2 = 0, (24)

where we have introduced the following notation: 1
Mj

= d2En(κ)
dκ2 and

b̃1,2 = b1,2

∫ a

0
|φ1,2(x)|4dx, b̃0 = b0

∫ a

0
|φ1(x)|2|φ2(x)|2dx
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In Fig.(3) we depict the first two bands and the the corresponding re-
ciprocal effective masses of the underlying linear system in Eq. (22). To
study modulational instability, we look for a solution of (23), (24) in the
form of a weakly modulated constant background

Q̃j = (γj + α̃je
iKx−iΩt + β̃je

−iKx+iΩt)e−iΩjt,

where Ω1 = b̃1γ
2
1 + b̃0γ

2
2 , Ω2 = b̃2γ

2
2 + b̃0γ

2
1 , and |α̃j|, |β̃j| � |γj|2. Next,

we linearize the system with respect to α̃j, β̃j and derive the dispersion
relation of the resulting linear system in the form

Λ2 − (G2
1 + G2

2 − 2χ̃1G1 − 2χ̃2G2)Λ (25)
+ G1G2(G1G2 + 2χ̃1G2 + 2χ̃2G1 − 4χ̃2

0 + 4χ̃1χ̃2) = 0

where Λ = Ω2, Gj = K2/(2Mj), χ̃j = γ2
j b̃j for j = 1, 2, and χ̃0 = γ1γ2b̃0.

The respective solution of the coupled nonlinear system (consisting of
two nonlinear Bloch waves) is stable if both roots of (25) are positive and
unstable otherwise (notice that this analysis gives stability with respect
to long wavelengths only).

As a particular example we take the case in which both components
belong to the same gap edge, i.e. M1M2 > 0 and therefore G1G2 > 0.
For the stability of the wave the following conditions must be satisfied

G2
1 + G2

2 − 2χ̃1G1 − 2χ̃2G2 > 0 (26)
G1G2 + 2(χ̃1G2 + χ̃2G1) > 4χ̃2

0 − 4χ̃1χ̃2. (27)

Since the cases physically more interesting correspond to positive bj we
have b1b2 > b2

0 and hence χ̃ = χ̃1χ̃2 − χ̃2
0. This implies that either (26)

or (27) is satisfied for all K if either M1,2 < 0 or M1,2 > 0. In the
case M1,2 < 0 the condition (27) can be viewed as a constrain on the
wave amplitude. Indeed, after some simple algebra, one gets that (27)
is satisfied for any K if the following equation is satisfied

(M1χ̃1 + M2χ̃2)2 < 4(χ̃1χ̃2 − χ̃2
0). (28)

In the second case, i.e. when M1,2 > 0, each of the states is unstable
with respect to large wavelength excitations.

Now we can give a qualitative physical interpretation of the result
depicted in Figs. 1, 2. As it follows from the explicit form of the solution,
both components are described by the states belonging to the same
edge of the Brillouin zone. This also can be viewed by the fact that
Ω1 = Ω2 ≈ 0.6 and thus the frequency of the solution is ω + Ω1,2 ≈ 1.
Then, from Fig. 3a one concludes that both waves correspond to states
at the edge of the Brillouin zone and border the gap from the side of the
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Figure 4. Prospective view of the
time evolution of the unstable sn-sn
solution. The initial amplitudes are
γ1 = 0.414039, γ2 = 0.925820. Pa-
rameters are fixed as in Fig. 1, except
for k2 = 0.2. The modulational initial
profile is taken as in Fig.2. Coupled
soliton components emerge out of the
instability.

Figure 5. Same as in Fig.4 but
for the unstable cn-sn solution. The
initial amplitudes are taken as γ1 =
0.237356, and γ2 = 0.627986. Param-
eters are fixed as in Fig.1 except for
k2 = 0.4 and b0 = 0.65. The unstable
sn component dominates and soliton
generation is more effective.

negative effective masses (this also follows from the fact that the period
of the waves is twice the period of the potential and thus BEC’s in the
neighbor potential wells have opposite phases). Thus (26) is satisfied.

Next, we consider (28) whose left and right hand sides in the present
case can be estimated as (|M1| = |M2| ≈ 0.238, see Fig. 3b) 0.0266
and 0.352 respectively. Thus the stability of the solution observed in
numerical simulations is confirmed by our stability analysis.

Let us now consider the case in which two atomic components belong
to different edges of the gap, so that M1 > 0 and M2 < 0 (and hence
G1 > 0 and G2 < 0) and restrict the consideration to the case bj > 0.
Then for the stability of the wave, the following conditions

2χ̃1G1 < G2
1 + G2

2 + 2χ2|G2|, 2χ̃2G1 < G1|G2| + 2χ̃1|G2|. (29)

must be satisfied. In this case the first component, having positive ef-
fective mass has a self-attractive character, which might dominate the
destructive action of the lattice when the matter localizes around the po-
tential maxima. In absence of the second component, this wave would
be modulationally unstable, this being well known fact which can be
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seen also from Eq. (29) (take χ̃0 and G2 to be equal to zero). On the
other hand, the second component, with negative effective mass, has a
self-repulsive character, which is compensated by the potential barriers
provided its localization occurs around the minima of the lattice poten-
tial. This component is stable even in absence of the first harmonic and
if its amplitude is large enough (or the amplitude of the first component
is small enough) it can help to stabilize the first component, as it follows
from (29). More specifically (29) is satisfied for any K if γ2

1 < b̃2M1

b̃1|M2|γ
2
2 .

The above analysis is in good qualitative agreement with the results
of numerical experiments. In particular, we find that except the cn-cn
solution, all other solutions display modulational instability which lead
to the formation of localized states. This is clearly seen in Fig. 4 where
the time evolution of the unstable sn-sn solution is reported (notice the
formation of two localized excitations at time t=40) . As for the previous
case, the instability of this solution can be easily understood from the
fact that the initial distribution of the matter corresponds to atoms
condensed at the maxima of the potential (i.e. a position of unstable
equilibrium). Notice that instability develops very quickly (already at
time t = 15, what is dues large negative effective mass, see Fig. 3 b), out
of which two components bright soliton states emerge, as clearly seen at
time t = 40. The bright soliton consists of two coupled solitons (one for
each component) one bigger than the other.

6. Discussions
Here we briefly discuss the above results in comparison with those

of Ref [13] in which an n-component NLS-type equation with external
potential is considered. The Hamiltonian of the n-component NLS is:

H =
∫

dx

⎡⎣ n∑
k=1

1
2µj

∣∣∣∣∂ψj

∂x

∣∣∣∣2 +
1
2

n∑
j,p=1

ajp|ψj|2|ψp|2 +
n∑

j=1

Vj(x)|ψj|2
⎤⎦ .

where the integration goes over one period.
One possible class of solutions studied in detail in [13] is obtained

with the anzats:

ψj(x) = nj(x, t)ψ(x, t), nj(x, t) = e−iωjt+iΘj(x)
√

Nj (30)

where Nj > 0 and dΘj/dx = Cj/(Nj|ψ(x)|2). In Ref. [13] four types of
non-trivial, as well as trivial phase solutions satisfying (30) and their sta-
bility properties are analyzed in details both by analytical and numerical
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means. Inserting (30) into H we get the reduced Hamiltonian:

Hred =
∫

dx

[
1
2
M0

∣∣∣∣∂ψ

∂x

∣∣∣∣2 +
1
2
M−1

1
|ψ|2 + V (x)|ψ|2 +

1
2
W0|ψ|4

]
,

(31)

where

M0 =
n∑

j=1

1
Njµj

, M−1 =
n∑

j=1

Nj

µj
, W0 =

n∑
j,p=1

ajpNjNp,

which describes the dynamics of the effective field ψ(x, t). The result
for the trivial phase solution case leads to Hred with M−1 = 0. This
means that the systems of n equations with the anzats (30) reduce to
just one equation for ψ(x, k); the remaining n − 1 equations follow as a
consequence of the first one and the set of constraints on the coefficients
ajl, Nj, µj, ωj. This argument holds true for our cases 4, 5 and 6.

The class of solutions that describe the multi-component effects should
be analyzed by using ansatz more general than (30), such as e.g. in our
cases 1, 2 and 3. Their stability properties do not seem to follow from
the theorems proved in [13] and deserve additional studies.

Further perspectives of finding stable periodic solutions to the prob-
lem of a 2-component condensate could be linked to investigations of
finite-gap solutions of Manakov system given in terms of multi-dimensional
θ-functions [18] and [19] and to reduction of finite-gap solutions to el-
liptic functions [20]. Interesting classes of periodic solutions can be also
obtained as the result of reduction of the Manakov system to completely
integrable two-particle system interacting with fourth order potential
[21, 22, 10].

Recently we became aware of Ref. [24] which gives extra evidence for
the correctness of our results and their agreement with the ones in [25].
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Instituto de F́ısica Teórica, Universidade Estadual Paulista-UNESP
Rua Pamplona 145, 01405-900 São Paulo, Brazil
kraenkel@ift.unesp.br

Abstract We consider formation of dissipationless shock waves in Bose-Einstein
condensates with repulsive interaction between atoms.

Experiments on free expansion of Bose-Einstein condensate (BEC)
have shown [1] that evolution of large and smooth distributions of BEC
is described very well by hydrodynamic approximation [2] where dis-
persion and dissipation effects are neglected. At the same time, it is
well known from classical compressible gas dynamics that typical initial
distributions of density and velocity can lead to wave breaking phe-
nomenon when formal solution of hydrodynamical equations becomes
multi-valued. It means that near the wave breaking point one cannot
neglect dispersion and/or dissipation effects which prevent formation of
a multi-valued region of a solution. If dispersion effects are small but
greater than dissipation ones, then the region of strong oscillations is
generated in vicinity of wave breaking point [3, 4]. Observation of dark
solitons in BEC [5, 6, 7] shows that the main role in dynamics of BEC is
played by dispersion and nonlinear effects taken into account by standard
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Gross-Pitaevskii (GP) equation [8]. Hence, there are initial distributions
of BEC which can lead to formation of dissipationless shock waves. Here
we shall consider such possibility.

The starting point of our consideration is the fact that the sound
velocity in BEC is proportional to the square root from its density (see,
e.g. [8]). Thus, if we create inhomogeneous BEC with high density hump
(with density ∼ ρ1) in the center of lower density distribution (with
density ∼ ρ0), and after that release this central part of BEC, then
the high density hump will tend to expand with velocity ∼ √

ρ1 greater
than the sound velocity ∼ √

ρ0 of propagation of disturbance in lower
density BEC. As a result, wave breaking and formation of dissipationless
shock wave can occur in this case. Note that initial distribution of
this type was realized in the recent experiment [9] where generation
of oscillations was also observed. The theory of dissipationless shock
waves in media described by one-dimensional (1D) nonlinear Schrödinger
(NLS) equation was developed in [10]. Since the GP equation in some
cases can be reduced to 1D NLS equation, this theory can be applied to
description of dissipationless shock waves in BEC. Here we suggest such
description and confirm it by numerical simulations.

We consider BEC confined in a “pancake” trap with the axial fre-
quency ωz much greater than the transverse one ωx = ωy = ω⊥. Let the
density of atoms in the central part of BEC be of order of magnitude
n0 and satisfy the condition n0asa

2
z � 1, where as > 0 is the s-wave

scattering length and az = (�/maz)1/2 is the amplitude of quantum os-
cillations in the axial trap. Then the condensate wavefunction ψ can be
factorized as ψ = φ(z)Ψ(x, y), where φ(z) = π−1/4a

−1/2
z exp(−z2/2a2

z)
is the ground state wavefunction of axial motion, and Ψ(x, y, t) satisfies
the reduced 2D GP equation

i�Ψt = − �2

2m
(Ψxx + Ψyy) + V (x, y)Ψ + g2D|Ψ|2Ψ, (1)

where V (x, y) is the potential of a transverse trap, g2D = 2
√

2π�2as
maz

is
the effective nonlinear interaction constant, and Ψ is normalized to the
number of atoms,

∫ |Ψ|2dxdy = N . The initial distribution of density
is determined by the potential V (x, y) and consists of wide background
with a hump in its center. We assume that the background width is much
greater than the hump’s width, so that at the initial stage of evolution we
can consider an expansion of the central part against the constant back-
ground. In a similar way, at the initial stage of evolution, when the ra-
dius of the central part does not change considerably, we can neglect the
curvature of axially symmetrical distribution and consider its 1D cross
section. As a result, we arrive at 1D NLS equation with inhomogeneous
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initial distribution of density. To simplify the notation, we introduce
dimensionless variables t′ = ωzt/2, x′ = x/az, u = (2

√
2πasaz/n0)1/2Ψ.

Then the initial stage of evolution of the wavefunction profile in the x
axis cross section is governed by the NLS equation,

iut + uxx − 2|u|2u = 0, (2)

where the primes in t′ and x′ are omitted for convenience of the notation.
Evolution of smooth pulses before the wave breaking point can be

described in the hydrodynamic approximation which can be achieved
by substitution u(x, t) =

√
ρ(x, t) exp

(
i
∫ x

v(x′, t)dx′) and separation of
the real and imaginary parts. As a result we obtain the system

1
2ρt + (ρv)x = 0, 1

2vt + vvx + ρx = 0, (3)

where we have neglected the so-called “quantum pressure” term with
higher space derivatives what is correct until the density distribution
has smooth enough profile.
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Figure 1. Formation of dissipationless shock wave after wave breaking point ac-
cording to Whitham modulation theory applied to 1D NLS equation. Dashed line
corresponds to multi-valued region arising in hydrodynamic approximation given by
Eq. (4) and solid line represents modulated periodic wave given by Eqs. (5) and (6).
Both profiles are calculated for λ = −10 at time t = 1.

In vicinity of the wave breaking point the solution can be approxi-
mated by a cubic function for one Riemann invariant λ+ = v/2 +

√
ρ of

the system (3) and by constant value for another one λ− = v/2 − √
ρ

(see [10]). After Galileo and scaling transformations the hydrodynamic
solution can be written in the form

x − (3λ+ + λ−)t = −λ3
+, λ− = const, (4)

and again for t > 0 it has a multi-valued region of λ+.
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In framework of Whitham theory of modulations [11, 4] one can obtain
an approximate solution of the NLS equation (2) in analytic form where
the dissipationless shock wave is presented as a modulated periodic non-
linear wave solution of the NLS equation. The density is expressed in
terms of Jacobi elliptic function

ρ(x, t) =|u(x, t)|2 = 1
4(λ1 − λ2 − λ3 + λ4)2 + (λ1 − λ2)(λ3 − λ4)

× sn2[
√

(λ1 − λ3)(λ2 − λ4)ξ, m],
(5)

where ξ = x− (λ1 + λ2 + λ3 + λ4)t, m = (λ1−λ2)(λ3−λ4)
(λ1−λ3)(λ2−λ4) , and parameters

λi, i = 1, 2, 3, 4, change slowly along the dissipationless shock. Their
dependence on x and t is determined implicitly by the solution

x − vi(λ)t = wi(λ), i = 1, 2, 3; λ4 = λ = const (6)

of Whitham equations, where Whitham velocities vi and wi are given by
quite complicated expressions in terms of elliptic integrals (see [10]):

wi = − 8
35w

(3)
i + 4

5λw
(2)
i − 1

35λ
2
vi(λ) + 1

35λ
3
, i = 1, 2, 3, (7)

w
(k)
i = W (k) + (vi − s1)∂iW

(k), (8)

W (1) = V = s1, W (2) = 3
8s2

1 − 1
2s2, W (3) = 5

16s3
1 − 3

4s1s2 + 1
2s3,

(9)

vi(λ) =
(

1 − L

∂iL
∂i

)
V, ∂i ≡ ∂/∂λi, i = 1, 2, 3, 4, (10)

where L = K(m)√
(λ1−λ3)(λ2−λ4)

is a wavelength, K(m) is the complete elliptic

integral of the first kind, and s1, s2, s3 are determined by the expressions
s1 =

∑
i λi, s2 =

∑
i<j λiλj, s3 =

∑
i<j<k λiλjλk.

Equations (7) can be solved with respect to λi, i = 1, 2, 3, giving
them as functions of x and t. Subsequent substitution of these functions
λi(x, t), i = 1, 2, 3, into (5) yields the modulated periodic wave which
represents the dissipationless shock wave. The resulting profile of den-
sity in dissipationless shock wave is shown in Fig. 1. At one its edge it
consists of the train of dark solitons, and at another edge describes small
amplitude oscillations propagating with local sound velocity into unper-
turbed region described by smooth solution of hydrodynamical equa-
tions. The modulated periodic wave replaces the multi-valued region
shown by dashed line and obtained in hydrodynamic approximation.
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Figure 2. Two-dimensional initial distribution of BEC density with paraboloid
hump on constant background given by Eq. (11) with a = 10, ρ0 = 1, ρ1 = 10.
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Figure 3. Two-dimensional density distribution of BEC after time t = 2 of evolu-
tion from initial paraboloid density on constant background according to numerical
solution of 2D GP equation.

To check the described above picture of formation of dissipationless
shock wave and to extend it to real 2D situation, we have solved numer-
ically Eq. (1) taken in dimensionless form, iut + uxx + uyy − 2|u|2u = 0,
with the initial condition

ρ(r, 0) =

{
ρ0 + (ρ1 − ρ0)(1 − r2/a2), |r| ≤ a,
ρ0, |r| > a,

(11)

(where r = (x2+y2)1/2) similar to one studied experimentally [9]. Plot of
two-dimensional initial density distribution is shown in Fig. 2 and density
distribution after time evolution t = 2 is shown in Fig. 3. As we see, the
parabolic hump expands with formation of dissipationless shock wave
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in the transition layer between high density region to low density one.
To see more clearly the evolution of the hump, its cross section profiles
are shown in Fig. 4 at different values of time t. Slowly propagating

−50 −30 −10 10 30 50
x

0
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10

|u(x,0)|
2

t=0

t=1

t=2

t=4

Figure 4. Cross sections of density profile at different evolution time according to
numerical solution of 2D GP equation with initial condition (11).

dark solitons are clearly seen as well as small amplitude sound waves
propagating into undisturbed low density region. Dissipationless shock
wave generated at the right side of the profile coincides qualitatively with
results of analytic theory shown in Fig. 1. We believe that oscillations
in BEC density profile observed in experiment [9] have the same origin.
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Abstract The problem of light propagating through two dimensional photonic
structures with a localized defect is addressed. Examples of potential
engineering applications of such structures are rerouting of light pulses
or optical memory. The governing mathematical model is the system of
Coupled Mode Equations (CME) in two spatial dimensions with addi-
tion of potentials which account for the defect. As we briefly explain,
unlike the one dimensional model of CME without potentials, the two
dimensional (x-uniform grating) one does NOT support stable localized
pulses as solutions. Because stable pulses are necessary for any physical
application, we add grating also in the x direction making, in effect,
a true 2D photonic structure, and as we show numerically, this allows
for launching of stable pulses. Next, making sensitive assumptions on
the shape of the defect, we first give here a derivation of exact linear
defect modes, i.e. solutions to the linear system with potentials, and
then outline our future study of whether these linear modes persist into
the nonlinear regime. Our next future task is to study the interactions
of pulses with the nonlinear defect modes.

Keywords: Coupled Mode Equations, planar waveguide, grating, photonic struc-
ture, defect mode, stopping light

1. Uniform Grating Structures

1.1 1D Structures - Fiber Gratings
Perhaps the most utilized one dimensional photonic structure is the

fiber grating. Here the envelope of the confined transverse (x, y) mode
propagates in a medium having a periodic (in z) refractive index profile.
Furthermore, the periodicity of the refractive index in the direction of
propagation is assumed to be in Bragg resonance with the wavelength
of the electric field, thus creating strong back reflection.
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The regime of wave propagation through these gratings that we are
interested in is when the coupling between forward and backward prop-
agating modes is of the order of the nonlinear length. A coupled system
for the slowly varying envelopes of the electric field can be derived from
Maxwell’s Equations. The derivation is typically done using a multi-
ple scales expansion under the assumption that the characteristic length
scales of the coupling and the nonlinearity are in balance. The dynam-
ics in uniform fiber gratings are then governed by the one dimensional
Coupled Mode Equations (see for example chapter 2 of [8])

i(∂t + cg∂z)E+ + κE− + Γ(|E+|2 + 2|E−|2)E+ = 0

i(∂t − cg∂z)E− + κE+ + Γ(|E−|2 + 2|E+|2)E− = 0,
(1)

where E+, E− denote the forward and backward propagating envelopes
respectively; and without any loss of generality cg, κ, Γ > 0.

This system has been studied extensively. Although it is not inte-
grable, Chen and Mills showed in [4] that it supports stable solitary
wave solutions with frequency inside the forbidden gap of the linear sys-
tem (Γ = 0). These are usually called “gap solitons” and in theory
they can propagate with velocities ranging between 0 and the speed of
light in the corresponding uniform medium. A more general class of
solitary wave solutions was presented in [3]. The stability of the solitary
waves is not all that surprising because in the more realistic experimen-
tal scenario (with frequency close to but outside the gap) (1) can be
approximated by the Nonlinear Schrödinger Equation (again chapter 2
of [8]).

Gap solitons were later also demonstrated experimentally, see [5]; but
the lowest velocity that has been seen experimentally is about 0.5 c

n. The
main difference between the gap solitons and true solitons propagating
in bare fibers from the applications point of view is the distance at which
solutions converge to these stable pulses. The grating allows for a solu-
tion to converge to a stable pulse within centimeters whereas in a bare
fiber it happens only after hundreds of meters! This is very important
for using periodic structures as optical logic and storing devices.

1.2 2D Structures - Planar Waveguide Gratings
A natural extension to the fiber grating is to go to a waveguide ge-

ometry, where the confinement of light is only in one (y) transverse
direction. In addition to all the features of waves propagating in fiber
gratings we get diffraction in the x direction for the planar waveguide
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gratings. The first question to ask is if by balancing coupling between
modes, nonlinearity and diffraction, gap solitons exist.

The two dimensional Coupled Mode Equations

i(∂t + cg∂z)E+ + κE− + ∂2
x2E+ + Γ(|E+|2 + 2|E−|2)E+ = 0

i(∂t − cg∂z)E− + κE+ + ∂2
x2E− + Γ(|E−|2 + 2|E+|2)E− = 0

(2)

are derived using the assumption that the characteristic length-scale of
diffraction is in balance with the length scales listed for (1).

Just like (1), (2) is dispersive, conservative, not integrable and Hamil-
tonian. It does not, however, support any stable localized pulses as its
solutions. In [2] it is shown that for frequencies close to but outside the
linear regime gap the system is well approximated by the 2D NLSE. As a
consequence, for sufficiently high powers these solutions have a tendency
to collapse (point blowup) but a collapse implies broadening of the so-
lution in the Fourier space and eventual overlap of the spectrum with
the frequency gap where the NLSE approximation is no longer valid.
Therefore, while localized dynamics in the 2D CME does not lead to
collapse, it remains unstable and in particular there are no stationary
wave solutions. This can be argued more directly using the Hamiltonian
structure. The Hamiltonian functional is

H =
∫

R

∫
R

icg

(
E∗

+∂zE+ − E∗
−∂zE−

)
+ κ

(
E−E∗

+ + E∗
−E+

)−
|∂xE+|2 − |∂xE−|2 + Γ

(
1
2
|E+|4 + 2|E−|2|E+|2 +

1
2
|E−|4

)
dxdz.

A stationary wave solution would have to be a minimizer of H under
the constraint that the total energy (which is conserved) stays constant;∫ ∫ |E+|2 + |E−|2dxdz = const. But given a candidate E+, E− for the
minimizer, we can always perturb it in such a way that we add more x
oscillations to increase the negative contribution from the |∂xE±|2 terms
without changing the L2 norm of E+ or E−. Hence, no minimizer exists.
This is an important difference from the 1D case. The nonexistence
of stable pulse propagation was seen both in the reduced variational
analysis of [1] and in our numerical experiments, where all so far studied
localized pulses rapidly diffract in the x direction. How to overcome this
is discussed in the next section.

2. Photonic Structures
Because we wish to study capturing and rerouting of light pulses by

defects in 2D periodic structures, we also need the pulses to propa-
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gate (in a stable fashion) through the uniform periodic medium before
they get to the defects. As mentioned in the previous section, peri-
odic structures uniform in x do not allow for such dynamics. That is
why we have decided to consider a structure with grating in the x di-
rection as well. This is certainly possible technologically with today’s
developments in photonic structures. The governing model is obtained
from (2) by addition of a positive x−periodic potential. Here we choose
P (x) = δ(1 + cos(νx)):

i(∂t + cg∂z)E+ + κE− + ∂2
x2E+ + P (x)E+ + Γ(|E+|2 + 2|E−|2)E+ = 0

i(∂t − cg∂z)E− + κE+ + ∂2
x2E− + P (x)E− + Γ(|E−|2 + 2|E+|2)E− = 0.

(3)

To demonstrate existence of localized pulses, we have performed numer-
ical experiments. In our numerics we use the discontinuous Galerkin
scheme with a triangular mesh. Here we choose order 6 in space and an
additive Runge-Kutta time integrator of order 4. Fig. 1 shows the plot
of |E+|, |E−| at t = 1 for the case δ = 10, ν = 2 and with the z−shape of
the initial condition being a sech function and the x−shape determined
as the solution of the linear eigenvalue problem

G′′ + (λ + δ(1 + cos(νx))G = 0 (4)

corresponding to the eigenvalue λ ≈ −15.7951. This eigenfunction is
well localized on the interval [−π, π]. The above eigenvalue problem
is the x−part of the linear case in (3). Note that the initial pulses
E+(t = 0) = E−(t = 0) were centered at the origin.

Although no theory is available for finding exact solutions of (3), one
can expect some interplay between gap solitons (for the z−dependence)
and localized Bloch-type waves, which exist for the time independent
NLS with a periodic potential (see [7]).

3. Periodic Structures with Defects
The previous sections dealt with uniform periodic structures which

accounted for distinct dynamics. An ongoing research trend is the ad-
dition of defects to this structure; an example in linear optics is, by
inclusion of a one dimensional defect in a 2D or 3D photonic structure,
to bend light beams without radiation loss. For a 1D photonic structure
like the fiber grating, by a defect we mean a local variation of the z−
periodic refractive index. Introducing a defect to a fiber grating allows
both for convergence to a stable pulse within centimeters and for ma-
nipulating the speed or direction of the pulse propagation due to the
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Figure 1. Solution to (3) with cg = 2, κ = 1, Γ = 1

effective potential well given by the defect. An appropriate balance be-
tween spectral properties of the defect, the velocity and the amplitude
of the pulse even allows for a complete stopping of the pulse due to the
transfer of its energy into a defect mode. This has potential applications
for optical memory or optical switches.

A defect in a planar waveguide grating gives even more potential ap-
plications. One can imagine rerouting of pulses into various directions
according to their amplitude, using these structures in fiber communi-
cations to bend light or, once again, for optical memory.

Goodman, Slusher and Weinstein studied fiber gratings with defects
in [6] and showed that capturing of gap solitons is possible. The model,
they used, is

i(∂t + cg∂z)E+ + κ(z)E− + V (z)E+ + Γ(|E+|2 + 2|E−|2)E+ = 0

i(∂t − cg∂z)E− + κ(z)E+ + V (z)E− + Γ(|E−|2 + 2|E+|2)E− = 0.
(5)

The authors first studied the linear case, Γ = 0, and introduced a
multiparameter family of defects that support linear bound states (linear
defect modes). Their frequency is always in the corresponding frequency
gap. Then, by using a perturbative construction, they showed that these
defect modes extend into the nonlinear regime. In order to study also
large values of the perturbation parameter they did a series of numerical
experiments. In these, they managed to verify the principle that a gap
soliton interacts most strongly with a defect for which a nonlinear defect
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mode exists with the same frequency (resonance) and with equal or less
total intensity (energetic accessibility).

In our work we wish to apply similar methods for the 2D case. Our
first results now follow.

3.1 Linear Defect Modes for the 2D CME
The model we use for the linear regime in two spatial dimensions

(without grating in the x−direction) is

i(∂t + cg∂z)E+ + κ(z)E− + ∂2
x2E+ + (V1(x) + V2(z))E+ = 0

i(∂t − cg∂z)E− + κ(z)E+ + ∂2
x2E− + (V1(x) + V2(z))E− = 0.

(6)

Note that even if V1, V2 have localized effective support (e.g. sech type
functions), V1(x) + V2(z) does not model a defect strictly localized in a
2D waveguide. Rather it looks like a cross with each line extending over
the whole domain. From an application point of view, this should not
be a problem because in a real waveguide (or in numerical simulations)
this cross can be truncated at some distance from its center (see Fig.
2). Then our analysis on (6) will apply only on the area spanned by the
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Figure 2. Potential structure used in (6)

cross. We use the potentials V1, V2 as given in (6) rather than a more
general V (x, z) for simplicity - so that we are able to use separation of
variables in (6). Our setup

E± = G±(x)F±(z, t) and G+ = G− =: G

gives

[i∂t + icgσ3∂z + V2(z) − µ + κ(z)σ1] �F =0 (7a)
G′′ + (V1(x) + µ)G =0, (7b)



Stopping and bending light in 2D photonic structures 299

with σ1 =
(

0 1
1 0

)
, σ3 =

(
1 0
0 −1

)
, �F =

(
F+

F−

)
and µ the separation

constant.
If, for the x−potential, we set, for example, V1(x) = 2β2sech2(βx),

the solution to the eigenvalue problem (7b) has a localized eigenfunction.
It is (G, µ) =

(
sech(βx),−β2

)
.

With µ fixed, we now try to solve the equation for �F . This can be
complicated or impossible for arbitrary grating κ(z) and potential V2(z)
but following the ideas in [6] we can obtain exact solutions for some
special cases. If we start in the opposite direction, having a form of the
solution �F , the problem is easier. For example, setting

�F = e−iωte
i

cg
σ3

∫ z
0 V2(ξ)dξ�L(z) with ω ∈ R, �L(z) ∈ R2,

the problem reduces to a self-adjoint eigenvalue problem for (ω, �L):

�L′ =
[
i(ω − µ) u(z)

ū(z) −i(ω − µ)

]
�L with u(z) = iκ(z)e

−2i
cg

∫ z
0 V2(ξ)dξ

. (8)

The point spectrum is contained in the frequency gap of the linear
regime, i.e. (µ − |κ∞|, µ + |κ∞|), where κ∞ = lim|z|→∞ κ(z). Setting

u(z) = −eiφ
(
(ω − µ) − ik tanh

(
k
cg

z
))

in (8), there is a simple solution(
ω − µ,

(
1

ie−iφ

)
sech

(
k

cg
z

))
.

The corresponding grating and potential are easily found

κ(z) = eiα

[
(ω − µ)2 + k2tanh2

(
k

cg
z

)]1/2

, α ∈ {0, π}

V2(z) =
1
2

k2(ω − µ)sech2
(

k
cg

z
)

(ω − µ)2 + k2tanh2
(

k
cg

z
) .

The condition for α is to preserve self-adjointness.

Finally, we can express the whole solution
(

E+

E−

)
:

e−iωt

⎛⎜⎜⎜⎜⎝
exp

(
i
2 arctan

(
ktanh

(
k
cg

z
)

ω−µ

))

ie−iφ exp

(
−i
2 arctan

(
ktanh

(
k
cg

z
)

ω−µ

))
⎞⎟⎟⎟⎟⎠ sech

(
k

cg
z

)
sech(βx),
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where µ = −β2, φ − α = 3
2π.

Fig. 3 shows |E+| of a numerical solution to (6) with κ(z), V2(z),
V1(x) as given above and the initial condition determined by the above
exact solution. The parameters used are β = 7, ω = −40, k = 4, φ = 3

2π
and cg = 1. The solution is stationary with time invariant modulus.

Figure 3. The modulus of a linear defect mode at time t = 1

4. Future Work
The linear defect modes, an example of which was given in section

3.1, were not derived for 2D photonic structures, which we have to use
in order to achieve stable pulse propagation. Consequently, we will have
to change these defect modes to account for the x−grating P (x). For
each linear frequency ω we will then perform a perturbative construction
of a nonlinear defect mode of small total intensity. To continue the
bifurcation branch of the mode (and its frequency) for large intensity,
we will numerically solve the nonlinear eigenvalue problem

(ω + icg∂z)E+ + κ(z)E− + ∂2
x2E+ + (V1(x) + V2(z) + P (x))E+

+Γ(|E+|2 + 2|E−|2)E+ = 0

(ω − icg∂z)E− + κ(z)E+ + ∂2
x2E− + (V1(x) + V2(z) + P (x))E−

+Γ(|E−|2 + 2|E+|2)E− = 0.
(9)

It is important to know the temporal frequencies of both the pulse and
the defect mode to achieve resonance. Although in the nonlinear case we
will probably have to measure the frequency numerically, in the linear
case it is easily found from studying the leading exponential tail of each
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envelope in (3). Taking G the eigenfunction of (4) and substituting(
E+

E−

)
=
(

a
b

)
G(x)e−ϑye−iωt, where y = z−pcgt,�(ϑ) > 0, p ∈ [0, 1]

into the linear case of (3), we obtain ω = λ − icgϑp ±
√

κ2 − c2
gϑ

2.
Next, we realize that although we have numerically shown that pho-

tonic structures (grating in both z and x directions - see section 2) allow
for propagation of localized pulses, in our results, initial data break into
two localized states travelling at high speeds, with the forward (back-
ward) bullet having a predominant E+ (E−) component. Referring to
the 1D case where for the gap solitons E+, E− both co-exist moving in
one direction, we wish to determine whether a specific z−profile in the
initial condition allows for such propagation in our 2D case.

Finally, we will investigate the possibility of trapping these pulses on
defects as well as changing direction of their propagation due to the
contact with a defect. We expect the same principles of resonance and
energetic accessibility to hold as in [6] .
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MODEL OF THE TWO LEVEL QUANTUM
DOTS ENSEMBLE INTERACTING WITH
ULTRA-SHORT PULSE OF COHERENT
RADIATION

A. I. Maimistov
Moscow Engineering Physics Institute, Kashirskoe sh. 31, Moscow, 115409 Russia

Abstract Based on a model of strong coupling for two electrons that are localized
inside a quantum dot characterized by only two levels of size quantiza-
tion, a set of equations is derived, which allows one to describe coherent
transient processes in an ensemble of isolated dots. Here one considered
the case of ultrashort durations of electromagnetic field pulses, when the
processes of polarization and population relaxation can be neglected.
The resulting set of equations is a generalization of the Maxwell-Bloch
equations, which are used in studying the processes occurring under
the action of ultrashort electromagnetic pulses. The model obtained is
reduced to the model of two-level atoms only if radiation is circularly
polarized.

Keywords: Quantum dot, size quantization, two level atoms, ultrashort pulse, elec-
tromagnetic field, polariton, solitary wave, coherent phenomena.

1. Introduction
Propagation of ultrashort (and extremely short) pulses of arbitrarily

polarized electromagnetic radiation in resonance media has been pre-
viously considered in terms of the models of two- or three-level atoms
[1, 2, 3, 4] (see also reviews [5, 6]). Interest in new resonance media that
can be generally referred to as low-dimensional systems (quantum wells,
quantum dots, thin films of atoms at the interface between insulators,
and zero-dimensional waveguides) motivated a search for new models.

The majority of investigations in this field were devoted to the trans-
port properties of low-dimensional systems (for example, of a system of
coupled quantum dots [7, 8]). However, their optical properties are also
considered. The study of optical spectra and exciton states [9, 10, 11]
represents a traditional direction of optics of such systems. Nonlinear
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optical properties and, in particular, harmonic generation were consid-
ered in [12, 13, 14]. The possibility of the existence of confined states and
coherent population transfer in quantum wells were theoretically demon-
strated in [15, 16]. The phenomenon of photon echo in low-dimensional
systems was studied in [17, 18].

In order to describe coherent phenomena in the optics of quantum
dots (QDs), Krasheninnikov et al. [19] suggested a model of a two-level
atom whose energy levels correspond to two one-particle states of an
electron localized in the QD. This model makes it possible to consider
the interactions of the QD electrons with a scalar electromagnetic field
of an ultrashort pulse (USP). A system of equations has been derived
[20, 21] to describe the evolution of a slowly varying envelope of an ar-
bitrarily polarized ultrashort electromagnetic pulse in a medium whose
resonance properties are governed by an ensemble of isolated QDs. Un-
der the assumption that the QD concentration is low, this ensemble is
equivalent to a gas of resonance four-level atoms. The equations describ-
ing the evolution of the QD state in the USP field can be derived on the
basis of a microscopic model of tight binding of electrons in a QD. An
increase in the concentration of QDs brings about either electron trans-
port between isolated QDs or excitation transfer, much as the energy
is transferred via Frenkel excitons in a molecular crystal. In [22], the
model from [20] is generalized to the situation where the interaction be-
tween individual QDs occurs via exciton transport between the nearest
QDs. This process is accounted for by introducing an exchange term in
the Hamiltonian of the ensemble of the QD electrons, which is similar
to what is done in transition from the Hubbard model to the t-J model
[23]. In this approximation a system of equations for polarization and
population of (two-electron) states of the QD chain has been derived. In
combination with Maxwell equations, the above equations describe the
excitonic wave of excitonic polaritons and a purely excitonic wave; the
latter has much lower propagation velocity than that of polaritons. A
reduction of this system of equations in the long-wavelength limit and
in the approximation of slowly varying variables gives rise to generalized
reduced Maxwell-Bloch equations. The latter resemble the equations of
the theory of self-induced transparency. However, an additional term
appearing in the equations for polarization describes detuning from a
precise resonance; this detuning depends linearly on the difference in
population.

2. Model of isolated quantum dots
Let us consider a model, in which a quantum dot has only two levels

of size quantization: the level εa corresponds to the single-particle state
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|a〉 of electrons in the conduction band and the level εb corresponds to
the single-particle state |b〉 of electrons in the valence band. Under the
action of an ultrashort pulse of electromagnetic radiation, electrons can
move from one level to the other, with the spin state of the electron
being changed in the process of absorption or emission of a photon.

The Hamiltonian of the system of electrons under consideration can
be written as

Ĥ = εc

∑
jµ

n̂jµ + Uc

∑
j

n̂j↑n̂j↓ + Tc

∑
jµ

(
â+

j+1µâjµ + â+
jµâj+1µ

)
+

+εv

∑
jµ

N̂jµ + Uv

∑
j

N̂j↑N̂j↓ + Tv

∑
jµ

(
b̂+
j+1µb̂jµ + b̂+

jµb̂j+1µ

)
+

+
∑

j

(
V1jâ

+
j↓b̂j↓ + V2jâ

+
j↑b̂j↓ + V ∗

1jb̂
+
j↑âj↓ + V ∗

2jb̂
+
j↓âj↑

)
+

+Ucv

∑
jµσ

n̂jµN̂jσ. (1)

The subscript j numbers all the QDs, and the subscript µ takes the
values ↑ and ↓. In expression (1), â+

jµ (̂b+
jµ) are the operators of creation

of the electron with the spin µ in the single-particle state |a〉 (|b〉) of the
jth QD.

The operators n̂jµ = â+
jµâjµ and N̂jµ = b̂+

jµb̂jµ are the operators of
the number of particles in the corresponding states of the jth QD. Here,
for simplicity sake, we assume that the electron energies in the valence
band and in the conduction band are independent of the QD number,
although the spread of the geometrical sizes of the QDs must lead to
such dependence, which would correspond to the inhomogeneous broad-
ening of the absorption line of this resonant system. If necessary, this
broadening can be easily taken into account in the final equations de-
scribing the model being considered. The parameters Ua , Ub , and Uab

correspond to the Coulomb repulsion of electrons in the single-particle
states |a〉 and |b〉 inside the QDs. Coulomb interaction between elec-
trons of adjacent QDs is not taken into account. The quantities Tc and
Tv are the tunneling. matrix elements between the nearest neighbor QD
sites. The interaction of the electromagnetic field with the electrons is
described by the matrix elements V1j and V2j. At the first stage, the
effects of tunneling are disregarded.

Since in the general case, equations specifying the evolution of any
operator are determined by the Heisenberg equations, it is useful to
have the (anti)commutation relations for the creation and annihilation
operators of electrons. As shown previously [21], the equations of motion
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for the operators P̂1j = b̂+
j↑âj↓, P̂2j = b̂+

j↓âj↑, R̂1j = n̂j↓−N̂j↑, R̂2j = n̂j↑−
N̂j↓, Ŝ1j = R̂2jP̂1j, Ŝ2j = R̂1jP̂2j, N̂3j = R̂1jR̂2j, Ŵj = P̂+

1jP̂2j = P̂2jP̂
+
1j,

and K̂j = P̂1jP̂2j = P̂2jP̂1j have the form of the following closed system
of equations:

i�
∂

∂t
P̂1j = ∆εP̂1j + ∆UŜ1j − V1jR̂1j, (2)

i�
∂

∂t
P̂2j = ∆εP̂2j + ∆UŜ2j − V2jR̂2j, (3)

i�
∂

∂t
R̂1j = 2

(
V1jP̂

+
1j − V ∗

1jP̂1j

)
, (4)

i�
∂

∂t
R̂2j = 2

(
V2jP̂

+
2j − V ∗

2jP̂2j

)
, (5)

i�
∂

∂t
Ŝ1j = ∆εŜ1j + ∆UP̂1j − V1jN̂3j + 2V2jŴ

+
j − 2V ∗

2jK̂j, (6)

i�
∂

∂t
Ŝ2j = ∆εŜ2j + ∆UP̂2j − V2jN̂3j + 2V1jŴj − 2V ∗

1jK̂j, (7)

i�
∂

∂t
N̂3j = 2

(
V2jŜ

+
2j − V ∗

2jŜ2j

)
+ 2

(
V1jŜ

+
1j − V ∗

1jŜ1j

)
, (8)

i�
∂

∂t
Ŵj = −

(
V2jŜ

+
1j − V ∗

1jŜ2j

)
, (9)

i�
∂

∂t
K̂j = 2∆εK̂j −

(
V1jŜ2j + V2jŜ1j

)
, (10)

where ∆ε = (εc − εb), ∆U = (Uv − Ucv) = (Uc − Ucv). We will suppose
that Uc = Uv �= Ucv .

Now we can obtain the classical (nonoperator) equations playing the
role of the generalized Bloch equations in the case of a two-level quantum
dot, if we replace all the operators by their expectation values. It should
be noted that the problem of splitting of the products of operators does
not appear here.

Let the duration of an ultrashort electromagnetic pulse be such that
we can use the reduced Maxwell equations for the slowly varying enve-
lope of an electromagnetic pulse. In this case, we can pass on to the
slowly varying complex amplitudes of the average values of the opera-
tors entering into (2) - (10) and take the rotating-wave approximation.
The site index j of the operators can be omitted also. It is convenient
to introduce the following notation:

2
〈
P̂1,2

〉
= p1,2, 2

〈
Ŝ1,2

〉
= s1,2, 2

〈
K̂
〉

= u, 2
〈
Ŵ
〉

= w,〈
R̂1,2

〉
= n1,2,

〈
N̂3

〉
= n3.
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The normalized envelope of the ultrashort electromagnetic pulse is de-
termined by the relation e1,2 = E1,2/A0 , and 2V1,2 = �ωRe1,2, Ω =
(∆ε − �ω0)/�ω . Here ωR = 2d12A0/� is the peak Rabi frequency, ω0

is the wave carrier frequency, d12 is the matrix element of the dipole
moment operator for the transition between the single-particle states |a〉
and |b〉 of the electron in a QD.

The set of normalized generalized Bloch equations has the form

i
∂

∂τ
p1 = Ωp1 − ∆s1 − e1n1, i

∂

∂τ
n1 = (e1p

∗
1 − e∗1p1)/2,

i
∂

∂τ
p2 = Ωp2 − ∆s2 − e2n2, i

∂

∂τ
n2 = (e2p

∗
2 − e∗2p2)/2,

i
∂

∂τ
s1 = Ωs1 − ∆p1 − e1n3 + e2w

∗ − e∗2u,

i
∂

∂τ
s2 = Ωs2 − ∆p2 − e2n3 + e1w

∗ − e∗1u, (11)

i
∂

∂τ
n3 = (e1s

∗
1 − e∗1s1)/2 + (e2s

∗
2 − e∗2s2)/2,

i
∂

∂τ
w = −(e2s

∗
1 − e∗1s2)/2

i
∂

∂τ
u = 2Ωu − (e1s2 + e2s1)/2

These equations must be complemented by the reduced Maxwell equa-
tions for normalized circularly polarized components of an electromag-
netic wave e1,2

∂

∂ζ
ea = ipa (12)

where a = 1, 2 is the subscript numbering the components of a circu-
larly polarized USP. In the equations (11) and (12) we used the rescaled
variables

ζ ≡ z/l, τ ≡ ωR(t − z/c) (13)

where l is the normalization length: l = (4πnAd2
12/c�ωR)−1 and nA is

the the density of QDs. Thus, the set of equations (11) and (12) forms
a basis for thr description of coherent transient processes such as the
photon echo, free induction decay, optical nutation, and propagation of
an ultrashort light pulse through a small-density QDs system.

If the light is circularly polarized, the model under study becomes
equivalent to the model of two-level atoms. In the case of arbitrary
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light polarization, a four-level model arises that is similar to that con-
sidered in [24]. Special cases of stationary solutions of the generalized
system of reduced Maxwell-Bloch equations have been obtained in [20].
These solutions exist under the rather unlikely condition that constants
of the Coulomb coupling between electrons in different energy states are
equal. The direct numerical simulation [20] has shown that the inter-
action between different circularly polarized USPs is of inelastic nature:
the collision gives rise to a change in the propagation velocity and to
emission of quasi-harmonic small-amplitude waves at the edges of the
colliding high-power pulses.

3. The effect of electron transport
Let us denote the two-particle state of an isolated QD by the ket vector

|na↑, na↓; nb↑, nb↓〉, where naµ and nbµ are the numbers of electrons with
spin µ. in the single-particle states |a〉 and |b〉 . In the ground state of
the system, in which case each QD is in the state |0, 0; 1, 1〉, tunneling
transitions of electrons between neighboring nodes are forbidden owing
to Pauli’s exclusion principle. This situation is similar to the absence of
conductivity in an intrinsic semiconductor at zero absolute temperature.
Exposure to radiation gives rise to non-equilibrium charge carriers and,
thus, to photoconductivity. Similarly, the transport of charges can be
observed in a system of QDs if the neighboring QDs are in states with
a single electron in the one-particle states |a〉 and |b〉 .

3.1 The t-J model
Let the jth QD be in the state |0, 1; 0, 1〉, which co responds to an

exciton located at this point and generated owing to the absorption of
a photon with the corresponding spirality. An electron in the state |a〉
of this QD can execute a transition to the state |a〉 of the neighboring
QD (for example, of the (j − 1)th QD); thereby, the energy of the entire
system would increase by about Uab. Further transitions to the state
|a〉 of the (j − 2)th QD increase the total energy by a value determined
by the Coulomb interaction of spatially separated charges. However, if,
immediately after the electron transition from the state |a〉 of the jth
QD to the same state of the (j−1)th QD, the electron of the (j−1)th QD
in the |b〉 state is transferred to the state |b〉 of the jth QD, the energy of
the system is not changed and remains at the same level as corresponds
to a single exciton in the system, with this exciton being transferred
from the jth QD to the (j−1)th QD. Such a transfer of excitons is more
energetically favorable than charge transport due to the electron tunneling
from one site to the neighboring sites in the QD chain. This process
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can be taken into account in the simple model under consideration by
introducing the following additional term into Hamiltonian (1) instead
of the terms proportional to the matrix elements Ta and Tb:

Ĥ = J
∑

j, a=1,2

(
P̂+

a j+1P̂a j + P̂+
a j−1P̂a j

)
(14)

The conventional Hubbard model describing the transport of electrons
from one site to another site incorporates (in addition to the energy
of the Coulomb interaction between electrons at a site U) a matrix el-
ement of electron transition to the neighboring site T0 which controls
the energy-band width in the tight-binding model [25]. The Coulomb
repulsion between electrons in a QD U for the typical case of a GaAs-
based structure amounts to about 1 meV, whereas T0 is on the order
of 0.05 meV. Since U/T0 � 1, an electron system of an ensemble of
QDs constitutes an example of a strongly correlated system. Since the
energy of the Coulomb repulsion of electrons at the same site is much
larger than the intersite-transition parameter T0 , the states with two
electrons at the same site may be disregarded and the Hubbard model
may be replaced by the effective Hamiltonian of the t-J model [23] (see
review [26]). The constant of the effective exchange interaction J in this
model is related to the parameters of the initial Hubbard model by the
formula J = T 2

0 /U . In the model under consideration, two types of elec-
trons are involved. Their internode transitions are characterized by the
matrix elements of electron transitions Ta and Tb in the states |a〉 and
|b〉, respectively. On the basis of analogy to the motion of an electron
in the tight-binding model, we may estimate the constant J in (14) as
J = TaTb/Uab.

3.2 The generalized system of reduced
Maxwell-Bloch equations

The equations of motion for the operators P̂a j, R̂a j , Ŝa j, N̂3 j, Ŵj

and K̂j have the form like the system of equations (2) - (10), but inwhere
the matrix elements Vaj should be rewriten as Ṽaj = Vaj + J(P̂a j+1 +
P̂a j−1).

In the quasi-classical approximation, in which case the mean product
of operators with different site indices are replaced by the product of the
mean values of these operators, the corresponding system of equations
has the same form as system (2) - (10), with all the operators replaced
by the c-numbers. The resulting system of generalized Bloch equations
takes the form which is like to (11), where normalized envelopes ea should
be replaced to ẽa = ea+(J/2�ωR)(pa j+1+pa j−1). These fields describe
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the interaction of an electromagnetic field with electrons in a QD. Thus,
it may be assumed that the effect of the exciton transport is reduced to
the introduction of a local Lorentz field.

It should be noted that we consider a polaritonic wave, i.e., an electro-
magnetic wave propagating along the QD chain with a velocity differing
only slightly from the speed of light owing to the drag of the polariza-
tion cloud. To emphasize that this polarization arises when localized
excitons come into existence, one can use the term excitonic polaritons.

When considering an electromagnetic pulse in the approximation of
a slowly varying envelope and phase, it may be additionally assumed
that the envelope encompasses a large number of QDs, so that the tran-
sition to the continuous approximation is justified; i.e., one may write
pa j+1 + pa j−1 ≈ 2pa(z) + a2

0∂
2pa(z)/∂z2. In this situation, the term

2Jpa/� describes a correction to the Lorentz local field and the second
term a2

0∂
2pa/∂z2 accounts for the motion of an exciton along the chain.

Here a0 is distance between quantum dots. The effective mass of such
an exciton can be defined as m−1∗ = Ja2

0/�. In the approximation of
heavy excitons (m∗ −→ ∞.), a non-local normalized field can be repre-
sented as ẽa(z) = ea(z) + (J/�ωR)p(z) The equations obtained in this
approximation become local.

3.3 A particular solution: a circularly polarized
polariton

For the sake of simplicity, let us consider the situation, where the
pulse of circularly polarized radiation propagates along the chain. Let
us assume that the absorption line is homogeneous one. In the case
of a circularly polarized wave one of the components of the normalized
enelopes is equal to zero. Let be e2 = 0. It is easy to verify that
p2 = s2 = 0 in the case under consideration. If the QD system is in the
ground state in the absence of the pulse, then w = u = 0, p1 = s1 = p
and n1 = n2 = n at any τ . The remaining equations can now be written
as

∂

∂ζ
e1 = ip, (15)

∂

∂τ
p = −i(Ω − ∆)p + ie1n + iβpn, (16)

∂

∂τ
n1 = (e1p

∗ − e∗1p)/2i, (17)

where β = J/�ωR.
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In [22] it was shown that two types of steady-state circularly polar-
ized solitary polaritonic waves can propagate along such chains; these are
waves with exponentially and algebraically decaying leading and trailing
edges. Previously, a USP with exponentially decaying leading and trail-
ing edges was identified in a problem concerning excitonic self-induced
transparency [27]. In the situation considered here, a steady-state pulse
with Lorentzian shape and more slowly decaying leading and trailing
edges was identified in addition to the above pulse.

4. Conclusion
A simple model of a quantum dot (and ensemble of QDs) interacting

with an ultrashort pulse of arbitrarily polarized radiation was considered.
The Hamiltonian of two electrons localized in a QD contains a term de-
scribing the motion of an exciton along the chain of QDs in addition to
the terms accounting for the Coulomb interaction of electrons. On the
basis of this Hamiltonian, a system of equations describing the evolution
of the state of this chain was derived and discussed. The creation of ex-
citons occurs under the effect of an arbitrarily polarized electromagnetic
wave. In the limiting case, this system of equations is reduced to the
Bloch equations for two-level atoms with allowance made for the effect
of the Lorentz local field. For a circularly polarized wave, two types
of solutions were obtained; these solutions correspond to steady-state
solitary waves which differ in the characteristics of decay of the electric
field at the edges of these pulses. Both types of solutions describe the
propagation of a polarization wave dragged by an electromagnetic pulse
along the QD chain.

The models under consideration can also be used to study the coherent
responses of an ensemble of QDs (even if the number of QDs is small).
This can be useful in developing the coherent nonlinear spectroscopy of
low-dimensional systems. Some results concerning the refraction of a
USP at a thin layer of QDs were reported previously [28]. The model
used in [28] can be derived from the model considered in this paper.
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Abstract Analytical theory of the enhanced optical transmission through a pe-
riodically structured metal film capable of supporting surface plasmon
polaritons is presented. The spectrum of the surface-polariton Bloch
modes of a nanostructured film and their electromagnetic field config-
uration have been derived. Two resonant regimes have been shown to
contribute to the transmission enhancement associated with the surface
polariton states of both or at least one of the film interfaces. The en-
hancement occurs due to the tunnel coupling between the electromag-
netic modes on the opposite interfaces. Transmission spectra as well
as far- and near-field properties of the reflected and transmitted light
are discussed. The obtained results are important for understanding
and applications of linear and non-linear optical properties of periodic
metallic nanostructures.
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Keywords: Surface plasmon polaritons, nanostructured metal films, enhanced op-
tical transmission.

1. Introduction
Optical properties of metallic films capable of supporting surface plas-

mon polaritons (SPPs) have recently attracted significant attention due
to various unusual electromagnetic effects [1, 2]. An important class of
metallic nanostructures for photonic and optoelectronic applications is
based on periodically structured metal films. They have been consid-
ered in the context of bio- and chemo-sensors, for the enhancement and
control of non-linear optical processes, and can lead to the development
of all-optical photonic circuits where they can be used as passive as well
as active photonic components.

Behaviour of surface plasmon polaritons on a periodically structured
surface is governed by the same rules as that of electrons in a crystalline
lattice or photons in a photonic crystal. In analogy to this, a nanos-
tructured metal surface has been dubbed a surface-polaritonic crystal.
The optical properties of such SPP crystals are determined by surface
polariton behaviour in a lattice formed by a nanostructure.

One of the SPP-related optical processes is the enhanced optical trans-
mission through periodic metallic films. After first experimental observa-
tions [3], the progress in understanding of this phenomenon has relied on
numerical modelling of one- and two-dimensional nanostructures. The
effects of the coupling between the electromagnetic modes in the film [4],
the role of the SPP Bloch modes and near-field effects [5], the difference
between slits and holes in a film [6], the influence of surroundings [7], and
other properties have been investigated. In addition to the transmission
mechanisms specific to one or the other geometry of a nanostructure,
the enhancement related to the photon tunnelling via surface plasmon
polariton states is universal for all metallic structures [2, 8]. Further ex-
periments on optical properties of nanostructured metal films addressed
non-linear and polarisation effects in transmission [9] as well as temporal
behaviour of the transmitted pulses [10].

Very recently, the analytical descriptions of the enhanced transmission
in the tunnelling regime were developed [8, 11]. This allowed derivation
of analytical expressions for the transmission and reflection of a periodi-
cally structured metal film surrounded by dielectric media and analysis of
the transmission mechanisms in different regimes. The results provided
the understanding of nonnecessity of holes or slits in a film (only one or
another kind of periodic modulation is needed, such as topography or
dielectric constant variations), the role of the SPP states related to the
different branches of the Brillouin zones in photon tunnelling through a
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metal film, etc. Optically induced enhancement of the transmission of a
smooth metal film due to non-linear effects has been suggested [11].

In this paper we have overviewed the theory of the optical transmis-
sion of periodically structured metal films related to the resonant light
tunnelling via the states of the SPP Bloch modes of surface-polaritonic
crystals.

2. SPP modes on a periodically structured
surface

Surface plasmon polaritons are collective excitations of electron plasma
at a metal surface (surface plasmons) coupled with photons. Surface po-
laritons have the wavevector kSP exceeding the wavevector of light of the
same frequency, (ωε

1/2
I /c), and therefore, cannot be excited directly by

light on a smooth surface. However, light illuminating a periodically
structured metal surface (Fig. 1) can excite surface polariton modes
since diffraction on a periodic structure can provide the wavevector con-
servation [12]

→
kSP =

ω

c
ε
1/2
I sin θ

→
ux ± p

→
q . (1)

Here, light is incident from the medium I and has the electric field
component in the incidence plane (x, z), θ is the angle of incidence,
→
q = 2π

→
ux/d is the reciprocal lattice vector of a periodic structure (

→
ux

is the unit reciprocal lattice vector), d is its periodicity, and p is integer
number. The SPP propagation through a periodic structure leads to
the same effects as for electrons propagating through a crystal lattice or
photons propagating through a medium with a periodically modulated
refractive index, namely, to modification of their dispersion law ω(kSP)
and the band-gap effects [13, 14].

The sketch of the dispersion of surface polaritons on a periodically
structured interface between a semi-infinite metal and a dielectric medi-
um I is schematically shown in Fig. 1, where thin solid lines indicate the
dispersion of the SPPs on an unstructured surface with εII = ε0 < 0.
The SPPs with the wavevector kx > ωε

1/2
I /c being true surface excita-

tions, have an infinite lifetime (with respect to decay in photons), while
the SPPs with the wavevector kx < ωε

1/2
I /c (shadowed region in Fig. 1)

are believed to be radiative modes because they can directly couple to
photons.

If we consider a periodically structured surface illuminated at the
normal incidence θ = 0 (the configuration which is most widely used in
the experiments), only SPPs in the vicinity of the even-numbered gaps
(second a−b, forth c−d, etc.) can be excited directly with light [Eq. (1)].
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Figure 1. (left) Geometry of a periodically structured metal film. (right) Schematic
of the band structure of surface polariton modes on a periodically nanostructured
metal surface. The dispersion of SPPs on a smooth surface ωSP = ω(kx) is shown
with thin solid lines. Shaded region shows the light cone ω = ck/ε1/2.

These SPPs correspond to the standing SPP Bloch waves on a periodic
surface. We have shown in Ref. [8] that the conservation of energy and
momentum, or in other words, matching the frequencies and wavevectors
of SPPs and bulk light that takes place in the shadowed region in Fig. 1,
is not sufficient condition for SPPs to be directly excited by (or converted
to) photons. Only the SPP states corresponding to points a and c (and
higher) of the dispersion curve in Fig. 1, which define the SPP Bloch
modes near the bottom edges of the even band-gaps, have complex (with
an imaginary part) frequencies and, thus, can interact with normally
incident photons [8]. In contrast, frequencies corresponding to the top
edges of the even band-gaps (points b, d, and higher in Fig. 1) are
real. It means that SPPs at these frequencies have an infinite lifetime
and do not interact with photons. This has the important consequences
for the understanding of the optical transmission through periodically
structured metal films.

3. SPP film modes of a periodic structure
Let us consider a metallic film of a finite thickness with periodic mod-

ulation of the dielectric properties throughout the film thickness. This
can be either topographic modulation due to slits or holes in the film,
metal permittivity modulation, or filling of the slits or holes with other
material. The film is placed between two generally different dielectric
media (Fig. 1). The structure is characterised by the dielectric con-
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stants εI > 0 for z > 0, εIII > 0 for z < −h, and εII for −h < z < 0.
The dielectric constant εII is assumed to be periodic in x-direction,
i.e. εII(x) = εII(x + nd), n = 1, 2..., and its average value is nega-
tive, < εII >= ε0 < 0. For simplicity we consider the case of the real
dielectric functions εI,II,III.

The structure is illuminated at normal incidence from the medium I
and the electromagnetic surface waves can be excited on the structure
interfaces due to periodic modulation. In the case of the TM polarised
wave propagating along the x-axis, the electromagnetic field has the
following form with both transverse and longitudinal components of the
electric field

→
E = (Ex, 0, Ez)eikxx−iωt + c.c.,

→
H = (0, Hy, 0)eikxx−iωt + c.c. (2)

The method of treating the electromagnetic properties of periodic struc-
tures is well developed and consists in substitution of the field and di-
electric function in the Maxwell equations by their Fourier expansions

→
E =

∞∑
n=−∞

→
En exp(ingx), ε2 =

∞∑
n=−∞

en exp(ingx), (3)

where g = 2π/d is the vector of the reciprocal lattice related to the
periodic structure. After straightforward algebra one arrives to the set
of equations for the field amplitudes that are usually studied numerically.

The first band-gap in the spectrum of SPPs on a periodically struc-
tured surface lies in the non-radiative region, therefore, higher SPP
band-gaps must be considered for the description of light transmis-
sion. We are interested only in the electromagnetic field configura-
tion of the branches of the SPP Bloch modes near the bottom edges of
the even band-gaps, since only these states have complex (with imagi-
nary part) frequencies and, thus, can interact with normally incident
photons [8]. To get analytical expressions for the dispersion law of
the film modes and in particular the width and position of the band-
gap edges as well as the field configurations and amplitudes of the re-
flected and transmitted waves, we restrict ourselves to the simple case
of εII(x) = ε0 + 2ε1 cos(gx). The field configuration near the second
band-gap can be calculated by truncating the Fourier series for fields,
and the electric field in the metallic medium can be sought in the form

→
EII = (

→
A +

→
B cos gx +

→
C sin gx)eκz, (4)

where
→
A,

→
B,

→
C, and κ are the parameters that should be determined.

This is the so-called three-wave approximation which is generalisation
of the two-wave approximation commonly used in solid state physics for
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the description of the Bloch states near the first band-gap [15]. Being
substituted into the Maxwell equations, Eq. (4) leads to the set of six
equations for six field amplitudes Ax;z, Bx;z, Cx;z. It is important to
note that this set of equations splits into two independent sets for the
fields Ax, Bx, Cz and Az, Bz, Cx. Conditions of solubility of the first
set of equations lead to the following expressions for two eigenvalues κi:

κ2
1,2 = 1

2

(
g2 − 2ε0k

2
0 ∓

√
g4 + 8α1ε0k2

0(ε0k2
0 − g2)

)
≈
[ −ε0k

2
0 − 2α1ε0k

2
0(ε0k

2
0 − g2)/g2

g2 − ε0k
2
0 + 2α1ε0k

2
0(ε0k

2
0 − g2)/g2 ,

(5)

while the conditions of solubility of the second set gives the third eigen-
value

κ2
3 = −ε0k

2
0 +

g2

1 − 2α1
≈ −ε0k

2
0 + g2 + 2α1g

2, (6)

where k0 = ω/c. Only three of six eigenvalues κi are independent since
κ4,5,6 = −κ1,2,3.

The approximations made in Eqs. (5) and (6) are valid for α1 =
ε2
1/ε2

0 << 1, or to be more precise in the case of Eq. (5), when the
second term in the square root is much smaller than the first one. This
condition can be written as

8ε2
1

d2

λ2
(
d2

λ2
− 1

ε0
) ≈ 8ε2

1

d4

λ4
<< 1. (7)

Eq. 7 shows that the absolute value of the dielectric constant modulation
depth |ε1| is more important than the ratio |ε1/ε0|.

Thus, within the chosen three-wave approximation (Eq. 4), the field
in the medium II has the following form:

Ex = (A1;x + B1;x cos gx)eκ1z + (A2;x + B2;x cos gx)eκ2z

+C3;x sin gx eκ3z + (a1;x + b1;x cos gx)e−κ1(z+h)

+(a2;x + b2;x cos gx)e−κ2(z+h) + c3;x sin gx e−κ3(z+h),
Ez = C1;z sin gx eκ1z + C2;z sin gx eκ2z + (A3;z + B3;z cos gx)eκ3z

+c1;z sin gx e−κ1(z+h) + c2;z sin gx e−κ2(z+h)

+(a3;z + b3;z cos gx)e−κ3(z+h),

(8)

where the fields of the corresponding eigenmodes are related as

A1,2;x =
−ε1k

2
0

ε0k2
0 + κ2

1,2

B1,2;x , C1,2;z =
gκ1,2

g2 − ε0k2
0

B1,2;x,

A3;z =
−ε1

ε0
B3;z , C3;x =

κ3

g
(2α1 − 1)B3;z. (9)

Similar relations hold for the amplitudes a, b, and c with κi substituted
by −κi.
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4. Transmission and reflection coefficients
Light transmission through and reflection from a metal film are de-

termined by the fields in the dielectric media I and III. We take these
fields in the form

Ex = Axe−ikIz + RxeikIz + (Bx cos gx + Cx sin gx) e−ηIz,
Ez = (Bz cos gx + Cz sin gx) e−ηIz (10)

for z > 0, where the incident, reflected, and SPP fields are present, and

Ex = Txe−ikIII(z+h) + (bx cos gx + cx sin gx) eηIII(z+h),

Ez = (bz cos gx + cz sin gx) eηIII(z+h) (11)

for z < −h, where the transmitted and SPP fields exist. Here,

k2
I,III = εI,IIIk

2
0, η2

I,III = g2 − εI,IIIk
2
0, (12)

Cz = − g

ηI
Bx, Cx =

ηI

g
Bz, cz =

g

ηIII
bx, cx = −ηIII

g
bz, (13)

where A, R, and T are the amplitudes of the incident, reflected, and
transmitted waves, respectively.

Upon substitution of the expressions (8), (10), and (11) into cor-
responding boundary conditions, we arrive at two independent sets of
equations for the field amplitudes. The set that corresponds to the fields
Ax, Bx, and Cz reads as

Ax + Rx = A1x + A2x + a1xe−κ1h + a2xe−κ2h,
ikI(Rx − Ax) = κ1A1x + κ2A2x − κ1a1xe−κ1h − κ2a2xe−κ2h,
Bx = B1x + B2x + b1xe−κ1h + b2xe−κ2h,
εICz = ε0(C1z + C2z + c1ze

−κ1h + c2ze
−κ2h),

Tx = a1x + a2x + A1xe−κ1h + A2xe−κ2h,
ikIIITx = κ1a1x + κ2a2x − κ1A1xe−κ1h − κ2A2xe−κ2h,
bx = b1x + b2x + B1xe−κ1h + B2xe−κ2h,
εIIIcz = ε0(c1z + c2z + C1ze

−κ1h + C2ze
−κ2h).

(14)

The set of the boundary conditions Eq. (14) contains the incident am-
plitude Ax and 18 unknown amplitudes. Using Eqs. (9) and (13) and
analogous relations between a1x,2x, b1x,2x, and c1z,2z, we reduce the full
system of equations to the system of four equations defining four ampli-
tudes A1x,2x and a1x,2x in terms of the incident field amplitude Ax:

⎛⎜⎜⎝
Ψ1 Ψ2 Ψ∗

1e
−κ1h Ψ∗

2e
−κ2h

ϕ1F1 ϕ2F2 ϕ1F̄1e
−κ1h ϕ2F̄2e

−κ2h

ψ∗
1e−κ1h ψ∗

2e−κ2h ψ1 ψ2

ϕ1f̄1e
−κ1h ϕ2f̄2e

−κ2h ϕ1f1 ϕ2f2

⎞⎟⎟⎠
⎛⎜⎜⎝

A1x

A2x

a1x

a2x

⎞⎟⎟⎠ =

⎛⎜⎜⎝
2kIAx

0
0
0

⎞⎟⎟⎠ .

(15)
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In writing down Eq. (15) the following notations were introduced:

F1,2 = εI
ηI

+ ε0κ1,2

g2−ε0k2
0
, F̄1,2 = εI

ηI
− ε0κ1,2

g2−ε0k2
0
,

f1,2 = εIII
ηIII

+ ε0κ1,2

g2−ε0k2
0
, f̄1,2 = εIII

ηIII
− ε0κ1,2

g2−ε0k2
0
,

(16)

and

Ψ1,2 = kI + iκ1,2, ψ1,2 = kIII + iκ1,2, ϕ1,2 = κ2
1,2 + ε0k

2
0. (17)

Now it is straightforward to get expressions for the fields amplitudes:
A1,2x = d1,2/d and a1,2x = d3,4/d. Here d = det[M ] is the determinant
of the 4 × 4 matrix defined in the left hand side of Eq. (15) and d1,2,3,4

are the determinants of the matrixes obtained from the matrix M by
replacing the corresponding column with the column defined in the right
hand side of Eq. (15). Using this, one can easily find the transmitted
and reflected field amplitudes

Tx =
(
d1e

−κ1h + d2e
−κ2h + d3 + d4

)
/d,

Rx =
(
d1 + d2 + d3e

−κ1h + d4e
−κ2h

)
/d − Ax.

(18)

The equation d = 0 defines the dispersion relation of the SPP modes
existing on a structured film. In particular case of a single interface,
which is given by limit h → ∞, it reproduces the dispersion relation
of the surface electromagnetic mode obtained in Ref. [8], while in the
case of α1 → 0 it gives the dispersion relation of the excitations of
a homogeneous film [12]. Eqs. (18) together with the corresponding
expressions for the determinants d and di give the solution of the problem
of the light transmission through the periodically nanostructured metal
film capable of supporting surface plasmon polaritons.

5. Transmission spectra
We have analysed the transmission spectra of the metallic structures

with parametres similar to those studied in the experiments and used for
numerical modelling [6, 7, 16]. In particular, we considered a gold film
deposited on a quartz substrate (εIII = 2.31). The film was illuminated
from the side opposite to the substrate. To model the dielectric function
of gold we used the approximation ε0 = 1 − 3 × 10−5(λ[nm])2 which is
valid in the spectral range λ= 600–1000 nm. A set of permittivities for
the adjacent medium was considered εI= 1–2.31 in order to clarify the
transmission mechanisms related to degenerate and non-degenerate SPP
modes on the film interfaces. Only real part of the dielectric constant
of gold was taken into account for simplicity, but the influence of the
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Figure 2. Intensity transmission spectra of the periodically structured gold film
deposited on the quartz substrate (εIII=2.31) for different dielectric constant of the
adjacent medium εI . The film thickness is 150 nm, the structure periodicity is d=600
nm, and the modulation depth is |ε1/ε0| = 0.1. TM-polarised electromagnetic wave
is incident perpendicularly to a metal surface.

Ohmic losses is also discussed. The analytically calculated transmission
spectra t = |Tx/Ax|2 obtained using Eq. (18) are similar to the ex-
perimentally observed spectra and numerical calculations. The spectral
position, shape of spectral bands as well as their behaviour with refrac-
tive index changes and thickness of the film are described well by the
analytical expressions.

The transmission spectra are presented in Fig. 2 for different dielec-
tric constants of the adjacent medium εI. In the case of a symmetric
structure (a metal film sandwiched in quartz), the spectrum consists of
two peaks of equal amplitudes. The peak wavelengths are very close in
the case of the relatively thick film. For smaller film thicknesses these
peaks move in opposite directions with the decrease of the thickness,
preserving their amplitudes t = 1. With the increase of the thickness,
the transmission peaks shift closer, and transmission becomes smaller.
These peaks correspond to the film SPP Bloch modes of the nanostruc-
tured metal film. In symmetric surroundings, the SPP modes related to
the opposite interfaces are degenerated and the interaction leads to split-
ting of their frequencies and formation of the film SPP modes with sym-
metric (low-frequency mode) and anti-symmetric (high-frequency mode)
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distributions of the field in the film. For relatively thick films, the SPP
modes are weakly interacting and thus shifted only slightly from each
other. With the decrease of the thickness they are repulsed further.

The transmission is expected to be t = 1 in the case of a symmetric
structure. This follows from the considerations of the resonant tunnelling
between the SPP modes on the opposite film interfaces (double-resonant
conditions) [8]. Irrespectively of the film thickness, the full transfer of
the excitation energy occurs through the film if the SPP lifetime is long
enough, similarly to the tunnelling through a potential barrier via reso-
nant states of quantum wells. However, in the case of very thick films,
the decrease in the transmission was observed. This is related to the
increase of the interaction time needed to achieve effective tunnelling
through a thick film. Although the Ohmic losses are absent, the radia-
tive losses due to coupling back to photons reduce the SPP lifetime. If
the imaginary part of the dielectric constant of metal is included into
considerations, the amplitude of the peaks drops and they become wider.
(In the case of a thick film and thus a weak coupling, these leads to one
transmission peak observed which is related to two closely spaced SPP
resonances [16].) The decrease of the transmission in both described sit-
uations is related to one or another kind of losses in the system leading
to the finite SPP lifetime and therefore, reduced tunnelling efficiency.

If the symmetry of the structure is broken (Fig. 2 b–h), the SPP
modes are not degenerated by still interact with each other. A short-
wavelength mode is related to the interface of the medium with a lower
dielectric constant which is varied in the calculations, and shifts to the
high frequency range with the decrease of the refractive index. At the
same time, the long-wavelength mode related to a quartz interface is
shifted much less since it is influenced only by a weak interaction between
the SPP modes. For thinner films, this shift is much more pronounced.

Since in the asymmetric case, due to the difference in the position of
SPP resonances on opposite interfaces, the double-resonant tunnelling
conditions are not satisfied, the transmission becomes smaller in both
resonances. In this case, the transmission peaks are related to direct
photon tunnelling via one of the SPP resonances. Initially, with the
decrease of εI the peak transmittance corresponding to the SPP on the
interface in contact with the εI dielectric is smaller than the other peak.
(In the opposite case, with the increase of εI, a symmetrical picture is
observed with the longer-wavelength resonant transmittance decreasing
faster.) However, two distinctively different transmission regimes can
be identified with the dielectric constant εI variation (cf. Fig. 2 b, c
and e–h). The transition between these two regimes is clearly observed
at some value of the dielectric constant (Fig. 2 d) which depends on
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the film thickness. For close values of the dielectric constants of sur-
roundings (weakly asymmetric case) the SPP Bloch modes of the in-
terfaces “remember” the symmetry of the film SPP modes. With the
increase of the asymmetry, the short-wavelength transmission peak be-
comes smaller and disappears at some value of the dielectric constant at
which the transmission at the SPP wavelength is suppressed compared to
the transmission of the unstructured film and reaches zero. The physical
reason for this behaviour is a crossing of the SPP mode states associ-
ated with the two systems of the Bloch modes of surface polaritons on
the opposite film interfaces: the radiative SPP branch related to the
interface with a lower refractive index medium and the non-radiative
branch of the SPP mode on the interface with a higher refractive index
medium. The decrease in the transmission and its suppression occurs
due to the resonant energy transfer from the radiative SPP Bloch mode
to the non-radiative mode (if the Ohmic losses are present, this leads to a
significant absorption at this wavelength [16]). With the further increase
of the difference in the dielectric constants of surroundings, these SPP
modes become separated in energy and the high-frequency transmission
peak appears again. However, the shape of the resonance has different
symmetry corresponding to the density of states in the Brillouin zone.

Further decrease of the dielectric constant leads to the increase of the
short-wavelength peak and the decrease of the long-wavelength trans-
mission until they become equal in the amplitude (Fig. 2 g), then the
high-frequency mode becomes dominating (Fig. 2 h). This behaviour
is determined by the different behaviour of the κ1,2 coefficients that
describes spatial extension of the two SPP modes with the dielectric
constant change. This leads to different tunnelling probabilities related
to these modes.

In the case of light incident from the side of a substrate, the transmis-
sion coefficient can be calculated by exchanging dielectric constants of
a substrate and a neighbouring medium εIII ↔ εI. The transmittance
ratio in this case is determined by the ratio of corresponding dielectric
constants tIII→I/tI→III = εIII/εI. This is a consequence of the fact
that the relative transmittance measured as the ratio of the transmitted
energy flow (the time averaged Poynting vector) St = c

8πnI,III |T |2 to
the incident energy flow Si = c

8πnIII,I |A|2 is equal in both directions.
This is valid for the total energy transmitted through the nanostruc-
ture. If the structure transmission has, in addition to zero-order, also
higher transmitted orders which propagates at some angle to the inci-
dent light direction, the transmission in the individual orders might not
provide reciprocity with respect to the illumination side of the asymmet-
ric nanostructure. Even if the transmission is the same, the reflection
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and absorption of the asymmetric structure depends on the side which
is illuminated [16].

6. Near-field and far-field transmission
The expressions (18) describe the field amplitudes in the far-field do-

main. Knowledge of the near-field is very important for many appli-
cations and especially for consideration of non-linear optical properties
of the structure if the non-linearity of a metal itself or a thin nonlinear
material film deposited on the surface should be taken into account. It is
the electromagnetic field enhancement in the near-field region close to a
metallic structure that makes possible observation of non-linear optical
effects at very low incident light intensities [9, 17].

The analytical approach described above permits determination of the
near-field amplitudes as well. According to Eq. (11), the total electro-
magnetic near-field on the opposite to the illuminated film interface, i.e.
at z = −h − 0, is described by Ex = Tx + bx cos gx, and Ez = cz sin gx,
with cz = gbx/ηIII. The fields proportional to cx and bz cannot be
excited with normally incident light, as was discussed above, and are
omitted from the near-field description.

Thus, in contrast to the far-field region, the near-field of the transmit-
ted light has the component Ez normal to the interface. This effect is
responsible for significant polarisation conversion observed in the near-
field. The field normal to the surface is related to the non-radiative part
of the SPP Bloch wave and cannot be detected in the far-field, where
the polarisation of the transmission light is the same as polarisation of
the incident light. This polarisation effect is important for scanning
near-field microscopy of nanostructured metals since the interpretation
of the near-field images depends on the efficiency of coupling of different
polarisation components of the field over a surface to a fibre tip and
the polarisation dependent electromagnetic field enhancement at the tip
apex. Polarisation properties of the transmitted light in the near-field
should also be taken into account considering non-linear optical interac-
tions which can exhibit profound polarisation dependencies due to the
symmetry properties of the second- and/or third-order nonlinear suscep-
tibilities.

The evanescent field component Ez exhibits a resonant behaviour with
the light frequency similar to Tx. However, it is proportional to sin(gx),
and its spatial distribution is out-of-phase compared to the evanescent
part of the Ex component. At the same time, the propagating part
of the transmitted field (Tx) has no spatial variation linked to the film
modulation since the tunnelling through the film as a whole determines
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the transmission, the surface periodicity determines only the modes con-
tributing to the tunnelling process.

7. Conclusion
The optical properties of periodically structured metal films are gov-

erned by surface polariton behaviour in a surface-polaritonic crystal.
The periodic structure modifies the local density of electromagnetic
states on the metal film interfaces leading to light tunnelling at the
resonant wavelengths of the SPP Bloch waves related to one of or both
film interfaces. Due to different structure of the electromagnetic field of
the SPP modes in different Brillouin zones, only SPPs in even Brillouin
zones contribute to the transmission enhancement at normal incidence.

The presented analytical studies of the enhanced optical transmission
through periodically nanostructured metal films allow identification of
the origin of the resonances in the spectra, which are related to surface
polariton processes. It is shown that the effect of the enhancement arises
due to a periodical structure of a film and not necessary requires holes
or slits through a film. In fact, the structures of different periodicities on
the opposite film interfaces can be advantageous for optimising resonant
tunnelling between the SPP states.

Surface polaritonic crystals that intrinsically provides the field en-
hancement related to SPP modes, are especially advantageous in a com-
bination with optical nonlinear materials. Such non-linear metamateri-
als can lead to a principally new class of all-optical devices for integrated
photonic circuits [2, 9, 17]. Periodically nanostructured metal films pro-
vide a possibility to efficiently control the spectrum and intensity of
the optical transmission and can find numerous applications in modern
photonics and optoelectronics.
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LIQUID LIGHT IN CUBIC-QUINTIC
NONLINEAR OPTICAL MATERIALS

Humberto Michinel, Maria J. Paz-Alonso, and Jose R. Salgueiro
Area de Optica, Facultade de Ciencias de Ourense, Universidade de Vigo, As Lagoas
s/n, Ourense, ES-32005 Spain.

Abstract For a nonlinear optical material with the adequate dependence of the
refractive index with light intensity, a condensation phenomenon takes
place for a laser beam. This process can be interpreted as a phase tran-
sition from a photon gas to a liquid of light. The physical properties
of the resulting state, like surface tension, are similar to those of quan-
tum liquids. Here we report a numerical exploration of the dynamics
of these light condensates. We show that, as in the case of superfluids,
eternal whirpools can be generated in light droplets. We also stress the
deep connections and analogies between this new state of matter and
Bose-Einstein condensates.

1. Introduction
It was Albert Einstein, during his miraculous year 1905 [1], the first

to consider seriously the analogies between a beam of light and a gas. By
means of statistical mechanics, he calculated the entropy of a monochro-
matic gas of light quanta, and applied it to explain the photoelectric
effect. Thus, if light can be regarded as a gas of photons, a couple of
simple questions are: Would it be possible to obtain a liquid of light?
What physical properties will it have? The answers are not trivial. In
first place, it is known that even in the quantum world the interactions
between photons in vacuum are negligible, thus one could expect that
photons will not yield to Van der Waals-like interactions. On the other
hand, laser photons are a collection of identical non-massive bosons and
thus, a liquid of light would have physical properties similar to those of
quantum liquids in a Bose-Einstein condensation.

Concerning the first question, it is interesting to consider the effect
on the photon gas of an intensity-dependent refractive index[3]. For
nonlinear optical materials with a linear growth of the refractive index
with light intensity (optical Kerr effect), only in one-dimensional con-
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figurations stable soliton propagation can be achieved. Two and three-
dimensional beams, with powers over a critical value, always collapse to
a singularity[6]. This behaviour is quite evident if one takes into account
that light directs to the regions with higher refractive index due to Fer-
mat’s principle. For these materials this zone corresponds to the center
of a gaussian laser beam. Thus, if the refractive index shift is strong
enough to counteract the natural curvature of the beam, diffraction is
overcame and self-focusing takes place.

2. Physical model
Thus, let us begin by remembering some well-known effects concerning

non-resonant laser propagation in nonlinear materials. In optical media
presenting linear growth of the refractive index shift with light inten-
sity (optical Kerr effect), envelope solitons [2, 3, 4] can be produced for
one-dimensional propagation. They can be obtained as pulses in opti-
cal fibers with anomalous dispersion (temporal solitons) or continuous
beams in several planar configurations. On the other hand, wild unsta-
ble phenomena like blow-up and catastrophic self-focusing take place for
intense two-dimensional propagation in bulk Kerr-like materials[5, 6].
However, collapse can be limited if the nonlinear growth of the refrac-
tive index saturates for high powers, and thus, stable two-dimensional
stationary beams can be obtained [7, 8].

In the present work, we will analyze the dynamical properties of laser
beams and pulses propagating through a nonlinear optical material with
the following refractive index:

n(I) = n0 + n2I − n4I
2. (1)

Where n0, n2 and n4 are positive constants determining the nonlinear
response of the optical material with the intensity (I) of the light beam.
This kind of refractive index represents the so-called cubic-quintic optical
materials [9, 10, 11, 12, 13, 41] and it can be considered as a Taylor
expansion up to I2 terms of more complicated optical nonlinearities. The
above n(I) grows with I for low powers, and diminishes for high powers
due to the contribution of the negative n4I

2 term. A very interesting
example of materials which correspond to the previous refractive index
are the recently reported nonlinearities of chalcogenide glasses[14], which
show an intensity-dependent refractive index that can de fitted by Eq.
(1). Our aim in the present paper, will be to show that this change in the
sign of the nonlinear response with the intensity, yields to the formation
of light condensates with physical properties resembling those of fluids.
This light condensates can be obtained as well as continuous or pulsed
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beams. Thus, we will use respectively the terms light streams or light
drops, to refer to each case.

We will analyze in first place the propagation along z, in the paraxial
regime, of a continuous linearly-polarized laser beam trough a nonlinar
optical material with the above refractive index n(I). The dynamics of
the envelope of the electromagnetic wave Ψ(x, y, z) is given by a gener-
alized Non Linear Schrdinger Equation (NLSE) of the form[9]:

2ikn0
∂Ψ
∂z

+ ∇2
⊥Ψ + 2k2n0

(
n2|Ψ|2 − n4|Ψ|4)Ψ = 0, (2)

where k = 2π/λ is the wavenumber in vacuum and ∇2
⊥ = ∂2/∂x2 +

∂2/∂y2 is the transverse Laplacian operator. The previous equation
can be interpreted in the light of results obtained for gaseous Bose-
Eintein condensates (BEC) where it is called a Gross-Pitaevskii Equa-
tion (GPE). In the GPE, the term ∇2Ψ represents the kinetic energy
that tends to broad the atom gas. The analogous to the optical non-
linearity is the scattering length, which determines whether the interac-
tions between atoms will be attractive (self-focusing) or repulsive (self-
defocusing). Thus, a term in the GPE that counteracts the motion of
the atoms may be considered as a cooling term. Therefore, coming back
to the NLSE, we can conclude that an optical material with self-focusing
nonlinearity acts as a cooling medium for a photon gas. The key point
is that it is neccessary to saturate the growth of the nonlinear shift in
order to avoid the collapse of the beam envelope to a singularity. This
happens in materials with the cubic-quintic nonlinearity.

Typical values of the above parameters can be chosen to fit usual ex-
perimental configurations by taking: n0 = 1.8, n2 ≈ 2 · 10−4cm2/GW
and n4 ≈ 2 · 10−3cm4/W 2, with λ = 1600nm. Thus, nonlinear effects
become significant for values of I in the range of GW/cm2. The physical
picture of the above nonlinearity is evident: for low intensities, propaga-
tion remains in a quasi-linear regime. If the power is increased, nonlinear
self-focusing tends to counteract diffraction and will overcome it for a
critical beam flux. This would yield to blow-up in pure Kerr materials
(n4 = 0). However, for high powers, the defocusing effect of the term
n4I

2 will balance collapse, yielding to a stable two-dimensional beam.
Thus, for an adequate power, a beam traversing such a nonlinear optical
material will yield to a compact state in which light acquires surface
tension properties, like droplets of usual liquids.

3. Stationary nodeless states
Before analysing the dynamics of laser beams, it is useful to take a

look to the spatial profile of the lowest-order stationary solutions of Eq.
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(2), which are nodeless wavefunctions of the form: Ψ = ψ(r)eiβz, where
β is the nonlinear phase shift (propagation constant) and Ψ(∞) = 0.
It can be seen in Fig. 1 that the shape and properties of the above
states depend crucially on the value of β. To the contrary of linear
waveguides (where there is only one fundamental mode with a given
β) nonlinear propagation yields to a continuum of nodeless eigenstates.
This is evident, as the nonlinear beam generates its own waveguide dur-
ing propagation. Thus, we have found by numerical integration, the
stationary states corresponding to Eq. (2) for increasing values of the
nonlinear phase shift, starting from β = 0. The result is a continuum of
stationary states with different shapes and increasing values of the beam
power N =

∫ |Ψ|2dxdy. Some of these spatial profiles are shown in the
insets of Fig. 1.

The form of the stationary solutions of Eq. (2) has been analysed by
several authors[15, 16, 17]. It is well known, for instance, that there is a
minimum power threshold N0 to generate a stationary beam. Obviously,
this minimum beam flux coincides with the collapse power threshold for
a gaussian beam in a bulk Kerr media[18, 19]. We must also point
that there is a critical value βc of the propagation constant for which
N diverges. Thus, for β > βc, no stationary solutions can be obtained.
Although there are good analytical approximations for shapes of the
previous stationary beams[17], less attention has been paid to investigate
the peculiar form of the spatial profiles of Fig. 1 from a physical point of
view. Thus, let us try to extract a qualitative picture of the properties of
the mentioned stationary beams, by analyzing the changes in the shape
of the eigenstates of Eq. (2) for growing values of β.

As it can be appreciated in Fig. 1, low values of the beam flux N
(i.e.: β → 0) yield to light distributions with quasi-gaussian profiles.
Note that the intensity scale in the inset a) is different and thus the
corresponding profile is smoother than those in b) and c). As β is in-
cremented, the beam flux grows and the spatial shapes tend to narrow,
keeping approximately the gaussian shape and reaches a minimum width
and a maximum peak for an intermediate power. For larger values of
β, the beam flux grows rapidly and the peak intensity of the light dis-
tribution saturates due to the effect of n4. The light distributions tend
to supergaussian profiles and thus, high power stationary beams yield to
wide top flatted profiles ended by sharp decays. Moreover, as the sharp
ends of intense beams are very similar, we can conclude that the shapes
of high power beams differ only on the length of the top flat.

Thus, let us reconsider the previous scenario in the light of statistical
mechanics of a “photon gas”. The situation looks as follows: low powers
(i.e.: β → 0 quasi-linear regime) yield to smooth gaussian-like spatial
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Figure 1. Beam power (N) vs nonlinear phase shift (β)for stationary nodeless states.
Solid line: numerical; dashed line: variational. Note that N grows monotonically with
β and the gap at β = 0. Insets: beam shapes corresponding to several powers. Note
that the intensity scale in a) is different.
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distributions of the “photon gas” and the dominant contribution in Eq.
(2) is diffraction (∇2ψ) that can be interpreted as a kinetic term (ex-
pansion of the photon gas). For stationary beams with higher powers,
the Kerr self-focusing term given by n2, becomes significant and tends to
narrow the shape of the light distribution. The beam would collapse for
powers over a critical value; however, the defocusing effect of n4 domi-
nates for high powers and avoids blow-up. The comparison between the
low and high power spatial profiles resembles the density distributions of
particles inside a gas for low values of N , (smooth quasi-gaussian spatial
distribution, representing high delocalization) or a condensed supergaus-
sian shape for high powers (almost constant photon density inside the
beam and sharp decay at the boundary). The analogy makes more sense
if the nonlinear material is regarded as a “cool region” where the kinetic
term ∇2ψ of Eq. (2) is balanced by nonlinear effects. Stable “light
streams” are formed due to competing effects of diffraction, the Kerr
term (n2) and the self-defocusing nonlinearity (n4) , in a similar way as
Van der Vaals forces form liquid droplets in a gas-liquid condensation.
The analogy is more evident in the case of pulsed beams, where “light
droplets” will be obtained. We will analyze this case in the last section
of the present work.

Thus, if one assumes the previous picture, the following step is to
formulate ideal experiments to detect typical properties of liquids in
the mentioned liquid light states, like the existence of surface tension
properties.

4. Dynamics of collective oscillations
To get a deeper physical insight in the properties of the above light

distributions, we have performed a variational analysis of the frequency
spectrum of the small amplitude oscillations of slightly perturbed sta-
tionary beams. The perturbation can be experimentally implemented
with a thin lens, that adds a slight curvature to an input gaussian beam.
Thus, we can model the evolution by means of the following trial func-
tion:

Ψ(r, z) = ψ(z)e
[
− r2

2w2(z)
+ib(z)r2

]
, (3)

where ψ, w and b are quantities depending on z, corresponding to the
peak amplitude, beam width and curvature, respectively. Following the
standard variational procedure[42, 15, 16], after minimization of the cor-
responding Lagrangian density over the set of trial functions from Eq.
(3), an ordinary newton-like differential equation is obtained for the
above parameter w. These equations can be reformulated in terms of
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Figure 2. Potential functions given by Eq. 4 of the nodeless states a), b) and c)
from Fig. 1 .

effective potentials for equivalent particles in the following form:

Π =
(

1
k2n2

0

− n2N

2πn0

)
w−2 +

2n4N
2

9π2n0
w−4, (4)

In Fig. 2, we have plotted the shape of the previous potentials for
three different values of the peak power, corresponding to the shapes
of the insets in Fig. 1. As it can be seen in the caption, the higher
N , the depper Π. The minimum width of the potential is achieved
for the b) eigenstate. The widths of the perturbed beams will evolve
oscillating around the minimum of Π, as classical particles in potential
wells, playing z the role of time. The variational analysis, although not
exact, provide the widths of the stationary states ws, as function of the
beam power. They are given as the values of w for which Π is minimum.
From a simple inspection of Eq. (4) it is obtained the following value
for the width of the beam:

w2
s =

8n4

9n2

N2

N − N0
,
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where N0 is the following critical value for the beam flux:

N0 =
2π

k2n0n2
, (5)

The value of N is the small gap of the beam power at β = 0 of Fig.
1. It is straightforward to calculate the minimum width wm of a sta-
tionary beam, which is achieved for N = 2N0 and is given by wm =

8
3k0n2

√
πn4
n0

. For the experimental values given above, it is easily ob-
tained that wm ≈ 6.4µm, which yields to peak powers in the range of
2GWcm2 to generate the stationary states. Thus, the variational model
predicts a minimum beam power to generate the stationary states that
we calculated above numerically. Obviously, Eq. (5) coincide with the
critical collapse threshold for a gaussian beam in a bulk Kerr material
[19]. The comparison with direct numerical calculations, as it can be
appreciated in Fig. 1, yields to a very good agreement (error below 1%)
for low values of β. However, it must be stressed that, as the shape of
the stationary states deviates from the gaussian profile, the fit of the
theoretical and the numerical curves is only qualitative.

In second place, notice that expanding Π around its minimum, it is
possible to obtain the frequencies ν of small amplitude oscillations along
z of perturbed stationary states, as functions of the main parameters
involved. To get a more physical view of the light condensates, it is
interesting to consider ν as a measure of the “rigidity” of the different
stationary states. After a trivial Taylor expansion around the minimum
of Π, it is obtained:

ν =
9π

4
√

2k3n2
0n4

(
N
N0

− 1
) 3

2

N2
, (6)

As it can be seen in Fig. 3, the variational analysis reveals that a
maximum rigidity of the light condensate is achieved for a given value
of N (or equivalently β). The critical value of N corresponding to the
maximum frequency can be easily calculated by taking dν/dN = 0, and
is given by:

Ncr =
8π

k2n0n2
= 4N0, (7)

In Fig.3, we can observe that the variational method has only a qual-
itative agreement with the numerical (solid line) calculation. From the
shape of the cuves, we can argue that Ncr is the critical value over which
the surface tension properties of the light beams appear. The reason is
that the maximum in the frequency νmax acts as a gap for the excitation
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Figure 3. Resonance frequencies (ν) of the nodeless states as a function of the
beam power. Dashed (solid) lines correspond to variational (numerical) calculations,
as given by Eq. (6).

of linear waves from the stationary state, and thus radiation is blocked
for beams with ν > νmax.

5. Collisional dynamics
In the present section we analyse numerically, the propagation of a

light condensates through a bulk cubic-quintic nonlinear optical mate-
rial in the presence of boundary conditions and localized inhomogeneities
(holes). The propagation equation for the above waveguide in the parax-
ial regime is a generalized NLSE, including the effect of boundaries or
holes. The experimental parameters are in the same range as in the
previous sections.

Our computer simulations show that there is a deep analogy between
incompressible fluid dynamics and interference behavior of light conden-
sates at boundaries and localized discontinuities. This can be understood
thinking of light condensates as having some kind of “surface tension”,
analogous to that of a liquid droplet. Considering that diffraction in
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Figure 4. Sketch of the numerical simulation of Fig. 5, showing total reflection at
a nonlinear-linear interface.

the NLSE plays the role of a kinetic energy term, a Kerr-like material
can be regarded as a “cold medium” that tends to compress the photon
gas (i.e.: beam self-focusing). From this point of view, when collapse
is stopped due to quintic defocusing terms, the situation is similar to
droplet condensation due to Van der Vaals forces.

As in the case of liquids, one can expect surface tension properties
from the resulting light condensates. To show this, we present two par-
ticular cases from our numerical investigation. Both simulations corre-
spond to a radial stationary fundamental state of the propagation equa-
tion. The beam is 25µm width and its peak intensity is 2.0GW/cm2.
The numerical simulations has been performed with standard Fourier
beam propagation method in a 1024 points grid. In Fig. 4, we show a
sketch of the numerical calculations of Fig. 5, where we have simulated
internal reflection inside a bulk cubic-quintic material surrounded by air.
The interference pattern when the beam reaches the boundary, clearly
resembles crushing of a liquid drop thrown towards a solid wall which
splits into smaller droplets. We have performed large series of numerical
explorations for different angles of incidence, from quasi-elastic to com-
plete inelastic range. Showing that surface tension effect provides the
beam a high stability.

In Fig. 6 we have plotted a collision with a 8µm air hole immersed in
the bulk nonlinear material. The role of the surface tension is evident:
the beam is strangulated when it intersects the hole. However, it recov-
ers its original form if the angle of incidence is below a critical value.
Both simulations show that light condensates behave against collisonal
perturbations in a similar fashion as liquids. The raising of surface
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Figure 5. Numerical simulation corresponding to the sketch of 4. Left: grascale
images of the transverse xy plane for a) z = −10, b) z = 0, c) z = 10, e) z = 20 and
f) z = 40 (in µm). Right: Maximum intensity profiles along the x axis corresponding
to the left images. The scale of the x axis is the same in all the pictures.
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Figure 6. The same as Fig.5 for total reflection at an 8µm air hole.

tension properties can be qualitatively explained as a balance between
the radiation pressure inside and outside the beam. Inside the beam,
the refractive index is greater than outside, due to the nonlinear effects.
However, a detailed understanding of the phenomenon should start from
a thermodynamical point of view, defining quantitative concepts as the
temperature and entropy of the beams for a given nonlinearity. This is
a deep problem that we address to further research.

6. Pulsed Beams
If the beam is pulsed, time must be included in the simulations. Thus,

an extra second derivative with respect to “proper time” should be added
to Eq. (2) in order to take into account the effect of second-order dis-
persion. The corresponding NLSE, becomes 1+3 dimensional, and extra
difficulties are added to the numerical simulations. Not only the increase
in the length of the calculations is an inconvenient but also the repre-
sentation of the data obtained. The need for analytical tools as the
variational model is more evident in this case.
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Figure 7. Numerical simulation of the collision of a light drop against a planar
boundary (not visible in the graphs). The values of z in each picture are the distances
from the center of the pulse to the origin of coordinates. The paper plane is xy and
z is perpendicular to the paper plane. The experimental parameters are given in the
text.

Thus, taking into account the data obtained for the 2-dimensional case
of laser beams, we will analyze the properties of pulsed beams, which
propagate in cubic-quintic materials, corresponding to the same material
parameters of Fig. 5. The result is plotted in Fig. 7, where it can be
seen that the effect of the planar boundary between the non-linear and
the linear material (not shown in the captions) is to generate a corona
of droplets in a similar fashion as it happens in the crushing of a liquid
drop. In fact, the dominant effect in the generation of smaller pulses at
the boundary is modulational instability[8, 20] around the rings formed
by diffraction.

We must notice the deep connection of this case with the dynamics of
Bose-Einstein Condensates (BEC) in alkalii gases. In fact, the collective
dynamics of a BEC in the absence of a trapping potential, is given by a
NLSE. If three-body elastic interactions are present, the equation for the
coherent cloud includes a quintic nonlinear term as in Eq. (2). Thus, it
is evident that similar behaviour as shown in Fig. 7 could be expected
for BECs with the adequate experimental configuration. In fact, the
possibility of gas-liquid phase transitions in Bose Eintein condensates
has been recently put forward by several authors[21].
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7. Light whirlpools
In wave mechanics, a vortex is a screw phase dislocation, or defect

[22] where the amplitude of the field vanishes. The phase around the
singularity has an integer number of windings, l, which plays the role of
an angular momentum. For fields with non-vanishing boundary condi-
tions, this number is a conserved quantity and governs the interactions
between vortices as if they were endowed with electrostatic charges [23].
Thus, l is usually called the “topological charge” of the defect.

Vortices are present in very different branches of physics like fluid
mechanics, superconductivity, Bose-Einstein condensation, astrophysics
or laser dynamics, among others [24]. In optics, a vortex with charge
l takes the form of a black spot surrounded by a light distribution.
Around the dark hole, the phase varies from zero to 2lπ. This defects
appear spontaneously in light propagation through turbulent media and
can also be produced by appropriately shining a computer generated
hologram [25, 26]. The trace of vortices in a light field is a characteris-
tic “fork-pattern” interferogram produced by superposition with a tilted
planar wave. The first experimental works on optical wavefront dislo-
cations were carried out in the 80’s, in the context of adaptive systems,
where phase singularities were a severe problem for image reconstruc-
tion techniques [27, 28]. Since then, they have been studied, among
other fields, in optical tweezing [29], particle trapping [30], laser cavi-
ties [31], optical interconnectors [32] or even to perform N-bit quantum
computers [33].

Concerning light vortices in the nonlinear regime [34], the first theo-
retical works analysed their stability in Gaussian-like distributions prop-
agating in optical Kerr materials [35]. It was found for a cubic self-
focusing refractive index, that a beam of finite size will always filament
under the action of a phase dislocation. This also stands for saturable
self-focusing nonlinearities. On the other hand, vortex states were pre-
dicted and found experimentally for self-defocussing materials both in
the Kerr case for continuous background [37] and in the saturable case
with finite size beams [39].

It was shown in [15, 38] that stable vortex states with l = 1 can
be obtained as stationary states of the propagation of a laser beam
through cubic-quintic optical materials[9]. This kind of nonlinearity is
characterized by the χ(3) > 0 and χ(5) < 0 components of the nonlinear
optical susceptibility and changes from self-focusing to self-defocussing
at a given intensity[40]. It has been recently shown that a gas-liquid
phase transition takes place in light beams propagating in this type of
materials[41].
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In the next sections we will show that stable vortex states with arbi-
trary value of the angular momentum exist and its peak amplitude and
propagation constant tend asymptotically to values that do not depend
on l as the beam flux is increased.

8. Azimuthal eigenstates
For Eq. (2) we have calculated the azimuthal stationary states of the

form: Ψ(r, θ, z) = ψ(r)ei(βz+lθ). The quantity β is the nonlinear phase
shift or propagation constant. For a given integer value of l, a continuum
of eigenstates can be obtained with β varying between zero and a critical
value βcr over which no stationary states can be found[15]. The profiles
of the eigenstates for several values of l and β are plotted in Fig. 8. We
particularly show states with l = 3 and l = 4 since these are the first
values of l for which all the eigenstates were previously found unstable,
as well as two examples of huge angular momentum states (l = 10 and
l = 50). It can be appreciated in the graphs that values of β below
0.5βcr yield to light distributions with smooth and wide Gaussian-like
shapes. As β is incremented, the beam flux grows and the spatial profiles
narrow, yielding to a minimum thickness of the ring of the stationary
state, for values of β around 0.8βcr keeping approximately the Gaussian
shape. For larger values of β, the beam flux grows rapidly with β and
the peak amplitude of the light distribution saturates due to the effect
of n4, reaching asymptotically the value Acr, which is slightly below
the maximum amplitude. Thus, high power beams show spatial light
distributions with flatted tops in their profiles, similar to those of hyper-
Gaussian functions[17] as in the case of nodeless beams.

It also worths to mention that the central hole increases its size with
the topological charge, as it can be seen comparing the profiles for l = 3, 4
with l = 10, 50. However, as the value of β approaches a critical value,
the thickness of the external ring grows faster than the internal hole and
thus, the final result takes always the asymptotic form of a dark spot
surrounded by a larger ring of light of almost constant shape which ends
abruptly at a given radius. Close to the origin the profiles follow the
linear regime with ψ ∝ rl.

Another intriguing fact is that both βcr and Acr do not depend on
the value of the topological charge. This is shown in Fig. 9, where the
peak value of the intensity has been plotted as a function of β. As it can
be appreciated, whatever the value of l all the curves join at the same
point. In the inset, it can be seen a detail of the critical zone. This
means that the critical value of the propagation constant only depends
on the nonlinearity and not on the value of l. Thus, we can deduce
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Figure 8. Numerically calculated radial amplitude profiles of the stationary az-
imuthal states of Eq. (2) for l = 3, 4, 10 and 50 with β/βcr=0.1, 0.5, 0.9 and 0.99.
We have used a relaxation method and a normalised equation with n2 = n4 = k = 1,
n0 = 1/2.
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momenta l=0, 1, 2, 3, 10 and 50. All the curves join at the point A = Acr = 0.866,
β = βcr = 0.1875. Inset: detail of the zone close to βcr where the calculations become
delicate. The normalisation is the same as in Fig. 8.

that spinning solitons are composite objects: one part is the top-flatted
background and the other is the vortex core.

To explain the properties of the above light distributions, we have
performed a variational analysis[17] by means of the square-like trial
function:

Ψv(r, θ, z) = ψv(r) exp[i(βz + lθ)],

where |ψv|2 takes the constant value |A|2 inside the interval [(r0 −w/2),
(r0+w/2)], and zero elsewhere, being w the mean radius of the light ring.
As it can be appreciated by comparison with Fig. (8), this square-shaped
function is very adequate for the region close to βcr, where the profiles of
the stationary states become almost square. Using this trial function and
performing the usual average[42] over the lagrangian density associated
to Eq.(2), the following relationships are obtained[15]:

β = k
(n2

2
|A|2 − n4

3
|A|4

)
; (8)
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[
β − k

(
n2|A|2 − n4|A|4)] =

l2

kn0

(
w2

6
+ 2r2

0

)−1

, (9)

and thus, in the limit w, r0 → ∞ the last term of the above equation
vanishes and it is obtained the critial value of the amplitude Acr:

|Acr|2 =
3
4

n2

n4
, (10)

corresponding to β = βcr = 3kn2
2/16n4. The comparison of these analyt-

ical results with the numerical calculations shows an excellent agreement.
Taking the normalised form of Eq. (2), making n2 = n4 = k = 1 and
n0 = 1/2, it is obtained that βcr = 0.1875 and Acr = 0.866, which are
exactly the values obtained numerically, as it can be seen in the inset
of Fig. (9). This good result is due to the choice of the trial function,
which fits very accurately with the exact numerical solution for values
close to the critical point.

9. Stability analysis of the azimuthal eigenstates
In order to test the stability of the stationary states, we calculated

the growth rates of small azimuthal perturbations to find out the value
of β at which they vanish. Additionally, in order to asses the accuracy of
the previous analysis, we propagated some eigenstates with a split-step
Fourier method and measured the distances at which the unstable states
split. The inverse of these values should coincide, except for a constant
scale factor, with the dominant perturbation eigenvalues calculated in
the azimuthal instability analysis. Finally, we have also simulated other
kind of perturbations like total reflection at the boundary between a
cubic-quintic material and air. As we will see below, the eigenstates
show robust behaviour against these collisions and preserve their angular
momentum although strong oscillations are observed.

To carry out the perturbation analysis we add to the original eigen-
state a small p-order azimuthal perturbation function[43]:

Ψ(r, θ, z) = [ψ(r) + f(r)eδpz+ipθ + h(r)eδ∗pz−ipθ]ei(lθ+βz), (11)

where f(r) = f1(r) + if2(r) and h(r) = h1(r) + ih2(r) are the complex
components of the eigenstate of the p-order azimuthal perturbation and
δp is the corresponding perturbation eigenvalue. In this way, the real
part of δp constitutes the growth rate of this perturbation. Substitution
of this perturbed eigenstate in Eq. (2) leads to the following set of
coupled differential equations:
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Figure 10. Growth rate of the azimuthal perturbation vs β. In (a) and (b), the
angular momentun is fixed (l=3 for (a), l =4 for (b)) and the values of the pertur-
bation order p are indicated by labels near the curves. In (c) the growth rate for the
perturbations with p=2 for l=1, 2, 3, 4, 10 and 50 are plotted. In (d), a comparison
between the inverse of the splitting distance (dots) and p = 2 perturbation eigenvalue
for unstable states with l = 3 is shown.

iδpf + ∇2
rrf − (l + p)2

r2
f + Q(ψ)f + R(ψ)h∗ = 0 (12a)

iδph + ∇2
rrh − (l − p)2

r2
h + Q(ψ)h + R(ψ)f∗ = 0, (12b)

where ∇2
rr ≡ ∂2/∂r2 + (1/r)∂/∂r, Q(ψ) ≡ −β + (2 − 3|ψ|2)|ψ|2 and

R(ψ) ≡ (1 − 2|ψ|2)|ψ|2. The solution of this equation system using a
Crank-Nicolson propagation scheme [43] yields to the growth rates for
different order perturbations versus propagation constant.

The results are illustrated in Fig. (10). Figs. 10(a)-(b) show the
growth rates for vortices with angular momentum l = 3 and l = 4. The
maximum growth rate corresponds to perturbation eigenvalues with p ≈
2l, while perturbation l = 2 has been proved to be the most persistent
(the one which remains till highest values of β before vanishing) despite
the value of the angular momentum. Hence, in Fig. 10(c) we plot the
curve associated to this perturbation for different values of the angular
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Figure 11. Numerical simulation of the total reflection at a planar boundary of
an eigenstate with angular momentum l =4 and β = 0.95βcr. The top image is the
isosurface of the beam trayectory. The boundary between the nonlinear material and
air is the plane y = 0. The images (a)-(c) correspond to intensity profiles of the beam
cross section at different points.

momentum, including such high momentum cases as l = 10 and l = 50.
As it is appreciated in these plots, there exists a window between the
vanishing point and the limit value for β (β = βcr) which proves the
existence of a stability zone close to the critical point. This window
narrows for high values of l but it remains finite. As l increases, the point
at which the perturbation vanishes tends asymptotically to a value below
the critical point. Therefore, whatever the value of l, there always exist
a stability window containing an infinite number of stable eigenstates.

We have to stress that close to βcr the azimuthal analysis turns it-
self very delicate and it has to be carried out in a careful way. In fact,
convergence takes a much longer distance and an erroneous final result
is obtained if the number of samples and the propagation step are not
chosen appropriately. In this sense, combining the analysis with direct
calculations of the splitting distance of the unstable eigenstates is defini-
tively useful. In Fig. 10(d) it is zoomed the region of 10(c) where the
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perturbation for l = 3 drops to zero. They are also plotted the points
obtained propagating the eigenstates and taking the inverse of the dis-
tance where they split. These values were subsequently scaled by the
same constant value to compare with the perturbation eigenvalue curve.
It is appreciated that the values obtained from this propagation experi-
ments fall to zero with the same slope as the perturbation eigenvalues do.
When the stability analysis is not perform with enough accuracy a more
steady behaviour of the curve appears, so that the eigenvalue falls to
zero at a higher value of β. In this way, the validity of the perturbation
analysis can be assessed.

As a final test of the stability of the eigenstates, we have simulated the
total reflection at a planar boundary between a cubic-quintic material
and air of beams with different angular momenta as it was done in section
5. For the simulation we have used a split-step Fourier method with a
512 × 512grid.

As it can be seen in Fig. 11, a beam with l = 4 does not split after
the total reflection, although a strong oscillation is observed. This is
another proof of the stability of these nonlinear waves. We must notice
that depending on the incidence angle, a strong deformation of the beam
can be induced, which can yield to a split or a decay of the inner vortex
into several defects with lower charges.

10. Vortices in pulsed beams
Light whirpools can be induced in pulsed beams as well as in the con-

tinuous beams that we have previously studied. From the experimental
point of view, it is more interesting to study the possibility of exciting
these azimuthal beams starting with pulsed gaussian distributions under
adequate conditions.

In Fig.12 we show the numerical simulation of the time evolution of
two different light distributions propagating through an optical material
with n0 = 1.8, n2 = 2 ·10−4cm2/GW and n4 = 0.8 ·10−3cm4/GW 2. The
top-left image a) shows an initial condition consisting on three pulses
(i.e.: light droplets) of 100µm diameter with λ = 1.964nm and I =
1.6GW/cm2 that are located at the vertices of a equilateral triangle.
The beams are 2π/3 out of phase. With this initial condition it can
be seen that the pulses coalesce into a spiral structure b) which finally
yields to the asymptotic rotating state c) with a nested vortex with
topological charge l = 1. The second series of images d) to f) show the
direct excitation inside a light droplet of a doubly-charged vortex, with
two windings of the phase around the central hole. The experimental
parameters are the same as in the previous case, despite the beam width
is now 30µm and I = 1.4GW . The images have been rescaled for a better
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Figure 12. Top: the image a) shows an initial condition consisting on three pulses
of 100µm diameter with λ = 1.964nm located at the vertices of a equilateral triangle.
The beams are 2π/3 out of phase. The pulses coalesce into a spiral structure b) which
finally yields to the asymptotic rotating state c) with a nested vortex with topological
charge l = 1. Bottom: Evolution of the initial state d) consisting of a gaussian beam
which is launched to a holographic phase mask with l = 2. After strong oscillations
and formation of characteristic surface ripples in e), the beam tends to an asymptotic
state with a nested “breathing hole” with topological charge l = 2, which is stable over
many diffractive lengths. In both examples the material parameters and intensities
are the same as for the continuous case.

ilustration. The azimuthal phase can be experimentally implemented
with an adequate phase mask. As it can be seen, after strong oscillations
and formation of characteristic surface ripples in e), the beam tends to an
asymptotic state with a nested “breathing hole” with topological charge
l = 2, which is stable over many diffractive lengths.

11. Conclusions
We have described the phenomenon of light condensation in nonlinear

optical materials with cubic-quintic (C-Q) nonlinearity. To support the
analogy between light condensates and quantum liquids, we have tested
the surface tension properties of “light streams” and “light drops” by
simulating collisions against planar boundaries and localized inhomo-
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geneities. We have also shown the existence of a new kind of physical
objects: stable azimuthal finite-size beams with arbitrary (integer) an-
gular momentum that can exist in C-Q nonlinear optical materials. The
shapes of these beams tend asymptotically to square-like ring profiles
with bigger dark holes for higher values of the angular momentum. The
critical values of the propagation constant and amplitude do not depend
on the angular momentum of the beam. We have also studied the exci-
tation of vortex states in this kind of nonlinear optical materials starting
from gaussian beams with an adequate phase distribution. Our predic-
tions open interesting questions about the nature and properties of what
we have named “liquid light”: a new state of matter-energy formed by
nonlinear waves.
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OPTICAL PULSE EVOLUTION TOWARD
LIGHT BULLET AND VORTEX
SOLUTION

Vladimir Skarka, Najdan B. Aleksic, and Vazha I. Berezhiani
Laboratoire POMA, UMR 6136 CNRS Universite d’Angers, 49045 Angers, France

Abstract The dynamics of a laser pulse, either with or without phase singularity
in media with cubic-quintic nonlinearity, is studied. The stability and
the robustness of light bullets predicted by variational approach are con-
firmed by numerical simulations. Singular beam reaching equilibrium
with the power larger than the breaking one, becomes vortex soliton,
otherwise it breaks into two filaments running away tangentially. Far
from equilibrium pulses with large width may, due to the modulation
instability, break into many filaments coalescing and splitting subse-
quently.

1. Introduction
There is a growing interest for spatiotemporal solitons, characterized

by a balance of diffraction and dispersion with respectively nonlinear spa-
tial and temporal self-focusing. Due to their exceptional robustness and
their low energy, spatiotemporal solitons, so-called light bullets, appear
to be an excellent candidate for carrying the information that has to be
treated in all-optical logic circuits. The dynamics of such localized struc-
tures is governed by a (D + 1)-dimensional nonlinear Schrödinger equa-
tion (NSE). It turns out that these solitons are unstable for cubic nonlin-
earity in case of higher transverse dimensions (D = 2, 3). However, NSE
with the nonlinearity saturation admits multi-dimensional (D = 2, 3)
soliton solutions that are stable for infinitely small perturbations [1].
Only recently it was shown numerically that under well defined condi-
tions the multidimensional solitons are stable even for large perturba-
tions; their dynamics resemble the ones of soliton solutions in integrable
systems [2, 3]. Taking into account that some of materials currently
used in optical systems exhibit weak saturation effects, their nonlinear-
ity can be approximated with good accuracy by cubic-quintic model.
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Recent measurements show that the polydiacetylene para-toluene sul-
fonate (PTS) exhibits such a saturating nonlinearity with large nonlin-
ear index of refraction [4]. This kind of nonlinearity has been widely
applied in different domains of research not only in nonlinear optics but
also in plasma physics as well as in the context of Bose super-fluid [5].
Recently an important development has occurred in the field of nonlin-
ear optics concerning optical vortex solitons (OVS) [6]. These solitons
in self-defocusing media are stationary beam structures with phase sin-
gularity and nonzero angular momentum proportional to an integer m
defined as topological charge. An OVS is a dark spot, i.e., a zero in-
tensity center surrounded by a bright infinite background. Self-focusing
media support localized optical vortex solitons (LOVS) with phase dis-
location surrounded by one or many bright rings. LOVS are unstable
against symmetry breaking perturbations that lead to the breakup of
rings into stable filaments [7]. Recently, we demonstrated the possibility
to generate both LOVS and OVS in media with cubic-quintic nonlinear-
ity [8, 9].

We will study analytically and numerically the light bullets either with
or without a topological charge as well as self-trapped singular beams in
saturating nonlinear media.

2. Variational Approach
We will study analytically and numerically the light bullets either with

or without a topological charge as well as self-trapped singular beams in
saturating nonlinear media.

The evolution of vortices in nonlinear materials is described by a
(3+1)-dimensional nonlinear Schrödinger equation (NSE)

2ik

(
∂E

∂z
+

1
vg

∂E

∂t

)
+ ∆⊥E − kD

∂2E

∂t2
+ 2k2 δn(|E|2)

n0
E = 0, (1)

where E is a slowly varying field envelope, vg is the group velocity of
the pulse propagating along the z axis, n0 is the linear optical index,
∆⊥ = ∂2/∂x2 + ∂2/∂y2 is the two-dimensional Laplacian describing
beam diffraction, k is wave vector and D = d2k/dω2 is group velocity
dispersion (GVD). In order to prevent the wave collapse the saturating
nonlinearity is required. The nonlinear index of refraction (NIR) δn(|E|2)
corresponding for instance to PTS is established to be δn = n2I + n4I

2,
where I = n0c|E|2/4π is the intensity of the electromagnetic radiation.
For the λ = 1.6µm laser radiation the measured values of second and
fourth-order optical indices are respectively n2 = 2.2 × 10−3cm2/GW
and n4 = −0.8 × 10−3cm4/GW 2 [4]. The dimensionless form of Eq. (1)
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reads

i
∂E

∂z
+ ∆⊥E + s

∂2E

∂t2
+ (|E|2 − |E|4)E = 0. (2)

The field envelope E is E redefined according to the cubic-quintic non-
linearity under consideration, and s = ±1 corresponds respectively to
the anomalous and normal GVD. For s = 0, the NSE reduces to a
(2 + 1)-dimensional equation.

General dynamical properties of nonstationary solutions of Eq. (2)
are rather complex and numerical simulations are required. Variational
approach can serve as a guideline for simulations. In order to study the
beam dynamics governed by NSE we first generalize the corresponding
variational method for multi-dimensional (D = 2, 3) saturating nonlin-
earitys with arbitrary topological charge m. In the case of cylindri-
cally symmetric pulses, the following Lagrangian density is associated
to Eq.(2)

L = r
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where the radius r = (x2 + y2)1/2. In the optimization procedure a
Gaussian trial functions is chosen

E = A1r
m exp

[
− r2

2R2
− t2

2T 2
+ i

(
r2b + t2c + mθ + φ

)]
(4)

with constant A1(z), beam width R(z) and temporal width T (z), wave
front curvature b(z) and the “temporal curvature” corresponding to the
chirp c(z), an integer m known as the topological charge of optical vor-
tex and phase φ(z) as parameters to optimize variational functional.
Substituting trial function into Eq. (3) and integrating over r and t,
the average Lagrangian is obtained. It depends only on optimizing z-
dependent parameters of this trial function. The condition that the
variation of average Lagrangian with respect to each of these parame-
ters is zero, gives corresponding Euler-Lagrange equations [10, 11]. The
equations for effective forces following respectively R and T “directions”
are
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dz2
= FR = − ∂

∂R
V (R, T ) and s

d2T
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V (R, T )

(5)
where V is the effective potential

V (R, T ) =
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Figure 1. a. Equilibrium energy b. Equilibrium power

with α1 = (2m)!
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. The “energy”, N =

αA2
mR2T is conserved during the pulse evolution
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The wave front curvature is given by the equation b = (1/4R)dR/dz,
while the chirp parameter is c = s(1/4T )dT/dz. The equilibrium “en-
ergy” as a function of the amplitude is expressed as

N = (m + 1) (αα1)A−1
m

(
1 − 2αα2 (α1)

−1 A2
m

)− 3
2
. (7)

In the case of the nonsingular light bullet (m = 0) the equilibrium curve
e is given in Fig. 1.a. For the power larger than the critical one Nc,
following variational approach, the pulse is trapped inside the trapping
curve t (dotted line in Fig. 1.a) and it oscillates around its stable equi-
librium e, as the numerical simulations confirm [3, 10]. Light bullets
are generated on the exact equilibrium curve n in Fig. 1.a obtained
numerically.

3. Filamentation
An input pulse near the equilibrium undergoes damped oscillations

around this curve before becoming light bullet; its “energy” N decreases
due to radiative losses. A light bullet is an exceptionally robust pulse
resisting to all perturbations. However, very far from equilibrium, a
large input pulse (with a small amplitude) even thought in the trapping
region may be subject of modulation instability. For instance, a pulse
with amplitude Am = 0.4 and ”energy” N = 3545 will first break into
three cells in temporal domain, than the central cells breaks into two
filaments in spatial domain, in order to merge back to the initial cell
which finally disappears living only other two cells in temporal domain
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Figure 2. Filaments for N=3545 and Am=0.4

(see Fig. 2). In the normal group velocity dispersion media (s = −1),
a laser pulses will never become a light bullets, i.e., a stable completely
confined soliton. Since diffraction and dispersion operators are of oppo-
site sign, the laser pulse evolution results from the competition between
two main tendencies, the pulse compression in the transverse spatial di-
rection either R (the self focusing) and the pulse stretching along the
time axis T (the depression). In media with cubic-quintic nonlinearity
that above a critical intensity changes the sign from the positive to the
negative one, the supercritical pulse near its peak value undergoes tem-
poral wave collapse while self defocusing, contrary to the behavior for
subcritical intensities. However, following our numerical simulations, a
catastrophic temporal blow-up is arrested by spatial splitting of pulse
into smaller cells [11].

4. Beams carrying phase singularity
Let us consider now the nonlinear dynamics and stability of laser

beams carrying phase singularity (m > 0) in media with cubic-quintic
nonlinearity. Although PTS is self-focusing medium (dδn/dI > 0), at
higher intensity, I > 0.5I0, it can exhibit features of defocusing media
since NIR have a negative slope (dδn/dI < 0). For the peak inten-
sity Im > 0.5I0 the NIR becomes defocusing at the peak while remains
focusing at the wings of the laser beam intensity profile. The NSE ad-
mits both LOVS and OVS solutions. The switching from LOVS to OVS
and vice versa may be used in information processing. Numerical sim-
ulations confirm the stability of such a novel kind of OVS. LOVS are
stable to azimuthal perturbations only above breaking power NB = 160
on the equilibrium curve e in Fig. 1.b obtained from Eq. (7) when
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Figure 3. Filamentation for N=300 and Am=0.1

s = 0. This curve nearly coincides with the numerical curve n. Below
this power the vortex soliton breaks into two stable bright solitons flying
off tangentially to the initial ring conserving total angular momentum
|M | = |m|N [8, 9].

In realistic experimental conditions a singular Gaussian input beam is
usually generated far from equilibrium, i.e., it differs substantially from
the stationary vortex soliton. Even far from equilibrium (for instance,
Am = 0.5) input beam power well above the breaking one (NB) decreases
due to radiative losses but will remain above the breaking one. However,
a new phenomenon occurs, the beam first breaks into four filaments
coalescing subsequently into a ring. For the input amplitude Am =
0.4 at the same power, after resisting to the first splitting into four
filaments, the beam finally breaks into two, since the power drops below
NB. An input beam with large width R and therefore, small amplitude
(for instance, Am = 0.1) may be subject of the modulation instability
that usually leads to the beam breaking in multiple filaments (twelve in
Fig. 3).

5. Conclusions
The stability and the robustness of light bullets in media with cubic-

quintic nonlinearity, predicted by variational approach are confirmed
by numerical simulations. The vortex structure of the laser beam con-
tributes in general, if not to suppress the filamentation generated far
from equilibrium, at least to distribute filaments symmetrically around
the singularity in order to conserve the angular momentum.
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THE DESCRIPTION OF EXTREMELY
SHORT PULSES IN NON-RESONANT
MEDIA IN FRAME OF
MAXWELL-DUFFING-TYPE MODELS

Elena V. Kazantseva
Department of Solid State Physics, Moscow Engineering Physics Institute,
Kashirskoe sh. 31, Moscow, 115409 Russia

Abstract The propagation of extremely short pulses of electromagnetic field (elec-
tromagnetic spikes) is considered in the framework of a model where
the material medium is represented by anharmonic oscillators with cu-
bic nonlinearities (Duffing model) and waves can propagate in both
directions. The system of total Maxwell-Duffing equations admits two
families of exact analytical solutions in the form of solitary waves. The
single-cycle electromagnetic pulse propagation in a medium whose dis-
persion and nonlinear properties are described by the cubic-quintic Duff-
ing model (oscillator with third- and fifth-order anharmonicity). A sys-
tem of equations governing the evolution of a unidirectional electro-
magnetic wave is analyzed without using the approximation of slowly
varying envelopes. Three types of solutions of this system describing
stationary propagation of a pulse in such a medium are found. When
the signs of the anharmonicity constants are different, the amplitude of
a steady-state pulse is limited, but its energy may grow on account of
an increase in its duration.

Keywords: extremely short pulses, anharmonic oscillators, Duffing model, steady
state pulse, soliton.

1. Introduction
Ultra short nonlinear pulses of an electromagnetic field, which contain

as few as one half optical cycle, have recently attracted a great deal of
attention [1]-[5]. The description of the evolution of the electromagnetic
field was based on Maxwell equations or the subsequent wave equation.
To describe a medium where electromagnetic waves propagate, one fre-
quently use an ensemble of oscillators. If the oscillators are linear we
obtain the important Lorentz model, which has been very useful to de-
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scribe the propagation of an electromagnetic wave in a linear medium.
The simplest generalization of the Lorentz model is obtained by adding
an anharmonic term to the equation of the oscillator. This leads to
the Duffing model in the case of a cubic nonlinearity [6, 7, 8]. In the
framework of the Duffing model it was shown that solitary pulses of
a unidirectional electromagnetic field (”electromagnetic bubbles”) hav-
ing an amplitude comparable to the atomic field and a duration down to
∼ 10−16 s may be expected. These bubbles propagate without dispersion
as stable solitary waves. Very short pulses of this kind will be referred
to as extremely short pulses (ESP). An objective of the present work
is to study the propagation of linearly polarized ESPs in a nonlinear
dispersive medium modeled by an anharmonic oscillator characterized
by the cubic nonlinearities. The evolution of the electric field of ESP
will be considered on the base of the Maxwell equations without any
unidirectional reduction.

In recent years, much attention has been paid to study of propagation
of electromagnetic pulses or beams in media with saturable nonlinearity
[9] -[13] and, in particular, media characterized by third- and fifth-order
nonlinear susceptibilities with opposite signs [14]- [18]. In the quasi-
harmonic approximation, the complex envelope of the pulse will obey
the nonlinear Schrödinger equation with third- and fifth-order nonlin-
ear terms. According to conventional terminology, this equation may
be called the CQ NSE (cubic-quintic nonlinear Schrödinger equation).
On the basis of the Duffing model with cubic nonlinearity, we may sug-
gest that ultimately short electromagnetic pulses in media of this type
should be described, in the nonlinear Lorentz model with allowance for
the next anharmonic correction. Then, we can obtain the generaliza-
tion, which take into account the fifth-order anharmonicity. Calculation
of the nonlinear susceptibility for this oscillator gives rise to polariza-
tion proportional to the third and fifth powers of the amplitude of the
electric field strength of the harmonic wave. The subsequent considera-
tion of the second-order group-velocity dispersion leads to the CQ NSE.
The oscillator with third- and fifth-order nonlinearities will be called the
fifth-order Duffing oscillator or, for brevity, the CQ Duffing oscillator. In
this paper, we consider the propagation of USPs in a rarefied medium,
when only waves propagating in one direction can be taken into account
and the medium is described by an ensemble of identical CQ Duffing
oscillators. Contrary to the original Duffing model, in the case under
study, a new type of solitary wave arises. This wave resembles the lim-
iting soliton of the Gardner equation [18] and will be referred to as an
electromagnetic domain. Such an electromagnetic pulse may occur when
the signs of the third- and fifth-order anharmonicity coefficients differ.
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2. Constitutive model
The propagation of an extremely short electromagnetic pulse in a

nonlinear dispersive medium is described by the total Maxwell wave
equation and some model for the medium. Let us consider the standard
Lagrangian density for an electromagnetic field taking into account the
interaction with an ensemble of nonlinear oscillators:

L =
1

2c2
A2

,t −
1
2
A2

,z + 4π
∑

a

{
1
2
mX2

a,t −
1
2
mX2

a − 1
4
κ3aX

4
a − e∗

c
AXa,t

}
(1)

Here a plane electromagnetic wave is considered, it propagate along
the z-axis and represented by the vector potential A. An anharmonic
oscillators model (Duffing-type model) is used to reproduce the elec-
tronic response of an atom located at the spatial point indicated by the
symbol a. The electrons are considered as particles in a potential well
characterized by the displacements from their equilibrium position Xa.
They oscillate with their own frequencies ωa and are influenced by the
electromagnetic field. In expression (1) e∗ is the electric charge of the
electron and κ3a are anharmonicity coefficients. Hereafter, the symbol
m is define the effective mass, which accounts for the local Lorentz field
effect. The partial derivatives are denoted as ∂f/∂t = f,t, ∂f/∂z = f,z

and so on.
The application of the variational procedure to the action related with

the Lagrangian density (1) yields equations

A,zz − c−2A,tt = (4πe∗/c)
∑

a

Xa,t,

mXa,tt + mω2
aXa + κ3aX

3
a = (e∗/c)A,t

If one introduces the strength of the electric field E = c−1A,t, then the
constituent equations of the model under consideration can be written
as

E,zz − c−2E,tt = (4π/c2)P,tt (2)

Xa,tt + ω2
aXa + (κ3a/m)X3

a = (e∗/m)E (3)

The polarization P of the nonlinear medium is P =
∑

a e∗Xa .
Let us consider the case of a homogeneous broadening medium where

all atoms have the same parameters, in particular ωa = ω0. Then we
can write the polarization as P = nAe∗X, where nA is the density of the
oscillators (atoms), and the index of the atom can be omitted.
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We rescale the variables and fields as ζ = zω0/c, τ = ω0t and e =
E/E0, q = X/X0, where

E0 = mω2
0X0/e∗ = mω3

0e
−1
∗ (2µ/|κ3|)1/2, X0 = (2µmω2

0/|κ3|)1/2,

and we will also use the following parameters 2µ = κ3X
2
0/mω2

0, γ =
ωp/ω0, where ωp = (4πnAe2∗/m)1/2 is the plasma frequency. In terms of
the rescaled variables equations (2) and (3) take the form

e,ζζ − e,ττ = γq,ττ , q,ττ + q + 2µq3 = γe. (4)

These equations will be named the total Maxwell-Duffing equations (or
TMD-equations).

Note that the system of equations (4) can be rewritten in alternative
form by introducing the new auxiliary field variable b by the relation
∂e/∂ζ = ∂b/∂τ . In this case the TMD-equations take the following
form:

e,ζ = b,τ , b,ζ = e,τ + γp , q,τ = p , p,τ + q + 2µq3 = γe. (5)

It should be noted that the system of equations (4) can be derived as
the Euler-Lagrange equations from the action functional

S =
∫

L[q, a]dτdζ,

where now the new Lagrangian density is

L =
1
2

(
∂a

∂ζ

)2

− 1
2

(
∂a

∂τ

)2

− 1
2

(
∂q

∂τ

)2

+
1
2
q2 +

µ

2
q4 − γq

∂a

∂τ
. (6)

Applying the variational procedure to the action S yields equations

∂2a

∂ζ2
− ∂2a

∂τ2
= γ

∂q

∂τ
,

∂2q

∂τ2
+ q + 2µq3 = γ

∂a

∂τ
(7)

Identifying a as a potential for the field e, so that e = a,τ , makes these
equations identical to Eqs. (4).

From the Lagrangian density (6) we can get the density of moments
of the fields a and q:

πa(ζ, τ) =
∂L

∂a,ζ
= a,ζ(ζ, τ) = b(ζ, τ) , πq(ζ, τ) =

∂L

∂q,ζ
= 0. (8)

The second expression in (8) indicates that we have a degenerate La-
grangian, which leads to a constrained Hamiltonian system (πq(ζ, τ) = 0
is a primary constraint) [19, 20].
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Now one can get a canonical Hamiltonian density using the Legendre
transform

H = a,ζ
∂L

∂a,ζ
− L =

1
2
(
a2

,ζ + a2
,τ + q2

,τ − q2 − µq4 + 2γqa,τ

)
. (9)

The integration of this expression with respect to τ leads to the canonical
Hamiltonian which is an integral of motion

H =
1
2

∞∫
−∞

(
e2 + b2 + q2

,τ − q2 − µq4 + 2γqe
)
dτ. (10)

It is worth noting that there are two additional integrals of motion,
which follow from the TMD-equations (5):

I1 =

∞∫
−∞

e(ζ, τ)dτ =

∞∫
−∞

a,τ(ζ, τ)dτ = a(ζ, τ = ∞) − a(ζ, τ = −∞),

(11)
and

I2 =

∞∫
−∞

b(ζ, τ)dτ =

∞∫
−∞

πa(ζ, τ)dτ . (12)

The magnitude of the first integral is defined by the boundary conditions
only so that it can be interpreted as a topological charge in the Maxwell-
Duffing model. The second integral is the canonical moment in this
model.

2.1 Steady state solutions
Let us look for solutions of the TMD-equations as traveling waves with

a non-varying profile. To the system of equations (4)should be added
the initial conditions:

e(ζ = 0, τ) = e0(τ), e,τ(ζ = 0, τ) = e′0(τ),

and the boundary conditions

q(ζ, τ) = q,τ(ζ, τ) = 0, at τ → ±∞.

related to the evolution of an initial electromagnetic solitary wave in a
nonlinear dispersive medium.

Substituting e(ζ, τ) = e(τ − ζ/v), q(ζ, τ) = q(τ − ζ/v) into the
first equation (4) and taking into account the boundary conditions one
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finds that it results in e = αq/γ, where α = γ2v2/(1 − v2). The second
equation of (4) can be transformed into the ordinary differential equation
in the variable T = τ − ζ/v

d2q

dT 2
− (α − 1)q + 2µq3 = 0.

A non-singular solution of this equation exists only if α > 1 and µ > 0.
In this case integrating results in the following expression [2, 7, 8]

qst(ζ, τ) = ±
√

(α − 1)/µ sec h
[√

(α − 1) (τ − ζ/v − τ0)
]
. (13)

Here the integration constants τ0 and α are the parameters of this steady
state solitary wave. The strength of the electric field of the ESP is given
by

est(ζ, τ) = ±αγ−1
√

(α − 1)/µ sec h
[√

(α − 1) (τ − ζ/v − τ0)
]

. (14)

This solution describes the propagation of an electromagnetic spike with
positive (+ sign ) or negative (− sign ) polarity. The condition for
existence of this solution leads to the limitation of it velocity: 1 < v <
(1 + γ2)−1/2.

2.2 Bilinear form of the total Maxwell-Duffing
equations

The system (5) can be reprezented as the bilinear equations, if the
following substitutions

e =
g

h
, b =

j

h
, q =

f

h
(15)

are used. Then equations (5) can be rewritten as

1
h2

Dζ(g · h) − 1
h2

Dτ(j · h) = 0,

1
h2

Dζ(j · h) − 1
h2

Dτ(g · h) = γ
1
h2

Dτ(f · h), (16)

1
h2

D2
τ(f · h) − f

h3
D2

τ(h · h) +
f

h
+ 2µ

f3

h3
= γ

g

h
,

where the Hirota D-operators Dζ(a·b) = a,ζb−ab,ζ, Dτ(a·b) = a,τb−ab,τ

have been introduced [21]. To derive the last equation we follow the rule

∂2

∂τ2

(
f

h

)
=

1
h2

D2
τ(f · h) − f

h3
D2

τ(h · h).
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Multiplying the first equation by h2, the second equation one by h3, the
third one by h2 and collecting the terms of order h−1, we can write the
resulting equations as a system of bilinear ones

Dζ(g · h) = Dτ(j · h), (17)
Dζ(j · h) = Dτ(g · h) + γDτ(f · h), (18)

D2
τ(f · h) = (γg − f)h,

D2
τ(h · h) = 2µf2

We will use the usual method [21, 22] to solve equations (18) by writing

g = g1e
θ, j = j1e

θ, f = f1e
θ, h = 1 + h1e

θ + h2e
2θ, (19)

where θ = kζ − Ωτ . Substituting this into (18) results in the equations:

kg1e
θ − kh2g1e

3θ + Ωj1e
θ − Ωh2j1e

3θ = 0,
kj1e

θ − kh2j1e
3θ + Ωg1e

θ − Ωh2g1e
3θ + Ωγf1e

θ − Ωγh2f1e
3θ = 0,

Ω2f1e
θ + Ω2h2f1e

3θ − (γg1 − f1)(eθ + h1e
2θ + h2e

3θ) = 0,
Ω2h1e

θ + 4Ω2h2e
2θ + Ω2h2h1e

3θ − µf2
1 e2θ = 0.

Equating the coefficients of the different powers of eθ to zero, one obtains
the system of equations that define j1, f1, g1, h1,h2 :

kg1 + Ωj1 = 0 , kj1 + Ω(g1 + γf1) = 0,
Ω2f1 − (γg1 − f1) = 0 , 4Ω2h2 = µf2

1 , h1 = 0.

From these relations one can get

h1 = 0 , h2 = µf2
1 (2Ω)−2,

j1 = −γ−1(k/Ω)(1 + Ω2)f1 , g1 = γ−1(1 + Ω2)f1,

and the “dispersion relation”

k2 =
Ω2(1 + γ2 + Ω2)

(1 + Ω2)
. (20)

It should be pointed out that in the low frequency limit this formula
yields k2 = Ω2(1+γ2), while in the high-frequency limit it yields k2 = Ω2.

Thus, a one-soliton solution of the bilinear equations (18) is found,
which can be written as

g = γ−1(1 + Ω2)f1e
θ,

j = −γ−1(k/Ω)(1 + Ω2)f1e
θ,

f = f1e
θ , h = 1 + µf2

1 (2Ω)−2e2θ.
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These relations yield a solution of the TMD-equations (6) which is con-
sistent with the steady state solution obtained earlier:

esol(ζ, τ) =
γ−1(1 + Ω2)f1e

θ

1 + µ(f/2Ω)2e2θ
,

bsol(ζ, τ) = −γ−1(k/Ω)(1 + Ω2)f1e
θ

1 + µ(f/2Ω)2e2θ
, (21)

qsol(ζ, τ) =
f1e

θ

1 + µ(f/2Ω)2e2θ
.

If we introduce a new constant of integration exp θ0 = ±µ1/2f1/2Ω, then
the one-soliton expression for the normalized electric field of ESP can
be written as

esol(ζ, τ) = ±
(

1 + Ω2

µ1/2γ

)
Ω

cosh(θ + θ0)
. (22)

The velocity of this soliton is defined as v = Ω/k. Taking into account
the dispersion relation (20) one can obtain

v2 =
1 + Ω2

1 + γ2 + Ω2
.

The magnitude of this velocity lies in the interval (1, (1+γ2)−1/2). This
is the same result as for a steady state pulse obtained above. Using the
expression for velocity we can see that α = 1 + Ω2, and the expression
for the steady state pulse (14) coincides with expression (22).

2.3 Two-component (vector) Duffing model
The simplest generalization of the Duffing model is to consider two-

component oscillator with potential

U(X, Y ) =
1
2
ω1X

2 +
1
2
ω2Y

2 +
1
2
k2X

2Y 2 +
1
4
k4

(
X4 + Y 4

)
.

The wave equations corresponding to the different polarization com-
ponent of the ESP field can be written as

∂2E1

∂z2
− 1

c2

∂2E1

∂t2
=

4πnAe∗
c2

∂2X

∂t2
,

∂2E2

∂z2
− 1

c2

∂2E2

∂t2
=

4πnAe∗
c2

∂2Y

∂t2
(23)

and the motion equations for the oscillator components are the following

∂2X

∂t2
+ ω2

1X + κ2XY 2 + κ4X
3 =

e∗
m

E1(z, t),
∂2Y

∂t2
+ ω2

2Y + κ2Y X2 + κ4Y
3 =

e∗
m

E2(z, t, ) .

(24)
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If the oscillator eigenfrequencies are equal ω1 = ω2, one obtain the
steady-state solution corresponding to the linearly polarized pulse whose
electric field components

E1(η) = E2(η) = Emα
√

(α − 1)sech
[
ω1

√
(α − 1) (η − η0)

]
. (25)

with Em =
(
mω3

1/e∗
)√

2/ (κ2 + κ4) are the unipolar.
In the the other case then the the oscillator eigenfrequencies are, but

anharmonicity coefficients are equal κ2 = κ4, the electic field componens
E1 and E2 of the corresponding steady-state solution are different

E1(η) =
8πnAeθ

√
2κ−1

2 µ1 exp (θ1) {1 + exp (2θ2 + µ12)}
1 + exp (2θ1) + exp (2θ2) + exp (2θ1 + 2θ2 + µ12)

, (26)

E2(η) =
8πnAeθ

√
2κ−1

2 µ2 exp (θ2) {1 + exp (2θ1 + µ12)}
1 + exp (2θ1) + exp (2θ2) + exp (2θ1 + 2θ2 + µ12)

, (27)

exp(µ12) =
µ1 − µ2

µ1+µ2
, µ12 = θω2

p − ω2
1,2, θ1,2 = µ1,2 (η − η1,2) . (28)

One of them (E1) is the unipolar burst of the electric field and the
other (E2) is the solitary wave with changing polarity [23].

3. Quintic Duffing model
Nowadays a considerable attention has been paid to study of propa-

gation of electromagnetic pulses or beams in a medium with third- and
fifth-order nonlinearity. Let a plane electromagnetic wave propagate in
a transparent low-density medium (a gas of molecules or impurities in a
transparent dielectric). In an isotropic dielectric, the Maxwell equation
(2) is reduced to one wave equation [24] for the electric field strength

E,z + c−1E,t = −(2π/c)P,t (29)

On the basis of the Duffing model with cubic nonlinearity, we may
suggest that ultimately short electromagnetic pulses in medium should
be described with allowance for the next anharmonic correction. Then,
we obtain, for isotropic nonlinear medium modeled by an ensemble of
identical CQ (cubic-quintic ) Duffing oscillators with γ = 1, the following
generalization of (4)

∂e

∂ζ
=

∂q

∂τ
,

∂2q

∂τ2
+ q + 2µq3 + 3εq5 = e, (30)

with parameters µ = k3/ |k3| = ±1, ε = 4k5ω
2
0/3k2

3.
In what follows, the reduced system of equations (30) will be referred

to as the RM CQD equations.
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3.1 Steady state solution
The RM CQD model have a solution in the form of a traveling solitary

wave with a constant profile. Let us assume

e(ζ, τ) = e (η = τ − ζ/α)

If µ = +1, here two types of solutions are possible:
if ε > 0

e2(η, µ = +1) =
2a(a + 1)2

1 +
√

1 + 4aε cosh
[
2a1/2 (η − η0)

] (31)

and if ε < 0

e2(η, µ = +1) =
2a(a + 1)2

1 +
√

1 − 4a|ε| cosh
[
2a1/2 (η − η0)

] (32)

with a = α − 1.
Let µ = −1, the only solution is possible, if ε > 0 :

e2(η, µ = −1) =
2a(a + 1)2√

1 + 4aε cosh
[
2a1/2 (η − η0)

]− 1
. (33)

In the other cases we have either singular solutions or a negative value
of the squared of the normalized electric field strength.

3.2 Electromagnetic domain
For the steady-state pulse, under the condition that µ = 1, ε < 0 (32)

the integral W (a) is given by the expression

W (a) =

+∞∫
−∞

e2(ζ, τ)dτ ∼ 4pcar tanh

⎛⎝ (p/pc)
2

1 +
√

1 − (p/pc)
2

⎞⎠
with p = a1/2. If the critical value of parameter p is pc = 1/2|ε|1/2, the
pulse width can be obtained as

∆τ = (1/p) arcosh
[
2 +

(
1 − (p/pc)

2
)1/2

]
at p → pc behave as

∆τ ≈ ln 2pc − ln (pc − p)
2pc

.
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The steady-state pulse swells, and its amplitude tends to that of the
limiting pulse, equal to (1+p2

c). Such a ESP, almost rectangular in shape
with sharp edges, will be referred to as an electromagnetic domain [25].

Therefore, in the vicinity of the domain boundary (a → ac ≡ 1/(4|ε|)),
we may write an approximate expression for the electric field strength
squared

e2(η, µ = +1) =
2ac(ac + 1)2

1 + (b/2) exp
[
η/
√|ε|

] (34)

It is convenient to define the coordinate of the domain boundary η1 by
the expression b/2 = exp

[
−η1/

√|ε|
]

The width of the edge of the electromagnetic domain (the domain
wall) can be found by noticing that in the vicinity of η1, the electric
field strength rapidly drops from its maximum value to zero. The width
of the domain wall ∆ = 2 ln

(
3 + 2

√
2
)√|ε| may be identified as the

derivative of the field strength in the region of the domain wall is a
burst whose width at half maximum.

4. Conclusion
A model for the propagation of extremely short unipolar pulses of an

electromagnetic field introduced and analyzed for a medium represented
by anharmonic oscillators with a cubic nonlinearity. The model takes
into account the dispersion properties of both the linear and nonlinear
responses of the medium. It is the simplest generalization of the well
known Lorenz model used to describe linear optical properties in con-
densed matter. The cubic nonlinearity is the first type of anharmonic
correction to the Lorenz model and it results in the Duffing oscillator.
Here we consider the total Maxwell-Duffing model in detail. The La-
grangian picture of the TMD model was considered and three integrals
of motion were found. Two families of exact analytical solutions, with
positive and negative polarities, have been found as moving solitary
pulses. The first kind of steady state ESP is an electromagnetic spike
propagating in a nonlinear medium. It was discussed early in [1, 2, 6].

The TMD equations can be represented in bilinear Hirota form. The
one-soliton solution of the bilinear equations was obtained. It coincides
with the expression of a steady state ESP. Among the solitary waves
that have been found in this work, an interesting example is provided
by waves propagating in a medium with opposite signs of the third-
and fifth order nonlinear susceptibilities. Such pulses, as their energy
increases, acquire an almost rectangular shape, with sharp edges. These
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pulses look like electromagnetic domains, i.e., regions with a constant
electric field strength, propagating as a whole.

Acknowledgments
Author is grateful to Prof. A. I. Maimistov and Dr. J. G. Caputo for

the contribution and valuable discussions.

References
[1] K. Akimoto, J. Phys.Soc.Japan 65, N7, 2020-2032 (1996).

[2] A. E. Kaplan, S.F. Straub and P. L. Shkolnikov, J.Opt.Soc.Amer. B14, N11,
3013-3024 (1997).

[3] N. Bloembergen, Rev.Mod.Phys. 71, N2, S283-S287 (1999).

[4] A.V. Kim, M.Yu. Ryabikin, and A.M. Sergeev, Uspekhi Phys. Nauk 169, N1,
58-65 (1999).

[5] Th. Brabec and F. Krausz, Rev.Mod.Phys. 72, N2, 545-591 (2000).

[6] A.D. Vuzha, Fiz.Tverd.Tela (Leningrad) 20, N1, 272-273 (1978).

[7] A.I. Maimistov and S.O. Elyutin, J.Mod.Opt. 39, N11, 2201-2208 (1992).

[8] A. E. Kaplan and P. L. Shkolnikov, Phys.Rev.Lett. 75, N12, 2316-2319 (1995).

[9] E. D. Eugenieva, D. N. Christodoulides, and M. Segev, Opt. Lett. 25, 972 (2000).

[10] A. Dreischuh, G. G. Paulus, F. Zacher, et al., Phys. Rev. E 60, 7518 (1999).

[11] N. V. Vysotina, L. A. Nesterov, N. N. Rozanov, and V. A. Smirnov, Opt. Spek-
trosk. 85, 239 (1998) [Opt. Spectrosc. 85, 218 (1998)].

[12] N. N. Rosanov, V. E. Semenov, and N. V. Vyssotina, J. Opt. B 3, S96 (2001).

[13] A. A. Sukhorukov and Yu. S. Kivshar, Pramana, J. Phys. 57, 1079 (2001).

[14] W. S. Kim and H. T. Moon, Phys. Lett. A 266, 364 (2000).

[15] A. Desyatnikov, A. Maimistov, and B. Malomed, Phys. Rev. E 61, 3107 (2000).

[16] D. Mihalache, D. Mazilu, L.-C. Crasovan, et al., Phys. Rev. E 61, 7142 (2000).

[17] B. A. Malomed, L.-C. Crasovan, and D. Mihalache, Physica D 161, 187 (2002).

[18] A. V. Slyunyaev and E. N. Pelinovski., Zh. Eksp. Teor. Fiz. 116, 318 (1999)
[JETP 89, 173 (1999)].

[19] P.A.M. Dirac, Canad.J.Math. 2, N2, 129-148 (1950).

[20] C.A.Hurst, Recent Developm. in Mathemat. Phys, Eds. H.Mitter, L.Pittner,
Springer-Verlag, Berlin,.(1987), p.18-52.

[21] R. Hirota, and J. Satsuma, Progr.Theor.Phys., Suppl. 59, 64 (1976).

[22] M.J. Ablowitz, and H. Segur. Solitons and the Inverse Scattering Transform
(SIAM, Philadelphia, 1981).

[23] A.I.Maimistov, Opt.Spektrosk. 87, 104-108 (1999).

[24] J. C. Eilbeck and R. K. Bullough, J. Phys. A 5, 820 (1972).

[25] A. I. Maimistov, Opt. Spektrosk. 94, No. 2, 281 (2003) [Opt. Spectrosc. 94, No.
2 , 251 (2003)].



STATISTICS OF THREE INTERACTING
OPTICAL SOLITONS
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Aston University, Birmingham B4 7ET, UK

Abstract We examine the statistics of three interacting optical solitons under the
effects of amplifier noise and filtering. We derive rigorously the Fokker-
Planck equation that governs the probability distribution of soliton pa-
rameters.

1. Introduction
In long-haul fibre-optic soliton communication systems the limitations

on the bit rate and error-free transmission distance are set mainly by the
amplified spontaneous emission (ASE) noise introduced by in-line opti-
cal amplifiers and the interaction of solitons. Even though both noise
and interaction are weak effects, in general one cannot use the perturba-
tion approach to obtain the error probability because errors occur when
the signal parameters change substantially due to the accumulation of
such effects. Large rare fluctuations in a nonlinear system are typically
beyond the area of applicability of the usual Gaussian statistics [1, 2].
Recently, rigorous approaches to study non-Gaussian soliton statistics
were suggested in [3, 4]. These methods allowed the calculation of the
tails of the probability density function (PDF) for soliton parameters
that in general are non-Gaussian. However, a straightforward approach
is necessary to tackle the problem of determining the exact form of the
PDF and not only its tails or halfwidth. One needs the approach that
allows to determine the regime of applicability of the classical results
based on the assumption of the Gaussian statistics as well as to study
the asymptotical behaviour of the tails of the PDF. Such an approach,
based on the Fokker-Planck equation (FPE) for the PDF, was initiated
in [5] for the single soliton transmission. In this work, we generalize the
method to the case of three interacting solitons in the presence of noise.
The basic principle of the proposed approach is recognizing the master
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system of stochastic differential equations that govern the dynamics of
soliton parameters as a set of generalized Langevin equations with a
multiplicative rather than additive noise. Thus the non-Gaussian statis-
tical behaviour of the soliton degrees of freedom becomes somewhat an
intrinsic property of the system. We derive the FPE for a transmission
system with in-line control by filters. The obtained equation contains
exact and complete knowledge of the soliton statistics, and solving this
equation analytically or numerically provides one with a complete or
marginal PDF for soliton parameters.

2. Basic Model
We start from the nonlinear Schrödinger equation (NLSE) in soliton

units, describing the optical pulse propagation in a fibre transmission
line under the action of guiding filters and ASE noise,

∂u

∂z
=

i

2
∂2u

∂t2
+ i|u|2u + αu + β

∂2u

∂t2
+ n. (1)

Here, α stands for a required extra gain to compensate for the fil-
ter loss, β is the filter strength, and the ASE noise is accounted for
as the white noise term n, with the statistical properties: 〈n(t, z)〉 =
〈n(t, z)n(t′, z′)〉 = 0 and 〈n(t, z)n∗(t′, z′)〉 = Dδ(t− t′)δ(z− z′), where D
is the noise intensity.

3. Three-Soliton System
To deal with the three-soliton interaction problem we use here the

quasi-particle approach [6, 7]. The method is based on the adiabatic
approximation, which is valid at least for the solitons with large separa-
tion. The main idea of this approach is to view the interaction as a slow
deformation of soliton parameters in which only the nearest-neighbor
interaction should be taken into account. Following [6, 7], we make the
ansatz:

u(t, z) =
3∑

j=1

uj(t, z), (2)

where

uj(t, z) ≡ uj0(t, z) = Aj(z)sech{Aj(z)[t − Tj(z)]}e−iΩj(z)[t−Tj(z)]+iδj(z).
(3)

Inserting (2) into Eq. (1) and retaining only first order terms with respect
to the overlap in the cubic term of (1), we can write a perturbed NLSE
for soliton j,

∂uj

∂z
=

i

2
∂2uj

∂t2
+ i|uj|2uj + Rj, (4)
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where the perturbation Rj describes the effects of soliton interaction,
filters, and ASE noise:

Rj = i
∑

l=j±1

(2|uj|2ul + u2
ju

∗
l ) + αuj + β

∂2uj

∂t2
+ n. (5)

Applying the standard soliton perturbation theory [8, 9] with Rj given
by (5), we come up with the following dynamical equations for the jth
soliton parameters:

dAj

dz
= 2αAj − 2β

(
Ω2

j +
A2

j

3

)
Aj + 4A3

∑
l=j±1

e−A|∆Tj,l| sin ∆φj,l

+ SAj (z), (6)
dΩj

dz
= − 4

3
βA2

jΩj + 4A3
∑

l=j±1

sj,le
−A|∆Tj,l| cos∆φj,l + SΩj (z), (7)

dTj

dz
= − Ωj + 2A

∑
l=j±1

sj,le
−A|∆Tj,l| sin ∆φj,l + STj (z), (8)

dδj

dz
=

1
2
(A2

j + Ω2
j) − 2AΩ

∑
l=j±1

sj,le
−A|∆Tj,l| sin ∆φj,l

+ 6A2
∑

l=j±1

e−A|∆Tj,l| cos∆φj,l + Sδj (z). (9)

Here A = 1
3

∑3
j=1 Aj, Ω = 1

3

∑3
j=1 Ωj, ∆Tj,l = Tj − Tl, ∆φj,l =

Ω∆Tj,l + ∆δj,l, ∆δj,l = δj − δl and terms Syj ,

Syj (z) = Re
∫

dt g∗yj
(t, z)n(t, z), yj = Aj, Ωj, Tj, δj, (10)

are the projections of the white noise on the perturbation functions gyj ,

gAj = uj0, gΩj = −i tanh[Aj(t − Tj)]uj0, gTj =
t − Tj

Aj
uj0,

gδj =
i

Aj
{1 − Aj(t − Tj) tanh[Aj(t − Tj)]}uj0 − ΩjgTj . (11)

Moreover, if we assume, e.g., that T1 > T2 > T3, then sj,j−1 = −1
and sj,j+1 = 1. In deriving Eqs. (6)-(9), we have assumed that, for the
differences ∆Aj,l = Aj − Al, ∆Ωj,l = Ωj − Ωl, and ∆Tj,l,

|∆Aj,l| � A, |∆Ωj,l| � 1, A|∆Tj,l| � 1, |∆Aj,l||∆Tj,l| � 1, (12)
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and we have taken into account only terms of first order with respect
to the overlap parameter e−A|∆Tj,l|. From Eqs. (6)-(9), one can derive a
system of equations for the variables A, Ω, ∆Ak,k+1, ∆Ωk,k+1, ∆Tk,k+1,
and ∆φk,k+1, k = 1, 2, which are, in fact, of interest to us. If we fur-
themore assume that the noise does not affect significantly the evolution
of the average amplitude and frequency, A and Ω, toward the point
(A = A0, Ω = 0), which gives a stable fixed point in the equations for A
and Ω in the absence of noise for the choice β = 3α, the last system can
be further reduced to

d∆A1,2

dz
= − 4α∆A1,2 + 4

(
2e−∆T1,2 sin ∆δ1,2 − e−∆T2,3 sin ∆δ2,3

)
+ ∆SA1,2 , (13)

d∆A2,3

dz
= − 4α∆A2,3 + 4

(
2e−∆T2,3 sin ∆δ2,3 − e−∆T1,2 sin ∆δ1,2

)
+ ∆SA2,3 , (14)

d∆Ω1,2

dz
= − 4α∆Ω1,2 + 4

(
2e−∆T1,2 cos∆δ1,2 − e−∆T2,3 cos∆δ2,3

)
+ ∆SΩ1,2 , (15)

d∆Ω2,3

dz
= − 4α∆Ω2,3 + 4

(
2e−∆T2,3 cos∆δ2,3 − e−∆T1,2 cos∆δ1,2

)
+ ∆SΩ2,3 , (16)

d∆T1,2

dz
= − ∆Ω1,2 − 2e−∆T2,3 sin ∆δ2,3 + ∆ST1,2 , (17)

d∆T2,3

dz
= − ∆Ω2,3 + 2e−∆T1,2 sin ∆δ1,2 + ∆ST2,3 , (18)

d∆δ1,2

dz
= ∆A1,2 − 6e−∆T2,3 cos∆δ2,3 + ∆Sδ1,2 , (19)

d∆δ2,3

dz
= ∆A2,3 + 6e−∆T1,2 cos∆δ1,2 + ∆Sδ2,3 , (20)

where ∆Syk,k+1
= Syk

−Syk+1
, and we have set A0 = 1. System (13)-(20)

is a master set of equations describing the adiabatic stochastic evolution
of the differences of soliton parameters. For such a system it is possible to
write down a FPE for the joint PDF [10] (see Sec. 4). It is worth noting
here that the main results concerning soliton statistics obtained so far
have been obtained under the implicit assumption that the functions
gyj do not depend on the soliton parameters, or rather depend on the
initial values. Such an approximation is valid only for small propagation
distances z � 1, when the soliton parameters do not change significantly
compared to their initial values. Under such an assumption, Syj become
independent additive white noises and one can readily calculate their
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variances. However, although the perturbation theory was used to derive
Eqs. (13)-(20), these equations are valid even for large deviations from
the initial values, i.e., for large distances. Therefore, in order to study
soliton statistics for large distances and determine the probabilities of
large fluctuations, given by the tails of the PDF, one has to assume that
the perturbation functions gyj depend on the current values of soliton
parameters rather than the initial ones. In other words, one needs to
recognize system (13)-(20) as a system with multiplicative noise.

4. Fokker-Planck Equation
System (13)-(20) is a special case of a general system with a complex

white multiplicative noise,

dqi

dz
= fi(�q) + Re

∫ ∞

−∞
dt [g∗i (�q, t) − g̃∗i (�q, t)]n(t, z), i = 1, . . . , N, (21)

where �q is a N -component real field, fi are deterministic “drift” terms,
gi and g̃i are the projection functions which themselves depend on the
random field �q, and n is a complex white noise with the statistical prop-
erties given in Sec. 2. We are interested in the equation governing the
evolution of the PDF:

P (�q, z) =

〈
N∏

i=1

δ(qi − qs
i (z))

〉
, (22)

where �qs is the solution of Langevin system (21). We omit here the
calculation details and only present the FPE in a closed form as

∂P (�q, z)
∂z

= −
∑

j

∂

∂qj
[Dj(�q)P (�q, z)] +

∑
j,k

∂2

∂qj∂qk
[Djk(�q)P (�q, z)]. (23)

Here, Dj and Djk are the components of the drift vector and diffusion
matrix, respectively, and are given by

Dj(�q) = fj(�q) +
D

4

∑
k

Re
∫ ∞

−∞
dt

[
gk(�q, t)

∂g∗j (�q, t)
∂qk

− g̃k(�q, t)
∂g̃∗j (�q, t)

∂qk

]
,

(24)

Djk(�q) =
D

4
Re

∫ ∞

−∞
dt [g∗j (�q, t)gk(�q, t) − g̃∗j (�q, t)g̃k(�q, t)].

(25)

In our system (13)-(20), we set ∆A1,2 = q1, ∆A2,3 = q2, ∆Ω1,2 = q3,
∆Ω2,3 = q4, ∆T1,2 = q5, ∆T2,3 = q6, ∆δ1,2 = q7, and ∆δ2,3 = q8,
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which yields: g1 = gA1 , g2 = g̃1 = gA2 , etc. All that is needed is to
calculate functions (24) and (25) using definitions (11). In doing so,
we neglect the terms that involve products of gi and g̃i associated with
different solitons. This approximation is justified by the small degree of
overlap between the solitons. Thus, after some algebra, we end up in
the following equation:

∂P

∂z
= 16αP

− 4(−αq1 + 2e−q5 sin q7 − e−q6 sin q8)
∂P

∂q1

− 4(−αq2 + 2e−q6 sin q8 − e−q5 sin q7)
∂P

∂q2

− 4(−αq3 + 2e−q5 cos q7 − e−q6 cos q8)
∂P

∂q3

− 4(−αq4 + 2e−q6 cos q8 − e−q5 cos q7)
∂P

∂q4

+ (q3 + 2e−q6 sin q8)
∂P

∂q5
+ (q4 − 2e−q5 sin q7)

∂P

∂q6

− (q1 − 6e−q6 cos q8)
∂P

∂q7
− (q2 + 6e−q5 cos q7)

∂P

∂q8

+
D

2

(
q1

∂2P

∂q2
1

+ q2
∂2P

∂q2
2

)
+

D

6

(
q1

∂2P

∂q2
3

+ q2
∂2P

∂q2
4

)
+

Dπ2

24

[(
1

A3
1

− 1
A3

2

)
∂2P

∂q2
5

+
(

1
A3

2

− 1
A3

3

)
∂2P

∂q2
6

]
− Dπ2

12

[(
Ω1

A3
1

− Ω2

A3
2

)
∂2P

∂q7∂q5
+
(

Ω2

A3
2

− Ω3

A3
3

)
∂2P

∂q8∂q6

]
+

D

24

{[(
4 +

π2

3

)(
1

A1
− 1

A2

)
+ π2

(
Ω2

1

A3
1

− Ω2
2

A3
2

)]
∂2P

∂q2
7

+
[(

4 +
π2

3

)(
1

A2
− 1

A3

)
+ π2

(
Ω2

2

A3
2

− Ω2
3

A3
3

)]
∂2P

∂q2
8

}
.

(26)

Here, A1 = 1 + 2
3q1 + 1

3q2, A2 = 1 − 1
3q1 + 1

3q2, A3 = 1 − 1
3q1 − 2

3q2,
Ω1 = 2

3q3+ 1
3q4, Ω2 = −1

3q3+ 1
3q4, and Ω3 = −1

3q3− 2
3q4. Equation (26) is

rather complicated and not easy to solve. We point out that neglecting
the multiplicative nature of the noise results in constant coefficients of
the noise terms, and the resulting equation can be integrated more easily.
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5. Summary
We have derived rigorously the FPE governing the evolution of the

PDF of soliton parameters for the problem of three interacting optical
solitons under the effects of ASE noise and filtering. Solving such an
equation in some special cases will be the subject of a future work.
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STATISTICAL STUDY OF RAMAN
SCATTERING IN OPTICAL FIBERS
AFFECTED BY RANDOM CONDITIONS

J. Villarroel
Faculty of Sciences, University of Salamanca, Plaza de la Merced 37008 Salamanca,
Spain

Abstract We study the statistical properties of a model that has been recently
suggested to account for the effects of dispersion on stimulated Raman
scattering in wavelength division multiplexed systems. We show that if
the initial powers are low enough all channels follow a Binomial proba-
bility distribution that is the same for channels symmetric with respect
to the middle one. This distribution can be approximated by a normal
distribution when the number of channels is not too small.

1. Introduction
In recent years, stimulated Raman scattering (SRS) has attracted

much attention, as this mechanism is responsible for power transfer from
the lowest to the highest wavelengths in wavelength division multiplexed
systems (WDM) [1]. This phenomenon is noticeable when a large num-
ber of wavelengths or channels is involved. Recently, the exact solution
for SRS power exchange in WDM systems was found in the continuous
wave (CW) regime [2]. It was shown that for an initially fully loaded
WDM system, SRS can lead to an exponential like power distribution
among channels, which increases as a function of distance [3, 4]. More
recently, a model was proposed to explain the SRS power exchange in
high-speed systems [4]. It is assumed that the signal in every channel
involves a random sequence of “1” and “0” bits with pulse duration
τ0. In this model, speeds were was supposed to be big enough to allow
averaging on statistical quantities (see [4, 5]).

The present model aims to consider statistical deviations from the lat-
ter deterministic situation. For previous work in this direction see [6-9].
Mathematically, this involves the problem of determining the distribu-
tion of a certain function of a sequence of independent discrete binomial
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random variables bk,1, ..bk,N. We show (result 1) that in this case the
powers of all channels follow exactly a probability distribution which
(up to a linear transformation) is binomial with channel dependent pa-
rameters. In most cases, they can be well approximated by Gaussian
distributions, unlike what it is claimed in [7, 9]. As the speed tends to
∞ we recover, using the strong law of large numbers, the results of [4, 5].

2. The physical foundations.
Let us assume a WDM system of N channels co-propagating in a

single mode fiber, where we assume that each wavelength or channel
corresponds to a different group velocity vk (See [10] for general facts
regarding SRS in optical fibers). We take the wavelengths in increasing
order, so channel #1 represents the lowest propagating wavelength and
#N the highest. We assume also that every channel is separated by a
frequency difference ∆f . In that case the group velocities of channel #k

can be written as v−1
k = β

′
0 + kβ′′

0∆Ω+ k2

2 β′′′
0 ∆Ω2, where Ω = k∆Ω, and

∆Ω = 2π∆f ([2]).
It is assumed that the signal in every channel involves a random se-

quence of “1” and “0” bits with pulse duration τ0 and the same prob-
ability. A further natural assumption is that the optical power is only
exchanged via SRS among bits of “1”. We assume that only their ratio
of 1 bits with respect to the total number of bits matters and the spe-
cific order of the bits “1” in any pattern is irrelevant. Thus the effect
of channel #k + 1 on channel #k, say, depends only on how many 1
bits of channel #k + 1, out of a total of ρ bits, channel #k sees passing
through. Let

δk,m, b̃k,m = 0, 1, ..δk,m and bk,m =
b̃k,m

δk,m

represent respectively the number of bits in channel #m passing #k
after a given time τ0, the total number of “1’s” in this sequence, and the
ratio of “1 “ bits to the total number of bits. Since we assume that that
every channel is separated by a constant frequency difference ∆f one
has δk,m ≡ ρ|k −m| where the parameter ρ gives the cross-talk between
neighbor channels ρ = δm−1,m = zβ′′

0∆Ω/τ0. We assume that ρ is an
integer. Clearly b̃k,m is a Binomial random variable that may take on
the values j = 0, 1, ..δk,m with

P (b̃k,m = j) =
(

δk,m

j

)
1

2δk,m
, 0 ≤ j ≤ δk,m (1)

Variables b̃k,m, b̃k,n are independent whenever n �= m.
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Let Qk(z) stand for the power in channel #k at the point z. We shall
consider the case of equally loaded channels, i.e., Qm(0) = C a constant.
Then ( see [2, 4])

Qk(z) =
JeGJkz

eGJkz + d
∑N

m�=k bk,meGJmz
(2)

where G = g′∆f/2A, and g′ is the slope of the Raman gain. The
effective core area is given by A and G is the Raman gain profile with ω
being the angular frequency. J is the total power in the system given by
J = C[

∑N
m=1,n�=k dbk,m + 1]. d represents the fraction of the area under

a bit “1” with respect to the total area of the bit slot.

3. Statistical properties of the power
In Ref. [4] ρ was supposed to be very large, in whose case the ap-

proximation bk,m = 1
2∀m, k, m �= k is valid. The present model aims

to consider statistical deviations from the latter deterministic situation.
In this case, the power Qk(z) is a random variable, and the problem of
determining the probability distribution of Qk involves determining the
distribution of a certain function Qk(bk,1, ..bk,N) of a sequence of inde-
pendent discrete binomial random variables bk,1, ..bk,N. Note that the
complicated form of expression (2) renders hopeless the task of deter-
mining an exact formula for the probability distribution of this random
variable. Even for small SRS cross-talk (i.e., small ρ), Qk takes a tremen-
dously large number of different values (N ! for the simplest case ρ = 1);
hence numerical simulations become computationally unwieldy as the
number of channels N increases.

The situation can be greatly simplified by assuming that GJkz � 1 is
small. This approximation corresponds to low input power levels. The
initial power launched in every WDM channel is usually kept relatively
low to minimize nonlinear effects. The power levels are in the order of
a few mW or even less.

Assume that GzdCN2 � 1. Then GJkz � 1 and one obtains by
expansion

1 +
N∑

m�=k

dbk,meGJ(m−k)z =
J

C
+

N∑
m�=k

dbk,m(eGJ(m−k)z − 1)

≈ J

C
+

N∑
m�=k

dbk,mGJ(m − k)z (3)
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We can divide the numerator and denominator of (2) by eGJkz. It follows
that

Qk(z) = J [1 +
N∑

m�=k

dbk,meGJ(m−k)z]−1

≈ C[1 −
N∑

m�=k

dbk,mGC(m − k)z] =

= C[1 − CGzd

ρ

N∑
m=1,m�=k

b̃k,msign (m − k)] (4)

Let us introduce

m+
k ≡ ρ

N∑
m>k

(m − k) =
ρ

2
(N − k)(N − k + 1), m−

k ≡ ρ

2
k(k − 1),

m+
k + m−

k ≡ Mk; k0 ≡ (N + 1)/2 (5)

From the latter formula it follows that the mean µk and variance σ2
k of

the power distribution for channel #k are given by:

µk = C[1 +
GzdCN

2
(k − k0)]

σ2
k =

(C2Gzd)2

4ρ2
Mk, Mk = ρ

(
(k − k0)2 + k2

0 − k0

)
The mean grows linearly with k, but is independent of ρ. The variance
σ2

k is symmetric with respect to k0 and attains a minimum for k = k0,
i.e. in the middle of the cluster. It first decreases with k, and then
grows quadratically again. Besides, it is inversely proportional to the
dispersion parameter ρ. Hence

µ1 ≡ C[1 − GzdC

4
N(N − 1)] ≤ µk ≤ C[1 +

GzdC

4
N(N − 1)] ≡ µN (6)

σ2
k0

=
(C2Gzd)2

16ρ
(N2 − 1) ≤ σ2

k ≤ (C2Gzd)2

8ρ
N(N − 1) = σ2

1 = σ2
N (7)

It is remarkable that the expression (5) giving Qk as a sum of random
variables can be simplified further. Note

X ≡
N∑

m=1,m�=k

b̃k,msign (m − k) =

(
N∑

m>k

−
N∑

m<k

)
b̃k,m ≡ X+ − X−



Raman scattering in optical fibers affected by random conditions 385

where X+ ≡ ∑N
m,m>k b̃k,m is sum of independent binomial variables

b̃k,m = B(ρ|m−k|, 1
2). It is well known then that X+ has also a binomial

distribution B(m+
k , 1

2). Likewise X− ≡ ∑N
m,m<k b̃k,m has a binomial

distribution B(m−
k , 1

2).
To proceed further, let us remind some standard probabilistic notation

(see [11] for a basic course in probability theory). Call support of X
the set of values X may take with positive probability; let P (A|B) the
conditional probability of the event A given that B happened: P (A|B) =
P(A∩B)

P(B) . It follows from the above considerations that X±, and X =
X+ − X− have support (i.e., may take on the values) Support X± =
{0, 1, 2..m±

k }, Support X = {−m−
k , ..0, 1, 2..m+

k }. By the theorem on
total probabililty one has that for j ∈ Support X is

P (X = j) =
m−

k∑
l=0

P (X = j|X− = l)P (X− = l) =

m−
k∑

l=0

P (X+ = j + l|X− = l)P (X− = l) =
m−

k∑
l=0

P (X+ = j + l)P (X− = l) =

1
2Mk

m−
k∑

l=0

(
m−

k
l

)(
m+

k
j + l

)
=
(

Mk

m+
k − j

)
1

2Mk

where we have used that X+, X− are independent variables and hence
P (X+ = j|X− = l) = P (X+ = j) and the well known combinatorial
identity:

n∑
l=0

(
n
l

)(
m

j + l

)
=
(

m + n
m − j

)
Remark. This means that X ≡ X̃ − m−

k and then Qk(z) = C[1 +
C
ρ Gzdm−

k − C
ρ GzdX̃] are linear functions of a binomial random variable

X̃ = B(Mk,
1
2). We now state our main result

Result 1. Assume that initially all channels are equally loaded , i.e.,
Qm(0) = C and that GzdCN2 << 1. Then the random variables Qk

satisfy
(i) For every channel #k, Qk takes on Mk + 1 different values qj:

qj ≡ C

[
1 − C

ρ
Gzdj

]
for − m−

k ≤ j ≤ m+
k (8)
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(ii) the probability that Qk takes the value qj is given by

P{Qk(z) = qj} =
(

Mk

m+
k − j

)
1

2Mk
,−m−

k ≤ j ≤ m+
k (9)

(iii) the power distribution is symmetric respect to its mean µk where
the peak power is attained (which corresponds to j = [m+

k − m−
k ]/2)

in (8); all channels have the same distribution (i.e., binomial up to a
linear transformation) but the defining parameters are different; the dis-
tance between peaks of different channels is constant and equals GzdC2

2 .
Finally channels symmetrically positioned with respect to k0 have the
same distribution. �

The study of the dependence on the cross-talk parameter shows inter-
esting features. Using eq. (9) one obtains that while the power’s peak is
independent of ρ the corresponding probability does depend; assuming
for convenience that Mk ≡ 2νk is even and recalling that ρ and νk are
proportional (see (5)): νk ≡ 1

2ρRk; Rk ≡ (k− k0)2 + k2
0 − k0, one obtains

that the probability of the maximum P2νk
reads

P2νk
≡ P{Qk(z) = µk} = P{j = mk − νk} =

(
2νk

νk

)
1

22νk
(10)

This expression shows that

P2νk+2

P2νk

=
νk + 1/2
νk + 1

< 1 (11)

i.e., that P decreases as ρ increases. This can be explained by the fact
that the interaction between channels takes place over a longer time
interval and more SRS exchange can occur. For large ρ, Stirling’s ap-
proximation shows that for all qj is

P{Qk(z) = qj} ≤ P{Qk(z) = µk} ≈ 1/
√

πνk
−→

ρ→∞ 0 (12)

However, it is misleading to believe that for very high speed :ρ → ∞,
the probability distribution vanishes. Indeed, since δk,m ≡ ρ|k − m| one
has b̃k,m =

∑ρ|k−m|
j=1 Bj where Bj is a sequence of independent Bernouilli

variables, i.e., P (Bj = 0) = P (Bj = 1) = 1
2 and

X+ ≡
N∑

m,m>k

b̃k,m =
N∑

m,m>k

ρ(m−k)∑
j=1

Bj =
m+

k∑
j=1

Bj

Hence writting m+
k = ρ

2(N − k)(N − k + 1) ≡ r+
k ρ, m−

k = ρ
2k(k − 1) ≡

r−k ρ one has X+/ρ =
∑m+

k
j=1 B̂j/m+

k where B̂j ≡ Bjr
+
k satisfies EB̂j =

r+
k /2; Var Bj = r+2

k /4.
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The series ∞∑
j=1

Var B̂j

j2
= π2r+2

k /24

is convergent. As ρ → ∞, m+
k → ∞. It follows by an application of the

strong law of large numbers that limρ→∞ X+/ρ = r+
k /2. Likewise

Qk(z) = C[1 − C

ρ
GzdX] −→

ρ→∞ C[1 − CGzd(r+
k − r−k )] ≡ µk

or P{limρ→∞ Qk(z) = µk} = 1 i.e., for large speeds Qk(z) = C[1 −
GzdC

4 N(N + 1− 2k)] and we recover the result of [4] (eq. (6) of [4]). We
have thus obtained the following result

Result 2. As the cross-talk ρ → ∞ one has
(i)

lim
ρ→∞P{Qk(z) = qj} = 0, ∀qj (13)

but

(ii) P{ lim
ρ→∞Qk(z) = µk} = 1 (14)

4. Gaussian approximation
The formula (9) gives exactly the distribution of Qk, independent of

whether N is small or large. In the latter case it is well known that
the binomial distribution can be approximated by a normal distribution
Qk(z) = N(µk, σ

2
k). The normal distribution is applicable if Mk ≥ 50,

even though Mk ≥ 25 gives very good results. Reminding the reader
that ρ

4(N2 − 1) ≤ Mk ≤ ρ
2N(N − 1) we see that, the number of channels

required for the approximation to hold is N ≥ 10/
√

ρ. For example, one
needs N = 5 for ρ = 4 and N = 10 for N = 1. In this case

P{Qk(z) = qj} ≈
√

2
πMk

exp
[
−2(j − Mk/2)2

Mk

]
(15)

provided |j − Mk/2| ≈ Mk/4. This shows that, at least in this regime,
the probability distribution is not lognormal as stated in Ref. [9].
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ELECTROMAGNETICS OF
UNHARMONIC WAVES –
EXACTLY SOLVABLE MODELS

A. Shvartsburg
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p/o 117342, Butlerov Str. 15, Moscow, Russia
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Abstract The non - local dispersion effects, produced by continuous spatial dis-
tributions of dielectric susceptibility of the medium, are visualized by
means of new exact analytical solutions of Maxwell equations. The
broadband antireflection properties of heterogeneous nanolayers, con-
trolled by this artificial dispersion, are shown. The dynamical reflectiv-
ity of instantaneous dielectrics, governed by finite relaxation times of
their non-stationary dielectric susceptibility, is examined.

Keywords: Heterogeneous nanolayers, unharmonic waveforms, heterogeneity - in-
duced dispersion, broadband antireflection coating, artificial cut - off
frequency.

This research is centered on the physical fundamentals and mathe-
matical basis of the electromagnetics of waveforms, whose parameters
are varying in the course of propagation in the heterogeneous or instan-
taneous media. The variable velocity of wave fields propagation in such
media can completely change the spectra of wave reflection as well as the
spatiotemporal structure of fields, travelling within these media. The de-
pendences of dielectric susceptibility upon coordinates and time, which
are described by continuous and smooth functions of these variables, de-
termine the domain of existence of discussed non-local dispersion. Owing
to the special types of such dependences these domains can be formed in
a frequency ranges remote from the natural resonances and absorption
bands of the material. Investigations of these effects are known to give
the rise to the series of problems in plasma physics, semiconductor and
polymer optics, laser and microwave technologies. Harnessing materials
with strong artificial dispersion opens the new avenues for synthesis of
optoelectronic and microwave engineering systems, nondestructive test-
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ing of complex materials and optimization of processes of energy and
information transfer through stratified and instantaneous media. More-
over, the elaboration of physical insight and the adequate mathematical
language for analysis of EM waves interaction with continuous dielec-
tric media can be generalized for the description of wave phenomena of
another physical nature.

The effects of artificial non-local dispersion on reflection – refraction
phenomena for EM waves in the heterogeneous and non-stationary di-
electrics can be considered with the aid of model dependences of dielec-
tric susceptibility upon coordinate ε(z) or time ε(t). These dependences
result in the coupled spatiotemporal distortions of waveforms of electric
(E) and magnetic (H) field components. In particular, when a wave
with harmonic E and H envelops is incidenting on the surface of a het-
erogeneous medium, the shapes of electric and magnetic envelops of the
refracted wave become unharmonic, and, moreover, they are varying in
the course of propagation. Herein, the shapes of E and H waveforms
can be essentially different. The rate of this distortion is determined by
the abovementioned non-local dispersion. The similar effects arise also
in the temporal envelops E(t) and H(t) in the non-stationary medium.

Therefore a new branch of the wave theory — electromagnetics of
unharmonic waves — is shaping now in the studies of EM fields in con-
tinuously heterogeneous and instantaneous media. The following results
of this theory are presented:

1 The wide classes of new exact analytical solutions of Maxwell equa-
tions, based on the same approach to both heterogeneous and non-
stationary dielectrics, are obtained. These results are free from any
WKB-like suppositions about smallness or slowness of variations
of fields or media.

2 The effects of giant heterogeneity-induced dispersion (HID), ex-
ceeding drastically the usual material dispersion, are visualized by
means of the aforesaid exact solutions.

3 The broadband antireflection properties of thin heterogeneous films,
controlled by the spatial dielectric susceptibility profiles, are exam-
ined.

4 The spectral broadening of EM waves, reflected from the media
with time-varying dielectric susceptibility is examined, the ratio
between the wave period and the medium relaxation time being
arbitrary.

5 The crucial role of gradient and curvature of ε(z) and ε(t) profiles in
reflectivity of heterogeneous and instantaneous media are shown,
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and the relevant ‘dynamical’ generalizations of classical Fresnel
formulae for reflection are presented.

These results are considered below in details:

1. Let us start from the presentation of continuous coordinate-depen-
dent dielectric susceptibility ε(z) in the transparent region(ε > 0, z ≥ 0)
in a form

ε(z) = n2
0U

2(z); U |z=0 = 1 (1)

Here n0 is the refractive index of the medium at the boundary z =
0, and the smooth dimensionless function U2(z) describes the spatial
profile of ε(z). Restricting ourselves by the normal incidence of linearly
polarized EM wave on the interface z = 0 and expressing the wave field
components via some auxiliary function (vector-potential

−→
A , Ax = Ψ,

Ay = Az = 0), we’ll reduce the system of Maxwell equations to one
equation, governing the function Ψ:

∂2Ψ
∂z2

− n2
0

c2

∂2Ψ
∂t2

= 0 (2)

Introducing the new functions F and Q and new variable η, one can
eliminate the unknown function U from the left side of wave equation
(2):

Ψ1 = FU−1/2; Q = U−1; η(z) =
∫ z

0
U(z1)dz1;

∂2F

∂η2
− n2

0

c2

∂2F

∂t2
= −F

[
Q

2
∂2Q

∂z2
− 1

4

(
∂Q

∂z

)2
]

(3)

Let us examine a simple particular solution of eq. (2), which arises in a
case, when the expression in brackets at the right side of (2) is equal to
some constant p2 , which will be defined below:

Q

2
∂2Q

∂z2
− 1

4

(
∂Q

∂z

)2

= −p2 (4)

Assuming, that the temporal dependence of the field F is harmonic,
one can write the solution of (4) in a form of a sinusoidal wave F =
exp [i(qη − ωt)]. Substitution of this solution to (2) brings the explicit
expression for dimensionless vector-potential in a form of travelling wave
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with spatially modulated amplitude

Ψ1 =
exp [i(qη − ωt)]√

U(z)
; (5)

q = kN ; k =
ωn0

c
; N =

√
1 − Ω2

ω2
; Ω2 =

p2c2

n2
0

(6)

Factor N in (6) resembles the refractive index for plasma or waveguide
with the cut-off frequency Ω. To calculate the EM field components E
and H from (2), the dielectric susceptibility profile U(z) has to be found
from (4):

U2(z) =
(

1 + s1
z

L1
+ s2

z2

L2
2

)−2

; (7)

s1 = 0,±1; s2 = 0,±1. (8)

Here L1 and L2 are the free parameters of the model (7); these pa-
rameters can be interpreted as the characteristic heterogeneity scales
for dielectric susceptibility distribution. The value p2, determining the
cut-off frequency Ω, is obtained due to substitution of (7) to (4)

p2 =
s2
1

4L2
1

− s2

L2
2

(9)

Thus, we found the wide classes of exact analytical solutions of Max-
well equations in a heterogeneous dielectric medium (7). It is necessary
to emphasize, that the EM field (5) is presented in a simple form of
harmonic travelling wave only in η-space, meanwhile in a real space
the spatial waveforms of EM field are unharmonic and the distances
between zero-crossing points for field components are varying in the
course of propagation. It’s interesting, that the classical Rayleigh profile
ε(z) = n2

0/(1 + z/L)2, widely used in the electromagnetics of heteroge-
neous media, can be considered as a limiting case of (7), related to the
limit L1,2 → ∞.

2. Formulae (5) – (6) visualize the influence of heterogeneity-induced
dispersion (HID) on the wave field structure inside the medium. The
salient features of this type of dispersion are:

a. Subject to the correlation of characteristic scales L1 and L2 the
HID parameter p2 (9) can assume positive, negative or zero values; re-
spectively, the HID can be both normal and abnormal; in a case p2 = 0
HID doesn’t arise.

b. The variations of wave velocity, produced by HID, can exceed in
several orders of magnitude the effects of natural material dispersion.
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c. Choosing the parameters of heterogeneity profile U(z) one can
create the HID phenomena in an arbitrary spectral range, in particular,
in a range, far from the material absorption bands.

d. In a case p2 > 0, one can provide the formation of cut-off frequency
in the controlled spectral range even in a dispersiveless material.

e. Being derived from exact analytical solutions of Maxwell equations,
these results can be scaled from optics to another spectral ranges, e.g.,
to the microwave phenomena in communication lines with distributed
parameters.

3. The reflectivity of heterogeneous media depends critically upon
the value of characteristic scales L1 and L2. These dependences reveal
the new trends in optics of thin heterogeneous dielectric films. These
films can be used as the effective frequency-selective interfaces. Several
applications of such interfaces, perspective for nano-optics, are discussed:

a. Broadband antireflection coatings and reflectionless barriers. The
phase shifts between the waves, reflected from both sides of heteroge-
neous layer, are dependent upon the spatial profile of ε(z). This depen-
dence is shown to provide the antireflection properties of such layer in
a broad spectral range: thus, the layer with thickness d = 30 nm (L1 =
100 nm, L2 = 200 nm), made from glass with n0 = 1.73, has the cut-off
frequency (6) Ω = 1.25 · 1014 Hz. This layer is characterized by power
reflection coefficient, less than 5% over the wavelengths interval 500 nm
< λ < 1500 nm, covering the visible and near infrared range.

b. The optimized photonic bandgap in an arbitrary spectral range
can be created from multilayer coating, containing several heterogeneous
films.

c. The artificial skin layer and high-pass filter for the frequencies
ω, less than the cut-off frequency Ω (6), can be manufactured in an
arbitrary spectral range from the dispersiveless lossless material.

d. The highly dispersive mirror can be synthesized from some combi-
nation of the aforesaid heterogeneous films.

e. The thickness of heterogeneous reflectionless coating can be several
times smaller, than the thickness of traditional quarter-wave plate, act-
ing in the same spectral range. The relevant optimization of the scales of
antireflection coatings opens the new perspectives in the miniaturization
of both optical and microwave devices.

4. Temporal variations of the dielectric susceptibility of continuous
medium can change drastically the reflection – refraction properties of
these media. Unlike the Doppler effect, when the tuning of reflected
wave is connected with the reflector’s motion, we’ll examine here the
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temporal evolution of EM fields in the immobile media, whose dielectric
susceptibility is time-dependent: ε = ε(t). Both reflected and refracted
waves in this case become unharmonic.

The important characteristic of such instantaneous wave processes are
the finite relaxation times of electromagnetic parameters of the medium,
e.g., its dielectric susceptibility. In a number of problems, both applied
and academic, one can face the situation, when the period of oscillations
of incidenting field and the relaxation time of the material prove to be
of the same order of magnitude, and, thus, the exact analytical solutions
of Maxwell equations with time-dependent coefficients are required for
analysis of the wave problem. The wide family of such solutions is ob-
tained here for the simple models ε(t), assuming, that the dynamics of
medium relaxation is determined by external factors, independent upon
the propagating EM field, for instance, by heating, ionization or phase
transition. The electric induction D, produced by the field E, can be
presented in this model as

D(t) = ε(t)E(t); ε(t) = n2
0U

2(t) (10)

Let us consider, for simplicity, the normal incidence of linearly polarized
EM wave on the plane interface of instantaneous dielectric. Proceed-
ing by analogy with the spatially heterogeneous media, we’ll solve the
Maxwell equations, expressing the field components by means of an aux-
iliary function Ψ2

E =
1

n2
0U

2(t)
∂Ψ2

∂z
; H =

1
c

∂Ψ2

∂t
(11)

Introducing the new dimensionless function F and the new variable τ ,
having the dimension of time

F =
Ψ2√
U(t)

; τ =
∫ t

0

dt1
U(t1)

(12)

and using the model

U(t) = 1 +
s1t

T1
+

s2t
2

T 2
2

, (13)

one can derive a simple equation, governing the field F

∂2F

∂z2
− n2

0

c2

∂2F

∂τ2
=

n2
0

c2

F

T 2
;

1
T 2

=
1
2

∂2U

∂t2
− 1

4

(
∂U

∂t

)2

= const (14)
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Combination of (12) and (14) yields an explicit expression for the non-
stationary field

Ψ2 =
√

U(t) exp [i(qz − ωτ)] (15)

q =
ωn0

c
N ; N =

√
1 − p2

ω2
; p2 =

1
T 2

(16)

It is remarkable, that the obtained exactly solvable model doesn’t con-
tain any suppositions about smallness or slowness of variations of EM
fields or media.

5. The results (10) – (16) visualize some important tendencies of
EM waves reflection and refraction in the instantaneous dielectrics, re-
sembling the similar tendencies in the electromagnetics of heterogeneous
media:

a. Owing to transform (11) the EM field is presented as a travelling
harmonic wave in a (z, τ) space, meanwhile in a physical space (z, t) the
refracted waveforms are unharmonic and the distances between zero-
crossing points are unequal.

b. The non-stationary medium can possess giant non-stationarity–
induced dispersion, determined by the ratio between the wave’s period
and the medium relaxation time. This dispersion, described by factors
N (16), can be both normal and abnormal; in particular, in a case p2 > 0
the new cut-off frequency can arise.

c. Generalization of classical Fresnel formulae for the problem of re-
flectivity of instantaneous dielectrics, obtained by means of exact solu-
tions (15) – (16), reveals the decisive role of the first and second temporal
derivatives of the function ε(t) in formation of spatiotemporal structure
of both reflected and refracted EM field.

d. The dynamics of EM field in some pump-probe experiments in
physics of laser-plasma interactions show the importance of considera-
tion of ‘dynamical’ models of such interactions, meanwhile the applica-
bility of ‘quasistatic’ model, operating with usual Fresnel formulae and
current value of the function ε = ε(t), is restricted by analysis of ‘slow’
processes (ωT1,2 � 1).

e. Formation of EM shock waves and spectral broadening of reflected
wave due to fast variations of the dielectric susceptibility are examined.

The next step in development of these models will be the generaliza-
tion of the developed approach for electromagnetics of lossy media with
spatial and temporal variations of losses.
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Abstract In one–dimensional translationally invariant anharmonic lattices, an ex-
tended Bloch state with two or more strongly correlated particles is usu-
ally called a quantum breather. Here we study an attractive fermionic
Hubbard model with two kind of particles of opposite spin. We discuss
the existence of breathers, and several effects that break the transla-
tional symmetry of the system and localize the breather in the lattice.

Keywords: Anharmonic quantum lattices, Quantum breathers, Quantum lattice
solitons

1. Introduction
Recent theoretical developments and improved experimental techniqu-

es has led to growing interest in the phenomenon of localization of energy
by nonlinearity in anharmonic lattices. The existence and properties of
these intrinsic localized modes, known as discrete breathers, have been
subject of an much investigation (see, e.g [1] for a number of recent re-
views of this topic). At present, discrete breathers in classical systems
is a relatively well understood phenomenon, but knowledge of the quan-
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tum equivalent of discrete breathers is not very developed. In particular
we restrict ourselves to a study of small lattices and a small number of
quanta where some numerically exact solutions can be found. Although
of less interest to the study of bulk matter, such studies are relevant to
the recent developments in quantum nanotechnology and applications in
quantum computing [7].

The quantum equivalent of a discrete breather in a translationally
invariant anharmonic lattice is an extended Bloch state with two or more
particles in a strongly correlated state. There exist some theoretical
results (i.e. [2, 3]), and some experimental observations of these states
in different quantum systems, as mixtures of 4–methyl–pyridine [4], in
Cu benzoates [5], and in doped alkalihalides [6].

Here we present some results on a quantum one–dimensional lattice
problem with a small number of quanta. We study a periodic lattice
with f sites containing fermions, described by an attractive fermionic
Hubbard model (FH) with two kinds of particles with opposite spins. It
is a model of interest in connection with the theory of high-Tc super-
conductivity [8], and it can be used to describe bound states of electron
and holes in some nanostructures as nanorings (excitons) [9]. Many of
the results could be extended to a great variety of systems, i.e., we have
obtained similar results with a periodic lattice containing bosons and
described by the quantum discrete nonlinear Schrödinger equation [10].

This paper is organized as follows: In the next section we present
the model, and in Section 3 we study the existence of breathers in the
simplest nontrivial case. In Section 4, we consider some modifications
that break the translational symmetry of the lattice, and can localize
the breather in the lattice. In Section 5 we extend the previous results,
obtained in the simplest nontrivial case, to more complicated situations.
Finally, in Section 6, we summarize our findings and present our conclu-
sions.

2. The model
We consider an anharmonic lattice with f sites and two kinds of

fermions with opposite spins described by an attractive fermionic Hub-
bard model (FH). The Hamiltonian of the system is given by

Ĥ = −
f∑

j=1

γja
†
jajb

†
jbj + εja

†
j(aj−1 + aj+1) + meεjb

†
j(bj−1 + bj+1), (1)

where a†j(aj) and b†j(bj) are raising (lowering) operators for different elec-
tronic spin states, satisfying the standard fermionic anticommutation re-
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lations. The parameter ratio γj/εj represent the ratios of anharmonicity
to nearest–neighbor, hopping energy, and me is the ratio of the effec-
tive mass of one type of fermion to the other. To eliminate the effects
related to the finite size of the chain, we consider periodic boundary con-
ditions and, initially, a translational invariant lattice, γj = γ and εj = ε,
independent of j. In general we consider ε = 1.

The Hamiltonian (1) conserves the number of quanta N , and it is
possible to apply the number–state–method to calculate the eigenvalues
and eigenvectors of the Hamiltonian operator [11]. We use a number–
state–basis |ψn〉 = [na

1, n
a
2, ..., n

a
f ; nb

1, n
b
2, ..., n

b
f ], where na

i (nb
i) represents

the number of quanta of fermions a (b) at site i. In this case, Na =∑
i n

a
i , Nb =

∑
i n

b
i, and N = Na + Nb. A general wave function is

|Ψn〉 =
∑

n cn|ψn〉. As a first step, we restrict ourselves to study the
simplest nontrivial case Na = 1, Nb = 1, and as a second step we
consider more complicated situations with a small number of quanta,
although many of the results are valid for larger values of Na and Nb.
The bound states correspond to exciton states, localized electron/hole
states that may appear in nanorings.

3. Quantum breathers in a translational
invariant lattice

In a homogeneous quantum lattice with periodic boundary condi-
tions, it is possible to block–diagonalize the Hamiltonian operator using
eigenfunctions of the translation operator T̂ defined as T̂ b†j = b†j+1T̂

(T̂ a†j = a†j+1T̂ ). In each block, the eigenfunctions have a fixed value of
the momentum k, with τ = exp(ik) being an eigenvalue of the transla-
tion operator [11]. In this way, it is possible to calculate the dispersion
relation E(k) with a minimal computational effort. The corresponding
matrix in the case Na = Nb = 1 is

Hk = −

⎡⎢⎢⎢⎢⎢⎢⎣
γ q∗ 0 . . q
q 0 q∗ 0 . 0
0 q 0 q∗ . .
. . . . . .
. . . q 0 q∗
q∗ . . . q 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where q = (me + τ∗).
In this simplest non–trivial case, if the anharmonicity parameter is

large enough, as Fig 1 shows, there exists an isolated eigenvalue for each
k which corresponds to a localized eigenfunction, in the sense that there
is a high probability for finding the two quanta at the same site. But due
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to the translational invariance of the system, there is an equal probability
for finding these two quanta at any site of the system. In these cases,
some analytical expressions can be obtained in some asymptotic limits
(for a recent discussion see [2, 11, 12]). Note that, qualitatively, the
existence of this localized state is independent of the value of parameter
me.
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Figure 1. Eigenvalues E(k). N = 2, f = 19, γ = 4. me = 1 (top) and me = 0.2
(bottom).

If we consider for simplicity the case k = 0, the ground state unnor-
malized eigenfunction is

|Ψ〉 = [10 . . . 0; 10 . . . 0]+[01 . . . 0; 01 . . . 0]+. . . [0 . . . 01; 0 . . . 01]+O(γ−1),

i.e. on a lattice of length f , the unnormalized coefficients ci of the first
f terms are equal to unity and the rest are O(γ−1).

4. Trapping in a lattice with broken
translational symmetry

In this section we will consider some modifications that can break
the translational invariance of the lattice, changing the coefficients ci

and localize the breather around a particular point of the lattice. In
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these cases, the Hamiltonian operator cannot be block-diagonalized us-
ing eigenvectors of the translation operator. Although the computational
effort increases, it is still possible to calculate its eigenvalues and eigen-
vectors if f and N are small enough, by using algebraic manipulation
methods and numerical eigenvalue solvers. In this section we restrict to
the situation Na = Nb = 1.

Perhaps the simplest way to break the translational invariance of the
lattice is by considering non–flux boundary conditions to simulate a
finite–size chain. In this case, the solution becomes weakly localized
around the middle of the lattice. If f is high enough, and we do no take
into account boundary effects, this case reduces to the homogeneous
lattice case.

A alternative mechanism for breaking the translational invariance can
be the existence of local inhomogeneities or impurities. In our model,
this can be modeled by making one or more of the γj or the εj depen-
dent on j. This can occur because of localized impurities or long–range
interaction between non nearest-neighbors sites due to non–uniform ge-
ometries of the lattice chain. The interplay between these two sources
of localization, nonlinearity and impurities is important to understand
the properties of these bound states.

(a) (b)

α

Figure 2. Two non-uniform chain geometries.

Two examples of non–uniform geometries are shown in Fig. 2. In Fig.
2a, a twisted circular geometry causes an interaction between two sites
of the chain, which are distant with respect to measurement along the
length of the chain. This model has been used in a classical model of a
globular protein [13], and it has been shown that moving breathers de-
scribed by the DNLS equation can be trapped at the cross–over point.
Fig. 2b shows another possible geometry, a bent chain, that has been
recently studied in the context of the DNLS equation and photonic crys-
tal context [14] and in Klein–Gordon systems [15]. In all these cases,
the geometry effects can be modeled by adding a long–range interaction
term of the form

α�,m(b†�bm + b†mb�), (2)
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where � and m are the neighbouring sites put brought closer in the
twisted–chain case, and m = m0 − 1 and � = m0 + 1 in the bent–chain
case, where m0 is the vertex of the chain.

We will analyze in more detail these modifications that break the
translational invariance of the system.

4.1 Localization in a chain with impurities
We introduce a local inhomogeneity in the anharmonic parameter in

our system and retain periodic boundary conditions, in order to isolate
the effect caused by this local inhomogeneity alone. We put γ� = γimp,
and γj = γ for j �= l.

In the homogeneous system, as discussed above, if the anharmonicity
parameter is large enough there exists a high probability of finding the
two particles at the same site of the chain, but with equal probability at
any site of the chain. If we consider a point impurity, a isolated localized
bound state appears, as shown in Fig. 3. This state has minimal energy
and corresponds to the ground state.
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Figure 3. Eigenvalues E as a function of the expected value of k corresponding to
the localized eigenfunctions. N = 2, f = 19, me = 1 and γ = 4. Point impurity at
the site � = 10. Homogeneous chain (top). γimp = 4.5 (center). γimp = 5 (bottom).

If we analyze this ground state, we observe that as γimp increases,
the localization around the impurity increases too, as shown in Fig 4.
In particular, the main contribution to the wave function corresponds
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to the bound states centered around the impurity. There exists also a
small contribution that corresponds to states with particles in adjacent
sites around this local inhomogeneity.
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Figure 4. Square wave function amplitudes |cn|2 corresponding to the ground state
as a function of the positions of the two fermions along the chain na and nb. f = 19
and γ = 4. Point impurity at the site � = 10. (a) Homogeneous chain, me = 1. (b)
γimp = 4.5, me = 1. (c) γimp = 5, me = 1. (d) γimp = 5, me = 0.2.

If we analyze the contribution of the components of the wave function
of the ground state corresponding to the two particles centered around
the local inhomogeneity in the same site, in adjacent sites, and separated
by one site, as shown in Fig 5, we observe that the localization increases
very rapidly with the magnitude of the impurity. Varying the value
of me from unity amplifies this effect even further. We note that, in
this case, as harmonic terms are homogeneous (null), there exists no
Anderson–like localization.

4.2 Localization in a twisted chain
In order to simulate the twisted chain shown in Fig. 2a, we consider a

long–range hopping term between sites m and � given by parameter αm,�.
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Figure 5. Some components of the wave function corresponding to the ground
state. N = 2, f = 19, γ = 4 and me = 1. Two particles centered on the impurity
(continuous line). Two particles in adjacent sites with one of them centered on the
impurity (dashed–dotted line). Two particles separated by one site and one of them
on the impurity (dotted line).

As Fig. 6 shows, this coupling generates a localized bound state around
the sites m and � that is a ground state of the system, a phenomenon
similar to that shown in Fig 3. Although there exist some degree of
localization in the harmonic case (γ = 0) due to an Anderson–like effect,
the existence of bound states due to the anharmonicity parameter γ
strongly increases the localization. Similar results have been obtained
with different values of the parameter αm�.

4.3 Localization in a bent chain
To simulate the bend shown in Fig. 2b, we introduce an additional

term that takes into account the interaction between the two neigh-
bouring sites of the vertex. In this case, if we suppose that the hop-
ping term varies as the inverse of the square of the distance between
sites, the parameter α can be related to the wedge angle θ through
α = 1

2/(1 − cos θ)−1.
As shown in Fig. 7, due to the existence of this long–range interac-

tion, there exist a localization phenomenon around the vertex of the
chain. If the wedge angle is small enough, the ground state is mainly
a bound state with the two particles localized in the neighbouring site
of the vertex, but when this angle decreases, the contribution of the
components corresponding to non–localized states with particles around
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Figure 6. Square wave function amplitudes |cn|2 corresponding to the ground state
as function of the positions of the two fermions na and nb along the twisted chain.
Long range interaction between sites m = 5 and � = 15 with αm� = 1 and f = 19.
(a) γ = 0 (harmonic case), me = 1. (b) γ = 2, me = 1. (c) γ = 4, me = 1. (d) γ = 4,
me = 0.2.

the vertex becomes significant. In the limit θ → 0, the lattice becomes
a T-junction. We have found that in this system, the ground state is
mainly localized around the junction.

We have compared this localization effect with the Anderson-like lo-
calization in the harmonic system (γ = 0). As shown in Fig. 8, the exis-
tence of bound states in the anharmonic case implies that the localization
effect due to the curvature of the system increases. This enhancement
decreases when θ decreases, although there exists a maximum around
θ ≈ 0.5.

We note that this model, to give a more realistic approximation of
a bent chain, must be improved to take into account the long–range
interaction between all sites that becomes significant when the angle θ
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Figure 7. Square wave function amplitudes |cn|2 corresponding to the ground state
as a function of the positions of the two fermions na and nb along the bent chain.
f = 19 and γ = 4. (a) θ = π, me = 1. (b) θ = π/3, me = 1. (c) θ = π/10, me = 1.
(d) θ = π/10, me = 0.2.

is small enough. We have considered the model given by the Hamiltonian

Ĥ = −γ

f∑
j=1

a†jajb
†
jbj −

f∑
j=1

∑
i>j

1
d2

ij

(a†iaj + a†jai) −

f∑
j=1

∑
i>j

me

d2
ij

(b†ibj + b†jbi), (3)

where dij represents the distance between sites i and j. We have found
the same qualitative behavior.

5. Higher number of quanta
In previous sections, we have restricted our studies to the case Na =

Nb = 1. Proceeding as the same way, it is possible –in principle– to
construct the Hamiltonian matrix for any value of the quantum numbers
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Figure 8. Some components of the wave function corresponding to the ground state.
N = 2, f = 19 and me = 1. Localized state corresponding to the two particles at
the neighbor site of the vertex and γ = 4 (continuous line). Two particles in a non–
localized state at neighbouring sites of the vertex and γ = 4 (dashed-dotted line).
Two particles in a non–localized state at neighbouring sites of the vertex and γ = 0
(dotted line).

Na and Nb and to calculate the spectrum. However, the computational
effort increases rapidly and can go beyond the limits of computational
convenience. Nevertheless, we have studied some cases involving a higher
number of fermions. In particular, we have considered the case Na = 2
and Nb = 1 and the case Na = Nb = 2.

In general, we have found the same qualitative behavior than in the
previous case. In the homogeneous system, if the anharmonic parameter
is high enough, the ground state is mainly a localized state, in the sense
that there exists a high probability to find two different fermions at the
same point of the lattice, but due to the translational invariance of the
system, with equal probability of finding these two particles at any site
of the system. However, we observe that the main components of the
ground state correspond to states where fermions of the same type are
as far apart as possible from each other. This is a similar effect as due
to the finite–size of the chain where the ground state is weakly localized
around the center of the chain. When a fermion is close to other of the
same type, the hopping in that direction is limited, as in the case of a
finite–size chain.

When we introduce some local inhomogeneities in the system, we
have observed similar localization phenomena as noted above. In Fig
9 we show the case Na = 2 and Nb = 1 with a point impurity at the
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anharmonic parameter. We observe that the ground state is mainly a
bound state. The two different fermions are mainly in a localized state
centered at the impurity with the other fermion in the other extremum
of the chain. We note that there exists a significant contribution of
other components corresponding to localized states of the two different
fermions in the impurity and the other one in different sites of the chain,
this contribution being more significant when it corresponds to states
where the two fermions are separated by a large number of sites. This
system, in the context of excitons in ring geometries, is usually called
ortho–trion, and can be viewed as an exciton plus an additional electron
smeared over the ring [16].
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Figure 9. Some components of the wave function of the ground state corresponding
to the case f = 11, Na = 2, Nb = 1, γ = 4, point impurity at the site � = 6 and
γimp = 5. na represents the position of one of the fermions of type (a) (the other
fermion is located at na + 5) and nb the position of the fermion of type (b). me = 1
(left), me = 0.2 (right).

In the other cases, when a local inhomogeneity is introduced by means
of a long–range interaction term, or Na = Nb = 2 is considered, the be-
havior is similar. The ground state corresponds to a localized state
centered at the local inhomogeneities where different fermions are to-
gether and fermions of the same type are located as further apart as
possible one from the other.

6. Conclusions
In this work we have shown some results related with the existence

and properties of quantum breathers in a fermionic Hubbard model with
two kinds of particles of opposite spins. We have studied the existence
of localized states due to the nonlinearity and to the influence of local
inhomogeneities in these localized states. In particular, we have found
that these local inhomogeneities, due to the geometrical factor and to a
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long–range interaction or an impurity in the anharmonicity parameter,
break the translational invariance of the system and localize the ground
state around a particular site of the chain. We expect that these results
are rather general, and could be extended to a great variety of systems.
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[9] R.A. Römer and A. Punnoose, Phys. Rev. B 52, 14809 (1995).

[10] J.C. Eilbeck and F. Palmero. Preprint http://arXiv.org/abs/nlin/0309042,
(2003)

[11] A.C. Scott, Nonlinear Science (OUP, Oxford 1999, 2003).

[12] J.C. Eilbeck, in Localization and Energy Transfer in Nonlinear Systems, eds.
L. Vázquez, R.S. MacKay, M.P. Zorzano, World Scientific, Singapore, 177
(2003).

[13] J.C. Eilbeck, in Computer Analysis for Life Science, eds. C. Kawabata and
A.R Bishop, 12 (Ohmsha: Tokyo 1986).

[14] P.L. Christiansen, Y.B. Gaididei and S.F. Mingaleev, J. Phys. Condens. Matter
13, 1181 (2001); Yu.S. Kivshar, P.G. Kevrekidis and S. Takeno, Phys. Lett. A
307, 287 (2003).



412 NONLINEAR WAVES: CLASSICAL AND QUANTUM ASPECTS

[15] J. Cuevas and P.G. Kevrekidis. Preprint http://arxiv.org/abs/nlin.PS/0308022
(2003).
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ENERGY LOCALIZATION AND FIRST
ORDER PHASE TRANSITION IN
SOLIDS AND MOLECULES
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Abstract An attempt is made to give a unified picture of energy localization
as a precursor to the first order phase transition and the Martenthitic
transformation in solids and the molecular dissociation in chemistry.

Keywords: Intrinsic localized modes, Energy localization, Melting of solids, Marten-
sitic transformation, Vortices, Bond energy localization, Molecular dis-
sociation, No energy equipartition.

1. Introduction
Despite the strong interest in melting of solids over the past 100 years,

its mechanism does not appear to have been well understood. In parallel
to this, much debates have been made on natures of Martensitic trans-
formation (MT) in solids. Situations similar to this exist in chemistry,
where little is known about dynamics of molecules leading eventually to
dissociation and chemical reaction. Let us first pay attention to situa-
tions in chemistry, where the familiar normal mode model has long been
used to describe vibrations of polyatomic molecules [1]. As a zeroth-
order description, it works well as long as the anharmonicity of molec-
ular vibrations is negligibly small compared with harmonic vibrations.
A general vibrational state of a given molecule can then be expressed as
a superposition of normal-mode-vibrations, in terms of which the stan-
dard theory can be formulated both in classical and quantum levels. In
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certain sense, normal coordinates extends equally over whole regions of
molecules. On the other hand, local (“bond”) modes provide a counter-
intuitive contrast to the above situations. The local mode model was put
forward long time ago in order to explain the overtone absorption spectra
of polyatomic molecules [2], [3]. They are vibrational modes with long
lifetimes in which the motion and the energy are more or less confined to
a single bond. In spite of its long history and accumulation of a wealth of
spectroscopic data, the local mode model itself appears to have remained
in conceptual and phenomenological stage. Relevance of the localization
of the bond vibrational energy to chemical dissociation does not appear
to have been mentioned, to the best of the authors’knowledge. Because
the first-order phase transitions including chemical dissociation is initi-
ated by deviations far from equilibrium, there is a good reason to believe
that large-amplitude motion of atoms are likely to be involved as a key
ingredient among possible mechanisms. Closely connected with this are
intrinsic localized modes (ILM) in nonlinear lattice dynamics. [4, 5]

It is the purpose of this paper to show that energy localization (EL) at
particular bonds or regions in systems associated with the ILM plays the
role of precursor to the first order phase transition including chemical
dissociation. Relevance of the EL to the phase transition was previously
presumed by Shigenari and his coworkers in their experiments using Ra-
man and fluoresence spectroscopy [6, 7] and by Peyrard theoretically
[8, 9]. The result obtained here is different from theirs in the following
respect that space-time evolution of atoms exhibiting the EL which sub-
sequently leads to the phase transition or the dissociation was explored
both numerically and analytically to illustrate how the EL takes place.
Two cases of dynamical systems characterized by soft interatomic poten-
tial are considered: (1) An idealized linear 3-atom molecule composed
of identical atoms. (2) FCC-type small crystals without internal lattice
defects. For case (1) and (2) the Morse potential and a model poten-
tial employed empirically for Fe were adopted. In the former, we pay
particular attention to large amplitude motion of atoms leads to local
breaking of bond and the time-evolution of the bond energy. It is shown
that energy localization at a particular bond accompanied with trans-
ferring of the bond energy from surroundings induces bond breaking. In
the latter we made detailed examination of change of cohesive energy,
shape of the model crystal, trajectories of atoms, appearance of BCC
phase, etc. Characteristic features were the appearance of vortex-like
pattern of trajectories of atoms on the surface of the small crystal as an
excited transient state prior to the onset of MT, in which vortices can
be considered as a spatially extended version of the ILM.
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(a)
(b)

Figure 1. Time evolution for case (i) of y1(t) (a) (large amplitude) and y2(t) (b).

Thus, we propose here a unified picture of energy localization as a
precursor to the first order phase in solid, the MT transformation and
the chemical dissociation.

2. Nonlinear molecular vibrations and chemical
dissociation

2.1 Equations of motion
We consider vibrations of molecules. We assume from the outset that

the Born-Oppenheimer approximation is satisfied for the electronic, vi-
brational and rotational states of the molecules. Let the atomic mass
and the displacement vector of an i atom from its equilibrium position in
a molecule be mi and �ri, respectively. The interatomic potential between
the i and j atoms, Uij in the molecule is taken to be of the form

Uij = Uij(| �ri − �rj |) ≡ Uij(| �rij |) with Uji(rji) = Uij(rij) (1)

We first consider vibrations of 3-atom molecules. Let three atoms be 1,2
and 3 with atomic masses m1, m2 and m3, respectively, as depicted in
Fig. 1

Let the position vector of an i(i = 1, 2, 3) atom be �ri. We set

�rij = �ri − �rj, rij = |�ri − �rj| with �rji = −�rij, rji = rij (2)

Equations of motion for the vibrations of the i atom are written as

mi
d2�ri

dt2
= −

∑
j �=i

dUij(�rij)
d�ri

(3)
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We are particularly interested in the dynamics of bonds rather than
that of individual constituent atoms. For an i-j bond, the equation of
motion takes the form

d2�rij

dt2
= − 1

µij

dUij(rij)
d�rij

− 1
mi

∑
k�=i

dUik(rik)
d�rik

− 1
mj

∑
��=j

dU�j(r�j)
d�r�j

(4)

Such a procedure ensures the conservation of the total momentum of the
molecule or the center of gravity of the molecule being at rest, i.e.

∑
i

mi�̈ri = 0
∑

i

mi�ri = const (5)

where

1
µij

=
1

mi
+

1
mj

(6)

is the reduced mass of the i and j atoms. Multiplying d�rij/dt on both
sides of Eq.(4) gives equations of motion for the local bond energy hij,

hij =
µij

2

[
d�rij

dt

]2

+ Uij(rij), (7)

in the form

dhij

dt
= −µij

mi

∑
k�=i

dUik(rik)
d�rik

· d�rij

dt
− µij

mj

∑
��=j

U�j(r�j)
d�r�j

· d�rij

dt
(8)

Equation (8) can be rewritten as

dhij

dt
= −µij

mi

∑
k�=i

dUik(rik)
dt

d�rij

d�rik
− µij

mj

∑
��=j

U�j(r�j)
dt

d�rij

d�r�j
(9)

2.2 Applications: 3-atom molecule
2.2.1 General theory. We first illustrate the above procedure
to the case of a 3-atom molecule. Let three atoms be 1,2 and 3 with
atomic masses m1, m2 and m3, respectively. Equation (4) then takes
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the form

d2�r12

dt2
= −

(
1

m1
+

1
m2

)
∇12U12(r12) − 1

m1
∇13U13(r13)

− 1
m2

∇32U32(r32)

d2�r13

dt2
= −

(
1

m1
+

1
m3

)
∇13U13(r13) − 1

m1
∇12U12(r12)

− 1
m3

∇32U32(r32)

d2�r32

dt2
= −

(
1

m2
+

1
m3

)
∇32U32(r32) − 1

m3
∇13U13(r13)

− 1
m2

∇12U12(r12) (10)

Of these three equations, two equations are independent of one another.
For example, we can eliminate the relative position vector �r13 in favor
of �r12 and �r32 by noting that �r13 = �r12 − �r32, arriving at the equations

d2�r12

dt2
= − 1

µ12

dU12(r12)
d�r12

− 1
m2

dU32(r32)
d�r32

− 1
m1

dU13(|�r12 − �r32|)
d�r12

(11)

d2�r32

dt2
= − 1

µ32

dU32(r32)
d�r32

− 1
m2

dU12(r12)
d�r12

− 1
m3

dU31(|�r32 − �r12|)
d�r32

(12)

Here, we limit our discussion to the case where the last terms in both
of Eqs. (11) and (12) can be neglected as compared with the remaining
terms, i.e.,

d2�r12

dt2
= − 1

µ12

dU12(r12)
d�r12

− 1
m2

dU32(r32)
d�r32

, (13)

d2�r32

dt2
= − 1

µ32

dU32(r32)
d�r32

− 1
m2

dU12(r12)
d�r12

. (14)

And Eqs. (9) take the form

dh12

dt
= −µ12

m2

dU32(r32)
dt

d�r12

d�r32
, (15)

dh32

dt
= −µ32

m2

dU12(r12)
dt

d�r32

d�r12
(16)
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From these two equations, we arrive at the equation

dh12

dt

dh32

dt
=

µ12µ32

m2
2

dU12(r12)
dt

dU32(r32)
dt

(17)

Conservation of the local bond energy

h12 = const or h32 = const or both (18)

provided

dU12(r12)
dt

= 0 or
dU32(r32)

dt
= 0 (19)

2.2.2 An illustrative example, a linear 3-atom molecule.
Here, we are concerned with stretching vibrations of three atoms in the
molecule which are taken to be located on the x-axis. Let x1, x2 and
x3 be the displacement of the atoms 1, 2 and 3, respectively, along the
x-axis. Then, in terms of

r12 = x1 − x2 ≡ y1, r32 = x3 − x2 ≡ y2 (20)

The inter-atomic potential energy is taken to be of the Morse-potential
type

Ui(yi) = ci[1 − exp(−aiyi)]2, i = 1, 2 (21)

where ci and ai are constants. Eqs.(13) and (14) reduce to

d2y1

dt2
= − 1

µ12

dU12(y1)
dy1

− 1
m2

dU32(y2)
dy2

, (22)

d2y2

dt2
= − 1

m2

dU12(y1)
dy1

− 1
µ32

dU32(y2)
dy2

, (23)

dh12

dt

dh32

dt
=

µ12µ32

m2
2

dU12(y1)
dt

dU32(r2)
dt

. (24)

2.2.3 An idealized 3-atom molecule. Equations (22) and
(23) constitute a pair of nonlinear differential equations which are gener-
ally non-integrable. The basic vibrational properties of the three-particle
system under consideration can be understood better by first studying
an idealized case where all the three atoms are identical with atomic
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mass m. These equations and Eq.(24) then reduce to

d2y1

dt2
= − 2

m

dU12(y1)
dy1

− 1
m

dU32(y2)
dy2

, (25)

d2y2

dt2
= − 1

m

dU12(y1)
dy1

− 2
m

dU32(y2)
dy2

, (26)

dh12

dt

dh32

dt
=

1
4

dU12(y1)
dt

dU32(r2

dt
(27)

Small-amplitude regime of these equations are well-known, where their
solutions are described by conventional normal modes. We are particu-
larly interested here in the existence of large-amplitude nonlinear modes
which leads eventually to dissociation of the molecule. To seek such a
mode and inquire into its properties, we solved Eqs. (25) numerically,
where we set c1 = c2 = a1 = a2 = 1 for simplicity. For this purpose, for
yi ≡ yi(t), ẏi(t) = dyi(t)/dt (i = 1, 2), we set

yi(0) ≡ ui, ẏi(0) ≡ vi, (28)

Two kinds of initial conditions,

(i) u1 = u2 = v2 = 0, v1 = 1.74 large amplitude regime
(ii) u1 = u2 = v2 = 0, v1 = 0.5 small amplitude regime (29)

are used here, of which the first one was chosen to observe how molecular
dissociation takes place, while the second one was chosen to illustrate
the case of small-amplitude vibrations where the conventional normal-
mode concepts holds. The result of numerical calculation for case (i)
was shown in Fig. 1 and Fig. 2 for yi(t) and hi(t), respectively, where
we put U12 ≡ U1(t), U32(t) ≡ U2(t) for simplicity.

The corresponding quantities for case (ii) are shown in Fig. 3 and
Fig. 4, respectively.

Figures 1 and 3 shows the how the bond vibrational motion for
large-amplitude motions different from the corresponding one for small-
amplitude motion. It is seen from Fig. 2a that at the initial stage t < 400
equi-partition of energy holds in the bonds 1 and 2, but for t ≥ 400
almost all energy are localized at bond 1. Here the energy shared by bond
2 is transferred to bond 1. This subsequently induces bond 1 breaking at
t ≈ 400. This is to be compared with the case (ii) where equi-partition
of energy takes place between the bonds 1 and 2 as seen from Fig. 4.
The physical meaning of the obtained result can be appreciated further
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Figure 2. Time evolution for case (i) of h1(t) (a) and h2(t) (b).

Figure 3. Time evolution for case (ii) of y1(t) (a) and y2(t) (b).

Figure 4. Time evolution for case (ii) of h1(t) (a) and h2(t). Small-amplitude
vibrations.
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by looking at the time evolution of the kinetic energy Ki(t) and the
potential energy Ui(t) of the i (=1,2,3) atom defined by

Ki(t) =
m

2
ẋi(t)

2, (30)

U1(t) = (1 − exp[−y1])2, (31)

U2(t) =
1
2
(1 − exp[−y1])2 +

1
2
(1 − exp[−y2])2, (32)

U2(t) = (1 − exp[−y2])2 (33)

These quantities are shown in Fig. 5, where Fig.s 5(ai) and 5(bi)
(i=1,2,3) stands for Ki(t) and Ui(t), respectively. To make closer exami-
nation of the energy localization in molecular vibrations, time evolution
of yi(t) and hi(t) just before and after dissociation, 390 < t < 400, was
made. The result for the former and the latter was shown in Fig. 6,
where Fig.s 6(ai) and 5(bi) (i=1,2,3) stands for yi(t) and hi(t), respec-
tively. Comparing these two, we see that breaking of the bond 1 results
from accumulation of the vibrational energy there, where the vibrational
energy of the bond 2 is transferred to the bond 1.

2.2.4 Implication of the obtained result to melting of solids.
The numerical result for the linear 3-atom molecule obtained above

is not directly applicable to the problem of melting of solids. For this
purpose, exploring large-amplitude vibrational motion of atoms in three-
dimensional (3D) lattice is indispensable, though simpler cases of two-
dimensional (2D) lattice gives some useful information on these prob-
lems. However, if we look at the motion of atoms in the direction of
large-amplitude motion, calculations based on one-dimensional models
may be of some use, for which we should modify the original Morse
potential by an effective soft potential with several minima.

3. Martensitic transformation of a small pure
crystal

Bulk metal crystals are believed to contain dislocations or defects of
the order of 108 - 1010/cm2. Many discussions have been made to see
whether the Martensitic transformation originates from the effects of the
defects or the intrinsic properties of the crystals. Keeping this in mind,
we performed numerical investigation of the Martensitic transformation
(MT) of a small crystal in the range of nm containing any extrinsic
defects without using the periodic boundary condition [10]. A molec-
ular dynamics method using the 5th order Gear algorithm was used,
where the embedded atom method potential was used [11]. This poten-
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Figure 5. Time evolution of the kintic energy Ki(t) and the potential energy Ui(t)
of i-th atom. Case (i).



Energy localization and phase transition in solids and molecules 423

Figure 6. Time-evolution of yi(t) and Ui(t) (i = 1, 2) in the range 390 < t < 400
for the case (i).
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Figure 7 Change of
cohesive energy (eV) vs
time(ps). Dotted and
full lines in the inset
corresponds to FCC and
BCC, respectively.

tial makes FCC Fe metastable and Bcc stable, it cannot reproduce the
reversal of the stability of FCC against Bcc with temperature increase.
The study of the MT is therefore carried out by raising the temperature
of metastable FCC.

Among many obtained numerical results, the simplest ones, that of
a crystal with 453 atoms is presented here. The integration step is
6.4fs. and the total kinetic energy is coled to the temperature at ev-
ery 10 integration steps. The temperature is raised at constant rate of
4.59K/ps from the initial temperature of 10K up to 200K and held there
afterwards. Change of the cohesive energy per one atom is plotted as
a function of time in Fig. 7, in which the radial distribution function
of the system at 51.2 ps is plotted. It is seen that sudden drop of the
cohesive energy close to 51.2 ps signals the MT.

Change of averaged coordinates of the atoms on the surface of the
system during the time span from 46 ps to 51 and that from 51 to
56 ps is ps seen from [100] directions is shown in the upper left and
right, respect of Fig. 8. The lower left and right show the change of the
positions of atoms on the [100] cross section through the center of the
crystal during 46 ps to 51 ps and 51 to 56 ps, respectively. It is seen
that vortex-like patterns are observed by pairs in the right are found to
penetrate gradually in the interior of the crystal as shown in the lower
right.

To gain physical picture of vortices as as a precursor of the MT, we
explored votex solutions of two-dimensional (2D) sine-Gordon equations
[12] as a model field equations for atoms on the surface of system to see
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Figure 8. Averaged displacement of atoms.
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Figure 9. Energy density of vortex solution of 2D SG equations.

that energy localization takes place at the vortex site, though the vortex
itself can be considered as an extended defect (see Fig. 9 ).
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SOLITON DYNAMICS IN RANDOMLY
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garnier@cict.fr

Abstract We consider the propagation of solitons in randomly perturbed nonlin-
ear lattices. We address the Ablowitz-Ladik chain with a random on-
site potential and the Toda lattice with a randomly distributed chain of
masses. Our approach is based on a perturbation theory of the inverse
scattering transform and stochastic calculus. The generation of a soli-
ton gas consisting of a large collection of evanescent solitons is shown
to play an important role. The interplay of discreteness, nonlinearity,
and randomness is discussed. The interaction is governed by a length-
scale competition involving the typical scales of the soliton as well as
the correlation length and the lattice step of the medium.

Keywords: Soliton, random media.

1. Introduction
The propagation of nonlinear waves in disordered media was recently

the subject of many investigations. Most results concern the dynamics of
waves in continuous media. Different scales have been shown to play im-
portant roles. One of them is the localization lengthlength,localization
characterizing the decay law when the nonlinearity is small. The second
one is a nonlinear length, which decays as the wave amplitude increases.
Below some amplitude threshold, the localization length is less than
the nonlinear length, so that the exponential decay of wave is observed.
Above the amplitude threshold the decay law is dramatically reduced
which proves that nonlinearity can compete with the exponential local-
ization [1, 2].

When the media are discrete a new length scale is coming into the
problem: the distance between two neighboring sites of the lattice.
In a periodic chain of masses, interactions between lattice oscillations
can take the form of a resonant sequence, leading to the transfer of the
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energies of lattice excitations on large distances. Randomness leads to
the detuning of the resonances and to the localization of the energy of an
excitation on a finite number of sites. The spectrum of normal modes is
pure point [3]. This result is valid for 1D and 2D lattices and occurs in
3D lattices for when the intensity of fluctuations is strong enough [4, 5].

In most nonlinear discrete systems like discrete nonlinear Schrödinger
(DNLS) equation, nonlinear Klein-Gordon lattice, Fermi-Pasta-Ulam
chain, moving localized modes are absent due to the Peierls-Nabarro
barrier and standing localized modes exist. Moving localized solutions
exist in integrable nonlinear discrete models. Two models admitting
moving discrete solitons are important. The first one is the Ablowitz-
Ladik (AL) model, which is the integrable discretized version of the
continuum nonlinear Schrödinger (NLS) equation. The wave dynamic
in some electric transmission LC lines is modeled by the superposition of
DNLS and AL equations with different weights [6]. The second model is
the Toda chain, which is used as a model for the dynamics of biopolymers
like DNA chains [7], LC transmission lines [8], excitations in anharmonic
lattices, lattices of optical solitons in fibers [9].

For disordered nonlinear discrete media few analytical results are
available. The first theoretical approach addresses a dilute system of
impurities where the distances between impurities are larger than the
soliton width and each interaction between soliton and impurity can be
considered as isolated [10, 1]. Another approach consists in using the
continuum approximation, and studying the stochastically perturbed
wave equations [11]. This approach, considering only broad solitons,
uses the mean field theory and neglects radiation phenomena that are
important for long distance propagation in a random chain, so that it is
generally questionable for nonlinear waves in random media [12]. Most
papers [13, 14, 15] apply the collective variable approximation or the av-
eraged Lagrangian approach, where the solution is sought in a soliton-
like form with time-dependent parameters. The ansatz is substituted
into the Lagrangian of the system, so that a finite-dimensional system
of ordinary differential equations is obtained for the set of soliton param-
eters. The most significant drawback of this method is that it neglects
radiation effects. Scharf and Bishop [13] show that the collective vari-
able approach is efficient when dealing with a slowly varying potential
which is almost constant at the scale of the soliton width. In this paper
we consider the AL (resp. Toda) chain with a segment containing a
random potential (resp. random masses). We use the Inverse Scattering
Transform to take into account both the variations of the soliton pa-
rameters and the radiation effects, which are important especially when
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the correlation length of the medium is of the same order as the soliton
width.

2. The Toda chain

2.1 The homogeneous Toda chain
The model consists of a one-dimensional chain of particles. Each

particle with mass 1 interacts through a nearest neighbor exponential
potential. The difference equation that governs the dynamics of the
lattice is deduced from Newton’s law [8]:

ẍn = exp(xn+1 − xn) − exp(xn − xn−1), (1)

where xn is the longitudinal displacement of the n-th particle from its
equilibrium position and the dot stands for a derivative with respect to
time.

2.1.1 The inverse scattering transform. Equation (1) can
be rewritten as

ċn = cn(vn − vn−1), v̇n = cn+1 − cn,

where cn = exp (xn − xn−1) and vn = ẋn. The eigenvalue problem for
the continuous spectrum filling the interval −2 ≤ λ ≤ 2 reads [16]

√
cn+1fn+1(k) +

√
cnfn−1(k) + vnfn(k) = λfn(k), λ = k + k−1,

where k is the spectral parameter that lies in the unit circle S1 =
{k ∈ C, |k| = 1}. The Jost function ψ (resp. φ) is the eigenfunction that
satisfies the boundary condition ψn(k)�kn as n → ∞ (resp. φn(k)�k−n

as n → −∞). The Jost coefficients are connected to the Jost functions
through the identities:

φn(k) = a(k)ψ∗
n(k) + b(k)ψn(k), ψn(k) = a(k)φ∗

n(k) − b∗(k)φn(k).

a admits an analytic continuation inside the unit disk. The points on
the real axis kr, r = 1, ..., R , |kr| < 1, at which a(kr) = 0 correspond
one-to-one with eigenvalues of the discrete spectrum. At these points we
have φn(kr) = brψn(kr), Im(br) = 0. Setting ρr = br/a′(kr), the set of
scattering data

{
a(k), b(k), k ∈ S1, kr, ρr, r = 1, ..., R

}
satisfies two im-

portant properties. First it is sufficient to reconstruct the Jost functions
and the function (xn)n∈N by the Gel’fand-Levitan-Marchenko equation.
Second the scattering data satisfy time evolution equations that are un-
coupled and integrable: ȧ = 0, ḃ = ω(k)b, and ρ̇r = ω(kr)ρr, where
ω(k) = k − 1/k.
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2.1.2 Conserved quantities. As any integrable system the
Toda chain possesses conserved quantities that can be expressed either
in terms of (xn)n∈N or in terms of the density n(θ) = − ln |a(eiθ)|2,
θ ∈ [0, 2π). The total displacement

D0 = lim
n→+∞xn − lim

n→−∞xn = − 1
2π

∫ 2π

0
n(θ)dθ + 2

R∑
r=1

ln(|kr|)

the momentum

M0 =
∞∑

n=−∞
ẋn =

1
2π

∫ 2π

0
n(θ) cos(θ)dθ +

R∑
r=1

kr − kr
−1

and the Hamiltonian

H0 =
+∞∑

n=−∞

1
2
ẋ2

n + [exp(xn − xn−1) − (xn − xn−1) − 1]

=
1
π

∫ 2π

0
n(θ) sin2(θ)dθ +

R∑
r=1

kr
2 − kr

−2 − ln(kr
2)

are three of the infinite number of conserved quantities for the homoge-
neous Toda chain.

2.1.3 Soliton. The scattering data of a pure soliton are

a(k) = ε0
k − k0

kk0 − 1
, b(k) = 0, k0 = ε0 exp(−q0),

ρ0 = exp(2q0n0(t)) sinh(q0), n0(t) = n0(0) − ε0 sinh(q0)/q0t

where q0 > 0, ε0 = ±1. The corresponding solution is:

xn(t) = − ln
[
1 +

eq0 sinh(q0)
cosh(q0(n − n0(t)))

e−q0(n−n0(t))

]
. (2)

Note that the soliton solution is negative-valued. Its velocity is negative
(resp. positive) if the zero k0 is positive (resp. negative).

2.2 Propagation with an impure segment
2.2.1 Perturbation model. We assume from now on that the
masses of the particles are not equal

mnẍn = (exp(xn+1 − xn) − exp(xn − xn−1)) , (3)
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where mn is the mass of the particle at site n. A finite segment of impure
masses is embedded into a homogeneous infinite chain

mn =
{

1 for n ≤ 0 and n ≥ Nε + 1,
1 + εVn for 1 ≤ n ≤ Nε,

where the small parameter ε ∈ (0, 1) characterizes the amplitude of the
perturbation. (Vn)n∈N is a sequence of identically distributed random
variables. They are zero-mean 〈Vn〉 = 0; they possess finite moments; the
chain is stationary so 〈V0Vn〉 = 〈VmVm+n〉. We may think for instance at
the discrete white noise, where the random variables Vn are statistically
independent 〈VmVn〉 = 0 if m �= n with the variance σ2 =

〈
V 2

n

〉
. This

configuration has been studied numerically in Refs. [17, 18]. We may
also consider a colored noise with a Gaussian autocorrelation function
〈V0Vn〉 = σ2 exp(−n2/l2c) with variance σ2 and correlation length lc.

The length of the impure segment Nε is assumed to be large, of the
order of ε−2, and we set Nε = [l0/ε2]. We introduce the slow variable
l as n = [l/ε2]. Here the brackets stand for the integral part of a real
number. We assume that a pure soliton is incoming from the left. The
parameter of the soliton is k0 = −e−q0 . Note that the total displacement,
momentum and Hamiltonian are preserved:

D = lim
n→+∞xn − lim

n→−∞xn, M =
∞∑

n=−∞
mnẋn, (4)

H =
∞∑

n=−∞

1
2
mnẋ2

n + [exp(xn − xn−1) − (xn − xn−1) − 1] . (5)

2.2.2 Asymptotic behavior. By applying the method intro-
duced by Karpman [20], the Jost coefficients satisfy the coupled equa-
tions:

ȧ = ε(k − k−1)−1 (γ̃(t, k)a + γ(t, k)b) , (6)
ḃ = ω(k)b − ε(k − k−1)−1 (γ∗(t, k)a + γ̃(t, k)b) , (7)

where the coupling terms are γ(t, k) =
∑

n ψ2
n(t, k)Vn(cn+1 − cn)(t) and

γ̃(t, k) =
∑

n |ψn|2(t, k)Vn(cn+1 − cn)(t). ψ is the Jost function in-
troduced in Section 2.1.1. The presence of the factor (k − k−1)−1 in
Eqs. (6-7) is important. It means that a resonance exists close to k = 1
and k = −1, and thus small solitons are likely to be generated, as was
observed for the random Korteweg-de Vries equation [21].

The random perturbation induces variations of the spectral data. Cal-
culating these changes we are able to find the effective evolution of the
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field and calculate the characteristic parameters of the wave. We are
interested in the effective dynamics of the soliton propagating through
large impure segments with length Nε = [l0/ε2]. The total energy is
conserved but the discrete and continuous components evolve during the
propagation. The evolution of the continuous component corresponding
to radiation will be found from the evolution equations of the Jost co-
efficients. The evolutions of the soliton parameter will then be derived
from the conservation of the total energy. However this approach turns
out to be a little more tricky than expected because of the generation of
new solitons. We can now state the main result [19].

1) With a probability that goes to 1 as ε → 0, the wave scattered by a
large impure segment with length [l/ε2] consists of one main soliton with
parameter qε(l), a soliton gas, and radiation. A soliton gas is a large
collection of small solitons whose total energy is evanescent (as ε → 0)
while the sum of their momenta is non-zero.

2) qε(l) converges in probability to the deterministic function qs(l)
which satisfies the ordinary differential equation

dqs

dl
= F (qs), (8)

where

F (q) = − 1
4π

∫ 2π

0
C2(q, θ)R̂(2K(q, θ))

sin2(θ)
sinh2(q)

dθ, (9)

C2(q, θ) is the normalized energy density scattered by the soliton with
parameter q per unit distance for a discrete white noise

C(q, θ) = π
sin

(
θ − q sin(θ)

sinh(q)

)
sinh

(
π sin(θ)
sinh(q)

) , (10)

R̂(κ) is the discrete Fourier transform of the autocorrelation function of
(Vn)n∈N

R̂(κ) =
∞∑

n=−∞
〈V0Vn〉 cos(κn), (11)

and K(q, θ) is the wavenumber K(q, θ) = θ − q sin(θ)
sinh(q) . Note that R̂ is

positive real-valued (Wiener-Khintchine theorem). In case of a discrete
white noise R̂(κ) is constant and equal to the variance σ2. In the fol-
lowing sections we shall extend the analysis of equation (8) carried out
in [19] by discussing in particular the role of the correlation length.
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2.2.3 Small-amplitude soliton regime - white noise. If
q � 1, then the scattered energy density can be analyzed more precisely.
It is found that the function C is concentrated around θ = π with a
bandwidth of the order of q. This means that the radiation is going
backward. Integrating establishes that qs(l) = q0/

√
1 + 2σ2q2

0l/15. In
terms of energy, the decay rate reads as

Hs(l) =
H0(

1 + 2σ2q2
0l/15

)3/2
. (12)

Note that the decay rate as l−3/2 for the soliton energy is in agreement
with the numerical simulations carried out in [17, 18, 19]. Fig. 1a shows
that this behavior of the soliton, obtained theoretically in the asymptotic
framework ε → 0, can be observed in numerical simulations in the case
where ε is small, more precisely smaller than any other characteristic
scale of the problem.
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Figure 1. Energy of the transmitted soliton as a function of the length of the impure
segment. Different initial values for the soliton parameters are addressed. The solid
lines stand for the theoretical values (Eq. (8)), and the dotted lines plot the results
of full numerical simulations. We consider random masses mn = 1 + εVn along the
segment [1, N ] where Vn are independent random variables with uniform distributions
between −1 and 1. We take the value ε = 0.1. The scales are log-log in picture a
(so that the N−3/2 decay is noticeable), and lin-log in picture b (so that the initial
exponential decay is noticeable).

2.2.4 Large-amplitude soliton regime - white noise. The
regime when q0 � 1 can also be analyzed precisely, as long as qs(l) � 1.
It is found that the function C becomes independent of θ which means
that broadband radiation is emitted. Integrating establishes that the
decay rate of qs is linear qs(l) = q0−σ2l/4, which reads as an exponential
decay in terms of the energy:

Hs(l) = H0 exp
(
−σ2l

2

)
. (13)
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The energy decay rate is also independent of the energy of the incoming
soliton. This feature was pointed out by numerical simulations [18, 19]
(see also Fig. 1b). When the value qs becomes of the order of 1, the
decay switches to the power law described in the previous section.

It should be noted that the decay rate of a large-amplitude soliton is
higher than the one of a small-amplitude soliton. This seems in contra-
diction with previous analysis of solitons driven by random perturbations
for other types of integrable systems, such as the NLS equation [1]. How-
ever we cannot extrapolate the results corresponding to the continuous
NLS equation to our system for the two following reasons. First the am-
plitude and velocity of the NLS soliton are not coupled and in the large
mass limit the variations of mass is small, but the variation of velocity
is important. In the Toda chain the soliton amplitude and velocity are
coupled so the deceleration leads to the damping of amplitude. Second
discreteness plays a primary role when the soliton amplitude is large and
the additional scale order of the lattice step comes into the play. The
analysis of the randomly perturbed NLS equation has shown that nonlin-
earity may reduce the exponential localization. The proposed analysis of
the randomly perturbed Toda system shows that the interplay between
discreteness, nonlinearity and randomness is more complicated and may
lead to an enhanced instability of a large-amplitude soliton. In the large-
amplitude regime the soliton width is of the order of one site, and so is
the correlation length of the discrete white noise. This involves a strong
interaction between the medium and the soliton. This comment will be
confirmed in the following section.

2.2.5 Role of the correlation length. Let us assume that
(Vn)n∈N is a colored noise with the autocorrelation function 〈V0Vn〉 =
σ2 exp(−n2/l2c). For an arbitrary lc the complete expressions (9-11)
should be considered. The case lc ≤ 1 corresponds to the discrete white
noise case. In this section we shall assume that lc ≥ 1 to analyze the
soliton dynamics and the influence of long-range correlation.

For large-amplitude soliton, the decay rate is independent of the soli-
ton parameter as soon as q ≥ 3, and that the decay rate is maximal in
the white noise case (lc ≤ 1). For small-amplitude soliton, the maximal
decay rate arises when qlc ∼ 0.6 (Fig. 2). Accordingly the interaction
between the soliton and the medium is maximal when the soliton width
is of the same order as the correlation length of the medium.
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Figure 2. Picture a: Decay rate as a function of the correlation length for a Gaussian
correlation function 〈V0Vn〉 = σ2 exp(−n2/l2c). Picture b: Optimal correlation length
involving the maximal decay rate for a given soliton parameter.

3. The Ablowitz-Ladik chain

3.1 The homogeneous Ablowitz-Ladik chain
The integrable discretized version of the continuum NLS equation is

the so-called Ablowitz-Ladik (AL) equation [22]:

iq̇n + qn+1 + qn−1 − 2qn + |qn|2(qn+1 + qn−1) = 0. (14)

This model can be derived from the Hamiltonian

H = −2
∑

n

Re(qnq∗n+1) + 2
∑

n

log(1 + |qn|2), (15)

if we take care to adopt the nonstandard Poisson brackets [23] {qm, q∗n} =
i(1+|qn|2)δmn, {qm, qn} = {q∗m, q∗n} = 0. This integrable system supports
moving nonlinear localized excitations in the form of lattice solitons

qns(t) =
sinh(µ) exp [ik(n − x(t)) + iα(t)]

cosh [µ(n − x(t))]
, (16)

where

x(t) = x0 + Ut, α(t) = α0 + t (2 cosh(µ) cos(k) − 2 + kU) ,

and U = 2 sin(k) sinh(µ)/µ is the velocity of the soliton.

3.2 A randomly perturbed Ablowitz-Ladik
chain

3.2.1 The model: A random on-site potential. We consider
an AL equation perturbed by a random potential:

iq̇n + qn+1 + qn−1 − 2qn + |qn|2(qn+1 + qn−1) = εVnqn. (17)
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The small parameter ε ∈ (0, 1) characterizes the amplitude of the per-
turbation. Eq. (17) can be derived from the Hamiltonian

H = −2
∑

n

Re(qnq∗n+1) +
∑

n

(2 + εVn) log(1 + |qn|2) (18)

and the total mass is also conserved

N =
∑

n

log(1 + |qn|2). (19)

The site-dependent potential V is assumed to be a bounded, zero-mean,
stationary and ergodic sequence of random variables, of the same type
as the one considered in Section 2.2.1. We consider the propagation of a
soliton with initial mass N0 = 2µ0 and velocity U0 = 2 sin(k0) sinh(µ0)/µ0.

3.2.2 Asymptotic behavior of the soliton parameters. By
applying the same method as the one described in Section 2, we come
to the following conclusion:

1) With a probability that goes to 1 as ε → 0, the wave scattered by a
large impure segment with length [l/ε2] consists of one main soliton with
parameters (µε(l), kε(l)) and radiation. No soliton gas is generated.

2) (µε(l), kε(l)) converges in probability to the deterministic functions
(µs(l), ks(l)) which satisfy the system of ordinary differential equations

dµs

dl
= F (µs, ks),

dks

dl
= G(µs, ks), (20)

starting from µs(0) = µ0, ks(0) = k0. The functions F and G are

F (µ, k) = −
∫ 2π

0

sinh(µ)
µ

sin(k)C(µ, k, θ)dθ,

G(µ, k) = −
∫ 2π

0

cosh(µ) cos(k) − cos(2θ)
µ

C(µ, k, θ)dθ,

where the function C is the mass density scattered by the soliton with
parameters (µ, k) per unit time

C(µ, k, θ) =
π sinhµ

16µ cosh
(

ω1π
2µ

)2
sin(k)

sin (ω2/2)4 R̂(ω2)
(cosh(µ) − cos(2θ − k))2

, (21)

the functions ω1 and ω2 are defined by

ω1(µ, k, θ) = µ
cosh(µ) cos(k) − cos(2θ)

sinh(µ) sin(k)
, ω2(µ, k, θ) = ω1 + k − 2θ,

and R̂ is the discrete Fourier transform of the autocorrelation function
of (Vn)n∈N.
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3.2.3 Linear regime in the approximation µ0 � 1. The
velocity U of the soliton (equal to 2 sin(k) sinh(µ)/µ � 2 sin(k)) is al-
most constant during the propagation, while the mass N (equal to 2µ)
decreases exponentially (see Fig. 3a):

µs(l) � µ0 exp
(
− l

Lloc

)
, Lloc =

4 sin(k0)2

R̂(2k0)
(22)

The spectrum of the radiation is concentrated around the spectral pa-
rameter θ = −k0/2 (and −k0/2 + π) with a bandwidth of the order
of µ0. This means that the radiation oscillates as exp(−ik0n). It can
be noticed that, in the limit case µ0 → 0, the incoming soliton can be
approximated by a linear wavepacket:

qn(t) �
∫ +∞

−∞
dκφ̂0(κ)eiκn−i4 sin2(κ/2)t,

with φ̂0(κ) = (1/4) cosh−1 (π(κ − k0)/(4µ0)). Note that the disper-
sion relation for the linear discrete Schrödinger equation reads ω(κ) =
4 sin2(κ/2). The spectrum φ̂0 of the soliton is sharply peaked about k0,
so that the localization length also reads as Lloc = ω(2k0)/R̂(2k0). If
k0 � 1, then we rediscover the well-known continuum limit. The con-
tinuum dispersion relation reads ω(κ) = κ2. The spectrum of the soliton
has carrier wavenumber k0, while the one of the scattered wavepacket is
−k0. These statements are in agreement with the linear approximation.
The localization length Lloc = ω(2k0)/R̂(2k0) corresponds to the local-
ization length of a monochromatic wave with wavenumber k0 scattered
by a slab of linear random medium [25].
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Figure 3. Evolutions of the soliton mass and velocity as predicted by integration of
system (20).

3.2.4 Nonlinear regime in the approximation µ0 � 1.
The soliton emits radiation whose spectrum covers all frequencies with
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a sin4 form centered at µ/ tan(k)+k. It can be checked that exp(µ) cos(k)
is constant during the propagation, which means that the mass of the
soliton converges to the limit value Nlim

Nlim = 2µlim = 2µ0 + 2 log(cos(k0)), (23)

while the velocity of the soliton decreases to 0 (see Fig. 3d). The limit
behavior for large l of the parameter ks depends on the high frequency
behavior of the spectrum of the potential V . An extensive study is
performed in [24]. If the spectrum of the potential decays slowly, then
ks decays logarithmically ks(l) � π/log l. This logarithmic rate actually
represents the maximal decay of the velocity. Whatever the potential V ,
lim infl→∞ ks(l) × log(l) ≥ π. However the decay rate may be smaller.
For instance, if 〈V0Vn〉 = σ2 exp(−n2/l2c). then the velocity decreases as
ks(l) � µlimlc/(2

√
log l).

3.2.5 Existence of a critical nonlinearity. In the case where
µ0 is of order 1, then the numerical integration of the system (20) shows
that the two above regimes are attractive. There exists a critical value
µc of µ0 which determines the behavior of the soliton. If µ0 ≤ µc, then,
after a transition period, the velocity becomes constant, and the mass
decays exponentially (Fig. 4a). If µ0 ≥ µc, then, after a transition pe-
riod, the mass becomes constant, and the velocity decays logarithmically
(Fig. 4b).
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Figure 4. Evolutions of the soliton mass and velocity. Two different set of ini-
tial values for the soliton parameters are addressed. The solid lines stand for the
theoretical values (Eq. (20)), and the dotted lines plot the results of full numerical
simulations. Vn is a sequence of independent and identically distributed variables,
which obey uniform distributions over the interval [−1/2, 1/2]. We take ε = 0.1.

3.2.6 Role of the correlation length. In this section we dis-
cuss the dependence of the localization length with respect to the corre-
lation length of the medium. In the case of the Toda chain we have seen



Soliton dynamics in randomly perturbed discrete lattices 439

that the interaction between the soliton and the medium is maximal
when the correlation length is of the same order as the soliton width. In
the AL case the localization length is independent of the amplitude or
the width of the soliton, but it depends on the carrier wavenumber k0.
More precisely, let us assume that (Vn)n∈N is a colored noise with the
autocorrelation function 〈V0Vn〉 = σ2 exp(−n2/l2c). If 0.24π ≤ k0 ≤ π/2,
then the localization length is minimal (corresponding to maximal in-
teraction) for a discrete white noise. If k0 ≤ 0.24π, then the minimal
location length arises when k0lc � 0.7 (Fig. 5). This condition corre-
sponds to the maximal interaction between the soliton and the medium.
It shows that the soliton carrier wavenumber is the parameter that gov-
erns the interaction, which also holds true for the Toda chain as the
soliton width and the carrier wavelength are proportional.
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Figure 5. Picture a: Localization length as a function of the correlation length for a
Gaussian correlation function 〈V0Vn〉 = σ2 exp(−n2/l2c). Picture b: Optimal correla-
tion length involving the minimal localization length for a given carrier wavenumber.

4. Conclusion
We have applied random perturbations to two integrable discrete sys-

tems. The AL chain has a similar behavior as the continuum NLS equa-
tion. We have found that there exists a critical value of the initial mass
of the soliton below which we observe an exponential decay of the mass,
and above which an original nonlinear regime prevails which involves
the convergence of the mass of the soliton to a calculable positive value
and the slow decay of the velocity. The overall conclusion is that large-
amplitude solitons are more stable than small-amplitude solitons.

In comparison with the random AL chain new phenomena are exhib-
ited for the random Toda chain. First, large-amplitude solitons are less
stable than small-amplitude solitons in the random Toda chain. Sec-
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ond, the generation of a large number of small quasi-localized solitons
in an impure segment is demonstrated. The production of the soliton
gas is interesting by itself as a new phenomenon that is not encountered
when a random NLS or AL equation is considered, but it should also
be pointed out that this production is very important in that we cannot
understand correctly the changes in the conservation equations without
accounting for soliton production.
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ULTRAFAST ELECTRON TRANSFER:
THE STANDARD THEORY REVISITED

A Nonadiabatic and Intrinsically Nonlinear Theory
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91191-Gif-sur-Yvette Cedex, France
aubry@llb.saclay.cea.fr

Abstract The vicinity of the Marcus inversion point is the regime where Electron
Transfer is expected to become ultrafast in the standard theory but it is
also the regime where the validity of the adiabatic approximation used
for this theory breaks down and where improvements are needed.

We construct a non-adiabatic model for ET where the complex am-
plitudes of the tight-binding electronic wave function, are the Kramers
variables. Because the whole thermalized environment reorganizes dur-
ing the electron tunnelling, the electron dynamics turns out described by
an effective equation which is a discrete nonlinear Shroedinger equation
on a dimer with extra dissipative terms and colored Langevin forces. Far
from the Marcus inversion point and in the most general case of ”soft
nonlinearities”, our model reproduces essentially the standard results
which describe ET as a thermally activated process.

Close to the inversion point where electron transfer is supposed to
occur at zero temperature, our model reveals important difference and
in particularly a non exponential transfer with long tails. Moreover, our
model naturally provides a new approach for understanding catalysis of
Ultrafast electron transfer(developed elsewhere).

Keywords: Electron transfer, Catalyst, Ultrafast

1. Introduction
It is known that most chemical and biological processes can be dis-

sected into a few number of elementary processes which are encoun-
tered many times in real situations but with different arrangements [1].
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Among these elementary processes, electron transfer (ET) between two
molecules (or different parts of the same molecule) is likely the most
ubiquitous elementary processes of chemical and biological reactions.

An electron on a donor molecule initially at some energy level is trans-
ferred to an acceptor molecule (or to another site of the same molecule).
This transfer is accompanied by the relaxation of the density of the other
electrons and the nuclear positions in the environment which changes
the energy levels on donor and acceptor. Indeed, the transferred elec-
tron is generally involved in chemical bonds and also has an electric
charge which strongly interact with the other charges and dipoles of its
environment. After ET and relaxation, some energy is released in the
environment. Thus, a correct description of ET must take into account
the reorganization the environment which is induced. This is done in
the Marcus theory [2] which describes ETs as thermally activated pro-
cesses. However, this theory fails in the case of ultrafast ET (precisely
in the vicinity of the Marcus inversion point) where some of the hypoth-
esis required for its validity breaks down. It is worthwhile to improve
this theory because ultrafast ET have been observed experimentally es-
pecially in biosystems and are even faster low temperature. ET in the
Photosynthetic Reaction center is a well-studied example[3] which is in-
terpreted as very close to the inversion point [2].

We already presented some details of our nonadiabatic model in [7].
We shall focus mostly in that paper on the fundaments of our model and
show that it encompasses the standard model of ET as a limit case. In
the case where ET is ultrafast that is close to the inversion point, its is
essentially due to a quantum tunneling in a deformable potential. Up to
now, this problem was discarded or treated empirically. We show that
very generally, the dynamics of the quantum electron during ET can be
modeled by a nonlinear discrete Schroedinger equation on a dimer with
damping and thermal noise.

The well-known concept of tunnelling which is usually modelled in
textbooks by two resonant linear oscillators does not hold for the non-
linear case. Nevertheless, we may have tunnelling when specific condi-
tions for nonlinear resonance are fulfilled. These conditions were only
recently made explicit [6] and involve both the coefficients of the lin-
ear and nonlinear terms. Moreover, the associated tunnelling process is
different from the linear case because first, it is selective on the initial
energy and second it is accompanied by frequency (or levels) oscillations.
The new terminology Targeted Energy Transfer was used to emphasize
the important differences of this phenomena with those of linear reso-
nance. We show that it should naturally play an essential role for a
better understanding of ultrafast ET and catalysis.
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In section 2, we review the standard theory of ET and explains its
inconsistency for ultrafast ET. We propose in section 3, a model which
captures the new essential features which should be taken into account at
the inversion point that when is the quantum dynamics of the electron
wave function cannot be treated within the adiabatic approximation.
This new theory is nevertheless equivalent to the Marcus theory far
from the inversion point and only differs in the vicinity of the inversion
point. In section 4, we derive the master equation for nonadiabatic
ET. In section 5, we show our the Marcus theory is recovered by the
adiabatic approximation far the inversion point. Section 6 is devoted
to the dynamics of ET close to the inversion point, we show that the
nonlinearities of the model requires to reconsider the basic concept of
linear resonance for electron tunneling. Finally, we conclude 7 by a brief
presentation of the mechanism of Targeted Transfer and its application
for catalysis of ultrafast ET.

2. Standard theory of ET: A thermally activated
process

We describe here the general ideas of the standard theory of ET used
in chemistry which was mostly due to Marcus [2]. Considering ET be-
tween two molecules (Donor and Acceptor) or two different sites of a
molecule, it is assumed that the system has two electronic states. The
first one correspond to the initial state where the electron is on the
donor molecule and the second one corresponds to the final state where
the electron is on the acceptor molecule. The overlap between the re-
dox orbitals associated with these two states is supposed to be small so
that they can be considered as eigenstates (except at resonance when
their two energy levels are equal). Then, the free energy of the system
depends on the many coordinates describing the displacements of nuclei
of the molecules and the environment and also on the state of the elec-
tron. Thus, there are two free energies surfaces which take into account
all contributions to the energy chemical, electrostatic. . . The first sur-
face describes the reactants (that is when the electron is on the donor
molecule) and the second one describes the products (that is when the
electron is on the acceptor molecule). These surfaces are well defined
within the standard adiabatic (or Born-Oppenheimer) approximation
where the electronic energy is only a function of the coordinates of the
nuclei which are supposed to move slowly under the effect of the thermal
fluctuations.

The minimum versus the nuclear coordinates of the free energy with
the electron either in the initial or the final electronic state determines
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the initial and the final average configurations respectively of the molecules
and their environment supposed to fluctuate under the effect of temper-
ature.

It is next assumed for simplicity that these surfaces are quadratic with
the same curvature, which is equivalent to assume that the phonons of
these molecules are perfectly harmonics with frequencies independent
of the electronic state. These surfaces can be determined in principle
from the knowledge of the structures of the molecules and from their
normal modes and frequencies. [2]. The difference between the first
and the second free energies at the same normal coordinates is just the
difference of the electronic levels on the donor and on the acceptor for
the same configuration of the environment. Thus, at the intersection
of these two quadratic surface which are shifted but identical, the two
electronic levels becomes equal. In that situation only, the electron may
be transferred from the donor to the acceptor by quantum tunnelling.
Standard theory of tunnelling assumes the double well potential due to
the environment of the electron is static during the time of tunnelling
between the two wells. Actually, the local potentials generated by the
thermal fluctuations is not static and because of that the tunneling is
supposed to occur only with a certain probability which can be estimated
from Landau-Zeener arguments [1].

These resonance events due to random thermal fluctuations are rare
but are essential to generate ET. It is equivalent to say that the thermal
fluctuations have to bring the system at the top of the lowest energy
barrier at the intersection of the two free energy surfaces (see Fig. 1)
where electron resonance occurs. Thus, the characteristic time needed
for realizing ET is found to obey a standard Arrhenius law (corrected
with some prefactor for taking into account the probability of tunnel-
ing). This situation is similar to the general theory of chemical reactions
described from the pioneering ideas of Kramers [4].

This theory is valid when the characteristic time for producing ET is
long at the scale of the phonon frequencies. Two regimes can be defined
regarding the tunneling [1]. The adiabatic regime is obtained when the
overlap between the redox orbitals (although supposed to be small) is
nevertheless sufficiently large (strong reactants) in order when resonance
occurs, electron tunnelling is fast at the scale of the phonon frequencies.
Thus its probability to occur is almost 1. The diabatic regime is obtained
at small overlap (weak reactants). Then, the tunnelling becomes slow at
the scale of the phonon characteristic time and has a small probability
to occur. In any case, the intrinsic time for tunnelling is usually much
shorter than the characteristic time required for the thermal fluctuations
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to overcome an energy barrier supposed to be large compared to the
thermal energy.

D

Reaction Coordinates

Free Energy

∆∆∆∆G*

∆∆∆∆el

∆∆∆∆el

∆∆∆∆G*

∆∆∆∆G0

∆∆∆∆G0

inverted

normal

Figure 1. Free Energy versus Reaction Coordinates for the reactants (curve D)
and the products for normal reaction (curve An), inverted reaction (curve Ai) and
at the inversion curve (curve Ac). The electron in the initial state requires a positive
excitation energy ∆�

el for the normal reaction, a negative excitation energy −∆�
el for

the inverted reaction (which could be directly emitted as light). There is a positive
energy barrier ∆n or ∆i in both cases between the reactants and products which
requires thermal activation for the reaction to occur. This energy barrier as well as
the energy for a direct electron excitation vanishes for the inversion curve and then
the electron transfer becomes ultrafast.

Despite it is based on many assumptions, Marcus theory revealed to
be quite successful for describing many observed ET’s. Moreover, two
different regimes were predicted and are indeed observed. The normal
regime where the free energy of the system in the initial atomic config-
uration and the electron on the donor is smaller than the free energy at
the same atomic configuration but with the electron on the acceptor.

The inverted regime is obtained when this inequality is reversed (see
Fig. 1). Since the electron may tunnel from the initial state to the final
state only when their eigenenergies are degenerate, there exists an energy
barrier to overcome by thermal activation in both situations.

However, the inverted situation differs from the normal situation be-
cause there is a second pathway for the electron to reach the final state.
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The electron may also decay directly from its initial state to its final state
which has a lower energy by the direct emission of a photon the energy
at fixed nuclei configuration according to the Franck-Condon principle.
This inverted regime manifests by the chemiluminescence phenomena
which can be observed at low temperature when the first pathway be-
comes ineffective [2].

This energy barrier precisely vanishes at the Marcus inversion point
when the initial electronic state and the final electronic state are degen-
erate for the initial ground-state atomic configuration. Thus in the close
vicinity of this inversion point, there is almost no energy barrier, and ET
is expected to become ultrafast even at low temperature. For example,
the ultrafast ET which occurs in the phototosynthetic reaction centers
of light harvesting cells, is considered to be in the close vicinity to the
Marcus inversion point where the energy barrier almost vanishes [2].

In that regime, the absence of energy barrier makes that ET does not
require thermal fluctuations and should also occur at zero or almost zero
temperature. Moreover, in that case the difference between the almost
degenerate electronic states on donor and acceptor being small becomes
of the order of the phonon characteristic energies so that the adiabatic
hypothesis cannot be fulfilled. The standard ET theory which reduces
phenomelogically tunnelling to a probability of transfer is clearly not
sufficient for producing the characteristic time of the ET except that
ET in that situation can be considered as ultrafast that is much faster
than ET requiring thermal activation. This problem is explicitly men-
tioned in section 3.6 Tunnel Times [1] as an unsolved problem although
its relevance in the case of ultrafast Et was not recognized. It should
be improved by taking into account explicitly the intrinsic quantum dy-
namics of the electron without using the adiabatic approximation.

3. Basic hypothesis for an improved theory
We propose a model valid for Ultrafast ET in the vicinity of the

inversion point which also reproduce the results of the standard theory
away from this inversion point. The hypothesis we use for constructing
our model are included in the set of hypothesis used by the Marcus
theory except concerning the adiabatic hypothesis. They are

We consider a model with a single electron which may occupy two
states either on the donor molecule (D) or on the acceptor molecule
(A) or on two sites of the same molecule. Actually, we may also
involve more states α for example three states for a catalytic trans-
fer.
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We assume that the different molecules or states α are weakly in-
teracting. Particularly, there is small overlap between the different
redox orbitals α.

We neglect the possible energy radiation through the electromag-
netic field induced by the variation of the spatial distribution of
charges during ET. Indeed, the photon emission induced by a direct
transition between two electronic quantum states usually requires
to consider the electromagnetic field as quantum and is calculated
with the Fermi golden rule in the limit of weak coupling [1, 5]. In
realistic situations, the characteristic time for a photon emission
ranges from ns to longer times. Thus, it is much longer than the
time for ET (except at low temperature in the Marcus inverted
case which generate chemiluminescence). In any case, it is not rel-
evant when ET is ultrafast where the energy which is released is
essentially absorbed by the phonon bath. Consequently, we take
into account only the electrostatic energy which varies with the
charge distributions discarding any energy loss by radiation.

For sake of simplicity we consider the environment as a large col-
lection of harmonic oscillators (corresponding to the normal modes
of the molecules labelled by i). Each of them is linearly and weakly
coupled to the electronic charge distribution so that this system
of oscillators acts as a thermal bath. Changes in the charge distri-
bution generate displacements of the rest position of the harmonic
oscillators which model the reorganization of the environment 1.

The averaged number of quantum phonons which are involved by
the reorganization of the environment during ET is supposed to be
large. In other word, the global displacements of nuclei in the close
environment of the electron is much larger than their quantum zero
point motion. Then, it is a good approximation to consider the
normal modes as non quantum but classical oscillators 2.

Unlike the standard theory, we do not consider tunneling as a prob-
abilistic event which is estimated empirically, but we consider the full
quantum dynamics of the electron during tunneling taking into account
it evolves in a selfconsistent deformable potential. For that purpose,

1Our theory is not valid for small molecules reacting in the vacuum. These small systems
have only few modes which cannot play the role of a thermal bath. In addition, in that
situation, these modes should be considered as anharmonic.
2This approximation may be not valid when only very light nuclei (protons) are involved in
the reorganization of the environment. We discard here this possible situation.
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it is obviously necessary to consider explicitly electron variables. We
consider a system with one electron and two electronic states one on
the donor (D) and the second on the acceptor (A). We assume that the
overlap between their (redox) orbitals is small so that a tight-binding
representation is valid. Then the wave function of the electron is a com-
bination of the (orthogonalized) orbitals on the donor and acceptor with
complex amplitudes ψD and ψA respectively. To be more general, we
may also consider a system with one electron and more electronic states
α which could be occupied transiently with the normalization condition∑

α |ψα|2 = 1. The total energy H of the system has to be a function
of the electron variables {ψα}, the oscillator coordinates {ui} and their
velocities {u̇i}. With the assumption that the oscillators are harmonic
and the coupling with the electron densities linear, this energy has the
general form

H = HT({ψα}) +
1
2

∑
i

mi

(
u̇2

i + ω2
i (ui −

∑
α

ki,α|ψα|2)2
)

(1)

The harmonic oscillators i with mass mi and frequency ωi, corresponds
to the normal modes not only of the molecules sustaining the electronic
states but also of the other molecules of environment which could couple
to the electron charge. We assume that there are many oscillators. Each
of them is weakly coupled with the coupling constant ki,α to the electric
charges Iα = |ψα|2 of the electron in the state α. Thus, this collection
of harmonic oscillators plays the role of a thermal bath 3. HT({ψα}) is
all the rest of the energy which only depends on the complex amplitudes
ψα. This energy is supposed to include all possible electronic energies in
particular the chemical bond energies, the electrostatic energies coming
from the charge distribution. . . . It can be readily checked from (1 that it
can be defined as the total energy of the system assuming the amplitudes
ψα are fixed and minimized with respect to all the nuclei coordinates
represented by the displacements of the harmonic oscillators

HT({ψα}) = min
{ui}

H({ψα}, {ui}) (2)

Thus, HT would be the Hamiltonian of the electronic system if one
assume that all the oscillators adiabatically follow their rest position
with respect to the electronic force. This approximation would become
valid in case the tunnelling time of the electron would be much longer

3The model should be modified in case some special modes would be strongly coupled to the
electron but this is left to further works.
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than the periods of the oscillators. This is just the limit opposite to the
adiabatic limit valid where the electron tunneling is much faster than
the phonons and thus we call HT anti-adiabatic electronic Hamiltonian.
Actually, the situation we treat here encompass both the adiabatic limit
and the anti-adiabatic limit as limit cases.

Assuming that the oscillators of the thermal bath are nonlinear would
be more realistic but the model would not be solvable with the known
methods. However, a well-known variational but rough approximation
consists in replacing nonlinear oscillators by effective linear oscillators
with temperature dependent parameters. Then, the energy form (1)
could be interpreted now as the free energy considered in the Marcus
theory, if its parameters are considered temperature dependent.

Energy HT can be written as a sum

HT({ψα}) = Hd
T({|ψα|2}) + Hint

T ({ψα}) (3)

Hd
T is the component of the energy which is independent of the phase of

the complex amplitudes ψα (it can be defined by phase averaging HT).
It only depends on the electron densities |ψα|2 of the charged molecules.
Component Hint

T in (3) is the rest of the energy. It also depends on
the phase differences of the complex amplitudes ψα. It originates from
the overlap of the redox orbitals. In most physical situations of ET, this
overlap is small but however essential because if zero, ET is not possible.
Its role is to trigger electron tunnelling when resonance occurs. This
contribution Hint

T calculated within the tight binding approximation in
the limit of small overlaps has the form

Hint
T ({ψα}) =

∑
β�=γ

λβ,γ({|ψα|2})(ψβψ�
γ + ψ�

βψγ) (4)

where λβ,γ({|ψα|2}) in principle depends on the electronic densities but
can be chosen as a constant parameter λβ,γ for simplicity.

The relative displacement of the harmonic oscillator i involved by
moving the electron from state α to β is ki,β − ki,α. Considering this os-
cillator as quantum, the creation and annihilation operators of phonons
for this oscillator are defined as

a+
i =

√
miωi

2�
ui −

√
�

2miωi

∂.

∂ui
and ai =

√
miωi

2�
ui +

√
�

2miωi

∂.

∂ui

Then it readily comes out that the total number of phonons ni = 〈a+
i ai〉

generated by the displacement ki,β − ki,α is ni = miωi
2�

(ki,β − ki,α)2.
The condition for considering the thermal bath classical is not that ni

be large but that the total number of phonons
∑

i ni is large. This
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condition validates the meanfield approximation which is equivalent to
the classical approximation. We obtain∑

i

miωi(ki,β − ki,α)2 � 2� (5)

Thus, the reorganization of the environment after electron transfer is
small for each oscillator but large collectively. We shall assume this
condition is fulfilled.

4. Dynamical equation for electron transfer and
dissipation

We derive the effective equation which governs the ET after elimi-
nation of the thermal bath considered as classical. We show that its
effect is to dissipate energy and at finite temperature, to generate a ran-
dom force as for the standard Langevin model. It is essential however
to consider that the Fourier spectrum of random force has a cut-off at
frequencies larger than the phonon frequencies.

4.1 Hamilton equations
The total energy (1) is the Hamiltonian which yields the dynamics of

whole the system by the standard Hamilton equations

∂H
∂ψ�

α

=
∂HT

∂ψ�
α

−
⎛⎝∑

i

ki,αmiω
2
i (ui −

∑
β

ki,β|ψβ|2)
⎞⎠ψα = i�ψ̇α (6)

üi + ω2
i (ui −

∑
α

ki,α|ψα|2) = 0 (7)

ui(t) can be made explicit from the second equation (7) which is linear
with respect to ui. The general solution has the form ui = u

(n)
i + u

(0)
i

where

u
(0)
i (t) =

∑
β

ki,β

(
|ψβ(t)|2 −

∫ t

−∞
cos ωi(t − τ)

d|ψβ(τ)|2
dτ

dτ

)
(8)

and u
(n)
i = ai cos(ωit− φi) is a solution with arbitrary amplitude ai and

phase φi of (7) without force (i.e. assuming |ψα|2 = 0). Substituting
ui(t) as a function of |ψα|2 in Eq. (6) yields

∂HT

∂ψ�
α

+

⎛⎝∫ t

−∞

∑
β

Γα,β(t − τ)
d|ψβ(τ)|2

dτ
dτ + ζα(t)

⎞⎠ψα = i�ψ̇α (9)
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where

Γα,β(t) =
∑

i

ki,αki,βmiω
2
i cos ωit (10)

will be assumed to be a smooth function because there are many modes
i with uniform frequency distribution and

ζα(t) =
∑

i

ki,αmiω
2
i u

(n)
i (t) (11)

is a colored random force.

4.2 Property of the random force
The time correlation function averaged over τ of oscillator i is

< u
(n)
i (t + τ)u(n)

j (τ) >τ= δi,j < (u(n)
i )2 > cos ωit (12)

If we assume that the harmonic oscillators are thermalized, we have
< (u(n)

i )2 >= kBT/(miω
2
i ) which yields the Langevin relation

< ζα(τ)ζβ(t + τ) >τ =
∑

i

ki,αki,βm2
iω

4
i < u

(n)
i (τ)u(n)

i (t + τ) >

= kBTΓα,β(t) (13)

It can be checked that the total norm
∑

α |ψα|2 = 1 is invariant by
Eq. (9).

The Fourier transform γα,β(ω) of Γα,β(t) defined as

Γα,β(t) =
1
π

∫ +∞

−∞
γα,β(ω)eiωtdω (14)

which by Eq. (13) corresponds also the Fourier transform correlation
function of the random force in the master equation (9) corresponds to
the weighted phonon spectrum of the thermal bath

γα,β(ω) =
∑

i

ki,αki,βmiω
2
i (δ(ω − ωi) + δ(ω + ωi)) (15)

Actually, the phonon spectrum does not extend to infinity and has ob-
viously a cut-off at some frequency ωc. In practice, �ωc cannot exceed
the largest known phonon quanta energies around 0.3 eV.
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At zero temperature, the thermal noise disappears ζα(t) = 0. Then,
we have

ḢT =
∑
α

(
∂HT

∂ψ�
α

ψ̇�
α +

∂HT

∂ψα
ψ̇α

)
=

∑
α

(i�ψ̇α − ψα

∫ t

−∞

∑
β

Γα,β(t − τ)
d|ψβ(τ)|2

dτ
dτ)ψ̇�

α + CC

= −
∑
α,β

d|ψα|2
dt

∫ t

−∞
Γα,β(t − τ)

d|ψβ(τ)|2
dτ

dτ

= −
∑
α,β

d|ψα|2
dt

∫ +∞

0
Γα,β(τ)

d|ψβ(t − τ)|2
dt

dτ (16)

using Eq. (9)

4.3 Energy dissipation
The role of the thermal bath is essential for ensuring dissipation of the

chemical reaction energy. We show that at zero degree, the dynamical
equation (9) yields always energy dissipation after a long time.

If for simplicity, we assume for example that Γα,β(t) = 2γαδα,βδ(t)
that is γα,α is independent of ω and γα,β = 0 for α �= β. This approxi-
mation corresponds to the white noise approximation for ζα by Eq. (13).
Then, we find

ḢT = −
∑
α

γα,α

(
d|ψα|2

dt

)2

< 0

is necessarily negative because γα,α(ω) is obviously positive from its
definition (15). However, this white noise approximation is not correct
physically.

In any case, we can show that there is energy dissipation in average.
We consider the energy variation

HT(t2) − HT(t1) =
∫ t2

t1

ḢTdt

over a long interval of time [t1, t2] and consider the Fourier transform

d|ψα(t)|2
dt

= İα =
∫ +∞

−∞
κα(ω)eiωtdω (17)
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Then, it comes out from Eq. (16)

HT(+∞) − HT(−∞) = −
∑
α,β

∫ +∞

0
Γα,β(τ)dτ

×
∫ +∞

−∞
dω

∫ +∞

−∞
dω′κα(ω)κβ(ω′)

∫ +∞

−∞
eiωteiω′(t−τ)dt

= −
∑
α,β

∫ +∞

0
Γα,β(τ)dτ

∫ +∞

−∞
dω

∫ +∞

−∞
dω′κα(ω)κβ(ω′)e−iω′τ

×2πδ(ω + ω′)

= −2π

∫ +∞

−∞
dω

∫ +∞

0

∑
α,β

(
κα(ω)Γα,β(τ)κ�

β(ω)
)
eiωτdτ (18)

Since Γα,β(τ) = Γα,β(−τ) and since
∑

α,β

(
κα(ω)Γα,β(τ)κ�

β(ω)
)

is un-
changed by changing ω into −ω, it comes out using Eq. (15)

HT(+∞) − HT(−∞) =

= −π

∫ +∞

−∞
dω

∫ +∞

−∞

∑
α,β

(
κα(ω)Γα,β(τ)κ�

β(ω)
)
eiωτdτ

= −2π

∫ +∞

−∞
dω

∑
α,β

(
κα(ω)γα,β(ω)κ�

β(ω)
)

(19)

= −2π
∑

i

miω
2
i (
∑
α

ki,ακα(ωi))(
∑

β

ki,βκ�
β(ωi)) + CC

= −4π
∑

i

miω
2
i |
∑
α

ki,ακα(ωi)|2 (20)

which is necessarily negative. Suppose that κα(ω) is nonzero only in
narrow intervals around ±Ω that is the variation of Iα is close to be
periodic at frequency Ω. Then γα,β(ω) assumed to be a smooth function
of ω can be considered as constant and equal to γα,β(Ω) so that

HT(+∞) − HT(−∞) ≈ −2π
∑
α,β

γα,β(Ω)
∫ +∞

−∞
dωκα(ω)κ�

β(ω)

= −
∑
α,β

γα,β(Ω)
∫ +∞

−∞
İα(t)İβ(t)dt (21)

This result shows that the effective damping depends on the frequency
Ω of the periodic variations of Iα = |ψα(t)|2. In the case where γα,β(Ω) is
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constant, we recover the case with a white spectrum mentioned above.
We shall use the approximation < ḢT >= −∑

α,β γα,β(Ω) < İαİβ >

where İγ(t) are time periodic function at frequency Ω which varies slowly
in time.

As a result, the effect of the memory function in (9) is always to
generate energy dissipation after a long time. Note that the Fourier
spectrum of this memory function represents nothing but the local ab-
sorption spectrum for ET. The measurements of Infrared Absorption
spectrum of the whole system also yields informations but for a uniform
field which is non local. However, some peaks associated with the normal
modes could appear in both spectrum but with different weights.

Since the total energy HT always decays in average, the asymptotic
behavior of the system at zero degree K (without thermal noise) must
be a state without energy dissipation. Eq.18 requires κα(ω) = 0 when
γα(ω) is not vanishing that is for ω in the phonon spectrum. If the
Fourier spectrum of |ψα(t)|2 lies inside the phonon spectrum, that is
the characteristic frequencies of the electron dynamics are at the same
scale as those of the phonons, this condition implies d|ψα(t)|2/dt = 0.
Therefore the electron densities Iα = |ψα(t)|2 are time constant for the
asymptotic states.

5. Recovering the standard Marcus theory
In principle, our model for describing the electron dynamics is valid

in the whole non adiabatic regime including the adiabatic regime and
the antiadiabatic regime as limit cases. These limit cases are determined
by the fact the electron dynamics could be either much faster or much
slower than the coupled phonons.

Thus, the standard theory of ET can be recovered as an approximation
from the master equation (9) of ET with Eqs. (10) and (13).

If we assume that the electronic variables follow adiabatically the nu-
clei, instead of eliminating the phonon variables as we did and keep an
effective equation for the electron, one could eliminate the electronic de-
grees of freedom by assuming the electron remains in its initial eigenstate
and then obtain an effective potential for the collection of oscillators.
The validity of the adiabatic approximation requires that the electron
characteristic frequencies ωα,β = |Eα − Eβ|/� associated with the elec-
tronic transitions between pairs of states α, β are much larger than the
phonon characteristic energies which have the upper bound �ωc.
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These eigenstates 4 correspond to extrema of H (1) with respect to
{ψα} under the constraint of fixed norm

∑
α |ψα|2 = 1 which yields

∂H
∂ψ�

α

= Eel

∂
∑

β |ψβ|2
∂ψ�

α

= Eelψα (22)

where the Lagrange multiplier Eel is the electron eigen energy. Note
that in the linear case which is more familiar, H =

∑
α,β ψ�

αhα,βψβ is an
Hermitian form of {ψα}, then Eq. (22) becomes linear and one recovers
a standard Schroedinger equation (in a tight-binding representation).
Otherwise, Eq. (22) is in general a nonlinear equation. Then note that
the well-known properties of eigenstates of linear hermitian operators
(orthogonality and completeness) are not valid anymore. Nevertheless,
according to the dynamical Eq. (6), the time dependence of the eigen-
states of of Eq. (22) fulfill ψα(t) = e−iEelt/�ψα(0).

In any case, far from resonance that is when none of these eigen en-
ergies are equal Eα �= Eβ for any α �= β, the initial states α which were
chosen as a base which have been assumed to be weakly coupled yields
practically the eigenstates. Thus ψα = 1 and ψβ = 0 for β �= α. More-
over, the adiabatic approximation is valid when the energy differences
|Eα − Eβ| are large compared to the phonon energies �ωi. Thus, in the
case this condition is fulfilled, we get one free energy surface for each
electronic state but note also that the adiabatic assumption cannot be
valid close to the intersection of these free energy surface where |Eα−Eβ|
vanishes.

In the Marcus theory with a donor and an acceptor only α = D or
α = A, the first free energy surface GD({ui} schematized Fig.1 is the
quadratic function of the nuclei coordinates {ui} obtained from (1) by
fixing the electron on the donor that is |ψD|2 = 1,|ψ1|2 = 0. The second
energy surface GA({ui}) is obtained similarly by fixing the electron on
the acceptor |ψD|2 = 0, |ψA|2 = 1. We have

GD({ui}) = H({1, 0}, {ui}, {u̇i = 0})
= HT(1, 0) +

1
2

∑
i

miω
2
i (ui − ki,D)2 (23)

GA({ui}) = H({0, 1}, {ui}, {u̇i = 0})
= HT(0, 1) +

1
2

∑
i

miω
2
i (ui − ki,A)2 (24)

4We use the terminology eigenstate by extension, because in textbook eigenstate are only
defined for linear operators.
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The minimum of GD({ui}) is obtained for ui = ki,D. Then, we have

∆�
el = GD({ki,D}) − GA({ki,D}) = HT(0, 1) − HT(1, 0)

+
1
2

∑
i

miω
2
i (ki,D − ki,A)2 (25)

(see Fig. 1). The normal regime is defined by the condition ∆�
el > 0, and

the inverted regime by ∆�
el < 0. The inversion point is obtained when

∆�
el = 0 or

1
2

∑
i

miω
2
i (ki,D − ki,A)2 = HT(1, 0) − HT(0, 1) = ∆G0 (26)

Note that the second member of Eq. (26) is ∆G0 the energy released by
the reaction and the first member is the energy released the reorganiza-
tion.

Marcus theory mostly focuses on the stochastic process for reaching
electron resonance and considers electron tunnelling as a probabilistic
process with negligible duration. This assumption is generally valid
because the energy barrier

∆G� =
1
4

∆� 2
el

∆G0 + ∆�
el

(27)

is generally much larger than the thermal energy kBT ( this result can
be obtained from the graph Fig. 1 or see rRf.[2]).

Clearly, this assumption is not valid at the inversion point where the
energy barrier vanishes. Then the characteristic time for ET becomes
essentially due to the electron tunnelling which requires a more detailed
analysis.

6. Electron transfer from donor to acceptor: a
dimer model

Before to describe ET, it is first useful to analyze the form of the
energy HT on the basis of physical arguments.

6.1 Main physical contributions to energy HT

The precise knowledge of HT from first principles in realistic situ-
ations should require complex and sophisticated ab initio calculations
which are still hardly available today. However, we can roughly decom-
pose HT into several contributions with physical significances. Since we
consider ET between weakly interacting units, Hd

T in (3) is mostly the
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sum of the energies Hα(|ψα|2) of the isolated (noninteracting) molecules
α which depends essentially on the electron occupation density |ψα|2 and
corrections

Hd
T({ψα}) =

∑
α

Hα(|ψα|2) + He
T({|ψα|2}) (28)

The small interaction potential He
T({|ψα|2}) between these charged mole-

cules α supposed to be far apart, may be neglect in a first approach. In
principle, they can also be taken into account in the following theory
but we shall not do for simplicity.

A good approximation for the energy Hα of the isolated system α is
to choose

Hα(Iα) = µαIα +
χα

2
I2
α (29)

for capturing the main effect of nonlinearities. Then, µα is the energy
level of the unoccupied electronic state (the energy Hα(0) when no elec-
tron is present is a constant which can dropped for convenience).

We also assume for consistency that the damping function Γα,β van-
ishes when α �= β, that is the thermal bath does not mediate significant
interactions between the different states α. This is equivalent to assume
ki,αki,β = 0 if α �= β that is the thermal bath splits into independent
thermal baths for each state α with variables ui,α (as we assumed in
Ref. [7]). Again, these terms could be taken into account but we shall
not do here it for simplicity.

Coefficient χα of the nonlinear term is mostly the sum of the two
contributions of different physical origin

χα = χC
α + χR

α (30)

where χC
α is a positive coefficient corresponding to the capacitive energy

involved by the electrostatic field generated by the electric charge pro-
portional to Iα at site α. It takes into account the relaxation of the
surrounding electrons through the dielectric constant ε∞ but assume
that the nuclei remain immobile.

χR
α is the negative coefficient corresponding to the energy released by

the reorganization of the nuclei of the environment due to the presence
of the electron Iα. Actually, this term can be readily calculated from
the coupling with the thermal bath in (1) assuming the thermal bath is
splitted into independant thermal baths. We have

χR
α = −

∑
i

miω
2
i k

2
i,α = −Γα,α(0) (31)

It can be speculated that when the electron occupies a state α involved
in chemical bonds, the reorganization energy will be prevalent on the
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electrostatic energy so that we shall have χα negative. Otherwise, when
this state corresponds to an inner orbital of a metallic ion for example,
the electrostatic energy may be prevalent on the reorganization energy
and thus, we shall χα positive.

6.2 The dimer model
Then, a simple Hamiltonian HT for describing the two states donor-

acceptor model (α = D or A) can be written as

HT(ψD, ψA) = µD|ψD|2 +
1
2
χD|ψD|4 + µA|ψA|2 +

1
2
χA|ψA|4

−λ(ψ�
DψA + ψ�

AψD) (32)

where constant λ is supposed to be small, real (and positive for fixing
the ideas). We have |ψD|2 + |ψA|2 = 1.

Then, we have from Eq. (9)

i�ψ̇α =
(

µα + χαIα +
∫ t

−∞
Γα(t − τ)İα(τ)dτ + ζα(t)

)
ψα − λψβ (33)

where (α, β) = (D, A) or (A, D) and γ = D and A. We also denotes
Γα,α as Γα for simplicity since the cross terms Γα,β have been assumed
to be zero for α �= β. When the transfer integral is zero λ = 0 and the
temperature zero ζD = ζA = 0, there is no coupling between the two
units so that ID and IA are time constant. Then, ψα(t) = e−Eαt/�ψα(0),
where energy levels Eα depends on Iα = |ψα|2 on the donor and the
acceptor respectively.

Eα(Iα) =
dHα

dIα
= µα + χαIα (34)

These energy levels are those of a very slow electron that is assuming
the nuclei has the time to relax adiabatically while the electron density
varies. We call these energy levels antiadiabatic. The adiabatic energy
levels are obtained for the nuclei at fixed position and thus depends on
these positions.

It is also convenient to rewrite Eqs. (33) in action-angle representation
{Iα, θα} defined as

ψα =
√

Iαe−iθα (35)
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We have ID + IA = 1 time constant and define θ = θD − θA and I =
(ID − IA)/2. Then, Eqs. (33) yields

�θ̇ = (ED + ζD) − (EA + ζA) +
4λI√

1 − 4I2
cos θ

+
∫ t

−∞
Γ(t − τ)İ(τ))dτ (36)

�İ = −2λ
√

1 − 4I2 sin θ (37)

where Γ = ΓD + ΓA. When λ is small, Eq. (37) shows that İ is small
and thus I slowly vary as a function of time as well as ID and IA.

At zero temperature, θ̇ rotates almost periodically with the frequency
Ω0 = (ED−EA)/� but the integral with kernel Γ may generates “damp-
ing”. At finite temperature the random force ζD − ζA which corre-
sponds to temperature fluctuations become important but the period
ΩT(t) = (ED + ζD −EA − ζA)/� fluctuates in time with the frequencies
of the phonons. Then it can be nevertheless assumed that ζD and ζA

have slow variation at the scale of the average frequency ΩT .

6.3 Adiabatic electron transfer at nonzero
temperature

Let us first analyze the regime where the temperature is prevalent.
The existence of a cut-off in frequency range for the phonons, is essential
for recovering the adiabatic regime where the Marcus theory holds far
away from the inversion point. The time Fourier transforms of Γα(t) and
the random force ζα(t) are zero beyond the cut-off frequency ωc which
corresponds to the largest phonon frequency.

The adiabatic approximation is valid when

�ΩT(t) = |ED + ζD − EA − ζA| � �ωc (38)

In the most common physical situations, the electronic levels ED and
EA are not initially at resonance and remains far from resonance during
most the ET except at the final stage of tunnelling. The characteristic
time for ET is mostly the time for reaching resonance.

Since the Fourier transform Γ(t) in Eq. (36) involves the phonon fre-
quencies which are small compared to the frequency variation of İ, the
integral in Eq. (36) is practically zero and does not generate damping.
Then, the adiabatic equation 33 becomes

i�ψ̇α = (µα + χαIα + ζα(t))ψα − λψβ (39)

where (α, β) = (D, A) or (A, D).
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The slow time dependent potential ζα(t), is nothing but the potential
generated by the atomic fluctuations (11). Iα(t) is also slow variable,
and thus the electronic levels can be assumed to follow adiabatically this
external potential ζα(t). Thus, if the electron is initially on the donor,
it will stay in the same eigenstate, so that ID(t) will remain practically
constant and equal to 1 while IA(t) remains equal to zero. No ET is
possible while no resonance occurs.

Resonance would occur in the initial state ID = 1, IA = 0 when the
electronic levels of Eq. (39) become equal that is when ED(1) + ζD ≈
EA(0) + ζA (see Fig. 2). Then the adiabatic approximation does not
hold. Thus if we forget about the intermediate dynamics of the electron
and assume fast tunneling at resonance, our model yields a qualitatively
identical behavior to those of Marcus except concerning the definition
of parameters as we shall see.

In our model, the inversion point is obtained when there is resonance
at zero temperature in the initial state ID = 1 and IA = 0 that is when
∆el = EA(0) − ED(1) = 0 or

µA = µD + χD (40)

Note that ∆el �= ∆�
el. The Marcus condition ∆�

el = 0 becomes in our
model (see 26)

µA − µD − 1
2
χD =

1
2
(χR

D + χR
A) (41)

Actually, rescaling µ′
α = µα + 1

2χC
α , the Marcus condition becomes

µ′
A = µ′

D + χR
D = 0 which is formally identical to our condition (40).

Moreover, if the capacitive coefficients are supposed to be equal for both
sites χC

D = χC
A which is not physically unreasonable if donor and acceptor

have similar dielectric environment and similar extension of their charge
distribution, the inversion point obtained within our theory is identical
to those predicted by Marcus.

Actually, the reason for this discrepancy is obvious because although
the Marcus theory does consider electrostatic energies in the global en-
ergy, it does not take into account the nonlinearities they induce in the
electron dynamics. Indeed in the standard theory, the electronic levels
(without lattice reorganization), are supposed to be independent of their
occupation density but actually these electronic levels do depend contin-
uously on their occupation density Iα because of the energy variation of
the surrounding electric field taking into account the dielectric response
ε∞ of the environment.

When there is resonance, there are two possible situations. Either
λ although small is not too small and larger than �ωc (strong reactant
regime) or it is smaller than �ωc (weak reactants). In the strong reactant
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Figure 2. Time-dependent fluctuations ( induced by thermal lattice fluctuations)
of the Electronic levels of the donor and acceptor in normal regime (a) and in the
Marcus inverted regime (b). Within Marcus theory, ET occurs at resonance.

case, the adiabatic approximation remains valid at resonance because the
electronic level splitting energy remains larger than the phonon energies
and ET occurs adiabatically (in the normal regime only). When ET
is in the inverted regime and also in the more frequent weak reactant
situation, a correct description requires to return to the non adiabatic
equations (33) or (36), (37) for describing properly electron tunnelling.

6.4 Energy barrier during electron transfer
The energy barrier considered in the Marcus theory is not the true

barrier in the configuration space because it assumes a discontinuous
variation of the electron densities on donor and acceptor 0 or 1. We con-
sider the true energy barrier of the global Hamiltonian (1) for both the
electronic and nuclei degrees of freedom. Since HT is the minimum of H
with respect to the nuclei degrees of freedom. This energy barrier on HT

is also those of the global Hamiltonian. The Marcus energy barrier which
is obtained with restrictions, is thus necessarily larger or equal than
those obtained for HT . Actually, the investigation of the energy barrier
for ET shall reveals new possible situations in a narrow region close to
the inversion point, which are not described in the Marcus theory.

At zero temperature, because of the coupling of the electronic charge
with the thermal bath generates only the damping term, the energy HT

of the system is decreasing in average so that the final steady state of
the electron is necessarily a local minimum of HT . Thus, transferring
the electron from the donor to the acceptor at zero temperature requires
two conditions which are 5

5It may be argued that our argument does not look not rigorous because we have only
proved energy dissipation in average. Actually, this energy barrier for HT is the same as for
the initial global Hamiltonian (1) in the full space of variables and cannot passed because of
global energy conservation.
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the absence of energy barrier for during ET between the donor and
the acceptor

a nonvanishing energy dissipation

Since |ψD|2 + |ψA|2 = 1, the energy variation of the donor-acceptor
dimer as a function of the amount of charge IA = |ψA|2 which is trans-
ferred onto the acceptor is

εT(IA) = HD(1 − IA) + HA(IA) − HD(1) − HA(0)

= (µA − µD − χD)IA +
1
2
(χD + χA)I2

A (42)

Since the overlap energy between the redox orbitals is small, it could
only weakly modify the energy profile (42) and thus we neglect it. Note
that this function εT(IA) is nothing but the analogous of the detuning
function between two nonlinear oscillators which was defined in [6] for
describing the phenomena of Targeted Transfer. (42) can be written
again

εT(IA) = ∆elIA − 1
2
(∆G0 + ∆el)I2

A (43)

after redefining ∆el = EA(0) − ED(1) and ∆G0 = HD(1) + HA(0) −
HD(0) − HA(1). Please note that this definition for ∆el is different of
those of Marcus ∆�

el shown Fig. 1 because we take into account the
electrostatic nonlinearities through χC

α . The definition of the energy
∆G0 released by ET is the same as in Marcus theory. We assume it is
positive.

Within our model, εT(IA) is a quadratic function of IA which has at
most one extrema at Im

A = ∆el
2(∆G0+∆el)

which formally coincides with
the Marcus energy barrier (27) if 0 ≤ Im

A ≤ 1. However, it will be a
maximum and thus an energy barrier only if

0 ≤ Im
A ≤ 1 and

∆el + ∆G0 > 0

These two conditions requires ∆el > 0 that is to be in the normal
Marcus regime. Then, because of the energy barrier, no ET from the
donor to the acceptor is possible at zero temperature and λ small. 6.

6However, if the barrier is small (small detuning function) it can be shown with the arguments
of Ref. [6] that ET may nevertheless occur provided λ be larger than a small critical value.
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Figure 3. Energy profiles εT (IA) for different values of µA versus electron transfer
IA when χD + χA < 0 (left) and when χD + χA > 0 (right) in the normal regime
(top curve) µA > µD + χD (or ∆el > 0), at the Marcus inversion point (middle
curve) (µA = µD + χD (or ∆el = 0) and in the inverted regime (bottom curves)
µA < µD + χD ( or ∆el < 0). ET may occur at zero K only in the inverted regime at
the left. This is not sufficient at the right. The minimum should be at IA = 1 that is
only for the lowest curve at the right.

On the opposite, there is no energy barrier when ∆el < 0 that is
in the inverted regime (in apparent contrast with the Marcus result).
Then, the situation is more subtle because one should distinguish two
situations according to the curvature of εT(IA) which is given by the
sign of χD + χA = −2(∆el + ∆G0)

When χD + χA < 0 or ∆G0 > −∆el > 0 (see Fig. 3 left), the
reorganization energy is prevalent on the Coulomb energy.

When χD + χA > 0 or −∆el > ∆G0 > 0 (or (see Fig. 3 right), the
electrostatic energy of the system is prevalent on its reorganization
energy. (remember ∆el has been redefined and is not those shown
Fig. 1). As we already suggested, this physical situations is favored
when either the donor or the acceptor involves metallic ions. We
have two situations again

– When, the minimum of εT(IA) is obtained for 0 < Im
A < 1

when dεT/dIA(1) > 0 that is when µD < µA + χA or −∆el >
2∆G0 > 0, the ET cannot be complete but partial with a
final state where the electronic charge distributed both on the
donor and the acceptor. However, the property of this state
sharply contrast with those of a standard covalent bond where
the charge is also distributed between two sites. The origin
of this state is due to the minimization of the electrostatic
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energy. This state has the peculiarity that unlike a covalent
bond, its energy weakly depends on the phase difference θD−
θA because λ is small. There are low frequency electronic
modes associated with phase excitation 7.

– When, the minimum of εT(IA) is obtained for IA = 1 (total
transfer), that is when µA + χA < µD or 2∆G0 > −∆el,
the energy minimum is obtained when the electron is totally
transferred to the acceptor as in the previous case.

Although the existence of an energy barrier forbids ET at zero tem-
perature, the absence of energy barrier is nevertheless not sufficient for
transferring the electron from the donor to the acceptor at least as an ul-
trafast process because energy dissipation by the damping terms should
be efficient enough. We recover the result that there is practically no ET
at zero temperature in the inverted regime but only far enough from the
inversion point. On contrary, ET occurs in the inverted regime close to
the inversion point as shown by our investigation of the real dynamics
of the electron for this transfer.

6.5 Non adiabatic electron transfer at zero
temperature close to the inversion point

We consider the weak reactant regime that is the nonadiabatic situ-
ation where λ << �ωc. It is clear that when there is a non vanishing
energy barrier that is the normal Marcus regime, no ET may occur at
zero temperature. Thermal fluctuations are needed.

On the other side of the inversion point but close to it, there is no
energy barrier, but the electron dynamics is nonadiabatic because the
energy gap between the electronic levels on donor and acceptor still
belong to the range of phonon energies. Because of that, ET may occur
at zero temperature 8.

We calculate this ET at zero temperature as a function of time in the
limit of a small transfer integral λ in the situation corresponding to the
right Fig. 3 in the incoherent regime.

7Although it is not the purpose of this paper to extend to the discussion of this physical
effect, we suggest that it could perhaps be used for the interpretation of intermediate valence
systems with transition metals.
8Note that in the inverted regime, the adiabatic approximation does not allow ET.
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Eqs. (36) and (37) become at zero temperature

�θ̇ = �Ω(
1
2
− I) +

4λI√
1 − 4I2

cos θ +
∫ t

−∞
Γ(t − τ)İ(τ))dτ

(44)

�İ = −2λ
√

1 − 4I2 sin θ (45)

where �Ω(IA) = −dεT (IA)
dIA

. We have �Ω(0) = −∆el

The minimum value of Ω(1
2 − I) = ED(1

2 + I)−EA(1
2 − I)) is positive

and obtained for I = 1/2 (which corresponds to IA = 0). We assume
that the negative slope of εT(IA) (42) fulfills ED(1 − IA) − EA(IA) =
−∆el >> |λ| that is we are close but not very close to the inversion point.
Then, the second equation yields İ is of order λ and the first equation
yields at leading order that �θ̇ ≈ ED(1

2 + I) − EA(1
2 − I) = �Ω(I).

Consequently, we have over long times θ(t) = Ω(I)t + Φ + . . . where
Φ is an arbitrary phase. Then, İ is also periodic over long times with
frequency Ω(I).

It is convenient to use Eq. 21 which yields the global energy dissi-
pation. This equation becomes in our dimer model for slow varying
frequencies after averaging over a relative long interval of time

<
dHT

dt
> = −γD(Ω(I)) < İ2

D > −γA(Ω(I)) < İ2
A >

= −γ(Ω(I)) < İ2 > (46)

where γ = γD + γA.
Actually, I(t) can be written explicitly as the sum of two components

Ī(t) + Ip(t) where Ī(t) =< I(t) > is averaged on a period of time long
compared to the characteristic frequency Ω(I). This component have
large variations but varies slowly. Ip is the fast oscillation at frequency
Ω(I) with a small amplitude of order λ. It can be obtained from Eq. (45)
neglecting the fluctuation of I and assuming Ī constant (Φ is an arbitrary
phase with slow variation).

Ip ≈ 2
λ

�

√
1 − 4Ī2

Ω(Ī)
cos(Ω(Ī)t + Φ)

Then, from Eq. (45), we have at lowest order

< İ2 >≈ 4
λ2

�2
(1 − 4Ī2) < sin2(Ω(Ī)t + Φ) >= 2

λ2

�2
(1 − 4Ī2)

which yields in Eq. (46) the rate of decay of the energy averaged on
the small amplitude but fast oscillations of I. Neglecting the small
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fluctuations of I, we have HT(I) ≈ HT(Ī) and thus, the long term
variation equation for Ī

˙̄I = −2
λ2

�2
(1 − 4Ī2)

γ(Ω(Ī))
Ω(Ī)

(47)

or
˙IA =

λ2

2�2
IA(1 − IA)F (IA) (48)

where F (IA) = γ(Ω( ¯1/2−IA))
Ω(1/2−IA

. Note that in this equation, the phase of
the wave function has been averaged out and the equation only concerns
their density.

If F (IA) = K is independent of IA. This equation has the simple
solution

IA(t) =
1

e−
t
τ + 1

with characteristic time τ = 2�2

Kλ2 . In general this solution is not valid
because F (IA) is not a constant.

There are two opposite limits. If Ω(I) becomes small or equivalently
the electronic gap vanishes, the rate of transfer İA diverges but then we
approach resonance and the model is not valid anymore. Then ET also
occurs but the phase coherence of the electron wave function plays an
essential role and cannot be averaged out.

If Ω(I) becomes larger than the phonon frequencies, the damping
constant γ(Ω(I)) vanishes and then ET sharply stops. Actually, it will
not stops because γ cannot be strictly zero in physics but it will exhibit a
very long tail (stretched exponential?). Thus far from the inversion point
in the inverted regime, there is practically no ET at zero temperature
despite the absence of any energy barrier.

When, there is no energy barrier that is in the inverted regime, we
have ET provided small electronic gaps in the rage of phonon energies
which also corresponds to weak reaction energies in the same range.
Then, in general, the transfer rate is not simply exponential with a
unique characteristic time. ET generally slows down as a function of
time because the electronic gap �Ω(IA) increases. However, Γ(Ω(IA))
may be non monotone in case of intense absorption bans in the phonon
bath.

6.6 Targeted electron transfer, coherent transfer
and catalysis

There is a highly interesting situations which is precisely obtained
when Ω(IA) = 0 for all IA.
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This situation corresponds to εT(IA) = 0 (42) for all IA since dεT/dIA

= �Ω(IA). We have simultaneously ∆G0 = 0 (no reaction energy) and
∆el = 0 that is we remains permanently at the inversion point. This
situation has apparently no physical interest because ET is reversible.
Actually, the minimum energy of the system is obtained for a symmetric
or antisymmetric electronic state (covalent bond) according to the sign
of λ but the binding energy which of the order of λ. This situation
requires

χA = −χD (49)
µA = µD + χD (50)

which means that the nonlinearities on donor and acceptor have just
opposite sign. They seems to cancel each other but on condition the
total of electron density on donor and acceptor is just one. Otherwise,
if the electron partly occupies other sites, it does not. Eq. (45) becomes

�θ̇ =
4λI√

1 − 4I2
cos θ +

∫ t

−∞
Γ(t − τ)İ(τ))dτ

(51)

�İ = −2λ
√

1 − 4I2 sin θ (52)

Without damping, this equation can be solved and yields Targeted Trans-
fer [6]. We get the simple solution θ = ±π/2 and IA(t) = sin2 2λ

�
t. This

solution keeps phase coherence since the phase difference θ is time con-
stant. It correspond to a ultrafast transfer at the order λ since its char-
acteristic time is proportional to 1/λ instead of 1/λ2 for the incoherent
process described above. Note also that this coherent transfer we call
Targeted Electron Transfer is also reversible.

When Γ is not zero, this time periodic solution damps and converges
to the covalent solution. The first interesting feature is that these os-
cillations start only when the electron injected from another source is
well focused on the donor where it has reached the density 1 (charge
selectivity). Then, the electronic levels ED(1 − IA) = EA(IA) oscillates
with the same frequency between two extreme values µA = µD+χD and
µA + χA = µD. This oscillation damps and finally converge to covalent
energy level µA + χA/2µD + χD/2.

In such situation, we shall call the acceptor, catalyst α = C because
it is not really an acceptor for the electron but this oscillating system
may induce a spectacular effect when it is weakly coupled to a third
unoccupied electronic level.

For λ small, suppose the interaction between such a donor and cata-
lyst generates electronic level oscillations ED(t) = EC(t) in an interval
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[µD, µC]. Then, assume a third unoccupied electronic level initially at
energy µA in the interval [µD, µC]. It is also assumed that this accep-
tor only coupled with the donor alone would be in the normal Marcus
regime (with a energy barrier). Thus, a direct transfer is not possi-
ble at zero temperature. However, resonance will necessarily occur at
a certain time after TET is initiated when ED(t) = µA. Then, if the
acceptor is sufficiently coupled, the immediate effect is to block the os-
cillation donor-catalyst and to trigger an ultrafast ET from the system
donor-catalyst to the acceptor. This very spectacular effect has been
numerically observed in [7].

7. Concluding remarks
We have presented here the basic hypothesis of our model but not de-

scribed some of its applications for example for understanding enzymatic
catalysis especially in biology. The reader is referred to [7].

We have demonstrated that the regime of ultrafast ET that is in the
vicinity of the Marcus inversion point, requires to take fully into account
the nonadiabaticity of the system. We show that this problem cannot be
treated within the standard theory of (linear) tunnelling. In the model
we obtain, the nonlinearities plays the fundamental role as well damping
and thermal noise and cannot be discarded.

The nonlinearity manifests by the fact an electronic energy levels de-
pend on its occupation density both because of the electrostatic effects
and the reorganisation of the environment. The special case of Tar-
geted Electron Transfer between donor and catalyst although exceptional
present a high physical interest despite in itself it does not produce irre-
versible ET. A very weak coupling turns out to be sufficient to generate
coherent large amplitude oscillation of electronic density associated with
a large amplitude oscillation of the corresponding energy level. This phe-
nomena is not an ordinary resonance effect. It relies essentially on the
nonlinearities of both electronic energy levels on Donor and Catalyst
which must be appropriately tuned. It also requires a specific initial
density (i.e., the fully occupied Donor) which yields selectivity. This
phenomena is drastically different from linear tunnelling which does not
generate oscillations for the electronic levels.

When a third molecule (acceptor) is weakly coupled with such a sys-
tem donor-catalyst, a resonance may be induced which triggers ultrafast
ET to the Acceptor. The presence of the catalyst is not only to suppress
the energy barrier between donor and acceptor but also to boost the
electron dynamics and generate an ultrafast electron transfer.
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There are straightforward extension of this theory, concerning more
generally the transfer of quantum excitations and particularly excitons.
Other directions concerns the possibility of forming more complex logical
devices with many electronic states based of nonlinear coherent electron
transfer.
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Abstract Femtosecond pump probe spectroscopy proves that self-trapping oc-
curs in the NH and amide I band of crystalline acetanilide (ACN). The
phonon modes that mediate the self-trapping are identified. Compari-
son between ACN and N-methylacetamide, both model systems for pro-
teins, shows that self-trapping is a common feature in hydrogen bonded
systems.

1. Introduction
It is well known that proteins have the remarkable, yet not well un-

derstood capability of storing and transporting efficiently small quanta
of energy. Davydov suggested self-localization of vibrational energy as
a possible explanation of this phenomena [1]. Crystalline acetanilide
(ACN) is considered to be a good model to study vibrational excitations
in proteins, since it consists of quasi-one-dimensional chains of hydrogen
bonded peptide groups with structural properties that are comparable
to those of an α-helix, the most common secondary structural motif
in proteins. Self-trapping originates from two coupling mechanisms [2]:
(i) dipole-dipole-interaction couples the individual peptide units to form
delocalized states, i.e. vibrational molecular excitons. (ii) nonlinear
interaction mediated through the hydrogen bonds, which stabilize the
crystal structure, couples the excitons to lattice phonons. Thus excita-
tion of an exciton leads to a deformation of the lattice and the initially
delocalized state collapses to form a self-localized state.

It is well known that the vibrational spectrum of ACN exhibits inter-
esting anomalies in the region of the amide I (i.e the C=O stretching) and
NH stretching band [3]. The amide I mode is observed at 1666 cm−1 at
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Figure 1. Absorption spectra and 2D-IR pump probe spectra of the C=O mode of
(a) crystalline ACN, (b) benzoylchloride and (c) N-methylacetamide (NMA) dissolved
in methanol. 2D-IR spectra record the absorption change as a function of probe
frequency and the center frequency of a narrow band pump pulse. The contour
intervals represent a linear scale. The absorption spectra exhibit the same doublet
structure in all three cases, while the 2D-IR spectra are clearly different.

room temperature and splits into two bands at low temperatures with an
additional ‘anomalous’ band at 1650 cm−1 (Fig. 2a). The NH stretching
mode consists of a main peak at 3295 cm−1 accompanied by an almost-
regular sequence of satellite peaks towards lower frequencies (Fig. 2b).
The anomalies in the CO and NH band have been both explained by self-
trapping theory [2, 3], according to which the main peak represents the
free exciton and the anomalous side bands represent self-trapped states.
In previous works self-trapping was observed through an indirect effect,
i.e. through the temperature dependence of the linear absorption spec-
trum [2, 3]. The temperature dependence is considered to be a signature
of anharmonicity of the molecular potential energy surface. We have re-
cently started to use an alternative, more direct approach to investigate
anharmonicity, namely nonlinear vibrational spectroscopy [4, 5, 6]. The
nonlinear vibrational response is exclusively sensitive to the anharmonic
part of the potential energy surface, since the response of a harmonic
system vanishes exactly. Anharmonicity at the same time gives also rise
to nonlinear dynamics. Hence, nonlinear spectroscopy is extremely valu-
able to study nonlinear phenomena such as vibrational self-trapping [7].

We performed femtosecond IR pump-probe experiments, using pulses
with a bandwidth of 200 cm−1 (FWHM). A small fraction of the in-
frared pulses was split off to obtain a broadband probe pulse, which was
spectrally dispersed after interaction with the sample and acquired by
a detector array. The remainder was used as a pump pulse, that was
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Figure 2. Part of the CO (a) and NH (b) band of crystalline ACN at 90K. Response
of the amide I band upon selective excitation of the self-trapped states (c) and the
free exciton peak (d) for two different delay times. The arrows indicate the position of
the narrow band pump pulse.(e) Coherent Response of the NH mode after impulsive
excitation and the Fourier transform spectra (f), for probe frequencies resonant with
the absorption peaks in the linear spectrum at 3295 cm−1 (grey lines) and 3195 cm−1

(black lines).

spectrally filtered to obtain tunable, narrow band pump pulses for some
of the experiments. Monocrystalline samples of ACN and deuterated N-
methylacetamide (NMA-D6) were placed in a cryostat and experiments
were performed with the E-vector parallel to the hydrogen bond chain.

2. Results and Discussion

2.1 The amide I mode
Self-trapping theory is considered to be the most convincing explana-

tion for the observed anomalous amide I band in ACN. However, two
alternative explanations, Fermi resonance and conformational substates,
have been discussed as well [2]. In a recent study [6] we compared the
two-dimensional infrared spectrum (2D-IR) of ACN with that of two
molecular systems, which show the same splitting in the amide I band,
and which were chosen as simple representatives of the alternative mech-
anisms (Fig. 1). 2D-IR spectra record the absorption change of the sam-
ple as a function of probe frequency and the center frequency of the
narrow band pump pulse (spectral width 14 cm−1, pulse duration 700 fs
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FWHM) [8]. The three 2D-IR spectra differ completely, albeit in a well
understood way. Based on the 2D-IR spectroscopic signature Fermi res-
onance and conformational sub-states can be definitely excluded as al-
ternative explanations for the anomalous spectra of ACN. Self-trapping
of the C=O mode, on the other hand, can naturally explain the observed
2D-IR spectrum of ACN.

Figure 2c,d shows two pump-probe spectra obtained by excitation of
either of the two absorption lines of ACN at a temperature of 90 K. These
spectra correspond to a horizontal cut through the 2D-IR spectra in
Figure 1a. When resonantly pumping the anomalous band (1650 cm−1,
Fig. 2c) the band bleaches (negative response) and a positive band emer-
ges at 1644 cm−1 (excited state absorption). When resonantly pump-
ing the normal band (1666 cm−1, Fig. 2d), on the other hand, hardly
any bleach of the band itself is observed. Coherent broad band excita-
tion experiments show that the lifetime of the normal amide I mode is
1.5 ps [5]. The lack of an observable bleach can therefore only be ex-
plained by the cancellation of all contributions to the pump-probe signal
(excited state absorption, stimulated emission and bleach), which is the
case for a perfect harmonic state [7]. It can be shown that the effective
anharmonicity of a vibrational exciton is a direct measure of its degree
of delocalization [5]. Thus, we conclude that the free exciton state is
almost perfectly delocalized at 90 K. As temperature increases, a bleach
signal starts to be observed, pointing to a non-complete cancellation of
the different contributions of the total pump-probe signal. Apparently,
thermally induced disorder starts to localize the free exciton.

The anharmonicity of the self-trapped state (1650 cm−1), on the other
hand, originates from nonlinear interaction between the amide I mode
and the phonon system of the crystal. It is mediated through the hy-
drogen bonds and is nonzero even at low temperatures. With rising
temperature, the bleach of the 1650 cm−1 band diminishes as the band
disappears in the absorption spectrum.

2.2 The NH mode
We used short broadband pump pulses (spectral width 200 cm−1,

pulse duration 130 fs FWHM) to excite impulsively the section of the NH
absorption spectrum which includes the free-exciton peak and the first
three satellite peaks [6](Fig. 2b,e,f). The transient absorbance change
signal shows pronounced oscillations that persist up to about 15 ps and
contain two distinct frequency components whose temperature depen-
dence and frequencies match perfectly with two phonon bands in the
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Figure 3. Part of the NH band of crystalline ACN (a) and NMA-D6 (b). The
free excitons are marked by dotted lines and the self-trapped states by black bars.
Response of the sample upon selective excitation of the free exciton peak (c,d) and
the self-trapped states (e,f) for delay times 400 fs (black line) and 4 ps (grey line).
The arrows indicate the position of the narrow band pump pulse.

non-resonant electronic Raman spectrum of ACN [3]. Therefore, the
beating structure is assigned to a ground state phonon excited through
a stimulated impulsive Raman effect, resonantly enhanced by the NH
absorption band as a consequence of anharmonic coupling to lattice
phonons. These are the phonons which modulate the hydrogen bond
distance and thus mediate self-trapping.

In a second experiment, narrow band pump pulses (spectral width
30 cm−1, pulse duration 250 fs FWHM) were used to selectively excite in-
dividual sub-levels of the NH band (Fig. 3c, e) [4]. On the sub-picosecond
time scale, the free-exciton and the lower lying self-trapped states be-
have distinctly differently. When exciting the free-exciton (Fig. 3c), a
strong bleach and stimulated emission signal is observed which recov-
ers on a 400 fs time scale. Simultaneously, population is transferred
into lower lying self-trapped states. On the other hand, when pumping
one of the self-trapped states directly (Fig. 3e), population within all
self-trapped states equilibrates essentially instantaneously, but the free
exciton peak is not back-populated. This is the direct observation of
ultrafast self-trapping: Excitation of the free-exciton leads to an irre-
versible population of self-trapped states, but not vice versa.
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2.3 N-methylacetamide
Our studies on the NH and amide I band of ACN prove the self-

trapping model and introduce a possible signature of self-trapping in
pump probe spectroscopy. So far ACN is the only hydrogen bonded crys-
tal for which vibrational self-trapping has been observed. However, other
molecules, such as N-methylacetamide (NMA) are structurally very sim-
ilar to ACN and form the same type of hydrogen bonded crystals. There-
fore they should also exhibit self-trapping, but convincing experimental
evidence for self-trapping in NMA has never been reported. Interestingly
the NH absorption band in NMA and deuterated NMA (NMA-D6) con-
sists of a main peak at about 3300 cm−1 accompanied by a regularly
spaced sequence of satellite peaks, which is in fact the same bandshape
as in ACN, except that the spacing is three times larger in NMA (see
Fig. 3a,b). If one compares the pump probe spectrum of NMA-D6 with
ACN one observes essentially the same spectral signature. An excitation
of the free exciton state results in negative signals at the position of all
bands in the NH mode (Fig. 3c,d), while an excitation of one of the self-
trapped states gives only a signal for the self-trapped states(Fig. 3e,f).
Consequently, one can use the self-trapping interpretation to explain
the spectral data in NMA. The comparison between pump-probe and
absorption spectra shows that the highest frequency band corresponds
in all three molecules to the free exciton.

3. Conclusion
In the amide I band of ACN we have observed temperature induced

localization of the free exciton mode at high temperatures and self-
localization at low temperatures. The NH mode self-localizes even at
room temperature, due to the larger self-trapping energy. A comparison
between ACN and NMA shows that self-trapping is not a unique feature
of ACN, but a general property of hydrogen bonded crystals. Hence one
might expect that α-helices should also exhibit vibrational self-trapping.
We are currently testing this hypothesis.
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Abstract By dealing with the classical equation of motion of a Fermi-Pasta-Ulam
chain as if the atomic displacement coordinates were quantum operators
and requiring that some special linear combinations of the displacements
and momenta pertaining to two nearest neighbor atoms obey the Bloch
theorem, an effective hermitian one-body potential is worked out at each
wave-vector throughout the Brillouin zone. The associated Schrödinger
equation is solved to yield the exact full spectrum of quantum anhar-
monic phonons as the set of bound eigenstates. The anharmonic dis-
persion curve differs barely from the harmonic one close to the Brillouin
zone center even at strong anharmonicity, the deviation being the largest
in the middle of the Brillouin zone.

Keywords: anharmonic lattice dynamics, quantum treatment

1. Introduction
The anharmonic part of the interatomic potential has been known

for long to be instrumental on a score of issues in solid matter such
as heat conduction, thermal expansion and structural changes including
melting. The whole gamut of anharmonic lattice dynamics comprises
phonons, solitons and breathers. Although the classical treatment of the
equation of motion of the solid provides indeed evidence for such stable
excitations arising in crystalline matter [1, 2, 3, 4, 5, 6], they prove to
be of little use to account for the thermal properties because the energy
of classical excitations varying continuously prevents any calculation of
the contribution to the free energy associated with the atomic motion.

Dealing with the quantum mechanical counterpart of anharmonic
crystal dynamics is a difficult many-body problem for which little has
been done[7, 8, 9, 10] beyond perturbation calculations based on har-
monic phonons. Consequently the perturbed eigenstates mix phonons
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with different wave-vectors so that they are no longer plane waves, which
makes the concept of a dispersion curve meaningless although such dis-
persion curves have been measured for decades in real anharmonic solids
by neutron scattering. In this work an exact diagonalization of the full
lattice dynamical Hamiltonian is presented for anharmonic phonons, i.e.
these eigenstates are plane waves characterized by a wave-vector. This
result has been achieved by requiring that the quantum version of the
equation of motion obey the Bloch theorem.

The outline is as follows: the principle of the method is described in
section I while an illustrative example is given for the Fermi-Pasta-Ulam
(FPU) chain in section II.

2. Working out the Schrödinger equation
As we are looking for plane waves, the crystal dimension is unimpor-

tant. Therefore we consider for simplicity an infinite chain of atoms of
mass m, distant from one another by the lattice parameter a and cou-
pled by the potential V =

∑
j∈Z

W (uj − uj+1) where uj designates the
displacement coordinate of the particle j with respect to its static equib-
rium position and W (x) is an arbitrary pairwise potential describing the
anharmonic coupling between nearest neighbors. The classical equation
of motion reads

müj = W ′(uj−1 − uj) − W ′(uj − uj+1) , j ∈ Z , (1)

where W ′ = dW
dx and üj refers to the second derivative of uj with respect

to time. From now on we shall regard the classical variables uj, uj±1, üj

as quantum operators, thus following the footsteps of Heisenberg in his
seminal treatment of the quantum harmonic oscillator [11].

Let us introduce now the operators a†j, aj defined as

a†j = mω0uj + ipj , aj = mω0uj − ipj , (2)

where ω0 is a vibrational frequency such that mω2
0 = d2W

dx2 (0) and pj =
i� ∂

∂uj
is the canonical momentum attached to the displacement uj. That

a†j, aj are hermitian conjugate of each other ensues from both operators

uj, pj being hermitian. The identities in Eqs. (2) secure that a†j, aj

reduce to the usual boson creation and annihilation operators in the
harmonic limit, i.e. W (x) ∝ x2.

The main assumption underlying this work consists of requiring that
the operators a†j, aj fulfil the Bloch condition consistent with the inter-
atomic potential being periodic

a†j+1 = eikaa†j ⇒ aj+1 = e−ikaaj , j ∈ Z . (3)
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The consistency of Eqs. (3) is ensured by a†j, aj being hermitian conju-
gate of each other. It must be emphasized that Eqs. (3) hold only inside
the subset Sk spanned by every anharmonic phonon associated with k.
Thence Eqs. (3) characterize Sk and sort Sk out of the whole Hilbert
space describing the atomic motion of the crystal. Taking advantage of
Eqs. (3), uj∓1 − uj is inferred to read

uj∓1 − uj = ±sin(ka)
mω0

pj − 2 sin2

(
ka

2

)
uj .

Inserting these expressions into Eqs. (1) results into

mü = W ′
(

sin(ka)
mω0

p − 2 sin2

(
ka

2

)
u

)
−W ′

(
sin(ka)
mω0

p + 2 sin2

(
ka

2

)
u

)
, (4)

wherein the index j has been dropped.
The virtue of the assumption conveyed by the identities in Eqs. (3)

is to map exactly the many-body Eqs. (1) into the one-body Eq. (3)
but only as far as anharmonic phonons are concerned. Other kinds of
nonlinear excitations such as breathers or solitons which do not belong
in Sk are thence not taken into account. Eq. (3) will now be used [11]
to introduce a one-body effective potential Ve(k, u) valid for anharmonic
phonons only

∂Ve

∂u
= −mü . (5)

The corresponding Hamiltonian and Schrödinger equation reads

Hk =
p2

2m
+ Ve , (Hk − ε)ψ = 0 , (6)

where ε, ψ designate the eigenenergy and eigenfunction and we focus
upon the bound eigenstates ψ (⇒ ∫ +∞

−∞ |ψ|2(u)du < ∞) making up the
basis of Sk.

It will be shown now by contradiction that k �= k′ ⇒ Sk
⋂

Sk′ = ∅.
For suppose that Sk

⋂
Sk′ �= ∅. It is then inferred from Eqs. (3) that

aj+1 = e−ikaaj = e−ik′aaj ⇒ aj = 0, which is wrong provided Sk or Sk′

are not empty or equivalently Eq. (6) has at least one bound solution.
Hence the anharmonic phonon subspace can be defined as Sφ =

⊕
k Sk

where the sum is carried out over the whole Brillouin zone. Accordingly
the projection of the full anharmonic lattice dynamical Hamiltonian onto
Sφ reads Hφ =

∑
k Hk. As in the harmonic case, a many-body eigenstate
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is made up of a tensor product of phonons, each being labelled by its
k. However the many harmonic phonon eigenstates do span the whole
Hilbert space describing the crystal motion whereas the many anhar-
monic phonon subspace Sφ fails to include an infinity of eigenstates, e.g.
quantum breathers and solitons. Besides the eigenvalues of Sk are in
general unequally spaced and the anharmonic phonons have no boson-
like property, contrary to the harmonic case. As a matter of fact because
the depth of W (x) is finite in real solids (W (x → ∞)−W (x = 0) < ∞)
unlike the harmonic case, the sequence of bound states is finite too, for
every k and might even be empty, which would hint towards an anhar-
monicity driven structural instability.
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Figure 1. The solid and dashed lines
picture ψ(u) and δψ(u) = ψ(u)−ψh(u)
where ψ, ψh refer to the solution of Eq.
(8) for given l, k in the anharmonic
(λ �= 0) and harmonic case (λ = 0),
respectively.

Figure 2. Same as in Fig.1 but for a
different k.

3. Results obtained for a FPU chain
The particular FPU pairwise potential chosen here reads

W (x) = mω2
0

(
x2

2
+ λ

x4

4

)
,

where the parameter λ measures anharmonicity. It is convenient to
introduce a0 such that λa2

0 = 2, which means that the anharmonic ∝ x4

and harmonic ∝ x2 terms are of equal magnitude for x = a0. It is then
seen that the smaller a0, the larger anharmonicity. Taking advantage of
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Eqs. (3,5), it comes for the one-body effective potential Ve(k, u)

Ve = 2mω2
0 sin2(

ka

2
)

[
u2 + 2λ sin4(

ka

2
)u4

+ λ

(
sin(ka)
mω0

)2 (
u2p2 + pu2p + p2u2

) ]
. (7)

The corresponding Schrödinger equation reads

�2

m

{[
1
2

+ 6λ
(

sin(
ka

2
) sin(ka)u

)2
]

∂2ψ

∂u2

+ 4λ
(

sin(
ka

2
) sin(ka)

)2 (
3u

∂ψ

∂u
+ ψ

)}

=
{

2mω2
0 sin2(

ka

2
)u2

(
1 + 2λ sin4(

ka

2
)u2

)
− ε

}
ψ (8)

It can be checked that the harmonic case is retrieved in Eqs. (6), (8) for
λ = 0. A scrutiny of Eq. (8) shows that the effect of anharmonicity is
twofold

similarly to the classical case it adds a term ∝ u4 to the harmonic
potential ∝ u2

unlike the classical case but in similarity with electron band theory
in periodic crystals, it alters the coefficient ∝ ∂2ψ

∂u2 , which gives rise
to a renormalized atomic mass.

Because of W (−x) = W (x), the solutions ψ of Eq. (8) can be assumed to
be real and are either even (ψ(u) = ψ(−u)) or odd (ψ(u) = −ψ(−u)) as
for harmonic phonons. It is thence convenient to label each eigenenergy
and eigenfunction ε(l, k), ψl,k where the integer l ≥ 0 is a band index,
keeping in mind that

εh(l, k) = 2�ωh(k)
(

l +
1
2

)
, ωh(k) = 2ω0 sin

(
ka

2

)
for harmonic phonons. Even and odd l values correspond to even and
odd eigenfunctions.

In the asymptotic limit |u| → ∞ Eq. (8) entails for a bound eigenstate

ψl,k = ule−αu2
, α =

mω0

2�
√

6
tan

(
ka

2

)
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and
ψl,k = ule−α|u|3 , α =

2mω0

3�

√
2λ

for ka < π and ka = π, respectively. Eq. (8) has been integrated from
u = aM � 1 down to u = 0 by ascribing the relevant asymptotic value

to
∂ψ
∂u

(aM )

ψ(aM ) , which yields ψ(u = 0, ε), ∂ψ
∂u(u = 0, ε). The solution ε is then

found by requiring ∂ψ
∂u(u = 0, ε) = 0, ψ(u = 0, ε) = 0 for even and odd

ψ, respectively. The aM value has been taken large enough so that ε
proves independent of aM and all calculations have been performed with
m = 10−26Kg, ω0 = 1013Hz.
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Figure 3. Dispersion data for
strongly anharmonic a0 = 1Å
phonons.

Figure 4. Dispersion data for weakly
anharmonic a0 = 3Å phonons.

The eigensolutions ψl=0,k of Eq. (8), represented in Figs. 1,2 illustrate
how little they differ from harmonic eigenfunctions even for subtantial
anharmonicity a0 = 1Å. Likewise ψl,k(u) displays l zeroes. Comparative
dispersion data across the Brillouin zone have been depicted for anhar-
monic and harmonic phonons in Figs. 3,4. The k dependent anharmonic
frequency is defined as ω(k) = ε(l=1,k)−ε(l=0,k)

�
and the dimensionless

parameter δk = ε(l=2,k)−ε(l=1,k)
ε(l=1,k)−ε(l=0,k) . In the harmonic case δk = 1,∀k. It is

then realized that the more ω(k)
ωh(k) , δk deviate from unity, the more influ-

ential anharmonicity is. This is in accordance with the data in Figs. 3,4
where the difference from unity is indeed larger for smaller a0. How-
ever the deviation is barely noticeable at low k values even for strong
anharmonicity, which implies that the sound velocity remains almost un-
affected by the anharmonic coupling in contrast with the classical case
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[4, 5]. The effect of anharmonicity turns out to be larger in the middle
of the Brillouin zone (ka � 0.6π), which suggests that mass renormaliza-
tion, vanishing at the zone edge (see Eqs. (6,8)), shows up more efficient
than the anharmonic term ∝ u4. Accounting for that result within the
harmonic theory would require to introduce unreasonably high coupling
beyond nearest neighbor atoms.

4. Conclusion
An exact diagonalization procedure has been devised for anharmonic

phonons valid for any interatomic coupling. Fitting the measured phonon
dispersion should enable one to assess the anharmonic part of the inter-
atomic potential and thereby to compute the partition function of the
crystal associated with the atomic motion and additionnally the specific
heat, the thermal expansion and the melting temperature. Besides this
approach can be extended to study quantum breathers by generalizing
the basic assumption in Eq. (3).
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Abstract A formalism to account for shape distortion and radiation effects for the
perturbed Ablowitz-Ladik soliton is outlined.

1. Introduction
Energy localization phenomena in nonlinear lattices have attracted

a great deal of attention [1, 2]. Waves arising as a result of interplay
between nonlinearity and lattice discreteness demonstrate a number of
novel features as compared with continuous nonlinear systems. Two
equations are frequently used to study discrete models - the discrete
nonlinear Schrödinger (DNLS) equation and the Ablowitz-Ladik (AL)
equation. Being discrete counterparts of the same continuous nonlinear
Schrödinger equation, these equations differ drastically in their math-
ematical properties. The DNLS equation being an adequate model in
various applications is nonintegrable [4] and studied numerically, as a
rule. Contrary, the AL equation is integrable and admits a complete an-
alytical investigation by means of the inverse spectral method [3]. More-
over, Konotop et al. [5] have proved integrability of the inhomogeneous
AL system in external field of a particular form.
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It is important that for some region of parameters the DNLS equation
can be considered as a perturbed version of the AL equation. In this
case, a considerable progress has been achieved in studying the DNLS
equation analytically in the framework of the adiabatic approximation of
the AL soliton perturbation theory [6, 7, 8, 9, 10]. The adiabatic approx-
imation accounts for a slow perturbation-induced evolution of the soliton
parameters, ignoring radiation of small-amplitude dispersive waves and
soliton shape distortion. Below we propose a formalism to go beyond
the adiabatic approximation. Our approach is based on the Riemann-
Hilbert (RH) problem method [11] that has been proved to be efficient
for continuous perturbed models [12, 13, 14]. Calculations in the frame-
work of the RH problem do not rely on inconvenient discrete analogs of
the Gel’fand-Levitan integral equations, as distinct from the formalism
by Konotop et al. [8].

2. The matrix Riemann-Hilbert problem and
AL soliton solution

The AL equation

iunt + un+1 + un−1 − 2un + |un|2(un+1 + un−1) = 0 (1)

for a scalar complex function un(t), −∞ < n < ∞, admits the Lax
representation with the spectral equation [3]

J(n + 1) = (E + Qn)J(n)E−1,

Qn =
(

0 un

−u∗
n 0

)
, E =

(
z 0
0 z−1

)
, (2)

where z is a spectral parameter. Matrix Jost solutions J± of (1) obey
the asymptotics J±(n) → I as n → ±∞ and the conjugation property
J†
±(n, z̄) = v±(n)J−1

± (n, z). Here z̄ = 1/z∗, v+(n) =
∏∞

l=n ρ−1
l , v−(n) =∏n−1

l=−∞ ρl, ρl = 1 + |ul|2. The scattering matrix

S(z) =
(

a+ −b−
b+ a−

)
connects the Jost solutions: J−(n) = J+(n)EnS(z)E−n. The spectral
problem (1) possesses the P-parity property: if J(n, z) is a solution of
the spectral equation, then the function PJ(n, z) ≡ σ3J(n,−z)σ3 is a
solution as well. Because PS(z) = S(z), we have a±(z) = a±(−z),
b±(z) = −b±(−z).



Dynamics of the perturbed Ablowitz-Ladik soliton 491

It can be shown that the matrix function Ψ+ (Ψ−1
− ) built from columns

(rows) of the Jost solutions,

Ψ+(n, z) =
(
J

[1]
− , J

[2]
+

)
(n, z), Ψ−1

− (n, z) =

(
(J−)−1

[1]

(J+)−1
[2]

)
(n, z),

is analytical outside (inside) the unit circle in the z-plane, i.e., in C+

(C−) and solves the direct (adjoint) spectral equation. These solutions
obey the conjugation relation

Ψ†
+(n, z) = B(n)Ψ−1

− (n, z̄), B(n) =
(

v−(n) 0
0 v+(n)

)
.

Having matrix functions Ψ+ and Ψ−1
− analytical in the complementary

domains of the z-plane and continuous on the boundary |z| = 1, we can
formulate the RH problem

Ψ−1
− (n, z)Ψ+(n, z) = EnG(z)E−n, G =

(
1 b−/v
b+ 1

)
, |z| = 1,

as a problem of analytical factorization of the matrix function G defined
on the boundary |z| = 1 with the normalization condition

Ψ+(n, z) −→
(

1 0
0 v+(n)

)
, z → ∞. (3)

In general, matrices Ψ+ and Ψ−1
− have zeros in some points zj and

z̄j in their regions of analyticity, i.e., det Ψ+(zj) = 0, zj ∈ C+, and
det Ψ−1

− (z̄j) = 0, z̄j ∈ C−, j = 1, 2, . . . , N . In virtue of the P-parity, ze-
ros appear in pairs ±zj, ±z̄j. We will solve the RH problem with zeros
by extracting from Ψ± rational factors responsible for zeros. It can be
shown [15, 16] that Ψ± is represented as a product Ψ± = ψ±Γ, where
ψ± solve the regular RH problem (i.e., without zeros)

ψ−1
− (n, z)ψ+(n, z) = Γ(n, z)EnG(z)E−nΓ−1(n, z), (4)

while the rational function Γ(n, z) accumulates all zeros of the RH prob-
lem and is written as

Γ(n, z) = I −
2N∑

j,k=1

1
z − z̄k

|yj〉(D−1)jk〈yk|B, Dkj = 〈yk| B

zj − z̄k
|yj〉.

(5)
Here the vector |yj〉 has the form |yj〉 = En(zj)eΩ(zj)t|p〉, |p〉 = const,
Ω(zj) = (i/2)(zj − z−1

j )2σ3. Comparing asymptotic expansions for Ψ+
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and Γ, we obtain that the solution of the regular RH problem is given
by the leading-order term (3) and the formula to reconstruct a solution
of the AL equation has the form

un(t) = −Ψ(1)
+12

Ψ(0)
+22

= − Γ(1)
12

v+(n)
. (6)

For the soliton solution associated with zeros ±z1 and ±z̄1 the vector
|yj〉 ≡ |n〉 is written explicitly as

|n〉 = e
1
2
(a+iϕ)

(
e

1
2
(xn+iϕn)

e−
1
2
(xn+iϕn)

)
.

Here z1 = exp[(1/2)(µ + ik)], xn = µn − 2t sinhµ sin k + a, ϕn = kn +
2t(cosh µ cos k − 1) + ϕ, a and ϕ are constants. Substituting this vector
into (5) and (6), we obtain soliton of the AL equation:

un(t) = exp[ik(n − x) + iα]
sinhµ

cosh µ(n − x)
.

It depends on four constant parameters µ, k, x0 and α0 which determine
soliton mass, its group velocity , soliton maximum position and phase.

3. Perturbation-induced evolution of RH data
The perturbed AL equation is written in the form (1) with the r.h.s.

εrn, ε being a small parameter and rn is a perturbation. To find correc-
tions to the soliton caused by a perturbation, we first derive the corre-
sponding evolution of the RH data. The perturbation causes a variation
δQn of the potential which in turn leads to a variation of the analytical
solutions:

δΨ+

δt
= −iεΨ+EnΠ+E−n,

δΨ−1
−

δt
= iεEnΠ−E−nΨ−1

− . (7)

Here the evolution functionals Π± are defined by

Π+(n, z) =
(

Υ+11(−∞, n − 1) −Υ+12(n,∞)
Υ+21(−∞, n − 1) −Υ+22(n,∞)

)
,

Π−(n, z) =
(

Υ−11(−∞, n − 1) Υ−12(−∞, n − 1)
−Υ−21(n,∞) −Υ−22(n,∞)

)
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and we introduce matrix functions

Υ±(Na, Nb) =
Nb∑

l=Na

E−(l+1)Ψ−1
± (l + 1)R̂lΨ±(l)El, (8)

Υ±(z) = Υ±(−∞,∞), R̂n =
(

0 rn

r∗n 0

)
,

which are interrelated by the matrix G entering the RH problem, Υ− =
GΥ+G−1. From (7) we obtain the evolution equation for G in the pres-
ence of perturbation:

Gt = [Ω, G] − iε(GΠ+ − Π−G). (9)

Perturbation-induced evolution of the discrete RH data is written as

z1t= iεResz=z1Υ+11(z), |p〉t= iεe−Ω(z1)t

(
Υ(reg)

+11 (z1) 0
Υ(reg)

+21 (z1) 0

)
eΩ(z1)t|p〉.

(10)
Here Υ(reg) is the regular part of the meromorphic function Υ which has
simple poles in zeros of the RH problem. Hence, perturbed evolution of
the RH data are given by Eqs. (9) and (10). It should be noted that
these equations are exact. However, they cannot be directly applied
because the matrices Π± and Υ± depend on unknown solutions Ψ± of
the spectral problem with the perturbed potential. Iterative analysis of
these equations w.r.t. ε gives consequently the adiabatic and the first-
order approximations.

4. The first-order approximation
The adiabatic approximation governed by the discrete data evolu-

tion is well known [6]. Below we describe the first-order approximation
accounting for the continuous RH data evolution (9). Within this ap-
proximation we pose

G = I + εg(z), ψ+(n, z) = ψ0
+(n)(I + εφ(n, z)),

where ψ0
+ stands for the solution of the regular RH problem (4) in the

adiabatic approximation, whereas the off-diagonal matrices g(z) and
φ(z) describe first-order corrections. Therefore, the reconstruction for-
mula (6) takes now the form

un = −Γ(1)
12 (n)Γ22(n, 0) − εφ

(1)
12 (n)Γ22(n, 0).

The first term in the r.h.s. represents the soliton solution in the adiabatic
approximation and the second one is responsible for radiation (soliton
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shape distortion). The matrix φ(1) is given by the integral

φ(1)(n) = − 1
2πi

∮
|z|=1

dz(ΓEngE−nΓ−1)(z)

which is simplified considerably at n → ∞,

φ
(1)
12 (n) = − 1

2πi

∮
|z|=1

dz
z2 − z2

1

z2 − z̄2
1

z2ng12.

Finally, g12 entering this integral is obtained from the equation

g̃12t = i exp
[−i(z − z−1)2t

]
Υ+12, g̃ = e−ΩtgeΩt.

It is important that because Υ+12 corresponds to the first order correc-
tion, we can replace in the definition (8) of Υ+ unknown solution ψ+ of
the regular RH problem (4) by ψ0

+ known from the adiabatic approxi-
mation. Examples of specific perturbations and numerical simulations
are considered in our recent paper [17].
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Abstract The existence of traveling waves is studied analytical for discrete sine-
Gordon equation with an inter-site potential. The reduced functional
differential equation is formulated as an infinite dimensional differen-
tial equation which is reduced by a centre manifold method and to a
4-dimensional singular ODE with certain symmetries and with hetero-
clinic structure. The bifurcations of solutions from heteroclinic ones are
investigated for singular perturbed systems.

Keywords: lattice sine-Gordon, center manifold reduction, normal form theory, bi-
furcations

1. Introduction
In recent years there has been a flurry of mathematical research aris-

ing from condensed matter physics and physical chemistry, namely the
study of localised modes in anharmonic molecules and molecular crys-
tals. Using classical approximations, these are described by nonlinear
lattice equations. Most nonlinear lattice systems are not integrable even
if the PDE model in the continuum limit is; (see [1, 2] and references
therein). Prototype models for such nonlinear lattices take the form of
various discrete NLS equations or systems, a particularly important class
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of solutions of which are so called discrete breathers which are homoclinic
in space and oscillatory in time. Other questions involve the existence
and propagation of topological defects or kinks which mathematically are
heteroclinic connections between a ground and an excited steady state.
Prototype models here are discrete version of sine-Gordon equations,
also known as known as Frenkel-Kontorova (FK) models [3]. There are
many outstanding issues for such systems relating to the global exis-
tence and dynamics of localised modes for general nonlinearities, away
from either continuum or anti-continuum limits [4]. The kinks solutions
have applications to problems such as dislocation and mass transport
in solids, charge-density waves, commensurable-incommensurable phase
transitions, Josephson transmission lines etc.

In this paper, we consider a perturbed Hamiltonian chain of coupled
oscillators with an Hamiltonian

H =
∑
n∈Z

( 1
2
u̇2

n +
1

2ε2
(un+1 − un)2 + H(un) + µG(un+1 − un)

)
(1)

where ε > 0, µ are small parameters and h(x) = H ′(x) and g(x) =
G′(x). H, G ∈ C2(R). For H(x) = G(x) = 1 − cosx we obtain the
discrete sine-Gordon equation with inter-site potential as perturbation.
The Hamiltonian H gives the nonlinear lattice eqn:

ün− 1
ε2

(un+1−2un+un−1)+h(un)+µ
{

g(un−un−1)−g(un+1−un)
}

= 0

(2)
We suppose for (2) the following conditions

(A1) h, g ∈ C1(R) are odd, h is 2π-periodic, h(x − π) = −h(x) and g is
globally Lipschitz on R.

(A2) h(0) = h(2π) = 0, h′(0) = h′(2π) = a2 > 0 and there is a hetero-
clinic solution Φ of

ẍ − h(x) = 0 : Φ(t) = 2π − Φ(−t), Φ(t) → 2π ast → +∞.

The continuum limit of eq. (2) for µ = 0

utt − uxx + h(u) = 0

admits travelling wave solutions

u(x, t) = Φ
( x − νt√

1 − ν2

)
, 0 < ν < 1 .
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We consider for eqn (2) travelling wave solutions of stationary profile in
a moving reference with constant velocity ν/ε. One can write

un(t) = V
(
n − ν

ε
t
)
≡ V (z), z = n − ν

ε
t, 0 < ν < 1 .

Eqn (2) is reduced to the following functional differential equation:

ν2V ′′(z) − V (z + 1) + 2V (z) − V (z − 1) + ε2h(V (z))
+ ε2µ

(
g(V (z) − V (z − 1)) − g(V (z + 1) − V (z))

)
= 0

(3)

where ′ represents differentiation with respect to z. In this paper, we
review the analytical results about the existence of solutions of eqn (3)
near Φ and the relationship between traveling wave solutions of (2) and
continuum sine-Gordon for ε > 0, µ small.

2. Periodic travelling waves-bifurcation analysis
We apply center manifold theory to the study of existence of travelling

wave solution of eqn (1.8) with small amplitude oscillations on infinite
nonlinear lattice.

We introduce a new variable v ∈ [−1, 1] and functions X(t, v) = x(t+
v). The notation U(t)(v) =

(
x(t), ξ(t), X(t, v)

)
indicates our intention

to construct V as a map from R into some function space living on
the v-interval [−1, 1]. We introduce the Banach spaces H and D for
U(v) =

(
x, ξ, X(v)

)
H = R2 × C[−1, 1], D =

{
U ∈ R2 × C1[−1, 1] | X(0) = x

}
with the usual maximum norms. Then L ∈ L(D, H) and M ∈ C1(D, D).
Eqn (3) can be written as follows [5]

Ut = LU +
ε2

ν2
M(U) (4)

where

L =

⎛⎝ 0 1 0
− 2

ν2 0 1
ν2 δ1 + 1

ν2 δ−1

0 0 ∂v

⎞⎠ , δ±1X(v) = X(±1)

M(U) =
(
0, h(x) − µ

{
g(x − δ−1X(v)) − g(δ1X(v) − x)

}
, 0
)

The spectrum σ(L) is given by the resolvent equation (λI − L)U = F ,
F ∈ H, λ ∈ C , U ∈ D. The resolvent equation is solvable if and only if
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N(λ) := λ2 + 2
ν2 (1− cosh λ) = 0. Clearly, σ(L) is invariant under λ → λ̄

and λ → −λ. The central part σ0(L) = σ(L) ∩ i R is determined by
the equation q2 + 2

ν2 (cos q − 1) = 0, q ∈ R. We assume that ν1 < ν < 1
where ν = ν1 is the first value from the left of 1 for which the equations

λ2 +
2
ν2

(cos λ − 1) = 0, λ − 1
ν2

sin λ = 0

have a common nonzero solution λ �= 0. Then equation N( i q) = 0 has
the double root 0 and simple roots ±q. Hence we have σ0(L) = {0,± i q}.

The linear operator on the 4th-dimensional central subspace Hc has
the form Lc = L/Hc in the basis (ξ1, ξ2, ξ3, ξ4) which satisfies Lξ1 = 0,
Lξ2 = ξ1, Lξ3 = −qξ4, Lξ4 = qξ3. The projection Pc H → Hc is given
by Pc(U) = P1(U)ξ1 + P2(U)ξ2 + P3(U)ξ3 + P4(U)ξ4 [7].Condition (A1)
implies that M is globally Lipschitz. We can apply the procedure of a
center manifold method to get for ε, µ small the reduced equation of (4)
over Hc given by

u̇c = Lcuc +
ε2

ν2
Pc(M(uc)) + O(ε4), (5)

where uc = u1ξ1 + u2ξ2 + u3ξ3 + u4ξ4. Introducing the appropriate
scaling, we consider the singularly perturbed system of the form:

ẍ + h(x) = f1(x, ẋ, y, εẏ, ε) ε2ÿ + y = ε2g1(x, ẋ, y, εẏ, ε) (6)

Theorem 1 (Feckan & Rothos, 2003) For any k0 ∈ N there is an
ε0 > 0 such that for any 0 < ε < ε0, |µ| ≤ ε0ε

1/4 and T = ε
(
k[ε−3/2]π +

τ
)

with k ∈ N, k ≤ k0, τ ∈ [π/3, π/6], system (6) has a 4T -periodic so-
lution (xT,ε,1(t), yT,ε,1(t)) near (φ(t), 0), −T ≤ t ≤ T and has a solution
(xT,ε,2(t), yT,ε,2(t)) on R near (φ(t), 0), −T ≤ t ≤ T , such that xT,ε, i ,
yT,ε, i are odd functions and

xT,ε, i (t + 2T ) = (−1) i xT,ε,1(t) + 2π( i − 1),

yT,ε, i (t + 2T ) = (−1) i yT,ε,1(t), i = 1, 2

Theorem 2 (Feckan & Rothos, 2003) If h, g satisfy the assumptions
(A1−A2) then traveling wave solution u(x, t) = Φ

(
x−νt√
1−ν2

)
for 0 < ν1 <

ν < 1 of sine-Gordon can be approximated by the both rotational and
librational travelling wave solutions of (2) with very large periods and
with the velocity ν for µ = o(ε1/4) small.

The central part of the spectrum σ(L) is {0,±iq}, where 0 has multi-
plicity two. We can perform a polynomial change of coordinates close to
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identity, analytically depending on the parameter µ̃, uc = Y + Φ(Y, µ̃)
such that the reduced system (5) is equivalent in a neighborhood of the
origin to

dY

dt
= N(Y, µ̃) + R(Y, µ̃) (7)

where N is the normal form of order 2 and R represents the new terms
of order greater or equal to 3, Y = (y1, y2, y3, y4) and the system (7) has
the following symmetry properties:

SN(Y, µ̃) = −N(SY, µ̃), SR(Y, µ̃) = −R(SY, µ̃)

with S(y1, y2, y3, y4) = (y1,−y2, y3,−y4).
For studying the dynamics of the initial system near the origin, we

perform a polynomial change of coordinates for which the “linear and
quadratic” part N is as simple as possible. Next, we analyze the trun-
cated system

dY

dt
= N(Y, µ̃),

its heteroclinic orbits close to the origin. We focus on the problem of the
persistence for the full system of the heteroclinic connections obtained
for the truncated system and emphasize the case of solutions tending to
exponentially small oscillations at infinity, (see [6]).
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[4] G. Iooss and K. Kirchgässner Traveling waves in a chain of coupled nonlinear
oscillators, Comm. Math. Phys. 211(2), pp. 439-464 (2000).

[5] M. Feckan and V. M. Rothos Bifurcations of periodics from homoclinics in sin-
gular o.d.e.: Applications to discretizations of traveling waves of p.d.e., Comm.
Pure Appl. Anal. 1, pp. 475-483 (2002).

[6] V. M. Rothos and M. Feckan, Global Normal Form for Travelling Waves in Non-
linear Lattices (2003) (preprint).

[7] M. Feckan and V. M. Rothos Travelling Waves for Perturbed Spatial Discretiza-
tions of Partial Differential Equations (2003) (preprint).



DYNAMICS OF MULTICOMPONENT
SOLITONS IN PERTURBED LADDER
LATTICES

Oleksiy O. Vakhnenko
Bogolyubov Institute for Theoretical Physics, Kÿıv UA-03143, Ukraine
vakhnenko@bitp.kiev.ua

Abstract We investigate the interplay between the longitudinal and lateral soli-
tonic modes in perturbed ladder lattices in regard to the transmission of
soliton wave packet. (1) In a longitudinal uniform field the lateral and
longitudinal solitonic modes are shown to be independent. However,
unlike in the unperturbed case the dynamics of soliton center of mass
becomes confined within a finite spatial domain via the Bloch mecha-
nism in the longitudinal direction and due to the transverse finiteness
of the ladder in the lateral one. (2) We study the impact of the mo-
dified transverse bond on the longitudinal soliton dynamics and reveal
that this imperfection might act on the soliton either as an attractive
or a repulsive potential, depending on the sign of the transverse energy
of the ingoing soliton. (3) The segment of zigzag-distributed on-site
impurities cause the soliton mode-mode mixing. As a result the soli-
ton exhibits rather complex two-dimensional dynamics accompanied by
wave radiation which may give rise to soliton trapping. Nevertheless,
under some specific conditions the soliton is able to bypass even the
strong impurities slaloming between them.

Keywords: Ladder lattice, soliton, Bloch oscillations, attractive-repulsive alterna-
tive, slalom

1. Introduction
The concept of soliton excitations is known to have been arisen orig-

inally from the theory of integrable nonlinear evolution systems in one
spatial dimension [1, 2]. Moreover, all subsequent history of soliton sci-
ence has shown that apart from rare exceptions [3, 4] the newly invented
integrable nonlinear models turn out to be spatially one-dimensional in
true physical (not mathematical) sense of the word. While being admis-
sible on the macrolevel (e.g. to the light pulse propagation in optical
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fibers [5] or to the electric pulse propagation in nonlinear transmission
lines [6]) the spatially one-dimensional models can hardly be applied on
the microlevel (e.g. to the energy and charge propagation in isolated
one-chain samples of long biological molecules [7] or long synthesized
molecules [8]) on account of the thermodynamically caused instability
of natural one-dimensional structures [9]. On the contrary in the quasi-
one-dimensional lattice systems (e.g. in the carbon nanotubes [10] or in
the other long molecules consisting of several mutually coupled chains)
the effects of structural instability are suppressed and the theoretical de-
scription of their nonlinear properties looks more realistic. In addition
this type of structures in itself might provide a substantially more rich
dynamics of nonlinear excitations [11, 12] as compared with the purely
one-dimensional systems to say nothing of pretty interesting or even un-
expected ballistic effects stemming from the external fields or specific
lattice imperfections unfeasible for the one-chain geometry [13, 14].

2. General model of perturbed ladder lattices
In this communication we summarize the results obtained for the dy-

namics of multicomponent solitons in perturbed ladder-lattices on an
example of generalized Hamiltonian [13, 14]

H =
M∑

α=1

M∑
β=1

∞∑
n=−∞

∞∑
m=−∞

Rα(n) [Uαβ(n|τ |m) − tαβ] Qβ(m) (1)

−
M∑

α=1

∞∑
n=−∞

E(n + 1)E(n) [Rα(n + 1)Qα(n) + Qα(n + 1)Rα(n)] ,

where E(n) =
√

[exp(ρ(n)) − 1]/ρ(n) and ρ(n) =
∑M

β=1 Rβ(n)Qβ(n).
For the sake of definiteness we associate Qα(n) and Rα(n) with the
probability amplitudes for the lattice site with the longitudinal n and
transverse α coordinates to be excited (Rα(n) ≡ Q∗

α(n)). Then the term
with the matrix tαβ ≡ t∗βα corresponds to the resonant coupling between
all M chains of ladder lattice structure, while the term with E(n+1)E(n)
describes both the resonant coupling between the sites in longitudinal di-
rection and the nonlinear couplings between the sites in longitudinal and
transverse directions. The potential matrix Uαβ(n|τ |m) ≡ U∗

βα(m|τ |n)
serves to specify either the external fields or lattice imperfections and
besides from the site coordinates may also be dependent on the time τ .
It is worth noticing that the amplitudes Qα(n) and Rα(n) are chosen to
be conjugated canonically in order that their evolution being governed



Dynamics of multicomponent solitons in perturbed ladder lattices 505

by the dynamical equations in standard Hamiltonian form

+idQα(n)/dτ = ∂H/∂Rα(n), −idRα(n)/dτ = ∂H/∂Qα(n). (2)

At tαβ ≡ 0 and Uαβ(n|τ |m) ≡ 0 these equations are proven to be one
of possible discretizations of famous Manakov system [15] generalized
to the case of 2M field variables. In contrast to the other known dis-
cretizations [16–18, 11] the problem of their integrability remains to be
open although the question about the one-soliton solutions has been re-
solved affirmatively even at tαβ �= 0. Here we would like to stress that at
tαβ �= 0 and Uαβ(n|τ |m) = 0 and nonzero area of structure cross-section
the model (1), (2) is able to describe also the exact one-soliton solutions
in the presence of uniform magnetic field directed along the chains [11]
and treated within the framework of Peierls substitution [19], supposing
of course the excitations to be electrically charged.

3. Three- and two-dimensional solitonic
oscillations in uniform longitudinal field

The simplest type of perturbation corresponds to the spatially linear
potential [14] when

Uαβ(n|τ |m) = −δαβδnmmE (τ). (3)

The multicomponent one-soliton solution has the form

Qα(n) = bα

√
ln[1 + sinh2µ sech 2µ(n − x)] exp(ikn + iθ) (4)

with
∑M

α=1 b∗αbα ≡ 1, α = 1, 2, . . . , M. Here µ and θ evolve according
to the equations dµ/dτ = 0 and dθ/dτ = 2 cosh µ cos k, while the other
solitonic parameters form the M + 1 pairs x, k and bα, b∗α of canonically
conjugated variables and evolve according to the Hamiltonian equations

dx

dτ
=

∂H

∂k
,

dk

dτ
= −∂H

∂x
(5)

+i
dbα

dτ
=

∂H

∂b∗α
, −i

db∗α
dτ

=
∂H

∂bα
(6)

with the effective Hamiltonian given by

H = − 2
µ

sinhµ cos k − xE (τ) −
M∑

α=1

M∑
β=1

b∗αtαβbβ. (7)

The collective variables x, k and bα, b∗α are responsible respectively for
the longitudinal and lateral dynamics of the soliton as a whole. These
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two sorts of dynamics are seen to be completely separated. Moreover, the
parameter x turns out to coincide with the mean longitudinal coordinate
of nonlinear wave packet

X =
∑∞

n=−∞ nρ(n)∑∞
n=−∞ ρ(n)

calculated on the one-solitonic ansatz (4) and at constant external field
E (τ) ≡ E it is bound to be confined within the finite interval of width
(4/µE ) sinhµ. This effect known as Bloch dynamical localization [20–
22] is emanated from the interplay between the finiteness of longitudinal
kinetic energy band (the consequence of structure discreteness) and the
monotonic dependence of longitudinal potential energy on coordinate x
so that the total longitudinal energy to be conserved. The direct integra-
tion of dynamical equations confirms this statement and we readily come
to the Bloch oscillations with the amplitude A‖ = (2/µE ) sinhµ and the
cyclic frequency ω‖ = E . As to the lateral dynamics it can be visualized
introducing the coordinates for the center of nonlinear wave packet in
structure cross-section. Thus, for the two-leg lattice structure (M = 2;
tαβ = (1 − δαβ)t; α = 1, 2; β = 1, 2) the only transverse coordinate

Y =
∑2

α=1

∑∞
n=−∞(−1)αRα(n)Qα(n)∑2

α=1

∑∞
n=−∞ Rα(n)Qα(n)

is sufficient and the original dynamical equations (2), (1), (3) yield that
for harmonic oscillator d2Y/dτ2 + (2t)2Y = 0. The frequency of lateral
oscillations is given by ω⊥ = 2t, while their amplitude

A⊥ =
√

cos2 2ϕ + sin2(δ1 − δ2) sin2 2ϕ

is determined by the initial conditions b1(0) = exp(iδ1) cos ϕ and b2(0) =
exp(iδ2) sinϕ and never exceeds the half-distance between the chains.
At incommensurate frequencies ω‖ and ω⊥ the solitonic centre of mass
exhibits unclosed trajectory confined in both spatial directions, although
when the frequencies ω‖ and ω⊥ are commensurate the trajectory is
reduced to some closed Lissajou one.

The most representative perturbation feasible for the multileg ladder
lattices is the local modification of transverse bonds [14]

Uαβ(n|τ |m) = −δ0nδm0hαβ. (8)

Here the parameters hαβ describe the changes of lateral coupling para-
meters tαβ within the zeroth unit cell. In what follows we consider only
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the case of proportional modification hαβ = wtαβ bearing in mind that
it is always justified at least for the two-leg ladder lattice. We will
see that such kind of modification might act on the longitudinal soliton
dynamics in two absolutely different ways: either as a repulsive or as an
attractive potential depending exclusively on the energy of transverse
solitonic modes far away from the defect where the longitudinal and
transverse solitonic modes prove to be practically uncoupled. The main
features of this effect can be understood already within the framework
of trial Lagrangian formalism [14]. The standard manipulations with
the system Lagrangian and one-solitonic ansatz (4) gives rise to the
dynamical equations (5)–(6) for the collective variables x, k and bα, b∗α
however this time with the effective Hamiltonian [14]

H = − 2
µ

sinhµ cos k

−
[
1+

w

2µ
ln
(
1+sinh2µ sech 2µx

)] M∑
α=1

M∑
β=1

b∗αtαβbβ, (9)

where the parameter µ is supposed to be constant. The quantity

η ≡
M∑

α=1

M∑
β=1

b∗αtαβbβ

when being conserved happens to be of key importance in the whole
problem under study. Its conservation is ensured provided the transverse
coupling parameters tαβ are time independent. Under this assumption
the effective equations (5), (9) for the longitudinal dynamics become
selfconsistent and the quantity η can be treated as some effective charge
of the soliton. Remarkable that through the effective charge η we are
capable to regulate the character of the interaction between the soli-
ton and modified transverse bonds from attractive to repulsive and vice
versa even at fixed modifying factor w by merely variating the initial pa-
rameters of the transverse soliton pattern. We believe this effect might
play a crucial role in the phenomena of soliton separation and reflection
with respect to the effective transverse energy of the ingoing soliton −η
since up to the sign it coincides with the effective charge η. Our quali-
tative theory is certainly valid provided the imperfection-induced effects
of wave radiation by soliton and soliton-induced effects of impurity-state
excitation are negligible. The qualitative results concerned to the effect
of attractive-repulsive alternative in soliton interaction with the modified
transverse bonds have been confirmed by the direct numerical simula-
tions of the exact dynamical equations (2), (1), (8) on an example of
two-leg ladder lattice [14].
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4. Slalom soliton dynamics between
zigzag-distributed impurities

In regular two-leg ladder lattice without external fields the trajectory
of the soliton as a whole according to the equations d2X/dτ 2 = 0 and
d2Y/dτ2 + (2t)2Y = 0 must be sinusoidal. This simple fact, that the
soliton dynamics is essentially two-dimensional, gives rise to the possi-
bility for the soliton to bypass even the strong on-site impurities (the
effect which in one-chain lattices is geometrically forbidden). Of course
to observe the bypassing effect the impurity locations have to be spe-
cially arranged and the soliton initial conditions should be appropriately
synchronized. We have verified this hypothesis by the direct computer
experiment taking the impurity potential matrix in the form [13, 14]

Uαβ(n|τ |m) = δαβδnmV
Z−1∑
s=0

∆(m − ni − (β − 1)l − Mls), (10)

which for the two-leg ladder lattice (M = 2; tαβ = (1 − δαβ)t; α = 1, 2;
β = 1, 2) models the set of 2Z on-site impurities arranged in an ideal
zigzag-like fashion. Here the constant V characterizes the strength of
impurity, ni marks the longitudinal position of first impurity on first
(α = 1) chain, 2l measures the distance between the neighbouring im-
purities along the same chain and ∆(m − n) ≡ δmn. From the purely
geometrical arguments the disturbance of sinusoidal trajectory of ingo-
ing soliton by the segment of zigzag-arranged impurities is expected to
be minimal when (i) the spatial period of trajectory T⊥v‖ will be com-
mensurate with the pitch of impurity distribution 2l via the relation
(2j + 1)T⊥v‖ = 2l (j = 0, 1, 2, . . .), (ii) the amplitude of ingoing soliton
will be maximal (i.e. equal to the half distance between the chains), (iii)
the trajectory of ingoing soliton will be synchronized to pass through
the lattice site n = ni, α = 2 just across from the first impurity site
n = ni, α = 1 and (iv) the soliton longitudinal size d will be narrow
as compared with the spatial half period of trajectory T⊥v‖/2. Here
T⊥ = π/t and v‖ are respectively the period of lateral oscillations and
the longitudinal velocity of ingoing soliton. The results of numerical sim-
ulations are as follows [13, 14]. The above-referred slaloming conditions
(i)–(iv) when fulfilled even within few percent windows ensure almost
the full transmission of ingoing soliton wave packet through the short
(2Z = 4) segment of very strong impurities irrespective of their type
attractive V < 0 or repulsive V > 0. However, the substantial break
of bypassing conditions (i) and/or (iii) almost inevitably leads to the
soliton trapping among impurities accompanied by some low amplitude
wave radiation. On the other hand the ingoing soliton with the small
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amplitude of sinusoidal trajectory (break of bypassing condition (ii)) is
governed by the scenario with the almost total reflection from the strong
repulsive impurities. The latter result can be easily understood in view
of approximately equal presence of nonlinear excitations on both chains
of ladder lattice before the soliton-impurity collision.

5. Conclusion
In conclusion, we have presented a physically corrected model of in-

tramolecular excitations on a multileg ladder lattice supporting both
the exact soliton solutions and the standard Hamiltonian formulation.
We have subjected this system subsequently to three different types of
perturbation and have investigated the corresponding multimode soli-
ton dynamics. In particular, we have paid attention to the uniform
longitudinal field, local modification of transverse bonds, and zigzag-
distributed on-site impurities and described the effects caused by the
nontrivial mixing between the lateral and longitudinal solitonic modes.
We expect that transverse-bond imperfection could serve as a filter se-
lecting the solitons with prescribed properties. A similar function is
feasible for zigzag-distributed on-site impurities too.
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Abstract I study the functional representation of the Volterra hierarchy (VH).
Using the Miwa’s shifts I rewrite the infinite set of Volterra equations
as one functional equation. These results are used to derive a formal
solution of the associated linear problem and a generating function for
the conservation laws and to obtain a new form of the Miura and Back-
lund transformations. I also discuss some relations between the VH and
other integrable systems.

Keywords: Volterra equations, tau-functions, functional equations, conservation
laws, Backlund transformations.

1. Introduction
In this work I want to discuss an application of the so-called functional

equation approach, or method of the Miwa’s shifts, to one of the oldest
integrable discrete systems, namely the Volterra model,

u̇n = un (un+1 − un−1) . (1)

It was proposed many years ago for the description of the population
dynamics [1, 2]. Later it was applied to many physical phenomena, such
as, e.g., collapse of Langmuir waves, nonlinear LC nets, Liouville field
theory. It is known to be integrable since the paper by Manakov [3]
(see also [4]) who developed the corresponding version of the inverse
scattering transform (IST).

The IST is a method which drastically changed the theory of PDEs, of
nonlinear systems as well as many other fields of nonlinear mathematics
and physics. However the practical implementation of its algorithms is
not so easy as one might expect. That is why during all the years of
the modern theory of integrable systems people were looking for some
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other tools to deal with these particular equations which are called in-
tegrable. One of such approaches is the topic of this work. In a few
words it can be described as follows: instead of your equation (Volterra
equation in our case) you consider an infinite family of similar equations
(Volterra hierarchy in our case) and then instead of an infinite number
of differential equations you deal with one (or a few) equation of other
kind, functional or difference ones. At first glance we complicate the
problem. But it turns out that sometimes such complications can make
things easier than they were at the beginning.

2. Volterra hierarchy
The Volterra equation is an integrable system. This word, ‘integrable’,

implies the following. First this system possesses an infinite number of
constants of motion,

İj = 0, j = 1, 2, 3, ... (2)

the simplest of which can be written as

I1 =
∑

un

I2 =
∑

un+1un + 1
2u2

n

...

(3)

Secondly, it is a Hamiltonian system. It can be presented in the form

u̇n = {H, un} (4)

where the Poisson brackets are given by

{um, un} = umun (δm,n+1 − δm,n−1) (5)

and H = I1.
The third ingredient of the integrability (the technical, but very im-

portant one) is that these constants of motion are in involution:

{Ij, Ik} = 0. (6)

The so-called higher Volterra equations can be obtained by choosing as
the Hamiltonian H not the the simplest constant of motion but one of
Ik, k = 2, 3, ... In such a way one can get an infinite number of equations

∂un

∂tk
= {Ik, un} k = 1, 2, ... (7)



Miwa’s representation of the Volterra hierarchy 513

where the simplest ones are given by

∂1un = {I1, un} = un (un+1 − un−1) (8)
∂2un = {I2, un} = un

(
un+2un+1 + un+1un + u2

n+1 (9)

−u2
n−1 − unun−1 − un−1un−2

)
(10)

with ∂k standing for ∂/∂tk (hereafter I denote different differentiatings
using different ‘times’ tk). Those who worked with integrable equa-
tions and hierarchies know that the difference between these equations
is mostly visual. Say, IST for (8) only slightly differs from the IST for
(9). This infinite set (7) of equations is called the Volterra hierarchy
(VH) by the name of its first representative (1) or (8).

At this point the most important moment for me is that these equa-
tions are compatible. In other words, ∂k are indeed derivatives: they
do commute. This fact is a reformulation of the third ingredient of the
integrability (6):

{Ij, Ik} = 0 ⇒ ∂j ∂k = ∂k ∂j. (11)

So, one can say that hierarchy is an infinite compatible system. We can
find one set of functions un that satisfies all equations of the hierarchy.
We can find such functions un, depending on an infinite number of times

un = un (t) = un (t1, t2, t3, ...) (12)

that, if we differentiate them with respect to t1 we will get the right-
hand side of (8); if we differentiate them with respect to t2 we will get
the right-hand side of (9) and so on.

Hereafter I will discuss mostly not the Volterra equation, but the
Volterra hierarchy, and I will try to convince that sometimes to deal
with an infinite number of equations can be easier than to deal with
only one.

It is known since the pioneering works of Hirota that almost all in-
tegrable equations can be rewritten in the bilinear form by introducing
the so-called tau-functions. And in some sense these tau-functions are
more important objects than the functions in terms of which the original
equations were written. For the Volterra equation the tau-function can
be introduced by

un =
τn+1τn−2

τnτn−1
(13)

which transforms (1) to Dt τn · τn−1 = τn+1τn−2 with Hirota’s bilinear
operators being defined by

Da
x Db

y... u · v =
∂a

∂ξa

∂b

∂ηb
...u(x + ξ, y + η, ...)v(x − ξ, y − η, ...)

∣∣∣∣
ξ=η=...=0

(14)
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The first equations of the VH can be presented as

D1 τn · τn−1 = τn+1τn−2 (15)(
D2 − D2

1

)
τn · τn−1 = 0 (16)(

D3 − D3
1

)
τn · τn−1 = 3τn+2τn−3 (17)

. . .

where I use the shortcut Dk = Dtk .
Now we face the question: is it possible to present this infinite set of

bilinear Volterra equations in some more condensed form? The answer
is: yes, if we use the so-called Miwa’s shifts.

3. VH in Miwa’s representation
The Miwa’s shift, which is a simple operation with rather non-trivial

consequences, can be described as simultaneous shift of all times tk ac-
cording to the rule tk → tk ± ζk/k,

f (t1, t2, t3, ...) → f

(
t1 ± ζ, t2 ± ζ2

2
, t3 ± ζ3

3
, ...

)
(18)

or f (t) → f (t ± [ζ]). In what follows, I will also denote them by the
symbols Eζ and Eζ: ( Eζf) (t) = f(t + [ζ]),

(
Eζf

)
(t) = f(t − [ζ]).

The main result of this work can be presented as follows: the infinite
set of differential Volterra equations (7) is equivalent to one difference
equation

ζ τn−2(t) τn+1(t + [ζ])− τn−1(t) τn(t + [ζ]) + τn(t) τn−1(t + [ζ]) = 0 (19)

This equation is closely related to the discrete-time Volterra equation
but I will consider it as not a discrete but as a functional (difference)
one: all quantities should depend on ζ in such a way that there always
exists the ζ → 0 limit. Moreover, all functions will be analytical in ζ
and at any moment one can use the Taylor expansion, returning to the
differential equations. So, if we expand (19) in series in ζ using

f(t + [ζ]) = f(t) + ζ∂1 f(t) +
ζ2

2
(
∂2 + ∂2

1

)
f(t) + ... (20)

and collect terms with different powers of ζ we will consequently get

ζ0 : 0 = 0 (21)
ζ1 : τn−2 τn+1 − τn−1 ∂1τn + τn ∂1τn−1 = 0 (22)
ζ2 : 2τn−2 ∂1τn+1 − τn−1

(
∂2 + ∂2

1

)
τn + τn

(
∂2 + ∂2

1

)
τn−1 = 0 (23)

...
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The ζ0 term is trivial, the ζ1 term is nothing but the first Volterra
equation (8), the ζ2 term can be rewritten (with the help of (8)) as the
second Volterra equation (9) and so on. In such a way we can get all
differential equations of the VH.

Starting from the one-shift formula (19) one can obtain the following
relation for the twice shifted functions:

a(ξ, η) τn−1 ( Eξ Eητn) = ξ ( Eξτn) ( Eητn−1)− η ( Eξτn−1) ( Eητn) (24)

where a(ξ, η) is some constant (with respect to n) depending on the
boundary conditions. These formulae can be extended to the case of
arbitrary number of Miwa’s shifts,

det
∣∣∣∣ ξN−k

j Eξj τn+1−k

∣∣∣∣
j,k=1,...,N

= a(ξ1, ..., ξN) τn+1−N ... τn−1 ( Eξ1 ... EξN
τn) (25)

with a(ξ1, ..., ξN) being some kind of generalized Van der Monde deter-
minant:

a(ξ1, ..., ξN) =
∏

1≤i<j≤N

a(ξi, ξj). (26)

4. Miwa’s representation and IST
The Volterra hierarchy is an integrable system that can be analyzed

using the IST. So, now I want to present some basic facts about the
IST for the VH and then to show how the main ideas, constructions
and objects of the inverse scattering approach look like in terms of the
functional representation.

The starting point of the IST is the so-called zero-curvature repre-
sentation, when our nonlinear equation is presented as a compatibility
condition for some linear system

Ψn+1 = UnΨn, ∂kΨn = V (k)
n Ψn (27)

with the same matrix Un (see (28)) but different matrices V
(k)
n . I will

not write down explicit formulae for V
(k)
n because, as is known, the main

part of the inverse scattering approach is analysis of the first of the linear
equations

Ψn+1(λ) = Un(λ)Ψn(λ), Un(λ) =
(

λ un

−1 0

)
(28)

which is considered as a scattering problem with λ being the spectral
parameter. Functions Ψn(λ) are the key objects of the IST. They are
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used to determine the so-called scattering data, to write down the linear
equations from which one can in principle determine solutions of the
Volterra equations. Namely Ψn(λ) are used to construct the generating
function for the conservation laws, the Backlund transformations and
so on. The main difficulty of this approach is that one cannot find
them explicitly or to express them in terms of the un’s. As a result, for
example, one cannot get closed expression for the generating function
for the constants of motion, but only an algorithm how to derive it.
However it turns out (and it is one of the main results of this work) one
can overcome this obstacle if dealing in the framework of the functional
representation.

Indeed, rewriting the scattering problem for the VH in the scalar form,

ψn+1 − λψn + unψn−1 = 0 (29)

where ψn is the first element of Ψn and comparing it with our basic
equation (19) one can conclude that the quantity ψn = λn Eζτn−1/τn−1

is a solution of equation (29). It is a very important moment: now we
have a formal solution of the scattering problem given by

Ψn =

⎛⎜⎜⎜⎝
Eζτn−1
τn−1

λn − Eζτn+1
τn−1

λ−n−1

− Eζτn−2
τn−2

λn−1 Eζτn
τn−2

λ−n

⎞⎟⎟⎟⎠ , ζ = λ−2 (30)

We can use this fact and address the main problems which one usually
solves when deals with integrable equations.

5. Conservation laws
As was mentioned above, the VH is known to posses an infinite num-

ber of constants of motion:

∂jJk = 0, j = 1, 2, 3, ... k = 0, 1, 2, ... (31)

(hereafter I use, instead of the quantities Ik which were defined above,
the constants Jk related to the former by Jk = (k + 1)Ik+1) and the
main object of this section is their generating function J(ζ) and the
corresponding density Fn(ζ),

J(ζ) =
∞∑

k=0

ζkJk =
∑

n

Fn(ζ). (32)

In the standard inverse scattering approach this density can be obtained
by solving some recurrence which arises from an expansion of the scat-
tering data. It turns out that it is possible to derive a closed formal
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expression for Fn (which, I repeat, can hardly be done in the framework
of the traditional IST):

Fn(ζ, t) =
τn−2 (t − [ζ]) τn+1 (t + [ζ])

τn−1(t)τn(t)
. (33)

Moreover, one can obtain not only the density but the generating func-
tion for the conservation laws for the Volterra equations as well. Say,
for the first (classical) Volterra equation it can be written as:

∂1Fn(ζ, t) = G(1)
n (ζ, t) − G

(1)
n−1(ζ, t), (34)

with

G(1)
n (ζ, t) =

τn−2 (t − [ζ]) τn+2 (t + [ζ])
τ2
n(t)

. (35)

In a similar manner we can present other conservation laws (i.e. the ones
for the higher Volterra equations) , ∂kFn = G

(k)
n − G

(k)
n−1, for k = 2, 3, ...

and even the generating function for all conservation laws of the VH:

∞∑
k=1

ηk−1∂k Fn(ζ, t) = Gn(ζ, η, t) − Gn−1(ζ, η, t). (36)

Here

Gn(ζ, η, t) = g(ζ, η)
τn−2 (t − [ζ] − [η]) τn+2 (t + [ζ] + [η])

τ2
n(t)

(37)

with g(ζ, η) being some constant determined by the boundary conditions.
Expansion of this identity in power series in ζ and η leads to

∂kF
(j)
n = G(jk)

n − G
(jk)
n−1 j = 0, 1, 2, ... k = 1, 2, 3, ... (38)

i.e. gives all the conserved densities and conserved currents.

6. Backlund transformations
In discussing the Miura and Backlund transformations I will compare

my results with ones obtained earlier by Kajinaga and Wadati [5].
The discrete Miura transformation, given by

un = µ2 (1 + qn−1) (1 − qn) , (39)

links the Volterra equation (1) and the modified Volterra equation,

q̇n = µ2
(
1 − q2

n

)
(qn+1 − qn−1) . (40)
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It can be used to construct the Backlund transformation linking different
solutions of the Volterra equations: if un solves (1) and qn is defined by
(39) then u′

n given by

u′
n = µ2 (1 − qn−1) (1 + qn) (41)

is also a solution of the Volterra equation (and of all equations of the
VH).

One can hardly solve (39) in a general case, but it turns out that
it is possible to construct its particular solution using the functional
representation of the VH. Indeed, it follows from (19) that the func-
tions q′n = 1 − 2τn+1 ( Eζτn) /τn ( Eζτn+1) are related to un by 4ζun =(
1 + q′n−1

)
(1 − q′n) i.e. by (39) with µ2 = 1/4ζ. Unfortunately this leads

to the trivial Backlund transform: B′ : un → u′
n = Eζun+1. We can

construct another Miura transform, q′′n = 2
(

Eζτn

)
τn−1/

(
Eζτn−1

)
τn−1

corresponding to the same µ. It also leads to a not very interesting result,
B′′ : un → u′′

n = Eζun−1, but it turns out that their linear superposition
leads to nontrivial Backlund transformations:

Bη : τn(t) → τn+1 (t + [η]) + η−n exp [χ(η, t)] τn−1 (t − [η]) (42)

provided χ solves

χ(η, t + [ζ]) − χ(η, t) = Γ(η, ζ) − Γ(η, 0) (43)

with Γ(η, ζ) = ln |η − ζ|/a2(η, ζ). The function χ is a linear function of
times

χ(η, t) =
∞∑

j=1

cj(η) tj cj(η) =
1
j

Γj(η) (44)

where Γj(η) are the coefficients of the Taylor series

Γ(η, ζ) =
∞∑

j=1

Γj(η) ζj.

In the case of zero boundary conditions, un → 0 as n → ∞ the
obtained Backlund transformations can be rewritten as

Bη : τn(t) → τn+1 (t + [η]) + η−n exp [χ(η, t)] τn−1 (t − [η]) (45)

with χ (t1, t2, ...) =
∑∞

j=1 η−j tj, i.e. they are nothing but well-known
soliton-adding Darboux-Backlund transformations.
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7. Volterra and other hierarchies
As the last application of the functional approach I am going to dis-

cuss an interesting question of interrelations between different integrable
systems. The idea behind examples given below is that starting from
the main equation of this work (19) one can derive some other equations
which turn out to be closely related to hierarchies different from the VH.

1. Volterra and modified KP hierarchies.
Equation (19) is an functional-difference equation which relates four tau-
functions with different index n. However by simple algebra one can
derive, as its consequences, equations relating less number of τn’s. One
of them can be written as a two-point relation

D(ζ) τn · τn−1 =
(

Eζτn−1

)
( Eζτn) − τn−1τn (46)

where D(ζ) is a “hierarchical” version of the Hirota’s bilinear opera-
tors: D(ζ) =

∑∞
j=1 ζjDj. Expanding this relation in multidimensional

bilinear Taylor series using the identity(
Eζa

)
( Eζb) = F (ζ, D) a · b (47)

where the bilinear operator F is given by

F (ζ, D) = 1+ζD1+
ζ2

2
(D2 + D11)+

ζ3

6
(2D3 + 3D21 + D111)+... (48)

(here Dj k... = DjDk...) one can get an infinite set of differential equa-
tions for the pair τn and τn−1. A few first of them are

(−D2 + D11) τn · τn−1 = 0 (49)
(−4D3 + 3D21 + D111) τn · τn−1 = 0 (50)
(−18D4 + 8D31 + 3D22 + 6D211 + D1111) τn · τn−1 = 0 (51)

· · ·
Comparing these equations with the ones presented in [6] one can con-
clude that i) equation (46) can be viewed as the Miwa’s representation
for the 1st modified KP hierarchy (according to the classification of [6])
and that ii) this hierarchy can be “embedded’ into the VH.

2. Volterra and KP hierarchies.
Continuing the procedure of decreasing the number of tau-functions in-
volved in our functional relations it is possible to derive the following
one:

ζ

2
D(ζ)D1 τn · τn =

(
Eζτn

)
( Eζτn) − τ2

n (52)
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which contains only one tau-function and which can be rewritten as[
ζ

2
D(ζ)D1 + 1 − F (ζ, D)

]
τn · τn = 0 (53)

where operator F was defined above. The simplest equation of this
infinite set is

(−4D31 + 3D22 + D1111) τn · τn = 0 (54)

nothing but the KP equation. So we have come to an interesting fact:
the KP equation can be ’embedded’ into the VH and have derived the
functional representation (53) for the KP hierarchy.
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Abstract It is well known that (anti)kink propagation in Klein-Gordon lattices
is hampered by the discreteness. However, depending on the shape of
the on-site potential, a discrete set of velocities can appear, for which
an (anti)kink can propagate freely. On several examples we show that
this is a generic effect which takes place for potentials with rather flat
barriers and narrow wells.

Keywords: Discrete kinks, topological solitons.

1. Introduction
Studies of the discreteness effects on the topological soliton dynam-

ics have been an important research topic in the last decades because
discreteness is a natural feature of many realistic systems like crystals,
macro-molecules, or Josephson devices (see [1]). Starting from [2] it is a
well-known fact that while propagating along the chain, the (anti)kink
radiates small-amplitude waves and finally stops because of the so-called
Peierls-Nabarro (PN) potential barrier. However, topological solitons
appear to be well-defined traveling waves of stationary profile while they
are moving on an oscillating background [3, 4]. On the other hand, the
integrable discretisation [5] of the continuous sine-Gordon (SG) equation
or discretisations [6] that conserve the Bogomolny’s bond yield moving
kinks but take us out of the discrete Klein-Gordon (DKG) class. Non-
trivial behaviour of static kinks such as the switching of the ground
state from the kink solution centered on a chain site to the kink so-
lution, centered in-between two sites and vice-versa depending on the
on-site potential convexity was shown to occur in Refs. [7, 8, 4, 9]. This
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observation gives a good reason to believe that for a general nonlinear
on-site potential, depending on its convexity, a transparent regime of
the kink propagation can occur as well. The aim of our paper will be to
investigate this possibility.

2. The model
We consider a chain of coupled particles subjected to an external on-

site potential. If the particles are coupled via the harmonic potential
U(r) = κr2/2, their dynamics is described by the discrete nonlinear
Klein-Gordon equation:

ün = κ(un+1 − 2un + un−1) − V ′(un) , n ∈ Z (1)

where un is the displacement of the nth particle from its equilibrium
position. We are going to consider a class of on-site potentials V (u)
with the flat barrier and narrow wells. As examples we will take the
Peyrard-Remoissenet (PR) potential [8], Eq. (2) and the double-Morse
(DM) potential (widely used for modeling the hydrogen bonded systems
[9]), Eq. (3):

V (u; α) = [(1 + 2α)(1 − cos u)]/[1 + α(1 − cos u)] , α ≥ 0 , (2)
V (u; β) = { [cosh(βa) − cosh (βu)]/[cosh(βa) − 1] }2 , β ≥ 0 . (3)

The shape parameters α and β measure the convexity of the potential
barrier (see Fig. 1): for larger α’s the wells of the potential become
more narrow and the barrier becomes more flat. The DM potential has
two minima at u = ±a, we will take a = 0.25 throughout the paper. In

−2π  −π  0  π  2π
0

1

2

u

V
(u

;α
)

1
2

3
4

Figure 1 The shape of the
PR potential (2) for α = 0
(curve 1), α = 1 (curve 2),
α = 5 (curve 3), α = 20
(curve 4).

the limit of α = 0 the PR potential coincides with the sine-Gordon (SG)
potential: V (u) = 1 − cos u. In the opposite limit V (u; α = ∞) = 2 if
u = 2πk, k ∈ Z and V (u; α = ∞) = 0 if u �= 2πk, k ∈ Z. For the
DM potential we obtained the φ4 model in the limit β = 0: V (u) =
(1 − u2/a2)2. In the opposite limit of β = ∞ we have V (±a) = 0,
V (u) = 1 if u ∈] − a, a[ and V (u) = ∞ for u � [−a, a] .
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3. Static properties of discrete kinks
We know that for the well-studied DKG models like discrete sine-

Gordon (DSG) or φ4 there exist only two stationary (anti)kink solutions:
a dynamically unstable one with the central particle n0 on the potential
barrier [see Eq. (4), note, however that a proper shift for un’s must be
added in the case of PR or DSG potentials] and a stable one (a minimum
of the potential energy of the system) with two central particles posi-
tioned symmetrically with respect to the center of the potential barrier
[see Eq. (5)]:

un0−n = −un0+n, n = 0,±1, . . . , (4)
un0−n = −un0+n−1, n = 0,±1, . . . . (5)

However, for the wider class of potentials this situation changes. First
we consider an important limiting case of α = ∞ (or β = ∞), where the
static problem is exactly solvable. There exists an infinite countable set
of (anti)kink solutions that consist of the the tails where V (un) = 0 and
the core with the finite number of particles, m. We can use this number
to numerate the solutions. Then the energy of such an (anti)kink with
m particles in the core [or on the barrier of V (u)] is given by

Em = Em(κ) = 2m + (∆X)2κ/[2(m + 1)] . (6)

Here ∆X stands for the distance between the two adjacent minima of
the on-site potential. Thus, ∆X = 2π for the PR potential potential (2)
and ∆X = 2a for the DM potential (3). From Fig. 2 we see that the
dependencies Em(κ) cross each other and for different κ the (anti)kink
state with different m has the minimal energy. When moving to large but
finite shape parameters (Fig. 3) we see that many features of the limiting
case survive. States with larger m’s turn into zig-zag-like kinks (curves 4
and 5) and normally are unstable. The most important surviving feature
is the switching of the kink state with minimal energy from the state of
the symmetry (5) (curve 1) to the state of the symmetry (4) (curve 2)
and vice versa as a function of κ. These switchings are accompanied by
the change of the linear stability of the respective solutions, as shown
in Fig. 3. In the limit when the shape parameter tends to zero, only
two states (4) and (5) survive and their energies are always different and
this difference tends to zero in the continuum limit. In the inset of Fig.
3 the curve 3 stands for a new type of kink solutions. These kinks do
not exhibit any of the symmetries defined by Eqs. (4-5) but are in some
sense intermediate configurations between (4) and (5). Their energy is
always larger than the energy of the symmetric kinks and they are always
unstable. In Fig. 4 we have plotted the position of the (N/2)th particle
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Figure 2. Dependence of the DM
kink energy Em, m = 0, 1, 2, 3, and
4, given by Eq. (6), in the exactly solv-
able limit β = ∞ on the coupling pa-
rameter κ.
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Figure 3. DM kink energy for β=10
as a function of κ for the different
types of kinks (see text for details).
The inset shows more detailed behav-
ior around the switching point. Solid
lines correspond to stable states and
dashed lines to unstable ones.

0 10 20 30 40

−0.2

−0.1

0

0.1

0.2

0.3

κ

u
N

/2

4

3

5

2

1 1

Figure 4. Displacement of the cen-
tral particle uN/2 from equilibrium for
the DM model at β=10. Solid lines
show stable kinks and dashed lines un-
stable ones.
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Figure 5. PN potential for β = 10
and (a) κ = 70.5, (b) κ = 71.22, (c)
κ = 71.288, (d) κ = 71.35, and (e)
κ = 72.

(N is the total number of particles) as a function of the coupling κ. Curve
1 corresponds to the kink of the type (4), centered on the particle N/2,
so uN/2 ≡ 0. Curves 2 and 3 correspond to the (5) kinks with centers
in-between the particles N/2, N/2+1 and N/2−1,N/2, respectively. At
a certain value of κ, the pitchfork bifurcation of the kink state, centered
on the N/2th site takes place. It becomes stable and two new unstable
asymmetric solutions (shown by the curves 4 and 5) appear. At the
beginning, they look like slightly distorted kinks of Eq. (4), but with
the growth of κ, they change more and more toward the configuration
(5). The second pitchfork bifurcation takes place at κ � 26.2. The
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asymmetric kinks join the kinks of the type (5) (junction of curves 3
and 4, and curves 2 and 5) and the configuration (5) loses its stability.
Thus, this pitchfork bifurcation is nothing but a transition of a kink
along the lattice one spacing forward or backwards. In Fig. 5 we show
the PN barrier for the DM model in the vicinity of the second switching
point κ � 72. It is important to note that in the point where the energies
of two kink configurations coincide [panel (c)] the PN barrier does not
disappear but decreases by the order of magnitude. Investigations [8, 4]
show that all the above properties of the static kinks also appear in the
PR model.

4. Dynamics of discrete kinks
We focus now on the traveling-wave (TW) solutions of stationary

profile moving with the constant velocity s, e.g. un(t) = u(n−st) ≡ u(z),
z = n−st. Then Eq. (1) is reduced to the following differential-difference
equation:

s2u′′(z) = u(z + 1) − 2u(z) + u(z − 1) − V ′[u(z)] , (7)

which has been solved numerically with the so-called pseudo-spectral
method [3, 10, 4]. It has been shown that for certain discrete set of
velocities it is possible to have moving topological solitons, which are
monotonic (see Fig. 6). Anywhere around these selected velocities the
moving (anti)kink has a shape of an nanopteron (see Ref. [11]), as shown
in Fig. 7. Numerical simulations of the dynamics of these solutions,
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Figure 6. An antikink for the PR
model with α = 1 and s = 0.5907.
Solid lines represent the profiles u(z)
and −su′(z) obtained by using the
pseudo-spectral method. Circles stand
for un(t) and u̇n(t) at the time instant
t = 6780.
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Figure 7. Same as in Fig. 6 for α = 0
and s = 0.73 . Circles represent the
final profiles at the time instant t =
1042.

performed in [4] have shown their stability. The same results have been
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obtained for the DM model in [9]. In the next example we consider the
on-site potential, constructed first by Schmidt in [12] for the DKG (1)
which has the TW solution un(t) = tanh[µ(n−st)] (as was shown in [13],
it is possible to map an arbitrary kink-like function u(z) into a double-
well potential V (u) for which u(z) will be a solution of the corresponding
DKG equation). For example, for the potential V (u) = −u2/2− u4/4−
ln(2 − u2) this kink will move with velocity s = 1/[

√
2 ln (1 +

√
2)] �

0.8023. In [13] the DKG equation with the Schmidt potential has been
investigated in the vicinity of this velocity using the pseudo-spectral
method. In Fig. 8 the amplitude of the oscillation in the tail of the
nanopteron is shown to disappear exactly at the above velocity, thus
confirming that the phenomenon of discrete kink propagation exists for
a selected set of velocities.
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Figure 8 Dependence
of the amplitude in
the asymptotics of a
nanopteron on the velocity
for the Schmidt potential.

5. Conclusion
On the different examples we have shown that in the discrete Klein-

Gordon (DKG) equation moving topological solitons can exist. Contrary
to the continuous Klein-Gordon models, where moving (anti)kinks ex-
ist as a one-parametric family of solutions with a continuous velocity
spectrum, in the DSG the spectrum of the allowed kink velocities is
discrete. The existence of moving kinks depends on the shape of the
on-site potential. If its barrier is flat enough and its wells are narrow
enough, so that the Peierls-Nabarro potential does not decay mono-
tonically with the coupling parameter but can experience deep minima
where it decreases by the order of magnitude. Everywhere outside this
discrete spectrum of velocities, (anti)kinks couple with phonons, form-
ing a nanopteron, or a solitary wave with oscillating tails. In [2] moving
non-oscillating kinks have been obtained for DSG for (anti)kinks with
topological charges larger then 1. In fact, static properties of these
(anti)kinks are similar to the ones, discussed in this paper (see [14]).
Similar results, e.g. selected values of velocity for moving (anti)kinks,
appearance of nanopterons and moving (anti)kinks with higher topolog-
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ical charges has been obtained in [15] for the nonlocal continuous SG
equation. Finally we note that anharmonic interparticle interaction can
also yield moving topological solitons, as was shown in [10]. However,
the mechanism of their appearance was different: they exist as hybrids
of acoustic and topological solitons, they are supersonic and while only
moving antikinks exist (solitons of contraction) no moving kinks (solitons
of rarefaction) have been reported.
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Abstract The dynamics of discrete solitons under the action of periodic modula-
tions of the nonlinearity is considered. The existence of quasi-stationary
states is predicted in the cases of both slow and rapid modulations. A
possibility of soliton splitting in the case of resonance modulations is
demonstrated.

Keywords: Discrete solitons, perturbations, variational approximation, arrays of
waveguides, Bose-Einstein condensate.

1. Introduction
Localized excitations, discrete solitons, are fundamental modes in non-

linear lattices, such as arraysarray of optical waveguides or arrays of
droplets of a Bose-Einstein condensate (BEC) in a deep optical lattice.
The dynamics of such systems is typically described by the discrete non-
linear Schrödinger (DNLS) equation. Recently different techniques, like
the periodic diffraction management [1, 2] and periodic modulation of
the coupling constant [3], for a control of soliton parameters are sug-
gested. These cases correspond to a variation of the coefficient at the
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second-finite-difference term in the DNLS equation. However, it is pos-
sible to vary the coefficient of the cubic term in the equation. In optics
it can be achieved by using an array of waveguides with the strength
of the Kerr nonlinearity alternating along the propagation distance. In
the case of a BEC the time-variation of the nonlinear coefficient can be
realized by ac magnetic field tuned near the Feshbach resonance [4]. On
the rest of the paper we study the DNLS equation in the context of
the BEC model, though the results obtained can be easily applied to an
array of optical waveguides.

The DNLS equation that describes the evolution of a BEC in an op-
tical lattice is written as [5, 6]:

iu̇n +
1
2

(un+1 + un−1 − 2un) + a(t) |un|2 un = 0 . (1)

where un(t) is related to the condensate density at n-th site of the lattice,
and a(t) = a0 + a1 sin(ωt) is a coefficient proportional to the atomic
scattering length in the BEC. We set a0 = 1 and a0 = −1 for the cases
of the negative and positive scattering lengths (repulsion and attraction
between atoms), respectively. Time scale 2K/� is related to the tunnel-
coupling parameter K between adjacent wells [5]. We study both the
case of slow, ω ∼ 1, and rapid, ω � 1, modulations.

2. Slow modulations
For analysis of the slow modulation case we use the variational ap-

proximation [7] based on the Lagrangian:

L =
∞∑

n=−∞

i

2
(u∗

nu̇n − unu̇∗
n) − 1

2
|un+1 − un|2 +

1
2
a(t)|un|4 , (2)

where u∗
n is a complex conjugate of un. We take the following ansatz [7],

which describe a pulse-shaped distribution of the BEC:

un(t) = A exp(iφ + ib|n| − α|n|) , (3)

where A, φ, b, and α are real functions of time. After substitution of
ansatz (3) into Eq. (2) and a variation of the effective Lagrangian, one
obtains a set of equations for the distribution parameters:

W ≡ A2 coth α = const,
db

dt
= 2 (cos b)

sinh3 α

cosh (2α)
− 1

2
Wa(t)

(
tanh2 α

) 2 cosh (2α) − 1
cosh (2α)

,

dα

dt
= − (sin b) (sinhα) tanh (2α) . (4)
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The analysis ot the Eqs. (4) in unperturbed case a(t) = a0 = const
shows that there exists a non-trivial fixed point (FP), (αFP, bFP), with

sinhαFP =
1
4
W

(
1 + 3 tanh2 αFP

)
, (5)

and bFP = 0 for a0 = 1, and bFP = π for a0 = −1. A corresponding
frequency ω0 of small oscillations around the FP is found as:

ω2
0 =

sinh3(αFP) cosh2(αFP)
cosh3(2αFP)

{4 sinh(αFP)[cosh(2αFP) + 2] −
W

cosh4(αFP)

[
5 cosh2(2αFP) − 2 cosh(2αFP) − 1

]}
. (6)

The frequency of small oscillations found from numerical simulations of
Eq. (1) is in good agreement with Eq. (6).
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Figure 1. Evolution of a discrete soliton with the initial amplitude A = 1 in the
periodically modulated system with a0 = 1, ω = 0.5, and different values of a1.

In presence of modulations (a1 �= 0) and relatively small amplitudes
a1 < ∼ 0.1, Eqs. (4) has a FP of the Poincaré map with the period
T = 2π/ω. This FP corresponds to a quasi-stationary discrete soliton.
The parameters of such a soliton change periodically with period T . This
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quasi-stationary soliton can be called a Feshbach-resonance managed
(FRM) soliton similarly to dispersion-managed or diffraction-managed
[1, 2] optical solitons.

For larger a1 the dynamics of the parameters, predicted by Eqs. (4),
becomes chaotic with asymptotic state α → 0. This indicate a possi-
bility of complex dynamics of the discrete solitons in the case of large
modulation amplitudes. Numerical simulations of Eq. (1) show that
this chaotic behaviour has transient character, since there is a loss of
the soliton energy due to radiation of linear waves. An interplay of the
soliton itself, its intrinsic eigenmodes and radiation waves may result
in a splitting of the pulse at a1 > ∼0.1 (see Fig. 1, a1 = 0.2). How-
ever, stronger modulations can induce more intensive radiation of linear
waves and moving small-amplitude solitons, resulting in a weakening of
the resonance influence, so that finally a main part of the condensate is
still around n = 0 (see Fig. 1, a1 = 0.3).

0.1

0.2

0.3

0.4

0.5

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

a

ω

1

Figure 2. The diagram in the plane (ω, a1), for the case a0 = 1. Open and solid
rectangles correspond to stable and splitting solitons, respectively. The initial soliton’s
amplitude is A = 1. The solid line is the chaos-onset threshold as predicted by the
variational equations (4).

Results of the systematic numerical study of the pulse splitting with
the initial amplitude A = 1 are summarized in Fig. 2. We classify
as splitting cases when at least two pulses emerge, moving in opposite
directions, and no pulse with an appreciable amplitude stays around n =
0. For a1 > ∼0.2, the modulation results in generation of several moving
pulses. However, if a soliton with conspicuous amplitude is eventually
found around n = 0, this case was classified as a “stable soliton”.

Figure 2 also displays the dependence of a chaos threshold a1 on ω,
found from simulations of Eqs. (4). As is seen, the splitting actually
occurs far above the threshold in a region of the developed dynamical
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chaos. The diagram for the case a0 = −1 looks similar, but not exactly
the same.

3. Rapid modulations
For analysis of the case of rapid modulations, ε ≡ 1/ω � 1, we

introduce a set of time scales τ = t/ε, tk = εkt, where k = 0, 1, 2 . . . , and
look for a solution in the form

un = Un + εu(1)
n + ε2u(2)

n + . . . , (7)

where Un is a function of the slow variables tk and u
(j)
n = u

(j)
n (τ, t1, t2, . . . ).

Then an application of the multiscale method [8] results in the following
equation for an average dynamics of the condensate:

iU̇n +
1
2
(Un+1 + Un−1 − 2Un) + a0|Un|2Un = −2Ma0ε

2|Un|6Un −
Mε2

[|Un+1|2(2|Un|2Un+1 + U2
nU∗

n+1)+

|Un−1|2(2|Un|2Un−1 + U2
nU∗

n−1) − 3|Un|4Un+1 − 3|Un|4Un−1

]
, (8)

where M ≡ a2
1/4 for the case of the periodic modulation. Equation

(8) is the higher-order DNLS equation, which contains extra on-site and
intersite (nonlocal) nonlinearities.

A change of variables qn ≡ Un+ ε2M |Un|4Un and a retention of terms
up to O(ε2) give the dynamical equation for qn, which can be derived
from a Lagrangian

Lq = L0 − 1
2
ε2M

∞∑
n=−∞

(|qn+1|2 − |qn|2)2(q∗nqn+1 + qnq∗n+1) , (9)

where L0 is obtained from the underlying Lagrangian (2) by the sub-
stitution un → qn and a(t) → a0. The existence of the Lagrangian Lq

allows one to apply the variational approximation like in Section 2. Such
an analysis shows that in presence of rapid modulations there also ex-
ists a fixed point, which corresponds to a FRM discrete soliton. One
can calculate the parameters of this localized state, for example, the de-
pendence of the total number of particles W̄ in the condensate on the
distribution maximum amplitude Ā (see Fig 3). As it is suggested by
Fig.3, where δ ≡ a2

1/(4ω2), one can effectively control the soliton by an
appropriate choice of the modulation parameters. Increase of the total
number of particles in the averaged soliton, as compared to that in the
unperturbed soliton with the same amplitude, is clearly seen in Fig. 3.
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Figure 3. The dependence of W̄ vs. Ā of an average soliton (dashed lines) is
compared with that of the unperturbed DNLS equation (solid line), a0 = 1.

4. Conclusions
We have studied analytically and numerically the dynamics of dis-

crete solitons in media with alternating nonliearity. By making use of
the variational expansion we have demonstrated the existence of quasi-
stationary discrete solitons in the case of both slow and rapid modula-
tions. The parameters of such solitons can be controlled by the param-
eters of modulations. The possibility of the soliton splitting is shown in
the case of resonance perturbations.
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ON CONTINUOUS LIMITS OF SOME
GENERALIZED COMPRESSIBLE
HEISENBERG SPIN CHAINS
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Institute of Physics and Technology, 480082, Alma-Ata-82, Kazakhstan

Abstract We study the connection between some lattice and continuous Heisen-
berg spin models. The continuous limits of some generalized compress-
ible Heisenberg spin chains are found. Using the methods of differen-
tial geometry of surfaces, the Lakshmanan equivalent counterpart of
one of the obtained continuous Heisenberg ferromagnet equation is con-
structed.

Keywords: Lattice models, Heisenberg spin chains, integrable systems, surfaces,
solitons

1. Introduction
In this note we will study the connection between the discrete and

continuous compressible Heisenberg spin chains [1-8]. Let us consider
the following generalized compressible Heisenberg spin chain

Ĥ = −
N∑

n=1

JnSn · Sn+1 + Ĥl, (1)

where Jn = J(qn+1 − qn) and Ĥl is the lattice potential which has the
Toda form

Ĥl =
N∑

n=1

{ p2
n

2m
+ [e−(qn−qn−1) − 1]

}
. (2)

In (1) and (2), Sn = (S1
n, S2

n, S3
n) is the discrete spin vector in n-th lattice

point, S2
n = s2 = constant, qn, pn and m are the position, moment and

mass of the n-th lattice site. The discrete equations of motion for the
Hamiltonian (1) is

Snt = S ∧ (Jn−1Sn−1 + JnSn+1), (3a)
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mqntt = e−(qn−qn−1) − e(qn+1−qn) +
∂(JnSnSn+1 + Jn−1Sn−1Sn)

∂qn
. (3b)

In the continuous limit, we take x = na, Sn(t) → S(na, t) = S(x, t)
and Sn±1 → S(x, t) ± aSx + a2

2 Sxx + · · ·. Then in the continuous limit,
the system (3) takes the form

St = {(µ − u)S ∧ Sx}x, (4a)

ρutt = ν2
0uxx + α(u2)xx + βuxxxx + λ(S2

x)xx, (4b)

which is the Myrzakulov XLIII (M-XLIII) equation [4,12]. Here µ, ν0, ρ,
α, β, λ are constants, u = qx. In the harmonic case (α = β = 0), instead
of the system (4), we obtain the Myrzakulov XLIV (M-XLIV) equation

St = {(µ − u)S ∧ Sx}x, ρutt = ν2
0uxx + λ(S2

x)xx. (5)

If we take into account the anisotropic interactions, then we get the
system

St = {(µ − u)S ∧ Sx}x + S ∧ JS, (6a)

ρutt = ν2
0uxx + α(u2)xx + βuxxxx + λ(S2

x)xx, (6b)

where J =diag(J1, J2, J3). Similarly, we can consider the case, when the
lattice Hamiltonian Ĥl is the Ablowitz - Ladik potential. In this case, in
the continuous limit, after some calculations, we obtain the Myrzakulov
LXXIV (M-LXXIV) equation

St = {(µ|φ|2 + ν)S ∧ Sx}x + S ∧ JS, (7a)

iφt + φxx + 2α|φ|2φ + λS2
xφ = 0, (7b)

where µ, ν, α, λ are constants, φ is the scalar complex function.

2. A list of some spin systems in 1+1 dimensions
Now we would like to present the list of some spin-phonon systems.

At first we give some equations for S with yet not specified potentials u
and then we concretize the form of this potentials.

Here and below, α, β, λ, ν0, ρ, µ, ν are constants, u, v are the scalar
real functions (potentials), [, ] ({, }) is commutator (anticommutator),

S =
(

S3 S−
S+ −S3

)
, S± = S1 ± iS2, S2 = I, S2

x = S2
1x + S2

2x + S2
3x.
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Table 1. Spin systems with the potentials

Name of equation Equation of motion

The M-LVII equation 2iSt = [S, Sxx] + u[S, σ3]

The M-LVI equation 2iSt = [S, Sxx] + uS3[S, σ3]

The M-LV equation 2iSt = {(µ�S2
x − u + m)[S, Sx]}x

The M-LIV equation 2iSt = n[S, Sxxxx] + 2{(µ�S2
x − u + m)[S, Sx]}x

The M-LIII equation 2iSt = [S, Sxx] + 2iuSx

Table 2. Spin systems of the 1-class

Name of equation Equation of motion

The M-LII equation 2iSt = [S, Sxx] + u[S, σ3]
ρutt = ν2

0uxx + λ(S3)xx

The M-LI equation 2iSt = [S, Sxx] + u[S, σ3]
ρutt = ν2

0uxx + α(u2)xx + βuxxxx + λ(S3)xx

The M-L equation 2iSt = [S, Sxx] + u[S, σ3]
ut + ux + λ(S3)x = 0

The M-XLIX equation 2iSt = [S, Sxx] + u[S, σ3]
ut + ux + α(u2)x + βuxxx + λ(S3)x = 0

3. L-equivalent counterparts of spin systems
Now let us we find the Lakshmanan equivalent (L-equivalent) coun-

terpart of one of above presented spin systems [7-12]. To this end, we
consider the Gauss-Weingarten equation for surfaces⎛⎝e1

e2

e3

⎞⎠
x

=

⎛⎝ 0 κ −σ
−κ 0 τ
σ −τ 0

⎞⎠⎛⎝e1

e2

e3

⎞⎠ , (8a)

⎛⎝e1

e2

e3

⎞⎠
t

=

⎛⎝ 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

⎞⎠⎛⎝e1

e2

e3

⎞⎠ . (8b)

The corresponding Gauss-Codazzi-Mainardi equation has the form

κt = ω3x + τω2 − σω1, (9a)
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Table 3. Spin systems of the 2-class

Name of equation Equation of motion

The M-XLVIII equation 2iSt = [S, Sxx] + uS3[S, σ3]
ρutt = ν2

0uxx + λ(S2
3)xx

The M-XLVII equation 2iSt = [S, Sxx] + uS3[S, σ3]
ρutt = ν2

0uxx + α(u2)xx + βuxxxx + λ(S2
3)xx

The M-XLVI equation 2iSt = [S, Sxx] + uS3[S, σ3]
ut + ux + λ(S2

3)x = 0

The M-XLV equation 2iSt = [S, Sxx] + uS3[S, σ3]
ut + ux + α(u2)x + βuxxx + λ(S2

3)x = 0

Table 4. Spin systems of the 3-class

Name of equation Equation of motion

The M-XLIV equation 2iSt = {(µ�S2
x − u + m)[S, Sx]}x

ρutt = ν2
0uxx + λ(�S2

x)xx

The M-XLIII equation 2iSt = {(µ�S2
x − u + m)[S, Sx]}x

ρutt = ν2
0uxx + α(u2)xx + βuxxxx + λ(�S2

x)xx

The M-XLII equation 2iSt = {(µ�S2
x − u + m)[S, Sx]}x

ut + ux + λ(�S2
x)x = 0

The M-XLI equation 2iSt = {(µ�S2
x − u + m)[S, Sx]}x

ut + ux + α(u2)x + βuxxx + λ(�S2
x)x = 0

σt = ω2x + κω1 − τω3, (9b)

τt = ω1x + σω3 − κω2. (9c)

Consider the Myrzakulov LIII (M-LIII) equation

St = S ∧ Sxx + uSx. (10)

We put e1 ≡ S, ϕ = 1
2(iσ − κ). Then the L-equivalent of the M-LIII

equation (10) takes the form

iϕt + ϕxx + 2|ϕ|2ϕ − 2i(uϕ)x = 0. (11)

Similarly, we can construct the L-equivalents of the other spin systems.
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Table 5. Spin systems of the 4-class

Name of equation Equation of motion

The M-XL equation 2iSt = [S, Sxxxx] + 2{(µ�S2
x − u + m)[S, Sx]}x

ρutt = ν2
0uxx + λ(�S2

x)xx

The M-XXXIX equation 2iSt = [S, Sxxxx] + 2{(µ�S2
x − u + m)[S, Sx]}x

ρutt = ν2
0uxx + α(u2)xx + βuxxxx + λ(�S2

x)xx

The M-XXXVIII equation 2iSt = [S, Sxxxx] + 2{(µ�S2
x − u + m)[S, Sx]}x

ut + ux + λ(�S2
x)x = 0

The M-XXXVII equation 2iSt = [S, Sxxxx] + 2{(µ�S2
x − u + m)[S, Sx]}x

ut + ux + α(u2)x + βuxxx + λ(�S2
x)x = 0

Table 6. Spin systems of the 5-class

Name of equation Equation of motion

The M-XXXVI equation 2iSt = [S, Sxx] + 2iuSx

ρutt = ν2
0uxx + λ(S2

x)xx

The M-XXXV equation 2iSt = [S, Sxx] + 2iuSx

ρutt = ν2
0uxx + α(u2)xx + βuxxxx + λ(S2

x)xx

The M-XXXIV equation 2iSt = [S, Sxx] + 2iuSx

ut + ux + λ(S2
x)x = 0

The M-XXXIII equation 2iSt = [S, Sxx] + 2iuSx

ut + ux + α(u2)x + βuxxx + λ(S2
x)x = 0

4. Conclusion
To summarize, we have established the connection between the dis-

crete and continuous Heisenberg spin chains. In particular, we obtained
a number of nonlinear systems which describe magnetic crystals with
account for lattice vibrations. We note that practically all of the pre-
sented nonlinear equations admit exact soliton solutions. Also some of
these equations are integrable. Investigations of integrability of the other
systems is now in progress [7-12].
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Table 7. Spin systems of the 6-class

Name of equation Equation of motion

The M-XXXVI equation 2iSt = [S, Sxx] + 2iuSx

ρutt = ν2
0uxx + λ(S2

x)xx

The M-XXXV equation 2iSt = [S, Sxx] + 2iuSx

ρutt = ν2
0uxx + α(u2)xx + βuxxxx + λ(S2

x)xx

The M-XXXIV equation 2iSt = [S, Sxx] + 2iuSx

ut + ux + λ(S2
x)x = 0

The M-XXXIII equation 2iSt = [S, Sxx] + 2iuSx

ut + ux + α(u2)x + βuxxx + λ(S2
x)x = 0

Table 8. Spin systems of the 7-class

Name of equation Equation of motion

The M-LXIX equation St = 1√
S2

x

(−√
S2

x − u2Sx + uS ∧ Sx) + βS3
x

ux = v
√

S2
t − u2

vt = −S · (St ∧ Sx)

The M-LXX equation St = S ∧ Sxx + H ∧ S + βS3
x

Ht = H ∧ Sxx

Table 9. Spin systems of the 8-class

Name of equation Equation of motion

The M-LXXI equation St = S ∧ Sxx + α|φ|2Sx + S ∧ JS
iφt + φxx + λS2

xφ = 0

The M-LXXII equation St = S ∧ Sxx + α|φ|2Sx + S ∧ JS
iφt + φxx + iλ(S2

xφ)x = 0

The M-LXXIII equation St = S ∧ Sxx + α|φ|2Sx + S ∧ JS
iφt + φxx + iλS2

xφx = 0

Acknowledgments
RM would like to thank the organizers for hospitality and for a finan-

cial support.



Continuous limits of generalized Heisenberg spin chains 541

Table 10. Spin systems of the 9-class

Name of equation Equation of motion

The M-LXXIV equation St = {(µ|φ|2 + m)S ∧ Sx}x + S ∧ JS
iφt + φxx + λS2

xφ = 0

The M-LXXV equation St = {(µ|φ|2 + m)S ∧ Sx}x + S ∧ JS
iφt + φxx + iλ(S2

xφ)x = 0

The M-LXXVI equation St = {(µ|φ|2 + m)S ∧ Sx}x + S ∧ JS
iφt + φxx + iλS2

xφx = 0

Table 11. Spin systems of the 10-class

Name of equation Equation of motion

The M-LXXVII equation St = nS ∧ Sxxxx + 2{(µ|φ|2 + m)S ∧ Sx}x

iφt + φxx + λS2
xφ = 0

The M-LXXVIII equation St = nS ∧ Sxxxx + 2{(µ|φ|2 + m)S ∧ Sx}x

iφt + φxx + iλ(S2
xφ)x = 0

The M-LXXIX equation St = nS ∧ Sxxxx + 2{(µ|φ|2 + m)S ∧ Sx}x

iφt + φxx + iλS2
xφx = 0
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ON THE GEOMETRY OF STATIONARY
HEISENBERG FERROMAGNETS

F. K. Rahimov, Kur. Myrzakul, N. S. Serikbaev, and R. Myrzakulov
Institute of Physics and Technology, 480082, Alma-Ata-82, Kazakhstan

Abstract A new class of two-dimensional surfaces generated by formulas which
are generalizations of the well known Lelieuvre and Schief formulas is
presented. These surfaces are connected with two-dimensional spin sys-
tems which are stationary versions of the (2+1)-dimensional classical
continuous Heisenberg ferromagnets.

Keywords: nonlinear models, Heisenberg ferromagnets, integrable systems, solitons,
differential geometry of surfaces.

1. Introduction
Since a long time surfaces appear in the description of many phenom-

ena in physics: spin glass models, membrane-like polymers, growth of
crystals, string theory and so on. On the other hand, there are many
very interesting partial differential equations originating from classical
differential geometry. The famous Liouville equation, for example, first
appeared in differential geometry. After the discovery of soliton theory,
people began to recognize the importance of differential geometry in the
theory of solitons. Since then, many authors paid attention to the use
of methods from differential geometry in theory of solitons [1-12]. The
aim of this paper is the investigation of the relation differential geome-
try of surfaces with the stationary versions of some classical continuous
Heisenberg ferromagnets in 2+1 dimensions [13-15].

2. Some formulas on the theory of surfaces
Let r be the position vector of the surface in three dimensional eu-

clidean space with the parameterization x, y. Then rx, ry are the tangent
vectors. Let these tangent vectors, as against existing in the literature,
are given by the following Myrzakulov formula (MF) (about our nota-
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tions, see, e.g. Refs. [14-18])

rx = a1N ∧ Nx + a2N ∧ Ny + a3Nx + a4Ny + a5N, (1a)

ry = b1N ∧ Nx + b2N ∧ Ny + b3Nx + b4Ny + b5N, (1b)

where N(x, t) is some vector function, ai(x, t), bi(x, t) are real scalar
functions. First of all, we note that the MF (1) contents the following
important particular cases:

i) The Rodrigues formula [12]

rx = −ρ1Nx, ry = −ρ2Ny. (2)

as

a1 = a2 = a4 = a5 = b1 = b2 = b3 = b5 = 0, a3 = −ρ1, b4 = −ρ2.
(3)

ii) The Lelieuvre formula [11-12, 19-21]

rx = ρNx ∧ N, ry = ρN ∧ Ny, (4)

as

a2 = a3 = a4 = a5 = b1 = b3 = b4 = b5 = 0, a1 = −ρ, b2 = ρ. (5)

iii) The Schief formula [12]

rx = ρNy ∧ N + µNx, ry = ρN ∧ Nx + µNy, (6)

as

a1 = a4 = a5 = b2 = b3 = b5 = 0, a2 = −ρ, a3 = µ, b1 = ρ, b4 = µ. (7)

For us the special interest represents the case, when N = S, where S
is the spin vector, S2 = 1. Then the MF (1) takes the form

rx = a1S ∧ Sx + a2S ∧ Sy + a3Sx + a4Sy + a5S, (8a)

ry = b1S ∧ Sx + b2S ∧ Sy + b3Sx + b4Sy + b5S. (8b)

3. Heisenberg ferromagnets associated with the
surfaces

Now we find the classical continuous Heisenberg ferromagnets related
with the MF (8). We note that the consistency relation of the formulas
(8) gives the following spin system

(a1y − b1x)S ∧ Sx + (a2y − b2x)S ∧ Sy + S ∧ [a2Syy + (a1 − b2)Sxy−
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b1Sxx] + (a3y − b5 − b3x)Sx + (a5 + a4y − b4x)Sy + (a5y − b5x)S+

(a1 + b2)Sy ∧ Sx + (a3 − b4)Sxy + a4Syy − b3Sxx = 0. (9)

From here we obtain

a5y−b5x = −(a1+b2)S·(Sy∧Sx)+S·[(a3−b4)Sxy+a4Syy−b3Sxx]. (10)

The topological charge is given by

Q =
1
4π

∫∫
{−(a1+b2)S·(Sx∧Sy)+S·[(a3−b4)Sxy+a4Syy−b3Sxx]}dxdy.

(11)
We can show that the spin system corresponding to (8) looks like

S∧[a2Syy+(a1−b2)Sxy−b1Sxx]+(a3y−b5)Sx+(a5−b4x)Sy = 0, (12a)

a5y − b5x = (a1 + b2)S · (Sx ∧ Sy). (12b)

It is the stationary version of the following M-XIII equation

St = S∧[a2Syy+(a1−b2)Sxy−b1Sxx]+(a3y−b5)Sx+(a5−b4x)Sy, (13a)

a5y − b5x = (a1 + b2)S · (Sx ∧ Sy). (13b)

Now we present the various special cases of the spin system (12) induced
by the formulas (8).

i) Let a3, b4 are constants. Then the system (12) pass to the following
set of equations

S ∧ [a2Syy + (a1 − b2)Sxy − b1Sxx] − b5Sx + a5Sy = 0, (14a)

a5y − b5x = (a1 + b2)S · (Sx ∧ Sy). (14b)

ii) Now we consider the following special case of the system (8), when

a4 = b3 = 0, a5 = b4x + φx, b5 = a3y − φy. (15)

In this case, we have

rx = a1S ∧ Sx + a2S ∧ Sy + a3Sx + (b4x + φx)S, (16a)

ry = b1S ∧ Sx + b2S ∧ Sy + b4Sy + (a3y − φy)S. (16b)

The corresponding spin system reads as

S ∧ [a2Syy + (a1 − b2)Sxy − b1Sxx] + φySx + φxSy = 0, (17a)

φxy =
(a1 + b2)

2
S · (Sx ∧ Sy). (17b)
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This system is the stationary variant of the following (2+1)-dimensional
M-XIIIA equation

St = S ∧ [a2Syy + (a1 − b2)Sxy − b1Sxx] + φySx + φxSy, (18a)

φxy =
(a1 + b2)

2
S · (Sx ∧ Sy). (18b)

Now let us consider the properties of the surface corresponding to the
system (16) for the simplest case when a3 = b4 = 0. In this case the
formulas for the tangent vectors (16) become simpler

rx = a1S∧Sx +a2S∧Sy +φxS, ry = b1S∧Sx + b2S∧Sy−φyS. (19)

The consistency relation of the equations (19) gives the spin system
(17), so that we can speak that the tangent vectors (19) define the some
surface associated with the system (17). Consider this surface in detail.
Let us calculate the value

rx ∧ ry = (a1b2 − a2b1)qS − (b1φx + a1φy)Sx − (b2φx + a2φy)Sy, (20)

where q = S · (Sx ∧ Sy). The topological charge is

Q =
1
4π

∫ ∫
qdxdy =

1
4π

∫ ∫
dxdyS · (Sx ∧ Sy). (21)

Hence we have

|rx ∧ ry|2 = (a1b2 − a2b1)2q2 + (b1φx + a1φy)2S2
x + (b2φx + a2φy)2S2

y+

2(b1φx + a1φy)(b2φx + a2φy)SxSy =

= (a1b2 − a2b1)2q2 + {(b1φx + a1φy)Sx + (b2φx + a2φy)Sy}2. (22)

Using (20) and (22) we can construct the normal vector of the surface.
At the same time, the coefficients of the first fundamental form are given
by

E = a2
1S

2
x + a2

2S
2
y + 2a1a2SxSy + φ2

x,

F = a1b1S2
x + (a2b1 + a1b2)SxSy + +a2b2S2

y − φxφy, (23)

G = b2
1S

2
x + b2

2S
2
y + 2b1b2SxSy + φ2

y.

Similarly we can calculate the coefficients of the second fundamental
form and the other parameters of the surface.

v) At last, we consider the reduction of the system (8) correponding
to the case

a4 = b3 = 0, a5 = φy, b5 = −φx. (24)
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In this case, instead of (8) we have the following formulas

rx = a1S∧Sx + a2S∧Sy + φyS, ry = b1S∧Sx + b2S∧Sy −φxS. (25)

Now the system (12) becomes

S ∧ [a2Syy + (a1 − b2)Sxy − b1Sxx] + φxSx + φySy = 0, (26a)

φxx + φyy = (a1 + b2)S · (Sx ∧ Sy). (26b)

It is the stationary version of the following M-XIIIB equation

St = S ∧ [a2Syy + (a1 − b2)Sxy − b1Sxx] + φxSx + φySy, (27a)

φxx + φyy = (a1 + b2)S · (Sx ∧ Sy). (27b)

4. Generalized surfaces
Finally we would like to note that Eq. (1) admits some interesting

generalizations. For example, one of possible generalizations of the MF
can be written as

rx = a1N ∧ Nx + a2N ∧ Ny + a3Nx + a4Ny + a5N + A, (28a)

ry = b1N ∧ Nx + b2N ∧ Ny + b3Nx + b4Ny + b5N + B. (28b)

In this case, from the compatibility of the equations (28), we obtain some
spin systems in 1+1 dimensions. The other perspective generalization
of the MF, for example, is given by

rx = a1S ∧ Sx + a2S ∧ Sy + a3Sx + a4Sy + a5S, ry = b1S ∧ Sx+

b2S ∧ Sy + b3Sx + b4Sy + b5S, rt = F, (29)

where F is the vector function. Hence we get some new class of (2+1)-
dimensional spin systems. Investigation of these generalized MF and
related spin systems is now in progress.

5. Conclusion
To conclude, in this note, we have considered the relation between

differential geometry of surfaces and some stationary versions of the
classical continuous Heisenberg ferromagnets in 2+1 dimensions. In
particular, we have studied spin systems induced by the new class of
two-dimensional surfaces. These surfaces are some generalizations of
the surfaces induced by the well-known from the differential geometry
Lelieuvre and Schief formulas.
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Superfluidity, 82
Surface-polaritonic crystal, 314
Surface plasmon polaritons, 314
System

compact, 157
dissipative, 100, 45
dynamical, 163
integrable, 503

low-dimensional, 108
nonlinear dynamical, 136
quantum integrable, 193

Targeted energy transfer, 444
Tau-functions, 513
Thermal bath, 449
Thermal Bethe ansatz method, 194
Thermal fluctuations, 445
Thermal noise, 444
Three-wave approximation, 317
Tight-binding model, 309
Tight-binding regime, 211
Time fractional derivative, 130
Toda chain, 16, 428, 535
Tonks-Girardeau gas, 203
Tonks equation, 196
Topological charge, 84, 340, 354
Transmission coefficient, 158
Trap

harmonic, 29, 82
magnetic, 210, 252, 270
magneto-optical, 224
parabolic, 63
rotating harmonic, 100

Travelling wave solution, 498
Tunnelling, 444
Two-component Bose-Einstein condensate,

270
Two-level atom, 304
Ultrashort pulses, 303, 361
Vakhitov-Kolokolov criterion, 65
Valence band, 305
Van der Vaals forces, 332
Vector nonlinear Schrödinger equation, 3
Vibrational motion, 419
Vibrational properties, 418
Vibrational spectrum, 473
Volterra hierarchy, 512
Volterra model, 511
Vortex-like pattern, 414
Vortex, 62, 81, 340
Vortex clusters, 82
Vortex line, 82
Vortex necklace, 85
Vortex quadrupoles, 95
Vortex site, 425
Vortex soliton, 62, 354
Vorticity, 62
Wannier functions, 245
Wave function of the condensate, 177
Wave

Bloch, 316
de Broglie, 178
dissipationless shock, 286
front, 82
matter, 29, 251
periodic, 258
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Waveforms, 389

Weierstrass ordering, 5

White noise, 374

Whitham modulation theory, 288
Yang-Yang integral equation, 204
Zakharov-Shabat spectral problem, 262
Zero-curvature representation, 515
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