

MODELING FINANCIAL

TIME SERIES WITH

S-PLUS®

Eric Zivot Jiahui Wang

MODELING FINANCIAL
TIME SERIES WITH
S-PLUS®

Second Edition

With 270 Figures

Eric Zivot Jiahui Wang
Department of Economics Ronin Capital LLC
University of Washington 230 S. La Salle St., 4th Floor
Seattle, WA 98195-3330 Chicago, IL 60604
USA USA
ezivot@u.washington.edu jwang@svolatility.com

Library of Congress Control Number: 2005929867

ISBN-10: 0-387-27965-2 e-ISBN 0-387-21763-0
ISBN-13: 978-0387-27965-7

Printed on acid-free paper.

© 2006 Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without
the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring
Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or schol-
arly analysis. Use in connection with any form of information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

Printed in the United States of America. (MVY)

9 8 7 6 5 4 3 2 1

springeronline.com

Preface

What Is the Book and Why Was It Written?

This book is a guide to analyzing and modeling financial time series using
S-PLUS and S+FinMetrics. It is a unique blend of econometric theory, fi-
nancial models, data analysis, and statistical programming. It serves as a
user’s guide for Insightful’s S+FinMetrics module of statistical functions
for financial time series analysis and financial econometrics as well as a gen-
eral reference for models used in applied financial econometrics. The format
of the chapters in the book is to give a reasonably complete description of
a statistical model and how it works followed by illustrations of how to
analyze the model using S-PLUS and the functions in S+FinMetrics. In
this way, the book stands alone as an introduction to financial time se-
ries analysis as well as a user’s guide for S+FinMetrics. It also highlights
the general analysis of time series data using the new time series objects
introduced in S-PLUS 6.

Intended Audience

This book is written for a wide audience of individuals who work, do re-
search or study in the areas of empirical finance and financial econometrics.
The field of financial econometrics has exploded over the last decade, and
this book represents an integration of theory, methods and examples us-
ing the S-PLUS modeling language to facilitate the practice of financial
econometrics. This audience includes researchers and practitioners in the
finance industry, academic researchers in economics and finance, and ad-

vi Preface

vanced MBA and graduate students in economics and finance. Researchers
and practitioners in the finance industry who already use S-PLUS and de-
sire more functionality for analyzing and modeling financial data will find
this text useful. It is also appropriate for financial analysts who may not
be familiar with S-PLUS but who desire an integrated and open statistical
modeling and programming environment for the analysis of financial data.
This guide is useful for academic researchers interested in empirical finance
and financial econometrics. Finally, this book may be used as a textbook
or a textbook companion for advanced MBA and graduate level courses in
time series analysis, empirical finance and financial econometrics.

Audience Background

It is assumed that the reader has a basic familiarity with S-PLUS at the level
of Krause and Olson (2005) and a background in mathematical statistics
at the level of Hogg and Craig (1994), is comfortable with linear algebra
and linear regression, and has been exposed to basic time series concepts as
presented in Harvey (1993) or Franses (1998). Most importantly, the book
assumes that the reader is interested in modeling and analyzing financial
time series.

Overview of the Book

The chapters in the book cover univariate and multivariate models for ana-
lyzing financial time series using S-PLUS and the functions in S+FinMetrics.
Chapter one gives a general overview of the use of S-PLUS 6 and highlights
certain aspects of the language for statistical modeling. Chapter two intro-
duces the new time series objects in S-PLUS 6 and illustrates the specifica-
tion, manipulation and visualization of these objects. Chapter three surveys
time series concepts used throughout the book. Chapters four through eight
cover a variety of topics in the modeling of univariate financial time series,
including testing for unit roots, extreme value theory, time series regression
models, GARCH models of volatility, and long memory models. Chapter
nine introduces rolling analyses of time series models and covers related
topics such as technical analysis of financial time series and moving aver-
age methods for high frequency data. Chapters ten through fifteen cover
models for the analysis of multivariate financial time series. Topics include
systems of regression equations, classical and Bayesian vector autoregres-
sive models, cointegration, factor models, multivariate GARCH models,
and state space models. Chapter 16 covers aspects of modeling time series
arising from fixed income financial assets. Chapter 17, written by Victor
Yohai and Jiahui Wang, describes robust REGARIMA models that al-
low for structural change. Chapters 18 through 23 are new to the Second
Edition of the book. These new chapters cover nonlinear regime-switching

Preface vii

models, copulas, continuous-time models, the generalized method of mo-
ments, semi-nonparametric conditional density models, and the e cient
method of moments.

What Is S+FinMetrics?

S+FinMetrics is an S-PLUS module for the econometric modeling and pre-
diction of economic and financial time series. With some 600 functions,
version 1.0 of S+FinMetrics o ers the following functionality:

• Easy-to-use Trellis plots for multivariate time series

• Time series manipulations such as missing value interpolation, dis-
aggregation, di erences, distributed lags and polynomial distributed
lags

• Rolling sample statistics such as variance, maximum, and minimum

• Moving average operators for both regularly spaced and irregularly
spaced time series

• Common technical analysis measures and indicators

• Statistical tests for normality, autocorrelation, heteroskedasticity, mul-
ticollinearity, GARCH e ects, and long memory

• Extreme value theory models based on generalized extreme value and
generalized Pareto distributions as well as copulas

• Autoregressive distributed lag regression models

• White and Newey-West corrections for heteroskedasticity and serial
correlation

• Robust estimation of REG-ARIMA models and robust detection of
level shifts, trend breaks, and outliers

• Rolling and recursive regression

• Generic rolling models for back-testing

• Long memory fractional ARIMA and SEMIFAR models

• Univariate GARCH models including long memory FIGARCH and
FIEGARCH models

• Multivariate GARCH models

• Linear and nonlinear systems of regression equations

• Classical and Bayesian vector autoregression models

viii Preface

• Tests for unit roots and cointegration

• Vector error correction models

• State space models and e cient estimation, prediction, smoothing,
and simulation using the Kalman filter

• Statistical multifactor models for large data sets based on asymptotic
principal components

• Term structure interpolation

New features in version 2.0 of S+FinMetrics include:

• Variance ratio tests, e cient unit root tests and tests for nonlinearity

• Threshold AR, smooth transition AR and Markov switching AR mod-
els as well as Markov switching state space models

• Simulated solutions to systems of stochastic di erential equations

• Generalized method of moments estimation

• Gallant and Tauchen’s semi-nonparametric conditional density esti-
mation and e cient method of moments estimation

S+FinMetrics incorporates functions from S+GARCH, the EVIS library
of functions for modeling extreme values created by Alexander McNeil,
the EVANESCE library of functions for modeling extreme values and bivari-
ate copulas created by Rene Carmona and Julia Morrison, the SsfPack
C library of state space modeling functions created by Siem Jan Koop-
man, and the SNP and EMM FORTRAN libraries created by Ronald Gal-
lant and George Tauchen. S+GARCH was originally developed by Zhuanxin
Ding, Hong-Ye Gao, Doug Martin, Jiahui Wang and Yihui Zhan. The
S+FinMetrics function arima.rob was written by Ana Bianco, Marta
Garcia Ben, Elena Martinez and Victor Yohai. The S+FinMetrics long
memory modeling functions FAR, FARIMA, SEMIFAR and fgarch were devel-
oped by Jan Beran, Andrew Bruce, Don Percival, Alan Gibbs and Jiahui
Wang and supported by NSF grant DMI-9801614 to Insightful Corpora-
tion (formerly MathSoft, Inc.). Much of the new functionality in version
2.0 of S+FinMetrics was supported by the NSF SBIR Phase II grant DMI-
0132076 to Insightful Corporation. The S-PLUS implementation of Gallant
and Tauchen’s SNP and EMM FORTRAN libraries was accomplished by
Jiahui Wang, Bob Thurman, Michael Sannella, Ying Gu and Eric Zivot,
with the generous help and support of George Tauchen. Hu McCulloch
kindly provided the term structure data included with S+FinMetrics, and
James MacKinnon provided data sets for the response surface critical val-
ues for the Dickey-Fuller and Phillips-Ouliaris distributions.

Preface ix

Contact Information and Website

The authors are responsible for all of the material in the book except the
material on robust change detection, which was written by Victor Yohai.
Eric Zivot is primarily responsible for chapters 2-6, 9-12, 14-15, and 19-23,
and Jiahui Wang is primarily responsible for chapters 1, 7-8, 13, 16 and 18.
The authors may be contacted by electronic mail at

ezivot@u.washington.edu

jwang@svolatility.com

and welcome feedback and suggestions for improvements to the contents of
the book. The website for the book is located on Eric Zivot’s University of
Washington web site at

http://faculty.washington.edu/ezivot/

ModelingFinancialTimeSeries.htm

The website for version 2.0 of S+FinMetrics is located on the Insightful
Corporation website at

http://www.insightful.com/support/finmetrics20

Acknowledgements

This book would not have been written without the support and encour-
agement from Insightful Corporation. The idea for the S+FinMetrics mod-
ule was conceived by Douglas Martin and the authors. The development of
S+FinMetrics was completed at Insightful by Jiahui Wang, Quan Wen and
Hui Huang with help from many people. In particular, Jan Beran wrote
many of the long memory functions while acting as a consultant to Insight-
ful. Siem Jan Koopman helped to incorporate the SsfPack functions into
S-PLUS and to write the chapter on state space models. Alexander McNeil
and Rene Carmona graciously provided background material and S-PLUS
examples for the material in the chapters on modeling extreme values and
copulas. Bob Thurman helped to write the chapter on continuous-time
models, and Ying Gu helped with the SNP and EMM examples. Ronald
Gallant and George Tauchen graciously allowed the use of material from
their unpublished 2001 survey paper “E cient Method of Moments” for
Chapters 22 and 23. A number of people were helpful in proofreading the
book and testing the software. Particular thanks go to Eric Aldrich, An-
drew Bruce, Chuck Curry, Zhuanxin Ding, Ruud Koning, Steve McKinney,
Jun Ma, Scott Payseur, David Weitzel, Quan Wen and Bingcheng Yan.

Typographical Conventions

This book obeys the following typographic conventions:

x Preface

• The italic font is used for emphasis, and also for user-supplied vari-
ables within UNIX, DOS and S-PLUS commands.

• The typewriter font is used for S-PLUS functions, the output of
S-PLUS functions and examples of S-PLUS sessions.

• S-PLUS objects of a specified class are expressed in typewriter font
enclosed in quotations “ ”. For example, the S-PLUS timeSeries
function creates objects of class “timeSeries”.

Displayed S-PLUS commands are shown with the prompt character >. For
example

> summary(ols.fit)

S-PLUS commands that require more than one line of input are displayed
with the continuation prompt indicated by + or Continue string:. The
S-PLUS output and plots in this book were generated from a combination of
S+FinMetrics Version 1.0 and S-PLUS Version 6.0 release 2 for Windows,
and S+FinMetrics Versions 2.0 and S-PLUS Version 7.0 for Windows. The
S-PLUS output and “timeSeries” objects were generated with the options
settings

> options(width=60)

> options(time.zone="GMT")

In some cases, parts of long output from S-PLUS functions is omitted and
these lines are indicated by

...

Some of the output has been hand edited to avoid line overflow.

Seattle, Washington, USA Eric Zivot
Chicago, Illinois, USA Jiahui Wang

References

Franses, P.H. (1998). Time Series Models for Business and Economic
Forecasting. Cambridge University Press, Cambridge.

Harvey, A.C. (1993). Time Series Models, Second Edition. MIT Press,
Cambridge.

Hogg, R.V. and A.T. Craig (1994). Introduction to Mathematical Statis-
tics, Fifth Edition. Prentice Hall, New York.

Krause, A. and M. Olson (2002). The Basics of S-PLUS, Fourth Edi-
tion. Springer-Verlag, New York.

Contents

Preface v

1 S and S-PLUS 1
1.1 Introduction . 1
1.2 S Objects . 2

1.2.1 Assignment . 2
1.2.2 Class . 3
1.2.3 Method . 7

1.3 Modeling Functions in S+FinMetrics 8
1.3.1 Formula Specification 8
1.3.2 Method . 11

1.4 S-PLUS Resources . 12
1.4.1 Books . 12
1.4.2 Internet . 13

1.5 References . 13

2 Time Series Specification, Manipulation, and
Visualization in S-PLUS 15
2.1 Introduction . 15
2.2 The Specification of “timeSeries” Objects in S-PLUS . . . 15

2.2.1 Basic Manipulations 18
2.2.2 S-PLUS “timeDate” Objects 19
2.2.3 Creating Common “timeDate” Sequences 24
2.2.4 Miscellaneous Time and Date Functions 28

xii Contents

2.2.5 Creating “timeSeries” Objects 28
2.2.6 Aggregating and Disaggregating Time Series 31
2.2.7 Merging Time Series 38
2.2.8 Dealing with Missing Values Using the

S+FinMetrics Function interpNA 39
2.3 Time Series Manipulation in S-PLUS 40

2.3.1 Creating Lags and Di erences 40
2.3.2 Return Definitions 43
2.3.3 Computing Asset Returns Using the

S+FinMetrics Function getReturns 46
2.4 Visualizing Time Series in S-PLUS 48

2.4.1 Plotting “timeSeries” Using the S-PLUS
Generic plot Function 48

2.4.2 Plotting “timeSeries” Using the S+FinMetrics
Trellis Plotting Functions 52

2.5 References . 55

3 Time Series Concepts 57
3.1 Introduction . 57
3.2 Univariate Time Series . 58

3.2.1 Stationary and Ergodic Time Series 58
3.2.2 Linear Processes and ARMA Models 64
3.2.3 Autoregressive Models 66
3.2.4 Moving Average Models 71
3.2.5 ARMA(p,q) Models 74
3.2.6 Estimation of ARMA Models and Forecasting 76
3.2.7 Martingales and Martingale Di erence Sequences . . 83
3.2.8 Long-run Variance 85
3.2.9 Variance Ratios . 88

3.3 Univariate Nonstationary Time Series 93
3.4 Long Memory Time Series 97
3.5 Multivariate Time Series . 101

3.5.1 Stationary and Ergodic Multivariate Time Series . . 101
3.5.2 Multivariate Wold Representation 106
3.5.3 Long Run Variance 107

3.6 References . 109

4 Unit Root Tests 111
4.1 Introduction . 111
4.2 Testing for Nonstationarity and Stationarity 112
4.3 Autoregressive Unit Root Tests 114

4.3.1 Simulating the DF and Normalized Bias
Distributions . 116

4.3.2 Trend Cases . 118
4.3.3 Dickey-Fuller Unit Root Tests 120

Contents xiii

4.3.4 Phillips-Perron Unit Root Tests 127
4.4 Stationarity Tests . 129

4.4.1 Simulating the KPSS Distributions 130
4.4.2 Testing for Stationarity Using the S+FinMetrics

Function stationaryTest 131
4.5 Some Problems with Unit Root Tests 132
4.6 E cient Unit Root Tests 132

4.6.1 Point Optimal Tests 133
4.6.2 DF-GLS Tests . 134
4.6.3 Modified E cient PP Tests 134
4.6.4 Estimating 2 . 135
4.6.5 Choosing Lag Lengths to Achieve Good Size

and Power . 135
4.7 References . 138

5 Modeling Extreme Values 141
5.1 Introduction . 141
5.2 Modeling Maxima and Worst Cases 142

5.2.1 The Fisher-Tippet Theorem and the Generalized
Extreme Value Distribution 143

5.2.2 Estimation of the GEV Distribution 147
5.2.3 Return Level . 153

5.3 Modeling Extremes Over High Thresholds 157
5.3.1 The Limiting Distribution of Extremes Over

High Thresholds and the Generalized Pareto
Distribution . 159

5.3.2 Estimating the GPD by Maximum Likelihood 164
5.3.3 Estimating the Tails of the Loss Distribution 165
5.3.4 Risk Measures . 171

5.4 Hill’s Non-parametric Estimator of Tail Index 174
5.4.1 Hill Tail and Quantile Estimation 175

5.5 References . 178

6 Time Series Regression Modeling 181
6.1 Introduction . 181
6.2 Time Series Regression Model 182

6.2.1 Least Squares Estimation 183
6.2.2 Goodness of Fit . 183
6.2.3 Hypothesis Testing 184
6.2.4 Residual Diagnostics 185

6.3 Time Series Regression Using the S+FinMetrics
Function OLS . 185

6.4 Dynamic Regression . 201
6.4.1 Distributed Lags and Polynomial Distributed Lags . 205
6.4.2 Polynomial Distributed Lag Models 207

xiv Contents

6.5 Heteroskedasticity and Autocorrelation Consistent
Covariance Matrix Estimation 208
6.5.1 The Eicker-White Heteroskedasticity Consistent

(HC) Covariance Matrix Estimate 209
6.5.2 Testing for Heteroskedasticity 211
6.5.3 The Newey-West Heteroskedasticity and

Autocorrelation Consistent (HAC) Covariance
Matrix Estimate . 214

6.6 Recursive Least Squares Estimation 217
6.6.1 CUSUM and CUSUMSQ Tests for Parameter

Stability . 218
6.6.2 Computing Recursive Least Squares Estimates

Using the S+FinMetrics Function RLS 219
6.7 References . 221

7 Univariate GARCH Modeling 223
7.1 Introduction . 223
7.2 The Basic ARCH Model . 224

7.2.1 Testing for ARCH E ects 228
7.3 The GARCH Model and Its Properties 229

7.3.1 ARMA Representation of GARCH Model 230
7.3.2 GARCH Model and Stylized Facts 230

7.4 GARCH Modeling Using S+FinMetrics 232
7.4.1 GARCH Model Estimation 232
7.4.2 GARCH Model Diagnostics 235

7.5 GARCH Model Extensions 240
7.5.1 Asymmetric Leverage E ects and News Impact . . . 241
7.5.2 Two Components Model 247
7.5.3 GARCH-in-the-Mean Model 250
7.5.4 ARMA Terms and Exogenous Variables in

Conditional Mean Equation 252
7.5.5 Exogenous Explanatory Variables in the

Conditional Variance Equation 254
7.5.6 Non-Gaussian Error Distributions 257

7.6 GARCH Model Selection and Comparison 260
7.6.1 Constrained GARCH Estimation 261

7.7 GARCH Model Prediction 262
7.8 GARCH Model Simulation 265
7.9 Conclusion . 267
7.10 References . 267

8 Long Memory Time Series Modeling 271
8.1 Introduction . 271
8.2 Long Memory Time Series 272
8.3 Statistical Tests for Long Memory 276

Contents xv

8.3.1 R/S Statistic . 276
8.3.2 GPH Test . 278

8.4 Estimation of Long Memory Parameter 280
8.4.1 R/S Analysis . 280
8.4.2 Periodogram Method 282
8.4.3 Whittle’s Method . 283

8.5 Estimation of FARIMA and SEMIFAR Models 284
8.5.1 Fractional ARIMA Models 285
8.5.2 SEMIFAR Model . 292

8.6 Long Memory GARCH Models 296
8.6.1 FIGARCH and FIEGARCH Models 296
8.6.2 Estimation of Long Memory GARCH Models 297
8.6.3 Custom Estimation of Long Memory GARCH

Models . 301
8.7 Prediction from Long Memory Models 304

8.7.1 Prediction from FARIMA/SEMIFAR Models 304
8.7.2 Prediction from FIGARCH/FIEGARCH Models . . 308

8.8 References . 309

9 Rolling Analysis of Time Series 313
9.1 Introduction . 313
9.2 Rolling Descriptive Statistics 314

9.2.1 Univariate Statistics 314
9.2.2 Bivariate Statistics 321
9.2.3 Exponentially Weighted Moving Averages 323
9.2.4 Moving Average Methods for Irregularly Spaced

High Frequency Data 327
9.2.5 Rolling Analysis of Miscellaneous Functions 334

9.3 Technical Analysis Indicators 337
9.3.1 Price Indicators . 338
9.3.2 Momentum Indicators and Oscillators 338
9.3.3 Volatility Indicators 340
9.3.4 Volume Indicators 341

9.4 Rolling Regression . 342
9.4.1 Estimating Rolling Regressions Using the

S+FinMetrics Function rollOLS 343
9.4.2 Rolling Predictions and Backtesting 349

9.5 Rolling Analysis of General Models Using the S+FinMetrics
Function roll . 358

9.6 References . 360

10 Systems of Regression Equations 361
10.1 Introduction . 361
10.2 Systems of Regression Equations 362
10.3 Linear Seemingly Unrelated Regressions 364

xvi Contents

10.3.1 Estimation . 364
10.3.2 Analysis of SUR Models with the S+FinMetrics

Function SUR . 367
10.4 Nonlinear Seemingly Unrelated Regression Models 374

10.4.1 Analysis of Nonlinear SUR Models with the
S+FinMetrics Function NLSUR 375

10.5 References . 382

11 Vector Autoregressive Models for Multivariate
Time Series 385
11.1 Introduction . 385
11.2 The Stationary Vector Autoregression Model 386

11.2.1 Estimation . 388
11.2.2 Inference on Coe cients 390
11.2.3 Lag Length Selection 390
11.2.4 Estimating VAR Models Using the S+FinMetrics

Function VAR . 390
11.3 Forecasting . 398

11.3.1 Traditional Forecasting Algorithm 398
11.3.2 Simulation-Based Forecasting 402

11.4 Structural Analysis . 406
11.4.1 Granger Causality 407
11.4.2 Impulse Response Functions 409
11.4.3 Forecast Error Variance Decompositions 414

11.5 An Extended Example . 416
11.6 Bayesian Vector Autoregression 424

11.6.1 An Example of a Bayesian VAR Model 424
11.6.2 Conditional Forecasts 427

11.7 References . 428

12 Cointegration 431
12.1 Introduction . 431
12.2 Spurious Regression and Cointegration 432

12.2.1 Spurious Regression 432
12.2.2 Cointegration . 435
12.2.3 Cointegration and Common Trends 437
12.2.4 Simulating Cointegrated Systems 437
12.2.5 Cointegration and Error Correction Models 441

12.3 Residual-Based Tests for Cointegration 444
12.3.1 Testing for Cointegration When the Cointegrating

Vector Is Pre-specified 444
12.3.2 Testing for Cointegration When the Cointegrating

Vector Is Estimated 447
12.4 Regression-Based Estimates of Cointegrating Vectors and

Error Correction Models . 450

Contents xvii

12.4.1 Least Square Estimator 450
12.4.2 Stock and Watson’s E cient Lead/Lag Estimator . 451
12.4.3 Estimating Error Correction Models by Least

Squares . 454
12.5 VAR Models and Cointegration 455

12.5.1 The Cointegrated VAR 456
12.5.2 Johansen’s Methodology for Modeling

Cointegration . 458
12.5.3 Specification of Deterministic Terms 459
12.5.4 Likelihood Ratio Tests for the Number of

Cointegrating Vectors 461
12.5.5 Testing Hypothesis on Cointegrating Vectors

Using the S+FinMetrics Function coint 463
12.5.6 Maximum Likelihood Estimation of the

Cointegrated VECM 467
12.5.7 Maximum Likelihood Estimation of the

Cointegrated VECM Using the S+FinMetrics
Function VECM . 468

12.5.8 Forecasting from the VECM 474
12.6 Appendix: Maximum Likelihood Estimation of a

Cointegrated VECM . 476
12.7 References . 478

13 Multivariate GARCH Modeling 481
13.1 Introduction . 481
13.2 Exponentially Weighted Covariance Estimate 482
13.3 Diagonal VEC Model . 486
13.4 Multivariate GARCH Modeling in S+FinMetrics 487

13.4.1 Multivariate GARCH Model Estimation 487
13.4.2 Multivariate GARCH Model Diagnostics 490

13.5 Multivariate GARCH Model Extensions 496
13.5.1 Matrix-Diagonal Models 496
13.5.2 BEKK Models . 498
13.5.3 Univariate GARCH-based Models 499
13.5.4 ARMA Terms and Exogenous Variables 504
13.5.5 Multivariate Conditional t-Distribution 508

13.6 Multivariate GARCH Prediction 509
13.7 Custom Estimation of GARCH Models 512

13.7.1 GARCH Model Objects 512
13.7.2 Revision of GARCH Model Estimation 514

13.8 Multivariate GARCH Model Simulation 515
13.9 References . 517

14 State Space Models 519
14.1 Introduction . 519

xviii Contents

14.2 State Space Representation 520
14.2.1 Initial Conditions . 521
14.2.2 State Space Representation in

S+FinMetrics/SsfPack 521
14.2.3 Missing Values . 527
14.2.4 S+FinMetrics/SsfPack Functions for Specifying

the State Space Form for Some Common Time
Series Models . 528

14.2.5 Simulating Observations from the State
Space Model . 540

14.3 Algorithms . 543
14.3.1 Kalman Filter . 543
14.3.2 Kalman Smoother 543
14.3.3 Smoothed State and Response Estimates 544
14.3.4 Smoothed Disturbance Estimates 544
14.3.5 Forecasting . 544
14.3.6 S+FinMetrics/SsfPack Implementation of State

Space Modeling Algorithms 545
14.4 Estimation of State Space Models 552

14.4.1 Prediction Error Decomposition of
Log-Likelihood . 552

14.4.2 Fitting State Space Models Using the
S+FinMetrics/SsfPack Function SsfFit 554

14.4.3 Quasi-Maximum Likelihood Estimation 561
14.5 Simulation Smoothing . 565
14.6 References . 566

15 Factor Models for Asset Returns 569
15.1 Introduction . 569
15.2 Factor Model Specification 570
15.3 Macroeconomic Factor Models for Returns 571

15.3.1 Sharpe’s Single Index Model 572
15.3.2 The General Multifactor Model 577

15.4 Fundamental Factor Model 580
15.4.1 BARRA-type Single Factor Model 581
15.4.2 BARRA-type Industry Factor Model 582

15.5 Statistical Factor Models for Returns 590
15.5.1 Factor Analysis . 590
15.5.2 Principal Components 597
15.5.3 Asymptotic Principal Components 606
15.5.4 Determining the Number of Factors 610

15.6 References . 614

16 Term Structure of Interest Rates 617
16.1 Introduction . 617

Contents xix

16.2 Discount, Spot and Forward Rates 618
16.2.1 Definitions and Rate Conversion 618
16.2.2 Rate Conversion in S+FinMetrics 619

16.3 Quadratic and Cubic Spline Interpolation 620
16.4 Smoothing Spline Interpolation 624
16.5 Nelson-Siegel Function . 628
16.6 Conclusion . 632
16.7 References . 633

17 Robust Change Detection 635
17.1 Introduction . 635
17.2 REGARIMA Models . 636
17.3 Robust Fitting of REGARIMA Models 637
17.4 Prediction Using REGARIMA Models 642
17.5 Controlling Robust Fitting of REGARIMA Models 643

17.5.1 Adding Seasonal E ects 643
17.5.2 Controlling Outlier Detection 645
17.5.3 Iterating the Procedure 647

17.6 Algorithms of Filtered -Estimation 649
17.6.1 Classical Maximum Likelihood Estimates 650
17.6.2 Filtered -Estimates 651

17.7 References . 651

18 Nonlinear Time Series Models 653
18.1 Introduction . 653
18.2 BDS Test for Nonlinearity 654

18.2.1 BDS Test Statistic 655
18.2.2 Size of BDS Test . 655
18.2.3 BDS Test as a Nonlinearity Test and a

Misspecification Test 657
18.3 Threshold Autoregressive Models 662

18.3.1 TAR and SETAR Models 663
18.3.2 Tsay’s Approach . 664
18.3.3 Hansen’s Approach 671

18.4 Smooth Transition Autoregressive Models 678
18.4.1 Logistic and Exponential STAR Models 678
18.4.2 Test for STAR Nonlinearity 680
18.4.3 Estimation of STAR Models 683

18.5 Markov Switching State Space Models 687
18.5.1 Discrete State Markov Process 688
18.5.2 Markov Switching AR Process 690
18.5.3 Markov Switching State Space Models 691

18.6 An Extended Example: Markov Switching Coincident Index 701
18.6.1 State Space Representation of Markov Switching Co-

incident Index Model 702

xx Contents

18.6.2 Approximate MLE of Markov Switching Coincident
Index . 705

18.7 References . 709

19 Copulas 713
19.1 Introduction . 713
19.2 Motivating Example . 714
19.3 Definitions and Basic Properties of Copulas 722

19.3.1 Properties of Distributions 722
19.3.2 Copulas and Sklar’s Theorem 724
19.3.3 Dependence Measures and Copulas 726

19.4 Parametric Copula Classes and Families 729
19.4.1 Normal Copula . 729
19.4.2 Normal Mixture Copula 730
19.4.3 Extreme Value Copula Class 730
19.4.4 Archimedean Copulas 732
19.4.5 Archimax Copulas 735
19.4.6 Representation of Copulas in S+FinMetrics 735
19.4.7 Creating Arbitrary Bivariate Distributions 743
19.4.8 Simulating from Arbitrary Bivariate Distributions . 745

19.5 Fitting Copulas to Data . 747
19.5.1 Empirical Copula . 747
19.5.2 Maximum Likelihood Estimation 750
19.5.3 Fitting Copulas Using the S+FinMetrics/EVANESCE

Function fit.copula 751
19.6 Risk Management Using Copulas 754

19.6.1 Computing Portfolio Risk Measures Using Copulas . 754
19.6.2 Computing VaR and ES by Simulation 755

19.7 References . 757

20 Continuous-Time Models for Financial Time Series 759
20.1 Introduction . 759
20.2 SDEs: Background . 760
20.3 Approximating Solutions to SDEs 761
20.4 S+FinMetrics Functions for Solving SDEs 765

20.4.1 Problem-Specific Simulators 765
20.4.2 General Simulators 771

20.5 References . 782

21 Generalized Method of Moments 785
21.1 Introduction . 785
21.2 Single Equation Linear GMM 786

21.2.1 Definition of the GMM Estimator 787
21.2.2 Specification Tests in Overidentified Models 791

Contents xxi

21.2.3 Two-Stage Least Squares as an E cient GMM Esti-
mator . 792

21.3 Estimation of S . 793
21.3.1 Serially Uncorrelated Moments 794
21.3.2 Serially Correlated Moments 794
21.3.3 Estimating S Using the S+FinMetrics

Function var.hac 797
21.4 GMM Estimation Using the S+FinMetrics Function GMM . 797
21.5 Hypothesis Testing for Linear Models 808

21.5.1 Testing Restrictions on Coe cients 808
21.5.2 Testing Subsets of Orthogonality Conditions 812
21.5.3 Testing Instrument Relevance 813

21.6 Nonlinear GMM . 816
21.6.1 Asymptotic Properties 818
21.6.2 Hypothesis Tests for Nonlinear Models 819

21.7 Examples of Nonlinear Models 819
21.7.1 Student’s Distribution 819
21.7.2 MA(1) Model . 821
21.7.3 Euler Equation Asset Pricing Model 827
21.7.4 Stochastic Volatility Model 833
21.7.5 Interest Rate Di usion Model 838

21.8 References . 842

22 Seminonparametric Conditional Density Models 847
22.1 Introduction . 847
22.2 Overview of SNP Methodology 848
22.3 Estimating SNP Models in S+FinMetrics 851

22.3.1 Example Data . 853
22.3.2 Markovian Time Series and the Gaussian Vector

Autoregression Model 855
22.3.3 Hermite Expansion and the Semiparametric VAR . . 860
22.3.4 Conditional Heterogeneity 868
22.3.5 ARCH/GARCH Leading Term 874

22.4 SNP Model Selection . 880
22.4.1 Random Restarts . 881
22.4.2 The expand Function 886
22.4.3 The SNP.auto Function 889

22.5 SNP Model Diagnostics . 891
22.5.1 Residual Analysis . 892
22.5.2 Simulation . 896

22.6 Prediction from an SNP Model 897
22.7 Data Transformations . 899

22.7.1 Centering and Scaling Transformation 899
22.7.2 Transformations to Deal with Heavy Tailed Data . . 901

xxii Contents

22.7.3 Transformation to Deal with Small SNP
Density Values . 903

22.8 Examples . 904
22.8.1 SNP Models for Daily Returns on Microsoft Stock . 904
22.8.2 SNP Models for Daily Returns on the S&P 500 Index 909
22.8.3 SNP Models for Weekly 3-Month U.S. T-Bill Rates . 914

22.9 References . 920

23 E cient Method of Moments 923
23.1 Introduction . 923
23.2 An Overview of the EMM Methodology 925

23.2.1 Continuous-Time Stochastic Volatility Model for
Interest Rates . 925

23.2.2 Minimum Chi-Squared Estimators 928
23.2.3 E ciency Considerations 930
23.2.4 A General Purpose Auxiliary Model 935
23.2.5 The Projection Step 935
23.2.6 The Estimation Step 936

23.3 EMM Estimation in S+FinMetrics 938
23.3.1 Simulator Functions 940
23.3.2 SNP Auxiliary Model Estimation 943

23.4 Examples . 943
23.4.1 MA(1) Model . 944
23.4.2 Discrete-Time Stochastic Volatility Models 954
23.4.3 Interest Rate Di usion Models 966

23.5 References . 986

Index 991

1
S and S-PLUS

1.1 Introduction

S-PLUS is a commercial software package developed by Insightful Corpo-
ration, based on the S language originally developed at Bell Laboratories
(of AT&T and now Lucent Technologies) for statistical computation and
visualization. Both S and S-PLUS have evolved through many versions. In
1999 John M. Chambers, the principal developer of S language, received
the prestigious Software System Award from the Association for Comput-
ing Machinery (ACM), which has been awarded to UNIX, TEX, PostScript,
TCP/IP and World Wide Web in the past.
The discussion of S language in this book is based on S-PLUS 6, which

is supported on Microsoft Windows, Sun Solaris, and LINUX operating
systems1. In addition to S-PLUS 6 Programmer’s Guide, there are many
excellent books available introducing di erent aspects of S and S-PLUS (see
Section 1.4 for a list of them), and refer to these books if you are not familiar
with S or S-PLUS. This chapter has a rather limited goal: to introduce
the object oriented approach of S language and summarize some modeling
conventions that will be followed in this book. Section 1.2 introduces the
concept of objects in S language, and Section 1.3 summarizes the usage

1Some of the examples in the book have been updated to make use of new features
in S-PLUS 7. All of the examples in Chapters 18 through 23 make use of S+FinMetrics
2.0, which is based on S-PLUS 7.

2 1. S and S-PLUS

of modeling functions in S-PLUS and S+FinMetrics. Finally, Section 1.4
points out some useful resources for learning and using S-PLUS.

1.2 S Objects

1.2.1 Assignment

As the S language evolved over time, di erent assignment operators have
been used, such as =, <-, <<-, and (underscore). This book will use the
assignment operator = whenever possible, because it is more intuitive and
requires only one key stroke. For example, in the command window of an
S-PLUS session, use the following command to assign the value of 3 to a
variable called a:

> a = 3

> a

[1] 3

When the name of the variable is typed at the command prompt, the value
of the variable is printed on screen with an index [1]. Since is reserved
as an assignment operator, it cannot be used in the names of any object.
Avoid the use of as an assignment operator, because the code may look
confusing to someone who is not familiar with S.
Although = has been chosen as the assignment operator whenever pos-

sible, only <- can be used as the assignment operator if the assignment is
inside a function call.2 For example, suppose the user wants to assign the
value of 10 to the variable a, and use a to initialize a 5× 5 matrix. If = is
used as the assignment operator, an error message appears:

> matrix(a = 10, 5, 5)

Problem in matrix: argument a= not matched: matrix(a = 10, 5, 5)

Use traceback() to see the call stack

But if the assignment operator <- is used, the desired behavior is achieved:

> matrix(a <- 10, 5, 5)

[,1] [,2] [,3] [,4] [,5]

[1,] 10 10 10 10 10

[2,] 10 10 10 10 10

[3,] 10 10 10 10 10

[4,] 10 10 10 10 10

[5,] 10 10 10 10 10

> a

2The reason is that S-PLUS functions allow optional arguments with default values,
and = is used to set the default values in a function call.

1.2 S Objects 3

[1] 10

and 10 is successfully assigned as the value of a.

1.2.2 Class

Since the S language is object oriented, everything in S-PLUS is an object
with a class, and the class function can be used to find out the class of
an object. For example:

> class(a)

[1] "integer"

thus the variable a has class “integer”. Explicitly using the decimal point
forces an integer number to be stored in double precision:

> b = 100000.

> class(b)

[1] "numeric"

A number with double precision in S-PLUS has class “numeric”. In most
situations S-PLUS is “smart” enough to perform computations in double
precision if necessary. However, one has to be a little careful with integer
arithmetic. For example, the following operation returns an NA:

> 100000 * 100000

[1] NA

because in this case, the multiplication is performed in integer mode, and
the largest integer on a 32-bit machine is:

> 2^31 - 1

[1] 2147483647

which can be verified by querying the integer.max component of the ma-
chine constant object in S-PLUS:3

> .Machine$integer.max

[1] 2147483647

However, since the variable b created earlier is stored in double precision,
the multiplication using b would return the desired result:

> b * b

[1] 1e+10

Together with “logical” and “character”, “integer” and “numeric”
objects are known as the atomic objects, upon which the user can build
more complicated data structure, such as matrix, list, data frame, function,

3See the on-line help file for .Machine for other components in the list.

4 1. S and S-PLUS

etc. For example, use the concatenation function c to combine the variables
a and b into a vector, and use the matrix function to reshape it into a 2×1
matrix:

> abMat = matrix(c(a,b), nrow=2)

> class(abMat)

[1] "matrix"

> abMat

[,1]

[1,] 1e+01

[2,] 1e+05

As another example, although matrix is a built-in function in S-PLUS,
it is just another object in S-PLUS:

> class(matrix)

[1] "function"

> matrix

function(data = NA, nrow = 1, ncol = 1, byrow = F, dimnames)

{

if(missing(nrow))

nrow <- ceiling(length(data)/ncol)

else if(missing(ncol))

ncol <- ceiling(length(data)/nrow)

dim <- c(nrow, ncol)

if(length(dim) != 2)

stop("nrow and ncol should each be of length 1")

value <- if(byrow) t(array(data, dim[2:1])) else

array(data, dim)

if(!missing(dimnames))

value@.Dimnames <- dimnames

value

}

The preceding output shows that matrix is just a “function” object. When
the name of this object is typed, S-PLUS prints its function definition on
the screen.
Most complicated S-PLUS objects are constructed as a list. For example,

combine the variables a and b into a list as follows:

> abList = list(aComponent=a, bComponent=b)

> class(abList)

[1] "list"

> abList

$aComponent:

[1] 10

1.2 S Objects 5

$bComponent:

[1] 1e+05

where the names aComponent and bComponent are given to a and b, re-
spectively. Use the length function to find out the number of components
in a list and the names function to extract the names of those components:

> length(abList)

[1] 2

> names(abList)

[1] "aComponent" "bComponent"

A particular component of a list can be extracted using the $ operator. For
example:

> abList$aComponent

[1] 10

or the [[operator:

> abList[[2]]

[1] 1e+05

S-PLUS 6 is based on S language Version 4 (SV4). In SV4, a new class
structure is introduced to build more complicated objects, as an alterna-
tive to using lists. One example is the “timeDate” objects in S-PLUS. For
example, in the following example, use the timeDate function to parse a
vector of character strings representing some dates:

> timeStamp = timeDate(c("1/1/2001", "1/2/2001", "1/3/2001"))

> timeStamp

[1] 01/01/2001 01/02/2001 01/03/2001

> class(timeStamp)

[1] "timeDate"

The names function cannot be used with these new class objects, which
will be referred to as SV4 objects. Instead, use the slotNames function to
extract the names of their components. For example:

> slotNames(timeStamp)

[1] ".Data" ".Data.names" ".Data.classes" "format"

[5] "time.zone"

A “timeDate” object has five slots. Instead of using the $ operator as
for lists, use the @ operator to extract the component in a particular slot.
For example:

> timeStamp@.Data

[[1]]:

[1] 14976 14977 14978

6 1. S and S-PLUS

[[2]]:

[1] 0 0 0

The .Data slot of a “timeDate” object actually stores a list with two
components.4

One di erence between the list based objects and SV4 objects is that
the list based objects are more flexible and thus prone to cause accidental
programming errors if a programmer is not careful enough. In contrast, the
SV4 objects are more stringently defined and can lead to robust software
and computational e ciency. For example, the user can add or delete a
component to a list at will:

> abList$anotherComponent = "a string component"

> abList

$aComponent:

[1] 10

$bComponent:

[1] 1e+05

$anotherComponent:

[1] "a string component"

> abList$aComponent = NULL

> abList

$bComponent:

[1] 1e+05

$anotherComponent:

[1] "a string component"

However, an SV4 object is strictly defined, and a component cannot be
edited unless it is defined in its declaration:

> timeStamp@time.zone

[1] "GMT"

> timeStamp@time.zone = "Pacific"

> timeStamp@anotherSlot = "no way"

Problem in timeStamp@anotherSlot = "no way": Class "timeDate"

has no "anotherSlot" slot

Use traceback() to see the call stack

4The first component represents the Julian dates, and the second component repre-
sents the milliseconds elapsed since midnight of each day.

1.2 S Objects 7

1.2.3 Method

Many S-PLUS functions are defined as generic in the sense that the user
has the freedom of defining his or her own method for a particular class.
For example, the print and summary functions in S-PLUS are so generic
that they work with any object and may generate di erent types of results
depending on the class of the object.5 For example:

> summary(abMat)

Min. 1st Qu. Median Mean 3rd Qu. Max.

10 25008 50005 50005 75002 100000

> summary(abList)

Length Class Mode

bComponent 1 numeric

anotherComponent 1 character

For a numeric matrix object, the summary method generates some sam-
ple statistics, while for a list object, the summary method summarizes the
length and mode of each component.
In the above example, S-PLUS is “smart” enough to figure out the ap-

propriate method to use for the generic summary function. If the name of
the method function is known, the user can also call the method function
directly. For example, if the user types matrix at the command prompt,
S-PLUS will dispatch the print method for “function” objects because
matrix is a “function” object. However, it can also call the function
print.list on a “function” object to view the object using another for-
mat:

> print.list(matrix)

$data:

NA

$nrow:

[1] 1

$ncol:

[1] 1

$byrow:

F

$dimnames:

5In fact, typing the name of an object at the command prompt, S-PLUS calls the
print method of that object automatically. So any print methods rarely need to be
called explicitly, except for Trellis graphics objects.

8 1. S and S-PLUS

$"":

{

if(missing(nrow))

nrow <- ceiling(length(data)/ncol)

else if(missing(ncol))

ncol <- ceiling(length(data)/nrow)

dim <- c(nrow, ncol)

if(length(dim) != 2)

stop("nrow and ncol should each be of length 1")

value <- if(byrow) t(array(data, dim[2:1])) else

array(data, dim)

if(!missing(dimnames))

value@.Dimnames <- dimnames

value

}

1.3 Modeling Functions in S+FinMetrics

In this book, many statistical and econometric examples are illustrated
using modeling functions in S+FinMetrics. Some modeling functions in
S+FinMetrics are named using upper case acronyms as they are known
in the literature, because S is case sensitive and it distinguishes between
upper case and lower case letters.

1.3.1 Formula Specification

For many modeling functions in S+FinMetrics, S formulas are used to spec-
ify the model to be estimated. Chambers and Hastie (1993) and S-PLUS
Guide to Statistics provide detailed examples of how to specify models using
formulas in S. This section points out some restrictions in formula spec-
ification so that the user can avoid some errors in using these functions.
For illustrations, use the S-PLUS lm function as an example of modeling
function.
If a formula is used to specify models in a modeling function, usually at

least two arguments are supplied to the function: a formula object and a
data object. The args function can always be used to find out the argument
names of any function:

> args(lm)

function(formula, data, weights, subset, na.action, method =

"qr", model = F, x = F, y = F, contrasts = NULL, ...)

NULL

1.3 Modeling Functions in S+FinMetrics 9

The data object must be a “data.frame” object, or a “timeSeries”
object with a “data.frame” in its data slot. First create a data frame
using the S-PLUS data objects stack.x and stack.loss:

> stack.df = data.frame(Loss=stack.loss, stack.x)

> colIds(stack.df)

[1] "Loss" "Air.Flow" "Water.Temp" "Acid.Conc."

so the data frame stack.df has four columns with variable names as shown
above.
To regress the variable Loss on Air.Flow, and Water.Temp using least

squares, use the lm function as follows:

> test.mod = lm(Loss~Air.Flow + Water.Temp, data=stack.df)

> test.mod

Call:

lm(formula = Loss ~ Air.Flow + Water.Temp, data = stack.df)

Coefficients:

(Intercept) Air.Flow Water.Temp

-50.35884 0.6711544 1.295351

Degrees of freedom: 21 total; 18 residual

Residual standard error: 3.238615

Notice that in the first formula object, Loss is on the left hand side of ~, so
it represents the endogenous or response variable of the model; Air.Flow
and Water.Temp are on the right hand side of ~, so they represent two
independent or explanatory variables. An intercept or a constant term is
also included automatically, as can be seen from the coe cient estimates
in the output, which is generated by a call to the print method for “lm”
objects:

> class(test.mod)

[1] "lm"

> oldClass(test.mod)

[1] "lm"

Note that since an “lm” object is a list based object, the user can also
use the oldClass function to obtain its class. However, oldClass function
does not work with SV4 objects. For example:

> oldClass(timeStamp)

NULL

The data argument can also be a “timeSeries” object with a data
frame in its data slot. To illustrate this possibility, turn stack.df into a
“timeSeries” object and call it stack.ts:

10 1. S and S-PLUS

> stack.ts = timeSeries(stack.df)

> stack.ts

Positions Loss Air.Flow Water.Temp Acid.Conc.

01/01/1960 42 80 27 89

01/02/1960 37 80 27 88

01/03/1960 37 75 25 90

01/04/1960 28 62 24 87

01/05/1960 18 62 22 87

...

Again, a linear model can be estimated using this data object just like in
the previous example:

> test.mod = lm(Loss~Air.Flow + Water.Temp, data=stack.ts)

However, the data argument must have a data frame representation. The
same function call will generate an error if the data argument is represented
by a matrix:

> stack.mat = as.matrix(stack.df)

> lm(Loss~Air.Flow+Water.Temp, data=stack.mat)

Warning messages:

Numerical expression has 84 elements: only the first used in:

model.frame(formula, data, na.action, dots)

Problem: Invalid frame number, 42

Use traceback() to see the call stack

For most modeling functions such as lm, the data argument is actually
an optional argument, which is not required. If the data argument is not
supplied by the user, then the variables specified in the formula object
must be on the search path. For example:

> lm(stack.loss~stack.x)

Call:

lm(formula = stack.loss ~ stack.x)

Coefficients:

(Intercept) stack.xAir Flow stack.xWater Temp stack.xAcid Conc.

-39.91967 0.7156402 1.295286 -0.1521225

Degrees of freedom: 21 total; 17 residual

Residual standard error: 3.243364

1.3 Modeling Functions in S+FinMetrics 11

In addition, if the data argument is not supplied, the variables specified
in the formula object must be either a vector or a matrix, and they cannot
be a data frame nor a “timeSeries” object. For example:6

> stack.x.df = as.data.frame(stack.x)

> lm(stack.loss~stack.x.df)

Problem: Length of stack.x.df (variable 2) is 3 != length of

others (21)

Use traceback() to see the call stack

> stack.loss.ts = timeSeries(stack.loss)

> lm(stack.loss.ts~stack.x)

Problem: Length of stack.loss.ts (variable 1) is 11 != length

of others (21)

Use traceback() to see the call stack

In S+FinMetrics, the formula is extended to support autoregressive
specification, moving average specification, distributed lags and polyno-
mial distributed lags for many modeling functions. These formulas will be
illustrated in the appropriate chapters.

1.3.2 Method

In addition to print and summary functions, many other functions in
S-PLUS are defined to be generic to work with modeling functions and
objects, such as plot for diagnostic plots, coefficients or simply coef
for extracting model coe cients, residuals for extracting model residu-
als, fitted.values or simply fitted for extracting model fitted values,
predict for out of sample prediction, etc. For example, for the “lm” ob-
ject test.mod, if the generic functions coef, predict or plot are applied,
S-PLUS will figure out the appropriate method to use:

> coef(test.mod)

(Intercept) Air.Flow Water.Temp

-50.35884 0.6711544 1.295351

> predict(test.mod, matrix(1, 5, 3))

[1] -48.39233 -48.39233 -48.39233 -48.39233 -48.39233

> plot(test.mod, ask=T)

Make a plot selection (or 0 to exit):

6In fact, many modeling functions in S+FinMetrics actually does allow a
“timeSeries” object on the left hand side of the formula, but not the right hand side of
the formula, if the data argument is not supplied. One example is the garch function.

12 1. S and S-PLUS

1: plot: All

2: plot: Residuals vs Fitted Values

3: plot: Sqrt of abs(Residuals) vs Fitted Values

4: plot: Response vs Fitted Values

5: plot: Normal QQplot of Residuals

6: plot: r-f spread plot

7: plot: Cook’s Distances

Selection:

In addition to the above generic functions, S+FinMetrics defines three
new generic functions for working with model objects: vcov for extracting
the variance-covariance matrix of estimated parameters, simulate for gen-
erating simulations according to the estimated model, and cpredict for
obtaining conditional forecasts of multivariate time series models.

1.4 S-PLUS Resources

1.4.1 Books

In addition to the S-PLUS manuals, there are a number of good books on
using and programming in S and S-PLUS as well as data and statistical
analysis using S-PLUS. The Insightful web page

http://www.insightful.com/support/splusbooks.asp

contains a listing of these books.

Using and Programming S-PLUS

Gentle introductions to S and S-PLUS are given in Spector (1994), Lam
(2001) and Krause and Olson (2005). The details of version four of the
S language are described in Chambers (1998), also known as the “green
book”. An indispensable guide to programming in the S language is Ven-
ables and Ripley (2000).

Data and Statistical Analysis in S-PLUS

S-PLUS provides extensive functionality for the statistical analysis of a wide
variety of data, and many books have been written on the use of S-PLUS for
particular applications. The following books describe statistical techniques
that are useful for the analysis of financial data. Carmona (2004) and Chan
(2002) describe the use of S-PLUS for the analysis of financial time series.
Scherer and Martin (2005) cover portfolio optimization and related topic.
An excellent guide to modern applied statistics using S-PLUS is Venables
and Ripley (2002). Harrell (2001) gives a thorough treatment of regression

1.5 References 13

models, including generalized linear models and survival model. Heiberger
and Holland (2004) emphasize the importance of graphical techniques in
statistical analysis. Pinheiro and Bates (2000) detail the analysis of mixed
e ects (panel data) models. Therneau and Grambsch (2000) survey survival
analysis models. Wilcox (1997), and Atkinson and Riani (2000) discuss
robust statistical methods. Bruce and Gao (1996) describe wavelet analysis.
Hastie, Tibshirani and Friedman (2001) cover aspects of statistical learning
and data mining. Davison and Hinkley (1997) survey bootstrap methods,
and Bowman and Azzalini (1997) disucss nonparametric and smoothing
methods.

1.4.2 Internet

There is a wealth of information about S-PLUS available on the internet.
The obvious place to start is the Insightful website at

http://www.insightful.com

S-News is an electronic mail discussion list for S and S-PLUS users. In-
formation about S-News may be found at

http://www.biostat.wustl.edu/s-news/s-news-intro.html

StatLib is a repository for software and extensions for the S language,
including many useful additions to S-PLUS. It can be found at

http://lib.stat.cmu.edu/S

Eric Zivot maintains a website containing links to websites for S-PLUS
applications in econometrics and finance at

http://faculty.washington.edu/ezivot/splus.htm

1.5 References

Atkinson, A. and M. Riani (2000). Robust Diagnostic Regression Anal-
ysis. Springer-Verlag, New York.

Bowman, A.W., and A. Azzalini (1997). Applied Smoothing Techniques
for Data Analysis:The Kernel Approach with S-PLUS Illustrations. Oxford
University Press, Oxford.

Bruce, A. and H.-Y. Gao (1996). Applied Wavelet Analysis with S-
PLUS. Springer-Verlag, New York.

Carmona, R. (2004). Statistical Analysis of Financial Data in S-PLUS.
Springer-Verlag, New York.

14 1. S and S-PLUS

Chambers, J.M. (1998). Programming with Data. Springer-Verlag, New
York.

Chambers, J. M., and Hastie, T. J. (1993). Statistical Models in S.
Chapman & Hall.

Chan, N.H. (2002). Time Series: Applications to Finance. John Wiley &
Sons, New York.

Davidson, A.C. and D.V. Hinkley (1997). Bootstrap Methods and Their
Application. Cambridge University Press, Cambridge, UK.

Harrell, F.E. (2001). Regression Modeling Strategies with Applications to
Linear Models, Logistic Regression, and Survival Analysis. Springer-Verlag,
New York.

Hastie, T., R. Tibshirani and J. Friedman (2001). The Elements
of Statistical Learning: Data Mining, Inference and Prediction. Springer-
Verlag, New York.

Heiberger, R.M. and B. Holland (2004). Statistical Analysis and Data
Display. Springer-Verlag, New York.

Krause, A. and M. Olson (2005). The Basics of S-PLUS, Fourth Edi-
tion. Springer-Verlag, New York.

Lam, L. (2001). An Introduction to S-PLUS for Windows. Candiensten,
Amsterdam.

Pinheiro, J.C. and D.M. Bates (2000). Mixed-E ects Models in S and
S-PLUS. Springer-Verlag, New York.

Scherer, B. and R.D. Martin (2005). Modern Portfolio Optimization
with NuOPT, S-PLUS and S+Bayes. Springer-Verlag, New York.

Spector, P. (1994). An Introduction to S and S-PLUS. Duxbury Press,
Belmont, CA.

Therneau, T.M. and P.M Grambsch (2000). Modeling Survival Data.
Springer-Verlag, New York.

Venables, W.N. and B.D. Ripley (2002). Modern Applied Statistics
with S-PLUS, Fourth Edition. Springer-Verlag, New York.

Venables, W.N. and B.D. Ripley (1999). S Programming. Springer-
Verlag, New York.

Wilcox, P. (1997). Introduction to Robust Estimation and Hypothesis
Testing. Academic Press, San Diego.

2
Time Series Specification,
Manipulation, and
Visualization in S-PLUS

2.1 Introduction

Time series data may be stored, manipulated and visualized in a variety of
ways in S-PLUS1. This chapter discusses the basics of working with finan-
cial time series data in the form of S-PLUS “timeSeries” objects. It begins
with a discussion of the specification of “timeSeries” and “timeDate” ob-
jects in S-PLUS and gives examples of how to specify common “timeDate”
sequences for financial time series. Basic manipulations of financial time
series are discussed and illustrated. These manipulations include aggregat-
ing and disaggregating time series, handling of missing values, creations of
lags and di erences and asset return calculations. The chapter ends with
an overview of time series visualization tools and techniques, including the
S-PLUS plotting functions for “timeSeries” as well as specialized plotting
functions in S+FinMetrics.

2.2 The Specification of “timeSeries” Objects in
S-PLUS

Financial time series data may be represented and analyzed in S-PLUS in
a variety of ways. By far the most flexible way to analyze, manipulate

1Chapters 25-27 in the S-PLUS Guide to Statistic (Vol. II) discusses the analysis of
time series in S-PLUS.

16 2. Time Series Specification, Manipulation, and Visualization in S-PLUS

and visualize time series data is through the use of S-PLUS calendar-based
“timeSeries” objects. A calendar-based “timeSeries” object, hereafter
referred to as simply a “timeSeries” is an S version 4 (sv4) object that
stores time and date information from a “timeDate” object in a positions
slot and time series data from any rectangular data object (vector, matrix
or data frame) in a data slot. Additionally, summary information about
the time series may be stored in the title, documentation, units and
attributes slots.
To illustrate a typical “timeSeries” object, consider the S+FinMetrics

“timeSeries” object singleIndex.dat which contains monthly closing
price data on Microsoft and the S&P 500 index over the period January
1990 through January 2001:

> class(singleIndex.dat)

[1] "timeSeries"

> slotNames(singleIndex.dat)

[1] "data" "positions" "start.position"

[4] "end.position" "future.positions" "units"

[7] "title" "documentation" "attributes"

[10] "fiscal.year.start" "type"

> singleIndex.dat@title

[1] "Monthly prices on Microsoft and S&P 500 Index"

> singleIndex.dat@documentation

[1] "Monthly closing prices over the period January 1900"

[2] "through January 2001 adjusted for dividends and stock"

[3] "splits.

> singleIndex.dat@units

[1] "Monthly price"

> singleIndex.dat[1:5,]

Positions MSFT SP500

Jan 1990 1.2847 329.08

Feb 1990 1.3715 331.89

Mar 1990 1.5382 339.94

Apr 1990 1.6111 330.80

May 1990 2.0278 361.23

The date information in the positions slot may be extracted directly
or by using the positions extractor function:

> singleIndex.dat@positions[1:5]

[1] Jan 1990 Feb 1990 Mar 1990 Apr 1990 May 1990

2.2 The Specification of “timeSeries” Objects in S-PLUS 17

> positions(singleIndex.dat)[1:5]

[1] Jan 1990 Feb 1990 Mar 1990 Apr 1990 May 1990

The generic start and end functions may be used to extract the start and
end dates of a “timeSeries” object:

> start(singleIndex.dat)

[1] Jan 1990

> end(singleIndex.dat)

[1] Jan 2001

The date information in the positions slot is an object of class “timeDate”

> class(positions(singleIndex.dat))

[1] "timeDate"

Details on “timeDate” objects are given later on in this chapter.
The time series data in the data slot may be accessed directly or through

the seriesData extractor function:

> singleIndex.dat@data[1:5,]

MSFT SP500

1 1.2847 329.08

2 1.3715 331.89

3 1.5382 339.94

4 1.6111 330.80

5 2.0278 361.23

> seriesData(singleIndex.dat)[1:5,]

MSFT SP500

1 1.2847 329.08

2 1.3715 331.89

3 1.5382 339.94

4 1.6111 330.80

5 2.0278 361.23

In general, the time series data in the data slot is a “rectangular” data
object and is usually a data frame or a matrix. For example,

> class(seriesData(singleIndex.dat))

[1] "data.frame"

In fact, “timeSeries” objects themselves are “rectangular” data objects
and so the functions numRows, numCols, colIds and rowIds may be used
to extract useful information:

> is.rectangular(singleIndex.dat)

[1] T

> numRows(singleIndex.dat)

[1] 133

18 2. Time Series Specification, Manipulation, and Visualization in S-PLUS

> numCols(singleIndex.dat)

[1] 2

> colIds(singleIndex.dat)

[1] "MSFT" "SP500"

> rowIds(singleIndex.dat)[1:5]

[1] Jan 1990 Feb 1990 Mar 1990 Apr 1990 May 1990

2.2.1 Basic Manipulations

Basic manipulation of “timeSeries” objects may be done in the same
way as other S-PLUS objects. Mathematical operations may be applied to
“timeSeries” objects in the usual way and the result will be a “timeSeries”
object. Subscripting a “timeSeries” works in the same way as subscript-
ing a data frame or matrix. For example, a “timeSeries” with the prices
on Microsoft may be extracted from singleIndex.dat using

> msft.p = singleIndex.dat[,"MSFT"]

> msft.p = singleIndex.dat[,1]

> msft.p@title = "Monthly closing price on Microsoft"

> msft.p@documentation =

+ c("Monthly closing price adjusted for stock",

+ "splits and dividends.")

> msft.p@units = "US dollar price"

> class(msft.p)

[1] "timeSeries"

Subsamples from a “timeSeries” may be extracted by creating an index of
logical values that are true for the times and dates of interest. For example,
consider creating a subsample from the “timeSeries” singleIndex.dat
over the period March 1992 through January 1993.

> smpl = (positions(singleIndex.dat) >= timeDate("3/1/1992") &

+ positions(singleIndex.dat) <= timeDate("1/31/1993"))

> singleIndex.dat[smpl,]

Positions MSFT SP500

Mar 1992 4.938 403.7

Apr 1992 4.594 414.9

May 1992 5.042 415.4

Jun 1992 4.375 408.1

Jul 1992 4.547 424.2

Aug 1992 4.656 414.0

Sep 1992 5.031 417.8

Oct 1992 5.547 418.7

Nov 1992 5.820 431.4

Dec 1992 5.336 435.7

Jan 1993 5.406 438.8

2.2 The Specification of “timeSeries” Objects in S-PLUS 19

S-PLUS 7 supports subscripting a “timeSeries” object directly with dates.
For example, the subsample from singleIndex.dat over the period March
1992 through January 1993 may be produced using

> singleIndex.dat[timeEvent("3/1/1992","1/31/1993"),]

Most S-PLUS functions have methods to handle “timeSeries” objects.
Some common examples are the S-PLUS functions colMeans, colVars and
colStdevs which compute the mean, variance and standard deviation value
for each column of data:

> colMeans(singleIndex.dat)

MSFT SP500

26.74513 730.3805

For functions that do not have methods to handle “timeSeries” objects,
the extractor function seriesData should be used to extract the data slot
of the “timeSeries” prior to applying the function:

> colMeans(seriesData(singleIndex.dat))

MSFT SP500

26.74513 730.3805

All of the S+FinMetrics modeling and support functions are designed
to accept “timeSeries” objects in a uniform way.

2.2.2 S-PLUS “timeDate” Objects

Time and date information in S-PLUSmay be stored in “timeDate” objects.
The S-PLUS function timeDate is used to create “timeDate” objects. For
example, to create a “timeDate” object for the date January 1, 2002 for
the US Pacific time zone use

> td = timeDate("1/1/2002",in.format="%m/%d/%Y",

+ zone="Pacific")

The date information is specified in a character string and the optional
arguments in.format and zone determine the input date format and the
time zone, respectively. The input formats are single-element character vec-
tors consisting of input fields which start with “%” and end with a letter.
The default input date format may be viewed with

> options("time.in.format")

$time.in.format:

[1] "%m[/][.]%d[/][,]%y [%H[:%M[:%S[.%N]]][%p][[(]%3Z[)]]]"

and examples of common date formats can be found in the S-PLUS object
format.timeDate

> names(format.timeDate)

20 2. Time Series Specification, Manipulation, and Visualization in S-PLUS

[1] "1/3/1998"

[2] "3/1/1998"

...

[32] "03 Jan 1998 14:04:32 (PST)"

> format.timeDate[[1]]$input

[1] "%m/%d/%Y"

The result of timeDate is an object of class “timeDate”

> class(td)

[1] "timeDate"

> td

[1] 1/1/02 0:00:00 AM

> slotNames(td)

[1] ".Data" ".Data.names" ".Data.classes"

[4] "format" "time.zone"

“timeDate” objects have a number of slots that are used to specify and
control time and date information. Full details may be seen using

> ?class.timeDate

The .Data slot is a list with components giving the Julian date represen-
tation of the day and time within the day. The Julian day represents the
number of days since January 1, 1960 and the Julian time within the day
indicates the number of milliseconds since midnight Greenwich mean time
(GMT)

> td@.Data

[[1]]:

[1] 15341

[[2]]:

[1] 28800000

Since the US Pacific Time Zone is 8 hours behind GMT, the number of
milliseconds since Greenwich mean time is 8 60 60 1000 = 28 800 000.
The output display format of the date information is specified in the format
slot

> td@format

[1] "%m/%d/%02y %H:%02M:%02S %p"

Like input formats, output formats are single-element character vectors
consisting of output fields, which start with “%” and end with a letter,
and other characters that are simply printed. The above format specifies
printing the date as month/day/year and then hour:minute:second and
AM or PM. The integers 02 before y, M and S fix the output width to 2
characters. All supported output fields are described in the help file for

2.2 The Specification of “timeSeries” Objects in S-PLUS 21

class.timeDate and a list of example output formats are given in the
S-PLUS object format.timeDate. For example,

> names(format.timeDate)[18]

[1] "03 Jan 1998"

> format.timeDate[[18]]$output

[1] "%02d %b %Y"

Time Zone Issues

The time and date information stored in a “timeDate” object is aligned to
the time zone specified in the time.zone slot

> td@time.zone

[1] "Pacific"

To modify the output format of a “timeDate” object to display time zone
information simply add "%z"

> td@format = paste(td@format,"%z")

> td

[1] 1/1/02 0:00:00 AM Pacific

The object td is aligned to the US Pacific time zone. If the zone argument
to timeDate is omitted when the “timeDate” object is created the default
time zone in options(‘‘time.zone") is used2. For example,

> options("time.zone")

$time.zone:

[1] "Pacific"

> td2 = timeDate("Mar 02, 1963 08:00 PM",

+ in.format="%m %d, %Y %H:%M %p",

+ format="%b %02d, %Y %02I:%02M %p %z")

> td2

[1] Mar 02, 1963 08:00 PM Pacific

Note that the above example shows that the output format of the “timeDate”
object can be specified when the object is created using the argument
format.
All of the time zone specifications supported by S-PLUS are described

in the help file for class.timeZone and these specifications are defined
relative to times and dates given in GMT. The time zone specifications
include daylight savings time in various areas around the world. To see
how a time zone specification a ects a timeDate object, consider what

2On Windows platforms, the time zone specification is obtained from the Windows
regional settings. The examples in this section were created on a Windows computer in
the U.S. Pacific time zone. Therefore, the default time zone taken from the Windows
regional settings is “Pacific”.

22 2. Time Series Specification, Manipulation, and Visualization in S-PLUS

happens when the time zone for the object td is changed to US Eastern
Time:

> td@time.zone = "Eastern"

> td

[1] 1/1/02 3:00:00 AM Eastern

> td@.Data

[[1]]:

[1] 15341

[[2]]:

[1] 28800000

Since US Eastern Time is three hours ahead of US Pacific Time the dis-
played date is moved ahead three hours. That is, midnight US Pacific Time
on January 1, 2002 is the same as 3 AM US Eastern Time on January 1,
2002. Notice that changing the time zone information does not alter the
Julian date information in the .Data slot. To align the Julian date repre-
sentation to reflect the number of milliseconds from GMT on US Eastern
time the millisecond information in the second component of the .Data slot
must be adjusted directly.
If a “timeDate” object is created in GMT then the S-PLUS function

timeZoneConvert may be used to re-align the millisecond o set to a spec-
ified time zone. For example,

> tdGMT = timeDate("1/1/2002",zone="GMT",

+ format="%m/%d/%02y %H:%02M:%02S %p %z")

> tdGMT

[1] 1/1/02 0:00:00 AM GMT

> tdGMT@.Data

[[1]]:

[1] 15341

[[2]]:

[1] 0

> tdPST = timeZoneConvert(tdGMT,"PST")

> tdPST

[1] 1/1/02 0:00:00 AM PST

> tdPST@.Data

[[1]]:

[1] 15341

[[2]]:

[1] 28800000

2.2 The Specification of “timeSeries” Objects in S-PLUS 23

Be aware that timeZoneConvert is not designed to convert the millisecond
o sets from one arbitrary time zone other than GMT to another arbitrary
time zone.

Mathematical Operations with “timeDate” Objects

Since “timeDate” objects have a Julian date representation, certain math-
ematical operations like addition and subtractions of numbers may be per-
formed on them and the result will also be a “timeDate” object. For ex-
ample,

> td1 = timeDate("1/1/2002",in.format="%m/%d/%Y",

+ zone="GMT",format="%m/%d/%04Y %H:%02M:%02S %p %z")

> td2 = timeDate("2/1/2002",in.format="%m/%d/%Y",

+ zone="GMT",format="%m/%d/%04Y %H:%02M:%02S %p %z")

> td1

[1] 1/1/2002 0:00:00 AM GMT

> td2

[1] 2/1/2002 0:00:00 AM GMT

> as.numeric(td1)

[1] 15341

> td1 + 1

[1] 1/2/2002 0:00:00 AM GMT

> td1 + 0.5

[1] 1/1/2002 12:00:00 PM GMT

> td1 - 1

[1] 12/31/2001 0:00:00 AM GMT

> 2*td1

[1] 30682

> td1+td2

[1] 2/2/2044 0:00:00 AM GMT

Adding two “timeDate” objects together creates another “timeDate”
object with date given by the addition of the respective Julian dates. Sub-
traction of two “timeDate” objects, however, produces an sv4 object of
class “timeSpan”

> td.diff = td2 - td1

> class(td.diff)

[1] "timeSpan"

> td.diff

[1] 31d 0h 0m 0s 0MS

> slotNames(td.diff)

[1] ".Data" ".Data.names" ".Data.classes"

[4] "format"

24 2. Time Series Specification, Manipulation, and Visualization in S-PLUS

The “timeSpan” object td.diff gives the time di erence between td1 and
td2 - 31 days, 0 hours, 0 minutes, 0 seconds and 0 milliseconds. The Julian
date information is kept in the .Data slot and the output format is in the
format slot. Details about “timeSpan” objects is given in The S-PLUS
Guide to Statistics, Vol. II, chapter 25.

2.2.3 Creating Common “timeDate” Sequences

Most historical financial time series are regularly spaced calendar-based
time series; e.g. daily, monthly or annual time series. However, some fi-
nancial time series are irregularly spaced. Two common examples of irreg-
ularly spaced financial time series are daily closing prices and intra-day
transactions level data. There are a variety of time and date functions in
S-PLUS that may be used to create regularly spaced and irregularly spaced
“timeDate” sequences for essentially any kind of financial data. These func-
tions are illustrated using the following examples3.
Regularly and irregularly spaced sequences may be created using the

S-PLUS functions timeCalendar, timeSeq and timeSequence. The func-
tion timeSeq is the most flexible. The following examples illustrate the use
of these functions for creating common “timeDate” sequences.

Annual Sequences

Creating a “timeDate” sequence for an annual time series from 1900 to
1910 may be done in a variety of ways. Perhaps, the simplest way uses the
S-PLUS timeCalendar function:

> td = timeCalendar(y=1900:1910,format="%Y")

> class(td)

[1] "timeDate"

> td

[1] 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910

The timeCalendar function produces an object of class “timeDate”.
The argument format="%Y" specifies the output format of the “timeDate”
object as a four digit year.
Since td contains a sequence of dates, the Julian date information for all

of the dates is available in the .Data slot

> td@.Data

[[1]]:

[1] -21914 -21549 -21184 -20819 -20454 -20088 -19723 -19358

[9] -18993 -18627 -18262

3To avoid problems with time zone specifications, all examples in this sections were
created after setting the default time zone to GMT using options(time.zone="GMT").

2.2 The Specification of “timeSeries” Objects in S-PLUS 25

[[2]]:

[1] 0 0 0 0 0 0 0 0 0 0 0

An annual sequence from 1900 to 1910 may also be computed using the
S-PLUS function timeSeq:

> timeSeq(from="1/1/1900", to="1/1/1910", by="years",

+ format="%Y")

[1] 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910

The argument by="years" specifies annual spacing between successive
values in the sequence starting at 1/1/1900 and ending at 1/1/1910. The
date formats for the starting and ending dates must conform to the default
input format for “timeDate” objects (see options("time.in.format")).
Finally, an annual sequence from 1900 to 1910 may be created using the

S-PLUS function timeSequence:

> tds = timeSequence("1/1/1900","1/1/1910",by="years",

+ format="%Y")

> class(tds)

[1] "timeSequence"

> tds

from: 1900

to: 1910

by: +1yr

[1] 1900 1901 1902 ... 1910

timeSequence creates an object of class “timeSequence” which stores time
and date information in a compact fashion. The “timeSequence” object
may be converted to a “timeDate” object using the S-PLUS as function

> td = as(tds,"timeDate")

> td

[1] 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910

Quarterly Sequences

A quarterly “timeDate” sequence from 1900:I through 1902:IV may be
created using timeSeq with the by="quarters" option:

> timeSeq(from="1/1/1900", to="10/1/1902", by="quarters",

+ format="%Y:%Q")

[1] 1900:I 1900:II 1900:III 1900:IV 1901:I 1901:II

[7] 1901:III 1901:IV 1902:I 1902:II 1902:III 1902:IV

The output format character %Q displays the quarter information. Notice
that the dates are specified as the first day of the quarter.

26 2. Time Series Specification, Manipulation, and Visualization in S-PLUS

Monthly Sequences

Now consider creating a monthly “timeDate” sequence from January 1,
1900 through March 1, 1901. This may be done using timeCalendar

> timeCalendar(m=rep(1:12,length=15),y=rep(1900:1901,each=12,

+ length=15), format="%b %Y")

[1] Jan 1900 Feb 1900 Mar 1900 Apr 1900 May 1900 Jun 1900

[7] Jul 1900 Aug 1900 Sep 1900 Oct 1900 Nov 1900 Dec 1900

[13] Jan 1901 Feb 1901 Mar 1901

or timeSeq

> timeSeq(from="1/1/1900",to="3/1/1901",by="months",

+ format="%b %Y")

[1] Jan 1900 Feb 1900 Mar 1900 Apr 1900 May 1900 Jun 1900

[7] Jul 1900 Aug 1900 Sep 1900 Oct 1900 Nov 1900 Dec 1900

[13] Jan 1901 Feb 1901 Mar 1901

To create a monthly sequence of end of month values from December 31,
1899 through February 28, 1901, subtract 1 from the above calculation:

> timeSeq(from="1/1/1900",to="3/1/1901",by="months",

+ format="%b %Y") - 1

[1] Dec 1899 Jan 1900 Feb 1900 Mar 1900 Apr 1900 May 1900

[7] Jun 1900 Jul 1900 Aug 1900 Sep 1900 Oct 1900 Nov 1900

[13] Dec 1900 Jan 1901 Feb 1901

Weekly Sequences

Weekly sequences are best created using timeSeq with by="weeks". For
example, a weekly sequence from Monday January 1, 1990 to Monday Feb
26, 1990 may be created using

> timeSeq(from="1/1/1990",to="3/1/1990",by="weeks",

+ format="%a %b %d, %Y")

[1] Mon Jan 1, 1990 Mon Jan 8, 1990 Mon Jan 15, 1990

[4] Mon Jan 22, 1990 Mon Jan 29, 1990 Mon Feb 5, 1990

[7] Mon Feb 12, 1990 Mon Feb 19, 1990 Mon Feb 26, 1990

To create a weekly sequence starting on a specific day, say Wednesday,
make the starting date a Wednesday.

Daily Sequences

A regularly spaced daily sequence may be created using timeSeq with by =
"days". For an irregularly spaced daily sequence of weekdays use timeSeq
with by = "weekdays". For financial asset price data that trades on U.S.
exchanges, the relevant “daily” sequence of dates is an irregularly spaced

2.2 The Specification of “timeSeries” Objects in S-PLUS 27

sequence based on business days. Business days are weekdays excluding cer-
tain holidays. For example, consider creating a daily “timeDate” sequence
for the month of January, 2000 for a time series of asset prices that trade
on the New York stock exchange (NYSE). The NYSE is not open on week-
ends and on certain holidays and these dates should be omitted from the
“timeDate” sequence. The S-PLUS function holiday.NYSE returns the New
York Stock Exchange holidays for a given year, 1885-present, according to
the historical and current (as of 1998) schedule, not including special-event
closure days or partial-day closures. The NYSE holidays for 2000 are

> holiday.NYSE(2000)

[1] 1/17/2000 2/21/2000 4/21/2000 5/29/2000 7/4/2000

[6] 9/4/2000 11/23/2000 12/25/2000

Martin Luther King day on Monday January 17 is the only weekday
holiday. A “timeDate” sequence of business days excluding the holiday
1/17/2000 may be created using

> timeSeq(from="1/3/2000",to="1/31/2000",by="bizdays",

+ holidays=holiday.NYSE(2000),format="%a %b %d, %Y")

[1] Mon Jan 3, 2000 Tue Jan 4, 2000 Wed Jan 5, 2000

[4] Thu Jan 6, 2000 Fri Jan 7, 2000 Mon Jan 10, 2000

[7] Tue Jan 11, 2000 Wed Jan 12, 2000 Thu Jan 13, 2000

[10] Fri Jan 14, 2000 Tue Jan 18, 2000 Wed Jan 19, 2000

[13] Thu Jan 20, 2000 Fri Jan 21, 2000 Mon Jan 24, 2000

[16] Tue Jan 25, 2000 Wed Jan 26, 2000 Thu Jan 27, 2000

[19] Fri Jan 28, 2000 Mon Jan 31, 2000

The argument holidays=holiday.NYSE(2000) in conjunction with by =
"bizdays" instructs timeSeq to exclude the weekday dates associated with
the NYSE holidays for 2000. Notice that the date Mon Jan 17, 2000 has
been omitted from the sequence.

Intra-day Irregularly Spaced Sequences

Sequences of irregularly spaced intra-day dates may be created using the
function timeCalendar. For example, consider creating a sequence of hourly
observations only during the hypothetical trading hours from 9:00 AM to
3:00 PM from Monday January 3, 2000 through Tuesday January 4, 2000.
Such a sequence may be created using timeCalendar as follows

> timeCalendar(h=rep(9:15,2),d=rep(3:4,each=7),

+ y=2000,format="%a %b %d, %Y %02I:%02M %p")

[1] Mon Jan 3, 2000 09:00 AM Mon Jan 3, 2000 10:00 AM

[3] Mon Jan 3, 2000 11:00 AM Mon Jan 3, 2000 12:00 PM

[5] Mon Jan 3, 2000 01:00 PM Mon Jan 3, 2000 02:00 PM

[7] Mon Jan 3, 2000 03:00 PM Tue Jan 4, 2000 09:00 AM

[9] Tue Jan 4, 2000 10:00 AM Tue Jan 4, 2000 11:00 AM

28 2. Time Series Specification, Manipulation, and Visualization in S-PLUS

[11] Tue Jan 4, 2000 12:00 PM Tue Jan 4, 2000 01:00 PM

[13] Tue Jan 4, 2000 02:00 PM Tue Jan 4, 2000 03:00 PM

In a similar fashion, a sequence of minute observations from 9:00 AM to
3:00 PM on Monday January 3, 2000 and Tuesday January 4, 2000 may be
created using

> timeCalendar(min=rep(rep(0:59,6),2),

+ h=rep(9:14,each=60,length=360*2),

+ d=rep(3:4,each=360,length=360*2),

+ y=2000,format="%a %b %d, %Y %02I:%02M %p")

[1] Mon Jan 3, 2000 09:00 AM Mon Jan 3, 2000 09:01 AM

[3] Mon Jan 3, 2000 09:02 AM Mon Jan 3, 2000 09:03 AM

...

[359] Mon Jan 3, 2000 02:58 PM Mon Jan 3, 2000 02:59 PM

[361] Tue Jan 4, 2000 09:00 AM Tue Jan 4, 2000 09:01 AM

...

[719] Tue Jan 4, 2000 02:58 PM Tue Jan 4, 2000 02:59 PM

2.2.4 Miscellaneous Time and Date Functions

In addition to the time and date functions discussed so far, S-PLUS has a
number of miscellaneous time and date functions. In addition S+FinMetrics
provides a few time and date functions. These are summarized in Table 2.1.

2.2.5 Creating “timeSeries” Objects

S-PLUS “timeSeries” objects are created with the timeSeries function.
Typically a “timeSeries” is created from some existing data in a data
frame or matrix and a “timeDate” object. For example,

> my.df = data.frame(x=abs(rnorm(10,mean=5)),

+ y=abs(rnorm(10,mean=10)))

> my.td = timeCalendar(y=1990:1999,format="%Y")

> my.ts = timeSeries(data=my.df,pos=my.td)

> my.ts

Positions x y

1990 4.250 11.087

1991 5.290 11.590

1992 5.594 11.848

1993 5.138 10.426

1994 5.205 9.678

1995 4.804 11.120

1996 5.726 11.616

1997 6.124 9.781

1998 3.981 10.725

2.2 The Specification of “timeSeries” Objects in S-PLUS 29

S-PLUS function Description
month.day.year Converts calendar dates to Julian dates
julian Converts Julian dates to calendar dates
quarters Create an ordered factor corresponding to

quarters
months Create an ordered factor corresponding to

months
days Create an ordered factor corresponding to

days
weekdays Create an ordered factor corresponding to

weekdays
years Create an ordered factor corresponding to

years
yeardays Extract year day from date
hours Extract hour from date
minutes Extract minutes from date
seconds Extract seconds from date
hms Create data frame containing hours,

minutes and seconds
mdy Create data frame containing month, day

and year
wdydy Create data frame containing weekday,

year day and year
leap.year Determines if year number corresponds to

a leap year
holidays Generate a collection of holidays
holiday.fixed Generate holidays that occur on fixed dates
holiday.weekday.number Generate holidays that occur on weekdays
S+FinMetrics function Description
days.count Count number of days between two dates
is.weekday Tests if date is a weekday
is.weekend Tests if date is a weekend
is.bizday Tests if date is a business day
imm.dates Create International Monetary Market dates

TABLE 2.1. Miscellaneous time and date functions

30 2. Time Series Specification, Manipulation, and Visualization in S-PLUS

1999 6.006 10.341

Information about the “timeSeries” object may be added to the title,
documentation and units slots:

> my.ts@title = "My timeSeries"

> my.ts@documentation = c("Simulated annual price data using ",

+ "the S-PLUS function rnorm")

> my.ts@units = c("US dollars","US dollars")

The title and units information is utilized in certain plot functions.

Creating “timeSeries” Objects from Time Series in Data Frames

Very often time series data that are in data frames have a date variable
with a formatted date string. The S-PLUS function timeDate has a vari-
ety of input formats that may be used to convert such date strings into
“timeDate” objects. For example, the S+FinMetrics data frame yhoo.df
contains daily high, low, open and close prices as well as volume information
for Yahoo stock for the month of February 2002

> yhoo.df[1:2,]

Date Open High Low Close Volume

1 1-Feb-02 17.26 17.3 16.35 16.68 6930100

2 4-Feb-02 16.55 16.6 15.60 15.75 8913700

The variable Date is a character vector containing the date strings. A
“timeDate” sequence created from the date strings in Date is

> td = timeDate(yhoo.df[,1],in.format="%d-%m-%y",

+ format="%a %b %d, %Y")

> td[1:2]

[1] Fri Feb 1, 2002 Mon Feb 4, 2002

A “timeSeries” object containing the data from yhoo.df is created using

> yhoo.ts = timeSeries(pos=td,data=yhoo.df[,-1])

> yhoo.ts[1:2,]

Positions Open High Low Close Volume

Fri Feb 1, 2002 17.26 17.3 16.35 16.68 6930100

Mon Feb 4, 2002 16.55 16.6 15.60 15.75 8913700

High frequency data, however, is often recorded using nonstandard time
formats. For example, consider the transactions level data for the month of
December 1999 for 3M stock in the S+FinMetrics data frame highFreq3m.df

> highFreq3M.df[1:2,]

trade.day trade.time trade.price

1 1 34412 94.688

2 1 34414 94.688

2.2 The Specification of “timeSeries” Objects in S-PLUS 31

The variable trade.day contains the integer trading day of the month,
the variable trade.time contains the integer trade time recorded as the
number of seconds from midnight and the variable trade.price contains
the transaction price in dollars. A “timeDate” sequence may be easily
created from the trade day and trade time information as follows

> td = timeDate(julian=(highFreq3M.df$trade.day-1),

+ ms=highFreq3M.df$trade.time*1000,

+ in.origin=c(month=12,day=1,year=1999),zone="GMT")

> td[1:2]

[1] 12/1/99 9:33:32 AM 12/1/99 9:33:34 AM

The function timeDate can create a “timeDate” sequence using Julian date
and millisecond information. The argument julian takes an integer vector
containing the number of days since the date specified in the argument
in.origin, and the argument ms takes an integer vector containing the
number of milliseconds since midnight. In the above example, in.origin
is specified as December 1, 1999 and the optional argument zone is used
to set the time zone to GMT. A “timeSeries” object containing the high
frequency data in highFreq3M.df is created using

> hf3M.ts = timeSeries(pos=td,data=highFreq3M.df)

2.2.6 Aggregating and Disaggregating Time Series

Often a regularly spaced financial time series of a given frequency may
need to be aggregated to a coarser frequency or disaggregated to a finer
frequency. In addition, aggregation and disaggregation may involve flow or
stock variables. The S-PLUS functions aggregateSeries and alignmay be
used for such purposes. To enhance and extend the disaggregation function-
ality in S-PLUS the S+FinMetrics function disaggregate is introduced.

Aggregating Time Series

Given a monthly “timeSeries” of end of month prices over a number of
years, suppose one would like to create an annual time series consisting of
the end of month December prices. Such a series may be easily constructed
by subsetting using the S-PLUS function months:

> dec.vals = "Dec"==months(positions(singleIndex.dat))

> annual.p = singleIndex.dat[dec.vals,]

> annual.p

Positions MSFT SP500

Dec 1990 2.090 330.2

Dec 1991 4.635 417.1

Dec 1992 5.336 435.7

Dec 1993 5.039 466.4

32 2. Time Series Specification, Manipulation, and Visualization in S-PLUS

Dec 1994 7.641 459.3

Dec 1995 10.969 615.9

Dec 1996 20.656 740.7

Dec 1997 32.313 970.4

Dec 1998 69.344 1229.2

Dec 1999 116.750 1469.3

Dec 2000 43.375 1320.3

Another way to create the above annual time series is to use the S-PLUS
aggregateSeries function with a user-written function to pick o Decem-
ber values. One such function, based on the S-PLUS function hloc used to
compute high, low, open and close values, is

pickClose = function(x)

{

return closing values of a vector

if(length(dim(x))) x = as.vector(as.matrix(x))

len = length(x)

if(!len)

as(NA, class(x))

else x[len]

}

The annual data is then constructed using aggregateSeries with op-
tional arguments FUN=pickClose and by="years"

> annual.p = aggregateSeries(singleIndex.dat,

+ FUN=pickClose,by="years")

> positions(annual.p)@format = "%Y"

> annual.p

Positions MSFT SP500

1990 2.090 330.2

1991 4.635 417.1

1992 5.336 435.7

1993 5.039 466.4

1994 7.641 459.3

1995 10.969 615.9

1996 20.656 740.7

1997 32.313 970.4

1998 69.344 1229.2

1999 116.750 1469.3

2000 43.375 1320.3

2001 61.063 1366.0

The function aggregateSeries passes to the function pickClose data
from singleIndex.dat in blocks of year’s length. The function pickClose

2.2 The Specification of “timeSeries” Objects in S-PLUS 33

simply picks o the last value for the year. Since singleIndex.dat only
has data for January 2, 2001, the 2001 value for annual.p is this value.
The method described above may also be used to construct end-of-month

closing price data from a “timeSeries” of daily closing price data. For
example, the commands to create end of month closing prices from daily
closing prices for Microsoft, taken from the S+FinMetrics “timeSeries”
DowJones30, using aggregateSeries with FUN = pickClose and by =
"months" are

> msft.daily.p = DowJones30[,"MSFT"]

> msft.daily.p@title = "Daily closing price on Microsoft"

> msft.daily.p@units = "Dollar price"

> msft.monthly.p = aggregateSeries(msft.daily.p,FUN=pickClose,

+ by="months",adj=0.99)

> msft.monthly.p[1:12]

Positions MSFT

1/31/1991 2.726

2/28/1991 2.882

3/31/1991 2.948

4/30/1991 2.750

5/31/1991 3.049

6/30/1991 2.838

7/31/1991 3.063

8/31/1991 3.552

9/30/1991 3.708

10/31/1991 3.912

11/30/1991 4.052

12/31/1991 4.635

The option adj=0.99 adjusts the positions of the monthly data to the
end of the month. Notice that the end of month dates are not necessarily
the last trading days of the month.
The monthly closing price data may be extracted from the daily closing

price data by clever use of subscripting4. One way to do this is

> end.month.idx =

+ which(diff(as.numeric(months(positions(msft.daily.p)))) != 0)

> msft.monthly.p = msft.daily.p[end.month.idx]

> msft.monthly.p[1:12]

Positions MSFT

1/31/1991 2.726

2/28/1991 2.882

3/28/1991 2.948

4/30/1991 2.750

4This method was suggested by Steve McKinney.

34 2. Time Series Specification, Manipulation, and Visualization in S-PLUS

5/31/1991 3.049

6/28/1991 2.838

7/31/1991 3.063

8/30/1991 3.552

9/30/1991 3.708

10/31/1991 3.912

11/29/1991 4.052

12/31/1991 4.635

A common aggregation operation with financial price data is to construct
a volume weighted average price (vwap). This may be easily accomplished
with aggregateSeries and a user-specified function to compute the vwap.
For example, consider the daily open, high, low and close prices and volume
on Microsoft stock from October 2, 2000 through August 31, 2001 in the
S+FinMetrics “timeSeries” msft.dat.

> smpl = (positions(msft.dat) >= timeDate("10/1/2000") &

+ positions(msft.dat) <= timeDate("8/31/2001"))

> msft.dat[smpl,]

Positions Open High Low Close Volume

10/2/2000 60.50 60.81 58.25 59.13 29281200

...

8/31/2001 56.85 58.06 56.30 57.05 28950400

A function that can be used to aggregate open, high, low and close prices,
volume and compute the open and close vwap is

vol.wtd.avg.price = function(x) {

VolumeSum = as.double(sum(x[, "Volume"]))

nrowx = numRows(x)

return(data.frame(Open = x[1, "Open"],

High = max(x[, "High"]),

Low = min(x[, "Low"]),

Close = x[nrowx, "Close"],

vwap.Open = sum(x[, "Open"] * x[, "Volume"])/VolumeSum,

wap.Close = sum(x[, "Close"] * x[, "Volume"])/VolumeSum,

Volume = VolumeSum))

}

Using aggregateSeries and the function vol.wtd.avg.price one can
compute the monthly open, high, low, close prices, volume, and open and
close vwap

> msft.vwap.dat = aggregateSeries(x = msft.dat[smpl,],

+ by = "months",FUN = vol.wtd.avg.price,

+ together = T)

> positions(msft.vwap.dat)@format="%b %Y"

> msft.vwap.dat[,-7]

2.2 The Specification of “timeSeries” Objects in S-PLUS 35

Positions Open High Low Close vwap.Open vwap.Close

Oct 2000 60.50 70.13 48.44 68.88 59.10 59.48

Nov 2000 68.50 72.38 57.00 57.38 68.35 67.59

...

Aug 2001 66.80 67.54 56.30 57.05 62.99 62.59

Disaggregating Time Series

Consider the problem of creating a daily “timeSeries” of inflation adjusted
(real) prices on Microsoft stock over the period January 2, 1991 through
January 2, 2001. To do this the daily nominal prices must be divided by
a measure of the overall price level; e.g. the consumer price level (CPI).
The daily nominal stock price data is in the “timeSeries” msft.daily.p
created earlier and the CPI data is in the S+FinMetrics “timeSeries”
CPI.dat. The CPI data, however, is only available monthly.

> start(CPI.dat)

[1] Jan 1913

> end(CPI.dat)

[1] Nov 2001

and represents the average overall price level during the month but is
recorded at the end of the month. The CPI data from December 1990
through January 2001 is extracted using

> smpl = (positions(CPI.dat) >= timeDate("12/1/1990")

+ & positions(CPI.dat) <= timeDate("2/1/2001"))

> cpi = CPI.dat[smpl,]

> cpi[1:3]

Positions CPI

Dec 1990 134.3

Jan 1991 134.8

Feb 1991 134.9

To compute real daily prices on Microsoft stock, the monthly CPI data
in the “timeSeries” object cpi must be disaggregated to daily data. This
disaggregation may be done in a number of ways. For example, the CPI for
every day during the month of January, 1991 may be defined as the monthly
CPI value for December, 1990 or the monthly CPI value for January, 1991.
Alternatively, the daily values for January 1991 may be computed by lin-
early interpolating between the December, 1990 and January, 1991 values.
The S-PLUS function align may be used to do each of these disaggrega-
tions.
The align function aligns a “timeSeries” object to a given set of po-

sitions and has options for the creation of values for positions in which
the “timeSeries” does not have values. For example, the disaggregated

36 2. Time Series Specification, Manipulation, and Visualization in S-PLUS

CPI using the previous month’s value for the current month’s daily data is
constructed using

> cpi.daily.before =

+ align(cpi,positions(msft.daily.p),how="before")

> cpi.daily.before[c(1:3,21:23)]

Positions CPI

1/2/1991 134.3

1/3/1991 134.3

1/4/1991 134.3

1/30/1991 134.3

1/31/1991 134.8

2/1/1991 134.8

The new positions to align the CPI values are the daily positions of the
“timeSeries” msft.daily.p, and the argument how="before" specifies
that the previous month’s CPI data is to be used for the current month’s
daily CPI values. Similarly, the disaggregated CPI using the next month’s
value for the current month’s daily data is constructed using

> cpi.daily.after =

+ align(cpi,positions(msft.daily.p),how="after")

> cpi.daily.after[c(1:3,21:23)]

Positions CPI

1/2/1991 134.8

1/3/1991 134.8

1/4/1991 134.8

1/30/1991 134.8

1/31/1991 134.8

2/1/1991 134.9

Finally, the disaggregated daily CPI using linear interpolation between the
monthly values is constructed using

> cpi.daily.interp = align(cpi,positions(msft.daily.p),

+ how="interp")

> cpi.daily.interp[c(1:3,21:23)]

Positions CPI

1/2/1991 134.3

1/3/1991 134.3

1/4/1991 134.4

1/30/1991 134.8

1/31/1991 134.8

2/1/1991 134.8

The daily real prices on Microsoft stock using the interpolated daily CPI
values are then

> msft.daily.rp = (msft.daily.p/cpi.daily.interp)*100

2.2 The Specification of “timeSeries” Objects in S-PLUS 37

Disaggregating Time Series using the S+FinMetrics disaggregate
Function

With economic and financial time series, it is sometimes necessary to dis-
tribute a flow variable or time average a stock variable that is observed at
a low frequency to a higher frequency. For example, a variable of interest
may only be observed on an annual basis and quarterly or monthly val-
ues are desired such that their sum is equal to the annual observation or
their average is equal to the annual observation. The S+FinMetrics func-
tion disaggregate performs such disaggregations using two methods. The
first method is based on cubic spline interpolation and is appropriate if the
only information is on the series being disaggregated. The second method
utilizes a generalized least squares (gls) fitting method due to Chow and
Lin (1971) and is appropriate if information is available on one or more re-
lated series that are observed at the desired disaggregated frequency. The
arguments expected by disaggregate are

> args(disaggregate)

function(data, k, method = "spline", how = "sum", x = NULL,

+ out.positions = NULL, ...)

where data is a vector, matrix or “timeSeries” of low frequency data, k is
the number of disaggregtion periods, method determines the disaggregation
method (spline or gls), how specifies if the disaggregated values sum to the
aggregated values or are equal on average to the disaggregated values, x
respresents any related observed data at the disaggregated frequency and
out.positions represents a “timeDate” sequence for the resulting output.
To illustrate the use of disaggregate, consider the problem of disag-

gregating the annual dividend on the S&P 500 index to a monthly divi-
dend. Since the annual dividend is a flow variable, the sum of the monthly
dividends should equal the annual dividend. The annual S&P 500 div-
idend information over the period 1871 - 2000 is in the S+FinMetrics
“timeSeries” shiller.annual. The disaggregated monthly dividend val-
ues such that their sum is equal to the annual values is created using

> monthly.dates = timeSeq(from="1/1/1871",to="12/31/2000",

+ by="months",format="%b %Y")

> div.monthly =

+ disaggregate(shiller.annual[,"dividend"],12,

+ out.positions=monthly.dates)

> div.monthly[1:12]

Positions dividend

Jan 1871 0.02999

Feb 1871 0.01867

Mar 1871 0.01916

Apr 1871 0.01963

May 1871 0.02009

38 2. Time Series Specification, Manipulation, and Visualization in S-PLUS

Jun 1871 0.02054

Jul 1871 0.02097

Aug 1871 0.02140

Sep 1871 0.02181

Oct 1871 0.02220

Nov 1871 0.02259

Dec 1871 0.02296

> sum(div.monthly[1:12])

[1] 0.26

> shiller.annual[1,"dividend"]

Positions dividend

1871 0.26

For the S&P 500 index, the index price is available in the S+FinMetrics
monthly “timeSeries” shiller.dat. This information may be utilized in
the disaggregation of the annual dividend using the gls method as follows

> smpl = positions(shiller.dat) <= timeDate("12/31/2000")

> price.monthly = as.matrix(seriesData(shiller.dat[smpl,"price"]))

> div2.monthly =

+ disaggregate(shiller.annual[,"dividend"], 12,

+ method="gls", x=price.monthly, out.positions=monthly.dates)

> div2.monthly[1:12]

Positions dividend

Jan 1871 0.006177

Feb 1871 0.010632

Mar 1871 0.014610

Apr 1871 0.018104

May 1871 0.021104

Jun 1871 0.023569

Jul 1871 0.025530

Aug 1871 0.027043

Sep 1871 0.028063

Oct 1871 0.028508

Nov 1871 0.028548

Dec 1871 0.028111

> sum(div2.monthly[1:12])

[1] 0.26

> shiller.annual[1,"dividend"]

Positions dividend

1871 0.26

2.2.7 Merging Time Series

Often one would like to combine several “timeSeries” objects into a
single “timeSeries” object. The S-PLUS functions c, concat and cbind

2.2 The Specification of “timeSeries” Objects in S-PLUS 39

do not operate on “timeSeries” objects. Instead, the S-PLUS function
seriesMerge is used to combine or merge a collection of “timeSeries”.
To illustrate, consider creating a new “timeSeries” object consisting of the
S+FinMetrics “timeSeries” CPI.dat and IP.dat containing monthly ob-
servations on the U.S. consumer price index and U.S. industrial production
index, respectively:

> CPI.dat

Positions CPI

Jan 1913 9.80

Feb 1913 9.80

...

Nov 2001 177.60

> IP.dat

Positions IP

Jan 1919 7.628

Feb 1919 7.291

...

Nov 2001 137.139

Notice that the start date for CPI.dat is earlier than the start date for
IP.dat,but the end dates are the same. A new “timeSeries” containing
both CPI.dat and IP.dat with positions aligned to those for IP.dat using
seriesMerge is

> IP.CPI.dat = seriesMerge(IP.dat,CPI.dat,

+ pos=positions(IP.dat))

> IP.CPI.dat[1:2,]

Positions IP CPI

Jan 1919 7.628 16.5

Feb 1919 7.291 16.2

To create a “timeSeries” with positions given by the union of the posi-
tions for CPI.dat and IP.dat set pos="union" in the call to seriesMerge.
Since IP.dat does not have observations for the dates January 1913 through
December 1918, NA values for IP for these dates will be inserted in the new
“timeSeries”.

2.2.8 Dealing with Missing Values Using the S+FinMetrics
Function interpNA

Occasionally, time series data contain missing or incorrect data values. One
approach often used to fill-in missing values is interpolation5. The S-PLUS

5More sophisticated imputation methods for dealing with missing values are available
in the library S+MISSINGDATA which is included with S-PLUS.

40 2. Time Series Specification, Manipulation, and Visualization in S-PLUS

align function may be used for this purpose. The S+FinMetrics func-
tion interpNA performs similar missing value interpolation as align but
is easier to use and is more flexible. The arguments expected by interpNA
are

> args(interpNA)

function(x, method = "spline")

where x is a rectangular object and method sets the interpolation method.
Valid interpolation methods are “before”, “after”, “nearest”, “linear”
and (cubic) “spline”. To illustrate the use of interpNA, note that the clos-
ing price for the Dow Jones Industrial Average in the S-PLUS “timeSeries”
djia has a missing value on January 18, 1990:

> djia.close = djia[positions(djia) >= timeDate("1/1/1990"),

+ "close"]

> djia.close[10:12,]

Positions close

01/17/1990 2659.1

01/18/1990 NA

01/19/1990 2677.9

To replace the missing value with an interpolated value based on a cubic
spline use

> djia.close = interpNA(djia.close)

> djia.close[10:12,]

Positions 1

01/17/1990 2659.1

01/18/1990 2678.7

01/19/1990 2677.9

2.3 Time Series Manipulation in S-PLUS

There are several types of common manipulations and transformations that
often need to be performed before a financial time series is to be analyzed.
The most important transformations are the creation of lagged and di er-
enced variables and the creation of returns from asset prices. The following
sections describe how these operations may be performed in S-PLUS.

2.3.1 Creating Lags and Di erences

Three common operations on time series data are the creation of lags, leads,
and di erences. The S-PLUS function shift may be used to create leads
and lags, and the generic function diff may be used to create di erences.
However, these functions do not operate on “timeSeries” objects in the

2.3 Time Series Manipulation in S-PLUS 41

most convenient way. Consequently, the S+FinMetrics module contains
the functions tslag and diff.timeSeries for creating lags/leads and dif-
ferences.

Creating Lags and Leads Using the S+FinMetrics Function tslag

The S+FinMetrics function tslag creates a specified number of lag/leads
of a rectangular data object. The arguments expected by tslag are

> args(tslag)

function(x, k = 1, trim = F)

where x is any rectangular object, k specifies the number of lags to be
created (negative values create leads) and trim determines if NA values are
to be trimmed from the result. For example, consider the “timeSeries”
singleIndex.dat containing monthly prices on Microsoft and the S&P
500 index. The first five values are

> singleIndex.dat[1:5,]

Positions MSFT SP500

Jan 1990 1.285 329.1

Feb 1990 1.371 331.9

Mar 1990 1.538 339.9

Apr 1990 1.611 330.8

May 1990 2.028 361.2

The “timeSeries” of lagged values using tslag are

> tslag(singleIndex.dat[1:5,])

Positions MSFT.lag1 SP500.lag1

Jan 1990 NA NA

Feb 1990 1.285 329.1

Mar 1990 1.371 331.9

Apr 1990 1.538 339.9

May 1990 1.611 330.8

Notice that tslag creates a “timeSeries” containing the lagged prices
on Microsoft and the S&P 500 index. The variable names are adjusted to
indicate the type of lag created and since trim=F, NA values are inserted
for the first observations. To create a “timeSeries” without NA values in
the first position, use tslag with trim=T:

> tslag(singleIndex.dat[1:5,],trim=T)

Positions MSFT.lag1 SP500.lag1

Feb 1990 1.285 329.1

Mar 1990 1.371 331.9

Apr 1990 1.538 339.9

May 1990 1.611 330.8

Leads are created by setting k equal to a negative number:

42 2. Time Series Specification, Manipulation, and Visualization in S-PLUS

> tslag(singleIndex.dat[1:5,],k=-1)

Positions MSFT.lead1 SP500.lead1

Jan 1990 1.371 331.9

Feb 1990 1.538 339.9

Mar 1990 1.611 330.8

Apr 1990 2.028 361.2

May 1990 NA NA

To create a “timeSeries” with multiple lagged values, simply specify
the lags to create in the call to tslag. For example, specifying k=c(1,3)
creates the first and third lag

> tslag(singleIndex.dat[1:5,],k=c(1,3))

Positions MSFT.lag1 SP500.lag1 MSFT.lag3 SP500.lag3

Jan 1990 NA NA NA NA

Feb 1990 1.285 329.1 NA NA

Mar 1990 1.371 331.9 NA NA

Apr 1990 1.538 339.9 1.285 329.1

May 1990 1.611 330.8 1.371 331.9

Similarly, specifying k=-1:1 creates

> tslag(singleIndex.dat[1:5,],k=-1:1)

Positions MSFT.lead1 SP500.lead1 MSFT.lag0 SP500.lag0

Jan 1990 1.371 331.9 1.285 329.1

Feb 1990 1.538 339.9 1.371 331.9

Mar 1990 1.611 330.8 1.538 339.9

Apr 1990 2.028 361.2 1.611 330.8

May 1990 NA NA 2.028 361.2

MSFT.lag1 SP500.lag1

NA NA

1.285 329.1

1.371 331.9

1.538 339.9

1.611 330.8

Creating Di erences Using the S+FinMetrics Function diff.timeSeries

The S+FinMetrics function diff.timeSeries is a method function for
the generic S-PLUS function diff for objects of class “timeSeries” and
creates a specified number of di erences of a “timeSeries” object. The
arguments expected by diff.timeSeries are

> args(diff.timeSeries)

function(x, lag = 1, differences = 1, trim = T, pad = NA)

where x represents a “timeSeries” object, lag specifies the number of
lagged periods used in the di erence, differences specifies the number

2.3 Time Series Manipulation in S-PLUS 43

of times to di erence the series, trim determines if the resulting series is
to have NA values removed and trimmed and pad specifies the value to
be padded to the series in the positions where the di erencing operation
exceeds the start or the end positions. For example, consider again the
“timeSeries” singleIndex.dat containing monthly prices on Microsoft
and the S&P 500 index. Let denote the price at time To create the
first di erence = 1 use diff with lag=1:

> diff(singleIndex.dat[1:5,],lag=1,trim=F)

Positions MSFT SP500

Jan 1990 NA NA

Feb 1990 0.0868 2.81

Mar 1990 0.1667 8.05

Apr 1990 0.0729 -9.14

May 1990 0.4167 30.43

To create the di erence 2 and pad the result with zeros instead of
NAs use diff with lag=2 and pad=0:

> diff(singleIndex.dat[1:5,],lag=2,trim=F,pad=0)

Positions MSFT SP500

Jan 1990 0.0000 0.00

Feb 1990 0.0000 0.00

Mar 1990 0.2535 10.86

Apr 1990 0.2396 -1.09

May 1990 0.4896 21.29

To create the 2 di erence 2 = (1) = 2 1+ 2 use
diff with lag=1 and diff=2:

> diff(singleIndex.dat[1:5,],lag=1,diff=2,trim=F)

Positions MSFT SP500

Jan 1990 NA NA

Feb 1990 NA NA

Mar 1990 0.0799 5.24

Apr 1990 -0.0938 -17.19

May 1990 0.3438 39.57

Unlike tslag, diff.timeSeries does not rename the variables to indi-
cate the di erencing operation performed. Additionally, diff.timeSeries
will not accept a vector of values for the arguments lag and differences.

2.3.2 Return Definitions

Simple Returns

Let denote the price at time of an asset that pays no dividends and
let 1 denote the price at time 1. Then the simple net return on an

44 2. Time Series Specification, Manipulation, and Visualization in S-PLUS

investment in the asset between times 1 and is defined as

=
1

1
= % (2.1)

Writing 1

1
=

1
1, we can define the simple gross return as

1 + =
1

(2.2)

Unless otherwise stated, references to returns mean net returns.
The simple two-period return on an investment in an asset between times
2 and is defined as

(2) =
2

2
=

2
1

=
1
· 1

2
1

= (1 +)(1 + 1) 1

Then the simple two-period gross return becomes

1 + (2) = (1 +)(1 + 1) = 1 + 1 + + 1

which is a geometric (multiplicative) sum of the two simple one-period gross
returns and not the simple sum of the one period returns. If, however, 1

and are small then 1 0 and 1 + (2) 1 + 1 + so that
(2) 1 +
In general, the -period gross return is defined as the geometric average

of one period gross returns

1 + () = (1 +)(1 + 1) · · · (1 + +1) (2.3)

=
1Y

=0

(1 +)

and the -period net return is

() =
1Y

=0

(1 +) 1 (2.4)

Continuously Compounded Returns

Let denote the simple one period return on an investment. The contin-
uously compounded one period return, is defined as

= ln(1 +) = ln

µ
1

¶
(2.5)

2.3 Time Series Manipulation in S-PLUS 45

where ln(·) is the natural log function. To see why is called the con-
tinuously compounded return, take exponentials of both sides of (2.5) to
give

= 1 + =
1

Rearranging gives
= 1

so that is the continuously compounded growth rate in prices between
periods 1 and . This is to be contrasted with which is the simple
growth rate in prices between periods 1 and without any compounding.

Since ln
³ ´

= ln() ln() it follows that

= ln

µ
1

¶
= ln() ln(1)

= 1

where = ln(). Hence, the continuously compounded one period return,
can be computed simply by taking the first di erence of the natural

logarithms of prices between periods 1 and
Given a one period continuously compounded return it is straightfor-

ward to solve back for the corresponding simple net return :

= 1

Hence, nothing is lost by considering continuously compounded returns
instead of simple returns.
The computation of multi-period continuously compounded returns is

considerably easier than the computation of multi-period simple returns. To
illustrate, consider the two period continuously compounded return defined
as

(2) = ln(1 + (2)) = ln

µ
2

¶
= 2

Taking exponentials of both sides shows that

= 2
(2)

so that (2) is the continuously compounded growth rate of prices between

periods 2 and Using
2
=

1
· 1

2
and the fact that ln(·) =

ln() + ln() it follows that

(2) = ln

µ
1
· 1

2

¶
= ln

µ
1

¶
+ ln

µ
1

2

¶
= + 1

46 2. Time Series Specification, Manipulation, and Visualization in S-PLUS

Hence the continuously compounded two period return is just the sum of
the two continuously compounded one period returns.
The continuously compounded -period return is defined as

() = ln(1 + ()) = ln

µ ¶
= (2.6)

Using similar manipulations to the ones used for the continuously com-
pounded two period return the continuously compounded -period return
may be expressed as the sum of continuously compounded one period
returns:

() =
1X

=0

(2.7)

The additivitity of continuously compounded returns to form multiperiod
returns is an important property for statistical modeling purposes.

2.3.3 Computing Asset Returns Using the S+FinMetrics
Function getReturns

Given a data set with asset prices the S+FinMetrics function getReturns
may be used to compute discrete and continuously compounded returns.
The arguments to getReturns are

> args(getReturns)

function(x, type = "continuous", percentage = F, trim = T)

where x is any rectangular data object and type specifies the type of re-
turns to compute (discrete or continuously compounded). To illustrate, the
S+FinMetrics “timeSeries” singleIndex.dat contains monthly closing
prices on Microsoft stock and the S&P 500 index, adjusted for stock splits
and dividends, over the period January 1990 through January 2001.

> colIds(singleIndex.dat)

[1] "MSFT" "SP500"

> singleIndex.dat[1:3,]

Positions MSFT SP500

Jan 1990 1.2847 329.08

Feb 1990 1.3715 331.89

Mar 1990 1.5382 339.94

A “timeSeries” of simple one-period discrete returns expressed as per-
centages is computed as

> ret.d = getReturns(singleIndex.dat,type="discrete",

+ percentage=T)

> ret.d[1:3,]

Positions MSFT SP500

2.3 Time Series Manipulation in S-PLUS 47

Feb 1990 6.756 0.8539

Mar 1990 12.155 2.4255

Apr 1990 4.739 -2.6887

By default the first observation in the “timeSeries” is trimmed. To retain
the first (NA) observation use the optional argument trim=F

> ret.d = getReturns(singleIndex.dat,type="discrete",trim=F)

> ret.d[1:3,]

Positions MSFT SP500

Jan 1990 NA NA

Feb 1990 0.067564 0.008539

Mar 1990 0.121546 0.024255

Continuously compounded returns are created by specifying the optional
argument type="continuous"

> ret.cc = getReturns(singleIndex.dat,type="continuous")

> ret.cc[1:3,]

Positions MSFT SP500

Feb 1990 0.065380 0.0085027

Mar 1990 0.114708 0.0239655

Apr 1990 0.046304 -0.0272552

Multiperiod returns may be computed from a “timeSeries” of one pe-
riod returns using the S-PLUS function aggregateSeries. Multiperiod re-
turns may be either overlapping or non-overlapping. For example, consider
computing a monthly “timeSeries” of overlapping annual continuously
compounded returns from the monthly continuously compounded returns
in the “timeSeries” ret.cc using aggregateSeries:

> ret12.cc = aggregateSeries(ret.cc,moving=12,FUN=sum)

> ret12.cc[1:3,]

Positions MSFT SP500

Feb 1990 0.75220 0.044137

Mar 1990 0.74254 0.100749

Apr 1990 0.65048 0.098743

> colSums(seriesData(ret.cc[1:12,]))

MSFT SP500

0.7522 0.044137

The argument moving=12 and FUN=sum tells aggregateSeries to compute
a moving sum of twelve returns. Hence, the annual return reported for
Feb 1990 is the sum of the twelve monthly returns from February 1990
through January 1991. Non-overlapping annual returns are computed from
the monthly returns using aggregateSeries with the option by="years"

> ret12.cc = aggregateSeries(ret.cc,by="years",FUN=sum)

> ret12.cc[1:3,]

48 2. Time Series Specification, Manipulation, and Visualization in S-PLUS

Positions MSFT SP500

Jan 1990 0.48678 0.0034582

Jan 1991 0.79641 0.2335429

Jan 1992 0.14074 0.0436749

> colSums(seriesData(ret.cc[1:11,]))

MSFT SP500

0.48678 0.0034582

The “timeSeries” ret12.cc is now an annual series of non-overlapping
annual returns. Notice that the annual return for January 1990 is computed
using only the eleven returns from February 1990 through December 1990.
Multiperiod discrete returns (2.4) may be computed using the function

aggregateSeries with FUN=prod. For example, a monthly “timeSeries”
of overlapping annual discrete returns is computed as

> ret12.d = aggregateSeries((1+ret.d),moving=12,FUN=prod)-1

> ret12.d[1:3,]

Positions MSFT SP500

Feb 1990 1.12166 0.045126

Mar 1990 1.10128 0.105999

Apr 1990 0.91646 0.103783

> prod(seriesData(1+ret.d[1:12,1]))-1

[1] 1.1217

Notice that 1 is added to the return data and 1 is subtracted from the result
in order to compute (2.4) properly. Non-overlapping multiperiod discrete
returns may be computed using

> ret12.d = aggregateSeries((1+ret.d),by="years",FUN=prod)-1

> ret12.d[1:3,]

Positions MSFT SP500

Jan 1990 NA NA

Jan 1991 1.2176 0.26307

Jan 1992 0.1511 0.04464

2.4 Visualizing Time Series in S-PLUS

Time series data in “timeSeries” objects may be visualized by using the
S-PLUS generic plot function, the S-PLUS trellisPlot function, or by
using the S+FinMetrics plotting functions based on Trellis graphics.

2.4.1 Plotting “timeSeries” Using the S-PLUS Generic
plot Function

The S-PLUS generic plot function has a method function, plot.timeSeries,
for plotting “timeSeries” objects. To illustrate, consider the monthly clos-

2.4 Visualizing Time Series in S-PLUS 49

Monthly closing price on Microsoft
U

S
do

lla
r p

ric
e

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

20
40

60
80

10
0

FIGURE 2.1. Monthly closing prices on Microsoft stock created using
plot.timeSeries.

ing prices of Microsoft stock over the period January 1990 to January 2001
in the “timeSeries” object msft.p created earlier:

> msft.p@title

[1] "Monthly closing price on Microsoft"

> msft.p@units

[1] "US dollar price"

Figure 2.1 shows the output produced by the generic plot function

> plot(msft.p)

Notice how the information in the title and units slots is utilized
in the plot. To eliminate the horizontal and vertical grid lines specify
reference.grid=F in the call to plot. To show the price data on a loga-
rithmic scale specify log.axes="y" in the call to plot.
Multiple series (on the same scale) may also be plotted together on the

same plot using plot6. For example, the prices for Microsoft and the S&P
500 index in the “timeSeries” singleIndex.dat may be plotted together
using

6To create a scatterplot of two “timeSeries” use the extractor function seriesData
possibly in conjunction with the coersion function as.matrix on the “timeSeries” ob-
jects in the call to plot. Alternatively, the S+FinMetrics function rvfPlot may be used.

50 2. Time Series Specification, Manipulation, and Visualization in S-PLUS

Monthly prices on Microsoft and S&P 500 Index
Pr

ic
e

pe
r s

ha
re

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

20
0

40
0

60
0

80
0

10
00

12
00

14
00

MSFT
SP500

FIGURE 2.2. Monthly closing prices on Microsoft and the S&P 500 index created
using plot.timeSeries.

> plot(singleIndex.dat,plot.args=list(lty=c(1,3)))

> legend(0.1,1400,legend=colIds(singleIndex.dat),lty=c(1,3))

The plot is illustrated in Figure 2.2. Notice how the line types are specified
as a list argument to the optional argument plot.args. In the placement
of the legend, the x-axis units are treated as values in the unit interval.
Multipanel plots may be created by specifying the plot layout using the

S-PLUS function par. Figure 2.3 shows a two panel plot of the price data
in singleIndex.dat produced using

> par(mfrow=c(2,1))

> plot(singleIndex.dat[,"MSFT"],

+ main="Monthly price on Microsoft")

> plot(singleIndex.dat[,"SP500"],

+ main="Monthly price on S&P 500 index")

Two specialized plot types for financial data can be made with the func-
tion plot.timeSeries. The first is a high/low/open/close (hloc) plot and
the second is a stackbar plot. These plots are made by setting plot.type =
"hloc" or plot.type = "stackbar" in the call to plot.timeSeries. For
a hloc plot, the “timeSeries” to be plotted must have hloc information or
such information must be created using aggregateSeries with the S-PLUS
function hloc. Stackbar plots are generally used for plotting asset volume

2.4 Visualizing Time Series in S-PLUS 51

Monthly price on Microsoft
U

S
do

lla
r p

ric
e

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

20
40

60
80

10
0

Monthly price on S&P 500 index

U
S

do
lla

r p
ric

e

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

40
0

80
0

12
00

FIGURE 2.3. Two panel plot created using par(mfrow=c(2,1)) in conjunction
with plot.timeSeries.

information. To illustrate these plot types, consider the monthly data from
the Dow Jones Industrial Averages in the S-PLUS “timeSeries” djia:

> colIds(djia)

[1] "open" "high" "low" "close" "volume"

Figure 2.4 gives a multipanel plot showing high, low, open, close and
volume information created by

> smpl = (positions(djia) >= timeDate("9/1/1987") &

+ positions(djia) <= timeDate("11/30/1987"))

> par(mfrow=c(2,1))

> plot(djia[smpl,1:4],plot.type="hloc")

> plot(djia[smpl,5],plot.type="stackbar")

Lines may be added to an existing time series plot using the S-PLUS
function lines.render and stackbar information may be added using the
S-PLUS function stackbar.render. See chapter 26 in the S-PLUS Guide
to Statistics Vol. II for details on using these functions.

52 2. Time Series Specification, Manipulation, and Visualization in S-PLUS

Dow Jones Industrial Average

Sep 7 Sep 14 Sep 21 Sep 28 Oct 5 Oct 12 Oct 19 Oct 26 Nov 2 Nov 9 Nov 16 Nov 23 Nov 30
1987

18
00

20
00

22
00

24
00

26
00

Dow Jones Industrial Average

Sep 7 Sep 14 Sep 21 Sep 28 Oct 5 Oct 12 Oct 19 Oct 26 Nov 2 Nov 9 Nov 16 Nov 23 Nov 30
1987

10
00

00
30

00
00

50
00

00

FIGURE 2.4. Monthly high, low, open, close and volume information for the
Dow Jones Industrial Average using plot.timeSeries with type="hloc" and
type="stackbar".

Function Description
seriesPlot Trellis time series plot
histPlot Trellis histogram plot
qqPlot Trellis qq-plot for various distributions

TABLE 2.2. S+FinMetrics Trellis plotting functions

2.4.2 Plotting “timeSeries” Using the S+FinMetrics
Trellis Plotting Functions

S+FinMetrics provides several specialized Trellis-based plotting functions
for “timeSeries” objects. These functions extend the S-PLUS function
TrellisPlot.timeSeries and are summarized in Table 2.2.
All of the functions in the table can create multi-panel plots with text

labels in the panel strips. For the following examples, monthly return data
on six stocks from the S+FinMetrics “timeSeries” DowJones30 will be
used. This data is created using

> DJ.ret = getReturns(DowJones30[,1:6], percentage=T)

> colIds(DJ.ret)

[1] "AA" "AXP" "T" "BA" "CAT" "C"

2.4 Visualizing Time Series in S-PLUS 53

-1
0

0
10

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

AA

-1
0

0
10

AXP

-2
0

0

T

0

BA

-1
0

0
10

CAT

0

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

C

Monthly returns on six Dow Jones 30 stocks

FIGURE 2.5. Multi-panel time plot created using the S+FinMetrics function
seriesPlot.

The function seriesPlot may be used to create single panel or multi-
panel time plots. To create the multi-panel time plot of the six Dow Jones
30 assets shown in Figure 2.5 use

> seriesPlot(DJ.ret,one.plot=F,strip.text=colIds(DJ.ret),

+ main="Monthly returns on six Dow Jones 30 stocks")

Notice that each time plot has a di erent scale.
The function histPlot may be used to create either a single panel his-

togram of one data series or a multi-panel plot of histograms for multiple
series. The multi-panel plot in Figure 2.6 is created using

> histPlot(DJ.ret,strip.text=colIds(DJ.ret),

+ main="Histograms of returns on six Dow Jones 30 stocks")

Notice that each histogram uses the same bins.
Single panel or multi-panel Trellis-based qq-plots using Gaussian, Student-

t, and double exponential distributions may be created using the function
qqPlot. To illustrate, consider computing qq-plots for the six Dow Jones
30 assets using six Student-t reference distributions with degrees of free-
dom equal to 5, 6, 7, 8, 9 and 10. These qq-plots, shown in Figure 2.7, are
created using

> s.text = paste(colIds(DJ.ret),5:10,sep=" ","df")

54 2. Time Series Specification, Manipulation, and Visualization in S-PLUS

0

20

40

60

-30 -20 -10 0 10

AA AXP

-30 -20 -10 0 10

BA

C

-30 -20 -10 0 10

CAT

0

20

40

60

T

x

Pe
rc

en
t o

f T
ot

al

Histograms of returns on six Dow Jones 30 stocks

FIGURE 2.6. Multi-panel histogram plot created using the S+FinMetrics func-
tion histPlot.

-30

-20

-10

0

10

-5 0 5

AA 5 df AXP 6 df

-5 0 5

BA 8 df

C 10 df

-5 0 5

CAT 9 df

-30

-20

-10

0

10

T 7 df

Student-t QQ-plots for returns on six Dow Jones 30 stocks

FIGURE 2.7. Multi-panel qq-plots created using the S+FinMetrics function
qqPlot.

2.5 References 55

> qqPlot(DJ.ret,strip.text=s.text,

+ distribution="t",dof=c(5,6,7,8,9,10), id.n=FALSE,

+ main="Student-t QQ-plots for returns on six Dow Jones 30 stocks")

Notice how the degress of freedom for each Student-t distribution along
with the asset name is indicated in the strip text. The optional argument
id.n=FALSE suppresses the identification of outliers on the qq-plots.

2.5 References

Chow, G., and Lin, A. (1971). “Best Linear Unbiased Interpolation,
Distribution, and Extrapolation of Time Series by Related Series,” Review
of Economics & Statistics, 53, 372-375.

3
Time Series Concepts

3.1 Introduction

This chapter provides background material on time series concepts that
are used throughout the book. These concepts are presented in an informal
way, and extensive examples using S-PLUS are used to build intuition. Sec-
tion 3.2 discusses time series concepts for stationary and ergodic univariate
time series. Topics include testing for white noise, linear and autoregressive
moving average (ARMA) process, estimation and forecasting from ARMA
models, and long-run variance estimation. Section 3.3 introduces univariate
nonstationary time series and defines the important concepts of (0) and
(1) time series. Section 3.4 explains univariate long memory time series.
Section 3.5 covers concepts for stationary and ergodic multivariate time
series, introduces the class of vector autoregression models, and discusses
long-run variance estimation.
Rigorous treatments of the time series concepts presented in this chap-

ter can be found in Fuller (1996) and Hamilton (1994). Applications of
these concepts to financial time series are provided by Campbell, Lo, and
MacKinlay (1997), Mills (1999), Gourieroux and Jasiak (2001), Tsay (2001),
Alexander (2001), and Chan (2002).

58 3. Time Series Concepts

3.2 Univariate Time Series

3.2.1 Stationary and Ergodic Time Series

Let { } = { 1 +1 } denote a sequence of random variables
indexed by some time subscript . Call such a sequence of random variables
a time series.
The time series { } is covariance stationary if

[] = for all

cov() = [()()] = for all and any

For brevity, call a covariance stationary time series simply a stationary
time series. Stationary time series have time invariant first and second
moments. The parameter is called the order or lag j autocovariance
of { } and a plot of against is called the autocovariance function. The
autocorrelations of { } are defined by

=
cov()p
var()var()

=
0

and a plot of against is called the autocorrelation function (ACF).
Intuitively, a stationary time series is defined by its mean, variance and
ACF. A useful result is that any function of a stationary time series is also
a stationary time series. So if { } is stationary then { } = { ()} is
stationary for any function (·).
The lag sample autocovariance and lag sample autocorrelation are

defined as

ˆ =
1 X

= +1

(¯)(¯) (3.1)

ˆ =
ˆ

ˆ0
(3.2)

where ¯ = 1
P

=1 is the sample mean. The sample ACF (SACF) is a
plot of ˆ against .
A stationary time series { } is ergodic if sample moments converge in

probability to population moments; i.e. if ¯ ˆ and ˆ .

Example 1 Gaussian white noise (GWN) processes

Perhaps the most simple stationary time series is the independent Gaus-
sian white noise process iid (0 2) (0 2). This process
has = = = 0 (6= 0). To simulate a (0 1) process in S-PLUS
use the rnorm function:

3.2 Univariate Time Series 59

y

0 20 40 60 80 100

-2
-1

0
1

2

Lag

AC
F

0 2 4 6 8 10

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : y

FIGURE 3.1. Simulated Gaussian white noise process and SACF.

> set.seed(101)

> y = rnorm(100,sd=1)

To compute the sample moments ¯, ˆ , ˆ (= 1 10) and plot the
data and SACF use

> y.bar = mean(y)

> g.hat = acf(y,lag.max=10,type="covariance",plot=F)

> r.hat = acf(y,lag.max=10,type="correlation",plot=F)

> par(mfrow=c(1,2))

> tsplot(y,ylab="y")

> acf.plot(r.hat)

By default, as shown in Figure 3.1, the SACF is shown with 95% con-
fidence limits about zero. These limits are based on the result (c.f. Fuller
(1996) pg. 336) that if { } iid (0 2) then

ˆ

µ
0
1
¶

0

The notation ˆ
¡
0 1

¢
means that the distribution of ˆ is approxi-

mated by normal distribution with mean 0 and variance 1 and is based on

the central limit theorem result ˆ (0 1). The 95% limits about

zero are then ±1 96 .

60 3. Time Series Concepts

Quantiles of Standard Normal

y

-2 -1 0 1 2

-2
-1

0
1

2

FIGURE 3.2. Normal qq-plot for simulated GWN.

Two slightly more general processes are the independent white noise
(IWN) process, (0 2), and the white noise (WN) process,

(0 2). Both processes have mean zero and variance 2, but
the IWN process has independent increments, whereas the WN process
has uncorrelated increments.

Testing for Normality

In the previous example, (0 1). There are several statistical
methods that can be used to see if an iid process is Gaussian. The most
common is the normal quantile-quantile plot or qq-plot, a scatterplot of the
standardized empirical quantiles of against the quantiles of a standard
normal random variable. If is normally distributed, then the quantiles
will lie on a 45 degree line. A normal qq-plot with 45 degree line for may
be computed using the S-PLUS functions qqnorm and qqline

> qqnorm(y)

> qqline(y)

Figure 3.2 shows the qq-plot for the simulated GWN data of the previous
example. The quantiles lie roughly on a straight line. The S+FinMetrics
function qqPlot may be used to create a Trellis graphics qq-plot.
The qq-plot is an informal graphical diagnostic. Two popular formal

statistical tests for normality are the Shapiro-Wilks test and the Jarque-

3.2 Univariate Time Series 61

Bera test. The Shapiro-Wilk’s test is a well-known goodness of fit test for
the normal distribution. It is attractive because it has a simple, graphical
interpretation: one can think of it as an approximate measure of the cor-
relation in a normal quantile-quantile plot of the data. The Jarque-Bera
test is based on the result that a normally distributed random variable has
skewness equal to zero and kurtosis equal to three. The Jarque-Bera test
statistic is

JB =
6

Ã
[skew

2
+
(dkurt 3)2

4

!
(3.3)

where [skew denotes the sample skewness and dkurt denotes the sample kur-
tosis. Under the null hypothesis that the data is normally distributed

JB 2(2)

Example 2 Testing for normality using the S+FinMetrics function
normalTest

The Shapiro-Wilks and Jarque-Bera statistics may be computed using
the S+FinMetrics function normalTest. For the simulated GWN data of
the previous example, these statistics are

> normalTest(y, method="sw")

Test for Normality: Shapiro-Wilks

Null Hypothesis: data is normally distributed

Test Statistics:

Test Stat 0.9703

p.value 0.1449

Dist. under Null: normal

Total Observ.: 100

> normalTest(y, method="jb")

Test for Normality: Jarque-Bera

Null Hypothesis: data is normally distributed

Test Statistics:

Test Stat 1.8763

p.value 0.3914

62 3. Time Series Concepts

Dist. under Null: chi-square with 2 degrees of freedom

Total Observ.: 100

The null of normality is not rejected using either test.

Testing for White Noise

Consider testing the null hypothesis

0 : (0 2)

against the alternative that is not white noise. Under the null, all of the
autocorrelations for 0 are zero. To test this null, Box and Pierce
(1970) suggested the Q-statistic

Q() =
X
=1

ˆ2 (3.4)

where ˆ is given by (3.2). Under the null, Q() is asymptotically dis-
tributed 2(). In a finite sample, the Q-statistic (3.4) may not be well
approximated by the 2(). Ljung and Box (1978) suggested the modified
Q-statistic

MQ() = (+ 2)
X
=1

ˆ2
(3.5)

which is better approximated by the 2() in finite samples.

Example 3 Daily returns on Microsoft

Consider the time series behavior of daily continuously compounded re-
turns on Microsoft for 2000. The following S-PLUS commands create the
data and produce some diagnostic plots:

> r.msft = getReturns(DowJones30[,"MSFT"],type="continuous")

> r.msft@title = "Daily returns on Microsoft"

> sample.2000 = (positions(r.msft) > timeDate("12/31/1999")

+ & positions(r.msft) < timeDate("1/1/2001"))

> par(mfrow=c(2,2))

> plot(r.msft[sample.2000],ylab="r.msft")

> r.acf = acf(r.msft[sample.2000])

> hist(seriesData(r.msft))

> qqnorm(seriesData(r.msft))

The daily returns on Microsoft resemble a white noise process. The qq-
plot, however, suggests that the tails of the return distribution are fatter
than the normal distribution. Notice that since the hist and qqnorm func-
tions do not have methods for “timeSeries” objects the extractor func-
tion seriesData is required to extract the data frame from the data slot
of r.msft.

3.2 Univariate Time Series 63

Daily returns on Microsoft
r.m

sf
t

Feb Apr Jun Aug Oct Dec
2000 2001

-0
.1

5
0.

05
0.

15

Lag

AC
F

0 5 10 15 20

-0
.2

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : r.msft[sample.2000]

-0.1 0.0 0.1

0
20

0
40

0
60

0
80

0

seriesData(r.msft) Quantiles of Standard Normal

se
rie

sD
at

a(
r.m

sf
t)

-2 0 2

-0
.1

0.
0

0.
1

FIGURE 3.3. Daily returns on Microsoft with diagnostic plots.

The S+FinMetrics functions histPlot and qqPlot will produce a his-
togram and qq-plot for a “timeSeries” object using Trellis graphics. For
example,

> histPlot(r.msft,strip.text="MSFT monthly return")

> qqPlot(r.msft,strip.text="MSFT monthly return")

However, Trellis plots cannot be displayed in a multipanel plot created
using par.
The S+FinMetrics function autocorTest may be used to compute the

Q-statistic and modified Q-statistic to test the null that the returns on
Microsoft follow a white noise process:

> autocorTest(r.msft, lag.n=10, method="lb")

Test for Autocorrelation: Ljung-Box

Null Hypothesis: no autocorrelation

Test Statistics:

Test Stat 11.7746

p.value 0.3004

Dist. under Null: chi-square with 10 degrees of freedom

64 3. Time Series Concepts

Total Observ.: 2527

The argument lag.n=10 specifies that = 10 autocorrelations are used
in computing the statistic, and method="lb" specifies that the modified
Box-Pierce statistic (3.5) be computed. To compute the simple Box-Pierce
statistic, specify method="bp". The results indicate that the white noise
null cannot be rejected.

3.2.2 Linear Processes and ARMA Models

Wold’s decomposition theorem (c.f. Fuller (1996) pg. 96) states that any
covariance stationary time series { } has a linear process or infinite order
moving average representation of the form

= +
X
=0

(3.6)

0 = 1
X
=0

2

(0 2)

In the Wold form, it can be shown that

[] =

0 = var() = 2
X
=0

2

= cov() = 2
X
=0

+

=

P
=0 +P

=0
2

Hence, the pattern of autocorrelations in any stationary and ergodic time
series { } is determined by the moving average weights { } in its Wold
representation. To ensure convergence of the linear process representation
to a stationary and ergodic process with nice properties, it is necessary
to further restrict the behavior of the moving average weights { }. A
standard assumption used in the econometrics literature (c.f. Hamilton
(1994) pg. 504) is 1-summabilityX

=0

| | = 1+ 2| 2|+ 3| 3|+ · · ·

The moving average weights in the Wold form are also called impulse
responses since

+
= = 1 2

3.2 Univariate Time Series 65

For a stationary and ergodic time series lim = 0 and the long-run
cumulative impulse response

P
=0 . A plot of against is called

the impulse response function (IRF).
The general Wold form of a stationary and ergodic time series is handy

for theoretical analysis but is not practically useful for estimation purposes.
A very rich and practically useful class of stationary and ergodic processes is
the autoregressive-moving average (ARMA) class of models made popular
by Box and Jenkins (1976). ARMA() models take the form of a
order stochastic di erence equation

= 1(1) + · · ·+ () (3.7)

+ + 1 1 + · · ·+
(0 2)

ARMA() models may be thought of as parsimonious approximations
to the general Wold form of a stationary and ergodic time series. More
information on the properties of ARMA() process and the procedures
for estimating and forecasting these processes using S-PLUS are in the S-
PLUS Guide to Statistics Vol. II, chapter 27, Venables and Ripley (2002)
chapter 13, and Meeker (2001)1.

Lag Operator Notation

The presentation of time series models is simplified using lag operator no-
tation. The lag operator is defined such that for any time series { },

= 1. The lag operator has the following properties:
2 = · =

2,
0 = 1 and 1 = +1. The operator = 1 creates the first

di erence of a time series: = (1) = 1. The ARMA()
model (3.7) may be compactly expressed using lag polynomials. Define
() = 1 1 · · · and () = 1 + 1 + · · ·+ . Then (3.7)
may be expressed as

()() = ()

Similarly, the Wold representation in lag operator notation is

= + ()

() =
X
=0

0 = 1

and the long-run cumulative impulse response is (1) (i.e. evaluate ()
at = 1). With ARMA() models the Wold polynomial () is approx-

1William Meeker also has a library of time series functions for the analysis of
ARMA models available for download at
http://www.public.iastate.edu/~stat451/splusts/splusts.html.

66 3. Time Series Concepts

imated by the ratio of the AR and MA polynomials

() =
()

()

3.2.3 Autoregressive Models

AR(1) Model

A commonly used stationary and ergodic time series in financial modeling
is the AR(1) process

= (1) + = 1

where (0 2) and | | 1. The above representation is called the
mean-adjusted form. The characteristic equation for the AR(1) is

() = 1 = 0 (3.8)

so that the root is = 1 . Stationarity is satisfied provided the absolute

value of the root of the characteristic equation (3.8) is greater than one:

| 1 | 1 or | | 1. In this case, it is easy to show that [] = , 0 =
2

1 2 ,

= = and the Wold representation is

= +
X
=0

Notice that for the AR(1) the ACF and IRF are identical. This is not true
in general. The long-run cumulative impulse response is (1) = 1

1 .

The AR(1) model may be re-written in components form as

= +

= 1 +

or in autoregression form as

= + 1 +

= (1)

An AR(1) with = 1, = 0 75, 2 = 1 and = 100 is easily simulated
in S-PLUS using the components form:

> set.seed(101)

> e = rnorm(100,sd=1)

> e.start = rnorm(25,sd=1)

> y.ar1 = 1 + arima.sim(model=list(ar=0.75), n=100,

3.2 Univariate Time Series 67

Simulated AR(1)

0 20 40 60 80 100

-2
0

2
4

ACF and IRF for AR(1)

lag

Au
to

co
rr

el
at

io
n

1 2 3 4 5 6 7 8 9 10

0.
2

0.
4

0.
6

Lag

AC
F

0 2 4 6 8 10

-0
.2

0.
2

0.
6

1.
0

 Series : y.ar1

FIGURE 3.4. Simulated AR(1), ACF, IRF and SACF.

+ innov=e, start.innov=e.start)

> mean(y.ar1)

[1] 1.271

> var(y.ar1)

[1] 2.201

The ACF and IRF may be computed as

> gamma.j = rep(0.75,10)^seq(10)

The simulated data, ACF and SACF are illustrated in Figure 3.4 using

> par(mfrow=c(2,2))

> tsplot(y.ar1,main="Simulated AR(1)")

> abline(h=1)

> tsplot(gamma.j, type="h", main="ACF and IRF for AR(1)",

+ ylab="Autocorrelation", xlab="lag")

> tmp = acf(y.ar1, lag.max=10)

Notice that { } exhibits mean-reverting behavior. That is, { } fluctuates
about the mean value = 1. The ACF and IRF decay at a geometric rate.
The decay rate of the IRF is sometimes reported as a half-life — the lag
half at which the IRF reaches 12 For the AR(1) with positive , it can be
shown that half = ln(0 5) ln(). For = 0 75, the half-life is

> log(0.5)/log(0.75)

68 3. Time Series Concepts

US/CA 30 day interest rate differential

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

-0
.5

-0
.1

0.
4

Lag

AC
F

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : uscn.id

FIGURE 3.5. US/CA 30 day interest rate di erential and SACF.

[1] 2.409

Many economic and financial time series are well characterized by an
AR(1) process. Leading examples in finance are valuation ratios (dividend-
price ratio, price-earning ratio etc), real exchange rates, interest rates,
and interest rate di erentials (spreads). To illustrate, consider the 30-
day US/CA interest rate di erential2 constructed from the S+FinMetrics
“timeSeries” object lexrates.dat:

> uscn.id = 100*(lexrates.dat[,"USCNF"]-

+ lexrates.dat[,"USCNS"])

> colIds(uscn.id) = "USCNID"

> uscn.id@title = "US/CA 30 day interest rate differential"

> par(mfrow=c(2,1))

> plot(uscn.id,reference.grid=F)

> abline(h=0)

> tmp = acf(uscn.id)

The interest rate di erential is clearly persistent: autocorrelations are
significant at the 5% level up to 15 months.

2By covered interest rate parity, the nominal interest rate di erential between risk
free bonds from two countries is equal to the di erence between the nominal forward
and spot exchange rates.

3.2 Univariate Time Series 69

AR() Models

The AR() model in mean-adjusted form is

= 1(1) + · · ·+ () +

or, in lag operator notation,

()() =

where () = 1 1 · · · . The autoregressive form is

() = +

It can be shown that the AR() is stationary and ergodic provided the
roots of the characteristic equation

() = 1 1 2
2 · · · = 0 (3.9)

lie outside the complex unit circle (have modulus greater than one). A
necessary condition for stationarity that is useful in practice is that | 1 +
· · · + | 1. If (3.9) has complex roots then will exhibit sinusoidal
behavior. In the stationary AR(), the constant in the autoregressive form
is equal to (1 1 · · ·).
The moments of the AR() process satisfy the Yule-Walker equations

0 = 1 1 + 2 2 + · · ·+ + 2 (3.10)

= 1 1 + 2 2 + · · ·+

A simple recursive algorithm for finding the Wold representation is based
on matching coe cients in () and () such that () () = 1. For
example, in the AR(2) model

(1 1 2
2)(1 + 1 + 2

2 + · · ·) = 1

implies

1 = 1

2 = 1 1 + 2

3 = 1 2 + 2 1

...

= 1 1 + 2 2

Partial Autocorrelation Function

The partial autocorrelation function (PACF) is a useful tool to help iden-
tify AR() models. The PACF is based on estimating the sequence of AR

70 3. Time Series Concepts

Lag

AC
F

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : irate.real
Monthly Real Interest Rate

1965 1970 1975 1980 1985 1990 1995 2000

-0
.0

04
0.

00
0

0.
00

4

Lag

Pa
rti

al
 A

C
F

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

 Series : irate.real

FIGURE 3.6. Monthly U.S. real interest rate, SACF and SPACF.

models

= 11 1 + 1

= 21 1 + 22 2 + 2

...

= 1 1 + 2 2 + · · ·+ +

where = is the demeaned data. The coe cients for = 1
(i.e., the last coe cients in each AR() model) are called the partial auto-
correlation coe cients. In an AR(1) model the first partial autocorrelation
coe cient 11 is non-zero, and the remaining partial autocorrelation coef-
ficients for 1 are equal to zero. Similarly, in an AR(2), the first
and second partial autocorrelation coe cients 11 and 22 are non-zero
and the rest are zero for 2. For an AR() all of the first partial
autocorrelation coe cients are non-zero, and the rest are zero for .
The sample partial autocorrelation coe cients up to lag are essentially
obtained by estimating the above sequence of AR models by least squares
and retaining the estimated coe cients ˆ .

Example 4 Monthly real interest rates

3.2 Univariate Time Series 71

The “timeSeries” object varex.ts in the S+FinMetrics module con-
tains monthly data on real stock returns, real interest rates, inflation and
real output growth.

> colIds(varex.ts)

[1] "MARKET.REAL" "RF.REAL" "INF" "IPG"

Figure 3.6 shows the real interest rate, RF.REAL, over the period January
1961 through December 2000 produced with the S-PLUS commands

> smpl = (positions(varex.ts) > timeDate("12/31/1960"))

> irate.real = varex.ts[smpl,"RF.REAL"]

> par(mfrow=c(2,2))

> acf.plot(acf(irate.real, plot=F))

> plot(irate.real, main="Monthly Real Interest Rate")

> tmp = acf(irate.real, type="partial")

The SACF and SPACF indicate that the real interest rate might be modeled
as an AR(2) or AR(3) process.

3.2.4 Moving Average Models

MA(1) Model

The MA(1) model has the form

= + + 1 (0 2)

For any finite the MA(1) is stationary and ergodic. The moments are
[] = , 0 =

2(1+ 2), 1 =
2 , = 0 for 1 and 1 = (1+ 2).

Hence, the ACF of an MA(1) process cuts o at lag one, and the maximum
value of this correlation is ±0 5.
There is an identification problem with the MA(1) model since = 1

produce the same value of 1. The MA(1) is called invertible if | | 1 and
is called non-invertible if | | 1. In the invertible MA(1), the error term
has an infinite order AR representation of the form

=
X
=0

()

where = so that may be thought of as a prediction error based on
past values of . A consequence of the above result is that the PACF for
an invertible MA(1) process decays towards zero at an exponential rate.

Example 5 Signal plus noise model

72 3. Time Series Concepts

Signal plus noise
y

0 20 40 60 80 100

-3
-2

-1
0

1
2

1st difference

dy

0 20 40 60 80 100

-2
0

2

Lag

AC
F

0 5 10 15

-0
.5

0.
0

0.
5

1.
0

 Series : dy

Lag

Pa
rti

al
 A

C
F

0 5 10 15

-0
.4

-0
.2

0.
0

0.
2

 Series : dy

FIGURE 3.7. Simulated data, SACF and SPACF from signal plus noise model.

MA(1) models often arise through data transformations like aggregation
and di erencing3. For example, consider the signal plus noise model

= + (0 2)

= 1 + (0 2)

where and are independent. For example, could represent the funda-
mental value of an asset price and could represent an iid deviation about
the fundamental price. A stationary representation requires di erencing :

= + 1

It can be shown, e.g. Harvey (1993), that is an MA(1) process with =
(+2)+ 2+4

2 where =
2

2 is the signal-to-noise ratio and 1 =
1
+2 0.

Simulated data with 2 = 1 and 2 = (0 5)2 created with the S-PLUS
commands

> set.seed(112)

> eps = rnorm(100,sd=1)

> eta = rnorm(100,sd=0.5)

3MA(1) type models for asset returns often occur as the result of no-trading e ects
or bid-ask bounce e ects. See Campbell, Lo and MacKinlay (1997) chapter 3 for details.

3.2 Univariate Time Series 73

> z = cumsum(eta)

> y = z + eps

> dy = diff(y)

> par(mfrow=c(2,2))

> tsplot(y, main="Signal plus noise",ylab="y")

> tsplot(dy, main="1st difference",ylab="dy")

> tmp = acf(dy)

> tmp = acf(dy,type="partial")

are illustrated in Figure 3.7. The signal-to-noise ratio = 0 25 implies a
first lag autocorrelation of 1 = 0 444. This negative correlation is clearly
reflected in the SACF.

MA(q) Model

The MA() model has the form

= + + 1 1 + · · ·+ where (0 2)

The MA(q) model is stationary and ergodic provided 1 are finite.
It is invertible if all of the roots of the MA characteristic polynomial

() = 1 + 1 + · · · = 0 (3.11)

lie outside the complex unit circle. The moments of the MA() are

[] =

0 = 2(1 + 2
1 + · · ·+ 2)

=

½
(+ +1 1 + +2 2 + · · ·+) 2 for = 1 2

0 for

Hence, the ACF of an MA() is non-zero up to lag and is zero afterwards.
As with the MA(1), the PACF for an invertible MA() will show exponen-
tial decay and possibly pseudo cyclical behavior if the roots of (3.11) are
complex.

Example 6 Overlapping returns and MA(q) models

MA() models often arise in finance through data aggregation trans-
formations. For example, let = ln(1) denote the monthly con-
tinuously compounded return on an asset with price . Define the an-
nual return at time using monthly returns as (12) = ln(12) =P11

=0 . Suppose (2) and consider a sample of monthly
returns of size , { 1 2 }. A sample of annual returns may be cre-
ated using overlapping or non-overlapping returns. Let { 12(12) 13(12)

(12)} denote a sample of = 11 monthly overlapping annual
returns and { 12(12) 24(12) (12)} denote a sample of 12 non-
overlapping annual returns. Researchers often use overlapping returns in

74 3. Time Series Concepts

analysis due to the apparent larger sample size. One must be careful using
overlapping returns because the monthly annual return sequence { (12)}
is not a white noise process even if the monthly return sequence { } is.
To see this, straightforward calculations give

[(12)] = 12

0 = var((12)) = 12 2

= cov((12) (12)) = (12) 2 for 12

= 0 for 12

Since = 0 for 12 notice that { (12)} behaves like an MA(11)
process

(12) = 12 + + 1 1 + · · ·+ 11 11

(0 2)

To illustrate, consider creating annual overlapping continuously com-
pounded returns on the S&P 500 index over the period February 1990
through January 2001. The S+FinMetrics “timeSeries” singleIndex.dat
contains the S&P 500 price data and the continuously compounded monthly
returns are computed using the S+FinMetrics function getReturns

> sp500.mret = getReturns(singleIndex.dat[,"SP500"],

+ type="continuous")

> sp500.mret@title = "Monthly returns on S&P 500 Index"

The monthly overlapping annual returns are easily computed using the
S-PLUS function aggregateSeries

> sp500.aret = aggregateSeries(sp500.mret,moving=12,FUN=sum)

> sp500.aret@title = "Monthly Annual returns on S&P 500 Index"

The optional argument moving=12 specifies that the sum function is to
be applied to moving blocks of size 12. The data together with the SACF
and SPACF of the monthly annual returns are displayed in Figure 3.8.
The SACF has non-zero values up to lag 11. Interestingly, the SPACF is

very small at all lags except the first.

3.2.5 ARMA(p,q) Models

The general ARMA() model in mean-adjusted form is given by (3.7).
The regression formulation is

= + 1 1 + · · ·+ + + 1 + · · ·+ (3.12)

It is stationary and ergodic if the roots of the characteristic equation () =
0 lie outside the complex unit circle, and it is invertible if the roots of the

3.2 Univariate Time Series 75

Monthly returns on S&P 500 Index

1990 1992 1994 1996 1998 2000

-0
.1

5
-0

.0
5

0.
05

Monthly Annual returns on S&P 500 Index

1990 1992 1994 1996 1998 2000

-0
.1

0
0.

10
0.

30

Lag

AC
F

0 5 10 15 20

-0
.2

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : sp500.aret

Lag

Pa
rti

al
 A

C
F

0 5 10 15 20

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

 Series : sp500.aret

FIGURE 3.8. Monthly non-overlapping and overlapping annual returns on the
S&P 500 index.

MA characteristic polynomial () = 0 lie outside the unit circle. It is
assumed that the polynomials () = 0 and () = 0 do not have canceling
or common factors. A stationary and ergodic ARMA() process has a
mean equal to

=
1 1 · · · (3.13)

and its autocovariances, autocorrelations and impulse response weights sat-
isfy the recursive relationships

= 1 1 + 2 2 + · · ·+
= 1 1 + 2 2 + · · ·+
= 1 1 + 2 2 + · · ·+

The general form of the ACF for an ARMA() process is complicated.
See Hamilton (1994) chapter five for details. In general, for an ARMA()
process, the ACF behaves like the ACF for an AR() process for , and
the PACF behaves like the PACF for an MA() process for . Hence,
both the ACF and PACF eventually show exponential decay.
ARMA() models often arise from certain aggregation transforma-

tions of simple time series models. An important result due to Granger
and Morris (1976) is that if 1 is an ARMA(1 1) process and 2 is
an ARMA(2 2) process, which may be contemporaneously correlated

76 3. Time Series Concepts

with 1 , then 1 + 2 is an ARMA() process with = 1 + 2 and
= max(1 + 2 1 + 2). For example, if 1 is an AR(1) process and 2

is a AR(1) process, then 1 + 2 is an ARMA(2,1) process.
High order ARMA() processes are di cult to identify and estimate

in practice and are rarely used in the analysis of financial data. Low order
ARMA() models with and less than three are generally su cient for
the analysis of financial data.

ARIMA() Models

The specification of the ARMA() model (3.7) assumes that is station-
ary and ergodic. If is a trending variable like an asset price or a macroeco-
nomic aggregate like real GDP, then must be transformed to stationary
form by eliminating the trend. Box and Jenkins (1976) advocate removal of
trends by di erencing. Let = 1 denote the di erence operator. If there
is a linear trend in then the first di erence = 1 will not have
a trend. If there is a quadratic trend in , then will contain a linear
trend but the second di erence 2 = (1 2 + 2) = 2 1+ 2

will not have a trend. The class of ARMA() models where the trends
have been transformed by di erencing times is denoted ARIMA()4.

3.2.6 Estimation of ARMA Models and Forecasting

ARMA() models are generally estimated using the technique of maxi-
mum likelihood, which is usually accomplished by putting the ARMA()
in state-space form from which the prediction error decomposition of the
log-likelihood function may be constructed. Details of this process are given
in Harvey (1993). An often ignored aspect of the maximum likelihood es-
timation of ARMA() models is the treatment of initial values. These
initial values are the first values of and values of in (3.7). The ex-
act likelihood utilizes the stationary distribution of the initial values in the
construction of the likelihood. The conditional likelihood treats the initial
values of as fixed and often sets the initial values of to zero. The exact
maximum likelihood estimates (MLEs) maximize the exact log-likelihood,
and the conditional MLEs maximize the conditional log-likelihood. The
exact and conditional MLEs are asymptotically equivalent but can di er
substantially in small samples, especially for models that are close to being
nonstationary or noninvertible.5

4More general ARIMA() models allowing for seasonality are discussed in chapter
27 of the S-PLUS Guide to Statistics, Vol. II.

5As pointed out by Venables and Ripley (1999) page 415, the maximum likelihood
estimates computed using the S-PLUS function arima.mle are conditional MLEs. Exact
MLEs may be easily computed using the S+FinMetrics state space modeling functions.

3.2 Univariate Time Series 77

For pure AR models, the conditional MLEs are equivalent to the least
squares estimates from the model

= + 1 1 + · · ·+ + (3.14)

Notice, however, that in (3.14) is not an estimate of [] = . The least
squares estimate of is given by plugging in the least squares estimates of

1 into (3.13).

Model Selection Criteria

Before an ARMA() may be estimated for a time series , the AR and
MA orders and must be determined by visually inspecting the SACF
and SPACF for . Alternatively, statistical model selection criteria may
be used. The idea is to fit all ARMA() models with orders max and

max and choose the values of and which minimizes some model
selection criteria. Model selection criteria for ARMA() models have the
form

MSC() = ln(˜2()) + · ()

where ˜2() is the MLE of var() = 2 without a degrees of freedom cor-
rection from the ARMA() model, is a sequence indexed by the sample
size , and () is a penalty function which penalizes large ARMA()
models. The two most common information criteria are the Akaike (AIC)
and Schwarz-Bayesian (BIC):

AIC() = ln(˜2()) +
2
(+)

BIC() = ln(˜2()) +
ln

(+)

The AIC criterion asymptotically overestimates the order with positive
probability, whereas the BIC estimate the order consistently under fairly
general conditions if the true orders and are less than or equal to max

and max. However, in finite samples the BIC generally shares no particular
advantage over the AIC.

Forecasting Algorithm

Forecasts from an ARIMA() model are straightforward. The model
is put in state space form, and optimal -step ahead forecasts along with
forecast standard errors (not adjusted for parameter uncertainty) are pro-
duced using the Kalman filter algorithm. Details of the method are given
in Harvey (1993).

78 3. Time Series Concepts

Estimation and Forecasting ARIMA() Models Using the S-PLUS
Function arima.mle

Conditional MLEs may be computed using the S-PLUS function arima.mle.
The form of the ARIMA() assumed by arima.mle is

= 1 1 + · · ·+
+ 1 1 · · ·
+ 0x

where x represents additional explanatory variables. It is assumed that
has been di erenced times to remove any trends and that the uncon-

ditional mean has been subtracted out so that is demeaned. Notice
that arima.mle assumes that the signs on the MA coe cients are the
opposite to those in (3.7).
The arguments expected by arima.mle are

> args(arima.mle)

function(x, model = NULL, n.cond = 0, xreg = NULL, ...)

where x is a univariate “timeSeries” or vector, model is a list ob-
ject describing the specification of the ARMA model, n.cond sets the
number of initial observations on which to condition in the formation of
the log-likelihood, and xreg is a “timeSeries”, vector or matrix of ad-
ditional explanatory variables. By default, arima.mle assumes that the
ARIMA() model is stationary and in mean-adjusted form with an es-
timate of subtracted from the observed data . To estimate the regression
form (3.12) of the ARIMA() model, simply set xreg=1. ARIMA()
models are specified using list variables the form

> mod.list = list(order=c(1,0,1))

> mod.list = list(order=c(1,0,1),ar=0.75,ma=0)

> mod.list = list(ar=c(0.75,-0.25),ma=c(0,0))

The first list simply specifies an ARMA(1,0,1)/ARMA(1,1) model. The
second list specifies an ARIMA(1,0,1) as well as starting values for the
AR and MA parameters and . The third list implicitly determines an
ARMA(2,2) model by giving the starting values for the AR and MA pa-
rameters. The function arima.mle produces an object of class “arima” for
which there are print and plot methods. Diagnostics from the fit can
be created with the S-PLUS function arima.diag, and forecasts may be
produced using arima.forecast.

Example 7 Estimation of ARMA model for US/CA interest rate di er-
ential

Consider estimating an ARMA() for the monthly US/CA interest
rate di erential data in the “timeSeries” uscn.id used in a previous

3.2 Univariate Time Series 79

example. To estimate an ARMA(1,1) model for the demeaned interest rate
di erential with starting values = 0 75 and = 0 use

> uscn.id.dm = uscn.id - mean(uscn.id)

> arma11.mod = list(ar=0.75,ma=0)

> arma11.fit = arima.mle(uscn.id.dm,model=arma11.mod)

> class(arma11.fit)

[1] "arima"

The components of arma11.fit are

> names(arma11.fit)

[1] "model" "var.coef" "method" "series"

[5] "aic" "loglik" "sigma2" "n.used"

[9] "n.cond" "converged" "conv.type" "call"

To see the basic fit simply type

> arma11.fit

Call: arima.mle(x = uscn.id.dm, model = arma11.mod)

Method: Maximum Likelihood

Model : 1 0 1

Coefficients:

AR : 0.82913

MA : 0.11008

Variance-Covariance Matrix:

ar(1) ma(1)

ar(1) 0.002046 0.002224

ma(1) 0.002224 0.006467

Optimizer has converged

Convergence Type: relative function convergence

AIC: -476.25563

The conditional MLEs are ˆ = 0 829 and ˆ = 0 110. Standard
errors for these parameters are given by the square roots of the diagonal
elements of variance-covariance matrix

> std.errs = sqrt(diag(arma11.fit$var.coef))

> names(std.errs) = colIds(arma11.fit$var.coef)

> std.errs

ar(1) ma(1)

0.04523 0.08041

It appears that the ˆ is not statistically di erent from zero.
To estimate the ARMA(1,1) for the interest rate di erential data in

regression form (3.12) with an intercept use

80 3. Time Series Concepts

> arma11.fit2 = arima.mle(uscn.id,model=arma11.mod,xreg=1)

> arma11.fit2

Call: arima.mle(x = uscn.id, model = arma11.mod, xreg = 1)

Method: Maximum Likelihood

Model : 1 0 1

Coefficients:

AR : 0.82934

MA : 0.11065

Variance-Covariance Matrix:

ar(1) ma(1)

ar(1) 0.002043 0.002222

ma(1) 0.002222 0.006465

Coeffficients for regressor(s): intercept

[1] -0.1347

Optimizer has converged

Convergence Type: relative function convergence

AIC: -474.30852

The conditional MLEs for and are essentially the same as before, and
the MLE for is ˆ = 0 1347. Notice that the reported variance-
covariance matrix only gives values for the estimated ARMA coe cients
ˆ and ˆ .
Graphical diagnostics of the fit produced using the plot method

> plot(arma11.fit)

are illustrated in Figure 3.9. There appears to be some high order serial
correlation in the errors as well as heteroskedasticity.
The -step ahead forecasts of future values may be produced with the

S-PLUS function arima.forecast. For example, to produce monthly fore-
casts for the demeaned interest rate di erential from July 1996 through
June 1997 use

> fcst.dates = timeSeq("7/1/1996", "6/1/1997",

+ by="months", format="%b %Y")

> uscn.id.dm.fcst = arima.forecast(uscn.id.dm, n=12,

+ model=arma11.fit$model, future.positions=fcst.dates)

> names(uscn.id.dm.fcst)

[1] "mean" "std.err"

The object uscn.id.dm.fcst is a list whose first component is a
“timeSeries” containing the -step forecasts, and the second component
is a “timeSeries” containing the forecast standard errors:

> uscn.id.dm.fcst[[1]]

3.2 Univariate Time Series 81

Plot of Standardized Residuals

1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996

-5
-1

3

ACF Plot of Residuals

A
C

F

0 5 10 15 20

-1
.0

0.
0

0.
5

1.
0

PACF Plot of Residuals

P
A

C
F

5 10 15 20

-0
.1

0.
1

0.
2

P-values of Ljung-Box Chi-Squared Statistics

Lag

p-
va

lu
e

4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

ARIMA Model Diagnostics: uscn.id.dm

ARIMA(1,0,1) Model with Mean 0

FIGURE 3.9. Residual diagnostics from ARMA(1,1) fit to US/CA interest rate
di erentials.

Positions 1

Jul 1996 0.09973

Aug 1996 0.08269

Sep 1996 0.06856

Oct 1996 0.05684

Nov 1996 0.04713

Dec 1996 0.03908

Jan 1997 0.03240

Feb 1997 0.02686

Mar 1997 0.02227

Apr 1997 0.01847

May 1997 0.01531

Jun 1997 0.01270

The data, forecasts and 95% forecast confidence intervals shown in Figure
3.10 are produced by

> smpl = positions(uscn.id.dm) >= timeDate("6/1/1995")

> plot(uscn.id.dm[smpl,],uscn.id.dm.fcst$mean,

+ uscn.id.dm.fcst$mean+2*uscn.id.dm.fcst$std.err,

+ uscn.id.dm.fcst$mean-2*uscn.id.dm.fcst$std.err,

+ plot.args=list(lty=c(1,4,3,3)))

82 3. Time Series Concepts

US/CA 30 day interest rate differential

Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2
1995 1996 1997

-0
.2

-0
.1

0.
0

0.
1

0.
2

0.
3

FIGURE 3.10. Forecasts for 12 months for the series uscn.id.dm.

Estimating AR() by Least Squares Using the S+FinMetrics Function
OLS

As previously mentioned, the conditional MLEs for an AR(p) model may
be computed using least squares. The S+FinMetrics function OLS, which
extends the S-PLUS function lm to handle general time series regression,
may be used to estimate an AR() in a particularly convenient way. The
general use of OLS is discussed in Chapter 6, and its use for estimating an
AR() is only mentioned here. For example, to estimate an AR(2) model
for the US/CA interest rate di erential use

> ar2.fit = OLS(USCNID~ar(2), data=uscn.id)

> ar2.fit

Call:

OLS(formula = USCNID ~ar(2), data = uscn.id)

Coefficients:

(Intercept) lag1 lag2

-0.0265 0.7259 0.0758

Degrees of freedom: 243 total; 240 residual

Time period: from Apr 1976 to Jun 1996

Residual standard error: 0.09105

3.2 Univariate Time Series 83

The least squares estimates of the AR coe cients are ˆ1 = 0 7259 and
ˆ
2 = 0 0758. Since

ˆ
1 +

ˆ
2 1 the estimated AR(2) model is stationary.

To be sure, the roots of () = 1 ˆ
1

ˆ
2
2 = 0 are

> abs(polyroot(c(1,-ar2.fit$coef[2:3])))

[1] 1.222 10.798

are outside the complex unit circle.

3.2.7 Martingales and Martingale Di erence Sequences

Let { } denote a sequence of random variables and let = { 1 }
denote a set of conditioning information or information set based on the
past history of . The sequence { } is called a martingale if

• 1 (is a filtration)

• [| |]

• [| 1] = 1 (martingale property)

The most common example of a martingale is the random walk model

= 1 + (0 2)

where 0 is a fixed initial value. Letting = { 0} implies [| 1] =

1 since [| 1] = 0.
Let { } be a sequence of random variables with an associated informa-

tion set . The sequence { } is called a martingale di erence sequence
(MDS) if

• 1

• [| 1] = 0 (MDS property)

If { } is a martingale, a MDS { } may be constructed by defining

= [| 1]

By construction, a MDS is an uncorrelated process. This follows from the
law of iterated expectations. To see this, for any 0

[] = [[| 1]]

= [[| 1]]

= 0

In fact, if is any function of the past history of so that 1 then

[] = 0

84 3. Time Series Concepts

Although a MDS is an uncorrelated process, it does not have to be an
independent process. That is, there can be dependencies in the higher order
moments of . The autoregressive conditional heteroskedasticity (ARCH)
process in the following example is a leading example in finance.
MDSs are particularly nice to work with because there are many useful

convergence results (laws of large numbers, central limit theorems etc.).
White (1984), Hamilton (1994) and Hayashi (2000) describe the most useful
of these results for the analysis of financial time series.

Example 8 ARCH process

A well known stylized fact about high frequency financial asset returns
is that volatility appears to be autocorrelated. A simple model to capture
such volatility autocorrelation is the ARCH process due to Engle (1982).
To illustrate, let denote the daily return on an asset and assume that
[] = 0. An ARCH(1) model for is

= (3.15)

iid (0 1)
2 = + 2

1 (3.16)

where 0 and 0 1. Let = { }. The S+FinMetrics function
simulate.garchmay be used to generate simulations from above ARCH(1)
model. For example, to simulate 250 observations on with = 0 1 and
= 0 8 use

> rt = simulate.garch(model=list(a.value=0.1, arch=0.8),

+ n=250, rseed=196)

> class(rt)

[1] "structure"

> names(rt)

[1] "et" "sigma.t"

Notice that the function simulate.garch produces simulated values of
both and . These values are shown in Figure 3.11.
To see that { } is a MDS, note that

[| 1] = [| 1]

= [| 1]

= 0

Since is a MDS, it is an uncorrelated process. Provided | | 1, is a
mean zero covariance stationary process. The unconditional variance of
is given by

var() = [2] = [[2 2| 1]]

= [2 [2| 1] = [2]

3.2 Univariate Time Series 85

Simulated returns

0 50 100 150 200 250

-2
-1

0
1

2

Simulated volatility

0 50 100 150 200 250

0.
5

1.
0

1.
5

FIGURE 3.11. Simulated values from ARCH(1) process with = 1 and = 0 8

since [2| 1] = 1. Utilizing (3.16) and the stationarity of , [2] may
be expressed as

[2] =
1

Furthermore, by adding 2 to both sides of (3.16) and rearranging it follows
that 2 has an AR(1) representation of the form

2 = + 2
1 +

where = 2 2 is a MDS.

3.2.8 Long-run Variance

Let be a stationary and ergodic time series. Anderson’s central limit
theorem for stationary and ergodic processes (c.f. Hamilton (1994) pg. 195)
states

(¯) (0
X
=

)

or

¯
1 X

=

86 3. Time Series Concepts

The sample size, , times the asymptotic variance of the sample mean is
often called the long-run variance of 6 :

lrv() = · avar(¯) =
X
=

Since = , lrv() may be alternatively expressed as

lrv() = 0 + 2
X
=1

Using the long-run variance, an asymptotic 95% confidence interval for
takes the form

¯± 1 96 ·
q

1clrv()

where clrv() is a consistent estimate of lrv().

Estimating the Long-Run Variance

If is a linear process, it may be shown that

X
=

= 2
X
=0

2

= 2 (1)2

and so
lrv() = 2 (1)2 (3.17)

Further, if ARMA() then

(1) =
1 + 1 + · · ·+
1 1 · · · =

(1)

(1)

so that

lrv() =
2 (1)2

(1)2
(3.18)

A consistent estimate of lrv() may then be computed by estimating the
parameters of the appropriate ARMA() model and substituting these
estimates into (3.18). Alternatively, the ARMA() process may be ap-
proximated by a high order AR() process

= + 1 1 + · · ·+ +

6Using spectral methods, (¯) has the alternative representation

(¯) =
1
2 (0)

where (0) denotes the spectral density of evaluated at frequency 0

3.2 Univariate Time Series 87

where the lag length is chosen such that is uncorrelated. This gives
rise to the autoregressive long-run variance estimate

lrvAR() =
2

(1)2
(3.19)

A consistent estimate of lrv() may also be computed using some non-
parametric methods. An estimator made popular by Newey and West
(1987) is the weighted autocovariance estimator

clrvNW() = ˆ0 + 2
X
=1

· ˆ (3.20)

where are weights which sum to unity and is a truncation lag
parameter that satisfies = (1 3). For MA() processes, = 0 for

and Newey and West suggest using the rectangular weights = 1
for = ; 0 otherwise. For general linear processes, Newey and West
suggest using the Bartlett weights = 1 +1 with equal to the

integer part of 4(100)2 9.

Example 9 Long-run variance of AR(1)

Let be an AR(1) process created using

> set.seed(101)

> e = rnorm(100,sd=1)

> y.ar1 = 1 + arima.sim(model=list(ar=0.75),innov=e)

Here (1) = 1
(1) =

1
1 and

lrv() =
2

(1)2

For = 0 75, 2 = 1, lrv() = 16 implies for = 100 an asymptotic
standard error for ¯ equal to SE(¯) = 0 40. If (0 1), then the
asymptotic standard error for ¯ is SE(¯) = 0 10.
lrvAR() may be easily computed in S-PLUS using OLS to estimate the

AR(1) parameters:

> ar1.fit = OLS(y.ar1~ar(1))

> rho.hat = coef(ar1.fit)[2]

> sig2.hat = sum(residuals(ar1.fit)^2)/ar1.fit$df.resid

> lrv.ar1 = sig2.hat/(1-rho.hat)^2

> as.numeric(lrv.ar1)

[1] 13.75

Here lrvAR() = 13 75, and an estimate for SE(¯) is cSEAR(¯) = 0 371.
The S+FinMetrics function asymp.var may be used to compute the

nonparameteric Newey-West estimate lrvNW(). The arguments expected
by asymp.var are

88 3. Time Series Concepts

> args(asymp.var)

function(x, bandwidth, window = "bartlett", na.rm = F)

where x is a “timeSeries”, bandwidth sets the truncation lag in
(3.20) and window specifies the weight function. Newey and West suggest
setting the bandwidth using the sample size dependent rule

= 4(100)2 9

which is equal to 4 in the present case. The Newey-West long-run variance
estimate is then

> lrv.nw = asymp.var(y.ar1, bandwidth=4)

> lrv.nw

[1] 7.238

and the Newey-West estimate of SE(¯) is cSENW(¯) = 0 269.
3.2.9 Variance Ratios

There has been considerable interest in testing the so-called random walk
(RW) model for log stock prices (see chapter 2 in Campbell, Lo andMacKin-
lay (1997) for an extensive review). The RW model for log prices has the
form

= + 1 + = 1

where is a random error term. Using = the RW model may be
rewritten as

= +

Campbell, Lo and MacKinlay distinguish three forms of the random walk
model:

RW1 iid(0 2)

RW2 is an independent process (allows for heteroskedasticity)

RW3 is an uncorrelated process (allows for dependence in higher order
moments)

For asset returns, RW1 and RW2 are not very realistic and, therefore, most
attention has been placed on testing the model RW3.
Some commonly used tests for RW3 are based on constructing variance

ratios. To illustrate, consider the simple two-period variance ratio

VR(2) =
var((2))

2 · var()

3.2 Univariate Time Series 89

The numerator of the variance ratio is the variance of the two-period return,
(2) = 1 + and the deminator is two times the variance of the one-

period return, Under RW1, is easy to see that VR(2) = 1 If { } is an
ergodic-stationary process then

VR(2) =
var(1) + var() + 2 · cov(1)

2 · var()

=
2 0 + 2 1

2 0

= 1 + 1

There are three cases of interest depending on the value of 1 If 1 = 0
then VR(2) = 1; if 1 1 then VR(2) 1; if 1 1 then VR(2) 1
The general period variance ratio is

VR() =
var(())

· var()
(3.21)

where () = +1 + · · · + Under RW1, VR() = 1. For ergodic
stationary returns, some algebra shows that

VR() = 1 + 2 ·
X
=1

µ
1

¶
When the variance ratio is greater than one, returns are called mean avert-
ing due to the dominating presence of positive autocorrelations. When the
variance ratio is less than one, returns are called mean reverting due to the
dominating presence of negative autocorrelations. Using the Wold repre-
sentation (3.6), it can be shown that

lim VR() =
2 (1)2

0

=
lrv()

var()

That is, as becomes large the variance ratio approaches the ratio of the
long-run variance to the short-run variance. Furthermore, Under RW2 and
RW3 it can be shown that VR() 1 as provided

1 X
=1

var() ¯2 0

Test Statistics

Let { 0 1 } denote a sample of + 1 log prices, which produces
a sample of one-period returns { 1 } Lo and MacKinlay (1988,
1989) develop a number of test statistics for testing the random walk hy-
pothesis based on the estimated variance ratio

dVR() = cvar(())

· cvar()
(3.22)

90 3. Time Series Concepts

The form of the statistic depends on the particular random walk model
(RW1, RW2 or RW3) assumed under the null hypothesis.
Under RW1, (3.22) is computed using

dVR() = ˆ2()

ˆ2

where

ˆ2 =
1 X

=1

(ˆ)2

ˆ2() =
1
2

X
=

(() ˆ)2

ˆ =
1 X

=1

=
1
(0)

Lo and MacKinlay show that, under RW1,p
(dVR() 1) (0 2(1))

Therefore, the variance ratio test statistic

ˆ() =

µ
2(1)

¶1 2

(dVR() 1) (3.23)

has a limiting standard normal distribution under RW1.
Lo and MacKinlay also derive a modified version of (3.23) based on the

following bias corrected estimates of 2 and 2() :

¯2 =
1

1

X
=1

(ˆ)2

¯2() =
1 X

=

(() ˆ)2

= (+ 1)

µ
1

¶
Defining VR() = ¯2() ¯2 the biased corrected version of (3.23) has the
form

¯() =

µ
3 2

2(2 1)(1)

¶1 2

(VR() 1) (3.24)

which has a limiting standard normal distribution under RW1.

3.2 Univariate Time Series 91

The variance ratio statistics (3.23) and (3.24) are not valid under the em-
pirically relevant RW3 and RW3 models. For this model, Lo and MacKinlay
derived the heteroskedasticity robust variance ratio statistic

() = ˆ() 1 2(VR() 1) (3.25)

where

ˆ() =

1X
=1

µ
2()

¶
ˆ

ˆ =

P
= +1 ˆ0 ˆ³P
=1 ˆ0

´2
ˆ = (1 ˆ)

Under RW2 or RW3, Lo and MacKinlay show that (3.25) has a limiting
stardard normal distribution.

Example 10 Testing the random walk hypothesis using variance ratios

The variance ratio statistics (3.23), (3.24) and (3.25) may be computed
using the S+FinMetrics function varRatioTest. The arguments for
varRatioTest are

> args(varRatioTest)

function(x, n.periods, unbiased = T, hetero = F)

where x is the log return series (which may contain more than one series)
and n.periods denotes the number of periods in the variance ratio. If
unbiased=T and hetero=F the bias corrected test statistic (3.24) is com-
puted. If unbiased=T and hetero=T then the heteroskedasticity robust
statistic (3.25) is computed. The function varRatioTest returns an object
of class “varRatioTest” for which there are print and plot methods.
Consider testing the model RW3 for the daily log closing prices of the

Dow Jones Industrial Average over the period 1/1/1960 through 1/1/1990.
To compute the variance ratio (3.21) and the heteroskedasticity robust test
(3.25) for = 1 60 use

> VR.djia = varRatioTest(djia[timeEvent("1/1/1960","1/1/1990"),

+ "close"], n.periods=60, unbiased=T, hetero=T)

> class(VR.djia)

[1] "varRatioTest"

> names(VR.djia)

[1] "varRatio" "std.err" "stat" "hetero"

> VR.djia

Variance Ratio Test

92 3. Time Series Concepts

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

0 10 20 30 40 50 60

close

Periods

Va
ria

nc
e

R
at

io

Variance Ratio Profile

FIGURE 3.12. Variance ratios for the daily log prices of the Dow Jones Industrial
Average.

Null Hypothesis: random walk with heteroskedastic errors

Variable: close

var.ratio std.err stat

2 1.0403 0.06728 0.5994871

3 1.0183 0.10527 0.1738146

...

60 1.0312 0.36227 0.0861747

* : significant at 5% level

** : significant at 1% level

None of the variance ratios are statistically di erent from unity at the 5%
level.
Figure 3.12 shows the results of the variance ratio tests based on plot

method

> plot(VR.djia)

The variance ratios computed for di erent values of hover around unity,
and the ± 2 × standard error bands indicate that the model RW3 is not
rejected at the 5% level.

3.3 Univariate Nonstationary Time Series 93

0.
8

0.
9

1.
0

1.
1

1 2 3 4 5

AA

0.
7

0.
8

0.
9

1.
0

AXP

0.
75

0.
85

0.
95

1.
05

1 2 3 4 5

BA
0.

8
0.

9
1.

0
C

0.
80

0.
90

1.
00

1 2 3 4 5

CAT

0.
80

0.
90

1.
00

1.
10 DD0.

75
0.

85
0.

95
1.

05

DIS

0.
95

1.
05

1.
15

EK

0.
7

0.
8

0.
9

1.
0

GE

0.
70

0.
80

0.
90

1.
00

GM

0.
8

0.
9

1.
0

1.
1

HD

0.
9

1.
0

1.
1

1.
2

HON

0.
7

0.
8

0.
9

1.
0

HWP

0.
7

0.
8

0.
9

1.
0

IBM

0.
7

0.
8

0.
9

1.
0

1.
1

INTC

0.
80

0.
90

1.
00

IP

0.
8

0.
9

1.
0

1.
1

JNJ

0.
80

0.
90

1.
00

1.
10

JPM

0.
85

0.
95

1.
05

1.
15

KO

0.
80

0.
90

1.
00

1.
10 MCD

0.
80

0.
90

1.
00

1.
10 MMM

0.
80

0.
90

1.
00

MO

0.
80

0.
90

1.
00

1.
10

MRK

0.
8

0.
9

1.
0

1.
1

MSFT

0.
8

0.
9

1.
0

1.
1 PG

0.
8

0.
9

1.
0

1 2 3 4 5

SBC

0.
8

0.
9

1.
0

1.
1 T

0.
8

0.
9

1.
0

1.
1

1 2 3 4 5

UTX

0.
8

0.
9

1.
0

1.
1

WMT

0.
6

0.
7

0.
8

0.
9

1.
0

1 2 3 4 5

XOM

Periods

Va
ria

nc
e

R
at

io

Variance Ratio Profile

FIGURE 3.13. Variance ratio statistics for daily log prices on individual Dow
Jones index stocks.

The RW3 model appears to hold for the Dow Jones index. To test the
RW3 model for the top thirty stocks in the index individually, based on
= 1 5, use

> VR.DJ30 = varRatioTest(DowJones30, n.periods=5, unbiased=T,

+ hetero=T)

> plot(VR.DJ30)

The results, illustrated in Figure 3.13, indicate that the RW3 model may
not hold for some individual stocks.

3.3 Univariate Nonstationary Time Series

A univariate time series process { } is called nonstationary if it is not
stationary. Since a stationary process has time invariant moments, a non-
stationary process must have some time dependent moments. The most
common forms of nonstationarity are caused by time dependence in the
mean and variance.

94 3. Time Series Concepts

Trend Stationary Process

{ } is a trend stationary process if it has the form

= +

where are deterministic trend terms (constant, trend, seasonal dum-
mies etc) that depend on and { } is stationary. The series is nonsta-
tionary because [] = which depends on . Since is stationary,
never deviates too far away from the deterministic trend . Hence,

exhibits trend reversion. If were known, may be transformed to a
stationary process by subtracting o the deterministic trend terms:

=

Example 11 Trend stationary AR(1)

A trend stationary AR(1) process with = + may be expressed
in three equivalent ways

= + + = 1 +

= (1 (1)) +

= + + 1 +

where | | 1, = (1)+ , = (1) and (0 2). Figure
3.14 shows = 100 observations from a trend stationary AR(1) with = 1,
= 0 25, = 0 75 and 2 = 1 created with the S-PLUS commands

> set.seed(101)

> y.tsar1 = 1 + 0.25*seq(100) +

+ arima.sim(model=list(ar=0.75),n=100)

> tsplot(y.tsar1,ylab="y")

> abline(a=1,b=0.25)

The simulated data show clear trend reversion.

Integrated Processes

{ } is an integrated process of order 1, denoted (1), if it has the form

= 1 + (3.26)

where is a stationary time series. Clearly, the first di erence of is
stationary

=

Because of the above property, (1) processes are sometimes called di er-
ence stationary processes. Starting at 0, by recursive substitution has

3.3 Univariate Nonstationary Time Series 95

y

0 20 40 60 80 100

5
10

15
20

FIGURE 3.14. Simulated trend stationary process.

the representation of an integrated sum of stationary innovations

= 0 +
X
=1

(3.27)

The integrated sum
P

=1 is called a stochastic trend and is denoted
. Notice that

= 1 +

where 0 = 0. In contrast to a deterministic trend, changes in a stochastic
trend are not perfectly predictable.
Since the stationary process does not need to be di erenced, it is called

an integrated process of order zero and is denoted (0). Recall, from
the Wold representation (3.6) a stationary process has an infinite order
moving average representation where the moving average weights decline
to zero at a geometric rate. From (3.27) it is seen that an (1) process has
an infinite order moving average representation where all of the weights on
the innovations are equal to 1.
If (0 2) in (3.26) then is called a random walk. In general,

an (1) process can have serially correlated and heteroskedastic innovations
. If is a random walk and assuming 0 is fixed then it can be shown

96 3. Time Series Concepts

that

0 = 2

= () 2

=

r
which clearly shows that is nonstationary. Also, if is large relative to
then 1. Hence, for an (1) process, the ACF does not decay at a

geometric rate but at a linear rate as increases.
An (1) process with drift has the form

= + 1 + where (0)

Starting at = 0 an (1) process with drift may be expressed as

= 0 + +
X
=1

= +

so that it may be thought of as being composed of a deterministic linear
trend = 0 + as well as a stochastic trend =

P
=1 .

An () process { } is one in which (0). In finance and eco-
nomics data series are rarely modeled as () process with 2. Just as
an (1) process with drift contains a linear deterministic trend, an (2)
process with drift will contain a quadratic trend.

Example 12 Simulated I(1) processes

Consider the simulation of = 100 observations from various (1) pro-
cesses where the innovations follow an AR(1) process = 0 75 1+
with (0 1).

> set.seed(101)

> u.ar1 = arima.sim(model=list(ar=0.75), n=100)

> y1 = cumsum(u.ar1)

> y1.d = 1 + 0.25*seq(100)+ y1

> y2 = rep(0,100)

> for (i in 3:100) {

+ y2[i] = 2*y2[i-1] - y2[i-2] + u.ar1[i]

+ }

The simulated data are illustrated in Figure 3.15 .

Example 13 Financial time series

3.4 Long Memory Time Series 97

I(0) innovations

0 20 40 60 80 100

-2
0

2
4

I(1) process

0 20 40 60 80 100

0
10

20
30

I(1) process with drift

0 20 40 60 80 100

0
10

20
30

40
50

I(2) process

0 20 40 60 80 100

0
50

0
10

00
15

00

FIGURE 3.15. Simulated () processes for = 0, 1 and 2.

Many financial time series are well characterized by (1) processes. The
leading example of an (1) process with drift is the logarithm of an asset
price. Common examples of (1) processes without drifts are the logarithms
of exchange rates, nominal interest rates, and inflation rates. Notice that
if inflation is constructed as the the di erence in the logarithm of a price
index and is an (1) process, then the logarithm of the price index is an
(2) process. Examples of these data are illustrated in Figure 3.16. The
exchange rate is the monthly log of the US/CA spot exchange rate taken
from the S+FinMetrics “timeSeries” lexrates.dat, the asset price of
the monthly S&P 500 index taken from the S+FinMetrics “timeSeries”
object singleIndex.dat, the nominal interest rate is the 30 day T-bill rate
taken from the S+FinMetrics “timeSeries” object rf.30day, and the
monthly consumer price index is taken from the S+FinMetrics “timeSeries”
object CPI.dat.

3.4 Long Memory Time Series

If a time series is (0) then its ACF declines at a geometric rate. As a
result, (0) process have short memory since observations far apart in time
are essentially independent. Conversely, if is (1) then its ACF declines
at a linear rate and observations far apart in time are not independent. In

98 3. Time Series Concepts

Log US/CA spot exchange rate

1976 1980 1984 1988 1992 1996

-0
.3

5
-0

.1
5

0.
00

Log S&P 500 index

1990 1992 1994 1996 1998 2000

5.
8

6.
2

6.
6

7.
0

Nominal 30 day T-bill rate

1930 1950 1970 1990

0.
00

0
0.

00
8

Log of US CPI

1915 1935 1955 1975 1995

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

FIGURE 3.16. Monthly financial time series.

between (0) and (1) processes are so-called fractionally integrated ()
process where 0 1. The ACF for a fractionally integrated processes
declines at a polynomial (hyperbolic) rate, which implies that observations
far apart in time may exhibit weak but non-zero correlation. This weak cor-
relation between observations far apart is often referred to as long memory.
A fractionally integrated white noise process has the form

(1) = (0 2) (3.28)

where (1) has the binomial series expansion representation (valid for
any 1)

(1) =
X
=0

µ ¶
()

= 1 +
(1)

2!
2 (1)(2)

3!
3 + · · ·

If = 1 then is a random walk and if = 0 then is white noise. For
0 1 it can be shown that

2 1

as so that the ACF for declines hyperbolically to zero at a speed
that depends on . Further, it can be shown is stationary and ergodic
for 0 0 5 and that the variance of is infinite for 0 5 1.

3.4 Long Memory Time Series 99

0 100 200 300 400 500

-2
0

2
4

Lag

AC
F

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : y.fwn

FIGURE 3.17. Simulated values from a fractional white noise process with = 0 3
and = 1.

Example 14 Simulated fractional white noise

The S+FinMetrics function simulate.FARIMA may be used to generate
simulated values from a fractional white noise process. To simulate 500
observations from (3.28) with = 0 3 and 2 = 1 use

> set.seed(394)

> y.fwn = simulate.FARIMA(list(d=0.3), 500)

Figure 3.17 shows the simulated data along with the sample ACF created
using

> par(mfrow=c(2,1))

> tsplot(y.fwn)

> tmp = acf(y.fwn,lag.max=50)

Notice how the sample ACF slowly decays to zero.
A fractionally integrated process with stationary and ergodic ARMA()

errors

(1) = ARMA()

is called an autoregressive fractionally integrated moving average (ARFIMA)
process. The modeling of long memory process is described in detail in
Chapter 8.

100 3. Time Series Concepts

Lag

AC
F

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : msft.aret

Lag

AC
F

0 10 20 30 40 50

-0
.2

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : uscn.id

FIGURE 3.18. SACFs for the absolute value of daily returns on Microsoft and
the monthly 30-day interest rate di erential between U.S. bonds and Canadian
bonds.

Example 15 Long memory in financial time series

Long memory behavior has been observed in certain types of financial
time series. Ding, Granger and Engle (1993) find evidence of long memory
in the absolute value of daily stock returns. Baillie and Bollerslev (1994)
find evidence for long memory in the monthly interest rate di erentials
between short term U.S. government bonds and short term foreign govern-
ment bonds. To illustrate, consider the absolute values of the daily returns
on Microsoft over the 10 year period 1/2/1991 - 1/2/2001 taken from the
S+FinMetrics “timeSeries” DowJones30

> msft.aret = abs(getReturns(DowJones30[,"MSFT"]))

Consider also the monthly US/CA 30-day interest rate di erential over the
period February 1976 through June 1996 in the “timeSeries” uscn.id
constructed earlier and taken from the S+FinMetrics “timeSeries” object
lexrates.dat. Figure 3.18 shows the SACFs these series create by

> par(mfrow=c(2,1))

> tmp = acf(msft.aret, lag.max=100)

> tmp = acf(uscn.id, lag.max=50)

For the absolute return series, notice the large number of small but ap-
parently significant autocorrelations at very long lags. This is indicative of

3.5 Multivariate Time Series 101

long memory. For the interest rate di erential series, the ACF appears to
decay fairly quickly, so the evidence for long memory is not as strong.

3.5 Multivariate Time Series

Consider time series variables { 1 } { }. A multivariate time se-
ries is the (× 1) vector time series {Y } where the row of {Y } is
{ }. That is, for any time , Y = (1)0. Multivariate time series
analysis is used when one wants to model and explain the interactions and
co-movements among a group of time series variables. In finance, multi-
variate time series analysis is used to model systems of asset returns, asset
prices and exchange rates, the term structure of interest rates, asset re-
turns/prices, and economic variables etc. Many of the time series concepts
described previously for univariate time series carry over to multivariate
time series in a natural way. Additionally, there are some important time
series concepts that are particular to multivariate time series. The follow-
ing sections give the details of these extensions and provide examples using
S-PLUS and S+FinMetrics.

3.5.1 Stationary and Ergodic Multivariate Time Series

A multivariate time series Y is covariance stationary and ergodic if all of
its component time series are stationary and ergodic. The mean of Y is
defined as the (× 1) vector

[Y] = µ = (1)0

where = [] for = 1 . The variance/covariance matrix of Y
is the (×) matrix

var(Y) = 0 = [(Y µ)(Y µ)0]

=

var(1) cov(1 2) · · · cov(1)
cov(2 1) var(2) · · · cov(2)

...
...

. . .
...

cov(1) cov(2) · · · var()

The matrix 0 has elements
0 = cov(). The correlation matrix of

is the (×) matrix

corr(Y) = R0 = D
1

0D
1

where D is an (×) diagonal matrix with diagonal element (0)1 2 =
SD(). The parameters , 0 andR0 are estimated from data (Y1 Y)

102 3. Time Series Concepts

using the sample moments

Ȳ =
1 X

=1

Y

ˆ
0 =

1 X
=1

(Y Ȳ)(Y Ȳ)0

R̂0 = D̂ 1ˆ
0D̂

1

whereD is the (×) diagonal matrix with the sample standard deviations
of along the diagonal. In order for the sample variance matrix ˆ0 and

correlation matrix R̂0 to be positive definite, the sample size must be
greater than the number of component time series .

Example 16 System of asset returns

The S+FinMetrics “timeSeries” object DowJones30 contains daily clos-
ing prices on the 30 assets in the Dow Jones index. An example of a station-
ary and ergodic multivariate time series is the continuously compounded
returns on the first four assets in this index:

> Y = getReturns(DowJones30[,1:4],type="continuous")

> colIds(Y)

[1] "AA" "AXP" "T" "BA"

The S-PLUS function colMeans may be used to e ciently compute the
mean vector of Y

> colMeans(seriesData(Y))

AA AXP T BA

0.0006661 0.0009478 -0.00002873 0.0004108

The function colMeans does not have a method for “timeSeries” ob-
jects so the extractor function seriesData is used to extract the data slot of
the variable Y. The S-PLUS functions var and cor, which do have methods
for “timeSeries” objects, may be used to compute ˆ0 and R̂0

> var(Y)

AA AXP T BA

AA 0.00041096 0.00009260 0.00005040 0.00007301

AXP 0.00009260 0.00044336 0.00008947 0.00009546

T 0.00005040 0.00008947 0.00040441 0.00004548

BA 0.00007301 0.00009546 0.00004548 0.00036829

> cor(Y)

AA AXP T BA

AA 1.0000 0.2169 0.1236 0.1877

AXP 0.2169 1.0000 0.2113 0.2362

T 0.1236 0.2113 1.0000 0.1179

3.5 Multivariate Time Series 103

BA 0.1877 0.2362 0.1179 1.0000

If only the variances or standard deviations of Y are needed the S-PLUS
functions colVars and colStdevs may be used

> colVars(seriesData(Y))

AA AXP T BA

0.000411 0.0004434 0.0004044 0.0003683

> colStdevs(seriesData(Y))

AA AXP T BA

0.020272 0.021056 0.02011 0.019191

Cross Covariance and Correlation Matrices

For a univariate time series the autocovariances and autocorrelations
summarize the linear time dependence in the data. With a multivariate

time series Y each component has autocovariances and autocorrelations
but there are also cross lead-lag covariances and correlations between all
possible pairs of components. The autocovariances and autocorrelations of

for = 1 are defined as

= cov()

= corr() = 0

and these are symmetric in : = , = . The cross lag covari-
ances and cross lag correlations between and are defined as

= cov()

= corr() = q
0 0

and they are not necessarily symmetric in . In general,

= cov() 6= cov(+) = cov() =

If 6= 0 for some 0 then is said to lead . Similarly, if 6= 0
for some 0 then is said to lead . It is possible that leads
and vice-versa. In this case, there is said to be feedback between the two
series.

104 3. Time Series Concepts

All of the lag cross covariances and correlations are summarized in the
(×) lag cross covariance and lag cross correlation matrices

= [(Y µ)(Y µ)0]

=

cov(1 1) cov(1 2) · · · cov(1)
cov(2 1) cov(2 2) · · · cov(2)

...
...

. . .
...

cov(1) cov(2) · · · cov()

R = D 1 D 1

The matrices and R are not symmetric in but it is easy to show that
= 0 and R = R0 . The matrices and R are estimated from

data (Y1 Y) using

ˆ =
1 X

= +1

(Y Ȳ)(Y Ȳ)0

R̂ = D̂ 1ˆ D̂ 1

Example 17 Lead-lag covariances and correlations among asset returns

Consider computing the cross lag covariances and correlations for =
0 5 between the first two Dow Jones 30 asset returns in the “timeSeries”
Y. These covariances and correlations may be computed using the S-PLUS
function acf

> Ghat = acf(Y[,1:2],lag.max=5,type="covariance",plot=F)

> Rhat = acf(Y[,1:2],lag.max=5,plot=F)

Ghat and Rhat are objects of class “acf” for which there is only a print
method. For example, the estimated cross lag autocorrelations are

> Rhat

Call: acf(x = Y[, 1:2], lag.max = 5, plot = F)

Autocorrelation matrix:

lag AA.AA AA.AXP AXP.AXP

1 0 1.0000 0.2169 1.0000

2 1 0.0182 0.0604 -0.0101

3 2 -0.0556 -0.0080 -0.0710

4 3 0.0145 -0.0203 -0.0152

5 4 -0.0639 0.0090 -0.0235

6 5 0.0142 -0.0056 -0.0169

lag AXP.AA

1 0 0.2169

3.5 Multivariate Time Series 105

 AA

A
C

F

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 AA and AXP

0 1 2 3 4 5

0.
0

0.
05

0.
10

0.
15

0.
20

 AXP and AA

Lag

A
C

F

-5 -4 -3 -2 -1 0

0.
0

0.
05

0.
10

0.
15

0.
20

 AXP

Lag
0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Multivariate Series : Y[, 1:2]

FIGURE 3.19. Cross lag correlations between the first two Dow Jones 30 asset
returns.

2 -1 -0.0015

3 -2 -0.0187

4 -3 -0.0087

5 -4 -0.0233

6 -5 0.0003

The function acf.plot may be used to plot the cross lag covariances
and correlations produced by acf.

> acf.plot(Rhat)

Figure 3.19 shows these cross lag correlations. The matrices ˆ and R̂
may be extracted from acf component of Ghat and Rhat, respectively. For
example,

> Ghat$acf[1,,]

[,1] [,2]

[1,] 0.00041079 0.00009256

[2,] 0.00009256 0.00044318

> Rhat$acf[1,,]

[,1] [,2]

[1,] 1.0000 0.2169

[2,] 0.2169 1.0000

> Ghat$acf[2,,]

106 3. Time Series Concepts

[,1] [,2]

[1,] 7.488e-006 2.578e-005

[2,] -6.537e-007 -4.486e-006

> Rhat$acf[2,,]

[,1] [,2]

[1,] 0.018229 0.06043

[2,] -0.001532 -0.01012

extracts ˆ1, R̂1, ˆ2 and R̂2.

3.5.2 Multivariate Wold Representation

Any (× 1) covariance stationary multivariate time series Y has a Wold
or linear process representation of the form

Y = µ+ + 1 1 + 2 2 + · · · (3.29)

= µ+
X
=0

where 0 = I and is a multivariate white noise process with mean zero
and variance matrix [0] = . In (3.29), is an (×) matrix with
()th element . In lag operator notation, the Wold form is

Y = µ+ ()

() =
X
=0

The moments of Y are given by

[Y] = µ

var(Y) =
X
=0

0

VAR Models

The most popular multivariate time series model is the vector autoregressive
(VAR) model. The VAR model is a multivariate extension of the univariate
autoregressive model. For example, a bivariate VAR(1) model has the formµ

1

2

¶
=

µ
1

2

¶
+

µ
1
11

1
12

1
21

1
22

¶µ
1 1

2 1

¶
+

µ
1

2

¶
or

1 = 1 +
1
11 1 1 +

1
12 2 1 + 1

2 = 2 +
1
21 1 1 +

1
22 2 1 + 2

3.5 Multivariate Time Series 107

where µ
1

2

¶
iid

µµ
0
0

¶ µ
11 12

12 22

¶¶
In the equations for 1 and 2, the lagged values of both 1 and 2 are
present.
The general VAR() model for Y = (1 2)0 has the form

Y = c+ 1Y 1 + 2Y 2 + · · ·+ Y + = 1

where are (×) coe cient matrices and is an (× 1) unobservable
zero mean white noise vector process with covariance matrix . VAR mod-
els are capable of capturing much of the complicated dynamics observed
in stationary multivariate time series. Details about estimation, inference,
and forecasting with VAR models are given in chapter eleven.

3.5.3 Long Run Variance

Let Y be an (× 1) stationary and ergodic multivariate time series with
[Y] = µ. Anderson’s central limit theorem for stationary and ergodic

process states

(Ȳ µ) 0
X
=

or

Ȳ µ
1 X

=

Hence, the long-run variance of Y is times the asymptotic variance of
Ȳ:

lrv(Y) = · avar(Ȳ) =
X
=

Since = 0 , lrv(Y) may be alternatively expressed as

lrv(Y) = 0 +
X
=1

(+ 0)

Using the Wold representation of Y it can be shown that

lrv(Y) = (1) (1)
0

where (1) =
P

=0 .

108 3. Time Series Concepts

VAR Estimate of the Long-Run Variance

TheWold representation (3.29) may be approximated by high order VAR()
model

Y = c+ 1Y 1 + · · ·+ Y +

where the lag length is chosen such = (1 3). This gives rise to the
autoregressive long-run variance matrix estimate

clrvAR(Y) = ˆ (1)ˆ ˆ (1)
0

ˆ (1) = (I ˆ
1 · · · ˆ) 1

ˆ =
1 X

=1

ˆ ˆ0

where ˆ (= 1) are estimates of the VAR parameter matrices.

Non-parametric Estimate of the Long-Run Variance

A consistent estimate of lrv(Y) may be computed using non-parametric
methods. A popular estimator is the Newey-West weighted autocovariance
estimator

clrvNW(Y) = ˆ0 +
X
=1

·
³
ˆ + ˆ0

´
(3.30)

where are weights which sum to unity and is a truncation lag
parameter that satisfies = (1 3).

Example 18 Newey-West estimate of long-run variance matrix for stock
returns

The S+FinMetrics function asymp.var may be used to compute the
Newey-West long-run variance estimate (3.30) for a multivariate time series.
The long-run variance matrix for the first four Dow Jones assets in the
“timeSeries” Y is

> M.T = floor(4*(nrow(Y)/100)^(2/9))

> lrv.nw = asymp.var(Y,bandwidth=M.T)

> lrv.nw

AA AXP T BA

AA 0.00037313 0.00008526 3.754e-005 6.685e-005

AXP 0.00008526 0.00034957 7.937e-005 1.051e-004

T 0.00003754 0.00007937 3.707e-004 7.415e-006

BA 0.00006685 0.00010506 7.415e-006 3.087e-004

3.6 References 109

3.6 References

Alexander, C. (2001). Market Models. A Guide to Financial Data Anal-
ysis. John Wiley & Sons, Chichester, UK.

Baille, R.T. and T. Bollerslev (1994). “The Long Memory of the
Forward Premium,” Journal of International Money and Finance, 13, 555-
571.

Box, G.E.P. and G.M. Jenkins (1976). Time Series Analysis, Forecast-
ing and Control. Revised Edition. Holden Day, San Francisco.

Campbell, J.Y., A.W. Lo, A.C. MacKinlay (1997). The Econometrics
of Financial Markets. Princeton University Press, Princeton, NJ.

Box, G.E.P., and D.A. Pierce (1970). “Distribution of Residual Au-
tocorrelations in Autoregressive-integrated Moving Average Time Series
Models,” Journal of the American Statistical Association, 65, 1509-1526.

Chan, N.H. (2002). Time Series: Applicatios to Finance. John Wiley &
Sons, New York.

Ding, Z., C.W.J. Granger and R.F. Engle (1993). “A Long Mem-
ory Property of Stock Returns and a New Model,” Journal of Empirical
Finance, 1, 83-106.

Engle, R.F. (1982). “Autoregressive Conditional Heteroskedasticity with
Estimates of the Variance of United Kingdom Inflations,” Econometrica,
50, 987-1097.

Fuller, W.A. (1996). Introduction to Statistical Time Series, Second Edi-
tion. John Wiley & Sons, New York.

Gourieroux, C and J. Jasiak (2001). Financial Econometrics. Prince-
ton University Press, Princeton, NJ.

Granger, C.W.J. and M.J. Morris (1976). “Time Series Modeling and
Interpretation,” Journal of the Royal Statistical Society, Series A, 139, 246-
257.

Hamilton, J.D. (1994). Time Series Analysis. Princeton University Press,
Princeton, NJ.

Harvey, A.C. (1993). Time Series Models, Second Edition. MIT Press,
Cambridge, MA.

110 3. Time Series Concepts

Hayashi, F. (2000). Econometrics. Princeton University Press, Princeton,
NJ.

Ljung, T. and G.E.P. Box (1979). “The Likelihood Function for a Sta-
tionary Autoregressive Moving Average Process,” Biometrika, 66, 265-270.

Mills, T.C. (1999). The Econometric Modeling of Financial Time Series,
Second Edition. Cambridge University Press, Cambridge, UK.

Newey, W.K. and K.D. West (1987). “A Simple Positive Semidef-
inite Heteroskedasticity and Autocorrelation Consistent Covariance Ma-
trix,” Econometrica, 55, 703-708.

Tsay, R.S. (2001). Analysis of Financial Time Series, John Wiley & Sons,
New York.

Venables, W.N. and B.D. Ripley (2002). Modern Applied Statistics
with S-PLUS, Fourth Edition. Springer-Verlag, New York.

White, H. (1984).Asymptotic Theory for Econometrians. Academic Press,
San Diego.

4
Unit Root Tests

4.1 Introduction

Many economic and financial time series exhibit trending behavior or non-
stationarity in the mean. Leading examples are asset prices, exchange rates
and the levels of macroeconomic aggregates like real GDP. An important
econometric task is determining the most appropriate form of the trend in
the data. For example, in ARMA modeling the data must be transformed
to stationary form prior to analysis. If the data are trending, then some
form of trend removal is required.
Two common trend removal or de-trending procedures are first di er-

encing and time-trend regression. First di erencing is appropriate for (1)
time series and time-trend regression is appropriate for trend stationary
(0) time series. Unit root tests can be used to determine if trending data
should be first di erenced or regressed on deterministic functions of time
to render the data stationary. Moreover, economic and finance theory often
suggests the existence of long-run equilibrium relationships among nonsta-
tionary time series variables. If these variables are (1) then cointegration
techniques can be used to model these long-run relations. Hence, pre-testing
for unit roots is often a first step in the cointegration modeling discussed
in Chapter 12. Finally, a common trading strategy in finance involves ex-
ploiting mean-reverting behavior among the prices of pairs of assets. Unit
root tests can be used to determine which pairs of assets appear to exhibit
mean-reverting behavior.

112 4. Unit Root Tests

This chapter is organized as follows. Section 4.2 reviews (1) and trend
stationary (0) time series and motivates the unit root and stationary
tests described in the chapter. Section 4.3 describes the class of autoregres-
sive unit root tests made popular by David Dickey, Wayne Fuller, Pierre
Perron and Peter Phillips. Section 4.4 describes the stationarity tests of
Kwiatkowski, Phillips, Schmidt and Shinn (1992). Section 4.5 discusses
some problems associated with traditional unit root and stationarity tests,
and Section 4.6 presents some recently developed so-called “e cient unit
root tests” that overcome some of the deficiencies of traditional unit root
tests.
In this chapter, the technical details of unit root and stationarity tests are

kept to a minimum. Excellent technical treatments of nonstationary time
series may be found in Hamilton (1994), Hatanaka (1995), Fuller (1996)
and the many papers by Peter Phillips. Useful surveys on issues associated
with unit root testing are given in Stock (1994), Maddala and Kim (1998)
and Phillips and Xiao (1998).

4.2 Testing for Nonstationarity and Stationarity

To understand the econometric issues associated with unit root and sta-
tionarity tests, consider the stylized trend-cycle decomposition of a time
series :

= +

= +

= 1 + (0 2)

where is a deterministic linear trend and is an AR(1) process. If
| | 1 then is (0) about the deterministic trend . If = 1, then
= 1 + = 0 +

P
=1 , a stochastic trend and is (1) with drift.

Simulated (1) and (0) data with = 5 and = 0 1 are illustrated in
Figure 4.1. The (0) data with trend follows the trend = 5+0 1 very
closely and exhibits trend reversion. In contrast, the (1) data follows an
upward drift but does not necessarily revert to
Autoregressive unit root tests are based on testing the null hypothesis

that = 1 (di erence stationary) against the alternative hypothesis that
1 (trend stationary). They are called unit root tests because under the

null hypothesis the autoregressive polynomial of , () = (1) = 0,
has a root equal to unity.
Stationarity tests take the null hypothesis that is trend stationary. If
is then first di erenced it becomes

= +

= 1 + 1

4.2 Testing for Nonstationarity and Stationarity 113

0 50 100 150 200 250

0
5

10
15

20
25

30

I(1)
I(0)

FIGURE 4.1. Simulated trend stationary ((0)) and di erence stationary ((1))
processes.

Notice that first di erencing , when it is trend stationary, produces a
unit moving average root in the ARMA representation of . That is, the
ARMA representation for is the non-invertible ARMA(1,1) model

= 1 + + 1

with = 1. This result is known as overdi erencing. Formally, stationar-
ity tests are based on testing for a unit moving average root in .
Unit root and stationarity test statistics have nonstandard and nonnor-

mal asymptotic distributions under their respective null hypotheses. To
complicate matters further, the limiting distributions of the test statistics
are a ected by the inclusion of deterministic terms in the test regressions.
These distributions are functions of standard Brownian motion (Wiener
process), and critical values must be tabulated by simulation techniques.
MacKinnon (1996) provided response surface algorithms for determining
these critical values, and various S+FinMetrics functions use these algo-
rithms for computing critical values and -values.

114 4. Unit Root Tests

4.3 Autoregressive Unit Root Tests

To illustrate the important statistical issues associated with autoregressive
unit root tests, consider the simple AR(1) model

= 1 + where (0 2)

The hypotheses of interest are

0 : = 1 (unit root in () = 0) (1)

1 : | | 1 (0)

The test statistic is

=1 =
ˆ 1

SE(ˆ)

where ˆ is the least squares estimate and SE(ˆ) is the usual standard error
estimate1. The test is a one-sided left tail test. If { } is stationary (i.e.,
| | 1) then it can be shown (c.f. Hamilton 1994, p. 216)

(ˆ) (0 (1 2))

or

ˆ
µ

1
(1 2)

¶

and it follows that =1 (0 1). However, under the null hypothesis of
nonstationarity the above result gives

ˆ (1 0)

which clearly does not make any sense. The problem is that under the unit
root null, { } is not stationary and ergodic, and the usual sample moments
do not converge to fixed constants. Instead, Phillips (1987) showed that
the sample moments of { } converge to random functions of Brownian

1The AR(1) model may be re-written as = 1 + where = 1. Testing
= 1 is then equivalent to testing = 0. Unit root tests are often computed using this

alternative regression and the S+FinMetrics function unitroot follows this convention.

4.3 Autoregressive Unit Root Tests 115

motion2:

3 2
X
=1

1

Z 1

0

()

2
X
=1

2
1

2

Z 1

0

()2

1
X
=1

1
2

Z 1

0

() ()

where () denotes a standard Brownian motion (Wiener process) defined
on the unit interval. Using the above results Phillips showed that under the
unit root null 0 : = 1

(ˆ 1)

R 1
0

() ()R 1
0

()2
(4.1)

=1

R 1
0

() ()³R 1
0

()2
´1 2

(4.2)

The above yield some surprising results:

• ˆ is super-consistent ; that is, ˆ at rate instead of the usual
rate 1 2.

• ˆ is not asymptotically normally distributed and =1 is not asymp-
totically standard normal.

• The limiting distribution of =1 is called the Dickey-Fuller (DF)
distribution and does not have a closed form representation. Conse-
quently, quantiles of the distribution must be computed by numerical
approximation or by simulation3.

• Since the normalized bias (ˆ 1) has a well defined limiting distri-
bution that does not depend on nuisance parameters it can also be
used as a test statistic for the null hypothesis 0 : = 1.

2AWiener process (·) is a continuous-time stochastic process, associating each date
[0 1] a scalar random variable () that satisfies: (1) (0) = 0; (2) for any dates

0 1 · · · 1 the changes (2) (1) (3) (2) () (1)
are independent normal with () () (0 ()); (3) () is continuous in .

3Dickey and Fuller (1979) first considered the unit root tests and derived the asymp-
totic distribution of =1. However, their representation did not utilize functions of
Wiener processes.

116 4. Unit Root Tests

4.3.1 Simulating the DF and Normalized Bias Distributions

As mentioned above, the DF and normalized bias distributions must be ob-
tained by simulation methods. To illustrate, the following S-PLUS function
wiener produces one random draw from the functions of Brownian motion
that appear in the limiting distributions of =1 and (ˆ 1):

wiener = function(nobs) {

e = rnorm(nobs)

y = cumsum(e)

ym1 = y[1:(nobs-1)]

intW2 = nobs^(-2) * sum(ym1^2)

intWdW = nobs^(-1) * sum(ym1*e[2:nobs])

ans = list(intW2=intW2,

intWdW=intWdW)

ans

}

A simple loop then produces the simulated distributions:

> nobs = 1000

> nsim = 1000

> NB = rep(0,nsim)

> DF = rep(0,nsim)

> for (i in 1:nsim) {

+ BN.moments = wiener(nobs)

+ NB[i] = BN.moments$intWdW/BN.moments$intW2

+ DF[i] = BN.moments$intWdW/sqrt(BN.moments$intW2)

}

Figure 4.2 shows the histograms and density estimates of the simulated
distributions. The DF density is slightly left-skewed relative to the standard
normal, and the normalized bias density is highly left skewed and non-
normal. Since the alternative is one-sided, the test statistics reject if they
are su ciently negative. For the DF and normalized bias densities the
empirical 1%, 5% and 10% quantiles are

> quantile(DF,probs=c(0.01,0.05,0.1))

1% 5% 10%

-2.451 -1.992 -1.603

> quantile(NB,probs=c(0.01,0.05,0.1))

1% 5% 10%

-11.94 -8.56 -5.641

For comparison purposes, note that the 5% quantile from the standard
normal distribution is -1.645.
The simulation of critical values and p-values from (4.1) and (4.2) is

straightforward but time consuming. The punitroot and qunitroot func-

4.3 Autoregressive Unit Root Tests 117

-3 -2 -1 0 1 2 3

0
50

10
0

15
0

20
0

Simulated DF distribution

DF

-25 -20 -15 -10 -5 0 5

0
10

0
20

0
30

0

Simulated normalized bias

NB

FIGURE 4.2. Histograms of simulated DF and normalized bias distributions.

tions in S+FinMetrics produce p-values and quantiles of the DF and nor-
malized bias distributions based on MacKinnon’s (1996) response surface
methodology. The advantage of the response surface methodology is that
accurate p-values and quantiles appropriate for a given sample size can be
produced. For example, the 1%, 5% and 10% quantiles for (4.2) and (4.1)
based on a sample size of 100 are

> qunitroot(c(0.01,0.05,0.10), trend="nc", statistic="t",

+ n.sample=100)

[1] -2.588 -1.944 -1.615

> qunitroot(c(0.01,0.05,0.10), trend="nc", statistic="n",

+ n.sample=100)

[1] -13.086 -7.787 -5.565

The argument trend="nc" specifies that no constant is included in the
test regression. Other valid options are trend="c" for constant only and
trend="ct" for constant and trend. These trend cases are explained be-
low. To specify the normalized bias distribution, set statistic="n". For
asymptotic quantiles set n.sample=0.
Similarly, the -value of -1 645 based on the DF distribution for a sample

size of 100 is computed as

> punitroot(-1.645, trend="nc", statistic="t")

[1] 0.0945

118 4. Unit Root Tests

Case I: I(1) data

0 50 100 150 200 250

-5
0

5
10

Case I: I(0) data

0 50 100 150 200 250

2
4

6
8

10

Case II: I(1) data

0 50 100 150 200 250

0
5

10
15

20
25

Case II: I(0) data

0 50 100 150 200 250

5
10

15
20

25
30

FIGURE 4.3. Simulated (1) and (0) data under trend cases I and II.

4.3.2 Trend Cases

When testing for unit roots, it is crucial to specify the null and alternative
hypotheses appropriately to characterize the trend properties of the data
at hand. For example, if the observed data does not exhibit an increasing
or decreasing trend, then the appropriate null and alternative hypotheses
should reflect this. The trend properties of the data under the alternative
hypothesis will determine the form of the test regression used. Further-
more, the type of deterministic terms in the test regression will influence
the asymptotic distributions of the unit root test statistics. The two most
common trend cases are summarized below and illustrated in Figure 4.3.

Case I: Constant Only

The test regression is
= + 1 +

and includes a constant to capture the nonzero mean under the alternative.
The hypotheses to be tested are

0 : = 1 (1) without drift

1 : | | 1 (0) with nonzero mean

This formulation is appropriate for non-trending financial series like interest
rates, exchange rates, and spreads. The test statistics =1 and (ˆ 1)

4.3 Autoregressive Unit Root Tests 119

are computed from the above regression. Under 0 : = 1 the asymptotic
distributions of these test statistics are di erent from (4.2) and (4.1) and
are influenced by the presence but not the coe cient value of the constant
in the test regression. Quantiles and p-values for these distributions can be
computed using the S+FinMetrics functions punitroot and qunitroot
with the trend="c" option:

> qunitroot(c(0.01,0.05,0.10), trend="c", statistic="t",

+ n.sample=100)

[1] -3.497 -2.891 -2.582

> qunitroot(c(0.01,0.05,0.10), trend="c", statistic="n",

+ n.sample=100)

[1] -19.49 -13.53 -10.88

> punitroot(-1.645, trend="c", statistic="t", n.sample=100)

[1] 0.456

> punitroot(-1.645, trend="c", statistic="n", n.sample=100)

[1] 0.8172

For a sample size of 100, the 5% left tail critical values for =1 and

(ˆ 1) are -2.891 and -13.53, respectively, and are quite a bit smaller
than the 5% critical values computed when trend="nc". Hence, inclusion
of a constant pushes the distributions of =1 and (ˆ 1) to the left.

Case II: Constant and Time Trend

The test regression is

= + + 1 +

and includes a constant and deterministic time trend to capture the deter-
ministic trend under the alternative. The hypotheses to be tested are

0 : = 1 (1) with drift

1 : | | 1 (0) with deterministic time trend

This formulation is appropriate for trending time series like asset prices or
the levels of macroeconomic aggregates like real GDP. The test statistics

=1 and (ˆ 1) are computed from the above regression. Under 0 :
= 1 the asymptotic distributions of these test statistics are di erent from

(4.2) and (4.1) and are influenced by the presence but not the coe cient
values of the constant and time trend in the test regression. Quantiles and
p-values for these distributions can be computed using the S+FinMetrics
functions punitroot and qunitroot with the trend="ct" option:

> qunitroot(c(0.01,0.05,0.10), trend="ct", statistic="t",

+ n.sample=100)

[1] -4.052 -3.455 -3.153

120 4. Unit Root Tests

> qunitroot(c(0.01,0.05,0.10), trend="ct", statistic="n",

+ n.sample=100)

[1] -27.17 -20.47 -17.35

> punitroot(-1.645, trend="ct", statistic="t", n.sample=100)

[1] 0.7679

> punitroot(-1.645, trend="ct", statistic="n", n.sample=100)

[1] 0.9769

Notice that the inclusion of a constant and trend in the test regression
further shifts the distributions of =1 and (ˆ 1) to the left. For a sample

size of 100, the 5% left tail critical values for =1 and (ˆ 1) are now
-3.455 and -20.471.

4.3.3 Dickey-Fuller Unit Root Tests

The unit root tests described above are valid if the time series is well
characterized by an AR(1) with white noise errors. Many financial time
series, however, have a more complicated dynamic structure than is cap-
tured by a simple AR(1) model. Said and Dickey (1984) augment the basic
autoregressive unit root test to accommodate general ARMA() models
with unknown orders and their test is referred to as the augmented Dickey-
Fuller (ADF) test. The ADF test tests the null hypothesis that a time
series is (1) against the alternative that it is (0), assuming that the
dynamics in the data have an ARMA structure. The ADF test is based on
estimating the test regression

= 0D + 1 +
X
=1

+ (4.3)

where D is a vector of deterministic terms (constant, trend etc.). The
lagged di erence terms, , are used to approximate the ARMA struc-
ture of the errors, and the value of is set so that the error is serially
uncorrelated. The error term is also assumed to be homoskedastic. The
specification of the deterministic terms depends on the assumed behavior
of under the alternative hypothesis of trend stationarity as described in
the previous section. Under the null hypothesis, is (1) which implies
that = 1. The ADF t-statistic and normalized bias statistic are based on
the least squares estimates of (4.3) and are given by

ADF = =1 =
ˆ 1

SE()

ADF =
(ˆ 1)

1 ˆ
1 · · · ˆ

4.3 Autoregressive Unit Root Tests 121

An alternative formulation of the ADF test regression is

= 0D + 1 +
X
=1

+ (4.4)

where = 1 Under the null hypothesis, is (0) which implies that
= 0. The ADF t-statistic is then the usual t-statistic for testing = 0

and the ADF normalized bias statistic is ˆ (1 ˆ
1 · · · ˆ). The test

regression (4.4) is often used in practice because the ADF t-statistic is the
usual t-statistic reported for testing the significance of the coe cient 1.
The S+FinMetrics function unitroot follows this convention.

Choosing the Lag Length for the ADF Test

An important practical issue for the implementation of the ADF test is the
specification of the lag length . If is too small then the remaining serial
correlation in the errors will bias the test. If is too large then the power
of the test will su er. Ng and Perron (1995) suggest the following data
dependent lag length selection procedure that results in stable size of the
test and minimal power loss. First, set an upper bound max for . Next,
estimate the ADF test regression with = max If the absolute value of the
t-statistic for testing the significance of the last lagged di erence is greater
than 1.6 then set = max and perform the unit root test. Otherwise,
reduce the lag length by one and repeat the process.
A useful rule of thumb for determining max, suggested by Schwert

(1989), is

max =

"
12 ·

µ
100

¶1 4
#

(4.5)

where [] denotes the integer part of . This choice allows max to grow
with the sample so that the ADF test regressions (4.3) and (4.4) are valid
if the errors follow an ARMA process with unknown order.

Example 19 Testing for a unit root in exchange rate data using ADF tests

To illustrate the ADF test procedure, consider testing for a unit root
in the logarithm of the US/CA monthly spot exchange rate, denoted ,
over the 30 year period 1976 - 1996. Figure 4.4 shows as well as the
sample autocorrelations for these series. The data and plots are created
with the S-PLUS commands

> uscn.spot = lexrates.dat[,"USCNS"]

> uscn.spot@title = "Log US/CN spot exchange rate"

> par(mfrow=c(2,2))

> plot.timeSeries(uscn.spot, reference.grid=F,

+ main="Log of US/CN spot exchange rate")

122 4. Unit Root Tests

Log of US/CN spot exchange rate

1976 1980 1984 1988 1992 1996

-0
.3

5
-0

.1
5

0.
00

Lag

AC
F

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : uscn.spot

First difference of log US/CN spot exchange rate

1976 1980 1984 1988 1992 1996

-0
.0

6
-0

.0
2

0.
02

Lag

AC
F

0 5 10 15 20

-0
.2

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : diff(uscn.spot)

FIGURE 4.4. US/CN spot rate, first di erence and SACF.

> xx = acf(uscn.spot)

> plot.timeSeries(diff(uscn.spot), reference.grid=F,

+ main="First difference of log US/CN spot exchange rate")

> xx = acf(diff(uscn.spot))

Clearly, exhibits random walk like behavior with no apparent posi-
tive or negative drift. However, behaves very much like a white noise
process. The appropriate trend specification is to include a constant in the
test regression. Regarding the maximum lag length for the Ng-Perron pro-
cedure, given the lack of serial correlation in a conservative choice is

max = 6. The ADF t-statistic computed from the test regression with a
constant and = 6 lags can be computed using the S+FinMetrics function
unitroot as follows

> adft.out = unitroot(uscn.spot, trend="c", statistic="t",

+ method="adf", lags=6)

> class(adft.out)

[1] "unitroot"

The output of unitroot is an object of class “unitroot” for which there
are print and summary methods. Typing the name of the object invokes
the print method and displays the basic test result

> adft.out

Test for Unit Root: Augmented DF Test

4.3 Autoregressive Unit Root Tests 123

Null Hypothesis: there is a unit root

Type of Test: t-test

Test Statistic: -2.6

P-value: 0.09427

Coefficients:

lag1 lag2 lag3 lag4 lag5 lag6 constant

-0.0280 -0.1188 -0.0584 -0.0327 -0.0019 0.0430 -0.0075

Degrees of freedom: 239 total; 232 residual

Time period: from Aug 1976 to Jun 1996

Residual standard error: 0.01386

With = 6 the ADF t-statistic is -2.6 and has a -value (computed using
punitroot) of 0.094. Hence we do not reject the unit root null at the 9.4%
level. The small -value here may be due to the inclusion of superfluous lags.
To see the significance of the lags in the test regression, use the summary
method

> summary(adft.out)

Test for Unit Root: Augmented DF Test

Null Hypothesis: there is a unit root

Type of Test: t test

Test Statistic: -2.6

P-value: 0.09427

Coefficients:

Value Std. Error t value Pr(>|t|)

lag1 -0.0280 0.0108 -2.6004 0.0099

lag2 -0.1188 0.0646 -1.8407 0.0669

lag3 -0.0584 0.0650 -0.8983 0.3700

lag4 -0.0327 0.0651 -0.5018 0.6163

lag5 -0.0019 0.0651 -0.0293 0.9766

lag6 0.0430 0.0645 0.6662 0.5060

constant -0.0075 0.0024 -3.0982 0.0022

Regression Diagnostics:

R-Squared 0.0462

Adjusted R-Squared 0.0215

Durbin-Watson Stat 2.0033

Residual standard error: 0.01386 on 235 degrees of freedom

F-statistic: 1.874 on 6 and 232 degrees of freedom, the

124 4. Unit Root Tests

p-value is 0.08619

Time period: from Aug 1976 to Jun 1996

The results indicate that too many lags have been included in the test
regression. Following the Ng-Perron backward selection procedure = 2
lags are selected. The results are

> adft.out = unitroot(uscn.spot, trend="c", lags=2)

> summary(adft.out)

Test for Unit Root: Augmented DF Test

Null Hypothesis: there is a unit root

Type of Test: t test

Test Statistic: -2.115

P-value: 0.2392

Coefficients:

Value Std. Error t value Pr(>|t|)

lag1 -0.0214 0.0101 -2.1146 0.0355

lag2 -0.1047 0.0635 -1.6476 0.1007

constant -0.0058 0.0022 -2.6001 0.0099

Regression Diagnostics:

R-Squared 0.0299

Adjusted R-Squared 0.0218

Durbin-Watson Stat 2.0145

Residual standard error: 0.01378 on 239 degrees of freedom

F-statistic: 3.694 on 2 and 240 degrees of freedom, the

p-value is 0.02629

Time period: from Apr 1976 to Jun 1996

With 2 lags the ADF t-statistic is -2.115, the -value 0.239 and we have
greater evidence for a unit root in . A similar result is found with the
ADF normalized bias statistic

> adfn.out = unitroot(uscn.spot, trend="c", lags=2,

+ statistic="n")

> adfn.out

Test for Unit Root: Augmented DF Test

Null Hypothesis: there is a unit root

Type of Test: normalized test

Test Statistic: -5.193

P-value: 0.4129

4.3 Autoregressive Unit Root Tests 125

Log of S&P 500 index

1990 1992 1994 1996 1998 2000

0.
5

1.
5

2.
5

3.
5

4.
5

Lag

AC
F

0 5 10 15 20

-0
.2

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : lnp

First difference of log S&P 500 Index

1990 1992 1994 1996 1998 2000

-0
.4

-0
.2

0.
0

0.
2

Lag

AC
F

0 5 10 15 20

-0
.2

0.
2

0.
6

1.
0

 Series : diff(lnp)

FIGURE 4.5. Log prices on the S&P 500 index, first di erence and SACF.

Coefficients:

lag1 lag2 constant

-0.0214 -0.1047 -0.0058

Degrees of freedom: 243 total; 240 residual

Time period: from Apr 1976 to Jun 1996

Residual standard error: 0.01378

Example 20 Testing for a unit root in log stock prices

The log levels of asset prices are usually treated as (1) with drift. Indeed,
the random walk model of stock prices is a special case of an (1) process.
Consider testing for a unit root in the log of the monthly S&P 500 index,
, over the period January 1990 through January 2001. The data is taken

from the S+FinMetrics “timeSeries” singleIndex.dat. The data and
various plots are created with the S-PLUS commands

> lnp = log(singleIndex.dat[,1])

> lnp@title = "Log of S&P 500 Index"

> par(mfrow=c(2,2))

> plot.timeSeries(lnp, reference.grid=F,

+ main="Log of S&P 500 index")

> acf.plot(acf(lnp,plot=F))

> plot.timeSeries(diff(lnp), reference.grid=F,

126 4. Unit Root Tests

+ main="First difference of log S&P 500 Index")

> acf.plot(acf(diff(lnp),plot=F))

and are illustrated in Figure 4.5. Clearly, the is nonstationary due to
the positive trend. Also, there appears to be some negative autocorrelation
at lag one in . The null hypothesis to be tested is that is (1) with
drift, and the alternative is that the is (0) about a deterministic time
trend. The ADF t-statistic to test these hypotheses is computed with a
constant and time trend in the test regression and four lags of (selecting
using the Ng-Perron backward selection method)

> adft.out = unitroot(lnp, trend="ct", lags=4)

> summary(adft.out)

Test for Unit Root: Augmented DF Test

Null Hypothesis: there is a unit root

Type of Test: t test

Test Statistic: -1.315

P-value: 0.8798

Coefficients:

Value Std. Error t value Pr(>|t|)

lag1 -0.0540 0.0410 -1.3150 0.1910

lag2 -0.1869 0.0978 -1.9111 0.0583

lag3 -0.0460 0.0995 -0.4627 0.6444

lag4 0.1939 0.0971 1.9964 0.0481

constant 0.1678 0.1040 1.6128 0.1094

time 0.0015 0.0014 1.0743 0.2848

Regression Diagnostics:

R-Squared 0.1016

Adjusted R-Squared 0.0651

Durbin-Watson Stat 1.9544

Residual standard error: 0.1087 on 125 degrees of freedom

F-statistic: 2.783 on 5 and 123 degrees of freedom, the

p-value is 0.0204

Time period: from May 1990 to Jan 2001

ADF = 1 315 and has a -value of 0.8798, so one clearly does not reject
the null that is (1) with drift.

4.3 Autoregressive Unit Root Tests 127

4.3.4 Phillips-Perron Unit Root Tests

Phillips and Perron (1988) developed a number of unit root tests that have
become popular in the analysis of financial time series. The Phillips-Perron
(PP) unit root tests di er from the ADF tests mainly in how they deal
with serial correlation and heteroskedasticity in the errors. In particular,
where the ADF tests use a parametric autoregression to approximate the
ARMA structure of the errors in the test regression, the PP tests ignore
any serial correlation in the test regression. The test regression for the PP
tests is

= 0D + 1 +

where is (0) and may be heteroskedastic. The PP tests correct for
any serial correlation and heteroskedasticity in the errors of the test
regression by directly modifying the test statistics =0 and ˆ. These
modified statistics, denoted and , are given by

=

µ
ˆ2

ˆ2

¶1 2

· =0
1

2

Ã
ˆ2 ˆ2

ˆ2

!
·
µ

· SE(ˆ)
ˆ2

¶
= ˆ

1

2

2 · SE(ˆ)
ˆ2

(ˆ
2

ˆ2)

The terms ˆ2 and ˆ
2
are consistent estimates of the variance parameters

2 = lim 1
X
=1

[2]

2 = lim
X
=1

£
1 2

¤
where =

P
=1 . The sample variance of the least squares residual

ˆ is a consistent estimate of 2, and the Newey-West long-run variance
estimate of using ˆ is a consistent estimate of 2.
Under the null hypothesis that = 0, the PP and statistics have

the same asymptotic distributions as the ADF t-statistic and normalized
bias statistics. One advantage of the PP tests over the ADF tests is that
the PP tests are robust to general forms of heteroskedasticity in the error
term . Another advantage is that the user does not have to specify a lag
length for the test regression.

Example 21 Testing for a unit root in exchange rates using the PP tests

Recall the arguments for the S+FinMetrics unitroot function are

> args(unitroot)

function(x, trend = "c", method = "adf",

128 4. Unit Root Tests

statistic = "t",lags = 1, bandwidth = NULL,

window = "bartlett", asymptotic = F, na.rm = F)

The PP statistics may be computed by specifying the optional argument
method="pp". When method="pp" is chosen, the argument window speci-
fies the weight function and the argument bandwidth determines the lag
truncation parameter used in computing the long-run variance parameter
2. The default bandwidth is the integer part of (4 · (100))2 9 where
is the sample size.
Now, consider testing for a unit root in the log of the US/CN spot ex-

change rate using the PP and statistics:

> unitroot(uscn.spot, trend="c", method="pp")

Test for Unit Root: Phillips-Perron Test

Null Hypothesis: there is a unit root

Type of Test: t-test

Test Statistic: -1.97

P-value: 0.2999

Coefficients:

lag1 constant

-0.0202 -0.0054

Degrees of freedom: 244 total; 242 residual

Time period: from Mar 1976 to Jun 1996

Residual standard error: 0.01383

> unitroot(uscn.spot, trend="c", method="pp", statistic="n")

Test for Unit Root: Phillips-Perron Test

Null Hypothesis: there is a unit root

Type of Test: normalized test

Test Statistic: -4.245

P-value: 0.5087

Coefficients:

lag1 constant

-0.0202 -0.0054

Degrees of freedom: 244 total; 242 residual

Time period: from Mar 1976 to Jun 1996

Residual standard error: 0.01383

As with the ADF tests, the PP tests do not reject the null that the log
of the US/CN spot rate is (1) at any reasonable significance level.

4.4 Stationarity Tests 129

4.4 Stationarity Tests

The ADF and PP unit root tests are for the null hypothesis that a time
series is (1). Stationarity tests, on the other hand, are for the null that
is (0). The most commonly used stationarity test, the KPSS test, is due

to Kwiatkowski, Phillips, Schmidt, and Shin (1992). They derived their test
by starting with the model

= 0D + + (4.6)

= 1 + (0 2)

where D contains deterministic components (constant or constant plus
time trend), is (0) and may be heteroskedastic. Notice that is a pure
random walk with innovation variance 2. The null hypothesis that is
(0) is formulated as 0 :

2 = 0, which implies that is a constant.
Although not directly apparent, this null hypothesis also implies a unit
moving average root in the ARMA representation of . The KPSS test
statistic is the Lagrange multiplier (LM) or score statistic for testing 2 = 0
against the alternative that 2 0 and is given by

KPSS =

Ã
2
X
=1

ˆ2

!
ˆ2 (4.7)

where ˆ =
P

=1 ˆ , ˆ is the residual of a regression of on D and ˆ
2

is a consistent estimate of the long-run variance of using ˆ . Under the
null that is (0), Kwiatkowski, Phillips, Schmidt, and Shin showed that
KPSS converges to a function of standard Brownian motion that depends
on the form of the deterministic terms D but not their coe cient values
In particular, if D = 1 then

KPSS

Z 1

0
1() (4.8)

where 1() = () (1) and () is a standard Brownian motion for
[0 1]. If D = (1)0 then

KPSS

Z 1

0
2() (4.9)

where 2() = () + (2 3) (1) + 6 (2 1)
R 1
0

() . Critical
values from the asymptotic distributions (4.8) and (4.9) must be obtained
by simulation methods, and these are summarized in Table 4.1.
The stationary test is a one-sided right-tailed test so that one rejects the

null of stationarity at the 100 · % level if the KPSS test statistic (4.7) is
greater than the 100 · (1)% quantile from the appropriate asymptotic
distribution (4.8) or (4.9).

130 4. Unit Root Tests

Right tail quantiles
Distribution 0.90 0.925 0.950 0.975 0.99R 1
0 1() 0.349 0.396 0.446 0.592 0.762R 1
0 2() 0.120 0.133 0.149 0.184 0.229

TABLE 4.1. Quantiles of the distribution of the KPSS statistic

4.4.1 Simulating the KPSS Distributions

The distributions in (4.8) and (4.9) may be simulated using methods similar
to those used to simulate the DF distribution. The following S-PLUS code
is used to create the quantiles in Table 4.1:

wiener2 = function(nobs) {

e = rnorm(nobs)

create detrended errors

e1 = e - mean(e)

e2 = residuals(OLS(e~seq(1,nobs)))

compute simulated Brownian Bridges

y1 = cumsum(e1)

y2 = cumsum(e2)

intW2.1 = nobs^(-2) * sum(y1^2)

intW2.2 = nobs^(-2) * sum(y2^2)

ans = list(intW2.1=intW2.1,

intW2.2=intW2.2)

ans

}

#

simulate KPSS distributions

#

> nobs = 1000

> nsim = 10000

> KPSS1 = rep(0,nsim)

> KPSS2 = rep(0,nsim)

> for (i in 1:nsim) {

BN.moments = wiener2(nobs)

KPSS1[i] = BN.moments$intW2.1

KPSS2[i] = BN.moments$intW2.2

}

#

compute quantiles of distribution

#

> quantile(KPSS1, probs=c(0.90,0.925,0.95,0.975,0.99))

90.0% 92.5% 95.0% 97.5% 99.0%

0.34914 0.39634 0.46643 0.59155 0.76174

> quantile(KPSS2, probs=c(0.90,0.925,0.95,0.975,0.99))

4.4 Stationarity Tests 131

90.0% 92.5% 95.0% 97.5% 99.0%

0.12003 0.1325 0.14907 0.1841 0.22923

Currently, only asymptotic critical values are available for the KPSS test.

4.4.2 Testing for Stationarity Using the S+FinMetrics
Function stationaryTest

The S+FinMetrics function stationaryTest may be used to test the null
hypothesis that a time series is (0) based on the KPSS statistic (4.7).
The function stationaryTest has arguments

> args(stationaryTest)

function(x, trend = "c", bandwidth = NULL, na.rm = F)

where x represents a univariate vector or “timeSeries”. The argument
trend specifies the deterministic trend component in (4.6) and valid choices
are "c" for a constant and "ct" for a constant and time trend. The argu-
ment bandwidth determines the lag truncation parameter used in com-
puting the long-run variance parameter 2. The default bandwidth is the
integer part of (4 · (100))2 9 where is the sample size. The output of
stationaryTest is an object of class “stationaryTest” for which there is
only a print method. The use of stationaryTest is illustrated with the
following example.

Example 22 Testing for stationarity in exchange rates

Consider the US/CN spot exchange data used in the previous examples.
To test the null that is (0), the KPSS statistic is computed using a
constant in (4.6):

> kpss.out = stationaryTest(uscn.spot, trend="c")

> class(kpss.out)

[1] "stationaryTest"

> kpss.out

Test for Stationarity: KPSS Test

Null Hypothesis: stationary around a constant

Test Statistics:

USCNS

1.6411**

* : significant at 5% level

** : significant at 1% level

132 4. Unit Root Tests

Total Observ.: 245

Bandwidth : 5

The KPSS statistic is 1.641 and is greater than the 99% quantile, 0.762,
from Table.4.1. Therefore, the null that is (0) is rejected at the 1%
level.

4.5 Some Problems with Unit Root Tests

The ADF and PP tests are asymptotically equivalent but may di er sub-
stantially in finite samples due to the di erent ways in which they correct
for serial correlation in the test regression. In particular, Schwert (1989)
found that if has an ARMA representation with a large and negative
MA component, then the ADF and PP tests are severely size distorted
(reject (1) null much too often when it is true) and that the PP tests are
more size distorted than the ADF tests. Recently, Perron and Ng (1996)
have suggested useful modifications to the PP tests to mitigate this size
distortion. Caner and Killian (2001) have found similar problems with the
KPSS test.
In general, the ADF and PP tests have very low power against (0)

alternatives that are close to being (1). That is, unit root tests cannot
distinguish highly persistent stationary processes from nonstationary pro-
cesses very well. Also, the power of unit root tests diminish as deterministic
terms are added to the test regressions. That is, tests that include a con-
stant and trend in the test regression have less power than tests that only
include a constant in the test regression. For maximum power against very
persistent alternatives the recent tests proposed by Elliot, Rothenberg, and
Stock (1996), and Ng and Perron (2001) should be used. These tests are
described in the next section.

4.6 E cient Unit Root Tests

Assume that observations are generated by

= 0D + = 1 +

where D represents a vector of deterministic terms, [0] and is
a 1-summable linear process with long-run variance 2 Typically = 1
or D = [1] Consider testing the null hypothesis = 1 versus | |
1 If the distribution of the data were known then the Neyman-Pearson
Lemma gives the test with best power against any point alternative ¯ The
power of this optimal test plotted as a function of ¯ gives an upper bound
(envelope) for the power of any test based on the same distribution of the

4.6 E cient Unit Root Tests 133

data. An undesirable feature of this power envelope is that it depends on the
specific value of ¯ so that there is no uniformly most power full test that
can be used against all alternatives | | 1 However, using asymptotic
approximations based on the local-to-unity alternative = 1 + for

0 Elliot, Rothenberg, and Stock (2001) (hereafter ERS) derived a
class of test statistics that come very close to the power envelope for a
wide range of alternatives. These tests are referred to as e cient unit root
tests, and they can have substantially higher power than the ADF or PP
unit root tests especially when is close to unity.

4.6.1 Point Optimal Tests

The starting point for the class of e cient tests is the feasible test statistic
that is optimal (asymptotically) for the point alternative ¯ = 1 ¯ ¯ 0
This test is constructed as follows. Define the dimensional column vector
y and × dimensional matrix D by

y = (1 2 1 1)
0

D = (D0
1 D

0
2 D0

1 D0 D0
1)
0

All of the elements of y and D except the first, are quasi-di erenced
using the operator 1 Next, for any value of define () as the sum
of squared residuals from a least squares regression of y on D That is,

() = ỹ0 ỹ

where ỹ = y D ˆ and ˆ = (D0 D) 1D0 y ERS showed that the

feasible point optimal unit root test against the alternative ¯ = 1 ¯ has
the form

=
£
(¯) ¯ (1)

¤
ˆ2 (4.10)

where ˆ
2
is a consistent estimate of 2 ERS derived the asymptotic dis-

tribution of for = 1 and = (1) and provided asymptotic and
finite sample critical values for tests of size 1% 2 5% 5% and 10%4

Through a series of simulation experiments, ERS discovered that if ¯ =
1+¯ is chosen such that the power of is tangent to the power envelope
at 50% power then the overall power of for a wide range of ¯ values
less than unity, is close to the power envelope. For a given sample size
the value of ¯ that results in having 50% power depends on ¯ and the
form of the deterministic terms in D ERS showed that if = 1 then
¯= 7, and if D = (1) then ¯= 13 5
The ERS statistic may be computed using the function unitroot

with method="ers".

4These critical values are given in ERS Table I panels A and B.

134 4. Unit Root Tests

4.6.2 DF-GLS Tests

In the construction of the ERS feasible point optimal test (4.10), the un-
known parameters of the trend function are e ciently estimated under
the alternative model with ¯ = 1 + ¯ That is, ˆ¯ = (D0̄ D¯) 1D0̄ y¯
ERS used this insight to derive an e cient version of the ADF -statistic,
which they called the DF-GLS test . They constructed this -statistic as fol-
lows. First, using the trend parameters ˆ¯ estimated under the alternative,
define the detrended data

= ˆ0¯D

ERS called this detrending procedure GLS detrending5. Next, using the
GLS detrended data, estimate by least squares the ADF test regression
which omits the deterministic terms

= 1 +
X
=1

+ (4.11)

and compute the -statistic for testing = 0 When = 1 ERS showed
that the asymptotic distribution of the DF-GLS test is the same as the
ADF -test, but has higher asymptotic power (against local alternatives)
than the DF -test. Furthermore, ERS show that the DF-GLS test has
essentially the same asymptotic power as the ERS point optimal test when
¯= 7 When D = (1) the asymptotic distribution of the DF-GLS test,
however, is di erent from the ADF -test. ERS and Ng and Perron (2001)
provided critical values for the DF-GLS test in this case. ERS showed that
the DF-GLS test has the same asymptotic power as the ERS point optimal
test with = 13 5 and has higher power than the DF -test against local
alternatives.
The DF-GLS -test may be computed using the function unitroot with

method="dfgls".

4.6.3 Modified E cient PP Tests

Ng and Perron (2001) used the GLS detrending procedure of ERS to create
e cient versions of the modified PP tests of Perron and Ng (1996). These
e cient modified PP tests do not exhibit the severe size distortions of the
PP tests for errors with large negative MA or AR roots, and they can have
substantially higher power than the PP tests especially when is close to
unity.

5For deterministicly trending trend data with ergodic-stationary deviations from
trend, Grenander’s Theorem gives the result that least squares estimates of the trend
parameters ignoring serial correlation are asymptotically equivalent to the generalized
least squares estimates that incorporate serial correlation.

4.6 E cient Unit Root Tests 135

Using the GLS detrended data , the e cient modified PP tests are
defined as

MZ = (1 ˆ2)

Ã
2 2

X
=1

1

! 1

MSB =

Ã
2
X
=1

1
ˆ2
!1 2

MZ = MZ ×MSB

The statistics MZ and MZ are e cient versions of the PP and
tests that have much smaller size distortions in the presence of negative
moving average errors. Ng and Perron derived the asymptotic distributions
of these statistics under the local alternative = 1 for = 1 and
D = (1) In particular, they showed that the asymptotic distribution of
MZ is the same as the DF-GLS -test.
The statistic MZ may be computed using the function unitroot with

method="mpp".

4.6.4 Estimating 2

Ng and Perron (2001) emphasized that the estimation of the long-run vari-
ance 2 has important implications for the finite sample behavior of the
ERS point optimal test and the e cient modified PP tests. They stressed
that an autoregressive estimate of 2 should be used to achieve stable finite
sample size. They recommended estimating 2 from the ADF test regres-
sion (4.11) based on the GLS detrended data:

ˆ
AR =

ˆ2³
1 ˆ(1)

´2
where ˆ(1) =

P
=1
ˆ and ˆ2 = () 1

P
= +1 ˆ

2 are obtained from
(4.11) by least squares estimation.

4.6.5 Choosing Lag Lengths to Achieve Good Size and Power

Ng and Perron also stressed that good size and power properties of the all
the e cient unit root tests rely on the proper choice of the lag length used
for specifying the test regression (4.11) They argued, however, that tradi-
tional model selection criteria such as AIC and BIC are not well suited for
determining with integrated data. Ng and Perron suggested the modified
information criteria (MIC) that selects as = argmin maxMIC()

136 4. Unit Root Tests

where

MIC() = ln(ˆ2) +
(() +)

max

() =
ˆ2
P

= max+1 1

ˆ2

ˆ2 =
1

max

X
= max+1

ˆ2

with 0 and 0 as The maximum lag, max may be
set using (4.5). The modified AIC (MAIC) results when = 2, and the
modified BIC (MBIC) results when = ln(max) Through a series
of simulation experiments, Ng and Perron recommended selecting the lag
length by minimizing the MAIC.

Example 23 E cient unit root tests

To illustrate the e cient unit root tests, consider testing for a unit root
in the 30-day interest rate di erential formed from the di erence between
monthly US and UK spot exchange rates:

> fd = lexrates.dat[,"USUKS"] - lexrates.dat[,"USUKF"]

> colIds(fd) = "USUKFD"

> fd@title = "US/UK 30-day interest rate differential"

The interest rate di erential, its SACF, and the SACF of its first di er-
ence are depicted in Figure 4.6. The graphs clearly show that the interest
rate di erential has a high degree of persistence, and that there is little
persistence in the first di erence.
The ERS test, DF-GLS -test and Ng-Perron MZ test all with = 1

may be computed using the function unitroot as follows:

> ers = unitroot(fd,trend="c",method="ers",max.lags=12)

> dfgls = unitroot(fd,trend="c",method="dfgls",max.lags=12)

> mpp = unitroot(fd,trend="c",method="mpp",max.lags=12)

Since the optional argument lags is omitted, the lag length for the test
regression (4.11) is determined by minimizing the MAIC with max = 12
set by the optional argument max.lags=12. The results of the e cient unit
root tests are:

> ers.test

Test for Unit Root: Elliott-Rothenberg-Stock Test

Null Hypothesis: there is a unit root

Test Statistic: 1.772**

4.6 E cient Unit Root Tests 137

US/UK 30-day interest rate differential

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

-0
.0

04
0.

01
2

Lag

0 5 10 15 20

0.
0

0.
4

0.
8

 Series : fd

Lag

0 5 10 15 20

-0
.2

0.
2

0.
6

1.
0

 Series : diff(fd)

FIGURE 4.6. 30-day US/UK interest rate di erential.

* : significant at 5% level

** : significant at 1% level

Coefficients:

lag1

-0.07

Degrees of freedom: 244 total; 243 residual

Time period: from Mar 1976 to Jun 1996

Residual standard error: 0.00116

> dfgls.test

Test for Unit Root: DF Test with GLS detrending

Null Hypothesis: there is a unit root

Type of Test: t-test

Test Statistic: -2.9205**

* : significant at 5% level

** : significant at 1% level

Coefficients:

lag1

138 4. Unit Root Tests

-0.07

Degrees of freedom: 244 total; 243 residual

Time period: from Mar 1976 to Jun 1996

Residual standard error: 0.00116

> mpp.test

Test for Unit Root: Modified Phillips-Perron Test

Null Hypothesis: there is a unit root

Type of Test: t-test

Test Statistic: -2.8226**

* : significant at 5% level

** : significant at 1% level

Coefficients:

lag1

-0.07

Degrees of freedom: 244 total; 243 residual

Time period: from Mar 1976 to Jun 1996

Residual standard error: 0.00116

Minimizing the MAIC gives = 0, and with this lag length all tests reject
the null hypothesis of a unit root at the 1% level.

4.7 References

Caner, M. and L. Kilian (2001). “Size Distortions of Tests of the Null
Hypothesis of Stationarity: Evidence and Implications for the PPP De-
bate,” Journal of International Money and Finance, 20, 639-657.

Dickey, D. and W. Fuller (1979). “Distribution of the Estimators for
Autoregressive Time Series with a Unit Root,” Journal of the American
Statistical Association, 74, 427-431.

Dickey, D. and W. Fuller (1981). “Likelihood Ratio Statistics for Au-
toregressive Time Series with a Unit Root,” Econometrica, 49, 1057-1072.

Elliot, G., T.J. Rothenberg, and J.H. Stock (1996). “E cient Tests
for an Autoregressive Unit Root,” Econometrica, 64, 813-836.

Fuller, W. (1996). Introduction to Statistical Time Series, Second Edi-
tion. John Wiley, New York.

4.7 References 139

Hamilton, J. (1994). Time Series Analysis. Princeton University Press,
Princeton, NJ.

Hatanaka, T. (1995). Time-Series-Based Econometrics: Unit Roots and
Co-Integration. Oxford University Press, Oxford.

Kwiatkowski, D., P.C.B. Phillips, P. Schmidt and Y. Shin (1992).
“Testing the Null Hypothesis of Stationarity Against the Alternative of a
Unit Root,” Journal of Econometrics, 54, 159-178.

MacKinnon, J. (1996). “Numerical Distribution Functions for Unit Root
and Cointegration Tests,” Journal of Applied Econometrics, 11, 601-618.

Maddala, G.S. and I.-M. Kim (1998). Unit Roots, Cointegration and
Structural Change. Oxford University Press, Oxford.

Ng, S., and P. Perron (1995). “Unit Root Tests in ARMA Models with
Data-Dependent Methods for the Selection of the Truncation Lag,” Journal
of the American Statistical Association, 90, 268-281.

Ng, S., and P. Perron (2001). “Lag Length Selection and the Construc-
tion of Unit Root Tests with Good Size and Power,” Econometrica, 69,
1519-1554.

Perron, P. and S. Ng. (1996). “Useful Modifications to Some Unit Root
Tests with Dependent Errors and their Local Asymptotic Properties,” Re-
view of Economic Studies, 63, 435-463.

Phillips, P.C.B. (1987). “Time Series Regression with a Unit Root,”
Econometrica, 55, 227-301.

Phillips, P.C.B. and P. Perron (1988). “Testing for Unit Roots in
Time Series Regression,” Biometrika, 75, 335-346.

Phillips, P.C.B. and Z. Xiao (1998). “A Primer on Unit Root Testing,”
Journal of Economic Surveys, 12, 423-470.

Schwert, W. (1989). “Test for Unit Roots: A Monte Carlo Investigation,”
Journal of Business and Economic Statistics, 7, 147-159.

Said, S.E. and D. Dickey (1984). “Testing for Unit Roots in Autore-
gressive Moving-Average Models with Unknown Order,” Biometrika, 71,
599-607.

Stock, J.H. (1994). “Units Roots, Structural Breaks and Trends,” in R.F.
Engle and D.L. McFadden (eds.), Handbook of Econometrics, Volume IV.
North Holland, New York.

5
Modeling Extreme Values

5.1 Introduction

One of the goals of financial risk management is the accurate calculation of
the magnitudes and probabilities of large potential losses due to extreme
events such as stock market crashes, currency crises, trading scandals, or
large bond defaults. In statistical terms, these magnitudes and probabili-
ties are high quantiles and tail probabilities of the probability distribution
of losses. The importance of risk management in finance cannot be over-
stated. The catastrophes of October 17, 1987, Long-Term Capital Manage-
ment, Barings PLC, Metallgesellschaft, Orange County and Daiwa clearly
illustrate the losses that can occur as the result of extreme market move-
ments1. The objective of extreme value analysis in finance is to quantify
the probabilistic behavior of unusually large losses and to develop tools for
managing extreme risks.
Traditional parametric and nonparametric methods for estimating distri-

butions and densities work well in areas of the empirical distribution where
there are many observations, but they often give very poor fits to the ex-
treme tails of the distribution. This result is particularly troubling because
the management of extreme risk often requires estimating quantiles and tail
probabilities beyond those observed in the data. The methods of extreme
value theory focus on modeling the tail behavior of a loss distribution using
only extreme values rather than all of the data.

1See Jorian (2001) for a detailed description of these financial disasters.

142 5. Modeling Extreme Values

This chapter is organized as follows. Section 5.2 covers the modeling of
block maximum and minimum values using the generalized extreme value
(GEV) distribution. The maximum likelihood estimator for the parameters
of the GEV distribution is derived and analyzed, and graphical diagnostics
for evaluating the fit are discussed. The use of the GEV distribution is
illustrated with examples from finance, and the concept of return level
is introduced. Section 5.3 discusses the modeling of extremes over high
thresholds or “peaks over thresholds”. This technique is well suited for
the estimation of common risk measures like value-at-risk and expected
shortfall. Parametric models utilizing the generalized Pareto distribution
as well as non-parametric models are presented.
Two excellent textbooks on extreme value theory are Embrechts, Klüppel-

berg and Mikosch (1997) and Coles (2001). Both books provide many ex-
amples utilizing S-PLUS. Less rigorous treatments of extreme value theory
with many examples in finance are given in Alexander (2001), Jorian (2001)
and Tsay (2001). Useful surveys of extreme value theory applied to finance
and risk management are given in Diebold, Schuermann and Stroughair
(1997), Danielsson and de Vries (2001), McNeil (1998) and Longin (2000).
The S+FinMetrics functions for modeling extreme values described in

this chapter are based on the functions in the EVIS (Extreme Values In
S-PLUS) library written by Alexander McNeil, and the EVANESCE (Ex-
treme Value ANalysis Employing Statistical Copula Estimation) library
written by Rene Carmona and Julia Morrison and described in Carmona
and Morrison (2001) and Carmona (2004). The EVANESCE library also
contains an extensive set of functions for analyzing and fitting bivariate
copulas, which are described in Chapter 19.

5.2 Modeling Maxima and Worst Cases

To motivate the importance of the statistical modeling of extreme losses in
finance, consider the following example taken from McNeil (1998). Figure
5.1 shows the daily closing prices and percentage changes in the S&P 500
index over the period January 5, 1960 through October 16, 1987 taken from
the S+FinMetrics “timeSeries” object sp.raw

> spto87 = getReturns(sp.raw, type="discrete", percentage=T)

> par(mfrow=c(2,1))

> plot(sp.raw, main="Daily Closing Prices")

> plot(spto87, main="Daily Percentage Returns")

Before the October crash, the stock market was unusually volatile with
several large price drops in the index resulting in large negative returns. Of
interest is the characterization of the worst case scenario for a future fall
in S&P 500 index utilizing the historical data prior to the crash given in
Figure 5.1. To do this, the following two questions will be addressed:

5.2 Modeling Maxima and Worst Cases 143

Daily Closing Prices

1960 1965 1970 1975 1980 1985

10
0

15
0

20
0

25
0

30
0

Daily Percentage Returns

1960 1965 1970 1975 1980 1985

-6
-4

-2
0

2
4

FIGURE 5.1. Daily closing prices and percentage returns on the S&P 500 Index
from January, 1960 through October 16, 1987.

• What is the probability that next year’s annual maximum negative
return exceeds all previous negative returns? In other words, what is
the probability that next year’s maximum negative return is a new
record?

• What is the 40-year return level of the negative returns? That is, what
is the negative return which, on average, should only be exceeded in
one year every forty years?

To answer these questions, the distribution of extreme negative returns
on S&P 500 index is required. The distribution theory required to analyze
maximum values is briefly discussed in the next section.

5.2.1 The Fisher-Tippet Theorem and the Generalized
Extreme Value Distribution

Let 1 2 be iid random variables representing risks or losses with
an unknown cumulative distribution function (CDF) () = Pr{ }.
Examples of the random risks are losses or negative returns on a financial
asset or portfolio, operational losses, catastrophic insurance claims, and
credit losses. Throughout this chapter, a loss is treated as a positive number
and extreme events occur when losses take values in the right tail of the

144 5. Modeling Extreme Values

loss distribution . Define = max (1) as the worst-case loss
in a sample of losses. An important part of extreme value theory focuses
on the distribution of . From the iid assumption, the CDF of is

Pr{ } = Pr{ 1 } =
Y
=1

() = ()

Since is assumed to be unknown and the empirical distribution function
is often a very poor estimator of (), an asymptotic approximation to

based on the Fisher-Tippet Theorem (Fisher and Tippett, 1928) is used
to make inferences on . Furthermore, since () 0 or 1 as
and is fixed, the asymptotic approximation is based on the standardized
maximum value

= (5.1)

where 0 and are sequences of real numbers such that is in-
terpreted as a scale measure and is interpreted as a location measure.
The Fisher-Tippet Theorem states that if the standardized maximum (5.1)
converges to some non-degenerate distribution function, it must be a gen-
eralized extreme value (GEV) distribution of the form

() =

½
exp

©
(1 +) 1

ª
exp { exp()}

6= 0 1 + 0
= 0

(5.2)

If (5.1) converges to (5.2), then the CDF of the underlying data is in
the domain of attraction of . The Fisher-Tippet Theorem is the analog
of the Central Limit Theorem for extreme values. Whereas the Central
Limit Theorem applies to normalized sums of random variables, the Fisher-
Tippet Theorem applies to standardized maxima of random variables. The
parameter is a shape parameter and determines the tail behavior of .
The parameter = 1 is called the tail index if 0.
The tail behavior of the distribution of the underlying data deter-

mines the shape parameter of the GEV distribution (5.2). If the tail of
declines exponentially, then is of the Gumbel type and = 0. Dis-

tributions in the domain of attraction of the Gumbel type are thin tailed
distributions such as the normal, log-normal, exponential, and gamma. For
these distributions, all moments usually exist. If the tail of declines by
a power function, i.e.

1 () = 1 ()

for some slowly varying function (), then is of the Fréchet type and
02. Distributions in the domain of attraction of the Fréchet type include

fat tailed distributions like the Pareto, Cauchy, Student-t, alpha-stable with

2A function on (0) is slowly varying if lim () () = 1 for 0.

5.2 Modeling Maxima and Worst Cases 145

characteristic exponent in (0 2) as well as various mixture models. Not all
moments are finite for these distributions. In fact, it can be shown that
[] = for = 1 . Last, if the tail of is finite then is of

the Weibull type and 0. Distributions in the domain of attraction of
the Weibull type include distributions with bounded support such as the
uniform and beta distributions. All moments exist for these distributions.
The Fisher-Tippet Theorem applies to iid observations. However, the

GEV distribution (5.2) may be shown (e.g. Embrechts et. al. (1997)) to
be the correct limiting distribution for maxima computed from stationary
time series including stationary GARCH-type processes.
The GEV distribution (5.2) characterizes the limiting distribution of the

standardized maximum (5.1). It turns out that the GEV distribution (5.2)
is invariant to location and scale transformations such that for location and
scale parameters and 0

() =

µ ¶
= () (5.3)

The Fisher-Tippet Theorem may then be interpreted as follows. For large
enough

Pr { } = Pr
½ ¾

()

Letting = + then

Pr{ }
µ ¶

= () (5.4)

The result (5.4) is used in practice to make inferences about the maximum
loss .

Example 24 Plots of GEV distributions

The S+FinMetrics/EVIS functions pgev, qgev, dgev and rgev compute
cumulative probability, quantiles, density, and random generation, respec-
tively, from the GEV distribution (5.3) for 6= 0 and general values for
, and . For example, the S-PLUS code to compute and plot the GEV
CDF and the pdf for a Fréchet (= 0 5), Weibull (= 0 5) and
Gumbell (= 0) is

> z.vals = seq(-5, 5, length=200)

> cdf.f = ifelse((z.vals > -2), pgev(z.vals,xi=0.5), 0)

> cdf.w = ifelse((z.vals < 2), pgev(z.vals,xi=-0.5), 1)

> cdf.g = exp(-exp(-z.vals))

> plot(z.vals, cdf.w, type="l", xlab="z", ylab="H(z)")

> lines(z.vals, cdf.f, type="l", lty=2)

> lines(z.vals, cdf.g, type="l", lty=3)

> legend(-5, 1, legend=c("Weibull H(-0.5,0,1)",

146 5. Modeling Extreme Values

z

H
(z

)

-4 -2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Weibull H(-0.5,0,1)
Frechet H(0.5,0,1)
Gumbel H(0,0,1)

FIGURE 5.2. Generalized extreme value CDFs for Fréchet (= 0 5),
Weibull (= 0 5) and Gumbell (= 0).

z

h(
z)

-4 -2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Weibull H(-0.5,0,1)
Frechet H(0.5,0,1)
Gumbel H(0,0,1)

FIGURE 5.3. Generalized extreme value pdfs for Fréchet (= 0 5), Weibull
(= 0 5) and Gumbell (= 0).

5.2 Modeling Maxima and Worst Cases 147

+ "Frechet H(0.5,0,1)","Gumbel H(0,0,1)"), lty=1:3)

> # pdfs

> pdf.f = ifelse((z.vals > -2), dgev(z.vals,xi=0.5), 0)

> pdf.w = ifelse((z.vals < 2), dgev(z.vals,xi=-0.5), 0)

> pdf.g = exp(-exp(-z.vals))*exp(-z.vals)

> plot(z.vals, pdf.w, type="l", xlab="z", ylab="h(z)")

> lines(z.vals, pdf.f, type="l", lty=2)

> lines(z.vals, pdf.g, type="l", lty=3)

> legend(-5.25, 0.4, legend=c("Weibull H(-0.5,0,1)",

+ "Frechet H(0.5,0,1)","Gumbel H(0,0,1)"), lty=1:3)

The CDF and pdf values are illustrated in Figures 5.2 and 5.3. Notice
that the Fréchet is only defined for 2, and that the Weibull is only
defined for 2.

5.2.2 Estimation of the GEV Distribution

The GEV distribution (5.4) depends on three parameters: the shape pa-
rameter and the standardizing constants and . These parameters
may be estimated using parametric maximum likelihood estimation (MLE).
The S+FinMetrics/EVIS functions gev and gumbel fit the GEV distribu-
tion (5.2) by MLE to block maxima data. The calculation of the parametric
MLE is briefly described below and illustrated with examples.

Parametric Maximum Likelihood Estimator

Let 1 be identically distributed losses from a sample of size with
unknown CDF and let denote the sample maximum. For inference
on using (5.4) the parameters , and must be estimated. Since
there is only one value of for the entire sample, it is not possible to
form a likelihood function for , and . However, if interest is on the
maximum of over a large finite subsample or block of size , ,
then a sub-sampling method may be used to form the likelihood function
for the parameters , and of the GEV distribution for . To do
this, the sample is divided into non-overlapping blocks of essentially
equal size =

[1 | +1 2 | | (1) +1]

and
()
is defined as the maximum value of in block = 1 .

The likelihood function for the parameters , and of the GEV
distribution (5.4) is then constructed from the sample of block maxima

{ (1) ()}. It is assumed that the block size is su ciently large
so that the Fisher-Tippet Theorem holds.

148 5. Modeling Extreme Values

The log likelihood function assuming iid observations from a GEV dis-
tribution with 6= 0 is

() = ln() (1 + 1)
X
=1

ln

"
1 +

Ã
()

!#
X
=1

"
1 +

Ã
()

!# 1

such that

1 +

Ã
()

!
0

The log-likelihood for the case = 0 (Gumbel family) is

() = ln()
X
=1

Ã
()

!
X
=1

exp

" Ã
()

!#

Details of the maximum likelihood estimation are discussed in Embrechts
et. al. (1997) and Coles (2001). For 0 5 the MLEs for , and
are consistent and asymptotically normally distributed with asymptotic

variance given by the inverse of the observed information matrix. The finite
sample properties of the MLE will depend on the number of blocks and
the block size , see McNeil (1998) for an illustration. There is a trade-o
between bias and variance. The bias of the MLE is reduced by increasing
the block size , and the variance of the MLE is reduced by increasing the
number of blocks .

Example 25 MLE of GEV CDF for block maxima from daily S&P 500
returns

Consider determining the appropriate GEV distribution for the daily
negative returns on S&P 500 index discussed at the beginning of this sec-
tion. A normal qq-plot of the returns computed using

> qqPlot(spto87,strip.text="Daily returns on S&P 500",

+ xlab="Quantiles of standard normal",

+ ylab="Quantiles of S&P 500")

is shown in Figure 5.4. The returns clearly have fatter tails than the normal
distribution which suggests the Fréchet family of GEV distributions with

0 for the block maximum of negative returns.
Before the GEV distribution is fit by MLE, consider first some ex-

ploratory data analysis on the annual block maxima of daily negative

5.2 Modeling Maxima and Worst Cases 149

-6

-4

-2

0

2

4

-4 -2 0 2 4

Daily returns on S&P 500
05/27/1970

10/16/1987

05/28/1962

Quantiles of standard normal

Q
ua

nt
ile

s
of

 S
&

P
 5

00

FIGURE 5.4. Normal qq-plot for the daily percentage returns on the S&P 500
index over the period January 5, 1960 through October 16, 1987.

returns. The block maxima may be easily computed using the function
aggregateSeries:

> annualMax.sp500 = aggregateSeries(-spto87, by="years",

+ FUN=max)

Figure 5.5 created using

> Xn = sort(seriesData(annualMax.sp500))

> par(mfrow=c(2,2))

> plot(annualMax.sp500)

> hist(seriesData(annualMax.sp500),xlab="Annual maximum")

> plot(Xn,-log(-log(ppoints(Xn))),xlab="Annual maximum")

> tmp = records(-spto87)

gives several graphical summaries of the annual block maxima. The largest
daily negative return in an annual block is 6.68% occurring in 1962. The
histogram resembles a Fréchet density (see example above). The qq-plot
uses the Gumbel, 0, as the reference distribution. For this distribution, the
quantiles satisfy 1

0 () = ln(ln()). The downward curve in the plot
indicates a GEV distribution with 0. The plot of record development
is created with the S+FinMetrics/EVIS function records and illustrates
the developments of records (new maxima) for the daily negative returns
along with the expected number of records for iid data, see Embrechts et.

150 5. Modeling Extreme Values

1960 1965 1970 1975 1980 1985

2
3

4
5

6

1 2 3 4 5 6 7

0
2

4
6

8
10

Annual maximum

Annual maximum

 -
lo

g(
 -

lo
g(

pp
oi

nt
s(

X
n)

))

2 3 4 5 6

-1
0

1
2

3
4

Plot of Record Development

Trial

R
ec

or
ds

1 5 10 50 100 500

2
4

6
8

10

FIGURE 5.5. Annual block maxima, histogram, Gumbel qq-plot and records
summary for the daily returns on the S&P 500.

al. (1997) section 6.2.5. Apart from the somewhat large number of records
early on, the number of records appears consistent with iid behavior.
The MLEs for the parameters of the GEV distribution with 6= 0 using

block maxima may be computed using the S+FinMetrics/EVIS function
gev. For example, to compute the MLEs using annual blocks from the
daily (negative) returns on S&P 500 index use

> gev.fit.year = gev(-spto87, block="year")

> class(gev.fit.year)

[1] "gev"

The argument block determines the blocking method for the supplied
data. An integer value for block gives the number of observations in each
block. If the data supplied are a “timeSeries” then the value of block
can be also be the character strings “year”, “semester”, “quarter” or
“month”. If no value for block is given then the data are interpreted as
block maxima.
The function gev returns an sv3 object of class “gev” for which there

are print and plot methods. The components of gev.fit.year are

> names(gev.fit.year)

[1] "n.all" "n" "call" "block"

[5] "data" "par.ests" "par.ses" "varcov"

5.2 Modeling Maxima and Worst Cases 151

[9] "converged" "nllh.final"

and a description of these components is given in the online help for
gev.object. The component n gives the number of blocks :

> gev.fit.year$n

[1] 28

The block maxima
()
(= 1) are in the data component. Since

the data supplied to gev are in a “timeSeries”, the block maxima in
gev.fit.year$data are also a “timeSeries”. The MLEs and asymptotic
standard errors for the parameters , and are:

> gev.fit.year

Generalized Extreme Value Distribution Fit --

28 blocks of maxima data

ML estimation converged.

Log-likelihood value: -38.34

Parameter Estimates, Standard Errors and t-ratios:

Value Std.Error t value

xi 0.3344 0.2081 1.6068

sigma 0.6716 0.1308 5.1337

mu 1.9750 0.1513 13.0549

The MLE for is 0 334 with asymptotic standard cSE(ˆ) = 0 208. An
asymptotic 95% confidence interval for is [0 081 0 751] and indicates
considerably uncertainty about the value of .
The fit to the GEV distribution may be evaluated graphically using the

plot method:

> plot(gev.fit.year)

Make a plot selection (or 0 to exit):

1: plot: Scatterplot of Residuals

2: plot: QQplot of Residuals

Selection:

Plot options 1 and 2 are illustrated in Figure 5.6. The plots show aspects
of the crude residuals

=

Ã
1 + ˆ

()
ˆ

ˆ

! 1

which should be iid unit exponentially distributed random variables if the
fitted model is correct. The scatter plot of the residuals, with a lowest esti-

152 5. Modeling Extreme Values

Ordering

R
es

id
ua

ls

0 5 10 15 20 25

0
1

2
3

0 1 2 3

0
1

2
3

4

Ordered Data

Ex
po

ne
nt

ia
l Q

ua
nt

ile
s

FIGURE 5.6. Residual plots from GEV distribution fit to annual block maxima
of daily negative return on the S&P 500 index.

mate of trend, does not reveal any significant unmodeled trend in the data.
The qq-plot, using the exponential distribution as the reference distribu-
tion, is linear and appears to validate the GEV distribution.
Using the MLEs of the GEV distribution fit to the annual block maxima

of the (negative) daily returns on S&P 500 index, the question

• What is the probability that next year’s annual maximum negative
return exceeds all previous negative returns?

may be answered using (5.4). Since the largest block maxima is 6 68%,
this probability is estimated using

Pr
³

(29)
260 max

³
(1)
260

(28)
260

´´
= 1 ˆ ˆ ˆ (6 68)

Using the S+FinMetrics/EVIS function pgev, the result is

> 1- pgev(max(gev.fit.year$data),

+ xi=gev.fit.year$par.ests["xi"],

+ mu=gev.fit.year$par.ests["mu"],

+ sigma=gev.fit.year$par.ests["sigma"])

0.02677

That is, there is a 2.7% chance that a new record maximum daily negative
return will be established during the next year.

5.2 Modeling Maxima and Worst Cases 153

The above analysis is based on annual block maxima. The GEV distri-
bution fit to quarterly block maxima is obtained using

> gev.fit.quarter= gev(-spto87,block="quarter")

> gev.fit.quarter

Generalized Extreme Value Distribution Fit --

112 blocks of maxima data

ML estimation converged.

Log-likelihood value: -111.9

Parameter Estimates, Standard Errors and t-ratios:

Value Std.Error t value

xi 0.1910 0.0695 2.7472

sigma 0.5021 0.0416 12.0701

mu 1.4013 0.0530 26.4583

The MLEs for , and using quarterly blocks are slightly smaller than
the MLEs using annual blocks. Notice, however, that the estimated asymp-
totic standard errors are much smaller using quarterly block. In particular,
an asymptotic 95% confidence interval for is [0 052 0 330] and contains
only positive values for indicating a fat-tailed distribution An estimate of
the probability that next quarter’s maximum exceeds all previous maxima
is

> 1- pgev(max(gev.fit.quarter$data),

+ xi=gev.fit.quarter$par.ests["xi"],

+ mu=gev.fit.quarter$par.ests["mu"],

+ sigma=gev.fit.quarter$par.ests["sigma"])

0.003138

As expected, this probability is smaller than the corresponding probability
computed for annual maxima.

5.2.3 Return Level

For (0 1) the 100 · % quantile of a continuous distribution with
distribution function is the value such that

= 1()

A useful risk measure for block maxima that is related to a high quantile
is the so-called return level. The -block return level, , is defined to
be that level which is exceeded in one out of every blocks of size . That
is, is the loss value such that

Pr{ } = 1 (5.5)

154 5. Modeling Extreme Values

The -block in which the return level is exceeded is called a stress period.
If the distribution of the maxima in blocks of length is characterized
by (5.4) then is simply the 1 1 quantile of this distribution:

1 (1 1) =
¡
1 (log(1 1))

¢
(5.6)

By the invariance property of maximum likelihood estimation, given the
MLEs for the parameters , and , the MLE for is

ˆ = ˆ
ˆ

ˆ

³
1 (log(1 1))

ˆ
´

An asymptotically valid confidence interval for may be computed using
the delta method (see Greene 2000, p. 118) or from the concentrated/profile
log-likelihood function. Given that (5.6) is a highly nonlinear function of
, and , the delta method is not recommended. Details of constructing
a confidence interval for based on the profile log-likelihood are given
in chapter three of Coles (2001) and the appendix of McNeil (1998).
The return level probability in (5.5) is based on the GEV distribution

of the maxima . For iid losses with CDF , so
that

() = Pr{ } (1 1)
1

(5.7)

Hence, for iid losses the return level is approximately the (1 1)
1

quantile of the loss distribution .

Example 26 Return levels for S&P 500 negative returns

Given the MLEs for the GEV distribution fit to the annual block maxima
of the (negative) daily returns on S&P 500 index, the question

• What is the 40-year return level of the index returns?

may be answered using (5.6). The S+FinMetrics/EVIS function rlevel.gev
computes (5.6) as well as an asymptotic 95% confidence interval based on
the profile likelihood using the information from a “gev” object. To com-
pute the 40 year return level for the S&P 500 returns from the “gev” object
gev.fit.year and to create a plot of the 95% confidence interval use

> rlevel.year.40 = rlevel.gev(gev.fit.year, k.blocks=40,

+ type="profile")

> class(rlevel.year.40)

[1] "list"

> names(rlevel.year.40)

[1] "Range" "rlevel"

> rlevel.year.40$rlevel

[1] 6.833

5.2 Modeling Maxima and Worst Cases 155

rl

pa
rm

ax

5 10 15 20 25 30

-4
2

-4
1

-4
0

-3
9

FIGURE 5.7. Asymptotic 95% confidence interval for the 40 year return level
based on the profile log-likelihood function.

When type="profile", the function rlevel.gev returns a “list” ob-
ject, containing the return level and range information used in the con-
struction of the profile log-likelihood confidence interval, and produces a
plot of the profile log-likelihood confidence interval for the return level.
The estimate of the 40 year return level is 6 83%. Assuming iid returns
and using (5.7), the estimated return level of 6 83% is approximately the
99 99% quantile of the daily return distribution. An asymptotic 95% con-
fidence interval for the true return level is illustrated in Figure 5.7. Notice
the asymmetric shape of the asymptotic confidence interval. Although the
point estimate of the return level is 6 83%, the upper endpoint of the 95%
confidence interval is about 21%. This number may seem large; however,
on Monday October 19th 1987 S&P 500 index closed down 20 4%.
By default, the function rlevel.gev produces a plot of the asymptotic

95% confidence level. Alternatively, if rlevel.gev is called with the op-
tional argument type="RetLevel":

> rlevel.year.40 = rlevel.gev(gev.fit.year, k.blocks=40,

+ type="RetLevel")

> names(rlevel.year.40)

[1] "LowerCB" "rlevel" "UpperCB"

> rlevel.year.40

$LowerCB:

156 5. Modeling Extreme Values

da
ta

0 5 10 15 20 25

2
3

4
5

6

FIGURE 5.8. Estimated 40-year return level with 95% confidence band for the
S&P 500 daily negative returns.

[1] 4.646

$rlevel:

[1] 6.833

$UpperCB:

[1] 20.5

A plot of the estimated return level along with the block maxima, as
shown in Figure 5.8, is created, and the components of the returned list are
the estimated return level along with the end points of the 95% confidence
interval.
The 40 year return level may also be estimated from the GEV distribu-

tion fit to quarterly maxima. Since 40 years is 160 quarters, the 40 year
return level computed from the “gev” object gev.fit.quarter is

> rlevel.160.q = rlevel.gev(gev.fit.quarter, k.blocks=160,

+ type="RetLevel")

> rlevel.160.q

$LowerCB:

[1] 4.433

$rlevel:

5.3 Modeling Extremes Over High Thresholds 157

[1] 5.699

$UpperCB:

[1] 8.549

Here, the estimated return level and asymptotic 95% confidence interval
are smaller than the corresponding quantities estimated from annual data.

5.3 Modeling Extremes Over High Thresholds

Modeling only block maxima data is ine cient if other data on extreme val-
ues are available. A more e cient alternative approach that utilizes more
data is to model the behavior of extreme values above some high threshold.
This method is often called peaks over thresholds (POT). Another advan-
tage of the POT approach is that common risk measures like Value-at-Risk
(VaR) and expected shortfall (ES) may easily be computed3.
To illustrate the concepts of VaR and ES, review the daily S&P 500

returns analyzed in the previous section. Suppose the S&P 500 is the only
asset in a large portfolio for an investor and that the random variable
with CDF represents the daily loss on the portfolio. The daily VaR on
the portfolio is simply a high quantile of the distribution of daily losses.
For example, the daily 1% VaR on the portfolio is the 99% quantile of

VaR 99 =
1(0 99)

That is, with 1% probability the loss in portfolio value over a day will
exceed VaR 99 Often the high quantile VaR 99 is computed assuming
(2). In this case, the calculation of VaR 99 reduces to the simple

formula

VaR 99 = + · 99 (5.8)

where 99 is the 99% quantile of the standard normal distribution. The
distribution of daily portfolio losses, however, generally has fatter tails than
the normal distribution so that (5.8) may severely under-estimate VaR 99.
Estimates of VaR based on the POT methodology are much more reliable.
The ES on the portfolio is the average loss given that VaR has been

exceeded. For example, the 1% ES is the conditional mean of given that
VaR 99

ES 99 = [| VaR 99]

3Notice that VaR and ES are based on the distribution of the losses and not on the
distribution of the maximum losses. The analysis of block maxima based on the GEV
distribution allowed inferences to be made only on the maxima of returns. The POT
analysis will allow inferences to be made directly on the distribution of losses.

158 5. Modeling Extreme Values

Fire Loss Insurance Claims
M

ill
io

ns
 o

f D
an

is
h

Kr
on

e

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

50
10

0
15

0
20

0
25

0

FIGURE 5.9. Large fire loss insurance claims.

If (2) then ES 99 may be computed as the mean of a truncated
normal random variable:

ES 99 = + · ()

1 ()
(5.9)

where = (VaR 99) , () is the standard normal density function
and () is the standard normal CDF. Again, if the distribution of losses
has fatter tails than the normal, then (5.9) will underestimate ES 99. The
POT methodology estimates the distribution of losses over a threshold and
produces an estimate of ES as a by-product of the estimation.
For another example, consider the “timeSeries” danish representing

Danish fire loss data in S+FinMetrics, which is analyzed in McNeil (1999).
The data in danish consist of 2167 daily insurance claims for losses exceed-
ing one million Danish Krone from January 3, 1980 through December 31,
1990. The reported loss is an inflation adjusted total loss for the event con-
cerned and includes damages to buildings, damage to contents of buildings
as well as loss of profits. Figure 5.9 created using

> plot(danish, ain="Fire Loss Insurance Claims",

+ ylab="Millions of Danish Krone")

shows the data and reveals several extreme losses. For risk management
purposes, insurance companies may be interested in the frequency of occur-
rence of large claims above some high threshold as well as the average value

5.3 Modeling Extremes Over High Thresholds 159

of the claims that exceed the high threshold. Additionally, they may be in-
terested in daily VaR and ES. The statistical models for extreme values
above a high threshold may be used to address these issues.

5.3.1 The Limiting Distribution of Extremes Over High
Thresholds and the Generalized Pareto Distribution

As with the analysis of block maxima, let 1 2 be a sequence of
iid random variables representing risks or losses with an unknown CDF
and let = max{ 1 }. A natural measure of extreme events

are values of the that exceed a high threshold . Define the excess
distribution above the threshold as the conditional probability:

() = Pr{ | } = (+) ()

1 ()
0 (5.10)

For the class of distributions such that the CDF of the standardized
value of converges to a GEV distribution (5.2), it can be shown (c.f.
Embrechts et. al. (1997)) that for large enough there exists a positive
function () such that the excess distribution (5.10) is well approximated
by the generalized Pareto distribution (GPD)

()() =

(
1

³
1 + (()) 1

´
for 6= 0

1 exp(()) for = 0
() 0 (5.11)

defined for 0 when 0 and 0 () when 0.

Remarks:

• Operationally, for a su ciently high threshold , () ()()
for a wide class of loss distributions . To implement this result, the
threshold value must be specified and estimates of the unknown
parameters and () must be obtained.

• There is a close connection between the limiting GEV distribution
for block maxima and the limiting GPD for threshold excesses. For a
given value of , the parameters , and of the GEV distribution
determine the parameters and (). In particular, the shape pa-
rameter of the GEV distribution is the same shape parameter in
the GPD and is independent of the threshold value . Consequently,
if 0 then is in the Weibull family and () is a Pareto type
II distribution; if = 0 then is in the Gumbell family and ()

is an exponential distribution; and if 0 then is in the Fréchet
family and () is a Pareto distribution.

• For 0, the most relevant case for risk management purposes, it
can be shown that [] = for = 1 . For example, if

160 5. Modeling Extreme Values

= 0 5 then [2] = and the distribution of losses, , does not
have finite variance. If = 1 then [] = .

• Consider a limiting GPD with shape parameter and scale param-
eter (0) for an excess distribution 0 with threshold 0. For an
arbitrary threshold 0, the excess distribution has a limit-
ing GPD distribution with shape parameter and scale parameter
() = (0)+ (0). Alternatively, for any 0 the excess distri-
bution

0+ has a limiting GPD distribution with shape parameter
and scale parameter (0) + .

Example 27 Plots of GPDs

The S+FinMetrics/EVIS functions pgpd, qgpd, dgpd and rgpd compute
cumulative probability, quantiles, density and random number generation,
respectively, from the GPD (5.11) for 6= 0 and general values for ().
For example, the S-PLUS code to compute and plot the CDFs and pdfs
with () = 1 for a Pareto (= 0 5), exponential (= 0) and Pareto type
II (= 0 5) is

> par(mfrow=c(1,2))

> y.vals = seq(0,8,length=200)

> cdf.p = pgpd(y.vals, xi=0.5)

> cdf.p2 = ifelse((y.vals < 2), pgpd(y.vals,xi=-0.5), 1)

> cdf.e = 1-exp(-z.vals)

> plot(y.vals, cdf.p, type="l", xlab="y", ylab="G(y)",

+ ylim=c(0,1))

> lines(y.vals, cdf.e, type="l", lty=2)

> lines(y.vals, cdf.p2, type="l", lty=3)

> legend(1,0.2,legend=c("Pareto G(0.5,1)","Exponential G(0,1)",

+ "Pareto II G(-0.5,1)"),lty=1:3)

> # PDFs

> pdf.p = dgpd(y.vals, xi=0.5)

> pdf.p2 = ifelse((y.vals < 2), dgpd(y.vals,xi=-0.5), 0)

> pdf.e = exp(-y.vals)

> plot(y.vals, pdf.p, type="l", xlab="y", ylab="g(y)",

+ ylim=c(0,1))

> lines(y.vals, pdf.e, type="l", lty=2)

> lines(y.vals, pdf.p2, type="l", lty=3)

> legend(2,1,legend=c("Pareto g(0.5,1)","Exponential g(0,1)",

+ "Pareto II g(-0.5,1)"),lty=1:3)

The CDFs and pdfs are illustrated in Figure 5.10. Notice that the Pareto
type II is only defined for 2.

Example 28 qq-plots to determine tail behavior

5.3 Modeling Extremes Over High Thresholds 161

y

G
(y

)

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pareto G(0.5,1)
Exponential G(0,1)
Pareto II G(-0.5,1)

y

g(
y)

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pareto g(0.5,1)
Exponential g(0,1)
Pareto II g(-0.5,1)

FIGURE 5.10. Generalized Pareto CDFs, 1, and pdfs, 1, for Pareto
(= 0 5), exponential (= 0) and Pareto type II (= 0 5).

A simple graphical technique to infer the tail behavior of observed losses
is to create a qq-plot using the exponential distribution as a reference dis-
tribution. If the excesses over thresholds are from a thin-tailed distribution,
then the GPD is exponential with = 0 and the qq-plot should be linear.
Departures from linearity in the qq-plot then indicate either fat-tailed be-
havior (0) or bounded tails (0). The S+FinMetrics/EVIS function
qplot may be used to create a qq-plot using a GPD as a reference distri-
bution. For example, to create qq-plots with the exponential distribution
as the reference distribution for the S&P 500 negative returns over the
threshold = 1 and the Danish fire loss data over the threshold = 10
use

> par(mfrow=c(1,2))

> qplot(-spto87, threshold=1, main="S&P 500 negative returns")

> qplot(danish, threshold=10, main="Danish fire losses")

Figure 5.11 shows these qq-plots. There is a slight departure from linearity
for the negative S&P 500 returns and a rather large departure from linearity
for the Danish fire losses.

162 5. Modeling Extreme Values

S&P 500 negative returns

1 2 3 4 5 6

0
2

4
6

Ordered Data

Ex
po

ne
nt

ia
l Q

ua
nt

ile
s

Danish fire losses

0 50 100 150 200 250

0
1

2
3

4
5

Ordered Data

Ex
po

ne
nt

ia
l Q

ua
nt

ile
s

FIGURE 5.11. QQ-plots with exponential reference distribution for the S&P 500
negative returns over the threshold = 1 and the Danish fire losses over the
threshold = 10

Mean Excess Function

Suppose the threshold excess 0 follows a GPD with parameters 1
and (0). Then the mean excess over the threshold 0 is

[0| 0] =
(0)

1
(5.12)

For any 0, define the mean excess function () as

() = [|] =
(0) + (0)

1
(5.13)

Alternatively, for any 0

(0 +) = [(0 +)| 0 +] =
(0) +

1
(5.14)

Notice that for a given value of , the mean excess function is a linear
function of = 0. This result motivates a simple graphical way to
infer the appropriate threshold value 0 for the GPD. Define the empirical
mean excess function

() =
1 X

=1

(()) (5.15)

5.3 Modeling Extremes Over High Thresholds 163

-4 -2 0 2 4

1
2

3
4

5

Threshold

M
ea

n
Ex

ce
ss

FIGURE 5.12. Mean excess plot for the S&P 500 negative returns.

where () (= 1) are the values of such that . The mean
excess plot is a plot of () against and should be linear in for 0.
An upward sloping plot indicates heavy-tailed behavior. In particular, a
straight line with positive slope above 0 is a sign of Pareto behavior in
tail. A downward trend shows thin-tailed behavior, whereas a line with zero
slope shows an exponential tail.

Example 29 Mean excess plots for S&P 500 and fire loss data

The S+FinMetrics/EVIS function meplot computes the empirical mean
excess function (5.15) and creates the mean excess plot. The mean excess
functions and mean excess plots for the S&P 500 negative returns and the
Danish fire losses are computed using

> me.sp500 = meplot(-spto87)

> me.dainsh = meplot(danish)

> class(me.sp500)

[1] "data.frame"

> colIds(me.sp500)

[1] "threshold" "me"

The function meplot returns a data frame containing the thresholds
and the mean excesses () and produces a mean excess plot. The mean
excess plots for the S&P 500 and Danish data are illustrated in Figures

164 5. Modeling Extreme Values

0 10 20 30 40 50 60

0
20

40
60

80
10

0
12

0

Threshold

M
ea

n
Ex

ce
ss

FIGURE 5.13. Mean excess plot for the Danish fire loss data.

5.12 and 5.13. The mean excess plot for the S&P 500 negative returns is
linear in with positive slope for 1 indicating Pareto tail behavior.
The plot for the fire loss data is upward sloping and linear for almost all
values of . However, there is a slight kink at = 10

5.3.2 Estimating the GPD by Maximum Likelihood

Let 1 be iid sample of losses with unknown CDF . For a given
high threshold , extreme values are those values for which
0. Denote these values (1) () and define the threshold excesses as
= () for = 1 . The results of the previous section imply

that if is large enough then { 1 } may be thought of as a random
sample from a GPD with unknown parameters and (). For 6= 0, the
log-likelihood function based on (5.11) is

(()) = ln(()) (1 + 1)
X
=1

ln(1 + ())

provided 0 when 0 and 0 () when 0. For = 0
the log-likelihood function is

(()) = ln(()) () 1
X
=1

5.3 Modeling Extremes Over High Thresholds 165

5.3.3 Estimating the Tails of the Loss Distribution

For a su ciently high threshold , () ()(). Using this result
in (5.10) and setting = + , an approximation to the tails of the loss
distribution () for is given by

() = (1 ()) ()() + () (5.16)

The CDF value () may be estimated non-parametrically using the em-
pirical CDF

ˆ() =
()

(5.17)

where denotes the number of exceedences over the threshold . Combin-
ing the parametric representation (5.11) with the non-parametric estimate
(5.17) gives the resulting estimate of (5.16)

ˆ() = 1

Ã
1 + ˆ ·

ˆ()

!
(5.18)

where ˆ and ˆ() denote the MLEs of and (), respectively.

Example 30 Estimating the GPD for the S&P 500 negative returns

Maximum likelihood estimation of the parameters and () of the GPD
(5.11) may be computed using the S+FinMetrics/EVIS function gpd. In
order to compute the MLE, a threshold value must be specified. The
threshold should be large enough so that the GPD approximation is valid
but low enough so that a su cient number of observations are available
for a precise fit.
To illustrate, consider fitting GPD to the negative returns on the S&P

500 index. The S+FinMetrics/EVIS function gpd may be used to compute
the MLEs for the GPD (5.11) for a given threshold The mean excess
plot for the S&P 500 returns in Figure 5.12 suggests a value of = 1 may
be appropriate for the GPD approximation to be valid. The MLE using
= 1 is computed using

> gpd.sp500.1 = gpd(-spto87, threshold=1)

> class(gpd.sp500.1)

[1] "gpd"

The function gpd returns an object of class “gpd” for which there are
print and plotmethods. The components of a “gpd” object are numerous,
and are described in the online help for gpd.object.
The MLEs for and (1) and asymptotic standard errors are

> gpd.sp500.1

Generalized Pareto Distribution Fit --

166 5. Modeling Extreme Values

Total of 6985 observations

Upper Tail Estimated with ml --

Upper Threshold at 1 or 8.518 % of the data

ML estimation converged.

Log-likelihood value: -183.6

Parameter Estimates, Standard Errors and t-ratios:

Value Std.Error t value

xi 0.0677 0.0397 1.7033

beta 0.4681 0.0267 17.5376

Notice that ˆ = 0 068 is fairly close to zero and indicates that the return
distribution is not so heavy-tailed. Also, the GPD estimate of is quite a
bit smaller than the GEV estimate ˆ = 0 334 based on annual data, but it
is very close to the GEV estimate ˆ = 0 069 based on quarterly data.
Diagnostic plots of the GDP fit are created using the plot method

> plot(gpd.sp500.1)

Make a plot selection (or 0 to exit):

1: plot: Excess Distribution

2: plot: Tail of Underlying Distribution

3: plot: Scatterplot of Residuals

4: plot: QQplot of Residuals

Selection:

The four plot options are depicted in Figure 5.14. The first plot option
shows the GPD estimate of the excess distribution, and the second plot
option shows the tail estimate (5.18). The GPD appears to fit the dis-
tribution of threshold excesses fairly well. Note, the S+FinMetrics/EVIS
function tailplot may be used to compute plot option 2 directly.
The S+FinMetrics/EVIS function shape can be used to create a plot

showing how the MLE of the shape parameter varies with the selected
threshold :

> shape(-spto87, end=600)

The optional argument end=600 specifies the maximum number of thresh-
old exceedences to consider. The resulting plot is shown in Figure 5.15. The
estimates of are fairly stable and close to zero for threshold values less
than 1.2, and increase slightly for threshold values between 1.2 and 2.
The S+FinMetrics/EVANESCE function shape.plot may also be used to

produce a plot similar to 5.15. For example

> shape.plot(-spto87, from = 0.9, to = 0.98)

5.3 Modeling Extremes Over High Thresholds 167

1 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x (on log scale)

Fu
(x

-u
)

1 5 10

10
^-

6
10

^-
4

10
^-

2

x (on log scale)

1-
F(

x)
 (o

n
lo

g
sc

al
e)

Ordering

R
es

id
ua

ls

0 100 200 300 400 500 600

0
2

4
6

8

0 2 4 6 8

0
2

4
6

Ordered Data

Ex
po

ne
nt

ia
l Q

ua
nt

ile
s

FIGURE 5.14. Diagnostic plots for GPD fit to daily negative returns on S&P 500
index.

estimates for threshold values starting at 90th percentile and ending
at the 98th percentile of the data.

Example 31 Estimating the GPD for lower and upper tails of S&P 500
returns

Sometimes it is desirable to estimate the parameters and () of the
GPD (5.11) separately for the lower and upper tails. This may be done
using the S+FinMetrics/EVANESCE function gpd.tail. In order to com-
pute the MLE, threshold values lower and upper must be specified. The
previous analysis found lower = 1 A guess for the upper threshold may
be obtained from the mean excess plot

> me.sp500 = meplot(spto87)

illustrated in Figure 5.16. For upper = 1 the plot appears linear with a
positive slope indicating Pareto tail behavior.
The two-tailed MLEs may then be computed using

> gpd.sp500.2tail = gpd.tail(spto87, upper = 1, lower = -1,

+ plot = T)

> class(gpd.sp500.2tail)

[1] "gpd"

> gpd.sp500.2tail

168 5. Modeling Extreme Values

600 559 519 478 438 398 357 317 277 236 196 156 115 75 35

0.
0

0.
5

1.
0

1.
5

0.992 1.050 1.100 1.160 1.270 1.360 1.460 1.570 1.810 2.190

Exceedances

Sh
ap

e
(x

i)
(C

I,
p

=
0.

95
)

Threshold

FIGURE 5.15. Estimates of shape parameter for S&P 500 negative returns as
a function of the threshold value

Generalized Pareto Distribution Fit --

Total of 6985 observations

Upper Tail Estimated with ml --

Upper Threshold at 1 or 8.533 % of the data

ML estimation converged.

Log-likelihood value: -277.7

Parameter Estimates, Standard Errors and t-ratios:

Value Std.Error t value

xi 0.0415 NA NA

beta 0.5624 NA NA

Lower Tail Estimated with ml --

Lower Threshold at -1 or 8.518 % of the data

ML estimation converged.

Log-likelihood value: -183.6

Parameter Estimates, Standard Errors and t-ratios:

5.3 Modeling Extremes Over High Thresholds 169

-6 -4 -2 0 2 4

0
1

2
3

4
5

6

Threshold

M
ea

n
E

xc
es

s

FIGURE 5.16.

Value Std.Error t value

xi 0.0677 NA NA

beta 0.4681 NA NA

The lower tail estimates are the same as in the previous example4. The
upper tail estimates are similar. The optional argument plot=T, produces
qq-plots of excesses over the specified thresholds versus GPD quantiles
using the estimated lower and upper tail shape parameters. The linear
nature of these plots, given in Figure 5.17, supports the assumption that
the lower and upper excesses have GPD distributions.

Example 32 Estimating the GPD for the Danish fire loss data

The mean excess plot in Figure 5.13 suggests a threshold value of = 10.
The MLEs of the GPD parameters for the Danish fire loss data using a high
threshold of 10 million Krone are computed using

> gpd.danish.10 = gpd(danish, threshold=10)

> gpd.danish.10

Generalized Pareto Distribution Fit --

4Currently, the function gpd.tail does not compute the estimated covariance matrix
for the estimated parameters. To get standard errors, use the function gpd on both tails
separately.

170 5. Modeling Extreme Values

GPD Quantiles, for xi = 0.0414854815615611

E
xc

es
s

ov
er

 th
re

sh
ol

d

0 2 4 6 8

0
1

2
3

4

Upper Tail

GPD Quantiles, for xi = 0.0676714921070174

E
xc

es
s

ov
er

 th
re

sh
ol

d

0 2 4 6 8

0
1

2
3

4
5

Lower Tail

FIGURE 5.17.

Total of 2167 observations

Upper Tail Estimated with ml --

Upper Threshold at 10 or 5.03 % of the data

ML estimation converged.

Log-likelihood value: -374.9

Parameter Estimates, Standard Errors and t-ratios:

Value Std.Error t value

xi 0.4970 0.1363 3.6467

beta 6.9755 1.1135 6.2645

The estimate of shows heavy tails and suggests that the variance may
not be finite. The diagnostic plots in Figure 5.18, created using

> par(mfrow=c(1,2))

> tailplot(gpd.danish.10)

> shape(danish)

show that the GPD fits the data well and that the estimates of are fairly
stable for a wide range of threshold values.

5.3 Modeling Extremes Over High Thresholds 171

10 50 100

0.
00

00
5

0.
00

05
0

0.
00

50
0

0.
05

00
0

x (on log scale)

1-
F(

x)
 (o

n
lo

g
sc

al
e)

500 449 399 349 299 249 198 148 98 48

0.
0

0.
5

1.
0

 3.13 3.66 4.17 5.08 6.59 12.40

Exceedances

S
ha

pe
 (x

i)
(C

I,
p

=
0.

95
)

Threshold

FIGURE 5.18. Diagnostic plots from GPD fit to Danish fire loss data.

5.3.4 Risk Measures

As mentioned in the introduction to this section, two common risk measures
are Value-at-Risk (VaR) and expected shortfall (ES). VaR is a high quantile
of the loss distribution. That is, for 0 95 1, say, VaR is the th
quantile of the distribution

VaR = 1() (5.19)

where 1 is the inverse of . For a given probability (), an estimate
of (5.19) based on inverting the tail estimation formula (5.18) is

dVaR = +
ˆ()

ˆ

µ³
(1)

´ ˆ

1

¶
(5.20)

Expected shortfall is the expected loss size, given that VaR is exceeded

ES = [| VaR] (5.21)

The measure ES is related to VaR via

ES = VaR + [VaR | VaR] (5.22)

where the second term in (5.22) is simply the mean of the excess distri-
bution VaR () over the threshold VaR . By the translation property of

172 5. Modeling Extreme Values

the GPD distribution, the GPD approximation to VaR () has shape pa-
rameter and scale parameter () + (VaR). Consequently, using
(5.13)

[VaR | VaR] =
() + (VaR)

1
(5.23)

provided 1. Combining (5.23) with (5.20) and substituting into (5.22)
gives the GPD approximation to ES

cES =
dVaR
1 ˆ

+
ˆ() ˆ

1 ˆ
(5.24)

Example 33 Computing VaR and ES for negative S&P 500 returns

The S+FinMetrics/EVIS function riskmeasures computes estimates of
VaR and ES based on the GPD approximations (5.20) and (5.24), re-
spectively, using the information from a “gpd” object. For example, the
VaR and ES estimates for the negative S&P 500 negative returns for
= 0 95 0 99 are computed using

> riskmeasures(gpd.sp500.1, p = c(0.95,0.99))

p quantile sfall

[1,] 0.95 1.2539 1.7744

[2,] 0.99 2.0790 2.6594

That is, with 5% probability the daily return could be as low as 1 254%
and, given that the return is less than 1 254%, the average return value is
1 774%. Similarly, with 1% probability the daily return could be as low

as 2 079% with an average return of 2 659% given that the return is
less than 2 079%.
It is instructive to compare these results to those based on the assump-

tion of normally distributed returns. Using the formulas (5.8) and (5.9),
estimates of VaR and ES for = 0 95 0 99 may be computed using the
following function

riskmeasures.normal <- function(data,p=c(0.95,0.99)) {

mu = colMeans(data)

sd = colStdevs(data)

q = mu + sd*qnorm(p)

sq = (q - mu)/sd

sf = mu + sd*dnorm(sq)/(1 - pnorm(sq))

cbind(p, quantile = q, sfall = sf)

}

> riskmeasures.normal(-spto87)

p quantile sfall

[1,] 0.95 1.299051 1.635526

[2,] 0.99 1.847814 2.120681

5.3 Modeling Extremes Over High Thresholds 173

1 5 10

10
^-

6
10

^-
5

10
^-

4
10

^-
3

10
^-

2
10

^-
1

x (on log scale)

1-
F(

x)
 (o

n
lo

g
sc

al
e)

99

95

99

95

FIGURE 5.19.

The estimates of VaR and ES based on the normal distribution are fairly
close to the estimates based on the GPD for = 0 95. For = 0 99 VaR
and ES based on the normal distribution are a bit smaller than the values
based on the GPD.
Estimates and asymptotically valid confidence intervals for VaR and

ES may be computed using the S+FinMetrics/EVIS function gpd.q and
gpd.sfall, respectively. Wald-type confidence intervals based on the delta
method or likelihood ratio-type confidence intervals based on the profile
log-likelihood function may be computed, and these confidence intervals
may be visualized on a plot with the tail estimate (5.18). First create plot
of the excess distribution using the S+FinMetrics/EVIS function tailplot

> tailplot(gpd.sp500.1)

After the plot has been created, the asymptotic confidence intervals for
VaR and ES may be added using

> gpd.q(0.99,plot=T)

> gpd.sfall(0.99,plot=T)

The combined plots are illustrated in Figure 5.19.
Notice the slightly asymmetric confidence interval for ES 99. This result

is due to the uncertainty created by only a few observations in the extreme
tails of the distribution.

174 5. Modeling Extreme Values

500 466 433 399 366 332 299 265 232 198 165 132 98 65 31

2.
0

2.
2

2.
4

2.
6

2.
8

1.08 1.12 1.21 1.27 1.36 1.45 1.54 1.65 1.87 2.26

Exceedances

0.
99

 Q
ua

nt
ile

 (C
I,

p
=

0.
95

)

Threshold

FIGURE 5.20.

The sensitivity of the VaR estimates to changes in the threshold may
be investigated using the S+FinMetrics/EVIS function quant. For exam-
ple, to see how the VaR 99 estimates vary with use

> quant(-spto87,p=0.99)

which produces the graph in Figure 5.20.
The VaR 99 estimates are stable for 2.

5.4 Hill’s Non-parametric Estimator of Tail Index

The shape parameter , or equivalently, the tail index = 1 , of the GEV
and GPD distributions (5.2) and (5.11) may be estimated non-parametrically
in a number of ways. A popular method due to Hill (1975) applies to the
case where 0 (0) so that the data is generated by some fat-tailed
distribution in the domain of attraction of a Fréchet type GEV. To describe
the Hill estimator, consider a sample of losses 1 and define the
order statistics as

(1) (2) · · · ()

For a positive integer , the Hill estimator of is defined as

ˆHill() =
1X

=1

¡
log () log ()

¢
(5.25)

5.4 Hill’s Non-parametric Estimator of Tail Index 175

and the Hill estimator of is

ˆHill() = 1 ˆ
Hill
() (5.26)

The Hill estimators of and depend on the integer . Notice that in
(5.26) plays the same role as in (5.17) for the analysis of the GPD. It can
be shown that if is in the domain of attraction of a GEV distribution,

then ˆ
Hill
() converges in probability to as and 0, and that

ˆHill() is asymptotically normally distributed with asymptotic variance

avar(ˆ
Hill
()) =

2

By the delta method, ˆHill() is asymptotically normally distributed with
asymptotic variance

avar(ˆHill()) =
2

In practice, the Hill estimators ˆ
Hill
() or ˆHill() are often plotted against

to find the value of such that the estimator appears stable.

5.4.1 Hill Tail and Quantile Estimation

Suppose that the loss distribution is such that 1 () = () with
= 1 0, where () is a slowly varying function. Let (+1)

where (+1) is a high order statistic. Then the Hill estimator of () is
given by

ˆHill() = 1

µ
(+1))

¶ ˆHill()

(+1) (5.27)

Inverting the Hill tail estimator (5.27) gives the Hill quantile estimator

ˆHill = (+1) (+1)

Ã³
(1)

´ ˆHill()

1

!
(5.28)

where 1 . The Hill quantile estimator (5.28) is very similar to the
ML GPD quantile estimator (5.20) with = (+1).

Example 34 Nonparametric estimation of for Danish fire loss data

The Hill estimates of , and the quantile may be computed and
plotted using the S+FinMetrics/EVIS function hill. The arguments ex-
pected by hill are

176 5. Modeling Extreme Values

> args(hill)

function(data, option = "alpha", start = 15, end = NA,

p = NA, ci = 0.95, plot = T, reverse = F,

auto.scale = T, labels = T, ...)

where data is a univariate numeric vector or “timeSeries”, option de-
termines if (“alpha”), (“xi”) or (“quantile”) is to be computed,
start and end specify the starting and ending number of order statistics to
use in computing the estimates, p specifies the probability required when
option=\quantile", ci determines the probability for asymptotic confi-
dence bands, and plot determines if a plot is to be created. To illustrate
the use of hill, consider the computation of (5.25) for the Danish fire loss
data using all of the order statistics less than (15)

> hill.danish = hill(danish, option="xi")

> class(hill.danish)

[1] "data.frame"

> names(hill.danish)

[1] "xi" "orderStat" "threshold"

The function hill returns a data frame with components xi containing
the estimates of , orderStat containing the order statistic labels , and
threshold containing the order statistic or threshold values (). Since
the default option plot=T is used, hill also produces the plot shown in

Figure 5.21. For 120 (() 9), ˆ
Hill
() is fairly stable around 0 7.

The GPD estimate of with threshold = 10 is 0 497. The Hill estimates
for threshold values near 10 are

> idx = (hill.danish$threshold >= 9.8 &

+ hill.danish$threshold <= 10.2)

> hill.danish[idx,]

xi orderStat threshold

2059 0.6183 109 9.883

2060 0.6180 108 10.011

2061 0.6173 107 10.072

2062 0.6191 106 10.137

2063 0.6243 105 10.178

2064 0.6285 104 10.185

The 99% quantile estimates (5.28) for 15 500 are computed using

> hill.danish.q = hill(danish, option="quantile", p=0.99,

+ end=500)

and are illustrated in Figure 5.22.

5.4 Hill’s Non-parametric Estimator of Tail Index 177

15 132 266 400 534 668 802 936 1087 1254 1421 1588 1755 1922 2089

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

29.00 5.56 3.65 2.67 2.14 1.85 1.65 1.47 1.32 1.20 1.07

Order Statistics

xi
 (C

I,
p

=0
.9

5)
Threshold

FIGURE 5.21. Hill estimates of for the Danish fire loss data.

15 38 61 84 111 142 173 204 235 266 297 328 359 390 421 452 483

24
25

26
27

28
29

30

29.00 14.70 10.10 7.10 5.77 5.19 4.61 4.15 3.85 3.55 3.26

Order Statistics

Q
ua

nt
ile

, p
 =

 0
.9

9

Threshold

FIGURE 5.22. Hill estimates of 1% quantile of Danish fire loss data.

178 5. Modeling Extreme Values

5.5 References

Alexander, C. (2001). Market Models: A Guide to Financial Data Anal-
ysis. John Wiley & Sons, Chichester, UK.

Carmona, R. (2004). Statistical Analysis of Financial Data in S-PLUS.
Springer-Verlag, New York.

Carmona, R. and J. Morrisson (2001). “Heavy Tails and Copulas with
Evanesce,” ORFE Tech. Report, Princeton University.

Coles, S (2001). An Introduction to Statistical Modeling of Extreme Val-
ues. Springer-Verlag, London.

Danielsson, J. and C.G. De Vries (1997). “Tail Index and Quantile Es-
timation with Very High Frequency Data,” Journal of Empirical Finance,
4, 241-257.

Diebold, F.X., T. Schuermann, and J.D. Stroughair (1997), “Pit-
falls and Opportunities in the Use of Extreme Value Theory in Risk Man-
agement,” Advances in Computational Management Science 2, 3-12.

Embrechts, P. C. Kloppelberg, and T. Mikosch (1997). Modelling
Extremal Events. Springer-Verlag, Berlin.

Embrechts, P., A. McNeil, and D. Straumann (2000). “Correla-
tion and Dependence in Risk Management: Properties and Pitfalls,” in M.
Dempster and H. K. Mo att (eds.), Risk management: value at risk and
beyond. Cambridge University Press, Cambridge.

Fisher, R. and L. Tippett (1928). “Limiting Forms of the Frequency
Distribution of the Largest or Smallest Member of a Sample,” Proceedings
of the Cambridge Philosophical Society 24, 180-190.

Greene, W. (2000). Econometric Analysis, Fourth Edition. Prentice Hall,
Upper Saddle River.

Hill, B.M. (1975). “A Simple General Approach to Inference about the
Tail of a Distribution,” The Annals of Statistics, 3, 1163-1174.

Jorian, P. (2001). Value at Risk, Second Edition. McGraw-Hill, New York.

Longin, F.M. (2000). “From Value-at-Risk to Stress Testing: The Extreme
Value Approach,” Journal of Banking an Finance 24, 1097-1130.

5.5 References 179

McNeil, A.J. (1998). “On Extremes and Crashes,” RISK, January, page
99.

McNeil, A.J. (1998). “Calculating Quantile Risk Measures for Financial
Returns using Extreme Value Theory,” ETH E-Collection
http://e-collection.ethbib.ethz.ch/show?type=bericht&nr=85.

McNeil, A.J. (1999). “Extreme Value Theory for Risk Managers,” in
Internal Modelling and CAD II, RISK Books, 93-113.

McNeil, A.J. and R. Frey (2000). “Estimation of Tail-Related Risk
Measures for Heteroskedastic Financial Time Series: An Extreme Value
Approach,” Journal of Empirical Finance 7, 271-300.

McNeil A.J. and T. Saladin (2000). “Developing Scenarios for Future
Extreme Losses Using the POT Method,” in P. Embrechts (ed.) Extremes
and Integrated Risk Management , RISK books, London.

Morrison, J. E. (2001). Extreme Value Statistics with Apllications in
Hydrology and Financial Engineering, Ph.D. thesis, Princeton University.

RiskMetrics, 1995. “RiskMetrics Technical Document,” J.P. Morgan, 3rd
ed.

Tsay, R.S. (2001). Analysis of Financial Time Series, John Wiley & Sons,
New York.

6
Time Series Regression Modeling

6.1 Introduction

Time series regression techniques are widely used in the analysis of financial
data and for estimating and testing models for asset prices and returns like
the capital asset pricing model and the arbitrage pricing model. They are
used to uncover and exploit predictive relationships between financial vari-
ables. For example, the predictability of asset returns using valuation ratios
like dividend/price, earnings/price and book/market is usually established
using time series regression techniques, and the resulting regression mod-
els are used to forecast future returns. Time series regression techniques
are also used for testing the informational e ciency of financial markets.
Market e ciency often implies that certain financial variables should not
be predictable based on observable information, and time series regression
techniques may be used to verify e ciency implications.
Regression modeling with financial time series requires some care because

the time series properties of the data can influence the properties of stan-
dard regression estimates and inference methods. In general, standard re-
gression techniques are appropriate for the analysis of (0) stationary data.
For example, asset returns are often treated as stationary and ergodic, and
standard regression techniques are then used to estimate models involving
asset returns. For nonstationary trending data like asset prices, however,
standard regression techniques may or may not be appropriate depending
on the nature of the trend. This chapter discusses regression modeling tech-
niques appropriate for (0) stationary and introduces and illustrates the

182 6. Time Series Regression Modeling

use of various S+FinMetrics functions designed for time series regression
analysis.
The rest of the chapter is organized as follows: Section 6.2 gives an

overview of the linear time series regression model and covers estimation,
goodness of fit, inference and residual diagnostics. Section 6.3 introduces
the S+FinMetrics function OLS that extends the S-PLUS linear model func-
tion lm to handle general time series regression and illustrates the use of
OLS through examples. Section 6.4 reviews dynamic regression models in-
volving distributed lags of the dependent and explanatory variables and
gives examples of how OLS may be used analyze these models. Section 6.5
discusses heteroskedasticity and autocorrelation consistent coe cient co-
variance matrices and their use in constructing robust standard errors for
estimated regression coe cients. Section 6.6 ends the chapter with a discus-
sion of recursive regression techniques for assessing the parameter stability
of time series regression models.
In this chapter, the technical details of time series regression are kept to

a minimum. Excellent treatments of time series regression models from an
econometric perspective are given in Hamilton (1994) and Hayashi (2000).
Many applications of time series regression to financial data can be found
in Mills (1999).

6.2 Time Series Regression Model

Consider the linear time series regression model

= 0 + 1 1 + · · ·+ + = x0 + = 1 (6.1)

where x = (1 1)0 is a (+1)×1 vector of explanatory variables,
= (0 1)0 is a (+1)×1 vector of coe cients, and is a random

error term. In matrix form the model is expressed as

y = X + (6.2)

where y and are (× 1) vectors and X is a (× (+ 1)) matrix.
The standard assumptions of the time series regression model are (e.g.,

Hayashi 2000, Chaps. 1 and 2):

• The linear model (6.1) is correctly specified.

• { x } is jointly stationary and ergodic.

• The regressors x are predetermined : [] = 0 for all and
= 1 .

• [x x0] = is of full rank + 1.

6.2 Time Series Regression Model 183

• {x } is an uncorrelated process with finite (+1)×(+1) covariance
matrix [2x x0] = S = 2 .

The second assumption rules out trending regressors, the third rules out
endogenous regressors but allows lagged dependent variables, the fourth
avoids redundant regressors or exact multicolinearity, and the fifth implies
that the error term is a serially uncorrelated process with constant uncondi-
tional variance 2. In the time series regression model, the regressors x are
random and the error term is not assumed to be normally distributed.

6.2.1 Least Squares Estimation

Ordinary least squares (OLS) estimation is based on minimizing the sum
of squared residuals

SSR() =
X
=1

(x0)2 =
X
=1

2

and produces the fitted model

= x0 ˆ + ˆ = 1

where ˆ = (X
0
X)

1
X0y and ˆ = ˆ = x0 ˆ. The error variance is

estimated as ˆ2 = ˆ0ˆ (1).
Under the assumptions described above, the OLS estimates ˆ are con-

sistent and asymptotically normally distributed. A consistent estimate of
the asymptotic variance of ˆ, avar(ˆ), is given by1

davar(ˆ) = ˆ2(X0X) 1 (6.3)

Estimated standard errors for ˆ (= 0), denoted cSE(ˆ), are given
by the square root of the diagonal elements of (6.3).

6.2.2 Goodness of Fit

Goodness of fit is summarized by the 2 of the regression

2 = 1
ˆ0ˆ

(y ¯1)0(y ¯1)

1The following convention is used throughout this book. A consistent and asymptot-

ically normal estimator ˆ satisfies (ˆ) (0 V) where denotes convergence
in distribution. CallV the asymptotic variance of (ˆ) and 1V the asymptotic

variance of ˆ. Use the notation ˆ (1V) to denote the asymptotic approximat-
ing distribution of ˆ and [(ˆ) to denote the asymptotic variance 1V.

184 6. Time Series Regression Modeling

where ¯ is the sample mean of and 1 is a (× 1) vector of 1’s. 2

measures the percentage of the variability of that is explained by the
regressors, x . The usual 2 has the undesirable feature of never decreasing
as more variables are added to the regression, even if the extra variables
are irrelevant. To remedy this, the 2 statistic may be adjusted for degrees
of freedom giving

2 = 1
ˆ0ˆ ()

(y ¯1)0(y ¯1) (1)
=

ˆ2cvar()

The adjusted 2, 2, may decrease with the addition of variables with
low explanatory power. If fact, it can be shown (e.g., Greene 2000, p. 240)
that 2 will fall (rise) when a variable is deleted from the regression if
the absolute value of the -statistic associated with this variable is greater
(less) than 1.

6.2.3 Hypothesis Testing

The simple null hypothesis

0 : = 0

is tested using the t-ratio

=
ˆ 0cSE(ˆ) (6.4)

which is asymptotically distributed (0 1) under the null. With the addi-
tional assumption of Gaussian errors and regressors independent of the
errors for all , ˆ is normally distributed in finite samples and the -ratio
is distributed Student-t with 1 degrees of freedom.
Linear hypotheses of the form

0 : R = r (6.5)

where R is a fixed × (+1) matrix of rank and r is a fixed × 1 vector
are tested using the Wald statistic

Wald = (Rˆ r)
0 h
Rdavar(ˆ)R0

i 1

(Rˆ r) (6.6)

Under the null, the Wald statistic is asymptotically distributed 2(). Un-
der the additional assumption of Gaussian errors and regressors inde-
pendent of the errors for all , Wald is distributed (1) in finite
samples.
The statistical significance of all of the regressors excluding the constant

is captured by the -statistic

=
2

(1 2) (1)

6.2 Time Series Regression Using the S+FinMetrics Function OLS 185

which is distributed (1) under the null hypothesis that all slope
coe cients are zero and the errors are Gaussian.

6.2.4 Residual Diagnostics

In the time series regression models, several residual diagnostic statistics
are usually reported along with the regression results. These diagnostics
are used to evaluate the validity of some of the underlying assumptions of
the model and to serve as warning flags for possible misspecification. The
most common diagnostic statistics are based on tests for normality and
serial correlation in the residuals of (6.1).
The most common diagnostic for serial correlation based on the esti-

mated residuals ˆ is the Durbin-Watson statistic

DW =

P
=2(ˆ ˆ 1)

2P
=1 ˆ

2

It is easy to show that DW 2(1 ˆ), where ˆ is the estimated correlation
between and ˆ and ˆ 1. Hence, values of DW range between 0 and 4.
Values of DW around 2 indicate no serial correlation in the errors, values
less than 2 suggest positive serial correlation, and values greater than 2
suggest negative serial correlation2. Another common diagnostic for serial
correlation is the Ljung-Box modified Q statistic discussed in Chapter 3.
Although error terms in the time series regression model are not as-

sumed to be normally distributed, severe departures from normality may
cast doubt on the validity of the asymptotic approximations utilized for
statistical inference especially if the sample size is small. Therefore, an-
other diagnostic statistic commonly reported is the Jarque-Bera test for
normality discussed in Chapter 3.

6.3 Time Series Regression Using the
S+FinMetrics Function OLS

Ordinary least squares estimation of the time series regression model (6.1)
in S-PLUS is carried out with the S+FinMetrics function OLS. OLS extends
the S-PLUS linear model function lm to handle time series regression in a

2The DW statistic is an optimal test only for the special case that in (1) follows
an AR(1) process and that the regressors x are fixed. Critical values for the bounding
distribution of DW in this special case are provided in most econometrics textbooks.
However, in practice there is often little reason to believe that follows an AR(1)
process and the regressors are rarely fixed and so the DW critical values are of little
practical use.

186 6. Time Series Regression Modeling

more natural way. The arguments expected by OLS are similar to those for
lm:

> args(OLS)

function(formula, data, weights, subset, na.rm = F, method

= "qr", contrasts = NULL, start = NULL, end = NULL,...)

The main arguments are formula, which is an S-PLUS formula with
the response variable(s) on the left hand side of the ~ character and the
response variables separated by + on the right hand side3, and data, which
is “timeSeries” or data frame in which to interpret the variables named in
the formula and subset arguments. The other arguments will be explained
and their use will be illustrated in the examples to follow.
The function OLS produces an object of class “OLS” for which there are

print, summary, plot and predict methods as well as extractor func-
tions coefficients (coef), residuals (resid), fitted.values (fitted),
vcov and IC. The extractor functions coef, resid and fitted are com-
mon to many S-PLUS model objects. Note that if “timeSeries” objects
are used in the regression then the extracted residuals and fitted values
are also “timeSeries” objects. The extractor functions vcov, which ex-
tracts davar(ˆ), and IC, which extracts information criteria, are specific to
S+FinMetrics model objects and work similarly to the extractor functions
vcov and AIC from the MASS library.
There are several important di erences between lm and OLS. First, the

argument formula is modified to accept lagged values of the dependent
variable through the use of AR terms and lagged values of regressors through
the use of the S+FinMetrics functions tslag and pdl. Second, subset re-
gression for “timeSeries” data is simplified through the use of the start
and end options. Third, summary output includes time series diagnostic
measures and standard econometric residual diagnostic tests may be com-
puted from OLS objects. Fourth, heteroskedasticity consistent as well as
heteroskedasticity and autocorrelation consistent coe cient covariance ma-
trices may be computed from OLS objects.
The use of OLS for time series regression with financial data is illustrated

with the following examples

Example 35 Estimating and testing the capital asset pricing model

The famous Capital Asset Pricing Model (CAPM) due to Sharpe, Litner
and Mosen is usually estimated using the excess return single index model

= + () + = 1 ; = 1 (6.7)

where is the return on asset (= 1) between time periods
1 and , is the return on a market index portfolio between time

3See Chapter 1 for details on specifying formulas in S-PLUS.

6.3 Time Series Regression Using the S+FinMetrics Function OLS 187

periods 1 and , denotes the rate of return between times 1 and
on a risk-free asset, and is a normally distributed random error such
that (0 2). The market index portfolio is usually some well
diversified portfolio like the S&P 500 index, the Wilshire 5000 index or the
CRSP4 equally or value weighted index. In practice, is taken as the T-
bill rate to match the investment horizon associated with . The CAPM
is an equilibrium model for asset returns and, if is the value-weighted
portfolio of all publicly traded assets, it imposes the relationship

[] = ([])

In other words, the above states that the risk premium on asset is equal
to its beta, , times the risk premium on the market portfolio. Hence,
is the appropriate risk measure for asset . In the excess returns single

index model, the CAPM imposes the testable restriction that = 0 for
all assets.
The intuition behind the CAPM is as follows. The market index

captures “macro” or market-wide systematic risk factors that a ect all re-
turns in one way or another. This type of risk, also called covariance risk,
systematic risk and market risk, cannot be eliminated in a well diversified
portfolio. The beta of an asset captures the magnitude of this nondiversifi-
able risk. The random error term represents random “news” that arrives
between time 1 and that captures “micro” or firm-specific risk factors
that a ect an individual asset’s return that are not related to macro events.
For example, may capture the news e ects of new product discoveries
or the death of a CEO. This type of risk is often called firm specific risk,
idiosyncratic risk, residual risk or non-market risk. This type of risk can be
eliminated in a well diversified portfolio. The CAPM says that in market
equilibrium the risk premium on any asset is directly related to the mag-
nitude of its nondiversifiable risk (beta). Diversifiable risk is not priced;
i.e., diversifiable risk does not command a risk premium because it can be
eliminated by holding a well diversified portfolio.
In the CAPM, the independence between and allows the un-

conditional variability of an asset’s return to be decomposed into the
variability due to the market index, 2 2 , plus the variability of the firm
specific component, 2. The proportion of the variance explained by
the variability in the market index is the usual regression 2 statistic. Ac-
cordingly, 1 2 is then the proportion of the variability of that is due
to firm specific factors. One can think of 2 as measuring the proportion
of risk in asset that cannot be diversified away when forming a portfolio
and 1 2 as the proportion of risk that can be diversified away.

4CRSP refers to the Center for Research in Security Prices at the University of
Chicago.

188 6. Time Series Regression Modeling

Estimating the CAPM Using the S+FinMetrics Function OLS

Consider the estimation of the CAPM regression (6.7) for Microsoft us-
ing monthly data over the ten year period January 1990 through January
2000. The S&P 500 index is used for the market proxy, and the 30 day
T-bill rate is used for the risk-free rate. The S+FinMetrics “timeSeries”
singleIndex.dat contains the monthly price data for Microsoft, and the
S&P 500 index and the “timeSeries” rf.30day contains the monthly 30
day T-bill rate. The excess return data are created using

> colIds(singleIndex.dat)

[1] "MSFT" "SP500"

> colIds(rf.30day)

[1] "RF"

> ret.ts = getReturns(singleIndex.dat, type="continuous")

> excessRet.ts = seriesMerge(ret.ts,log(1+rf.30day))

> excessRet.ts[,"MSFT"] = excessRet.ts[,"MSFT"] -

+ excessRet.ts[,"RF"]

> excessRet.ts[,"SP500"] = excessRet.ts[,"SP500"] -

+ excessRet.ts[,"RF"]

> excessRet.ts = excessRet.ts[,1:2]

Time plots and a scatterplot of the excess returns created by

> par(mfrow=c(2,1))

> plot(excessRet.ts, plot.args=list(lty=c(1,3)),

+ main="Monthly excess returns on Microsoft and S&P 500 Index")

> legend(0, -0.2, legend=c("MSFT","S&P 500"), lty=c(1,3))

> plot(seriesData(excessRet.ts[,"SP500"]),

+ seriesData(excessRet.ts[,"MSFT"]),

+ main="Scatterplot of Returns",

+ xlab="SP500", ylab="MSFT")

are given in Figure 6.1. The returns on Microsoft and the S&P 500 index
appear stationary and ergodic and tend to move in the same direction over
time with the returns on Microsoft being more volatile than the returns on
the S & P 500 index. The estimate of the CAPM regression for Microsoft
using OLS is:

> ols.fit = OLS(MSFT~SP500, data=excessRet.ts)

> class(ols.fit)

[1] "OLS"

OLS produces an object of class “OLS” with the following components

> names(ols.fit)

[1] "R" "coef" "df.resid" "fitted"

[5] "residuals" "assign" "contrasts" "ar.order"

[9] "terms" "call"

6.3 Time Series Regression Using the S+FinMetrics Function OLS 189

Monthly excess returns on Microsoft
and S&P 500 Index

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

-0
.4

-0
.2

0.
0

0.
2

MSFT
S&P 500

Scatterplot of Returns

SP500

M
S

FT

-0.15 -0.10 -0.05 0.0 0.05 0.10

-0
.4

-0
.2

0.
0

0.
2

FIGURE 6.1. Monthly excess returns on Microsoft and the S&P 500 index.

The results of the OLS fit are displayed using the generic print and
summary methods. The print method produces minimal output:

> ols.fit

Call:

OLS(formula = MSFT ~SP500, data = excessRet.ts)

Coefficients:

(Intercept) SP500

0.0128 1.5259

Degrees of freedom: 131 total; 129 residual

Time period: from Feb 1990 to Dec 2000

Residual standard error: 0.09027

Notice that since the object specified in data is a “timeSeries”, the start
and end dates of the estimation sample are printed. The summary method
produces the standard econometric output:

> summary(ols.fit)

Call:

OLS(formula = MSFT ~SP500, data = excessRet.ts)

Residuals:

190 6. Time Series Regression Modeling

Min 1Q Median 3Q Max

-0.3835 -0.0566 0.0023 0.0604 0.1991

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 0.0128 0.0080 1.6025 0.1115

SP500 1.5259 0.1998 7.6354 0.0000

Regression Diagnostics:

R-Squared 0.3113

Adjusted R-Squared 0.3059

Durbin-Watson Stat 2.1171

Residual Diagnostics:

Stat P-Value

Jarque-Bera 41.6842 0.0000

Ljung-Box 11.9213 0.9417

Residual standard error: 0.09027 on 129 degrees of freedom

Time period: from Feb 1990 to Dec 2000

F-statistic: 58.3 on 1 and 129 degrees of freedom, the

p-value is 4.433e-012

The estimated value for for Microsoft is 1 526 with an estimated stan-
dard error cSE(ˆ) = 0 200. An approximate 95% confidence interval for

is ˆ ± 2· cSE(ˆ) = [1 126 1 926], and so Microsoft is judged to be riskier
than the S&P 500 index. The estimated value of is 0 013 with an esti-
mated standard error of cSE(ˆ) = 0 008. An approximate 95% confidence

interval for is ˆ ± 2· cSE(ˆ) = [0 003 0 029]. Since = 0 is in the confi-
dence interval the CAPM restriction hold for Microsoft. The percentage of
nondiversifiable (market specific) risk is 2 = 0 31 and the percentage of
diversifiable (firm specific) risk is 1 2 = 0 69. The estimated magnitude
of diversifiable risk is ˆ = 0 090 or 9% per month. Notice that the Jarque-
Bera statistic indicates that the residuals from the CAPM regression are
not normally distributed. The DW and Ljung-Box statistics, however, in-
dicate that the residuals are serially uncorrelated (at least at the first lag).
The extractor functions for an “OLS” object are used to extract the vec-

tors of estimated coe cients ˆ, fitted values ŷ, residuals ˆ and asymptotic
variance matrix davar(ˆ) :
> coef(ols.fit)

(Intercept) SP500

0.01281 1.526

6.3 Time Series Regression Using the S+FinMetrics Function OLS 191

> fitted(ols.fit)[1:3]

Positions 1

Feb 1990 0.01711

Mar 1990 0.03965

Apr 1990 -0.03927

> resid(ols.fit)[1:3]

Positions 1

Feb 1990 0.04258

Mar 1990 0.06868

Apr 1990 0.07870

> vcov(ols.fit)

(Intercept) SP500

(Intercept) 0.00006393 -0.0002618

SP500 -0.00026181 0.0399383

Notice that to use the extractor functions residuals and fitted.values
one only has to type resid and fitted. Since the data used for estimation
is a “timeSeries” object, the extracted residuals and fitted values are also
“timeSeries” objects.
To illustrate the use of the extractor functions, the -statistics for testing

the null hypothesis that the intercept is zero and the slope is unity are

> (coef(ols.fit)-c(0,1))/sqrt(diag(vcov(ols.fit)))

(Intercept) SP500

1.603 2.631

and summary statistics for the residuals using the S+FinMetrics function
summaryStats are

> summaryStats(residuals(ols.fit))

Sample Quantiles:

min 1Q median 3Q max

-0.3835 -0.05661 0.002342 0.06037 0.1991

Sample Moments:

mean std skewness kurtosis

-7.204e-018 0.08993 -0.7712 5.293

Number of Observations: 131

Testing Linear Restrictions

The CAPM regression (6.7) in matrix form is (6.2) with x = (1)0

and = ()0. Consider testing the joint null hypothesis 0 : = 0 and

192 6. Time Series Regression Modeling

= 1. This hypothesis imposes two linear restrictions on the parameter
vector = ()0 that may be written in the form (6.5) with

R =

µ
1 0
0 1

¶
r =

µ
0
1

¶
The Wald statistic (6.6) may be computed directly as

> Rmat = diag(2)

> rvec = c(0,1)

> bhat = coef(ols.fit)

> avarRbhat = Rmat%*%vcov(ols.fit)%*%t(Rmat)

> wald.stat =

+ t(Rmat%*%bhat-rvec)%*%solve(avarRbhat)%*%(Rmat%*%bhat-rvec)

> as.numeric(wald.stat)

[1] 11.17

> p.value = 1 - pchisq(wald.stat,2)

> p.value

[1] 0.003745

The small -value suggests that null 0 : = 0 and = 1 should be
rejected at any reasonable significance level. The -statistic version of the
Wald statistic based on normal errors is

> F.stat = wald.stat/2

> p.value = 1 - pf(F.stat,2,ols.fit$df.resid)

> p.value

[1] 0.004708

and also suggests rejection of the null hypothesis.
The -statistic version of the Wald statistic for general linear restrictions

of the form (6.5) may be conveniently computed using the S+FinMetrics
function waldTest. For example,

> waldTest(ols.fit,Intercept==0,SP500==1)

Wald Test of Coefficients:

Null Hypothesis: constraints are true

Test Statistic: 5.587

Dist. under Null: F with (2 , 129) degrees of freedom

P-value: 0.004708

produces the -statistic version of the Wald test for the null hypothesis 0 :
= 0 and = 1. Notice how the restrictions under the null being tested

are reflected in the call to waldTest. More complicated linear restrictions
like 0 : + 2 = 2 are also easily handled

> waldTest(ols.fit,Intercept-2*SP500==2)

6.3 Time Series Regression Using the S+FinMetrics Function OLS 193

Wald Test of Coefficients:

Null Hypothesis: constraints are true

Test Statistic: 157.8

Dist. under Null: F with (1 , 129) degrees of freedom

P-value: 0

Likelihood ratio (LR) statistics for testing linear hypotheses may also
be computed with relative ease since the OLS estimates are the maximum
likelihood estimates assuming the errors have a normal distribution. The
log-likelihood value of the OLS fit assuming normal errors may be extracted
using the S+FinMetrics function IC. For example, the log-likelihood for the
unrestricted CAPM fit is

> IC(ols.fit, "loglike")

[1] 130.2

Consider testing the CAPM restriction 0 : = 0 using a LR statistic.
The restricted OLS fit, imposing = 0 is computed using

> ols.fit2 = OLS(MSFT~SP500-1,data=excessRet.ts)

The LR statistic is then computed as

> LR = -2*(IC(ols.fit2,"loglike")-IC(ols.fit,"loglike"))

> LR

[1] 2.571

> 1 - pchisq(LR,1)

[1] 0.1089

Given the -value of 0 109, the CAPM restriction is not rejected at the 10%
significance level.

Graphical Diagnostics

Graphical summaries of the OLS fit are produced with the generic plot
function. By default, plot produces a menu of plot choices:

> plot(ols.fit)

Make a plot selection (or 0 to exit):

1: plot: all

2: plot: response vs fitted values

3: plot: response and fitted values

4: plot: normal QQ-plot of residuals

5: plot: residuals

6: plot: standardized residuals

7: plot: residual histogram

8: plot: residual ACF

194 6. Time Series Regression Modeling

Plot Function Description
xygPlot Trellis xyplot with grid and strip.text options
rvfPplot Trellis response vs. fitted plot with grid and

strip.text options
rafPlot Trellis plot of response and fitted values
histPlot Trellis density estimate with strip.text options
qqPlot Trellis QQ-plot with grid and strip.text options
residPlot Trellis plot of residuals
acfPlot Trellis ACF plot

TABLE 6.1. S+FinMetrics utility Trellis plotting functions

9: plot: residual PACF

10: plot: residual^2 ACF

11: plot: residual^2 PACF

Selection:

The plot choices are di erent from those available for “lm” objects and focus
on time series diagnostics. All plots are generated using Trellis graphics5.
Table 6.1 summarizes the utility plot functions used to create the various
OLS plots. See the help files for more information about the plot functions.
Figures 6.2 and 6.3 illustrate plot choices 3 (response and fitted) and 8
(residual ACF). From the response and fitted plot, it is clear that the
return on the S&P 500 index is a weak predictor of return on Microsoft.
The residual ACF plot indicates that the residuals do not appear to be
autocorrelated, which supports the results from the residual diagnostics
reported using summary.
Individual plots can be created directly, bypassing the plot menu, using

the which.plot option of plot.OLS. For example, the following command
creates a normal qq-plot of the residuals:

> plot(ols.fit,which.plot=3)

Notice that number used for the qq-plot specified by which.plot is one
less than the value specified in the menu. The qq-plot may also be created
by calling the Trellis utility plot function qqPlot directly:

> qqPlot(resid(ols.fit), strip.text="ols.fit",

+ xlab="Quantile of Standard Normal",

+ ylab="Residuals",main="Normal QQ Plot")

Residual Diagnostics

The residual diagnostics reported by summary may be computed directly
from an “OLS” object. The normalTest and autocorTest functions in

5Unfortunately, the Trellis plots cannot be easily combined into multipanel plots.

6.3 Time Series Regression Using the S+FinMetrics Function OLS 195

-0
.4

-0
.3

-0
.2

-0
.1

0.
0

0.
1

0.
2

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

ols.fit

Response and Fitted Values

FIGURE 6.2. Response and fitted values from the OLS fit to the CAPM regression
for Microsoft.

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20

ols.fit

Lag

AC
F

Residual Autocorrelation

FIGURE 6.3. Residual ACF plot from the OLS fit to the CAPM regression for
Microsoft.

196 6. Time Series Regression Modeling

S+FinMetrics may be used to compute test statistics for normality and
autocorrelation from the residuals of an OLS fit. For example, to compute
the Jarque-Bera normality test and the Ljung-Box test from the residuals
of the CAPM regression use

> normalTest(ols.fit,method="jb")

Test for Normality: Jarque-Bera

Null Hypothesis: data is normally distributed

Test Statistics:

Test Stat 41.68

p.value 0.00

Dist. under Null: chi-square with 2 degrees of freedom

Total Observ.: 131

> autocorTest(ols.fit,method="lb")

Test for Autocorrelation: Ljung-Box

Null Hypothesis: no autocorrelation

Test Statistics:

Test Stat 11.9213

p.value 0.9417

Dist. under Null: chi-square with 21 degrees of freedom

Total Observ.: 131

The Durbin-Watson statistic may be recovered using the S-PLUS function
durbinWatson as follows

> durbinWatson(residuals(ols.fit))

Durbin-Watson Statistic: 2.117063

Number of observations: 131

The Breusch-Godfrey LM test for residual autocorrelation may be com-
puted using autocorTest by specifying method=\lm". For example, to
compute the LM statistic for the null of no autocorrelation against the
alternative of serial correlation up to lag two use

> autocorTest(ols.fit,method="lm",lag.n=2)

6.3 Time Series Regression Using the S+FinMetrics Function OLS 197

Test for Autocorrelation: Breusch-Godfrey LM

Null Hypothesis: no autocorrelation

Test Statistics:

Test Stat 2.9768

p.value 0.2257

Dist. under Null: chi-square with 2 degrees of freedom

Total Observ.: 131

Consistent with the Ljung-Box test, the LM test indicates no residual au-
tocorrelation.

Subset Regression

The estimated for Microsoft uses all of the data over the 11 year period
from January 1990 to December 2000. It is generally thought that does
not stay constant over such a long time period. To estimate using only
the most recent five years of data the start option of OLS may be utilized

> OLS(MSFT~SP500, data=excessRet.ts,

+ start="Jan 1996", in.format="%m %Y")

Call:

OLS(formula = MSFT ~SP500, data = excessRet.ts, start =

"Jan 1996", in.format = "%m %Y")

Coefficients:

(Intercept) SP500

0.0035 1.7828

Degrees of freedom: 60 total; 58 residual

Time period: from Jan 1996 to Dec 2000

Residual standard error: 0.1053

Notice that date string passed to start uses the same display format as
the “timeDate” objects in the positions slot of excessRet.ts, and that
this format is specified directly using in.format="%m %Y". Estimation over
general sub-periods follows by specifying both the start date and the end
date of the sub-period in the call to OLS.
Regression estimates may be computed over general subsets by using the

optional argument subset to specify which observations should be used in
the fit. Subsets can be specified using a logical vector (which is replicated
to have length equal to the number of observations), a numeric vector
indicating the observation numbers to be included, or a character vector of

198 6. Time Series Regression Modeling

the observation names that should be included. For example, to estimate
the CAPM only for the observations for which the excess return on the
S&P 500 is positive, use

> OLS(MSFT~SP500, data=excessRet.ts, subset=(SP500>=0))

Call:

OLS(formula = MSFT ~SP500, data = excessRet.ts, subset = (

SP500 >= 0))

Coefficients:

(Intercept) SP500

0.0231 1.3685

Degrees of freedom: 80 total; 78 residual

Residual standard error: 0.08341

Regression with Dummy Variables

In the analysis of asset returns, it is often noticed that excess returns are
higher in January than in any other month. To investigate this claim, a
dummy variable is created which equals 1 if the month is January and 0
otherwise:

> is.Jan = (months(positions(excessRet.ts))=="Jan")

> Jan.dum = timeSeries(pos=positions(excessRet.ts),

+ data=as.integer(is.Jan))

Next, the January dummy variable is added to the time series of excess
returns:

> newdat.ts = seriesMerge(excessRet.ts,Jan.dum)

> colIds(newdat.ts)[3] = "Jan.dum"

The CAPM regression allowing for a di erent intercept in January is

> summary(OLS(MSFT~SP500+Jan.dum, data=newdat.ts))

Call:

OLS(formula = MSFT ~SP500 + Jan.dum, data = newdat.ts)

Residuals:

Min 1Q Median 3Q Max

-0.3804 -0.0532 0.0065 0.0604 0.2032

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 0.0090 0.0082 1.0953 0.2755

6.3 Time Series Regression Using the S+FinMetrics Function OLS 199

SP500 1.5085 0.1986 7.5972 0.0000

Jan.dum 0.0513 0.0295 1.7371 0.0848

Regression Diagnostics:

R-Squared 0.3271

Adjusted R-Squared 0.3166

Durbin-Watson Stat 2.0814

Residual Diagnostics:

Stat P-Value

Jarque-Bera 43.4357 0.0000

Ljung-Box 12.1376 0.9358

Residual standard error: 0.08958 on 128 degrees of freedom

Time period: from Feb 1990 to Dec 2000

F-statistic: 31.11 on 2 and 128 degrees of freedom, the

p-value is 9.725e-012

The coe cient on the January dummy is positive and significant at the 9%
level indicating that excess returns are slightly higher in January than in
other months. To allow for a di erent intercept and slope in the regression,
use

> summary(OLS(MSFT~SP500*Jan.dum, data=newdat.ts))

Call:

OLS(formula = MSFT ~SP500 * Jan.dum, data = tmp1.ts)

Residuals:

Min 1Q Median 3Q Max

-0.3836 -0.0513 0.0047 0.0586 0.2043

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 0.0095 0.0082 1.1607 0.2479

SP500 1.4307 0.2017 7.0917 0.0000

Jan.dum 0.0297 0.0317 0.9361 0.3510

SP500:Jan.dum 1.6424 0.9275 1.7707 0.0790

Regression Diagnostics:

R-Squared 0.3433

Adjusted R-Squared 0.3278

Durbin-Watson Stat 2.0722

200 6. Time Series Regression Modeling

Residual Diagnostics:

Stat P-Value

Jarque-Bera 51.4890 0.0000

Ljung-Box 12.7332 0.9177

Residual standard error: 0.08884 on 127 degrees of freedom

Time period: from Feb 1990 to Dec 2000

F-statistic: 22.13 on 3 and 127 degrees of freedom, the

p-value is 1.355e-011

Notice that the formula uses the short-hand notation A*B = A+B+A:B.
Interestingly, when both the slope and intercept are allowed to be di erent
in January only the slope is significantly higher.

Predictions

Predictions or forecasts from an OLS fit may be computed using the generic
predict function. For example, consider computing forecasts of the excess
return on Microsoft conditional on specified values for the S&P 500 excess
return based on the CAPM fit. The excess returns on the S&P 500 for the
conditioinal forecasts are

> sp500.new = data.frame(c(-0.2,0,2))

> colIds(sp500.new) = "SP500"

These new data values must be in a data frame with the same name as
the variable containing the S&P 500 data in excessRet.ts. The forecasts
are computed using

> ols.pred = predict(ols.fit,n.predict=3,newdata=sp500.new)

> class(ols.pred)

[1] "forecast"

> ols.pred

Predicted Values:

[1] -0.2924 0.0128 3.0646

The result of predict is an object of class “forecast” for which there
are print, summary and plot methods. The print method shows just the
forecasts. The summary method shows the forecasts and forecast standard
errors (ignoring parameter estimation error)

> summary(ols.pred)

Predicted Values with Standard Errors:

prediction std.err

6.4 Dynamic Regression 201

0
1

2
3

128 130 132 134

MSFT

index

va
lu

es

FIGURE 6.4. Conditional forecasts for the excess returns on Microsoft from the
CAPM regression.

1-step-ahead -0.2924 0.0903

2-step-ahead 0.0128 0.0903

3-step-ahead 3.0646 0.0903

To view the forecasts and standard error band along with the historical
data use

> plot(ols.pred, xold=excessRet.ts[,1], n.old=5, width=2)

The argument xold contains the historical data for the response variable,
n.old determines how many historical observations to plot along with the
forecasts and width specifies the multiplier for the forecast standard errors
in the construction of the error bands. The created plot is illustrated in
Figure 6.4.

6.4 Dynamic Regression

Often the time series regression model (6.1) contains lagged variables as
regressors to capture dynamic e ects. The general dynamic time series
regression model contains lagged values of the response variable and

202 6. Time Series Regression Modeling

lagged values of the exogenous stationary regressors 1 :

= +
X
=1

+
1X
=0

1 1 + · · ·+
X
=0

+ (6.8)

where the error term is assumed to be (0 2). The model (6.8) is
called an autoregressive distributed lag (ADL) model and generalizes an
AR() by including exogenous stationary regressors.
The main issues associated with the analysis and interpretation of the

ADL model (6.8) can be illustrated using the following simple ADL model
with a single exogenous variable :

= + 1 + 0 + 1 1 + (6.9)

Since is assumed to be stationary, and (0 2), behaves like
an AR(1) process

= + 1 +

where = 0 + 1 1 + is a composite error term. Therefore, the
ADL model (6.9) is stationary provided | | 1. Given that is stationary
it has an infinite order moving average representation (impulse response
function) in terms of the composite errors

= +
X
=0

= + + 1 1 + 2 2 + · · ·

where = 1 (1) and = . Substituting = 0 + 1 1 +

and = into the above moving average representation gives

= + (0 + 1 1 +) + (0 1 + 1 2 + 1)

+ 2(0 2 + 1 3 + 2) + · · ·
= + 0 + (1 + 0) 1 + (1 + 0) 2 + · · · (6.10)

+ 1(1 + 0) + · · ·+ + 1 +
2

2 + · · ·

Using (6.10), the interpretation of the coe cients in (6.9) becomes clearer.
For example, the immediate impact multiplier is the impact of a change in
on

= 0

The first lag multiplier is the impact of a change in 1 on

1
= 1 + 0

6.4 Dynamic Regression 203

which incorporates a feedback e ect 0 due to the lagged response variable
in (6.9). The second lag multiplier is

2
= (1 + 0)

and is smaller in absolute value than the first lag multiplier since | | 1.
In general, the th lag multiplier is

= 1 (1 + 0)

Notice that as , 0 so that eventually the e ect of a change

in on dies out. The long-run e ect of a change in on is defined
as the cumulative sum of all the lag impact multipliers

long-run e ect = +
1
+

2
+ · · ·

=
X
=0

(0 + 1)

= 0 + 1

1

The parameter on 1 determines the speed of adjustment between the
immediate impact of on and the long-run impact. If = 0, then the
long-run impact is reached in one time period since = 0 for 1.

In contrast, if 1, then the long-run impact takes many periods. A
parameter often reported is the half-life of the adjustment; that is, the
lag at which one half of the adjustment to the long-run impact has been
reached. In the simple ADL (6.9), it can be shown that the half-life is equal
to ln(2) ln().
For the general ADL model (6.8), stationarity of requires that all

be stationary and that the roots of the characteristic polynomial () =
1 1 · · · = 0 have modulus greater than one. The immedi-
ate impact multipliers are the coe cients 10 0 and the long-run
multipliers are P

2

=0 1

1 1 · · ·

P
=0

1 1 · · ·

The speed of adjustment to the long-run impacts is determined by the sum
of the coe cients on the lagged responses 1 + · · ·+ .

Example 36 Estimating a simple dynamic CAPM regression for Microsoft

Consider estimating a simple dynamic version of the CAPM regression

= + (1 1)+ 0()+ 1(1 1)+

204 6. Time Series Regression Modeling

using the monthly excess return data for Microsoft and the S&P 500 index.
The “short-run beta” for Microsoft is 0 and the “long-run beta” is (0 +

1) (1). The dynamic CAPM estimated using OLS is

> adl.fit = OLS(MSFT~SP500+ar(1)+tslag(SP500),

+ data=excessRet.ts)

In the regression formula, the lagged dependent variable (MSFT) is speci-
fied using the ar(1) term, and the lagged explanatory variable (SP500) is
created using the S+FinMetrics function tslag. The dynamic regression
results are

> summary(adl.fit)

Call:

OLS(formula = MSFT ~SP500 + ar(1) + tslag(SP500), data =

excessRet.ts)

Residuals:

Min 1Q Median 3Q Max

-0.3659 -0.0514 0.0059 0.0577 0.1957

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 0.0156 0.0083 1.8850 0.0617

SP500 1.5021 0.2017 7.4474 0.0000

tslag(SP500) -0.0308 0.2453 -0.1257 0.9001

lag1 -0.1107 0.0921 -1.2021 0.2316

Regression Diagnostics:

R-Squared 0.3248

Adjusted R-Squared 0.3087

Durbin-Watson Stat 1.9132

Residual Diagnostics:

Stat P-Value

Jarque-Bera 41.5581 0.0000

Ljung-Box 10.5031 0.9716

Residual standard error: 0.0904 on 126 degrees of freedom

Time period: from Mar 1990 to Dec 2000

F-statistic: 20.2 on 3 and 126 degrees of freedom, the

p-value is 9.384e-011

6.4 Dynamic Regression 205

The least squares estimates of dynamic CAPM parameters are ˆ = 0 016,
ˆ = 0 111, ˆ0 = 1 502 and

ˆ
1 = 0 031. The estimated “short-run beta”

for Microsoft is 1 502 and the estimated “long-run beta” is6

> bhat = coef(adl.fit)

> lr.beta = (bhat[2]+bhat[3])/(1-bhat[4])

> lr.beta

SP500

1.325

Notice that the “long-run beta” is smaller than the “short-run beta”. How-
ever, since the standard errors on the dynamic terms ˆ and ˆ1 are large
relative to the estimated values, the data do not support the dynamic
CAPM model.

6.4.1 Distributed Lags and Polynomial Distributed Lags

A special case of the general ADL model (6.8) is the distributed lag model

= +
X
=0

+ (6.11)

For simplicity, the model is shown with one exogenous variable The
extension to multiple exogenous variables is straightforward. Given the
results of the previous section, is interpreted as the th lag multiplier,
and the long-run impact on of a change in is

P
=1 .

Determining the Lag Length

In many applications, the lag length needs to be long to adequately cap-
ture the dynamics in the data. To determine the lag length, all models with

max are fit and the preferred model minimizes some model selection
criterion like the Akaike (AIC) or Schwarz (BIC). For the distributed lag
model, the AIC and BIC have the form

AIC() = ln(˜2()) +
2

BIC() = ln(˜2()) +
ln

where ˜2() is the least squares estimate of 2 without a degrees of freedom
correction. For objects of class “OLS”, S+FinMetrics provides the extractor
function IC to compute the AIC or BIC information criteria.

6Since the “long-run beta” is a nonlinear function of the least squares estimates,
estimated standard errors for the “long-run beta” may be computed using the so-called
“delta method”. See Greene (2000) page 118.

206 6. Time Series Regression Modeling

If the exogenous variable is highly persistent, then lagged values

1 may be highly correlated and problems associated with
near multicollinearity may occur in (6.11)7. In this case, the S+FinMetrics
function collinearTest may be used to diagnose the extent of near multi-
collinearity in the data. The function collinearTest computes either the
condition number for X0X or the variance inflation statistics associated
with each variable.

Example 37 Distributed lag model for U.S. real GDP growth

The S+FinMetrics “timeSeries” policy.dat contains monthly data
on U.S. real GDP and the Federal Funds rate. Consider estimating a dis-
tributed lag model with = 12 for the growth rate in real GDP using the
Federal Funds rate as an exogenous variable over the period January 1990
to March 1998:

> dl.fit = OLS(diff(log(GDP))~FFR+tslag(FFR,1:12),data=

+ policy.dat, start="Jan 1990",in.format="%m %Y",na.rm=T)

The AIC and BIC information criteria may be extracted using

> IC(dl.fit,type="AIC")

[1] -1271

> IC(dl.fit,type="BIC")

[1] -1235

The model may be re-fit with di erent values of and the preferred model
is the one which produces the smallest value of the chosen information
criterion.
The condition number and variance inflation statistics from the least

square fit are

> collinearTest(dl.fit, method="cn")

[1] 311.2

> collinearTest(dl.fit, method="vif")

FFR tslag(FFR, 1:12)lag1 tslag(FFR, 1:12)lag2

111.8 278.7 293

tslag(FFR, 1:12)lag3 tslag(FFR, 1:12)lag4

304.9 331.8

tslag(FFR, 1:12)lag5 tslag(FFR, 1:12)lag6

344.9 370.5

tslag(FFR, 1:12)lag7 tslag(FFR, 1:12)lag8

7See Greene (2000) pages 255-259 for a discussion of the problems associated with
near multicollinearity.

6.4 Dynamic Regression 207

369 390

tslag(FFR, 1:12)lag9 tslag(FFR, 1:12)lag10

389.5 410

tslag(FFR, 1:12)lag11 tslag(FFR, 1:12)lag12

424.5 162.6

The large condition number and variance inflation statistics indicate that
high correlation among the regressors is a potential problem.

6.4.2 Polynomial Distributed Lag Models

The unrestricted distributed lag model (6.11) may produce unsatisfactory
results due to high correlation among the lagged variables. If the sample size
is small and the lag length is large then these problems are exacerbated.
In these cases, one may want to restrict the behavior of the lag coe cients
in (6.11). One popular way to do this is to use the polynomial distributed

lag (PDL) model8. The PDL model specifies that follows a polynomial

= 0 + 1 + 2
2 + · · ·+ (6.12)

for = 1 . Usually, the order of the polynomial, , is small.
Whereas the general distributed lag model (6.11) has lag parameters the
PDL model has only + 1 lag parameters. To see this more explicitly,
the distributed lag model with lags under the restriction (6.12) may be
re-written as the linear regression with variables

= + 0 0 + 1 1 + · · ·+ + (6.13)

where

=
X
=1

(6.14)

Example 38 PDL model for U.S. real GDP growth

To estimate a PDL model for U.S. GDP growth using the Federal Funds
rate with = 2 and = 12 use

> pdl.fit = OLS(diff(log(GDP))~pdl(FFR,d=2,q=12),

+ data=policy.dat, start="Jan 1990",

+ in.format="%m %Y", na.rm=T)

> pdl.fit

8The PDL model is also known as the Almon lag model.

208 6. Time Series Regression Modeling

Call:

OLS(formula = diff(log(GDP)) ~pdl(FFR, d = 2, q = 12),

data = policy.dat, na.rm = T, start = "Jan 1990",

in.format = "%m %Y")

Coefficients:

(Intercept) pdl(FFR, d = 2, q = 12)FFR.PDL0

0.0006 -0.0070

pdl(FFR, d = 2, q = 12)FFR.PDL1

0.0031

pdl(FFR, d = 2, q = 12)FFR.PDL2

-0.0002

Degrees of freedom: 97 total; 93 residual

dropped 1 cases due to missing observations.

Time period: from Feb 1990 to Feb 1998

Residual standard error: 0.0003371

The S+FinMetrics function pdl used in the formula compute the regres-
sors (6.14) for the PDL regression (6.13).

6.5 Heteroskedasticity and Autocorrelation
Consistent Covariance Matrix Estimation

In the time series regression model, the e ciency of the least squares esti-
mates and the validity of the usual formulas for the estimated coe cient
standard errors and test statistics rely on validity of the underlying assump-
tions of the model outlined in the beginning of Section 6.2. In empirical
applications using financial time series, it is often the case that the error
terms have non constant variance (heteroskedasticity) as well as auto-
correlation. As long as the regressors x are uncorrelated with the errors
the least squares estimates of will generally still be consistent and

asymptotically normally distributed. However, they will not be e cient
and the usual formula (6.3) for computing davar(ˆ) will not be correct. As
a result, any inference procedures based on (6.3) will also be incorrect. If
the form of heteroskedasticity and autocorrelation is known, then e cient
estimates may be computed using a generalized least squares procedure9. If
the form of heteroskedasticity and autocorrelation is not known, it is possi-

9The S-PLUS function glsmay be used to compute generalized least squares estimates
using a variety of models for heteroskedasticity and autocorrelation.

6.5 HAC Covariance Matrix Estimation 209

ble to estimate davar(ˆ) consistently so that valid standard errors and test
statistics may be obtained. This section describes the construction of het-
eroskedasticity and autocorrelation consistent estimates of davar(ˆ). First,
the heteroskedasticity consistent estimate of davar(ˆ) due to Eicker (1967)
and White (1980) is discussed and then the heteroskedasticity and auto-
correlation consistent estimate of davar(ˆ) due to Newey and West (1987)
is covered.

6.5.1 The Eicker-White Heteroskedasticity Consistent (HC)
Covariance Matrix Estimate

A usual assumption of the time series regression model is that the errors
are conditionally homoskedastic; i.e., [2|X] = 2 0. In many situations
it may be more appropriate to assume that the variance of is a function
of x so that is conditionally heteroskedastic: [2|x] = 2 (x)
0. Formally, suppose the assumptions of the time series regression model
hold but that [2x x0] = S 6= 2 . This latter assumption allows the
regression errors to be conditionally heteroskedastic and dependent on x ;
i.e., [2|x] = 2 (x). In this case, it can be shown that the asymptotic
variance matrix of the OLS estimate, ˆ, is

avar(ˆ) = 1 1 S 1 (6.15)

The above generalized OLS asymptotic variance matrix will not be equal to
the usual OLS asymptotic matrix 2 1 , and the usual estimate davar(ˆ) =
ˆ2(X0X) 1 will not be correct. Hence, in the presence of heteroskedastic-
ity the usual OLS t-statistics, standard errors, Wald statistics cannot be
trusted.
If the values of (x) are known, then the generalized or weighted least

squares (GLS) estimator

ˆ
GLS = (X

0V(X) 1X) 1X0V(X)y

where V(X) is a (×) diagonal matrix with (x) along the diagonal,
is e cient.
In most circumstances (x) is not known so that the e cient GLS es-

timator cannot be computed. If the OLS estimator is to be used, then a
consistent estimate for the generalized OLS covariance matrix is needed for
proper inference. A heteroskedasticity consistent (HC) estimate of avar(ˆ)
due to Eicker (1967) and White (1980) is

davarHC(ˆ) = (X0X) 1
ŜHC(X

0
X) 1 (6.16)

where

ŜHC =
1 X

=1

ˆ2x x0 (6.17)

210 6. Time Series Regression Modeling

and ˆ is the OLS residual at time .
The square root of the diagonal elements of davarHC(ˆ) gives the Eicker-

White heteroskedasticity consistent standard errors (HCSEs) for the least

squares estimates of . These are denoted cSEHC(ˆ). Heteroskedasticity
robust -statistics and Wald statistics are computed in the usual way using
(6.4) and (6.6) but with davarHC(ˆ) and cSEHC(ˆ) replacing davar(ˆ) andcSE(ˆ), respectively.
Example 39 Heteroskedasticity robust inference for the CAPM

Once a model has been fit using OLS, the HC estimate (6.16) may be

extracted using vcov and cSEHC(ˆ) may be computed using summary by
specifying the optional argument correction="white" as follows

> ols.fit = OLS(MSFT~SP500, data=excessRet.ts)

> avar.HC = vcov(ols.fit, correction="white")

> summary(ols.fit, correction="white")

Call:

OLS(formula = MSFT ~SP500, data = excessRet.ts)

Residuals:

Min 1Q Median 3Q Max

-0.3835 -0.0566 0.0023 0.0604 0.1991

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 0.0128 0.0080 1.5937 0.1134

SP500 1.5259 0.1920 7.9463 0.0000

Regression Diagnostics:

R-Squared 0.3113

Adjusted R-Squared 0.3059

Durbin-Watson Stat 2.1171

Residual Diagnostics:

Stat P-Value

Jarque-Bera 41.6842 0.0000

Ljung-Box 11.9213 0.9417

Residual standard error: 0.09027 on 129 degrees of freedom

Time period: from Feb 1990 to Dec 2000

F-statistic: 58.3 on 1 and 129 degrees of freedom, the

p-value is 4.433e-012

6.5 HAC Covariance Matrix Estimation 211

Here, the HCSE values cSEHC(ˆ) are almost identical to the usual OLS
values cSE(ˆ) which suggests that the errors are not heteroskedastic.
6.5.2 Testing for Heteroskedasticity

If the error terms in the time series regression model are heteroskedastic,
then the OLS estimates are consistent but not e cient and the usual for-
mula (6.3) for computing davar(ˆ) is incorrect. As shown in the previous
section, davarHC(ˆ) given by (6.16) provides a consistent estimate of the
generalized asymptotic variance (6.15). If the errors are not heteroskedas-
tic, however, (6.15) is still consistent, but the usual formula (6.3) will gen-
erally give smaller standard errors and more powerful tests. Therefore, it
is of interest to test for the presence of heteroskedasticity. If the errors
are heteroskedastic and depend on some function of exogenous variables,
then tests for heteroskedasticity may help determine which variables a ect
the error variance and how they might a ect the variance. Finally, if the
time series regression model is misspecified, e.g. some important variables
have been omitted or the parameters are not constant over time, then of-
ten the errors will appear to be heteroskedastic. Hence, the presence of
heteroskedasticity may also signal inadequacy of the estimated model. In
this section, two common tests for heteroskedasticity are introduced. The
first is Breusch and Pagan’s (1979) LM test for heteroskedasticity caused
by specified exogenous variables and the second is White’s (1980) general
test for unspecified heteroskedasticity.

Breusch-Pagan Test for Specific Heteroskedasticity

Suppose it is suspected that the variance of in (6.1) is functionally related
to some known (×1) vector of exogenous variables z , whose first element
is unity, via the relation

[|x] = (z0)

where (·) is an unknown positive function. Let ˆ denote the least squares
residual from (6.1), and consider the auxiliary regression

ˆ2

¯2
= z0 + error (6.18)

where ¯2 = 1
P

=1 ˆ
2. Since the first element of z is unity, the null

hypothesis of homoskedasticity, [2|x] = 2, implies that all of the ele-
ments of except the first are equal to zero. Under the homoskedasticity
null, Breusch and Pagan (1979) showed that the test statistic

1

2
RSSaux

2(1)

212 6. Time Series Regression Modeling

where RSSaux is the residual sum of squares from the auxiliary regression
(6.18).
The Breusch-Pagan LM test is based on the assumption that the error

terms are normally distributed. Koenker and Basset (1982) suggested a
modification of the Breusch-Pagan LM test that is robust to non-normal
errors and generally has more power than the Breusch-Pagan test when the
errors are non-normal.

White’s Test for General Heteroskedasticity

Suppose is generally heteroskedastic such that [2x x0] = S, where S
is a (×) matrix. Recall, if is homoskedastic then S = 2 . Now,
under general heteroskedasticity ŜHC in (6.17) is a consistent estimate of
S and ˆ2(X0X) 1 is a consistent estimate of 2 and S 6= 2 .
However, under the null hypothesis of homoskedasticity, the di erence be-
tween ŜHC and ˆ

2(X0X) 1 should go to zero as the sample size gets larger.
White (1980) utilized this result to develop a very simple test for general
heteroskedasticity. To describe this test, let denote the (×1) vector of
unique and nonconstant elements of the (×) matrix x x0 . Let ˆ denote
the least squares residual from (6.1) and form the auxiliary regression

ˆ = 0 + error (6.19)

Under the null hypothesis of homoskedasticity, White (1980) showed that

· 2
aux

2()

where 2
aux is the

2 from the auxiliary regression (6.19).

Testing for Heteroskedasticity Using the S+FinMetrics Function
heteroTest

Once a model has been fit using OLS (or lm), the Breusch-Pagan, Koenker-
Basset and White tests for heteroskedasticity may be computed using
the S+FinMetrics function heteroTest. For example, consider the sim-
ple CAPM regression for Microsoft

> ols.fit = OLS(MSFT~SP500, data=excessRet.ts)

To apply the Breusch-Pagan LM test, a set of variables z for which var()
is related must be identified. For illustrative purposes let z = (

()2)0 The LM may then be computed using

> z1 = as.matrix(seriesData(excessRet.ts[,"SP500"]))

> zmat = cbind(z1,z1^2)

> heteroTest(ols.fit, method="lm", regressors=zmat)

Test for Heteroskedasticity: Breusch-Pagan LM Test

6.5 HAC Covariance Matrix Estimation 213

Null Hypothesis: data is homoskedastic

Test Statistic: 0.152

Dist. under Null: chi-square with 2 degrees of freedom

P-value: 0.9268

Coefficients:

Intercept SP500 SP500^2

1.041 -1.320 -20.407

Degrees of freedom: 131 total; 128 residual

Residual standard error: 2.095

Notice that the regressors specified for the LM test must be in the form
of a matrix. The high -value of the test clearly signals that the null of
homoskedasticity should not be rejected against the alternative that var()
depends on z . To compute the Koenker-Basset robust LM test, set the
optional argument robust=T in the call to heteroTest.
The application of White’s test for heteroskedasticity is more straight-

forward since var() is assumed to be functionally related to the variables
used in the OLS fit:

> heteroTest(ols.fit, method="white")

Test for Heteroskedasticity: White General Test

Null Hypothesis: data is homoskedastic

Test Statistic: 0.152

Dist. under Null: chi-square with 2 degrees of freedom

P-value: 0.9268

Coefficients:

Intercept SP500 SP500^2

0.0084 -0.0106 -0.1638

Degrees of freedom: 131 total; 128 residual

Residual standard error: 0.01681

Notice that in this particular example the LM test and White’s test are
identical.

214 6. Time Series Regression Modeling

6.5.3 The Newey-West Heteroskedasticity and
Autocorrelation Consistent (HAC) Covariance Matrix
Estimate

In some applications of time series regression, in (6.1) may be both
conditionally heteroskedastic and serially correlated. In this case, the er-
ror covariance matrix [0|X] is non-diagonal. Under certain assumptions
about the nature of the error heteroskedasticity and serial correlation a
consistent estimate of the generalized OLS covariance matrix can be com-
puted. The most popular heteroskedasticity and autocorrelation consistent
(HAC) covariance matrix estimate, due to Newey and West (1987), has the
form davarHAC(ˆ) = (X0X) 1ŜHAC(X

0X) 1 (6.20)

where

ŜHAC =
X
=1

ˆ2x x0 +
X
=1

X
= +1

(x ˆ ˆ x0 + x ˆ ˆ x0) (6.21)

is a nonparametric long-run variance estimate, and is the Bartlett weight
function

= 1
+ 1

The Bartlett weight function, , depends on a truncation parameter that
must grow with the sample size in order for the estimate to be consistent.
Newey and West suggested choosing to be the integer part of 4(100)2 9.
In some cases, a rectangular weight function

=

½
1 for
0 for

is used if it is known that autocovariances in (6.21) cut o at lag . The
square root of the diagonal elements of the HAC estimate (6.21) gives the
heteroskedasticity and autocorrelation consistent standard errors (HAC-

SEs) for the least squares estimates of . These are denoted cSEHAC(ˆ).
Heteroskedasticity robust t-statistics and Wald statistics are computed in
the usual way using (6.4) and (6.6) but with davarHAC(ˆ) and cSEHAC(ˆ)
replacing davar(ˆ) and cSE(ˆ), respectively.
Example 40 Long horizon regressions of stock returns on dividend-price
ratio

There has been much interest recently in whether long-term stock returns
are predictable by valuation ratios like dividend-to-price and earnings-to-
price. See Chapter 7 in Campbell, Lo, and MacKinlay (1997), and Chapter
20 in Cochrane (2001) for reviews of this literature. Predictability is inves-
tigated by regressing future multiperiod stock returns on current values of

6.5 HAC Covariance Matrix Estimation 215

valuation ratios. To illustrate, let denote the continuously compounded
real annual total return on an asset in year and and let denote the
log dividend price ratio. The typical long-horizon regression has the form

+1 + · · ·+ + = + () + + = 1 (6.22)

where +1+ · · ·+ + is the continuously compounded future -year real
total return. The dividend-price ratio predicts future returns if 6= 0 at
some horizon. Since the sampling frequency of the data is annual and the
return horizon of the dependent variable is years the dependent variable
and error term in (6.22) will behave like an MA(1) process. This serial
correlation invalidates the usual formula for computing the estimated stan-
dard error of the least squares estimate of . The HACSE, cSEHAC(ˆ),
however, will provide a consistent estimate.
The long-horizon regression (6.22) with = 10 years is estimated using

the annual stock price and dividend data on the S&P 500 composite index
in the S+FinMetrics “timeSeries” object shiller.annual. The relevant
data are constructed as

> colIds(shiller.annual)

[1] "price" "dividend" "earnings"

[4] "cpi" "real.price" "real.dividend"

[7] "real.earnings" "pe.10"

> # compute log of real data

> ln.p = log(shiller.annual[,"real.price"])

> colIds(ln.p) = "ln.p"

> ln.d = log(shiller.annual[,"real.dividend"])

> colIds(ln.d) = "ln.d"

> ln.dpratio = ln.d - ln.p

> colIds(ln.dpratio) = "ln.dpratio"

> # compute cc real total returns

> ln.r = diff(ln.p) + log(1+exp(ln.dpratio[-1,]))

> colIds(ln.r) = "ln.r"

> # create 10-year cc total returns

> ln.r.10 = aggregateSeries(ln.r,moving=10,FUN=sum)

> colIds(ln.r.10) = "ln.r.10"

> stockdiv.ts = seriesMerge(ln.p,ln.d,ln.dpratio,

+ ln.r,ln.r.10,pos="union")

The continuously compounded real total return is computed as

= ln

µ
+ 1

1

¶
=

ln(1) + ln(1 + exp(ln() ln()))

where is the real price and is the real dividend. Notice how the S-PLUS
function aggregateSeries is used to compute the 10 year continuously
compounded real total returns.

216 6. Time Series Regression Modeling

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

5 10 15

ols.fit10

Lag

AC
F

Residual Autocorrelation

FIGURE 6.5. Residual ACF from regression of ten year real returns on divi-
dend-price ratio.

The long-horizon regression (6.22) using10 year real total return returns
over the postwar period 1947 - 1995 is computed using

> ols.fit10 = OLS(ln.r.10~tslag(ln.dpratio),data=stockdiv.ts,

+ start="1947", end="1995", in.format="%Y", na.rm=T)

Figure 6.5 shows the residual ACF. There is clearly serial correlation in
the residuals. The HACSEs are computed using summary with the optional
argument correction="nw". By default, the Newey-West HAC covariance
matrix is computed using a Bartlett kernel with automatic lag truncation
= 4(100)2 9. In the present context, the serial correlation is known

to be of the form of an MA(9) process. Therefore, it is more appropriate
to compute the Newey-West HAC covariance using a rectangular weight
function with = 9 which is accomplished by specifying bandwidth=9 and
window="rectangular" in the call to summary:

> summary(ols.fit10, correction="nw", bandwidth=9,

+ window="rectangular")

Call:

OLS(formula = ln.r.10 ~tslag(ln.dpratio), data =

stockdiv.ts, na.rm = T, start = "1947", end =

"1995", in.format = "%Y")

6.6 Recursive Least Squares Estimation 217

Residuals:

Min 1Q Median 3Q Max

-0.6564 -0.2952 0.0030 0.1799 0.9997

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 5.7414 0.9633 5.9600 0.0000

tslag(ln.dpratio) 1.5604 0.3273 4.7668 0.0000

Regression Diagnostics:

R-Squared 0.5012

Adjusted R-Squared 0.4896

Durbin-Watson Stat 0.2554

Residual Diagnostics:

Stat P-Value

Jarque-Bera 1.7104 0.4252

Ljung-Box 105.9256 0.0000

Residual standard error: 0.4116 on 43 degrees of freedom

Time period: from 1947 to 1991

F-statistic: 43.21 on 1 and 43 degrees of freedom, the

p-value is 5.359e-008

Notice the low DW statistic and the large value of the Ljung-Box statistic
indicating serial correlation in the residuals. The regression results with the
corrected standard errors indicate that future 10 year real total returns are
highly predictable and positively related to the current dividend-price ratio.
The predictability coe cient is ˆ10 = 1 560 with cSEHAC(ˆ10) = 0 416 and
2 = 0 501.

6.6 Recursive Least Squares Estimation

The time series regression model (6.1) assumes that the parameters of the
model, , are constant over the estimation sample. A simple and intuitive
way to investigate parameter constancy is to compute recursive estimates
of ; that is, to estimate the model

= 0x + (6.23)

by least squares recursively for = +1 giving recursive least
squares (RLS) estimates (ˆ +1

ˆ). If is really constant then the

218 6. Time Series Regression Modeling

recursive estimates ˆ should quickly settle down near a common value. If
some of the elements in are not constant then the corresponding RLS
estimates should show instability. Hence, a simple graphical technique for
uncovering parameter instability is to plot the RLS estimates ˆ (=
0) and look for instability in the plots.
An alternative approach to investigate parameter instability is to com-

pute estimates of the model’s parameters over a fixed rolling window of a
given length. Such rolling analysis is discussed in Chapter 9.

6.6.1 CUSUM and CUSUMSQ Tests for Parameter Stability

Brown, Durbin and Evans (1976) utilize the RLS estimates of (6.23) and
propose two simple tests for parameter instability. These tests, know as
the CUSUM and CUSUMSQ tests, are based on the standardized 1-step
ahead recursive residuals

ˆ =
ˆ

ˆ
=

ˆ0
1x

ˆ

where 2̂ is an estimate of the recursive error variance

2 = 2
h
1 + x0 (X0

1X 1)
1
x
i

and X is the (×) matrix of observations on x using data from =
1 .
The CUSUM test is based on the cumulated sum of the standardized

recursive residuals

CUSUM =
X
= +1

ˆ

ˆ

where ˆ is the sample standard deviation of ˆ . Under the null hypothesis
that in (6.1) is constant, CUSUM has mean zero and variance that is
proportional to 1. Brown, Durbin and Evans (1976) show that approx-
imate 95% confidence bands for CUSUM are given by the two lines which
connect the points (±0 948 1) and (±0 948 · 3 1).
If CUSUM wanders outside of these bands, then the null of parameter
stability may be rejected.
The CUSUMSQ test is based on the cumulative sum of the squared stan-

dardized recursive residuals and is given by

CUSUMSQ =

P
= +1 ˆ

2P
= +1 ˆ

2

The distribution of CUSUMSQ under the null of parameter stability is
given in Brown, Durbin and Evans (1976) where it is shown that 95% con-
fidence bands for CUSUMSQ have the form ± 1. As with the

6.6 Recursive Least Squares Estimation 219

CUSUM statistic, if CUSUMSQ wanders outside the confidence bands,
then the null of parameter stability may be rejected.

6.6.2 Computing Recursive Least Squares Estimates Using
the S+FinMetrics Function RLS

E cient RLS estimation of the time series regression model (6.1) may be
performed using the S+FinMetrics function RLS. The calling syntax of RLS
is exactly the same as that of OLS so that any model that may be estimated
using OLS may also be estimated using RLS. For example, to compute the
RLS estimates of the CAPM regression for Microsoft use

> rls.fit = RLS(MSFT~SP500, data=excessRet.ts)

> class(rls.fit)

[1] "RLS"

RLS produces an object of class “RLS” for which there are coef, plot,
print and residuals methods. The print method give a basic description
of the RLS fit

> rls.fit

Call:

RLS(formula = MSFT ~SP500, data = excessRet.ts)

Time period: from Feb 1990 to Dec 2000

Coefficients:

(Intercept) SP500

mean 0.0284 1.2975

std. dev. 0.0121 0.1531

Recursive Residuals Summary:

mean std. dev.

-0.0157 0.0893

The recursive intercept and slope estimates do not seem to vary too
much. The plotmethod allows one to see the recursive coe cients, CUSUM
and CUSUMSQ residuals

> plot(rls.fit)

Make a plot selection (or 0 to exit):

1: plot: All

2: plot: Coefficient Estimates

3: plot: CUSUM of Residuals

4: plot: CUSUM of Squared Residuals

220 6. Time Series Regression Modeling

0.
02

0.
04

0.
06

(Intercept)

1.
2

1.
4

1.
6

1.
8

2.
0

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

SP500

Index

Va
lu

e
Recursive Coefficients

FIGURE 6.6. RLS coe cient estimates from the CAPM regression for Microsoft.

-3
0

-2
0

-1
0

0
10

20
30

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

rls.fit

CUSUM of Residuals

FIGURE 6.7. CUSUM of residuals from the CAPM regression for Microsoft.

6.7 References 221

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

rls.fit

CUSUM of Squared Residuals

FIGURE 6.8. CUSUMSQ of residuals from CAPM regression for Microsoft.

Selection:

Figures 6.6, 6.7 and 6.8 show the plots from options 2, 3 and 4. The RLS
estimates of and settle down in the middle of the sample but then
the estimates of decrease and the estimates of increase. The CUSUM
statistics stay within the 95% confidence bands but the CUSUMSQ statis-
tics wander outside the bands. Hence, there is some evidence for instability
in the CAPM coe cients.

6.7 References

Breusch, T. and A. Pagan (1979). “A Simple Test for Heteroscedasticity
and Random Coe cient Variation,” Econometrica, 47, 1287-1294.

Brown, R., J. Durbin and J. Evans (1976). “Techniques for Testing the
Constancy of Regression Relationships over Time,” Journal of the Royal
Statistical Society, Series B, 37, 149-172.

Campbell, J. A. Lo, C. MacKinlay (1997). The Econometrics of Fi-
nancial Markets. Princeton University Press, Princeton, NJ.

222 6. Time Series Regression Modeling

Cochrane, J. (2001). Asset Pricing. Princeton University Press, Prince-
ton, NJ.

Eicker, F. (1967). “Limit Theorems for Regression with Unequal and
Dependent Errors,” in L. LeCam and J. Neyman (eds.), Proceedings of
the 5th Berkeley Symposium on Mathematical Statistics and Probability.
University of California Press, Berkeley.

Greene, W. (2000). Econometric Analysis, Fifth Edition. Prentice Hall,
New Jersey.

Hamilton, J.D. (1994). Time Series Analysis. Princeton University Press,
Princeton, NJ.

Hayashi, F. (2000). Econometrics. Princeton University Press, Princeton,
NJ.

Jarque, C.M. and A.K. Bera (1981). “E cients Tests for Normality,
Homoskedasticity and Serial Dependence of Regression Residuals,” Eco-
nomics Letters, 6, 255-259.

Koenker, R. and G. Bassett (1982). “Robust Tests for Heteroscedas-
ticity Based on Regression Quantiles,” Econometrica, 50, 43-61.

Mills, T.C. (1999). The Econometrics Modelling of Financial Time Se-
ries, Second Edition. Cambridge University Press, Cambridge.

Newey, W.K. and K.D. West (1987). “A Simple Positive Semidef-
inite Heteroskedasticity and Autocorrelation Consistent Covariance Ma-
trix,” Econometrica, 55, 703-708.

White, H. (1980). “A Heteroskedasticity Consistent Covariance Matrix
Estimator and a Direct Test for Heteroskedasticity,” Econometrica, 48,
817-838.

7
Univariate GARCH Modeling

7.1 Introduction

Previous chapters have concentrated on modeling and predicting the con-
ditional mean, or the first order moment, of a univariate time series, and
are rarely concerned with the conditional variance, or the second order mo-
ment, of a time series. However, it is well known that in financial markets
large changes tend to be followed by large changes, and small changes tend
to be followed by small changes. In other words, the financial markets are
sometimes more volatile, and sometimes less active.
The volatile behavior in financial markets is usually referred to as the

“volatility”. Volatility has become a very important concept in di erent
areas in financial theory and practice, such as risk management, portfolio
selection, derivative pricing, etc. In statistical terms, volatility is usually
measured by variance, or standard deviation. This chapter introduces the
class of univariate generalized autoregressive conditional heteroskedasticity
(GARCH) models developed by Engle (1982), Bollerslev (1986), Nelson
(1991), and others, which are capable of modeling time varying volatility
and capturing many of the stylized facts of the volatility behavior usu-
ally observed in financial time series. It will show how to formulate, esti-
mate, evaluate and predict from various types of GARCH models, such as
EGARCH, TGARCH, PGARCH, etc.
The outline of the chapter follows. Section 7.2 shows how to test for

ARCH e ects in a time series, then section 22.16 introduces the basic
GARCH model and its properties. GARCH model estimation and diagnos-

224 7. Univariate GARCH Modeling

Daily Stock Returns of FORD

Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1

1984 1985 1986 1987 1988 1989 1990 1991 1992

-0
.1

5
-0

.1
0

-0
.0

5
0.

00
0.

05
0.

10

FIGURE 7.1. Daily Ford stock returns: ford.s.

tics using the S+FinMetrics family of GARCH functions are illustrated in
section 7.4. Section 7.5 extends the basic GARCH model to accommodate
some well-known stylized facts of financial time series. Prediction and sim-
ulation from various GARCH models are treated at the end of the chapter.
The statistical properties of GARCH models are nicely summarized in

Hamilton (1994), Tsay (2001) and the review papers by Bera and Hig-
gins (1986), Bolerslev, Engle and Nelson (1994) and Diebold and Lopez
(1996). Bollerslev, Chou and Kroner (1992) give a comprehensive survey
of GARCH modeling in finance. Alexander (2001) provides many examples
of the use of GARCH models in finance, and Engle (2001) and Engle and
Patton (2001) discuss the usefulness of volatility modeling.

7.2 The Basic ARCH Model

Figure 7.1 plots a daily time series of Ford stock returns as contained in
the “timeSeries” object ford.s in S+FinMetrics:

> class(ford.s)

[1] "timeSeries"

> plot(ford.s, reference.grid=F)

7.2 The Basic ARCH Model 225

Lag

A
C

F

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : ford.s

Lag

A
C

F

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : ford.s^2

FIGURE 7.2. ACF of ford.s and ford.sˆ2.

Although there is little serial correlation in the time series ford.s itself,
it seems that both large changes and small changes are clustered together,
which is typical of many high frequency macroeconomic and financial time
series. To confirm this conjecture, use the S-PLUS function acf to look at
the autocorrelation plot of Ford returns and its squared returns:

> par(mfrow=c(1,2))

> tmp = acf(ford.s, lag=12)

> tmp = acf(ford.s^2, lag=12)

> par(mfrow=c(1,1))

The plots are shown in Figure 7.2. Obviously there is no autocorrelation
in the return series itself, while the squared returns exhibit significant au-
tocorrelation at least up to lag 5. Since the squared returns measure the
second order moment of the original time series, this result indicates that
the variance of ford.s conditional on its past history may change over
time, or equivalently, the time series ford.s may exhibit time varying con-
ditional heteroskedasticity or volatility clustering.
The serial correlation in squared returns, or conditional heteroskedastic-

ity, can be modeled using a simple autoregressive (AR) process for squared
residuals. For example, let denote a stationary time series such as finan-
cial returns, then can be expressed as its mean plus a white noise if there

226 7. Univariate GARCH Modeling

is no significant autocorrelation in itself:

= + (7.1)

where is the mean of , and is iid with mean zero. To allow for volatility
clustering or conditional heteroskedasticity, assume that 1() = 2

with 1(·) denoting the variance conditional on information at time
1, and

2 = 0 + 1
2
1 + · · ·+ 2 (7.2)

since has a zero mean, 1() = 1(
2) = 2, the above equation

can be rewritten as:

2 = 0 + 1
2
1 + · · ·+ 2 + (7.3)

where = 2
1(

2) is a zero mean white noise process. The above
equation represents an AR() process for 2, and the model in (7.1) and
(7.2) is known as the autoregressive conditional heteroskedasticity (ARCH)
model of Engle (1982), which is usually referred to as the ARCH() model.
An alternative formulation of the ARCH model is

= +

=
2 = 0 + 1

2
1 + · · ·+ 2

where is an iid random variable with a specified distribution. In the
basic ARCH model is assumed to be iid standard normal. The above
representation is convenient for deriving properties of the model as well as
for specifying the likelihood function for estimation.

Exercise 41 Simulating an ARCH(p) model

The S+FinMetrics function simulate.garch may be used to simulate
observations from a variety of time-varying conditional heteroskedastic-
ity models. For example, to simulate 250 observations from the ARCH()
model (7.1)-(7.2) with = 0, = 1, 0 = 0 01 and 1 = 0 8 use

> sim.arch1 = simulate.garch(model=list(a.value=0.01,arch=0.8),

+ n=250, rseed=196)

> names(sim.arch1)

[1] "et" "sigma.t"

The component et contains the ARCH errors and the component sigma.t
contains the conditional standard deviations . These components are il-
lustrated in Figure 7.3 created using

> par(mfrow=c(2,1))

> tsplot(sim.arch1$et,main="Simulated ARCH(1) errors",

7.2 The Basic ARCH Model 227

Simulated ARCH(1) errors
e(

t)

0 50 100 150 200 250

-0
.6

-0
.2

0.
2

0.
6

Simulated ARCH(1) volatility

si
gm

a(
t)

0 50 100 150 200 250

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

FIGURE 7.3. Simulated values of and from ARCH(1) process.

+ ylab="e(t)")

> tsplot(sim.arch1$sigma.t,

+ main="Simulated ARCH(1) volatility",ylab="sigma(t)")

Some summary statistics for the simulated data are

> summaryStats(sim.arch1$et)

Sample Quantiles:

min 1Q median 3Q max

-0.6606 -0.1135 0.0112 0.1095 0.6357

Sample Moments:

mean std skewness kurtosis

-0.003408 0.1846 -0.2515 4.041

Number of Observations: 250

Notice the somewhat high kurtosis value (relative to the kurtosis value of 3
for a normal distribution). Finally, Figure 7.4 shows the sample ACFs for
and 2 Both series exhibit almost identical serial correlation properties.

228 7. Univariate GARCH Modeling

Lag

A
C

F

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : sim.arch1$et^2

Lag

A
C

F

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : sim.arch1$sigma.t^2

FIGURE 7.4. Sample ACFs for 2 and 2 from simulated ARCH(1) process.

7.2.1 Testing for ARCH E ects

Before estimating a full ARCH model for a financial time series, it is usually
good practice to test for the presence of ARCH e ects in the residuals.
If there are no ARCH e ects in the residuals, then the ARCH model is
unnecessary and misspecified.
Since an ARCHmodel can be written as an AR model in terms of squared

residuals as in (7.3), a simple Lagrange Multiplier (LM) test for ARCH
e ects can be constructed based on the auxiliary regression (7.3). Under
the null hypothesis that there are no ARCH e ects: 1 = 2 = · · · = = 0,
the test statistic

LM = · 2 2()

where is the sample size and 2 is computed from the regression (7.3)
using estimated residuals.1

The S+FinMetrics function archTest can be used to carry out the above
test for ARCH e ects. For example, to test for the presence of ARCH e ects
in ford.s, use the following command:

> archTest(ford.s, lag.n=12)

Test for ARCH Effects: LM Test

1We refer to Engle (1982) for details.

7.3 The GARCH Model and Its Properties 229

Null Hypothesis: no ARCH effects

Test Statistics:

FORD

Test Stat 112.6884

p.value 0.0000

Dist. under Null: chi-square with 12 degrees of freedom

Total Observ.: 2000

In this case, the -value is essentially zero, which is smaller than the con-
ventional 5% level, so reject the null hypothesis that there are no ARCH
e ects. Note that archTest function takes a time series and an optional
argument lag.n specifying the order of the ARCH e ects. Since S-PLUS
allows lazy evaluation, lag instead of lag.n could have been supplied as
the optional argument.

7.3 The GARCH Model and Its Properties

If the LM test for ARCH e ects is significant for a time series, one could
proceed to estimate an ARCH model and obtain estimates of the time
varying volatility based on past history. However, in practice it is often
found that a large number of lags , and thus a large number of parameters,
is required to obtain a good model fit. A more parsimonious model proposed
by Bollerslev (1986) replaces the AR model in (7.2) with the following
formulation:

2 = 0 +
X
=1

2 +
X
=1

2 (7.4)

where the coe cients (= 0 · · ·) and (= 1 · · ·) are all assumed
to be positive to ensure that the conditional variance 2 is always positive.2

The model in (7.4) together with (7.1) is known as the generalized ARCH
or GARCH() model. When = 0, the GARCH model reduces to the
ARCH model.
Under the GARCH() model, the conditional variance of , 2, de-

pends on the squared residuals in the previous periods, and the con-
ditional variance in the previous periods. Usually a GARCH(1,1) model
with only three parameters in the conditional variance equation is adequate
to obtain a good model fit for financial time series.

2Positive coe cients are su cient but not necessary conditions for the positivity of
conditional variance. We refer to Nelson and Cao (1992) for the general conditions.

230 7. Univariate GARCH Modeling

7.3.1 ARMA Representation of GARCH Model

Just as an ARCH model can be expressed as an AR model of squared
residuals, a GARCH model can be expressed as an ARMAmodel of squared
residuals. Consider the GARCH(1,1) model:

2 = 0 + 1
2
1 + 1

2
1 (7.5)

Since 1(
2) = 2, the above equation can be rewritten as:

2 = 0 + (1 + 1)
2
1 + 1 1 (7.6)

which is an ARMA(1,1) model with = 2
1(

2) being the white
noise disturbance term.
Given the ARMA representation of the GARCH model, many proper-

ties of the GARCH model follow easily from those of the corresponding
ARMA process for 2. For example, for the GARCH(1,1) model to be sta-
tionary, requires that 1 + 1 1 as in (7.6). Assuming the stationarity of
GARCH(1,1) model, the unconditional variance of can be shown to be

() = (2) = 0 (1 1 1), because from (7.6):

(2) = 0 + (1 + 1) (2 1)

and thus
(2) = 0 + (1 + 1) (2)

based on the assumption that 2 is stationary.
For the general GARCH() model (7.4), the squared residuals be-

have like an ARMA(max()) process Covariance stationarity requiresP
=1 +

P
=1 1 and the unconditional variance of is

() =
0

1
³P

=1 +
P

=1

´ (7.7)

7.3.2 GARCH Model and Stylized Facts

In practice, researchers have uncovered many so-called “stylized facts”
about the volatility of financial time series; Bollerslev, Engle and Nelson
(1994) gave a complete account of these facts. Using the ARMA repre-
sentation of GARCH models shows that the GARCH model is capable of
explaining many of those stylized facts. This section will focus on three im-
portant ones: volatility clustering, fat tails, and volatility mean reversion.
Other stylized facts are illustrated and explained in later sections.

Volatility Clustering

Consider the GARCH(1 1) model in (7.5). Usually the GARCH coe cient

1 is found to be around 0 9 for many weekly or daily financial time series.

7.3 The GARCH Model and Its Properties 231

Given this value of 1, it is obvious that large values of
2
1 will be fol-

lowed by large values of 2, and small values of 2
1 will be followed by

small values of 2. The same reasoning can be obtained from the ARMA
representation in (7.6), where large/small changes in 2

1 will be followed
by large/small changes in 2.

Fat Tails

It is well known that the distribution of many high frequency financial time
series usually have fatter tails than a normal distribution. That is, large
changes are more often to occur than a normal distribution would imply.
Bollerslev (1986) gave the condition for the existence of the fourth order
moment of a GARCH(1 1) process. Assuming the fourth order moment ex-
ists, Bollerslev (1986) showed that the kurtosis implied by a GARCH(1 1)
process is greater than 3, the kurtosis of a normal distribution. He and
Teräsvirta (1999a, 1999b) extended these results to general GARCH()
models. Thus a GARCH model can replicate the fat tails usually observed
in financial time series.

Volatility Mean Reversion

Although financial markets may experience excessive volatility from time
to time, it appears that volatility will eventually settle down to a long
run level. The previous subsection showed that the long run variance of
for the stationary GARCH(1 1) model is 0 (1 1 1). In this case,

the volatility is always pulled toward this long run level by rewriting the
ARMA representation in (7.6) as follows:

(2
0

1 1 1
) = (1 + 1)(

2
1

0

1 1 1
) + 1 1

If the above equation is iterated times, one can show that

(2+
0

1 1 1
) = (1 + 1) (

2 0

1 1 1
) + +

where is a moving average process. Since 1 + 1 1 for a stationary
GARCH(1 1) model, (1 + 1) 0 as . Although at time there
may be a large deviation between 2 and the long run variance, 2

+

0 (1 1 1) will approach zero “on average” as gets large, i.e., the
volatility “mean reverts” to its long run level 0 (1 1 1). In contrast,
if 1 + 1 1 and the GARCH model is non-stationary, the volatility will
eventually explode to infinity as . Similar arguments can be easily
constructed for a GARCH() model.

232 7. Univariate GARCH Modeling

7.4 GARCH Modeling Using S+FinMetrics

7.4.1 GARCH Model Estimation

This section illustrates how to estimate a GARCH model using functions
in S+FinMetrics. Recall, the general GARCH() model has the form

= + (7.8)

2 = 0 +
X
=1

2 +
X
=1

2 (7.9)

for = 1 · · · , where 2 = 1(). Assuming that follows nor-
mal or Gaussian distribution conditional on past history, the prediction
error decomposition of the log-likelihood function of the GARCH model
conditional on initial values is:

log =
2
log(2)

1

2

X
=1

log 2 1

2

X
=1

2

2 (7.10)

The unknown model parameters , (= 0 · · ·) and (= 1 · · ·)
can be estimated using conditional maximum likelihood estimation (MLE).
Details of the maximization are given in Hamilton (1994). Once the MLE
estimates of the parameters are found, estimates of the time varying volatil-
ity (= 1) are also obtained as a side product.
For a univariate time series, S+FinMetrics provides the garch function

for GARCH model estimation. For example, to fit a simple GARCH(1,1)
model as in (7.8) and (7.9) to the “timeSeries” object ford.s, use the
command:

> ford.mod11 = garch(ford.s~1, ~garch(1,1))

Iteration 0 Step Size = 1.00000 Likelihood = 2.62618

Iteration 0 Step Size = 2.00000 Likelihood = 2.61237

Iteration 1 Step Size = 1.00000 Likelihood = 2.62720

Iteration 1 Step Size = 2.00000 Likelihood = 2.62769

Iteration 1 Step Size = 4.00000 Likelihood = 2.59047

Iteration 2 Step Size = 1.00000 Likelihood = 2.62785

Iteration 2 Step Size = 2.00000 Likelihood = 2.62795

Iteration 2 Step Size = 4.00000 Likelihood = 2.62793

Convergence R-Square = 4.630129e-05 is less than tolerance

= 0.0001

Convergence reached.

In the above example, the garch function takes two arguments: the first ar-
gument is an S-PLUS formula which specifies the conditional mean equation
(7.8), while the second argument is also an S-PLUS formula which specifies

7.4 GARCH Modeling Using S+FinMetrics 233

the conditional variance equation (7.9). The specification of the conditional
mean formula is the same as usual S-PLUS formulas.3 For the conditional
variance formula, nothing needs to be specified on the left hand side, and
the garch(1,1) term on the right hand side denotes the GARCH(1 1)
model. By default, the progress of the estimation is printed on screen. Those
messages can be suppressed by setting the optional argument trace=F in
the call to the garch function.
The object returned by garch function is of class “garch”. Typing the

name of the object at the command line invokes its print method:

> class(ford.mod11)

[1] "garch"

> ford.mod11

Call:

garch(formula.mean = ford.s ~ 1, formula.var = ~ garch(1, 1))

Mean Equation: ford.s ~ 1

Conditional Variance Equation: ~ garch(1, 1)

Coefficients:

C 7.708e-04

A 6.534e-06

ARCH(1) 7.454e-02

GARCH(1) 9.102e-01

The print method for a “garch” object shows the formulas for the con-
ditional mean equation and conditional variance equation, together with
the estimated model coe cients. Note that in the output C corresponds
to the constant in the conditional mean equation (7.8), A, ARCH(1) and
GARCH(1) correspond to 0, 1 and 1 in the conditional variance equa-
tion (7.9), respectively. Notice that the estimated GARCH(1) parameter is
close to one and the ARCH(1) parameter is close to zero. The sum of these
parameters is 0 985 which indicates a covariance stationary model with
a high degree of persistence in the conditional variance. Use the S-PLUS
function names to extract the component names for a “garch” object. For
example:

> names(ford.mod11)

[1] "residuals" "sigma.t" "df.residual" "coef" "model"

[6] "cond.dist" "likelihood" "opt.index" "cov" "prediction"

[11] "call" "asymp.sd" "series"

3Chapter 1 provides a review of the usage of S-PLUS formulas and modeling functions.

234 7. Univariate GARCH Modeling

It should be clear what most of the components are and the on-line help file
for the garch function provides details for these components. Of particular
interest is the component asymp.sd, which gives an estimate of the uncon-
ditional standard deviation of the GARCH residuals provided the GARCH
model is stationary. That is,

> ford.mod11$asymp.sd

[1] 0.02068

is an estimate of the square root of 0 (1 1 1)
For most components that a user is interested in, S+FinMetrics pro-

vides methods for generic functions such as coef, residuals, and vcov for
extracting those components. For example, the estimated coe cients can
be extracted by calling the generic coef function:

> coef(ford.mod11)

C 7.708418e-04

A 6.534363e-06

ARCH(1) 7.454134e-02

GARCH(1) 9.101842e-01

Similarly, call the generic vcov function to obtain the covariance matrix of
the estimated coe cients:

> vcov(ford.mod11)

C A ARCH(1) GARCH(1)

C 1.41574e-07 -1.21204e-13 -3.56991e-07 2.21310e-07

A -1.21204e-13 3.04607e-12 2.55328e-09 -1.24396e-08

ARCH(1) -3.56991e-07 2.55328e-09 2.87505e-05 -3.43277e-05

GARCH(1) 2.21310e-07 -1.24396e-08 -3.43277e-05 7.67660e-05

By default, the vcov method for “garch” objects uses the covariance ma-
trix based on the outer product of gradients. However, for maximum likeli-
hood estimation, there are three di erent ways of computing the covariance
matrix of model parameters which are asymptotically equivalent if the un-
derlying error distribution is Gaussian: one based on the outer product of
gradients, one based on the numerical Hessian matrix, and one based on
the asymptotic formula for quasi-maximum likelihood estimation (QMLE).
These di erent covariance matrices can be obtained by setting the optional
argument method to "op", "hessian", or "qmle", respectively. For exam-
ple, to obtain the covariance matrix of ford.mod11 parameters based on
QMLE formula, use the following command:

> vcov(ford.mod11, method="qmle")

C A ARCH(1) GARCH(1)

C 1.26671e-07 -7.54398e-11 5.67606e-07 -7.71183e-08

A -7.54398e-11 2.69841e-11 1.37576e-07 -2.00363e-07

7.4 GARCH Modeling Using S+FinMetrics 235

ARCH(1) 5.67606e-07 1.37576e-07 1.28016e-03 -1.46718e-03

GARCH(1) -7.71183e-08 -2.00363e-07 -1.46718e-03 1.84173e-03

This covariance matrix is sometimes referred to as the robust covariance
matrix, because it is robust to possible misspecification of the error distri-
bution, or the sandwich estimate, because of the form of the asymptotic
formula (see Bollerslev and Wooldrige, 1992 or Davidson and MacKinnon,
1993).
The residuals method for a “garch” object takes an optional argument

standardize, which can be used to obtain estimates of the standardized
residuals . For example:

> residuals(ford.mod11, standardize=T)

returns the standardized residuals of the fitted GARCHmodel ford.mod11.
S+FinMetrics also provides another function sigma.t for extracting the
fitted volatility series . Note that if the original data is a “timeSeries”
object, the calendar information of the original data is also retained in the
residual and volatility series.

7.4.2 GARCH Model Diagnostics

The previous subsection showed how to estimate a GARCH model using
the S+FinMetrics function garch and how to extract various components
of the fitted model. To assess the model fit, S+FinMetrics provides method
functions for two generic functions: summary and plot, one for statistical
summary information and the other for visual diagnostics of the model fit.
For example, to obtain a more detailed summary of ford.mod11, call the

generic summary function:

> summary(ford.mod11)

Call:

garch(formula.mean = ford.s ~ 1, formula.var = ~ garch(1, 1))

Mean Equation: ford.s ~ 1

Conditional Variance Equation: ~ garch(1, 1)

Conditional Distribution: gaussian

--

Estimated Coefficients:

--

Value Std.Error t value Pr(>|t|)

C 7.708e-04 3.763e-04 2.049 2.031e-02

236 7. Univariate GARCH Modeling

A 6.534e-06 1.745e-06 3.744 9.313e-05

ARCH(1) 7.454e-02 5.362e-03 13.902 0.000e+00

GARCH(1) 9.102e-01 8.762e-03 103.883 0.000e+00

--

AIC(4) = -10503.79

BIC(4) = -10481.39

Normality Test:

--

Jarque-Bera P-value Shapiro-Wilk P-value

364.2 0 0.9915 0.9777

Ljung-Box test for standardized residuals:

--

Statistic P-value Chi^2-d.f.

14.82 0.2516 12

Ljung-Box test for squared standardized residuals:

--

Statistic P-value Chi^2-d.f.

14.04 0.2984 12

Lagrange multiplier test:

--

Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8

2.135 -1.085 -2.149 -0.1347 -0.9144 -0.2228 0.708 -0.2314

Lag 9 Lag 10 Lag 11 Lag 12 C

-0.6905 -1.131 -0.3081 -0.1018 0.9825

TR^2 P-value F-stat P-value

14.77 0.2545 1.352 0.2989

By default, the summary method shows the standard errors and -values
for the -statistics for testing that the true coe cients are zero, together
with various tests on the standardized residuals ˆ ˆ for assessing the
model fit. The standard errors and -values are computed using the default
covariance estimate. To use robust or numerical Hessian based standard
errors to compute the -values, the summary method takes an optional
argument method just like the vcov method does.
The various tests returned by the summarymethod can also be performed

separately by using standard S+FinMetrics functions. For example, if the
model is successful at modeling the serial correlation structure in the condi-

7.4 GARCH Modeling Using S+FinMetrics 237

tional mean and conditional variance, then there should be no autocorrela-
tion left in the standardized residuals and squared standardized residuals.
This can be checked by using the S+FinMetrics function autocorTest:

> autocorTest(residuals(ford.mod11, standardize=T), lag=12)

Test for Autocorrelation: Ljung-Box

Null Hypothesis: no autocorrelation

Test Statistics:

Test Stat 14.8161

p.value 0.2516

Dist. under Null: chi-square with 12 degrees of freedom

Total Observ.: 2000

> autocorTest(residuals(ford.mod11, standardize=T)^2, lag=12)

Test for Autocorrelation: Ljung-Box

Null Hypothesis: no autocorrelation

Test Statistics:

Test Stat 14.0361

p.value 0.2984

Dist. under Null: chi-square with 12 degrees of freedom

Total Observ.: 2000

In both cases, the tests are the same as those returned by the summary
method, and the null hypothesis that there is no autocorrelation left can-
not be rejected because the -values in both cases are greater than the
conventional 5% level. Note that lag was chosen to be 12 to match the
results returned by the summary method.
Similarly, one can also apply the ARCH test on the standardized residuals

to see if there are any ARCH e ects left. For example, call archTest on
the standardized residuals of ford.mod11 as follows:

> archTest(residuals(ford.mod11, standardize=T), lag=12)

Test for ARCH Effects: LM Test

Null Hypothesis: no ARCH effects

238 7. Univariate GARCH Modeling

-6

-4

-2

0

2

4

-2 0 2

QQ-Plot

10/13/1989

12/23/1991

10/19/1987

Quantiles of gaussian distribution

St
an

da
rd

iz
ed

 R
es

id
ua

ls

QQ-Plot of Standardized Residuals

FIGURE 7.5. Normal qq-plot of standardized residuals: ford.mod11.

Test Statistics:

Test Stat 14.7664

p.value 0.2545

Dist. under Null: chi-square with 12 degrees of freedom

Total Observ.: 2000

Again, the results match the Lagrange Multiplier test as returned by the
summary method.
The basic garch model assumes a normal distribution for the errors

If the model is correctly specified then the estimated standardized residu-
als should behave like a standard normal random variable. To eval-
uate the normality assumption, the summary method reports both the
Jarque-Bera test and the Shapiro-Wilks test for the standardized residuals,
which again can be performed separately using the S+FinMetrics function
normalTest. However, in the above example, the Jarque-Bera test and the
Shapiro-Wilks test lead to opposite conclusions, with one -value close to
zero and the other close to one.
To get a more decisive conclusion regarding the normality assumption,

resort to the qq-plot by calling the generic plot function on a “garch”
object:

7.4 GARCH Modeling Using S+FinMetrics 239

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30

ACF

Lags

ACF of Squared Std. Residuals

FIGURE 7.6. ACF of squared standardized residuals: ford.mod11.

> plot(ford.mod11)

Make a plot selection (or 0 to exit):

1: plot: All

2: plot: Series and Conditional SD

3: plot: Series with 2 Conditional SD Superimposed

4: plot: ACF of the Observations

5: plot: ACF of Squared Observations

6: plot: Cross Correlation between Squared Series and Series

7: plot: Residuals

8: plot: Conditional Standard Deviations

9: plot: Standardized Residuals

10: plot: ACF of Standardized Residuals

11: plot: ACF of Squared Standardized Residuals

12: plot: Cross Correlation between Squared Std.Res and Std.

13: plot: QQ-Plot of Standardized Residuals

Selection:

By selecting 13, the qq-plot of standardized residuals can be obtained as
shown in Figure 7.5 In this case, there is significant deviation in both tails
from the normal qq-line, and thus it seems that the normality assumption
for the residuals may not be appropriate. Section 7.5.6 will show how to

240 7. Univariate GARCH Modeling

0.
02

0.
03

0.
04

0.
05

Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1
1984 1985 1986 1987 1988 1989 1990 1991 1992

Conditional SD

-0
.1

0.
0

0.
1 Original Series

Va
lu

es

Series and Conditional SD

FIGURE 7.7. Daily Ford stock returns and conditional volatility.

use alternative distributions.Other plots can also be chosen to visualize the
model fit. For example, choosing 11 generates the ACF plot of squared
standardized residuals as shown in Figure 7.6, which shows that there is
little autocorrelation left in the squared standardized residuals. Choosing
2 plots the original return series and the fitted volatility series as shown in
Figure 7.7.

7.5 GARCH Model Extensions

In many cases, the basic GARCH model (7.4) provides a reasonably good
model for analyzing financial time series and estimating conditional volatil-
ity. However, there are some aspects of the model which can be improved so
that it can better capture the characteristics and dynamics of a particular
time series. For example, the previous section showed that the normality
assumption may not be appropriate for the time series ford.s. This sec-
tion introduces several extensions to the basic GARCH model that make
GARCH modeling more flexible and shows how to estimate those models
using the S+FinMetrics garch function.

7.5 GARCH Model Extensions 241

7.5.1 Asymmetric Leverage E ects and News Impact

In the basic GARCHmodel (7.9), since only squared residuals 2 enter the
equation, the signs of the residuals or shocks have no e ects on conditional
volatility. However, a stylized fact of financial volatility is that bad news
(negative shocks) tends to have a larger impact on volatility than good
news (positive shocks). Black (1976) attributed this e ect to the fact that
bad news tends to drive down the stock price, thus increasing the leverage
(i.e., the debt-equity ratio) of the stock and causing the stock to be more
volatile. Based on this conjecture, the asymmetric news impact is usually
referred to as the leverage e ect. All the GARCH variants implemented in
S+FinMetrics are capable of incorporating leverage e ects. This subsection
focuses on the EGARCH, TGARCH and PGARCH models.

EGARCH Model

Nelson (1991) proposed the following exponential GARCH (EGARCH)
model to allow for leverage e ects:

= 0 +
X
=1

| |+
+
X
=1

(7.11)

where = log 2 or 2 = . Note that when is positive or there is
“good news”, the total e ect of is (1+)| |; in contrast, when
is negative or there is “bad news”, the total e ect of is (1)| |.
Bad news can have a larger impact on volatility, and the value of would
be expected to be negative.
The garch function can be used to fit an EGARCH model by specifying

~egarch(p,q) as the conditional variance formula. For example, to fit an
EGARCH(1 1) model with leverage e ects using the daily Hewlett-Packard
stock returns contained in the S+FinMetrics “timeSeries” object hp.s,
use the following command:

> hp.egarch = garch(hp.s~1, ~egarch(1,1), leverage=T, trace=F)

> hp.egarch

Call:

garch(formula.mean = hp.s ~ 1, formula.var = ~ egarch(1, 1),

leverage = T, trace = F)

Mean Equation: hp.s ~ 1

Conditional Variance Equation: ~ egarch(1, 1)

Coefficients:

242 7. Univariate GARCH Modeling

C 0.000313

A -1.037907

ARCH(1) 0.227878

GARCH(1) 0.886652

LEV(1) -0.133998

Note that the optional argument trace=F is set to suppress the iteration
messages, and set leverage=T to impose leverage e ects. In the output,
the estimated 1 coe cient for the leverage e ect is denoted by LEV(1)and
is negative in this case. The -statistic for testing 1 = 0 is

> coef(hp.egarch)[5]/sqrt(vcov(hp.egarch)[5,5])

[1] -2.159

Another advantage of the EGARCH model over the basic GARCH model
is that the conditional variance 2 is guaranteed to be positive regardless of
the values of the coe cients in (7.11), because the logarithm of 2 instead
of 2 itself is modeled.

TGARCH Model

Another GARCH variant that is capable of modeling leverage e ects is the
threshold GARCH (TGARCH) model,4 which has the following form:

2 = 0 +
X
=1

2 +
X
=1

2 +
X
=1

2 (7.12)

where

=

½
1 if 0
0 if 0

That is, depending on whether is above or below the threshold value
of zero, 2 has di erent e ects on the conditional variance 2: when
is positive, the total e ects are given by 2 ; when is negative,
the total e ects are given by (+) 2 . So one would expect to be
positive for bad news to have larger impacts. This model is also known as
the GJR model because Glosten, Jagannathan and Runkle (1993) proposed
essentially the same model.
Use the garch function to estimate a TGARCH model by specifying

~tgarch(p,q) as the conditional variance formula. For example, to fit a
TGARCH instead of an EGARCH model to hp.s, use the following com-
mand:

> hp.tgarch = garch(hp.s~1, ~tgarch(1,1), trace=F)

> hp.tgarch

4The original TGARCH model proposed by Zakoian (1994) models instead of 2.

7.5 GARCH Model Extensions 243

Call:

garch(formula.mean = hp.s ~ 1, formula.var = ~ tgarch(1, 1),

trace = F)

Mean Equation: hp.s ~ 1

Conditional Variance Equation: ~ tgarch(1, 1)

Coefficients:

C 3.946e-04

A 3.999e-05

ARCH(1) 6.780e-02

GARCH(1) 8.369e-01

GAMMA(1) 3.306e-02

Note that when using the TGARCH model, the leverage e ects are au-
tomatically imposed, so it is not necessary to set leverage=T. Also, the
coe cient 1 for leverage e ects is denoted by GAMMA(1) in the output to
distinguish it from the EGARCH-type formulation of leverage e ects. The
estimated value of 1 is positive, indicating the presence of leverage e ects,
and is statistically di erent from zero at the 5% significance level since its
-statistic is greater than 2:

> coef(hp.tgarch)[5]/sqrt(vcov(hp.tgarch)[5,5])

[1] 2.5825

PGARCH Model

The basic GARCH model in S+FinMetrics is also extended to allow for
leverage e ects. This is made possible by treating the basic GARCH model
as a special case of the power GARCH (PGARCH) model proposed by
Ding, Granger and Engle (1993):

= 0 +
X
=1

(| |+) +
X
=1

(7.13)

where is a positive exponent, and denotes the coe cient of lever-
age e ects. Note that when = 2, (7.13) reduces to the basic GARCH
model with leverage e ects. Ding, Granger and Engle (1993) showed that
the PGARCH model also includes many other GARCH variants as special
cases.
To estimate a basic GARCH(1 1) model with leverage e ects, specify

~garch(1,1) as the conditional variance formula and set the optional ar-
gument leverage=T:

> hp.garch = garch(hp.s~1, ~garch(1,1), leverage=T, trace=F)

244 7. Univariate GARCH Modeling

> hp.garch

Call:

garch(formula.mean = hp.s ~ 1, formula.var = ~ garch(1, 1),

leverage = T, trace = F)

Mean Equation: hp.s ~ 1

Conditional Variance Equation: ~ garch(1, 1)

Coefficients:

C 4.536e-04

A 3.823e-05

ARCH(1) 7.671e-02

GARCH(1) 8.455e-01

LEV(1) -1.084e-01

The estimated value of 1 is negative and its -statistic

> coef(hp.garch)[5]/sqrt(vcov(hp.garch)[5,5])

[1] -2.2987

is less than 2 so one can reject the null of no leverage e ects. If ~pgarch(p,q)
instead of ~garch(p,q) is used as the conditional variance formula, the
garch function will estimate the PGARCH model (7.13) where the expo-
nent is also estimated by MLE.
One can fix the exponent in PGARCH model at a value other than two.

For example, a popular choice is to set = 1 so that the GARCH model is
robust to outliers. To fit such a model, simply use ˜pgarch(p,q,d) as the
conditional variance formula:

> hp.pgarch = garch(hp.s~1,~pgarch(1,1,1),leverage=T,trace=F)

> hp.pgarch

Call:

garch(formula.mean = hp.s~1, formula.var = ~pgarch(1, 1, 1),

leverage = T, trace = F)

Mean Equation: hp.s ~ 1

Conditional Variance Equation: ~ pgarch(1, 1, 1)

Coefficients:

C 0.0003312

A 0.0015569

7.5 GARCH Model Extensions 245

GARCH() ¯2 = 0 [1
P

=1 (1 + 2)
P

=1]

TGARCH() ¯2 = 0 [1
P

=1(+ 2)
P

=1]

PGARCH(1) ¯2 = 2
0 [1

P
=1

p
2

P
=1]2

EGARCH() ¯2 = exp{(0 +
P

=1

p
2) (1

P
=1)}

TABLE 7.1. Unconditional variance of GARCH processes

ARCH(1) 0.0892505

GARCH(1) 0.8612378

LEV(1) -0.1499219

> coef(hp.pgarch)[5]/sqrt(vcov(hp.pgarch)[5,5])

[1] -2.2121

News Impact Curve

The above subsections have shown that GARCH, EGARCH, TGARCH and
PGARCH models are all capable of modeling leverage e ects. The choice
of a particular model can be made by using a model selection criterion such
as the Bayesian information criterion (BIC). Alternatively, Engle and Ng
(1993) proposed that the news impact curve could also be used to compare
these di erent models. Here is the definition of the news impact curve
following Engle and Ng (1993):
The news impact curve is the functional relationship between conditional

variance at time and the shock term (error term) at time 1, hold-
ing constant the information dated 2 and earlier, and with all lagged
conditional variance evaluated at the level of the unconditional variance.
To facilitate the comparison of news impact curves of di erent GARCH

models, Table 7.1 summarizes the unconditional variance, ¯2, of various
GARCH models and Table 7.2 summarizes the news impact curves for
models with = 1 and = 1.
For example, to compare the news impact curves implied by hp.tgarch,

hp.pgarch and hp.garch, plot the corresponding news impact curves using
the following commands:

> a0 = hp.tgarch$coef[2]

> a1 = hp.tgarch$coef[3]

> b1 = hp.tgarch$coef[4]

> g1 = hp.tgarch$coef[5]

> A = a0 + b1 * hp.tgarch$asymp.sd^2

246 7. Univariate GARCH Modeling

GARCH(1 1) 2 = + 1(| 1|+ 1 1)
2

= 0 + 1¯
2

TGARCH(1 1) 2 = + (1 + 1 1)
2
1

= 0 + 1¯
2

PGARCH(1 1 1) 2 = + 2 1(| 1|+ 1 1)
+ 2

1(| 1|+ 1 1)
2, = (0 + 1¯)

2

EGARCH(1 1) 2 = exp{ 1(| 1|+ 1 1) ¯}
= ¯2 1 exp{ 0}

TABLE 7.2. News impact curves of GARCH processes

> epsilon = seq(-0.21, 0.14, length=100)

> sigma2.t.TGARCH = A + (a1+g1*(epsilon < 0))*(epsilon^2)

> a0 = hp.pgarch$coef[2]

> a1 = hp.pgarch$coef[3]

> b1 = hp.pgarch$coef[4]

> g1 = hp.pgarch$coef[5]

> A = (a0 + b1 * hp.pgarch$asymp.sd)^2

> error = abs(epsilon) + g1*epsilon

> sigma2.t.PGARCH = A + 2*sqrt(A)*a1*error + (a1*error)^2

> a0 = hp.garch$coef[2]

> a1 = hp.garch$coef[3]

> b1 = hp.garch$coef[4]

> g1 = hp.garch$coef[5]

> A = a0 + b1 * hp.garch$asymp.sd^2

> error = abs(epsilon) + g1*epsilon

> sigma2.t.GARCH = A + a1*(error^2)

> matplot(cbind(epsilon, epsilon, epsilon), cbind(

sigma2.t.TGARCH, sigma2.t.PGARCH, sigma2.t.GARCH), type="l")

> key(-0.05, 0.0045, lines=list(type="l", lty=1:3), text=

list(c("TGARCH", "PGARCH", "GARCH")), border=1, adj=1)

In this plot, the range of is determined by the residuals from the fitted
models. The resulting plot is shown in Figure 7.8. This plot shows that the
news impact curves are all asymmetric because leverage e ects are allowed

7.5 GARCH Model Extensions 247

-0.2 -0.1 0.0 0.1

0.
00

1
0.

00
2

0.
00

3
0.

00
4

0.
00

5

TGARCH
PGARCH

GARCH

FIGURE 7.8. Camparison of news impact curves.

in all three models, and negative shocks or bad news have larger impacts
on volatility. The TGARCH model suggests larger impacts of shocks on
volatility than the GARCH model with leverage e ects, regardless of the
size of the shock. Moreover, since the PGARCH model with = 1 is more
robust to extreme shocks, impacts of small shocks implied by the PGARCH
model are larger compared to those from GARCH and TGARCH models,
whereas impacts of large shocks implied by the PGARCH model are smaller
compared to those from GARCH and TGARCH models.

7.5.2 Two Components Model

Section 7.3.2 illustrated that the GARCH model can be used to model
mean reversion in conditional volatility; that is, the conditional volatility
will always “mean revert” to its long run level if the GARCH model is
stationary. Recall the mean reverting form of the basic GARCH(1 1) model:

(2 ¯2) = (1 + 1)(
2
1 ¯2) + 1 1

where ¯2 = 0 (1 1 1) is the unconditional long run level of volatil-
ity. As previous examples have shown, the mean reverting rate 1 + 1

implied by most fitted models is usually very close to 1. For example, the
ford.mod11 object fitted in Section 7.4,has the following mean reverting
rate:

248 7. Univariate GARCH Modeling

> ford.mod11$coef[3] + ford.mod11$coef[4]

[1] 0.9847255

which is almost one. The half life of a volatility shock implied by this mean
reverting rate is:5

> log(0.5)/log(ford.mod11$coef[3] + ford.mod11$coef[4])

[1] 45.03192

which amounts to more than two calendar months. So the fitted GARCH
model implies that the conditional volatility is very persistent.
Engle and Lee (1999) suggested that the high persistence in volatility

may be due to a time-varying long run volatility level. In particular, they
suggested decomposing conditional variance into two components:

2 = + (7.14)

where is a highly persistent long run component, and is a transitory
short run component.
S+FinMetrics supports a wide range of two component models by ex-

tending all the previously discussed GARCH variants to incorporate the two
components form (7.14). The general form of the two components model is
based on a modified version of Ding and Granger (1996):

= + (7.15)

= 1| 1| + 1 1 (7.16)

= 0 + 2| 1| + 2 1 (7.17)

That is, the long run component follows a highly persistent PGARCH(1 1)
model, and the transitory component follows another PGARCH(1 1)
model. By expressing the above two PGARCH models using lag operator
notation

= (1 1) 1
1| 1|

= 0 + (1 2) 1
2| 1|

and then substituting them into (7.15), it can be shown that the reduced
form of the two components model is:

= 0 + (1 + 2)| 1| (1 2 + 2 1)| 2|
+ (1 + 2) 1 1 2 2

which is in the form of a constrained PGARCH(2 2) model. However,
the two components model is not fully equivalent to the PGARCH(2 2)

5See Chapter 2 for the definition of half life.

7.5 GARCH Model Extensions 249

model because not all PGARCH(2 2) models have the component struc-
ture. In fact, since the two components model is a constrained version
of the PGARCH(2 2) model, the estimation of a two components model
is often numerically more stable than the estimation of an unconstrained
PGARCH(2 2) model.
Although the PGARCH(1 1) model is used here as the component for the

two components model, S+FinMetrics actually allows any valid GARCH
variant as the component, and leverage e ects are also allowed correspond-
ingly. For example, to fit a two components model using a GARCH compo-
nent, EGARCH component, or PGARCH component, simply use the condi-
tional variance formulas ~garch.2comp, ~egarch.2comp, ~pgarch.2comp(d),
respectively. Since a two components model reduces to a GARCH(2 2)
model of the corresponding type, the orders of the ARCH and GARCH
terms need not be given in the formula specification. The only exception
is the PGARCH two components model, which can explicitly specify the
exponent for the underlying PGARCH model. For example, to estimate
a two components PGARCH model with = 2 using the daily Ford stock
returns ford.s, use the following command:

> ford.2comp = garch(ford.s~1, ~pgarch.2comp(2))

> summary(ford.2comp)

Call:

garch(formula.mean = ford.s ~ 1, formula.var =

~ pgarch.2comp(2))

Mean Equation: ford.s ~ 1

Conditional Variance Equation: ~ pgarch.2comp(2)

Conditional Distribution: gaussian

--

Estimated Coefficients:

--

Value Std.Error t value Pr(>|t|)

C 6.870e-04 3.795e-04 1.810 3.519e-02

A 1.398e-06 5.877e-07 2.379 8.716e-03

ALPHA(1) 2.055e-02 6.228e-03 3.300 4.925e-04

ALPHA(2) 1.422e-01 2.532e-02 5.617 1.110e-08

BETA(1) 9.664e-01 8.637e-03 111.883 0.000e+00

BETA(2) 3.464e-01 1.091e-01 3.175 7.617e-04

The coe cients for the two components, 1, 1, 2 and 2, are identified by
ALPHA(1), BETA(1), ALPHA(2) and BETA(2) in the output. As expected, the

250 7. Univariate GARCH Modeling

long run component associated with 1 and 1 is very persistent, whereas
the second component associated with 2 and 2 is not persistent at all.
Also, all the coe cients are highly significant.
In the above example, fixing = 2 for the two components PGARCH

model can be easily verified that the model is equivalent to a two compo-
nents GARCH model. If the exponent is not specified in the formula, it
will be estimated by MLE. In addition, setting leverage=T when fitting
a two components model, the coe cients for leverage e ects will also be
estimated, and the form of leverage e ects is same as in (7.11) and (7.13).
However, for the two components PGARCH model, S+FinMetrics also al-
lows leverage e ects to take the form as in the TGARCH model (7.12). The
resulting model can be estimated by using ~two.comp(i,d) as the condi-
tional variance formula, with = 2 corresponding to the leverage e ects as
in (7.12), and = 1 corresponding to the leverage e ects as in (7.13). For
example, the following model is essentially the two components TGARCH
model:

> garch(ford.s~1, ~two.comp(2,2), leverage=T, trace=F)

Call:

garch(formula.mean = ford.s ~ 1, formula.var =

~ two.comp(2, 2), leverage = T, trace = F)

Mean Equation: ford.s ~ 1

Conditional Variance Equation: ~ two.comp(2, 2)

Coefficients:

C 5.371e-04

A 1.368e-06

ALPHA(1) 1.263e-02

ALPHA(2) 1.154e-01

BETA(1) 9.674e-01

BETA(2) 2.998e-01

LEV(1) 8.893e-02

LEV(2) -5.235e-02

7.5.3 GARCH-in-the-Mean Model

In financial investment, high risk is often expected to lead to high returns.
Although modern capital asset pricing theory does not imply such a simple
relationship, it does suggest there are some interactions between expected
returns and risk as measured by volatility. Engle, Lilien and Robins (1987)
proposed to extend the basic GARCH model so that the conditional volatil-

7.5 GARCH Model Extensions 251

() Formula name
sd.in.mean

2 var.in.mean

ln(2) logvar.in.mean

TABLE 7.3. Possible functions for ()

ity can generate a risk premium which is part of the expected returns.
This extended GARCH model is often referred to as GARCH-in-the-mean
(GARCH-M) model.
The GARCH-M model extends the conditional mean equation (7.8) as

follows:

= + () + (7.18)

where (·) can be an arbitrary function of volatility . The garch func-
tion allows the GARCH-M specification in the conditional mean equation
together with any valid conditional variance specification. However, the
function () must be one of the functions listed in Table 7.3, where the
corresponding formula specifications are also given.
For example, to fit a GARCH-M model with () = 2 to Hewlett-

Packard stock returns using a PGARCH(1 1 1) model with leverage e ects,
use the following command:

> hp.gmean = garch(hp.s~var.in.mean,~pgarch(1,1,1),leverage=T)

Iteration 0 Step Size = 1.00000 Likelihood = 2.40572

Iteration 0 Step Size = 2.00000 Likelihood = 2.40607

Iteration 0 Step Size = 4.00000 Likelihood = 2.38124

Iteration 1 Step Size = 1.00000 Likelihood = 2.40646

Iteration 1 Step Size = 2.00000 Likelihood = 2.40658

Iteration 1 Step Size = 4.00000 Likelihood = 2.40611

Iteration 2 Step Size = 1.00000 Likelihood = 2.40667

Iteration 2 Step Size = 2.00000 Likelihood = 2.40669

Iteration 2 Step Size = 4.00000 Likelihood = 2.40653

Convergence R-Square = 7.855063e-05 is less than tolerance

= 0.0001

Convergence reached.

> summary(hp.gmean)

Call:

garch(formula.mean = hp.s ~ var.in.mean, formula.var =

~ pgarch(1, 1, 1), leverage = T)

Mean Equation: hp.s ~ var.in.mean

Conditional Variance Equation: ~ pgarch(1, 1, 1)

252 7. Univariate GARCH Modeling

Conditional Distribution: gaussian

--

Estimated Coefficients:

--

Value Std.Error t value Pr(>|t|)

C -0.001712 0.0013654 -1.254 1.050e-01

ARCH-IN-MEAN 4.373179 2.8699425 1.524 6.386e-02

A 0.001648 0.0003027 5.444 2.920e-08

ARCH(1) 0.093854 0.0096380 9.738 0.000e+00

GARCH(1) 0.853787 0.0176007 48.509 0.000e+00

LEV(1) -0.161515 0.0648241 -2.492 6.399e-03

The coe cient in (7.18) is identified by ARCH-IN-MEAN in the output.
In this case, the risk premium is positive which implies that high risk
(volatility) leads to high expected returns. However, the -value for the
-statistic is slightly larger than the conventional 5% level.

7.5.4 ARMA Terms and Exogenous Variables in Conditional
Mean Equation

So far the conditional mean equation has been restricted to a constant
when considering GARCH models, except for the GARCH-M model where
volatility was allowed to enter the mean equation as an explanatory vari-
able. The garch function in S+FinMetrics allows ARMA terms as well
as exogenous explanatory variables in the conditional mean equation. The
most general form for the conditional mean equation is

= +
X
=1

+
X
=1

+
X
=1

0x + (7.19)

where x is a × 1 vector of weakly exogenous variables, and l is the
× 1 vector of coe cients. Note that distributed lags of the exogenous

variables in x are also allowed. To include AR(), MA(), or ARMA()
terms in the conditional mean, simply add ar(r), ma(s), or arma(r,s) to
the conditional mean formula.

Example 42 Single factor model with GARCH errors

From the Capital Asset Pricing Model (CAPM), stock returns should be
correlated with the returns on a market index, and the regression coe cient
is usually referred to as the “market beta”. S+FinMetrics comes with a
“timeSeries” object nyse.s which represents daily returns on a value
weighted New York Stock Exchange index and covers the same time period

7.5 GARCH Model Extensions 253

-0.15

-0.10

-0.05

0.0

0.05

0.10

-0.15 -0.10 -0.05 0.0 0.05 0.10

Market Beta

NYSE Returns

Fo
rd

 R
et

ur
ns

FIGURE 7.9. Daily Ford returns versus NYSE returns.

as ford.s. Use the S+FinMetrics function rvfPlot to generate a Trellis
scatter plot of ford.s versus nyse.s:

> rvfPlot(ford.s, nyse.s, strip.text="Market Beta",

id.n=0, hgrid=T, vgrid=T,

xlab="NYSE Returns", ylab="Ford Returns")

The plot is shown in Figure 7.9, from which a clear linear relationship can
be seen. To estimate the market beta for daily Ford returns allowing for a
GARCH(1 1) error, use the following command:

> ford.beta = garch(ford.s~ma(1)+seriesData(nyse.s),

~garch(1,1), trace=F)

> summary(ford.beta)

Call:

garch(formula.mean = ford.s ~ ma(1) + seriesData(nyse.s),

formula.var = ~ garch(1, 1), trace = F)

Mean Equation: ford.s ~ ma(1) + seriesData(nyse.s)

Conditional Variance Equation: ~ garch(1, 1)

Conditional Distribution: gaussian

254 7. Univariate GARCH Modeling

--

Estimated Coefficients:

--

Value Std.Error t value Pr(>|t|)

C 8.257e-05 3.063e-04 0.2695 3.938e-01

MA(1) 4.448e-02 2.186e-02 2.0348 2.100e-02

seriesData(nyse.s) 1.234e+00 2.226e-02 55.4418 0.000e+00

A 1.406e-06 5.027e-07 2.7971 2.603e-03

ARCH(1) 3.699e-02 4.803e-03 7.7019 1.044e-14

GARCH(1) 9.566e-01 6.025e-03 158.7691 0.000e+00

Note that an MA(1) term has also been added in the mean equation to allow
for first order serial correlation in the daily returns caused by the possible
bid-ask bounce often observed in daily stock prices. The above summary
shows that both the MA(1) coe cient and market beta are highly signif-
icant. The estimated volatility is shown in Figure 7.10, which is obtained
by choosing choice 8 from the plot method. Compare this with the esti-
mated volatility without using nyse.s as shown in Figure 7.7: the estimated
volatility has the same pattern, but the magnitude of volatility has signif-
icantly decreased. Since the market e ects are taken into consideration
here by using nyse.s as an explanatory variable, the resulting volatility
may be interpreted as the “idiosyncratic” volatility, while the volatility in
Figure 7.7 includes both the idiosyncratic component and the systematic
market component.

7.5.5 Exogenous Explanatory Variables in the Conditional
Variance Equation

Adding explanatory variables into the conditional variance formula may
have impacts on conditional volatility.6 To illustrate, it is widely believed
that trading volume a ects the volatility. The S+FinMetrics object dell.s
contains a time series of daily stock returns of Dell Computer Corporation,
and dell.v contains daily trading volume of Dell stocks spanning the same
time period. In the next example, use the percentage change in trading
volume to forecast volatility.

Example 43 Trading volume and volatility

First, use the S+FinMetrics function getReturns to compute rates of
changes in trading volume. Then look at the scatter plot of log absolute
returns versus the changes in trading volume:

6To guarantee that the conditional variance is always positive, one has to make sure
that exogenous variables are positive unless an EGARCH type model is selected.

7.5 GARCH Model Extensions 255

0.
01

0
0.

01
4

0.
01

8
0.

02
2

Q2 Q4 Q2 Q4 Q2 Q4 Q2 Q4 Q2 Q4 Q2 Q4 Q2 Q4 Q2 Q4
1984 1985 1986 1987 1988 1989 1990 1991 1992

volatility

C
on

di
tio

na
l S

D

GARCH Volatility

FIGURE 7.10. Idiosyncratic volatility of daily Ford returns.

> log.abs.ret = log(abs(dell.s-mean(dell.s)))[-1]

> d.volume = getReturns(dell.v)

> rvfPlot(log.abs.ret, d.volume, strip="Scatter Plot",

id.n=0, hgrid=T, vgrid=T,

xlab="% Volume", ylab="Volatility")

The resulting plot is shown in Figure 7.11. There seems to exist a fairly
linear relationship between the changes in volume and the volatility as
measured by the log absolute returns. Based on this observation, use the
changes in volume as an explanatory variable in the EGARCH variance
equation:

> dell.mod = garch(dell.s~1,~egarch(1,1)+seriesData(d.volume),

series.start=2)

> summary(dell.mod)

Call:

garch(formula.mean = dell.s ~ 1, formula.var = ~ egarch(1, 1)

+ seriesData(d.volume), series.start = 2)

Mean Equation: dell.s ~ 1

Conditional Variance Equation: ~ egarch(1, 1) +

seriesData(d.volume)

256 7. Univariate GARCH Modeling

-6

-4

-2

0

2

-6 -4 -2 0 2

Scatter Plot

% Volume

Vo
la

til
ity

FIGURE 7.11. Log absolute returns versus changes in volume: Dell.

Conditional Distribution: gaussian

--

Estimated Coefficients:

--

Value Std.Error t value Pr(>|t|)

C 0.15678 0.06539 2.3977 8.321e-03

A -0.02078 0.03927 -0.5293 2.984e-01

ARCH(1) 0.14882 0.03721 3.9992 3.364e-05

GARCH(1) 0.95140 0.01695 56.1226 0.000e+00

seriesData(d.volume) 1.39898 0.08431 16.5928 0.000e+00

The optional argument series.start=2 is used because the “timeSeries”
d.volume has one less observation than the “timeSeries” dell.s. From
the summary output, the coe cient on changes in volume is estimated to
be 1 4 and is highly significant with a -value essentially equal to zero. The
estimated model implies a 1% change in trading volume causes about a
1 4% change in conditional variance.

7.5 GARCH Model Extensions 257

7.5.6 Non-Gaussian Error Distributions

In all the examples illustrated so far, a normal error distribution has been
exclusively used. However, given the well known fat tails in financial time
series, it may be more desirable to use a distribution which has fatter tails
than the normal distribution. The garch function in S+FinMetrics allows
three fat-tailed error distributions for fitting GARCH models: the Student’s
t distribution; the double exponential distribution; and the generalized error
distribution.

Student’s Distribution

If a random variable has a Student’s distribution with degrees of
freedom and a scale parameter , the probability density function (PDF)
of is given by:

() =
[(+ 1) 2]

()1 2 (2)

1 2

[1 + 2 ()](+1) 2

where (·) is the gamma function. The variance of is given by:

() =
2

2

If the error term in a GARCH model follows a Student’s distribution
with degrees of freedom and 1() = 2, the scale parameter
should be chosen to be

=
2(2)

Thus the log-likelihood function of a GARCH model with Student’s dis-
tributed errors can be easily constructed based on the above PDF.

Generalized Error Distribution

Nelson (1991) proposed to use the generalized error distribution (GED) to
capture the fat tails usually observed in the distribution of financial time
series. If a random variable has a GED with mean zero and unit variance,
the PDF of is given by:

() =
exp[(1 2)| |]
· 2(+1) (1)

where

=

·
2 2 (1)

(3)

¸1 2

and is a positive parameter governing the thickness of the tail behavior
of the distribution. When = 2 the above PDF reduces to the standard

258 7. Univariate GARCH Modeling

normal PDF; when 2, the density has thicker tails than the normal
density; when 2, the density has thinner tails than the normal density.
When the tail thickness parameter = 1, the PDF of GED reduces to

the PDF of double exponential distribution:

() =
1

2
2| |

Based on the above PDF, the log-likelihood function of GARCH mod-
els with GED or double exponential distributed errors can be easily con-
structed. Refer to Hamilton (1994) for an example.

GARCH Estimation with Non-Gaussian Error Distributions

To estimate a GARCH model with the above three non-Gaussian error
distributions using the garch function, simply set the optional argument
cond.dist to "t" for the Student’s distribution, "ged" for the GED
distribution, and "double.exp" for the double exponential distribution,
respectively.
For example, to estimate a basic GARCH(1 1) model with Student’s

distribution using daily Ford stock returns ford.s, use the command:

> ford.mod11.t = garch(ford.s~1, ~garch(1,1), cond.dist="t")

Iteration 0 Step Size = 1.00000 Likelihood = 2.64592

Iteration 0 Step Size = 2.00000 Likelihood = -1.00000e+10

Iteration 1 Step Size = 1.00000 Likelihood = 2.64788

Iteration 1 Step Size = 2.00000 Likelihood = 2.64367

Iteration 2 Step Size = 1.00000 Likelihood = 2.64808

Iteration 2 Step Size = 2.00000 Likelihood = 2.64797

Convergence R-Square = 4.712394e-05 is less than tolerance

= 0.0001

Convergence reached.

The distribution information is saved in the cond.dist component of the
returned object:

> ford.mod11.t$cond.dist

$cond.dist:

[1] "t"

$dist.par:

[1] 7.793236

$dist.est:

[1] T

7.5 GARCH Model Extensions 259

-8

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6

QQ-Plot

2/3/1984

12/31/1991

2/2/1984

Quantiles of t distribution

St
an

da
rd

iz
ed

 R
es

id
ua

ls

QQ-Plot of Standardized Residuals

FIGURE 7.12. Student-t QQ-plot of standardized residuals: ford.mod11.t.

where the dist.par component contains the estimated degree of freedom
for Student’s distribution. Calling the generic summary function on the

returned object will also show the standard error of the estimate of .
To assess the goodness-of-fit of ford.mod11.t, generate the qq-plot based

on the estimated Student’s distribution by calling the plot function on
ford.mod11.t, which is shown in Figure 7.12. Compare this with Figure 7.5
and the Student’s error distribution provides a much better fit than the
normal error distribution.
When using Student’s or GED distributions, the distribution parameter
is estimated as part of the MLE procedure by default. One can also choose

to fix at a certain value during the estimation. For example, to fix = 1
for GED distribution, use the command:

> ford.mod11.dexp = garch(ford.s~1, ~garch(1,1),

+ cond.dist="ged", dist.par=1, dist.est=F)

where the optional argument dist.par is used to set the value, and dist.est
is used to exclude the distribution parameter for MLE. It can be easily ver-
ified that this is equivalent to setting cond.dist="double.exp".

260 7. Univariate GARCH Modeling

7.6 GARCH Model Selection and Comparison

The previous sections have illustrated the variety of GARCH models avail-
able in S+FinMetrics. Obviously selecting the best model for a particular
data set can be a daunting task. Model diagnostics based on standard-
ized residuals and news impact curves for leverage e ects can be used to
compare the e ectiveness of di erent aspects of GARCH models. In addi-
tion, since GARCH models can be treated as ARMA models for squared
residuals, traditional model selection criteria such as Akaike information
criterion (AIC) and Bayesian information criterion (BIC) can also be used
for selecting models.
To facilitate the selection and comparison of di erent GARCH models,

S+FinMetrics provides the function compare.mgarch to compare the fits
of di erent “garch” objects.7 For example, to compare the GARCH(1,1)
fits of the “garch” objects ford.mod11 and ford.mod11.t, one fitted with
the Gaussian distribution and the other with the Student’s distribution,
use the following command:

> ford.compare = compare.mgarch(ford.mod11, ford.mod11.t)

> oldClass(ford.compare)

[1] "compare.garch" "compare.mgarch"

> ford.compare

ford.mod11 ford.mod11.t

AIC -10504 -10582

BIC -10481 -10554

Likelihood 5256 5296

The returned object ford.compare is an S version 3 object with class
“compare.garch”, which inherits from the class “compare.mgarch”. The
print method for this class of objects shows the AIC, BIC, and log-
likelihood values of the fitted models. Since the BIC of ford.mod11.t is
much smaller than that of ford.mod11, Student’s distribution seems to
provide a much better fit than the normal distribution.
S+FinMetrics also provides a method for the generic plot function for

objects inheriting from class “compare.mgarch”. To see the arguments of
the plot method, use the args function as usual:

> args(plot.compare.mgarch)

function(x, qq = F, hgrid = F, vgrid = F, lag.max = NULL,

ci = 2, ...)

> plot(ford.compare)

7This is originally designed as a method function for the generic compare function for
an S version 3 object. However, for S-PLUS 6 which is based on S version 4, the generic
function compare does not work correctly when more than two objects are compared. So
we suggest calling compare.mgarch directly.

7.6 GARCH Model Selection and Comparison 261

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30

ford.mod11

0 10 20 30

ford.mod11.t

Lags

ACF of Squared Std. Residuals

FIGURE 7.13. Comparison of ACF of squared std. residuals.

The resulting plot is shown Figure 7.13. By default, the plot method com-
pares the ACF of squared standardized residuals from the fitted models.
This plot demonstrates that both models are successful at modeling condi-
tional volatility. If the optional argument is set at qq=T, then a comparison
of qq-plots is generated:

> plot(ford.compare, qq=T, hgrid=T, vgrid=T)

which is shown in Figure 7.14. Note that since ford.mod11 is fitted using
the normal distribution, the qq-plot is based on normal assumption. In
contrast, since ford.mod11.t is fitted using Student’s distribution, the
qq-plot is based on a Student’s distribution with degrees of freedom taken
from the cond.dist component of the object.

7.6.1 Constrained GARCH Estimation

For a GARCH model, some model parameters can also be fixed at certain
values to evaluate the fit of a particular model. Section 13.7 in Chapter 13
provides some examples.

262 7. Univariate GARCH Modeling

-8

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6

ford.mod11

-6 -4 -2 0 2 4 6

ford.mod11.t

Quantile of Comparison Distribution

St
an

da
rd

iz
ed

 R
es

id
ua

ls
QQ-Plot of Standardized Residuals

FIGURE 7.14. Comparison of QQ-plot of std. residuals.

7.7 GARCH Model Prediction

An important task of modeling conditional volatility is to generate accurate
forecasts for both the future value of a financial time series as well as its
conditional volatility. Since the conditional mean of the general GARCH
model (7.19) assumes a traditional ARMA form, forecasts of future values
of the underlying time series can be obtained following the traditional ap-
proach for ARMA prediction. However, by also allowing for a time varying
conditional variance, GARCH models can generate accurate forecasts of
future volatility, especially over short horizons. This section illustrates how
to forecast volatility using GARCH models.
For simplicity, consider the basic GARCH(1 1) model:

2 = 0 + 1
2
1 + 1

2
1

which is estimated over the time period = 1 2 · · · . To obtain [2
+],

the forecasts of future volatility 2
+ , for 0, given information at time

. The above equation can easily obtain:

[2
+1] = 0 + 1 [2] + 1 [2]

= 0 + 1
2 + 1

2

7.7 GARCH Model Prediction 263

0.0230

0.0235

0.0240

0.0245

0.0250

0 20 40 60 80 100

Predicted Conditional SD

GARCH Predictions

FIGURE 7.15. PGARCH forecasts of future volatility: hp.pgarch.

since it already has 2 and 2 after the estimation.8 Now for + 2

[2
+2] = 0 + 1 [2 +1] + 1 [2

+1]

= 0 + (1 + 1) [2
+1]

since [2 +1] = [2
+1] The above derivation can be iterated to give

the conditional volatility forecasting equation

[2
+] = 0

2X
=1

(1 + 1) + (1 + 1)
1 [2

+1] (7.20)

for 2. Notice that as , the volatility forecast in (7.20) ap-
proaches the unconditional variance 0 (1 1 1) if the GARCH process
is stationary (i.e., if 1 + 1 1).
The forecasting algorithm (7.20) produces forecasts for the conditional

variance 2
+ The forecast for the conditional volatility, + is defined

as the square root of the forecast for 2
+

The predict method for “garch” objects in S+FinMetrics implements
the forecasting procedure as described above for all the supported GARCH
variants, allowing for leverage e ects and the use of exogenous variables

8We are a little bit loose with notations here because and 2 are actually the
fitted values instead of the unobserved “true” values.

264 7. Univariate GARCH Modeling

in both the conditional mean and the conditional variance. The forecasts
can be easily obtained by calling the generic predict function on a fitted
model object with the desired number of forecasting periods. For example,
consider the PGARCH object hp.pgarch in Section 7.5.1. To obtain 10-
step-ahead forecasts, simply use the command:

> hp.pgarch.pred = predict(hp.pgarch,10)

> class(hp.pgarch.pred)

[1] "predict.garch"

> names(hp.pgarch.pred)

[1] "series.pred" "sigma.pred" "asymp.sd"

> hp.pgarch.pred

$series.pred:

[1] 0.0003312 0.0003312 0.0003312 0.0003312 0.0003312

[6] 0.0003312 0.0003312 0.0003312 0.0003312 0.0003312

$sigma.pred:

[1] 0.02523 0.02508 0.02494 0.02482 0.02470 0.02458 0.02448

[8] 0.02438 0.02429 0.02421

$asymp.sd:

[1] 0.02305

attr(, "class"):

[1] "predict.garch"

The returned object hp.pgarch.pred is of class “predict.garch” for which
there is only a plot method. Since the conditional mean was restricted to
a constant in hp.pgarch, the forecasts of the future values contained in
the component series.pred are simply the estimate of the mean. The
component sigma.pred contains the forecasts of , and the component
asymp.sd contains the estimate of the unconditional standard deviation if
the estimated model is stationary. If a very large number of steps lie ahead,
the forecasted volatility should approach the unconditional level. This can
be easily verified for hp.pgarch as follows:

> plot(predict(hp.pgarch, 100))

where the plot method for the returned object can be directly invoked
and the resulting plot is shown in Figure 7.15. Note that a plot of the
forecasted series values can also be obtained. See the on-line help file for
plot.predict.garch for details.
The forecasted volatility can be used together with forecasted series val-

ues to generate confidence intervals of the forecasted series values. In many
cases, the forecasted volatility is of central interest, and confidence inter-
vals for the forecasted volatility can be obtained as well. However, analytic
formulas for confidence intervals of forecasted volatility are only known for

7.8 GARCH Model Simulation 265

some special cases (see Baillie and Bollerslev, 1992). The next section will
show how a simulation-based method can be used to obtain confidence in-
tervals for forecasted volatility from any of the GARCH variants available
in S+FinMetrics.

7.8 GARCH Model Simulation

S+FinMetrics provides a method for the generic S-PLUS function simulate
for objects of class “garch”. This function, simulate.garch, allows obser-
vations as well as volatility to be simulated from a user-specified GARCH
model or from the model contained in a fitted “garch” object. This section
illustrates the use of simulate to create confidence intervals for volatility
forecasts from a fitted GARCH model.

Example 44 Simulation-based GARCH forecasts

To obtain volatility forecasts from a fitted GARCH model, simply sim-
ulate from the last observation of the fitted model. This process can be
repeated many times to obtain an “ensemble” of volatility forecasts. For
example, suppose 100-step-ahead volatility forecasts need to be generated
from hp.pgarch, take the residual term and fitted volatility of the last
observation:9

> sigma.start = as.numeric(hp.pgarch$sigma.t[2000])

> eps.start = as.numeric(hp.pgarch$residuals[2000])

> eps.start = matrix(eps.start, 1, 1000)

> error = rbind(eps.start, matrix(rnorm(100*1000), 100))

Note that the first row of error contains the pre-sample values of to
start o the simulation for each of the 1000 replications, whereas the rest
of error are simply random variates with zero mean and unit variance
which will be updated by the simulation procedure to result in GARCH
errors. Now use these values to obtain the simulations as follows:

> set.seed(10)

> hp.sim.pred = simulate(hp.pgarch, n=100, n.rep=1000,

sigma.start=sigma.start, etat=error)$sigma.t

The argument n specifies the desire to simulate 100 steps ahead, and n.rep
specifies wanting to repeat this 1000 times. The simulation procedure re-
turns both the simulated GARCH errors and volatility. Only take the sim-
ulated volatility contained in the sigma.t component; thus hp.sim.pred
is a 100×1000 matrix with each column representing each simulation path.

9If the order of the fitted GARCH model is = max(), then last observations
are required.

266 7. Univariate GARCH Modeling

0 20 40 60 80 100

0.
01

5
0.

02
0

0.
02

5
0.

03
0

Simulated Confidence Interval of Volatility

Time

Vo
la

til
ity

FIGURE 7.16. Simulation-based volatility forecasts: hp.pgarch.

The simulation-based forecasts are simply the average of the 1000 simula-
tion paths. 95% confidence intervals for the forecasts may be computed in
two ways. They can be computed using the usual formula based on nor-
mally distributed forecasts; that is, mean forecast ±2· standard deviation
of forecasts. Alternatively, the 95% confidence interval may be constructed
from the 2.5% and 97.5% quantiles of the simulated forecasts. Use the fol-
lowing code to compute the forecasts and plot the 95% confidence interval
based on the normal formula:

> vol.mean = rowMeans(hp.sim.pred)

> vol.stdev = rowStdevs(hp.sim.pred)

> vol.cf = cbind(vol.mean+2*vol.stdev, vol.mean-2*vol.stdev)

> tsplot(cbind(vol.mean, vol.cf))

> points(predict(hp.pgarch, 100)$sigma.pred, pch=1)

> title(main="Simulated Confidence Interval of Volatility",

xlab="Time", ylab="Volatility")

The resulting plot is shown in Figure 7.16. Note that analytic forecasts
are also added as points in the plot for comparison. The simulation-based
forecasts agree with the analytic ones produced by the predict method.
In the above example, the “standardized” errors were generated by ran-

dom sampling from the standard normal distribution. In practice, it may
be desirable to generate standardized errors by bootstrapping from stan-
dardized residuals.

7.9 Conclusion 267

Formula Model
~garch(p,q) GARCH() model
~egarch(p,q) EGARCH() model
~tgarch(p,q) TGARCH() model
~pgarch(p,q) PGARCH() model with free exponent
~pgarch(p,q,d) PGARCH() model with fixed exponent
~garch.2comp GARCH TWO.COMP model
~egarch.2comp EGARCH TWO.COMP model
~pgarch.2comp PGARCH TWO.COMP model with free

exponent
~pgarch.2comp(d) PGARCH TWO.COMP model with fixed

exponent
~two.comp(i) PGARCH TWO.COMP model with choice of

leverage e ects
~two.comp(i,d) PGARCH TWO.COMP model with choice of

leverage e ects and exponent

TABLE 7.4. GARCH Formula Specifications

7.9 Conclusion

This chapter illustrated how to estimate and forecast from various GARCH
models. The range of GARCH models supported by S+FinMetrics is very
broad. Table 7.4 summarizes all the conditional variance formulas sup-
ported by the garch function.

7.10 References

Alexander, C. (2001). Market Models: A Guide to Financial Data Anal-
ysis, John Wiley & Sons, Chichester, UK.

Bera, A.K. and M.L. Higgins (1995). “On ARCH Models: Properties,
Estimation and Testing,” Journal of Economic Surveys, 7, 305-362.

Black, F. (1976). “Studies in Stock Price Volatility Changes,” Proceedings
of the 1976 Business Meeting of the Business and Economics Statistics
Section, American Statistical Association, 177-181.

Bollerslev, T. (1986). “Generalized Autoregressive Conditional Het-
eroskedasticity,” Journal of Econometrics, 31, 307-327.

Bollerslev, T., R.Y. Chu and K.F. Kroner (1994). “ARCHModeling
in Finance: A Selective Review of the Theory and Empirical Evidence,”
Journal of Econometrics, 52, 5-59.

268 7. Univariate GARCH Modeling

Bollerslev, T., Engle, R. F., and Nelson, D. B. (1994). “ARCH
Models,” in R. F. Engle and D. L. McFadden (eds.), Handbook of Econo-
metrics, Vol. 4, Elsevier Science B. V., Amsterdam.

Bollerslev, T., and Wooldrige, J. M. (1992). “Quasi-maximum Like-
lihood Estimation and Inference in Dynamic Models with Time-varying
Covariances,” Econometric Reviews, 11, 143-172.

Davidson, R., MacKinnon, J. G. (1993). Estimation and Inference in
Econometrics, Oxford University Press, Oxford.

Diebold, F.X. and J.A. Lopez (1996). “Modeling Volatility Dynam-
ics,” in K. Hoover (ed.) Macroeconomics: Developments, Tensions and
Prospects. Kluwer, Boston.

Ding, Z., and Granger, C. W. J. (1996). “Modeling Volatility Persis-
tence of Speculative Returns: A New Approach,” Journal of Econometrics,
73, 185-215.

Ding, Z., Granger, C. W. J., and Engle, R. F. (1993). “A Long
Memory Property of Stock Market Returns and a New Model,” Journal of
Empirical Finance, 1, 83-106.

Engle, R. F. (1982). “Autoregressive Conditional Heteroskedasticity with
Estimates of the Variance of United Kingdom Inflation,” Econometrica,
50(4), 987-1007.

Engle, R. F., and Lee, G. J. (1999). “A Long-Run and Short-Run
Component Model of Stock Return Volatility,” in R. F. Engle and H. White
(eds.), Cointegration, Causality, and Forecasting. Oxford University Press,
Oxford.

Engle, R. F., Lilien, D. M., and Robins, R. P. (1987). “Estimating
Time Varying Risk Premia in the Term-Structure: the ARCH-M Model,”
Econometrica, 55(2), 391-407.

Engle, R. F., and Ng, V. (1993). “Measuring and Testing the Impact
of News on Volatility,” Journal of Finance, 48(5), 1749-1778.

Engle, R.F. (2001). “GARCH 101: The Use of ARCH/GARCH Models
in Applied Economics,” Journal of Economic Perspectives, 15, 157-168.

Engle, R.F. and A.J. Patton (2001). “What Good is a Volatility
Model?” QuantitativeFinance, 237-245.

7.10 References 269

Glosten, L. R., Jagannathan, R., and Runkle, D. E. (1993). “On
the Relation Between the Expected Value and the Volatility of the Nominal
Excess Return on Stocks,” Journal of Finance, 48(5), 1779-1801.

Hamilton, J. D. (1994). Time Series Analysis. Princeton University Press,
Princeton, NJ.

He, C., Teräsvirta, T. (1999a). “Properties of Moments of a Family of
GARCH Processes,” Journal of Econometrics, 92, 173-192.

He, C., Teräsvirta, T. (1999b). “Fourth Moment Structure of the
GARCH() Process,” Econometric Theory, 15, 824-846.

Nelson, D. B. (1991). “Conditional Heteroskedasticity in Asset Returns:
a New Approach,” Econometrica, 59(2), 347-370.

Nelson, D. B., and Cao, C. Q. (1992). “Inequality Constraints in the
Univariate GARCH Model,” Journal of Business and Economic Statistics,
10(2), 229-235.

Tsay, R.S. (2001). Analysis of Financial Time Series, John Wiley & Sons,
New York.

Zakoian, M. (1994), “Threshold Heteroscedastic Models,” Journal of Eco-
nomic Dynamics and Control, 18, 931-955.

8
Long Memory Time Series Modeling

8.1 Introduction

Earlier chapters have demonstrated that many macroeconomic and finan-
cial time series like nominal and real interest rates, real exchange rates,
exchange rate forward premiums, interest rate di erentials and volatility
measures are very persistent, i.e., that an unexpected shock to the under-
lying variable has long lasting e ects. Persistence can occur in the first
or higher order moments of a time series. The persistence in the first mo-
ment, or levels, of a time series can be confirmed by applying either unit
root tests or stationarity tests to the levels, while the persistence in the
volatility of the time series is usually exemplified by a highly persistent
fitted GARCH model. Although traditional stationary ARMA processes
often cannot capture the high degree of persistence in financial time series,
the class of non-stationary unit root or (1) processes have some unap-
pealing properties for financial economists. In the last twenty years, more
applications have evolved using long memory processes, which lie halfway
between traditional stationary (0) processes and the non-stationary (1)
processes. There is substantial evidence that long memory processes can
provide a good description of many highly persistent financial time series.
This chapter will cover the concept of long memory time series. Sec-

tion 8.3 will explain various tests for long memory, or long range depen-
dence, in a time series and show how to perform these tests using functions
in S+FinMetrics module. In Section 8.4 will illustrate how to estimate
the long memory parameter using R/S statistic and two periodogram-

272 8. Long Memory Time Series Modeling

based method. Section 8.5 will extend the traditional ARIMA processes
to fractional ARIMA (FARIMA) processes, which can be used to model
the long range dependence and short run dynamics simultaneously. The
semiparametric fractional autoregressive (SEMIFAR) process recently pro-
posed by Beran and his coauthors will also be introduced. Section 8.6 will
extend GARCH models to fractionally integrated GARCH models to al-
low for long memory in conditional volatility. Finally, section 8.7 will con-
sider the prediction from long memory models such as FARIMA and FI-
GARCH/FIEGARCH models. Beran (1994) gives an exhaustive treatment
of statistical aspects of modeling with long memory processes, while Bail-
lie (1996) provides a comprehensive survey of econometric analysis of long
memory processes and applications in economics and finance.

8.2 Long Memory Time Series

To illustrate the long memory property in financial time series, consider
the daily returns on the S&P500 index from January 4, 1928 to August 30,
1991 contained in the S+FinMetrics “timeSeries” object sp500. Since
daily returns usually have a mean very close to zero, the absolute return
is sometimes used as a measure of volatility. The sample autocorrelation
function of the daily absolute returns can be plotted using the following
commands:

> tmp = acf(abs(sp500), lag=200)

> sp500.ar = ar(abs(sp500))

> sp500.ar$order

[1] 37

> tmp.mod = list(ar=as.vector(sp500.ar$ar), sigma2=1, d=0)

> ar.acf = acf.FARIMA(tmp.mod, lag.max=200)

> lines(ar.acf$lags, ar.acf$acf/ar.acf$acf[1])

and the plot is shown in Figure 8.1. The autocorrelation of absolute re-
turns is highly persistent and remains very significant at lag 200. In the
above code fragment, the S-PLUS function ar is used to select the best fit-
ting AR process using AIC, which turns out to be an AR(37) model. The
S+FinMetrics function acf.FARIMA compares the theoretical autocorrela-
tion function implied by the AR(37) process with the sample autocorrela-
tion function. The following comments apply to this example:

1. Traditional stationary ARMA processes have short memory in the
sense that the autocorrelation function decays exponentially. In the
above example, the theoretical autocorrelation closely matches the
sample autocorrelation at small lags. However, for large lags, the
sample autocorrelation decays much more slowly than the theoretical
autocorrelation.

8.2 Long Memory Time Series 273

Lag

AC
F

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : abs(sp500)

FIGURE 8.1. ACF of daily absolute returns of S&P500 index.

2. When the sample autocorrelation decays very slowly, traditional sta-
tionary ARMA processes usually result in an excessive number of
parameters. In the above example, 37 autoregressive coe cients were
found necessary to capture the dependence in the data.

Based on the above observations, a stationary process has long mem-
ory , or long range dependence, if its autocorrelation function behaves like

() as (8.1)

where is a positive constant, and is a real number between 0 and 1.
Thus the autocorrelation function of a long memory process decays slowly
at a hyperbolic rate. In fact, it decays so slowly that the autocorrelations
are not summable: X

=

() =

For a stationary process, the autocorrelation function contains the same
information as its spectral density. In particular, the spectral density is
defined as:

() =
1

2

X
=

()

274 8. Long Memory Time Series Modeling

where is the Fourier frequency (c.f. Hamilton, 1994). From (8.1) it can
be shown that

() 1 as 0 (8.2)

where is a positive constant. So for a long memory process, its spectral
density tends to infinity at zero frequency. Instead of using , in practice
use

= 1 2 (0 5 1) (8.3)

which is known as the Hurst coe cient (see Hurst, 1951) to measure the
long memory in . The larger is, the longer memory the stationary
process has.
Based on the scaling property in (8.1) and the frequency domain property

in (8.2), Granger and Joyeux (1980) and Hosking (1981) independently
showed that a long memory process can also be modeled parametrically
by extending an integrated process to a fractionally integrated process. In
particular, allow for fractional integration in a time series as follows:

(1) () = (8.4)

where denotes the lag operator, is the fractional integration or fractional
di erence parameter, is the expectation of , and is a stationary short-
memory disturbance with zero mean.
In practice, when a time series is highly persistent or appears to be

non-stationary, let = 1 and di erence the time series once to achieve
stationarity. However, for some highly persistent economic and financial
time series, it appears that an integer di erence may be too much, which is
indicated by the fact that the spectral density vanishes at zero frequency
for the di erenced time series. To allow for long memory and avoid taking
an integer di erence of , allow to be fractional. The fractional di erence
filter is defined as follows, for any real 1:

(1) =
X
=0

µ ¶
(1) (8.5)

with binomial coe cients:µ ¶
=

!

!()!
=

(+ 1)

(+ 1) (+ 1)

Notice that the fractional di erence filter can be equivalently treated as an
infinite order autoregressive filter.1 It can be shown that when | | 1 2,
is non-stationary; when 0 1 2, is stationary and has long

1The S+FinMetrics function FARIMA.d2ar can be used to compute the autoregressive
representation of the fractional di erence filter.

8.2 Long Memory Time Series 275

d = 0.3

lags

A
C

F

0 20 40 60 80 100

0.
2

0.
4

0.
6

0.
8

1.
0

d = -0.3

lags

A
C

F

0 20 40 60 80 100

-0
.2

0.
2

0.
6

1.
0

FIGURE 8.2. Autocorrelation of fractional integrated process.

memory; when 1 2 0, is stationary and has short memory, and
is sometimes referred to as anti-persistent.
When a fractionally integrated series has long memory, it can also be

shown that

= 1 2 (8.6)

and thus and can be used interchangeably as the measure of long
memory. Hosking (1981) showed that the scaling property in (8.1) and the
frequency domain property in (8.2) are satisfied when 0 1 2.

Example 45 Theoretical ACF of fractionally integrated processes

In this example,use the S+FinMetrics function acf.FARIMA to plot the
theoretical autocorrelation function of a fractionally integrated process with
a standard normal disturbance , for = 0 3 and = 0 3, respectively:

> d.pos = acf.FARIMA(list(d=0.3, sigma2=1), 100)

> d.pos$acf = d.pos$acf / d.pos$acf[1]

> d.neg = acf.FARIMA(list(d=-0.3, sigma2=1), 100)

> d.neg$acf = d.neg$acf / d.neg$acf[1]

> par(mfrow=c(2,1))

> plot(d.pos$lags, d.pos$acf, type="h", main="d = 0.3",

+ xlab="lags", ylab="ACF")

276 8. Long Memory Time Series Modeling

> plot(d.neg$lags, d.neg$acf, type="h", main="d = -0.3",

+ xlab="lags", ylab="ACF")

> par(mfrow=c(1,1))

and the plot is shown in Figure 8.2. Notice that the signs of the ACF
coe cients are determined by the sign of .

8.3 Statistical Tests for Long Memory

Given the scaling property of the autocorrelation function, the frequency
domain property and the fractionally integrated process representation of a
long memory time series, various tests have been proposed to determine the
existence of long memory in a time series. This section introduces the R/S
statistic and GPH test. However, before getting into the details of those
test statistics, it is important to note that the definition of long memory
does not dictate the general behavior of the autocorrelation function or its
spectral density. Instead, they only specify the asymptotic behavior when

or 0. What this means is that for a long memory process, it
is not necessary for the autocorrelation to remain significant at large lags
as in the previous sp500 example, as long as the autocorrelation function
decays slowly. Beran (1994) gives an example to illustrate this property.

8.3.1 R/S Statistic

The best-known test for long memory or long range dependence is prob-
ably the rescaled range, or range over standard deviation, or simply R/S
statistic, which was originally proposed by Hurst (1951), and later refined
by Mandelbrot and his coauthors. The R/S statistic is the range of partial
sums of deviations of a time series from its mean, rescaled by its standard
deviation. Specifically, consider a time series , for = 1 · · · . The R/S
statistic is defined as:

=
1

max
1

X
=1

(¯) min
1

X
=1

(¯) (8.7)

where ¯ = 1
P

=1 and =
q
1

P
=1(¯)2. If ’s are i.i.d.

normal random variables, then

1

where denotes weak convergence and is the range of a Brownian bridge
on the unit interval. Lo (1991) gives selected quantiles of .

8.3 Statistical Tests for Long Memory 277

Lo (1991) pointed out that the R/S statistic is not robust to short range
dependence. In particular, if is autocorrelated (has short memory) then
the limiting distribution of is scaled by the square root of the
long run variance of . To allow for short range dependence in , Lo (1991)
modified the R/S statistic as follows:

˜ =
1

ˆ ()
max
1

X
=1

(¯) min
1

X
=1

(¯) (8.8)

where the sample standard deviation is replaced by the square root of the
Newey-West estimate of the long run variance with bandwidth .2 Lo (1991)
showed that if there is short memory but no long memory in , ˜ also
converges to , the range of a Brownian bridge.
The S+FinMetrics function rosTest can be used to test for long memory

in a time series using the R/S statistic (8.7) or the modified R/S statistic
(8.8). For example, to test for long memory in the absolute returns of
S&P500 index, use the following command:

> rosTest(abs(sp500))

Test for Long Memory: Modified R/S Test

Null Hypothesis: no long-term dependence

Test Statistics:

7.8823**

* : significant at 5% level

** : significant at 1% level

Total Observ.: 17054

Bandwidth : 14

By default, Lo’s modified R/S statistic is computed and the bandwidth
for obtaining the long run variance is chosen to be [4(100)1 4], where
is the sample size, and [·] denotes integer part of. In the above example, the
modified R/S statistic is significant at 1% level of significance. A di erent
bandwidth can be used by setting the optional argument bandwidth. If
bandwidth is set to zero, then classical R/S statistic is returned:

> rosTest(abs(sp500), bandwidth=0)

2See Chapter 2 for the definition and estimation of long run variance and the online
help file for the S+FinMetrics function asymp.var.

278 8. Long Memory Time Series Modeling

Test for Long Memory: R/S Test

Null Hypothesis: no long-term dependence

Test Statistics:

17.821**

* : significant at 5% level

** : significant at 1% level

Total Observ.: 17054

which is also significant at 1% level of significance in this case.

8.3.2 GPH Test

Based on the fractionally integrated process representation of a long mem-
ory time series as in (8.4), Geweke and Porter-Hudak (1983) proposed a
semi-nonparametric approach to testing for long memory. In particular, the
spectral density of the fractionally integrated process is given by:

() = [4 sin2(
2
)] () (8.9)

where is the Fourier frequency, and () is the spectral density cor-
responding to . Note that the fractional di erence parameter can be
estimated by the following regression:

ln () = ln[4 sin2(
2
)] + (8.10)

for = 1 2 · · · (). Geweke and Porter-Hudak (1993) showed that

using a periodogram estimate of (), the least squares estimate ˆ using
the above regression is normally distributed in large samples if () =
with 0 1:

ˆ (
2

6
P

=1(
¯)2

)

where
= ln[4 sin2(

2
)]

and ¯ is the sample mean of , = 1 · · · . Under the null hypothesis
of no long memory (= 0), the t-statistic

=0 = ˆ·
Ã

2

6
P

=1(
¯)2

! 1 2

(8.11)

8.3 Statistical Tests for Long Memory 279

has a limiting standard normal distribution.
The S+FinMetrics function gphTest can be used to estimate from

(8.10) and compute the test statistic (8.11), which is usually referred to as
the GPH test. The arguments taken by gphTest are:

> args(gphTest)

function(x, spans = 1, taper = 0.1, pad = 0, detrend = F,

demean = T, alpha = 0.5, na.rm = F)

The optional arguments spans, taper, pad, detrend and demean are ac-
tually passed to the S-PLUS function spec.pgram to obtain a periodogram
estimate.3 The optional argument alpha is used to choose the number of
frequencies (). By default, () = with = 0 5. To illustrate the
use of gphTest, consider estimating and testing for long memory in the
S&P 500 index absolute returns:

> gph.sp500 = gphTest(abs(sp500),taper=0)

> class(gph.sp500)

[1] "gphTest"

> names(gph.sp500)

[1] "d" "n" "na" "n.freq" "std.err"

The result of gphTest is an object of class “gphTest” for which there is
only a print method:

> gph.sp500

Test for Long Memory: GPH Test

Null Hypothesis: d = 0

Test Statistics:

d 0.4573

stat 7.608**

* : significant at 5% level

** : significant at 1% level

Total Observ.: 17054

Number of Freq: 130

The estimated value of from (8.10) is ˆ = 0 457, which suggests long
memory, and the gph test statistic (8.11) is 7 608. Hence, the null of no
long memory is rejected at the 1% significance level. The estimate of is

3See S-PLUS Guide to Statistics for an introduction to the estimation of periodogram
and the usage of spec.pgram.

280 8. Long Memory Time Series Modeling

close to the nonstationary range. In fact, a 95% confidence interval for
based on the asymptotic standard error

> gph.sp500$std.err

[1] 0.06011

is [0 337 0 578] and contains 0 5.

8.4 Estimation of Long Memory Parameter

The previous section introduced the R/S statistic and the log-periodogram
regression to test for long memory in a time series. Cheung (1993) con-
ducted a Monte Carlo comparison of these tests. Obtaining an estimate of
the long memory parameter or is also of interest. The GPH test pro-
duces an estimate of automatically. This section will show that the R/S
statistic can also be used to obtain an estimate of the Hurst coe cient .
It will also introduce two periodogram-based methods for estimating the
long memory parameter: the periodogram method and Whittle’s method.
In addition, the fractional di erence parameter can also be estimated
by using a general FARIMA() model, which will be introduced in
the next section. Taqqu, Teverovsky and Willinger (1995) and Taqqu and
Teverovsky (1998) compared the performance of many di erent estimators
of the long memory parameter, including the above mentioned methods.

8.4.1 R/S Analysis

Section 8.3.1 mentioned that when there is no long memory in a stationary
time series, the R/S statistic converges to a random variable at rate 1 2.
However, when the stationary process has long memory, Mandelbrot
(1975) showed that the R/S statistic converges to a random variable at
rate , where is the Hurst coe cient. Based on this result, the log-log
plot of the R/S statistic versus the sample size used should scatter around
a straight line with slope 1 2 for a short memory time series. In contrast,
for a long memory time series, the log-log plot should scatter around a
straight line with slope equal to 1 2, provided the sample size is large
enough.
To use the above method to estimate the long memory parameter ,

first compute the R/S statistic using 1 consecutive observations in the
sample, where 1 should be large enough. Then increase the number of
observations by a factor of ; that is, compute the R/S statistic using
= 1 consecutive observations for = 2 · · · . Note that to obtain

the R/S statistic with consecutive observations, one can actually divide
the sample into [] blocks and obtain [] di erent values, where [·]
denotes the integer part of a real number. Obviously, the larger is, the

8.4 Estimation of Long Memory Parameter 281

Log-Log R/S Plot

k

R
/S

50 100 500 1000

5
10

50
10

0

FIGURE 8.3. R/S estimate of long memory parameter.

smaller [] is. A line fit of all those R/S statistics versus , = 1 · · · ,
on the log-log scale yields an estimate of the Hurst coe cient .
The S+FinMetrics function d.ros implements the above procedure for

estimating . The arguments taken by d.ros are:

> args(d.ros)

function(x, minK = 4, k.ratio = 2, minNumPoints = 3,

method = "ls", output = "d", plot = F, ...)

where minK specifies the value for 1, k.ratio specifies the ratio factor
, and minNumPoints specifies the minimum requirement for []. For
example, if minNumPoints=3, must be such that one can divide obser-
vations into three blocks with at least observations in each block. The
optional argument output specifies the type of output: if output="H", then
the Hurst coe cient is returned; if output="d", then the fractional di er-
ence parameter is returned. For example, to estimate the Hurst coe cient
for absolute returns of S&P500 index using R/S statistic, use the following
command:

> d.ros(abs(sp500), minK=50, k.ratio=2, minNumPoints=10,

+ output="H", plot=T)

[1] 0.8393

By setting plot=T, the log-log plot of R/S statistics versus is generated,
as shown in Figure 8.3: the solid line represents the fitted line, and the

282 8. Long Memory Time Series Modeling

dotted line represents the case for no long memory. In this case, the solid
line is far away from the dotted line, which is substantial evidence for long
memory. The estimate of using (8.6) is 0 3393
The weakness of the above procedure is that for a particular sample, it

is not clear what value of 1 is “large enough”. In addition, for large values
of , few values of the R/S statistic can be calculated unless the sample
size is very large. To mitigate the latter problem, set the optional argument
method="l1" when calling d.ros, which will direct the procedure to use
the 1 method or least absolute deviation (LAD) method, for the line fit,
and thus result in a robust estimate of the long memory parameter. For the
S&P 500 absolute returns, the results using the 1 method are essentially
the same as using the least squares method:

> d.ros(abs(sp500), minK=50, k.ratio=2, minNumPoints=10,

+ output="H", method="l1", plot=F)

[1] 0.8395

8.4.2 Periodogram Method

Section 8.3 demonstrates that for a long memory process, its spectral den-
sity approaches 1 2 when the frequency approaches zero. Since the
spectral density can be estimated by a periodogram, the log-log plot of pe-
riodogram versus the frequency should scatter around a straight line with
slope 1 2 for frequencies close to zero. This method can also be used
to obtain an estimate of the long memory parameter , and it is usually
referred to as the periodogram method.
The S+FinMetrics function d.pgram implements a procedure to esti-

mate the long memory parameter using the periodogram method, which
calls the S-PLUS function spec.pgram to obtain an estimate of periodogram.
The arguments taken by d.pgram are:

> args(d.pgram)

function(x, spans = 1, taper = 0.1, pad = 0, detrend = F,

demean = T, method = "ls", output = "d",

lower.percentage = 0.1, minNumFreq = 10, plot = F, ...)

Similar to the gphTest function, the optional arguments spans, taper,
pad, detrend and demean are passed to spec.pgram to obtain the peri-
odogram estimate. The optional argument lower.percentage=0.1 speci-
fies that only the lower 10% of the frequencies are used to estimate . For
example, to estimate the long memory parameter of abs(sp500) with
no tapering,use the following command:

> d.pgram(abs(sp500), taper=0, output="H", plot=F)

[1] 0.8741311

The implied estimate of is then 0 3741.

8.4 Estimation of Long Memory Parameter 283

Log-Log Plot of Periodogram

Frequency

S
pe

ct
ru

m

0.00005 0.00050 0.00500 0.05000

10
^-

7
10

^-
6

10
^-

5
10

^-
4

10
^-

3
10

^-
2

Log-Log Plot of Periodogram

Frequency

S
pe

ct
ru

m

0.00005 0.00050 0.00500 0.05000

10
^-

7
10

^-
6

10
^-

5
10

^-
4

10
^-

3
10

^-
2

FIGURE 8.4. Periodogram estimates of long memory parameter using least
squares and LAD.

Just like with the R/S estimate of the long memory parameter, it can be
di cult to choose the value for lower.percentage. To obtain a more robust
line fit, set the optional argument method="l1" when calling d.pgram, to
use 1 method or LAD method instead of the default least squares fit. For
example, to compare the least squares and 1 fits for abs(sp500)use

> par(mfrow=c(1,2))

> H.ls = d.pgram(abs(sp500),taper=0, output="d",plot=T)

> H.l1 = d.pgram(abs(sp500),taper=0, output="d",method="l1",

+ plot=T)

> H.ls

[1] 0.3741

> H.l1

[1] 0.1637

8.4.3 Whittle’s Method

Whittle’s method for estimating is based on a frequency domain max-
imum likelihood estimation of a fractionally integrated process (8.4). It
can be shown that the unknown parameters in (8.4) can be estimated by

284 8. Long Memory Time Series Modeling

minimizing a discretized version of

() =

Z
()

(;)

where is the vector of unknown parameters including the fractional dif-
ference parameter , () is the periodogram of , and () is the the-
oretical spectral density of . Refer to Beran (1994) for the derivation of
Whittle’s method.
To use Whittle’s method to estimate the fractional di erence parameter
, use the S+FinMetrics function d.whittle. The syntax of d.whittle is
similar to but more simple than that of d.pgram:

> args(d.whittle)

function(x, spans = 1, taper = 0.1, pad = 0, detrend = F,

demean = T, output = "d")

where again the arguments spans, taper, pad, detrend and demean are
passed to the S-PLUS function spec.pgram to obtain the periodogram. For
example, to estimate the fractional di erence parameter of abs(sp500)
with no tapering, use the command:

> d.whittle(abs(sp500), taper=0)

[1] 0.2145822

A caveat to using d.whittle is that although the Whittle’s method
is defined for a general fractionally integrated process in (8.4), it is
implemented assuming that is a standard normal disturbance and thus
follows a FARIMA(0 0) process.

8.5 Estimation of FARIMA and SEMIFAR Models

Previous sections illustrated how to test for long memory and estimate the
long memory parameter or . This section introduces the more flexible
fractional ARIMA models, which are capable of modeling both the long
memory and short run dynamics in a stationary time series. It will also
introduce a semiparametric model for long memory, which allows a semi-
parametric estimation of a trend component.
Many empirical studies have found that there is strong evidence for long

memory in financial volatility series, for example, see Lobato and Savin
(1998) and Ray and Tsay (2000). Indeed, Andersen, Bollerslev, Diebold and
Labys (1999) suggested to use FARIMA models to forecast daily volatility
based on logarithmic realized volatility. This section will focus on modeling
a volatility series for the examples.

8.5 Estimation of FARIMA and SEMIFAR Models 285

8.5.1 Fractional ARIMA Models

The traditional approach to modeling an (0) time series is to use the
ARIMA model:

()(1) () = () (8.12)

where () and () are lag polynomials

() = 1
X
=1

() = 1
X
=1

with roots outside the unit circle, and is assumed to be an normal
random variable with zero mean and variance 2. This is usually referred to
as the ARIMA() model. By allowing to be a real number instead of a
positive integer, the ARIMA model becomes the autoregressive fractionally
integratedmoving average (ARFIMA) model, or simply, fractional ARIMA
(FARIMA) model4.
For a stationary FARIMA model with 1 2 1 2, Sowell (1992)

described how to compute the exact maximum likelihood estimate (MLE).
The S-PLUS function arima.fracdiff implements a very fast procedure
based on the approximate MLE proposed by Haslett and Raftery (1989),
and refer the reader to the S-PLUS Guide to Statistics for a discussion of
this procedure.
However, for many economic and financial time series, the data usually

seem to lie on the borderline separating stationarity from non-stationarity.
As a result, one usually needs to decide whether or not to di erence the
original time series before estimating a stationary FARIMA model, and
the inference of unknown FARIMA model parameters ignores this aspect of
uncertainty in . Beran (1995) extended the estimation of FARIMA models
for any 1 2 by considering the following variation the FARIMA
model:

()(1) [(1)] = () (8.13)

where 1 2 1 2, and () and () are defined as above. The
integer is the number of times that must be di erenced to achieve
stationarity, and thus the di erence parameter is given by = + . In
the following discussions and in the S+FinMetrics module, restrict to be
either 0 or 1, which is usually su cient for modeling economic and financial
time series. Note that when = 0, is the expectation of ; in contrast,
when = 1, is the slope of the linear trend component in .

4The S+FinMetrics module actually provides a convenience function FAR for estimat-
ing a FARIMA(0) model.

286 8. Long Memory Time Series Modeling

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
1996 1997 1998 1999 2000 2001

0.
02

0.
06

0.
10

Lag

A
C

F

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : log(ndx.vol)

FIGURE 8.5. Garman-Klass volatility of daily NASDAQ-100 returns.

The S+FinMetrics function FARIMA implements a procedure (based on
arima.fracdiff) to estimate the FARIMA model (8.13), and the standard
errors of unknown parameters are computed using the asymptotic distri-
bution derived by Beran (1995), which takes into account that is also
determined by data rather than by a prior decision.
To illustrate the usage of the FARIMA function, consider modeling the

volatility of daily NASDAQ-100 index returns. In recent years, intra-day
security prices have been employed to compute daily realized volatility,
for example, see Andersen, Bollerslev, Diebold and Labys (2001a, 2001b).
Since intra-day security prices can be hard to obtain, compute daily volatil-
ity based on the daily opening, highest, lowest, and closing prices, as pro-
posed by Garman and Klass (1980) and implemented by the S+FinMetrics
function TA.garmanKlass.

Example 46 Long memory modeling of NASDAQ-100 index volatility

The S+FinMetrics “timeSeries” ndx.dat contains the daily opening,
highest, lowest and closing prices of NASDAQ-100 index from January 2,
1996 to October 12, 2001. First compute the volatility series using the
Garman-Klass estimator and visualize its sample ACF:

> ndx.vol = TA.garmanKlass(ndx.dat[,"Open"], ndx.dat[,"High"],

+ ndx.dat[,"Low"], ndx.dat[,"Close"])

> par(mfrow=c(2,1))

8.5 Estimation of FARIMA and SEMIFAR Models 287

> plot(ndx.vol, reference.grid=F)

> tmp = acf(log(ndx.vol), lag=200)

> par(mfrow=c(1,1))

The volatility series ndx.vol and the sample ACF of logarithmic volatility
are shown in Figure 8.5. The ACF decays very slowly and remains highly
significant at lag 200, which indicates that the series may exhibit long
memory.
First estimate a FARIMA(0 0) model for logarithmic volatility as fol-

lows:

> ndx.d = FARIMA(log(ndx.vol), p=0, q=0)

> class(ndx.d)

[1] "FARIMA"

> names(ndx.d)

[1] "call" "model" "m" "delta"

[5] "n.used" "BIC" "loglike" "residuals"

[9] "fitted" "x.name" "cov" "CI"

The result of FARIMA is an object of class “FARIMA”, for which there are
print, summary, plot and predict methods as well as extractor functions
coef, fitted, residuals and vcov. The summary method gives

> summary(ndx.d)

Call:

FARIMA(x = log(ndx.vol), p = 0, q = 0)

Coefficients:

Value Std. Error t value Pr(>|t|)

d 0.3534 0.0205 17.1964 0.0000

Information Criteria:

log-likelihood BIC

-732.3 1471.9

Residual scale estimate: 0.4001

total residual

Degree of freedom: 1455 1453

Time period: from 01/04/1996 to 10/12/2001

The estimated model appears stationary and has long memory since 0
ˆ 1 2. Notice that is estimated to be zero:

> ndx.d$m

[1] 0

288 8. Long Memory Time Series Modeling

To allow for long memory and short memory at the same time, use a
FARIMA() model with 6= 0 or 6= 0. However, in practice, it is
usually di cult to choose the appropriate value for or . The FARIMA
function can choose the best fitting FARIMA model based on finding val-
ues of max and max which minimize the Bayesian Information
Criterion (BIC). For example, to estimate all the FARIMA models with
0 2 and 0 2, use the optional arguments p.range and
q.range as follows:

> ndx.bic = FARIMA(log(ndx.vol), p.range=c(0,2),

+ q.range=c(0,2), mmax=0)

p = 0 q = 0

p = 0 q = 1

p = 0 q = 2

p = 1 q = 0

p = 1 q = 1

p = 1 q = 2

p = 2 q = 0

p = 2 q = 1

p = 2 q = 2

In the above example, set mmax=0 to restrict to be zero because the pre-
vious FARIMA(0 0) model fit suggests that the data may be stationary.
A summary of the fitted model is

> summary(ndx.bic)

Call:

FARIMA(x = log(ndx.vol), p.range = c(0, 2), q.range = c(0, 2),

mmax = 0)

Coefficients:

Value Std. Error t value Pr(>|t|)

d 0.4504 0.0287 15.6716 0.0000

MA(1) 0.2001 0.0359 5.5687 0.0000

Information Criteria:

log-likelihood BIC

-717.9342 1450.4325

Residual scale estimate: 0.3963

total residual

Degree of freedom: 1454 1451

Time period: from 01/05/1996 to 10/12/2001

8.5 Estimation of FARIMA and SEMIFAR Models 289

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-2 0 2

ndx.bic

02/13/199812/24/1998

10/28/1997

Quantile of Standard Normal

R
es

id
ua

ls

Normal Q-Q Plot

FIGURE 8.6. FARIMA residual QQ-plot of log(ndx.vol).

BIC of all models estimated:

q=0 q=1 q=2

p=0 1466.898 1450.432 1451.055

p=1 1457.319 1462.694 1455.590

p=2 1464.800 1457.243 1464.238

The BIC values for all the models considered are shown in the output.
The model minimizing the BIC is a FARIMA(0 1) model. The estimates
of and the moving average coe cient are very significant, but the 95%
Wald-type confidence interval of includes 1 2 and thus the non-stationary
case.5

Further diagnostics of the model fit can be obtained by using the plot
method:

> plot(ndx.bic)

Make a plot selection (or 0 to exit):

1: plot: all

2: plot: response vs fitted values

5Currently the standard error of the mean parameter is not available because
arima.fracdiff concentrates out the mean and thus does not compute its standard
error.

290 8. Long Memory Time Series Modeling

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30

ndx.bic

Lag

AC
F

Residual Autocorrelation

FIGURE 8.7. FARIMA residual ACF of log(ndx.vol).

3: plot: response and fitted values

4: plot: normal QQ-plot of residuals

5: plot: residuals

6: plot: standardized residuals

7: plot: residual histogram

8: plot: residual ACF

9: plot: residual PACF

10: plot: residual^2 ACF

11: plot: residual^2 PACF

Selection:

For example, if 4 is chosen at the prompt the normal qq-plot of the model
residuals will be shown as in Figure 8.6. It seems that the normality
assumption agrees well with the data. If 8 is chosen at the prompt, the ACF
of model residuals will be shown as in Figure 8.7, and the FARIMA model
is very successful at capturing the long memory in logarithmic volatility.
In the above example, can also be allowed to be estimated:

> ndx.bic2 = FARIMA(log(ndx.vol),p.range=c(0,2),

+ q.range=c(0,2), mmax=1)

p = 0 q = 0

...

p = 2 q = 2

8.5 Estimation of FARIMA and SEMIFAR Models 291

> ndx.bic2$m

[1] 1

> summary(ndx.bic2)

Call:

FARIMA(x = log(ndx.vol), p.range = c(0, 2), q.range =

c(0, 2), mmax = 1)

Coefficients:

Value Std. Error t value Pr(>|t|)

d 0.5161 0.1056 4.8864 0.0000

AR(1) 1.1387 0.3753 3.0340 0.0025

AR(2) -0.1561 0.3724 -0.4193 0.6751

MA(1) 1.4364 0.4416 3.2528 0.0012

MA(2) -0.4309 0.7574 -0.5689 0.5695

Information Criteria:

log-likelihood BIC

-696.3 1429.0

Residual scale estimate: 0.3903

total residual

Degree of freedom: 1453 1447

Time period: from 01/08/1996 to 10/12/2001

BIC of all models estimated:

q=0 q=1 q=2

p=0 1467 1450 1451

p=1 1457 1459 1456

p=2 1456 1454 1429

Here the best fitting model is a FARIMA(2 0 52 2) model. However, the
values of the AR and MA coe cients indicate an explosive model. The
problem appears to be near canceling roots in the AR and MA polynomials.
If the model is re-fitted with = = 1, the results make more sense:

> ndx.bic2 = FARIMA(log(ndx.vol), p=1, q=1, mmax=1)

> summary(ndx.bic2)

Call:

FARIMA(x = log(ndx.vol), p = 1, q = 1, mmax = 1)

Coefficients:

Value Std. Error t value Pr(>|t|)

292 8. Long Memory Time Series Modeling

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30

ndx.bic2

Lag

AC
F

Residual Autocorrelation

FIGURE 8.8. Residual ACF from FARIMA(1 0 51 1) model fit to log(ndx.vol).

d 0.5051 0.0436 11.5965 0.0000

AR(1) 0.2376 0.0687 3.4597 0.0006

MA(1) 0.4946 0.0367 13.4894 0.0000

Information Criteria:

log-likelihood BIC

-712.7 1447.3

Residual scale estimate: 0.3948

total residual

Degree of freedom: 1454 1450

Time period: from 01/05/1996 to 10/12/2001

Figure 8.8 gives the residual ACF from the above model. The long memory
behavior has been well captured by the model. However, the fitted model
has the undesirable property of being non-stationary.

8.5.2 SEMIFAR Model

The previous subsection demonstrated that for logarithmic volatility of
NASDAQ-100 index returns, the FARIMA model chosen by BIC suggests
that the underlying series may be non-stationary. In addition, from the time

8.5 Estimation of FARIMA and SEMIFAR Models 293

series plot in Figure 8.5, the volatility has become much larger since the
middle of 2000. To allow for a possible deterministic trend in a time series,
in addition to a stochastic trend, long memory and short memory compo-
nents, Beran, Feng and Ocker (1998), Beran and Ocker (1999), and Beran
and Ocker (2001) proposed the semiparametric fractional autoregressive
(SEMIFAR) model. The SEMIFAR model is based on the following exten-
sion to the FARIMA(0) model (8.12):

()(1) [(1) ()] = (8.14)

for = 1 · · · . The above equation is very similar to (8.13), except that
the constant term is now replaced by (), a smooth trend function on
[0 1], with = . By using a nonparametric kernel estimate of (),
the S+FinMetrics function SEMIFAR implements a procedure to estimate
the SEMIFAR model, and it uses BIC to choose the short memory au-
toregressive order . Refer to Beran, Feng and Ocker (1998) for a detailed
description of the algorithm.

Example 47 Estimation of SEMIFAR model for NASDAQ-100 index
volatility

To obtain a SEMIFAR model of logarithmic volatility of NASDAQ-100
index returns, use the following command:

> ndx.semi = SEMIFAR(log(ndx.vol), p.range=c(0,2), trace=F)

> class(ndx.semi)

[1] "SEMIFAR"

Note that the optional argument trace=F is used to suppress the mes-
sages printed by the procedure. The result of SEMIFAR is an object of class
“SEMIFAR” for which there are print, summary, plot and predictmethods
as well as extractor functions coef, residuals and vcov. The components
of ndx.semi are

> names(ndx.semi)

[1] "model" "m" "delta" "BIC"

[5] "loglike" "trend" "g.CI" "bandwidth"

[9] "Cf" "nu" "residuals" "cov"

[13] "CI" "call"

The basic fit is

> ndx.semi

Call:

SEMIFAR(x = log(ndx.vol), p.range = c(0, 2), trace = F)

Difference:

0: estimates based on original series.

294 8. Long Memory Time Series Modeling

Original Series

Q1 Q3 Q3 Q3 Q3 Q4
1996 1997 1998 1999 2000 2001

-5
.5

-4
.5

-3
.5

-2
.5

Smoothed Trend

Q1 Q3 Q3 Q3 Q3 Q4
1996 1997 1998 1999 2000 2001

-4
.5

-4
.1

-3
.7

Fitted Values

Q1 Q3 Q3 Q3 Q3 Q4
1996 1997 1998 1999 2000 2001

-0
.4

0.
0

0.
4

Residuals

Q1 Q3 Q3 Q3 Q3 Q4
1996 1997 1998 1999 2000 2001

-1
.5

-0
.5

0.
5

1.
5

FIGURE 8.9. SEMIFAR decomposition of log(ndx.vol).

FAR coefficients:

d

0.2928

Residual scale estimate: 0.3946

total residual

Degree of freedom: 1453 1452

Time period: from 01/08/1996 to 10/12/2001

From the above output, after accounting for a smooth nonparametric trend
component (), the logarithmic volatility appears to be stationary and has
long memory.
The estimated trend component can be visualized by calling the plot

method of fitted model object:

> plot(ndx.semi)

Make a plot selection (or 0 to exit):

1: plot: all

2: plot: trend, fitted values, and residuals

3: plot: normal QQ-plot of residuals

8.5 Estimation of FARIMA and SEMIFAR Models 295

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30

ndx.semi

Lag

AC
F

Residual Autocorrelation

FIGURE 8.10. SEMIFAR residual ACF of log(ndx.vol).

4: plot: standardized residuals

5: plot: residual histogram

6: plot: residual ACF

7: plot: residual PACF

8: plot: residual^2 ACF

9: plot: residual^2 PACF

Selection:

If 2 is selected at the prompt, a plot as in Figure 8.9 will be shown, which
indicates the original time series, the estimated smooth trend component,
the fitted values and model residuals. The smooth trend component is also
plotted with a confidence band. If the trend falls outside the confidence
band, it indicates that the trend component is significant. In this case, the
trend in logarithmic volatility appears to be very significant, at least for
the time period investigated. The model fit can also be checked by choosing
6 at the prompt, which will generate the ACF plot of residuals, as shown
in Figure 8.10. Again, the SEMIFAR model seems to be very successful at
modeling the long memory in the original time series.
Prediction from SEMIFAR models will be discussed in section 8.7.

296 8. Long Memory Time Series Modeling

8.6 Long Memory GARCH Models

8.6.1 FIGARCH and FIEGARCH Models

The previous section showed that the FARIMA or SEMIFAR model can be
used directly to model the long memory behavior observed in the volatility
of financial asset returns, given that a time series representing the volatility
exists. However, sometimes a reliable estimate of volatility may be hard to
obtain, or the user may want to model the dynamics of the asset returns
together with its volatility. In those situations, the GARCH class models
provide viable alternatives for volatility modeling.
Section 7.5.2 of Chapter 7 has illustrated that two components GARCH

models can be used to capture the high persistence in volatility by allowing
a highly persistent long run component and a short run transitory com-
ponent in volatility. This subsection shows how GARCH models can be
extended to allow directly for long memory and high persistence in volatil-
ity.

FIGARCH Model

Section 22.16 of Chapter 7 shows that a basic GARCH(1 1) model can be
written as an ARMA(1 1) model in terms of squared residuals. In the same
spirit, for the GARCH() model:

2 = +
X
=1

2 +
X
=1

2

easily shows that it can be rewritten as follows:

() 2 = + () (8.15)

where

= 2 2

() = 1 1 2
2 · · ·

() = 1 1 2
2 · · ·

with = max() and = + . Obviously equation (8.15) represents
an ARMA() process in terms of squared residuals 2 with being a
MDS disturbance term.
The high persistence in GARCH models suggests that the polynomial
() = 0 may have a unit root, in which case the GARCH model becomes
the integrated GARCH (IGARCH) model. See Nelson (1990) for which
the unconditional variance does not exist. To allow for high persistence
and long memory in the conditional variance while avoiding the complica-
tions of IGARCH models, extend the ARMA() process in (8.15) to a

8.6 Long Memory GARCH Models 297

FARIMA() process as follows:

()(1) 2 = + () (8.16)

where all the roots of () = 0 and () = 0 lie outside the unit circle.
When = 0, this reduces to the usual GARCH model; when = 1, this
becomes the IGARCH model; when 0 1, the fractionally di erenced
squared residuals, (1) 2, follow a stationary ARMA() process. The
above FARIMA process for 2 can be rewritten in terms of the conditional
variance 2:

() 2 = + [() ()(1)] 2 (8.17)

Baillie, Bollerslev and Mikkelsen (1996) refered to the above model as
the fractionally integrated GARCH, or FIGARCH() model. When
0 1, the coe cients in () and () capture the short run dynamics
of volatility, while the fractional di erence parameter models the long run
characteristics of volatility.

FIEGARCH

The FIGARCHmodel directly extends the ARMA representation of squared
residuals, which results from the GARCH model, to a fractionally inte-
grated model. However, to guarantee that a general FIGARCH model
is stationary and the conditional variance 2 is always positive, usually
complicated and intractable restrictions have to be imposed on the model
coe cients. For example, see Baillie, Bollerslev and Mikkelsen (1996) or
Bollerslev and Mikkelsen (1996) for a discussion.
Noting that an EGARCH model can be represented as an ARMA process

in terms of the logarithm of conditional variance and thus always guarantees
that the conditional variance is positive, Bollerslev and Mikkelsen (1996)
proposed the following fractionally integrated EGARCH (FIEGARCH)
model:

()(1) ln 2 = +
X
=1

(| |+) (8.18)

where () is defined as earlier for the FIGARCH model, 6= 0 allows
the existence of leverage e ects, and is the standardized residual:

= (8.19)

Bollerslev and Mikkelsen (1996) showed that the FIEGARCH model is
stationary if 0 1.

8.6.2 Estimation of Long Memory GARCH Models

Given the iterative formulations of conditional variance as in (8.17) and
(8.18), the FIGARCH and FIEGARCH model coe cients can be estimated

298 8. Long Memory Time Series Modeling

using maximum likelihood estimation (MLE), if the residuals follow a con-
ditional normal distribution. The S+FinMetrics function fgarch can be
used to estimate the long memory FIGARCH or FIEGARCH model.
The syntax of fgarch is very similar to that of the garch function, except

that ~figarch(m,q) is used as the FIGARCH conditional variance formula
and ~fiegarch(m,q) as the FIEGARCH conditional variance formula. For
example, to fit a FIGARCH(1 1) model to daily stock returns of Dell
Computer contained in the S+FinMetrics “timeSeries” object dell.s,
simply use the following command:

> dell.figarch = fgarch(dell.s~1, ~figarch(1,1))

Initializing model parameters.

Iteration No. 1: log-likelihood=-3282.303431

...

Iteration No. 10: log-likelihood=-3279.508705

Convergence in gradient.

> oldClass(dell.figarch)

[1] "fgarch" "garch"

The returned object is of class “fgarch”, which inherits the “garch” class.
Consequently, most of the method functions for a “garch” object (e.g.
print, summary, plot, predict, coef, residuals, sigma.t, vcov)also
work for a “fgarch” object. One exception is that currently there is no
simulate method for “fgarch” objects. For example, the print method
gives

> dell.figarch

Call:

fgarch(formula.mean = dell.s~1, formula.var = ~figarch(1, 1))

Mean Equation: dell.s ~1

Conditional Variance Equation: ~figarch(1, 1)

Coefficients:

C 0.4422

A 0.6488

GARCH(1) 0.6316

ARCH(1) 0.4481

fraction 0.2946

The estimate of is 0 295 which indicates the existence of long memory.
However, the sum ARCH(1) and GARCH(1) is greater than one which
indicates a nonstationary model.

8.6 Long Memory GARCH Models 299

If the FIEGARCH model instead of FIGARCH model is desired, the
optional argument leverage can be used to allow for leverage e ects. For
example,

> dell.fiegarch = fgarch(dell.s~1, ~fiegarch(1,1), leverage=T)

Initializing model parameters.

Iteration No. 1: log-likelihood=-3286.169656

...

Iteration No. 20: log-likelihood=-3274.244677

Convergence in gradient.

> summary(dell.fiegarch)

Call:

fgarch(formula.mean = dell.s~1, formula.var = ~fiegarch(1, 1),

leverage = T)

Mean Equation: dell.s ~1

Conditional Variance Equation: ~fiegarch(1, 1)

--

Estimated Coefficients:

--

Value Std.Error t value Pr(>|t|)

C 0.39494 0.08981 4.397 5.946e-006

A -0.06895 0.04237 -1.627 5.195e-002

GARCH(1) 0.65118 0.17820 3.654 1.343e-004

ARCH(1) 0.15431 0.04578 3.370 3.867e-004

LEV(1) -0.09436 0.02691 -3.507 2.346e-004

fraction 0.34737 0.11408 3.045 1.188e-003

--

AIC(6) = 6560.5

BIC(6) = 6591.3

Normality Test:

--

Jarque-Bera P-value Shapiro-Wilk P-value

13.22 0.001348 0.9888 0.7888

Ljung-Box test for standardized residuals:

--

300 8. Long Memory Time Series Modeling

Statistic P-value Chi^2-d.f.

13.13 0.3597 12

Ljung-Box test for squared standardized residuals:

--

Statistic P-value Chi^2-d.f.

14.51 0.2696 12

Lagrange multiplier test:

--

Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8

-0.925 0.6083 -1.581 0.2593 0.3943 0.6991 -0.03191 0.3339

Lag 9 Lag 10 Lag 11 Lag 12 C

1.959 -0.8794 2.422 0.1089 0.8896

TR^2 P-value F-stat P-value

15.1 0.2362 1.389 0.2797

In the above output, C corresponds to the constant term in the conditional
mean equation, A corresponds to the constant term , GARCH(1) corre-
sponds to 1, ARCH(1) corresponds to 1, LEV(1) corresponds to 1 and
fraction corresponds to the fractional di erence parameter in the con-
ditional variance equation (8.18). Notice that the leverage term is negative
and significant, and the sum of ARCH(1) and GARCH(1) is now less than
one. It appears that the FIEGARCH model fits the data better than the
FIGARCH model.
Just like for “garch” objects, the generic plot function can be used vi-

sually to diagnose the model fit. Use compare.mgarch to compare multiple
model fits. For example, consider comparing the above two FIGARCH,
FIEGARCH with short memory GARCH and EGARCH models:

> dell.garch = garch(dell.s~1, ~garch(1,1), trace=F)

> dell.egarch = garch(dell.s~1, ~egarch(1,1),

+ leverage=T, trace=F)

> dell.comp = compare.mgarch(dell.garch,dell.egarch,

+ dell.figarch,dell.fiegarch)

> dell.comp

dell.garch dell.egarch dell.figarch dell.fiegarch

AIC 6564 6559 6569 6560

BIC 6585 6584 6595 6591

Likelihood -3278 -3274 -3280 -3274

Here, the EGARCH and FIEGARCH models seem to provide better fits
than the GARCH and FIGARCH models. The qq-plots of standardized
residuals for the four models can be compared using:

8.6 Long Memory GARCH Models 301

-4

-2

0

2

4

-2 0 2

dell.garch dell.egarch

dell.figarch

-4

-2

0

2

4

-2 0 2

dell.fiegarch

Quantile of Comparison Distribution

St
an

da
rd

iz
ed

 R
es

id
ua

ls

QQ-Plot of Standardized Residuals

FIGURE 8.11. qq-plot of standardized residuals from long memory GARCHmod-
els.

> plot(dell.comp, qq=T)

and the plot is shown in Figure 8.11, where the FIEGARCH model seems
to provide a slightly better fit to the outliers in both tails.

8.6.3 Custom Estimation of Long Memory GARCH Models

ARMA Terms and Exogenous Variables

Just like with the garch function, the fgarch function also allows ARMA
terms and exogenous variables in the conditional mean equation, as well as
the conditional variance equation.

Example 48 Trading volume and volatility (extended)

The previous subsection shows that the fitted FIEGARCH model object
dell.fiegarch suggests that there may be long memory in the volatility
of Dell stocks. In Section 7.5 of Chapter 7, the changes in trading volume
were used to explain the volatility of Dell stocks. If there is a 1% change
in trading volume, it will cause about 1.4% change in conditional variance
using an EGARCH model for volatility. In this example, the analysis using
the FIEGARCH model instead of the EGARCH model is done again.

> dell.mod2 = fgarch(dell.s~1, ~fiegarch(1,1) +

302 8. Long Memory Time Series Modeling

+ seriesData(d.volume), series.start=2)

> summary(dell.mod2)

Call:

fgarch(formula.mean = dell.s ~1, formula.var = ~fiegarch(1,1)

+ seriesData(d.volume), series.start = 2)

Mean Equation: dell.s ~ 1

Conditional Variance Equation: ~ fiegarch(1, 1) +

seriesData(d.volume)

--

Estimated Coefficients:

--

Value Std.Error t value Pr(>|t|)

C 0.14514 0.06245 2.3242 1.014e-002

A -0.13640 0.03117 -4.3761 6.542e-006

GARCH(1) 0.04123 0.10703 0.3852 3.501e-001

ARCH(1) 0.16600 0.03809 4.3583 7.091e-006

seriesData(d.volume) 1.49123 0.07814 19.0849 0.000e+000

fraction 0.80947 0.07523 10.7596 0.000e+000

...

First, compare the above output with dell.fiegarch, the FIEGARCH
model fitted in the previous subsection. After controlling for the e ects of
trading volume, the GARCH coe cient has decreased significantly and be-
come insignificant, while the fractional di erence parameter has increased
from 0 34 to 0 8. Second, compare this with the EGARCH model dell.mod
in Chapter 7: after allowing for long memory, the GARCH coe cient de-
creased from 0 95 to 0 04, while the e ects of trading volume remain almost
the same.

Control of Model Estimation

For a “fgarch” object, all the model specific information is contained in the
model component of the object. For example, view the model information
of the fitted dell.figarch object as follows:

> dell.figarch$model

Mean Equation: dell.s ~ 1

Conditional Variance Equation: ~ figarch(1, 1)

8.6 Long Memory GARCH Models 303

Values

constant in mean 0.4422

constant in var 0.6488

GARCH(1) 0.6316

ARCH(1) 0.4481

fraction 0.2946

This model object can be edited to provide starting values for re-estimating
the same model with the same or a di erent time series.6 For example, to
use this set of values as starting values for a FIGARCH model of the time
series hp.s, use the following command:

> hp.figarch = fgarch(series=hp.s*100,model=dell.figarch$model)

Iteration No. 1: log-likelihood=-4419.644144

...

Iteration No. 10: log-likelihood=-4390.179116

Convergence in gradient.

> hp.figarch

Call:

fgarch(series = hp.s * 100, model = dell.figarch$model)

Mean Equation: dell.s ~ 1

Conditional Variance Equation: ~ figarch(1, 1)

Coefficients:

C 0.05776

A 0.55897

GARCH(1) 0.49103

ARCH(1) 0.40210

fraction 0.22533

Unlike the garch and mgarch functions which use the BHHH algorithm
for MLE, the FIGARCH/FIEGARCHmodels are estimated using the BFGS
algorithm (for example, see Press, Teukolsky, Vetterling, and Flannery,
1992 for details). Since daily financial returns are very small numbers, the
algorithm can become badly scaled and may fail to converge. That is why
in the above example the percentage returns are used to improve the con-
vergence.

6However, unlike “garch” and “mgarch” objects, currently the coe cients cannot
be fixed at certain values during the estimation of long memory GARCH models. See
Section 13.7 in Chapter 13 for discussions related to “garch” and “mgarch” objects.

304 8. Long Memory Time Series Modeling

Other aspects of the BFGS algorithm can be controlled by passing the
optional argument control to the fgarch function, where control must
be set to an object returned by the fgarch.control function. For example,
to change the convergence tolerance of gradient zeroing from the default
value of 1e-5 to 1e-6 when fitting a FIGARCH model to dell.s, use the
following command:

> fgarch(dell.s~1, ~figarch(1,1), control=

+ fgarch.control(tolg=1e-6))

The on-line help file for fgarch.control provides more details for the
arguments accepted by the fgarch.control function.
Finally, introducing the FIGARCH/FIEGARCH models illustrated that

both models are essentially an ARMAmodel fitted to the fractionally di er-
enced squared residuals or fractionally di erenced logarithmic conditional
variance. The fractional di erence operator is defined in (8.5), which in-
volves an infinite order autoregressive filter. In practice, a very large num-
ber is usually chosen to approximate the fractional di erence operator.
Following Bollerslev and Mikkelsen (1996), the fgarch function sets the
order to be 1000 by default. To change this number to another value, pass
the optional argument lag to fgarch.control. For example, the command

> fgarch(dell.s~1, ~figarch(1,1), control=

+ fgarch.control(lag=500))

estimates a FIGARCH model using only 500 lags to approximate the frac-
tional di erence operator.

8.7 Prediction from Long Memory Models

S+FinMetrics long memory modeling functions such as FARIMA, SEMIFAR
and fgarch all return objects for which there are corresponding predict
methods. Therefore, predictions from those fitted model objects can be
readily generated. This section gives an overview of how to predict from a
long memory process. In particular, the truncation method and the best
linear predictor will be introduced, see Bhansali and Kokoszka (2001). How
to predict from fitted model objects in S+FinMetrics module will be illus-
trated.

8.7.1 Prediction from FARIMA/SEMIFAR Models

To illustrate prediction from long memory processes, consider the FARIMA
model in (8.12), which can be rewritten as:

()(1)

()
() =

8.7 Prediction from Long Memory Models 305

The lag polynomial on the left hand side of the above equation can be
expressed as an infinite order polynomial so that a FARIMA() model
can be equivalently expressed as an AR() model. Once the parameters
of the FARIMA() model are known, one can solve for the parameters
of the equivalent AR() model. In practice, however, forecasting from the
AR() representation usually truncates the AR() model to an AR()
model with a very large value of . This method is usually referred to as
the truncation method.
In the truncation method, the AR() coe cients are the first coe -

cients of the AR() representation of the FARIMA() model. How-
ever, for any stationary process, choose to use lagged values to predict
future values:

ˆ +1 = 1 + · · ·+ +1

where for = 1 · · · are chosen to yield the best linear predictor of

+1 in terms of · · · +1 for any . Note that although both the
above method and the truncation method use an AR() model for predic-
tion, the AR() coe cients in the truncation method do not necessarily
correspond to best linear prediction coe cients . Brockwell and Davis
(1991) showed that the best linear prediction coe cients can be recursively
computed using the Durbin-Levinson algorithm given the autocovariance
function of the stationary process.7

The predict method for “FARIMA” objects in S+FinMetrics implements
the Durbin-Levinson algorithm to compute the forecasts. The arguments
taken by predict.FARIMA are:

> args(predict.FARIMA)

function(x, n.predict = 1, ar.approx = 50, kapprox = 100000,

series = NULL)

where n.predict indicates the number of steps to predict ahead, ar.approx
gives the order of the AR representation used for prediction, kapprox is
passed to acf.FARIMA to obtain the theoretical autocovariance function of
the FARIMA model, and series can be used to pass the original time
series used to fit the model. For example, to predict 100 steps ahead using
an AR(100) representation from the fitted model object ndx.bic, use the
following command:

> ndx.pred1 = predict(ndx.bic, n.predict=100, ar.approx=100)

> class(ndx.pred1)

7Although exact expressions of the autocovariance functions for FARIMA()
models have been given by Sowell (1992), the derivation assumes that all the roots of
the AR polynomial are distinct. The S+FinMetrics function acf.FARIMA implements a
numerical quadrature procedure based on fast Fourier transform to approximate the
autocovariance function of the FARIMA models, as proposed by Bhansali and Kokoszka
(2001).

306 8. Long Memory Time Series Modeling

-4
.0

-3
.5

-3
.0

1250 1300 1350 1400 1450 1500 1550

index

va
lu

es

FIGURE 8.12. Predictions from a FARIMA model.

[1] "forecast"

The returned object has class “forecast” and has components

> names(ndx.pred1)

[1] "values" "std.err" "coef"

where the values contains the predicted values, std.err contains the stan-
dard errors of the predictions, and coef contains the best linear prediction
coe cients (= 1). The predictions and standard errors can be
seen by calling the summary function on a “forecast” object. For example:

> summary(ndx.pred1)

Predicted Values with Standard Errors:

prediction std.err

1-step-ahead -3.4713 0.3965

2-step-ahead -3.5407 0.4732

3-step-ahead -3.5638 0.5023

4-step-ahead -3.5792 0.5148

5-step-ahead -3.5883 0.5204

...

8.7 Prediction from Long Memory Models 307

co
ef

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

FIGURE 8.13. Best linear prediction coe cients.

A “forecast” object can be plotted together with the original data
to visualize the predictions. For example, since ndx.bic was fitted using
log(ndx.vol), the predictions can be visualized as follows:

> plot(ndx.pred1, log(ndx.vol), n.old=200)

where the optional argument n.old specifies the number of observations
in the original data to be used in the plot. The plot is shown Figure 8.12.
Also, the best linear prediction coe cients can also be visualized to see the
e ects of using more lags for prediction. For example:

> plot(ndx.pred1$coef, type="h", ylab="coef")

generates the coe cient plot shown in Figure 8.13. Adding lags beyond 30
should not change the predictions very much.
In S+FinMetrics, predictions from SEMIFAR models are computed in

a similar fashion to predictions from FARIMA models, except that there
is a choice to use a constant extrapolation or linear extrapolation for the
trend component8

> args(predict.SEMIFAR)

function(x, n.predict = 1, ar.approx = 50, kapprox = 100000,

8We refer to Beran and Ocker (1999) for the details of predicting from a SEMIFAR
model.

308 8. Long Memory Time Series Modeling

2.6

2.8

3.0

3.2

3.4

0 20 40 60 80 100

Predicted Conditional SD

GARCH Predictions

FIGURE 8.14. Predictions from FIGARCH model.

trend = "constant", series = NULL)

For example, to produce 100 steps ahead forecasts from the fitted model
object ndx.semi using constant extrapolation, use the following command:

> ndx.pred2 = predict(ndx.semi,n.predict=100,trend="constant")

The returned object is also a “forecast” object, so the predictions can be
visualized together with the original data

> plot(ndx.pred2, ndx.vol, n.old=200)

8.7.2 Prediction from FIGARCH/FIEGARCH Models

Predictions from the S+FinMetrics long memory GARCH models are com-
puted using the truncation method because the user needs to generate fore-
casts for both the level and the volatility of the series at the same time.
The arguments taken by the predict method are:

> args(predict.fgarch)

function(object, n.predict = 1, n.lag = 1000)

NULL

where n.predict specifies the number of periods to predict ahead, and
n.lag specifies the order of the AR() representation used in the trunca-
tion method. For example, to use an AR(100) representation to predict 100

8.8 References 309

steps ahead from the fitted model object dell.figarch, use the following
command:

> dell.pred3 = predict(dell.figarch, n.predict=100, n.lag=100)

> oldClass(dell.pred3)

[1] "predict.fgarch" "predict.garch"

The returned object is of class “predict.fgarch”, which inherits from the
class “predict.garch”. So just like for a “predict.garch” object, use the
generic plot function to visualize the volatility forecast:

> plot(dell.pred3, hgrid=T, vgrid=T)

and the plot is shown in Figure 8.14. The volatility predictions approach
the long run level in a slowly decaying fashion for the long memory GARCH
model9.

8.8 References

Andersen, T., Bollerslev, T., Diebold, F. X., and Labys, P.

(1999): “(Understanding, Optimizing, Using and Forecasting) Realized Volatil-
ity and Correlation,” Manuscript, Northwestern University, Duke Univer-
sity and University of Pennsylvania.

Andersen, T., Bollerslev, T., Diebold, F. X., and Labys, P.

(2001a): “The Distribution of Realized Exchange Rate Volatility,” Jour-
nal of the American Statistical Association, 96, 42-55.

Andersen, T., Bollerslev, T., Diebold, F. X., and Labys, P.

(2001b): “The Distribution of Realized Stock Return Volatility,” Journal
of Financial Economics, 61, 43-76.

Baillie, R. T. (1996). “Long Memory Processes and Fractional Integra-
tion in Econometrics,” Journal of Econometrics, 73, 5-59.

Baillie, R. T., Bollerslev, T., and Mikkelsen, H. O. (1996). “Frac-
tionally Integrated Generalized Autoregressive Conditional Heteroskedas-
ticity,” Journal of Econometrics, 74, 3-30.

Beran, J. (1994). Statistics for Long Memory Processes, Chapman and
Hall, New York.

Beran, J. (1995). “Maximum Likelihood Estimation of the Di erencing
Parameter for Invertible Short and Long Memory ARIMA Models,” Jour-
nal of Royal Statistical Society Series B, 57(4), 659-672.

9Currently, standard errors are not available for the volatility predictions.

310 8. Long Memory Time Series Modeling

Beran, J., Feng, Y., and Ocker, D. (1999). “SEMIFARModels,” Tech-
nical Report, 3/1999, SFB 475 University of Dortmund.

Beran, J., and Ocker, D. (1999). “SEMIFAR Forecasts, with Appli-
cations to Foreign Exchange Rates,” Journal of Statistical Planning and
Inference, 80, 137-153.

Beran, J., and Ocker, D. (2001). “Volatility of Stock Market Indices -
An Analysis Based on SEMIFAR Models,” Journal of Business and Eco-
nomic Statistics, 19(1), 103-116.

Bhansali, R. J., and Kokoszka, P. S. (2001). “Computation of the
Forecast Coe cients for Multistep Prediction of Long-range Dependent
Time Series,” International Journal of Forecasting, 18(2), 181-206.

Bollerslev, T., and Mikkelsen, H. O. (1996). “Modeling and Pricing
Long Memory in Stock Market Volatility,” Journal of Econometrics, 73,
151-184.

Brockwell, P. J., and Davis, R. A. (1991). Time Series: Theory and
Methods, Springer-Verlag, New York.

Cheung, Y.W. (1993). “Tests for Fractional Integration: A Monte Carlo
Investigation,” Journal of Time Series Analysis, 14, 331-345.

Garman, M. B., and Klass, M. J. (1980). “On the Estimation of Secu-
rity Price Volatility from Historical Data,” Journal of Business, 53, 67-78.

Geweke, J., and Porter-Hudak, S. (1983). “The Estimation and Ap-
plication of Long Memory Time Series Models,” Journal of Time Series
Analysis, 4, 221-237.

Granger, C. W. J., and Joyeux, R. (1980). “An Introduction to Long-
Memory Time Series Models and Fractional Di erencing,” Journal of Time
Series Analysis, 1, 15-29.

Hamilton, J. D. (1994). Time Series Analysis. Princeton University Press,
Princeton, NJ.

Haslett, J., and Raftery, A. E. (1989). “Space-time Modelling with
Long-Memory Dependence: Assessing Ireland’s Wind Power Resource,”
Journal of Royal Statistical Society Series C, 38, 1-21.

Hosking, J. R. M. (1981). “Fractional Di erencing,” Biometrika, 68, 165-
176.

8.8 References 311

Hurst, H. E. (1951). “Long Term Storage Capacity of Reservoirs,” Trans-
actions of the American Society of Civil Engineers, 116, 770-799.

Lo, A. W. (1991). “Long Term Memory in Stock Market Prices,” Econo-
metrica, 59, 1279-1313.

Lobato, I. N., and Savin, N. E. (1998). “Real and Spurious Long-
Memory Properties of Stock-Market Data,” Journal of Business and Eco-
nomic Statistics, 16 (3), 261-268.

Mandelbrot, B. B. (1975). “Limit Theorems on the Self-Normalized
Range for Weakly and Strongly Dependent Processes,” Zeitschrift für Wahr-
scheinlichkeitstheorie und verwandte Gebiete, 31, 271-285.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flan-

nery, B. P. (1992). Numerical Recipes in C: The Art of Scientific Com-
puting, Cambridge University Press, Cambridge.

Ray, B. K., and Tsay, R. S. (2000). “Long-Range Dependence in Daily
Stock Volatilities,” Journal of Business and Economic Statistics, 18, 254-
262.

Sowell, F. (1992). “Maximum Likelihood Estimation of Stationary Uni-
variate Fractionally Integrated Time Series Models,” Journal of Economet-
rics, 53, 165-188.

Taqqu, M. S., and Teverovsky, V. (1998). “On Estimating the In-
tensity of Long-Range Dependence in Finite and Infinite Variance Time
Series”, in R. J. Adler, R. E. Feldman and M. S. Taqqu (eds.), A Practical
Guide to Heavy Tails: Statistical Techniques and Applications. Birkhaüser,
Boston.

Taqqu, M. S., Teverovsky, V., Willinger, W. (1995). “Estimators
for Long Range Dependence: An Empirical Study,” Fractals, 3(4), 785-798.

9
Rolling Analysis of Time Series

9.1 Introduction

A rolling analysis of a time series model is often used to assess the model’s
stability over time. When analyzing financial time series data using a sta-
tistical model, a key assumption is that the parameters of the model are
constant over time. However, the economic environment often changes con-
siderably, and it may not be reasonable to assume that a model’s parame-
ters are constant. A common technique to assess the constancy of a model’s
parameters is to compute parameter estimates over a rolling window of a
fixed size through the sample. If the parameters are truly constant over the
entire sample, then the estimates over the rolling windows should not be
too di erent. If the parameters change at some point during the sample,
then the rolling estimates should capture this instability.
Rolling analysis is commonly used to backtest a statistical model on

historical data to evaluate stability and predictive accuracy. Backtesting
generally works in the following way. The historical data is initially split
into an estimation sample and a prediction sample. The model is then fit
using the estimation sample and -step ahead predictions are made for
the prediction sample. Since the data for which the predictions are made
are observed -step ahead prediction errors can be formed. The estimation
sample is then rolled ahead a given increment and the estimation and pre-
diction exercise is repeated until it is not possible to make any more -step
predictions. The statistical properties of the collection of -step ahead pre-

314 9. Rolling Analysis of Time Series

diction errors are then summarized and used to evaluate the adequacy of
the statistical model.
Moving average methods are common in rolling analysis, and these meth-

ods lie at the heart of the technical analysis of financial time series. Moving
averages typically use either equal weights for the observations or exponen-
tially declining weights. One way to think of these simple moving average
models is that they are a “poor man’s” time varying parameter model.
Sometimes simple moving average models are not adequate, however, and
a general time varying parameter model is required. In these cases, the
state space models discussed in Chapter 14 should be used.
This chapter describes various types of rolling analysis of financial time

series using S-PLUS. Section 9.2 covers rolling descriptive statistics for
univariate and bivariate time series with an emphasis on moving average
techniques, and Section 9.3 gives a brief review of technical analysis using
S+FinMetrics functions. Section 9.4 discusses rolling regression using the
S+FinMetrics function rollOLS and illustrates how rollOLS may be used
for backtesting regression models. Section 9.5 describes rolling analysis of
general models using the S+FinMetrics function roll.
Rolling analysis of financial time series is widely used in practice but

the technique is seldom discussed in textbook treatments of time series
analysis. Notable exceptions are Alexander (2001) and Dacorogna et. al.
(2001). Rolling analysis techniques in finance are generally discussed in
the technical analysis literature, but the statistical properties of backtest-
ing technical analysis are rarely addressed. A comprehensive treatment of
technical analysis indicators is given in Colby and Meyers (1988) and a
critical evaluation of technical analysis is provided in Bauer and Dahlquist
(1999). The econometric literature on evaluating the predictive accuracy of
models through backtesting has matured over the last decade. The main
reference is Diebold and Mariano (1995).

9.2 Rolling Descriptive Statistics

9.2.1 Univariate Statistics

Consider the analysis of a univariate time series over a sample from
= 1 . Whether the mean and variance (or standard deviation) pa-
rameters of the distribution of are constant over the entire sample is
of interest. To assess parameter constancy, let denote the width of a
sub-sample or window and define the rolling sample means, variances and

9.2 Rolling Descriptive Statistics 315

standard deviations

ˆ () =
1

1X
=0

(9.1)

ˆ2() =
1

1

1X
=0

(ˆ ())2 (9.2)

ˆ () =

q
ˆ2() (9.3)

for windows = . The rolling mean and variance estimates at time
with window width are the usual sample estimates using the most recent
observations. Provided the windows are rolled through the sample one

observation at a time, there will be + 1 rolling estimates of each
parameter. The rolling mean ˆ () is sometime called a -period simple
moving average.

Computing Rolling Descriptive Statistics Using the S-PLUS Function
aggregateSeries

Consider the monthly continuously compounded returns on Microsoft stock
over the period February 1990 through January 2001 computed from the
monthly closing prices in the S+FinMetrics “timeSeries” singleIndex.dat

> msft.ret = getReturns(singleIndex.dat[,"MSFT"])

> start(msft.ret)

[1] Feb 1990

> end(msft.ret)

[1] Jan 2001

> nrow(msft.ret)

[1] 132

24-month rolling mean and standard deviations may be computed easily
using the S-PLUS function aggregateSeries1

> roll.mean = aggregateSeries(msft.ret,moving=24,adj=1,FUN=mean)

> roll.sd = aggregateSeries(msft.ret,moving=24,adj=1,FUN=stdev)

The arguments moving=24, adj=1 and FUN=mean(stdev) tell the S-PLUS
function aggregateSeries to evaluate the mean (stdev) function on a
rolling window of size 24 and to adjust the output positions to the end of
each window. roll.mean and roll.sd are “timeSeries” objects contain-
ing 109 rolling estimates:

> class(roll.mean)

1aggregateSeries is the method function of the generic S-PLUS function aggregate
for objects of class “timeSeries” and “signalSeries”.

316 9. Rolling Analysis of Time Series

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

-0
.4

-0
.3

-0
.2

-0
.1

0.
0

0.
1

0.
2

0.
3

Returns
Rolling mean
Rolling sd

FIGURE 9.1. Monthly returns on Microsoft stock along with 24 month rolling
means and standard deviations.

[1] "timeSeries"

> nrow(roll.mean)

[1] 109

> roll.mean[1:5]

Positions 1

Jan 1992 0.05671

Feb 1992 0.05509

Mar 1992 0.04859

Apr 1992 0.04366

May 1992 0.03795

The monthly returns along with the rolling means and standard devia-
tions may be plotted together using

> plot(msft.ret,roll.mean,roll.sd,plot.args=list(lty=c(1,3,4)))

> legend(0,-0.2,legend=c("Returns","Rolling mean","Rolling sd"),

+ lty=c(1,3,4))

which is illustrated in Figure 9.1. The 24 month rolling estimates ˆ (24)
and ˆ (24) clearly vary over the sample. The rolling means start out around
5%, fall close to 0% in 1994, rise again to about 5% until 2000 and then
fall below 0%. The rolling ˆ (24) values start out around 10%, fall slightly
until 1997 and then begin to steadily rise for the rest of the sample. The

9.2 Rolling Descriptive Statistics 317

end of sample value of ˆ (24) is almost twice as big as the beginning of
sample value.
The moving average estimates (9.1) - (9.3) are one-sided backward look-

ing estimates. The S-PLUS function aggregateSeries may also compute
two-sided asymmetric moving averages by specifying a value between 0
and 1 for the optional argument adj. For example, to compute a 24 month
symmetric two-sided simple moving average set adj=0.5

> roll.mean.5 = aggregateSeries(msft.ret,moving=24,adj=0.5,

+ FUN=mean)

> roll.mean.5[1:5]

Positions MSFT

Feb 1991 0.056708

Mar 1991 0.055095

Apr 1991 0.048594

May 1991 0.043658

Jun 1991 0.037950

Instead of computing the rolling means and standard deviations in sep-
arate calls to aggregateSeries, they can be computed in a single call by
supplying a user-written function to aggregateSeries that simply returns
the mean and standard deviation. One such function is

> mean.sd = function (x) {

> tmp1 = mean(x)

> tmp2 = stdev(x)

> ans = concat(tmp1,tmp2)

> ans

> }

The call to aggregateSeries to compute the rolling means and standard
deviations is then

> roll.mean.sd = aggregateSeries(msft.ret,moving=24,adj=1,

+ FUN=mean.sd,colnames=c("mean","sd"))

> roll.mean.sd[1:5,]

Positions mean sd

Jan 1992 0.05671 0.09122

Feb 1992 0.05509 0.09140

Mar 1992 0.04859 0.09252

Apr 1992 0.04366 0.09575

May 1992 0.03795 0.08792

Notice that the column names of roll.mean.sd are specified using optional
argument colnames=c("mean","sd") in the call to aggregateSeries.

318 9. Rolling Analysis of Time Series

Standard error bands around the rolling estimates of and may be
computed using the asymptotic formulas

cSE(ˆ ()) = ˆ () cSE(ˆ ()) = ˆ ()

2

Using the rolling estimates in roll.mean.sd, the S-PLUS commands to
compute and plot the rolling estimates along with approximate 95% confi-
dence bands are

> lower.mean = roll.mean.sd[,"mean"]-

+ 2*roll.mean.sd[,"sd"]/sqrt(24)

> upper.mean = roll.mean.sd[,"mean"]+

+ 2*roll.mean.sd[,"sd"]/sqrt(24)

> lower.sd = roll.mean.sd[,"sd"]-

+ 2*roll.mean.sd[,"sd"]/sqrt(2*24)

> upper.sd = roll.mean.sd[,"sd"]+

+ 2*roll.mean.sd[,"sd"]/sqrt(2*24)

> par(mfrow=c(2,1))

> plot(roll.mean.sd[,"mean"],lower.mean,upper.mean,

+ main="24 month rolling means",plot.args=list(lty=c(1,2,2)))

> plot(roll.mean.sd[,"sd"],lower.sd,upper.sd,

+ main="24 month rolling standard deviations",

+ plot.args=list(lty=c(1,2,2)))

Figure 9.2 shows the results. In general, the rolling ˆ (24) values are esti-
mated much more precisely than the rolling ˆ (24) values.
The rolling means, variances and standard deviations are not the only

rolling descriptive statistics of interest, particularly for asset returns. For
risk management purposes, one may be interested in extreme values. There-
fore, one may want to compute rolling minima and maxima. These may be
computed using aggregateSeries with FUN=min and FUN=max.

Computing Rolling Means, Variances, Maxima and Minima Using the
S+FinMetrics Functions SMA, rollVar, rollMax and rollMin

The S-PLUS function aggregateSeries is extremely flexible but not ef-
ficient for computing rolling means, variances, maxima and minima. The
S+FinMetrics functions SMA (simple moving average), rollVar, rollMax
and rollMin implement e cient algorithms for computing rolling means,
variances, maxima and minima. The arguments expected by these functions
are

> args(SMA)

function(x, n = 9, trim = T, na.rm = F)

> args(rollVar)

function(x, n = 9, trim = T, unbiased = T, na.rm = F)

9.2 Rolling Descriptive Statistics 319

24 month rolling means

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

-0
.0

8
0.

00
0.

08

24 month rolling standard deviations

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

0.
06

0.
14

0.
22

FIGURE 9.2. 24 month rolling estimates of ˆ (24) and ˆ (24) for Microsoft with
95% confidence bands.

> args(rollMax)

function(x, n = 9, trim = T, na.rm = F)

> args(rollMin)

function(x, n = 9, trim = T, na.rm = F)

where x is a vector or univariate “timeSeries”, n is the window width,
trim determines if start-up values are trimmed from the output series and
na.rm determines if missing values are to be removed. For rollVar, the
option unbiased=T computes the unbiased variance estimator using 1

1

as a divisor and unbiased=F computes the biased estimator using 1 .
To illustrate the use of SMA, rollVar, rollMax and rollMin 24 month

rolling means, standard deviations, maxima and minima from the monthly
returns on Microsoft are computed as

> roll2.mean = SMA(msft.ret,n=24)

> roll2.sd = sqrt(rollVar(msft.ret,n=24))

> roll.max = rollMax(msft.ret,n=24)

> roll.min = rollMin(msft.ret,n=24)

These estimates are identical to those computed using aggregateSeries,
but the computation time required is much less. To compare the compu-

320 9. Rolling Analysis of Time Series

tation times in seconds within S-PLUS 6 for Windows the S-PLUS function
dos.time may be used2

> dos.time(SMA(msft.ret,n=24))

[1] 0.05

> dos.time(aggregateSeries(msft.ret,moving=24,adj=1,FUN=mean))

[1] 4.23

> dos.time(sqrt(rollVar(msft.ret,n=24)))

[1] 0.06

> dos.time(aggregateSeries(msft.ret,moving=24,adj=1,FUN=stdev))

[1] 6.76

Example 49 Computing rolling standard deviations from high frequency
returns

Rolling estimates of 2 and based on high frequency continuously com-
pounded return data are often computed assuming the mean return is zero

ˆ2() =
1X

=1

2

In this case the rolling estimates of 2 may be computed using the compu-
tationally e cient S+FinMetrics function SMA. For example, consider com-
puting rolling estimates of based on the daily continuously compounded
returns for Microsoft over the 10 year period from January 1991 through
January 2001. The squared return data is computed from the daily closing
price data in the S+FinMetrics “timeSeries” object DowJones30

> msft.ret2.d = getReturns(DowJones30[,"MSFT"],

+ type="continuous")^2

Rolling estimates of based on 25, 50 and 100 day windows are computed
using SMA

> roll.sd.25 = sqrt(SMA(msft.ret2.d,n=25))

> roll.sd.50 = sqrt(SMA(msft.ret2.d,n=50))

> roll.sd.100 = sqrt(SMA(msft.ret2.d,n=100))

The rolling estimates ˆ () are illustrated in Figure 9.3 created using

> plot(roll.sd.25,roll.sd.50,roll.sd.100,

+ plot.args=(list(lty=c(1,3,4))))

> legend(0,0.055,legend=c("n=25","n=50","n=100"),

+ lty=c(1,3,4))

2The computations are carried out using S-PLUS 6 Professional Release 2 on a Dell
Inspiron 3500 400MHz Pentium II with 96MB RAM.

9.2 Rolling Descriptive Statistics 321

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0
0.

03
5

0.
04

0
0.

04
5

0.
05

0
0.

05
5

n=25
n=50
n=100

FIGURE 9.3. 25, 50 and 100 day rolling estimates of for the daily returns on
Microsoft stock.

There is considerable variation in the rolling estimates of daily , and
there appears to be a seasonal pattern with higher volatility in the summer
months and lower volatility in the winter months.

9.2.2 Bivariate Statistics

Consider now the analysis of two univariate time series 1 and 2 over
the sample from = 1 . To assess if the covariance and correlation
between 1 and 2 is constant over the entire sample the -period rolling
sample covariances and correlations

ˆ12 () =
1

1

1X
=0

(1 ˆ1 ())(2 ˆ2 ())

ˆ12 () =
ˆ12 ()

ˆ1 ()ˆ2 ()

may be computed.

Example 50 24 month rolling correlations between the returns on Mi-
crosoft and the S&P 500 index

Consider the monthly continuously compounded returns on Microsoft
stock and S&P 500 index over the period February 1990 through Jan-

322 9. Rolling Analysis of Time Series

uary 2001 computed from the monthly closing prices in the S+FinMetrics
“timeSeries” object singleIndex.dat

> ret.ts = getReturns(singleIndex.dat,type="continuous")

> colIds(ret.ts)

[1] "MSFT" "SP500"

The 24-month rolling correlations between the returns on Microsoft and
S&P 500 index may be computed using the S-PLUS function aggregateSeries
with a user specified function to compute the correlations. One such func-
tion is

> cor.coef = function(x) cor(x)[1,2]

The 24-month rolling correlations are then computed as

> smpl = positions(ret.ts)>=start(roll.cor)

> roll.cor = aggregateSeries(ret.ts,moving=24,together=T,

+ adj=1,FUN=cor.coef)

> roll.cor[1:5]

Positions 1

Jan 1992 0.6549

Feb 1992 0.6535

Mar 1992 0.6595

Apr 1992 0.6209

May 1992 0.5479

In the call to aggregateSeries the argument together=T passes all of
the columns of ret.ts to the function cor.coef instead of passing each
column separately. The monthly returns on Microsoft and the S&P 500
index along with the rolling correlations are illustrated in Figure 9.4 which
is created by

> par(mfrow=c(2,1))

> plot(ret.ts[smpl,],main="Returns on Microsoft and

+ S&P 500 index",

+ plot.args=list(lty=c(1,3)))

> legend(0,-0.2,legend=c("Microsoft","S&P 500"),

+ lty=c(1,3))

> plot(roll.cor,main="24-month rolling correlations")

At the beginning of the sample, the correlation between Microsoft and the
S&P 500 is fairly high at 0 6. The rolling correlation declines steadily, hits

9.2 Rolling Descriptive Statistics 323

Returns on Microsoft and S&P 500 index

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

-0
.4

-0
.2

0.
0

0.
2

Microsoft
S&P 500

24-month rolling correlations

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

FIGURE 9.4. Returns on Microsoft and the S&P 500 index along with 24-month
rolling correlations.

a low of about 0 1 at the beginning of 1997, then increases quickly to 0 6
and stabilizes at this value through the end of the sample3.

9.2.3 Exponentially Weighted Moving Averages

The rolling descriptive statistics described in the previous sections are based
on equally weighted moving averages of an observed time series . Equally
weighted moving averages are useful for uncovering periods of instability
but may produce misleading results if used for short-term forecasting. This
is because equally weighted averages are sensitive (not robust) to extreme
values. To illustrate, consider = 100 observations from a simulated time
series (0 1) with an outlier inserted at = 20: i.e., 20 = 10.
The data and rolling values ˆ (10) and ˆ (10) are illustrated in Figure 9.5.
Notice how the outlier at = 20 inflates the rolling estimates ˆ (10) and
ˆ (10) for 9 periods.

3Approximate standard errors for the rolling correlations may be computed using

d(ˆ ()) =

s
1 ˆ ()2

324 9. Rolling Analysis of Time Series

0 20 40 60 80 100

0
2

4
6

8
10

0 20 40 60 80 100

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Rolling mean
Rolling sd

FIGURE 9.5. E ect of an outlier on equally weighted rolling estimates of and
.

To mitigate the e ects of extreme observations on moving average es-
timates the observations in a rolling window can be weighted di erently.
A common weighting scheme that puts more weight on the most recent
observations is based on exponentially declining weights and the resulting
weighted moving average is called an exponentially weighted moving average
(EWMA). An -period EWMA of a time series is defined as

˜ () =
1X

=0

· =
1P 1

=0
1

where 0 1 is the decay parameter. As , 0, 0, and
the EWMA converges to

˜ () = (1)
X
=0

(9.4)

so the EWMA may be defined independently of the window width . The
EWMA in (9.4) may be e ciently computed using the recursion

˜ () = (1) + ˜ 1() (9.5)

From (9.5), it is clear that the closer is to one the more weight is put on the
the previous period’s estimate relative to the current period’s observation.

9.2 Rolling Descriptive Statistics 325

Therefore, may be interpreted as a persistence parameter. The recursive
formula (9.5) requires a starting value 0(). Common choices are the first
observation and the average over a local window.
EWMA estimates of descriptive statistics for continuously compounded

asset returns are usually computed using high frequency data with the
assumption that the mean returns are zero. Accordingly, the EWMA esti-
mates of 2 and 12 are

˜2() = (1) 2 + ˜2 1() (9.6)

˜12 () = (1) 1 2 + ˜12 1()

where denotes the continuously compounded return on an asset. The
EWMA estimate of volatility (9.6) is in the form of a IGARCH(1,1) model
without an constant term.

Computing EWMA Estimates Using the S+FinMetrics Function EWMA

EWMA estimates based on (9.5) may be e ciently computed using the
S+FinMetrics function EWMA. The arguments expected by EWMA are

> args(EWMA)

function(x, n = 9, lambda = (n - 1)/(n + 1), start =

"average", na.rm = F)

where x is the data input, n is a window width, lambda is the decay pa-
rameter and start specifies the starting value for the recursion (9.5). The
implied default value for is 0 8. Valid choices for start are "average"
and "first". The use of EWMA is illustrated with the following examples.

Example 51 Outlier example

Consider again the outlier example data shown in Figure 9.5. EWMA
estimates of for = 0 95, 0 75 and 0 5 are computed and plotted in
Figure 9.6 using

> ewma95.mean = EWMA(e,lambda=0.95)

> ewma75.mean = EWMA(e,lambda=0.75)

> ewma50.mean = EWMA(e,lambda=0.5)

> tsplot(ewma95.mean,ewma75.mean,ewma50.mean)

> legend(60,4,legend=c("lamda=0.95","lamda=0.75",

+ "lamda=0.50"),lty=1:3)

Notice that the EWMA estimates with = 0 95, which put the most weight
on recent observations, are only minimally a ected by the one-time outlier
whereas the EWMA estimates with = 0 75 and 0 5 increase sharply at
the date of the outlier.

Example 52 EWMA estimates of standard deviations and correlations
from high frequency data

326 9. Rolling Analysis of Time Series

0 20 40 60 80 100

-1
0

1
2

3
4

lamda=0.95
lamda=0.75
lamda=0.50

FIGURE 9.6. EWMA estimates of for outlier example data.

EWMA estimates of asset return standard deviations computed from
high frequency data are commonly used as local or short-term estimates of
volatility. Similarly, EWMA estimates of pairwise return correlations are
often used to infer local interactions between assets. Indeed, J.P. Morgan’s
RiskMetrics r° methodology is based on EWMA estimates of volatility and
correlation. To illustrate, consider computing EWMA estimates of volatility
and correlation with = 0 95 using daily closing price data on Microsoft
and IBM stock over the five year period 1996-2000:

> smpl = (positions(DowJones30) >= timeDate("1/1/1996"))

> msft.ret.d = getReturns(DowJones30[smpl,"MSFT"])

> ibm.ret.d = getReturns(DowJones30[smpl,"IBM"])

> msft.ewma95.sd = sqrt(EWMA(msft.ret.d^2,lambda=0.95))

> ibm.ewma95.sd = sqrt(EWMA(ibm.ret.d^2,lambda=0.95))

> cov.ewma95 = EWMA(msft.ret.d*ibm.ret.d,lambda=0.95)

> cor.ewma95 = cov.ewma95/(msft.ewma95.sd*ibm.ewma95.sd)

> par(mfrow=c(2,1))

> plot(msft.ewma95.sd,ibm.ewma95.sd,

+ main="Rolling EWMA SD values",

+ plot.args=list(lty=c(1,3)))

> legend(0,0.055,legend=c("Microsoft","IBM"),lty=c(1,3))

> plot(cor.ewma95,main="Rolling EWMA correlation values")

Figure 9.7 shows the EWMA estimates of volatility and correlation. Daily

9.2 Rolling Descriptive Statistics 327

Rolling EWMA SD values

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1
1996 1997 1998 1999 2000 2001

0.
01

5
0.

03
5

0.
05

5
Microsoft
IBM

Rolling EWMA correlation values

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1
1996 1997 1998 1999 2000 2001

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

FIGURE 9.7. EWMA estimates of daily volatility and correlation with = 0 95.

volatility for Microsoft and IBM varies considerably, exhibiting apparent
seasonality and an increasing trend. The daily correlations fluctuate around
0 5 for the first part of the sample and then drop to about 0 1 at the end
of the sample.

9.2.4 Moving Average Methods for Irregularly Spaced High
Frequency Data

The use of moving average and rolling methods on irregularly spaced or
inhomogeneous high frequency time series data requires care. The moving
average tools discussed so far are designed to work on regularly spaced
or homogeneous time series data. Two approaches have been used to apply
moving average methods to irregularly spaced data. The first approach con-
verts the irregularly spaced data to regularly spaced data and then applies
the tools for appropriate for regularly spaced data. The second approach,
pioneered by Zumbach and Müller (2001), utilizes moving average methods
specifically designed for irregularly spaced data.

Converting Inhomogeneous Time Series to Homogeneous Time Series

To illustrate the conversion of a inhomogeneous time series to a homoge-
neous time series, consider the transactions level data on 3M corporation

328 9. Rolling Analysis of Time Series

stock for December 1999 in the S+FinMetrics data frame highFreq3M.df.
As in Chapter 2, a “timeSeries” object may be created using

> td = timeDate(julian=(highFreq3M.df$trade.day-1),

+ ms=highFreq3M.df$trade.time*1000,

+ in.origin=c(month=12,day=1,year=1999),zone="GMT")

> hf3M.ts = timeSeries(pos=td,data=highFreq3M.df)

> hf3M.ts[1:20,]

Positions trade.day trade.time trade.price

12/1/99 9:33:32 AM 1 34412 94.69

12/1/99 9:33:34 AM 1 34414 94.69

12/1/99 9:33:34 AM 1 34414 94.69

...

12/1/99 9:34:45 AM 1 34485 94.69

12/1/99 9:34:47 AM 1 34487 94.63

...

The trade time is measured in second from midnight. Notice that many of
the first trades took place at the same price and that there are instances of
multiple transactions at the same time. The analysis is limited to the first
three trading days of December

> smpl = positions(hf3M.ts) < timeDate("12/4/1999")

> hf3M.ts = hf3M.ts[smpl,]

The data in hf3M.ts may be made homogeneous by use of an interpola-
tion method to align the irregularly spaced time sequence and associated
data to a regularly spaced time sequence. For example, consider creating
a homogeneous time series of five minute observations. Since the data in
hf3M.ts may not be recorded at all five minute intervals, some interpola-
tion scheme must be used to create the data. Two common interpolation
schemes are: previous tick interpolation, and linear interpolation. The for-
mer method uses the most recent values, and the latter method uses ob-
servations bracketing the desired time. The S-PLUS functions align may
be used to perform these interpolation schemes.
The function align takes a “timeSeries” and a “timeDate” vector of

new positions to align to. An easy way to create a “timeDate” sequence of
five minute observations covering the trading hours for 3M stock is to use
the S-PLUS function aggregateSeries as follows:

> tmp = aggregateSeries(hf3M.ts,by="minutes",k.by=5,FUN=mean)

The positions slot of “timeSeries” tmp contains the desired five minute
“timeDate” sequence:

> positions(tmp[1:4])

[1] 12/1/99 9:30:00 AM 12/1/99 9:35:00 AM

[3] 12/1/99 9:40:00 AM 12/1/99 9:45:00 AM

9.2 Rolling Descriptive Statistics 329

To align the 3M price data to the five minute time sequence using previous
tick interpolation use

> hf3M.5min = align(hf3M.ts[,"trade.price"], positions(tmp),

+ how="before")

> hf3M.5min[1:5,]

Positions trade.price

12/1/99 9:30:00 AM NA

12/1/99 9:35:00 AM 94.63

12/1/99 9:40:00 AM 94.75

12/1/99 9:45:00 AM 94.50

12/1/99 9:50:00 AM 94.31

To align the price data using linear interpolation use

> hf3M.5min = align(hf3M.ts[,"trade.price"], positions(tmp),

+ how="interp")

> hf3M.5min[1:5,]

Positions trade.price

12/1/99 9:30:00 AM NA

12/1/99 9:35:00 AM 94.65

12/1/99 9:40:00 AM 94.75

12/1/99 9:45:00 AM 94.42

12/1/99 9:50:00 AM 94.26

The usual methods for the analysis of homogeneous data may now be
performed on the newly created data. For example, to compute and plot
an EWMA of price with = 0 9 use

> hf3M.5min.ewma = EWMA(hf3M.5min,lambda=0.9,na.rm=T)

> plot(hf3M.5min.ewma)

The resulting plot is shown in Figure 9.8.

Inhomogeneous Moving Average Operators

Zumbach and Müller (2001) presented a general framework for analyzing in-
homogeneous time series. A detailed exposition of this framework is beyond
the scope of this book. Only a brief description of the most fundamental
inhomogeneous time series operators is presented and reader is referred to
Zumbach and Müller (2001) or Dacorogna et. al. (2001) for technical details
and further examples.
Zumbach andMüller (2001) distinguished betweenmicroscopic andmacro-

scopic operations on inhomogeneous time series. A microscopic operation
depends on the actual sampling times of the time series, whereas a macro-
scopic operator extracts an average over a specified range. Macroscopic
operations on high frequency inhomogeneous time series are advantageous
because they are essentially immune to small variations in the individual

330 9. Rolling Analysis of Time Series

10:00 12:00 2:00 4:00 10:00 12:00 2:00 4:00 10:00 12:00 2:00 4:00
Dec 1 1999 Dec 2 1999 Dec 3 1999

94
95

96
97

98
99

10
0

FIGURE 9.8. EWMA of five minute prices on 3M stock.

data observations and are better behaved and more robust than microscopic
operations. The S+FinMetrics functions for analyzing inhomogeneous time
series are based on a subset of the macroscopic operators discussed in Zum-
bach and Müller (2001). These functions are summarized in Table 9.1.
In general, given a continuous time signal (), a macroscopic operator
can be defined as a convolution with a causal kernel (·):

() =

Z
0

() () (9.7)

for 0. Note that for a causal kernel () = 0 for any 0, since future
information cannot be utilized. In addition, it is usually required thatZ

0

() = 1

so that the operator can be interpreted as a weighted moving average of the
signal (). For example, the exponential moving average (EMA) operator
is defined with an exponential kernel:

() = (9.8)

and it is easy to verify that Z
0

= 1

9.2 Rolling Descriptive Statistics 331

Function Description
iEMA Inhomogeneous EWMA
iMA Inhomogeneous moving average
iMNorm Inhomogeneous moving norm
iMVar Inhomogeneous moving variance
iMSD Inhomogeneous moving SD
iMSkewness Inhomogeneous moving skewness
iMKurtosis Inhomogeneous moving kurtosis
iMCor Inhomogeneous moving correlation
iDiff Inhomogeneous moving di erence
iEMA.kernel Kernel function for iEMA
iMA.kernel Kernel function for iMA

TABLE 9.1. S+FinMetrics inhomogeneous time series function

The parameter can be shown to be the range of the EMA kernel.4

In reality, a time series signal is usually observed at discrete times. In
addition, financial transactions level data are usually observed on irregular
intervals. For the EMA operator, Zumbach and Müller suggest to use the
following iterative formula to compute a discrete time approximation to
(9.7):5

EMA(;) = EMA(1;)+(1) ()+()[() (1)] (9.9)

where
= = (1)

and
= (1)

Note that when is very small, 1 + and it can be shown that
. In this case, the above formula reduces to the same iteration for

evenly spaced EWMA operator.
Using the basic EMA operator, di erent operators can be constructed.

For example, Zumbach and Müller suggested that the basic EMA operator
can be iterated a finite number of times to obtain an operator with a di er-
ent kernel, denoted EMA(). The EMA() operator can be summed to
obtain the analog of the moving average (MA) operator for inhomogeneous
time series:

MA() =
1X

=1

EMA()

where = 2 (+ 1) so that the range of MA() is equal to , indepen-
dent of .

4The range is defined as the first moment of the kernel, i.e.,
R
0 () .

5This formula is actually obtained by assuming linear interpolation between points.
If previous tick interpolation is used, then = 1.

332 9. Rolling Analysis of Time Series

The S+FinMetrics functions iEMA.kernel and iMA.kernel can be used
to plot the kernel functions for EMA and MA operators, while iEMA and iMA
can be used to compute the EMA and MA operator for inhomogeneous time
series. For example, the following code plots the EMA() and MA()
kernel functions for = 1 and = 1 2 · · · 10:

> par(mfrow=c(2,1))

> knl = iEMA.kernel(1, 1)

> plot(knl, type="l", main="EMA Kernel")

> for(i in 2:10) {

> knl = iEMA.kernel(1, i)

> lines(knl, lty=i)

> }

> knl = iMA.kernel(1, 1)

> plot(knl, type="l", main="MA Kernel")

> for(i in 2:10) {

> knl = iMA.kernel(1, i)

> lines(knl, lty=i)

> }

> par(mfrow=c(1,1))

and the resulting plot is shown in Figure 9.9. From the figure, it can be
seen that when = 1, EMA() and MA(1) are equivalent by definition.
However, as gets larger, the kernel function of EMA() becomes flatter,
while the kernel function of MA(1) becomes more like a rectangle. In fact,
Zumbach and Müller showed that the range of EMA() is , while the
range of MA(1) becomes a constant for 2 as . As a result, to
obtain an MA operator with window width equal to 9 (which corresponds
to a range of 8, i.e., using 8 observations in the past), one sets = 4 and
to a large number:

> iMA(1:100, 4, iter=10)

[1] 1.000 1.084 1.305 1.662 2.150 2.761 3.481

[8] 4.289 5.166 6.091 7.047 8.024 9.011 10.005

[15] 11.002 12.001 13.000 14.000 15.000 16.000 17.000

[22] 18.000 19.000 20.000 21.000 22.000 23.000 24.000

[29] 25.000 26.000 27.000 28.000 29.000 30.000 31.000

[36] 32.000 33.000 34.000 35.000 36.000 37.000 38.000

[43] 39.000 40.000 41.000 42.000 43.000 44.000 45.000

[50] 46.000 47.000 48.000 49.000 50.000 51.000 52.000

[57] 53.000 54.000 55.000 56.000 57.000 58.000 59.000

[64] 60.000 61.000 62.000 63.000 64.000 65.000 66.000

[71] 67.000 68.000 69.000 70.000 71.000 72.000 73.000

[78] 74.000 75.000 76.000 77.000 78.000 79.000 80.000

[85] 81.000 82.000 83.000 84.000 85.000 86.000 87.000

9.2 Rolling Descriptive Statistics 333

EMA Kernel

knl$x

kn
l$

y

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MA Kernel

knl$x

kn
l$

y

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FIGURE 9.9. Kernel function for EMA and MA operators for inhomogeneous
time series.

[92] 88.000 89.000 90.000 91.000 92.000 93.000 94.000

[99] 95.000 96.000

The S+FinMetrics iMA function requires at least two arguments: the
first is the input series, and the second specifies the value for . In the
above example, the optional argument iter is used to specify the number
of iterations ; in addition, since the input series is not a “timeSeries”
object, iMA treats it as evenly spaced and is in units of observations. If
the input series is a “timeSeries” object, then should be specified in
units of “business days”. To illustrate the usage of iMA in this case, first
create a “timeSeries” object representing the transaction price data from
hf3M.ts created earlier6:

> smpl2 = positions(hf3M.ts) < timeDate("12/02/1999")

> hf3m.1min = aggregateSeries(hf3M.ts[smpl2,"trade.price"],

+ by="minutes", FUN=mean)

> hf3m.1min[103:110]

Positions trade.price

12/1/1999 11:28:00 AM 94.25000

6The S-PLUS function aggregateSeries is used to eliminate multiple transactions
that occur at the same time. Currently, the S+FinMetrics inhomogeneous time series
functions do not work if there are multiple observations with the same time stamp.

334 9. Rolling Analysis of Time Series

9:30 10:00 11:00 12:00 1:00 1:30 2:00 2:30 3:00 3:30 4:00
Dec 1 1999

93
.8

94
.0

94
.2

94
.4

94
.6

94
.8

95
.0

95
.2

FIGURE 9.10. 20 minute moving average computed from iMA for 3M stock prices.

12/1/1999 11:30:00 AM 94.18750

12/1/1999 11:32:00 AM 94.25000

12/1/1999 11:33:00 AM 94.25000

12/1/1999 11:34:00 AM 94.21875

12/1/1999 11:36:00 AM 94.26563

12/1/1999 11:37:00 AM 94.18750

12/1/1999 11:39:00 AM 94.18750

Note that the data is not evenly spaced. To obtain a 20 minute moving
average of hf3m.1min, set = 10 (6 5 60) because there are 6.5 hours for
the default trading hours (from 9:30 AM to 4:00 PM):

> hf3m.ma = iMA(hf3m.1min, 10/(6.5*60), iter=10)

> plot(seriesMerge(hf3m.1min, hf3m.ma),

+ plot.args=list(lty=c(1,3)))

The original data and the 20 minutes moving average hf3m.ma are plotted
together in Figure 9.10.

9.2.5 Rolling Analysis of Miscellaneous Functions

The standard analysis tools for time series require the data to be stationary.
Rolling analysis of descriptive statistics can give an indication of structural
change or instability in the moments of a time series. Level shifts and

9.2 Rolling Descriptive Statistics 335

S&P 500 Annual D/P
D

/P

1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09

0.
10

FIGURE 9.11. S & P 500 annual dividend/price ratio.

variance changes can usually be detected by rolling analyses. The S-PLUS
function aggregateSeries may be used to perform rolling analysis with a
variety of functions to uncover periods of instability and nonstationarity.
The following example illustrates the use of aggregateSeries with the
S+FinMetrics function unitroot to determine periods of unitroot nonsta-
tionarity of a time series.

Example 53 Rolling unit root tests applied to annual dividend/price ratio

Predictive regressions of asset returns on valuation ratios like dividend/
price or earnings/price require the valuation ratios to be stationary or,
more generally, (0), for the regressions to be statistically valid. Since asset
returns are (0), if valuation ratios are (1) then the predictive regressions
are unbalanced and the results will be nonsensical. To illustrate, consider
the annual dividend-price (D/P) ratio on S&P 500 index taken from the
S+FinMetrics “timeSeries” shiller.annual

> dp.ratio = shiller.annual[,"dp.ratio"]

> plot(dp.ratio,main="S&P 500 Annual D/P",ylab="D/P")

shown in Figure 9.11. For most of the sample the annual D/P looks to
be (0) with mean near 5%. However, there are long periods when the
ratio stays above or below 5% suggesting periods of non-mean reverting
(nonstationary) behavior. Also, there is a clear drop in the ratio at the

336 9. Rolling Analysis of Time Series

end of the sample suggesting a fundamental change in the mean. Rolling
unit root tests may be used to uncover periods of nonstationary behavior
in D/P. To compute rolling ADF t-tests and normalized bias statistics
using the S-PLUS function aggregateSeries create the following function
adf.tests

> adf.tests = function(x, trend = "c", lags = 3)

> {

> tmp1 = unitroot(x,trend=trend,lags=lags,statistic="t")

> tmp2 = unitroot(x,trend=trend,lags=lags,statistic="n")

> ans = concat(tmp1$sval,tmp2$sval)

> ans

> }

The function adf.tests takes a time series x, passes it to the S+FinMetrics
function unitroot twice and returns the ADF t-statistic and normalized
bias statistic. Three lags are chosen for the tests based on a full sample
analysis using the Ng-Perron backward selection procedure. Rolling unit
root tests using a window of 50 years are then computed using the function
aggregateSeries:

> roll.adf = aggregateSeries(dp.ratio,moving=50,adj=1,

+ FUN=adf.tests,colnames=c("t.test","norm.bias"))

The object roll.adf is a “timeSeries” containing the rolling unit root
tests

> roll.adf[1:3,]

Positions t.test norm.bias

Dec 1920 -1.840 -13.24

Dec 1921 -2.168 -15.24

Dec 1922 -2.270 -16.03

Figure 9.12 is created using

> cvt.05 = qunitroot(0.05,trend="c",n.sample=50)

> cvn.05 = qunitroot(0.05,trend="c",statistic="n",

+ n.sample=50)

> par(mfrow=c(2,1))

> plot(roll.adf[,"t.test"], reference.grid=F,

+ main="Rolling ADF t-statistics")

> abline(h=cvt.05)

> plot(roll.adf[,"norm.bias"], reference.grid=F,

+ main="Rolling ADF normalized bias")

> abline(h=cvn.05)

and shows the rolling unit root tests along with 5% critical values. The
results indicate that D/P is stationary mainly in the middle of the sample
and becomes nonstationary toward the end of the sample. However, some

9.3 Technical Analysis Indicators 337

Rolling ADF t-statistics

1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

-3
.5

-3
.0

-2
.5

-2
.0

-1
.5

Rolling ADF normalized bias

1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

-3
5

-3
0

-2
5

-2
0

-1
5

-1
0

-5

FIGURE 9.12. 50 year rolling ADF t-statistics and normalized bias statistics for
the S&P 500 dividend-price ratio.

care must be used when interpreting the significance of the rolling unit
root tests. The 5% critical values shown in the figures are appropriate for
evaluating a single test and not a sequence of rolling tests. Critical values
appropriate for rolling unit root tests are given in Banerjee, Lumsdaine and
Stock (1992).

9.3 Technical Analysis Indicators

Technical analysis is, perhaps, the most widely used method for analyzing
financial time series. Many of the most commonly used technical indicators
are based on moving average techniques so it is appropriate to include a
discussion of them here. A comprehensive survey of technical analysis is be-
yond the scope of this book. Useful references are Colby and Meyers (1988)
and Bauer and Dahlquist (1999). The S+FinMetrics technical analysis in-
dicators are implemented using the definitions in Colby and Meyers (1988).
Broadly, the main technical indicators can be classified into four categories:
price indicators, momentum indicators and oscillators, volatility indicators
and volume indicators.

338 9. Rolling Analysis of Time Series

Function Description
TA.Bollinger Bollinger band
TA.medprice Median price
TA.typicalPrice Typical price
TA.wclose Weighted close

TABLE 9.2. S+FinMetrics price indicators

9.3.1 Price Indicators

The S+FinMetrics price indicator functions are summarized in Table 9.2.
To illustrate the use of these functions, consider the calculation of the
typical daily price, which is defined to be the average of the highest, low-
est and closing prices during the day, using the S+FinMetrics function
TA.typicalPrice. The arguments expected by TA.typicalPrice are

> args(TA.typicalPrice)

function(high, low, close)

In order to compute this indicator, a data set with high, low and close
prices is required. To compute the typical price for the Dow Jone Industrial
Average over the period January 1, 1990 to February 20, 1990 using the
S-PLUS “timeSeries” djia, use

> smpl = positions(djia) >= timeDate("1/1/1990")

> dj = djia[smpl,]

> tp.dj = TA.typicalPrice(dj[,"high"],

+ dj[,"low"],dj[,"close"])

> class(tp.dj)

[1] "timeSeries"

The typical price along with the high, low, open and close prices may be
plotted together using

> plot.out = plot(dj[,1:4],plot.type="hloc")

> lines.render(positions(tp.dj),seriesData(tp.dj),

+ x.scale=plot.out$scale)

and the resulting plot is shown in Figure 9.13.

9.3.2 Momentum Indicators and Oscillators

The S+FinMetrics momentum indicator and oscillator functions are sum-
marized in Table 9.3. For example, consider the popular moving average
convergence divergence (MACD) indicator. This is an oscillator that rep-
resents the di erence between two exponential moving averages. A sig-
nal line is computed as the exponential moving average of MACD. When
the oscillator crosses above the signal line, it indicates a buy signal; when

9.3 Technical Analysis Indicators 339

Dow Jones Industrial Average

Jan 8 Jan 15 Jan 22 Jan 29 Feb 5 Feb 12 Feb 19
1990

25
50

26
00

26
50

27
00

27
50

28
00

FIGURE 9.13. Typical price along with high, low, open and close prices for the
Dow Jones Industrial Average.

the oscillator crosses below the signal line, it indicates a sell signal. The
S+FinMetrics function TA.macd computes the MACD and has arguments

> args(TA.macd)

function(x, n.short = 12, n.long = 26, n.signal = 9, start

= "average", na.rm = F)

where x is a price series, n.short is a positive integer specifying the number
of periods to be used for calculating the short window EWMA, n.long
is a positive integer specifying the number of periods to be used for the
calculating the long window EWMA, and n.signal is a positive integer

Function Description
TA.accel Acceleration
TA.momentum Momentum
TA.macd Moving average convergence divergence
TA.roc Price rate of change
TA.rsi Relative strength index
TA.stochastic Stochastic Oscillator
TA.williamsr Williams’ %R
TA.williamsad Williams’ accumulation distribution

TABLE 9.3. S+FinMetrics momentum indicators

340 9. Rolling Analysis of Time Series

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct
2000 2001

-5
-4

-3
-2

-1
0

1
2

3

MACD
Signal

FIGURE 9.14. MACD and signal for daily closing prices on Microsoft stock.

Function Description
TA.adoscillator accumulation/distribution oscillator
TA.chaikinv Chaikin’s volatility
TA.garmanKlass Garman-Klass estimator of volatility

TABLE 9.4. S+FinMetrics volatility indicator functions

giving the number of periods for the signal line. To compute and plot the
MACD using daily closing prices on Microsoft use

> msft.macd = TA.macd(msft.dat[,"Close"])

> colIds(msft.macd) = c("MACD","Signal")

> plot(msft.macd,plot.args=list(lty=c(1:3)))

> legend(0.5,-3,legend=colIds(msft.macd),

+ lty=c(1,3))

Figure 9.14 shows the plot of the MACD and signal.

9.3.3 Volatility Indicators

The S+FinMetrics volatility indicator functions are summarized in Table
9.4. These functions compute estimates of volatility based on high, low,
open and close information. For example, consider Chaikin’s volatility in-
dicator computed using the S+FinMetrics function TA.chaikin. It com-

9.3 Technical Analysis Indicators 341

Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct
2000 2001

-4
0

-2
0

0
20

40
60

FIGURE 9.15. Chainkin’s volatility estimate using the daily prices on Microsoft
stock.

pares the spread between a security’s high and low prices and quantifies
volatility as a widening of the range between the high and low price. Let
and represent the highest and lowest price for period , respectively.

Chaikin’s volatility is calculated as the percentage change in the EWMA
of = :

· 100

where is a positive number specifying the number of periods to use for
computing the percentage change. To compute and plot Chaikin’s volatility
with = 10 and a ten day EWMA for the daily high and low price for
Microsoft stock use

> msft.cv = TA.chaikinv(msft.dat[,"High"],

+ msft.dat[,"Low"],n.range=10,n.change=10)

> plot(msft.cv)

Figure 9.15 shows the estimated Chaikin volatility.

9.3.4 Volume Indicators

The S+FinMetrics volume indicator functions are summarized in Table
9.5. These indicators relate price movements with volume movements. To
illustrate, consider the S+FinMetrics function TA.adi which computes the

342 9. Rolling Analysis of Time Series

Function Description
TA.adi Accumulation/distribution indicator
TA.chaikino Chaikin oscillator
TA.nvi Negative volume index
TA.pvi Positive volume index
TA.obv On balance volume
TA.pvtrend Price-volume trend

TABLE 9.5. S+FinMetrics volume indicator functions

accumulations/distribution (A/D) indicator. This indicator associates price
changes with volume as follows. Let denote the closing price, the
highest price, the lowest price, and the trading volume for time . The
A/D indicator is the cumulative sum

=
X
=1

() ·

When moves up, it indicates that the security is being accumulated;
when it moves down it indicates that the security is being distributed. To
compute and plot the A/D indicator for Microsoft stock use

> msft.adi = TA.adi(msft.dat[,"High"],msft.dat[,"Low"],

+ msft.dat[,"Close"],msft.dat[,"Volume"])

> plot(msft.adi)

The resulting plot is shown in Figure 9.16.

9.4 Rolling Regression

For the linear regression model, rolling analysis may be used to assess the
stability of the model’s parameters and to provide a simple “poor man’s”
time varying parameter model. For a window of width , the rolling
linear regression model may be expressed as

y () = X () () + () = (9.10)

where y () is an (× 1) vector of observations on the response, X () is
an (×) matrix of explanatory variables, () is an (× 1) vector of
regression parameters and () is an (× 1) vector of error terms. The
observations in y () and X () are the most recent values from times

+ 1 to . It is assumed that . The rolling least squares estimates

9.4 Rolling Regression 343

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct
2000 2001

-5
e+

00
8

-4
e+

00
8

-3
e+

00
8

-2
e+

00
8

-1
e+

00
8

FIGURE 9.16. Accumulation/distribution indicator for Microsoft stock.

are

ˆ () = [X ()0X ()]
1
X ()0y ()

ˆ2() =
1

ˆ ()0ˆ ()

=
1 h

y () X ()ˆ ()
i0 h
y () X ()ˆ ()

i
[(ˆ ()) = ˆ2() · [X ()0X ()]

1

9.4.1 Estimating Rolling Regressions Using the
S+FinMetrics Function rollOLS

The S+FinMetrics function rollOLS may be used to estimate general
rolling regression models. rollOLS is based on the S+FinMetrics regres-
sion function OLS and implements e cient block updating algorithms for
fast computation of rolling estimates. The arguments expected by rollOLS
are

> args(rollOLS)

function(formula, data, subset, na.rm = F, method = "fit",

contrasts = NULL, start = NULL, end = NULL, width =

NULL, incr = 1, tau = 1e-010, trace = T, ...)

344 9. Rolling Analysis of Time Series

which are similar to those used by OLS. In particular, AR may be used in
formulas to allow for lagged dependent variables and tslag and pdl may
be used to allow for lagged independent variables. The argument width
determines the rolling window width and the argument incr determines
the increment size by which the windows are rolled through the sample.
The output of rollOLS is an object of class “rollOLS” for which there
are print, summary, plot and predict methods and extractor function
coefficients. The use of rollOLS is illustrated with the following exam-
ple.

Example 54 Rolling estimation of CAPM for Microsoft

Consider the estimation of the capital asset pricing model (CAPM) for
an asset using rolling regression on the excess returns market model

= + () + (0 2) (9.11)

where denotes the monthly return on an asset, denotes the 30 day
T-bill rate, and denotes the monthly return on a market portfolio
proxy. The coe cient measures the magnitude of market risk, and the
CAPM imposes the restriction that = 0. Positive values of indicate
an average excess return above that predicted by the CAPM and nega-
tive values indicate an average return below that predicted by the CAPM.
Rolling regression can be used to assess the stability of the CAPM regres-
sion over time and to uncover periods of time where an asset may have
been overpriced or underpriced relative to the CAPM.
The monthly excess return data on Microsoft stock and S&P 500 index

over the ten year period February 1990 through December 2000 are in the
S+FinMetrics “timeSeries” object excessReturns.ts.

> colIds(excessReturns.ts)

[1] "MSFT" "SP500"

> start(excessReturns.ts)

[1] Feb 1990

> end(excessReturns.ts)

[1] Dec 2000

The full sample CAPM estimates using the S+FinMetrics function OLS are

> ols.fit = OLS(MSFT~SP500,data=excessReturns.ts)

> summary(ols.fit)

Call:

OLS(formula = MSFT ~SP500, data = excessReturns.ts)

Residuals:

Min 1Q Median 3Q Max

-0.3101 -0.0620 -0.0024 0.0581 0.2260

9.4 Rolling Regression 345

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 0.0175 0.0081 2.1654 0.0322

SP500 1.5677 0.2015 7.7788 0.0000

Regression Diagnostics:

R-Squared 0.3193

Adjusted R-Squared 0.3140

Durbin-Watson Stat 2.1891

Residual standard error: 0.09095 on 129 degrees of freedom

Time period: from Feb 1990 to Dec 2000

F-statistic: 60.51 on 1 and 129 degrees of freedom, the p-va

lue is 2.055e-012

The estimated full sample for Microsoft is 1 57, which indicates that
Microsoft was riskier than the market. Also, the full sample estimate of
is significantly di erent from zero so, on average, the returns on Microsoft
are larger than predicted by the CAPM.
Consider now the 24-month rolling regression estimates incremented by

1 month computed using rollOLS

> roll.fit = rollOLS(MSFT~SP500, data=excessReturns.ts,

+ width=24,incr=1)

Rolling Window #1: Total Rows = 24

Rolling Window #2: Total Rows = 25

Rolling Window #3: Total Rows = 26

...

Rolling Window #108: Total Rows = 131

To suppress the printing of the window count, specify trace=F in the call
to rollOLS. The returned object roll.fit is of class “rollOLS” and has
components

> names(roll.fit)

[1] "width" "incr" "nwin" "contrasts" "rdf"

[6] "coef" "stddev" "sigma" "terms" "call"

[11] "positions"

The components coef, stddev and sigma give the estimated coe cients,
standard errors, and residual standard deviations for each of the nwin re-
gressions. The positions component gives the start and end date of the
estimation sample.
The print method, invoked by typing the object’s name, gives a brief

report of the fit

346 9. Rolling Analysis of Time Series

> roll.fit

Call:

rollOLS(formula = MSFT ~SP500, data = excessReturns.ts,

width = 24, incr = 1)

Rolling Windows:

number width increment

108 24 1

Time period: from Feb 1990 to Dec 2000

Coefficients:

(Intercept) SP500

mean 0.0221 1.2193

std. dev. 0.0120 0.4549

Coefficient Standard Deviations:

(Intercept) SP500

mean 0.0177 0.5057

std. dev. 0.0034 0.1107

Residual Scale Estimate:

mean std. dev.

0.0827 0.0168

Regression estimates are computed for 108 rolling windows. The mean and
standard deviation are computed for the estimates and for the estimated
coe cient standard errors. The average and standard deviation of the ˆ
values are 0 0221 and 0 0120, respectively, and the average and standard
deviation of the SE(ˆ) values are 0 0177 and 0 0034, respectively. Hence,
most of the ˆ values appear to be not significantly di erent from zero as
predicted by the CAPM. The average and standard deviation of the ˆ

values are 1 2193 and 0 4549, respectively. The ˆ values are quite variable
and indicate that amount of market risk in Microsoft is not constant over
time.
The rolling coe cient estimates for each rolling regression may be viewed

using summary

> summary(roll.fit)

Call:

rollOLS(formula = MSFT ~ SP500, data = excessReturns.ts,

width = 24, incr = 1)

Rolling Windows:

number width increment

9.4 Rolling Regression 347

108 24 1

Time period: from Feb 1990 to Dec 2000

Coefficient: (Intercept)

Value Std. Error t value Pr(>|t|)

Jan 1992 0.05075 0.01551 3.271 0.003492

Feb 1992 0.04897 0.01559 3.141 0.004751

Mar 1992 0.04471 0.01561 2.863 0.009035

...

Coefficient: SP500

Value Std. Error t value Pr(>|t|)

Jan 1992 1.3545 0.3322 4.077 0.0004993

Feb 1992 1.3535 0.3337 4.056 0.0005260

Mar 1992 1.3735 0.3332 4.123 0.0004472

...

or by using the coef extractor function. Notice that the first 24-month
rolling estimates are computed for January 1992, which is 24 months after
the sample start date of February 1990. The rolling estimates, however, are
best viewed graphically using plot

> plot(roll.fit)

Make a plot selection (or 0 to exit):

1: plot: All

2: plot: Coef Estimates

3: plot: Coef Estimates with Confidence Intervals

4: plot: Residual Scale Estimates

Selection:

Plot selections 3 and 4 are illustrated in Figures 9.17 and 9.18. From the
graphs of the rolling estimate it is clear that ˆ is significantly positive
only at the very beginning of the sample. The ˆ values are near unity for
most windows and increase sharply at the end of the sample. However, the
large standard errors make it di cult to determine if is really changing
over time. The residual scale estimates, ˆ, increase sharply after 1999. This
implies that the magnitude of the non-market risk in Microsoft increased
after 1999.
In rollOLS, the optional argument incr sets the number of observa-

tions between the rolling blocks of data of length determined by width.
Therefore, rolling regressions may be computed for arbitrary overlapping
and non-overlapping blocks of data. For example, consider computing the
CAPM estimates for Microsoft over the two non-overlapping but adjacent
subsamples, February 1990 - June 1995 and July 1996 - November 2000
using rollOLS:

348 9. Rolling Analysis of Time Series

-0
.0

5
0.

00
0.

05
(Intercept)

-1
0

1
2

3

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

SP500

Rolling Window

Va
lu

e

Rolling Coefficients

FIGURE 9.17. Rolling regression estimates of CAPM coe cients ˆ and ˆ for
Microsoft.

0.
07

0.
08

0.
09

0.
10

0.
11

0.
12

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

roll.fit

Rolling Window

si
gm

a

Rolling Scale

FIGURE 9.18. Rolling regression estimates of CAPM residual standard error for
Microsoft.

9.4 Rolling Regression 349

> roll.fit2 = rollOLS(MSFT~SP500, data=excessReturns.ts,

+ width=65, incr=65)

Rolling Window #1: Total Rows = 65

Rolling Window #2: Total Rows = 130

> summary(roll.fit2)

Call:

rollOLS(formula = MSFT ~SP500, data = excessReturns.ts,

width = 65, incr = 65)

Rolling Windows:

number width increment

2 65 65

Time period: from Feb 1990 to Dec 2000

Coefficient: (Intercept)

Value Std. Error t value Pr(>|t|)

Jun 1995 0.02765 0.009185 3.0100 0.003755

Nov 2000 0.01106 0.012880 0.8585 0.393851

Coefficient: SP500

Value Std. Error t value Pr(>|t|)

Jun 1995 1.339 0.2712 4.937 6.125e-006

Nov 2000 1.702 0.2813 6.050 8.739e-008

9.4.2 Rolling Predictions and Backtesting

Rolling regressions may be used to evaluate a model’s predictive perfor-
mance based on historical data using a technique commonly referred to as
backtesting. To illustrate, consider the rolling regression model (9.10). The
“out-of-sample” predictive performance of (9.10) is based on the rolling
-step predictions and prediction errors

ˆ + | = x0+ ˆ () (9.12)

ˆ + | = + ˆ + | = + x0+ ˆ () (9.13)

The predictions are “out-of-sample” because ˆ () only uses data up to
time , whereas the predictions are for observations at times + for

0. The rolling predictions are adaptive since ˆ () is updated when
is increased. When = 1 there are rolling 1-step predictions

{ˆ +1| ˆ +2| +1 ˆ | 1}, when = 2 there are 1 rolling
2-step predictions {ˆ +2| ˆ +3| +1 ˆ | 2} and so on.

350 9. Rolling Analysis of Time Series

Forecast Evaluation Statistics

The rolling forecasts (9.12) may be evaluated by examining the properties
of the rolling forecast errors (9.13). Common evaluation statistics are

ME =
1

+ 1

X
=

ˆ + | (9.14)

MSE() =
1

+ 1

X
=

ˆ2+ |

RMSE() =
p

()

MAE() =
1

+ 1

X
=

|ˆ + | |

MAPE() =
1

+ 1

X
=

¯̄̄̄
ˆ + |

+

¯̄̄̄
The first measure evaluates the bias of the forecasts, and the other measures
evaluate bias and precision.

Example 55 Backtesting the CAPM

Consider again the estimation of the CAPM (9.11) for Microsoft using
rolling regression. The rolling regression information is contained in the
“rollOLS” object roll.fit. The rolling -step predictions (9.12) may be
computed using the generic predict method. For example, the rolling 1-
step forecasts are computed as

> roll.pred = predict(roll.fit,n.step=1)

> class(roll.pred)

[1] "listof"

> names(roll.pred)

[1] "1-Step-Ahead Forecasts"

The argument n.step determines the step length of the predictions. The
object roll.pred is of class “listof” whose list component is a “timeSeries”
object containing the rolling 1-step predictions:

> roll.pred[[1]]

Positions 1

Feb 1992 0.05994784

Mar 1992 0.01481398

...

Dec 2000 -0.00049354

The prediction errors (9.13) are then computed as

ehat.1step = excessReturns.ts[,"MSFT"]-roll.pred[[1]]

9.4 Rolling Regression 351

Returns on MSFT and 1-step forecasts
R

et
ur

n
pe

r m
on

th

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

-0
.3

-0
.1

0.
1

0.
3

Actual
1-step forecast

1-step forecast error

R
et

ur
n

pe
r m

on
th

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

-0
.3

-0
.2

-0
.1

0.
0

0.
1

0.
2

FIGURE 9.19. Monthly returns on Microsoft, 1-step rolling forecasts and forecast
errors.

The monthly returns on Microsoft, 1-step forecasts and 1-step forecast er-
rors are shown in Figure 9.19 created by

> par(mfrow=c(2,1))

> plot(excessReturns.ts[,"MSFT"], roll.pred[[1]],

+ main="Returns on MSFT and 1-step forecasts",

+ plot.args=list(lty=c(1,3)))

> legend(0, -0.2, legend=c("Actual","1-step forecast"),

+ lty=c(1,3))

> plot(ehat.1step,main="1-step forecast error")

The forecast evaluation statistics (9.14) may be computed as

> me.1step = mean(ehat.1step)

> mse.1step = as.numeric(var(ehat.1step))

> rmse.1step = sqrt(mse.1step)

> mae.1step = mean(abs(ehat.1step))

> mape.1step = mean(abs(ehat.1step/excessReturns.ts[,"MSFT"]),

+ na.rm=T)

To compute just the 2-step forecasts, specify n.step=2 in the call to
predict. To compute the 1-step and 2-step forecasts specify n.step=1:2

> roll.pred.12 = predict(roll.fit,n.steps=1:2)

352 9. Rolling Analysis of Time Series

> names(roll.pred.12)

[1] "1-Step-Ahead Forecasts" "2-Step-Ahead Forecasts"

> roll.pred.12[[1]]

Positions 1

Feb 1992 0.05994784

Mar 1992 0.01481398

...

Dec 2000 -0.00049354

> roll.pred.12[[2]]

Positions 1

Mar 1992 0.0165764

Apr 1992 0.0823867

...

Dec 2000 -0.0025076

Since the 1-step and 2-step predictions are components of the list object
roll.pred.12, the S-PLUS function lapply may be used to simplify the
computation of the forecast errors and evaluation statistics. To illustrate,
supplying the user-defined function

> make.ehat = function(x,y) {

+ ans = y - x

+ ans[!is.na(ans),]

+ }

to lapply creates a “named” object containing the 1-step and 2-step fore-
casts errors as components:

> ehat.list = lapply(roll.pred.12, make.ehat,

+ excessReturns.ts[,"MSFT"])

> names(ehat.list)

[1] "1-Step-Ahead Forecasts" "2-Step-Ahead Forecasts"

The forecast evaluation statistics (9.14) may be computed for each compo-
nent of ehat.list using lapply with the following user-defined function

> make.errorStats = function(x){

+ me = mean(x)

+ mse = as.numeric(var(x))

+ rmse = sqrt(mse)

+ mae = mean(abs(x))

+ ans = list(ME=me,MSE=mse,RMSE=rmse,MAE=mae)

+ ans

+ }

> errorStat.list = lapply(ehat.list,make.errorStats)

9.4 Rolling Regression 353

> unlist(errorStat.list)

1-Step-Ahead Forecasts.ME 1-Step-Ahead Forecasts.MSE

-0.006165 0.009283

1-Step-Ahead Forecasts.RMSE 1-Step-Ahead Forecasts.MAE

0.09635 0.07207

2-Step-Ahead Forecasts.ME 2-Step-Ahead Forecasts.MSE

-0.007269 0.009194

2-Step-Ahead Forecasts.RMSE 2-Step-Ahead Forecasts.MAE

0.09589 0.07187

The S-PLUS function sapply may be used instead of lapply to summarize
the forecast error evaluation statistics:

> sapply(ehat.list,make.errorStats)

1-Step-Ahead Forecasts 2-Step-Ahead Forecasts

[1,] -0.006165 -0.007269

[2,] 0.009283 0.009194

[3,] 0.09635 0.09589

[4,] 0.07207 0.07187

Comparing Predictive Accuracy

Backtesting is often used to compare the forecasting accuracy of two or
more competing models. Typically, the forecast evaluation statistics (9.14)
are computed for each model, and the model that produces the smallest set
of statistics is judged to be the better model. Recently, Diebold and Mari-
ano (1995) proposed a simple procedure using rolling -step forecast errors
for statistically determining if one model’s forecast is more accurate than
another’s. Let ˆ1+ | and ˆ

2
+ | denote the -step forecast errors from two

competing models, and let denote the number of -step forecasts. The
accuracy of each forecast is measured by a particular forecast evaluation
or loss function

(ˆ + |) = 1 2

Two popular loss functions are the squared error loss (ˆ + |) =
³
ˆ + |

´2
and absolute error loss (ˆ + |) =

¯̄̄
ˆ + |

¯̄̄
. To determine if one model fore-

casts better than another Diebold and Mariano (1995) suggested computing
the loss di erential

= (ˆ1+ |) (ˆ2+ |)

and testing the null hypothesis of equal forecasting accuracy

0 : [] = 0

354 9. Rolling Analysis of Time Series

The Diebold-Mariano test statistic is the simple ratio

DM =
¯clrv()̄1 2

(9.15)

where

¯=
1 X

=1

is the average loss di erential, and clrv()̄ is a consistent estimate of the
long-run asymptotic variance of .̄ Diebold and Mariano suggest comput-

ing clrv()̄ using the Newey-West nonparametric estimator with a rectan-
gular weight function and a lag truncation parameter equal to the forecast
step length, , less one. Diebold and Mariano showed that under the null
hypothesis of equal predictive accuracy the statistic is asymptotically
distributed (0 1).

Example 56 Backtesting regression models for predicting asset returns

To illustrate model comparison and evaluation by backtesting, consider
the problem of predicting the annual real return on S&P 500 index using
two di erent valuation ratios. The regression model is of the form

= + 1 + (9.16)

where denotes the natural logarithm of the annual real total return on
S&P 500 index and denotes the natural logarithm of a valuation ratio.
The first valuation ratio considered is the dividend/price ratio and the
second ratio is the earning/price ratio. The data are constructed from the
S+FinMetrics “timeSeries” shiller.annual as follows:

> colIds(shiller.annual)

[1] "price" "dividend" "earnings"

[4] "cpi" "real.price" "real.dividend"

[7] "real.earnings" "pe.10" "dp.ratio"

[10] "dp.yield"

> # compute log of real data

> ln.p = log(shiller.annual[,"real.price"])

> colIds(ln.p) = "ln.p"

> ln.dpratio = log(dp.ratio)

> colIds(ln.dpratio) = "ln.dpratio"

> ln.epratio = -log(shiller.annual[,"pe.10"])

> ln.epratio = ln.epratio[!is.na(ln.epratio),]

> colIds(ln.epratio) = "ln.epratio"

> # compute cc real total returns - see CLM pg. 261

> ln.r = diff(ln.p) + log(1+exp(ln.dpratio[-1,]))

> colIds(ln.r) = "ln.r"

9.4 Rolling Regression 355

> stock.ts = seriesMerge(ln.p,ln.d,ln.dpratio,

+ ln.epratio,ln.r,pos=positions(ln.epratio))

> start(stock.ts)

[1] Dec 1881

> end(stock.ts)

[1] Dec 2000

Rolling regression estimates of (9.16) with the two valuation ratios using a
50 year window incremented by 1 year are computed as

> roll.dp.fit = rollOLS(ln.r~tslag(ln.dpratio),data=stock.ts,

+ width=50,incr=1)

Rolling Window #1: Total Rows = 50

Rolling Window #2: Total Rows = 51

...

> roll.ep.fit = rollOLS(ln.r~tslag(ln.epratio),data=stock.ts,

+ width=50,incr=1)

Rolling Window #1: Total Rows = 50

Rolling Window #2: Total Rows = 51

...

Rolling Window #70: Total Rows = 119

Figures 9.20 and 9.21 show the rolling coe cient estimates from the two
models along with standard error bands. The rolling estimates of for
the two models are similar. For both models, the strongest evidence for
return predictability occurs between 1960 and 1990. The value of for the
earning/price model appears to be di erent from zero during more periods
than the value of for the dividend/price model.
The rolling -step predictions for = 1 5 and prediction errors are

> roll.dp.pred = predict(roll.dp.fit,n.steps=1:5)

> roll.ep.pred = predict(roll.ep.fit,n.steps=1:5)

> ehat.dp.list = lapply(roll.dp.pred,make.ehat,

+ stock.ts[,"ln.r"])

> ehat.ep.list = lapply(roll.ep.pred,make.ehat,

+ stock.ts[,"ln.r"])

The forecast evaluation statistics are

> errorStats.dp.list = lapply(ehat.dp.list,make.errorStats)

> errorStats.ep.list = lapply(ehat.ep.list,make.errorStats)

> tmp = cbind(unlist(errorStats.dp.list),

+ unlist(errorStats.ep.list))

> colIds(tmp) = c("D/P","E/P")

> tmp

numeric matrix: 20 rows, 2 columns.

D/P E/P

1-Step-Ahead Forecasts.ME 0.03767 0.01979

356 9. Rolling Analysis of Time Series

0.
0

0.
5

1.
0

(Intercept)
0.

0
0.

2
0.

4

1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

tslag(ln.dpratio)

Rolling Window

Va
lu

e

Rolling Coefficients

FIGURE 9.20. 50 year rolling regression estimates of (9.16) using dividend/price
ratio.

0.
0

0.
5

1.
0

(Intercept)

0.
0

0.
2

0.
4

1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

tslag(ln.epratio)

Rolling Window

Va
lu

e

Rolling Coefficients

FIGURE 9.21. 50 year rolling regression estimates of (9.16) using earning/price.

9.4 Rolling Regression 357

1-Step-Ahead Forecasts.MSE 0.03150 0.03139

1-Step-Ahead Forecasts.RMSE 0.17749 0.17718

1-Step-Ahead Forecasts.MAE 0.14900 0.14556

2-Step-Ahead Forecasts.ME 0.04424 0.02334

2-Step-Ahead Forecasts.MSE 0.03223 0.03205

2-Step-Ahead Forecasts.RMSE 0.17952 0.17903

2-Step-Ahead Forecasts.MAE 0.15206 0.14804

3-Step-Ahead Forecasts.ME 0.04335 0.02054

3-Step-Ahead Forecasts.MSE 0.03203 0.03180

3-Step-Ahead Forecasts.RMSE 0.17898 0.17832

3-Step-Ahead Forecasts.MAE 0.14993 0.14731

4-Step-Ahead Forecasts.ME 0.04811 0.02397

4-Step-Ahead Forecasts.MSE 0.03292 0.03248

4-Step-Ahead Forecasts.RMSE 0.18143 0.18022

4-Step-Ahead Forecasts.MAE 0.15206 0.14855

D/P E/P

5-Step-Ahead Forecasts.ME 0.04707 0.02143

5-Step-Ahead Forecasts.MSE 0.03339 0.03255

5-Step-Ahead Forecasts.RMSE 0.18272 0.18043

5-Step-Ahead Forecasts.MAE 0.15281 0.14825

The forecast evaluation statistics are generally smaller for the model using
the earning/price ratio. The Diebold-Mariano statistics based on squared
error and absolute error loss functions may be computed using

> for (i in 1:5) {

+ d.mse[,i] = ehat.dp.list[[i]]^2 - ehat.ep.list[[i]]^2

+ DM.mse[i] = mean(d.mse[,i])/sqrt(asymp.var(d.mse[,i],

+ bandwidth=i-1,window="rectangular"))

+ d.mae[,i] = abs(ehat.dp.list[[i]]) - abs(ehat.ep.list[[i]])

+ DM.mae[i] = mean(d.mae[,i])/sqrt(asymp.var(d.mae[,i],

+ bandwidth=i-1,window="rectangular"))

+ }

> names(DM.mse) = names(ehat.dp.list)

> names(DM.mae) = names(ehat.dp.list)

> cbind(DM.mse,DM.mae)

DM.mse DM.mae

1-Step-Ahead Forecasts 0.07983 0.07987

2-Step-Ahead Forecasts 0.09038 0.08509

3-Step-Ahead Forecasts 0.07063 0.05150

4-Step-Ahead Forecasts 0.08035 0.06331

5-Step-Ahead Forecasts 0.07564 0.06306

Since the DM statistics are asymptotically standard normal, one cannot
reject the null hypothesis of equal predictive accuracy at any reasonable

358 9. Rolling Analysis of Time Series

significance level based on the 1-step through 5-step forecast errors for the
two models.

9.5 Rolling Analysis of General Models Using the
S+FinMetrics Function roll

The S-PLUS aggregateSeries function is appropriate for rolling analy-
sis of simple functions and the S+FinMetrics function rollOLS handles
rolling regression. The S+FinMetrics function roll is designed to perform
rolling analysis of general S-PLUS modeling functions that take a formula
argument describing the relationship between a response and explanatory
variables and where the data, usually a data frame or “timeSeries” ob-
ject with a data frame in the data slot, is supplied explicitly in a data
argument. The arguments expected by roll are

> args(roll)

function(FUN, data, width, incr = 1, start = NULL, end =

NULL, na.rm = F, save.list = NULL, arg.data =

"data", trace = T, ...)

where FUN is the S-PLUS modeling function to be applied to each rolling
window, data is the data argument to FUN which must be either a data
frame or a “timeSeries” with a data frame in the data slot,width specifies
the width of the rolling window and incr determines the increment size by
which the windows are rolled through the sample. The argument save.list
specifies the components of the object returned by FUN to save in the object
returned by roll. If FUN requires more arguments in addition to data, for
example a formula relating a response to a set of explanatory variables,
then these arguments should be supplied in place of The use of roll
is illustrated with the following examples.

Example 57 Rolling regression

In this example, the 24-month rolling regression estimation of the CAPM
for Microsoft using the “timeSeries” excessReturns.ts is repeated using
the S+FinMetrics function roll with FUN=OLS. OLS requires a formula
argument for model specification and a data frame or “timeSeries” in
data argument. The 24 month rolling CAPM estimates using roll are

> roll.fit = roll(FUN=OLS, data=excessReturns.ts,

+ width=24, incr=1, formula=MSFT~SP500)

Rolling Window #1: Total Rows = 24

Rolling Window #2: Total Rows = 25

...

Rolling Window #108: Total Rows = 131

9.5 Rolling Analysis of General Models 359

> class(roll.fit)

[1] "roll"

The return roll.fit is an object of class “roll” for which there are no
specific method functions. Since the data argument excessReturns.ts is
a “timeSeries”, the default components of roll.fit are the positions of
the rolling windows and “timeSeries” objects containing the components
that are produced by OLS for each of the windows:

> names(roll.fit)

[1] "R" "coef" "df.resid" "fitted"

[5] "residuals" "assign" "contrasts" "ar.order"

[9] "terms" "call" "positions"

> class(roll.fit$coef)

[1] "timeSeries"

> nrow(roll.fit$coef)

[1] 108

> class(roll.fit$residuals)

[1] "timeSeries"

> nrow(roll.fit$residuals)

[1] 108

The first column of the “timeSeries” roll.fit$coef contains the rolling
intercept estimates, and the second column contains the rolling slope esti-
mates.

> roll.fit$coef[1:2,]

Positions 1 2

Jan 1992 0.05075 1.354

Feb 1992 0.04897 1.353

The rows of the “timeSeries” roll.fit$residuals contain the residuals
for the OLS fit on each 24-month window

> roll.fit$residuals[1:2,]

Positions 1 2 3 4 5

Jan 1992 0.007267 0.04021 0.03550 0.085707 0.004596

Feb 1992 0.042014 0.03726 0.08757 0.006368 -0.164498

...

24

0.05834

-0.03393

If only some of the components of OLS are needed for each rolling window,
these components may be specified in the optional argument save.list.
For example, to retain only the components coef and residuals over the

360 9. Rolling Analysis of Time Series

rolling windows specify save.list=c("coef","residuals") in the call to
roll:

> roll.fit = roll(FUN=OLS, data=excessReturns.ts,

+ width=24, incr=1, formula=MSFT~SP500,

+ save.list=c("coef","residuals"), trace=F)

> names(roll.fit)

[1] "coef" "residuals" "call" "positions"

9.6 References

Alexander, C. (2001). Market Models: A Guide to Financial Data Anal-
ysis. John Wiley & Sons, Chichester, UK.

Bauer, R.J. and J.R. Dahlquist (1999). Techincal Market Indicators:
Analysis & Performance. John Wiley & Sons, New York.

Banerjee, A. R. Lumsdaine and J.H. Stock (1992). “Recursive and
Sequential Tests of the Unit Root and Trend Break Hypothesis: Theory
and International Evidence,” Journal of Business and Economic Statistics,
10(3), 271-288.

Colby, R.W. and T.A Meyers (1988). The Encyclopedia of Technical
Market Indicators. McGraw-Hill, New York.

Dacorogna, M.M., R. Gençay, U.A. Müller, R.B. Olsen, and

O.V. Pictet (2001). An Introduction to High-Frequency Finance. Aca-
demic Press, San Diego.

Diebold, F.X. and R.S. Mariano (1995). “Comparing Predictive Ac-
curacy,” Journal of Business and Economic Statistics, 13, 253-263.

Shiller, R. (1998). Irrational Exuberance. Princeton University Press,
Princeton, NJ.

Zumbach, G.O., and U.A. Müller (2001). “Operators on Inhomoge-
neous Time Series,” International Journal of Theoretical and Applied Fi-
nance, 4, 147-178.

10
Systems of Regression Equations

10.1 Introduction

The previous chapters dealt with models for univariate financial time se-
ries. In many applications, it is desirable to model the joint behavior of
multiple time series because of possible e ciency gains to the joint estima-
tion of a system of time series models. For example, there may be complex
interactions between the variables and/or the error structure across mod-
els. Univariate models cannot capture these interactions whereas multivari-
ate models can. Furthermore, many equilibrium models for asset returns,
like the capital asset pricing model (CAPM) or the arbitrage price model
(APT), imply parameter restrictions that are common to the model rep-
resentation of all assets. Hence, the testing of equilibrium asset pricing
models requires the testing of cross equation parameter constraints, and
the proper estimation of these models would impose these cross equation
restrictions.
This chapter introduces methods for modeling and analyzing systems

of linear and nonlinear regression equations. Section 10.2 describes Zell-
ner’s seemingly unrelated regression (SUR) system of regression equations
that may be linked through common regressors, correlated error terms,
or cross equation parameter restrictions. Section 10.3 describes the spec-
ification and estimation of linear SUR models and gives examples using
the S+FinMetrics function SUR. Section 10.4 describes the specification
and estimation of nonlinear SUR models and gives examples using the
S+FinMetrics function NLSUR.

362 10. Systems of Regression Equations

The SUR model was developed by Theil (1961) and Zellner (1962) and
is described in most econometric textbooks. The nonlinear SUR model was
developed by Gallant (1974). Greene (2000) gives a general overview of
linear and nonlinear SUR models and Srivastava and Giles (1987) provides
a thorough treatment. Burmeister and McElroy (1986) and Campbell, Lo,
and MacKinlay (1997) describe the estimation and testing of systems of
asset pricing models using SUR and nonlinear SUR models.

10.2 Systems of Regression Equations

Many applications in economics and finance involve a system of linear re-
gression equations of the form

y1 = X1 1 + 1 (10.1)

y2 = X2 2 + 2

...

y = X +

where y is a (×1) vector of dependent variables, X is a (×) matrix
of explanatory variables and is a (× 1) vector of errors for equations
= 1 . It is assumed that each X is exogenous, i.e., uncorrelated

with . Depending on the application, each X may be distinct or there
may be common regressors across equations. The equations in (10.1) are
potentially linked either through the covariance structure of the errors or
through cross equation restrictions on the elements of (= 1), and
estimation of the entire system generally produces more e cient estimates
than the estimation of each equation individually.
Economic theory often implies a system of nonlinear regression equations

of the form

y1 = f1(1 X1) + 1

y2 = f2(2 X2) + 2

...

y = f (X) +

where f (X) is a (×1) vector containing the nonlinear function values
(x) for equations = 1 . The functions may be the same

or di erent across equations, the error structures may be linked, and there
may be cross equation restrictions on the elements of (= 1).
Some common applications in finance are illustrated below.

Example 58 Exchange rate regressions

10.2 Systems of Regression Equations 363

Consider the system of exchange rate regressions

+ = + () + + = 1 (10.2)

where + represents the natural log of the spot exchange exchange rate
for currency (relative, say, to the U.S. dollar) at time + and de-
notes the natural log of the forward exchange rate at time for a forward
contract in currency that will deliver at time + . In terms of the pre-
vious notation for the system of linear regression equations, = + ,
x = (1)0 and = ()0, the only common regressor in the
system is a vector of ones. The error terms, + are likely to be corre-
lated contemporaneously across equations due to common random shocks
a ecting all exchange rates. That is, [0] = I where [] =
for = and 0 otherwise. In the present context, this across equation cor-
relation can be used to increase the e ciency of the parameter estimates
for each equation.

Example 59 The capital asset pricing model with a risk-free asset

Consider the excess return single index model regression

= + () + = 1

where denotes the return on asset at time , denotes the return
on a risk-free asset, denotes the return on an proxy for the “market
portfolio” and denotes the residual return not explained by the “market”
for asset . In terms of the previous notation for the system of regression
equations, = x = (1)0, and = ()0 so
that all regression equations share the same regressors. It is likely that the
residual returns, , are contemporaneously correlated across assets due
to common shocks not related to the “market”. That is, [0] = I
where [] = for = and 0 otherwise. However, unless there
are across equation restrictions on , the fact that x is the same for
each equation means that there will be no e ciency gain in estimating
the parameters from exploiting the across equation error correlation. The
capital asset pricing model (CAPM) imposes the restriction = 0 for
all assets so that [] = ([). Testing the CAPM
therefore involves a joint test of many cross equation zero restrictions.

Example 60 The capital asset pricing model without a risk-free asset

The CAPM formulation above assumes the existence of a risk-free asset.
If there is no risk-free asset, then Black (1972) showed that the CAPM
takes the form

[real] = ([real])

where real denotes the real return on asset , real denotes the real return
on the market, and denotes the unobservable return on a zero-beta port-
folio. The Black form of the CAPM may be estimated from the system of

364 10. Systems of Regression Equations

nonlinear regression equations

real = (1) + real + = 1 (10.3)

In terms of the above notation for systems of nonlinear regression equations,
Black’s restricted CAPM has = real, x = (1 real)0, = ()0 and
(x) = (1) + real. Notice that the parameter is common

across all equations. The Black form of the CAPM may be tested by esti-
mating the unrestricted system

real = + real + = 1 (10.4)

and testing the nonlinear cross equation restrictions = (1) .

10.3 Linear Seemingly Unrelated Regressions

The seemingly unrelated regression (SUR) model due to Theil (1961) and
Zellner (1962) is the unrestricted system of linear regression equations

y = X + = 1 (10.5)

where y is (×1), X is (×), is (×1) and is (×1). The error
terms are assumed to be contemporaneously correlated across equations
but temporally uncorrelated: [] = for = ; 0 otherwise.
The equations may be stacked to form the giant regression model

y1
...
y

=

X1 0 0

0
. . . 0

0 0 X

1
... +

1

...

or
y= X + (10.6)

where y is (× 1), X is (×), is (× 1) and is (× 1).
Here =

P
=1 is the total number of regressors across all equations.

The error term in the giant regression has non-diagonal covariance matrix

V = [0] = I (10.7)

where the (×) matrix has elements .

10.3.1 Estimation

SinceV is not diagonal, least squares estimation of in the giant regression
(10.6) is not e cient. The generalized least squares (GLS) estimator of ,

ˆ
GLS = (X0V 1X) 1X0V 1y (10.8)

= (X0(1 I)X) 1X0(1 I)y

10.3 Linear Seemingly Unrelated Regressions 365

is e cient.
It can be shown (e.g., Greene 2000, Chap. 15) that if X = X for all

equations = 1 (i.e., all equations have the same regressors), or if
the error covariance matrix V is diagonal and there are no cross equa-
tion restrictions on the values of then least squares estimation of (10.5)
equation by equation produces the GLS estimator (10.8).

Feasible GLS Estimation

The GLS estimator of is usually not feasible since the covariance matrix
, and hence V, is generally not known. However, in the SUR model the

elements of can be consistently estimated by least squares estimation of
(10.5) equation by equation using

ˆ = 1ˆ0ˆ (10.9)

= 1(y X ˆ)0(y X ˆ)

producing ˆ . In (10.9), represents the degrees of freedom used for the
estimate ˆ See the online help for SUR for more details on the di erent
options for choosing The feasible generalized least squares estimator
(FGLS) is

ˆ
FGLS = (X

0(ˆ
1

I)X) 1X0(ˆ
1

I)y (10.10)

and its asymptotic variance is consistently estimated by

davar(ˆFGLS) = (X0(ˆ
1

I)X)
1

The FGLS estimator (10.10) is asymptotically equivalent to the GLS esti-
mator (10.8).
Tests of linear hypotheses of the form R = r, which may incorporate

cross equation linear restrictions, may be computed in the usual way with
the Wald statistic

Wald = (RˆFGLS r)0
h
Rdavar(ˆFGLS)R0

i 1

(RˆFGLS r) (10.11)

which is asymptotically distributed chi-square with degrees of freedom
equal to the number of restrictions being tested under the null.

Iterated Feasible GLS Estimation

The estimate of in FGLS estimation uses the ine cient least squares
estimate of . The iterated FGLS estimator repeats the construction of
the FGLS estimator using an updated estimator of based on the FGLS
estimator (10.10). That is, at each iteration updated estimates of are
computed as

ˆ FGLS =
1(y X ˆ

FGLS)
0(y X ˆ

FGLS)

366 10. Systems of Regression Equations

and the resulting updated estimator of is used to recompute the FGLS
estimator. This process is iterated until ˆFGLS no longer changes. If the er-
ror terms for each equation are Gaussian, it can be shown that the iterated
FGLS estimator of using = is the maximum likelihood estimator
(MLE). It should be noted, however, that iteration does not improve the
asymptotic properties of the FGLS estimator.

Maximum Likelihood Estimation

Although the MLE of may be obtained by iterating the FGLS estimator,
it is often computationally more e cient to compute the MLE directly.
To conveniently express the likelihood function for the SUR model it is
necessary to re-express the SUR model by grouping the data horizontally by
observations instead of vertically by equations. The SUR model expressed
this way is given by

y0 = x0 + 0 = 1

where y0 = (1 2) is (1 ×) vector of dependent variables,
x0 = (1 2) is the (1 ×) vector containing all of the unique
explanatory variables, = [1 2] is a (×) matrix where the
(× 1) vector contains the coe cients on x0 for the th equation, and
0 = (1 2) is a (1 ×) vector of error terms with covariance
matrix . Note that since the th equation may not have all of the variables
as regressors so that some of the values in may be equal to zero.
The log-likelihood function for a sample of size is

ln () =
2
ln(2)

2
ln | | 1

2

X
=1

0 1

where represents the appropriate non-zero elements of . The log-likelihood
function may be concentrated with respect to giving

ln () =
2
(ln(2) + 1)

2
ln (| ()|) (10.12)

where

() = 1
X
=1

0 (10.13)

is the MLE for given . Hence, the MLE for solves

min
1

2
ln (| ()|)

and the resulting estimator ˆmle is equivalent to the iterated feasible GLS
estimator with = .

10.3 Linear Seemingly Unrelated Regressions 367

Likelihood Ratio Tests

The form of the concentrated log-likelihood function (10.12), implies that
likelihood ratio (LR) tests for hypotheses about elements of have the
simple form

LR =
³
ln
³
| (˜mle)|

´
ln
³
| (ˆmle)|

´´
(10.14)

where ˜mle denotes the MLE imposing the restrictions under the null being
tested and ˆmle denotes the unrestricted MLE. The LR statistic (10.14) is
asymptotically distributed chi-square with degrees of freedom equal to the
number of restrictions being tested under the null.

10.3.2 Analysis of SUR Models with the S+FinMetrics
Function SUR

The S+FinMetrics function SUR may be used for the estimation of linear
SUR models without cross equation restrictions. The arguments for SUR
are

> args(SUR)

function(formulas, data, subset, na.rm = F, start = NULL, end

= NULL, method = "fit", contrasts = NULL, df = 1,

tol = 1e-006, iterate = F, trace = T, ...)

Generally, the two specified arguments are formulas, which is a list con-
taining the formulas for each equation in the SUR model, and data, which
must be either a data frame, or a “timeSeries” object with a data frame
in the data slot. Formulas are specified in the usual way with the response
variables on the left hand side of the character and explanatory variables
on the right hand side. If the variables in formulas can be directly ac-
cessed, e.g. through an attached data frame, then the data argument may
be skipped. The default fitting method is one-step (not iterated) feasible
GLS as in (10.10). To specify iterated feasible GLS set the optional argu-
ment iterate=T. In this case, the trace option controls printing of the
iteration count and the tol option specifies the numerical tolerance of the
convergence criterion. The optional argument df specifies the degrees of
freedom parameter for the computation of ˆ . If df=1, the feasible
GLS estimates are unbiased; if df=2, the feasible GLS estimates are min-
imum MSE estimates; if df=3, the sample size is used as the degree of

freedom; if df=4, [()()]1 2 is used as the degree of freedom for
the () element of the residual covariance matrix. To reproduce the MLE
under Gaussian errors set iterate=T and df=3.
SUR produces an object of class “SUR” for which there are print, summary

and plotmethods as well as extractor functions residuals, fitted.values

368 10. Systems of Regression Equations

(or fitted), coef, and vcov. The use of SUR is illustrated using the fol-
lowing examples.

Example 61 Testing e ciency in foreign exchange markets

Consider estimating the system of exchange rate regressions (10.2) using
monthly data on six currencies relative to the US dollar over the period
August 1978 through June 1996. The data are in the “timeSeries” ob-
ject surex1.ts, which is constructed from the data in the “timeSeries”
lexrates.dat. The variables in surex1.ts are

> colIds(surex1.ts)

[1] "USCN.FP.lag1" "USCNS.diff" "USDM.FP.lag1" "USDMS.diff"

[5] "USFR.FP.lag1" "USFRS.diff" "USIL.FP.lag1" "USILS.diff"

[9] "USJY.FP.lag1" "USJYS.diff" "USUK.FP.lag1" "USUKS.diff"

The variables with extensions .FP.lag1 are one month forward premia,
1 , and variables with extensions .diff are future returns on spot
currency, +1. The list of formulas for the regressions in the system
(10.2) is created using

> formula.list = list(USCNS.diff~USCN.FP.lag1,

+ USDMS.diff~USDM.FP.lag1,

+ USFRS.diff~USFR.FP.lag1,

+ USILS.diff~USIL.FP.lag1,

+ USJYS.diff~USJY.FP.lag1,

+ USUKS.diff~USUK.FP.lag1)

The command to compute the feasible GLS estimator of the SUR system
over the period August 1978 through June 1996 is

> sur.fit = SUR(formula.list, data=surex1.ts,

+ start="Aug 1978", in.format="%m %Y")

> class(sur.fit)

[1] "SUR"

As usual, the print method is invoked by typing the name of the object
and gives basic output:

> sur.fit

Seemingly Unrelated Regression:

Eq. 1: USCNS.diff ~USCN.FP.lag1

Coefficients:

(Intercept) USCN.FP.lag1

-0.0031 -1.6626

10.3 Linear Seemingly Unrelated Regressions 369

Degrees of freedom: 215 total; 213 residual

Time period: from Aug 1978 to Jun 1996

Residual scale estimate: 0.0135

Eq. 2: USDMS.diff ~USDM.FP.lag1

Coefficients:

(Intercept) USDM.FP.lag1

0.0006 0.5096

Degrees of freedom: 215 total; 213 residual

Time period: from Aug 1978 to Jun 1996

Residual scale estimate: 0.0358

...

Eq. 6: USUKS.diff ~USUK.FP.lag1

Coefficients:

(Intercept) USUK.FP.lag1

-0.0035 -1.2963

Degrees of freedom: 215 total; 213 residual

Time period: from Aug 1978 to Jun 1996

Residual scale estimate: 0.0344

Log determinant of residual covariance: -47.935

In the above output, the log determinant of residual covariance is the quan-

tity ln
³
| (ˆFGLS)|

´
. The forward rate is an unbiased predictor of the fu-

ture spot rate if the coe cient on the forward premium is equal to 1. The
results above suggest that unbiasedness holds only for the US/France ex-
change rate.
The summary method provides more detailed information about the fit

including estimated standard errors of coe cients and fit measures for each
equation

> summary(sur.fit)

Seemingly Unrelated Regression:

Eq. 1: USCNS.diff ~USCN.FP.lag1

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) -0.0031 0.0012 -2.5943 0.0101

370 10. Systems of Regression Equations

USCN.FP.lag1 -1.6626 0.5883 -2.8263 0.0052

Regression Diagnostics:

R-Squared 0.0300

Adjusted R-Squared 0.0254

Durbin-Watson Stat 2.2161

Degrees of freedom: 215 total; 213 residual

Time period: from Aug 1978 to Jun 1996

Residual scale estimate: 0.0135

. . .

Eq. 6: USUKS.diff ~USUK.FP.lag1

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) -0.0035 0.0027 -1.3256 0.1864

USUK.FP.lag1 -1.2963 0.6317 -2.0519 0.0414

Regression Diagnostics:

R-Squared 0.0253

Adjusted R-Squared 0.0207

Durbin-Watson Stat 1.9062

Degrees of freedom: 215 total; 213 residual

Time period: from Aug 1978 to Jun 1996

Residual scale estimate: 0.0344

Log determinant of residual covariance: -47.935

Graphical summaries of each equation are provided by the plot method
which produces a menu of plot choices:

> plot(sur.fit)

Make a plot selection (or 0 to exit):

1: plot: All

2: plot: Response and Fitted Values

3: plot: Residuals

4: plot: Normal QQplot of Residuals

5: plot: ACF of Residuals

10.3 Linear Seemingly Unrelated Regressions 371

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20

USCNS.diff USDMS.diff

5 10 15 20

USFRS.diff

USILS.diff

5 10 15 20

USJYS.diff

-0.2

0.0

0.2

0.4

0.6

0.8

1.0
USUKS.diff

Lag

A
C

F
Residual Autocorrelation

FIGURE 10.1. Residual ACF plots from SUR fit to exchange rate data.

6: plot: PACF of Residuals

7: plot: ACF of Squared Residuals

8: plot: PACF of Squared Residuals

Selection:

Plot choices 2-8 create multi-panel plots, one panel for each equation, using
Trellis graphics. For example, Figure 10.1 shows the ACF of Residuals plot
for the exchange rate data.
The above results are based on the non-iterated feasible GLS estimator

(10.10). The iterated estimator is computed using

> sur.fit2 = SUR(formula.list, data=surex1.ts,

+ start="Aug 1978", in.format="%m %Y", iterate=T)

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Iteration 6

Iteration 7

372 10. Systems of Regression Equations

Iteration 8

which converges after eight iterations. The non-iterated and iterated esti-
mators may be easily compared using the coef extractor function:

> cbind(coef(sur.fit),coef(sur.fit2))

[,1] [,2]

(Intercept) -0.00312063 -0.00312126

USCN.FP.lag1 -1.66255897 -1.66303965

(Intercept) 0.00058398 0.00035783

USDM.FP.lag1 0.50956590 0.65014949

(Intercept) 0.00133327 0.00135930

USFR.FP.lag1 1.01512081 1.02834484

(Intercept) -0.00058789 -0.00083921

USIL.FP.lag1 0.46173993 0.40852433

(Intercept) 0.00778918 0.00744485

USJY.FP.lag1 -1.76416190 -1.63952144

(Intercept) -0.00354947 -0.00334026

USUK.FP.lag1 -1.29625869 -1.19508947

There is not much di erence between the two estimators.
The SUR estimator is more e cient than least squares equation-by-

equation in this example provided the error terms across equations are
correlated. The residual correlation matrix of the SUR fit (10.13) may be
computed using

> sd.vals = sqrt(diag(sur.fit$Sigma))

> cor.mat = sur.fit$Sigma/outer(sd.vals,sd.vals)

> cor.mat

USCNS.diff USDMS.diff USFRS.diff USILS.diff

USCNS.diff 1.00000 0.20187 0.19421 0.27727

USDMS.diff 0.20187 1.00000 0.97209 0.85884

USFRS.diff 0.19421 0.97209 1.00000 0.85090

USILS.diff 0.27727 0.85884 0.85090 1.00000

USJYS.diff 0.12692 0.61779 0.61443 0.50835

USUKS.diff 0.31868 0.71424 0.70830 0.72274

USJYS.diff USUKS.diff

USCNS.diff 0.12692 0.31868

USDMS.diff 0.61779 0.71424

USFRS.diff 0.61443 0.70830

USILS.diff 0.50835 0.72274

USJYS.diff 1.00000 0.53242

USUKS.diff 0.53242 1.00000

Many of the estimated correlations are large so there appears to be an
e ciency benefit to using SUR.

10.3 Linear Seemingly Unrelated Regressions 373

The forward rate unbiasedness implies that = 1 in (10.2) for =
1 6 A formal test of the unbiasedness hypothesis for all six currencies
simultaneously may be done using the Wald statistic (10.11) or the LR
statistic (10.14). For the LR statistic, the iterated FGLS estimate should
be used. The S-PLUS commands to compute the Wald statistic are

> bigR = matrix(0,6,12)

> bigR[1,2] = bigR[2,4] = bigR[3,6] = bigR[4,8] =

+ bigR[5,10] = bigR[6,12] = 1

> rr = rep(1,6)

> bHat = as.vector(coef(sur.fit))

> avar = bigR%*%vcov(sur.fit)%*%t(bigR)

> Wald = t((bigR%*%bHat-rr))%*%solve(avar)%*%(bigR%*%bHat-rr)

> Wald

[,1]

[1,] 47.206

> 1-pchisq(Wald,6)

[1] 1.7025e-008

The data clearly reject the unbiased hypothesis. To compute the LR statis-
tic (10.14), the restricted model with = 1 for = 1 6 must first be
computed. The restricted model takes the form

+ () = + +

The S-PLUS commands to compute the restricted model are

> formula.list = list((USCNS.diff-USCN.FP.lag1)~1,

+ (USDMS.diff-USDM.FP.lag1)~1,

+ (USFRS.diff-USFR.FP.lag1)~1,

+ (USILS.diff-USIL.FP.lag1)~1,

+ (USJYS.diff-USJY.FP.lag1)~1,

+ (USUKS.diff-USUK.FP.lag1)~1)

> sur.fit2r = SUR(formula.list, data=surex1.ts,

+ start="Aug 1978", in.format="%m %Y", iterate=T)

Iteration 1

Iteration 2

> sur.fit2r

Seemingly Unrelated Regression:

Eq. 1: (USCNS.diff - USCN.FP.lag1) ~1

Coefficients:

(Intercept)

0.0004

374 10. Systems of Regression Equations

Degrees of freedom: 215 total; 214 residual

Time period: from Aug 1978 to Jun 1996

Residual scale estimate: 0.014

...

Eq. 6: (USUKS.diff - USUK.FP.lag1) ~1

Coefficients:

(Intercept)

0.0012

Degrees of freedom: 215 total; 214 residual

Time period: from Aug 1978 to Jun 1996

Residual scale estimate: 0.0353

Log determinant of residual covariance: -47.61

The LR statistic (10.14) may then be computed using

> nobs = nrow(residuals(sur.fit2r))

> LR = nobs*(determinant(sur.fit2r$Sigma,log=T)$modulus-

+ determinant(sur.fit2$Sigma,log=T)$modulus)

> as.numeric(LR)

[1] 70.09

> 1-pchisq(LR,6)

[1] 3.912e-013

The LR statistic also confirms the rejection of the unbiasedness hypothesis.

10.4 Nonlinear Seemingly Unrelated Regression
Models

The nonlinear SURmodel is the system of nonlinear regression equations

y = f (X) + = 1

where y is a (× 1) vector of response variables, f (X) is a (× 1)
vector containing the nonlinear function values (x), X is a (×)
matrix of explanatory variables, and is a (× 1) vector of parameters.
As with the linear SUR model, some of the explanatory variables in each
X may be common across equations and some of the parameters in each
may also be common across equations. Without loss of generality, let X

denote the (×) matrix of unique variables and let denote the (×1)

10.4 Nonlinear Seemingly Unrelated Regression Models 375

vector of unique parameters,1 and rewrite the nonlinear SUR system as

y = f (X) + = 1

The assumptions about the (× 1) system error vector = (0
1

0)0

are the same as in the linear SUR model. That is, the covariance matrix of
is given by (10.7).
The estimation of nonlinear SUR models is detailed in Greene (2000)

Chapter 15 and only a brief description is given here. The nonlinear FGLS
estimator of solves

min
X
=1

X
=1

ˆ (y f (X))
0
(y f (X)) (10.15)

where denotes the th element of 1. The nonlinear FGLS estimator
utilizes initial estimates of based on minimizing (10.15) with ˆ = 1.
The iterated FGLS estimator minimizes (10.15) utilizing updated estimates
of . Assuming standard regularity conditions on the functions the
FGLS and iterated FGLS estimators are consistent and asymptotically nor-
mally distributed with asymptotic covariance matrix given by the inverse
of the empirical Hessian matrix of (10.15).

10.4.1 Analysis of Nonlinear SUR Models with the
S+FinMetrics Function NLSUR

The S+FinMetrics function NLSUR may be used to estimate general nonlin-
ear SUR models as well as linear SUR models with parameter restrictions.
The arguments for NLSUR are

> args(NLSUR)

function(formulas, data, na.rm = F, coef = NULL, start = NULL,

end = NULL, control = NULL, ...)

The usage of NLSUR is similar to that of SUR. The argument formulas
contains a list of nonlinear model formulas for each equation in the SUR
model. Nonlinear formulas are specified with the response on the left hand
side of the ~ character and the nonlinear regression function specified on the
right hand side. The parameters of the nonlinear regression functions in
the SUR model are specified explicitly by user specified coe cient values.
For example, consider a “timeSeries” specified in the data argument with
variables y1, y2, y3, x1 and suppose the nonlinear SUR model has three

1In nonlinear models the number of parameters does not have to be equal to the
number of variables.

376 10. Systems of Regression Equations

equations

1 = 10 + 11 1 + 1

2 = 20 + 21 1 + 2

3 = 30 + 31 1 + 3

The vector of = 7 parameters of the SUR system are

= (10 11 20 21 30 31)0

Notice that the parameter is common across the three equations. The
formulas for the three equations above could be specified in a list as

> formula.list = list(y1~b10+b11*x1^b,

+ y2~b20+b21*x1^b,

+ y3~b30+b31*x1^b)

Notice that the user-specified coe cients b10, b11, b20, b21, b30, b31,
b match the values in the parameter vector . The common parameter
across equations is given by the user specified coe cient b. Starting

values for the coe cients may be specified in the named object coef. The
parameter coe cients specified in the formulas argument must match the
named elements in coef. For example, the starting values 10 = 20 =

30 = 0 11 = 21 = 31 = 1 and = 0 5 may be specified using

> start.vals = c(0,1,0,1,0,1,0.5)

> names(start.vals) = c("b10","b11","b20","b21","b30",

+ "b31","b")

Finally, the argument control is a list variable containing control parame-
ters for the nonlinear optimization. These control parameters are the same
as those used for the S-PLUS function nlregb. See the online help for
nlregb.control for details.
NLSUR produces an object of class “NLSUR”, that inherits from the class

“SUR”, for which there are print, summary and plot methods as well as
extractor functions residuals, fitted, coef and vcov. The use of NLSUR
is illustrated with the following examples.

Example 62 Black CAPM model

Consider estimating and testing the Black form of the CAPM (10.3) using
monthly data on 16 assets over the five year period January 1983 through
December 1987. The real return data are in the “timeSeries” black.ts
which is constructed from the nominal return data in the “timeSeries”
berndt.dat and the consumer price data in the “timeSeries” CPI.dat.
The variables in black.ts are

> colIds(black.ts)

10.4 Nonlinear Seemingly Unrelated Regression Models 377

[1] "BOISE" "CITCRP" "CONED" "CONTIL" "DATGEN" "DEC"

[7] "DELTA" "GENMIL" "GERBER" "IBM" "MARKET" "MOBIL"

[13] "PANAM" "PSNH" "TANDY" "TEXACO" "WEYER"

The variable MARKET is a value weighted index of all stocks on the NYSE
and AMEX. The system (10.3) imposes = 16 nonlinear cross equation
restrictions on the intercept parameters: = (1) . As a result, the
parameter vector has = 17 elements: = (1 16)

0. A list
of formulas for the 16 nonlinear regressions imposing the cross equation
restrictions = (1) is

> formula.list = list(BOISE~(1-b1)*g + b1*MARKET,

+ CITCRP~(1-b2)*g + b2*MARKET,

+ CONED~(1-b3)*g + b3*MARKET,

+ CONTIL~(1-b4)*g + b4*MARKET,

+ DATGEN~(1-b5)*g + b5*MARKET,

+ DEC~(1-b6)*g + b6*MARKET,

+ DELTA~(1-b7)*g + b7*MARKET,

+ GENMIL~(1-b8)*g + b8*MARKET,

+ GERBER~(1-b9)*g + b9*MARKET,

+ IBM~(1-b10)*g + b10*MARKET,

+ MOBIL~(1-b11)*g + b11*MARKET,

+ PANAM~(1-b12)*g + b12*MARKET,

+ PSNH~(1-b13)*g + b13*MARKET,

+ TANDY~(1-b14)*g + b14*MARKET,

+ TEXACO~(1-b15)*g + b15*MARKET,

+ WEYER~(1-b16)*g + b16*MARKET)

The user specified coe cients g, b1, . . . , b16 represent the elements of
the parameter vector , and the cross equation restrictions are imposed
by expressing each intercept coe cient as the function (1-bi)*g for =
1 16 The starting values = 0 and = 1 (= 1 16) for the
estimation may be specified using

> start.vals = c(0,rep(1,16))

> names(start.vals) = c("g",paste("b",1:16,sep=""))

The FGLS nonlinear SUR estimator is computed using NLSUR

> nlsur.fit = NLSUR(formula.list,data=black.ts,

+ coef=start.vals,start="Jan 1983",in.format="%m %Y")

> class(nlsur.fit)

[1] "NLSUR"

The components of an “NLSUR” object are

> names(nlsur.fit)

[1] "coef" "objective" "message" "grad.norm"

[5] "iterations" "r.evals" "j.evals" "scale"

378 10. Systems of Regression Equations

[9] "cov" "call" "parm.list" "X.k"

[13] "residuals" "fitted" "Sigma"

The message component indicates that the nonlinear optimation converged:

> nlsur.fit$message

[1] "RELATIVE FUNCTION CONVERGENCE"

Since “NLSUR” objects inherit from “SUR” objects the print, summary and
plot methods for “NLSUR” objects are identical to those for “SUR” objects.
The print method gives basic fit information:

> nlsur.fit

Nonlinear Seemingly Unrelated Regression:

Eq. 1: BOISE ~(1 - b1) * g + b1 * MARKET

Coefficients:

b1 g

1.0120 0.0085

Degrees of freedom: 60 total; 58 residual

Time period: from Jan 1983 to Dec 1987

Residual scale estimate: 0.065

Eq. 2: CITCRP ~(1 - b2) * g + b2 * MARKET

Coefficients:

b2 g

1.0699 0.0085

Degrees of freedom: 60 total; 58 residual

Time period: from Jan 1983 to Dec 1987

Residual scale estimate: 0.0581

...

Eq. 16: WEYER ~(1 - b16) * g + b16 * MARKET

Coefficients:

b16 g

1.0044 0.0085

Degrees of freedom: 60 total; 58 residual

Time period: from Jan 1983 to Dec 1987

Residual scale estimate: 0.0574

10.4 Nonlinear Seemingly Unrelated Regression Models 379

Log determinant of residual covariance: -85.29

The estimated coe cients and their standard errors may be extracted using
coef and vcov:

> std.ers = sqrt(diag(vcov(nlsur.fit)))

> cbind(coef(nlsur.fit),std.ers)

numeric matrix: 17 rows, 2 columns.

std.ers

g 0.008477 0.004642

b1 1.012043 0.134400

b2 1.069874 0.119842

b3 0.028169 0.104461

b4 1.479293 0.361368

b5 1.133384 0.218596

b6 1.099063 0.195965

b7 0.704410 0.182686

b8 0.547502 0.127458

b9 0.960858 0.157903

b10 0.649761 0.096975

b11 0.741609 0.121843

b12 0.715984 0.265048

b13 0.205356 0.348101

b14 1.054715 0.185498

b15 0.574735 0.145838

b16 1.004 0.1186

More detailed information about the fit may be viewed using summary, and
a graphical analysis of the fit may be created using plot. For example,
Figure 10.2 shows the residuals from the 16 nonlinear equations.
The nonlinear restrictions implied by the Black form of the CAPM may

be tested using a LR statistic. The unrestricted model (10.4) is specified
using the formula list

> formula.list = list(BOISE~a1+b1*MARKET,

+ CITCRP~a2+b2*MARKET,

+ CONED~a3+b3*MARKET,

+ CONTIL~a4+b4*MARKET,

+ DATGEN~a5+b5*MARKET,

+ DEC~a6+b6*MARKET,

+ DELTA~a7+b7*MARKET,

+ GENMIL~a8+b8*MARKET,

+ GERBER~a9+b9*MARKET,

+ IBM~a10+b10*MARKET,

+ MOBIL~a11+b11*MARKET,

+ PANAM~a12+b12*MARKET,

380 10. Systems of Regression Equations

0

1983 1984 1985 1986 1987 1988

BOISE

0

CITCRP

0

1983 1984 1985 1986 1987 1988

CONED

0

CONTIL

-0
.2

0.
0

0.
2 DATGEN

-0
.2

0.
0

0.
2 DEC

-0
.2

0.
0

DELTA

0

GENMIL

0

GERBER

-0
.1

0.
0

IBM

-0
.1

0.
0

0.
1

MOBIL

0

PANAM

-0
.5

0.
0

PSNH

-0
.2

0.
0

1983 1984 1985 1986 1987 1988

TANDY

-0
.2

0.
0

TEXACO

-0
.1

0.
0

0.
1

1983 1984 1985 1986 1987 1988

WEYER

Residuals versus Time

FIGURE 10.2. Estimated residuals from nonlinear SUR fit to Black’s form of the
CAPM.

+ PSNH~a13+b13*MARKET,

+ TANDY~a14+b14*MARKET,

+ TEXACO~a15+b15*MARKET,

+ WEYER~a16+b16*MARKET)

and is estimated using NLSUR with the starting values = 0 and = 1
(= 1 16):

> start.vals = c(rep(0,16),rep(1,16))

> names(start.vals) =

+ c(paste("a",1:16,sep=""),paste("b",1:16,sep=""))

> nlsur.fit2 = NLSUR(formula.list,data=black.ts,

+ coef=start.vals,start="Jan 1983",in.format="%m %Y")

The LR statistic for testing the = 16 nonlinear cross equation restric-
tions = (1) is computed using

> nobs = nrow(residuals(nlsur.fit2))

> LR = nobs*(determinant(nlsur.fit$Sigma,log=T)$modulus-

+ determinant(nlsur.fit2$Sigma,log=T)$modulus)

> as.numeric(LR)

[1] 15.86

> 1-pchisq(LR,16)

[1] 0.4625

10.4 Nonlinear Seemingly Unrelated Regression Models 381

The -value of the test is 0.4627, and so the Black CAPM restrictions are
not rejected at any reasonable significance level.

Example 63 Estimation of exchange rate system with cross equation pa-
rameter restrictions

Consider estimating the system of exchange rates (10.2), using the data
described in the previous section, imposing the cross equation restriction
that 1 = · · · = = The list of formulas for this restricted system
may be constructed as

> formula.list = list(USCNS.diff~a1+g*USCN.FP.lag1,

+ USDMS.diff~a2+g*USDM.FP.lag1,

+ USFRS.diff~a3+g*USFR.FP.lag1,

+ USILS.diff~a4+g*USIL.FP.lag1,

+ USJYS.diff~a5+g*USJY.FP.lag1,

+ USUKS.diff~a6+g*USUK.FP.lag1)

Notice that the common parameter is captured by the user-specified
coe cient g. The starting values are chosen to be 1 = · · · = 6 = 0 and
= 1 and are specified using

> start.vals = c(rep(0,6),1)

> names(start.vals) = c(paste("a",1:6,sep=""),"g")

The FGLS estimator is computed using NLSUR

> nlsur.fit = NLSUR(formula.list, data=surex1.ts,

+ coef=start.vals, start="Aug 1978", in.format="%m %Y")

> nlsur.fit

Nonlinear Seemingly Unrelated Regression:

Eq. 1: USCNS.diff ~a1 + g * USCN.FP.lag1

Coefficients:

a1 g

-0.0005 0.3467

Degrees of freedom: 215 total; 213 residual

Time period: from Aug 1978 to Jun 1996

Residual scale estimate: 0.0138

...

Eq. 6: USUKS.diff ~a6 + g * USUK.FP.lag1

Coefficients:

382 10. Systems of Regression Equations

a6 g

-0.0002 0.3467

Degrees of freedom: 215 total; 213 residual

Time period: from Aug 1978 to Jun 1996

Residual scale estimate: 0.035

Log determinant of residual covariance: -47.679

The estimate of the common parameter is 0 3467, and its asymptotic
standard error is

> sqrt(diag(vcov(nlsur.fit)))[7]

[1] 0.16472

Hence, the data indicate that the common value of is less than 1. The
LR statistic, however, rejects the common parameter restriction

> nobs = nrow(residuals(nlsur.fit))

> LR = nobs*(determinant(nlsur.fit$Sigma,log=T)$modulus

+ -determinant(sur.fit2$Sigma,log=T)$modulus)

> as.numeric(LR)

[1] 55.65

> 1 - pchisq(LR,6)

[1] 3.433e-010

10.5 References

Black, F. (1972). “Capital Market Equilibrium with Restricted Borrow-
ing,” Journal of Business, 44, 444-454.

Burmeister, E. and M.B. McElroy (1988). “Arbitrage Pricing The-
ory as a Restricted Nonlinear Multivariate Regression Model: ITNLSUR
Estimates,” Journal of Business and Economic Statistics, vol. 6(1), 28-42.

Campbell, J. A. Lo and C. MacKinlay (1997). The Econometrics of
Financial Markets. Princeton University Press, Princeton, NJ.

Gallant, R.A. (1974). “Seemingly Unrelated Nonlinear Regressions,”
Journal of Econometrics, 3, 35-50.

Greene, W. (2000). Econometric Analysis, Fourth Edition. Prentice Hall,
New Jersey.

Srivastava, V.K. and D.E.A. Giles (1987). Seemingly Unrelated Re-
gression Models: Estimation and Inference. Marcel Dekker, New York.

10.5 References 383

Theil, H. (1961). Economic Forecasts and Policy. North Holland, Ams-
terdam.

Zellner, A. (1962). “An E cient Method of Estimating Seemingly Unre-
lated Regressions and Tests of Aggregation Bias,” Journal of the American
Statistical Association, 57, 500-509.

11
Vector Autoregressive Models for
Multivariate Time Series

11.1 Introduction

The vector autoregression (VAR) model is one of the most successful, flexi-
ble, and easy to use models for the analysis of multivariate time series. It is
a natural extension of the univariate autoregressive model to dynamic mul-
tivariate time series. The VAR model has proven to be especially useful for
describing the dynamic behavior of economic and financial time series and
for forecasting. It often provides superior forecasts to those from univari-
ate time series models and elaborate theory-based simultaneous equations
models. Forecasts from VAR models are quite flexible because they can be
made conditional on the potential future paths of specified variables in the
model.
In addition to data description and forecasting, the VAR model is also

used for structural inference and policy analysis. In structural analysis, cer-
tain assumptions about the causal structure of the data under investiga-
tion are imposed, and the resulting causal impacts of unexpected shocks or
innovations to specified variables on the variables in the model are summa-
rized. These causal impacts are usually summarized with impulse response
functions and forecast error variance decompositions.
This chapter focuses on the analysis of covariance stationary multivari-

ate time series using VAR models. The following chapter describes the
analysis of nonstationary multivariate time series using VAR models that
incorporate cointegration relationships.

386 11. Vector Autoregressive Models for Multivariate Time Series

This chapter is organized as follows. Section 11.2 describes specification,
estimation and inference in VAR models and introduces the S+FinMetrics
function VAR. Section 11.3 covers forecasting from VAR model. The discus-
sion covers traditional forecasting algorithms as well as simulation-based
forecasting algorithms that can impose certain types of conditioning infor-
mation. Section 11.4 summarizes the types of structural analysis typically
performed using VAR models. These analyses include Granger-causality
tests, the computation of impulse response functions, and forecast error
variance decompositions. Section 11.5 gives an extended example of VAR
modeling. The chapter concludes with a brief discussion of Bayesian VAR
models.
This chapter provides a relatively non-technical survey of VAR models.

VARmodels in economics were made popular by Sims (1980). The definitive
technical reference for VAR models is Lütkepohl (1991), and updated sur-
veys of VAR techniques are given in Watson (1994) and Lütkepohl (1999)
and Waggoner and Zha (1999). Applications of VAR models to financial
data are given in Hamilton (1994), Campbell, Lo and MacKinlay (1997),
Cuthbertson (1996), Mills (1999) and Tsay (2001).

11.2 The Stationary Vector Autoregression Model

LetY = (1 2)0 denote an (×1) vector of time series variables.
The basic -lag vector autoregressive (VAR()) model has the form

Y = c+ 1Y 1 + 2Y 2 + · · ·+ Y + = 1 (11.1)

where are (×) coe cient matrices and is an (× 1) unobservable
zero mean white noise vector process (serially uncorrelated or independent)
with time invariant covariance matrix . For example, a bivariate VAR(2)
model equation by equation has the formµ

1

2

¶
=

µ
1

2

¶
+

µ
1
11

1
12

1
21

1
22

¶µ
1 1

2 1

¶
(11.2)

+

µ
2
11

2
12

2
21

2
22

¶µ
1 2

2 2

¶
+

µ
1

2

¶
(11.3)

or

1 = 1 +
1
11 1 1 +

1
12 2 1 +

2
11 1 2 +

2
12 2 2 + 1

2 = 2 +
1
21 1 1 +

1
22 2 1 +

2
21 1 1 +

2
22 2 1 + 2

where cov(1 2) = 12 for = ; 0 otherwise. Notice that each equation
has the same regressors — lagged values of 1 and 2 . Hence, the VAR()
model is just a seemingly unrelated regression (SUR) model with lagged
variables and deterministic terms as common regressors.

11.2 The Stationary Vector Autoregression Model 387

In lag operator notation, the VAR() is written as

()Y = c+

where () = I 1 . The VAR() is stable if the roots of

det (I 1 · · ·) = 0

lie outside the complex unit circle (have modulus greater than one), or,
equivalently, if the eigenvalues of the companion matrix

F =

1 2 · · ·
I 0 · · · 0

0
. . . 0

...
0 0 I 0

have modulus less than one. Assuming that the process has been initialized
in the infinite past, then a stable VAR() process is stationary and ergodic
with time invariant means, variances, and autocovariances.
If Y in (11.1) is covariance stationary, then the unconditional mean is

given by
µ = (I 1 · · ·) 1c

The mean-adjusted form of the VAR() is then

Y µ = 1(Y 1 µ) + 2(Y 2 µ) + · · ·+ (Y µ) +

The basic VAR() model may be too restrictive to represent su ciently
the main characteristics of the data. In particular, other deterministic terms
such as a linear time trend or seasonal dummy variables may be required
to represent the data properly. Additionally, stochastic exogenous variables
may be required as well. The general form of the VAR() model with de-
terministic terms and exogenous variables is given by

Y = 1Y 1 + 2Y 2 + · · ·+ Y + D +GX + (11.4)

where D represents an (× 1) matrix of deterministic components, X
represents an (× 1) matrix of exogenous variables, and and G are
parameter matrices.

Example 64 Simulating a stationary VAR(1) model using S-PLUS

A stationary VAR model may be easily simulated in S-PLUS using the
S+FinMetrics function simulate.VAR. The commands to simulate =
250 observations from a bivariate VAR(1) model

1 = 0 7 + 0 7 1 1 + 0 2 2 1 + 1

2 = 1 3 + 0 2 1 1 + 0 7 2 1 + 2

388 11. Vector Autoregressive Models for Multivariate Time Series

with

1 =

µ
0 7 0 2
0 2 0 7

¶
c =

µ
0 7
1 3

¶
µ =

µ
1
5

¶
=

µ
1 0 5
0 5 1

¶
and normally distributed errors are

> pi1 = matrix(c(0.7,0.2,0.2,0.7),2,2)

> mu.vec = c(1,5)

> c.vec = as.vector((diag(2)-pi1)%*%mu.vec)

> cov.mat = matrix(c(1,0.5,0.5,1),2,2)

> var1.mod = list(const=c.vec,ar=pi1,Sigma=cov.mat)

> set.seed(301)

> y.var = simulate.VAR(var1.mod,n=250,

+ y0=t(as.matrix(mu.vec)))

> dimnames(y.var) = list(NULL,c("y1","y2"))

The simulated data are shown in Figure 11.1. The VAR is stationary since
the eigenvalues of 1 are less than one:

> eigen(pi1,only.values=T)

$values:

[1] 0.9 0.5

$vectors:

NULL

Notice that the intercept values are quite di erent from the mean values of

1 and 2:

> c.vec

[1] -0.7 1.3

> colMeans(y.var)

y1 y2

0.8037 4.751

11.2.1 Estimation

Consider the basic VAR() model (11.1). Assume that the VAR() model
is covariance stationary, and there are no restrictions on the parameters of
the model. In SUR notation, each equation in the VAR() may be written
as

y = Z + e = 1

where y is a (× 1) vector of observations on the equation, Z is
a (×) matrix with row given by Z0 = (1 Y0

1 Y0) =
+ 1 is a (× 1) vector of parameters and e is a (× 1) error with

covariance matrix 2I Since the VAR() is in the form of a SUR model

11.2 The Stationary Vector Autoregression Model 389

time

y1
,y

2

0 50 100 150 200 250

-4
-2

0
2

4
6

8
10

y1
y2

FIGURE 11.1. Simulated stationary VAR(1) model.

where each equation has the same explanatory variables, each equation may
be estimated separately by ordinary least squares without losing e ciency
relative to generalized least squares. Let ˆ = [ˆ1 ˆ] denote the (×)
matrix of least squares coe cients for the equations.
Let vec(ˆ) denote the operator that stacks the columns of the (×)

matrix ˆ into a long (× 1) vector. That is,

vec(ˆ) =

ˆ1
...
ˆ

Under standard assumptions regarding the behavior of stationary and er-
godic VAR models (see Hamilton (1994) or Lütkepohl (1991)) vec(ˆ) is
consistent and asymptotically normally distributed with asymptotic co-
variance matrix davar(vec(ˆ)) = ˆ (Z

0
Z) 1

where

ˆ =
1 X

=1

ˆ ˆ0

and ˆ = Y ˆ 0Z is the multivariate least squares residual from (11.1)
at time .

390 11. Vector Autoregressive Models for Multivariate Time Series

11.2.2 Inference on Coe cients

The element of vec(ˆ), ˆ , is asymptotically normally distributed with
asymptotic standard error given by the square root of diagonal element

of ˆ (Z
0
Z) 1. Hence, asymptotically valid -tests on individual coe -

cients may be constructed in the usual way. More general linear hypotheses
of the form R·vec() = r involving coe cients across di erent equations
of the VAR may be tested using the Wald statistic

Wald = (R·vec(ˆ) r)0
n
R
hdavar(vec(ˆ))iR0

o 1

(R·vec(ˆ) r) (11.5)

Under the null, (11.5) has a limiting 2() distribution where = rank(R)
gives the number of linear restrictions.

11.2.3 Lag Length Selection

The lag length for the VAR() model may be determined using model
selection criteria. The general approach is to fit VAR() models with orders
= 0 max and choose the value of which minimizes some model

selection criteria. Model selection criteria for VAR() models have the form

() = ln |˜ ()| + · ()

where ˜ () = 1
P

=1 ˆ ˆ
0 is the residual covariance matrix without a de-

grees of freedom correction from a VAR() model, is a sequence indexed
by the sample size , and () is a penalty function which penalizes
large VAR() models. The three most common information criteria are the
Akaike (AIC), Schwarz-Bayesian (BIC) and Hannan-Quinn (HQ):

AIC() = ln |˜ ()|+ 2 2

BIC() = ln |˜ ()|+ ln 2

HQ() = ln |˜ ()|+ 2 ln ln 2

The AIC criterion asymptotically overestimates the order with positive
probability, whereas the BIC and HQ criteria estimate the order consis-
tently under fairly general conditions if the true order is less than or
equal to max. For more information on the use of model selection criteria
in VAR models see Lütkepohl (1991) chapter four.

11.2.4 Estimating VAR Models Using the S+FinMetrics
Function VAR

The S+FinMetrics function VAR is designed to fit and analyze VAR models
as described in the previous section. VAR produces an object of class “VAR”

11.2 The Stationary Vector Autoregression Model 391

for which there are print, summary, plot and predict methods as well
as extractor functions coefficients, residuals, fitted and vcov. The
calling syntax of VAR is a bit complicated because it is designed to handle
multivariate data in matrices, data frames as well as “timeSeries” objects.
The use of VAR is illustrated with the following example.

Example 65 Bivariate VAR model for exchange rates

This example considers a bivariate VAR model for Y = ()0,
where is the logarithm of the monthly spot exchange rate between the US
and Canada, = = US CA is the forward premium or interest
rate di erential, and is the natural logarithm of the 30-day forward
exchange rate. The data over the 20 year period March 1976 through June
1996 is in the S+FinMetrics “timeSeries” lexrates.dat. The data for
the VAR model are computed as

> dspot = diff(lexrates.dat[,"USCNS"])

> fp = lexrates.dat[,"USCNF"]-lexrates.dat[,"USCNS"]

> uscn.ts = seriesMerge(dspot,fp)

> colIds(uscn.ts) = c("dspot","fp")

> uscn.ts@title = "US/CN Exchange Rate Data"

> par(mfrow=c(2,1))

> plot(uscn.ts[,"dspot"],main="1st difference of US/CA spot

+ exchange rate")

> plot(uscn.ts[,"fp"],main="US/CN interest rate

+ differential")

Figure 11.2 illustrates the monthly return and the forward premium
over the period March 1976 through June 1996. Both series appear to be

(0) (which can be confirmed using the S+FinMetrics functions unitroot
or stationaryTest) with much more volatile than . also ap-
pears to be heteroskedastic.

Specifying and Estimating the VAR(p) Model

To estimate a VAR(1) model for Y use

> var1.fit = VAR(cbind(dspot,fp)~ar(1),data=uscn.ts)

Note that the VAR model is specified using an S-PLUS formula, with the
multivariate response on the left hand side of the ~ operator and the built-
in AR term specifying the lag length of the model on the right hand side.
The optional data argument accepts a data frame or “timeSeries” ob-
ject with variable names matching those used in specifying the formula.
If the data are in a “timeSeries” object or in an unattached data frame
(“timeSeries” objects cannot be attached) then the data argument must
be used. If the data are in a matrix then the data argument may be omit-
ted. For example,

392 11. Vector Autoregressive Models for Multivariate Time Series

1st difference of US/CN spot exchange rate

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

-0
.0

6
-0

.0
2

0.
02

US/CN interest rate differential

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

-0
.0

05
-0

.0
01

0.
00

3

FIGURE 11.2. US/CN forward premium and spot rate.

> uscn.mat = as.matrix(seriesData(uscn.ts))

> var2.fit = VAR(uscn.mat~ar(1))

If the data are in a “timeSeries” object then the start and end options
may be used to specify the estimation sample. For example, to estimate the
VAR(1) over the sub-period January 1980 through January 1990

> var3.fit = VAR(cbind(dspot,fp)~ar(1), data=uscn.ts,

+ start="Jan 1980", end="Jan 1990", in.format="%m %Y")

may be used. The use of in.format=\%m %Y" sets the format for the date
strings specified in the start and end options to match the input format
of the dates in the positions slot of uscn.ts.
The VARmodel may be estimated with the lag length determined using

a specified information criterion. For example, to estimate the VAR for the
exchange rate data with set by minimizing the BIC with a maximum lag

max = 4 use

> var4.fit = VAR(uscn.ts,max.ar=4, criterion="BIC")

> var4.fit$info

ar(1) ar(2) ar(3) ar(4)

BIC -4028 -4013 -3994 -3973

When a formula is not specified and only a data frame, “timeSeries” or
matrix is supplied that contains the variables for the VAR model, VAR fits

11.2 The Stationary Vector Autoregression Model 393

all VAR() models with lag lengths less than or equal to the value given
to max.ar, and the lag length is determined as the one which minimizes
the information criterion specified by the criterion option. The default
criterion is BIC but other valid choices are logL, AIC and HQ. In the com-
putation of the information criteria, a common sample based on max.ar
is used. Once the lag length is determined, the VAR is re-estimated us-
ing the appropriate sample. In the above example, the BIC values were
computed using the sample based on max.ar=4 and = 1 minimizes BIC.
The VAR(1) model was automatically re-estimated using the sample size
appropriate for = 1.

Print and Summary Methods

The function VAR produces an object of class “VAR” with the following
components.

> class(var1.fit)

[1] "VAR"

> names(var1.fit)

[1] "R" "coef" "fitted" "residuals"

[5] "Sigma" "df.resid" "rank" "call"

[9] "ar.order" "n.na" "terms" "Y0"

To see the estimated coe cients of the model use the print method:

> var1.fit

Call:

VAR(formula = cbind(dspot, fp) ~ar(1), data = uscn.ts)

Coefficients:

dspot fp

(Intercept) -0.0036 -0.0003

dspot.lag1 -0.1254 0.0079

fp.lag1 -1.4833 0.7938

Std. Errors of Residuals:

dspot fp

0.0137 0.0009

Information Criteria:

logL AIC BIC HQ

2058 -4104 -4083 -4096

total residual

Degree of freedom: 243 240

Time period: from Apr 1976 to Jun 1996

394 11. Vector Autoregressive Models for Multivariate Time Series

The first column under the label “Coefficients:” gives the estimated
coe cients for the equation, and the second column gives the estimated
coe cients for the equation:

= 0 0036 0 1254 · 1 1 4833 · 1

= 0 0003 + 0 0079 · 1 + 0 7938 · 1

Since uscn.ts is a “timeSeries” object, the estimation time period is also
displayed.
The summary method gives more detailed information about the fitted

VAR:

> summary(var1.fit)

Call:

VAR(formula = cbind(dspot, fp) ~ar(1), data = uscn.ts)

Coefficients:

dspot fp

(Intercept) -0.0036 -0.0003

(std.err) 0.0012 0.0001

(t.stat) -2.9234 -3.2885

dspot.lag1 -0.1254 0.0079

(std.err) 0.0637 0.0042

(t.stat) -1.9700 1.8867

fp.lag1 -1.4833 0.7938

(std.err) 0.5980 0.0395

(t.stat) -2.4805 20.1049

Regression Diagnostics:

dspot fp

R-squared 0.0365 0.6275

Adj. R-squared 0.0285 0.6244

Resid. Scale 0.0137 0.0009

Information Criteria:

logL AIC BIC HQ

2058 -4104 -4083 -4096

total residual

Degree of freedom: 243 240

Time period: from Apr 1976 to Jun 1996

In addition to the coe cient standard errors and t-statistics, summary also
displays 2 measures for each equation (which are valid because each equa-

11.2 The Stationary Vector Autoregression Model 395

tion is estimated by least squares). The summary output shows that the
coe cients on 1 and 1 in both equations are statistically signifi-
cant at the 10% level and that the fit for the equation is much better
than the fit for the equation.
As an aside, note that the S+FinMetrics function OLS may also be used

to estimate each equation in a VAR model. For example, one way to com-
pute the equation for using OLS is

> dspot.fit = OLS(dspot~ar(1)+tslag(fp),data=uscn.ts)

> dspot.fit

Call:

OLS(formula = dspot ~ar(1) + tslag(fp), data = uscn.ts)

Coefficients:

(Intercept) tslag(fp) lag1

-0.0036 -1.4833 -0.1254

Degrees of freedom: 243 total; 240 residual

Time period: from Apr 1976 to Jun 1996

Residual standard error: 0.01373

Graphical Diagnostics

The plotmethod for “VAR” objects may be used to graphically evaluate the
fitted VAR. By default, the plot method produces a menu of plot options:

> plot(var1.fit)

Make a plot selection (or 0 to exit):

1: plot: All

2: plot: Response and Fitted Values

3: plot: Residuals

4: plot: Normal QQplot of Residuals

5: plot: ACF of Residuals

6: plot: PACF of Residuals

7: plot: ACF of Squared Residuals

8: plot: PACF of Squared Residuals

Selection:

Alternatively, plot.VAR may be called directly. The function plot.VAR
has arguments

> args(plot.VAR)

function(x, ask = T, which.plots = NULL, hgrid = F, vgrid

= F, ...)

396 11. Vector Autoregressive Models for Multivariate Time Series

-0
.0

6
-0

.0
4

-0
.0

2
0.

00
0.

02

1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

dspot

-0
.0

04
0.

00
0

0.
00

4

fp

Response and Fitted Values

FIGURE 11.3. Response and fitted values from VAR(1) model for US/CN ex-
change rate data.

To create all seven plots without using the menu, set ask=F. To create
the Residuals plot without using the menu, set which.plot=2. The optional
arguments hgrid and vgrid control printing of horizontal and vertical grid
lines on the plots.
Figures 11.3 and 11.4 give the Response and Fitted Values and Residuals

plots for the VAR(1) fit to the exchange rate data. The equation for fits
much better than the equation for . The residuals for both equations
look fairly random, but the residuals for the equation appear to be
heteroskedastic. The qq-plot (not shown) indicates that the residuals for
the equation are highly non-normal.

Extractor Functions

The residuals and fitted values for each equation of the VAR may be ex-
tracted using the generic extractor functions residuals and fitted:

> var1.resid = resid(var1.fit)

> var1.fitted = fitted(var.fit)

> var1.resid[1:3,]

Positions dspot fp

Apr 1976 0.0044324 -0.00084150

May 1976 0.0024350 -0.00026493

Jun 1976 0.0004157 0.00002435

11.2 The Stationary Vector Autoregression Model 397

-0
.0

6
-0

.0
4

-0
.0

2
0.

00
0.

02

1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

dspot

-0
.0

04
-0

.0
02

0.
00

0
0.

00
2

fp

Residuals versus Time

FIGURE 11.4. Residuals from VAR(1) model fit to US/CN exchange rate data.

Notice that since the data are in a “timeSeries” object, the extracted
residuals and fitted values are also “timeSeries” objects.
The coe cients of the VAR model may be extracted using the generic

coef function:

> coef(var1.fit)

dspot fp

(Intercept) -0.003595149 -0.0002670108

dspot.lag1 -0.125397056 0.0079292865

fp.lag1 -1.483324622 0.7937959055

Notice that coef produces the (3 × 2) matrix ˆ whose columns give the
estimated coe cients for each equation in the VAR(1).
To test stability of the VAR, extract the matrix 1 and compute its

eigenvalues

> PI1 = t(coef(var1.fit)[2:3,])

> abs(eigen(PI1,only.values=T)$values)

[1] 0.7808 0.1124

Since the modulus of the two eigenvalues of 1 are less than 1, the VAR(1)
is stable.

398 11. Vector Autoregressive Models for Multivariate Time Series

Testing Linear Hypotheses

Now, consider testing the hypothesis that 1= 0 (i.e., Y 1 does not help
to explain Y) using the Wald statistic (11.5). In terms of the columns of
vec() the restrictions are 1 = (1 0 0)

0 and 2 = (2 0 0) and may be
expressed as Rvec() = r with

R =

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

r =

0
0
0
0

The Wald statistic is easily constructed as follows

> R = matrix(c(0,1,0,0,0,0,

+ 0,0,1,0,0,0,

+ 0,0,0,0,1,0,

+ 0,0,0,0,0,1),

+ 4,6,byrow=T)

> vecPi = as.vector(var1.fit$coef)

> avar = R%*%vcov(var1.fit)%*%t(R)

> wald = t(R%*%vecPi)%*%solve(avar)%*%(R%*%vecPi)

> wald

[,1]

[1,] 417.1

> 1-pchisq(wald,4)

[1] 0

Since the p-value for the Wald statistic based on the 2(4) distribution
is essentially zero, the hypothesis that 1= 0 should be rejected at any
reasonable significance level.

11.3 Forecasting

Forecasting is one of the main objectives of multivariate time series analysis.
Forecasting from a VAR model is similar to forecasting from a univariate
AR model and the following gives a brief description.

11.3.1 Traditional Forecasting Algorithm

Consider first the problem of forecasting future values of Y when the
parameters of the VAR() process are assumed to be known and there
are no deterministic terms or exogenous variables. The best linear predictor,
in terms of minimum mean squared error (MSE), of Y +1 or 1-step forecast
based on information available at time is

Y +1| = c+ 1Y + · · ·+ Y +1

11.3 Forecasting 399

Forecasts for longer horizons (-step forecasts) may be obtained using
the chain-rule of forecasting as

Y + | = c+ 1Y + 1| + · · ·+ Y + |

where Y + | = Y + for 0. The -step forecast errors may be ex-
pressed as

Y + Y + | =
1X

=0

+

where the matrices are determined by recursive substitution

=

1X
=1

(11.6)

with 0 = I and = 0 for .1 The forecasts are unbiased since all of
the forecast errors have expectation zero and the MSE matrix for Y + |
is

() = MSE
¡
Y + Y + |

¢
=

1X
=0

0 (11.7)

Now consider forecasting Y + when the parameters of the VAR()
process are estimated using multivariate least squares. The best linear pre-
dictor of Y + is now

Ŷ + | = ˆ
1Ŷ + 1| + · · ·+ ˆ Ŷ + | (11.8)

where ˆ are the estimated parameter matrices. The -step forecast error
is now

Y + Ŷ + | =
1X

=0

+ +
³
Y + Ŷ + |

´
(11.9)

and the term
³
Y + Ŷ + |

´
captures the part of the forecast error due

to estimating the parameters of the VAR. The MSE matrix of the -step
forecast is then

ˆ () = () +MSE
³
Y + Ŷ + |

´
1The S+FinMetrics fucntion VAR.ar2ma computes the matrices given the ma-

trices using (11.6).

400 11. Vector Autoregressive Models for Multivariate Time Series

In practice, the second term MSE
³
Y + Ŷ + |

´
is often ignored and

ˆ () is computed using (11.7) as

ˆ () =
1X

=0

ˆ ˆ ˆ 0 (11.10)

with ˆ =
P

=1
ˆ ˆ . Lütkepohl (1991, Chap. 3) gave an approxi-

mation to MSE
³
Y + Ŷ + |

´
which may be interpreted as a finite

sample correction to (11.10).
Asymptotic (1)·100% confidence intervals for the individual elements

of Ŷ + | are then computed as£
ˆ + | 1 2ˆ () ˆ + | + 1 2ˆ ()

¤
where 1 2 is the (1 2) quantile of the standard normal distribution

and ˆ () denotes the square root of the diagonal element of ˆ ().

Example 66 Forecasting exchange rates from a bivariate VAR

Consider computing -step forecasts, = 1 12, along with estimated
forecast standard errors from the bivariate VAR(1) model for exchange
rates. Forecasts and forecast standard errors from the fitted VAR may be
computed using the generic S-PLUS predict method

> uscn.pred = predict(var1.fit,n.predict=12)

The predict function recognizes var1.fit as a “VAR” object, and calls the
appropriate method function predict.VAR. Alternatively, predict.VAR
can be applied directly on an object inheriting from class “VAR”. See the
online help for explanations of the arguments to predict.VAR.
The output of predict.VAR is an object of class “forecast” for which

there are print, summary and plot methods. To see just the forecasts, the
print method will su ce:

> uscn.pred

Predicted Values:

dspot fp

1-step-ahead -0.0027 -0.0005

2-step-ahead -0.0026 -0.0006

3-step-ahead -0.0023 -0.0008

4-step-ahead -0.0021 -0.0009

5-step-ahead -0.0020 -0.0010

6-step-ahead -0.0018 -0.0011

7-step-ahead -0.0017 -0.0011

11.3 Forecasting 401

8-step-ahead -0.0017 -0.0012

9-step-ahead -0.0016 -0.0012

10-step-ahead -0.0016 -0.0013

11-step-ahead -0.0015 -0.0013

12-step-ahead -0.0015 -0.0013

The forecasts and their standard errors can be shown using summary:

> summary(uscn.pred)

Predicted Values with Standard Errors:

dspot fp

1-step-ahead -0.0027 -0.0005

(std.err) 0.0137 0.0009

2-step-ahead -0.0026 -0.0006

(std.err) 0.0139 0.0012

...

12-step-ahead -0.0015 -0.0013

(std.err) 0.0140 0.0015

Lütkepohl’s finite sample correction to the forecast standard errors com-
puted from asymptotic theory may be obtained by using the optional ar-
gument fs.correction=T in the call to predict.VAR.
The forecasts can also be plotted together with the original data using

the generic plot function as follows:

> plot(uscn.pred,uscn.ts,n.old=12)

where the n.old optional argument specifies the number of observations to
plot from uscn.ts. If n.old is not specified, all the observations in uscn.ts
will be plotted together with uscn.pred. Figure 11.5 shows the forecasts
produced from the VAR(1) fit to the US/CN exchange rate data2. At the
beginning of the forecast horizon the spot return is below its estimated
mean value, and the forward premium is above its mean values. The spot
return forecasts start o negative and grow slowly toward the mean, and the
forward premium forecasts decline sharply toward the mean. The forecast
standard errors for both sets of forecasts, however, are fairly large.

2Notice that the dates associated with the forecasts are not shown. This is the result
of “timeDate” objects not having a well defined frequency from which to extrapolate
dates.

402 11. Vector Autoregressive Models for Multivariate Time Series

-0
.0

1
0.

0
0.

01

235 240 245 250 255

dspot

-0
.0

02
-0

.0
01

0.
0

235 240 245 250 255

fp

index

va
lu

es

FIGURE 11.5. Predicted values from VAR(1) model fit to US/CN exchange rate
data.

11.3.2 Simulation-Based Forecasting

The previous subsection showed how to generate multivariate forecasts from
a fitted VAR model, using the chain-rule of forecasting (11.8). Since the
multivariate forecast errors (11.9) are asymptotically normally distributed
with covariance matrix (11.10), the forecasts of Y + can be simulated
by generating multivariate normal random variables with mean zero and
covariance matrix (11.10). These simulation-based forecasts can be ob-
tained by setting the optional argument method to "mc" in the call to
predict.VAR.
When method="mc", the multivariate normal random variables are ac-

tually generated as a vector of standard normal random variables scaled
by the Cholesky factor of the covariance matrix (11.10). Instead of using
standard normal random variables, one could also use the standardized
residuals from the fitted VAR model. Simulation-based forecasts based on
this approach are obtained by setting the optional argument method to
"bootstrap" in the call to predict.VAR.

Example 67 Simulation-based forecasts of exchange rate data from bivari-
ate VAR

The -step forecasts (= 1 12) for + and + using the Monte
Carlo simulation method are

11.3 Forecasting 403

> uscn.pred.MC = predict(var1.fit,n.predict=12,method="mc")

> summary(uscn.pred.MC)

Predicted Values with Standard Errors:

dspot fp

1-step-ahead -0.0032 -0.0005

(std.err) 0.0133 0.0009

2-step-ahead -0.0026 -0.0006

(std.err) 0.0133 0.0012

...

12-step-ahead -0.0013 -0.0013

(std.err) 0.0139 0.0015

TheMonte Carlo forecasts and forecast standard errors for + are almost
identical to those computed using the chain-rule of forecasting. The Monte
Carlo forecasts for + are slightly di erent and the forecast standard
errors are slightly larger than the corresponding values computed from the
chain-rule.
The -step forecasts computed from the bootstrap simulation method

are

> uscn.pred.boot = predict(var1.fit,n.predict=12,

+ method="bootstrap")

> summary(uscn.pred.boot)

Predicted Values with Standard Errors:

dspot fp

1-step-ahead -0.0020 -0.0005

(std.err) 0.0138 0.0009

2-step-ahead -0.0023 -0.0007

(std.err) 0.0140 0.0012

...

12-step-ahead -0.0023 -0.0013

(std.err) 0.0145 0.0015

As with the Monte Carlo forecasts, the bootstrap forecasts and forecast
standard errors for + are almost identical to those computed using the
chain-rule of forecasting. The bootstrap forecasts for + are slightly
di erent from the chain-rule and Monte Carlo forecasts. In particular, the
bootstrap forecast standard errors are larger than corresponding values
from the chain-rule and Monte Carlo methods.
The simulation-based forecasts described above are di erent from the

traditional simulation-based approach taken in VAR literature, e.g., see

404 11. Vector Autoregressive Models for Multivariate Time Series

Runkle (1987). The traditional approach is implemented using the following
procedure:

1. Obtain VAR coe cient estimates and residuals .

2. Simulate the fitted VAR model by Monte Carlo simulation or by
bootstrapping the fitted residuals ˆ .

3. Obtain new estimates of and forecasts of Y + based on the sim-
ulated data.

The above procedure is repeated many times to obtain simulation-based
forecasts as well as their confidence intervals. To illustrate this approach,
generate 12-step ahead forecasts from the fitted VAR object var1.fit by
Monte Carlo simulation using the S+FinMetrics function simulate.VAR
as follows:

> set.seed(10)

> n.pred=12

> n.sim=100

> sim.pred = array(0,c(n.sim, n.pred, 2))

> y0 = seriesData(var1.fit$Y0)

> for (i in 1:n.sim) {

+ dat = simulate.VAR(var1.fit,n=243)

+ dat = rbind(y0,dat)

+ mod = VAR(dat~ar(1))

+ sim.pred[i,,] = predict(mod,n.pred)$values

+ }

The simulation-based forecasts are obtained by averaging the simulated
forecasts:

> colMeans(sim.pred)

[,1] [,2]

[1,] -0.0017917 -0.0012316

[2,] -0.0017546 -0.0012508

[3,] -0.0017035 -0.0012643

[4,] -0.0016800 -0.0012741

[5,] -0.0016587 -0.0012814

[6,] -0.0016441 -0.0012866

[7,] -0.0016332 -0.0012904

[8,] -0.0016253 -0.0012932

[9,] -0.0016195 -0.0012953

[10,] -0.0016153 -0.0012967

[11,] -0.0016122 -0.0012978

[12,] -0.0016099 -0.0012986

11.3 Forecasting 405

Comparing these forecasts with those in uscn.pred computed earlier, one
can see that for the first few forecasts, these simulated forecasts are slightly
di erent from the asymptotic forecasts. However, at larger steps, they ap-
proach the long run stable values of the asymptotic forecasts.

Conditional Forecasting

The forecasts algorithms considered up to now are unconditional multivari-
ate forecasts. However, sometimes it is desirable to obtain forecasts of some
variables in the system conditional on some knowledge of the future path
of other variables in the system. For example, when forecasting multivari-
ate macroeconomic variables using quarterly data from a VAR model, it
may happen that some of the future values of certain variables in the VAR
model are known, because data on these variables are released earlier than
data on the other variables. By incorporating the knowledge of the future
path of certain variables, in principle it should be possible to obtain more
reliable forecasts of the other variables in the system. Another use of con-
ditional forecasting is the generation of forecasts conditional on di erent
“policy” scenarios. These scenario-based conditional forecasts allow one to
answer the question: if something happens to some variables in the system
in the future, how will it a ect forecasts of other variables in the future?
S+FinMetrics provides a generic function cpredict for computing con-

ditional forecasts, which has a method cpredict.VAR for “VAR” objects.
The algorithms in cpredict.VAR are based on the conditional forecast-
ing algorithms described in Waggoner and Zha (1999). Waggoner and Zha
classified conditional information into “hard” conditions and “soft condi-
tions”. The hard conditions restrict the future values of certain variables at
fixed values, while the soft conditions restrict the future values of certain
variables in specified ranges. The arguments taken by cpredict.VAR are:

> args(cpredict.VAR)

function(object, n.predict = 1, newdata = NULL, olddata = NULL,

method = "mc", unbiased = T, variables.conditioned =

NULL, steps.conditioned = NULL, upper = NULL, lower =

NULL, middle = NULL, seed = 100, n.sim = 1000)

Like most predict methods in S-PLUS, the first argument must be a fitted
model object, while the second argument, n.predict, specifies the number
of steps to predict ahead. The arguments newdata and olddata can usually
be safely ignored, unless exogenous variables were used in fitting the model.
With classical forecasts that ignore the uncertainty in coe cient esti-

mates, hard conditional forecasts can be obtained in closed form as shown
by Doan, Litterman and Sims (1984), and Waggoner and Zha (1999). To
obtain hard conditional forecasts, the argument middle is used to specify
fixed values of certain variables at certain steps. For example, to fix the

406 11. Vector Autoregressive Models for Multivariate Time Series

1-step ahead forecast of dspot in var1.fit at -0.005 and generate other
predictions for 2-step ahead forecasts, use the following command:

> cpredict(var1.fit, n.predict=2, middle=-0.005,

+ variables="dspot", steps=1)

Predicted Values:

dspot fp

1-step-ahead -0.0050 -0.0005

2-step-ahead -0.0023 -0.0007

In the call to cpredict, the optional argument variables is used to specify
the restricted variables, and steps to specify the restricted steps.
To specify a soft condition, the optional arguments upper and lower

are used to specify the upper bound and lower bound, respectively, of a
soft condition. Since closed form results are not available for soft condi-
tional forecasts, either Monte Carlo simulation or bootstrap methods are
used to obtain the actual forecasts. The simulations follow a similar proce-
dure implemented in the function predict.VAR, except that a reject/accept
method to sample from the distribution conditional on the soft conditions
is used. For example, to restrict the range of the first 2-step ahead forecasts
of dspot to be (0 004 0 001) use:

> cpredict(var1.fit, n.predict=2, lower=c(-0.004, -0.004),

+ upper=c(-0.001, -0.001), variables="dspot",

+ steps=c(1,2))

Predicted Values:

dspot fp

1-step-ahead -0.0027 -0.0003

2-step-ahead -0.0029 -0.0005

11.4 Structural Analysis

The general VAR() model has many parameters, and they may be di cult
to interpret due to complex interactions and feedback between the variables
in the model. As a result, the dynamic properties of a VAR() are often
summarized using various types of structural analysis. The three main types
of structural analysis summaries are (1) Granger causality tests ; (2) impulse
response functions; and (3) forecast error variance decompositions. The
following sections give brief descriptions of these summary measures.

11.4 Structural Analysis 407

11.4.1 Granger Causality

One of the main uses of VAR models is forecasting. The structure of the
VAR model provides information about a variable’s or a group of variables’
forecasting ability for other variables. The following intuitive notion of a
variable’s forecasting ability is due to Granger (1969). If a variable, or
group of variables, 1 is found to be helpful for predicting another variable,
or group of variables, 2 then 1 is said to Granger-cause 2; otherwise it
is said to fail to Granger-cause 2. Formally, 1 fails to Granger-cause 2

if for all 0 the MSE of a forecast of 2 + based on (2 2 1) is
the same as the MSE of a forecast of 2 + based on (2 2 1) and
(1 1 1). Clearly, the notion of Granger causality does not imply
true causality. It only implies forecasting ability.

Bivariate VAR Models

In a bivariate VAR() model for Y = (1 2)
0, 2 fails to Granger-cause

1 if all of the VAR coe cient matrices 1 are lower triangular.
That is, the VAR() model has the formµ

1

2

¶
=

µ
1

2

¶
+

µ
1
11 0
1
21

1
22

¶µ
1 1

2 1

¶
+ · · ·

+

µ
11 0

21 22

¶µ
1

2

¶
+

µ
1

2

¶
so that all of the coe cients on lagged values of 2 are zero in the equation
for 1. Similarly, 1 fails to Granger-cause 2 if all of the coe cients on
lagged values of 1 are zero in the equation for 2. The linear coe cient
restrictions implied by Granger non-causality may be tested using the Wald
statistic (11.5). Notice that if 2 fails to Granger-cause 1 and 1 fails
to Granger-cause 2, then the VAR coe cient matrices 1 are
diagonal.

General VAR Models

Testing for Granger non-causality in general variable VAR() models
follows the same logic used for bivariate models. For example, consider a
VAR() model with = 3 and Y = (1 2 3)

0. In this model, 2 does
not Granger-cause 1 if all of the coe cients on lagged values of 2 are zero
in the equation for 1. Similarly, 3 does not Granger-cause 1 if all of the
coe cients on lagged values of 3 are zero in the equation for 1. These
simple linear restrictions may be tested using the Wald statistic (11.5). The
reader is encouraged to consult Lütkepohl (1991) or Hamilton (1994) for
more details and examples.

Example 68 Testing for Granger causality in bivariate VAR(2) model for
exchange rates

408 11. Vector Autoregressive Models for Multivariate Time Series

Consider testing for Granger causality in a bivariate VAR(2) model for
Y = ()0. Using the notation of (11.2), does not Granger cause

if 1
12 = 0 and

2
12 = 0. Similarly, does not Granger cause if

1
21 = 0 and 2

21 = 0. These hypotheses are easily tested using the Wald
statistic (11.5). The restriction matrix R for the hypothesis that does
not Granger cause is

R =

µ
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0

¶
and the matrix for the hypothesis that does not Granger cause is

R =

µ
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0

¶
The S-PLUS commands to compute and evaluate these Granger causality
Wald statistics are

> var2.fit = VAR(cbind(dspot,fp)~ar(2),data=uscn.ts)

> # H0: fp does not Granger cause dspot

> R = matrix(c(0,0,1,0,0,0,0,0,0,0,

+ 0,0,0,0,1,0,0,0,0,0),

+ 2,10,byrow=T)

> vecPi = as.vector(coef(var2.fit))

> avar = R%*%vcov(var2.fit)%*%t(R)

> wald = t(R%*%vecPi)%*%solve(avar)%*%(R%*%vecPi)

> wald

[,1]

[1,] 8.468844

> 1-pchisq(wald,2)

[1] 0.01448818

> R = matrix(c(0,0,0,0,0,0,1,0,0,0,

+ 0,0,0,0,0,0,0,0,1,0),

+ 2,10,byrow=T)

> vecPi = as.vector(coef(var2.fit))

> avar = R%*%vcov(var2.fit)%*%t(R)

> wald = t(R%*%vecPi)%*%solve(avar)%*%(R%*%vecPi)

> wald

[,1]

[1,] 6.157

> 1-pchisq(wald,2)

[1] 0.04604

The -values for the Wald tests indicate a fairly strong rejection of the null
that does not Granger cause but only a weak rejection of the null
that does not Granger cause . Hence, lagged values of appear

11.4 Structural Analysis 409

to be useful for forecasting future values of and lagged values of
appear to be useful for forecasting future values of .

11.4.2 Impulse Response Functions

Any covariance stationary VAR() process has a Wold representation of
the form

Y = µ+ + 1 1 + 2 2 + · · · (11.11)

where the (×) moving average matrices are determined recursively
using (11.6). It is tempting to interpret the ()-th element, , of the
matrix as the dynamic multiplier or impulse response

+
= = = 1

However, this interpretation is only possible if var() = is a diagonal
matrix so that the elements of are uncorrelated. One way to make the
errors uncorrelated is to follow Sims (1980) and estimate the triangular
structural VAR() model

1 = 1 +
0
11Y 1+ · · ·+ 0

1 Y + 1 (11.12)

2 = 1 + 21 1 +
0
21Y 1+ · · ·+ 0

2 Y + 2

3 = 1 + 31 1 + 32 2 +
0
31Y 1+ · · ·+ 0

3 Y + 3

...

= 1 + 1 1 + · · ·+ 1 1 + 0
1Y 1+ · · ·+ 0 Y +

In matrix form, the triangular structural VAR() model is

BY = c+ 1Y 1 + 2Y 2 + · · ·+ Y + (11.13)

where

B =

1 0 · · · 0

21 1 0 0
...

...
. . .

...

1 2 · · · 1

(11.14)

is a lower triangular matrix with 10 along the diagonal. The algebra of
least squares will ensure that the estimated covariance matrix of the error
vector is diagonal. The uncorrelated/orthogonal errors are referred
to as structural errors.
The triangular structural model (11.12) imposes the recursive causal or-

dering

1 2 · · · (11.15)

410 11. Vector Autoregressive Models for Multivariate Time Series

The ordering (11.15) means that the contemporaneous values of the vari-
ables to the left of the arrow a ect the contemporaneous values of the
variables to the right of the arrow but not vice-versa. These contempora-
neous e ects are captured by the coe cients in (11.12). For example,
the ordering 1 2 3 imposes the restrictions: 1 a ects 2 and 3

but 2 and 3 do not a ect 1; 2 a ects 3 but 3 does not a ect 2 .
Similarly, the ordering 2 3 1 imposes the restrictions: 2 a ects

3 and 1 but 3 and 1 do not a ect 2; 3 a ects 1 but 1 does not
a ect 3 . For a VAR() with variables there are ! possible recursive
causal orderings. Which ordering to use in practice depends on the context
and whether prior theory can be used to justify a particular ordering. Re-
sults from alternative orderings can always be compared to determine the
sensitivity of results to the imposed ordering.
Once a recursive ordering has been established, the Wold representation

of Y based on the orthogonal errors is given by

Y = µ+ 0 + 1 1 + 2 2 + · · · (11.16)

where 0 = B 1 is a lower triangular matrix. The impulse responses to
the orthogonal shocks are

+
= = = 1 ; 0 (11.17)

where is the () th element of . A plot of against is called the
orthogonal impulse response function (IRF) of with respect to . With
variables there are 2 possible impulse response functions.
In practice, the orthogonal IRF (11.17) based on the triangular VAR()

(11.12) may be computed directly from the parameters of the non triangular
VAR() (11.1) as follows. First, decompose the residual covariance matrix
as

= ADA0

whereA is an invertible lower triangular matrix with 10 along the diagonal
and D is a diagonal matrix with positive diagonal elements. Next, define
the structural errors as

= A 1

These structural errors are orthogonal by construction since var() =
A 1 A 10= A 1ADA0A 10= D. Finally, re-express the Wold represen-
tation (11.11) as

Y = µ+AA 1 + 1AA
1

1 + 2AA
1

2 + · · ·
= µ+ 0 + 1 1 + 2 2 + · · ·

where = A. Notice that the structural B matrix in (11.13) is equal
to A 1.

11.4 Structural Analysis 411

Computing the Orthogonal Impulse Response Function Using the
S+FinMetrics Function impRes

The orthogonal impulse response function (11.17) from a triangular struc-
tural VAR model (11.13) may be computed using the S+FinMetrics func-
tion impRes. The function impRes has arguments

> args(impRes)

function(x, period = NULL, std.err = "none", plot = F,

unbiased = T, order = NULL, ...)

where x is an object of class “VAR” and period specifies the number of
responses to compute. By default, no standard errors for the responses
are computed. To compute asymptotic standard errors for the responses,
specify std.err="asymptotic". To create a panel plot of all the response
functions, specify plot=T. The default recursive causal ordering is based on
the ordering of the variables in Y when the VAR model is fit. The optional
argument order may be used to specify a di erent recursive causal order-
ing for the computation of the impulse responses. The argument order ac-
cepts a character vector of variable names whose order defines the recursive
causal ordering. The output of impRes is an object of class “impDecomp” for
which there are print, summary and plot methods. The following example
illustrates the use of impRes.

Example 69 IRF from VAR(1) for exchange rates

Consider again the VAR(1) model for Y = ()0. For the impulse
response analysis, the initial ordering of the variables imposes the assump-
tion that structural shocks to have no contemporaneous e ect on
but structural shocks to do have a contemporaneous e ect on . To
compute the four impulse response functions

+

1

+

2

+

1

+

2

for = 1 12 we use S+FinMetrics function impRes. The first twelve
impulse responses from the VAR(1) model for exchange rates are computed
using

> uscn.irf = impRes(var1.fit, period=12, std.err="asymptotic")

The print method shows the impulse response values without standard
errors:

> uscn.irf

Impulse Response Function:

(with responses in rows, and innovations in columns)

412 11. Vector Autoregressive Models for Multivariate Time Series

, , lag.0

dspot fp

dspot 0.0136 0.0000

fp 0.0000 0.0009

, , lag.1

dspot fp

dspot -0.0018 -0.0013

fp 0.0001 0.0007

, , lag.2

dspot fp

dspot 0.0000 -0.0009

fp 0.0001 0.0006

...

, , lag.11

dspot fp

dspot 0.0000 -0.0001

fp 0.0000 0.0001

The summary method will display the responses with standard errors and
t-statistics. The plot method will produce a four panel Trellis graphics
plot of the impulse responses

> plot(uscn.irf)

A plot of the impulse responses can also be created in the initial call to
impRes by using the optional argument plot=T.
Figure 11.6 shows the impulse response functions along with asymptotic

standard errors. The top row shows the responses of to the structural
shocks, and the bottom row shows the responses of to the structural
shocks. In response to the first structural shock, 1 , initially increases
but then drops quickly to zero after 2 months. Similarly, initially in-
creases, reaches its peak response in 2 months and then gradually drops
o to zero after about a year. In response to the second shock, 2 , by
assumption has no initial response. At one month, a sharp drop occurs
in followed by a gradual return to zero after about a year. In contrast,

initially increases and then gradually drops to zero after about a year.
The orthogonal impulse responses in Figure 11.6 are based on the recur-

sive causal ordering . It must always be kept in mind that this
ordering identifies the orthogonal structural shocks 1 and 2 . If the or-
dering is reversed, then a di erent set of structural shocks will be identified,
and these may give very di erent impulse response functions. To compute

11.4 Structural Analysis 413

0.
0

0.
00

01
0

0.
00

02
0

0 2 4 6 8 10

Inno.: dspot
Resp.: fp

0.
0

0.
00

04
0.

00
08

Inno.: fp
Resp.: fp

0.
0

0.
00

5
0.

01
0

Inno.: dspot
Resp.: dspot

-0
.0

01
5

-0
.0

00
5

0.
0

0 2 4 6 8 10

Inno.: fp
Resp.: dspot

Steps

Im
pu

ls
e

R
es

po
ns

e

Orthogonal Impulse Response Function

FIGURE 11.6. Impulse response function from VAR(1) model fit to US/CN ex-
change rate data with ordered first.

the orthogonal impulse responses using the alternative ordering
specify order=c("fp","dspot") in the call to impRes:

> uscn.irf2 = impRes(var1.fit,period=12,std.err="asymptotic",

+ order=c("fp","dspot"),plot=T)

These impulse responses are presented in Figure 11.7 and are almost iden-
tical to those computed using the ordering . The reason for this
response is that the reduced form VAR residuals ˆ1 and ˆ2 are almost
uncorrelated. To see this, the residual correlation matrix may be computed
using

> sd.vals = sqrt(diag(var1.fit$Sigma))

> cor.mat = var1.fit$Sigma/outer(sd.vals,sd.vals)

> cor.mat

dspot fp

dspot 1.000000 0.033048

fp 0.033048 1.000000

Because of the near orthogonality in the reduced form VAR errors, the
error in the equation may be interpreted as an orthogonal shock to the
exchange rate and the error in the equation may be interpreted as an
orthogonal shock to the forward premium.

414 11. Vector Autoregressive Models for Multivariate Time Series

-0
.0

02
0

-0
.0

00
5

0.
00

10

0 2 4 6 8 10

Inno.: fp
Resp.: dspot

0.
0

0.
00

5
0.

01
0

Inno.: dspot
Resp.: dspot0.

0
0.

00
04

0.
00

08
Inno.: fp
Resp.: fp

0.
0

0.
00

00
5

0.
00

01
5

0 2 4 6 8 10

Inno.: dspot
Resp.: fp

Steps

Im
pu

ls
e

R
es

po
ns

e

Orthogonal Impulse Response Function

FIGURE 11.7. Impulse response function from VAR(1) model fit to US/CN ex-
change rate with ordered first.

11.4.3 Forecast Error Variance Decompositions

The forecast error variance decomposition (FEVD) answers the question:
what portion of the variance of the forecast error in predicting + is
due to the structural shock ? Using the orthogonal shocks the -step
ahead forecast error vector, with known VAR coe cients, may be expressed
as

Y + Y + | =
1X

=0

+

For a particular variable + , this forecast error has the form

+ + | =
1X

=0

1 1 + + · · ·+
1X

=0

+

Since the structural errors are orthogonal, the variance of the -step fore-
cast error is

var(+ + |) = 2
1

1X
=0

(1)
2
+ · · ·+ 2

1X
=0

()
2

11.4 Structural Analysis 415

where 2 = var(). The portion of var(+ + |) due to shock
is then

FEVD () =

2
P 1

=0

¡ ¢2
2
1

P 1
=0 (1)

2 + · · ·+ 2
P 1

=0 ()2
= 1

(11.18)
In a VAR with variables there will be 2 FEVD () values. It must be
kept in mind that the FEVD in (11.18) depends on the recursive causal or-
dering used to identify the structural shocks and is not unique. Di erent
causal orderings will produce di erent FEVD values.

Computing the FEVD Using the S+FinMetrics Function fevDec

Once a VAR model has been fit, the S+FinMetrics function fevDec may
be used to compute the orthogonal FEVD. The function fevDec has argu-
ments

> args(fevDec)

function(x, period = NULL, std.err = "none", plot = F,

unbiased = F, order = NULL, ...)

where x is an object of class “VAR” and period specifies the number of
responses to compute. By default, no standard errors for the responses
are computed and no plot is created. To compute asymptotic standard
errors for the responses, specify std.err="asymptotic" and to plot the
decompositions, specify plot=T. The default recursive causal ordering is
based on the ordering of the variables inY when the VAR model is fit. The
optional argument ordermay be used to specify a di erent recursive causal
ordering for the computation of the FEVD. The argument order accepts
a text string vector of variable names whose order defines the recursive
causal ordering. The output of fevDec is an object of class “impDecomp”
for which there are print, summary and plot methods. The use of fevDec
is illustrated with the following example.

Example 70 FEVD from VAR(1) for exchange rates

The orthogonal FEVD of the forecast errors from the VAR(1) model
fit to the US/CN exchange rate data using the recursive causal ordering

is computed using

> uscn.fevd = fevDec(var1.fit,period=12,

+ std.err="asymptotic")

> uscn.fevd

Forecast Error Variance Decomposition:

(with responses in rows, and innovations in columns)

416 11. Vector Autoregressive Models for Multivariate Time Series

, , 1-step-ahead

dspot fp

dspot 1.0000 0.0000

fp 0.0011 0.9989

, , 2-step-ahead

dspot fp

dspot 0.9907 0.0093

fp 0.0136 0.9864

...

, , 12-step-ahead

dspot fp

dspot 0.9800 0.0200

fp 0.0184 0.9816

The summary method adds standard errors to the above output if they are
computed in the call to fevDec. The plot method produces a four panel
Trellis graphics plot of the decompositions:

> plot(uscn.fevd)

The FEVDs in Figure 11.8 show that most of the variance of the forecast
errors for + at all horizons is due to the orthogonal innovations.
Similarly, most of the variance of the forecast errors for + is due to the
orthogonal innovations.
The FEVDs using the alternative recursive causal ordering

are computed using

> uscn.fevd2 = fevDec(var1.fit,period=12,

+ std.err="asymptotic",order=c("fp","dspot"),plot=T)

and are illustrated in Figure 11.9. Since the residual covariance matrix is
almost diagonal (see analysis of IRF above), the FEVDs computed using
the alternative ordering are almost identical to those computed with the
initial ordering.

11.5 An Extended Example

In this example the causal relations and dynamic interactions among monthly
real stock returns, real interest rates, real industrial production growth and
the inflation rate is investigated using a VAR model. The analysis is similar
to that of Lee (1992). The variables are in the S+FinMetrics “timeSeries”
object varex.ts

> colIds(varex.ts)

11.5 An Extended Example 417

0.
0

0.
01

0.
02

0.
03

0.
04

2 4 6 8 10 12

Inno.: dspot
Resp.: fp

0.
96

0.
97

0.
98

0.
99

1.
00

Inno.: fp
Resp.: fp

0.
97

0.
98

0.
99

1.
00

Inno.: dspot
Resp.: dspot

0.
0

0.
01

0.
02

0.
03

2 4 6 8 10 12

Inno.: fp
Resp.: dspot

Forecast Steps

Pr
op

or
tio

n
of

 V
ar

ia
nc

e
C

on
tri

bu
tio

n

Forecast Error Variance Decomposition

FIGURE 11.8. Orthogonal FEVDs computed from VAR(1) model fit to US/CN
exchange rate data using the recursive causal ordering with first.

[1] "MARKET.REAL" "RF.REAL" "INF" "IPG"

Details about the data are in the documentation slot of varex.ts

> varex.ts@documentation

To be comparable to the results in Lee (1992), the analysis is conducted
over the postwar period January 1947 through December 1987

> smpl = (positions(varex.ts) >= timeDate("1/1/1947") &

+ positions(varex.ts) < timeDate("1/1/1988"))

The data over this period is displayed in Figure 11.10. All variables appear
to be (0), but the real T-bill rate and the inflation rate appear to be highly
persistent.
To begin the analysis, autocorrelations and cross correlations at leads

and lags are computed using

> varex.acf = acf(varex.ts[smpl,])

and are illustrated in Figure 11.11. The real return on the market shows a
significant positive first lag autocorrelation, and inflation appears to lead
the real market return with a negative sign. The real T-bill rate is highly
positively autocorrelated, and inflation appears to lead the real T-bill rate
strongly with a negative sign. Inflation is also highly positively autocorre-
lated and, interestingly, the real T-bill rate appears to lead inflation with

418 11. Vector Autoregressive Models for Multivariate Time Series

0.
0

0.
01

0.
02

0.
03

0.
04

2 4 6 8 10 12

Inno.: fp
Resp.: dspot

0.
96

0.
97

0.
98

0.
99

1.
00

Inno.: dspot
Resp.: dspot0.

97
5

0.
98

5
0.

99
5

Inno.: fp
Resp.: fp

0.
0

0.
01

0
0.

02
0

2 4 6 8 10 12

Inno.: dspot
Resp.: fp

Forecast Steps

Pr
op

or
tio

n
of

 V
ar

ia
nc

e
C

on
tri

bu
tio

n

Forecast Error Variance Decomposition

FIGURE 11.9. Orthogonal FEVDs from VAR(1) model fit to US/CN exchange
rate data using recursive causal ordering with first.

a positive sign. Finally, industrial production growth is slightly positively
autocorrelated, and the real market return appears to lead industrial pro-
duction growth with a positive sign.
The VAR() model is fit with the lag length selected by minimizing the

AIC and a maximum lag length of 6 months:

> varAIC.fit = VAR(varex.ts,max.ar=6,criterion="AIC",

+ start="Jan 1947",end="Dec 1987",

+ in.format="%m %Y")

The lag length selected by minimizing AIC is = 2:

> varAIC.fit$info

ar(1) ar(2) ar(3) ar(4) ar(5) ar(6)

AIC -14832 -14863 -14853 -14861 -14855 -14862

> varAIC.fit$ar.order

[1] 2

The results of the VAR(2) fit are

> summary(varAIC.out)

Call:

VAR(data = varex.ts, start = "Jan 1947", end = "Dec 1987",

11.5 An Extended Example 419

Real Return on Market

1930 1950 1970 1990

-0
.3

-0
.1

0.
1

0.
3

Real Interest Rate

1930 1950 1970 1990

-0
.0

15
-0

.0
05

0.
00

5

Industrial Production Growth

1930 1950 1970 1990

-0
.1

0
0.

00
0.

10

Inflation

1930 1950 1970 1990

-0
.0

2
0.

02
0.

05

FIGURE 11.10. Monthly data on stock returns, interest rates, output growth and
inflation.

max.ar = 6, criterion = "AIC", in.format = "%m %Y")

Coefficients:

MARKET.REAL RF.REAL INF IPG

(Intercept) 0.0074 0.0002 0.0010 0.0019

(std.err) 0.0023 0.0001 0.0002 0.0007

(t.stat) 3.1490 4.6400 4.6669 2.5819

MARKET.REAL.lag1 0.2450 0.0001 0.0072 0.0280

(std.err) 0.0470 0.0011 0.0042 0.0146

(t.stat) 5.2082 0.0483 1.7092 1.9148

RF.REAL.lag1 0.8146 0.8790 0.5538 0.3772

(std.err) 2.0648 0.0470 0.1854 0.6419

(t.stat) 0.3945 18.6861 2.9867 0.5877

INF.lag1 -1.5020 -0.0710 0.4616 -0.0722

(std.err) 0.4932 0.0112 0.0443 0.1533

(t.stat) -3.0451 -6.3147 10.4227 -0.4710

MARKET.REAL RF.REAL INF IPG

IPG.lag1 -0.0003 0.0031 -0.0143 0.3454

420 11. Vector Autoregressive Models for Multivariate Time Series

 MARKET.REAL

AC
F

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 MARKET.REAL and RF.REAL

0 5 10 15 20

-0
.0

5
0.

0
0.

05

 MARKET.REAL and INF

0 5 10 15 20

-0
.2

0
-0

.1
5

-0
.1

0
-0

.0
5

0.
0

0.
05

0.
10 MARKET.REAL and IPG

0 5 10 15 20

-0
.1

5
-0

.1
0

-0
.0

5
0.

0
0.

05

 RF.REAL and MARKET.REAL

AC
F

-20 -15 -10 -5 0

-0
.0

5
0.

0
0.

05
0.

10

 RF.REAL

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 RF.REAL and INF

0 5 10 15 20

-0
.3

-0
.2

-0
.1

0.
0

0.
1 RF.REAL and IPG

0 5 10 15 20

-0
.0

5
0.

0
0.

05
0.

10

 INF and MARKET.REAL

AC
F

-20 -15 -10 -5 0

-0
.1

5
-0

.1
0

-0
.0

5
0.

0
0.

05

 INF and RF.REAL

-20 -15 -10 -5 0

-0
.1

5
-0

.1
0

-0
.0

5
0.

0
0.

05
0.

10

 INF

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 INF and IPG

0 5 10 15 20

-0
.0

5
0.

0
0.

05

 IPG and MARKET.REAL

Lag

AC
F

-20 -15 -10 -5 0-0
.1

0
-0

.0
5

0.
0

0.
05

0.
10

0.
15

0.
20

 IPG and RF.REAL

Lag-20 -15 -10 -5 0

-0
.0

5
0.

0
0.

05

 IPG and INF

Lag-20 -15 -10 -5 0

-0
.2

0
-0

.1
5

-0
.1

0
-0

.0
5

0.
0

0.
05

 IPG

Lag0 5 10 15 20

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FIGURE 11.11. Autocorrelations and cross correlations at leads and lags of data
in VAR model.

(std.err) 0.1452 0.0033 0.0130 0.0452

(t.stat) -0.0018 0.9252 -1.0993 7.6501

MARKET.REAL.lag2 -0.0500 0.0022 -0.0066 0.0395

(std.err) 0.0466 0.0011 0.0042 0.0145

(t.stat) -1.0727 2.0592 -1.5816 2.7276

RF.REAL.lag2 -0.3481 0.0393 -0.5855 -0.3289

(std.err) 1.9845 0.0452 0.1782 0.6169

(t.stat) -0.1754 0.8699 -3.2859 -0.5331

INF.lag2 -0.0602 0.0079 0.2476 -0.0370

(std.err) 0.5305 0.0121 0.0476 0.1649

(t.stat) -0.1135 0.6517 5.1964 -0.2245

MARKET.REAL RF.REAL INF IPG

IPG.lag2 -0.1919 0.0028 0.0154 0.0941

(std.err) 0.1443 0.0033 0.0130 0.0449

(t.stat) -1.3297 0.8432 1.1868 2.0968

Regression Diagnostics:

MARKET.REAL RF.REAL INF IPG

11.5 An Extended Example 421

R-squared 0.1031 0.9299 0.4109 0.2037

Adj. R-squared 0.0882 0.9287 0.4011 0.1905

Resid. Scale 0.0334 0.0008 0.0030 0.0104

Information Criteria:

logL AIC BIC HQ

7503 -14935 -14784 -14875

total residual

Degree of freedom: 489 480

Time period: from Mar 1947 to Nov 1987

The signs of the statistically significant coe cient estimates corroborate
the informal analysis of the multivariate autocorrelations and cross lag au-
tocorrelations. In particular, the real market return is positively related to
its own lag but negatively related to the first lag of inflation. The real T-bill
rate is positively related to its own lag, negatively related to the first lag of
inflation, and positively related to the first lag of the real market return. In-
dustrial production growth is positively related to its own lag and positively
related to the first two lags of the real market return. Judging from the
coe cients it appears that inflation Granger causes the real market return
and the real T-bill rate, the real T-bill rate Granger causes inflation, and
the real market return Granger causes the real T-bill rate and industrial
production growth. These observations are confirmed with formal tests for
Granger non-causality. For example, the Wald statistic for testing the null
hypothesis that the real market return does not Granger-cause industrial
production growth is

> bigR = matrix(0,2,36)

> bigR[1,29]=bigR[2,33]=1

> vecPi = as.vector(coef(varAIC.fit))

> avar = bigR%*%vcov(varAIC.fit)%*%t(bigR)

> wald = t(bigR%*%vecPi)%*%solve(avar)%*%(bigR%*%vecPi)

> as.numeric(wald)

[1] 13.82

> 1-pchisq(wald,2)

[1] 0.0009969

The 24-period IRF using the recursive causal ordering MARKET.REAL
RF.REAL IPG INF is computed using

> varAIC.irf = impRes(varAIC.fit,period=24,

+ order=c("MARKET.REAL","RF.REAL","IPG","INF"),

+ std.err="asymptotic",plot=T)

and is illustrated in Figure 11.12. The responses of MARKET.REAL to unex-
pected orthogonal shocks to the other variables are given in the first row of

422 11. Vector Autoregressive Models for Multivariate Time Series

-0
.0

00
3

0.
0

0.
00

02

0 5 10 15 20

Inno.: MARKET.REAL
Resp.: INF

0.
0

0.
00

04

Inno.: RF.REAL
Resp.: INF

-0
.0

00
2

0.
0

0.
00

02

0 5 10 15 20

Inno.: IPG
Resp.: INF

0.
0

0.
00

15
0.

00
30 Inno.: INF

Resp.: INF

0.
0

0.
00

10
0.

00
25 Inno.: MARKET.REAL

Resp.: IPG

-0
.0

00
2

0.
00

04

Inno.: RF.REAL
Resp.: IPG

0.
0

0.
00

4
0.

00
8

Inno.: IPG
Resp.: IPG

-0
.0

01
0

-0
.0

00
4

0.
00

02 Inno.: INF
Resp.: IPG-1

.5
*1

0^
-4

0

Inno.: MARKET.REAL
Resp.: RF.REAL

0.
00

02
0.

00
06

Inno.: RF.REAL
Resp.: RF.REAL

-2
*1

0^
-5

6*
10

^-
5

Inno.: IPG
Resp.: RF.REAL

-0
.0

00
4

-0
.0

00
1

Inno.: INF
Resp.: RF.REAL

0.
0

0.
01

0.
03

Inno.: MARKET.REAL
Resp.: MARKET.REAL

-0
.0

01
5

0.
0

0.
00

15

0 5 10 15 20

Inno.: RF.REAL
Resp.: MARKET.REAL

-0
.0

03
-0

.0
01

0.
00

1 Inno.: IPG
Resp.: MARKET.REAL

-0
.0

06
-0

.0
03

0.
0

0 5 10 15 20

Inno.: INF
Resp.: MARKET.REAL

Steps

Im
pu

ls
e

R
es

po
ns

e
Orthogonal Impulse Response Function

FIGURE 11.12. IRF using the recursive causal ordering MARKET.REAL RF.REAL

IPG INF.

the figure. Most notable is the strong negative response of MARKET.REAL to
an unexpected increase in inflation. Notice that it takes about ten months
for the e ect of the shock to dissipate. The responses of RF.REAL to the
orthogonal shocks is given in the second row of the figure. RF.REAL also
reacts negatively to an inflation shock and the e ect of the shock is felt for
about two years. The responses of IPG to the orthogonal shocks is given
in the third row of the figure. Industrial production growth responds posi-
tively to an unexpected shock to MARKET.REAL and negatively to shocks to
RF.REAL and INF. These e ects, however, are generally short term. Finally,
the fourth row gives the responses of INF to the orthogonal shocks. Infla-
tion responds positively to a shock to the real T-bill rate, but this e ect is
short-lived.
The 24 month FEVD computed using the recursive causal ordering as

specified by MARKET.REAL RF.REAL IPG INF,

> varAIC.fevd = fevDec(varAIC.out,period=24,

> order=c("MARKET.REAL","RF.REAL","IPG","INF"),

> std.err="asymptotic",plot=T)

11.5 An Extended Example 423

-0
.0

02
0.

00
4

0.
00

8

5 10 15 20

Inno.: MARKET.REAL
Resp.: INF

0.
01

0.
03

0.
05

Inno.: RF.REAL
Resp.: INF

-0
.0

02
0.

00
4

0.
01

0

5 10 15 20

Inno.: IPG
Resp.: INF

0.
94

0.
98

Inno.: INF
Resp.: INF

0.
0

0.
04

Inno.: MARKET.REAL
Resp.: IPG

-0
.0

02
0.

00
4

0.
00

8 Inno.: RF.REAL
Resp.: IPG

0.
90

0.
94

0.
98

Inno.: IPG
Resp.: IPG

0.
0

0.
01

0
0.

02
5

Inno.: INF
Resp.: IPG

0.
01

0.
03

Inno.: MARKET.REAL
Resp.: RF.REAL

0.
5

0.
7

0.
9

Inno.: RF.REAL
Resp.: RF.REAL

-0
.0

05
0.

00
5

0.
01

5

Inno.: IPG
Resp.: RF.REAL

0.
0

0.
2

0.
4

Inno.: INF
Resp.: RF.REAL

0.
94

0.
98

Inno.: MARKET.REAL
Resp.: MARKET.REAL

-0
.0

00
5

0.
00

10

5 10 15 20

Inno.: RF.REAL
Resp.: MARKET.REAL

-0
.0

02
0.

00
4

0.
01

0

Inno.: IPG
Resp.: MARKET.REAL

0.
0

0.
02

0.
04

0.
06

5 10 15 20

Inno.: INF
Resp.: MARKET.REAL

Forecast Steps

Pr
op

or
tio

n
of

 V
ar

ia
nc

e
C

on
tri

bu
tio

n

Forecast Error Variance Decomposition

FIGURE 11.13. FEVDs using the recursive causal ordering MARKET.REAL
RF.REAL IPG INF.

is illustrated in Figure 11.13. The first row gives the variance decom-
positions for MARKET.REAL and shows that most of the variance of the
forecast errors is due to own shocks. The second row gives the decomposi-
tions for RF.REAL. At short horizons, most of the variance is attributable
to own shocks but at long horizons inflation shocks account for almost
half the variance. The third row gives the variance decompositions for IPG.
Most of the variance is due to own shocks and a small fraction is due to
MARKET.REAL shocks. Finally, the fourth row shows that the forecast error
variance of INF is due mostly to its own shocks.
The IRFs and FEVDs computed above depend on the imposed recursive

causal ordering. However, in this example, the ordering of the variables will
have little e ect on the IRFs and FEVDs because the errors in the reduced
form VAR are nearly uncorrelated:

> sd.vals = sqrt(diag(varAIC.out$Sigma))

> cor.mat = varAIC.out$Sigma/outer(sd.vals,sd.vals)

> cor.mat

MARKET.REAL RF.REAL INF IPG

MARKET.REAL 1.00000 -0.16855 -0.04518 0.03916

RF.REAL -0.16855 1.00000 0.13046 0.03318

INF -0.04518 0.13046 1.00000 0.04732

IPG 0.03916 0.03318 0.04732 1.00000

424 11. Vector Autoregressive Models for Multivariate Time Series

11.6 Bayesian Vector Autoregression

VAR models with many variables and long lags contain many parameters.
Unrestricted estimation of these models reqires lots of data and often the
estimated parameters are not very precise, the results are hard to inter-
pret, and forecasts may appear more precise than they really are because
standard error bands do not account for parameter uncertainty. The esti-
mates and forecasts can be improved if one has prior information about
the structure of the model or the possible values of the parameters or func-
tions of the parameters. In a classical framework, it is di cult to incorpo-
rate non-sample information into the estimation. Nonsample information
is easy to incorporate in a Bayesian framework. A Bayesian framework
also naturally incorporates parameter uncertainty into common measures
of precision. This section briefly describes the Bayesian VAR modeling
tools in S+FinMetrics and illustrates these tools with an example. Details
of underlying Bayesian methods are given in Sims and Zha (1998) and Zha
(1998).

11.6.1 An Example of a Bayesian VAR Model

S+FinMetrics comes with a “timeSeries” object policy.dat, which con-
tains six U.S. macroeconomic variables:

> colIds(policy.dat)

[1] "CP" "M2" "FFR" "GDP" "CPI" "U"

which represent IMF’s index of world commodity prices, M2 money stock,
federal funds rate, real GDP, consumer price index for urban consumers,
and civilian unemployment rate. The data set contains monthly observa-
tions from January 1959 to March 1998. Tao Zha and his co-authors have
analyzed this data set in a number of papers, for example see Zha (1998).
To use the same time period as in Zha (1998), create a subset of the data:

> zpolicy.dat = policy.dat[1:264,]

> zpolicy.mat = as.matrix(seriesData(zpolicy.dat))

which contains monthly observations from January 1959 to December
1980.

Estimating a Bayesian VAR Model

To estimate a Bayesian vector autoregression model, use the S+FinMetrics
function BVAR. For macroeconomic modeling, it is usually found that many
trending macroeconomic variables have a unit root, and in some cases,
they may also have a cointegrating relationship (as described in the next
chapter). To incorporate these types of prior beliefs into the model, use
the unit.root.dummy and coint.dummy optional arguments to the BVAR

11.6 Bayesian Vector Autoregression 425

function, which add some dummy observations to the beginning of the data
to reflect these beliefs:

> zpolicy.bar13 = BVAR(zpolicy.mat~ar(13), unit.root=T,

+ coint=T)

> class(zpolicy.bar13)

[1] "BVAR"

The returned object is of class “BVAR”, which inherits from “VAR”, so many
method functions for “VAR” objects work similarly for “BVAR” objects, such
as the extractor functions, impulse response functions, and forecast error
variance decomposition functions.
The Bayesian VAR models are controlled through a set of hyper param-

eters, which can be specified using the optional argument control, which
is usually a list returned by the function BVAR.control. For example, the
tightness of the belief in the unit root prior and cointegration prior is spec-
ified by mu5 and mu6, respectively. To see what default values are used for
these hyper parameters, use

> args(BVAR.control)

function(L0 = 0.9, L1 = 0.1, L2 = 1, L3 = 1, L4 = 0.05,

mu5 = 5, mu6 = 5)

For the meanings of these hyper parameters, see the online help file for
BVAR.control.

Adding Exogenous Variables to the Model

Other exogenous variables can be added to the estimation formula, just
as for OLS and VAR functions. The BVAR function and related functions
will automatically take that into consideration and return the coe cient
estimates for those variables.

Unconditional Forecasts

To forecast from a fitted Bayesian VAR model, use the generic predict
function, which automatically calls the method function predict.BVAR for
an object inheriting from class “BVAR”. For example, to compute 12-step
ahead forecasts use

> zpolicy.bpred = predict(zpolicy.bar13,n.predict=12)

> class(zpolicy.bpred)

[1] "forecast"

> names(zpolicy.bpred)

[1] "values" "std.err" "draws"

> zpolicy.bpred

Predicted Values:

426 11. Vector Autoregressive Models for Multivariate Time Series

4.
5

4.
6

4.
7

4.
8 CP

4.
3

4.
4

4.
5

4.
6

245 250 255 260 265 270 275

CPI

0.
10

0.
12

0.
14

0.
16

0.
18

0.
20

FFR

8.
42

8.
43

8.
44

8.
45

8.
46

8.
47

245 250 255 260 265 270 275

GDP

7.
25

7.
30

7.
35

7.
40

7.
45

M2

0.
06

0.
07

0.
08

0.
09

0.
10

245 250 255 260 265 270 275

U

index

va
lu

es

FIGURE 11.14. Forecasts from Bayesian VAR model.

CP M2 FFR GDP CPI U

1-step-ahead 4.6354 7.3794 0.1964 8.4561 4.4714 0.0725

2-step-ahead 4.6257 7.3808 0.1930 8.4546 4.4842 0.0732

3-step-ahead 4.6247 7.3834 0.1823 8.4505 4.4960 0.0746

4-step-ahead 4.6310 7.3876 0.1670 8.4458 4.5065 0.0763

5-step-ahead 4.6409 7.3931 0.1515 8.4414 4.5160 0.0785

6-step-ahead 4.6503 7.3998 0.1384 8.4394 4.5244 0.0810

7-step-ahead 4.6561 7.4075 0.1309 8.4390 4.5321 0.0833

8-step-ahead 4.6552 7.4159 0.1307 8.4403 4.5397 0.0852

9-step-ahead 4.6496 7.4242 0.1362 8.4428 4.5475 0.0867

10-step-ahead 4.6415 7.4323 0.1451 8.4453 4.5561 0.0879

11-step-ahead 4.6321 7.4402 0.1546 8.4473 4.5655 0.0889

12-step-ahead 4.6232 7.4476 0.1618 8.4482 4.5753 0.0899

The forecasts can also be plotted along with the original data using

> plot(zpolicy.bpred, zpolicy.mat, n.old=20)

The resulting plot is shown in Figure 11.14. The Bayesian forecasts usually
have wider error bands than classical forecasts, because they take into ac-
count the uncertainty in the coe cient estimates. To ignore the uncertainty
in coe cient estimates, one can call the classical VAR predict method
function, predict.VAR, directly instead of the generic predict function.

11.6 Bayesian Vector Autoregression 427

The forecasts from Bayesian VAR models are of class “forecast”, and
are computed using Monte Carlo integration. By default, 1000 simulation
draws are used. To change the number of simulation draws and random
seed, specify the n.sim and seed optional arguments, respectively. For
forecasts from Bayesian VAR models, there is one more component in the
returned object: draws, which contains all the simulated forecasts. This
can be used to assess other statistical properties of the forecasts.

11.6.2 Conditional Forecasts

As mentioned earlier, conditional forecasts from classical VAR models ig-
nore the uncertainty in estimated coe cients. In contrast, conditional fore-
casts from Bayesian VAR models take into account the uncertainty asso-
ciated with estimated coe cients. To perform conditional forecasts from a
fitted Bayesian VAR model, use the generic cpredict function. For exam-
ple, if it is known that FFR in January 1981 is between 0 185 and 0 195, one
can incorporate this (soft condition) information into the forecasts using:

> zpolicy.spred = cpredict(zpolicy.bar13, 12, steps=1,

+ variables="FFR", upper=0.195, lower=0.185)

> zpolicy.spred

Predicted Values:

CP M2 FFR GDP CPI U

1-step-ahead 4.6374 7.3797 0.1910 8.4554 4.4714 0.0729

2-step-ahead 4.6286 7.3816 0.1855 8.4540 4.4840 0.0736

3-step-ahead 4.6279 7.3850 0.1743 8.4498 4.4954 0.0752

4-step-ahead 4.6349 7.3899 0.1587 8.4452 4.5057 0.0768

5-step-ahead 4.6447 7.3960 0.1443 8.4414 4.5149 0.0791

6-step-ahead 4.6525 7.4033 0.1324 8.4406 4.5231 0.0814

7-step-ahead 4.6549 7.4114 0.1270 8.4412 4.5307 0.0835

8-step-ahead 4.6523 7.4201 0.1283 8.4428 4.5383 0.0851

9-step-ahead 4.6453 7.4284 0.1349 8.4457 4.5461 0.0864

10-step-ahead 4.6389 7.4365 0.1432 8.4482 4.5547 0.0876

11-step-ahead 4.6317 7.4444 0.1516 8.4501 4.5641 0.0885

12-step-ahead 4.6264 7.4519 0.1572 8.4511 4.5741 0.0896

For conditional forecasts with soft conditions, a Monte Carlo integra-
tion with acceptance/rejection method is used. By default, 1000 simulation
draws are used. However, it may occur that only a small number of draws
satisfy the soft conditions if the intervals are very tight. To see how many
draws satisfied the soft conditions and thus are used for inference, simply
check the dimension of the draws component of the returned object (see
the on-line help file for forecast.object for details):

428 11. Vector Autoregressive Models for Multivariate Time Series

> dim(zpolicy.spred$draws)

[1] 372 72

In this case, only 372 out of 1000 simulation draws satisfied the con-
ditions. To continue simulating from the posterior moment distribution,
use the same command as before, with seed set to the current value of
.Random.seed:

> zpolicy.spred2 = cpredict(zpolicy.bar13, 12, steps=1,

+ variables="FFR", upper=0.195, lower=0.185, seed=.Random.seed)

> dim(zpolicy.spred2$draws)

[1] 389 72

Note that the draws in zpolicy.spred2 can be combined with the draws
in zpolicy.spred to obtain an updated and more accurate estimate of
conditional forecasts.
To ignore the coe cient uncertainty for the conditional forecasts, call

the classical method function cpredict.VAR directly on a fitted Bayesian
VAR object. The technique introduced above can also be used for classical
prediction with soft conditions.

11.7 References

Campbell, J. A. Lo and C. MacKinlay (1997). The Econometrics of
Financial Markets. Princeton University Press, Princeton, NJ.

Culbertson, K. (1996).Quantitative Financial Economics: Stocks, Bonds
and Foreign Exchange. John Wiley & Sons, Chichester.

Doan, T. A., Litterman, R. B., and Sims, C. A. (1984). “Forecasting
and Conditional Projection Using Realistic Prior Distributions,” Econo-
metric Reviews, 3, 1-100.

Granger, C.W.J. (1969). “Investigating Causal Relations by Economet-
ric Models and Cross Spectral Methods,” Econometrica, 37, 424-438.

Hamilton, J.D. (1994). Time Series Analysis. Princeton University Press,
Princeton, NJ.

Lee, B.-S. (1992). “Causal Relations Among Stock Returns, Interest Rates,
Real Activity, and Inflation,” Journal of Finance, 47, 1591-1603.

Lutkepohl, H. (1991). Introduction to Multiple Time Series Analysis.
Springer-Verlag, Berlin.

11.7 References 429

Lutkepohl, H. (1999). “Vector Autoregressions,” unpublished manuscript,
Institut für Statistik und Ökonometrie,” Humboldt-Universität zu Berlin.

Mills, T.C. (1999). The Econometric Modeling of Financial Time Series,
Second Edition. Cambridge University Press, Cambridge.

Runkle, D. E. (1987). “Vector Autoregressions and Reality,” Journal of
Business and Economic Statistics, 5(4), 437-442.

Sims, C.A. (1980). “Macroeconomics and Reality,” Econometrica, 48, 1-48.

Sims, C. A., and Zha, T. (1998). “Bayesian Methods for Dynamic Mul-
tivariate Models,” International Economic Review, 39(4), 949-968.

Stock, J.H. and M.W. Watson (2001). “Vector Autoregressions,” Jour-
nal of Economic Perspectives, 15, 101-115.

Tsay, R. (2001). Analysis of Financial Time Series. John Wiley & Sons,
New York.

Watson, M. (1994). “Vector Autoregressions and Cointegration,” in R.F.
Engle and D. McFadden (eds.), Handbook of Econometrics, Volume IV.
Elsevier Science Ltd., Amsterdam.

Waggoner, D. F., and Zha, T. (1999). “Conditional Forecasts in Dy-
namic Multivariate Models,” Review of Economics and Statistics, 81(4),
639-651.

Zha, T. (1998). “Dynamic Multivariate Model for Use in Formulating Pol-
icy”, Economic Review, Federal Reserve Bank of Atlanta, First Quarter,
1998.

12
Cointegration

12.1 Introduction

The regression theory of Chapter 6 and the VAR models discussed in the
previous chapter are appropriate for modeling (0) data, like asset returns
or growth rates of macroeconomic time series. Economic theory often im-
plies equilibrium relationships between the levels of time series variables
that are best described as being (1). Similarly, arbitrage arguments imply
that the (1) prices of certain financial time series are linked. This chapter
introduces the statistical concept of cointegration that is required to make
sense of regression models and VAR models with (1) data.
The chapter is organized as follows. Section 12.2 gives an overview of

the concepts of spurious regression and cointegration, and introduces the
error correction model as a practical tool for utilizing cointegration with
financial time series. Section 12.3 discusses residual-based tests for coin-
tegration. Section 12.4 covers regression-based estimation of cointegrating
vectors and error correction models. In Section 12.5, the connection be-
tween VAR models and cointegration is made, and Johansen’s maximum
likelihood methodology for cointegration modeling is outlined. Some tech-
nical details of the Johansen methodology are provided in the appendix to
this chapter.
Excellent textbook treatments of the statistical theory of cointegration

are given in Hamilton (1994), Johansen (1995) and Hayashi (2000). Ap-
plications of cointegration to finance may be found in Campbell, Lo, and

432 12. Cointegration

MacKinlay (1997), Mills (1999), Alexander (2001), Cochrane (2001), and
Tsay (2001).

12.2 Spurious Regression and Cointegration

12.2.1 Spurious Regression

The time series regression model discussed in Chapter 6 required all vari-
ables to be (0). In this case, the usual statistical results for the linear
regression model hold. If some or all of the variables in the regression are
(1) then the usual statistical results may or may not hold1. One important
case in which the usual statistical results do not hold is spurious regres-
sion when all the regressors are (1) and not cointegrated. The following
example illustrates.

Example 71 An illustration of spurious regression using simulated data

Consider two independent and not cointegrated (1) processes 1 and

2 such that

= 1 + where (0 1) = 1 2

Following Granger and Newbold (1974), 250 observations for each series
are simulated and plotted in Figure 12.1 using

> set.seed(458)

> e1 = rnorm(250)

> e2 = rnorm(250)

> y1 = cumsum(e1)

> y2 = cumsum(e2)

> tsplot(y1, y2, lty=c(1,3))

> legend(0, 15, c("y1","y2"), lty=c(1,3))

The data in the graph resemble stock prices or exchange rates. A visual
inspection of the data suggests that the levels of the two series are positively
related. Regressing 1 on 2 reinforces this observation:

> summary(OLS(y1~y2))

Call:

OLS(formula = y1 ~y2)

1A systematic technical analysis of the linear regression model with (1) and (0) vari-
ables is given in Sims, Stock and Watson (1990). Hamilton (1994) gives a nice summary
of these results and Stock and Watson (1989) provides useful intuition and examples.

12.2 Spurious Regression and Cointegration 433

0 50 100 150 200 250

-1
5

-1
0

-5
0

5
10

15

y1
y2

FIGURE 12.1. Two simulated independent (1) processes.

Residuals:

Min 1Q Median 3Q Max

-16.360 -4.352 -0.128 4.979 10.763

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 6.7445 0.3943 17.1033 0.0000

y2 0.4083 0.0508 8.0352 0.0000

Regression Diagnostics:

R-Squared 0.2066

Adjusted R-Squared 0.2034

Durbin-Watson Stat 0.0328

Residual standard error: 6.217 on 248 degrees of freedom

F-statistic: 64.56 on 1 and 248 degrees of freedom, the

p-value is 3.797e-014

The estimated slope coe cient is 0 408 with a large -statistic of 8 035
and the regression 2 is moderate at 0 201. The only suspicious statistic
is the very low Durbin-Watson statistic suggesting strong residual auto-
correlation. These statistics are representative of the spurious regression

434 12. Cointegration

phenomenon with (1) that are not cointegrated. If 1 is regressed on

2 the correct relationship between the two series is revealed

> summary(OLS(diff(y1)~diff(y2)))

Call:

OLS(formula = diff(y1) ~diff(y2))

Residuals:

Min 1Q Median 3Q Max

-3.6632 -0.7706 -0.0074 0.6983 2.7184

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) -0.0565 0.0669 -0.8447 0.3991

diff(y2) 0.0275 0.0642 0.4290 0.6683

Regression Diagnostics:

R-Squared 0.0007

Adjusted R-Squared -0.0033

Durbin-Watson Stat 1.9356

Residual standard error: 1.055 on 247 degrees of freedom

F-statistic: 0.184 on 1 and 247 degrees of freedom, the

p-value is 0.6683

Similar results to those above occur if cov(1 2) 6= 0. The levels re-
gression remains spurious (no real long-run common movement in levels),
but the di erences regression will reflect the non-zero contemporaneous
correlation between 1 and 2 .

Statistical Implications of Spurious Regression

Let Y = (1)0 denote an (×1) vector of (1) time series that are
not cointegrated. Using the partition Y = (1 Y0

2)
0, consider the least

squares regression of 1 on Y2 giving the fitted model

1 = ˆ
0
2Y2 + ˆ (12.1)

Since 1 is not cointegrated with Y2 (12.1) is a spurious regression and
the true value of 2 is zero. The following results about the behavior of ˆ2
in the spurious regression (12.1) are due to Phillips (1986):

• ˆ2 does not converge in probability to zero but instead converges in
distribution to a non-normal random variable not necessarily centered
at zero. This is the spurious regression phenomenon.

12.2 Spurious Regression and Cointegration 435

• The usual OLS -statistics for testing that the elements of 2 are zero
diverge to ± as . Hence, with a large enough sample it will
appear that Y is cointegrated when it is not if the usual asymptotic
normal inference is used.

• The usual 2 from the regression converges to unity as so
that the model will appear to fit well even though it is misspecified.

• Regression with (1) data only makes sense when the data are coin-
tegrated.

12.2.2 Cointegration

Let Y = (1)0 denote an (× 1) vector of (1) time series. Y is
cointegrated if there exists an (× 1) vector = (1)0 such that

0Y = 1 1 + · · ·+ (0) (12.2)

In words, the nonstationary time series in Y are cointegrated if there is
a linear combination of them that is stationary or (0). If some elements
of are equal to zero then only the subset of the time series in Y with
non-zero coe cients is cointegrated. The linear combination 0Y is often
motivated by economic theory and referred to as a long-run equilibrium
relationship. The intuition is that (1) time series with a long-run equilib-
rium relationship cannot drift too far apart from the equilibrium because
economic forces will act to restore the equilibrium relationship.

Normalization

The cointegration vector in (12.2) is not unique since for any scalar
the linear combination 0Y = 0Y (0). Hence, some normalization
assumption is required to uniquely identify . A typical normalization is

= (1 2)0

so that the cointegration relationship may be expressed as

0Y = 1 2 2 · · · (0)

or

1 = 2 2 + · · ·+ + (12.3)

where (0). In (12.3), the error term is often referred to as the
disequilibrium error or the cointegrating residual. In long-run equilibrium,
the disequilibrium error is zero and the long-run equilibrium relationship
is

1 = 2 2 + · · ·+

436 12. Cointegration

Multiple Cointegrating Relationships

If the (×1) vectorY is cointegrated there may be 0 linearly inde-
pendent cointegrating vectors. For example, let = 3 and suppose there are
= 2 cointegrating vectors 1 = (11 12 13)

0 and 2 = (21 22 23)
0.

Then 0
1Y = 11 1 + 12 2 + 13 3 (0), 0

2Y = 21 1 + 22 2 +

23 3 (0) and the (3× 2) matrix

B0 =
µ 0

10
2

¶
=

µ
11 12 13

21 22 33

¶
forms a basis for the space of cointegrating vectors. The linearly indepen-
dent vectors 1 and 2 in the cointegrating basis B are not unique unless
some normalization assumptions are made. Furthermore, any linear combi-
nation of 1 and 2, e.g. 3 = 1 1 + 2 2 where 1 and 2 are constants,
is also a cointegrating vector.

Examples of Cointegration and Common Trends in Economics and
Finance

Cointegration naturally arises in economics and finance. In economics, coin-
tegration is most often associated with economic theories that imply equi-
librium relationships between time series variables. The permanent income
model implies cointegration between consumption and income, with con-
sumption being the common trend. Money demand models imply cointe-
gration between money, income, prices and interest rates. Growth theory
models imply cointegration between income, consumption and investment,
with productivity being the common trend. Purchasing power parity im-
plies cointegration between the nominal exchange rate and foreign and
domestic prices. Covered interest rate parity implies cointegration between
forward and spot exchange rates. The Fisher equation implies cointegration
between nominal interest rates and inflation. The expectations hypothesis
of the term structure implies cointegration between nominal interest rates
at di erent maturities. The equilibrium relationships implied by these eco-
nomic theories are referred to as long-run equilibrium relationships, because
the economic forces that act in response to deviations from equilibriium
may take a long time to restore equilibrium. As a result, cointegration
is modeled using long spans of low frequency time series data measured
monthly, quarterly or annually.
In finance, cointegration may be a high frequency relationship or a low

frequency relationship. Cointegration at a high frequency is motivated by
arbitrage arguments. The Law of One Price implies that identical assets
must sell for the same price to avoid arbitrage opportunities. This implies
cointegration between the prices of the same asset trading on di erent
markets, for example. Similar arbitrage arguments imply cointegration be-
tween spot and futures prices, and spot and forward prices, and bid and

12.2 Spurious Regression and Cointegration 437

ask prices. Here the terminology long-run equilibrium relationship is some-
what misleading because the economic forces acting to eliminate arbitrage
opportunities work very quickly. Cointegration is appropriately modeled
using short spans of high frequency data in seconds, minutes, hours or
days. Cointegration at a low frequency is motivated by economic equilib-
rium theories linking assets prices or expected returns to fundamentals. For
example, the present value model of stock prices states that a stock’s price
is an expected discounted present value of its expected future dividends or
earnings. This links the behavior of stock prices at low frequencies to the
behavior of dividends or earnings. In this case, cointegration is modeled
using low frequency data and is used to explain the long-run behavior of
stock prices or expected returns.

12.2.3 Cointegration and Common Trends

If the (× 1) vector time series Y is cointegrated with 0 coin-
tegrating vectors then there are common (1) stochastic trends.
To illustrate the duality between cointegration and common trends, let
Y = (1 2)

0 (1) and = (1 2 3)
0 (0) and suppose that Y

is cointegrated with cointegrating vector = (1 2)
0. This cointegration

relationship may be represented as

1 = 2

X
=1

1 + 3

2 =
X
=1

1 + 2

The common stochastic trend is
P

=1 1 . Notice that the cointegrating
relationship annihilates the common stochastic trend:

0Y = 2

X
=1

1 + 3 2

ÃX
=1

1 + 2

!
= 3 2 2 (0)

12.2.4 Simulating Cointegrated Systems

Cointegrated systems may be conveniently simulated using Phillips’ (1991)
triangular representation. For example, consider a bivariate cointegrated
system for Y = (1 2)

0 with cointegrating vector = (1 2)
0. A

triangular representation has the form

1 = 2 2 + where (0) (12.4)

2 = 2 1 + where (0) (12.5)

438 12. Cointegration

The first equation describes the long-run equilibrium relationship with an
(0) disequilibrium error . The second equation specifies 2 as the com-
mon stochastic trend with innovation :

2 = 20 +
X
=1

In general, the innovations and may be contemporaneously and serially
correlated. The time series structure of these innovations characterizes the
short-run dynamics of the cointegrated system. The system (12.4)-(12.5)
with 2 = 1, for example, might be used to model the behavior of the
logarithm of spot and forward prices, spot and futures prices or stock prices
and dividends.

Example 72 Simulated bivariate cointegrated system

Consider simulating = 250 observations from the system (12.4)-(12.5)
using = (1 1)0, = 0 75 1 + , iid (0 0 52) and
iid (0 0 52). The S-PLUS code is

> set.seed(432)

> e = rmvnorm(250, mean=rep(0,2), sd=c(0.5,0.5))

> u.ar1 = arima.sim(model=list(ar=0.75), innov=e[,1])

> y2 = cumsum(e[,2])

> y1 = y2 + u.ar1

> par(mfrow=c(2,1))

> tsplot(y1, y2, lty=c(1,3),

+ main="Simulated bivariate cointegrated system",

+ sub="1 cointegrating vector, 1 common trend")

> legend(0, 7, legend=c("y1","y2"), lty=c(1,3))

> tsplot(u.ar1, main="Cointegrating residual")

Figure 12.2 shows the simulated data for 1 and 2 along with the cointe-
grating residual = 1 2 . Since 1 and 2 share a common stochas-
tic trend they follow each other closely. The impulse response function for
may be used to determine the speed of adjustment to long-run equi-

librium. Since is an AR(1) with = 0 75 the half life of a shock is
ln(0 5) ln(0 75) = 2 4 time periods.
Next, consider a trivariate cointegrated system for Y = (1 2 3)

0.
With a trivariate system there may be one or two cointegrating vectors.
With one cointegrating vector there are two common stochastic trends and
with two cointegrating vectors there is one common trend. A triangular
representation with one cointegrating vector = (1 2 3)

0 and two

12.2 Spurious Regression and Cointegration 439

Simulated bivariate cointegrated system

1 cointegrating vector, 1 common trend

0 50 100 150 200 250

-2
0

2
4

6
8

y1
y2

Cointegrating residual

0 50 100 150 200 250

-1
0

1
2

FIGURE 12.2. Simulated bivariate cointegrated system with = (1 1)0.

stochastic trends is

1 = 2 2 + 3 3 + where (0) (12.6)

2 = 2 1 + where (0) (12.7)

3 = 3 1 + where (0) (12.8)

The first equation describes the long-run equilibrium and the second and
third equations specify the common stochastic trends. An example of a
trivariate cointegrated system with one cointegrating vector is a system of
nominal exchange rates, home country price indices and foreign country
price indices. A cointegrating vector = (1 1 1)0 implies that the real
exchange rate is stationary.

Example 73 Simulated trivariate cointegrated system with 1 cointegrating
vector

The S-PLUS code for simulating = 250 observation from (12.6)-(12.8)
with = (1 0 5 0 5)0, = 0 75 1 + , iid (0 0 52),
iid (0 0 52) and iid (0 0 52) is

> set.seed(573)

> e = rmvnorm(250, mean=rep(0,3), sd=c(0.5,0.5,0.5))

> u1.ar1 = arima.sim(model=list(ar=0.75), innov=e[,1])

> y2 = cumsum(e[,2])

440 12. Cointegration

Simulated trivariate cointegrated system

1 cointegrating vector, 2 common trends

0 50 100 150 200 250

0
5

10
y1
y2
y3

Cointegrating residual

0 50 100 150 200 250

-1
0

1
2

FIGURE 12.3. Simulated trivariate cointegrated system with one cointegrating
vector = (1 0 5 0 5)0 and two stochastic trends.

> y3 = cumsum(e[,3])

> y1 = 0.5*y2 + 0.5*y3 + u1.ar1

> par(mfrow=c(2,1))

> tsplot(y1, y2, y3, lty=c(1,3,4),

+ main="Simulated trivariate cointegrated system",

+ sub="1 cointegrating vector, 2 common trends")

> legend(0, 12, legend=c("y1","y2","y3"), lty=c(1,3,4))

> tsplot(u.ar1, main="Cointegrating residual")

Figure 12.3 illustrates the simulated data. Here, 2 and 3 are the two
independent common trends and 1 = 0 5 2 + 0 5 3 + is the average
of the two trends plus an AR(1) residual.
Finally, consider a trivariate cointegrated system with two cointegrat-

ing vectors and one common stochastic trend. A triangular representa-
tion for this system with cointegrating vectors 1 = (1 0 13)

0 and
2 = (0 1 23)

0 is

1 = 13 3 + where (0) (12.9)

2 = 23 3 + where (0) (12.10)

3 = 3 1 + where (0) (12.11)

Here the first two equations describe two long-run equilibrium relations
and the third equation gives the common stochastic trend. An example in

12.2 Spurious Regression and Cointegration 441

finance of such a system is the term structure of interest rates where 3

represents the short rate and 1 and 2 represent two di erent long rates.
The cointegrating relationships would indicate that the spreads between
the long and short rates are stationary.

Example 74 Simulated trivariate cointegrated system with 2 cointegrating
vectors

The S-PLUS code for simulating = 250 observation from (12.9)-(12.11)
with 1 = (1 0 1)0, 2 = (0 1 1)0, = 0 75 1+ , iid (0 0 52),
= 0 75 1 + , iid (0 0 52) and iid (0 0 52) is

> set.seed(573)

> e = rmvnorm(250,mean=rep(0,3), sd=c(0.5,0.5,0.5))

> u.ar1 = arima.sim(model=list(ar=0.75), innov=e[,1])

> v.ar1 = arima.sim(model=list(ar=0.75), innov=e[,2])

> y3 = cumsum(e[,3])

> y1 = y3 + u.ar1

> y2 = y3 + v.ar1

> par(mfrow=c(2,1))

> tsplot(y1, y2, y3, lty=c(1,3,4),

+ main="Simulated trivariate cointegrated system",

+ sub="2 cointegrating vectors, 1 common trend")

> legend(0, 10, legend=c("y1","y2","y3"), lty=c(1,3,4))

> tsplot(u.ar1, v.ar1, lty=c(1,3),

+ main="Cointegrated residuals")

> legend(0, -1, legend=c("u","v"), lty=c(1,3))

12.2.5 Cointegration and Error Correction Models

Consider a bivariate (1) vector Y = (1 2)
0 and assume that Y is

cointegrated with cointegrating vector = (1 2)
0 so that 0Y = 1

2 2 is (0). In an extremely influential and important paper, Engle and
Granger (1987) showed that cointegration implies the existence of an error
correction model (ECM) of the form

1 = 1 + 1(1 1 2 2 1) (12.12)

+
X

11 1 +
X

12 2 + 1

2 = 2 + 2(1 1 2 2 1) (12.13)

+
X

21 1 +
X

2
22 2 + 2

that describes the dynamic behavior of 1 and 2 . The ECM links the
long-run equilibrium relationship implied by cointegration with the short-
run dynamic adjustment mechanism that describes how the variables react

442 12. Cointegration

Simulated trivariate cointegrated system

2 cointegrating vectors, 1 common trend

0 50 100 150 200 250

0
5

10

y1
y2
y3

Cointegrated residuals

0 50 100 150 200 250

-2
-1

0
1

u
v

FIGURE 12.4. Simulated trivatiate cointegrated system with two cointegrating
vectors 1 = (1 0 1)0, 2 = (0 1 1)0 and one common trend.

when they move out of long-run equilibrium. This ECM makes the concept
of cointegration useful for modeling financial time series.

Example 75 Bivariate ECM for stock prices and dividends

As an example of an ECM, let denote the log of stock prices and
denote the log of dividends and assume that Y = ()0 is (1). If the
log dividend-price ratio is (0) then the logs of stock prices and dividends
are cointegrated with = (1 1)0. That is, the long-run equilibrium is

= + +

where is the mean of the log dividend-price ratio, and is an (0) random
variable representing the dynamic behavior of the log dividend-price ratio
(disequilibrium error). Suppose the ECM has the form

= + (1 1) +

= + (1 1) +

where 0 and 0. The first equation relates the growth rate of
dividends to the lagged disequilibrium error 1 1 , and the second
equation relates the growth rate of stock prices to the lagged disequilibrium
as well. The reactions of and to the disequilibrium error are captured
by the adjustment coe cients and .

12.2 Spurious Regression and Cointegration 443

Consider the special case of (12.12)-(12.13) where = 0 and = 0 5.
The ECM equations become

= + 0 5(1 1) +

= +

so that only responds to the lagged disequilibrium error. Notice that
[|Y 1] = + 0 5(1 1) and [|Y 1] = . Consider

three situations:

1. 1 1 = 0. Then [|Y 1] = and [| 1] = , so
that and represent the growth rates of stock prices and dividends
in long-run equilibrium.

2. 1 1 0. Then [|Y 1] = +0 5(1 1)
. Here the dividend yield has increased above its long-run mean

(positive disequilibrium error) and the ECM predicts that will grow
faster than its long-run rate to restore the dividend yield to its long-
run mean. Notice that the magnitude of the adjustment coe cient
= 0 5 controls the speed at which responds to the disequilibrium

error.

3. 1 1 0. Then [|Y 1] = +0 5(1 1)
. Here the dividend yield has decreased below its long-run mean

(negative disequilibrium error) and the ECM predicts that will
grow more slowly than its long-run rate to restore the dividend yield
to its long-run mean.

In Case 1, there is no expected adjustment since the model was in long-
run equilibrium in the previous period. In Case 2, the model was above
long-run equilibrium last period so the expected adjustment in is down-
ward toward equilibrium. In Case 3, the model was below long-run equi-
librium last period and so the expected adjustment is upward toward the
equilibrium. This discussion illustrates why the model is called an error cor-
rection model. When the variables are out of long-run equilibrium, there
are economic forces, captured by the adjustment coe cients, that push
the model back to long-run equilibrium. The speed of adjustment toward
equilibrium is determined by the magnitude of . In the present example,
= 0 5 which implies that roughly one half of the disequilibrium error

is corrected in one time period. If = 1 then the entire disequilibrium
is corrected in one period. If = 1 5 then the correction overshoots the
long-run equilibrium.

444 12. Cointegration

12.3 Residual-Based Tests for Cointegration

Let the (×1) vector Y be (1). Recall, Y is cointegrated with 0
cointegrating vectors if there exists an (×) matrix B0 such that

B0Y =

0
1Y
...
0Y

=

1

... (0)

Testing for cointegration may be thought of as testing for the existence
of long-run equilibria among the elements of Y . Cointegration tests cover
two situations:

• There is at most one cointegrating vector

• There are possibly 0 cointegrating vectors.

The first case was originally considered by Engle and Granger (1986) and
they developed a simple two-step residual-based testing procedure based
on regression techniques. The second case was originally considered by Jo-
hansen (1988) who developed a sophisticated sequential procedure for de-
termining the existence of cointegration and for determining the number of
cointegrating relationships based on maximum likelihood techniques. This
section explains Engle and Granger’s two-step procedure. Johansen’s more
general procedure will be discussed later on.
Engle and Granger’s two-step procedure for determining if the (× 1)

vector is a cointegrating vector is as follows:

• Form the cointegrating residual 0Y =

• Perform a unit root test on to determine if it is (0).

The null hypothesis in the Engle-Granger procedure is no-cointegration and
the alternative is cointegration. There are two cases to consider. In the first
case, the proposed cointegrating vector is pre-specified (not estimated).
For example, economic theory may imply specific values for the elements
in such as = (1 1)0. The cointegrating residual is then readily con-
structed using the prespecified cointegrating vector. In the second case, the
proposed cointegrating vector is estimated from the data and an estimate

of the cointegrating residual ˆ
0
Y = ˆ is formed. Tests for cointegration

using a pre-specified cointegrating vector are generally much more powerful
than tests employing an estimated vector.

12.3.1 Testing for Cointegration When the Cointegrating
Vector Is Pre-specified

Let Y denote an (× 1) vector of (1) time series, let denote an (× 1)
prespecified cointegrating vector and let = 0Y denote the prespecified

12.3 Residual-Based Tests for Cointegration 445

Log US/CA exchange rate data

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

-0
.3

5
-0

.1
5

0.
00

spot
forward

US/CA 30-day interest rate differential

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

-0
.0

04
0.

00
0

0.
00

4

FIGURE 12.5. Log of US/CA spot and 30-day exchange rates and 30-day interest
rate di erential.

cointegrating residual. The hypotheses to be tested are

0 : = 0Y (1) (no cointegration) (12.14)

1 : = 0Y (0) (cointegration)

Any unit root test statistic may be used to evaluate the above hypotheses.
The most popular choices are the ADF and PP statistics. Cointegration is
found if the unit root test rejects the no-cointegration null. It should be kept
in mind, however, that the cointegrating residual may include deterministic
terms (constant or trend) and the unit root tests should account for these
terms accordingly. See Chapter 4 for details about the application of unit
root tests.

Example 76 Testing for cointegration between spot and forward exchange
rates using a known cointegrating vector

In international finance, the covered interest rate parity arbitrage re-
lationship states that the di erence between the logarithm of spot and
forward exchange rates is equal to the di erence between nominal domes-
tic and foreign interest rates. It seems reasonable to believe that interest
rate spreads are (0) which implies that spot and forward rates are coin-
tegrated with cointegrating vector = (1 1)0. To illustrate, consider the
log monthly spot, , and 30 day forward, , exchange rates between the

446 12. Cointegration

US and Canada over the period February 1976 through June 1996 taken
from the S+FinMetrics “timeSeries” object lexrates.dat

> uscn.s = lexrates.dat[,"USCNS"]

> uscn.s@title = "Log of US/CA spot exchange rate"

> uscn.f = lexrates.dat[,"USCNF"]

> uscn.f@title = "Log of US/CA 30-day forward exchange rate"

> u = uscn.s - uscn.f

> colIds(u) = "USCNID"

> u@title = "US/CA 30-day interest rate differential"

The interest rate di erential is constructed using the pre-specified cointe-
grating vector = (1 1)0 as = . The spot and forward exchange
rates and interest rate di erential are illustrated in Figure 12.5. Visually,
the spot and forward exchange rates clearly share a common trend and the
interest rate di erential appears to be (0). In addition, there is no clear de-
terministic trend behavior in the exchange rates. The S+FinMetrics func-
tion unitroot may be used to test the null hypothesis that and are
not cointegrated ((1)). The ADF t-test based on 11 lags and a con-
stant in the test regression leads to the rejection at the 5% level of the
hypothesis that and are not cointegrated with cointegrating vector
= (1 1)0:

> unitroot(u, trend="c", method="adf", lags=11)

Test for Unit Root: Augmented DF Test

Null Hypothesis: there is a unit root

Type of Test: t-test

Test Statistic: -2.881

P-value: 0.04914

Coefficients:

lag1 lag2 lag3 lag4 lag5 lag6 lag7

-0.1464 -0.1171 -0.0702 -0.1008 -0.1234 -0.1940 0.0128

lag8 lag9 lag10 lag11 constant

-0.1235 0.0550 0.2106 -0.1382 0.0002

Degrees of freedom: 234 total; 222 residual

Time period: from Jan 1977 to Jun 1996

Residual standard error: 8.595e-4

12.3 Residual-Based Tests for Cointegration 447

12.3.2 Testing for Cointegration When the Cointegrating
Vector Is Estimated

Let Y denote an (× 1) vector of (1) time series and let denote an
(× 1) unknown cointegrating vector. The hypotheses to be tested are
given in (12.14). Since is unknown, to use the Engle-Granger procedure
it must be first estimated from the data. Before can be estimated some
normalization assumption must be made to uniquely identify it. A common
normalization is to specify the first element inY as the dependent variable
and the rest as the explanatory variables. Then Y = (1 Y0

2)
0 where

Y2 = (2)0 is an ((1)× 1) vector and the cointegrating vector
is normalized as = (1 0

2)
0. Engle and Granger proposed estimating the

normalized cointegrating vector 2 by least squares from the regression

1 = + 0
2Y2 + (12.15)

and testing the no-cointegration hypothesis (12.14) with a unit root test
using the estimated cointegrating residual

ˆ = 1 ˆ ˆ
2Y2 (12.16)

where ˆ and ˆ2 are the least squares estimates of and 2. The unit root
test regression in this case is without deterministic terms (constant or con-
stant and trend). Phillips and Ouliaris (1990) showed that ADF and PP
unit root tests (t-tests and normalized bias) applied to the estimated coin-
tegrating residual (12.16) do not have the usual Dickey-Fuller distributions
under the null hypothesis (12.14) of no-cointegration. Instead, due to the
spurious regression phenomenon under the null hypothesis (12.14), the dis-
tribution of the ADF and PP unit root tests have asymptotic distributions
that are functions of Wiener processes that depend on the deterministic
terms in the regression (12.15) used to estimate 2 and the number of vari-
ables, 1 in Y2 . These distributions are known as the Phillips-Ouliaris
(PO) distributions, and are described in Phillips and Ouliaris (1990). To
further complicate matters, Hansen (1992) showed the appropriate PO dis-
tributions of the ADF and PP unit root tests applied to the residuals
(12.16) also depend on the trend behavior of 1 and Y2 as follows:

Case I: Y2 and 1 are both (1) without drift. The ADF and PP unit
root test statistics follow the PO distributions, adjusted for a con-
stant, with dimension parameter 1.

Case II: Y2 is (1) with drift and 1 may or may not be (1) with drift.
The ADF and PP unit root test statistics follow the PO distributions,
adjusted for a constant and trend, with dimension parameter 2.
If 2 = 0 then the ADF and PP unit root test statistics follow the
DF distributions adjusted for a constant and trend.

448 12. Cointegration

Case III: Y2 is (1) without drift and 1 is (1) with drift. In this case,

2 should be estimated from the regression

1 = + + 0
2Y2 + (12.17)

The resulting ADF and PP unit root test statistics on the residuals
from (12.17) follow the PO distributions, adjusted for a constant and
trend, with dimension parameter 1.

Computing Quantiles and P-values from the Phillips-Ouliaris
Distributions Using the S+FinMetrics Functions pcoint and qcoint

The S+FinMetrics functions qcoint and pcoint, based on the response
surface methodology of MacKinnon (1996), may be used to compute quan-
tiles and -values from the PO distributions. For example, to compute the
10%, 5% and 1% quantiles from the PO distribution for the ADF -statistic,
adjusted for a constant, with 1 = 3 and a sample size = 100 use

> qcoint(c(0.1,0.05,0.01), n.sample=100, n.series=4,

+ trend="c", statistic="t")

[1] -3.8945 -4.2095 -4.8274

Notice that the argument n.series represents the total number of variables
. To adjust the PO distributions for a constant and trend set trend="ct".
To compute the PO distribution for the ADF normalized bias statistic
set statistic="n". The quantiles from the PO distributions can be very
di erent from the quantiles from the DF distributions, especially if 1 is
large. To illustrate, the 10%, 5% and 1% quantiles from the DF distribution
for the ADF -statistic with a sample size = 100 are

> qunitroot(c(0.1,0.05,0.01), n.sample=100,

+ trend="c", statistic="t")

[1] -2.5824 -2.8906 -3.4970

The following examples illustrate testing for cointegration using an esti-
mated cointegrating vector.

Example 77 Testing for cointegration between spot and forward exchange
rates using an estimated cointegrating vector

Consider testing for cointegration between spot and forward exchange
rates assuming the cointegrating vector is not known using the same data as
in the previous example. Let Y = ()0 and normalize the cointegrating
vector on so that = (1 2)

0. The normalized cointegrating coe cient

2 is estimated by least squares from the regression

= + 2 +

giving the estimated cointegrating residual ˆ = ˆ ˆ
2 . The OLS

function in S+FinMetrics is used to estimate the above regression:

12.3 Residual-Based Tests for Cointegration 449

> uscn.ts = seriesMerge(uscn.s,uscn.f)

> ols.fit = OLS(USCNS~USCNF,data=uscn.ts)

> ols.fit

Call:

OLS(formula = USCNS ~USCNF, data = uscn.ts)

Coefficients:

(Intercept) USCNF

0.0023 1.0041

Degrees of freedom: 245 total; 243 residual

Time period: from Feb 1976 to Jun 1996

Residual standard error: 0.001444

The estimated value of 2 is 1 004 and is almost identical to the value

2 = 1 implied by covered interest parity. The estimated cointegrating
residual ˆ is extracted from the least squres fit using

> u.hat = residuals(ols.fit)

Next, the no-cointegration hypothesis (12.14) is tested using the ADF and
PP -tests. Because the mean of ˆ is zero, the unit root test regressions are
estimated without a constant or trend. The ADF -statistic is computed
using 11 lags, as in the previous example, and the PP -statistic is computed
using an automatic lag truncation parameter:

> adf.fit = unitroot(u.hat,trend="nc",method="adf",lags=11)

> adf.tstat = adf.fit$sval

> adf.tstat

lag1

-2.721

> pp.fit = unitroot(u.hat,trend="nc",method="pp")

> pp.tstat = pp.fit$sval

> pp.tstat

lag1

-5.416

The ADF -statistic is 2 721 whereas the PP -statistic is 5 416. Since
and are both (1) without drift, the 10%, 5% and 1% quantiles from

the approrpiate Phillips-Ouliaris distribution for the ADF -statistic is

> qcoint(c(0.10,0.05,0.01),n.sample=nrow(uscn.s),n.series=2,

+ trend="c",statistic="t")

[1] -3.062 -3.361 -3.942

450 12. Cointegration

The no-cointegration null hypothesis is not rejected at the 10% level using
the ADF -statistic but is rejected at the 1% level using the PP -statistic.
The -values for the ADF and PP -statistics are

> pcoint(adf.tstat, n.sample=nrow(uscn.s), n.series=2,

+ trend="c", statistic="t")

[1] 0.1957

> pcoint(pp.tstat, n.sample=nrow(uscn.s), n.series=2,

+ trend="c", statistic="t")

[1] 0.00003925

12.4 Regression-Based Estimates of Cointegrating
Vectors and Error Correction Models

12.4.1 Least Square Estimator

Least squares may be used to consistently estimate a normalized cointe-
grating vector. However, the asymptotic behavior of the least squares es-
timator is non-standard. The following results about the behavior of ˆ2 if
Y is cointegrated are due to Stock (1987) and Phillips (1991):

• (ˆ2 2) converges in distribution to a non-normal random variable
not necessarily centered at zero.

• The least squares estimate ˆ2 is consistent for 2 and converges to

2 at rate instead of the usual rate 1 2. That is, ˆ2 is super
consistent.

• ˆ2 is consistent even if 2 is correlated with so that there is no
asymptotic simultaneity bias.

• In general, the asymptotic distribution of (ˆ2 2) is asymptoti-
cally biased and non-normal. The usual OLS formula for computing
[(ˆ2) is incorrect and so the usual OLS standard errors are not
correct.

• Even though the asymptotic bias goes to zero as gets large ˆ2 may
be substantially biased in small samples. The least squres estimator
is also not e cient.

The above results indicate that the least squares estimator of the coin-
tegrating vector 2 could be improved upon. A simple improvement is
suggested by Stock and Watson (1993).

12.4 Regression-Based Estimates and Error Correction Models 451

12.4.2 Stock and Watson’s E cient Lead/Lag Estimator

Stock and Watson (1993) provided a very simple method for obtaining
an asymptotically e cient (equivalent to maximum likelihood) estimator
for the normalized cointegrating vector 2 as well as a valid formula for
computing its asymptotic variance2.
Let Y = (1 Y0

2)
0 where Y2 = (2)0 is an ((1)×1) vector

and let the cointegrating vector be normalized as = (1 0
2)
0. Stock and

Watson’s e cient estimation procedure is:

• Augment the cointegrating regression of 1 on Y2 with appropriate
deterministic terms D with leads and lags of Y2

1 = 0D + 0
2Y2 +

X
=

0 Y2 + + (12.18)

= 0D + 0
2Y2 +

0 Y2 + + · · ·+ 0
1 Y2 +1

+ 0
0 Y2 +

0
1 Y2 1 + · · ·+ 0 Y2 +

• Estimate the augmented regression by least squares. The resulting
estimator of 2 is called the dynamic OLS estimator and is denoted
ˆ
2 DOLS. It will be consistent, asymptotically normally distributed
and e cient (equivalent to MLE) under certain assumptions (see
Stock and Watson, 1993).

• Asymptotically valid standard errors for the individual elements of
ˆ
2 DOLS are given by the OLS standard errors from (12.18) multiplied
by the ratio Ã

ˆ2clrv()

!1 2

where ˆ2 is the OLS estimate of var() and clrv() is any consistent
estimate of the long-run variance of using the residuals ˆ from
(12.18). Alternatively, the Newey-West HAC standard errors may also
be used.

Example 78 DOLS estimation of cointegrating vector using exchange rate
data3

Let denote the log of the monthly spot exchange rate between two
currencies at time and let denote the log of the forward exchange
rate at time for delivery of foreign currency at time + . Under rational

2Hamilton (1994) chapter 19, and Hayashi (2000) chapter 10, give nice discussions of
the Stock and Watson procedure.

3This example is based on Zivot (2000).

452 12. Cointegration

expectations and risk neutrality is an unbiased predictor of + , the
spot exchange rate at time + . That is

+ = + +

where + is a white noise error term. This is known as the forward
rate unbiasedness hypothesis (FRUH). Assuming that and are (1)
the FRUH implies that + and are cointegrated with cointegrat-
ing vector = (1 1)0. To illustrate, consider again the log monthly
spot, , and one month forward, 1, exchange rates between the US and
Canada over the period February 1976 through June 1996 taken from the
S+FinMetrics “timeSeries” object lexrates.dat.The cointegrating vec-
tor between +1 and

1 is estimated using least squares and Stock and
Watson’s dynamic OLS estimator computed from (12.18) with 1 = +1,
D = 1, Y2 =

1 and = 3. The data for the DOLS regression equation
(12.18) are constucted as

> uscn.df = diff(uscn.f)

> colIds(uscn.df) = "D.USCNF"

> uscn.df.lags = tslag(uscn.df,-3:3,trim=T)

> uscn.ts = seriesMerge(uscn.s,uscn.f,uscn.df.lags)

> colIds(uscn.ts)

[1] "USCNS" "USCNF" "D.USCNF.lead3"

[4] "D.USCNF.lead2" "D.USCNF.lead1" "D.USCNF.lag0"

[7] "D.USCNF.lag1" "D.USCNF.lag2" "D.USCNF.lag3"

The least squares estimator of the normalized cointegrating coe cient 2

computed using the S+FinMetrics function OLS is

> summary(OLS(tslag(USCNS,-1)~USCNF,data=uscn.ts,na.rm=T))

Call:

OLS(formula = tslag(USCNS, -1) ~USCNF, data = uscn.ts,

na.rm = T)

Residuals:

Min 1Q Median 3Q Max

-0.0541 -0.0072 0.0006 0.0097 0.0343

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) -0.0048 0.0025 -1.9614 0.0510

USCNF 0.9767 0.0110 88.6166 0.0000

Regression Diagnostics:

R-Squared 0.9709

12.4 Regression-Based Estimates and Error Correction Models 453

Adjusted R-Squared 0.9708

Durbin-Watson Stat 2.1610

Residual standard error: 0.01425 on 235 degrees of freedom

Time period: from Jun 1976 to Feb 1996

F-statistic: 7853 on 1 and 235 degrees of freedom,

the p-value is 0

Notice that in the regression formula, tslag(USCN,-1) computes +1. The
least squares estimate of 2 is 0 977 with an estimated standard error of
0 011 indicating that 1 underpredicts +1. However, the usual formula
for computing the estimated standard error is incorrect and should not be
trusted.
The DOLS estimator of 2 based on (12.18) is computed using

> dols.fit = OLS(tslag(USCNS,-1)~USCNF +

+ D.USCNF.lead3+D.USCNF.lead2+D.USCNF.lead1 +

+ D.USCNF.lag0+D.USCNF.lag1+D.USCNF.lag2+D.USCNF.lag3,

+ data=uscn.ts,na.rm=T)

The Newey-West HAC standard errors for the estimated coe cients are
computed using summary with correction="nw":

> summary(dols.fit,correction="nw")

Call:

OLS(formula = tslag(USCNS, -1) ~USCNF + D.USCNF.lead3 +

D.USCNF.lead2 + D.USCNF.lead1 + D.USCNF.lag0 +

D.USCNF.lag1 + D.USCNF.lag2 + D.USCNF.lag3, data =

uscn.ts, na.rm = T)

Residuals:

Min 1Q Median 3Q Max

-0.0061 -0.0008 0.0000 0.0009 0.0039

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 0.0023 0.0005 4.3948 0.0000

USCNF 1.0040 0.0019 531.8862 0.0000

D.USCNF.lead3 0.0114 0.0063 1.8043 0.0725

D.USCNF.lead2 0.0227 0.0068 3.3226 0.0010

D.USCNF.lead1 1.0145 0.0090 112.4060 0.0000

D.USCNF.lag0 0.0005 0.0073 0.0719 0.9427

D.USCNF.lag1 -0.0042 0.0061 -0.6856 0.4937

D.USCNF.lag2 -0.0056 0.0061 -0.9269 0.3549

D.USCNF.lag3 -0.0014 0.0045 -0.3091 0.7575

454 12. Cointegration

Regression Diagnostics:

R-Squared 0.9997

Adjusted R-Squared 0.9997

Durbin-Watson Stat 0.4461

Residual standard error: 0.001425 on 228 degrees of freedom

Time period: from Jun 1976 to Feb 1996

F-statistic: 101000 on 8 and 228 degrees of freedom,

the p-value is 0

The DOLS estimator of 2 is 1 004 with a very small estimated standard
error of 0 0019 and indicates that 1 is essentially an unbiased predictor of
the future spot rate +1.

12.4.3 Estimating Error Correction Models by Least Squares

Consider a bivariate (1) vectorY = (1 2)
0 and assume thatY is coin-

tegrated with cointegrating vector = (1 2)
0 so that 0Y = 1 2 2

is (0). Suppose one has a consistent estimate ˆ2 (by OLS or DOLS) of
the cointegrating coe cient and is interested in estimating the correspond-
ing error correction model (12.12)-(12.13) for 1 and 2 . Because ˆ2
is super consistent it may be treated as known in the ECM, so that the
estimated disequilibrium error 1

ˆ
2 2 may be treated like the known

disequilibrium error 1 2 2 . Since all variables in the ECM are (0),
the two regression equations may be consistently estimated using ordinary
least squares (OLS). Alternatively, the ECM system may be estimated by
seemingly unrelated regressions (SUR) to increase e ciency if the number
of lags in the two equations are di erent.

Example 79 Estimation of error correction model for exchange rate data

Consider again the monthly log spot rate, , and log forward rate, ,
data between the U.S. and Canada. Earlier it was shown that and are
cointegrated with an estimated cointegrating coe cient ˆ2 = 1 004. Now
consider estimating an ECM of the form (12.12)-(12.13) by least squares
using the estimated disequilibrium error 1 004 · . In order to estimate
the ECM, the number of lags of and needs to be determined. This
may be done using test statistics for the significance of the lagged terms
or model selection criteria like AIC or BIC. An initial estimation using one
lag of and may be performed using

> u.hat = uscn.s - 1.004*uscn.f

> colIds(u.hat) = "U.HAT"

> uscn.ds = diff(uscn.s)

> colIds(uscn.ds) = "D.USCNS"

12.5 VAR Models and Cointegration 455

> uscn.df = diff(uscn.f)

> colIds(uscn.df) = "D.USCNF"

> uscn.ts = seriesMerge(uscn.s,uscn.f,uscn.ds,uscn.df,u.hat)

> ecm.s.fit = OLS(D.USCNS~tslag(U.HAT)+tslag(D.USCNS)

+ +tslag(D.USCNF),data=uscn.ts,na.rm=T)

> ecm.f.fit = OLS(D.USCNF~tslag(U.HAT)+tslag(D.USCNS)+

+ tslag(D.USCNF),data=uscn.ts,na.rm=T)

The estimated coe cients from the fitted ECM are

> ecm.s.fit

Call:

OLS(formula = D.USCNS ~tslag(U.HAT) + tslag(D.USCNS) + tslag(

D.USCNF), data = uscn.ts, na.rm = T)

Coefficients:

(Intercept) tslag(U.HAT) tslag(D.USCNS) tslag(D.USCNF)

-0.0050 1.5621 1.2683 -1.3877

Degrees of freedom: 243 total; 239 residual

Time period: from Apr 1976 to Jun 1996

Residual standard error: 0.013605

> ecm.f.fit

Call:

OLS(formula = D.USCNF ~tslag(U.HAT) + tslag(D.USCNS) + tslag(

D.USCNF), data = uscn.ts, na.rm = T)

Coefficients:

(Intercept) tslag(U.HAT) tslag(D.USCNS) tslag(D.USCNF)

-0.0054 1.7547 1.3595 -1.4702

Degrees of freedom: 243 total; 239 residual

Time period: from Apr 1976 to Jun 1996

Residual standard error: 0.013646

12.5 VAR Models and Cointegration

The Granger representation theorem links cointegration to error correction
models. In a series of important papers and in a marvelous textbook, Soren
Johansen firmly roots cointegration and error correction models in a vector
autoregression framework. This section outlines Johansen’s approach to
cointegration modeling.

456 12. Cointegration

12.5.1 The Cointegrated VAR

Consider the levels VAR() model for the (× 1) vector Y

Y = D + 1Y 1 + · · ·+ Y + = 1 (12.19)

where D contains deterministic terms (constant, trend, seasonal dummies
etc.). Recall, the VAR() model is stable if

det(I 1 · · ·) = 0 (12.20)

has all roots outside the complex unit circle. If (12.20) has a root on the
unit circle then some or all of the variables in Y are (1) and they may
also be cointegrated. Recall, Y is cointegrated if there exists some linear
combination of the variables in Y that is (0). Suppose Y is (1) and
possibly cointegrated. Then the VAR representation (22.11) is not the most
suitable representation for analysis because the cointegrating relations are
not explicitly apparent. The cointegrating relations become apparent if
the levels VAR (22.11) is transformed to the vector error correction model
(VECM)

Y = D + Y 1 + 1 Y 1 + · · ·+ 1 Y +1 + (12.21)

where = 1+· · ·+ I and =
P

= +1 , = 1 1. The
matrix is called the long-run impact matrix and are the short-run
impact matrices. Notice that the VAR parameters may be recovered
from the VECM parameters and via

1 = 1 + + I (12.22)

= 1 = 2

In the VECM (12.21), Y and its lags are (0). The term Y 1 is
the only one which includes potential (1) variables and for Y to be
(0) it must be the case that Y 1 is also (0). Therefore, Y 1 must
contain the cointegrating relations if they exist. If the VAR() process has
unit roots then from (12.20) it is clear that is a singular matrix. If is
singular then it has reduced rank ; that is rank() = . There are two
cases to consider:

1. rank() = 0. This implies that = 0 and Y is (1) and not cointe-
grated. The VECM (12.21) reduces to a VAR(1) in first di erences

Y = D + 1 Y 1 + · · ·+ 1 Y +1 +

2. 0 rank() = . This implies that Y is (1) with linearly
independent cointegrating vectors and common stochastic trends

12.5 VAR Models and Cointegration 457

(unit roots)4. Since has rank it can be written as the product

(×)
=
(×)(×)

0

where and are (×) matrices with rank() = rank() = .
The rows of 0 form a basis for the cointegrating vectors and the
elements of distribute the impact of the cointegrating vectors to
the evolution of Y . The VECM (12.21) becomes

Y = D + 0Y 1 + 1 Y 1 + · · ·+ 1 Y +1 +
(12.23)

where 0Y 1 (0) since 0 is a matrix of cointegrating vectors.

It is important to recognize that the factorization = 0 is not unique
since for any × nonsingular matrix H we have

0 = HH 1 0 = (aH)(H 10)0 = a 0

Hence the factorization = 0 only identifies the space spanned by the
cointegrating relations. To obtain unique values of and 0 requires further
restrictions on the model.

Example 80 A bivariate cointegrated VAR(1) model

Consider the bivariate VAR(1) model for Y = (1 2)
0

Y = 1Y 1 +

The VECM is
Y = Y 1 +

where = 1 I2. Assuming Y is cointegrated there exists a 2 × 1
vector = (1 2)

0 such that 0Y = 1 1 + 2 2 is (0). Using the
normalization 1 = 1 and 2 = the cointegrating relation becomes
0Y = 1 2 . This normalization suggests the stochastic long-run
equilibrium relation

1 = 2 +

where is (0) and represents the stochastic deviations from the long-run
equilibrium 1 = 2 .
Since Y is cointegrated with one cointegrating vector, rank() = 1 and

can be decomposed as

= 0 =
µ

1

2

¶¡
1

¢
=

µ
1 1

2 2

¶
4To see thatY has common stochastic trends we have to look at the Beveridge-

Nelson decomposition of the moving average representation of Y .

458 12. Cointegration

The elements in the vector are interpreted as speed of adjustment coef-
ficients. The cointegrated VECM for Y may be rewritten as

Y = 0Y 1 + (12.24)

Writing the VECM equation by equation gives

1 = 1(1 1 2 1) + 1

2 = 2(1 1 2 1) + 2

The first equation relates the change in 1 to the lagged disequilibrium
error 0Y 1 = (1 1 2 1) and the second equation relates the change
in 2 to the lagged disequilibrium error as well. Notice that the reactions
of 1 and 2 to the disequilibrium errors are captured by the adjustment
coe cients 1 and 2.
The stability conditions for the bivariate VECM are related to the stabil-

ity conditions for the disequilibrium error 0Y . By pre-multiplying (12.24)
by 0, it is straightforward to show that 0Y follows an AR(1) process

0Y = (1+
0
)

0
Y 1 +

0

or

= 1 +

where = 0Y , = 1+ 0 = 1+(1 2) and = 0 = 1 2 .
The AR(1) model for is stable as long as | | = |1+ (1 2)| 1. For
example, suppose = 1. Then the stability condition is | | = |1 + (1

2)| 1 which is satisfied if 1 2 0 and 1 2 2. If 2 = 0 then
2 1 0 is the required stability condition.

12.5.2 Johansen’s Methodology for Modeling Cointegration

The basic steps in Johansen’s methodology are:

• Specify and estimate a VAR() model for Y .

• Construct likelihood ratio tests for the rank of to determine the
number of cointegrating vectors.

• If necessary, impose normalization and identifying restrictions on the
cointegrating vectors.

• Given the normalized cointegrating vectors estimate the resulting
cointegrated VECM by maximum likelihood.

12.5 VAR Models and Cointegration 459

12.5.3 Specification of Deterministic Terms

Following Johansen (1995), the deterministic terms in (12.23) are restricted
to the form

D = µ = µ0 + µ1

If the deterministic terms are unrestricted then the time series in Y may
exhibit quadratic trends and there may be a linear trend term in the coin-
tegrating relationships. Restricted versions of the trend parameters µ0 and
µ1 limit the trending nature of the series in Y . The trend behavior of Y
can be classified into five cases:

1. Model 2(): µ = 0 (no constant). The restricted VECM is

Y = 0Y 1 + 1 Y 1 + · · ·+ 1 Y +1 +

and all the series in Y are (1) without drift and the cointegrating
relations 0Y have mean zero.

2. Model 1 (): µ = µ0 = 0 (restricted constant). The restricted
VECM is

Y = (0Y 1 + 0) + 1 Y 1 + · · ·+ 1 Y +1 +

the series in Y are (1) without drift and the cointegrating relations
0Y have non-zero means 0.

3. Model 1(): µ = µ0 (unrestricted constant). The restricted VECM
is

Y = µ0 +
0Y 1 + 1 Y 1 + · · ·+ 1 Y +1 +

the series in Y are (1) with drift vector µ0 and the cointegrating
relations 0Y may have a non-zero mean.

4. Model (): µ = µ0 + 1 (restricted trend). The restricted
VECM is

Y = µ0 + (0Y 1 + 1)

+ 1 Y 1 + · · ·+ 1 Y +1 +

the series in Y are (1) with drift vector µ0 and the cointegrating
relations 0Y have a linear trend term 1 .

5. Model (): µ = µ0 + µ1 (unrestricted constant and trend). The
unrestricted VECM is

Y = µ0 + µ1 +
0Y 1+ 1 Y 1 + · · ·+ 1 Y +1 +

the series inY are (1) with a linear trend (quadratic trend in levels)
and the cointegrating relations 0Y have a linear trend.

460 12. Cointegration

Case 1: No constant

0 50 100 150 200

-2
2

4
6

8

Case 2: Restricted constant

0 50 100 150 200

0
5

10
15

Case 3: Unrestricted constant

0 50 100 150 200

40
80

12
0

Case 4: Restricted trend

0 50 100 150 200

40
80

12
0

16
0

Case 5: Unrestricted trend

0 50 100 150 200

50
0

15
00

30
00

FIGURE 12.6. Simulated Y from bivariate cointegrated VECM for five trend
cases.

Case 1: No constant

0 50 100 150 200

-2
0

2
4

Case 2: Restricted constant

0 50 100 150 200

6
8

10
12

Case 3: Unrestricted constant

0 50 100 150 200

4
6

8
10

Case 4: Restricted trend

0 50 100 150 200

15
20

25
30

Case 5: Unrestricted trend

0 50 100 150 200

-2
0

-1
0

0

FIGURE 12.7. Simulated 0Y from bivariate cointegrated VECM for five trend
cases.

12.5 VAR Models and Cointegration 461

Simulated data from the five trend cases for a bivariate cointegrated
VAR(1) model are illustrated in Figures 12.6 and 12.7. Case I is not really
relevant for empirical work. The restricted contstant Case II is appropriate
for non-trending (1) data like interest rates and exchange rates. The un-
restriced constant Case III is appropriate for trending (1) data like asset
prices, macroeconomic aggregates (real GDP, consumption, employment
etc). The restricted trend case IV is also appropriate for trending (1) as
in Case III. However, notice the deterministic trend in the cointegrating
residual in Case IV as opposed to the stationary residual in case III. Fi-
nally, the unrestricted trend Case V is appropriate for (1) data with a
quadratic trend. An example might be nominal price data during times of
extreme inflation.

12.5.4 Likelihood Ratio Tests for the Number of Cointegrating
Vectors

The unrestricted cointegrated VECM (12.23) is denoted (). The (1)
model () can be formulated as the condition that the rank of is less
than or equal to . This creates a nested set of models

(0) · · · () · · · ()

where (0) represents the non-cointegrated VAR model with = 0 and
() represents an unrestricted stationary VAR() model. This nested

formulation is convenient for developing a sequential procedure to test for
the number of cointegrating relationships.
Since the rank of the long-run impact matrix gives the number of coin-

tegrating relationships in Y , Johansen formulates likelihood ratio (LR)
statistics for the number of cointegrating relationships as LR statistics for
determining the rank of . These tests are based on the estimated eigenval-
ues ˆ1 ˆ

2 · · · ˆ of the matrix 5. These eigenvalues also happen to
equal the squared canonical correlations between Y and Y 1 corrected
for lagged Y and D and so lie between 0 and 1. Recall, the rank of
is equal to the number of non-zero eigenvalues of .

Johansen’s Trace Statistic

Johansen’s LR statistic tests the nested hypotheses

0() : = 0 vs. 1(0) : 0

The LR statistic, called the trace statistic, is given by

LRtrace(0) =
X
= 0+1

ln(1 ˆ)

5The calculation of the eigenvalues ˆ (= 1) is described in the appendix.

462 12. Cointegration

If rank() = 0 then ˆ 0+1
ˆ should all be close to zero and LRtrace(0)

should be small. In contrast, if rank() 0 then some of ˆ 0+1
ˆ

will be nonzero (but less than 1) and LRtrace(0) should be large. The
asymptotic null distribution of LRtrace(0) is not chi-square but instead
is a multivariate version of the Dickey-Fuller unit root distribution which
depends on the dimension 0 and the specification of the determinis-
tic terms. Critical values for this distribution are tabulated in Osterwald-
Lenum (1992) for the five trend cases discussed in the previous section for

0 = 1 10.

Sequential Procedure for Determining the Number of Cointegrating
Vectors

Johansen proposes a sequential testing procedure that consistently deter-
mines the number of cointegrating vectors. First test 0(0 = 0) against

1(0 0). If this null is not rejected then it is concluded that there are no
cointegrating vectors among the variables in . If 0(0 = 0) is rejected
then it is concluded that there is at least one cointegrating vector and pro-
ceed to test 0(0 = 1) against 1(0 1). If this null is not rejected then
it is concluded that there is only one cointegrating vector. If the null is re-
jected then it is concluded that there is at least two cointegrating vectors.
The sequential procedure is continued until the null is not rejected.

Johansen’s Maximum Eigenvalue Statistic

Johansen also derives a LR statistic for the hypotheses

0(0) : = 0 vs. 1(0) : 0 = 0 + 1

The LR statistic, called the maximum eigenvalue statistic, is given by

LRmax(0) = ln(1 ˆ
0+1)

As with the trace statistic, the asymptotic null distribution of LRmax(0)
is not chi-square but instead is a complicated function of Brownian mo-
tion, which depends on the dimension 0 and the specification of the
deterministic terms. Critical values for this distribution are tabulated in
Osterwald-Lenum (1992) for the five trend cases discussed in the previous
section for 0 = 1 10.

Finite Sample Correction to LR Tests

Reinsel and Ahn (1992) and Reimars (1992) have suggested that the LR
tests perform better in finite samples if the factor is used instead
of in the construction of the LR tests.

12.5 VAR Models and Cointegration 463

12.5.5 Testing Hypothesis on Cointegrating Vectors Using the
S+FinMetrics Function coint

This section describes how to test for the number of cointegrating vectors,
and how to perform certain tests for linear restrictions on the long-run
coe cients.

Testing for the Number of Cointegrating Vectors

The Johansen LR tests for determining the number of cointegrating vec-
tors in multivariate time series may be computed using the S+FinMetrics
function coint. The function coint has arguments

> args(coint)

function(Y, X = NULL, lags = 1, trend = "c", H = NULL,

b = NULL, save.VECM = T)

where Y is a matrix, data frame or “timeSeries” containing the (1)
variables in Y , X is a numeric object representing exogenous variables to
be added to the VECM, lags denotes the number of lags in the VECM
(one less than the number of lags in the VAR representation), trend deter-
mines the trend case specification, and save.VECM determines if the VECM
information is to be saved. The arguments H and b will be explained later.
The result of coint is an object of class “coint” for which there are print
and summary methods. The use of coint is illustrated with the following
examples.

Example 81 Exchange rate data

Consider testing for the number of cointegrating relations among the log-
arithms of the monthly spot and forward exchange rates in the “timeSeries”
uscn.ts examined earlier. The first step is to determine the number of lags
to use in the VECM. Using the S+FinMetrics function VAR, the lag length
that minimizes the AIC with a maximum lag of 6 is = 2:

> uscn.ts = seriesMerge(uscn.s, uscn.f)

> var.fit = VAR(uscn.ts,max.ar=6,criterion="AIC")

> var.fit$ar.order

[1] 2

The lag length for the VECM is then 1 = 1. Since the monthly exchange
rate data are not trending, the Johansen LR tests are computed assuming
the restricted constant case II:

> coint.rc = coint(uscn.ts,trend="rc",lags=1)

> class(coint.rc)

[1] "coint"

> coint.rc

464 12. Cointegration

Call:

coint(Y = uscn.ts, lags = 1, trend = "rc")

Trend Specification:

H1*(r): Restricted constant

Trace tests significant at the 5% level are flagged by ’ +’.

Trace tests significant at the 1% level are flagged by ’++’.

Max Eigenvalue tests significant at the 5% level are flagged

by ’ *’.

Max Eigenvalue tests significant at the 1% level are flagged

by ’**’.

Tests for Cointegration Rank:

Eigenvalue Trace Stat 95% CV 99% CV Max Stat

H(0)++** 0.0970 32.4687 19.9600 24.6000 24.8012

H(1) 0.0311 7.6675 9.2400 12.9700 7.6675

95% CV 99% CV

H(0)++** 15.6700 20.2000

H(1) 9.2400 12.9700

Recall, the number of cointegrating vectors is equal to the number of non-
zero eigenvalues of . The two estimated eigenvalues are 0 0970 and 0 0311.
The first row in the table gives LRtrace(0) and LRmax(0) for testing the null
of 0 = 0 cointegrating vectors as well as the 95% and 99% quantiles of the
appropriate asymptotic distributions taken from the tables in Osterwald-
Lenum (1992). Both the trace and maximum eigenvalue statistics reject the

0 = 0 null at the 1% level. The second row in the table gives LRtrace(1)
and LRmax(1) for testing the null of 0 = 1. Neither statistic rejects the
null that 0 = 1.
The summary method gives the same output as print as well as the un-

normalized cointegrating vectors, adjustment coe cients and the estimate
of .

Testing Linear Restrictions on Cointegrating Vectors

The coint function can also be used to test linear restrictions on the coin-
tegrating vectors . Two types of restrictions are currently supported: the
same linear restrictions on all cointegrating vectors in ; some cointegrating
vectors in are assumed known. Following Johansen (1995), two examples
are given illustrating how to use the coint function to test linear restric-
tions on .

Example 82 Johansen’s Danish data

12.5 VAR Models and Cointegration 465

The "timeSeries" data set johansen.danish in S+FinMetrics contains
the monthly Danish data used in Johansen (1995), with the columns LRM,
LRY, LPY, IBO, IBE representing the log real money supply (), log real
income (), log prices, bond rate () and deposit rate (), respectively.
Johansen (1995) considered testing the cointegrating relationship among
, , and . A natural hypothesis is that the velocity of money is a

function of the interest rates, or the cointegrating relation contains and
only through the term . For R0 = (1 1 0 0), this hypothesis can

be represented as a linear restriction on :

0 : R
0 = 0 or =H (12.25)

where are the unknown parameters in the cointegrating vectors , H =
R and R is the orthogonal complement of R such that R0R = 0.
Johansen (1995) showed that the null hypothesis (12.25) against the alter-
native of unrestricted cointegrating relations () can be tested using a
likelihood ratio statistic, which is asymptotically distributed as a 2 with
() degree of freedom where is the number of columns in H.
To test the hypothesis that the coe cients of and add up to zero

in the cointegrating relations, Johansen (1995) considered a restricted con-
stant model. In this case, R0 = (1 1 0 0 0) since the restricted constant
also enters the cointegrating space. Given the restriction matrix R, the
matrix H can be computed using the perpMat function in S+FinMetrics:

> R = c(1, 1, 0, 0, 0)

> H = perpMat(R)

> H

[,1] [,2] [,3] [,4]

[1,] -1 0 0 0

[2,] 1 0 0 0

[3,] 0 1 0 0

[4,] 0 0 1 0

[5,] 0 0 0 1

Now the test can be simply performed by passing the matrix H to the
coint function:

> restr.mod1 = coint(johansen.danish[,c(1,2,4,5)],

+ trend="rc", H=H)

The result of the test can be shown by calling the generic print method
on restr.mod1 with the optional argument restrictions=T:

> print(restr.mod1, restrictions=T)

Call:

coint(Y = johansen.danish[, c(1, 2, 4, 5)], trend = "rc",

H = H)

466 12. Cointegration

Trend Specification:

H1*(r): Restricted constant

Tests for Linear Restriction on Coint Vectors:

Null hypothesis: the restriction is true

Stat Dist df P-value

H(1) 0.0346 chi-square 1 0.8523

H(2) 0.2607 chi-square 2 0.8778

H(3) 4.6000 chi-square 3 0.2035

H(4) 6.0500 chi-square 4 0.1954

For unrestricted sequential cointegration testing, the statistics in the out-
put are labeled according to the null hypothesis, such as (0), (1), etc.
However, when restrictions are imposed, the statistics in the output printed
with restrictions=T are labeled according to the alternative hypothesis,
such as (1), (2), etc. In the above output, the null hypothesis can-
not be rejected against the alternatives of (1), (2), (3) and (4) at
conventional levels of significance.
After confirming that the cointegrating coe cients on and add

up to zero, it is interesting to see if (1 1 0 0 0) actually is a cointegrat-
ing vector. In general, to test the null hypothesis that some cointegrating
vectors in are equal to b:

0 : = (b)

where b is the × matrix of known cointegrating vectors and is the
×() matrix of unknown cointegrating vectors, Johansen (1995) showed
that a likelihood ratio statistic can be used, which is asymptotically dis-
tributed as a 2 with () degrees of freedom. This test can be simply
performed by setting the optional argument b to the known cointegrating
vectors. For example,

> b = as.matrix(c(1,-1,0,0,0))

> restr.mod2 = coint(johansen.danish[,c(1,2,4,5)],

+ trend="rc", b=b)

> print(restr.mod2, restrictions=T)

Trend Specification:

H1*(r): Restricted constant

Tests for Known Coint Vectors:

Null hypothesis: the restriction is true

Stat Dist df P-value

H(1) 29.7167 chi-square 4 0.0000

H(2) 8.3615 chi-square 3 0.0391

12.5 VAR Models and Cointegration 467

H(3) 4.8759 chi-square 2 0.0873

H(4) 0.5805 chi-square 1 0.4461

Again, the statistics in the above output are labeled according to the al-
ternative hypothesis (1), (2), etc. Although the hypothesis that the
cointegrating coe cients on and sum up to zero cannot be rejected,

does not seem to be stationary because the hypothesis of the known
value of b is rejected at conventional levels of significance against (1) and
(2).

12.5.6 Maximum Likelihood Estimation of the Cointegrated
VECM

If it is found that rank() = , 0 , then the cointegrated VECM
(12.23) becomes a reduced rank multivariate regression. The details of the
maximum likelihood estimation of (12.23) under the reduced rank restric-
tion rank() = is briefly outlined in the Appendix to this chapter. There
it is shown that

ˆ
mle = (v̂1 v̂) (12.26)

where v̂ are the eigenvectors associated with the eigenvalues ˆ , and that
the MLEs of the remaining parameters are obtained by multivariate least
squares estimation of (12.23) with replaced by ˆmle.

Normalized Estimates

Recall, the factorization = 0 is not unique and so the columns of
ˆ
mle in (12.26) may be interpreted as linear combinations of the under-
lying cointegrating relations. For interpretations, it is often convenient to
normalize or identify the cointegrating vectors by choosing a specific coor-
dinate system in which to express the variables. One arbitrary way to do
this, suggested by Johansen, is to solve for the triangular representation of
the cointegrated system. The details of this normalization process is given
in the appendix, and the S+FinMetrics function VECM utilizes this normal-
ization scheme by default. The resulting normalized cointegrating vector is
denoted ˆ mle. The normalization of the MLE for to ˆ mle will a ect
the MLE of but not the MLEs of the other parameters in the VECM.
It must be emphasized that it is not possible to estimate the individual

elements of without a specific normalization or identification scheme
and that the normalization based on Phillips’ triangular representation is
arbitrary and the resulting normalized cointegrating vectors (12.29) may
not have any economic meaning. Only in the case = 1 can a unique
cointegrating vector be found after normalization.

Example 83 Unnormalzed MLEs for exchange rate data

468 12. Cointegration

The unnormalized cointegrating vector assuming 0 = 1 may also be
extracted directly from the “coint” object:

> coint.rc$coint.vectors[1,]

USCNS USCNF Intercept*

-739.0541 743.314 2.023532

Notice in the case of a restricted constant, the last coe cient in ˆmle is an
estimate of the restricted constant. Normalizing on USCNS by dividing each
element in ˆmle by 739 0541 gives

> coint.rc$coint.vectors[1,]/

+ as.numeric(-coint.rc$coint.vectors[1,1])

USCNS USCNF Intercept*

-1 1.005764 0.002738003

The normalized MLEs, ˆ mle = (1 1 006)0 and ˆ = 0 0027 are almost

identical to the least squares estimates ˆ = (1 1 004)0 and ˆ = 0 0023
found earlier.

Asymptotic Distributions

Let ˆ mle denote the MLE of the normalized cointegrating matrix .

Johansen (1995) showed that ((ˆ mle) ()) is asymptotically
(mixed) normally distributed and that a consistent estimate of the asymp-
totic covariance of ˆ mle is given by

[((ˆ mle)) =

1(I ˆ
mlec

0)S 1
11 (I

ˆ
mlec

0)0
³
ˆ 0 mleˆ

1ˆ mle

´ 1

(12.27)

Notice that this result implies that ˆ mle at rate instead of the

usual rate 1 2. Hence, like the least squares estimator, ˆ mle is super con-
sistent. However, unlike the least squares estimator, asymptotically valid
standard errors may be compute using the square root of the diagonal
elements of (12.27).

12.5.7 Maximum Likelihood Estimation of the Cointegrated
VECM Using the S+FinMetrics Function VECM

Once the number of cointegrating vectors is determined from the coint
function, the maximum likelihood estimates of the full VECM may be
obtained using the S+FinMetrics function VECM. The arguments expected
by VECM are

> args(VECM)

function(object, coint.rank = 1, coint.vec = NULL, X = NULL,

unbiased = T, lags = 1, trend = "c", levels = F)

12.5 VAR Models and Cointegration 469

where object is either a “coint” object, usually produced by a call to the
function coint, or a rectangular data object. If object is a “coint” object
then coint.rank specifies the rank of to determine the number of coin-
tegrating vectors to be used in the fitted VECM. The cointegrating vectors
are then normalized using the Phillips’ triangular representation described
in the appendix. The lag length and trend specification for the VECM is
obtained from the information in the “coint” object. The lag length in
the fitted VECM, however, is one less than the lag length specified in the
“coint” object. If object is a rectangular data object, then coint.vec
must be assigned a matrix whose columns represent pre-specified cointe-
grating vectors. The argument lags is then used to specify the lag length of
the VECM, and trend is used to set the trend specification. The optional
argument X is used to specify any exogenous variables (e.g. dummy variables
for events) other than a constant or trend. The optional argument levels
determines if the VECM is to be fit to the levels Y or to the first di er-
ences Y , and determines if forecasts are to be computed for the levels or
the first di erences. The result of VECM is an object of class “VECM”, which
inherits from “VAR” for which there are print, summary, plot, cpredict
and predict methods and extractor functions coef, fitted, residuals
and vcov. Since “VECM” objects inherit from “VAR” objects, most of the
method and extractor functions for “VECM” objects work similarly to those
for “VAR” objects. The use of VECM is illustrated with the following exam-
ples.

Example 84 Maximum likelihood estimation of the VECM for exchange
rate data

Using the “coint” object coint.rc computed from the VAR(2) model
with a restricted constant, the VECM(1) with a restricted constant for the
exchange rate data is computed using

> vecm.fit = VECM(coint.rc)

> class(vecm.fit)

[1] "VECM"

> inherits(vecm.fit,"VAR")

[1] T

The print method gives the basic output

> vecm.fit

Call:

VECM(test = coint.rc)

Cointegrating Vectors:

coint.1

USCNS 1.0000

470 12. Cointegration

USCNF -1.0058

Intercept* -0.0027

VECM Coefficients:

USCNS USCNF

coint.1 1.7771 1.9610

USCNS.lag1 1.1696 1.2627

USCNF.lag1 -1.2832 -1.3679

Std. Errors of Residuals:

USCNS USCNF

0.0135 0.0136

Information Criteria:

logL AIC BIC HQ

2060.2 -4114.4 -4103.9 -4110.1

total residual

Degree of freedom: 243 240

Time period: from Apr 1976 to Jun 1996

The print method output is similar to that created by the VAR function.
The output labeled Cointegrating Vectors: gives the estimated cointe-
grating vector coe cients normalized on the first variable in the specifica-
tion of the VECM. To see standard errors for the estimated coe cients use
the summary method

> summary(vecm.fit)

Call:

VECM(test = coint.rc)

Cointegrating Vectors:

coint.1

1.0000

USCNF -1.0058

(std.err) 0.0031

(t.stat) -326.6389

Intercept* -0.0027

(std.err) 0.0007

(t.stat) -3.9758

VECM Coefficients:

12.5 VAR Models and Cointegration 471

USCNS USCNF

coint.1 1.7771 1.9610

(std.err) 0.6448 0.6464

(t.stat) 2.7561 3.0335

USCNS.lag1 1.1696 1.2627

(std.err) 0.9812 0.9836

(t.stat) 1.1921 1.2837

USCNF.lag1 -1.2832 -1.3679

(std.err) 0.9725 0.9749

(t.stat) -1.3194 -1.4030

Regression Diagnostics:

USCNS USCNF

R-squared 0.0617 0.0689

Adj. R-squared 0.0538 0.0612

Resid. Scale 0.0135 0.0136

Information Criteria:

logL AIC BIC HQ

2060.2 -4114.4 -4103.9 -4110.1

total residual

Degree of freedom: 243 240

Time period: from Apr 1976 to Jun 1996

The VECM fit may be inspected graphically using the generic plot
method

> plot(vecm.fit)

Make a plot selection (or 0 to exit):

1: plot: All

2: plot: Response and Fitted Values

3: plot: Residuals

4: plot: Normal QQplot of Residuals

5: plot: ACF of Residuals

6: plot: PACF of Residuals

7: plot: ACF of Squared Residuals

8: plot: PACF of Squared Residuals

9: plot: Cointegrating Residuals

10: plot: ACF of Cointegrating Residuals

11: plot: PACF of Cointegrating Residuals

12: plot: ACF of Squared Cointegrating Residuals

472 12. Cointegration

-0
.0

06
-0

.0
02

0.
00

2

1977 1979 1981 1983 1985 1987 1989 1991 1993 1995

coint.1

Cointegrating Residuals

FIGURE 12.8. Cointegrating residual from maximum likelihood estimation of
VECM(1) for exchange rate data.

13: plot: PACF of Squared Cointegrating Residuals

Selection:

The first eight plot options are the same as those created for a "VAR" object.
The remaining plot options allow a graphical inspection of the cointegrat-
ing residual. For example, plot option 9 is illustrated in Figure 12.8. The
estimated cointegrating residual appears to be (0).

Example 85 Estimate VECM with pre-specified cointegrating vector

For the exchange rate data, the MLE of the normalized cointegrating
vector is close to (1 1)0 and the estimate of the restricted constant is
close to zero. These are the values implied by the FRUH. To estimate a
VECM(1) imposing = (1 1)0 and = 0 use

> beta.true = as.matrix(c(1,-1, 0))

> dimnames(beta.true) = list(c("USCNS","USCNF","Intercept"),

+ "coint.1")

> vecm.fruh.fit = VECM(uscn.ts, coint.vec = beta.true,

+ lags = 1, trend = "rc")

Since the restricted constant lies in the cointegrating space, the last ele-
ment of the pre-specified cointegrating vector is the value of the restricted
constant. A summary of the restricted VECM fit is:

12.5 VAR Models and Cointegration 473

> summary(vecm.fruh.fit)

Call:

VECM(data = uscn.ts, coint.vec = beta.true, lags = 1, trend =

"rc")

Cointegrating Vectors:

coint.1

USCNS 1

USCNF -1

Intercept 0

VECM Coefficients:

USCNS USCNF

coint.1 0.0337 0.1354

(std.err) 0.4442 0.4466

(t.stat) 0.0758 0.3032

USCNS.lag1 2.1330 2.2781

(std.err) 0.9535 0.9588

(t.stat) 2.2371 2.3760

USCNF.lag1 -2.2226 -2.3573

(std.err) 0.9472 0.9525

(t.stat) -2.3465 -2.4748

Regression Diagnostics:

USCNS USCNF

R-squared 0.0354 0.0393

Adj. R-squared 0.0273 0.0312

Resid. Scale 0.0137 0.0138

Information Criteria:

logL AIC BIC HQ

2053.662 -4101.324 -4090.845 -4097.103

total residual

Degree of freedom: 243 240

Time period: from Apr 1976 to Jun 1996

Notice that the VECM with the pre-specified cointegrating vector does not
fit as well as the VECM using the estimated cointegrating vector.

474 12. Cointegration

12.5.8 Forecasting from the VECM

Forecasts from a VECM are computed by first transforming the VECM to
a VAR using (12.22), and then using the forecasting algorithms for VAR
models described in the previous chapter. For VECM models, one may
forecast the changes in the variables, Y , or the levels of the variables Y .
The generic S+FinMetrics functions predict and cpredict are used to
compute unconditional and conditional forecasts from a “VECM” object. The
following example illustrates the use of the predict method to compute
forecasts for the di erences and levels of the exchange rate data.

Example 86 Forecasts from VECM fit to exchange rate data

The “VECM” object vecm.fit was produced with the optional argument
levels=F. Consequently, the predict method will produce forecasts for
the changes in and . To compute -step forecasts for and for
= 1 12 use

> vecm.fcst = predict(vecm.fit,n.predict=12)

> class(vecm.fcst)

[1] "forecast"

To see the forecast and forecast standard errors use

> summary(vecm.fcst)

Predicted Values with Standard Errors:

USCNS USCNF

1-step-ahead -0.0105 -0.0110

(std.err) 0.0136 0.0136

2-step-ahead -0.0130 -0.0139

(std.err) 0.0183 0.0183

...

12-step-ahead -0.0237 -0.0260

(std.err) 0.0435 0.0432

By default, the forecasts are computed using the chain-rule of forecasting.
To compute simulation-based forecasts use method = "mc" or method =
"bootstrap" in the call to predict.
To see the forecasts with standard error bands along the original data

use

> plot(vecm.fcst, xold=diff(uscn.ts), n.old=12)

Since the forecasts are of the first di erenced data, the data passed to xold
must be first di erenced. The resulting plot is shown in Figure 12.9.
To compute forecasts for the levels and , re-fit the VECM with the

optional argument levels=T

12.5 Appendix: MLE of a Cointegrated VECM 475

-0
.0

6
-0

.0
4

-0
.0

2
0.

0
0.

02

235 240 245 250 255

USCNF

-0
.0

6
-0

.0
4

-0
.0

2
0.

0
0.

02

235 240 245 250 255

USCNS

index

va
lu

es

FIGURE 12.9. VECM forecasts of first di erences of exchange rate data.

> vecm.fit.level = VECM(coint.rc, levels=T)

and then call the predict method as before

> vecm.fcst.level = predict(vecm.fit.level, n.predict=12)

> summary(vecm.fcst.level)

Predicted Values with Standard Errors:

USCNS USCNF

1-step-ahead -0.3150 -0.3154

(std.err) 0.0136 0.0136

2-step-ahead -0.3157 -0.3161

(std.err) 0.0183 0.0183

...

12-step-ahead -0.3185 -0.3193

(std.err) 0.0435 0.0432

To plot the forecasts use

> plot(vecm.fcst.level, xold=uscn.ts, n.old=12)

The resulting plot is shown in Figure 12.10.

476 12. Cointegration

-0
.3

6
-0

.3
4

-0
.3

2
-0

.3
0

-0
.2

8

235 240 245 250 255

USCNF

-0
.3

6
-0

.3
4

-0
.3

2
-0

.3
0

-0
.2

8

235 240 245 250 255

USCNS

index

va
lu

es

FIGURE 12.10. VECM forecasts of levels of exchange rate data.

12.6 Appendix: Maximum Likelihood Estimation
of a Cointegrated VECM

The following brief discussion of maximum likelihood estimation of the
cointegrated VECM (12.23) follows Hamilton (1994) and Johansen (1995).
For simplicity, assume the absence of deterministic terms.

• Concentrate the likelihood function with respect to the error covari-
ance matrix and short-run dynamics by estimating the regressions

Y = ˆ
1 Y 1 + · · ·+ ˆ 1 Y +1 + Û

Y = ˆ
1 Y 1 + · · ·+ ˆ 1 Y +1 + V̂

• Form the sample covariance matrices

S00 =
1 X

=1

Û Û0 S01 =
1 X

=1

Û V̂0 S11 =
1 X

=1

V̂ V̂0

• Solve the eigenvalue problem

| S11 S10S
1

00 S01| = 0

12.6 Appendix: Maximum Likelihood Estimation of aCointegrated VECM 477

giving ordered eigenvalues6 ˆ1 ˆ
2 · · · ˆ and associated eigen-

vectors v̂1 v̂2 v̂ that satisfy

ˆ S11v̂ = S10S
1

00 S01 = 1

V̂S11V̂ = I

where V̂ = [v̂1 v̂]

• The unnormalized MLE for the (×) matrix based on 0
cointegrating vectors is given by the first eigenvectors

ˆ
mle = (v̂1 v̂)

• Form the normalized estimator ˆ mle by imposing the appropriate
normalizing and identifying restrictions. The MLE for the normalized
estimator of may be computed as

ˆ mle = S01ˆ mle

• The maximum likelihood estimators for the remaining parameters
may be obtained by multivariate least squares of the VECM with
replaced by ˆ mle

Y = ˆ0
mleY 1 + 1 Y 1 + · · ·+ 1 Y +1 +

• The maximized value of the likelihood function based on cointe-
grating vectors used in the construction of LR tests for the number
of cointegrating vectors is

2
max |S00|

Y
=1

(1 ˆ)

• Estimates of the orthogonal complements of and are given by

ˆ = S 1
00 S11(v̂ +1 v̂)

ˆ = S11(v̂ +1 v̂)

Let c be any (×) matrix such that 0c has full rank. Then may be
normalized as

= (c0) 1

6These eigenvalues are the squared canonical correlations between Y and Y cor-
rected for Y 1 Y +1. Johansen (1995) describes how to solve for the eigen-
values.

478 12. Cointegration

satisfying c0 = I provided |c0 | 6= 0. Johansen suggests setting

c = (I
...0)0 (12.28)

This choice of c corresponds to solving the cointegrating relations 0Y for
the first variables. To see this, let Y = (Y

0
1 Y0

2)
0
, where Y1 contains

the first variables and Y2 contains the remaining variables, and let

0 = (1

... 2), where 1 is (×) and 2 is (×()). Then 0c = 1

and

=

µ
I
1

1 2

¶
(12.29)

provided 1 has full rank .
Some examples will help clarify the normalization scheme described above.

First, suppose there is only one cointegrating vector so that = 1.Let the
(× 1) vector = (1 2)0 and define c = (1 0 0)0 so that
0c = 1 and = (1 2 1 1)

0 is the normalized coin-
tegrating vector. Notice that this normalization requires 1 6= 0. Next,
suppose there are two cointegrating vectors, = 2, and let

0 =

µ
11 12 13 1

21 22 23 2

¶
=

µ
1

... 2

¶
c0 =

µ
1 0 0 0
0 1 0 0

¶
= (I2

...0)

such that 1 has full rank. Then
0c = 1 and

0 =
µ
1 0 13 1

0 1 23 2

¶
= (I2

...)

where = 1
1 2. The rows of

0 are the normalized cointegrating vec-
tors.

12.7 References

Alexander, C. (2001). Market Models: A Guide to Financial Data Anal-
ysis, John Wiley & Sons, Chichester, UK.

Cochrane, J. (2001). Asset Pricing. Princeton University Press, Prince-
ton, NJ.

Engle, R.F. and C.W.J. Granger (1987). “Co-Integration and Error
Correction: Representation, Estimation and Testing,” Econometrica, 55,
251-276.

12.7 References 479

Granger, C.W.J. and P.E. Newbold (1974). “Spurious Regression in
Econometrics,” Journal of Econometrics, 2, 111-120.

Hamilton, J.D. (1994). Time Series Analysis, Princeton Unversity Press,
Princeton, NJ.

Hansen, B.E. (1992). “E cient Estimation and Testing of Cointegrating
Vectors in the Presence of Deterministic Trends,” Journal of Econometrics,
53, 87-121.

Hayashi, F. (2000). Econometrics, Princeton University Press, Princeton,
NJ.

Johansen, S. (1988). “Statistical Analysis of Cointegration Vectors,” Jour-
nal of Economic Dynamics and Control, 12, 231-254.

Johansen, S. (1995). Likelihood Based Inference in Cointegrated Vector
Error Correction Models, Oxford University Press, Oxford.

MacKinnon, J. (1996). “Numerical Distribution Functions for Unit Root
and Cointegration Tests,” Journal of Applied Econometrics, 11, 601-618.

Mills, T. (1999). The Econometric Analysis of Financial Time Series,
Cambridge University Press, Cambridge.

Osterwald-Lenum, M. (1992). “A Note with Quantiles of the Asymp-
totic Distribution of the Maximum Likelihood Cointegration Rank Statis-
tics,” Oxford Bulletin of Economics and Statistics,54, 461-472.

Phillips, P.C.B. (1986). “Understanding Spurious Regression in Econo-
metrics,” Journal of Econometrics, 33, 311-340.

Phillips, P.C.B. (1991). “Optimal Inference in Cointegrated Systems,”
Econometrica, 59, 283-306.

Phillips, P.C.B. and S. Ouliaris (1990). “Asymptotic Properties of
Residual Based Tests for Cointegration,” Econometrica, 58, 73-93.

Reimars, H.-E. (1992). “Comparisons of Tests for Multivariate Cointe-
gration,” Statistical Papers, 33, 335-359.

Reinsel, G.C. and S.K. Ahn (1992). “Vector Autoregression Models
with Unit Roots and Reduced Rank Structure: Estimation, Likelihood Ra-
tio Test, and Forecasting,” Journal of Time Series Analysis, 13, 353-375.

480 12. Cointegration

Sims, C.A., J.H. Stock and M.W. Watson (1990). “Inference in Linear
Time Series Models with Some Unit Roots,” Econometrica, 58, 113-144.

Stock, J.H. (1987). “Asymptotic Properties of Least Squares Estimation
of Cointegrating Vectors,” Econometrica, 55, 1035-1056.

Stock, J.H. and M.W. Watson (1989). “Variable Trends in Economic
Time Series,” Journal of Economic Perspectives, Vol. 2(3), 147-174.

Stock, J.H. and M.W. Watson (1993). “A Simple Estimator of Coin-
tegrating Vectors in Higher Order Integrated Systems,” Econometrica, 61,
783-820.

Tsay, R. (2001). The Analysis of Financial Time Series, John Wiley &
Sons, New York.

Zivot, E. (2000). “Cointegration and Forward and Spot Exchange Rate
Regressions,” Journal of International Money and Finance, 19, 785-812.

13
Multivariate GARCH Modeling

13.1 Introduction

When modeling multivariate economic and financial time series using vector
autoregressive (VAR) models, squared residuals often exhibit significant
serial correlation. For univariate time series, Chapter 7 indicates that the
time series may be conditionally heteroskedastic, and GARCH models have
been proved to be very successful at modeling the serial correlation in the
second order moment of the underlying time series.
This chapter extends the univariate GARCH models to the multivari-

ate context and shows how multivariate GARCH models can be used to
model conditional heteroskedasticity in multivariate time series. In partic-
ular, it will focus on modeling and predicting the time varying volatility
and volatility co-movement of multivariate time series. The multivariate
GARCH models in S+FinMetrics are so general that they actually include
the vector ARMA (VARMA) model as a special case.
To motivate multivariate GARCH models, Section 13.2 first introduces

an exponentially weighted covariance estimate and shows how to esti-
mate the optimal weight using the mgarch function in S+FinMetrics. Sec-
tion 13.3 modifies exponentially weighted covariance estimates to obtain
the popular diagonal VEC (DVEC) model. Section 13.4 illustrates how to
use the mgarch function to estimate a multivariate GARCH model such
as the DVEC model. Section 13.5 introduces some alternative formula-
tions of multivariate GARCH models. Section 13.6 focuses on how to pre-
dict from multivariate GARCH models supported by S+FinMetrics. Sec-

482 13. Multivariate GARCH Modeling

 HP

A
C

F

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 HP and IBM

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

 IBM and HP

Lag

A
C

F

-30 -25 -20 -15 -10 -5 0

0.
0

0.
2

0.
4

0.
6

 IBM

Lag
0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Multivariate Series : hp.ibm^2

FIGURE 13.1. ACF of multivariate hp.ibmˆ2.

tion 13.7 gives a detailed explanation of the structure of “garch.model”
and “mgarch.model” objects and shows how to use them to fine-tune or
constrain a GARCH model, univariate or multivariate. Finally, section 13.8
illustrates how to simulate from selected multivariate GARCH models.

13.2 Exponentially Weighted Covariance Estimate

S+FinMetrics module comes with two “timeSeries” objects, hp.s and
ibm.s, which represent daily stock returns of Hewlett-Packard and In-
ternational Business Machine for the same time period. Chapter 7 shows
that these financial return series usually exhibit little serial correlation, but
squared returns are usually autocorrelated. In multivariate context, cross-
correlations of the levels as well as the volatility of the time series are also
of interest. Cross-correlation in the levels can be modeled using vector au-
toregression (VAR) as shown in the previous chapter. This chapter focuses
on cross-correlation, or co-movement, of the volatility.
Just as in the univariate context, the existence of cross-correlation can be

diagnosed using the S-PLUS function acf, which also takes a multivariate
time series as an argument, to produce both autocorrelation and cross-
correlation plots:

> hp.ibm = seriesMerge(hp.s, ibm.s)

13.2 Exponentially Weighted Covariance Estimate 483

> tmp = acf(hp.ibm^2)

Use the S-PLUS function seriesMerge, which is specifically designed for
“timeSeries” objects, to create a multivariate time series. The plot is
shown in Figure 13.1. Both the autocorrelation and cross-correlation of the
second order moments are significant at least up to lag 5, which indicates
that the covariance matrix of hp.ibm may be time varying and serially
correlated.
Now let y be a × 1 vector of multivariate time series:

y = c+ ² for = 1 2 · · · (13.1)

where c is the × 1 mean vector, and ² is × 1 vector of white noise with
zero mean. The sample covariance matrix is given by:

=
1

1

X
=1

(y ȳ)(y ȳ)0

where ȳ is the × 1 vector of sample mean. In the above calculation, the
same weight 1 (1) is applied to the outer product of “demeaned” multi-
variate time series. To allow for time varying covariance matrix, in practice
an ad hoc approach uses exponentially decreasing weights as follows:1

= ² 1²
0
1 +

2² 2²
0
2 + · · ·

=
X
=1

² ²0

where 0 1 so that smaller weights are placed on observations further
back into the past history. Since

+ 2 + · · · =
1

the weights are usually scaled so that they sum up to one:

= (1)
X
=1

1² ²0 (13.2)

The above equation can be easily rewritten to obtain the following recursive
form for exponentially weighted covariance matrix:

= (1)² 1²
0
1 + 1 (13.3)

which will be referred to as the EWMA model of time varying covariance.
From the above equation, given and an initial estimate 1, the time
varying exponentially weighted covariance matrices can be computed easily.

1This approach has recently been justified and exhaustively investigated by Foster
and Nelson (1996), and Andreou and Ghysels (2002). Fleming, Kirby and Ostdiek (2001)
applied this method for constructing portfolios.

484 13. Multivariate GARCH Modeling

0.
0

0.
00

05
0.

00
15

0 500 1000 1500 2000

Cov.

0.
00

05
0.

00
15

0.
00

25

HP Vol.0.
0

0.
00

05
0.

00
15

0.
00

25 IBM Vol.

FIGURE 13.2. Exponentially weighted covariance estimate.

The S+FinMetrics function EWMA.cov can be used to compute the ex-
ponentially weighted covariance matrix. For example, to obtain the time
varying covariance estimate of hp.ibm, use the following command:

> hp.ibm.cov = EWMA.cov(hp.ibm, lambda=0.9672375)

> seriesPlot(cbind(hp.ibm.cov[,1,1], hp.ibm.cov[,2,2],

+ hp.ibm.cov[,1,2]), one.plot=F,

+ strip.text=c("HP Vol.", "IBM Vol.", "Cov."))

The returned object hp.ibm.cov is an array of dimension 2000 × 2 × 2
representing the time varying covariance matrices, since there are 2000
observations in hp.ibm. Then use the S+FinMetrics function seriesPlot
to obtain a Trellis multivariate plot of the time varying covariance matrix
as shown in Figure 13.2, where the large spikes in the middle correspond
to the 1987 stock market crash.
In practice, the value of is usually chosen in an ad hoc way as typified by

the RiskMetrics proposal. However, if one assumes that ² in (13.1) follows
a multivariate normal distribution with zero mean, and = Cov 1(²)
is treated as the covariance of ² conditional on the past history, then the
log-likelihood function of the observed time series can be written as:

log =
2
log(2)

1

2

X
=1

| | 1

2

X
=1

(y c)0 1(y c) (13.4)

13.2 Exponentially Weighted Covariance Estimate 485

Since can be recursively calculated as in (13.3), the log-likelihood func-
tion can also be easily evaluated. Thus the mean vector c and can be
treated as unknown model parameters and estimated using quasi-maximum
likelihood estimation (MLE), given the initial value 1.
The mgarch function in S+FinMetrics actually allows the estimation of

the above EWMA model using either (13.3) or an exact form of (13.2) with
limited past history. The syntax of mgarch is very much similar to that of
garch function. For example, to estimate the EWMA model as in (13.3),
use the following command:

> hp.ibm.ewma = mgarch(hp.ibm~1, ~ewma1, trace=F)

> hp.ibm.ewma

Call:

mgarch(formula.mean = hp.ibm ~ 1, formula.var = ~ ewma1,

trace = F)

Mean Equation: hp.ibm ~ 1

Conditional Variance Equation: ~ ewma1

Coefficients:

C(1) 0.0005202

C(2) 0.0004732

ALPHA 0.0327625

where the conditional variance formula is specified by ~ewma1. In the out-
put, C(1) and C(2) correspond to the 2×1 vector of c in (13.1), and ALPHA
corresponds to 1 in (13.3). This is why lambda=0.9672375 is set in the
earlier EWMA.cov example.
The EWMA model with an exact form of (13.2) can also be estimated

by specifying ~ewma2 as the conditional variance formula. However, in that
case, the coe cient labeled by ALPHA actually corresponds to in (13.2):

> mgarch(hp.ibm~1, ~ewma2, trace=F)

Call:

mgarch(formula.mean = hp.ibm ~ 1, formula.var = ~ ewma2,

trace = F)

Mean Equation: hp.ibm ~ 1

Conditional Variance Equation: ~ ewma2

Coefficients:

486 13. Multivariate GARCH Modeling

C(1) 0.0007369

C(2) 0.0002603

ALPHA 0.9730018

13.3 Diagonal VEC Model

In the univariate context, the EWMA model introduced in the previous
section reduces to:

= (1) 2 1 + 1

which is simply a GARCH(1 1) model with 1 = 1 , 1 = and thus

1 + 1 = 1. Since 1 + 1 corresponds to the AR(1) coe cient in the
ARMA representation of GARCH models (see Section 22.16 in Chapter 7),
the condition 1+ 1 = 1 implies that the GARCH model is not stationary
in the weak sense.2 Engle and Bollerslev (1986) termed this model the
integrated GARCH (IGARCH) model in the univariate context.3 Given
the non-stationarity of IGARCH and EWMA models, they are sometimes
not favored for modeling volatility.
To preserve the intuition behind EWMA models while allowing for a

flexible and stationary model for time varying covariance, generalize the
EWMA model as follows:

= A0 +
X
=1

A (² ²0) +
X
=1

B (13.5)

where the symbol stands for Hadamard product, i.e., element-by-element
multiplication, and all the coe cient matrices have dimension × . This
model is first proposed by Bollerslev, Engle and Wooldridge (1988), and
they called it the diagonal VEC, or DVEC() model.

2Unlike the unit root time series, a GARCH model may be strongly stationary, even
when it is not weakly stationary. See Nelson (1990) and Bougerol and Picard (1992) for
technical proof.

3In fact, the mgarch function can be called with a univariate time series using ~ewma1
as the conditional variance formula to estimate such an IGARCH model.

13.4 Multivariate GARCH Modeling in S+FinMetrics 487

To appreciate the intuition behind DVEC model, consider the bivariate
DVEC(1 1) model:"

(11)

(21) (22)

#
=

"
A
(11)
0

A
(21)
0 A

(22)
0

#

+

"
A
(11)
1

A
(21)
1 A

(22)
1

#"
(1)
1
(1)
1

(2)
1
(1)
1

(2)
1
(2)
1

#

+

"
B
(11)
1

B
(21)
1 B

(22)
1

#"
(11)
1

(21)
1

(22)
1

#
where only the lower triangular part of the system is considered, with
X() denoting the ()-th element of matrix X, and ²() the -th element
of vector ². The above matrix notation can be rewritten as follows:4

(11)
= A

(11)
0 +A

(11)
1 ²

(1)
1²
(1)
1 +B

(11)
1

(11)
1

(21)
= A

(21)
0 +A

(21)
1 ²

(2)
1²
(1)
1 +B

(21)
1

(21)
1

(22)
= A

(22)
0 +A

(22)
1 ²

(2)
1²
(2)
1 +B

(22)
1

(22)
1

so the ()-th element of the time varying covariance matrix only depends
on its own lagged element and the corresponding cross-product of errors.
As a result, the volatility of each series follows a GARCH process, while
the covariance process can also be treated as a GARCH model in terms of
the cross-moment of the errors.
Since a covariance matrix must be symmetric, in practice it su ces to

treat as symmetric and only consider the lower triangular part of the
system. A covariance matrix must be also positive semi-definite (PSD).
However, in the DVEC model cannot be guaranteed to be PSD, which
is considered a weakness of the DVEC model. Section 13.5 will introduce
other formulations of multivariate GARCH models that guarantee the time
varying covariance matrix to be PSD.

13.4 Multivariate GARCH Modeling in
S+FinMetrics

13.4.1 Multivariate GARCH Model Estimation

Section 13.2 showed that the mgarch function in S+FinMetrics can be used
to estimate a multivariate GARCH model such as the EWMA model. It

4If these equations are written using matrix notation with a vector on the left hand
side, then the coe cient matrices become diagonal matrices; thus this model is referred
to as the diagonal VEC model.

488 13. Multivariate GARCH Modeling

can also be used to fit other types of multivariate GARCH models such
as the DVEC model by using a di erent conditional variance formula. For
example, to fit a DVEC(1 1) model to the bivariate time series hp.ibm,
use the following command:

> hp.ibm.dvec = mgarch(hp.ibm~1, ~dvec(1,1), trace=F)

> class(hp.ibm.dvec)

[1] "mgarch"

> hp.ibm.dvec

Call:

mgarch(formula.mean = hp.ibm ~ 1, formula.var = ~ dvec(1, 1),

trace = F)

Mean Equation: hp.ibm ~ 1

Conditional Variance Equation: ~ dvec(1, 1)

Coefficients:

C(1) 7.018e-04

C(2) 2.932e-04

A(1, 1) 3.889e-05

A(2, 1) 1.322e-05

A(2, 2) 2.877e-05

ARCH(1; 1, 1) 6.226e-02

ARCH(1; 2, 1) 3.394e-02

ARCH(1; 2, 2) 1.049e-01

GARCH(1; 1, 1) 8.568e-01

GARCH(1; 2, 1) 8.783e-01

GARCH(1; 2, 2) 7.421e-01

The returned object is of class “mgarch”. Similar to “garch” objects, the
print method shows the conditional mean equation, conditional variance
equation, together with the estimated model coe cients. In the output,
C(i) corresponds to the -th element of c in (13.1), while A(i,j) cor-
responds to the ()-th element of A0, ARCH(i;j,k) corresponds to the
()-th element of A , and GARCH(j;i,k) corresponds to the ()-th el-
ement of B in (13.5).
As usual, use the S-PLUS function names to find out the component

names of an “mgarch” object:

> names(hp.ibm.dvec)

[1] "residuals" "sigma.t" "df.residual" "coef"

[5] "model" "cond.dist" "likelihood" "opt.index"

[9] "cov" "std.residuals" "R.t" "S.t"

13.4 Multivariate GARCH Modeling in S+FinMetrics 489

[13] "prediction" "call" "series"

These components are similar to those of “garch” objects, and the on-line
help file for mgarch provides details for them. For most components that
a user is interested in, S+FinMetrics provides methods for generic func-
tions such as coef, residuals, and vcov for extracting those components.
For example, extract the estimated coe cients by calling the generic coef
function:

> coef(hp.ibm.dvec)

C(1) 7.017567e-04

C(2) 2.932253e-04

A(1, 1) 3.888696e-05

A(2, 1) 1.322108e-05

A(2, 2) 2.876733e-05

ARCH(1; 1, 1) 6.225657e-02

ARCH(1; 2, 1) 3.393546e-02

ARCH(1; 2, 2) 1.048581e-01

GARCH(1; 1, 1) 8.567934e-01

GARCH(1; 2, 1) 8.783100e-01

GARCH(1; 2, 2) 7.421328e-01

Note that since only the lower triangular part of the system is considered
for DVEC models, only that part of the coe cient matrices are shown here.
Similarly, call the generic vcov function to obtain the covariance matrix

of the estimated coe cients. By default, the covariance matrix based on
the outer product of gradients is returned. Just like in the univariate case,
the covariance matrix based on the inverse of numerical Hessian and the
robust covariance matrix can be obtained by setting the optional argument
method to "op" and "qmle", respectively. For example, to obtain the robust
standard error of the estimated coe cients, use the command:

> sqrt(diag(vcov(hp.ibm.dvec, method="qmle")))

[1] 0.00048803101 0.00030789132 0.00003531643 0.00001088806

[5] 0.00001685943 0.03070917257 0.02983075055 0.06630322823

[9] 0.10170075535 0.09285527451 0.13273539264

Similar to the method functions for “garch” objects, residuals and
sigma.t can be used to extract the model residuals and estimated volatil-
ity, respectively. If the original multivariate data is a “timeSeries” ob-
ject, the extracted model residuals and conditional volatility will also be
“timeSeries” objects with the same dimension. Note that in the multivari-

ate case, the standardized residuals are computed as
1 2
² , where

1 2

is the Cholesky factor of . To obtain the standardized residuals, set the
optional argument standardize=T when calling the residuals function:

> residuals(hp.ibm.dvec, standardize=T)

490 13. Multivariate GARCH Modeling

The sigma.t function only extracts the conditional standard deviation
of each series, and ignores the conditional covariance term. To obtain the
conditional covariance or conditional correlation term, extract the S.t and
R.t component, respectively. Both S.t and R.t are three dimensional ar-
rays with dimension × × .

13.4.2 Multivariate GARCH Model Diagnostics

The previous subsection showed how to estimate a multivariate GARCH
model in S+FinMetrics, and how to extract various components of the
fitted model. To assess the model fit, S+FinMetrics provides method func-
tions for two generic functions: summary and plot, one for statistical sum-
mary and the other for visual diagnostics of the model fit.
For example, to obtain more detailed summary of hp.ibm.dvec, call the

generic summary function:

> summary(hp.ibm.dvec)

Call:

mgarch(formula.mean = hp.ibm ~ 1, formula.var = ~ dvec(1, 1),

trace = F)

Mean Equation: hp.ibm ~ 1

Conditional Variance Equation: ~ dvec(1, 1)

Conditional Distribution: gaussian

--

Estimated Coefficients:

--

Value Std.Error t value Pr(>|t|)

C(1) 7.018e-04 4.630e-04 1.516 6.489e-02

C(2) 2.932e-04 2.870e-04 1.022 1.536e-01

A(1, 1) 3.889e-05 6.175e-06 6.297 1.860e-10

A(2, 1) 1.322e-05 2.461e-06 5.372 4.345e-08

A(2, 2) 2.877e-05 4.302e-06 6.687 1.469e-11

ARCH(1; 1, 1) 6.226e-02 8.690e-03 7.164 5.498e-13

ARCH(1; 2, 1) 3.394e-02 6.848e-03 4.955 3.916e-07

ARCH(1; 2, 2) 1.049e-01 9.212e-03 11.382 0.000e+00

GARCH(1; 1, 1) 8.568e-01 1.762e-02 48.625 0.000e+00

GARCH(1; 2, 1) 8.783e-01 1.885e-02 46.589 0.000e+00

GARCH(1; 2, 2) 7.421e-01 2.966e-02 25.019 0.000e+00

13.4 Multivariate GARCH Modeling in S+FinMetrics 491

--

AIC(11) = -21886.25

BIC(11) = -21824.64

Normality Test:

--

Jarque-Bera P-value Shapiro-Wilk P-value

HP 755.8 0 0.9891 0.7105

IBM 2606.3 0 0.9697 0.0000

Ljung-Box test for standardized residuals:

--

Statistic P-value Chi^2-d.f.

HP 18.57 0.09952 12

IBM 11.76 0.46511 12

Ljung-Box test for squared standardized residuals:

--

Statistic P-value Chi^2-d.f.

HP 11.43 0.4925 12

IBM 4.44 0.9741 12

Lagrange multiplier test:

--

Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7

HP -0.1990 0.2496 -0.7004 2.594 0.1039 -0.1167 -0.2286

IBM -0.7769 -0.9883 -0.5770 -1.198 0.4664 -0.2077 -0.4439

Lag 8 Lag 9 Lag 10 Lag 11 Lag 12 C

HP 0.09018 -0.7877 -0.1279 -0.9280 -0.03133 1.8549

IBM -0.26423 -0.5352 -0.6724 0.1852 0.02102 -0.0729

TR^2 P-value F-stat P-value

HP 11.914 0.4526 1.090 0.4779

IBM 4.522 0.9721 0.412 0.9947

By default, the summary method shows the standard errors and -values
of estimated coe cients, together with various tests on the standardized
residuals for assessing the model fit. The standard errors and -values are
computed using the default covariance estimate. To use robust or numer-
ical Hessian based standard errors to compute the -values, the summary
method takes an optional argument method just like the vcovmethod does.
All the tests performed on the standardized residuals can also be per-

formed independently by using standard S+FinMetrics functions. In gen-

492 13. Multivariate GARCH Modeling

eral, if the model is successful at modeling the serial correlation in the time
series and the time varying aspect of covariance matrix, there should be no
serial correlation left in both the first order and second order moments of
standardized residuals. For example, to check that there is no serial corre-
lation left in squared standardized residuals, use the following command:

> autocorTest(residuals(hp.ibm.dvec, standardize=T)^2, lag=12)

Test for Autocorrelation: Ljung-Box

Null Hypothesis: no autocorrelation

Test Statistics:

HP IBM

Test Stat 11.4299 4.4404

p.value 0.4925 0.9741

Dist. under Null: chi-square with 12 degrees of freedom

Total Observ.: 2000

which is the same as the test results returned by the summary method.
Since the -values for both series are much greater than the conventional
5% level, the null hypothesis that there is no autocorrelation left cannot
be rejected.
Similarly, the LM test for ARCH e ects can be performed on the multi-

variate standardized residuals:

> archTest(residuals(hp.ibm.dvec, standardize=T), lag=12)

Test for ARCH Effects: LM Test

Null Hypothesis: no ARCH effects

Test Statistics:

HP IBM

Test Stat 11.9136 4.5219

p.value 0.4526 0.9721

Dist. under Null: chi-square with 12 degrees of freedom

Total Observ.: 2000

which is also the same as the LM test returned by the summary method.
The -values for LM tests are very close to those of the autocorrelation
tests, which confirms that the DVEC model is very successful at modeling
the time varying aspect of covariance matrix.
Note the above tests are applied to each series separately, and they do

not check the serial correlation of the cross-moment. Hence those tests are

13.4 Multivariate GARCH Modeling in S+FinMetrics 493

not really multivariate tests. However, the autocorTest function does have
an option to produce a multivariate portmanteau test as proposed by Hosk-
ing (1980), which is a multivariate extension of the univariate Ljung-Box
test. For example, to produce the multivariate test of squared standardized
residuals, use the command:

> autocorTest(residuals(hp.ibm.dvec, standardize=T)^2,

+ lag=12, bycol=F)

Multivariate Portmanteau Test: Ljung-Box Type

Null Hypothesis: no serial correlation

Test Statistics:

Test Stat 42.4585

p.value 0.6985

Dist. under Null: chi-square with 48 degrees of freedom

Total Observ.: 2000

where the optional argument bycol is set to FALSE to use the Hosking’s
test. The autocorTest function sets bycol to TRUE by default, and thus
tests the multivariate series column by column.
The goodness-of-fit of a multivariate GARCH model can also be assessed

by calling the generic plot function on a fitted “mgarch” object. For ex-
ample:

> plot(hp.ibm.dvec)

Make a plot selection (or 0 to exit):

1: plot: All

2: plot: Original Observations

3: plot: ACF of Observations

4: plot: ACF of Squared Observations

5: plot: Residuals

6: plot: Conditional SD

7: plot: Standardized Residuals

8: plot: ACF of Standardized Residuals

9: plot: ACF of Squared Standardized Residuals

10: plot: QQ-Plots of Standardized Residuals

Selection:

By selecting 9 the ACF of squared standardized residuals can be ob-
tained, which is shown in Figure 13.3. After fitting the DVEC model, there
is essentially little serial correlation left in the second order moments of

494 13. Multivariate GARCH Modeling

 HP

A
C

F

0 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 HP and IBM

0 10 20 30

0.
0

0.
1

0.
2

0.
3

0.
4

 IBM and HP

Lag

A
C

F

-30 -20 -10 0

0.
0

0.
1

0.
2

0.
3

0.
4

 IBM

Lag
0 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ACF of Squared Std. Residuals

FIGURE 13.3. ACF of squared standardized residuals.

the residuals. Normal QQ-plot of standardized residuals can be obtained
by selecting 10, which is shown in Figure 13.4. There is significant de-
viation in the tails from the normal QQ-line for both residuals, which is
also confirmed by the normality tests in the summary output shown earlier.
Thus it seems that the normality assumption for the residuals may not be
appropriate. Section 13.5.5 will show how to use alternative distributions
in multivariate GARCH models.
Other plots can also be chosen to visualize the model fit. For example,

choosing 6 plots the estimated conditional standard deviation as shown in
Figure 13.5. For the bivariate time series hp.ibm, the time varying cross-
correlation, which is contained in the R.t component of the fitted object,
is also of interest. Since R.t is a three-dimensional array, use the following
command to generate a time series of the conditional cross-correlation:

> hp.ibm.cross = hp.ibm.dvec$R.t[,1,2]

> hp.ibm.cross = timeSeries(hp.ibm.cross,pos=positions(hp.ibm))

> seriesPlot(hp.ibm.cross, strip="Conditional Cross Corr.")

The plot is shown in Figure 13.6. Although the conditional cross correla-
tion between hp.s and ibm.s usually fluctuates around 0 5, it can suddenly
drop down to 0 3 and then go back to 0 5 very quickly.

13.4 Multivariate GARCH Modeling in S+FinMetrics 495

-8

-6

-4

-2

0

2

4

6

-2 0 2

HP

9/28/1990
2/19/1991

10/19/1987

-2 0 2

IBM

9/27/1989

3/19/199110/19/1987

Quantiles of gaussian distribution

St
an

da
rd

iz
ed

 R
es

id
ua

ls

QQ-Plot of Standardized Residuals

FIGURE 13.4. QQ-plot of standardized residuals.

0.
02

0.
03

0.
04

0.
05

Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1
1984 1985 1986 1987 1988 1989 1990 1991 1992

HP

0.
02

0.
04

0.
06

IBM

C
on

di
tio

na
l S

D

MGARCH Volatility

FIGURE 13.5. Multivariate conditional volatility: hp.ibm.

496 13. Multivariate GARCH Modeling

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Q2 Q4 Q2 Q4 Q2 Q4 Q2 Q4 Q2 Q4 Q2 Q4 Q2 Q4 Q2 Q4
1984 1985 1986 1987 1988 1989 1990 1991 1992

Conditional Cross Corr.

FIGURE 13.6. Conditional cross correlation: hp.ibm.

13.5 Multivariate GARCH Model Extensions

13.5.1 Matrix-Diagonal Models

Although the DVEC model provided a good model fit for the bivariate time
series hp.ibm, the time varying covariance matrices are not guaranteed to
be PSD given the formulation as in (13.5). Note that a su cient condition
for to be PSD is that A0, A (for = 1 · · ·) and B (for = 1 · · ·)
are all PSD. Based on this observation, Ding (1994) and Bollerslev, Engle
and Nelson (1994) proposed to estimate the Cholesky factors of the coe -
cient matrices:

= A0A
0
0 +

X
=1

(A A0) (² ²0) +
X
=1

(B B0) (13.6)

where A0, A (for = 1 · · ·) and B (for = 1 · · ·) are all lower
triangular matrices. This model will be referred to as the matrix-diagonal
model.
The matrix-diagonal models can be further simplified by restricting A

and B to be a vector, which results in:

= A0A
0
0 +

X
=1

(a a0) (² ²0) +
X
=1

(b b0) (13.7)

13.5 Multivariate GARCH Model Extensions 497

where a and b are × 1 vectors. Even simpler, use the following formu-
lation:

= A0A
0
0 +

X
=1

(² ²0) +
X
=1

(13.8)

where and are positive scalars. It is easy to show that all the formu-
lations given in (13.6), (13.7), and (13.8) guarantee that the time varying
covariance matrix is PSD. However, the simpler the model is, the more
stringent restrictions are placed on the dynamics of the model.
The mgarch function in S+FinMetrics allows the estimation of all the

above modifications of the DVEC model by using ~dvec.type.type(p,q)
as the conditional variance formula, where type can be mat for the (13.6)
formulation, vec for the (13.7) formulation, or scalar for the (13.8) for-
mulation, and the first type refers to the type of A , the second type refers
to the type of B . Hence, one can use mgarch to estimate a multivariate
GARCH model with di erent formulations for A and B . For example,
to estimate a multivariate GARCH model with the following covariance
matrix formulation:

= A0A
0
0 +A1A

0
1 (² ²0) + 1 (13.9)

with A0 and A1 being lower triangular matrices and 1 just a scalar, use
the following conditional variance formula:

> mgarch(hp.ibm~1, ~dvec.mat.scalar(1,1), trace=F)

Call:

mgarch(formula.mean = hp.ibm ~ 1, formula.var =

~ dvec.mat.scalar(1, 1), trace = F)

Mean Equation: hp.ibm ~ 1

Conditional Variance Equation: ~ dvec.mat.scalar(1, 1)

Coefficients:

C(1) 0.0007500

C(2) 0.0003268

A(1, 1) 0.0099384

A(2, 1) 0.0037295

A(2, 2) 0.0044583

ARCH(1; 1, 1) 0.3215890

ARCH(1; 2, 1) 0.1984259

ARCH(1; 2, 2) 0.2958904

GARCH(1) 0.6968114

498 13. Multivariate GARCH Modeling

Note that in the output the GARCH(1) coe cient corresponds to 1, while
ARCH(1;i,j) corresponds to the ()-th element of A1 in (13.9).

13.5.2 BEKK Models

Although the DVEC model can be modified in various ways to ensure the
time varying covariance matrices are PSD, the dynamics allowed in the con-
ditional covariance matrix are still somewhat restricted. In particular, the
conditional variance and covariance are only dependent on their own lagged
element and the corresponding cross-product of shocks or error terms. For
example, consider the bivariate time series hp.ibm. If there is a shock to
hp.s in the current period, it will a ect the conditional volatility of hp.s
and the conditional correlation between hp.s and ibm.s in the next period.
However, it will not directly a ect the volatility of ibm.s.
The BEKK model, as formalized by Engle and Kroner (1995), provides

an alternative formulation of the conditional variance equation:

= A0A
0
0 +

X
=1

A (² ²0)A0 +
X
=1

B B0

where A0 is a lower triangular matrix, but A (= 1 · · ·) and B
(= 1 · · ·) are unrestricted square matrices. It is easy to show that
is guaranteed to be symmetric and PSD in the above formulation. Fur-

thermore, the dynamics allowed in the BEKK model are richer than the
DVEC model, which can be illustrated by considering the (2 2) element of

in the BEKK(1 1) model:

(22)
= A

(22)
0 A

(22)
0 + [A

(21)
1 ²

(1)
1 +A

(22)
1 ²

(2)
1]
2+

[B
(21)
1 B

(21)
1

(11)
1 + 2B

(21)
1 B

(22)
1

(21)
1 +B

(22)
1 B

(22)
1

(22)
1]

where both ²
(1)
1 and ²

(2)
1 enter the equation. In addition,

(11)
1 , the volatil-

ity of the first series, also has direct impacts on
(22)
, the volatility of the

second series. However, for the bivariate BEKK(1 1) model, flexibility is

achieved at the cost of two extra parameters, i.e., A
(12)
1 and B

(12)
1 , which

are not needed for the DVEC(1 1) model. In general, a BEKK() model
requires (1)(+) 2 more parameters than a DVEC model of the
same order.
One can fit a BEKK model by using ~bekk(p,q) as the conditional

variance formula. For example, to fit a BEKK(1 1) model to the bivariate
time series hp.ibm, use the following command:

> hp.ibm.bekk = mgarch(hp.ibm~1, ~bekk(1,1))

> hp.ibm.bekk

13.5 Multivariate GARCH Model Extensions 499

Call:

mgarch(formula.mean = hp.ibm ~ 1, formula.var = ~ bekk(1, 1))

Mean Equation: hp.ibm ~ 1

Conditional Variance Equation: ~ bekk(1, 1)

Coefficients:

C(1) 0.0007782

C(2) 0.0002870

A(1, 1) 0.0077678

A(2, 1) -0.0035790

A(2, 2) 0.0046844

ARCH(1; 1, 1) 0.2054901

ARCH(1; 2, 1) -0.0287318

ARCH(1; 1, 2) -0.0734735

ARCH(1; 2, 2) 0.4169672

GARCH(1; 1, 1) 0.8078184

GARCH(1; 2, 1) 0.1277266

GARCH(1; 1, 2) 0.2867068

GARCH(1; 2, 2) 0.6954790

Note that in the output, the coe cient matrix A1 (the ARCH(1;i,j) coef-
ficients) and B1 (the GARCH(1;i,j)) are not restricted.
Compare the conditional correlations between hp.s and ibm.s implied

by the DVEC model and BEKK model as follows:

> seriesPlot(cbind(hp.ibm.dvec$R.t[,1,2],

+ hp.ibm.bekk$R.t[,1,2]),strip=c("DVEC Corr.","BEKK Corr."),

+ one.plot=F, layout=c(1,2,1))

The plot is shown in Figure 13.7, from which one can see that the condi-
tional correlation implied by the BEKK model is more volatile than that
implied by the DVEC model.

13.5.3 Univariate GARCH-based Models

For BEKK model, DVEC model and its modifications, the conditional co-
variance matrix is modeled directly. This approach can result in a large
number of parameters since the covariance terms need to be modeled sepa-
rately. Another approach in multivariate GARCH modeling is to transform
the multivariate time series into uncorrelated time series and then apply the
univariate GARCH models in Chapter 7 to each of those uncorrelated se-
ries. This subsection introduces three types of multivariate GARCH models
in this fashion.

500 13. Multivariate GARCH Modeling

0.
0

0.
2

0.
4

0.
6

0.
8

0 500 1000 1500 2000

BEKK Corr.

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

DVEC Corr.

FIGURE 13.7. Comparison of conditional correlation: hp.ibm.

Constant Conditional Correlation Model

In general, a × covariance matrix can be decomposed into the following
form:

= R

where R is the correlation matrix, is a diagonal matrix with the vec-
tor (1 · · ·) on the diagonal, and is the standard deviation of the
-th series. Based on the observation that the correlation matrix of for-
eign exchange rate returns is usually constant over time, Bollerslev (1990)
suggested modelling the time varying covariance matrix as follows:

= R

where R is the constant conditional correlation matrix, and is the fol-
lowing diagonal matrix:

=

1

. . .

with following any univariate GARCH process, for = 1 · · · . This
model is usually referred to as the constant conditional correlation (CCC)
model.

13.5 Multivariate GARCH Model Extensions 501

The mgarch function can be used to estimate a CCC model with a
GARCH() model for each series, by specifying ~ccc(p,q) as the con-
ditional variance formula. In addition, a more general formula such as
~ccc.type(p,q) can also be used, where type can be any of the GARCH
variants supported by the garch function.5 For example, to use a two com-
ponents model for each series when fitting a CCC model to the bivariate
time series hp.ibm, use the following conditional variance formula:

> mgarch(hp.ibm~1, ~ccc.two.comp(1,1), trace=F)

Call:

mgarch(formula.mean = hp.ibm ~ 1, formula.var =

~ ccc.two.comp(1, 1), trace = F)

Mean Equation: hp.ibm ~ 1

Conditional Variance Equation: ~ ccc.two.comp(1, 1)

Coefficients:

C(1) 4.907e-04

C(2) 1.844e-04

A(1, 1) 8.722e-05

A(2, 2) 6.579e-05

ARCH(1; 1, 1) 8.102e-03

ARCH(1; 2, 2) 9.621e-03

ARCH(2; 1, 1) 9.669e-02

ARCH(2; 2, 2) 9.582e-02

GARCH(1; 1, 1) 9.699e-01

GARCH(1; 2, 2) 9.654e-01

GARCH(2; 1, 1) 7.365e-01

GARCH(2; 2, 2) 7.271e-01

Conditional Constant Correlation Matrix:

HP IBM

HP 1.0000 0.5582

IBM 0.5582 1.0000

When fitting a CCC model, mgarch function allows several alternatives
for the estimation of the constant conditional correlation matrix R by set-
ting the optional argument cccor.choice:

1. cccor.choice=0: The sample correlation matrix is used, and no fur-
ther MLE estimation of R is carried out.

5See Section 7.9 in Chapter 7 for a summary of those specifications.

502 13. Multivariate GARCH Modeling

2. cccor.choice=1: The sample correlation matrix is used as the initial
estimate, and the final estimate of R is obtained as part of the MLE
method. This is the default value.

3. cccor.choice=2: The user supplies an initial correlation matrix es-
timate, and the final estimate of R is obtained as part of the MLE
method. In this case, the user needs to supply the initial estimate
with the optional argument cccor.value.

A potentially important use of the last choice is to obtain robustness
toward multivariate outliers by using a robust initial covariance matrix
estimate. The covRob function in S-PLUS robust library provides several
robust covariance and correlation estimates.

Principal Component Model

In principal component analysis, it is well known that for any covariance
matrix , one can always find an orthogonal matrix and a diagonal
matrix such that

0 =

where is usually normalized so that 0 = I with I being an identity
matrix. It can be shown that the diagonal elements of are the eigen-
values of , while the columns of correspond to the eigenvectors of .
Based on this result, the principal components of y , which are defined as
z = 0y , have a diagonal covariance matrix. Ding (1994) describes the
principal component GARCH model, which essentially models each prin-
cipal component in z as a univariate GARCH model. This model is also
proposed by Alexander (1998).
The mgarch function can be used to estimate a principal component

model with a GARCH() model for principal component, by specifying
~prcomp(p,q) as the conditional variance formula. Similar to the CCC
model, a more general formula such as ~prcomp.type(p,q) can also be
used, where type can be any of the GARCH variants supported by the
garch function. For example, to use a PGARCH(1 1 1) model for each
series when fitting the principal component model to the bivariate time
series hp.ibm, use the following conditional variance formula:

> mgarch(hp.ibm~1, ~prcomp.pgarch(1,1,1), trace=F)

Call:

mgarch(formula.mean = hp.ibm ~ 1, formula.var =

~ prcomp.pgarch(1, 1, 1), trace = F)

Mean Equation: hp.ibm ~ 1

Conditional Variance Equation: ~ prcomp.pgarch(1, 1, 1)

13.5 Multivariate GARCH Model Extensions 503

Coefficients:

C(1) -3.519e-04

C(2) -1.614e-05

A(1, 1) 1.848e-03

A(2, 2) 3.565e-04

ARCH(1; 1, 1) 1.100e-01

ARCH(1; 2, 2) 5.992e-02

GARCH(1; 1, 1) 8.380e-01

GARCH(1; 2, 2) 9.222e-01

Eigenvectors: (orthonormal transform matrix):

HP IBM

HP -0.9054 0.4245

IBM -0.4245 -0.9054

Eigenvalues:

[1] 0.0006002 0.0001222

Pure Diagonal Model

Sometimes, the user may want to fit the same type of GARCH model to a
large number of time series. The mgarch function also allows this type of
univariate GARCH-based estimation, which totally ignores the correlation
of the multivariate time series. For this purpose, any univariate GARCH
specification can be used directly with the mgarch function. For example,
to estimate a TGARCH(1 1) model to both hp.s and ibm.s at the same
time, use the following command:

> mgarch(hp.ibm~1, ~egarch(1,1), leverage=T, trace=F)

Call:

mgarch(formula.mean = hp.ibm ~ 1, formula.var = ~ egarch(1, 1),

leverage = T, trace = F)

Mean Equation: hp.ibm ~ 1

Conditional Variance Equation: ~ egarch(1, 1)

Coefficients:

C(1) 0.0004561

C(2) 0.0001810

A(1, 1) -0.7959068

A(2, 2) -0.9192535

504 13. Multivariate GARCH Modeling

ARCH(1; 1, 1) 0.1618657

ARCH(1; 2, 2) 0.1350345

GARCH(1; 1, 1) 0.9124564

GARCH(1; 2, 2) 0.9066042

LEV(1; 1, 1) 0.0243099

LEV(1; 2, 2) -0.1743824

Although the optional argument leverage can be used with any uni-
variate GARCH-based models for mgarch function, it is ignored for BEKK,
DVEC and its modifications.

13.5.4 ARMA Terms and Exogenous Variables

All the multivariate GARCH models considered so far have been restricted
to a constant mean assumption. However, the mgarch function actually
allows a more general model with a vector ARMA (VARMA) structure
and optional inclusion of weakly exogenous variables in the conditional
mean:

y = c+
X
=1

y +
X
=0

x + ² +
X
=1

² (13.10)

where are × autoregressive coe cient matrix, are × moving
average coe cient matrix, x is the × 1 vector of weakly exogenous
variables, and is × coe cients of x . Note that a distributed lag
structure of x is allowed in the above equation by setting to be a positive
integer.
To include an AR(), MA(), or ARMA() term in the conditional

mean, the user can simply add an ar(r), ma(s), or arma(r,s) term to the
conditional mean formula. However, by default, and are restricted
to be diagonal matrices for parsimonious reasons. This behavior can be
changed by setting the optional argument armaType of the mgarch func-
tion. In particular, if armaType="lower", then and are restricted
to be lower triangular matrices; if armaType="full", then and are
not restricted. When weakly exogenous variables x are used, the optional
argument xlag can be set to a positive integer to use a distributed lag
structure.

Example 87 Single factor model with multivariate GARCH errors

Section 7.5 of Chapter 7 developed a single factor model with GARCH
errors. Here that example is extended to multivariate context using the
bivariate time series hp.ibm. The univariate example used daily returns
on the value weighted New York Stock Exchange index as the “market
returns” to estimate the “market beta”. In practice, this market beta can
be biased due to the serial correlation in the market returns. Hence, both

13.5 Multivariate GARCH Model Extensions 505

0.
02

0.
03

0.
04

0.
05

Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1
1984 1985 1986 1987 1988 1989 1990 1991 1992

HP

0.
01

0.
02

0.
03

0.
04

IBM

C
on

di
tio

na
l S

D

MGARCH Volatility

FIGURE 13.8. Idiosyncratic volatility of bivariate hp.ibm.

nyse.s and its first lag as regressors are included in the conditional mean
equation, and the DVEC(1 1) model is used in the conditional variance:

> hp.ibm.beta = mgarch(hp.ibm~seriesData(nyse.s), ~dvec(1,1),

+ xlag=1)

> summary(hp.ibm.beta)

Call:

mgarch(formula.mean = hp.ibm ~ seriesData(nyse.s),

formula.var = ~ dvec(1, 1), xlag = 1)

Mean Equation: hp.ibm ~ seriesData(nyse.s)

Conditional Variance Equation: ~ dvec(1, 1)

Conditional Distribution: gaussian

--

Estimated Coefficients:

--

Value Std.Error t value Pr(>|t|)

C(1) 7.860e-05 3.714e-04 0.2116 4.162e-01

506 13. Multivariate GARCH Modeling

C(2) -3.343e-04 1.947e-04 -1.7166 4.311e-02

X(0; 1, 1) 1.491e+00 2.867e-02 52.0032 0.000e+00

X(0; 2, 1) 1.112e+00 1.751e-02 63.4896 0.000e+00

X(1; 1, 1) -1.497e-01 3.233e-02 -4.6297 1.949e-06

X(1; 2, 1) -1.802e-01 1.898e-02 -9.4945 0.000e+00

A(1, 1) 1.028e-04 1.420e-05 7.2413 3.160e-13

A(2, 1) 6.166e-06 4.520e-06 1.3642 8.633e-02

A(2, 2) 3.117e-05 3.226e-06 9.6600 0.000e+00

ARCH(1; 1, 1) 1.230e-01 1.812e-02 6.7878 7.482e-12

ARCH(1; 2, 1) 5.030e-03 1.530e-02 0.3288 3.712e-01

ARCH(1; 2, 2) 2.567e-01 2.155e-02 11.9125 0.000e+00

GARCH(1; 1, 1) 5.494e-01 5.543e-02 9.9112 0.000e+00

GARCH(1; 2, 1) 7.904e-01 1.483e-01 5.3285 5.511e-08

GARCH(1; 2, 2) 4.261e-01 4.432e-02 9.6126 0.000e+00

...

In the above output, the coe cient matrix 0 of nyse.s is denoted by
X(0;i,j) and 1 of the first lag of nyse.s is denoted by X(1;i,j). All
those coe cients are very significant. Now compare the GARCH(1;i,j) co-
e cients with those of hp.ibm.dvec; after taking account of the market
e ects, the persistence in the GARCH volatilities has dropped quite a bit.
The estimated conditional volatility can also be plotted as shown in Fig-
ure 13.8. Compare this with Figure 13.5: since the market e ects are already
taken into account in the above single factor model, the volatility in Fig-
ure 13.8 can be treated as the “idiosyncratic” volatility, while Figure 13.5
also includes the systematic market component.
Weakly exogenous variables are also allowed in the conditional variance

equation for multivariate GARCHmodels. For example, for the DVEC()
model, the general conditional variance equation is:

= A0 +
X
=1

A (² ²0) +
X
=1

B +D · Z ·D0 (13.11)

where Z is a diagonal matrix with the × 1 weakly exogenous variable
(1 · · ·) on the diagonal, andD is × coe cient matrix. Note that
using this formulation, the regressor e ects are guaranteed to be positive
semi-definite as long as the regressors Z are non-negative.

Example 88 Monday and Friday e ects of volatility

There is a conjecture that the volatility in stock markets may be higher
on Mondays and Fridays. To investigate if this conjecture holds for the
bivariate time series hp.ibm, build a dummy variable for those observations
falling on a Monday or a Friday:

> weekdaysVec = as.integer(weekdays(positions(hp.ibm)))

13.5 Multivariate GARCH Model Extensions 507

> MonFriDummy = (weekdaysVec == 2 | weekdaysVec == 6)

Note that the integer representation of Monday in S-PLUS is two because
Sunday is represented as one. Now add MonFriDummy as an exogenous vari-
able in the conditional variance formula:

> hp.ibm.dummy = mgarch(hp.ibm~1, ~dvec(1,1)+MonFriDummy)

> summary(hp.ibm.dummy)

Call:

mgarch(formula.mean = hp.ibm ~ 1, formula.var = ~ dvec(1, 1)

+ MonFriDummy)

Mean Equation: hp.ibm ~ 1

Conditional Variance Equation: ~ dvec(1, 1) + MonFriDummy

Conditional Distribution: gaussian

--

Estimated Coefficients:

--

Value Std.Error t value Pr(>|t|)

C(1) 6.953e-04 4.696e-04 1.4806 6.943e-02

C(2) 2.659e-04 2.849e-04 0.9333 1.754e-01

A(1, 1) 3.369e-05 8.612e-06 3.9124 4.723e-05

A(2, 1) 7.384e-06 5.682e-06 1.2997 9.693e-02

A(2, 2) 2.011e-05 5.214e-06 3.8565 5.934e-05

ARCH(1; 1, 1) 6.400e-02 8.952e-03 7.1494 6.088e-13

ARCH(1; 2, 1) 3.546e-02 7.029e-03 5.0443 2.482e-07

ARCH(1; 2, 2) 1.076e-01 1.004e-02 10.7141 0.000e+00

GARCH(1; 1, 1) 8.600e-01 1.716e-02 50.1061 0.000e+00

GARCH(1; 2, 1) 8.805e-01 1.816e-02 48.4743 0.000e+00

GARCH(1; 2, 2) 7.472e-01 2.855e-02 26.1706 0.000e+00

Z(1,1) 3.139e-03 2.440e-03 1.2865 9.921e-02

Z(2,1) 4.426e-03 1.074e-03 4.1215 1.959e-05

...

In the above output, Z(1,1) denotes the coe cient of the dummy variable
for hp.s, the -value of which is higher than the conventional 5% level, and
Z(2,1) denotes the coe cient for ibm.s, the -value of which is very close
to zero. So it seems that for IBM stocks, the volatility tends to be slightly
higher on Mondays and Fridays.

508 13. Multivariate GARCH Modeling

13.5.5 Multivariate Conditional t-Distribution

In all the multivariate GARCH models fitted so far, it has been assumed
that the residuals ² follow a conditional multivariate normal distribution.
The mgarch function also allows the residuals to follow a multivariate Stu-
dent’s distribution.
If a -dimensional random variable u follows a multivariate Student’s

distribution with degrees of freedom and the scale matrix S , the proba-
bility density function (PDF) of u is given by:

(u) =
[(+) 2]

() 2 (2)

|S | 1 2

[1 + u0S 1u](+) 2
(13.12)

where (·) is the gamma function. The covariance matrix of u is given by:

Cov(u) =
2
S

If the error term ² is assumed in multivariate GARCH models follows a
conditional multivariate Student’s distribution with degrees of freedom
and Cov(²) = , obviously the scale matrix S should be chosen so that

S =
2

By substituting the above relationship into (13.12), the user can easily de-
rive the log-likelihood function for multivariate GARCH models with con-
ditional multivariate Student’s distributed errors. The unknown model
parameters can also be routinely estimated using maximum likelihood es-
timation.
To use the multivariate Student’s distribution with the mgarch function

to estimate a multivariate GARCHmodel, simply set the optional argument
cond.dist to "t". For example:

> hp.ibm.dvec.t = mgarch(hp.ibm~1, ~dvec(1,1), cond.dist="t")

The estimated degree of freedom is contained in the cond.dist com-
ponent of the returned object:

> hp.ibm.dvec.t$cond.dist

$cond.dist:

[1] "t"

$dist.par:

[1] 6.697768

$dist.est:

[1] T

13.6 Multivariate GARCH Prediction 509

-10

-5

0

5

-6 -4 -2 0 2 4 6

HP
hp.ibm.dvec

IBM
hp.ibm.dvec

HP
hp.ibm.dvec.t

-10

-5

0

5

-6 -4 -2 0 2 4 6

IBM
hp.ibm.dvec.t

Quantile of Comparison Distribution

St
an

da
rd

iz
ed

 R
es

id
ua

ls

QQ-Plot of Standardized Residuals

FIGURE 13.9. Comparison of QQ-plot using normal and Student-t distributions.

Compare this model with the one fitted using multivariate normal distri-
bution:

> hp.ibm.comp = compare.mgarch(hp.ibm.dvec, hp.ibm.dvec.t)

> hp.ibm.comp

hp.ibm.dvec hp.ibm.dvec.t

AIC -21886 -22231

BIC -21825 -22164

Likelihood 10954 11128

> plot(hp.ibm.comp, qq=T)

Obviously, the multivariate Student’s distribution provides a much better
fit. This can also be confirmed by comparing the QQ-plot of standardized
residuals, which is shown in Figure 13.9.

13.6 Multivariate GARCH Prediction

Predictions from multivariate GARCH models can be generated in a simi-
lar fashion to predictions from univariate GARCH models. Indeed, for the
univariate GARCH-based models, such as CCC model and principal com-
ponent model, the predictions are generated from the underlying univariate
GARCH models and then converted to the scale of the original multivariate

510 13. Multivariate GARCH Modeling

time series by using the appropriate transformation. This section focuses
on predicting from DVEC model, because predicting from BEKK model
can be performed similarly.
For multivariate GARCH models, predictions can be generated for both

the levels of the original multivariate time series and its conditional covari-
ance matrix. Predictions of the levels are obtained just as for vector au-
toregressive (VAR) models. Compared with VAR models, the predictions
of the conditional covariance matrix from multivariate GARCH models can
be used to construct more reliable confidence intervals for predictions of
the levels.
To illustrate the prediction of conditional covariance matrix for multi-

variate GARCH models, consider the conditional variance equation for the
DVEC(1 1) model:

= A0 +A1 (² 1²
0
1) +B1 1

which is estimated over the time period = 1 2 · · · . To obtain (+),
use the forecasts of conditional covariance matrix at time + for 0,
given information at time . For one-step-ahead prediction, it is easy to
obtain:

(+1) = A0 +A1 (² ²0) +B1 ()

= A0 +A1 (² ²0) +B1

since an estimate of ² and already exists after estimating the DVEC
model. When = 2, it can be shown that

(+2) = A0 +A1 (² +1²
0
+1) +B1 (+1)

= A0 + (A1 +B1) (+1)

where (+1) is obtained in the previous step. This procedure can be
iterated to obtain (+) for 2.
The predict method for “mgarch” objects in S+FinMetrics implements

the forecasting procedure for all the multivariate GARCH models sup-
ported by the mgarch function. The forecasts can be easily obtained by
calling the generic predict function for an “mgarch” object with the de-
sired number of forecasting periods. For example, to obtain 10-step-ahead
forecasts from the BEKK model object hp.ibm.bekk fitted in Section 13.5,
use the following command:

> hp.ibm.pred = predict(hp.ibm.bekk, 10)

> class(hp.ibm.pred)

[1] "predict.mgarch"

> names(hp.ibm.pred)

[1] "series.pred" "sigma.pred" "R.pred"

13.6 Multivariate GARCH Prediction 511

0.
02

36
0.

02
40

0.
02

44
0.

02
48

2 4 6 8 10

HP

0.
01

48
5

0.
01

48
7

0.
01

48
9

IBM

Predicted Conditional SD

FIGURE 13.10. BEKK prediction of conditional standard deviations.

The returned object hp.ibm.pred is of class “predict.mgarch”, and has
three components: series.pred represents the forecasts of the levels of the
time series, sigma.pred represents the forecasts of the conditional standard
deviations, and R.pred represents the forecasts of the conditional correla-
tion matrix. Note that the sigma.pred and R.pred components can be
used together to obtain the forecasts of the conditional covariance matrix.
S+FinMetrics also implements a plot method for “predict.mgarch”

objects, so that the multivariate forecasts can be visualized directly. For ex-
ample, if the user calls the generic plot function directly on hp.ibm.pred:

> plot(hp.ibm.pred)

Make a plot selection (or 0 to exit):

1: plot: All

2: plot: Predicted Conditional Mean

3: plot: Predicted Conditional SD

Selection:

Selecting 3 will generate the plot of predicted conditional standard devi-
ations, as shown in Figure 13.10, the confidence interval of the volatility
forecasts should be obtained as well. Section 13.8 shows how to obtain a
confidence interval using simulation-based forecasts.

512 13. Multivariate GARCH Modeling

13.7 Custom Estimation of GARCH Models

13.7.1 GARCH Model Objects

For both “garch” and “mgarch” objects, there is a model component which
contains all the necessary model specific information about the fitted uni-
variate or multivariate GARCH model. For example, for the univariate
“garch” object ford.mod11 fitted in Section 7.4 of Chapter 7:

> class(ford.mod11$model)

[1] "garch.model"

> ford.mod11$model

Mean Equation: ford.s ~ 1

Conditional Variance Equation: ~ garch(1, 1)

------------ Constants in mean ------------

value which

0.0007708 1

---------- Constants in variance ----------

value which

6.534e-06 1

------------------- ARCH ------------------

value which

lag 1 0.07454 1

------------------ GARCH ------------------

value which

lag 1 0.9102 1

So the model component of a “garch” object is of class “garch.model”.
Similarly, for the “mgarch” object hp.ibm.dvec fitted in this chapter:

> class(hp.ibm.dvec$model)

[1] "mgarch.model"

> hp.ibm.dvec$model

Mean Equation: hp.ibm ~ 1

Conditional Variance Equation: ~ dvec(1, 1)

13.7 Custom Estimation of GARCH Models 513

------------ Constants in mean ------------

value which

v1 0.0007017567 T

v2 0.0002932253 T

---------- Constants in variance ----------

v1.value v2.value *** v1.which v2.which

v1 3.888696e-05 1.322108e-05 *** T T

v2 1.322108e-05 2.876733e-05 *** T T

------------------- ARCH ------------------

Lag 1

v1.value v2.value *** v1.which v2.which

v1 0.06225657 0.03393546 *** T T

v2 0.03393546 0.10485809 *** T T

------------------ GARCH ------------------

Lag 1

v1.value v2.value *** v1.which v2.which

v1 0.8567934 0.8783100 *** T T

v2 0.8783100 0.7421328 *** T T

So the model component of an “mgarch” object is of class “mgarch.model”,
which has similar structures to a “garch.model” object. This section will
focus on “mgarch.model” objects, though all the things illustrated can also
be applied to “garch.model” objects.
Since an “mgarch.model” object contains all the necessary information

about a fitted GARCH model, this object can be saved or edited for many
purposes.6 The names of the components of an “mgarch.model” object can
be obtained using the S-PLUS function names:

> names(hp.ibm.dvec$model)

[1] "c.which" "c.value" "MA" "AR" "arch" "garch"

[7] "a.which" "a.value" "info"

6In the first release of S+GARCH module, there was a revise function which provides
a graphical user interface for editing this object. However, the function was broken as
the graphical user interface of S-PLUS went through several evolutions. Currently there
is no revise function in S+FinMetrics module.

514 13. Multivariate GARCH Modeling

The component c.value contains the value of the constant terms in the
conditional mean equation, while the component a.value contains the
value of the constant terms in the conditional variance equation. The MA,
AR, arch and garch components are lists themselves. For example:

> hp.ibm.dvec$model$arch

$order:

[1] 1

$value:

$lag.1:

[,1] [,2]

[1,] 0.06225657 0.03393546

[2,] 0.03393546 0.10485809

$which:

$lag.1:

[,1] [,2]

[1,] T T

[2,] T T

Note that for each of the model coe cients, there is a corresponding which
component that specifies if the coe cient is free to be estimated by MLE.
If the which component is 1 or TRUE, then the corresponding coe cient
is free to be estimated; otherwise, the corresponding coe cient is fixed at
that value during MLE. The next subsection shows how these values can
be edited for di erent purposes.

13.7.2 Revision of GARCH Model Estimation

For both univariate and multivariate GARCH models, the unknown model
parameters are estimated using the BHHH algorithm (e.g., see Boller-
slev, 1986). Both garch and mgarch functions take an optional argument
control, which can be used to control certain numerical aspects of the
BHHH algorithm. The defaults for those settings are provided in the on-
line help file for bhhh.control.
Like many other nonlinear optimization algorithms, the BHHH algorithm

performs local optimization in the sense that the optimal solution it finds
may well be just a local optimum instead of the global optimum. To make
sure that the global optimum has indeed been reached, start the algorithm
using a few di erent starting values and see if they all lead to the same
optimum. For this purpose, edit the model component of a fitted “garch”
or “mgarch” object and use it as a new starting value.

Example 89 Restarting multivariate GARCH estimation

13.8 Multivariate GARCH Model Simulation 515

> bekk.mod = hp.ibm.bekk$model

> bekk.mod$a.value[2,1] = 0

> hp.ibm.bekk2 = mgarch(series=hp.ibm, model=bekk.mod)

Note that when a model object is supplied directly to the mgarch (or garch)
function, the series argument must be used to supply the data. The user
can easily verify that hp.ibm.bekk2 reached a smaller log-likelihood value,
so the original fit hp.ibm.bekk seems to be better.

Example 90 Constraining multivariate GARCH estimation

For some GARCH models, the user may want to fix certain parameters
at certain values during maximum likelihood estimation. For example, most
daily financial security returns seem to fluctuate around a zero mean. In
this example, fix the constant terms in the conditional mean equation of
hp.ibm.bekk to zero and re-estimate the model:

> bekk.mod = hp.ibm.bekk$model

> bekk.mod$c.value = rep(0,2)

> bekk.mod$c.which = rep(F,2)

> hp.ibm.bekk3 = mgarch(series=hp.ibm, model=bekk.mod)

> LR.stat = -2*(hp.ibm.bekk3$likelihood-

+ hp.ibm.bekk$likelihood)

Note that since the log-likelihood value of the fitted model is returned, a
likelihood ratio (LR) test of the restrictions imposed in the above example
can easily be performed.
The “garch.model” or “mgarch.model” object can be used for sim-

ulation. For example, simulation from fitted univariate GARCH models
actually uses this component. The next section illustrates this usage for
multivariate GARCH models.

13.8 Multivariate GARCH Model Simulation

S+FinMetrics provides a method of the generic function simulate for
objects of class “mgarch”. The method function, simulate.mgarch, can
take a fitted “mgarch” object, or an “mgarch.model object, or simply a
user specified list. This section illustrates how to create confidence intervals
for the predictions of conditional standard deviations using simulations.

Example 91 Simulation-based multivariate GARCH forecasts

The function simulate.mgarch only supports those multivariate GARCH
models of order (1 1), which should be enough for most applications. To
simulate a multivariate GARCH process directly from a fitted “mgarch”
object such as hp.ibm.bekk, call the generic function simulate as follows:

516 13. Multivariate GARCH Modeling

> hp.ibm.sim = simulate(hp.ibm.bekk, n=10)

where = 10 specifies the length of the simulated time series. Since all
the model specific information is contained in the model component of
an “mgarch” object, which is an “mgarch.model” object as shown in the
previous section, an “mgarch.model can also pass directly to the function
simulate.mgarch. The following code example simulates 100 steps ahead
from the end of estimation period in hp.ibm.bekk, and replicates the sim-
ulation 200 times:

> eps.start = residuals(hp.ibm.bekk)[2000,]@data

> V.start = hp.ibm.bekk$S.t[2000, ,]

> n.rep = 200

> hp.ibm.sim = array(0, c(100, 2, n.rep))

> set.seed(10)

> for (i in 1:n.rep) {

+ eps.pred = rbind(eps.start, rmvnorm(100))

+ tmp = simulate(hp.ibm.bekk, n=100, n.start=0,

+ etat=eps.pred, V.start=V.start)$V.t

+ hp.ibm.sim[, , i] = matrix(tmp,byrow=T,nrow=100)[,c(1,4)]

+ }

> hp.ibm.sim = sqrt(hp.ibm.sim)

> hp.ibm.simpred = rowMeans(hp.ibm.sim, dims=2)

> hp.ibm.simstde = rowStdevs(hp.ibm.sim, dims=2)

Note that to simulate the multivariate GARCH process using the last ob-
servation in the sample as the starting value, set n.start=0 and V.start
to the last estimated conditional covariance matrix. Similarly, the last es-
timated residual vector is used as the starting value in eps.pred, which
is otherwise standard normal random variables. All the simulated condi-
tional standard deviations are saved in hp.ibm.sim, which is a three di-
mensional array. The simulation-based forecasts of conditional standard
deviations are computed as the average of hp.ibm.sim, and saved in the
object hp.ibm.simpred, while hp.ibm.simstde contains the standard er-
rors of those forecasts.
Finally, use the following code to plot confidence intervals around the

simulation-based forecasts:

> par(mfrow=c(2,1))

> ci.upper = hp.ibm.simpred + 2*hp.ibm.simstde

> ci.lower = hp.ibm.simpred - 2*hp.ibm.simstde

> tsplot(cbind(hp.ibm.simpred[,1],ci.upper[,1],ci.lower[,1]))

> title("Forecasted HP Volatility", xlab="Time", ylab="SD")

13.9 References 517

0 20 40 60 80 100

0.
02

0
0.

02
5

0.
03

0

Forecasted HP Volatility

Time

S
D

0 20 40 60 80 100

0.
00

8
0.

01
2

0.
01

6
0.

02
0

Forecasted IBM Volatility

Time

S
D

FIGURE 13.11. Simulation-based forecasts of BEKK model.

> tsplot(cbind(hp.ibm.simpred[,2],ci.upper[,2],ci.lower[,2]))

> title("Forecasted IBM Volatility", xlab="Time", ylab="SD")

> par(mfrow=c(1,1))

The plot shown in Figure 13.11 only used 200 replications, so the confidence
intervals are a little rough. If more replications are used, the confidence
intervals should be relatively smooth.

13.9 References

Alexander, C. O. (1998). “Volatility and Correlation: Methods, Models
and Applications,” in C. O. Alexander (ed.) Risk Management and Anal-
ysis: Measuring and Modeling Financial Risk. John Wiley & Sons, New
York.

Andreou, E., and Ghysels, E. (2002). “Rolling Volatility Estimators:
Some new Theoretical, Simulation and Empirical Results,” Journal of Busi-
ness and Economic Statistics, 20(3), 363-376.

Bollerslev, T. (1986). “Generalized Autoregressive Conditional Het-
eroskedasticity,” Journal of Econometrics, 31, 307-327.

518 13. Multivariate GARCH Modeling

Bollerslev, T. (1990). “Modeling the Coherence in Short-run Nomi-
nal Exchange Rates: a Multivariate Generalized ARCH Model,” Review of
Economics and Statistics, 72, 498-505.

Bollerslev, T., Engle, R. F., and Nelson, D. B. (1994). “ARCH
Models,” in R. F. Engle and D. L. McFadden (eds.), Handbook of Econo-
metrics, Vol. 4. Elsevier Science B. V., Amsterdam.

Bollerslev, T., Engle, R. F., and Wooldridge, J. M. (1988). “A
Capital-Asset Pricing Model with Time-Varying Covariances,” Journal of
Political Economy, 96, 116-131.

Bougerol, P., and Picard, N. (1992). “Stationarity of GARCH Pro-
cesses and of Some Nonnegative Time Series,” Journal of Econometrics,
52, 115-127.

Ding, Z. (1994). “Time Series Analysis of Speculative Returns,” Ph.D.
Thesis, Department of Economics, University of California, San Diego.

Engle, R. F., and Bollerslev, T. (1986). “Modeling the Persistence
of Conditional Variances,” Econometric Reviews, 5, 1-50.

Engle, R. F., and Kroner, K. F. (1995). “Multivariate Simultaneous
Generalized ARCH,” Econometric Theory, 11, 122-150.

Fleming, J., Kirby, C., and Ostdiek, B. (2001). “The Economic Value
of Volatility Timing,” Journal of Finance, 56, 329-352.

Foster, D. P., and Nelson, D. B. (1996). “Continuous Record Asymp-
totics for Rolling Sample Variance Estimators,” Econometrica, 64, 139-174.

Hosking, J. R. M. (1980). “The Multivariate Portmanteau Statistic,”
Journal of the American Statistical Association, 75, 602-608.

Nelson, D. B. (1990). “Stationarity and Persistence in the GARCH (1,1)
Model,” Econometric Theory, 6, 318-334.

14
State Space Models

14.1 Introduction

The state space modeling tools in S+FinMetrics are based on the algo-
rithms in SsfPack 3.0 developed by Siem Jan Koopman and described in
Koopman, Shephard and Doornik (1999, 2001)1. SsfPack is a suite of C
routines for carrying out computations involving the statistical analysis of
univariate and multivariate models in state space form. The routines allow
for a variety of state space forms from simple time invariant models to
complicated time-varying models. Functions are available to put standard
models like ARMA and spline models in state space form. General rou-
tines are available for filtering, smoothing, simulation smoothing, likelihood
evaluation, forecasting and signal extraction. Full details of the statistical
analysis is provided in Durbin and Koopman (2001). This chapter gives an
overview of state space modeling and the reader is referred to the papers by
Koopman, Shephard and Doornik for technical details on the algorithms
used in the S+FinMetrics/SsfPack functions.
This chapter is organized as follows. Section 14.2 describes the gen-

eral state space model and state space representation required for the
S+FinMetrics/SsfPack state space functions. Subsections describe the
various S+FinMetrics/SsfPack functions for putting common time series
models into state space form. The process of simulating observations from
a given state space model is also covered. Section 14.3 summarizes the main

1Information about Ssfpack can be found at http://www.ssfpack.com.

520 14. State Space Models

algorithms used for the analysis of state space models. These include the
Kalman filter, Kalman smoother, moment smoothing, disturbance smooth-
ing and forecasting. Estimation of the unknown parameters in a state space
model is described in Section 14.4. The chapter concludes with a short dis-
cussion of simulation smoothing.
Textbook treatments of state space models are given in Harvey (1989,

1993), Hamilton (1994), West and Harrison (1997), and Kim and Nelson
(1999). Interesting applications of state space models in finance are given in
Engle and Watson (1987), Bomho (1994), Duan and Simonato (1999), and
Harvey, Ruiz, and Shephard (1994), Carmona (2004), and Chan (2002).

14.2 State Space Representation

Many dynamic time series models in economics and finance may be rep-
resented in state space form. Some common examples are ARMA mod-
els, time-varying regression models, dynamic linear models with unob-
served components, discrete versions of continuous time di usion processes,
stochastic volatility models, non-parametric and spline regressions. The
linear Gaussian state space model may be represented as the system of
equations

+1
×1

= d
×1
+ T

×
·

×1
+H

×
·
×1

(14.1)

×1
= ct

×1
+ Zt

×
· t
×1

(14.2)

y
×1

=
×1
+ G

×
·

×1
(14.3)

where = 1 and

1 (a P) (14.4)

iid (0 I) (14.5)

iid (0 I) (14.6)

and it is assumed that
[0] = 0

In (14.4), a and P are fixed and known but that can be generalized. The
state vector contains unobserved stochastic processes and unknown fixed
e ects and the transition equation (14.1) describes the evolution of the
state vector over time using a first order Markov structure. The measure-
ment equation (14.3) describes the vector of observations y in terms of the
state vector through the signal and a vector of disturbances . It
is assumed that the innovations in the transition equation and the innova-
tions in the measurement equation are independent, but this assumption

14.2 State Space Representation 521

can be relaxed. The deterministic matrices T , Z ,H ,G are called system
matrices and are usually sparse selection matrices. The vectors d and c
contain fixed components and may be used to incorporate known e ects or
known patterns into the model; otherwise they are equal to zero.
The state space model (14.1)-(14.6) may be compactly expressed asµ

+1

y

¶
=

(+)×1
+
(+)×

·
×1
+ u
(+)×1

(14.7)

1 (a P) (14.8)

u iid (0) (14.9)

where

=

µ
d
c

¶
=

µ
T
Z

¶
u =

µ
H
G

¶
=

µ
H H0 0
0 G G0

¶
The initial value parameters are summarized in the (+ 1)× matrix

=

µ
P
a0

¶
(14.10)

For multivariate models, i.e. 1, it is assumed that the × matrix
G G0 is diagonal. In general, the system matrices in (14.7) are time varying.

14.2.1 Initial Conditions

The variance matrix P of the initial state vector 1 is assumed to be of
the form

P = P + P (14.11)

where P and P are symmetric × matrices with ranks and ,
respectively, and is a large scalar value, e.g. = 106. The matrix P
captures the covariance structure of the stationary components in the ini-
tial state vector, and the matrix P is used to specify the initial variance
matrix for nonstationary components. When the th diagonal element of
P is negative, the corresponding th column and row of P are assumed
to be zero, and the corresponding row and column of P will be taken
into consideration. When some elements of state vector are nonstation-
ary, the S+FinMetrics/SsfPack algorithms implement an “exact di use
prior” approach as described in Durbin and Koopman (2001) and Koop-
man, Shephard and Doornik (2001).

14.2.2 State Space Representation in
S+FinMetrics/SsfPack

State space models in S+FinMetrics/SsfPack utilize the compact repre-
sentation (14.7) with initial value information (14.10). The following ex-

522 14. State Space Models

amples describe the specification of a state space model for use in the
S+FinMetrics/SsfPack state space modeling functions.

Example 92 State space representation of the local level model

Consider the following simple model for the stochastic evolution of the
logarithm of an asset price

+1 = + iid (0 2) (14.12)

= + iid (0 2) (14.13)

1 () (14.14)

where it is assumed that [] = 0. In the above model, the observed
asset price is the sum of two unobserved components, and . The
component is the state variable and represents the fundamental value
(signal) of the asset. The transition equation (14.12) shows that the fun-
damental values evolve according to a random walk. The component
represents random deviations (noise) from the fundamental value that are
assumed to be independent from the innovations to . The strength of
the signal in the fundamental value relative to the random deviation is
measured by the signal-to-noise ratio of variances = 2 2. The model
(14.12)-(14.14) is called the random walk plus noise model, signal plus noise
model or the local level model.2

The state space form (14.7) of the local level model has time invariant
parameters

=

µ
0
0

¶
=

µ
1
1

¶
=

µ
2 0
0 2

¶
(14.15)

with errors = and = . Since the state variable is (1),
the unconditional distribution of the initial state 1 doesn’t have finite
variance. In this case, it is customary to set = [1] = 0 and =var(1)
to some large positive number, e.g. = 107, in (14.14) to reflect that no
prior information is available. Using (14.11), the initial variance is specified
with = 0 and = 1. Therefore, the initial state matrix (14.10) for the
local level model has the form

=

µ
1
0

¶
(14.16)

where 1 implies that = 1
In S+FinMetrics/SsfPack, a state space model is specified by creating

either a list variable with components giving the minimum components

2A detailed technical analysis of this model is given in Durbin and Koopman (2001),
chapter 2.

14.2 State Space Representation 523

State space parameter List component name
mDelta

mPhi

mOmega

mSigma

TABLE 14.1. State space form list components

necessary for describing a particular state space form or by creating an
“ssf” object. To illustrate, consider creating a list variable containing the
state space parameters in (14.15)-(14.16), with = 0 5 and = 1

> sigma.e = 1

> sigma.n = 0.5

> a1 = 0

> P1 = -1

> ssf.ll.list = list(mPhi=as.matrix(c(1,1)),

+ mOmega=diag(c(sigma.n^2,sigma.e^2)),

+ mSigma=as.matrix(c(P1,a1)))

> ssf.ll.list

$mPhi:

[,1]

[1,] 1

[2,] 1

$mOmega:

[,1] [,2]

[1,] 0.25 0

[2,] 0.00 1

$mSigma:

[,1]

[1,] -1

[2,] 0

In the list variable ssf.ll.list, the component names match the state
space form parameters in (14.7) and (14.10). This naming convention, sum-
marized in Table 14.1, must be used for the specification of any valid state
space model. Also, notice the use of the coercion function as.matrix. This
ensures that the dimensions of the state space parameters are correctly
specified.
An “ssf” object may be created from the list variable ssf.ll.list

using the S+FinMetrics/SsfPack function CheckSsf:

> ssf.ll = CheckSsf(ssf.ll.list)

> class(ssf.ll)

[1] "ssf"

524 14. State Space Models

> names(ssf.ll)

[1] "mDelta" "mPhi" "mOmega" "mSigma" "mJPhi"

[6] "mJOmega" "mJDelta" "mX" "cT" "cX"

[11] "cY" "cSt"

> ssf.ll

$mPhi:

[,1]

[1,] 1

[2,] 1

$mOmega:

[,1] [,2]

[1,] 0.25 0

[2,] 0.00 1

$mSigma:

[,1]

[1,] -1

[2,] 0

$mDelta:

[,1]

[1,] 0

[2,] 0

$mJPhi:

[1] 0

$mJOmega:

[1] 0

$mJDelta:

[1] 0

$mX:

[1] 0

$cT:

[1] 0

$cX:

[1] 0

$cY:

[1] 1

14.2 State Space Representation 525

$cSt:

[1] 1

attr(, "class"):

[1] "ssf"

The function CheckSsf takes a list variable with a minimum state space
form, coerces the components to matrix objects and returns the full pa-
rameterization of a state space model used in many of the S+FinMetrics/
SsfPack state space modeling functions. See the online help for CheckSsf
for descriptions of the components of an “ssf” object.

Example 93 State space representation of a time varying parameter re-
gression model

Consider the Capital Asset Pricing Model (CAPM) with time varying
intercept and slope

= + + (0 2) (14.17)

+1 = + (0 2) (14.18)

+1 = + (0 2) (14.19)

where denotes the return on an asset in excess of the risk free rate,
and denotes the excess return on a market index. In this model, both
the abnormal excess return and asset risk are allowed to vary over
time following a random walk specification. Let = ()0, = ,
x = (1)0, H =diag()0 and = . Then the state space form
(14.7) of (14.17) - (14.19) isµ

+1

¶
=

µ
I2
x0

¶
+

µ
H

¶
and has parameters

=

µ
I2
x0

¶
=

2 0 0

0 2 0
0 0 2

(14.20)

Since is (1) the initial state vector 1 doesn’t have finite variance so
it is customary to set a = 0 and P = I2 where is large. Using (14.11),
the initial variance is specified with P = 0 and P = I2. Therefore, the
initial state matrix (14.10) for the time varying CAPM has the form

=
1 0
0 1
0 0

526 14. State Space Models

The state space parameter matrix in (14.20) has a time varying system
element Z = x0 . In S+FinMetrics/SsfPack, the specification of this time
varying element in requires an index matrix J and a data matrix
X to which the indices in J refer. The index matrix J must have the
same dimension as . The elements of J are all set to 1 except the
elements for which the corresponding elements of are time varying. The
non-negative index value indicates the column of the data matrix X which
contains the time varying values.
The specification of the state space form for the time varying CAPM

requires values for the variances 2, 2, and 2 as well as a data ma-
trix X whose rows correspond with Z = x0 = (1). For example, let
2 = (0 01)2, 2 = (0 05)2 and 2 = (0 1)2 and construct the data ma-
trix X using the excess return data in the S+FinMetrics “timeSeries”
excessReturns.ts

> X.mat = cbind(1,

+ as.matrix(seriesData(excessReturns.ts[,"SP500"]))

The state space form may be created using

> Phi.t = rbind(diag(2),rep(0,2))

> Omega = diag(c((.01)^2,(.05)^2,(.1)^2))

> J.Phi = matrix(-1,3,2)

> J.Phi[3,1] = 1

> J.Phi[3,2] = 2

> Sigma = -Phi.t

> ssf.tvp.capm = list(mPhi=Phi.t,

+ mOmega=Omega,

+ mJPhi=J.Phi,

+ mSigma=Sigma,

+ mX=X.mat)

> ssf.tvp.capm

$mPhi:

[,1] [,2]

[1,] 1 0

[2,] 0 1

[3,] 0 0

$mOmega:

[,1] [,2] [,3]

[1,] 0.0001 0.0000 0.00

[2,] 0.0000 0.0025 0.00

[3,] 0.0000 0.0000 0.01

$mJPhi:

[,1] [,2]

14.2 State Space Representation 527

Parameter index matrix List component name
J mJDelta

J mJPhi

J mJOmega

Time varying component data matrix List component name
X mX

TABLE 14.2. S+FinMetrics time varying state space components

[1,] -1 -1

[2,] -1 -1

[3,] 1 2

$mSigma:

[,1] [,2]

[1,] -1 0

[2,] 0 -1

[3,] 0 0

$mX:

numeric matrix: 131 rows, 2 columns.

SP500

1 1 0.002803

2 1 0.017566

...

131 1 -0.0007548

Notice in the specification of the values associated with x0 in the third
row are set to zero. In the index matrix J , the (3,1) element is 1 and
the (3,2) element is 2 indicating that the data for the first and second
columns of x0 come from the first and second columns of the component
mX, respectively.
In the general state space model (14.7), it is possible that all of the system

matrices , and have time varying elements. The corresponding
index matrices J , J and J indicate which elements of the matrices ,
and are time varying and the data matrix X contains the time varying
components. The naming convention for these components is summarized
in Table 14.2.

14.2.3 Missing Values

The S+FinMetrics/SsfPack state space modeling functions can handle
missing values in the vector of response variables y in (14.3). Missing
values are not allowed in the state space system matrices , , and
. Missing values are represented by NA in S-PLUS.

528 14. State Space Models

In the S+FinMetrics/SsfPack state space functions, the observation vec-
tor y with missing values will be be reduced to the vector y† without
missing values and the measurement equation will be adjusted accordingly.
For example, the measurement equation y = c + Z +G with

y =

5

3
c =

1
2
3
4

Z =

1

2

3

4

G =

1

2

3

4

reduces to the measurement equation y† = c† + Z† +G† with

y† =
µ
5
3

¶
c† =

µ
1
3

¶
Z† =

µ
1

3

¶
G† =

µ
1

3

¶
The SsfPack algorithms in S+FinMetrics automatically replace the ob-
servation vector y with y† when missing values are encountered and the
system matrices are adjusted accordingly.

14.2.4 S+FinMetrics/SsfPack Functions for Specifying the
State Space Form for Some Common Time Series
Models

S+FinMetrics/SsfPack has functions for the creation of the state space
representation of some common time series models. These functions and
models are described in the following sub-sections.

ARMA Models

Following Harvey (1993, Sec. 4.4), the ARMA() model with zero mean3

= 1 1 + · · ·+ + + 1 1 + · · ·+ (14.21)

may be put in state space form with transition and measurement equations

+1 = T +H (0 2)

= Z

3Note that the MA coe cients are specified with positive signs, which is the opposite
of how the MA coe cients are specified for models estimated by the S-PLUS function
arima.mle.

14.2 State Space Representation 529

and time invariant system matrices

T =

1 1 0 · · · 0

2 0 1 0
...

. . .
...

1 0 0 1
0 0 · · ·

H =

1

1

...

1

(14.22)

Z =
¡
1 0 · · · 0 0

¢
where d c and G of the state space form (14.1)-(14.3) are all zero and
= max(+ 1). The state vector has the form

=

2 1 + · · ·+ +1 + 1 + · · ·+ 1 +2

3 1 + · · ·+ +2 + 2 + · · ·+ 1 +3
...

1 + 1

(14.23)

In compact state space form (14.7), the model isµ
+1

¶
=

µ
T
Z

¶
+

µ
H
0

¶
= + u

and

=

µ
2HH0 0

0 0

¶
If is stationary then (0 V) is the unconditional distribution of
the state vector, and the covariance matrixV satisfiesV = TVT0+ 2HH0,
which can be solved for the elements of V. The initial value parameters are
then

=

µ
V
00

¶
The S+FinMetrics/SsfPack function GetSsfArma creates the state space

system matrices for any univariate stationary and invertible ARMA model.
The arguments expected by GetSsfArma are

> args(GetSsfArma)

function(ar = NULL, ma = NULL, sigma = 1, model = NULL)

where ar is the vector of AR coe cients, ma is the vector of MA coef-
ficients, sigma is the innovation standard deviation , and model is a list
with components giving the AR, MA and innovation standard deviation.
If the arguments ar, ma, and sigma are specified, then model is ignored.
The function GetSsfArma returns a list containing the system matrices ,
and the initial value parameters .

530 14. State Space Models

Example 94 AR(1) and ARMA(2,1)

Consider the AR(1) model

= 0 75 1 + (0 (0 5)2)

The state space form may be computed using

> ssf.ar1 = GetSsfArma(ar=0.75,sigma=.5)

> ssf.ar1

$mPhi:

[,1]

[1,] 0.75

[2,] 1.00

$mOmega:

[,1] [,2]

[1,] 0.25 0

[2,] 0.00 0

$mSigma:

[,1]

[1,] 0.5714

[2,] 0.0000

In the component mSigma, the unconditional variance of the initial state

1 is computed as var(1) = (0 5)
2 (1 0 752) = 0 5714

Next, consider the ARMA(2,1) model

= 0 6 1 + 0 2 2 + 0 2 1 (0 0 9)

The state space system matrices may be computed using

> arma21.mod = list(ar=c(0.6,0.2),ma=c(-0.2),sigma=sqrt(0.9))

> ssf.arma21 = GetSsfArma(model=arma21.mod)

> ssf.arma21

$mPhi:

[,1] [,2]

[1,] 0.6 1

[2,] 0.2 0

[3,] 1.0 0

$mOmega:

[,1] [,2] [,3]

[1,] 0.90 -0.180 0

[2,] -0.18 0.036 0

[3,] 0.00 0.000 0

14.2 State Space Representation 531

$mSigma:

[,1] [,2]

[1,] 1.58571 0.01286

[2,] 0.01286 0.09943

[3,] 0.00000 0.00000

The unconditional variance of the initial state vector 1 = (11 12)
0 is in

the top 2× 2 block of mSigma and is

var(1) =

µ
1 586 0 013
0 013 0 099

¶
Structural Time Series Models

The basic univariate unobserved components structural time series model
(STSM) for a time series has the form

= + + + (14.24)

where represents the unobserved trend component, represents the
unobserved seasonal component, represents the unobserved cycle com-
ponent, and represents the unobserved irregular component.
The nonstationary trend component has the form of a local linear

trend :

+1 = + + (0 2) (14.25)

+1 = + (0 2) (14.26)

with 1 (0) and 1 (0) where is a large number, e.g. = 106.
If 2 = 0 then follows a random walk with drift 1. If both

2 = 0 and
2 = 0 then follows a linear deterministic trend.
The stochastic seasonal component has the form

() = (0 2) (14.27)

() = 1 + + · · ·+ 1

where gives the number of seasons. When 2 = 0, the seasonal component
becomes fixed.
The stochastic cycle component is specified asµ

+1

+1

¶
=

µ
cos sin
sin cos

¶µ ¶
+

µ ¶
(14.28)µ ¶ µµ

0
0

¶
2 (1 2)I2

¶
where 0 (0 2), 0 (0 2) and (0 0) = 0. The parameter

(0 1] is interpreted as a damping factor. The frequency of the cycle

532 14. State Space Models

Argument STSM parameter
irregular

level

slope

seasonalDummy

seasonalTrig

seasonalHS

cycle0
...

...
cycle9

TABLE 14.3. Arguments to the S+FinMetrics function GetSsfStsm

is = 2 and is the period. When = 1 the cycle reduces to a
deterministic sine-cosine wave.
The S+FinMetrics/SsfPack function GetSsfStsm creates the state space

system matrices for the univariate structural time series model (14.24). The
arguments expected by GetSsfStsm are

> args(GetSsfStsm)

function(irregular = 1, level = 0.1, slope = NULL,

seasonalDummy = NULL, seasonalTrig = NULL, seasonalHS

= NULL, cycle0 = NULL, cycle1 = NULL, cycle2 = NULL,

cycle3 = NULL, cycle4 = NULL, cycle5 = NULL, cycle6 =

NULL, cycle7 = NULL, cycle8 = NULL, cycle9 = NULL)

These arguments are explained in Table 14.3.

Example 95 Local level model

The state space for the local level model (14.12)-(14.14) may be con-
structed using

> ssf.stsm = GetSsfStsm(irregular=1, level=0.5)

> class(ssf.stsm)

[1] "list"

> ssf.stsm

$mPhi:

[,1]

[1,] 1

[2,] 1

$mOmega:

[,1] [,2]

[1,] 0.25 0

[2,] 0.00 1

14.2 State Space Representation 533

$mSigma:

[,1]

[1,] -1

[2,] 0

The arguments irregular=1 and level=0.5 specify = 1 and = 1 in
(14.13) and (14.14), respectively.

Regression Models

The linear regression model

= x0 + (0 2)

where x is a × 1 data matrix and is a × 1 fixed parameter vector,
may be put in the state spaceµ

+1

¶
=

µ
I
x0

¶
+

µ
0

¶
(14.29)

The state vector satisfies +1 = = . The state space system matrices
are T = I , Z = x0 , G = and H = 0. The coe cient vector
is fixed and unknown so that the initial conditions are 1 (0 I)
where is large. An advantage of analyzing the linear regression model in
state space form is that recursive least squares estimates of the regression
coe cient vector are readily computed. Another advantage is that it is
straightforward to allow some or all of the regression coe cients to be time
varying.
The linear regression model with time varying parameters may be intro-

duced by setting H not equal to zero in (14.29). For example, to allow all
regressors to evolve as random walks set

H =
1

...

so that the state equation becomes

+1 = +H (14.30)

More explicitly, since +1 = = the state equation (14.30) implies

+1 = + · = 1

If = 0 then is constant.
The S+FinMetrics/SsfPack function GetSsfReg creates the state space

system matrices for the linear regression model. The arguments expected
by GetSsfReg are

534 14. State Space Models

> args(GetSsfReg)

function(mX)

where mX is a rectangular data object which represents the regressors in the
model. The function GetSsfReg returns a list with components describing
the minimal state space representation of the linear regression model.

Example 96 Time trend regression model

Consider the time trend regression model

= + + (0 2)

The state space form for a sample of size = 10 is computed using

> ssf.reg = GetSsfReg(cbind(1,1:10))

> class(ssf.reg)

[1] "list"

> names(ssf.reg)

[1] "mPhi" "mOmega" "mSigma" "mJPhi" "mX"

> ssf.reg

$mPhi:

[,1] [,2]

[1,] 1 0

[2,] 0 1

[3,] 0 0

$mOmega:

[,1] [,2] [,3]

[1,] 0 0 0

[2,] 0 0 0

[3,] 0 0 1

$mSigma:

[,1] [,2]

[1,] -1 0

[2,] 0 -1

[3,] 0 0

$mJPhi:

[,1] [,2]

[1,] -1 -1

[2,] -1 -1

[3,] 1 2

$mX:

[,1] [,2]

14.2 State Space Representation 535

[1,] 1 1

[2,] 1 2

[3,] 1 3

[4,] 1 4

[5,] 1 5

[6,] 1 6

[7,] 1 7

[8,] 1 8

[9,] 1 9

[10,] 1 10

Since the system matrix Z = x0 , the parameter is time varying and
the index matrix J , represented by the component mJPhi, determines the
association between the time varying data in Z and the data supplied in
the component mX.
To specify a time trend regression with a time varying slope of the form

+1 = + (0 2) (14.31)

one needs to specify a non-zero value for 2 in . For example, if 2 = 0 5
then

> ssf.reg.tvp = ssf.reg

> ssf.reg.tvp$mOmega[2,2] = 0.5

> ssf.reg.tvp$mOmega

[,1] [,2] [,3]

[1,] 0 0.0 0

[2,] 0 0.5 0

[3,] 0 0.0 1

modifies the state space form for the time trend regression to allow a time
varying slope of the form (14.31).

Regression Models with ARMA Errors

The ARMA() models created with GetSsfArma do not have determinis-
tic terms (e.g., constant, trend, seasonal dummies) or exogenous regressors
and are therefore limited. The general ARMA() model with exogenous
regressors has the form

= x0 +

where follows an ARMA() process of the form (14.21). Let be
defined as in (14.23) and let

=

µ ¶
(14.32)

536 14. State Space Models

where = . Writing the state equation implied by (14.32) as +1 =
T +H and let

T =

·
T 0
0 I

¸
H =

·
H
0

¸
Z = (1 0 0 x0)

where T and H are defined in (14.23). Then the state space form of the
regression model with ARMA errors isµ

+1

¶
=

µ
T
Z

¶
+

µ
H
0

¶
The S+FinMetrics/SsfPack function GetSsfRegArma creates the state

space system matrices for the linear regression model with ARMA errors.
The arguments expected by GetSsfRegArma are

> args(GetSsfRegArma)

function(mX, ar = NULL, ma = NULL, sigma = 1, model = NULL)

where mX is a rectangular data object which represents the regressors in the
model, and the remaining arguments are the same as those for GetSsfArma.
The function GetSsfRegArma returns a list with components describing the
minimal state space representation of the linear regression model.

Example 97 Time trend regression with AR(2) errors

The state space form of the time trend regression with AR(2) errors

= + +

= 1 1 + 2 2 + (0 2)

may be computed using

> ssf.reg.ar2 = GetSsfRegArma(cbind(1,1:10),

+ ar=c(1.25,-0.5))

> ssf.reg.ar2

$mPhi:

[,1] [,2] [,3] [,4]

[1,] 1.25 1 0 0

[2,] -0.50 0 0 0

[3,] 0.00 0 1 0

[4,] 0.00 0 0 1

[5,] 1.00 0 0 0

$mOmega:

[,1] [,2] [,3] [,4] [,5]

[1,] 1 0 0 0 0

14.2 State Space Representation 537

[2,] 0 0 0 0 0

[3,] 0 0 0 0 0

[4,] 0 0 0 0 0

[5,] 0 0 0 0 0

$mSigma:

[,1] [,2] [,3] [,4]

[1,] 4.364 -1.818 0 0

[2,] -1.818 1.091 0 0

[3,] 0.000 0.000 -1 0

[4,] 0.000 0.000 0 -1

[5,] 0.000 0.000 0 0

$mJPhi:

[,1] [,2] [,3] [,4]

[1,] -1 -1 -1 -1

[2,] -1 -1 -1 -1

[3,] -1 -1 -1 -1

[4,] -1 -1 -1 -1

[5,] -1 -1 1 2

$mX:

[,1] [,2]

[1,] 1 1

[2,] 1 2

...

[10,] 1 10

Nonparametric Cubic Spline Model

Suppose the continuous time process () is observed at discrete time points

1 . Define = 1 0 as the time duration between obser-
vations. The goal of the nonparametric cubic spline model is to estimate a
smooth signal () from () using

() = () + ()

where () is a stationary error. The signal () is extracted by minimizing

X
=1

(() ())2 + 1

Z µ
2 ()
2

¶2

538 14. State Space Models

where the second term is a penalty term that forces () to be “smooth”4,
and may be interpreted as a signal-to-noise ratio. The resulting function
() may be expressed as the structural time series model

(+1) = () + () + () (14.33)

(+1) = () + ()

where µ
()
()

¶
˜

·µ
0
0

¶
2

µ
1
3
2 1

2
1
2 1

¶¸
Combining (14.33) with the measurement equation

() = () + ()

where () (0 2) and is independent of () and (), gives the
state space form for the nonparametric cubic spline model. The state space
system matrices are

=
1
0 1
1 0

=

2

3

2

2 0
2

2 0
0 0 1

When the observations are equally spaced, is constant and the above
system matrices are time invariant.
The S+FinMetrics/SsfPack function GetSsfSpline creates the state

space system matrices for the nonparametric cubic spline model. The ar-
guments expected by GetSsfSpline are

> args(GetSsfSpline)

function(snr = 1, delta = 0)

where snr is the signal-to-noise ratio , and delta is a numeric vector
containing the time durations (= 1). If delta=0 then is as-
sumed to be equal to unity and the time invariant form of the model is
created. The function GetSsfSpline returns a list with components de-
scribing the minimal state space representation of the nonparametric cubic
spline model.

Example 98 State space form of non-parametric cubic spline model

The default non-parametric cubic spline model with = 1 is created
using

4This process can be interpreted as an interpolation technique and is similar to the
technique used in the S+FinMetrics functions interpNA and hpfilter. See also the
smoothing spline method described in chapter sixteen.

14.2 State Space Representation 539

> GetSsfSpline()

$mPhi:

[,1] [,2]

[1,] 1 1

[2,] 0 1

[3,] 1 0

$mOmega:

[,1] [,2] [,3]

[1,] 0.3333 0.5 0

[2,] 0.5000 1.0 0

[3,] 0.0000 0.0 1

$mSigma:

[,1] [,2]

[1,] -1 0

[2,] 0 -1

[3,] 0 0

$mJPhi:

NULL

$mJOmega:

NULL

$mX:

NULL

For unequally spaced observations

> t.vals = c(2,3,5,9,12,17,20,23,25)

> delta.t = diff(t.vals)

and = 0 2, the state space form is

> GetSsfSpline(snr=0.2,delta=delta.t)

$mPhi:

[,1] [,2]

[1,] 1 1

[2,] 0 1

[3,] 1 0

$mOmega:

[,1] [,2] [,3]

[1,] 0.06667 0.1 0

[2,] 0.10000 0.2 0

[3,] 0.00000 0.0 1

540 14. State Space Models

$mSigma:

[,1] [,2]

[1,] -1 0

[2,] 0 -1

[3,] 0 0

$mJPhi:

[,1] [,2]

[1,] -1 1

[2,] -1 -1

[3,] -1 -1

$mJOmega:

[,1] [,2] [,3]

[1,] 4 3 -1

[2,] 3 2 -1

[3,] -1 -1 -1

$mX:

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 1.00000 2.0000 4.000 3.0 5.000 3.0 3.0 2.0000

[2,] 0.20000 0.4000 0.800 0.6 1.000 0.6 0.6 0.4000

[3,] 0.10000 0.4000 1.600 0.9 2.500 0.9 0.9 0.4000

[4,] 0.06667 0.5333 4.267 1.8 8.333 1.8 1.8 0.5333

14.2.5 Simulating Observations from the State Space Model

Once a state space model has been specified, it is often interesting to draw
simulated values from the model. The S+FinMetrics/SsfPack function
SsfSim may be used for such a purpose. The arguments expected from
SsfSim are

> args(SsfSim)

function(ssf, n = 100, mRan = NULL, a1 = NULL)

where ssf represents either a list with components giving a minimal state
space form or a valid “ssf” object, n is the number of simulated obser-
vations, mRan is user-specified matrix of disturbances, and a1 is the initial
state vector. The use of SsfSim is illustrated with the following examples.

Example 99 Simulating observations from the local level model

To generate 250 observations on the state variable +1 and observations
in the local level model (14.12) - (14.14) use

> set.seed(112)

14.2 State Space Representation 541

0 50 100 150 200 250

-6
-4

-2
0

2
4

6

State
Response

FIGURE 14.1. Simulated values from local level model created using the
S+FinMetrics function SsfSim.

> ll.sim = SsfSim(ssf.ll.list,n=250)

> class(ll.sim)

[1] "matrix"

> colIds(ll.sim)

[1] "state" "response"

The function SsfSim returns a matrix containing the simulated state vari-
ables +1 and observations . These values are illustrated in Figure 14.1
created using

> tsplot(ll.sim)

> legend(0,4,legend=c("State","Response"),lty=1:2)

Example 100 Simulating observations from CAPM with time varying
parameters

When simulating observations from a state space form with a data matrix
component mX using the function SsfSim, the number of simulated values
must match the number of rows of mX. The state space form for the CAPM
with time varying parameters created earlier uses a data matrix mX with
= 131 observations

> nrow(ssf.tvp.capm$mX)

[1] 131

542 14. State Space Models

Time varying intercept

al
ph

a(
t)

0 20 40 60 80 100 120

-0
.1

5
-0

.0
5

Time varying slope

be
ta

(t)

0 20 40 60 80 100 120

0.
2

0.
6

1.
0

Simulated returns

re
tu

rn
s

0 20 40 60 80 100 120

-0
.4

-0
.2

0.
0

FIGURE 14.2. Simulated state and response values from the CAPM with time
varying parameters state space form ssf.tvp.

The state variables are the time varying intercept +1 and the time varying

+1. Natural initial values for these parameters are 1 = 0 and 1 = 1.
Using these initial values, = 131 observations are generated from the
CAPM with time varying parameters using

> set.seed(444)

> tvp.sim = SsfSim(ssf.tvp.capm,n=nrow(X.mat),a1=c(0,1))

> colIds(tvp.sim)

[1] "state.1" "state.2" "response"

The simulated state and response variables are illustrated in Figure 14.2
created using

> par(mfrow=c(3,1))

> tsplot(tvp.sim[,"state.1"],main="Time varying intercept",

+ ylab="alpha(t)")

> tsplot(tvp.sim[,"state.2"],main="Time varying slope",

+ ylab="beta(t)")

> tsplot(tvp.sim[,"response"],main="Simulated returns",

+ ylab="returns")

14.3 Algorithms 543

14.3 Algorithms

14.3.1 Kalman Filter

The Kalman filter is a recursive algorithm for the evaluation of moments
of the normally distributed state vector +1 conditional on the observed
data Y = (1). To describe the algorithm, let a = [|Y 1]
denote the conditional mean of based on information available at time

1 and let P = var(|Y 1) denote the conditional variance of
The filtering or updating equations of the Kalman filter compute a | =
[|Y] and P | = var(|Y) using

a | = a +K v (14.34)

P | = P PtZ
0
tK

0
(14.35)

where

v = y c Z a (14.36)

F = Z P Z0 +G G0 (14.37)

K = P Z0F 1 (14.38)

The variable v is themeasurement equation innovation or prediction error,
F = var(v) and K is the Kalman gain matrix.
The prediction equations of the Kalman filter compute a +1 and P +1

using

a +1 = T a | (14.39)

P +1 = T P | T0 +H H0 (14.40)

In the Kalman filter recursions, if there are missing values in y then
v = 0, F 1= 0 and K = 0. This allows out-of-sample forecasts of and
y to be computed from the updating and prediction equations.

14.3.2 Kalman Smoother

The Kalman filtering algorithm is a forward recursion which computes one-
step ahead estimates a +1 and P +1 based on Y for = 1 . The
Kalman smoothing algorithm is a backward recursion which computes the
mean and variance of specific conditional distributions based on the full
data set Y = (1). The smoothing equations are

r = T0r N = T N T0 K =N K (14.41)

e = F 1v K0r D = F 1 +K K 0

and the backwards updating equations are

r 1 = Z
0e + r N 1 = Z

0D Z K Z +N (14.42)

544 14. State Space Models

for = 1 with initializations r = 0 and N = 0. For any square
matrix A, the operator A = A+A0. The values r are called state
smoothing residuals and the values e are called response smoothing residu-
als. The recursions (14.41) and (14.42) are somewhat non-standard. Durbin
and Koopman (2001) show how they may be re-expressed in more standard
form.

14.3.3 Smoothed State and Response Estimates

The smoothed estimates of the state vector and its variance matrix
are denoted ˆ = [|Y] and var(ˆ |Y), respectively. The smoothed
estimate ˆ is the optimal estimate of using all available information
Y , whereas the filtered estimate â | is the optimal estimate only using
information available at time Y . The computation of ˆ and its variance
from the Kalman smoother algorithm is described in Durbin and Koopman
(2001).
The smoothed estimate of the response y and its variance are computed

using

ŷ = ˆ = [|Y] = c + Z ˆ

var(ŷ |Y) = Z var(ˆ |Y)Z0

14.3.4 Smoothed Disturbance Estimates

The smoothed disturbance estimates are the estimates of the measure-
ment equations innovations and transition equation innovations based
on all available information Y , and are denoted ˆ = [|Y] and
ˆ = [|Y], respectively. The computation of ˆ and ˆ from the
Kalman smoother algorithm is described in Durbin and Koopman (2001).
These smoothed disturbance estimates are useful for parameter estimation
by maximum likelihood and for diagnostic checking. See chapter seven in
Durbin and Koopman (2001) for details.

14.3.5 Forecasting

The Kalman filter prediction equations (14.39) - (14.40) produces one-step
ahead predictions of the state vector, a +1 = [+1|Y], along with pre-
diction variance matrices P +1. Out of sample predictions, together with
associated mean square errors, can be computed from the Kalman filter
prediction equations by extending the data set y1 y with a set of
missing values. When is missing, the Kalman filter reduces to the pre-
diction step described above. As a result, a sequence of missing values
at the end of the sample will produce a set of -step ahead forecasts for
= 1 .

14.3 Algorithms 545

14.3.6 S+FinMetrics/SsfPack Implementation of State
Space Modeling Algorithms

The S+FinMetrics/SsfPack function KalmanFil implements the Kalman
filter forward recursions in a computationally e cient way, see Koopman,
Shephard and Doornik (2001). It produces an object of class “KalmanFil”
for which there are print and plot methods. The S+FinMetrics/SsfPack
function KalmanSmo computes the Kalman smoother backwards recursions,
and produces an object of class “KalmanSmo” for which there are print
and plot methods. The functions KalmanFil and KalmanSmo are primarily
used by other S+FinMetrics/SsfPack state space functions that require
the output from the Kalman filter and Kalman smoother.
Filtered and smoothed estimates of and y , with estimated variances,

as well as smoothed estimates of and , with estimated variances, are
computed using the S+FinMetrics/SsfPack function SsfMomentEst. The
result of SsfMomentEst is an object of class “SsfMomentEst” for which
there is only a plot method. The function SsfMomentEst may also be used
to compute out-of-sample forecasts and forecast variances of and .
The use of the S+FinMetrics/SsfPack functions for implementing the

state space algorithms are illustrated with the following examples.

Example 101 State space algorithms applied to local level model

Consider the simulated data for the local level model (14.12) - (14.14) in
the object ll.sim computed earlier. The response variable is extracted
using

> y.ll = ll.sim[,"response"]

Kalman Filter

The Kalman filter recursions for the simulated data from the local level
model are obtained using the S+FinMetrics/SsfPack function KalmanFil
with the optional argument task="STFIL" (which stands for state filtering)

> KalmanFil.ll = KalmanFil(y.ll,ssf.ll,task="STFIL")

> class(KalmanFil.ll)

[1] "KalmanFil"

The function KalmanFil takes as input a vector of response data and either
a list describing the minimal state space form or a valid “ssf” object. The
result of KalmanFil is an object of class “KalmanFil” with components

> names(KalmanFil.ll)

[1] "mOut" "innov" "std.innov"

[4] "mGain" "loglike" "loglike.conc"

[7] "dVar" "mEst" "mOffP"

[10] "task" "err" "call"

546 14. State Space Models

A complete explanation of the components of a “KalmanFil” object is given
in the online help for KalmanFil. These components are mainly used by
other S+FinMetrics/SsfPack functions and are only briefly discussed here.
The component mOut contains the basic Kalman filter output.

> KalmanFil.ll$mOut

numeric matrix: 250 rows, 3 columns.

[,1] [,2] [,3]

[1,] 0.00000 1.0000 0.0000

[2,] -1.28697 0.5556 0.4444

...

[250,] -1.6371 0.3904 0.6096

The first column of mOut contains the prediction errors , the second col-
umn contains the Kalman gains, , and the last column contains the
inverses of the prediction error variances, 1. Since task="STFIL" the
filtered estimates | and | = | are in the component mEst

> KalmanFil.ll$mEst

numeric matrix: 250 rows, 4 columns.

[,1] [,2] [,3] [,4]

[1,] 1.10889 1.10889 1.0000 1.0000

[2,] 0.39390 0.39390 0.5556 0.5556

...

[250,] 4.839 4.839 0.3904 0.3904

The plotmethod allows for a graphical analysis of the Kalman filter output

> plot(KalmanFil.ll)

Make a plot selection (or 0 to exit):

1: plot: all

2: plot: innovations

3: plot: standardized innovations

4: plot: innovation histogram

5: plot: normal QQ-plot of innovations

6: plot: innovation ACF

Selection:

The standardized innovations are illustrated in Figure 14.3.

Kalman Smoother

The Kalman smoother backwards recursions for the simulated data from
the local level model are obtained using the S+FinMetrics/SsfPack func-
tion KalmanSmo

> KalmanSmo.ll = KalmanSmo(KalmanFil.ll,ssf.ll)

14.3 Algorithms 547

-2

-1

0

1

2

0 50 100 150 200 250

innovations
Va

lu
es

Standardized Prediction Errors

FIGURE 14.3. Standardized innovations from Kalman filter applied to simulated
data from local level model.

> class(KalmanSmo.ll)

[1] "KalmanSmo"

The function KalmanSmo takes as input an object of class “KalmanFil” and
an associated list variable containing the state space form used to produce
the “KalmanFil” object. The result of KalmanSmo is an object of class
“KalmanSmo” with components

> names(KalmanSmo.ll)

[1] "state.residuals" "response.residuals"

[3] "state.variance" "response.variance"

[5] "aux.residuals" "scores"

[7] "call"

The component state.residuals contains the smoothing residuals from
the state equation, response.residuals contains the smoothing residu-
als from the measurement equation. The corresponding variances of these
residuals are in the components state.variance and response.variance.
A multi-panel timeplot of the standardized residuals in the component
aux.residuals, illustrated in Figure 14.4, is created with the plotmethod

> plot(KalmanSmo.ll,layout=c(1,2))

548 14. State Space Models

-3
-2

-1
0

1
2

0 50 100 150 200 250

response

-2
-1

0
1

2
3 state

R
es

id
ua

ls

Standardized Smoothing Residuals

FIGURE 14.4. Standardized smoothing residuals from Kalman smoother recur-
sions computed from simulated data from local level model.

Filtered and Smoothed Moment Estimates

Filtered and smoothed estimates of and with corresponding estimates
of variances may be computed using the S+FinMetrics/SsfPack function
SsfMomentEst. To compute filtered estimates, call SsfMomentEst with the
argument task="STFIL" (which stands for state filtering)

> FilteredEst.ll = SsfMomentEst(y.ll,ssf.ll,task="STFIL")

> class(FilteredEst.ll)

[1] "SsfMomentEst"

> names(FilteredEst.ll)

[1] "state.moment" "state.variance"

[3] "response.moment" "response.variance"

[5] "task"

The function SsfMomentEst takes as input a vector of response data and
either a list describing the minimal state space form or a valid “ssf” object.
The result of SsfMomentEst is an object of class “SsfMomentEst” for which
there is only a plotmethod. The filtered estimates | and | = + |
are in the components state.moment and response.moment, respectively,
and the corresponding filtered variance estimates are in the components
state.variance and response.variance. From the measurement equa-
tion (14.13) in the local level model, | = |

14.3 Algorithms 549

-4
-2

0
2

4

0 50 100 150 200 250

response

-4
-2

0
2

4
state

Va
lu

es

State Filtering

FIGURE 14.5. Filtered estimates of and computed from simulated data
from local level model.

> FilteredEst.ll$state.moment[1:5]

[1] 1.1089 0.3939 -0.1389 -0.1141 0.3461

> FilteredEst.ll$response.moment[1:5]

[1] 1.1089 0.3939 -0.1389 -0.1141 0.3461

The plot method creates a multi-panel timeplot, illustrated in Figure 14.5,
of the estimates of and

> plot(FilteredEst.ll,layout=c(1,2))

A plot of the filtered state estimates with 95% confidence intervals may be
created using

> upper.state = FilteredEst.ll$state.moment +

+ 2*sqrt(FilteredEst.ll$state.variance)

> lower.state = FilteredEst.ll$state.moment -

+ 2*sqrt(FilteredEst.ll$state.variance)

> tsplot(FilteredEst.ll$state.moment,upper.state,lower.state,

+ lty=c(1,2,2),ylab="filtered state")

and is shown in Figure 14.6.
The smoothed estimates ˆ and ˆ along with estimated variances may

be computed using SsfMomentEst with task="STSMO" (state smoothing)

> SmoothedEst.ll = SsfMomentEst(y.ll,ssf.ll.list,task="STSMO")

550 14. State Space Models

fil
te

re
d

st
at

e

0 50 100 150 200 250

-6
-4

-2
0

2
4

6

FIGURE 14.6. Filtered estimates of with 95% confidence intervals computed
from simulated values from local level model.

In the local level model, ˆ = ˆ

> SmoothedEst.ll$state.moment[1:5]

[1] 0.24281 0.02629 -0.13914 -0.13925 -0.15455

> SmoothedEst.ll$response.moment[1:5]

[1] 0.24281 0.02629 -0.13914 -0.13925 -0.15455

The smoothed state estimates with 95% confidence bands are illustrated
in Figure 14.7. Compared to the filtered state estimates, the smoothed
estimates are “smoother” and the confidence bands are slightly smaller.
Smoothed estimates of and without estimated variances may be

obtained using the S+FinMetrics/SsfPack function SsfCondDens with the
argument task="STSMO" (which stands for state smoothing)

> smoothedEst.ll = SsfCondDens(y.ll,ssf.ll.list,task="STSMO")

> class(smoothedEst.ll)

[1] "SsfCondDens"

> names(smoothedEst.ll)

[1] "state" "response" "task"

The object smoothedEst.ll is of class “SsfCondDens” with components
state, giving the smoothed state estimates ˆ , response, which gives the
smoothed response estimates ˆ , and task, naming the task performed. The

14.3 Algorithms 551

sm
oo

th
ed

 s
ta

te

0 50 100 150 200 250

-4
-2

0
2

4
6

FIGURE 14.7. Smoothed estimates of with 95% confidence intervals computed
from simulated values from local level model.

smoothed estimates ˆ and ˆ may be visualized using the plot method
for “SsfCondDens” objects

> plot(smoothedEst.ll)

The resulting plot has the same format at the plot shown in Figure 14.5.

Smoothed Disturbance Estimates

The smoothed disturbance estimates ˆ and ˆ may be computed using
SsfMomentEst with the optional argument task="DSSMO" (which stands
for disturbance smoothing)

> disturbEst.ll = SsfMomentEst(y.ll,ssf.ll,task="DSSMO")

> names(disturbEst.ll)

[1] "state.moment" "state.variance"

[3] "response.moment" "response.variance"

[5] "task"

The estimates ˆ are in the component state.moment, and the estimates ˆ
are in the component response.moment. These estimates may be visualized
using the plot method.

552 14. State Space Models

Koopman, Shephard and Doornik (1999) pointed out that, in the local
level model, the standardized smoothed disturbances

ˆpcvar(ˆ) ˆpcvar(ˆ) (14.43)

may be interpreted as -statistics for impulse intervention variables in the
transition and measurement equations, respectively. Consequently, large
values of (14.43) indicate outliers and/or structural breaks in the local
level model.

Forecasting

To produce out-of-sample -step ahead forecasts + | for = 1 5 a
sequence of 5 missing values is appended to the end of the response vector
y.ll

> y.ll.new = c(y.ll,rep(NA,5))

The forecast values and mean squared errors are computed using the
function SsfMomentEst with the argument task="STPRED"

> PredictedEst.ll = SsfMomentEst(y.ll.new,ssf.ll,task="STPRED")

> y.ll.fcst = PredictedEst.ll$response.moment

> fcst.var = PredictedEst.ll$response.variance

The actual values, forecasts and 95% confidence bands are illustrated in
Figure 14.8 created by

> upper = y.ll.fcst + 2*sqrt(fcst.var)

> lower = y.ll.fcst - 2*sqrt(fcst.var)

> upper[1:250] = lower[1:250] = NA

> tsplot(y.ll.new[240:255],y.ll.fcst[240:255],

+ upper[240:255],lower[240:255],lty=c(1,2,2,2))

14.4 Estimation of State Space Models

14.4.1 Prediction Error Decomposition of Log-Likelihood

The prediction error decomposition of the log-likelihood function for the
unknown parameters of a state space model may be conveniently com-
puted using the output of the Kalman filter

ln (|) =
X
=1

ln (y |Y 1;) (14.44)

=
2
ln(2)

1

2

X
=1

¡
ln |F | + v0F 1v

¢

14.4 Estimation of State Space Models 553

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3
4

5
6

7

FIGURE 14.8. Actual values, -step forecasts and 95% confidence intervals for
from local level model.

where (y |Y 1;) is a conditional Gaussian density implied by the state
space model (14.1) - (14.6). The vector of prediction errors v and pre-
diction error variance matrices F are computed from the Kalman filter
recursions.
A useful diagnostic is the estimated variance of the standardized predic-

tion errors for a given value of :

ˆ2() =
1 X

=1

v0F 1v (14.45)

As mentioned by Koopman, Shephard and Doornik (1999), it is helpful to
choose starting values for such that ˆ2() 1. For well specified
models, ˆ2(ˆmle) should be very close to unity.

Concentrated Log-likelihood

In some models, e.g. ARMA models, it is possible to solve explicitly for one
scale factor and concentrate it out of the log-likelihood function (14.44).
The resulting log-likelihood function is called the concentrated log-likelihood
or profile log-likelihood and is denoted ln (|Y). Following Koopman,
Shephard and Doornik (1999), let denote such a scale factor, and let

y = +G

554 14. State Space Models

with iid (0 2I) denote the scaled version of the measurement equa-
tion (14.3). The state space form (14.1) - (14.3) applies but withG = G
and H = H . This formulation implies that one non-zero element of G
or H is kept fixed, usually at unity, which reduces the dimension of the
parameter vector by one. The solution for 2 from (14.44) is given by

˜2() =
1 X

=1

v0 (F) 1 v

and the resulting concentrated log-likelihood function is

ln (|Y) =
2
ln(2)

2
ln
¡

2() + 1
¢ 1

2

X
=1

ln |F | (14.46)

14.4.2 Fitting State Space Models Using the
S+FinMetrics/SsfPack Function SsfFit

The S+FinMetrics/SsfPack function SsfFit may be used to compute
MLEs of the unknown parameters in the state space model (14.1)-(14.6)
from the prediction error decomposition of the log-likelihood function (14.44).
The arguments expected by SsfFit are

> args(SsfFit)

function(parm, data, FUN, conc = F, scale = 1, gradient =

NULL, hessian = NULL, lower = - Inf, upper = Inf,

trace = T, control = NULL, ...)

where parm is a vector containing the starting values of the unknown pa-
rameters , data is a rectangular object containing the response variables
y , and FUN is a character string giving the name of the function which takes
parm together with the optional arguments in ... and produces an “ssf”
object representing the state space form. The remaining arguments control
aspects of the S-PLUS optimization algorithm nlminb. An advantage of us-
ing nlminb is that box constraints may be imposed on the parameters of
the log-likelihood function using the optional arguments lower and upper.
See the online help for nlminb for details. A disadvantage of using nlminb
is that the value of the Hessian evaluated at the MLEs is returned only if
an analytic formula is supplied to compute the Hessian. The use of SsfFit
is illustrated with the following examples.

Example 102 Exact maximum likelihood estimation of AR(1) model

Consider estimating by exact maximum likelihood the AR(1) model dis-
cussed earlier. First, = 250 observations are simulated from the model

> ssf.ar1 = GetSsfArma(ar=0.75,sigma=.5)

> set.seed(598)

14.4 Estimation of State Space Models 555

> sim.ssf.ar1 = SsfSim(ssf.ar1,n=250)

> y.ar1 = sim.ssf.ar1[,"response"]

Least squares estimation of the AR(1) model, which is equivalent to MLE
conditional on the first observation, gives

> OLS(y.ar1~tslag(y.ar1)-1)

Call:

OLS(formula = y.ar1 ~tslag(y.ar1) - 1)

Coefficients:

tslag(y.ar1)

0.7739

Degrees of freedom: 249 total; 248 residual

Residual standard error: 0.4921

The S+FinMetrics/SsfPack function SsfFit requires as input a func-
tion which takes the unknown parameters = (2)0 and produces the
state space form for the AR(1). One such function is

ar1.mod = function(parm) {

phi = parm[1]

sigma2 = parm[2]

ssf.mod = GetSsfArma(ar=phi,sigma=sqrt(sigma2))

CheckSsf(ssf.mod)

}

In addition, starting values for are required. Somewhat arbitrary starting
values are

> ar1.start = c(0.5,1)

> names(ar1.start) = c("phi","sigma2")

The prediction error decomposition of the log-likelihood function evalu-
ated at the starting values = (0 5 1)0 may be computed using the
S+FinMetrics/SsfPack function KalmanFil with task="KFLIK"

> KalmanFil(y.ar1,ar1.mod(ar1.start),task="KFLIK")

Call:

KalmanFil(mY = y.ar1, ssf = ar1.mod(ar1.start), task =

"KFLIK")

Log-likelihood: -265.5222

Prediction error variance: 0.2851

Sample observations: 250

556 14. State Space Models

Standardized Innovations:

Mean Std.Error

-0.0238 0.5345

Notice that the standardized prediction error variance (14.45) is 0 285, far
below unity, which indicates that the starting values are not very good.
The MLEs for = (2)0 using SsfFit are computed as

> ar1.mle = SsfFit(ar1.start,y.ar1,"ar1.mod",

+ lower=c(-.999,0), upper=c(0.999,Inf))

Iteration 0 : objective = 265.5

Iteration 1 : objective = 282.9

...

Iteration 18 : objective = 176.9

RELATIVE FUNCTION CONVERGENCE

In the call to SsfFit, the stationarity condition 1 1 and the
positive variance condition 2 0 is imposed in the estimation. The result
of SsfFit is a an object of class “SsfFit” with components

> names(ar1.mle)

[1] "parameters" "objective" "message" "grad.norm" "iterations"

[6] "f.evals" "g.evals" "hessian" "scale" "aux"

[11] "call" "vcov"

The exact MLEs for = (2)0 are

> ar1.mle

Log-likelihood: -176.9

250 observations

Parameter Estimates:

phi sigma2

0.77081 0.2402688

and the MLE for is

> sqrt(ar1.mle$parameters["sigma2"])

sigma2

0.4902

These values are very close to the least squares estimates. Standard errors
and -statistics are displayed using

> summary(ar1.mle)

Log-likelihood: -176.936

250 observations

Parameters:

Value Std. Error t value

phi 0.7708 0.03977 19.38

sigma2 0.2403 0.02149 11.18

14.4 Estimation of State Space Models 557

Convergence: RELATIVE FUNCTION CONVERGENCE

A summary of the log-likelihood evaluated at the MLEs is

> KalmanFil(y.ar1,ar1.mod(ar1.mle$parameters),

+ task = "KFLIK")

Call:

KalmanFil(mY = y.ar1, ssf = ar1.mod(ar1.mle$parameters),

task = "KFLIK")

Log-likelihood: -176.9359

Prediction error variance: 1

Sample observations: 250

Standardized Innovations:

Mean Std.Error

-0.0213 1.0018

Notice that the estimated variance of the standardized prediction errors is
equal to 1.

Example 103 Exact maximum likelihood estimation of AR(1) model us-
ing re-parameterization

An alternative function to compute the state space form of the AR(1) is

ar1.mod2 = function(parm) {

phi = exp(parm[1])/(1 + exp(parm[1]))

sigma2 = exp(parm[2])

ssf.mod = GetSsfArma(ar=phi,sigma=sqrt(sigma2))

CheckSsf(ssf.mod)

}

In the above model, a stationary value for between 0 and 1 and a
positive value for 2 is guaranteed by parameterizing the log-likelihood
in terms of 0 = ln((1)) and 1 = ln(2) instead of and 2.

By the invariance property of maximum likelihood estimation, ˆmle =
exp(ˆ0 mle) (1 + exp(ˆ0 mle)) and ˆ

2
mle = exp(ˆ1 mle) are the MLEs for

and 2. The MLEs for = (0 1)
0 computed using SsfFit are

> ar1.start = c(0,0)

> names(ar1.start) = c("ln(phi/(1-phi))","ln(sigma2)")

> ar1.mle = SsfFit(ar1.start,y.ar1,"ar1.mod2")

Iteration 0 : objective = 265.5222

...

Iteration 10 : objective = 176.9359

558 14. State Space Models

RELATIVE FUNCTION CONVERGENCE

> summary(ar1.mle)

Log-likelihood: -176.936

250 observations

Parameters:

Value Std. Error t value

ln(phi/(1-phi)) 1.213 0.22510 5.388

ln(sigma2) -1.426 0.08945 -15.940

Convergence: RELATIVE FUNCTION CONVERGENCE

The MLEs for and 2 and estimated standard errors computed using
the delta method, are5

> ar1.mle2 = ar1.mle

> tmp = coef(ar1.mle)

> ar1.mle2$parameters[1] = exp(tmp[1])/(1 + exp(tmp[1]))

> ar1.mle2$parameters[2] = exp(tmp[2])

> dg1 = exp(-tmp[1])/(1 + exp(-tmp[1]))^2

> dg2 = exp(tmp[2])

> dg = diag(c(dg1,dg2))

> ar1.mle2$vcov = dg%*%ar1.mle2$vcov%*%dg

> summary(ar1.mle2)

Log-likelihood: -176.936

250 observations

Parameters:

Value Std. Error t value

ln(phi/(1-phi)) 0.7708 0.03977 19.38

ln(sigma2) 0.2403 0.02149 11.18

Convergence: RELATIVE FUNCTION CONVERGENCE

and exactly match the previous MLEs.

Example 104 Exact maximum likelihood estimation of AR(1) model us-
ing concentrated log-likelihood

In the AR(1) model, the variance parameter 2 can be analytically con-
centrated out of the log-likelihood. The advantages of concentrating the
log-likelihood are to reduce the number of parameters to estimate, and to
improve the numerical stability of the optimization. A function to compute
the state space form for the AR(1) model, as a function of only, is

ar1.modc = function(parm) {

5Recall, if (ˆ) () and is a continuous function then ((ˆ) ())

(0 0 0
0
).

14.4 Estimation of State Space Models 559

phi = parm[1]

ssf.mod = GetSsfArma(ar=phi)

CheckSsf(ssf.mod)

}

By default, the function GetSsfArma sets 2 = 1 which is required for the
computation of the concentrated log-likelihood function from (14.46). To
maximize the concentrated log-likelihood function (14.46) for the AR(1)
model, use SsfFit with ar1.modc and set the optional argument conc=T :

> ar1.start = c(0.7)

> names(ar1.start) = c("phi")

> ar1.cmle = SsfFit(ar1.start,y.ar1,"ar1.modc",conc=T,

+ lower=0,upper=0.999)

Iteration 0 : objective = 178.506

...

Iteration 4 : objective = 176.9359

RELATIVE FUNCTION CONVERGENCE

> summary(ar1.cmle)

Log-likelihood: -176.936

250 observations

Parameters:

Value Std. Error t value

phi 0.7708 0.03977 19.38

Convergence: RELATIVE FUNCTION CONVERGENCE

Notice that with the concentrated log-likelihood, the optimizer converges
in only four interations. The values of the log-likelihood and the MLE for
are the same as found previously. The MLE for 2 may be recovered by

running the Kalman filter and computing the variance of the prediction
errors:

> ar1.KF = KalmanFil(y.ar1,ar1.mod(ar1.cmle$parameters),

+ task="KFLIK")

> ar1.KF$dVar

[1] 0.2403

One disadvantage of using the concentrated log-likelihood is the lack of an
estimated standard error for ˆ2

Example 105 Maximum likelihood estimation of CAPM with time vary-
ing parameters

Consider estimating the CAPM with time varying coe cients (14.17) -
(14.19) using monthly data on Microsoft and the S&P 500 index over the pe-
riod February, 1990 through December, 2000 contained in the S+FinMetrics
“timeSeries” excessReturns.ts. The parameters of the model are the

560 14. State Space Models

variances of the innovations to the transition and measurement equations;
2 2 and 2 . Since these variances must be positive the log-likelihood

is parameterized using = (ln(2) ln(2) ln(2))0. Since the state space
form for the CAPM with time varying coe cients requires a data matrix X
containing the excess returns on the S&P 500 index, the function SsfFit
requires as input a function which takes both and X and returns the
appropriate state space form. One such function is

tvp.mod = function(parm,mX=NULL) {

parm = exp(parm) # 3 x 1 vector containing log variances

ssf.tvp = GetSsfReg(mX=mX)

diag(ssf.tvp$mOmega) = parm

CheckSsf(ssf.tvp)

}

Starting values for are specified as

> tvp.start = c(0,0,0)

> names(tvp.start) = c("ln(s2.alpha)","ln(s2.beta)","ln(s2.y)")

The maximum likelihood estimates for based on SsfFit are computed
using

> tvp.mle = SsfFit(tvp.start,msft.ret,"tvp.mod",mX=X.mat)

Iteration 0 : objective = 183.2

...

Iteration 22 : objective = -123

RELATIVE FUNCTION CONVERGENCE

The MLEs for = (ln(2) ln(2) ln(2))0 are

> summary(tvp.mle)

Log-likelihood: 122.979

131 observations

Parameters:

Value Std. Error t value

ln(s2.alpha) -12.480 2.8030 -4.452

ln(s2.beta) -5.900 3.0890 -1.910

ln(s2.y) -4.817 0.1285 -37.480

Convergence: RELATIVE FUNCTION CONVERGENCE

The estimates for the standard deviations , and as well as estimated
standard errors, from the delta method, are:

> tvp2.mle = tvp.mle

> tvp2.mle$parameters = exp(tvp.mle$parameters/2)

> names(tvp2.mle$parameters) = c("s.alpha","s.beta","s.y")

> dg = diag(tvp2.mle$parameters/2)

14.4 Estimation of State Space Models 561

> tvp2.mle$vcov = dg%*%tvp.mle$vcov%*%dg

> summary(tvp2.mle)

Log-likelihood: 122.979

131 observations

Parameters:

Value Std. Error t value

s.alpha 0.001951 0.002734 0.7135

s.beta 0.052350 0.080860 0.6474

s.y 0.089970 0.005781 15.5600

Convergence: RELATIVE FUNCTION CONVERGENCE

It appears that the estimated standard deviations for the time varying
parameter CAPM are close to zero, suggesting a constant parameter model.
The smoothed estimates of the time varying parameters and as

well as the expected returns may be extracted and plotted using

> smoothedEst.tvp = SsfCondDens(y.capm,

+ tvp.mod(tvp.mle$parameters,mX=X.mat),

+ task="STSMO")

> plot(smoothedEst.tvp,strip.text=c("alpha(t)",

+ "beta(t)","Expected returns"),main="Smoothed Estimates",

+ scales="free")

These estimates are illustrated in Figure 14.9. Notice the increase in ˆ and
decrease in ˆ over the sample.

14.4.3 Quasi-Maximum Likelihood Estimation

The S+FinMetrics function SsfFitFast is a fast version of SsfFit that
also computes the sandwhich covariance matrix estimate which is appro-
priate for QMLE. This matrix is given in the r.vcov component of the
“SsfFit” object returned by SsfFitFast.

Example 106 Quasi-maximum likelihood estimation of a stochastic volatil-
ity model

Let denote the continuously compounded return on an asset between
times 1 and . Following Harvey, Ruiz, and Shephard (1994), hereafter
HRS, a simple discrete-time stochastic volatility (SV) model has the form

= iid (0 1) (14.47)

= ln 2 = + 1 + iid (0 2)

[] = 0

562 14. State Space Models

-0
.2

-0
.1

0.
0

0.
1

0 20 40 60 80 100 120

Expected returns

0.
01

0
0.

01
5

0.
02

0
0.

02
5

alpha(t)

1.
4

1.
5

1.
6

1.
7

1.
8 beta(t)

M
ea

n

Smoothed Estimates

FIGURE 14.9. Smoothed estimates of and from CAPM with time varying
parameter fit to the monthly excess returns on Microsoft.

Defining = ln 2, and noting that [ln 2] = 1 27 and var(ln 2) = 2 2
an unobserved components state space representation for has the form

= 1 27 + + iid (0 2 2)

= + 1 + iid (0 2)

[] = 0

If were iid Gaussian then the parameters = (2)0 of the SV
model could be e ciently estimated by maximizing the prediction error
decomposition of the log-likelihood function constructed from the Kalman
filter recursions. However, since = ln 2 is not normally distributed the
Kalman filter only provides minimum mean squared error linear estimators
of the state and future observations. Nonetheless, HRS point out that even
though the exact log-likelihood cannot be computed from the prediction
error decomposition based on the Kalman filter, consistent estimates of
= (2)0 can still be obtained by treating as though it were iid
(0 2 2) and maximizing the quasi log-likelihood function constructed

from the prediction error decomposition.
The state space representation of the SV model has system matrices

=

µ
1 27

¶
=

µ
1

¶
=

µ
2 0
0 2 2

¶

14.4 Estimation of State Space Models 563

Assuming that | | 1, the initial value matrix has the form

=

µ
2 (1 2)
(1)

¶
If = 1 then use

=

µ
1
0

¶
A function to compute the state space form of the SV model given a

vector of parameters, assuming | | 1 is

sv.mod = function(parm) {

g = parm[1]

sigma2.n = exp(parm[2])

phi = parm[3]

ssf.mod = list(mDelta=c(g,-1.27),

mPhi=as.matrix(c(phi,1)),

mOmega=matrix(c(sigma2.n,0,0,0.5*pi^2),2,2),

mSigma=as.matrix(c((sigma2.n/(1-phi^2)),g/(1-phi))))

CheckSsf(ssf.mod)

}

Notice that an exponential transformation is utilized to ensure a positive
value for 2 A sample of = 1000 observations are simulated from the
SV model using the parameters = 0 3556, 2 = 0 0312 and = 0 9646:

> parm.hrs = c(-0.3556,log(0.0312),0.9646)

> nobs = 1000

> set.seed(179)

> e = rnorm(nobs)

> xi = log(e^2)+1.27

> eta = rnorm(nobs,sd=sqrt(0.0312))

> sv.sim = SsfSim(sv.mod(parm.hrs),

+ mRan=cbind(eta,xi),a1=(-0.3556/(1-0.9646)))

The first 250 simulated squared returns, 2, and latent squared volatilities,
2, are shown in Figure 14.10.
Starting values for the estimation of = (ln 2)0 are values close to

the true values:

> sv.start = c(-0.3,log(0.03),0.9)

> names(sv.start) = c("g","ln.sigma2","phi")

Using SsfFitFast, the quasi-maximum likelihood (QML) estimates are

> low.vals = c(-Inf,-Inf,-0.999)

> up.vals = c(Inf,Inf,0.999)

> sv.mle = SsfFitFast(sv.start,sv.sim[,2],"sv.mod",

564 14. State Space Models

Simulated values from SV model

0 50 100 150 200 250

0.
0

0.
00

02
0.

00
04

0.
00

06

volatility
squared returns

FIGURE 14.10. Simulated values from SV model.

+ lower=low.vals,upper=up.vals)

Iteration 0 : objective = 5.147579

...

Iteration 15 : objective = 2.21826

RELATIVE FUNCTION CONVERGENCE

To show the estimates with the QMLE standard errors use summary with
the optional argument method="qmle"

> summary(sv.mle,method="qmle")

Log-likelihood: -2218.26

1000 observations

Parameters:

Value QMLE Std. Error t value

g -0.4810 0.18190 -2.644

ln.sigma2 -3.5630 0.53020 -6.721

phi 0.9509 0.01838 51.740

Convergence: RELATIVE FUNCTION CONVERGENCE

Using the delta method, the QMLE and estimated standard error for 2

are 0.02834 and 0.01503, respectively.
The filtered and smoothed estimates of log-volatility are computed using

> ssf.sv = sv.mod(sv.mle2$parameters)

14.5 Simulation Smoothing 565

Log-Volatility

0 50 100 150 200 250

-1
1

-1
0

-9
-8

actual
filtered
smoothed

FIGURE 14.11. Log-volatility along with filtered and smoothed estimates from
SV model.

> filteredEst.sv = SsfMomentEst(sv.sim[,2],ssf.sv,task="STFIL")

> smoothedEst.sv = SsfCondDens(sv.sim[,2],ssf.sv,task="STSMO")

The first 250 estimates along with actual log-volatility are illustrated in
Figure 14.11

14.5 Simulation Smoothing

The simulation of state and response vectors and y or disturbance
vectors and conditional on the observations Y is called simula-
tion smoothing. Simulation smoothing is useful for evaluating the appro-
priateness of a proposed state space model and for the Bayesian analysis of
state space models using Markov chain Monte Carlo (MCMC) techniques.
The S+FinMetrics/SsfPack function SimSmoDraw generates random draws
from the distributions of the state and response variables or from the dis-
tributions of the state and response disturbances. The arguments expected
by SimSmoDraw are

> args(SimSmoDraw)

function(kf, ssf, task = "DSSIM", mRan = NULL, a1 = NULL)

566 14. State Space Models

where kf is a “KalmanFil” object, ssf is a list which either contains the
minimal necessary components for a state space form or is a valid “ssf”
object and task determines whether the state smoothing (“STSIM”) or
disturbance smoothing (“DSSIM”) is performed.

Example 107 Simulation smoothing from the local level model

Simulated state and response values from the local level model may be
generated using

> KalmanFil.ll = KalmanFil(y.ll,ssf.ll,task="STSIM")

> ll.state.sim = SimSmoDraw(KalmanFil.ll,ssf.ll,

+ task="STSIM")

> class(ll.state.sim)

[1] "SimSmoDraw"

> names(ll.state.sim)

[1] "state" "response" "task"

The resulting simulated values may be visualized using

> plot(ll.state.sim,layout=c(1,2))

To simulate disturbances from the state and response equations, set
task="DSSIM" in the calls to KalmanFil and SimSmoDraw.

14.6 References

Bomhoff, E. J. (1994). Financial Forecasting for Business and Economics.
Academic Press, San Diego.

Carmona, R. (2004). Statistical Analysis of Financial Data, with S-PLUS.
Springer-Verlag, New York.

Chan, N.H. (2002). Time Series: Applicatios to Finance. John Wiley &
Sons, New York.

Durbin, J. and S.J. Koopman (2001). Time Series Analysis by State
Space Methods. Oxford University Press, Oxford.

Duan, J.-C. and J.-G. Simonato (1999). “Estimating Exponential-A ne
Term Structure Models by Kalman Filter,” Review of Quantitative Finance
and Accounting, 13, 111-135.

Hamilton, J.D. (1994). Time Series Analysis. Princeton University Press,
Princeton, NJ.

14.6 References 567

Harvey, A. C. (1989). Forecasting, Structural Time Series Models and
the Kalman Filter. Cambridge University Press, Cambridge.

Harvey, A.C. (1993). Time Series Models, 2nd edition. MIT Press, Cam-
bridge.

Harvey, A.C., E. Ruiz and N. Shephard (1994). “Multivariate Stochas-
tic Variance Models,” Review of Economic Studies, 61, 247-264.

Kim, C.-J., and C.R. Nelson (1999). State-Space Models with Regime
Switching. MIT Press, Cambridge.

Koopman, S.J., N. Shephard, and J.A. Doornik (1999). “Statisti-
cal Algorithms for State Space Models Using SsfPack 2.2,” Econometrics
Journal, 2, 113-166.

Koopman, S.J., N. Shephard, and J.A. Doornik (2001). “SsfPack
3.0beta: Statistical Algorithms for Models in State Space,” unpublished
manuscript, Free University, Amsterdam.

Engle, R.F. and M.W. Watson (1987). “The Kalman Filter: Applica-
tions to Forecasting and Rational Expectations Models,” in T.F. Bewley
(ed.) Advances in Econometrics: Fifth World Congress, Volume I. Cam-
bridge University Press, Cambridge.

West, M. and J. Harrison (1997). Bayesian Forecasting and Dynamic
Models, 2nd edition. Springer-Verlag, New York.

Zivot, E., Wang, J. and S.J. Koopman (2004). “State Space Models
in Economics and Finance Using SsfPack in S+FinMetrics,” in A. Harvey,
S.J. Koopman, and N. Shephard (eds.), Unobserved Components Models.
Cambridge University Press, Cambridge.

15
Factor Models for Asset Returns

15.1 Introduction

Multifactor models can be used to predict returns, generate estimates of
abnormal return, and estimate the variability and covariability of returns.
This chapter focuses on the use of multifactor models to describe the co-
variance structure of returns1. Asset return covariance matrices are key
inputs to portfolio optimization routines used for asset allocation and ac-
tive asset management. A factor model decomposes an asset’s return into
factors common to all assets and an asset specific factor. Often the com-
mon factors are interpreted as capturing fundamental risk components, and
the factor model isolates an asset’s sensitivities to these risk factors. The
three main types of multifactor models for asset returns are: (1) macroe-
conomic factor models; (2) fundamental factor models; and (3) statistical
factor models. Macroeconomic factor models use observable economic time
series like interest rates and inflation as measures of pervasive or common
factors in asset returns. Fundamental factor models use observable firm or
asset specific attributes such as firm size, dividend yield, and industry clas-
sification to determine common factors in asset returns. Statistical factor
models treat the common factors as unobservable or latent factors. Esti-
mation of multifactor models is type-specific, and this chapter summarizes

1A recent review of factor models for this purpose is given in Chan, Karceski and
Lakonishok (1998).

570 15. Factor Models for Asset Returns

the econometric issues associated with estimating each type of factor model
and gives illustrations using S-PLUS.
This chapter is organized as follows. Section two presents the general

factor model specification. Section three describes the macroeconomic fac-
tor model. Examples using Sharpe’s single index model as well as a general
macroeconomic model are given. Section four surveys the fundamental fac-
tor model and provides illustrations of an industry factor model and a
Fama-French type model. Statistical factor models estimated using factor
analysis and principal components analysis are covered in Section five. Par-
ticular emphasis is given to techniques appropriate for the case in which
the number of assets is greater than the number of time periods.
Connor (1995) gives an overview of three types of factor models for asset

returns and compares their explanatory power. Campbell, Lo, and MacKin-
lay (1997) and Grinold and Kahn (2000) survey the econometric specifi-
cation of these models. Johnson and Wichern (1998) provides an excellent
treatment of statistical factor models. Good textbook discussions of sta-
tistical factor models with applications in finance are given in Alexander
(2001) and Tsay (2001).

15.2 Factor Model Specification

Each of the three types of multifactor models for asset returns has the
general form

= + 1 1 + 2 2 + · · ·+ + (15.1)

= + 0f +

where is the return (real or in excess of the risk-free rate) on asset
(= 1) in time period (= 1), is the intercept, is
the common factor (= 1), is the factor loading or factor
beta for asset on the factor, and is the asset specific factor. In the
multifactor model, it is assumed that the factor realizations, f are (0)
with unconditional moments

[f] = µ

cov(f) = [(f µ)(f µ)0] =

and that the asset specific error terms, , are uncorrelated with each of
the common factors, , so that

cov() = 0 for all and

It is also assumed that the error terms are serially uncorrelated and
contemporaneously uncorrelated across assets

cov() = 2 for all = and =

= 0 otherwise

15.3 Macroeconomic Factor Models for Returns 571

In applications, it is often the case that the number of assets, is sub-
stantially larger than the number of time periods, In what follows a
subscript represents time and a subscript represents asset so that R
represents an (×1) vector of assets at time and R represents a (×1)
vector of returns on asset .
The multifactor model (15.1) may be rewritten as a cross-sectional re-

gression model at time by stacking the equations for each asset to give

R
(×1)

=
(×1)

+ B
(×)

f
(×1)

+
(×1)

= 1 (15.2)

[0 |f] = D

where B is the (×) matrix of factor betas, f is the (× 1) vector of
factor realizations for time period , and is the (× 1) vector of asset
specific error terms with (×) diagonal covariance matrix D. Given the
assumption of the multifactor model, the (×) covariance matrix of
asset returns has the form

cov(R) = = B B0+D

The multifactor model (15.1) may also be rewritten as a time-series
regression model for asset by stacking observations for a given asset to
give

R
(×1)

= 1
(×1)(1×1)

+ F
(×)(×1)

+
(×1)

= 1 (15.3)

[0] = 2I

where 1 is a (× 1) vector of ones, F is a (×) matrix of factor
realizations (the th row of F is f 0), is a (×1) vector of factor loadings,
and is a (× 1) vector of error terms with covariance matrix 2I .
Finally, collecting data from = 1 allows the model (15.2) to be

expressed in matrix form as the multivariate regression

R
(×)

=
(×1)

+ B
(×)

F
(×)

+ E
(×)

(15.4)

15.3 Macroeconomic Factor Models for Returns

In a macroeconomic factor model, the factor realizations f in (15.1) are
observed macroeconomic variables that are assumed to be uncorrelated
with the asset specific error terms . The two most common macroeco-
nomic factor models are Sharpe’s (1970) single factor model and Chen, Roll
and Ross’s (1986) multifactor model. Once the macroeconomic factors are
specified and constructed the econometric problem is then to estimate the
factor betas, , residual variances, 2, and factor covariance, , using
time series regression techniques.

572 15. Factor Models for Asset Returns

15.3.1 Sharpe’s Single Index Model

The most famous macroeconomic factor model is Sharpe’s single factor
model or market model

= + + = 1 ; = 1 (15.5)

where denotes the return or excess return (relative to the risk-free
rate) on a market index (typically a value weighted index like the S&P 500
index) in time period . The market index is meant to capture economy-
wide or market risk, and the error term captures non-market firm specific
risk. The multifactor model (15.1) reduces to (15.5) if 1 = , =
0 (= 1 ; = 2). The covariance matrix of assets from the
single factor model is

= 2 0 +D (15.6)

where 2 = var(), = (1)0 and D is a diagonal matrix with
2 = var() along the diagonal.
Because is observable, the parameters and 2 of the single factor

model (15.5) for each asset can be estimated using time series regression
giving

R = b 1+R b + b = 1

b2 =
1

2
b0b

The variance of the market index is estimated using the time series sample
variance

b2 =
1

1

X
=1

()2

=
1 X

=1

The estimated single factor model covariance is then

b = b2 bb0 + bD
where bD has b2 along the diagonal.
Remarks

1. Computational e ciency may be obtained by using multivariate re-
gression2. The coe cients and and the residual variances 2

2Since is the regressor for each asset, multivariate OLS estimates are numerically
equivalent to multivariate GLS estimates that take into account the across equation
correlation between the errors in each equation.

15.3 Macroeconomic Factor Models for Returns 573

may be computed in one step in the multivariate regression model

R = X 0 +E

where R is a (×) matrix of asset returns, X = [1 : R] is a
(× 2) matrix, 0 = [:]0 is a (2 ×) matrix of coe cients and
E is a (×) matrix of errors. The multivariate OLS estimator of
0 is b0 = (X0X) 1X0R

The estimate of the residual covariance matrix is

b = 1

2
bE0 bE

where Ê = R Xˆ
0
is the multivariate least squares residual

matrix. The diagonal elements of b are the diagonal elements of bD
2. The 2 from the time series regression is a measure of the propor-
tion of “market” risk, and 1 2 is a measure of asset specific risk.
Additionally, b is a measure of the typical size of asset specific risk.

3. Robust regression techniques can be used to estimate and 2. Also,
a robust estimate of 2 could be computed.

4. In practice, the estimated value of is often adjusted toward unity.
Adjusted values are discussed in chapter seven of Elton and Gruber
(1997).

5. The single factor covariance matrix (15.6) is constant over time. This
may not be a good assumption. There are several ways to allow (15.6)
to vary over time. For example, assume that is constant and that 2

and 2 are conditionally time varying. That is, 2 = 2 and 2 =
2 . To capture conditional heteroskedasticity, GARCH models may
be used for 2 and 2 . One may also use exponential weights in
computing the sample variances of 2 and 2 . Alternatively, one
may assume that is not constant over time.

Example 108 Estimation of Sharpe’s single factor model using S-PLUS

The single factor model parameters and the return covariance matrix
(15.6) may be e ciently estimated using the matrix functions in S-PLUS.
To illustrate, consider estimating the single factor model using the monthly
return data over the period January 1978 through December 1987 in the
“timeSeries” berndt.dat. The variables in berndt.dat are

> colIds(berndt.dat)

[1] "CITCRP" "CONED" "CONTIL" "DATGEN" "DEC" "DELTA"

[7] "GENMIL" "GERBER" "IBM" "MARKET" "MOBIL" "PANAM"

[13] "PSNH" "TANDY" "TEXACO" "WEYER" "RKFREE"

574 15. Factor Models for Asset Returns

See the online help for berndt.dat for a description of these variables. The
return data on the assets and the market index are extracted using:

> returns = as.matrix(seriesData(berndt.dat[, c(-10, -17)]))

> market = as.vector(seriesData(berndt.dat)[,10])

The single factor model parameters may be estimated by multivariate re-
gression using

> n.obs = nrow(returns)

> X.mat = cbind(rep(1,n.obs),market)

> G.hat = solve(X.mat,returns)

> beta.hat = G.hat[2,]

> E.hat = returns - X.mat%*%G.hat

> diagD.hat = diag(crossprod(E.hat)/(n.obs-2))

> names(diagD.hat) = colIds(G.hat)

> r.sq = 1-(n.obs-2)*diagD.hat/diag(var(returns,SumSquares=T))

The second row of G.hat contains the estimated values, and the vector
diagD.hat contains the estimated residual variances 2:

> t(rbind(beta.hat,sqrt(diagD.hat),r.sq))

beta.hat r.square

CITCRP 0.667776 0.067163 0.317769

CONED 0.091021 0.050096 0.015316

CONTIL 0.738357 0.142597 0.112158

DATGEN 1.028160 0.106880 0.303631

DEC 0.843053 0.081018 0.337829

DELTA 0.489461 0.090289 0.121627

GENMIL 0.267765 0.062676 0.079188

GERBER 0.624807 0.076966 0.236938

IBM 0.453024 0.050461 0.275235

MOBIL 0.713515 0.064072 0.368818

PANAM 0.730140 0.122507 0.143372

PSNH 0.212632 0.108961 0.017627

TANDY 1.055494 0.105649 0.319860

TEXACO 0.613277 0.068076 0.276615

WEYER 0.816867 0.064448 0.430829

The and 2 values are illustrated graphically in Figure 15.1. The assets
most sensitive to the market factor (those with highest values) are the
technology and forest sector stocks DATGEN, DEC, TANDY and WEYER. Those
least sensitive are the utility stocks CONED and PSNH. These stocks also have
the lowest 2 values.
The single factor covariance matrix (15.6) and corresponding correlation

matrix are computed using

> cov.si = var(market)*(beta.hat%o%beta.hat) +

15.3 Macroeconomic Factor Models for Returns 575

CITCRP

CONED

CONTIL

DATGEN

DEC

DELTA

GENMIL

GERBER

IBM

MOBIL

PANAM

PSNH

TANDY

TEXACO

WEYER

0.0 0.2 0.4 0.6 0.8 1.0

Beta values

CITCRP

CONED

CONTIL

DATGEN

DEC

DELTA

GENMIL

GERBER

IBM

MOBIL

PANAM

PSNH

TANDY

TEXACO

WEYER

0.0 0.1 0.2 0.3 0.4

R-square values

FIGURE 15.1. Estimated and 2 values from single index model for Berndt
data.

+ diag(diagD.hat)

> sd = sqrt(diag(cov.si))

> cor.si = cov.si/outer(sd,sd)

Since all estimated values are positive, all of the values in the single
factor covariance (15.6) will be positive. To illustrate, some of the single
factor correlations are displayed below

> print(cor.si,digits=1,width=2)

CITCRP CONED CONTIL DATGEN DEC DELTA GENMIL GERBER

CITCRP 1.00 0.07 0.19 0.31 0.33 0.20 0.16 0.27

CONED 0.07 1.00 0.04 0.07 0.07 0.04 0.03 0.06

CONTIL 0.19 0.04 1.00 0.18 0.19 0.12 0.09 0.16

DATGEN 0.31 0.07 0.18 1.00 0.32 0.19 0.15 0.27

DEC 0.33 0.07 0.19 0.32 1.00 0.20 0.16 0.28

DELTA 0.20 0.04 0.12 0.19 0.20 1.00 0.10 0.17

GENMIL 0.16 0.03 0.09 0.15 0.16 0.10 1.00 0.14

GERBER 0.27 0.06 0.16 0.27 0.28 0.17 0.14 1.00

IBM 0.29 0.06 0.17 0.29 0.30 0.18 0.15 0.25

MOBIL 0.34 0.07 0.20 0.33 0.35 0.21 0.17 0.29

PANAM 0.21 0.05 0.13 0.21 0.22 0.13 0.11 0.18

PSNH 0.07 0.02 0.04 0.07 0.08 0.05 0.04 0.06

TANDY 0.32 0.07 0.19 0.31 0.33 0.20 0.16 0.27

576 15. Factor Models for Asset Returns

TEXACO 0.29 0.06 0.17 0.29 0.30 0.18 0.15 0.25

WEYER 0.37 0.08 0.22 0.36 0.38 0.23 0.18 0.32

...

These correlations may be compared with the sample correlations

> print(cor(returns),digits=1,width=2)

CITCRP CONED CONTIL DATGEN DEC DELTA GENMIL

CITCRP 1.0 0.269 0.5 0.53 0.49 0.40 0.473

CONED 0.3 1.000 0.1 0.10 0.11 0.09 0.329

CONTIL 0.5 0.105 1.0 0.26 0.23 0.17 0.206

DATGEN 0.5 0.096 0.3 1.00 0.58 0.33 0.280

DEC 0.5 0.108 0.2 0.58 1.00 0.43 0.212

DELTA 0.4 0.092 0.2 0.33 0.43 1.00 0.373

GENMIL 0.5 0.329 0.2 0.28 0.21 0.37 1.000

GERBER 0.4 0.171 0.4 0.14 0.16 0.19 0.350

IBM 0.4 0.091 0.3 0.49 0.44 0.34 0.170

MOBIL 0.3 0.003 0.2 0.32 0.41 0.13 0.047

PANAM 0.3 0.163 0.1 0.29 0.27 0.39 0.207

PSNH 0.1 0.112 0.1 0.08 0.04 0.03 0.059

TANDY 0.5 0.102 0.2 0.51 0.49 0.46 0.400

TEXACO 0.3 -0.106 0.2 0.32 0.25 0.13 0.002

WEYER 0.5 0.158 0.2 0.48 0.59 0.49 0.357

...

Another way to compare the single index covariance matrix to the sample
covariance is to compute the global minimum variance portfolio. The global
minimum variance portfolio is the portfolio that solves

min 2 = w0 w s.t. w01 = 1

and is given by

w =
11

10 11

The global minimum variance portfolios based on the single index covari-
ance and the sample covariance are

> w.gmin.si = solve(cov.si)%*%rep(1,nrow(cov.si))

> w.gmin.si = w.gmin.si/sum(w.gmin.si)

> t(w.gmin.si)

numeric matrix: 1 rows, 15 columns.

CITCRP CONED CONTIL DATGEN DEC DELTA

[1,] 0.04379 0.3757 0.005229 -0.02348 -0.004413 0.0525

GENMIL GERBER IBM MOBIL PANAM PSNH

[1,] 0.1819 0.04272 0.1866 0.03372 0.007792 0.06618

15.3 Macroeconomic Factor Models for Returns 577

TANDY TEXACO WEYER

[1,] -0.02719 0.05782 0.001173

> w.gmin.sample = solve(var(returns))%*%rep(1,nrow(cov.si))

> w.gmin.sample = w.gmin.sample/sum(w.gmin.sample)

> t(w.gmin.sample)

numeric matrix: 1 rows, 15 columns.

CITCRP CONED CONTIL DATGEN DEC DELTA

[1,] -0.06035 0.3763 -0.002152 -0.06558 0.03626 0.03155

GENMIL GERBER IBM MOBIL PANAM PSNH

[1,] 0.1977 -0.02966 0.2846 0.02257 0.01071 0.07517

TANDY TEXACO WEYER

[1,] -0.01868 0.1996 -0.05804

15.3.2 The General Multifactor Model

The general macroeconomic multifactor model specifies observable macro-
variables as the factor realizations f in (15.1). The paper by Chen, Roll
and Ross (1986) provides a description of the most commonly used macroe-
conomic factors. Typically, the macroeconomic factors are standardized to
have mean zero and a common scale. The factors must also be transformed
to be stationary (not trending). Sometimes the factors are made orthogonal
but this in not necessary.
The general form of the covariance matrix for the macroeconomic factor

model is
= B B0 +D

where B = [1 2 · · ·]0, = [(f µ)(f µ)0] is the covariance
matrix of the observed factors andD is a diagonal matrix with 2 =var()
along the diagonal.
Because the factor realizations are observable, the parameter matrices B

and D of the model may be estimated using time series regression giving

R = b 1+Fb + b = 1

b2 =
1

1
b0b

The covariance matrix of the factor realizations may be estimated using
the time series sample covariance matrix

b =
1

1

X
=1

(f f)(f f)0

f =
1 X

=1

f

578 15. Factor Models for Asset Returns

The estimated multifactor model covariance matrix is then

b = bBb bB0 + bD (15.7)

Remarks

1. As with the single factor model, robust regression may be used to
compute and 2. A robust covariance matrix estimator may also
be used to compute and estimate of .

Example 109 Estimating a general macroeconomic factor model using
S-PLUS

As explained in Chen, Roll and Ross (1986), the macroeconomic factors
should be constructed as surprise variables so that the returns on assets will
respond to unexpected changes in economy-wide factors. To illustrate the
construction of a macroeconomic factor model with macroeconomic sur-
prise variables, consider a simple factor model for the monthly returns in
the “timeSeries” returns, constructed earlier, using as factors the sur-
prise to inflation and the surprise to industrial production growth. Monthly
observations on inflation and industrial production growth are constructed
from the S+FinMetrics “timeSeries” CPI.dat and IP.dat as follows

> infl = getReturns(CPI.dat)

> ipg = getReturns(IP.dat)

In general, to compute surprise variables, one must first explain the ex-
pected behavior and then define the surprise to be the di erence between
what is observed and what is expected. A common way to compute the ex-
pected behavior is to use a VAR model. For simplicity, consider a VAR(6)
model for inflation and industrial production growth fit over the period
July 1977 through December 1987

> factor.ts = seriesMerge(ipg,infl)

> var6.fit = VAR(cbind(CPI,IP)~ar(6),data=factor.ts,

> start="July 1977",end="Jan 1988",in.format="%m %Y")

The start date of July 1977 allows for six initial values so that the first
fitted value is for January 1978. The factor surprises are constructed as the
residuals from the VAR(6) fit:

> factor.surprise = residuals(var6.fit)

The factor betas and 2 values for the fifteen assets in the “timeSeries”
returns are computed using

> factor.surprise = as.matrix(seriesData(factor.surprise))

> n.obs = nrow(returns)

> X.mat = cbind(rep(1,n.obs),factor.surprise)

15.3 Macroeconomic Factor Models for Returns 579

-10 -5 0 5

Beta values for inflation surprise

-2 -1 0 1

Beta values for IP growth surprise

CITCRP

CONED

CONTIL

DATGEN

DEC

DELTA

GENMIL

GERBER

IBM

MOBIL

PANAM

PSNH

TANDY

TEXACO

WEYER

0.0 0.01 0.02 0.03 0.04

R-square values

FIGURE 15.2. Estimated macroeconomic factor model for Berndt data.

> G.hat = solve(X.mat,returns)

> beta.hat = t(G.hat[2:3,])

> E.hat = returns - X.mat%*%G.hat

> diagD.hat = diag(crossprod(E.hat)/(n.obs-3))

> names(diagD.hat) = colIds(G.hat)

> r.sq = 1-(n.obs-3)*diagD.hat/diag(var(returns,SumSquares=T))

These results are illustrated graphically in Figure 15.2 created by

> par(mfrow=c(1,3))

> barplot(beta.hat[,1],names=names(beta.hat),horiz=T,

+ main="Beta values for inflation surprise")

> barplot(beta.hat[,2],names=names(beta.hat),horiz=T,

+ main="Beta values for IP growth surprise")

> barplot(r.sq,names=names(r.sq),horiz=T,

+ main="R-square values")

Most stocks have negative loadings on the inflation surprise factor. Notice
the very low 2 values indicating that the factor surprises do not explain
much of the variability in the monthly asset returns.
The estimated factor model covariance using (15.7) is

> cov.macro = beta.hat%*%var(factor.surprise)%*%t(beta.hat) +

+ diag(diagD.hat)

580 15. Factor Models for Asset Returns

and the corresponding correlation matrix is

> sd = sqrt(diag(cov.macro))

> cor.macro = cov.macro/outer(sd,sd)

> print(cor.macro,digits=1,width=2)

CITCRP CONED CONTIL DATGEN DEC DELTA GENMIL GERBER

CITCRP 1.000 0.0181 0.0035 -0.010 -0.008 -0.0019 0.017 0.0115

CONED 0.018 1.0000 -0.0056 -0.007 0.002 0.0214 0.030 0.0300

CONTIL 0.004 -0.0056 1.0000 -0.005 -0.008 -0.0134 -0.002 -0.0062

DATGEN -0.010 -0.0069 -0.0052 1.000 0.009 0.0081 -0.008 -0.0030

DEC -0.008 0.0017 -0.0083 0.009 1.000 0.0164 -0.002 0.0042

DELTA -0.002 0.0214 -0.0134 0.008 0.016 1.0000 0.011 0.0200

GENMIL 0.017 0.0301 -0.0017 -0.008 -0.002 0.0114 1.000 0.0218

GERBER 0.011 0.0300 -0.0062 -0.003 0.004 0.0200 0.022 1.0000

IBM 0.007 0.0208 -0.0049 -0.001 0.004 0.0150 0.015 0.0164

MOBIL -0.002 -0.0128 0.0053 -0.002 -0.006 -0.0137 -0.008 -0.0109

PANAM 0.019 0.0195 0.0061 -0.013 -0.012 -0.0066 0.019 0.0115

PSNH 0.003 0.0033 0.0005 -0.002 -0.001 -0.0001 0.003 0.0021

TANDY 0.007 0.0335 -0.0121 0.003 0.013 0.0325 0.022 0.0280

TEXACO 0.003 0.0002 0.0027 -0.003 -0.004 -0.0051 0.001 -0.0008

WEYER 0.007 0.0183 -0.0042 -0.001 0.003 0.0131 0.013 0.014

...

The macroeconomic factor model global minimum variance portfolio is

> w.gmin.macro = solve(cov.macro)%*%rep(1,nrow(cov.macro))

> w.gmin.macro = w.gmin.macro/sum(w.gmin.macro)

> t(w.gmin.macro)

numeric matrix: 1 rows, 15 columns.

CITCRP CONED CONTIL DATGEN DEC DELTA GENMIL

[1,] 0.06958 0.1776 0.02309 0.03196 0.04976 0.04766 0.1049

GERBER IBM MOBIL PANAM PSNH TANDY

[1,] 0.05463 0.1318 0.08186 0.02469 0.04019 0.02282

TEXACO WEYER

[1,] 0.07759 0.06185

15.4 Fundamental Factor Model

Fundamental factor models use observable asset specific characteristics
(fundamentals) like industry classification, market capitalization, style clas-
sification (value, growth) etc. to determine the common risk factors. In
practice, fundamental factor models are estimated in two ways. The first
way was pioneered by Bar Rosenberg, founder of BARRA Inc., and is dis-

15.4 Fundamental Factor Model 581

cussed at length in Grinold and Kahn (2000). In this approach, hereafter
referred to as the “BARRA” approach, the observable asset specific funda-
mentals (or some transformation of them) are treated as the factor betas,
, which are time invariant3. The factor realizations at time , f , however,

are unobservable. The econometric problem is then to estimate the factor
realizations at time given the factor betas. This is done by running
cross-section regressions. The second way was introduced by Eugene Fama
and Kenneth French (1992) and is referred to as the “Fama-French” ap-
proach. For a given observed asset specific characteristic, e.g. size, they
determined factor realizations using a two step process. First they sorted
the cross-section of assets based on the values of the asset specific charac-
teristic. Then they formed a hedge portfolio which is long in the top quintile
of the sorted assets and short in the bottom quintile of the sorted assets.
The observed return on this hedge portfolio at time is the observed factor
realization for the asset specific characteristic. This process is repeated for
each asset specific characteristic. Then, given the observed factor realiza-
tions for = 1 the factor betas for each asset are estimated using
time series regressions.

15.4.1 BARRA-type Single Factor Model

Consider a single factor model in the form of a cross-sectional regression
at time

R
(×1)

=
(×1)(1×1)

+
(×1)

= 1

where is a vector of observed values of an asset specific attribute (e.g.,
market capitalization, industry classification, style classification) and is
an unobserved factor realization. It is assumed that

var() = 2

cov() = 0 for all

var() = 2 = 1

In the above model the factor realization is the parameter to be es-
timated for each time period = 1 . Since the error term is het-
eroskedastic, e cient estimation of is done by weighted least squares
(WLS) (assuming the asset specific variances 2 are known)

ˆ
wls = (

0D 1) 1 0D 1R = 1 (15.8)

where D is a diagonal matrix with 2 along the diagonal. The above WLS
estimate of is infeasible since 2 is not known. However, 2 may be

3See Sheikh (1995) for a description of the BARRA fundamental factor model for
U.S. equities.

582 15. Factor Models for Asset Returns

consistently estimated and a feasible WLS estimate may be computed.
How 2 may be consistently estimated and how a feasible WLS estimate
may be computed is illustrated below.
The WLS estimate of in (15.8) has an interesting interpretation as the

return on a portfolio h = (1)0 that solves

min
h

1

2
h0Dh subject to h0 = 1

The portfolio h minimizes asset return residual variance subject to having
unit exposure to the attribute and is given by

h0 = (0D 1) 1 0D 1

The estimated factor realization is then the portfolio return

ˆ
wls = h

0R

When the portfolio h is normalized such that
P

= 1, it is referred to
as a factor mimicking portfolio.

15.4.2 BARRA-type Industry Factor Model

As an example of a fundamental factor model with factors, consider
a stylized BARRA-type industry factor model with mutually exclusive
industries. The factor sensitivities in (15.1) for each asset are time
invariant and of the form

= 1 if asset is in industry

= 0 otherwise

and represents the factor realization for the industry in time period
. Notice that factor betas are simply dummy variables indicating whether
a given asset is in a particular industry. Hence, the industry factor betas do
not have to be estimated from the data. The factor realizations, however,
are not initially observable. As will become apparent, the estimated value
of will be equal to the weighted average excess return in time period
of the firms operating in industry . This weighted average excess return
at time can be easily estimated using a cross-section regression over all
asset returns at time .
The industry factor model with industries is summarized as

= 1 1 + · · ·+ + = 1 ; = 1

var() = 2 = 1

cov() = 0 = 1 ; = 1

cov() = = 1

15.4 Fundamental Factor Model 583

where = 1 if asset is in industry (= 1) and is zero oth-
erwise4. It is assumed that there are firms in the th industry suchP

=1 = .

Least Squares Estimation of the Factor Realizations

The factor realizations 1 for = 1 , can be estimated from
the observed cross-section of asset returns at time period as follows. Con-
sider the cross-section regression at time

R = 1 1 + · · ·+ + (15.9)

= Bf +

[0] = D cov(f) =

where R is an (× 1) vector of returns, B = [1] is a (×
) matrix of zeros and ones reflecting the industry factor sensitivities for

each asset, f = (1)0 is a (× 1) vector of unobserved factor
realizations, is an (× 1) error term, and D is a diagonal matrix with
2 along the diagonal. Note that the error term is heteroskedastic across
assets. Since the industries are mutually exclusive it follows that

0 = for = 0 otherwise (15.10)

An unbiased but ine cient estimate of the factor realizations f can be
obtained by OLS giving

bf OLS = (B
0B) 1

B0R (15.11)

or b
1 OLS

...b
OLS

=

1
1

P
1

=1
1

...
1
P

=1

using (15.10) where denotes the return on asset if it is in industry

. Here, the estimated factor realizations b have nice interpretations.
They represent an equally weighted average return in time period on the
industry assets. Of course, this is expected given the nature of the binary
industry factor beta values.
To get the time series of factor realizations, the cross-section regression

(15.9) needs to be estimated for each = 1 giving the estimated

factor realizations (bf1 OLS bf OLS)

4Notice that there is no intercept in the industry factor model. With mutually
exclusive industries, the intercept will be collinear with the factor betas and not identi-
fiable.

584 15. Factor Models for Asset Returns

Estimation of Factor Realization Covariance Matrix

Given the time series of factor realizations, the covariance matrix of the
industry factors may be computed as the time series sample covariance

b
OLS =

1

1

X
=1

(bf OLS fOLS)(bf OLS fOLS)
0 (15.12)

fOLS =
1 X

=1

bf OLS

Estimation of Residual Variances

The residual variances, var() = 2, can be estimated from the time
series of residuals from the cross-section regressions given in (15.9) as
follows. Let b OLS, = 1 , denote the (×1) vector of OLS residuals
from (15.9), and let b OLS denote the row of b OLS. Then

2 may be
estimated using

b2OLS =
1

1

X
=1

(b OLS OLS)
2 = 1 (15.13)

OLS =
1 X

=1

b OLS

Estimation of Industry Factor Model Asset Return Covariance Matrix

The covariance matrix of the assets is then estimated byb
OLS = BbOLSB0 + bDOLS

where bDOLS is a diagonal matrix with b2OLS along the diagonal.
Remarks

1. Multivariate regression may be used to compute all of the factor re-
turns in one step. The multivariate regression model is

R = BF+E

where R is a (×) matrix of cross-sectionally demeaned asset
returns, F is a (×) matrix of parameters to be estimated (factor
returns) and E is a (×) matrix of errors such that [EE0] = D.

2. Robust regression techniques can be used to estimate f , and a robust
covariance matrix estimate of can be computed.

3. The industry factor model may be extended to cover cases where an
asset may be classified into several industry categories.

15.4 Fundamental Factor Model 585

4. Given the estimated factor realizations, a time series regression may
be run to assess the constructed model. The estimated factor loading
may be compared to the imposed values and the proportion of asset
variance attributable to all of the factors may be computed.

Weighted Least Squares Estimation

The OLS estimation of the factor realizations f is ine cient due to the
cross-sectional heteroskedasticity in the asset returns. The estimates of the
residual variances from (15.13) may be used as weights for weighted least
squares (feasible GLS) estimation:

bf GLS = (B
0 bD 1

OLSB)
1B0 bD 1

OLS(R 1) = 1 (15.14)

Given the time series of factor realizations, (bf1 GLS bf GLS), the covari-
ance matrix of the industry factors may be computed as the time series
sample covariance

b
GLS =

1

1

X
=1

(bf GLS fGLS)(bf GLS fGLS)
0 (15.15)

fGLS =
1 X

=1

bf GLS

The residual variances, var() = 2, can be re-estimated from the time
series of residuals from the cross-section GLS regressions as follows. Letb GLS, = 1 , denote the (× 1) vector of GLS residuals from the
industry factor model (15.9) and let b GLS denote the row of b GLS.
Then 2 may be estimated using

b2GLS =
1

1

X
=1

(b GLS GLS)
2 = 1 (15.16)

GLS =
1 X

=1

b GLS

The covariance matrix of the assets is then estimated byb
GLS = BbGLSB0 + bDGLS

where bDGLS is a diagonal matrix with b2GLS along the diagonal.
Remarks

1. Since B and bDOLS are time invariant, (B
0 bD 1

OLSB)
1
B0 bD 1

OLS only
needs to be computed once, and this greatly speeds up the computa-
tion of bf GLS (= 1)

586 15. Factor Models for Asset Returns

2. In principle, the GLS estimator may be iterated. Iteration does not
improve the asymptotic e ciency of the estimator, and it may per-
form better or worse than the non-iterated estimator.

3. Weighted robust regression techniques can be used to estimate f , and
a robust covariance matrix estimate of can be computed.

Factor Mimicking Portfolios

The GLS estimates of the factor realizations (15.14) are just linear combi-
nations of the observed returns in each industry. Further, these linear com-
binations sum to unity so that they can be interpreted as factor mimicking
portfolios. Notice that they are simply weighted averages of the returns in
each industry where the weights on each asset are based on the size of the
residual variance. The (×1) vector of weights for the th factor mimicking
portfolio is given by

w =H =
³
(B0 bD 1

OLSB)
1B0 bD 1

OLS

´
= 1

where H denotes the th row of H

Seemingly Unrelated Regression Formulation of Industry Factor Model

The industry factor model may be expressed as a seemingly unrelated re-
gression (SUR) model. The cross section regression models (15.9) can be
stacked to form the giant regression

R1

...
R

=

B 0 0

0
. . . 0

0 0 B

f1
...
f

+

1

...

The giant regression may be compactly expressed using Kronecker products
as

vec(R) = (I B)f +

[0] = I D

where vec(R) is a (× 1) vector of returns, f is a (× 1) vector of
factor realizations, and is a (×1) vector of errors. The GLS estimator
of f isbfGLS =

h
(I B)0(I D)

1
(I B)

i 1

(I B)0(I D)
1
R

=
£
I (B0D 1B) 1B0D 1

¤
R

or bf1 GLS
...bf GLS

=

(B0D 1B) 1B0D 1R1

...
(B0D 1B) 1B0D 1R

15.4 Fundamental Factor Model 587

which is just weighted least squares on each of the cross section regressions
(15.9). Hence, equation by equation GLS estimation of (15.9) is e cient.
Of course, the above GLS estimator is not feasible because it requires

knowledge of the firm specific variances inD. However, using the techniques
described above to estimate 2, feasible GLS estimation is possible.

Example 110 Estimating an industry factor model using S-PLUS

Consider creating a three industry factor model for the fifteen assets
taken from the S+FinMetrics “timeSeries” berndt.dat. The three in-
dustries are defined to be “technology”, “oil” and “other”. The 15 × 3
matrix B of industry factor loadings are created using

> n.stocks = numCols(returns)

> tech.dum = oil.dum = other.dum = matrix(0,n.stocks,1)

> tech.dum[c(4,5,9,13),] = 1

> oil.dum[c(3,6,10,11,14),] = 1

> other.dum = 1 - tech.dum - oil.dum

> B = cbind(tech.dum,oil.dum,other.dum)

> dimnames(B) = list(colIds(returns),c("TECH","OIL","OTHER"))

> B

integer matrix: 15 rows, 3 columns.

TECH OIL OTHER

CITCRP 0 0 1

CONED 0 0 1

CONTIL 0 1 0

DATGEN 1 0 0

DEC 1 0 0

DELTA 0 1 0

GENMIL 0 0 1

GERBER 0 0 1

IBM 1 0 0

MOBIL 0 1 0

PANAM 0 1 0

PSNH 0 0 1

TANDY 1 0 0

TEXACO 0 1 0

WEYER 0 0 1

The multivariate least squares estimates of the factor realizations are

> returns = t(returns)

> F.hat = solve(crossprod(B))%*%t(B)%*%returns

The multivariate GLS estimates are computed using

> E.hat = returns - B%*%F.hat

> diagD.hat = rowVars(E.hat)

588 15. Factor Models for Asset Returns

> Dinv.hat = diag(diagD.hat^(-1))

> H = solve(t(B)%*%Dinv.hat%*%B)%*%t(B)%*%Dinv.hat

> F.hat = H%*%returns

> F.hat = t(F.hat)

The rows of the matrix H contain the weights for the factor mimicking
portfolios:

> t(H)

numeric matrix: 15 rows, 3 columns.

TECH OIL OTHER

[1,] 0.0000 0.00000 0.19918

[2,] 0.0000 0.00000 0.22024

[3,] 0.0000 0.09611 0.00000

[4,] 0.2197 0.00000 0.00000

[5,] 0.3188 0.00000 0.00000

[6,] 0.0000 0.22326 0.00000

[7,] 0.0000 0.00000 0.22967

[8,] 0.0000 0.00000 0.12697

[9,] 0.2810 0.00000 0.00000

[10,] 0.0000 0.28645 0.00000

[11,] 0.0000 0.11857 0.00000

[12,] 0.0000 0.00000 0.06683

[13,] 0.1806 0.00000 0.00000

[14,] 0.0000 0.27561 0.00000

[15,] 0.0000 0.00000 0.15711

Notice that the weights sum to unity

> rowSums(H)

TECH OIL OTHER

1 1 1

The factor realizations are illustrated in Figure 15.3.
The industry factor model covariance and correlation matrices are com-

puted using

> cov.ind = B%*%var(F.hat)%*%t(B) + diag(diagD.hat)

> sd = sqrt(diag(cov.ind))

> cor.ind = cov.ind/outer(sd,sd)

> print(cor.ind,digits=1,width=2)

CITCRP CONED CONTIL DATGEN DEC DELTA GENMIL GERBER

CITCRP 1.0 0.4 0.10 0.2 0.2 0.1 0.3 0.2

CONED 0.4 1.0 0.14 0.2 0.3 0.2 0.4 0.3

CONTIL 0.1 0.1 1.00 0.1 0.1 0.2 0.1 0.1

DATGEN 0.2 0.2 0.12 1.0 0.3 0.2 0.2 0.1

DEC 0.2 0.3 0.14 0.3 1.0 0.2 0.2 0.2

DELTA 0.1 0.2 0.20 0.2 0.2 1.0 0.2 0.1

15.4 Fundamental Factor Model 589

0 20 40 60 80 100 120

-0
.2

-0
.1

0.
0

0.
1

0.
2

TECH
OIL
OTHER

FIGURE 15.3. Estimated industry factor realizations from Berndt data.

GENMIL 0.3 0.4 0.12 0.2 0.2 0.2 1.0 0.3

GERBER 0.2 0.3 0.10 0.1 0.2 0.1 0.3 1.0

IBM 0.2 0.3 0.18 0.4 0.5 0.3 0.3 0.2

MOBIL 0.2 0.2 0.22 0.2 0.2 0.3 0.2 0.2

PANAM 0.1 0.2 0.15 0.1 0.2 0.2 0.1 0.1

PSNH 0.2 0.3 0.08 0.1 0.1 0.1 0.2 0.2

TANDY 0.2 0.2 0.12 0.3 0.3 0.2 0.2 0.1

TEXACO 0.2 0.2 0.22 0.2 0.2 0.3 0.2 0.2

WEYER 0.3 0.3 0.10 0.2 0.2 0.1 0.3 0.2

The industry factor model global minimum variance portfolio is

> w.gmin.ind = solve(cov.ind)%*%rep(1,nrow(cov.ind))

> w.gmin.ind = w.gmin.ind/sum(w.gmin.ind)

> t(w.gmin.ind)

numeric matrix: 1 rows, 15 columns.

CITCRP CONED CONTIL DATGEN DEC DELTA GENMIL

[1,] 0.0905 0.2409 0.02232 0.006256 0.01039 0.05656 0.1416

GERBER IBM MOBIL PANAM PSNH TANDY

[1,] 0.07775 0.02931 0.07861 0.02972 0.04878 0.006455

TEXACO WEYER

[1,] 0.0794 0.08149

590 15. Factor Models for Asset Returns

15.5 Statistical Factor Models for Returns

In statistical factor models, the factor realizations f in (15.1) are not di-
rectly observable and must be extracted from the observable returns R
using statistical methods. The primary methods are factor analysis and
principal components analysis. Traditional factor analysis and principal
component analysis are usually applied to extract the factor realizations
if the number of time series observations, , is greater than the number
of assets, . If , then the sample covariance matrix of returns be-
comes singular which complicates traditional factor and principal compo-
nents analysis. In this case, the method of asymptotic principal component
analysis due to Connor and Korajczyk (1988) is more appropriate.
Traditional factor and principal component analysis is based on the (×
) sample covariance matrix5

b =
1
RR0

where R is the (×) matrix of observed returns. Asymptotic principal
component analysis is based on the (×) covariance matrix

b =
1
R0R

15.5.1 Factor Analysis

Traditional factor analysis assumes a time invariant orthogonal factor struc-
ture6

R
(×1)

= µ
(×1)

+ B
(×)

f
(×1)

+
(×1)

(15.17)

cov(f) = 0 for all

[f] = [] = 0

var(f) = I

var() = D

where D is a diagonal matrix with 2 along the diagonal. Then, the return
covariance matrix, , may be decomposed as

= BB0 +D

5The matrix of returns is assumed to be in deviations about the mean form. In some
applications, a mean correction is not used because the means are small.

6An excellent overview of factor analysis is given in Johnson and Wichern (1998).
Factor analysis using S-PLUS is described in the S-PLUS 6 Guide to Statistics Vol. 2,
chapter 21.

15.5 Statistical Factor Models for Returns 591

Hence, the common factors f account for all of the cross covariances of
asset returns.
For a given asset , the return variance variance may be expressed as

var() =
X
=1

2 + 2

The variance portion due to the common factors,
P

=1
2 , is called the

communality, and the variance portion due to specific factors, 2, is called
the uniqueness.
The orthogonal factor model (15.17) does not uniquely identify the com-

mon factors f and factor loadings B since for any orthogonal matrix H
such that H0=H 1

R = µ+BHH0f +
= +B f +

whereB = BH f = H0f and var(f) = I . Because the factors and factor
loadings are only identified up to an orthogonal transformation (rotation
of coordinates), the interpretation of the factors may not be apparent until
suitable rotation is chosen.

Estimation

Estimation using factor analysis consists of three steps:

• Estimation of the factor loading matrix B and the residual covariance
matrix D

• Construction of the factor realizations f

• Rotation of coordinate system to enhance interpretation

Traditional factor analysis provides maximum likelihood estimates of B
and D under the assumption that returns are jointly normally distributed
and temporally . Given estimates bB and bD, an empirical version of the
factor model (15.2) may be constructed as

R bµ = bBf + b (15.18)

where bµ is the sample mean vector of R . The error terms in (15.18) are
heteroskedastic so that OLS estimation is ine cient. Using (15.18), the
factor realizations in a given time period , f , can be estimated using the
cross-sectional generalized least squares (GLS) regression

bf = (bB0 bD 1 bB) 1 bB0 bD 1(R bµ) (15.19)

592 15. Factor Models for Asset Returns

Performing this regression for = 1 times gives the time series of
factor realizations (bf1 bf)
The factor model estimated covariance matrix is given by

b = bBbB0+bD
Remarks:

• Traditional factor analysis starts with a - consistent and asymp-
totically normal estimator of , usually the sample covariance matrixb , and makes inference on based on b . A likelihood ratio test is
often used to select under the assumption that is normally dis-
tributed (see below). However, when consistent estimation
of , an × matrix, is not a well defined problem. Hence, if
is large relative to , then traditional factor analysis may run into
problems. Additionally, typical algorithms for factor analysis are not
e cient for very large problems.

• Traditional factor analysis is only appropriate if is cross-sectionally
uncorrelated, serially uncorrelated, and serially homoskedastic.

Factor Mimicking Portfolios

From (15.19), we see that the estimated factor realizations bf are simply
linear combinations of the observed returns R . As such, it is possible to
normalize the linear combination so that the weights sum to unity. The
resulting re-scaled factors are the factor mimicking portfolios and are per-
fectly correlated with the factor realizations.

Tests for the Number of Factors

Using the maximum likelihood estimates of B and D based on a factor
model and the sample covariance matrix b , a likelihood ratio test (modified
for improved small sample performance) of the adequacy of factors is of
the form

LR() = (1
1

6
(2 + 5)

2

3
) ·
³
ln |b | ln |bBbB0+bD|´

LR() is asymptotically chi-square with 1
2

¡
()2

¢
degrees

of freedom.

Example 111 Estimating a statistical factor model by factor analysis us-
ing S-PLUS

Factor analysis in S-PLUS is performed using the function factanal,
which performs estimation of B and D using either the principal factor
method or the maximum likelihood method, and it takes as input either raw

15.5 Statistical Factor Models for Returns 593

data or an estimated covariance or correlation matrix. A robust version
of factor analysis can be computed if the inputted covariance matrix is a
robust covariance matrix (MCD, MVE or M-estimate). If the maximum
likelihood method is used, then the LR test for the adequacy of the
factor model is computed.
A factor model with = 2 factors for the fifteen returns from berndt.dat

computed using maximum likelihood method is

> factor.fit = factanal(returns,factors=2,method="mle")

> class(factor.fit)

[1] "factanal"

> factor.fit

Sums of squares of loadings:

Factor1 Factor2

3.319 2.471

The number of variables is 15 and the number of observations

is 120

Test of the hypothesis that 2 factors are sufficient

versus the alternative that more are required:

The chi square statistic is 118.25 on 76 degrees of freedom.

The p-value is 0.00138

Component names:

"loadings" "uniquenesses" "correlation" "criteria"

"factors" "dof" "method" "center" "scale" "n.obs" "scores"

"call"

Call:

factanal(x = returns, factors = 2, method = "mle")

The likelihood ratio test for determining the number of factors indicates
that two factors is not enough to adequately explain the sample return
covariance. A factor model with = 3 factor appears to be adequate

> factor.fit = factanal(returns,factors=3,method="mle")

> factor.fit

Sums of squares of loadings:

Factor1 Factor2 Factor3

3.137 1.765 1.719

594 15. Factor Models for Asset Returns

The number of variables is 15 and the number of observations

is 120

Test of the hypothesis that 3 factors are sufficient

versus the alternative that more are required:

The chi square statistic is 71.6 on 63 degrees of freedom.

The p-value is 0.214

...

A summary of the three factor model is

> summary(factor.fit)

Importance of factors:

Factor1 Factor2 Factor3

SS loadings 3.1370 1.7651 1.7185

Proportion Var 0.2091 0.1177 0.1146

Cumulative Var 0.2091 0.3268 0.4414

The degrees of freedom for the model is 63.

Uniquenesses:

CITCRP CONED CONTIL DATGEN DEC DELTA GENMIL GERBER

0.3125 0.8506 0.7052 0.4863 0.3794 0.6257 0.592 0.5175

IBM MOBIL PANAM PSNH TANDY TEXACO WEYER

0.6463 0.2161 0.7643 0.9628 0.5442 0.3584 0.4182

Loadings:

Factor1 Factor2 Factor3

CITCRP 0.518 0.217 0.610

CONED 0.116 0.356

CONTIL 0.173 0.195 0.476

DATGEN 0.668 0.206 0.160

DEC 0.749 0.236

DELTA 0.563 0.239

GENMIL 0.306 0.556

GERBER 0.346 0.600

IBM 0.515 0.224 0.197

MOBIL 0.257 0.847

PANAM 0.427 0.219

PSNH 0.115 0.133

TANDY 0.614 0.264

TEXACO 0.140 0.787

WEYER 0.694 0.200 0.247

15.5 Statistical Factor Models for Returns 595

DEC WEYER DATGEN TANDY DELTA CITCRP

0.
0

0.
4

Factor1

MOBIL TEXACO GERBER DEC IBM CITCRP

0.
0

0.
4

0.
8

Factor2

CITCRP GERBER GENMIL CONTIL CONED TANDY

0.
0

0.
2

0.
4

0.
6

Factor3

FIGURE 15.4. Estimated loadings from three factor model fit to Berndt data by
factor analysis.

The three factors explain about forty four percent of the total variance of
returns. The reported uniqueness for each asset is standardized such that
the sum of the uniqueness and the communality is unity. Therefore, assets
with uniqueness values close to zero are well explained by the factor model.
The factor loadings may be extracted using the generic loadings func-

tion. The extracted loadings have class “loadings” and may be visualized
with plot

> plot(loadings(factor.fit))

Figure 15.4 gives the resulting plot. The first factor appears to be market-
wide factor, and the second factor is concentrated on oil stocks. Since the
factors are only defined up to an orthogonal rotation, the factor may be
rotated to aid interpretation. The generic function rotate performs such
rotation. For example, to rotate the factor using the quartimax rotation
and view the rotated loadings use

> factor.fit2 = rotate(factor.fit,rotation="quartimax")

> loadings(factor.fit2)

Factor1 Factor2 Factor3

CITCRP 0.722 0.108 0.393

CONED 0.233 -0.153 0.268

CONTIL 0.351 0.113 0.398

596 15. Factor Models for Asset Returns

DATGEN 0.693 0.168

DEC 0.734 0.212 -0.193

DELTA 0.610

GENMIL 0.485 -0.164 0.382

GERBER 0.299 0.243 0.578

IBM 0.566 0.181

MOBIL 0.307 0.829

PANAM 0.472 -0.112

PSNH 0.150 -0.101

TANDY 0.673

TEXACO 0.205 0.767 0.103

WEYER 0.748 0.148

See the online help for rotate for a description of the supported rotation
methods.
The factor realizations (15.19) may be computed using the generic predict

function:

> factor.ret = predict(factor.fit,type="weighted.ls")

The estimated factor model correlation matrix may be extracted using

> fitted(factor.fit)

numeric matrix: 15 rows, 15 columns.

CITCRP CONED CONTIL DATGEN DEC DELTA

CITCRP 1.0000 0.25701 0.42245 0.48833 0.47656 0.43723

CONED 0.2570 1.00000 0.17131 0.11533 0.08655 0.15095

CONTIL 0.4224 0.17131 1.00000 0.23205 0.20474 0.21099

DATGEN 0.4883 0.11533 0.23205 1.00000 0.55841 0.41386

DEC 0.4766 0.08655 0.20474 0.55841 1.00000 0.43597

DELTA 0.4372 0.15095 0.21099 0.41386 0.43597 1.00000

GENMIL 0.4825 0.24043 0.30402 0.27919 0.24681 0.30570

GERBER 0.4693 0.18728 0.36267 0.20404 0.15936 0.17371

IBM 0.4354 0.10893 0.22663 0.42116 0.45030 0.33649

MOBIL 0.3278 -0.04399 0.21832 0.34861 0.39336 0.14722

PANAM 0.3396 0.13446 0.16438 0.30585 0.31682 0.29320

PSNH 0.1237 0.06825 0.06786 0.08206 0.07588 0.09689

TANDY 0.5000 0.15650 0.25080 0.47188 0.49859 0.40868

TEXACO 0.2712 -0.04208 0.19960 0.26285 0.29353 0.08824

WEYER 0.5531 0.14958 0.27646 0.54368 0.58181 0.44913

...

To obtain the estimated factor model covariance matrix, the estimated
loadings and uniqueness values must be re-scaled. One way to do this is

> S.hat = diag(factor.fit$scale)

> D.hat = S.hat%*%diag(factor.fit$uniqueness)%*%S.hat

> D.hat.inv = diag(1/diag(D.hat))

15.5 Statistical Factor Models for Returns 597

> B.hat = S.hat%*%loadings(factor.fit)

> cov.factor = B.hat%*%t(B.hat)+D.hat

> dimnames(cov.fa) = list(colIds(returns),colIds(returns))

The factor analysis global minimum variance portfolio is then

> w.gmin.fa = solve(cov.fa)%*%rep(1,nrow(cov.fa))

> w.gmin.fa = w.gmin.fa/sum(w.gmin.fa)

> t(w.gmin.fa)

numeric matrix: 1 rows, 15 columns.

CITCRP CONED CONTIL DATGEN DEC DELTA

[1,] -0.0791 0.3985 -0.02537 -0.04279 -0.002584 0.04107

GENMIL GERBER IBM MOBIL PANAM PSNH TANDY

[1,] 0.1889 0.01321 0.2171 0.1027 0.01757 0.07533 -0.03255

TEXACO WEYER

[1,] 0.1188 0.009147

15.5.2 Principal Components

Principal component analysis (PCA) is a dimension reduction technique
used to explain the majority of the information in the sample covariance
matrix of returns. With assets there are principal components, and
these principal components are just linear combinations of the returns. The
principal components are constructed and ordered so that the first principal
component explains the largest portion of the sample covariance matrix of
returns, the second principal component explains the next largest portion,
and so on. The principal components are constructed to be orthogonal
to each other and to be normalized to have unit length. In terms of a
multifactor model, the most important principal components are the
factor realizations. The factor loadings on these observed factors can then
be estimated using regression techniques.
Let b denote the sample covariance matrix of returns. The first sample

principal component is x 0
1 R where the (× 1) vector x1 solves

max
1

x01 bx1 s.t. x01x1 = 1
The solution x1 is the eigenvector associated with the largest eigenvalue ofb . The second principal component is x 0

2 R where the (× 1) vector x2
solves

max
2

x02 bx2 s.t. x02x2 = 1 and x 0
1 x2 = 0

The solution x2 is the eigenvector associated with the second largest eigen-

value of b . This process is repeated until principal components are
computed.

598 15. Factor Models for Asset Returns

The estimated factor realizations are simply the first principal com-
ponents b = x 0R = 1 (15.20)

The factor loadings for each asset, , and the residual variances, var() =
2 can be estimated via OLS7 from the time series regression

= + 0bf + = 1 (15.21)

giving b and b2 for = 1 . The factor model covariance matrix of
returns is then b = bBb bB0+bD (15.22)

where

bB = b0
1
...b0 bD =

b21 0 0

0
. . . 0

0 · · · b2
and

b =
1

1

X
=1

(bf f)(bf f)0

f =
1 X

=1

bf
Usually b = I because the principal components are orthonormal.

Factor Mimicking Portfolios

Since the principal components (factors) x are just linear combinations
of the returns, it is possible to construct portfolios that are perfectly cor-
related with the principal components by re-normalizing the weights in
the x vectors so that they sum to unity. Hence, the weights in the factor
mimicking portfolios have the form

w =

µ
1

10x

¶
· x = 1 (15.23)

where 1 is a (× 1) vector of ones.

7OLS estimation is e cient even though assets are contemporaneously correlated
because the time series regression for each asset has the same regressors.

15.5 Statistical Factor Models for Returns 599

Variance Decomposition

It can be shown that

X
=1

var() =
X
=1

var() =
X
=1

where are the ordered eigenvalues of var(R) = . Therefore, the ratio

P
=1

gives the proportion of the total variance
P

=1var() attributed to the
th principal component factor return, and the ratioP

=1P
=1

gives the cumulative variance explained. Examination of these ratios help in
determining the number of factors to use to explain the covariance structure
of returns.

Example 112 Estimating a statistical factor model by principal compo-
nents using S-PLUS

Principal component analysis in S-PLUS is performed using the function
princomp. The S+FinMetrics function mfactor simplifies the process of
estimating a statistical factor model for asset returns using principal com-
ponents. To illustrate, consider estimating a statistical factor model for the
assets in the S+FinMetrics “timeSeries” berndt.dat excluding market
portfolio and the thirty-day T-bill

> returns.ts = berndt.dat[,c(-10,-17)]

To estimate a statistical factor model with the default of one factor use

> pc.mfactor = mfactor(returns.ts)

> class(pc.mfactor)

[1] "mfactor"

The result of the function mfactor is an object of class “mfactor”, for
which there are print and plot methods and extractor functions factors,
loadings, residuals and vcov. The components of an “mfactor” object
are

> names(pc.mfactor)

[1] "factors" "loadings" "k"

[4] "alpha" "Omega" "r2"

[7] "eigen" "call" "sum.loadings"

600 15. Factor Models for Asset Returns

where factors contains the estimated factor returns (15.20), loadings

contains the asset specific factor loadings ˆ estimated from (15.21), alpha
contains the estimated intercepts from (15.21), r2 contains the regression
2 values from (15.21), k is the number of factors and eigen contains the

eigenvalues from the sample covariance matrix.
The print method gives a brief summary of the PCA fit

> pc.mfactor

Call:

mfactor(x = returns.ts)

Factor Model:

Factors Variables Periods

1 15 120

Factor Loadings:

Min. 1st Qu. Median Mean 3rd Qu. Max.

F.1 0.0444 0.139 0.25 0.231 0.308 0.417

Regression R-squared:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.032 0.223 0.329 0.344 0.516 0.604

Notice that all of the estimated loadings on the first factor are positive,
and the median 2 is around thirty percent. These results are very similar
to those found for the single index model. The factor loadings and factor
regression 2 values may be extracted using the functions loadings and
mfactor.r2

> loadings(pc.mfactor)

numeric matrix: 1 rows, 15 columns.

CITCRP CONED CONTIL DATGEN DEC DELTA GENMIL

F.1 0.2727 0.04441 0.3769 0.4172 0.3049 0.2502 0.1326

GERBER IBM MOBIL PANAM PSNH TANDY TEXACO

F.1 0.1672 0.1464 0.1552 0.3107 0.08407 0.4119 0.1323

WEYER

F.1 0.2649

> mfactor.r2(pc.mfactor)

CITCRP CONED CONTIL DATGEN DEC DELTA GENMIL GERBER

0.6041 0.1563 0.3285 0.5633 0.516 0.3665 0.2662 0.2181

IBM MOBIL PANAM PSNH TANDY TEXACO WEYER

0.3408 0.2277 0.2922 0.03241 0.5643 0.1635 0.5153

15.5 Statistical Factor Models for Returns 601

The factor returns (15.20) and the residuals from the regression (15.21) may
be extracted using the functions factors and residuals, respectively.
The function vcov extracts the PCA covariance matrix (15.22). The

corresponding correlation matrix may computed using

> cov.pca = vcov(pc.mfactor)

> sd = sqrt(diag(cov.pca))

> cor.pca = cov.pca/outer(sd,sd)

> print(cor.pca,digits=1,width=2)

CITCRP CONED CONTIL DATGEN DEC DELTA GENMIL GERBER

CITCRP 1.0 0.16 0.4 0.6 0.5 0.5 0.36 0.34

CONED 0.2 1.00 0.1 0.2 0.1 0.1 0.09 0.09

CONTIL 0.4 0.12 1.0 0.4 0.4 0.3 0.27 0.25

DATGEN 0.6 0.15 0.4 1.0 0.5 0.4 0.35 0.33

DEC 0.5 0.14 0.4 0.5 1.0 0.4 0.33 0.31

DELTA 0.5 0.12 0.3 0.4 0.4 1.0 0.28 0.26

GENMIL 0.4 0.09 0.3 0.3 0.3 0.3 1.00 0.20

GERBER 0.3 0.09 0.2 0.3 0.3 0.3 0.20 1.00

IBM 0.4 0.11 0.3 0.4 0.4 0.3 0.26 0.25

MOBIL 0.3 0.09 0.3 0.3 0.3 0.3 0.21 0.19

PANAM 0.4 0.11 0.3 0.4 0.4 0.3 0.25 0.23

PSNH 0.1 0.04 0.1 0.1 0.1 0.1 0.08 0.08

TANDY 0.6 0.15 0.4 0.6 0.5 0.4 0.34 0.32

TEXACO 0.3 0.08 0.2 0.3 0.3 0.2 0.18 0.16

WEYER 0.5 0.14 0.4 0.5 0.5 0.4 0.33 0.31

The PCA global minimum variance portfolio is

> w.gmin.pca = solve(cov.pca)%*%rep(1,nrow(cov.pca))

> w.gmin.pca = w.gmin.pca/sum(w.gmin.pca)

> t(w.gmin.pca)

numeric matrix: 1 rows, 15 columns.

CITCRP CONED CONTIL DATGEN DEC DELTA GENMIL

[1,] 0.02236 0.3675 -0.021 -0.06549 -0.01173 0.0239 0.1722

GERBER IBM MOBIL PANAM PSNH TANDY

[1,] 0.07121 0.2202 0.09399 -0.006415 0.06427 -0.06079

TEXACO WEYER

[1,] 0.105 0.02472

The plot method allows a graphical investigation of the PCA fit

> plot(pc.mfactor)

Make a plot selection (or 0 to exit):

602 15. Factor Models for Asset Returns

F.1 F.2 F.3 F.4 F.5 F.6 F.7 F.8 F.9

0.
0

0.
01

0.
02

0.
03

0.
04

0.
05

Screeplot
Va

ria
nc

es
0.354

0.489

0.598

0.672
0.737 0.792

0.837 0.878 0.909

FIGURE 15.5. Screeplot of eigenvalues from PCA of Berndt returns.

1: plot: All

2: plot: Screeplot of Eigenvalues

3: plot: Factor Returns

Selection:

The Screeplot of Eigenvalues is illustrated in Figure 15.5. The first prin-
cipal component explains about thirty five percent of the total variance,
and the first two components explain about half of the total variance. It
appears that two or three factors may be su cient to explain most of the
variability of the assets. The screeplot may also be computed directly using
the S+FinMetrics function screeplot.mfactor.
The PCA factor model is re-estimated using two factors with

> pc2.mfactor = mfactor(returns.ts,k=2)

> pc2.mfactor

Call:

mfactor(x = returns.ts, k = 2)

Factor Model:

Factors Variables Periods

2 15 120

Factor Loadings:

15.5 Statistical Factor Models for Returns 603

-0
.5

0.
0

0.
5

F.1

-0
.5

0.
0

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988

F.2

Factor Returns

FIGURE 15.6. Estimated factors from PCA of Berndt data.

Min. 1st Qu. Median Mean 3rd Qu. Max.

F.1 0.0444 0.1395 0.2502 0.23143 0.308 0.417

F.2 -0.8236 -0.0671 0.0124 -0.00245 0.142 0.365

Regression R-squared:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.033 0.253 0.435 0.419 0.577 0.925

The first factor is the same as before and has all positive loadings. The
second factor has both positive and negative loadings. The median regres-
sion 2 has increased to about forty four percent. The factor returns are
illustrated in Figure 15.6, created by selecting option 3 from the plot menu.
The factor return plot may also be computed directly by first extracting

the factors and then using the S+FinMetrics function fplot:

> fplot(factors(pc2.mfactor))

The factor loadings are shown in Figure 15.7, created by

> pc2.betas = loadings(pc2.mfactor)

> par(mfrow=c(1,2))

> barplot(pc2.betas[1,],names=colIds(pc2.betas),horiz=T,

+ main="Beta values for first PCA factor")

> barplot(pc2.betas[2,],names=colIds(pc2.betas),horiz=T,

+ main="Beta values for second PCA factor")

604 15. Factor Models for Asset Returns

CITCRP

CONED

CONTIL

DATGEN

DEC

DELTA

GENMIL

GERBER

IBM

MOBIL

PANAM

PSNH

TANDY

TEXACO

WEYER

0.0 0.1 0.2 0.3 0.4

Beta values for first PCA factor

CITCRP

CONED

CONTIL

DATGEN

DEC

DELTA

GENMIL

GERBER

IBM

MOBIL

PANAM

PSNH

TANDY

TEXACO

WEYER

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4

Beta values for second PCA factor

FIGURE 15.7. Estimated loadings on PCA factors for Berndt data.

The factor mimicking portfolios (15.23) may be computed using the
S+FinMetrics function mimic

> pc2.mimic = mimic(pc2.mfactor)

> class(pc2.mimic)

[1] "mimic"

> pc2.mimic

F.1 F.2

CITCRP 0.07856 2.3217

CONED 0.01279 -0.0324

...

WEYER 0.07630 -3.5637

attr(, "class"):

[1] "mimic"

These weights in these portfolios may be summarized using

> pc2.mimic.sum = summary(pc2.mimic,n.top=3)

> pc2.mimic.sum

Factor 1

Top.Long.Name Top.Long.Weight Top.Short.Name Top.Short.Weight

1 DATGEN 12% CONED 1.3%

2 TANDY 12% PSNH 2.4%

15.5 Statistical Factor Models for Returns 605

DATGEN

TANDY

CONTIL

TEXACO

PSNH

CONED

0 2 4 6 8 10 12

Top Positions in Factor 1 (Percentages)

CONTIL

GERBER

CITCRP

DELTA

TANDY

PANAM

-1000 -500 0 500 1000 1500 2000

Top Positions in Factor 2 (Percentages)

FIGURE 15.8. Weights in factor mimicking portfolios from PCA fit to Berndt
data.

3 CONTIL 11% TEXACO 3.8%

Factor 2

Top.Long.Name Top.Long.Weight Top.Short.Name Top.Short.Weight

1 CONTIL 2200% PANAM -990%

2 GERBER 540% TANDY -560%

3 CITCRP 230% DELTA -490%

The optional argument n.top=3 specifies that the three assets with the
largest and smallest weights in each factor mimicking portfolio are dis-
played. For the first factor, the assets DATGEN, TANDY and CONTIL have the
highest weights and the assets CONED, PSNH and TEXACO have the lowest
weights. Examination of the weights helps to interpret the factor mim-
icking portfolio. For the first portfolio, the weights are all positive (long
positions in all assets) and are roughly equal suggesting the interpretation
of a market-wide factor. The second factor has both positive and negative
weights (long and short positions in the assets), and it is not clear how to
interpret the weights. The weights may also be examined graphically using

> par(mfrow=c(1,2))

> plot(pc2.mimic.sum)

which produces the plot in Figure 15.8.

606 15. Factor Models for Asset Returns

15.5.3 Asymptotic Principal Components

Asymptotic principal component analysis (APCA), proposed and developed
in Conner and Korajczyk (1986) and based on the analysis in Chamberlain
and Rothschild (1983), is similar to traditional PCA except that it relies
on asymptotic results as the number of cross-sections (assets) grows

large. APCA is based on eigenvector analysis of the × matrix b .
Conner and Korajczyk proved that as grows large, eigenvector analysis
of b is asymptotically equivalent to traditional factor analysis. That is,
the APCA estimates of the factors f are the first eigenvectors of b .
Specifically, let bF denote the orthornormal × matrix consisting of the
first eigenvectors of b . Then bf is the column of bF.
The main advantages of the APCA approach are:

• It works in situations where the number of assets, , is much greater
than the number of time periods, . Eigenvectors of the smaller ×
matrix b only need to be computed, whereas with traditional

principal component analysis eigenvalues of the larger × matrixb need to be computed.

• The method allows for an approximate factor structure of returns.
In an approximate factor structure, the asset specific error terms
are allowed to be contemporaneously correlated, but this correlation
is not allowed to be too large across the cross section of returns.
Allowing an approximate factor structure guards against picking up
local factors, e.g. industry factors, as global common factors.

Refinement

Connor and Korajczyk (1988) o ered a refinement of the APCA procedure
that may improve the e ciency of the procedure.

1. Estimate the factors f (= 1) by computing the first eigen-

values of b .

2. For each asset, estimate the time series regression (factor model) by
OLS

= + 0bf + = 1

and compute the residual variances b2. Use these variance estimates
to compute the residual covariance matrix

bD =

b21 0 0

0
. . . 0

0 · · · b2

15.5 Statistical Factor Models for Returns 607

3. Form the × matrix of re-scaled returns

R =bD 1 2R

and recompute the × covariance matrix

b =
1
R 0R

4. Re-estimate the factors f by computing the first eigenvalues ofb .

Example 113 Estimation of a statistical factor model by asymptotic prin-
cipal component analysis using S-PLUS

The S+FinMetrics function mfactor estimates a statistical factor model
by asymptotic principal components whenever the number of assets, , is
greater than the number of time periods, . To illustrate, consider fitting a
statistical factor model using the S+FinMetrics “timeSeries” folio.dat,
which contains weekly data on 1618 stocks over the period January 8, 1997
to June 28, 2000. For this data, = 1618 and = 182. To compute the
APCA fit with = 15 factors use

> folio.mf = mfactor(folio.dat,k=15)

> folio.mf

Call:

mfactor(x = folio.dat, k = 15)

Factor Model:

Factors Variables Periods

15 1618 182

Factor Loadings:

Min. 1st Qu. Median Mean 3rd Qu. Max.

F.1 -0.977 -0.4261 -0.314658 -0.33377 -0.2168 0.160

F.2 -0.420 -0.1041 -0.014446 0.06519 0.1628 1.110

F.3 -0.463 -0.0784 -0.011839 -0.00311 0.0392 0.998

F.4 -0.556 -0.0588 0.004821 0.00866 0.0771 0.495

F.5 -1.621 -0.0622 0.015520 0.01373 0.0858 0.467

F.6 -0.835 -0.0635 -0.001544 0.00307 0.0665 0.468

F.7 -0.758 -0.0633 -0.006376 -0.01183 0.0509 2.090

F.8 -0.831 -0.0685 -0.012736 -0.01413 0.0479 0.517

F.9 -0.464 -0.0466 0.006447 0.01200 0.0640 1.095

F.10 -0.640 -0.0659 -0.008760 -0.01050 0.0482 0.687

F.11 -1.515 -0.0540 -0.001114 -0.00457 0.0539 0.371

F.12 -1.682 -0.0637 -0.005902 -0.01068 0.0451 0.515

608 15. Factor Models for Asset Returns

F.1 F.2 F.3 F.4 F.5 F.6 F.7 F.8 F.9 F.10 F.11 F.12 F.13 F.14 F.15

0
10

20
30

40

Screeplot
Va

ria
nc

es
0.167

0.224

0.256

0.2750.2940.3090.3220.3340.3460.3570.3680.3780.3880.3970.406

FIGURE 15.9. Screeplot of eigenvalues from APCA fit to 1618 assets.

F.13 -0.462 -0.0480 0.001901 0.00164 0.0516 0.685

F.14 -0.912 -0.0523 -0.001072 -0.00443 0.0472 0.436

F.15 -0.681 -0.0505 -0.000977 -0.00366 0.0473 0.548

Regression R-squared:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.066 0.265 0.354 0.372 0.459 0.944

By default, the APCA fit uses the Connor-Korajczyk refinement. To com-
pute the APCA fit without the refinement, set the optional argument
refine=F in the call to mfactor. The factor loadings appear to be rea-
sonably scaled and skewed toward negative values. The loadings for the
first factor appear to be almost all negative. Multiplying the first factor
by negative one would make it more interpretable. The median regression
2 is about thirty five percent, which is a bit higher than what one would

expect from the single index model.
Figures 15.9 and 15.10 show the screeplot of eigenvalues and factor re-

turns for the APCA fit, computed using

> screeplot.mfactor(folio.mf)

> fplot(factors(folio.mf)

15.5 Statistical Factor Models for Returns 609

0
F.1

-0
.2

0.
0

0.
2

1997 1998 1999 2000

F.2

0.
0

0.
2

F.3

0

1997 1998 1999 2000

F.4
0

F.5

0

F.6

0

F.7

0

F.8

0

F.9

0.
0

0.
2

F.10

0.
0

0.
2

F.11

-0
.2

0.
0

0.
2

F.12

0

1997 1998 1999 2000

F.13

0

F.14

0

1997 1998 1999 2000

F.15

Factor Returns

FIGURE 15.10. Estimated factors returns from APCA fit to 1618 assets.

The first two factors clearly have the largest explanatory power, and the
fifteen factors together explain roughly forty one percent of the total vari-
ance.
The factor mimicking portfolios are computed using

> folio.m = mimic(folio.mf)

which is an object of class “mimic” of dimension 1618 × 15. It is di cult
to concisely summarize the factor mimicking portfolios when the number
of assets is large. This is why the summary method for “mimic” objects has
an option for displaying only the largest and smallest n.top weights for
each factor mimicking portfolio. To view the top five largest and smallest
weights for the fifteen factors use

> folio.ms = summary(folio.m,n.top=5)

> folio.ms

Factor 1

Top.Long.Name Top.Long.Weight Top.Short.Name Top.Short.Weight

1 OWC 0.23% BBY -0.15%

2 FNV 0.22% SCON -0.14%

3 MT 0.22% PUMA -0.12%

4 BAC 0.21% THDO -0.11%

5 CACC 0.21% AVTC -0.11%

610 15. Factor Models for Asset Returns

...

Factor 15

Top.Long.Name Top.Long.Weight Top.Short.Name Top.Short.Weight

1 ALXN 79% SCTC -85%

2 AVID 59% MCLL -82%

3 LTXX 53% WLNK -65%

4 IDX 52% LRCX -63%

5 SEAC 51% TSCC -63%

The summary information may be visualized using the generic plot func-
tion

> plot(folio.ms)

which generates a fifteen page graph sheet, with one page for each factor.
The correlations of the assets giving the largest and smallest weights

for a given factor may be visualized using an image plot. To do this, first
compute the correlation matrix for all of the assets

> folio.cov = vcov(folio.mf)

> sd = sqrt(diag(folio.cov))

> folio.cor = folio.cov/outer(sd,sd)

Extract the names of the assets in the summary for the first factor

> top.names = c(as.character(folio.m[[1]][,1]),

+ rev(as.character(folio.ms[[1]][,3])))

and call the S+FinMetrics function image.plot

> image.plot(folio.cor[top.names, top.names],

+ sub="Risk factor 1", main="Correlations of top positions")

The resulting plot is shown in Figure 15.11.

15.5.4 Determining the Number of Factors

The statistical methods described above are based on knowing the number
of common factors. In practice, the number of factors is unknown and
must be determined from the data. If traditional factor analysis is used,
then there is a likelihood ratio test for the number of factors. However,
this test will not work if . Connor and Korajczyk (1993) described a
procedure for determining the number of factors in an approximate factor
model that is valid for and Connor (1995) applied this method to
a variety of factor models. Recently Bai and Ng (2002) have proposed an
alternative method.

15.5 Statistical Factor Models for Returns 611

Correlations of top positions

Risk factor 1

O
W

C

FN
V

M
T

BA
C

C
AC

C

A V
TC

TH
D

O

PU
M

A

SC
O

N

BB
Y

OWC

FNV

MT

BAC

CACC

AVTC

THDO

PUMA

SCON

BBY

FIGURE 15.11. Image plot correlations between assets with top five largest and
smallest weights in first factor mimicking portfolio.

Connor and Korajczyk Method

The intuition behind this method is that if is the correct number of
common factors then there should be no significant decrease in the cross-
sectional variance of the asset specific error, , in moving from to +1
factors. The procedure is implemented as follows:

1. Given observed returns on asset and a time series of + 1 factors,
estimate the time series regression models

= + 0bf +
= + 0bf + +1 +1 +

giving residuals b and b
2. Calculate degrees-of-freedom adjusted squared residuals

b =
b2

1 (+ 1)

b =
b 2

1 (+ 3) (+ 1)

612 15. Factor Models for Asset Returns

3. Calculate the cross-sectional di erence in squared errors based on odd
and even time periods

b = b2 1 b2 = 1 2

b =
1 X

=1

b
b =

1 X
=1

b
and compute the 2 ×1 vector of di erences

b = ³b 1 b 2 b
2

´0
4. Compute the time series sample mean and variance of the di erences

=
2

2X
=1

b
b2 =

2

2

2X
=1

³b ´2
5. Compute the -statistic

= b
and use it to test for a positive mean value.

Bai and Ng Method

Bai and Ng (2002) proposed some panel (Mallows-type) information
criteria for choosing the number of factors. Their criteria are based on the
observation that eigenvector analysis on b or b solves the least squares
problem

min
f
() 1

X
=1

X
=1

(0f)2

Bai and Ng’s model selection or information criteria are of the form

IC() = b2() + · ()

where

b2() =
1 X

=1

b2

15.5 Statistical Factor Models for Returns 613

is the cross-sectional average of the estimated residual variances for each
asset based on a model with factors and () is a penalty function
depending only on and . The preferred model is the one which mini-
mizes the information criteria () over all values of max Bai and
Ng consider several penalty functions and the preferred criteria are

PC 1() = b2() + · b2(max)

µ
+

¶
· ln
µ

+

¶
PC 2() = b2() + · b2(max)

µ
+

¶
· ln
¡

2
¢

where = min().
The implementation of the Bai and Ng strategy for determining the

number of factors is a follows. First, select a number max indicating the
maximum number of factors to be considered. Then for each value of

max, do the following:

1. Extract realized factors bf using the method of APCA.
2. For each asset , estimate the factor model

= + 0bf +

where the superscript indicates that the regression has factors,
using time series regression and compute the residual variances

b2() =
1

1

X
=1

b2
3. Compute the cross-sectional average of the estimated residual vari-
ances for each asset based on a model with factors

b2() =
1 X

=1

b2()

4. Compute the cross-sectional average of the estimated residual vari-
ances for each asset based on a model with max factors, b2(max).

5. Compute the information criteria PC 1() and PC 2()

6. Select the value of that minimized either PC 1() or PC 2()

Bai and Ng performed an extensive simulation study and found that the
selection criteria PC 1 and PC 2 yield high precision when min() 40

Example 114 Determining the number of factors for a statistical factor
model estimated by asymptotic principal components

614 15. Factor Models for Asset Returns

To determine the number of factors in the “timeSeries” folio.dat
using the Connor-Korajczyk method with a maximum number of factors
equal to ten and a significance level equal to five percent use8

> folio.mf.ck = mfactor(folio.dat,k="ck",max.k=10,sig=0.05)

> folio.mf.ck

Call:

mfactor(x = folio.dat, k = "ck", max.k = 10, sig = 0.05)

Factor Model:

Factors Variables Periods

2 1618 182

Factor Loadings:

Min. 1st Qu. Median Mean 3rd Qu. Max.

F.1 -0.177 0.2181 0.31721 0.3317 0.419 0.95

F.2 -0.411 -0.0958 -0.00531 0.0777 0.181 1.12

Regression R-squared:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000 0.124 0.188 0.206 0.268 0.837

Two factors are selected by the Connor-Korajczyk method. Notice that
most of the loadings on the first factor are positive.
Similarly, to determine the number of factors using the Bai-Ng method

use

> folio.mf.bn = mfactor(folio.dat,k="bn",max.k=10,sig=0.05)

> folio.mf.bn$k

[1] 2

Again, two factors are determined.

15.6 References

Alexander, C. (2001). Market Models: A Guide to Financial Data Anal-
ysis, John Wiley & Sons, Chichester, UK.

Bai, J. and Ng, S., (2002). “Determining the Number of Factors in Ap-
proximate Factor Models,” Econometrica, 70, 191-221.

8For a data set with a large number of assets, the Connor-Korajczyk and Bai-Ng
methods may take a while.

15.6 References 615

Chamberlain, G. and Rothschild, M. (1983). “Arbitrage, Factor Struc-
ture and Mean-Variance Analysis in Large Asset Markets,” Econometrica,
51, 1305-1324.

Chan, L.K., Karceski, J. and Lakonishok, J. (1998). ”The Risk and
Return from Factors,” Journal of Financial and Quantitative Analysis,
33(2), 159-188.

Chan, L.K., Karceski, J. and Lakonishok, J. (1999). “On Portfo-
lio Optimization: Forecasting Covariances and Choosing the Risk Model,”
Review of Financial Studies, 5, 937-974.

Chen, N.F., Roll, R., and Ross, S.A. (1986). “Economic Forces and
the Stock Market,” The Journal of Business, 59(3), 383-404.

Campbell, J.Y., Lo, A.W., and MacKinlay, A.C. (1997). The Econo-
metrics of Financial Markets. Princeton University Press, Princeton, NJ.

Connor, G. (1995). “The Three Types of Factor Models: A Comparison
of Their Explanatory Power,” Financial Analysts Journal, 42-46.

Connor, G., and Korajczyk, R.A. (1986). “Performance Measurement
with the Arbitrage Pricing Theory: A New Framework for Analysis,” Jour-
nal of Financial Economics, 15, 373-394.

Connor, G., and Korajczyk, R.A. (1988). “Risk and Return in an
Equilibrium APT: Application of a New Test Methodology,” Journal of
Financial Economics, 21, 255-289.

Connor, G. and Korajczyk, R.A. (1993). “A Test for the Number of
Factors in an Approximate Factor Model,” The Journal of Finance, vol.
48(4), 1263-92.

Elton, E. and M.J. Gruber (1997). Modern Portfolio Theory and In-
vestment Analysis, 5th Edition. John Wiley & Sons, New York.

Fama, E. and K.R. French (1992). “The Cross-Section of Expected
Stock Returns”, Journal of Finance, 47, 427-465.

Grinold, R.C. and Kahn, R.N. (2000). Active Portfolio Management:
A Quantitative Approach for Producing Superior Returns and Controlling
Risk, Second Edition. McGraw-Hill, New York.

Johnson andWichern (1998).Multivariate Statistical Analysis. Prentice-
Hall, Englewood Cli s, New Jersey.

616 15. Factor Models for Asset Returns

Sharpe, W.F. (1970). Portfolio Theory and Capital Markets. McGraw-
Hill, New York.

Sheikh, A. (1995). “BARRA’s Risk Models,” mimeo, BARRA.

16
Term Structure of Interest Rates

16.1 Introduction

In financial markets, the term structure of interest rates is crucial to pric-
ing of fixed income securities and derivatives. The last thirty years have
seen great advances in the financial economics of term structure of interest
rates. This chapter will focus on interpolating the term structure of inter-
est rates from discrete bond yields. Refer to Campbell, Lo, and MacKinlay
(1997) for basic concepts in fixed income calculations and Hull (1997) for
an introduction to theoretical term structure modeling.
Section 16.2 first defines di erent rates, such as spot or zero coupon

interest rate, forward rate, and discount rate, and documents how one rate
can be converted to another. Section 16.3 shows how to interpolate term
structure data using quadratic or cubic spline. Section 16.4 illustrates how
to use smoothing splines to fit term structure data. Section 16.5 introduces
the parametric Nelson-Siegel function and its extension and shows how it
can be used to interpolate term structure data. Bliss (1997) and Ferguson
and Raymar (1998) compared the performance of these di erent methods.
Section 16.6 concludes this chapter.

618 16. Term Structure of Interest Rates

16.2 Discount, Spot and Forward Rates

16.2.1 Definitions and Rate Conversion

Although many theoretical models in financial economics hinge on an ab-
stract interest rate, in reality there are many di erent interest rates. For
example, the rates of a three month U.S. Treasury bill are di erent from
those of a six month U.S. Treasury bill. The relationship between these dif-
ferent rates of di erent maturity is known as the term structure of interest
rates. The term structure of interest rates can be described in terms of spot
rate, discount rate or forward rate.
The discount function, (), gives the present value of $1.00 which is

repaid in years. The corresponding yield to maturity of the investment,
(), or spot interest rate, or zero coupon rate, must satisfy the following
equation under continuous compounding:

() ()· = 1

or

() = ()· (16.1)

Obviously, the discount function is an exponentially decaying function of
the maturity, and must satisfy the constraint (0) = 1.
The above equation easily shows that under continuous compounding

() =
log ()

If discrete compounding is used instead, one can similarly show that

() = [()
1· 1]

where is the number of compounding periods in a year.
The spot interest rate is the single rate of return applied over the ma-

turity of years starting from today. It is also useful to think of it as
the average of a series of future spot interest rates, or forward rates, with
di erent maturities starting from a point in the future, and thus:

()· =
R
0

()

from which one can easily obtain:

() =
1
Z
0

() (16.2)

with () denoting the forward rate curve as a function of the maturity
.

16.2 Discount, Spot and Forward Rates 619

Maturity

R
at

e

0 5 10 15 20 25 30

0.
07

6
0.

08
0

0.
08

4

Yield Curve: 1/1990

Maturity

R
at

e

0 5 10 15 20 25 30

0.
06

5
0.

07
5

0.
08

5

Forward Rate Curve: 1/1990

FIGURE 16.1. Yield curve and forward rate curve for January 1990.

From (16.1) and (16.2), the relationship between the discount function
and forward rate can be derived:

() = exp{
Z
0

() }

or

() =
0()

()

Hence the forward rate gives the rate of decay of the discount function as a
function of the maturity . The relationship between these di erent rates
under discrete compounding can be similarly obtained.

16.2.2 Rate Conversion in S+FinMetrics

To facilitate the interpolation of term structure from any of discount rate,
spot rate, or forward rate, S+FinMetrics provides a group of functions for
converting one rate into another rate. These functions will be illustrated us-
ing the mk.zero2 and mk.fwd2 data sets in S+FinMetrics, which contains
the U.S. zero coupon rates and forward rates, respectively, as computed by
McCulloch and Kwon (1993).
Both mk.zero2 and mk.fwd2 are “timeSeries” objects with 55 columns,

with each column representing the rate with the corresponding maturity

620 16. Term Structure of Interest Rates

in the 55 × 1 vector mk.maturity. For example, the first element of the
vector mk.maturity is 0 083, so the first columns of mk.zero2 and mk.fwd2
correspond to the rates with maturity of one month. Use the following code
to plot the yield curve and forward rate curve for January 1990, and the
graph is shown in Figure 16.1:

> par(mfrow=c(2,1))

> plot(mk.maturity,mk.zero2[54,],xlab="Maturity",ylab="Rate")

> title(paste("Yield Curve:", positions(mk.zero2[54,])))

> plot(mk.maturity,mk.fwd2[54,],xlab="Maturity",ylab="Rate")

> title(paste("Forward Rate Curve:",positions(mk.fwd2[54,])))

> par(mfrow=c(1,1))

To convert the spot interest rate or forward rate into the discount rate,
use the S+FinMetrics function bond.discount. For example, to convert
the first 48 spot rates in Figure 16.1 to discount rates, use the following
command:

> disc.rate = bond.discount(mk.zero2[54, 1:48],

+ mk.maturity[1:48], input="spot", compounding=2)

The bond.discount function takes two required arguments: the first is
a vector of rates, and the second is a vector of the corresponding maturity.
Note that the optional argument input is used to specify the type of the in-
put rates, and compounding to specify the number of compounding periods
in each year. So compounding=2 corresponds to semi-annual compounding.1

If the input rates are forward rates, simply set input="forward".
The functions bond.spot and bond.forward can be called in a similar

fashion to compute the spot interest rate and forward rate, respectively,
from di erent input rates. For all those three functions, the rates should
be expressed as decimal numbers, and the maturity should be expressed in
units of years. For example, to convert disc.rate back into the spot rates,
use the following command:

> spot.rate = bond.spot(disc.rate, mk.maturity[1:48],

+ input="discount", compounding=2)

It can be easily checked that spot.rate is the same as mk.zero2[54,
1:48].

16.3 Quadratic and Cubic Spline Interpolation

The interest rates are observed with discrete maturities. In fixed income
analysis, the rate for a maturity which is not observed can sometimes be

1To use continuous compounding, specify compounding=0.

16.3 Quadratic and Cubic Spline Interpolation 621

used. Those unobserved rates can usually be obtained by interpolating the
observed term structure.
Since the discount rate should be a monotonically decreasing function of

maturity and the price of bonds can be expressed as a linear combination
of discount rates, McCulloch (1971, 1975) suggested that a spline method
could be used to interpolate the discount function, or the bond prices di-
rectly. In particular, use continuously di erentiable functions () to
approximate the discount rates:

() = 0 +
X
=1

() (16.3)

where () are known functions of maturity , and are the unknown
coe cients to be determined from the data. Since the discount rate must
satisfy the constraint (0) = 1, set 0 = 1 and (0) = 0 for = 1 · · · .
Note that once the functional form of () is determined, the coe cients
can be easily estimated by linear regression. Thus the discount rate, or

forward rate, or spot rate, associated with an unobserved maturity can be
easily interpolated using the above functional form, as long as the maturity
is smaller than the largest maturity used in the estimation.
Figure 16.1 shows that there are usually more points in the short end of

the term structure, and less points in the long end of the term structure.
To obtain a reliable interpolation using the spline method, the functional
form of () should be chosen so that it adapts to the density of matu-
rity . McCulloch (1971) gave a functional form of () using quadratic
spline, which is based on piecewise quadratic polynomials, while McCulloch
(1975) gave a functional form of () using cubic spline, which is based
on piecewise cubic polynomials.
Term structure interpolation using quadratic or cubic spline methods can

be performed by calling the term.struct function in S+FinMetrics. The
arguments taken by term.struct are:

> args(term.struct)

function(rate, maturity, method = "cubic", input.type = "spot",

na.rm = F, plot = T, compounding.frequency = 0,

k = NULL, cv = F, penalty = 2, spar = 0, ...)

NULL

Similar to bond.spot, bond.discount and bond.forward functions, the
first argument rate should be a vector of interest rates, while the sec-
ond argument maturity specifies the corresponding maturity in units of
years. The type of the input interest rate should be specified through the
optional argument input.type. Note that the quadratic or cubic spline
methods operate on discount rates. If the input interest rates are not dis-
count rates, the optional argument compounding.frequency should also be
set for proper conversion, which is set to zero for continuous compounding

622 16. Term Structure of Interest Rates

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30

Term Structure

Maturity

R
at

e

Discount Function

FIGURE 16.2. U.S. discount function for January 1990: quadratic spline.

by default. The optional argument k determines the number of functions
in (16.3), also known as knot points. By default, follow McCulloch (1971,
1975) and set = [] where is the length of the input rates. Other
optional arguments will be discussed in later sections.
To illustrate the usage of the spline methods, in order to interpolate the

term structure corresponding to January 1990, using mk.zero2, use the
following command:

> disc.rate = term.struct(mk.zero2[54,], mk.maturity,

+ method="quadratic", input="spot", na.rm=T)

Note that na.rm=T is set to remove the missing values at the long end
of the term structure. By default, the interpolated discount rate is plot-
ted automatically, which is shown in Figure 16.2. The points in the figure
represent the original discount rates, while the line represents the spline
interpolation.
The returned object disc.rate is of class “term.struct”. As usual, typ-

ing the name of the object at the command line invokes its print method:

> class(disc.rate)

[1] "term.struct"

> disc.rate

Call:

16.3 Quadratic and Cubic Spline Interpolation 623

Yield Curve

Maturity

R
at

e

0 5 10 15 20 25 30

0.
07

6
0.

07
8

0.
08

0
0.

08
2

0.
08

4
0.

08
6

FIGURE 16.3. U.S. yield curve for January 1990: quadratic spline.

term.struct(rate = mk.zero2[54,], maturity = mk.maturity,

method = "quadratic", input.type = "spot", na.rm = T)

Coefficients:

a1 a2 a3 a4 a5 a6

-0.0761 -0.0791 -0.0688 -0.0373 -0.0146 -0.0045

Degrees of freedom: 48 total; 42 residual

Residual standard error: 0.001067688

Since the unknown coe cients of the spline are estimated by linear
regression, the output looks very much similar to linear regression output.
Since there are 48 spot rates available for January 1990, the number of
knot points is chosen to be 6 by default.
The plot generated in Figure 16.2 shows the interpolated discount func-

tion because the quadratic or cubic spline methods are designed to operate
on discount function. This plot can be later regenerated by calling the
generic plot function on a “term.struct” object. However the yield curve
or forward rate curve is usually of more interest. These can also be easily
plotted using the components of a “term.struct” object. For example, use
the S-PLUS names function to find out the components of disc.rate:

> names(disc.rate)

[1] "coefficients" "residuals" "fitted.values" "effects"

624 16. Term Structure of Interest Rates

[5] "R" "rank" "assign" "df.residual"

[9] "contrasts" "terms" "call" "fitted"

[13] "knots" "method" "maturity" "rate"

The first 10 components are inherited from an “lm” object, because the
S-PLUS lm function is used for the linear regression. The fitted (instead
of the fitted.values) component represents the estimated discount rates
associated with the maturity component. To plot the interpolated yield
curve or forward rate curve, simply convert the estimated discount rates
into the rates you want. For example, use the following code to plot the
interpolated yield curve:

> spot.rate = bond.spot(disc.rate$fitted, disc.rate$maturity,

+ input="discount", compounding=0)

> plot(mk.maturity[1:48], mk.zero2[54,1:48],

+ xlab="Maturity", ylab="Rate", main="Yield Curve")

> lines(disc.rate$maturity, spot.rate)

and the plot is shown in Figure 16.3. Note that in the plot the points repre-
sent the original zero coupon rates, while the line represents the quadratic
spline interpolation.

16.4 Smoothing Spline Interpolation

The previous section demonstrated that the polynomial spline methods
proposed by McCulloch (1971, 1975) can fit the discount rate and yield
curve very well. However, since the methods operate on (linear combina-
tions of) discount functions, the implied forward rate curve usually has
some undesirable features. For example, use the following code to generate
the implied forward rate curve from the object disc.rate fitted in the
previous section:

> fwd.rate = bond.forward(disc.rate$fitted, disc.rate$maturity,

+ input="discount", compounding=0)

> plot(disc.rate$maturity, fwd.rate, type="l",

+ xlab="Maturity", ylab="Rate", main="Forward Rate")

> points(mk.maturity[1:48], mk.fwd2[54, 1:48])

The plot is shown in Figure 16.4. The implied forward rate is way o at
the long end of the term structure.
In addition to the undesirable behavior of implied forward rate, the choice

of knot points for polynomial splines is rather ad hoc. For a large number of
securities, the rule can imply a large number of knot points, or coe cients
. To avoid these problems with polynomial spline methods, Fisher, Ny-

chka and Zervos (1995) proposed to use smoothing splines for interpolating
the term structure of interest rates.

16.4 Smoothing Spline Interpolation 625

Forward Rate

Maturity

R
at

e

0 5 10 15 20 25 30

0.
05

0.
06

0.
07

0.
08

0.
09

FIGURE 16.4. U.S. forward rate for January 1990: quadratic spline.

In general, for an explanatory variable and a response variable ,
the smoothing spline tries to find a smooth function (·) to minimize the
penalized residual sum of squares (PRSS):

PRSS =
X
=1

[()]2 +

Z
[00()]2 (16.4)

where the first term is the residual sum of squares (RSS), and the second
term is the penalty term, and the parameter controls the trade-o be-
tween goodness-of-fit and parsimony. By using the penalty term, the spline
function can be over-parameterized, while using to reduce the e ective
number of parameters.
Let denote the × implicit smoother matrix such that () =P
=1 () . Fisher, Nychka and Zervos (1995) suggested using gen-

eralized cross validation (GCV) to choose . That is, is chosen to minimize

GCV =
RSS

· tr()

where is called the cost, and tr() denotes the trace of the implicit
smoother matrix and is usually used as the measure of e ective number
of parameters.
Interpolation of term structure using smoothing spline can also be per-

formed using the term.struct function by setting the optional argument

626 16. Term Structure of Interest Rates

0.076

0.078

0.080

0.082

0.084

0.086

0 5 10 15 20 25 30

Term Structure

Maturity

R
at

e

Yield Curve

FIGURE 16.5. U.S. yield curve for January 1990: smoothing spline.

method="smooth". The procedure uses the S-PLUS smooth.spline func-
tion as the workhorse.2 In particular, for all the arguments taken by the
function term.struct, cv, penalty and spar are specifically used for
smoothing spline methods and passed to the smooth.spline function. By
default, use GCV by setting cv=F and thus spar, which specifies the value
of , is ignored.3 The optional argument penalty is used to specify the
value for . Following Fisher, Nychka, and Zervos (1995), set = 2 by
default.
For example, use the following command to interpolate the yield curve

for January 1990, with the smoothing spline method:

> fnz.fit = term.struct(mk.zero2[54,], mk.maturity,

+ method="smooth", input="spot", na.rm=T)

Again, the interpolated yield curve is plotted automatically, as shown in
Figure 16.5. Although the returned object fnz.fit is of class “term.struct”,
its components are di erent from the disc.rate object fitted in the pre-
vious section, because now the smooth.spline function is used as the
workhorse:

2Refer to Hastie (1993) and S-PLUS Guide to Statistics for the description of
smooth.spline function.

3For further details regarding these arguments, see the on-line help file for
smooth.spline function.

16.4 Smoothing Spline Interpolation 627

> class(fnz.fit)

[1] "term.struct"

> names(fnz.fit)

[1] "x" "y" "w" "yin" "lev" "cv.crit"

[7] "pen.crit" "df" "spar" "fit" "call" "method"

[13] "maturity" "rate"

The first 10 components are inherited from a “smooth.spline” object,
while the last four components are generated by the term.struct function.
For the same reason, the print function now shows di erent information:

> fnz.fit

Call:

term.struct(rate = mk.zero2[54,], maturity = mk.maturity,

method = "smooth", input.type = "spot", na.rm = T)

Smoothing Parameter (Spar): 4.767984e-11

Equivalent Degrees of Freedom (Df): 47.57122

Penalized Criterion: 4.129338e-10

GCV: 3.605842e-14

which shows the optimal smoothing parameter , and its associated GCV,
penalized criterion, and equivalent degrees of freedom.
For “term.struct” objects, S+FinMetrics also implements a predict

method, which can be used to obtain the interpolated rate associated with
an arbitrary vector of maturity. For example, to recover the fitted spot
rates from fnz.fit, use the predict method as follows:

> fnz.spot = predict(fnz.fit, fnz.fit$maturity)

From the fitted spot rates, one can compute the implied forward rates
for the smoothing spline:

> fnz.forward = bond.forward(fnz.spot, fnz.fit$maturity,

+ input="spot", compounding=0)

> plot(mk.maturity[1:48], mk.fwd2[54,1:48],

+ xlab="Maturity", ylab="Rate", main="Forward Rate")

> lines(fnz.fit$maturity, fnz.forward)

The “real” forward rates and the smoothing spline interpolations are
shown together in Figure 16.6. The interpolations agree very well with the
“real” forward rates. The slight di erence is partly caused by the fact that
mk.zero2[54,] and the spot rates implied by mk.fwd2[54,] are slightly
di erent.

628 16. Term Structure of Interest Rates

Forward Rate

Maturity

R
at

e

0 5 10 15 20 25 30

0.
06

5
0.

07
0

0.
07

5
0.

08
0

0.
08

5
0.

09
0

FIGURE 16.6. U.S. forward rate for January 1990: smoothing spline.

16.5 Nelson-Siegel Function

The previous sections have shown that both the polynomial and smoothing
spline methods can fit the term structure very well, except that the implied
forward rates from polynomial spline methods have some undesirable fea-
tures at the long end of the term structure. However, the non-parametric
spline based methods usually do not generate good out-of-sample fore-
casts. There is substantial evidence showing that a parametric function
suggested by Nelson and Siegel (1987) has better out-of-sample forecasting
performance.
Using a heuristic argument based on the expectation theory of the term

structure of interest rates, Nelson and Siegel (1987) proposed the following
parsimonious model for the forward rate:

() = 0 + 1 · + 2 · ·

They suggested that the model may also be viewed as a constant plus a
Laguerre function, and thus can be generalized to higher-order models.
Based on the above equation, the corresponding yield curve can be derived
as follows:

() = 0 + 1

1
+ 2

·
1

¸
(16.5)

16.5 Nelson-Siegel Function 629

tau=0.5

0 10 20 30 40 50

0.
2

0.
4

0.
6

0.
8

tau=1.5

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FIGURE 16.7. Short term and medium term components of Nelson-Siegel func-
tion.

For a given constant , both the forward rate curve and the yield curve
are linear functions of the coe cients 0, 1 and 2. Nelson and Siegel
(1987) showed that, depending on the values of 1 and 2, the yield curve
can assume the common shapes of observed yield curves, such as upward
sloping, downward sloping, humped, or inverted humped. In addition, con-
sistent with stylized facts of the yield curve, the three components in (16.5)
can be interpreted as the long term, short term and medium term compo-
nent, or the level, slope, and curvature component of the yield curve.4

Example 115 Interpretation of Nelson-Siegel function

The function term.struct.nsx in S+FinMetrics can be used to generate
the regressors in (16.5) given a vector of maturity and a value for . Use
the following code to visualize these components for di erent values of :

> ns.maturity = seq(1/12, 10, length=50)

> ns05 = term.struct.nsx(ns.maturity, 0.5)

> ns15 = term.struct.nsx(ns.maturity, 1.5)

> par(mfrow=c(2,1))

> tsplot(ns05[,2:3], main="tau=0.5")

> tsplot(ns15[,2:3], main="tau=1.5")

4Refer to Diebold and Li (2002) for a detailed explanation.

630 16. Term Structure of Interest Rates

0.076

0.078

0.080

0.082

0.084

0.086

0 5 10 15 20 25 30

Term Structure

Maturity

R
at

e

Yield Curve

FIGURE 16.8. U.S. yield curve for January 1990: Nelson-Siegel function.

> par(mfrow=c(1,1))

A vector of maturity was created from one month to ten years. The regres-
sor matrix has three columns, and only the last two columns were plotted
because the first column is always one, and the plot is shown in Figure 16.7.
The parameter controls the rate of decay of those components. When is
smaller, the short and medium term components decay to zero at a faster
rate. Asymptotically, both the short and medium term components ap-
proach zero, and thus 0 can be interpreted as the long term component,
or the level of the yield curve.
To interpolate yield curves using the Nelson-Siegel function, choose the

value of which gives the best fit for equation (16.5). The term.struct
function employs this procedure if the optional argument method is set
to "ns". For example, use the following command to interpolate the yield
curve for January 1990:

> ns.fit = term.struct(mk.zero2[54,], mk.maturity,

+ method="ns", input="spot", na.rm=T)

> ns.fit

Call:

term.struct(rate = mk.zero2[54,], maturity = mk.maturity,

method = "ns", input.type = "spot", na.rm = T)

16.5 Nelson-Siegel Function 631

Coefficients:

b0 b1 b2

0.0840 -0.0063 0.0044

Degrees of freedom: 48 total; 45 residual

Residual standard error: 0.001203026

Tau estimate: 1.7603

Again, the fit is plotted by default as shown in Figure 16.8. The graph
shows that although the Nelson-Siegel generally captures the shape of the
yield curve, the in-sample fit is usually not as good as the non-parametric
spline methods because it only uses three coe cients. The output shows
the estimates of those coe cients, along with the estimate of .
Since the Nelson-Siegel function does not fit the data very well when the

yield curve has a rich structure as in the above example, Svensson (1994)
proposed to extend the Nelson-Siegel forward function as follows:

() = 0 + 1
1 + 2 · 1 · 1 + 3 · 2 · 2

which adds another term to the Nelson-Siegel function to allow for a second
hump. The corresponding yield function can be shown to be:

() = 0 + 1

1 1

1
+ 2

·
1 1

1

1

¸
+ 3

·
1 2

2

2

¸
(16.6)

To use the above function for interpolating yield curve, simply call the
function term.struct with method="nss":

> nss.fit = term.struct(mk.zero2[54,], mk.maturity,

+ method="nss", input="spot", na.rm=T)

> nss.fit

Call:

term.struct(rate = mk.zero2[54,], maturity = mk.maturity,

method = "nss", input.type = "spot", na.rm = T)

Coefficients:

b0 b1 b2 b3

0.0000 0.0761 0.1351 0.0104

Degrees of freedom: 48 total; 44 residual

Residual standard error: 0.0005997949

Tau estimate: 21.8128 0.5315

632 16. Term Structure of Interest Rates

0.076

0.078

0.080

0.082

0.084

0.086

0 5 10 15 20 25 30

Term Structure

Maturity

R
at

e

Yield Curve

FIGURE 16.9. U.S. yield curve for January 1990: Svensson function.

The output now shows two estimates for and one more coe cient for
the additional term. The plot of the interpolated yield curve is shown in
Figure 16.9.

16.6 Conclusion

For all the term structure interpolation methods discussed in this chapter,
they all work with the yield curve for a given time, and thus do not consider
the time series aspect of the yield curve. Recently Diebold and Li (2002)
considered estimating the three components 0, 1 and 2 of the Nelson-
Siegel function for each available time, and building a time series model
(in particular, an AR(1)-GARCH(1,1) model) for the estimated 0, 1 and

2. By employing the times series forecasts of 0, 1 and 2, they are able
to generate reliable forecasts of yield curve. However, in this approach, the
coe cients 0, 1 and 2 are still estimated ignoring the time series aspect.
In recent years, many researchers have proposed to use state space mod-

els and Kalman filter to estimate the term structure of interest rates using a
panel data, for example, see Duan and Simonato (1999), Geyer and Pichler
(1999), Babbs and Nowman (1999), de Jong and Santa-Clara (1999) and
de Jong (2000). Most of these models are special cases of the a ne term
structure model proposed by Du e and Kan (1996), which can be readily

16.7 References 633

expressed in a state space model by discretizing the continuous-time mod-
els. These models can be easily implemented using the state space model-
ing functions in S+FinMetrics as illustrated in Zivot, Wang and Koopman
(2004).

16.7 References

Babbs, S. H., and Nowman, K. B. (1999). “Kalman Filtering of Gen-
eralized Vasicek Term Structure Models,” Journal of Financial and Quan-
titative Analysis, 34(1), 115-129.

Bliss, R. R. (1997). “Testing Term Structure Estimation Methods”, in
P. Boyle, G. Pennacchi, and P. Ritchken (eds.), Advances in Futures and
Options Research, Volume 9. Elsevier, Amsterdam, pp. 197-231.

Campbell, J. Y., Lo, A. W., and MacKinlay, A. C. (1997). The
Econometrics of Financial Markets. Princeton University Press, Princeton,
NJ.

de Jong, F. (2000). “Time Series and Cross Section Information in A ne
Term-Structure Models,” Journal of Business and Economic Statistics,
18(3), 300-314.

de Jong, F., and Santa-Clara, P. (1999). “The Dynamics of the For-
ward Interest Rate Curve: a Formulation with State Variables,” Journal of
Financial and Quantitative Analysis, 34(1), 131-157.

Diebold, F. X., and Li, C. (2003). “Forecasting the Term Structure of
Government Bond Yields,” NBER Working Paper No. 10048.

Duan, J.-C., and Simonato, J. (1999). “Estimating and Testing Exponential-
A ne Term Structure Models by Kalman Filter,” Review of Quantitative
Finance and Accounting, 13, 111-135.

Duffie, D., and Kan, R. (1996). “A Yield-Factor Model of Interest
Rates,” Mathematical Finance, 6(4), 379-406.

Ferguson, R., and Raymar, S. (1998). “A Comparative Analysis of Sev-
eral Popular Term Structure Estimation Models,” Journal of Fixed Income,
March 1998, 17-33.

Fisher, M., Nychka, D., and Zervos, D. (1995). “Fitting the Term
Structure of Interest Rates with Smoothing Splines,” Finance and Eco-
nomics Discussion Series #1995-1, Board of Governors of the Federal Re-
serve System.

634 16. Term Structure of Interest Rates

Geyer, A. L. J., and Pichler, S. (1999). “A State-Space Approach
to Estimate and Test Multifactor Cox-Ingersoll-Ross Models of the Term
Structure,” Journal of Financial Research, 22(1), 107-130.

Hastie, T. J. (1993). “Generalized Additive Models,” in J. M. Chambers
and T. J. Hastie (eds.), Statistical Models in S. Chapman & Hall.

Hull, J. C. (1997). Options, Futures, and Other Derivatives, Prentice
Hall, New York.

McCulloch, J. H. (1971). “Measuring the Term Structure of Interest
Rates,” Journal of Business, 44, 19-31.

McCulloch, J. H. (1975). “The Tax-Adjusted Yield Curve”, Journal of
Finance, 30(3), 811-830.

McCulloch, J. H., and Kwon, H.-C. (1993). “U.S. Term Structure
Data: 1947-1991,” Department of Economics, Working Paper #93-6, Ohio
State University.

Nelson, C. R., and Siegel, A. F. (1987). “Parsimonious Modeling of
Yield Curves,” Journal of Business, 60(4), 473-489.

Svensson, L. E. O. (1994). “Estimating and Interpreting Forward Interest
Rates: Sweden 1992-1994”, NBER Working Paper No. 4871.

Zivot, E., Wang, J. and S.J. Koopman (2004). “State Space Models
in Economics and Finance Using SsfPack in S+FinMetrics,” in A. Harvey,
S.J. Koopman, and N. Shephard (eds.), Unobserved Components Models.
Cambridge University Press, Cambridge.

17
Robust Change Detection

17.1 Introduction

In time series analysis, autoregressive integrated moving average (ARIMA)
models have found extensive use since the publication of Box and Jenkins
(1976). For an introduction to the standard ARIMA modeling in S-PLUS,
see S-PLUS Guide to Statistics. Regression models are also frequently used
in finance and econometrics research and applications. For example, as
“factor” models for empirical asset pricing research and for parsimonious
covariance matrix estimation in portfolio risk models. Often ARIMA mod-
els and regression models are combined by using an ARIMA model to
account for serially correlated residuals in a regression model, resulting in
REGARIMA models.
In reality, most time series data are rarely completely well behaved and

often contain outliers and level shifts, which is especially true for economic
and financial time series. The classical maximum likelihood estimators of
both ordinary regression model parameters and ARIMA model parameters
are not robust in that they can be highly influenced by the presence of even
a small fraction of outliers and/or level shifts in a time series. It is therefore
not suprising that classical maximum likelihood estimators of REGARIMA
models also lack robustness toward outliers and/or level shifts.
S+FinMetrics provides functions that compute robust alternatives to

the classical non-robust MLE’s for robust fitting and diagnostics of RE-
GARIMA models. In particular, the robust procedure arima.rob allows
reliable model fitting when the data contain outliers and/or level shifts. In

636 17. Robust Change Detection

addition, it also detects the types and locations of the outliers in the time
series and thus can be used to perform robust change detection.
This chapter is organized as follows: Section 17.2 gives a brief introduc-

tion to REGARIMAmodels, and Section 17.3 shows how to fit a robust RE-
GARIMA model using functions in S+FinMetrics. Section 17.4 shows how
to predict from a robustly fitted REGARIMA model, while Section 17.5
illustrates more options which can be used to control the robust fitting of
REGARIMA models. Finally in Section 17.6, some technical details are
given about how REGARIMA model parameters are estimated robustly in
the procedure arima.rob.

17.2 REGARIMA Models

The REGARIMAmodel considered in this chapter takes the following form:

= x0 + for = 1 2 · · · (17.1)

where x is a × 1 vector of predictor variables, and is a × 1 vector of
regression coe cients. The error term follows a seasonal ARIMA process:

()(1) (1) = (1) () (17.2)

where is the lag (or backshift) operator, the number of regular di er-
ences, the number of seasonal di erences, the seasonality frequency,
() = 1 1 · · · a stationary autoregressive operator of order
, () = 1 1 · · · a moving average operator of order and
a seasonal moving average parameter. Note that currently only one sea-

sonal moving average term is allowed in the discussions in this chapter. The
innovations are assumed to be i.i.d. random variables with distribution
.
In practice, observed time series data are rarely well behaved as assumed

in the REGARIMA model (17.1) and (17.2). An observed time series is
usually some kind of variant of in equation (17.1). When the observed
time series might be influenced by some outliers, the classical maximum
likelihood estimates as implemented in the S-PLUS function arima.mle are
not robust. In contrast, the S+FinMetrics function arima.rob allows the
robust estimation of the model parameters (), where = (),
is a vector of the autoregressive parameters and is a vector of the moving
average parameters. Furthermore, it will detect three kinds of outliers in
the original data :

Additive outliers (AO): An additive outlier occurs at time 0 if 0
=

0 + , where is a constant. The e ect of this type of outlier is
restricted to the time period 0.

17.3 Robust Fitting of REGARIMA Models 637

Innovation outliers (IO): An innovation outlier occurs at time 0 if 0 =

0
+ , where

0
is generated by the distribution . Usually it is

assumed that is the normal distribution (0 2). Note that the
e ect of an innovation outlier is not restricted to time 0 because
of the structure of an ARIMA model. It also has influence on the
subsequent observations.

Level shifts (LS): If one level shift occurs at time 0, the observed series
is = + for all 0, with being a constant. Note that if the
series has a level shift at 0, the di erenced series 1 has an
additive outlier at 0.

In all those three cases is the size of the outlier or level shift. Without
any potential confusion, the general term “outlier” may refer to any of the
three types of behavior.

17.3 Robust Fitting of REGARIMA Models

The S+FinMetrics function arima.rob computes the so-called “filtered -
estimates” of the parameters () of REGARIMA model (17.1)-(17.2)
when a time series is influenced by outliers. The technical details of this
type of estimation can be found in Section 17.6.
S+FinMetrics comes with a “timeSeries” data frip.dat, which rep-

resents monthly industrial production of France from January 1960 to De-
cember 1989. This data set will be used to illustrate the usage of arima.rob
function. First, a plot of the data will show the general properties of the
time series:

> plot(frip.dat)

A few characteristics of the time series can be seen from Figure 17.1: (i)
there are three big outliers around 1963 and 1968; (ii) it appears that a
level shift happened around 1975; (iii) there is an obvious trend in the time
series, and the trend looks like a exponential one, especially in the last five
years. For diagnostic purpose, a robust ARIMA(2,1,0) model can be tried
on the logarithm of frip.dat, due to the exponential-looking trend:

> frip.rr = arima.rob(log(frip.dat)~1, p=2, d=1)

Note that the arima.rob function has only one required argument: a
formula specifying the regression model. The optional argument p specifies
the autoregressive order, and d specifies the order of di erence. In this case,
the only predictor variable is the intercept term.

Caveat: The interpretation of the intercept term in arima.rob
is di erent from that for other formulas in S-PLUS. When both d

638 17. Robust Change Detection

Monthly Industrial Production of France

1960 1965 1970 1975 1980 1985 1990

40
50

60
70

80
90

FIGURE 17.1. Monthly industrial production of France.

and sd (seasonal di erence) are zero (which is the default), the
intercept is the constant term as usual. However, when either
d or sd is positive, the intercept is the coe cient of the lowest
order time trend that can be identified. For instance, in the
above example, the intercept corresponds to the coe cient of
the trend term . One can easily verify this using the following
command:

> frip.t = 1:length(frip.dat)

> tmp = arima.rob(log(frip.dat)~frip.t-1, p=2, d=1)

which should give the same fit as frip.rr. The reason for this
modification is obvious: some coe cients are not identifiable
when di erencing is involved.

The object returned by the function arima.rob is of class “arima.rob”,
which has print and summary methods, just like most modeling objects.
For “arima.rob” objects, there is one additional advantage of using the
summary method instead of the print method: if the data object is of class
“timeSeries”, the outliers will be lined up in a table with the time stamps
of the observations, the types of the outliers, the impacts of the outliers,
and the t-statistics. For example,

> summary(frip.rr)

17.3 Robust Fitting of REGARIMA Models 639

Call:

arima.rob(formula = log(frip.dat) ~ 1, p = 2, d = 1)

Regression model:

log(frip.dat) ~ 1

ARIMA model:

Ordinary differences: 1 ; AR order: 2 ; MA order: 0

Regression Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 0.0024 0.0005 4.6558 0.0000

AR Coefficients:

Value Std. Error t value Pr(>|t|)

AR(1) -0.3099 0.0537 -5.7742 0.0000

AR(2) -0.0929 0.0537 -1.7310 0.0843

Degrees of freedom: 360 total; 356 residual

Innovations standard deviation: 0.01311

Number of outliers detected: 9

Outliers detected:

|Time |Type |Impact |t-value|

-------+--------+-------+--------+-------+

1 |Mar 1963|AO |-0.1457 |13.76 |

-------+--------+-------+--------+-------+

2 |May 1968|AO |-0.3978 |38.1 |

-------+--------+-------+--------+-------+

3 |Jun 1968|AO |-0.1541 |14.55 |

-------+--------+-------+--------+-------+

4 |Sep 1968|AO |-0.04516| 4.41 |

-------+--------+-------+--------+-------+

5 |Apr 1969|LS | 0.04511| 3.814 |

-------+--------+-------+--------+-------+

6 |Sep 1974|LS |-0.04351| 3.767 |

-------+--------+-------+--------+-------+

7 |Nov 1974|LS |-0.04844| 4.092 |

-------+--------+-------+--------+-------+

8 |Sep 1976|AO | 0.0382 | 3.829 |

-------+--------+-------+--------+-------+

640 17. Robust Change Detection

9 |Apr 1986|AO | 0.03935| 3.932 |

-------+--------+-------+--------+-------+

Innovation scale estimate before correcting outliers:

0.01311

Innovation scale estimate after correcting outliers:

0.01215

The output generated by the summary method actually has two sections.
The first section contains the parameter estimates in the REGARIMA
model. In this section, one can see that the intercept (which, again, is
actually the slope of the first order time trend) and the first autoregressive
coe cient are very significant (that is, they have very small -values), while
the second autoregressive coe cient is not very significant.
The second section contains a summary of the outliers automatically

detected by the arima.rob function. In this case, nine outliers are found:
the first four and the last two are additive outliers, while the middle three
are level shifts. The three additive outliers shown in Figure 17.1 are all
detected with very large -statistics.
A picture is always better than a thousand words. A visual diagnostic of

the model fit frip.rr can be obtained by using the generic plot function:

> plot(frip.rr)

Make a plot selection (or 0 to exit):

1: plot: all

2: plot: Robust ACF of Innov.

3: plot: Robust PACF of Innov.

4: plot: Normal QQ-Plot of Innov.

5: plot: Original and Cleaned Series

6: plot: Detected Outliers

Selection:

Selections 2 and 3 will plot the robustly estimated autocorrelations and
partial autocorrelations of the innovations , respectively. Selection 4 pro-
duces the normal qq-plot of the innovations, as shown in Figure 17.2, from
which one can see that the three additive outliers are far away from the
bulk of the data. Selection 5 plots the original response time series together
with the series obtained by cleaning the original series of additive outliers
using a robust filter, which is shown in Figure 17.3. Finally, Selection 6
plots the detected outliers, as shown in Figure 17.4.

17.3 Robust Fitting of REGARIMA Models 641

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

-3 -2 -1 0 1 2 3

frip.rr

36

100

98

Quantile of Standard Normal

In
no

v.

Normal Q-Q Plot of Innov.

FIGURE 17.2. Normal qq-plot of robust innovations.

3.
8

4.
0

4.
2

4.
4

4.
6

1960 1965 1970 1975 1980 1985 1990

cleaned

3.
8

4.
0

4.
2

4.
4

4.
6 original

Time

Va
lu

es

Original and Cleaned Series

FIGURE 17.3. Original and cleaned series of frip.dat.

642 17. Robust Change Detection

-0
.3

-0
.2

-0
.1

0.
0

1960 1965 1970 1975 1980 1985 1990

Add. Outliers

-0
.3

-0
.2

-0
.1

0.
0

Level Shifts

Time

Va
lu

es

Impacts of Outliers

FIGURE 17.4. Detected outliers in frip.dat.

17.4 Prediction Using REGARIMA Models

One of the main applications of a REGARIMA model is to predict future
values of response variable based on past values of and the correspond-
ing future values of . If future predictions are intended, then the call to
the arima.rob function should specify the optional argument n.predict.
This argument should be set to a number equal or greater than the number
of predictions, the default of which is set to 20.
Prediction from REGARIMA models will be illustrated using the data

set import.dat in S+FinMetrics, which contains two monthly time series
from January 1983 to December 1990. The first series taxes corresponds to
Argentinian import taxes and the second import to Argentinian imports.
Another data frame newtaxes.dat contains the values of the variable taxes
from January 1992 to October 1992. First fit a REGARIMA model with
ARIMA(2,1,0) errors:

> import.rr = arima.rob(import~taxes-1, data=import.dat,

+ p=2, d=1)

Now with the new data of the predictor variable taxes in newtaxes.dat,
one can predict import from January 1992 to October 1992 as follows:

> import.hat = predict(import.rr,10,newdata=newtaxes.dat,se=T)

> class(import.hat)

17.5 Controlling Robust Fitting of REGARIMA Models 643

30
0

40
0

50
0

60
0

0 20 40 60 80 100

import

index

va
lu

es

FIGURE 17.5. Fitted values ± 2· standard deviation.

[1] "forecast"

> names(import.hat)

[1] "values" "std.err"

The optional argument se=T to the predict method tells the procedure to
return the standard errors of the forecasts. The returned object import.hat
is a “forecast” object with two components: values are the predicted
values of import, and std.err are the standard errors of the prediction.
Since import.hat is a “forecast” object, as we have seen from earlier
chapters, the predictions can be easily plotted together with the original
data:

> plot(import.hat, import.dat[, "import"])

The plot is shown in Figure 17.5.

17.5 Controlling Robust Fitting of REGARIMA
Models

17.5.1 Adding Seasonal E ects

The arima.rob function allows for two kinds of seasonal e ects options: the
order of seasonal di erence and the inclusion of a seasonal moving average

644 17. Robust Change Detection

term, controlled by the optional arguments sd and sma, respectively. For
example, frip.dat is a monthly series, and you might expect that there
are some seasonal e ects in the series. Toward this end, you can add a
seasonal moving average term by specifying the optional argument sma:

> frip.srr = arima.rob(log(frip.dat)~1, p=2, d=1, sfreq=12,

+ sma=T)

> summary(frip.srr)

Call:

arima.rob(formula = log(frip.dat) ~ 1, p = 2, d = 1,

sfreq = 12, sma = T)

Regression model:

log(frip.dat) ~ 1

ARIMA model:

Ordinary differences: 1 ; AR order: 2 ; MA order: 0

Seasonal differences: 0 ; Seasonal period: 12 ; Seasonal MA: 1

Regression Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 0.0024 0.0004 5.3946 0.0000

AR Coefficients:

Value Std. Error t value Pr(>|t|)

AR(1) -0.3135 0.0518 -6.0494 0.0000

AR(2) -0.1124 0.0518 -2.1697 0.0307

Seasonal MA Coefficient:

Value Std. Error t value Pr(>|t|)

[1,] 0.0945 0.0519 1.8208 0.0695

Degrees of freedom: 360 total; 355 residual

Innovations standard deviation: 0.01304

Number of outliers detected: 10

Outliers detected:

|Time |Type |Impact |t-value|

-------+--------+-------+--------+-------+

1 |Mar 1963|AO |-0.1438 |13.58 |

-------+--------+-------+--------+-------+

17.5 Controlling Robust Fitting of REGARIMA Models 645

2 |May 1963|LS | 0.03988| 3.545 |

-------+--------+-------+--------+-------+

3 |May 1968|AO |-0.3952 |38.67 |

-------+--------+-------+--------+-------+

4 |Jun 1968|AO |-0.1519 |14.27 |

-------+--------+-------+--------+-------+

5 |Sep 1968|AO |-0.04653| 4.615 |

-------+--------+-------+--------+-------+

6 |Apr 1969|LS | 0.04602| 4.005 |

-------+--------+-------+--------+-------+

7 |Sep 1974|LS |-0.04247| 3.739 |

-------+--------+-------+--------+-------+

8 |Nov 1974|LS |-0.04914| 4.24 |

-------+--------+-------+--------+-------+

9 |Sep 1976|AO | 0.038 | 3.891 |

-------+--------+-------+--------+-------+

10 |Apr 1986|AO | 0.03792| 3.946 |

-------+--------+-------+--------+-------+

Innovation scale estimate before correcting outliers:

0.01304

Innovation scale estimate after correcting outliers:

0.01199

From the first section of the summary, one can see that the seasonal
moving average term is relatively significant, and the estimates of other
parameters are not altered very much. However, in the second section of
the summary, one more level shift is detected, which corresponds to May
1963.

17.5.2 Controlling Outlier Detection

The outlier detection procedure used in arima.rob is similar to those pro-
posed by Chang, Tiao and Chen (1988) and Tsay (1988) for ARIMA mod-
els, and the one used in the X12-REGARIMA program of U.S. Census
Bureau. The main di erence with those procedures is that arima.rob uses
innovation residuals based on the filtered -estimates of and , instead
of the classical maximum likelihood estimates.
To detect the presence of an outlier at a given time 0, the outlier detec-

tion procedure in arima.rob computes:

T = max
0

max{ 0 AO 0 LS 0 IO}

646 17. Robust Change Detection

where 0 AO, 0 LS and 0 IO are the statistics corresponding to an AO,
LS and IO at time 0 respectively. The test statistic is defined as follows:

=
|ˆ|

ˆ (ˆ)1 2

where ˆ is an estimate of , the size of the outlier, based on the residuals
of the filtered -estimates and ˆ (ˆ) an estimate of its variance. If T ,
where is a conveniently chosen critical value, one declares that there is
an outlier. The time 0 where the outlier occurs and the type of the outlier
are those where the double maximum is attained.
The critical value is similar to the constant used by Chang, Tiao, and

Chen (1988). They recommend using = 3 for high sensitivity in outlier
detection, = 3 5 for medium sensitivity and = 4 for low sensitivity,
when the length of the series is less than 200. For arima.rob the critical
value is specified by the optional argument critv. The default value of
critv is set as follows:

=
3 if 200
3 5 if 200 500
4 if 500

More details of this procedure can be found in Bianco, Garcia Ben, Mar-
tinez, and Yohai (1996, 2001).
So far none of the outliers detected is an innovation outlier. This is not a

coincidence. By default, the outlier detection procedure in arima.rob does
not consider innovation outliers. To allow for innovation outliers, use the
optional argument innov.outlier:

> frip.nrr = arima.rob(log(frip.dat)~1, p=2, d=1, sma=T,

+ sfreq=12, innov.outlier=T)

S+FinMetrics also provides a function outliers to extract the infor-
mation of the detected outliers from an “arima.rob” object. The object
returned by outliers is of class “outliers”. The methods print and
summary are available for an “outliers” object. For example,

> summary(outliers(frip.nrr))

Number of outliers detected: 10

Outliers detected:

|Time |Type |Impact |t-value|

-------+--------+-------+--------+-------+

1 |Mar 1963|AO |-0.1438 |13.58 |

-------+--------+-------+--------+-------+

2 |May 1963|LS | 0.03988| 3.545 |

17.5 Controlling Robust Fitting of REGARIMA Models 647

-------+--------+-------+--------+-------+

3 |May 1968|AO |-0.3952 |38.67 |

-------+--------+-------+--------+-------+

4 |Jun 1968|AO |-0.1519 |14.27 |

-------+--------+-------+--------+-------+

5 |Sep 1968|AO |-0.04653| 4.615 |

-------+--------+-------+--------+-------+

6 |Apr 1969|LS | 0.04602| 4.005 |

-------+--------+-------+--------+-------+

7 |Sep 1974|LS |-0.04247| 3.739 |

-------+--------+-------+--------+-------+

8 |Nov 1974|LS |-0.04914| 4.24 |

-------+--------+-------+--------+-------+

9 |Sep 1976|AO | 0.038 | 3.891 |

-------+--------+-------+--------+-------+

10 |Apr 1986|AO | 0.03792| 3.946 |

-------+--------+-------+--------+-------+

Innovation scale estimate before correcting outliers:

0.01304

Innovation scale estimate after correcting outliers:

0.01199

In this case, still no innovation outlier is detected even though we allowed
for innovation outliers.

17.5.3 Iterating the Procedure

After the outlier detection, one can clean the original series of additive
outliers and level shifts. If all the outliers in the data have been detected,
and arima.rob is called on the cleaned data again, one should not find any
new outliers. By this line of argument, the process of robust estimation and
outlier detection can be iterated to obtain a more thorough detection of
outliers. Before illustrating how this can be done using arima.rob function,
we want to warn that this procedure is ad hoc, and sometimes the results
may not be easily interpretable.
To carry out the iteration process, simply set the optional argument

iter=T when calling arima.rob function. For example,

> frip.irr = arima.rob(log(frip.dat)~1, p=2, d=1, iter=T)

> summary(frip.irr)

Call:

arima.rob(formula = log(frip.dat) ~ 1, p = 2, d = 1, iter = T)

648 17. Robust Change Detection

Regression model:

log(frip.dat) ~ 1

ARIMA model:

Ordinary differences: 1 ; AR order: 2 ; MA order: 0

Regression Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 0.0023 0.0005 4.6027 0.0000

AR Coefficients:

Value Std. Error t value Pr(>|t|)

AR(1) -0.2861 0.0577 -4.9542 0.0000

AR(2) -0.0728 0.0577 -1.2608 0.2082

Degrees of freedom: 360 total; 356 residual

Innovations standard deviation: 0.01178

Number of outliers detected: 10

Outliers detected:

|Time |Type |Impact |t-value|

-------+--------+-------+--------+-------+

1 |Mar 1963|AO |-0.1457 |13.76 |

-------+--------+-------+--------+-------+

2 |May 1968|AO |-0.3978 |38.1 |

-------+--------+-------+--------+-------+

3 |Jun 1968|AO |-0.1541 |14.55 |

-------+--------+-------+--------+-------+

4 |Sep 1968|AO |-0.04516| 4.41 |

-------+--------+-------+--------+-------+

5 |Apr 1969|LS | 0.04511| 3.814 |

-------+--------+-------+--------+-------+

6 |Sep 1974|LS |-0.04351| 3.767 |

-------+--------+-------+--------+-------+

7 |Sep 1974|LS | 0.04162| 3.598 |

-------+--------+-------+--------+-------+

8 |Nov 1974|LS |-0.04844| 4.092 |

-------+--------+-------+--------+-------+

9 |Dec 1975|LS | 0.04037| 3.534 |

-------+--------+-------+--------+-------+

10 |Dec 1975|LS | 0.0414 | 3.619 |

-------+--------+-------+--------+-------+

17.6 Algorithms of Filtered -Estimation 649

11 |Sep 1976|AO | 0.0382 | 3.829 |

-------+--------+-------+--------+-------+

12 |Apr 1986|AO | 0.03935| 3.932 |

-------+--------+-------+--------+-------+

Innovation scale estimate before correcting outliers:

0.01311

Innovation scale estimate after correcting outliers:

0.01176

In the first section of the output, the parameter estimates are from the
last iterated model. In the second section of the output, it is stated that 10
outliers have been detected altogether, though there are 12 outliers listed
in the table. The di erence comes from the fact that some outliers are
detected repeatedly during the iteration process. For example, two level
shifts have been detected corresponding to September 1974.
To obtain a summary of the outliers detected for each iteration, one can

use the outliers function with an iter argument. For example,

> summary(outliers(frip.irr, iter=2))

Number of outliers detected: 2

Outliers detected:

|Time |Type |Impact |t-value|

-------+--------+-------+-------+-------+

1 |Sep 1974|LS |0.04162|3.598 |

-------+--------+-------+-------+-------+

2 |Dec 1975|LS |0.04037|3.534 |

-------+--------+-------+-------+-------+

Innovation scale estimate before correcting outliers:

0.01202

Innovation scale estimate after correcting outliers:

0.01176

which summarizes the outliers detected in the second iteration.

17.6 Algorithms of Filtered -Estimation

This section briefly introduces filtered -estimates for REGARIMA models.
The technical details can be found in the references cited in this chapter.

650 17. Robust Change Detection

17.6.1 Classical Maximum Likelihood Estimates

For the REGARIMA model in equations (17.1) and (17.2), the model pa-
rameters are usually estimated by maximum likelihood estimation (MLE).
The MLE can be computed using prediction error decomposition, for ex-
ample, see Chapter 14.
First, let 0 = + . Note that we will lose the first 0 observations

because of the ARIMA di erencing and/or seasonal di erencing. For the
moment, consider only equation (17.2). Let

ˆ | 1() = E [| 1 1] for 0

be the one-step-ahead predictor of given the knowledge of historic values
of . Then

ˆ () = ˆ | 1() (17.3)

will be the one-step-ahead prediction error, and the variance of ˆ () is of
the form

2() = E [ˆ | 1()]
2 = 2() 2

where lim () = 1.
Second, for the REGARIMAmodel considered, the prediction error ˆ ()

can be obtained similarly as in equation (17.3), replacing with () =
x0 .

Now, let (2) be the conditional likelihood function of the sample
observations, and let

() = 2 argmax
2

log ()

which is 2 times the log-likelihood concentrated with respect to 2. Using
prediction error decomposition, it can be easily shown that

() =
X
= 0+1

log 2() + (0)
2(
ˆ

0+1()

0+1()

ˆ ()

()
)

(17.4)
up to a constant, where

2(1) =
1X

=1

2 (17.5)

is the square of the scale estimate.
The classical maximum likelihood estimates of and are obtained by

minimizing (), that is,

(ˆ ˆ) = argmin ()

and the maximum likelihood estimate of 2 is given by

ˆ2 = 2(ˆ ˆ)

17.7 References 651

17.6.2 Filtered -Estimates

It is well known that the classical maximum likelihood estimates in the
previous section are not robust and can produce poor estimates when the
data contain outliers. Bianco, Garcia Ben, Martinez, and Yohai (1996) pro-
posed a class of robust estimates for REGARIMA model called filtered -
estimates. See also Martin and Yohai (1996). These estimates are based on
a robustification of the log-likelihood function. The robustification is ac-
complished through two steps: (1) use the filtered prediction error instead
of the usual prediction error; (2) use a robust -estimate of the scale in
equation (17.4).
The filtered -estimation uses a robust filter proposed by Masreliesz

(1975) which eliminates the influence of previous outliers or bad obser-
vations. That is, the robust prediction error ˜ | 1 is computed based on
cleaned series ˜ | instead of the contaminated series . For an AR(1) model,
the two series ˜ | 1 and ˜ | are obtained simultaneously by a recursion pro-
cedure as follow:

˜ | = + (1)˜ | 1

where

= (
| ˜ | 1|

ˆ
)

and (·) is an even and non-increasing weight function, is a tuning con-
stant, and ˆ2 is an estimate of the prediction variance 2. For the general
case the robust filtering procedure is based on the state space representa-
tion of the ARIMA model. The details can be found in Martin, Samarov,
and Vandaele (1983).
The filtered -estimation replaces the statistic 2 in equation (17.5) with

a robust -estimate of scale. For details of how -estimates of scale can be
computed, see Yohai and Zamar (1983).
In summary, the filtered -estimates are defined by

(ˆ ˆ) = argmin ()

where

() =
X
= 0+1

log 2() + (0)
2(
˜ 0+1()

0+1()

˜ ()

()
)

with ˜ = ˜ | 1, and
2(·) is the square of the -estimate of scale.

17.7 References

Bianco, A., Garcia Ben, M., Martinez, E., and Yohai, V. (1996).
“Robust Procedure for Regression Models with ARIMA Errors,” in A.

652 17. Robust Change Detection

Prat (ed.) COMPSTAT 96 Proceedings Computational Statistics. Physica-
Verlag, Heidelberg.

Bianco, A., Garcia Ben, M., Martinez, E., and Yohai, V. (2001).
“Outlier Detection in Regression Rodels with ARIMA Errors Using Robust
Estimates,” Journal of Forecasting, 20, 565-579.

Box, G., and Jenkins, G. (1976). Time Series Analysis: Forecasting and
Control. Holden-Day, San Francisco.

Chang, I., Tiao, G. C., and Chen. C (1988). “Estimation of Time Series
Parameters in the Presence of Outliers,” Technometrics, 30, 193-204.

Martin, R. D., Samarov, A., and Vandaele, W. (1983). “Robust
Methods for ARIMA Models,” in A. Zellner (ed.) Applied Time Series
Analysis of Economic Data. U.S. Census Bureau, Government Printing
O ce.

Martin, R.D., and V. J. Yohai (1996). “Highly Robust Estimation of
Autoregressive Integrated Time Series Models,” Publicaciones Previas No.
89, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires.

Masreliesz, C. J. (1975). “Approximate non-Gaussian Filtering with Lin-
ear State and Observation Relations,” IEEE Transactions on Automatic
Control, AC-20, 107-110.

Tsay, R. S. (1988). “Outliers, Level Shifts and Variance Changes in Time
Series,” Journal of Forecasting, 7, 1-20.

Yohai, V. J., and Zamar, R. H. (1988). “High Breakdown-Point Esti-
mates of Regression by Means of the Minimization of an E cient Scale,”
Journal of the American Statistical Association, 83, 406-413.

18
Nonlinear Time Series Models

18.1 Introduction

Most of the time series models discussed in the previous chapters are lin-
ear time series models. Although they remain at the forefront of academic
and applied research, it has often been found that simple linear time series
models usually leave certain aspects of economic and financial data un-
explained. Since economic and financial systems are known to go through
both structural and behavioral changes, it is reasonable to assume that dif-
ferent time series models may be required to explain the empirical data at
di erent times. This chapter introduces some popular nonlinear time series
models that have been found to be e ective at modeling nonlinear behavior
in economic and financial time series data.
To model nonlinear behavior in economic and financial time series, it

seems natural to allow for the existence of di erent states of the world or
regimes and to allow the dynamics to be di erent in di erent regimes. This
chapter focuses on models that assume in each regime that the dynamic
behavior of the time series is determined by an autoregressive (AR) model,
such as threshold AR, self-exciting threshold AR, and smooth transition
AR models. This is because simple AR models are arguably the most popu-
lar time series model and are easily estimated using regression methods. By
extending AR models to allow for nonlinear behavior, the resulting nonlin-
ear models are easy to understand and interpret. In addition, this chapter
also covers more general Markov switching models using state space repre-
sentations. The types of model that can be cast into this form are enormous.

654 18. Nonlinear Time Series Models

However, there are many other types of nonlinear time series model that
are not covered in this chapter, such as bilinear models, nearest neighbor
methods, and neural network models.1 Book length treatment of nonlinear
time series models can be found in Tong (1990), Granger and Teräsvirta
(1993), and Franses and van Dijk (2000). Kim and Nelson (1999) provides
a comprehensive account of di erent Markov switching models that have
been used in economic and financial research.
Given the wide range of nonlinear time series models available and the

inherent flexibility of these models, the possibility of getting a spuriously
good fit to any time series data set is very high. Therefore, it is usually rec-
ommended to perform a test of linearity against nonlinearity before building
a possibly complex nonlinear model. Section 18.2 first introduces a popular
test for nonlinearity, the BDS test, which has been found to have power
against a wide range of nonlinear time series models. There are many other
types of nonlinearity test that are developed to test against specific non-
linear models. Some of these tests will be introduced together with the
nonlinear models in later sections. For example, Section 18.3 introduces
threshold AR models and two tests for threshold nonlinearity, and Sec-
tion 18.4 introduces smooth transition AR (STAR) models and a test for
STAR nonlinearity. Finally, Section 18.5 describes the Markov switching
state space models and Section 18.6 gives an extended example of how to
estimate Markov switching models in S+FinMetrics.

18.2 BDS Test for Nonlinearity

The BDS test developed by Brock, Dechert, and Scheinkman (1987) (and
later published as Brock, Dechert, Scheinkman, and LeBaron, 1996) is ar-
guably the most popular test for nonlinearity. It was originally designed
to test for the null hypothesis of independent and identical distribution
(iid) for the purpose of detecting non random chaotic dynamics.2 How-
ever, many studies have shown that the BDS test has power against a wide
range of linear and nonlinear alternatives; for example, see Brock, Hsieh,
and LeBaron (1991) and Barnett, Gallant, Hinich, Jungeilges, Kaplan, and
Jensen (1997). In addition, it can also be used as a portmanteau test or
misspecification test when applied to the residuals from a fitted model. In
particular, when applied to the residuals from a fitted linear time series
model, the BDS test can be used to detect remaining dependence and the
presence of an omitted nonlinear structure. If the null hypothesis cannot
be rejected, then the original linear model cannot be rejected; if the null

1A function to estimate single-hidden-layer neural network models is in the nnet
library provided with S-PLUS.

2Loosely speaking, a time series is said to be “chaotic” if it follows a nonlinear de-
terministic process but looks random.

18.2 BDS Test for Nonlinearity 655

hypothesis is rejected, the fitted linear model is misspecified, and in this
sense, it can also be treated as a test for nonlinearity.

18.2.1 BDS Test Statistic

The main concept behind the BDS test is the correlation integral, which
is a measure of the frequency with which temporal patterns are repeated
in the data. Consider a time series for = 1 2 and define its
-history as = (1 +1). The correlation integral at em-

bedding dimension can be estimated by

=
2

(1)

XX
(;) (18.1)

where = + 1 and (;) is an indicator function that is
equal to one if | | for = 0 1 1 and zero otherwise.
Intuitively, the correlation integral estimates the probability that any two
-dimensional points are within a distance of of each other; that is, it

estimates the joint probability:

Pr(| | | 1 1| | +1 +1|)

If are iid, this probability should be equal to the following in the limiting
case:

1 = Pr(| |)

Brock, Dechert, Scheinkman, and LeBaron (1996) define the BDS statistic
as follows:

=
1

(18.2)

where is the standard deviation of (1) and can be esti-
mated consistently as documented by Brock, Dechert, Scheinkman, and
LeBaron (1997). Under fairly moderate regularity conditions, the BDS
statistic converges in distribution to (0 1)

(0 1) (18.3)

so the null hypothesis of iid is rejected at the 5% significance level whenever
| | 1 96.

18.2.2 Size of BDS Test

S+FinMetrics provides the BDSTest function for performing the BDS test.3

The arguments expected by BDSTest function are:

3The BDSTest function is implemented using the C source file provided by LeBaron
(1997). The same test can also be performed by calling nonlinearTest function with
the optional argument method set to "BDS".

656 18. Nonlinear Time Series Models

Nominal Size

M
on

te
 C

ar
lo

 S
iz

e

0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

m=2
m=3
m=4
m=5

FIGURE 18.1. Size of BDS test statistics using distribution.

> args(BDSTest)

function(x, m = 3, eps = NULL, variable.removal = T)

where x specifies the time series to be tested, m instructs the test to use
the embedding dimensions from 2 to m, and eps specifies in units of sample
standard deviations the distance threshold in (18.1). By default, BDSTest
computes the BDS statistics with set to 0 5, 1, 1 5 and 2 standard de-
viations of the data set. When the optional argument variable.removal
is set to TRUE, di erent numbers of points in the sample are removed for
di erent values of such that the test is always computed using all of
the sample observations available; if it is set to FALSE, the same points are
removed for di erent values of such that the test is always computed
using the same sample observations.

Example 116 Size of BDS test

The following script illustrates how to use the BDSTest function in a
Monte Carlo experiment to investigate the size of the BDS test:

set.seed(10)

size.mat = matrix(0, 1000, 4)

for (i in 1:1000) {

if (i %% 100 == 0) {

cat("i =", i, "\n")

}

18.2 BDS Test for Nonlinearity 657

test.dat = rt(500, df=8)

size.mat[i,] = BDSTest(test.dat, m=5, eps=1)$stat[,1]

}

One advantage of the BDS test is that it is a statistic that requires no
distributional assumption on the data to be tested. In fact, in the above
Monte Carlo experiment, the data are simulated from a distribution with
8 degrees of freedom. Each simulated sample has 500 observations, which
is usually thought to be the minimal sample size for the BDS test to have
reliable performance. The data are simulated 1000 times and BDS statistics
using embedding dimensions from 2 to 5 are computed by setting to one
standard deviation of the sample observations. The following commands
plot the size of the “one-sided” test against its nominal value4:

> size.p = seq(0.05, 0.95, by=0.05)

> size.q = qnorm(size.p)

> size.bds = apply(size.mat, 2,

+ function(x) colMeans(outer(x, size.q, FUN="<=")))

> par(fty="s")

> matplot(matrix(size.p, nrow=length(size.p), ncol=4),

+ size.bds, type="l",

+ xlab="Nominal Size", ylab="Monte Carlo Size")

> legend(0.6, 0.3, paste("m=",2:5,sep=""), type="l", lty=1:4)

and the result is shown in Figure 18.1. Considering that the Monte Carlo
experiment is conducted using only 1000 replications, the plot shows that
the test has very good size behavior for all of the chosen embedding dimen-
sions.

18.2.3 BDS Test as a Nonlinearity Test and a
Misspecification Test

Another advantage of the BDS test is that when applied to model residuals,
the first-order asymptotic distribution of BDS statistic given in (18.3) is
independent of estimation errors under certain su cient conditions. In gen-
eral, de Lima (1996) shows that for linear additive models, or models that
can be transformed into that format, the BDS test is nuisance-parameter-
free and does not require any adjustment when applied to fitted model
residuals. Thus, the BDS test can be used as a test for nonlinearity or as a
test for model misspecification.

Example 117 Nonlinearity in weekly returns of Dutch Guilder foreign ex-
change rates

4The BDS test is actually a two-sided test. However, for the purpose of illustrating
distributional properties of BDS statistics, the plots are generated using the “incorrect”
one-sided test.

658 18. Nonlinear Time Series Models

The "timeSeries" data set DFX.ts in S+FinMetrics contains weekly
returns on the Dutch Guilder spot exchange rate from January 1980 to
December 1998. To test for the existence of nonlinearity in this data set,
use the following command:

> BDSTest(DFX.ts, m=5)

BDS Test for Independence and Identical Distribution

Null Hypothesis: DFX.ts is independently and identically

distributed.

Embedding dimension = 2 3 4 5

Epsilon for close points = 0.0073 0.0146 0.0219 0.0291

Test Statistics =

[0.01] [0.01] [0.02] [0.03]

[2] 1.0802 1.5908 1.9991 2.6097

[3] 3.1661 3.0984 3.5817 4.1536

[4] 4.0523 3.9006 4.4871 5.1613

[5] 5.2798 4.7189 5.3238 5.9882

p-value =

[0.01] [0.01] [0.02] [0.03]

[2] 0.2801 0.1117 0.0456 0.0091

[3] 0.0015 0.0019 0.0003 0.0000

[4] 0.0001 0.0001 0.0000 0.0000

[5] 0.0000 0.0000 0.0000 0.0000

In the above output, the default values of = (0 5 1 0 1 5 2 0) used in
the test are converted back to the units of the original data, and the null
hypothesis that the data are iid is rejected for most combinations of and
at conventional significance levels. Since there is almost no discernible

linear structure in the levels of DFX.ts, the results from the BDS test
suggest that there may be nonlinear structure in the data.
One possibility to model the nonlinear structure in DFX.ts is to use a

GARCH(1,1) model:

> DFX.garch = garch(DFX.ts~1, ~garch(1,1), trace=F)

> summary(DFX.garch)$coef

Value Std.Error t value Pr(>|t|)

C 0.00021084425 3.939145e-004 0.5352539 5.925817e-001

A 0.00001942582 5.508377e-006 3.5265964 4.381551e-004

ARCH(1) 0.10297320531 2.096693e-002 4.9112210 1.041116e-006

GARCH(1) 0.80686268689 3.798031e-002 21.2442379 0.000000e+000

18.2 BDS Test for Nonlinearity 659

All of the estimated parameters in DFX.garch are highly significant ex-
cept for the conditional mean parameter C. To evaluate if the GARCH(1,1)
model adequately captures the nonlinear structure in DFX.ts, the BDS test
can be used again on the standardized residuals of DFX.garch as a mis-
specification test. There are two ways to apply the BDS test to GARCH
standardized residuals: One is to apply the BDS test directly to the stan-
dardized residuals:

> BDSTest(residuals(DFX.garch, standard=T), m=5,

+ eps=c(0.5, 1, 1.5))

BDS Test for Independence and Identical Distribution

Null Hypothesis: residuals(DFX.garch, standard = T) is

independently and identically distributed.

Embedding dimension = 2 3 4 5

Epsilon for close points = 0.5002 1.0004 1.5006

Test Statistics =

[0.5] [1] [1.5]

[2] -1.9487 -1.5430 -1.6035

[3] -1.4581 -1.1172 -1.2687

[4] -1.2832 -0.9735 -1.1355

[5] -0.8634 -0.6079 -0.8305

p-value =

[0.5] [1] [1.5]

[2] 0.0513 0.1228 0.1088

[3] 0.1448 0.2639 0.2045

[4] 0.1994 0.3303 0.2561

[5] 0.3879 0.5432 0.4062

and the other is to apply it to the logarithms of squared standardized
residuals5:

> BDSTest(log(residuals(DFX.garch, standard=T)^2),

+ m=5, eps=c(0.5, 1, 1.5))

BDS Test for Independence and Identical Distribution

5When the BDSTest function is applied to a fitted model object, it is currently always
applied to the residuals of the fittd model, instead of standardized residuals or logarithms
of squared standardized residuals.

660 18. Nonlinear Time Series Models

Null Hypothesis: log(residuals(DFX.garch, standard = T)^2)

is independently and identically distributed.

Embedding dimension = 2 3 4 5

Epsilon for close points = 1.1218 2.2435 3.3653

Test Statistics =

[1.12] [2.24] [3.37]

[2] -0.6461 -0.5538 -0.5463

[3] -0.8508 -0.9030 -0.9175

[4] -0.7540 -0.9977 -1.0821

[5] -0.9397 -0.8581 -1.0252

p-value =

[1.12] [2.24] [3.37]

[2] 0.5182 0.5797 0.5849

[3] 0.3949 0.3665 0.3589

[4] 0.4509 0.3184 0.2792

[5] 0.3474 0.3909 0.3052

Here, both ways of applying the BDS test suggest that the GARCH(1,1)
model provides an adequate fit to the original data and successfully removes
the nonlinearity in the data. In general, when applied to standardized resid-
uals from a fitted GARCH model, earlier studies (e.g., see Brock, Hsieh,
and LeBaron, 1991) suggested that the BDS statistic needs to be adjusted
to have the right size and Monte Carlo simulations are usually relied upon
to derive the adjustment factor for specific GARCH models. However, fol-
lowing suggestions in Brock and Potter (1993) and de Lima (1996), recent
studies (e.g., see Caporale, Ntantamis, Pantelidis, and Pittis, 2004 and Fer-
nandes and Preumont, 2002) showed that if applied to the logarithms of
squared standardized residuals from a fitted GARCH model, the BDS test
actually has correct size, because the logarithmic transformation casts the
GARCH model into a linear additive model that satisfies the conditions in
de Lima (1996) for the BDS test to be nuisance-parameter-free.6

Example 118 Size of BDS misspecification test for GARCH models

The following script performs a Monte Carlo experiment to illustrate the
di erent size behaviors of the BDS test when applied to standardized resid-
uals and logarithms of squared standardized residuals for the GARCH(1,1)
model. The data sets are simulated using the GARCH fit in DFX.garch with

6Since GARCH models with leverage e ects cannot be transformed into a linear
additive model, BDS test may not have good size behavior for those models.

18.2 BDS Test for Nonlinearity 661

Nominal Size

M
on

te
 C

ar
lo

 S
iz

e

0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

m=2
m=3
m=4
m=5

FIGURE 18.2. Size of the BDS test when applied to logarithms of squared stan-
dardized GARCH residuals.

Nominal Size

M
on

te
 C

ar
lo

 S
iz

e

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

m=2
m=3
m=4
m=5

FIGURE 18.3. Size of the BDS test when applied to standardized GARCH resid-
uals.

662 18. Nonlinear Time Series Models

1000 observations. The GARCH estimation and BDS test are repeated 1000
times.

set.seed(10)

sim.garch.dat = simulate(DFX.garch, sigma=F, n.start=500,

n=1000, n.rep=1000)

size.garch.res = matrix(0, 1000, 4)

size.garch.log = matrix(0, 1000, 4)

for (i in 1:1000) {

tmp = garch(sim.garch.dat[,i]~1, ~garch(1,1), trace=F)

if (i %% 10 == 0)

cat("Simulation No.", i, "\n")

tmp.res = residuals(tmp, standardized=T)

size.garch.res[i,] = BDSTest(tmp.res, m=5, eps=1)$stat[,1]

size.garch.log[i,] = BDSTest(log(tmp.res^2), m=5,

eps=1)$stat[,1]

}

size.p = seq(0.05, 0.95, by=0.05)

size.q = qnorm(size.p)

size.garch.res = apply(size.garch.res, 2,

function(x) colMeans(outer(x, size.q, FUN="<=")))

size.garch.log = apply(size.garch.log, 2,

function(x) colMeans(outer(x, size.q, FUN="<=")))

As in Example 116, the sizes of the “one-sided” test applied to the stan-
dardized residuals and the logarithms of squared standardized residuals are
plotted against the nominal sizes in Figure 18.3 and Figure 18.2, respec-
tively. Obviously the sizes of the BDS test computed using standardized
residuals are o and become more conservative for larger values of , but
those using logarithms of squared standardized residuals are reliable.

18.3 Threshold Autoregressive Models

As discussed in the previous subsection, when there is no prior knowledge
about the type of nonlinearity a time series may have, the BDS test can be
used to test for the existence of nonlinearity in either the time series itself
or the residuals from a fitted linear time series model. However, sometimes
economic or financial theory, or even stylized empirical facts, may suggest
a specific form of nonlinearity for a time series. In these cases, it is usually
preferred to perform the test for the specific form of nonlinearity and build
a nonlinear time series model for the form of nonlinearity detected.
One popular class of nonlinear time series models is the threshold autore-

gressive (TAR) models, which was probably first proposed by Tong (1978)
and discussed in detail in Tong (1990). The TAR models are simple and

18.3 Threshold Autoregressive Models 663

easy to understand, but rich enough to generate complex nonlinear dy-
namics. For example, it can be shown that the TAR models can have limit
cycles and thus be used to model periodic time series or produce asymme-
tries and jump phenomena that cannot be captured by a linear time series
model.
In spite of the simplicity of the TAR model form, there are many free

parameters to estimate and variables to choose when building a TARmodel,
and this has hindered its early use. Recently, however, much progress has
been made with regard to specification and estimation of TAR models. The
next subsection introduces the general form of TAR models and a special
class called SETAR models and then illustrates how to perform tests for
threshold nonlinearity and estimate unknown parameters in TAR models
using ready-to-use functions in S+FinMetrics.

18.3.1 TAR and SETAR Models

Consider a simple AR() model for a time series7 :

= + 1 1 + 2 2 + · · ·+ + (18.4)

where (= 1 2) are the AR coe cients, (0 1) and 0
is the standard deviation of disturbance term. The model parameters =
(1 2) and are independent of time and remain constant.
To capture nonlinear dynamics, TAR models allow the model parameters
to change according to the value of a weakly exogenous threshold variable
:

= X () + () if 1 (18.5)

where X = (1 1 2), = 1 2 · · · , and = 0 1

= . In essence, the 1 nontrivial thresholds (1 2 1)
divide the domain of the threshold variable into di erent regimes. In
each di erent regime, the time series follows a di erent AR() model.8

When the threshold variable = with the delay parameter being
a positive integer, the dynamics or regime of is determined by its own
lagged value and the TAR model is called a self-exciting TAR, or
SETAR model. For the ease of notation, let SETAR(1) denote the one-
regime linear AR model with = 1, SETAR(2) denote the two-regime
TAR model with = 2, etc. For the one-regime SETAR(1) model, =

0 1 = and the unknown parameters are = ((1) (1)); for the

7See Chapter 3 and the references therein for basic concepts in linear time series
analysis.

8Although the AR order is assumed to be the same in di erent regimes throughout
this chapter and in the related S+FinMetrics functions for the ease of illustration and
programming, in theory the AR order can be di erent for di erent regimes.

664 18. Nonlinear Time Series Models

two-regime SETAR(2) model, the unknown parameters include the single

threshold 1 and = ((1) (2) (1) (2)).
The next subsection introduces two approaches for testing threshold non-

linearity and estimating the unknown parameters in the associated SETAR
models, following Tsay (1989) and Hansen (1997), respectively. Although
the illustrations and examples focus on SETAR models, the theory and
procedures can also be applied to TAR models in general. Finally, note
that if only the intercept terms () are di erent in di erent regimes, SE-
TAR models can be used to capture level shifts in ; if only the variance
terms () are di erent in di erent regimes, SETAR models can be used to
capture additive outliers or innovation outliers in . Chapter 17 provides
a more comprehensive approach for analyzing time series models that are
robust to level shifts and outliers.

18.3.2 Tsay’s Approach

Before developing a SETAR model, it is preferred to test for the existence
of threshold-type nonlinearity in the time series first. The null hypothesis
is that usually the time series follows the SETAR(1) model, whereas the
alternative hypothesis is that follows a SETAR() model with 1.
One complicating issue in testing for threshold nonlinearity is that the
thresholds for = 1 2 · · · 1 are only identified under the alterna-
tive hypothesis. To avoid dealing with the thresholds directly, Tsay (1989)
proposed a conventional test based on an auxiliary regression.

Arranged Autoregression and Tsay’s Test

Tsay’s approach centers on the use of an arranged autoregression with
recursive least squares (RLS) estimation. Consider the SETAR model in
(18.5) with = . Since the threshold values are usually unknown,
Tsay suggested arranging the equations in (18.5) for = max() +
1 , where is the sample size, such that the equations are sorted
according to the threshold variable which may take any value in
Y = () with = max(1 + 1):

= X ˆ + ˆ (18.6)

where = 1 2 0, 0 = + 1 is the e ective sample size
for the above arranged autoregression, and corresponds to the index in
the original sample such that is the -th smallest value in Y . For
example, if 10 is the smallest value in Y , then 1 = 10 + ; if 20 is the
second smallest value in Y , then 2 = 20 + , etc. So if the original time
series is generated by a SETAR(2) model and there are values in Y
that are smaller than the threshold 1, then the first equations in (18.6)
correspond to the first regime and the remaining equations correspond to
the second regime.

18.3 Threshold Autoregressive Models 665

To test for the existence of threshold-type nonlinearity, Tsay suggested
computing RLS estimates of ˆ in (18.6). If there is no threshold nonlinear-
ity, the standardized predictive residuals ˆ from the RLS of (18.6) should
be white noise asymptotically and orthogonal to X . However, if is a

SETAR() process with 1, the RLS estimates of ˆ are biased, and ˆ

in the following auxiliary regression will be statistically significant:

ˆ = X0 + (18.7)

Thus, the conventional statistic for testing = 0 the above regression
can be used as a test for threshold nonlinearity.

Example 119 SETAR nonlinearity in NASDAQ realized volatility

To illustrate the usage of Tsay’s test for threshold nonlinearity, con-
sider the weekly realized volatility of the NASDAQ 100 index constructed
as follows from the S+FinMetrics data set ndx.dat:

> ndx.ret2 = getReturns(ndx.dat[,"Close"])^2

> ndx.rvol = sqrt(aggregate(ndx.ret2, FUN=sum, by="weeks",

+ week.align=1))

> colIds(ndx.rvol) = "RVOL"

> par(mfrow=c(2,2))

> plot(ndx.rvol, reference.grid=F, main="RVOL")

> plot(log(ndx.rvol), reference.grid=F, main="Log RVOL")

The levels and the logarithms of the weekly realized volatility series are
shown in the top half of Figure 18.4. The time series plots suggest that the
volatility may have switched to a di erent regime after the first quarter of
2000. Before testing for threshold nonlinearity, the ACF and PACF plots
can be used to help identify the AR order to use:

> ndx.acf = acf(log(ndx.rvol))

> ndx.pacf = acf(log(ndx.rvol), type="partial")

The resulting plots are shown in the bottom half of Figure 18.4. The
ACF function decays very slowly and remains significant even after 30 lags,
whereas the PACF function is significant for the first 6 lags. This suggests
that an AR model with order from 2 to 6 may be considered as a starting
point for modeling the logarithms of realized volatility log(ndx.rvol).9

The S+FinMetrics function nonlinearTest can now be used to test for
threshold nonlinearity:

9Hereafter, the logarithms of ndx.rvol are used because usually the logarithms of
realized volatility tend to be normally distributed. See Andersen, Bollerslev, Diebold,
and Ebens (2001) for a detailed analysis of properties of realized volatility for stock
returns.

666 18. Nonlinear Time Series Models

RVOL

Q1 Q3 Q1 Q3 Q3 Q1 Q3 Q4
1996 1997 1998 1999 2000 2001

0.
02

0.
10

0.
18

RVOL

Q1 Q3 Q1 Q3 Q3 Q1 Q3 Q4
1996 1997 1998 1999 2000 2001

-4
.5

-3
.5

-2
.5

Lag

A
C

F

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : log(ndx.rvol)

Lag

Pa
rti

al
 A

C
F

0 5 10 15 20

0.
0

0.
2

0.
4

 Series : log(ndx.rvol)

FIGURE 18.4. Weekly realized volatility of the NASDAQ 100 index.

> nonlinearTest(log(ndx.rvol), method="threshold", p=6, d=1:6)

Nonlinearity Test: Threshold Nonlinearity

Null Hypothesis: no threshold nonlinearity

F-stat dof P-val

d=1 1.2568 (7,253) 0.2724

d=2 1.4203 (7,253) 0.1974

d=3 1.2586 (7,253) 0.2714

d=4 0.5104 (7,253) 0.8264

d=5 0.5224 (7,253) 0.8173

d=6 0.1179 (7,253) 0.9971

Note that the optional argument p specifies the AR order to use in the
arranged autoregression, and the optional argument d is used to select the
delay parameters from 1 to 6. The output gives the statistics and their
corresponding -values for all chosen values of delay parameter , and it
shows that the evidence for threshold nonlinearity is not strong with the
AR(6) specification. Since a high-order AR model may actually approxi-
mate nonlinear dynamics relatively well, a lower-order AR(2) specification
may also be tried:

> nonlinearTest(log(ndx.rvol), method="threshold", p=2, d=1:2)

18.3 Threshold Autoregressive Models 667

Nonlinearity Test: Threshold Nonlinearity

Null Hypothesis: no threshold nonlinearity

F-stat dof P-val

d=1 4.4468 (3,265) 0.0046

d=2 4.0010 (3,265) 0.0082

Now the null hypothesis of no threshold nonlinearity is actually rejected
for both = 1 and = 2 with an AR(2) specification!

Choice of Delay Parameter and Thresholds

After rejecting the null hypothesis of no threshold nonlinearity, one pro-
ceeds to the next stage of estimating a SETAR model. Tsay (1989) sug-
gested identifying the delay parameter and the thresholds for =
1 1 first, and then used least squares (LS) to estimate the un-
known parameters in (18.5) with given values of and thresholds. As
long as there are enough observations in each regime, the LS estimates are
consistent.
For a given AR order , Tsay suggested choosing the delay parameter

such that
= argmax ()

where () is the statistic of the auxiliary regression (18.7) with AR
order and the delay parameter equal to , and is a set of values of
to consider. For the NASDAQ realized volatility series, can be set to 1
according to the nonlinearity test output using this rule.
Tsay (1989) also proposed using two graphical tools for identifying the

threshold values: (1) the scatter plot of standardized predictive residuals
ˆ from the arranged autoregression versus the ordered threshold variable;

(2) the scatter plot of the -statistics of the RLS estimates of ˆ from the
arranged autoregression versus the ordered threshold variable. Both plots
may exhibit structural breaks at the threshold values. To produce such
plots for the nonlinearity test, set the optional argument save.RLS to TRUE
when calling nonlinearTest:

> ndx.test = nonlinearTest(log(ndx.rvol), method="threshold",

+ p=2, d=1, save.RLS=T)

> names(ndx.test)

[1] "stat" "df" "threshold" "residuals"

[4] "tRatios" "yd" "method"

The returned object ndx.test includes the following components: yd
is the ordered threshold variable, residuals is the standardized predic-
tive residuals, and tRatios is the -statistics of RLS estimates of the AR

668 18. Nonlinear Time Series Models

Y_{t-1}

t-r
at

io
 o

f A
R

(1
)

-3.5 -3.0 -2.5 -2.0 -1.5

0
2

4
6

Y_{t-1}

t-r
at

io
 o

f A
R

(2
)

-3.5 -3.0 -2.5 -2.0 -1.5

2.
0

3.
0

4.
0

FIGURE 18.5. Scatter plot of -statistics of RLS estimates of AR coe cients
versus ordered threshold variable.

coe cients. To produce the scatter plot of -statistics versus the ordered
threshold variable, for example, use the following commands:

> par(mfrow=c(2,1))

> plot(ndx.test$yd, ndx.test$tRatio[,1], xlab="Y_{t-1}",

+ ylab="t-ratio of AR(1)")

> plot(ndx.test$yd, ndx.test$tRatio[,2], xlab="Y_{t-1}",

+ ylab="t-ratio of AR(2)")

The plots in Figure 18.5 show that both estimates are significant, with
-statistics greater than 2 in absolute values in most cases. In addition, the
trend in the -statistics seems to have two breaks: One occurs when the
threshold variable is around 2 8 and the other occurs when the threshold
variable is around 2 4. This suggests a SETAR(3) model with two non-
trivial threshold values: 1 = 2 8 and 2 = 2 4.

LS Estimates of SETAR Model

After choosing the delay parameter and the thresholds, other unknown
parameters in of the SETAR model may be simply estimated by LS using
the S+FinMetrics function SETAR, which takes the following arguments:

> args(SETAR)

function(x, threshold, p = 1, d = NULL)

18.3 Threshold Autoregressive Models 669

where the first argument specifies the data to be used, the second argument
gives the vector of threshold values, and the optional arguments p and d
specify the AR order and delay parameter, respectively. To estimate the
SETAR(3) model with thresholds (2 8 2 4), use the following command:

> ndx.setar = SETAR(log(ndx.rvol), c(-2.8, -2.4), p=2, d=1)

> summary(ndx.setar)

Call:

SETAR(x = log(ndx.rvol), threshold = c(-2.8, -2.4), p = 2,

d = 1)

Coefficients:

regime.1 regime.2 regime.3

Intercept -1.5043 -2.4463 -3.2661

(std.err) 0.2778 1.1323 0.8676

(t.stat) -5.4157 -2.1605 -3.7643

lag1 0.2866 -0.0373 -0.6283

(std.err) 0.0776 0.4400 0.3795

(t.stat) 3.6942 -0.0848 -1.6555

lag2 0.2573 0.1381 0.2191

(std.err) 0.0687 0.1305 0.1279

(t.stat) 3.7449 1.0577 1.7138

Std. Errors of Residuals:

regime.1 regime.2 regime.3

0.4291 0.3794 0.3583

Information Criteria:

logL AIC BIC HQ

-157.5830 333.1659 366.5000 346.5063

total regime.1 regime.2 regime.3

Degree of freedom: 300 228 44 19

Time period: from 01/15/1996 to 10/08/2001

Note that the AR coe cients for the first regime are estimated to be
(0 29 0 26) which appear to be significant, whereas the AR coe cients
for the second and third regimes are estimated to be (0 03 0 14) and
(0 63 0 22), respectively, and are not very significant. The estimated
regime indices can be plotted as follows:

> plot(timeSeries(ndx.setar$regime,

670 18. Nonlinear Time Series Models

R
eg

im
e

In
de

x

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
1996 1997 1998 1999 2000 2001

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

FIGURE 18.6. Estimated regime indices of ndx.setar.

+ pos=positions(ndx.rvol)[-(1:2)]), reference.grid=F,

+ ylab="Regime Index", plot.args=list(type="h"))

and the plot is shown in Figure 18.6. It can be seen that most of the
observations prior to 2000 fall into the first regime, and the third regime
observations usually follow the second regime observations.

Predictions from SETAR Models

After estimating a SETAR model, sometimes a more important task is
to generate forecasts of future values of the time series that is of interest.
Predictions from SETAR models can be easily computed using Monte Carlo
simulations, by following the same principle used for vector autoregressive
forecasting (see Section 11.3 for details). For example, to generate 1-step-
ahead to 100-step-ahead forecasts from the fitted model ndx.setar, use
the following command:

> class(ndx.setar)

[1] "SETAR"

> ndx.pred = predict(ndx.setar, n.predict=100, CI.alpha=0.6,

+ n.sim=10000)

Note that the fitted object ndx.setar has class "SETAR". By calling the
generic predict function on "SETAR" objects, the simulation-based fore-
casting method implemented in predict.SETAR is automatically applied

18.3 Threshold Autoregressive Models 671

0 20 40 60 80 100

-3
.6

-3
.4

-3
.2

-3
.0

-2
.8

-2
.6

-2
.4

FIGURE 18.7. Predicted realized volatility (in logarithm scale) from ndx.setar.

on the "SETAR" objects. The optional argument n.predict is used to spec-
ify the number of forecasts to obtain in the future, the argument CI.alpha
is used to specify 60% pointwise confidence intervals for the forecasts based
on Monte Carlo simulations, and the argument n.sim is used to specify the
number of simulations to be used for computing the forecasts. The forecasts
and their pointwise confidence intervals can be plotted as follows:

> tsplot(cbind(ndx.pred$values, ndx.pred$CI), lty=c(1,6,6))

and the plot is shown Figure 18.7. After less than 20 steps, the forecasts
settle down to the asymptotic mean of the SETAR process.

18.3.3 Hansen’s Approach

Although the procedure introduced in the above subsection for identifying
and estimating SETAR models is easy to perform, it requires some human
decisions, especially for choosing the threshold values. This subsection in-
troduces another test for threshold nonlinearity and another procedure for
estimating SETAR models as proposed by Hansen (1997). The advantage
of this procedure is that the thresholds can be estimated together with
other model parameters and valid confidence intervals can be constructed
for the estimated thresholds. The disadvantage is that the current imple-

672 18. Nonlinear Time Series Models

mentation only supports the two-regime SETAR model and thus only one
threshold can be estimated.10

Hansen’s sup-LR Test

Hansen (1997) considered the following two-regime variant of (18.5):

= X (1)(1 (1)) +X
(2) (1) + (18.8)

where () is the indicator function that is equal to 1 if is true and 0
otherwise, iid(0 2) and there is only one nontrivial threshold 1. As
discussed in the previous subsection, if and 1 are known, then the model
parameters = ((1) (2) 2) can be estimated by least squares:

ˆ = argmin
(1) (2)

ˆ2(1) = argmin
(1) (2)

1
0
X
=

ˆ2 (18.9)

where = max(1 + 1) and 0 = + 1 is the e ective sample
size after adjusting for starting values and the delay parameter.
To test the null hypothesis of SETAR(1) against the alternative hypoth-

esis of SETAR(2), the likelihood ratio test assuming normally distributed
errors can be used:

(1) =
RSS0 RSS1

ˆ21(1)
= 0 ˆ

2
0 ˆ21(1)

ˆ21(1)
(18.10)

where RSS0 is the residual sum of squares from SETAR(1), RSS1 is the
residual sum of squares from SETAR(2) given the threshold 1, and ˆ

2
0 is

the residual variance of SETAR(1). The above test is also the standard F
test since (18.8) is a linear regression. However, since the threshold 1 is
usually unknown, Hansen (1997) suggested computing the following sup-LR
test :

= sup
1 Y

(1) (18.11)

by searching over all of the possible values of the threshold variable .
In practice, to ensure that each regime has a nontrivial proportion of ob-
servations, a certain percentage of Y at both ends are usually trimmed
and not used.
The sup-LR test has near-optimal power as long as the error term is

iid. If is not iid, the test needs to be replaced by the heteroskedasticity-
consistent Wald or Lagrange multiplier test. One complicating issue is that
since 1 is only identified under the alternative, the asymptotic distribution
of is not 2 and nonstandard. Hansen (1996) showed that the asymptotic

10Hansen (1999) has generalized this procedure to SETAR models with more than
two regimes.

18.3 Threshold Autoregressive Models 673

distribution may be approximated by a bootstrap procedure in general,
and Hansen (1997) gave the analytic form of the asymptotic distribution
for testing against SETAR(2) models.
The nonlinearTest function in S+FinMetrics can also be used to pro-

duce Hansen’s sup-LR test, simply by setting the optional argument method
to "sup-LR". For example, to test for threshold nonlinearity in weekly real-
ized volatility of the NASDAQ 100 index using the same AR(2) specification
and choosing the threshold variable to be = 1 as in Tsay’s test,
use the following command11:

> nonlinearTest(log(ndx.rvol), method="sup-LR", p=2, d=1,

+ trim.pct=0.1, n.boot=1000)

Nonlinearity Test: Hansen sup-LR Nonlinearity

Null Hypothesis: no threshold with the specified threshold

variable

Under Maintained Assumption of Homoskedastic Errors --

Number of Bootstrap Replications 1000

Trimming percentage 0.1

Threshold Estimate -2.8768

F-test for no threshold 22.9687

Bootstrap P-Value 0

Note that the optional argument trim.pct is used to trim 10% observa-
tions at both ends ofY and n.boot is used to set the number of bootstrap
simulations for computing the -value of the test. Again, the null hypoth-
esis of no threshold nonlinearity is strongly rejected. To produce the test
robust to heteroskedastic errors, simply set the optional argument hetero
to TRUE:

> nonlinearTest(log(ndx.rvol), method="sup-LR", p=2, d=1,

+ trim.pct=0.1, n.boot=1000, hetero=T)

Nonlinearity Test: Hansen sup-LR Nonlinearity

Null Hypothesis: no threshold with the specified threshold

variable

Allowing Heteroskedastic Errors using White Correction --

Number of Bootstrap Replications 1000

Trimming percentage 0.1

11General TAR alternatives with arbitrary threshold variable can also be tested by
using setting the optional argument q instead of d.

674 18. Nonlinear Time Series Models

Threshold Estimate -2.8768

F-test for no threshold 18.7357

Bootstrap P-Value 0

Sequential Estimation of SETAR Models

After confirming the existence of threshold nonlinearity, Hansen (1997) sug-
gested estimating the threshold value 1 together with using LS methods:

1̂ = argmin
1 Y

ˆ2(1) (18.12)

where ˆ2(1) is the residual variance of the LS estimate of (18.8) given
the threshold 1 and the delay parameter . So the threshold value 1 can
be estimated sequentially by searching over the possible values of 1. If the
delay parameter is not known, it can be estimated similarly by expanding
the search to another dimension:

(1̂)̂ = argmin
1

ˆ2(1) (18.13)

One thing to note is that for the asymptotic inference on SETAR models
to work correctly, each regime must have a nontrivial proportion of obser-
vations in the limit. Therefore, just as in computing Hansen’s sup-LR test,
a certain percentage of Y at both ends are usually trimmed and not used
when searching for the value of 1.
The TAR function in S+FinMetrics implements the above sequential es-

timation approach.12 For example, to estimate a two-regime SETAR model
with = 1 and AR(2) components, use the following command:

> ndx.setar.r = TAR(log(ndx.rvol), p=2, d=1, trim.pct=0.1)

> ndx.setar.r

Call:

TAR(x = log(ndx.rvol), p = 2, d = 1, trim.pct = 0.1)

Coefficients:

regime.1 regime.2

intercept -2.0356 -1.4614

lag1 0.1903 0.2183

lag2 0.2056 0.2435

12As its name suggests, the TAR function actually supports general TAR models, in
addition to SETAR models. A general threshold variable can be used by specifying
the optional argument q. In addition, the TAR function also allows for the use of some
popular functions of a variable as the threshold variable. See the online help file for TAR
for details.

18.3 Threshold Autoregressive Models 675

Std. Errors of Residuals:

regime.1 regime.2

0.4233 0.3828

Information Criteria:

logL AIC BIC HQ

-155.7369 323.4739 345.6966 332.3674

total regime.1 regime.2

Degree of freedom: 300 207 87

Time period: from 01/15/1996 to 10/08/2001

Note that the optional argument trim.pct is used to set the trimming per-
centage for Y to 10%. Compared with the three-regime SETAR fit in the
previous subsection, this two-regime SETAR model actually gives a bet-
ter fit in terms of log-likelihood value and Bayesian information criterion
(BIC), which is probably due to the fact the threshold value is also opti-
mized in this fit. The estimated threshold value is given as a component in
the returned object ndx.setar.r:

> ndx.setar.r$qhat

[1] -2.876807

which is quite close to the first threshold identified using Tsay’s -statistics
plot in the previous subsection.

Confidence Interval for the Threshold

Using the generic summary function on the fitted model object ndx.setar.r
displays more details of the model fit:

> summary(ndx.setar.r)

Call:

TAR(x = log(ndx.rvol), p = 2, d = 1, trim.pct = 0.1)

Minimized SSE for all threshold variable candidates:

RVOL.lag1

49.84288

Threshold estimate for the threshold variable chosen with

smallest minimized SSE:

CI.lower point CI.upper

-3.826435 -2.876807 -2.828314

Coefficients and standard errors:

regime.1 (se) regime.2 (se)

676 18. Nonlinear Time Series Models

intercept -2.036 0.325 -1.461 0.372

lag1 0.190 0.103 0.218 0.150

lag2 0.206 0.073 0.244 0.099

Coefficient confidence intervals:

regime.1.lower regime.1.upper

intercept -2.700 -1.075

lag1 -0.020 0.417

lag2 0.055 0.412

regime.2.lower regime.2.upper

intercept -2.435 -0.454

lag1 -0.093 0.600

lag2 -0.003 0.472

Std. Errors of Residuals:

regime.1 regime.2

0.423 0.383

Information Criteria:

logL AIC BIC HQ

-155.737 323.474 345.697 332.367

total regime.1 regime.2

Degree of freedom: 300 207 87

Time period: from 01/15/1996 to 10/08/2001

Note that standard inference statistics as well as confidence intervals for
both the coe cients and the threshold are given. In particular, as pro-
posed by Hansen (1997), an asymptotically valid confidence interval for
the threshold is constructed by inverting the likelihood ratio (LR) test for
testing the null hypothesis that the threshold is equal to a given value :

LR() = 0 ˆ
2() ˆ2(1̂)

ˆ2(1̂)
(18.14)

The 100 · % confidence interval (CI) for the threshold 1 is given by the set
of values of for which the above LR test cannot be rejected at significance
level 1 :

CI() = { : () Z } (18.15)

where Z is the 100 · % quantile of the asymptotic distribution of the LR
statistic given in Hansen (1997). A graphical tool to help locate the confi-
dence interval for the threshold is to plot the above LR statistics against
di erent values of , and choose the region of close to 1 where the LR
statistics are smaller than the critical value Z . The necessary information

18.3 Threshold Autoregressive Models 677

Threshold

LR
 s

ta
t

-3.8 -3.6 -3.4 -3.2 -3.0 -2.8 -2.6

0
5

10
15

FIGURE 18.8. Confidence interval for threshold value by inverting likelihood
ratio statistics.

to generate such a plot is contained in the LR.q component of the fitted
model object. For example, to produce the plot using the fitted model
object ndx.setar.r, use the following commands:

> names(ndx.setar.r$LR.q)

[1] "LR" "Threshold" "Critical"

> plot(ndx.setar.r$LR.q$Threshold, ndx.setar.r$LR.q$LR,

+ type="b", xlab="Threshold", ylab="LR stat")

> abline(h=ndx.setar.r$LR.q$Critical)

and the plot is shown in Figure 18.8. This plot can also be generated
directly and applying the generic plot function on the fitted model object
ndx.setar.r.

Predictions from TAR Models

Just like with SETAR models, predictions from general TAR models can
be computed using Monte Carlo simulations, as long as the future values
of the threshold variable are known. In fact, the objects returned by the
TAR function have class "TAR", which inherits from the "SETAR" class. For
example,

> class(ndx.setar.r)

[1] "TAR"

678 18. Nonlinear Time Series Models

> inherits(ndx.setar.r, "SETAR")

[1] T

Thus, when the generic predict function is called on "TAR" objects, the
simulation-based forecasting procedure in predict.SETAR is also used to
produce the forecasts. For example, to generate forecasts from the fitted
model object ndx.setar.r, use the following command:

> ndx.pred.2 = predict(ndx.setar.r, n.predict=100,

+ CI.alpha=0.6, n.sim=10000)

which are very similar to the forecasts produced earlier using a three-regime
model.

18.4 Smooth Transition Autoregressive Models

In the TAR models introduced in the previous section, a regime switch
happens when the threshold variable crosses a certain threshold. Although
the model can capture many nonlinear features usually observed in eco-
nomic and financial time series, sometimes it is counterintuitive to sug-
gest that the regime switch is abrupt or discontinuous. Instead, in some
cases it is reasonable to assume that the regime switch happens gradually
in a smooth fashion. If the discontinuity of the thresholds is replaced by
a smooth transition function, TAR models can be generalized to smooth
transition autoregressive (STAR) models.
In this section, two main STAR models — logistic STAR and exponential

STAR — are introduced. After illustrating how to test for STAR nonlin-
earity, examples will be given to show how to estimate STAR models in
S+FinMetrics. A systematic modeling cycle approach for STAR models
was proposed by Teräsvirta (1994), and van Dijk, Teräsvirta, and Franses
(2002) provided a survey of recent development for STAR models.

18.4.1 Logistic and Exponential STAR Models

In the SETAR model (18.8) considered in the previous section, the obser-
vations are generated either from the first regime when is smaller
than the threshold or from the second regime when is greater than the
threshold. If the binary indicator function is replaced by a smooth tran-
sition function 0 () 1 which depends on a transition variable
(like the threshold variable in TAR models), the model becomes a STAR
model:

= X (1)(1 ()) +X (2) () + (18.16)

Now, the observations switch between two regimes smoothly in the sense
that the dynamics of may be determined by both regimes, with one

18.4 Smooth Transition Autoregressive Models 679

Logistic

z_t

G
(z

_t
)

-4 -2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

gamma=1
gamma=5

Exponential

z_t

G
(z

_t
)

-4 -2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

gamma=1
gamma=5

FIGURE 18.9. Logistic and exponential transition functions.

regime having more impacts in some times and the other regime having
more impacts in other times. Another interpretation is that STAR models
actually allow for a “continuum” of regimes, each associated with a di erent
value of ().
Two popular choices for the smooth transition function are the logis-

tic function and the exponential function. Using the logistic function, the
transition function can be specified as

(;) =
1

1 + ()
0 (18.17)

and the resulting model is referred to as logistic STAR or LSTAR model.
The parameter can be interpreted as the threshold, as in TARmodels, and
determines the speed and smoothness of transition. Using the exponential

function, the transition function can be specified as

(;) = 1 ()2 0 (18.18)

and the resulting model is referred to as exponential STAR or ESTAR
model. As in LSTAR models, can be interpreted as the threshold and
determines the speed and smoothness of transition.
In spite of the similarity between LSTAR and ESTAR models, they ac-

tually allow for di erent types of transitional behavior. To illustrate this
point, Figure 18.9 plots the logistic and exponential transition functions

680 18. Nonlinear Time Series Models

with = 0 and = 1 and 5. The following properties can be readily
observed:

1. If is small, both transition functions switch between 0 and 1 very
smoothly and slowly; if is large, both transition functions switch
between 0 and 1 more quickly.

2. As , both transition functions become binary. However, the
logistic function approaches the indicator function () and the
LSTAR model reduces to a TAR model; the exponential function
approaches the indicator function (=) and the model does not
nest the TAR model as a special case.

3. The logistic function is monotonic and the LSTAR model switches
between two regimes smoothly depending on how much the transi-
tion variable is smaller than or greater than the threshold . The
exponential function is symmetrical and the ESTAR model switches
between two regimes smoothly depending on how far the transition
variable is from the threshold . For the LSTAR model, both the
distance between and and its sign matter; for the ESTAR model,
only the distance between and matters, but not the sign.

18.4.2 Test for STAR Nonlinearity

Testing for the existence of STAR-type nonlinearity is usually the first step
toward building a STAR model. However, just like the test for threshold-
type nonlinearity, tests for the null hypothesis of a simple AR model against
the alternative of a STAR model have nonstandard asymptotic distribu-
tions, because some parameters in the STAR model are not identified under
the null hypothesis, such as the AR coe cients (2) in the second regime,
the transition parameter and the threshold .

STAR Nonlinearity Test with Homoskedastic Errors

To avoid complicated issues caused by the unidentified STAR model pa-
rameters under the null hypothesis of a linear AR model, Luukkonen,
Saikkonen, and Teräsvirta (1988) proposed replacing the transition func-
tion (;) by a suitable Taylor series approximation around = 0. It
turns out that if the transition function (;) in the LSTAR model is
replaced by its third-order Taylor series approximation, the LSTAR model
in (18.16) can be written as13

= X 0 +X 1 +X
2

2 +X
3

3 + (18.19)

13See Franses and van Dijk (2000) for details.

18.4 Smooth Transition Autoregressive Models 681

where the coe cient vectors for = 0 1 2 3 4 are functions of the origi-
nal model parameter . Similarly, if the transition function (;) in the
ESTAR model is replaced by its second-order Taylor series approximation,
the ESTAR model in (18.16) can be written as

= X 0 +X 1 +X
2

2 +X
3

3 +X
4

4 + (18.20)

Now, testing the null hypothesis of a linear AR model against a nonlinear
STAR model is equivalent to testing the null hypothesis 0 : = 0 for
= 1 2 3 4 in the above auxiliary regressions, which is a conventional

Lagrange multiplier (LM) test with an asymptotic 2 distribution.
In practice, it has been found that the LM test based on (18.19) for

LSTAR models also has power against ESTAR alternatives. Thus, for rea-
sons of parsimony, usually only the LM test based on (18.19) is computed
for testing STAR-type nonlinearity in general. Also, instead of using the
asymptotic 2 distribution, in small samples it is usually preferred to use
the version of the LM test, which tends to have better size and power
properties. Finally, since TAR models are special cases of LSTAR models
when the transition parameter , it can be shown that the LM test
also has power against threshold-type nonlinearity. Granger and Teräsvirta
(1993) discuss these issues in more detail.
The LM test for STAR nonlinearity can be performed in S+FinMetrics

using the nonlinearTest function, by setting the optional argument method
to "STAR-LM". For example, to test for STAR-type nonlinearity in NAS-
DAQ realized volatility ndx.rvol, use the command

> nonlinearTest(log(ndx.rvol), method="STAR-LM", p=2, d=1:2)

Nonlinearity Test: STAR Nonlinearity

Null Hypothesis: no smooth threshold nonlinearity

Under Maintained Assumption of Homoskedastic Errors --

ChiSq-stat ChiSq-dof ChiSq.pv-val

RVOL.lag1 21.3008 6 0.0016

RVOL.lag2 13.6974 6 0.0332

F-stat F-dof F.pv-val

RVOL.lag1 3.7068 (6,291) 0.0014

RVOL.lag2 2.3204 (6,291) 0.0333

In the above example, the transition variable is set to by specifying
the optional argument d.14 More than one value of d can be specified and

14A weakly exogenous variable can also be used as the transition variable by setting
the optional argument q instead of d. See the online help file for nonlinearTest for
details.

682 18. Nonlinear Time Series Models

nonlinearTest automatically computes the LM test for all of the given
values of d. If the null hypothesis of a linear AR model is rejected, the
test statistics based on di erent values of d can be used to choose the
appropriate value of in the final STAR model. In the output shown above,
the null hypothesis of no STAR-type nonlinearity is rejected at the 5%
significance level for both = 1 and = 2. In addition, the -values from
both the 2 test and test prefer = 1, which is consistent with the results
of threshold-type nonlinearity tests presented in the previous section.

STAR Nonlinearity Test with Heteroskedastic Errors

The LM test presented above assumes that the error term in (18.16) has
constant variance. However, economic and financial time series are often
heteroskedastic, and neglected heteroskedasticity may lead to spurious re-
jection of the null hypothesis. Based on Davidson and MacKinnon (1985),
Granger and Teräsvirta (1993) summarized the following LM test for non-
linearity, which is robust toward heteroskedastic errors:

1. Regress on X to obtain the LS residuals ˆ .

2. Regress X for = 1 2 3 on X to obtain the residuals R̂ .

3. Regress the unit vector on R̂ ˆ and compute the LM statistic as the
explained sum of squares from this regression.

This test can be performed just as before by setting the optional argu-
ment hetero to TRUE:

> nonlinearTest(log(ndx.rvol), method="STAR-LM", p=2, d=1:2,

+ hetero=T)

Nonlinearity Test: STAR Nonlinearity

Null Hypothesis: no smooth threshold nonlinearity

Allowing Heteroskedastic Errors using White Correction --

ChiSq-stat ChiSq-dof ChiSq.pv-val

RVOL.lag1 15.0731 6 0.0197

RVOL.lag2 10.8287 6 0.0938

F-stat F-dof F.pv-val

RVOL.lag1 2.5657 (6,291) 0.0195

RVOL.lag2 1.8162 (6,291) 0.0957

Now, the null hypothesis cannot be rejected at 5% significance level when
= 2, but it is still rejected at 5% level when = 1. However, based on

some simulation evidence, Lundbergh and Teräsvirta (1998) suggested that

18.4 Smooth Transition Autoregressive Models 683

in some cases this robustification may not be desirable because it removes
most of the power of the test.

18.4.3 Estimation of STAR Models

After confirming the existence of STAR-type nonlinearity in a time series,
one can proceed to the next stage of building a STAR model. This usu-
ally involves choosing the transition variable and the form of transition
function. As mentioned in the previous subsection, the test for STAR-type
nonlinearity can be computed for a range of transition variables, and the
-values of the test statistics can be used to help choose the appropriate
transition variable. The choice between the LSTAR model and the ESTAR
model can usually be made by considering the specific transitional behav-
ior under investigation or by comparing di erent information criteria. This
subsection first shows how to estimate LSTAR models using the STAR func-
tion in S+FinMetrics and then it walks through an example of estimating
an ESTAR model using the S-PLUS function nlregb.

LSTAR Model

Once the AR order and the transition variable have been chosen, LSTAR
models can be estimated by nonlinear least squares (NLS):

ˆ = argmin
X
ˆ2 (18.21)

where

ˆ = X̃ ˆ

X̃ =

·
X (1 (;))
X (;)

¸
ˆ =

"
ˆ (1)

ˆ (2)

#
=

"X
(X̃0X̃)

1 "X
X̃0

#
Note that the minimization of the NLS objective function is only performed

over and because ˆ
(1)
and ˆ

(2)
can be estimated by least squares once

and are known. Under the additional assumption that the errors are
normally distributed, NLS is equivalent to the maximum likelihood estima-
tion. Otherwise, the NLS estimates can be interpreted as quasi-maximum
likelihood estimates.

Example 120 LSTAR model for NASDAQ realized volatility

The following command fits an LSTAR model to the logarithms of weekly
realized volatility of the NASDAQ 100 index, with the same AR order and
delay parameter used in the previous examples:

684 18. Nonlinear Time Series Models

> ndx.lstar = STAR(log(ndx.rvol), p=2, d=1)

> summary(ndx.lstar)

Call:

STAR(X = log(ndx.rvol), p = 2, d = 1)

Parameter estimates:

Values Std.Error Std.Error.white

gamma 1.608 1.113 1.282

threshold -2.845 0.398 0.309

Coefficient estimates and standard errors:

Lower regime:

Values Std.Error Std.Error.white

intercept(lower) -3.729 1.832 2.696

lag1(lower) -0.221 0.404 0.632

lag2(lower) 0.205 0.092 0.092

Upper regime:

Values Std.Error Std.Error.white

intercept(upper) -2.668 1.904 1.497

lag1(upper) -0.396 1.076 0.896

lag2(upper) 0.216 0.134 0.131

Std. Errors of Residuals:

[1] 0.415

Information Criteria:

logL AIC BIC HQ

-158.863 329.727 351.950 338.620

Degrees of freedom:

total residuals

300 294

Time period: from 01/15/1996 to 10/08/2001

Note that the threshold estimate 2 85 is very close to the SETAR es-
timate of 2 88 given by the TAR estimate ndx.setar.r. However, by
allowing for a smooth transition between two regimes, the AR coe cients
in both regimes are quite di erent from those estimated by ndx.setar.r.

18.4 Smooth Transition Autoregressive Models 685

0 20 40 60 80 100

-3
.6

-3
.4

-3
.2

-3
.0

-2
.8

-2
.6

-2
.4

-2
.2

FIGURE 18.10. Predicted realized volatility (in logarithmic scale) from
ndx.lstar.

Predictions from LSTAR Model

Simulation-based forecasts from the LSTAR model can be easily generated
using the same principle for generating forecasts from VAR models and
SETAR models. The fitted model objects returned by the STAR function
have class "STAR". By calling the generic predict function on fitted model
objects, the method function predict.STAR is automatically invoked. For
example, the following command generates 100-step-ahead forecasts from
ndx.lstar:

> ndx.pred.3 = predict(ndx.lstar, n.predict=100,

+ CI.alpha=0.6, n.sim=10000)

> tsplot(cbind(ndx.pred.3$values, ndx.pred.3$CI),

+ lty=c(1,6,6))

and Figure 18.10 shows the forecasts with 60% pointwise confidence in-
tervals. The forecasts are very similar to those generated by the SETAR
model object ndx.setar, except they do not have the initial small peak
exhibited by the SETAR forecasts.

ESTAR Model

Currently, the STAR function in S+FinMetrics only supports LSTAR mod-
els, not ESTAR models. However, the estimation of ESTAR models fol-

686 18. Nonlinear Time Series Models

lows essentially the same procedure in (18.21) with the transition function
given by (18.18). Here, an example is given to show how to estimate ES-
TAR models using the S-Plus function nlregb for nonlinear least squares
estimation.
The arguments expected by nlregb are as follows:

> args(nlregb)

function(nres, start, residuals, jacobian=NULL, scale=NULL,

control = NULL, lower = -Inf, upper = Inf, ...)

where the first argument, nres, specifies the number of observations or
residuals to be used, the second argument, start, specifies the starting
values for the unknown parameters, and the third argument, residuals,
is an S-PLUS function that takes the parameter values and computes the
residual vector with length equal to nres. The optional arguments lower
and upper can be used to specify lower and upper bounds on the unknown
parameters.
One general issue in estimating STAR models is that the transition pa-

rameter can become large and cause numerical problems in the optimiza-
tion procedure. To alleviate the potential numerical problems in estimating
ESTAR models, it is usually preferred to estimate the following transition
function instead of the original exponential function in (18.18):

(; ˜) = 1 exp

½
˜ ()2

2

¾
(18.22)

where 2 is the sample variance of the transition variable . The new
parameter ˜ can be transformed to the original parameter as follows:

=
˜

2
(18.23)

This transformation has the following numerical properties:

1. The squared distance between and the threshold is now scaled
by the variance of which makes it scale-free.

2. The original parameter lies in (0) which requires a constrained
optimization in terms of . The new parameter ˜ lies in ()
and is unconstrained.

3. The new parameter ˜ is a linear function of the logarithm of which
is more dampened than .

Using the new formulation in (18.22), the following S-PLUS function takes
the unknown parameter values (˜) and returns the residual vector:

18.5 Markov Switching State Space Models 687

ESTAR.res = function(theta, g.scale, x, y, q)

{

k = ncol(x)

G = 1 - exp(- exp(theta[1])/g.scale * (q - theta[2])^2)

X = cbind(x * (1 - G), x * G)

m = crossprod(t(backsolve(chol(crossprod(X)), diag(2 * k))))

beta = m %*% t(X) %*% y

y - X %*% beta

}

Now, to estimate an ESTAR model with an AR(2) specification and
transition variable = 1 using the NASDAQ realized volatility series,
use the following commands:

> ndx.LHS = log(ndx.rvol)[3:length(ndx.rvol)]@data

> ndx.RHS = cbind(1, tslag(log(ndx.rvol), 1:2, trim=T)@data)

> ndx.estar = nlregb(length(ndx.rvol)-2,

+ start=c(0,mean(ndx.RHS[,2])),

+ residuals=ESTAR.res,

+ lower=c(-Inf, min(ndx.RHS[,2])),

+ upper=c(Inf, max(ndx.RHS[,2])),

+ g.scale=var(ndx.RHS[,2]),

+ x=ndx.RHS, y=ndx.LHS, q=ndx.RHS[,2]))

Note that the regressors ndx.RHS include a constant term and two lagged
values of , and the transition variable 1 is given by the second column
of ndx.RHS. In the call to the nlregb function, the starting values of ˜
is set to zero, which corresponds to setting = 1, and the starting value
of is simply set to the mean of the transition variable 1. The other
arguments g.scale, x, y, and q to the residual function ESTAR.res are
passed as optional arguments to nlregb. The NLS estimates of (˜) are
given by

> ndx.estar$parameters

[1] -1.239878 -2.774638

Note that the threshold estimate of 2 77 is close to the threshold es-
timates obtained in earlier examples. The transition parameter in the
original exponential function can be obtained as follows:

> exp(ndx.estar$parameters[1])/var(ndx.RHS[,2])

[1] 1.013556

18.5 Markov Switching State Space Models

The nonlinear time series models introduced so far all allow for di erent
regimes, with each regime represented by a simple AR model. For TAR

688 18. Nonlinear Time Series Models

and SETAR models, the regimes are solely determined by the magnitude
of an observable weakly exogenous variable, whereas for STAR models, the
regimes are allowed to switch smoothly according to the magnitude of a
weakly exogenous variable relative to a threshold value. This section in-
troduces another type of regime switching model — the Markov switching
model — where the regimes are determined by an unobserved state or regime
variable that follows a discrete state Markov process. Discrete state Markov
processes, also called Markov chains, are very popular choices for modeling
state-dependent behavior. Since Hamilton (1989) proposed using a simple
Markov switching AR process to model the U.S. real Gross National Prod-
uct (GNP), Markov switching time series models have seen extraordinary
growth and become extremely popular for modeling economic and financial
time series. They have been applied to model and forecast business cycles,
the term structure of interest rates, volatility in economic and financial
variables, foreign exchange rate dynamics, inflation rate dynamics, etc.
This section first introduces the discrete state Markov process used to

model the hidden state variable and it then illustrates how the discrete
state Markov process can be combined with an AR model to produce the
Markov switching AR process. To allow for Markov switching dynamics
in a much broader context, Markov switching state space models are then
introduced and examples will be given to illustrate the estimation of these
models using S+FinMetrics functions.

18.5.1 Discrete State Markov Process

Discrete state Markov processes are very popular choices for modeling
state-dependent behavior in natural phenomena and are natural candi-
dates for modeling the hidden state variables in Markov switching models.
A discrete state Markov process classifies the state of the world at any
time into a few discrete regimes. The state switches between di erent
regimes according to its previous value and transition probabilities given
by15

Pr(= | 1 =) = 0 (18.24)

where = 1 2 with di erent possible states or regimes, and

X
=1

Pr(= | 1 =) = 1 (18.25)

15A discrete state Markov process that only depends on its most recent observation is
called the first-order Markov process. Since higher-order Markov processes can always
be rewritten as a first-order Markov process, it usually su ces to consider only the
first-order Markov process.

18.5 Markov Switching State Space Models 689

It is usually convenient to collect the transition probabilities into a transi-
tion matrix :

P =

11 12 · · · 1

21 22 · · · 2

...
...

. . .
...

1 2 · · ·

where each row sums up to 1. For example, at time the state of the
economy can be classified as either recessionary (= 1) or expansionary
(= 2). Using quarterly observations of the U.S. real GNP from 1952 to
1984, Kim (1994) estimated the transition matrix to be

P =
·
47% 53%
5% 95%

¸
(18.26)

These transition probabilities imply that if the economy is in an expansion,
it tends to stay in expansion with a very high probability of 95%; if the
economy is in a recession, it has a 47% chance of staying in a recession and
a 53% chance of getting out of a recession. These numbers also reflect the
common observation that the transition from an expansion to a recession
is usually very quick, whereas the recovery from a recession is relatively
slow.
Suppose at time the probability of each state or regime is given by

the vector = (1 2), then the probability of each state at time
+ 1 is given by

+1 = P 0 (18.27)

For a stationary discrete state Markov process, the ergodic probability vec-
tor exists such that

= P 0 (18.28)

The ergodic probability vector can also be treated as the steady state, or
the unconditional probability of each state of the world. S+FinMetrics
provides a convenience function mchain.p0 to compute the ergodic prob-
ability vector for a stationary Markov chain.16 For example, the following
command computes the ergodic probabilities for the state of the economy
using the transition matrix in (18.26):

> mchain.p0(matrix(c(0.47, 0.05, 0.53, 0.95), 2, 2))

[1] 0.0862069 0.9137931

Thus the unconditional probability of the economy being in a recession is
about 9% and the unconditional probability of the economy being in an
expansion is about 91%.

16See Hamilton (1994) for the analytic formula for computing the ergodic probabilities
for a stationary Markov chain.

690 18. Nonlinear Time Series Models

The transition probabilities can also be used to infer the duration of each
state or regime. For example, using the transition matrix in (18.26), the
average duration of an economic expansion can be computed as17

1

1 22
= 20 quarters = 5 years

and the average duration of an economic recession can be computed as

1

1 11
= 2 quarters

which is consistent with the fact that a recession is usually defined as a
drop in real GDP for two consecutive quarters.

18.5.2 Markov Switching AR Process

If the model parameters in the simple AR() model in (18.4) are relaxed
to be dependent on a latent or hidden state variable , it becomes

= +X + for = 1 2 (18.29)

where X = (1 2), is the ×1 vector of AR coe cients,
(0 2) and the hidden state variable follows a -regime Markov

chain given by (18.24) and (18.25). This is usually referred to as theMarkov
switching AR() process. The Markov switching AR() model has proved to
be e ective at modeling nonlinear dynamics usually observed in economic
and financial time series. For example, Hamilton (1989) used a two-state
Markov switching AR(4) model with constant 2 to capture the di erent
dynamics observed in the U.S. real GNP during economic recessions and
expansions.
In general, if the states S = (+1) are known, the unknown pa-

rameters of the Markov switching AR() model, which include the inter-
cept terms, the AR coe cients, and the error variance in di erent regimes,
can be estimated by maximizing the following log-likelihood function:

(|S) =
X
= +1

log (|Y 1)

where Y 1 denotes all the information available at time 1 and includes
all of the observations in X for , and

(|Y 1) exp

½
1

2
log 2 (X)2

2 2

¾
(18.30)

17See Kim and Nelson (1999), for example, for the derivation of this result.

18.5 Markov Switching State Space Models 691

However, the states S are usually unobserved and must be inferred from
the data. When the states S are unknown, the parameters of the Markov
switching AR() model are expanded to include the transition probabilities
P. By applying the law of total probability, the log-likelihood function can
now be written as

() =
X
= +1

log (|Y 1)

=
X
= +1

log
X
=1

(|Y 1 =)Pr(= |Y 1) (18.31)

where (|Y 1 =) is given in (18.30), and by Bayes theorem the
predictive probability Pr(= |Y 1) can be shown to be

Pr(= |Y 1) =
X
=1

Pr(= | 1 = Y 1) Pr(1 = |Y 1)

=
X
=1

(1|Y 2 1 =)Pr(1 = |Y 2)P
=1 (1|Y 2 1 =)Pr(1 = |Y 2)

(18.32)

Thus, given an estimate of the initial probability of each state as Pr(+1 =
|Y) for = 1 2 , the log-likelihood function of the Markov switch-
ing AR() model can be computed iteratively using (18.31) and (18.32)
and the unknown parameters can be estimated by maximum likelihood
estimation (MLE).
The evaluation of the above log-likelihood function for the Markov switch-

ing AR() model can be easily programmed in S-PLUS. However, since it
involves an iterative process that prevents the use of vectorized operations
in S-PLUS, the optimization process of obtaining the MLE can be slow and
computationally ine cient. In order to be able to estimate a broad range
of Markov switching models using the same code, the following subsection
introduces Markov switching state space models that includes the Markov
switching AR() model as a special case. The Markov switching state space
models utilize optimized C code for fast calculation.

18.5.3 Markov Switching State Space Models

As shown in Chapter 14, most linear time series regression models can be
cast into a state space form, and the state space representation provides a
convenient framework for obtaining filtered and smoothed estimates of the
unobserved state variables. In this subsection, the state space representa-
tion in Chapter 14 is generalized to allow for Markov switching dynamics
so that a vast number of Markov switching models can be easily estimated
using the same framework.

692 18. Nonlinear Time Series Models

Using the notation in Chapter 14, a state space model can be represented
as follows:

+1 = d + T · + H · (18.33)

y = c + Z · + G · (18.34)

where +1 is the × 1 state vector, y is the × 1 vector of observed
variables, iid (0 I) is the × 1 vector of disturbance terms in the
transition equation governing the dynamics of the state vector +1,
iid (0 I) is the × 1 vector of disturbance terms in the measurement
equation governing the dynamics of the observed variables y , and d , T ,
H , c , Z and G are conformable hyperparameter matrices or system
matrices. More compactly, the above representation can be rewritten asµ

+1

y

¶
= + · + u (18.35)

where u iid (0) and

=

µ
d
c

¶
=

µ
T
Z

¶
u =

µ
H
G

¶
=

µ
H H0 0
0 G G0

¶
For Markov switching state space models, the hyperparameter matrices

are assumed to be dependent on a latent or unobserved discrete state vari-
able :

=

=

=

and the discrete state variable follows a -regime Markov chain given
in (18.24) and (18.25). For example, by setting the continuous state vector
to = (1), the Markov switching AR(2) model can be put into the
above state space representation with

=
+1

0
0

=

· 0
+1

I2×2

¸
I2×2 =

·
1 0
1 0

¸

and is a 3 × 3 matrix with 2
+1
being the (1 1) element and zero

elsewhere.

Example 121 State space representation of Markov switching AR(2) model

S+FinMetrics uses a "list" object with some required components to
represent a state space model in S-PLUS, and Chapter 14 has many ex-
amples showing how to create such objects for some popular time series

18.5 Markov Switching State Space Models 693

regression models. In order for Markov switching state space models to
be represented by an S-PLUS object, the "list" object is expanded to al-
low for the following components: mTrans, mDelta.other, mPhi.other and
mOmega.other. The mTrans component is required for a Markov switching
state space representation and specifies the transition matrix P for the
underlying Markov chain, and at least one of mDelta.other, mPhi.other,
and mOmega.other must be specified so that at least some hyperparameter
of the model is Markov switching. The usual components mDelta, mPhi
and mOmega specify the hyperparameter matrices for the first regime, and
the new components mDelta.other, mPhi.other, and mOmega.other spec-
ify the hyperparameter matrices for other regimes if necessary. If there
are 2 regimes for the discrete state variable , the components
mDelta.other, mPhi.other, and mOmega.other store the hyperparameter
matrices for regimes 2 to stacked columnwise.
For example, the unknown parameters of a two-regime Markov switching

AR(2) model can be collected in the vector:

= (1 2 11 12 21 22 1 2 11 22) (18.36)

where 1, 11, 12 and 1 are the intercept term, the AR coe cients, and
error standard deviation for the first regime, 2, 21, 22 and 2 are the
counterparts for the second regime, 11 and 22 are the diagonal elements
of the transition matrix P. Note that since each row of P sums up to 1,
only two transition probabilities are required to identify P. The following
S-PLUS function takes the vector (18.36) and returns a "list" object giving
the state space representation of the two-regime Markov switching AR(2)
model18:

GetSsfMSAR = function(parm)

{

mDelta = mDelta.other = rep(0, 3)

mDelta[1] = parm[1]

mDelta.other[1] = parm[2]

#

mPhi = mPhi.other = matrix(0, 3, 2)

mPhi[1,] = c(parm[3], parm[4])

mPhi.other[1,] = c(parm[5], parm[6])

mPhi[2:3,1] = mPhi.other[2:3,1] = 1

#

mOmega = mOmega.other = matrix(0, 3, 3)

mOmega[1,1] = parm[7]

mOmega.other[1,1] = parm[8]

#

mSigma = matrix(0, 3, 2)

18One may also use the S+FinMetrics function GetSsf.MSAR.

694 18. Nonlinear Time Series Models

mSigma[1:2, 1:2] = diag(1e+6, 2)

#

mTrans = matrix(0, 2, 2)

mTrans[1,1] = parm[9]

mTrans[1,2] = 1 - mTrans[1,1]

mTrans[2,2] = parm[10]

mTrans[2,1] = 1 - mTrans[2,2]

#

list(mDelta=mDelta, mDelta.other=mDelta.other,

mPhi=mPhi, mPhi.other=mPhi.other,

mOmega=mOmega, mOmega.other=mOmega.other,

mSigma=mSigma, mTrans=mTrans)

}

Note that a di use prior on the initial state vector is specified by setting
the first 2 × 2 block of mSigma to a diagonal matrix with large values on
the diagonal and setting the last row of mSigma to zero.

Approximate MLE of Markov Switching State Space Models

Since Markov switching state space models allow for nonlinear dynamics,
the traditional Kalman filtering and smoothing algorithms for Gaussian
linear state space models can no longer be applied to obtain valid inference
on the unobserved state vector. In particular, given the initial estimate

a
()
| and P

()
| for = with = 1 , the prediction equations for the

Gaussian linear state space model in (14.39) and (14.40) now become

a
()
+1| = T a

()
| (18.37)

P
()
+1| = T P

()
| T

0 +H H0 (18.38)

where the superscript () denotes the case of = and +1 = for
= 1 . The updating equations for the Gaussian linear state space

model in (14.34) and (14.35) now become

a
()
| = a

()
| 1 +K

()
v
()

(18.39)

P
()
| = P

()
| 1 P

()
| 1Z

0 (K()
)0 (18.40)

where

v
()

= y c Z a
()
| 1

F
()

= Z P
()
| 1Z

0 +G G0

K
()

= P
()
| 1Z

0 (F()
) 1

Therefore, at each step, the set of statistics that needs to be computed
and stored will increase by the order of . Obviously, even for a relatively

18.5 Markov Switching State Space Models 695

small sample, the Kalman filtering algorithm will become computationally
infeasible.
To make the filtering algorithm manageable, Kim (1994) proposed col-

lapsing the set of statistics in the updating equations (18.39) and (18.40)
as follows:

a
()
| =

P
=1 Pr(= 1 = |Y)a()

|
Pr(= |Y) (18.41)

P
()
| =

P
=1 Pr(= 1 = |Y)[P()

| + (a
()
| a

()
|)(a

()
| a

()
|)0]

Pr(= |Y)
(18.42)

where the filtered probability Pr(= |Y) can be updated similarly as in
(18.32), given an initial estimate. Now at each step, only sets of statistics
need to be stored, which can be fed into the prediction equations (18.37)
and (18.38) to complete the filtering algorithm. This algorithm is sometimes
referred to as Kim’s filtering algorithm.
Just like the Kalman filtering algorithm for Gaussian linear state space

models, Kim’s filtering algorithm can be used to provide the prediction
error decomposition for computing the log-likelihood function of Markov
switching state space models. However, the drawback of the above filtering

algorithm is that the filtered estimates a
()
| now follow normal mixture

distributions instead of normal distributions as in Gaussian linear state
space models. As a result, the MLEs obtained using Kim’s algorithm are
only approximate and not optimal, but empirical evidence seems to suggest
that approximate MLEs obtained using Kim’s filtering algorithm are very
reliable.19

The SsfLoglikeMS function in S+FinMetrics implements Kim’s filter-
ing algorithm to compute the log-likelihood function for arbitrary Markov
switching state space models, and the SsfFitMS function uses it to ob-
tain approximate MLEs of the unknown parameters in Markov switching
state space models. However, Markov switching state space models can be
di cult to fit due to various numerical issues. Here, a few guidelines are
provided for using the SsfFitMS function for maximum likelihood estima-
tion of Markov switching state space models:

1. Make sure that the model to be fitted is actually identified. It can be
very easy to specify a Markov switching model that is not identified or
poorly identified. Overidentification or poor identification can cause
the optimization procedure to fail.

19In recent years, more computationally intensive Bayesian methods have also been
developed to analyze Markov switching state space models or non-Gaussian state space
models on a case-by-case basis. See Kim and Nelson (1998), Kim, Shephard, and Chib
(1998), and Aguilar and West (2000) for some examples.

696 18. Nonlinear Time Series Models

2. Start from a small model. If the estimation of the small model does
not pose any problem, extend the model to allow for more features.

3. Provide good starting values to SsfFitMS. Good starting values can
be found by calling SsfLoglikeMS with di erent sets of parameter
values and choosing the one with largest log-likelihood value.

4. Although the SsfFitMS function allows lower and upper bound con-
straints on the parameters, sometimes better convergence can be ob-
tained by transforming the parameters so that the parameters to be
estimated are unconstrained.

Example 122 Markov switching AR(2) model for NASDAQ realized volatil-
ity

Earlier examples in this chapter show that the logarithms of weekly re-
alized volatility of the NASDAQ 100 index can be modeled by a switching
AR(2) process, with the switching determined by either a TAR model or a
STAR model. It is interesting to see if the Markov switching AR(2) model
can provide a better or equivalent characterization of the nonlinear dynam-
ics observed in the data.
Instead of directly estimating the unknown parameters for the Markov

switching AR(2) model as given in (18.36), it is usually better to transform
these parameters so that they are unconstrained. For example, the following
monotonic transformations are usually adopted:

1. If lies within (0), then = log is unconstrained and = .

2. If lies within (0 1), then = log[(1)] is unconstrained and
= 1 (1 +).

3. If lies within (1 1), then = log[(1+) (1)] is unconstrained
and = 2 (1 +) 1.

4. For the AR(2) process = 1 1 + 2 2 + to be stationary,
the roots 1 and 2 of the characteristic equation

2
1 2 = 0

must lie within the unit circle, with 1 + 2 = 1 and 1 · 2 = 2.

The following S-PLUS function modifies the GetSsfMS function given ear-
lier in this subsection by employing the above transformations. It now takes
an unconstrained parameter vector and returns the state space representa-
tion of Markov switching AR(2) model:

GetSsfMSAR2 = function(parm)

{

parm = as.vector(parm)

#

mDelta = mDelta.other = rep(0, 3)

18.5 Markov Switching State Space Models 697

mDelta[1] = parm[1]

mDelta.other[1] = parm[1] + exp(parm[2])

#

AR11 = 2/(1+exp(-parm[3])) - 1

AR12 = 2/(1+exp(-(parm[3]+exp(parm[4])))) - 1

AR21 = 2/(1+exp(-parm[5])) - 1

AR22 = 2/(1+exp(-(parm[5]+exp(parm[6])))) - 1

#

mPhi = mPhi.other = matrix(0, 3, 2)

mPhi[1,] = c(AR11+AR12, -AR11*AR12)

mPhi.other[1,] = c(AR21+AR22, -AR21*AR22)

mPhi[2:3,1] = mPhi.other[2:3,1] = 1

#

mOmega = matrix(0, 3, 3)

mOmega[1,1] = exp(parm[7])

#

mSigma = matrix(0, 3, 2)

mSigma[1:2, 1:2] = diag(1e+6, 2)

#

mTrans = matrix(0, 2, 2)

mTrans[1,2] = 1/(1+exp(-parm[8]))

mTrans[1,1] = 1 - mTrans[1,2]

mTrans[2,1] = 1/(1+exp(-parm[9]))

mTrans[2,2] = 1 - mTrans[2,1]

#

ssf = list(mDelta=mDelta, mDelta.other=mDelta.other,

mPhi=mPhi, mPhi.other=mPhi.other, mOmega=mOmega,

mTrans=mTrans, mSigma=mSigma)

CheckSsf(ssf)

}

A few comments on the function GetSsfMSAR2 are as follows:

1. The second parameter parm[2] is actually log(2 1). By employing
this transformation, 2 is guaranteed to be greater than 1, and thus
the first regime can be identified as the low-volatility regime and the
second as the high-volatility regime.

2. The fourth and sixth parameters, parm[4] and parm[6], are actually
the logarithmic di erence between two characteristic roots of their re-
spective AR(2) processes. By employing this transformation, the first
roots are identified as the smaller roots and the second are identified
as the larger ones.

3. Finally, it is usually preferred to call the CheckSsf function before
returning the list with the state space representation, which makes
sure that the returned list is a valid state space representation.

698 18. Nonlinear Time Series Models

Now, to fit the Markov switching AR(2) model to log(ndx.rvol), use
the following commands20:

> ndx.start = c(-2, -0.7, -0.7, 0.7, -0.7, 0.7, -2, -2, -3)

> names(ndx.start) = c("mu1", "mu2", "phi11", "phi12",

+ "phi21", "phi22", "sigma", "p", "q")

> ndx.msar = SsfFitMS(ndx.start, log(ndx.rvol), GetSsfMSAR2,

+ l.start=11)

Iteration 0 : objective = 0.5575044

Iteration 1 : objective = 0.9047186

Iteration 2 : objective = 0.555338

...

Iteration 98 : objective = 0.5161791

RELATIVE FUNCTION CONVERGENCE

Note that the first argument to SsfFitMS specifies the starting values,
the second argument specifies the data to be used, and the third argument
specifies the S-PLUS function that takes a vector of model parameters and
returns a valid state space representation of a Markov switching model.
Since the filtering algorithm is started with di use priors on the state
vector, the optional argument l.start is used to start the log-likelihood
function evaluation from the 11th observation, which allows the e ects of
di use priors on the state vector to dissipate before log-likelihood values
are computed.
The returned object is a "SsfFit" object, and applying the generic

summary function returns the standard errors of the estimated parameters
and associated -statistics:

> class(ndx.msar)

[1] "SsfFit"

> summary(ndx.msar)

Log-likelihood: -150.724

302 observations

Parameters:

Value Std. Error t value

mu1 -1.8670 0.27600 -6.7640

mu2 -0.9385 1.08100 -0.8684

phi11 -0.3336 0.23730 -1.4060

phi12 0.4073 0.32060 1.2710

phi21 -0.8366 0.25960 -3.2230

phi22 0.8109 0.22670 3.5760

20S+FinMetrics provides the function MSAR for estimating general Markov switching
AR() processes. The MSAR function returns an "MSAR" object, and methods for many
generic functions, such as summary, plot, residuals, vcov, and simulate, are provided
for "MSAR" objects. See the online help file for MSAR for details.

18.5 Markov Switching State Space Models 699

sigma -1.8310 0.08313 -22.0300

p -5.3150 1.00900 -5.2670

q -8.4870 6.00100 -1.4140

Convergence: RELATIVE FUNCTION CONVERGENCE

From the above output, most of the parameters are significant according
to the -statistics. To transform the estimated parameters into the param-
eters for the Markov switching AR(2) model, simply call GetSsfMSAR2 on
the ML estimates21:

> ndx.ssf = GetSsfMSAR2(ndx.msar$parameters)

> cbind(ndx.ssf$mDelta, ndx.ssf$mDelta.other)

[,1] [,2]

[1,] -1.86719 -1.475965

[2,] 0.00000 0.000000

[3,] 0.00000 0.000000

> ndx.ssf$mPhi

[,1] [,2]

[1,] 0.3606984 0.08693354

[2,] 1.0000000 0.00000000

[3,] 1.0000000 0.00000000

> ndx.ssf$mPhi.other

[,1] [,2]

[1,] 0.2130623 0.2406814

[2,] 1.0000000 0.0000000

[3,] 1.0000000 0.0000000

> ndx.ssf$mOmega

[,1] [,2] [,3]

[1,] 0.1601773 0 0

[2,] 0.0000000 0 0

[3,] 0.0000000 0 0

> ndx.ssf$mTrans

[,1] [,2]

[1,] 0.9951049274 0.004895073

[2,] 0.0002061726 0.999793827

Note that the intercept terms in both regimes and the AR coe cients
in the high-volatility regime are similar to those estimated by the SE-
TAR model ndx.setar.r in Section 18.3. However, the AR coe cients in
the low-volatility regime are somewhat di erent from those estimated by
ndx.setar.r. In addition, both the transition probabilities 11 and 22 are
estimated to be very close to 1, which suggests that once is in a certain
regime, it tends to stay in that regime.

21Standard errors for these parameters may be obtained using the delta method.

700 18. Nonlinear Time Series Models

Filtered and Smoothed Estimates of Regime Probabilities

Once the unknown parameters of Markov switching models are estimated,
it is usually of interest to obtain the filtered estimates of the latent discrete
state or regime probability Pr(= |Y). However, this quantity is already
computed by Kim’s filtering algorithm and, thus, is a side product of the
log-likelihood function evaluation. In addition, it is also of interest to obtain
the smoothed estimates of the latent discrete state probability Pr(=
|Y), which is useful for retrospective analysis. To obtain the smoothed
estimates Pr(= |Y), note that at time

Pr(= 1 = |Y) = Pr(= |) Pr(1 = | = Y)

Pr(= |Y) Pr(1 = | = Y 1)

=
Pr(= |Y) Pr(1 = = |Y 1)

Pr(= |Y 1)

=
Pr(= |Y) Pr(1 = |Y 1) Pr(= | 1 =)

Pr(= |Y 1)

and, thus, the smoothed estimate Pr(1 = |Y) can be obtained as

Pr(1 = |Y) =
X
=1

Pr(= 1 = |Y)

This procedure can be repeated iteratively backward from time 1 to
time 1 to obtain the smoothed estimates of regime probabilities.
In S+FinMetrics, the filtered and smoothed regime probabilities can

be obtained using the SsfLoglikeMS function with the optional argument
save.regm set to TRUE. For example, the following commands plot the
filtered and smoothed estimates of regime probabilities based on the fit
ndx.msar:

> ndx.f = SsfLoglikeMS(log(ndx.rvol), ndx.ssf, save.rgm=T)

> par(mfrow=c(2,1))

> plot(timeSeries(ndx.f$regimes[,1], pos=positions(ndx.rvol)),

+ reference.grid=F, main="Filtered Low Vol Regime Prob")

> plot(timeSeries(ndx.f$regimes[,3], pos=positions(ndx.rvol)),

+ reference.grid=F, main="Smoothed Low Vol Regime Prob")

and the plot is shown in Figure 18.11. The smoothed regime probabilities
suggest that there is actually an abrupt switch around the first quarter of
2000.

18.6 An Extended Example: Markov Switching Coincident Index 701

Filtered Low Vol Regime Prob

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
1996 1997 1998 1999 2000 2001

0.
1

0.
3

0.
5

0.
7

0.
9

Smoothed Low Vol Regime Prob

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
1996 1997 1998 1999 2000 2001

0.
1

0.
3

0.
5

0.
7

0.
9

FIGURE 18.11. Filtered and smoothe regime probabilities of NASDAQ realized
volatility.

18.6 An Extended Example: Markov Switching
Coincident Index

The United States Department of Commerce periodically publishes the In-
dex of Coincident Economic Indicators (CEI) based on four macroeconomic
coincident variables, which provides a composite measure of the general
state of the economy. The method used for the construction of the coinci-
dent index is ad doc, and the coincident index is subject to revisions after
it is published. To provide a systematic probabilistic model for building an
alternative coincident index, Stock and Watson (1991) have developed a
dynamic factor model using a state space representation that models the
coincident index as a common factor driving the four macroeconomic co-
incident variables: industrial production (IP), total personal income less
transfer payments (PI), total manufacturing and trade sales (Sales), and
employees on nonagricultural payrolls (Payroll). Stock and Watson (1991)
show that their probabilistic coincident index matches very well with the
Index of CEI compiled by the Department of Commerce.
Stock and Watson’s dynamic factor model has been extended by Kim

and Yoo (1995), Chauvet (1998), and Kim and Nelson (1998) to allow for
Markov switching dynamics in the common factor that represents the co-
incident index. In addition to matching very well with the Index of CEI

702 18. Nonlinear Time Series Models

compiled by the Department of Commerce, the Markov switching coin-
cident index is also shown to capture the economic expansions and reces-
sions in the U.S. economy as classified by the National Bureau of Economic
Research (NBER). Chauvet and Potter (2000) have developed coincident
indicators for the U.S. stock market using the same methodology.
This section is provided to show how the Markov switching coincident

index model can be represented as a Markov switching state space model
and estimated using the functions in S+FinMetrics.

18.6.1 State Space Representation of Markov Switching
Coincident Index Model

Since the levels of most macroeconomic variables are usually found to be
nonstationary (e.g., see Nelson and Plosser, 1982), it is reasonable to as-
sume that the coincident index representing the state of the economy is also
nonstationary. Thus, in this example the growth rates of the four macroe-
conomic variables y are modeled and they are assumed to be driven by
a common factor interpreted as the change in the coincident index:

y = + 1 + 2 1 + e (18.43)

where y , , 1, 2 and e are 4× 1 vectors with

1 =

1

2

3

41

2 =

0
0
0

42

Thus, the four macroeconomic coincident variables are driven by the com-
mon factor and idiosyncratic components e . Note that only the cur-
rent value of a ects the first three variables (IP, PI, and Sales) in
y , while both and 1 a ect the last variable (employees on

nonagricultral payroll) because the employment data tend to lag other co-
incident variables.
The idiosyncratic components are assumed to be independent of each

other and are assumed to follow simple AR(1) models:

e = e 1 + ² ² (0 2) (18.44)

where is a diagonal matrix with (1 2 3 4) on the diagonal and
2 is a diagonal matrix with (2

1
2
2

2
3

2
4) on the diagonal. The common

factor is assumed to follow a Markov switching AR(2) process:

= + 1 1 + 2 2 + (0 2) (18.45)

where the unobserved discrete state variable follows a two-regime Markov
chain, and only the intercept term is Markov switching. When the econ-
omy is in a recession (= 1), the coincident index grows at a slower

18.6 An Extended Example: Markov Switching Coincident Index 703

rate 1; when the economy is in an expansion (= 2), the coincident index
grows at a faster rate 2.
Note that in the above model, the intercept term and are not

separately identified and the variance term 2 cannot be separated from
the coe cients 1 and 2. To make the model identifiable, the original
data y are standardized to remove its mean and make it scale-free so
that can be set to 0. In addition, the error variance 2 for can be
normalized to 1. Using = (1 e 1) as the continuous state
vector, the Markov switching coincident index model in (18.43) and (18.45)
can now be written in a state space form with the following representation:

=

+1

0
0
0
0
0
0
0
0
0
0

=

1 2 0 0 0 0 0
1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 2 0 0 0
0 0 0 0 3 0 0
0 0 0 0 0 4 0
1 0 0 0 0 0 1

1 0 1 0 0 0 0

2 0 0 1 0 0 0

3 0 0 0 1 0 0

41 42 0 0 0 1 0

and

=

1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 2

1 0 0 0 0 0 0 0 0
0 0 0 2

2 0 0 0 0 0 0 0
0 0 0 0 2

3 0 0 0 0 0 0
0 0 0 0 0 2

4 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

Note that = + 1 is also included as one of the state variables,
but does not enter the measurement equation for the observables y . By
including as one of the state variables, filtered estimates of can be
readily obtained from Kim’s filtering algorithm.
By collecting the unknown model parameters in the vector = (1 2

1 2 1 2 3 4 1 2 3 41 42
2
1

2
2

2
3

2
4 12 21), the follow-

ing function takes such a vector and returns the state space representation
of the model in S-PLUS:

GetSsfCoinIndex = function(parm) {

parm = as.vector(parm)

704 18. Nonlinear Time Series Models

mDelta = mDelta.other = rep(0, 11)

mDelta[1] = parm[1]

mDelta.other[1] = parm[1] + exp(parm[2])

#

AR.C1 = 2/(1+exp(-parm[3])) - 1

AR.C2 = 2/(1+exp(-(parm[3]+exp(parm[4])))) - 1

#

AR.e1 = 2/(1+exp(-parm[5])) - 1

AR.e2 = 2/(1+exp(-parm[6])) - 1

AR.e3 = 2/(1+exp(-parm[7])) - 1

AR.e4 = 2/(1+exp(-parm[8])) - 1

#

mPhi = matrix(0, 11, 7)

mPhi[1,1:2] = c(AR.C1+AR.C2, -AR.C1*AR.C2)

mPhi[2,1] = 1

mPhi[3,3] = AR.e1

mPhi[4,4] = AR.e2

mPhi[5,5] = AR.e3

mPhi[6,6] = AR.e4

mPhi[7,1] = mPhi[7,7] = 1

#

mPhi[8:10,1] = parm[9:11]

mPhi[11,1:2] = parm[12:13]

mPhi[8,3] = mPhi[9,4] = mPhi[10,5] = mPhi[11,6] = 1

#

mOmega = matrix(0, 11, 11)

mOmega[1,1] = 1

mOmega[3,3] = exp(parm[14])

mOmega[4,4] = exp(parm[15])

mOmega[5,5] = exp(parm[16])

mOmega[6,6] = exp(parm[17])

#

mTrans = matrix(0, 2, 2)

mTrans[1,2] = 1/(1+exp(-parm[18]))

mTrans[1,1] = 1-mTrans[1,2]

mTrans[2,1] = 1/(1+exp(-parm[19]))

mTrans[2,2] = 1-mTrans[2,1]

#

mSigma = matrix(0, 8, 7)

mSigma[1:7, 1:7] = diag(1e+6, 7)

ans = list(mDelta=mDelta, mDelta.other=mDelta.other,

mSigma=mSigma, mOmega=mOmega,

mPhi=mPhi, mTrans=mTrans)

CheckSsf(ans)

}

18.6 An Extended Example: Markov Switching Coincident Index 705

A few comments on the function GetSsfCoinIndex are in order:

1. The second parameter parm[2] is actually log(2 1). By employing
this transformation, 2 is guaranteed to be greater than 1; thus,
the first regime can be identified as the recessionary regime and the
second as the expansionary regime.

2. Like in the Markov switching AR(2) model for the NASDAQ realized
volatility, instead of directly estimating the AR(2) coe cients for

, the two real characteristic roots are estimated and the first
root is constrained to be the smaller one. By constraining the real
characteristic roots to lie within the unit circle, the estimated AR(2)
process is guaranteed to be stationary and aperiodic.

3. The AR(1) coe cients for the idiosyncratic components are trans-
formed to guarantee that they lie within (1 1) and the correspond-
ing AR processes are stationary.

4. The logarithmic variances log 2 (= 1 2 3 4) are estimated because
they are unbounded.

5. Like in the Markov switching AR(2) model for the NASDAQ realized
volatility, the transition probabilities 12 and 21 are transformed to
guarantee that they lie within (0 1).

6. Finally, di use priors on the state vector are employed by setting
the top 7× 7 block of mSigma to a diagonal matrix with large values
on the diagonal and zero in the last row.

18.6.2 Approximate MLE of Markov Switching Coincident
Index

To fit the above Markov switching model to the four coincident variables,
the data are first standardized for model identification and better numerical
convergence:

> DOC.dat = getReturns(DOC.ts[,1:4], percentage=T)

> DOC.dat@data = t(t(DOC.dat@data) - colMeans(DOC.dat@data))

> DOC.dat@data = t(t(DOC.dat@data) / colStdevs(DOC.dat@data))

then the SsfFitMS function can be used to fit the model with the following
starting values:

> DOC.start = c(-1.5, 0.6, 0.3, 0.1, .1, .1, .1, .1, 0.3,

+ 0.3, 0.3, 0.3, 0.1, -.5, -.5, -.5, -.5, -1.5, -3)

+ names(DOC.start) = c("mu1", "mu2", "phi1", "phi2", "psi1",

+ "psi2", "psi3", "psi4", "L1", "L2", "L3", "L41",

+ "L42", "s1", "s2", "s3", "s4", "p", "q")

706 18. Nonlinear Time Series Models

> DOC.fit = SsfFitMS(DOC.start, DOC.dat, GetSsfCoinIndex,

+ l.start=13, trace=T)

> summary(DOC.fit)

Log-likelihood: -1998.11

432 observations

Parameters:

Value Std. Error t value

mu1 -1.5650 0.30180 -5.187

mu2 0.6053 0.16900 3.582

phi1 -0.8171 0.20610 -3.965

phi2 0.7124 0.17010 4.187

psi1 0.3711 0.14940 2.484

psi2 -0.6070 0.10590 -5.731

psi3 -0.5169 0.10930 -4.729

psi4 -0.7584 0.18340 -4.135

L1 0.5059 0.03832 13.200

L2 0.2977 0.03193 9.322

L3 0.3480 0.03406 10.220

L41 0.4443 0.04013 11.070

L42 0.1966 0.03504 5.610

s1 -1.1590 0.12180 -9.517

s2 -0.2758 0.07225 -3.817

s3 -0.4155 0.07624 -5.449

s4 -1.3940 0.15220 -9.156

p -1.9560 0.52340 -3.738

q -3.7600 0.43460 -8.652

Convergence: RELATIVE FUNCTION CONVERGENCE

Note that the optional argument l.start to SsfFitMS is used to start log-
likelihood evaluation from the 13th observation. From the summary output,
it can be seen that all the estimated model parameters are significantly
di erent from zero.
To transform the parameters into the original model form, simply call

the GetSsfCoinIndex function with the estimated parameters:

> DOC.ssf = GetSsfCoinIndex(DOC.fit$parameters)

> c(DOC.ssf$mDelta[1], DOC.ssf$mDelta.other[1])

[1] -1.565361 0.266435

> print(DOC.ssf$mPhi, digits=3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 0.158 0.211 0.000 0.000 0.000 0.000 0

[2,] 1.000 0.000 0.000 0.000 0.000 0.000 0

[3,] 0.000 0.000 0.183 0.000 0.000 0.000 0

[4,] 0.000 0.000 0.000 -0.295 0.000 0.000 0

[5,] 0.000 0.000 0.000 0.000 -0.253 0.000 0

18.6 An Extended Example: Markov Switching Coincident Index 707

Filtered Recession Probability

1960 1965 1970 1975 1980 1985 1990 1995

0.
1

0.
3

0.
5

0.
7

0.
9

Smoothed Recession Probability

1960 1965 1970 1975 1980 1985 1990 1995

0.
1

0.
3

0.
5

0.
7

0.
9

FIGURE 18.12. Filtered and smoothed recession probabilities of Markov switch-
ing coincident index.

[6,] 0.000 0.000 0.000 0.000 0.000 -0.362 0

[7,] 1.000 0.000 0.000 0.000 0.000 0.000 1

[8,] 0.506 0.000 1.000 0.000 0.000 0.000 0

[9,] 0.298 0.000 0.000 1.000 0.000 0.000 0

[10,] 0.348 0.000 0.000 0.000 1.000 0.000 0

[11,] 0.444 0.197 0.000 0.000 0.000 1.000 0

The growth rate of in a recession is estimated to be 1 57, and the
growth rate in an expansion is estimated to be 0 27. Although the growth
rates of the four macroeconomic variables are positively correlated with
the Markov switching coincident index, only the idiosyncractic component
of industrial production has a positive AR(1) coe cient and all other id-
iosyncratic components have a negative AR(1) coe cient.
To obtain the filtered and smoothed regime probabilities, simply call the

SsfLoglikeMS function with the estimated state space representation and
set the optional argument save.rgm to TRUE:

> DOC.f = SsfLoglikeMS(DOC.dat, DOC.ssf, save.rgm=T,

+ l.start=13)

> DOC.dates = positions(DOC.dat)[-(1:12)]

> filt.p = timeSeries(DOC.f$regimes[,1], pos=DOC.dates)

> smoo.p = timeSeries(DOC.f$regimes[,3], pos=DOC.dates)

> par(mfrow=c(2,1))

708 18. Nonlinear Time Series Models

Filtered MS Coincident Index

1960 1965 1970 1975 1980 1985 1990 1995

-1
0

0
10

20
30

40
50

DOC Coincident Index

1960 1965 1970 1975 1980 1985 1990 1995

-6
-4

-2
0

1
2

3

FIGURE 18.13. Filtered Markov switching coincident index and DOC coincident
index.

> plot(filt.p, reference.grid=F,

+ main="Filtered Recession Probability")

> plot(smoo.p, reference.grid=F,

+ main="Smoothed Recession Probability")

and Figure 18.12 shows the filtered and smoothed probabilities for the
recession regime.
To visualize the estimated Markov switching coincident index, note that

the object DOC.f also has a states component:

> names(DOC.f)

[1] "loglike" "err" "regimes" "states"

which contains the filtered estimates of the states
()
| for = 1 2. Since

there are seven state variables in the model, the first seven columns cor-

respond to
(1)
| and the next seven columns correspond to

(2)
| . The fol-

lowing commands plot the weighted average of filtered estimates of and
compare it with the coincident index compiled by the U.S. Department of
Commerce:

> DOC.index = lm(DOC.ts@data[,5]~I(1:433))$residuals[-(1:13)]

> filt.ci = rowSums(DOC.f$state[,c(7,14)]*DOC.f$regime[,1:2])

> filt.ci = timeSeries(filt.ci, pos=DOC.dates)

> plot(filt.ci, reference.grid=F,

18.7 References 709

+ main="Filtered MS Coincident Index")

> doc.ci = timeSeries(DOC.index, pos=DOC.dates)

> plot(doc.ci, reference.grid=F,

+ main="DOC Coincident Index")

and the plot is shown in Figure 18.13. Note that since the Markov switch-
ing coincident index is estimated with demeaned data, a time trend is also
removed from the coincident index DOC.ts[,5] compiled by the U.S. De-
partment of Commerce. In general, both series share the same pattern,
although the Markov switching coincident index seems to be smoother.

18.7 References

Andersen, T., T. Bollerslev, F.X. Diebold and H. Ebens (2001).
“The Distribution of Realized Stock Return Volatility,” Journal of Finan-
cial Economics, 61, 43-76.

Aguilar, O. and M. West (2000). “Bayesian Dynamic Factor Models
and Portfolio Allocation,” Journal of Business and Economic Statistics,
18(3), 338-357.

Barnett, W.A., R.A. Gallant, M.J. Hinich, J.A. Jungeilges, D.T.

Kaplan and M.J. Jensen (1997). “A Single-blind Controlled Competi-
tion Among Tests for Nonlinearity and Chaos,” Journal of Econometrics,
82, 157-192.

Brock, W.A., W.D. Dechert and J.A. Scheinkman (1987). “A Test
for Independence Based on the Correlation Dimension,” unpublished manu-
script, Department of Economics, University of Wisconsin, Madison.

Brock, W.A., W.D. Dechert, J.A. Scheinkman and B.

LeBaron (1996). “A Test for Independence Based on the Correlation Di-
mension,” Econometric Reviews, 15, 197-235.

Brock, W.A., D.A. Hsieh and B. LeBaron (1991). Nonlinear Dynam-
ics, Chaos, and Instability: Statistical Theory and Economic Evidence. MIT
Press.

Brock, W.A. and S. Potter (1993). “Nonlinear Time Series andMacroe-
conomics,” in G.S. Maddala, C. R. Rao and H. D. Vinod (eds.), Handbook
of Statistics, Vol. II. North-Holland, Amsterdam.

Caporale, G.M., C. Ntantamis, T. Pantelidis and N. Pittis (2004).
“The BDS Test As a Test for the Adequacy of a GARCH(1,1) Specification:
A Monte Carlo Study,” Working Paper, Brunel University.

710 18. Nonlinear Time Series Models

Chauvet, M. (1998). “An Econometric Characterization of Business Cy-
cle Dynamics with Factor Structure and Regime Switching,” International
Economic Review, 39(4), 969-996.

Chauvet, M. and S. Potter (2000). “Coincident and Leading Indicators
of the Stock Market,” Journal of Empirical Finance, 7, 87-111.

Davidson, R. and J. G. MacKinnon (1985). “Heteroskedasticity-Robust
Tests in Regressions Directions,” Annales de l’INSEE, 59/60, 183-218.

de Lima, P.J.F. (1996). “Nuisance Parameter Free Properties of Correla-
tion Integral Based Statistics,” Econometric Reviews, 15, 237-259.

Fernandes, M. and P.-Y. Preumont (2002). “The Finite-Sample Size
of the BDS Test for GARCH Standardized Residuals,” unpublished manu-
script, Department of Economics, Queen Mary, University of London.

Franses, P.H. and D. van Dijk (2000). Non-Linear Time Series Models
in Empirical Finance. Cambridge University Press, Cambridge.

Granger, C.W.J. and T. Teräsvirta (1993).Modelling Nonlinear Eco-
nomic Relationships. Oxford University Press, Oxford.

Hamilton, J.D. 1989. “A New Approach to the Economic Analysis of
Nonstationary Time Series Subject to Changes in Regime,” Econometrica,
57, 357-384.

Hamilton, J.D. (1994). Time Series Analysis. Princeton University Press,
Princeton.

Hansen, B.E. (1996). “Inference When a Nuisance Parameter is Not Iden-
tified Under the Null Hypothesis,” Econometrica, 64, 413-430.

Hansen, B.E. (1997). “Inference in TAR Models,” Studies in Nonlinear
Dynamics and Econometrics, 2, 1-14.

Hansen, B.E. (1999). “Testing for Linearity,” Journal of Economic Sur-
veys, 13(5), 551-576.

Kim, C.J. (1994). “Dynamic Linear Models with Markov-Switching,” Jour-
nal of Econometrics, 60, 1-22.

Kim, C.-J. and C.R. Nelson (1998). “Business Cycle Turning Points,
a New Coincident Index, and Tests of Duration Dependence Based on a
Dynamic Factor Model with Regime-Switching,” Review of Economics and
Statistics, 80, 188-201.

18.7 References 711

Kim, C.-J. and C.R. Nelson (1999). State-Space Models with Regime-
Switching: Classical and Gibbs-Sampling Approaches with Applications. MIT
Press, Cambridge, MA.

Kim, M.-J. and J.-S. Yoo (1995). “New Index of Coincident Indica-
tors: A Multivariate Markov Switching Factor Model Approach,” Journal
of Monetary Economics, 36, 607-630.

Kim, S., N. Shephard and S. Chib (1998). “Stochastic Volatility: Likeli-
hood Inference and Comparison with ARCH Models,” Review of Economic
Studies, 65, 361-393.

LeBaron, B. (1997). “A Fast Algorithm for the BDS Statistic,” Studies
in Nonlinear Dynamics and Econometrics, 2, 53-59.

Lundbergh, S. and T. Teräsvirta (1998). “Modelling Economic High-
Frequency Time Series with STAR-GARCHModels,” Working Paper Series
in Economics and Finance No. 291, Stockholm School of Economics.

Lundbergh, S. and T. Teräsvirta (2002). “Forecasting with
Smooth Transition Autoregressive Models,” in M. P. Clements and D. F.
Hendry (eds.), A Companion to Economic Forecasting. Blackwell Publish-
ers, London.

Luukkonen, R, P. Saikkonen and T. Teräsvirta (1988). “Testing
Linearity Against Smooth Transition Autoregressive Models,” Biometrika
75, 491—499.

Nelson, C.R. and C.I. Plosser (1982). “Trends and Random Walks in
Macroeconomic Time Series: Some Evidence and Implications,” Journal of
Monetary Economics, 10, 139-162.

Teräsvirta, T. (1994). “Specification, Estimation, and Evaluation of
Smooth Transition Autoregressive Models,” Journal of the American Sta-
tistical Association, 89, 208—218.

Stock, J.H. and M.W. Watson (1991). “A Probability Model of the Co-
incident Economic Indicators,” in K. Lahiri and G.H. Moore (eds.), Leading
Economic Indicators: New Approaches and Forecasting Records. Cambridge
University Press, Cambridge.

Tong, H. (1978). “On a Threshold Model,” in C.H. Chen (ed.), Pattern
Recognition and Signal Processing. Sijho & Noordho , Amsterdam.

Tong, H. (1990). Non-Linear Time Series: A Dynamical System Ap-
proach. Oxford University Press, Oxford.

712 18. Nonlinear Time Series Models

Tsay, R.S. (1989). “Testing and Modeling Threshold Autoregressive Pro-
cesses,” Journal of the American Statistical Association, 84(405), 231-240.

van Dijk, D., T. Teräsvirta and P.H. Franses (2002). “Smooth Tran-
sition Autoregressive Models — A Survey of Recent Developments,” Econo-
metric Reviews, 21 (1), 1-47.

19
Copulas

19.1 Introduction

Capturing comovement between financial asset returns with linear corre-
lation has been the staple approach in modern finance since the birth of
Harry Markowitz’s portfolio theory. Linear correlation is the appropriate
measure of dependence if asset returns follow a multivariate normal (or
elliptical) distribution. However, the statistical analysis of the distribution
of individual asset returns frequently finds fat tails, skewness, and other
non-normal features. If the normal distribution is not adequate, then it is
not clear how to appropriately measure the dependence between multiple
asset returns. Fortunately, the theory of copulas provides a flexible method-
ology for the general modeling of multivariate dependence. As Cherubini,
Luciano, and Vecchiato (2004) state the following in the introduction to
their book: “the copula function methodology has become the most signif-
icant new technique to handle the co-movement between markets and risk
factors in a flexible way.”
This chapter gives an overview of the copula function methodology for

modeling arbitrary bivariate distributions of asset returns. Attention is re-
stricted to bivariate distributions because the mathematical and statistical
theory for bivariate copulas is more complete than it is for multivariate
copulas. The bivariate theory also lays the foundation for the general mul-
tivariate theory. Section 19.2 provides a motivating example to introduce
the main issues and problems. Section 19.3 defines copulas and gives some
basic properties. The parametric copula classes and families implemented

714 19. Copulas

in S+FinMetrics are reviewed in Section 19.4. Section 19.5 describes fitting
copulas to data, and Section 19.6 discusses risk management using copulas.
The mathematical theory of copulas is covered in the monographs by

Joe (1997) and Nelson (1999). Excellent treatments of copula methods in
finance are given in Carmona (2004) and Cherubini, Luciano, and Vecchiato
(2004). The latter book contains numerous examples of using copulas for
the analysis of credit risk and for the pricing of derivative securities.
The S+FinMetrics functions for analyzing bivariate copulas are based

on the functions in the EVANESCE (Extreme Value ANalysis Employing
Statistical Copula Estimation) library written by René Carmona and Julia
Morrison and described in Carmona and Morrison (2001), Morrison (2001),
and Carmona (2004).

19.2 Motivating Example

As a motivating example, consider the problem of modeling the uncondi-
tional bivariate distribution of the daily log returns on BMW and Siemens
stock, contained in the S+FinMetrics “timeSeries” bmw and siemens,
over the period January 2, 1973 through July 23, 1996.1 To simplify the fol-
lowing analysis, these series are combined in the timeSeries “german.ts”:

> german.ts = seriesMerge(bmw,siemens)

Time series plots of the returns are given in Figure 19.1. The two return
series behave similarly over time, exhibit periods of high and low volatility,
and sometimes take on extremely large and small values. For the analysis
in this chapter, the time dependent nature of the return volatility will be
ignored. Modeling time-dependent volatility is covered in Chapters 7, 13,
and 22.
The two return series have a particular feature that complicates the

analysis of their distributions. This feature is the joint presence of a large
number of zero returns, which result from the prices being constant across
certain days. The percentage of common zero returns is

> zero.idx = (bmw == 0 & siemens == 0)

> sum(zero.idx)/length(bmw)

[1] 0.05076473

The presence of these zero returns causes the empirical marginal and joint
distribution functions to have large jumps at 0. Following Carmona (2004),
before analyzing the distribution of returns, the returns are adjusted to
eliminate these zero returns. In what follows, the nonzero returns are iden-
tified by the logical index variable nz.idx:

1Carmona (2004), Chapter 2, presents a similar analysis using the S+FinMetrics
“timeSeries” columbia.coffee and brazil.coffee.

19.2 Motivating Example 715

Daily returns on BMW

1973 1975 1977 1979 1981 1983 1985 1987 1989 1991 1993 1995

-0
.1

0
0.

00
0.

10

Daily returns on Siemens

1973 1975 1977 1979 1981 1983 1985 1987 1989 1991 1993 1995

-0
.1

2
-0

.0
4

0.
04

FIGURE 19.1. Daily log returns on BMW and Siemens stock.

> nz.idx = (seriesData(bmw) != 0 & seriesData(siemens) != 0)

Regarding the marginal distribution of returns, Figure 19.2 shows the qq
plots against the normal distribution computed using the S+FinMetrics
function qqPlot. The strong departure from linearity at the ends of the qq
plots indicates non-normal fat-tailed behavior. To be sure, the Jarque-Bera
test

> normalTest(german.ts[nz.idx,],method="jb")

Test for Normality: Jarque-Bera

Null Hypothesis: data is normally distributed

Test Statistics:

bmw siemens

Test Stat 8371.159 10433.032

p.value 0.000 0.000

Dist. under Null: chi-square with 2 degrees of freedom

Total Observ.: 5350

clearly rejects the null hypothesis that the individual returns are normally
distributed.

716 19. Copulas

-0.15

-0.10

-0.05

0.0

0.05

0.10

-4 -2 0 2 4

bmw

11/09/1987

11/11/1987

10/16/1989

-4 -2 0 2 4

siemens

11/10/198708/19/1991

10/16/1989

FIGURE 19.2. Normal qq plots of the daily log returns on BMW and Siemens
stocks.

Given that the marginal distributions of the two return series are not
normal, it would be surprising if the bivariate normal is a good character-
ization of the joint distribution. To see this, Figure 19.3 shows a scatter
plot of the actual returns together with a scatter plot of simulated bivariate
normal data calibrated to the actual data. The simulated data is created
using

> mu.hat = colMeans(german.ts[nz.idx,])

> Sigma.hat = var(german.ts[nz.idx,])

> nobs = numRows(german.ts[nz.idx,])

> set.seed(0)

> german.sim = rmvnorm(nobs,mean=mu.hat,cov=Sigma.hat)

> colIds(german.sim) = colIds(german.ts)

The dependence captured by the bivariate normal distribution is com-
pletely described by the (Pearson) correlation coe cient

> cor(german.ts[nz.idx,])[1,2]

[1] 0.6517873

which indicates a moderately strong positive linear dependence. The sim-
ulated normal data matches the joint behavior of returns in the middle
of the distribution fairly well, but does not capture the observed positive
dependence in the tails of the distribution. Since the bivariate normal dis-

19.2 Motivating Example 717

BMW

S
ie

m
en

s

-0.15 -0.10 -0.05 0.0 0.05 0.10

-0
.1

0
-0

.0
5

0.
0

0.
05

Actual Returns

bmw

si
em

en
s

-0.15 -0.10 -0.05 0.0 0.05 0.10

-0
.1

0
-0

.0
5

0.
0

0.
05

Simulated Normal Returns

FIGURE 19.3. Scatter plots of actual returns and simulated bivariate normal
returns for BMW and Siemens stocks.

tribution does not adequately describe the joint behavior of returns, the
correlation coe cient may not be the proper measure of dependence.
As described in Chapter 5, the tails of the marginal distribution of asset

returns can be successfully modeled using the generalized Pareto distribu-
tion (GPD). As demonstrated in Carmona (2004), standard nonparametric
techniques based on the empirical distribution function can be used to
model the center of the distribution. This modeling strategy leads to a
semiparametric model (parametric in the tails and nonparametric in the
center) for the marginal distribution. The S+FinMetrics/ EVANESCE func-
tion gpd.tail implements such a semiparametric model. It fits separate
parametric GPDs to the lower and upper tails and uses the empirical CDF
to fit the remaining part of the distribution.
Fitting semiparametric GPD models to the BMW and Siemens returns

requires specification of the lower and upper thresholds. These thresholds
may be inferred from sample mean excess plots and verified by inspecting
plots showing how the GPD shape parameters vary as a function of the
specified thresholds. Figures 19.4 and 19.5 give these plots for the BMW
and Siemens returns. The plots suggest lower and upper threshold values
of 0 015 and 0 015, respectively, for BMW and lower and upper threshold
values of 0 01 and 0 01, respectively, for Siemens. Using these thresh-

718 19. Copulas

-0.10 -0.05 0.0 0.05 0.10

0.
02

0.
06

0.
10

Threshold

M
ea

n
E

xc
es

s

BMW, lower tail

-0.05 0.0 0.05

0.
02

0.
04

0.
06

Threshold

M
ea

n
E

xc
es

s

Siemens, lower tail

-0.10 -0.05 0.0 0.05

0.
02

0.
06

0.
10

0.
14

Threshold

M
ea

n
E

xc
es

s

BMW, upper tail

-0.10 -0.05 0.0 0.05

0.
02

0.
06

0.
10

Threshold

M
ea

n
E

xc
es

s

Siemens, upper tail

FIGURE 19.4. Mean excess plots for the lower and upper tails of daily log returns
on BMW and Siemens stock.

old values, the semiparametric GPDs models for BMW and Siemens are
estimated using2

> gpd.bmw.fit2 = gpd.tail(bmw[nz.idx], upper = 0.015,

+ lower = -0.015)

> gpd.bmw.fit2

Generalized Pareto Distribution Fit --

Total of 5350 observations

Upper Tail Estimated with ml --

Upper Threshold at 0.015 or 12.93 % of the data

ML estimation converged.

Log-likelihood value: 2457

Parameter Estimates, Standard Errors and t-ratios:

Value Std.Error t value

2The L-moment fitting method is used for the Siemens upper tail estimates because
the default ML estimate did not converge. The function gpd.tail does not return esti-
mated standard errors. Use the function gpd to get estimated standard errors.

19.2 Motivating Example 719

Threshold

Es
tim

at
e

of
 x

i

0.0 0.01 0.02 0.03

-0
.4

0.
0

0.
4

0.
8

48 30 18 10 6 4 2

Percent Data Points above Threshold

BMW, lower tail

Threshold

Es
tim

at
e

of
 x

i

0.0 0.005 0.010 0.015 0.020 0.025

-0
.5

0.
0

0.
5

1.
0

52 25 13 7 4 2

Percent Data Points above Threshold

Siemens, lower tail

Threshold

Es
tim

at
e

of
 x

i

0.0 0.01 0.02 0.03

-0
.6

-0
.2

0.
2

0.
6

52 31 19 11 7 4 3

Percent Data Points above Threshold

BMW, upper tail

Threshold

Es
tim

at
e

of
 x

i

0.0 0.005 0.010 0.015 0.020 0.025

-0
.6

-0
.2

0.
2

0.
6

48 27 14 7 4 2

Percent Data Points above Threshold

Siemens, upper tail

FIGURE 19.5. Estimated GPD shape parameter , as a function of increasing
thresholds, for the lower and upper tails of daily log returns on BMW and Siemens
stocks.

xi 0.1701 NA NA

beta 0.0089 NA NA

Lower Tail Estimated with ml --

Lower Threshold at -0.015 or 11.5 % of the data

ML estimation converged.

Log-likelihood value: 2189

Parameter Estimates, Standard Errors and t-ratios:

Value Std.Error t value

xi 0.1901 NA NA

beta 0.0087 NA NA

> gpd.siemens.fit2 = gpd.tail(siemens[nz.idx], upper = 0.01,

+ lower = -0.01, upper.method="lmom")

> gpd.siemens.fit2

Generalized Pareto Distribution Fit --

Total of 5350 observations

720 19. Copulas

Upper Tail Estimated with lmom --

Upper Threshold at 0.01 or 16.19 % of the data

Log-likelihood value: NA

Parameter Estimates, Standard Errors and t-ratios:

Value Std.Error t value

xi 0.1153 NA NA

beta 0.0066 NA NA

Lower Tail Estimated with ml --

Lower Threshold at -0.01 or 14.45 % of the data

ML estimation converged.

Log-likelihood value: 2923

Parameter Estimates, Standard Errors and t-ratios:

Value Std.Error t value

xi 0.1543 NA NA

beta 0.0072 NA NA

To evaluate the fit of the GPD model in the tails of the distribution,
the function gpd.tail automatically creates qq plots of excesses over the
specified lower and upper thresholds against the quantiles of the fitted
GPD model. The linearity of the left parts of the plots (not shown) in-
dicates a good fit to the tails of the distributions. The GPD fit may also
be evaluated graphically by examining the plots of the tails of the distri-
butions along with the fitted GPD tails. These plots, produced using the
S+FinMetrics/EVANESCE function tailplot, are given in Figure 19.6 and
indicate good fits to the tails of the BMW and Siemens return distributions.
As a further reality check on the overall fit of the semiparametric GPD

models to the entire distribution of the BMW and Siemens returns, simu-
lated returns from the fitted models are generated using

> nobs = numRows(bmw[nz.idx])

> set.seed(123)

> bmw.gpd.sim = gpd.2q(runif(nobs),gpd.bmw.fit2)

> siemens.gpd.sim = gpd.2q(runif(nobs),gpd.siemens.fit2)

In the above code, the S+FinMetrics/EVANESCE function gpd.2q is used to
compute quantiles from a fitted semiparametric GPD model. Figure 19.7
shows qq plots of the simulated returns against the actual returns created
using

> par(mfrow=c(1,2))

> qqplot(seriesData(bmw[nz.idx]),bmw.gpd.sim,

+ xlab="Actual returns", ylab="Simulated returns")

19.2 Motivating Example 721

0.05 0.10 0.15

0.
00

01
0.

01
00

x (on log scale)

1-
F(

x)
 (o

n
lo

g
sc

al
e)

BMW Lower tail Fit

0.05 0.10 0.15

0.
00

01
0.

01
00

x (on log scale)

1-
F(

x)
 (o

n
lo

g
sc

al
e)

BMW Upper tail Fit

0.01 0.05 0.10

0.
00

00
1

0.
00

10
0

0.
10

00
0

x (on log scale)

1-
F(

x)
 (o

n
lo

g
sc

al
e)

Siemens Lower tail Fit

0.01 0.05 0.10

0.
00

01
0.

01
00

x (on log scale)

1-
F(

x)
 (o

n
lo

g
sc

al
e)

Siemens Upper tail Fit

FIGURE 19.6. Estimated tails from GPD models fit to lower and upper tails of
the daily log returns on BMW and Siemens stock.

> abline(0,1)

> title("BMW")

> qqplot(seriesData(siemens[nz.idx]),siemens.gpd.sim,

+ xlab="Actual returns", ylab="Simulated returns")

> abline(0,1)

> title("Siemens")

> par(mfrow=c(1,1))

The approximate linearity of these plots verifies that the fitted semipara-
metric GPD models adequately describe the marginal distributions of the
BMW and Siemens returns. The simulated returns from the fitted semi-
parametric GPD models capture the marginal behavior of actual returns,
but not the joint behavior since the uniform variables used to simulate each
return series are independent. To see this, Figure 19.8 gives the scatter plot
of the simulated returns. The occurrence of extreme values observed in the
actual returns from Figure 19.3 are reproduced for the marginal distribu-
tions, but the dependence of the extreme values is not produced for the
bivariate distribution.
The modeling problem introduced in this example involves modeling the

individual marginal distributions of returns to capture fat-tailed behavior,
and modeling the dependence structure of the joint behavior to capture the
observed dependence — especially in the tails of the joint distribution. The

722 19. Copulas

Actual returns

S
im

ul
at

ed
 re

tu
rn

s

-0.15 -0.10 -0.05 0.0 0.05 0.10

-0
.1

5
-0

.1
0

-0
.0

5
0.

0
0.

05
0.

10

BMW

Actual returns

S
im

ul
at

ed
 re

tu
rn

s

-0.10 -0.05 0.0 0.05

-0
.1

0
-0

.0
5

0.
0

0.
05

0.
10

Siemens

FIGURE 19.7. qq plots of actual returns versus simulated returns from fitted
semiparametric GPD models.

marginal distributions are shown to be adequately modeled using semi-
parametric GPD models. However, it is not clear how to model the joint
dependence given models for the marginal distributions. As the following
sections will show, a flexible way to successfully model the joint behav-
ior of financial returns, after modeling the marginal distributions, is with
copulas.

19.3 Definitions and Basic Properties of Copulas

This section lays out the basic mathematical and statistical theory for
bivariate copulas.

19.3.1 Properties of Distributions

Let be a random variable with distribution function (df) () =
Pr(). For simplicity and ease of exposition, is assumed to be
continuous and di erentiable. The density function () is defined by

() =

Z
()

so that = 0 .

19.3 Definitions and Basic Properties of Copulas 723

bmw.gpd.sim

si
em

en
s.

gp
d.

si
m

-0.15 -0.10 -0.05 0.0 0.05 0.10

-0
.1

0
-0

.0
5

0.
0

0.
05

0.
10

FIGURE 19.8. Scatter plot of simulated bivariate returns from fitted semipara-
metric GPD models.

Let 1 denote the quantile function

1() = inf{ | () }

for (0 1). The following are useful results from probability theory:

• () (0 1), where (0 1) denotes a uniformly distributed ran-
dom variable on (0 1)

• If (0 1) then 1()

The latter result gives a simple way to simulate observations from
provided 1 is easy to calculate.
Let and be random variables with marginal dfs (margins) and
, respectively, and joint df

() = Pr()

In general, the marginal dfs may be recovered from the joint df via

() = () () = ()

The joint density is defined by

() =
2

()

724 19. Copulas

The random variables and are independent if

() = () () (19.1)

for all values of and .

19.3.2 Copulas and Sklar’s Theorem

A bivariate copula is a bivariate df defined on 2 = [0 1] × [0 1] with
uniformly distributed margins; that is,

() = Pr()

where (0 1). As a result, it satisfies the following properties:

• (0) = (0) = 1, (1) = , (1) = for every [0 1]

• 0 () 1

• For every 1 2, 1 2 and 1 2 1 2 [0 1], the following
inequality holds: (1 1) (2 1) (1 2) + (2 2) 0

The last property ensures that Pr(1 2 1 2) 0.
Although not immediately apparent from its definition, the idea of a cop-

ula is to separate a joint df into a part that describes the dependence
between and and parts that only describe the marginal behavior. To
see this, and may be transformed into uniform random variables
and via = () and = (). Let the joint df of () be the
copula . Then, it follows that

() = Pr()

= Pr(() () () ())

= (() ()) = ()

and so the joint df can be described by the margins and and
the copula . The copula captures the dependence structure between
and .

Sklar’s Theorem

Let be a joint df with margins and . Then there exists a copula
such that for all []

() = (() ()) (19.2)

If and are continuous, then is unique. Otherwise, is uniquely
defined on Range × Range . Conversely, if is a copula and and

19.3 Definitions and Basic Properties of Copulas 725

are univariate dfs, then defined in (19.2) is a joint df with margins
and .
Sklar’s theorem (Sklar, 1959) shows that the copula associated with a

continuous df couples the margins and with a dependence
structure to uniquely create . As such, it is often stated that the copula
of and is the df of () and ().
The copula of and has the property that it is invariant to strictly

increasing transformations of the margins and ; that is, if and
are strictly increasing functions, then () and ()) have the same
copula as and . This property of copulas is useful for defining measures
of dependence.

Examples of Simple Copulas

If and are independent, then their copula satisfies

() = · (19.3)

The copula (19.3) is called the independent copula or product copula. Its
form follows from the definition of independence given in (19.1).
Suppose that and are perfectly positively dependent or comono-

tonic. This occurs if
= ()

and is a strictly increasing transformation. Then the copula for and
satisfies

() = min()

Notice that this is df for the pair () where (0 1).
Finally, suppose that and are perfectly negatively dependent or

countermonotonic. This occurs if

= ()

and is a strictly decreasing transformation. Then the copula for and
satisfies

() = max(+ 1 0)

The above is the df for the pair (1).
The copulas for comonotonic and countermonotonic random variables

form the so-called Fréchet bounds for any copula ():

max(+ 1 0) () min()

Copula Density

The copula density is defined by

() =
2

()

726 19. Copulas

Let be a joint df with margins and defined by (19.2). Then,
using the chain rule, the joint density of and may be recovered using

() =
2

() (19.4)

=
2

(() ())

= (() ()) · () ()

The above result shows that it is always possible to specify a bivariate
density by specifying the marginal densities and a copula density.

19.3.3 Dependence Measures and Copulas

Dependence measures for financial risk management are nicely surveyed in
Embrechts, Lindskog, and McNeil (2003). For two random variables and
, they list four desirable properties of a general, single number measure

of dependence ():

1. () = ()

2. 1 () 1

3. () = 1 if and are comonotonic; () = 1 if and
are countermonotonic.

4. If is strictly monotonic, then

(()) =

½
()
()

increasing
decreasing

They point out that the usual (Pearson) linear correlation only satisfies
the first two properties. They show that the rank correlation measures
Spearman’s rho and Kendall’s tau satisfy all four properties.

Pearson’s Linear Correlation

The Pearson correlation coe cient

=
cov()p
var()var()

gives a scalar summary of the linear dependence between and . If =
+ then = ±1. If and are independent, then = 0. Embrechts,
McNeil, and Straumann (2000) summarize the following shortcomings of
linear correlation:

• requires that both var() and var() exist.

19.3 Definitions and Basic Properties of Copulas 727

• = 0 does not imply independence. Only if and are bivariate
normal does = 0 imply independence.

• is not invariant under nonlinear strictly increasing transformations.

• Marginal distributions and correlation do not determine the joint
distribution. This is only true for the bivariate normal distribution.

• For given marginal distributions and , [min max] and it
may be the case that min 1 and max 1.

Kendall’s Tau and Spearman’s Rho

Suppose the random variables and represent financial returns or pay-
o s. It is often the case that both and take either large or small values
together, whereas it is seldom the case that takes a large value and, at
the same time, takes a small value (or vice versa). The concept of concor-
dance is used to measure this type of association. Concordance measures
have the useful property of being invariant to increasing transformations
of and . As a result, concordance measures may be expressed as a
function of the copula between and . Since the linear correlation
is not invariant to increasing transformations of and , it is does not
measure concordance. Two common measures of concordance are Kendall’s
tau statistic and Spearman’s rho statistic.
Let be a continuous bivariate df, and let (1 1) and (2 2) be two

independent pairs of random variables from this distribution. The vectors
(1 1) and (2 2) are said to be concordant if 1 2 whenever

1 2 and 1 2 whenever 1 2; they are said to be discordant in
the opposite case. Kendall’s tau statistic for the distribution is defined
as

= Pr{(1 2)(1 2) 0} Pr{(1 2)(1 2) 0}

If is the copula associated with , then it can be shown that

= 4

Z Z
2

1 = 4

Z Z
2

() () 1 (19.5)

where () is the copula density. The empirical estimate3 of for a sample
of size is the number of the sample’s concordant pairs minus the number
of discordant pairs divided by the total number of pairs

¡
2

¢
:

ˆ =
1¡
2

¢ X
1

sign (() ()) (19.6)

3A pair () and () of the sample is called concordant if either and
or and . It is called discordant if either and or
and .

728 19. Copulas

For a pair of random variables () with joint df and marginal
distributions and , Spearman’s rho statistic, , is defined as the
(Pearson) correlation between () and (). It is a measure of rank
correlation in terms of the integral transforms of and . For a copula
associated with and , it can be shown that

= 12

Z Z
2

() 3 (19.7)

For a sample of size , may be estimated using

ˆ =
12

(2 1)

X
=1

µ
rank()

+ 1

2

¶µ
rank()

+ 1

2

¶
(19.8)

Although both and are measures of concordance, their values can
be quite di erent. Nelson (1999) summarized the relationship between
and with the following inequalities:

3 1

2

1 + 2 2

2
for 0

2 + 2 1

2

1 + 3

2
for 0

Example 123 Empirical estimates of Kendall’s tau and Spearman’s rho

In S-PLUS, estimates of Kendall’s tau and Spearman’s rho using (19.6)
and (19.8) may be computed using the function cor.test. For example, to
compute these statistics from the daily returns on BMW and Siemens, use

> german.tau = cor.test(bmw[nz.idx],siemens[nz.idx],

+ method="k")$estimate

> german.tau

tau

0.4729532

> german.rho = cor.test(bmw[nz.idx],siemens[nz.idx],

+ method="spearman")$estimate

> german.rho

rho

0.6499582

The estimates ˆ = 0 4729 and ˆ = 0 6499 are both smaller than the
Pearson correlation estimate ˆ = 0 6517.

Tail Dependence Measures

Tail dependence measures are used to capture dependence in the joint tail
of bivariate distributions. The coe cient of upper tail dependence may be
defined as

() = lim
1
Pr(VaR ()| VaR ()

19.4 Parametric Copula Classes and Families 729

where the values-at-risk VaR () and VaR () denote the 100· th percent
quantiles of and , respectively. Loosely speaking, () measures
the probability that is above a high quantile given that is above a
high quantile. Similarly, the coe cient of lower tail dependence is

() = lim
0
Pr(VaR ()| VaR ()

and measures the probability that is below a low quantile given that
is below a low quantile. It can be shown (Joe, 1997 p. 178) that the

coe cients of tail dependence are functions of the copula given by

= lim
1

1 2 + ()

1
(19.9)

= lim
0

()
(19.10)

If (0 1], then there is upper tail dependence; if = 0 then there is
independence in the upper tail. Similarly, if (0 1], then there is lower
tail dependence; if = 0 then there is independence in the lower tail.

19.4 Parametric Copula Classes and Families

In this section, the bivariate parametric copula families implemented in
S+FinMetrics/EVANESCE are defined. Once a copula family is defined, func-
tions are available to construct joint cumulative and probability density
functions, generate random variables, compute Kendall’s tau and Spear-
man’s rho, compute the tail index parameters, and to estimate the copula
parameters by the method of maximum likelihood.

19.4.1 Normal Copula

One of the most frequently used copulas for financial modeling is the copula
of a bivariate normal distribution with the correlation parameter defined
by

() =

Z 1() Z 1() 1

2
p
1 2

exp

½
2 2 + 2

2(1 2)

¾
= (1() 1()) (19.11)

where 1(·) is the quantile function of the standard normal distribution
and is the joint cumulative distribution function of a standard bivari-
ate normal distribution with correlation coe cient (0 1). From
Sklar’s theorem, the normal copula generates the bivariate standard nor-
mal distribution if and only if the margins are standard normal. For any

730 19. Copulas

other margins, the normal copula does not generate a bivariate standard
normal distribution. The normal copula is heavily used in financial applica-
tions. See, for example, the technical documents describing J.P. Morgan’s
RiskMetricsTM system (RiskMetrics, 1995).
For the normal copula, Kendall’s tau and Spearman’s rho are given by

=
2
arcsin

=
6
arcsin

2

In addition, except for the case = 1, the normal copula does not display
either lower or upper tail dependence:

= =

½
0
1

for 1
for = 1

19.4.2 Normal Mixture Copula

Consider two pairs of random variables (1 1) and (2 2) that are
independent of each other. The joint distribution of the two pairs are
given by normal copulas with parameters 1 and 2, respectively; that is,
(1 1) 1 and (2 2) 2 , where denotes the normal copula
(19.11) with parameter . Let () be a random pair such that it is equal
to (1 1) with probability and it is equal to (2 2) with probability
(1). Note that since the marginal distributions of 1 1 2 and 2 are
uniform, so are the marginals of , and . The joint distribution of ()
is given by the following normal mixture copula:

() =
1() + (1) 2()

where 0 , 1, 2 1.

19.4.3 Extreme Value Copula Class

A copula is said to be an extreme value (EV) copula if for all 0 the
scaling property

() = (())

holds for all () 2. Let (1 1) (2 2) () be iid random
pairs from an EV copula and define = max(1) and =
max(1). Then is also a copula associated with the random pair
(). This property is called max-stability. In can be shown (e.g. Joe,
1997 p. 175) that EV copulas can be represented in the form

() = exp

½
ln()

µ
ln()

ln()

¶¾

19.4 Parametric Copula Classes and Families 731

where (·) : [0 1] [12 1] is a convex function such that max(1)
() 1 for all [0 1]. The function () is called the dependence
function. The following EV copulas are implemented in S+FinMetrics/
EVANESCE.

Gumbel Copula

Probably the most common EV copula is the Gumbel copula (Gumbel,
1960) with parameter :

() = exp
n
[(ln() + (ln()]1

o
1

The dependence function of the Gumbel copula has the form

() = (+ (1))1

The parameter controls the strength of dependence. When = 1 there
is no dependence; when = + there is perfect dependence. It can be
shown that Kendall’s tau is given by

= 1 1

Further, the Gumbel copula exhibits upper tail dependency with

= 2 21

Galambos Copula

The Galambos copula (Galambos, 1975) with parameter has the form

() = exp
n
[(ln() + (ln()] 1

o
0

The dependence function for this copula is

() = 1 (+ (1)) 1

Hüsler and Reiss Copula

The Hüsler and Reiss copula (Hüsler and Reiss, 1987) with parameter is

() = exp

½
˜

·
1
+
1

2
ln

µ
˜

˜

¶¸
˜

·
1
+
1

2
ln

µ
˜

˜

¶¸¾
where 0 ˜ = ln ˜ = ln , and is the df of a standard
normal random variable. The dependence function for this copula is

() =

·
1
+
1

2
ln

µ
1

¶¸
+(1)

·
1 1

2
ln

µ
1

¶¸

732 19. Copulas

Twan Copula

The Twan copula (Twan, 1988) is an asymmetric extension of the Gumbel
copula with parameters and . It has dependence function

() = 1 + () + { + (1) }1

where 0 1 and 1 .

BB5 Copula

Joe (1997) defined the BB5 copula as a two-parameter extension of the
Gumbel copula. It has the form

() = exp

½ h
˜ + ˜ (˜ + ˜) 1

i1 ¾
where 0 1 ˜ = ln and ˜ = ln . The dependence function
for this copula is

() =
h
+ (1) (+ (1)) 1

i1
19.4.4 Archimedean Copulas

Archimedean copulas (see Nelson, 1999, Chap. 4) are copulas that may be
written in the form

() = 1 [() + ()]

for a function : R+ that is continuous, strictly decreasing, and
convex and satisfies (1) = 0. The function is called the Archimedean
generator , and 1 is its inverse function. For example, the Gumbel copula
is an Archimedean copula with generator function () = (ln) . The
density of an Archimedean copula may be determined using

() =
00 (()) 0() 0()¡ 0(())

¢3
where 0 and 00 denote the first and second derivatives of , respectively.
Genest and MacKay (1986) showed that Kendall’s tau may be computed

using

= 4

Z
()
0()

+ 1

Prior to their use in financial applications, Archimedean copulas have
been successfully used in actuarial applications (see Frees and Valdez,
1998). The following Archimedean copulas are implemented in S+FinMetrics/
EVANESCE.

19.4 Parametric Copula Classes and Families 733

Frank Copula

The Frank copula (Frank, 1979) has the following distribution function:

() = log
¡£

(1)(1)
¤ ¢

where 0 and = 1 . The generator function is given by

() = ln

µ
1

1

¶
The Frank copula does not exhibit lower or upper tail dependency.

Kimeldorf-Sampson (Clayton) Copula

The Kimeldorf and Sampson copula (Kimeldorf and Sampson, 1975) has
the following form:

() =
¡

+ 1
¢ 1

where 0 , and the generator function is

() = 1

This copula is also known as the Clayton copula (Clayton, 1978).
Kendall’s tau is given by

=
+ 2

and it exhibits only lower tail dependency:

= 2 1

Joe Copula

The Joe copula (Joe, 1993) has the form

() = 1
¡
(1) + (1) (1) (1)

¢1
where 1 with generator function

() = ln(1 (1))

BB1 Copula

The BB1 copula (Joe, 1997) is given by

() =
³
1 +

£
(1) + (1)

¤ 1
´

with 0 and 1 and generator function

() = (1)

734 19. Copulas

BB2 Copula

The BB2 copula (Joe, 1997) has the form

() =
h
1 + 1 ln

³
+ 1

´i1
with 0, 0 and generator function

() = (1) 1

BB3 Copula

The BB3 copula (Joe, 1997) has the form of

() = exp

½ h
1 ln

³
˜ + ˜ 1

´i1 ¾
with 1, 0, ˜ = ln , and ˜ = ln . The generator function is

() = exp
©
(ln)

ª
1

BB6 Copula

The BB6 copula (Joe, 1997) has the form of

() = 1

µ
1 exp

½ ·³
ln
³
1 (1)

´´
+
³

ln
³
1 (1)

´´ ¸1)!1
where 1, 0 and has generator function

() =
h
ln
³
1 (1)

´i
BB7 Copula

The BB7 copula (Joe, 1997) has the form of

() = 1

µ
1

h¡
1 (1)

¢
+
¡
1 (1)

¢
1
i 1

¶1
where 1 and 0 and generator function

() =
³
1 (1)

´
1

19.4 Parametric Copula Classes and Families 735

19.4.5 Archimax Copulas

Capéraà, Fourgères, and Genest (2000) combined the EV and Archimedean
copula classes into a single class called Archimax copulas. The Archimax
copulas have the form

() = 1

·
(() + ())

µ
()

() + ()

¶¸
where () is a valid dependence function and is a valid Archimedean
generator. Archimax copulas reduce to Archimedean copulas for () = 1
and to EV copulas for () = ln(). S+FinMetrics/EVANESCE implements
the following Archimax copula due to Joe (1997).

BB4 Copula

The Archimax copula with

() = 1 and () = 1 (+ (1)) 1

is called the BB4 copula and has the form

() =
³

+ 1
£
(1) + (1)

¤ 1
´ 1

with 0 and 0.

19.4.6 Representation of Copulas in S+FinMetrics

The EVANESCE implementation in S+FinMetrics defines an SV4 object class
“copula”, and its child classes “ev.copula”, “archm.copula”, “normal.
copula”, “normal.mix.copula”, “bb4.copula”, and “empirical.copula”.
These classes are referred to as copula types. Each parametric family of cop-
ulas discussed in the previous subsection that belongs to one of these copula
types is also defined as a separate subclass and is named “family.name.
copula”. For example, the Gumbel copula family is a “copula” object,
with child class “ev.copula” and subclass “gumbell.copula”. If the cop-
ula family defines an EV copula, it is considered to be of “ev.copula” type.
If it is an Archimedean copula but not an EV copula, then it inherits from
“archm.copula”. A copula’s type will determine what internal functions
are used for various operations and computations on the copula (e.g., gen-
eration of random observations from the copula, computation of Kendall’s
tau, etc.). For example, each parametric copula of class archm.copula has
S+FinMetrics/EVANESCE method functions for computing , 1 0, 00

and 0(1). See the online help for copula.object for more details on these
functions.
Objects of class “copula” for a particular family are created using the

constructor functions listed in Table 19.1. In addition to the parametric

736 19. Copulas

Function Parameters Inherits
normal.copula delta copula

normal.mix.copula p, delta1, delta2 copula

bb4.copula theta, delta copula

gumbel.copula delta copula, ev.copula
galambos.copula delta copula, ev.copula
husler.reiss.copula delta copula, ev.copula
bb5.copula delta, theta copula, ev.copula
twan.copula a, b, r copula, ev.copula
frank.copula delta copula, archm.copula
kimeldorf.sampson. delta copula, archm.copula
copula

joe.copula theta copula, archm.copula
bb1.copula theta, delta copula, archm.copula
bb2.copula theta, delta copula, archm.copula
bb3.copula theta, delta copula, archm.copula
bb6.copula theta, delta copula, archm.copula
bb7.copula theta, delta copula, archm.copula

TABLE 19.1. Copula constuctor functions

Slot name Description
parameters A vector with values of the parameters
param.names Names of the greek letter parameters for the copula
param.lowbnd A vector the same length of parameters containing

the values of the lower bounds for the parameters
param.upbnd A vector the same length of parameters containing

the values of the upper bounds for the parameters
message Name of the parametric copula family and copula

subclass if applicable

TABLE 19.2. Slots for ”copula” objects

family constructor functions, there are also copula child class constructor
functions ev.copula and archm.copula. Each object of class “copula” has
slots described in Table 19.2.

Example 124 Constructing copula objects.

To create a “copula” object representing a normal copula (19.11) with
= 0 7 use the constructor function normal.copula:

> ncop.7 = normal.copula(delta=0.7)

> class(ncop.7)

[1] "normal.copula"

> inherits(normal.cop.7, what="copula")

[1] T

19.4 Parametric Copula Classes and Families 737

> slotNames(ncop.7)

[1] "parameters" "param.names" "param.lowbnd" "param.upbnd"

[5] "message"

> normal.cop.7@parameters

[1] 0.7

> normal.cop.7@param.lowbnd

[1] 0

> normal.cop.7@param.upbnd

[1] 1

> normal.cop.7@message

[1] "Normal copula family"

The print method gives a basic description of the copula:

> ncop.7

Normal copula family.

Parameters :

delta = 0.7

An object representing the Gumbel copula with = 2 may be created in
a number of ways. It may be created using the gumbel.copula constructor
function:

> gumbel.cop.2 = gumbel.copula(delta=2)

> inherits(gumbel.cop.2,what="copula")

[1] T

> inherits(gumbel.cop.2, what="ev.copula")

[1] T

> gumbel.cop.2

Gumbel copula family; Extreme value copula.

Parameters :

delta = 2

Since the Gumbel copula is an EV copula, it may also be created using the
ev.copula constructor function:

> gcop.2 = ev.copula(family="gumbel", param=2)

> class(gcop.2)

[1] "gumbel.copula"

> gcop.2

Gumbel copula family; Extreme value copula.

Parameters :

delta = 2

Visualizing Copulas

Table 19.3 lists the S+FinMetrics/EVANESCE method functions for visu-
alizing bivariate copulas. The surface plot of the bivariate CDF ()

738 19. Copulas

Method Function Description
persp.pcopula Surface plot of copula CDF ()
contour.plot Plot contours of copula CDF ()
contour.pcopula

persp.dcopula Surface plot of copula density ()
contour.dcopula Plot contours of copula density ()

TABLE 19.3. Method functions for visualizing bivariate copulas

produced by the function persp.pcopula is often not very informative
about the dependence properties of a copula. Instead, the contour plots of
the level sets

{() 2 : () = } is constant

produced by the functions contour.plot and contour.pcopula are much
more informative.

Example 125 Visualizing copulas

The normal copula with = 0 7 may be visualized using

> persp.dcopula(ncop.7)

> contour.dcopula(ncop.7)

> persp.pcopula(ncop.7)

> contour.pcopula(ncop.7)

The resulting figures are shown in Figure 19.9. Notice how the surface plot
of the CDF is tent-shaped, with level 0 at the point (0 0) and level 1 at the
point (1 1). The level sets of the CDF are convex and their angled shape
indicates moderate dependence. The copula density has two large peaks at
the points (0 0) and (1 1) and almost no mass in the upper left and lower
right quadrants of 2 which reflects positive dependence.
Figure 19.10 illustrates the normal copula with = 0 0001 created by

> normal.cop.0 = normal.copula(delta=0.0001)

This copula is essentially the independent copula () = . Notice how
the level curves of the CDF are less convex than the level curves of the
normal copula with = 0 7. Also, the copula density has a relatively flat
mass over the interior of 2.
Figure 19.11 shows the Gumbel copula with = 2. The plots look similar

to those for the normal copula with = 0 7. One noticeable di erence is the
asymmetric peaks in the density at the points (0 0) and (1 1). The Gumbel
density has a much larger peak at the point (1 1) than at the point (0 0).
This reflects upper tail dependence in the copula.
Figure 19.12 shows the Kimeldorf-Sampson (Clayton) copula with = 2.

The lower tail dependence of this copula is clearly shown in the CDF and

19.4 Parametric Copula Classes and Families 739

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

x

y

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

xy

CDF

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

1

12

2

3

3

4

4

5

5

6

6

7

7

8

8

x

y

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

1

2

3

4

xy

pdf

FIGURE 19.9. Surface and contour plots of () and () for the normal
copula with = 0 7.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.1

0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

x

y

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

xy

CDF

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.9996

0.9996

0.9997

0.9997

0.9998

0.9998

0.9999

0.9999

1.0000

1.00001.0001

1.0001

1.0002

1.0002

1.0003

1.0003

1.0004

1.0004

x

y

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

11111

xy

pdf

FIGURE 19.10. Surface and contour plots of () and () for the normal
copula with = 0.

740 19. Copulas

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

x

y

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

xy

CDF

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

 2

 2

 4

 4 6 81012141618

x

y

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

2

4

6

xy

pdf

FIGURE 19.11. Surface and contour plots of () and () for the Gumbel
copula with = 0.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

x

y

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

xy

CDF

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

 2

 2

 4 6 8101214161820222426

x

y

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

 2

 4

 6

 8

10

xy

pdf

FIGURE 19.12. Surface and contour plots of () and () for the Clayton
copula with = 0.

19.4 Parametric Copula Classes and Families 741

density plots. The level sets of the CDF are pushed much closer to the
origin where the density has a strong peak.
The reader is encouraged to experiment with plots of the other paramet-

ric copula families implemented in S+FinMetrics.

Simulating from Copulas

The S+FinMetrics/EVANESCEmethod functions pcopula and dcopula com-
pute the copula CDF and pdf at specified points. The function rcoupla
generates random variables with uniform marginal distributions and joint
CDF determined by a specified copula. The algorithms used for simulating
from parametric copulas are described in Genest and Revest (1993) and
Cherubini, Luciano, and Vecchiato (2004).

Example 126 Simulating uniform random variables from specified copulas

To compute 2000 random pairs with uniform marginal distributions and
joint distributions specified by the independent copula, normal copula with
= 0 7, Gumbel copula with = 2 and Clayton copula with = 2,

respectively, use

> set.seed(123)

> normal.7.sim = rcopula(normal.cop.7,2000)

> normal.0.sim = rcopula(normal.cop.0,2000)

> gumbel.2.sim = rcopula(gumbel.cop.2,2000)

> ks.2.sim = rcopula(ks.cop.2,2000)

Figure 19.13 shows these pairs. Notice how the distribution of the uniformly
distributed pairs in 2 reflects the dependence structure of the copulas.

Computing Dependence Measures

The dependence measures introduced in Section 19.3 may be computed for
selected copulas using the functions Kendalls.tau, Spearmans.rho and
tail.index. These functions make use of the fact that for certain copu-
las, the dependence measures either have closed-form solutions based on
the copula parameters or have representations in terms of the generator
function and its inverse and derivatives.

Example 127 Computing dependence measures for various copulas

Kendall’s tau, Spearman’s rho, and the tail index parameters and
for the normal copula with = 0 7 may be computed using

> Kendalls.tau(ncop.7)

[1] 0.4936334

> Spearmans.rho(ncop.7)

[1] 0.6829105

> tail.index(ncop.7)

742 19. Copulas

Independent Copula

v

u

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Normal Copula, delta=0.7

v

u

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Gumbel Copula, delta=2

v

u

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Clayton Copula, delta=2

v

u

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FIGURE 19.13. Random simulations from specified copulas.

lower.tail upper.tail

0 0

The corresponding estimates for the Gumbel copula with = 2 are

Kendalls.tau(gcop.2)

[1] 0.5

> Spearmans.rho(gcop.2)

[1] 0.6822338

> tail.index(gcop.2)

lower.tail upper.tail

0 0.5857864

For the Gumbel copula, the dependence measures are increasing functions
of . For example, setting = 10 produces

> gcop.10 = gumbel.copula(delta=10)

> Kendalls.tau(gcop.10)

[1] 0.9

> Spearmans.rho(gcop.10)

[1] 0.9854924

> tail.index(gcop.10)

lower.tail upper.tail

0 0.9282265

19.4 Parametric Copula Classes and Families 743

Method Function Description
pbivd Compute CDF for bivariate distribution
dbivd Compute pdf for bivariate distribution
rbivd Simulate from bivariate distribution
persp.pbivd Surface plot of CDF
contour.pbivd Contour plot of CDF
persp.dbivd Surface plot of pdf
contour.dbivd Contour plot of pdf

TABLE 19.4. Method functions for ”bivd” objects

19.4.7 Creating Arbitrary Bivariate Distributions

Consider the problem of creating an arbitrary bivariate distribution for two
random variables and . Sklar’s theorem states that it is always possible
to specify a bivariate distribution () by specifying

• the marginal distributions () and ()

• a copula ()

Equations (19.2) and (19.4) show how this is done. In S+FinMetrics/
EVANESCE, the constructor function bivd allows the user to build an ar-
bitrary bivariate distribution from specified margins and a copula. The
arguments expected by bivd are

> args(bivd)

function(cop, Xmarg = "unif", Ymarg = Xmarg, param.Xmarg =

c(0, 1), param.Ymarg = param.Xmarg)

where cop represents a copula object, Xmarg and Ymarg specify the marginal
distributions for and , respectively, and param.Xmarg and param.Ymarg
specify the parameters defining the marginal distributions. If the marginal
distribution name is specified as “dist”, it is assumed that the functions
ddist, pdist, and qdist are implemented in S-PLUS. For example, if
Xmarg="norm", then the functions dnorm, pnorm, and qnorm should be avail-
able for correct performance of the bivariate distribution functions. The dis-
tribution names are not limited to those available in standard S-PLUS. The
user may create the appropriate density and quantile functions. The argu-
ments param.Xmarg and param.Ymarg specify the parameters required by
the functions named by Xmarg and Ymarg. For example, if Xmarg="norm",
then the user must specify in a vector the values of the parameters mean
and sd required by the functions dnorm, pnorm, and qnorm. The function
bivd creates an object of class “bivd” with child class method functions
listed in Table 19.4.

Example 128 Create bivariate distribution with (3 42) and 3 margins,
and Gumbel copula with = 2

744 19. Copulas

To create a “bivd” object representing a bivariate distribution with
a normal distribution with = 3 and = 4, a central Student’s-t
distribution with = 3 degrees of freedom, and a Gumbel copula with
= 2 use

> gumbel.biv <- bivd(cop=gumbel.copula(2), Xmarg="norm",

+ Ymarg="t", param.Xmarg=c(3,4),

+ param.Ymarg=3)

> class(gumbel.biv)

[1] "gumbel.bivd"

Notice that the class of the object created by bivd is based on the class of
the “copula” object specified by the cop argument. The information for
the marginal normal distribution for will be computed using the S-PLUS
functions dnorm, pnorm, and qnorm, respectively. The corresponding infor-
mation for the marginal Student’s-t distribution for will be computed
using the S-PLUS functions dt, pt, and qt, respectively. The bivariate dis-
tribution represented by the object gumbel.bivd may be visualized using

> persp.dbivd(gumbel.biv)

> contour.dbivd(gumbel.biv)

> persp.pbivd(gumbel.biv)

> contour.pbivd(gumbel.biv)

and these plots are given in Figure 19.14.
Joint orthant probabilities of the form Pr{ 0 0} may be

computed using the function pbivd. For example,

> pbivd(gumbel.biv, x = c(-2, 0), y = c(-2, 0))

[1] 0.03063639 0.19430934

gives Pr{ 2 2} = 0 0306 and Pr{ 0 0} = 0 1943,
respectively.
A simulated sample of size 2000 from the bivariate distribution repre-

sented by the object gumbel.bivd may be created using the function rbivd
as follows:

> set.seed(123)

> gumbel.biv.sim = rbivd(gumbel.biv,n=2000)

> class(gumbel.biv.sim)

[1] "data.frame"

> names(gumbel.biv.sim)

[1] "x" "y"

Some graphical diagnostics of the simulated data are given in Figure 19.15.
The lower right-hand panel shows a scatter plot of the uniform random
variables computed using = () and = ():

> U.x = pnorm(gumbel.biv.sim$x,mean=3,sd=4)

> V.y = pt(gumbel.biv.sim$y,df=3)

19.4 Parametric Copula Classes and Families 745

-2

0

2

-5 0 5 10

0.005
0.010

0.0150.0200.0250.0300.0350.0400.0450.0500.055

x

y

 -5

 0

 5

 10

-3
-2

-1
 0

 1
 2

 3

0.01

0.02

0.03

0.04

0.05

xy

Density

-2

0

2

-5 0 5 10

0.1
0.2
0.30.40.50.60.7
0.8

0.9

x

y

 -5

 0

 5

 10

-3
-2

-1
 0

 1
 2

 3

0.2

0.4

0.6

0.8

xy

CDF

FIGURE 19.14. Bivariate distribution with (3 42) and 3 marginals, and Gum-
bel copula with = 2

This plot reflects the upper tail dependence induced by the Gumbel copula.

19.4.8 Simulating from Arbitrary Bivariate Distributions

In the previous subsection, random draws from an arbitrary bivariate dis-
tribution were obtained using the rbivd method function for objects of
class “bivd”. The creation of a “bivd” object representing an arbitrary
bivariate distribution requires a valid “copula” object and S-PLUS func-
tions for computing the density, cumulative distribution, and quantiles. If
one or more of the S-PLUS distribution functions for the margins are not
available, then it is not possible to create the bivd object, and simulations
using rbivd cannot be made. However, if S-PLUS functions for comput-
ing the quantiles of the marginal distributions are available, then it is still
possible to compute simulated observations from the desired bivariate dis-
tribution. The process is as follows4:

1. Create a “copula” object using one of the copula constructor func-
tions from Table 19.1.

4This process is carried out automatically in the function rbivd from the information
in the “bivd” object.

746 19. Copulas

-10 -5 0 5 10 15

0
10

0
20

0
30

0
40

0

x

-20 -10 0 10

0
20

0
40

0
60

0
80

0

y

x

y

-10 -5 0 5 10 15

-2
0

-1
0

0
10

u

v

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FIGURE 19.15. Graphical diagnostics of simulated data from bivariate distribu-
tion with (3 42) and 3 marginals, and Gumbel copula with = 2.

2. Simulate a random sample of univariate pairs from the specified cop-
ula using the function rcopula.

3. Use the S-PLUS quantile functions for the marginal distributions eval-
uated on the simulated univariate pairs to generate observations from
the desired bivariate distribution.

Example 129 Simulate from bivariate distribution with GPD margins and
normal copula

Figure 19.8 shows a scatter plot of simulated returns from a bivariate
distribution constructed from independent GPD margins fit to the BMW
and Siemens returns. The GPDs capture the tail behavior of the marginal
distributions, but the (implicit) independent copula does not capture the
observed positive dependence in the bivariate distribution. Instead of simu-
lating from a bivariate distribution with GPD margins and an independent
copula, consider simulating from a distribution with the same margins and
a normal copula with = 0 7:

> n.obs <- seriesLength(bmw[nz.idx])

> set.seed(123)

> u.data <- rcopula(normal.cop.7,n.obs)

> bmw.cop.sim <- gpd.2q(u.data$x, gpd.bmw.fit2)

> siemens.cop.sim <- gpd.2q(u.data$y, gpd.siemens.fit2)

19.5 Fitting Copulas to Data 747

BMW

S
ie

m
en

s

-0.15 -0.10 -0.05 0.0 0.05 0.10

-0
.1

0
-0

.0
5

0.
0

0.
05

Actual Returns

BMW

S
ie

m
en

s

-0.15 -0.10 -0.05 0.0 0.05 0.10

-0
.1

0
-0

.0
5

0.
0

0.
05

Simulated Returns from Copula

FIGURE 19.16. Scatter plots of actual returns and simulated returns from a
bivariate distribution constructed from GPD margins and a normal copula with
= 0 7.

In the above code, the S+FinMetrics/EVANESCE function gpd.2q is used
to compute the quantiles of the two-tailed GPD fit to the observed returns.
Figure 19.16 shows scatter plots of the actual returns and the simulated
returns. The simulated data from the bivariate distribution constructed
from fitted GPD margins and a normal copula with = 0 7 mimics the
actual returns surprisingly well.

19.5 Fitting Copulas to Data

19.5.1 Empirical Copula

Deheuvels (1978) proposed the following nonparametric estimate of a cop-
ula . Let (1) (2) · · · () and (1) (2) · · · () be the
order statistics of the univariate samples from a copula . The empirical
copula ˆ is defined at the points

¡ ¢
by

ˆ
µ ¶

=
1X

=1

1{ () ()} = 1 2 (19.12)

748 19. Copulas

Deheuvels proved that ˆ converges uniformly to as the sample size tends
to infinity. The empirical copula frequency ˆ is given by

ˆ

µ ¶
=

½
1

0
if (() ()) is an element of the sample
otherwise

Nelson (1999) showed that estimates of Spearman’s rho and Kendall’s
tau for a sample of size may be computed from the empirical copula using

ˆ =
12
2 1

X
=1

X
=1

·
ˆ
µ ¶

·
¸

ˆ =
2

1

X
=2

X
=2

·
ˆ
µ ¶

ˆ
µ

1 1
¶

ˆ
µ

1
¶
ˆ
µ

1
¶¸

The tail index parameters (19.9) and (19.10) may be inferred from the
empirical copula by plotting

ˆ () =
1 2 + ˆ()

1

ˆ () =
ˆ()

as functions of and visually observing convergence as 1 and 0,
respectively.

Example 130 Empirical copula for BMW and Siemens daily returns

Consider computing the empirical copula (19.12) for the BMW and
Siemens returns based on the estimated semiparametric GPD models for
the marginal distributions. The empirical copula (19.12) requires a sample
of univariate random variables based on the estimated CDFs:

(ˆ ˆ) = (ˆ () ˆ ()) = 1 (19.13)

From the estimated semiparametric GPD models for ˆ and ˆ , the uni-
form pairs (19.13) may be computed using the S+FinMetrics/EVANESCE
function gpd.2p as follows:

> U.bmw.gpd <- gpd.2p(bmw[nz.idx], gpd.bmw.fit2)

> V.siemens.gpd <- gpd.2p(siemens[nz.idx], gpd.siemens.fit2)

The empirical copula (19.12) may then be computed using the S+FinMetrics/
EVANESCE function empirical.copula as follows:

19.5 Fitting Copulas to Data 749

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.1
0.2
0.3
0.4
0.5
0.6

0.6

0.7
0.8
0.9

x

y

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

V.siemens.gpd

U
.b

m
w

.g
pd

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

1.2

1.2

1.4

1.41.6

1.6

1.8

1.8
1.8

2.0

2.0

2.22.2

2.2

2.42.6

x

y

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

0.5

1.0

1.5

2.0

2.5

xy

pdf

FIGURE 19.17. Empirical copula for BMW and Siemens daily returns based on
estimated GPD marginals.

> empcop.bs <- empirical.copula(x = U.bmw.gpd,

+ y = V.siemens.gpd)

> class(empcop.bs)

[1] "empirical.copula"

> slotNames(empcop.bs)

[1] "x" "y"

The values in the slots x and y are the same as the inputs. The function
empirical.copula produces an object of class “empirical.copula” with
method functions available for visualization, quantile evaluation, and the
computation of dependence measures. The empirical copula may be visu-
alized using

> plot(empcop.bs@x,empcop.bs@y)

> contour.pcopula(empcop.bs)

> persp.dcopula(empcop.bs)

> contour.dcopula(empcop.bs)

and the resulting plots are given in Figure 19.17. Notice that many of the
features of the empirical copula are similar to those from a normal copula
with = 0 7 (see Figure 19.9).
Estimates of Kendall’s tau, Spearman rho, and the tail index parameters
and may also be computed from the empirical copula:

750 19. Copulas

> Kendalls.tau(empcop.bs)

[1] 0.472954

> Spearmans.rho(empcop.bs)

[1] 0.6499589

> tail.index(empcop.bs)

The function tail.index produces a plot (not shown) showing estimates
of and based on (19.10) and (19.9) as 0 and 1, respectively.

19.5.2 Maximum Likelihood Estimation

Let (1 1) (2 2) () denote a random sample from a bivariate
distribution with marginal distributions and and copula with
density . Recall, the joint density of () may be represented as

(;) = ((;) (;);) (;) (;)

where are the parameters for the marginal distribution , are the
parameters for the marginal distribution , are the parameters for the
the copula density , and = (0

x
0 0)0 are the parameters of the joint

density. The exact log-likelihood function is then

(;x y) =
X
=1

ln ((;) (;);) (19.14)

+
X
=1

(ln (;) + ln (;))

and the exact maximum likelihood estimator (MLE) is defined as

ˆ = argmax (;x y)

The numerical computation of the exact MLE may be di cult if there
are many parameters in the marginal models and in the copula. Instead
of maximizing the exact likelihood (19.14) as a function of , the copula
parameters may be estimated using a two-stage procedure. First, the
marginal distributions and are estimated. This could be done using
parametric models (e.g., normal or Student’s-t distributions), the empirical
CDF, or a combination of an empirical CDF with an estimated generalized
Pareto distribution for the tail. Next, given estimates ˆ and ˆ , a pseudo
sample of observations from the copula

(ˆ ˆ) = (ˆ () ˆ ()) = 1

is formed. Then, for a specified parametric copula (;) with density
(;) and unknown parameters , the log-likelihood

(: û v̂) =
X
=1

ln (ˆ ˆ ;) (19.15)

19.5 Fitting Copulas to Data 751

is maximized using standard numerical methods. This two-step method,
due to Joe and Xu (1996), is called the inference functions for margins
(IFM) method and the resulting estimator of is called the IFM estimator
(IFME). Properties of the IFME are discussed in Joe (1997) and Cherubini,
Luciano, and Vecchiato (2004). Under standard regularity conditions, the
IFME is consistent and asymptotically normally distributed. In particular,
Joe (1997) showed that the IFME often nearly as e cient as the exact
MLE.

19.5.3 Fitting Copulas Using the S+FinMetrics/EVANESCE
Function fit.copula

The IFM for fitting bivariate copulas is implemented in the S+FinMetrics/
EVANESCE function fit.copula. The arguments expected by fit.copula
are

> args(fit.copula)

function(data, family = "normal", plot = F, init.est = NA,

trace = T, scale = 1, gradient = NULL, hessian = NULL,

control = NULL, ...)

where data is an object of class “empirical.copula” and “family” is the
name of a parametric family of copulas to fit to the data. Table 19.1 lists the
families available to be fit. Setting the optional argument plot=T produces
a contour plot of the empirical copula overlaid with a contour plot of the
fitted copula. The remaining parameters control aspects of the optimization
performed by the S-PLUS function nlminb. The function returns an object
of class “copulaFit” for which there are print, IC, and compare methods.

Example 131 Estimate copulas for BMW and Siemens returns

The visualization plots of the empirical copula for the BMW and Siemens
returns, based on the fitted GPDs for the marginal distributions, suggest
that a normal copula may be appropriate. To fit a normal copula with
parameter by the IFM, use

> cop.normal.fit = fit.copula(empcop.bs, family="normal",

+ plot=T)

Iteration 0 : objective = -1473.311

...

Iteration 7 : objective = -1510.05

RELATIVE FUNCTION CONVERGENCE

> class(cop.normal.fit)

[1] "copulaFit"

> names(cop.normal.fit)

[1] "data" "copula" "vcov" "loglike"

752 19. Copulas

> cop.normal.fit

Fit Bivariate Copula by MLE --

Log-likelihood value: 1510

Normal copula family.

Parameters :

delta = 0.6567

Parameter Estimates, Standard Errors and t-ratios:

Value Std.Error t value

delta 0.6567 0.0065 101.0596

The IFME of is 0 6567, with an asymptotic standard error of 0 0065. The
close match between the contour plot of the fitted copula and the empirical
copula, given in Figure 19.18, indicates a good fit to the data. Kendall’s
tau and Spearman’s rho for the fitted copula are

> Kendalls.tau(cop.normal.fit$copula)

[1] 0.4561202

> Spearmans.rho(cop.normal.fit$copula)

[1] 0.6389838

These values are very close to the empirical estimates from the returns
computed earlier.
For comparison purposes, consider fitting a Gumbel copula with param-

eter to the BMW and Siemens returns:

> cop.gumbel.fit <- fit.copula(empcop.bs,family="gumbel",

+ plot=T)

Iteration 0 : objective = -1348.776

Iteration 5 : objective = -1410.845

RELATIVE FUNCTION CONVERGENCE

> cop.gumbel.fit

Fit Bivariate Copula by MLE --

Log-likelihood value: 1411

Gumbel copula family; Extreme value copula.

Parameters :

delta = 1.7717

19.5 Fitting Copulas to Data 753

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIGURE 19.18. Contour plots of empirical copula and fitted normal copula for
the daily returns on BMW and Siemens.

Parameter Estimates, Standard Errors and t-ratios:

Value Std.Error t value

delta 1.7717 0.0196 90.5103

The IFME of is 1 7717, with an asymptotic standard error of 0 0196.
The log-likelihood value of the fitted Gumbel copula is much lower than
the log-likelihood value of the normal copula. Figure 19.19 shows that the
contours of the fitted Gumbel copula do not match the contours of the
empirical copula nearly as well as the normal copula.
The fits of the normal and Gumbel copula may be compared using the

compare.copulaFit method function:

> compare.copulaFit(cop.normal.fit, cop.gumbel.fit)

loglike AIC BIC HQ

cop.normal.fit 1510.050 -3018.100 -3011.516 -3015.800

cop.gumbel.fit 1410.845 -2819.689 -2813.104 -2817.389

The normal copula is clearly a better fit to the bivariate returns than the
Gumbel copula. It is emphasized here that the normal copula is a good fit to
the bivariate returns conditional on using semiparametric GPD models for

754 19. Copulas

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIGURE 19.19. Contour plots of empirical copula and fitted Gumbel copula for
the daily returns on BMW and Siemens.

the marginal distributions. If di erent models are used to fit the marginals,
then the normal copula may not provide the best fit.

19.6 Risk Management Using Copulas

Cherubini, Luciano, and Vecchiato (2004) gave detailed examples of using
copulas to compute risk measures for general portfolios of derivative se-
curities including credit derivatives. In this section, the simple problem of
computing common risk measures for a portfolio of two assets using copulas
is described.

19.6.1 Computing Portfolio Risk Measures Using Copulas

Consider a one-period investment in two assets named asset 1 and asset 2.
Let 1 and 2 denote the shares of wealth invested in asset 1 and asset 2,
respectively, such that 1 + 2 = 1 Let and denote the one-period
continuously compounded (log) returns defined by

= ln

µ
1 +1

1

¶
= ln

µ
2 +1

2

¶

19.6 Risk Management Using Copulas 755

where 1 and 2 denote the prices of assets 1 and 2 at time period ,
respectively. Then, the one-period log-return on the portfolio is given by

= ln(1 + 2) (19.16)

Since is a nonlinear transformation of the random variables and ,
the df of is generally unknown.
Two common portfolio risk measures, introduced in Chapter 5, are value-

at-risk (VaR) and expected shortfall (ES). For a portfolio with random
return and df , the VaR and ES for a given loss probability 1 are

VaR = 1() (19.17)

ES = [| VaR] (19.18)

Since the df is generally unknown, analytic expressions for VaR and
ES are generally not available.

19.6.2 Computing VaR and ES by Simulation

If it is possible to generate random simulations from the joint df of and ,
then it is easy to compute numerical approximations to (19.17) and (19.18)
using (19.16). Let { 1 } denote a simulated values of based on
simulated random pairs of and . Then the simulation-based estimates
of (19.17) and (19.18) are

\VaR = 100 · th empirical quantile of valuesdES = mean of values greater than\VaR

If the joint df of and is specified by the marginal dfs and and
the copula , then simulated values for and may be obtained using
the procedures described in Section 19.4.

Example 132 Simulation-based VaR and ES estimates

Let and denote the daily log-returns on two assets. Consider a
portfolio with 1 = 0 7 and 2 = 0 3. Suppose (0 00034 0 01472)
and (0 00021 0 011402). Furthermore, suppose the copula for
and is the Clayton copula with = 2. Since the Clayton copula exhibits
a lower tail dependence, there is a greater probability of large negative
values of and together than is predicted by the bivariate normal
distribution with a similar correlation structure. The following commands
may be used to compute the simulation-based estimates of (19.17) and
(19.18) for = 0 95 based on = 10000 simulated values of the portfolio
log-return :

> # create bivd object

756 19. Copulas

> clayton.biv <- bivd(cop=kimeldorf.sampson.copula(delta=2),

+ Xmarg = "norm", Ymarg = "norm",

+ param.Xmarg=c(0.00034, 0.0147),

+ param.Ymarg=c(0.00021, 0.01140))

> # simulate from bivariate distn and compute log-return

> set.seed(123)

> xy.sim = rbivd(clayton.biv,10000)

> R.sim = log(0.7*exp(xy.sim$x) + 0.3*exp(xy.sim$y))

> VaR.95.est = quantile(-R.sim,probs=0.95)

> ES.95.est = -mean(R.sim[-R.sim > VaR.95.est])

> VaR.95.est

95%

0.02215953

> ES.95.est

[1] 0.02776794

With 5% probability, the portfolio could lose 2 216% or more in one day.
If the return is less than 2 216%, then, on average, the loss is 2 777%

Example 133 VaR and ES estimates for portfolio of BMW and Siemens
stocks

The S+FinMetrics/EVANESCE function VaR.exp.sim automates the cal-
culation of VaR and ES for a portfolio of two assets when the bivariate
dfs of and are described by GPD margins and a given parametric
copula . This type of bivariate model with a normal copula was used to
describe the joint df of the daily returns on BMW and Siemens stocks.
Consider a portfolio with 70% of wealth invested in BMW (1 = 0 7) and
the remainder invested in Siemens (2 = 0 3) Then, simulation-based esti-
mates of (19.17) and (19.18) for = 0 99 and = 0 95 based on = 10 000
simulated values of the portfolio log-return may be computed using

> VaR.out = VaR.exp.sim(n=10000,Q=c(0.01,0.05),

+ copula=cop.normal.fit$copula,

+ x.est=gpd.bmw.fit2,

+ y.est=gpd.siemens.fit2,

+ lambda1=0.7,

+ lambda2=0.3)

> VaR.out

Simulation size VaR Q=0.01 VaR Q=0.05 ES Q=0.01 ES Q=0.05

10000 0.03527972 0.01949605 0.04730781 0.029359

19.7 References 757

19.7 References

Capéraà, P., A.-L. Fourgères, and C. Genest (2000). “Bivariate Dis-
tributions with Given Extreme Value Attractor,” Journal of Multivariate
Analysis, 72, 30—49.

Carmona, R. (2004). Statistical Analysis of Financial Data in Splus.
Springer-Verlag, New York.

Carmona, R. and J. Morrisson (2001). “Heavy Tails and Copulas with
Evanesce,” ORFE Tech. Report, Princeton University, Princeton, NJ.

Cherubini, U., E. Luciano and W. Vecchiato (2004). Copula Methods
in Finance. John Wiley & Sons, New York.

Clayton, D.G. (1978). “A Model for Association in Bivariate Life Tables
and Its Application in Epidemiological Studies of Familial Tendency in
Chronic Disease Incidence,” Biometrika, 65, 141-151.

Deheuvels, P. (1978). “Caractérisation Compléte des lois Extrêmes Mul-
tivariées et de la Convergence des Types Extêmes,” Publications de l’Institut
de. Statistique de l’Université de Paris, 23, 1—36.

Embrechts, P. C., F. Lindskog and A. McNeil (2003). “Modelling
Dependence with Copulas and Applications to Risk Management,” in S.T.
Rachev (ed.) Handbook of Heavy Tailed Distributions in Finance, Pronide
Publisher.

Embrechts, P., A. McNeil and D. Straumann (2000). “Correla-
tion and Dependence in Risk Management: Properties and Pitfalls,” in
M. Dempster and H. K. Mo att (eds.) Risk Management: Value at Risk
and Beyond, Cambridge University Press, Cambridge.

Frank, M.J. (1979). “On the Simultaneous Associativity of () and
+ (),” Aequationes Mathematiques, 19, 194—226.

Frees, E.W. and E. Valdez (1998). “Understanding Relationships Using
Copulas,” North American Actuarial Journal, 2, 1-25.

Galambos, J. (1975). “Order Statistics of Samples from Multivariate Dis-
tributions,” Journal of American Statistical Association, 70, 674—680.

Genest, C. and R. J. MacKay (1986). “Copules Archimédiennes et
Familles de lois Bidimensionnelles dont les Marges sont Données,” Cana-
dian Journal of Statistics, 14, 145—159,

758 19. Copulas

Genest, C. and L.-P. Rivest (1993). “Statistical Inference Procedures
for Bivariate Archimedean Copulas,” Journal of American Statistical As-
sociation, 88(423), 1034—1043.

Gumbel, E. J. (1960). “Distributions des Valeurs Extrêmes en Plusiers
Dimensions,” Publications de l’Institut de. Statistique de l’Université de
Paris, 9, 171—173.

Hüsler, J. and R.-D. Reiss (1989). “Maxima of Normal Random Vec-
tors: Beween Independence and Complete Dependence, Statistics and Prob-
ability Letters, 7, 283—286.

Joe, H. (1993). “Parametric Families of Multivariate Distributions with
Given Margins,” Journal of Multivariate Analysis, 46, 262—282.

Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman
& Hall, London.

Joe, H. and J. Xu (1996). “The Estimation Method of Inference Func-
tions for Margins for Multivariate Models,” Technical Report No. 166, De-
partment of Statistics, University of British Columbia, Vancouver.

Kimeldorf, G. and Sampson, A.R. (1975). “Uniform Representations
of Bivariate Distributions,” Communications in Statistics, 4, 617-627.

Morrison, J.E. (2001). Extreme Value Statistics with Applications in
Hydrology and Financial Engineering, Ph.D. thesis, Princeton University,
Princeton, NJ.

Nelson, R. B. (1999). An Introduction to Copulas, Lecture Notes in
Statistics. Springer-Verlag, New York.

RiskMetrics, 1995. “RiskMetrics Technical Document,” 3rd ed., J.P. Mor-
gan, New York.

Sklar, A. (1959). “Fonctions de Répartition à Dimensions et Leurs
Marges,” Publications de l’Institut de. Statistique de l’Université de Paris,
8, 229—231.

Tawn, J. A. (1988). “Bivariate Extreme Value Theory: Models and Esti-
mation,” Biometrika, 75, 397—415.

20
Continuous-Time Models for Financial
Time Series

20.1 Introduction

Many stochastic models in modern finance are represented in continuous-
time. In these models, the dynamic behavior of the underlying random
factors is often described by a system of stochastic di erential equations
(SDEs). The leading example is the option pricing model of Black and Sc-
holes (1973), in which the underlying stock price evolves according to a
geometric SDE. For asset pricing purposes, continuous-time financial mod-
els are often more convenient to work with than discrete-time models. For
practical applications of continuous-time models, it is necessary to solve,
either analytically or numerically, systems of SDEs. In addition, the simu-
lation of continuous-time financial models is necessary for estimation using
the E cient Method of Moments (EMM) described in Chapter 23. This
chapter discusses the most common types of SDEs used in continuous-time
financial models and gives an overview of numerical techniques for simu-
lating solution paths to these SDEs.
This chapter begins with two introductory sections: the first giving some

basic background material on SDEs and their solutions, and the second pre-
senting some common numerical schemes for simulating solutions to SDEs
using discretization methods. Then, the S+FinMetrics functions that are
available for simulating general systems of SDEs, as well as those tailored
to some of the more popular models for financial data, are described and
illustrated through examples.

760 20. Continuous-Time Models for Financial Time Series

1965 1970 1975 1980 1985 1990 1995

4
6

8
10

12
14

16

FIGURE 20.1. U.S. 3-month T-Bill rate, observed weekly, 1962 - 1995.

Merton (1990) and Du e (1996) gave comprehensive treatments of con-
tinuous -time models in finance. The discussion and treatment of SDEs and
methods for simulating their solutions presented in this chapter is meant to
be intuitive and nontechnical and similar to the treatment in Neftci (1996),
Baxter and Rennie (1996), and Seydel (2002). A thorough technical treat-
ment of SDEs is given in Kloeden and Platten (1999) and Øksendal (1998).

20.2 SDEs: Background

Stochastic di erential equations provide a framework for modeling continu-
ous, dynamically changing quantities that exhibit randomness, or volatility,
such as the U.S. Treasury bill rates shown in Figure 20.1. Applications of
SDEs span the social and physical sciences. See Kloeden and Platten (1999)
and Øksendal (1998) for numerous examples.
An SDE is represented by an equation of the form

= () + () (20.1)

with a deterministic component defined by the function () (the in-
stantaneous drift) and a random component defined by function ()
(the instantaneous di usion). When 0, the SDE reduces to an ordinary
di erential equation (ODE). The stochastic di erential represents an

20.3 Approximating Solutions to SDEs 761

infinitessimal increment of Brownian motion, , also called the Wiener
process. The Wiener process, first introduced in Chapter 4, is a continuous
random variable such that for 0, + is distributed as nor-
mal, (0) and is independent of the history of what the process did up
to . The formal definition of (20.1) comes from writing down its integral
representation,

= 0 +

Z
0

() +

Z
0

() (20.2)

and then defining the right-hand stochastic integral in terms of a limit
of sums including finite Brownian increments. This leads to the “Ito” or
“Stratonovich” calculus, depending on the definition of the integral. For
technical details, see Kloeden and Platen (1999). For a financial approach,
see Neftci (1996), and for a readable introduction, see Baxter and Rennie
(1996).
A solution to (20.1) or (20.2) is called a stochastic process, which

can be thought of as being indexed by and the di erent realizations
of Brownian motion. For fixed , is a random variable. For a fixed
realization () of Brownian motion, one obtains a sample path ().
For example,

= + (20.3)

has the explicit solution

= + (20.4)

This is just the straight-line solution to = plus some Gaussian
noise. Figure 20.2 shows di erent sample paths for an example of this simple
SDE, and the superimposed straight line.
Equation (20.3) is an example of a scalar SDE. In general, (20.1) may

be vector-valued, with of dimension and the Brownian motion
of dimension . In that case, the drift is an -vector and the di usion
is a matrix of dimension × . The individual components of are
sometimes called the factors of the model.

20.3 Approximating Solutions to SDEs

Stochastic di erential equations like (20.3) with explicit solutions are rare.
As with ODEs, there are a variety of methods for approximating solutions
using discretization. S+FinMetrics supports three: Euler’s method and the
so-called “strong order 1” and “weak order 2” explicit methods of Platen
(a reference for this entire section is Kloeden and Platen (1996)).
Euler’s method is the simplest of the three and is a straightforward ex-

tension of the ODE technique of the same name. For a discretization step

762 20. Continuous-Time Models for Financial Time Series

0 200 400 600 800 1000

0
20

0
40

0
60

0

FIGURE 20.2. Sample paths for = 1
2

+ 5 with 0 = 0, and the straight
line = 2.

size of and = 0 + , the Euler’s method approximation to (20.1),
= , is given by

+1 = + () + () (20.5)

where 0 = 0 is the initial condition. Increments of the Brownian mo-
tion, = +1 , can be simulated using pseudo randomly gener-
ated normal variates, since by the defining properties of Brownian motion,

= (0) for = 1 . Each discretization step for Euler’s
method thus requires random normals.
For the other two schemes, the notions of strong and weak convergence

of approximations to solutions of SDEs need to be defined. The former
concerns pathwise approximations, whereas the latter focuses on matching
expectations of moments (or some other functional) of solutions.
A discrete approximation scheme with discretization step size =

is said to converge strongly to at time with order 0 if there exists
a positive constant that does not depend on such that

(| ()|)

The quantity (| ()|) measures the closeness of sample paths at
the endpoint .
The approximation is said to converge weakly with order 0 to
at time if for every function of su cient regularity, there exists a

20.3 Approximating Solutions to SDEs 763

positive constant independent of such that

| (()) ((()))|

Thus, weak convergence of order implies convergence of moments of all
order (taking () = | |).
Under suitable smoothness and growth conditions on the drift and dif-

fusion terms of the SDE, Euler’s method is convergent of strong order
0 5 and weak order 1. Other schemes are usually devised to converge either
strongly or weakly, and it is a matter of the type of problem that one wants
to solve as to which is more appropriate. Higher-order schemes typically in-
volve higher order derivatives of the drift and di usion functions. “Implicit”
approximation schemes require analytic expressions for these higher-order
derivatives, whereas “explicit” schemes use approximations of these deriva-
tives and thus require only the values of the drift and di usion functions
themselves. Only explicit schemes are implemented in S+FinMetrics.
The th component of the strong order 1 scheme of Platen is given by

+1 = + +
X
=1

+
1 X

1 2=1

{ 2(1) 2} (1 2)

(20.6)
with the supporting values

= + +

Here, the ’s and ’s without arguments are taken to be evaluated at
(), and denotes the th column of . The multiple Ito stochastic
integral

(1 2) =

Z
+1
Z

+1

1

2

2

1

can be evaluated exactly when 1 = 2 as

(1 1) =
1

2

©
(1)2

ª
For 1 6= 2, however, (1 2) must be approximated, using

(1 2)
=

µ
1

2 1 2
+ (

1 2 2 1
)

¶
(20.7)

+
2

X
=1

1 ³
1
(2

2
+

2
)

2
(2

1
+

1
)
´

where

=
1

12

1

2 2

X
=1

1
2

764 20. Continuous-Time Models for Financial Time Series

and , , , and are independent (0 1) and = 1 ,

for = 1 and = 1 . The choice of a ects the accuracy of
the approximation. Gallant (2003) recommended that 0 05 . Altogether,
each discretization step of (20.6) requires 2 (+ 1) random normals.
That is a lot of overhead. In fact, 50 in typical applications, which

makes very long simulations such as those required by EMM prohibitively
expensive using this scheme. However, the computation of (1 2)

can be

avoided in the special case of diagonal noise; that is, when = and

is a diagonal matrix with = 0 for 6= . In that case, the strong order
1 scheme reduces to

+1 = + + +
1

2
{ () }{()2 }

(20.8)
which requires random normals for each discretization step.
A sub-case of diagonal noise is additive noise, when the di usion is

constant. In that case, the term on the right of (20.8) drops out and the
strong order 1 scheme reduces to Euler’s method.
The weak order 2 scheme applies to autonomous SDEs; that is, when
= () and = () are not explicitly dependent on the variable .

Under that assumption, the weak order 2 scheme is given by

+1 = +
1

2
(() +) (20.9)

+
1

4

X
=1

[
³ ³

+

´
+

³ ´
+ 2

´

+
X
=1 6=

³ ³
+

´
+

³ ´
2
´

]

+
1

4

X
=1

[
³ ³

+

´ ³ ´´n¡ ¢2 o

+
X
=1 6=

³ ³
+

´ ³ ´´©
+

ª
] () 1 2

with supporting values

= + +

± = + ±

± = +

and with = (0) and 1 2 distributed as two-point random
variables with (

1 2 = ±) = 1
2 for 2 = 1 1 1, 1 1 =

and
1 2 = 2 1 . Each discretization step thus requires random

20.4 S+FinMetrics Functions for Solving SDEs 765

normals for the { } and (1) 2 uniform random numbers for the
{

1 2
}.

In the case of additive noise, the weak order 2 scheme reduces to

+1 = +
1

2
{ (+ +) + } + (20.10)

This requires random normals and no random uniforms, per discretiza-
tion the step.

20.4 S+FinMetrics Functions for Solving SDEs

S+FinMetrics includes functions that implement one or more of the three
schemes just described for simulating sample paths to both general and
specific systems of SDEs. Most of the simulators follow a specific template,
as they are designed to be used with the S+FinMetrics function EMM for
model estimation. The calling sequence for these “gensim” functions is as
follows:

xxx.gensim(rho, n.sim, n.var, n.burn, aux)

This is a very general framework for supporting simulations of models that
are not necessarily defined by systems of SDEs. Here, rho is a vector of
parameters that define the model to be simulated, n.sim is the length of
the simulation, n.var is the number of variables in the simulation, n.burn
is the number of “burn-in” simulation steps that are to be performed before
the n.sim steps to be returned, and aux is a list designed to be a catch all
container for any other parameters that a particular simulator may require.
Usually, aux is supplied by a separate S-PLUS function that is tailored to
the particular gensim simulator. Specific examples in the following sections
will illustrate and further explain these arguments.
Functions for performing simulations for specific systems of SDEs are

described in Section 20.4.1. Section 20.4.2 describes functions for simulating
general systems of SDEs.

20.4.1 Problem-Specific Simulators

S+FinMetrics includes several gensim functions that are tailored to spe-
cific systems of SDEs, namely the Ornstein-Uhlenbeck (also called Vasicek),
CIR (Cox-Ingersoll-Ross), and IRD (two-factor interest rate di usion). Ex-
amine the first example carefully, since the other gensim functions use
many of the same arguments and follow the same behavior.

Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck (OU), or Vasicek, process,

= () + (20.11)

766 20. Continuous-Time Models for Financial Time Series

is a simple single-factor model for interest rate behavior originally described
in Vasicek (1977). There are three parameters, , , and , which are usu-
ally all strictly positive. The long-run behavior of any solution is to hover
around (the level). This property is calledmean reversion; mean-reverting
SDEs are also called stationary. The parameter controls the rate of mean
reversion, whereas controls the volatility.
The OU SDE has the following exact solution:

= + (0) +

Z
0

() (20.12)

The latter stochastic integral must still be simulated. Functions OU.gensim
and OU.aux are available for simulating exact solutions to the OU process
in the gensim framework.

Example 134 Simulate exact solution to the OU process

To simulate 1000 values from (20.12) calibrated to match annualized data
sampled weekly, use

In OU.gensim, rho is packed as c(kappa, theta, sigma)

> kappa = .4; theta = .08; sigma = .1

> sim.ou = OU.gensim(rho = c(kappa, theta, sigma),

+ n.sim = 1000, n.burn = 500,

+ aux = OU.aux(X0 = .1, ndt = 25,

+ seed = 1, t.per.sim = 1/52))

Plot the simulation

> tsplot(sim.ou)

Plot the long-run mean

> abline(h=theta)

See Figure 20.3 for the simulated solution. The auxiliary information for the
simulator is supplied by the S+FinMetrics function OU.aux. The argument
ndt defines the number of discretization steps per simulation step, and
argument t.per.sim defines the time length of each simulation step. The
internal discretization step size is thus = t.per.sim/ndt. In the above
simulation, the 1000 simulated values of are separated by an implied time
of 1 52 (1 week, if the parameters are assumed to generate annualized data),
and successive values are separated by 25 internal discretization steps. With
a burn-in period of 500 simulation steps, that is a total of (1000+100)×25 =
27 500 discretization steps of size = 1 (52× 25) ' 0 0008 for the entire
simulation. Notice that the simulated solution generates negative values for
.
Other arguments to OU.aux, including additional optional arguments not

used in the above example, are listed in Table 20.1. Note that the exact
solution approximation still requires a vector z of random normals (one per
discretization step, the same as Euler’s method) in order to approximate
the stochastic integral in (20.12).

20.4 S+FinMetrics Functions for Solving SDEs 767

0 200 400 600 800 1000

-0
.1

0.
0

0.
1

0.
2

0.
3

FIGURE 20.3. OU sample path; horizontal line is the long-run mean.

CIR Process

The Cox-Ingersoll-Ross (CIR) (1985) SDE,

= () + (20.13)

is almost identical to the OU model, except that volatility increases
and decreases with , whereas for OU processes it is constant. The CIR
model guarantees that is non-negative (as long as and are strictly
positive). The gensim functions for CIR are CIR.gensim and CIR.aux,

Argument Description
X0 Initial condition for the SDE.
z Vector of random normals, of length

ndt*(n.sim + n.burn), required by the exact
Approximation. If not specified, then it is generated
internally.

seed Random number seed, for reproducibility in case z
is generated internally. Default value is 0.

lbound, ubound The simulation is truncated to lie in the interval
[lbound, ubound]. Default is [-100, 100].

TABLE 20.1. Arguments for OU.aux

768 20. Continuous-Time Models for Financial Time Series

and they always use Euler’s method. Their usage is identical to that of
OU.gensim and OU.aux.

Example 135 Simulate solution to CIR model using Euler’s method

To simulate 1000 values from (20.13) based on Euler’s method calibrated
to match annualized data sampled weekly, use

> kappa = .4; theta = .08; sigma = .1

> rho = c(kappa, theta, sigma)

pass in random normals for Brownian motion, although

CIR.gensim can generate these internally on the fly.

> ndt = 25; n.sim = 1000; n.burn = 500

> set.seed(1)

> z = rnorm(ndt*(n.burn + n.sim))

> sim.cir = CIR.gensim(rho = rho, n.sim = n.sim,

+ n.burn = n.burn,

+ aux = CIR.aux(X0 = theta,

+ ndt = ndt, z = z,

+ t.per.sim = 1/52))

Plot the simulation

> tsplot(sim.cir)

Plot the long-run mean

> abline(h=theta)

See Figure 20.4 for the simulated solution. Compare with the OU example
with the same parameters of Figure 20.3, where the same random seed,
and hence the same random normal vector, is used to define the discretized
sample path. Note the di erence in scale between the two plots and that
simulated values for from the CIR model are always positive.
The presence of the square root in (20.13) can be problematic for simula-

tion. For although exact solutions to CIR processes are guaranteed to stay
positive, discretization error can lead to negative values for under the
square root sign. The function CIR.gensim handles this by truncating the
instantaneous standard deviation at 0 whenever discretized values of
are pushed negative.

IRD Process

Gallant and Tauchen (2002) presented the following two-factor interest rate
di usion (IRD) model for modeling the short-term interest rate, .µ ¶

=

µ
+ +

+

¶
(20.14)

+

µ
1 + 1 + 1 2

0 (2 + 2)

¶µ
1

2

¶
(20.15)

20.4 S+FinMetrics Functions for Solving SDEs 769

0 200 400 600 800 1000

0.
05

0.
10

0.
15

FIGURE 20.4. CIR sample path; horizontal line is the long-run mean.

The component is an unobserved factor contributing to the volatility of
. There are 11 parameters describing the process. Normalization is usually

accomplished by setting = . Functions IRD.gensim and IRD.aux
simulate solutions to (20.14) and (20.15) using Euler’s method.

Example 136 Simulate solution to two-factor IRD using Euler’s method

To simulate 1000 values of and from (20.14) and (20.15) based on
Euler’s method, calibrated to match annualized data in percent sampled
weekly, use

Set values for the parameters

> av = .18; avv = -av; avs = -.0088; as = .019; ass = -.0035

> b1v = .69; b1vv = 0; b1vs = -.063; b2v = 0; b2s = .038

> b2ss = -.017

Generate the random normals for this simulation

> n.sim = 10000; n.burn = 10000; ndt = 25

> set.seed(0)

> ird.z = rnorm(2*ndt*(n.sim + n.burn))

IRD.gensim assumes rho is packed as follows. Note that av

is missing from the list, as the normalization av = -avv

is assumed.

770 20. Continuous-Time Models for Financial Time Series

0 2000 4000 6000 8000 10000

0
2

4
6

FIGURE 20.5. Two factor interest rate di usion sample path. The short rate, ,
appears on top.

> rho = c(avv, avs, as, ass, b1v, b1vv, b1vs, b2v, b2s, b2ss)

> ird.sim = IRD.gensim(rho = rho, n.sim = n.sim,

+ n.burn = n.burn, n.var = 2,

+ aux = IRD.aux(ndt = ndt, t.per.sim = 1/52,

+ z = ird.z, X0 = c(1, 5), returnc = c(T, T)))

The simulation is stored in the object ird.sim as a single vector of length
20000 (= n.var*n.sim), with the first two entries corresponding to { 0 0},
followed by { 1 1}, and so on. The following plots both factors:

Plot v(t) and s(t)

> tsplot(t(matrix(ird.sim, nrow = 2)))

and the resulting plot is shown in Figure 20.5. Note that the initial condition
argument X0 is a vector for both factors. Argument returnc appears in this
and other auxiliary functions for multi-factor models; it is a logical vector
of length equal to the number of factors describing which factors should be
returned in the simulation. In this case, it is specified that all factors be
returned; the default is to return only the short rate component (returnc
= c(F,T)), since the observed factor is the only one that would be used
for estimation purposes. The number of T’s in returnc needs to match
argument n.var.

20.4 S+FinMetrics Functions for Solving SDEs 771

20.4.2 General Simulators

The S+FinMetrics functions euler.pcode.gensim, strong1.pcode.
gensim, and weak2.pcode.gensim simulate sample paths for solutions to
univariate and multivariate SDEs with nearly arbitrary drift and di usion
terms using Euler’s method, the strong order 1 scheme, and the weak or-
der 2 scheme, respectively. The function euler1d.pcode.gensim simulates
solutions to univariate SDE’s using Euler’s method. A pseudo code gram-
mar is used to define mathematical expressions for the drift and di usion.
The price to pay for this flexibility is speed; these functions are two to five
times slower than compiled C. Accompanying the pcode.gensim functions
are the pcode.aux functions euler.pcode.aux, strong1.pcode.aux, and
weak2.pcode.aux used to specify auxiliary information required for the
simulation. The arguments to euler.pcode.aux and weak2.pcode.aux are
listed in Table 20.2. The arguments to strong1.pcode.aux include the ar-
gument p, which corresponds to in (20.7). The arguments to weak2.pcode.
aux include the argument u for passing in uniform random numbers for
defining the { 1 2} in (20.9) (these are generated internally by default).
These arguments are explained in the following examples.

Example 137 Simulate solution to OU process using pcode.gensim
functions

The auxiliary information required to simulate 1000 values for the solu-
tion to the OU process (20.11) calibrated to annualized weekly data is

> n.sim = 1000; n.burn = 500; ndt = 25

> set.seed(1)

> z = rnorm(ndt*(n.sim + n.burn))

> ou.names = c("kappa", "theta", "sigma")

> ou.eu.aux1 = euler.pcode.aux(ndt=25, t.per.sim=1/52,

+ X0 = 0.1, z = z,

+ drift.expr = expression(kappa*(theta - X)),

+ diffuse.expr = expression(sigma),

+ rho.names = ou.names)

The n.sim=1000 simulated values of are separated by an implied time
of t.per.sim=1/52 (1 week, since the parameters are assumed to generate
annualized data), and successive values are separated by ndt=25 internal
discretization steps. With a burn-in period of n.burn=500 simulation steps,
that is a total of (1000 + 100) × 25 = 27 500 discretization steps of size

= 1 (52 × 25) ' 0 0008 for the entire simulation. The random nor-
mal variables required for the simulation are precomputed and supplied
in the vector z. The drift and di usion are defined by using the S-PLUS
expression function in the arguments drift.expr and diffuse.expr.
The state vector is referred to by X. The model parameter names are
specified in the vector assigned to the rho.names argument. Notice that

772 20. Continuous-Time Models for Financial Time Series

Argument Description
drift.expr Expression for drift function.
diffuse.expr Expression for di usion function.
rho.names Vector of strings that can be used in drift and di use.

expressions for accessing elements of the rho vector.
M Dimension of the Brownian motion process.
N Number of factors in the SDE.
t.per.sim Time length of each simulation step.
ndt Number of discretization steps per simulation step.
z Vector of random normals. Length of z is:

(n.sim + n.burn)ndt*M for Euler’s method;
(n.sim + n.burn)2*ndt*M*(p + 1) for
Strong 1; (n.sim + n.burn)*ndt*M for Weak 2.

u Vector of random uniforms, for Weak 2 scheme, of
length(n.burn+n.sim)*ndt*M*(M-1)/2.

p Value to control approximation to multiple Ito integral
used by Strong order 1 scheme. The default value is
ceiling(0.05/(t.per.sim/ndt))

seed Random number seed, for reproducibility in case z
and/or u is generated internally. Default value is 0.

X0 Initial condition for the SDE. Vector of length N.
returnnc Logical vector of length N indicating which

components of the simulation to return.
lbound, The simulation is truncated to lie in the interval
ubound [lbound, ubound]. Default is [-100, 100].

TABLE 20.2. Arguments for pcode.aux functions

the drift and di usion terms are specified in a way that is analogous to
their mathematical representation. For the OU process, these terms are
() = () and () = , respectively.1 The expressions for
the drift and di usion support the arithmetic operations +, -, *, /, and ^,
basic functions such as trigonometric and exponential, max/min, and logi-
cal functions and conditionals. See the online help file for euler.pcode.aux
for a complete list.
The expressions for the drift and di usion specified in the call to euler.

pcode.auxmay be tested using the function euler.pcode.test. For exam-
ple, to evaluate the drift and di usion for the OU process with parameters
= 0 4, = 0 08 and = 0 1 at = 0 and 0 = 0 08 use

> rho.test = c(0.4, 0.08, 0.1)

> euler.pcode.test(rho.test,X=0.08,aux=ou.eu.aux1)

1If a vector of parameter names is not specified, the parameters are assumed to be in
a vector called rho and the components of rho can be used directly in the expressions;
for example, rho[1] for kappa, rho[2] for theta and rho[3] for sigma.

20.4 S+FinMetrics Functions for Solving SDEs 773

$drift:

[1] 0

$diffuse:

[,1]

[1,] 0.1

With the auxiliary information specified, the simulated solution to the
OU process may be computed using either euler1d.pcode.gensim or
euler.pcode.gensim:

> sim.ou.eu1 = euler1d.pcode.gensim(rho=c(0.4, 0.08, 0.1),

+ n.sim = n.sim, n.burn = n.burn,

+ aux = ou.eu.aux1)

> sim.ou.eu = euler.pcode.gensim(rho = c(0.4, 0.08, 0.1),

+ n.sim = n.sim, n.burn = n.burn,

+ aux = ou.eu.aux1)

The simulated solutions look identical to Figure 20.3. For univariate SDEs,
the function euler1d.pcode.gensim is slightly more e cient than euler.
pcode.gensim. Simulations produced using strong1.pcode.gensim and
weak2.pcode.gensim work essentially the same and have nearly the same
arguments. For the OU process, which has additive noise, the strong order
1 scheme reduces to Euler’s method.
Some of the simulated values of in (20.11) are negative. To create

simulated values for that are bounded from below by zero, set lbound=0
in the auxiliary list variable ou.eu.aux1:

> ou.eu.aux1$lbound = 0

> sim.ou.eu1 = euler1d.pcode.gensim(rho=c(kappa,theta,sigma),

+ n.sim = n.sim, n.burn = n.burn,

+ aux = ou.eu.aux1)

> tsplot(sim.ou.eu1)

The simulated solution path truncated at zero is illustrated in Figure 20.6.

Example 138 Compare Euler’s method and weak order 2 scheme for OU
process

To compare Euler’s method and the weak order 2 scheme on the OU
process of the previous example, use

> sim.ou.wk = weak2.pcode.gensim(rho = c(kappa, theta, sigma),

+ n.sim = n.sim, n.burn = n.burn, n.var = 1,

+ aux = weak2.pcode.aux(ndt = ndt, t.per.sim = 1/52,

+ N = 1, M = 1, X0 = .1, z = z,

+ drift.expr = expression(kappa*(theta - X)),

+ diffuse.expr = expression(sigma),

774 20. Continuous-Time Models for Financial Time Series

0 200 400 600 800 1000

0.
0

0.
1

0.
2

0.
3

0.
4

FIGURE 20.6. Simulated OU sample path with negative values of replaced
with zeros.

+ rho.names = c("kappa", "theta", "sigma")))

Plot the simulation

> tsplot(sim.ou.wk)

Plot the absolute differences with the exact solution.

> tsplot(abs(sim.ou.wk - sim.ou))

> lines(abs(sim.ou.eu - sim.ou), col = 2)

Since the OU process has additive noise the weak 2 scheme reduces to
(20.10) and no uniform random numbers are required to produce the sim-
ulation. The weak order 2 simulation (not shown) looks identical when
plotted next to the exact simulation of Figure 20.3. Figure 20.7 shows ab-
solute di erences between the weak and exact simulations and between
Euler’s method and exact simulations. Note that this is not really a fair
comparison, since weak convergence is aiming for better average behav-
ior over all paths, but it is, nevertheless, instructive to see how the two
methods compare on a single path.

Example 139 Simulate solutions to generalized CIR model

Chan, Karolyi, Longsta , and Sanders (1992), hereafter CKLS, consid-
ered estimating the parameters of the continuous-time interest rate di u-
sion model

= (0 + 0) + 0
0 (20.16)

20.4 S+FinMetrics Functions for Solving SDEs 775

0 200 400 600 800 1000

0.
0

0.
00

00
1

0.
00

00
2

0.
00

00
3

0.
00

00
4

FIGURE 20.7. Comparison of Euler’s method and the weak order 2 scheme for
simulating an OU sample path. The smooth curve is the absolute di erence be-
tween the Euler and exact simulations. The more volatile curve is the absolute
di erence between the weak order 2 and exact simulations.

The process (20.16) is sometimes referred to as the generalized CIR pro-
cess. In (20.16), the drift function (0 + 0) may be reparameterized
as 0(0) where 0 = 0 0 and 0 = 0. The parameter 0 is
the long-run mean, and the parameter 0 determines the speed of mean
reversion. The model (20.16) encompasses a variety of models that have
been proposed for the short-term interest rate. These models and the cor-
responding parameter restrictions on (20.16) are summarized in Table 20.3:
The Merton model is a simple Brownian motion, the Vasicek model is an
OU process, and the Dothan model may be viewed as a restricted version
of the Merton or Vasicek models. These models all imply constant volatil-
ity for . The remaining models allow for stochastic volatility. The CIR
SR model is the so-called “square root” model, the GBM is the geometric
Brownian motion model, and the CEV model is the constant elasticity of
variance model.
Simulated solutions from (20.16) for the nine models in Table 20.3, based

on the estimated parameters from CKLS Table III, using Euler’s method
may be produced using

> n.sim.ckls = 306; n.burn.ckls = 0; ndt.ckls = 25

> set.seed(123)

> z.ckls = rnorm(ndt*(n.sim.ckls + n.burn.ckls))

776 20. Continuous-Time Models for Financial Time Series

= (+) +
Model Specification
Merton = + 0 0
Vasicek = (+) + 0

CIR SR = (+) +
1 2

1/2
Dothan = 0 0 0
GBM = + 0 1
Brennan-Schwartz = (+) + 1

CIR VR =
3 2

0 0 3/2
CEV = + 0

TABLE 20.3. Parameter restrictions imposed by alternative short-term interest
rate models

> gcir.names = c("alpha","beta","sigma","gamma")

> gcir.aux=euler.pcode.aux(

+ drift.expr = expression(alpha + beta*X),

+ diffuse.expr = expression(sigma*X^gamma),

+ rho.names = gcir.names,

+ t.per.sim = 1/12, ndt = 25,

+ z = z.ckls,

+ X0 = 0.067)

generalized cir model

> rho.gcir = c(0.0408,-0.5921,sqrt(1.6704),1.4999)

> gcir.sim = euler1d.pcode.gensim(rho.gcir,n.sim = n.sim.ckls,

+ n.burn = n.burn.ckls, aux = gcir.aux)

merton model

> rho.merton = c(0.0055, 0.0, sqrt(0.0004), 0.0)

> merton.sim = euler1d.pcode.gensim(rho.merton,

+ n.sim = n.sim.ckls, n.burn = n.burn.ckls,aux = gcir.aux)

vasicek model

> rho.vasicek = c(0.0154, -0.1779, sqrt(0.0004), 0.0)

> vasicek.sim = euler1d.pcode.gensim(rho.vasicek,

+ n.sim = n.sim.ckls, n.burn = n.burn.ckls,aux = gcir.aux)

cir.sr model

> rho.cir.sr = c(0.0189, -0.2339, sqrt(0.0073), 0.5)

> cir.sr.sim = euler1d.pcode.gensim(rho.cir.sr,

+ n.sim = n.sim.ckls, n.burn = n.burn.ckls,aux = gcir.aux)

dothan model

> rho.dothan = c(0.0, 0.0, sqrt(0.1172), 1)

> dothan.sim = euler1d.pcode.gensim(rho.dothan,

+ n.sim = n.sim.ckls, n.burn = n.burn.ckls,aux = gcir.aux)

gbm model

> rho.gbm = c(0.0, 0.1101, sqrt(0.1185), 1)

20.4 S+FinMetrics Functions for Solving SDEs 777

GCIR Model

0 50 100 150 200 250 300

0.
04

0.
08

Merton Model

0 50 100 150 200 250 300

0.
08

0.
14

0.
20

Vasicek Model

0 50 100 150 200 250 300

0.
02

0.
06

0.
10

CIR SR Model

0 50 100 150 200 250 300

0.
02

0.
06

0.
10

Dothan Model

0 50 100 150 200 250 300

0.
0

0.
04

0.
08

GBM Model

0 50 100 150 200 250 300

0.
05

0.
20

0.
35

Brennan-Schwartz Model

0 50 100 150 200 250 300

0.
04

0.
08

CIR VR Model

0 50 100 150 200 250 300

0.
02

0.
06

0.
10

CEV Model

0 50 100 150 200 250 300

0.
05

0.
15

FIGURE 20.8. Simulated solutions from GCIR and restricted models based on
Euler’s method

> gbm.sim = euler1d.pcode.gensim(rho.gbm,n.sim = n.sim.ckls,

+ n.burn = n.burn.ckls,aux = gcir.aux)

bs model

> rho.bs = c(0.0242, -0.3142, sqrt(0.1185), 1)

> bs.sim = euler1d.pcode.gensim(rho.bs,n.sim = n.sim.ckls,

+ n.burn = n.burn.ckls,aux = gcir.aux)

cir.vr model

> rho.cir.vr = c(0.0, 0.0, sqrt(1.5778), 1.5)

> cir.vr.sim = euler1d.pcode.gensim(rho.cir.vr,

+ n.sim = n.sim.ckls, n.burn = n.burn.ckls,aux = gcir.aux)

cev model

> rho.cev = c(0.0, 0.1026, sqrt(0.5207), 1.2795)

> cev.sim = euler1d.pcode.gensim(rho.cev,n.sim = n.sim.ckls,

+ n.burn = n.burn.ckls,aux = gcir.aux)

The simulated solutions are illustrated in Figure 20.8.

Example 140 Simulate solutions to two-factor IRD

Andersen and Lund (1997) considered the following two-factor extension
of the CKLS model:

log 2 = 2(log 2) + 1 (20.17)

= 1() + 2 0

778 20. Continuous-Time Models for Financial Time Series

where 1 and 2 are independent Brownian motion processes, to model
weekly observations on the U.S. 3-month T-bill rate. The specification im-
plies mean reversion of the interest rate level as well as the (log-) volatility.
Define = log 2 = 2 log . Then, exp(2) = and (20.17) may be
re-expressed as

= 2() + 1 (20.18)

= 1() + exp(2) 2 0

Let X = ()0 andW = (1 2)
0 so that (23.32) may be expressed

in matrix form as

X = a(X) + b(X) W

where

a(X) =

µ
2()

1()

¶
b(X) =

µ
0

0 exp(2)

¶
(20.19)

are the drift and di usion functions.
Simulated solutions forX from (20.17) may be easily computed using the

general pcode.gensim functions. For example, the auxiliary information
to set the drift and di usion function (20.19) for Euler’s method and to
calibrate the simulation to the weekly data on 3-month T-bills is

> ndt = 25; t.per.sim = 1/52; n.var = 2; n.sim = 2000

> n.burn = 100

> set.seed(0)

> z.euler = rnorm(ndt*n.var*(n.sim + n.burn))

> rho.AL2.names = c("k1","alpha","k2","xi","mu","gamma")

> ird.AL2.aux = euler.pcode.aux(

+ N = n.var, M = n.var,

+ t.per.sim = t.per.sim, ndt = ndt,

+ X0 = c(6,-0.3), z = z.euler,

+ returnc = c(T,T),

+ rho.names = rho.AL2.names,

+ drift.expr = expression(k1*(mu - X[1]),

+ k2*(alpha-X[2])),

+ diffuse.expr = expression((exp(X[2]/2)*X[1]^gamma,

+ 0.0, 0.0, xi))

The model (20.17) has two random factors and the dimension of W is
the same as X , so N=2 and M=2. Since the annualized rates are assumed to
be observed weekly, t.per.sim=1/52. The number of discretization points,
ndt, for each X is 25. The initial value for X is set using X0=c(6,-0.3).
Setting returnc=c(T,T) returns simulated solutions for both and .
The drift and di usion functions (20.19) are specified in the components

20.4 S+FinMetrics Functions for Solving SDEs 779

drift.expr and diffuse.expr. The parameters used in the expressions
are specified in the component rho.names, and the two state variables in
X are accessed as X[1] and X[2], respectively. The drift and di usion
functions evaluated at = 0, X0 = (6 0 3) and the parameters estimated
by Andersen and Lund

> rho.AL2 = c(0.163,-0.282,1.04,1.27,5.95,0.544)

are

> euler.pcode.test(rho.AL2, N = 2, M = 2, t = 0,

+ X = c(6, -0.3), aux = ird.AL2.aux)

$drift:

[1] -0.00815 0.01872

$diffuse:

[,1] [,2]

[1,] 2.281235 0.00

[2,] 0.000000 1.27

To produce 2000 simulated values for and from (20.17) using Euler’s
method, with 100 burn-in values, based on the parameters estimated by
Andersen and Lund, use the following commands:

> ird.AL2.sim = euler.pcode.gensim(rho = rho.AL2,

+ n.sim = n.sim, n.var = n.var, n.burn = n.burn,

+ aux = ird.AL2.aux)

> class(ird.AL2.sim)

[1] "numeric"

> length(ird.AL2.sim)

[1] 4000

The simulation is stored in the object ird.AL2.sim as a single vector of
length 4000 (= n.var*n.sim), with the first two entries corresponding to
{ 0 0}, followed by { 1 1}, and so on. The simulated solutions for
and may be placed in a 2000× 2 matrix using

> ird.AL2.sim = matrix(ird.AL2.sim, n.sim, n.var, byrow=T)

Figure 20.9 shows the solutions.
Simulations from the strong order 1 scheme require much more overhead

than simulations from Euler’s method. In this example, if in (20.7) is set
according to the rule

> p.strong = ceiling(0.05/(t.per.sim/ndt))

> p.strong

[1] 65

then the number of random normals to compute for one simulated path is

780 20. Continuous-Time Models for Financial Time Series

Simulated short rate

%
 p

er
 y

ea
r

0 500 1000 1500 2000

5
10

15
20

25

Simulated log-volatility

0 500 1000 1500 2000

-3
-2

-1
0

1
2

FIGURE 20.9. Simulated solutions from (20.17) based on Euler’s method.

> 2*ndt*n.var*(p.strong + 1)*(n.sim + n.burn)

[1] 13860000

Euler’s method only requires

> ndt*n.var*(n.sim + n.burn)

[1] 105000

values. To produce 2000 simulated values for and from (20.17) us-
ing the strong order 1 scheme, with 100 burn-in values, use the following
commands:

> set.seed(0)

> z.strong = rnorm(2*ndt*n.var*(p.strong + 1)*(n.sim + n.burn))

> ird.AL2.aux = strong1.pcode.aux(

+ N = n.var, M = n.var,

+ t.per.sim = t.per.sim, ndt = ndt,

+ p = p.strong, z = z.strong,

+ X0 = c(6,-0.3),

+ returnc = c(T,T),

+ rho.names = rho.AL2.names,

+ drift.expr = expression(

+ k1*(mu - X[1]),

+ k2*(alpha - X[2])),

+ diffuse.expr = expression(

20.4 S+FinMetrics Functions for Solving SDEs 781

+ (exp(X[2]/2))*X[1]^gamma,

+ 0.0,

+ 0.0,

+ xi))

> ird.AL2.simS = strong1.pcode.gensim(rho = rho.AL2,

+ n.sim = n.sim, n.var = n.var, n.burn = n.burn,

+ aux = ird.AL2.aux)

> ird.AL2.simS = matrix(ird.AL2.simS, n.sim, n.var, byrow = T)

The overhead for the weak order 2 scheme is in between the overhead for
Euler’s method and the strong order 1 scheme. The weak order 2 scheme
requires

> ndt*n.var*(n.sim + n.burn)

[1] 105000

random normal variables and

> (n.burn+n.sim)*ndt*n.var*(n.var-1)/2

[1] 52500

random uniform variables. To produce 2000 simulated values for and
from (20.17) using the weak order 2 scheme, with 100 burn-in values, use
the following commands:

> set.seed(0)

> z.weak = rnorm(ndt*n.var*(n.sim + n.burn))

> u.weak = runif((n.burn+n.sim)*ndt*n.var*(n.var-1)/2)

> ird.AL2.aux = weak2.pcode.aux(

+ N = n.var, M = n.var,

+ t.per.sim = t.per.sim, ndt = ndt,

+ z = z.weak, u = u.weak,

+ X0 = c(6,-0.3),

+ returnc=c(T,T),

+ rho.names = rho.AL2.names,

+ drift.expr = expression(

+ k1*(mu - X[1]),

+ k2*(alpha-X[2])),

+ diffuse.expr = expression(

+ (exp(X[2]/2))*X[1]^gamma,

+ 0.0,

+ 0.0,

+ xi))

> ird.AL2.simW = weak2.pcode.gensim(rho = rho.AL2,

+ n.sim = n.sim, n.var = n.var, n.burn = n.burn,

+ aux = ird.AL2.aux)

> ird.AL2.simW = matrix(ird.AL2.simW, n.sim, n.var, byrow=T)

782 20. Continuous-Time Models for Financial Time Series

Simulated short rate from Strong 1

%
 p

er
 y

ea
r

0 500 1000 1500 2000

0
5

10
15

Simulated log-volatility from Strong 1

0 500 1000 1500 2000

-2
-1

0
1

2
3

Simulated short rate from Weak 2

%
 p

er
 y

ea
r

0 500 1000 1500 2000

5
10

15
20

25

Simulated log-volatility from Weak 2

0 500 1000 1500 2000

-3
-2

-1
0

1
2

FIGURE 20.10. Simulated solutions from (23.32) based on the strong order 1
scheme and the weak order 2 scheme.

Figure 20.10 shows the simulated solution from the strong order 1 and
weak order 2 schemes. Notice that the paths from Euler’s method and the
weak order 2 scheme are almost identical, whereas the strong order 1 path
is quite di erent.

20.5 References

Andersen, T.G. and J. Lund (1997). “Estimating Continuous-Time
Stochastic Volatility Models of the Short-Term Interest Rate,” Journal of
Econometrics, 77, 343-377.

Baxter, M.W. and A.J.O. Rennie (1996) Financial Calculus: An In-
troduction to Derivative Pricing. Cambridge University Press, Cambridge.

Black, F. and M. Scholes (1973). “The Pricing of Options and Corpo-
rate Liabilities,” Journal of Political Economy, 81, 637-654.

Chan, K.C., G.A. Karolyi, F.A. Longstaff and A.B. Sanders

(1992). “An Empirical Comparison of Alternative Models of the Term
Structure of Interest Rates,” Journal of Finance, 47, 1209-1227.

20.5 References 783

Cox, J.C., J.E. Ingersoll and S.A. Ross (1985). “A Theory of the
Term Structure of Interest Rates,” Econometrica, 53(2), 385—407.

Duffie, D. (1996). Dynamic Asset Pricing, 2nd ed., Princeton University
Press, Princeton, NJ.

Gallant, A.R. (2003). Original FORTRAN routines stng1.f and
weak2.f. Downloaded from ftp.econ.duke.edu, directory
pub/arg/libf, . Copyright (C) 1995. A. Ronald Gallant, P.O. Box 659,
Chapel Hill NC 27514-0659, USA. Permission to use, copy, modify, and
distribute this software and its documentation for any purpose and with-
out fee is hereby granted, provided that the above copyright notice appear
in all copies and that both that copyright notice and this permission notice
appear in supporting documentation.

Gallant, A.R. and G. Tauchen (2002). “EMM: A Program for E cient
Method of Moments Estimation, Version 1.6, User’s Guide,” Working pa-
per, University of North Carolina at Chapel Hill. Current revision available
at www.unc.edu/~arg.

Kloeden, P.E. and E. Platen (1999). Numerical Solution of
Stochastic Di erential Equations, 3rd ed. Volume 23 of Applications of
Mathematics, Stochastic Modelling and Applied Probability,
Springer-Verlag, New York.

Merton, R. (1990). Continuous Time Finance. Blackwell, Cambridge.

Neftci, S.N. (1996). An Introduction to the Mathematics of Financial
Derivatives. Academic Press, San Diego.

Øksendal, B.K. (1998). Stochastic Di erential Equations. An Introduc-
tion with Applications, 5th ed. Universitext. Springer-Verlag, New York.

Seydel, R. (2002). Tools for Computational Finance. Springer-Verlag,
Berlin.

Vasicek, O.A. (1977). “An Equilibrium Characterization of the Term
Strucure,” Journal of Financial Economics, 5, 177—188.

21
Generalized Method of Moments

21.1 Introduction

This chapter describes generalized method of moments (GMM) estimation
for linear and nonlinear models with applications in economics and finance.
The GMM estimation was formalized by Hansen (1982), and since has
become one of the most widely used methods of estimation for models in
economics and finance. Unlike the maximum likelihood estimation (MLE),
GMM does not require complete knowledge of the distribution of the data.
Only specified moments derived from an underlying model are needed for
the GMM estimation. In some cases in which the distribution of the data is
known, MLE can be computationally very burdensome, whereas GMM can
be computationally very easy. The log-normal stochastic volatility model is
one example. In models for which there are more moment conditions than
model parameters, the GMM estimation provides a straightforward way to
test the specification of the proposed model. This is an important feature
that is unique to the GMM estimation.
This chapter is organized as follows. The GMM estimation for linear

models is described in Section 21.2. Section 21.3 describes methods for es-
timating the e cient weight matrix. Sections 21.4 and 21.5 give examples
of estimation and inference using the S+Finmetrics function GMM. Section
21.6 describes the GMM estimation and inference for nonlinear models.
Section 21.7 provides numerous examples of the GMM estimation of non-
linear models in finance, including Euler equation asset pricing models,

786 21. Generalized Method of Moments

discrete-time stochastic volatility models, and continous-time interest rate
di usion models.
The theory and notation for GMM presented herein follows the excel-

lent treatment given in Hayashi (2000). Other good textbook treatments of
GMM at an intermediate level are given in Hamilton (1994), Ruud (2000),
Davidson and MacKinnon (2004), and Greene (2004). The most compre-
hensive textbook treatment of GMM is Hall (2005). Excellent surveys of
recent developments in GMM are given in the special issues of the Jour-
nal of Business and Economic Statistics (1996, 2002). Discussions of GMM
applied to problems in finance are given in Ogaki (1992), Ferson (1995), An-
dersen and Sorensen (1996), Campbell, Lo, and MacKinlay (1997), James
and Webber (2000), Cochrane (2001), Jagannathan and Skoulakis (2002),
and Hall (2005).

21.2 Single Equation Linear GMM

Consider the linear regression model

= z0 0 + = 1 (21.1)

where z is an × 1 vector of explanatory variables, 0 is a vector of
unknown coe cients, and is a random error term. The model (21.1)
allows for the possibility that some or all of the elements of may be
correlated with the error term (i.e., [] 6= 0 for some). If [] 6=
0 then is called an endogenous variable. It is well known that if z
contains endogenous variables, then the least squares estimator of 0 in
(21.1) is biased and inconsistent.
Associated with the model (21.1), it is assumed that there exists a ×1

vector of instrumental variables x that may contain some or all of the
elements of z . Let w represent the vector of unique and nonconstant
elements of { z x }. It is assumed that {w } is a stationary and ergodic
stochastic process.
The instrumental variables x satisfy the set of orthogonality condi-

tions
[g (w 0)] = [x] = [x (z0 0)] = 0 (21.2)

where g (w 0) = x = x (z0 0). Expanding (21.2) gives the relation

= 0

where = [x] and = [x z0]. For identification of 0, it is
required that the × matrix [x z0] = be of full rank . This
rank condition ensures that 0 is the unique solution to (21.2). Note that
if = , then is invertible and 0 may be determined using

0 =
1

21.2 Single Equation Linear GMM 787

A necessary condition for the identification of 0 is the order condition

(21.3)

which simply states that the number of instrumental variables must be
greater than or equal to the number of explanatory variables in (21.1). If
= then 0 is said to be (apparently) just identified; if then 0

is said to be (apparently) overidentified; if then 0 is not identified.
The word “apparently” in parentheses is used to remind the reader that
the rank condition

rank() = (21.4)

must also be satisfied for identification.
In the regression model (21.1), the error terms are allowed to be condi-

tionally heteroskedastic as well as serially correlated. For the case in which
is conditionally heteroskedastic, it is assumed that {g } = {x } is a

stationary and ergodic martingale di erence sequence (MDS) satisfying

[g g0] = [x x0 2] = S

where S is a nonsingular × matrix. The matrix S is the asymptotic
variance-covariance matrix of the sample moments ḡ = 1

P
=1 g (w 0).

This follows from the central limit theorem for ergodic stationary martin-
gale di erence sequences (see Hayashi, 2000, p. 106)

ḡ =
1 X

=1

x (0 S)

where S = avar(ḡ) denotes the variance-covariance matrix of the limiting
distribution of ḡ.
For the case in which is serially correlated and possibly conditionally

heteroskedastic as well, it is assumed that {g } = {x } is a stationary
and ergodic stochastic process that satisfies

ḡ =
1 X

=1

x (0 S)

S =
X
=

= 0 +
X
=1

(+ 0)

where = [g g0] = [x x0]. In the above, avar(ḡ) = S is also
referred to as the long-run variance of ḡ.

21.2.1 Definition of the GMM Estimator

The GMM estimator of 0 in (21.1) is constructed by exploiting the orthog-
onality conditions (21.2). The idea is to create a set of estimating equations

788 21. Generalized Method of Moments

for 0 by making sample moments match the population moments defined
by (21.2). The sample moments based on (21.2) for an arbitrary value
are

g () =
1X

=1

(w) =
1X

=1

x (z0)

=

1
P

=1 1 (z0)
...

1
P

=1 (z0)

These moment conditions are a set of linear equations in unknowns.
Equating these sample moments to the population moment [x] = 0
gives the estimating equations

S S = 0 (21.5)

where S = 1
P

=1 x and S = 1
P

=1 x z
0 are the sample mo-

ments.
If = (0 is just identified) and S is invertible, then the GMM

estimator of 0 is
ˆ = S 1S

which is also known as the indirect least squares estimator. If then
there may not be a solution to the estimating equations (21.5). In this
case, the idea is to try to find a that makes S S as close to zero as

possible. To do this, let Ŵ denote a × symmetric and positive definite

(p.d.) weight matrix, possibly dependent on the data, such that Ŵ W
as with W symmetric and p.d. Then, the GMM estimator of 0,
denoted ˆ(Ŵ), is defined as

ˆ(Ŵ) = argmin (Ŵ)

where

(Ŵ) = g ()0Ŵg () (21.6)

= (S S)0Ŵ(S S)

Since (Ŵ) is a simple quadratic form in , straightforward calculus
may be used to determine the analytic solution for ˆ(Ŵ):

ˆ(Ŵ) = (S0 ŴS) 1S0 ŴS (21.7)

Asymptotic Properties

Under standard regularity conditions (see Hayashi, 2000, Chap. 3), it can
be shown that

ˆ(Ŵ) 0³
ˆ(Ŵ) 0

´
(0 avar(ˆ(Ŵ)))

21.2 Single Equation Linear GMM 789

where

avar(ˆ(Ŵ)) = (0 W) 1 0 WSW (0 W) 1 (21.8)

A consistent estimate of avar(ˆ(Ŵ)), denoted davar(ˆ(Ŵ)), may be com-
puted using

davar(ˆ(Ŵ)) = (S0 ŴS) 1S0 ŴŜŴS (S0 ŴS) 1 (21.9)

where Ŝ is a consistent estimate for S = avar(ḡ).

The E cient GMM Estimator

For a given set of instruments x , the GMM estimator ˆ(Ŵ) is defined
for an arbitrary positive definite and symmetric weight matrix Ŵ. The
asymptotic variance of ˆ(Ŵ) in (21.8) depends on the chosen weight ma-
trix Ŵ. A natural question to ask is: What weight matrix W produces
the smallest value of avar(ˆ(Ŵ))? The GMM estimator constructed with
this weight matrix is called the e cient GMM estimator . Hansen (1982)
showed that e cient the GMM estimator results from setting Ŵ = Ŝ 1

such that Ŝ S. For this choice of Ŵ, the asymptotic variance formula
(21.8) reduces to

avar(ˆ(Ŝ 1)) = (0 S 1) 1 (21.10)

of which a consistent estimate is

davar(ˆ(Ŝ 1)) = (S0 Ŝ 1S) 1 (21.11)

The e cient GMM estimator is defined as

ˆ(Ŝ 1) = argmin g ()
0
Ŝ 1g ()

which requires a consistent estimate of S. However, a consistent estimation
of S, in turn, requires a consistent estimate of 0. To see this, consider
the case in which in (21.1) is conditionally heteroskedastic so that S =
[g g0] = [x x0 2]. A consistent estimate of S has the form

Ŝ =
1X

=1

x x0ˆ2 =
1X

=1

x x0 (z0ˆ)2

such that ˆ 0. Similar arguments hold for the case in which g = x
is a serially correlated and heteroskedastic process.

Two-Step E cient GMM

The two-step e cient GMM estimator utilizes the result that a consis-
tent estimate of 0 may be computed by GMM with an arbitrary posi-

tive definite and symmetric weight matrix Ŵ such that Ŵ W. Let

790 21. Generalized Method of Moments

ˆ(Ŵ) denote such an estimate. Common choices for Ŵ are Ŵ = I and
Ŵ = S 1 = (1X0X) 1, where X is an × matrix with the th row
equal to x0 1. Then, a first step consistent estimate of S is given by

Ŝ(Ŵ) =
1X

=1

x x0 (z0ˆ(Ŵ))2 (21.12)

The two-step e cient GMM estimator is then defined as

ˆ(Ŝ 1(Ŵ)) = argmin g ()0Ŝ 1(Ŵ)g () (21.13)

Iterated E cient GMM

The iterated e cient GMM estimator uses the two-step e cient GMM
estimator ˆ(Ŝ 1(Ŵ)) to update the estimation of S in (21.12) and then
recomputes the estimator in (21.13). The process is repeated (iterated) until
the estimates of 0 do not change significantly from one iteration to the
next. Typically, only a few iterations are required. The resulting estimator

is denoted ˆ(Ŝ
1

iter). The iterated e cient GMM estimator has the same
asymptotic distribution as the two-step e cient estimator. However, in
finite samples, the two estimators may di er. As Hamilton (1994, p. 413)
pointed out, the iterated GMM estimator has a practical advantage over
the two-step estimator in that the resulting estimates are invariant with
respect to the scale of the data and to the initial weighting matrix Ŵ.

Continuous Updating E cient GMM

This estimator simultaneously estimates S, as a function of , and . It is
defined as

ˆ(Ŝ 1
CU) = argmin g ()0Ŝ 1()g () (21.14)

where the expression for Ŝ() depends on the estimator used for S. For
example, with conditionally heteroskedastic errors, Ŝ() takes the form

Ŝ()=
1X

=1

x x0 (z0)2

Hansen, Heaton, and Yaron (1996) call ˆ(Ŝ 1
CU) the continuous updating

(CU) e cient GMM estimator . This estimator is asymptotically equivalent
to the two-step and iterated estimators, but may di er in finite samples.

1In the function GMM, the default initial weight matrix is the identity matrix.
This can be changed by supplying a weight matrix using the optional argument
w=my.weight.matrix. Using Ŵ = S 1 is often more numerically stable than using
Ŵ = I .

21.2 Single Equation Linear GMM 791

The CU e cient GMM estimator does not depend on an initial weight ma-
trixW, and like the iterated e cient GMM estimator, the numerical value
of CU estimator is invariant to the scale of the data. It is computationally
more burdensome than the iterated estimator, especially for large nonlin-
ear models, and is more prone to numerical instability. However, Hansen,
Heaton, and Yaron found that the finite sample performance of the CU
estimator, and test statistics based on it, is often superior to the other esti-
mators. The good finite sample performance of the CU estimator relative to
the iterated GMM estimator may be explained by the connection between
the CU estimator and empirical likelihood estimators. See Imbens (2002)
and Newey and Smith (2004) for a further discussion on the relationship
between GMM estimators and empirical likelihood estimators.

21.2.2 Specification Tests in Overidentified Models

An advantage of the GMM estimation in overidentified models is the ability
to test the specification of the model. The following subsections summarize
the common statistics used for evaluating the basic model specification.

The -Statistic

The -statistic, introduced in Hansen (1982), refers to the value of the
GMM objective function evaluated using an e cient GMM estimator:

= (ˆ(Ŝ 1) Ŝ 1) = g (ˆ(Ŝ
1
))0Ŝ 1g (ˆŜ 1) (21.15)

where ˆ(Ŝ 1) denotes any e cient GMM estimator of 0 and Ŝ is a con-
sistent estimate of S. If = then = 0, and if then 0.
Under regularity conditions (see Hayashi, 2000, Chap. 3) and if the moment
conditions (21.2) are valid, then as

2()

Hence, in a well-specified overidentified model with valid moment condi-
tions the -statistic behaves like a chi-square random variable with degrees
of freedom equal to the number of overidentifying restrictions. If the model
is misspecified and/or some of the moment conditions (21.2) do not hold
(e.g., [] = [(z0 0)] 6= 0 for some), then the -statistic will
be large relative to a chi-square random variable with degrees of
freedom.
The -statistic acts as an omnibus test statistic for model misspecifica-

tion. A large -statistic indicates a misspecified model. Unfortunately, the
-statistic does not, by itself, give any information about how the model
is misspecified.

792 21. Generalized Method of Moments

Normalized Moments

If the model is rejected by the -statistic, it is of interest to know why the
model is rejected. To aid in the diagnosis of model failure, the magnitudes
of the individual elements of the normalized moments g (ˆ(Ŝ 1)) may
point the reason why the model is rejected by the -statistic. Under the
null hypothesis that the model is correct and the orthogonality conditions
are valid, the normalized moments satisfy

g (ˆ(Ŝ 1)) (0 S [0 S 1] 1 0)

As a result, for a well specified model, the individual moment -ratios

= g (ˆ(Ŝ 1)) SE(g (ˆ(Ŝ 1))) = 1 (21.16)

where

SE(g (ˆ(Ŝ 1)) =
³h
Ŝ ˆ [ˆ 0 Ŝ 1ˆ] 1 ˆ 0

i ´1 2

are asymptotically standard normal. When the model is rejected using the
-statistic, a large value of indicates misspecification with respect to
the th moment condition. Since the rank of S [0 S 1] 1 0 is

, the interpretation of the moment -ratios (21.16) may be di cult
in models for which the degree of overidentification is small. In particular,
if = 1 then 1 = · · · = .

21.2.3 Two-Stage Least Squares as an E cient GMM
Estimator

If, in the linear GMM regression model (21.1), the errors are conditionally
homoskedastic, then

[x x0 2] = 2 = S

A consistent estimate of S has the form Ŝ = ˆ2S where ˆ2 2.
Typically,

ˆ2 = 1
X
=1

(z0ˆ)2

where ˆ 0. The e cient GMM estimator becomes

ˆ(ˆ 2S 1) = (S0 ˆ 2S 1S) 1S0 ˆ 2S 1S

= (S0 S 1S) 1S0 S 1S

= ˆ(S 1)

21.3 Estimation of S 793

which does not depend on ˆ2. The estimator ˆ(S 1) is, in fact, identical
to the two-stage least squares (TSLS) estimator of 0:

ˆ(S 1) = (S0 S 1S) 1S0 S 1S

= (Z0P Z) 1Z0P y

= ˆ
TSLS

where Z denotes the × matrix of observations with th row z0 , X
denotes the × matrix of observations with the th row x0 , and P =

X(X0X) 1X0 is the idempotent matrix that projects onto the columns of
X.
Using (21.10), the asymptotic variance of ˆ(S 1) = ˆTSLS is

avar(ˆTSLS) = (
0 S 1) 1 = 2(0 1) 1

Although ˆ(S 1) does not depend on ˆ2, a consistent estimate of the
asymptotic variance does:

davar(ˆTSLS) = ˆ2(S0 S 1S) 1

Similarly, the -statistic also depends on ˆ2 and takes the form

(ˆTSLS ˆ
2S 1) =

(s S ˆ
TSLS)

0S 1(s S ˆ
TSLS)

ˆ2

The TSLS -statistics is also known as Sargan’s statistic (see Sargan 1958).

21.3 Estimation of S

To compute any of the e cient GMM estimators, a consistent estimate of
S = avar(ḡ) is required. The method used to estimate S depends on the
time series properties of the population moment conditions g . Two cases
are generally considered. In the first case, g is assumed to be serially un-
correlated but may be conditionally heteroskedastic. In the second case,
g is assumed to be serially correlated as well as potentially conditionally
heteroskedastic. The following subsections discuss the estimation of S in
these two cases. Similar estimators were discussed in the context of linear
regression in Chapter 6, Section 5. In what follows, the assumption of a lin-
ear model (21.1) is dropped and the moment conditions embodied in the
vector g are assumed to be nonlinear functions of model parameters
and are denoted g (). The moment conditions satisfy [g (0)] = 0 and

S = avar(ḡ) = avar(1
P

=1 g (0)).

794 21. Generalized Method of Moments

Kernel Default

Truncated int
h
4
¡
100

¢1 5
i ½

1 for 1
0 for 1

Bartlett int
h
4
¡
100

¢1 4
i ½

1 for 1
0 for 1

Parzen int
h
4
¡
100

¢4 25
i 1 6 2 + 6 3 for 0 0 5

2(1)3 for 0 5 1
0 for 1

Quadratic
spectral

int
h
4
¡
100

¢4 25
i

25
12 2 2

h
sin()

cos()
i

note: = (+ 1), = , = 6 5

TABLE 21.1. Common kernel weights and default bandwidths

21.3.1 Serially Uncorrelated Moments

In many situations, the population moment conditions g (0) form an
ergodic-stationary MDS with an appropriate information set . In this
case,

S = avar(ḡ) = [g (0)g (0)
0]

Following White (1980), a heteroskedasticity consistent (HC) estimate of S
has the form

ŜHC =
1X

=1

g (ˆ)g (ˆ)0 (21.17)

where ˆ is a consistent estimate of 0
2 Davidson and MacKinnon (1993,

Sec. 16.3) suggested using a simple degrees-of-freedom corrected estimate
of S that replaces 1 in (21.17) with () 1 to improve the finite sample
performance of tests based on (21.11).

21.3.2 Serially Correlated Moments

If the population moment conditions g (0) are an ergodic-stationary but
serially correlated process then

S = avar(ḡ) = 0 +
X
=1

(+ 0)

where = [g (0)g (0)
0]. In this case, a heteroskedasticity and auto-

correlation consistent (HAC) estimate of S has the form

ŜHAC =
1

1X
=1

(ˆ (ˆ) + ˆ0 (ˆ))

2For example, ˆ may be an ine cient GMM estimate based on an arbitrary p.d.
weight matrix.

21.3 Estimation of S 795

where (= 1) are kernel function weights, is a non-negative

bandwidth parameter that may depend on the sample size, ˆ (ˆ) =
1
P

= +1 g (
ˆ)g (ˆ)0, and ˆ is a consistent estimate of 0. Di erent

HAC estimates of S are distinguished by their kernel weights and band-
width parameter. The most common kernel functions are listed in Table
21.1. For all kernels except the quadratic spectral, the integer bandwidth
parameter, , acts as a lag truncation parameter and determines how
many autocovariance matrices to include when forming ŜHAC. Figure 21.1
illustrates the first 10 kernel weights for the kernels listed in Table 21.1
evaluated using the default values of for = 100. The choices of kernel
and bandwidth determine the statistical properties of ŜHAC. The truncated
kernel is often used if the moment conditions follow a finite-order moving
average process. However, the resulting estimate of S is not guaranteed
to be positive definite. Use of the Bartlett, Parzen, or quadratic spectral
kernel ensures that ŜHAC will be positive semidefinite. For these kernels,
Andrews (1991) studied the asymptotic properties ŜHAC. He showed that
ŜHAC is consistent for S provided that as . Furthermore, for
each kernel, Andrews determined the rate at which to asymptoti-
cally minimize the mean sequared error, (ŜHAC S). For the Bartlett,
Parzen, and quadratic spectral kernels, the rates are 1 3, 1 5, and 1 5,
respectively. Using the optimal bandwidths, Andrews found that the ŜHAC
based on the quadratic spectral kernel has the smallest asymptotic MSE,
followed closely by ŜHAC based on the Parzen kernel.

Automatic Bandwidth Selection

Based on extensive Monte Carlo experiments, Newey and West (1994) con-
cluded that the choice of bandwidth parameter was more important than
the choice of kernel for the finite sample performance of ŜHAC. Increas-
ing reduces the bias of ŜHAC but increases the variance. The default
values for in Table 21.1 are ad hoc, being motivated by the conver-
gence rates of ŜHAC for the respective kernels. To overcome the ad hoc
choice of , Andrews (1991) and Newey and West (1994) propose data
dependent automatic bandwidth selection procedures that asymptotically
minimize (ŜHAC S). The details of these procedures are tedious and
so are not repeated here. The interested reader is referred to den Haan and
Levin (1997), who nicely summarize the procedures and give guidance to
the practitioner. However, as den Haan and Levin point out, the so-called
“automatic” bandwidth selection procedures still depend on a × 1 user-
specified vector of weights w for the elements of g (ˆ) and a method of
providing initial estimates of S.

796 21. Generalized Method of Moments

lags

w
ei

gh
ts

1 2 3 4 5 6 7 8 9 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Truncated
Bartlett
Parzen
Quadratic Spectral

FIGURE 21.1. Kernel weights evaluated at default bandwidths for = 100.

Prewhitening and Recoloring

If g (ˆ) is highly autocorrelated, Andrews and Monahan (1992) found that
the finite sample behavior of ŜHAC is often improved if a prewhitening and
recoloring procedure is used. This procedure works as follows:

[1] Prewhiten g (ˆ) by estimating a single lag vector autoregression,
VAR(1), for g (ˆ)

g (ˆ) = g 1(ˆ) + (ˆ)

and forming the residuals (ˆ) = g (ˆ) ˆg 1(ˆ)

[2] Construct an HAC estimator for (ˆ):

ˆ
HAC =

1X
=1

(ˆ + ˆ0)

where ˆ = 1
P

= +1 (ˆ) (ˆ)

[3] Form the recolored HAC estimate for S using

ŜPWHAC = (I ˆ) 1ˆ
HAC(I ˆ) 10

21.4 GMM Estimation Using the S+FinMetrics Function GMM 797

21.3.3 Estimating S Using the S+FinMetrics Function
var.hac

The HAC estimates of S for an × time series x , based on the pro-
cedures described in the previous section, may be computed using the
S+FinMetrics function var.hac.3 The arguments expected by var.hac
are

> args(var.hac)

function(x, bandwidth = NULL, window = "parzen", na.rm = F,

automatic = "none", df.correction = 0, prewhiten = F,

w = NULL, demean = T)

The optional arguments bandwidth and window are used to specify the
bandwidth parameter and kernel weight function , respectively.
Valid kernels are those listed in Table 21.1: "truncated", "bartlett",
"parzen", and "qs". If the bandwidth is not specified, then the default
value for from Table 21.1 is used for the specified kernel. The argu-
ment df.correction specifies a non-negative integer to be subtracted from
the sample size to perform a degrees-of-freedom correction. The argument
automatic determines if the Andrews (1991) or Newey-West (1994) auto-
matic bandwidth selection procedure is to be used to set . If automatic is
set to "andrews" or "nw", then the argument wmust be supplied as a vector
of weights for each variable in x. The Andrews-Monahan (1992) VAR(1)
prewhitening and recoloring procedure is performed if prewhiten=T.

21.4 GMM Estimation Using the S+FinMetrics
Function GMM

The GMM estimation of general linear and nonlinear models may be per-
formed using the S+FinMetrics function GMM. The arguments expected by
GMM are

> args(GMM)

function(start, moments, control = NULL, scale = NULL, lower

= -Inf, upper = Inf, trace = T, method = "iterative",

w = NULL, max.steps = 100, w.tol = 0.0001, ts = F,

df.correction = T, var.hac.control = var.hac.control(),

w0.efficient = F, ...)

The required arguments are start, which is a vector of starting values for
the parameters of the model, and moments, which is an S-PLUS function

3The function var.hac is an enhanced version of the S+FinMertics function
asymp.var.

798 21. Generalized Method of Moments

to compute the sample moment conditions used for estimating the model.
The moments function must be of the form f(parm,...), where parm is a
vector of parameters, and return a matrix of dimension × giving the
GMM moment conditions x0 for = 1 . The optional arguments
control, scale, lower, and upper are used by the S-PLUS optimization
function nlregb. See the online help for nlregb and nlregb.control for
details. Setting trace=T displays iterative information from the optimiza-
tion. The argument method determines the type of GMM estimation to
be performed. Valid choices are "iterative", for iterated GMM estima-
tion, and "simultaneous", for continuous updating GMM estimation. If
method="iterative" then the argument max.steps determines the num-
ber of iterations to be performed. The argument w specifies the weight ma-
trix used for constructing the GMM objective function (21.6).4 If w=NULL,
then an estimate of the e cient weight matrix based on the asymptotic
variance of the sample moment conditions will be used. In this case, the ar-
gument ts determines if an HC or HAC covariance estimator is computed
and the arguments df.correction and var.hac.control control various
options associated with these estimators. The user may supply a positive
definite and symmetric weight matrix to be used as the initial weight ma-
trix if method="iterative". This weight matrix may be fixed through-
out the estimation by setting max.step=0. If method="interative", and
max.step=0 then the argument w0.efficient indicates whether the user-
supplied weight matrix is an e cient weight matrix. This is useful for com-
puting certain types of test statistics based on the GMM objective function.
The argument ... specifies any optional arguments that will be passed to
the moments function used for computing the GMM moment conditions.
Typically, these arguments specify the data used to compute the moment
conditions.
The GMM function produces an object of class "GMM" for which there are

print and summary methods, and extractor function coef.

Example 141 Estimating the classical linear regression model by GMM

Consider the classical linear regression model

= x0 0 + (21.18)

where the explanatory variables x are assumed to be orthogonal to the er-
ror term. However, is allowed to be conditionally heteroskedastic and/or
serially correlated. In this model, the explanatory variables are also the
instrumental variables so that z = x and = . The population orthog-
onality condition is

[(w 0)] = [x] = [x (x0 0)] = 0

4The current version of GMM uses the inverse of w as the initial weight matrix.

21.4 GMM Estimation Using the S+FinMetrics Function GMM 799

where (w) = x and w = (x)0. The sample moment condition
used for estimation is

(w) =
1X

=1

x (x0)

which gives rise to the GMM estimating equation

S S = 0

Since = the model is just identified, and, provided that S is invert-
ible, the GMM estimator is equivalent to the least squares estimator

ˆ = S 1S

The estimate ˆ is asymptotically normally distributed with asymptotic
variance

avar(ˆ) = (S 1) 1

where S = avar(ḡ). If is iid (0 2), say, then S = [x x0 2] = 2 and

avar(ˆ) =
2 1, which is the usual formula for avar(ˆ) in the classical

linear regression formula.
As an example of a simple linear regression model, consider the Capital

Asset Pricing Model (CAPM)

= + () + = 1 (21.19)

where denotes the return on an asset, denotes the risk-free rate, and
denotes the return on a market portfolio proxy. Using the notation

for the linear model (21.18), = and = (1)0. The
data for this example are the monthly excess returns on Microsoft stock
and the S&P 500 index over the period February 1990 through December
2000 in the S+FinMetrics "timeSeries" object excessReturns.ts. As-
suming that the error term is orthogonal to , the CAPM may be
consistently estimated using ordinary least squares (OLS):

> ols.fit = OLS(MSFT~SP500, data = excessReturns.ts)

> ols.fit

Call:

OLS(formula = MSFT ~SP500, data = excessReturns.ts)

Coefficients:

(Intercept) SP500

0.0175 1.5677

Degrees of freedom: 131 total; 129 residual

Time period: from Feb 1990 to Dec 2000

Residual standard error: 0.09094843

800 21. Generalized Method of Moments

An S-PLUS function to compute the moment conditions for the linear
regression model is

ols.moments = function(parm,y=NULL,x=NULL) {

x = as.matrix(x)

x * as.vector(y - x %*% parm)

}

where parm is an × 1 vector of parameter , y is an × 1 vector of
observations on the dependent variable, and x is an × matrix of obser-
vations on the explanatory variables. The function returns an × matrix
of moment conditions x0 = x0 (x0) for = 1 :

> excessReturns.df = excessReturns.ts@data

> ols.moments(c(1,1),y = excessReturns.df[,"MSFT"],

+ x = cbind(1, excessReturns.df[,"SP500"]))

numeric matrix: 131 rows, 2 columns.

[,1] [,2]

[1,] -0.9409745 -0.0026713864

[2,] -0.9027093 -0.0161178959

...

[131,] -1.2480621 0.0009318206

To estimate the CAPM regression (21.19) with GMM assuming het-
eroskedastic errors, use

> start.vals = c(0,1)

> names(start.vals) = c("alpha", "beta")

> gmm.fit = GMM(start.vals, ols.moments, max.steps = 1,

+ y = excessReturns.df[,"MSFT"],

+ x = cbind(1, excessReturns.df[,"SP500"]))

> class(gmm.fit)

[1] "GMM"

Notice how the data are passed to the function ols.moments through the
... argument. The object gmm.fit returned by GMM is of class "GMM" and
has components

> names(gmm.fit)

[1] "parameters" "objective"

[3] "message" "grad.norm"

[5] "iterations" "r.evals"

[7] "j.evals" "scale"

[9] "normalized.moments" "vcov"

[11] "method" "df.J"

[13] "df.residual" "call"

21.4 GMM Estimation Using the S+FinMetrics Function GMM 801

The online help for GMM gives a complete description of these components.5

Typing the name of the "GMM" object invokes the print method on the
fitted object:

> gmm.fit

Call:

GMM(start = start.vals, moments = ols.moments, max.steps = 1,

y = excessReturns.df[, "MSFT"], x = cbind(1,

excessReturns.df[, "SP500"]))

Coefficients:

alpha beta

0.0175 1.5677

Test of Overidentification:

model is just-identified

Optimization Info:

Number of Iterations: 1

Convergence: x convergence

As expected, the GMM estimates of and are equivalent to the least
squares estimates. Also, since the linear model is just identified, the GMM
objective function (-statistic) is identically zero at the optimum and,
therefore, there is no test for overidentifying restrictions.
The summary method provides information about the statistical signifi-

cance of the estimated parameters:

> summary(gmm.fit)

Call:

GMM(start = start.vals, moments = ols.moments, max.steps = 1,

y = excessReturns.df[, "MSFT"], x = cbind(1,

excessReturns.df[, "SP500"]))

Coefficients:

Value Std.Error t value Pr(>|t|)

alpha 0.0175 0.0079 2.2175 0.0283

beta 1.5677 0.1905 8.2274 0.0000

5Since the linear model is just identified, the weight matrix in the GMM objective
function is irrelevant and so the weight.matrix component of gmm.fit is not returned.
Also, the moments.vcov component is not returned since all of the normalized moments
are equal to zero.

802 21. Generalized Method of Moments

Test of Overidentification:

model is just-identified

Optimization Info:

Number of Iterations: 1

Convergence: x convergence

By default, the GMM function computes an HC estimate of the asymptotic
variance of the sample moment conditions, and so values in the column
labeled Std.Error are heteroskedasticity consistent (HC) standard errors.
To be sure, these standard errors may be compared to those computed from
the OLS fit with the White HC correction:

> summary(ols.fit,correction="white")

Call:

OLS(formula = MSFT ~SP500, data = excessReturns.ts)

Residuals:

Min 1Q Median 3Q Max

-0.3101 -0.0620 -0.0024 0.0581 0.2260

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 0.0175 0.0079 2.2175 0.0283

SP500 1.5677 0.1905 8.2274 0.0000

To compute the GMM estimator using an HAC estimate of the asymp-
totic variance of the sample moment conditions, call the GMM function with
the optional argument ts=T. The type of HAC estimate used is determined
by the options set in var.hac.control. For example, to compute the OLS
estimates with the usual Newey-West HAC standard errors use

> gmm.fit2 = GMM(c(0,1), ols.moments, max.steps = 1,

+ y = excessReturns.df[,"MSFT"],

+ x = cbind(1, excessReturns.df[,"SP500"]), ts = T,

+ var.hac.control = var.hac.control(window = "bartlett",

+ bandwidth = floor(4 * (nrow(excessReturns.df)/100)^(2/9))))

The standard errors for the above GMM estimates are identical to those
returned by

> summary(ols.fit,correction="nw")

Example 142 Estimating the instrumental variables regression model
using GMM

21.4 GMM Estimation Using the S+FinMetrics Function GMM 803

As in Campbell and Mankiw (1990), consider the stylized consumption
function

= 0 + 1 + 2 + = 1 (21.20)

= 0z +

where denotes the log of real per capita consumption (excluding durables),
denotes the log of real disposable income, and denotes the ex post real

interest rate (T-bill rate — inflation rate). Assume that { } are
stationary and ergodic and that { } is a stationary and ergodic martin-
gale di erence sequence (MDS), where = { } =1 denotes the
observed information set at time . In (21.20), the variables and are
likely to be contemporaneously correlated with and so the least squares
estimates of are likely to be biased and inconsistent. Because { }
is a stationary and ergodic MDS, [| 1] = 0 which implies that any
variable in 1 is a potential instrument. Furthermore, for any variable

1 1, { 1 } is an uncorrelated sequence.
The data for this example are annual data over the period 1960 to

1995 taken from Wooldridge (2002), and are in the "timeSeries" object
consump.ts:

> colIds(consump.ts)

[1] "GC" "GY" "R3"

> consump.ts@documentation

[1] "GY = log growth rate of real income"

[2] "GC = log growth rate of real consumption"

[3] "R3 = real 3-month T-bill rate"

[4] "source: Wooldridge (2002), Introduction to"

[5] "Econometrics, 2nd Edition"

[6] "South-Western Thompson"

The following data frame consump is created for use with the function GMM:

> nobs = numRows(consump.ts)

> consump = seriesData(consump.ts)

> consump$const = rep(1,nobs)

An S-PLUS function to compute the linear instrumental variables regres-
sion model moment conditions (w) = x (z0) for = 1 ,
is

iv.moments = function(parm, y, X, Z) {

parm = L x 1 vector of parameters

y = n x 1 response vector

X = n x K matrix of instruments

Z = n x L matrix of explanatory variables

X = as.matrix(X)

Z = as.matrix(Z)

804 21. Generalized Method of Moments

X * as.vector(y - Z %*% parm)

}

Applying this function to the consumption data with = (1 1 1)0, z =
(1)0 and x = (1 1 1 1)

0 gives

> iv.moments(c(1,1,1),y = consump[2:nobs,1],

+ X = consump[1:(nobs-1),],

+ Z = consump[2:nobs,2:4])

GC GY R3 const

1 -0.014143206 -0.0070677434 -0.0124922035 -1.0156263

2 -0.013609181 -0.0154800892 -0.0141370678 -1.0244252

...

35 -0.015828003 -0.0143904735 -0.0175688817 -1.0395788

To estimate the consumption function (21.20) by two-step e cient GMM
using Ŵ = I as the initial weight matrix and assuming conditionally
heteroskedastic errors, call GMM with the optional arguments method =
"iterative" and max.steps = 1:

> start.vals = rep(0.1,3)

> names(start.vals) = c("GY","R3","const")

> gmm.fit.2step = GMM(start.vals, iv.moments,

+ method = "iterative", max.steps=1,

+ y = consump[2:nobs,1],

+ X = consump[1:(nobs-1),],

+ Z = consump[2:nobs,2:4])

1-step objective = 1.02951e-8

2-step objective = 1.57854

A summary of the model fit is

> summary(gmm.fit.2step)

Call:

GMM(start = start.vals, moments = iv.moments, method =

"iterative", max.steps = 1, y = consump[2:nobs, 1],

X = consump[1:(nobs - 1),], Z = consump[2:nobs,2:4])

Coefficients:

Value Std.Error t value Pr(>|t|)

GY 0.6277 0.1500 4.1852 0.0002

R3 -0.0099 0.0981 -0.1009 0.9202

const 0.0071 0.0037 1.9134 0.0647

Test of Overidentification:

J-stat Df P.value

1.5785 1 0.209

21.4 GMM Estimation Using the S+FinMetrics Function GMM 805

Optimization Info:

Number of Iterative Steps: 2

The coe cient on is 0 6277, with an estimated standard error of 0 1761,
and the coe cient on is slightly negative, with an estimated standard
error of 0 1156. The -statistic is 1 5785 and has a -value of 0 209 based
on the chi-square distribution with one degree of freedom. The data appear
to support the single overidentifying restriction.
To estimate the consumption function (21.20) by iterated e cient GMM

assuming conditionally heteroskedastic errors, call GMM with method =

"iterative" and max.steps set to a large number6:

> gmm.fit.iter = GMM(start.vals, iv.moments,

+ method = "iterative", max.steps = 100,

+ y = consump[2:nobs,1],

+ X = consump[1:(nobs-1),],

+ Z = consump[2:nobs,2:4])

1-step objective = 1.02951e-8

2-step objective = 1.57854

...

13-step objective = 1.85567

To compute the continuously updated e cient GMM estimator (21.14),
call GMM with method = "simultaneous":

> start.vals = gmm.fit.iter$parameters

> gmm.fit.cu = GMM(start.vals, iv.moments,

+ method = "simultaneous",

+ y = consump[2:nobs,1],

+ X = consump[1:(nobs-1),],

+ Z = consump[2:nobs,2:4])

Good starting values are important for the CU estimator, and the above
estimation uses the iterated GMM estimates as starting values.
Finally, to compute an ine cient one-step GMM estimator withW = I4

use

> start.vals = rep(0.1,3)

> names(start.vals) = c("GY","R3","const")

> gmm.fit.1step = GMM(start.vals, iv.moments,

+ method = "iterative", max.steps = 0,

+ w = diag(4), w0.efficient = F,

6Notice that the one-step objective almost equal to zero. This is caused by using
Ŵ = I as the initial weight matrix since the scaling of the individual moment conditions
is very di erent. Using Ŵ = S 1 generally provides a better scaling of the moment
conditions.

806 21. Generalized Method of Moments

= 1 + 2 + 3 +
x = (1 1 1 1)

0 [x] = 0 [x x0 2] = S
Estimator 1 2 3 -stat

2-step e cient
007
(004)

627
(150)

010
(098)

1 578
(209)

Iterated e cient
008
(004)

591
(144)

032
(095)

1 855
(173)

CU e cient
008
(003)

574
(139)

054
095

1 747
(186)

1-step ine cient
003
(005)

801
(223)

024
(116)

TABLE 21.2. E cient GMM estimates of the consumption function parameters

+ y = consump[2:nobs,1],

+ X = consump[1:(nobs-1),],

+ Z = consump[2:nobs,2:4])

1-step objective = 1.02951e-8

1-step objective = 1.02951e-8

Warning messages:

1: Maximum iterative steps exceeded. in: GMM(start.vals,

iv.moments, method = "iterative", max.steps =

2: The J-Statistic is not valid since the weight matrix is

not efficient. in: GMM(start.vals, iv.moments, method

= "iterative", max.steps =

Table 21.2 summarizes the di erent e cient GMM estimators for the
parameters in (21.20). The results are very similar across the e cient esti-
mations.7

Example 143 Estimating the instrumental variables regression model
using TSLS

The TSLS estimator of may be computed using the function GMM by
supplying the fixed weight matrixW = S 1 as follows8:

> w.tsls = crossprod(consump[1:(nobs-1),])/nobs

> start.vals = rep(0.1,3)

> names(start.vals) = c("GY","R3","const")

> gmm.fit.tsls = GMM(start.vals,iv.moments,

+ method = "iterative",max.steps = 0,

+ w = w.tsls,w0.efficient = T,

7To match the default Eviews output for GMM, set the optional argument
df.correction=F.

8Recall the GMM function uses the inverse of w as the weight matrix.

21.4 GMM Estimation Using the S+FinMetrics Function GMM 807

+ y = consump[2:nobs,1],

+ X = consump[1:(nobs-1),],

+ Z = consump[2:nobs,2:4])

1-step objective = 1.12666e-4

> gmm.fit.tsls

Call:

GMM(start = start.vals, moments = iv.moments, method =

"iterative", w = w.tsls, max.steps = 0, w0.efficient

= T, y = consump[2:nobs, 1], X = consump[1:(nobs -1),],

Z = consump[2:nobs, 2:4])

Coefficients:

GY R3 const

0.5862 -0.0269 0.0081

Test of Overidentification:

J-stat Df P.value

0.0001 1 0.9915

Optimization Info:

Number of Iterative Steps: 1

The TSLS estimate of is similar to the e cient iterated estimate. The
-statistic and the estimate of avar(ˆTSLS) computed using Ŵ = Ŝ 1,
however, are not correct since S 1 is proportional to the e cient weight
matrix. To get the correct values for these quantities, a consistent estimate
ˆ2 of 2 is required to form the e cient weight matrix ˆ2S 1. This is easily
accomplished using

compute TSLS estimate of error variance

> y = as.vector(consump[2:nobs,1])

> X = as.matrix(consump[1:(nobs-1),])

> Z = as.matrix(consump[2:nobs,2:4])

> d.hat = coef(gmm.fit.tsls)

> e.hat = y - Z%*%d.hat

> df = nrow(Z) - ncol(Z)

> s2 = as.numeric(crossprod(e.hat)/df)

compute correct efficient weight matrix for tsls

that contains error variance term

> w.tsls2 = crossprod(X)*s2/nobs

> start.vals = rep(0.1,3)

> names(start.vals) = c("GY","R3","const")

> gmm.fit.tsls2 = GMM(start.vals,iv.moments,

+ method = "iterative",max.steps = 0,

808 21. Generalized Method of Moments

+ w = w.tsls2,w0.efficient = T,

+ y = consump[2:nobs,1],

+ X = consump[1:(nobs-1),],

+ Z = consump[2:nobs,2:4])

1-step objective = 2.01841

> summary(gmm.fit.tsls2)

Call:

GMM(start = start.vals, moments = iv.moments, method =

"iterative", w = w.tsls2, max.steps = 0, w0.efficient

= T, y = consump[2:nobs, 1], X = consump[1:(nobs -1),],

Z = consump[2:nobs, 2:4])

Coefficients:

Value Std.Error t value Pr(>|t|)

GY 0.5862 0.1327 4.4177 0.0001

R3 -0.0269 0.0753 -0.3576 0.7230

const 0.0081 0.0032 2.5285 0.0166

Test of Overidentification:

J-stat Df P.value

2.0184 1 0.1554

21.5 Hypothesis Testing for Linear Models

The following subsections discuss hypothesis testing in linear models es-
timated by GMM. The main types of hypothesis test are for coe cient
restrictions, overidentification restrictions, subsets of orthogonality restric-
tions, and instrument relevance. Except for the tests for instrument rele-
vance, the tests extend in a straightforward way to nonlinear models esti-
mated by GMM.

21.5.1 Testing Restrictions on Coe cients

Hypothesis testing on coe cients in linear GMM models is surveyed in
Newey and West (1987) and nicely summarized in Chapter 3 of Hayashi
(2000).

Wald Statistics

Wald-type statistics are based on the asymptotic normality of the GMM es-
timator ˆ(Ŵ) for an arbitrary weight matrix Ŵ. Simple tests on individual

21.5 Hypothesis Testing for Linear Models 809

coe cients of the form

0 : = 0 (21.21)

may be conducted using the asymptotic -ratio

=
ˆ (Ŵ) 0cSE(ˆ (Ŵ))

(21.22)

where cSE(ˆ (Ŵ)) is the square root of the th diagonal element of (21.9).
Under the null hypothesis (21.21), the -ratio (21.22) has an asymptotic
standard normal distribution.
Linear hypotheses of the form

0 : R = r (21.23)

where R is a fixed × matrix of rank and r is a fixed ×1 vector, may
be tested using the Wald statistic

Wald = (Rˆ(Ŵ) r)0
h
Rdavar(ˆ(Ŵ))R0

i 1

(Rˆ(Ŵ) r) (21.24)

where davar(ˆ(Ŵ)) is given by (21.9). Under the null (21.23), the Wald
statistic (21.24) has a limiting chi-square distribution with degrees of
freedom. The Wald statistic (21.24) is valid for any consistent and asymp-
totically normal GMM estimator ˆ(Ŵ) based on an arbitrary symmetric

and positive definite weight matrix Ŵ W. Usually, Wald statistics are
computed using Ŵ = Ŝ 1 so that davar(ˆ(Ŝ 1)) is given by (21.11).
Nonlinear hypotheses of the form

0 : a(0) = 0 (21.25)

where a(0) = 0 imposes nonlinear restrictions and a(0)
0 has full

rank , may be tested using the Wald statistic

Wald = a(ˆ(Ŵ))0
"
a(ˆ(Ŵ))

0 davar(ˆ(Ŵ))
a(ˆ(Ŵ))0

1

a(ˆ(Ŵ))

(21.26)
Under the null (21.25), the Wald statistic (21.26) has a limiting chi-square
distribution with degrees of freedom.

GMM LR-Type Statistics

Linear and nonlinear restrictions on the model coe cients may also be
tested using a likelihood ratio (LR)-type statistic. In e cient GMM estima-
tion, the unrestricted objective function is (ˆ(Ŝ 1) Ŝ 1), for a consistent
estimate Ŝ of S. The restricted e cient GMM estimator solves

˜
R(Ŝ

1) = argmin (Ŝ 1) subject to 0 (21.27)

810 21. Generalized Method of Moments

The GMM LR-type statistic is the di erence between the restricted and
unrestricted -statistics:

LRGMM = (˜R(Ŝ
1) Ŝ 1) (ˆ(Ŝ 1) Ŝ 1) (21.28)

Under the null hypotheses (21.23) or (21.25), LRGMM has a limiting chi-
square distribution with degrees of freedom. As , it can be shown

that Wald LRGMM 0, although the two statistics may di er in finite
samples. For linear restrictions, Wald and LRGMM are numerically equiv-
alent provided that the same value of Ŝ is used to compute the restricted
and unrestricted e cient GMM estimators. Typically Ŝ computed under
the unrestricted model is used in constructing LRGMM. In this case, when
the restricted e cient GMM estimator is computed by solving (21.27) the
weight matrix Ŝ 1

UR is held fixed during the estimation (no iteration is per-
formed on the weight matrix). If LRGMM is computed using two di erent
consistent estimates of S, say Ŝ and S̃, then it is not guaranteed to be posi-
tive in finite samples but is asymptotically valid. The LRGMM statistic has
the advantage over the Wald statistic for nonlinear hypotheses in that it
is invariant to how the nonlinear restrictions are represented. Additionally,
Monte Carlo studies have shown that LRGMM often performs better than
Wald in finite samples. In particular, Wald tends to over reject the null
hypothesis when it is true.

Example 144 Testing the PIH

The pure permanent income hypothesis (PIH) due to Hall (1978) states
that in (21.20) is a martingale so that = is a MDS. Hence, the
PIH implies the linear restrictions

0 : 1 = 2 = 0

which are of the form (21.23) with

R =

µ
1 0 0
0 1 0

¶
r =

µ
0
0

¶
If there are temporary income consumers, then 1 0.
The Wald statistic (21.24) based on the iterated e cient GMM estimator

may be computed using

> Rmat = matrix(c(1,0,0,1,0,0),2,3)

> rvec = c(0,0)

> dhat = coef(gmm.fit.iter)

> avarRbhat = Rmat %*% gmm.fit.iter$vcov %*% t(Rmat)

> Rmr = Rmat %*% dhat - rvec

> wald.stat = as.numeric(t(Rmr) %*% solve(avarRbhat) %*% Rmr)

> wald.stat

[1] 16.99482

21.5 Hypothesis Testing for Linear Models 811

Since there are = 2 linear restrictions, the Wald statistic has an asymp-
totic chi-square distribution with two degrees of freedom. The -value is

> 1 - pchisq(wald.stat,2)

[1] 0.0002039964

which suggests rejecting the PIH at any reasonable level of significance.
To compute the GMM LR-type statistic (21.28), one must compute re-

stricted and unrestricted GMM estimates using the same estimate Ŝ 1of
the e cient weight matrix and evaluate the corresponding -statistics.
Consider computing (21.28) using the iterated e cient GMM estimate as
the unrestricted estimate. Its -statistic is (ˆ(Ŝ 1) Ŝ 1) = 1 855. To
compute the restricted e cient GMM estimate with Ŝ 1 from the unre-
stricted iterated e cient estimation as the weight matrix, use the following
commands:

> s.ur = solve(gmm.fit.iter$weight.matrix)

> s.ur = (s.ur + t(s.ur))/2

> start.vals = 0.1

> names(start.vals) = c("const")

> gmm.fit.r = GMM(start.vals, iv.moments,

+ method = "iterative", max.steps = 0,

+ w = s.ur, w0.efficient = T,

+ y = consump[2:nobs,1],

+ X = consump[1:(nobs-1),],

+ Z = consump[2:nobs,4])

1-step objective = 18.8505

The second line above is used to ensure that the weight matrix passed
to GMM is symmetric. The restricted model is specified using the function
iv.moments with = (1), and x = (1 1 1 1)

0. The restricted
fit is given by

> summary(gmm.fit.r)

Call:

GMM(start = start.vals, moments = iv.moments, method =

"iterative", w = s.ur, max.steps = 0, w0.efficient = T,

y = consump[2:nobs, 1], X = consump[1:(nobs - 1),],

Z = consump[2:nobs, 4])

Coefficients:

Value Std.Error t value Pr(>|t|)

const 0.0209 0.0012 17.0687 0.0000

Test of Overidentification:

J-stat Df P.value

812 21. Generalized Method of Moments

18.8505 3 0.0003

Optimization Info:

Number of Iterative Steps: 1

The restricted -statistic is (˜R(Ŝ
1) Ŝ 1) = 18 8505. The GMM-LR

statistic is then

> gmm.lr = gmm.fit.r$objective - gmm.fit.iter$objective

> gmm.lr

[1] 16.99482

which is numerically identical to the Wald statistic computed earlier.

21.5.2 Testing Subsets of Orthogonality Conditions

Consider the linear GMM model (21.1) with instruments x = (x01 x02)
0

such that x1 is 1 × 1 and x2 is 2 × 1 with 1 and 1 + 2 = .
The instruments x1 are assumed to be valid (i.e., [x1] = 0), whereas
the instruments x2 are suspected not to be valid (i.e., [x2] 6= 0). A
procedure to test for the validity of x2 due to Newey (1985) is as follows.
First, estimate (21.1) by e cient GMM using the full set of instruments
x giving

ˆ(Ŝ 1
Full) = (S

0 Ŝ 1
FullS) 1S0 Ŝ 1

FullS

where

ŜFull =

·
Ŝ11 Full Ŝ12 Full
Ŝ21 Full Ŝ22 Full

¸
such that Ŝ11 Full is 1 × 1. Second, estimate (21.1) by e cient GMM

using only the instruments x1 and using the weight matrix Ŝ 1
11 Full giving

˜(Ŝ 1
11 Full) = (S

0
1
Ŝ 1
11 FullS 1)

1S0
1
Ŝ 1
11 FullS 1

Next, form the statistic9

= (ˆ(Ŝ 1
Full) Ŝ

1
Full) (˜(Ŝ 1

11 Full) Ŝ
1

11 Full) (21.29)

Under the null hypothesis that [x] = 0, the statistic has a limiting
chi-square distribution with 1 degrees of freedom.

Example 145 Testing the endogeneity of in the consumption function

Consider testing the hypothesis that in (21.20) is exogenous ([] =
0). In this case, the full set of instruments is x = (1 1 1 1)0

and the reduced set is x1 = (1 1 1 1)
0. E cient GMM esti-

mation of the full model is achieved using

9The use of Ŝ 1
11 Full guarantees that the statistic is non-negative.

21.5 Hypothesis Testing for Linear Models 813

> start.vals = rep(0.1,3)

> names(start.vals) = c("GY","R3","const")

> gmm.fit.full = GMM(start.vals,iv.moments,

+ method = "iterative", max.steps = 100,

+ y = consump[2:nobs,"GC"],

+ X = cbind(consump[1:(nobs-1),],

+ consump[2:nobs,"R3"]),

+ Z = consump[2:nobs,2:4])

The e cient weight matrix Ŝ 1
11 Full may be extracted using

> w11.full = solve(gmm.fit.full$weight.matrix[1:4,1:4])

> w11.full = (w11.full + t(w11.full))/2

E cient GMM estimation using x1 together with Ŝ 1
11 Full may be com-

puted using

> start.vals = rep(0.1,3)

> names(start.vals) = c("GY","R3","const")

> gmm.fit.11 = GMM(start.vals,iv.moments,

+ method = "iterative", max.steps = 0,

+ w = w11.full, w0.efficient = T,

+ y = consump[2:nobs,"GC"],

+ X = consump[1:(nobs-1),],

+ Z = consump[2:nobs,2:4])

The statistic (21.29) for testing the exogeneity of is then

> C.stat = gmm.fit.full$objective - gmm.fit.11$objective

> C.stat

[1] 0.01821106

Since = 5 and 1 = 4, has an limiting chi-square distribution with
one degree of freedom. The -value for the test

> 1 - pchisq(C.stat,1)

[1] 0.8926527

indicates that may be treated as exogenous in the consumption function.

21.5.3 Testing Instrument Relevance

In order to obtain consistent GMM estimates, the instruments x must be
uncorrelated with the error term (valid instruments) and they must be
correlated with the endogenous variables z (relevant instruments). The
subset orthogonality tests of the previous subsection can be used to test
instrument validity. This subsection discusses some simple tests for instru-
ment relevance.

814 21. Generalized Method of Moments

Instrument relevance is related to the rank condition (21.4). To see this,
consider the simple GMM regression involving a single endogenous variable
and a single instrument

= +

[] = 0

The rank condition (21.4) reduces to rank() = 1, which implies that
6= 0. Assuming that both and are demeaned, the rank condition

can be restated as cov() = 6= 0. Hence, the rank condition will
be satisfied as long as is correlated with . If there are instruments

1 but only one endogenous variable then the rank condition
holds as long as cov() 6= 0 for some . If cov() 0 for all then
the instruments are called weak.
Testing instrument relevance is important in practice because recent re-

search (e.g., Stock and Wright (2000)) has shown that standard GMM
procedures for estimation and inference may be highly misleading if instru-
ments are weak. If instruments are found to be weak, then nonstandard
methods of inference should be used for constucting confidence intervals
and performing hypothesis tests. Stock, Wright, and Yogo (2002) gave a
nice survey of the issues associated with using GMM in the presence of
weak instruments and discussed the nonstandard inference procedures that
should be used.
In the general linear GMM regression (21.1), the relevance of the set of

instruments x for each endogenous variable in z can be tested as follows.
First, let z1 denote the 1× 1 vector of nonconstant endogenous variables
in z , and let x1 denote the 1 × 1 remaining deterministic or exogenous
variables in z such that z = (z01 x01)

0 and 1+ 1 = . Similarly, define
x2 as the 2 × 1 vector of exogenous variables that are excluded from
z so that x = (x01 x02)0 and 1 + 2 = . What is important for the
rank condition are the correlations between the endogenous variables in
z1 and the instruments in x2 . To measure these correlations and to test
for instrument relevance, estimate by least squares the so-called first-stage
regression

1 = x01 1 + x2 2 + = 1 1

for each endogenous variable in z1 . The -ratios on the variables in x2
can be used to assess the strength of the correlation between 1 and the
variables in x2 . The -statistic for testing 2 = 0 can be used to assess
the joint relevance of x2 for 1 .

Example 146 Testing instrument relevance in the consumption function

In the consumption function regression, z1 = ()
0
, 1 = (1), and

x2 = (1 1 1)
0. The first stage regressions for and may

be computed simultaneously using the S+FinMetrics function OLS as fol-
lows:

21.5 Hypothesis Testing for Linear Models 815

> firstStage.fit = OLS(cbind(GY,R3) ~ tslag(GC) + tslag(GY)

+ + tslag(R3), data = consump)

> class(firstStage.fit)

[1] "mOLS"

When a multivariate response is specified in the call to OLS, a regression
is performed for each response variable and the returned object is of class
"mOLS". A summary of each first-stage regression is

> summary(firstStage.fit)

Response: GY

Call:

OLS(formula = cbind(GY, R3) ~tslag(GC) + tslag(GY) + tslag(

R3), data = consump)

Residuals:

Min 1Q Median 3Q Max

-0.0305 -0.0122 -0.0021 0.0112 0.0349

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 0.0067 0.0055 1.2323 0.2271

tslag(GC) 1.2345 0.3955 3.1214 0.0039

tslag(GY) -0.5226 0.2781 -1.8787 0.0697

tslag(R3) 0.0847 0.1395 0.6069 0.5483

Regression Diagnostics:

R-Squared 0.2791

Adjusted R-Squared 0.2093

Durbin-Watson Stat 1.8808

Residual Diagnostics:

Stat P-Value

Jarque-Bera 0.6181 0.7341

Ljung-Box 8.9289 0.8812

Residual standard error: 0.0163 on 31 degrees of freedom

F-statistic: 4 on 3 and 31 degrees of freedom, the p-value

is 0.01617

Response: R3

Call:

OLS(formula = cbind(GY, R3) ~tslag(GC) + tslag(GY) + tslag(

816 21. Generalized Method of Moments

R3), data = consump)

Residuals:

Min 1Q Median 3Q Max

-0.0264 -0.0069 0.0021 0.0068 0.0436

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 0.0083 0.0044 1.8987 0.0669

tslag(GC) 0.1645 0.3167 0.5192 0.6073

tslag(GY) -0.4290 0.2228 -1.9259 0.0633

tslag(R3) 0.8496 0.1117 7.6049 0.0000

Regression Diagnostics:

R-Squared 0.6519

Adjusted R-Squared 0.6182

Durbin-Watson Stat 1.7470

Residual Diagnostics:

Stat P-Value

Jarque-Bera 14.8961 0.0006

Ljung-Box 20.7512 0.1450

Residual standard error: 0.01305 on 31 degrees of freedom

F-statistic: 19.35 on 3 and 31 degrees of freedom, the p-value

is 2.943e-007

In the first-stage regression for , the -ratios for 1 and 1 are
significant at the 1% and 10% levels, respectively, indicating that these
variables are correlated with . The -statistic for testing the joint sig-
nificance of the variables in x2 is 4, with a -value of 0.0167 indicating
that x2 is relevant for .

21.6 Nonlinear GMM

Nonlinear GMM estimation occurs when the GMM moment conditions
(w) are nonlinear functions of the model parameters . Depending
on the model, the moment conditions (w) may be nonlinear
functions satisfying

[(w 0)] = 0 (21.30)

21.6 Nonlinear GMM 817

Alternatively, for a response variable , explanatory variables z , and
instruments x , the model may define a nonlinear error term

(z ; 0) =

such that
[] = [(z ; 0)] = 0

Given that x is orthogonal to , define (w 0) = x = x (z ; 0)
so that

[(w 0)] = [x] = [x (z ; 0)] = 0 (21.31)

defines the GMM orthogonality conditions.
In general, the GMM moment equations (21.30) and (21.31) produce a

system of nonlinear equations in unknowns. Identification of 0 requires
that

[(w 0)] = 0

[(w)] 6= 0 for 6= 0

and the × matrix

G =

·
(w 0)

0

¸
(21.32)

has full column rank . The sample moment condition for an arbitrary is

() = 1
X
=1

(w)

If = , then 0 is apparently just identified and the GMM objective
function is

() = ()0 ()

which does not depend on a weight matrix. The corresponding GMM esti-
mator is then

ˆ = argmin ()

If , then 0 is apparently overidentified. Let Ŵ denote a ×
symmetric and p.d. weight matrix, possibly dependent on the data, such

that Ŵ W as with W symmetric and p.d. Then, the GMM
estimator of 0, denoted ˆ(Ŵ), is defined as

ˆ(Ŵ) = argmin (Ŵ) = ()0Ŵ ()

The e cient GMM estimator uses Ŵ = Ŝ
1
such that Ŝ S = avar(ḡ).

As with e cient GMM estimation of linear models, the e cient GMM
estimator of nonlinear models may be computed using a two-step, iterated,
or continuous updating estimator.

818 21. Generalized Method of Moments

21.6.1 Asymptotic Properties

Under standard regularity conditions (see Hayashi, 2000, Chap. 7), it can
be shown that

ˆ(Ŵ) 0³
ˆ(Ŵ) 0

´
(0 avar(ˆ(Ŵ)))

where

avar(ˆ(Ŵ)) = (G0WG) 1G0WSWG(G0WG) 1 (21.33)

and G is given by (21.32). IfW = S 1 then

avar(ˆ(Ŝ 1)) = (G0S 1G) 1 (21.34)

Notice that with nonlinear GMM, the expression for avar(ˆ(Ŵ)) is of the
same form as in linear GMM except that = [x z0] is replaced by
G =

h
(w 0)0

i
.

A consistent estimate of avar(ˆ(W)), denoted davar(ˆ(Ŵ)), may be com-
puted using

davar(ˆ(Ŵ)) = (Ĝ0ŴĜ) 1Ĝ0ŴŜŴĜ(Ĝ0ŴĜ) 1 (21.35)

where Ŝ is a consistent estimate for S = avar(ḡ) and

Ĝ =G (ˆ(Ŵ)) = 1
X
=1

(w ˆ(Ŵ))
0

For the e cient GMM estimator, Ŵ = Ŝ
1
and

davar(ˆ(Ŝ 1)) = (Ĝ0Ŝ 1Ĝ) 1 (21.36)

If {g (w 0)} is an ergodic stationary MDS with [g (w 0)g (w 0)
0]

= S, then a consistent estimator of S takes the form

1
X
=1

g (w ˆ)g (w ˆ)0

where ˆ is any consistent estimator of 0. If {g (w 0)} is a serially cor-
related ergodic stationary process, then

S = avar(ḡ) = 0 + 2
X
=1

(+ 0)

and the methods discussed in Section 21.3 may be used to consistently
estimate S.

21.7 Examples of Nonlinear Models 819

21.6.2 Hypothesis Tests for Nonlinear Models

Most of the GMM test statistics discussed in the context of linear models
have analogs in the context of nonlinear GMM. For example, the -statistic
for testing the validity of the moment conditions (21.31) has the form
(21.15) with the e cient GMM estimate ˆ(Ŝ 1) in place of ˆ(Ŝ 1). The
asymptotic null distribution of the -statistic is chi-squared with
degrees of freedom. Wald statistics for testing linear and nonlinear restric-
tion on have the same form as (21.24) and (21.26), with ˆ(Ŵ) in place
of ˆ(Ŵ). Similarly, GMM LR-type statistics for testing linear and nonlin-
ear restriction on have the form (21.28), with ˜(Ŝ 1) in place of ˜(Ŝ 1)
and with ˆ(Ŝ 1) in place of ˆ(Ŝ 1). Testing the relevance of instruments
in nonlinear models, however, is not as straightforward as it is in linear
models. In nonlinear models, instruments are relevant if the × matrix
G defined in (21.32) has full column rank . Testing this condition is prob-
lematic becauseG depends on 0 which is unknown. See Wright (2003) for
an approach that can be used to test for instrument relevance in nonlinear
models.

21.7 Examples of Nonlinear Models

The following subsections give detailed examples of estimating nonlinear
models using GMM.

21.7.1 Student’s Distribution

As in Hamilton (1994, Chap. 14), consider a random sample 1

that is drawn from a centered Student’s distribution with 0 degrees of
freedom. The density of has the form

(; 0) =
[(0 + 1) 2]

(0)1 2 (0 2)
[1 + (2

0)]
(0+1) 2

where (·) is the gamma function. The goal is to estimate the degrees of
freedom parameter 0 by GMM using the moment conditions

[2] =
0

0 2

[4] =
3 2
0

(0 2)(0 4)

which require 0 4. Let w = (2 4)0 and define

g(w) =

µ
2 (2)

4 3 2 (2)(4)

¶
(21.37)

820 21. Generalized Method of Moments

Then, [g(w 0)] = 0 is the moment condition used for defining the GMM
estimator for 0. Here, = 2 and = 1 so 0 is apparently overidentified.
Using the sample moments

g () =
1X

=1

g(w) =

µ
1
P

=1
2 (2)

1
P

=1
4 3 2 (2)(4)

¶
the GMM objective function has the form

() = g ()0Ŵg ()

where Ŵ is a 2× 2 p.d. and symmetric weight matrix, possibly dependent
on the data, such that Ŵ W. The e cient GMM estimator uses the

weight matrix Ŝ 1 such that Ŝ S = [g(w 0)g(w 0)
0].

A random sample of = 250 observations from a centered Student’s
distribution with 0 = 10 degrees of freedom may be generated using the
S-PLUS function rt as follows:

> set.seed(123)

> y = rt(250,df = 10)

Basic summary statistics, computed using

> summaryStats(y)

Sample Quantiles:

min 1Q median 3Q max

-4.387 -0.6582 -0.0673 0.6886 3.924

Sample Moments:

mean std skewness kurtosis

-0.03566 1.128 -0.3792 4.659

Number of Observations: 250

indicate that the data are roughly symmetric about zero and have thicker
tails than the normal distribution.
An S-PLUS function to compute the moment condition (21.37) for =

1 is

t.moments <- function(parm,data=NULL) {

parm = df parameter

data = [y^2, y^4] is assumed to be a matrix

m1 = parm/(parm - 2)

m2 = 3*parm*parm/((parm - 2)*(parm - 4))

t(t(data) - c(m1,m2))

}

21.7 Examples of Nonlinear Models 821

The function t.moments has arguments parm, specifying the degrees of
freedom parameter , and data, specifying an × 2 matrix with the th
row w = (2 4)0.
To compute the iterated e cient GMM estimator of the degrees of free-

dom parameter from the simulated Student’s data use

> y = y - mean(y)

> t.data = cbind(y^2,y^4)

> start.vals = 15

> names(start.vals) = c("theta")

> t.gmm.iter = GMM(start.vals, t.moments,

+ method = "iterative", max.steps = 100,

+ data = t.data)

1-step objective = 0.471416

2-step objective = 0.302495

3-step objective = 0.302467

> summary(t.gmm.iter)

Call:

GMM(start = start.vals, moments = t.moments, method =

"iterative", max.steps = 100, data = data)

Coefficients:

Value Std.Error t value Pr(>|t|)

theta 7.8150 1.1230 6.9592 0.0000

Test of Overidentification:

J-stat Df P.value

0.3025 1 0.5823

Optimization Info:

Number of Iterative Steps: 3

The iterated e cient GMM estimate of 0 is 7 8150, with an asymptotic
standard error of 1 123. The small -statistic indicates a correctly specified
model.

21.7.2 MA(1) Model

Following Harris (1999), consider GMM estimation of the parameters in
the moving average MA(1) model

= 0 + + 0 1 = 1

iid (0 2
0) | 0| 1

0 = (0 0
2
0)
0

822 21. Generalized Method of Moments

Some population moment equations that can be used for GMM estimation
are

[] = 0

[2] = 2
0 +

2
0(1 +

2
0)

[1] = 2
0 +

2
0 0

[2] = 2
0

Let w = (2
1 2)

0 and define the moment vector

g(w) =
2 2 2(1 + 2)

1
2 2

2
2

(21.38)

Then,
[g(w 0)] = 0

is the population moment condition used for GMM estimation of the model
parameters 0. The sample moments are

g () =
1

2

X
=3

(w) =

P
=3 (2)P

=3
2 (2) 2 2(1 + 2)P

=3 1 (2) 2 2P
=3 2 (2) 2

Since the number of moment conditions = 4 is greater than the number
of model parameters = 3, 0 is apparently overidentified and the e cient
GMM objective function has the form

() = (2) · g ()0Ŝ 1g ()

where Ŝ is a consistent estimate of S = avar(ḡ(0)). Notice that the pro-
cess {g(w 0)} will be autocorrelated (at least at lag 1) since follows
an MA(1) process. As a result, an HAC-type estimator must be used to
estimate S.
Simulated MA(1) data with 0 = (0 0 5 1)0 and = 250 is computed

using the S-PLUS function arima.sim10:

> set.seed(123)

> ma1.sim = arima.sim(model = list(ma=-0.5),n=250)

These data along with the sample autocorrelation function (SACF) and
sample partial autocorrelation function (SPACF) are illustrated in Figure
21.2. Summary statistics for the simulated data are

10Recall that the S-PLUS function arima.sim reverses the sign of the moving average
parameter .

21.7 Examples of Nonlinear Models 823

Simulated MA(1) Data

0 50 100 150 200 250

-2
0

1
2

3

Lag

0 5 10 15 20

0.
0

0.
4

0.
8

Sample ACF

Lag

0 5 10 15 20

-0
.2

0.
0

0.
2

0.
4

Sample PACF

FIGURE 21.2. Simulated data, SACF and SPACF from MA(1) model with
= (0 5 1)0.

> summaryStats(ma1.sim)

Sample Quantiles:

min 1Q median 3Q max

-2.606 -0.6466 0.1901 0.8755 3.221

Sample Moments:

mean std skewness kurtosis

0.1126 1.071 -0.0624 2.634

Number of Observations: 250

An S-PLUS function to compute the moment conditions (21.38) is11

ma1.moments <- function(parm, data = NULL) {

parm = (mu,psi,sig2)’

data = (y(t),y(t)^2,y(t)*y(t-1),y(t)*y(t-2))

m1 = parm[1]

m2 = parm[1]^2 + parm[3]*(1 + parm[2]^2)

11In the function ma1.moments, the parameters are unrestricted. To force the moving
average parameter to satisfy | | 1 use the logistic transformation = exp(1) (1 +
exp(1)), and to force the variance parameter to be positive, use

2 = exp(2).

824 21. Generalized Method of Moments

m3 = parm[1]^2 + parm[3]*parm[2]

m4 = parm[1]^2

t(t(data) - c(m1,m2,m3,m4))

}

The function ma1.moments has arguments parm, specifying the model pa-
rameters = (2)0 and data, specifying an (2) × 4 matrix with
the th row w = (2

1 2)
0. The first five rows of g(w 0) are

> ma1.data = cbind(ma1.sim[3:nobs],ma1.sim[3:nobs]^2,

+ ma1.sim[3:nobs]*ma1.sim[2:(nobs-1)],

+ ma1.sim[3:nobs]*ma1.sim[1:(nobs-2)])

> start.vals = c(0,0.5,1)

> names(start.vals) = c("mu","psi","sig2")

> ma1.mom = ma1.moments(parm = start.vals, data = ma1.data)

> ma1.mom[1:5,]

[,1] [,2] [,3] [,4]

[1,] 1.24643 0.303579 1.10981 -0.071482

[2,] -0.80526 -0.601549 -1.50370 -1.040035

[3,] 1.13258 0.032744 -1.41203 1.411681

[4,] 1.58545 1.263659 1.29566 -1.276709

[5,] 0.67989 -0.787743 0.57794 0.770037

The sample average of g(w 0) is

> colMeans(ma1.mom)

[1] 0.10852675 -0.09134586 0.01198312 0.05919433

which is somewhat close to the population value [g(w 0)] = 0 The
sample autocorrelations and cross-autocorrelations of g(w 0) are shown
in Figure 21.3, which confirm the need for an HAC-type estimator for S.
To estimate the MA(1) model by GMM with S estimated using a trun-

cated (rectangular) kernel with bandwidth equal to one lag, use12:

> start.vals = c(0,0.5,1)

> names(start.vals) = c("mu","psi","sig2")

> ma1.gmm.trunc = GMM(start.vals, ma1.moments,

+ data = ma1.data,ts=T,

+ var.hac.control = var.hac.control(bandwidth = 1,

+ window = "truncated"))

1-step objective = 0.530132

2-step objective = 0.354946

3-step objective = 0.354926

The fitted results are

12Recall that Ŝ computed with a truncated kernel is not guaranteed to be positive
definite.

21.7 Examples of Nonlinear Models 825

 Series 1

AC
F

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series 1 and Series 2

0 5 10 15

-0
.1

0
-0

.0
5

0.
0

0.
05

0.
10

 Series 1 and Series 3

0 5 10 15

-0
.1

0
-0

.0
5

0.
0

0.
05

0.
10

0.
15

 Series 1 and Series 4

0 5 10 15

-0
.1

0.
0

0.
1

0.
2

 Series 2 and Series 1

AC
F

-15 -10 -5 0

-0
.1

5
-0

.1
0

-0
.0

5
0.

0
0.

05
0.

10

 Series 2

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series 2 and Series 3

0 5 10 15

0.
0

0.
2

0.
4

0.
6

 Series 2 and Series 4

0 5 10 15

-0
.1

5
-0

.1
0

-0
.0

5
0.

0
0.

05
0.

10
0.

15

 Series 3 and Series 1

AC
F

-15 -10 -5 0

-0
.1

0.
0

0.
1

0.
2

 Series 3 and Series 2

-15 -10 -5 0

0.
0

0.
2

0.
4

0.
6

 Series 3

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series 3 and Series 4

0 5 10 15

-0
.1

0.
0

0.
1

0.
2

0.
3

 Series 4 and Series 1

Lag

AC
F

-15 -10 -5 0

-0
.1

0.
0

0.
1

0.
2

 Series 4 and Series 2

Lag-15 -10 -5 0

-0
.1

0
-0

.0
5

0.
0

0.
05

0.
10

0.
15

0.
20

 Series 4 and Series 3

Lag-15 -10 -5 0

-0
.1

0.
0

0.
1

0.
2

0.
3

 Series 4

Lag0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FIGURE 21.3. SACF of g(w 0) from the MA(1) model.

> summary(ma1.gmm.trunc)

Call:

GMM(start = start.vals, moments = ma1.moments, ts = T,

var.hac.control = var.hac.control(bandwidth = 1,

window = "truncated"), data = ma1.data)

Coefficients:

Value Std.Error t value Pr(>|t|)

mu 0.1018 0.0927 1.0980 0.2733

psi 0.5471 0.0807 6.7788 0.0000

sig2 0.8671 0.0763 11.3581 0.0000

Test of Overidentification:

J-stat Df P.value

0.3549 1 0.5513

Optimization Info:

Number of Iterative Steps: 3

The GMM estimate of 0 is close to the sample mean, the estimate of 0

is slightly larger than 0 5 and the estimate of 2
0 is slightly smaller than 1.

The low -statistic indicates a correctly specified model.

826 21. Generalized Method of Moments

To illustrate the impact of model misspecification on the GMM estima-
tion, consider fitting an MA(1) model by GMM to data simulated from an
autoregression AR(1) model:

0 = 0(1 0) + iid (0 2
0)

The AR(1) model has moments

[] = 0

[2] = 2
0 +

2
0 (1

2
0)

[1] = 2
0 +

2
0 (1

2
0)

[2] = 2
0 +

2 2
0 (1

2
0)

Simulated AR(1) data with 0 = 0, 0 = 0 5, 2
0 = 1 and = 250 is

computed using the S-PLUS function arima.sim:

> set.seed(123)

> ar1.sim = arima.sim(model=list(ar=0.5),n=250)

The moment data required for GMM estimation of the MA(1) model are

> nobs = numRows(ar1.sim)

> ar1.data = cbind(ar1.sim[3:nobs],ar1.sim[3:nobs]^2,

+ ar1.sim[3:nobs]*ar1.sim[2:(nobs-1)],

+ ar1.sim[3:nobs]*ar1.sim[1:(nobs-2)])

The iterated e cient GMM estimates of the misspecified MA(1) model
are

> ma1.gmm.ar1 = GMM(start.vals, ma1.moments,

+ data=ar1.data,ts = T,

+ var.hac.control = var.hac.control(bandwidth = 1,

+ window = "truncated"))

1-step objective = 25.6768

...

9-step objective = 13.0611

> summary(ma1.gmm.ar1, print.moments = T)

Call:

GMM(start = start.vals, moments = ma1.moments, ts = T,

var.hac.control = var.hac.control(bandwidth = 1,

window = "truncated"), data = ar1.data)

Coefficients:

Value Std.Error t value Pr(>|t|)

mu -0.0407 0.0909 -0.4478 0.6547

psi 0.4199 0.0789 5.3207 0.0000

sig2 0.7840 0.0737 10.6391 0.0000

21.7 Examples of Nonlinear Models 827

Test of Overidentification:

J-stat Df P.value

13.0611 1 0.0003

Optimization Info:

Number of Iterative Steps: 9

Normalized Moments:

Moment Std.Error t value Pr(>|t|)

Moment 1 2.9166 0.8072 3.6131 0.0003

Moment 2 5.3807 1.4888 3.6140 0.0003

Moment 3 5.6389 1.5603 3.6140 0.0003

Moment 4 5.8329 1.6140 3.6140 0.0003

The GMM estimates of the MA(1) model parameters look reasonable. How-
ever, the large -statistic correctly indicates a misspecified model. Setting
the optional argument print.moments=T adds the normalized moment in-
formation to the summary output. Since the -statistic is large, all of the
normalized moments are significantly di erent from zero.

21.7.3 Euler Equation Asset Pricing Model

Following Hansen and Singleton (1982), a representative agent is assumed
to choose an optimal consumption path by maximizing the present dis-
counted value of lifetime utility from consumption

max
X
=1

£
0 ()|

¤
subject to the budget constraint

+ 1 +

where denotes the information available at time , denotes real con-
sumption at , denotes real labor income at , denotes the price of a
pure discount bond maturing at time + 1 that pays +1, represents
the quantity of bonds held at , and 0 represents a time discount factor.
The first-order condition for the maximization problem may be represented
as the conditional moment equation (Euler equation)·

(1 + +1) 0

0(+1)
0()

|
¸

1 = 0

where 1 + +1 =
+1 is the gross return on the bond at time + 1.

Assuming utility has the power form

() =
1 0

1 0

828 21. Generalized Method of Moments

where 0 represents the intertemporal rate of substitution (risk aversion),
then

0(+1)
0()

=

µ
+1
¶

0

and the conditional moment equation becomes"
(1 + +1) 0

µ
+1
¶

0

|
#

1 = 0 (21.39)

Define the nonlinear error term as

+1 = (+1 +1 ; 0 0) = (1 + +1) 0

µ
+1

¶
0

1

= (z +1 0)

with z +1 = (+1 +1)0 and 0 = (0 0)
0. Then, the conditional

moment equation (21.39) may be represented as

[+1|] = [(z +1 0)|] = 0

Since { +1 +1} is a MDS, potential instruments x include current and
lagged values of the elements in z as well as a constant. For example, one
could use

x = (1 1 1 2 1)
0

Since x , the conditional moment (21.39) implies that

[x +1|] = [x (z +1 0)|] = 0

and by the law of total expectations,

[x +1] = 0

For the GMM estimation, define the nonlinear residual as

+1 = (1 + +1)

µ
+1

¶
1

and form the vector of moments

(w +1) = x +1 = x (z +1) (21.40)

=

(1 + +1)
³

+1

´
1

(1)

µ
(1 + +1)

³
+1

´
1

¶
(1 2)

µ
(1 + +1)

³
+1

´
1

¶
µ
(1 + +1)

³
+1

´
1

¶
1

µ
(1 + +1)

³
+1

´
1

¶

21.7 Examples of Nonlinear Models 829

In (21.40), there are = 5 moment conditions to identify = 2 model pa-
rameters giving = 3 overidentifying restrictions. The GMM objective
function is

(Ŝ 1) = (2) · ()0Ŝ 1 ()

where Ŝ is a consistent estimate of S = avar(ḡ).
An S-PLUS function to compute the Euler moments (21.40) is

euler1.moments <- function(parm, data = NULL) {

parm = (beta,gamma)

data = (1+R(t+1),C(t+1)/C(t),1,C(t)/C(t-1),

C(t-1)/C(t-2),R(t),R(t-1),...)

ncol = numCols(data)

euler = data[,1]*parm[1]*(data[,2]^(-parm[2])) - 1

as.matrix(rep(euler,(ncol-2))*data[,3:ncol])

}

The function euler1.moments has arguments parm, specifying the model
parameters = ()0 and data, specifying an (2) × 7 matrix with
the th row w +1 = (1 + +1 +1 1 1 1 2 1)

0

Verbeek (2000, Chap. 5, Sec. 7) describes an extension of the model
presented above that allows the individual to invest in risky assets with
returns +1 (= 1), as well as a risk-free asset with certain return

+1. Assuming power utility and restricting attention to unconditional
moments (i.e., using x = 1), the Euler equations may be written as"

(1 + +1) 0

µ
+1
¶

0
#

1 = 0 (21.41)"
(+1 +1) 0

µ
+1

¶
0
#

= 0 = 1

Define the stochastic discount factor as

+1(0) = 0

µ
+1

¶
0

so that the risky assets satisfy

[(+1 +1) · +1(0)] = 0

Using the identity [] = cov() + [] [], the risk premium for the
risky assets may be deduced as

[+1 +1] =
cov(+1(0) +1 +1)

[+1(0)]
(21.42)

If the asset pricing model is correct, then the right-hand side of (21.42)
should explain the cross-sectional variation of expected returns across as-
sets.

830 21. Generalized Method of Moments

For the GMM estimation, define the + 1 vector of moments

(w +1) =

(1 + +1)
³

+1

´
1

(1 +1 +1)
³

+1

´
...

(+1 +1)
³

+1

´
An S-PLUS function to compute the above moments is

euler2.moments <- function(parm, data = NULL) {

parm = (beta,gamma)

data = (C(t+1)/C(t),1+Rf(t+1),R1(t+1)-Rf(t+1),...,

RJ(t+1)-Rf(t+1))

ncol = numCols(data)

sdf = parm[1]*data[,1]^(-parm[2])

d1 = (sdf - 1)*data[,2]

d2 = as.matrix(rep(sdf,(ncol-2))*data[,3:ncol])

cbind(d1,d2)

}

The function euler2.moments has arguments parm, specifying the model
parameters = ()0 and data, specifying an ×(+1) matrix with the
th row w +1 = (+1 1+ +1 1 +1 +1 +1 +1)

0.
Following Verbeek (2000), the power utility asset pricing model is esti-

mated using monthly data over the period February 1959 through Novem-
ber 1993.13 Ten size-based portfolios from the Center for Research in Secu-
rity Prices (CRSP) data base are used as the risky assets. That is, portfolio
1 contains the monthly returns on the smallest 10% of firms (by market
capitalization) listed on the New York Stock Exchange, and portfolio 10
contains the returns on the largest 10% of firms. The risk-free asset is the
monthly return on 3-month U.S. T-bills, and real consumption is measured
by total U.S. personal consumption expenditures on nondurables and ser-
vices. The data are available in the S+FinMetrics "timeSeries" object
pricing.ts, which has variables

> colIds(pricing.ts)

[1] "CONS" "R1" "R2" "R3" "R4" "R5" "R6" "R7"

[9] "R8" "R9" "R10" "RF"

The data to be passed to the function euler2.moments are constructed
using

13The data are taken from Manro Verbeek’s web page at
http://www.econ.kuleuven.ac.be/GME.

21.7 Examples of Nonlinear Models 831

> pricing.mat = as.matrix(seriesData(pricing.ts))

> ncol = numCols(pricing.mat)

> excessRet.mat = apply(pricing.mat[,2:(ncol-1)], 2,

+ function(x,y){x-y},

+ pricing.mat[,"RF"])

data = (C(t+1)/C(t),1+Rf(t+1),R1(t+1)-Rf(t+1),...,

RJ(t+1)-Rf(t+1))

> euler.data = cbind(pricing.mat[,"CONS"],

+ 1 + pricing.mat[,"RF"],

+ excessRet.mat)

The iterated e cient GMM estimator may be computed using

> start.vals = c(1,5)

> names(start.vals) = c("beta","alpha")

> euler.gmm.fit = GMM(start.vals, euler2.moments,

+ method = "iterative",data = euler.data)

> summary(euler.gmm.fit)

Call:

GMM(start = start.vals, moments = euler2.moments, method =

"iterative", data = euler.data)

Coefficients:

Value Std.Error t value Pr(>|t|)

beta 0.8314 0.1170 7.1049 0.0000

alpha 57.4020 34.3021 1.6734 0.0950

Test of Overidentification:

J-stat Df P.value

5.6574 9 0.7737

Optimization Info:

Number of Iterative Steps: 9

The small -statistic indicates a correctly specified model. The estimate
of the time discount parameter is economically reasonable and fairly
precise, but the estimate of the risk-aversion parameter is implausibly
large and imprecise. The large estimate of illustrates the well-known
equity premium puzzle under which the high risk premia on equity assets
is associated with extremely risk-averse investors.
The one-step ine cient GMM estimator withW = I11 may be computed

using

> euler.gmm.fit2 = GMM(start.vals, euler2.moments,

+ method = "iterative", max.steps = 0,

+ w = diag(11), w0.efficient = F,

832 21. Generalized Method of Moments

+ data = euler.data)

> summary(euler.gmm.fit2)

Call:

GMM(start = start.vals, moments = euler2.moments, method =

"iterative", w = diag(11), max.steps = 0, w0.efficient

= F, data = euler.data)

Coefficients:

Value Std.Error t value Pr(>|t|)

beta 0.7031 0.1446 4.8612 0.0000

alpha 91.4097 38.2102 2.3923 0.0172

The usual -statistic is not valid for the one-step estimates so it is not
reported. The one-step estimates are similar to the iterated e cient GMM
estimates and have slightly larger estimated standard errors.
Cochrane (1996, 2001) recommended using the one-step GMM estimates

to compute empirical pricing errors based on (21.42), since these estimates
minimize such pricing errors by construction. The pricing errors can then
be plotted to evaluate the economic significance of the proposed asset pric-
ing model. The empirical pricing errors may be computed and plotted as
follows. First, the historical average excess returns on the 10 portfolios are
computed using

> excessRet.hat = colMeans(excessRet.mat)

Next, the average excess returns on the 10 portfolios predicted by the
model, based on the one-step ine cient GMM estimates, may be computed
using the function

predRet <- function(parm,data) {

parm = (beta,gamma)

data = (C(t+1)/C(t),1+Rf(t+1),R1(t+1)-Rf(t+1),...,

RJ(t+1)-Rf(t+1))

ncol = numCols(data)

sdf = parm[1]*data[,1]^(-parm[2])

tmp = function(x,y) { -var(x,y)/mean(y) }

ans = apply(data[,3:ncol], 2, FUN = tmp,sdf)

ans

}

> predRet.hat = predRet(coef(euler.gmm.fit2),euler.data)

Figure 21.4 shows the historical average excess returns and the predicted
average excess returns along with a 45 line. If the model is correct, then
all points should lie on the 45 line. The plot shows that the model under-
predicts the small firm excess returns and overpredicts the large firm excess
returns.

21.7 Examples of Nonlinear Models 833

Predicted mean excess return

M
ea

n
ex

ce
ss

 re
tu

rn

0.0 0.002 0.004 0.006 0.008 0.010

0.
0

0.
00

2
0.

00
4

0.
00

6
0.

00
8

0.
01

0

FIGURE 21.4. Monthly actual versus predicted mean excess returns of size-based
portfolios.

21.7.4 Stochastic Volatility Model

The simple log-normal stochastic volatility (SV) model, due to Taylor
(1986), is given by

= = 1 (21.43)

ln 2 = 0 + 0 ln
2
1 + 0

()0 iid (0 I2)

0 = (0 0 0)0

For 0 0 1 and 0 0 the series is strictly stationary and ergodic,
and unconditional moments of all orders exist. In the SV model, the series
is serially uncorrelated but dependency in the higher-order moments is

induced by the serially correlated stochastic volatility term ln 2. Shephard
(1996) surveyed the use of autoregressive conditional heteroskedasticity
(ARCH) and SV models in finance and noted some important advantages of
SV models over ARCH models. In particular, their statistical properties are
easier to find and understand, they generalize more easily to multivariate
settings, and they have simpler continuous-time representations that can
be used in contingent claims pricing.
Simulated data from (21.43) with 0 = 0 736, 0 = 0 90, 0 = 0 363

and = 1000 is illustrated in Figure 21.5. The data exhibit ARCH-like

834 21. Generalized Method of Moments

0 200 400 600 800 1000

-0
.1

0
-0

.0
5

0.
0

0.
05

0.
10

FIGURE 21.5. Simulated data from SV model (21.43) with

0 = 0 736 0 = 0 90 and 0 = 0 363.

features such as volatility clustering and fat tails. The data is created with
the function sv.as.gensim, described in Chapter 22 on EMM estimation,
using

beta.t = log(beta/(1-beta))

> n.sim = 1000

> n.burn = 100

> nz = n.sim + n.burn

> set.seed(456)

> sv.as.aux = list(z = rnorm(nz),u = rnorm(nz))

> rho.as = c(-0.736,2.197225,0.363)

> names(rho.as) = c("alpha","beta.t","sigma.u")

> sv.as.sim = sv.as.gensim(rho = rho.as, n.sim = n.sim,

+ n.burn = n.burn, aux = sv.as.aux)

The GMM estimation of the SV model is surveyed in Andersen and
Sorensen (1996). They recommended using moment conditions for GMM
estimation based on lower-order moments of , since higher-order moments
tend to exhibit erratic finite sample behavior. They considered a GMM es-
timation based on (subsets) of 24 moments considered by Jacquier, Polson,

21.7 Examples of Nonlinear Models 835

and Rossi (1994). To describe these moment conditions, first define

=
1

2 =
2

1 2

Then, the moment conditions, which follow from properties of the log-
normal distribution and the Gaussian AR(1) model, are expressed as

[| |] = (2)1 2 []

[2] = [2]

[| 3|] = 2
p
2 [3]

[4] = 3 [4]

[| |] = (2) [] = 1 10

[2 2] = [2 2] = 1 10

where for any positive integer and positive constants and ,

[] = exp

µ
2
+

2 2

8

¶
[] = [] [] exp

Ã
2

4

!

Let

w = (| | 2 | 3| 4 | 1| | 10| 2 2
1

2 2
10)

0

and define the 24× 1 vector

(w) =

| | (2)1 2 exp
³
2 +

2

8

´
2 exp

³
+

2

2

´
...

2 2
10 exp

³
+

2

2

´2
exp

¡
10 2

¢
(21.44)

Then, [(w 0)] = 0 is the population moment condition used for the
GMM estimation of the model parameters 0. Since the elements of w
are serially correlated, the e cient weight matrix S = avar(ḡ) must be
estimated using an HAC estimator.
An S-PLUS function to compute the moment conditions (21.44) for =

1 is

sv.moments = function(parm, data = NULL)

{

omega = parm[1]

836 21. Generalized Method of Moments

beta = parm[2]

sigu = parm[3]

mu = omega/(1-beta)

sig2 = (sigu*sigu)/(1-beta*beta)

#

E.sigma = c(sqrt(2/pi) * exp(mu/2 + sig2/8),

exp(mu + sig2/2),

2 * sqrt(2/pi) * exp(3*mu/2 + 9*sig2/8),

3 * exp(2*mu + 2*sig2))

E.sigma.c = c(2/pi * exp(2*(mu/2 + sig2/8)

+ beta^(1:10) * sig2/4),

exp(2*(mu + sig2/2)

+ 4 * beta^(1:10) * sig2/4))

#

t(t(data) - c(E.sigma, E.sigma.c))

}

The transformed simulated data to be passed to the function sv.moments
for GMM estimation are created using

> sv.pow = cbind(abs(sv.as.sim), sv.as.sim^2,

+ abs(sv.as.sim)^3, sv.as.sim^4)

> sv.pow = sv.pow[-(1:10),]

> sv.cm = tslag(sv.as.sim, 1:10, trim=T) *

+ as.vector(sv.as.sim[-(1:10)])

> sv.data = cbind(sv.pow, abs(sv.cm), sv.cm^2)

The iterated e cient GMM estimator based on (21.44) may be computed
using

> start.vals = c(0,0.5,0.5)

> names(start.vals) = c("omega","beta","sigu")

> sv.fit.1 = GMM(start.vals, sv.moments, method = "iterative",

+ ts = T, data = sv.data)

> summary(sv.fit.1)

Call:

GMM(start = start.vals, moments = sv.moments, method =

"iterative", ts = T, data = sv.data)

Coefficients:

Value Std.Error t value Pr(>|t|)

omega -0.4628 0.3731 -1.2405 0.2151

beta 0.9378 0.0502 18.6959 0.0000

sigu 0.2233 0.0978 2.2841 0.0226

Test of Overidentification:

21.7 Examples of Nonlinear Models 837

J-stat Df P.value

18.8761 21 0.5931

Optimization Info:

Number of Iterative Steps: 7

The high -value for the -statistic indicates that the 24 moment conditions
are not rejected by the data. Consistent with the findings of Andersen and
Sorensen, 0 is not estimated very precisely, whereas 0 is estimated fairly
precisely.
Now, consider estimation of the SV model (21.43) using the daily returns

on the S&P 500 index over the period March 14, 1986 through June 30,
2003:

> SP500.ts = sp500.ts

> SP500.ts@data = as.matrix(seriesData(sp500.ts))

>

> SP500.pow = seriesMerge(abs(SP500.ts), SP500.ts^2,

+ abs(SP500.ts)^3, SP500.ts^4)

> SP500.pow = SP500.pow[-(1:10),]@data

> SP500.cm = tslag(SP500.ts, 1:10, trim=T)@data *

+ as.vector(SP500.ts[-(1:10)]@data)

> SP500.data = cbind(SP500.pow, abs(SP500.cm), SP500.cm^2)

> colIds(SP500.data) = NULL

>

> # iterative GMM estimation of the SV model

> start.vals = c(0,0.5,0.5)

> names(start.vals) = c("omega","beta","sigu")

> sv.fit.SP500 = GMM(start.vals, sv.moments,

+ method = "iterative", ts = T,

+ data = SP500.data)

1-step objective = 2.10165e-7

...

9-step objective = 39.9342

> summary(sv.fit.SP500,print.moments=F)

Call:

GMM(start = start.vals, moments = sv.moments, method =

"iterative", ts = T, data = SP500.data)

Coefficients:

Value Std.Error t value Pr(>|t|)

omega -0.1541 0.1758 -0.8767 0.3807

beta 0.9838 0.0184 53.3692 0.0000

sigu 0.1548 0.0908 1.7041 0.0884

838 21. Generalized Method of Moments

Test of Overidentification:

J-stat Df P.value

39.9342 21 0.0076

Optimization Info:

Number of Iterative Steps: 9

The low -value on the -statistic indicates that the SV model (21.43) does
not fit S&P 500 daily returns.

21.7.5 Interest Rate Di usion Model

Chan, Karolyi, Longsta , and Sanders (1992), hereafter CKLS, considered
estimating the parameters of the continuous-time interest rate di usion
model

= (0 + 0) + 0
0 (21.45)

0 = (0 0 0 0)
0

using GMM. In (23.26), the drift function (0+ 0) may be reparameter-

ized as 0(0) where 0 = 0 0 and 0 = 0. The parameter

0 is the long-run mean, and the parameter 0 determines the speed of
mean reversion. The model (23.26) encompasses a variety of models that
have been proposed for the short-term interest rate. Simulated solutions
from (23.26) based on Euler’s method for various models using parameters
estimated by CKLS are presented in Chapter 19.
CKLS derived moment conditions for GMM estimation of 0 from the

Euler discretization

+ = (0 + 0) + 0
0

+

[+] = 0 [2+] = 1

They defined the true model error as

+ = (+ ; 0 0 0 0) = (+) (0 + 0)

= (z + 0)

where z + = (+)0. Letting represent information available
at time , the true error satisfies [+ |] = 0. Since { + + } is
a MDS, potential instruments x include current and lagged values of the
elements of z as well as a constant. As the basis for the GMM estimation,
CKLS used x = (1)0 as the instrument vector and deduced the following
four conditional moments:

[+ |] = 0 [2+ |] = 2
0
2 0

[+ |] = 0 [2+ |] = 2
0
2 0 ·

21.7 Examples of Nonlinear Models 839

For given values of and define the nonlinear residual

+ = (+) (+)

and for w + = (+
2)0, define the 4× 1 vector of moments

(w +) =

µ
+
2
+

¶
x =

+

+
2
+

2 2³
2
+

2 2
´

Then, [(w + 0)] = 0 gives the GMM estimating equation. Even
though { } is a MDS, the moment vector (w 0) is likely to be auto-
correlated since it contains 2. For the most general specification (23.26),
= and the model is just identified. For all submodels of (23.26) listed

in Table 20.3 from Chapter 19, , so that they are overidentified.
An S-PLUS function to compute the CKLS moments is

ckls.moments <- function(parm, data = NULL,dt = 1/12) {

parm = (alpha,beta,sigma,gamma)’

data = [r(t+dt)-r(t),r(t)]

dt = discretization step

e.hat = as.vector(data[,1] -

(parm[1] + parm[2]*data[,2])*dt)

m2 = e.hat*as.vector(data[,2])

m3 = e.hat^2 - dt*parm[3]*parm[3]*

(as.vector(data[,2])^(2*parm[4]))

m4 = m3*data[,2]

cbind(e.hat,m2,m3,m4)

}

The function ckls.moments has arguments parm, specifying the model pa-
rameters = ()0, data, specifying an × 2 matrix with th row
(+), and dt, specifying the discretization increment.
The GMM estimation is performed on (23.26) using monthly observa-

tions on the U.S. 30-day T-bill rate over the period June 1964 through
November 1989. The same data are analyzed in Cli (2003), and are illus-
trated in Figure 21.6.
The data to be passed to the function ckls.moments are constructed

using

> data.ckls.ts = seriesMerge(diff(ckls.ts), tslag(ckls.ts))

> colIds(data.ckls.ts)[1] = "RF.diff"

> data.ckls = as.matrix(seriesData(data.ckls.ts))

The summary statistics for and 1

840 21. Generalized Method of Moments

1965 1970 1975 1980 1985 1990

0.
04

0.
08

0.
12

0.
16

1965 1970 1975 1980 1985 1990

-0
.0

5
-0

.0
1

0.
03

FIGURE 21.6. Monthly observations on the U.S. 30-day T-bill rate and its first
di erence.

> summaryStats(data.ckls)

Sample Quantiles:

min 1Q median 3Q max

RF.diff -0.05813 -0.00267 0.0002 0.00324 0.03285

RF.lag1 0.03127 0.04756 0.0603 0.07883 0.16150

Sample Moments:

mean std skewness kurtosis

RF.diff 0.00012 0.008187 -1.347 13.354

RF.lag1 0.06659 0.026375 1.206 4.332

Number of Observations: 305

are very close to those presented in Table II of CKLS (1992).
First, consider GMM estimation of the most general model (23.26). Sen-

sible starting values for and may be determined using the following
approximations:

= []

2 var(+)

var()

21.7 Examples of Nonlinear Models 841

The GMM estimation of may be performed using

> start.vals = c(0.06,-0.5,1,1)

> names(start.vals) = c("alpha","beta","sigma","gamma")

> gmm.ckls = GMM(start.vals,ckls.moments,ts = T,

+ data = data.ckls,dt = 1/12)

> summary(gmm.ckls)

Call:

GMM(start = start.vals, moments = ckls.moments, ts = T, data

= data.ckls, dt = 1/12)

Coefficients:

Value Std.Error t value Pr(>|t|)

alpha 0.0419 0.0193 2.1710 0.0307

beta -0.6077 0.3454 -1.7592 0.0796

sigma 1.3337 1.0004 1.3331 0.1835

gamma 1.5081 0.2900 5.2010 0.0000

Test of Overidentification:

model is just-identified

Optimization Info:

Number of Iterations: 14

Convergence: absolute function convergence

In the call to GMM, the parameter dt is set to 1/12 because the data are
annual rates sampled monthly. Since the model is just identified, the -
statistic is zero and the estimates do not depend on a weight matrix. The
results are similar to those obtained by CKLS. In particular, the estimate
of is roughly 1.5 and is highly significant. The estimates of the long-run
mean and speed of adjustment are

> theta.hat = coef(gmm.ckls)

> theta.hat["alpha"]/-theta.hat["beta"]

alpha

0.06895576

> -theta.hat["beta"]

beta

0.6076583

The GMM estimates for the restricted models in Table 3 of Chapter 20
may be computed in a similar fashion by modifying the function ckls.
moments. For example, to estimate the CIR SR model, use

cir.moments <- function(parm, data = NULL, dt = 1/12) {

parm = (alpha,beta,sigma)’

842 21. Generalized Method of Moments

data = [r(t+dt)-r(t),r(t)]

dt = discretization step

e.hat = as.vector(data[,1] -

(parm[1] + parm[2]*data[,2])*dt)

m2 = e.hat*as.vector(data[,2])

m3 = e.hat^2 - dt*parm[3]*parm[3]*

(as.vector(data[,2]))

m4 = m3*data[,2]

cbind(e.hat,m2,m3,m4)

}

> start.vals = c(0.06,-0.5,1)

> names(start.vals) = c("alpha","beta","sigma")

> gmm.cir = GMM(start.vals, cir.moments, ts = T,

+ data = data.ckls, dt = 1/12)

> summary(gmm.cir,print.moments = F)

Call:

GMM(start = start.vals, moments = cir.moments, ts = T, data =

data.ckls, dt = 1/12)

Coefficients:

Value Std.Error t value Pr(>|t|)

alpha 0.0204 0.0166 1.2258 0.2212

beta -0.2407 0.3023 -0.7963 0.4265

sigma 0.0841 0.0066 12.7661 0.0000

Test of Overidentification:

J-stat Df P.value

3.7977 1 0.0513

Optimization Info:

Number of Iterative Steps: 13

The low -value on the -statistic indicates a potentially misspecified model.

21.8 References

Andersen, T.G. and B.E. Sorensen (1996). “GMM Estimation of a
Stochastic Volatility Model: A Monte Carlo Study,” Journal of Business
and Economic Statistics, 14, 328-352.

Andrews, D.W. (1991). “Heteroskedasticity and Autocorrelation Consis-
tent Covariance Matrix Estimation,” Econometrica, 59, 817-858.

21.8 References 843

Andrews, D.W. and C.J. Monahan (1992). “An Improved Heteroskedas-
ticity and Autocorrelation Consistent Covariance Matrix Estimator,” Econo-
metrica, 60, 953-966.

Campbell, J.Y., A.W. Lo and A.C. MacKinlay (1997). The Econo-
metrics of Financial Markets. Princeton University Press, Princeton, NJ.

Campbell, J. and G. Mankiw (1990). “Permanent Income, Current
Income and Consumption,” Journal of Business and Economic Statistics,
8, 265-279.

Chan, K.C., G.A. Karolyi, F.A. Longstaff and A.B. Sanders

(1992). “An Empirical Comparison of Alternative Models of the Term
Structure of Interest Rates”, Journal of Finance, 47, 1209-1227.

Cliff, M.T. (2003). “GMM and MINZ Program Libraries for MATLAB,”
unpublished manuscript, Krannert Graduate School of Management, Pur-
due University.

Cochrane, J.H. (1996). “A Cross-Sectional Test of an Investment-Based
Asset Pricing Model,” Journal of Political Economy, 104, 572-561.

Cochrane, J.H. (2001).Asset Pricing. Princeton University Press, Prince-
ton, NJ.

Davidson, R. and J. MacKinnon (2004). Econometric Theory and Meth-
ods. Oxford University Press, Oxford.

den Haan, W.J. and A. Levin (1997). “A Practioner’s Guide to Ro-
bust Covariance Matrix Estimation,” in G. Maddala and C. Rao (eds.),
Handbook of Statistics, Volume 15, Elsevier, Amsterdam, pp. 309-327.

Ferson, W.E. (1995). “Theory and Empirical Testing of Asset Pricing
Models,” in R.A. Jarrow, V. Maksimovic and W.T. Ziemba (eds.), Hand-
books in OR & MS, Volume 9, Finance. Elsevier Science B.V., Amsterdam.

Greene, W.H. (1994). Econometric Analysis. Prentice Hall, Englewood
Cli s, NJ.

Hall, R.E. (1978). “Stochastic Implications of the Life Cycle-
Permanent Income Hypothesis: Theory and Evidence,” Journal of Polit-
ical Economy, 86(6), 971-987.

Hall, A. (2005).Generalized Method of Moments. Oxford University Press,
Oxford.

844 21. Generalized Method of Moments

Hamilton, J.D. (1994). Time Series Analysis. Princeton University Press,
Princeton, NJ.

Hansen, L.P. (1982). “Large Sample Properties of Generalized
Method of Moments Estimators,” Econometrica, 50, 1029-1054.

Hansen, L.P. and K.J. Singleton (1982). “Generalized Instrumental
Variables Estimation of Nonlinear Rational Expectations Models,” Econo-
metrica, 50, 1269-1286.

Hansen, L.P., J. Heaton and A. Yaron (1996). “Finite-Sample Prop-
erties of Some Alternative GMM Estimators,” Journal of Business and
Economic Statistics, 14, 262-280.

Harris, D. (1999). “GMM Estimation of Time Series Models,” in L.
Mátyás (ed.),Generalized Method of Moments, Cambridge University Press,
Cambridge.

Hayashi, F. (2000). Econometrics. Princeton University Press, Princeton,
NJ.

Imbens, G.W. (2002). “Generalized Method of Moments and Empirical
Likelihood,” Journal of Business and Economic Statistics, 20, 493-506.

Jacquier, E., N.G. Polson and P.E. Rossi (1994). “Bayesian Anal-
ysis of Stochastic Volatility Models,” Journal of Business and Economic
Statistics, 12, 371-389.

Jagannathan, R. and G. Skoulakis(2002). “Generalized Method of
Moments: Applications in Finance,” Journal of Business and Economic
Statistics, 20, 470-482.

James, J. and N. Webber (2000). Interest Rate Models. John Wiley &
Sons, Chichester, England.

Newey, W. (1985). “Generalized Method of Moments Specification Test-
ing,” Journal of Econometrics, 29, 229-256.

Newey, W. and R. Smith (2004). “Higher Order Properties of GMM
and Generalized Empirical Likelihood,” Econometrica, 72, 219-255.

Newey, W. and K. West (1987). “Hypothesis Testing with E cient
Method of Moments,” International Economic Review, 28, 777-787.

Newey, W. and K. West (1994). “Automatic Lag Selection for Covari-
ance Matrix Estimation,” Review of Economic Studies, 61, 631-653.

21.8 References 845

Ogaki, M. (1992). “Generalized Method of Moments: Econometric Appli-
cations”, in G. Maddala, C. Rao and H. Vinod (eds.), Handbook of Statis-
tics, Volume 11: Econometrics, North-Holland, Amsterdam.

Ruud, P. A. (2000). An Introduction to Classical Econometric Theory.
Oxford University Press, Oxford.

Sargan, D. (1958). “The Estimation of Economic Relationships Using
Instrumental Variables,” Econometrica, 26, 393-415.

Shephard, N. G. (1996). “Statistical Aspects of ARCH and Stochastic
Volatility,” in D.R. Cox, D.V. Hinkley and O.E. Barndor -Nielsen (eds.),
Time Series Models in Econometrics, Finance and Other
Fields. Chapman & Hall, London.

Stock, J.H. and J.H. Wright (2000). “GMMwithWeak Identification,”
Econometrica, 68, 1055-96.

Stock, J.H., J.H. Wright and M. Yogo (2002). “A Survey of Weak
Instruments and Weak Identification in Generalized Method of Moments,”
Journal of Business and Economic Statistics, 20, 518-529.

Taylor, S.J. (1986). Modelling Financial Time Series. John Wiley &
Sons, Chichester, England.

Verbeek, M. (2000). A Guide to Modern Econometrics. John Wiley &
Sons, Chichester, England.

White, H. (1980). “A Heteroskedasticity-Consistent Covariance Matrix
Estimator and a Direct Test for Heteroskedasticity,” Econometrica, 48,
817-838.

Wooldrige, J. (2002). Introduction to Econometrics, 2nd edition. South-
Western, Cincinnati, OH.

Wright, J. (2003). “Detecting Lack of Identification in GMM,” Econo-
metric Theory, 19, 322-330.

22
Seminonparametric Conditional
Density Models

22.1 Introduction

For a stationary multiple time series, the one-step-ahead conditional den-
sity represents the underlying stochastic process. The conditional density
incorporates all information about various characteristics of the time series,
including conditional heteroskedasticity, non-normality, time irreversibility,
and other forms of nonlinearity. These properties are now widely consid-
ered to be important features of many time series processes. Since the
conditional density completely characterizes a stochastic process, it is thus
naturally viewed as the fundamental statistical object of interest.
SNP is a seminonparametric method, based on an expansion in Hermite

functions, for estimation of the one-step-ahead conditional density. The
method was first proposed by Gallant and Tauchen (1989) in connection
with an asset pricing application. It consists of applying classical paramet-
ric estimation and inference procedures to models derived from nonpara-
metric truncated series expansions. Particularly, estimation of SNP mod-
els entails using a standard maximum likelihood procedure together with
a model selection strategy that determines the appropriate degree of the
nonparametric expansion. The general form of the SNP model is a nonlin-
ear, non-Gaussian multivariate generalized autoregressive conditional het-
eroskedasticity (GARCH) model. Under reasonable regularity conditions,
the estimator is consistent and e cient for the unknown one-step-ahead
conditional density.

848 22. Seminonparametric Conditional Density Models

As a pure time series model, the SNP model extends the standard vec-
tor autoregressive (VAR) model described in Chapter 11 to allow for non-
Gaussian multivariate GARCH-type error structures. As a result, they pro-
vide a semiparametric alternative to the multivariate GARCH models de-
scribed in Chapter 13. The SNP models can also be used as an alternative
to the coupla methodology discussed in Chapter 19 for the general mod-
eling of multivariate distributions. An important use of SNP models is to
act as a score generator, or auxiliary model, for e cient method of mo-
ments (EMM) estimation. The EMM estimation of general discrete-time
and continuous-time dynamic time series models based on SNP auxiliary
models is described in the next chapter.
This chapter provides a general overview of the SNP methodology, and

introduces a comprehensive set of S-PLUS functions for the estimation and
analysis of SNP models that are based on the FORTRAN code of Gal-
lant and Tauchen (2001). The exposition of the SNP methodology borrows
heavily from Gallant and Tauchen (2001, 2001b, and 2002). The outline of
the chapter is as follows. Section 22.2 gives a general overview of the SNP
methodology and the S-PLUS functions for fitting SNP models. Section 22.3
illustrates the use of the S+FinMetrics function SNP for estimating a va-
riety of univariate and bivariate SNP models. Section 22.4 describes the
estimation of SNP models using model selection criteria. Section 22.5 dis-
cusses various types of diagnostic analysis of SNP models, including resid-
ual diagnostics and simulation diagnostics. Prediction from SNP models
is covered in Section 22.6, and useful data transformations are covered in
Section 22.7. Finally, Section 22.8 presents several in-depth examples of
fitting SNP models to financial time series.

22.2 Overview of SNP Methodology

Consider a stationary and ergodic multivariate time series {y } = +1,
where each y is a vector of length . Assume that y is Markovian (i.e.,
the conditional distribution of y given the entire past depends only on a
finite number of lagged values of y)1. Denote these lagged values by the
state vector

x 1 = (y
0
1 y0)0

which is a vector of length · . For simplicity, the time subscripts are often
suppressed and y and x are used to denote the contemporaneous value and
lagged state vector, respectively. With these conventions, the stationary
density of the dynamic system under consideration can be written (x y|)

1This section is taken from Gallant and Tauchen (2001b) by permission of the authors.

22.2 Overview of SNP Methodology 849

and its transition density as

(y|x) =
(x y|)R
(x y|) x (22.1)

If one expands
p
(x y |) in a Hermite series and derives the transition

density of the truncated expansion, then one obtains a transition density
(y |x 1) that has the form of a location-scale transform

y = Rz + µ
1

of an innovation z (Gallant, Hsieh, and Tauchen, 1991). The density func-
tion of this innovation is

(z|x) = [P(z x)]2 (z)R
[P(u x)]2 (u) u (22.2)

where P(z x) is a polynomial in (z x) of degree and (z) denotes the
multivariate normal density function with dimension , zero mean vector
zero, and identity variance-covariance matrix.
It proves convenient to express the polynomial P(z x) in a rectangular

expansion

P(z x) =
X
=0

X
=0

a x z (22.3)

where and are multi-indexes of maximal degrees and , respec-
tively, and = + . Because [P(z x)]2

R
[P(u x)]2 (u) u is a homo-

geneous function of the coe cients of the polynomial P(z x), P(z x) can
only be determined to within a scalar multiple. To achieve a unique repre-
sentation, the constant term 00 of the polynomial P(z x) is put to one.
With this normalization, (z|x) has the interpretation of a series expan-
sion whose leading term is the normal density (z) and whose higher-order
terms induce departures from normality.
The location function is linear

µ = b0 +Bx 1 (22.4)

where b0 is a vector and B is a matrix.
It proves advantageous in applications to allow the scaleR of the location-

scale transformation y = Rz + µ to depend on x because it reduces the
degree required to achieve an adequate approximation to the transition
density (y|x). With this, the location-scale transformation becomes

y = R z+ µ (22.5)

whereR is an upper triangular matrix that depends on x. The two choices
of R that have given good results in applications are an autoregressive

850 22. Seminonparametric Conditional Density Models

conditional heteroskedasticity (ARCH)-like moving average specification
and a GARCH-like autoregressive-moving average (ARMA) specification.
For an ARCH specification, let R 1 be a linear function of the absolute

values of the elements of the vectors y µ
1

through y 1 µ
2
;

namely,

vech(R 1) = 0 +
X
=1

P()|y 1 + µ
2 +

|

where vech(R) denotes a vector of length (+ 1) 2 containing the ele-
ments of the upper triangle of R, 0 is a vector of length (+1) 2, P(1)
through P() are (+1) 2× matrices, and |y µ| denotes a vector
containing the absolute values of y µ. The classical ARCH (Engle, 1982)
has

1 = R 1R
0

1

depending on a linear function of squared lagged residuals. The SNP version
of ARCH is more akin to the suggestions of Taylor (1986) and Davidian
and Carroll (1987).
Since the absolute value function is not di erentiable, | | is approxi-

mated in the above formula for R by the twice continuously di erentiable
function

() =

½
(|100 | 2 + 1) 100 |100 | 2
(1 cos(100)) 100 |100 | 2

The above scale factor 100 represents a compromise. Small values, such
as 3, improve the stability of the computations but then (·) does not
approximate | · | well.
For a GARCH specification, let

vech(R
1) = 0 +

X
=1

P()|y 1 + µ
2 +

| (22.6)

+
X
=1

diag(G())R 2 +

where G(1) through G() are vectors of length (+ 1) 2.
The classical GARCH (Bollerslev, 1986) has 1 expressed in terms

of squared lagged residuals and lagged values of 1 . As with the SNP
variant of ARCH, the SNP version of GARCH is expressed in terms of the
absolute value of lagged residuals and standard deviations.
Note that when 0, the SNP model is not Markovian and that one

must know both x 1 and R 2 through R 2 to move forward to
the value for y . Thus, x 1 and R 2 through R 2 represent the
state of the system at time 1 and must be retained in order to evaluate

22.3 Estimating SNP Models in S+FinMetrics 851

the SNP conditional density of y or to iterate the SNP model forward by
simulation. If one wants to compute the derivatives of the SNP density with
respect to model parameters, one must retain the derivatives of R 2

through R 2 with respect to model parameters as well.
The change of variable formula applied to the location-scale transform

(22.5) and innovation density (22.2) yields the SNP density

(y |x) =

£
R 1(y µ) |x

¤
det(R)

(22.7)

Hereafter, the lag lengths appearing in the various components of the ex-
pansion will be distinguished. The number of lags in µ is denoted ,
the number of lags in R is + , and the number of lags in the x
part of the polynomial, P(z x), is . The maximum lag is defined as
= max(+).
Large values of can generate a large number of interactions (cross-

product terms) for even modest settings of degree , and similarly for
· and . Accordingly, two additional tuning parameters, and ,

are introduced to represent filtering out of these high-order interactions.
= 0 means that no interactions are suppressed, = 1 means that

the highest-order interactions are suppressed, namely those of degree .
In general, a positive means that all interactions of order larger than

are suppressed; similarly for .
In summary, , , and determine the location-scale transformation

y = R z +µ and, hence, determine the nature of the leading term of the
expansion. The number of lags in the location function µ is and the
number of lags in the scale function R is + . The number of lags
that go into the x part of the polynomial P(z x) is . The parameters
, , and determine the degree of P(z x) and, hence, the nature

of the innovation process {z }.

22.3 Estimating SNP Models in S+FinMetrics

S+FinMetrics contains a variety of functions for estimation and analysis
of SNP models. Table 22.1 gives a brief summary of these functions. The
main functions are based on the public domain FORTRAN code for the
estimation of SNP models described in Gallant and Tauchen (2001).
The function SNP is used to estimate univariate and multivariate SNP

models. The arguments expected by SNP are

> args(SNP)

function(data, model = SNP.model(), n.drop = NULL, control =

SNP.control(), coef = NULL, est = NULL, iAr = 0, iArch

= 0, iGarch = 0, iLagP = 0, iZPoly = 0, iXPoly = 0,

852 22. Seminonparametric Conditional Density Models

Function Description
SNP Fit SNP model using quasi-maximum likelihood

estimation
SNP.model Create SNP model list
SNP.control Create list of control parameters for SNP model and

estimation
expand Expand fitted SNP model to larger model
SNP.auto Automatically find best fitting SNP model by

minimizing Bayesian information criterion (BIC)
SNP.density Plot SNP conditional transition density

TABLE 22.1. S+FinMetrics functions for analysis of SNP models

iTrimZ = 0, iTrimX = 0, LStransform = NULL, save.data

= F, trace = F)

The main arguments are data, which may be a univariate or multivariate
rectangular data object, model, which is a list describing the SNP model
to be fit, and control, which is a list containing various parameters that
control aspects of the SNP model and optimization algorithm. The other
arguments will be explained in the examples below.
The function SNP.model creates a list containing components that specify

the type of SNP model to be fit. The arguments of SNP.model are

> args(SNP.model)

function(ar = 0, arch = 0, garch = 0, lagP = 1, zPoly = 0,

xPoly = 0, trimZ = 0, trimX = 0)

The form of a fitted SNPmodel is determined by a number of tuning param-
eters. These parameters and the corresponding arguments to the function
SNP.model are summarized in Table 22.2. When describing a particular
SNP model, it is convenient to refer to the model as a string of tuning
parameters: . For example, a semiparametric VAR(1)
with = 4 is denoted 10014000 and a nonlinear nonparametric VAR(3)-
GARCH(1,1) model with = 4, = 2 excluding all interactions and
allowing two lags of 1 in P(z x 1) is denoted 31124321.
Table 22.3 provides a useful taxonomy of SNP models, defined by putting

certain restrictions on the tuning parameters. The print and summary
methods of "SNP" objects reflect this taxonomy.
The function SNP.control creates a list with parameters that control re-

strictions on the SNP model and set options for the optimization algorithm.
The default arguments to SNP.control are

> args(SNP.control)

function(initial.itmax = 15, final.itmax = 385, tol = 1e-005,

xTransform = "none", inflection = NULL, diagS = T, darch = T,

rgarch = F, dvec = T, n.start = 0, seed = 72674,

22.3 Estimating SNP Models in S+FinMetrics 853

Parameter SNP.model Description
argument
ar VAR lag length
garch GARCH lag length
arch ARCH lag length
lagP Lags of x 1 in P(z x 1)
zPoly Order of z in P(z x 1)
trimZ Index of z interactions in P(z x 1)
xPoly Order of x 1 in P(z x 1)
trimX Index of x 1 interactions in P(z x 1)

TABLE 22.2. SNP tunning parameters

Parameter Setting Characterization of
{y }

= 0 = 0 = 0 0 = 0 = 0 iid Gaussian
0 = 0 = 0 0 = 0 = 0 Gaussian VAR
0 = 0 = 0 0 0 = 0 Semiparametric VAR
0 = 0 0 0 = 0 = 0 Gaussian ARCH
0 = 0 0 0 0 = 0 Semiparametric ARCH
0 0 0 0 = 0 = 0 Gaussian GARCH
0 0 0 0 0 = 0 Semiparametric

GARCH
0 0 0 0 0 0 Nonlinear

nonparametric

TABLE 22.3. Taxonomy of SNP Models

fOld = 0, fNew = 0, eps0 = 1e-005, version = 8.9)

These control parameters are explained in the examples in the following
subsections.
The following subsections describe in detail the SNP methodology for de-

scribing the conditional transition density of a stationary and ergodic time
series, and the use of the S+FinMetrics function SNP for estimating the
SNP density. The analysis starts with a simple Gaussian VAR model. This
model is then generalized to a semiparametric VAR model. Finally, condi-
tional heterogeneity is introduced into the SNP model. In each subsection,
examples of using the SNP function to estimate univariate and bivariate
SNP models are given.

22.3.1 Example Data

The data for the following examples are in the "timeSeries" object
dmRet.dat, which contains weekly observations on three variables: the per-
centage changes in the German mark and U.S. dollar (DM/US) exchange

854 22. Seminonparametric Conditional Density Models

US/DM spot exchange rate

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

-6
-4

-2
0

2
4

6
8

US/DM forward discount

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FIGURE 22.1. Weekly observations on US/DM spot exchange rate and 30-day
forward discount.

rate; the di erence between the 30-day forward rate and the spot exchange
rate; and the U.S. 30-day Treasury bill rate. The data cover the period
January 10, 1975 to December 28, 1990. This data set has been analyzed
by Bansal, Gallant, Hussey, and Tauchen (1994), and Gallant and Tauchen
(2001) used it to illustrate their FORTRAN code for fitting SNP models.2

The three variables in dmRet.dat are

> colIds(dmRet.dat)

[1] "exch" "forward" "tbill"

which give the spot returns, the forward discounts, and the U.S. Treasury
bill rates, respectively. Figure 22.1 shows the log returns on the spot ex-
change rate and the forward discount, which will be used in the examples.
The sample autocorrelation and cross-autocorrelation functions for the two
series are given in Figure 22.2. The spot returns are nearly uncorrelated,
whereas the forward discounts are highly persistent. Some sample descrip-
tive statistics, from the S+FinMetrics function summaryStats, are

> summaryStats(dmRet.dat[,c("exch","forward")])

2The data are taken from the file dm fri.dat available from
ftp://ftp.econ.duke.edu/pub/get/data/

22.3 Estimating SNP Models in S+FinMetrics 855

 exch

A
C

F

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 exch and forward

0 5 10 15 20 25

-0
.1

0
-0

.0
5

0.
0

0.
05

 forward and exch

Lag

A
C

F

-25 -20 -15 -10 -5 0

-0
.1

5
-0

.1
0

-0
.0

5
0.

0
0.

05

 forward

Lag
0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Multivariate Series : dmRet.dat[, c("exch", "forward")]

FIGURE 22.2. Sample autocorrelation function (SACF) for weekly spot return
and forward discount data.

Sample Quantiles:

min 1Q median 3Q max

exch -7.4622 -0.6977 0.006332 0.8175 8.225

forward -0.1291 0.1619 0.279385 0.3955 1.187

Sample Moments:

mean std skewness kurtosis

exch 0.05516 1.4964 0.3367 6.172

forward 0.29111 0.1911 0.8574 4.672

Number of Observations: 834

The distribution of spot returns is nearly symmetric but has fatter tails
than the normal distribution. The distribution of the forward discount is
slightly positively skewed and has fatter tails than the normal.

22.3.2 Markovian Time Series and the Gaussian Vector
Autoregression Model

As in Section 22.2, consider an -dimensional stationary and ergodic
Markovian multivariate time series {y } = +1 with state vector x 1 =
(y0 1 y0)0. The likelihood function conditional on the first obser-

856 22. Seminonparametric Conditional Density Models

vations can be written as

L =
Y
=1

(y |x 1) (22.8)

where (·) is the density function of y conditional on x 1 and consists
of the parameters of the density function.
A traditional approach to modeling the Markovian multiple time series y

uses the Gaussian VAR model as described in Chapter 11. For a Gaussian
VAR model, y is assumed to be of the form

y = µ0 +Bx 1 +Rz (22.9)

= µ
1
+Rz

where µ0 is an × 1 vector, B is an × matrix, µ
1
= µ0 +

Bx 1, R is an upper triangular matrix, and z follows an -dimensional
Gaussian distribution with zero mean and identity covariance matrix. Note
that since there are lagged values in x 1, this represents an th order
VAR (VAR() model). The term µ

1
is referred to as the conditional

mean equation.
By using the location-scale transformation

z = R 1(y µ0 Bx 1) = R
1(y µ

1
) (22.10)

it is easy to show that for the Gaussian VARmodel, the one-step conditional
density of y is given by

(y |x 1) =
1

|det(R)| (R 1(y µ0 Bx 1);0 I) (22.11)

= (y ;µ
1
R ·R0)

where (z;µ) denotes the density function of a multivariate Gaussian
random vector z with mean µ and covariance matrix . Note that for
the Gaussian VAR model, the model parameter consists of µ0, B, and
R (since = R ·R0). Lütkepohl (1990) showed that maximum likelihood
estimates of the Gaussian VAR parameters may be obtained using multi-
variate regression.

Example 147 Gaussian VAR for univariate exchange rate data

Consider fitting a Gaussian VAR(1) model to the log returns on the
US/DM spot exchange rate, . For a univariate time series , a VAR(1)
model reduces to a simple first-order autoregressive, AR(1), model. This is
in the form (22.9) with 1 = 1 and

1
= 0 + 1

= =
p
var(| 1)

22.3 Estimating SNP Models in S+FinMetrics 857

To fit a Gaussian AR(1) model to the spot rate return, call the SNP function
using the "exch" column of dmRet.dat:

> fit.10010000 = SNP(dmRet.dat[,"exch"],model=SNP.model(ar=1),

+ n.drop=14)

The model specification is accomplished by calling the function SNP.model
and passing the result as a model argument to SNP. The ar=1 argument
to SNP.model determines the order of the VAR model, and the optional
argument n.drop=14 specifies setting aside 14 observations as presample
observations and starting the estimation from the 15th observation.
The returned object fit.10010000 is of class "SNP":

> class(fit.10010000)

[1] "SNP"

Typing the name of an object at the command line automatically invokes
the print method for the corresponding class and prints out the function
call that generated the object, the estimated model parameters, along with
some commonly used information criteria3:

> fit.10010000

Call:

SNP(data = dmRet.dat[, "exch"], model = SNP.model(ar = 1),

n.drop = 14)

Model: Gaussian VAR

Conditional Mean Coefficients:

mu ar(1)

0.0005 0.0222

Conditional Variance Coefficients:

sigma

1.0025

Information Criteria:

BIC HQ AIC logL

1.4337 1.4284 1.4251 -1165.6

Convergence Type:

both x and relative function convergence

3If the default settings are used to invoke the SNP function, the SNP estimates of
a Gaussian VAR model are not the same as traditional VAR estimates because of a
location-scale transform employed on the data.

858 22. Seminonparametric Conditional Density Models

number of iterations: 2

The conditional mean coe cients are the estimates of the coe cients in

1
, which include ˆ0 = 0 005 and

ˆ = 0 0222. The conditional variance
coe cients are the estimates of the coe cients in R which in this case is
just ˆ = 1 0025.
To obtain standard errors of the estimated parameters, use the generic

summary function, which automatically invokes the summarymethod for the
corresponding class:

> summary(fit.10010000)

Call:

SNP(data = dmRet.dat[, "exch"], model = SNP.model(ar = 1),

n.drop = 14)

Model: Gaussian VAR

Conditional Mean Coefficients:

mu ar(1)

coef 0.0005 0.0222

(std.err) 0.0356 0.0270

(t.stat) 0.0143 0.8245

Conditional Variance Coefficients:

sigma

coef 1.0025

(std.err) 0.0158

(t.stat) 63.2994

Information Criteria:

BIC HQ AIC logL

1.4337 1.4284 1.4251 -1165.6

Convergence Type:

both x and relative function convergence

number of iterations: 2

Given the sample ACF of the spot rate return, it is not surprising that the
autoregressive coe cient ˆ is not significantly di erent from zero.

Example 148 Gaussian VAR for bivariate exchange rate data

Now consider fitting a bivariate Gaussian VAR(1) model to the spot rate
return and the forward discount. Here, = ()0 and the VAR model

22.3 Estimating SNP Models in S+FinMetrics 859

(22.9) has x 1 = y 1 = (1 1)
0 with

µ
1
= µ0 +By 1

=

µ
0 1

0 2

¶
+

µ
11 12

21 22

¶µ
1

1

¶
R =

µ
11 21

0 22

¶
RR0 = = var(y |x 1)

To fit the bivariate VAR(1) to the exchange rate data, use4

> bfit.10010000 = SNP(dmRet.dat[,1:2],model=SNP.model(ar=1),

+ n.drop=14)

> bfit.10010000

Call:

SNP(data = dmRet.dat[, 1:2], model = SNP.model(ar = 1),

n.drop = 14)

Model: Gaussian VAR

Conditional Mean Coefficients:

exch forward

mu 0.0025 -0.0016

var(1;1) 0.0087 -0.1065

var(1;2) -0.0201 0.9671

Conditional Variance Coefficients:

sigma11 sigma12 sigma22

0.992 -0.0994 0.2541

Information Criteria:

BIC HQ AIC logL

1.4965 1.4806 1.4706 -1196.927

Convergence Type:

both x and relative function convergence

number of iterations: 2

The first row of the conditional mean coe cients are the intercept estimates
µ̂0. The second row, labeled var(1;1), gives the estimates on the lag-

4To match the output of the S+FinMetrics function VAR, the location-scale trans-
formation must be turned o . To do this, in the call to SNP set the optional argument
LStransform=list(mu=c(0,0),cstat=diag(2),pstat=diag(2)). Note: the arrangement
of the VAR coe cients printed from an "SNP" object is di erent than the arrangement
of the coe cients printed from a "VAR" object.

860 22. Seminonparametric Conditional Density Models

1 variables for the spot return equation (first row of B̂). The third row,
labeled var(1;2), gives the estimates on the lag-1 variables for the forward
discount equation (second row of B̂). The estimated equations are then

= 0 0025 + 0 0087 1 0 1065 1

= 0 0016 0 0201 1 + 0 9671 1

The conditional variance coe cients give the estimates of the elements of
the upper triangular matrix R:

R̂ =

µ
0 992 0 0994
0 0 2541

¶

22.3.3 Hermite Expansion and the Semiparametric VAR

In practice, especially for economic and financial time series modeling, the
standardized residuals z are rarely Gaussian. To model di erent charac-
teristics usually observed in empirical data, like fat tails or asymmetry,
one needs a good general-purpose density (y |x 1) that can accom-
modate any shape, especially the Gaussian as it is most likely a priori.
The SNP model proposed by Gallant and Tauchen (1989) provides such a
general-purpose approximation.
The SNP model is based on an expansion in Hermite functions. Using

a Hermite expansion as a general approximation to a density function has
a long established tradition in statistics; examples are Gram-Charlier and
Edgeworth expansions. The form of a Hermite expansion is a multivariate
polynomial in the standardized residuals z multiplied by the standard
Gaussian density; that is,

(y |x 1) [P(z)]2 (y ;µ
1

) (22.12)

where = R ·R0 and P(z) denotes a multivariate polynomial of degree
.5 The polynomial P(z) has the form

P(z) =
X
| |=0

z

with denoting the non-negative multi-index (1), and

| | = 1 + · · ·+
z = (1) 1 · · · · · ()

5The constant of proportionality in (22.12) is 1
R
[P(s)]2 (s) s, where (s) denotes

the density of a multivariate normal random variable with zero mean and identity co-
variance matrix.

22.3 Estimating SNP Models in S+FinMetrics 861

For example, let = 2 and = 2. Then,6

z = (1 2)
0 = (1 2)

0 = (1 2)

| | = 0 = (0 0)0

| | = 1 = (1 0)0 (0 1)0

| | = 2 = (1 1)0 (2 0)0 (0 2)0

and

P(z) = 1 + (1 0) 1 + (0 1) 2

+ (1 1) 1 2 + (2 0)
2
1 + (0 2)

2
2

The order of the Hermite polynomial expansion acts like a smooth-
ness parameter in nonparametric analysis. When is set to zero, the
SNP density (y |x 1) reduces to the Gaussian VAR density function
in (22.11). As a result, the SNP density in (22.12) nests the Gaussian VAR
as a special case. In general, the SNP density (22.12) is referred to as
the semiparametric VAR. When is positive, the semiparametric VAR
density can accommodate arbitrary shape departures from the Gaussian
VAR as long as is large enough. The shape modifications achieved by
the semiparametric VAR are rich enough to accurately approximate densi-
ties from a large class that includes densities with fat, -like tails, densities
with tails that are thinner than Gaussian, skewed densities, and even multi-
modal densities. See Gallant and Tauchen (1999) for details.
The parameter vector of the semiparametric VAR density consists of

the coe cients of the polynomial P(z), plus µ0, B, and R. They can
be estimated using a quasi-maximum likelihood procedure, by minimizing

() =
1X

=1

log (y |x 1) (22.13)

using nonlinear regression techniques. Under regularity conditions, Gallant
and Nychka (1987) showed that if the number of parameters in grows
with the sample size, the true density and various features of it, such as
derivatives and moments, are estimated consistently. Fenton and Gallant
(1996a, 1996b) proved the e ciency of SNP estimates and other properties.

Example 149 Semi-parametric VAR for univariate exchange rate data

Fitting a semiparametric VAR model using the SNP function requires
specifying the order of the Hermite polynomial in the specification of

6However, since the density function in (22.12) can be shown to be a homogeneous
function of the coe cients of the polynomial P(z), the coe cients can only be de-
termined to within a scalar multiple. Thus, to achieve model identification, the constant
term of the polynomial part is always set to 1.

862 22. Seminonparametric Conditional Density Models

the SNP model. The optional argument zPoly of the function SNP.model
corresponds to , and setting this to a non-negative integer specifies a
semiparametric VAR model. For example, to estimate a semiparametric
AR(1) model with = 4 to the spot return data, use7

> fit.10014000 = SNP(dmRet.dat[,"exch"],model=SNP.model(ar=1,

zPoly=4), n.drop=14)

> summary(fit.10014000)

Call:

SNP(data = dmRet.dat[, "exch"], model = SNP.model(ar = 1,

zPoly = 4), n.drop = 14)

Model: Semiparametric VAR

Hermite Polynomial Coefficients:

z^0 z^1 z^2 z^3 z^4

coef 1.0000 -0.0214 -0.1812 0.0110 0.0235

(std.err) 0.0795 0.0226 0.0102 0.0032

(t.stat) -0.2699 -8.0043 1.0703 7.3975

Conditional Mean Coefficients:

mu ar(1)

coef -0.0287 0.0460

(std.err) 0.1151 0.0283

(t.stat) -0.2493 1.6245

Conditional Variance Coefficients:

sigma

coef 1.0458

(std.err) 0.0376

(t.stat) 27.8252

Information Criteria:

BIC HQ AIC logL

1.399 1.3866 1.3789 -1123.668

Convergence Type:

relative function convergence

7Gallant and Tauchen (2001, p. 15) state “Experience has taught us never to consider
a value of 4 ”

22.3 Estimating SNP Models in S+FinMetrics 863

0.
0

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

-4 -2 0 2 4

dmRet.dat[, "exch"]

x

y

SNP Normal

FIGURE 22.3. Estimated conditional density from semiparametric AR(1) for
weekly spot returns.

number of iterations: 12

The estimated coe cient values for of P() are given under the table
labeled Hermite Polynomial Coefficients. The estimate of P() has the
form

P̂() = 1 0 0214 · 0 1812 · 2 + 0 0110 · 3 + 0 0235 · 4

The estimated coe cients on the even powers of are highly significant and
indicate a conditional density with tails fatter than the Gaussian distribu-
tion. The coe cients on the odd powers of are not significantly di erently
from zero and suggest that the conditional density is symmetric. To be sure,
the function SNP.density can be used to compute and plot the estimated
SNP conditional density (22.12):

> SNP.density(fit.10014000)

The estimated density, shown in Figure 22.3, is computed with x 1 set to
its sample mean value. Also shown is a normal density with the same mean
and variance as (22.12).
Given that the Hermite coe cients on 1 and 3 are insignificant, it

may be of interest to re-estimate the semiparametric AR(1) with these
coe cients restricted to zero. The optional argument est determines which
coe cients of the SNP model are fixed at their initial values and which are

864 22. Seminonparametric Conditional Density Models

estimated. The argument est is a vector of logical values with length equal
to coef, the vector of starting values. If an element of est is TRUE, then
the corresponding element of coef is estimated freely; if an element of
est is FALSE, then the corresponding element of coef is fixed during the
estimation. To re-estimate the semiparametric AR(1) with the coe cients
on 1 and 3 equal to zero, the starting values for these coe cients must
be set to zero and the corresponding elements of the vector est must be
set to FALSE8:

> coef.start = fit.10014000$coef

> est.start = fit.10014000$est

> coef.start[c(2,4)] = 0

> est.start[c(2,4)] = F

> fitr.10014000 = SNP(dmRet.dat[,"exch"],model=SNP.model(ar=1,

+ zPoly=4), n.drop=14, coef=coef.start,

+ est=est.start)

> fitr.10014000

Call:

SNP(data = dmRet.dat[, "exch"], model = SNP.model(ar = 1,

zPoly = 4), n.drop = 14, coef = coef.start,

est = est.start)

Model: Semiparametric VAR

Hermite Polynomial Coefficients:

z^0 z^1 z^2 z^3 z^4

1 0 -0.1819 0 0.0236

Conditional Mean Coefficients:

mu ar(1)

-0.0244 0.051

Conditional Variance Coefficients:

sigma

1.0481

Information Criteria:

BIC HQ AIC logL

1.3927 1.3839 1.3784 -1125.25

Convergence Type:

8Currently, the names of the SNP model coe cients are not attached to the elements
of coef. However, these names can be determined using the coef() extractor function.

22.3 Estimating SNP Models in S+FinMetrics 865

relative function convergence

number of iterations: 4

Example 150 Semiparametric VAR for bivariate exchange rate data

With multivariate time series data, the semiparametric VAR can become
complicated and include many terms if is large. To illustrate, consider
fitting a semiparametric VAR(1) model to the bivariate exchange rate data
with = 4:

> bfit.10014000 = SNP(dmRet.dat[,1:2],model=SNP.model(ar=1,

+ zPoly=4), n.drop=14)

> summary(bfit.10014000)

Call:

SNP(data = dmRet.dat[, 1:2], model = SNP.model(ar = 1,

zPoly = 4), n.drop = 14)

Model: Semiparametric VAR

Hermite Polynomial Coefficients:

z^00 z^01 z^10 z^02 z^11

coef 1.0000 0.0967 0.0908 -0.3057 0.0489

(std.err) 0.0533 0.0708 0.0196 0.0355

(t.stat) 1.8140 1.2821 -15.6251 1.3766

z^20 z^03 z^12 z^21 z^30

coef -0.1703 -0.0025 0.0228 -0.0054 0.0002

(std.err) 0.0210 0.0096 0.0118 0.0130 0.0099

(t.stat) -8.1056 -0.2604 1.9325 -0.4126 0.0221

z^04 z^13 z^22 z^31 z^40

coef 0.0393 -0.0271 0.0066 0.0001 0.0211

(std.err) 0.0034 0.0070 0.0082 0.0089 0.0031

(t.stat) 11.5137 -3.8679 0.8103 0.0084 6.7813

Conditional Mean Coefficients:

exch forward

mu -0.2372 -0.0334

(std.err) 0.1041 0.0139

(t.stat) -2.2772 -2.4017

var(1;1) 0.0086 -0.1501

866 22. Seminonparametric Conditional Density Models

(std.err) 0.0283 0.0331

(t.stat) 0.3048 -4.5398

var(1;2) -0.0022 0.9786

(std.err) 0.0053 0.0056

(t.stat) -0.4124 173.8433

Conditional Variance Coefficients:

sigma11 sigma12 sigma22

coef 1.0376 0.0068 0.2389

(std.err) 0.0374 0.0410 0.0033

(t.stat) 27.7294 0.1659 72.3597

Information Criteria:

BIC HQ AIC logL

1.3014 1.2607 1.2354 -990.0173

Convergence Type:

relative function convergence

number of iterations: 63

In the printout of the Hermite coe cients, the indices in the superscripts
of the variable z correspond to the indices = (1 2) of the coe cients
in the polynomial P(z). For example, the indices 01 and 10 correspond to
(0 1) and (1 0) which are the coe cients on 2 and 1 in P(z), respectively.
With = 4, the estimated value of P(z) has the form

P̂() = 1 + 0 0908 · 1 + 0 0967 · 2

+0 0489 · 1 2 0 1703 · 2
1 0 3057 · 2

2

0 0054 · 2
1 2 + 0 0228 · 1

2
2 + 0 0002 · 3

1 0 0025 · 3
2

+0 0001 · 3
1 2 + 0 0066 · 2

1
2
2 0 0271 · 1

3
2 + 0 0211 · 4

1

+0 0393 · 4
2

Notice that only the even powers of 1 and 2 are highly significant in the
bivariate semiparametric VAR(1).
The marginal conditional densities for the spot return and the forward

discount may be computed and plotted using

> SNP.density(bfit.10014000)

These densities are illustrated in Figure 22.4.
For multivariate models, one may want to eliminate interaction terms

(e.g., 1 2,
2
1 2, 2

2
1 etc.) in the polynomial () to reduce the number

of estimated parameters and to improve the stability of the fit. By default,

22.3 Estimating SNP Models in S+FinMetrics 867

0.
0

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

-4 -2 0 2 4

exch

0
2

4
6

8
10

12

-0.2 0.0 0.2 0.4 0.6 0.8

forward

x

y

SNP Normal

FIGURE 22.4. Estimated marginal conditional densities from bivariate semipara-
metric VAR(1) model for weekly spot returns and forward discounts.

all possible interactions are allowed. To suppress the highest-order inter-
actions, set the optional SNP.model argument trimZ=1. This will suppress
all interaction terms of order . For example,

> bfit.10014100 = SNP(dmRet.dat[,1:2],model=SNP.model(ar=1,

+ zPoly=4, trimZ=1), n.drop=14)

> bfit.10014100

Call:

SNP(data = dmRet.dat[, 1:2], model = SNP.model(ar = 1,

zPoly= 4, trimZ = 1), n.drop = 14)

Model: Semiparametric VAR

Hermite Polynomial Coefficients:

z^00 z^01 z^10 z^02 z^11 z^20 z^03 z^12

1 0.0671 0.0843 -0.2938 0.0398 -0.1417 -0.0026 0.0046

z^21 z^30 z^04 z^40

-0.0166 0.0019 0.0414 0.0202

...

868 22. Seminonparametric Conditional Density Models

With zPoly=4 and trimZ=1, the interaction terms 1
3
2 ,

2
1
2
2 , and

3
1 2 are

suppressed. The component idxZ of the fitted "SNP" object indicates which
terms are included in P(z):

> bfit.10014100$idxZ

[,1] [,2]

[1,] 0 0

[2,] 0 1

[3,] 1 0

[4,] 0 2

[5,] 1 1

[6,] 2 0

[7,] 0 3

[8,] 1 2

[9,] 2 1

[10,] 3 0

[11,] 0 4

[12,] 4 0

In general, all interaction terms of degree higher than zPoly-trimZ will be
supressed. To filter out all interactions, set trimZ to zPoly-1:

> bfit.10014300 = SNP(dmRet.dat[,1:2],model=SNP.model(ar=1,

+ zPoly=4, trimZ=3), n.drop=14)

> bfit.10014300

Call:

SNP(data = dmRet.dat[, 1:2], model = SNP.model(ar = 1, zPoly

= 4, trimZ = 3), n.drop = 14)

Model: Semiparametric VAR

Hermite Polynomial Coefficients:

z^00 z^01 z^10 z^02 z^20 z^03 z^30 z^04

1 0.0344 0.0322 -0.2884 -0.1289 -0.0008 0.0064 0.0407

z^40

0.0194

...

22.3.4 Conditional Heterogeneity

Although a semiparametric VAR density can accurately approximate densi-
ties with arbitrary shape departures from the Gaussian VAR, the approx-
imated shape is constant with respect to variations in x 1; that is, the
semiparametric VAR density is conditionally homogeneous, because only

22.3 Estimating SNP Models in S+FinMetrics 869

the first moment of the density depends on x 1. However, for economic and
financial time series data, it is usually found that the underlying stochastic
processes are conditionally heterogeneous, or conditionally heteroskedastic.
The SNP methodology allows one to model the conditional heterogeneity

in multiple time series using two approaches, which can be used either
separately or jointly. The first approach is to let the Hermite polynomial
coe cients be a multivariate polynomial of order in x 1:

(x 1) =
X
| |=0

x 1

with denoting the non-negative multi-index (1), and

| | = 1 + · · ·+
x = (1) 1 × · · · × ()

The Hermite polynomial becomes

(z x 1) =
X
| |=0

X
| |=0

x 1z

For example, let = 1, = 2, = 1 and 1 = 1. Then,

P(1) = (1 + 0 1 1) + (1 0 + 1 1 1) + (2 0 + 2 1 1)
2

which shows that the coe cients on the powers of are linear functions of
the conditioning variable 1. If = 2, then the coe cients will contain
linear and quadratic terms in 1.
The SNP density function becomes

(y |x 1) [P(z x 1)]
2 (y ;µ

1
) (22.14)

where P(z x 1) is now a multivariate polynomial of degree + .
It is referred to as the nonlinear nonparametric VAR model . When is
set to zero, the above density reduces to the semiparametric VAR density
in (22.12) and thus nests semiparametric VAR as a special case. When

is positive, the above density can approximate any form of conditional
heterogeneity in principle, because the shape and thus all moments of the
density will depend on x 1.
In the polynomial P(z x 1), the number of terms associated with each

power of z is a function of the number of elements in x 1. If x 1 contains
many lags of y then the number of terms in P(z x 1) can become very
large. In applications, it may be advantageous to restrict the number of
lags, , of x 1 to a small number. In addition, if is large, there will
be many interaction terms between the elements of z . Similarly, if is
large there will be many interaction terms between the elements of x 1. In
applications, it may be desirable to limit the number of these interactions.
The following example illustrates how to do this.

870 22. Seminonparametric Conditional Density Models

Example 151 Nonlinear nonparametric VAR for univariate exchange rate
data

To fit a nonlinear nonparametric AR(1) model to the spot return data
with = 4 and = 1 use

> fit.10014010 = SNP(dmRet.dat[,"exch"],model=SNP.model(ar=1,

+ zPoly=4, xPoly=1), n.drop=14)

> fit.10014010

Call:

SNP(data = dmRet.dat[, "exch"], model = SNP.model(ar = 1,

zPoly = 4, xPoly = 1), n.drop = 14)

Model: Nonlinear Nonparametric

Hermite Polynomial Coefficients:

x^0 x^1

z^0 1.0000 -0.2118

z^1 0.0054 -0.0508

z^2 -0.1939 0.0443

z^3 0.0081 -0.0031

z^4 0.0230 -0.0039

Conditional Mean Coefficients:

mu ar(1)

-0.037 0.2047

Conditional Variance Coefficients:

sigma

1.0899

Information Criteria:

BIC HQ AIC logL

1.4175 1.3963 1.3831 -1122.127

Convergence Type:

relative function convergence

number of iterations: 36

With = 4 and = 1, the printout of the Hermite coe cients is a
5× 2 table giving the polynomial coe cients . The first row gives the
coe cients on 0, the second row gives the coe cients on 1, and so on.

22.3 Estimating SNP Models in S+FinMetrics 871

Since 1 = 1, the estimated polynomial (1) has the form
9

(1) = (1 0 2118 1) + (0 0054 0 0508 1)

+ (0 1939 + 0 0443 1)
2 + (0 0081 0 0031 1)

3

+(0 0230 0 0039 1)
4

If xPoly is not zero, the optional argument lagP to the SNP.model func-
tion can be used to set the number of lagged values in x 1 to go into
the polynomial (z x 1). By default, lagP is set to 1 so that x 1 only
contains y 1. To re-estimate the nonlinear nonparametric AR(1) with two
lags of in x 1 use

> fit.10024010 = SNP(dmRet.dat[,"exch"],

+ model=SNP.model(ar=1,zPoly=4,xPoly=1,lagP=2),

+ n.drop=14)

> fit.10024010

Call:

SNP(data = dmRet.dat[, "exch"], model = SNP.model(ar = 1,

zPoly = 4,xPoly = 1, lagP = 2), n.drop = 14)

Model: Nonlinear Nonparametric

Hermite Polynomial Coefficients:

x^00 x^01 x^10

z^0 1.0000 -0.1381 0.1434

z^1 0.0094 0.0030 0.0480

z^2 -0.1956 0.0389 -0.0369

z^3 0.0073 -0.0049 -0.0074

z^4 0.0231 -0.0034 0.0021

...

Example 152 Nonlinear nonparametric VAR for bivariate exchange rate
data

To fit a bivariate nonlinear nonparametric VAR(1) to the exchange rate
data with = 4, = 1 and = 1 use

> bfit.10014010 = SNP(dmRet.dat[,1:2],model=SNP.model(ar=1,

+ zPoly=4,xPoly=1), n.drop=14)

> bfit.10014010

Call:

SNP(data = dmRet.dat[, 1:2], model = SNP.model(ar = 1,

9Keep in mind that the constant term of the polynomial is always set to one.

872 22. Seminonparametric Conditional Density Models

zPoly = 4, xPoly = 1), n.drop = 14)

Model: Nonlinear Nonparametric

Hermite Polynomial Coefficients:

x^00 x^01 x^10

z^00 1.0000 -0.1985 -0.1009

z^01 0.0605 0.0041 0.1063

z^10 0.0279 -0.0566 0.0374

z^02 -0.2736 0.0598 0.0269

z^11 0.0656 -0.0198 -0.0149

z^20 -0.1472 0.0331 0.0258

z^03 -0.0035 -0.0004 -0.0317

z^12 0.0138 0.0061 -0.0123

z^21 -0.0103 -0.0002 -0.0002

z^30 0.0072 0.0064 -0.0066

z^04 0.0338 -0.0001 -0.0042

z^13 -0.0130 -0.0013 0.0156

z^22 -0.0027 0.0132 0.0002

z^31 -0.0002 0.0021 -0.0005

z^40 0.0196 -0.0026 0.0004

Conditional Mean Coefficients:

exch forward

mu -0.1195 -0.0222

var(1;1) 0.0015 -0.0799

var(1;2) -0.0224 0.9721

Conditional Variance Coefficients:

sigma11 sigma12 sigma22

0.9789 -0.0948 0.2373

Information Criteria:

BIC HQ AIC logL

1.3763 1.2826 1.2242 -950.8071

Convergence Type:

relative function convergence

number of iterations: 113

The fitted SNP model has many parameters: 6 conditional mean parame-
ters, 3 conditional variance parameters, and 44 Hermite polynomial coef-
ficients. The form of the estimated multivariate polynomial P̂(z x 1) is

22.3 Estimating SNP Models in S+FinMetrics 873

rather complicated:

P̂(z x 1) = (1 0 1985 1 0 1009 1)

+ (0 0279 0 0566 1 + 0 0374 1) 1

+(0 0605 + 0 0041 1 + 0 1063 1) 2

+ · · ·+
+(0 0338 0 0001 1 0 0042 1)

4
2

In general, many of the coe cients in P̂(z x 1) may be insignificant.
In particular, many of the interaction terms between the elements of z
and x 1 may be insignificant. When zPoly 0 and xPoly 0, the number
of interaction terms allowed in the Hermite polynomial is controlled by
the SNP.model optional arguments trimZ and trimX. By default, trimZ=0
and trimX=0, which allows all interactions. Setting trimZ=1 will exclude
interactions between the elements of z at the highest order (); setting
trimX=1 will exclude interactions between the elements of x 1 at the high-
est order (). To exclude all interaction terms, set trimZ to zPoly-1 and
trimX to xPoly-1. For example, to fit a bivariate nonlinear nonparametric
VAR(1) model with = 4, = 2 and no interaction terms, use

> bfit.10014321 = SNP(dmRet.dat[,1:2],

+ model=SNP.model(ar=1,zPoly=4,xPoly=2,trimZ=3,trimX=1),

+ n.drop=14)

> bfit.10014321

Call:

SNP(data = dmRet.dat[, 1:2], model = SNP.model(ar = 1,

zPoly = 4, xPoly = 2, trimZ = 3, trimX = 1),

n.drop = 14)

Model: Nonlinear Nonparametric

Hermite Polynomial Coefficients:

x^00 x^01 x^10 x^02 x^20

z^00 1.0000 -0.2433 -0.4283 0.0797 0.1209

z^01 0.0359 0.0868 0.0554 -0.0240 -0.0494

z^10 0.0530 0.0260 0.0245 0.0030 -0.0163

z^02 -0.2807 0.0860 0.1495 -0.0213 -0.0360

z^20 -0.1627 0.0690 0.0364 -0.0157 0.0180

z^03 -0.0001 -0.0138 -0.0317 0.0033 0.0130

z^30 0.0090 -0.0012 -0.0003 -0.0029 -0.0007

z^04 0.0340 -0.0040 -0.0205 0.0090 0.0021

z^40 0.0173 -0.0036 -0.0017 -0.0023 0.0015

...

874 22. Seminonparametric Conditional Density Models

22.3.5 ARCH/GARCH Leading Term

In practice, in order to model conditional heteroskedasticity often observed
in financial time series data, the order of the polynomial in x 1 can
get quite large. To keep small when the data are markedly condition-
ally heteroskedastic, the SNP methodology allows for a second approach
based on using a Gaussian ARCH model or Gaussian GARCH model as
the leading term in the Hermite expansion, rather than a Gaussian VAR
model.
The class of ARCH/GARCH models, discussed in Chapters 7 and 13,

are very successful at modeling conditional heteroskedasticity in macroe-
conomic and financial time series data; for example, see Engle (1995). To
use the Gaussian ARCH as the leading term for the SNP method, Gallant,
Hsieh, and Tauchen (1991) suggested modeling the upper triangular ma-
trix R as a linear function of the absolute values of the lagged elements of
y µ

1
:

vech(R 1) = 0 +
X
=1

P |y 1 + µ
2 +

| (22.15)

where vech(R) denotes a vector of length (+ 1) 2 containing the ele-
ments of the upper triangle of R, 0 is a vector of length (+1) 2, and
P is an (+1) 2× matrix for = 1 . The expression (22.15),
and its extensions, is referred to as the conditional variance equation.
Equation (22.15) represents the SNP version of the -th order ARCH

model, or ARCH() model. However, the classical ARCHmodel hasR 1

depending on a linear function of squared lagged residuals instead of abso-
lute values. The SNP version of ARCH is more akin to the suggestions of
Taylor (1986) and Davidian and Carroll (1987). In practice, this version has
been shown to perform better than the classical ARCH model, for example,
see Schwert (1990) and Ding, Granger, and Engle (1993).
The Gaussian ARCH leading term can usually be further improved by

adding a Gaussian GARCH leading term:

vech(R
1
) = 0 +

X
=1

P |y 1 + µ
2 +

| (22.16)

+
X
=1

diag(G)vech(R 2 +)

where G is a vector of length (+1) 2 for = 1 . This equation
represents a GARCH model with order (), where gives the ARCH
order and gives the GARCH order.
In summary, a Hermite polynomial with coe cients modeled as a poly-

nomial in terms of x 1, which is referred to as “state dependence,” and

22.3 Estimating SNP Models in S+FinMetrics 875

a Gaussian ARCH/GARCH leading term can be used either separately or
jointly to model conditional heterogeneity.10 The resulting SNP density has
the following form:

(y |x 1) P(z x 1)
2 (y |µ

1 1
)

where
1
= R

1
· R0

1
. When (and thus) is set to zero,

the SNP density becomes a Gaussian GARCH model ; when is positive
and is zero, the SNP density becomes a semiparametric GARCH model
similar to Engle and González-Rivera (1991); when both and are
positive, the resulting nonparametric density also allows state dependence.
In general, the model parameter contains the GARCH coe cients in
addition to the coe cients of the Hermite polynomial, plus µ0 and B.
In practice GARCH processes have been very successful in modeling the

conditional heteroskedasticity in univariate time series. However, for a mul-
tivariate time series, the GARCH structure requires many parameters in
the conditional variance equation. In addition, it may be di cult to ob-
tain convergence of the maximum likelihood estimate, and if convergence
occurs, the resulting estimates may be sensitive to starting values. Expe-
rience has shown that the GARCH(1,1) process is a useful starting point
for analysis. To improve the performance of SNP models with a GARCH
structure and to ease the computational burden for multiple time series
modeling, Gallant and Tauchen (2001) recommended imposing two sim-
plifying restrictions: (1) restrict the ARCH coe cient matrix so that the
diagonal elements of R 1 only depend on the corresponding elements of
|y 1 + µ

2 +
| and (2) restrict the elements of each GARCH

coe cient matrix, G , to be the same.
In the S+FinMetrics implementation of the SNP methodology, a diago-

nal VEC multivariate GARCH model is also available. This model for the
conditional variance, discussed in Section 3 of Chapter 13, has the form

vech(1) = 0 +
X
=1

diag(P)vech
¡ 0 ¢

(22.17)

+
X
=1

diag(G)vech(2 +)

where = y µx 1
.

Example 153 Gaussian ARCH/GARCH model for univariate exchange
rate data

10However, when the Gaussian GARCH leading term is used (i.e., when 0) the
SNP model is no longer Markovian, because one must know lagged values of Rx 1 as
well as x 1 to iterate forward for y .

876 22. Seminonparametric Conditional Density Models

To model conditional heteroskedasticity in spot returns with a
GARCH(1,1) leading term, use

> fit.11110000 = SNP(dmRet.dat[,"exch"],model=SNP.model(ar=1,

+ arch=1,garch=1), n.drop=14)

The returned object fit.11110000 represents the fit of an AR(1)-
GARCH(1,1) model, where the optional arguments arch and garch to the
SNP.model function specify the ARCH order and GARCH order , re-
spectively. Since the model is univariate, the conditional variance equation
(22.16) has the form

= 0 + 1| 1 2
|+ 1 1

where
2
= 0 2. A summary of the estimated model is

> summary(fit.11110000)

Call:

SNP(data = dmRet.dat[, "exch"], model = SNP.model(ar = 1,

arch = 1, garch = 1), n.drop = 14)

Model: Gaussian GARCH

Conditional Mean Coefficients:

mu ar(1)

coef 0.0180 0.0911

(std.err) 0.0259 0.0333

(t.stat) 0.6929 2.7351

Conditional Variance Coefficients:

s0 arch(1) garch(1)

coef 0.0783 0.1881 0.7822

(std.err) 0.0162 0.0229 0.0289

(t.stat) 4.8174 8.2272 27.0207

Information Criteria:

BIC HQ AIC logL

1.3635 1.3546 1.3491 -1101.283

Convergence Type:

relative function convergence

number of iterations: 25

22.3 Estimating SNP Models in S+FinMetrics 877

The estimated ARCH and GARCH coe cients are 1 = 0 1881 and 1 =
0 7822, respectively, and are highly significant.11

A semiparametric GARCH model, or state dependence model, can also
be fitted by setting zPoly or xPoly to a non-negative integer as shown in
earlier examples.

Example 154 Gaussian ARCH/GARCH model for bivariate exchange rate
data

For the bivariate exchange rate data, consider fitting a VAR(1)-
GARCH(1,1) using the commands

> bfit.11110000.r2 = SNP(dmRet.dat[,1:2],

+ model=SNP.model(ar=1,arch=1,garch=1),

+ control=SNP.control(dvec=F),

+ n.drop=14)

The SNP.control optional argument dvec=F turns o the default diagonal
VEC structure. The fitted model coe cients are

> bfit.11110000

Call:

SNP(data = dmRet.dat[, 1:2], model = SNP.model(ar = 1,

arch = 1, garch = 1), n.drop = 14, control =

SNP.control(darch = F, rgarch = F, dvec = F))

Model: Gaussian GARCH

Conditional Mean Coefficients:

exch forward

mu -0.0139 -0.0104

var(1;1) 0.0795 -0.0836

var(1;2) -0.0058 0.9946

Conditional Variance Coefficients:

R11 R12 R22

s0 0.0967 0.0312 0.0152

arch(1;1) 0.2066 -0.0504 -0.0065

arch(1;2) -0.0350 -0.2094 0.2656

garch(1) 0.7546 0.0002 0.7662

Information Criteria:

BIC HQ AIC logL

11Since the absolute value is used in the ARCH specification, the usual condition

1 + 1 1 does not determine stationarity of the model.

878 22. Seminonparametric Conditional Density Models

1.1378 1.1059 1.0861 -872.6075

Convergence Type:

relative function convergence

number of iterations: 47

The ARCH and GARCH coe cients are given in the Conditional Variance
Coe cients table. The form of the estimated conditional variance equation
(22.16) has coe cient matrices

ˆ0 =
0 0967
0 0312
0 0152

P̂1 =
0 2066 0 0350
0 0504 0 2094
0 0065 0 2656

Ĝ1 =
0 7546
0 0002
0 7662

To estimate the model imposing a diagonal ARCH structure on P1 set
the SNP.control optional argument darch=T, and to estimate the model
imposing common GARCH parameters in G1 set the optional argument
rgarch=T:

> bfit.11110000.r2 = SNP(dmRet.dat[,1:2],

+ model=SNP.model(ar=1,arch=1,garch=1),

+ control=SNP.control(darch=T,rgarch=T,dvec=F),

+ n.drop=14)

> bfit.11110000.r2

Call:

SNP(data = dmRet.dat[, 1:2], model = SNP.model(ar = 1,

arch = 1, garch = 1),n.drop = 14, control =

SNP.control(darch = T, rgarch = T, dvec = F))

Model: Gaussian GARCH

Conditional Mean Coefficients:

exch forward

mu -0.0079 -0.0086

var(1;1) 0.0712 -0.0853

var(1;2) -0.0084 0.9967

Conditional Variance Coefficients:

R11 R12 R22

s0 0.0856 -0.0076 0.0109

arch(1;1) 0.2034 0.0000 0.0000

arch(1;2) 0.0000 0.0000 0.2689

garch(1) 0.7637 0.7637 0.7637

Information Criteria:

22.3 Estimating SNP Models in S+FinMetrics 879

BIC HQ AIC logL

1.1195 1.0982 1.085 -877.7125

Convergence Type:

relative function convergence

number of iterations: 37

In the diagonal ARCH with restricted GARCH coe cients, the estimated
coe cient matrices for the conditional variance equation are

ˆ0 =
0 0856
0 0076
0 0109

P̂1 =
0 2034 0
0 0
0 0 2689

Ĝ1 =
0 7637
0 7637
0 7637

To estimate a VAR-DVEC(1,1) model, which is the default multivariate
GARCH model, use

> bfit.11110000.dvec = SNP(dmRet.dat[,1:2],

+ model=SNP.model(ar=1,arch=1,garch=1),

+ control=SNP.control(dvec=T),

+ n.drop=14)

> bfit.11110000.dvec

Call:

SNP(data = dmRet.dat[, 1:2], model = SNP.model(ar = 1,

arch = 1, garch = 1), n.drop = 14,

control = SNP.control(dvec = T))

Model: Gaussian GARCH

Conditional Mean Coefficients:

exch forward

mu -0.0055 -0.0082

var(1;1) 0.0352 -0.0828

var(1;2) -0.0052 0.9946

Conditional Variance Coefficients:

R11 R12 R22

s0 0.2894 0.0339 0.0218

arch(1) 0.3222 0.3364 0.3653

garch(1) 0.8440 0.0470 0.9292

Information Criteria:

BIC HQ AIC logL

1.0902 1.0636 1.0471 -843.6081

880 22. Seminonparametric Conditional Density Models

Convergence Type:

relative function convergence

number of iterations: 112

Common GARCH coe cients may be imposed by setting rgarch=T.
For fitting SNP models with a multivariate GARCH structure, Gallant

and Tauchen (2001) recommended starting with a highly restricted specifi-
cation to obtain a stable fit and then moving on to more general processes.

22.4 SNP Model Selection

The examples in the previous sections showed how to fit di erent SNP
models using the S+FinMetrics function SNP. It was seen that the SNP
model can become increasingly more complex by setting di erent model
parameters, such as ar, arch, garch, zPoly, and xPoly, to large values.
Due to the nested structure of SNP models, model selection can be con-
ducted using conventional information criteria, such as the Akaike Infor-
mation Criterion (AIC), the Bayesian Information Criterion (BIC), or the
Hannan-Quinn (HQ) criterion. Model selection strategies for determining
the best fitting SNP models are discussed in Fenton and Gallant (1996a,
1996b), Coppejans and Gallant (2002), and Gallant and Tauchen (2001).
The general consensus from these articles is that minimizing the BIC

BIC() = () +
2
ln()

where () is the average log-likelihood (22.13) and denotes the number
of parameters in the SNP model, performs best.
The model selection strategy entails moving upward along an expansion

path. For univariate models, Gallant and Tauchen (2001) suggest the search
order:

[1] Determine best VAR order

[2] Determine best ARCH and GARCH orders and

[3] Determine best polynomial order (start at = 4)

[4] Determine the best polynomial order

The fitted SNP models become more richly parameterized at each level
along the path. At each step of the expansion, Gallant and Tauchen rec-
ommended using the previously fit (smaller) model coe cients as starting
values for the currently fit model. In addition, for each SNP model fit,
they recommended that a random restart procedure of the optimizer be

22.4 SNP Model Selection 881

implemented to avoid getting stuck at potential local minima. The func-
tion SNP implements the random restart procedure advocated by Gallant
and Tauchen, and is discussed in detail below.
The suggested search procedure is not an exhaustive search of all possi-

ble models and may not produce the model that globally minimizes BIC.
Furthermore, Fenton and Gallant (1996a) found that the strategy of min-
imizing BIC often produced an overly conservative model. In particular,
BIC had a tendency to select models with = 0 in situations in which
one would expect 0. As a result, Gallant and Tauchen recommended
that a battery of residual and graphical diagnostics be run on any tentative
model. Section 22.5 discusses SNP diagnostics and provides some examples.
Model selection issues in multivariate SNP models have not been stud-

ied as closely as model selection in univariate models. The main compli-
cations are with the form of the multivariate ARCH/GARCH model and
the form of the multivariate Hermite polynomial P(z x 1). Multivariate
ARCH/GARCH models are notoriously unstable. As a result, Gallant and
Tauchen (2001) advocated first fitting a highly restricted specification (e.g.,
GARCH(1,1) with common GARCH coe cients or DVEC-GARCH(1,1))
to obtain a stable fit and then moving on to more general processes. With
respect to the specification of P(z x 1), Gallant and Tauchen recom-
mended starting with models that do not allow any interactions (i.e., set-
ting trimZ to zPoly-1 and trimX to xPoly-1) and then using BIC to
determine if any interactions need to be included.
In S+FinMetrics, the functions expand and SNP.auto are provided to fa-

cilitate model selection strategies to determine the best fitting SNP model.
The function expand allows one to expand an existing SNP model toward a
larger model, and the function SNP.auto implements Gallant and Tauchen’s
suggested model selection strategy for determining the best fitting univari-
ate SNP model. These functions are described in the following subsections.

22.4.1 Random Restarts

The function SNP implements the random restart procedure described in
Gallant and Tauchen (2001, Sec. 3). The procedure is best described through
an example. Consider fitting an AR(1)-ARCH(3) SNP model to the spot
return data using SNP. First, fit a simple AR(1) model using

> fit.10010000 = SNP(dmRet.dat[,"exch"],model=SNP.model(ar=1),

+ n.drop=14)

> fit.10010000

Call:

SNP(data = dmRet.dat[, "exch"], model = SNP.model(ar = 1),

n.drop = 14)

882 22. Seminonparametric Conditional Density Models

Model: Gaussian VAR

Conditional Mean Coefficients:

mu ar(1)

0.0005 0.0222

Conditional Variance Coefficients:

sigma

1.0025

Information Criteria:

BIC HQ AIC logL

1.4337 1.4284 1.4251 -1165.6

Convergence Type:

both x and relative function convergence

number of iterations: 2

Since the quasilikelihood for an AR(1) model is a quadratic function of ,
random restarts are not needed to check for local minima.
Next, consider fitting an AR(1)-ARCH(3) without random restarts using

the coe cients from the AR(1) as starting values:

> fit.10310000 = SNP(dmRet.dat[,"exch"],model=SNP.model(ar=1),

+ iArch=3,coef=fit.10010000$coef,n.drop=14)

> fit.10310000

Call:

SNP(data = dmRet.dat[, "exch"], model = SNP.model(ar = 1),

n.drop = 14, coef = fit.10010000$coef, iArch = 3)

Model: Gaussian ARCH

Conditional Mean Coefficients:

mu ar(1)

0.008 0.1362

Conditional Variance Coefficients:

s0 arch(1) arch(2) arch(3)

0.5059 0.2655 0.1764 0.2152

Information Criteria:

BIC HQ AIC logL

1.3735 1.3629 1.3563 -1106.182

Convergence Type:

22.4 SNP Model Selection 883

relative function convergence

number of iterations: 9

The optional argument iArch=3 tells the SNP function to increment the
ARCH component of the initial model specified in the call to SNP.model
by 3. When one or more of the optional increment arguments (iAr, iArch,
iGarch, iZpoly, iXpoly, itrimZ, itrimX) to SNP are utilized, the model
specified in the call to SNP.model is called the initial model, and the model
fit is called the expanded model. By setting coef=fit.10010000$coef, the
SNP function uses the AR(1) model coe cients as starting values for the
coe cients in the initial model and sets the starting values for the addi-
tional ARCH(3) coe cients to zero. The coe cients for the initial model
are referred to as the “old” coe cients, and additional coe cients speci-
fied by increment arguments (e.g., iArch=3) are referred to as the “new”
coe cients.12

The same fit to the AR(1)-ARCH(3) may be obtained using

> fit.10310000b = SNP(dmRet.dat[,"exch"],model=SNP.model(ar=1,

+ arch=3), n.drop=14)

The reason for this is that, by default, the SNP function uses a VAR()
model (where is specified by the ar component of SNP.model) to generate
starting values for any specified SNPmodel. As a result, if the starting value
and model increment arguments are not specified in the call to SNP, then
the “old” coe cients are the coe cients to the VAR() and the “new”
coe cients are the remaining parameters of the specified SNP model.
Now, consider refitting the AR(1)-ARCH(3) using Gallant and Tauchen’s

random restart procedure. The restart procedure involves refitting the
AR(1)-ARCH(3) model using randomly perturbed starting values for both
the old (initial model) coe cients and the new (expanded model) coef-
ficients. The user has control over how the old and new coe cients are
perturbed, as well as how many random perturbations are performed. The
random perturbations of the start values are generated using the scheme

old old · (1 + · tweakold) (22.18)
new new · (1 + · tweaknew)

where is a random variable distributed as [1 1], and tweakold and
tweaknew are so-called tweak constants. For each random restart, the start-
ing values are perturbed as in (22.18), and the SNP model optimization
is run for a specified number of iterations to explore the surface of the
SNP objective function (22.13). At convergence (or last iteration, whichever
comes first), the SNP objective function value is recorded, and the restart

12This example is given to illustrate how the SNP function distinguishes between old
and new parameters. In practice, the user would not call SNP with the increment argu-
ments. Instead, the user would call the expand function discussed in the next subsection.

884 22. Seminonparametric Conditional Density Models

procedure is repeated. Of all the randomly restarted fits, the best fit is
determined as the one with the lowest SNP objective function value. If
necessary, this fit is then iterated to convergence.
In the function SNP, the random restart procedure is controlled through

the SNP.control optional arguments fOld, fNew, n.start, initial.itmax,
final.itmax, and seed. The arguments fOld and fNew determine the
tweak constants tweakold and tweaknew, respectively, and n.start deter-
mines the number of random restarts. The argument initial.itmax sets
the maximum number of iterations for each random-restart, and
final.itmax sets the maximum number of iterations for the best of the
randomly restarted models. The seed argument sets the random number
seed used to generate .
For example, to refit the AR(1)-ARCH(3) using 25 random restarts with

tweakold = tweaknew = 0 1 use

> fit.10310000.restart = SNP(dmRet.dat[,"exch"],

+ model=SNP.model(ar=1,arch=3), n.drop=14,

+ control=SNP.control(fOld=0.1,fNew=0.1,n.start=25),

+ trace=T)

random start 1, objective = 1.349

random start 2, objective = 1.349

...

random start 25, objective = 1.349

Iteration No. 1, objective = 1.349

The optional argument trace=T allows the progress of the restart procedure
to be monitored on screen.13 For each random restart the SNP objective
function value (22.13) is printed. After the best fit is determined, it is
iterated to convergence. In the above output, it appears that all of the
randomly restarted fits are very close.
The above example only utilized one tweak constant value for the old

and new parameters. In general, Gallant and Tauchen recommended that
a variety of tweak constants of various magnitudes be used to thoroughly
explore the surface of the SNP objective function. To accommodate this
recommendation, the arguments fOld, fNew, and n.start can be vectors.
For example, to implement a wave of random restarts using the collection
of tweak constants specified by Gallant and Tauchen (2001, p. 27), use

> fOld = c(0, 1e-5, 0, -1e-5, 1e-5, 1e-5, 1e-4, 0, -1e-4,

+ 1e-4, 1e-4, 1e-3, 0, -1e-3, 1e-3, 1e-3, 1e-5, 0,

+ -1e-2, 1e-2, 1e-2, 1e-1, 0, -1e-1, 1e-1, 1e-1,

+ 1e0, 0, -1e0, 1e0, 1e0)

13On Windows systems, the trace information may be printed to the screen all at
once at the end of the restart procedure. This occurs because of the way screen output
is bu ered in the Windows environment.

22.4 SNP Model Selection 885

> fNew = c(0, 0, 1e-5, 1e-5, -1e-5, 1e-5, 0, 1e-4, 1e-4,

+ -1e-4, 1e-4, 0, 1e-3, 1e-3, -1e-3, 1e-3, 0,

+ 1e-2, 1e-2, -1e-2, 1e-2, 0, 1e-1, 1e-1, -1e-1,

+ 1e-1, 0, 1e0, 1e0, -1e0, 1e0)

> n.start = c(0,rep(25,30))

The vectors fOld and fNew specify 31 di erent tweak constant combination.
The vector n.start, which is the same length as fOld and fNew, specifies
how many random restarts are to be performed for each combination of
tweak constants. Notice that the first set of tweak constants are zero and
there are no random restarts. This corresponds to the SNP fit without a
random restart. To estimate the SNP model using the above list of restart
parameters use

> fit.10310000.mruns = SNP(dmRet.dat[,"exch"],

+ model=SNP.model(ar=1, arch=3),

+ control = SNP.control(n.start = n.start,

+ seed = 011667, fOld = fOld, fNew = fNew),

+ trace = T)

Run 1 , 0 starts, fOld = 0 fNew = 0

Iteration No. 1, objective = 1.52188

Iteration No. 2, objective = 1.38215

...

Iteration No. 9, objective = 1.34811

Run 2 , 25 starts, fOld = 1e-005 fNew = 0

random start 1, objective = 1.34811

random start 2, objective = 1.34811

...

Run 31 , 25 starts, fOld = 1 fNew = 1

random start 1, objective = 1.34811

random start 2, objective = 1.34811

...

random start 25, objective = 1.48451

Iteration No. 1, objective = 1.34811

With the above restart specification, the SNP model is fit 1+30×25 = 751
times.14 The best fitting model is given by

> fit.10310000.mruns

Call:

SNP(data = dmRet.dat[, "exch"], model = SNP.model(ar = 1,

14Estimation of these 751 models takes about 20 s on a 1.6-GHz Pentium M under
Windows XP Pro.

886 22. Seminonparametric Conditional Density Models

arch = 3), control = SNP.control(n.start = n.start,

seed = 11667, fOld = fOld, fNew = fNew), trace = F)

Minimum BIC (out of 31 runs) occurred for control parameters

fOld fNew n.start

1 0 25

Model: Gaussian ARCH

Conditional Mean Coefficients:

mu ar(1)

0.0059 0.1336

Conditional Variance Coefficients:

s0 arch(1) arch(2) arch(3)

0.5078 0.2631 0.1707 0.218

Information Criteria:

BIC HQ AIC logL

1.3724 1.3619 1.3553 -1118.931

Convergence Type:

relative function convergence

number of iterations: 1

With multiple runs of random restarts, the print method displays the
optimal tweak constants (fOld=1, fNew=0). The fit information from each
run is contained in the component runs, which is a list with components

> names(fit.10310000.mruns$runs)

[1] "nruns" "best" "detail" "coef"

The best fit occurs for run 27,

> fit.10310000.mruns$runs$best

[1] 27

and the information for this run is

> fit.10310000.mruns$runs$detail[27,]

fOld fNew n.start BIC HQ AIC logL

1 0 25 1.372405 1.361883 1.355339 -1118.931

22.4.2 The expand Function

The function expand is designed to allow a user to easily expand an existing
SNP model toward a larger model. The arguments expected by expand are

22.4 SNP Model Selection 887

> args(expand)

function(x, ar = 0, arch = 0, garch = 0, lagP = 0, zPoly = 0,

xPoly = 0, trimZ = 0, trimX = 0, control = NULL, trace

= F)

The argument x denotes a fitted "SNP" object from which the model expan-
sion is to take place. The arguments ar, arch, garch, lagP, zPoly, xPoly,
trimZ, and trimX give the desired increments to the SNP tuning param-
eters of the initial SNP model that define the new, expanded SNP model.
For example, to expand from a Gaussian AR(3)-ARCH(1) to a semipara-
metric AR(4)-ARCH(4) with = 4 the increment specification would be
ar=1, arch=3, and zPoly=4. The expand function calls the SNP function
using the coe cients of the supplied "SNP" object as starting values, and it
expands the SNP model according to the specified increments in a manner
similar to that described in the previous subsection. By default, the expand
function uses the control information from the supplied "SNP" object. The
result of expand is an object of class "SNP".
To illustrate, consider expanding the initial Gaussian AR(1) SNP model

fit to the spot return data to a Gaussian AR(1)-ARCH(3) model. The
Gaussian AR(1) model is represented by the "SNP" object fit.10010000.
To expand this model to an AR(1)-ARCH(3), use

> fit.10310000 = expand(fit.10010000,arch=3)

> class(fit.10310000)

[1] "SNP"

> fit.10310000

Call:

SNP(data = dmRet.dat[, "exch"], model = list(ar = 1, arch = 0,

garch = 0, lagP = 1, zPoly = 0, xPoly = 0, trimZ = 0,

trimX = 0), n.drop = 14,coef = c(1., 0.000508918280817768,

0.0222361334180125, 1.00252754954042), est = c(0, 1, 1, 1),

iArch = 3, trace = F)

Model: Gaussian ARCH

Conditional Mean Coefficients:

mu ar(1)

0.008 0.1362

Conditional Variance Coefficients:

s0 arch(1) arch(2) arch(3)

0.5059 0.2655 0.1764 0.2152

Information Criteria:

BIC HQ AIC logL

888 22. Seminonparametric Conditional Density Models

1.3735 1.3629 1.3563 -1106.182

Convergence Type:

relative function convergence

number of iterations: 9

The result of expand is an object of class "SNP" representing the expanded
SNP fit. In the Call information, notice that the initial model is speci-
fied as an AR(1) and that the starting values for the initial model (old)
parameters are set to the estimated coe cients from the AR(1) model.
The expansion to the AR(1)-ARCH(3) is indicated through the increment
argument iArch=3.
When expanding a SNP fit, Gallant and Tauchen (2001) stressed that

random restarts be used to avoid getting stuck at local minima. When using
the expand function, a random restart procedure may be specified in two
ways. The first way is to specify a random restart procedure for the initial
SNP model. This restart information, contained in the control component
of the "SNP" object, will then be passed on to the expand function and
used. The second way is to directly specify the control information passed
to the expand function. For example, in the "SNP" object fit.10010000
representing the AR(1) fit, there is no restart information in the control
component:

> fit.10010000$control$fold

[1] 0

> fit.10010000$control$fnew

[1] 0

> fit.10010000$control$nstart

[1] 0

The vectors of restart information from the previous section may be in-
serted into the control component as follows:

> control.new = fit.10010000$control

> control.new$fold = fOld

> control.new$fnew = fNew

> control.new$nstart = n.start

The expanded model fit with random restarts may be obtained using

> fit.10310000.mruns = expand(fit.10010000,arch=3,

+ control=control.new,trace=T)

The expand function may be used to conduct a specific-to-general model
selection strategy for determining the best fitting SNP model. For each
expanded model, the model selection criteria AIC, BIC, and HQ may be
used to select the best fitting model. This information is available in the
component obj of an "SNP" object. For example, a comparison of the model

22.4 SNP Model Selection 889

selection criteria for the AR(1) and AR(1)-ARCH(3) models may be ob-
tained using

> fit.10010000$obj - fit.10310000.mruns$obj

BIC HQ AIC logL

0.0613315 0.06654345 0.06978232 -46.66811

The AR(1)-ARCH(3) is preferred to the AR(1) using all of the model se-
lection criteria.

22.4.3 The SNP.auto Function

The function SNP.auto implements Gallant and Tauchen’s (2001) sug-
gested model selection strategy for determining the best fitting univariate
SNP model by minimizing the BIC. The arguments expected by SNP.auto
are

> args(SNP.auto)

function(data, n.drop = NULL, control = SNP.control(), trace

= T, arMax = 4, zPolyMax = 8, xPolyMax = 4, lagPMax

= 4)

The first four arguments are the same as those expected by the SNP func-
tion. The remaining arguments, arMax, zPolyMax, xPolyMax, and lagPMax,
correspond to the maximum orders of , , , and , respectively,
for the prospective SNP models. The search for the best fitting SNP model
follows a restricted specific-to-general model expansion path based on the
specified maximum orders of a subset of SNP model parameters. Each
model is fit to the same span of data and the BIC is computed.15 The
initial SNP model is a simple Gaussian location model. The SNP model
is first expanded (using the expand function with increments of 1) toward
a Gaussian VAR model with maximum lag determined by arMax. Then,
the Gaussian VAR model is expanded to a GARCH(1,1) model. Next, the
z part of the polynomial P(z x 1) is sequentially expanded up to the
maximum order set by zPolyMax and then the x 1 part of the polyno-
mial P(z x 1) is sequentially expanded up to the maximum order set by
xPolyMax. Finally, the number of lags that go into the x 1 part of the
polynomial P(z x 1) is sequentially expanded up to the maximum order
set by lagPMax. The SNP model with the lowest value of BIC is returned
as an object of class "SNP".
To illustrate, consider using SNP.auto with the default parameters to

find the best SNP model preferred by BIC for the spot return data:

> fit.auto = SNP.auto(dmRet.dat[,"exch"], n.drop=14)

15The user must set the argument n.drop so that su cient presample observations
are available to accommodate the maximum lags specified by arMax and lagPMax.

890 22. Seminonparametric Conditional Density Models

Initializing using a Gaussian model ...

Expanding the order of VAR: 1234

Expanding toward GARCH model ...

Expanding the order of z-polynomial: 12345678

Expanding the order of x-polynomial: 1234

> class(fit.auto)

[1] "SNP"

By default, SNP.auto displays information about the order of the expansion
path on screen. The best fitting model is a semiparametric GARCH(1,1):

> fit.auto

Call:

SNP(data = dmRet.dat[, "exch"], model = list(ar = 0, arch = 1,

garch = 1,lagP = 1, zPoly = 3, xPoly = 0, trimZ = 0,

trimX = 0), n.drop = 14, coef = c(1., -0.13265782318379,

0.00224280476347416, 0.0189674305327692, 0.122336259918009,

0.0624215245663479, 0.171626674286156, 0.808804423426396),

est = c(0, 1, 1, 1, 1, 1,1, 1), iZPoly = 1, trace = F)

Model: Semiparametric GARCH

Hermite Polynomial Coefficients:

z^0 z^1 z^2 z^3 z^4

1 -0.097 -0.1068 0.018 0.0227

Conditional Mean Coefficients:

mu

0.0618

Conditional Variance Coefficients:

s0 arch(1) garch(1)

0.037 0.1515 0.8343

Information Criteria:

BIC HQ AIC logL

1.3437 1.3295 1.3207 -1074.972

Convergence Type:

relative function convergence

number of iterations: 16

By default, SNP.auto does not utilize random restarts. To incorporate
random restarts at each stage of the expansion path, the user needs to sup-
ply restart information in the control argument to SNP.auto. For exam-

22.5 SNP Model Diagnostics 891

ple, to repeat the above estimation using Gallant and Tauchen’s suggested
restart information, use16

> fOld = c(0, 1e-5, 0, -1e-5, 1e-5, 1e-5, 1e-4, 0, -1e-4,

+ 1e-4, 1e-4, 1e-3, 0, -1e-3, 1e-3, 1e-3, 1e-5, 0,

+ -1e-2, 1e-2, 1e-2, 1e-1, 0, -1e-1, 1e-1, 1e-1,

+ 1e0, 0, -1e0, 1e0, 1e0)

> fNew = c(0, 0, 1e-5, 1e-5, -1e-5, 1e-5, 0, 1e-4, 1e-4,

+ -1e-4, 1e-4, 0, 1e-3, 1e-3, -1e-3, 1e-3, 0,

+ 1e-2, 1e-2, -1e-2, 1e-2, 0, 1e-1, 1e-1, -1e-1,

+ 1e-1, 0, 1e0, 1e0, -1e0, 1e0)

> n.start = c(0,rep(25,30))

> fit.auto.restart = SNP.auto(dmRet.dat[,"exch"],n.drop=14,

+ control = SNP.control(n.start = n.start,

+ seed = 011667, fOld = fOld, fNew = fNew))

The search procedure employed by SNP.auto is not an exhaustive search
of all possible models and may not produce the model that globally mini-
mizes BIC. As mentioned earlier, the BIC has a tendency to select models
with = 0 in situations in which one would expect 0. As a result,
it is recommend that a battery of residual and graphical diagnostics be run
on any tentative model to confirm the adequacy of the model. The next
section describes how to do this.
The function SNP.auto can be used on multivariate data, but it is not

recommended to do so. The default search procedure may not produce sat-
isfactory results for a variety of reasons. In particular, the default DVEC-
GARCH(1,1) model imposes no restrictions on the ARCH/GARCH pa-
rameters. Moreover, the default values for trimZ and trimX allow all in-
teractions among the elements of z and x 1, respectively, in the Hermite
polynomial P(z x 1).

22.5 SNP Model Diagnostics

Although model selection criteria may be used to determine the apparent
best fitting SNP model, it is still important to perform diagnostic checks
on the fitted model to verify that the chosen model is adequate and ap-
propriate. This is particularly important when the fitted SNP model is to
be used as a score generator (auxiliary model) for EMM estimation. In
this context, for the EMM estimation to work well, it is imperative that
the SNP density capture all of the salient features (correlation structure,
conditional heteroskedasticity, asymmetry, fat tails, etc.) of the observed
data. Two types of diagnostic check should be routinely conducted: residual

16Since each model in the expansion is restarted 751 times, this may take a while!

892 22. Seminonparametric Conditional Density Models

analysis, and SNP model simulation. The S+FinMetrics implementation
of SNP provides convenient method functions to facilitate this diagnostic
analysis.

22.5.1 Residual Analysis

Table 22.4 shows the generic extractor functions for "SNP" objects avail-
able in S+FinMetrics. To illustrate these functions, consider the Gaussian
AR(1)-GARCH(1,1) SNP object fit.1111000 computed from the spot re-
turn data. To extract the estimated coe cients, use

> coef(fit.11110000)

Conditional Mean Coefficients:

mu ar(1)

0.018 0.0911

Conditional Variance Coefficients:

s0 arch(1) garch(1)

0.0783 0.1881 0.7822

Note that S-PLUS allows “lazy evaluation” so that coef() may be used
instead of coefficients().17 To return the residuals, use

> resid.11110000 = residuals(fit.11110000)

> resid.11110000[1:3]

Positions exch

04/18/1975 0.09765122

04/25/1975 -0.10085499

05/02/1975 0.04326546

Since underlying data, dmRet.dat, is a "timeSeries" object, the residuals
are returned as a "timeSeries" object. The standardized residuals (resid-
uals divided by an estimate of the conditional standard deviation) may also
be extracted by passing the optional argument standardized:

> resid.11110000.std = residuals(fit.11110000,stardard=T)

The estimated conditional standard deviations may be extracted directly
using the extractor function sigma.t.SNP:

> sig.11110000 = sigma.t.SNP(fit.1111000)

A comparison of these estimated conditional standard deviations with a
simple nine-period moving average of absolute log returns, computed using

17Similarly, fitted() may be used instead of fitted.values() and resid() may be
used instead of residuals().

22.5 SNP Model Diagnostics 893

Moving average of absolute log returns

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

conditional standard deviations from SNP fit

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

FIGURE 22.5. Nine-period moving average of absolute log returns and esti-
mated conditional standard deviations from the Gaussian AR(1)-GARCH(1,1)
SNP model.

Function Description
coefficients Extract the estimated coe cients
residuals Extract the residuals
fitted.values Extract the fitted values
sigma.t.SNP Extract the estimated conditional standard deviations

TABLE 22.4. SNP extractor functions

> par(mfrow=c(2,1))

> plot(SMA(abs(dmRet.dat[15:834,"exch"])),

+ main="Moving average of absolute log returns",

+ reference.grid=F)

> plot(sqrt(sig.11110000),

+ main="conditional standard deviations from SNP fit",

+ reference.grid=F)

> par(mfrow=c(1,1))

is shown in Figure 22.5.
For multivariate models, the sigma.t.SNP extracts the estimated con-

ditional standard deviations associated with each series. To extract condi-
tional covariances, set the optional argument cov=T.

894 22. Seminonparametric Conditional Density Models

If the fitted SNP model adequately describes the conditional density
of the observed data, then the standardized residuals should resemble a
Gaussian white noise process. A variety of diagnostic functions for testing
if a series behaves like Gaussian white noise are available in S-PLUS and
S+FinMetrics. Chapter 3 reviews some of these functions.
Graphical diagnostics (correlograms, QQ-plots, histograms, etc.) may be

conducted on the extracted residuals from an "SNP" object. For example,
to plot the standardized residuals from the AR(1) SNP model for the spot
return, use

> plot(residuals(fit.11110000,stardard=T),reference.grid=F)

> abline(h=0)

Alternatively, the plot method for "SNP" objects may be used to automat-
ically generate a number of useful diagnostic plots for residual analysis. To
display a menu of available plots, type

> plot(fit.11110000)

Make a plot selection (or 0 to exit):

1: plot: All

2: plot: Response and Fitted Values

3: plot: SNP Marginal Density

4: plot: Std. Residuals

5: plot: Normal QQplot of Std. Residuals

6: plot: ACF of Std. Residuals

7: plot: PACF of Std. Residuals

8: plot: ACF of Squared Std. Residuals

9: plot: PACF of Squared Std. Residuals

Selection:

For example, selecting 4 gives a trellis plot of the standardized residuals
shown in Figure 22.6.
To create plots directly without using the menu, set the optional argu-

ment ask=F. For example, to create an ACF plot of the squared residuals,
use18

> plot(fit.11110000,ask=F,which.plots=7)

This plot, displayed in Figure 22.7, shows that the Gaussian AR(1)-
GARCH(1,1) has captured the autocorrelation in the conditional heteroske-
dasticity present in the spot return data.
For multivariate data, the diagnostic plots produced by the plot method

adjust accordingly. To illustrate, consider the bivariate Gaussian VAR(1)

18Note that the number associated with the plot is one less than the number displayed
in the menu of plot choices.

22.5 SNP Model Diagnostics 895

-3
-2

-1
0

1
2

3
4

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

dmRet.dat[, "exch"]

Std. Residuals versus Time

FIGURE 22.6. Standardized residuals from a Gaussian AR(1) SNP model for
weekly spot returns.

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30

dmRet.dat[, "exch"]

Lag

AC
F

Std. Residual^2 ACF

FIGURE 22.7. SACF of standardized squared residuals from a Gaussian AR(1)
SNP model fit to weekly spot returns.

896 22. Seminonparametric Conditional Density Models

-4
-2

0
2

4

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

exch

-5
0

5

forward

Std. Residuals versus Time

FIGURE 22.8. Standardized residuals from a bivariate Gaussian VAR(1) SNP
model fit to weekly spot returns and forward discounts.

SNP model fit to the exchange rate data. Figures 22.8 and 22.9 show the
plots of the standardized residuals and correlograms for the squared stan-
dardized residuals produced using

> plot(bfit.10010000,ask=F,which.plots=c(3,7))

22.5.2 Simulation

In addition to examining the residuals from a fitted SNP model, one should
also examine the properties of simulated data from a fitted SNP model. If
the SNP density truly captures all of the features of the observed data,
then simulated data from the model should also reflect these features. Fur-
ther, as emphasized in Andersen and Lund (1997), if the fitted SNP model
is to be used in conjunction with EMM, it is important to check the dy-
namic stability of the SNP model. For complicated SNP models, it may be
nearly impossible to determine if the model is dynamically stable by exam-
ining the estimated coe cients. A simple way to check dynamic stability
is to generate long simulations from the fitted model and observe if these
simulations become explosive.
Once an SNP model has been fit, simulated data of length equal to the

observed data from the fitted model can be generated using the generic

22.6 Prediction from an SNP Model 897

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30

exch

0 5 10 15 20 25 30

forward

Lag

AC
F

Std. Residual^2 ACF

FIGURE 22.9. SACF of squared standardized residuals from a bivariate Gaussian
VAR(1) SNP model fit to weekly spot returns and forward discounts.

simulate function. For example, to simulate from the Gaussian AR(1)
SNP model fit to the spot return data, use

> sim.10010000 = simulate(fit.10010000)

The simulated return data along with the actual return data are illustrated
in the top two panels of Figure 22.10. Clearly, the data simulated from the
Gaussian AR(1) does not reflect the marked conditional heteroskedasticity
in the actual return data. This can be further verified by comparing the
correlograms of the squared returns for the two series. In contrast, the
bottom panel of Figure 22.10 shows that simulations from a semiparametric
AR(1)-GARCH(1,1) mimic the actual data quite well.

22.6 Prediction from an SNP Model

Once an SNP model has been fit, -step-ahead predictions, along with
estimated confidence bands, may be computed using the generic predict
function. For example, to compute -step-ahead predictions (= 1 10)
from the Gaussian AR(1)-GARCH(1,1) model for the spot return, use

> predict.11110000 = predict(fit.11110000,n.predict=10)

> class(predict.11110000)

898 22. Seminonparametric Conditional Density Models

US/DM spot returns

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

-6
2

8

Simulated returns from Gaussian AR(1) SNP model

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

-4
0

2
4

Simulated returns from semi-parametric AR(1)-GARCH(1,1) SNP model

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

-1
0

-2
6

FIGURE 22.10. Actual returns and simulated returns from a Gaussian AR(1)
SNP model and semiparametric AR(1)-GARCH(1,1) SNP model.

[1] "forecast"

The object returned by predict is of class "forecast", which has print,
summary, and plot methods.19 The summary method shows the forecasts
along with estimated standard errors:

> summary(predict.11110000)

Predicted Values with Standard Errors:

prediction std.err

1-step-ahead 0.0870 0.1260

2-step-ahead 0.0863 0.1338

...

10-step-ahead 0.0882 0.1495

The plot method allows the forecasts and user specified confidence bands
to be plotted along with the original data. For example, to plot the spot
return forecasts appended to the actual data along with 95% confidence
bands use

19Objects of class "forecast" are defined and used in S+FinMetrics. See the online
help for forecast.object.

22.7 Data Transformations 899

-2
-1

0
1

825 830 835 840

exch

index

va
lu

es

FIGURE 22.11. -step-ahead forecasts from a Gaussian AR(1)-GARCH(1,1) SNP
model.

> plot(predict.11110000,dmRet.dat[,"exch"],n.old=10,width=2)

The resulting plot is illustrated in Figure 22.11. The optional arguments
n.old=10 and width=2 specifies that the forecasts are appended to the 10
most recent observations and that the confidence band has width equal to
two times the estimated forecast standard error.

22.7 Data Transformations

A number of data transformations may be employed to improve the stabil-
ity of the fitted SNP models. These transformations are described in the
following subsections. The S-PLUS code is structured so that the transfor-
mations are transparent to the user and all input and output is in the units
of the untransformed data.

22.7.1 Centering and Scaling Transformation

To improve the stability of computation, the original data for SNP esti-
mation are centered and scaled to have mean zero and identity covariance
matrix. This location-scale transform is accomplished by computing esti-

900 22. Seminonparametric Conditional Density Models

mates of the unconditional mean and variance of the original data:

ȳ = 1
X
=1

y

S = 1
X
=1

(y ȳ)(y ȳ)0

The SNP model is then estimated using the standardized data:

ỹ = S 1 2(y ȳ) (22.19)

where S 1 2 denotes the Cholesky factor of S 1. To aid interpretation of
results with multivariate data, it is often useful to make S diagonal be-
fore the standardization (22.19) is employed. Because of the location-scale
transform (22.10) employed in SNP estimation itself, the statistical prop-
erties of the SNP estimates are not a ected by the standardization (22.19).
When predictions, simulations, or other information about y is produced
from the SNP estimates, the location-scale transformation is reversed so
that the desired quantities relate to the actual data.
Sometimes it may be necessary to use external estimates of ȳ and S

instead of the defaults to standardize the data or it may not be neces-
sary to standardize the data. Within the SNP function, the standardiza-
tion (22.19) is controlled using the optional list argument LStransform.
The components of LStransform are mu, cstat, and pstat, which corre-
spond to ȳ, S1 2 and S 1 2, respectively. By default, LStransform=NULL
and the standardization (22.19) is performed with S diagonal. To per-
form the standardization with S nondiagonal, set the SNP.control op-
tional argument diagS=F. To turn o the standardization, call SNP with
LStransform=list(mu=0, cstat=diag(M), pstat=diag(M)), where M is
the number of columns in the data argument.
For example, to estimate an AR(1) model for the spot return data with

no standardization, use

> fit.ar1 = SNP(dmRet.dat[,"exch"], model=SNP.model(ar=1),

+ n.drop=14,LStransform=list(mu=0,cstat=1,pstat=1))

> coef(fit.ar1)

Conditional Mean Coefficients:

mu ar(1)

0.0547 0.0222

The above result agrees with an AR(1) model estimated using the
S+FinMetrics function OLS:

> fit.OLS = OLS(exch~tslag(exch), data=dmRet.dat[14:834,])

> coef(fit.OLS)

22.7 Data Transformations 901

(Intercept) tslag(exch)

0.0546925 0.02223613

To estimate a bivariate VAR(1) for the exchange rate data with no stan-
dardization, use

> fit.var1 = SNP(dmRet.dat[,1:2],model=SNP.model(ar=1),

+ n.drop=14,

+ LStransform=list(mu=c(0,0),cstat=diag(2),

+ pstat=diag(2)))

> coef(fit.var1)

Conditional Mean Coefficients:

exch forward

mu 0.3012 0.0094

var(1;1) 0.0087 -0.8338

var(1;2) -0.0026 0.9671

The VAR(1) fit using the S+FinMetrics function VAR is

> fit.VAR = VAR(cbind(exch,forward)~ar(1),

+ data=dmRet.dat[14:834,])

> print(coef(fit.VAR), digits=2)

exch forward

(Intercept) 0.3012 0.0094

exch.lag1 0.0087 -0.0026

forward.lag1 -0.8338 0.9671

Notice that the coe cients are arranged di erently in the VAR output.

22.7.2 Transformations to Deal with Heavy Tailed Data

Time series data, particularly financial market data, often contain extreme
or outlying observations. This is not necessarily a problem when the ex-
treme value is considered as a value for y , because it just fattens the
tails of the estimated conditional density. However, once it becomes a lag
and passes into x 1, the optimization algorithm can use an extreme value
in x 1 to fit an element of y nearly exactly, thereby reducing the cor-
responding conditional variance to near zero and inflating the likelihood.
This problem is endemic to procedures that adjust variance on the basis of
observed explanatory variables.
The SNP function allows two methods to alleviate the problem of extreme

values in y . First, for heavy-tailed, mean-reverting data such as daily stock
market returns, the following logistic transformation of the variables in x 1

may be employed:

ˆ = 4
exp{ }

1 + exp{ } 2 = 1 · (22.20)

902 22. Seminonparametric Conditional Density Models

x

-6 -4 -2 0 2 4 6

-4
-2

0
2

4

spline
logit

FIGURE 22.12. Logistic and spline transformations with = ±2.

where denotes an element of x 1. This transformation has a negligible
e ect on values of between and , but progressively compresses
values that exceed ± . Second, for highly persistent data (such as interest
rates) that have a strong ARCH/GARCH component, it can happen that
an estimated SNP density will generate explosive simulations. This creates
problems if a fitted SNP model object is to be used as an auxiliary model
(score) for the EMM estimation. To deal with this problem, the SNP func-
tion allows the following spline transformation of x 1 as an alternative to
the logistic transformation:

ˆ =

1
2 [ln(1)] for

for
1
2 [+ + ln(1 +)] for

(22.21)

Figure 22.12 illustrates the logistic and spline transformations. Because
the logistic and spline transformations only a ect x, not y, the asymptotic
properties of SNP estimator is not a ected.
To use the logistic transformation in SNP estimation, set the optional

argument xTransform of SNP.control to "logistic". For example, to
estimate a semiparametric AR(1) model for the spot return with a logistic
transformation, use

> fit.10014000.logit = SNP(dmRet.dat[,"exch"],

+ model=SNP.model(ar=1,zPoly=4), n.drop=14,

22.7 Data Transformations 903

+ control=SNP.control(xTransform="logistic"))

Since the original data are usually standardized before applying the SNP
estimation, the inflection point of the logistic transformation is set
to two by default. To change the default value of , pass the optional
argument inflection to SNP.control:

> fit.10014000.logit2 = SNP(dmRet.dat[,"exch"],

+ model=SNP.model(ar=1,zPoly=4), n.drop=14,

+ control=SNP.control(xTransform = "logistic",

+ inflection=2.5))

To use the spline transformation, set the optional argument xTransform
of SNP.control to "spline". By default, the inflection point for the
spline transformation is set to 4. To change the default value of the inflec-
tion point, simply set the optional argument inflection to the desired
value. To illustrate the importance of the spline transformation for highly
persistent data with a strong ARCH/GARCH component, consider fitting
an AR(1)-ARCH(4) model to the weekly 3-month U.S T-bill data in the
"timeSeries" object tbill.dat with and without a spline transformation:

> tb3mo = tbill.dat[,"tb3mo"]

> fit.204100 = SNP(tbill.dat[,"tb3mo"],model=SNP.model(ar=2,

+ arch=4), n.drop=6)

> fit.204100.s = SNP(tbill.dat[,"tb3mo"],model=SNP.model(ar=2,

+ arch=4), n.drop=6,

+ control=SNP.control(xTransform="spline",

+ inflection=4))

Simulations from the two fits, along with the T-bill data, are given in Figure
22.13. Notice that the untransformed fit generates explosive simulations,
whereas the spline transformed fit does not.

22.7.3 Transformation to Deal with Small SNP Density
Values

If the fitted SNP model is used in conjunction with the EMM estimation,
it may happen that the estimated SNP density is smaller than the smallest
value that the FORTRAN DLOG function can evaluate at simulated values
generated by the EMM function. To avoid potential numerical problems, the
SNP density may be replaced by

(|) =

©
P2[R 1()] + 0

ª
(|)R

[()]2 () + 0

where the user sets the value of 0. The default value suggested by Gallant
and Tauchen (2001) is 0 = 0 001. This value is set by the SNP.control
optional argument eps0.

904 22. Seminonparametric Conditional Density Models

T-bill data

1965 1970 1975 1980 1985 1990 1995

4
8

12
16

simulated data from fitted SNP 204100 model

1965 1970 1975 1980 1985 1990 1995

-2
50

-5
0

simulated data from SNP 204100 model with spline transform

1965 1970 1975 1980 1985 1990 1995

-2
0

0
20

FIGURE 22.13. Weekly 3-month U.S. T-bill rates and simulations from a SNP
AR(1)-ARCH(4) model without and with spline transformation.

22.8 Examples

The following subsections illustrate the process of fitting an SNP model to
some common univariate financial time series. The fitting process makes
use of the model selection strategy and residual diagnostics detailed in
the previous sections. The final models will be used as score generators
(auxiliary models) for the EMM examples in the next chapter.20

22.8.1 SNP Models for Daily Returns on Microsoft Stock

Data

The data are daily continuously compounded returns, based on closing
prices, on Microsoft stock over the period March 14, 1986 through June 30,
2003. There are 4365 observations. Similar data, ending in February 2001,
was analyzed in Gallant and Tauchen (2002). Figure 22.14 shows the data
along with the sample ACF of the squared returns, and Figure 22.15 shows
four distribution summary plots. Some summary statistics, computed using
the S+FinMetrics function summaryStats, are

20The "SNP" objects for these models are included with S+FinMetrics 2.0.

22.8 Examples 905

Daily returns on Microsoft stock

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

-0
.3

0
-0

.1
0

0.
10

Lag

A
C

F

0 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : msft.ts^2

FIGURE 22.14. Daily log returns on Microsoft and SACF of squared returns.

> summaryStats(msft.ts)

Sample Quantiles:

min 1Q median 3Q max

-0.3012 -0.01274 0 0.01567 0.1957

Sample Moments:

mean std skewness kurtosis

0.0016 0.02526 -0.2457 11.66

Number of Observations: 4365

From Figures 22.14 and 22.15, it is clear that the returns exhibit consid-
erably conditional heteroskedasticity as well as a few large outliers. The
conditional transition density is likely to be non-Gaussian but symmetric.

SNP Model Selection

For heavy-tailed mean-reverting financial return data, it is recommended
to use the logistic transformation (22.20) when fitting the SNP models. In
the model selection strategy with financial return data, it is recommended
to initially increment from 0 to 4. Financial return data have thick
tailed densities relative to the Gaussian, and only a quartic term in
can capture this. The Hermite polynomial P() has to “move” the mass

906 22. Seminonparametric Conditional Density Models

-0.3 -0.2 -0.1 0.0 0.1 0.2

0
2

4
6

8
10

returns

-0
.3

-0
.1

0.
0

0.
1

0.
2

re
tu

rn
s

returns

de
ns

ity
 e

st
im

at
e

-0.3 -0.2 -0.1 0.0 0.1 0.2

0
2

4
6

8
10

12
14

Quantiles of Standard Normal

re
tu

rn
s

-2 0 2

-0
.3

-0
.1

0.
0

0.
1

0.
2

FIGURE 22.15. Distribution diagnostics for daily log returns on Microsoft.

of the Gaussian density around. It has to increase the mass around zero,
depress the mass somewhat on either side of zero, and then increase the
mass in the tails by going to ± . Linear, quadratics, and cubics in P()
cannot do this, but a quartic can. In fitting SNP models, it is possible that
incrementing by 1 starting from = 0 and moving up to = 4
produces inferior fits. The reason is that a model with = 1 is not a
good model for the density of the return data, and the fit may involve an
area of the parameter space that is far away from SNP models with larger
values of . It is not recommended to fit SNP models with 8. For
these models, P() generally only captures little wiggles and the nonlinear
fits can become somewhat unstable. If the density is roughly symmetric, it
is preferred to increase from 4 in increments of 2 as the even powers
of () are more important.
Based on the above discussion, the following model selection strategy is

entertained to find the best fitting SNP model for the MSFT daily returns:

10010000 11110000

11114000

11116000 11116010 11116020

11118000

11216000

22.8 Examples 907

The initial Gaussian AR(1) SNP model is fit using the random restart
parameters

> fOld = c(0, 1e-5, 0, -1e-5, 1e-5, 1e-5, 1e-4, 0, -1e-4,

+ 1e-4, 1e-4, 1e-3, 0, -1e-3, 1e-3, 1e-3, 1e-5, 0,

+ -1e-2, 1e-2, 1e-2, 1e-1, 0, -1e-1, 1e-1, 1e-1,

+ 1e0, 0, -1e0, 1e0, 1e0)

> fNew = c(0, 0, 1e-5, 1e-5, -1e-5, 1e-5, 0, 1e-4, 1e-4,

+ -1e-4, 1e-4, 0, 1e-3, 1e-3, -1e-3, 1e-3, 0,

+ 1e-2, 1e-2, -1e-2, 1e-2, 0, 1e-1, 1e-1, -1e-1,

+ 1e-1, 0, 1e0, 1e0, -1e0, 1e0)

> n.start = c(0,rep(25,30))

> fit.msft.10010000 = SNP(msft.ts, model=SNP.model(ar=1),

+ control = SNP.control(xTransform="logistic",

+ n.start=n.start,fOld=fOld,

+ fNew=fNew),

+ n.drop=14, trace=T)

Although it is not necessary to use random restarts with the initial model,
it will become essential to use them for more complicated models. The
remaining models in the model selection strategy are fit using the expand
function as follows:

> fit.msft.11110000 = expand(fit.msft.10010000, arch=1,

+ garch=1, trace=T)

> fit.msft.11114000 = expand(fit.msft.11110000, zPoly=4)

> fit.msft.11116000 = expand(fit.msft.11114000, zPoly=2)

> fit.msft.11116010 = expand(fit.msft.11116000, xPoly=1)

> fit.msft.11116020 = expand(fit.msft.11116010, xPoly=1)

> fit.msft.11216000 = expand(fit.msft.11116000, arch=1)

> fit.msft.12116000 = expand(fit.msft.11116000, garch=1)

> fit.msft.11118000 = expand(fit.msft.11116000, zPoly=2)

The BIC values for the fitted SNP models are summarized in Table 22.5.
According to the BIC, the best fitting SNP models are the semiparametric
GARCH(1,1) with = 6. The same specification was chosen by Gallant
and Tauchen (2002). A summary of this SNP fit is

> summary(fit.msft.11116000)

Model: Semiparametric GARCH

Hermite Polynomial Coefficients:

z^0 z^1 z^2 z^3 z^4

coef 1.0000 -0.0189 -0.3336 0.0138 0.0558

(std.err) 0.0302 0.0172 0.0097 0.0043

(t.stat) -0.6254 -19.4181 1.4262 12.9964

908 22. Seminonparametric Conditional Density Models

SNP Model BIC
10010000 1 0 0 1 0 0 0 0 1.4216
11110000 1 1 1 1 0 0 0 0 1.3651
11114000 1 1 1 1 4 0 0 0 1.3394
11116000 1 1 1 1 6 0 0 0 1.3377
11116s00 1 1 1 1 6 0 0 0 1.3354
11118000 1 1 1 1 8 0 0 0 1.3390
11116010 1 1 1 1 6 0 1 0 1.3434
11116020 1 1 1 1 6 0 2 0 1.3487
11216000 1 1 2 1 6 0 0 0 1.3387
12116000 1 2 1 1 6 0 0 0 1.3383

TABLE 22.5. BIC values for SNP models fit to Microsoft returns

z^5 z^6

coef -0.0012 -0.0025

(std.err) 0.0008 0.0003

(t.stat) -1.5228 -8.7763

Conditional Mean Coefficients:

mu ar(1)

coef -0.0020 0.0186

(std.err) 0.0318 0.0159

(t.stat) -0.0612 1.1660

Conditional Variance Coefficients:

s0 arch(1) garch(1)

coef 0.0679 0.1630 0.8615

(std.err) 0.0073 0.0135 0.0099

(t.stat) 9.2548 12.1146 86.9439

Notice that only the coe cients on the even powers of in the Hermite
polynomial P() are statistically di erent from zero. This suggests refitting
the 11116000 model with the added restriction that the coe cients on the
odd powers of are equal to zero

> fit.msft.11116s00 = SNP(data = msft.ts,

+ model = SNP.model(ar=1, arch=1, garch=1, zPoly=6),

+ control = SNP.control(xTransform="logistic",

+ n.start=n.start,

+ fOld=fOld, fNew=fNew),

+ n.drop = 14, trace=T,

+ coef = c(1,0,0,0,0,0,0,0,0,1,0,0),

+ est = c(0,0,1,0,1,0,1,1,1,1,1,1))

This restricted model, denoted 11116s00, gives the overall lowest BIC value.

22.8 Examples 909

The function SNP.auto may also be used to find the best fitting SNP
model:

> fit.msft.auto = SNP.auto(msft.ts, n.drop=14,

+ control = SNP.control(xTransform="logistic",

+ n.start = n.start, seed = 011667,

+ fOld = fOld, fNew = fNew))

Here, the best fitting model is a semiparametric GARCH(1,1) with = 7,
01117000. It has a BIC value equal to 1 3373, which is slightly lower than
the 11116000 model but slightly higher than the restricted 11116000 model.

SNP Model Diagnostics

From the analysis in the previous section, the SNP 11116000 and 11116s00
models are determined to be the best fitting SNP models for the daily
returns on Microsoft stock. The estimated SNP density for the 11116000
model, compared to a normal density, is shown in Figure 22.16. As ex-
pected, the SNP density is roughly symmetric and has fatter tails than
the normal. The sample ACF and PACF plots of the standardized residu-
als and squared standardized residuals (not shown) indicate no remaining
serial correlation.
Simulations from the SNP 11116000 model are computed using

> sim.msft.11116000 = simulate(fit.msft.11116000)

The simulated data, shown in Figure 22.17, mimics the actual data quite
well.

22.8.2 SNP Models for Daily Returns on the S&P 500 Index

Data

The data consist of daily continuously compounded returns, based on clos-
ing prices, on the S&P 500 index over the period March 14, 1986 through
June 30, 2003 (same time span as the data for the Microsoft returns). Sim-
ilar data were analyzed in Gallant and Tauchen (2002). Figure 22.18 shows
the data along with the sample ACF of the squared returns, and Figure
22.19 shows four distribution summary plots. Sample summary statistics
are

> summaryStats(sp500.ts)

Sample Quantiles:

min 1Q median 3Q max

-0.2047 -0.004686 0.0004678 0.005827 0.09099

Sample Moments:

mean std skewness kurtosis

910 22. Seminonparametric Conditional Density Models

0
5

10
15

20
25

-0.05 0.0 0.05

msft.ts

x

y

SNP Normal

FIGURE 22.16. Estimated conditional density from the SNP 11116000 model fit.

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

-0
.1

5
-0

.1
0

-0
.0

5
0.

00
0.

05
0.

10
0.

15
0.

20

FIGURE 22.17. Simulated returns from the SNP 11116000 model fit.

22.8 Examples 911

Daily returns on S&P 500 index

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

-0
.2

0
-0

.1
0

0.
00

Lag

A
C

F

0 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : sp500.ts^2

FIGURE 22.18. Daily log returns on the S&P 500 index and SACF of squared
returns.

0.0003916 0.01124 -1.486 32.59

Number of Observations: 4365

The S&P 500 returns appear to be highly non-normal, with negative skew-
ness and very large kurtosis, and display considerable conditional het-
eroskedasticity.

SNP Model Selection

A model selection strategy similar to that used for the Microsoft returns
is followed. However, the S&P 500 index is expected to display richer dy-
namics than any single stock. The manual search strategy employed is

10010000 11110000

11114000

11116000

11118000 11118010 11118020

Table 22.6 reports the BIC values for the above models using the
S+FinMetrics functions SNP and expand with random restarts.
The BIC preferred model is the semiparametric GARCH(1,1) model with
= 8, 11118000. A summary of the fit is

> summary(fit.sp500.11118000)

912 22. Seminonparametric Conditional Density Models

Model: Semiparametric GARCH

Hermite Polynomial Coefficients:

z^0 z^1 z^2 z^3 z^4

coef 1.0000 -0.0938 -0.4103 0.0356 0.0925

(std.err) 0.0317 0.0239 0.0187 0.0098

(t.stat) -2.9543 -17.1575 1.8996 9.4081

z^5 z^6 z^7 z^8

coef -0.0049 -0.0082 0.0001 0.0002

(std.err) 0.0036 0.0014 0.0002 0.0001

(t.stat) -1.3710 -5.7050 0.5784 3.8843

Conditional Mean Coefficients:

mu ar(1)

coef 0.1032 0.0202

(std.err) 0.0232 0.0162

(t.stat) 4.4547 1.2451

Conditional Variance Coefficients:

s0 arch(1) garch(1)

coef 0.0122 0.1620 0.9105

(std.err) 0.0032 0.0072 0.0049

(t.stat) 3.8641 22.6131 184.9564

Information Criteria:

BIC HQ AIC logL

1.2426 1.2365 1.2331 -5352.208

The best fitting model using SNP.auto

> fit.sp500.auto = SNP.auto(sp500.ts,n.drop=14,

+ control = SNP.control(xTransform="logistic",

+ n.start = n.start, seed = 011667,

+ fOld = fOld, fNew = fNew))

is an SNP 01118000 model, which is very similar to the 11118000 model
but has a slightly higher BIC value:

> fit.sp500.auto$obj[,"BIC"]

1.243061

Gallant and Tauchen (2002) reported the results from a specification
search and suggested the SNP models 20b14000 and 20b14010, where b
represents = 11. When these models are fit to the updated S&P 500
data, using an expansion path starting from a Gaussian AR(2) with ran-

22.8 Examples 913

-0.20 -0.15 -0.10 -0.05 0.0 0.05 0.10

0
5

10
15

20
25

returns

-0
.2

0
-0

.1
0

0.
0

0.
10

re
tu

rn
s

returns

de
ns

ity
 e

st
im

at
e

-0.2 -0.1 0.0 0.1

0
5

10
15

20
25

Quantiles of Standard Normal

re
tu

rn
s

-2 0 2

-0
.2

0
-0

.1
0

0.
0

0.
10

FIGURE 22.19. Distribution summary from daily log returns on the S&P 500
index.

SNP Model BIC
10010000 1 0 1 1 0 0 0 0 1.4218
11110000 1 1 1 1 0 0 0 0 1.2798
11114000 1 1 1 1 4 0 0 0 1.2492
11116000 1 1 1 1 6 0 0 0 1.2479
11118000 1 1 1 1 8 0 0 0 1.2426
11118010 1 1 1 1 8 0 1 0 1.2465
11118020 1 1 1 1 8 0 2 0 1.2481

TABLE 22.6. BIC values for SNP models fit to the SP 500 returns.

914 22. Seminonparametric Conditional Density Models

0
10

20
30

40
50

-0.02 0.0 0.02

data2.SP

x

y

SNP Normal

FIGURE 22.20. Estimated conditional density from the SNP 11118000 model fit.

dom restarts, the BIC values are 1.2597 and 1.2598, respectively. The SNP
11118000 model still dominates in terms of BIC.

SNP Model Diagnostics

From the analysis in the last subsection, the SNP 11118000 model is deter-
mined to be the best fitting SNP model for the daily returns on the S&P
500 index. The estimated SNP density, shown in Figure 22.20, is roughly
symmetric and has fatter tails than the normal. Simulated data from the
fitted 11118000 model, along with the SACF of the squared data, are de-
picted in Figure 22.21. These plots confirm that the fitted 11118000 model
adequately captures the salient features of the S&P 500 daily returns.

22.8.3 SNP Models for Weekly 3-Month U.S. T-Bill Rates

Data

The data are weekly (Friday) observations on the 3-month U.S. Treasury
Bill rate (annualized rates times 100) over the period January 5, 1962
through March 31, 1995. This data has been analyzed by Gallant and
Tauchen (2002) to illustrate the EMM estimation of a two factor interest

22.8 Examples 915

Simulated returns from SNP model

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

-0
.1

2
-0

.0
4

0.
04

Lag

A
C

F

0 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : sim.sp.11118000^2

FIGURE 22.21. Simulated returns and SACF of squared returns from the SNP
11118000 model fit.

rate di usion model21. The data, obtained from ftp://ftp.duke.econ, are
in the first column of the S+FinMetrics "timeSeries" object tbill.dat

> colIds(tbill.dat)

[1] "tb3mo" "tb12mo" "tb10yr"

and are labeled "tb3mo". The data and sample ACF are displayed in Figure
22.22. These plots show that interest rates are highly persistent and that the
volatility of rates increases with the level of rates. A simple AR(1) model
is often used to characterize the conditional mean. Summary statistics of
the residuals from a fitted AR(1) to the interest rate data are

> resid.ar1 = residuals(OLS(tb3mo~tslag(tb3mo),

data=tbill.dat, na.rm=T))

> summaryStats(resid.ar1)

Sample Quantiles:

min 1Q median 3Q max

-2.156 -0.07646 -0.006411 0.08537 1.852

21These data are similar to the data used by Andersen and Lund (1997). They used
weekly (Wednesday) observations on the 3-month U.S. T-bill over the period 1954 to
1995.

916 22. Seminonparametric Conditional Density Models

1965 1970 1975 1980 1985 1990 1995

4
6

8
10

12
14

16

Lag

A
C

F

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : tb3mo

FIGURE 22.22. Weekly observations on U.S. 3-month T-bill rate and SACF.

Sample Moments:

mean std skewness kurtosis

1.465e-015 0.2667 -0.925 16.89

Number of Observations: 1734

These statistics and the distribution summary plots in Figure 22.23, show
that the innovation to the one-step-ahead conditional density based on an
AR(1) model of interest rates is highly non-normal.

SNP Model Selection

Andersen and Lund (1997), Tauchen (1997), McManus and Watt (1999),
Jensen (2001), and Gallant and Tauchen (2002) fitted SNP models to
weekly interest rates. For highly persistent data like interest rates, it is
recommended to use the spline transformation (22.20) when fitting the
SNP models. In addition, as stressed by Andersen and Lund (1997), Gal-
lant and Long (1997), and Tauchen (1997, 1998), for interest rate data it is
important to check the dynamic stability of any candidate SNP model that
is to be used as a score generator for the EMM estimation. Dynamic sta-
bility may be checked visually by plotting long simulations from the fitted
SNP model.

22.8 Examples 917

SNP Model BIC
GARCH Models

11110000 1 1 1 1 0 0 0 0 -1.4071
11114000 1 1 1 1 4 0 0 0 -1.4524
11116000 1 1 1 1 6 0 0 0 -1.4482
11118000 1 1 1 1 8 0 0 0 -1.4603
11118010 1 1 1 1 8 0 1 0 -1.4474
11118020 1 1 1 1 8 0 2 0 -1.4320

ARCH Models
10110000 1 0 1 1 0 0 0 0 -1.1700
10210000 1 0 2 1 0 0 0 0 -1.2261
10310000 1 0 3 1 0 0 0 0 -1.3104
10410000 1 0 4 1 0 0 0 0 -1.3406
10510000 1 0 5 1 0 0 1 0 -1.3554
10610000 1 0 6 1 0 0 2 0 -1.3622
10710000 1 0 7 1 0 0 0 0 -1.3631
10810000 1 0 8 1 0 0 0 0 -1.3678
10814000 1 0 8 1 4 0 0 0 -1.4217
10815000 1 0 8 1 5 0 0 0 -1.4196
10816000 1 0 8 1 6 0 0 0 -1.4174
10817000 1 0 8 1 7 0 0 0 -1.4234
10818000 1 0 8 1 8 0 0 0 -1.4289
10818010 1 0 8 1 8 0 1 0 -1.4197
10818020 1 0 8 1 8 0 2 0 -1.4044

TABLE 22.7. BIC values for SNP models fit to weekly U.S. T-bill rates

918 22. Seminonparametric Conditional Density Models

-2 -1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

percent times 100

-2
-1

0
1

2

pe
rc

en
t t

im
es

 1
00

percent times 100

de
ns

ity
 e

st
im

at
e

-2 -1 0 1 2

0.
0

0.
5

1.
0

1.
5

Quantiles of Standard Normal

tb
3m

o.
m

at

-2 0 2

-2
-1

0
1

2

FIGURE 22.23. Distribution summary of weekly returns on U.S. 3-month T-bill
rate.

Two types of manual model selection strategy are followed. In the first
strategy, an expansion path based on a GARCH(1,1) leading term is used.
This strategy produces the overall BIC minimizing SNP model. In the
second strategy, following Gallant and Tauchen (2002), only pure ARCH
models with 4 are considered. In both cases, the best fitting initial
Gaussian AR model has = 5, which seems rather high. In fact, for both
strategies, SNP models with = 1 lead to better overall fits as measured
by BIC.
The BIC values for a subset of the models fit with the S+FinMetrics

functions SNP and expand using the above strategies are given in Ta-
ble 22.7. For the first strategy, the best fitting model is a semiparamet-
ric AR(1)-GARCH(1,1) with = 8, 11118000. For the second strategy,
the best fitting model is a semiparametric AR(1)-ARCH(8) with = 8,
10818000. Gallant and Tauchen (2002) reported their preferred dynami-
cally stable SNP model as a nonlinear nonparametric AR(1)-ARCH(4),
10414010. The BIC values for these models are -1.4031 and 1 4113, re-
spectively. Finally, the BIC minimizing model found using SNP.auto is a
semiparametric AR(5)-GARCH(1,1) with = 8. The BIC for this model
is 1 4594, which is slightly higher than the BIC for the 11118000 model.
A summary of the SNP 11118000 model fit is

> summary(fit.tb3mo.11118000)

22.8 Examples 919

Model: Semiparametric GARCH

Hermite Polynomial Coefficients:

z^0 z^1 z^2 z^3 z^4

coef 1.0000 0.0440 -0.4300 -0.0091 0.1200

(std.err) 0.0369 0.0355 0.0204 0.0139

(t.stat) 1.1933 -12.1030 -0.4445 8.6598

z^5 z^6 z^7 z^8

coef 0.0014 -0.0117 -0.0001 0.0004

(std.err) 0.0033 0.0016 0.0002 0.0001

(t.stat) 0.4359 -7.1523 -0.3864 6.9470

Conditional Mean Coefficients:

mu ar(1)

coef -0.0034 0.9960

(std.err) 0.0017 0.0013

(t.stat) -1.9517 753.3579

Conditional Variance Coefficients:

s0 arch(1) garch(1)

coef 0.0010 0.2095 0.8842

(std.err) 0.0001 0.0201 0.0093

(t.stat) 7.0564 10.3975 94.7220

Information Criteria:

BIC HQ AIC logL

-1.4603 -1.4732 -1.4808 2561.52

Convergence Type:

relative function convergence

number of iterations: 59

SNP Model Diagnostics

Tauchen (1997) and Gallant and Tauchen (2002) stressed that the BIC
minimizing SNP model may not be the best choice for weekly interest
rate data, especially if the SNP model is to be used as an auxiliary model
for the EMM estimation. The above analysis identifies four potential SNP
models: 11118000, 10818000, 51118000, and 10414010. The standard resid-
ual diagnostics are similar for these models. All of the models except the
5111800 model show slight autocorrelation in the standardized residuals.
Figure 22.24 shows simulated values and estimated conditional volatilities

920 22. Seminonparametric Conditional Density Models

11118000 model

1965 1970 1975 1980 1985 1990 1995

-1
0

30

11118000 model

1965 1970 1975 1980 1985 1990 1995

0.
2

1.
0

10818000 model

1965 1970 1975 1980 1985 1990 1995

-2
0

20

10818000 model

1965 1970 1975 1980 1985 1990 1995

0.
2

1.
0

51118000 model

1965 1970 1975 1980 1985 1990 1995

-1
0

35

51118000 model

1965 1970 1975 1980 1985 1990 1995

0.
2

1.
0

10414010 model

1965 1970 1975 1980 1985 1990 1995

0
10

20

10414010 model

1965 1970 1975 1980 1985 1990 1995

0.
2

1.
0

FIGURE 22.24. Simulations (left column) and estimated conditional volatility
(right column) from fitted SNP models for weekly U.S. T-bill rates.

from the four models. All models appear to be dynamically stable and have
similar fitted conditional volatilities.

22.9 References

Andersen, T.G. and J. Lund (1997). “Estimating Continuous-Time
Stochastic Volatility Models of the Short-Term Interest Rate,” Journal of
Econometrics, 77, 343-377.

Bansal, R., A.R. Gallant, R. Hussey and G. Tauchen (1994). “Non-
parametric Estimation of Structural Models for High-Frequency Currency
Market Data,” Journal of Econometrics, 66, 251-287.

Bollerslev, T. (1986). “Generalized Autoregressive Conditional Het-
eroskedasticity,” Journal of Econometrics, 31, 307-327.

Coppejans, M. and A.R. Gallant (2002). “Cross-Validated SNP Den-
sity Estimates,” Journal of Econometrics, 110, 27-65.

Davidian, M. and R.J. Carroll (1987). “Variance Function Estima-
tion,” Journal of the American Statistical Association, 82, 1079-1091.

22.9 References 921

Ding, Z., C.W.J. Granger and R.F. Engle (1993). “A Long Memory
Property of Stock Market Returns and a New Model,” Journal of Empirical
Finance, 1, 83-106.

Engle, R.F. (1982). “Autoregressive Conditional Heteroskedasticity With
Estimates of the Variance of U.K. Inflation,” Econometrica, 50, 987-1008.

Engle, R.F. (1995). ARCH: Selected Readings. Oxford University Press,
Oxford.

Engle, R.F. and G. González-Rivera (1991). “Semiparametric ARCH
Models,” Journal of Business and Economic Statistics, 9(4), 345-359.

Fenton, V.M. and A.R. Gallant (1996a). “Convergence Rates of SNP
Density Estimators,” Econometrica, 64, 719-727.

Fenton, V.M. and A.R. Gallant (1996b). “Qualitative and
Asymptotic Performance of SNP Density Estimators,” Journal of Econo-
metrics, 74, 77-118.

Gallant, A.R. and J.R. Long (1997). “Estimating Stochastic Di eren-
tial Equations E ciently by Minimum Chi-Square,” Biometrika, 84, 125-
141.

Gallant, A.R. and D.W. Nychka (1987). “Seminonparametric Maxi-
mum Likelihood Estimation,” Econometrica, 55, 363-390.

Gallant, A.R., D.A. Hsieh and G. Tauchen (1991). “On Fitting a
Recalcitrant Series: The Pound/Dollar Exchange Rate, 1974-83,” in W.A.
Barnett, J. Powell and G. Tauchen (eds.), Nonparametric and Semipara-
metric Methods in Econometrics and Statistics. Cambridge University Press,
Cambridge.

Gallant, A.R. and G. Tauchen (1989). “Seminonparametric Estima-
tion of Conditionally Constrained Heterogeneous Processes: Asset Pricing
Applications,” Econometrica, 57, 1091-1120.

Gallant, A.R. and G. Tauchen (1999). “The Relative E ciency of
Method of Moments Estimators,” Journal of Econometrics, 92, 149-172.

Gallant, A.R. and G. Tauchen (2001). “SNP: A Program for Nonpara-
metric Time Series Analysis, Version 8.8, User’s Guide,” Working Paper,
University of North Carolina at Chapel Hill.

Gallant, A.R. and G. Tauchen (2001b). “E cient Method of Mo-
ments,” unpublished manuscript, Department of Economics, University of
North Carolina.

922 22. Seminonparametric Conditional Density Models

Gallant, A.R. and G. Tauchen (2002). “Simulated Score Methods
and Indirect Inference for Continuous-time Models,” forthcoming in Y.
Ait-Sahalia, L.P. Hansen and J. Schienkman (eds.), Handbook of
Financial Econometrics. North-Holland, Amsterdam.

Jensen, M.B. (2001). “E cient Method of Moments Estimation of the
Longsta and Schwartz Interest Rate Model,” unpublished manuscript,
Department of Business Studies, Aalborg University, Denmark.

Lütkepohl, H. (1990). Introduction to Multiple Time Series Analysis.
Springer-Verlag, New York.

McManus, D. and D. Watt (1999). “Estimating One Factor Models
of Short-Term Interest Rates,” Working Paper 99-18, Bank of Canada,
Ottawa, Canada.

Schwert, W. (1990). “Stock Volatility and the Crash of ’87,” Review of
Financial Studies, 3(1), 77-102.

Tauchen, G. (1997). “New Minimum Chi-Square Methods in Empirical
Finance,” in Advances in Econometrics, Seventh World Congress, D. Kreps
and K. Wallis (eds.), Cambridge University Press, 279-317.

Tauchen, G. (1998). “The Objective Function of Simulation Estimators
Near the Boundry of the Unstable Region of the Parameter Space,” Review
of Economics and Statistics, 80, 389-398.

Taylor, S. (1986). Modelling Financial Time Series. John Wiley & Sons,
New York.

23
E cient Method of Moments

23.1 Introduction

Dynamic nonlinear models that have unobserved variables pervade sci-
ence.1 Most often they arise from dynamic systems described by a system
of deterministic or stochastic di erential equations in which the state vec-
tor is partially observed. For example, in epidemiology, the SEIR model
determines those susceptible, exposed, infected, and recovered from a dis-
ease, whereas usually data are from case reports that report only those
infected (Olsen and Scha er, 1990). Other examples are continuous- and
discrete-time stochastic volatility models of speculative markets from fi-
nance (Ghysels, Harvey, and Renault, 1996), general equilibrium models
from economics (Gennotte and Marsh, 1993), and compartment models
from pharmacokinetics (Mallet, Mentré, Steimer, and Lokiec, 1988).
Standard statistical methods, both classical and Bayesian, are usually

not applicable in these situations either because it is not practicable to
obtain the likelihood for the entire state vector or because the integration
required to eliminate unobservables from the likelihood is infeasible. On
a case-by-case basis, statistical methods are often available. However, the
purpose here is to describe methods that are generally applicable.
Although determining the likelihood of a nonlinear dynamic system that

has unobserved variables is often infeasible, simulating the evolution of the

1Sections 1 and 2 are based on Gallant and Tauchen (2001) by permission of the
authors.

924 23. E cient Method of Moments

state vector is often quite practicable. The e cient method of moments
(EMM) methodology described in this chapter relies on this.
Briefly, the steps involved in EMM are as follows: Summarize the data

by using quasi-maximum-likelihood to project the observed data onto a
transition density that is a close approximation to the true data generating
process. This transition density is called the auxiliary model and its score
is called the score generator for EMM. The SNP model described in the
previous chapter provides a convenient general-purpose auxiliary model
in this connection. Once a score generator is in hand, given a parameter
setting for the system, one may use simulation to evaluate the expected
value of the score under the stationary density of the system and compute
a chi-squared, or generalized method of moments (GMM)-type, criterion
function. A nonlinear optimizer is used to find the parameter setting that
minimizes the criterion.
If the auxiliary model encompasses the true data generating process, then

quasi maximum likelihood estimates become su cient statistics and EMM
is fully e cient (Gallant and Tauchen, 1996). If the auxiliary model is a
close approximation to the data generating process, then one can expect
the e ciency of EMM to be close to that of maximum likelihood (Gallant
and Long, 1997; Tauchen, 1997). Because EMM is a GMM-type estima-
tor, diagnostic tests are available to assess system adequacy as well as are
graphics that suggest reasons for failure.
Due to the fundamental importance of di usion models for stock price

dynamics, there has been significant progress recently using alternative sim-
ulation strategies; see Brandt and Santa-Clara (1999), Durham and Gallant
(2002), Elerian, Chib, and Shephard (2001), and the references therein.
Despite this recent progress, the alternatives to the simulation methods
discussed here are not as general purpose and are limited in their ability
to deal with latent variables.
This chapter is organized as follows. Section 23.2 gives an overview of

the EMM methodology based on Gallant and Tauchen (2001). Section 23.3
describes the implementation of EMM in S+FinMetrics. Section 23.4 gives
detailed examples of EMM estimation of moving average models for time se-
ries, discrete-time stochastic volatility models for asset returns, and contin-
uous-time models for interest rates.
E cient method of moments has found several recent applications, and

the following is a selected list mainly from finance. Andersen and Lund
(1997), Dai and Singleton (2000), and Ahn, Dittmar, and Gallant (2002)
use the method for interest rate applications. Liu (2000), Andersen, Ben-
zoni, and Lund (2002), and Chernov, Gallant, Ghysels, and Tauchen (2003)
use it to estimate stochastic volatility models for stock prices with such
complications as long memory and jumps. Chung and Tauchen (2001) use
it to estimate and test target zone models of exchange rates. Jiang and
van der Sluis (2000) use it to price options. Valderrama (2001) employs
it for a macroeconomic analysis and Nagypal (2001) employs it in a labor

23.2 An Overview of the EMM Methodology 925

economics application. An excellent survey of EMM and related methods is
given in Gallant and Tauchen (2005). The S+FinMetrics implementation of
EMM described in this chapter is based on the public-domain FORTRAN
code developed by Ronald Gallant and George Tauchen and summarized
in Gallant and Tauchen (2002).2

23.2 An Overview of the EMM Methodology

The following subsections, based on Gallant and Tauchen (2001), give a
general overview of the EMM methodology, and draw connections with the
GMM and maximum likelihood (ML) methodologies. The EMM method-
ology is first motivated by the problem of estimating a continuous-time
stochastic volatility model for short-term interest rates. Minimum chi-
square estimators are then defined, and their e ciency properties are com-
pared. The SNP model is introduced next as a general-purpose auxiliary
model, and then the steps of the EMM methodology are described.

23.2.1 Continuous-Time Stochastic Volatility Model for
Interest Rates

The data used to illustrate ideas are weekly observations on the 3-month
U.S. T-bill rate, from January 1962 through March 1995, yielding 1,735
raw observations.3 Figure 23.1 is a plot of the data. The series { } is the
annualized return on the 3-month T-bill.
The finance literature normally treats interest rates as a di usion, usually

expressed as a system of stochastic di erential equations. The data shown
in Figure 23.1 would thus be regarded as having resulted from discretely
sampling a di usion.
An example is the following two-factor mean-reverting continuous-time

stochastic volatility model:

1 = 1(1) + exp(2 2) 1 1 0 (23.1)

2 = 2(2) + 2

where 1 is observable at time and represents the instantaneous short-
term interest rate. The second component 2 is not observable and rep-
resents a factor that a ects the volatility of the process. The variables

1 and 2 are increments to standard Brownian motion, as discussed
in Chapter 20. Versions of this model without an unobservable volatility
factor

= () + 0

2The code is available at ftp.econ.duke.edu in directory pub/get/emm.
3These data were analyzed in the previous chapter.

926 23. E cient Method of Moments

1965 1970 1975 1980 1985 1990 1995

4
6

8
10

12
14

16

FIGURE 23.1. Weekly observations on 3-month U.S. T-bill rate.

have a long history in financial economics.
In matrix notation, the system (23.1) is

X = A(X) +B(X) W 0 (23.2)

where

X =

µ
1

2

¶
A(X) =

µ
1(1)

2(2)

¶
W =

µ
1

2

¶
B(X) =

µ
exp(2 2) 1 0

0

¶
The process is discretely sampled so that the data available for analysis are

= 100 (1 1 1) = 1 2 (23.3)

which corresponds directly to the interest rate series plotted in Figure 23.1.
The parameters of the system are

= (1 2) (23.4)

As is well known since Lo (1988), the likelihood of the observed process
given under the system dynamics

X = A(X) +B(X) W (23.5)

23.2 An Overview of the EMM Methodology 927

is not readily available in closed form. This aspect of the problem motivates
the method of moments estimation and, in particular, simulated method of
moments as in Ingram and Lee (1991) and Du e and Singleton (1993) and
the essentially equivalent indirect inference method proposed by Gourier-
oux, Monfort, and Renault (1993) and Smith (1993).
The system dynamics (23.5) suggest that, given a value for 0, one could

simulate an increment 0 from the process { : 0 } for a
small time value as follows: Generate two independent normal (0 2)
variates 1 and 2, simulate the Brownian motion incrementW W0 by
putting

W W0 =

µ
1

2

¶
and simulate the increment 0 by putting

X X0 = A(X0) +B(X0) (W W0)

To simulate a value for , sum over the increments:

X X0 =
X
=1

¡
X X(1)

¢
(23.6)

=
X
=1

A(X(1)) +
X
=1

B(X(1))
¡
W W(1)

¢
In passing, it is noted that under regularity conditions (Karatzas and

Shreve, 1991), as decreases, the random variable
P

=1 B((1))(W
W(1)) converges in mean square to a random variable that has many

properties of an integral and is therefore usually denoted as
R
0
B() W .

Similarly, the Reimann sum
P

=1 A((1)) converges to
R
0
A() .

The process { : 0 } is interpreted as the solution to the integral
equation

X X0 =

Z
0

A(X) +

Z
0

B(X) W

which exists under smoothness and growth conditions on the functions
A() and B() (Karatzas and Shreve, 1991).
The important feature of this example, and of all the applications that

are considered in this chapter, is that it can be simulated; that is, given a
value for the parameters of the model, it is straightforward to generate a
simulation {ˆ } =1 of arbitrary length .
The simulation scheme (23.6) is known as an Euler scheme. This scheme

and more sophisticated simulation schemes are discussed in Chapter 20,
and in Kloeden and Platen (1992).
If the model (23.1) is stationary at a given value for then a time-

invariant stationary density

(1 0|) (23.7)

928 23. E cient Method of Moments

exists for any stretch (1) of obsevables. If, in addition, (23.1)
is ergodic at , then the expectation of a time-invariant (nonlinear) function
(1 0) with respect to (23.7)

[] =

Z
· · ·
Z

(0) (0|) · · · 0

can be approximated as accurately as desired by averaging over a simula-
tion, namely

[] =
1 X

=1

(ˆ ˆ 1 ˆ)

Throughout, it is presumed that the requisite initial lags for this computa-
tion are primed via draws from the stationary distribution, which is usually
accomplished by letting the system run long enough for transients to die
out. For examples such as that above, one typically uses values of on the
order of 1/7 per week or 1/24 per day, a burn-in period of 1000 to 5000,
and values of on the order of 50,000 to 100,000.
The ability to compute [] for given and arbitrary (1 0)

means that model parameters can be computed by the method of moments
or minimum chi-squared, as discussed in the next subsection.

23.2.2 Minimum Chi-Squared Estimators

In general, nonlinear systems are considered that have the features of the
stochastic volatility model (23.1) just described. Specifically, (i) for a pa-
rameter vector in a parameter space , the random variables determined
by the system have a stationary density

(1 0|) (23.8)

for every stretch () and (ii) for , the system is easily simu-
lated so that expectations

[] =

Z
· · ·
Z

(0) (0 |) · · · 0 (23.9)

can be approximated as accurately as desired by averaging over a long
simulation

[] =
1 X

=1

(ˆ ˆ 1 ˆ) (23.10)

Henceforth, { } will be used to denote the stochastic process determined
by the system, {ˆ } =1 to denote a simulation from the system, {˜ } =1 to
denote data presumed to have been generated by the system, and (,

1 0) to denote function arguments and dummy variables of integration.

23.2 An Overview of the EMM Methodology 929

The true value of the parameter vector of the system (23.8) is denoted by
.
A classical method of moments estimator ˆ of is implemented by (i)

setting forth a moment function, such as

˜ (1 0) =

0 ˜1
2
0 ˜2

...

0 ˜

1 0 ˜(1)

2 0 ˜(2)
...

0 ˜()

(23.11)

where ˜ = 1
P

=1 ˜ , ˜() =
1
P

=1+ ˜ ˜ , (ii) computing the mo-
ment equations

m () = [] =

Z
· · ·
Z
˜ (0) (0 |) · · · 0

and (iii) attempting to solve the estimating equations

m () = 0

for the system parameters . If a solution ˆ can be found, then that
solution is the method of moments estimate of the system parameters. As
indicated earlier, the moment equations will usually have to be computed
by generating a long simulation {ˆ } = from the system at parameter
setting and then averaging over the simulation:

m () =
1 X

=1

˜ (ˆ ˆ 1 ˆ)

If there are multiple roots of the estimating equations m () = 0, a par-
ticular solution can be selected as the estimate using methods discussed in
Heyde and Morton (1998).
In the event that there is no solution to the estimating equations because,

for instance, the dimension of is larger than the dimension of (so
that there are more equations than unknowns), then one must resort to
minimum chi-squared estimation (Neyman and Pearson, 1928) as adapted
to dynamic models (GMM estimation) by Hansen (1982). The minimum
chi-squared, or GMM, estimator is obtained by using a nonlinear optimizer
to minimize a quadratic form in the moment equations. Specifically,

ˆ = argmin m ()0S̃ 1m ()

930 23. E cient Method of Moments

where the matrix S̃ appearing in the quadratic form is a heteroskedas-
ticity and autocorrelation consistent (HAC) estimate of the variance of
m () and may be computed using the methods described in Section

21.3 of Chapter 21.
If is multivariate, that is,

y = (1)0

then, instead of (23.11), the vector is comprised of the elements

Y
=1

(0) ˜

(0)() ()

where

= (1)0 0 0
X
=1

˜ =
1X

=1

Y
=1

(˜)

() =
1 X

=1+

˜ ˜ 0 0

The use of method of moments together with simulation to estimate the
parameters of dynamic models with unobserved variables has been pro-
posed by Ingram and Lee (1991), Du e and Singleton (1993), Gourieroux,
Monfort, and Renault (1993), Smith (1993), and others. The particular
methods discussed next are due to Gallant and Tauchen (1996).

23.2.3 E ciency Considerations

The previous subsection described a minimum chi-squared (GMM) esti-
mation strategy based on the moment function ˜ that can be used to
estimate system parameters . There are two open questions with regard
to this estimator: What is the best choice of the moment function ˜? How
many moments should be included in ˜?
These questions will be considered in the simplest case where the random

variables defined by the system (23.8) generate univariate independently
and identically distributed random variables { } with density (|). The
ideas for the general case of a multivariate, non-Markovian, stationary sys-
tem are the same, but the algebra is far more complicated (Gallant and
Long, 1997). Nothing essential is lost by considering the simplest case.

23.2 An Overview of the EMM Methodology 931

Consider three moment functions ˜ , ˜ , and ˜ that correspond
to the Classical Method of Moments (CMM), Maximum Likelihood (ML),
and E cient Method of Moments (EMM), respectively, defined as follows:

˜ () =

1
P

=1 ˜
2 1

P
=1(˜)

2

...
1
P

=1(˜)

˜ () = log (|˜)

˜ () = log (|˜)

where the exponent that appears in ˜ () is the degree of the largest
moment used in a method of moments application, the function (|)
that appears in ˜ () is a density that closely approximates the true
data generating process in a sense made precise later, and the statistics ˜
and ˜ that appear in ˜ () and ˜ () are

˜ = argmax
1X

=1

log (˜ |)

˜ = argmax
1X

=1

log (˜ |);

where is of length and is of length .

Note that each of the moment functions ˜ , ˜ , and ˜ is in the
null space of the expectation operator corresponding to the empirical dis-

tribution of the data, denoted as ˜ ; that is, ˜

h
˜

i
= ˜

h
˜

i
=

˜

h
˜

i
= 0. The method of moments is basically an attempt to do

the same for the model (|); that is, the method of moments attempts
to find a that puts one of these moment functions, denoted generically
as ˜ , in the null space of the expectation operator corresponding to
(|).
In addition to computing ˜ , one computes

S̃ = ˜

h
˜ ˜ 0

i
Once ˜ and S̃ have been computed, the data are summarized and what
is referred to as “the projection step” is finished.
For the estimation, define

m () =
h
˜
i

932 23. E cient Method of Moments

If the dimensions of and ˜ () are the same, then usually the equations
m () = 0 can be solved to obtain an estimator ˆ . For ˜ , the solution

is the maximum likelihood estimator (Gauss, 1816; Fisher, 1912). For ˜

with = , it is the classical method of moments estimator (Pearson,

1894). For ˜ with , no solution exists and the moment functions
˜ are those of minimum chi-squared or generalized method of moments
(Neyman and Pearson, 1928; Hansen, 1982) as customarily implemented.
As just noted, when , then ˜ cannot be placed in the null space

of the operator for any , because the equations m () = 0 have no
solution. In this case, the minimum chi-squared estimator relies on the fact
that under standard regularity conditions (Gallant and Tauchen, 1996) and
choices of ˜ similar to the above, there is a function such that

lim ˜ () = () a.s.

lim S̃ = [0] a.s.

m ()
¡
0

£ 0¤¢
where denotes expectation taken with respect to (|). For the three

choices ˜ , ˜ , and ˜ of () above, the functions , , and
given by this result are

() =

[]
2 [2]

...
[]

() = log (|)

and

() = log (|)

where
= argmax : [log (·|)]

With these results in hand, may be estimated by minimum chi-squared
(GMM), viz.,

ˆ = argmin :m ()0 S̃ 1m ()

and
(ˆ)

³
0 (C)

1
´

where
C =

£ 0¤ [0] 1
£ 0¤

23.2 An Overview of the EMM Methodology 933

Note that for any nonzero a R ,

min
b

£
a0 0b

¤2
=

¡
a0

¢2
a0C a 0 (23.12)

Expression (23.12) implies that a0C a cannot exceed
£
a0

¤2
=

a0
£ 0¤a and therefore the best achievable asymptotic variance of

the estimator ˆ is I =
£ 0¤ 1

, which is the variance of the max-
imum likelihood estimator of . It is also apparent from (23.12) that if
{ } =1 spans the 2 probability space 2 = { :

£
2
¤

} and
= (1), then ˆ has good e ciency relative to the maximum

likelihood estimator for large . The polynomials span 2 if (|) has a
moment generating function (Gallant, 1980). Therefore, one might expect
good asymptotic e ciency from ˜ for large .
Rather than just spanning 2 , EMM requires, in addition, that the

moment functions actually be the score vector () of some density

(|˜) that closely approximates (|). Possible choices of (|˜) are
discussed in Gallant and Tauchen (1996). Of them, one commonly used in
applications is the SNP density, which was proposed by Gallant and Nychka
(1987) in a form suited to cross-sectional applications and by Gallant and
Tauchen (1989) in a form suited to time series applications.
The SNP density, discussed in detail in the previous chapter, is obtained

by expanding the square root of an innovation density () in a Hermite
expansion p

() =
X
=0

p
()

where (z) denotes the standard normal density function. Because the Her-
mite functions are dense in 2 (Lebesque) and

p
() is an 2 function,

this expansion must exist. The truncated density is

() =
P2 () ()R
P2 () ()

where

P () =
X
=0

and the renormalization is necessary so that the density () integrates
to 1. The location-scale transformation = + completes the definition
of the SNP density

(|) = 1
µ ¶

(23.13)

with = (0). Gallant and Long (1997) have shown that

() = log (|)

934 23. E cient Method of Moments

with
= argmax : [log (·|)]

spans 2 .
Although a spanning argument can be used to show that high e ciency

obtains for large , it gives no indication as to what might be the best
choice of moment functions with which to span 2 . Moreover, if is
in the span of for some finite , then full e ciency obtains at once
(Gallant and Tauchen, 1996). For instance, the score of the normal density
is in the span of both ˜ and ˜ for 2. These considerations seem
to rule out any hope of general results showing that one moment function
should be better than another.
With general results unattainable, the best one can do is compare e -

ciencies over a class of densities designed to stress test an estimator and
over some densities thought to be representative of situations likely to be
encountered in practice to see if any conclusions seem to be indicated. Com-
parisons using Monte Carlo methods are reported by Andersen, Chung, and
Sorensen (1999), Chumacero (1997), Ng and Michaelides (2000), and van
der Sluis (1999). Overall, their work supports the conjecture that EMM is
more e cient than GMM in representative applications at typical sample
sizes.
Analytical comparisons are possible for the independently and identically

distributed case and are reported in Gallant and Tauchen (1999). Their
measure of e ciency is the volume of a confidence region on the parameters
of the density (|) computed using the asymptotic distribution of ˆ .
This region has the form { : ()0(C) 1() X 2 } with
volume

2 2(X 2)

(2) det(C)

where X 2 denotes a critical value of the chi-squared distribution on de-
grees of freedom. As small volumes are to be preferred and the region
{ : ()0I () X 2 } has the smallest achievable volume,

RE =
det(C)

det(I)

is a measure of relative e ciency. Over a large collection of densities thought
to represent typical applications, their computations support the conclusion
that EMM dominates GMM. Moreover, their computations indicate that
once (·|) begins to approximate (·|) accurately, the e ciency of
the EMM estimator begins to increase rapidly.
The second question to address is how many moments to include in the

moment function . As the computations in Gallant and Tauchen (1999)
suggest, the answer is as many as is required for to well approximate .
The natural conclusion is that one should use standard statistical model

23.2 An Overview of the EMM Methodology 935

selection criteria to determine . This approach has a distinct advantage
over the use of in that there seems to be no objective statistical criterion
for determining the number of moments to include in .

23.2.4 A General Purpose Auxiliary Model

As indicated in the previous subsection, the best choice of a moment func-
tion to implement a simulated method of moments is the score of an
auxiliary model that closely approximates the density of the data. The
SNP methodology of Gallant and Tauchen (1989) extended to the time
series context serves as a general-purpose auxiliary model or score gen-
erator for use with the EMM estimation of general dynamic systems. In
this context, the observed data are assumed to be a stationary and ergodic
Markovian multivariate time series {y } = +1, where each y is a vector
of length . Since y is Markovian, the conditional distribution of y given
the entire past depends only on a finite number of lagged values of y
denoted x 1 = (y

0
1 y0)0. The SNP model is then used to approx-

imate the transition density (y |x 1). The SNP methodology and its
implementation in S+FinMetrics is described in the previous chapter.

23.2.5 The Projection Step

The best choice of a moment function to implement simulated method of
moments estimation of general dynamic systems is the score of an auxiliary
model (y|x) that closely approximates the transition density implied
by the system, where the parameter vector of the auxiliary model is
evaluated at its quasi-maximum-likelihood estimate ˜ ; that is, the best
choice has the form

˜ (x y) = log (y|x ˜) (23.14)

where

˜ = argmin () (23.15)

() =
1X

=1

log (ỹ |x̃ 1)

A considerable advantage of closely approximating the transition density
of the system is that the computational formula for the weighting matrix
S̃ for the chi-squared (GMM) estimator simplifies to

S̃ =
1X

=1

˜ (x̃ 1 ỹ)˜
0
(x̃ 1 ỹ) (23.16)

936 23. E cient Method of Moments

because the covariance terms of the HAC estimator can be neglected when
the auxiliary model closely approximates the transition density of the sys-
tem in a sense made precise by Gallant and Long (1997).

23.2.6 The Estimation Step

The objectives are (i) to estimate , (ii) test the hypothesis that the dy-
namic system under consideration generated the observed data {ỹ } =1,
and (iii) provide diagnostics that indicate how a rejected system should be
modified to better describe the distribution of the observable process {y }.

The EMM Estimator

It is presumed that the data have been summarized in the projection step,
as described in the previous subsection, and that a moment function of the
form

˜ (x y) = log (y |x ˜)

and a weighting matrix

S̃ =
1X

=1

·
log (ỹ | x̃ 1

˜)

¸ ·
log (ỹ | x̃ 1

˜)

¸0
are available from the projection step. Here, it is assumed that (y |x ˜)
closely approximates (y |x). If not, the weighting matrix given by a
HAC estimator must be used. If the SNP density (y |x) is used as the
auxiliary model with tuning parameters selected by the Bayesian Informa-
tion Criterion (BIC), S̃ as computed above will be adequate (Gallant and
Long, 1997; Gallant and Tauchen, 1999; Coppejans and Gallant, 2002).
Here, it is explicitly indicated that the dependence on of the moment

equations m () enters through the quasi-maximum-likelihood estimate
˜ by writing m(˜) for m () where

m() =

·
log (y |x)

¸
Recall that the moment equations of the minimum chi-squared procedure
are computed by averaging over a long simulation:

m(˜) =
1 X

=1

log (ŷ | x̂ 1
˜)

The EMM estimator is

ˆ = argmin m(˜)0S̃ 1m(˜)

23.2 An Overview of the EMM Methodology 937

Asymptotic Properties

The asymptotics of the estimator are as follows. If denotes the true value
of and is an isolated solution of the moment equations m() = 0,
then under regularity conditions (Gallant and Tauchen, 1996; Gallant and
Long, 1997),

lim ˆ = a.s.

(ˆ)
©
0 [M 0I 1M] 1

ª
(23.17)

lim M̂ =M a.s

lim S̃ = I a.s.

where M̂ = M(ˆ ˜), M = M(), M() = (0)m(),
and

I =

·
log (y0 |x 1)

¸ ·
log (y0 |x 1)

¸0
Under the null hypothesis that (0 |) is the correct model,

the EMM J-statistic

0 = m(ˆ ˜)0S̃ 1m(ˆ ˜) (23.18)

is asymptotically chi-squared on degrees of freedom.

Hypothesis Tests

Under the null hypothesis that () = 0, where maps into < , the
EMM likelihood ratio (LR)-type statistic

LREMM =
h
m(˘ ˜)0S̃ 1m(˘ ˜) m(ˆ ˜)0S̃ 1m(ˆ ˜)

i
(23.19)

is asymptotically chi-squared on degrees of freedom where

˘ = argminm(˜)0S̃ 1m(˜) s.t. () = 0

A Wald confidence interval on an element of can by constructed in
the usual way from an asymptotic standard error ˆ . A standard error
may be obtained by computing the JacobianM () numerically and tak-
ing the estimated asymptotic variance ˆ to be the th diagonal element of
ˆ = (1)[M̂0 S̃ 1M̂] 1. These intervals, which are symmetric, are some-
what misleading because they do not reflect the rapid increase in the EMM
objective function () = m(˜)0S̃ 1m(˜) when approaches a
value for which the system under consideration is explosive. Confidence in-
tervals obtained by inverting the criterion di erence test LREMM do reflect

938 23. E cient Method of Moments

this phenomenon and are therefore more useful. To invert the test one puts
in the interval those for which LREMM for the hypothesis = is less
than the critical point of a chi-squared on one degree of freedom. To avoid
re-optimization one may use the approximation

˘ = ˆ +
ˆ

ˆ
ˆ
()

in the formula for LREMM where ˆ () is the th column of ˆ . The above
remarks should only be taken to imply that confidence intervals obtained
by inverting the criterion di erence test have more desirable structural
characteristics than those obtained by inverting the Wald test and not
that they have more accurate coverage probabilities.

Diagnostics

When 0 exceeds the chi-squared critical point, diagnostics that suggest
improvements to the system are desirable. Because

m(ˆ ˜)
©
0 I M [M 0(I) 1M] 1M 0ª (23.20)

inspection of the -ratios

= S 1 m(ˆ ˜) (23.21)

where S =
³
diag{S̃ M̂ [M̂0 S̃ 1M̂] 1M̂0 }

´1 2

, can suggest reasons

for failure. Di erent elements of the score correspond to di erent charac-
teristics of the data and large -ratios reveal those characteristics that are
not well approximated.

23.3 EMM Estimation in S+FinMetrics

A general class of discrete-time and continuous-time dynamic time series
models may be estimated by EMM using the S+FinMetrics function EMM.
The arguments expected by EMM are

> args(EMM)

function(score, coef = NULL, appcode = NULL, ui, ur, control

= EMM.control(), est = NULL, save.sim = F, trace = T,

gensim.fn = NULL, gensim.language = "C", gensim.aux =

NULL, save.intermediate = F)

These arguments are summarized in Table 23.1. The main arguments are
score, which is an object of class “SNP” representing the fit of the auxiliary
model to the observed data, coef, which is a vector containing starting

23.3 EMM Estimation in S+FinMetrics 939

Argument Description
score Object of class “SNP” representing the auxiliary

model fit.
coef Starting values for the model coe cients.
appcode Integer identifying the simulation function built

into EMM.
ui Vector of integer parameters to the simulation

function.
ur Vector of real parameters to the simulation

function.
control List of EMM control parameters. Values set

using EMM.control.
est Vector of logical values indicating which

coe cients are held fixed.
save.sim If TRUE, simulated values at final iteration are

saved.
trace If TRUE, iteration count and objective are

printed to screen.
gensim.fn The simulation function. If NULL, then value is

specified by appcode.
gensim.language The language of the simulation function: C,

FORTRAN or SPLUS.
gensim.aux An S-PLUS object that will be passed to the

simulation function.
save.intermediate If TRUE, intermediate results are saved.

TABLE 23.1. Arguments to function EMM

values for the model coe cients to be estimated, and gensim.fn, which is
a function to create simulations from the structural model given a set of
parameters. The score object is usually created by a call to the S-PLUS
function SNP. See the previous chapter for details on the creation of “SNP”
objects. The function specified by gensim.fn is called repeatedly by the
EMM function to generate simulated data as a function of a set of model
parameters. For EMM to work correctly, the same random numbers must
be used to generate simulations for di erent values of the model parameters.
The simulation function may be defined as an S-PLUS function or a C or
FORTRAN function.4 If an S-PLUS function is supplied, then the user must
set gensim.language="SPLUS". Details on creating an S-PLUS simulation
function for use with the function EMM are given in the next section. The
function EMM creates an object of class “EMM” for which there are print,
summary, and plot methods, and extractor functions coef and vcov.

4See the online help for EMM for details on specifying a C or FORTRAN function.

940 23. E cient Method of Moments

The control component of EMM is a list containing parameters that con-
trol aspects of the EMM estimation. Defaults for these parameters are set
by the function EMM.control:

> args(EMM.control)

function(initial.itmax = 10, final.itmax = 200, tol = 1e-005,

n.burn = 100, n.sim = 10000, n.start = 0, tweak = 0,

siglev = 0.95, sfac1 = 1, sfac2 = 2, sfdrho = 1e-006,

seed = 61883, optimize = T, cf.interval = T, std.err

= T, scale = 1)

These components are summarized in Table 23.2. The most important
components are n.burn and n.sim, which specify the number of burn-
in and simulation values, respectively, for the simulation function spec-
ified by the argument gensim.fn. In complicated nonlinear models for
which good starting values are hard to obtain, it is recommended that
the random restart option for the optimizer be utilized. This feature al-
lows the user to restart the EMM optimization at random perturbations
of the initial values in order to explore the surface of the EMM objective
function and avoid getting stuck at possible local minima. The component
initial.itmax sets the maximum number of iterations for each random
restart, and final.itmax determines the maximum number of iterations
in the final estimation. The number of random restarts is determined by
n.start, which may be a scalar or a vector and must have the same length
as tweak. If n.start is a vector, then the th element of n.start de-
termines how many random restarts are performed for the corresponding
value in the th element of tweak. If n.start=0, then tweak is ignored.
The component tweak contains tweak constants for random restarts of the
optimizer. The starting value for each coe cient, , is perturbed such that
gets transformed to (1+ × tweak)× , where is a random draw from

the uniform distribution on (1 1).

23.3.1 Simulator Functions

The user is required to supply a function to generate simulations from the
model under study as a function of the model parameters. This function
may be an S-PLUS, C, or FORTRAN function. The following subsections
describe how to create these functions.

S-PLUS Simulator Functions

The easiest way to use EMM is with a user-written S-PLUS simulator func-
tion. The simulator function supplied to the gensim.fn argument of EMM
must have the form

my.gensim = function(rho, n.sim, n.var, n.burn, aux) {

... }

23.3 EMM Estimation in S+FinMetrics 941

Component Description
initial.itmax Maximum number of iterations used for each random

restart.
final.itmax Maximum number of iterations used for final model
tol convergence tolerance for optimization.
n.burn Number of burn-in values to discard from beginning

of simulation.
n.sim Number of simulated values for each series to be

simulated.
n.start Number of random restarts of the optimizer.
tweak Tweak constants for random restarts of the optimizer.
siglevel Significance level for confidence intervals.
sfac1 Scale factor for confidence intervals.
sfac2 Scale factor for confidence intervals.
sfdrho Perturbation to rho for numerical derivatives.
seed Random number seed used for random restarts.
optimize If TRUE, perform optimization.
cf.interval If TRUE, compute confidence intervals by inverting

LREMM -statistic.
std.err If TRUE, compute Wald standard errors.
scale scale factor used by the S-PLUS optimizer nlminb.

TABLE 23.2. Arguments to EMM.control

where rho gives the model parameters, n.sim specifies the number of sim-
ulated observations, n.var sets the number of simulated variables, n.burn
gives the number of burn-in observations, aux is an S-PLUS structure con-
taining any auxiliary components required by the simulation function, and
... represents the body of the function. The function my.gensim must
return a numeric vector of length n.sim*n.var, containing the simulated
values.5

In most applications, the structural model to be estimated is a discrete-
time or continuous-time dynamic time series model. For computational e -
ciency, it is extremely important that the simulation function for the struc-
tural model be fast. For discrete-time models, it is recommended that the
user utilize existing S-PLUS or S+FinMetrics simulation functions within
the body of the function specified by the gensim.fn argument since these
functions rely on underlying C or FORTRAN code to speed computations.
A listing of the simulation functions available in S-PLUS and S+FinMetrics
is given in Table 23.3. The examples in the following sections illustrate the

5If simulations for a multivariate time series are required, then the function still
returns a numeric vector. The multivariate simulations must be ordered such that the
first n.var elements correspond to the first simulated values of all the series, the second
n.var elements correspond to the second simulated values of all the series, an so on.

942 23. E cient Method of Moments

Simulation Function Source Description
arima.fracdiff.sim S-PLUS Simulate from fractional

ARIMA model.
arima.sim S-PLUS Simulate from ARIMA

model.
filter S-PLUS Compute convolution or

recursive filter.
simulate.FARIMA S+FinMetrics Simulate from fractional

ARIMA model.
simulate.garch S+FinMetrics Simulate from univariate

garch model.
simulate.mgarch S+FinMetrics Simulate from multivariate

garch model.
simulate.SNP S+FinMetrics Simulate from SNP

models.
simulate.VAR S+FinMetrics Simulate from vector

autoregressive model.
SsfSim S+FinMetrics Simulate from linear state

space model.
atsm.ssfsim S+FinMetrics Simulate from a ne term

structure state space model.
simulate.SVOL S+FinMetrics Simulate from discrete-time

stochastic volatility model.
ssfSimMS S+FinMetrics Simulate from Markov

switching state space model.

TABLE 23.3. S-PLUS and S+FinMetrics simulation functions

creation of user-specified simulation functions for discrete-time dynamic
models utilizing the functions from Table 23.3.
For continuous-time dynamic time series models, simulations are often

generated as the solution of a system of stochastic di erential equations
(SDEs) of the form

X = a(X) + b(X) W (23.22)

where X is a univariate or multivariate stochastic process, a(X) is the
drift function, b(X) is the di usion function, and W is a standard
Brownian motion (Wiener) process. This SDE may be univariate or mul-
tivariate. For most applications, the SDE solution must be approximated
using numerical methods such as Euler’s method. S+FinMetrics contains
several functions for numerically simulating the solution to univariate and
multivariate SDEs, and the main functions are listed in Table 23.4. Chap-
ter 20 describes the solution methods underlying these functions in detail
and provides many examples describing how to use the functions. The four
p-code functions are particularly handy since they allow S-PLUS functions

23.4 Examples 943

Simulation function Description
euler1d.pcode.gensim Solve univariate SDE using Euler’s method
euler.pcode.gensim Solve SDE using Euler’s method
strong1.pcode.gensim Solve SDE using Strong order 1 scheme
weak2.pcode.gensim Solve SDE using Weak order 2 scheme
CIR.gensim Euler’s method for Cox-Ingersoll-Ross

square root di usion
IRD.gensim Euler’s method for two-factor interest rate

di usion
OU.gensim Exact solution for Ornstein-Uhlenbeck

(or Vasicek) SDE

TABLE 23.4. Simulation functions for continuous-time SDEs

to be used for specifying arbitrary drift and di usion functions a(X)
and b(X), respectively. These p-code functions are heavily utilized in
the examples in the following sections.

C or FORTRAN Simulator Functions

The p-code functions listed in Table 23.4 for simulating the solutions to
the SDE (23.22) are flexible and easy to use, but they generally run two to
five times slower than compiled C code. These functions, however, utilize
underlying C code. If computational speed is important, the user may wish
to write their own simulator functions in C or FORTRAN that call the C
code functions for implementing the SDE solution methods.

23.3.2 SNP Auxiliary Model Estimation

The auxiliary model, or score generator, used to summarize the observed
data is created using the S+FinMetrics function SNP. The previous chapter
describes the SNP and associated functions and gives several examples of
fitting SNP models to common financial time series. The fitted SNP models
from these examples are used as score generators for some of the examples
of EMM estimation in the following sections.

23.4 Examples

The following subsections describe the estimation of some common univari-
ate and multivariate time series models for financial data using the func-
tion EMM. The examples cover the estimation of moving average models,
discrete-time and continuous-time stochastic volatility models for equity
returns, and continuous-time stochastic volatility models for interest rates.
Some of the examples utilize the financial time series described and ana-
lyzed in the preceding chapter, and the reader is referred to that chapter

944 23. E cient Method of Moments

for the details of fitting the SNP auxiliary models. The examples illustrate
the creation of S-PLUS simulation functions for use with EMM, and describe
in detail the many options for controlling the EMM estimation. The ex-
amples also illustrate aspects of statistical inference and model diagnostics
associated with EMM estimation.

23.4.1 MA(1) Model

Following Chumacero (1997), consider the first-order moving average, MA(1),
model

= 0 + + 0 1 = 1 (23.23)

iid (0 2
0)

0 = (0 0
2
0)
0 = true value

The MA(1) model is a convenient example for illustrating the mechanics
of EMM because it is easy to simulate, there is a simple auxiliary model
based on a th order autoregressive, AR(), model, and the method of
moments and maximum likelihood estimators are easy to compute. The
GMM estimation of (23.23) was discussed in Chapter 21.
Given the model parameters , it is straightforward to simulate values for
. In S-PLUS, the function arima.sim may be used to e ciently generate

simulated values. For 0 = (0 0 5 1)
0 and = 250, simulated values may

be created using

> set.seed(123)

> ma1.sim = arima.sim(model=list(ma=-0.5),n=250)

The simulated are illustrated in Chapter 21, Figure 21.2, along with the
sample autocorrelation function (SACF) and sample partial autocorrelation
function (SPACF).

Auxiliary Model

If | | 1 then the MA(1) is invertible and has the AR() representation

= +
X
=1

+

= (1) · () = (1 +)

A feasible auxiliary model is an AR() model

= + 1 1 + · · ·+ +

iid (0 2)

= (1
2)0

23.4 Examples 945

with su ciently large to adequately capture the dynamics of the MA(1)
model. The log-density for the auxiliary model is

ln (|x 1) =
1

2
ln(2)

1

2
ln(2)

1

2 2
(1 1 · · ·)2

where x 1 = (1)0. If at rate 1 3 then () will
encompass the MA(1) data generating process as .

Quasi-Maximum-Likelihood Estimation

Given a sample of observed data {˜ } =1 based on 0, the quasi-maximum-
likelihood estimation of the auxiliary model parameters based on the
conditional log-likelihood solves

˜ = argmin () =
1X

=1

ln (˜ |x̃ 1)

The sample score vector (˜) has + 2 elements

1

˜2

X
=1

(˜ ˜ ˜
1˜ 1 · · · ˜ ˜)

1

˜2

X
=1

(˜ ˜ ˜
1˜ 1 · · · ˜ ˜)˜ 1

...

1

˜2

X
=1

(˜ ˜ ˜
1˜ 1 · · · ˜ ˜)˜

1

2˜2
[+ ˜ 2]

X
=1

(˜ ˜ ˜
1˜ 1 · · · ˜ ˜)

and by construction, (˜) = 0.

Estimating the Auxiliary Model Using SNP

For the EMM estimation in S-PLUS, the auxiliary model must be estimated
using the function SNP. The SNP function estimates Gallant and Tauchen’s
general-purpose seminonparametric auxiliary model for stationary multi-
variate time series, as described in the previous chapter, and can be used
to estimate a wide class of auxiliary models, including the AR() model.
The object returned by SNP contains the information necessary to compute
the analytic score required for computing the EMM objective function.

946 23. E cient Method of Moments

For illustrative purposes, let the auxiliary model for the MA(1) data
be a Gaussian AR(3) model. This model has a 5 × 1 parameter vector
= (1 2 3

2)0 and may be estimated using SNP as follows:

> ar3.fit = SNP(data=ma1.sim, model=SNP.model(ar=3))

> class(ar3.fit)

[1] "SNP"

> summary(ar3.fit)

Call:

SNP(data = ma1.sim, model = SNP.model(ar = 3))

Model: Gaussian VAR

Conditional Mean Coefficients:

mu ar(1) ar(2) ar(3)

coef -0.0045 0.5312 -0.2328 0.1007

(std.err) 0.0565 0.0637 0.0690 0.0659

(t.stat) -0.0788 8.3444 -3.3763 1.5280

Conditional Variance Coefficients:

sigma

coef 0.8828

(std.err) 0.0462

(t.stat) 19.1253

Information Criteria:

BIC HQ AIC logL

1.35 1.3288 1.3145 -319.6804

Convergence Type:

both x and relative function convergence

number of iterations: 1

For successful estimation using EMM, it is vitally important that the
auxiliary model provide a good fit to the observed data and be able to
replicate the important dynamic features of the data. For the AR(3) aux-
iliary model, the estimated values for 1 2 and 3 are all statistically
di erent from zero and have values that are consistent with = (0 5)
for = 1 2 3. In addition, the estimated value of is close to = 1.
Graphical residual diagnostics, produced using

> plot(ar3.fit, which.plots=3:6)

23.4 Examples 947

0 50 100 150 200 250

-4
-2

0
2

Lag

0 5 10 15 20

-0
.2

0.
2

0.
6

1.
0

 Series : ar3.sim

Lag

0 5 10 15 20

-0
.2

0.
2

 Series : ar3.sim

FIGURE 23.2. Simulated data, SACF and PACF from the AR(3) auxiliary model
fit to simulated data from the MA(1) model.

indicate that the AR(3) has adequately captured the dynamics in the data.
To be sure, simulated data from the AR(3) auxiliary model should qual-
itatively match the characteristics of the MA(1) data. Simulations from
the fitted SNP model of length equal to the actual data may be computed
using the generic simulate method function

> ar3.sim = simulate(ar3.fit)

Figure 23.2 shows the simulated data along with the SACF and SPACF.
These plots verify that the auxiliary model adequately mimics the MA(1)
model.

EMM Algorithm

For a fixed , let {ˆ ()} =1 denote a simulated sample of size
from the MA(1) model. The length, , of the simulation should, in general,
be much larger than the sample size, , of the observed data. The sample
score of the auxiliary model evaluated using the simulated data is

m(˜) =
1 X

=1

ln (ˆ ()|x̂ 1
˜)

948 23. E cient Method of Moments

which, for the AR() auxiliary model, has elements

1 X
=1

(ˆ () ˜ ˜
1ˆ 1() · · · ˜ ˆ ())

1 X
=1

(ˆ () ˜ ˜
1ˆ 1() · · · ˜ ˆ ())ˆ 1()

...

1 X
=1

(ˆ () ˜ ˜
1ˆ 1() · · · ˜ ˆ ())ˆ ()

1

2˜2
[+ ˜ 2]

X
=1

(ˆ () ˜ ˜
1ˆ 1() · · · ˜ ˆ ())

If = 0 then
m(0

˜) 0

whereas if 6= 0 then
m(˜) 6= 0

The EMM algorithm attempts to find the value ˆ such that m(ˆ ˜) is
as close to zero as possible. Since is (+ 2) × 1 and is (3 × 1) it is
not possible to find ˆ such that m(ˆ ˜) = 0. Instead, is estimated
by minimizing the GMM-type objective function:

ˆ = argmin m(˜)0S̃ 1m(˜)

where S̃ is a consistent estimate of avar(m(0
˜)).

The Simulator Function

An example of a simulation function for the MA(1) model in a form for use
with the function EMM is

MA1.gensim = function(rho, n.sim, n.var=1, n.burn,

aux=MA1.aux())

{

rho = (mu,psi,sigma2)’

aux is a list with components

z = vector of N(0,1) values of length (n.sim + n.burn)

nz = n.burn + n.sim

if(is.null(z <- aux$z))

stop("aux$z must be supplied")

if(length(z) != nz)

stop("aux$z must be of length",nz," if provided")

23.4 Examples 949

ans = rho[1]+arima.sim(model = list(ma=-rho[2]),

innov = z[(n.burn+1):nz]*sqrt(rho[3]),

start.innov = z[1:n.burn]*sqrt(rho[3]))

as.numeric(ans)

}

In the body of MA1.gensim, the S-PLUS function arima.sim is called to
e ciently simulate from the MA(1) model. The function is specified such
that the random numbers used to generate the simulation are computed in
advance and passed to the simulator through the optional aux list compo-
nent. This allows MA1.gensim to use the same random numbers to generate
simulations for di erent values of rho.

EMM Estimation

Once the auxiliary model has been fit using the SNP function and the user
has written the simulator function, the structural model (MA(1) model)
may be estimated by EMM using the EMM function. For example, commands
to estimate the MA(1) model using EMM with = 10 000 simulations and
10 burn-in values are

> set.seed(345)

> nsim = 10000

> nburn = 10

> MA1.aux = list(z = rnorm(nsim+nburn))

> start.vals = c(0,0.5,1)

> names(start.vals) = c("mu","theta","sigma2")

> EMM.MA1.fit = EMM(ar3.fit,coef = start.vals,

+ control = EMM.control(n.sim = nsim, n.burn = nburn),

+ gensim.fn = "MA1.gensim", gensim.language = "SPLUS",

+ gensim.aux = MA1.aux, save.sim = T)

Iteration No. 1, objective = 114.452

...

Iteration No. 12, objective = 0.0963164

> class(EMM.MA1.fit)

[1] "EMM"

In the call to EMM, the simulator function is specified by the arguments
gensim.fn="MA1.gensim" and gensim.language="SPLUS". The control
argument sets the number of burn-in and simulation values. The random
numbers, which are fixed across iterations in the optimization, are con-
tained in the user-created list variable MA1.aux and are passed to the sim-
ulator within EMM using gensim.aux="MA1.gensim". The dimension of the
vectors in MA1.aux must match the dimension n.burn+n.sim determined
by the corresponding arguments passed to the function EMM.control. By
setting save.sim=T, the simulated observations evaluated at the estimated

950 23. E cient Method of Moments

value of , ˆ (ˆ), are added as the component smdat of the returned “EMM”
object.
The function EMM returns an object of class “EMM” for which there are

print, summary, and plot methods. Typing the name of an “EMM” object
invokes the print method

> EMM.MA1.fit

Call:

EMM(score = ar3.fit, coef = start.vals, control = EMM.control(

n.sim = nsim, n.burn = nburn), save.sim = T, gensim.fn

= "MA1.gensim", gensim.language = "SPLUS", gensim.aux

= MA1.aux)

Coefficients:

Value Std. Error 95% Conf. Int.

mu 0.0985 0.09960 -0.09606 0.2955

psi 0.5267 0.06473 0.41302 0.6689

sigma2 0.9024 0.07060 0.76378 1.0403

Final optimization:

Convergence: relative function convergence

Iterations: 12

Score at final iteration: 0.09632

The estimated coe cients are close to their true values, but have some-
what large standard errors. The 95% confidence intervals are based on
inverting the LREMM statistic for testing = . To compute the usual

Wald-type 95% confidence intervals, ˆ ± 1 96 · cSE(ˆ), set the optional ar-
gument cf.interval=F in EMM.control. The final value of the score is the
normalized EMM objective function, and its small value indicates that the
overidentifying conditions are not rejected by the data.
The summary method provides some useful diagnostics for assessing the

EMM fit:

> summary(EMM.MA1.fit)

Call:

EMM(score = ar3.fit, coef = start.vals, control = EMM.control(

n.sim = nsim, n.burn = nburn), save.sim = T, gensim.fn

= "MA1.gensim", gensim.language = "SPLUS", gensim.aux

= MA1.aux)

Coefficients:

Value Std. Error 95% Conf. Int.

mu 0.0985 0.09960 -0.09606 0.2955

psi 0.5267 0.06473 0.41302 0.6689

sigma2 0.9024 0.07060 0.76378 1.0403

23.4 Examples 951

Final optimization:

Convergence: relative function convergence

Iterations: 12

EMM objective at final iteration: 0.09632

P-Value: 0.953 on 2 degrees of freedom

Score Information:

Mean Score Std. Error t-ratio Adj. Std. Error t-ratio

mu 0.005372 1.133 0.004743 0.09656 0.05564

ar(3) 0.235363 1.174 0.200504 1.16387 0.20222

ar(2) 0.354856 1.209 0.293554 1.14360 0.31030

ar(1) 0.219727 1.105 0.198858 0.84555 0.25986

sigma 0.093842 1.427 0.065739 0.36389 0.25789

First, the -value for the EMM objective function based on the limiting
chi-square distribution is given. The degrees of freedom for the chi-square
distribution is equal to the number of parameters in the auxiliary SNP
model minus the number of parameters in the structural model: 5 3 = 2.
Here, the very large -value of 0 9558 supports the validity of the overiden-
tifying conditions. Second, the individual normalized score values (23.20)
along with their (unadjusted and adjusted) asymptotic standard errors and
-statistics (23.21) are given.6 In a correctly specified model, the EMM ob-
jective function should not be significantly large and the absolute value
of the score -ratios should be less than 2. If the model is misspecified in
some way and the auxiliary model adequately describes the observed data,
then the EMM objective should be significantly large, and one or more of
the score -ratios should be large reflecting a characteristic of the auxiliary
model that is not being captured by the structural model. For the MA(1)
model, the EMM objective function is not significantly large and all of the
score -ratios are less than 2 indicating a well specified-model.
The plot method gives a barchart of the unadjusted or adjusted score
-ratios. For example, to display the adjusted score -ratios, use

> plot(EMM.MA1.fit)

The resulting plot is shown in Figure 23.3.
The simulated observations at the estimated value of , ˆ (ˆ), are in

the component smdat. These values should mimic the properties of the
observed data if the estimated structural model is correctly specified.

6The -ratios (23.21) are called the adjusted -ratios. The unadjusted -ratios use S̃
instead of S in (23.21). The unadjusted -ratios are easier to compute but are biased
downward relative to 2.0.

952 23. E cient Method of Moments

mu

ar(3)

ar(2)

ar(1)

sigma

0.0 0.05 0.10 0.15 0.20 0.25 0.30

Adjusted t-ratios of mean score

FIGURE 23.3. Adjusted score -ratios from the EMM estimation of an MA(1)
model using a Gaussian AR(3) SNP model.

GMM and ML Estimation

The GMM estimation of the MA(1) model (23.23) using the moments

[] = 0

[2] = 2
0 +

2
0(1 +

2
0)

[1] = 2
0 +

2
0 0

[2] = 2
0

is discussed in Chapter 21. The GMM estimates of for the simulated data
in ma1.sim, based on an HAC estimate of the asymptotic variance of the
moments with a truncated kernel, are repeated here:

> summary(ma1.gmm.trunc)

Call:

GMM(start = start.vals, moments = ma1.moments, ts = T,

var.hac.control = var.hac.control(bandwidth = 1,

window = "truncated"), data = ma1.data)

Coefficients:

Value Std.Error t value Pr(>|t|)

mu 0.1018 0.0927 1.0980 0.2733

23.4 Examples 953

psi 0.5471 0.0807 6.7788 0.0000

sig2 0.8671 0.0763 11.3581 0.0000

Test of Overidentification:

J-stat Df P.value

0.3549 1 0.5513

Optimization Info:

Number of Iterative Steps: 3

The GMM estimates are close to the EMM estimates. The standard errors
for the EMM estimates of and 2 are slightly smaller than the standard
errors of the corresponding GMM estimates. This e ciency gain reflects
the fact that EMM uses the e cient moments based on the score of the
auxiliary model, whereas GMM uses a set of arbitrary moments. EMM
also benefits from not having to use an HAC estimator for the asymptotic
variance of the moments.
The conditional maximum likelihood estimation of the MA(1) model

(23.23) may be performed using the S-PLUS function arima.mle as follows:

> mle.fit = arima.mle(ma1.sim,model=list(ma=-0.5),

+ xreg=rep(1, length(ma1.sim)))

> mle.fit

Call: arima.mle(x = ma1.sim, model = list(ma = -0.5),

xreg = rep(1, length(ma1.sim)))

Method: Maximum Likelihood

Model : 0 0 1

Coefficients:

MA : -0.52262

Variance-Covariance Matrix:

ma(1)

ma(1) 0.002907486

Coeffficients for regressor(s): rep(1, length(ma1.sim))

[1] 0.11416

Optimizer has converged

Convergence Type: relative function convergence

AIC: 683.51018

> mle.fit$sigma2

[1] 0.8859344

The estimates of , , and 2 are 0 5226, 0 1142 and 0 8859, respectively.
These estimates are close to the GMM and EMM estimates. The S-PLUS
function arima.mle only computes an estimate of the coe cient covariance

954 23. E cient Method of Moments

matrix for the autoregressive moving average (ARMA) parameters. The
estimated standard error for is

> sqrt(mle.fit$var.coef)

ma(1)

ma(1) 0.05392111

which is slightly smaller than the EMM standard error. Here we see that
the EMM estimates are comparable to the ML estimates. As the sample
size increases and the number of AR terms in the SNP model increases,
the di erence between the EMM and ML estimates will approach zero.

23.4.2 Discrete-Time Stochastic Volatility Models

This subsection describes the EMM estimation of some discrete-time sto-
chastic volatility (SV) models used for modeling the daily continuously
compounded returns on the S&P 500 index. The first model is an elemen-
tary and empirically unrealistic SV model used by Gallant and Tauchen
(2002), hereafter GT, to illustrate some of the workings and properties of
EMM estimation and inference. The second model is a more realistic SV
model with AR(1) dynamics considered by Andersen and Sorensen (1996)
and Andersen, Chung, and Sorensen (1999). The third model is a general
SV model with AR() dynamics that allows for leverage e ects considered
by Gallant, Hsieh, and Tauchen (1997). The analysis of the SV models
in this section is in the spirit of the analysis done in Gallant, Hsieh, and
Tauchen (1997) and GT.

Data

The data consist of daily continuously compounded returns, based on clos-
ing prices, on the S&P 500 index over the period March 14, 1986 through
June 30, 2003. These data were extensively analyzed in the previous chap-
ter. Similar data were analyzed in GT. Figure ?? of Chapter 22 shows the
data along with the sample ACF of the squared returns. Sample summary
statistics are

> summaryStats(sp500.ts)

Sample Quantiles:

min 1Q median 3Q max

-0.2047 -0.004686 0.0004678 0.005827 0.09099

Sample Moments:

mean std skewness kurtosis

0.0003916 0.01124 -1.486 32.59

Number of Observations: 4365

23.4 Examples 955

The S&P 500 returns appear to be highly non-normal, with negative skew-
ness and very large kurtosis, and display considerable conditional het-
eroskedasticity.

SNP Auxiliary Model Fit

The details of finding the best fitting SNP model for the S&P 500 re-
turns are described in the previous chapter. There it was found that a
non-Gaussian AR(1)-GARCH(1,1) model, 11118000, adequately describes
the data. The auxiliary model information is contained in the “SNP” object
fit.sp500.11118000, which is provided with the S+FinMetrics module.
For illustrative purposes, the EMM estimation using the simplistic non-
Gaussian AR(1) with = 4 will also be considered. This fit is available
in the “SNP” object fit.sp500.10014000.

Gallant and Tauchen (2002)

To illustrate the workings of EMM, GT considered the very simple discrete-
time SV model

= (1) + exp() (23.24)

=

where , , , , and are parameters and { } and { } are mutually
independent iid Gaussian processes with mean zero and unit variance. GT
impose the normalization = 2 , which implies that var(| 1) =

2.
The model allows for serially correlated returns, but no serial correlation
in the unobserved log volatility . This model is too simplistic for actual
data. Nonetheless, its estimation by EMM provides important insights to
the proper use of the EMM methodology.

Simulator Function

An S-PLUS function to e ciently simulate from the SV model (23.24) that
can be used in conjunction with the function EMM is

sv.gt.gensim = function(rho,n.sim,n.var=1,

n.burn,aux=sv.gt.aux)

{

rho = (mu,c,sigma,sigma.w)

aux is a list with components

z = vector of N(0,1) values of length (n.sim + n.burn)

zw = vector N(0,1) values of length (n.sim + n.burn)

nz = n.burn + n.sim

sv = rho[3]*exp(-rho[4]*rho[4] + rho[4]*aux$zw)*aux$z

y = arima.sim(model = list(ar=rho[2]),

innov = sv[(n.burn+1):nz],

956 23. E cient Method of Moments

0 1000 2000 3000 4000

-0
.0

5
0.

0
0.

05

FIGURE 23.4. Simulated data from a discrete-time SV model.

start.innov = sv[1:n.burn])

y = y + rho[1]

as.numeric(y)

}

Notice that the S-PLUS function arima.sim is used to e ciently simulate
from an AR(1) process. Also notice that the function sv.gt.gensim is set
up so that the user must pass two vectors of random numbers as compo-
nents in the list sv.gt.aux.
To generate a simulated sample with = 4000, with 100 burn-in values,

calibrated to match the S&P 500 returns, use

> n.sim = 4000

> n.burn = 100

> nz = n.sim + n.burn

> set.seed(123)

> sv.gt.aux = list(z=rnorm(nz), zw=rnorm(nz))

> rho.gt = c(0.0004, 0.01, 0.01, 0.5)

> sv.gt.sim = sv.gt.gensim(rho = rho.gt, n.sim = n.sim,

+ n.burn = n.burn, aux = sv.gt.aux)

The simulated sample is illustrated in Figure 23.4. The simple SV model
(23.24) cannot produce the large outliers or volatility clustering observed
in the actual data.

23.4 Examples 957

EMM Estimation

As in GT, first consider the EMM estimation of the simple SV model (23.24)
for the S&P 500 returns using the poorly fitting auxiliary model represented
by the “SNP” object fit.sp500.10014000. The EMM estimation with =
10 000 simulations and 100 burn-in values may be performed using

> n.sim = 10000

> n.burn = 100

> nz = n.sim + n.burn

> set.seed(456)

> sv.gt.aux = list(z=rnorm(nz), zw=rnorm(nz))

> rho.gt = c(0.0004, 0.01, 0.01, 0.5)

> names(rho.gt) = c("mu","c","sigma","sigma.w")

> emm.svgt.fit1 = EMM(fit.sp500.10014000, coef = rho.gt,

+ EMM.control(n.burn=n.burn, n.sim=n.sim),

+ gensim.fn = "sv.gt.gensim",

+ gensim.language = "SPLUS",

+ gensim.aux = sv.gt.aux)

Iteration No. 1, objective = 2.0701e+010

...

Iteration No. 18, objective = 4.66991

The EMM estimation converges, and the small objective value indicates
that the data, as summarized through the 10014000 auxiliary model, are
consistent with the structural model (23.24). A summary of the EMM fit
is

> summary(emm.svgt.fit1)

Call:

EMM(score = fit.sp500.10014000, coef = rho.gt, appcode =

EMM.control(n.burn = n.burn, n.sim = n.sim), gensim.fn

= "sv.gt.gensim", gensim.language = "SPLUS",

gensim.aux = sv.gt.aux)

Coefficients:

Value Std. Error 95% Conf. Int.

mu 0.0006102 0.0001488 0.000318 0.0009016

c 0.0111869 0.0157008 -0.019764 0.0417771

sigma 0.0104773 0.0002044 0.010078 0.0108867

sigma.w 0.4411473 0.0261296 0.388516 0.4929767

Final optimization:

Convergence: relative function convergence

Iterations: 18

EMM objective at final iteration: 4.67

P-Value: 0.1976 on 3 degrees of freedom

958 23. E cient Method of Moments

Score Information:

Mean Score Std. Error t-ratio Adj. Std. Error t-ratio

z^1 -0.3076 2.436 -0.12631 1.4234 -0.2161

z^2 -0.2058 3.953 -0.05206 0.5299 -0.3884

z^3 3.0758 9.393 0.32745 8.5520 0.3597

z^4 3.6977 22.354 0.16541 3.1628 1.1691

mu -0.3931 1.118 -0.35160 0.2239 -1.7557

ar(1) 0.9893 1.262 0.78408 0.6526 1.5160

sigma 4.4093 3.315 1.33009 3.0670 1.4377

The autoregressive coe cient is not statistically di erent from zero, but the
variance of the stochastic volatility term is highly significant. The -value
of 0.1976 on the EMM objective function indicates that the overidentify-
ing moment conditions from the 10014000 scores are not rejected by the
data. As a result, the absolute value of the -ratios on the individual score
elements are all less than 2. The results indicate that the simple SV model
fits the data, as summarized through the 10014000 auxiliary model.
Next, consider fitting the simple SV model (23.24) using the best fitting

SNP 11118000 auxiliary model with = 10 000 simulations and 100 burn-
in values:

> emm.svgt.fit = EMM(fit.sp500.11118000, coef=rho.gt,

+ EMM.control(n.burn=n.burn, n.sim=n.sim),

+ gensim.fn = "sv.gt.gensim",

+ gensim.language = "SPLUS",

+ gensim.aux = sv.gt.aux)

Iteration No. 1, objective = 3.5508e+008

...

Iteration No. 44, objective = 156.49

The EMM estimation converges with a high objective value, indicating
that the data now reject the structural model (23.24). This is confirmed by
examining the EMM fit:

> summary(emm.svgt.fit)

Call:

EMM(score = fit.sp500.11118000, coef = rho.gt,

appcode = EMM.control(n.burn = n.burn, n.sim = n.sim),

gensim.fn = "sv.gt.gensim",

gensim.language = "SPLUS", gensim.aux = sv.gt.aux)

Coefficients:

Value Std. Error 95% Conf. Int.

mu 0.0005499 0.00009724 0.0003601 0.0006583

c 0.0267012 0.01025450 0.0052093 0.0480410

sigma 0.0128051 0.00059129 0.0120651 0.0135576

23.4 Examples 959

sigma.w 0.4470297 0.00786893 0.4392415 0.4575820

Final optimization:

Convergence: relative function convergence

Iterations: 44

EMM objective at final iteration: 156.5

P-Value: 0 on 9 degrees of freedom

Score Information:

Mean Score Std. Error t-ratio Adj. Std. Error t-ratio

z^1 -4.5158 2.4735 -1.8257 2.1519 -2.0986

z^2 -27.4201 3.7849 -7.2446 3.3053 -8.2958

z^3 -4.7150 8.6945 -0.5423 8.1304 -0.5799

z^4 -157.5280 21.7408 -7.2457 20.0389 -7.8611

z^5 124.1809 65.0210 1.9099 60.8025 2.0424

z^6 -934.3530 213.5628 -4.3751 200.8732 -4.6515

z^7 2537.7699 760.7266 3.3360 726.0131 3.4955

z^8 -6559.4648 2856.7967 -2.2961 2758.2166 -2.3782

mu -2.4675 1.4805 -1.6666 0.8574 -2.8779

ar(1) 0.5342 0.9803 0.5449 0.3660 1.4595

s0 -42.1830 14.6437 -2.8806 13.9578 -3.0222

arch(1) -13.6875 8.0812 -1.6938 6.6419 -2.0608

garch(1) -42.1351 15.6225 -2.6971 12.7673 -3.3003

The zero -value on the EMM objective function, based on the chi-square
distribution with 9 degrees of freedom, leads to a rejection of the overiden-
tifying moment conditions. The large -ratios on the individual score ele-
ments associated with the Hermite polynomial elements and the GARCH
elements shows that the simple SV model cannot capture the fat tails and
volatility clustering that exists in the data, as summarized by the 11118000
auxiliary model. This example highlights the importance of using an aux-
iliary model that captures all of the important features of the data when
estimating and evaluating a structural model by EMM.

Andersen, Chung, and Sorensen (1999)

The SV model considered by Andersen and Sorensen (1997), Chumacero
(1997), and Andersen, Chung, and Sorensen (1999) is of the form

= (23.25)

ln 2 = + ln 2
1 +

where () is iid (0 I2). This model was estimated by GMM using 24
moments in Chapter 21. The return series is assumed to be demeaned.
For 1 1 and 0 the return series, , is strictly stationary and
ergodic, and unconditional moments of any order exist. Let = ln 2 so

960 23. E cient Method of Moments

that = exp(2). Then, (23.25) may be rewritten as

= exp(2) ·
= + 1 +

which is in a form similar to the model (23.24). The SV model (23.25)
allows log-volatility to be serially correlated, which produces autoregres-
sive conditional heteroskedasticity (ARCH)-like features in the data. See
Shephard (1996) and Ghysels, Harvey, and Renault (1996) for a detailed
comparison of ARCH and SV models.

Simulator Function

An S-PLUS function to generate simulations from the SV model (23.25) is

sv.as.gensim = function(rho, n.sim, n.var=1, n.burn,

aux = sv.as.aux)

{

rho = (alpha, beta.t, sigma.u)

aux is a list with components

z = vector of N(0,1) values of length (n.sim + n.burn)

u = vector N(0,1) values of length (n.sim + n.burn)

nz = n.burn + n.sim

beta = exp(rho[2])/(1 + exp(rho[2]))

mu = rho[1]/(1-beta)

w = mu + arima.sim(model = list(ar=beta),

innov = aux$u[(n.burn + 1):nz]*rho[3],

start.innov = aux$u[1:n.burn]*rho[3])

y = exp(w/2)*aux$z[(n.burn + 1):nz]

as.numeric(y)

}

To impose stationarity on the log-volatility process, the logistic transforma-
tion is used to define the autoregressive parameter from the unrestricted
parameter :

=
exp()

1 + exp()

The logistic transformation restricts to the interval (0 1). This restriction
is reasonable since negative values of are not empirically relevant for
asset returns. The unconditional mean of the log-volatility process is =
(1).
Figure 23.5 shows a simulated sample of size = 4000 from (23.25) us-

ing the parameterization = 0 147 = 0 98 and = 0 166 taken from
Andersen, Chung, and Sorensen (1999) (Monte Carlo design II). The pa-
rameters are calibrated to match typical daily return data. The simulation
is generated using

23.4 Examples 961

0 1000 2000 3000 4000

-0
.1

0.
0

0.
1

FIGURE 23.5. Simulated data from the Andersen-Sorensen SV model with
= 0 736 = 0 90 and = 0 363.

> n.sim = 4000

> n.burn = 100

> nz = n.sim + n.burn

> set.seed(456)

> sv.as2.aux = list(z=rnorm(nz), u=rnorm(nz))

> rho.as2 = c(-0.147, 3.89182, 0.166)

> sv.as2.sim = sv.as.gensim(rho = rho.as, n.sim = n.sim,

+ n.burn = n.burn, aux = sv.as.aux)

The autocorrelated log-volatility process generates ARCH-like volatility
clustering in the simulated data.

EMM Estimation on Simulated Data

Andersen, Chung, and Sorensen (1999) studied the EMM estimation of
(23.25) using an extensive Monte Carlo study. They found that EMM per-
forms substantially better than GMM and comparably to direct likelihood-
based inference procedures. For samples of size 1000 or less they found that
a simple Gaussian GARCH(1,1) SNP model was a good choice for a score
generator. Only for much larger samples did they find that adding Her-
mite polynomial terms to the SNP model improved e ciency. Regarding
inference, they found that the EMM objective function test for overidenti-

962 23. E cient Method of Moments

fying restriction was remarkably reliable in contrast to the analogous GMM
objective function test (Hansen’s -test).
The estimation of (23.25) using the simulated data in sv.as2.sim is

based on the following Gaussian GARCH(1,1) SNP model:

> fOld = c(0,1e-5, 0, -1e-5, 1e-5, 1e-5, 1e-4, 0, -1e-4,

1e-4, 1e-4, 1e-3, 0, -1e-3, 1e-3, 1e-3, 1e-2,

0, -1e-2, 1e-2, 1e-2, 1e-1, 0, -1e-1, 1e-1,

1e-1, 1e0, 0, -1e0, 1e0, 1e0)

> fNew = c(0,0, 1e-5, 1e-5, -1e-5, 1e-5, 0, 1e-4, 1e-4,

-1e-4, 1e-4, 0, 1e-3, 1e-3, -1e-3, 1e-3, 0,

1e-2, 1e-2, -1e-2, 1e-2, 0, 1e-1, 1e-1, -1e-1,

1e-1, 0, 1e0, 1e0, -1e0, 1e0)

> n.start = c(0,rep(25,30))

> fit.svas2sim.01110000 = SNP(as.matrix(sv.as2.sim),

+ model = SNP.model(ar=0, arch=1, garch=1),

+ control = SNP.control(xTransform = "logistic",

+ n.start=n.start, fOld=fOld,

+ fNew=fNew),

+ n.drop=4, trace=T)

The quasi-maximum-likelihood estimation of the SNP model utilizes ran-
dom restarts of the optimizer to avoid getting stuck at potential local min-
ima, as recommended by Gallant and Tauchen (2001).
The EMM estimation with = 40 000 simulations and 100 burn-in

values is performed using7

> n.sim = 40000

> n.burn = 100

> nz = n.sim + n.burn

> set.seed(123)

> sv.as2.aux = list(z=rnorm(nz), u=rnorm(nz))

> emm.svas2sim.fit = EMM(fit.svas2sim.01110000, coef=rho.as2,

+ EMM.control(n.burn=n.burn, n.sim=n.sim),

+ gensim.fn="sv.as.gensim",

+ gensim.language="SPLUS",

+ gensim.aux=sv.as2.aux)

Iteration No. 1, objective = 85170

...

Iteration No. 30, objective = 0.168816

> summary(emm.svas2sim.fit)

7These are values similar to those used by Andersen and Sorensen (1996). They
utilized = 20 000 simulations with 20 000 antithetic pairs. The S-PLUS function EMM
currently does not support antithetic variates.

23.4 Examples 963

Call:

EMM(score = fit.svas2sim.01110000, coef = rho.as2,

appcode = EMM.control(n.burn = n.burn, n.sim = n.sim),

gensim.fn = "sv.as.gensim",

gensim.language = "SPLUS", gensim.aux = sv.as2.aux)

Coefficients:

Value Std. Error 95% Conf. Int.

alpha -0.2631 0.13018 -0.3839 -0.1330

beta.t 3.3228 0.50730 2.8523 3.8301

sigma.u 0.1950 0.04636 0.1486 0.2378

Final optimization:

Convergence: relative function convergence

Iterations: 30

EMM objective at final iteration: 0.1688

P-Value: 0.6812 on 1 degrees of freedom

Score Information:

Mean Score Std. Error t-ratio Adj. Std. Error t-ratio

mu 0.8230 2.004 0.410711 2.0029 0.4109

s0 2.4909 16.076 0.154946 6.0634 0.4108

arch(1) 0.3551 8.196 0.043326 0.8647 0.4107

garch(1) 0.1139 11.928 0.009551 0.2777 0.4102

The EMM estimation converges with a high objective function -value in-
dicating that the data do not reject the single overidentifying restriction
implied by the GARCH(1,1) score generator. The estimates of and
are reasonably close to their true values, and the sizes of their estimated
standard errors are similar to the Monte Carlo root mean square errors
reported by Anderson, Chung, and Sorensen. The estimate of is 3 3228,
which implies an estimate for equal to 0 9652028. The standard error for
, obtained using the delta method approximation, is

> bt.hat = emm.svas2sim.fit$coef[2]

> b.hat = exp(bt.hat)/(1 + exp(bt.hat))

> dg = b.hat*(1 - b.hat)

> se.b.hat = sqrt(dg%*%emm.svas2sim.fit$var[2,2]%*%dg)

> se.b.hat

[,1]

[1,] 0.01703867

Notice that all of the adjusted score -ratios are the same. This occurs
because the asymptotic variance of the normalized moments has rank 1
(degree of overidentification).

964 23. E cient Method of Moments

The GMM estimation of (23.25) based on 24 arbitrary moment conditions
is described in Chapter 21. The GMM estimates based on the simulated
data in sv.as2.sim are computed using

> sv.pow = cbind(abs(sv.as2.sim), sv.as2.sim^2,

+ abs(sv.as2.sim)^3, sv.as2.sim^4)

> sv2.pow = sv.pow[-(1:10),]

> sv2.cm = tslag(sv.as2.sim, 1:10, trim=T) *

+ as.vector(sv.as2.sim[-(1:10)])

> sv2.data = cbind(sv2.pow, abs(sv2.cm), sv2.cm^2)

> start.vals = c(0, 0.5, 0.5)

> names(start.vals) = c("omega", "beta", "sigu")

> sv2.fit.gmm = GMM(start.vals, sv.moments, method="iterative",

+ ts=T, data=sv2.data)

> summary(sv2.fit.gmm,print.moments=F)

Call:

GMM(start = start.vals, moments = sv.moments, method =

"iterative", ts = T, data = sv2.data)

Coefficients:

Value Std.Error t value Pr(>|t|)

omega -0.2650 0.1348 -1.9655 0.0494

beta 0.9649 0.0179 54.0224 0.0000

sigu 0.1926 0.0532 3.6214 0.0003

Test of Overidentification:

J-stat Df P.value

15.297 21 0.8078

The GMM and EMM estimates are remarkably similar. However, based on
extensive Monte Carlo exercises, Chumacero (1997) and Anderson, Chung,
and Sorensen (1999) recommend EMM over GMM for the following reasons:
(1) EMM estimates are numerically more stable; (2) EMM estimates have
smaller root mean squared errors; (3) the problems associated with the
choice of weighting matrices in the case of GMM are absent in EMM; (4)
the EMM test for overidentifying restrictions is more reliable; (5) inference
regarding the parameters based on EMM -statistics is more reliable.

EMM Estimation on S&P 500 Returns

Consider EMM estimation of (23.25) for the S&P 500 daily returns using
the best fitting score generator summarized by the “SNP” object fit.sp500.
11118000. The EMM estimation with = 40 000 simulated values and
100 burn-in values is computed using

23.4 Examples 965

> n.sim = 40000

> n.burn = 100

> nz = n.sim + n.burn

> set.seed(456)

> sv.as.aux = list(z=rnorm(nz), u=rnorm(nz))

> rho.as = c(-0.147, 3.89182, 0.166)

> names(rho.as) = c("alpha", "beta.t", "sigma.u")

> emm.svas.sp500 = EMM(fit.sp500.11118000,coef=rho.as,

+ EMM.control(n.burn=n.burn, n.sim=n.sim),

+ gensim.fn = "sv.as.gensim",

+ gensim.language = "SPLUS",

+ gensim.aux = sv.as2.aux)

Iteration No. 1, objective = 255798

...

Iteration No. 24, objective = 71.8841

> emm.svas.sp500

Call:

EMM(score = fit.sp500.11118000, coef = rho.as, appcode =

EMM.control(n.burn = n.burn, n.sim = n.sim), gensim.fn

= "sv.as.gensim", gensim.language = "SPLUS", gensim.aux

= sv.as2.aux)

Coefficients:

Value Std. Error 95% Conf. Int.

alpha -0.2945 0.13010 -0.4059 -0.1644

beta.t 3.4229 0.45495 3.0318 3.8778

sigma.u 0.1759 0.03137 0.1445 0.1921

Final optimization:

Convergence: relative function convergence

Iterations: 24

EMM objective at final iteration: 71.88

P-Value: 1.916e-011 on 10 degrees of freedom

The small -value on the final EMM objective value indicates that the SV
model (23.25) is rejected by the S&P 500 returns as summarized through
the SNP 11118000 model. A bar plot of the adjusted -ratios associated
with the EMM fit, produced using

> plot(emm.svas.sp500)

is shown in Figure 23.6.
The large -ratios on the z^4, z^5, and z^7moments indicate the features

of the returns that the SV model (23.25) cannot adequately describe.

966 23. E cient Method of Moments

z^1

z^2

z^3

z^4

z^5

z^6

z^7

z^8

mu

ar(1)

s0

arch(1)

garch(1)

-2 0 2 4

Adjusted t-ratios of mean score

FIGURE 23.6. Adjusted -ratios from the SNP 11118000 mean score associated
with the EMM fit to the SV model (23.25) for the S&P 500 returns.

Gallant, Hsieh, and Tauchen (1997)

Gallant, Hsieh, and Tauchen (1997) considered the general univariate discrete-
time SV model

= +
X
=1

+ exp(2)

=
X
=1

+

where { } and { } are iid Gaussian random variables with mean zero, unit
variance, and correlation coe cient . The model allows for autoregressive
e ects in the mean and log-volatility. A negative correlation between the
innovations to the level and log-volatility allow for the so-called leverage
e ect.

23.4.3 Interest Rate Di usion Models

In this subsection, the one-factor and two-factor interest di usion models
for short-term interest rates introduced in Section 23.2 are fit by EMM.
The first example is based on Chan, Karolyi, Longsta , and Sanders (1992)
who fitted a one-factor model to monthly observations on the 3-month U.S.

23.4 Examples 967

T-bill. The second and third examples follow Andersen and Lund (1997)
who fittd one-factor and two-factor models to weekly observations on the
3-month U.S. T-bill.

CKLS (1992) One-Factor Model

Chan, Karolyi, Longsta , and Sanders (1992), hereafter CKLS, estimated
the generalized Cox-Ingersoll-Ross (GCIR) one-factor continuous-time in-
terest rate di usion model

= (0 + 0) + 0
0 (23.26)

using GMM with four moment conditions derived from an Euler discretiza-
tion. For their estimation, they used = 307 monthly observations on the
3-month U.S. T-bill rate over the period June 1964 through December
1989.8

The model (23.26) is of the form (23.22) where = and

() = (0 + 0) () = 0
0 (23.27)

are the drift and di usion functions, respectively. In (23.26), the drift
function () = (0 + 0) may be reparameterized as () =

0(0) where 0 = 0 0 and 0 = 0. The parameter 0 is the
long-run mean and the parameter 0 determines the speed of mean rever-
sion.

Simulator Function

Simulations of from the GCIR model (23.26) based on Euler’s method
using the S-PLUS function euler1d.pcode.gensim9 was discussed in Chap-
ter 20. The auxiliary information to set the drift and di usion functions
(23.27) and to calibrate the simulation to monthly data on 3-month T-bills
is

> rho.names = c("alpha", "beta", "sigma", "gamma")

> ckls.aux = euler.pcode.aux(

+ drift.expr = expression(alpha + beta*X),

+ diffuse.expr = expression(sigma*X^gamma),

+ rho.names = rho.names,

+ t.per.sim = 1/12, ndt = 25,

+ lbound=0, ubound=10)

Since the yields are annualized and the data are observed monthly, the
argument t.per.sim is set to 1/12. Setting ndt=25 indicates that each

8Chapter 21 also gives an example of estimating the GCIR model with monthly data
using GMM.

9The function euler1d.pcode.gensim is more e cient for simulating the solutions to
single- factor SDEs than the more general function euler.pcode.gensim.

968 23. E cient Method of Moments

0 50 100 150 200 250 300

0.
04

0.
08

Lag

0 5 10 15 20

0.
0

0.
4

0.
8

 Series : ckls.sim2

Lag

0 5 10 15 20

0.
0

0.
4

0.
8

 Series : ckls.resid^2

FIGURE 23.7. Simulated annualized short-term interest rates, sampled monthly,
from GCIR model.

monthly simulated value is based on 25 discretization points. The argu-
ments lbound=0 and ubound=10 truncate the simulation to lie in the inter-
val [0,10]. This prevents nonstationary parameterizations from generating
explosive simulations.
CKLS fitted the GCIR model (23.26) to = 307 monthly observations

on the 3-month U.S. T-bill rate using GMM, and reported the estimates

ˆ0 = 0 0408 ˆ
0 = 0 5921 ˆ20 = 1 6704 ˆ = 1 4999 (23.28)

The estimates imply a long-run mean interest rate of 0 0408 0 5921 =
0 069. Figure 23.7 shows a simulation of = 300 annualized interest rates
sampled monthly, based on the above GMM estimates, computed using

> rho.ckls = c(0.0408, -0.5921, sqrt(1.6704), 1.4999)

> ckls.aux$seed = 123

> ckls.aux$X0 = 0.0408/0.5921

> ckls.sim = euler1d.pcode.gensim(rho.ckls,n.sim=300,

+ n.burn=100, aux=ckls.aux)

The simulated rates have a long-run mean of about 0 069 and exhibit in-
creased volatility as the level of rates rises. The SACF of the rates shows
high persistence in the mean. The SACF of the squared residuals from an
AR(1) model fit to the rates shows some evidence of stochastic volatility.

23.4 Examples 969

EMM Estimation on Simulated Data

The SNP auxiliary model for the simulated data is determined using the
function SNP.auto:

> ckls.sim = as.matrix(ckls.sim)

> fit.snp.ckls = SNP.auto(ckls.sim,n.drop=8,

+ control = SNP.control(xTransform="spline",

+ n.start = n.start,

+ seed = 011667,

+ fOld = fOld,

+ fNew = fNew),

+ xPolyMax=1,lagPMax=1)

where the parameters n.start, fOld and fNew are the same as those used
in fitting the SNP model for the simulations from the discrete-time SV
model discussed earlier. The SNP model that minimizes the BIC is a semi-
parameteric AR(1) - GARCH(1,1), 11111000, model:

> coef(fit.snp.ckls)

Hermite Polynomial Coefficients:

z^0 z^1

1 -0.6622

Conditional Mean Coefficients:

mu ar(1)

-0.3814 0.8125

Conditional Variance Coefficients:

s0 arch(1) garch(1)

-0.0798 -0.2568 0.5421

A similar model was used by Jensen (2001) in his analysis of monthly
interest rate data using EMM. The above SNP model passes the standard
residual diagnostics. Figure 23.8 shows simulated values from the fitted
SNP model, along with the SACF of the simulated values and the SACF
of squared residuals from the SNP fit. The SNP model appears to capture
the relevant features of the simulated GCIR data.
Now, consider EMM estimation of the GCIR parameters from the sim-

ulated data based on the SNP 11111000 auxiliar model. EMM estimation
with = 40 000 simulated values and 100 burn-in values is computed
using

> n.burn = 100

> n.sim = 40000

> ndt = 25

> set.seed(456)

970 23. E cient Method of Moments

0 50 100 150 200 250 300

0.
04

0.
08

Lag

0 5 10 15 20

-0
.2

0.
2

0.
6

1.
0

 Series : snp.ckls.sim

Lag

0 5 10 15 20

0.
0

0.
4

0.
8

 Series : snp.ckls.resid^2

FIGURE 23.8. Simulated data from SNP model fit to simulated values from
GCIR model.

> z.ckls = rnorm(ndt*(n.burn + n.sim))

> rho.ckls.names = c("alpha", "beta", "sigma", "gamma")

> ckls.aux = euler.pcode.aux(

+ drift.expr = expression(alpha + beta*X),

+ diffuse.expr = expression(sigma*X^gamma),

+ rho.names = rho.ckls.names,

+ t.per.sim = 1/12, ndt = 25,

+ z = z.ckls, X0 = 0.06,

+ lbound=0, ubound=10)

> rho.ckls = c(0.04, -0.6, 1.3 , 1.5)

> emm.ckls.fit = EMM(fit.snp.ckls, coef=rho.ckls,

+ control = EMM.control(n.sim=n.sim,

+ n.burn=n.burn),

+ gensim.fn = euler1d.pcode.gensim,

+ gensim.language = "SPLUS",

+ gensim.aux = ckls.aux, save.sim=T)

Iteration No. 1, objective = 248417

...

Iteration No. 37, objective = 19.9188

> emm.ckls.fit

Call:

23.4 Examples 971

EMM(score = fit.snp.ckls, coef = rho.ckls, control =

EMM.control(n.sim = n.sim, n.burn = n.burn), save.sim

= T, gensim.fn = euler1d.pcode.gensim,

gensim.language = "SPLUS", gensim.aux = ckls.aux)

Coefficients:

Value Std. Error 95% Conf. Int.

alpha 0.03545 0.004832 0.03416 0.03699

beta -0.57791 0.083459 -0.61014 -0.55178

sigma 1.25784 0.151522 1.23507 1.29620

gamma 1.49369 0.036179 1.48007 1.50649

Final optimization:

Convergence: relative function convergence

Iterations: 37

EMM objective at final iteration: 19.92

P-Value: 4.728e-005 on 2 degrees of freedom

Interestingly, even though the starting values are set close to the true values,
EMM converges with a large objective value. It is possible that the EMM
estimates converged to a local minimum. To check this, the GCIR model
is re-estimated utilizing the random restart feature of EMM:

> rho.ckls = c(0.04, -0.6, 1.3 , 1)

> emm.ckls.fit.restart = EMM(fit.snp.ckls,coef=rho.ckls,

+ control = EMM.control(n.sim = n.sim,

+ n.burn = n.burn,

+ init.itmax = 10,

+ final.itmax = 300,

+ n.start = rep(5,3),

+ tweak = c(0.25, 0.5, 1.0)),

+ gensim.fn = euler1d.pcode.gensim,

+ gensim.language = "SPLUS",

+ gensim.aux = ckls.aux, save.sim=T)

Run 1 , 5 starts, tweak = 0.25

Iteration No. 1, objective = 248417

...

Iteration No. 30, objective = 3.38473

The random restarts are controled by the arguments n.start=rep(5,3)
and tweak=c(0.25, 0.05, 1.0) to EMM.control. The starting values for
each coe cient are perturbed according to

× (1 + × tweak) (23.29)

where is a uniformly distributed random variable in (1 1). The opti-
mization is restarted five times using starting values set by (23.29), with

972 23. E cient Method of Moments

each of the three tweak constants specified in tweak and iterated 10 times.
The restart that generates the lowest objective function value after 10 iter-
ations is then iterated to convergence. After allowing for random restarts,
EMM converges with a much smaller objective function value. The final
estimates are

> emm.ckls.fit.restart

Call:

EMM(score = fit.snp.ckls, coef = rho.ckls, control =

EMM.control(n.sim = n.sim, n.burn = n.burn, n.start =

rep(5, 3), tweak = c(0.25, 0.5, 1.)), save.sim = T,

gensim.fn = euler1d.pcode.gensim, gensim.language =

"SPLUS", gensim.aux = ckls.aux)

Minimum objective (out of 3 runs) occurred for control

parameters

tweak n.start

1 5

Coefficients:

Value Std. Error 95% Conf. Int.

alpha 0.03246 0.006698 0.02425 0.05684

beta -0.51219 0.108073 -0.89322 -0.37401

sigma 0.63430 0.170606 0.45965 0.82233

gamma 1.30524 0.099467 1.20165 1.42463

Final optimization:

Convergence: relative function convergence

Iterations: 30

EMM objective at final iteration: 3.385

P-Value: 0.1841 on 2 degrees of freedom

With random restarts of the optimizer, the EMM estimates converge with a
much smaller value of the objective function that does not reject the overi-
dentifying restrictions. Interestingly, the EMM estimate of is considerably
smaller than the true value of 1.292 and it has the largest estimated stan-
dard error. Also, the EMM estimate of is smaller than its true value of
1.4999. As noted by Tauchen (1997), it is di cult to estimate both and
precisely when their values are large. The small sample sizes a orded by

monthly data are likely to exercerbate this problem.
The GMM estimation based on moments derived from the Euler dis-

cretization used by CKLS was discussed in Chapter 21. Using the S+Fin-
Metrics function GMM, the GMM estimates of the GCIR model parameters
from the simulated data are

> start.vals = c(0.06, -0.5, 1, 1)

23.4 Examples 973

> names(start.vals) = c("alpha","beta","sigma","gamma")

> gmm.ckls.sim = GMM(start.vals, ckls.moments, ts=T,

+ data=data.ckls.sim, dt=1/12)

> summary(gmm.ckls.sim)

Call:

GMM(start = start.vals, moments = ckls.moments, ts = T, data

= data.ckls.sim, dt = 1/12)

Coefficients:

Value Std.Error t value Pr(>|t|)

alpha 0.0464 0.0157 2.9589 0.0033

beta -0.7309 0.2701 -2.7064 0.0072

sigma 0.3981 0.2499 1.5932 0.1122

gamma 1.1082 0.2246 4.9336 0.0000

Test of Overidentification:

model is just-identified

Optimization Info:

Number of Iterations: 5

Convergence: absolute function convergence

Notice that the GMM estimates based on four moments derived from the
Euler discretization are more biased and less precise than the EMM esti-
mates based on the six moments derived from the SNP 11111000 auxiliary
model.

EMM Estimation on Monthly T-bill Data

Monthly observations on the U.S. T-bill rate over the period June 1964
through November 1989, similiar to the data analyzed by CKLS, are in the
S+FinMetrics “timeSeries” object ckls.ts. The SNP auxiliary model
for the monthly T-bill data is determined using the function SNP.auto:

> fit.snp.ckls.ts = SNP.auto(ckls.ts, n.drop=8,

+ control = SNP.control(xTransform = "spline",

+ n.start = n.start,

+ fOld = fOld, fNew = fNew),

+ xPolyMax=1,lagPMax=1)

The BIC minimizing model is a semiparametric AR(1)-GARCH(1,1) model
(11111000):

> coef(fit.snp.ckls.ts)

Hermite Polynomial Coefficients:

z^0 z^1

974 23. E cient Method of Moments

1 -0.5984

Conditional Mean Coefficients:

mu ar(1)

-0.2254 0.8532

Conditional Variance Coefficients:

s0 arch(1) garch(1)

-0.0083 -0.1131 0.86

The above SNP model passes the standard residual diagnostics, and simu-
lations from the model are dynamically stable.
The EMM estimation with = 40 000 simulated values and 100 burn-in

values is computed using

> emm.ckls.ts.fit = EMM(fit.snp.ckls.ts, coef=rho.ckls,

+ control = EMM.control(n.sim=n.sim,

+ n.burn=n.burn),

+ gensim.fn = euler1d.pcode.gensim,

+ gensim.language = "SPLUS",

+ gensim.aux=ckls.aux,save.sim=T)

Iteration No. 1, objective = 15897

...

Iteration No. 42, objective = 3.70258

> emm.ckls.ts.fit

Call:

EMM(score = fit.snp.ckls.ts, coef = rho.ckls, control =

EMM.control(n.sim = n.sim, n.burn = n.burn), save.sim

= T, gensim.fn = euler1d.pcode.gensim,

gensim.language = "SPLUS", gensim.aux = ckls.aux)

Coefficients:

Value Std. Error 95% Conf. Int.

alpha 0.05821 0.05369 0.01217 0.1286

beta -0.85281 0.82692 -1.88260 -0.7343

sigma 1.11085 0.97791 0.16814 2.1487

gamma 1.44809 0.29755 1.16062 1.7611

Final optimization:

Convergence: relative function convergence

Iterations: 42

EMM objective at final iteration: 3.703

P-Value: 0.157 on 2 degrees of freedom

23.4 Examples 975

The EMM estimates converge with a low value of the objective function
such that the two overidentifying restrictions implied by the SNP 11111000
model are not rejected. The EMM estimates are similar to the GMM es-
timates (23.28) for the GCIR model obtained by CKLS, and the GMM
estimates using ckls.ts reported in Chapter 21. The estimated standard
error for the EMM estimate of , however, is very large and indicates con-
siderable uncertainty about the value of . Although the GCIR model is
not rejected using a short span of monthly data, the analysis in the next
subsection shows that it may be rejected using a much longer span of weekly
data.

Andersen and Lund (1997) One Factor Model

Andersen and Lund (1997) considered fitting the one-factor GCIR model
(23.26) to = 2155 weekly observations on the annualized U.S. 3-month
T-bill rate (multiplied by 100) over the period January 1954 through April
1995. SNP models were fit to similar weekly interest rate data in the pre-
vious chapter. They fit the following reparameterized model

= () + 0 (23.30)

where represents the long-run mean and is a speed-of-adjustment pa-
rameter. They estimated (23.30) by EMM using a semiparametric AR(5)-
EGARCH(1,1) auxiliary model, and reported the following parameter es-
timates10:

ˆ = 0 082 ˆ = 6 279 ˆ = 0 670 ˆ = 0 676 (23.31)

Notice that the estimates of both and are much smaller than the
corresponding estimates (23.28) based on monthly data obtained by CKLS.
Based on a large value of the EMM objective function, they rejected the
one-factor model. Contrary to the results from EMM estimation of the
one-factor model on a short span of monthly data, the one-factor model is
strongly rejected using a long span of weekly data.

Simulator Function

The auxiliary information to set the drift and di usion functions of the one-
factor model (23.30) for Euler’s method and to calibrate the simulation to
weekly data on the 3-month T-bill is

> rho.gcir.names = c("k","mu","sigma","gamma")

> gcir.aux = euler.pcode.aux(

+ drift.expr = expression(k*(mu-X)),

10These estimates are reported in Andersen and Lund (1997, Table 7, p. 370). Ander-
sen and Lund did not use Gallant and Tauchen’s FORTRAN code to estimate SNP and
EMM models. Their EGARCH specification for the SNP model cannot be implemented
using Gallant and Tauchen’s SNP code.

976 23. E cient Method of Moments

0 500 1000 1500 2000

5
10

15
20

25
30

FIGURE 23.9. Simulated values from GCIR process calibrated to weekly obser-
vations on the annualized U.S. 3-month T-bill rate.

+ diffuse.expr = expression(sigma*X^gamma),

+ rho.names = rho.gcir.names,

+ t.per.sim = 1/52, ndt = 25,

+ lbound=0, ubound=100)

For annualized data observed weekly, t.per.sim is set to 1/52. To compute
a solution path from Euler’s method with = 2000 values and 1000 burn-in
values, based on the estimates (23.31), use

> rho.gcir = c(0.082, 6.279, 0.670, 0.676)

> gcir.aux$seed = 123

> gcir.aux$X0 = 6

> gcir.sim = euler1d.pcode.gensim(rho.gcir, n.sim=2000,

+ n.var=1, n.burn=1000,

+ aux=gcir.aux)

These values are shown in Figure 23.9. Notice that the simulated weekly
rates look more like actual rates than the simulated monthly rates shown
in Figure 23.7.

EMM Estimation on Simulated Data

The SNP auxiliary model for the simulated weekly data is determined using
the function SNP.auto:

23.4 Examples 977

> gcir.sim = as.matrix(gcir.sim)

> fit.snp.gcir = SNP.auto(gcir.sim,n.drop=8,

+ control = SNP.control(xTransform="spline",

+ n.start = n.start,

+ fOld = fOld, fNew = fNew),

+ xPolyMax=1,lagPMax=1)

> coef(fit.snp.ckls.ts)

Hermite Polynomial Coefficients:

z^0 z^1

1 -0.5984

Conditional Mean Coefficients:

mu ar(1)

-0.2254 0.8532

Conditional Variance Coefficients:

s0 arch(1) garch(1)

-0.0083 -0.1131 0.86

> coef(fit.snp.gcir)

Hermite Polynomial Coefficients:

x^0 x^1

z^0 1.0000 0.2037

z^1 -0.3793 -0.3124

Conditional Mean Coefficients:

mu ar(1)

-0.0487 0.9537

Conditional Variance Coefficients:

s0 arch(1) garch(1)

-0.0017 -0.0815 0.9057

The BIC minimizing SNP model is a nonlinear nonparametric AR(1)-
GARCH(1,1) with = 1 and = 1, 11111010. The model passes the
usual residual diagnostics, and simulations from the model appear dynam-
ically stable.
The EMM estimation with = 50 000 simulated values and 1000 burn-

in values may be computed using

> n.burn = 1000

> n.sim = 50000

> ndt = 25

> set.seed(456)

> z.gcir = rnorm(ndt*(n.burn+n.sim))

978 23. E cient Method of Moments

> gcir.aux$z = z.gcir

> emm.gcir.fit = EMM(fit.snp.gcir,coef=rho.gcir,

+ control=EMM.control(n.sim=n.sim,

+ n.burn=n.burn),

+ gensim.fn = euler.pcode.gensim,

+ gensim.language = "SPLUS",

+ gensim.aux = gcir.aux, save.sim=T)

Iteration No. 1, objective = 5099.04

...

Iteration No. 31, objective = 1.73639

> emm.gcir.fit

Call:

EMM(score = fit.snp.gcir, coef = rho.gcir, control =

EMM.control(n.sim = n.sim, n.burn = n.burn), save.sim

= T, gensim.fn = euler.pcode.gensim, gensim.language

= "SPLUS", gensim.aux = gcir.aux)

Coefficients:

Value Std. Error 95% Conf. Int.

k 0.2768 0.04432 0.2047 NA

mu 6.8552 0.51202 6.1242 7.6481

sigma 0.8490 0.11229 0.7006 1.0450

gamma 0.5554 0.05951 0.4608 0.6368

Final optimization:

Convergence: relative function convergence

Iterations: 31

EMM objective at final iteration: 1.736

P-Value: 0.7841 on 4 degrees of freedom

The EMM estimates converge with a low value of the objective function
that does not reject the four overidentifying restrictions implied by the SNP
11111010 model. All of the estimates, except ˆ, are reasonably precise and
close to their true values. The asymmetric 95% confidence interval for
indicates that the EMM objective function is nonsmooth in near ˆ. As
Gallant and Tauchen (2002) pointed out, estimation can often be improved
by utilizing a very long simulation length (e.g., = 100 000) together with
random restarts of the optimizer.

EMM Estimation on Monthly T-bill Data

Now, consider EMM estimation of the one-factor model using weekly ob-
servations on the U.S. 3-month T-bill contained in the first column of the
S+FinMetrics “timeSeries” object tbill.dat. The specification and esti-
mation of SNP models for these data were discussed in the previous chapter.

23.4 Examples 979

SNP b b b b EMM

11118000
1 467
(1 095)

5 559
(1 419)

0 685
(1 073)

1 105
(0 593)

35 7
(0 000)

10818000
0 227
(0 315)

4 080
(3 023)

0 1373
(0 093)

2 275
(0 158)

47 3
(0 000)

51118000
0 342
(0 446)

8 219
(1 731)

0 074
(0 068)

1 723
(0 327)

41 8
(0 000)

10414010
0 445
(0 078)

7 137
(0 401)

2 981
(0 506)

0 4336
(0 1172)

54 4
(0 000)

TABLE 23.5. EMM estimates of one-factor GCIR model for weekly 3-month
T-bill rates. Starndard errors are in parentheses for estimates; p-vaule in paren-
thesis for J statistic.

The following four models were suggested: 11118000, 10818000, 51118000
and 10414010. Table 23.5 shows the EMM estimates of the one-factor GCIR
model (23.30) based on the above four SNP models. Each model was esti-
mated using = 50 000 simulations and 1000 burn-in values. For example,
the EMM estimates based on the SNP 11118000 model are computed using

> n.burn = 1000

> n.sim = 50000

> ndt = 25

> set.seed(456)

> z.gcir= rnorm(ndt*(n.burn + n.sim))

> gcir.aux$z = z.gcir

> rho.gcir = c(0.082,6.279,0.670,0.676)

> emm.gcir.11118000.fit = EMM(fit.tb3mo.11118000,

+ coef=rho.gcir,

+ control = EMM.control(n.sim=n.sim,

+ n.burn=n.burn),

+ gensim.fn = euler.pcode.gensim,

+ gensim.language = "SPLUS",

+ gensim.aux = gcir.aux, save.sim=T)

The one-factor model is rejected using all of the SNPmodels.11 Figure 23.10
shows the adjusted score -ratios (23.21) for the four models. Generally, the
one-factor model does not fit the Hermite polynomial terms of the SNP
models.

Andersen and Lund (1997) Two-Factor Model

Given the rejection of the one-factor model using weekly data, Andersen
and Lund (1997) considered the following two-factor extension of the GCIR

11Similar results were obtained using = 75 000 simulations and random restarts.

980 23. E cient Method of Moments

z^1
z^2
z^3
z^4
z^5
z^6
z^7
z^8

mu
ar(1)

s0
arch(1)

garch(1)

-1.5 -1.0 -0.5 0.0 0.5 1.0

Adjusted t-ratios of mean score

SNP 11118000 Model

z^1
z^2
z^3
z^4
z^5
z^6
z^7
z^8

mu
ar(1)

s0
arch(8)
arch(7)
arch(6)
arch(5)
arch(4)
arch(3)
arch(2)
arch(1)

-6 -4 -2 0 2

Adjusted t-ratios of mean score

SNP 10818000 Model

z^1
z^2
z^3
z^4
z^5
z^6
z^7
z^8

mu
ar(5)
ar(4)
ar(3)
ar(2)
ar(1)

s0
arch(1)

garch(1)

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Adjusted t-ratios of mean score

SNP 51118000 Model

z^0 x^1
z^1 x^0
z^1 x^1
z^2 x^0
z^2 x^1
z^3 x^0
z^3 x^1
z^4 x^0
z^4 x^1

mu
ar(1)

s0
arch(4)
arch(3)
arch(2)
arch(1)

-2 -1 0 1 2 3

Adjusted t-ratios of mean score

SNP 10414010 Model

FIGURE 23.10. Adjusted t-ratios for SNP score elements from the EMM estima-
tion of one-factor GCIR model (23.30) for weekly U.S. T-bill rates.

model:

= 1() + 1 0 (23.32)

ln 2 = 2(ln 2) + 2

where 1 and 2 are independent Brownian motion processes. The spec-
ification implies mean reversion of the interest rate level as well as the (log-)
volatility. The parameter is the long-run mean of log-volatility and is
the long-run mean for interest rates. Define = ln 2 = 2 ln . Then,
exp(2) = and (23.32) may be re-expressed as

= 1() + exp(2) 2 0

= 2() + 2

Let X = ()0 andW = (1 2)
0. Then (23.32) may be expressed

in matrix form
X = a(X) + b(X) W

where

a(X) =

µ
1()

2()

¶
b(X) =

µ
exp(2) 0

0

¶
(23.33)

are the drift and di usion functions, respectively.

23.4 Examples 981

Andersen and Lund estimated (23.32) by EMM using a semiparametric
AR(5)-EGARCH(1,1) model and reported the following estimates12

ˆ1 = 0 163 ˆ = 5 95 ˆ = 0 544 ˆ2 = 1 04 ˆ = 0 282 ˆ = 1 27
(23.34)

They reportedd an EMM objective function value of 24 25 with a -value
of 0 019, and concluded that there is mild evidence against the two-factor
model for weekly U.S. 3-month T-bill rates.

Simulator Function

Simulated solutions for X from (23.32) based on Euler’s method may be
computed using the S-PLUS function euler.pcode.gensim. The auxiliary
information to set the drift and di usion function (23.33) and to calibrate
the simulation to the weekly data on 3-month T-bills is

> rho.tf.names = c("k1", "mu", "gamma", "k2", "alpha", "xi")

> tf.aux=euler.pcode.aux(

+ rho.names = rho.tf.names,

+ drift.expr = expression(

+ k1*(mu - X[1]),

+ k2*(alpha-X[2])),

+ diffuse.expr = expression(

+ (exp((X[2]-5)*0.5))*X[1]^gamma,

+ 0.0,

+ 0.0,

+ xi),

+ N = 2, M = 2, t.per.sim = 1/52, ndt = 25,

+ lbound = 0, ubound = 100,

+ returnc = c(T,T))

Since there are two factors to simulate and the di usion matrix is square,
N=2 and M=2. Setting returnc=c(T,T) specifies that simulated values of
both and are returned by the simulator. To ensure that stays
positive, lbound=0. However, this lower bound applies to both and
. Since = ln , can be both positive and negative. To allow to

vary freely, the di usion is reparameterized so that the level of is shifted
up by 5 units. As a result, the expression for the drift function for is
exp((5) 2) instead of exp(2) .
A solution path of length = 2000, with 1000 burn-in values, using

Euler’s method calibrated to the estimates (23.34), may be computed using

> tf.aux$seed = 678

> tf.aux$X0 = c(6,5-0.28)

12These estimates are reported in Andersen and Lund (1997, Table 6, p. 368). They
are based on a simulation length of = 75 000 with = 25.

982 23. E cient Method of Moments

interest rates: r(t)

0 500 1000 1500 2000

0
5

10
15

20

log volatility: v(t) - 5

0 500 1000 1500 2000

-2
-1

0
1

2
3

FIGURE 23.11. Simulated values from two-factor GCIR process calibrated to
weekly observations on annualized U.S. 3-month T-bill rate.

> tf.sim = euler.pcode.gensim(rho=rho.tf,

+ n.sim=2000, n.var=2,

+ n.burn=1000, aux=tf.aux)

> tmp = matrix(tf.sim, 2000, 2, byrow=T)

> tfird.sim = as.matrix(tmp[,1, drop=F])

> logvol.sim = tmp[,2] - 5

To create the simulation, the initial value for is shifted up by 5 units.
Figure 23.11 shows the simulated values for and 5.

EMM Estimation on Simulated Data

The SNP auxiliary model for the simulated data from the two-factor model
is determined using the function SNP.auto:

> fit.snp.tfird = SNP.auto(tfird.sim,n.drop=8,

+ control = SNP.control(xTransform="spline",

+ n.start = n.start,

+ fOld = fOld,

+ fNew = fNew),

lagPMax = 1)

The BIC minimizing SNP model is a nonlinear non-parametric AR(1)-
GARCH(1,1) with = 4 and = 1, 11114010:

23.4 Examples 983

> coef(fit.snp.tfird)

Hermite Polynomial Coefficients:

x^0 x^1

z^0 1.0000 0.6246

z^1 -0.0765 -0.0517

z^2 -0.0515 -0.0085

z^3 -0.0045 -0.0022

z^4 0.0170 0.0099

Conditional Mean Coefficients:

mu ar(1)

-0.0151 0.9885

Conditional Variance Coefficients:

s0 arch(1) garch(1)

-0.0032 -0.1338 0.8569

This model is similar to Gallant and Tauchen’s preferred SNP model for
weekly interest rates. The model passes the usual residual diagnostics, and
simulations from the model appear dynamically stable.
The EMM estimation with = 50 000 simulated values and 1000 burn-

in values may be computed using

> n.burn = 1000

> n.sim = 50000

> ndt = 25

> set.seed(456)

> z.tfird = rnorm(2*ndt*(n.burn + n.sim))

> tfird.aux$z = z.tfird

> tfird.aux$X0 = c(6,5-0.28)

> tfird.aux$returnc = c(T,F))

> rho.tfird = c(0.163, 5.95, 0.544, 1.04, 5-0.282, 1.27)

> emm.tfird.fit = EMM(fit.snp.tfird, coef=rho.tfird,

+ control = EMM.control(n.sim=n.sim,

+ n.burn=n.burn),

+ gensim.fn = euler.pcode.gensim,

+ gensim.language = "SPLUS",

+ gensim.aux = tfird.aux, save.sim=T)

Notice that for the two-factor model 2*ndt*(n.burn + n.sim), random
normals are required for Euler’s method. Also, since EMM only requires
simulations from , returnc=c(T,F) in tfird.aux. The results from the
estimation are

> emm.tfird.fit

Call:

984 23. E cient Method of Moments

EMM(score = fit.snp.tfird, coef = rho.tfird, control =

EMM.control(n.sim = n.sim, n.burn = n.burn), save.sim

= T, gensim.fn = euler.pcode.gensim, gensim.language

= "SPLUS", gensim.aux = tfird.aux)

Coefficients:

Value Std. Error 95% Conf. Int.

k1 0.2631 0.06132 0.2019 0.4521

mu 5.4689 0.73000 4.8023 6.4598

gamma 0.4876 0.04728 0.4368 0.5648

k2 2.0939 0.70286 1.2181 2.9536

alpha 5.2284 0.14385 4.9863 5.3744

xi 1.6774 0.29380 1.3268 2.1570

Final optimization:

Convergence: relative function convergence

Iterations: 29

EMM objective at final iteration: 5.546

P-Value: 0.698 on 8 degrees of freedom

The high -value on the EMM objective function indicates that the two-
factor model is not rejected by the SNP 11114010 model. All of the esti-
mates are reasonable precise and close to their true values. The estimate
of is 5.2284 - 5 = 0.2284.

EMM estimation on monthly T-bill data

Now consider EMM estimation of the two-factor model using weekly ob-
servations on the U.S. 3-month T-bill rate. Table 23.6 shows the EMM es-
timates of the two-factor GCIR model (23.32) based on the same four SNP
models considered for the one-factor model. Each model was estimated us-
ing = 50 000 simulations and 1 000 burn-in values13. For example, the
EMM estimates based on the SNP 11118000 model are computed using

> n.burn = 1000

> n.sim = 50000

> ndt = 25

> set.seed(456)

> z.tfird = rnorm(2*ndt*(n.burn + n.sim))

> tfird.aux$z = z.tfird

> rho.tfird = c(0.163, 5.95, 0.544, 1.04, 5-0.282, 1.27)

> emm.11118000.fit = EMM(fit.tb3mo.11118000, coef=rho.tfird,

+ control = EMM.control(n.sim=n.sim,

+ n.burn=n.burn),

13Similar results were obtained using = 75 000 simulations.

23.4 Examples 985

11118000 10818000 51118000 10414010

ˆ1
1 292
(1 623)

1 215
(3 825)

0 990
(0 823)

1 119
(0 171)

ˆ
6 848
(3 371)

7 031
(0 893)

10 532
(2 869)

5 977
(0 314)

ˆ
0 705
(0 725)

0 014
(1 535)

0 813
(0 507)

0 133
(0 063)

ˆ2
0 879
(1 650)

2 623
(3 079)

1 457
(0 983)

0 775
(0 151)

ˆ + 5
4 988
(4 365)

3 501
(6 227)

3 576
(2 923)

4 656
(0 275)

ˆ 1 785
(0 427)

3 251
(0 484)

1 945
(0 305)

1 566
(0 144)

EMM
22 61
(0 002)

32 02
(0 002)

29 03
(0 002)

40 77
(0 000)

df 7 13 11 10

TABLE 23.6. EMM estimates of two factor GCIR model for weekly 3-month
T-Bill rates. Starndard errors are in parentheses for estimates; p-vaule in paren-
thesis for J statistic

z^1
z^2
z^3
z^4
z^5
z^6
z^7
z^8

mu
ar(1)

s0
arch(1)

garch(1)

-1.5 -1.0 -0.5 0.0 0.5 1.0

Adjusted t-ratios of mean score

SNP 11118000 Model

z^1
z^2
z^3
z^4
z^5
z^6
z^7
z^8

mu
ar(1)

s0
arch(8)
arch(7)
arch(6)
arch(5)
arch(4)
arch(3)
arch(2)
arch(1)

-2 -1 0 1 2 3 4

Adjusted t-ratios of mean score

SNP 10818000 Model

z^1
z^2
z^3
z^4
z^5
z^6
z^7
z^8

mu
ar(5)
ar(4)
ar(3)
ar(2)
ar(1)

s0
arch(1)

garch(1)

-1 0 1 2

Adjusted t-ratios of mean score

SNP 51118000 Model

z^0 x^1
z^1 x^0
z^1 x^1
z^2 x^0
z^2 x^1
z^3 x^0
z^3 x^1
z^4 x^0
z^4 x^1

mu
ar(1)

s0
arch(4)
arch(3)
arch(2)
arch(1)

-2 -1 0 1 2

Adjusted t-ratios of mean score

SNP 10414010 Model

FIGURE 23.12. Adjusted -ratios for SNP score elements from EMM estimation
of two-factor GCIR model (23.32) for weekly U.S. T-bill rates.

986 23. E cient Method of Moments

+ gensim.fn = euler.pcode.gensim,

+ gensim.language = "SPLUS",

+ gensim.aux = tfird.aux, save.sim=T)

The one-factor model is rejected using all of the SNP models. Figure 23.12
shows the adjusted score -ratios (23.21) for the four models. As with the
one-factor model, the two-factor model generally does not fit the Hermite
polynomial terms of the SNP models.

23.5 References

Ahn, D-H., R.F. Dittmar and A.R. Gallant (2002). “Quadratic Term
Structure Models: Theory and Evidence,” Review of Financial Studies,
15(1), 243-288.

Andersen, T.G., L. Benzoni and J. Lund (2002). “An Empirical Foun-
dation of Continuous-Time Equity Return Models,” Journal of Finance, 57,
1239-1284.

Andersen, T.G., H.-J. Chung and B.E. Sorensen (1999). “E cient
Method of Moments Estimation of a Stochastic Volatility Model: A Monte
Carlo Study,” Journal of Econometrics, 91, 61-87.

Andersen, T.G. and J. Lund (1997). “Estimating Continuous-Time
Stochastic Volatility Models of the Short-Term Interest Rate,” Journal of
Econometrics, 77, 343-377.

Andersen, T.G. and B.E. Sorensen (1996). “GMM Estimation of a
Stochastic Volatility Model: A Monte Carlo Study,” Journal of Business
and Economic Statistics, 14, 328-352.

Brandt, M. and P. Santa-Clara (2002). “Simulated Likelihood Esti-
mation of Di usions with an Application to Exchange Rate Dynamics in
Incomplete Markets,” Journal of Financial Economics, 63, 161-210.

Chan, K.C., G.A. Karolyi, F.A. Longstaff and A.B. Sanders

(1992). “An Empirical Comparison of Alternative Models of the Term
Structure of Interest Rates,” Journal of Finance, 47, 1209-1227.

Chernov, M., A.R. Gallant, E. Ghysels and G. Tauchen (2003).
“Alternative Models for Stock Price Dynamics,” Journal of Econometrics,
116, 225-257.

Chumacero, R. A. (1997). “Finite Sample Properties of the E cient
Method of Moments,” Studies in Nonlinear Dynamics & Econometrics, 2,
35-51.

23.5 References 987

Chung, C-C. and G. Tauchen (2001). “Testing Target Zone Models
Using E cient Method of Moments,” Journal of Business and Economic
Statistics, 19(3), 255-277.

Coppejans, M. and A.R. Gallant (2002). “Cross Validated SNP Den-
sity Estimates,” Journal of Econometrics, 110(1), 27-65.

Dai, Q. and K.J. Singleton (2000). “Specification Analysis of A ne
Term Structure Models,” Journal of Finance, 55(5), 1943-1978.

Duffie, D. and K.J. Singleton (1993). “Simulated Moments Estima-
tion of Markov Models of Asset Prices,” Econometrica, 61, 929-952.

Durham, G.B. and A.R. Gallant (2002). “Numerical Techniques for
Maximum Likelihood Estimation of Continuous Time Di usion Precesses,”
Journal of Business and Economic Statistics, 20(3), 297-338.

Elerian, O., S. Chib and N. Shephard (2001). “Likelihood Inference
for Discretely Observed Nonlinear Di usions,” Econometrica, 69, 959-994.

Fisher, R.A. (1912). “On an Absolute Criterion for Fitting Frequency
Curves,” Messages of Mathematics, 41, 155-157.

Gallant, A.R. (1980). “Explicit Estimators of Parametric Functions in
Nonlinear Regression,” Journal of the American Statistical Association 75,
182-193.

Gallant, A.R., D.A. Hsieh and G.E. Tauchen (1991). “On Fitting
a Recalcitrant Series: The Pound/Dollar Exchange Rate, 1974-83,” in W.
A. Barnett, J. Powell, G. E. Tauchen (eds.), Nonparametric and Semipara-
metric Methods in Econometrics and Statistics, Proceedings of the Fifth In-
ternational Symposium in Economic Theory and Econometrics. Cambridge
University Press, Cambridge, pp. 199-240.

Gallant, A.R., D.A. Hsieh and G.E. Tauchen (1997). “Estimation of
Stochastic Volatility Models with Diagnostics,” Journal of Econometrics,
81(1), 159-192.

Gallant, A.R. and J. Long (1997). “Estimating Stochastic Di erential
Equations E ciently by Minimum Chi-squared,” Biometrika, 84, 125-141.

Gallant, A.R. and D.W. Nychka (1987). “Seminonparametric Maxi-
mum Likelihood Estimation,” Econometrica, 55, 363-390.

Gallant, A.R. and G. Tauchen (1989). “Seminonparametric Estima-
tion of Conditionally Constrained Heterogeneous Processes: Asset Pricing
Applications,” Econometrica, 57, 1091-1120.

988 23. E cient Method of Moments

Gallant, A.R. and G. Tauchen (1996). “Which Moments to Match,”
Econometric Theory, 12, 657-681.

Gallant, A.R. and G. Tauchen (1999). “The Relative E ciency of
Method of Moments Estimators,” Journal of Econometrics, 92, 149-172.

Gallant, A.R. and G. Tauchen (2001). “E cient Method of Moments,”
unpublished manuscript, Department of Economics, University of North
Carolina.

Gallant, A.R. and G. Tauchen (2002). “EMM: A Program for E cient
Method of Moments, Version 1.6, User’s Guide,” available at ftp econ econ
duke edu.

Gallant, A.R. and G. Tauchen (2005). “Simulated Score Methods and
Indirect Inference for Continuous-time Models,” in Y. Ait-Sahalia and L.P.
Hansen (eds.), Handbook of Financial Econometrics. Elsevier Science B.V.,
Amsterdam.

Gauss, C.F. (1816). “Bestimmung der Genauigkeit der Beobachtungen,”
Zeitschrift für Astronomie und verwandte Wissenschaften, 1, 185-196.

Gennotte, G. and T.A. Marsh (1993). “Variations in Economic Uncer-
tainty and Risk Premiums on Capital Assets,” European Economic Review,
37, 1021-1041.

Ghysels, E., A.C. Harvey and E. Renault (1996). “Stochastic Volatil-
ity,” in G.S. Maddala and C.R. Rao (eds.), Handbook of Statistics, Vol. 14.
Elsevier Science B.V., Amsterdam.

Gourieroux, C., A. Monfort and E. Renault (1993). “Indirect In-
ference,” Journal of Applied Econometrics, 8, S85-S118.

Hansen, L.P. (1982). “Large Sample Properties of Generalized Method
of Moments Estimators,” Econometrica, 50, 1029-1054.

Heyde, C.C. and R. Morton (1998). “Multiple Roots in General Esti-
mating Equations,” Biometrika, 85, 949—953.

Ingram, B.F. and B.S. Lee (1991). “Simulation Estimation of Time
Series Models,” Journal of Econometrics 47, 197-250.

Jensen, M. B. (2001). “E cient Method of Moments Estimation of the
Longsta and Schwartz Interest Rate Model,” unpublished manuscript,
Department of Business Studies, Aalborg University, Denmark.

23.5 References 989

Jiang, G.J. and P.J. van der Sluis (2000). “Option Pricing with the
E cient Method of Moments,” in Y. S. Abu-Mostafa, B. LeBaron, A. W. Lo
and A. S. Weigend (eds.), Computational Finance. MIT Press, Cambridge,
MA.

Karatzas, I. and S.E. Shreve (1991). Brownian Motion and Stochastic
Calculus, 2nd ed. Springer-Verlag, Berlin.

Kloeden, P.E. and E. Platen (1992). Numerical Solution of Stochastic
Di erential Equations. Springer-Verlag, Berlin.

Liu, M. (2000). “Modeling Long Memory in Stock Market Volatility,” Jour-
nal of Econometrics, 99, 139-171.

Lo, A.W. (1988). “Maximum Likelihood Estimation of Generalized Ito
Process with Discretely Sampled Data,” Econometric Theory, 4, 231-247.

Mallet, A., F. Mentré, J-L. Steimer and F. Lokiec (1988). “Non-
parametric Maximum Likelihood Estimation for Population Pharmacoki-
netics, with Application to Cyclosporine,” Journal of Pharmacokinetics and
Biopharmaceutics, 16, 311-327.

Nagypal, E. (2001). “Learning-by-Doing versus Selection: Can We Tell
Them Apart?” unpublished manuscript, Department of Economics, Stan-
ford University.

Neyman, J. and E.S. Pearson (1928). “On the Use and Interpretation
of Certain Test Criteria for Purposes of Statistical Inference,” Biometrika,
20A, 175-240.

Ng, S. and A. Michaelides (2000). “Estimating the Rational Expecta-
tions model of Speculative Storage: A Monte Carlo Comparison of Three
Simulation Estimators, Journal of Econometrics, 96, 231-266.

Olsen, L.F. and W.M. Schaffer (1990). “Chaos Versus Noisy Peri-
odicity: Alternative Hypotheses for Childhood Epidemics,” Science, 249,
499-504.

Pearson, K. (1894). “Contributions to the Mathematical Theory of Evo-
lution,” Philosophical Transactions of the Royal Society of London, Series
A, 185, 71-78.

Shephard, N. (1996). “Statistical Aspects of ARCH and Stochastic Volatil-
ity”, in D.R. Cox, D.V. Hinkley and O.E. Barndor -Nielsen (eds.), Time
Series Models: In Econometrics, Finance and Other Fields. Chapman &
Hall, London.

990 23. E cient Method of Moments

Smith, A.A. (1993). “Estimating Nonlinear Time Series Models Using
Simulated Vector Autoregressions,” Journal of Applied Econometrics, 8,
S63-S84.

Tauchen, G. (1997). “New Minimum Chi-square Methods in Empirical
Finance,” in D. Kreps and K. Wallis (eds.), Advances in Econometrics,
Seventh World Congress. Cambridge University Press, Cambridge, pp. 279-
317.

Valderrama, D. (2001). “Can a Standard Real Business Cycle Model
Explain the Nonlinearities in U.S. National Accounts Data?” Ph.D. thesis,
Department of Economics, Duke University.

van der Sluis, P.J. (1999). “Estimation and Inference with the E cient
Method of Moments: With Application to Stochastic Volatility Models and
Option Pricing,” Research Series Paper No. 204, Tinbergen Institute, Am-
sterdam.

Index

acf function, 67, 104
acf.FARIMA function, 272
acf.plot function, 105
additive outlier, 636
aggregateSeries function, 32, 47,

315
Akaike information criterion, see

model selection criteria
align function, 35, 328
ar function, 272
ARCH model, 84, 226
ARCH test, 228, 237
Archimax copulas, 735
Archimedean copulas, 732

Archimedean generator, 732
archTest function, 228, 492
arima.diag function, 78
arima.forecast function, 78, 80
arima.fracdiff function, 285
arima.mle function, 78
arima.rob function, 637
arima.sim function, 66
asymp.var function, 87, 108
asymptotic principal component

analysis (APCA), 606

autocorrelation function (ACF),
58

autocorTest function, 63, 194, 237,
492

autoregressive distributed lag
(ADL) model, 202

autoregressive fractionally integrated
moving average (ARFIMA),
99

autoregressive integrated moving
average (ARIMA) model,
76

autoregressive moving average (ARMA)
model

estimation, 76
representation, 65
state space form, 528

backtesting, 349
Bayesian vector autoregression (BVAR)

model, 424
BB1 copula, 733
BB2 copula, 734
BB3 copula, 734
BB4 copula, 735

992 Index

BB5 copula, 732
BB6 copula, 734
BB7 copula, 734
BDS statistic, 655
BDSTest function, 655
BEKK model, 498
bivd function, 743
bond.discount function, 620
bond.forward function, 620
bond.spot function, 620
BVAR function, 424

CCC model, 500
chain rule of forecasting, 399
characteristic equation

AR(1), 66
AR(p), 69

CheckSsf function, 523
CIR.aux function, 767
CIR.gensim function, 767
Clayton copula, 733
coint function, 463
cointegration

cointegrating residual, 435
common trends, 437
definition, 435
estimation by least squares,

450
Johansen’s maximum likeli-

hood estimation, 467
normalization, 435
specification of deterministic

terms, 459
triangular representation, 437

cointegration tests
residual-based tests
using a pre-specified coin-
tegrating vector, 445

using an estimated cointe-
grating vector, 447

colStdevs function, 103
colVars function, 103
common stochastic trends, 437
communality, 591
comonotonic, 725

compare.mgarch function, 260
concordance, 727
concordant, 727
condition number, 206
conditional forecasting

BVAR, 427
VAR, 405

contour.pcopula function, 738
contour.plot function, 738
countermonotonic, 725
covariance matrix

EWMA, 483
QMLE, 234
robust, 235

covRob function, 502
cpredict function, 405, 427, 474
cpredict.VAR function, 405
cross lag correlation, 103
cubic spline, 37, 621
CUSUM test, 218
CUSUMSQ test, 218

d.pgram function, 282
d.ros function, 281
d.whittle function, 284
dcopula function, 741
dgev function, 145
dgpd function, 160
diagonal VEC model, 486
Diebold-Mariano (DM) statistic,

354
diff.timeSeries function, 42
di erence stationary process, 94
disaggregate function, 37
discordant, 727
discount rate, 618
dos.time function, 320
Durbin-Watson statistic, 185
dynamic OLS estimator, 451

EGARCH model, 241
EMM estimator, 936
EMM function, 938
EMM.control function, 940
empirical copula, 747

Index 993

empirical copula frequency, 748
empirical.copula function, 748
end function, 17
endogenous variable, 786
Engle-Granger two-step procedure,

447
ergodicity, 58
error correction model (ECM), 441
ESTAR model, 679
Euler’s method, 761
euler.pcode.aux function, 771
euler.pcode.gensim function, 771
euler.pcode.test function, 772
euler1d.pcode.gensim function,

771
ev.copula function, 737
EVANESCE library, 142, 714
EVIS library, 142
EWMA covariance matrix, 483
EWMA function, 325
EWMA.cov function, 484
expand function, 886
expected shortfall (ES), 157, 171
exponentially weighted moving av-

erage (EWMA), 324
extreme value (EV) copula, 730
extreme value theory, 144

factanal function, 592
factor analysis, 590
factor loading, 570
factor mimicking portfolio, 582
FARIMA function, 286
fevDec function, 415
fgarch function, 298
fgarch.control function, 304
FIEGARCH model, 297
FIGARCH model, 297
Fisher-Tippet theorem, 144
forecast error variance decompo-

sition (FEVD), 414
forecast evaluation statistics, 350
forecasting

ARIMA, 77
BVAR, 425

GARCH, 262
long memory, 304
multivariate GARCH, 510
state space models, 544
time series regression, 200
VECM, 474

forward rate, 618
fplot function, 603
fractional ARIMA model, see au-

toregressive fractionally
integrated moving aver-
age (ARFIMA)

fractional di erence, 274
fractional white noise process, 98
fractionally integrated process, 98
Frank copula, 733
fundamental factor model, 580

Galambos copula, 731
GARCH

prediction, 263
simulation, 265
unconditional variance, 230,

245
garch function, 232
GARCH model, 229
GARCH-M model, 251
Garman-Klass estimator, 286
generalized error distribution, 257
generalized extreme value (GEV)

distribution, 144
Frechet type, 144
Gumbel type, 144
maximum likelihood estima-

tion, 148
Weibull type, 145

generalized least squares, 208
generalized method of moments,

785
linear GMM, 786
continuous updating e cient
GMM estimator, 790

e cient GMM estimator,
789

GMM estimator, 788

994 Index

iterated e cient GMM es-
timator, 790

J-statistic, 791
order condition, 787
two-stage-least-squares, 793
two-step e cient GMM es-
timator, 790

generalized Pareto distribution (GPD),
159

maximum likelihood estima-
tion, 164

getReturns function, 46
GetSsfArma function, 529
GetSsfReg function, 533
GetSsfRegArma function, 536
GetSsfSpline function, 538
GetSsfStsm function, 532
gev function, 147
GJR model, 242
GMM function, 797
gpd function, 165
gpd.2p function, 748
gpd.q function, 173
gpd.sfall function, 173
gpd.tail function, 167
GPH test, 278
gphTest function, 279
Granger causality, 407
Gumbel copula , 731
gumbel function, 147
gumbel.copula function, 737

Hüsler and Reiss copula, 731
half life, 67, 203

GARCH, 248
heteroskedasticity, 209
heteroskedasticity and autocorre-

lation consistent standard
error (HACSE), 214

heteroskedasticity consistent stan-
dard error (HCSE), 210

heteroskedasticity test, 211
Breusch-Pagan test, 211
Koenker-Basset test, 212
White test, 212

heteroTest function, 212
high quantile, 141
Hill estimator, 174
hill function, 175
histPlot function, 53, 63
Hurst coe cient, 274

I(0) process, 95
I(1) process, 94
IC function, 193, 205
iEMA.kernel function, 332
IGARCH model, 296, 486
iMA function, 333
iMA.kernel function, 332
image.plot function, 610
immediate impact multiplier, 202
impRes function, 411
impulse response function (IRF)

multivariate, 409
univariate, 65

inference from margins estimator,
751

inhomogeneous time series func-
tions, 330

inhomogenous time series, 327
innovation outlier, 637
interpNA function, 40
invertibility, 73
IRD.gensim function, 769

Joe copula, 733
Johansen’s maximum eigenvalue

statistic, 462
Johansen’s trace statistic, 461

Kalman filter, 543
KalmanFil function, 545
KalmanSmo function, 546
Kendall’s tau statistic, 727
Kendalls.tau function, 741
Kimeldorf and Sampson copula,

733

lag operator, 65
lapply function, 352

Index 995

level shift, 637
leverage e ects, 241, 504
linear interpolation, 328
linear process, 64
linear time series regression model,

182
asymptotic distribution, 183
ordinary least squares (OLS)

estimation, 183
lines.render function, 51
Ljung-Box, see serial correlation

test
loadings function, 595
long memory, 98, 273
long range dependence, 273
long run e ect, 203
long run variance

autoregressive estimate, 87, 108
multivariate, 107
Newey-West estimate, 87, 108
univariate, 86

long-run equilibrium, 435
LSTAR model, 679

macroeconomic factor model, 571
Markov switching AR(p) process,

690
Markov switching state space mod-

els, 692
martingale, 83
martingale di erence sequence (MDS),

83
matrix-diagonal model, 496
mchain.p0 function, 689
mean excess function, 162
mean excess plot, 163
meplot function, 163
mfactor function, 599
mgarch function, 485
mimic function, 604
model selection criteria

ARMA models, 77
VAR model, 390

momentum indicator functions, 338
multifactor model, 570

multivariate portmanteau test, 493

Nelson-Siegel function, 628
Newey-West estimate, 87, 108, 214
news impact curve, 245
nlregb function, 376
NLSUR function, 375
nonlinear nonparametric VARmodel,

869
nonlinearTest function, 665
nonparametric cubic spline model,

see cubic spline
nonstationary time series, 93
normal copula, 729
normal mixture copula, 730
normal.copula function, 736
normality test

Jarque-Bera test, 61
Shapiro-Wilk test, 61

normalTest function, 61, 194

OLS function, 185
orthogonal impulse response func-

tion, 410
OU.aux function, 766
OU.gensim function, 766
outliers function, 646

par function, 50
partial autocorrelation function

(PACF), 69
pbivd function, 744
pcoint function, 448
pcopula function, 741
pdl function, 208
peaks over thresholds (POT), 157
periodogram method, 282
perpMat function, 465
persp.pcopula function, 738
PGARCH model, 243
pgev function, 145
pgpd function, 160
plot function, 48
plot.OLS function, 194
plot.timeSeries function, 48

996 Index

plot.VAR function, 395
polynomial distributed lag (PDL)

model, 207
positions function, 16
predict.BVAR function, 425
predict.FARIMA function, 305
predict.SETAR function, 670
predict.STAR function, 685
predict.VAR function, 400
prediction error decomposition, 552
previous tick interpolation, 328
principal component analysis (PCA),

597
principal component GARCH, 502
princomp function, 599
punitroot function, 116

qcoint function, 448
qgev function, 145
qgpd function, 160
qnorm function, 60
qplot function, 161
qq-plot, 60
qqPlot function, 63
qqPlot function, 53, 194
quadratic spline, 621
quant function, 174
qunitroot function, 116

R/S statistic, 276, 280
random walk, 95
random walk model, 88
rbivd function, 744
rcoupla function, 741
records function, 149
recursive causal ordering, 409
recursive least squares (RLS), 217
REGARIMA model, 636
return level, 153
rgev function, 145
rgpd function, 160
riskmeasure function, 172
rlevel.gev function, 154
RLS function, 219
rnorm function, 58

roll function, 358
rolling correlations, 321
rolling linear regression model, 342
rollMax function, 318
rollMin function, 318
rollOLS function, 343
rollVar function, 318
rosTest function, 277
rotate function, 595
rvfPlot function, 253

S language, 1
S+FinMetrics, vii
S+FinMetrics time and date func-

tions, 28
sample autocorrelation, 58
sapply function, 353
Schwarz information criterion, see

model selection criteria
screeplot.mfactor function, 602
seemingly unrelated regression (SUR)

model, 364
feasible generalized least squares

(FGLS) estimator, 365
maximum likelihood estima-

tor, 366
nonlinear model, 374

semi-parametric GARCH model,
875

semi-parametric VAR, 861
SEMIFAR function, 293
SEMIFAR model, 293
serial correlation test

modified Q-statistic, 62
multivariate, 493
Q-statistic, 62

seriesData function, 17
seriesMerge function, 39
seriesPlot function, 53
SETAR function, 668
SETAR model, 663
shape function, 166
shape.plot function, 166
Sharpe’s single index model, 572
sigma.t function, 235, 490

Index 997

sigma.t.SNP function, 892
simple moving average, 315
SimSmoDraw function, 565
simulate function, 897
simulate.FARIMA function, 99
simulate.garch function, 84, 226,

265
simulate.mgarch function, 515
simulate.VAR function, 387
simulation smoothing, 565
SMA function, 318
smooth transition autoregressive

(STAR) models, 678
smooth.spline function, 626
smoothing spline, 624
SNP function, 851
SNP.auto function, 889
SNP.control function, 852
SNP.density function, 863
SNP.model function, 852
Spearman’s rho statistic, 728
Spearmans.rho function, 741
spot interest rate, 618
spurious regression, 432, 434
SsfCondDens function, 550
SsfFit function, 554
SsfFitMS function, 695
SsfLoglikeMS function, 695
SsfMomentEst function, 548
SsfPack library, 519
SsfSim function, 540
STAR function, 683
start function, 17
state space model, 520
stationarity, 58
stationarity tests, 112

KPSS test, 129
stationaryTest function, 131
stochastic di erential equations,

759
Ornstein-Uhlenbeck process,

765
stochastic trend, 95
stress period, 154
strong order 1 scheme, 763

strong1.pcode.aux function, 771
strong1.pcode.gensim function,

771
structural time series model (STSM),

531
summaryStats function, 191
SUR function, 367
Svensson function, 631
system of linear regression equa-

tions, 362
system of nonlinear regression equa-

tions, 362

t distribution, 257
multivariate, 508

t-ratio, 184
TA.adi function, 341
TA.chaikin function, 340
TA.garmanKlass function, 286
TA.macd function, 339
TA.typicalPrice function, 338
tail dependence, 728
tail index, 144
tail probability, 141
tail.index function, 741
tailplot function, 166, 173
TAR function, 674
technical analysis, 337
technical analysis functions, 337
term.struct function, 621
term.struct.nsx function, 629
TGARCH model, 242
threshold autoregressive (TAR) mod-

els, 662
timeCalendar function, 24
timeDate function, 19
timeDate object, 19
timeSeq function, 25
timeSequence function, 25
timeSeries object, 16

creating, 28
timeSpan object, 23
timeZoneConvert function, 22
trend stationary process, 94

998 Index

triangular structural VAR model,
409

tslag function, 41, 204
Twan copula, 732
two components model, 248

uniqueness, 591
unit root test, 112

augmented Dickey-Fuller (ADF)
test, 120

DF-GLS test, 134
Dickey-Fuller test, 114
e cient tests, 133
Phillips-Perron (PP) test, 127
point optimal test, 133

unit root tests
e cient modified PP tests, 134
modified information criteria,

135
unitroot function, 122

Value-at-Risk (VaR), 157, 171
VAR function, 390
VaR.exp.sim function, 756
var.hac function, 797
variance inflation statistics, 206

variance ratios, 88
mean averting, 89
mean reverting, 89
test statistic, 90

vector autoregression (VAR) model,
106, 386

conditional forecasts, 405
estimation by least squares,

389
simulation-based forecasts, 402
traditional forecasting, 398

vector error correction
(VECM), 456

volatility indicator functions, 340
volume indicator functions, 341
volume weighted average price, 34

Wald statistic, 184
waldTest function, 192
weak order 2 scheme, 764
weak2.pcode.aux function, 771
weak2.pcode.gensim function, 771
weighted least squares, 209
white noise, 58
Whittle’s method, 284
Wold decomposition, 64

Yule-Walker equations, 69

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

