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Preface

This book is intended to serve as a guide to applied statistical analysis in public 
health using the Stata program. Our motivation for writing this book lies in our 
years of experience teaching biostatistics and epidemiology, particularly in the aca-
demic programs of biostatistics and epidemiology. The academic material is usu-
ally covered in biostatistics courses at the master’s and doctoral levels at schools of 
public health. The main focus of this book is the application of statistics in pub-
lic health. Because of its user-friendliness, we used the Stata software package in 
the creation of the database and the statistical analysis that will be seen herein. 
This 12-chapter book can serve equally well as a textbook or as a source for con-
sultation. Readers will be exposed to the following topics: Basic Commands, Data 
Description, Graph Construction, Significance Tests, Linear Regression Models, Analysis 
of Variance, Categorical Data Analysis, Logistic Regression Model, Poisson Regression 
Model, Survival Analysis, Analysis of Correlated Data, and Advanced Programming 
in Stata. Each chapter is based on one or more research problems linked to public 
health. We have started with the assumption that the readers of this book have taken 
at least a basic course in biostatistics and epidemiology. Further, for those readers 
who are new to Stata, the first three chapters should be read sequentially, as they 
form the basis of an introductory course to this software.

Erick L. Suárez
University of Puerto Rico

Cynthia M. Pérez
University of Puerto Rico

Graciela M. Nogueras
MD Anderson Cancer Center

Camille Moreno-Gorrín
University of Puerto Rico
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Chapter 1

Basic Commands

Aim: Upon completing the chapter, the learner should be able to 
 understand the general form of the basic commands of Stata for read-
ing and saving databases.

1.1 Introduction
Stata is a computer program designed to perform various statistical procedures. 
Among the basic statistical procedures that can be performed are the following: 
 calculation of summary measures, construction of graphs, and frequency distribu-
tion using contingency tables. Furthermore, using Stata, you can perform param-
eter estimation in generalized linear models and survival analysis models using 
uncorrelated and correlated data. The program also has the ability to perform arith-
metic operations on matrices. Its ability to export and import databases in the Excel 
format gives Stata great versatility. This program is regularly used in biostatistics 
courses in public health schools in different countries. It is also often cited as one 
of the main programs used for statistical analysis in scientific publications related 
to public health research.

This chapter will provide an introduction to the Stata program, version 14.0. 
We assume that readers of this book have a basic knowledge of both biostatistics 
and epidemiology.
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1.2 Entering Stata
After selecting the Stata icon on your computer, the program responds with five 
windows (Figure 1.1), which have the following utilities:

 1. Command: In this window the user can write or enter “commands” or 
instructions to perform various operations with an active database. Not all 
commands can be executed in this area; there is also a taskbar with executable 
commands.

 2. Results: This window shows the results obtained after the execution of the 
commands introduced or requested via the taskbar.

 3. Variables: In this window the variables of an active database are displayed. If 
this window is blank, that is an indication that there is no active database.

 4. Review: This window lists all the commands used during the current open 
session of the program and allows them to be repeated without rewriting 
them in the command area.

 5. Properties: This window displays the properties of the user’s variables and dataset.

1.3 Taskbar
The taskbar provides common access to all windows-based program commands, such 
as File, Edit, Data, Graphics, and Statistics; these options can be found at the upper part 
of the main window. The most frequently used icon is the Data Editor icon, with which 

Figure 1.1 Main Stata 14 window.
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it is possible to enter values and identify the variables in a given project. The Graphics 
button provides access to the window used to generate different types of graphs. The 
Statistics option allows the user to perform statistical mathematical operations through 
the execution of the commands. Below the taskbar are icons that allow the user to open, 
save, and print, along with icons that facilitate the observation of graphics (Figure 1.2).

1.4 Help
One of the most useful attributes of Stata is its support system, which allows the 
user to find the commands and their ways of execution, according to that user’s 
specific needs. The help menu can be accessed by clicking on the “New Viewer” 
icon on the toolbar or by typing either help or the letter h in the command area 
and following that with a keyword that represents the topic about which the user 
requires more information (see Figure 1.3).

Figure 1.2 Taskbar and icons.

www.Ebook777.com
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For example, if we want to learn how to perform an analysis of variance 
(ANOVA), we can use one of the following commands:

help anova 

or

h anova

Upon entering those commands, a specific window for ANOVA will appear (see 
Figure 1.4).

1.5 Stata Working Directories
When working with Stata, files and results can be saved to a specific directory, which 
is defined during the installation instructions. For example, to view the working 
directory for a project, enter the command pwd (path of the current working direc-
tory), and the following results will be displayed:

. pwd
 /Users/Documents/students

Figure 1.3 Help window.
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It is important to keep the working files in a directory that is different from the 
default directory that Stata assigns, because during the regular program updates 
files located in the default directory may be removed.

To create a particular file, the mkdir and cd commands must be used to navi-
gate to that directory again. The sequence of commands to create a directory is 
as follows:

cd C:\ Navigate to the main directory of your hard drive or to 
the location where you wish to create your home 
directory

mkdir new_folder Create a new working directory

cd new_folder Navigate to the new working directory

To use Stata in the new working directory, you need to restart the program 
and immediately move to the desired directory. For example, assuming that the 
name of the working directory is “students” and assuming, as well, that this 

Figure 1.4 Help ANOVA.
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directory is located in your computer’s Documents folder, the following will take 
you to that folder:

cd “/Users/Documents/students”

1.6 Reading a Data File
After creating the working directory in which, outside the Stata program, we have 
previously copied a data file (i.e., the file named “Cancer.dta”), we proceed to open 
the file. This can be done in two different ways: using the command area or using 
the icon on the toolbar. For the former, we would write the following command 
sequence:

cd “C:\new_folder”
dir
use cancer

Command to navigate to the new working directory
Command to browse the contents of the folder
The use command indicates the name of the file that 
will be used

For the latter, on the other hand, it is necessary to click , the Open icon, and 
browse the folder that contains the working file. The describe command can be 
used to view the information contained in the data file, which might include the 
number of observations, variables, and file size, among others, as shown below 
(assuming that the active database being used contains the anthropometric mea-
surements of 10 subjects): 

describe

Output

. describe

Contains data
 obs:            10                          
vars:             5                          
size:           200                          
-----------------------------------------------------------------------------
               storage   display    value
variable name      type     format          label       variable label
-----------------------------------------------------------------------------
var1            float     %9.0g                 
var2            float     %9.0g                 
var3            float     %9.0g                 
var4            float     %9.0g                 
var5            float     %9.0g                 
-----------------------------------------------------------------------------
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1.7 insheet Procedure
Another way to read a database in Stata is to import existing databases created 
in other formats. Delimited text files using the .txt (can be opened by most text 
 editors), .raw (a raw image file), and .csv (an MS Excel file) extensions can be 
imported into Stata. The most commonly used is .csv, which, as indicated, is cre-
ated using MS Excel. In Excel, you must save the data file using the .csv file exten-
sion instead of the .xls extension. When you have the data saved with .csv, you can 
then proceed to use the insheet command in Stata:

insheet using “c:/data.csv”, replace

The replace option that has been placed after the comma (above) is used to 
clear the program if another database was being used. Stata does not open 
a   database if there is another one that is already open. The clear command can 
also be used in Stata to remove a database, therefore clearing the way to use a 
new one.

1.8 Types of Files
Below is a list of the different types of archives that can be created in Stata; the left-
hand column contains the file extensions that correspond to each archive.

.dta data files

.do command files

.ado programs

.hlp help files

.gph graphs

.dct dictionary files

1.9 Data Editor
In the Data Editor window, you can input data for the creation and identifi-
cation of the study variables. One advantage of Stata’s data editor is its ability 
to import databases built in Excel. This is done by the simple operation of select-
ing the  entire database in Excel and copying and pasting it into the Stata data 
editor. 
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To access the Data Editor window (Figure 1.5), click the “Edit” icon, , on 
the taskbar located in the main window.

At the beginning of the data entry process, the program automatically assigns a 
name to the column that defines each variable (var1, var2, …, vark). This name can 
be changed in the Variables Manager window after clicking the Data Editor icon, 
using the box “Name” (Figure 1.6). To return to the main window of Stata, you 
close or minimize the Data Editor window.

Constructing a user-friendly database requires that each variable be named in 
such a way as to be easy to identify. This can be done using the “Label” box in the 
properties window. When building a database, it is possible for the values assigned to 
the variables to be represented by codes. The coding of the variables can be done using 
the “Value Label” option. With this option you can assign numerical values to alpha-
numeric variables, thereby allowing better management of the database. This coding 
can be done in the Variables Manager window. The steps to do this are as follows:

 1. Click “Manage” in the Variables Manager window, and a new window appears 
(Figure 1.7). Then click “Create Label” to assign each code a label.

 2. After creating the value labels, return to the Variables Manager window, in 
which you will be able to assign labels to each variable in the “Label” box (if they 
were not assigned previously in the Properties window) (Figure 1.8).

Figure 1.5 Data Editor window.
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Figure 1.6 Variable name change.

Figure 1.7 Assigning value label.
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To continue working in Stata after having created a database, the user needs to 
ensure that the data have been saved. To that end, the user will need to assign a 
name to the file to continue working on the database. Clicking on “File” (on the 
toolbar) followed by “Save As” (on the subsequent dropdown menu) begins this 
process. After that, select the working folder or directory and assign a name to the 
database. The default file extension is .dta.

Figure 1.8 Assigning labels to each variable.
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Chapter 2

Data Description

Aim: Upon completing the chapter, the learner should be able to 
describe a database with the specific commands of Stata.

2.1 Most Useful Commands
Although specific reference is made to the use of the menus and dialog windows of 
the program, it is important to understand how to manage the different conditions 
and options that are available for each Stata command. Most Stata commands fol-
low the same basic sequence:

<command>  <variable or variables list>  <condition or use of 
if>, <options>

A list containing several of the commands and their corresponding descriptions 
follows below:

list Lists the values of the variables

describe Produces a summary of the dataset in memory or of the data 
stored in a Stata-format dataset

codebook Examines the variable names, labels, and data to produce a 
codebook for describing the dataset

generate Creates a new variable in the dataset

recode Changes the values of the numeric variables according to the 
rules specified
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replace Changes the contents of an existing variable

label Can be used for several purposes, but is mainly used for 
attaching labels to data, variables, or values

drop Eliminates variables or observations from the data that are in 
the memory

summarize Calculates and displays a variety of univariate summary 
statistics

tabulate Produces one-way or two-way tables of frequency counts

table Calculates and displays tables of statistics

2.2 list Command
The list command displays the values of all the components of the database 
requested in the command line. If the user wants to view a specific variable of the 
database, the user must first write the word list, followed by the condition in and 
then write the number of observations to be viewed on the screen, as shown in the 
following:

Output

. list in 5/10
    +----------------------------------+
    | var1   var2   var3   var4   var5 |
    |----------------------------------|
 5. |    5     45     56   1.52      1 |
 6. |    6     36     87   1.46      1 |
 7. |    7     30     78   1.44      1 |
 8. |    8     29     77   1.56      1 |
 9. |    9     27     67   1.52      0 |
    |----------------------------------|
10. |   10     29     63   1.52      1 |
    +----------------------------------+

Only observations 5–10 of the active database are displayed.

2.3 Mathematical and Logical Operators
To carry out different mathematical or logical operations with numbers or variables 
of the active database, the following symbols are available:
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Symbol Definition

== Equal to (double equal sign)

!= or ~= Not equal to

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

+ Addition (e.g., 2 + 3)

− Subtraction (e.g., 2 − 3)

* Multiplication (e.g., 2 * 3)

/ Division (e.g., 2/3)

^ Exponentiation (e.g., 2 ^ 3)

& and (assuming two conditions, the symbol & is used to 
indicate that both conditions are occurring simultaneously.) 

| or (assuming two conditions, the symbol | is used to indicate 
that one or the other or both conditions are occurring; that 
is, that at least one of them is occurring.)

Usually, these operators are associated with the conditional command If for specific 
variables. For example, to display only those observations in which the age is below 
30, the command line is as follows:

list id age weikg heimt if age<30

Output

    +--------------------------+
    | id   age   weikg   heimt |
    |--------------------------|
 1. |  1    28      59    1.55 |
 3. |  3    25      76     1.6 |
 4. |  4    26      65    1.78 |
 8. |  8    29      77    1.56 |
 9. |  9    27      67    1.52 |
    |--------------------------|
10. | 10    29      63    1.52 |
    +--------------------------+
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The symbol of asterisk (*) is also used to make any comment during the Stata pro-
gramming; for example:

*Displaying observations in which the age is below 30
list  id age weikg heimt if age<30 

2.4 generate Command
The generate command (or gen) is used to define new variables in an existing data-
base. For example, let us suppose that you have a database of anthropometric mea-
surements (corresponding to the hypothetical participants of your study), such as 
weight in kilograms (weikg) and height in meters (heimt), and you want to calculate 
the body mass index (bmi) of each participant, with bmi being defined as the ratio 
of weikg over heimt squared. Suppose, further, that the following database is active 
in Stata:

    +--------------------------------+
    | id   age   weikg   heimt   sex |
    |--------------------------------|
 1. |  1    28      59    1.55     0 |
 2. |  2    32      35    1.35     0 |
 3. |  3    25      76     1.6     0 |
 4. |  4    26      65    1.78     0 |
 5. |  5    45      56    1.52     1 |
    |--------------------------------|
 6. |  6    36      87    1.46     1 |
 7. |  7    30      78    1.44     1 |
 8. |  8    29      77    1.56     1 |
 9. |  9    27      67    1.52     0 |
10. | 10    29      63    1.52     1 |
    +--------------------------------+

To compute and display the bmi of each participant, the following commands are 
executed:

gen bmi = weikg/(heimt^2)
list id bmi

You can see that a new variable, named bmi, has been created as a result of using 
the list command:
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Output

    +---------------+
    | id        bmi |
    |---------------|
 1. |  1   24.55775 |
 2. |  2   19.20439 |
 3. |  3    29.6875 |
 4. |  4   20.51509 |
 5. |  5   24.23823 |
    |---------------|
 6. |  6   40.81441 |
 7. |  7   37.61574 |
 8. |  8   31.64037 |
 9. |  9   28.99931 |
10. | 10   27.26801 |
    +---------------+

2.5 recode Command
The recode command allows the user to change or regroup the values of any variable. 
For example, let us assume that a user wants to regroup the values of the bmi variable 
of the previous database in the following three groups: (1) Group 1 contains the val-
ues ranging from 18.5 to 24.9, (2) Group 2 are those that range from 25 to 29.9, and 
(3) Group 3 are the values that are 30 or greater. The commands sequence is as follows:

gen bmig=bmi
recode bmig 18.5/24.9=1 25/29.9=2 30/max=3
list id bmig

Output

    +-----------+
    | id   bmig |
    |-----------|
 1. |  1      1 |
 2. |  2      1 |
 3. |  3      2 |
 4. |  4      1 |
 5. |  5      1 |
    |-----------|
 6. |  6      3 |
 7. |  7      3 |
 8. |  8      3 |
 9. |  9      2 |
10. | 10      2 |
    +-----------+
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2.6 drop Command
The drop command allows us to eliminate from one to several variables from our 
active database. For example, to eliminate the bmi variable, the following com-
mand must be used:

drop bmi

2.7 replace Command
This command allows you to change the value of an existing variable according to 
the rule specified. For example, let us assume that a user wants to categorize bmi into 
the following groups: Group 1 (persons with a bmi from 18.5 to 24.49), Group 2 
(persons with a bmi from 24.5 and 29.9), and Group 3 (persons with a bmi from 30 
onward). The command sequence to create these categories of bmi, assuming that 
bmi was not already created, is as follows:

gen bmi= weikg/(heimt^2)
gen bmig=bmi
replace bmig=1 if bmi >= 18.5 & bmi < 24.5
replace bmig=2 if bmi >= 24.5 &  bmi < 30
replace bmig=3 if bmi >= 30
list id bmig

After the list command, the results will be the same as that reported with the replace 
command. 

2.8 label Command
The label command defines a name to the variables of the active database; for exam-
ple, the label variable command assigns a label to the variable bmig as follows:

label variable bmig “body mass index categories”

In addition, the label command decodes the categories of the variables, combining 
label define and label value commands. The label define command is used to create a 
label for different codes to be attached to a legend. Then, the label value command 
is used to relate the categories of 1 variable to the labels defined in label define 
command. For example, the command lines that are used to label the codes of the 
variables sex and bmig are as follows:

label define sexc 0 “Male” 1 “Female”   
label value sex sexc
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label define bm 1 “Normal” 2 “Overweight” 3 “Obese” 
label value  bmig bm 
list id sex bmig

After using the list command, the following output will be displayed: 

    +----------------------------+
    | id        sex         bmig |
    |----------------------------|
 1. |  1      Male    Overweight |
 2. |  2      Male        Normal |
 3. |  3      Male    Overweight |
 4. |  4      Male        Normal |
 5. |  5    Female        Normal |
    |----------------------------|
 6. |  6    Female         Obese |
 7. |  7    Female         Obese |
 8. |  8    Female         Obese |
 9. |  9      Male    Overweight |
10. | 10    Female    Overweight |
    +----------------------------+
   

If you want to eliminate a label that was previously assigned to a variable, the drop 
command must be used, as follows:

label drop sex

And to eliminate all of the assigned labels, write the following:

label drop all

2.9 summarize Command 
If we want to summarize the variables in a database, we must write summarize 
(or sum) in our command window. After we do this, a table containing a summary 
of all the variables in our database appears. It is recommended that this command 
be used with quantitative variables. For example, in the previous database, age, 
weight (weikg), height (heimt), and bmi are defined as quantitative variables; there-
fore, the command would be as follows:

sum  age weikg heimt bmi
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Output

   Variable |   Obs       Mean   Std. Dev.      Min Max
--------------+---------------------------------------------------------
        age |    10       30.7     5.9264        25 45
      weikg |    10       66.3   14.62912        35 87
      heimt |    10       1.53   .1127435      1.35 1.78
        bmi |    10   28.45408   6.925241  19.20439 40.81441

As a result, in the command window, a table is displayed containing the number of 
observations, mean (Mean), standard deviation (Std. Dev.), minimum (Min), and 
maximum (Max) for each variable. If the user is interested in displaying descrip-
tive statistics for certain conditions, the conditional command if can be used. For 
example, a statistical description of the bmi in subjects less than 30 years old, the 
following procedure can be used:

sum bmi if age < 30

Output

   Variable |  Obs       Mean   Std. Dev.      Min Max
--------------+---------------------------------------------------------
        bmi |    6   27.11134    4.01918  20.51509 31.64037

The detail command can be written at the end of the command line to obtain 
information, which is more detailed, about quantitative variables in the database. 
For example, assuming we want the detailed information of the distribution of the 
variable bmi, the following command line can be used:

sum bmi, detail

Output

              bmi
---------------------------------------------------------------
      Percentiles      Smallest
1%       19.20439      19.20439
5%       19.20439      20.51509
10%      19.85974      24.23823       Obs 10
25%      24.23823      24.55775       Sum of Wgt. 10

50%      28.13366                     Mean 28.45408
                        Largest       Std. Dev. 6.925241
75%      31.64037       29.6875
90%      39.21507      31.64037       Variance 47.95897
95%      40.81441      37.61574       Skewness .4458304
99%      40.81441      40.81441       Kurtosis 2.272217
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2.10 do-file Editor
A do-file is a set of Stata commands that can be stored for later use. In the Stata 

toolbar, click on the icon  to create a do-file. A window will open (Figure 2.1), 
and you can either type or paste a series of commands and then save this as a file 
for later use. To execute these commands, totally or partially, click on the Do icon,  

, in this editor, which is located in the extreme right corner.
Once the sequence of Stata commands is defined for the first time, a name has 

to be assigned to this do-file for later use. Stata assigns the extension .do to this 
file name. 

2.11 Descriptive Statistics and Graphs
To generate a table of descriptive statistics, on the main taskbar, click Statistics  
Summaries, tables, and tests  Other tables  Compact table of summary 
statistics (Figure 2.2).

When you click this sequence, a window opens that lets you select the variable 
of the active database that will be analyzed and choose the statistical procedure of 
interest. Within this window, we can assess (in terms of mean, standard deviation, 
coefficient of variation, 25th percentile [p25], 75th percentile [p75], and interquar-
tile range [p75–p25]) the statistical distribution of a quantitative variable, as shown 
for bmi from the previous database (Figure 2.3).

If the Statistics icon is used, Stata displays the command and the results. The 
output above indicates that the value of the sd (standard deviation) is only 24.3% 
of the mean, which might suggest a relatively moderate variability in the bmi 

Figure 2.1 do-file editor window.
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distribution. Based on the iqr (interquartile range), the output indicates that 50% of 
the bmi around the median value is not greater than 7.4. 

2.12 tabulate Command
The tabulate (or tab) command provides a table with the frequency values of the 
corresponding variable. For example, to obtain the frequency distribution of the 
grouped bmi (bmig), the user needs to write the following: 

tab bmig

Output

      bmig |      Freq.     Percent        Cum.
-----------+-----------------------------------
    Normal |          3       30.00       30.00
Overweight |          4       40.00       70.00
     Obese |          3       30.00      100.00
-----------+-----------------------------------
     Total |         10      100.00

Figure 2.3 Window for displaying a table of summary statistics.

Figure 2.2 Creating a table to display summary statistics.
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In this example, 30% of the study group was categorized as being obese and 40% 
as being normal.

The tab command can be used to report contingency tables that, in turn, can be 
used to report the frequency distribution, with the option of including percentages 
by column and row. For example, to describe the association between the variables 
bmig and sex (see the previous database), use the tab command, as follows:

tab bmig sex, co 

Output

+-------------------+
| Key               |
|-------------------|
|     frequency     |
| column percentage |
+-------------------+
          |          sex
     bmig |     Male     Female  |     Total
----------+----------------------+----------
   Normal |         2          1 |         3 
          |     40.00      20.00 |     30.00 
----------+----------------------+----------
Overweight|         3          1 |         4 
          |     60.00      20.00 |     40.00 
----------+----------------------+----------
    Obese |         0          3 |         3 
          |      0.00      60.00 |     30.00 
----------+----------------------+----------
    Total |         5          5 |        10 
          |    100.00     100.00 |    100.00 

The results show that 80% of women are categorized as being either overweight 
or obese, while 40% of men are categorized as being overweight, with none being 
categorized as being obese. Only 30% of the subjects (both sexes) are categorized as 
being of normal weight.
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Chapter 3

Graph Construction

Aim: Upon completing the chapter, the learner should be able to create 
the graphs that are most commonly used for data description.

3.1 Introduction
To create a graph, we click on the Graphics option on the taskbar (Figure 3.1). 
After we do this, the following dropdown menu appears, listing a series of possible 
graphs that can be constructed. 

Afterward, the user clicks the type of graph or plot needed; a new window 
with the different specifications available for this type of graph will be displayed. 
Once the specifications are provided, the user must choose one of the following two 
options for obtaining the graph that he or she desires: Submit or OK. If Submit is 
chosen, the requested graph will be displayed, with the graph window remaining 
open (enabling the user to explore other specifications); choosing OK brings up the 
requested graph but the graph window remains closed.

3.2 Box Plot
To construct a box plot, the user should click the Box Plot option after clicking 
Graphics (Figure  3.2). Afterward, a quantitative variable must be defined. For 
example, to obtain the box plot for the variable bmi of the previous database, insert 
bmi in the space provided; in addition, the user has the option of writing a title in 
the Title option (Figure 3.3).

www.Ebook777.com

http://www.ebook777.com


24 ◾ Biostatistics in Public Health Using STATA

Figure 3.1 Graphics options.

Figure 3.2 Box plot window.
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3.3 Histogram
Another commonly used chart is the histogram, which shows the frequency dis-
tribution of the variable of interest using abutting rectangles, and in which the 
height of each rectangle corresponds to the frequency of subjects within certain 
limits of the variable (these limits are the base of each rectangle). For example, to 
create a histogram of the variable with four rectangles using the Graphics window, 
the user needs to click the Histogram option and write the name of the variable, 
bmi (Figure 3.4). At this point, the user has the option of specifying the number of 
rectangles in the space labeled Number of bins and, in addition, has the option to 
include the normal density plot (see Figure 3.5).

The normal option will show a curve of the normal probability distribution over 
the histogram. This tells us how far away the distribution of the variable of interest 
is from the normal distribution.

3.4 Bar Chart
To construct a bar chart, the user clicks the Bar Chart option after clicking Graphics 
and sets the specifications for this type of graph (Figure 3.6). For example, to show 
the mean of the bmi by sex, the user needs to define the requested statistics (i.e., 
mean), and the variable that identifies the subgroup (for the purposes of this exam-
ple, the variable sex) in the window that is opened when the By button is depressed 
(see Figure 3.7).
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Figure 3.3 Graph box for bmi.
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The results show that the mean of the bmi in women is higher than it is in men. 
The next chapter will demonstrate the procedure that is used to determine whether 
this sort of difference is statistically significant.

Figure 3.4 Histogram window.
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Figure 3.5 Histogram for bmi.
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Figure 3.7 Graph bar: Mean bmi by sex.

Figure 3.6 Bar chart window.
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Another type of bar chart that the user might want to create is one in which the 
standard deviation is added (see Figure 3.8). The next sequence of commands can 
be used for this purpose:

sort sex
gen mbmi=bmi
gen sbmi=bmi
collapse (mean) mbmi (sd) sbmi, by(sex)
gen hbmi = mbmi + sbmi
twoway (bar mbmi sex) (rcap hbmi mbmi sex), yscale(range(0 40)) 
xlabel(none) by(sex, noxrescale) by(,legend(off))

The collapse command is used to summarize a set of data using statistics, such as 
mean, sum, median, and percentiles. These statistics can be computed overall or for 
each category of specific variables, previously sorted. In the last sequence of com-
mands, we computed the mean and standard deviation of the variable bmi for each 
category of variable sex. The twoway command is used to create different plots in 
the same graph. In the previous example, we used bar for graph bars and rcap for 
capped spikes in the same graph.

40
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Figure 3.8 Mean bmi with one standard deviation by sex.
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Chapter 4

Significance Tests

Aim: Upon completing the chapter, the learner should be able to per-
form significance tests that are concerned with the expected values of 
continuous random variables.

4.1 Introduction
Classical statistical tests are performed to compare the expected values of a random 
variable, under the assumption that these values are constant parameters of the tar-
get population. The Bayesian approach assumes that these parameters are another 
random variable. In this chapter we will concentrate our analysis using classical 
statistical tests for comparing the expected values of a continuous random variable 
in two independent groups.

The classical statistical tests are based on the initial formulation of two comple-
mentary hypotheses that are related to the parameters of the target population; 
these hypotheses are the null and the alternative hypotheses. The null hypothesis, 
denoted by H0, is the hypothesis that is to be tested. The alternative hypothesis, usu-
ally denoted by Ha, is the hypothesis that contradicts the null hypothesis (Rosner, 
2010); usually, the alternative hypothesis will be related to a research hypothesis. 
To assess the null hypothesis, a sample of data is collected to compute a test statis-
tic for supporting a decision in favor of or against the H0; there are four possible 
outcomes:

 1. Evidence in favor of H0, with H0 in fact being true
 2. Evidence against H0, though H0 is in fact true (Type I error)
 3. Evidence in favor of H0, though H0 is in fact false (Type II error)
 4. Evidence against H0, with H0 in fact being false
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In classical statistics, the probabilities of the occurrences of these outcomes are 
summarized in the following table:

Decision based on 
the sample data

H0

True False

Evidence in favor 
of H0 (do not 
reject  H0)

1 – α = Pr[accept H0|H0 true] β = Pr[accept H0|H0 false] 
Probability of Type II error

Evidence against 
H0 (reject H0)

α = Pr[reject H0|H0 true] 
Probability of Type I error 
(significance level)

1 – β = Pr[reject H0|H0 false] 
Statistical power

The general aim in hypothesis testing is to use statistical tests that make α and β 
as small as possible. Typically, the evidence against H0 is determined with a signifi-
cance level less than or equal to 5%, while a statistical power of 80% or higher is 
considered adequate.

The significance level can be defined prior to performing the test; when this is 
done, two regions for the test statistics are defined: the acceptance region (evidence 
for accepting H0) and the rejection region (evidence against the null hypothesis). 
However, the output of the statistical programs usually shows the probability (called 
P-value) for each statistical test. P-value is defined as the probability of obtaining a 
test statistic as extreme as or more extreme than the test statistic actually obtained, 
given that the null hypothesis is true. As a consequence, the P-value is interpreted 
as α level at which the given value of the test statistic is on the borderline between 
the acceptance and rejection regions (Rosner, 2010). In Stata, the P-value will be 
presented according to the test statistic used and the probability distribution assumed 
for this statistic; for example, assuming the Student’s t-test statistic with t-probability 
distribution, the output for identifying the P-value will be expressed as Pr(T > t). 
To interpret P-values, we can use one of the following statements (Rosner, 2010):

If the P-value ≥ .05, then the results are considered not statistically significant.
If .01 < P-value < .05, then the results are significant. 
If .001 < P-value ≤ .01, then the results are highly significant.
If the P-value ≤ .001, then the results are very highly significant.

However, if .05  ≤  P-value  <  .10, then a trend toward statistical significance is 
sometimes noted. 



Significance Tests ◾ 31

4.2 Normality Test
When we want to estimate or compare the expected value of a continuous random 
variable, usually we assume that this variable follows a normal probability distribu-
tion. To assess whether the normality assumption is met, different statistical tests 
can be performed. A formal test to evaluate the normality of a continuous random 
variable is the Shapiro–Wilk test, whose null hypothesis states that a given random 
variable follows a normal distribution (Rosner, 2010). The swilk command can be 
used for this purpose. For example, to determine whether the continuous variables 
of the previous database follow a normal distribution, the command line below can 
be used:

swilk age weikg heimt bmi

Output

             Shapiro-Wilk W test for normal data

   Variable |      Obs       W          V        z      Prob>z
-------------+------------------------------------------------------
        age |       10    0.82089     2.760    1.943   0.02598
      weikg |       10    0.94243     0.887   -0.203   0.58031
      heimt |       10    0.93312     1.031    0.052   0.47923
        bmi |       10    0.95562     0.684   -0.628   0.73506

The results above provide evidence in favor of the null hypothesis for all variables 
(P-value > .05) with the exception of the variable age (P-value = .0259).

4.3 Variance Homogeneity
An assumption that can be used in the performance of a parametric test to compare 
the expected values of a continuous random variable in two unmatched groups is 
that the variances are equal (variance homogeneity). This indicates that the location 
parameters (expected values) of the continuous random variables can be different in 
each group, but the dispersion parameter (variance) is equal in all groups. To per-
form this assessment in two groups, the sdtest command is available; for this assess-
ment, it is assumed that the variance ratio of the two groups follows an F-Fisher 
probability distribution σ σ1

2
2
2 ~ F( ). The command lines are as follows for the 

variables bmi, weight, and height (all from the previous database):

sdtest  bmi, by(sex)
sdtest  weikg, by(sex)
sdtest  heimt, by(sex)
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Output

. sdtest  bmi, by(sex)

Variance ratio test
------------------------------------------------------------------------------
   Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
----------+--------------------------------------------------------------------
   Male  | 5 24.59281 2.133509 4.770671 18.66924 30.51638
 Female  | 5 32.31535 3.094344 6.919164 23.72407 40.90663
----------+--------------------------------------------------------------------
combined | 10 28.45408 2.189954 6.925241 23.50006 33.4081
------------------------------------------------------------------------------
    ratio  = sd(Male) / sd(Female) f = 0.4754
Ho: ratio = 1  degrees of freedom =   4, 4

   Ha: ratio < 1        Ha: ratio != 1             Ha: ratio > 1
 Pr(F < f) = 0.2446  2*Pr(F < f) = 0.4891       Pr(F > f) = 0.7554

. sdtest  weik, by(sex)

Variance ratio test
------------------------------------------------------------------------------
   Group |   Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
----------+--------------------------------------------------------------------
   Male | 5 60.4 6.910861 15.45316 41.21237 79.58763
 Female  | 5 72.2 5.580323 12.47798 56.70654 87.69346
----------+---------------------------------------------------------------------
combined | 10 66.3 4.626133 14.62912 55.83496 76.76504
------------------------------------------------------------------------------
    ratio = sd(Male) / sd(Female)                       f  = 1.5337
Ho: ratio = 1                          degrees of freedom  = 4, 4

   Ha: ratio < 1         Ha: ratio != 1            Ha: ratio > 1
 Pr(F < f) = 0.6556  2*Pr(F > f) = 0.6887       Pr(F > f) = 0.3444

. sdtest  heimt, by(sex)

Variance ratio test
------------------------------------------------------------------------------
   Group |  Obs   Mean   Std. Err.  Std. Dev.  [95% Conf. Interval]
----------+--------------------------------------------------------------------
   Male |    5   1.56   .0692098   .1547579    1.367843  1.752157
 Female  |    5    1.5   .0219089   .0489897    1.439171  1.560829
----------+--------------------------------------------------------------------
combined |   10   1.53   .0356526   .1127435    1.449348  1.610652
------------------------------------------------------------------------------
    ratio = sd(Male) / sd(Female) f = 9.9792
Ho: ratio = 1                          degrees of freedom = 4, 4

   Ha: ratio < 1         Ha: ratio != 1            Ha: ratio > 1
 Pr(F < f) = 0.9766  2*Pr(F > f) = 0.0468       Pr(F > f) = 0.0234
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For each variable (in the above case, sex), a table displays a description of the sum-
mary measures in each category of that variable: Obs (number of observations), 
Mean, Std. Err. (standard error), Std. Dev. (standard deviation), and 95% Conf. 
Interval (the 95% confidence interval is used to estimate the expected value of the 
random variables). In the above table, the user can see that the standard deviation 
of the variable bmi among males is 4.77 (variance = 22.75), while among females 
it is 6.92 (variance = 47.74); so the estimated ratio of the variances is 0.4754 (male/
female). If the variances are equal in these two groups, the expected value of this 
ratio must be 1 (Rosner, 2010). Near the bottom of the table, the user can see that 
the null hypothesis is “H0: ratio = 1.” The alternative hypothesis is expressed in 
three ways: Ha: ratio < 1, Ha: ratio != 1 (different than 1), and Ha: ratio > 1; it is 
recommended that only the second alternative hypothesis (ratio is different from 1) 
be considered, if the purpose is assessing the variance homogeneity. Below each 
alternative hypothesis, the corresponding P-values are presented. Only for the vari-
able height does the statistical evidence not support the assumption of variance 
homogeneity (P-value = .0468).

4.4 Student’s t-Test for Independent Samples
Assuming that the assumptions of normality and variance homogeneity are met, 
the next step is to determine whether the expected value of the continuous variable 
changes in different groups. Suppose that the user wants to compare the expected 
value of the variable bmi by sex, assuming that the selection of a male is independent 
of the selection of a female in the study sample; for this, Student’s t-test for inde-
pendent samples (Rosner, 2010) can be used, as is demonstrated with the following 
expression:

 t
Y Y

Y Y
tk H= −

−( )
1 2

1 2

0

Var
∼ |

where:
Yi indicates the sample mean of the variable bmi for the ith group
tk is the t-probability distribution with k degrees of freedom
Var Y Y1 2−( ) is the variance of Y Y1 2−( )

To compute the P-value, it is assumed that this expression follows the t-probability 
distribution under the null hypothesis assumption. To perform this kind of t-test, 
the user can utilize the ttest command. The specifications for this command can 
change depending on the structure of the database. For example, assuming that the 
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previous database is being used and that the aim of the user is to assess the variance 
homogeneity in the variable bmi by sex group, the command line for performing 
student’s t-test is as follows:

ttest bmi, by(sex)

Output

Two-sample t test with equal variances
-----------------------------------------------------------------------------
    Group| Obs      Mean Std. Err. Std. Dev.  [95% Conf. Interval]
----------+-------------------------------------------------------------------
   “Male”|   5  24.59281  2.133509  4.770671    18.66924  30.51638
“Female” |   5  32.31535  3.094344  6.919164    23.72407  40.90663
----------+-------------------------------------------------------------------
combined |  10  28.45408  2.189954  6.925241    23.50006   33.4081
----------+-------------------------------------------------------------------
     diff|     -7.722543  3.758567             -16.38981  .9447286
-----------------------------------------------------------------------------
     diff = mean(“Male”) - mean(“Female”)               t = -2.0547
Ho:  diff = 0                          degrees of freedom = 8

   Ha: diff < 0          Ha: diff != 0              Ha: diff > 0
Pr(T < t) = 0.0370  Pr(|T| > |t|) = 0.0740      Pr(T > t) = 0.9630

The above table is the same as the one described by the sdtest command. However, 
the null hypothesis formulated below in this table is different. The null hypoth-
esis states that the expected bmi value is the same for both sexes µ µMale Female=( ). 
In Stata notation, this hypothesis is formulated as the following: diff  = 
mean(Male) − mean(Fem) = 0. The alternative hypotheses that can be assessed 
are Ha: diff < 0, Ha: diff != 0 (different than zero), and Ha: diff > 0. Assuming 
that the research hypothesis is that males have a lower mean body mass index than 
females do, the user has to assess the P-value below the first alternative hypothesis 
(one-tailed alternative hypothesis), with the result indicating that there is statisti-
cal evidence against the null hypothesis (P-value =  .037); this finding suggests 
that the expected bmi in males is lower than the expected bmi in females. If the 
research hypothesis is that males have different mean body mass index than females 
do, then the user has to assess the P-value below the second alternative hypoth-
esis (two-tailed alternative hypothesis), with this result indicating that there is 
statistical evidence in favor of the null hypothesis (P-value = .074); this finding 
suggests that the expected bmi in males is not different from the expected bmi 
in females.
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4.5  Confidence Intervals for Testing 
the Null Hypothesis

Another way to assess the null hypothesis is to use a confidence interval. For example, 
to assess the statistical hypotheses, the following can be used: H0 0: µ µMale Female− =  
vs. Ha :µ µMale Female− ≠ 0. In this case, to test the null hypothesis (with a 5% signifi-
cance level), the 95% confidence level for the mean difference provided in the ttest 
command can be used. The interval indicates that with a 95% confidence level, the 
difference of the expected bmi by sex µ µMale Female−( ) is between −16.39 and 0.94. 
As zero is included in the interval, this finding provides evidence in favor of the null 
hypothesis (P-value > .05). 

4.6 Nonparametric Tests for Unpaired Groups
There are several tests available to assess the distribution of the quantitative random 
variable in two groups when the basic assumptions of the t-test are violated. One 
of these tests is the Mann–Whitney test, also called the Wilcoxon rank sum test, 
which is a nonparametric test that compares two unpaired groups. To perform the 
Mann–Whitney test, all data are ranked, paying no attention to which group each 
value belongs; the smallest number gets a rank of 1 and the largest number gets a 
rank of n, where n is the total number of values in the two groups. Then, this test 
computes the average of the ranks in each group and reports the two averages. If the 
means of the ranks in the two groups are very different, the P-value will be small. 
The null hypothesis is that the distributions of both groups will be identical, so that 
there is a 50% probability that an observation from a value randomly selected from 
one population will exceed an observation randomly selected from the other popu-
lation. In Stata, this test can be performed with the command kwallis. Using the 
data from the previous example, the syntax of the kwallis command is as follows:

kwallis bmi, by(sex)

Output

Kruskal-Wallis equality-of-populations rank test
  +---------------------------+
  |      sex | Obs | Rank Sum  |
  |----------+-----+---------- |
  |     Male |   5 |    20.00  |
  |   Female |   5 |    35.00  |
  +---------------------------+
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chi-squared =     2.455 with 1 d.f.
probability =     0.1172

chi-squared with ties =     2.455 with 1 d.f.
probability =     0.1172

As can be seen above, the results of this test show that the frequency distributions of 
the bmi for both sexes are identical (P-value = .1172). This interpretation is consistent 
with that of Student’s t-test for the two-tailed alternative hypothesis. An extensive 
review of the parametric and nonparametric statistical procedures can be found in the 
book of Sheskin (2007).

4.7 Sample Size and Statistical Power
The study design for comparing two means involves the minimum sample size and 
statistical power needed to reduce the probability of a false conclusion. Stata pro-
vides the Power and sample size option on the Statistics dropdown menu (Figure 4.1). 

Once the Statistics menu is clicked, a new window will be displayed (Figure 4.2). 
If you choose the test comparing two independent means, a dialog window, in 
which the user enters the data according to the study problem, is displayed. For 
example, assuming that we are interested in determining the minimum sample 
size of the previous example for a two-sided test with a 5% significance level, 
an 80% statistical power, and an allocation ratio equal to 1 (equal sample size in 
each group), the window should be completed in the manner seen in Figure 4.3.

Figure 4.1 Statistics options.
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Figure 4.3 Power analyses for a two-sample means test.

Figure 4.2 Power and sample size analysis options.
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After clicking the Submit option, the output will be as seen below:

. power twomeans 24.6 32.3, sd1(4.77) sd2(6.91)

Performing iteration ...

Estimated sample sizes for a two-sample means test
Satterthwaite’s t test assuming unequal variances
Ho: m2 = m1  versus  Ha: m2 != m1

Study parameters:

       alpha =    0.0500
       power =    0.8000
       delta =    7.7000
          m1 =   24.6000
          m2 =   32.3000
         sd1 =    4.7700
         sd2 =    6.9100

Estimated sample sizes:

           N =        22
 N per group =        11

To compare the statistical hypotheses with a 5% significance level, an 80% statis-
tical power, and an allocation ratio equal to 1, the minimum sample size needed 
(for this problem) is 11 per group. If the user is interested in displaying a graph 
for different options in the statistical power (0.8, 0.85, 0.9), using common stan-
dard deviation (5), and different allocation ratios (1, 2, 3), the window should be 
completed in the manner seen in Figure 4.4.
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Figure 4.4 Sample size for two-sample means tests with several power levels and 
allocation ratios.
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When the graph option is used, the output will be as seen in Figure 4.5. 
The total sample size requested will increase when the statistical power is 
increased; however, the changes in the sample size will depend on the alloca-
tion ratio.
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Figure 4.5 Sample size for two-sample means tests using graph option.
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Chapter 5

Linear Regression Models

Aim: Upon completing the chapter, the learner should be able to use 
simple, multiple, and polynomial linear regression models for  estimating 
the expected values of a continuous random variable.

5.1 Introduction
A simple linear regression model (SLRM) is a statistical technique that attempts to 
model the relationship between two variables. One of these variables is the main 
outcome of interest and is a quantitative random variable, usually denoted with 
the letter Y and called the response or dependent variable. The second one can also 
be quantitative and is used to explain the behavior of the expected values of Y; it 
is usually denoted with the letter X and is called the predictor, explanatory, or inde-
pendent variable. The relationship between these variables, when X is a quantitative 
variable, is established using the following expression:

 µ β βy x ii i x| 0 1= + ∗

where:
μy xi i|  defines the expected value of the random variable Y given the predictor 

variable X for the ith subject
β1 is a constant parameter associated with the predictor variable X; it is known 

as the slope of the regression line and indicates the change in the expected 
value of Y per unit of change in X

β0 is a constant parameter that indicates the expected value of Y when xi = 0; 
it is known as the intercept of the regression line
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A simple regression model can also be expressed with the following formula:

 y X ei i i= + +β β0 1

where:
yi indicates the response or dependent variables for the ith subject
ei  denotes the residual, which is the difference between the observed values in Yi and 

the expected value under the model β β0 1+ ∗ xi for the ith subject, as follows:

 e y xi i i= − + ∗( )β β0 1

5.2 Model Assumptions
The procedure to estimate the regression coefficients of an SLRM is performed 
based on the following assumptions:

 1. The response variable is a quantitative random variable that follows a normal 
distribution with an expected value of β β0 + ∗1 xi and a variance of σY X|

2 .

 Y N xi Y X∼ + ∗( )β β σ0 1
2, |

 The expected value of the random variable Y is a straight-line function of X. 
 2. There is independence between the response variable values.
 3. The independent or predictor variable is a quantitative variable, not necessar-

ily a random one.
 4. The βi coefficients should not be affected by any power, other than the unit, 

or by any trigonometric function.
 5. The expected value of the residuals is zero, that is,

 E e ii( ) = 0 for every value of “ ”

 6. The variance of the residuals is constant and is equal to the variance of the 
response variable under the SLRM, that is,

 var ei Y X( ) = σ /
2

 This variance is constant across the range of values of X (Homoscedasticity 
property).

 7. There is no correlation between the residuals, in that

 E e e i ji j, ,( ) = ≠0 for all

 The residual associated with a subject does not affect the residual of another 
subject.
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 8. The probability distribution of the residuals is normal, as can be determined 
using the following:

 
e Ni Y X, /∼ ( )0 2σ

5.3 Parameter Estimation
Several methods are available for estimating the beta coefficients for the linear regres-
sion model. In classical statistics, the method of least squares is used. This method 
chooses the coefficients that minimize the following residual sum of squares:

 S y yi i

i

n

= −( )
=
∑ ˆ 2

1

where:
yi indicates the observed value of the y variable for the ith subject
ŷi indicates the estimated expected value of Y under the model for the ith subject 

using a specific combination of the estimated beta coefficients, as follows:

 ˆ ˆ ˆy Xi i= +β β0 1

To reach the coefficients that minimize S, the mathematical method of optimiza-
tion is used, which equates the first derivative of S to 0 (Draper and Smith, 1998). As 
a consequence, the resulting equation ˆ ˆβ β0 1+( )Xi  minimizes the distance between 
the fitted values ( ŷi ) and the observed values (yi).

5.4 Hypothesis Testing
To assess the statistical significance of the changes in the expected value of Y per 
unit of change in X, any one of several methods can be used (Bingham and Fry, 
2010). The null hypothesis of these methods states that the coefficient associated 
with the predictor variable is zero (H0: β1 = 0). One of the methods for testing this 
hypothesis is the t-test, which is expressed in the following way:

 t tn H=
( )

∼
ˆ

ˆ
|

β

β

1

1

2 0

Var
−

in which β̂1 indicates the estimated β1 , tn−2 is the t-probability distribution with n − 2 
degrees of freedom under the null hypothesis, and Var β̂1( ) is the variance of β1. To 
compute the P-value, it is assumed that this formula follows the t-probability distribu-
tion under the null hypothesis assumption.
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Another method is called analysis of variance (ANOVA), which decomposes the 
variance of Y, as follows:

 TSS SSR SSE= +

where:
TSS 2= −( )∑ = y yii

n
1  indicates the variation of Y around the overall mean of Y; 

this variation is known as the total sum of squares
SSR = −( )∑ = ŷ yii

n 2
1  indicates the variation due to the model, the explained 

variation between the expected value under the model and the overall 
mean of Y; this variation is known as the sum of squares (SS) due to the 
regression model

SSE = −( )∑ = y yii
n ˆ 2

1  indicates the overall variation within the model and the 
unexplained variation within the residuals; this variation is known as the 
residual sum of squares or error sum of squares

SS divided by their degrees of freedom are the mean squares (MS). The follow-
ing ANOVA table summarizes the sources of variation in the data, SS due to the 
source, degrees of freedom in the source, MS due to the source, and the expected 
value of the MS (Draper and Smith, 1998): 

Source of 
Variation

Sum of 
Squares (SS)

Degrees of 
Freedom (df)

Mean Squares 
(MS = SS/df)

Expected Value of 
MS

Regression SSR 1 SSR/1 σ β2
1
2 2

1+ −( )∑ X Xii

n

=

Residual (error) SSE n − 2 SSE/(n − 2) σ2

Total TSS n − 1

Under the null hypotheses, the ratio σ β σ2
1
2 2 2 1+ −∑ { } =( )X Xi . To determine 

how far this ratio should be away from 1, once a set data are collected and the 
parameters of the linear model σ β2 , i( )  are estimated, a P-value is computed using 
the F-Fisher probability distribution with 1 and n − 2 degrees of freedom. 

5.5 Coefficient of Determination
The coefficient of determination R2 is a measure of the goodness of fit of the model 
and is defined using the following expression:
 

R2 100= ×SSR
TSS

%

where the range of values of R2 is between 0% and 100%. This coefficient deter-
mines the percentage of variation of the variable Y explained by the model. Another 
way to calculate R2 is with the following formula:
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 R2 1 100= − ×SSE
TSS

%

This coefficient is used as a criterion to compare two or more models; the higher the 
R2, the better the model fits the data.

5.6 Pearson Correlation Coefficient
The Pearson correlation coefficient is an index indicating the direction and strength 
of the linear association between two continuous random variables. This coefficient 
is represented by ρ; the estimator is represented by r = ρ̂. Its values range from −1.0 
to 1.0. If r is close to 1.0 or to −1.0, it is said that there is a strong positive (directly 
proportional) or negative (inversely proportional) linear association, respectively; 
values close to zero indicate little or no linear association. The mathematical expres-
sion of r is the following: 

 r =
∗

SSXY

SSX TSS

where:

 SSXY = −( ) −( )
=
∑ X X Y Yi i

i

n

1

and

 SSX = −( )
=
∑ X Xi

i

n
2

1

An alternative way to calculate the Pearson correlation coefficient is using the 
square root of the coefficient of determination, assigning the sign of the β1 previ-
ously estimated:

 r R= ( )1sign β̂ 2

To assess whether the Pearson correlation coefficient is different from zero (H0: ρ = 0), 
with data from a random sample of size n, the following formula is used (Kleinbaum 
et al., 2008):

 
T

r n

r
tn= −

−
∼ −

2

1 2
2
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To obtain the P-value, the t-distribution with n − 2 degrees of freedom is used. This 
test is equivalent to the t-test for assessing H0: β1 = 0, described previously.

5.7 Scatter Plot
Prior to performing a linear regression analysis for specific data, it is recommended 
that a scatter plot of the observed data be done to determine whether a linear trend 
can be associated with the relationship that exists between the dependent and inde-
pendent variables. For example, the relationship between the variables weight and 
height (from the previous database) can be obtained (Figure 5.1) with the following 
command: 

twoway (scatter weikg heimt) (lfit weikg heimt), 
xtitle(“Height, mt”) ytitle(“Weight, kg”)

Output

The option lfit in the twoway command is used to draw a line to describe the linear 
relationship between two variables using an SLRM: in this case between height and 
weight given the observed data.
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Figure 5.1 Scatter plot.
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5.8 Running the Model
The results of this scatter plot show a linear upward trend between height and 
weight. Specifically, the higher the subjects, the heavier their weight. After generat-
ing a scatter plot, the user can run a linear regression model with these data using 
the command regress (or reg), as follows:

reg weikg heimt

Output

  Source | SS df MS Number of obs = 10
--------+--------------------------- F(1, 8) =	 0.56
 Model | 125.560422 1 125.560422 Prob > F =	 0.4765
 Residual | 1800.53958 8 225.067447 R-squared =	 0.0652
--------+--------------------------- Adj R-squared = -0.0517
 Total | 1926.1 9 214.011111 Root MSE = 15.002

------------------------------------------------------------------------------
 weikg | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------- +	---------------------------------------------------------------
 heimt | 33.12939 44.35508 0.75 0.476 -69.15362 135.4124
 _cons | 15.61203 68.0289 0.23 0.824 -141.2629 172.487
------------------------------------------------------------------------------

The results of this command show two tables. The first table describes the esti-
mated ratio of the MS obtained by the model over the residual MS is less than 1 

125 6 225 1 0 56. . .( ) =  . This result indicates that there is no evidence to reject the 
null hypothesis (P-value = .4765 > .05). The second table shows the estimated coef-
ficients of the model for the predictor weight and for the intercept (_cons); so, the 
linear trend is estimated using the following equation: Weight height = + ∗15 6 33 1. . . 
Thus, the estimated expected weight in kilograms will increase 33.1 (95% CI: −69.2, 
135.4) for every additional meter of height. However, this increasing trend was not 
significant (P-value > .05). The percentage of total variation from Y  explained by 
the model is 6.5% (R-squared). In this case, Student’s t-test described below the 
ANOVA table shows nonsignificant results for the predictor weight with exactly 
the same P-value described for the F-distribution in ANOVA, which is because of 
the fact that in an SLRM, t2 = F.

5.9 Centering
To facilitate the interpretation of the intercept on a linear regression model, it is 
advisable to transform the values of Xi to the difference of each value from its 
mean as X Xi i−( ). This transformation is known as centering. As a result of the 



48 ◾ Biostatistics in Public Health Using STATA

centralization, the estimator of the coefficient associated with the intercept is equal 
to the mean of the dependent variable, that is,

 β̂0 =Y

This process does not affect the estimates of the coefficients associated with the 
independent variable. Assuming the previous database, the process of center-
ing height to explain weight in STATA can be achieved by typing the following 
commands:

sum weikg 
sum heimt    
*Centering weikg using the result of the previous sum command
gen heimtc=heimt-r(mean)
reg weikg heimtc 

Output

sum weikg 
 Variable | Obs Mean Std. Dev. Min Max
------------+----------------------------------------------
 weikg | 10 66.3 14.62912 35 87

. sum heimt

 Variable | Obs Mean Std. Dev. Min Max
------------+----------------------------------------------
 heimt | 10 1.53 .1127435 1.35 1.78

*Centering weikg using the result of the previous sum command

gen heimtc=heimt-r(mean)   

reg weikg heimtc 
 Source | SS df MS Number of obs = 10
------------+------------------------  F(1, 8) = 0.56
 Model | 125.56044 1 125.56044 Prob > F = 0.4765
 Residual | 1800.53956 8 225.067445 R-squared = 0.0652
------------+---------------  Adj R-squared = -0.0517
 Total | 1926.1 9 214.011111 Root MSE = 15.002
------------------------------------------------------------------------------
 weikg | Coef. Std. Err. t P>|t| [95% Conf. Interval]
------------ + ----------------------------------------------------------------
 heimtc | 33.12939 44.35508 0.75 0.476 -69.15361 135.4124
 _cons | 66.3 4.744127 13.98 0.000 55.36002 77.23998
------------------------------------------------------------------------------

Now the equation model can be expressed in the following manner:

 weikg heimtc heimt = + ∗ = + ∗( )66 3 33 1 66 3 33 1 1 53. . . . .−
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where weikg  is the estimated expected weight (kilograms), explained by centering 
height (meters). The user can confirm that the output is the same with the exception 
of the estimated constant coefficient ( ˆ .β0 66 3= ), which is the mean of the variable 
weight and is identified in Stata in the row labeled _cons.

5.10 Bootstrapping
Bootstrapping is a robust  alternative to classical statistical methods when the 
assumptions are not met using these methods; it provides more accurate inferences, 
particularly when the sample size is small. The procedure to perform bootstrapping 
is via resampling methods for estimating standard errors and computing confi-
dence intervals (Good, 2006). Bootstrapping in Stata can be done using the option 
vce(boot) in the command reg. For example, assuming the previous database, the 
command for estimating weight with centering height using bootstrapping esti-
mates is as follows:

reg weikg heimtc, vce(boot)

Output

Bootstrap replications (50)
----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5 
..................................................    50

Linear regression               Number of obs     =         10
                                Replications      =         50
                                Wald chi2(1)      =       0.24
                                Prob > chi2       =     0.6275
                                R-squared         =     0.0652
                                Adj R-squared     =    -0.0517
                                Root MSE          =    15.0022
------------------------------------------------------------------------------
         | Observed  Bootstrap                Normal-based
   weikg | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-----------+-----------------------------------------------------------------
  heimtc | 33.12939   68.2667  0.49 0.627 -100.6709   166.9297
   _cons |     66.3  4.538575 14.61 0.000  57.40456   75.19544
------------------------------------------------------------------------------

The results show that the estimates of the regression coefficients are the same as 
those obtained using the least-squares method, but the standard errors for the coef-
ficient of heimtc are different, being 44.4 versus 68.3. It is likely that these dif-
ferences are due to the small sample size that was used in this example. For more 
information on this topic, we recommend checking out the book by Draper and 
Smith (1998).
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5.11 Multiple Linear Regression Model
An extension of the SLRM is to use more predictor variables to improve the esti-
mation of the expected value of Y. This model extension is called a multiple linear 
regression model (MLRM), and it is represented as follows for m-predictors:

 µ β β βy x m mX X/ = + + +0 1 1 

where:
μy/x indicates the expected value of Y explained by the X variables for the ith 

subject
Xj indicates the predictor variables ( j = 1,…, m)
β j  indicates the coefficient (constant) associated with Xj

The assessment of the overall significance of its regression coefficients (βis, i > 0) can 
be performed using an ANOVA table, as follows: 

Source of 
Variation SS df MS F-Ratio

Regression SSR m MSR = SSR/m Fc = MSR/MSE

Residual SSE n − m − 1 MSE = SSE/(n − m − 1)

Total TSS n − 1 MST = TSS/(n − 1)

 TSS = −( )
=
∑ y yi

i

n
2

1

 SSR = −( )
=
∑ ŷ yi

i

n
2

1

 SSE = −( )
=
∑ y yi i

i

n

ˆ 2

1

where:
ŷi indicates the estimated expected value of Y given a set of specific values of the 

predictors
Xs for the ith subject, as follows: ˆ ˆ ˆ ˆy X Xi m m= + +…+1β β0 1 β
β̂ j  indicates the estimated value of the coefficient β j

y i indicates the overall mean of Y
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For a multiple regression model, the ANOVA table assumes that H0: 
β1 = β2 = … = βm = 0. If the calculated value of the test statistic Fc is greater than 
F(1−α; m, n−m−1) for a given significance level α, we conclude that there is evidence 
against H0.

In MLRMs, the Stata command reg can be used in a manner that is similar 
to how the simple linear regression was programmed, except that in the latter, the 
model consists of more than one independent variable. For example, assuming the 
previous database, to explain the expected bmi by the predictors age and sex, the 
specifications of the reg command are as follows:

reg  bmi age sex

Output

   Source |     SS      df  MS         Number of obs  =     10
----------+--------------------------  F(  2,     7)  =   2.81
    Model | 192.330078   2 96.1650389  Prob > F       = 0.1269
 Residual |  239.30065   7 34.1858072  R-squared      = 0.4456
----------+--------------------------  Adj R-squared  = 0.2872
    Total | 431.630728   9 47.9589698  Root MSE       = 5.8469
------------------------------------------------------------------------------
      bmi | Coef. Std. Err. t P>|t| [95%   Conf.  Interval]
------------+-------------------------------------------------------------
      age | -.4433135 .3941954 -1.12 0.298 -1.375438  .4888106
      sex |  10.47109 4.432552  2.36 0.050 -.0102331  20.95241
    _cons |  36.82826  11.1896  3.29 0.013  10.36907  63.28745
------------------------------------------------------------------------------

The results show that the fitted MLRM is

 
bmi age sex = − ∗ + ∗36 83 0 44 10 47. . .

with adjusted ˆ . .R 2 28 72= %  The overall assessment of ANOVA indicates that 
we are unable to reject the null hypothesis (H0 0:β βage sex= = ); thus, this result 
suggests that the coefficients of the predictors are equal to zero (P-value > .05), 
but the t-test for the predictor sex suggests that its coefficient in the model 
could be different from zero (P-value =  .05). This contradictory result could 
be explained by the linear dependency (or multicollinearity) between the pre-
dictors, which affects the procedure that is used to estimate the coefficients 
of the MLRM. For example, if we want to run the SLRM of each predictor, 
bmi explained by age and bmi explained by sex, the resulting equations are as 
follows:
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 bmi 26.30 age = + ∗0 07.

and

 bmi sex = + ∗24 59 7 72. .

When we compare the coefficient estimates of these equations with the equation of 
the MLRM, we can see different estimates in the coefficient values: 0.07 vs. −0.44 
in age and 7.72 vs. 10.47 in sex. The presence of one of them affects the estimate of 
the coefficient associated with the other predictor. Unless both predictors are com-
pletely independent of each other, the coefficient estimates will not be affected by 
the presence or absence of one of them (Draper and Smith, 1998).

5.12 Partial Hypothesis
When ANOVA results are significant in MLRMs, the user may wish to determine 
which set of specific predictor variables are the most significant when all the pre-
dictors are assessed simultaneously. For this evaluation, it is recommended that the 
additional sum of squares of the residuals in the model without these predictors 
(incomplete model ) be compared, using the model with these predictors (complete 
model) as a reference. When we reduce the predictor variables from a linear regres-
sion model, the sum of squares of the residuals increases. For example, the residual 
sum of squares for bmi explained by different predictors is described in the follow-
ing table:

Predictors in the 
Model

Residual Degrees 
of Freedom

Residual Sum of 
Squares

Additional Sum of 
Squares

Age + sex
(complete model)

7 239.3 –

Age
(incomplete model)

8 430.1 190.8

Sex
(incomplete model)

8 282.5 43.2

In both incomplete models, the additional sum of squares increases. To assess if this 
increment is statistically significant, a partial F-statistic is used. For example, let us 
assume the following notation for the complete and incomplete models:

Complete Model: μy|X = β0 + β1X1 + … + βkXk + βk+1Xk+1 + … + βmXm

Nested or Incomplete Model: μy|X ′ = β′0 + β′1X1 + … + β′kXk
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The user has to be aware that the coefficients from both models do not necessarily 
have the same value. Based on these models, a partial hypothesis can be defined 
with the following equation:

 H k k X X Xm k0 1 2 0 1 2: , , ,β β β+ + …= =…= =

Then, the following steps are performed to evaluate this type of partial 
hypothesis:

 1. Calculate the sum of squares of the residuals in the complete model (SSEcom) 
with n − m − 1 degrees of freedom.

 2. Calculate the sum of squares of the residuals in the incomplete model (SSEinc) 
with n − k − 1 degrees of freedom.

 3. Compute the difference of SS between the sum of squares of the complete 
and incomplete models, which is called the additional sum of squares, with 
m − k degrees of freedom.

 4. Compute the following formula (partial F):

 F X X X X
m k

n m
k m k+ … …( ) = −( ) −( )

− −( )1 1
1

, , , ,|
SSE SSE

SSE
inc com

com

 5. Calculate the P-value using Fisher’s F-distribution with m − k and n − m − 1 
degrees of freedom.

Considering the previous data of the sum of squares, the partial F, discarding sex 
from the complete model, will be:

 
F sex age|( ) = =

190 8 1
239 3 7

5 58
.
.

.

And the partial F, again discarding age from the complete model, will be:

 F age sex  |( ) = =
43 2 1

239 3 7
1 26

.
.

.

The respective null hypotheses are

 H0 0:βsex age| =

and

 H0 0:βage sex| =
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The respective P-values are computed with the F-Fisher probability distribution 
with 1 and 7 degrees of freedom. In Stata, these P-values can be obtained using the 
Ftail command, as is illustrated in the following:

. dis Ftail(1,7,(282.536554 - 239.30065)/34.1858072) 
0.29783641
. dis Ftail(1,7,(430.07574- 239.30065)/34.1858072) 
0.05017009

An alternative procedure is to use the test command after the reg command for the 
complete model, as in the following:

quietly: reg bmi age sex
test sex
test age

Output

. test sex

( 1)  sex = 0

      F(  1,     7) =    5.58
           Prob > F =    0.0502

. test age

( 1)  age = 0

      F(  1,     7) =    1.26
           Prob > F =    0.2978

Thus, we conclude that there is marginal evidence against the null hypothesis, 
H0 0:βsex age| =  (P-value = .05), suggesting that the variable sex could be part of the 
model when the variable age is already one of the predictors.

5.13 Prediction
Should the user pursue using the model for predicting the expected value under 
the specific conditions of the predictors, the adjust command is available in Stata 
for this purpose. For example, assuming that the user is interested in estimating 
the expected bmi for females (sex = 1) aged 30 years; after the reg command, the 
specifications for the adjust command are as follows:

quietly: reg bmi age sex 
adjust age=30 sex=1, ci
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Output

-----------------------------------------------------------------------------
    Dependent variable: bmi     Command: regress
Covariates set to value: age = 30, sex = 1
-----------------------------------------------------------------------------

----------------------------------------------
     All |         xb          lb           ub
---------+------------------------------------
         |    33.9999    [26.8742     41.1257]
----------------------------------------------
    Key:  xb         =  Linear Prediction
          [lb , ub]  =  [95% Confidence Interval]

The option ci in the adjust command is used to display the 95% confidence interval 
of the prediction. The results displayed in the above table indicate that for 30-year-
old females, the estimated expected bmi is 34 (95% CI: 26.9, 41.1).

5.14 Polynomial Linear Regression Model
Another extension of the SLRM is the polynomial linear regression model, with at 
least one predictor at the power greater than 1. This model is recommended when 
it is suspected that a nonlinear trend would better explain the relationship between 
the outcome of interest and the predictors. The simplest polynomial model is the 
following expression:

 Y X X ei i i i= + + +β β β0 1 2
2

The model above is known as a second-order or quadratic polynomial model, 
because it contains an independent variable expressed as a term to the first power 
(Xi) and a term expressed to the second power (Xi

2). To use this model, it is rec-
ommended that all predictors be centralized to reduce the effect of the correlation 
among predictors. For example, to explain the variable bmi by age and age2, the fol-
lowing commands generate the estimates of the expected values for both the linear 
and polynomial models:

quietly: sum age
gen agec=age-r(mean)
gen agec2=agec^2
reg bmi agec
predict bmiesp1
reg bmi agec agec2
predict bmiesp2
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Output

quietly: sum age

. gen agec=age-r(mean)

. gen agec2=agec^2

. reg bmi agec

 Source | SS df MS Number of obs = 10
---------+--------------------------- F(  1,     8) = 0.03
 Model | 1.55497935 1 1.55497935 Prob > F = 0.8692
Residual | 430.075749 8 53.7594686 R-squared = 0.0036
---------+--------------------------- Adj R-squared = -0.1209
 Total | 431.630728 9 47.9589698 Root MSE = 7.3321
------------------------------------------------------------------------------
           bmi | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-----------+----------------------------------------------------------------
        agec | .0701375 .4123967 0.17 0.869 -.8808511 1.021126
   _cons | 28.45408 2.318609 12.27 0.000 23.10736 33.8008
------------------------------------------------------------------------------

. predict bmiesp1
(option xb assumed; fitted values)

. reg bmi agec agec2

 Source | SS df MS Number of obs = 10
---------+---------------------------- F(  2,     7) = 0.66
 Model | 68.2219892 2 34.1109946 Prob > F = 0.5476
 Residual | 363.408739 7 51.9155342 R-squared = 0.1581
---------+---------------------------- Adj R-squared = -0.0825
 Total | 431.630728 9 47.9589698 Root MSE = 7.2052

------------------------------------------------------------------------------
     bmi |   Coef.  Std. Err.  t   P>|t|  [95% Conf. Interval]
-----------+----------------------------------------------------------------
    agec | .7288876 .7086385  1.03 0.338  -.9467761   2.404551
   agec2 |-.0769584 .0679124 -1.13 0.294  -.2375457   .0836289
   _cons | 30.88673 3.130483  9.87 0.000   23.48432   38.28915
------------------------------------------------------------------------------

. predict bmiesp2
(option xb assumed; fitted values)

Once the expected value for each model is estimated with the command predict 
(bmiesp1 and bmiesp2), a plot with these estimates can be displayed with the fol-
lowing command (Figure 5.2): 

twoway (scatter bmi age, sort) (line bmiesp1 age, sort) (line 
bmiesp2 age, sort), ytitle(bmi)
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Output

In this example, the quadratic curve appears to be better than the linear trend in 
terms of its ability to explain the expected value of bmi by age.

5.15 Sample Size and Statistical Power

To determine the minimum sample size for performing an SLRM with enough sta-
tistical power (i.e., 1 − β = 0.8) and a minimum significance level (i.e., α = 0.05), 
the following expression is used (Kleinbaum et al., 2008):

 n
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in which C(ρ) is the Fisher transformation, defined as follows:
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In the above, ρ can be estimated with the square root of the expected coefficient of 
determination (R2) for the model under consideration.

In Stata we can estimate sample size using the option of correlation in the 
Power and sample size analysis window in the Statistics menu, providing significance 
level, power value, and the linear correlation coefficient value under the alternative 
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Figure 5.2 Linear and polynomial fits.



58 ◾ Biostatistics in Public Health Using STATA

hypothesis. For example, assuming that we want to determine the minimum sam-
ple size needed to estimate the expected bmi value using an SLRM with sex as pre-
dictor and an approximate R2 of 0.3454 (ρ ∼ =. .3454 59), the dialog box should 
be filled out as described in Figure 5.3.

Output

Estimated sample size for a one-sample correlation test
Fisher’s z test
Ho: r = r0  versus  Ha: r != r0

Study parameters:

       alpha =    0.0500
       power =    0.9000
       delta =    0.5900
          r0 =    0.0000
          ra =    0.5900
Estimated sample size:

           N =        26

Therefore, the minimum sample size for performing an SLRM between BMI and sex, 
assuming 90% statistical power and a 5% significance level, is 26 subjects. Should the 
user want to determine the minimum sample size for an MLRM (nm), when X1 is the 
main predictor, the following expression is recommended (Kleinbaum et al., 2008):

Figure 5.3 Power and sample-size analysis.
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 n
n

m
s

X X Xk

=
− ( )1

1 2

2ρ , ,

where ns is the minimum sample size for the SLRM using X1 as predictor, ρX X Xk1

2
2 , ,…( ) 

is the chosen value of the population-squared multiple correlation between the 
main predictor X1 and the control variables X2, X3,…,Xk.

5.16  Considerations for the Assumptions 
of the Linear Regression Model

Having defined the linear regression model most suitable to your needs, it is neces-
sary to verify its compliance with the assumptions for its creation. This assessment 
is conducted primarily through the absolute difference between the observed and 
expected values under the model:

 ˆ ˆe y yi i i= −

where

 ˆ ˆ ˆ ˆy X Xi p p= + + +β β β0 1 1 

At first it is assumed that the residuals are independent; however, the ei obtained 
from the study data depend on the expected values of Y under the model, which 
in turn depend on the values of the predictors. Moreover, the model assumes that 
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Figure 5.4 Residuals distribution.
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the variances are constant, but the variance of the residual depends on the distance 
of the central values of the predictors. To verify the compliance of constant vari-
ance, it is recommended that the standardized residuals be graphically represented. 
In Stata, this type of graph can be obtained using the rvpplot command after the 
reg command. For example, to describe the residuals distribution related with the 
linear regression model between heimt and age, the Stata commands are:

reg heimt age
rvpplot age

The output of these commands can be seen in Figure 5.4. Because of the small 
sample size in this example, it is difficult to visualize a particular pattern around 0, 
although some symmetric distribution is observed. For more discussion on this 
topic, we recommend checking out the book by Draper and Smith (1998).
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Chapter 6

Analysis of Variance

Aim: Upon completing the chapter, the learner should be able to perform 
an analysis of variance to compare the expected values of a continuous 
random variable between different groups.

6.1 Introduction
An analysis of variance (ANOVA) can be performed to compare two or more 
parameters (expected values and variances). The possible objectives of this analysis 
might be to:

 1. Compare the expected value of a continuous random variable in “m” different 
groups to assess the following hypothesis:

 H m0 1 2:µ µ µ= = =

 2. Determine which expected values are different among comparison groups to 
evaluate any of the following potential null hypotheses:

 H H Hi j i
i k

0 0 0
1 2 3 4 5

2 3 2
: ; : ; :µ µ µ µ µ µ µ µ µ µ= = + + + = +



 3. Determine if the variability of a random continuous variable is the same 
between different groups to evaluate the following hypothesis:

 H0
2 0:σα =
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6.2 Data Structure
Assuming that we have three groups or three selected groups, the database to com-
pare the expected value of random variable Y would have the following structure:

Group 1 Group 2 Group 3

Y1,1 Y2,1 Y3,1

Y1,2 Y2,2 Y3,2

: : :

: : :

Y1,n1 Y2,n2 Y3,n3 Total

Total Σ j
n Y j=1
1

1, Σ j

n Y j=1
2

2, Σ j

n Y j=1
3

3, Yi jj
n

i
k i

,== ∑∑ 11

Mean Y1 Y2 Y3 Y

Variance s1
2 s2

2 s2
2 s2

Number of 
subjects

n1 n2 n3 n

Expected 
value

μ1 μ2 μ3 μ

The possible research questions for this study are:

 1. Assuming that the information available is from all possible groups, the 
research question can be stated as follows: Does the expected value vary by 
group (μ1= μ2= μ3)? (Fixed effects model)

 2. Assuming that the information available is from a random sample of all 
 possible groups, the research question can be stated as follows: Is there any 
variation among all the groups (σα

2

 
≠

 
0)? (Random effects model)

6.3 Example for Fixed Effects
To exemplify the research question for fixed effects (above), we are going to use 
the information from the previous database. As the bmig consists of three groups 
(normal, overweight, and obese), the research question would be the follow-
ing: Are there differences in the expected age, according to the bmig categories? 
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The basic statistics from the database, using the table command, are in the fol-
lowing output:

. table bmig, c(n age mean age sd age)

-----------------------------------------------
      bmig|     N(age)   mean(age)       sd(age)
----------+------------------------------------
    Normal|          4       32.75     8.539125
Overweight|          3          27            2
     Obese|          3    31.66667     3.785939
-----------------------------------------------

The results from the above table show that subjects having a normal bmi are in 
the older group, and those categorized as being overweight are younger. But the 
variability in these groups seems to be very different, based on the comparison of 
standard deviations. To assess whether these differences are statistically significant, 
either a linear model or an analysis of variance can be used (both of which are 
described in the following sections).

6.4 Linear Model with Fixed Effects
For a comparison of the expected values of a continuous random variable Y (e.g., 
age in years) for the groups of interest, we can establish the following model, using 
the bmig categories:

 y eij ij= µ µ µ µ µ1 2( ) ( )* *+ − + − +1 2 3 1 3BMIG BMIG

and

 y eij ij= * *1 2 2 3 3µ α α+ +BMIG BMIG++

where:
yij indicates the value of the continuous random variable Y in the ith subject that 

belongs to the jth bmig category
μj indicates the expected value of Y in the jth bmig category, E yij j( ) = µ
eij indicates the difference between the observed value of yij and the expected 

value of the random variable Y in the jth bmig category (µj) (it is assumed 
that the errors, eij, are independent and follow an N 0 2,σ( ) distribution)

α j indicates the effect of the jth bmig category with respect to the first bmig 
category (normal), subject to the restriction α1 = 0

BMIGj is a dummy variable whose value is 1 if the subject belongs to the jth bmig 
category; its value is 0 if the subject belongs to another bmig group
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When the groups being compared correspond to all of the possible groups or when 
they represent a select group of interest, the αis are constants and are defined as 
fixed effects. If the effects are fixed, then it is initially assumed that variances within 
groups are equal, Var Yij( ) = σ2.

6.5 Analysis of Variance with Fixed Effects
For analyzing the expected values of a continuous random variable between 
 different groups using the statistical method of analysis of variance, we start by 
decomposing the numerator of the variance of Y, as can be accomplished using 
the following:

 Y Y n Y Y Y Yij

ji

k

i

i

k

ij

j

n

i

k i

−( ) = −( ) + −( )
== = ==
∑∑ ∑ ∑∑2

11

2

1

2

11

n

i i

i

where:
n Y Yii

k
i −( )=∑ 2

1  indicates the variation between groups (between sum of squares)
Y Yijj

n
i

i −( )== ∑∑
2

11
k  indicates the overall variation within each group (within sum 

of squares)

The null hypothesis in ANOVA with fixed effects determines that the expected  values 
of the random variable of interest, Y, in all groups are the same, H k0 1:µ µ= = ; 
thus, αi = 0 for all groups. To assess the null hypothesis, the estimated expected 
values of SS between and SS within are compared, considering their respective 
degrees of freedom, as follows:

Source of 
Variation SS Df MS E[MS]

Between ni ii

k Y Y−( )=∑
2

1 k − 1 n Y Y ki ii
k −( ) −( )=∑

2

1 / 1 σ φ2 +

Within Y Yij i−( )∑∑
2

=1=1 j

n

i

k i n − k Y Y kij ij

n

i

k i −( ) −( )∑∑ =

2

=11 n σ2

Total
i

k

j
ijY Y

= =
∑∑ −( )

1 1

2ni

n − 1

Note:
 

φ =
−

=
∑1

1

2

1
k

ni i

i

k

α
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Under the null hypotheses, the ratio σ α σ2 1
1

2 2 1+( ) =− ∑k i in . To determine how 
far this ratio should be away from 1, once a dataset is collected and the parameters 
of the linear model σ α2 , i( )  are estimated, a P-value is computed using the F-Fisher 
probability distribution with 1 and n − 2 degrees of freedom. 

6.6 Programming for ANOVA
To program a linear model to determine which fixed effect is different from zero, 
we can use the regress (or reg) command with a categorical predictor. For example, 
to compare age between the categories of the bmig, using the first category as the 
reference group, go to the Statistics dropdown menu and click on “Linear regres-
sion”; next, write age in the Dependent variable box and bmig (as a categorical vari-
able) in the Independent variables box, remembering to precede “bmig” with the 
symbol “i.”, as is illustrated in Figure 6.1.

Once the previous table is submitted, the following output will be displayed:

. reg  age i.bmig

     Source |      SS        df      MS Number of obs = 10
------------+------------------------------ F(2, 7) = 0.83
      Model |  60.6833333     2  30.3416667 Prob > F = 0.4742
   Residual |  255.416667     7  36.4880952 R-squared = 0.1920
------------+------------------------------ Adj R-squared = -0.0389
      Total |       316.1     9  35.1222222 Root MSE =     6.0405

Figure 6.1 Linear regression model with categorical predictor.
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------------------------------------------------------------------------------
        age |     Coef.  Std. Err.   t     P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
       bmig |
Overweight  |     -5.75  4.613537  -1.25   0.253  -16.65928   5.159281
     Obese  | -1.083333  4.613537  -0.23   0.821  -11.99261   9.825948
            |
      _cons |     32.75  3.020269  10.84   0.000    25.6082    39.8918
------------------------------------------------------------------------------

The results show that there is no evidence of significant differences in the mean age 
across bmig categories using normal subjects as the reference group (P-value > .1). 
If the user wants to change the reference group (e.g., use the second category of 
bmig), the following command syntax should be used:

reg  age b2.bmig

Output

. reg  age b2.bmig

    Source |       SS       df       MS      Number of obs   =        10
-----------+------------------------------   F(2, 7)         =      0.83
     Model |  60.6833333     2  30.3416667   Prob > F        =    0.4742
  Residual |  255.416667     7  36.4880952   R-squared       =    0.1920
-----------+------------------------------   Adj R-squared   =   -0.0389
     Total |       316.1     9  35.1222222   Root MSE        =    6.0405

------------------------------------------------------------------------
       age |      Coef.   Std. Err.    t    P>|t| [95% Conf. Interval]
-----------+----------------------------------------------------------------
      bmig |
   Normal  |       5.75   4.613537   1.25   0.253  -5.159281    16.65928
    Obese  |   4.666667   4.932078   0.95   0.376  -6.995845    16.32918
           |
     _cons |         27   3.487506   7.74   0.000   18.75336    35.24664
------------------------------------------------------------------------------

The commands oneway and anova can be used in the assessment of the null hypoth-
esis, H k0 1:µ µ= =  (using fixed-effect ANOVA). The oneway command includes 
Bartlett’s test for equal variances, a condition needed in the F-test for comparing 
expected values. The anova command expands the sum of squares if more than one 
source of variation is used. For example, to compare age between the bmig catego-
ries, the following command is used:

oneway age bmig
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Output

. oneway age bmig

                    Analysis of Variance
    Source           SS        df       MS         F     Prob > F
------------------------------------------------------------------------
Between groups   60.6833333     2   30.3416667  0.83    0.4742
 Within groups   255.416667     7   36.4880952
------------------------------------------------------------------------
   Total              316.1     9   35.1222222

Bartlett’s test for equal variances: chi2(2) = 3.5156 Prob>chi2 = 0.172

The output of the oneway command provides evidence in favor of the null hypoth-
esis, H0 :µ µ µnormal overweight obese= = , and evidence in favor of equal variances, via the 
Bartlett’s test (P-value > 0.1).

If the user includes the variable sex as a second source of variation and the 
interaction of age and sex to explore how the mean of age changes by bmig 
category and sex, the command line (making use of the anova command) is as 
follows:

anova age bmig sex bmig#sex

Output

 Number of obs =         10    R-squared     =  0.8439
 Root MSE      =    3.14113    Adj R-squared =  0.7191

 Source | Partial SS         df         MS        F    Prob>F
-–-------+----------------------------------------------------
 Model |  266.76667          4   66.691667      6.76  0.0299
           |
 bmig |  157.11373          2   78.556863      7.96  0.0279
 sex |  131.92157          1   131.92157     13.37  0.0146
 bmig#sex |  62.745098          1   62.745098      6.36  0.0531
          |
 Residual |  49.333333          5   9.8666667  
---------+----------------------------------------------------
   Total |      316.1          9   35.122222  

The output suggests that the mean of age changes according to the bmig and sex cat-
egories due to the fact that the interaction term bmig#sex is marginally significant 
(P-value = .053); however, caution should be taken with this interpretation because 
the sample size is very small.
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6.7 Planned Comparisons (before Observing the Data)
Having determined that there is evidence of a difference between the expected 
values, the next step is to determine if the difference of interest is significant. This 
difference of interest can be defined with two expected values (pairs of means) or 
with a combination of expected values (linear contrasts).

6.7.1 Comparison of Two Expected Values

Continuing with the same example as before, suppose the user’s main purpose is to 
compare the expected age of subjects having a normal bmi with the expected age of 
subjects who are categorized as being overweight. To do this, the null hypothesis is 
formulated in the following way:

 H H0 1 2 0 1 2 0: :µ µ µ µ= − =or

which is equivalent to

 H0 2 0:α =

The test statistic will be

 F t
Y

s
F

Y

n n

i

i j
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2

2

1
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where s2 is MSE (within MS).
To evaluate the null hypothesis in Stata, using this statistic, we can use the test 

command after the anova command, as can be seen in the following:

anova age bmig

test 1.bmig=2.bmig

Output

. anova age bmig

            Number of obs =      10 R-squared     =  0.1920
            Root MSE      = 6.04054 Adj R-squared = -0.0389

     Source | Partial SS  df          MS      F          Prob>F
          -----------+----------------------------------------------------
      Model | 60.683333   2    30.341667    0.83        0.4742
            |
       bmig | 60.683333   2    30.341667    0.83        0.4742
            |
   Residual | 255.41667   7    36.488095  
           -----------+----------------------------------------------------
      Total |      316.1   9    35.122222  
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.  test 1.bmig=2.bmig

 ( 1) 1b.bmig - 2.bmig = 0

      F(  1,     7) =    1.55
           Prob > F =    0.2527

The results suggest that there is no difference in the expected age between normal 
bmi subjects and those whose bmi indicates that they are overweight (P-value > .1).

6.7.2 Linear Contrast

A linear contrast is a combination of expected values, as is illustrated in the 
following:

 
L ci i

i

k

=
=
∑ µ

1

where:

 
ci

i

k

=
=
∑ 0

1

The definition for a linear contrast depends on the null hypothesis under evalua-
tion. For example,

 1. When H0 1 2 0:µ µ− =  then, 

 L = + −( ) ( )1 11 2µ µ

 where c1 = 1 and c2 = −1

 2. When H H0 1 2 3 0 1 2 32 1 0 5 0 5 0: : . .µ µ µ µ µ µ= +( )⇒ ( ) + −( ) + −( ) =  then,

 L = + − + −( ) ( ) ( )1 0 5 0 51 2 3µ µ µ. .

 where c1 = 1, c2 = −0.5, c3 = −0.5

Once the linear contrast is defined, the test statistic is
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where s2 = MSE (within MS) and L  is determined by the sample means.
To evaluate linear contrasts in Stata, we can use the test command after the 

anova command. For example, assuming the user wants to compare the expected age 
between the subjects categorized as having a normal bmi against the average of the 
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expected age in subjects categorized as being overweight or obese, the null hypothesis is 
formulated as H0: µ1 = (µ2 + µ3)/2. To assess this hypothesis with the test command, 
the specified command line, after running the anova command, is as follows:

test 1.bmig=(2.bmig+3.bmig)/2

Output

. test 1.bmig=(2.bmig+3.bmig)/2
 ( 1)  1b.bmig - .5*2.bmig - .5*3.bmig = 0
       F(  1,     7) =    0.77
            Prob > F =    0.4099

The results suggest that the expected age does not change between the groups under 
comparison (P-value > .1).

6.8 Multiple Comparisons: Unplanned Comparisons
Having determined that there is evidence of a difference between the expected  values, 
the next step is to determine which of the differences is or are significant. There are 
several methods, called post hoc tests, which have been developed to answer this 
type of question; two of the most commonly used methods are Bonferroni’s method 
and Scheffé’s method.

Bonferroni’s method compares pairs of groups by adjusting the significance level 
of each pair of averages compared to the total possible number of paired comparisons. 
For example, if the level of significance is 5% and there are three possible pairwise 
comparisons, then the level of significance for evaluating one particular pair of means 
is divided by 3; that is, the level of significance of one pair would be 0.05/3 = 0.0167. 
Another alternative is to multiply the P-value of each comparison by 3. This method 
ensures that the overall significance level defined in ANOVA is maintained when it is 
conducted simultaneously on all possible pairwise comparisons. This method can be 
programmed through the oneway command. For example, assuming the user wants to 
compare the expected age in the following three bmig categories (normal, overweight, 
and obese), the command syntax with oneway command will be the following:

oneway age bmig, bon tab

Output

           |           Summary of age
      bmig |        Mean   Std. Dev.       Freq.
-----------+------------------------------------
    Normal |       32.75   8.5391256           4
 Overweigh |          27           2           3
     Obese |   31.666667   3.7859389           3
-----------+------------------------------------
     Total |        30.7   5.9264004          10
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                    Analysis of Variance
   Source           SS         df      MS        F    Prob > F
------------------------------------------------------------------------
Between groups   60.6833333     2   30.3416667  0.83         0.4742
 Within groups   255.416667     7   36.4880952
------------------------------------------------------------------------
   Total              316.1     9   35.1222222

Bartlett’s test for equal variances: chi2(2) = 3.5156 Prob>chi2 = 0.172

                         Comparison of age by bmig
                               (Bonferroni)
Row Mean-|
Col Mean |     Normal   Overweig
---------+----------------------
Overweig |      -5.75
         |      0.758
         |
   Obese |   -1.08333    4.66667
         |      1.000      1.000

Note: The option Bon displays the Bonferroni multiple-comparison test. The option 
tab produces a summary of age at each category of bmig.

At the bottom of the output table, all the pairwise comparisons between the samples 
means can be seen; for example, the difference between the mean age of the obese group 
and that of the overweight group is 4.67, which can be confirmed with the first table 
requested in this output, in which Y Y Ynormal overweight obeseand= = =32 8 27 0 31 7. , . , . . 
Below the pairwise differences is the P-value for the F-statistics of one pair, which was 
computed by multiplying by the total number of possible mean pairs to be compared. 
The results show that there are no evidences of significant differences (P-values > .1) in 
any of the pairwise comparisons.

Scheffé’s method performs multiple comparisons through linear contrasts, but 
the significance level of each comparison is not adjusted. In Scheffé’s method, the 
test statistic is calculated using the following formula:
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The null hypothesis is rejected with a certain significance level, α, when

 t k F t k Fk n k k n k> −( ) <− −( )− − − − − −1 11 1 1 1, , , ,α αor
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The P-value is calculated with the F-Fisher probability distribution with k − 1 and 
n − k degrees of freedom. The Stata command line for performing multiple com-
parisons by Scheffé’s method is as follows:

oneway age bmig, sch

Output

**The ANOVA table is omitted

Comparison of age by bmig
                                 (Scheffe)
Row Mean-|
Col Mean |     Normal   Overweig
---------+----------------------
Overweig |      -5.75
         |      0.496
         |
   Obese |   -1.08333    4.66667
         |      0.973      0.656

The results displayed in the above output table show that the P-values that result 
when using Scheffé’s method are different from those that result when Bonferroni’s 
method is used; however, the statistical evidence confirms that there are no signifi-
cant differences (P-values > .1) in any of the pairwise comparisons.

6.9 Random Effects
When the statistical information is collected only from a random sample of groups 
of subjects, which are part of all possible study groups (Figure 6.2), we can define a 
linear model with random effects. 

The linear model with random effects is represented as follows:

Yij|µi = µi + eij,

where:
Y Nij i i½µ ∼ ( ) i.i.d µ σ, 2

µ µ σµi iN∼ ( ) i.i.d , 2

 i.i.d = independently and identically distributed

The main outcome, Y, is a continuous random variable distributed as a normal 
distribution with the following parameters: µ σi,

2. These parameters could be 
also random variables; however, in the random effect model considered, only μi 
is assumed to be a random variable with normal distribution and parameters: 
µ σµ, 2. 
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Following is an alternative expression of the linear model with random effects:

 E Yij i i½α( ) = +µ α

 
Y Nij i i½α ∼ ( )i.i.d µ σ, 2

 
α σαi N∼ ( )i.i.d 0 2,

The procedure to estimate the parameters of this model is similar to the process 
used in Bayesian data analysis; however, in ANOVA with random effects, we are 
only assuming randomness in μi. The null hypothesis of the ANOVA with random 
effects is formulated as follows:

 H0 :: ==σα
2 0

Having σα
2 0==  implies that the expected values of Y for all groups, including the 

groups in the study sample and the groups of subjects who were not included in the 
study sample, are equal µ µ µ1 2= = =( ) m .

Under the assumption of random effects, the expected values for the sum of 
squares in the ANOVA can be seen below in the following:
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All possible groups

Random sample of groups

Figure 6.2 Random effects scheme.
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where:
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To evaluate the null hypothesis with the data collected in the sample, the F-statistic 
is obtained using the following equation:
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The estimates of σα
2  and σ22  are calculated by the following expressions:
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6.10  Other Measures Related to the Random 
Effects Model

6.10.1 Covariance

In the previous example, there is a possible relationship between the subjects of the 
same group. To assess this, the covariance statistic is defined using the following 
equation:
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Cov , Cov{ , Cov ,Y Y E Y E Y E Y Yim in im i in i im in i( ) = ( ) + ( ){ }
=

( | | } |α α α

CCov µ α µ α α α σα+ +( ) + = ( ) =i i i i, Cov 20 ,

6.10.2 Variance and Its Components

Another expression for the variance of Yij with its components is as follows:

 
Var Var Var

Var

Y E Y E Yij ij i ij i

i

( ) = ( ){ } + ( ){ }
= +( ) + ( ) =

½ ½α α

µ α σ σαE 2 2 ++ σ2

where σα
2  and σ2 are defined as components of the variance.

6.10.3 Intraclass Correlation Coefficient

A useful measure of association within groups is the intraclass correlation coef-
ficient defined as follows:

 Corr
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Y Y
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This index can be interpreted as a measure of reproducibility or consistency (reli-
ability coefficient) between the measurements of a group. Rosner (2010) suggests 
using the following interpretations:

ρI < 0 4.   Poor reproducibility

0 4 0 75. .≤ <ρI  Moderate reproducibility

ρI ≥ 0 75.   Excellent reproducibility

6.11 Example of a Random Effects Model
Let us assume that the user is interested in assessing the systolic blood pressure 
readings (mm Hg) from a portable machine. In addition, we must take into con-
sideration the fact that the experimental design was defined to measure these 
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readings from a subject twice a day, for 10 consecutive days, as a random sample 
of days in 1 month. Finally, let us assume that the data in Stata conform to the 
following format:

    +-----------------+
    | day   sb1   sb2 |
    |-----------------|
 1. |   1    98    99 |
 2. |   2   102    93 |
 3. |   3   100    98 |
 4. |   4    99   100 |
 5. |   5    96   100 |
 6. |   6    95   100 |
 7. |   7    90    98 |
 8. |   8   102    93 |
 9. |   9    91    92 |
10. |  10    90    94 |
    +-----------------+
    sb1 indicates the first measure of systolic blood pressure.
    sb2 indicates the second measure of systolic blood pressure.

To perform an ANOVA, the user has to modify the previous database structure. 
The actual format is called wide format, where every row in the dataset contains all 
the information of one subject. To run an ANOVA the database structure must be 
in the long format, where every row contains the information of each subject’s visit. 
The reshape command can be used to change the database structure from wide to 
long format, as follows:

reshape long sb, i(day)

Output
. reshape long sb, i(day)
(note: j = 1 2)

Data                               wide   ->   long
-----------------------------------------------------------------------------
Number of obs.                       10   ->      20
Number of variables                   3   ->       3
j variable (2 values)                     ->   _j
xij variables:
                                sb1 sb2   ->   sb
-----------------------------------------------------------------------------

After the reshape command, use the list command to see the current data structure, 
as is demonstrated in the following table:
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list     
     +----------------+
  i  | day   _j    sb |
     |----------------|
  1. |   1    1    98 |
  2. |   1    2    99 |
  3. |   2    1   102 |
  4. |   2    2    93 |
  5. |   3    1   100 |
  6. |   3    2    98 |
  7. |   4    1    99 |
  8. |   4    2   100 |
  9. |   5    1    96 |
 10. |   5    2   100 |
 11. |   6    1    95 |
 12. |   6    2   100 |
 13. |   7    1    90 |
 14. |   7    2    98 |
 15. |   8    1   102 |
 16. |   8    2    93 |
 17. |   9    1    91 |
 18. |   9    2    92 |
 19. |  10    1    90 |
 20. |  10    2    94 |
     +----------------+

To run the linear model with random effects, use the loneway command, as follows:

loneway sb day

Output
       One-way Analysis of Variance for sb: 

                                            Number of obs =           20
                                                R-squared =       0.5118

  Source                SS         df      MS            F      Prob > F
-------------------------------------------------------------------------
Between day                152      9    16.888889      1.16      0.4050
Within day                 145     10         14.5
-------------------------------------------------------------------------
Total                      297     19    15.631579

       Intraclass       Asy.        
       correlation      S.E.       [95% Conf. Interval]
       ------------------------------------------------
          0.07611     0.32301       0.00000     0.70920

       Estimated SD of day effect              1.092906
       Estimated SD within day                 3.807887
       Est. reliability of a day mean           0.14145
            (evaluated at n=2.00)
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The results indicate that there is evidence in favor of the null hypothesis 
H0 :σα

2 0==( ). Therefore, the expected values of the systolic blood pressure read-
ings from the portable machine are equal for the subject under study for 1 month 
(P-value > .1). The estimated intraclass correlation coefficient is as follows:

 ρI
 =

+
=1 19

1 19 14 5
0 076

.
. .

.

where ˆ . . .σα
2 = −( ) =16 9 14 5 2 1 19. Therefore, based on the intraclass correlation 

coefficient estimation, there is a poor reproducibility index between the two mea-
surements taken in a single day.

6.12 Sample Size and Statistical Power
To determine the minimum sample size for comparing means with enough sta-
tistical power (i.e., at least 1 − β = 0.8) and a minimum significance level (i.e., 
α = 0.05), Stata provides the option for comparing the means of independent sam-
ples using ANOVA with the Power and sample size analysis window in the Statistics 
menu. For example, assuming we want to determine the minimum sample size to 
compare their mean age across the three bmig categories, the following informa-
tion must be provided in the option One-way analysis of variance: significance level, 
statistical power, the group of means under the alternative hypothesis, and the error 
(within-group) variance (Figure 6.3).

Once the previous table is submitted, the following output will be displayed:

. power oneway 32.8  27 31.7, varerror(36.5)

Performing iteration ...

Estimated sample size for one-way ANOVA
F test for group effect
Ho: delta = 0  versus  Ha: delta != 0

Study parameters:

       alpha =    0.0500
       power =    0.8000
       delta =    0.4163
         N_g =         3
          m1 =   32.8000
          m2 =   27.0000
          m3 =   31.7000
       Var_m =    6.3267
       Var_e =   36.5000
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Estimated sample sizes:

          N =         60
N per group =         20

Both delta (effect design, Var_m Var_e ) and Var_m (variance between groups, 
based on the means of each group and the grand mean, Y Yii −( ) =∑ 2

1
3 3 ) are com-

puted automatically by Stata.
Therefore, the minimum sample size to compare the means across the three 

bmig categories is 20 subjects per group, assuming the following conditions: an 
80% statistical power, a 5% significance level, and an error (within-group) variance 
of 36.5.

Figure 6.3 Sample size for one-way ANOVA.
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Chapter 7

Categorical Data Analysis

Aim: Upon completing the chapter, the learner should be able to perform 
a stratified analysis in an epidemiological study, using cohort and case-
control study designs.

7.1 Introduction
So far, we have discussed the Stata commands for estimating the conditional  expectations 
of continuous variables. There are, however, numerous occasions in the public health 
field in which we are interested in exploring the association between a categorical out-
come (e.g., disease status) and one or more predictor variables (e.g., exposure status, 
confounding variables, and effect modifiers variables) collected in epidemiologic stud-
ies. Epidemiology is “the study of the occurrence and distribution of health-related 
events in specified populations and the application of this knowledge to control rel-
evant health problems” (Porta, 2008; Rothman, 2002). Epidemiological studies are 
commonly categorized as descriptive or analytical studies. These studies are defined 
immediately below:

 ◾ Descriptive epidemiology focuses on describing the occurrence (incidence, preva-
lence, and mortality) and distribution of disease (or other health event) patterns 
by characteristics relating to person (who is affected by the health event?), time 
(when does the health event occur?), and place (where does the health event 
occur?). Descriptive studies often use routine data (i.e., vital statistics,  surveillance 
systems, registries, or population surveys) collected in a population to charac-
terize the patterns of disease occurrence. The data generated from descriptive 
studies can be used for healthcare planning and hypothesis generation. Types 
of descriptive studies include case series, cross-sectional, and ecological studies.
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 ◾ Analytical epidemiology is concerned with assessing the associations between 
exposures and diseases (or other health outcomes), which associations may 
provide further insights into the causes of a disease and lead to prevention 
strategies. Types of analytical studies include case-control studies, cohort 
studies, and clinical trials.

In the next sections, we will show the application of the Mantel–Haenszel method 
for the analysis of data derived from cohort and case-control studies (Jewell, 2004; 
Rothman, 2002). This method is based on the stratification of potential confound-
ing variables to estimate a weighted average of the magnitude of the exposure–disease 
association. Confounding factors are variables that are related to both the exposure 
and the outcome but do not lie in the causal pathway between them (Rothman, 
2002; Woodward, 2004). As we shall see in the next chapters, regression models are 
efficient techniques that can be employed to assess the exposure–disease association 
while controlling for the confounding variables. 

7.2 Cohort Study
Cohort studies are designed with at least two groups of subjects usually called exposed 
and nonexposed (in terms of a particular factor, in either case) groups. Once these 
groups are identified, they are followed up for a specific period of time to determine 
whether any of their members develop the disease of interest, while controlling for 
potential confounding variables. The magnitude of the association between exposure 
and disease is determined by the relative risk, which is defined in the following way:

 RR exposure

nonexposure

=
I

I

where Ij indicates the incidence of the disease in the jth group. When stratified 
analysis is performed, the RR is assessed under different strata (to be combined into 
one single RR) or reported in each stratum. In the Mantel–Haenszel method, the 
combined RR is computed using the weighted mean of the RRs, as follows:

 RR
RR

M H− =∑w
w

k k

k

where wk is the weighted factor in the kth stratum, which is itself determined with 
the product of the total number of cases who are unexposed and the proportion of 
exposure in this stratum.

For example, let us say that we want to evaluate the association between  alcohol 
intake (exposure) and a diagnosis of myocardial infarction (MI) over a period of 
5 years, controlling for the effect of cigarette smoking (potential confounding 
 variable). To analyze this type of study in Stata, we can use the following data:
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Smoker (0)

Alcohol MI + (1) MI – (0) Total

Present (1)  8 16 24

Absence (0) 22 44 66

Total 30 60 90

Nonsmoker (1)

Alcohol MI + (1) MI – (0) Total

Present (1) 63 36  99

Absence (0)  7  4  11

Total 70 40 110

Between the parentheses are the codes for each category (1 indicates presence and 0 
indicates absence).

To program these data, the database can be entered in Stata as follows: 

    +----------------------------------+
    | smoker   alcohol   mi   subjects |
    |----------------------------------|
 1. |      0         1    1          8 |
 2. |      0         1    0         16 |
 3. |      0         0    1         22 |
 4. |      0         0    0         44 |
 5. |      1         1    1         63 |
 6. |      1         1    0         36 |
 7. |      1         0    1          7 |
 8. |      1         0    0          4 |
    +----------------------------------+

The command to perform a stratified analysis using the Mantel–Haenszel method 
is cs, as is illustrated in the following:

cs mi alcohol [fw=subjects], by (smoker)

Output
 smoker | RR [95% Conf. Interval] M-H Weight

---------------+----------------------------------------------
 0 | 1 0.5164877 1.936154 5.866667
 1 | 1 0.6244517 1.601405 6.3

---------------+--------------------------------------------–-
 Crude |   1.53266  1.10769 2.120674
M-H combined | 1 0.6695272 1.493591

-------------------------------------------------------––--------
Test of homogeneity (M-H) chi2(1) = 0.000   Pr>chi2 = 1.0000
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Note: When the database collapses and contains a variable that tells the frequency 
of each observation, the fw option is used. This option specifies the variable that 
contains the number of times the observation was actually observed.

The output reports the point estimation of the relative risk (RR) for each stratum, as 
well as the crude RR and the weighted RR (RRM–H) with their respective 95% confidence 
intervals. In addition, the weighted factor in each stratum is reported (M–H weight), 
as is the significance test (test of homogeneity [H0 1 2: RR RR RR= = = k]), to 
assess whether the RRs in all strata are equal.

The results indicate that there is a nonsignificant difference in the RRs, per 
stratum (P-value >  .10); therefore, it is recommended that the RRM–H be used. 
When we compare the point estimates of the crude RR  = 1.53 and the RRM–H = 1, 
we are able to conclude that the data show a strong confounding effect, as the crude 
RR is overestimating the magnitude of the association between MI and alcohol 
intake. Finally, the estimated magnitude of the association of interest, controlling 
for smoking, is 1 (95% CI: 0.67, 1.49); this, however, is not statistically significant 
(P-value > .05).

7.3 Case-Control Study
Case-control studies are designed initially with at least two groups of subjects, 
called cases (diseased) and controls (nondiseased). Once these groups are identified 
as having been exposed (or not) to a specific factor, they are then classified as being 
either exposed or nonexposed groups. The magnitude of the association between 
exposure and disease is determined by the odds ratio (OR), which is calculated with 
the following expression:

 OR
Odds

Odds
exposure

nonexposure

=

where Oddsj indicates the expected number of cases per control in the jth group 
(exposed or nonexposed) and can be defined as follows:

 Odds =
−
p

p1

where p is the probability of having a diagnosis of the disease of interest under the 
study design.

In the Mantel–Haenszel method, the combined OR is computed using the 
weighted mean of the ORs, as follows:

 OR
OR

M H− =∑w
w

k k

k
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where wk is the weighted factor in the kth stratum, which is determined with the 
product of the number of cases who are unexposed and the number of controls who 
are exposed divided by the number of subjects in this stratum.

For example, let us assume that the user wants to evaluate the association 
between HPV (human papilloma virus) infection status and oropharyngeal cancer 
(OC), stratified by smoking (smokers vs. nonsmokers), using a case-control design 
with the following data:

Smoker (0)

HPV OC + (1) OC – (0) Total

Present (1) 75  20  95

Absent (0)  5  80  85

Total 80 100 180

Nonsmoker (1)

HPV OC + (1) OC – (0) Total

Present (1)  5 18  23

Absent (0) 10 72  82

Total 15 90 105

To perform the stratified analysis of these data, the database in Stata is prepared as 
is seen here:

. list
    +------------------------------+
    | smoker   hpv   oc   subjects |
    |------------------------------|
 1. |      0     1    1         75 |
 2. |      0     1    0         20 |
 3. |      0     0    1          5 |
 4. |      0     0    0         80 |
 5. |      1     1    1          5 |
    |------------------------------|
 6. |      1     1    0         18 |
 7. |      1     0    1         10 |
 8. |      1     0    0         72 |
    +------------------------------+

Using the Mantel–Haenszel method, the following command can be employed to 
perform the stratified analysis in a case-control study:

cc oc hpv [fw=subjects], by(smoker)



86 ◾ Biostatistics in Public Health Using STATA

Output

        smoker |      OR       [95% Conf. Interval]  M-H Weight
---------------+-----------------------------------------------
             0 |        60      20.21104   207.9978    .5555556 (exact)
             1 |         2      .4721323   7.399327    1.714286 (exact)
---------------+-----------------------------------------------
         Crude |  21.33333      10.63312   43.91911             (exact)
  M-H combined |   16.1958      8.529819   30.75142             
---------------------------------------------------------------
Test of homogeneity (M-H)   chi2(1) = 18.06   Pr>chi2 = 0.0000

                  Test that combined OR = 1:
                               Mantel-Haenszel chi2(1) = 89.05

                                              Pr>chi2 = 0.0000

The output reports the point estimation of the OR for each stratum as well as the crude 
OR and the weighted OR (M–H combined) with 95%  confidence intervals, respec-
tively. In addition, the weighted factor in each stratum is reported (M–H weight) 
as well as two significance tests. The purposes of these tests are as follows:

 1. To assess whether the ORs in all strata are equal: test of homogeneity 
(H k0 1 2: OR OR OR= = = ). 

 2. To assess whether the weighted OR is equal to 1: test of combined OR = 1 
(H0 1: OR M H− = ).

The results indicate that there is a significant difference in the ORs of each stratum 
(P-value < .05); therefore, it is recommended that the OR be analyzed per stratum. 
When we compare the point estimates of the OR0 (60) in nonsmokers and those of 
the OR1 (2) in smokers, we can see that the smoking habit modifies the magnitude 
of the association between HPV and OC. Finally, the estimated magnitude of the 
association of interest among smokers is 60 (95% CI: 20.2, 207.9), which is statisti-
cally significant (P-value < .05).

7.4 Sample Size and Statistical Power
To determine the minimum sample size for assessing the null hypothesis, H0: OR = 1, 
with enough statistical power (i.e., 1  –  β  =  0.8) and a minimum level of signifi-
cance (i.e., α = 0.05), the classical formula for comparing two proportions is recom-
mended (Rosner, 2010). In Stata, this can be performed in the option that features the 
chi-squared test comparing two independent proportions with the Power and sample 
size analysis window in the Statistics menu (Figure 7.1).
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For example (using the data of nonsmokers), to assess the magnitude of the 
association between HPV status and OC with ORs  =  2, 2.5, and 3, assuming 
that the prevalence estimates of OC in HPV-negatives are 0.10, 0.15, and 0.2, the 
table of sample size should be filled in for a one-sided test and equal allocation, as 
illustrated in Figure 7.2. 

Figure 7.1 Sample size for comparing two independent proportions.

Figure 7.2 Sample size specifications for comparing two independent propor-
tions under different conditions.
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Once the window for the previous requested sample size is submitted with 
the graph option, a plot is displayed (Figure 7.3). The results show that the lower 
the OR, the total sample size increases; however, when the proportion of OC in 
HPV-negative groups is incremented, the differences in sample size are reduced. 
To determine the sample size for the overall OR while controlling for potential 
confounders, an adjustment has to be made, as explained in Chapter 8 (Hosmer 
and Lemeshow, 2000). 
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Figure 7.3 Alternatives of sample size for comparing two independent propor-
tions under different conditions. Parameters: α = 0.05, 1 − β = 0.8.
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Chapter 8

Logistic Regression Model

Aim: Upon completing the chapter, the learner should be able to use a 
logistic regression model to estimate the magnitude of the association 
between exposure and disease, controlling for potential confounders.

8.1 Model Definition
The logistic regression model is a statistical model that can explain the behavior of 
a dichotomous variable or a binomial proportion through different predictor vari-
ables. In epidemiology these predictors may include variables of exposure, potential 
confounding variables, and other types of controlling variables. A simple binary 
logistic regression model (Hosmer and Lemeshow, 2000; Collett, 2002) is defined 
using the following expression:

 Pr Y pi i

X

X X
=( ) = =

+
=

+

− +( )

− +( ) − +( )1
1

1

1

0 1

0 1 0 1

e
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where:
pi indicates the probability of having the diagnosis of interest in the ith subject, 

that is, the probability of the ith subject being a case
Y  indicates a dichotomous variable, coded as Y = 1 for a case and Y = 0 for a 

control
X indicates a predictor variable
β0 indicates the coefficient that is not affected by any predictor
β1 indicates the coefficient that affects the predictor X
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By using the logarithmic transformation of p pi i1−( ) , we obtain the logit 
 function, as can be seen in the following:

 g x p
p

p
xi

i

i
( ) = ( ) =

−








 = +logit ln

1
0 1β β

where:
β0 indicates the value of the logit(pi) when X = 0
β1 indicates changes in the logit(pi) per unit of change in X

8.2 Parameter Estimation
The logistic regression model is adjusted by estimating the unknown parameters β0 
and β1. One of the procedures for estimating the unknown parameters is known as 
the maximum-likelihood estimation (MLE), which is based on the likelihood function. 
This function is given by the joint probability of observing the sample data and is 
demonstrated in the following:

 L Y Y Yn= …( )Pr 1 2, , ,

where n is the number of observations or the sample size. The likelihood function 
provides support for a particular value of the parameter βi , given an observed data. 
If the observed data provide more support for one value of the parameter than 
for another value, then the likelihood is higher for the former parameter value 
(Marschener, 2015). 

Under the assumption that the observed data are independent, the likelihood 
function can be expressed as follows:

 L Y Y Yn= ( ) ( ) … ( )Pr Pr1 2∗ ∗ ∗Pr , ,

Defining Pr Yi( ) depends on the probability distribution of the random variable, Yi. 
In the case of binomial distribution, when Y is the binomial proportion in K groups, 
the likelihood function is defined as

 L C p p
i

K

yi
ni

i
y

i
n yi i iβ( ) = −( )

=

−∏
1

1∗ ∗

where:
C y

ni
i  is the total number of combinations with y cases given n subjects in the ith 

group
pi is the probability of the disease in the ith group
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If Y is a dichotomous variable (Y  =  0, 1), the likelihood function is defined as 
follows:

 L p p
i

n

i
y

i
yi iβ( ) = −( )

=

−∏
1

1
1∗

where:
pi is the probability of having the disease in the ith subject
n is the total number of subjects

In the case of the logistic regression model, we use the coefficients βs that produce the 
highest value of the likelihood function. The βs obtained in this maximization process 
are identified as the maximum-likelihood estimates (Hardin and Hilbe, 2001).

8.3 Programming the Logistic Regression Model
There are several commands in Stata that can be used to estimate the parameters of 
the logistic regression model, including logit, logistic, binreg, and glm. For example, 
perhaps the user is interested in exploring the statistical relationship between smok-
ing habits and oral cavity cancer with the following data (Fu et al., 2013):

Cancer 

Smoker No (0) Yes (1) Total

No (0) 511 333 844

Yes (1) 346 340 686

Total 857 673 1530

Note: Codes of the categories of each variable are shown in parentheses.

The database in Stata is the following:

  +----------------------------+
  | smoker   cancer   subjects |
  |----------------------------|
  |      0        0        511 |
  |      1        0        346 |
  |      0        1        333 |
  |      1        1        340 |
  +----------------------------+

The estimate of the simple logistic regression model parameters for the above 
grouped data can be accomplished with different commands. The difference 
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between them is the default output provided and the method used to maximize the 
likelihood function for parameters’ estimation. Some of these commands and their 
outputs are shown below.

8.3.1 Using glm
glm cancer smoker [fw=subjects], fam(bin)

Output

Generalized linear models No. of obs = 1530
Optimization : ML Residual df  = 1528
 Scale parameter = 1
Deviance =  2083.154244 (1/df) Deviance = 1.363321
Pearson =  1529.999986 (1/df) Pearson = 1.001309

Variance function : V(u) = u*(1-u) [Bernoulli]
Link function : g(u) = ln(u/(1-u)) [Logit]

 AIC = 1.364153
Log likelihood   = -1041.577122 BIC = -9121.705
------------------------------------------------------------------------------
       |            OIM
cancer |   Coef.   Std. Err.    Z   P>|z| [95% Conf. Interval]
--------+----------------------------------------------------------------
Smoker | 0.4107339 0.1038812  3.95 0.000 0.2071305  0.6143372
 _cons | -0.428227 0.0704269 -6.08 0.000 -0.5662612 -0.2901928
------------------------------------------------------------------------------

The command fam(bin) is used to ensure that the probability distribution of the 
dependent variable (cancer) will follow a binomial distribution. 

8.3.2 Using logit
logit cancer smoker [fw=subjects]

Output

Logistic regression Number of obs   =       1530
 LR chi2(1)      =      15.69
 Prob > chi2     =     0.0001
Log likelihood = -1041.5771 Pseudo R2       =     0.0075

------------------------------------------------------------------------------
cancer |   Coef.   Std. Err.  z    P>|z| [95% Conf.  Interval]
--------+----------------------------------------------------------------
smoker | 0.4107339 0.1038812  3.95 0.000  0.2071306  0.6143373
_cons  |-0.4282271 0.0704269 -6.08 0.000 -0.5662613 -0.2901929
------------------------------------------------------------------------------
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8.3.3 Using logistic
logistic cancer smoker [fw=subjects], coef

Output

Logistic regression Number of obs   =       1530
 LR chi2(1)      =      15.69
 Prob > chi2     =     0.0001
Log likelihood = -1041.5771 Pseudo R2       =     0.0075

------------------------------------------------------------------------------
  cancer |   Coef.   Std. Err.   z    P>|z|   [95% Conf.  Interval]
----------+----------------------------------------------------------------
  smoker | 0.4107339 0.1038812  3.95  0.000  0.2071306  0.6143373
   _cons |-0.4282271 0.0704269 -6.08  0.000 -0.5662613  -0.2901929
------------------------------------------------------------------------------

To display the estimates of the beta parameters, the coef option is used.

8.3.4 Using binreg
binreg cancer smoker [fw=subjects], coef ml

Output

Generalized linear models           No. of obs = 530
Optimization     : ML Residual df = 1528
 Scale parameter = 1
Deviance         = 2083.154244    (1/df) Deviance  = 1.363321
Pearson          = 1529.999986    (1/df) Pearson  = 1.001309

Variance function: V(u) = u*(1-u)    [Bernoulli]
Link function    : g(u) = ln(u/(1-u)) [Logit]

        AIC            = 1.364153
Log likelihood    = -1041.577122      BIC             = -9121.705

------------------------------------------------------------------------------
            |               OIM
     cancer |   Coef.     Std. Err.    z    P>|z|  [95% Conf. Interval]
-------------+----------------------------------------------------------------
     smoker | 0.4107339   0.1038812   3.95  0.000  0.2071305  0.6143372
    _cons   | -0.428227   0.0704269  -6.08  0.000 -0.5662612 -0.2901928
------------------------------------------------------------------------------

The coef option is used to display the estimates of the beta parameters. The option 
ml is for obtaining the maximum-likelihood estimates.

Therefore, the fitted model for all the commands of the simple logistic regres-
sion can be determined with the following equation:

 logit smokerp( ) =− +. .0 43 0 41∗
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8.4 Alternative Database
A logistic regression model can also be used when the data are summarized as 
a binomial proportion (number of cases with a characteristic of interest over the 
number of observations). For example, let us assume the previous example with the 
following format:

Smoker Cancer Total

No (0) 333 844

Yes (1) 340 686

In parentheses are the codes for the smoker categories.

In this case, the database is entered in Stata as follows:

. list
    +-------------------------+
    | smoker    cases   total |
    |-------------------------|
    |      0      333     844 |
    |      1      340     686 |
    +-------------------------+

The syntax using the glm command, under this database structure, is the following:

glm cases smoker, fam(bin total)

Output

Generalized linear models No. of obs      =         2
Optimization     : ML Residual df     =         0
 Scale parameter =         1
Deviance         =  7.90479e-14 (1/df) Deviance =         .
Pearson          =  1.60265e-29 (1/df) Pearson  =         .

Variance function: V(u) = u*(1-u/total)    [Binomial]
Link function    : g(u) = ln(u/(total-u))  [Logit]

 AIC            =  9.063989
Log likelihood   = −7.063989303 BIC            =  7.90e-14

------------------------------------------------------------------------------
        |                OIM
  cases |    Coef.     Std. Err.    z     P>|z|  [95% Conf. Interval]
--------+----------------------------------------------------------------
 smoker |  0.4107339   0.1038812   3.95   0.000   0.2071306  0.6143373
  _cons | -0.4282271   0.0704269  -6.08   0.000  -0.5662613 -0.2901929
------------------------------------------------------------------------------

The fam(bin) option is modified to fam(bin total) because the dependent variable 
denotes the number of cases and not the presence or absence of disease (dichoto-
mous scenario).
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Similar results can be obtained with the binreg command if the following speci-
fications are used:

binreg cases smoker, or n(total) ml

The or and ml options are added to estimate the odds ratio (OR) using the maxi-
mum likelihood method.

8.5 Estimating the Odds Ratio
One of the important applications of the logistic regression model is estimating 
the strength or magnitude of association between the disease and exposure under 
study. This model can be expressed as follows:
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Using this expression, the user can obtain the OR. For example, if we assume that X 
takes 0 for unexposed subjects and 1 for exposed subjects, the resulting OR will be
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In this case, the OR is the exponential of the regression coefficient associated with 
the exposure. The syntax in Stata to estimate the OR of the previous example (using 
the glm command) is as follows:

glm cases smoker, fam(bin total) ef nolog noheader

Output

------------------------------------------------------------------------------
         |                 OIM
   cases | Odds Ratio    Std. Err.     z   P>|z|  [95% Conf. Interval]
----------+----------------------------------------------------------------
  smoker |   1.507924    0.1566449   3.95  0.000  1.230143    1.848431
   _cons |   0.6516634   0.0458946  -6.08  0.000  0.5676437  0.7481193
---------------------------------------------------------------------------

The ef option is added to obtain the estimated OR. The terms nolog and noheader 
are used to display only the parameters of the model.

The result indicates that the odds of having oral cavity cancer among smokers 
is 1.51 (95% CI: 1.23, 1.85) times the odds of having oral cavity cancer among 
nonsmokers. This OR is known as the crude OR, because the model includes only 
the exposure variable.
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8.6 Significance Tests
8.6.1 Likelihood Ratio Test

Hypothesis testing can be performed for the logistic regression model using the sta-
tistic known as Deviance (D), which is a measure of discrepancy between observed 
and fitted data. This measure is defined based on the relative comparison of two 
likelihood functions, as follows (McCullagh and Nelder, 1999):

 D = − −
2∗ln

likelihood function current model
likelihood functionn best model−









where:
likelihood function−current model is calculated with the estimate of the param-

eter p of the binomial distribution using the current logistic model
likelihood function−best model is calculated with the binomial proportion using 

the observed data

For logistic regression, the equation for D is the following:
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This comparison is known as the likelihood ratio test. The syntaxes in Stata to 
perform this test (with the previous database) to assess the effect of the predictor 
smoker are as follows:

. quietly: glm cases smoker, fam(bin total)

. estimates store model1

. quietly: glm cases, fam(bin total)

. lrtest model1 .
Likelihood-ratio test LR chi2(1)  =     15.69
(Assumption: . nested in model1) Prob > chi2 =    0.0001

The results show that removing the predictor smoker from the model has a signifi-
cant effect (P-value = .0001). Therefore, it is suggested that it not be removed from 
the model.

8.6.2 Wald Test

The statistical assessment of specific parameters in the logistic regression model can be 
performed with the likelihood ratio test. Another option is  the Wald test for assessing 
individual parameters (H0: βj = 0) using the following statistic:

 Z j

j

0 = ( )
β

β



SE
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where SE β̂ j( ) is the asymptotic (i.e., large-sample) standard error of β j. The test 
statistic Z0 follows an asymptotic standard-normal distribution, N(0,1), under the 
null hypothesis.

An equivalent process is to calculate the square of Z0 and use the chi-squared 
distribution (χ2) to assess the null hypothesis, H0: β j  = 0. The use of χ2 is recom-
mended for two-sided alternatives (Ha: βi  ≠ 0). For one-sided alternatives (Ha: βi  < 0, 
Ha:βi > 0), the normal distribution is recommended.

The output of the glm command for the logistic model shows the Wald test for 
each predictor. Another Stata command that can be used to perform the Wald test 
is test. For example, using the previous database to assess the effect of the predictor 
smoker, the syntaxes are as follows:

glm cases smoker, fam(bin total)  
test smoker

Output

. quietly: glm cases smoker, fam(bin total)

. test smoker
( 1)  [cases]smoker = 0
          chi2(  1) =   15.63
        Prob > chi2 =    0.0001

The likelihood ratio test and the Wald test showed the significant effect of the pre-
dictor smoker in the logistic regression model (P-value = .0001); however, the test 
statistics differ (15.69 vs. 15.63). 

8.7 Extension of the Logistic Regression Model
The logistic regression model can be extended to include as predictors of the poten-
tial confounders and the interaction terms formed by the product of the exposure 
and confounders. When more than one predictor is included, the model is called a 
multivariable logistic regression model and is expressed as follows:

 Pr Y pi i
E C E CE i i i j i j i

=( ) = =
+ ∑− + ∗ + + ∗ ∗( )( )( ) ( )

1
1

1
0

e
β β β γΣ

where:
 pi indicates the probability of the ith subject’s having the disease of interest
E indicates the exposure
Ci indicates the ith potential confounding variable
γ j indicates the jth coefficient or the interaction terms associated with the prod-

uct of the exposure and the potential confounding variables (E*C)
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These interaction terms are useful to estimate the magnitude of the association in 
different strata.

By way of illustration, let us continue to use the previous example, in which the 
predictor sex was included as a potential confounding variable, with the following 
data distribution:

Smoker Sex Cases of Cancer Total

No (0) Female (0) 218 477

Male (1) 115 367

Yes (1) Female (0)  20  42

Male (1) 370 694

Note: In parentheses are the codes for the categories of the 
variables smoker and sex.

To analyze these data, the following database is created in the Stata data editor:

    +------------------------------+
    | smoker   sex   cases   total |
    |------------------------------|
 1. |      0     0     218     477 |
 2. |      0     1     115     367 |
 3. |      1     0      20      42 |
 4. |      1     1     370     694 |
    +------------------------------+

In Stata, the glm command can be used in conjunction with the previous database 
to fit a logistic regression model with interaction terms. The syntax for doing so is 
as follows: 

xi: glm cases i.smoker*i.sex, fam (bin total) nolog noheader 

Output

. xi: glm cases i.smoker*i.sex, fam (bin total) nolog noheader 
-------------------------------------------------------------------------------
             |              OIM
        cases|  Coef.    Std. Err.    z   P>|z|   [95% Conf. Interval]
--------------–+----------------------------------------------------------------
   _Ismoker_1| .0770228  .3223394   0.24  0.811   -.5547508   .7087965
      _Isex_1| -.612164  .1452999  -4.21  0.000   -.8969466  -.3273814
_IsmoXsex_1_1| .8402336  .3497938   2.40  0.016    .1546503   1.525817
        _cons| -.172333  .0919139  -1.87  0.061   -.3524809   .0078149
-------------------------------------------------------------------------------

The multivariate logistic regression model is determined with the following 
equation:
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 logit 0.6 0.84p Ismoker Isex IsmoXsex( ) =− + − ∗ + ∗. . _ _ _ _ _0 17 0 08 1 1∗ __ _1 1

where:
_Ismoker_1 is a dummy variable with value 1 if the subject smokes, otherwise is 0
_Isex_1 is a dummy variable with value 1 for males, otherwise is 0
_IsmoXsex_1_1 is a dummy variable with value 1 if the subject smokes and is a 

male, otherwise is 0

Start the command with xi: in the glm command to indicate that some of the 
 predictors are defined as categorical. This instruction, when placed prior to the glm 
command, enables us to define the model with interaction terms. The instruction 
i.smoker*i.sex indicates that the logistic regression model will use as predictors 
smoker, sex, and the interaction term formed by the product of these predictors. This 
form is useful when there are more than two categories in the predictor variables that 
are defined as being categorical.

In the previous output table, the Wald test shows that there is evidence that the 
interaction term _IsmoXsex_1_1 affects the logit(p) estimate (P-value = .016). An 
alternative procedure for making a statistical assessment of the interaction term is 
the likelihood ratio test (lrtest), which is recommended when the user is interested 
in assessing simultaneously several interaction terms. The following commands 
sequence perform the lrtest with the previous database:

. quietly xi: glm cases i.smoker*i.sex, fam(bin total)

. estimates store model1

. quietly: glm cases i.smoker, fam(bin total)
lrtest model1 .
Likelihood-ratio test LR chi2(2)  =     18.62
(Assumption: . nested in model1) Prob > chi2 =    0.0001

The results indicate that the interaction term composed of smoker and sex is statisti-
cally significant (P-value = .0001), which is similar to what was found using the 
Wald test. Therefore, the variable sex modifies the relationship between smoking 
status and cancer. As a consequence, it is recommended to estimate sex-specific OR 
using the lincom command as follows:

quietly xi: glm cases i.smoker*i.sex, fam(bin total)

*In females
. lincom _Ismoker_1 , or

(1)  [cases]_Ismoker_1 = 0

-–––––––--------------------------------------------------------
  cases | Odds Ratio  Std. Err.  z   P>|z| [95% Conf. Interval]
---------+----------------------------------------------------------------
    (1) |   1.080067  .3481481  0.24 0.811 .5742153    2.031545
------------------------------------------------------------------------------
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In females the result indicates that the odds of having oral cavity cancer among smok-
ers is 1.08 (95% CI: 0.57, 2.03) times the odds of having oral cavity cancer among 
nonsmokers. However, this excess was not statistically significant (P-value > .1).

*In males

. lincom _Ismoker_1 + _IsmoXsex_1_1, or

( 1)  [cases]_Ismoker_1 + [cases]_IsmoXsex_1_1 = 0

------------------------------------------------------------------------------
   cases | Odds Ratio   Std. Err.   z   P>|z|    [95% Conf. Interval]
---------+----------------------------------------------------------------
     (1) |   2.502415   .3399329  6.75  0.000     1.917479     3.26579
------------------------------------------------------------------------------

In males the result indicates that the odds of having oral cavity cancer among 
smokers is 2.5 (95% CI: 1.92, 3.27) times the odds of having oral cavity cancer 
among nonsmokers. This excess was statistically significant (P-value < .05).

8.8 Adjusted OR and the Confounding Effect
The logistic regression model without interaction terms allows us to estimate the 
OR of the exposure of interest, while simultaneously adjusting for potential con-
founders. Let us assume the following expression of the logistic regression model 
without interaction terms:

 Odds e=
−

= + +p
p

E i i iE C

1
0β β β∗ Σ

If we assume that E is a dichotomous exposure of interest with two categories 
(0 indicates the absence of exposure and 1 indicates the presence of exposure) and 
that Ci is a potential confounding variable, then the adjusted OR is obtained fol-
lowing the steps described below:

 1. Calculate the odds when the exposure is absent (E = 0):
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 where:
C ′ is used to distinguish the value of the potential confounders

 2. Calculate the odds when the exposure is present (E1 = 1):
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 3. Calculate the ratio of the odds obtained in steps (1) and (2):

 OR
Odds
Odds

e= =
+ −( ) + + − ′( )′1

0

2 1 1β β βE p p pC C C C∗


When C Ci i− ′( ) = 0, that is, when we assume that the values of the potential con-
founding variables are equal in exposed and nonexposed subjects, we can obtain 
the adjusted odds ratio (ORadjusted), as follows:

 OR eadjusted = βE

The syntax in Stata for obtaining the adjusted odds ratio using the previous data is 
as follows:

xi: glm cases i.smoker i.sex, fam (bin total) ef nolog noheader

Output

------------------------------------------------------------------------------
           |               OIM
     cases | Odds Ratio  Std. Err.   z    P>|z|  [95% Conf. Interval]
--------– –––+----------------------------------------------------------------
_Ismoker_1 |  2.211517   0.2757527  6.37  0.000   1.732026   2.823749 
   _Isex_1 |  0.6247632  0.0825355 -3.56  0.000   0.482243   0.8094034
     _cons |  0.7947862  0.0708192 -2.58  0.010   0.6674276  0.9464473
------------------------------------------------------------------------------

The results indicate that the odds of having oral cavity cancer in smokers is 2.21 
(95% CI: 1.73, 2.82) times the odds of having oral cavity cancer in nonsmokers, 
after adjusting for sex. The difference between the point estimate of the adjusted OR 
(OR adjusted
 = 2 21. ) and the point estimate of the crude OR (OR crude

 =1 51. ) indi-
cates that the magnitude of association given by the crude OR is underestimated. 
Therefore, the variable sex confounds the relationship between the smoking habit 
and oral cavity cancer.

8.9 Effect Modification
When the magnitude of the association between the exposure and the disease is 
explored in different strata, the user can identify effect modification. If the ORs 
change between strata, using a subjective assessment, then it is expected that the 
interaction terms in the model will be statistically significant. For example, using 
the previous example, if we stratify by sex, the point estimates of the ORs are 
very different (OR 2.50smk vs smk

sex


+ −
= =1  vs. OR smk vs smk

sex
 + −

=
=

0
1 08. ), as can be seen in the 

following results:
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. xi: glm cases i.smoker if sex==1, fam (bin total) ef nolog noheader
------------------------------------------------------------------------------
            |                OIM
      cases | Odds Ratio  Std. Err.   z    P>|z| [95% Conf.  Interval]
–------------+----------------------------------------------------------------
 _Ismoker_1 |   2.502415  0.3399329  6.75  0.000   1.917479     3.26579
      _cons |  0.4563492  0.0513548 -6.97  0.000  0.3660228   0.5689662
------------------------------------------------------------------------------

. xi: glm cases i.smoker if sex==0, fam (bin total) ef nolog noheader

------------------------------------------------------------------------------
            |                 OIM
      cases | Odds Ratio  Std. Err.   z    P>|z| [95% Conf.   Interval]
-------------+---------------------------------------------------------------
 _Ismoker_1 |   1.080067  0.3481481  0.24  0.811  0.5742153    2.031545
      _cons |  0.8416988  0.0773638 -1.87  0.061  0.702942     1.007845
------------------------------------------------------------------------------

This result indicates that the predictor sex has a modifying effect on the relationship 
between the smoking habit and oral cavity cancer, as was expected (because of the 
significant results in the likelihood ratio test).

8.10 Prevalence Ratio
Several epidemiological studies use the prevalence ratio (PR) to assess the magni-
tude of the association between exposure and disease. The main reason is that the 
OR can augment this magnitude, particularly when the prevalence of the outcome 
among exposure and nonexposure groups is large. To estimate the PR using the 
logistic regression model, the user needs to use the command link(log). For exam-
ple, to estimate the PR by sex, the syntax is as follows:

glm cases i.smoker if sex==1, fam(bin total) ef link(log)

Output

------------------------------------------------------------------------------
         |                 OIM
   cases | Risk Ratio   Std. Err.   z    P>|z|   95% Conf.   Interval]
----------+------------------------------------------------------------------
1.smoker | 1.701416   0.1446968   6.25   0.000   1.440191     2.010022
   _cons | 0.3133515  0.0242131 -15.02   0.000   0.2693136    0.3645904
------------------------------------------------------------------------------
glm cases i.smoker if sex==0, fam(bin total) ef link(log)

Output

------------------------------------------------------------------------------
         |                OIM
   cases | Risk Ratio  Std. Err.    z    P>|z|   [95% Conf.  Interval]
--------- +----------------------------------------------------------------
1.smoker | 1.04194     0.1764579   0.24  0.808   0.7476307     1.452105
   _cons | 0.4570231   0.0228087 -15.69  0.000   0.4144356    0.5039868
------------------------------------------------------------------------------
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Among males we can see that there is a substantial difference between the ORs and 
the PRs; the estimated OR is 2.50 and the estimated PR is 1.70.

Another command that can be used to obtain the PR by sex in a logistic regres-
sion model is binreg, as follows:
binreg cases smoker if sex==1, n(total) rr nolog

Output
------------------------------------------------------------------------------
        |                 EIM
  cases | Risk Ratio   Std. Err.   z     P>|z|   [95% Conf.  Interval]
---------+--------------------------------------------------------------------
 smoker | 1.701416   0.1446966    6.25   0.00    1.440191     2.010022
  _cons | 0.3133515  0.0242131  -15.02   0.000   0.2693137   0.3645904
------------------------------------------------------------------------------
binreg cases smoker if sex==0, n(total) rr nolog

Output
------------------------------------------------------------------------------
         |                 EIM
   cases | Risk Ratio   Std. Err.     z    P>|z| [95% Conf.  Interval]
--------- +----------------------------------------------------------------
  smoker |    1.04194   0.1764578    0.24  0.808  0.7476309   1.452105
   _cons |  0.4570231   0.0228087  -15.69  0.000  0.4144356  0.5039868
------------------------------------------------------------------------------

The observed results (using binreg and glm), by sex, show that the estimates of the 
PRs are the same; only slight differences are observed in the standard errors, and 
these are due to the default methods used to estimate the variance; the glm com-
mand uses the maximum-likelihood method, and binreg uses Fisher’s scoring method 
(Hardin and Hilbe, 2001; Collett, 2002).

8.11 Nominal and Ordinal Outcomes
The logistic regression model can be extended to handle polytomous outcome (i.e., 
more than two nominal or ordinal categories). An example of a nominal outcome in 
an epidemiological case-control study might be a situation in which we have cases 
(diseased) and two types of controls, which, for example, could be subjects with 
another disease (control I) and healthy subjects (control II). An example of an ordinal 
outcome in an epidemiological case-control study might be a situation in which cases 
(diseased) are categorized by their level of disease severity (e.g., high, moderate, low). 
In Stata, the programming for these situations can be done with the following com-
mands: mlogit, ologit, and gologit2.

The logistic regression model in the case of a nominal outcome with more than 
two categories is called a multinomial logistic regression model or polytomous logistic 
regression model. When the outcome is ordinal, the model is called an ordinal logistic 
regression model (Kleinbaum and Klein, 2002). The mathematical expression of both 
models is based on the ratio of two probabilities defined according to the codes used 
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in the outcome Y. For example, assuming Y has k categories (0, 1, 2, …, k), then the 
most simple expression of the multinomial regression model is the following:
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The exponential of the estimated exposure coefficient (β̂E) will provide the estimated 
OR between the category with code k and the category with code 0, as follows:
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The interpretation of this OR is as follows: in reference to category 0, the probability 
of being in category k among the exposure group is eβ

 E times this probability among 
the nonexposure group’s being in category k. For the following example, let us assume 
that we are working with a case-control study to assess the relationship between hepa-
titis C and receiving a blood transfusion (before 1992), using two types of controls 
(subjects with hepatitis B and healthy subjects), and using, as well, the following data:

Blood Transfusion

Hepatitis

Healthy (1)C (3) B (2)

Yes (1) 19 11 14

No (0) 85 63 220

Note: Codes are in parentheses.

The database in Stata for this study should be as seen below:

    +------------------------+
    | hep   trans   subjects |
    |------------------------|
 1. |   1       1         14 |
 2. |   1       0        220 |
 3. |   2       1         11 |
 4. |   2       0         63 |
 5. |   3       1         19 |
    |------------------------|
 6. |   3       0         85 |
    +------------------------+

The syntax in Stata to run the multinomial regression model is as follows:

mlogit hep trans [fw=subjects], rrr

Output

Multinomial logistic regression Number of obs = 412
 LR chi2(2)    = 12.86
 Prob > chi2   = 0.0016
Log likelihood = -396.16997             Pseudo R2     =� 0.0160
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--------------––----------------------------------------------
     hep |   RRR    Std. Err.   z    P>|z| [95% Conf. Interval]
-----------+----------------------------------------------------------------
1        | (base outcome)
-----------+----------------------------------------------------------------
2        |
   trans | 2.743767  1.17296   2.36  0.018  1.187022  6.342139
   _cons | .2863636 .0409194  -8.75  0.000  .2164148  .3789211
-----------+----------------------------------------------------------------
3        |
   trans | 3.512603  1.316033  3.35  0.001  1.685457  7.320497
   _cons | .3863636  .049343  -7.45  0.000 .3008072   .4962543
------------------------------------------------------------------------------

The above table shows that in reference to the healthy subjects: the likelihood of 
hepatitis C among the subjects who had had blood transfusion experience before 
1992 is 3.51 (95% CI: 1.69, 7.32) times the likelihood of hepatitis C among the 
subjects who had not had blood transfusion experience before 1992. This excess was 
statistically significant (P-value = .001). 

To use as the reference the subjects with hepatitis B instead of the healthy sub-
jects, you need to use the option baseoutcome, as is done in the following:

mlogit hep trans [fw=subjects], rrr baseoutcome(2)

Output

------------------------------------------------------------------------------
     hep |       RRR   Std. Err.     z   P>|z|  [95% Conf. Interval]
---------+----------------------------------------------------------------
1        |
   trans |  0.3644624  0.1558076  -2.36   0.018   0.1576755  0.8424443
   _cons |   3.492063  0.4989922   8.75   0.000    2.639072    4.620756
-----  –---+----------------------------------------------------------------
2        |  (base outcome)
---------+----------------------------------------------------------------
3        |
   trans |  1.280212    0.529671   0.60   0.550  0.5689947   2.880417
   _cons |  1.349206   0.2243001   1.80   0.072   0.9740238   1.868905
------------------------------------------------------------------------------

The table above indicates that in reference to the subjects with hepatitis B, the like-
lihood of hepatitis C among the subjects who had had blood transfusion experience 
before 1992 is 1.28 (95% CI: 0.57, 2.88) times the likelihood of hepatitis C among 
the subjects who had not had blood transfusion experience before 1992. However, 
this excess was not statistically significant (P-value > .1).

For the ordinal logistic regression model, there are different expressions, the 
use of each depending on the manner in which the categories are compared. When 
these categories are grouped and the ORs do not depend on the grouping procedure, 
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it is said that the proportional odds assumption is met. The most common expression 
of this model, under this assumption, is as follows:
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This model combines into two groups the categories of the outcome, as follows: those 
subjects with categories that are less than or equal to k and those with categories that are 
greater than k. The negative sign in the coefficient of the exposure occurs because of the 
way Stata programmed this model; therefore, caution has to be taken to interpret the 
output and the way the codes of the outcome categories are defined. The exponential 
of the estimated exposure coefficient, β E, will provide the estimated OR between cat-
egories with code >k and categories with code ≤k,  due to the following relationship: 
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The interpretation of this OR is as follows: the likelihood of being in a category 
greater than k among the members of the exposure group is eβE times the likelihood 
of being in a category greater than k among the nonexposure group. To improve 
the interpretation, use high values of the outcome codes for those subjects with 
worst outcome. For example, assuming a case-control study to assess the relation-
ship between glycohemoglobin and age, let us suppose that glycohemoglobin is cat-
egorized into three groups—using tertiles as the cutoff points—as follows:

Q1: ≤ 5.4 (best)
Q2: >5.4 and ≤ 5.9
Q3: >5.9 (worst)

In addition, let’s assume that age was categorized into two groups (above and at 
or below the mean value of the study sample). Using the available data, then, the 
 following table results:

 Age (Years)

Glycohemoglobin Group

TotalQ1 (1) Q2 (2) Q3 (3)

≤45 (0) 14  7  3 24

>45 (1)  9 16 14 39

Total 23 23 17 63

Note: Codes are in parentheses.
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The structure of the database in Stata is as seen below:

    +---------------------------+
    | glycon3    age   subjects |
    |---------------------------|
 1. |       1      0         14 |
 2. |       1      1          9 |
 3. |       2      0          7 |
 4. |       2      1         16 |
 5. |       3      0          3 |
    |---------------------------|
 6. |       3      1         14 |
    +---------------------------+

The ordinal logistic model can be run with the assumption that the OR depends 
on the cutoff point of the outcome. Therefore, for every cutoff point in the 
outcome, one OR is estimated. If we assume that the proportional odds assump-
tion is fulfilled, then we would expect all ORs to be equal. The syntax in Stata 
to run the ordinal logistic model without the proportional odds assumption is 
as follows:

gologit2 glycon3 age [fw=subjects], or

Output

Generalized Ordered Logit Estimates Number of obs = 63
 LR chi2(2)    = 8.83
 Prob > chi2   = 0.0121
Log likelihood = -64.204942 Pseudo R2     = 0.0643
------------------------------------------------------------------------------
glycon3 | Odds Ratio  Std. Err.   z  P>|z| [95% Conf. Interval]
---------+----------------------------------------------------------------
1      |
    age | 4.666667    2.622787  2.74 0.006  1.550992  14.04119
 _cons | .7142857    .2957424 -0.81 0.416  .3172788  1.608062
---------+----------------------------------------------------------------
2       |
    age |     3.92    2.750659  1.95 0.052  .9908299  15.50862
 _cons |  .1428571    .0881733  -3.15 0.002  .0426117  .4789332
------------------------------------------------------------------------------

The gologit2 command has to be downloaded from Internet.
The numbers in the first column of the above table indicate the way the refer-

ence categories are defined. For example, the number 1 indicates that Q1 is the 
reference category, OR vs

vs
 > ≤

> ≤
45 45
5 4 5 4

.
( . . . )

. The number 2 indicates that Q1 and Q2 are the 
reference categories, OR vs

vs


> ≤
> ≤
45 45
5 9 5 9

.
( . . . ).
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The interpretation of these ORs is as follows:

 1. The likelihood of having a glycohemoglobin higher than 5.4 among subjects 
older than 45 years is 4.67 (95% CI: 1.55, 14.04) times the likelihood of having 
a glycohemoglobin higher than 5.4 among subjects 45 years old or younger.

 2. The likelihood of having a glycohemoglobin higher than 5.9 among subjects 
older than 45 years is 3.92 (95% CI: 0.99, 15.51) times the likelihood of having 
a glycohemoglobin higher than 5.9 among subjects 45 years old or younger.

The syntax in Stata to run the ordinal logistic model, assessing the proportional 
odds assumption, is as follows:

gologit2 glycon3 age [fw= subjects], or autofit lrf

Output

------------------------------------------------------------------------------
Testing parallel lines assumption using the .05 level of 
significance...

Step 1: Constraints for parallel lines imposed for age 
(P Value = 0.8004)

Step 2: All explanatory variables meet the pl assumption

Wald test of parallel lines assumption for the final model:

( 1)  [1]age - [2]age = 0

          chi2(  1) = 0.06
        Prob > chi2 = 0.8004

An insignificant test statistic indicates that the final model
does not violate the proportional odds/ parallel lines 
assumption

If you re-estimate this exact same model with gologit2, 
instead of autofit you can save time by using the parameter

pl(age)
------------------------------------------------------------------------------
Generalized Ordered Logit Estimates   Number of obs   =    63
                                      LR chi2(1)      =  8.77
                                      Prob > chi2     = 0.0031
Log likelihood = -64.236022           Pseudo R2       = 0.0639

( 1)  [1]age - [2]age = 0
------------------------------------------------------------------------------
 glycon3 | Odds Ratio  Std. Err.  z   P>|z|  [95% Conf. Interval]
----------+----------------------------------------------------------------
1        |
     age | 4.427933   2.303347  2.86 0.004 1.597417   12.27394
   _cons | .7293552   .2970438  -0.77 0.438 .3283002   1.620343
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-----------+----------------------------------------------------------------
2        |
    age | 4.427933   2.303347  2.86 0.004 1.597417   12.27394
   _cons | .1290829   .0626706  -4.22 0.000 .0498431    .334297
------------------------------------------------------------------------------

The first assessment in gologit2 with the autofit lrf command is used to determine 
if there is statistical evidence, based on the likelihood ratio test, that the propor-
tional odds assumption has been fulfilled. If this assumption has been fulfilled, the 
same OR is estimated for all combinations of the outcome. In this example, the 
output indicates that the model does not violate the proportional odds assumption 
(P-value = .8004). As a consequence we interpret only one OR, as follows:

Using as the reference category the participants with the low levels of glycohe-
moglobin, the likelihood of having high levels of glycohemoglobin among subjects 
older than 45 years is 4.43 (95% CI: 1.60, 12.27) times the likelihood of having 
high levels of glycohemoglobin among subjects 45 years old or younger.

8.12 Overdispersion
When the logistic regression model is run with grouped data (binomial proportion), 
the relationship between the deviance and the degrees of freedom can be useful in 
determining the model’s goodness of fit (McCullagh and Nelder, 1999; Hardin and 
Hilbe, 2001). Overdispersion occurs when data exhibit more variation than expected. 
Underdispersion occurs when data exhibit less variation than expected. Because devi-
ance is a random variable with chi-squared distribution, if the model is adequate 
to explain the binomial proportion, then it is expected that the observed deviance 
would be close to the degrees of freedom of the model (equidispersion). For example, 
if we run the model with only the predictor smoker in the example of cancer explained 
by smoker and sex, we discover that the deviance is 18.62, with 2 degrees of freedom; 
therefore, overdispersion is observed. To assess the departure between the deviance 
and the degrees of freedom, we can use the P-value to determine the statistical signifi-
cance of this difference. The syntax to perform this in Stata is as follows:

dis chi2tail(2,18.62)
.00009051

The results show that there is a significant difference between the deviance and 
its degrees of freedom (P-value = 0.00009051). Therefore, the logistic regression 
model using only the predictor smoker is not adequate. Either including more pre-
dictors or exploring other models would be another option to consider at this point. 

8.13 Sample Size and Statistical Power
To determine the total minimum sample size for assessing the adjusted OR in a 
case-control study with enough statistical power (i.e., 1 − β = 0.8), a minimum 
significance level (i.e., α = 0.05), and using an unconditional multivariable logistic 
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regression model with one exposure and different covariates, the following expres-
sion (Hosmer and Lemeshow, 2000) can be used:
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where:
Z1−α and Zβ denote the upper α and β percentage points, respectively, of the 

standard normal distribution
π denotes the fraction of subjects in the study who are not exposed
P0 denotes the probability of being a case among those who are not exposed
ρ2 denotes the squared correlation between the observed and fitted values of the 

exposure (dichotomous variable) using a logistic regression model, as fol-
lows: logit pr[ 1]( )E = ∗= + ∑β β0 0 Xi  

This can be used to estimate pseudo R2, as follows:
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where:
L0 and Lp denote the log likelihoods for models containing only the intercept 

and the model containing the intercept plus the p-covariates, respectively
βE  denotes the coefficient of the exposure in the multivariate logistic regression 

model for the outcome of interest under the alternative hypothesis. If we 
assume that OR = 2, then βE is approximately 0.69314 {ln(2) = 0.69314}

Based on the data presented previously, the purpose of which was to assess the mag-
nitude of the association between cancer and the smoking habit adjusted by sex 
( . )OR adj
 = 2 21 , the parameters needed to obtain the minimum sample size are as 

follows:

 

β ρE P

Z

. . , . , . , . ,

..

= = = = =

=

( )ln 2 21 0 7929 0 4658 0 3945 0 5679

1

0
2

0 95

Π

996 1 280 80, ..Z =

Therefore,

n=
+( )
−

−( ) + ( ) + −

1 2 3945

1 0 5679

1 96 1 1 0 4658 1 0 4658 1 28 1 1 0

∗

∗
∗

.

.

. . . . .44658 1 0 4658

0 3945 0 7929
618 64

7929

2

2

( )+( )( )
=

.

. .
.

.e

∗
 



Logistic Regression Model ◾ 111

It is desirable for the result to be divisible by 2, given that a total sample size of 
about 619, or 310, per group would be the minimum required. Unfortunately, Stata 
does not provide the option in its power and sample size calculation tool for this 
formula. Therefore, a do-file has to be programmed with the following sequence of 
commands (and assuming the data of the previous example):

gen a=(1+2*.3945)/(1-.5679)
gen b=1.96*sqrt((1/(1-.4658))+(1/.4658))
gen c=1.28*sqrt( (1/(1-.4658)) + (1/(.4658*exp(.7929)))) 
gen d=.3945*.7929^2
gen n=a*((b+c)^2)/d

Before running these commands, go to edit and create a dataset with one variable, 
such as id, and one space row. The other option is to work interactively with Stata 
by invoking the mata command, as follows:

. mata
–––––––––––––––––––– mata (type end to exit) ----------------––
: a=(1+2*.3945)/(1-.5679)
: b=1.96*sqrt((1/(1-.4658))+(1/.4658))
: c=1.28*sqrt( (1/(1-.4658)) + (1/(.4658*exp(.7929)))) 
: d=.3945*.7929^2
: n=a*((b+c)^2)/d
: n
  618.6378426
: end
---------------------------------------------------------------

Mata is a matrix programming language that can be used interactively or as an 
extension for do-files and ado-files. To extend the information about mata com-
mand, we recommend checking out the book by Baum (An Introduction to Stata 
Programming, 2009).
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Chapter 9

Poisson Regression Model

Aim: Upon completing the chapter, the learner should be able to esti-
mate the magnitude of the association between disease and exposure, 
controlling for potential confounders, using a Poisson regression model.

9.1 Model Definition
The Poisson regression model allows us to assess epidemiological studies when the 
main outcome is an integer number, such as the number of cancer patients, number 
of immunized children, or number of hospitalized patients. It is assumed that these 
types of outcomes, Y, are random variables with positive integers and are distributed 
as the Poisson probability distribution. This probability distribution is characterized 
by one parameter, identified by the Greek letter μ, which is the expected number of 
events of the outcome of interest and is expressed in the following manner:
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where the variance of Y is equal to the expected value of Y, Var(Y ) = E(Y ) = μ.
The Poisson regression model is used in cohort studies to estimate the expected 

value of Y among exposure and nonexposure groups, adjusted for the effect of poten-
tial confounders. An example of this would be the expected number of lung cancer 
cases in a 5-year period among smokers and nonsmokers, adjusted for the effects 
of age and sex (Fox, 2008; Hoffmann, 2004). One advantage of this model is that 
it can be used to obtain an estimate of the relative risk (RR), adjusted for potential 
confounders. The simplest form of a Poisson regression model, with an exposure 
variable (E ) and one potential confounding variable (C ), can be defined with any of 
the following equivalent expressions:
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where:
µi indicates the expected value for the outcome variable
Ii represents the incidence (the expected cases by time unit or population under 

the ith condition)
Ti represents the sum of the times in the study under the ith condition
E denotes the exposure variable
C denotes the effect of the confounder variable
E*C denotes the interaction between the exposure and confounder
βj denotes the coefficients (parameters) associated with the jth predictor vari-

ables ( j = E, C, or E * C); this value represents the expected changes in the 
natural logarithm of μi in the expression [iii] 

β0 represents the constant term (intercept) in the model

The expression Ln(Ti) denotes the natural logarithm of Ti under the expression [iii] 
of the Poisson regression model, which is included as a predictor variable with a 
coefficient or parameter equal to 1. This type of predictor is identified as an offset 
and has a fixed parameter.

9.2 Relative Risk
In the event that the outcome variable Y indicates the occurrence of new cases of a 
disease in a cohort study, we can determine the incidence of this disease among dif-
ferent groups of exposure through a Poisson regression model, as follows (assuming 
E is dichotomous and C is continuous):

Exposure (E = 1)

 I
T

E C C C
exp

exp

exp

e * *= = + + +µ β β β β0 EC

Nonexposure (E = 0)
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C C
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non-exp
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e= = + ′µ β β0 *
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If C = C′, then

 RR exp

non-exp

= = +I

I
E E C Ceβ β * *

In the case of nonsignificant interaction terms (H0: βE*C = 0), we can obtain the 
adjusted RR using the following:

 RR adjusted
exp

non-exp

= =
*I

I
Eeβ

where βE
*  is obtained from the model that excludes the interaction term. If the inter-

action term is significant, it is necessary to estimate the RR in different population 
subgroups defined by the levels of C.

9.3 Parameter Estimation
The procedure for estimating the unknown coefficients in the Poisson regression 
model is similar to the procedure of logistic regression for obtaining the maxi-
mum-likelihood estimates. Under the assumption that the observations are inde-
pendent, the likelihood function for the Poisson regression model is expressed as 
follows:
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where µi is the expected value of Y under the ith condition in the Poisson regression 
model. The coefficients βs that produce the highest value of this likelihood function 
are the maximum-likelihood estimates (MLEs) for this model. Based on the MLEs 
estimates, we can also estimate the RRs and test the statistical hypothesis, with the 
approach similar to that performed for the logistic regression model.

9.4 Example
Suppose we are interested in assessing the difference in the incidence of car-
diovascular disease by sex, controlling for age. Available data for this pur-
pose can be extracted from the epidemiological cohort study of Framingham 
(Massachusetts), which started in 1948 with a sample of 5,127 subjects, aged 
30–62 years old. The following table summarizes the incidence of cardiovascu-
lar disease by age and sex:
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Age CVDM PYM IM CVDF PYF IF RRM:F

<46 43 7,370 5.83 9 9,205 0.98 5.97

46–55 163 12,649 12.89 71 16,708 4.25 3.03

56–60 155 7,184 21.58 105 10,139 10.36 2.08

61–80 443 15,015 29.50 415 24,338 17.05 1.73

>80 19 470 40.43 50 1,383 36.15 1.12

Total 823 42,688 19.28 650 61,773 10.52 1.83

Note: M, male; F, female; CVD, cardiovascular disease; PY, person-years; and I, 
incidence per 1,000 persons in 1 year.

The last column of the table shows the RRs between males and females by age group. 
The observed trend in these RRs indicates that, in the older age groups, the RRs are 
getting close to 1; therefore, the incidences of cardiovascular disease by sex are quite 
different for the younger age groups and quite similar for the older age groups. This 
trend suggests that age has a modifying effect on the relationship between sex and 
cardiovascular disease (Szklo and Nieto, 2004).

9.5 Programming the Poisson Regression Model
To evaluate the expected number of cases in the Framingham Study by sex and age 
using the Poisson model, we need to prepare the database as follows:

    +-------------------------+
    | age   sex      py   cvd |
    |-------------------------|
 1. |   1     1    7370    43 |
 2. |   1     0    9205     9 |
 3. |   2     1   12649   163 |
 4. |   2     0   16708    71 |
 5. |   3     1    7184   155 |
    |-------------------------|
 6. |   3     0   10139   105 |
 7. |   4     1   15015   443 |
 8. |   4     0   24338   415 |
 9. |   5     1     470    19 |
10. |   5     0    1383    50 |
    +-------------------------+
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Note:
 ◾ age indicates the code of the age group (1: <46 years; 2: 46–55 years; 

3: 56–60 years; 4: 61–80 years; 5: >80 years)
 ◾ sex indicates the code of the sex (0 = female, 1 = male)
 ◾ py indicates person-years
 ◾ cvd indicates the number of cardiovascular disease cases

9.6 Assessing Interaction Terms
According to the trend in the RRs (by age group) that was observed in the previous table, 
which suggests the presence of an age–sex interaction, we will initially explore the inter-
action terms in the Poisson regression model using the likelihood ratio test, as follows:

. quietly xi: glm cvd i.sex*i.age, fam(poi) lnoff(py)

. estimates store model1

. quietly xi: glm cvd i.sex i.age, fam(poi) lnoff(py)

. lrtest model1 .

Likelihood-ratio test                   LR chi2(4)   =   29.58
(Assumption: . nested in model1)        Prob > chi2  =  0.0000

Note: lnoff(py) indicates the inclusion of the natural logarithm of the py variable 
as an offset variable.

The results indicate a significant age–sex interaction term (P-value <  .0001), 
confirming that age has a modifying effect on the relationship that exists between 
sex and cardiovascular disease. Therefore, it is necessary to estimate the RR (male 
vs. female) by age group. To carry out this evaluation, we use the Poisson regression 
model, while also including interaction terms. For example, the resulting models of 
previous data can be programmed in Stata with the following command:

xi: glm cvd i.sex*i.age, fam(poisson) lnoff(py)

Output
Generalized linear models          No. of obs      =        10
Optimization     : ML              Residual df     =         0
                                   Scale parameter =         1
Deviance         =  5.31308e-13    (1/df) Deviance =         .
Pearson          =  4.76108e-13    (1/df) Pearson  =         .

Variance function: V(u) = u        [Poisson]
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Link function    : g(u) = ln(u)    [Log]

                                    AIC            =  8.241062
Log likelihood   = -31.20531135     BIC            =  5.31e-13

-------------------------------------------------------------------------------
              |               OIM
          cvd |    Coef.   Std. Err.    z   P>|z| [95% Conf. Interval]
----------------+---------------------------------------------------------------
      _Isex_1 | 1.786304   .3665609   4.87  0.000  1.067858   2.504751
      _Iage_2 | 1.469314   .3538299   4.15  0.000  .7758204   2.162808
      _Iage_3 | 2.360093   .3473253   6.80  0.000  1.679348   3.040838
      _Iage_4 | 2.858762   .3369284   8.48  0.000  2.198394   3.519129
      _Iage_5 |  3.61029   .3620926   9.97  0.000  2.900601   4.319979
_IsexXage_1_2 |-.6769246   .3931747  -1.72  0.085 -1.447533   .0936837
_IsexXage_1_3 |-1.052307     .38774  -2.71  0.007 -1.812263  -.2923501
_IsexXage_1_4 |-1.238024   .3728725  -3.32  0.001 -1.968841  -.5072074
_IsexXage_1_5 |-1.674611   .4549709  -3.68  0.000 -2.566337  -.7828843
        _cons |-6.930277   .3333333 -20.79  0.000 -7.583599  -6.276956
       ln(py) |        1 (exposure)
-------------------------------------------------------------------------------

The resulting equation of the Poisson regression model, using only one decimal 
approximation of the estimated coefficient of this output, is as follows:

 

Ln ˆ / * * *µi iPY _Isex_1 _Iage_2 _Iage_3 _( ) = − + + + +6.9 1.8 1.5 2.4 2.9 * IIage_4

_Iage_5 _IsexXage_1_2 _IsexXage_1_3+ − −

−

3.6 0.7 1.1

1.

* * *

22 1.7* *_IsexXage_1_4 _IsexXage_1_5−

where:
PYi = person-years
_Isex_1 = 1, if sex = M; _Isex_1 = 0 if sex = F
_Iage_2 = 1, if group of age “2”; _Iage_2 = 0 other groups of age
_Iage_3 = 1, if group of age “3”; _Iage_3 = 0 other groups of age
_Iage_4 = 1, if group of age “4”; _Iage_4 = 0 other groups of age
_Iage_5 = 1, if group of age “5”; _Iage_5 = 0 other groups of age
_IsexXage_1_2 = 1, if _Isex_1 = 1 and _Iage_2 = 1, otherwise 0
_IsexXage_1_3 = 1, if _Isex_1 = 1 and _Iage_3 = 1, otherwise 0
_IsexXage_1_4 = 1, if _Isex_1 = 1 and _Iage_4 = 1, otherwise 0
_IsexXage_1_5 = 1, if _Isex_1 = 1 and _Iage_5 = 1, otherwise 0

Considering the previous estimated coefficients, and using the expression [ii] of the 
Poisson model, we can determine the age-specific incidences as follows:

 1. Incidence for the <46 years age group (age2  =  0, age3  =  0, age4  =  0, 
age5 = 0):

 I<
− +=46 e( )6.9 1.8*_Isex_1
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 2. Incidence for the 46–55 years age group (age2  =  1, age3  =  0, age4  =  0, 
age5 = 0):

 I46 55−
− + + −= e( )*6.9 1.8* 1.5* 0.7_Isex_1 _Iage_2 _IsexXage_1_2

 3. Incidence for the 56–60 years age group (age2 =  0, age3  =  1, age4  =  0, 
age5 = 0):

 I56 60−
− + + −= e( )*6.9 1.8* 2.4*_Isex_1 _Iage_3 _IsexXage_1_31.1

 4. Incidence for the 61–80 years age group (age2  =  0, age3  =  0, age4  =  1, 
age5 = 0):

 I61 80−
− + + −= e( )*6.9 1.8* * 1.2_Isex_1 _Iage_4 _IsexXage_1_42.9

 5. Incidence for the >80 years age group (age2  =  0, age3  =  0, age4  =  0, 
age5 = 1):

 I>
− + + −=80 e( )*6.9 1.8* 3.6* 1.7_Isex_1 _Iage_5 _IsexXage_1_5

Therefore, to estimate the relative risk (males vs. females) for the first two age groups. 
We estimate the incidence by sex and then divide these incidences in each age group 
as follows:

 1. The <46 years age group:
 When _Isex_1 = 1,

 Imale =
− +( )e 6.9 1.8

 And when _Isex_1 = 0,

 I female =
−( )e 6.9

 Then,

 RR emale

female

= = =I
I

( )1.8 5.96

 2. The 46–55 years age group:
 When _Isex_1 = 1 and _IsexXage_1_2 = 1,

 I Imale = =−
− + + −

46 55 e )( 6.9 1.8 1.5 0.7
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 And when _Isex_1 = 0 and _IsexXage_1_2 = 1,

 I female = − +e 6.9 1.5( )

 Then

 RR expmale

female

= = − =( )I
I

1.8 0.7 3 03.

To facilitate the estimation of these RRs with 95% confidence intervals in Stata, 
we can use the lincom command in the model, with interaction terms, instead of 
having one model for each age group. To use this command, after running the 
model with interaction terms, we enter the name of the predictor with the name 
Stata assigned to it; then we add the plus sign (+) followed by the corresponding 
interaction terms and the option irr. The syntaxes for the first two age groups will 
be as follows:

For the <46 years age group:

xi: glm cvd i.sex*i.age, fam(poisson) lnoff(py) 
            lincom _Isex_1, irr

Output

(1)  [cvd]_Isex_1 = 0
------------------------------------------------------------------------------
    cvd |      IRR  Std. Err.   z   P>|z| [95% Conf. Interval]
---------+-----------------------------------------------------------
    (1) | 5.967359    2.1874  4.87  0.000  2.909142   12.24051
------------------------------------------------------------------------------

The incidence of cardiovascular disease in males younger than 46 years old 
is 5.97 (95% CI: 2.91, 12.24) times the incidence of cardiovascular disease in 
females younger than 46 years. This greater level of risk is highly significant 
(P-value < .001).

For the 46–55 years age group:

lincom _Isex_1 + _IsexXage_1_2, irr

Output

(1) [cvd]_Isex_1 + [cvd]_IsexXage_1_2 = 0
------------------------------------------------------------------------------
    cvd |     IRR  Std. Err.   z   P>|z|  [95% Conf. Interval]
---------+------------------------------------------------------------
    (1) |3.032477  .4312037  7.80  0.000   2.294884   4.007138
------------------------------------------------------------------------------
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The incidence of cardiovascular disease in males aged 46–55 years old is 3.03 (95% 
CI: 2.29, 4.01) times the incidence of cardiovascular disease in females aged 46–55 
years old. This greater level of risk is highly significant (P-value < .001).

9.7 Overdispersion
Using the Poisson regression model, we can also assess the goodness of fit of the 
model, as was shown in the previous chapter. For example, if we run the model 
using only the predictor sex (in the previous database) as follows:

.  xi: glm cvd i.sex, fam(poi) lnoff(py)

Generalized linear models         No. of obs      =         10
Optimization     : ML             Residual df     =          8
                                  Scale parameter =          1
Deviance         =  555.0977773   (1/df) Deviance =   69.38722
Pearson          =  517.3470186   (1/df) Pearson  =   64.66838

Variance function: V(u) = u       [Poisson]
Link function    : g(u) = ln(u)   [Log]

                                   AIC            =   62.15084
Log likelihood   =    -308.7542    BIC            =   536.6771

------------------------------------------------------------------------------
        |              OIM
    cvd |   Coef.   Std. Err.       z  P>|z| [95% Conf.  Interval]
---------+----------------------------------------------------------------
_Isex_1 | .6055324  .0524741    11.54  0.000   .5026851      .7083797
   cons |-4.554249  .0392232  -116.11  0.000  -4.631125     -4.477373
 ln(py) |        1 (exposure)
------------------------------------------------------------------------------

We discover that the deviance is 555.10, with 8 degrees of freedom; therefore, 
overdispersion is observed. To assess the departure between the deviance and the 
degrees of freedom, we obtain the P-value in Stata, in the following manner:

dis chi2tail(8,555.09)

1.05e-114 

The results show a very highly significant difference between the deviance and its 
degrees of freedom (P-value < .001). Therefore, the Poisson regression model using only 
the predictor sex is not adequate; including more predictors, exploring another type of 
model, or assessing the potential correlation between adjacent age groups is called for. 
For more discussion on this topic, we recommend checking out the books by Cameron 
and Trivedi (1998), Hilbe (2007), Hoffmann (2004), and Kleinbaum et al. (2008).
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Chapter 10

Survival Analysis

Aim: Upon completing the chapter, the learner should be able to use 
the Cox proportional hazards model to estimate the magnitude of the 
association between the risk of the occurrence of a given clinical event 
(e.g., disease, death, remission) after a certain period of time and a fac-
tor of exposure, controlling for potential confounders.

10.1 Introduction
In this chapter we present the use of a regression model to analyze the occurrence 
of an event after a certain time. This analysis is regularly identified as a survival 
analysis or a time to event analysis (Kleinbaum and Klein, 2005). The objective in 
survival analysis is to assess the time it takes for an event of interest to occur when 
there is the possibility that this event will not occur in all subjects under study. 
Take the following examples:
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Event of Interest Time of Study At the End of the Study 

Death Time that a person 
remains alive after heart 
surgery until the event of 
interest occurs.

There are persons who 
remain alive after heart 
surgery.

Development of a 
respiratory disease

Time without developing 
a respiratory disease 
after exposure to an 
environmental 
contaminant until the 
event of interest occurs.

There are persons who 
do not develop a 
respiratory disease after 
being exposed to an 
environmental 
contaminant.

Hospital discharge 
after 24 h

Length of hospital stay of a 
patient who arrives at an 
emergency room until the 
event of interest occurs.

There are people who 
stay in the hospital for 
longer than 24 h.

For the analysis of survival times, it is necessary to identify a start date for partici-
pation in the study. Some possible start dates are date of birth, date of diagnosis, 
therapy start date, and date or time of an exposure to a toxin. In addition, it is also 
necessary to identify the date on which the event of interest occurs or the date of 
study completion.

The study time in survival analysis is determined by the difference between the 
date of the occurrence of the event of interest and the start date of the study:

 T = date of occurrence of event under study start date–

where T can be measured in days, months, years, or some other time unit.
The use of survival analysis is justified when there is a possibility that an event 

of interest will not occur in a high number of subjects during a given study period, 
meaning that there will be a high number of individuals with incomplete infor-
mation. The time of occurrence of the event of interest (T ) cannot be exactly 
determined when the event does not happen; only the minimum survival time (t) 
(in which the event of interest does not occur in the individual) can be determined. 
Therefore, the formulation of a study problem in survival analysis with the event’s 
date or time of occurrence being unknown is given by the following expression:

 T t≥

Censoring information may arise in the following situations:

 ◾ Termination of the research study
 ◾ Loss of follow-up due to the voluntary withdrawal from the study (reasons 

unrelated to the study)
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 ◾ Death, assuming that this is not the event of interest
 ◾ Development of a disease or health condition that is not associated with the 

event of interest

When the study time of a subject has not been determined, we use the term cen-
sored. If the date of the event’s occurrence is unknown, the incomplete data in the 
survival analysis are called right censoring. The existence of censored observations 
can be attributed to a selection bias, unless it can be assured that censored indi-
viduals are representative of the study population. Therefore, censoring has to be 
independent of t.

A survival analysis involves a longitudinal design in which there is a recruitment 
period and a maximum date of observation, as illustrated in the following:

Recruitment period
Last date for observation

Time of study

Recruitment time comprises a fixed period of time during which the initial mea-
surement of the study subjects for survival analysis is performed. The maximum 
date of observation indicates the last day or the specific time to observe the occur-
rence of an event. The possible situations that may occur while observing the event 
of interest are illustrated in Figure 10.1.

Situation A. The occurrence of the event after the completion of the study (censored).

Situation B. The occurrence of the event before the completion of the study.

Known time

Date of completion of
the study

Occurrence of the event

T > t

T  ≥ t Occurrence of the event Date of the completion of
the study

Unknown time

Figure 10.1 Occurrence of the Event in Survival Analysis.
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10.2 Probability of Survival
In a survival study, the evaluation T = t cannot be established for censored obser-
vations. If there are no censored observations, then the variable T can be analyzed 
using the standard methods for evaluating a continuous variable (e.g., linear regres-
sion, ANOVA). In the case of censored observations, we can ensure only that the 
event occurred after a time greater than t (T > t). For this reason, one of the main 
objectives in a survival analysis is to determine the probability of T > t. This prob-
ability is expressed as follows:

 S t T t( ) [ ]= >Pr

S(t) is defined as the survival function and indicates the probability of being free of 
the event of interest at least at t; that is, the probability of the event occurring after t.

10.3 Components of the Study Design
To perform a survival analysis, the minimum information that must be provided 
by the study design is: (1) recruitment date, (2) date of the occurrence of the study 
event, and (3) last date of observation (which could be the date of study termination 
or the occurrence of the study event). For example, let us assume that the time dis-
tribution of seven subjects with cancer in a survival analysis design is as illustrated in 
Figure 10.2.

Recruitment period Last date of observation

Subject 1

Subject 2

Subject 3

Subject 4

Subject 5

Subject 7

Denotes death by cancer Denotes a censored observation

Subject 6

0 1 2 3 4 5 6 7 8 9 10 11 12 (Months)

Figure 10.2 Longitudinal design in survival analysis.
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In the above illustration, the following patterns occur: (1) the recruitment date 
is different for every subject; (2) the date of the occurrence of the study event is also 
different in each subject; (3) the last date of observation is the same for all subjects, 
12 months; however, not all the subjects get free of the event at this point. Usually, 
this type of information can be summarized in the following table:

Subject
Entrance 
Month

Month of Death 
or Censored

Death (D) 
Censored (C)

Survival 
Time

1 0 6 D 6

2 1 12 C 11

3 2 3 C 1

4 1 6 C 5

5 0 4 D 4

6 4 6 D 2

7 0 11 D 11

When there are censored observations, there are several nonparametric methods for 
estimating S(t). The life-table estimate of the survivor function, also known as the 
actuarial estimate of survivor function, assumes that the censoring process is such 
that the censored survival times occur uniformly within different series of time 
intervals. Another method for estimating the survival function, S(t), is through the 
Kaplan‒Meier (KM) method. This method determines the probability of surviving 
at least to time t(j). Time t(j) indicates the times at which one or more events have 
occurred and is sorted in ascending order:

 t t t t tj j( ) ( ) ( ) ( ) ( )1 2 3 1≤ ≤ ≤ ≤ ≤ ≤− 

where t(1) is the time at which the event of least time occurred. 

10.4 Kaplan–Meier Method
To describe the procedure to estimate the survival function of a person, S(t( j)), we 
use the KM method. This method is based on the product of survival function 
at time t(j−1) and the conditional probability that the event of interest will occur 
after t(j), given that the person is alive at least until t(j). This product is expressed as 
follows:
 S t S t T t T tj j j j( ) ( ) ( ) ( )1 Pr( ) ( ) ≥( )= ∗ >−
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where Pr[T > t( j)|T ≥ t( j)] indicates the probability, among those persons who reached 
t( j) alive, of remaining alive after that specific time,

 ◾ t( j) indicates the time in j order in which at least one event occurs after the 
data are ordered from least to greatest

 ◾ S(t( j−1)) is the function of survival until time t( j−1)

The development of the previous expression with the data from the previous exam-
ple is presented in the following table:

T(j) rj
a fj

b Pr[T > t(j)|T ≥ t(j)]c S(tj)

0 7 0 1 − (0/7) = 1 1.0

1d – – – –

2 6 1 1 − (1/6) = 0.833 0.833

4 5 1 1 − (1/5) = 0.8 0.666

5d – – – –

6 3 1 1 − (1/3) = 0.667 0.44

11d – – – –

11 1 1 1 − (1/1) = 0 0

a rj indicates the subjects that are at risk an instant before t(j).
b fj indicates the number of deaths in j time.
c Pr[T > t(j)|T ≥ t(j)] = 1 − (fj/rj).
d censored cases.

The S(t( j)) usually is graphically represented as a step function; it means that 
S(t( j)) probability remains constant until the time when the next event of interest 
occurs.

10.5 Programming of S(t)
Let us assume a study aimed at assessing oropharyngeal cancer mortality by sex 
(1 = Males, 2 = Females), adjusting for tumor stage (1, 2, and 3). Further, let us sup-
pose that we have the observation time (months) after the diagnosis in 87 subjects, 
as follows:
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id death sex stage time id death sex stage time

1 1 2 2 34 46 0 2 1 28

2 1 2 2 61 47 1 1 2 39

3 0 2 1 78 48 1 1 2 8

4 0 1 2 95 49 1 2 1 35

5 1 2 2 49 50 0 1 1 5

6 1 2 2 59 51 0 1 1 45

7 0 2 2 2 52 1 2 2 0

8 0 2 2 1 53 0 2 2 17

9 1 1 3 6 54 0 2 1 0

10 0 1 1 53 55 0 1 2 1

11 1 2 2 8 56 0 2 1 39

12 0 1 2 21 57 1 2 1 9

13 1 2 3 71 58 1 1 2 5

14 1 1 3 47 59 1 2 2 2

15 0 1 2 35 60 0 1 2 38

16 0 1 1 1 61 1 2 1 41

17 1 2 3 10 62 0 2 2 6

18 0 1 2 7 63 1 2 1 28

19 0 2 2 1 64 0 2 1 60

20 1 1 2 27 65 0 2 2 1

21 0 1 2 34 66 1 2 1 81

22 1 2 3 10 67 0 2 1 2

23 1 2 2 43 68 0 1 1 5

24 0 1 2 84 69 0 1 2 2

25 1 2 2 89 70 0 2 2 44

26 1 2 2 6 71 1 2 3 8
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id death sex stage time id death sex stage time

27 0 2 2 4 72 1 1 3 7

28 0 2 2 0 73 0 1 2 5

29 0 2 1 22 74 0 2 2 3

30 1 2 3 1 75 1 2 1 3

31 1 2 1 23 76 1 2 2 2

32 1 2 3 37 77 1 1 2 55

33 1 2 1 25 78 1 2 1 46

34 0 2 1 0 79 0 2 1 70

35 0 2 3 1 80 1 2 1 39

36 1 2 2 39 81 1 1 1 99

37 1 2 1 20 82 0 1 2 5

38 0 1 2 48 83 1 1 2 52

39 1 1 2 20 84 1 2 3 12

40 1 2 2 6 85 0 2 1 39

41 0 2 1 44 86 1 1 1 40

42 1 2 3 13 87 0 1 2 73

43 0 1 3 1

44 0 2 2 50

45 0 2 1 0

To run a survival analysis in Stata, we have to specify the name of the variable that 
defines the time and the variable that defines the event with the code to be used for 
the occurrence of the event, as follows:

stset time,fa(death=1)

Output

     failure event:  death == 1
obs. time interval:  (0, time]
 exit on or before:  failure
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-----------------------------------------------------------------------------
      87  total observations
       5  observations end on or before enter()
-----------------------------------------------------------------------------
      82  observations remaining, representing
      43  failures in single-record/single-failure data
    2385  total analysis time at risk and under observation
                                    at risk from t =         0
                         earliest observed entry t =         0
                              last observed exit t =        99

We defined the time-of-survival variable at the beginning; in this case it was defined 
with the name time. After the comma, the occurrence of the event of interest is 
indicated with the command fa followed by a parenthesis to indicate the variable 
for the event of interest and the code that indicates when the event occurs.

An estimation of survival probability is obtained in Stata with the ltable com-
mand, as is demonstrated in the following:

ltable time 

Output

           Beg.                         Std.
Interval Total Deaths Lost Survival  Error [95% Conf. Int.]
-------------------------------------------------------------------------------
 0 1 87 5 0 0.9425 0.0250 0.8674 0.9757
 1 2 82 8 0 0.8506 0.0382 0.7566 0.9104
 2 3 74 5 0 0.7931 0.0434 0.6919 0.8642
 3 4 69 2 0 0.7701 0.0451 0.6667 0.8451
 4 5 67 1 0 0.7586 0.0459 0.6542 0.8354
 5 6 66 5 0 0.7011 0.0491 0.5930 0.7856
 6 7 61 4 0 0.6552 0.0510 0.5453 0.7446
 7 8 57 2 0 0.6322 0.0517 0.5218 0.7238
 8 9 55 3 0 0.5977 0.0526 0.4870 0.6920
 9 10 52 1 0 0.5862 0.0528 0.4755 0.6813
10 11 51 2 0 0.5632 0.0532 0.4527 0.6597
12 13 49 1 0 0.5517 0.0533 0.4414 0.6489
13 14 48 1 0 0.5402 0.0534 0.4302 0.6380
17 18 47 1 0 0.5287 0.0535 0.4190 0.6270
20 21 46 2 0 0.5057 0.0536 0.3967 0.6049
21 22 44 1 0 0.4943 0.0536 0.3857 0.5938
22 23 43 1 0 0.4828 0.0536 0.3747 0.5826
23 24 42 1 0 0.4713 0.0535 0.3637 0.5714
25 26 41 1 0 0.4598 0.0534 0.3529 0.5601
27 28 40 1 0 0.4483 0.0533 0.3420 0.5488
28 29 39 2 0 0.4253 0.0530 0.3205 0.5260
34 35 37 2 0 0.4023 0.0526 0.2993 0.5029
35 36 35 2 0 0.3793 0.0520 0.2783 0.4797
37 38 33 1 0 0.3678 0.0517 0.2678 0.4680



132 ◾ Biostatistics in Public Health Using STATA

38 39 32 1 0 0.3563 0.0513 0.2575 0.4562
39 40 31 5 0 0.2989 0.0491 0.2067 0.3964
40 41 26 1 0 0.2874 0.0485 0.1967 0.3843
41 42 25 1 0 0.2759 0.0479 0.1868 0.3721
43 44 24 1 0 0.2644 0.0473 0.1770 0.3598
44 45 23 2 0 0.2414 0.0459 0.1577 0.3350
45 46 21 1 0 0.2299 0.0451 0.1481 0.3225
46 47 20 1 0 0.2184 0.0443 0.1387 0.3099
47 48 19 1 0 0.2069 0.0434 0.1293 0.2972
48 49 18 1 0 0.1954 0.0425 0.1200 0.2844
49 50 17 1 0 0.1839 0.0415 0.1109 0.2715
50 51 16 1 0 0.1724 0.0405 0.1019 0.2585
52 53 15 1 0 0.1609 0.0394 0.0930 0.2454
53 54 14 1 0 0.1494 0.0382 0.0842 0.2322
55 56 13 1 0 0.1379 0.0370 0.0756 0.2188
59 60 12 1 0 0.1264 0.0356 0.0671 0.2053
60 61 11 1 0 0.1149 0.0342 0.0589 0.1916
61 62 10 1 0 0.1034 0.0327 0.0508 0.1778
70 71 9 1 0 0.0920 0.0310 0.0430 0.1637
71 72 8 1 0 0.0805 0.0292 0.0354 0.1494
73 74 7 1 0 0.0690 0.0272 0.0282 0.1349
78 79 6 1 0 0.0575 0.0250 0.0213 0.1200
81 82 5 1 0 0.0460 0.0225 0.0150 0.1047
84 85 4 1 0 0.0345 0.0196 0.0092 0.0889
89 90 3 1 0 0.0230 0.0161 0.0044 0.0725
95 96 2 1 0 0.0115 0.0114 0.0010 0.0558
99   100 1 1 0 0.0000   . .   .
-------------------------------------------------------------------------------

Note: The command ltable is followed by the variable that indicates the observation 
time.

After running the stset command, the sts graph command can be used in Stata 
to construct the S(t) graph using the KM method, as illustrated in Figure 10.3.

10.6 Hazard Function
Another way to assess the time of occurrence of an event is by using the hazard function, 
which is denoted by h(t). This function is defined as the instantaneous risk of occur-
rence of the event of interest after a time, t, given that this event did not occur during at 
least a single time t. To estimate the hazard function using the KM method, in a given 
time interval (t( j), t( j+1)), a similar process is used to compute the incidence density:

 
h t
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j j
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where τj indicates the size of the interval (t( j), t( j+1)), that is, τj = t( j+1) − t( j). According to 
the time unit that is used, the product rj*τj indicates person-time (i.e., person-years, 
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person-weeks, person-days, etc.). The estimation of the hazard probabilities can 
also be obtained with the ltable command, but we add the hazard option. For 
example, using the previous data, the command is as follows:

ltable time, hazard

Output

          Beg.    Cum.    Std.          Std.
Interval Total Failure Error Hazard Error [95% Conf. Int.]
-------------------------------------------------------------------------------
 0  1 87 0.0575 0.0250 0.0592 0.0265 0.0073 0.1110
 1  2 82 0.1494 0.0382 0.1026 0.0362 0.0316 0.1735
 2  3 74 0.2069 0.0434 0.0699 0.0313 0.0087 0.1312
 3  4 69 0.2299 0.0451 0.0294 0.0208 0.0000 0.0702
 4  5 67 0.2414 0.0459 0.0150 0.0150 0.0000 0.0445
 5  6 66 0.2989 0.0491 0.0787 0.0352 0.0098 0.1477
 6  7 61 0.3448 0.0510 0.0678 0.0339 0.0014 0.1342
 7  8 57 0.3678 0.0517 0.0357 0.0252 0.0000 0.0852
 8  9 55 0.4023 0.0526 0.0561 0.0324 0.0000 0.1195
 9 10 52 0.4138 0.0528 0.0194 0.0194 0.0000 0.0575
10 11 51 0.4368 0.0532 0.0400 0.0283 0.0000 0.0954
12 13 49 0.4483 0.0533 0.0206 0.0206 0.0000 0.0610
13 14 48 0.4598 0.0534 0.0211 0.0211 0.0000 0.0623
17 18 47 0.4713 0.0535 0.0215 0.0215 0.0000 0.0637
20 21 46 0.4943 0.0536 0.0444 0.0314 0.0000 0.1060
21 22 44 0.5057 0.0536 0.0230 0.0230 0.0000 0.0680
22 23 43 0.5172 0.0536 0.0235 0.0235 0.0000 0.0696
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Figure 10.3 Survival function using the Kaplan‒Meier method.
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23 24 42 0.5287 0.0535 0.0241 0.0241 0.0000 0.0713
25 26 41 0.5402 0.0534 0.0247 0.0247 0.0000 0.0731
27 28 40 0.5517 0.0533 0.0253 0.0253 0.0000 0.0749
28 29 39 0.5747 0.0530 0.0526 0.0372 0.0000 0.1255
34 35 37 0.5977 0.0526 0.0556 0.0393 0.0000 0.1325
35 36 35 0.6207 0.0520 0.0588 0.0416 0.0000 0.1403
37 38 33 0.6322 0.0517 0.0308 0.0308 0.0000 0.0911
38 39 32 0.6437 0.0513 0.0317 0.0317 0.0000 0.0940
39 40 31 0.7011 0.0491 0.1754 0.0782 0.0223 0.3286
40 41 26 0.7126 0.0485 0.0392 0.0392 0.0000 0.1161
41 42 25 0.7241 0.0479 0.0408 0.0408 0.0000 0.1208
43 44 24 0.7356 0.0473 0.0426 0.0425 0.0000 0.1259
44 45 23 0.7586 0.0459 0.0909 0.0642 0.0000 0.2168
45 46 21 0.7701 0.0451 0.0488 0.0488 0.0000 0.1444
46 47 20 0.7816 0.0443 0.0513 0.0513 0.0000 0.1518
47 48 19 0.7931 0.0434 0.0541 0.0540 0.0000 0.1600
48 49 18 0.8046 0.0425 0.0571 0.0571 0.0000 0.1691
49 50 17 0.8161 0.0415 0.0606 0.0606 0.0000 0.1793
50 51 16 0.8276 0.0405 0.0645 0.0645 0.0000 0.1909
52 53 15 0.8391 0.0394 0.0690 0.0689 0.0000 0.2041
53 54 14 0.8506 0.0382 0.0741 0.0740 0.0000 0.2192
55 56 13 0.8621 0.0370 0.0800 0.0799 0.0000 0.2367
59 60 12 0.8736 0.0356 0.0870 0.0869 0.0000 0.2572
60 61 11 0.8851 0.0342 0.0952 0.0951 0.0000 0.2817
61 62 10 0.8966 0.0327 0.1053 0.1051 0.0000 0.3113
70 71  9 0.9080 0.0310 0.1176 0.1174 0.0000 0.3478
71 72  8 0.9195 0.0292 0.1333 0.1330 0.0000 0.3941
73 74  7 0.9310 0.0272 0.1538 0.1534 0.0000 0.4545
78 79  6 0.9425 0.0250 0.1818 0.1811 0.0000 0.5367
81 82  5 0.9540 0.0225 0.2222 0.2208 0.0000 0.6551
84 85  4 0.9655 0.0196 0.2857 0.2828 0.0000 0.8400
89 90  3 0.9770 0.0161 0.4000 0.3919 0.0000 1.1681
95 96  2 0.9885 0.0114 0.6667 0.6285 0.0000 1.8986
99 100  1 1.0000      . 2.0000 0.0000 2.0000 2.0000
-------------------------------------------------------------------------------

To graphically represent h(t) through the KM method, the same command for S(t) 
is used, but we add the hazard option (sts graph, hazard ). The output of this com-
mand is illustrated in Figure 10.4.

10.7 Relationship between S(t) and h(t)
Assuming that the time of observation, T, is a random variable in the survival 
analysis setting, then, as a consequence, the following functions exist:

 f(t): the probability density function of T
F(t): the probability cumulative function of f(t)
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It has been shown that there is a mathematical relationship between these survival 
and hazard functions, the specifics of which are as follows (Collett, 2003):
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where S ′(t) indicates the derivative of S(t) and H(t), the cumulative hazard function.

10.8 Cumulative Hazard Function
The following methods are available for determining the cumulative hazard function:

 1. The KM method:
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Figure 10.4 Hazard function.
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 2. The Nelson‒Aalen method:

 H t
f
rit i t

 ( ) =
( )≤
∑ i

The estimate of H(t) using the Nelson–Aelen method will always be greater than or 
equal to that which is generated using the KM method. When the number of sub-
jects at risk at any given time is large, the two estimates are basically equal. Based on 
the Nelson–Aalen method, we can obtain the survival function with the following 
expression:

 S t H t( ) = − ( )( )
 e

The graphic representation of the cumulative hazard [H(t)] using the Nelson–Aalen 
method is programmed in Stata using the following command to create Figure 10.5:

sts graph, cumhaz

10.9 Median Survival Time and Percentiles
The minimum survival time in which the probabilities are less than 50% is identi-
fied by the median survival time {t(50) = min(time|S(t) < 50%)}. In Stata this time 
is obtained as follows:

stci, median
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Figure 10.5 Nelson–Aelen cumulative hazard estimate.



Survival Analysis ◾ 137

Output

      failure _d:  death == 1
  analysis time _t:  time

         |   no. of 
         | subjects   50%   Std. Err.     [95% Conf. Interval]
-----------+---------------------------------------------------------------
   total |   82       41     3.705979            34         55

Note: The median option is added.
If an estimate of other times, based on percentiles [(1–S(t)], is required, we use 

the option p with the integer that indicates the percentile. For example, for the 
percentiles 25 and 75, the Stata commands are as follows:

stci, p(25)

Output

         |    no. of 
         |  subjects    25%   Std. Err.  [95% Conf. Interval]
-----------+--------------------------------------------------------------

   total |    82        13    6.687969            8         28

stci, p(75)

Output

         |   no. of 
         | subjects    75%    Std. Err.  [95% Conf.  Interval]
-----------+---------------------------------------------------------------
  total  |       82     71    12.37697           52         .

Note: In the previous case, the 25th percentile indicates the minimum time for 
which the survival probabilities are less than 75%. The 75th percentile indicates the 
minimum time for which the survival probabilities are less than 25%.

10.10 Comparison of Survival Curves
To compare the overall experience of two or more survival curves, you can use differ-
ent tests of significance. Initially, it is recommended that a graph of Si(t) by different 
subgroups of the stratum be constructed. The Stata programming for visualizing dif-
ferent survival curves in the same plot, using the KM method, uses the option by after 
the sts graph command. For example, using the previous database, the survival curves 
by sex are graphically obtained with the following command to create Figure 10.6:

sts graph, by(sex)
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To obtain the median survival time in different subgroups, the option by can also be 
used after the stci command. For example, the command line for finding the median 
time by sex would be

stci, median by(sex)

Output

        |    no. of 
sex     |  subjects    50%    Std. Err.   [95% Conf. Interval]
----------+----------------------------------------------------------------
      1 |        31     52     5.187957           27         .
      2 |        51     39     3.999146           23        49
----------+----------------------------------------------------------------
  total |        82     41     3.705979           34        55

10.11 Proportional Hazards Assumption
The application of certain significance tests to evaluate hazard functions depends 
on the behavior of these functions among the study groups over time. If the ratio 
of hazard functions is constant over time h1(t)/h2(t) = constant, it is said that the 
hazards are proportional (proportional hazards). For example, using the previous 
database, the hazard function curves by sex are graphically obtained with the follow-
ing command to create Figure 10.7:
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Figure 10.6 Survival function by sex.
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sts graph, by(sex) hazard

A proportional hazards (PH) assessment can be performed through the pattern 
observed in the survival function curves. It is a necessary but not sufficient con-
dition that the curves not cross over time, suggesting that the PH assumption 
is met. An alternate way to evaluate this assumption graphically is to determine 
whether the function ln{–ln[S(t)]} is kept parallel through time. For example, for 
programming this function we use the following command to create Figure 10.8:

stphplot, by(sex)

10.12 Significance Assessment
Hypothesis testing can be performed to compare the survival curves of different 
groups. There are several methods that can be used to evaluate these curves, which 
include the log-rank test, the Wilcoxon‒Gehan‒Breslow (WGB) test, and the 
Tarone–Ware test. A log-rank test is recommended when the condition of PH is 
fulfilled, while a Wilcoxon test is recommended when the condition of PH is not 
fulfilled.
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Figure 10.7 Hazard function by sex.
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10.12.1 Log-Rank Test

To compare the survival curves, the log-rank test assumes the following null 
hypothesis:

 H S t S t0 1 2: ( ) = ( )

To evaluate the survival curves with the log-rank test, the following contingency 
table is constructed at each time t( j):

Group Events No Events Number at Risk

1 f1j r1j − f 1j r1j

2 f2j r2j −f 2j r2j

Total fj rj − f j rIj

Under the null hypothesis of no association between the type of group and the 
occurrence of the event, you can determine the expected events in each group and 
compare with the observed event with the following statistics:
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where:
UL  =  ∑wi( f Ij  −  eIj) defines the weighted difference (observed events minus 

expected events E( f Ij) = eIj, under H0) with equal weights (wi = 1) over 
time

VL = ∑vij determines the sum of the variances under the hypergeometric distri-
bution vij = Var( f Ij) = rIj*rIIj*f j * (rj − f j)/r2

j * (rj − 1)

The Stata command for a log-rank test is:

sts test sex, logrank

Output

Log-rank test for equality of survivor functions
      |   Events         Events
sex   |  observed       expected
------+-------------------------
1     |        12          17.84
2     |        31          25.16
------+-------------------------
Total |        43          43.00
                                chi2(1) =       3.48
                                Pr>chi2 =     0.0620

According to the log-rank test performed, there is evidence in favor of H0: 
S1(t) = S2(t) (P-value = .062). However, some users might even consider this  statis-
tical evidence as marginally significant (0.05 ≤ P-value < .1).

10.12.2 Wilcoxon–Gehan–Breslow Test

The Wilcoxon‒Gehan‒Breslow (WGB) test is also based on the null hypothesis

 H S t S t0 1 2: ( ) = ( )

To perform this test, the following statistic is computed:
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The difference between the UW statistic and the statistics of the log-rank test is that 
(fij − eij) is being weighted by rj. As time increases, the rj decreases; therefore, indi-
viduals with very high values in the observation times will have less weight. The 
Stata command for this test is

sts test sex, wilcoxon

Output

Wilcoxon (Breslow) test for equality of survivor functions

      |   Events         Events        Sum of
sex   |  observed       expected        ranks
------+--------------------------------------
1     |        12          17.84         –208
2     |        31          25.16          208
------+--------------------------------------
Total |        43          43.00            0
           chi2(1) =       2.23
           Pr>chi2 =     0.1350

According to the Wilcoxon test, there is evidence in favor of the statement H0: 
S1(t) = S2(t) (P-value > .1).

10.12.3 Tarone–Ware Test

The Tarone‒Ware test is similar to the WGB test, but the weighting factor is rj
2. 

The Stata command for this is as follows:

sts test sex, tware

Output

Tarone-Ware test for equality of survivor functions

      |   Events         Events        Sum of
sex   |  observed       expected        ranks
------+--------------------------------------
1     |        12          17.84    –31.88649
2     |        31          25.16     31.88649
------+--------------------------------------
Total |        43          43.00            0
                 chi2(1) =       2.63
                 Pr>chi2 =     0.1049

According to the Tarone‒Ware test, there is evidence in favor of the statement H0: 
S1(t) = S2(t) (P-value > .10). 
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10.13 Cox Proportional Hazards Model
To evaluate the effect of an exposure on the hazard function, controlling for the 
presence of potential confounding variables, we can use the Cox proportional haz-
ards model (Royston and Lambert, 2011), as follows:

 h t X h t E i iE X,( ) = ( ) ∑+
0 ∗ ∗eβ β

where:
E defines the exposure variable of interest
Xi defines the group of independent or predictor variables (it includes potential 

confounding variables and interaction terms)
bi defines the group of coefficients of the predictor variables
h0(t) defines the immediate risk in time t. This function depends on the time  

and indicates the risk at initial conditions (E = 0, Xi = 0) or in average con-
ditions when the predictor variables are centralized (E = 0, Xi −X ) 

The predictor variables can be time dependent (e.g., age, blood pressure), but in this 
book, we are analyzing only those variables that are not time dependent. One of the 
most important uses of this model in epidemiologic studies is to estimate the hazard 
ratio (HR) adjusted for potential confounding variables. For example, assuming that 
the hazard between two persons having different exposure levels is obtained by the 
Cox model without interaction terms, the HR is estimated as follows: 

First person (E = 1):

 h t x h t X Xk k
1 0; 1( ) ( ) + + +( )== ∗ e β β βE 1 

Second person (E = 0):

 h t x h t X
2 0; 1 1′ =( ) ( ) ′+ + ′( )∗ e β βκ κ X

as a consequence,
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If we assume that the difference between both persons is only the exposure, then: 

 X X X X X Xk k1 1 2 2= ′ = ′ … = ′( ) ( ) ( )    , , ,
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As a consequence, the adjusted HR is obtained with the following:

 HR eadjusted = βE

During the HR estimation, the h0(t) function is canceled. We assume that the HR 
remains constant over time; therefore, the HR varies only according to the value of 
the predictor variables. This process of obtaining the adjusted HR is similar to that 
used in evaluating the adjusted OR and RR of the logistic and Poisson regression 
models, respectively.

The Stata commands to evaluate the interaction terms in the Cox regression 
model is as follows:

. quietly xi: stcox i.sex*i.stage

. estimates store model1

. quietly xi: stcox i.sex i.stage

. lrtest model1 .

Output

Likelihood-ratio test                  LR chi2(2)  =      1.62
(Assumption: . nested in model1)       Prob > chi2 =    0.4440

The results show that there is no evidence of any significant interaction terms in 
the Cox model (P-value > .10). Now, to assess the effect of potential confounding 
variables, we need to compare the crude and adjusted HRs. To estimate the crude 
HR, stcox is used, as can be seen in the following:

stcox b1.sex

Output

------------------------------------------------------------------------------
    _t | Haz. Ratio Std. Err.  z    P>|z| [95% Conf. Interval]
---------+---------------------------------------------------------------------
 2.sex | 1.906899   0.6747282 1.82  0.068  0.9531086  3.815161
------------------------------------------------------------------------------

Note: The use of b1 before the predictor is to indicate that the category with a code 
equal to 1 is the reference category.

The HR between sexes adjusted for stage is estimated with the following Stata 
command:

stcox b1.sex b1.stage
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Output

------------------------------------------------------------------------------
        _t | Haz. Ratio   Std. Err.   z   P>|z|  [95% Conf. Interval]
-------------+----------------------------------------------------------------
     2.sex |   1.894716  0.690035   1.75  0.079  0.9279952    3.868499
           |
     stage |
        2  |   1.472089  0.5575111  1.02  0.307  0.7007552    3.092446
        3  |   3.766573  1.596584   3.13  0.002  1.641108     8.644817
------------------------------------------------------------------------------

This example indicates that tumor stage is not a confounding variable in the asso-
ciation of sex and cancer mortality because the difference between the estimated 
HRCrude (1.91) and the estimated HRAdjusted (1.89) is very small.

10.14  Assessment of the Proportional 
Hazards Assumption

If the condition of PH is fulfilled, there should not be an interaction between time 
and the exposure variable (E). To confirm this pattern, you can use the Cox model, 
as is demonstrated by the following:

 h t x h t E XE X; 1 0( ) ( )= +∗ ∗eβ β *

where:

X = E *ln(time)

If the PH condition is met, then bE = 0. Therefore, the expectation is that the inter-
action variable X would not be statistically significant to provide evidence that the 
PH assumption is met.

There are several methods for assessing the PH assumption, which are based on 
the quantities known as residuals. A description of these methods can be read in 
Collett (2003). Stata uses Schoenfeld residuals, or partial residuals, as its method 
for assessing PH. This method can be used with the option phtest after running 
stcox, as is demonstrated in the following:

    quietly: stcox i.sex i.stage
    estat phtest, detail

Output

     Test of proportional-hazards assumption
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  Time:  Time
  ------------------------------------------------------------
              |       rho       chi2       df        Prob>chi2
  ------------+-----------------------------------------------
  1b.sex      |         .          .        1                .
  2.sex       |   0.10298       0.46        1           0.4954
  1b.stage    |         .          .        1                .
  2.stage     |  –0.03693       0.06        1           0.8142
  3.stage     |  –0.09269       0.33        1           0.5671
  ------------+-----------------------------------------------
  global test |                      0.80      3        0.8483
  ------------------------------------------------------------

The data suggest that the condition of PH is fulfilled for both predictors simultane-
ously (P-value > .10).

10.15  Survival Function Estimation Using the Cox 
Proportional Hazards Model

Using the Cox model, we can obtain the survival function as follows:

 S t E x H E t x g E x H t H t
g E x

, , , , , , , , , ,
β β β β

( ) = = = 
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e e e0 0
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S t H t

0
0( ) = − ( )e

Therefore, for visualizing the survival curves by sex at stage 3 (stage = 3) after running 
the Cox model, the following sequences of commands is used to create Figure 10.9:

     quietly xi: stcox b1.sex b1.stage
     stcurve , survival at1(sex=1 stage=3) at2(sex=2 stage=3)

10.16 Stratified Cox Proportional Hazards Model
If the predictors do not satisfy the PH assumption, we recommend using the strati-
fied Cox model, which is expressed as follows:
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 h t X h tg g
E XE i i,( ) = ( ) ∑+

0 eβ β∗ ∗

where g indicates the stratum.
It is necessary to first identify all the predictors that do not satisfy the PH. With 

these predictor categories, strata are formed. For example, if the stage variable does not 
satisfy the PH assumption, the Cox model can be stratified by stage levels. In  Stata the 
command line for the stratified Cox model using the previous data would have the 
variable sex as the sole predictor, as follows:

xi: stcox  b1.sex, strata(stage) nolog

Output

Stratified Cox regr. -- Breslow method for ties
No. of subjects =            82      Number of obs  =       82
No. of failures =            43
Time at risk    =          2385
                                   LR chi2(1)       =     2.84
Log likelihood  =   –98.460443     Prob > chi2      =   0.0919
------------------------------------------------------------------------------
    _t | Haz. Ratio  Std. Err.   z  P>|z| [95% Conf. Interval]
--------+--------------------------------------------------------------
 2.sex |   1.818963  0.6677337 1.63 0.103  0.8858321  3.73505
------------------------------------------------------------------------------
                                           Stratified by stage
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Figure 10.9 Survival curves by sex at stage 3.
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A slight variation is observed between the HR stratified by stage (HRstratified by stage: 1.82, 
95% CI: 0.89, 3.74) and the adjusted HR (HRadjusted by stage: 1.89, 95% CI = 0.93, 3.87).

There are other applications of survival analysis that can be explored in Stata, 
including time-dependent predictors, competing risks regression, parametric sur-
vival models, and multilevel parametric regression. These topics are beyond the 
scope of this book, but an extensive review of survival analysis can be found in 
Collett (2003), Peace (2009), Royston and Lambert (2011), and Wienke (2011).
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Chapter 11

Analysis of 
Correlated Data

Aim: Upon completing the chapter, the learner should be able to fit a 
linear regression with correlated data.

11.1 Regression Models with Correlated Data
When the measurements are part of a group of individuals, then it is possible that 
these measurements will be correlated. For example, patients receiving medical care 
in a hospital (private or public) and who are assigned to a doctor (generalist or spe-
cialist), it is possible that the treatments that these patients receive will be very simi-
lar. The patients are observed nested within certain type of doctors and hospitals.

Another example of correlated data is in cross-sectional studies, when a complex 
sampling design of households is used (Figure  11.1); the possibility exists that the 
responses of the people who reside on the same census block about lifestyle habits will 
be similar.

Another situation in which there might be correlated data is when repeated 
measurements are made; for example, the different weights of a single child at dif-
ferent visits to his or her pediatrician. There are various alternatives for analyzing 
these data, and which alternatives to use will depend on the objectives of the inves-
tigator. One alternative is to analyze the independent measurements separately, 
which results in a loss of information and statistical power. For example, assume 
the following data with regard to 20 different children, each one visiting his or her 
pediatrician three different times, being weighed at each visit, and information on 
whether they practice a sport on a regular basis (1 = yes vs. 0 = no):
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    +------------------------------------------+
    | id   weight1   weight2   weight3   sport |
    |------------------------------------------|
 1. |  1        66        67        68       0 |
 2. |  2        71        71        65       0 |
 3. |  3        70        66        62       0 |
 4. |  4        64        62        66       1 |
 5. |  5        67        66        68       1 |
    |------------------------------------------|
 6. |  6        65        64        65       1 |
 7. |  7        67        67        63       0 |
 8. |  8        65        66        66       1 |
 9. |  9        69        70        68       0 |
10. | 10        63        62        63       1 |
    |------------------------------------------|
11. | 11        61        60        60       1 |
12. | 12        66        68        68       1 |
13. | 13        68        68        70       0 |
14. | 14        67        69        65       0 |
15. | 15        65        67        63       1 |
    |------------------------------------------|
16. | 16        64        62        64       1 |
17. | 17        65        64        55       0 |
18. | 18        65        65        66       0 |
19. | 19        64        63        62       1 |
20. | 20        67        66        63       0 |
    +------------------------------------------+

Figure 11.1 Sampling design in Puerto Rico.
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To perform the analysis with independent measurements, assuming that the  objective 
is to compare the average weight by type of sport, we could carry out a simple linear 
regression analysis of the weight of each child, using the following command lines at 
each visit:

For the first visit:

reg weight1 sport

Output

    Source |     SS    df     MS       Number of obs  =     20
-----------+-------------------------  F(1, 18)       =  14.20
     Model |    48.05   1       48.05  Prob > F       = 0.0014
  Residual |     60.9  18  3.38333333  R-squared      = 0.4410
-----------+-------------------------  Adj R-squared  = 0.4100
     Total |   108.95  19  5.73421053  Root MSE       = 1.8394

------------------------------------------------------------------------------
   weight1 | Coef. Std. Err.    t  P>|t|  [95% Conf. Interval]
-------------+-----------------------------------------------------------
     sport | -3.1  .8225975  -3.77 0.001  -4.828213  -1.371787
     _cons | 67.5  .5816643 116.05 0.000   66.27797   68.72203
------------------------------------------------------------------------------

The results show a significant effect of the predictor sport on mean weight at visit 1 
(P-value = .001). The estimated regression coefficient for the predictor sport is the 
difference between the mean weights by sport in visit 1. The following command 
line can be used to compute the observed mean weight by sport:

table sport, c(mean weight1)

Output

------------------------
   sport | mean(weight1)
---------+--------------
       0 |          67.5
       1 |          64.4
------------------------

The difference in the mean weights at visit 1 is −3.1, so the children who practice 
regularly a sport weigh less, on average, than those who do not practice regularly a 
sport. To explore the differences in mean weight in each visit, a line can be drawn 
between the estimated weights from a linear regression model by sport. For exam-
ple, in the first visit the following Stata commands for visualizing this line can be 
used to create Figure 11.2:
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predict weight1exp
twoway (line weight1exp sport, sort), ytitle(Mean weight) 
xtitle(Sport) xlabel(0(1)1) legend(off)

We repeat the previous steps for the second visit:

reg weight2 sport

Output

    Source |    SS     df     MS      Number of obs  =      20
-----------+------------------------  F(1, 18)       =    9.24
     Model |   54.45    1      54.45  Prob > F       =  0.0071
  Residual |   106.1   18 5.89444444  R-squared      =  0.3391
-----------+------------------------  Adj R-squared  =  0.3024
     Total |  160.55   19       8.45  Root MSE       =  2.4278

------------------------------------------------------------------------------
  weight2  |Coef.  Std. Err.  t    P>|t|  [95% Conf. Interval]
-------------+-----------------------------------------------------------
    sport  |-3.3  1.085766  -3.04  0.007  -5.581111  -1.018889
    _cons  |67.3  .7677529  87.66  0.000   65.68701   68.91299
------------------------------------------------------------------------------

table sport, c(mean weight2)

0 1
Sport

64
65

66

M
ea

n 
w

ei
gh

t

67
68

Figure 11.2 Mean weight in the first visit.



Analysis of Correlated Data ◾ 153

Output

-------------------------
   sport |  mean(weight2)
---------+---------------
       0 |           67.3
       1 |             64
-------------------------

The results also show a significant effect of the predictor sport on mean weight at 
visit 2 (P-value = .007). The difference in the mean weights at the second visit 
is −3.3; children who practice regularly a sport weight less, on average, than those 
who do not practice regularly a sport. To draw the estimated weight by sport at visit 
2, the following Stata commands are used to create Figure 11.3:

predict weight2exp
twoway (line weight2exp sport, sort), ytitle(Mean weight) 
xtitle(Sport) xlabel(0(1)1) legend(off)
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Figure 11.3 Mean weight in the second visit.



154 ◾ Biostatistics in Public Health Using STATA

The Stata commands on the third visit are:

reg weight3 sport

Output

     Source |   SS   df      MS       Number of obs  =      20
------------+----------------------   F(1, 18)       =    0.00
      Model |     0   1           0   Prob > F       =  1.0000
   Residual |   219  18  12.1666667   R-squared      =  0.0000
------------+----------------------   Adj R-squared  = -0.0556
      Total |   219  19  11.5263158   Root MSE       =  3.4881

------------------------------------------------------------------------------
    weight3 | Coef. Std. Err.   t   P>|t| [95% Conf. Interval]
--------------+---------------------------------------------------------
      sport |    0  1.559915   0.00 1.000 -3.277259   3.277259
      _cons | 64.5  1.103026  58.48 0.000  62.18263   66.81737
------------------------------------------------------------------------------
table sport, c(mean weight3)

Output

-------------------------
   sport |  mean(weight3)
---------+---------------
       0 |           64.5
       1 |           64.5
-------------------------

The results do not show a significant effect of the predictor sport on mean weight at 
visit 3 (P-value > .1). There is no difference in the mean weights at the third visit. 
To draw the estimated weight by sport on the third visit, the following Stata com-
mands are used to create Figure 11.4:

predict weight3exp
twoway (line weight3exp sex, sort), ytitle(Mean weight) 
xtitle(Sport) xlabel(0(1)1) legend(off)

11.2 Mixed Models
The other alternative for analyzing correlated data is to use mixed models or multi-
level models that allow us to correct the statistical relationship due to the potential 
correlation between measurements. For example, the simplest scheme of correla-
tion is the repeated measures study; the same subject is measured several times, as 
illustrated in Figure 11.5.
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Figure 11.4 Mean weight in the third visit.
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yij indicates the value of Y in the jth visit for the ith subject.

Level 1 refers to the set of weights of each subject on different visits.

Level 2 refers to the set of subjects.

Figure 11.5 Repeated measures of weight in the same subject.
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Mixed models can be expressed in various forms to explain the expected value 
of the main outcome (Y ) of the study. The construction of these models depends on 
the following variations:

 1. Yi  may be different between subjects at baseline (variability between 
measurements).

 2. Yi  may change according to the conditions in each subject (variability within 
measurements).

When an association is established between a continuous random variable, 
Y, and a quantitative variable, X, through a simple linear regression model, 
µ β βY X X| * ,= +0 1  in a mixed model approach, the intercept β0( ) and the slope 
β1( ) could be fixed or random. The following table indicates the possible combina-

tions of these alternatives:

Intercept β0( ) Slope β1( )

Fixed Fixed

Fixed Random

Random Fixed

Random Random

Based on the previous example of the estimated weights by sport, we need to iden-
tify the possible patterns of the linear relationships. According to the previous 
graphs, the respective patterns in the lines suggest a model with a random intercept 
considering the first two visits, similar slopes but different intercept; it means that 
the difference in the mean weight, between those who practice regularly a sport 
and those who do not, is independent of the visit. However, if the three visits are 
considered, a model with random intercept and slope is suggested; the difference in 
the mean weight, between those who practice sport and those who do not, is not 
independent of the visit. 

11.3 Random Intercept
The definition of a linear mixed model with a random intercept is as follows (Rabe-
Hesketh and Skrondal, 2005):

 Y X eij i ij ij= + +β β0 1 *
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where:
β γ0 00 0i iU= +  (random coefficient) 
β1  indicates the coefficients (fixed) associated to the predictor X

U Ni U0
20 0∼ ,σ( )

γ00  indicates the average intercept in a design with two levels
σu0

2  indicates the variance of the intercept between subjects

The variance of Yij conditional on the value of Xij is given by the following expression:

 var Y X Uij ij j ij u½( ) = ( ) + ( ) = +var var0 0
2 2ε σ σε

where σε
2  indicates the variance of Y within the subjects (variance of the residuals).

Using the data of the previous example, the correlation between two differ-
ent visits ( j ≠ j ′) of the ith subject is calculated through the covariance expres-
sion, as follows:

 cov , , varY Y X X Uij ij ij ij j u′ ′½( ) = ( ) =0 0
2σ

Therefore, the correlation between the measurements of Y in a subject, when Y is 
fitted by X, is defined with the following equation:

 ρ σ
σ σε

Y X
Y Y X X

Y X
ij ij

ij ij ij ij

ij ij

u

u

|
cov , | ,

var |
( ) = ( )

( ) =
+

′ ′ 0
2

0
2 2

This measurement is known as an intraclass correlation coefficient, which does not 
change according to the value of X.

11.4  Using the mixed and gllamm Commands 
with a Random Intercept

To run the mixed model with the assumption of a random intercept, we need the 
database to be in the long format. The following command needed to get a long 
database from a wide database is:

reshape long weight, i(id) j(visit) 
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After submitting this command, the database is changed as follows:

    +-----------------------------+
    | id   visit   weight   sport |
    |-----------------------------|
 1. |  1       1       66       0 |
 2. |  1       2       67       0 |
 3. |  1       3       68       0 |
 4. |  2       1       71       0 |
 5. |  2       2       71       0 |
    |-----------------------------|
 6. |  2       3       65       0 |
 7. |  3       1       70       0 |
 8. |  3       2       66       0 |
 9. |  3       3       62       0 |
10. |  4       1       64       1 |
    |-----------------------------|
11. |  4       2       62       1 |
12. |  4       3       66       1 |
13. |  5       1       67       1 |
14. |  5       2       66       1 |
15. |  5       3       68       1 |
    |-----------------------------|
16. |  6       1       65       1 |
17. |  6       2       64       1 |
18. |  6       3       65       1 |
19. |  7       1       67       0 |
20. |  7       2       67       0 |
    |-----------------------------|
21. |  7       3       63       0 |
22. |  8       1       65       1 |
23. |  8       2       66       1 |
24. |  8       3       66       1 |
25. |  9       1       69       0 |
    |-----------------------------|
26. |  9       2       70       0 |
27. |  9       3       68       0 |
28. | 10       1       63       1 |
29. | 10       2       62       1 |
30. | 10       3       63       1 |
    |-----------------------------|
31. | 11       1       61       1 |
32. | 11       2       60       1 |
33. | 11       3       60       1 |
34. | 12       1       66       1 |
35. | 12       2       68       1 |
    |-----------------------------|
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36. | 12       3       68       1 |
37. | 13       1       68       0 |
38. | 13       2       68       0 |
39. | 13       3       70       0 |
40. | 14       1       67       0 |
    |-----------------------------|
41. | 14       2       69       0 |
42. | 14       3       65       0 |
43. | 15       1       65       1 |
44. | 15       2       67       1 |
45. | 15       3       63       1 |
    |-----------------------------|
46. | 16       1       64       1 |
47. | 16       2       62       1 |
48. | 16       3       64       1 |
49. | 17       1       65       0 |
50. | 17       2       64       0 |
    |-----------------------------|
51. | 17       3       55       0 |
52. | 18       1       65       0 |
53. | 18       2       65       0 |
54. | 18       3       66       0 |
55. | 19       1       64       1 |
    |-----------------------------|
56. | 19       2       63       1 |
57. | 19       3       62       1 |
58. | 20       1       67       0 |
59. | 20       2       66       0 |
60. | 20       3       63       0 |
    +-----------------------------+

Subsequently, the mixed command is used for the first two visits as can be seen 
below:

mixed weight sport if visit < 3, || id:,  stddev

Output

Mixed-effects ML regression       Number of obs     =       40
Group variable: id                Number of groups  =       20

                                  Obs per group:
                                                min =        2
                                                avg =      2.0
                                                max =        2
                                  Wald chi2(1)      =    14.12
Log likelihood = -77.965175       Prob > chi2       =   0.0002
------------------------------------------------------------------------------
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    weight | Coef. Std. Err.     z  P>|z| [95% Conf. Interval]
-------------+------------------------------------------------------------
     sport | -3.2  .8514694   -3.76 0.000 -4.868849  -1.531151
     _cons | 67.4  .6020798  111.95 0.000  66.21995   68.58005
------------------------------------------------------------------------------

------------------------------------------------------------------------------
Random-effects Parameters |Estimate Std. Err. [95% Conf. Interval]
------------------------------+----------------------------------------------
id: Identity            |
              sd(_cons) |1.746425 .3322952  1.202792  2.535768
------------------------------+----------------------------------------------
           sd(Residual) | 1.07238 .1695582  .7866148   1.46196
------------------------------------------------------------------------------
LR test vs. linear model: chibar2(01) = 14.99 Prob >= chibar2 = 0.0001

The results indicate that there is a significant change in the expected weight by sport 
(P-value  <.001), even after controlling for the effect between subjects (ˆ .β1 3 2= −  
95% CI: −4.87, −1.53). The intraclass correlation coefficient is determined with the 
following estimates:

 σU0 1 74= .

 σε = 1 07.

 ρ =
+

=1 74
1 74 1 07

73
2

2 2

.
. .

.

We can see that the average intercept is γ00 67 4= .  and varies per visit ±1 74. .
Another option when running the mixed model with a random intercept is to 

use the gllamm command, which may be downloaded from www.gllamm.org. The 
result is the following, assuming that the data are in the long format:

gllamm weight sport if visit < 3, i(id) nip(20)

Output

gllamm model 

log likelihood = -77.94849
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----------------------------------------------------------------------------
 weight |   Coef.  Std. Err.   z   P>|z| [95% Conf.  Interval]
---------+------------------------------------------------------------
  sport |-3.194099 .8346379  -3.83 0.000  -4.829959  -1.558239
  _cons | 67.38501 .570114  118.20 0.000   66.26761   68.50241
----------------------------------------------------------------------------

Variance at level 1
------------------------------------------------------------------------------
 1.1368944 (.37024967)

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id)

   var(1): 3.1128248 (1.2621798)
------------------------------------------------------------------------------

The results of both mixed and gllamm are similar, with a slight difference in the 
log-likelihood estimate and in the variance of random effects.

11.5  Using the mixed Command with 
Random Intercept and Slope

Another way to express a mixed model that explains the expected values of Y (μij) is 
to assume that the intercept and the slope are random variables, as follows:

 µ β βij i i ijX= +0 1 *

where:
β γ0 00 0i iU= +  (random coefficient)
β1i indicates a random coefficient associated with the predictor X, which is 

defined as follows: γ01 1+U i

U Ni U0
20 0∼ ,σ( )

U Ni U1
20 1∼ ,σ( )

γ00 indicates the average intercept in a design with two levels
γ01 indicates the average slope in a design with two levels
σu0

2  indicates the variance of the intercept between subjects
σu1

2  indicates the variance of the slope between subjects
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In this mixed model, the variance of Yij, given Xij, is enumerated by the following 
expression: 

 var | ’Y X X Xij ij u ij u ij( ) = + + +σ σ σ σ0
2

01 1
2 2 22 ε

where σ01 is the covariance between the intercept and the slope.
In addition, there is a possibility that there is a correlation between each of two 

different visits ( j ≠ j ′) by the same subject, which is calculated from the covariance, 
as follows:

 Cov Y X X X X X Xij ij ij ij u ij ij u ij ij,Y | , * *′ ′ ′ ′( ) = + +( ) +σ σ σ0
2

01 1
2

As a consequence, the intraclass correlation coefficients with random intercept and 
random slope will be defined as follows:

 ρ
σ σ

Y X
Y Y X X

Y X

X
ij ij

ij ij ij ij

ij ij

u ij|
|

Var |
( ) = ( )

( ) =
+′ ′Cov , , (0

2
01 ++ +
+ + +

′ ′X X X

X X
ij u ij ij

u ij u ij

) *σ
σ σ σ σε

1
2

0
2

01 1
2 2 22

Therefore, this intraclass correlation coefficient will depend on the value of X.
When the intercept and slope are random in a mixed model, we can use the 

Stata command mixed with the previous database considering the three visits as 
follows:

mixed weight sport, || id: || sport:,  stddev

Output

Mixed-effects ML regression         Number of obs     =     60
---------------------------------------------------
               |  No. of   Observations per Group
Group Variable |  Groups  Minimum  Average  Maximum
---------------+-----------------------------------
            id |      20        3      3.0        3
         sport |      20        3      3.0        3
---------------------------------------------------

                                   Wald chi2(1)       =   5.16
Log likelihood = -140.95844        Prob > chi2        = 0.0231

------------------------------------------------------------------------------
 weight |  Coef.   Std. Err.    z  P>|z| [95% Conf.  Interval]
---------+-------------------------------------------------------------
  sport |-2.133333 .9387534  -2.27 0.023 -3.973256   -.2934105
  _cons | 66.43333 .6637989 100.08 0.000  65.13231    67.73436
------------------------------------------------------------------------------
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------------------------------------------------------------------------------
Random-effects Parameters |Estimate Std. Err. [95% Conf. Interval]
-----------------------------+---------------------------------------------
id: Identity            |
              sd(_cons) |1.206639 18.1424  1.92e-13   7.58e+12
-----------------------------+---------------------------------------------
sport: Identity         |
              sd(_cons) |1.206645 18.14232 1.92e-13   7.58e+12
-----------------------------+---------------------------------------------
           sd(Residual) |2.1173   .2367064 1.700675   2.635989
------------------------------------------------------------------------------
LR test vs. linear model: chi2(2) = 8.40 Prob > chi2 =  0.0150

The results indicate that there is a significant change in the average expected weight 
by sport (P-value  =  .023), even after controlling for the effect between subjects 
(ˆ . ,γ01 2 13= − 95% CI: −3.97, −0.29). However, the average of the slopes associated 
with the sport predictor will vary ±1.21, so the pattern of change in the average 
weight will depend on each visit. 

11.6 Mixed Models in a Sampling Design
Let us assume that we have the following information from a random sample of 
88 subjects, which will be used to assess the association between hepatitis C virus 
infection (hcv: 1 = present; 0 = absent) and cocaine metabolite assay result (co: 
1 = positive; 0 = negative), controlling for the variables age (age2: 1 = <45 years; 
2 = ≥45 years) and residential block (block), selected randomly:

    +-------------------------+
    | block   co   hcv   age2 |
    |-------------------------|
 1. |     3    0     0      2 |
 2. |     4    1     1      1 |
 3. |     4    1     0      2 |
 4. |     1    0     0      2 |
 5. |     1    0     0      1 |
    |-------------------------|
 6. |     1    1     1      1 |
 7. |     4    1     0      1 |
 8. |     4    0     0      1 |
 9. |     2    0     0      1 |
10. |     2    0     0      1 |
    |-------------------------|
11. |     3    0     1      2 |
12. |     2    0     0      1 |
13. |     2    1     0      2 |
14. |     4    0     0      1 |
15. |     3    0     0      1 |
    |-------------------------|

www.Ebook777.com

http://www.ebook777.com


164 ◾ Biostatistics in Public Health Using STATA

16. |     1    1     0      2 |
17. |     1    0     0      1 |
18. |     4    1     0      1 |
19. |     2    1     1      1 |
20. |     2    1     0      1 |
    |-------------------------|
21. |     2    0     0      1 |
22. |     2    1     0      1 |
23. |     3    0     0      1 |
24. |     3    1     0      1 |
25. |     3    0     0      1 |
    |-------------------------|
26. |     3    0     0      2 |
27. |     1    1     0      1 |
28. |     1    1     0      1 |
29. |     4    0     0      2 |
30. |     4    0     0      1 |
    |-------------------------|
31. |     4    1     1      2 |
32. |     4    1     1      1 |
33. |     1    0     0      1 |
34. |     2    0     1      1 |
35. |     2    0     0      1 |
    |-------------------------|
36. |     3    0     0      2 |
37. |     3    0     1      1 |
38. |     2    1     0      2 |
39. |     4    0     0      1 |
40. |     4    0     1      1 |
    |-------------------------|
41. |     1    0     0      1 |
42. |     4    0     0      2 |
43. |     4    0     0      1 |
44. |     1    0     0      1 |
45. |     2    1     0      2 |
    |-------------------------|
46. |     2    0     0      1 |
47. |     1    1     1      1 |
48. |     1    1     0      1 |
49. |     3    0     0      1 |
50. |     3    0     0      2 |
    |-------------------------|
51. |     2    0     1      1 |
52. |     2    1     0      1 |
53. |     2    0     0      1 |
54. |     4    0     0      1 |
55. |     4    0     0      1 |
    |-------------------------|
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56. |     4    1     1      1 |
57. |     4    0     0      1 |
58. |     4    0     0      1 |
59. |     3    1     0      1 |
60. |     3    1     0      2 |
    |-------------------------|
61. |     3    1     0      1 |
62. |     4    1     1      2 |
63. |     2    0     0      1 |
64. |     2    0     0      1 |
65. |     2    0     0      2 |
    |-------------------------|
66. |     1    0     0      2 |
67. |     2    0     0      1 |
68. |     2    0     0      2 |
69. |     4    0     0      1 |
70. |     2    0     0      2 |
    |-------------------------|
71. |     2    1     0      1 |
72. |     2    1     0      2 |
73. |     2    0     0      2 |
74. |     2    0     0      1 |
75. |     2    0     0      1 |
    |-------------------------|
76. |     3    1     0      2 |
77. |     3    0     0      2 |
78. |     3    0     0      1 |
79. |     1    0     0      1 |
80. |     1    0     0      2 |
    |-------------------------|
81. |     1    0     0      2 |
82. |     3    1     0      2 |
83. |     1    1     0      2 |
84. |     1    0     0      2 |
85. |     2    1     0      1 |
    |-------------------------|
86. |     2    0     0      1 |
87. |     2    1     0      2 |
88. |     1    1     0      1 |
    +-------------------------+

If the data are analyzed under the assumption that there is a possible correlation 
between the subjects that reside in the same block (random intercept), the syntax of 
the gllamm command line to estimate the prevalence ratio using a logistic regres-
sion model with the option link(log), which is called log-binomial regression model, 
is as follows:

xi:gllamm hcv i.co i.age2,fam(bin) i(block) eform link(log)
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Output

gllamm model 

log likelihood = -34.37179

------------------------------------------------------------------------------
      hcv | exp(b)  Std. Err.  z   P>|z|  [95% Conf. Interval]
------------+-------------------------------------------------------------
   _Ico_1 |2.834653 1.482238 1.99  0.046   1.017202   7.899373
 _Iage2_2 |.5385232 .3316394 -1.01 0.315   .1610675   1.800532
    _cons |.1036169 .0489457 -4.80 0.000   .0410533   .2615254
------------------------------------------------------------------------------
Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (block)

   var(1): .0386266 (.20576199)
------------------------------------------------------------------------------

The results show that the prevalence of HCV infection among cocaine users is 2.83 
(95% CI: 1.02, 7.90) times the prevalence of HCV infection among cocaine nonus-
ers, adjusting for age and block of residence. This excess was statistically significant 
(P-value = .046).

There are other applications of multilevel modeling in health sciences that can 
be explored in Stata, including ordinal outcomes, count outcomes, and censored 
outcomes. These topics are beyond the scope of this book, but an extensive review 
of multilevel modeling can be found in Snijders and Bosker (2003), Leyland and 
Goldstein (2001), Twisk (2003), and Rabe-Hesketh and Skrondal (2005).
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Chapter 12

Introduction to Advanced 
Programming in STATA

Aim: Upon completing the chapter, the learner should be able to 
develop short programs that will make the existing Stata commands 
run more efficiently.

12.1 Introduction
Stata provides an editor window to save Stata commands and user-defined commands. 
These files can be executed within this editor or they can be called for execution 
within another do-file. In this chapter, we will present an introduction about how to 
prepare do-files and the structure to define program commands (Juul, 2014).

12.2 do-files
The do-file editor tool can be used for data management and to create programs. 
There are four ways to open a new do-file: (1) the Windows menu (Window → do-file 
editor); (2) the keyboard (press Crtl+9); (3) the Windows icon (using the new 
 do-file editor); and (4) using the command line doedit.

Example 1

Open a new do-file editor using the command window by typing “doedit.” A do-file 
editor page will open. Create the following do-file:
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noisily display “Introduction to STATA Programming”
noisily display “Example 1: New Do-file”
noisily display “END”

Then, save it under “\Users\Documents\students\example1.do.”
To run the example1.do file, use the command window. To do this, you can type 

cd “\Users\Documents\students” 
do “example1.do”,

and the following will appear:

. noisily display “Introduction to STATA Programming”
Introduction to STATA Programming
. noisily display “Example 1: New Do-file”
Example 1: New Do-file
. noisily display “END”
END

Or you can type

run example1,

and the following will appear:

Introduction to STATA Programming
Example 1: New Do-file
END

The commands noisily and quietly are special commands that turn the output on 
and off. The first, noisily, performs the command subsequently written and ensures 
terminal output. The second, quietly, performs the command subsequently writ-
ten but suppresses terminal output. As you can see in the example above, if you 
type “do” before typing “example1,” all the information in the do-file will be dis-
played in the Stata results window. If you type “run,” only the information after the 
 noisily display commands will be shown in the output window.

12.3 program Command
The program command is used to do data management and to run analyses. The 
following is the basic structure to use the program command: 

program program name 
{a series of STATA commands}
end

When you are writing a program, the program name has to be unique and cannot 
be the same as any other command name. For example, you cannot use the name 
“ttest” because it is a built-in command in Stata. To be able to find out whether a 
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name is already in use by Stata, you can use the which command. In the command 
window type which program name. Doing so will result in the following:

. which ttest
C:\Program Files (x86)\Stata\ado\base\t\ttest.ado
*! version 4.1.1  30dec2004
. which example
command example not found as either built-in or ado-file
r(111);

As you can see in the previous example, a program named “ttest” is being used by 
Stata, and the program name “example” is not being used. Example2.do illustrates 
the use of the program command using the command window. Type the following 
lines in the command field:

program example2
display “Example 2: How to use the command program”
display “STATA commands”
display “End of the Example”
end

To execute the program, type “example2” in the command line; the output after 
having done so will be:

Example 2: How to use the command program
STATA commands
End of the Example

If you want to change or edit a program, you will need to first delete that program 
from the memory. If you try to use the name “example2” again, you will get the 
following error:

program example2
example3 already defined
r(110);

To delete this error or cause it to be ignored, you can use the commands drop and 
capture. The drop command deletes the program from the memory, and the capture 
command causes the errors associated with the command that follows the capture 
command to be ignored. Type the following example in the command line, or create 
a do-file with these commands:

capture program drop example3
program example3
display “Example 3: How to use the commands drop and capture”
display “STATA commands”
display “End of the Example”
end
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Then, type “example3” in the command window.

Example 3: How to use the commands drop and capture
STATA commands
End of the Example

12.4 Log Files
It is important to keep track of your work while you are programming. If you keep a 
log of your work, you will find it easier to go back and check what you have already 
done. To create a log, use the following steps:

 1. To start:
 Menu toolbar → File – Log – Begin → Save as filename

 2. To finish:
 Menu toolbar → File – Log – Close

Or, write the following in the command window:

log using “C:\MyPrograms\mylog”, replace 
{a series of STATA commands and their outputs}
log close

For example, prepare a do-file, named “example4,” as follows:

log using “example4”, replace text
use “/Users/Documents/bmi.dta”
tab bmig
       bmig |      Freq.     Percent      Cum.
------------+-----------------------------------
     Normal |        4       40.00       40.00
 Overweight |        3       30.00       70.00
      Obese |        3       30.00      100.00
------------+-----------------------------------
      Total |       10      100.00
log close

After log using command, all the commands and their outputs will be saved in 
example4.txt until log close command.

12.5 trace Command
While you are programming, sometimes you will get errors after executing a given 
program. The trace command is a useful tool for finding these errors. You can turn 
this command on or off at any time while you are programming. The following 
do-file, named “example5,” illustrates how to use the trace command:

capture log close

log using “example5.log”, replace 
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capture program drop _all
 program example5
      display “Example #5”
      display “Runs the error when you run the program”
       display “Stops and displays the error when executing the 

program”
      display “End of the Example” 
      ERRORRRRRR
 end
log close
set trace on
set more off
example5

If you run the do-file named “example5,” you will get the following error:

.   example5
 ------------------------------------------- begin example5 ---
  - display “Example #5”
Example #5
  - display “Runs the error when you run the program”
Runs the error when you run the program
  - display “Stops and displays the error when executing the 
program”
Stops and displays the error when executing the program
  - display “End of the Example”
End of the Example
  - ERRORRRRRR
unrecognized command:  ERRORRRRRR
   --------------------------------------------- end example5 ---
r(199);
end of do-file

12.6 Delimiters
Stata reads each line as a complete command line, but sometimes the com-
mands are long. To be able to use more than one line as your command line 
you can use delimiters. There are two types of delimiters, one you can use in 
each line (///), and one you set up before running your Stata commands (#d ;). 
The following examples show how each of the two delimiters is used to create 
a two-way graph:

twoway  (scatter bmi age if sex==0,  sort mcolor(navy)               ///
         msymbol(circle_hollow))                                   ///
 (scatter bmi age if sex==1, sort mcolor(maroon)  msymbol(circle))///
 (line    bmi age if sex==0, sort lcolor(navy)   lwidth(thick)) ///
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 (line   bmi age if sex==1, sort lcolor(maroon) lwidth(thick)),///
 legend(position(10) ring(0) col(1) order(1 “Males” 2 “Females”)///
 region(fcolor(none) lcolor(none))) ///
ylab(, angle(horizontal)) ytitle(“BMI”) xtitle(“Age”) graphregion(fcolor 
(white))

And

#d ;
twoway (scatter bmi age if sex==0, sort mcolor(navy)  msymbol(circle_hollow))
(scatter bmi age if sex==1,  sort mcolor(maroon) msymbol(circle))
(line    bmi age if sex==0,  sort lcolor(navy)   lwidth(thick)) 
(line    bmi age if sex==1,  sort lcolor(maroon) lwidth(thick)),
legend(position(10) ring(0) col(1) order(1 "Males" 2 "Females") 
region(fcolor(none) lcolor(none))) ylab( , angle(horizontal)) 
ytitle("BMI") xtitle("Age") graphregion(fcolor(white));
#d cr

As you can see above, you need to open with #d ; and then close with #d cr for the 
next command lines. If you do not close the delimiter, Stata will continue to read 
all the lines continuously.

12.7 Indexing
When you execute a Stata command, the command will loop across each line of 
the dataset. For example, if you generate a new variable, Stata will work in line 1, 
then line 2, and so on. The use of indexing will help the user to run only Stata com-
mands in certain observations. The following are examples of indexing:

 1. Generate a new variable, x, that contains the number of the current observation:

 gen x=_n

 Output

 .  list x

    +---+
    | x |
    |---|
 1. | 1 |
 2. | 2 |
 3. | 3 |
 4. | 4 |
 5. | 5 |  
    |---|
 6. | 6 |
 7. | 7 | 
    +---+
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 2. Generate a new variable, y, which contains the total number of observations 
in the dataset, assuming the last dataset:

 gen y=_N

 . list x y

    +-------+
    | x   y |
    |-------|
 1. | 1   7 |
 2. | 2   7 |
 3. | 3   7 |
 4. | 4   7 |
 5. | 5   7 |
    |-------|
 6. | 6   7 |
 7. | 7   7 |
    +-------+

 3. To check for duplicates in your dataset, assuming every subject has an id, 
which is identified in this dataset by ID and it is a sequential set of numbers 
starting with 1, use the following command line:

 bysort ID: gen duplicates = _n

 4. To create a variable with the total number of subjects in a group, where these 
groups are identified by groupid, use the following command line:

 bysort groupid: gen subjects = _N

 5. Generate two new variables, z and w. Variable z contains the current obser-
vation minus 1. The first observation will be missing. Variable w contains the 
current observation plus 1. The last observation will be missing. Observe:

 gen z=x[_n-1]
 gen w=x[_n+1]

 list  x y z w
    +---------------+
    | x   y   z   w |
    |---------------|
 1. | 1   7   .   2 |
 2. | 2   7   1   3 |
 3. | 3   7   2   4 |
 4. | 4   7   3   5 |
 5. | 5   7   4   6 |
 6. | 6   7   5   7 |
 7. | 7   7   6   . |
    +---------------+
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12.8 Local Macros
Local macros are temporary variables in the memory for loops and programs. 
A local macro can be a number or a string of characters (in either case, up to 31 char-
acters can be used). To exemplify these macros, let’s assume the following database:

. list

    +--------------------------+
    | age   bmi    hgb   smoke |
    |--------------------------|
 1. |  18    18   11.3       1 |
 2. |  19    24     14       1 |
 3. |  23    27   14.5       1 |
 4. |  25    24   14.7       0 |
 5. |  37    28     15       0 |
    |--------------------------|
 6. |  56    29     13       0 |
 7. |  78    32     12       0 |
 8. |  52    23     11       1 |
 9. |  21    24     14       1 |
10. |  45    20   11.5       1 |
    |--------------------------|
11. |  25    24   14.7       0 |
12. |  34    20     12       0 |
13. |  59    29     13       0 |
14. |  78    32     12       0 |
    +--------------------------+

If we are interested in using age and hemoglobin (hgb) levels as predictors of bmi, 
we could define the list of predictors and then run a multivariate linear regression 
model, as follows:

local list = “age hgb”
reg bmi ’list’

Output

  Source |      SS           df       MS     Number of obs   =        14
---------+--------------------------------   F(2, 11)        =     43.77
   Model | 221.078339        2  110.539169   Prob > F        =    0.0000
Residual | 27.7788042       11  2.52534584   R-squared       =    0.8884
---------+--------------------------------   Adj R-squared   =    0.8681
   Total | 248.857143       13  19.1428571   Root MSE        =    1.5891

-------------------------------------------------------------------------
     bmi |     Coef.   Std. Err.     t    P>|t|     [95% Conf. Interval]
---------+---------------------------------------------------------------
     age |  .2179857   .0239641    9.10   0.000      .165241    .2707304
     hgb |  2.241635   .3550485    6.31   0.000     1.460178    3.023091
   _cons | -12.84275   5.193205   -2.47   0.031    -24.27292   -1.412584
-------------------------------------------------------------------------
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12.9 Scalars
Scalars are temporary results that are saved in the memory after a command is 
run. After you run a command, you can review which scalars were saved using 
the return list command. For example, let’s assume that we have the variable smoke 
from the previous database, and we want to run a Student’s t-test to compare the 
expected bmi by smoke. The following is what that would look like:

ttest bmi, by(smoke)

Output

Two-sample t test with equal variances
------------------------------------------------------------------------------
   Group | Obs      Mean  Std. Err.  Std. Dev.  [95% Conf.  Interval]
-------- -+----------------------------------------------------------------
       0 |   8     27.25  1.497021   4.234214   23.71011      30.78989
       1 |   6  22.66667  1.308094   3.204164    19.3041      26.02923
-------- -+----------------------------------------------------------------
combined |  14  25.28571  1.169336   4.375255   22.75952      27.81191
-------- -+--------------------------------------------------------------------
    diff |      4.583333   2.07317              .0662847 9.100382
------------------------------------------------------------------------------
   diff = mean(0) - mean(1)                              t = 2.2108
Ho: diff = 0                            degrees of freedom = 12

   Ha: diff < 0             Ha: diff != 0              Ha: diff > 0
 Pr(T < t) = 0.9764    Pr(|T| > |t|) = 0.0472 Pr(T > t) = 0.0236

After Student’s t-test, we use the return command, as follows:

return list

After doing so, the following results should appear:

scalars:
             r(level) =  95
                r(sd) =  4.375255094603872
              r(sd_2) =  3.204163957519444
              r(sd_1) =  4.234214381508266
                r(se) =  2.073169652345752
               r(p_u) =  .0236068853559555
               r(p_l) =  .9763931146440445
                 r(p) =  .047213770711911
                 r(t) =  2.210785464733855
              r(df_t) =  12
              r(mu_2) =  22.66666666666667
               r(N_2) =  6
              r(mu_1) =  27.25
               r(N_1) =  8
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Scalars are useful for displaying only the results you want, instead of displaying all 
the results. Here is an example:

. noisily display “Pr(|T| > |t|) =” %9.3f ‘r(p)’
Pr(|T| > |t|) =    0.047

In addition, you can create new scalars to calculate results not included in the saved 
results. In the following example, using the previous database, the mean difference 
between two groups is calculated: 

capture program drop example6
program example6, rclass
  summarize ‘1’ if ‘2’==0, meanonly
  scalar mean1 = r(mean)
  summarize ‘1’ if ‘2’==1, meanonly
  scalar mean2 = r(mean)
  return scalar diff = mean1 - mean2
end 

After running the program named “example6,” the following is returned:

. example6 bmi smoke

. return list

scalars:

r(diff) =  4.583333333333332

12.10 Loops (foreach and forvalues)
The command foreach repeatedly executes the commands enclosed inside the 
braces, as can be seen in the following:

foreach lname {in|of listtype} list {
commands referring to ‘lname’
}

Here is an example that uses the previous database with the following do-file:

foreach var of var bmi age hgb {
mean ‘var’
}
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Output

Mean estimation                   Number of obs   = 14
--------------------------------------------------------------
            |       Mean   Std. Err. [95% Conf. Interval]
------------+-------------------------------------------------
        bmi |   25.28571   1.169336 22.75952    27.81191
--------------------------------------------------------------

Mean estimation                   Number of obs   = 14

--------------------------------------------------------------
            |       Mean   Std. Err. [95% Conf. Interval]
------------+-------------------------------------------------
        age |   40.71429   5.614374      28.58517 52.8434
--------------------------------------------------------------

Mean estimation                   Number of obs   = 14

--------------------------------------------------------------
            |       Mean   Std. Err. [95% Conf. Interval]
------------+-------------------------------------------------
        hgb |      13.05   .3789444      12.23134 13.86866
--------------------------------------------------------------

In addition, you can use the local command in the do-file, as can be seen in the following:

local variables = “bmi age hgb”
foreach var of local variables {
sum ‘var’
}

After doing so, the following results will appear:

  Variable |       Obs       Mean   Std. Dev.      Min     Max
-----------+---------------------------------------------------------
       bmi |        14   25.28571   4.375255        18      32

  Variable |       Obs       Mean   Std. Dev.      Min     Max
-----------+---------------------------------------------------------
       age |        14   40.71429   21.00706        18      78

  Variable |       Obs       Mean   Std. Dev.      Min     Max
------------+---------------------------------------------------------
       hgb |        14      13.05    1.41788        11      15
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The command forvalues loops over consecutive values, using the following structure:

forvalues lname = range {
commands referring to ‘lname’
}

For example, assuming we want to generate two random variables with uniform 
distribution between the numbers 1 and 14, and assuming we are using the previ-
ous bmi database, the do-file will be composed of the following commands:

forvalues i = 1(1)2  {
generate x‘i’ = 1+ int(runiform()*14)
}

Once the above forvalues command is run, the variables x1 and x2 are generated. To 
explore the values of these variables, we use list, as is demonstrated in the following:

. list x1 x2
    +---------+
    | x1   x2 |
    |---------|
 1. |  7   13 |
 2. | 11   13 |
 3. | 13   11 |
 4. |  2   13 |
 5. |  7   10 |
    |---------|
 6. | 13    4 |
 7. | 11   12 |
 8. |  4    1 |
 9. |  3   13 |
10. | 11    5 |
    |---------|
11. | 14   11 |
12. | 11    9 |
13. | 13    5 |
14. |  4    3 |
    +---------+

Assuming we would like to select those persons for whom x1 is greater than x2 for 
further assessment, we would use the following commands:

gen id=_n
gen selec=(x1 > x2)
list id age bmi hgb smoke if selec==1
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Output

    +-------------------------------+
    | id   age   bmi    hgb   smoke |
    |-------------------------------|
 3. |  3    23    27   14.5       1 |
 6. |  6    56    29     13       0 |
 8. |  8    52    23     11       1 |
10. | 10    45    20   11.5       1 |
11. | 11    25    24   14.7       0 |
    |-------------------------------|
12. | 12    34    20     12       0 |
13. | 13    59    29     13       0 |
14. | 14    78    32     12       0 |
    +-------------------------------+

Therefore, the individuals to be selected will be those with ids 3,6,8,10,11,12,13, 
and 14. 

12.11  Application of matrix and local Commands 
for Prevalence Estimation

If we want to estimate the prevalence of one particular event, there are different 
Stata commands for performing this process, which include proportion and glm. 
The proportion command uses a normal approach (Rosner, 2010), and the glm 
command uses a logistic regression model (Hosmer and Lemeshow, 2000). For 
example, assuming we are interested in estimating the prevalence of women from 
the previous database who have a hemoglobin level below 12, the syntaxes with the 
proportion command will be as follows:

gen nhgb=hgb < 12
proportion nhgb

Output

Proportion estimation             Number of obs   = 14
--------------------------------------------------------------
            | Proportion   Std. Err. [95% Conf. Interval]
------------+-------------------------------------------------
nhgb        |
          0 |   .7857143   .1138039      .4598449 .9404495
          1 |   .2142857   .1138039      .0595505 .5401551
--------------------------------------------------------------
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The prevalence estimate of a hemoglobin level below 12 is 21.4% (95% CI: 5.9, 
54.0%).

If we want to use the glm command for this estimation, we will use the logistic 
regression model with no predictor variables, as follows:

 Prevalence =
+ −

1
1 0e β

where β0 is the intercept. The syntaxes for a prevalence estimate of hemoglobin 
levels below 12, after running the glm command, will be based on the matrix and 
local commands and are seen in the following:

quietly: glm nhgb , fam(bin) 
matrix def b=e(b)
matrix def v=e(V)
local c=b[1,1]
local es=sqrt(v[1,1])
gen prev=100/(1+exp(-‘c’))
gen previnf=100/(1+exp(-(‘c’-1.96*‘es’)))
gen prevsup=100/(1+exp(-(‘c’+1.96*‘es’)))
collapse (mean) prev previnf prevsup
list 

The output of the above will be:

    +--------------------------------+
    |     prev    previnf    prevsup |
    |--------------------------------|
 1. | 21.42857   7.070517   49.43356 |
    +--------------------------------

The point estimates of this prevalence are the same, but the confidence limits are 
different, probably because of the small sample size for the normal approach used 
in the proportion command.

The other option for prevalence estimation is to use the adjust command after 
the logit command, as is demonstrated in the following:

logit nhgb
adjust ,pr ci

Output

Logistic regression             Number of obs     =         14
                                LR chi2(0)        =       0.00
                                Prob > chi2       =          .
Log likelihood = -7.2741177     Pseudo R2         =     0.0000
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 ------------------------------------------------------------------------------
  nhgb |  Coef.    Std. Err.  z    P>|z| [95% Conf. Interval]
--------+----------------------------------------------------------------
 _cons | -1.299283 .6513389  -1.99 0.046  -2.575884  -.0226821
------------------------------------------------------------------------------

. adjust ,pr ci

--------------------------------------------------------------------------------------
  Dependent variable: nhgb   Equation: nhgb     Command: logit
--------------------------------------------------------------------------------------

----------------------------------------------
   All |            pr          lb          ub
-------+-–––----------------------------------
       |       .214286    [.070707     .49433]
----------------------------------------------
  Key:   pr           =  Probability
           [lb , ub]  =  [95% Confidence Interval]

The results are the same as those obtained with the glm command. That is, the 
prevalence estimate of hemoglobin levels below 12 is 21.4% (95% CI: 7.07%, 
49.43%).

When the logistic regression model includes predictors, prevalence estimation 
can be performed setting the value of only one of the predictors. For example, if 
we run the previous logistic model with age as the predictor, the prevalence can be 
estimated at mean bmi and at bmi equal to 20, as follows:

logit nhgb bmi
adjust , pr ci
adjust bmi=20, pr ci

Output

Logistic regression Number of obs     =         14
 LR chi2(1)        =       7.09
 Prob > chi2       =     0.0078
Log likelihood =  -3.729784 Pseudo R2         =     0.4873

------------------------------------------------------------------------------
    nhgb |      Coef.   Std. Err.    z    P>|z| [95% Conf. Interval]
----------+----------------------------------------------------------------
     bmi |  -.7007166   .4025497  -1.74   0.082  -1.489699 .0882662
   _cons |   14.81156   8.899236   1.66   0.096  -2.630626 32.25374
------------------------------------------------------------------------------

.  adjust , pr ci
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--------------------------------------------------------------------------------------
     Dependent variable: nhgb     Equation: nhgb     Command: logit
    Variable left as is: bmi
--------------------------------------------------------------------------------------

----------------------------------------------
      All |         pr          lb          ub
----------+-----------------------------------
          |     .05183     [.00225    .569917]
----------------------------------------------
     Key:  pr         =  Probability
           [lb , ub]  =  [95% Confidence Interval]

.  adjust bmi=20, pr ci

--------------------------------------------------------------------------------------
     Dependent variable: nhgb     Equation: nhgb     Command: logit
 Covariate set to value: bmi = 20
--------------------------------------------------------------------------------------

----------------------------------------------
      All |         pr          lb          ub
----------+-----------------------------------
          |     .68938    [.165612    .961265]
----------------------------------------------
     Key:  pr         =  Probability
           [lb , ub]  =  [95% Confidence Interval]

The prevalence estimate of hemoglobin levels below 12 set at mean bmi is 5.2% 
(95% CI: 0.22%, 57.0%). The prevalence estimate of hemoglobin levels below 
12 for those subjects with bmi equal to 20 is 68.9% (95% CI: 16.56%, 96.13%). 
Although the bmi predictor in the model is marginally significant (P-value = .082), 
the prevalence estimates at different bmi values are quite different. 

There are other options of programming that can be explored in Stata, including 
different procedures for matrix operations using Mata functions. These  topics are 
beyond the scope of this book, so we recommend checking out the books by Acock 
(A Gentle Introduction to Stata, 4th edition, 2014) and by Baum (An Introduction to 
Stata Programming, 2009).
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