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Preface

The purpose of this book is to present concepts in a statistical treatment of
risks. Such knowledge facilitates the understanding of the influence of random
phenomena and gives a deeper knowledge of the possibilities offered by and
algorithms found in certain software packages. Since Bayesian methods are
frequently used in this field, a reasonable proportion of the presentation is
devoted to such techniques.

The text is written with student in mind – a student who has studied el-
ementary undergraduate courses in engineering mathematics, may be includ-
ing a minor course in statistics. Even though we use a style of presentation
traditionally found in the math literature (including descriptions like defin-
itions, examples, etc.), emphasis is put on the understanding of the theory
and methods presented; hence reasoning of an informal character is frequent.
With respect to the contents (and its presentation), the idea has not been to
write another textbook on elementary probability and statistics — there are
plenty of such books — but to focus on applications within the field of risk
and safety analysis.

Each chapter ends with a section on exercises; short solutions are given in
appendix. Especially in the first chapters, some exercises merely check basic
concepts introduced, with no clearly attached application indicated. However,
among the collection of exercises as a whole, the ambition has been to present
problems of an applied character and to a great extent real data sets have
been used when constructing the problems.

Our ideas have been the following for the structuring of the chapters: In
Chapter 1, we introduce probabilities of events, including notions like indepen-
dence and conditional probabilities. Chapter 2 aims at presenting the two fun-
damental ways of interpreting probabilities: the frequentist and the Bayesian.
The concept of intensity, important in risk calculations and referred to in later
chapters, as well as the notion of a stream of events is also introduced here. A
condensed summary of properties for random variables and characterisation
of distributions is given in Chapter 3. In particular, typical distributions met
in risk analysis are presented and exemplified here. In Chapter 4 the most im-
portant notions of classical inference (point estimation, confidence intervals)
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are discussed and we also provide a short introduction to bootstrap method-
ology. Further topics on probability are presented in Chapter 5, where notions
like covariance, correlation, and conditional distributions are discussed.

The second part of the book, Chapters 6-10, are oriented at different
types of problems and applications found in risk and safety analysis. Bayesian
methods are further discussed in Chapter 6. There we treat two problems:
estimation of a probability for some (undesirable) event and estimation of
the mean in a Poisson distribution (that is, the constant risk for accidents).
The concept of conjugated priors to facilitate the computation of posterior
distributions is introduced.

Chapter 7 relates to notions introduced in Chapter 2 – intensities of events
(accidents) and streams of events. By now the reader has hopefully reached
a higher level of understanding and applying techniques from probability and
statistics. Further topics can therefore be introduced, like lifetime analysis and
Poisson regression. Discussion of absolute risks and tolerable risks is given.
Furthermore, an orientation on more general Poisson processes (e.g. in the
plane) is found.

In structural engineering, safety indices are frequently used in design regu-
lations. In Chapter 8, a discussion on such indices is given, as well as remarks
on their computation. In this context, we discuss Gauss’ approximation formu-
lae, which can be used to compute the values of indices approximately. More
generally speaking, Gauss’ approximation formulae render approximations of
the expected value and variance for functions of random variables. Moreover,
approximate confidence intervals can be obtained in those situations by the
so-called delta method, introduced at the end of the chapter.

In Chapter 9, focus is on how to estimate characteristic values used in
design codes and norms. First, a parametric approach is presented, thereafter
an orientation on the POT (Peaks Over Threshold) method is given. Finally,
in Chapter 10, an introduction to statistical extreme-value distributions is
given. Much of the discussion is related to calculation of design loads and
return periods.

We are grateful to many students whose comments have improved the
presentation. Georg Lindgren has read the whole manuscript and given
many fruitful comments. Thanks also to Anders Bengtsson, Oskar Hagberg,
Krzysztof Nowicki, Niels C. Overgaard, and Krzysztof Podgórski for reading
parts of the manuscript; Tord Isaksson and Colin McIntyre for valuable re-
marks; and Tord Rikte and Klas Bogsjö for assistance with exercises. The
first author would like to express his gratitude to Jeanne Wéry for her long-
term encouragement and interest in his work. Finally, a special thanks to our
families for constant support and patience.

Lund and Malmö, Igor Rychlik
March, 2006 Jesper Rydén
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1

Basic Probability

Different definitions of what risk means can be found in the literature. For
example, one dictionary1 starts with:

“A quantity derived both from the probability that a particular hazard
will occur and the magnitude of the consequence of the undesirable
effects of that hazard. The term risk is often used informally to mean
the probability of a hazard occurring.”

Related to risk are notions like risk analysis, risk management, etc. The same
source defines risk analysis as:

“A systematic and disciplined approach to analyzing risk – and thus
obtaining a measure of both the probability of a hazard occurring and
the undesirable effects of that hazard.”

Here, we study the parts of risk analysis concerned with computations of
probabilities closer. More precisely, what is the role of probability in the fields
of risk analysis and safety engineering? First of all, identification of failure or
damage scenarios needs to be done (what can go wrong?); secondly, chances
for these and their consequences have to be stated. Risk can then be quantified
by some measures, often involving probabilities, of the potential outputs. The
reason for quantifying risks is to allow coherent (logically consistent) actions
and decisions, also called risk management.

In this book, we concentrate on mathematical models for randomness and
focus on problems that can be encountered in risk and safety analysis. In
that field, the concept (and tool) of probability often enters in two different
ways. Firstly, when we need to describe the uncertainties originating from
incomplete knowledge, imperfect models, or measurement errors. Secondly,
when a representation of the genuine variability in samples has to be made, e.g.
reported temperature, wind speed, the force and location of an earthquake,
the number of people in a building when a fire started, etc. Mixing of these

1A Dictionary of Computing, Oxford Reference.
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two types of applications in one model makes it very difficult to interpret
what the computed probability really measures. Hence we often discuss these
issues.

We first present two data sets that are discussed later in the book from
different perspectives. Here, we formulate some typical questions.

Example 1.1 (Periods between earthquakes). The time intervals in days
between successive serious earthquakes world-wide have been recorded. “Se-
rious” means a magnitude of at least 7.5 on the Richter scale or more than
1000 people killed. In all, 63 earthquakes have been recorded, i.e. 62 waiting
times. This particular data set covers the period from 16 December 1902 to
4 March 1977.

In Figure 1.1, data are shown in the form of a histogram. Simple statistical
measures are the sample mean (437 days) and the sample standard deviation
(400 days). However, as is evident from the figure, we need more sophisticated
probabilistic models to answer questions like: “How often can we expect a time
period longer than 5 years or shorter than one week?” Another important issue
for allocation of resources is: “How many earthquakes can happen during a
certain period of time, e.g. 1 year?”. Typical probabilistic models for waiting
times and number of “accidents” are discussed in Chapter 7.

(This data set is presented in a book of compiled data by Hand et al. [34].)
�

Example 1.2 (Significant wave height). Applications of probability and
statistics are found frequently in the fields of oceanography and offshore tech-
nology. At buoys in the oceans, the so-called significant wave height Hs is
recorded, an important factor in engineering design. One calculates Hs as the
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Fig. 1.1. Histogram: periods in days between serious earthquakes 1902-1977.
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average of the highest one-third of all of the wave heights during a 20-minute
sampling period. It can be shown that H2

s is proportional to average energy
of sea waves.

In Figure 1.2, measurements of Hs from January to December 1995 are
shown in the form of a time series. The sampling-time interval is one hour,
that is, Hs is reported every hour. The buoy was situated in the North East
Pacific. We note the seasonality, i.e. waves tend to be higher during winter
months.

One typical problem in this scientific field is to determine the so-called
100-year significant wave (for short, the 100-year wave): a level that Hs will
exceed on average only once over 100 years. The 100-year wave height is an
important parameter when designing offshore oil platforms. Usually, 100 years
of data are not recorded, and statistical models are needed to estimate the
height of the 100-year wave from available data.

Another typical problem is to estimate durations of storms (time periods
with high Hs values) and calm periods. For example, transport of large cargos
is only allowed when longer periods of calmer weather can be expected. In
Chapters 2 and 10 we study such questions closer.

(The data in this example are provided by the National Data Buoy Center
and are accessible on the Internet.) �

In this chapter a summary of some basic properties of probabilities is given.
The aim is to give a review of a few important concepts: sample space, events,
probability, random variables, independence, conditional probabilities, and
the law of total probability.
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Fig. 1.2. Time series: significant wave height at a buoy in the East Pacific
(Jan 1995 – Dec 1995).



4 1 Basic Probability

1.1 Sample Space, Events, and Probabilities

We use the term experiment to refer to any process whose outcome is not
known in advance. Generally speaking, probability is a concept to measure
the uncertainty of an outcome of an experiment. (Classical simple experiments
are to flip a coin or roll a die.) With the experiment we associate a collection
(set) of all possible outcomes, call it sample space, and denote it by S . An
element s in this set will be denoted by s ∈ S and called a sample point.
Intuitively, an event is a statement about outcomes of an experiment. More
formally, an event A is a collection of sample points (a subset of S , written
as A ⊂ S ) for which the statement is true. Events will be denoted by capital
letters A,B,C ; sometimes we will use indices, e.g. Ai , i = 1, . . . , k, to denote
a collection of k events.

Random variables

We now introduce the fundamental notion of a random variable (r.v.), which
is a number determined by the outcome of an experiment.�
�

�
�

Definition 1.1. A random variable is a real-valued function defined on
a sample space.

In many experiments, only finitely many results need to be considered and
hence the sample space is also finite. For illustration of some basic concepts we
often use the already-mentioned experiments: “flip a coin” and “roll a die.” The
sample space of flipping a coin is S = {“heads”, “tails”} . We write 0 if heads is
shown, and 1 for tails; in this situation the sample space is S={0, 1} . Example
of an event could be “The coin shows heads” with a truth set A = {0} . For
an experiment of rolling a die, S = {1, 2, 3, 4, 5, 6} , and the event “The die
shows an odd number” is equivalent to the set A = {1, 3, 5} .

Let N be a number shown by the die. Clearly, N is a numerical function
of an outcome of the experiment of rolling a die and serves as a simple exam-
ple of a random variable. Now the statement “The die shows an odd number”
is equivalent to “N is odd.” We also use an experiment of rolling a die twice;
then S = {(1, 1), (1, 2), . . . , (6, 6)} = {(i, j) : i, j = 1, 2, . . . , 6} . Here it is nat-
ural to define two random variables to characterize the properties of outcomes
of the experiment: N1 , the result of the first roll, and N2 , the result of the
second roll.

Probabilities

Probabilities are numbers, assigned to statements about an outcome of an
experiment, that express the chances that the statement is true. For example,
for the experiment of rolling a fair die,

P(“The die shows odd number”) = P(A) =
1
2
.
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Verbal statements and logical operations defining events are often closer to
the practical use of probabilities and easier to understand. However, they
lead to long expressions and hence are not convenient when writing formulae.
Consequently it is more common to use sets, e.g. the statement “The die shows
odd number” gives a set A = {1, 3, 5} , where the statement is true. Here we
use both methods: the more intuitive P(“N is odd”) and the more formal
P({1, 3, 5}) , or simply P(A) .

We assume that basic facts (definitions) of set theory are known; for ex-
ample, that for two events A , B , the symbol A ∪ B , which is a sum of two
sets, means that A or B or both are true, while A ∩ B means A and B
are true simultaneously. Two events (statements) are excluding if they cannot
be true simultaneously, which transfers into the condition on the sets that
A ∩ B = ∅ (the empty set). For any event A , denote by Ac its complement,
i.e. A ∪ Ac = S and A ∩ Ac = ∅ .

Probability is a way to assign numbers to events. It is a measure of the
chances of an event to occur in an experiment or a statement about a result
to be true. As a measure, similarly for volume or length, it has to satisfy some
general rules in order to be called a probability. The most important is that

P(A ∪ B) = P(A) + P(B), if A ∩ B = ∅. (1.1)

Furthermore, for any event A , 0 ≤ P(A) ≤ 1 . The statements that are always
false have probability zero, similarly, always-true statements have probability
one.

One can show that

P(A ∪ B) = P(A) + P(B) − P(A ∩ B). (1.2)

The definition of probability just discussed is too wide, we need to further
limit the class of possible functions P that can be called probability to such
that satisfy the following more restrictive version of Eq. (1.1).�

�

�

	

Definition 1.2. Let A1, A2, . . . be an infinite sequence of statements such
that at most one of them can be true (Ai are mutually excluding); then

P(“At least one of Ai is true”) = P(∪∞
i=1Ai) =

∞∑
i=1

P(Ai). (1.3)

Any function P satisfying (1.3), taking values between zero and one and
assigning value zero to never-true statements (impossible events) and value
one to always-true statements (certain events) is a correctly defined prob-
ability.

Obviously, for a given experiment with sample space S , there are plenty of
such functions P , which satisfy the condition of Eq. (1.3). Hence, an important
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problem is how to choose an adequate one, i.e. well measuring the uncertain-
ties one has to consider. In the following we present the classical example how
to define probabilities.

Example 1.3 (Classical definition). An important example of a proba-
bility P defined for events in S with a finite number of sample points is the
following one, sometimes referred to as the “classical” definition of probability:

P(A) =
NA

NS
(1.4)

where NA is the number of sample points that belong to the event A , NS is
the total number of sample points in the sample space S .

The probability defined by Eq. (1.4) is a proper model for situations when
each individual output of the random experiment has equal chance to occur.
Then (1.1) states that (1.4) is the only possible probability on S . For example,
it is clear that for the experiment “roll a fair die,” all outcomes have the same
chance to occur. Then

P(“The die shows odd number”) =
3
6

=
1
2
.

�

Generally for a countable sample space, i.e. when we can enumerate all
possible outcomes, denoted by S = {1, 2, 3, . . .} , it is sufficient to know the
probabilities

pi = P(“Experiment results with outcome i”)

in order to be able to define a probability of any statement. These probabil-
ities constitute the probability-mass function. Simply, for any statement A ,
Eq. (1.3) gives

P(A) =
∑
i∈A

pi, (1.5)

i.e. one sums all pi for which the statement A is true; see Eq. (1.6).

Example 1.4 (Rolling a die). Consider a random experiment consisting of
rolling a die. The sample space is S = {1, 2, 3, 4, 5, 6} . We are interested in
the likelihood of the following statement: “The result of rolling a die is even”.
The event corresponding to this statement is A = {2, 4, 6} . If we assume that
the die is “fair”, i.e. all sample points have the same probability to come up,
then, by Eq. (1.4)

P(A) =
3
6

= 0.5.
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However, if the die was not fair and showed 2 with probability p2 = 1/4 while
all other results were equally probable (pi = 3/20 , i �= 2), then by Eq. (1.5)

P(A) = p2 + p4 + p6 =
11
20

= 0.55. (1.6)

The probability-mass functions for the two cases are shown in Figure 1.3.
The question of whether the die is “fair” or how to find the numerical

values for the probabilities pi is important and we return to it in following
chapters. Here we only indicate that there are several methods to estimate
the values of pi . For example:

• One can assume that any values for pi are possible. In order to find them,
one can roll the die many times and record the frequency with which the six
possible outcomes occur. This method would require many rolls in order
to get reliable estimates of pi . This is the classical statistical approach.

• Another method is to use our experience from rolling different dice. The
experience can be quantified by probabilities (or odds), now describing
“degree of belief,” which values pi can have. Then one can roll the die and
modify our opinion about the pi . Here the so-called Bayesian approach
is used to update the experience to the actual die (based on the observed
outcomes of the rolls).

• Finally, one can assume that the die is fair and wait until the observed
outcomes contradict this assumption. This approach is referred to as hy-
pothesis testing.

�

In many situations, one can assume (or live with) the assumption that
all possible outcomes of an experiment are equally likely. However, there are
situations when assigning equal probabilities to all outcomes is not obvious.
The following example, sometimes called the Monty Hall problem, serves as
an illustration.

0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

Fig. 1.3. Probability-mass functions. Left: Fair die; Right: Biased die.
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Example 1.5 (“Car or Goat?”). In an American TV show, a guest (called
“player” below) has to select one of three closed doors. He knows that behind
one of the doors is a prize in the form of a car, while behind the other two
are goats. For simplicity, suppose that the player chooses No. 1, which he is
not allowed to open. The host of the show opens one of the remaining doors.
Since he knows where the car is, he always manages to open a door with a
goat behind. Suppose the host opened door No. 3.

We have two closed doors, where No. 1 has been chosen by the player.
Now the player gets the possibility to open his door and check whether it is
a car behind it or to abandon his first choice and open the second door. The
question is which strategy is better: to switch and hence open No. 2, or stick
to the original choice and check what is hidden behind No. 1.

Often people believe their first choice is a good one and do not want to
switch, others think that their odds are 1:1 to win, regardless of switching.
However, the original odds for the car to be behind door No. 1 was 1:2. Thus
the problem is whether the odds should be changed to 1:1 (or other values)
when one knows that the host opened door No. 3. A solution employing Bayes’
formula is given in Example 2.2.

Note that if odds are unchanged, this would mean that the probability
that the car is behind door No. 1 is independent of the fact that the host
opens door No. 3 (see Remark 1.1, page 13).

(This problem has been discussed in an article by Morgan et al. [55].)
�

1.2 Independence

Another important concept that is used to compute (construct) more compli-
cated probability functions P is the notion of independence. We illustrate it
using an experiment: roll a die twice. It is intuitively clear that the results of
the two rolls of the die (if performed in a correct way) should give independent
results.

As before, let the sample space of this experiment be

S = {(1, 1), (1, 2), . . . , (6, 6)}.
We shall now compute the probability of the statements A1 = “The first roll
gave odd number” and A2 = “The second roll gave one (1)”. If the die is fair
and the rolls have been performed correctly, then any of the sample points in
S are equally probable. Now using Eq. (1.4), we have that

P(A1 ∩ A2) = P({(1, 1), (3, 1), (5, 1)}) =
3
36

=
1
12

.

Similarly, we obtain that P(A1) = 1/2 while P(A2) = 1/6 and the following
equality follows

P(A1 ∩ A2) = P(A1) · P(A2). (1.7)
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This is not by accident but an evidence that our intuition was correct, because
the definition of independence requires that (1.7) holds. The definition of
independence is given now.�

�

�

	

Definition 1.3. For a sample space S and a probability measure P , the
events A,B ⊂ S are called independent if

P(A ∩ B) = P(A) · P(B). (1.8)

Two events A and B are dependent if they are not independent, that is,

P(A ∩ B) �= P(A) · P(B).

Observe that independence of events is not really a property of the events but
rather of the probability function P . We turn now to an example of events
where we have little help from intuition to decide whether the events are
independent or dependent.

Example 1.6 (Rolling a die). Consider a random experiment consisting of
rolling a die. The sample space is S = {1, 2, 3, 4, 5, 6} . We are interested in two
statements: “The result of rolling a die is even” and “The result is 2 or 3”. The
events corresponding to this statements are A = {2, 4, 6} and B = {2, 3} . Can
one directly by intuition say whether A and B are independent or dependent?

Let us check it by using the definition. If we assume that the die is “fair”,
i.e. all sample points have the same probability to come up, then

P(A ∩ B) =
1
6

= P(A) · P(B) =
3
6
· 2
6
.

So the events A and B are independent. Observe that if the die was not
fair and showed 2 with probability 1/4 while all other results were equally
probable, then the events A and B become dependent (check it). (Solution:
1/4 �= (1/4 + 3/20 + 3/20) · (1/4 + 3/20)). �

The conclusion of the last example was that the question whether two
specific events are dependent or not may not be easy to answer using only
intuition. However, the important application of the concept of independence
is to define probabilities. Often we construct probability functions P so that
independence of some events is obvious or assumed, as we see in the follow-
ing simple example. The specific of that example is that we will compute
probabilities of some events without first specifying the sample space S .

Example 1.7 (Rescue station). At a small rescue station, one has observed
that the probability of having at least one emergency call a given day is 0.15 .
Assume that emergency calls from one day to another are independent in the
statistical sense. Consider one week; we want to calculate the probability of
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emergency calls (i) on Monday; (ii) on Monday and Tuesday; (iii) on Monday,
Tuesday, and Wednesday.

The probability wanted in (i) is simply 0.15 . By independence, we get the
probabilities asked for in (ii): 0.15 · 0.15 = 0.0225 and (iii): 0.153 = 0.0034 .

Consider now the statement A : “There will be exactly one day with emer-
gency calls in a week”. Then P(A) = 7 · 0.15 · 0.856 , which can be motivated
as follows: Let Ai , i = 1, 2, . . . , 7 be the statement “Emergency on the ith
day of the week and no calls the remaining six days.” Obviously, the state-
ments Ai are mutually excluding, i.e. only one of them can be true. Since
A = A1 ∪ A2 ∪ . . . ∪ A7 , we obtain by Eq. (1.3)

P(A) = P(A1) + P(A2) + · · · + P(A7).

Now, any of the probabilities P(Ai) = 0.15 · 0.856 , because of the assumed
independence. �

The reasoning in the last example is often met in applications, as shown in
the following subsection.

1.2.1 Counting variables

Special types of random variables are the so-called counting variables, which
are related to statements or questions of the type “how many”; an example is
found in Example 1.7. Three commonly used types of counting variables in
applications are now discussed: binomial, Poisson, and geometric.

Binomial probability-mass function

Suppose we are in a situation where we can perform an experiment n times
in an independent manner. Let A be a statement about the outcome of an
experiment. If A is true we say that the experiment leads to a success and
denote by p = P(A) the probability for “success” in each trial; it is then
interesting to find the probability for the number of successes K = k out of
n trials. One can derive the following probability (see [25], Chapter VI, or any
textbook on elementary probability, e.g. [70], Chapter 3.4):

P(K = k) = pk =
(

n

k

)
pk(1 − p)n−k, k = 0, 1, 2, . . . , n (1.9)

where with n! = 1 · 2 · . . . · n ,(
n

k

)
=

n!
k! (n − k)!

.

For the random variable K taking values k = 0, . . . , n , the sequence of prob-
abilities pk = P(K = k) given by Eq. (1.9) is called the binomial probability-
mass function for K . A shorthand notation is K ∈ Bin(n, p) .
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Example 1.8. The total number of days with at least one call during one
week at the rescue station in Example 1.7 can be described by an r.v. K ∈
Bin(7, 0.15) . Hence,

P(K = k) =
(

7
k

)
pk(1 − p)7−k, k = 0, 1, . . . , 7

where p = 0.15 . For example, the probability of exactly three days with calls
is

P(K = 3) =
(

7
3

)
0.153 · 0.854 = 0.062. (1.10)

�

Poisson probability-mass function

The Poisson distribution is often used in risk analysis to model the num-
ber of rare events. A thorough discussion follows in Chapters 2 and 7. For
convenience, we present the probability mass function at this moment:

P(K = k) = e−m mk

k!
, k = 0, 1, 2, . . . (1.11)

The shorthand notation is K ∈ Po(m) . Observe that now the sample space
S = {0, 1, 2, . . .} is the set of all non-negative integers, which actually has an
infinite number of elements. (All sets that have as many elements as the set
of all integers are called countable sets, e.g. the set of all rational numbers
is countable. Obviously not all sets are countable (for instance, the elements
in the set R of all real numbers cannot be numbered); such sets are called
uncountable.) Under some conditions, given below, the Poisson probability-
mass function can be used as an approximation to the binomial probability
mass.�

�

�

	

Poisson approximation of Binomial probability-mass function.
If an experiment is carried out by n independent trials and the probability
for “success” in each trial is p , then the number of successes K is given by
the binomial probability-mass function:

K ∈ Bin(n, p).

If p → 0 and n → ∞ so that m = n ·p is constant, we have approximately
that

K ∈ Po(np).

The approximation is satisfied if p < 0.1 , n > 10 . It is occasionally called
the law of small numbers, following von Bortkiewicz (1898).
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Example 1.9 (Poisson approximation). Consider a power plant. For a
given month, the probability of no interruptions (stops in production) is 0.95.
Denote by K the number of months with at least one interruption during
one year. Clearly, K ∈ Bin(n, p) , with n = 12 , p = 0.05 . We investigate the
validity of the Poisson approximation, i.e. K ∈ Po(0.6) , since np = 12 ·0.05 =
0.6 . The following table results:

k 0 1 2 3 4
Binomial, P(K = k) 0.5404 0.3413 0.0988 0.0173 0.0021
Poisson, P(K = k) 0.5488 0.3293 0.0988 0.0198 0.0030

Repeating the calculation with a smaller probability, p = 0.01 , we have K ∈
Po(0.012) and obtain

k 0 1 2 3 4
Binomial, P(K = k) 0.8864 0.1074 0.0060 2.01 · 10−4 4.57 · 10−6

Poisson, P(K = k) 0.8869 0.1064 0.0064 2.55 · 10−4 7.66 · 10−6

Clearly, the lower the value of p is, the better the approximation works. �

Geometric probability-mass function

Consider again the power plant in Example 1.9. Suppose we start a study in
January (say) and are interested in the following random variable

K = “The number of months before the first interrupt” .

Using assumed independence, we find

P(K = k) = 0.05(1 − 0.05)k, k = 0, 1, 2, . . . .

Generally a variable K such that

P(K = k) = p (1 − p)k, k = 0, 1, 2, . . . (1.12)

is said to have a geometric probability-mass function. If p is the probability
of success then K is the time of the first success.

1.3 Conditional Probabilities and the Law
of Total Probability

We begin with the concept of conditional probability. We wish to know the
likelihood that some statement B is true when we know that another state-
ment A , say, is true. (Intuitively, the chance that B is true should not be
changed if we know that A is true and that the statements A and B are
independent.)

For example, consider again an experiment of rolling a die. Let N be the
number showed by the die. We can ask, what is the probability that N = 1
if we know that the result is an odd number, which we denote

p1 = P(N = 1 | N is odd). (1.13)
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Since all outcomes are equally probable, it is easy to agree that p1 = 1/3 .
Obviously, we also have

p2 = P(N = 2 | N is odd) = 0.

We may ask what is the probability that N < 3 if N is odd. By Eq. (1.1),
we get

P(N < 3| N is odd) = P( N = 1 or N = 2 | N is odd)

= P(N = 1 | N is odd) + P(N = 2 | N is odd )

= p1 + p2 =
1
3
.

We turn now to the formal definition of conditional probability.�

�

�

	

Definition 1.4 (Conditional probability). The conditional probability
of B given A such that P(A) > 0 is defined as

P(B|A) =
P(A ∩ B)

P(A)
. (1.14)

Note that the conditional probability as a function of events B , A fixed,
satisfies the assumptions of Definition 1.2, i.e. is a probability itself.

The conditional probability can now be recomputed by direct use of Eq. (1.14),

P(N < 3 and N is odd)
P(N is odd)

=
P(N = 1)

P(N is odd)
=

1/6
1/2

=
1
3
,

i.e. the same result as obtained previously.

Remark 1.1. Obviously, if A and B are independent then

P(B|A) =
P(A ∩ B)

P(A)
=

P(A) · P(B)
P(A)

= P(B),

so in that case, knowledge that A occurred has not influenced the probability
of occurrence of B . �

We turn now to a simple consequence of the fundamental Eq. (1.1). For a
sample space S and two excluding events A1, A2 ⊂ S (that means A1∩A2 =
∅), if A2 is a complement to A1 , i.e. if A1 ∪ A2 = S , then

P(A1 ∪ A2) = P(A1) + P(A2) = 1,

A1, A2 is said to be a partition of S , see the following definition. (Obviously
A2 = Ac

1 .)
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Definition 1.5. A collection of events A1, A2, . . . , An is called a partition
of S if

(i) The events are mutually excluding, i.e.

Ai ∩ Aj = ∅ for i �= j

(ii)The collection is exhaustive, i.e.

A1 ∪ A2 ∪ . . . ∪ An = S,

that is, at least one of the events Ai occurs.

For a partition of S ,

P(A1 ∪ A2 ∪ . . . ∪ An) = P(A1) + P(A2) + · · · + P(An) = 1.

Using the formalism of statements one can say that we have n different
hypotheses about a sample point such that any two of them cannot be true
simultaneously but at least one of them is true. Partitions of events are often
used to compute (define) the probability of a particular event B , say. The
following fundamental result can be derived:


�

�



Theorem 1.1 (Law of total probability). Let A1, A2, . . . , An be a par-
tition of S . Then for any event B

P(B) = P(B|A1)P(A1) + P(B|A2)P(A2) + · · · + P(B|An)P(An).

Proof. Obviously, we have

B = (B ∩ A1) ∪ (B ∩ A2) ∪ . . . ∪ (B ∩ An)

and since the events B ∩ Ai are mutually excluding we obtain

P(B) = P(B ∩ A1) + P(B ∩ A2) + · · · + P(B ∩ An). (1.15)

Now from Eq. (1.14) it follows that

P(B|A)P(A) = P(B ∩ A). (1.16)

Combining Equations (1.15) and (1.16) gives the law of total probability. �

The law of total probability is a useful tool if the chances of B to be true de-
pend on which of the statements Ai are true. Obviously, if B and A1, . . . , An

are independent then nothing is gained by splitting B into n subsets, since

P(B) = P(B)P(A1) + · · · + P(B)P(An).
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Example 1.10 (Electrical power supply). Assume that we are interested
in the risk of failure of an electric power supply in a house. More precisely, let
the event B be “Errors in electricity supply during a day”. From experience we
know that in the region errors in supply occurs on average once per 10 thunder
storms, 1 per 5 blizzards, and 1 per 100 days without any particular weather-
related reasons. Consequently, one can consider the following partition of a
sample space:

A1 = “A day with thunder storm” , A2 = “A day with blizzard,”
A3 = “Other weather”.

Obviously the three statements A1 , A2 , and A3 are mutually exclusive but
at least one of them is true. (We ignore the possibility of two thunderstorms
in one day.)

From the information in the example it seems reasonable to estimate
P(B|A1) = 1/10 , P(B|A2) = 1/5 , and P(B|A3) = 1/100 . Now in order
to compute the probability that day one has no electricity supply, we need to
compute the probabilities (frequencies) of days with thunder storm, blizzard.
Assume that we have on average 20 days with thunderstorms and 2 days with
blizzards during a year, then

P(B) = 0.1 · 20
365

+ 0.2 · 2
365

+ 0.01 ·
(

1 − 20
365

− 2
365

)
= 0.016.

�

1.4 Event-tree Analysis

Failure of a complicated engineering system can lead to different damage sce-
narios. The consequence of a particular failure event may depend on a se-
quence of events following the failure. The means for systematic identification
of the possible event sequences is the so-called event tree. This is a visual rep-
resentation, indicating all events that can lead to different scenarios. In the
following example, we first identify events. Later on, we show how conditional
probabilities can be applied to calculate probabilities of possible scenarios.

Example 1.11 (Information on fires). Consider an initiation event A ,
fire ignition reported to a fire squad. After the squad has been alarmed and
has done its duty at the place of accident, a form is completed where a lot
of information about the fire can be found: type of alarm, type of building,
number of staff involved, and much more. We here focus on the following:

• The condition of the fire at the arrival of the fire brigade. This is described
by the following statement

E1: “Smoke production without flames”
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and the complement

Ec
1: “A fire with flames (not merely smoke production)” .

• The place where the fire was extinguished, described by the event

E2 = “Fire was extinguished in the item where it started”

and the complement

Ec
2 = “Fire was extinguished outside the item”.

For an illustration, see Figure 1.4. �

Let us consider one branch of an event tree, starting with the failure event
A1 and the following ordered events of consequences A2, . . . , An . It is nat-
ural to compute or estimate from observations, the conditional probabilities
P(A2|A1) , P(A3|A2 and A1) , etc. We turn to a formula for the probability of
a branch “A1 and A2 and . . . An .”

Using the definition of conditional probabilities Eq. (1.14), we have that
for n = 2

P(A1 ∩ A2) = P(A2|A1)P(A1).

Similarly for n = 3 we have that

P(A1∩A2∩A3) = P(A3|A2∩A1)P(A2∩A1) = P(A3|A2∩A1)P(A2|A1)P(A1).

Repeating the same derivation n times we obtain the general formula

P(A1 ∩ A2 ∩ . . . ∩ An) = P(An|An−1 ∩ . . . ∩ A1)
· . . . · P(A3|A2 ∩ A1) · P(A2|A1)P(A1). (1.17)

A

(100)

E1

(35)

(32)

Ec
1

(65)

E2

Ec
2

(3)

E2

(35)

Ec
2

(30)

Fig. 1.4. The event tree discussed in Examples 1.11 and 1.12. The numbers within
parentheses indicate the number of cases observed after 100 fire ignitions.
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The derived Eq. (1.17) is a useful tool to calculate the probability for a “chain”
of consequences. Often in applications, events can be assumed to be indepen-
dent and the probability for a specific scenario can then be calculated. If
A1, . . . , An are independent, then

P(Ai |Ai−1, . . . , A1) = P(Ai)

and P(A1 ∩ . . . ∩ An) = P(A1) · . . . · P(An) . In applications with many
branches the computations may be cumbersome, and approximate methods
exist; see [3], Chapter 7.5. We now return to our example from fire engineering.

Example 1.12 (Information on fires). From statistics for fires in indus-
tries in Sweden (see Figure 1.4), we can assign realistic values of the proba-
bilities, belonging to the events in the event tree:

P(E1) =
35
100

= 0.35, P(E2|E1) =
32
35

= 0.91, P(E2|Ec
1) =

35
65

= 0.54.

Within an event tree, obviously some outcomes are more interesting than
others with respect to the potential damage, the more the number of serious
damages, the higher the costs. Consider in our simple example the scenario
that there was a fire with flames at the arrival and that the fire was extin-
guished outside the item where it started. We calculate probabilities according
to Eq. (1.17) and have A1 = Ec

1 and A2 = Ec
2 ; hence the probability is given

as

P(Ec
1 ∩ Ec

2) = P(Ec
2|Ec

1) · P(Ec
1) = (1 − 0.54) · (1 − 0.35) = 0.30.

(Note that this probability could be directly obtained from Figure 1.4: P(Ec
1∩

Ec
2) = 30/100). �

Problems

1.1. A student writes exams in three subjects in one week. Let A , B , and C denote
events of passing each of the subjects. The probabilities for passing are P(A) =
0.5 , P(B) = 0.8 , and P(C) = 0.2 , respectively. Assume that A , B , and C are
independent and the total number of exams that the student will pass is denoted by
X .

(a) What are the possible values of X , or in other words, give the sample space.
(b) Calculate P(X = 0) , P(X = 1) .
(c) Calculate P(X < 2) .
(d) Is it reasonable to assume independence?

1.2. Demonstrate that for any events A and B

P(A ∪ B) = P(A) + P(B) − P(A ∩ B).
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1.3. Consider two independent events A and B with P(A) > 0 , P(B) > 0 . Are the
events excluding?

1.4. For any event A , denote by Ac its complement. Can the events A and Ac be
independent?

1.5. For a given month, the probability of at least one interruption in a powerplant
is 0.05. Assume that events of interrupts in the different months are independent.
Calculate

(a) The probability of exactly three months with interruptions during a year,
(b) The probability for a whole year without interruptions.

1.6. In an office, there are 110 employees. Using a questionnaire, the number of
vegetarians has been found. The following statistics are available:

Vegetarians Nonvegetarians
Men 25 35
Women 32 18

One of the employees is chosen at random (any person has the same probability to
be selected).

(a) Calculate the probability that the chosen person is a vegetarian.
(b) Suppose one knows that a woman was chosen. What is the probability that she

is a vegetarian?
(c) Are the events “woman is chosen” and “vegetarian is chosen” independent? Ex-

plain your reasoning.

1.7. The lifetime of a certain type of light bulb is supposed to be longer than 1000
hours with probability 0.55. In a room, four light bulbs are used. Find the probability
that at least one light bulb is functioning for more than 1000 hours. Assume that
the lifetimes of the different light bulbs are independent.

1.8. Consider the circuit in Figure 1.5.
The components A1 and A2 each function with probability 0.8. Assuming in-

dependence, calculate the probability that the circuit functions. Hint: The system
is working as long as one of the components is working.

1.9. Consider the lifetime of a certain filter. The probability of a lifetime longer than
one year is equal to 0.9, while the probability of a lifetime longer than five years
is 0.1. Now, one has observed that the filter has been functioning longer than one
year. Taking this information into account, what is the probability that it will have
a lifetime longer than five years?

1.10. Consider a chemical waste deposit where some containers with chemical waste
are kept. We investigate the probability of leakage during a time period of five years,
that is, with

B = “Leakage during five years”

the goal is to compute P(B) .
Due to subterranean water, corrosion of containers can lead to leakage. The

probability of subterranean water flow at the site during a time period of five years
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A1

A2

Fig. 1.5. Circuit studied in Problem 1.8.

is P(A1) = 0.04 and the probability of leakage under these conditions is P(B |A1) =
0.6 . The other important reason for leakage is thermal expansion due to chemical
reactions in the container. The probability of conditions for thermal expansion is
P(A2) = 0.01 and P(B |A2) = 0.9 . Leakage can also occur for other reasons than
the two mentioned, P(B|Ac

1 ∩ Ac
2) = 0.01 .

Based on this information, compute P(B) , the probability for leakage of a con-
tainer at the site during a five-year period. (Discussion on environmental problems
and risk analysis is found in a book by Lerche and Paleologos [50]).

1.11. Color blindness is supposed to appear in 4 percent of the people in a certain
country. How many people need to be tested if the probability to find at least one
colour blind person is to be 0.95 or more? Note that for simplicity we allow to test
a person several times, i.e., people are chosen with replacement. Hint: Use suitable
approximation.

1.12. A manufacturer of a certain type of filters for use in powerplants claims that
on average one filter out of thousand has a serious fault. At a powerplant with 200
installed filters, 2 erroneous filters have been found, which rather indicates that one
filter out of hundred is of low quality.

The management of the powerplant wants to claim money for the filters and
want to calculate, based on the information from the manufacturer, the probability
of more than two erroneous filters out of 200. Calculate this probability (use suitable
approximation).
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Probabilities in Risk Analysis

In the previous chapter, we introduced conditions that a function P has to
satisfy in order to be called probability, see Definition 1.2. The probability
function is then used as a measure of the chances that a statement about an
outcome of an experiment is true. This measure is intended to help in decision
making in situations with uncertain outcomes.

In order to be able to model uncertainties in a variety of situations met in
risk analysis, we need to further elaborate on the notion of probability. The
following four common usages of the concept of probability are discussed in
this chapter:

(1)To measure the present state of knowledge, e.g. the probability that a pa-
tient tested positively for a disease is really infected, or that the detected
tumour is malignant. “The patient is infected or not”, “the tumour is ma-
lignant or benign” — we just do not know which of the statements is true.
Usually further studies or tests will give exact answer to the question, see
also Examples 2.2 and 2.3.

(2)To quantify the uncertainty of an outcome of a non-repeatable event, for
instance the probability that your car will break down tomorrow and you
miss an important appointment, or that the flight you took will land safely.
Here again the probability will depend on the available information, see
Example 2.4.

(3)To describe variability of outcomes of repeatable experiments, e.g. chances
of getting “Heads” in a flip of a coin; to measure quality in manufacturing;
everyday variability of environment, see Section 2.4.

(4) In the situation when the number of repetitions of the experiment is un-
certain too, e.g. the probability of fire ignition after lightning has hit a
building. Here we are mostly interested in conditional probabilities of the
type: given that a cyclone has been formed in the Caribbean Sea, what are
the chances that its centre passes Florida. Obviously, here nature controls
the number of repetitions of the experiment.
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If everybody agrees with the choice of P , it is called an objective proba-
bility. This is only possible in a situation when we use mathematical models.
For example, under the assumption that a coin is “fair” the probability of
getting tails is 0.5. However, there are probably no fair coins in reality and
the probabilities have to be estimated. It is a well-known fact that measure-
ments of physical quantities or estimation of probabilities done by different
laboratories will lead to different answers (here we exclude the possibility
of arithmetical errors). This happens because different approaches, assump-
tions, knowledge, and experience from similar problems will lead to a variety
of estimates. Especially for the problems that have been described in (1) and
(2), the probability incorporates often different kinds of information a person
has when estimating the chances that a statement A , say, is true. One then
speaks of subjective probabilities. As new information about the experiment
(or the outcome of the experiment) is gathered there can be some evidence
that changes our opinions about the chances that A is true. Such modifica-
tions of the probabilities should be done in a coherent way. Bayes’ formula,
which is introduced in Section 2.1, gives a means to do it.

Sections 2.4–2.6 are devoted to a discussion of applications of probabilities
for repeatable events, as described in (3) and (4). In this context, it is natural
to think of how often a statement is true. This leads to the interpretation of
probabilities as frequencies, which is discussed in Section 2.4. However, often
even the repetition of experiments happens in time in an unpredictable way,
at random time instants. This aspect has to be taken into account when mod-
elling safety of systems and is discussed in Sections 2.5 and 2.6, respectively.
Concepts presented in those sections, in particular the concept of a stream of
events, will be elaborated in later chapters.

2.1 Bayes’ Formula

We next present Bayes’ formula, attributed to Thomas Bayes (1702–1761).
Bayes’ formula is valid for any properly defined probability P ; however, it is
often used when dealing with subjective probabilities in cases (1-2). These
types of applications are presented in the following two subsections.�

�

�

	

Theorem 2.1 (Bayes’ formula). Let A1, A2, . . . , Ak be a partition of
S , see Definition 1.5, and B an event with P(B) > 0 . Then

P(Ai |B) =
P(Ai ∩ B)

P(B)
=

P(B |Ai)P(Ai)
P(B)

.

In the framework of Bayes’ formula, we deal with a collection of alter-
natives A1 , A2, . . . , An , for which one and only one is true: we want to de-
duce which one. The function L(Ai) = P(B|Ai) is called the likelihood and
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measures how likely the observed event is under the alternative Ai . Note that
for an event B ,

P(B) = P(B|A1)P(A1) + · · · + P(B|An)P(Ak),

by the law of total probability.
Often a version of Bayes’ formula is given, which particularly puts empha-

sis on the role of P(B) as a normalization constant:

P(Ai|B) = cP(B|Ai)P(Ai), (2.1)

where c = 1/P(B) is a normalization constant. In practical computations, all
terms P(B|Ai)P(Ai) are first evaluated, then added up to derive c−1 . Actu-
ally, this approach is particularly convenient when odds are used to measure
chances that alternative Ai is true (see the following subsection). Then the
constant c does not have to be evaluated; any value could be used.

2.2 Odds and Subjective Probabilities

Consider a situation with two events; for example, the odds for A1=“A coin
shows heads” and A2=“A coin shows tails” when flipping a fair coin is usually
written 1:1. In this text we define the odds for events A1 and A2 , to be any
positive numbers q1, q2 such that q1/q2 = P(A1)/P(A2) . Knowing probabili-
ties, odds can always be found. However, the opposite is not true: odds do not
always give the probabilities of events. For instance, the odds for A1=“A die
shows six” against A2=“A die shows one” for a fair die are also 1:1. However,
if one knows that A1, A2 form a partition, e.g. A2 = Ac

1 , the probabilities
P(A1) and P(A2) are given by

P(A1) =
q1

q1 + q2
, P(A2) =

q2

q1 + q2
,

respectively. In the following theorem we generalize this result to more than
two events.�

�

�

�

Theorem 2.2. Let A1, A2, . . . , Ak be a partition of S , having odds qi , i.e.
P(Aj)/P(Ai) = qj/qi . Then

P(Ai) =
qi

q1 + · · · + qk
. (2.2)

Example 2.1. Consider an urn with balls of three colours. 50 % of the balls
are red, 30 % black, and the remaining balls green. The experiment is to
draw a ball from the urn. Clearly A1 , A2 , and A3 , defined as the ball being
red, black, or green, respectively, forms a partition. It is easy to see that the
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odds for Ai are 5:3:2. Now by Theorem 2.2 we find, for instance P(A2) , the
probability that a ball picked at random is black:

P(A2) =
3

5 + 3 + 2
= 0.3.

�

We now present Bayes’ formula for odds. Consider again any two statements
Ai and Aj having odds qi : qj , which we call a priori odds and also denote
as qprior

i : qprior
j . Next, suppose that one knows that a statement B about

the result of the experiment is true. Knowledge that B is true may influence
the odds for Ai and Aj , and lead to a posteriori odds, any positive numbers
qpost
i , qpost

j such that qpost
i /qpost

j = P(Ai|B)/P(Aj |B) . Now Bayes’ formula
can be employed to compute the a posteriori odds:

qpost
i = P(B |Ai)q

prior
i , (2.3)

for any value of i . (Obviously, qpost
i = cP(B |Ai)q

prior
i , for any positive c , are

also the a posteriori odds, since the ratio qpost
i /qpost

j remains unchanged.)
The notions a priori and a posteriori are often used when applying Bayes’

formula. These are known from philosophy, and serve, in a general sense, to
make a distinction among judgements, concepts, ideas, arguments, or kinds
of knowledge. The a priori is taken to be independent of sensory experience,
which a posteriori presupposes, being dependent upon or justified by reference
to sensory experience. The importance of Bayesian views in science has been
discussed for instance by Gauch [27].

Example 2.2 (“Car or goat?”). Let us return to the Monty Hall problem
from Example 1.5 and compute the posterior odds for a car being behind door
No. 1.

As before, let us label the doors No. 1, No. 2, and No. 3, and suppose that
the player chooses door No. 1, and that the following statement

B =“The host opens door No. 3”

is true. The player can now decide to open door No. 1 or No. 2. The prior
odds for a car being behind No. 1 against it being not was 1:2. Now, he wishes
to base his decision on the posterior odds, i.e. rationally he will open door
No. 1 if this has the highest odds to win the car.

In order to find the odds let us first introduce the following three alterna-
tives:

A1 = “The car is behind No. 1” , A2 = “The car is behind No. 2” ,

A3 = “The car is behind No. 3” .

Let qprior
1 , qprior

2 , qprior
3 be the odds for A1, A2, A3 , respectively. Here the odds

are denoted as a priori odds since their values will be chosen from knowledge
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of the rules of the game and experience from similar situations. It seems
reasonable to assume that the prior odds are 1:1:1. However, since B is true
the player wishes to use this information to compute the a posteriori odds. In
order to be able to use Eq. (2.3) to compute the posterior odds he needs to
know the likelihood function L(Ai) , i.e. the probabilities of B conditionally
that the alternative A1 (or A2 ) is true: P(B|A1) and P(B|A2) . The assigned
values for the probabilities reflect his knowledge of the game.

Since the player chooses door No. 1 a simple consequence of the rules is
that P(B|A2) = 1 . He turns now to the second probability P(B|A1) ; if A1

is true (the car is behind the door No. 1) then the host had two possibilities:
to open door No. 2 or No. 3. If one can assume that he has no preferences
between the doors then P(B|A1) = 1/2 , which the player assumes, leading to
the following posterior odds by Eq. (2.3)

qpost
1 = P(B |A1)q

prior
1 =

1
2
· 1 =

1
2
, qpost

2 = P(B |A2)q
prior
2 = 1 · 1 = 1.

Since qpost
3 = 0 , the posterior odds for a car being behind No. 1 is still 1:2.

Hence a rational decision is to open door No. 2. (Note that the odds would be
1:1 if the host opens door No. 3 whenever he can, since then P(B|A1) = 1 .)

�

Bayes’ formula in the formulation in Eq. (2.3) is often used in the case
when Ai are interpreted as alternatives. For example, in a courtroom, one
can have

A1 = “The suspect is innocent” , A2 = Ac
1 = “The suspect is guilty”

while B is the evidence, for example

B = “DNA profile of suspect matches the crime sample”.

Using modern DNA analysis, it can often be established that the conditional
probability P(B|A2) is very high while P(B|A1) very low. However, what
is really of interest are the posterior odds for A1 and A2 conditionally the
evidence B , which are given by Eq. (2.3), i.e. P(B|A1)q

prior
1 : P(B|A2)q

prior
2 .

Here the prior odds summarizes the strength of all the other evidences, which
can be very hard to estimate (choose) and quite often, erroneously, taken
as 1:1.

We end this section with an example of a typical application of Bayes’ for-
mula, where the prior odds dominates the conditional probabilities P(B|Ai) .
The values for various probabilities used in the example are hypothetical and
probably not too realistic. This is an important example, illuminating the role
of priors, which is often erroneously ignored, cf. [39], pp. 52-54.

Example 2.3 (Mad cow disease). Suppose that one morning a newspaper
reports that the first case of a suspected mad cow (BSE infected cow) is
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found. “Suspected” means that a test for the illness gave positive result. Since
this information can influence shopping habits, a preliminary risk analysis
is desired. The most important information is the probability that a cow,
positively tested for BSE, is really infected.

Let us introduce the statements

A = “Cow is BSE infected” and B = “Cow is positively tested for BSE”.

The posterior odds for A1 = A and A2 = Ac given that one knows that B
is true are of interest. These can be computed using Bayes’ formula (2.3), if
the a priori odds qprior

1 , qprior
2 and the likelihood function, i.e. the conditional

probabilities P(B|A1) and P(B|A2) , are known.
Selection of prior odds. Suppose that one could find, e.g. on the Internet, a
description of how the test for BSE works. The important information is that
the frequency of infected cows that pass the test, i.e. are not detected, is 1
per 100 (here human errors, like mixing the samples etc, are included), while
a healthy cow can be suspected for BSE in 1 per 1000 cases. This implies
that P(B|A1) = 0.99 while P(B|A2) = 0.001 . Assume first that the odds that
a cow has BSE are 1:1 (half of the population of cows is “mad”). Then the
posterior odds are

qpost
1 = 0.99 · 1 = 0.99, qpost

2 = 0.001 · 1 = 0.001,

in other words 990:1 in favour that the cow has BSE. Many people erroneously
neglect estimating the prior odds, which leads to the “pessimistic” posterior
odds 990:1 for a cow to be BSE infected.

In order to assign a more realistic value to the prior odds, the problem
needs to be further investigated. Suppose that the reported case was observed
on a cow chosen at random. Then the reasonable odds for A and Ac would be

“Number of BSE infected cows” : “Number of healthy cows” .

Note that the numbers are unknown! In such situations one needs to rely on
the experience and has to ask an expert for his opinion.
Prior odds: Expert’s opinion. Suppose an expert claims that there can be as
many as 10 BSE infected cows in a total population of ca 1 million cows. This
results in the priors qprior

1 = 1 , qprior
2 = 105 leading to the posterior odds

qpost
1 = 0.99, qpost

2 = 0.001 · 105,

which can be also written as 1 : 100 in favour of that the cow is healthy.
Finally, suppose one decides to test all cows and as a consumer one should

be interested in the odds that a cow that passed the test is actually infected,
i.e. P(A1|Bc) . Again we start with the conditional probabilities

P(Bc |A1) = 1 − 0.99 = 0.01, P(Bc |A2) = 1 − 0.001 = 0.999,

and then using the expert’s odds for A1 and A2 , 1 : 105 , Bayes’ formula gives
the following posterior odds

qpost
1 = 0.01 · 1, qpost

2 = 0.999 · 105,
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which (approximately 1 : 107 ) is clearly a negligible risk, if one strongly be-
lieves in the expert’s odds. �

2.3 Recursive Updating of Odds

In many practical situations the new information relevant for risk estimation is
collected (or available) in different time instances. Hence the odds are changing
in time with new received information. Again, Bayes’ formula is the main tool
to compute the new, updated, priors for truth of statements Ai .

Sequences of statements

Before giving an example let us formalize the described process of updating of
the odds. Suppose one is interested in the odds for a collection of statements
A1, . . . , Ak , which form a partition, i.e. these are mutually excluding and
always one of them is true, (see Definition 1.5). Let q0

i denote the a priori
odds for Ai . Let B1, . . . , Bn, . . . be the sequence of statements (evidences)
that become available with time and let qn

i be the a posteriori odds for Ai

with the knowledge that B1, . . . , Bn are true is included. Obviously, Bayes’
formula (2.3) can be used to compute qn

i , if the likelihood function L(Ai) ,
i.e. the conditional probability P(all B1, . . . , Bn are true |Ai) , is known. The
formula simplifies if it can be assumed that given that Ai is true B1, . . . , Bn

are independent. For n = 2 this means that

P(B1 ∩ B2 |Ai) = P(B1 |Ai)P(B2 |Ai).

This property will be called conditional independence.�

�

�

	

Theorem 2.3. Let A1, A2, . . . , Ak be a partition of S , and B1, . . . , Bn, . . .
a sequence of true statements (evidences). If the statements B are condi-
tionally independent of Ai then the a posteriori odds after receiving the
n th evidence

qn
i = P(Bn |Ai)qn−1

i , n = 1, 2, . . . , (2.4)

where q0
i are the a priori odds.

The last theorem means that each time a new evidence Bn , say, is available
the posterior odds for Ai , Aj are computed using Bayes’ formula (2.3) and
then the prior odds are updated, i.e. replaced by the posterior odds. This re-
cursive estimation of the odds for Ai is correct only if the evidences B1, B2, . . .
are conditionally (given Ai is true) independent.

In the following example, presenting an application actually studied with
Bayesian techniques by von Mises in the 1940s [54], we apply the recursive
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Bayes’ formula to update the odds. The example represents a typical appli-
cations of Bayes’ formula and the subjective probabilities1 (odds) in safety
analysis.

Example 2.4 (Waste-water treatment). A new unit at a biological waste-
water treatment station has been constructed. The active biological substances
can work with different degree of efficiency, which can vary from day to day,
due to variability of waste-water chemical properties, temperature, etc. This
uncertainty can be measured by means of the probability that a chemical
analysis of the processed water, done once a day or so, satisfies a required
standard and can be released. We write this as p = P(B) where

B = “The standard is satisfied” .

Since p is the frequency of water releases, the higher the value of p , the more
efficient the waste-water treatment is.

The constant p is needed in order to make a decision whether a new
bacterial culture has to be used to treat the waste water or a change of the
oxygen concentrations should be made. Under stationary conditions one can
assume that the probability is constant over time and, as shown in the next
section, using rules of probabilities, one can find the value p if an infinite
number of tests were performed: simply, this is the fraction of times B were
true. However, this is not possible in practice since it would take infinitely
long time and require not-negligible costs. Consequently, the efficiency of the
unit needs to be evaluated based on a finite number of tests during a trial
period.
Subjective probabilities. By experience from similar stations we claim that for
a randomly chosen bacterial culture, the probability p can take values 0.1,
0.3, 0.5, 0.7, and 0.9, which means that we here have k = 5 alternatives to
choose between

A1 = “p = 0.1” , . . . , A5 = “p = 0.9”

about the quality of bacterial culture, i.e. the ability to clean the waste water.
(Note that if A5 is true, the volume of cleaned water is 0.9/0.1 = 9 times
higher than if A1 were true.) Mathematically, if the alternative Ai is true
then P(B|Ai) = p , that is

P(B|A1) = 0.1, P(B|A2) = 0.3, P(B|A3) = 0.5, P(B|A4) = 0.7,

P(B|A5) = 0.9,

furthermore P(Bc|Ai) = 1−P(B|Ai) . However, we do not know which of the
alternatives Ai is correct. The ignorance about possible quality (the p value)
of the bacterial culture can be modelled by means of odds qi for which of Ai

is true.
1A formalization of the notion of subjective probabilities was made in a classical

paper by Anscombe and Aumann [4], often referred to in economics when expected
utility is discussed.
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Selection of prior odds. Suppose nothing is known about the quality of the
bacterial culture, i.e. any of the values of p are equally likely. Hence the prior
odds, denoted by q0

i , are all equal, that is, q0
i = 1 .

Computing posterior odds for Ai . Denote by Bn the result of the nth test,
i.e. B or Bc is true, and let the odds for the alternative Ai be qn

i (including
all evidences B1, . . . , Bn ). The posterior odds will be computed using the
recursive Bayes’ formula (2.4). This is a particularly efficient way to update
the odds when the evidences Bn become available at different time points2.

Suppose the nth measurement results in that B is true; then, by Theorem
2.3, the posterior odds

qn
i = P(B|Ai)qn−1

i , n > 0,

and q0
i = 1 , while if instead the nth measurement resulted in Bc being true

qn
i = P(Bc|Ai)qn−1

i =
(
1 − P(B|Ai)

)
qn−1
i .

Note that the odds are defined up to a factor c . In the following example we
choose to use c = 10 .

Suppose the first 5 measurements resulted in a sequence B∩Bc∩B∩B∩B ,
which means the tests were positive, negative, positive, positive, and positive.
Let us again apply the recursion to update the uniform prior odds. Let us
choose c = 10 ; then, each time the standard is satisfied the odds q1, . . . , q5

are multiplied by 1, 3, 5, 7, 9 , respectively, while in the case of negative test
result one should multiply the odds by the factors 9, 7, 5, 3, 1 . Consequently,
starting with uniform odds as the results of tests arrive, the odds are updated
as follows

A1 A2 A3 A4 A5

p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.9
prior 1 1 1 1 1
B 1 3 5 7 9
Bc 9·1 7 · 3 5 · 5 3 · 7 1 · 9
B 1 · 9 3 · 21 5 · 25 7 · 21 9 · 9
B 1 · 9 3 · 63 5 · 125 7 · 147 9 · 81
B 1 · 9 3 · 189 5 · 625 7 · 1029 9 · 729

We note that after this particular sequence, the highest likelihood is given for
p = 0.7 as

P(p = 0.7) =
7 · 1029

1 · 9 + 3 · 189 + 5 · 625 + 7 · 1029 + 9 · 729
= 0.41

using Eq. (2.2). (Note that the observed frequency of positive test is 4/5, i.e.
between alternatives A4 and A5 .) �

2However, in order to be able to use the formula one needs to assume that Bn

are conditionally independent if Ai is true. This can be a reasonable assumption if
one uses tests separated by long enough periods of time. Let us assume this.



30 2 Probabilities in Risk Analysis

The previous example is further investigated below, where the efficiency of
the cleaning is introduced through properties of p .

Example 2.5 (Efficiency of cleaning). As already mentioned the proba-
bility p is only needed to make a decision to keep or replace the bacterial
culture in the particular waste-water cleaning station. For example, suppose
on basis of economical analysis it is decided that the bacterial culture is called
efficient if p ≥ 0.5 , i.e. on average cleaned water is released at least once in
two days. Hence our rational decision, whether to keep or replace the bacterial
culture, will be based on odds for

A = “Bacterial culture is efficient”

against Ac .
We have that A is true if A3 , A4 , or A5 are true while Ac is true if A1

or A2 are true. Hence, since Ai are excluding, we have

P(A) = P(A3) + P(A4) + P(A5) while P(Ac) = P(A1) + P(A2).

For the odds, we have qA/qAc = P(A)/P(Ac) and thus the odds for A against
Ac are computed as

qA = qn
3 + qn

4 + qn
5 , qAc = qn

1 + qn
2 .

The same sequence of measurements as in the previous example, B , Bc ,
B , B , B , results in the posterior odds in favour for A (the bacterial culture
is efficient) being 16889 : 567 = 29.8 : 1 . The posterior probability that A is
true after receiving results of the first 5 tests is P(A) = 29.8/(1+29.8) = 0.97 .

�
In the last example, the true probability p = P(B) can be only one of the five
possibilities; this is clearly an approximation. In Chapter 6 we will return to
this example and present a more general analysis where p can be any number
between zero and one.

Remark 2.1 (Selection of information). It is important to use all avail-
able information to update priors. A biased selection of evidences for A
(against Ac ) that supports the claim that A is true will obviously lead to
wrong posterior odds. Consider for example the situation of the courtroom,
discussed in page 25: imagine situations and information that when omitted
could change the posterior odds. �

2.4 Probabilities as Long-term Frequencies

In previous sections of this chapter, we studied probabilities as used in sit-
uations (1-2), e.g. we have non-repeatable scenarios and wish to measure
uncertainties and lack of knowledge to make decisions whether statements
are true or not. In this section, we turn to a diametrically different setup of
repeatable events.
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Frequency interpretation of probabilities

In Chapter 1, some basic properties of probabilities were exemplified by using
two simple experiments: flip a coin and roll a die. Let us concentrate on the first
one and denote its sample space S={0, 1} , which represents the physically
observed outcomes S = {“Heads”, “Tails”} . Next, let us flip the coin many
times, in the independent manner, and denote the results of the ith flip by
Xi . (The random variables Xi are independent.)

If the coin is fair then P(Xi = 1) = P(Xi = 0) = 1/2 . In general, a coin
can be biased. Then there is a number p , 0 ≤ p ≤ 1 , such that P(Xi = 1) = p
and, obviously, P(Xi = 0) = 1 − p . (For example, p = 1 means that the
probability for getting “Tails” is one. This is only possible for a coin that has
“Tails” on both sides.) Finding the exact value of p is not possible in practice.
However, using suitable statistical methods, estimates of p can be computed.
One type of estimation procedure is called the Frequentist Approach. This is
motivated by the fundamental result in theory of probability, “Law of Large
Numbers” (LLN ), given in detail in Section 3.5. The law says that the fraction
of “tails” observed in the first n independent flips converges to p as n tends
to infinity:

X̄ =
1
n

(X1 + X2 + · · · + Xn) → p, as n → ∞ (2.5)

since
∑n

i=1 Xi is equal to the number of times “tails” is shown in n flips. Thus
we can interpret p as “long-term frequency” of “tails” in an infinite sequence
of flips. (Later on in Chapter 6 we will also present the so-called Bayesian
Approach to estimate p .)

Practically, one cannot flip a coin infinitely many times. Consequently,
we may expect that in practice X̄ �= p and it is important to study3 the
error E = p − X̄ or relative error |p − X̄|/p . Obviously errors will depend
on the particular results of a flipping series and hence are random variables
themselves. A large part of Chapter 4 will be devoted to studies of the size
of errors. Here we only mention that (as expected) larger n should give on
average smaller errors. An interesting question is how large n should be so
that the error is sufficiently small (for the problem at hand).

In Chapter 9 we will show that for a fair coin (p = 0.5) about 70 flips
are needed in order to have 0.4 < X̄ < 0.6 , i.e. relative error less than 20%,
with high probability (see Problem 9.5). A result from a computer simulation
is shown in Figure 2.1. Of hundred such simulations, on average 5 would fail
to satisfy the bound. In the more interesting case when the probability p is
small, 100/p flips are required approximately in order to have a “reliable”
estimate of the unknown value of p .

As shown next, X̄ can also be used to estimate general probabilities p =
P(A) of a statement A about an outcome of an experiment that can be
performed infinitely many times in an independent manner.

3Note that the value of p is also unknown.
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Fig. 2.1. Simulation, tosses of a fair coin. Top: Arithmetic mean x̄ = 1
n
(x1 + x2 +

· · · + xn) . Bottom: Relative error (x̄ − p)/p .
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Long-term frequencies. Define a sequence of independent random vari-
ables Xi as follows

Xi =

⎧⎨⎩
1, if the statement A about the outcome of the ith experiment

is true,
0, otherwise.

Again, by LLN, X̄ = 1
n (X1 + X2 + · · · + Xn) → p , where p = P(A) .

Here we interpret the probability P(A) as observed long-term frequencies
when the statement A about a result of an experiment is true. In most compu-
tations of risks, one wishes to give probabilities interpretations as frequencies
of times when A is true. However, this is not always possible as discussed in
the previous section.

An approach to construct the notion of probability based on long-term
frequencies (instead of the axiomatic approach given in Definition 1.2) was
suggested by von Mises in the first decades of the 20th century (cf. [16] for
discussion). However, the approach leads to complicated mathematics, hence
the axiomatic approach (presented by Kolmogorov in 1933 [44]), see Definition
1.2, is generally used at present. Nevertheless the interpretation of probabili-
ties as frequencies is intuitively very appealing and is important in engineering
applications.

We end this subsection with some remarks on practical conditions when
X̄ can be used as an estimator of the unknown probability P(A) .
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Remark 2.2. Often, in practice, the assumption that results of experiments
are independent cannot be checked (or is not appropriate). If the assumption of
independence cannot be motivated, then one checks whether experiments are
stationary, which means that properties of the experiment do not change with
time. Under the assumption of stationarity, X̄ converges but not necessarily
to P(A) . What is really needed is that the sequence is ergodic, see [17]. Then
the long-term frequencies will converge to the probabilities. �

2.5 Streams of Events

Earthquakes, storms, floods, drafts, fire ignitions in dwellings, forest fires,
train collisions, etc. can be regarded as results (outcomes) of experiments,
which can result from environment and/or human activities. Some of these
outcomes can be called accidents or catastrophes if their impacts on society
are particularly harmful, but generally we will treat them as “initiation” events
that can lead to hazards. The risk for storms, floods, etc. can be measured by
means of frequencies; fractions of days with storms or years with floods. In this
section we formalize these measures of risk so that it satisfies the assumptions
of Definition 1.2 and can be called probabilities. Let us first define a stream
of events.�
�

�
�

Definition 2.1. If an event A is true at times 0 < S1 < S2 < . . . and
fails otherwise, then the sequence of times Si , i = 1, 2, . . . will be called a
stream of events A .

An important common property of the streams mentioned above is that the
exact times Si , when A is true, are unknown and may vary in an unpredictable
way. We turn now to the definition of probability of the event A .�

�

�

	

Definition 2.2. For a stream A , i.e. a sequence of times Si , i = 1, 2, . . .
when A is true, let (for t > 0)

NA(t) = Number of times A occurred in the interval [0, t]

and denote the probability of at least one event in [0, t] by

Pt(A) = P(NA(t) > 0).

Further, for fixed s and t ,

NA(s, t) = Number of times A occurred in the interval [s, s + t]

and Pst(A) = P(NA(s, t) > 0) .
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Note that Pt(A) means the probability that the event A occurs at least once
in the time interval [0, t] . Again, X̄ can be used to estimate Pt(A) as shown
next. Let t be one time unit, year say, and define a sequence of random
variables Xi as follows

Xi =
{

1, if A occurred in ith year
0, otherwise.

If the events that A occurred in different years are independent then again
by LLN,

X̄ =
1
n

(X1 + X2 + · · · + Xn) → Pt(A). (2.6)

Clearly the definition of Pt(A) easily modifies to other time periods t . The
subscript t is needed since the value assigned to the probability of A depends
on t . A shorter t means a lower probability while for longer periods t , Pt(A)
can take values close to one.

Remark 2.3. In some risk and safety management documents, for example
BSI [78], probabilities Pt(A) are called frequencies of events (accidents) A ,
e.g. frequency of fires. Some authors call these frequencies simply probabilities,
with adjective “per year” if t is one year, see e.g. Ramachandran [65]. �
We turn now to two examples of streams to which we will return on several
occasions.

Example 2.6. Consider alarm systems for floods. A warning is issued if the
water level at some measuring station exceeds a critical threshold ucrt . Now,
with A = “Warning for flood is issued”, and t one year, the yearly probability
of flood warnings Pt(A) is the frequency of years in which at least one warning
was issued. Actually the probability is also equal to

P(“Maximal water level during one year exceeds ucrt ”);

the last chapter will be devoted to computations of this probability. �
Example 2.7 (Fire ignition). Probabilities of ignitions have been studied
intensively in fire-safety literature and formulae have been proposed for dif-
ferent types of buildings as well as different geographical locations. Here we
use the following formula, see [65], t equal to one year:

Pt(A) = exp(β0 + β1 · ln a),

where a is the total floor area of a building while β0 and β1 are constants that
vary between types of activities, geographical location, country, etc. For textile
industry in Great Britain the proposed values are β0 = −5.84 , β1 = 0.56 ,
while for hospitals β0 = −7.1 , β1 = 0.75 . (Note that for extremely large a ,
the last formula can give probabilities exceeding one which obviously is not
allowed.)

Suppose now a textile industry has a total area of 10 000 m2 . Then
Pt(A2) = exp(−5.84 + 0.56 · ln (10000)) = 0.506 . �
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Finally, note that in some situations t is not time but a region in space.
For example, if we are interested in the frequency of corrosion damages on a
pipeline, t is measured in metres (or km) while the frequency of infected trees
in a forest depends on t that has unit m2 (or km2 ).

Initiation events and scenarios

Let us consider a stream of events A , e.g. “fire is detected”, “warning for flood
is issued”, or “failure of a pump”. Obviously not all times when A occur need
to cause hazard for harm or economical losses for people. In order for A to
develop an accident or catastrophe, some other unfortunate circumstances,
described by events B , have to take place. We call A an “initiating event”, B
a “scenario”. The description of the event B can be very complex and contain
both event trees and fault trees. In risk evaluations, it is the stream A∩B and
probability Pt(A and B) , which are of interest. In this subsection we examine
this closer.

Remark 2.4. We do not in this book discuss consequences of A ∩ B for
society in terms of financial or human losses, etc. but refer to the literature.
For instance, a discussion of problems related to transport and storage of
hazardous materials from an economic perspective is given in [50]. �

It is important to note that B has the role to describe a scenario when an
initiating event A has occurred. For example, if A is “fire ignition” B could be
“failure of sprinkler system”, so that if A and B are true one may expect larger
economical losses. One can ask why we do not directly consider a stream of A
where A = “fire ignition and sprinklers out of order”. Obviously this could be
done, but in some situations it can be more convenient to separate scenarios
from initiating events. Description of different risk-reduction measures, taken
in order to avoid the hazard, is often included in B . For instance, B tells
us how the systems preventing the hazard can fail. Consequently B can be
modified until the acceptable measure of risk for hazard is reached, while the
definition of the initiation event A remains unchanged.

Independence

The probability Pt(A and B) is the final goal. Since this is hopefully very
small it may be difficult to estimate from historical data. The problem of
computing Pt(A and B) is in general very complex and here we treat only
the case when B can be assumed to be independent of the stream of A .

A formal definition of independence between the stream of A and the
scenario B is somewhat technical and is not given here. Intuitively, the con-
ditional probability that B is true at time Sn = s does not depend on our
knowledge of the stream and whether B occurred or not up to time s and
that Sn = s . The value of the probability P(B) is a limiting fraction of times
si when B is true. In Figure 2.2, an estimate of P(B) is given as 3/6 .
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Fig. 2.2. Stream of events A at times Si with related scenarios B .

In order to give some intuition for the concepts of the stream of events A
and an independent scenario B , a mathematical random mechanism generat-
ing B independent of a stream is given in the following example.

Example 2.8. This is an artificial example of B which is independent of any
stream A . Suppose that a biased coin, giving “heads” with probability p , is
available. At each time Si , when A occurs, the coin is flipped in an inde-
pendent manner. If “heads” comes up, one decides that B is true (activated),
otherwise B is false (is disconnected). Such defined B is independent of the
stream and P(B) = p . �

Inspired by Eq. (1.8), we would like to be able to write Pt(B and A) =
P(B)·Pt(A) when B is independent of the stream A . However, such a formula
is usually not correct, except for the situation that only one event A can occur
during the period t . However, still the following approximation is often used:
if B is independent of the stream of events A , then

Pt(B and A) ≈ P(B) · Pt(A). (2.7)

Example 2.9. (Continuation of Example 1.11.) Suppose we want to estimate
the probability p of at least one “serious” fire during one year, that is, the
scenario B = Ec

1 ∩ Ec
2 happening at least once and A the stream of fire

ignition. For the stream of initiation events, a realistic value is Pt(A) = 0.5 .
In Example 1.12, we found P(B) = 0.30 . If the scenario is assumed to be
independent of the stream, we have by Eq. (2.7)

p ≈ P(B)Pt(A) = 0.30 · 0.5 = 0.15.

�

An example of estimation of P(B)

Estimation of a probability P(B) can be difficult since it is a fraction of
times Si when B is true, which hopefully occurs very rarely. Hence P(B) is
often computed by means of laws of probabilities under different assumptions,
mixtures of experts’ opinions, experiences from similar situations, some data
of recorded failures of components, etc. For example P(B) can be taken as a
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fraction of times when B is true when checked at fixed time points according
to some schedule chosen in advance, see the following example. The final result,
the probability Pt(A) ·P(B) , although a useful measure of risk, is usually not
equal to Pt(A and B) .

Example 2.10. Let us discuss a simple scenario for hazard due to fire in a
textile industry, where A = “Fire starts” defines a stream of fire ignitions.
As in Example 2.7, consider a building with total area 8 000 m2 ; hence the
probability of ignition per year

Pt(A) = exp(−5.84 + 0.56 · ln 8000) = 0.446.

We define a “scenario” B , which increases risk for hazard of harm for employ-
ees as

B = “At least one of the evacuation doors cannot be opened”

and assume that B is independent of the stream of fire ignitions. A proper
way for estimation of P(B) is to use historical data and check how often it
happens that exit doors were malfunctioning when a fire started in a textile
industry. Even if such data existed, the estimated frequency of failures would
be very uncertain. An alternative method is now presented.

Suppose the safety regulations require periodic tests of functionality of exit
doors. From reports, one estimates that on average in 1 per 100 inspections
(experts’ opinion) not all the doors could be opened for different reasons,
which gives P(B) = 0.01 ; consequently, by Eq. (2.7), we find

Pt(A and B) ≈ Pt(A)P(B) = 0.01 · 0.45 = 0.0045.

�

2.6 Intensities of Streams

In the previous section, the notion of a stream of events was presented and
used to define probabilities. For example, for a stream of events A and a fixed
period of time t

Pt(A) = P(“A occurs at least once in the time interval of length t ”).

The probability had frequentistic interpretation, see Eq. (2.6). Some technical
difficulties in using a so-defined probability to measure risks resulted in the
sign ≈ in Eq. (2.7) instead of equality. These difficulties have their origins in
the possibility of multiple occurrences of A in the period4. A natural solution

4For example, if there were three fire ignitions in a building during a specific
year, each time there is a risk for unfortunate development leading to hazard of
harm for people. However, Pt(A ∩ B) measures risk for the hazard assuming that
only one fire will occur during the period. Clearly the risk is underestimated.
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to the problem would be to use smaller periods t so that the possibility of
more than one accident in the period can be neglected. (Equivalently one can
always use t = 1 but change units in which t is measured to the smaller ones,
e.g. from years to days, hours, seconds, etc.) In this section we formalize this
idea by introducing a concept of intensity λA of a stream A . Intuitively, for
t = 1 measured in such units that one can neglect the possibility of occurrence
of more than one A in the interval, the intensity λA is approximately equal
to the probability Pt(A) . The formal definition follows:�

�

�

	

Definition 2.3. For a stationary stream of events A (mechanism creating
events is not changing in time) the intensity of events λA and its inverse
TA , called the return period of A , are defined as

λA = lim
t→0

Pt(A)
t

, TA =
1

λA
.

Note that λA has a unit ; for instance, if t = 1 day, λA ≈ Pt(A) = 10−3 , then
λA with unit [year−1 ] is approximately 0.365.

Remark 2.5. In Definition 2.3, stationarity of a stream was required. That
concept was not precisely defined since the definition is very technical. A
necessary condition for stationarity is that Pst(A) = Pt(A) for any value of
s , where Pst(A) was defined in Definition 2.2. �

We shall demonstrate later on that intensity is a very useful tool in risk
analysis and hence estimation of λA will be one of the main problems discussed
in this book. One of the methods is introduced next.

Suppose we have access to historical data. Then a short period of time t
could be chosen and Eq. (2.6) be used to estimate Pt(A) , hence λA ≈ Pt(A)/t .
However, some seconds of reflection and some calculations show that such an
estimate is equal to NA(T )/T , where T is the time span of the historical
record. This is an intuitive motivation for the following important result; if
the mechanism generating accidents is ergodic then

λA = lim
T→∞

NA(T )
T

, (2.8)

where NA(T ) is the number of times A happened in the time interval [0, T ] .
We do not discuss what ergodicity means and merely use it as a term for an
assumption sufficient for Eq. (2.8) to be true. In this book we only consider
stationary streams that are ergodic. (Note that not all stationary streams are
ergodic.) Two very useful properties of intensities are given next.
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Theorem 2.4. Suppose there are n stationary-independent streams where
Ai happen with intensity λAi

. Let A be an event that any of Ai occurs
(A = A1 ∪ A2 ∪ . . . ∪ An ). Then the stream of A is stationary and its
intensity λA is given by

λA =
∑

λAi
. (2.9)

Consider a scenario B that can happen when A occurs. If B is indepen-
dent of the stream A , then the stream of events when A and B are true
simultaneously has the intensity

λA∩B = λA · P(B). (2.10)

A consequence of Eq. (2.9) is that even if intensities of accidents Ai are small,
chances are likely that any of Ai will occur. For instance, consider the intensity
of fire in a flat i in a building, λAi

, which is small. However, since there are
many buildings in a country, the intensity λA =

∑
λAi

of fires in any of the
buildings in a country is much higher.

In the following example, we illustrate the important problem of estimating
the intensity given data.

Example 2.11 (Accidents in mines). Consider a data set with information
on serious accidents in coal mines in United Kingdom, starting from 1851,
see [40]. (The data set is also presented in the book by Hand et al. [34].) Let
A = “Accident in a coal mine happens” ; then

NA(s, t) : The number of accidents occurring in the time interval [s, s + t].

The function NA(t) = NA(s, s+t) , s = 1851 , is shown in Figure 2.3, left panel,
from which by inspection we find for instance NA(10) = 30 , NA(30) = 100 .

The intensity λA is estimated by means of (2.8)

λA ≈ NA(T )
T

=
120
40

= 3, [year−1].

The probability Pt(A) for t = 1 month can be approximated, using the
defining equation of the intensity in Definition 2.3, Pt(A) ≈ tλA = 3/12 .

Now let us assign to each accident a measure of how severe the accident
was; for example, by means of the number of deaths in an accident K , say.
Let a “scenario” defining a catastrophe be B = K > ucrt , where ucrt is some
critical number, say 75 . In the present case of accidents in mines, one has also
access to the number of deaths in each accident, see Figure 2.3, right panel,
and hence P(B) can be estimated. Since there were 17 accidents with more
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Fig. 2.3. Left: Number of accidents NA(t) in coal mines in United Kingdom
(NA(1851) = 0). Right: Number of those who died in accidents in coal mines in
United Kingdom.

than 75 deaths the probability of B is estimated by 17/120 . Assume that
the number of perished K is independent of the stream. Then the intensity
λA∩B = λAP(B) ≈ 0.43 year−1 .

Suppose one wishes to increase the threshold ucrt to a much higher level,
for example to 400 deaths. Now there are no data to estimate P(B) = P(K >
400) and hence mathematical modelling is needed to estimate the probability.
Methods to estimate this type of probabilities will be discussed in Chapter 9.

�

2.6.1 Poisson streams of events

In the previous section we assumed that Pt(A) ≈ λA · t . For large t , λA · t > 1
and hence cannot be used as an approximation of Pt(A) . In the following
theorem conditions are given when the intensity λA defines uniquely Pt(A)
for all values of t . First conditions are given that are sufficient for a stream
to be called Poisson. Further properties of Poisson streams will be studied in
Chapter 7.

(I) More than one event cannot happen simultaneously, i.e. at ex-
actly the same time. (Let the event A define the stream. If A = “An
aeroplane crashes”, the possibility that two aeroplanes crash at the same
instance is negligible and (I) holds. However, if A = “A person dies in an
aeroplane accident” then (I) is not satisfied since usually several persons
die in the same accident.)

(II) The expected number of events observed in any period of time
is finite. (The concept of expected value will be described in Chapter 3.
For ergodic streams (II) means that intensity λA is finite.)

(III) The number of events that occur in disjoint intervals are inde-
pendent. (This is a crucial assumption that has to be motivated in each
case studied.)
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Theorem 2.5 (Poisson stream of events). For a stationary stream of
event A , if conditions (I) and (II) hold then one has the following bound

Pt(A) ≤ λA t =
t

TA
, (2.11)

where λA is the intensity, TA the return period of A , see Definition 2.3.
If in addition condition (III) is satisfied then the number of events NA(s, t)
observed in a time interval of length t , [s, s+ t] , NA(s, t) ∈ Po(m) , where
m = λA · t , viz.

P(NA(s, t) = n) = e−λAt (λAt)n

n!
, n = 0, 1, 2, . . . . (2.12)

Consequently, the probability of at least one accident in [0, t] is given by

Pt(A) = 1 − P(NA(t) = 0) = 1 − e−λA t. (2.13)

(The proof of the theorem can be found in [17], Chapter 3, where a weaker
assumption that P(NA(s, t) = n) depends only on t and n , instead of required
stationarity of the stream, is used.)

It is easy to see that for a stream A and scenario B , if B is independent
of the stream and the stream A is Poisson then also the stream of A ∩ B is
Poisson. The intensity of the stream is given by Eq. (2.10), λA∩B = λA ·P(B) ,
and hence the number of times that both A and B occur simultaneously in
the period of time with length t

NA∩B(s, t) ∈ Po(m), m = λA · P(B) · t. (2.14)

The last equation is a very useful result that will be used frequently in
Chapter 7.

Example 2.12 (Accidents in mines, continuation). In Example 2.11 we
measured risk for accidents by Pt(A) , t = 1 month. This probability was
estimated by 1/4 . Now, suppose that we wish to know the probability of
more than one accident during the month, i.e. P(NA(t) > 1) .

In order to use Theorem 2.5 to compute the probability, one needs to
check that assumptions (I-III) hold for the stream. There is no problem in
accepting (I-II), only (III) needs to be checked. We have no tools to do this yet
and hence we just find it reasonable to assume that the number of accidents
between different years is independent and hence assume that (III) is also
true. Consequently, the probability that there will be more than one accident
in one month is by Eq. (2.12) equal to

P(NA(1/12) > 1) = 1 − P(NA(1/12) = 0) − P(NA(1/12) = 1)

= 1 − e−λA/12 − λA

12
e−λA/12 ≈ 0.027,

since λA ≈ 3 [year]−1 .
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Finally, consider the scenario B introduced in Example 2.11, i.e. B =
“K > 75” , where K is the number of deaths in an accident, assumed to be
independent of the stream. Then the stream of catastrophes, i.e. accidents
when B is true, is Poisson too. Now, since5 P(B) ≈ 17/120 , the probability
of a serious accident during one month is

Pt(A ∩ B) = 1 − e−λAP(B)/12 ≈ 17
40 · 12

,

i.e. not negligible. (We have used that 1 − exp(−x) ≈ x for small x .) The
probability of more than one catastrophe during one month is

P(NA∩B(1) > 1) = 1 − e−λAP(B)/12 − λAP(B)
12

e−λAP(B)/12 ≈ 6.1 · 10−4.

�

In Chapters 6, 7, and 9 we will return to the problems discussed here, give
further applications and methods to estimate λA and P(B) from data.

Return period of an event — 100-year waves

Consider a stream of events A . We now give a typical application of the
concept of return period TA of A , met in reliability and safety analysis where
one often talks about 100-year waves or 50-year wind speeds. Several non-
equivalent definitions of the 100-year value exist. Here we present two of them
by means of an example where A = “Water level exceeds ucrt ” defines the
stream. Both definitions extend easily to any stationary stream.

(1) If for t = 1 year Pt(A) = 1/100 , then ucrt is called a 100-year water level
(or wave). One could also say that A is a 100-year event.

(2) For stationary streams another approach is often used, namely: A is a
100-year event (ucrt a 100-year level) if its return period TA = 100 years.

Do these two approaches give different heights for 100-year levels? We answer
this question next.

Consider a stationary stream, let t = 1 year and ucrt be chosen so that
Pt(A) = 1/100 . Since Pt(A) ≤ 1/TA , ucrt is somewhat smaller than derived
by means of Method (2), i.e. by solving the equation TA = 100 for A , i.e.
ucrt . However, if the stream is Poisson then

Pt(A) = 1 − e−1/TA ≈ 1
TA

and the difference is very small and not important in practice. The true ad-
vantage of the first definition is that it can be used even for non-stationary

5The sign ≈ means that the value of the probability is estimated and hence
uncertain.
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streams exhibiting seasonal variability. In addition, in a non-stationary situa-
tion (e.g. caused by climate change) the 100-year value can be computed by
solving Pst(A) = 1/100 and the critical level is updated as conditions change.

Finding the magnitudes of 100-year levels is an important problem that
will be discussed in Chapter 10, where we shall use (1) as the definition of
100-year values.

Example 2.13 (Design of sea walls). When designing protection against
high sea level, one speaks about 100-year or 10 000-year storms, which means,
if Method (1) is used, that the probability of observing a storm stronger than
100- or 10 000-year storm in one year is 1/100 and 1/10000, respectively. Here
the stream of storms will be identified with the inception times when water
level exceeds a critical level ucrt at some specified observation point.

We discuss two examples of design of sea walls: at Ribe in Denmark (at
the North Sea) and in the Netherlands. In Denmark, one chose in the 1970s
a design load with a return period of 200 years, see [51]. (The old level was
30-45 years.) In the Netherlands, after disastrous floods in 1953 with nearly
1900 deaths, the decision was taken to design the sea walls against return
storms of 10 000 years.

Use of Eq. (2.11) gives the probability of catastrophical floods in the fol-
lowing t = 50 years, i.e. at least one flood, Pt(A) ≤ t

T , which, in case of Ribe
in Denmark, gives a considerable risk with likelihood 1/4 . Due to this risk,
it is worth having some alarm system to warn the inhabitants of the possi-
bility of a flood. Such systems are installed. In the Netherlands the chance is
negligible if all computations and constructions have been done properly.

However, aspects not known at the time of the analysis have obviously not
been taken into account. Wave climate in the Atlantic Sea may change, and
knowledge about the impact of ice melting at the poles is uncertain. Besides
this “model-type” uncertainties we need to acknowledge that we have also
statistical uncertainty due to the fact that one wishes to find properties of
storms that are very rare. Consequently our estimates will be very uncertain.
For example, the storm that we consider as a 10 000-year storm may have a
return period of 1000 years or less, (see Section 10.3.4 for further discussion).

However, the gathered information over many years can be used to update
the value of return periods. This is of importance in computations of reliability
of existing systems. (See Section 5.4.3, where examples of this type of problems
are discussed).

Finally, note that we have not said how to find the size of the sea walls,
which will sustain storms with return periods of 50 or 10 000 years, or equiv-
alently how to find the level ucrt . This will be discussed in the last chapter.

�

2.6.2 Non-stationary streams

Computations are often done for stationary situations; however, most real
phenomenon are non-stationary: simple environmental conditions vary with
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time, new safety technologies or regulations are introduced, systems deteror-
iate with time. Since introducing non-stationarity complicates mathematical
modelling of uncertainties one often neglects it. However, there are situations
when the non-stationary character of a problem is essential when safety of a
system is evaluated.�

�

�

	

Definition 2.4 (Intensity, non-stationary case). Let s be a fixed time
point and Pst(A) = P(NA(s, t) > 0) the probability that at least one event
A occurs in the interval [s, s + t] , then the limiting value (if it exists)

λA(s) = lim
t→0

Pst(A)
t

, (2.15)

will be called a non-stationary intensity of the stream of A .

Obviously if Pst(A) does not depend on s , as in the stationary case, then
λA(s) = λA . We now introduce the non-stationary Poisson stream.�

�

�

	

Theorem 2.6 (Poisson stream of events). Consider a stream of events
A . Under some regularity assumptions (which are always satisfied in the
problems studied in this book), if the conditions (I-III) are satisfied then

Pst(A) = 1 − e−
∫ s+t

s
λA(x) dx

, (2.16)

where λA(x) is given in Definition 2.4. Furthermore, the number of events
observed in the time interval [s, s + t] , NA(s, t) ∈ Po(m) , where m =∫ s+t

s
λA(x) dx .

Example 2.14. Consider an event A whose intensity λA(s) varies seasonally,
i.e. it is a periodical function with period one year. Assume that it can be
constant in one month; Using historical records, monthly intensities can be
estimated by means of a formula similar to Eq. (2.8),

λAi
= lim

T→∞
NAi

(T )
T/12

[year]−1,

where Ai = “Event A occurs and is in month i” and T/12 is the fraction of
total recording time that falls into an individual month.

As an example, let us use records of daily rain amount measured at an
airport in Venezuela during 1961-1999. (The data will be considered again in
Chapter 10.) Define A = “Daily rain exceeds 50 mm” as an initiation event for
possible hazard of proper operations of the airport. Clearly we have T = 39
years while the 12 observed values of NAi

(T ) are

4 0 3 4 3 2 3 3 3 2 7 10.
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Consequently a simple model could be to assume different intensities for, on
the one hand, the months January to October, on the other, November and
December:

λAi
≈

{ 27
39(10/12) = 0.83, i = 1, . . . , 10,

17
39(2/12) = 2.62, i = 11, 12.

(The sign ≈ is used since these are only estimates of the intensities, T = 39
is not infinity.) Now λA(s) = λAi

if s , having units years, falls in month i . It
seems reasonable to assume that assumptions (I-III) in page 40 are satisfied
and hence the stream of extreme rains is Poisson with intensity λA(s) .

Let N1, N2 be the number of huge rains in the first and second six months
during next year, respectively. By Theorem 2.6 we know that N1 ∈ Po(m1) ,
while N2 ∈ Po(m2) where

m1 =
∫ 1/2

0

λA(x) dx ≈ 0.83 · 1
2

= 0.415,

m2 =
∫ 1

1/2

λA(x) dx ≈ 0.83 · 4
12

+ 2.62 · 2
12

= 0.713.

Now the probability that there will be more than two rains in the periods is
given by

P(Ni > 2) = 1 − P(Ni = 0) − P(Ni = 1) − P(Ni = 2)

= 1 − e−mi
(
1 + mi +

m2
i

2
)
,

giving numerical values P(N1 > 2) ≈ 0.009 , while P(N2 > 2) ≈ 0.036 , which
is four times higher. �

Problems

2.1. Let X be the number of death casualties on a shipyard in a decade. It is
assumed that X ∈ Po(3) . Calculate

(a) P(X ≤ 2) ,
(b) P(0 ≤ X ≤ 1) ,
(c) P(X > 0) ,
(d) P(5 ≤ X ≤ 7 |X ≥ 3) .

2.2. In a highway, it is noticed that the probability of at least one accident in a
given month involving lorries transporting hazardous materials is roughly 0.08.

(a) Calculate the probability of exactly 6 consecutive months without such an acci-
dent (an accident will thus happen in the seventh month).

(b) Estimate the intensity of accidents and compute the return period. (Hint. Use
Definition 2.3.)
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2.3. Suppose P(A) = 0.20 , P(B|A) = 0.75 , and P(B) = 0.45 . Calculate P(A|B) .

2.4. The buildings in a district can roughly be characterized as either housing area
or industrial zone. We study here emergency calls due to alarm. The probability for
the brigade to turn out to a housing area is 0.45, the corresponding probability for
industrial zone is 0.55. From available statistics, one assumes that the probability
of a true fire at the arrival to a housing area is 0.90 while the probability of a true
fire at the arrival to an industrial zone is 0.05.

The fire brigade returns to the station after a mission, they have put out a fire.
Calculate the probability that they have returned from a mission to an industrial
zone.

2.5. When coded messages are sent, errors in transmission sometimes occur. Con-
sider Morse code, where “dots” and “dashes” are used. It is known that the odds for
dot sent versus dash sent is 3:4.

Suppose there is interference on the transmission line: with probability 1/10 a
dot is mistakenly received as a dash and vice versa. Calculate the probability of
correctly receiving a dot.

2.6. This problem is based on a question posed by Stewart [75]:

(a) “Suppose Mr. and Mrs. Smith tell you they have two children, one of whom is a
girl. What is the probability that the other is a girl?”

(b) Compute the probability if you know that Mr. and Mrs. Smith have two children
and you see them walking with a girl (their girl).

2.7. Suppose a certain disease has a frequency 1 per 10 000. One can test whether a
person is infected or not. Suppose the test has accuracy 99%, i.e. out of 100 infected
persons on average 99 will be tested positive. The risk of “false alarms” is 0.1%, i.e.
out of 1000 not infected persons, on average one will yield a positive test result6.
Assume now that a person has been tested positively for the disease. Use Bayes’
formula to compute the probability that the person is really infected.

2.8. Recall Problem 1.10, leakage of containers. Suppose that leakages in the deposit
form a stationary stream with intensities

λCorr = 0.18, λTherm = 0.45, λOther = 0.002 year−1

The prior odds for the three conditions water flow, chemical interactions, and others
are 4:1:95. Assume that the conditions are mutually excluding, one and only one of
them is true.

The cost differs depending on scenario, hence it is of interest to update the
probability distributions based on available information. Suppose that in 5 years, 3
leakages have been observed. Update the priors and give a comment on the result.

2.9. Oil pipelines are inspected by submarines in order to detect imperfections. A
non-destructive (NDT) device is used to detect the location of cracks. Cracks may
exist in various shapes and sizes, hence the probability that a crack will be detected

6Using terminology from medical science, the sensitivity is 0.99 in this problem
while the specificity is 0.999.
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by the NDT device is 0.8. Assume that the events of each crack being detected are
statistically independent and that the NDT does not give false alarms.

(a) Suppose that along a fixed distance examined (say 5 m), there are two cracks in
the pipeline. What is the probability that none of them would be detected?

(b) The actual number of cracks N along the distance examined is not known.
However, a prior distribution is given as P(N = 0) = 0.3 , P(N = 1) = 0.6 ,
P(N = 2) = 0.1 . Find the probability that the NDT device will detect 0 cracks
in the pipeline.

(c) If the device detects 0 cracks, what is the probability that there is no crack
at all?

2.10. A man walks across three main streets every morning on his way to work.
In the afternoon, he walks across the same three streets when he returns home.
Every time he walks across one of the main streets, he is subject to a risk of being
hit by a car, which is roughly 5 · 10−8 . He goes to work approximately 200 days
every year.

(a) Estimate the probability of being hit by a car at least once during 20 years.
(b) Determine roughly the return period (in years) for the event “being hit by

a car”.

2.11. In a factory, 5 accidents have been observed in 10 years.

(a) Estimate the intensity of accidents.
(b) Estimate the return period.
(c) Give an estimate of the probability that no accidents will occur in one month.

2.12. Consider the model for the intensity of fire ignition,

λA = t exp(β0 + β1 ln a), [year−1]

where t = 1 year, a is total floor area (m2 ) and

A = “Fire ignition at a hospital”.

For hospitals in Great Britain, β0 ≈ −7.1 , β1 ≈ 0.75 .
In a county, there are two hospitals with total areas 6 000 m2 and 7 500 m2 ,

respectively. Suppose the streams of fire ignitions are Poisson and fires start in both
hospitals independently. Calculate the probability that there will be fire ignitions in
both hospitals in one month.

2.13. Consider traffic accidents in the Swedish province of Dalecarlia (Dalarna). As
reported to SRSA (Swedish Rescue Services Agency), the total number of accidents
with trucks and the number of accidents involving tank trucks with dangerous goods
signs were as follows for the years 2002-2004:

Year 2002 2003 2004
All trucks 48 26 44
Tank trucks 2 0 2

Assume a Poisson stream of events.

(a) Estimate the intensity of accidents involving trucks.
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(b) Calculate the probability of at least one accident with a tank truck during one
month in Dalecarlia. Employ data for the whole of Sweden, see table below, for
estimation of the probability P(B) that a truck accident involves a tank truck.

Year 2002 2003 2004
All trucks 1108 1089 1192
Tank trucks 37 41 39

2.14. A consultant in fire engineering investigates the risk for fire in a town. Obvi-
ously, the number of fires varies from year to year. However, from experience it is
assumed that fires occur according to a Poisson process with unknown intensity Λ
(year−1 ).

The intensity of fires starting may depend on many factors. The consultant limits
himself to fires that start in dwellings or schools. In the literature, it is suggested
that the intensity of fires starting in these types of buildings is equal to the floor
area times a factor α , say, taking values between 10−6 and 4 ·10−6 ([year−1 m−2 ]).
Suppose that the total floor area in the town investigated is 2.5 · 106 m2 .

(a) As values of α , the consultant chooses 10−6 , 2 · 10−6 , 3 · 10−6 , and 4 · 10−6 .
Based on this choice, help her to estimate intensities and formulate suitable prior
odds for Λ .

(b) Suppose during the first two months, no fires were reported. Use this information
to update the prior odds.

(c) Use the updated odds to compute the probability of no fire in the following
month.
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Distributions and Random Variables

Often in engineering or the natural sciences, outcomes of random experiments
are numbers associated with some physical quantities. Obviously there are
random experiments with outcomes that are not numerical, for example flip-
ping a coin. However, the results in such experiments can also be identified
numerically by artificially assigning numbers to each of the possible outcomes.
For example, to the outcomes “tails” and “heads”, one can (arbitrarily) assign
the values 0 and 1, respectively.

In this section we consider random experiments with numerical outcomes.
Such experiments are denoted by capital letters, e.g., U , X , Y , N , K . The
set S of possible values of a random variable is a sample space, which can
be all real numbers, all integer numbers, or subsets thereof. Statements about
random variables have truth sets that are subsets of S .

A statement of the type “X ≤ x ” for any fixed real value x , e.g. x = −2.1
or x = 5.375 , plays an important role in computation of probabilities for
statements on random variables. More precisely, we introduce

FX(x) = P(X ≤ x), x ∈ R,

and call the function FX(x) the probability distribution, cumulative distribu-
tion function (cdf), or for short, the distribution function.

Example 3.1 (Exponential distribution). As presented later in this chap-
ter, some distribution functions have their own names. One important example
is the so-called exponential distribution

FX(x) =
{

1 − e−x, if x ≥ 0,
0, if x < 0,

often used to describe variability of life-length data for units under constant
risk for accident.

Note that this function is increasing, starting at zero and approaching one
as x tends to infinity. �
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The importance of the probability distribution function lies in the following
fact:�
�

�
�

Theorem 3.1. The probability of any statement about the random variable
X is computable (at least in theory) when the distribution function FX(x)
is known.

Recall that the probability function P is defined on events (Section 1.1).
Since, usually, the number of different events is higher than the number of all
real numbers we cannot write the function P explicitly but can only give an al-
gorithm how to compute the probabilities P(A) for any event A . Theorem 3.1
says that the algorithm to compute P(A) can be given if the distribution func-
tion FX(x) is known or estimated from data.

Examples of events and statements

Some simple and useful statements about X are “X exceeds a limit b ” and
“X is between two limits, a < X ≤ b ”. It is easy to show that P(X > b) =
1 − FX(b) and the fundamental relation

P(a < X ≤ b) = FX(b) − FX(a). (3.1)

The slightly more complicated statement “ eX ≤ b ” can also be computed,
since it is equivalent to “X ≤ ln b ” and hence

P(eX ≤ b) = P(X ≤ ln b) = FX(ln b).

We turn now to another important example, considering the event “X = b ”
whose probability is given by

P(X = b) = lim
n→∞P(b − 1/n < X ≤ b) = lim

n→∞(FX(b) − FX(b − 1/n))

(cf. Eq. (3.1)). If the distribution function FX(x) is a continuous function
then for any fixed b , P(X = b) = 0 , i.e. it is impossible to guess the future
value of X . The random variables with continuous distribution function are
called continuous random variables.

Conclusion

We defined a random variable as a random experiment with numerical out-
comes. To each random variable a distribution function FX is assigned. We
demonstrated that the distribution can be used to compute probabilities of
different statements about X . We have, however, not specified methods how
to find the distribution function FX(x) so that the computed probabilities
can be used in taking rational decisions in risk analysis. This will be done in
the next chapter.
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3.1 Random Numbers

It is easy to see that the distribution function FX(x) is increasing in x ,
FX(−∞) = 0 while FX(+∞) = 1 . Actually any function F (x) satisfying the
three properties is a distribution of some random variable. In this section we
show how one constructs a random variable X , called random number, such
that P(X ≤ x) = F (x) .

3.1.1 Uniformly distributed random numbers

In Chapter 1, simple properties of probabilities were exemplified by random
experiments having a finite number of possible outcomes. A random variable
was defined as a number associated with the outcome of the experiment. In
the same chapter, we introduced experiments with an infinite, but countable,
number of possible outcomes (the geometric and the Poisson probability-mass
functions). We now go further and use a series of coin-flipping experiments
to create a random variable that can take any value between 0 and 1 with
equal probability; hence, called uniformly distributed random number. The
uniformly distributed random numbers will form the basis for construction of
any non-uniformly distributed random numbers.

Binary representation of numbers

The procedure is based on a binary representation of a number u , 0 ≤ u ≤ 1 ,
i.e. as a sequence of zeros and ones; for example:

u =
(
011 011 01 . . .

)
:

0
2

+
1
4

+
1
8

+
0
16

+
1
32

+
1
64

+
0

128
+

1
256

+ · · · (3.2)

Let us use the binary representation in Eq. (3.2) to transform the result
of two independent coin flips 00, 01, 10, 11 into the following four numbers
0, 1/4, 1/2, 3/4 . We denote this transformation of the result of two flips
of a coin to real numbers, which obviously is a random variable, by U (2) .
Clearly the probability P(U (2) = u) = 1/4 for any of the four possible values
of u .

In the same way, using Eq. (3.2), we can transform a result of 20 flips of
a coin into a number u and denote it by U (20) . Obviously there are now 220

(more than one million) distinct values u that U (20) can take. By indepen-
dence of individual flips, each of these values can occur with equal probability
2−20 . What is important is that all possible u -values are uniformly spread
over the interval [0, 1] . Similarly, let U (n) be a number, which is a result of
evaluating (3.2) on a result of n flips of a fair coin. Again, all possible resulting
numbers u have equal probability (very small) of occurrence 2−n that tends
to zero as n goes to infinity and are uniformly spread over [0, 1] .
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Definition 3.1. A limit value of the random experiments U (n) as n tends
to infinity will be called a uniformly on [0, 1] distributed random number
and denoted by U , i.e.

U = lim
n→∞U (n)

Obviously, the variable U cannot be realized in practice — nobody can flip
the coin infinitely many times. However, already U (100) has more than

1 000 000 000 000 000 000 000 000 000 000

possible outcomes and can be used as a practical version of the mathematically
constructed variable U .

Distribution function

It is not too difficult to be convinced that the distribution function of U has
the following form

FU (u) = P(U ≤ u) =

⎧⎪⎨⎪⎩
0, if u < 0,

u, if 0 ≤ u ≤ 1,

1, if u > 1,

with derivative (called probability-density function, see Section 3.2)

fU (u) =
d
du

FU (u) =

⎧⎪⎨⎪⎩
0, if u < 0,

1, if 0 ≤ u ≤ 1,

0, if u > 1.

3.1.2 Non-uniformly distributed random numbers

From science and technology we are familiar with deterministic scale trans-
formations, e.g.

u = ax + b, u = log x,

where u and x could be temperature in Celsius and Fahrenheit; amplification
in real numbers and decibels, respectively. It can be shown that starting from
a uniformly distributed random variable we can compute any existing random
number by a suitable change of scales. We can view a uniformly distributed
random number as a “dimensionless” standard number.
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Theorem 3.2. For any strictly increasing continuous function F (x) , x is
a real number, taking values in the interval [0, 1] , such that F (−∞) = 0
and F (+∞) = 1 , the random variable X defined by

U = F (X), X = F−1(U) (3.3)

where U is a uniformly distributed random number, has probability distri-
bution

FX(x) = F (x).

The last equality simply follows from Eq. (3.3), viz.

P(X ≤ x) = P(U ≤ F (x)) = F (x),

since the statements “X ≤ x ” and “U ≤ F (x)” are true for the same out-
comes of the random experiment of infinitely many flips of a coin. Simply, in
order to get a random number X that is smaller than a fixed number x , the
uniformly distributed variable U has to be in the interval (0, F (x)) .

However, there are distribution functions that are not strictly increasing
or even have discontinuities; for example, see Figure 3.1. In such a case the
solution to Eq. (3.3), X = F−1(U) , may not be unique or defined. This is
only a technical problem and one can define an (generalized) inverse function
to F (x) , denoted by

x = F−(y)

as follows. For any y ∈ [0, 1] , let F−(y) be the maximal x̃ satisfying F (x̃) ≤ y
(cf. Figure 3.1).

Remark 3.1. Any non-decreasing, right-continuous function F (x) taking
values in the interval [0, 1] , such that F (−∞) = 0 and F (+∞) = 1 , de-
fines an inverse function x = F−(y) to be the maximum of all x̃ satisfying

x = F −(y) x = F −(y)

y

y

Fig. 3.1. Definition of the inverse x = F−(y) , two situations. Left: Discontinuity
of the distribution function. Right: Distribution function, not strictly increasing.
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the inequality F (x̃) ≤ y . The random number X = F−(U) has F (x) as its
distribution, i.e. P(X ≤ x) = F (x) . As before, U is a uniformly distributed
random number. �

Equation (3.3) is fundamental since it provides a constructive way of defin-
ing random numbers as well as classifying them. More precisely, one can think
of the statement “a random variable with distribution F (x)” means a proce-
dure giving a random number X defined by Eq. (3.3).

Note that there are other methods to create and describe random numbers.
Computer-generated random numbers are the basis of the so-called Monte
Carlo algorithms, also called simulation methods. The random numbers cre-
ated in a computer are called pseudo-random numbers, since these are created
by means of deterministic algorithms. The pseudo-random numbers mimic
properties of “true” random numbers created using random experiments sim-
ilar to flipping a coin.

Remark 3.2. An important consequence of the definition of random numbers
defined by means of Eq. (3.3) is the following observation. If we have two
distributions F1(x) and F2(x) that are close to each other (in horizontal
direction), then for a fixed value of U the random numbers X1 , X2 , which
are solutions of the equations U = F1(X1) and U = F2(X2) , are close.
Practically speaking, random numbers with similar distribution can be used
equivalently. Hence, of the distributions F1(x) and F2(x) the one is chosen
that is easiest to handle. This continuity property explains why one considers
classes of distributions that have nice explicit formulae but are flexible enough
to be close to any particular distribution. �

As already mentioned, there are infinitely many different types of random
numbers (variables) since there are infinitely many different scales. Some of
them are simpler to handle in mathematical models, often fit real data well,
have useful mathematical properties; hence, they are used more often and got
specific names, see the following examples.

3.1.3 Examples of random numbers

Exponential distribution

An exponentially distributed random number X has distribution F (x) =
P(X ≤ x) = 1 − e−x , x ≥ 0 , and hence

U = 1 − e−X , X = − ln(1 − U).

Weibull distribution

A random number X , which is Weibull distributed, with shape parameter c ,
has distribution F (x) = 1 − e−xc

, x ≥ 0 , and hence

U = 1 − e−Xc

, X = (− ln(1 − U))1/c.
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Note that for c = 1 we have the exponential distribution, for c = 2 a Rayleigh
distribution and c = 3 a Maxwell distribution.

Gumbel distribution

A random number X from the Gumbel distribution (also called double expo-
nential distribution) has distribution F (x) = exp(−e−x) , −∞ < x < ∞ , and
hence

U = e−e−X

, X = − ln(− ln U).

Two-point distribution

A result of a flip of a coin, i.e. X = 0 if “Heads” showed up and X = 1
otherwise, has a distribution function satisfying F (x) = 0 for x < 0 , F (x) =
1/2 for 0 ≤ x < 1 , and F (x) = 1 for x ≥ 1 , and hence

U = F (X), X =

{
0, if U ≤ 1/2,

1, if U > 1/2.

Obviously there are many other random numbers having special names
that have already been presented: binomial-, Poisson-, geometric-distributed
r.v. Others will be introduced later on in this book; some examples are normal
(or Gauss), log-normal, Pareto, gamma, beta, Dirichlet, multinomial.

At this moment one may ask why we define X using the implicit equation
U = F (X) instead of just writing X = g(U) . Obviously, the variables

X = U2, X = arctan U or X = U + eU ,

are random numbers by definition too. The problem is that the distribution
of such defined variables FX(x) = P(X ≤ x) may be hard to find. Many ques-
tions in safety analysis are often related to computations of distributions of
explicitly defined functions of random variables. We return to these questions
in Chapter 8, see also Section 3.3.1.

3.2 Some Properties of Distribution Functions

Hitherto we have shown how to create random numbers. We have used the
uniformly distributed U and the distribution function F (x) = P(X ≤ x)
to obtain new types of random numbers, denoted by X . Consequently, the
distribution function completely characterizes a random number (variable).
There are other concepts, usually functions of F (x) , that are also used to
describe properties of random numbers. We now present three of these.
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Probability-mass function

Let X take a finite or (countable) number of values (for simplicity, the values
0, 1, 2, . . .). One then speaks of discrete random variables and the distribution
function F (x) is a “stair” looking function that is constant except the possible
jumps for x = 0, 1, 2, . . . . The size of a jump at x = k , say, is equal to
the probability P(X = k) , denoted by pk , which is called the probability-
mass function (pmf). The function, or rather series, pk defines uniquely the
distribution since F (x) =

∑
k≤x pk . Consider for example a geometrically

distributed r.v. K with pmf

pk = 0.70k · 0.30, k = 0, 1, 2, . . . .

This distribution is shown in Figure 3.2 in the form of its distribution function
(left panel) and pmf (right panel).

Probability-density function

For a uniformly distributed random variable (X = U ), the concept of prob-
ability mass does not have a sense since P(X = x) = 0 . However, one can
write somewhat unprecisely but correctly that P(X ≈ x) = dx where X ≈ x
means x − 0.5 dx < X ≤ x + 0.5 dx , i.e. X has a value somewhere in an
interval of length dx around x . We can interpret the relation as that the
density of random numbers is constant and equal to one. We turn now to
other random variables that are obtained by smooth scale changes, which
gives non-constant intensities of random numbers. More precisely, if the dis-
tribution function F (x) is differentiable, then the derivative

f(x) =
d
dx

F (x),
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Fig. 3.2. Geometrical distribution with pk = 0.70k · 0.30 , for k = 0, 1, 2, . . . . Left:
Distribution function. Right: Probability-mass function.
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called probability-density function (pdf), has the interpretation P(X ≈ x) =
f(x) dx . For random variables having a pdf, Eq. (3.1) can be written as

P(a < X ≤ b) =
∫ b

a

f(x) dx (3.4)

and these are called continuous random variables. Consequently,∫ ∞

−∞
f(x) dx = 1.

By direct differentiation we have that an exponentially distributed r.v. X
has the density

f(x) = e−x, x ≥ 0 and zero otherwise.

Another example is the Weibull density, given by

f(x) = c xc−1e−xc

, x ≥ 0.

Standard normal distribution

The probability density f(x) can be used to define a distribution function,
since any non-negative function that integrates to one is a density of some
distribution. Actually, the distribution of a standard normal (or standard
Gaussian) random variable is defined by means of its density function. The
density of a standard normal variable has its own symbol φ(x) and is given by

φ(x) =
1√
2π

e−x2/2, −∞ < x < ∞. (3.5)

The r.v. X having this density is often denoted as X ∈ N(0, 1) . The distrib-
ution function of the variable, F (x) , has its own symbol Φ(x) ,

Φ(x) =
∫ x

−∞

1√
2π

e−t2/2 dt. (3.6)

For an illustration of Φ(x) and φ(x) , see Figure 3.3.
There is no analytical expression for Φ(x) and numerically computed val-

ues are often tabulated, see appendix. There are also very accurate polynomial
approximations for Φ(x) that are basis for computer evaluations of its values.

Quantiles

The median x0.5 of a random variable X is a value such that the probability
that the outcome of X is not exceeding x0.5 is equal to 0.5, i.e.

P(X ≤ x0.5) = 0.5, and hence x0.5 = F−
X (0.5).
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Fig. 3.3. Top: Distribution function Φ(x) . Bottom: Density function φ(x)

For an exponentially distributed variable X with FX(x) = 1 − e−x , we have
that x = F−

X (y) = − ln(1−y) , giving the median x0.5 = − ln(1−0.5) ≈ 0.69 .
Often income statistics is presented using median salary, which states that
half of a population earns more than the median. The related concepts of
quartiles denoted by x0.75, x0.25 are also often reported and mean the values
of incomes that salaries of 75 % , 25 % of the population exceeds x0.75, x0.25 ,
respectively. For the exponential variable X the quartiles x0.75, x0.25 are ob-
tained by solving the equations

P(X ≤ x0.75) = 1 − 0.75, P(X ≤ x0.25) = 1 − 0.25,

and are given by

x0.75 = F−
X (0.25) = − ln 0.75 ≈ 0.29, x0.25 = F−

X (0.75) = − ln 0.25 ≈ 1.39,

respectively.
The α quantile xα , 0 ≤ α ≤ 1 , is a generalization of the concepts of

median and quartiles and is defined as follows:


�

�



Definition 3.2. The quantile xα for a random variable X is defined by
the following relations:

P(X ≤ xα) = 1 − α, xα = F−(1 − α). (3.7)

Remark 3.3. In some textbooks, quantiles are defined by the relation P(X ≤
xα) = α ; then the inverse function F−(y) could be called the “quantile
function”. �
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Table 3.1. Quantiles of the standard normal distribution.

α 0.10 0.05 0.025 0.01 0.005 0.001
λα 1.28 1.64 1.96 2.33 2.58 3.09

Remark 3.4. Obviously, knowing all quantiles xα for a random variable X ,
we know the inverse function x = F−(y) and can easily construct the random-
number generator for X . If U is a uniformly distributed random number, then
X = x1−U . �

In Chapter 4 where tools for statistical analysis of data are presented, we
will make frequent use of quantiles for some common distributions:

Normal distribution. For a standard normal variable X ∈ N(0, 1) , the
quantiles are denoted λα . Thus, Φ(λα) = 1 − α . Values of λα are found
in tables for standard choices of α and are also usually implemented in
statistical software packages.

χ2 distribution. The α quantiles of the so-called χ2 distribution, to be
presented in Section 3.3.1, are denoted as χ2

α(f) , where f is an integer.

Quantiles of the standard normal distribution are given in Table 3.1 for
some common choices of α .

Quantiles are important in statistics when constructing confidence inter-
vals (see the next chapter). They are also of importance when focusing on
applications to risk and safety, and are used to describe loads and strengths
of components. We return to these issues in Chapters 8 and 9.

3.3 Scale and Location Parameters – Standard
Distributions

As mentioned before, the somewhat artificial formula (3.3) is useful for con-
struction of random variables with a desired distribution function F (x) . How-
ever, in practice we are often interested in distributions of functions of random
variables. Maybe the simplest case is just a linear changing of scales. More
precisely, for a fixed distribution FX(x) define a variable Y as follows

U = FX(X), Y = aX + b,

where a and b are deterministic constants (may be unknown); a is called
scale parameter and b is called location parameter. The distribution of Y is
easy to compute:

FY (y) = P(Y ≤ y) = P(aX + b ≤ y) = P(X ≤ y − b

a
) = FX(

y − b

a
).
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Definition 3.3. If two variables X and Y have distributions satisfying
the equation

FY (y) = FX(
y − b

a
)

for some constants a and b , we shall say that the distributions FY and
FX belong to the same class.

3.3.1 Some classes of distributions

Here we list some distributions of the continuous type that are focused on
particularly in the sequel of this book. For an overview of relationships between
some commonly used distributions, see the article by Leemis [48].

Exponential distribution

The class of exponentially distributed variables Y = aX has the form

FY (y) = 1 − e−y/a, y ≥ 0.

The density is

fY (y) =
1
a
e−y/a, y ≥ 0 (3.8)

while the quantile function, defined by Eq. (3.7), is given by

yα = −a lnα. (3.9)

This class is often used in applications as a model for failure time, for example
a machine breaking down or death caused by an accident.

Gamma distribution

A gamma distributed random variable Y has the probability density function

fY (y) =
ba

Γ (a)
ya−1e−by, y ≥ 0 (3.10)

where a > 0 , b > 0 and Γ (.) is the Gamma function1. Sometimes Y ∈
Gamma(a, b) is used as a shorthand notation2.

Several common distributions are obtained as special cases of the gamma
distribution. For instance, Gamma(n/2 ,1/2) leads to a chi-square distribu-
tion, notated as χ2(n) , and Gamma(1 ,1/a) is the exponential distribution in
the form presented in Eq. (3.8).

1 Γ (p) =
∫∞
0

tp−1e−t dt, p > 0 . For p an integer, Γ (p) = (p − 1)! When p is
not an integer, the relation pΓ (p) = Γ (p + 1) is useful.

2Note that here 1/b is the scale parameter while a is a form parameter.
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Weibull distribution

The general form of the three-parameter family of Weibull distributions Y =
aX + b . With a shape parameter c ,

FY (y) = 1 − e−((y−b)/a)c

, y ≥ b, and zero for y < b.

(Observe that we usually assume that b = 0 .) The density is

fY (y) =
c

a

(
y − b

a

)c−1

e−((y−b)/a)c

, y ≥ b, and zero otherwise

while the quantile function, defined by Eq. (3.7), is given by yα = b +
a(− ln α)1/c . The Weibull distribution is commonly used as a model for
strength of materials, obeying the “weakest link” principle: a chain will
break when its weakest link breaks; cf. the original papers by Waloddi
Weibull [80], [81].

Normal distribution

Let X be a standard normal variable denoted usually as X ∈ N(0, 1) ; then
the variable Y = σX + m (for normal variables we customarily use m and
σ instead of b ,a , respectively) is also normally distributed, which we write
as Y ∈ N(m,σ2) . Note that the variable −X has the same distribution as X
and hence we need only to consider positive values of σ . The density of Y is

fY (y) =
1

σ
√

2π
e−(y−m)2/2σ2

, −∞ < y < ∞

and

FY (y) = P(Y ≤ y) = P(σX + m ≤ y) = P(X ≤ (y − m)/σ) = Φ(
y − m

σ
),

where Φ (cf. Eq. (3.6)) is the distribution of an N(0, 1) variable. The quantile
function yα is given by

yα = m + σλα, (3.11)

where λα is a quantile of X . The quantile λα is often used in statistical
analysis and hence has been tabulated, see Table 3.1. It can also be found
from a table for Φ(x) function by means of the inverse λα = Φ−1(1 − α) .

The class of normal distributions is extremely versatile. From a theoretical
point of view, it has many advantageous features; in addition, variability of
measurements of quantities in science and technology are often well described
by normal distributions.

Gumbel distribution

The family of Gumbel distributions has a form

FY (y) = exp (−e−(y−b)/a), −∞ < y < ∞.
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The quantile function is yα = b − a ln(− ln(1 − α)) , while the density

fY (y) =
1
a

e−(y−b)/a exp(−e−(y−b)/a), −∞ < y < ∞.

This class has proven to be useful in situations where the variable models the
maximum load on a system. It is an important tool in design of engineering
systems, e.g. in order to calculate design loads.

3.4 Independent Random Variables

The notion of independent events was introduced in Section 1.2. In the present
section, we extend this notion and discuss independence for random variables.
First, we introduce the concept of a sequence of independent identically dis-
tributed random variables.

Construction of iid variables

Let us consider a vector of k independent uniformly distributed variables3
U1, U2, . . . , Uk . Since the numbers are independent then, by solving k equa-
tions Ui = F (Xi) , we obtain k independent variables X1, X2, . . . , Xk , each
being F (x) distributed. Such a vector is composed of the so-called iid (inde-
pendent, identically distributed) variables.

Obviously, the construction easily extends to not identically distributed
variables. Next we give a condition that has to be true in order to have inde-
pendent variables.

Independent random variables

We now consider random variables having different distributions and start
with the case of two distributions. In Chapter 1, we said that two events
(statements) A1 , A2 are independent if

P(A1 ∩ A2) = P(A1)P(A2).

For random variables X1 and X2 with distribution functions F1(x) , F2(x) ,
respectively, we state that if any statement about X1 is independent of a
statement about X2 , then they are independent. Let A1 be a statement about
X1 , for example A1 = “X1 ≤ 5”, and A2 = “X2 ≤ −1”. Then

P(A1 ∩ A2) = P(X1 ≤ 5 and X2 ≤ −1) = P(X1 ≤ 5)P(X2 ≤ −1)
= F1(5)F2(−1).

3This can be interpreted as a result of k persons flipping independently, each of
them say 100 times, a fair coin, rendering k uniformly distributed random numbers.
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For random variables there is a convention that the word “and” relating the
events is replaced by a comma and hence

P(X1 ≤ 5 and X2 ≤ −1) = P(X1 ≤ 5, X2 ≤ −1).

It would be very hard to check whether all statements about X1 and all
statements about X2 are independent and it is also not necessary. Again, the
statements “X1 ≤ x1 ” and “X2 ≤ x2 ” will play an important role in defining
independence between two variables X1 and X2 , see the following definition.�

�

�

	

Definition 3.4 (Independent random variables). The variables X1

and X2 with distributions F1(x) and F2(x) , respectively, are indepen-
dent if for all values x1 and x2

P(X1 ≤ x1, X2 ≤ x2) = F1(x1) · F2(x2).

The function

FX1, X2(x1, x2) = P(X1 ≤ x1 and X2 ≤ x2) (3.12)

is called the distribution function for a pair of random variables. The prob-
ability of any statement about X1, X2 can be computed (at least in theory)
if the distribution function FX1, X2(x1, x2) is known (for example by means
of Eq. (5.6), to be presented in Chapter 5). The distribution of a vector of
n random variables is defined in a similar way. In the following chapters we
shall mostly deal with independent random variables. In such a case their
distribution is given by

FX1,...,Xn
(x1, . . . , xn) = P(X1 ≤ x1, . . . , Xn ≤ xn)

= F1(x1) · F2(x2) · . . . · Fn(xn). (3.13)

3.5 Averages – Law of Large Numbers

For a random variable X , the probability of any statement A about X can
be computed when the distribution FX(x) is known. In Section 3.1.1 we
introduced a procedure giving numbers as an output (numbers whose values
cannot be known in advance). The procedure was called a random-number
generator and was a way to construct a random variable with distribution
F (x) . The proof that X had distribution F (x) was based on the fact that X
was a transformation of a random variable U , X = F−(U) , while U had the
property that any outcome was equally probable. Consequently, P(X ≤ x) =
F (x) is the only possible probability that would satisfy Definition 1.2.

Now, let us consider an r.v. X , which is the unknown numerical output
of a real-world experiment. If X is the result of rolling a die, then similar
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arguments, assuming the die is fair, would give the distribution of X . How-
ever, for many r.v. X used to model quantities in real-word experiments, the
distributions F (x) cannot be derived from the assumption that the outcomes
of the experiment are equally probable. Hence another approach is needed.

The possible solution, in many cases, is based on the assumption that
the experiment can be repeated in an independent manner, resulting in a
vector X1, . . . , Xn of r.v. all having the distribution F (x) . If the assumption
of independence can be motivated, then the distribution F (x) can be found
using the following, fundamental result from probability theory: the Law of
Large Numbers (LLN).

We return to the problem of finding F (x) in the next chapter, where we
discuss the classical inference theory, also called frequentistic approach.�

�

�

	

Theorem 3.3. Law of large numbers: Let X1, . . . , Xk be a sequence of
iid (independent identically distributed) variables all having the distribution
FX(x) . Denote by X̄ the average of Xi , i.e.

X̄ =
1
k

(X1 + X2 + · · · + Xk). (3.14)

(Obviously X̄ is a random variable itself.) Let us also introduce a constant
called the expected value of X , defined by

E[X] =
∫ +∞

−∞
xfX(x) dx,

if the density fX(x) = d
dxFX(x) exists, or

E[X] =
∑

x

xP(X = x),

where summation is over those x for which P(X = x) > 0 . If the expected
value of X exists and is finite then, as k increases (we are averaging more
and more variables), X̄ ≈ E[X] with equality when k approaches infinity.

Remark 3.5. Note that for random variables Xi such that Xi = 1 if A is
true and zero otherwise, E[X] = P(A) . �

For the most common distributions, the expectations have been calculated
and can be found in tables. As illustration, we study two examples: one for a
r.v. of discrete type, the other for a r.v. of continuous type.

Example 3.2. Recall the binomial distribution and let X ∈ Bin(n, p) .

E[X] =
n∑

k=0

k P(X = k) =
n∑

k=0

k

(
n

k

)
pk(1 − p)n−k = np.
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(We have omitted the mathematical details when calculating the sum.) Known
values of n and p immediately gives us the expectation; e.g. n = 7 , p = 0.15
as in Example 1.7 yields E[X] = 1.05 . �

Example 3.3. Let X be exponentially distributed with density function

fX(x) =
1
a
e−x/a, x ≥ 0.

Then E[X] is given by

E[X] =
∫ ∞

0

xfX(x) dx =
∫ ∞

0

x

a
e−x/a dx =

[
−xe−x/a

]∞
0

+
∫ ∞

0

e−x/a dx

= a,

where we used integration by parts. �

3.5.1 Expectations of functions of random variables

From LLN it follows that even the average of functions Zi = G(Xi) , say, must
converge to a constant that we denote by E[Z] = E[G(X)] , i.e.

1
k

(G(X1) + G(X2) + · · · + G(Xk)) → E[G(X)] as k → ∞, (3.15)

if

E[G(X)] =
∫ +∞

−∞
G(x)fX(x) dx, or E[G(X)] =

∑
x

G(x)P(X = x),

(3.16)

exists.

Linear functions

A simple example is a linear function, that is, G(x) = ax+b . From Eq. (3.16)
it then follows that

E[G(x)] = E[aX + b] =
∫ +∞

−∞
(ax + b)fX(x) dx (3.17)

= a

∫ +∞

−∞
x fX(x) dx + b

∫ +∞

−∞
fX(x) dx = aE[X] + b.

This linearity property is important, and we will make use of it in the next
chapter in a generalized form for random variables X1, . . . , Xn and coefficients
c1, . . . , cn

E[c1X1 + · · · + cnXn] = c1E[X1] + · · · + cnE[Xn]. (3.18)
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Power functions. Variance

Especially important functions G(x) are powers, i.e. G(x) = xk . For k = 2 ,
we obtain the so-called second moment of X , i.e. E[X2] . Somewhat more
often used is the so-called variance

V[X] = E[(X − E[X])2] = E[X2] − E[X]2, (3.19)

which measures the average squared distance between the random variable and
its expected value. Variance is a measure of variability for random numbers
(higher variance is related to higher variability).

One can show that for the variance,

V[aX + b] = a2V[X] (3.20)

and that for a sequence of independent random variables X1, . . . , Xn and
coefficients c1, . . . , cn

V[c1X1 + · · · + cnXn] = c2
1V[X1] + · · · + c2

nV[Xn]. (3.21)

This is an important result that will be used in Section 4.4; see also the
following example.

Example 3.4. Consider the random variable

X̄ =
1
n

(
X1 + X2 + · · · + Xn

)
where X1, X2, . . . , Xn are iid with E[Xi] = m and V[Xi] = σ2 . By using
Eqs. (3.18) and (3.21), one finds

E[X̄] = m, V[X̄] =
σ2

n
. (3.22)

�

Standard deviation and coefficient of variation

Related concepts are the standard deviation D[X] =
√

V[X] , and for X with
positive expectation (i.e. E[X] > 0) the coefficient of variation defined as

R[X] =
D[X]
E[X]

, (3.23)

which measures “pure” variability of X : the influence of units in which X
is measured is removed. Observe that if D[X] = 0 then the variable is a
deterministic constant. If D[X] ≈ 0 we may think that X is almost constant
but it may be only a consequence that one is using wrong units. For example,
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let X be the length of a randomly chosen person measured in microns4; then
the variance will be astronomically large. On the contrary, if we use kilometres
as the scale of X , the variance will be close to zero and hence X almost
constant. However, the coefficient of variation R[X] would be the same in
both cases. It is also called the relative uncertainty. Consequently, if R[X] ≈ 0
then X is almost a constant independently of units used.

For the classes of standard distributions, it is not necessary to compute in-
tegrals to find values of E[X] or V[X] . There are tables where these quantities
are presented as a functions of parameters for different classes of distributions,
see appendix.

Problems

3.1. The time intervals T (in hours) between emergency calls at a fire station are
exponentially distributed as

FT (t) = 1 − e−0.2t, t ≥ 0.

(a) Find the probability for the time between emergencies to be longer than 3 hours.
(b) Find the expected value of T . (Hint. Use the table on page 252.)

3.2. Which of the following functions are probability density functions?

(i) f(x) = 1
2
, −1 ≤ x ≤ 1

(ii) f(x) = e−x, 0 ≤ x ≤ 1
(iii) f(x) = π2x e−πx, 0 ≤ x < ∞
(iv) f(x) = sin x, 0 ≤ x ≤ 3π

2

3.3. Specific load-bearing capacity is defined as the 95 % quantile of the real load-
bearing capacity. In other words, the probability that the real load-bearing capacity
will exceed the specific one is 0.95. Calculate the specific load-bearing capacity if
the real capacity is assumed to be Weibull distributed with distribution function

F (x) = 1 − e−(x/a)k

, x > 0.

The parameters are a = 10 , k = 5 .

3.4. The random variable X is Gumbel distributed. Give the distribution for Y =
eX .

3.5. A random variable Y for which

P(Y > y) =

{
1, y ≤ 0,
e−y2/a2

, y > 0,

is said to belong to a Rayleigh distribution (a > 0).

(a) Find the distribution function FY (y) .
(b) Give the density function fY (y) .

41 micron = 10−6 m.
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3.6. Show by partial integration that for a non-negative continuous random variable
T with existing E[T ] , the expected value E[T ] can be calculated as

E[T ] =

∫ ∞

0

1 − FT (t) dt.

3.7. Use the result in Problem 3.6 to calculate the expected value for a Rayleigh
distributed random variable (see Problem 3.5). Hint: Use that

∫∞
−∞ e−u2

du =
√

π .

3.8. A random variable X with the density function

f(x) =
1

π(1 + x2)
, −∞ < x < ∞

is said to belong to a Cauchy distribution.

(a) Calculate the median.
(b) Show that the expected value E[|X|] = ∞ and hence E[X] does not exist.

3.9. Consider the high-water volume rate (m3/s) in a certain river. Suppose the
maximal rate during one year, X , is Gumbel distributed

FX(x) = exp(−e−(x−b)/a), −∞ < x < ∞,

where a = 7.0 m3/s and b = 35 m3/s. The 0.01 quantile x0.01 of X is called the
100-year flow. Find the value of the 100-year flow for this river.

3.10. Let X ∈ N(0, 1) . Find the quantiles x0.01 , x0.025 , and x0.95 .

3.11. Let Z ∈ χ2(5) . Find the quantiles χ2
α(5) for α = 0.001 , 0.01 , 0.95 .

3.12. Suppose that the height of a man in a certain population is normally distrib-
uted with mean 180 (cm) and standard deviation 7.5 (cm).

(a) Calculate the probability that a man is taller than 2 metres.
(A practical interpretation of this result is that we have a population of men and
choose one person at random (each person has the same chance to be chosen). If
X is the length of the person, then P(X > 200) is the fraction of the population
with this property.)

(b) Calculate the quantile x0.01 when X ∈ N(180, 7.52) . Interpretation?

3.13. Let X ∈ Gamma(10, 2) . Define Y = 3X − 5 and calculate E[Y ] and V[Y ] .

3.14. Let X be an exponentially distributed random variable with expectation
E[X] = m . Find the coefficient of variation R[X] .
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Fitting Distributions to Data – Classical
Inference

In Chapter 3, computations of probabilities assigned to statements about nu-
merical outcomes of random experiments were discussed. The results of such
experiments were denoted by X and identified as random variables1.

Uncertainty in the values of X was described by a cumulative distribu-
tion function (cdf) FX(x) = P(X ≤ x) , since the probability of any state-
ment about future values of X can be computed if FX(x) is known. Fur-
thermore, knowing the distribution, random-number generators can be con-
structed, which give numerical outputs having the uncertainty described by
FX(x) . Random-number generators are very useful tools in risk assessments
of complicated systems whose behaviours have to be simulated. Then the un-
certain initial values (unknown constants, future measured quantities, etc.)
can be generated using random-number generators with suitable distributions
describing the uncertainty of the parameters or variability of not yet observed
quantities.

In practice the distributions are seldom known and have to be determined
in a coherent way. This chapter is devoted to the problem of finding (estimat-
ing) a function F (x) that can be used as an approximation of the unknown
distribution function FX(x) . Rephrasing, one wishes to assign probabilities
to statements about X , which well describe the uncertainties whether state-
ments are true for future values of X .

The estimation of FX(x) is based on the assumption that the random
experiment is repeatable in an independent manner (see discussion of different
uses of probabilities in the Introduction of Chapter 2 and in Section 3.5).
This assumption allows us to interpret the probabilities of a statement A ,
say, about X , as the relative frequency of times A is true as the number n of
repetitions of a random experiment is increasing to infinity. This interpretation
of probability P(A) was introduced in Section 2.4 and motivated by the Law
of Large Numbers (LLN). This law was given in Theorem 3.3, see also the
following remark for more details on how the law is used in the present context.

1Formally, random variables are functions of outcomes, here identities X(x) = x
and hence identified with random experiments.
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Remark 4.1. The Law of Large Numbers (LLN) states that, under some con-
ditions, the average value of independent observations of random experiment
converges to a constant, called the expected value. Now, let Xi be a sequence
of iid (independent identically distributed) variables having the same distrib-
ution as X . (One can see Xi as the ith outcome of random experiment X .)
Let

Zi =

{
1 if A is true for Xi,
0 otherwise,

then, by LLN, Z̄ = 1
n

∑n
i=1 Zi converges to E[Zi] . Now

E[Zi] = 1 · P(Zi = 1) + 0 · P(Zi = 0) = P(X ∈ A).

�

Suppose that the experiment has been performed in an independent man-
ner a number of times n , say, giving a sequence of values of the random
variable X , x1, . . . , xn . (In practice n is always finite.) The values xi will be
called data or observations and the distribution function will reflect variabil-
ity in observed data. More precisely, let Pn(A) be the fraction of xi for which
A was true, i.e. Pn(A) = 1

n

∑n
i=1 zi with zi as defined in Remark 4.1. By

LLN, if n is large, Pn(A) ≈ P(A) . Now Pn(·) is a well-defined probability,
satisfies the axiom given in Definition 1.2, and can be computed for any A .
Since the probability describes the observed variability of data it is called an
empirical probability. Similarly as in Chapter 3, statements A = “X ≤ x ” are
particularly important and Pn(X ≤ x) = Fn(x) , see the following definition.�

�

�

	

Definition 4.1. Let x1, . . . , xn be a sequence of measurements (taking val-
ues in an unpredictable manner), then the fraction Fn(x) of the observa-
tions satisfying the condition “ xi ≤ x”

Fn(x) =
number of xi ≤ x, i = 1, . . . , n

n

is called the empirical cumulative distribution function (ecdf).

Example 4.1 (Life times of ball bearings). In an experiment, the life
times of ball bearings were recorded (million revolutions), see [34]. Consider
the following 22 observations (sorted in order):

17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.48, 51.84,
51.96, 54.12, 55.56, 67.80, 68.64, 68.88, 84.12, 93.12,
98.64, 105.12, 105.84, 127.92, 128.04, 173.40.

The ecdf obtained by use of the definition is shown in Figure 4.1. �
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Fig. 4.1. Empirical distribution function, 22 observations of life times for ball
bearings.

Obviously Fn(x) is a non-decreasing function, further, Fn(−∞) = 0 and
Fn(+∞) = 1 and hence it is a distribution. We now construct a random
number that has distribution Fn(x) .

Remark 4.2 (Resampling algorithm). Let x1, . . . , xn be a sequence of
measurements and Fn(x) be the empirical cumulative distribution function.
Let X̃ be a random number having distribution Fn(x) . Independent obser-
vations of X̃ can be generated according to the following algorithm:

Write the observed xi on separate pieces of papers called lots. Put lots
into an urn, mix them well, and draw one from the urn. The number
written on the chosen lot, denoted by x̃1 , is the observation of a r.v.
X̃1 having distribution Fn(x) . Finally, put the lot back into the urn
and mix well.

If one wishes to have a sequence of k observations of independent variables
X̃i , i = 1, . . . , k with common distribution Fn(x) just repeat the procedure
k times. �

Properties of Fn(x) for large number of observations

The LLN tells us that if xi are outcomes of iid random variables Xi with
a common distribution FX(x) then, as n grows to infinity, the empirical
distribution Fn(x) converges to a distribution function FX(x) . Even more
can be said: the Glivenko–Cantelli Theorem, see e.g. [82], states that even the
maximal distance between Fn(x) and FX(x) tends to zero when n increases
without bounds, viz. maxx |FX(x) − Fn(x)| → 0 as n → ∞ with probability
one. However, n is always finite and moreover, in many problems encountered
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in safety or risk analysis, n is small. Using Fn as a model for FX , i.e. assuming
that FX(x) = Fn(x) , means that the uncertainty in the future (yet unknown)
value of the observation of X is the same as the uncertainty of drawing lots
from an urn, where lots contain only the previously observed values xi of
X , see Remark 4.2. In many cases, such a random model of the variability
of an observed sequence xi can be sufficient. However, there are statements
about an outcome of an experiment, which are false for all xi that have been
observed up to now. Consider again Example 4.1 and let A = “Lifetime of a
ball bearing is longer than 190 million revolutions”. Using FX(x) = Fn(x) we
find from Figure 4.1 that P(A) = 0 . However, we are quite sure that if we
wait long enough and test further ball bearings, xi > 190 will happen.

Simply, the empirical distribution contains no information about possible
extreme values that have not been observed in a finite sequence. If we wish to
make some predictions about the chances of receiving extreme values without
observing them, hypotheses are needed about the values of FX outside the
region of observations. One way of solving this problem is to assume that FX

belongs to a family of distributions, e.g. normal, exponential, Weibull, etc.,
which limits the possible shapes of the distributions. The problem boils down
to estimation of scale- or location parameters (cf. Chapter 3.3) in the actual
distribution. That problem is discussed in more detail in Section 4.3. Based
on observations, one of the possible “shapes” are chosen, for example the one
that is (in some sense) closest to the empirical distribution. Methods for this
are presented in the following section.

4.1 Estimates of FX

The previously defined empirical distribution function can be used as an ap-
proximation of the unknown distribution for a given data set. However, the
convergence of Fn(x) to FX(x) is slow, hundreds of observations are needed
(see discussion in Chapter 2.4) to get acceptably small relative errors. Often
in practical situations n can be small, especially when experiments are expen-
sive to perform or seldom observed. For example, when estimating strength of
material it is not rare to have less than 10 observations xi . In such situations
one wishes to use another estimate of FX(x) than the empirical distribution
Fn(x) .

Example 4.2 (Periods between earthquakes). We return to Example 1.1.
Periods between serious earthquakes are modelled by an r.v. X . By experi-
ence (see also Chapter 7 for theoretical motivations) we expect X to have
an exponential cdf F (x; a) = 1 − exp(−x/a) , x ≥ 0 , where a is an unknown
parameter that has to be found. For example, one could choose a value a∗

such that the empirical distribution Fn(x) and F ∗(x) = F (x; a∗) are close to
each other. Since the expected value of an exponentially distributed variable
is just a and the mean x̄ converges to the expectation (by LLN) as n tends
to infinity, let us choose a∗ = x̄ = 437.2 hours.
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In Figure 4.2, left panel, we can see both Fn(x) (stairwise function) and
F ∗(x) = 1 − exp(−x/437.2) (solid line). The curves seem to well follow each
other. In order to motivate this opinion we perform a Monte Carlo experi-
ment. We simulate 62 random numbers using an exponential random-number
generator with mean 437.2 and based on this, compute the ecdf F̃n(x) . Now
we know that the difference between F̃n(x) and FX(x) = 1 − exp(−x/437.2)
reflects estimation error only due to the limited number of observations. The
empirical distribution is presented in Figure 4.2, right panel. Conclusion: 62
observations is not much and the ecdf F̃n(x) can differ quite a lot from the
true distribution FX(x) . �

The discussion in the last example contained three main steps: choice
of a model, finding the parameters, and analysis of error (in other words,
checking if the model does not contradict the observations). These three steps
are the core of a parametric estimation procedure to model the distribution
FX(x) . In the following we describe the three steps, introducing a more concise
framework:

I Modelling. Choose a model, which means one of the standard distribu-
tions F (x) , for example normal, exponential, Weibull, Poisson, etc. Next
postulate that

FX(x) = F
(x − b

a

)
,

where a and b are unknown scale and location parameters. There are fam-
ilies of distributions that in addition have a shape parameter c . Examples
encountered in this book are Weibull, GEV (generalized extreme value),
and GPD (generalized Pareto distribution). For notational convenience,
denote the vector of parameters by θ , i.e. θ = (a, b, c) , and the model by
F (x; θ) .
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Fig. 4.2. Left: Original data, ecdf; Right: Simulated data, ecdf.
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II Estimation. On the basis of the observations x = x1, x2, . . . , xn select a
value of the parameter θ . Since the chosen value depends on data it will
be denoted by

θ∗(x) =
(
a∗(x), b∗(x), c∗(x)

)
.

The functions in θ∗(x) are called estimates of the unknown parameters
in θ .

III Error analysis. The estimation error e = θ − θ∗ is in reality unknown
and the best we can do is to study its variability. In order to do it we
introduce the concept of an estimator, which consists of gathering of data
and computation of estimates. More precisely, the values of x (which
are unknown in advance) are treated as outcomes of a random vector
X := (X1, X2, . . . , Xn) . Then the estimator

Θ∗ =
(
a∗(X), b∗(X), c∗(X)

)
is a random variable modelling the uncertainty of the value of an es-
timate due to the variability of data. (Sometimes we also write Θ∗ =
(A∗, B∗, C∗) .) Now the error e = θ−θ∗ is an outcome of the random vari-
able E = θ − Θ∗ . The variability of the error can be described by finding
the probability distributions of

E = (E1, E2, E3) = (a − A∗, b − B∗, c − C∗).

If the chosen model contains FX(x) , usually the error FX(x)−F (x; θ∗) is
much smaller than the error FX(x)−Fn(x) . Hence our estimates of probabil-
ities calculated from the distribution can be quite accurate even if the number
of observations is limited. (It requires a lesser number of observations to get
useful estimates of the probabilities of interest.) However, we face a problem
of model error: simply, the distribution FX(x) looked for does not belong to
the chosen class of distributions. Thus it is always recommended to make a
sensitivity analysis of computed risk measure for the model error.

4.2 Choosing a Model for FX

The choice of a family of distributions F (x; θ) to model FX often depends
on experience from studies of similar experiments or by analysis of data. Note
also that the estimate F (x; θ∗) is often used in computations of some proba-
bilities or other measures of risks, hence models that make the computations
as simple as possible are preferable. In the following subsections we discuss
some methods to check whether the chosen model is not contradicted by the
variability observed in data.
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4.2.1 A graphical method: probability paper

Let F (x; θ∗) be the cdf chosen to approximate the unknown probability dis-
tribution FX(x) . A natural question is whether we can verify that F (x; θ∗)
is a good model. How to perform this task is not obvious since the truth is
unknown. Suppose now the observations are independent and hence the ecdf
Fn(x) is close to FX(x) at least when n is large. Consequently, the simplest
check of the correctness of the model is to compare F (x; θ∗) with Fn(x) . Here
it is important that the horizontal distance between F (x; θ∗) and Fn(x) is
small, which means that the quantiles are close. (Recall the definition of a
quantile from Section 3.2.)

The visual estimation of the horizontal distance between F (x; θ∗) and
Fn(x) is not simple since for high and low values of x , both F (x; θ∗)
and Fn(x) are almost parallel to the abscissa. In order to avoid this nuisance,
one uses the so-called probability papers. For historical reasons, one speaks of
papers, in spite of the fact that computer programs with graphics facilities
are used today. The graphical method is suitable for many of the distributions
encountered in risk analysis: Weibull, Gumbel, exponential. Also the normal
and lognormal distributions can be handled with this approach. In this book
we use the papers only for the purpose of model validation. The idea is sim-
ple; change the scales so that the curve (x, F (x; θ)) becomes a straight line
for all values of the parameter θ . For simplicity, the probability scale, shown
in Figure 4.3 right panel, is often omitted.

Suppose that θ = (a, b) , i.e. F (x; θ) = F ((x − b)/a) , where a and b are
scale and location parameters, respectively, while F (.) is a known cdf. Let us
assume that

FX(x) = F

(
x − b

a

)
. (4.1)
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Fig. 4.3. Left: Exponential distribution investigated; observations plotted as(
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)
. Right: Normal distribution investigated; observations plotted

in normal probability paper.
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Now let us solve for (x − b)/a in Eq. (4.1); then one obtains

F−(FX(x)) =
x − b

a
,

and hence dots with coordinates (x, F−(FX(x))) lie on a straight line. Here
F−(.) is the inverse function to F (.) defined in Chapter 3.

The idea is simple but a practical problem is that FX(x) is unknown.
Thus in practice, it is replaced by the ecdf Fn(x) . Now dots with coordinates
(x, F−(Fn(x))) should be close to a straight line if n is large, since Fn(x) ≈
FX(x) . Consequently, if the curve (x, F−(Fn(x))) is not close to the straight
line it gives strong indication that Eq. (4.1) cannot be true, i.e. our model is
wrong.

Example 4.3 (Exponential distribution). Suppose one believes that the
studied variable X is exponentially distributed. This means that FX(x) =
1 − e−x/a , i.e. θ = a . The solution of Eq. (4.1) is x/a = − ln(1 − FX(x)) .
Since FX(x) is unknown it is replaced by the ecdf. Dots with coordinates(
xi,− ln(1 − Fn(xi))

)
are plotted on the figure and they should be close to a

straight line if the exponential distribution is a good model.

Periods between earthquakes. We turn again to studies of periods between
earthquakes, cf. Example 4.2. As will be shown in Chapter 7, a more complex
study of the variability of times of occurrences of earthquakes simplifies if the
periods between earthquakes are independent and exponentially distributed.
Consequently this is our first choice for the model and we will check whether
the available data do not contradict it.

In Figure 4.3, we see that the points
(
xi,− ln(1−Fn(xi))

)
follow a straight

line and hence we will keep the model. Note that the same data plotted on
normal probability paper clearly form a bent curve; hence normal distribution
would not be appropriate to model variability of these data. �

In the approach with probability paper, one heavily makes use of an assump-
tion that Fn(x) is close to FX(x) if n is large. In the following remark we
further discuss that this does not always have to be correct.

Remark 4.3 (The inspection paradox). The empirical distribution is a
means to describe the variability of the observations of a random variable X .
One can ask if Fn(x) is always a “good” (although irregular) estimate of the
unknown distribution FX(x) . If the collected values are independent then by
LLN Fn(x) will converge to FX(x) as the number of observations n tends to
infinity. In practice the method of collection of data may introduce dependence
into the sequence of observations causing bias, which manifests that Fn(x)
does not converge to FX(x) .

Suppose we wish to know the distribution of X , the average income per
person in a family chosen at random. Data will be gathered according to the
following scheme: Select at random a person (using a personal identification
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code) and then ask for an estimate of the average income in his/her family.
The ecdf of the so collected data can be biased and not converge to FX —
the problem is that large families have higher probability to be selected than
singles do.

The discussed sampling problem is a version of the so-called “inspection
paradox”, which states that the interval between accidents that contains a
fixed time t , e.g. the period between earthquakes that contains the time Jan. 1,
2010, tends to be larger than an ordinary interval. Intuitively, larger intervals
have a greater chance to contain the fixed time t . The inspection paradox, if
overlooked, can lead to serious errors in practical situations (Fn(x) may differ
considerably from FX(x)); see [67] for more detailed discussion. �

4.2.2 Introduction to χ2 -method for goodness-of-fit tests

The method to be presented offers ways to test whether data do not contradict
the model. (It does not imply that the model is correct, one just checks if it
is not obviously wrong.) First, let us consider a simple version of the method,
useful in situations where data are collected in classes as illustrated by the
following example.

Example 4.4 (Rolling a die 20 000 times). In 1882, R. Wolf rolled a die
n = 20 000 times and recorded the number of eyes shown ([84], the data set
is found in [34]). The result is given in the table below:

Number of eyes i 1 2 3 4 5 6
Frequency ni 3407 3631 3176 2916 3448 3422

If the die were fair, then we have the probabilities

pi = P(“The die shows number i”) =
1
6
.

The estimated probabilities p∗i = ni/n are equal to

p∗i = 0.1704, 0.1815, 0.1588, 0.1458, 0.1724, 0.1711.

Our problem is, on the basis of this data set, to decide whether we still can
believe that the die is fair, and hence pi = 1/6 in the next roll, or not. Can
the difference pi − p∗i be explained by the estimation error as n is finite? Or
are errors pi − p∗i too large and hence caused by model error? �

The χ2 test

The following method, called χ2 test, has been developed by Karl Pearson
(1857-1936). The quantity Q in Eq. (4.2) is sometimes called Pearson statis-
tic. The interpretation of the test procedure is as follows. Denote by α the
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probability of rejecting a true hypothesis. This number is called the signifi-
cance level and α is often chosen to be 0.05 or 0.01. Rejecting H0 with a lower
α indicates stronger evidence against H0 . Not rejecting the hypothesis does
not mean that there is strong evidence that H0 is true. It is recommendable
to use the terminology “reject hypothesis H0 ” or “not reject hypothesis H0 ”
but not to say “accept H0 ”.

Consider an experiment that can result in r different ways (classes). Let
ni , i = 1, . . . , r , denote the number of experiments resulting in outcome i ,
while the total number of experiments n = n1 + · · · + nr . Suppose that pi ,
denoting the probability that any trial results in outcome i , are known.�

�

�

	

χ2 test. Consider the hypothesis

H0 : P(“Experiment results in outcome i”) = pi, i = 1, . . . , r.

The test procedure is as follows:
1. Calculate

Q =
r∑

i=1

(ni − npi)2

npi
(4.2)

where pi are the probabilities we are testing for.
2. Reject H0 if Q > χ2

α(f) , where f = r − 1 .
Further, in order to use the test, as a rule of thumb one should check that
npi > 5 for all i (see [13], [85] and references therein).

If n is large, this test has approximatively significance α , i.e. the probability
of rejecting true hypothesis is α .

Example 4.5 (Wolf’s data). Using Eq. (4.2), we get

Q = 1.6280 + 26.5816 + 7.4261 + 52.2501 + 3.9445 + 2.3585 = 94.2

Since f = r − 1 = 5 and the quantile χ2
0.05(f) = 11.1 , we have Q > χ2

0.05(5) ,
which leads to rejection of the hypothesis of a fair dice. �

Goodness-of-fit tests

The χ2 test can also be adapted to the situation when one observes results of
experiments that are modelled by a continuous random variable X . Suppose
that one wishes to check whether data do not contradict the model FX(x) =
F (x, θ) . Our problem is that the χ2 test is constructed for a discrete r.v., i.e.
experiments have a finite number of possible results.

A way to go around this difficulty is to represent data by its histogram.
More precisely let us introduce a partition

−∞ = c0 < c1 < c2 < . . . < cr−1 < cr = +∞
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The observations in x are then classified into r groups by checking which of
the conditions ci−1 < xj ≤ ci that are satisfied. Then ni is the number of
observations in x that falls in the interval (ci−1, ci] . Now if FX(x) = F (x, θ) ,
the probability of getting observations in the class i is

pi(θ) = F (ci, θ) − F (ci−1, θ), i = 1, . . . , r.

If the parameter θ were known, one could compute the χ2 test as described
before. This is a rare situation in risk or safety analysis and one would prefer
to test whether data do not indicate the presence of model error, i.e. that the
estimated model F (x; θ∗) does not fit the unknown FX(x) . This can be done
as follows:

For the partition c0, . . . , cr , let ni , i = 1, . . . , r , denote the number of
observations xj satisfying ci−1 < xj ≤ ci , while the total number of obser-
vations n = n1 + · · · + nr . Let θ∗ be an estimate of the parameter θ having
k elements. (If θ = (a, b, c) then k = 3 .) Next, let

p∗i = pi(θ∗) = F (ci, θ
∗) − F (ci−1, θ

∗).�

�

�

	

Goodness-of-fit test. Consider the hypothesis H0 : FX(x) = F (x, θ∗) .
The test procedure is as follows:
1. Calculate

Q =
r∑

i=1

(ni − np∗i )
2

np∗i
. (4.3)

2. Reject H0 if Q > χ2
α(f) , where f = r− k − 1 and k is the number of

estimated parameters.
(Again, as a rule of thumb one should check that npi > 5 for all i .)

If n is large, at least around 100, this test has approximatively significance
α , i.e. the probability of rejecting a true hypothesis is α . In the following
example the number of observations will be too low in order to claim the
significance of the test to be α .

Example 4.6 (Testing for exponential distribution). Consider the data
set with 62 recorded periods between serious earthquakes (days):

840 157 145 44 33 121 150 280 434 736
584 887 263 1901 695 294 562 721 76 710
46 402 194 759 319 460 40 1336 335 1354

454 36 667 40 556 99 304 375 567 139
780 203 436 30 384 129 9 209 599 83
832 328 246 1617 638 937 735 38 365 92
82 220
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In Example 4.3, we discussed as a model for this situation an exponential
distribution F (x; θ) = 1 − exp(−x/θ) with θ∗ = 437.2 . We now perform a
hypothesis test of this model.

Let us describe variability of data by means of the histogram and introduce
c0 = 0 , c1 = 100 , c2 = 200 , c3 = 400 , c4 = 700 , c5 = 1000 , and c6 =
∞ . Consequently, r = 6 and ni the number of observed periods between
earthquakes xj satisfying condition ci−1 < xj ≤ ci . For example, n1 is the
number of observations not exceeding 100 and thus n1 = 14 . The remaining
values of ni are n2 = 7 , n3 = 14 , n4 = 13 , n5 = 10 , and n6 = 4 .

Returning to the exponential distribution, we now find

p∗1 = 1 − e−100/437.2 = 0.2045,

p∗2 = e−100/437.2 − e−200/437.2 = 0.1627,

and in a similar manner p∗3 = 0.2323 , p∗4 = 0.1989 , p∗5 = 0.1001 , and p∗6 =
0.1015 . The Pearson statistic is

Q = 0.1376 + 0.9449 + 0.0113 + 0.0362 + 2.3191 + 0.8355 = 4.285.

Now f = 6 − 1 − 1 and with α = 0.05 , the quantile χ2
0.05(4) = 9.49 . Hence

Q < χ2
0.05(4) , which leads to the conclusion that the exponential model can

not be rejected. �

We end this subsection by a brief remark that there also exist other test
procedures to test for continuous distributions, for instance, the Kolmogorov–
Smirnov test, which measures the distance in a certain sense between the ecdf
and the distribution given in the hypothesis. We refer to any textbook in
statistics, e.g. [70], Chapter 8.5 or [3], Chapter 6.3.

4.3 Maximum Likelihood Estimates

4.3.1 Introductory example

The so-called Maximum Likelihood (ML) method is fundamental in finding
estimates θ∗ in a model F (x; θ) (recall Section 4.1 for an introductory dis-
cussion of the estimation problem). The theory of ML estimates has deep
consequences for many fields in statistics; see Pawitan [60]. The statistical
properties of the ML estimate are also useful, as demonstrated in Sections 4.4
and 4.5. Before we give details of the ML algorithm, we start with an example
where X is of the discrete type.

Example 4.7 (Poisson distribution, accidents). The number of accidents
in one year K , say, is unknown and may vary from year to year. Obviously
K is a discrete r.v. and we wish to find the probability-mass function p(k) =
P(K = k) .
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Probabilistic model: Suppose that we can assume that the mechanism gener-
ating accidents is stationary and that the number of accidents in disjoint time
periods are independent. Then we know that K is Poisson distributed, i.e.

p(k) = p(k; θ) =
θk

k!
e−θ, k = 0, 1, . . . ,

where θ > 0 is unknown.

Estimation: Suppose k1 = 2 accidents were recorded during the first year.
What is a reasonable estimate θ∗ of θ on basis of this information? The
ML method proposes to choose θ∗ so that the probability that two accidents
happen during one year is as high as possible. This is accomplished for θ∗

such that

P(K = 2) = p(2; θ) =
θ2

2
e−θ

attains its maximal value for θ = θ∗ . It is easy to check that p(2; θ) attains
its maximal value for θ∗ = 2 . Consequently the ML estimate θ∗(k1) = k1 .

Suppose that in the second year K2 = 0 accidents were counted. By our
assumptions K1 and K2 are independent, hence

P(K1 = 2, K2 = 0) = P(K1 = 2)P(K2 = 0) =
θ2

2
e−θ · e−θ. (4.4)

Again the ML estimate θ∗ is the value of parameter θ that makes the observed
number of accidents most likely, which is θ∗(2, 0) = (2 + 0)/2 = 1 . �

Remark 4.4. The idea of the ML method presented in Example 4.7 is closely
related to the issues discussed in Section 2.1. As in the previous example, let
K ∈ Po(θ) , θ = E[K] unknown. For instance, let Aθ be the alternative state-
ment that “ E[K] = θ ”. Then, given that B1 = “Two accidents first year” and
B2 = “Zero accidents second year” , the likelihood function L(Aθ) = L(θ) ,
say, is given by L(θ) = (θ2/2) exp(−θ) exp(−θ) , i.e. the same as in Eq. (4.4).

Suppose now we have no information about possible value of E[K] , i.e.
odds for Aθ are 1 for all θ . The posterior odds given B1 and B2 are just
L(θ) and the ML method proposes to choose θ∗ as the alternative, which has
the highest posterior odds.

We will return to this type of reasoning in Chapter 6. �

Suppose we have a random experiment (real or a random-number gener-
ator) that generates numbers with unknown distribution, having the density
f(x) or probability-mass function p(x) , say. We shall model the experiment
by assuming that f(x) = f(x; θ) (or p(x) = p(x; θ)), for some value of the
parameter θ . The parameter θ can be a vector θ = (a, b, c, . . .) . Assume that
we have n independent observations x1, . . . , xn , outcomes of the random ex-
periment. Our goal is to choose a value of the parameter θ .
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Maximum Likelihood Method. Consider n independent observations
x1, . . . , xn and study the likelihood function L(θ) , defined as

L(θ) =
{

f(x1; θ) · f(x2; θ) · . . . · f(xn; θ) (continuous r.v.)
p(x1; θ) · p(x2; θ) · . . . · p(xn; θ) (discrete r.v.) (4.5)

where f(x; θ) , p(x; θ) is probability density and probability-mass function,
respectively.
The value of θ that maximizes L(θ) is denoted by θ∗ and called the ML
estimate.

Thus, to find the optimal value of the parameter θ in the sense of the
ML method, one needs to find maximum of a function. For the standard
distributions, explicit expressions for ML estimates of parameters have been
derived. We now outline in several examples the main techniques of such
derivations. However, calculations of this kind are not always possible and
numerical algorithms to find maximum have to be used.

4.3.2 Derivation of ML estimates for some common models

Example 4.8 (ML estimation for Poisson distribution). Assume our
model is the Poisson distribution with probability-mass function

p(x; θ) =
θx

x!
e−θ, x = 0, 1, 2, . . .

where θ is unknown, and that we have independent observations x1, . . . , xn .
The likelihood function is

L(θ) =
n∏

i=1

θxi

xi!
e−θ =

θ
∑

xi∏
xi!

e−nθ

where
∏n

i=1 ai = a1 · a2 · . . . · an . A common trick when deriving ML esti-
mates is to study the logarithm of the likelihood function; this leads to easier
expressions and the θ maximizing L(θ) does also maximize l(θ) = lnL(θ)
given by

l(θ) = lnL(θ) =
∑

xi ln θ − ln(
∏

xi!) − nθ.

Differentiating, we get

l̇(θ) =
d
dθ

l(θ) =
∑

xi

θ
− n, l̈(θ) =

d2

dθ2
l(θ) = −

∑
xi

θ2
. (4.6)
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and we now find extremum

l̇(θ) = 0 ⇐⇒ θ =
1
n

∑
xi = x̄.

If the extremum at x̄ is local maximum then ML estimate θ∗ = x̄ . Therefore,
we should check that the second derivative of l(θ) at θ = x̄ is negative.
Employing Eq. (4.6) we get that l̈(θ∗) = − n2∑

xi
< 0 and hence θ∗ = x̄ . �

Example 4.9 (Deaths from horse kicks). In this example we analyse some
real data. In 1898, von Bortkiewicz published a dissertation about a law of
low numbers where he proposed to use the Poisson probability-mass function
in studying accidents [5] 2. A part of his famous data is the number of soldiers
killed by horse kicks in 1875–1894 in corps of the Prussian army, presented
in [34], see also [62]. Here the data from corps II are presented:

0 0 0 2 0 2 0 0 1 1 0 0 2 1 1 0 0 2 0 0

Clearly the ML estimate of θ is θ∗ = 12/20 . �

Example 4.10 (ML estimation for exponential distribution). Assume
that our model is the exponential distribution with density

f(x) =
1
θ
e−x/θ, x ≥ 0,

θ unknown, and that we have independent observations x1, . . . , xn . The like-
lihood function is

L(θ) =
n∏

i=1

1
θ
e−xi/θ =

1
θn

e−
∑

xi/θ.

The log-likelihood function l(θ) = lnL(θ) is given by

l(θ) = lnL(θ) = ln
1
θn

− 1
θ

∑
xi = −n ln θ − 1

θ

∑
xi.

Differentiating, we get

l̇(θ) = −n

θ
+

1
θ2

∑
xi, l̈(θ) =

n

θ2
− 2

θ3

∑
xi. (4.7)

and we now find extremum

l̇(θ) = 0 ⇐⇒ θ =
1
n

∑
xi = x̄.

2In [29], the author argues that the Poisson distribution could have been named
the von Bortkiewicz distribution.
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This is a local maximum since by Eq. (4.7)

l̈(x̄) = − n3

(
∑

xi)2
< 0,

and hence the obtained ML estimate is θ∗ = x̄ .
For the data of earthquakes, the arithmetic mean of the observations,

θ∗ = 437.2 , thus is the ML estimate of the parameter. �

Example 4.11 (ML estimation for normal distribution). Consider a
normal variable X ∈ N(m,σ2) ; hence f(x; θ) = 1

σ
√

2π
e−(x−m)2/2σ2

. Suppose
we have n independent observations x = (x1, . . . , xn) of X . We derive the ML
estimates of θ = (θ1, θ2) = (m,σ2) . The likelihood function and log-likelihood
function are given by

L(θ) =
1

(2πθ2)n/2
e−

∑
(xi−θ1)

2/2θ2 ,

l(θ) = −n

2
(
ln(2π) + ln θ2

)− 1
2θ2

∑
(xi − θ1)2.

Differentiating l(θ) with respect to θ1 and θ2 , we obtain

∂l

∂θ1
=

1
θ2

∑
(xi − θ1) =

1
θ2

∑
xi − n

θ1

θ2
,

∂l

∂θ2
= − n

2θ2
+

1
2θ2

2

∑
(xi − θ1)2.

Solving the system of equations ∂l
∂θ1

= 0 and ∂l
∂θ2

= 0 leads to the ML
estimates

θ∗1 =
x1 + · · · + xn

n
= x̄, (4.8)

θ∗2 =
1
n

n∑
i=1

(xi − x̄)2 = s2
n. (4.9)

Actually, we also should check if the matrix of second derivatives of l(θ) is
negative definite to be sure that extremes are really local maxima. We do it
here for completeness:

[
l̈(θ)

]
=

⎡⎢⎢⎢⎣
∂2l

∂θ2
1

∂2l

∂θ1∂θ2

∂2l

∂θ2∂θ1

∂2l

∂θ2
2

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
− n

θ2
−nx̄

θ2
2

+
nθ1

θ2
2

−nx̄
θ2
2

+
nθ1

θ2
2

n

2θ2
2

−
∑

(xi − θ1)2

θ3
2

⎤⎥⎥⎥⎦.

(4.10)
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Now, it is easy to check that

[
l̈(θ∗)

]
=

⎡⎢⎢⎣
− n

s2
n

0

0 − n

2(s2
n)2

⎤⎥⎥⎦, (4.11)

i.e.
[
l̈(θ∗)

]
is a diagonal matrix with negative elements on the diagonal and

hence the extremum at θ∗ is the local maximum. �

4.4 Analysis of Estimation Error

Suppose that the results of an experiment are uncertain values modelled by
a random variable X with an unknown distribution FX . We assumed that a
family of distributions F (x; θ) contains the unknown cdf, i.e. there is a value
of θ such that FX(x) = F (x; θ) for all x . By this we neglect the possibility
of a model error. Using observations of X , gathered in an n dimensional
vector x we presented, in the previous subsection, the ML method to derive
the estimates θ∗(x) of θ . As long as n is finite, θ∗(x) �= θ ; in other words, the
error θ− θ∗ �= 0 for finite n . Obviously, practically it is important to know if
the error θ − θ∗ tends to zero as the number of observations n increases to
infinity. The so-called consistent estimators possess the property.

In previous subsections, we proved that the ML estimate θ∗ of the para-
meter θ in Poisson and exponential distributions was the average x̄ . Conse-
quently, in these models the estimator Θ∗ = X̄ , where X = (X1, X2, . . . , Xn)
are iid with common cdf FX(x) . Now, by LLN, Θ∗ converges to E[X] . For
Poisson and exponential distributions E[X] = θ and hence the estimator Θ∗

is consistent.
The error analysis can be performed for any estimator, even if we limit

ourselves here to the ML case. The reason for it is that ML estimators pos-
sess many good properties. For example, it can be shown (see [49] or for a
review [60]) that the ML method results in consistent estimators, see the
following theorem:�

�

�

	

Theorem 4.1. Consistency of ML estimators. Assume that f(x; θ)
(or p(x; θ)) satisfy certain regularity conditions, which are valid in exam-
ples discussed in this text, and let X1, X2, . . . be independent variables each
having distribution given by f(x; θ) (or p(x; θ)). Then the ML estimator
Θ∗ = θ∗(X1, X2, . . . , Xn) is a consistent estimator of θ , i.e.

P(C) = 1

where C is the statement “Θ∗ converges to θ , as n → ∞”.
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Example 4.12. Let X = θ · U , where U is a uniformly distributed variable
(Chapter 3.1.1). Then the probability density of X is

f(x; θ) =

⎧⎨⎩
1
θ
, 0 < x < θ,

0, otherwise.

This density does not satisfy the “regularity conditions” assumed in Theo-
rems 4.1, 4.2, and 4.3. �

As we have mentioned above the exact value of the estimation error is
unknown, in other words, it is an uncertain value. The variability of the error
can be studied using the following random variable,

E = θ − Θ∗,

the estimation error. For consistent estimators, E tends to zero as n increases
without bounds. In practice, the values of the r.v. E cannot be observed except
in Monte Carlo experiments using random-number generators, since then θ
is an input to the program. Nevertheless we can study the distribution of E ,
FE(e) , which, for example, can be used to find intervals such that with high
confidence we can claim that θ is in these intervals (see Section 4.5). However,
we first present some simpler measures to describe variability of E .

4.4.1 Mean and variance of the estimation error E
Finding the exact cdf of the error E can be difficult; hence first mean and
variance of E are studied.

Mean of the estimation error

First the expected error may be checked:

mE = E[θ − Θ∗] = θ − E[Θ∗].

If the expected error is zero, we call the estimator unbiased.

Example 4.13. In Examples 4.8, 4.10, and 4.11, we proved that the ML
estimate θ∗ = x̄ . Is the estimator Θ∗ = X̄ unbiased? The answer is given by
the following calculation, cf. Eq (3.18) and Example 3.4:

E[Θ∗] = E
[X1 + · · · + Xn

n

]
=

1
n

E[X1 + · · · + Xn]

=
1
n

(
E[X1] + · · · + E[Xn]

)
=

1
n

(
n · E[X]

)
= E[X].

Since E[X] = θ in these examples, the estimator is unbiased. In other words,
the expected value of the error E[E ] = 0 . �
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Example 4.14. The ML estimator θ∗2 = s2
n of θ2 = σ2 in Example 4.11 (see

Eq. (4.9)) is actually biased. Slightly changing the estimate

(σ2)∗ =
1

n − 1

n∑
i=1

(xi − x̄)2 = s2
n−1, (4.12)

will give unbiased estimation. One can show that the estimator

S2
n−1 =

1
n − 1

n∑
i=1

(Xi − X̄)2,

is an unbiased estimator of θ = V[X] for a general r.v. X . Here we kept the
traditional symbols for the estimators. �

Variance of the estimation error

The variance is an important measure of variability of the error, denote it by
σ2
E . Since for any r.v. ξ and a constant c , V[ξ + c] = V[ξ] one has that

σ2
E = V[θ − Θ∗] = V[Θ∗]. (4.13)

For unbiased estimators mE = 0 . Moreover, efficient estimators should have
as small variance σ2

E as possible. For two unbiased estimators of the same
parameter the one with lower σ2

E is considered more efficient. Computation
of V[Θ∗](= σ2

E) , by (4.13), is important in evaluation of uncertainty in the
estimate θ∗ . Since Θ∗ = θ∗(X1, . . . , Xn) the variance can be theoretically
computed if FX(x) is known (see Chapters 5 and 8 for definitions and ap-
proximate methods for computation of expectations of functions of random
variables).

Since FX(x) = F (x; θ) , even the variance V[Θ∗] is a function of an
unknown parameter θ , which we write V[Θ∗] = f(θ) . Hence, most often,
a numerical value for the variance cannot be given. However, since for
consistent estimators θ∗ → θ as n increases to infinity, the approximation
V(Θ∗) ≈ f(θ∗) is made if n is large.

Example 4.15. Suppose X is exponentially or Poisson distributed with un-
known mean θ , i.e. E[X] = θ . Let x denote the data. In both cases the ML
estimate of θ is θ∗ = x̄ . We have already demonstrated that Θ∗ = X̄ is
an unbiased estimator. Its variance σ2

E = V[Θ∗] follows from the calculation
(cf. Eq. (3.21) and Example 3.4):

V[Θ∗] = V
[X1 + · · · + Xn

n

]
=

1
n2

V[X1 + · · · + Xn]

=
1
n2

(V[X1] + · · · + V[Xn]) =
1
n2

(n · V[X]) =
V[X]

n
. (4.14)

Now for exponentially distributed X , V[X] = θ2 , while for Poisson distributed
r.v. X , V[X] = θ . The approximation of the variance V[Θ∗] is obtained by



88 4 Fitting Distributions to Data – Classical Inference

replacing the unknown parameter θ in the formulae for V[X] by the estimates
θ∗ = x̄ . In the case when X was distance between earthquakes, see Exam-
ple 4.10, V[Θ∗] ≈ 437.22/62 = 3083 , while for X being the number of perished
from horse kicks during one year (see Example 4.9), V[Θ∗] ≈ 0.6/20 = 0.03 .

�

Obviously, if σ2
E = 0 there is no estimation error present and the estimate is

equal to the parameter. However, in general it is not possible to have σ2
E = 0 .

Under the assumptions of Theorem 4.1, one can actually demonstrate that
there is a lower bound for the efficiency of the unbiased estimators, i.e. the
variance σ2

E for an unbiased estimator is bounded from below by a positive
constant σ2

MVB (MVB — Minimum Variance Bound). The value of σ2
MVB

depends on the model F (x; θ) and it is proportional to 1/n (the inverse of
the number of observations).


�

�



Theorem 4.2. Suppose that the assumptions of Theorem 4.1 holds. Then

E[E ] → 0 and V[E ] → 0 as n → ∞.

In addition limn→∞(σ2
E/σ2

MVB) = 1.

The last theorem states that for large values n , the ML estimator Θ∗ is
approximately unbiased (i.e. E[E ] ≈ 0) and the error E has its variance close
to the lowest possible value σ2

E ≈ σ2
MVB .

A very important property for ML estimators Θ∗ is that when n is large,
the variance V[Θ∗] = σ2

E can be approximated using the second-order deriv-
atives of the log-likelihood function computed at its maximum. The method
is presented next.

Approximation of variance of ML estimators

Consider first the case when the model F (x; θ) for the cdf of X depends only
on one parameter θ ; for instance X is a binomial, Poisson, exponentially,
Rayleigh distributed variable. Then

V[Θ∗] = σ2
E ≈ − 1

l̈(θ∗)
= (σ2

E)∗. (4.15)

Programs used to compute ML estimates often also give (σ2
E)∗ as an output.

Example 4.16. Consider Examples 4.8 and 4.9, where a Poisson distribution
was studied. With the ML estimate θ∗ = x̄ , it follows from Eq. (4.6) that
l̈(θ) = −∑

xi/θ2 and hence

(σ2
E)∗ = − 1

l̈(θ∗)
=

(θ∗)2∑
xi

=
(θ∗)2

nθ∗
=

θ∗

n
,

where θ∗ = x̄ and is the same as derived in Example 4.15. �
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Example 4.17. Consider now an exponentially distributed r.v. X with mean
θ . Again the ML estimate θ∗ = x̄ , while

l̈(x̄) = − n3

(
∑

xi)2
= − n

(θ∗)2
.

Consequently, one finds that

(σ∗
E)2 = − 1

l̈(θ∗)
=

(θ∗)2

n
.

�

Next consider the case when parameter θ is a vector, e.g. θ = (θ1, θ2) for
Weibull, Gumbel, normal distribution, or θ = (θ1, θ2, θ3) for the GEV distri-
bution, which will be used in Chapter 10. For a vector-valued parameter θ ,
l̈(θ) is a matrix of second-order derivatives, which we write as [l̈(θ)] , see e.g.
(4.10) in Example 4.11. Now variances V(Θ∗

i ) = σ2
Ei

can be approximated
by (σ2

Ei
)∗ equal to the ith element on the diagonal of the inverse matrix

−[l̈(θ∗)]−1 .

Example 4.18. Consider a normal variable X ∈ N(m,σ2) , and let θ =
(θ1, θ2) = (m,σ2) . For the data x = (x1, . . . , xn) , by Eqs. (4.8-4.9), the ML
estimates θ∗1 = x̄ , while θ∗2 = s2

n . For the matrix [l̈(θ∗)] given in Eq. (4.11)
the inverse

[l̈(θ∗)]−1 =

⎡⎢⎢⎣−s2
n

n
0

0 −2(s2
n)2

n

⎤⎥⎥⎦, (4.16)

and thus we find

(σ2
E1

)∗ =
s2

n

n
, (σ2

E2
)∗ =

2(s2
n)2

n
, (4.17)

and hence from Eq. (4.15) V[Θ∗
1 ] ≈ (σ2

E1
)∗ and V[Θ∗

2 ] ≈ (σ2
E2

)∗ . �

4.4.2 Distribution of error, large number of observations

In the previous subsection we described the variability of the estimation error
by means of the mean mE and variance σ2

E . The complete description of the
variability of the estimation error E is first and foremost given by the cdf
FE(e) = P(E ≤ e) . If the cumulative distribution is known, the probability of
making error larger than a specified threshold could be computed.

Finding the distribution is in general a difficult problem. Here we give two
methods to approximate FE(e) . The methods are accurate when the number
of observations n is large.
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Asymptotic normality of the error distribution

The result presented in the following theorem is important when assessing
the uncertainty of estimates. Based on this theorem, large-sample confidence
intervals is considered later in this chapter. Further applications will be given
in Chapters 7, 8, and 10. The theorem is valid for ML estimators for the
so-called “regular” families of distributions; see Section 6.5 in Lehmann and
Casella [49] where the exact assumptions are given:�

�

�

	

Theorem 4.3. Asymptotic normality of ML estimators. Assume
that f(x; θ) (or p(x; θ)) satisfies certain regularity conditions, which are
satisfied in examples discussed in this text. Then

P(E/σ∗
E ≤ e) −→ Φ(e) as n → ∞

where

σ∗
E = 1/

√
−l̈(θ∗). (4.18)

We shall also say that E is asymptotically normal distributed and write
E ∈ AsN(0, (σ2

E)∗) .

Asymptotic normality means that for large n , P(E ≤ e) ≈ Φ(e/σ∗
E) . In

the following example, we summarize the variances (σ2
E)∗ for some common

distributions.

Example 4.19. Consider again the three distributions encountered earlier in
this section: Poisson, exponential, normal (see Examples 4.16-4.18 and for ML
estimates of binomial distribution, see Problem 4.3).

Distribution ML estimates (σ2
E)∗

X ∈ Po(θ) θ∗ = x̄
θ∗

n

K ∈ Bin(n, p) θ∗ =
k

n

θ∗(1 − θ∗)
n

X ∈ Exp(θ) θ∗ = x̄
(θ∗)2

n

X ∈ N(m,σ2) θ∗ = (x̄, s2
n)

(s2
n

n
,
2(s2

n)2

n

)
�

Theorem 4.3 is a generalization of a fundamental3 result from probability
theory, the Central Limit Theorem (CLT).

3Casella and Berger [10] describe this as “one of the most startling theorems in
statistics”.
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�
Theorem 4.4. Central Limit Theorem. Let X = (X1, . . . , Xn) be iid
(independent identically distributed) variables all having the distribution
FX(x) . Assume that the expected value E[X] = m and variance V[X] = σ2

are finite. Then X̄ ∈ AsN(m,σ2/n) .

The CLT tells us that for large n

P

(
X̄ − m

σ/
√

n
≤ x

)
≈ Φ(x), or P(X̄ ≤ x) ≈ Φ

(
x − m

σ/
√

n

)
.

How large n should be in order to be able to use the last approximation
depends on the distribution FX(x) . However, always valid is that

if X ∈ N(m,σ2) then X̄ ∈ N(m,σ2/n) (4.19)

for any value of n .

Using Bootstrap to estimate the error distribution

In the past decades, the use of bootstrap techniques has attracted a lot of
interest, from scientists in different fields handling data, as well as researchers
in statistical theory. Roughly speaking, bootstrap techniques combine notions
from classical inference with computer-intensive methods. Much literature ex-
ists; for an introduction, we refer the interested reader to [23], [36]. Bradley
Efron is honoured to have invented the bootstrap method, and he gives an
overview in [19].

We here only point out some of the basic ideas and demonstrate how to
use bootstrap to derive the distribution of the estimation error E . Bootstrap
methods are most useful for complicated statistical problems, e.g. when the
parameter θ is a large vector, and when an analytical approach is not possible
or adequate.

Parametric bootstrap

Let us neglect the possibility of a model error, i.e. we assume that there is
a value of a parameter θ such that FX(x) = F (x; θ) . Assume that we have
n independent observations x = (x1, . . . , xn) with X having distribution
FX(x) . The parameter θ is estimated using an estimate θ∗(x) . Since, as
before, usually θ∗ �= θ , we wish to find the distribution of the error E = θ−Θ∗ .
This can be done numerically by parametric bootstrap.

For bootstrap methods, a computer program for Monte Carlo simulation is
necessary. If the parameter θ , equivalently, the distribution FX(x) is known,
such a program can simulate independent samples xi = (x1, . . . , xn) , i =
1, . . . , NB , where NB is some large integer. All these samples have the same
random properties as our initial sample x and from each sample are calculated
estimates θ∗i = θ∗(xi) and the errors

ei = θ − θ∗i , i = 1, . . . , NB. (4.20)
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The error distribution FE(e) can be approximated by means of the empir-
ical distribution of (e1, e2, . . . , eNB) , with increasing accuracy as NB goes to
infinity. However, in most cases the distribution FX(x) is unknown. Still we
can use the same simulation principle as outlined above if there is strong evi-
dence that our model is correct, i.e. there is a θ such that FX(x) = F (x; θ) .
Simply, replace the unknown distribution FX(x) by the closest we can get,
F (x; θ∗) , and the parameter θ in (4.20) by θ∗ .

This is the so-called parametric bootstrap: simulate NB times a sample
with n independent random numbers having distribution F (x; θ∗) , xi =
(x1, . . . , xn) , i = 1, . . . , NB . From each sample estimates θB

i = θ∗(xi) and
the errors

eB
i = θ∗ − θB

i , i = 1, . . . , NB.

are calculated
Let FB

E (e) be the empirical distribution describing the variability of the
sequence eB

i . (Note that the empirical distribution depends both on the num-
ber n of observations in our original data set and the number NB of bootstrap
simulations.) Usually NB is much larger than n since it is only limited by the
computer time we wish to spend for the simulations. Finally, one can prove
that, under suitable conditions, with NB > n ,

FB
E → FE(e) as n → ∞. (4.21)

Using the last result, if n is large we have an approximation of the error
distribution E .

4.5 Confidence Intervals

In this section, we present the idea of confidence intervals. Such intervals
summarize the information on the estimation error. We study how an interval
that covers the true value of the parameter with high probability can be
constructed.

As pointed out in Section 4.1, page 73, the parameter θ can be a vector.
Hence also the error can be a vector, e = θ − θ∗ . For simplicity we consider
each component of the error vector separately. For example, in the case of a
normal model when θ = (m,σ2) and θ∗ = (x̄, s2

n) we have two errors m − x̄
and σ2 − s2

n and here we only consider the first one, i.e. e = m − x̄ .

4.5.1 Introduction. Calculation of bounds

The error distribution FE(e) describes the size of error as well as the frequency
with which that occurs. For instance, FE(eU) − FE(eL) is the probability
(frequency) that the error will be between a lower bound eL and an upper
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bound eU , i.e. eL ≤ E ≤ eU . This probability can be computed for any pair
eL < eU . However, in most situations it is enough to choose only one interval
[eL, eU] and give the probability that the error will fall in the interval as a
rough characterization of the variability of the estimation error. Actually, one
usually starts by first choosing the probability, α , for some low value α and
then looks for suitable bounds such that

P(eL ≤ E ≤ eU) = 1 − α.

Typical values of α are 0.01, 0.05, or 0.1; then eL and eU are chosen to be
the quantiles e1−α/2 , eα/2 , respectively. The quantiles are solutions to the
following equations, see also Chapter 3.2,

P(E ≤ e1−α/2) = P(E ≥ eα/2) = α/2. (4.22)

Obviously we have that P(e1−α/2 ≤ E ≤ eα/2) = 1 − α . An equivalent way,
and more often used in practice, of presenting the bounds is derived from the
defining equation E = θ − Θ∗ :

1 − α = P(e1−α/2 ≤ E ≤ eα/2) = P
(
Θ∗ + e1−α/2 ≤ θ ≤ Θ∗ + eα/2

)
= P

(
θ ∈ [Θ∗ + e1−α/2, Θ∗ + eα/2]

)
.

Before we continue, let us return to the interpretation of the concept of
probability. Suppose we have an experiment with numerical outcomes, i.e. a
random variable X , and let A be a statement about properties of an out-
come of the experiment. Then P(A) measures chances that for a yet unknown
outcome x , the statement A will be true. Obviously when the outcome x is
available then one usually, but not always, knows if A is true or not.

Let X = Θ∗ while A is the statement θ ∈ [Θ∗ + e1−α/2, Θ∗ + eα/2] .
Since α is small, the probability that A will be true is high (0.9, 0.95, or
0.99). The outcome of our experiment is now the estimate θ∗ , i.e. x = θ∗ .
Now the problem starts: the statement A is of such nature that one cannot
tell whether A is true or not for Θ∗ = θ∗ . In order to measure this lack of
knowledge, one uses the probability P(A) = 1 − α but call this confidence
instead. Thus we say that with confidence 1 − α ,

θ ∈ [θ∗ + e1−α/2, θ∗ + eα/2]. (4.23)

Remark 4.5 (One-sided intervals). In some applications it can be more
important to find one-sided confidence intervals. In the case when positive
errors are “beneficial” (for instance, when estimating θ , the average volume of
milk in a one-litre package) positive errors mean that on average consumers
get more milk than the estimated value. Then one finds the 1−α quantile of
error distribution P(E ≥ e1−α) = 1 − α , leading to

P(Θ∗ + e1−α ≤ θ) = 1 − α, θ∗ + e1−α ≤ θ
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with confidence 1 − α . Similarly, when negative errors are beneficial, e.g. θ
being the average concentration of pollutant, then the α quantile of error
distribution P(E ≤ eα) = 1 − α , leading to

P(θ ≤ Θ∗ + eα) = 1 − α, θ ≤ θ∗ + eα,

with confidence 1 − α . �

4.5.2 Asymptotic intervals

Theorem 4.3 tells us that for large values of n , the error of the ML estimator
E = θ − Θ∗ , based on iid observations x1, . . . , xn , is approximately normally
distributed E ∈ AsN(0, (σ2

E)∗) , which means that for large values of n

P(E ≤ e) ≈ Φ(e/σ∗
E).

Consequently the quantiles

e1−α/2 ≈ λ1−α/2 σ∗
E = −λα/2σ

∗
E , eα/2 = λα/2 σ∗

E

and hence, for large n , with approximately 1 − α confidence,

θ ∈ [θ∗ − λα/2σ
∗
E , θ∗ + λα/2σ

∗
E ], (4.24)

where σ∗
E is given in Theorem 4.3, see Eq. (4.18). The number of observations

n needs to be quite large in order to be sure that the true confidence level of
the interval is close to 1 − α .

Remark 4.6. Suppose we have independent observations x1, . . . , xn from
N(m,σ2) , σ unknown, and we want to construct a confidence interval for
m . If the number of observations is not large enough, use of the interval in
Eq. (4.24) is not justified. However, with σ estimated as

(σ2)∗ =
1

n − 1

n∑
i=1

(xi − x̄)2 = s2
n−1,

(see Example 4.14), one can construct an exact interval. Without going into
details, the exact confidence interval for m is given by[

x̄ − tα/2(n − 1)
sn−1√

n
, x̄ + tα/2(n − 1)

sn−1√
n

]
(4.25)

where tα/2(f) are quantiles of the so-called Student’s t distribution with
f = n − 1 degrees of freedom. This could be compared with Eq. (4.24)[

x̄ − λα/2
sn√
n

, x̄ + λα/2
sn√
n

]
.

Consider α = 0.05 . Then λα/2 = 1.96 and for n = 10 , one has tα/2(9) = 2.26
while for n = 25 , tα/2(24) = 2.06 , which is closer to λα/2 = 1.96 . �
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4.5.3 Bootstrap confidence intervals

Using resampling techniques one can approximate the error distribution (see
Eq. (4.21)) and hence for large n we have that FB

E (e) ≈ FE(e) . Consequently,
the bootstrap quantiles defined by

FB
E (eB

1−α/2) = α/2, FB
E (eB

α/2) = 1 − α/2,

are close to the quantiles e1−α/2, eα/2 given in Eq. (4.22). (The quantiles
eB
1−α/2, e

B
α/2 can be found graphically or by means of a suitable computer

program.) Thus an interval, which with (approximately) 1 − α confidence,
covers the unknown parameter θ is given by

[ θ∗ + eB
1−α/2, θ∗ + eB

α/2 ]. (4.26)

Here we replaced the error distribution FE by FB
E , hence a so-called simple

(or standard) bootstrap confidence interval was obtained. For other methods
see [23], Ch. 12-14, or [36], Ch. 5.7.

4.5.4 Examples

Example 4.20. Return to the data set with periods between earthquakes.
From the previous analysis, we concluded that a suitable model for FX(x) is
the exponential distribution: FX(x) = 1 − exp(−x/θ) . In Example 4.10, we
found the ML estimate θ∗ as the average observed over the n = 62 periods:
θ∗ = x̄ = 437.2 days.

Asymptotic interval. For exponentially distributed X , the ML estimate θ∗ =
x̄ = 437.2 . Further,

σ∗
E = θ∗/

√
n = 437.2/

√
62 = 55.5.

Using Eq. (4.24), an asymptotic 0.95-confidence interval for the parameter θ
is

[437.2 − 1.96 · 55.5, 437.2 + 1.96 · 55.5] = [328, 546].

The interpretation of the interval is as follows: the risk of making error when
claiming that θ (the average period between serious earthquakes) is some
number between 328 and 546 days is approximately 0.05, i.e. similar as getting
four heads in four flips of a fair coin.

Exact interval, exponential distribution. Next one can ask if the number of
observations n = 62 is large enough to allow us to use the asymptotic normal
approximation for the error distribution. Now if the true model for distribution
of X is exponential and the observed values of X are independent then the
distribution of relative error E = Θ∗/θ can be found and exact confidence
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intervals for the parameter θ can be derived. Without going into details, we
just give formulas: with confidence 1 − α

θ ∈
[

2nθ∗

χ2
α/2(2n)

,
2nθ∗

χ2
1−α/2(2n)

]
, (4.27)

where χ2
α(f) is the α quantile of the χ2(f) distribution. These quantiles are

tabulated or for large n computed using Eq. (4.28).
For α = 0.05 and n = 62 , we find by Eq. (4.28) χ2

1−α/2(2n) = 95.07 and
χ2

α/2(2n) = 156.71 and hence Eq. (4.27) gives that

θ ∈ [346, 570]

with confidence 0.95. We can see that the confidence interval based on asymp-
totic normality of the errors is, for practical use, sufficiently close to the exact
confidence interval. For higher n values the intervals become closer.

Bootstrap interval. In order to make the comparison more complete we also
use the bootstrap methodology to estimate the error distribution and de-
rive the confidence intervals. The distribution FB

E (e) has been derived with
n = 62 , the number of observed periods between major earthquakes, and the
number of bootstrap simulations NB = 5000 . The distribution is shown in
Figure 4.4 (right) where the quantiles eB

1−α/2 , eB
α/2 , α = 0.05 are marked

as stars. We obtain the following bootstrap confidence interval for θ (the
unknown return period between the earthquakes) with approximately 0.95
confidence:[

θ∗ + eB
1−α/2, θ∗ + eB

α/2

]
= [437.2+(−107.9), 437.2+97.7] = [329, 535].

The interval is very similar to the one obtained using the normal approxi-
mation of the error distribution. It is important to note that, although both
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Fig. 4.4. Illustration of the distribution of bootstrap errors. Left: A histogram for
the bootstrap errors compared with the pdf of normally distributed errors. Right:
The empirical distribution FB

E (e) with quantiles eB
1−α/2 , eB

α/2 , marked as stars.
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methods are derived under the assumption that n is large4, they have different
theoretical motivations.

�

Remark 4.7 (Accurate approximations). Computation of quantiles of a
χ2(f) distribution might be problematic when f is large. By the central limit
theorem, X ∈ χ2(f) can be approximated by an N(f, 2f) distribution and
hence the following approximation is valid:

χ2
α(f) ≈ f + λα

√
2f.

However, this approximation is not particularly accurate unless f is rather
large. Better approximations are for instance the Wilson-Hilferty approxima-
tion,

χ2
α(f) ≈ f

(√
2
9f

λα + 1 − 2
9f

)3

, (4.28)

originally given by Wilson and Hilferty [83] and discussed in [41], Section 18.5.
�

Example 4.21. In this example we turn to the data set with the number of
killed people due to horse kicks, cf. Example 4.9. For the intensity of accidents,
we give approximate confidence intervals as well as exact.

We assumed a Poisson distribution and found the ML estimate θ∗ = x̄ =
0.6 . The total number of victims is 12 (in 20 years, n = 20), which we consider
sufficiently large to apply asymptotic normality.

Approximate interval. For a Poisson variable,(σ2
E)∗ = θ∗/n , hence σ∗

E =√
θ∗/20 = 0.173 . Now, by Eq. (4.24), with approximate confidence 0.95, the

true intensity of deaths due to horse kicks

θ ∈ [
0.6 − 1.96 · 0.173, 0.6 + 1.96 · 0.173

]
= [0.26, 0.94].

Exact interval, Poisson distribution. Similarly as in the exponential model,
one can even here propose confidence intervals with exactly 1 − α coverage.
Again without going into details, if n is the number of years accidents are
observed, x = x1, x2, . . . , xn are the observed numbers of accidents during the
successive years. With confidence 1 − α , the expected number of accidents θ
during one year is in

θ ∈
[

χ2
1−α/2(2nθ∗)

2n
,

χ2
α/2(2nθ∗ + 2)

2n

]
, (4.29)

where χ2
α(f) is the α quantile of the χ2(f) distribution. This interval was

first derived by Garwood in 1936 [26]; see also [10], page 434 for the derivation.
4The interval is based on n = 62 observed periods.
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Now with θ∗ = 0.6 we get

θ ∈ [0.32, 1.05]

since χ2
1−α/2(2nθ∗) = χ2

0.975(24) = 12.40 while χ2
α/2(2nθ∗+2) = χ2

0.025(26) =
41.92 .

Again the difference between the confidence intervals would be smaller if
the number of degrees of freedom f = 2nθ∗ were higher — in other words, if
we had observed more accidents. This can be done by observing longer periods
of time than 20 years, or by studying situations with higher intensities of
accidents.

�

4.6 Uncertainties of Quantiles

In safety applications we are often interested in estimations of the following
quantities used to measure risks:

(1) The probability that some measured quantity exceeds a critical level ucrt ,
e.g. p = P(X > ucrt) = 1 − FX(ucrt) .

(2) The α quantile, i.e. xα such that P(X > xα) = α , i.e. xα = F−(1 − α) .

The two quantities p and xα can be seen as functions defined on the distrib-
ution FX , which we write as g(FX) .

Two types of estimates can be considered: non-parametric, when FX is
approximated by the empirical distribution Fn and parametric when FX

is approximated by F (x; θ∗) . Here we assume that F (x; θ) is a family of
distributions such that there is a value of θ for which FX(x) = F (x; θ) . The
unknown value of parameter is estimated by θ∗ , e.g. using the ML method.
As we mentioned earlier, using the non-parametric method model error of the
type that FX(x) �= F (x; θ) for all θ is avoided, but the price to be paid is
that the estimates have usually larger errors.

In this section we present means to find the distribution of errors e =
xα − x∗

α , e = p − p∗ , where x∗
α and p∗ are parametrically estimated. First,

the asymptotic normality of the ML estimate θ∗ is employed to describe the
statistical error only. Second, we use the so-called statistical bootstrap to
estimate the distribution FE . The method is designed so that the error e
contains two possible sources of error: the statistical error due to finiteness of
the sample size n ; and model error, i.e. FX does not belong to the family of
distributions F (x; θ) .

4.6.1 Asymptotic normality

As we have seen in the previous subsection, the estimate of θ∗ itself serves
only as an intermediate step to compute probabilities of type p = P(X > x)
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(p∗ = 1 − F (x; θ∗)) or quantiles xα (x∗
α = F−(1 − α; θ∗)). Generally, we are

interested in the estimates of functions of the parameter, g(θ) say, by means
of g(θ∗) . One can ask the question whether g(Θ∗) is a consistent estimator
of g(θ) , and further, what is the distribution of the error g(θ)− g(Θ∗) . (Here
we neglect the possibility of model error.)

Let g(r) possess a continuous derivative ġ(r) . If the assumptions of The-
orem 4.3 are satisfied then

g(θ) − g(Θ∗) ∈ AsN
(
0, ġ(θ∗)2 (σ2

E)∗
)
, (4.30)

where (σ2
E)∗ is an estimate of the variance of E = θ − Θ∗ . The result is an

application of Taylor’s formula

g(θ) − g(Θ∗) ≈ ġ(θ)(θ − Θ∗) = ġ(θ)E
and shows us that g(Θ∗) is a consistent estimate of g(θ) and for large n the
estimation error g(θ) − g(Θ∗) is approximately normally distributed. Note,
however, that usually a higher number of observations n are needed than in
Theorem 4.3, especially if g is a strongly non-linear function of θ . Hence, the
approximation should be used with caution. Further discussion is found in
Chapter 8 on the so-called Gauss approximation and the delta method.

Example 4.22 (Earthquake data). This is a continuation of Example 4.23
where the objective was to estimate the probability

p = P(X > 1500) = e−1500/θ.

Let g(θ) = e−1500/θ , then p∗ = g(θ∗) . Based on the ML estimate θ∗ = 437.2
found earlier in this chapter, we find

p∗ = g(θ∗) = 0.032.

We want to have an idea of the uncertainty of this estimate. In order to use
Eq. (4.30) we need to compute ġ(θ∗) = (1500/(θ∗)2)p∗ and (σ2

E)∗ = (θ∗)2/n
(see table in Example 4.19) and hence[

ġ(θ∗)σ∗
E
]2 =

(1500 p∗)2

(θ∗)4
· (θ∗)2

n
=

(1500 · 0.032)2

62 · 437.22
= 1.944 · 10−4.

In the right panel of Figure 4.5, the solid curve is the asymptotic normal pdf
of the estimation error g(θ) − g(Θ∗) ∈ AsN(0, 1.944 · 10−4) . By comparing
to the corresponding bootstrap-estimation error (the normalized histogram)
we can see that the two approaches give in general similar results, although
the normal asymptotic approximation seems to be a somewhat more crude
approach, giving symmetrical errors.

Finally, we give an approximate 0.95-confidence interval, based on the
asymptotic normal approximation of the error distribution:

[0.032 − 1.96 · 0.014, 0.032 + 1.96 · 0.014] = [0.005, 0.06].

�
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Fig. 4.5. Left: Histogram, bootstrap estimate of p = P(X > 1500) ; Right: His-
togram, bootstrap-estimation error.

4.6.2 Statistical bootstrap

Suppose we are interested in the estimation error of the quantity g(FX) , where
g is a real-valued functional like p = 1−FX(ucrt) or xα . Recall the resampling
algorithm of generating independent observations described in Remark 4.2,
page 71. Now, a resampling technique is used as follows. Simulate NB times
from the empirical distribution a sample of n observations. This results in the
bootstrap estimates θB

i , i = 1, . . . , NB . Bootstrap-error estimates are given
by

eB
i = g(Fn) − g(F (x; θB

i )), i = 1, . . . , NB. (4.31)

The distribution of the error E is then estimated by means of empirical dis-
tribution of eB

i . Note that here both errors are incorporated: estimation error
and modelling error.

Example 4.23 (Bootstrap study: earthquake data). In this example
we return to earthquake data. Our objective is to get an opinion about the
probability of a period of more than 1500 days between serious earthquakes.
This will be summarized in histograms of the probability itself and the error
given in Eq. (4.31).

The parametric model is exponential, i.e.

F (x; θ) = 1 − e−x/θ, x > 0,

and we are interested in the quantity

p = P(X > 1500) = 1 − F (1500; θ) = e−1500/θ.
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Using the previously derived ML estimate θ∗ = 437.2 , we find p∗ =
exp(−1500/437.2) = 0.032 .

We want to have an idea of the uncertainty of the value p∗ and wish to
employ statistical bootstrap. Let

g(Fn) = 1 − Fn(1500)

while

g(F (x; θ)) = 1 − F (1500; θ) = e−1500/θ = g(θ),

say.
We turn to the bootstrap algorithm to derive the distribution of estimation

error e = p − p∗ . From the original data set of 62 observations, we find
that 1 − Fn(1354) = 3/62 while 1 − Fn(1617) = 2/62 . Hence, by linear
interpolation,

g(Fn) = 1 − Fn(1500) = 0.04.

We now resample NB = 10 000 bootstrap samples from the original data.
In each sample, the parameter θ is estimated (by taking the average of the
bootstrap sample) and plugged in, yielding

g(θB
i ) = e−1500/θB

i , i = 1, . . . , NB. (4.32)

A histogram of the resulting estimates p∗i = exp(−1500/θB
i ) from Eq. (4.32)

is shown in Figure 4.5, left panel. From the histogram, we get an idea of the
variability of p∗ ; note that the distribution is skewed to the right. In the right
panel, a histogram of the bootstrap-estimation error eB

i = g(Fn) − g(θB
i ) ,

see Eq. (4.31), is shown. This can be used to find quantiles eB
1−α/2 , eB

α/2

and hence a bootstrap interval follows from Eq. (4.26) as [0.01, 0.06] , since
eB
0.975 = −0.022 and eB

0.025 = 0.028 . This could be compared to the result
found in Example 4.22: [0.005, 0.06] . Practically, the intervals are equivalent.

�

Problems

4.1. Assume that x1, . . . , x4 are independent observations from a distribution with
E[X] = m and V[X] = σ2 . Consider the following estimators for m :

M∗
1 =

1

2
(X1 + X4), M∗

2 =
1

2
(X1 + 2X4), M∗

3 = X̄ =
1

4
(X1 + · · · + X4)

(a) Check which of the proposed estimators are unbiased.
(b) Calculate variances of the proposed estimators. Which one has the smallest

variance?
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4.2. The annual maximum of the water level at a place by the sea was observed
for 70 years. The numerical values x1, . . . , x70 of the registered maximum levels are
observations of independent, identically distributed random variables X1, . . . , X70 ,
which are log-normally distributed with parameters m and σ , that is to say that
ln Xi ∈ N(m, σ2) .

(a) Find unbiased estimates of the parameters m and σ when

70∑
i=1

ln xi = 69.3,
70∑

i=1

(ln xi)
2 = 74.8.

Hint: Use that, with ȳ = 1
n

∑
yi ,

∑
(yi − ȳ)2 =

∑
y2

i − nȳ2 .
(b) Find an estimate of the constant h1000 , called 1000 -year sea level, defined by

the equation P(X > h1000) = 1/1000 .

4.3. Consider an r.v. K ∈ Bin(n, p) with probability-mass function

P(K = k) =

(
n

k

)
pk(1 − p)n−k, k = 0, 1, 2, . . . , n

(a) Derive the ML estimate p∗ .
(b) Find the variance of the estimation error (σ2

E)∗ .

4.4. Assume that the strength of a wire of length 10 cm, i.e. the maximal load it
can carry, R is Rayleigh distributed with density function

f(x) =
2x

a2
e−x2/a2

, x > 0,

where a > 0 is a scale parameter. For eight tested wires, the following observations
were found (unknown unit):

2.5 2.9 1.8 0.9 1.7 2.1 2.2 2.8.

(a) Give the maximum likelihood estimation of a on the assumption that the ob-
servations above are independent. Hint: Study the logarithm of the likelihood
function.

(b) Compute (σ2
E)∗ and give an asymptotic 0.9 confidence interval for a .

(c) It can be shown that R2 ∈ Exp(a2) and then Eq. (4.27) gives an exact confidence
interval as

a ∈
[
a∗
√

2n/χ2
α/2(2n), a∗

√
2n/χ2

1−α/2(2n)
]

Compute an exact confidence interval for a using this information. (Use the
quantiles χ2

α/2(16) = 26.30 , χ2
1−α/2(16) = 7.962 .)

4.5. A sample of nine iron bars were tested for tensile strength, and the sample
mean was 20 kN. Assume normally distributed strengths.

(a) Give a 90 % confidence interval for the expectation, if the standard deviation is
assumed to be equal to 3 kN.

(b) How many more bars would have had to be tested to keep (at least not increase)
the width of the interval but increase the confidence level to 95%?
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4.6. One of the most important researchers in the history of mathematical statistics
was Karl Pearson (1857-1936). For instance, he is considered “father” of the χ2 test.
Around 1900, Pearson tossed a coin 24 000 times and received 12 012 heads. Test
the hypothesis “Coin is fair” at the significance level 0.05.

4.7. Consider a traditional deck of cards and the following simple game. A person
draws a card, checks whether it was a spade, and puts the card back. The deck is
shuffled, and the person draws again. This is repeated one more time, i.e. a person
has drawn 3 cards in total.

(a) Suggest a probability model for X = “Total number of spades in three trials”.
Hint: Binomial distribution.

(b) One has noticed the outcomes of 4096 people playing this game; the independent
observations are given in the table below:

Value 0 1 2 3
Observations 1764 1692 552 88

Test at the significance level 1 % that data follow the distribution suggested in
(a).

4.8. Suppose Θ∗
1 and Θ∗

2 are each unbiased estimators of θ . Further, V(Θ∗
1) = σ2

1

and V(Θ∗
2) = σ2

2 . A new unbiased estimator for θ is constructed as

Θ∗
3 = aΘ∗

1 + (1 − a)Θ∗
2

where 0 ≤ a ≤ 1 . Assuming that Θ∗
1 and Θ∗

2 are independent, how should a be
chosen so that V(Θ∗

3) is minimized?

4.9. The following data set gives the number of motorcycle riders killed in Sweden
in 1990–1999:

39 30 28 38 27 29 38 33 33 36.

Assume that the number of killed drivers per year is modelled as a random variable
N ∈ Po(m) .

(a) Give the ML estimate of m .
(b) Calculate an approximate 95%-confidence interval.
(c) Calculate an exact 95%-confidence interval (use Eqs. (4.28-4.29)).

4.10. The Environmental Protection Agency has collected data on the LC50 mea-
surements for certain chemicals, likely to be found in freshwater rivers and lakes.
With LC50 is meant the concentration killing 50% of the tested animals in a spec-
ified time interval. For a certain species of fish, the LC50 measurements (in ppm)
for DDT in 12 experiments resulted in the following data set:

16 5 21 19 10 5 8 2 7 2 4 9

(cf. [70], Chapter 7.3). Assume that these measurements are approximately normally
distributed with mean m =LC50 (unbiased estimates).

(a) Which is of interest in this application, to find a lower or upper confidence
bound?
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(b) Estimate m∗ and calculate a one-sided 95% confidence bound for the mean,
following the suggestion from (a).

4.11. Two researchers A and B at an institute analysed the same data set. Both
assumed that data originated from N(m, σ2) , σ known and wanted to compute a
confidence interval for m . However, they did use different confidence level 1−α . The
intervals are as follow – A: [2.41, 4.59] ; B: [2.19, 4.81] . Deduce from these results
which researcher used α = 0.10 and α = 0.05 , respectively.

4.12. Below are given the total numbers of yearly hurricanes for the North Atlantic
basin5 for the years 1950 – 2004.

11 9 4 4 5 6 9 7 8 11 8
8 4 8 7 6 6 7 4 4 9 9
6 3 3 6 3 5 2 3 4 3 4
6 7 7 5 4 5 3 5 4 10 7
8 7 6 12 4 6 5 7 3 8 9

(a) Let Ni be the number of hurricanes in the Northern Atlantic during year i .
Assume that Ni are independent and Poisson distributed with mean m . Test
if data do not contradict the assumed distribution. Hint. Use a χ2 test, divide
into classes < 3, 3, 4, . . . , 9, > 9 .

(b) Give an approximate 0.95-confidence upper bound for m .

5Data are found at http://weather.unisys.com/hurricane/atlantic/ and are cour-
tesy of Tropical Prediction Center.
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Conditional Distributions with Applications

In this chapter, some more notions from probability theory are provided like
correlation, conditional distributions, and densities. Some results are extended
and generalized, for instance, we present in terms of distributions the law of
total probability and Bayes’ formula. Some of the material will be needed in
the following chapter to further develop Bayesian methods to analyse data.

5.1 Dependent Observations

When the outcome of an experiment is numerical we call it a random variable.
Obviously, for one and the same experimental outcome many numerical prop-
erties can be measured. For instance, at a meteorological station the weather
situation is measured in the form of temperature, pressure, wind speed, etc.
Thus weather is described as a vector of random variables X1, . . . , Xn , say,
defined on the same outcome.

Example 5.1 (Wave parameters). We study here measurements of wave
data from the North Sea. Data were recorded on 24th December 1989 at the
Gullfaks C platform. The so-called significant crest height for data is 3.4 m
and the peak period is 10.5 s.

An observed wave can be considered as an outcome of a random experi-
ment. Clearly, a huge number of waves are found in the actual data set. In
ocean engineering a number of quantities and measures are used to charac-
terize an individual wave, the so-called characteristic wave parameters. We
consider two of them in this example: crest amplitude Ac and crest period
Tc . A definition is given in Figure 5.1.

A computer program was applied to extract crest periods and related crest
amplitudes from (a part of) data; the procedure resulted in 199 pairs (Tc, Ac) ,
and these are illustrated in a scatter plot (see Figure 5.2, left panel). In the
scatter plot, each outcome of a random experiment is represented as a dot
in a Cartesian coordinate system. For each wave we have a pair (Tc, Ac) ,
which is represented as a dot in the plane. Thus the variability of the wave
characteristics is represented as 199 dots.
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�
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�

Ac

��

Tc

Fig. 5.1. Some characteristic wave parameters: Ac (crest amplitude) and Tc (crest
period)
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Fig. 5.2. Left: Scatter plot of crest period and crest amplitude. Real data. Right:
Scatter plot of crest period and crest amplitude, resampled from original data.

We note that the measurements follow a certain pattern; high crest periods
tend to have higher crest amplitudes, which also is reasonable from a physical
point of view.

Obviously, variability is present in this problem and Tc and Ac can be
modelled as random variables. The question of which distributions that might
be suitable to describe Tc and Ac is subject for much research, and we do
not tackle it here.

We know from previous chapters how to generate independent variables
by means of a random-number generator. If we use the empirical distribution
functions for Tc and Ac , respectively, random numbers can be produced by
the resampling technique described in Chapter 4. We then obtain two samples
of 199 independent observations each for Tc and Ac .
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However, the scatter plot of the resampled observations, shown in Figure
5.2 (right), does not resemble the original scatter plot (left). Although the
individual distributions for Tc and Ac before and after resampling are about
the same, the simultaneous behaviour of Tc and Ac is lost. Clearly Figure 5.2
(left) does not represent independent observations. The concept of dependent
distributions is therefore studied next. �

The analysis of data simplifies when observations can be assumed to be
independent. However, as we have seen in Example 5.1, variables may both
have different distributions Fi(x) and be dependent. In Chapter 3.4, we de-
fined the notion of independent random variables, and presented Eq. (3.13)
that in the case of two random variables X1 and X2 can be written

FX1, X2(x1, x2) = P(X1 ≤ x1 and X2 ≤ x2) = P(X1 ≤ x1) · P(X2 ≤ x2).

We now investigate this relation for our example with wave parameters.

Example 5.2 (Wave parameters). Are Tc and Ac independent? From the
data available, we can calculate, for example,

FTc, Ac
(1.0, 2.0) = P(Tc ≤ 1.0, Ac ≤ 2.0)

≈ Number of waves with Tc ≤ 1.0 and Ac ≤ 2.0
Total number of waves

=
31
199

= 0.156.

Now, using values from the empirical distributions, we have that

FTc
(1.0) ≈ 0.161, FAc

(2.0) ≈ 0.558.

Hence FTc
(1.0) ·FAc

(2.0) ≈ 0.161 · 0.558 = 0.0898 �= 0.156 . Thus we conclude
that Tc and Ac are dependent. �

5.2 Some Properties of Two-dimensional Distributions

In this section we assume that we have only two random variables, n = 2 , and,
in order to simplify notation, we denote X1, X2 by X,Y . The distribution
function FX1,X2(x1, x2) is also denoted by

FX,Y (x, y) = P(X ≤ x, Y ≤ y),

which we often write simplified as F (x, y) . The distributions of the variables
X and Y is denoted by F (x) = P(X ≤ x) and F (y) = P(Y ≤ y) , respectively.
From the definition of F (x, y) , it follows immediately that

F (x) = F (x,+∞), F (y) = F (+∞, y).
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Probability-mass function

If X and Y take only a finite or (countable) number of values (for sim-
plicity only, let X,Y take values 0, 1, 2, . . .), then the distribution F (x, y)
is a “stair” looking function, that is constant except the possible jumps for
x, y = 0, 1, 2, . . . . The function

pjk = P(X = j, Y = k)

or rather matrix (can have infinitely many elements) is called probability-mass
function (pmf) and defines the distribution

F (x, y) =
∑

j≤x, k≤y

pjk.

A pmf pjk often used in applications is the multinomial pmf, which is a
generalization of the binomial pmf (see Eq. (1.9)) to higher dimensions:

P(X = j, Y = k) =
n!

j! k! (n − j − k)!
pj

Apk
B(1 − pA − pB)n−j−k (5.1)

for 0 ≤ j + k ≤ n and zero otherwise, where n , 0 ≤ pA ≤ 1 , and 0 ≤ pB ≤ 1
are parameters.

Obviously the variables X and Y are discrete and their probability-mass
functions can be computed (using Eq. (1.3))

pj = P(X = j) =
∞∑

k=0

pjk, pk = P(Y = k) =
∞∑

j=0

pjk. (5.2)

These are called the marginal probability-mass functions for X and Y , re-
spectively. It is easy to show (Definition 3.4) that if X and Y are independent,

pjk = pjpk.

Note that multinomially distributed variables X,Y are dependent and that
the probabilities pj , pk are given by the binomial pmf, X ∈ Bin(n, pA) ,
Y ∈ Bin(n, pB) .

An application of the multinomial distribution is now presented.

Example 5.3 (Multinomial distribution – Chess players). Two per-
sons, called A and B, play chess once a week. Let us assume that the results
of their games are independent. Further, suppose that their capacities to win
(knowledge of the game) are unchanged as time passes. Obviously a game of
chess can end (result) in three ways: A wins, B wins, or neither A nor B win
(draw).
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Probabilistic model. Let X be the number of times A wins, while Y is the
number of times B wins and let pA and pB be the corresponding probabilities
in an individual game. Then for a fixed number n of games, X,Y have the
multinomial pmf in Eq. (5.1).

Obviously the parameters pA and pB have to be estimated in some way.
Suppose that after one year of playing the score is: A won 10 times while B
won 20 times. Since there are 52 weeks in a year, our estimates of probabili-
ties are p∗A = 10/52 and p∗B = 20/52 . Obviously, the estimates are uncertain
values. This is a frequentist approach where pA, pB are unknown constants —
frequencies. Here we assume that capacities of victories for A and B, respec-
tively (probabilities pA , pB ), are unchanged for 52 games and that results are
independent. However, this assumption of constant capacity for such a long
time is quite unrealistic, hence the classical approach is questionable.

This example will be revisited in the next chapter, where we give a sys-
tematic account of a Bayesian solution to the problem. �

Probability-density function

If the distribution F (x, y) is differentiable with respect to x and y , the deriv-
ative

f(x, y) =
∂2F (x, y)

∂x∂y

is called the probability-density function (pdf) and

F (x, y) =
∫ x

−∞

∫ y

−∞
f(x̃, ỹ) dx̃ dỹ.

Any non-negative function f(x, y) that integrates to one∫ +∞

−∞

∫ +∞

−∞
f(x, y) dxdy = 1 (5.3)

is a density of some random variables (X,Y ) . Often one specifies the density
and computes the distribution function by integration. The one-dimensional,
marginal densities of X , Y can be computed from the joint density by means
of the following integrals

f(x) =
∫ +∞

−∞
f(x, ỹ) dỹ, f(y) =

∫ +∞

−∞
f(x̃, y) dx̃.

It is easy to prove (Definition 3.4) that for independent X and Y

f(x, y) = f(x)f(y). (5.4)
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Two-dimensional normal distribution

Suppose that X and Y are normal r.v., with distributions N(mX , σ2
X) ,

N(mY , σ2
Y ) , respectively. This means that their probability-density functions

are written

f(x) =
1

σX

√
2π

e
− 1

2σ2
X

(x−mX)2

, f(y) =
1

σY

√
2π

e
− 1

2σ2
Y

(y−mY )2

,

defined for −∞ < x < ∞ , −∞ < y < ∞ , respectively. If X and Y are
independent, their joint probability density f(x, y) is given by

f(x, y) = f(x)f(y) =
1

2πσXσY
e
− 1

2

{
(x−mX )2

σ2
X

+
(y−mY )2

σ2
Y

}
,

defined for −∞ < x < ∞ , −∞ < y < ∞ , respectively.
The variables X and Y can also be dependent. Then there is a parameter

−1 ≤ ρ ≤ 1 , called correlation (to be introduced later on), that measures the
degree of dependence between X and Y . If ρ = 0 then X and Y are in-
dependent. Consequently, five parameters define the two-dimensional normal
distribution. These are mX , mY , σ2

X , σ2
Y , and ρ , and the statement that

(X,Y ) is normal,

(X,Y ) ∈ N(mX , mY , σ2
X , σ2

Y , ρ),

means that the joint density of (X,Y ) is given by

f(x, y)=
1

2πσXσY

√
1 − ρ2

e
− 1

2(1−ρ2)

{
(x−mX )2

σ2
X

+
(y−mY )2

σ2
Y

−2ρ
(x−mX )

σX

(y−mY )
σY

}
.

(5.5)

Remark 5.1 (Simulation). The question is how to generate correlated nor-
mally distributed random variables. Suppose we want to create observations
from

(X,Y ) ∈ N(mX , mY , σ2
X , σ2

Y , ρ).

We first consider the case with independent random variables, i.e. ρ = 0 (fol-
lows from Eqs. (5.4-5.5)). Let Ui be independent uniformly distributed ran-
dom variables. Then Zi defined by Ui = Φ(Zi) are independent and N(0, 1)
(see Section 3.1.2). Then{

X = mX + σXZ1

Y = mY + σY Z2

are N(mX ,mY , σX , σY , 0) . In the case of dependent variables, the relation is
given as
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X = mX + σXZ1

Y = mY + ρσY Z1 + σY

√
1 − ρ2Z2

and (X,Y ) ∈ N(mX ,mY , σ2
X , σ2

Y , ρ) . (cf. Problem 5.8). �

Example 5.4 (Length and weight of children). In a medical study, length
and weight of 725 newborn children were registered. In Figure 5.3, left panel,
we show a histogram for the weights along with a fitted pdf for N(mW , σ2

W ) ,
where m∗

W = 3343 [g], σ∗
W = 528 [g] (estimated from the sample). Ditto

plot for length is shown in the right panel, the pdf for N(mL, σ2
L) where the

estimated parameter values are given as m∗
L = 49.8 [cm], σ∗

L = 2.5 [cm].
Now, study the joint distribution. An estimate of the correlation is ρ∗ =

0.75 (see Eq. (5.14)). In Figure 5.4, contour lines of a two-dimensional nor-
mal density are shown as well as a scatter plot of the original data. Note
that some observations are not well described by the distribution. Usually in
scientific investigations, such not “normal” observations have to be examined
closer. This simple example shows that attention has to be paid in modelling
situations of real data. �

For an r.v. having a pdf, probabilities of statements can be obtained by in-
tegrating the density function (see Eq. (3.4)). In the case of a two-dimensional
distribution, we have that for any events A and B ,

P(X ∈ A and Y ∈ B) =
∫

A

∫
B

f(x, y) dxdy, (5.6)
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Fig. 5.3. Histogram and fitted normal pdf for data of children. Left: weight. Right:
length.
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Fig. 5.4. Scatter plot of observations of length and weight and fitted two-
dimensional normal density (ρ∗ = 0.75). Note that some observations are not well
described by the distribution.

that is, a double integral. Quite often, the last formula has to be computed
numerically, even for simple sets A,B . For example, this is the case when
X,Y are normally distributed.

Expected values of functions

Consider a function z = h(x, y) . Define a new random variable Z as Z =
h(X,Y ) . Simple examples are Z = X + Y or Z = XY . We want to find
the expected value of Z . Obviously if the distribution of Z is known, we can
compute the expectation of Z directly by use of Eq. (3.16). However, it can
also be done by means of the following formulae:

E[Z] = E[h(X,Y )] =
∫ +∞

−∞

∫ +∞

−∞
h(x, y)f(x, y) dxdy (5.7)

or

E[Z] = E[h(X,Y )] =
+∞∑
j=0

+∞∑
k=0

h(j, k) pjk.

In the special case of a linear combination h(X,Y ) = aX +bY , it follows that

E[aX + bY ] = aE[X] + bE[Y ],

for any constants a and b (cf. Eq. (3.18)).
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5.2.1 Covariance and correlation

It is easy to check (Eqs. (5.4) and (5.7)) that for independent variables X
and Y , the relation

E[X · Y ] = E[X] · E[Y ] (5.8)

is always valid. Variables X and Y for which Eq. (5.8) holds are called un-
correlated. (All independent variables are uncorrelated but not conversely.)
Now, if the equation does not hold, the difference between the terms is a mea-
sure of dependence between the variables X and Y . This measure is called
covariance and is defined by

Cov[X,Y ] = E[X · Y ] − E[X] · E[Y ]. (5.9)

A glance at Eq. (3.19) convinces oneself that Cov[X,X] = V[X] and obviously
Cov[Y, Y ] = V[Y ] .

When one has two random variables, their variances and covariances are
often represented in the form of a symmetric matrix

Cov[X,Y ; X,Y ] =
[

V[X] Cov[X,Y ]
Cov[X,Y ] V[Y ]

]
. (5.10)

The variance of a sum of correlated variables will be needed for computation of
variance in the following chapters. Starting from the definition of variance and
covariance, the following general formula can be derived (do it as an exercise):

V[aX + bY + c] = a2V[X] + b2V[Y ] + 2abCov[X,Y ]. (5.11)

The last formula easily generalizes to

V
[ n∑

i=1

aiXi

]
=

n∑
i=1

a2
i V[Xi] + 2

n∑
i=2

i−1∑
j=1

aiajCov[Xi, Xj ]. (5.12)

The property Cov[aX, bY ] = ab · Cov[X,Y ] means that by changing the
units in which variables X and Y are measured, the covariance can be made
very close to zero. This could be misinterpreted as X and Y being only weakly
dependent. Consequently, the covariance is often scaled so that it becomes
independent of the units in which the variables are measured. Such a scaled
covariance is called correlation and is defined as follows

ρXY =
Cov[X,Y ]
D[X]D[Y ]

, (5.13)

where D[X] =
√

V[X] , D[Y ] =
√

V[Y ] . The correlation is always between one
and minus one, see the following theorem (a proof is given in [10], Section 4.5).
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Theorem 5.1. Let X and Y be two random variables such that |ρXY | =
1 . Then there are constants a , b , and c (all not equal to zero) such that
aX + bY + c = 0 with probability one.

However, not all functionally dependent variables X and Y are perfectly
correlated ( |ρXY | = 1). For example, for X ∈ N(0, 1) , define Y = X3 .
Obviously, if we know the outcome of the random experiment then X = x
while Y = x3 . However, the correlation is given by ρXY = 3/

√
15 < 1 .

Remark 5.2 (Estimation of correlation). Having observed (xi, yi) , i =
1, . . . , n , an estimate of ρXY , the correlation between the variables X and
Y , is given by

ρ∗XY =
Σ(xi − x̄)(yi − ȳ)√∑
(xi − x̄)2

∑
(yi − ȳ)2

. (5.14)

For instance, consider a bivariate normal distribution, with density function
given by Eq. (5.5). In Example 5.4, length and weight were positively corre-
lated with ρ∗XY = 0.75 (see also Figure 5.4). �

We end this section with an important application of the two-dimensional
normal density to approximate the error distribution when the estimated pa-
rameter θ has two components: θ = (θ1, θ2) . For example, in Example 4.11,
θ1 = m and θ2 = σ2 are mean and variance in a N(m,σ2) distribution. Now
the estimation error

E = (E1, E2) = (θ1 − Θ∗
1 , θ2 − Θ∗

2)

consists of two random variables. If (Θ∗
1 , Θ∗

2) are ML estimators, then, for
large values of n , E[Ei] ≈ 0 and the covariance matrix

Cov[E1, E2; E1, E2] ≈ −

⎡⎢⎢⎣
∂2l

∂θ2
1

∂2l

∂θ1∂θ2

∂2l

∂θ2∂θ1

∂2l

∂θ2
2

⎤⎥⎥⎦
−1

= −
[
l̈(θ∗1 , θ∗2)

]−1

(5.15)

i.e. the partial derivatives are computed for θi equal to the ML estimates θ∗i .
(Here A−1 means the inverse of the matrix A). Furthermore, the errors are
asymptotically normally distributed.

Example 5.5. As in Example 4.11, let X ∈ N(m,σ2) and suppose we have
n independent observations x = (x1, . . . , xn) of X . The ML estimates of
θ = (θ1, θ2) = (m,σ2) are

θ∗1 =
x1 + · · · + xn

n
= x̄,

θ∗2 =
1
n

n∑
i=1

(xi − x̄)2 = s2
n.
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The errors (E1, E2) = (m− X̄, σ2 −S2
n) have for large n mean approximately

equal to zero and covariance matrix

Cov[E1, E2; E1, E2] ≈ −

⎡⎢⎢⎣ − n

s2
n

− nx̄
(s2

n)2
+

nx̄
(s2

n)2

− nx̄
(s2

n)2
+

nx̄
(s2

n)2
n

2(s2
n)2

− ns2
n

(s2
n)3

⎤⎥⎥⎦
−1

=

⎡⎢⎣ s2
n

n
0

0
2(s2

n)2

n

⎤⎥⎦ .

Consequently, (E1, E2) ∈ AsN(0, 0, s2
n/n, 2(s2

n)2/n, 0) are asymptotically un-
correlated and normally distributed. Asymptotical confidence intervals can be
constructed as presented in Chapter 4.

It is easy to prove, using Eqs. (5.4-5.5), that uncorrelated (ρ = 0) normal
variables are actually independent. �

5.3 Conditional Distributions and Densities

In Section 1.3 we introduced the concept of conditional probabilities. We
give the definition again: Suppose we are told that the event A , such that
P(A) > 0 , has occurred. Then the probability that B occurs, given that A
has occurred, is

P(B|A) =
P(A ∩ B)

P(A)
.

This notion is now extended to random variables and distributions, which is
needed in order to introduce the Bayesian analysis in Chapter 6.

5.3.1 Discrete random variables

For discrete random variables X,Y with pmf pjk = P(X = j, Y = k) the
conditional probabilities

P(X = j|Y = k) =
P(X = j, Y = k)

P(Y = k)
=

pjk

pk
= p(j|k), j = 0, 1, . . . (5.16)

are well defined for all k such that pk > 0 (if pk = 0 we can let p(j|k) = 0
too). The conditional probabilities p(j|k) = P(X = j|Y = k) sum to one, since∑∞

j=0 pjk = pk . This means that p(j|k) , as a function of j , is a probability-
mass function.

Suppose we observed the value of Y , e.g. we know that Y = y , but X
is not observed yet. An important question is if the uncertainty about X
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is affected by our knowledge that Y = y . Uncertainty is measured by the
distribution function, which we denote by F (x|y) = P(X ≤ x|Y = y) . (If X
and Y are independent then obviously F (x|y) = FX(x) and Y gives us no
knowledge about X .) For discrete X,Y we have

F (x|k) = P(X ≤ x|Y = k) =
P(X ≤ x, Y = k)

P(Y = k)
=

∑
j≤x pjk

pk
=

∑
j≤x

p(j|k),

i.e. p(j|k) is the probability-mass function of the conditional distribution
F (x|y) . That is why we call p(j|k) a conditional probability-mass function.

5.3.2 Continuous random variables

Consider now variables X,Y having continuous distributions. We wish to find
the conditional distribution F (x|Y = y) . However, we face a problem since
for continuous variables Y , P(Y = y) = 0 for all y . An easy solution to this
problem can be found if X,Y has the density f(x, y) . In such a case we can
follow the formula (5.16) and define

f(x|y) =
f(x, y)
f(y)

, if f(y) > 0 and zero otherwise. (5.17)

Since for a fixed value y , f(x|y) as a function of x integrates to one (Eq. 5.3),
f(x|y) is a probability density function. Let us denote by F (x|y) a distribution
having the density f(x|y) , i.e. for any x

F (x|y) =
∫ x

−∞
f(x̃|y) dx̃. (5.18)

Now a combination of Eqs. (5.6), (5.17), and (5.18) leads to the following
important result

P (X ≤ x) = F (x) =
∫ +∞

−∞
F (x|y)f(y) dy. (5.19)

The last equation is a special case of the law of total probability given in the
following subsection and is the motivation why we call F (x|y) the conditional
distribution of X given that Y = y , which we also write

F (x|y) = P(X ≤ x|Y = y).

Consequently, we also call f(x|y) the conditional density of X given Y = y .
Note that since f(x, y) = f(x|y)f(y) then

f(x) =
∫ +∞

−∞
f(x|y)f(y) dy, (5.20)

which also could be used to demonstrate (5.19).
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5.4 Application of Conditional Probabilities

In Chapters 1 and 2, the most important applications of the conditional proba-
bilities were the law of total probability and Bayes’ formula. We now give more
general versions of these two results, starting with the law of total probability.

5.4.1 Law of total probability

In Chapter 1, we considered an event B and a partition of the sample space
S , i.e. a collection of n disjoint events Ai that sums to the whole space S .
Then the probability

P(B) = P(B|A1)P(A1) + · · · + P(B|An)P(An).

Now, consider a partition generated by a random variable Y , say, that takes
only n values 1, . . . , n . Obviously Ai = {Y = i} is a well-defined partition
and hence we can write

P(B) = P(B|Y = 1)P(Y = 1) + · · · + P(B|Y = n)P(Y = n).

An extension to any discrete variable Y that can take infinitely many values
is straightforward:�

�

�

	

Theorem 5.2 (Law of total probability, discrete distributions). Let
B be an event and Y a random variable of discrete type. Then

P(B) =
∞∑

i=0

P(B|Y = i)P(Y = i). (5.21)

Example 5.6 (Inspection of cracks). In this hypothetical example we con-
sider an old tanker that has a large number of surface cracks. We model the
total number of cracks by a Poisson distributed variable N , say, which means
that

P(N = k) =
mk

k!
e−m, k = 0, 1, . . . .

The parameter m is the average number of cracks, to be derived next. Con-
sidering the age of the tanker, one assumes that the intensity of cracks is
λ = 0.01 m−2 , while the total area of the surface of the tanker is 5000 m2

giving on average m = λ · 5000 = 50 cracks.
Assume that an automatic device is used to detect and repair cracks.

From laboratory experiments it is known that the detection probability is
extremely high and equal to 0.999. Further, failures in detection are assumed
to be independent. We are interested in the probability that all cracks have
been detected and repaired.
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Let us introduce B = “All cracks have been repaired”, and Ai = “There
have been i cracks on the surface before inspection”, i.e. Ai = {N = i} . Then

P(B) =
∞∑

i=0

P(B|N = i)P(N = i) =
∞∑

i=0

(0.999)i m
i

i!
e−m

= e−m
∞∑

i=0

(0.999m)i

i!
= e−me0.999m = e−0.001m = e−0.05 ≈ 0.95.

Since the surface of the tanker is large, the probability of missing some cracks
is not negligible. �

A generalization of Eq. (5.21) to the case of Y having a density function
is given in the following theorem.�

�

�

	

Theorem 5.3 (Law of total probability, continuous distributions).
Assume that a random experiment renders values of an r.v. Y and that
we in addition are interested in any statement B , say, about the outcomes
of the experiment. Then, for each y , there exists a probability P(B|Y = y)
such that

P(B) =
∫ +∞

−∞
P(B|Y = y)fY (y) dy. (5.22)

If X and Y have joint density f(x, y) and B is a statement about X ,
then

P(B |Y = y) =
∫

B

f(x|y) dx,

where f(x|y) is the conditional probability density defined by Eq. (5.17).

The following formula, a simple consequence of the last theorem, is often used.

Remark 5.3. Suppose that X,Y are independent variables and that Y has
a density fY (y) . Consider a statement B = “X ≤ Y ” . It is not difficult to
prove P(B|Y = y) = P(X ≤ y) , and hence using Eq. (5.22), we have that

P(B) = P(X ≤ Y ) =
∫ ∞

−∞
P(X ≤ y)fY (y) dy. (5.23)

�

5.4.2 Bayes’ formula

Suppose that for an outcome of a random experiment it is known that B
is true. Let Y be an r.v. with pdf fY (y) (or pmf p(y)). The conditional
distribution of Y given that B is true is

FY |B(y) = P(Y ≤ y |B).
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The pdf (or pmf) of this distribution is given by Bayes’ formula as

fY |B(y) = c · P(B |Y = y) fY (y) (5.24)

where 1/c = P(B) and P(B) is given by Eq. (5.22). Again, L(y) = P(B|Y = y)
is called likelihood function (cf. Chapter 2, page 22).

5.4.3 Example: Reliability of a system

The following example demonstrates the use of Eqs. (5.23-5.24) to compute
the probability of failure of a simple system. The features of this simple sys-
tem are common in many applications to engineering design, where typically
“loads” and “strengths” have to be modelled. In Chapters 9–10, we will study
design questions in more detail, when discussing how to compute the so-called
characteristic strengths and design loads.

Example 5.7 (Reliability of a wire). A wire to be used in a construc-
tion needs to be designed to support weights that varies from day to day in
an unpredictable way, without breaking in a year of operation. We will now
give probabilistic models for load and strength, respectively, and compute the
probability of failure.

Modelling the load. Denote by X the maximal weight that will be carried
by the wire for a period of 1 year. Obviously the weight, and hence X , is
unknown and X will be modelled as a random variable. As will be shown in
Chapter 10, X can have a Gumbel distribution,

P(X ≤ x) = e−e−(x−b)/a

, −∞ < x < ∞.

Suppose the load X has mean 1000 kg and standard deviation 200 kg. From
the expressions for mean and variance of a Gumbel distributed variable, one
finds that a = 156 and b = 910 . We neglect the fact that the parameters are
estimated and hence are uncertain values.

Modelling the strength. When ordering a wire, wires of different capacity of
carrying loads can be chosen. The producer specifies the quality of his wires
by giving the average strength of a wire and the coefficient of variation. From
experience it is known that the strength of wires follows a Weibull distribution.

The last three sentences describe a random experiment of getting a product
from a population of wires with variable strength. The variability is described
using a Weibull distribution with specified mean and coefficient of variation.
Let us ignore the fact that the parameters are estimated and hence uncertain,
or even that the choice of a Weibull model might be wrong. We agree that
the strength y (i.e. a capacity to carry a load) is unknown before we get the
wire and hence is modelled by a random variable Y with density

f(y) =
c

α

( y

α

)c−1

e−(y/α)c

, y ≥ 0.
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Suppose that one decides to order wires with average strength 1000 kg and
coefficient of variation R[Y ] = 0.2 . This implies (see appendix, Table 4) that
the shape parameter in the Weibull distribution c = 5.79 while the scale
parameter α = 1000/0.9259 ≈ 1080 .
Reliability of the wire. Introduce the statement

B = “Safe operation during 1 year”.

Clearly P(B) = P(X < Y ) and we can use Eq. (5.23) to compute the proba-
bility. (Note that P(X = Y ) = 0 .)

Suppose that we know the value of the strength of the wire, Y = y . Then
the conditional probability of safe operation given the strength Y = y is given
as

P(B | y) = P(X ≤ y) = e−e−(y−b)/a

,

since the load X is independent of the value of the strength Y . Now Eq. (5.23)
gives the probability of safe operation

P(B) =
∫ ∞

0

exp(−e−(y−910)/156)
5.79
1080

( y

1080

)4.79

e−(y/1080)5.79
dy

≈ 0.533. (5.25)
The likelihood takes into account both the variability of the load and the
variability of material properties and manufacturing, leading to an unknown
value of the strength of the wire.

(The result in Eq. (5.25) is not particularly surprising since we took the
average strength to be equal to the expected load. Thus we expect that the
odds are approximately 1:1 that the load will exceed the strength.) �

Often decisions need to be made about safety of existing structures, for
example, whether a bridge used for 40 years has to be renovated or be used
for some additional period of time, e.g. 10 years. Money spent on renovation
of a safe (with high probability) bridge could be used on other measures to
increase the safety of traffic.

The following example illustrates some aspects of evaluation of safety of
existing structures. Again, we study the simple system of a wire under variable
load. A serious simplification is made by assuming that the wire is not getting
weaker with age.

Example 5.8 (Safety of existing structures). Suppose the wire ordered
in Example 5.7 survived one year of exploitation, which means that

B = “The wire supported a load during one year”

is true. The probability for this was computed in Eq. (5.25), P(B) = 0.533 .
We have to make a decision whether to keep the wire for the next year or to
replace it by a new one of higher quality with E[Y ] = 1200 kg and R[Y ] = 0.2 .
The decision is taken on the basis of computed reliability, i.e. P(C) where

C = “Safe operation during next year” .
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New wire. We begin with the reliability of a new wire with E[Y ] = 1200 kg
and R[Y ] = 0.2 , which means that we need to find the new scale parameter
a for the Weibull strength. (Since E[Y ] = aΓ (1 + 1/c) we have that a =
1200/0.9259 ≈ 1300 .) Then we recompute the integral (5.25)

P(C) =
∫ ∞

0

exp(−e−(y−910)/156)
5.79
1300

( y

1300

)4.79

e−(y/1300)5.79
dy ≈ 0.757.

One-year-old wire. Next we compute the reliability of a one-year-old wire.
Obviously we wish to include in our analysis the information that B is true,
i.e. we wish to modify the density f(y) describing the strength of wire and
compute the posterior density fpost(y) using Bayes’ formula. Since the likeli-
hood function P(B|y) = P(X ≤ y) and P(B) = 0.533 , we can use Eq. (5.24)
to compute the conditional density, viz.

fpost(y) =
1

P(B)
P(B|y)f(y)

=
1

0.533
exp(−e−(y−910)/156)

5.79
1080

( y

1080

)4.79

e−(y/1080)5.79
.

Consequently, with this posterior density, the probability of safe operations
during the following year is found as

P(C) =
∫ ∞

0

P(C|y)fpost(y) dy = 0.705.

Clearly, the decision is not easy. The reliability of a used wire is slightly lower
(compared to 0.757), but by keeping it one saves the cost of buying and
installing a new one. Against the decision of keeping the used wire is the
possibility of ageing, i.e. losing strength over time.

Conditional independence. We end this example with a warning about the
possible erroneous analysis of failure during the time period investigated. De-
note by X1 and X2 the maximal load during the first and second year, respec-
tively. By our assumption, the variables X1 and X2 are independent Gumbel
distributed. Further let B1 = “X1 < Y ” and B2 = “X2 < Y ” be the event
that the strength is higher than the load during the first and second year,
respectively. Since the load is independent of the strength and Y = y is fixed,
although unknown, one could think that B1 and B2 are independent, giving

P(“The wire survives two years”) = P(B1 ∩B2) = P(B1) ·P(B2) = 0.5332.

However, this is not correct since we have only independency conditionally
that we know the strength “Y = y” ,

P(B1 ∩ B2|Y = y) = P(B1|Y = y)2

and the correct answer is P(B1 ∩ B2) = P(B2|B1)P(B1) = 0.705 · 0.533 .
Conditional independence will be further discussed in the next chapter.

�
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Problems

5.1. The random variables X and Y are independent and have probability mass
functions

j 1 2 3
pj 0.20 0.60 0.20 ,

k 1 2 3 4
pk 0.25 0.25 0.25 0.25 .

Calculate the following probabilities:

(a) P(X = 2, Y = 3)
(b) P(X ≤ 2, Y ≤ 3)

5.2. From the National Fire Incident Reporting Service (in the U.S.), we have that
among residential fires, approximately 73% are in family homes, 20% are in apart-
ments, and the remaining 7% are in other types of dwellings [70].

Consider five fires, independently reported during one week. Find the probability
that three are in family homes, one is in an apartment, and one is in another type
of dwelling.

5.3. A friendly tournament in football (association football, “soccer”) between two
football teams, A and B, is so arranged that there will be precisely two matches
played. In a single match, the probability that A will win is pA = 0.35 . The proba-
bility that B will win in the same match is pB = 0.25 . So the probability of a draw
is thus 1 − pA − pB = 0.40 . Let XA be the number of matches won by A, and XB

the number of matches won by B.

(a) Give the joint probability-mass function pXA,XB for XA and XB .
(b) Calculate E[XA] , V[XA] , Cov[XA, XB] , and ρ[XA, XB] .

5.4. Let X denote the number of interruptions in a newly installed computer net-
work: 1, 2, or 3 times per week. Let Y denote the number of times an expert techni-
cian is called on an emergency call, related to interruptions during a week. A statisti-
cian has established the following probability-mass function pjk = P(X = j, Y = k) :

j
1 2 3

1 0.05 0.05 0.1
k 2 0.05 0.1 0.35

3 0 0.2 0.1

(a) Give the marginal distributions of X and Y .
(b) Calculate P(Y = 3|X = 2) .
(c) Explain theoretically what the probability in (b) means.

5.5. A region by the sea with a square area with sides one length unit is frequently
used by e.g. old tankers that might leak oil. Let X and Y denote the coordinates of
a ship when a leakage starts. Suppose the position of the ship is uniformly located
over the square area. Then a model for (X, Y ) is given by

fX,Y (x, y) =

{
1, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,
0, elsewhere.

Find the probability P(X ≤ 0.3, Y ≤ 0.4) .

5.6. Let X ∈ Gamma(7, 2) , Y ∈ Gamma(6, 4) . Calculate E[2X + 3Y ] .
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5.7. Let N1 ∈ Bin(20, 0.3) , N2 ∈ Bin(10, 0.5) . Further, the variables are correlated,
Cov[N1, N2] = 0.85 . Calculate V[N1 − N2] .

5.8. Let X1 ∈ N(0, 1) and X2 ∈ N(0, 1) be two independent random variables. Let
Y1 and Y2 be two other random variables defined by{

Y1 = X1

Y2 = �X1 +
√

1 − �2X2

where � is a real-valued constant such that −1 ≤ � ≤ 1 .
(a) Give E[Y1] , E[Y2] , V[Y1] , V[Y2] , Cov[Y1, Y2] , and the correlation coefficient

ρ[Y1, Y2] .
(b) One can show that (Y1, Y2) has a bivariate Gaussian distribution. Write down

the joint density function for Y1 and Y2 .

5.9. (a) Let X be a random variable with distribution function FX . Assume that
we have observed that X > 0 . Give, in terms of FX , the conditional distribution
function of X , given that information, i.e.

FX|X>0(x) = P(X ≤ x|X > 0), x ∈ R.

You may assume that P(X > 0) 
= 0 .
(b) A property of the normal distribution is that it always produces negative num-

bers with a non-zero probability. If one wants to model something that is strictly
non-negative (T , say) but still retain the bell-shaped curve of the density func-
tion, one can model T by means of a truncated normal distribution, i.e.

FT (t) = P(X ≤ t|X > 0)

where X ∈ N(m, σ2) . Use (a) to obtain FT (t) .
Hint: FX(x) = Φ

(
x−m

σ

)
.

(c) Give the density function of the truncated normal distribution of T , obtained
in (b).

5.10. Consider the independent random variables X ∈ Po(m1) and Y ∈ Po(m2) .
Show that the conditional probability-mass function for X , given X + Y = n , is
binomial. Use that X + Y ∈ Po(m1 + m2) .

5.11. A classic example of a hierarchical model is as follows: An insect lays a large
number of eggs, each surviving with probability p . On average, how many eggs will
survive? A probabilistic framework is given below.

First, the large number of eggs laid is often modelled as a Poisson variable with
expectation m , say. Further, if the survival of each egg is independent, we have a
binomial model for the number of survivors. With X = “Number of survivors” and
Y = “Number of eggs laid” , we have

X |Y = y ∈ Bin (y, p), Y ∈ Po (m).

Compute

P(X = x) =

∞∑
y=0

P(X = x|Y = y)P(Y = y)

and identify the distribution for X . Then find the number asked for, the average
number of survivors, as E[X] .
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Introduction to Bayesian Inference

In this chapter we further develop Bayesian methods to analyse data and
estimate probabilities for the different scenarios first discussed in Chapter 2.
The probabilities, often used as measures for risks, depend on a mathematical
model of the random experiment, observations (data) and experience from
similar problems.

In Chapter 4, we presented some statistical methods to fit distributions
to data. The methods were based on interpretation of probabilities as fre-
quencies, i.e. if one has an infinite sequence of independent outcomes of the
experiment, then by means of LLN one can compute the probability p , say,
of any statement by finding the relative frequency of times that the statement
is true. However, since we never have infinite series of observations, even in
the frequentist framework the estimated probabilities are uncertain. Conse-
quently the classical inference results in an estimate p∗ of the probability and
a random variable E that models the variability of the estimation error. Often
confidence intervals are used to describe possible size of error.

In the Bayesian approach, probability densities (pdfs) are used instead of
confidence intervals to describe uncertainty in the value of a risk (a probability
of suitably chosen scenario) due to finite length of observed data. However, a
more important difference is that even uncertainties originating from our “lack
of knowledge” as well as experience can be included in a measure of a risk for
a particular scenario. This is often used when probabilities of occurrence of
non-repeatable scenarios have to be analysed, for example damage of the vital
parts in a specific nuclear power plant or a collision of a ship with a bridge,
etc. Even here probabilities are used to measure risks; however, those have no
frequentistic interpretation (the Law of Large Numbers cannot be applied).

This chapter is a brief introduction to the Bayesian methodology to analyse
data and compute probabilities. Only some of the methods in this theory are
mentioned. For deeper studies, we refer to the book by Gelman et al. [28]. For a
discussion of the philosophy of the Bayesian interpretation of probability and
reasoning, much debated among statisticians over decades, see for instance
[52], and for a review, Chapters 1.4-1.5 in [60].
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6.1 Introductory Examples

Bayesian statistics is a general methodology to analyse and draw conclusions
from data. Here we mainly focus on two problems of interest in risk analysis:

• The first one deals with the estimation of a probability pB = P(B) , say,
of some event B , for example the probability of failure of some system.

• The second one is estimation of the probability that at least once an event
A occurs in a time period of length t . The problem reduces itself to esti-
mation of the intensity λA of A .

Both the continuous parameters pB and λA are attributes of some physical
system, e.g. if B = “A water sample passes tests” then pB = P(B) is a measure
of efficiency of a waste-water cleaning process. The intensity λA of accidents
may characterize a particular road crossing. Obviously, the parameters pB

and λA are unknown.
For simplicity of presentation, let θ denote the unknown value of pB , λA ,

or any other quantity. Similarly as in Section 2.3, let us introduce odds qθ ,
which for any pair θ1 , θ2 represents our belief of which θ1 or θ2 is more likely
to be the unknown value of θ , i.e. qθ1 : qθ2 are odds for the alternatives A1 =
“ θ = θ1 ” against A2 = “ θ = θ2 ” . Since there are here uncountable number
of alternatives, we require that qθ integrates to one and hence f(θ) = qθ is
a probability-density function representing our belief about the value of θ .
The random variable Θ having the pdf serves as a mathematical model for
uncertainty in the value of θ . Let us turn to two illustrative examples.

Estimation of probability P(B)

Suppose we are interested in the probability of an event B , for example
B = “Victim of an traffic accident needs hospitalization”, where outcomes of
the random experiment are accidents on a specific road crossing. We are inter-
ested in the frequency of serious accidents in which hospitalization for one or
more of involved people is needed. We assume that B , for different accidents,
happen independently with the same probability pB = P(B) . In other words,
if Bi denotes the event that B is true in the ith accident then for any i �= j ,

P(Bi ∩ Bj) = P(Bi)P(Bj) = p2
B .

Consequently, if K is the number of accidents leading to hospitalization of any
of the people involved in the accident, then K ∈ Bin(n, pB) , where n is the
total number of accidents considered. The goal is to estimate the probability
pB .

Classical estimate of the probability pB : The probability pB is an un-
known constant. A commonly used estimate of the frequency is p∗B = k/n ,
where k is the number of times B were true in n trials. Since n is finite the
estimate is an uncertain value, and very likely pB �= p∗B . The uncertainty
is quantified using a random variable E and measured by means of confi-
dence interval.
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Bayesian approach: If parameters (or constants) are unknown, the uncer-
tainty of which value is true can be described using a pdf f(p) , say. As
mentioned before, the ratio f(p1) : f(p2) is our odds for p1 against p2 .
Methods to find f(p) is the main subject of this chapter.

Suppose f(p) has been selected and denote by P a random variable having
pdf f(p) . A plot of f(p) is an illustrative measure of how likely the different
values of pB are. If only one value of the probability is needed, the Bayesian
methodology proposes to use the so-called predictive probability, which is sim-
ply the mean of P :

Ppred(B) = E[P ] =
∫

pf(p) dp. (6.1)

The predictive probability is a properly defined probability that measures the
likelihood that B occurs in future. By the Law of Total Probability, the pre-
dictive probability combines two sources of uncertainty: the unpredictability
whether B will be true in a future accident and the uncertainty in the value
of probability pB .

Example 6.1. Suppose we have no idea how harmful accidents are. We ex-
press this total “lack of knowledge” by choosing f(p) to be a uniform density
function equal to 1 for all 0 ≤ p ≤ 1 and zero otherwise (see Figure 6.1 left
panel, dashed line). Obviously, for any two probabilities p1 and p2 the ratio
f(p1) : f(p2) is 1:1, which means that p1 is equally likely to be true as p2 .
Finally, using Eq. (6.1), the predictive probability

Ppred(B) = E[P ] =
∫ 1

0

p dp =
1
2
.

�
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Fig. 6.1. Left: the pdf f(p) in Examples 6.1 (dashed line) and 6.4 (solid line).
Right: the pdf f(p) in Examples 6.2 (dashed line) and 6.3 (solid line).
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Estimation of probability Pt(A)

Suppose one is interested in the probability of occurrences of at least one
accident at a specific road crossing. Let A be the event that an accident is
recorded. Times instants when A occurs form a stream of A . Suppose that
the stream is stationary and has intensity λA . The goal is to compute Pt(A) ,
e.g. t = 1 day, i.e. the probability of at least one accident in the period t .
If it is reasonable to assume that the stream satisfies conditions (I-III) from
Section 2.5.1, then the stream is Poisson and Pt(A) = 1 − e−λA t . If λA t is
small, the probability Pt(A) can be approximated as follows

Pt(A) = 1 − e−λA t ≈ λA t. (6.2)

Actually, the approximation is also a bound for the probability since

Pt(A) ≤ λA t (6.3)

for any stationary stream of A (see Eq. (2.11), Theorem 2.5). Since we are
mainly interested in the situations when Pt(A) is small, in this chapter, we
always estimate Pt(A) by λA t , which is a conservative measure of a risk.

Classical estimate of the probability: Obviously the intensity λA is un-
known and the commonly used estimate of the intensity is λ∗

A = NA(T )/T ,
where NA(T ) is the number of accidents that occurred in the period of
time T . Consequently by Eq. (6.2) the estimate p∗ of Pt(A) is simply
p∗ = λ∗

A t . Since T is finite, the estimate is an uncertain value and one
can analyse the size of the estimation error E . The error can be expressed
using a confidence interval, e.g. using Eq. (4.29).

Bayesian approach: Again, the Bayesian methodology models the uncer-
tainty in the value of λA by means of a probability-density function fΛ(λ) .
The density fΛ(λ) describes our knowledge about possible values of λA .
Denote by Λ a random variable having the pdf fΛ(λ) . Recall that by
Eqs. (6.2-6.3), Pt(A) ≈ λA t . To describe the uncertainty of this quantity,
a random variable

P = Λ t

is introduced. Since P(P ≤ p) = P(Λ ≤ p/t) , the pdf of P is given by

f(p) =
d
dp

P(P ≤ p) =
1
t
fΛ(p/t). (6.4)

As before, if only one single value of the probability is needed, the Bayesian
approach proposes to use the predictive probability

Ppred
t (A) ≈ E[P ] = tE[Λ] = t

∫
λfΛ(λ) dλ. (6.5)



6.1 Introductory Examples 129

This is a measure of the risk that A occurs, combining two sources of uncer-
tainty: the variability of the stream of A and the uncertainty in the intensity
of accidents λA .

We see that the crucial point in the Bayesian methodology is the choice of
the density fΛ(λ) . The density reflects all our knowledge about the studied
problem — we give a simple example.

Example 6.2. The exact value of λA is unknown and the pdf f(λ) expresses
our uncertainty in the value of λA . Suppose that our experience (belief) is
that the intensity of accidents λA varies between road crossings. However, for
the type of crossing considered, on average, the intensity is 1/30 [day−1 ]. In
Section 6.5.1 we discuss methods to choose f(λ) when not much is known
about the intensity. It is shown that in the present situation a convenient
choice is the exponential density. Since E[Λ] = 1/30 , f(λ) = 30 e−30λ , λ ≥ 0
[day−1 ]. The density is shown in Figure 6.1, right panel, dashed line. Let t = 1
day, then Pt(A) is approximated by P = Λ . From the plot one can see that
the uncertainty in the value of P is quite high. Actually the probability can
be any value between zero and 1/10 with higher odds for small values of P .
Finally, the Bayesian predictive probability is

Ppred
t (A) ≈ t E[Λ] =

t

30
.

�

Again, let θ be the unknown parameter (θ = pB , θ = λA in Examples 6.1,
and 6.2, respectively) while Θ denotes any of the variables P or Λ . Since θ is
unknown, it is seen as a value taken by a random variable Θ with pdf f(θ)1. In
both examples we assumed that the probability densities f(θ) were somehow
selected and we claimed that the densities represented our knowledge about
the possible value of the parameter θ .

If f(θ) is chosen on basis of experience without including observations of
outcomes of an experiment then the density f(θ) is called a prior density and
denoted by fprior(θ) . However, as time passes, our knowledge may change, es-
pecially if we observe some outcomes of the experiment that can influence our
opinions about the values of parameter θ reflecting in the new density f(θ) .
The modified density f(θ) will be called the posterior density and denoted
by fpost(θ) . The method to update f(θ) is discussed in detail in the follow-
ing section. Selection of prior densities is discussed in Section 6.5. In Section
6.4, the so-called conjugated priors are introduced. These are the priors that
are particularly convenient for recursive updating procedures, i.e. when new
observations arrive at different time instants.

1For discrete distributions F (θ) , i.e. when θ can take only a countable number
of values θi , in all formulae integration on θ should be replaced by summation over
all possible values of θ . Updation of odds was discussed in Chapter 2.
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6.2 Compromising Between Data and Prior Knowledge

In the previous section we have introduced the prior density fprior(θ) , which
represents information about the random experiment before any observations
(measurements) of the experiment were collected. Suppose now that the ex-
periment resulted in that a statement C about the outcome is true. If the
information is relevant it should influence our opinion about θ . The new
density, called posterior and denoted as fpost(θ) , incorporates our a priori
knowledge (experience) and the information that C is true. How to mod-
ify fprior(θ) to include this new piece of information is the subject of this
section.

Suppose one can compute the probability of C when the unknown para-
meter has value θ , i.e. P(C|Θ = θ) , for all values of θ , then Bayes’ formula
in Eq. (5.24) can be employed to update the prior density, viz.

fpost(θ) = cP(C|Θ = θ)fprior(θ), (6.6)

where the constant c is chosen so that
∫

fpost(θ) dθ = 1 , since fpost(θ) is a
probability density function. Consequently

1
c

=
∫ +∞

−∞
P(C|Θ = θ)fprior(θ) dθ.

Example 6.3. We continue the analysis from Example 6.2, where the prior
pdf was chosen to be exponential with mean 1/30 [days−1 ], i.e. fprior(λ) =
30e−30λ , where λ is the intensity of accidents at a particular crossing.

Now suppose that after one year of monitoring the crossing three accidents
have been recorded. Let us denote this information by C . The fact that C is
true should affect our uncertainty about the intensity λA and also a measure
of risk: the probability of at least one accident during one day. In order to use
Eq. (6.6) to compute the posterior density fpost(λ) the likelihood function,
i.e. the conditional probability P(C|Λ = λ) , needs to be found. This is done
next.

Let NA(T ) be the number of accidents that has been recorded during a
period of time T . Using Theorem 2.5, Eq. (2.12), it follows that

P(C) = P(NA(T ) = 3) =
(λAT )3

3 !
e−λAT

if the stream is Poissonian (the assumptions I–III can be motivated). Conse-
quently P(C |Λ = λ) = (λT )3

3 ! e−λT and Bayes’ formula (6.6) gives

fpost(λ) = c λ3e−λT fprior(λ) = c λ3 e−λT e−30λ = c λ3 e−(30+T )λ,

where c is a constant that needs to be determined and T = 365 [days].
The posterior density is recognized to be the pdf for the gamma distribution,
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Θ ∈ Gamma(4, 395) , (see Eq. (6.16) for definition and some simple properties
of gamma distributed variables). The posterior density fpost(λ) is given in
Figure 6.1 right panel, solid line. We observe that the updated density f(λ)
is more concentrated around its peak, showing that the uncertainty for the
probability Pt(A) ≈ t Λ decreased considerably after monitoring the crossing
for a year.

Finally, as in Example 6.2, we compute the predictive probability for an
accident during one day using Eq. (6.5) for the updated pdf fpost(λ) . Since
for a random variable Λ ∈ Gamma(a, b) , the mean E[Λ] = a/b , we have
that

Ppred
t (A) ≈ t E[Λ] = t

4
395

which for t = 1 gives the value Ppred
t (A) = 0.01 . The computed risk is around

three times smaller than computed in Example 6.1.
�

The following example shows another use of Bayes’ formula.

Example 6.4. We continue the analysis from Example 6.1 and study the
probability pB for a serious accident (leading to hospitalization of one or
more victims). Due to complete ignorance about the order of the probability,
the prior pdf fpred(p) was chosen to be uniform U(0, 1) .

Now suppose that in the first year of monitoring this crossing three acci-
dents were recorded and only one of these was serious. Denote this event by
C . Using this information the posterior pdf is computed by means of Eq. (6.6).

Let N be the number of serious accidents among three accidents. If the
probability pB were known then N ∈ Bin(3, pB) ; consequently, with C =
“N = 1” ,

P(C |P = p) = 3 p (1 − p)2, 0 ≤ p ≤ 1,

and by (6.6)

fpost(p) = c p (1 − p)2 · 1, 0 ≤ p ≤ 1,

where c is a constant that needs to be determined. The posterior density
is recognized to be the pdf for the beta distribution, P ∈ Beta(2, 3) , (see
Eq. (6.10) for definition and some simple properties of beta distributed vari-
ables). The constant c = 4!/2! = 12 . The prior and posterior pdf of P are
presented in Figure 6.1 (right panel). We note that f(p) is more concentrated,
showing that the uncertainty for the probability P(B) decreased slightly after
monitoring the crossing for one year. More data are needed to be more cer-
tain about the size of the probability. Finally, using Eq. (6.1), the predictive
probability Ppred(B) = 2/5 . Note that the classical estimate p∗B = 1/3 ; this
is the value that maximizes the density fpost . �
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6.2.1 Bayesian credibility intervals

In the previous section a random variable P with posterior pdf fpost(p) was
used to describe uncertainty in the values of the probabilities P(B) and Pt(A) .
The plot of fpost(p) visualizes the uncertainty while the predictive probability
E[P ] gives a single value as a measure of risk. By computing the predictive
probability the information about the uncertainty in values of the probabil-
ities P(B) , Pt(A) is lost. A compromise between a complete description of
uncertainty fpost(p) and averaging the possible values of p in the predictive
probability E[P ] is to use quantiles pα of P . Definition and some applica-
tions of quantiles were given in Chapter 3. For convenience we give the defining
equation here: pα , where 0 < α < 1 , is the α quantile of P if it satisfies the
following equality: P(P > pα) = α .

Often instead of giving the posterior density, the uncertainty of P is de-
scribed by means of a few quantiles, for example for α =0.975, 0.9, 0.75,
0.5, 0.25, 0.1, and 0.025. In particular the interval [p0.975, p0.025] is called the
0.95-credibility interval since P(p0.975 ≤ P ≤ p0.025) = 0.95 .

Example 6.5. Continuation of Example 6.4, where the posterior density for
f(p) ∈ Beta(2, 3) . Quantiles are given below:

α 0.975 0.9 0.75 0.5 0.25 0.1 0.025
pα 0.068 0.143 0.243 0.386 0.544 0.680 0.806

The 0.95-credibility interval is [0.068, 0.806] .
�

Quantiles and credibility intervals can also be used to describe the uncer-
tainty of parameters, for example the intensity λA of a stream A . See the
following example.

Example 6.6. In Example 6.3, an intensity λA was studied. As before, let
Λ be a r.v. having a pdf f(λ) ; thus, Λ ∈ Gamma(4, 395) . Quantiles for Λ ,
denoted by qα , are as follows:

α 0.975 0.9 0.75 0.5 0.25 0.1 0.025
qα 0.003 0.004 0.006 0.009 0.013 0.017 0.022

Thus the 0.95-credibility interval is [0.003, 0.022] . �

6.3 Bayesian Inference

In the previous section we considered two problems: the estimation of the
probability that a statement B about an outcome of a random experiment
will be true and the probability Pt(A) that at least one event A occurs in a
period of time t . In both cases the uncertainty of some parameter θ , equal
to pB , λA , respectively, needed to be modelled. In this section we consider a
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more general situation, which is a parallel to the problem studied in Chapter
4, i.e. modelling observed variability in the data. The scope of problems that
is discussed in this section is much narrower than in Chapter 4 and should
only be regarded as a short introduction to some issues treated in Bayesian
statistics.

6.3.1 Choice of a model for the data – conditional independence

Suppose we wish to model the variability of an experiment whose output is
a value x of a random variable X . Let us choose a class of distributions
F (x; θ) . In order to keep things simple, we write f(x; θ) for the density, or
probability-mass function, defining the distribution F (x; θ) . As in Chapter
4.2, assume that there is a θ (seen as a property of an experiment), for which,
if known, FX(x) = F (x; θ) . The important step in Bayesian modelling is to
assume that F (x; θ) is actually the conditional distribution of X given that
Θ = θ , i.e.

F (x|θ) = P(X ≤ x|Θ = θ) = F (x; θ). (6.7)

We denote the density (or probability-mass function) of the conditional dis-
tribution F (x|θ) by f(x|θ) .
Example 6.7. Consider an experiment of flipping a coin n times in an inde-
pendent manner and let X be the number of “Heads” recorded. If the coin is
fair, then X ∈ Bin(n, 1/2) . Obviously, there exist no exactly fair coins and
we let θ = p be the unknown probability of getting “Heads”, a property of a
coin. The natural choice of the model of P(X ≤ x|Θ = θ) = F (x|θ) is bino-
mial, Bin(n, θ) . Here the parameter θ is equal to the probability p of getting
“Heads” in a single flip of the coin. �
Example 6.8 (Periods between earthquakes). Let us turn to the data set
with periods between earthquakes (cf. Example 1.1). Denote by X the time
between large earthquakes. Suppose that large earthquakes form a Poisson
stream A with intensity λA ; then, as will be shown in the following chapter,
P(X ≤ x|Θ = θ) = F (x|θ) is exponential and hence θ is equal to the intensity
of earthquakes λA . �

Now we turn to the most important assumption of conditional indepen-
dence of outcomes (observations) of the random variable X . As in the previous
chapters we denote the not-yet observed values of X by X1, X2, . . . , Xn . In
Chapter 4, we assumed that X1, X2, . . . , Xn are iid (independent identically
distributed) with the same distribution as X , i.e. F (x; θ0) , where θ0 is the
true parameter whose value is usually not known.

Here in the Bayesian set-up both Xi and the parameter value, represented
by Θ , are random and hence the independence is assumed to be valid for any
value θ of the parameter, i.e. when Θ = θ . This is written more formally as

P(X1 ≤ x1, . . . , Xn ≤ xn |Θ = θ) = F (x1|θ) · . . . · F (xn|θ) (6.8)
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for all θ and called conditional independence. This subject was already dis-
cussed; in Section 2.3 and Section 5.4.3. The assumption Eq. (6.8) allows for
recursive updating of the priors.

6.3.2 Bayesian updating and likelihood functions

Suppose we have observed n values of X : X1 = x1 , X2 = x2, . . . , Xn = xn .
We assume that the conditional density (probability-mass function) f(x|θ)
is known and that the observations of Xi are conditionally independent (see
Eq. (6.8)), which means that the joint density (probability-mass function)
satisfies

f(x1, . . . , xn|θ) = f(x1|θ) · . . . · f(xn|θ) = L(θ).

Here L(θ) is the likelihood function defined in Eq. (4.5), which was maximized
to find the ML estimate θ∗ of θ . Obviously, one should include these obser-
vations into the model for the variability of the parameter θ . The following
version of Bayes’ formula can be used to update the prior density fprior(θ) to
the posterior density,

fpost(θ) = c L(θ)fprior(θ), c−1 =
∫ +∞

−∞
L(θ)fprior(θ) dθ. (6.9)

The following example illustrates the updating procedure.

Example 6.9 (Prediction of earthquake tomorrow). Suppose that one
is interested in the probability of occurrence of at least one major earthquake
tomorrow anywhere in the world, i.e. Pt(A) ≈ θ t , t = 1 day. Denote by
X the time period between the major earthquakes. As seen in Example 6.8,
fX(x|θ) = θe−xθ . Here θ = λA is the unknown intensity of earthquakes while
observations xi are time between ith and the next earthquake.
Choice of prior density. First we need to describe our experience of uncer-
tainty in the possible value of θ by means of a prior pdf fprior(θ) . For ex-
ample, suppose we have total ignorance about the possible value of λA . In
such a situation, as will be discussed in Section 6.5.1, Eq. (6.30), a conve-
nient choice is given by the so-called improper prior fprior(θ) = 1/θ . An im-
proper prior has to be used with care since this is not a pdf and, for example,
Ppred

t (A) ≈ t
∫

θfprior(θ) dθ = +∞ .
Updating the prior density. Now suppose we found that the time periods be-
tween the last 3 serious earthquakes were 92, 82, and 200 days. These observa-
tions are used to update f(θ) , by means of (6.9). Since f(x|θ) = θ exp(−θx)
the likelihood function L(θ) is given by

L(θ) = f(220|θ) f(82|θ) f(92|θ) = θ3e−θ(220+82+92) = θ3e−394θ.

Bayes’ formula, Eq. (6.9), now gives

fpost(θ) = cL(θ)fprior(θ) = c θ2e−394 θ, θ > 0.
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The density is recognized to be the pdf for the gamma distribution, i.e. Θ ∈
Gamma(3, 394) with c = 3943/2 .

Predictive probability from posterior density. The predictive probability of at
least one serious earthquake next day is wanted. Using Eq. (6.5), for the
posterior density fpost(θ) the predictive probability is given by

Ppred
t (A) ≈ E[P ] = t E[Θ] = t

3
394

(t in days). The quantiles of P are given by tqα where qα in their turn are
quantiles of the intensity of earthquakes, i.e. of a Gamma(3,394) distribution.

�

In Example 6.9 we encountered a problem of how to choose the prior
pdf fprior(θ) . This is needed to summarize the a priori knowledge about the
parameter and also in order to be able to use Bayes’ formula to compute the
posterior density, i.e. to include data into the evaluation of uncertainty of the
value of the parameter θ . We discuss different situations and give examples
on how one can proceed to select the prior density. Another aspect is that
in all Bayes’ formulae there is a generic constant c that, at some stage, has
to be given a value. The computation of the constant c can be problematic,
especially when one has several parameters. In such a case the integral (sum)
is multi-dimensional. One way to avoid such problems is to use the so-called
conjugated priors described in Section 6.4.

Remark 6.1 (Recursive updating). When data arrive at different time in-
stances it can be convenient to recursively update the density f(θ) as data
arrive. This is possible by assumed conditional independence of data. It sim-
plifies the Bayesian analysis, since we can always add some new data into the
estimation procedure. Consider a model f(x|θ) and data x1, . . . , xn . For any
prior pdf fprior(θ) , the resulting posterior density, obtained using Eq. (6.9)
or (6.6) n times each time a new observation xi is received, will be the same
as the one obtained by a single use of Eq. (6.9) with L(θ) computed for the
whole data set x1, . . . , xn . �

6.4 Conjugated Priors

For a fixed family of distributions F (x; θ) , e.g. normal, Weibull, and Poisson
distributions, one looks for a corresponding family of densities that will be a
convenient prior for θ . Here convenient means that the posterior density is of
the same type as the prior density. This has several mathematical advantages,
for example the normalization constant c in Eq. (6.6) can be easily found
without cumbersome numerical integration.
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There are tables with conjugated priors given in the literature, here we
use only three of them (see the following subsections). Obviously, even if it
is mathematically convenient to use conjugated priors to describe the uncer-
tainty in parameters, these should be used only when they are close to our
belief.

In this chapter three families of conjugated priors are presented:�

�

�

	

Beta probability-density function (pdf):

Θ ∈ Beta(a, b) , a, b > 0 , if

f(θ) = c θa−1(1 − θ)b−1, 0 ≤ θ ≤ 1, c =
Γ (a + b)
Γ (a)Γ (b)

. (6.10)

The expectation and variance of Θ ∈ Beta(a, b) are given by

E[Θ] = p, V[Θ] =
p(1 − p)
a + b + 1

, (6.11)

where p = a/(a + b) . Furthermore, the coefficient of variation

R(Θ) =
1√

a + b + 1

√
1 − p

p
. (6.12)

A generalization of the beta pdf is the following two-dimensional Dirichlet
pdf. If Θ = (Θ1, Θ2) has a Dirichlet distribution then Θ1 and Θ2 , considered
separately, have beta distributions, possibly with different parameters.

�

�

�

	

Dirichlet’s pdf:

Θ = (Θ1, Θ2) ∈ Dirichlet(a) , a = (a1, a2, a3) , ai > 0 , if

f(θ1, θ2) = c θa1−1
1 θa2−1

2 (1 − θ1 − θ2)a3−1, θi > 0, θ1 + θ2 < 1, (6.13)

where c = Γ (a1+a2+a3)
Γ (a1)Γ (a2)Γ (a3)

. Let a0 = a1 + a2 + a3 ; then

E[Θi] =
ai

a0
, V[Θi] =

ai(a0 − ai)
a2
0(a0 + 1)

, i = 1, 2. (6.14)

Furthermore the marginal probabilities are Beta distributed, viz.

Θi ∈ Beta(ai, a0 − ai), i = 1, 2. (6.15)
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�

�

�

	

Gamma pdf:

Θ ∈ Gamma(a, b), a, b > 0 , if

f(θ) = c θa−1e−bθ, θ ≥ 0, c =
ba

Γ (a)
. (6.16)

The expectation, variance, and coefficient of variation for Θ ∈
Gamma(a, b) are given by

E[Θ] =
a

b
, V[Θ] =

a

b2
, R[Θ] =

1√
a
. (6.17)

The beta and gamma densities almost coincide for large values of b and with
a much smaller than b , i.e. when a/b is close to zero. Further, the constant c ,
in the formulae for beta and gamma density, is computed using the following
integrals:∫ 1

0

θa−1(1 − θ)b−1 dθ =
Γ (a)Γ (b)
Γ (a + b)

(6.18)

∫ ∞

0

θa−1e−bθ dθ =
Γ (a)
ba

(6.19)∫ 1

0

∫ 1

0

θa1−1
1 θa2−1

2 (1 − θ1 − θ2)a3−1 dθ1 dθ2 =
Γ (a1)Γ (a2)Γ (a3)
Γ (a1 + a2 + a3)

(6.20)

For k = 1, 2, 3, . . . , we have Γ (k) = (k − 1)! and for any a ≥ 0 , Γ (a + 1) =
aΓ (a) .

In the following subsections we present three types of problems where beta,
Dirichlet, and gamma priors, respectively, can be applied.

6.4.1 Unknown probability

Let us return to the problems discussed in Chapter 2 and Section 6.1. Consider
a stream of events A and let B be an event (statement) describing a “scenario”
of interest, for example:

A = “Fire ignition in a building”, B = “Not all exit doors function properly”

In a Bayesian approach, the uncertainty of the probability of B is modelled
by means of a random variable Θ with density f(θ) . Here the outcomes of Θ
are θ = pB .

Suppose that, as in a frequentist’s approach, we observe n outcomes of the
experiment A and find that the statement B was true k times. Clearly the
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value k is unknown in advance and hence it is modelled as a random variable
K , which can take any of the values 0, 1, . . . , n . If θ was known (which means
conditionally that Θ = θ ), then K has a binomial probability-mass function
(1.9), i.e.

P(K = k|Θ = θ) =
(

n

k

)
θk(1 − θ)n−k, k = 0, 1, . . . , n.

The information that we have observed k of n times that B was true should
be included in the prior density describing the likelihood of the possible values
of θ = P(B) . We see directly that Eq. (6.6) with C = “K = k” can be used
to compute the posterior density

fpost(θ) = cP(K = k|Θ = θ)fprior(θ).

Note that here the information about the parameter θ consists of a pair (n, k) ,
where n is the number of trials while k is the number of times B was true
in the n trials. Now if the prior density is of beta type, i.e. Θ ∈ Beta(a, b) ,
then

fpost(θ) = c̃ θk(1− θ)n−kθa−1(1− θ)b−1 = c̃ θa+k−1(1− θ)b+n−k−1, (6.21)

where c̃ is computed using Eq. (6.18), 1/c̃ = Γ (a+k)Γ (b+n−k)/Γ (a+b+n) .
By this we proved:�

�

�

	

The beta priors are conjugated priors for the problem of estimating the
probability pB = P(B) .

Let θ = pB . If one has observed that in n trials (results of experiments),
the statement B was true k times and if the prior density fprior(θ) ∈
Beta(a, b) then

fpost(θ) ∈ Beta(ã, b̃), ã = a + k, b̃ = b + n − k. (6.22)

Ppred(B) =
∫ 1

0

θfpost(θ) dθ =
ã

ã + b̃
. (6.23)

From Eq. (6.22), the Beta(a, b) prior means that our experience is equivalent
to observing a times the event B in a + b experiments.

Example 6.10 (Waste-water treatment: conjugated priors). Recall
Example 2.4. We studied there the probability pB = P(B) where

B = “Cleaned waste-water passes the test”.

This is now studied within the framework of the present chapter, with the
probability pB now described as a parameter θ , regarded as an r.v. with pdf
f(θ) .
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Fig. 6.2. Solid: Beta(1, 1) (prior distribution); Dashed: Beta(1, 3) ; Dashed-dotted:
Beta(3, 11) .

Total lack of knowledge is represented by a uniform prior density,

fprior(θ) = 1, 0 ≤ θ ≤ 1.

We recognize this as fprior(θ) ∈ Beta(1, 1) .
Assume that we observe that in the two last tests, we had two failures.

Then by Eq. (6.22) we directly find the posterior density, fpost(θ) ∈ Beta(1, 3)
(Figure 6.2, dashed curve).

If the next 10 tests showed that water was successfully cleaned only
2 times, then this information gives the new (updated) posterior density
fpost(θ) ∈ Beta(3, 11) (Figure 6.2, dashed-dotted curve). The probability that
the bacterial culture is efficient (pB ≥ 0.5), is computed from the density
functions as P(Θ ≥ 0.5) , and for the densities Beta(1, 1) , Beta(1, 3) and
Beta(3, 11) we find (by integration) P(Θ ≥ 0.5) to be 0.5 , 0.125 , 0.0112 ,
respectively. �

6.4.2 Probabilities for multiple scenarios

We here consider a generalization of the previous subsection and study the case
of two excluding scenarios B1 , B2 , which cannot happen simultaneously. We
assume that Bi are independent of the stream A . Let p1 = P(B1) and p2 =
P(B2) , which, by LLN, are frequencies of occurrences of B1 , B2 , respectively.

Assume that p1 + p2 < 1 , then a third scenario is possible B3 = “Neither
B1 nor B2 occurs”, having probability P(B3) = 1 − p1 − p2 . (Obviously, if
p1 + p2 = 1 , only one scenario B1 needs to be considered, since B2 = Bc

1 ,
and the problem reduces to case discussed in the previous subsection.)

Now the parameter θ = (θ1, θ2) , where θi = pi , is unknown. Suppose
that n experiments were performed and let ki be the number of time Bi
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was true. In the Bayesian approach the uncertainty of the parameter θ will
be modelled by means of a prior density fprior(θ1, θ2) . We demonstrate here
that it is convenient to choose Dirichlet priors, which are the conjugated priors
for the problem of estimation of the unknown probabilities.

Suppose we observe n outcomes of the experiment and find that ki times
the statement Bi was true, k1 + k2 + k3 = n . Clearly the values ki are
unknown in advance and hence are modelled as random variables Ki . If θ was
known (which means conditionally that Θ = θ ), then K has a multinomial
probability-mass function Eq. (5.1):

P
(
K1 = k1,K2 = k2 |Θ = (θ1, θ2)

)
=

n!
k1! k2! k3!

θk1
1 θk2

2 (1 − θ1 − θ2)k3 .

The information C = “K1 = k1,K2 = k2 ” should be included in the prior
density and by means of Eq. (6.6), the posterior density is

fpost(θ) = cP
(
K1 = k1,K2 = k2 |Θ = (θ1, θ2)

)
fprior(θ).

Now it is easy to see that if the prior density is Dirichlet then also the posterior
density belongs to the same class:�

�

�

	

The Dirichlet priors are conjugated priors for the problem of estimating
the probabilities pi = P(Bi) , i = 1, 2, 3 , such that Bi are disjoint and
p1 + p2 + p3 = 1 .

Let θi = pi . Then, under assumptions of this section, if one has observed
that the statement Bi was true ki times in n trials and the prior density
fprior(θ1, θ2) ∈ Dirichlet (a) ,

fpost(θ1, θ2) ∈ Dirichlet (ã), ã = (a1 + k1, a2 + k2, a3 + k3), (6.24)

where k3 = n − k1 − k2 . Further

Ppred(Bi) = E[Θi] =
ãi

ã1 + ã2 + ã3
. (6.25)

Example 6.11 (Chess players). (Continuation of Example 5.3.) Suppose
that A and B are famous chess players who start to play a series of 8 matches
against each other. We get results in the newspaper and wish to predict the
result of the next game. We consider pA , pB (the probabilities that A and B
win, respectively) to be unknown parameters. This lack of knowledge can be
modelled using a prior distribution representing our knowledge of results from
matches played earlier, ranking etc. If we have no idea about the capacity of
the players, we may use uniform priors allowing all values of pA, pB , such
that pA + pB ≤ 1 , with equal likelihood. This can be established by choosing
Dirichlet priors with parameters ai = 1 .
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Suppose that after 4 matches, A won one match while B won two. Using
Eq. (6.24) the posterior density is Dirichlet too with parameters a1 = 2 ,
a2 = 3 , a3 = 2 , and a0 = a1 + a2 + a3 = 7 . Suppose we wish to find the
probability that A wins in the next match. The predictive probability, which
by means of the law of total probability, is given by

Ppred(“A wins next match”) =
∫ 1

0

P(“A wins next match” |Θ1 = θ1)

· fpost(θ1) dθ1

=
∫ 1

0

θ1 fpost(θ1) dθ1 = E[Θ1],

since P(“A wins next match” |Θ1 = θ1) = θ1 . Now by Eq. (6.14), E[Θ1] =
a1/a0 = 2/7 . Similarly, Ppred(“B wins next match”) = E[Θ2] = 3/7 and draw
has probability 1 − 2/7 − 3/7 = 2/7 .

Finally, if one wishes to know the predictive probability of C = “The
winner of the next match is A, the match thereafter B will win”, the following
calculations are needed: First, by conditional independence

P(A ∩ B |Θ1 = θ1, Θ2 = θ2) = P(A |Θ1 = θ1, Θ2 = θ2)
·P(B |Θ1 = θ1, Θ2 = θ2) = θ1θ2

then

Ppred(C) =
∫ 1

0

∫ 1

0

P(C |Θ1 = θ1, Θ2 = θ2)fpost(θ1, θ2) dθ1 dθ2

=
∫ 1

0

∫ 1

0

θ1 · θ2 · fpost(θ1, θ2) dθ1 dθ2 = E[θ1 θ2]

=
∫ 1

0

∫ 1

0

θ1 θ2
Γ (a0)

Γ (a1)Γ (a2)Γ (a3)
θa1−1
1 θa2−1

2

· (1 − θ1 − θ2)a3−1 dθ1 dθ2

=
Γ (a0)

Γ (a1)Γ (a2)Γ (a3)
Γ (a1 + 1)Γ (a2 + 1)Γ (a3)

Γ (a0 + 2)
=

a1a2

a0(a0 + 1)
,

where the last integral was computed by means of Eq. (6.20). Finally, for the
specific values of parameters ai , P(C) = 2·3

8·7 = 0.107 .
Note that Ppred(C) �= 2

7 · 3
7 , which would be the case if Θ1 and Θ2 were

independent. �

6.4.3 Priors for intensity of a stream A

In Chapter 2 we gave conditions when a stationary stream A is Poisson.
The intensity of A was denoted by λA , say, and if the stream is Poisson the
number of events A that occur in an interval of length t is NA(t) ∈ Po(m) ,
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where m = λA · t . This means that the expected number of times A occurs
in a period of length t is equal to λA · t .

In order to keep the same notation as in the previous section, we denote
the unknown intensity λA by θ and write N(t) instead of NA(t) . Then we
model our prior knowledge about θ by means of a random variable Θ with
prior density fprior(θ) . Now if θ were known (which means conditionally that
Θ = θ ), then N(t) would have a Poisson probability-mass function

P(N(t) = k|Θ = θ) =
(θ t)k

k!
e−θ t, k = 0, 1, 2, . . . .

Our observations consist now of a pair: the exposure time t and the number
of times N(t) the initiation event A (accident) occurred under a time period
t . This should be included in the prior density describing the likelihood of the
possible values of θ , i.e. the intensity of accidents λ . Again one can introduce
a statement C = “N(t) = k” and use Eq. (6.6) to compute the posterior
density

fpost(θ) = cP(N(t) = k|Θ = θ)fprior(θ).

Now if the prior density is of gamma type, i.e. Θ ∈ Gamma(a, b) , then

fpost(θ) = c (θ t)ke−θ tθa−1e−bθ = c̃ θa+k−1e−θ(b+t), (6.26)

The constant c̃ can be computed using Eq. (6.19), 1/c̃ = Γ (a+k)/(b+t)(a+k) .
We summarize our findings:�

�

�

	

The gamma priors are conjugated priors for the problem of estimating the
intensity in a Poisson stream of events A . If one has observed that in
time t̃ there were k events reported and if the prior density fprior(θ) ∈
Gamma(a, b) , then

fpost(θ) ∈ Gamma(ã, b̃), ã = a + k, b̃ = b + t̃. (6.27)

Further, the predictive probability of at least one event A during a period
of length t is given by

Ppred
t (A) ≈ tE[Θ] = t

ã

b̃
(6.28)

Remark 6.2 (Predictive probability, Poisson stream). In this remark
we give an exact formula for the predictive probability of at least one event
A in the period t . For a Poisson stream of A the number of times A occurs
during a period t , given Θ = θ , is Poisson distributed with mean θt and

Pt(A |Θ = θ) = 1 − P(Nt(A) = 0) = 1 − e−θt.
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Hence, with P = 1 − e−Θt , for any posterior density, which is Gamma( ã , b̃)
we have that

Ppred
t (A) = E[P ] =

∫ ∞

0

(
1 − e−θt

)
fpost(θ) dθ

= 1 −
∫ ∞

0

e−θt b̃ã

Γ (ã)
θã−1e−̃bθ dθ = 1 − b̃ã

Γ (ã)

∫ ∞

0

θã−1e−(̃b+t)θ dθ

= 1 − b̃ã

Γ (ã)
Γ (ã)

(̃b + t)̃a
= 1 −

(
b̃

b̃ + t

)ã

. (6.29)

For t much smaller than b̃ , Eq. (6.29) gives similar value as Eq. (6.28). �

6.5 Remarks on Choice of Priors

A critical issue in a Bayesian analysis is the choice of priors. These are sub-
jective and everybody can have his own priors. The only restriction is that
motivation should be given for the choice. Here we indicate some possible mo-
tivations for choosing specific values of the parameters in the beta and gamma
priors in situations when not much is known about the values of parameters.

6.5.1 Nothing is known about the parameter θ

Beta priors

Suppose that θ = P(B) for some statement B . If nothing is known about
θ , uniform priors seem to be a reasonable choice. Fortunately the conjugated
priors for this problem contain the uniform, i.e. Beta(1, 1) .

Gamma priors

The choice of non-informative prior in the case when θ is the intensity of a
stream of events A , say, (for example a stream of accidents) is more compli-
cated. Since θ can take any non-negative value it is not obvious how to define
the uniform priors.

If the priors are not probability densities these are called improper priors.
Such priors can be used as long as the posterior odds form a true pdf. An
often used improper prior is

fprior(θ) = 1/θ, θ > 0 (6.30)

which could be denoted as Gamma(0,0). In the following remark, we analyes
how this is obtained from properties of the gamma distribution.
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Remark 6.3 (Motivation for improper prior Gamma(0,0)). Suppose
that, subjectively, values of the mean E[Θ] and a large coefficient of variation
R[Θ] are assigned. Since large values of the coefficient of variation mean high
uncertainty a possible choice of non-informative priors is to let R[Θ] increase
to infinity. By means of Eq. (6.17) this implies that the parameter a tends
to zero. Now, since a → 0 and E[Θ] is constant, b converges to zero too. We
note that the prior density fprior(θ) , suitably scaled (c = 1), converges to
1/θ , and the function in Eq. (6.30) is found.

Consequently, by increasing the coefficient of variation, information that
E[Θ] was known becomes irrelevant. Such priors could be seen as non-
informative. However, the integral of the function in Eq. (6.30) is equal to
infinity and hence it is not a probability-density function. �

Suppose now that the information is that during a time period t , no
event A has been observed. Hence, by using Eq. (6.27), the improper prior
in Eq. (6.30) would give the posterior odds Gamma(0, t) . Note that this is
not a pdf and hence use of Eq. (6.30) is not recommendable, since the predic-
tive probability cannot be computed. In such a situation, the use of uniform
improper priors2,

fprior(θ) = 1, θ > 0, (6.31)

which can be denoted as Gamma(1, 0) , could be applied. This prior results
in the posterior pdf Gamma(1, t) , which is the exponential distribution with
mean 1/t .

6.5.2 Moments of Θ are known

In engineering, quite often unknown parameters, e.g. strength, are specified
by assigning values for the expectation E[Θ] ; further, uncertainty is given by
the coefficient of variation R[Θ] = D[Θ]/E[Θ] . We interpret this approach
as that one has a subjective opinion what θ is, e.g. θ = θ0 . For example,
P(“A flip results in Heads”) = θ0 = 1/2 if the coin is fair. If we wish to allow
for some uncertainty in our opinion then we can choose to have a random Θ
such that E[Θ] = θ0 with a specified coefficient of variation R[Θ] .

If beta priors are chosen, the parameters a and b can be solved from
Eqs. (6.11-6.12), while in the case of gamma priors, the formula (6.17) leads
to the lowing values for the parameters a and b :

a =
1

R[Θ]2
, b =

1
E[Θ]R[Θ]2

. (6.32)

Example 6.12 (Flight safety). Suppose we are interested in flight safety
and follow reports about crashes. From our experience we believe that the
average rate θ of “fatal accidents” is constant and close to 25 per year

2In principle, the uniform improper prior f(θ) = 1 , θ > 0 is not a natural choice
since this gives equal odds for low and high intensities.
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(thus E[Θ] = 25) and we add a vague statement about possible error in our
prediction “± 20”. If Θ were normally distributed, which is often the case if
many data are available, then this vague statement could be interpreted as
D[Θ] = 10 or R[Θ] = 10/25 = 0.4 , which we assume in the following.

We choose to use gamma priors, Θ ∈ Gamma(a, b) . Our “belief” is that
E[Θ] = 25 [years−1 ] while R[Θ] = 0.4 and hence using Eq. (6.32) we can
compute the parameters a = 6.25 and b = 0.25 . This corresponds to as-
sumptions that nothing was known about the possible value of the rate
of accidents and 6 accidents were observed in 3 months. The prior density
fprior(θ) ∈ Gamma(6.25, 0.25) is shown in Figure 6.3, left panel (dotted line).
Updating priors. In “Statistical Abstract of the United States” one can find
the data for the number of crashes in the world during the years 1976-1985,
which we denote as k1, . . . , k10 with values

24, 25, 31, 31, 22, 21, 26, 20, 16, 22,

respectively. These observations are now used to update our prior density. By
means of Eq. (6.27) we know that fpost(θ) ∈ Gamma(6.25+

∑
ki, 10.25) . Since∑

ki = 238 , fpost(θ) ∈ Gamma(244.25, 10.25) . In Figure 6.3, left panel, (solid
line), we note that the density becomes narrower, reflecting better knowledge
about the value of the parameter θ .

Consequently the probability of at least one accident tomorrow Pt(A) ≈
Θ t , where t = 1/365 [year] is very concentrated around the predictive prob-
ability

Ppred
t (A) ≈ E[Θ t] =

244.25
10.25

1
365

= 0.065.
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Fig. 6.3. The prior (dotted line) and posterior (solid line) densities fprior(θ),
fpost(θ) discussed in Example 6.12.
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The uncertainty in the unknown probability Pt(A) can also be described by
the 95% credibility interval for Θ t , viz. [tθ0.975, tθ0.025] , where θ0.975 and
θ0.025 are 0.975 and 0.025 quantiles of Θ (see Section 6.2.1 for the dis-
cussion on credibility intervals). For the Gamma(244.25, 10.25) the quantiles
θ0.975 = 20.96 , while θ0.025 = 26.94 , which give the credibility interval for the
probability [20.96/365, 26.94/365] = [0.057, 0.074] .

Influence of choice of prior. Clearly the prior information of 6 accidents in
0.25 years had been totally dominated by the data and has little influence
on the posterior density. For example, suppose we had wrong ideas about
the frequency of crashes and postulated that the mean was E[Θ] = 5 with
the same coefficient of variation R[Θ] = 0.4 . This would lead to the prior
density fprior(θ) ∈ Gamma(6.25, 1.25) and the posterior density fpost(θ) ∈
Gamma(244.25, 11.25) , which is quite close to the previously computed pos-
terior density. Data corrected our poor prior knowledge. The densities are
shown in Figure 6.3, centre.

Finally, let us be very sure that the true frequency of accidents is close to
5 per year and choose a very low coefficient of variation R(Θ) = 0.1 . Then
the prior density fprior(θ) ∈ Gamma(100, 20) (i.e. one postulates that 100
accidents were observed in 20 years). Clearly the data of 238 accidents in 10
years cannot compensate for such wrong priors. The densities are shown in
Figure 6.3, right panel. �

Is it dangerous to choose the wrong prior density? Generally the answer is:
theoretically “no”, practically “it can be”, as seen is the following paragraphs.

Suppose the random variable X has a distribution F (x; θ0) , where θ0 is
an unknown fixed parameter. Using the frequentist approach, we finally find
the value of the parameter θ0 as we get an infinite number of independent
observations of X . This is also the case for the Bayesian approach if one
has started with a prior density such that fprior(θ0) > 0 , as seen in Sec-
tion 6.6, Eq. (6.33). This formula tells us that if our experience (knowledge)
does not exclude the possibility that the parameter can be equal to θ0 , then
the Bayesian approach is equivalent to the frequentistic one for large data
sets.

Consequently, it is important to choose wide (non-informative) priors if
we do not have much knowledge about the random experiment — so that
the possible parameter values are not excluded. This is recommendable if one
expects to receive many data later on. However, Bayesian methods are most
useful when there are few data available and hence the choice of the prior is
an important issue. For instance, in many cases when a specific problem is
studied, e.g., intensity of fire ignition in a specific building (in a nuclear power
plant), we do not expect many incidents. In such a situation it is important
to carefully choose the priors.

Finally, even if the data will correct wrong priors, it is good practice to
check whether the priors are sensible. For example one can try to “translate”
the prior densities to the approximate amount of data the priors represent. For



6.6 Large number of observations: Likelihood dominates prior density 147

example, in the last example E[Θ] = 2 and R[Θ] = 0.1 and the gamma prior
density corresponds to 100 accidents in 50 years. All available data about the
crashes cannot compensate for so wrong priors; 10 years is a much shorter
time than 50 years.

6.6 Large number of observations: Likelihood dominates
prior density

In this section, we return to the discussion from the previous section about
importance of a good choice of the prior density fprior(θ) . Earlier we claimed
that data can correct the wrong prior density as long as the true parameter
is not excluded. This is a consequence of the fact that the posterior density
fpost(θ) , given in Eq. (6.9), becomes proportional to the likelihood function
L(θ) . Hence, when a large number of data are available, the choice of the prior
density is less important in the analysis3.

Distributions dependent on a single parameter

Assume first that the chosen class of distributions to model the random vari-
able X depends only on one parameter, i.e. θ in F (x; θ) is one-dimensional
(for example X is binomial, Poisson, exponential, or Rayleigh distributed).
Suppose we have observed a large number n of values of X : X1 = x1 ,
X2 = x2, . . . , Xn = xn and that the conditional density (probability-mass
function) f(x|θ) satisfies the regularity assumptions required in Theorem 4.1.
In such a case, we know that the ML estimator Θ∗ is consistent, i.e. converges
to the unknown parameter θ0 , say, and the error E = θ0−Θ∗ is approximately
normally distributed, i.e. for large values of n

P(E ≤ x) = P(θ0 − Θ∗ ≤ x) ≈ Φ
( x

σ∗
E

)
,

where σ∗
E = 1/

√
−l̈(θ∗) , l(θ) is the log-likelihood function and θ∗ is the

ML estimate of θ . In order to shorten the notation we write this property as
E ∈ AsN(0, (σ2

E)∗) , (see Eq. (4.18)). Next, we demonstrate how the asymptotic
normality of the estimation error E relates to the properties of the posterior
density fpost(θ) .

Again, let θ0 be the unknown value of the parameter. If the prior density
fprior(θ) is a smooth function and does not exclude the possibility of θ0 , i.e.
fprior(θ0) > 0 , then for large n the posterior pdf fpost(θ) ≈ N(θ∗, (σ2

E)∗) .

3Note that there are situations, not met in this book, when parameters are vectors
and data have little information about some of the parameters. In such situations
the choice of priors can remain essential for the final result.
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Posterior pdf for a large number of observations.

If fprior(θ0) > 0 then

Θ ∈ AsN(θ∗, (σ2
E)∗) (6.33)

as n → ∞ , where θ∗ is the ML estimate of θ and (σ2
E)∗ = −1/l̈(θ∗) .

Remark 6.4. To prove Eq. (6.33), Taylor’s formula is employed for the log-
likelihood function l(θ) and this is expanded around the ML estimate θ∗ ,
viz.

l(θ) ≈ l(θ∗) + l̇(θ∗)(θ − θ∗) +
1
2
l̈(θ∗)(θ − θ2)∗.

Further, since the likelihood function L(θ) = el(θ) and l̇(θ∗) = 0 , the following
approximation is obtained

L(θ) ≈ exp
(

l(θ∗) + l̇(θ∗)(θ − θ∗) +
1
2
l̈(θ∗)(θ − θ2)∗

)
(6.34)

= c exp
(1
2
l̈(θ∗)(θ − θ∗)2

)
.

As n increases, l̈(θ∗) decreases to minus infinity. The decay is so fast that the
prior density can be replaced by a constant fprior(θ) ≈ fprior(θ∗) and hence

fpost(θ) ≈ c exp
( 1

2
l̈(θ∗)(θ − θ∗)2

)
= c exp

(−1
2
(
(θ − θ∗)2/(σ2

E)∗
))

, (6.35)

where c is just the normalizing constant and we have that fpost(θ) ≈
N(θ∗, (σ2

E)∗) . �

We now apply the result to the earthquake data.

Example 6.13 (Prediction of earthquake tomorrow). Continuation of
Examples 6.8 and 6.9. In Example 4.6 62 recorded periods were given between
serious earthquakes. The mean period was 437.2 days. In that example, it
was demonstrated that the variability of periods between earthquakes can
be adequately modelled by means of an exponentially distributed random
variable X . The variable has pdf fX(x) = θe−θ x , where θ = λA is the
intensity of earthquakes.
Posterior distribution. In Chapter 4, a = 1/θ was used as a parameter of
the exponential distribution. The ML estimate of a is a∗ = x̄ . A similar
derivation will lead to the ML estimate θ∗ = 1/x̄ and l̈(θ) = −n/θ2 . Since
x̄ = 437.2 we have that θ∗ = 1/437.2 = 0.0023 , while

(σ2
E)∗ =

(θ∗)2

n
= 8.4 · 10−8.

Consequently fpost(θ) ≈ N(0.0023, 8.4 · 10−8) .
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Predictive probability. The predictive probability for a serious earthquake to-
morrow is Ppred

t (A) ≈ t E[Θ] = 0.0023 . This value should be compared with
the predictive probability Ppred

t (A) = 0.0076 , computed in Example 6.9,
where only three observations of X were available to derive the posterior
pdf. The new value is about three times smaller.

The predictive probability is an average value of Pt(A) ≈ tΘ and the
coefficient of variation is a simple measure of its variability. For the gamma
posterior pdf used in Example 6.9 is found R[Θ] = 1/

√
3 = 0.577 , while

including 59 further observations gives

R[Θ] =
D[Θ]
E[Θ]

=

√
8.4 · 10−8

0.0023
= 0.126.

Comparison of posterior distributions. Finally we compare the “asymptotic”
normal posterior pdf used in this example with the previously used gamma
posterior pdf. Since the pdfs are very concentrated around their means let us
first change units from days to years. Then fpost(θ) ≈ N(0.0023 · 365, 3652 ·
8.4 · 10−8) , while, for fprior(θ) = 1/θ used in Example 6.9, the gamma pos-
terior density has parameters a = 62 and b = (437.2/365) · 62 = 74.26 ;
fpost(θ) ∈ Gamma(62, 74.26) . In Figure 6.4, left panel, the two posterior den-
sities are compared. The solid line is the gamma prior while the dotted shows
the asymptotically normal one. We can see that for this data set the posterior
densities are very close and can be used equivalently. �

Example 6.14 (Flight safety). Continuation of Example 6.12 in which a
Bayesian method was used to measure uncertainty of the value of the intensity
of flight crashes. The posterior density used was Gamma(244.25, 10.25) . The
risk for crash during a time period of length t is measured by P = tΘ and
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Fig. 6.4. Left: Comparison of posterior pdf for intensity of earthquakes Θ in Exam-
ple 6.13. Solid line: Gamma(62, 74.26) distribution. Dotted line: Asymptotic normal
posterior pdf N(0.8395, 0.0112). Right: Comparison of posterior pdf for intensity of
airplane crashes Θ in Example 6.14 (right plot). Solid line: Gamma(244.25, 10.25)
distribution. Dotted line: Asymptotic normal posterior pdf N(23.8, 2.38).
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hence the predictive probability of at least one crash during a period of time
t , measured in years, is approximately equal to t · 244.25/10.25 .

The posterior density reflects our experience of the number of crashes
during the decade 1976–1985. Since crashes are not rare events the ten years
of observations seem to constitute a large data set for which the asymptotic
normality of the posterior density should be applicable. We investigate this
claim next.

First, in order to use Eq. (6.33) we need to recall that if the intensity
of crashes θ were known then the number of crashes during different years
is independent, Po(θ) distributed variables. Let x1, . . . , x10 be the observed
number of crashes during the years 1976–1985. Then the ML estimate of θ is
θ∗ =

∑
xi/n and l̈(θ∗) = −n2/

∑
xi , n = 10 (see Example 4.8 for computa-

tional details). Hence the posterior density is approximately N(θ∗,−1/l̈(θ∗))
and since

∑
xi = 238 we have that the posterior density is N(23.8,2.38).

The posterior densities Gamma(244.25,10.25) and N(23.8,2.38) are com-
pared in Figure 6.4, right panel, where one can see that the densities almost
coincide.

Next, using the normal posterior density, the 95%-credibility interval for
the probability of at least one accident in the period t = 1 day is computed:

[t(23.8 − 1.96 ·
√

2.38), t(23.8 + 1.96 ·
√

2.38)] = [0.057, 0.074].

As expected the interval is almost identical to the one derived in Example 6.12
using the gamma posterior pdf. However, the normal posterior pdf is more
convenient to use than the gamma. For example the quantiles of the normal
variable are given in any textbook while, in order to get quantiles of the
gamma distributed variable, a dedicated software is needed. �

Distributions dependent on more than one parameter

Often the chosen class of distributions F (x; θ) to model the random vari-
able X depends on more than one parameter; e.g. normal, Weibull, Gumbel
distributions all have two parameters θ = (θ1, θ2) . Then also Θ = (Θ1, Θ2)
is a two-dimensional variable4. What can be said about the posterior den-
sity fpost(θ1, θ2) as the number of observations n increases? Actually, similar
results as for the one-dimensional situation are true, namely the posterior
density is approximately equal to the two-dimensional normal density given
in Eq. (5.5):

Θ = AsN(θ∗1 , θ∗2 , (σ2
E1

)∗, (σ2
E2

)∗, ρ∗E1 E2
), Θ ≈ θ∗ + E , (6.36)

as n → ∞ . Here the estimates of variances (σ2
E1

)∗ , (σ2
E2

)∗ and the correlation
ρ∗E1 E2

can be computed using Eqs. (5.13-5.15). The asymptotic normality of

4The probability-density function and some other properties of two-dimensional
variables were introduced in Chapter 5.
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fpost(θ) was already known by Laplace in 1810 [45] and was rigorously proved
by Le Cam in 1953 [46].

In Chapter 4, the variable E was used to model the estimation error due
to finite sample size. We have emphasized that the estimate and the error
distribution completely describe the uncertainty of θ∗ . In a Bayesian analysis
the uncertainty is modelled by assuming that the parameter is an outcome of
a random variable Θ . Now when a large number of data are available one has
that approximately E[Θ] = θ∗ , while the deviation from the mean Θ − E[Θ]
has the same distribution as E . Consequently, in this situation, the classical
inference and the Bayesian one give similar answers.

6.7 Predicting Frequency of Rare Accidents

In the previous section we discussed the situation when many data are avail-
able and the data dominate the priors, i.e. the posterior density becomes
proportional to the likelihood function. In this section we discuss the diamet-
rically different situation when the observations are very few. What is meant
by “few” may depend on the safety level required, as illustrated by an example
concerning safety of transports of nuclear fuel waste. The problem is discussed
by Kaplan and Garrick [42].

Example 6.15 (Transport of nuclear fuel waste). Spent nuclear fuel is
transported by railroad. From historical data, one knows that there were 4 000
transports without a single release of radioactive material. Since fuel waste is
highly dangerous, one has discussed the possibility of constructing a special
(very safe and expensive) train to transport the spent fuel.

One problem was the definition of an acceptable risk pacc for an accident,
i.e. one wishes the probability of an accident θ , say, to be smaller than pacc .
Since θ is unknown and uncertainty of its value is modelled by a random
variable Θ the issue is to check, on basis of available data and experience,
whether the probability P(Θ < pacc) is high.

A number between 10−8 and 10−10 was first proposed for pacc , i.e. the
average waiting time for an accident is 108 to 1010 transports (mean of geo-
metric distribution). In such a scale the experienced 4000 safe transports look
clearly negligible and hence the conclusion was: if one wishes to transport the
waste with the required reliability, one needs to develop transport systems
with maximum reliability.

We turn now to the problem of how the information about 4 000 trans-
ports affects our belief about the risk for accidents. Suppose accidents happen
independently. Then5

P(“No accidents for 4 000 transports” |Θ = θ) = (1 − θ)4000 ≈ e−4000 θ,

5Here we use that for small θ , θ ≈ 1−e−θ . See also Remark 6.5 on computation
of the probability of no accidents in n transports, (1−θ)n , for small θ and large n .
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and the posterior density fpost(θ) = cfprior(θ)e−4000 θ will be close to zero for
any reasonable choice of the prior density and θ > 10−3 . This agrees with the
conclusion of Kaplan and Garrick that the information of 4 000 release-free
transport is quite informative:

“The experience of 4 000 release-free shipments is not sufficient to
distinguish between release frequencies of 10−5 or less. However, it is
sufficient to substantially reduce our belief that the frequency is on
the order of 10−4 and virtually demolish any belief that the frequency
could be 10−3 or greater”.

�

Remark 6.5. We investigate here a technique for calculations of probabilities,
which is useful in applications, where events are studied that are unlikely to
happen, but the exposure to the risk is long.

Assume that the risk for an accident is 1/1000 and that we expose ourselves
for the risk 1000 times. Then the probability that no accident will happen is(

1 − 1
1000

)1000

≈ e−1, since lim
n→∞

(
1 − a

n

)n

= e−a. (6.37)

Finally, if we require a safety level of 10−8 , then the chance for accidents
in the first 4000 transports is simply

1 −
(

1 − 1
108

)4000

≈ 1 − [
e−1

]4000/108

≈ 4000/108 = 4 · 10−5, (6.38)

i.e. negligible. �

Streams of initiation events and scenarios

In Example 6.15 we studied the problem of estimation of the frequency λ ,
say, of very rare accidents. In such cases a direct estimation of frequencies
is difficult, if it is even possible, because the period when data are gathered
usually very short compared to the return period T = 1/λ . Similar problems
occur in the evaluation of risk for failure of existing structures; e.g. collision
of a ship with a particular bridge, an aeroplane crashing into a nuclear power
plant, etc. Here accidents are not repeatable, since when these happen new
safety measures are often introduced, changing λ . In both situations, in order
to overcome shortness of data, system analysis is often performed in the form
of events and/or failure trees.

We do not go further into this matter and consider only the simplest
case, introduced in Section 2.5: We refer to accidents as occurrences of an
initiation event A , with intensity λA , followed by an event B describing
the scenario leading to a hazard. Consequently, an accident happens when
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A and B occur simultaneously. If B is independent of the stream of A , which
is often assumed, then the intensity of accidents λ = λAP(B) (cf. Eq. (2.10)).

The risk of an accident is often measured by means of Pt(A ∩ B) , the
probability of at least one accident in t = 1 year. Often the acceptable risk
pacc , say, is 10−2 or smaller, dependent on the consequences an accident might
have. (In Chapter 8 we will further discuss the choice of the values of pacc .)
Since

Pt(A ∩ B) ≤ t λAP(B) = p, (6.39)

say, p is a conservative estimate of the risk. In the case where p is small and
two accidents cannot happen simultaneously, we also have that Pt(A ∩ B) ≈
t λAP(B) . Consequently p is often used as a measure of risk.

Predictive probability for a single stream of initiation events

Since the intensity λA is unknown, we can model it as a random variable Θ1 ,
having a gamma pdf if conjugated priors are used. Moreover, P(B) , denoted
by Θ2 , has a beta pdf as conjugated prior. As B is independent of the stream
A , we also assume that Θ1 and Θ2 are independent and the unknown intensity
of accidents Θ = Θ1Θ2 . The reason for such a decomposition is that more
data may be rendered available to update the prior densities f(θ1) and f(θ2) .
The probability of at least one accident in a period t is thus given by

Pt(A ∩ B) ≈ P = Θ1Θ2 t. (6.40)

The predictive probability is then approximated by

Ppred
t (A ∩ B) ≈ E[P ] = E[tΘ1Θ2] = tE[Θ1]E[Θ2]. (6.41)

A measure of the precision of the estimate is given by the coefficient of vari-
ation of Θ = Θ1Θ2 . This is evaluated easily by assumed independence of
parameters Θ1, Θ2 . Note first that

R[P ] =

√
V[tΘ1Θ2]

E[tΘ1Θ2]
=

√
V[Θ1Θ2]

E[Θ1Θ2]

and hence, since V[X] = E[(X − E[X])2] = E[X2] − E[X]2 ,

R[P ] =

√
E[Θ2

1]E[Θ2
2] − E[Θ1]2E[Θ2]2

E[Θ1]E[Θ2]
=

√
E[Θ2

1]
E[Θ1]2

E[Θ2
2]

E[Θ2]2
− 1 (6.42)

=
√(

R[Θ1]2 + 1
)(

R[Θ2]2 + 1
)− 1 (6.43)

Example 6.16 (Fire ignition). In a cinema the exit doors are checked once
a month to insure that they work properly. Suppose that in the last 5 years
a fire has started twice in the cinema. Additionally, no malfunctions of exit
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doors were filed during this period. On the basis of this information, we give
a measure of risk for at least one incident, that is “fire ignition in the cinema
and not all exit doors can be opened” during a period of one year (t = 1).

Suppose that no information about the fire intensity for the particular
cinema is available and hence improper priors 1/θ1 will be used for Θ1 . The
information of 2 fires in 5 years will be included in the priors leading to the
posterior density fpost(θ1) ∈ Gamma(2, 5) . The unknown probability Θ2 =
P(B) will have a uniform prior and hence the posterior density fpost(θ2) ∈
Beta(1, 12 · 5 + 1) .

Let us now approximate with P the probability of at least one serious
accident in period of length t , Pt(A∩B) . Using Eq. (6.11) and Eq. (6.17) we
have that E[Θ1] = 2/5 while E[Θ2] = 1/(12 · 5 + 2) = 1/62 and hence

E[P ] = tE[Θ1]E[Θ2] = 1 · 2
5
· 1
62

= 0.0065.

�

Problems

6.1. A beta-distributed r.v. Θ has the density function

f(θ) = c θa−1(1 − θ)b−1, 0 ≤ θ ≤ 1,

where c is a normalization constant. Show by direct calculation that in the special
case of parameters a = b = 1 , we obtain a uniform distribution.

6.2. A gamma distributed r.v. Θ has the density function

f(θ) = c θa−1e−bθ, θ ≥ 0,

where c is a normalization constant. Show by direct calculation that in the special
case of a = 1 , we obtain an exponential distribution.

6.3. Detection of possible leakages at sections in a pipeline system is performed by
some specialized equipment. One wants to study the intensity of faults per km. A
suggested prior distribution for this intensity is Gamma(1, 100) .

(a) What is the expected value of the prior distribution?
(b) The examination starts, and 12 imperfections are found along 500 km of pipeline.

Find the posterior distribution.
(c) Find the average number of imperfections per km, as given by the posterior

distribution. Compare with your answer in (a).

6.4. Time intervals between successive failures of the air-conditioning system for a
fleet of Boeing 720 planes have been recorded, see Proschan [63]. The data below
consider plane 7914 (times in hours):

50 44 102 72 22 39 3 15 197 188 79 88
46 5 5 36 22 139 210 97 30 23 13 14
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Assume that the times T between failures of components are exponentially distrib-
uted, i.e.

P(T > t) = e−λt, t > 0.

The intensity λ is unknown and will be modelled by means of an r.v. Λ .

(a) Use the data set to derive the posterior density for Λ . Hint. Use Example 6.13.
(b) Suppose we are interested in the probability that the air-conditioning system

will work for longer than 24 hours, p = P(T > 24) = exp(−24λ) . Compute
the predictive probability Ppred(T > 24) = E[P ] , where P = exp(−24Λ) . Hint.
Check that P is lognormally distributed.

6.5. Suppose the waiting time T (in minutes) for you to get in contact at a calling
centre for traffic information is exponentially distributed as follows:

FT (t) = 1 − e−λt, t > 0.

Based on previous experience, one suggests a Gamma(1,15) distribution for the
intensity Λ .

(a) Suppose we started with uniform improper priors. What does the Gamma(1,15)
distribution mean, in terms of experience of waiting?

(b) One has observed the following waiting times: 10 minutes, 5 minutes, and
2 minutes. Based on these observations, update the prior distribution — in
other words, calculate the posterior distribution for Λ .

(c) Find the expected value of the posterior distribution.
(d) Suppose we are interested in the probability of waiting for a time period longer

than t (t = 1, 5, 10 min), that is, p = P(T > t) = exp(−λ t) . Compute the
predictive probability Ppred(T > t) = E[P ] , where P = exp(−Λ t) . Hint. Make
use of Eq. (6.19).

6.6. A man plays five times on an automatic gaming machine, and, surprisingly, he
wins every time. Let p denote the probability that the player will win in a single
game.

(a) What is the classical estimate of p?
(b) Adopt now a Bayesian attitude and model the parameter p as a random

variable P . Assume that the prior distribution of P is uniform (continuous
distribution). What is the posterior distribution of P ?

(c) What is the predictive probability to win next time?

6.7. The famous boat race between teams from the universities in Cambridge and
Oxford was premiered in 1829. In 2004, the 150th race took place on the Thames.

(a) Suppose you have no idea about the capacities of the teams. Suggest a suitable
Dirichlet prior.

(b) From the start and up to 2004, Cambridge won 78 times and Oxford 71. Over
the years, there has been one dead heat (in 1877). Update your prior density
using this information.

(c) Calculate the probability that Oxford will win the next race.
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6.8. In a mine, drainage water and subsoil water is stored in a dam, to be treated
before it is dumped in a nearby river. Unfortunately, now and then the dam will
flood and then untreated, pollutant water is released in the river.

Suppose the instants for such releases are described by a Poisson process with
unknown (but constant) intensity λ . Releases occur on average once in four years
and the uncertainty of Λ is given by the coefficient of variation R[Λ] = 2 .

(a) Choose an appropriate Gamma prior and estimate the risk for at least one release
in 6 months.

(b) During a two-year period, one flooding of the dam, leading to release of dangerous
water, occurred. Use Bayes’ formula to update the probability distribution of λ
and compute the predictive probability of flooding in 6 months.

6.9. Recall Example 6.12 on flight safety. By including the information of the ob-
served crashes in 1976–1985, the posterior density fpost(θ) ∈ Gamma(244.25, 10.25)
was found, where θ is the intensity of crashes in unit year−1 .

Use the result derived in Remark 6.2 to compute the predictive probability of no
crashes during a one-week period. Compare this probability with the one obtained
by the approximation in Eq. (6.28).

6.10. Assume that T is exponentially distributed, i.e.

P(T ≤ t) = 1 − e−λt, t > 0

where λ = 1/E[T ] is an unknown constant. Suppose there are n independent obser-
vations t1, t2, . . . , tn . Demonstrate that the gamma distribution is conjugated prior
for λ . Hint. See Example 6.9.

6.11. Suppose the number of perished in motorcycle accidents (see Problem 4.9) is
Poisson distributed with mean m .

(a) Using results from asymptotic theory, give the posterior density for m . Hint.
See Example 6.14.

(b) Give the 0.95-credibility interval for m .

6.12. In this problem we discuss again accidents with tank trucks (cf. Problem 2.13).
Suppose we want to evaluate the risk of a traffic accident involving tank trucks in
the Swedish region of Dalecarlia for one day, say, tomorrow. Denote this event by
C .

(a) Suppose that your experience is quite vague and can be summarized that no
accidents have been observed the last month. Compute the predictive probabil-
ity of C and give a measure of the uncertainty by means of the coefficient of
variation. Hint. Use uniform improper priors, Gamma(1,0).

(b) Suppose in years 2002-2004 2, 0, and 2 accidents were observed. Update the prior
density and recompute E[P ] , R[P ] .

(c) In order to increase the precision of the derived probability, one plans to use
data from Problem 2.13. Perform the analysis and compute Ppred(C) , R[P ] .
Hint. Make use of Eq. (6.42).
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Intensities and Poisson Models

In this chapter we return to a great extent to the notions of intensities. In
the first section, the failure intensity is introduced; this gives the distribution
of the waiting time to the first event. This intensity is of particular interest
when lifetimes (of components or humans) are considered. Estimation proce-
dures and statistical problems are discussed. Relative risks and risk exposure
are the main topics of Section 7.2. In Section 7.3, models for Poisson counts
are considered, leading to an introduction to the often-used Poisson regres-
sion models. This makes modelling possible of situations where the relation
between an intensity and some explanatory, non-random variables, is given by
a regression equation.

In Section 7.4, we introduce the notion of Poisson point process (PPP), an
extension of Poisson streams discussed in Chapter 2. This enables modelling
of events that can occur in spatial locations or at space and time locations,
discussed in Section 7.5. Finally, we study superposition and decomposition
of Poisson processes.

7.1 Time to the First Accident — Failure Intensity

7.1.1 Failure intensity

Before presenting new notions, let us revisit Example 4.1 (lifetimes of ball
bearings) to analyse refined probabilistic modelling of lifetimes.

Example 7.1 (Lifetimes of ball bearings). In safety analysis, studies are
often made of data of a type describing time to the first occurrence of an event.
Time can sometimes be measured in rather strange units like the number of
revolutions to failure, if lifetimes of ball bearings are studied (cf. Example 4.1,
where an experiment with 22 observed lifetimes was presented).

An important issue is obviously to find a suitable distribution to describe
the variability of lifetimes. In Example 4.1, the data were described using the
empirical distribution Fn , while in Example 9.1 a Weibull distribution will
be used to model variability of lifetimes. In this chapter we introduce another
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(equivalent) means to describe data: the so-called failure intensity λ(s) . The
intensity measures risk for failure of a component of age s . For example,
consider the risk that a ball bearing that has been used for 30 millions of
revolutions will break in the next one. If the risk for failure increases with
age, which is the case with ball bearings, then we say that lifetime of ball
bearings has increasing failure rate (IFR).

�
Let T denote a waiting time for the first failure (accident, death, etc.) Suppose
the value of T cannot be predicted and hence is modelled as a random variable.
Let F (t) = P(T ≤ t) be the probability that the failure happens in the interval
[0, t] . One sometimes speaks about the survival function

R(t) = P(T > t) = 1 − F (t)

which can equivalently be used to describe statistical properties of the lifetime.
The properties of the distribution F (t) (or survival function R(t)) are of-

ten discussed in safety analysis, where failure times (life times) of components
or structures are of interest. In such analysis, one is not only limited to failures
that can be traced to accidents caused by environmental actions but also can
be related to wear and other ageing processes. The distribution F (t) may also
reflect variability of quality (or strength) in some population of components:
an element is chosen randomly from a population and then the lifetime of the
chosen element is observed. Generally, any r.v. taking only positive values can
be a model for the lifetime of members in some population.

Next we introduce a very important characterization of T called the
failure-intensity function, (for short, the failure intensity), alternatively, the
hazard function.�

�

�

	

Definition 7.1 (Failure-intensity function). For an r.v. T ≥ 0 there
is a function Λ(t) , called the cumulative failure-intensity function,
such that

R(t) = e−Λ(t), t ≥ 0.

If T has a density, then

R(t) = exp
(−∫ t

0

λ(s) ds
)

where the function λ(s) = d Λ(s)
d s is called the failure-intensity function.

The failure-intensity function defines the distribution of T uniquely. If the
distribution is of the continuous type, the failure intensity can also be calcu-
lated by

λ(s) =
f(s)

1 − F (s)
. (7.1)
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It can also be demonstrated that

λ(s) = lim
t→0

P(T ≤ s + t |T > s)
t

,

which means that for small values of t , λ(s)·t is approximately the probability
that an item of age s will break within the period of time t .

Generally, failure-intensity functions are classified as IFR (increasing fail-
ure rate), where components wear with time, or DFR (decreasing failure
rate) where the weak components fail first so the ones that rest are the
strongest: consequently failures occur less frequently. Often both mechanisms
are present simultaneously and we observe an increasing failure rate for the
old components due to damaging processes. This is often experienced by own-
ers of old cars. In the following somewhat artificial example the IFR and DFR
failure intensities are given.

Example 7.2 (Strength of a wire). Suppose the strength R of a particular
wire is modelled as a Weibull distribution, that is, with a distribution function

FR(r) = 1 − e−(r/a)c

, r ≥ 0.

The wire is used under water and is exposed to a load increasing with time,
due to growth of the organic material attached to its surface. The rate of
growth is considered constant, γ ; hence, during a period of length t , the load
has increased by γt (the initial weight is neglected).

At the lifetime T , when the weight exceeds the strength, obviously R = γT
or equivalently, T = R/γ . Hence the lifetime distribution is given by

FT (t) = P(T ≤ t) = P(R/γ ≤ t) = FR(γt) = 1 − e−(γt/a)c

.

Since R(t) = e−(γt/a)c

, the cumulative failure-intensity function Λ(t) =
(γt/a)c and hence λ(t) = cγ

a (γt/a)c−1 . Suppose that in some units, a = 1 and
γ = 0.1 . For different choices of the shape parameter c , the failure-intensity
function is presented in Figure 7.1; from top to bottom c = 0.8 , c = 1.0 ,
and c = 1.2 . Note that, depending on the choice of c , the function might be
classified as IFR, DFR, or have a constant failure intensity. �

In the previous examples failure intensity described the properties of popu-
lations of some components. Principally, it was used to model the uncertainty
of properties like quality or strength of a component. A different situation is
met in the following example.

Example 7.3 (Constant failure intensity). Consider periods in days be-
tween serious earthquakes worldwide (presented in Example 1.1). This data
set was investigated in many aspects in Chapter 4. Now assume that we at
some fixed date s (say, today) start counting the time until the next earth-
quake. As in Chapter 2, we thus consider a stream of events with intensity λA
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Fig. 7.1. Failure-intensity functions, Weibull distribution. From top to bottom,
c = 0.8 , c = 1.0 , c = 1.2 .

and the event A=“Earthquake occurs”. Recall the properties I-III in Chapter
2 (page 40), which we assume to be satisfied in our situation; then Theorem 2.5
gives

P(T > t) = P(N(s, s + t) = 0) = e−λAt

and hence Λ(t) = λA t , giving by differentiation λ(t) = λA . Thus, the failure-
intensity function is constant and equal to the intensity of the stream.

If the intensity of events A is non-stationary, λA(s) say, then similar
calculations lead to the failure-intensity function λ(t) = λA(s + t) . �

Often one is interested in whether the time to failure is longer than t , if
we know the age of the component to be t0 , say, i.e. we wish to compute the
probability P(T > t0 + t |T > t0) . This conditional probability can be easily
computed if the failure intensity is known:

P(T > t0 + t |T > t0) =
P(T > t0 + t and T > t0)

P(T > t0)

=
P(T > t0 + t)

P(T > t0)
=

e−
∫ t0+t

0
λ(s) ds

e−
∫ t0

0
λ(s) ds

= e
−
∫ t0+t

t0
λ(s) ds

. (7.2)

Note that for λ(s) = λ (being constant),

P(T > t0 + t |T > t0) = e−λt,

that is, old components have the same distribution for their remaining life as
new ones. This is sometimes stated as “memorylessness” of the exponential
distribution.
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We exemplify the use of Eq. (7.2) with an example from life insurance
where the “components” are humans. The variability of lifetimes, and hence
the failure intensity, depends on the choice of population. For example when
considering the lifetimes of inhabitants in two countries, there can be differ-
ent diseases common for each country, habits of smoking, traffic situation,
frequency of catastrophes like earthquakes, etc. which leads to different func-
tions λ(s) .

Example 7.4 (Life insurance). Let T be a lifetime for a human. In life in-
surance, P(T > t) is specified by standard tables, based on observed lifetimes
of a huge number of people; one example is the Norwegian N-1963 standard.
A popular choice of λ(s) is the Gompertz-Makeham distribution (with roots
to Makeham [53]), given by the failure-rate function

λ(s) = α + βcs,

s measured in years. For example, for N-1963, the estimates are

α∗ = 9 · 10−4, β∗ = 4.4 · 10−5, c∗ = 100.042.

We want to solve the following problems:

(i) Calculate the probability that a person will reach the age of at least sev-
enty.

(ii) A person is alive on the day he is thirty. Calculate the conditional proba-
bility that he will live to be seventy.

For problem (i), we obtain the solution as

P(T > 70) = exp
{
−
∫ 70

0

λ(s) ds

}
= 0.63.

The solution to problem (ii) is given by Eq. (7.2) as

P(T > 70|T > 30) = exp
{
−
∫ 70

30

λ(s) ds

}
= 0.65.

�

Combining different risks for failure

In real life, there are often several different types of risks that may cause
failures; one speaks of different failure modes. Each of these has an intensity
λi(s) and a lifetime Ti . We are interested in the distribution of T : the time
instant when the first of the modes happen. If Ti are independent then the
event T > t is equivalent to the statement that all lifetimes Ti exceed t , i.e.
T1 > t, T2 > t, . . . , Tn > t and hence

P(T > t) = P(T1 > t) · . . . · P(Tn > t) = e−
∫ t

0
λ1(s) ds · . . . · e−

∫ t

0
λn(s) ds

= e−
∫ t

0
λ1(s) ds−...−

∫ t

0
λn(s) ds = e−

∫ t

0
λ1(s)+...+λn(s) ds (7.3)
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which means that the failure intensity, including the n independent failure
modes, is λ(s) =

∑
λi(s) .

Remark 7.1. In the special case when the failures can be related to external
actions (accidents causing failures) constituting independent streams Ai ,
each with constant intensity λi , Eq. (7.3) was already derived in Chapter 2.
There, a stream A = A1 ∪ . . . ∪ An was considered, with the interpretation
that at least one of Ai happens. The intensity λA is equal to the sum of
intensities λi , (see Eq. (2.9)). If the streams are Poisson then the stream A
is also Poisson (see Theorem 7.1, p. 188), and hence

P(T ≤ t) = 1 − e−λAt,

i.e. T is exponentially distributed with intensity λA = λ1 + · · · + λn . �

7.1.2 Estimation procedures

Earlier in this chapter, we have introduced the notions failure intensity and
survival function when studying the distribution of the time T to failure for
some items. In this section we discuss how these functions can be estimated
from data. Obviously, a standard (parametric) method is to assume that F (t)
belongs to a class of distributions F (t; θ) , estimate parameters, and finally
calculate λ(s) . We here instead present a non-parametric method, commonly
used in applications with lifetime data.

In reliability studies as well as in clinical trials in the medical sciences,
it is not always possible to wait for all units to reach their final “lifetime”
(lifetime could mean time for failure, or death, or the appearance of a certain
condition). An intricate issue is that censored data may occur; for example,
an item may not have reached its lifetime until the study is finished or is lost
during the time (e.g. people move). Efficient estimation procedures need to
take censoring aspects into account.

In this section, we review some commonly used tools within statistical
analysis of survival or reliability data: the Nelson–Aalen estimator for estima-
tion of the cumulative failure-intensity function Λ(t) , and the log-rank test for
testing hypotheses about the failure-intensity functions of two samples. For
further reading, we refer to Klein and Moeschberger [43] where a thorough
presentation of methods in survival analysis is given.

Nelson–Aalen estimator

This estimator was first presented by Nelson [57] and later refined by Aalen [1].
It estimates the cumulative failure-intensity function

Λ(t) =
∫ t

0

λ(s) ds.
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The Nelson–Aalen estimator is considered to have good small-sample perfor-
mance, i.e. when n is small, when estimating the survival function.

Introduce the following notation:
ti: Time points for failures
di: Number of failures at time ti
ni: Number of items at risk at time ti, i.e. number of items not yet failed

prior to failure time ti.
The estimator is given by

Λ∗(t) =
∑
ti≤t

di

ni
(7.4)

and thus R∗(t) = exp(−Λ∗(t)) . (Note that R∗(t) �= 1 − Fn(t) .)
If censoring is present, the values of ni will be affected, leading to a change

in the value of the estimated survival function.

Example 7.5 (Cycles to failure). In an experiment, the number of cycles
to failure for reinforced concrete beams was measured in seawater and air [37].
The observations (in thousands) were as follows:

Seawater: 774 633 477 268 407 576 659 963 193
Air: 734 571 520 792 773 276 411 500 672

Parametric model. A Weibull distribution is often used to model the strength
of a material, and plots of the observations in Weibull probability paper indi-
cate that Weibull might be a good choice. With

FT (t) = 1 − e−(t/a)c

, t ≥ 0

one finds by statistical software the ML estimates a∗ = 620 , c∗ = 2.63 for
seawater conditions. Based on these, an estimate of the cumulative failure-
intensity function can easily be computed and is shown as the solid curve in
Figure 7.2.
Non-parametric model. The following table gives the Nelson–Aalen estimate
of the cumulative failure-intensity for seawater (creation of the corresponding
scheme for air is left as an exercise):

i ti ni di Λ∗(ti)
1 193 9 1 0.1111
2 268 8 1 0.2361
3 407 7 1 0.3790
4 477 6 1 0.5456
5 576 5 1 0.7456
6 633 4 1 0.9956
7 659 3 1 1.3290
8 774 2 1 1.8290
9 963 1 1 2.8290

In Figure 7.2, the Nelson–Aalen estimate is shown (the stair-wise function).
From the plot it can be judged that we have a case, which can be considered
IFR. �
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Fig. 7.2. Cumulative failure-intensity function, concrete beams in sea water. Curve:
Weibull estimate. Stair-wise function: Non-parametric Nelson–Aalen estimate.

Log-rank test

Finally, we present a statistical test, called the log-rank test, for comparison
of the intensities λ1(t) and λ2(t) in two groups (1 and 2). The aim is to test
the hypothesis

H0 : λ1(t) = λ2(t).

The test can be generalized to more than two groups, but we content our-
selves in this exposition to the simplest case and refer to the literature for
more specialized studies. (Note that two groups can have different number of
elements.)

Consider the time points for failures t1, t2, . . . , tD , both groups considered.
Introduce the following notation:

di1: Number of failures in group 1 at times ti
di2: Number of failures in group 2 at times ti
di: di = di1 + di2

ni1: Number of items in group 1 at risk at time ti, i.e. number of items not yet
failed prior to failure time ti.

ni2: Number of items in group 2 at risk at time ti, i.e. number of items not yet
failed prior to failure time ti.

ni: ni = ni1 + ni2

The test quantity is

Q =
1
s2

(
D∑

i=1

di1 −
D∑

i=1

di
ni1

ni

)2

where

s2 =
D∑

i=1

di

ni
· ni − di

ni
· ni1ni2

ni − 1
.
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Fig. 7.3. Cumulative failure-intensity functions (Nelson–Aalen estimates). Solid:
air; Dashed: seawater.

The test is similar to the χ2 test and is as follows: If Q ≥ χ2
α(1) , reject H0 .

(Note that since for X ∈ N(0, 1) , X2 ∈ χ2(1) ; hence, χ2
α(1) = λ2

α/2 .)

Example 7.6 (Cycles to failure). Consider again the experiment men-
tioned in Example 7.5. In Figure 7.3, the cumulative failure-intensity functions
are shown for air (solid) and seawater (dashed). Does seawater seem to lessen
the number of cycles to failure, or in other words, can we reject the hypothesis
that λ1(s) = λ2(s) , where group 1 corresponds to seawater conditions, group
2 to air?

From the 18 observations of lifetimes, the quantities needed are computed
and presented in the following table:

ti ni1 di1 ni2 di2 ni di

193 9 1 9 0 18 1
268 8 1 9 0 17 1
276 7 0 9 1 16 1
407 7 1 8 0 15 1
411 6 0 8 1 14 1
477 6 1 7 0 13 1
500 5 0 7 1 12 1
520 5 0 6 1 11 1
571 5 0 5 1 10 1
576 5 1 4 0 9 1
633 4 1 4 0 8 1
659 3 1 4 0 7 1
672 2 0 4 1 6 1
734 2 0 3 1 5 1
773 2 0 2 1 4 1
774 2 1 1 0 3 1
792 1 0 1 1 2 1
963 1 1 0 0 1 1
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From this table, we find

18∑
i=1

di1 = 9,
18∑

i=1

di
ni1

ni
= 8.02,

and s2 = 4.16 . It follows that Q = 0.23 . Hence χ2
0.05(1) = 3.84 and we do

not reject the hypothesis about equal failure intensity. �

7.2 Absolute Risks

In the previous section we introduced the concept of failure intensity λ(s) ,
which describes variability of lifelengths in a population of components, ob-
jects or human beings. Extensive statistical studies are needed to estimate
λ(s) . More often, observed information is not sufficient to determine the fail-
ure intensity. In this section we consider situations when information about
failures is less detailed: instead of knowing the times for failures ti , access
is available only to the total number; for example, failures during a specified
period of time (or in a certain geographical region). Let us call failures “ac-
cidents”, and suppose that these cause serious hazards for humans. Absolute
risk is meant as the chance for a person to be involved in a serious accident
(fatal), or of developing a disease, over a time period. Chances for accidents
due to different activities are often compared. A full treatment of such issues
is outside of the scope of this book and hence we only mention some aspects
of the problem.

Poisson assumption

Let N be the number of deaths due to an activity, in a specified population (a
country), and period of time (often one year). The distribution of N may not
be easy to choose. For example, if N is the number of accidents that occur in-
dependently with small probability then N may have a Poisson distribution,
N ∈ Po(μ) , where μ = E[N ] . This is a consequence of the approximation of
the binomial distribution by the Poisson distribution (the law of small num-
bers). For instance, it seems reasonable to model the number of commercial
air-carrier crashes during one year by a Poisson variable. However, the number
of people killed in those accidents is not Poisson distributed, since usually a
large number of people are killed in a single accident. Since N , for different
activities, can have different types of distributions, risks are often compared
by means of averages. However, as demonstrated next, such comparisons have
to be made with care.

Example 7.7 (Number of deaths in traffic). In year 1998 it was reported
about 41 500 died in traffic accidents in the United States while in Sweden the
number was about 500 [7]. In order to compare these numbers, one needs to
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compare the size of populations in both countries. A fraction of the numbers
of deaths by the size of population, giving the frequencies of death, is often
used to measure risk for death. In US the frequency was about 1 in 6 000,
circa 1.7 · 10−4 ; while in Sweden, 1 in 17 000, circa 0.6 · 10−4 , which is nearly
three times lower. (Comparisons of chances to die in traffic accidents between
countries can be difficult since statistics may use different definitions and have
different accuracy.) �

The last example turns our attention to a problem often discussed in the
literature of reliability and risk analysis, namely when risks are acceptable (or
tolerable).

Tolerable risks

Often a distinction is made between the so-called “voluntary risks” and the
“background risks”. Clearly accidents due to an activity like mountaineering
are obviously a voluntary risk, while the risk for death because of a collapse
of a structure is an example of a background risk and is much smaller. (In
United Kingdom one estimates that one hour of climbing has twice as high
probability for a fatal accident than for a fatal accident in 100 years caused
by structural failures, see table in [77].)

In the literature indicators of tolerable risks can be found, see e.g. Otway
et al. [59]. The magnitudes of the risks specified in Table 7.1 are meant ap-
proximatively: the number of fatal accidents during a year divided by the size
of the population exposed for the hazard. (Fatal accidents in traffic belongs
to the second category of hazards.)

Example 7.8 (Perished in traffic). Continuation of Example 7.7. The es-
timated chances of dying in traffic in the U.S. was nearly three times as high
as in Sweden. When looking for explanation for the difference, the first thing
to be explored is the total exposure of the populations for the hazard, in
other words if an average inhabitant of the U.S. spends more time in a car

Table 7.1. Indicators of tolerable risks.

Risk of death Characteristic response
per person per year

10−3 Uncommon accidents; immediate action is taken
to reduce the hazard

10−4 People spend money, especially public money to
control the hazard (e.g. traffic signs, police, laws)

10−5 Parents warn their children of the hazard (e.g. fire,
(drowning, fire arms, poison)

10−6 Not of great concern to average person; aware of
hazard, but not of personal nature; act of God.
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than a person in Sweden does. For traffic-related accidents, exposure is often
measured by total vehicle kilometres.

Neglecting that the exposures are estimates and hence uncertain numbers,
we found that in 1998 the intensity λ = E[N ]/t in the U.S. was about 1
person per 100 million km driven, while in Sweden, λ is 1 per 125 million km.
The conclusion is that a person who drives 0.01-million km during one year
has a chance of the order 10−4 , 0.8 · 10−4 , respectively, of dying as a result
of traffic accidents in both countries. In other words, the chances are quite
similar. �

In our setup the absolute risk was derived for an average member of the
population (a person chosen at random). However, the natural question is
whether the same risk is valid for some subpopulations: geographical, stratified
by age, income, etc. We return to this kind of question when Poisson regression
is presented. Here we end with an example where we compare risk for fire in
an average school in a country as a whole compared with a school in a smaller
urban region.

Example: Intensity of fire ignitions in schools in Sweden

In published statistical tables ([74], [76]) one can find that in 2002 there were
k = 13 053 educational buildings in Sweden and n = 422 fires were recorded.
(We ignore the fact that these two numbers are uncertain, taken from different
statistical tables.) As is common practice in fire safety, the assumption is made
that the stream of fire ignitions in a school is Poisson, and that ignitions in
different schools happen independently (see examples in Chapter 2).

Constant intensity

The simplest approach is to assume that intensities in all schools are constant
and equal to λ (per school). As derived in Example 4.8, the ML estimate is

λ∗ =
n

k
=

422
13 053

= 0.032 [year−1].

Now the probability of at least one fire in a school in three years, Pt(A) , t = 3
years, can be estimated as

Pt(A) = 1 − e−λ∗t = 1 − e−0.097 = 0.092.

The expected number of fires in an average school during a three-year period
is found to be μ = 3 · 0.032 = 0.096 .

Validation of the model: Schools in Stockholm

Here we use a small data set presented in [69] and further analysed in [68].
Data contain the number of fires ni for 20 schools in Stockholm, Sweden.
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These have been chosen, at random, from Stockholm Fire Department files
containing reports from actions in 2000-2002. The number of fires in each of
the schools was ni , i = 1, . . . , 20

1 1 3 1 1 3 1 2 1 1 1 1 1 1 1 2 1 1 1 1

We now investigate if the risk for fire in schools in Stockholm differs from
the average risk for the country, i.e. circa 0.1 fires on average during three
years. (We neglect some uncertainties in the estimate μ∗ = 0.032 found above
and assume stationarity of fire ignitions in years 2000-2002.) Our model is that
the number of fires (during three years) in Stockholm schools is independent
Poisson distributed variables with mean μS , which has to be estimated. We
suspect that μS > μ . However, there is a small difficulty here: namely the
fire department files contain only addresses of schools where the fire started.
Thus, schools with zero fires are not present in the data (see Remark 4.3
where the inspection paradox was discussed); hence the average of the data is
an obviously biased estimate of μS . In order to resolve the problem we need to
work with conditional probabilities, conditionally that one knows that there
was already a fire in a school.

We proceed as follows. Using data, we derive the ML estimate θ∗ of the
three-year average θ = μS . The asymptotic normality of the estimation error
is used to construct a 0.95-confidence interval for μS . If the country average
(here consider as known constant) lies outside the interval we can reject the
hypothesis that the intensity of Stockholm school fires is the same as the
average in the country.

ML estimate of μS

Let N be the number of fires observed in schools that had at least one fire
during the period. Clearly N may take values 1, 2, . . . with probabilities

P(N = n) =
θn

n!
e−θ

1 − e−θ
,

where θ is the unknown average number of fires in a school in 3 years. Suppose
n1, . . . , nk are independent observations from k schools, then the likelihood-,
log likelihood-, and the derivatives functions are given by

L(θ) =
k∏

i=1

P(N = ni) =
k∏

i=1

θni

ni!
e−θ

1 − e−θ
,

l(θ) = −
k∑

i=1

ln(ni!) + ln(θ)
k∑

i=1

ni − kθ − k ln(1 − e−θ),

l̇(θ) = k
n̄

θ
− k

1 − e−θ
, l̈(θ) = −k

(
n̄

θ2
− e−θ

(1 − e−θ)2

)
, (7.5)
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where n̄ =
∑k

i=1 ni/k . The ML estimate θ∗ is the solution to the equation

θ∗ = n̄(1 − e−θ∗
) while σ∗

E = 1/
√

−l̈(θ∗) . The estimate θ∗ can be found by
means of numerical procedures or a graphical method to solve the equation.
For the data the solution is θ∗ = 0.5481 while σ∗

E = 0.2151 . Since with
approximately 0.95 confidence

μS ∈ [
0.5481 − 1.96 · 0.2151, 0.5481 + 1.96 · 0.2151

]
=

[
0.13, 0.97

]
we reject the hypothesis that μS = 0.096 , i.e. that the schools in Stockholm
has the same yearly average number of fire as the country as whole.

7.3 Poisson Models for Counts

As we have seen the number of accidents Ni in different populations may
vary; it also can change from year to year. Sometimes the differences can be
explained as the result of random variability, i.e. when Ni are independent
outcomes of the same random experiment. However, often the independence
can be questionable or properties of the “experiment” changes with time, hence
Ni are not iid.

In this section we study this type of problems closer. We do not treat it
in full generality but assume that Ni are independent Poisson distributed
variables, counting a number of failures (accidents) in different populations or
time periods. Since the Poisson distribution has only one parameter, it means
that our model is fully specified if μi = E[Ni] are estimated.

Let N be the number of people killed in traffic, for instance, the next year.
We assume that N ∈ Po(μ) where μ = E[N ] . In order to be able to make any
statement of type P(N > 400) , μ needs to be estimated. This is usually done
using historical data. Denote by Ni the number of people killed in year i . We
assume that Ni are independent, Poisson distributed with mean μi = E[Ni] .
We have access to historical data and we know that Ni = ni .

Using the historical data, we wish to find a pattern of how μi varies
in order to extrapolate the variability to the future, i.e. the unknown value
μ . Obviously, if there is no clear pattern in μi , the ML estimate μ∗ and the
historical data can hardly be used to predict future. However, if the mechanism
generating accidents can be assumed to be stationary, then μi = μ for all i .
The average value n̄ =

∑
ni/k is the ML estimate μ∗ of μ .

In this section, we first briefly consider two data sets with regard to possible
constant μ over time. For a more thorough analysis, tests are then introduced:
to test for Poisson distribution and μi = μ (constant mean). Finally, for the
situation with μi not constant, the expected value is modelled as a function
of other, explanatory variables.

Example 7.9 (Flight safety). In Example 6.12 flight safety was studied.
From “Statistical Abstract of the United States”, data for the number of
crashes in the world during the years 1976-1985 are found:

24 25 31 31 22 21 26 20 16 22
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Here a model for constant mean number of accidents for the period seems
sensible. �

Sometimes trends are observed in ni : these seem to increase (or decrease)
over time. A possible model can be that the mean changes linearly viz.

μi = μ + β · i

where β is a constant and i the year. Historical data are used to find estimates
μ∗ and β∗ . However, often more complicated models for the variable mean
has to be used.

Example 7.10 (Traffic accidents in Sweden). Suppose we are interested
in the number of deaths related to traffic accidents in Sweden. From official
statistics [7], we find that during the years 1990-2004 the following number of
people died due to accidents in Sweden:

772 745 759 632 545 531 508 507 492 536 564
551 532 529 480

We can see that number of deaths is decreasing and obviously one cannot
assume that the data are observations of independent Poisson variables with
constant mean. �

7.3.1 Test for Poisson distribution – constant mean

In the following subsection we test whether data contradict the iid Poisson
model for Ni , i.e. μi = μ . However, first we present a useful approximation
of the Poisson distribution valid for large populations, commonly assumed to
be valid for μ > 15 .

For N ∈ Po(μ) when μ is large, a very effective tool is to approximate the
Poisson distribution by a normal distribution (the so-called normal approxi-
mation).�

�

�

	

Normal approximation of Poisson distribution.
Let N be a Poisson distributed random variable with expectation μ ,

N ∈ Po(μ).

If μ is large (in practice, μ > 15), we have approximately that

N ∈ N(μ, μ). (7.6)

Example 7.11 (Accidents in mines). Consider Example 2.11, page 39. We
there estimated the intensity of accidents in mines λ = 3 year−1 and argued
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that the stream of accidents is Poisson. Suppose we want to calculate the
probability of at least 80 accidents during 25 years, that is, P(N(25) ≥ 80) .
Since the stream is Poisson, N(25) ∈ Po(3 · 25) = Po(75) . For simplicity of
notation, let N = N(25) ; we compute

P(N ≥ 80) = 1−P(N ≤ 79) = 1−P(N = 0)−P(N = 1)−. . .−P(N = 79),

which might be cumbersome1. An alternative solution is to employ the normal
approximation instead to evaluate the probability:

P(K ≥ 80) ≈ 1 − Φ((79.5 − 75)/
√

75)) = 1 − Φ(0.52) = 0.30.

�

Suppose we have k observations n1, . . . , nk of Poisson distributed quan-
tities N1, . . . , Nk . Our assumption is that all Ni ∈ Po(μ) , i.e. stationarity
(homogeneity) is present.

For small values of μ but large k we can use the χ2 test presented in
Section 4.2.2 to validate the model.

In the case when μ is large, to test whether data do not contradict the
assumption of stationarity or constant mean, often the following property of
a Poisson distribution is used: V[N ] = E[N ] = μ . In the case of a Poisson
distribution, the ratio V[N ]/E[N ] is obviously equal to 1. The test to be
presented below is based on this fact. If μ is large, by Eq. (7.6) N ∈ N(μ, μ)
and we can estimate E[N ] by n̄ and V[N ] by s2

k−1 . As confidence interval
for θ = V[N ]/E[N ] can be constructed, viz.

n̄

s2
k−1

χ2
1−α/2(k − 1)

k − 1
≤ V[N ]

E[N ]
≤ n̄

s2
k−1

χ2
α/2(k − 1)

k − 1
(7.7)

with approximate confidence 1 − α . If θ = 1 is not in that interval, the
hypothesis that N is Poisson distributed is rejected. For further reading about
tests of this type, see Brown and Zhao [6].

Remark 7.2. The assumption of equal variance and mean is not always sat-
isfied working with real data. If V[X] > E[X] , overdispersion is present. Ad-
ditional statistical tests for this are found in the literature (cf. [18]).

In the following example we study how the hypothesis that μi are constant
over time can be validated.

Example 7.12 (Flight safety). This is a continuation of Example 7.12
where number of crashes of commercial air carriers in the world during the
years 1976-1985 were presented. Let us assume that the flight accidents form

1Some of the probabilities can be hard to compute and Stirling’s formula n! ≈√
2π nn+0.5e−n needs to be used.
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a Poisson stream and hence ni are independent observations of Po(μ) dis-
tributed variables.

A point estimate is μ∗ = n̄ = 23.8 . Since μ∗ > 15 , the model implies
that ni can be considered independent observations of an N(μ, μ) distributed
variable (cf. Eq. (7.6)). Consequently, we expect for the ML estimate of the
variance s2

k−1 ≈ n̄ . For this data set, s2
k−1 = 22.2 , which is close to 23.8 .

Next, the confidence interval given in Eq. (7.7) is computed:[
23.8
22.2

· 2.7
9

,
23.8
22.2

· 19.02
9

]
= [ 0.32, 2.26 ]

and hence the hypothesis of constant μ is not rejected. �

7.3.2 Test for constant mean – Poisson variables

Suppose it can be assumed that data are observations of independent Poisson
distributed variables but we suspect that the mean is not constant. More
precisely, we check if the data do not contradict the assumption that E[Ni] =
μ . The test we wish to use is based on a quantity called deviance and is based
on log-likelihood values. The specific of the test is that we do not need to
assume that the mean μ is high.

Statistical test using deviance

Let Ni be independent Poisson distributed variables and consider two models:
a more general model, where no restriction are put on the means μi = E[Ni] ,
and a simpler where all means are equal, i.e. μi = μ . Let ni be the observed
values of Ni . Using the ML method the optimal estimates μ∗

i = ni if the
general model is assumed while the ML estimate is μ∗ =

∑
ni/k for the

simpler, more restrictive model.
Since the more general model contains the simpler, the log-likelihood

function l(μ∗
1, . . . , μ

∗
k) must be higher than l(μ∗) . Higher values of the log-

likelihood function means that the observed data are more likely to occur
under the model, hence the increase of the function is a measure of how much
better the more complex model explains the data. It can be shown that the
following test quantity, called deviance,

DEV = 2 · (l(μ∗
1, . . . , μ

∗
k) − l(μ∗)

)
, (7.8)

for large k is χ2(k − 1) distributed if the simpler model is true2. Thus if
DEV > χ2

α(k− 1) , the difference between log-likelihoods cannot be explained
by the statistical variability and hence the simpler model should be rejected.
Straightforward calculations lead to the following formula

DEV = 2
k∑

i=1

ni

(
ln(μ∗

i ) − ln(μ∗)
)

= 2
k∑

i=1

ni

(
ln(ni) − ln(n̄)

)
, (7.9)

where for ni = 0 we let ni ln(ni) = 0 .
2The test can also be used for small k if μ is large.
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Example 7.13 (Daily rains). This is continuation of Example 2.14 where
the data ni , i = 1, . . . , 12 , are numbers of daily rains exceeding 50 mm
observed in month i , during years 1961-1999. We suspect that the simplest
model of constant mean μi = μ , estimated to be μ∗ = n̄ = 3.67 , is not
correct. Let us compute the deviance by Eq. (7.9)

DEV = 2
{
4(ln(4) − ln(3.67)) + · · · + 10(ln(10) − ln(3.67))

}
= 19.64.

The value 19.64 should be compared with the 0.05 quantile found as χ2
0.05(11) =

19.68 . Obviously this is a boarder case. Although DEV is slightly below the
quantile we decide that with approximative confidence 0.95 the hypothesis of
the means μi = μ can be rejected. �
Example 7.14 (Motorcycle data). Consider the data set from Problem 4.9
where the numbers of killed motorcyle riders in Sweden 1990-1999, are re-
ported. We suspect that the simplest model that E[Ni] = μi = μ explains well
the data and wish to test it against the more complex model that E[Ni] = μi .

DEV = 2
10∑

i=1

ni

(
ln(ni) − ln(n̄)

)
= 5.5,

since n̄ = 33.1 . The value 5.5 should be compared with the 0.05 quantile
found as χ2

0.05(9) = 16.92 . We conclude that the more complex model does
not explain data better than the simpler one does. �

7.3.3 Formulation of Poisson regression model

As seen in the previous subsection, often the assumption of constant mean
μ for the number of accidents Ni has to be rejected. In such a situation it
is desirable to find a model for the variability of the mean μi . A standard
approach is to find (or select from available data) a collection of explanatory
variables (quantities) that influence means. A method to find a functional
relation between the explanatory variables and the means is the so-called
Poisson regression.

Regression techniques are widely used in statistical applications found in
most sciences, a standard reference is the book by Draper and Smith [22].
The random outcomes of an experiment Yi (called responses or dependent
variables) of the ith experiment have means related to a vector of p , say,
explanatory3 variables x1, x2, . . . , xp .

A regression model

Consider a sequence of Poisson distributed counting variables Ni , i =
1, . . . , k , for example the number of accidents (failures) occurring in year i .
Let ni be the observed values of Ni . Suppose that for each i one observes

3Several names exist in the literature: independent variables, regressor variables,
predictor variables.
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p different variables characterizing the population, or mechanisms generat-
ing accidents. Consequently, data consist of ni and a vector xi1, xi2, . . . , xip ,
i = 1, . . . , k . In addition in some models an extra quantity ti , say, measuring
the exposure for risk is selected and the model for μi = E[Ni] is written down
as follows4

μi = ti exp(β0 + β1xi1 + . . . + βpxip). (7.10)

As before, one assumes that Ni ∈ Po(μi) are independent and hence the ML
estimates of the parameters βi are readily available. The algorithm is given
in Section 7.3.4.

Example 7.15. The simplest regression model is derived when p = 0 , i.e.
there are no explanatory variables xij at all. Then with λ = exp(β0) the
model is μi = tiλ . The ML estimate of the unknown intensity λ and standard
deviation of the estimation error are given by

λ∗ =
∑k

i=1 ni∑k
i=1 ti

, σ∗
E =

√
λ∗/

∑
ti. (7.11)

Obviously if all exposures ti are equal, ti = 1 , then μ = λ giving the estimate
μ∗ = n̄ . �

The model in Eq. (7.10) is convenient for studying the influence of a vari-
able xij on the mean μi . The rate ratio defined as

RRj = exp(βj), j = 1, . . . , p (7.12)

measures multiplicative increase of intensity of events when xij increases by
one unit. The rate ratio is estimated by RR∗

j = exp(β∗
j ) , where β∗

j is the
ML estimate of βj . Using asymptotic normality of ML estimators, confidence
intervals for RRj can easily be given.

Example 7.16 (Traffic accidents in Sweden). This is continuation of Ex-
ample 7.10 where we presented the number of people killed in traffic in Sweden
in years 1990-2004. Constant work on improving safety in traffic, new legis-
lations, technical improvements in cars (ABS, airbags, etc.) as well as better
standards of roads should result in a decrease of the death rate. However, the
increase in traffic volume has contrary effects.

In the report [7] the following model was proposed, μi = a · bi · xc
i , where

i = 1, 2, . . . are the years and a , b , and c unknown parameters. Further xi

is the traffic index in year i . Since we do not have access to the traffic index
we consider first a simplified model when c = 0 , μi = a · bi . However, we use
the equivalent formulation from Eq. (7.10)

μi = exp(β0 + xi1β1),

4The functional form in Eq. (7.10) follows the set-up of so-called generalized
linear models [56].
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Fig. 7.4. Number of deaths because of traffic in Sweden, 1990–2004. Left: Simple
Poisson regression, yearly trend. Right: Poisson regression taking into account yearly
trend and traffic volume.

where5 xi1 = i − 8.0 . The parameters β0, β1 are estimated using the ML
algorithm giving

β∗
0 = 6.35, β∗

1 = −0.0294.

The estimated values μ∗
i = exp(6.37 − 0.0294 · (i − 8.0)) are given in Fig-

ure 7.4 (left), solid line. These constitute a regression curve and are compared
with observed values ni shown as dots.

We can see that data ni oscillate quite regularly around the regression
curve μ∗

i , which contradicts the assumed independence of Ni . However, the
model can still be a useful, crude description of the data. The most important
property of this model is that it indicates that the average number of deaths
decreases with RR∗

1 = exp(β∗
1) = 0.97 by 3%. (This was one of the conclusions

of the VTI report [7].) �

By taking further explanatory variables in Eq. (7.10) more sophisticated
models can be proposed. In Example 7.16 we had two parameters (p = 1 while
k = 15) and we concluded that a more complex model would be needed to
adequately describe the traffic data. However, a higher number of parameters
βj will lead to higher uncertainty of the estimate μ∗

i . In the limiting case
when p ≥ k − 1 there are at least as many parameters to estimate as there
are observations ni . Consequently, the estimates μ∗

i = ni can be used as well
instead of μi = exp(β∗

0 +
∑

β∗
j xij) .

Clearly, more complex models better explain the observed variability in
data; however, as the number of parameters increases the estimated values

5The values of the explanatory variables are centred in order to obtain more
well-conditioned covariance matrices, hence xi1 = i−8.0 since (1/15)

∑15

i=1
i = 8.0 .
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often become more uncertain. When combining both types of uncertainty—
(1) the uncertainty of the future outcome of the experiment; (2) the uncer-
tainty of the parameter— the computed measures of risks can be more un-
certain for the complex model than for the simpler one6. This leads us to
the next important issue, the model selection. We do not go deep into this
matter, but just indicate how the different models can be compared using the
already-introduced quantity, deviance (for the simplest case see Eq. (7.8-7.9)).

Model selection and use of deviance

The above-discussed Poisson regression is a very versatile approach to model
variability of counts. Applications are found in most sciences: technology,
medicine, etc. In this subsection we further discuss these models, more pre-
cisely, the number of explanatory variables to be used. Illustrating examples
will be given.

One way of comparing different models is to analyse the value of the log-
arithm of the ML function l(.) for different choices of explanatory variables.
Let us consider two models: a more general model, with p explanatory vari-
ables, and a simpler where only q < p of the variables xi are used. (Here
q = 0 if no explanatory variables x are used.) Denote by βp , βq , the β pa-
rameters in the two models. Using the ML method optimal estimates β∗

p and
β∗
q are chosen. Since the more general model contains all the parameters of

the simpler one (and some additional) the log-likelihood function l(β∗
p) must

be higher than l(β∗
q) . Since higher values of the log-likelihood function means

that the observed data are more likely to occur (if the model is true), the
increase of the function is a measure of how much better the more complex
model explains the data. It can be shown that the following test quantity,
called deviance,

DEV = 2 · (l(β∗
p) − l(β∗

q)
)
, (7.13)

for large k is χ2(p − q) distributed if the less complex model is true. Thus if
DEV > χ2

α(p− q) , the difference between log-likelihoods cannot be explained
by the statistical variability and hence the simpler model should be rejected.
In other words, the more complex model fits data significantly better. Further
discussion of this type of χ2 test can be found in [82], page 345 or [10],
Section 8.2.

Now the computation of the deviance DEV is relatively simple if the ML
estimates β∗

p , β∗
q are given. Using β∗

p , β∗
q , the estimates of μi = E[Ni] can

be readily computed

μ∗
i = ti · exp(β∗

0 + β∗
1xi1 + · · · + β∗

l xil),

6We return to this problem in Chapter 10 where 100-year values will be
estimated.
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where l = p and l = q , respectively. Denote by μ∗
iS the estimates derived

using β∗
q while μ∗

iC the ones derived using β∗
p . Then

DEV = 2
k∑

i=1

ni (ln(μ∗
iC) − ln(μ∗

iS)) . (7.14)

Example 7.17 (Traffic accidents in Sweden). This is a continuation of
Example 7.16 where we concluded that the proposed model for the expected
number of perished in traffic in one year is too simple. We believe that the
systematical variability (see Figure 7.4, left panel) of ni around the estimated
regression could be explained by changes in the amount of traffic. It is obvious
that the years where the observations are below the average correspond to the
years when traffic growth was slower.

In the report [7], estimates of the total vehicle kilometres during 1990-2004
in 109 kilometres, where i = 1 corresponds to year 1990, were also reported.
The estimates yi , say, are as follows:

64.3 64.9 65.5 64.1 64.9 66.1 66.5 66.7 67.4 69.6
70.6 71.6 74.0 75.4 76.1

Now the new, more complex, model for μi (with p = 2) is

μi = exp(β0 + β1xi1 + β2xi2),

where xi1 = i − 8.0 while xi2 = yi − 68.5 . The parameters β are estimated
using the ML algorithm giving

β∗
0 = 6.35, β∗

1 = −0.082, β∗
2 = 0.063.

In Figure 7.4 (right panel) we can see the estimated values of μi as a solid line
together with observations marked as dots. The two rate ratios RR1 = exp(β1)
and RR2 = exp(β2) are estimated to be RR∗

1 = 0.92 and RR∗
2 = 1.065 . The

rough interpretation of the ratios is that the safety improvements led to a
yearly decrease of about 8% of the expected number of perished in the traffic
but the increase in the traffic volume by 109 km increases the expectation by
ca 6.5%. Since on average the traffic volume increases by 0.84 · 109 km, this
leads to a yearly decrease of the expected number of perished by about 3%
(the same as given for the simpler model in Example 7.16). The more complete
model seems to give more insight into the problem; however, we should also
check whether the more complicated model explains the data significantly
better than the simpler one does.

Consequently, let us compute the deviance. Again, let μ∗
iS denote the

estimated averages μ∗
i presented in Figure 7.4 (left panel) for the simpler

regression, p = 1 , while μ∗
iC be the corresponding estimates μ∗

i presented in
Figure 7.4 (right panel) for the more complex regression, p = 2 . Then the
deviance given by Eq. (7.14) is equal to
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DEV = 2
15∑

i=1

ni(ln(μ∗
iC) − ln(μ∗

iS)) = 59.75

which could be compared with the 0.001 quantile found as χ2
0.001(1) = 10.83 .

Since DEV > 10.83 , we reject with high confidence the hypothesis that the
more complex model explains the data equally well as the simpler one. �

Example 7.18 (Derailments in Sweden). In [73], statistics for derailments
in Sweden are given. Authorities are interested in the impact of usage of dif-
ferent track types. Data consist of derailments of passenger trains during 1
January 1985 – 1 May 1995, where ni is the number of derailments on track
type i and ti is the corresponding exposure in 106 train kilometres. The fol-
lowing numbers are extracted from [73]. The observations ni, ti are given in
columns two and three, respectively;
i = 1 15 421 [Welded track with concrete sleepers]
i = 2 28 80 [Welded track with wooden sleepers]

A statistical test is needed to test for possible differences in safety; below,
we use the deviance. The numbers of derailments that occur at tracks of type
i , denoted by Ni , is assumed to be independent and Poisson distributed.
Further, let μi = E[Ni] = λiti , where ti are exposures measured in 106 train
km (tkm). The simpler model is that λ1 = λ2 = λ while the more complex is
that λ1 and λ2 are different. We are interested in the rate ratio RR = λ2/λ1 .

Eq. (7.11) gives the estimate λ∗ = (n1+n2)/(t1+t2) = 0.0858 [10−6tkm−1 ];
consequently, μ∗

1S = λ∗t1 = 36.1 and μ∗
2S = λ∗t2 = 6.9 . Next, for the complex

model μ∗
iC = ni and hence using Eq. (7.13)

DEV = 2
(
15(ln(15) − ln(36.1)) + 28(ln(28) − ln(6.9)

)
= 52.1.

Since the more complex model has two parameters while the simpler has only
one, one should compare the computed deviation with the quantile χ2

0.001(1) =
10.83 . Consequently, with very high confidence, we reject the simplest model.
Hence in the following we consider only the more complex model.

The rate ratio RR. The rate ratio measures how the increase of intensity
of events changes between the two populations, here RR = λ2/λ1 and is
estimated by

RR∗ =
λ∗

2

λ∗
1

=
28 · 421
15 · 80

= 9.8,

i.e. the risk for derailment is nearly ten times higher for the second type of
track.

The Poisson-regression model. The estimations μi can also be described as a
Poisson-regression problem since we can write

μi = ti exp(β0 + β1xi). (7.15)
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Here xi is a dummy variable taking only two values: defined to be zero when
i = 1 and one when i = 2 . The parameter estimate β∗

1 could be computed
using the ML algorithm, however, here we take a shortcut and use that RR∗

has already been estimated. Since RR∗ = 9.8 , we find β∗
1 = ln(9.8) = 2.28 .

Any statistical software would compute the estimates β∗
i and give the

matrix with −[l̈(β∗)
]−1 needed for computations of standard deviations of

the estimation error, σ∗
Ei
. However, since in this simple example these can be

easily derived analytically we present the complete solution for illustration of
the methodology.

The main purpose of these computations is to derive an asymptotic confi-
dence interval for RR . (Asymptotic normality of ML estimators is utilized.)
When the estimate σ∗

E associated with β∗
1 is computed then, with approxi-

mately 0.95 confidence, β∗
1 − 1.96σ∗

E < β1 < β∗
1 + 1.96σ∗

E and hence

exp(β∗
1 − 1.96σ∗

E) < RR < exp(β∗
1 + 1.96σ∗

E).

What remains is computation of the estimated variance (σ2
E)∗ . The vari-

ance is the second element of the diagonal of Σ =
[−l̈(β∗

0 , β∗
1)
]−1 . Now, the

matrix of second-order derivatives can be computed using Eq. (7.17) when
the estimates μ∗

i are known. From the definition of xij , Eq. (7.17) gives[
l̈(β∗

0 , β∗
1)
]

= −
(∑

μ∗
i μ∗

2

μ∗
2 μ∗

2

)
= −

(
43 28
28 28

)
.

Consequently

Σ =
(

0.0667 −0.0667
−0.0667 0.1024

)
,

and hence with approximately 0.95 confidence

exp(2.28 − 1.96
√

0.1024) < RR < exp(2.28 + 1.96
√

0.1024),

5.2 < RR < 18.3 . Thus, rail type 1 is, with high confidence, at least five times
safer to use than rail type 2 is.

�

7.3.4 ML estimates of β0, . . . , βp

For simplicity of derivations, let us introduce xi0 = 1 and let

E[Ni] = μi = ti exp

⎛⎝ p∑
j=0

βj xij

⎞⎠ ,

where Ni ∈ Po(μi) , i = 1, . . . , k . Clearly Ni may take values 0, 1, 2, . . . with
probabilities
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P(Ni = n) =
μn

i

n!
e−μi .

Denote by ni the observed Ni , i.e. the number of events that occurred in a
period of time ti . The likelihood-, log likelihood-, and the derivative functions
are given by

L(β) =
k∏

i=1

P(Ni = ni) =
k∏

i=1

μni
i

ni!
e−μi ,

l(β) = −
k∑

i=1

ln(ni!) +
k∑

i=1

ni ln(μi) −
k∑

i=1

μi,

l̇(β) =
k∑

i=1

dμi

dβ

(
ni

μi
− 1

)
. (7.16)

Now Eq. (7.16), with β replaced by βj can be used to compute the deriv-
atives of the log-likelihood functions. Since ∂μi/∂βj = xijμi the derivatives
and second-order derivatives of the log-likelihood are given by

∂l(β)
∂βj

=
k∑

i=1

(ni − μi)xij ,
∂2l(β)

∂βj∂βm
= −

k∑
i=1

μi xijxim. (7.17)

As before the ML estimate of β∗
p = (β∗

0 , . . . , β∗
p) are solutions to the system

of (p + 1) non-linear equations in βj , viz.
∑k

i=1(ni − μi)xij = 0 . Often
these cannot be solved analytically, but a numerical method, e.g. the recursive
Newton–Raphson algorithm, can be used:

• The algorithm starts with a guess β0 , say, of the values of the vector β ,
for example

β0
0 = ln(

∑
ni) − ln(

∑
ti), β0

i = 0, i > 0.

• If the values of the parameters after the mth iteration are denoted by
βm then the N–R algorithm renders the new estimates by the following
formula

βm+1 = βm − [
l̈(βm)

]−1
l̇(βm),

where [l̈(β)] is a matrix with derivatives ∂2l(β)
∂βj∂βm

while l̇(β) is a column

vector of ∂l(β)
∂βj

.

• The algorithm stops when all components in the vector l̇(βm+1) are small
enough.
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7.4 The Poisson Point process

The Poisson point process is an important tool, widely used not only in ap-
plications to risk and safety analysis, but also in telecommunication engineer-
ing, financial, and insurance mathematics. Applications to risk analysis and
accidents were present already in the 1920s, cf. [30]. In Section 2.6.1, we in-
troduced a Poisson stream of events, which is here renamed Poisson point
process (PPP) in order to generalize the notion from a line (time) to higher-
dimensional spaces.

We start with an alternative definition of a PPP on the line, i.e. in the
case when the PPP is a Poisson stream of events A , say, and review some
basic properties of a PPP. Of particular interest is the distribution of the time
intervals Ti between the occurrences of A .�

�

�

�

Definition 7.2 (Poisson Point process (PPP)). If the time intervals
T1, T2, . . . between occurrences of an event are independent, exponentially
distributed variables with common failure intensity λ , then the times 0 <
S1 < S2 < . . . when the event A occurs form a Poisson point process
with intensity λ .

Let us recall the notation NA(s, t) , NA(t) from Definition 2.2. (In the
following the subscript A is omitted.) For fixed values s, t the random variable
N(s, t) is the number of times an event A occurred in the time interval [s, s+ t]
while N(t) is understood as N(0, t) . The variable N(t) can also be seen as a
function of time which (see Figure 7.5), is called a Poisson process.

�

�

�� �� �� ��
T1 T2 T3 T4

S1 S2 S3 S4

-

-

-

-

1

2
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4
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t
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Fig. 7.5. Illustration of a Poisson process.
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We summarize the important properties of a PPP:�

�

�

	

Let λ be the intensity of a PPP. Then
• The time to the first event, T , is exponentially distributed:

P(T > t) = e−λt.

• Times between events, Ti , are independent and exponentially distrib-
uted:

P(Ti > t) = e−λt.

• The number of events N(s, t) ∈ Po(m) , i.e. is Poisson distributed with
m = λt .

• The number of events in disjoint time intervals are independent and
(obviously) Poisson distributed.

Remark 7.3. If we assume that real-world phenomenon can be modelled by
means of a Poisson point process then the intensity λ is the only parameter
that is needed to compute probabilities of interest, since N(t) ∈ Po(λ t) . If
the mean E[N(t)] = λ t is small, then

P(N(t) = 0) = e−λ t ≈ 1 − λ t, P(N(t) = 1) ≈ λ t = E[N(t)],

and the probability of more than one accident is of smaller order. �

Typical applications of a PPP often are to model variability of counting
and book-keeping of times, for example between cars passing a checkpoint.
The Poisson model implies that in any time period t , say, the number of cars
that have been registered in the period N(t) , say, is Poisson distributed with
mean equal to λ t .

In safety analysis of complex systems, e.g. an electrical power network in
a country, transients that occur in the system need to be analysed as con-
sequences of different types of failures (accidents). The failures are modelled
using Poisson streams and the safety of the system is investigated by means
of suitable (numerical) simulations of transients. The possibility of analytical
computations is limited by the complexity of a system. One of the inputs is
times of failures and hence Poisson streams with a given intensity λ need to
be simulated.

Simulation of a Poisson point process

Since the intensity of events λ is constant, we expect that there are no spe-
cific patterns regarding the positions of the points in a PPP. This somewhat
unprecise statement can be illuminated by the following method to simulate
a PPP.
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Step 1 First choose an interval of length t , for example [0, t] .
Step 2 Then, by some Monte Carlo method, generate the number of points

in the interval N(t) , i.e. random numbers with distribution Po(λ t) (see
Chapter 3 for details). Denote the generated number by n (for instance,
if n = 10 , then there are 10 points in [0, t]).

Step 3 What remains to find are the exact locations of the n points. These
should be totally random. In fact, the locations are independent and uni-
formly distributed variables. By this we mean that we need to simulate n
values ui of uniformly distributed (between zero and one) random num-
bers. Then the positions of the events are given by t · ui (not ordered).

It is important to be able to motivate the correctness of the assumption
that the sequence of events forms a Poisson stream. According to Section 2.6.1,
conditions I-III, one needs to motivate that the mechanism generating acci-
dents is stationary. One often limits oneself to check if the intensity of acci-
dents is constant (see Examples 7.13-7.14). Next, one needs to argue that the
number of accidents in disjoint intervals is independent and, finally, that two
or more events cannot happen exactly at the same moment. Here the reason
for the use of a PPP consists mainly of general arguments. This type of “val-
idation” is often used when events occur rarely and hence use of statistical
tests is limited.

Remark 7.4 (Barlow–Proschan test). Actually the property used in Step
3 in the simulation algorithm, that times when accidents occur are uniformly
distributed can be used to construct a test whether the ordered observed times
0 < S1 < S2 < . . . < Sn do not contradict the assumption that those are the
first n times of the PPP. It can be shown that the statistic

Z =
1
Sn

n−1∑
i=1

Si

is approximately normally distributed. From Step 3, it can be seen that Z has
the distribution of the sum of n − 1 uniformly distributed random variables
Ui . Consequently, a table of means and variances gives that E[Z] = (n− 1)/2
and V[Z] = (n − 1)/12 and hence, with approximately probability 1 − α

1
2
(n − 1) − λα/2

√
n − 1
12

< Z <
1
2
(n − 1) + λα/2

√
n − 1
12

. (7.18)

Now having observed the times si , i = 1, . . . , n , the value of z =
∑n−1

i=1 si/sn

is computed. If z is outside the interval given in Eq. (7.18) then the hypothesis
that the times si are outcomes of Poisson point process is rejected. This
procedure is called Barlow–Proschan’s test. �

Example 7.19 (Periods between earthquakes). Let us reconsider times
between earthquakes ti , first encountered in Example 1.1, later discussed e.g.
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in Example 4.6, where a χ2 test was used to test for exponentially distributed
time intervals. Here we make use of Barlow–Proschan’s test outlined earlier.

Obviously sk =
∑k

i=1 ti , k = 1, . . . , n and hence

z =
∑n−1

k=1

∑k
i=1 ti∑n

i=1 ti
. (7.19)

For the data, n = 62 and we find z = 31.06 . The interval [30.5 −
1.96

√
61/12, 30.5 + 1.96

√
61/12] = [26.1, 34.9] contains z and hence the

hypothesis that times for major earthquakes forms a PPP cannot be rejected.
�

7.5 More General Poisson Processes

Earlier in this chapter, we have used the Poisson point process to describe
when events occur in time, i.e. a Poisson stream. However, applications do
not have to be restricted to events occurring in time. Consider for example
cracks along an oil pipeline and think about how a PPP can be applied. The
concept can be generalized even more.

A general Poisson process

Let N(B) denote the number of events (or accidents) occurring in a region
B . Consider the following list of assumptions (cf. Section 7.4):

(A) More than one event cannot happen simultaneously.
(B) N(B1) is independent of N(B2) if B1 and B2 are disjoint.
(C) Events happen in a stationary (in time) and homogeneous (in space) way,

more precisely, the distribution of N(B) depends only on the size |B| of
the region: for example N(B) ∈ Po(λ|B|) .

The process for which we can motivate that (A–B) are true is called a Poisson
process. It is a stationary process with constant intensity λ if (A–C) holds.

An illustration of a Poisson process in the plane is given in Figure 7.6.

Example 7.20 (Japanese black pines). In Figure 7.7 are shown the lo-
cations of Japanese black pine samplings in a square sampling region in a
natural region. The observations were originally collected by Numata [58]
and the data are used as a standard example in the textbook by Diggle [20].
Having adequate biological information about the species region and other
relevant information one could may be assume the validity of assumptions
(A-C) leading to the Poisson model for the locations of the trees.

As statisticians we can also validate the model, i.e. check if some statistics
do not contradict the assumed PPP. First, let us estimate the intensity λ of
pines.
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Fig. 7.6. Illustration of a Poisson process in the plane. Here N(B) = 11 while
N(B1) = 2 , N(B2) = 3 .
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Fig. 7.7. Locations of Japanese black pines in a square sampling region.

The region studied was 5.7 × 5.7 m2 , which we refer to as one area unit
(au) in the following. There are 65 pines in a region of 1 au, and hence the
estimate of the estimate of intensity λ∗ = 65 au−1 . We divide the region
in 25 smaller squares, each of size 0.2 · 0.2 = 0.04 au. Since we assumed
homogeneity of trees, we expect on average 0.04 · 65 = 2.6 trees in each of
such smaller regions. Obviously the true number differs from the average and
their variability is modelled as 25 independent Po(2.6) distributed variables.

From Figure 7.7 are found 1, 5, 4, 11, 2, 1, 1 regions containing 0,
1, 2, 3, 4, 5, 6 pines. The probability-mass function for Po(2.6) is pk =
2.6k exp(−2.6)/k! and hence one expects to have 25 · pi smaller regions to
contain k plants. The expectations are 1.9 , 4.8 , 6.3 , 5.4 , 3.5 , 1.8 , 0.8 , re-
spectively; how close is this to what the model predicts? We use a χ2 test:

Q =
(1 − 25p0)2

25p0
+

(5 − 25p1)2

25p1
+

(4 − 25p2)2

25p2
+

(11 − 25p3)2

26p3

+
(2 − 25p4)2

25p4
+

(1 − 25p5)2

25p5
+

(1 − 25p6)2

25p6
= 8.1.
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Since χ2
0.05(7 − 1 − 1) = 11.07 , the hypothesis about Poisson distribution

cannot be rejected (see Eq. (4.3)). �

Example 7.21 (Bombing raids on London). During the bombing raids
on London in World War II, one discussed whether the impacts tended to
cluster or if the spatial distribution could be considered random. This was
not merely a question of academic interest; one was interested in whether the
bombs really targeted (as claimed by Germans) or fell at random7. An area
in the south of London was divided into 576 small areas of 1/4 km2 each; the
Poisson distribution was found to be a good model. For further discussion,
consult Chapter VI.7 in the classical book by Feller [25]. �

7.6 Decomposition and Superposition of Poisson
Processes

The Poisson process is a mathematical tool in risk analysis to describe the
occurrence of events of particular interest in some application. We now go one
step further: to a given event, additional properties can be related.

Example 7.22. In Example 1.11, the event A = “Fire starts” was considered.
The stream of A is often modelled as a PPP. Now the fire was furthermore
classified at the arrival by means of two scenarios: B = “Fire with flames”
or (if B was false) “Smoke without flames”. The date of the fire is written
down and is marked with a star in case scenario B followed fire ignition, i.e.
fire with flames was recorded, was true. Otherwise, when “merely smoke” was
recorded, a dot is marked.

As it was shown in Eq. (2.14), if the scenario B were independent of
stream of ignition then the point process of “stars” (dates of fires with flames)
is a PPP too. Consider one type of fire, e.g. the one marked with stars8. In
this section we discuss generalizations of the presented splitting of a PPP into
point processes of stars and dots. �

Consider an event A that is true at point Si and suppose that Si form a PPP
with intensity λ . Consider for instance a Poisson process in the plane, as used

7This problem has even influenced literary texts, as the following excerpt from
Pynchon’s Gravity’s Rainbow, [64], Part 1, Chapter 9:

Roger has tried to explain to her the V-bomb statistics; the difference be-
tween distribution, in angel’s-eye view, over the map of England, and their
own chances, as seen from down there. She’s almost got it, nearly under-
stands his Poisson equation. . . “. . . Couldn’t there be an equation for us
too,. . . ”. . . “. . . There is no way, love, not as long as the mean density of the
strikes is constant . . . ”

8The same is valid for the point process of dots, since if B is independent of the
stream A then the complement Bc is independent too.
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Fig. 7.8. Superposition (decomposition) of Poisson processes.

in Example 7.20. Let B be a scenario (a statement that can be true or false
when A occurs, i.e. at points Si ). Now at each point Si (when A occurs)
we put a mark “star” if B is true. All remaining Si (when B is false) are
marked by dots (see Figure 7.8). If B is independent of the PPP A , then the
point processes of stars and dots are independent Poisson and have intensities
P(B)λ , (1 − P(B))λ , respectively.

It is not surprising that the reverse operation of superposition of two (or
more) independent Poisson processes gives a Poisson process.�

�

�

	

Theorem 7.1. Superposition Theorem: Assume that we have two in-
dependent Poisson point processes SI

i and SII
i with intensities λI , λII ,

respectively. Consider a point process Si , which is a union of the point
processes SI

i and SII
i . (If SI

i , SII
i are marked by stars and dots, respec-

tively, replace all symbols with a ring (◦) and let Si be positions of rings.)
The point process of Si is a superposition of the two processes and is a
PPP itself, with intensity λ = λI + λII .

For further reading about decomposition and superposition, including proofs,
see the books by Gut [33] or Çinlar [11].

Problems

7.1. Assume that the lifetime process for humans has the death-rate function

λ(t) = a + b · et/c, t > 0,

where a = 3 · 10−3 , b = 6 · 10−5 , and c = 10 . The unit of time is 1 year.

(a) Calculate the probability that a person will reach the age of at least fifty.
(b) A person is alive on the day he is thirty. Calculate the conditional probability

that he will live to be fifty.

7.2. Consider the experiment presented in Example 7.6. Use the Nelson–Aalen esti-
mator to estimate the cumulative failure-intensity function of the observed lifetimes
for concrete beams in air.

7.3. At time t = 0 , a satellite is put into orbit. Two transmitters have been in-
stalled. At t = 0 , both of them are working, but they break down independently
with constant failure rate λ each. When both transmitters have failed to work, the
satellite is out of order. Find the failure rate for the whole transmitter system.
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7.4. The random variable Z is Poisson distributed and has a coefficient of variation
of 0.50. Calculate P(Z = 0) .

7.5. The number of cars passing a street corner is modelled by a Poisson process
with intensity λ = 20 h−1 . Calculate (approximately) the probability that more
than 50 cars will pass during two hours (2 h).

7.6. Consider an oil pipeline. Suppose the number of imperfections N(x) along a
distance x can be modelled by a Poisson process, that is, N(x) ∈ Po(λx) , where λ
is the intensity (km−1 ). Let λ = 1.7 km−1 .

(a) Calculate the probability that there are more than 2 imperfections along a dis-
tance of 1 km.

(b) Calculate the probability that two consecutive imperfections are separated by a
distance longer than 1200 m.

7.7. Consider again the data set with time intervals between failures given in Prob-
lem 6.4.

(a) Test if data do not contradict the assumption of a PPP.
(b) Modelling the occurrences of failures of the air-conditioning system as a PPP,

use the observations to estimate the intensity λ for plane 7914.

7.8. The number of defects (“specks”) in plates is described by a Poisson distribution.
One has the following observations: 30 plates are of colour 1 and 45 plates of colour 2.

Colour 1: 1 3 1 0 0 0 2 1 1 0 2 0 0 2 0
1 0 2 0 0 2 0 0 1 1 0 0 1 0 0

(Observations from Po(m1))

Colour 2: 0 0 0 0 0 2 0 0 1 1 1 0 0 0 0
0 1 0 0 1 0 0 1 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 2 1 0 1 1 1 0

(Observations from Po(m2))
Give an estimate of m1−m2 and estimate the standard deviation of the proposed

estimator of m1 − m2 . Compute a 0.95-confidence interval for m1 − m2 .

7.9. A group of parachutists is launched randomly over a region. Suppose the mean
intensity of parachutists is λ per unit area and assume a Poisson model; that is, the
number of people in a region of area A is Poisson distributed with mean λA .

For a randomly selected person in this region, let R denote the distance to the
nearest neighbour.

(a) Find the distribution for R . Hint: Note that P(R > r) is the same as the
probability of seeing no people within a circle of radius r .

(b) Give the expected value, E[R] (cf. Problem 3.7).
(c) Suppose that a group of 20 people are launched over a region of size 1 km2 .

An estimate of λ is then 2 · 10−5 m−2 . Use the previous results to compute the
average distance between the parachutists.
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7.10. Consider flying-bomb hits on London, discussed in Example 7.21. The total
number of small areas was 576 and the total number of hits was 537. In [12], the
following numbers are found (reprinted in [25]):

k 0 1 2 3 4 ≥ 5
nk 229 211 93 35 7 1

where nk is the number of areas with exactly k hits.
Test for a Poisson distribution using a χ2 test.

7.11. Consider the data set of hurricanes, given in Problem 4.12.

(a) Based on the given 55 yearly observations, estimate the intensity of hurricanes.
Compute the probability of more than 10 hurricanes in a given year using normal
approximation. Use this probability to compute the expected number of years
with more than 10 hurricanes during a 55-year period.

(b) The question of a possible increase over time of the average number of hurricanes
has been much discussed in media as well as in the specialized research literature
on climatology. We here investigate this complex issue by a simple Poisson-
regression model:

E[Ni] = exp(β0 + β1xi), i = 1, . . . , 55

where the explanatory variable x is time in years x = 0, . . . , 54 . A constant
intensity over time means β1 = 0 . We want to test for a possible trend, i.e. the
null hypothesis is β1 = 0 .
A software package returns the values of log-likelihood functions l(β∗

0 , β∗
1 ) =

−123.8366 (with β∗
0 = 1.8000 , β∗

1 = 1.4 · 10−4 ) and l(β∗
0 , 0) = −123.8374 (with

β∗
0 = 1.8038). Calculate the deviance and draw conclusions.

7.12. In Figure 7.9 are shown the locations of 71 pines in a square sampling region
in Sweden. Use the division into 25 small squares given in the figure and perform
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Fig. 7.9. Locations of pines in a square sampling region at a location in Sweden.
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calculations as in Example 7.20 to investigate whether the pines are distributed in
the plane according to a Poisson process.
Hint. Some observations fall at the border between squares. In that situation, let
the observation belong to the higher limit.

7.13. Consider lorries travelling over a bridge. Assume that the times Si of arrivals
form a Poisson process with intensity 2 000 per day. Consider a scenario B = “A
lorry transports hazardous material”. Assume that the scenario is independent of
the stream of lorries. (This would not be the case if a chemical company is usually
sending a convoy of lorries with hazardous material to the same destination). From
statistics, one has found that with probability p = 0.08 , a lorry transports hazardous
materials and with probability q = 0.92 , other material is transported.

(a) In one week (Monday–Friday), on average 10 000 lorries will travel over the
bridge. What is the probability that during a week a number of 300 more than
the average will pass?

(b) What is the probability that during a week (Monday–Friday) there are more
than 820 transports of hazardous materials?



8

Failure Probabilities and Safety Indexes

In Section 6.7 we discussed the problem of estimating risks for very rare ac-
cidents, which are seldom observed but can have serious consequences. In
that situation the applicability of direct estimation of the probabilities using
the empirical frequencies of such accidents is limited due to lack of data or
large uncertainty in values of the computed measures of risks. An alternative
method to compute risk, here the probability of at least one accident in one
year, is to identify streams of events Ai , which, if followed by a suitable sce-
nario Bi , leads to the accident. Then the risk for the accident is approximately
measured by

∑
λAi

P(Bi) where the intensities of the streams of Ai , λAi
, all

have units [year−1 ]. An important assumption is that the streams of initi-
ation events are independent and much more frequent than the occurrences
of studied accidents. Hence these can be estimated from historical records.
(Estimations of intensities λi were discussed in the previous chapter.) What
remains is computation of probabilities P(Bi) .

We consider cases when the scenario B describes the ways systems can fail,
or generally, some risk-reduction measures fail to work as planned. Hence P(B)
describes the chances of a “failure”, which we write explicitly in the notation
Pf = P(B) . We are particularly interested in situations when, as often seen in
safety of engineering structures, B can be written in a form that as a function
of uncertain values (random variables) exceeds some critical level ucrt

B = “ h(X1, X2, . . . , Xn) > ucrt ”

Hence the main subject of this chapter is to study distributions of functions
of random variables Xi with known distributions. Some of the variables Xi

may describe uncertainty in model, parameters, etc. while others may describe
genuine random variability of the environment. One thus mixes the variables
X with distributions interpreted in the frequentist’s way with variables hav-
ing subjective probability distributions. Hence the interpretation of what the
failure probability

Pf = P(B) = P(h(X1, X2, . . . , Xn) > ucrt) (8.1)

means is difficult and will depend on properties of the analysed risk scenario.
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As mentioned earlier, in this chapter we focus on computations of Pf as
defined in Eq. (8.1), hence with

Z = h(X1, X2, . . . , Xn), (8.2)

formally, the failure probability is given by

Pf = P(Z > ucrt) = 1 − FZ(ucrt).

At first, one might think it is a simple matter to find the failure probability Pf ,
since only the distribution of a single variable Z needs to be found. However,
that is not the case. Here Z is a function of other variables and computation
of its distribution is usually not a simple task. We give some examples in
Section 8.1 when the distribution of Z can be computed. However, often that
will not be possible or, if the information of the distribution of Xi is too
uncertain, not really recommendable. In such situations we may use safety
indices, introduced in Section 8.2, instead of poorly computed probabilities.
For complicated problems, even the safety indices cannot be computed exactly.
Thus we discuss, in Section 8.3, how Gauss’ formulae can be employed to
compute approximations for the value of an index. Gauss’ formulae can also
be used to approximately compute confidence intervals, the so-called delta
method. This is presented in the final section.

8.1 Functions Often Met in Applications

The reliability of an engineering system may be defined as the probability
of performing its intended function or mission. The level of performance of
a system will obviously depend on the properties of the system. Often the
problem can be formulated on the form supply versus demand, i.e. the (supply)
capacity of a system must meet certain (demand) requirements.

A typical example is an imposed load on a structure. Here, the strength of
the material, including material constants and geometry of the structure, is an
example of variables of supply type. The load is regarded as a demand. In civil
engineering a situation is often considered where variables can be classified as
describing strengths of the system (higher strength means lower probability
of failure). Other variables can be called loads, since higher loads will lead to
higher probability of failure.

In this section, we discuss the distribution of Z in Eq. (8.2) for some
standard types of functions and common families of distributions. In some of
the examples, we study applications involving variables having interpretations
as strengths or loads.

8.1.1 Linear function

Example 8.1 (Load and strength). Consider for simplicity a system with
a single random strength R and a load S . The system will fail when the
strength is lower than the load, hence we study

Z = R − S
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and the statement “System fails” is true when Z < 0 , i.e. R < S . We wish to
find the distribution of a linear combination of random variables of supply-
and-demand type. Generally the probability P(R < S) has to be computed
by means of numerical integration. If R and S are independent, Eq. (5.23)
can be employed, that is

P(R < S) =
∫

P(R < s)fS(s) ds =
∫

FR(s)fS(s) ds.

Alternatively, one can simulate independent random numbers ri and si and
estimate the frequency of cases when ri < si . That frequency becomes an
estimate of the probability P(R < S) . Often in reliability applications, the
case is encountered that S is Gumbel distributed, R is Weibull. �
We now give an example where Eq. (5.23) is used to obtain an expression for
the distribution of the sum.

Example 8.2 (Crack propagation, time to failure). Consider crack
growth in some specimen. The time to failure, T , due to cracking is the
sum of two times, T = T1 + T2 :

T1 = “Time to initiation of a microscopic crack”,
T2 = “Time for the crack to grow a fixed distance and cause failure”

If the component is supposed to be used for a period of time t0 , failure occurs
if T < t0 .

We may model T1 as an exponential random variable with mean 1/λ (the
initiation is caused by an accident1). Further, in well-controlled experiments,
T2 is often well modelled by a Gumbel distribution with parameters dependent
on how extensive the load is and the place where the crack was initiated.

The probability of failure in the sense of above is thus given by Eq. (5.23),
viz.

P(T ≤ t0) = P(T2 ≤ t0 − T1) =
∫ t0

0

P(T2 < t0 − t1)fT1(t1) dt1

=
∫ t0

0

exp(−e−(t0−t1−b)/a)λe−λt1 dt1

which can be computed by numerical integration if the parameters a , b , and
λ are known. �
In the following example, we formulate a safety criterion where a sum of
random variables appears. We focus on the distribution of sums of random
variables in a moment.

Example 8.3 (Hooke’s law). By Hooke’s law, the elongation ε of a fibre is
proportional to the force F , that is, ε = K−1F or F = Kε . Here K , called
Young’s modulus, is uncertain and modelled as a random variable with mean
m and variance σ2 .

1For example, the load exceeded the fatigue limit, or a change in the geometries
of the object due to the accident causes higher stress concentrations.
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Consider a wire containing 1000 fibres with individual independent values
of Young’s modulus Ki . A safety criterion is given by ε ≤ ε0 . With F =
ε
∑

Ki we can write

P(“Failure”) = P
( F∑

Ki
> ε0

)
= P(ε0

∑
Ki − F < 0).

Hence, in this example, we have

h(K1, . . . , K1000, F ) = ε0
∑

Ki − F

which is a linear function of Ki and F . Here, F is an external force (load)
while

∑
Ki is the strength of the material. �

An important linear function to study is the sum of n random variables

Z = X1 + · · · + Xn.

We restrict ourselves to independent Xi . If all Xi have the same distribution
F (x) , say, with mean m = E[X] and variance σ2 = V[X] then for large n
the distribution of the sum P(Z ≤ z) can be approximately computed using
the Central Limit Theorem presented in Theorem 4.4. For a small number of
summands n and (or) when variables have different distributions it is usu-
ally hard to compute the distribution of the sum. There are, however, some
exceptions.

Normal variables

The most important case when the sum of random numbers is particularly
easy to handle is when Xi are normally distributed. From Chapter 3 we know
that any normally distributed random variable Z ∈ N(m,σ2) is defined by
two parameters, location m and scale σ , and hence only these have to be
specified.�

�

�

	

Theorem 8.1. If X1, . . . , Xn are independent normally distributed ran-
dom variables, i.e. Xi ∈ N(mi, σ

2
i ) , then their sum Z is normally distrib-

uted too, i.e. Z ∈ N(m,σ2) , where

m = m1 + · · · + mn, σ2 = σ2
1 + · · · + σ2

n. (8.3)

This property extends to dependent variables; here we present the case when
n = 2 . Suppose X1, X2 ∈ N(m1,m2, σ

2
1 , σ2

2 , ρ) ; then for any constants a ,
b , and c the variable

Z = c + aX1 + bX2 ∈ N(m,σ2), (8.4)

where

m = c + am1 + bm2, σ2 = a2σ2
1 + b2σ2

2 + 2 a b σ1σ2ρ. (8.5)
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Example 8.4 (Hooke’s law). Consider again the wire, composed of 1000
fibres. Assume that F ∈ N(mF , σ2

F ) is independent of Ki . By the central
limit theorem, we find that

∑
Ki is approximately N(1000m, 1000σ2) where

E[Ki] = m , V[Ki] = σ2 . Introducing Z = ε0
∑

Ki − F , we have that Z ∈
N(mZ , σ2

Z) where

mZ = 1000mε0 − mF , σ2
Z = 1000 ε20 σ2 + σ2

F .

Hence

P(“Failure”) = P(Z < 0) = Φ
(−mZ

σZ

)
.

�

Gamma variables

For independent gamma distributed random variables X1, X2, . . . , Xn , where
Xi ∈ Gamma(ai, b) , i = 1, . . . , n , one can show that

n∑
i=1

Xi ∈ Gamma(a1 + a2 + · · · + an, b).

That is, the sum of gamma variables with common parameter b is again
gamma distributed. Recall from Section 3.3.1 that X ∈ Gamma(1, b) is an
exponentially distributed r.v. (with expectation E[X] = 1/b). Hence, the sum
of iid exponentially distributed random variables is Gamma distributed.

Example 8.5. Suppose we are exposed to some risk of accidents with inten-
sity λ , which can be well approximated by means of a Poisson point process,
e.g. the distances between accidents are independent exponentially distributed
with mean equal to the return period 1/λ . The mission that will take time t
has capacity to survive n−1 accidents, i.e. it fails if T = T1+T2+· · ·+Tn < t .
Now, the event T < t is equivalent to the event N(t) ≥ n , where N(t) is the
number of accidents in period t . It follows that

Pf = P(T < t) = 1 − e−λ t
n−1∑
k=0

(λ t)k

k!
. (8.6)

We demonstrated that for T ∈ Gamma(n, λ) , Eq. (8.6) gives the cdf for T .
�

Poisson variables

Already in Chapter 2, the superposition of Poisson streams was discussed. In
the simpler situation, just considering random variables, one can prove that
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a sum of independent Poisson variables, Ki ∈ Po(mi) , i = 1, . . . , n , is again
Poisson distributed:

n∑
i=1

Ki ∈ Po(m1 + · · · + mn).

Recall the more general results of superposition and decomposition of Poisson
processes in Section 7.6.

8.1.2 Often used non-linear function

As mentioned in the introduction, failures of some systems can be described
as the value of a function of random variables exceeding a threshold. We here
present an example of such a situation, which leads us to closer studies of the
lognormal distribution.

Lognormal variables

Assume that in year 2000, one has invested K [e] in a stock portfolio and one
wonders what its value will be in year 2020. Denote the value of the portfolio
in year 2020 by Z and let Xi be factors by which this value changed during
a year 2000 + i , i = 0, 1, . . . , 20 . Obviously the value is given by

Z = K · X0 · X1 · . . . · X20.

Here “failure” is subjective and depends on our expectations, for example we
may be interested in an increase of our savings and hence “failure” means
that Z < K . In order to estimate the risk (probability) for failure, one needs
to model the properties of Xi . Whether the factors Xi are independent and
follow the same distribution is not easy to know. One can only study historical
data and develop a model for Xi under assumption that the future will follow
the same model as the past.

A variable Z , which is a multiplication of different factors, has found
many applications in engineering and hence finding the distribution of Z is an
important problem. This is often done by means of logarithmic transformation

lnZ = lnK + lnX1 + · · · + lnXn.

In order to compute the distribution of lnZ we need to find the distribution
of a sum of random variables. Obviously, if the distribution of lnZ is known,
i.e. there is a function F (r) , say, such that P(ln Z ≤ r) = F (r) , then the
distribution of Z is given by

FZ(z) = P(Z ≤ z) = P(lnZ ≤ ln z) = F (ln z).

Often one can assume that Xi are iid and n is large. Then the Central
Limit Theorem shows that lnZ is approximatively normally distributed. This
is an important situation, and the distribution presented here is widely used
in applications.
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Definition 8.1 (Lognormal distribution). A variable Z such that

lnZ ∈ N(m,σ2)

is called a lognormal variable.

Using the distribution Φ of a N(0, 1) variable (see Eq. (3.6)) we have that

FZ(z) = P(Z ≤ z) = P(lnZ ≤ ln z) = Φ
( ln z − m

σ

)
. (8.7)

Moreover, it can be proven that for a lognormally distributed variable Z ,

E[Z] = em+σ2/2, (8.8)

V[Z] = e2m · (e2σ2 − eσ2
), (8.9)

D[Z] = em
√

e2σ2 − eσ2 = em+σ2/2 ·
√

eσ2 − 1. (8.10)

Note that the coefficient of variation R[Z] =
√

exp(σ2) − 1 is only a function
of σ2 ; solving for σ2 , we obtain σ2 = ln(1 + R[Z]2) . With σ2 known, m can
be computed if E[Z] is given. However, m is much easier to find in the case
when the median of Z is specified. For a normal variable lnZ ∈ N(m,σ2) the
parameter m is both mean and median, thus

0.5 = P(lnZ ≤ m) = P(Z ≤ em),

and hence the median of Z is exp(m) .
We now give an example where the product of independent lognormally

distributed variables is presented. In this example we estimate the risk for
“failure” of cleaning spill water in a chemical industry.

Example 8.6 (Concentration of pollutants). Suppose the spilled water
in a chemical factory is treated before it is dumped into a nearby lake. Let X
denote the concentration of a pollutant feeding into the treatment system, and
Y the concentration of the same pollutant leaving the system. Suppose that
for a day, X has a lognormal distribution with median 4 mg/l and coefficient
of variation R[X] = 0.2 .

Because of the erratic nature of biological and chemical reactions, the effi-
ciency of the treatment system is unpredictable. Hence the fraction of pollu-
tant remaining untreated, denoted by K , is also a random variable. Assume K

� �TreatmentX Y = KX

Fig. 8.1. Treatment system for spill water; X : concentration of pollutant before
treatment; Y : concentration of pollutant after treatment; K : efficiency of treatment.
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is lognormal with median of 0.15 and coefficient of variation R[K] = 0.1 . We
also assume that X and K are independent.

We answer several questions:

(i) What is the distribution of Y = K · X ?

The lognormal variable is defined by the property that its logarithm is nor-
mally distributed. Hence lnK ∈ N(m1, σ

2
1) and lnX ∈ N(m2, σ

2
2) . Since K

and X are independent, their logarithms are independent too. Consequently

lnY = lnKX = lnK + lnX ∈ N(m,σ2),

is a sum of two independent normal variables and hence it is also normal

lnY ∈ N(m1 + m2, σ
2
1 + σ2

2).

What remains is to find the parameters m1,m2, σ1, σ2 from the specifications
of the problem. Note that m2 = E[ln X] and σ2 = D[ln X] are not simply
equal to E[X] , D[X] , respectively. Using the relations in Eqs. (8.8-8.10) we
find

m1 = ln 0.15, σ2
1 = ln(1 + 0.12), m2 = ln 4, σ2

2 = ln(1 + 0.22),

and finally

m = ln 4 + ln 0.15 = −0.51, σ =
√

ln(1 + 0.22) + ln(1 + 0.12) = 0.22.

(ii) Suppose the maximal concentration of the pollutant permitted to be
dumped into the lake is specified to be 1 mg/l. What is the probability (fail-
ure probability) that on a normal day this specified standard will be exceeded?

What is needed to calculate is P(Y > 1) . This is simple since

P(Y > 1) = P(ln Y > 0) = 1 − Φ(−m/σ) = 1 − 0.99 = 0.01.

�

Model uncertainty

Lognormal distributions are often used to describe model uncertainties. Con-
sider a quantity Zmod , which is modelled by g(X1, . . . , Xn) where X1, . . . , Xn

are uncertain parameters or measured quantities. If the true value z can
be obtained from an experiment, when the values Xi = xi are known, we
have z = k · g(x1, . . . , xn) . The quantity k = z/g(x1, . . . , xn) is called a
model uncertainty factor. Since the fraction k varies, we write the relation
Z = K · g(X1, . . . , Xn) .
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A common model is a lognormal random variable K . Suppose this is speci-
fied by its median, k0.5 say, and its coefficient of variation a = R[K] . If a < 0.2
then

K ≈ k0.5 eaX

where X ∈ N(0, 1) . Values of the median k0.5 are then interpreted as follows:

• k0.5 = 1 : the model is unbiased
• k0.5 < 1 : the model is conservative (gives often too large estimates)
• k0.5 > 1 : the model is unconservative (gives often too small values)

8.1.3 Minimum of variables

The weakest-link principle, used for instance in mechanics, means that the
strength of a structure is equal to the strength of its weakest part. In other
words we may say that “failure” occurs if the minimum strength of some
component is below a critical level ucrt :

min(X1, . . . , Xn) ≤ ucrt.

If Xi are independent with distributions Fi , then

P(min(X1, . . . , Xn) ≤ ucrt) = 1 − P(min(X1, . . . , Xn) > ucrt)

= 1 − P(X1 > ucrt, . . . , Xn > ucrt)

= 1 − (1 − F1(ucrt)) ·. . .· (1− Fn(ucrt)).

The computations are particularly simple if all Xi are Weibull distributed.

Example 8.7 (Strength of a wire). In laboratory, experiments have been
performed with 5-centimeter-long wires with strengths Xi , i = 1, . . . , n . The
average strength is mX = 200 kg and the coefficient of variation R[X] =
0.20 . From experience, one knows that such wires have Weibull-distributed
strengths,

FXi
(x) = 1 − e−(x/a)c

, x ≥ 0,

and the relation

a =
E[X]

Γ (1 + 1/c)

is valid. Consider now the distribution of the strength X of a l -m long wire.
This can be seen as a chain composed of k = 20 l 5-cm-long metre wires.
Hence, the distribution of X = min(X1, X2, . . . , Xk) is

P(X ≤ x) = 1 − (1 − (1 − e−(x/a)c

))k = 1 − e−k(x/a)c

= 1 − e−(x/ak)c

,
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that is, a Weibull distribution with a new scale parameter ak = a/k1/c . The
change of scale parameter due to minimum formation is called size effect
(larger objects are weaker).

If we want to calculate the probability that a wire of length 5 m will have
a strength less than 50 kg, we need values of the parameters a and c . From
the experiments, the coefficient of variation R[X] = 0.20 is known, as well
as the expectation E[X] = 200 kg. From tables or by numerical computation
values of a and c can be obtained (cf. Table 4 in appendix). In our case, we
find c = 5.79 and a = E[X]/Γ (1 + 1/c) = 200/0.9259 = 216.01 and hence
ak = 216.01/1001/5.79 = 97.51 . Thus

P(X ≤ 50) = 1 − e−(50/97.51)5.79
= 0.021.

�

The distribution of the maximum of random variables is studied deeper in
Chapter 10, where topics from statistical extreme-value theory are discussed.

8.2 Safety Index

A safety index is used in risk analysis as a safety measure, which is high when
the probability of failure Pf is low. This measure is a more crude tool than
the probability, and it is used when the uncertainty in Pf is too large or when
there is not sufficient information to compute Pf .

8.2.1 Cornell’s index

Let us return to the simplest case, Z = R − S , introduced in Example 8.1.
As illustrated before, the distribution of a sum (and difference) of two ran-
dom variables often cannot be given by an analytical formula but has to
be computed using numerical methods. In the special, but very important,
case where the variables R and S are independent and normally distributed,
i.e. R ∈ N(mR, σ2

R) and S ∈ N(mS , σ2
S) , then also Z ∈ N(mZ , σ2

Z) , where
mZ = mR − mS and σZ =

√
σ2

R + σ2
S , and thus

Pf = P(Z < 0) = Φ
(0 − mZ

σZ

)
= Φ(−βC) = 1 − Φ(βC),

where

βC =
mZ

σZ

is the so-called Cornell’s safety index. The index measures the distance from
the mean mZ = E[Z] > 0 to the unsafe region (that is zero) in the number
of standard deviations. For illustration, see Figure 8.2 where we have chosen
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Fig. 8.2. Illustration of safety index. Here: βC = 2 . Failure probability Pf = 1 −
Φ(2) = 0.023 (area of shaded region).

mZ = 2 and σZ = 1 in a normal distribution. For these values of parameters,
we can immediately deduce the value of βC , by just inspection of the figure.
Recall the interpretation of measuring the distance from the mean expressed
in standard deviations; we thus find βC = 2 . In this particular situation we
have a failure probability Pf = 1 − Φ(2) ≈ 0.023 .

For R and S that are not normally distributed it may be much more diffi-
cult to get the distribution of Z (principally, one has to compute an integral).
More importantly, our knowledge about the distributions of R and S can
be very uncertain, making the whole issue of computation of the distribution
of Z questionable. However, in such a situation and also in the general case,
i.e. when Z is defined by Eq. (8.2) and is a function of may be hundreds of
strength and load variables, we may still compute Cornell’s index.

Even for general Z , Cornell’s safety index βC = 4 still means that the
distance from the mean of Z to the unsafe region is 4 standard deviations.
Observe that usually Pf �= 1−Φ(βC) , and we have no exact relation between
the index βC and the failure probability Pf . There exists however a conserva-
tive estimate of Pf (we do not prove it here even if the proof is not especially
difficult), namely

P(“System fails”) = P(Z < 0) ≤ 1
1 + β2

C
. (8.11)

Clearly, the higher the safety index, the safer the system. The bounds are valid
for any variable Z , E[Z] ≥ 0 , independent of its distribution and are hence
quite conservative. For example, if the safety index is 3, then our bound tells us
that failure probability is less than 1 per 10. If we knew that Z was a normally
distributed variable, then βC = 3 corresponds to the failure probability below
2 per 1000.
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8.2.2 Hasofer-Lind index

What we have just shown is that Cornell’s index is a quite crude measure of
reliability. It has one more deficiency: it is not unique. Let us explain why. The
statement “System fails” is equivalent to the failure set, which is characterized
by the inequality Z = h(R1, . . . , Rk, S1, . . . , Sn) < 0 . The failure set is defined
uniquely but the function h (and hence the variable Z ) is not unique. For
example, in the simplest case of one strength and load variable we can write
P(“System fails”) = P(R/S − 1 < 0) , and hence Z̃ = R/S − 1 could be used
instead of Z and one could compute the safety index β̃C , say. Obviously, the
failure probability

Pf = P(Z < 0) = P(Z̃ < 0), but βC �= β̃C.

In this introductory section, we use Cornell’s index only as an example of
a notion to measure risk. In practice, βC is seldom used.

We have demonstrated that the value of Cornell’s safety index may de-
pend on the choice of function h . This undesirable property can be remedied
by the so-called Hasofer–Lind index, here denoted by βHL and presented by
Hasofer and Lind in [35]. This index measures distance from expectations of
the strength and load variables to the unsafe region in a way that is indepen-
dent of a particular choice of the h function. The Hasofer–Lind safety index
is commonly used in reliability analysis, although quite advanced computer
software is needed for its computation. However:

In the special case when h is a linear function, the Hasofer–Lind index
βHL is equal to Cornell’s index βC .

For a more general discussion of safety indexes with applications to structural
engineering, consult Ditlevsen and Madsen, [21].

8.2.3 Use of safety indexes in risk analysis

Here we sketch a common application of the safety indexes (Hasofer–Lind) in
risk analysis related to design of structures. The material is based on the rec-
ommendations proposed by Joint Committee on Structural Safety (see [79]).
For βHL , one has approximately that Pf ≈ Φ(−βHL) . Clearly, a higher value
of the safety index implies lower risk for failure and also a more expensive
structure. In order to propose the so-called target safety index one needs to
consider both costs and consequences. Possible classes of consequences are:

Minor Consequences This means that risk to life, given a failure, is small
to negligible and economic consequences are small or negligible (e.g. agri-
cultural structures, silos, masts).

Moderate Consequences This means that risk to life, given a failure, is
medium or economic consequences are considerable (e.g. office buildings,
industrial buildings, apartment buildings).
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Table 8.1. Safety index and consequences.

Relative cost of Minor consequences Moderate consequences Large consequences
safety measure of failure of failure of failure

Large βHL = 3.1 βHL = 3.3 βHL = 3.7
Normal βHL = 3.7 βHL = 4.2 βHL = 4.4
Small βHL = 4.2 βHL = 4.4 βHL = 4.7

Major Consequences This means that risk to life, given a failure, is high
or that economic consequences are significant (e.g. main bridges, theatres,
hospitals, high-rise buildings).

Obviously, the cost of risk prevention, etc. also has to be considered (see
Table 8.1) where we present target reliability indexes (“target” means that one
wishes to design the structures so that the safety index for a particular failure
mode will have the target value). Here the so-called “ultimate limit states”
are considered, which means failure modes of the structure — in everyday
language: that one cannot use it anymore. This kind of failure concerns mainly
the maximum load-carrying capacity as well as the maximum deformability.

In order to give some intuition what “target safety level”, proposed in the
table, means we now have a brief discussion of the problem.

8.2.4 Return periods and safety index

As mentioned before, if Z were a normally distributed variable, then the
failure probability Pf = 1 − Φ(βHL) . Consequently βHL = 3.1 gives Pf cor-
responding to one per thousand. We can think about the value 1/1000 as
a nominal value that can be used to compare different solutions (construc-
tions) at the design stage of a construction. (Higher value of index means
safer structure.)

It is important to remember that the values of βHL contain time informa-
tion. An important issue is that the safety index considers a measure of safety
for one year, i.e. Pf = Pt(A) where t = 1 year. As discussed in Chapter 2,
the severity of the event A can be measured using its return period, i.e. if
Pf = 0.01 , A is called a 100-year event.

The safety index βHL = 3.1 implies that the intensity of accidents is
1/1000 [year−1] , or equivalently, the return period is 1000 years. Correspond-
ing return periods to the other values of βHL in Table 8.1 can be found:

Safety index βHL 3.1 3.3 3.7 4.2 4.4 4.7
Return period (years) 103 2 · 103 104 105 2 · 105 106

(Note that these are nominal values.) Since most buildings follow these design
recommendations and we do not observe failures very frequently, it means
that the method is not too unconservative.
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Note that if there are 100 objects having return period of 1000 years be-
tween failures (βHL = 3.1) then (under assumption of independence of failures
between the objects) the return period of a failure of one object is only 10
years. The intensity of failure in the populations of 100 objects will be 100
times higher than the intensity of failure for an individual object, i.e. equal
to 100/1000 giving a return period of 10 years.

Finally, a structure may contain n different failure modes. If we assume
that those are independent and have failure probabilities Pf(i) , i = 1, . . . , n
then the return period of failure of the structure

Tf =
1
λ

, where λ =
n∑

i=1

Pf(i) =
n∑

i=1

λi,

and 1/λi are return periods for accident of type i (cf. Theorem 2.4, page 39).
Note that the number n is usually under-estimated, since there often exist

failure modes that were not taken into account. That is why safety indices
corresponding to return periods of millions of years are used. (If you have
1000 independent failure modes, each with return period 1 million years, the
nominal return period for the whole structure will be only 1000 years.)

8.2.5 Computation of Cornell’s index

Although Cornell’s index βC has some deficiencies it is still an important
measure of safety and its inverse, the coefficient of variation, also called relative
uncertainty, is frequently computed in practical situations. We turn now to
computation of βC , which in general has to be done approximately.

Let us return to the random variable from Eq. (8.2)

Z = h(R1, . . . , Rk, S1, . . . , Sn),

such that E[Z] > 0 . Assume that only expected values and variances of the
variables Ri and Si are known. We also assume that all strength and load
variables are independent. In order to compute βC we need to find

E[h(R1, . . . , Rk, S1, . . . , Sn)], V[h(R1, . . . , Rk, S1, . . . , Sn)].

We have presented formulae for computation of the variance of a linear
function of random variables (see Eq. (5.11)). However, the function h is
usually much more complicated and computation of Cornell’s index

βC =
E[h(R1, . . . , Rk, S1, . . . , Sn)][
V[h(R1, . . . , Rk, S1, . . . , Sn)]

]1/2

can only be done by means of some approximations. The main tools are the
so-called Gauss’ formulae, which is presented and discussed next. For the
one-dimensional case, see Eqs. (8.14-8.15); while for a more general case,
cf. Eqs. (8.16-8.17). In the physics literature, one speaks about the law of
propagation of error.
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8.3 Gauss’ Approximations

We first state Gauss’ approximation for a function of one random variable.�

�

�

	

Theorem 8.2 (Gauss’ approximation, one variable). Let X be a
random variable with E[X] = m and V[X] = σ2 . Further, let h be a
function with continuous derivative. Then

E[h(X)] ≈ h(m) and V[h(X)] ≈ (h′(m))2σ2. (8.12)

A motivation for the result in Eq. (8.12) follows. Choose a fixed point x0 , and
write Taylor’s formula to approximate h around x0 by a polynomial function

h(x) ≈ h(x0) + h′(x0)(x − x0) +
1
2
h′′(x0)(x − x0)2.

Now, let us choose x0 to be a “typical value” x0 = E[X] = m , say. Then using
Eq. (3.18) we have that

E[h(X)] ≈ h(m) + h′(m)E[(X − m)] +
1
2
h′′(m)E[(X − m)2]

= h(m) +
1
2
h′′(m)V[X] (8.13)

since E[(X−m)] = 0 and V[X] = E[(X−m)2] (see Eq. (3.19)). Since even the
function h can be uncertain, for example it can be derived empirically from
some measurements using statistical methods like regression or smoothing,
the second derivative h′′(m) can be corrupted by errors. Hence, one often
disregards the term 1

2h′′(m)V[X] in Eq. (8.13) and uses a simplified form of
Gauss’ approximation

E[h(X)] ≈ h(E[X]). (8.14)

If the function h is approximately linear in a neighbourhood where its argu-
ment is calculated, Eq. (8.14) is a good approximation of the expectation.

We turn now to the variance and, by again using the Taylor expansion
around x0 = m , we have that

V[h(X)] ≈ V
[
h(m) + h′(m)(X − m)

]
=

(
h′(m)

)2
V[X] (8.15)

where we have used Eq. (3.20) and the fact that m , h(m) , and h′(m) are
constants.

The more general case when h is a function of several variables, follows
from a multi-dimensional version of Taylor’s formula. For transparency of the
formulae, we consider first a function h of two variables X and Y .
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�

�

	

Theorem 8.3 (Gauss’ approximation, two variables). Let X and Y
be independent random variables with expectations mX ,mY , respectively.
For a smooth function h the following approximations

E[h(X,Y )] ≈ h(mX ,mY ), (8.16)

V[h(X,Y )] ≈ [
h1(mX ,mY )

]2
V[X] +

[
h2(mX ,mY )

]2
V[Y ], (8.17)

where

h1(x, y) =
∂

∂x
h(x, y), h2(x, y) =

∂

∂y
h(x, y),

are called Gauss’ formulae.

Remark 8.1. Gauss’ approximation formulae have been derived for indepen-
dent, or rather uncorrelated, variables X and Y . If X and Y are correlated
the derivation from Taylor’s formula to Gauss’ approximation is not correct,
simply one term is missing. The correct formula is as follows

E[h(X,Y )] ≈ h(mX ,mY ), (8.18)

V[h(X,Y )] ≈ [
h1(mX ,mY )

]2
V[X] +

[
h2(mX ,mY )

]2
V[Y ]

+2h1(mX ,mY )h2(mX ,mY )Cov[X,Y ]. (8.19)

�
Using the general versions of the formulae (8.16-8.17), Cornell’s index can be
approximately computed by the following formula

βC ≈ h(mR1 , . . . , mRk
,mS1 , . . . , mSn

)[k+n∑
i=1

[
hi(mR1 , . . . , mRk

,mS1 , . . . ,mSn
)
]2

σ2
i

]1/2
, (8.20)

where σ2
i is the variance of the ith variable in the vector of loads and strengths

(R1, . . . , Rk, S1, . . . , Sn) , while hi denote the partial derivatives of the func-
tion h . (Here loads and strengths are mutually independent.)

As soon as we face a mathematical model — a relation obtained by phys-
ical laws or by experiments — in any field in science and technology, Gauss’
formulae might be useful tools. Note that the distributions of the random
quantities need not to be known, just the expectations and standard devia-
tions. We give here an example from solid mechanics.

Example 8.8. Consider a beam of length L = 3 m. A random force P with
expectation 25 000 N and standard deviation 5 000 N is applied at the mid-
point of such a beam2. The modulus of elasticity E of a randomly chosen

2We neglect the fact that parameters at some stage have to be estimated.
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beam has the expectation 2 · 1011 Pa and the standard deviation 3 · 1010 Pa.
All beams share the same second moment of (cross-section) area I = 1 · 10−4

m4 . Then the vertical displacement of the midpoints is

U =
PL3

48EI
.

Give approximately E[U ] and V[U ] .
In the model, P and E are considered random variables; P being an

external load and E describing material properties. Assume that P and E
are uncorrelated. Introducing

h(P,E) =
PL3

48EI

we have

h1(P,E) =
∂

∂P
h(P,E) =

L3

48EI
,

h2(P,E) =
∂

∂E
h(P,E) = − PL3

48E2I
,

and Gauss’ formulae yield

E[U ] =
E[P ]L3

48E[E]I
=

25 000 · 33

48 · 2 · 1011 · 1 · 10−4
= 7.03 · 10−4 m,

V[U ] = V[P ]
[
h1(E[P ],E[E])

]2 + V[E]
[
h2(E[P ],E[E])

]2 = 1.11 · 10−8 m2.

Hence D[U ] = 1.06 · 10−4 m and the coefficient of variation is 15%.
Suppose the vertical displacement must be smaller than 1.5 mm. Intro-

ducing

Z = 1.5 · 10−3 − U,

we are able to use Eq. (8.11) to estimate the failure probability P(Z < 0) . We
have that Cornell’s index βC = (1.5 · 10−3 − E[U ])/D[U ] = 7.52 and hence an
estimate is given as

P(Z < 0) ≤ 1
1 + β2

C
= 0.017.

�

8.3.1 The delta method

Gauss’ approximation gives, as we have seen, a way of estimating the variance
for a non-linear function h of random variables. Here we use it to construct
confidence intervals for quantities, which are functions of some parameters.
In order to construct a confidence interval the distribution of the estimation
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error E needs to be found (see Section 4.5) for details. Here the error is of the
form

E = h(θ) − h(Θ∗).

If Θ∗ are ML estimators then, by Theorem 4.3 and Example 5.5, the distri-
bution of Θ∗ is asymptotically normal. Next, by using Taylor expansion and
estimating errors, it can be demonstrated that even the error E = h(θ)−h(Θ∗)
is asymptotically normal with mean zero and variance (σ2

E)∗ computed using
Gauss’ formulae. Thus with approximately 1 − α confidence, h(θ) is in[

h(θ∗) − λα/2σ
∗
E , h(θ∗) + λα/2σ

∗
E
]
. (8.21)

An expression for the standard deviation σ∗
E is given in Eq. (8.23). This way

of constructing approximative confidence intervals is called the delta method.
(Actually, a special case of the method was given in Eq. (4.30) for the case of
a one-dimensional parameter θ .)

Estimates of σ2
E are computed by Gauss’ approximation of the variance

of h(Θ∗) . Gauss’ approximation formulae were presented earlier with explicit
expressions in the two-dimensional case. We here state the general case of a
d dimensional parameter θ = (θ1, θ2, . . . , θd) . The ML estimator is a vector
Θ∗ = (Θ∗

1 , Θ∗
2 , . . . , Θ∗

d) .
Let h(θ) be a scalar function and consider the vector of derivatives, called

gradient and denoted by

∇h(θ) =
[

∂

∂θ1
h(θ) . . .

∂

∂θd
h(θ)

]T

.

Denote the covariance matrix of Θ∗ with Σ = [σ2
ij ] , where σ2

ij = Cov(Θ∗
i , Θ∗

j ) .
Now if Θ∗ is a vector of ML estimators then the covariance matrix is estimated
by inverting the matrix with the second-order derivatives

Σ∗ = [(σ2
ij)

∗] = −[l̈(θ∗)]−1, (8.22)

see Examples 4.11, 5.6 for explicit computation in the special case when d =
2 . Gauss’ formulae written using matrix notation give the estimate of the
variance

(σ2
E)∗ = V[h(Θ∗)] ≈ ∇h(θ∗)TΣ∗∇h(θ∗)

=
d∑

i=1

d∑
j=1

(σ2
ij)

∗ ∂

∂θi
h(θ∗)

∂

∂θj
h(θ∗). (8.23)

An illustration of a typical application of the delta method is given in
Example 8.9.

Example 8.9 (Rating life of ball bearings). Recall Example 4.1 (page 70)
where 22 lifetimes of ball bearings were presented, which we consider as inde-
pendent observations of ball-bearing lifetime X . In this example we assume
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a parametric model for the distribution and study the uncertainty of the
parameter estimates. In particular, we study the so-called rating life, L10 ,
a statistical measure of the life, which 90% of a large group of apparently
identical ball bearings will achieve or exceed. In other words, L10 satisfies
P(X ≤ L10) = 1/10 .

ML estimates. Assume that a Weibull model is valid for the distribution of
the lifetime:

FX(x) = 1 − e−(x/a)c

, x ≥ 0.

One can prove that the ML estimates of the parameters a and c are given by

a∗ =

(
1
n

n∑
i=1

xc∗
i

)1/c∗

,

1
c∗

=
∑n

i=1 xc∗
i lnxi∑n

i=1 xi
− 1

n

n∑
i=1

lnxi.

From a computational point of view, c∗ is first solved by iteration from the
second equation; then a∗ is calculated from the first equation. For our data
set, one finds a∗ = 82.08 and c∗ = 2.06 . (Thus, the distribution is close to a
Rayleigh distribution (c = 2).)

The estimators are consistent and asymptotically two-dimensional nor-
mally distributed with variances and covariance

V[A∗] ≈ 1.087
(a∗/c∗)2

n
, V[C∗] ≈ 0.608

(c∗)2

n
, Cov[A∗, C∗] ≈ 0.2545

a∗

n
,

and E[A∗] ≈ a∗ , E[C∗] ≈ c∗ . (Note that the correlation coefficient ρ[A∗, C∗] ≈
0.313 .) The variances can be presented in the matrix form

Σ∗ =

⎡⎢⎢⎣1.087
(a∗/c∗)2

n
0.2545

a∗

n

0.2545
a∗

n
0.608

(c∗)2

n

⎤⎥⎥⎦
and are derived by inverting the matrix with second-order derivatives of the
log-likelihood function evaluated at a∗, c∗ , i.e. −[l̈(a∗, c∗)]−1 .

Studies of rating life. With our assumption of a Weibull distribution, an es-
timate of the rating life is given by the expression

L∗
10 = a∗ · (− ln(1 − 1

10
)
)1/c∗

.

A point estimate for our data is thus L∗
10 = 27.53 (106 revolutions).
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As usual, we are interested in the uncertainty of this estimate. Gauss’
approximation will be used to approximately compute (σ2

E)∗ = V[L∗
10] by

considering the random variables A∗ and C∗ . Introducing

h(a, c) = a · (− ln(1 − 1
10

)
)1/c

we find components in the gradient vector ∇h(a, c)

∂

∂a
h(a, c) =

(− ln(1 − 1
10

)
)1/c

,

∂

∂c
h(a, c) = − a

c2
· (ln(− ln(1 − 1

10
))
) · (− ln(1 − 1

10
)
)1/c

.

Now we can compute the variance

(σ2
E)∗ = V[h(A∗, C∗)] ≈ ∇h(θ∗)TΣ∗∇h(θ∗)

=
(

∂

∂a
h(a∗, c∗)

)2

V[A∗] +
(

∂

∂c
h(a∗, c∗)

)2

V[C∗]

+ 2
∂

∂a
h(a∗, c∗)

∂

∂c
h(a∗, c∗)Cov[A∗, C∗] = 43.1.

Since σ∗
E = 6.57 , using Eq. (8.21) we conclude that with approximate confi-

dence 95% the rating life L10 is in the interval[
L∗

10 − λα/2σ
∗
E , L∗

10 + λα/2σ
∗
E
]

= [ 27.53 − 1.96 · 6.57, 27.53 + 1.96 · 6.57 ]

= [ 14.66, 40.4 ],

millions of revolutions.

Problems

8.1. Let X ∈ Po(2) and Y ∈ Po(3) be two independent random variables. De-
fine Z = X + Y and give the distribution for Z .

8.2. Let X ∈ N(10, 32) , Y ∈ N(6, 22) be independent random variables and define
Z = X − Y .

(a) Give the distribution for Z .
(b) Calculate P(Z > 5) .

8.3. In a certain region, there are three powerplants, say A , B , and C . Let XA ,
XB , and XC denote the number of (serious) interruptions in each individual power-
plant during one year. Assume a Poisson distribution; from historical data, one then
has XA ∈ Po(0.05) , XB ∈ Po(0.42) , XC ∈ Po(0.37) . Further, assume statistical
independence.

Calculate the probability for at least one interrupt in the region during one year.
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8.4. An accelerated test. Fifty ball bearings, subjected to a lifetime test, are divided
into ten groups, in each of which there are five bearings. The lifetime of a single
bearing is Weibull distributed with distribution function

F (t) = 1 − e−(t/a)c

, t > 0,

where a > 0 and c > 0 are constants3. When the first bearing breaks down in each
group, its lifetime is recorded. The group in question has therewith done its bit and
is withdrawn from the test. Eventually, there will be 10 such observations, one from
each group.
(a) Show that the distribution of the time until the first breakdown of a bearing in

a certain group also is Weibull, and express its parameters — say a1 and c1 —
in terms of a and c . Every bearing breaks down independent of the others.

(b) Now, estimates of a1 and c1 can be obtained from the data set of ten obser-
vations (for example by means of the maximum-likelihood method), and from
those estimates we can, in turn, estimate a and c . Assume that we have used
a routine from a software package4 to get the estimates a1

∗ = 5.59 · 106 and
c1

∗ = 1.56 of a1 and c1 , respectively. Estimate a and c .
At the cost of lost information, time has been saved, since we need not to wait
for all bearings to break down.

In this exercise, the “lifetime” of a ball bearing is the number of revolutions covered
before breakdown.

8.5. The water supply to a small town comes from two sources: from a reservoir and
from pumping underground water. Suppose during a summer month, the amount of
water available from each source is normally distributed N(30, 9) , N(15, 16) , million
litres, respectively. Suppose the demand during the month is also variable and can
be modelled as a normally distributed variable with mean 35 millions of litres and
coefficient of variation 10%.
(a) Determine the probability Pf that there will be insufficient supply of water

during the summer month. Assume that demand and supply vary independently.
(b) Determine the probability Pf that there will be insufficient supply of water

during the summer months, under the assumption that demand and the total
supply of water are negatively correlated with correlation coefficient ρ = −0.8 .

8.6. A bus travels from the city A to a city C via the village B . The times are
considered independent and exponentially distributed (quite unrealistic) with mean
values (minutes) 40 (A → B ); 40 (B → C ). Calculate the probability that the route
takes more than one and a half hour.

8.7. In an electric circuit of voltage U with three resistors R1, R2, R3 in parallel,
the current I is given by

I = U
(

1

R1
+

1

R2
+

1

R3

)
.

Consider U , R1 , R2 , and R3 as independent random variables with expectations
120 V, 10 Ω , 15 Ω , and 20 Ω , respectively, and standard deviations 15 V, 1 Ω , 1 Ω ,
and 2 Ω , respectively. The four random variables are assumed to be independent.
Give, approximately, E[I] and D[I] .

3The location parameter b is b = 0 .
4e.g. wweibfit.m from the Matlab toolbox WAFO.
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8.8. Consider a situation with one strength variable R and one load variable S .
The following expression for the failure probability is sometimes more convenient:

Pf = P

(
R

S
− 1 < 0

)
.

Let R and S be independent, log-normally distributed random variables, ln R ∈
N(mR, σ2

R) , ln S ∈ N(mS , σ2
S) . Derive an explicit expression for Pf in terms of mR ,

σR , mS , and σS .

8.9. Assume that in a design situation, one has log-normally distributed strength
R and load S with E[R] = 150 MPa, E[S] = 100 MPa. The coefficient of variation
of the load is known, R[S] = 0.05 , i.e. V[S] = 0.052 · 1002 MPa2 . How large is the
coefficient of variation of the strength allowed to be if the failure probability must
be less than 0.001?

8.10. Small cracks of mode I (opening cracks, plane state) grow larger in metal when
the specimen is subject to cyclic loads. The growth rate of a crack is given by

ΔA

ΔN
= 2c0

(
Δσ

√
π · (A/2)

(ΔKI)0

)n

,

where

A is the initial length of crack
Δσ is the range of the varying stress applied
ΔN is a “small” number of load cycles
ΔA is the growth of the crack during the ΔN load cycles
c0 is a constant, c0 = 1 · 10−6 m

(ΔKI)0 is a constant specific to the material
n is a constant specific to the material

For steel SIS 2309, we know that (ΔKI)0 = 61.6 MN/m3/2 , and n = 2.8 . If

E[A] = 2.5 mm, D[A]/E[A] = 20 %

E[Δσ] = 250 MN/m2, D[Δσ]/E[Δσ] = 30 %

calculate the expectation and the coefficient of variation for the growth of the crack
per applied cycle, i.e. for ΔA/ΔN . Assume that A and Δσ are statistically inde-
pendent.

8.11. The maximum electrical energy that can be delivered to a region during one
certain day (the production capacity) is log normally distributed with a median
of 6 GWh and coefficient of variation 0.1. The daily demand is also variable and
depends on the economical activity, outdoor temperature, etc. The demand is also
log normally distributed with coefficient of variation 0.2 and a median that is 60 %
of the median of the production capacity.

(a) Compute the probability that the demand will not be satisfied on a certain day.
Assume that demand and production capacity are independent. Calculate the
related return period for the event “demand is not satisfied”.
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(b) Surveys indicate that the return period in (a) is incorrect. A deeper investigation
showed that the logarithm of the demand and the logarithm of the production
capacity are correlated with correlation coefficient −0.8 . What is now the prob-
ability that the demand will not be satisfied on a certain day? And what about
the return period?

8.12. In this exercise we prove the inequality in Eq. (8.11), that is

P(Z < 0) ≤ 1

1 + β2
C

,

where Z = R − S and βC = mZ/σZ .

(a) Let X be a random variable with m = E[X] > 0 and σ2 = V(X) . Show that

P(X < 0) ≤ E[(X − a)2]

a2
=

σ2 + (m − a)2

a2

for each a > 0 .
(b) Use the inequality in (a) to obtain the bound in Eq. (8.11).

8.13. A beam is rigidly supported by a wall and simply supported at a distance �
from the wall according to Figure 8.3. The action P is assumed to be stochastic
with E[P ] = 4 kN and D[P ] = 1 kN while the length � is deterministic, � = 5 m.
Further the beam is assumed to have a moment capacity MF that is a random
variable with E[MF ] = 20 kNm, D[MF ] = 2 kNm. Failure is given by M > MF

where M = P�/2 . The failure function becomes

h(MF , �, P ) = MF − P�/2

and the probability of failure is given as Pf = P(MF − P�/2 < 0) .

(a) We consider R = MF a strength variable and S = P�/2 a load variable.
Calculate E[R] , D[R] , E[S] , and D[S] .

(b) Find an upper bound of the probability of failure (use Eq. (8.11)).
(c) Make an assumption of distribution; suppose R and S are normally distributed

with parameters as found in (a). Compute the probability of failure. Compare
with the result in (b).

8.14. In a mine, water is gathered at a rate S ; E[S] = 0.05 , V[S] = 10−6 . One
plans to install n pumps with capacities Ri ; E[Ri] = 0.0025 , V[Ri] = 10−7 .

(a) Assume that the capacities of the pumps are independent. How many pumps
should be installed in order for the safety index for the event that the water
level is not increasing, is higher than 3.5.

P

�/2�

Fig. 8.3. Illustration for Problem 8.13.
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(b) Assume now that there is a correlation between capacities of the pumps; the
correlation coefficient is ρRi, Rj = 0.5 . Calculate n in this situation. (Hint. Use
Eq. (5.12).)

8.15. In an industry, products are produced at a rate of on average 400 metric
tons per day in the working week. The variation is quite large with a variance of
1000 ton2 ; further, the amounts of goods for different days are strongly correlated
with Cov[Xi, Xj ] = ρ|j−i| (where ρ = 0.9).

The work is scheduled on a weekly basis, in particular the number of lorries
needed for the transports. Each lorry has a capacity of 10 ton per transport. From
experience it is known that the number of transports per day for an individual lorry
can be modelled as a Poisson distributed r.v. with intensity 1 hour−1 .

How many lorries are needed in order to have Cornell’s index at least 3.5 for the
whole production of one week being transported to customers?

Assume 7 hours of efficient work per day and 5 working days per week; further,
assume that transports by different lorries can be modelled as independent r.v. (Hint.
Use Eq. (5.12).)
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Estimation of Quantiles

The notion of quantiles was introduced in Section 3.2: recall that a quantile
xα for an r.v. X is a constant such that

P(X ≤ xα) = 1 − α. (9.1)

In this chapter we examine quantiles in somewhat more detail: we present
methods for obtaining estimates of quantile values and also discuss techniques
to assess the uncertainties of such estimates. In the previous chapter, Gauss
approximation was used for that purpose. Here we present bootstrap method-
ology and Bayesian approaches through examples. Furthermore, we study par-
ticular applications of quantiles in reliability and engineering design, where
analysis of the so-called characteristic strength is an important issue.

The chapter is organized as follows: first, the notion of characteristic
strength is introduced and then examples are given where a parametric mod-
elling is performed. In Section 9.2, the Peaks Over Threshold (POT) method
is introduced. Finally, in Section 9.3, we present a type of problem where
quality of components is concerned. Two methods are discussed, one based on
asymptotic normality of estimation error, the other on Bayesian principles.

9.1 Analysis of Characteristic Strength

In Section 8.1, we discussed failure of a system in terms of variables of
“strength” or “load” type. In designing systems in a wide sense (buildings,
procedures), attention must be paid to gain statistical knowledge of the com-
ponents of the system. We here analyse variables of “strength” type (“load”
variables are modelled in the next chapter) and consider estimation of quan-
tiles of the strength of a randomly chosen component.

Let the r.v. R model the strength of a randomly chosen component from
a certain population. Using Eq. (9.1), the quantile rα is the value of the load
that will break (1 − α)100% of the components in the population. In safety
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analysis, one is mostly interested in the fraction of weak components and hence
α is chosen close to one (e.g. 0.95). That quantile rα is called the characteristic
strength. Thus, by definition, on average 5 out of 100 components will break
when loaded by the load greater than the specified value of characteristic
strength r0.95 . In practice the last statement cannot be true, since the quantile
rα is unknown and has to be estimated. The uncertainty in the estimate r∗α
of rα therefore has to be analysed.

9.1.1 Parametric modelling

In many situations, strengths ri , i = 1, . . . , n , of tested components have been
observed in experiments. To find a suitable model for the distribution function
FR(r) , experience and external information about the situation should be
used to limit the class of possible distributions. For instance, we may assume
that FR(r) belongs to some specific family of distributions, like Weibull, log-
normal, etc. To indicate the parameter(s), we write FR(r; θ) . A restriction
to a certain class of distributions can be assumed from previous knowledge in
the actual field of application and earlier tests. Often observed strengths are
plotted on different probability papers, and the family of distributions that
gives the best fit to data is chosen. If the parameter θ were known, rα can
be computed by solving the equation

FR(rα; θ) = P(R ≤ rα) = 1 − α.

Hence rα is a function of θ and an estimate r∗α is obtained by replacing θ
by its estimate θ∗ : r∗α = rα(θ∗) . Uncertainties of the estimate rα can be
found by the delta method; another approach is bootstrap methodology (see
Example 9.1 below).

In Example 4.23 we studied variability of a probability by bootstrap
methodology. We now use that technique to investigate variability of a quan-
tile. The parametric model is chosen to be Weibull.

Example 9.1 (Ball bearings: bootstrap study). Consider Example 4.1,
where 22 lifetimes of ball bearings were presented. In this example we assume a
parametric model for the distribution and study the uncertainty of an estimate
x∗

0.9 of the quantile value x0.9 .

ML estimates. As in Example 8.9, page 210, we assume a Weibull model
and thus the ML estimates are a∗ = 82.08 and c∗ = 2.06 . The observations
plotted in Weibull probability paper are shown in Figure 9.1, left panel.

Characteristic value. An estimate of the characteristic value x0.9 based on
the ML estimates is given by

x∗
0.9 = a∗(− ln 0.9)1/c∗ = 27.53.

Construction of a confidence interval for x0.9 is not simple and we propose to
use a bootstrap approach.
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Bootstrap estimates. We resample from the original data set of 22 observations
many times (NB = 5000) and hence obtain the bootstrap estimates

(x0.9)Bi = aB
i (− ln 0.9)1/cB

i , i = 1, . . . , NB.

Note that in each of the simulations, an ML estimation is performed of a
and c . The 5 000 pairs of bootstrapped parameter estimates are shown in
Figure 9.1, right panel.

A histogram of bootstrapped quantile values xB
0.9 is shown in Figure 9.2,

left panel (the star on the abcissa indicates the ML estimate x∗
0.9 ). To con-

struct a confidence interval, we need the bootstrap-estimation error xemp
0.9 −

(x0.9)Bi , where xemp
0.9 = 33 (obtained by considering the empirical distribution

Fn and solving the equation Fn(x0.9) = 0.1). The ring in Figure 9.2, left
panel, indicates the estimate xemp

0.9 .
In Figure 9.2, right, the empirical distribution for the bootstrap-estimation

error is given. We can see that the error distribution is skewed to the right
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and has larger positive errors than negative. Let us choose confidence level
0.95. We have marked with stars the quantiles eB

1−α/2 , eB
α/2 , left and right

star, respectively. Now Eq. (4.26) gives the following confidence interval for
x0.9 , [19.1, 41.4] . (Compare the interval with the one in Example 8.9.) �

Our guess, based on some limited experience in fatigue analysis, is that
in engineering the parameters of type rα are computed based on small num-
bers of observations. One of the reasons is that it can be very expensive to
test components or it may take long time to perform tests. However, since
tests have been performed on similar types of components one is quite sure
about the type of distribution of strength FR and maybe even values of some
parameters. In such a situation a Bayesian approach is an option.

9.2 The Peaks Over Threshold (POT) Method

Hitherto in this chapter, we have given examples of uncertainty analysis of
a parametric estimate of a quantile. In applications to safety analysis, often
the fraction of weak components in some population is of interest. Then α is
chosen close to one.

The POT method, to be introduced next, can be used to find the α quan-
tile of a random variable X , i.e. a constant xα such that P(X ≤ xα) = 1−α
when α is close to zero (in its original formulation) or one (as demonstrated
in Remark 9.3). It is more convenient to write the definition of the α quantile
in the following alternative way

P(X > xα) = α.

The method is based upon the following result (cf. [61]), which we summarize
as a theorem:�

�

�

	

Theorem 9.1. Under suitable conditions on the random variable X ,
which are always satisfied in examples considered in this book, if the thresh-
old u0 is high (when u0 tends to infinity), then the conditional probability

P(X > u0 + h |X > u0) ≈ 1 − F (h; a, c)

where F (h; a, c) is a generalized Pareto distribution (GPD), given by

GPD: F (h; a, c) =

⎧⎨⎩1 − (1 − ch/a)1/c
, if c �= 0,

1 − exp(−h/a), if c = 0,
(9.2)

for 0 < h < ∞ if c ≤ 0 and for 0 < h < a/c if c > 0 .
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Fig. 9.3. Data X1, . . . X10 and corresponding exceedances H1, . . . , H4 over the
threshold u0 .

Note that the GPD is used to model the exceedances over the threshold,
hence the term Peaks Over Threshold. (For an illustration, see Figure 9.3.)
In practice, the choice of a value for the threshold u0 is not trivial. Several
graphical methods have been developed; these are often combined with fitting
a GPD to a range of thresholds, observing the stability of the corresponding
parameter estimates.

There exists software to estimate the parameters in a GPD. The ML
method can be applied, and also algorithms specifically derived for the pur-
pose [38]. Moreover, also observe that when c = 0 , F (h; a, 0) is an exponential
distribution with expected value a . For most distributions of X met in this
book,

P(X > u0 + h |X > u0) ≈ e−h/a

with very good approximation when u0 is sufficiently high, and consequently,
one often assumes that c = 0 . In case the exponential function does not
model P(X > u0 + h |X > u0) with sufficient accuracy, the more general
Pareto distribution with c �= 0 is used.

Remark 9.1. The standard Pareto distribution is defined by

F (x) = 1 − x−k, x ≥ 1,

where k > 0 is a shape parameter. If X is Pareto distributed then, with
c = −1/k < 0 and a > 0 , Y = −a

c (X − 1) is GPD with FY (y) = F (y; a, c)
as given in Eq. (9.2). �
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9.2.1 The POT method and estimation of xα quantiles

We turn now to the presentation of an algorithm for estimation of xα , which
can be used when α is close to zero.

Let Xi be independent identically distributed variables with common dis-
tribution FX(x) . As before, let xi be the observed values of Xi , i = 1, . . . , n .
Suppose for a fixed level u0 the probability p0 = P(X > u0) can be esti-
mated and the uncertainty of the estimate p∗0 , say, is not too large. Here a
parametric approach could be taken involving choice of a particular family of
distribution; alternatively, simply p∗0 is given as the fraction

p∗0 =
Number of xi > u0

n
.

The POT method can be used for α < p∗0 , i.e. xα > u0 .
Now, if u0 is high and x > u0 , then

P(X > x) = P(X > u0) · P(X > u0 + (x − u0) |X > u0) (9.3)

≈ P(X > u0)(1 − F (x − u0; a, c)),

where F is a generalized Pareto distribution with a suitable scale parameter
a and form parameter c (often taken to be zero) (see Theorem 9.1).

Let a∗ and c∗ be the estimates of a and c . Then x∗
α is the solution of

the equation

p∗0(1 − F (xα − u0, a
∗, c∗)) = α

and the POT algorithm gives the following estimate:

x∗
α =

{
u0 + (a∗/c∗)

[
1 − (α/p∗0)

c∗
]
, if c �= 0,

u0 + a∗ ln (p∗0/α), if c = 0.
(9.4)

Remark 9.2. An advantage with the POT method and the approximation
in Eq. (9.3) is the capability to model the tails of the distribution: this in
contrast to earlier chapters, where families of distributions were intended to
model the central part of the unknown distribution.

The POT method consists of two steps. The first one is estimation of
p0 = P(X > u0) , basically by means of the method presented in the previous
section; then the few extremely high values of xi , are used to model the
distribution at its tails. �
Remark 9.3. The POT method can also be used to find quantiles when α is
close to one. Simply let Y = −X and find the quantile y1−α . Using Eq. (9.4),
since 1 − α is close to zero, the xα quantile is simply equal to −y1−α .

For example, let xi be the observations of X and assume α = 0.999 is of
interest. Then define yi = −xi and use the POT method to find the estimate
y∗
0.001 . Finally, let x∗

0.999 = −y∗
0.001 . �

The two following examples illustrate how the POT method can be used to
find lower and higher quantiles, respectively.
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9.2.2 Example: Strength of glass fibres

Consider experimental data of the breaking strength (GPa) of glass fibres of
length 1.5 cm (see [72]). The empirical distribution, based on a sample of 63
observations, is shown in Figure 9.4. In this example, we want to estimate
the lower 0.01 quantile. We use two methods: a parametric approach and the
POT method. Note that we have less than 100 observations, hence finding the
0.01 quantile is a delicate issue. The lowest observed value (0.55) is probably
close to the quantile.

Parametric model: Weibull. Strength of material is often modelled with a
Weibull distribution,

F (x) = 1 − e−(x/a)c

, x ≥ 0

say. Statistical software return the ML estimates a∗ = 1.63 , c∗ = 5.78 . The
quantile is then found as

x∗
0.99 = a∗(− ln(1 − 0.01))1/c∗ = 0.74.

By incident, the second smallest observed strength is 0.74; the third smallest
0.77. The Weibull is considered to fit the central parts of the distribution well
but here our aim is to examine the tail, to find the quantile. The POT method
is employed next.

POT method. To find the lower quantile, the data with opposite sign are inves-
tigated (cf. Remark 9.3). Investigating the stability of fitted shape parameter
in a GPD for different choices of thresholds indicates a suitable threshold
about −1.4 . This threshold results in p∗0 = 0.27 . The method of probability
weighted moments (PWM) is used to estimate parameters and result in the
estimates a∗ = 0.404 , c∗ = 0.248 , which gives the quantile of interest as
x∗

0.99 = 0.49 .
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Fig. 9.4. Breaking strength of glass fibres. Empirical distribution.
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Note that we presented only point estimates x∗
α in this example. Clearly,

a full analysis should investigate the uncertainty of these as well. For instance,
the standard error of the estimates when fitting a general GPD is larger com-
pared to the case of exponential excursions (more parameters means higher
uncertainty).

In the following example we perform a Bayesian analysis of the uncertainty
of POT estimates.

9.2.3 Example: Accidents in mines

This is a continuation of Example 2.11, which finished with a question; how
to compute the probability P(K > 400) , i.e. more than 400 perished people
in a single mining accident. Here POT is used to estimate the probability.

Estimation using the POT method

Denote by ki , i = 1, 2, . . . , 120 , the number of deaths in the ith accident.
These form independent observations of K . Let us choose a threshold u0 = 75 ,
as we did in Example 2.11.

The first step of the POT method is to estimate the probability p0 =
P(K > 75) . Since there are 17 accidents with more than 75 deaths, we find
the estimate

p∗0 = 17/120 = 0.142.

The 17 values are given next:

89 114 189 76 142 361 91 178 143 207 189 268

120 164 101 178 81

The second step in the POT method is to model the conditional distribution
of excursions above u0 = 75 , P(K − u0 ≤ h |K > u0) by means of a GPD.
Often one assumes that the shape parameter c = 0 , i.e. that the distribution
is exponential

P(K > u0 + h |K > u0) = e−h/a,

where a is the unknown parameter to be estimated. In Figure 9.5, left panel,
we can see the exceedances plotted on exponential paper (see Example 4.3
for definition) follow a straight line and hence we have no reasons to reject
the model. The ML estimate is a∗ =

∑
ki/n − u0 = 83.3 . Consequently, the

probability looked for is estimated as

P(K > 400) ≈ p∗e−(400−u0)/a∗
= 0.0029, (9.5)

i.e. on average once in 333 mines accidents there will be more than 400
perished.
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A quantile can also be estimated, by means of Eq. (9.4). For instance, for
α = 0.001

k∗
α = u0 + a∗ ln (p∗/α) = 75 + 83.3 ln (0.142/0.001) = 487.2.

Obviously both estimates are uncertain and in the following we use
Bayesian modelling in order to investigate the size of the uncertainties. In
the frequentistic approach, this could be done using confidence intervals and
the delta method. However, as long as we do not have informative priors,
both ways of analysing the uncertainty work equivalently well. Here we found
it more illustrative to use the Bayesian approach.

Bayesian modelling of uncertainties

As usual, the unknown parameters θ1 = p0 and θ2 = 1/a are modelled by
independent random variables Θ1 and Θ2 . Note that it is more convenient to
use the parameter θ2 = 1/a than a since the family of gamma distributions
forms conjugated prior for Θ2 , as demonstrated in the following remark.

Remark 9.4. Suppose the prior density for Θ2 is Gamma(a, b). Let X be
exponentially distributed with mean a , having the pdf

fX(x) = θ2 e−θ2 x with θ2 =
1
a
,

and let xi , i = 1, . . . , m be observations of independent experiments X . The
likelihood function is given by

L(θ2) =
m∏

i=1

θ2 exp(−θ2xi) = θm
2 exp

(−θ2

m∑
i=1

xi

)
.
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Fig. 9.5. Left: Exceedances over the threshold u0 = 75 , plotted on exponential
paper. Right: Histogram; 10 000 simulated values of p = P(K > 400) .
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Following Eq. (6.9), i.e. fpost(θ2) = cL(θ2)fprior(θ2) , we arrive at the
posterior density

fpost(θ2) ∈ Gamma
(
a + m, b +

m∑
i=1

xi

)
. (9.6)

�

To model the unknown frequency Θ1 we use beta priors. Suppose there
is no prior information about the value p0 . Thus the prior density for θ1

is Beta(1,1) (uniform prior) and by Eq. (6.22) with n = 120 and k = 17 ,
the posterior density is Beta(18,104). We turn now to the choice of the prior
density for Θ2 . Again suppose there is little experience of the size of θ2 and
hence the so-called “improper” prior fprior(θ2) = 1/θ2 is proposed1. Now, with
xi = ki − u0 , by Eq. (9.6), the posterior density for Θ2 is

fpost(θ2) =
c

θ2
L(θ2) ∈ Gamma

(
m,

m∑
i=1

(ki − u0)
)

= Gamma (17, 1416).

(Note that θ2 , the inverse of the expected number of deaths in a mining ac-
cident, is an important parameter often estimated for other data sets; hence,
there are reasons in using more informative priors. This could lower the un-
certainty in the estimated value of the probability.)

The probability P = P(K > 400) = Θ1 exp(−Θ2(400 − u0)) is a random
variable. Since Θ1, Θ2 are independent the distribution of P could be com-
puted using the version of the law of total probability in Eq. (5.22); this yields
with u0 = 75 ,

P(P ≤ p) =
∫ ∞

0

P
(
Θ1 ≤ p eθ2 325

)
fpost(θ2) dθ2.

This integral has to be computed numerically, giving the posterior distribution
for P . Using this distribution, the predictive probability E[P ] = 0.0044 is
found. A credibility interval is found as [3.5 · 10−4, 0.016] . As a complement
to these findings, we use a Monte Carlo method and simulate a large number
N = 10 000 , say, of independent values of θ1, θ2 , compute N values of the
probability p and present these in the form of a histogram (normalized to
have integral one). The result is given in Figure 9.5 (right panel) and the star
at the abscissa is the value of the estimate p∗ = 0.0029 , found in Eq. (9.5) by
a frequentistic approach. We can see that the uncertainty is quite large.

9.3 Quality of Components

In this section we return to the study of a variable R describing strength
of some kind of component. Suppose components with a prescribed quality

1This prior is not a pdf; see Section 6.5.1 for definition and interpretations.
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rα = r̂ , say, are to be bought. The question is: Can one trust the value r̂
assigned to the components — how can the accuracy of the characteristic
strength be checked? Principally we wish to find the probability

p = P(R ≤ r̂)

and compare this with the value 1 − α claimed by a dealer.

9.3.1 Binomial distribution

Suppose we plan to test n components and check whether the strength exceeds
a fixed threshold r̂ , say. A natural estimate of the probability p = P(R ≤ r̂)
is the fraction of broken components divided by n . Using mathematical lan-
guage, let K be the number of components that have strength below r̂ . Then,
since the strengths of individual components are assumed to be independent,
K is a binomially distributed variable:

K ∈ Bin(n, p).

Suppose that k failures were observed in n tested components. From the
table in Example 4.19, p. 90, the ML estimate of p is found as p∗ = k/n
and if n is large (np(1 − p) > 10) the error E is approximately normally
distributed: mE ≈ 0 and (σ2

E)∗ = p∗(1 − p∗)/n . Hence with approximately
1 − α confidence,

p ∈ [
p∗ − λα/2σ

∗
E , p∗ + λα/2σ

∗
E
]
. (9.7)

More often we are interested in the number of tests needed in order that the
estimate p∗ is sufficiently close to the unknown probability p . For example,
we wish to find n such that, with confidence 1 − α , the relative error is less
than 50%, i.e. n satisfying

λα/2
σ∗
E

p∗
≤ 0.50, hence n ≥ 1 − p∗

p∗

(
λα/2

0.50

)2

.

An obvious generalization to the case of relative error less than 100q% is

n ≥ 1 − p∗

p∗

(
λα/2

q

)2

. (9.8)

If p∗ is small we can simplify by replacing 1 − p∗ in the numerator in the
right-hand side of Eq. (9.8) by 1.

For example, let α = 0.10 , q = 0.5 . In the case when r̂ = rα , then
p = 0.10 . (However, normally r̂ �= rα .) We obtain that more than circa 108
components need to be tested in order to satisfy the accuracy requirements
that the error of an estimate p∗ is less than 50% with probability 1−α = 0.90 .

Since many experiments are needed, more elaborate methods have to be
used. Measurements of the strengths will have to be made and possibly a
parametric model for the strength employed.
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Example 9.2 (Ball bearings). For simplicity only, assume that the com-
ponents are the ball bearings from Example 4.1. The given observations were
lifetimes. Suppose an expert claims that only 10% of such ball bearings have
a lifetime less than 40 millions cycles. How reliable is this information?

In Example 4.1 we had n = 22 observations, which is a too small number
to justify use of asymptotic normality of the error distribution if p = 0.1 . The
computed interval in Eq. (9.7) with confidence level 0.95 (α/2 = 0.025) is not
well motivated and in addition, we can see that it is quite wide (p ∈ [0, 0.23]).
This is not surprising since more than 154 tested bearings are needed in order
to get accuracy of the estimate of 50% with confidence 95% (see Eq. (9.8)).

�

9.3.2 Bayesian approach

As discussed in Chapter 6, conjugated beta priors are useful for estimation
of a probability. We often assumed as prior distribution a Beta(1, 1) , a uni-
form distribution corresponding to lack of knowledge. However, in the present
application, the prior density must be determined. We illustrate with an ex-
ample.

Example 9.3. Consider a production of components, coming in series all
labelled with a quality expressed in characteristic strength r0.9 . Again, sup-
pose we know that on average (taken over the series and based on many data)
p = 0.1 but there is a variability between the series with coefficient of variation
equal to 1. Using Eq. (6.11), we translate this information into the parame-
ters a and b of the beta distribution. More precisely, we choose a = 0.8 ,
b = 6.2 .

Now, first assume that in the test of 25 components, 3 were weaker
than the value r̂ . This information will change our beta priors and yield
new parameters ã = 3.8 and b̃ = 28.2 . Let θ = p . The priors gives the
probability P(Θ > 0.2) = 0.188 , which is quite high. The posterior dis-
tribution, on the other hand, renders P(Θ > 0.2) = 0.089 . If there were
only two components that broke under the load r̂ , the posterior density
has parameters ã = 2.8 and b̃ = 29.2 , resulting in P(Θ > 0.2) = 0.029 .

In Figure 9.6, the prior density is shown as a solid curve. We further note
that the posterior distribution resulting in the case of two broken compo-
nents (dashed-dotted curve) has its mode2 at a lower probability than the
corresponding distribution for three broken components (dotted curve). (As
in Example 9.1, the number of tested components (here: 25) is small.)

�

2If an r.v. X has a probability-density function f(x) , then x = M is a mode of
the distribution if f(x) has a global maximum at M .
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Fig. 9.6. Solid: Prior density. Dashed: Posterior density (three broken components).
Dashed-dotted: Posterior density (two broken components).

Problems

9.1. A manufacturer of filters claims that only 4% of the products are of less quality
than required in specifications. Let p be the probability that a filter is of poor quality.
How many items need to be tested to get an estimate p∗ of p having relative error
less than 0.50 accuracy with confidence 95%? (Hint. See Eq. (9.8).)

9.2. Consider an a r.v. X . In the POT method, exceedances over a threshold u are
analysed and the conditional probability

P(X > u + x |X > u)

is essential for the analysis.

(a) Show that

P(X > u + x |X > u) =
1 − F (u + x)

1 − F (u)
.

(b) Consider an exponential model, F (x) = 1 − e−x , x > 0 . Use the result in (a)
to determine the distribution of the exceedances over a threshold u .

9.3. For a certain batch of ball bearings the expected value of the lifetime X (million
revolutions) is E[X] = 75 and the coefficient of variation R[X] = 0.40 . Make the
assumption of a Weibull distribution and give an estimate of the rating life L10 , a
quantile satisfying

P(X ≤ L10) = 1/10.

Hint. Use Table 4 in appendix and the fact that for the scale parameter in a Weibull
distribution,

a =
E[X]

Γ (1 + 1/c)
.
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9.4. Consider strengths of fibres from Example 9.2.2. Assuming a Weibull distribu-
tion for the strength,

F (x) = 1 − e−(x/a)c

, x ≥ 0,

statistical software result in the ML estimates a∗ = 1.63 , c∗ = 5.78 and the covari-
ance matrix

Σ =

(
0.0014 0.0066
0.0066 0.3225

)
A point estimate of x0.99 was found as 0.74. Use the delta method to construct a
95 %-approximate confidence interval for the quantile x0.99 .

9.5. Consider flipping a coin, giving “heads” with probability p . Assume that p is
around 0.50. How many flips are needed to get a relative error of p∗ less than 20%
with high confidence? Perform the calculations for α = 0.05 and α = 0.10 . (This
problem was discussed in page 31.)

9.6. The strength of a storm at sea is measured by the peak value of significant wave
height (Hs ) that is observed during the storm. During 12 years of measurements
at US NODC Buoy 46005, 576 storms have been recorded. Denote by X the peak
value of Hs that is measured during a storm and assume that the values of Hs for
different storm are iid r.v.

(a) Estimate the quantile for α = 0.001 , P(X > xα) = 0.001 , if the following values
of x for 40 serious storms are available (where the peak Hs exceeded 9 m):

9.6 9.6 9.5 11.0 11.9 9.2 9.6 9.1 9.9 9.3
9.4 9.5 9.5 12.2 13.0 10.0 9.3 10.0 9.5 9.8
9.2 10.8 9.9 9.8 10.1 12.3 10.8 9.4 9.1 11.1
9.0 11.5 10.6 10.4 9.0 9.4 11.8 12.9 11.3 9.9

Assume that the cdf of H = X − 9 is well approximated by an exponential
distribution. (Hint: Use the POT method and

∑40

i=1
hi = 49.2 .)

(b) Use the delta method to derive approximative confidence intervals for x0.001 .
(Hint: Assume that the estimators of p0 and a are independent.)

(c) Estimate the intensity of storms and the expected number of storms during 100
years that are stronger than x0.001 .
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Design Loads and Extreme Values

In the previous chapter, we presented methods to estimate quantiles of a
random variable X . In the special case when X is an unknown strength
of a component, the quantile is a measure, called characteristic strength (of
material), or production quality. Often the 0.9 quantile is used; this has the
interpretation that if a constant load is equal to the characteristic strength,
then the likelihood of failure is 0.1.

The situation that a load is constant is often a crude approximation. If a
load varies in time (or space) then the strength has to be chosen to accom-
modate for possible high values. A constant, used to describe the severity of
a variable load, is the so-called design load sT with return period T . Let for
instance T = 100 years: a 100-year value s100 means that the load will exceed
s100 on average once per 100 years if stationarity of the processes generating
loads could be assumed. Usually variability of a load would change in such a
long period and hence the above-mentioned interpretation should be rather
seen as a more intuitive description of the severity of the load. Here we use
another definition of design load sT , namely that the probability that the
load would exceed the design value sT during a period t = 1 (in units of T )
is 1/T , i.e. Pt(A) = 1/T where A = “Load exceeds sT ”. Since

Pt(A) = P(The maximal load in the period t > sT )

this means that sT is a 1/T quantile of a variable

Mt = max
s∈[0,t]

X(s),

where X(s) is the value of the load at time instance s . Consequently in this
chapter, we discuss estimation of quantiles for Mt , which is a maximal value
of a sequence of random variables.

The parametric approach, presented in Section 9.1.1, will be used to es-
timate sT . The generalized extreme-value distribution is introduced in Sec-
tion 10.2 and analysed using extreme-value theory, this will be employed as
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a model for Mt . Estimation of design loads is very difficult and sometimes
even questionable (we make statements about loads never observed) but such
information is needed to construct safe structures. We also show by examples
with data from real situations that the estimated values of the design load sT

are very uncertain.

10.1 Safety Factors, Design Loads, Characteristic
Strength

Consider the simplest case with only one strength variable R and one load
variable S , taking values r and s , respectively. A failure occurs when the load
exceeds the strength, i.e. s > r . The true values of r and s are unknown. If
the characteristic strength r0.9 is available, we believe that

P(R ≤ r0.9) = 0.1. (10.1)

If we accept as high risk for failure as 0.1, we could allow to load the component
(structure) with a load not higher than s = r0.9 .

Example 10.1. Consider again the wire in Example 8.7. The parameter
r0.9 = 100 [kg] suggests is that the risk that the wire cannot support a load of
100 kg is 0.1. This can be interpreted as that 10% of the population of wires
fail when loaded by the mass of 100 kg. �

At the design stage one can choose the strength of a structure by specifying
the value of the characteristic strength r0.9 . (Lower quantiles than r0.9 could
also be used to measure strength of materials, components or structures.) We
show next how a simple analysis of the load can look like.

A deterministic fixed load level s , called the design load, which we require
that the component (or structure) is able to carry without failing, is chosen.
Depending on the intended safety level, a constant c ≥ 1 (safety factor) is
selected and it is required that the characteristic strength r0.9 > cs . How
much r0.9 should exceed s can be found in design norms and regulations.
The exact value of c is decided by using a suitable safety analysis, usually
employing safety indices.

Static and time variable loads

Often s is defined by means of a worst-case scenario. First we consider a static
situation when the load S is more or less constant during the whole service
time and deterioration of material strength can be neglected. For example, S
can be the maximal pressure on a dam when it contains the maximum allowed
amount of water, or it can be the weight that has to be supported by a beam.
The static load S can be constant in time but still uncertain; for example,
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due to variability of geometry. In many practical design codes the static load
is characterized by its expected value mS = E[S] . However, besides the static
load the structure may experience a time variable (for example environmental)
load often defined as the maximal load during a service time. The severity of
the variable load is measured by the so-called return value; often a 50- or 100-
year value s50 is used, however in some cases, e.g. dikes in the Netherlands or
protection for high wave heights at offshore platforms, even 10 000-year values
are employed. (Note that the service time of the structure does not need to
be the same as the return period T .)

Remark 10.1. The notion of return period originated in the sciences of hy-
drology, when for instance analysis of severe floods was made, but the concept
can be applied in other fields of science and technology as well. An early ac-
count of a statistical description of return periods for flood flows was made by
Gumbel (one of the pioneer researchers in statistical extreme-value theory) in
the early 1940s [31]. �

Design norm

Assume that we are interested in 50-year loads. The design norm gives two
constants, c1 and c2 , and indicates to us that we should have a characteristic
strength r0.9 that exceeds the design load s = c1mS + c2s50 , i.e.

r0.9 > c1mS + c2s50, (10.2)

in order to ensure sufficient safety during the service time.
Higher values of the constants c1 and c2 render a safer structure and also

a more expensive one. The constants c1 ≥ 1, c2 ≥ 0 , specified in design codes,
define safety of a particular type of structure. In computations of c1 and c2

some typical distributions for strength R and load S are assumed. Hence, if
the real strength, or load, has a distribution that differs from the one used in
the derivation of c1 and c2 , the true safety level can be lower than intended
in the norm. Another reason for deviation of the true failure probability from
the nominal value specified in the design norms is that the values of s50 , r0.9 ,
and mS are estimated and hence uncertain.

10.2 Extreme Values

As mentioned in the introduction, finding 100-year loads is equivalent to find-
ing the 0.01 quantile of the distribution of heights of yearly loads, i.e. the
maximal load during one year. We return to this problem in Section 10.3,
where we use extreme-value theory to give theoretical grounds for employing
the generalized extreme-value distributions as models for the variability of
yearly maxima.
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However, the question of how high the maximum of some quantity X can
be over a relative long period of time t has its own interest. For instance, the
weather, rain, snow, wind, etc. change, and so do financial activities — stock
prices, insurance claims, and many other quantities vary over time. Society is
adapted to handle the usual variability of the environment. However, some-
times it rains or snows much more than usual, or it may be a very cold or
warm period. Some accidents cause large losses that have been covered by in-
surance companies. Such extreme situations can lead to serious consequences,
which one wishes to be prepared for and get an idea of the likelihood for them
happening.

Examples of relevant questions are: What are the maximal values of claims
related to a single storm that may happen during next 10 years, or what is
the maximal daily rain observed at some meteorological measurement station
during the next 20 years? Obviously, nobody knows the answers to these
questions since these consider future values of variable quantities. Hence a
more appropriate problem is to give a measure of risk, usually probability or
safety indices, that maximal future losses (or amount of rain) S exceed the
available resources R , i.e. P(S > R) . This section serves as an introduction to
the problem of finding an appropriate class of distributions for the variable S ,
which represents “maximal demand”. We hope that its reading will motivate
the reader to deeper studies of extreme-value theory and its applications; for
further reading, see for instance the seminal book by Gumbel [32], Leadbetter
et al. [47], Coles [14], and the chapter by Smith [71].

10.2.1 Extreme-value distributions

Let X1, X2, . . . , Xn be iid random variables, each having distribution F (x) .
Classical extreme-value theory deals principally with the distribution of the
maximum

Mn(X) = max(X1, . . . , Xn)

Similarly, if the quantity X is measured continuously during a period of length
t , its maximal value will be denoted Mt(X) . Most often we shall use simpler
notation and write Mn,Mt for Mn(X),Mt(X) , respectively.

Since Xi are independent the distribution function FMn
(x) = P(Mn ≤ x)

can be easily computed as follows

FMn
(x) = P(X1 ≤ x,X2 ≤ x, . . . ,Xn ≤ x) = P(X1 ≤ x)n =F (x)n. (10.3)

In practice, a distribution F (x) is assumed or assigned: from experience or
based on analysis like presented in Chapter 4 (probability papers, etc.). The
distributions are often fitted to the observations available and often describe
the central parts well. However, the interest of extreme-value analysis is within
the tails of the distribution. In Example 10.2, we see that the differences may
be considerable.
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Example 10.2. Suppose the maximal daily loads Xi are iid variables with
distribution F (x) and one is interested in the design load sT , T = 100 years.
The 100-year load is the 0.01 quantile of M365 with distribution given by
Eq. (10.3). In other words, sT is a solution of the equation 1−F (x)365 = 0.01 ,
i.e. F (x) = (1 − 0.01)1/365 . Employing Taylor’s formula, (1 − x)c ≈ 1 − cx ,
we find that F (x) ≈ 1−1/36500 , that is, sT is close to the 1/36500 quantile.

The 1/36500 quantile is very sensitive to the exact shape of the distribution
F (x) for x where F (x) ≈ 1 (in the tail). A model error, i.e. that F (x) differs
from the true distribution P(X ≤ x) in that region may result in big errors
in the design load. We give now a numerical example:

Suppose a daily load X is log normally distributed with mean 1 and
coefficient of variation 0.1, consequently

m = E[ln(X)] = −0.005 and σ2 = V[ln(X)] = 0.01.

Hence the 100-year load is equal to 1.49, i.e. the mean plus five standard devi-
ations. Now suppose we choose F (x) to be the normal distribution N(1, 0.01).
Using F (x) , the 100-year load would be 1.40, i.e. mean plus four standard
deviations.

As seen in Figure 10.1 (left panel), for mean one and coefficient of variation
0.1 the log-normal density can hardly be distinguished from the normal one.
100 simulated values from the log-normal distribution are shown in a normal
probability paper in Figure 10.1 (right panel). Having observed 100 values xi ,
one could erroneously assume that X is normally distributed. �

In Example 10.2 a situation was presented when the use of Eq. (10.3)
to find the low quantiles of Mn may lead to not-negligible errors due to
uncertainty in the shapes of the tails for the cdf of Xi . Here the POT method,
presented, in Chapter 9 could be used to solve the problem. However, there
are also other practical problems and disadvantages to use (10.3) (or the
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POT method) to find the design loads, namely, assumed independence of
daily loads Xi may not be true; the distribution of Xi may vary (e.g. due
to seasonal effects: loads in winter are different than in summer). There are
specialized techniques to use POT in the situation of dependence, sometimes
manifesting in clustering of large values, or seasonal dependence; however,
these are outside the scope of this book and we refer the reader to specialized
literature: Chapters 5-6 in [14] or for an application to ocean engineering, the
report [2].

Here we present an alternative approach in which instead of estimating
distribution Xi and using Eq. (10.3) (or the POT method) to find the design
load, the distribution of yearly maxima is estimated directly if data over longer
periods (several years) are available. The theoretical ground for this approach
is an important result in extreme-value theory called the Extremal Types
Theorem. This shows us that, under very general conditions, the distribution
of Mn can be well approximated by the so-called Generalized Extreme-Value
distribution (GEV). The accuracy of the approximation increases with n .
Thus, this is a similar type of asymptotic result for maxima as the Central
Limit Theorem was for sums or ML estimates.�

�

�

	

Theorem 10.1. If there are parameters an > 0 , bn and a non-degenerate
probability distribution G(x) such that

P

(
Mn − bn

an
≤ x

)
=

[
F (anx + bn)

]n

→ G(x) (10.4)

then G is the Generalized Extreme Value distribution

GEV: G(x; a, b, c) =

{
exp

(
−(1 − c(x − b)/a)1/c

+

)
, if c �= 0,

exp (− exp{−(x − b)/a}) , if c = 0,
(10.5)

where a is a scale parameter, b is a location parameter and c a shape
parameter; x+ = max(0, x) .

The expression (1− c(x− b)/a)+ in Eq. (10.5) means that 1− c(x− b)/a ≥ 0
and hence, if c < 0 , the formula is valid for x > b + (a/c) and if c > 0 , it
is valid for x < b + (a/c) . The case c = 0 is interpreted as the limit when
c → 0 . Note that the Gumbel distribution is a GEV distribution with c = 0 .

The consequence of Theorem 10.1 is that for large values of n

P(Mn ≤ x) ≈ G

(
x − bn

an

)
, (10.6)

which means that maximum of large number of iid variables Xi is well ap-
proximated by a distribution belonging to a class of generalized extreme-value
distributions, see also Definition 3.3.
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Remark 10.2. Note that there are situations when the maximum of iid vari-
ables is not asymptotically GEV, i.e. Eq. (10.4) does not hold for G(x) defined
in Eq. (10.5). Classical examples are when Xi are iid Poisson or geometrically
distributed; see [47], p. 26. �

Many real-world maximum loads belong to the GEV distributions with c = 0 ,
i.e. the class of Gumbel distributions. For instance, if daily loads are normal,
log-normal, exponential, Weibull (and some other distributions having so-
called exponential tails) then the yearly (or monthly) maximum loads can be
well modelled by a Gumbel distribution.

Let Xi be independent Gumbel distributed variables. Then an interesting
result related to the distribution of the maximum can be derived; see the
following example.

Example 10.3. Recall that a Gumbel distributed r.v. X with scale and lo-
cation parameter a and b has the cdf

F (x) = exp(−e−(x−b)/a), −∞ < x < ∞.

Now the maximum Mn = max1≤i≤n Xi has distribution

P(Mn ≤ x) =
(
exp(−e−(x−b)/a)

)n

= exp(−ne−(x−b)/a)

= exp(−e−(x−b)/a+ln n) = exp(−e−(x−b−a ln n)/a). (10.7)

Thus, the maximum of n independent Gumbel variables is also Gumbel with
the same scale parameter and with location parameter changed from b to
b + a ln n . This property is sometimes referred to as the Gumbel distribution
being max stable. �
A numerical illustration of the derived result for Gumbel distributions is given
in the following example. The application is related to design loads and oper-
ational time period.

Example 10.4. Assume that the maximum load on a construction during
one year is given by a Gumbel distribution with expectation 1000 kg and
standard deviation 200 kg. From the expressions for expectation and variance
(given in appendix), is found a = 156 , b = 910 .

Suppose the construction will be used for 10 years. Then the maximum
load over these 10 years is according to Eq. (10.7) given by a Gumbel distrib-
ution with mean 1000 + 156 · ln 10 = 1.4 · 103 kg and standard deviation 200
kg. The probability density functions for these two Gumbel distributions are
shown in Figure 10.2. The solid line has mean 1.0 · 103 kg, the dashed-dotted
1.4 · 103 kg. �

If F (x) and F (x)n are of the same type, i.e. differ by values of location and
scale parameters, then F (x) is called max stable. As demonstrated in (10.7),
the Gumbel distribution is max-stable. Actually the GEV distributions are
the only max-stable distributions. We end this subsection with two remarks
in which we give some properties of GEV distributions.
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Fig. 10.2. Probability density function for Gumbel distributions with standard
deviation 200 kg. Solid line: Gumbel distribution with mean 1.0 · 103 kg (maximum
load, one year). Dashed-dotted line: Gumbel distribution with mean 1.4 · 103 kg
(maximum load, ten years).

Remark 10.3 (Max stability). The GEV distribution is max stable, which
means that maximum of n iid GEV distributed variables with parameters
(a, b, c) is GEV distributed with the shape parameter c unchanged. While
the scale parameter a is changed to a/nc , the location parameter b is equal
to ⎧⎨⎩ b +

a

c

(
1 − n−c

)
, if c �= 0,

b + a ln n, if c = 0.

�

Remark 10.4 (GEV – Random numbers). To simulate GEV-distributed
Z with shape parameter c �= 0 , let U be a uniformly distributed random
number, U ∈ [0, 1] . Then Z is the solution of the equation U = F (Z) , i.e.

Z = b +
a

c

(
1 − (− ln U)c

)
, c �= 0.

For c = 0 (Gumbel distribution), Z = b − a ln(− ln U) . �

Choice between Gumbel and GEV

The Gumbel distribution c = 0 is often a natural model. This is because
the distribution of maximum of independent (or even weakly dependent) nor-
mally, log-normally, gamma, Weibull loads is well approximated by a Gumbel
distribution. Having one parameter fixed makes estimation simpler and at the
same time the uncertainty of the estimated design load sT smaller. However,
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before assuming that c = 0 it is recommendable to test whether data do not
contradict the assumption.

The simplest test is to plot data on Gumbel probability paper and check
if the observations lie reasonably close on a straight line. Next, a confidence
interval for c can be computed (see Remark 10.5 for more details). If the
confidence interval contains the value zero, then data do not contradict the
assumption that yearly maxima are Gumbel distributed. The deviance can
also be used to measure how much the GEV cdf better explains the variability
of maxima compared to the Gumbel cdf. The deviance can be computed by
means of

DEV = 2
(
l(a∗, b∗, c∗) − l(ã∗, b̃∗)

)
, (10.8)

where l(a∗, b∗, c∗) is the log-likelihood function and a∗, b∗, c∗ are ML esti-
mates of parameters in a GEV cdf, while l(ã∗, b̃∗) is the log-likelihood function
and ã∗, b̃∗ are ML estimates of parameters in a Gumbel cdf (see Remark 10.6
for computational details). If the deviance DEV is higher than χ2

α(1) = λ2
α/2

then the Gumbel model should be rejected, i.e. the GEV explains data sig-
nificantly better.

Remark 10.5 (Confidence interval for shape parameter). The confi-
dence interval for c can be derived using asymptotic normality of the ML
estimators (see Theorem 4.3 and Section 8.3.1). If the number of observations
is large (here fifty years or more), the asymptotic normality of estimators of
the GEV cdf implies that with approximate confidence 1 − α

c ∈ [
c∗ − λα/2σ

∗
E , c∗ + λα/2σ

∗
E
]
. (10.9)

Here λα/2 is the α/2-quantile of an N(0,1) cdf, while σ∗
E ≈ D[C∗] . The

standard deviation σ∗
E is one of the outputs of most programs used to esti-

mate the parameters in a GEV cdf. It is computed by inverting the matrix
−[l̈(a∗, b∗, c∗)] (see Eq. (8.22) and Section 8.3.1 on the delta method). �
Remark 10.6 (Log likelihood for GEV and Gumbel distributions).
Most of the programs used to estimate the parameters in a GEV (or Gumbel)
cdf return the value of the log-likelihood as one of the outputs. If z1, . . . , zn

are observed yearly maxima, then for a GEV pdf the log-likelihood

l(a, b, c) =
n∑

i=1

ln
(
f(zi; a, b, c)

)
where

f(x; a, b, c) =
1
a
(1 − c(x − b)/a)1/c−1

+ exp
(
−(1 − c(x − b)/a)1/c

+

)
,

when c �= 0 , and

f(x; a, b, c) =
1
a

exp(−(x − b)/a) exp (− exp{−(x − b)/a}) ,

when c = 0 . �
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10.2.2 Fitting a model to data: An example

In this section we present a typical use of the GEV distribution. The para-
meters are estimated using statistical software. The data analysed represent
24 000 temperature readings, performed by the same person for 66 years (1919-
1985). All observations were made at 8 a.m. outside Växjö in the Swedish
province Småland. Suppose we are interested in the probability that the max-
imal temperature at 8 a.m. in the next 100 years exceeds x = 27 ◦C.

The observations are Xi , i = 1, . . . , 24 000 . We face the problem that Xi

are not equally distributed. Temperature in winter is obviously lower than in
summer. This is a typical example of seasonal variability of the phenomenon.
The solution is to combine the 24 000 observations into 66 yearly maxima Zi ,
i = 1, . . . , 66 . It is then more reasonable to assume that Zi have the same
distribution and are independent (one should, however, check whether there
are trends caused by climate change).

Distribution of yearly maximal temperature.

As mentioned before, the Gumbel distribution c = 0 is often a natural model.
We first plot data on Gumbel paper (see Figure 10.3 (left)) and note that
extreme temperature has shorter upper tail than the Gumbel model. We fit
the GEV distribution and find the estimates a∗ = 1.67 , b∗ = 22.6 , c∗ = 0.323 .
The estimated standard deviations are D[A∗] ≈ 0.16 , D[B∗] ≈ 0.20 , and
D[C∗] ≈ 0.04 . A 95 %-confidence interval for the shape parameter c is given
by Eq. (10.9) as

[0.323 − 1.96 · 0.04, 0.323 + 1.96 · 0.04]

This does not contain the value c = 0 , hence the Gumbel model should
be rejected. In addition, the interval shows that the estimated c parameter is

18 20 22 24 26 28
−3

−2

−1

0

1

2

3

4

5
Gumbel Probability Plot

X

−l
og

(−
lo

g(
F

))

18 20 22 24 26 28
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
(x

)

Empirical and GEV estimated cdf (ML method)

x

Fig. 10.3. Temperature measurements in Småland 1919-1985. Left: 66 yearly max-
ima plotted on Gumbel paper. Right: Comparison between the empirical distribution
and the fitted GEV-model, dashed curve.
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significantly positive. This is not surprising, since the positive c indicates that
the maximum distribution has its upper bound estimated to be b∗+(a∗/c∗) =
27.7 ◦C .

In Figure 10.3 (right), we see a comparison between the estimated GEV
distribution and the empirical one. The agreement is good. Note that the
estimated distribution describes variability of yearly maxima.

Distribution of M100 , maximal temperature during 100 years.

We are interested in the probability of the maximal temperature during 100
years. Obviously we do not have any observation of this random variable. The
maximal temperature observed in 66 years was 26 ◦C. The calculation of the
distribution of M100 , the maximum of 100 Zi variables, is as follows:

P(M100 ≤ x) = P(Zi ≤ x)100 = exp
{
−100(1 − c(x − b)/a)1/c

+

}
≈ exp

{
−100(1 − c∗(x − b∗)/a∗)1/c∗

+

}
, x ≤ 27.7.

For x = 27◦C, we have that during the following 100 years P(M100 > 27) =
0.21 , while during the next year it is P(M1 > 27) = P(Z1 > 27) = 0.002 .

Note that we could directly use the maximum stability of GEV to derive
the distribution of M100 , which is GEV with the same parameters c , while a
and b changed to a/nc , b + (a/c)(1−n−c) , respectively. Consequently, M100

is GEV with parameters a, b, c estimated to be 0.377, 26.6, 0.323, respectively,
while, as found earlier, M1 = Zi is GEV distributed with parameters a, b, c
estimated to be 1.67, 22.6, 0.323, respectively.

Obviously the computed distribution for maximal temperature during 100
years assumes no changes in climate and independence of yearly maxima.
Finally, note that M100 is a random variable and not a 100-year temperature
s100 (the 1/100 quantile of the M1 distribution that is exceeded on average
once in 100 years). In fact,

P(M100 ≤ s100) =
(

1 − 1
100

)100

≈ 1
e

= 0.37.

10.3 Finding the 100-year Load: Method of Yearly
Maxima

In this section we employ the GEV distribution to estimate the T -year load.
Suppose we have observed yearly loads Mt , t = 1 year, for a number of years.
If the load varies relatively fast so that values of daily or weekly1 loads can
be considered independent then Theorem 10.1 tells us that the distribution of

1Here daily, weekly, monthly, or yearly loads mean the maximal value of the load
during the specified period of time.
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M1 is well approximated by a cdf belonging to a GEV class. Since the design
load sT with return period T is equal to the level u solving the equation

1
T

= P(M1 > u),

and M1 is modelled as GEV distribution then

sT = b − a ln(− ln(1 − 1/T )), if c = 0, (10.10)

sT = b +
a

c

(
1 − (− ln(1 − 1/T ))c

)
, if c �= 0. (10.11)

Next, using the observed yearly maxima a GEV cdf can be fitted to data,
e.g. by means of the ML method (or other methods), and estimates θ∗ =
(a∗, b∗, c∗) found. An estimate of the design load s∗T is then obtained by
replacing a , b , c in Eqs. (10.10-10.11) by a∗ , b∗ , c∗ .

Since in most cases long return periods are of interest, at least T ≥ 50 ,
and since we have that − ln(1− 1/T ) ≈ 1/T , we use the following, somewhat
simpler, estimates of the design load:

s∗T = b∗ + a∗ lnT, if c = 0, (10.12)

s∗T = b∗ +
a∗

c∗
(1 − T−c∗), if c �= 0. (10.13)

Example 10.5. An estimate of the 100-year temperature in Växjö, is (by
Eq. (10.13)) given by

s∗100 = 22.6 +
1.67
0.323

(
1 − 100−0.323

)
= 26.6 [◦C].

�
Remark 10.7. In some situations one may wish to use for example monthly
maxima Mt , t = 1/12 , to estimate sT . If t is not equal to one year, by a
moment of reflection is found that sT is a t/T quantile of Mt . Hence, for
T ≥ 50 , the estimate of the design load sT is given by

s∗T = b∗ + a∗ ln(T/t), if c = 0, (10.14)

s∗T = b∗ +
a∗

c∗
(
1 − (T/t))−c∗), if c �= 0. (10.15)

(Note that t and T must have the same units.) �

10.3.1 Uncertainty analysis of sT : Gumbel case

The Gumbel distribution, a special case of the GEV distribution with para-
meter c = 0 , is often used to model M1 , yearly maxima. For T ≥ 50 , say, the
estimate s∗T = b∗ + a∗ lnT , where a∗ , b∗ are ML estimates of the unknown
parameters a , b . The ML estimators A∗ , B∗ , are asymptotically normally
distributed (see Theorem 4.3) with variances

V[A∗] ≈ 0.61
(a∗)2

n
, V[B∗] ≈ 1.11

(a∗)2

n
, Cov[A∗, B∗] ≈ 0.26

(a∗)2

n
.
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(The variances and covariance are derived by inverting the matrix of second-
order derivatives of the log-likelihood function.) Now using Eq. (5.11) we find

V[S∗
T ] ≈ 1.11

(a∗)2

n
+ (lnT )2 · 0.61

(a∗)2

n
+ 2 · 0.26 · lnT

(a∗)2

n

and hence with

σ∗
E = a∗

√
1.11 + 0.61(ln T )2 + 0.52 ln T

n
(10.16)

we have that with approximately 1 − α confidence

sT ∈ [
s∗T − λα/2σ

∗
E , s∗T + λα/2σ

∗
E
]
. (10.17)

Example 10.6 (Analysis of buoy data). We now study data from a buoy
(US NODC Buoy 46005) situated in the NE Pacific (46.05 N, 131.02 W). The
quantity called significant wave height (Hs) is important in ocean engineering
and oceanography. This was calculated as the average of the highest one-third
of all of the wave heights during the 20-minute sampling period. An alternative
definition of Hs is as 4 times the standard deviation of the sea-surface level.
Thus, in some sense, one can talk of Hs as representative of high values.

Obviously, there is a variability in Hs over the year; storms and hence
high waves are e.g. less frequent in the summer. Again, we face the problem
of seasonality as can be seen in Figure 10.4, left panel. If there are trends, for
example due to global-warming effects (see [8], [9] for discussion of the wave
climate in the North Atlantic) or periodic variability with longer periods than
a few years, more advanced methods have to be used to study occurrences of
high loads. These are not treated in this book and we refer, for examples in
ocean engineering and oceanography, to the report by Anderson et al. [2].
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Fig. 10.4. Left : Time series of observations of Hs, 1st July 1993 – 1st July 2003.
Yearly maxima indicated with rings. Right: Yearly maxima plotted in Gumbel prob-
ability paper.
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Here we study data from 1993 to 2003 and assume that yearly maxima
(where a year is defined as starting on July 1) are independent and identi-
cally distributed. These are marked as circles in the left plot. On the basis of
extreme-value theory, we choose to model the yearly maximal Hs values using
a Gumbel distribution. Only 12 yearly maxima of observations (unit: meters)
are available:

9.6 11.0 11.9 8.9 7.9 9.9 13.0 9.8 10.8 12.3 11.5 12.9

Thus, it is hard to make a proper validation of the model and we only present
the values on a Gumbel probability plot (Figure 10.4 (right panel)). The ML
estimates of the parameters are a∗ = 1.5 and b∗ = 10.0 , which gives the
estimate of the 100-year significant wave height

s∗100 = b∗ + a∗ ln(100) = 16.9 [m].

If we neglect the possibility of model error (namely that yearly maxima are not
Gumbel distributed) and that the number of observations 12 is far too low to
use asymptotic results like Theorem 4.3 (asymptotic normality of estimation
errors) a confidence interval for s100 can be constructed. By means of (10.16)

σ∗
E = 1.5

√
1.11 + 0.61(ln(100))2 + 0.52 ln(100)

12
= 1.756

and hence, with approximately 95% confidence, s100 is bounded by 16.9 +
1.64 · 1.756 = 19.8 m. �

10.3.2 Uncertainty analysis of sT : GEV case

In the case when data contradict the assumption that yearly maxima are
Gumbel distributed, e.g. the confidence interval for c does not contain zero
or the deviance DEV > χ2

α(1) = λ2
α/2 , then the GEV distribution is used to

model the variability of yearly maxima and the design load sT is estimated
using Eq. (10.13).

If c is significantly negative then the predicted design load is usually very
uncertain. One way of including the uncertainty into prediction of the design
load is to estimate the confidence bound for sT . The delta method (presented
in Section 8.3.1) can be employed for this purpose. Some additional informa-
tion needed for computations of the bounds is given in the following remark.

Remark 10.8. In order to use the delta method to evaluate the approxima-
tive confidence bound for sT the gradient ∇sT (a, b, c) first needs to be found,
i.e. a vector containing the following partial derivatives:

∂sT

∂a
=

1 − T−c

c
,

∂sT

∂b
= 1,

∂sT

∂c
=

a

c2

(
T−c + cT−c ln(T ) − 1

)
.

Now by Eq. (8.23) the approximate variance of the estimation error E
(σ2

E)∗ = ∇sT (a∗, b∗, c∗)T Σ∗ ∇sT (a∗, b∗, c∗)
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where Σ∗ =
[−l̈(a∗, b∗, c∗)

]−1 . Then with approximately (1 − α) confidence
the design load is bounded by

sT ≤ s∗T + λασ∗
E . (10.18)

�

10.3.3 Warning example of model error

This example has origin in an article by Coles and Pericchi [15], examining a
series of daily rainfalls recorded at Maiquetia international airport, Venezuela.
In Example 2.14, we already seen the data and concluded that daily rains
exhibit seasonal variability. Here we wish to find the design value for the rain-
water load and hence a natural analysis is first finding the distribution of
yearly maxima Mt , t one year, and then finding the design value as described
in Section 10.3. Let us first review the analysis presented in [15].

Model fit with Gumbel and GEV

First, the maximal daily rainfall observed during the years 1951 , . . . , 1998
is computed. Thus we have 48 observations z1, . . . , z48 of random variables
Z1, . . . , Z48 of the maximum amount of rain that falls during one day in each
of the 48 years. Assume that Zi are independent and choose the GEV class
of distributions to model the data. ML estimates are found as a∗ = 19.9 ,
b∗ = 49.2 , and c∗ = −0.16 and the standard deviation D[C∗] ≈ 0.14 . Hence
by Eq. (10.9), with approximately 95% confidence, c lies in [−0.16 − 1.96 ·
0.14, −0.16 + 1.96 · 0.14 ] . Since the interval contains c = 0 we conclude that
the estimated parameter c∗ does not significantly differ from zero.

In Figure 10.5, left, the observed maximal daily rainfall during the years
1951 , . . . , 1998 are presented while in the right panel data are plotted on
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Fig. 10.5. Left: The observed yearly maximal rainfall in one day observed during
the years 1951–1998 at Maiquetia international airport, Venezuela. Right: The data
plotted on Gumbel paper.
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Gumbel paper. We can see that the fit to the Gumbel distribution is accept-
able. In engineering and statistical practice the Gumbel distribution would
be considered to be perfectly adequate to model the data. Consequently, the
estimation procedure is repeated under the assumption that Zi are Gumbel
distributed, giving the ML estimates ã∗ = 21.5 and b̃∗ = 50.9 . Having the
estimates a∗ , b∗ , c∗ and ã∗, b̃∗ the deviance given in Eq. (10.8) can be ap-
plied. This measures how much better the GEV distribution explains the data
compared to the simpler Gumbel distribution. The obtained value DEV=1.67
should be compared with χ2

0.05(1) = λ2
0.025 = 3.84 . Since DEV< 3.84 , this

confirms our previous conclusions that the more complicated three-parameter
GEV distribution does not explain the variability of data significantly better
than the two-parameter Gumbel distribution does.

Estimation of design load

Suppose we wish to propose a design for a system that takes care of the large
amounts of rainwater in the tropical climate; thus a design of the rain fall
is needed. A quick glance at Table 8.1, page 205, indicates that we could
use the safety index βHL = 3.7 , which corresponds to a risk2 for failure
in one year to be 1 per 10 000. Using this piece of information, we look
for the quantile z0.0001 . For a Gumbel-distributed variable with parameters
a∗ = 21.5 and b∗ = 50.9 we get the design criterion that the system should
manage s∗10000 = 249 mm rain fall during one day.

We turn next to uncertainty analysis of the design load. Using Eq. (10.17)
with standard deviation computed using Eq. (10.16), we find that with approx-
imately 95% confidence s10000 ≤ 249 + 1.64 · 23.6 = 295 mm. The confidence
level is achieved under the assumption that the Gumbel distribution is the
correct model for yearly maximal rain in one year. Now, in 1999 a catastro-
phe occurred with an accumulated rain in one day of 410 mm, causing around
50 000 deaths. The conclusion was that “the impossible had happened”.

Let us also re-estimate the design load, including the observed 1999 year
disaster. The hypothesis that c = 0 has to be rejected. The parameters of
the GEV distribution are now a∗ = 20.8 , b∗ = 48.6 , and c∗ = −0.34 and
D[C∗] ≈ 0.13 . Consequently, with high confidence we conclude that c �= 0 . In
addition, the deviance DEV= 15.2 > λ2

α/2 = 10.9 for α = 0.001 , showing that
GEV explains the data much better than the Gumbel distribution does. The
design load s10000 is now estimated to be 1344 mm, far above the observed
1999 rain. The delta method gives that with approximately 95% confidence
the bound for the design load is as high as 3175 mm.

The model error

Before the 1999 maximum was observed, there were no indications that the
Gumbel model was not correct and a natural question is why not always

2When designing sea walls in the Netherlands, a return period of 10 000 years
was considered (Example 2.13).
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use the GEV model to describe the variability of yearly maxima, instead of
assuming that c = 0 . Often in statistical practice, it is not recommended
to use more complicated models than needed to describe data adequately. In
the case studied here, including one more parameter c to the model would
not explain better the variability of data but made the design value more
uncertain causing additional costs to meet the required safety level. On the
other hand, using the GEV distribution as a model for the yearly maxima
instead of assuming that c = 0 is a way of including model uncertainty in the
analysis (see the following subsection for some more detailed discussions on
uncertainties in the design-load estimation).

Let us now compute s∗T using the GEV model estimated for the data from
the years 1951-1998, i.e. a∗ = 19.9 , b∗ = 49.2 , and c∗ = −0.16 . The design
load s∗10000 = 468 mm and, with approximately 95% confidence, it is smaller
than 1030 mm. Clearly, using the design load 468 mm, one could be better
prepared for the catastrophe that occurred 1999.

Remark 10.9. Coles and Pericchi proposed to use a Bayesian approach to
predict future rainfall. The model for Z conditionally that the parameters a ,
b , and c are known was a GEV distribution. Then they used suitable priors
for the parameters. (Seasonality was also included in their model.) The prior
density was then updated using the available observations. Since there are
some technical problems in finding the normalization constant in the updating
procedure, the so-called MCMC (Markov Chain Monte Carlo) procedure was
employed to get the posterior distribution for the parameters. The theory
behind the MCMC algorithm is beyond the scope of this book. The algorithm
is very useful in the Bayesian updating scheme when many parameters are
uncertain. �

10.3.4 Discussion on uncertainty in design-load estimates

As seen in Remark 10.8, the design load sT is a strictly decreasing function
of c , having large negative derivative for c < 0 . Consequently the uncer-
tainty in the value of parameter c will heavily influence the uncertainty of
sT (except the case when c is significantly positive). The main reason for
the uncertainty of c is the notorious lack of data. In practice, cases can be
found where 100-year design loads are estimated using less than 20 years of
measurements. Sometimes there are reliable observations for a period of about
50 years and seldom more than 100 years of reliable data are available. Note
that even if data for longer periods were available, new problems could ap-
pear, namely, changes in environment that would require more parameters to
model and hence the uncertainty may not be smaller. Our conclusion is that
the uncertainty of s∗T , for T > 100 years, is hard to avoid and should not be
neglected.

Since the confidence bounds for sT are extremely large, these are seldom
used as design values. Instead longer return periods T are used for definition
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of design loads. The dikes in the Netherlands should withstand a 10 000-year
sea-level and offshore platforms have to be designed so that a 10 000-year wave
is not hitting their decks. In the following example we demonstrate that the
design load with a return period of 10 000 years can with non-negligible prob-
ability have a return period of only 100 years.

Example 10.7. The difficulty in estimating the design load is illustrated by
the following experiment. Suppose the yearly maxima Zi are GEV distributed
with parameters (a, b, c) = (20, 50,−0.2) (the parameters are chosen to be
close to the ones valid for the Venezuela rain data). The 100-year and 1000-
year loads are found by Eq. (10.13) as s100 = 201 , s1000 = 348 (suitable
units).

Now suppose 50 yearly maxima have been observed from the distribution.
This is achieved by simulating 50 random numbers from GEV distribution
with the parameters. Next, one checks whether the Gumbel distribution fits
well the data and computes the estimate s∗T , T = 10 000 years.

The numerical experiment was repeated 1000 times in order to get an idea
of the uncertainty. The following result was found:

s∗10 000 was lower than s100 in about 5% of the cases

s∗10 000 was lower than s1000 in about 25% of the cases

Hence, the probability that “the impossible would happen” is non-negligible,
due to the huge uncertainty of the parameter c and the limited time of ob-
servation (50 years).

Finally, it is worth noting that in about 65% of the cases, the Gumbel
distribution fitted well the data (could not be rejected at 95%-confidence
level). �

The topic discussed in the last example has importance when evaluating
safety of a structure during its service time Ts , say. Assume that Ts is much
shorter than the return period T (typically Ts = 50 while T = 10 000 years);
then the probability that the load exceeds the design loading the service period
is close to Ts/T .

For example, if the service time Ts = 50 years while T = 10 000 years
then the chances of observing the 10 000-year load in 50 years is 1:200, i.e.
negligible, while if T = 100 years, the probability is about 1/2 (more precisely
1− exp(−0.5) = 0.39). Thus one should not be surprised in observing the 100
year-load in a 50-year period. The last example shows that even the design of
10 000-year load may be observed during such a period.

Problems

10.1. Consider the random variables Xi , i = 1, . . . , 5 , each of which is uniformly
distributed on (−1, 1) . Find an expression for the distribution of the random variable
Y = max(X1, . . . , X5) .
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10.2. Consider wind speeds of storms. Assume that the speed of the wind is varying
according to some unknown distribution. The maximum wind speed U during a
time interval, 30 minutes say, is often well modelled by a Gumbel distribution,
that is

FU (u) = exp
(
−e−(u−b)/a

)
,

where a > 0 and b are constants. Since wind speeds are positive, b will be so high
that the probability of obtaining negative values is negligible.

Assume that a storm lasts for 3 hours and that we measure the maximum
wind speed during these six 30-minute periods, resulting in the random variables
U1, U2, . . . , U6 . You may assume that U1, U2, . . . , U6 are independent.

(a) Give the distribution function for Umax = max(U1, . . . , U6) , expressed in terms
of FU (u) .

(b) Assume that a = 4 m/s. During a hurricane, the maximum wind speed was
at some places higher than 40 m/s. Give the value of b corresponding to a
probability of 50 % that the maximum wind speed will exceed 40 m/s during
3 hours. In other words, what is the value b such that the median value of Umax

is 40 m/s?

10.3. Consider the exponential distribution,

F (x) = 1 − e−x, x ≥ 0.

Use Eq. (10.4) with an = 1 and bn = ln n to prove that the limiting distribution of
the sample extremes is the Gumbel distribution.

10.4. In the following data set are found 19 observations of X , yearly maximum
of one-hour averages of concentration of sulphur dioxide SO2 (pphm), Long Beach,
California ([66]). The observations were recorded in 1956-1974.

47 41 68 32 27 43 20 27 25 18 33 40 51 55 40

55 37 28 34

A statistician decides after plotting in probability paper that a Gumbel distribution
might fit the annual maxima:

FX(x) = exp(−e−(x−b)/a), −∞ < x < ∞.

The parameters a and b are estimated by the ML method and estimates are returned
by statistical software as a∗ = 10.6 , b∗ = 31.9 .

(a) Estimate the 100-year one-hour average, x100 , i.e. the 0.01 quantile of X .
(b) For a Gumbel distributed r.v., one can show that the estimators A∗ and B∗

are asymptotically normally distributed. The covariance matrix is given by(
V(A∗) Cov(A∗, B∗)

Cov(A∗, B∗) V(B∗)

)
≈ (a∗)2

n

(
0.61 0.26
0.26 1.11

)
.
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Note that the estimates are correlated! Calculate the coefficient of correlation.
(c) Use the covariance matrix to find an approximative distribution of the estima-

tion error E = x100 − (B∗ + A∗ ln(100)) .
(d) Calculate an approximative confidence interval for x100 .

10.5. Starting from Eq. (10.13), derive the expression for the gradient ∇sT (a, b, c)
found in Remark 10.8.

10.6. Recall the example from Section 10.3.3, the situation with data from years
1951-1998. A software package returns the following GEV estimates and covariance
matrix:

a∗ = 19.8931, b∗ = 49.1592, c∗ = −0.1648,

Σ∗ =

(
7.0099 5.0433 0.0848
5.0433 11.2277 0.1791
0.0848 0.1791 0.0191

)
.

Use the delta method to compute a 95% upper bound for the 10 000-year design
load.

10.7. Consider a Weibull distributed r.v. X :

FX(x) = 1 − e−(x/a)c

, x > 0.

Show that Y = ln X is Gumbel distributed and find its scale parameter. (This fact
can be used when constructing test statistics for the Weibull distribution, see [24].)



A

Some Useful Tables

In the following pages, we first present a list of some common distributions
discussed in this book, including expressions for expectations and variances.
Thereafter follow:

Table 1. A table of the standard normal distribution, N(0, 1) .
Table 2. A table with quantiles for Student’s t distribution.
Table 3. A table with quantiles for the χ2 distribution.
Table 4. Coefficient of variation for a Weibull distributed random variable.
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Table 1. Standard-normal distribution function

If X ∈ N(0, 1) , then P(X ≤ x) = Φ(x) , where Φ(·) is a non-elementary
function given by

Φ(x) =
∫ x

−∞

1√
2π

e−ξ2/2 dξ.

This table gives function values of Φ(x) . For negative values of x , use that
Φ(−x) = 1 − Φ(x) .

x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.67600 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
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Table 2. Quantiles of Student’s t-distribution

If X ∈ t(n) , then the α quantile tα(n) is defined by

P
(
X > tα(n)

)
= α, 0 < α < 1.

This table gives the α quantile tα(n) . For values of α ≥ 0.9 , use that

t1−α(n) = −tα(n), 0 < α < 1.

n α
0.1 0.05 0.025 0.01 0.005 0.001 0.0005

1 3.078 6.314 12.706 31.821 63.657 318.309 636.619
2 1.886 2.920 4.303 6.965 9.925 22.327 31.599
3 1.638 2.353 3.182 4.541 5.841 10.215 12.924
4 1.533 2.132 2.776 3.747 4.604 7.173 8.610
5 1.476 2.015 2.571 3.365 4.032 5.893 6.869
6 1.440 1.943 2.447 3.143 3.707 5.208 5.959
7 1.415 1.895 2.365 2.998 3.499 4.785 5.408
8 1.397 1.860 2.306 2.896 3.355 4.501 5.041
9 1.383 1.833 2.262 2.821 3.250 4.297 4.781
10 1.372 1.812 2.228 2.764 3.169 4.144 4.587
11 1.363 1.796 2.201 2.718 3.106 4.025 4.437
12 1.356 1.782 2.179 2.681 3.055 3.930 4.318
13 1.350 1.771 2.160 2.650 3.012 3.852 4.221
14 1.345 1.761 2.145 2.624 2.977 3.787 4.140
15 1.341 1.753 2.131 2.602 2.947 3.733 4.073
16 1.337 1.746 2.120 2.583 2.921 3.686 4.015
17 1.333 1.740 2.110 2.567 2.898 3.646 3.965
18 1.330 1.734 2.101 2.552 2.878 3.610 3.922
19 1.328 1.729 2.093 2.539 2.861 3.579 3.883
20 1.325 1.725 2.086 2.528 2.845 3.552 3.850
21 1.323 1.721 2.080 2.518 2.831 3.527 3.819
22 1.321 1.717 2.074 2.508 2.819 3.505 3.792
23 1.319 1.714 2.069 2.500 2.807 3.485 3.768
24 1.318 1.711 2.064 2.492 2.797 3.467 3.745
25 1.316 1.708 2.060 2.485 2.787 3.450 3.725
26 1.315 1.706 2.056 2.479 2.779 3.435 3.707
27 1.314 1.703 2.052 2.473 2.771 3.421 3.690
28 1.313 1.701 2.048 2.467 2.763 3.408 3.674
29 1.311 1.699 2.045 2.462 2.756 3.396 3.659
30 1.310 1.697 2.042 2.457 2.750 3.385 3.646
40 1.303 1.684 2.021 2.423 2.704 3.307 3.551
60 1.296 1.671 2.000 2.390 2.660 3.232 3.460
120 1.289 1.658 1.980 2.358 2.617 3.160 3.373
∞ 1.282 1.645 1.960 2.326 2.576 3.090 3.291
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Table 3. Quantiles of the χ2 distribution

If X ∈ χ2(n) , then the α quantile χ2
α(n) is defined by

P
(
X > χ2

α(n)
)

= α, 0 < α < 1

This table gives the α quantile χ2
α(n) .

n α

0.9995 0.999 0.995 0.99 0.975 0.95 0.05 0.025 0.01 0.005 0.001 0.0005
1 — — < 10−2 < 10−2 < 10−2 < 10−2 3.841 5.024 6.635 7.879 10.83 12.12
2 < 10−2 < 10−2 0.0100 0.0201 0.0506 0.1026 5.991 7.378 9.210 10.60 13.82 15.20
3 0.0153 0.0240 0.0717 0.1148 0.2158 0.3518 7.815 9.348 11.34 12.84 16.27 17.73
4 0.0639 0.0908 0.2070 0.2971 0.4844 0.7107 9.488 11.14 13.28 14.86 18.47 20.00
5 0.1581 0.2102 0.4117 0.5543 0.8312 1.145 11.07 12.83 15.09 16.75 20.52 22.11
6 0.2994 0.3811 0.6757 0.8721 1.237 1.635 12.59 14.45 16.81 18.55 22.46 24.10
7 0.4849 0.5985 0.9893 1.239 1.690 2.167 14.07 16.01 18.48 20.28 24.32 26.02
8 0.7104 0.8571 1.344 1.646 2.180 2.733 15.51 17.53 20.09 21.95 26.12 27.87
9 0.9717 1.152 1.735 2.088 2.700 3.325 16.92 19.02 21.67 23.59 27.88 29.67
10 1.265 1.479 2.156 2.558 3.247 3.940 18.31 20.48 23.21 25.19 29.59 31.42
11 1.587 1.834 2.603 3.053 3.816 4.575 19.68 21.92 24.72 26.76 31.26 33.14
12 1.934 2.214 3.074 3.571 4.404 5.226 21.03 23.34 26.22 28.30 32.91 34.82
13 2.305 2.617 3.565 4.107 5.009 5.892 22.36 24.74 27.69 29.82 34.53 36.48
14 2.697 3.041 4.075 4.660 5.629 6.571 23.68 26.12 29.14 31.32 36.12 38.11
15 3.108 3.483 4.601 5.229 6.262 7.261 25.00 27.49 30.58 32.80 37.70 39.72
16 3.536 3.942 5.142 5.812 6.908 7.962 26.30 28.85 32.00 34.27 39.25 41.31
17 3.980 4.416 5.697 6.408 7.564 8.672 27.59 30.19 33.41 35.72 40.79 42.88
18 4.439 4.905 6.265 7.015 8.231 9.390 28.87 31.53 34.81 37.16 42.31 44.43
19 4.912 5.407 6.844 7.633 8.907 10.12 30.14 32.85 36.19 38.58 43.82 45.97
20 5.398 5.921 7.434 8.260 9.591 10.85 31.41 34.17 37.57 40.00 45.31 47.50
21 5.896 6.447 8.034 8.897 10.28 11.59 32.67 35.48 38.93 41.40 46.80 49.01
22 6.404 6.983 8.643 9.542 10.98 12.34 33.92 36.78 40.29 42.80 48.27 50.51
23 6.924 7.529 9.260 10.20 11.69 13.09 35.17 38.08 41.64 44.18 49.73 52.00
24 7.453 8.085 9.886 10.86 12.40 13.85 36.42 39.36 42.98 45.56 51.18 53.48
25 7.991 8.649 10.52 11.52 13.12 14.61 37.65 40.65 44.31 46.93 52.62 54.95
26 8.538 9.222 11.16 12.20 13.84 15.38 38.89 41.92 45.64 48.29 54.05 56.41
27 9.093 9.803 11.81 12.88 14.57 16.15 40.11 43.19 46.96 49.64 55.48 57.86
28 9.656 10.39 12.46 13.56 15.31 16.93 41.34 44.46 48.28 50.99 56.89 59.30
29 10.23 10.99 13.12 14.26 16.05 17.71 42.56 45.72 49.59 52.34 58.30 60.73
30 10.80 11.59 13.79 14.95 16.79 18.49 43.77 46.98 50.89 53.67 59.70 62.16
40 16.91 17.92 20.71 22.16 24.43 26.51 55.76 59.34 63.69 66.77 73.40 76.09
50 23.46 24.67 27.99 29.71 32.36 34.76 67.50 71.42 76.15 79.49 86.66 89.56
60 30.34 31.74 35.53 37.48 40.48 43.19 79.08 83.30 88.38 91.95 99.61 102.7
70 37.47 39.04 43.28 45.44 48.76 51.74 90.53 95.02 100.4 104.2 112.3 115.6
80 44.79 46.52 51.17 53.54 57.15 60.39 101.9 106.6 112.3 116.3 124.8 128.3
90 52.28 54.16 59.20 61.75 65.65 69.13 113.1 118.1 124.1 128.3 137.2 140.8
100 59.90 61.92 67.33 70.06 74.22 77.93 124.3 129.6 135.8 140.2 149.4 153.2
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Table 4. Coefficient of variation of a Weibull distribution

The distribution function is given by

FX(x) = 1 − e−(x/a)c

, x > 0,

and then the coefficient of variation is

R(X) =

√
Γ (1 + 2/c) − Γ 2(1 + 1/c)

Γ (1 + 1/c)
.

c Γ (1 + 1/c) R(X)
1.00 1.0000 1.0000
2.00 0.8862 0.5227
2.10 0.8857 0.5003
2.70 0.8893 0.3994
3.00 0.8930 0.3634
3.68 0.9023 0.3025
4.00 0.9064 0.2805
5.00 0.9182 0.2291
5.79 0.9259 0.2002
8.00 0.9417 0.1484

10.00 0.9514 0.1203
12.10 0.9586 0.1004
20.00 0.9735 0.0620
21.80 0.9758 0.0570
50.00 0.9888 0.0253
128.00 0.9956 0.0100



Short Solutions to Problems

Problems of Chapter 1

1.1

(a) Possible values: X = 0, 1, 2, 3 .
(b) P(X = 0) = (1 − 0.5) · (1 − 0.8) · (1 − 0.2) = 0.08 .

P(X = 1) = 0.5·(1−0.8)·(1−0.2)+(1−0.5)·0.8·(1−0.2)+(1−0.5)·(1−0.8)·0.2 =
0.42 .

(c) P(X < 2) = P(X = 0) + P(X = 1) = 0.08 + 0.42 = 0.50 .

1.2 A ∪ B = A ∪ (Ac ∩ B), B = (A ∩ B) ∪ (Ac ∩ B) . The events A and Ac ∩ B
are excluding, and so are A ∩ B and Ac ∩ B . Hence P(A ∪ B) = P(A) + P(Ac ∩
B), P(B) = P(A ∩ B) + P(Ac ∩ B) . Subtraction gives the result. Alternatively:
Deduce from the so-called Venn diagrams.

1.3 P(A ∩ B) = [independence] = P(A)P(A) > 0 , hence P(A ∩ B) 
= 0 and the
events are not excluding.

1.4 P(A) = p , P(Ac) = 1−p . Since A∩Ac = ∅ , P(A∩Ac) = 0 . But P(A)P(Ac) =
p(1 − p) > 0 if p > 0 . Hence the events are not independent. If p = 0 then the
events are independent.

1.5

(a)
(
12
3

)
0.0530.959 = 0.017.

(b) 0.9512 = 0.54 .

1.6

(a) 57/(57 + 53) = 57/110 .
(b) 32/50 .
(c) P(“Vegetarian”) = 57

110
, P(“Woman”) = 50

110
,

P(“Vegetarian” ∩ “Woman”) = 32
110

. But 57
110

· 50
110


= 32
110

, hence the events are
dependent.

1.7

p = P(“At least one light functions after 1000 hours”)
= 1 − P(“No light functions after 1000 hours”) = 1 − (1 − 0.55)4 = 0.96.
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1.8 P(“Circuit functions”) = 0.8 · 0.8 + 0.8 · 0.2 + 0.2 · 0.8 = 0.96 . Alternatively,
reasoning with complementary event: 1 − 0.2 · 0.2 = 0.96 .

1.9 A = “Lifetime longer than one year”, B = “Lifetime longer than five years”.
P(B|A) = P(A ∩ B)/P(A) = P(B)/P(A) = 1/9 .

1.10 Law of total probability: 0.6 · 0.04 + 0.9 · 0.01 + 0.01 · 0.95 = 0.024 + 0.009 +
0.0095 = 0.0425 .

1.11 Let N = “Number of people with colour blindness”. Then N ∈ Bin(n, p) ,
P(N > 0) = 1−P(N = 0) = 1− (1−p)n . Since for p close to zero, 1−p ≈ exp(−p) ,
we have P(N > 0) ≈ 1− exp(−np) ; hence n ≥ 75 . (Alternatively, p is close to zero,
hence N ∈

∼
Po(np) , etc.)

1.12 N = “Number of erroneous filters out of n ” . Model: N ∈ Bin(n, p) , where
n = 200 , p = 0.01 . As n > 10 , p < 0.1 , Poisson approximation is used: N ∈ Po(np) ,
i.e. N ∈ Po(0.2) . P(N > 2) = 1−P(N ≤ 2) ≈ 1− (e−0.2 + 0.2 · e−0.2 + 0.22

2
e−0.2) =

0.0011.

Problems of Chapter 2

2.1

(a) P(X ≤ 2) = P(X = 0) + P(X = 1) + P(X = 2) = e−3 30

0!
+ e−3 31

1!
+ e−3 32

2!
=

17
2

e−3 = 0.423

(b) P(0 ≤ X ≤ 1) = P(X = 0) + P(X = 1) = e−3 30

0!
+ e−3 31

1!
= 4e−3 = 0.199

(c) P(X > 0) = 1 − P(X ≤ 0) = 1 − P(X = 0) = 1 − e−3 30

0!
= 0.950

(d)

P(5 ≤ X ≤ 7 |X ≥ 3) =
P(5 ≤ X ≤ 7 ∩ X ≥ 3)

P(X ≥ 3)
=

P(5 ≤ X ≤ 7)

P(X ≥ 3)
=

=
P(5 ≤ X ≤ 7)

1 − P(X ≤ 2)
=

e−3 ·
(

35

5!
+ 36

6!
+ 37

7!

)
1 − 17

2
e−3

= 0.300.

2.2

(a) By independence, p = 0.926 · 0.08 = 0.049 (see also geometric distribution).
(b) 1/0.08 = 12.5 months.

2.3 Bayes’ formula gives P(A|B) = 0.33 .

2.4 Introduce the events A1 = “Fire-emergency call from industrial zone”, A2 = “Fire-
emergency call from housing area”, F = “Fire at arrival”. Further, P(A1) = 0.55 ,
P(A2) = 0.45 , P(F |A1) = 0.05 , P(F |A2) = 0.90 . Thus

P(A1 |F ) =
P(F |A1)P(A1)

P(F )
=

P(F |A1)P(A1)

P(F |A1)P(A1) + P(F |A2)P(A2)

=
0.05 · 0.55

0.05 · 0.55 + 0.90 · 0.45
= 0.064

2.5 Introduce A1 = “Dot sent” , A2 = “Dash sent” , B = “Dot received” . From the
text, P(B|A2) = 1/10 , P(Bc|A1) = 1/10 . Asked for: P(A1|B) .



Short Solutions to Problems 259

Odds for A1 , A2 : qprior
1 = 3 , qprior

2 = 4 . Posterior odds, given B is true:
qpost
1 = (1−1/10)·3 , qpost

2 = (1/10)·4 . Hence P(A1|B) = qpost
1 /(qpost

1 +qpost
2 ) = 0.87 .

2.6

(a) Solution 1: There are four possible gender sequences: BB, BG, GB, and GG.
All sequences are equally likely. We know that there is at least one girl, hence
the sequence BB is eliminated and three cases remain. The probability that the
other child is also a girl is hence 1/3 .
Solution 2: The odds for the four gender combinations are equal: qprior

i = 1 .
A = “The Smiths tell you that they have 2 children and at least one is a girl”.
We wish to find P(GG |A) . Since P(A|BB) = 0 , P(A|BG) = P(A|GB) =
P(A|GG) = 1 , the posterior odds given A is true are 0 : 1 : 1 : 1 . Hence
P(GG|A) = 1/3 .

(b) A = “You see the Smiths have a girl”. P(A|BB) = 0 , P(A|BG) = P(A|GB) =
1/2 , P(A|GG) = 1 . Thus the posterior odds are 0 : 1/2 : 1/2 : 1 and hence

P(GG|A) =
qpost
4

qpost
1 + · · · + qpost

4

=
1

2
.

2.7 A = “A person is infected” , B = “Test indicates person infected” .
Bayes’ formula: P(A|B) = 0.99·0.0001

0.99·0.0001+0.001·(1−0.0001)
≈ 0.09 .

2.8 We have

P(3 leakages |Corr) =
(
(λCorr5)3/3!

)
exp(−λCorr5) = 0.05

and similarly

P(3 leakages |Thermal) = 0.20, P(3 leakages |Other) = 1.7 · 10−7.

Hence the posterior odds are qpost
Corr = 4 · 0.05 = 0.2 , qpost

Therm = 1 · 0.20 = 0.2 ,
qpost
Other = 95 · 1.7 · 10−7 = 2 · 10−5 . In other words, the odds are roughly 1:1:0. The

two reasons for leakage are now equally likely.

2.9 p = P(“A certain crack is detected”) , (p = 0.8); N =the number of cracks
along the distance inspected; K =the number of detected cracks along the distance
inspected.

(a) P(K = 0 |N = 2) = (1 − p)(1 − p) = 0.04 .
(b) Since P(N = 0) + P(N = 1) + P(N = 2) = 1 , there are never more than two

cracks. Law of total probability: P(K = 0) = P(K = 0|N = 0)P(N = 0)+P(K =
0|N = 1)P(N = 1) + P(K = 0|N = 2)P(N = 2) = P(N = 0) + (1 − p)P(N =
1) + (1 − p)2P(N = 2) = 0.42 .

(c) Bayes’ formula: P(N = 0|K = 0) = P(K = 0|N = 0)P(N = 0)/P(K = 0) =
1 · 0.3/0.424 = 0.71 .

2.10

(a) 1− (1− p)24 000 ≈ 1− (1− 24 000 · p) = 24 000p = 1.2 · 10−3 , where p = 5 · 10−8 .
(b) On average, n = 1/p street crossings to the first accident. One year has 6 · 200

street crossings, giving a return period of 1.7 · 104 years.

2.11

(a) λ ≈ 5/10 = 1/2 [year−1 ]
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(b) T ≈ 2 [years]
(c) Pt(A) ≈ 1

2
· 1

12
= 1

24
and hence p = 1 − Pt(A) ≈ 23/24 .

2.12 Introduce A1 , A2 : fire ignition in hospital No. 1 and No. 2, respectively. Asked
for:

p = P(NA1(t) > 0 ∩ NA2(t) > 0) = Pt(A1) · Pt(A2),

t = 1/12 year. By Eq. (2.11),

p =

[
1 − exp

( 1

12
exp(−7.1 + 0.75 · ln(6000))

)]
·
[
1 − exp

( 1

12
exp(−7.1 + 0.75 · ln(7500))

)]
= 0.0025.

2.13

(a) λA ≈ (48 + 26 + 44)/3 = 39.3 year−1 .
(b) N ∈ Po(m) , m = λA ·P(B) · 1/12 . Since P(B) ≈ (37 + 41 + 49)/(1108 + 1089 +

1192) = 0.0345 , we find Pt(A ∩ B) = 1 − exp(−m) ≈ 0.11 .

2.14

(a) The factors given lead to the following intensities of fires in the town: λ1 = 2.5 ,
λ2 = 5 , λ3 = 7.5 , λ4 = 10 (year−1 ). Choose a uniform prior odds: q0

i = 1 ,
i = 1, . . . , 4 .

(b) C = “No fire start during two months” . Poisson assumption: P(C|Λ = λi) =
e−λi/6 and hence P(C|Λ = λ1) = 0.66 , P(C|Λ = λ2) = 0.43 , P(C|Λ = λ3) =

0.27 , P(C|Λ = λ4) = 0.19 . The posterior odds are given as qpost
i = P(C|Λ =

λi)q
0
i and thus qpost

1 = 0.66 , qpost
2 = 0.43 , qpost

3 = 0.27 , qpost
4 = 0.19 .

(c) Theorem 2.2 yields Ppost(Λ = λi) = qpost
i /

∑
j
qpost

j , giving 0.43, 0.28, 0.17,
0.12. B = “No fire starts next month” . With P(B|Λ = λi) = exp(−λi t) , t =
1/12 , the law of total probability gives:

Ppost(B) =
∑

P(B|Λ = λi)P
post(Λ = λi) = 0.68.

Problems of Chapter 3

3.1

(a) e−0.2·3 = 0.549 .
(b) E[T ] = 1/0.2 = 5 (hours).

3.2 Alternatives (i) and (iii). The function in (ii) does not integrate to one, the
function in (iv) takes negative values.

3.3 x0.95 = 10(− ln(0.95))1/5 = 5.52.

3.4 FX(x) = exp(−e−(x−b)/a) ⇒ FY (y) = P(eX ≤ y) = P(X ≤ ln y) = FX(ln y) =
exp(−y−1/aeb/a) , y > 0 .
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3.5

(a) FY (y) =

{
1 − e−y2/a2

y > 0

0, y ≤ 0
.

(b) fY (y) =
d

dy
FY (y) =

{
2

a2 · ye−y2/a2
y > 0

0, y ≤ 0
.

3.6 E[T ] =
∫∞
0

u fT (u) du = [−u(1 − FT (u))]∞0 +
∫∞
0

(1 − FT (u)) du. We show
that the first term is equal to zero. Consider t(1 − FT (t)) = t

∫∞
t

fT (u)du <∫∞
t

ufT (u) du . Since E[T ] exists,
∫∞

t
ufT (u) du → 0 as t → 0 , thus t(1−FT (t)) →

0 .

3.7 E[Y ] =
∫∞
0

e−y2/a2
dy = a

2

∫∞
−∞ e−u2

du = a
2

√
π .

3.8

(a) x0.50 = 0 by symmetry of the pdf around zero.
(b)

∫∞
−∞

|x|
π(1+x2)

dx = ∞ .

3.9 x0.01 = b − a ln(− ln(1 − 0.01)) = 67 m3/s

3.10 Table: x0.01 = λ0.01 = 2.33 ; x0.025 = λ0.025 = 1.96 , and x0.95 = −x0.05 =
−λ0.05 = −1.64 .

3.11 Table: χ2
0.001(5) = 20.52 ; χ2

0.01(5) = 15.09 ; χ2
0.95(5) = 1.145 .

3.12

(a) P(X > 200) = 1 − Φ( 200−180
7.5

) = 1 − Φ(2.67) = 0.0038 .
(b) Use Eq. (3.11): x0.01 = 180 + 7.5λ0.01 = 197.5 . Thus 1% of the population of

men is longer than 197.5 cm.

3.13 Table in appendix gives for the gamma distribution E[X] = 10/2 = 5 , V[X] =
10/22 = 2.5 . E[Y ] = 3E[X] − 5 = 10 , V[Y ] = 32V[X] = 22.5 .

3.14 E[X] = m , D[X] = m ; hence R[X] = 1 .

Problems of Chapter 4

4.1

(a) E[M∗
1 ] = m , E[M∗

2 ] = 3m/2 , E[M∗
3 ] = m . Thus M∗

1 and M∗
3 are unbiased.

(b) V[M∗
1 ] = σ2/2 , V[M∗

2 ] = 5σ2/4 , V[M∗
3 ] = σ2/4 . Thus M∗

3 has the smallest
variance (and is unbiased).

4.2

(a) m∗ = 1
n

∑70

i=1
ln xi = 0.99 , (σ2)∗ = 1

n−1

∑70

i=1
(ln xi−m∗)2 = 0.0898 , σ∗ = 0.3 .

(b) We have 1/1000 = P(X > h1000) = 1 − Φ((ln h1000 − m)/σ) , thus λ0.001 =
(ln h1000−m)/σ ⇐⇒ h1000 = exp(m+σλ0.001) ⇒ h∗

1000 = exp(m∗+σ∗λ0.001) =
6.8 m.
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4.3

(a) Log-likelihood function and its derivative:

l(p) = k ln p + (n − k) ln(1 − p) + ln

(
n

k

)
l̇(p) =

k

p
− n − k

1 − p

Solving l̇(p) = 0 yields the ML estimate p∗ = k/n , which can be shown to
maximize the function.

(b)

l̈(p) = − k

p2
− n − k

(1 − p)2
= −k(1 − p)2 + (n − k)p2

p2(1 − p)2

= −k − 2kp + np2

p2(1 − p)2

Now, with p∗ = k/n , we find l̈(p∗) = −n/(p∗(1 − p∗)) and hence (σ2
E)∗ =

p∗(1 − p∗)/n .

4.4

(a) L(a) =
∏n

i=1
f(xi; a) =

∏n

i=1
2xi
a2 e

− xi
2

a2 . Log-likelihood function:

l(a) = ln L(a) =

n∑
i=1

ln
(2xi

a2
e
− xi

2

a2
)

=

n∑
i=1

(
ln 2xi − 2 ln a − xi

2

a2

)
with derivative

l̇(a) = −2n

a
+ 2

n∑
i=1

xi
2

a3
.

Hence a∗ =
√∑n

i=1
xi

2/n = 2.2 .
(b) Since

l̈(a) =
2n

a2
− 6

a4

∑
x2

i

we find l̈(a∗) = −4n/(a∗)2 and hence (σ2
E)∗ = (a∗)2/4n = 0.15 . An asymptotic

0.9 interval is then

[2.2 − 1.64 ·
√

0.15, 2.2 + 1.64 ·
√

0.15] = [1.56, 2.84]

(c) [1.72, 3.28] .

4.5 Tensile strength X ∈ N(m, 9) .

(a) m∗ = 20 , n = 9 , (σ2
E)∗ = σ2/n = 1 ; thus with 95 % confidence m ∈

[
m∗ ±

λ0.05σ
∗
E
]

= [18.4, 21.6] .
(b) 2 · λ0.05 · σ/

√
9 = 2 · λ0.025 · σ/

√
n ⇒ n = 9(λ0.025/λ0.05)

2 = 12.8 . Thus, the
number must be n = 13 and one needs 13 − 9 = 4 observations more.



Short Solutions to Problems 263

4.6 Q = 0.024 , χ2
0.05(1) = 3.84 . Do not reject the hypothesis about a fair coin.

4.7

(a) X ∈ Bin(3, 1/4) .
(b) Since X ∈ Bin(3, 1/4) , P(X = 0) = (3/4)3 , P(X = 1) = 3 · (1/4) · (3/4)2 =

27/64 , P(X = 2) = 9/64 , P(X = 3) = 1/64 . It follows that Q = 11.5 and since
Q > χ2

0.01(4 − 1) = 11.3 we reject the hypothesis. (It seems that the frequency
of getting 3 spades is too high.)

4.8 Minimize g(a) = V[Θ∗
3 ] = a2σ2

1 + (1− a)2σ2
2 ; g′(a) = 2aσ2

1 − 2(1− a)σ2
2 = 0 ⇔

a = σ2
2/(σ2

1 + σ2
2) (local minimum since g′′(a) = 2σ2

1 + 2σ2
2 ).

4.9

(a) m∗ = x̄ = 33.1 .
(b) E ∈

∼
N(0, (σ2

E)∗) , where (σ2
E)∗ = x̄/n . Hence [ 29.5, 36.7 ] .

(c) Eq. (4.28) gives

χ2
0.975(2 · 331) = 662

(√
2

9 · 662
(−1.96) + 1 − 2

9 · 662

)3

= 592.6.

In a similar manner follows χ2
0.025(2 ·331+2) = 737.3 . Now Eq. (4.29) gives the

interval [χ2
0.975(662)/20, χ2

0.025(664)/20] = [29.6, 36.9] .

4.10

(a) Since high concentrations are dangerous, is to find a lower bound of interest.
(b) m∗ = x̄ = 9.0 ; n = 12 ; σ∗

E =
√

s2
n/n = 6.15/

√
12 ; α = 0.05 .

Since with approximate confidence 1 − α , m ≥ x̄ − λασ∗
E , we find m ≥ 6.0 .

4.11 The interval presented by B is wider; hence, B used a higher confidence level
(1 − α = 0.95) as opposed to A (1 − α = 0.90).

4.12

(a) There are r = 9 classes in which the n = 55 observations are distributed as
1, 7, 10, 6, 8, 8, 6, 5, 4; m∗ = 334/55 = 6.1 . Further, p∗

1 = exp(−m∗)(1 +
m∗ + (m∗)2/2) = 0.0577 , p∗

2 = exp(−m∗) (m∗)3/3! = 0.0848 , p∗
3 = 0.1294 ,

p∗
4 = 0.1579 , p∗

5 = 0.1605 , p∗
6 = 0.1399 , p∗

7 = 0.1066 , p∗
8 = 0.0723 , p∗

9 =
1−∑8

i=1
p∗

i = 0.0909 . One finds Q = 5.21 which is smaller than χ2
0.05(r−1−1) =

14.07 . Hence do not reject hypothesis about Poisson distribution.
(b) With σ∗

E =
√

m∗/55 = 0.33 and λ0.05 = 1.64 it follows that with approximate
confidence 0.95, m ≤ m∗ + λ0.05σ

∗
E = 6.64 .

Problems of Chapter 5

5.1

(a) P(X = 2, Y = 3) = [independence] = P(X = 2)P(Y = 3) = 0.60 · 0.25 = 0.15 .
(b) P(X ≤ 2, Y ≤ 3) = [independence] = P(X ≤ 2)P(Y ≤ 3) = 0.80 · 0.75 = 0.60 .
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5.2 Multinomial probability: 5!
3!1!1!

0.733 · 0.20 · 0.07 = 0.11 .

5.3

(a) Using multinomial probabilities (or independence) pXA,XB(0, 0) = (1 − pA −
pB)2 = 0.16 , pXA,XB(0, 1) = 2pB(1 − pA − pB)2 = 0.20 . pXA,XB(1, 0) = 0.28 ,
pXA,XB(1, 1) = 0.175 , pXA,XB(0, 2) = 0.0625 , pXA,XB(2, 0) = 0.1225 .

(b) XA ∈ Bin(2, pA) , XB ∈ Bin(2, pB) . Use of formulae for mean and variance for
binomial variables gives the results:

E[XA] = 0.70, E[X2
A] = 2p2

A + 2pA = 0.945,

E[XB] = 2pB = 0.50, E[X2
B] = 2p2

B + 2pB = 0.625.

E[XAXB] =
∑

xAxBpxAxB(xAxB) = 1 · 1 · p(1, 1) = 0.175 .
V[XA] = E[X2

A] − (E[XA])2 = 0.455 . V[XB] = E[X2
B] − (E[XB])2 = 0.375 .

Cov[XA, XB] = E[XAXB] − E[XA]E[XB] = −0.175 . ρ(XA, XB) =
Cov[XAXB]√
V[XA]V[XB]

= −0.42 .

5.4

(a) Marginal distributions by Eq. (5.2):

j 1 2 3
pj 0.10 0.35 0.55

k 1 2 3
pk 0.20 0.50 0.30

(b) P(Y = 3|X = 2) = P(X = 2, Y = 3)/P(X = 2) = 0.2/0.35 = 0.57 .
(c) The probability that give two interruption, the expert is called three times.

5.5
∫ 0.3

x=0

∫ 0.4

y=0
fX,Y (x, y) dxdy = 0.12 .

5.6 E[2X + 3Y ] = 2E[X] + 3E[Y ] = 2 · 7
2

+ 3 · 6
4

= 11.5 .

5.7 V[N1] = 4.2, V[N2] = 2.5, Cov[N1, N2] = 0.85 ⇒
V[N1 − N2] = V[N1] + V[N2] − 2Cov[N1, N2] = 5 .

5.8

(a) E[Y1] = E[Y2] = 0 , V[Y1] = 1 , V[Y2] = �2V[X1] + (1 − �2)V[X2] = 1 ,
Cov[Y1, Y2] = E[Y1 Y2]−E[Y1]E[Y2] , where E[Y1Y2] = �E[X2

1 ]+
√

1 − �2E[X1X2] =
� ; since here E[X1 · X2] = E[X1]E[X2] = 0 . Hence Cov[Y1, Y2] = � and
ρY1 Y2 = � .

(b) (Y1, Y2) ∈ N(0, 0, 1, 1, �) and hence

fY1,Y2(y1, y2) =
1

2π
√

1 − �2
e
− 1

2(1−�2)
(y2

1+y2
2−2�y1y2)

.

5.9

(a) FX|X>0(t) = P(X≤t∩X>0)
P(X>0)

= FX (t)−FX (0)
1−FX (0)

, t > 0 .
(b) FX(x) = Φ(x−m

σ
) . From (a) it follows, using 1 − Φ(−m/σ) = Φ(m/σ) , that

FT (t) = P(X ≤ t |X > 0) =
Φ( t−m

σ
)+Φ( m

σ
)−1

Φ( m
σ

)
, t > 0 .

(c) Differentiating the distribution function in (b) yields

fT (t) =
1
σ

Φ′( t−m
σ

)

Φ( m
σ

)
= 1

Φ(m/σ)
· 1

σ
√

2π
e−(t−m)2/2σ2

, t > 0 .
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5.10

P(X = k |X + Y = n) =
P(X = k, X + Y = n)

P(X + Y = n)
=

P(X = k, Y = n − k)

P(X + Y = n)

=
P(X = k)P(Y = n − k)

P(X + Y = n)
=

e−m1mk
1

k!
· e−m2mn−k

2
(n−k)!

e−(m1+m2)(m1+m2)n

n!

=

(
n

k

)(
m1

m1 + m2

)k (
1 − m1

m1 + m2

)n−k

,

i.e. the probability-mass function for Bin(n, m1
m1+m2

) .

5.11

P(X = x) =

∞∑
y=0

P(X = x|Y = y)P(Y = y) =

∞∑
y=x

[(
y

x

)
px(1 − p)y−x

][
e−mmy

y!

]

=
(mp)xe−m

x!

∞∑
y=x

((1 − p)m)y−x

(y − x)!
=

(mp)xe−m

x!

∞∑
k=0

((1 − p)m)k

k!

=
(mp)xe−m

x!
e(1−p)m =

(mp)x

x!
e−mp.

Hence, X ∈ Po(mp) and E[X] = mp .

Problems of Chapter 6

6.1 a = b = 1 ⇒ f(θ) = cθ1−1(1 − θ)1−1 = c, 0 < θ < 1 , and hence with c = 1 ,
Θ ∈ U(0, 1) .

6.2 a = 1 ⇒ f(θ) = cθ1−1e−bθ = ce−bθ, θ ≥ 0 , and hence, for c = b , Θ is an
exponentially distributed r.v. with expectation 1/b .

6.3 Let the intensity of imperfections be described by the r.v. Λ .

(a) E[Λ] = 1/100 km−1 .
(b) Gamma(13, 600) .
(c) E[Λ] = 13/600 = 0.022 [km−1 ].

6.4

(a) Λ ∈
∼

N(λ∗, (σ2
E)∗) , where λ∗ = n/

∑
ti , (σ2

E)∗ = (λ∗)2/n = n/(
∑

ti)
2 . For the

data, λ∗ = 0.0156 , σ∗
E = 0.0032 , hence Λ ∈

∼
N(0.0156, 0.00322) .

(b) Let t = 24 . Since P = exp(−Λt) and −Λt ∈ N(−0.0156 · t, (0.0032 · t)2) , P is
lognormally distributed and

E[P ] = exp(−24 · 0.0156 + (24 · 0.0032)2/2) ≈ exp(−24 · 0.0156) = 0.69,

i.e. the same as in the frequentistic approach, P = exp(−λ∗t) .
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6.5

(a) For example, one has called once and waited for 15 min, got no answer, and
then rang off immediately.

(b) Gamma(4, 32) .
(c) 4/32 = 1/8 = 0.125 min−1 .
(d)

Ppred(T > t) = E[e−Λt] =

∫ ∞

0

e−λ t fpost(λ) dλ =
324

Γ (4)

∫ ∞

0

e−λtλ3e−32λ dλ

=
324

Γ (4)

∫ ∞

0

λ3 e−λ(32+t) dλ =
(

32

32 + t

)4

Thus P(T > 1) = 0.88 , P(T > 5) = 0.56 , P(T > 10) = 0.34 .

6.6

(a) p∗ = 5/5 = 1
(b) Posterior distribution: Beta(6, 1) .
(c) A = “The man will win in a new game” . Since P(A|P = p) = p , Ppred(A) =

E[P ] = 6/7 .

6.7

(a) Dirichlet(1,1,1)
(b) Dirichlet(79,72,2)
(c) 72/153 = 0.47 .

6.8

(a) Λ ∈ Gamma(a, b) ; R[Λ] = 2 yields a = 1/4 and since a/b = 1/4 , we find
Λ ∈ Gamma(1/4, 1) . Predictive probability: E[Λ]t = 1

4
· 1

2
= 1/8 = 0.125 .

(b) Updating the distribution in (a) yields Λpost ∈ Gamma(5/4, 3) . Predictive prob-
ability:

E[Λ]t =
5

4
· 1

3
· 1

2
=

5

24
= 0.21

(about twice as high as in (a)).

6.9 With t = 1/52 , p = (10.25/(10.25 + 1/52))244.25 = 0.63 . The approximate
predictive probability is 1 − (244.25/10.25)/52 = 0.54 .

6.10 Since fT (t) = λ exp(−λt) , the likelihood function is L(λ) = λn exp(−λ
∑n

i=1
ti) .

If fprior(λ) ∈ Gamma(a, b) , i.e. fprior(λ) = c · λa−1 exp(−bλ) , then

fpost(λ) = c · λa+n−1e
−(b+

∑n

i=1
ti)λ,

i.e. a Gamma(a + n, b +
∑n

i=1
ti) .

6.11

(a) With Θ = m , we have Θ ∈ N(m∗, m∗/n) . Hence with m∗ = 33.1 , n = 10 ,
Θ ∈ N(33.1, 3.3) .

(b) [m∗ − 1.96
√

m∗/n, m∗ + 1.96
√

m∗/n] , i.e. [29.5, 36.7] (the same answer as in
Problem 4.9 (b)).
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6.12

(a) Λ ∈ Gamma(1, 1/12) , hence P(C) ≈ Λt and Ppred(C) = E[P ] = 12/365 . Fur-
ther, R[P ] = 1 .

(b) Λ ∈ Gamma(5, 3+1/12) ; Ppred(C) ≈ (5/37)(12/365) = 0.0044 . R[P ] = 1/
√

5 =
0.45 .

(c) Θ1 = Intensity of accidents involving trucks in Dalecarlia ;
Θ2 = P(B) = A truck is a tank truck.
Data and use of improper priors yields Θ1 ∈ Gamma(118, 3) . With a uniform
prior for Θ2 is obtained Θ2 ∈ Beta(37 + 41 + 39 + 1, 1108 + 1089 + 1192− 37−
41 − 39 + 1) , i.e. Beta(118, 3273) . Hence

Ppred(C) ≈ E[Θ1Θ2 t] =
118

3

118

118 + 3273

1

365
= 0.0037,

a similar answer as in (b). Uncertainty: For the posterior densities R[Θ1] =

1/
√

118 , R[Θ2] = 1/
√

3392
√

(1 − p)/p = 1/
√

3392 · √27.73 (with p = 0.0348)
and hence with Eq. (6.42), R[P ] =

√
(1 + 1/118)(1 + 27.73/3392) − 1 = 0.13 .

(Compare with the result in (b)).

Problems of Chapter 7

7.1

(a) P(T > 50) = exp(− ∫ 50

0
λ(s) ds) = 0.79 .

(b) P(T > 50 |T > 30) = exp(− ∫ 50

30
λ(s) ds) = 0.87 .

7.2 Application of the Nelson–Aalen estimator results in
ti 276 411 500 520 571 672 734 773 792

Λ∗(ti) 0.1111 0.2361 0.3790 0.5456 0.7456 0.9956 1.3290 1.8290 2.8290

7.3 Constant failure rate means exponential distribution for life time. FT1(t) =
FT2(t) = 1 − exp(−λt) , t ≥ 0 . The life time T of the whole system is given by
T = max(T1, T2) :

FT (t) = P(T ≤ t) = P(T1 ≤ t, T2 ≤ t) = FT1(t) FT2(t).

It follows that λT (t) = fT (t)/(1 − FT (t)) = 2λ(1 − exp(−λt))/(2 − exp(−λt)) .

7.4 Let Z ∈ Po(m) . R[Z] = D[Z]/E[Z] = 1/
√

m . Thus 0.50 = 1/
√

m ⇒ m = 4 ;
P(Z = 0) = exp(−4) = 0.018 .

7.5 P(N(2) > 50) ≈ 1 − Φ
(
(50.5 − 20 · 2)/

√
20 · 2

)
= 1 − Φ(1.66) = 0.05 .

7.6

(a) N(1) ∈ Po(λ·1) = Po(1.7) ; P(N(1) > 2) = 1−P(N(1) ≤ 2) = 1−exp(−1.7)(1+
1.7 + (1.7)2/2) = 0.24.

(b) X (distance between imperfections) is exponentially distributed with mean 1/λ ;
hence P(X > 1.2) = exp(−1.2λ) = 0.13 .

7.7

(a) Barlow–Proschan’s test; Eq.(7.19), (n = 24) gives z = 11.86 and with α = 0.05
results in the interval [8.8, 14.2] ; hence, no rejection of the hypothesis of a PPP.
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(b) Ti = Distance between failures , Ti ∈ exp(θ) ; θ∗ = t̄ = 64.13 . Since λ∗ = 1/θ∗ ,
λ∗ = 0.016 [hour−1 ].

7.8 m∗
1 = 21/30 ; (σ2

E1)
∗ = m∗

1/30 ; m∗
2 = 16/45 ; (σ2

E2)
∗ = m∗

2/45 . With m∗ =
m∗

1 −m∗
2 we have σ2

E = V[M∗] and an estimate is found as (σ2
E)∗ = (σ2

E1)
∗ +(σ2

E2)
∗ .

Numerical values: m∗ = 0.34 , σ∗
E = 0.177 which gives the confidence interval [0.34−

1.96 · 0.177, 0.34 + 1.96 · 0.177] , i.e. [−0.007, 0.69] . The hypothesis that m1 = m2

cannot be rejected but we suspect that m1 > m2 .

7.9

(a) Let N(A) ∈ Po(λA) . Let A be a disc with radius r . Then P(R > r) =

P(N(A) = 0) = e−λπr2
, that is, a Rayleigh distribution with a = 1/

√
λπ .

(b) E[R] = 1/2
√

λ (cf. Problem 3.7).
(c) E[R] = 1/2

√
2 · 10−5 = 112 m.

7.10 Let N be the number of hits in the region: N ∈ Po(m) . We find m∗ =
537/576 = 0.9323 , (n = 576). With p∗

k = P(N = k) = exp(−m∗)(m∗)k/k! , the
following table results

k 0 1 2 3 4 > 5

nk 229 211 93 35 7 1
n · p∗

k 226.74 211.39 98.54 30.62 7.14 1.57

We find Q = 1.17 . Since χ2
0.05(6 − 1 − 1) = 9.49 , we do not reject the hypothesis

about Poisson distribution.
The two last groups should be combined. Then Q = 1.018 found, which should

be compared to χ2
0.05(5− 1− 1) = 7.81 . Hence, even here, one should not reject the

hypothesis about Poisson distribution.

7.11

(a) The intensity: 334/55 = 6.1 . p = 1 − Φ((10.5 − 6.1)/
√

6.1) = 0.038 . Ex-
pected number of years: p · t = 0.038 · 55 = 2.1 (the observed data had 3 such
years).

(b) DEV= 2(−123.8366− (−123.8374)) = 0.0017 . Since χ2
0.01(1) = 6.63 , we do not

reject the hypothesis β1 = 0 . There is no sufficient statistical evidence that the
number of hurricanes is increasing over the years.

7.12 We have 25 observations (n = 25) from Po(m) , where m∗ = 71/25 = 2.84 .
The statistics of the number of pines in a square is as follows:

0 1 2 3 4 5 6
1 4 5 8 4 1 2

We combine groups in order to apply a χ2 test and with p∗
k = exp(−m∗)(m∗)k/k! ,

the following table results:
k < 2 2 3 4 > 4

nk 5 5 8 4 3

n · p∗
k 5.6 5.9 5.6 4.0 4.0

We find Q = 1.48 ; since χ2
0.05(5 − 1 − 1) = 7.8 , the hypothesis about a Poisson

process is not rejected.
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7.13

(a) NTot(t) = The total number of transports ; NTot(t) ∈ Po(λt) , where λ = 2000
day−1 . It follows that

P(NTot(5) > 10300) = 1 − P(NTot(5) ≤ 10300) ≈ 1 − Φ(
10300 − 2000 · 5√

2000 · 5 )

= 1 − Φ(3.0) = 0.0013,

where we used normal approximation.
(b) NHaz(t) = The number of transports of hazardous material during period t .

NHaz(t) ∈ Po(μ) with μ = pλt = 160t . For a period of t = 5 days, μ = 800 .
Normal approximation yields

P(NHaz(5) > 820) = 1 − Φ(
820 − 800√

800
) = 0.24.

Problems of Chapter 8

8.1 X + Y ∈ Po(2 + 3) = Po(5).

8.2

(a) Z ∈ N(10 − 6, 32 + 22) , i.e. Z ∈ N(4, 13) .
(b) P(Z > 5) = 1 − P(Z ≤ 5) = 1 − Φ( 5−4√

13
) = 0.39 .

8.3 Let X = XA + XB + XC . Then X ∈ Po(0.84) and P(X ≥ 1) = 1 − P(X =
0) = 1 − exp(−0.84) = 0.57 .

8.4 Let T = min(T1, . . . , Tn) , where Ti are independent Weibull distributed vari-
ables. Then

(a)

FT (t) = 1 − (1 − F (t))n = 1 − (1 − 1 + e−(t/a)c

)n = 1 − e−n(t/a)c

= 1 − e
−
(

t/(an−1/c)

)c

This is a Weibull distribution with scale parameter a1 = a · n−1/c , location
parameter b1 = 0 , and shape parameter c1 = c .

(b) c∗ = c∗1 = 1.56 ; a∗ = a∗
1 · n1/c∗1 = 1.6 · 107 (n = 5).

8.5

(a) Let Sr ∈ N(30, 9) , Sp ∈ N(15, 16) . Water supply: S = Sr + Sp ∈ N(45, 25) .
Demand: D ∈ N(35, (35 · 0.10)2) . Hence S − D ∈ N(10, 25 + 3.52) . Pf =
P(S − D ≤ 0) = 1 − Φ(10/

√
25 + 3.52) = 0.051 .

(b) V[S −D] = 25 + 3.52 + 2 · (−1) · (−0.8) · 5 · 3.5 = 65.25 and Pf = 0.11 . The risk
of insufficient supply of water has doubled!

8.6 T = T1+T2 ; T1 ∈ Gamma(1, 1/40) , T2 ∈ Gamma(1, 1/40) , T ∈ Gamma(2, 1/40) ;
P(T > 90) = 1 − P(T ≤ 90) = exp(−90/40)(1 + 90/40) = 0.34 using Eq. (8.6).
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8.7 Gauss formulae give E[I] ≈ 26 A, D[I] ≈ 3.6 A.

8.8 Pf = P(R/S < 1) = P(ln R − ln S < 0) = Φ( mS−mR√
σ2

R
+σ2

S

)

8.9 σ2
S = ln(1 + 0.052) ≈ 0.0025 , mS = ln 100 − σ2

S/2 ≈ 4.604 , mR = ln 150 −
σ2

R/2 ≈ 5.01 − σ2
R/2 . Since 0.001 ≥ P(“Failure”) = Φ

(
mS−mR√

σ2
R

+σ2
S

)
(cf. Problem 8.8),

we get the condition mS−mR√
σ2

R
+σ2

S

≥ λ0.999 = −3.09 and hence σ2
R ≤ 0.014 , i.e. R(R) =√

exp(σ2
R) − 1 ≤ 0.12 . The coefficient of variation must be less than 0.12 .

8.10 Gauss’ formulae give E[ ΔA
ΔN

] ≈ 43.3 nm, V[ ΔA
ΔN

] = 1.321 · 10−15 + 1.5 · 10−17 =
1.34 · 10−15 and hence R[ ΔA

ΔN
] ≈ 0.85 .

8.11

(a) R : Production capacity, S : maximum demand during the day. Wanted: Pf =
P(R < S) = P(ln R − ln S < 0) . Independence ⇒ Z = ln R − ln S ∈ N(m, σ2) ,
where m = mR −mS = ln 6− ln 3.6 = 0.5108 , σ2 = σ2

R + σ2
S = ln(1 + R(R)2) +

ln(1 + R(S)2) . It follows that Pf = P(Z < 0) = 0.0107 , hence return period
1/Pf = 93.5 days.

(b) Correlation ⇒ σ2 = σ2
R + σ2

S + 2 · 1 · (−1)ρσRσS = 0.0809 . It follows that
Pf = 0.0363 and return period 1/Pf = 27.6 days.

8.12

(a) P(X < 0) =
∫ 0

x=−∞ fX(x) dx ≤ ∫ 0

x=−∞
(x−a)2

a2 fX(x) dx ≤ ∫∞
−∞

(x−a)2

a2 fX(x) dx =

E[(X−a)2]

a2 = σ2+(m−a)2

a2 .
(b) Let X = R − S . Then P(R < S) ≤ 1

a2 (σ2
R + σ2

S + (mR − mS − a)2) for all

a > 0 . The right-hand side has minimum for a =
σ2

R
+σ2

S
+(mR−mS)2

mR−mS
> 0 and

the minimum value is σ2
R+σ2

S

σ2
R

+σ2
S

+(mR−mS)2
= 1

1+β2
C

. The inequality is shown.

8.13

(a) mR = E[MF ] = 20 kNm, σ2
R = 22 (kNm)2 , mS = �

2
E[P ] = 10 kNm, σ2

S =
(�/2)2V[P ] = 2.52 (kNm)2 .

(b) Pf ≤ 1
1+β2

C

= 22+2.52

22+2.52+(20−10)2
= 0.093 . (βC = 3.12).

(c) 1 − Φ(3.12) = 0.001 .

8.14

(a) Failure probability: P(Z < 0) , where Z = h(R1, . . . , Rn, S) =
∑n

i=1
Ri − S .

Safety index: E[Z]√
V[Z]

= nE[Ri]−E[S]√
nV[Ri]+V[S]

, from which it is found n = 23 .

(b) Introduce R = R1 + · · · + Rn . Then

V[R] =

n∑
i=1

V[Ri] + 2
∑
i<j

Cov[Ri, Rj ] = nV[Ri] + 2
∑
i<j

ρV[Ri]

= V[Ri]

[
n + 2

n(n − 1)

2
ρ

]
= nV[Ri]

[
1 + ρ(n − 1)

]
and hence the safety index nE[Ri]−E[S]√

nV[Ri](1+ρ(n−1))+V[S]
from which it is found n =

30 . Higher correlation required more pumps.



Short Solutions to Problems 271

8.15 Production. X = “Total production during a working week (tons)”. Then

E[X] = 5 · 400 = 2000,

V[X] = V[X1 + · · · + X5] = V[X1]

5∑
i,j

ρ|i−j| = 1000(5 + 8ρ + 6ρ2 + 4ρ3 + 2ρ4)

= 21 300.

Transportation. Let Ni be the number of transportations of one lorry in a week;
Ni ∈ Po(m) where m = λt = 1 · 7 · 5 = 35 . Let Yi = “Capacity (tons) of one lorry
during a week”, Y = “Total capacity during a week (ton) using n lorries” . We have
that Yi = 10 Ni and Y =

∑n

i=1
Yi = 10

∑n

i=1
Ni . Now

∑
Ni ∈ Po(35m) and hence

E[Y ] = 350n, V[Y ] = 3500n.

Solving for n in

350n − 2000√
3500n + 21300

> 3.5

yields n = 8 lorries are needed.

Problems of Chapter 9

9.1 1/0.04(1.96/0.5)2 = 384.16 , hence 384 items need to be tested.

9.2

(a) Use the definition of conditional probability.
(b)

1 − F (u + x)

1 − F (u)
=

e−(u+x)

e−u
= e−x

for x > 0 . Hence, exceedances are again exponentially distributed.

9.3 Table 4 in appendix gives c = 2.70 ; hence a = 84.3 and L∗
10 = 36.6 .

9.4 Introduce

h(a, c) = a ·
(
− ln(1 − 1

100
)
)1/c

= a ·
(
− ln(0.99)

)1/c
.

The quantities

∂

∂a
h(a, c) =

(
− ln(0.99)

)1/c
,

∂

∂c
h(a, c) = − a

c2
·
(
ln(− ln(0.99))

)
·
(
− ln(0.99)

)1/c
.

evaluated at the ML estimates are 0.451 and 0.101, respectively. The delta method
results in the approximate variance 0.0042 and since x∗

0.99 = 0.74 , with approximate
0.95 confidence

x0.99 ∈
[
0.74−1.96 ·

√
0.0042, 0.74+1.96 ·

√
0.0042

]
, i.e. x0.99 ∈ [0.61, 0.87].
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9.5 With p = 0.5 , Eq. (9.8) gives n ≥ (1 − p)/p(λα/2/q)2 , where q = 0.2 . α =
0.05 : n ≥ 96.0 ; α = 0.10 : n ≥ 67.2 . Cf. the discussion at page 31.

9.6

(a) p∗
0 = 40/576 = 0.069 and a∗ = 49.2/40 = 1.23 , hence by Eq. (9.4) x∗

0.001 =
9 + 1.23 ln(0.069/0.001) = 14.2 m.

(b) Let θ1 = p0 and θ2 = a . From the table in Example 4.19 the estimates of vari-
ances are found: (σ2

E1)
∗ = p∗

0(1−p∗
0)/n = 0.0001 (n = 576) , (σ2

E2)
∗ = (a∗)2/n =

0.0378 (n = 40). The gradient vector is equal to [a∗/p∗
0 ln(p∗

0/α)] = [17.83 4.23] ,
hence (σ2

E)∗ = 17.832 · 0.0001 + 4.232 · 0.0378 = 0.708 giving an approximate
0.95 confidence interval for x0.001 ; [14.2 − 1.96

√
0.708, 14.2 + 1.96

√
0.708] =

[12.6, 15.8] .
(c) With λ∗ = 576/12 [year]−1 , we find E[N ] = λ · P(B) · t ≈ λ∗ · 0.001 · 100 = 4.8 .

(Thus, the value x0.001 is approximately the 20-year storm.)

Problems of Chapter 10

10.1 FY (y) = (FX(y))5 , where X ∈ U(−1, 1) and thus FX(x) =
∫ x

−1
1
2

dξ =
1
2
(x + 1) , −1 < x < 1 . Hence FY (y) = 1

25 (y + 1)5 , −1 < y < 1 .

10.2

(a) Let n = 6 be the number of observations. Due to independence, we have

FUmax(u) =
(
FU (u)

)n
=
(

exp(−e−(u−b)/a)
)n

= exp(−n · e−(u−b)/a)

= exp(−eln n−(u−b)/a) = exp
(
−e−(u−(b+a ln n))/a

)
.

Thus, Umax is also Gumbel distributed with scale parameter a and location
parameter b + a ln n .

(b) Let a = 4 m/s, u0 = 40 m/s, p = 0.50 . Find b such that P(Umax > u0) = p :
b = u0 + a ln(− ln(1 − p)) − a ln n = 31.4 m/s.

10.3

F n(anx + bn) = (1 − e−x−ln n)n =

(
1 − e−x

n

)n

→ exp(−e−x) as n → ∞.

10.4

(a) x∗
100 = 31.9 − 10.6 · ln(− ln(0.99)) = 80.7 pphm.

(b) 0.26/
√

0.62 · 1.11 = 0.32 .
(c) (σ2

E)∗ = V[B∗ + ln(100)A∗] = 9.92 , hence approx. E ∈ N(0, 9.92) .
(d) [80.66 − 1.96 · 9.9, 80.66 + 1.96 · 9.9] = [61.3, 100.1] .

10.5 Use common rules for differentiation, for instance d
dx

(ax) = ax ln a .

10.6 We find ∇sT (a∗, b∗, c∗) = [21.6231 1 −2.46 ·103]T and hence by Remark 10.8
σ∗
E = 330.8 . With s∗10000 = 479.3 follows the upper bound: 479.3 + 1.64 · 330.8 =

1022 .
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10.7

P(Y ≤ y) = P(ln X ≤ y) = P(X ≤ ey) = FX(ey)

= 1 − exp(−(ey/a)c) = 1 − exp(−e−cy/ac

).

The scale parameter is ac/c .
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