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Preface

What Is the Book and Why Was It Written?

This book is a guide to analyzing and modeling financial time series using
S-PLUS and S+FinMetrics. It is a unique blend of econometric theory, fi-
nancial models, data analysis, and statistical programming. It serves as a
user’s guide for Insightful’s S+FinMetrics module of statistical functions
for financial time series analysis and financial econometrics as well as a gen-
eral reference for models used in applied financial econometrics. The format
of the chapters in the book is to give a reasonably complete description of
a statistical model and how it works followed by illustrations of how to
analyze the model using S-PLUS and the functions in S+FinMetrics. In
this way, the book stands alone as an introduction to financial time se-
ries analysis as well as a user’s guide for S+FinMetrics. It also highlights
the general analysis of time series data using the new time series objects
introduced in S-PLUS 6.

Intended Audience

This book is written for a wide audience of individuals who work, do re-
search or study in the areas of empirical finance and financial econometrics.
The field of financial econometrics has exploded over the last decade, and
this book represents an integration of theory, methods and examples us-
ing the S-PLUS modeling language to facilitate the practice of financial
econometrics. This audience includes researchers and practitioners in the
finance industry, academic researchers in economics and finance, and ad-
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vanced MBA and graduate students in economics and finance. Researchers
and practitioners in the finance industry who already use S-PLUS and de-
sire more functionality for analyzing and modeling financial data will find
this text useful. It is also appropriate for financial analysts who may not
be familiar with S-PLUS but who desire an integrated and open statistical
modeling and programming environment for the analysis of financial data.
This guide is useful for academic researchers interested in empirical finance
and financial econometrics. Finally, this book may be used as a textbook
or a textbook companion for advanced MBA and graduate level courses in
time series analysis, empirical finance and financial econometrics.

Audience Background

It is assumed that the reader has a basic familiarity with S-PLUS at the level
of Krause and Olson (2005) and a background in mathematical statistics
at the level of Hogg and Craig (1994), is comfortable with linear algebra
and linear regression, and has been exposed to basic time series concepts as
presented in Harvey (1993) or Franses (1998). Most importantly, the book
assumes that the reader is interested in modeling and analyzing financial
time series.

Overview of the Book

The chapters in the book cover univariate and multivariate models for ana-
lyzing financial time series using S-PLUS and the functions in S+FinMetrics.
Chapter one gives a general overview of the use of S-PLUS 6 and highlights
certain aspects of the language for statistical modeling. Chapter two intro-
duces the new time series objects in S-PLUS 6 and illustrates the specifica-
tion, manipulation and visualization of these objects. Chapter three surveys
time series concepts used throughout the book. Chapters four through eight
cover a variety of topics in the modeling of univariate financial time series,
including testing for unit roots, extreme value theory, time series regression
models, GARCH models of volatility, and long memory models. Chapter
nine introduces rolling analyses of time series models and covers related
topics such as technical analysis of financial time series and moving aver-
age methods for high frequency data. Chapters ten through fifteen cover
models for the analysis of multivariate financial time series. Topics include
systems of regression equations, classical and Bayesian vector autoregres-
sive models, cointegration, factor models, multivariate GARCH models,
and state space models. Chapter 16 covers aspects of modeling time series
arising from fixed income financial assets. Chapter 17, written by Victor
Yohai and Jiahui Wang, describes robust REGARIMA models that al-
low for structural change. Chapters 18 through 23 are new to the Second
Edition of the book. These new chapters cover nonlinear regime-switching



Preface vii

models, copulas, continuous-time models, the generalized method of mo-
ments, semi-nonparametric conditional density models, and the efficient
method of moments.

What Is S+FinMetrics?

S+FinMetrics is an S-PLUS module for the econometric modeling and pre-
diction of economic and financial time series. With some 600 functions,
version 1.0 of S+FinMetrics offers the following functionality:

Easy-to-use Trellis plots for multivariate time series

Time series manipulations such as missing value interpolation, dis-
aggregation, differences, distributed lags and polynomial distributed
lags

Rolling sample statistics such as variance, maximum, and minimum

Moving average operators for both regularly spaced and irregularly
spaced time series

Common technical analysis measures and indicators

Statistical tests for normality, autocorrelation, heteroskedasticity, mul-
ticollinearity, GARCH effects, and long memory

Extreme value theory models based on generalized extreme value and
generalized Pareto distributions as well as copulas

Autoregressive distributed lag regression models

White and Newey-West corrections for heteroskedasticity and serial
correlation

Robust estimation of REG-ARIMA models and robust detection of
level shifts, trend breaks, and outliers

Rolling and recursive regression
Generic rolling models for back-testing
Long memory fractional ARIMA and SEMIFAR models

Univariate GARCH models including long memory FIGARCH and
FIEGARCH models

Multivariate GARCH models
Linear and nonlinear systems of regression equations

Classical and Bayesian vector autoregression models
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e Tests for unit roots and cointegration
e Vector error correction models

e State space models and efficient estimation, prediction, smoothing,
and simulation using the Kalman filter

e Statistical multifactor models for large data sets based on asymptotic
principal components

e Term structure interpolation
New features in version 2.0 of S+FinMetrics include:

e Variance ratio tests, efficient unit root tests and tests for nonlinearity

e Threshold AR, smooth transition AR and Markov switching AR mod-
els as well as Markov switching state space models

e Simulated solutions to systems of stochastic differential equations
e Generalized method of moments estimation

e Gallant and Tauchen’s semi-nonparametric conditional density esti-
mation and efficient method of moments estimation

S+FinMetrics incorporates functions from S+GARCH, the EVIS library
of functions for modeling extreme values created by Alexander McNeil,
the EVANESCE library of functions for modeling extreme values and bivari-
ate copulas created by Rene Carmona and Julia Morrison, the SsfPack
C library of state space modeling functions created by Siem Jan Koop-
man, and the SNP and EMM FORTRAN libraries created by Ronald Gal-
lant and George Tauchen. S+GARCH was originally developed by Zhuanxin
Ding, Hong-Ye Gao, Doug Martin, Jiahui Wang and Yihui Zhan. The
S+FinMetrics function arima.rob was written by Ana Bianco, Marta
Garcia Ben, Elena Martinez and Victor Yohai. The S+FinMetrics long
memory modeling functions FAR, FARIMA, SEMIFAR and fgarch were devel-
oped by Jan Beran, Andrew Bruce, Don Percival, Alan Gibbs and Jiahui
Wang and supported by NSF grant DMI-9801614 to Insightful Corpora-
tion (formerly MathSoft, Inc.). Much of the new functionality in version
2.0 of S+FinMetrics was supported by the NSF SBIR Phase II grant DMI-
0132076 to Insightful Corporation. The S-PLUS implementation of Gallant
and Tauchen’s SNP and EMM FORTRAN libraries was accomplished by
Jiahui Wang, Bob Thurman, Michael Sannella, Ying Gu and Eric Zivot,
with the generous help and support of George Tauchen. Hu McCulloch
kindly provided the term structure data included with S+FinMetrics, and
James MacKinnon provided data sets for the response surface critical val-
ues for the Dickey-Fuller and Phillips-Ouliaris distributions.
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Contact Information and Website

The authors are responsible for all of the material in the book except the
material on robust change detection, which was written by Victor Yohai.
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The authors may be contacted by electronic mail at
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jwang@svolatility.com

and welcome feedback and suggestions for improvements to the contents of
the book. The website for the book is located on Eric Zivot’s University of
Washington web site at

http://faculty.washington.edu/ezivot/
ModelingFinancialTimeSeries.htm
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Typographical Conventions
This book obeys the following typographic conventions:
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e The italic font is used for emphasis, and also for user-supplied vari-
ables within UNIX, DOS and S-PLUS commands.

e The typewriter font is used for S-PLUS functions, the output of
S-PLUS functions and examples of S-PLUS sessions.

e S-PLUS objects of a specified class are expressed in typewriter font
enclosed in quotations “ ”. For example, the S-PLUS timeSeries
function creates objects of class “timeSeries”.

Displayed S-PLUS commands are shown with the prompt character >. For
example

> summary(ols.fit)

S-PLUS commands that require more than one line of input are displayed
with the continuation prompt indicated by + or Continue string:. The
S-PLUS output and plots in this book were generated from a combination of
S+FinMetrics Version 1.0 and S-PLUS Version 6.0 release 2 for Windows,
and S+FinMetrics Versions 2.0 and S-PLUS Version 7.0 for Windows. The
S-PLUS output and “timeSeries” objects were generated with the options
settings

> options(width=60)
> options(time.zone="GMT")

In some cases, parts of long output from S-PLUS functions is omitted and
these lines are indicated by

Some of the output has been hand edited to avoid line overflow.

Seattle, Washington, USA Eric Zivot
Chicago, Illinois, USA Jiahui Wang
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1
S and S-PLUS

1.1 Introduction

S-PLUS is a commercial software package developed by Insightful Corpo-
ration, based on the S language originally developed at Bell Laboratories
(of AT&T and now Lucent Technologies) for statistical computation and
visualization. Both S and S-PLUS have evolved through many versions. In
1999 John M. Chambers, the principal developer of S language, received
the prestigious Software System Award from the Association for Comput-
ing Machinery (ACM), which has been awarded to UNIX, TEX, PostScript,
TCP/IP and World Wide Web in the past.

The discussion of S language in this book is based on S-PLUS 6, which
is supported on Microsoft Windows, Sun Solaris, and LINUX operating
systems!. In addition to S-PLUS 6 Programmer’s Guide, there are many
excellent books available introducing different aspects of S and S-PLUS (see
Section 1.4 for a list of them), and refer to these books if you are not familiar
with S or S-PLUS. This chapter has a rather limited goal: to introduce
the object oriented approach of S language and summarize some modeling
conventions that will be followed in this book. Section 1.2 introduces the
concept of objects in S language, and Section 1.3 summarizes the usage

1Some of the examples in the book have been updated to make use of new features
in S-PLUS 7. All of the examples in Chapters 18 through 23 make use of S+FinMetrics
2.0, which is based on S-PLUS 7.
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of modeling functions in S-PLUS and S+FinMetrics. Finally, Section 1.4
points out some useful resources for learning and using S-PLUS.

1.2 S Objects

1.2.1  Assignment

As the S language evolved over time, different assignment operators have
been used, such as =, <=, <<=, and _ (underscore). This book will use the
assignment operator = whenever possible, because it is more intuitive and
requires only one key stroke. For example, in the command window of an
S-PLUS session, use the following command to assign the value of 3 to a
variable called a:

>a=3
> a
[1] 3

When the name of the variable is typed at the command prompt, the value
of the variable is printed on screen with an index [1]. Since _ is reserved
as an assignment operator, it cannot be used in the names of any object.
Avoid the use of _ as an assignment operator, because the code may look
confusing to someone who is not familiar with S.

Although = has been chosen as the assignment operator whenever pos-
sible, only <- can be used as the assignment operator if the assignment is
inside a function call.? For example, suppose the user wants to assign the
value of 10 to the variable a, and use a to initialize a 5 x 5 matrix. If = is
used as the assignment operator, an error message appears:

> matrix(a = 10, 5, 5)
Problem in matrix: argument a= not matched: matrix(a = 10, 5, 5)
Use traceback() to see the call stack

But if the assignment operator <- is used, the desired behavior is achieved:

> matrix(a <- 10, 5, 5)

[,11 [,2]1 [,3]1 [,4] [,5]
[1,] 10 10 10 10 10
[2,] 10 10 10 10 10
[3,] 10 10 10 10 10
(4,1 10 10 10 10 10
[5,J] 10 10 10 10 10
> a

2The reason is that S-PLUS functions allow optional arguments with default values,
and = is used to set the default values in a function call.
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[1] 10

and 10 is successfully assigned as the value of a.

1.2.2 Class

Since the S language is object oriented, everything in S-PLUS is an object
with a class, and the class function can be used to find out the class of
an object. For example:

> class(a)
[1] "integer"

thus the variable a has class “integer”. Explicitly using the decimal point
forces an integer number to be stored in double precision:

> b = 100000.
> class(b)
[1] "numeric"

A number with double precision in S-PLUS has class “numeric”. In most
situations S-PLUS is “smart” enough to perform computations in double
precision if necessary. However, one has to be a little careful with integer
arithmetic. For example, the following operation returns an NA:

> 100000 * 100000
[1] NA

because in this case, the multiplication is performed in integer mode, and
the largest integer on a 32-bit machine is:

> 2731 -1

[1] 2147483647

which can be verified by querying the integer.max component of the ma-
chine constant object in S-PLUS:?

> .Machine$integer.max
[1] 2147483647

However, since the variable b created earlier is stored in double precision,
the multiplication using b would return the desired result:

>Db *x b
[1] 1e+10

Together with “logical” and “character”, “integer” and “numeric”
objects are known as the atomic objects, upon which the user can build
more complicated data structure, such as matrix, list, data frame, function,

3See the on-line help file for .Machine for other components in the list.
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etc. For example, use the concatenation function c to combine the variables
a and b into a vector, and use the matrix function to reshape it into a 2 x 1
matrix:

> abMat = matrix(c(a,b), nrow=2)
> class(abMat)
[1] "matrix"
> abMat
[,1]
[1,] 1e+01
[2,] 1e+05

As another example, although matrix is a built-in function in S-PLUS,
it is just another object in S-PLUS:

> class(matrix)
[1] "function"
> matrix
function(data = NA, nrow = 1, ncol = 1, byrow = F, dimnames)
{
if (missing(nrow))
nrow <- ceiling(length(data)/ncol)
else if (missing(ncol))
ncol <- ceiling(length(data)/nrow)
dim <- c(nrow, ncol)
if (length(dim) != 2)
stop("nrow and ncol should each be of length 1")
value <- if(byrow) t(array(data, dim[2:1])) else
array(data, dim)
if (!missing(dimnames))
value@.Dimnames <- dimnames
value

}

The preceding output shows that matrix is just a “function” object. When
the name of this object is typed, S-PLUS prints its function definition on
the screen.

Most complicated S-PLUS objects are constructed as a list. For example,
combine the variables a and b into a list as follows:

> abList = list(aComponent=a, bComponent=b)
> class(abList)

[1] "list"

> abList

$aComponent :

[1] 10
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$bComponent :
[1] 1e+05

where the names aComponent and bComponent are given to a and b, re-
spectively. Use the length function to find out the number of components
in a list and the names function to extract the names of those components:

> length(abList)

(1] 2

> names(abList)

[1] "aComponent" "bComponent"

A particular component of a list can be extracted using the $ operator. For
example:

> abList$aComponent
[1]1 10

or the [[ operator:

> abList[[2]]
[1] 1e+05

S-PLUS 6 is based on S language Version 4 (SV4). In SV4, a new class
structure is introduced to build more complicated objects, as an alterna-
tive to using lists. One example is the “timeDate” objects in S-PLUS. For
example, in the following example, use the timeDate function to parse a
vector of character strings representing some dates:

> timeStamp = timeDate(c("1/1/2001", "1/2/2001", "1/3/2001"))
> timeStamp

[1] 01/01/2001 01/02/2001 01/03/2001

> class(timeStamp)

[1] "timeDate"

The names function cannot be used with these new class objects, which
will be referred to as SV4 objects. Instead, use the slotNames function to
extract the names of their components. For example:

> slotNames (timeStamp)
[1] ".Data" ".Data.names" ".Data.classes" "format"
[5] "time.zone"

A “timeDate” object has five slots. Instead of using the $ operator as
for lists, use the @ operator to extract the component in a particular slot.
For example:

> timeStamp@.Data
([11]:
[1] 14976 14977 14978
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[r21]:
(11000

The .Data slot of a “timeDate” object actually stores a list with two
Components.4

One difference between the list based objects and SV4 objects is that
the list based objects are more flexible and thus prone to cause accidental
programming errors if a programmer is not careful enough. In contrast, the
SV4 objects are more stringently defined and can lead to robust software
and computational efficiency. For example, the user can add or delete a
component to a list at will:

> abList$anotherComponent = "a string component"
> abList

$aComponent:

1] 10

$bComponent:
[1] 1e+05

$anotherComponent:
[1] "a string component"

> abList$aComponent = NULL
> abList

$bComponent:

[1] 1e+05

$anotherComponent:
[1] "a string component"

However, an SV4 object is strictly defined, and a component cannot be
edited unless it is defined in its declaration:

> timeStamp@time.zone

[1] "GMT"

> timeStamp@time.zone = "Pacific"

> timeStamp@anotherSlot = "no way"

Problem in timeStamp@anotherSlot = "no way": Class "timeDate"

has no "anotherSlot" slot
Use traceback() to see the call stack

4The first component represents the Julian dates, and the second component repre-
sents the milliseconds elapsed since midnight of each day.
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1.2.3 Method

Many S-PLUS functions are defined as generic in the sense that the user
has the freedom of defining his or her own method for a particular class.
For example, the print and summary functions in S-PLUS are so generic
that they work with any object and may generate different types of results
depending on the class of the object.? For example:

> summary (abMat)
Min. 1st Qu. Median Mean 3rd Qu. Max.
10 25008 50005 50005 75002 100000
> summary(abList)

Length Class Mode
bComponent 1 numeric
anotherComponent 1 character

For a numeric matrix object, the summary method generates some sam-
ple statistics, while for a list object, the summary method summarizes the
length and mode of each component.

In the above example, S-PLUS is “smart” enough to figure out the ap-
propriate method to use for the generic summary function. If the name of
the method function is known, the user can also call the method function
directly. For example, if the user types matrix at the command prompt,
S-PLUS will dispatch the print method for “function” objects because
matrix is a “function” object. However, it can also call the function
print.list on a “function” object to view the object using another for-
mat:

> print.list(matrix)
$data:
NA

$nrow:
[1]1 1

$ncol:
[1] 1

$byrow:
F

$dimnames:
5In fact, typing the name of an object at the command prompt, S-PLUS calls the

print method of that object automatically. So any print methods rarely need to be
called explicitly, except for Trellis graphics objects.
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g
{
if (missing(nrow))
nrow <- ceiling(length(data)/ncol)
else if (missing(ncol))
ncol <- ceiling(length(data)/nrow)
dim <- c(nrow, ncol)
if (length(dim) != 2)
stop("nrow and ncol should each be of length 1")
value <- if(byrow) t(array(data, dim[2:1])) else
array(data, dim)
if (!missing(dimnames))
value@.Dimnames <- dimnames
value

1.3 Modeling Functions in S+FinMetrics

In this book, many statistical and econometric examples are illustrated
using modeling functions in S+FinMetrics. Some modeling functions in
S+FinMetrics are named using upper case acronyms as they are known
in the literature, because S is case sensitive and it distinguishes between
upper case and lower case letters.

1.8.1  Formula Specification

For many modeling functions in S+FinMetrics, S formulas are used to spec-
ify the model to be estimated. Chambers and Hastie (1993) and S-PLUS
Guide to Statistics provide detailed examples of how to specify models using
formulas in S. This section points out some restrictions in formula spec-
ification so that the user can avoid some errors in using these functions.
For illustrations, use the S-PLUS 1m function as an example of modeling
function.

If a formula is used to specify models in a modeling function, usually at
least two arguments are supplied to the function: a formula object and a
data object. The args function can always be used to find out the argument
names of any function:

> args(1lm)

function(formula, data, weights, subset, na.action, method =
"qr", model = F, x = F, y = F, contrasts = NULL, ...)

NULL
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The data object must be a “data.frame” object, or a “timeSeries”
object with a “data.frame” in its data slot. First create a data frame
using the S-PLUS data objects stack.x and stack.loss:

> stack.df = data.frame(Loss=stack.loss, stack.x)
> collds(stack.df)
[1] "Loss" "Air.Flow"  "Water.Temp" "Acid.Conc."

so the data frame stack.df has four columns with variable names as shown
above.

To regress the variable Loss on Air.Flow, and Water.Temp using least
squares, use the 1m function as follows:

> test.mod
> test.mod
Call:

Im(formula = Loss ~ Air.Flow + Water.Temp, data = stack.df)

Im(Loss™Air.Flow + Water.Temp, data=stack.df)

Coefficients:
(Intercept) Air.Flow Water.Temp
-50.35884 0.6711544  1.2953561

Degrees of freedom: 21 total; 18 residual
Residual standard error: 3.238615

Notice that in the first formula object, Loss is on the left hand side of ~, so
it represents the endogenous or response variable of the model; Air.Flow
and Water.Temp are on the right hand side of ~, so they represent two
independent or explanatory variables. An intercept or a constant term is
also included automatically, as can be seen from the coefficient estimates
in the output, which is generated by a call to the print method for “1m”
objects:

> class(test.mod)

[1] Illmll
> oldClass(test.mod)
[1] "m"

Note that since an “lm” object is a list based object, the user can also
use the 01dClass function to obtain its class. However, o1dClass function
does not work with SV4 objects. For example:

> oldClass(timeStamp)
NULL

The data argument can also be a “timeSeries” object with a data
frame in its data slot. To illustrate this possibility, turn stack.df into a
“timeSeries” object and call it stack.ts:
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> stack.ts = timeSeries(stack.df)
> stack.ts
Positions Loss Air.Flow Water.Temp Acid.Conc.

01/01/1960 42 80 27 89
01/02/1960 37 80 27 88
01/03/1960 37 75 25 90
01/04/1960 28 62 24 87
01/05/1960 18 62 22 87

Again, a linear model can be estimated using this data object just like in
the previous example:

> test.mod = 1lm(Loss™Air.Flow + Water.Temp, data=stack.ts)

However, the data argument must have a data frame representation. The
same function call will generate an error if the data argument is represented
by a matrix:

> stack.mat = as.matrix(stack.df)

> Im(Loss™Air.Flow+Water.Temp, data=stack.mat)

Warning messages:
Numerical expression has 84 elements: only the first used in:
model.frame(formula, data, na.action, dots)

Problem: Invalid frame number, 42

Use traceback() to see the call stack

For most modeling functions such as 1m, the data argument is actually
an optional argument, which is not required. If the data argument is not
supplied by the user, then the variables specified in the formula object
must be on the search path. For example:

> Im(stack.loss™stack.x)
Call:
Im(formula = stack.loss ~ stack.x)

Coefficients:
(Intercept) stack.xAir Flow stack.xWater Temp stack.xAcid Conc.
-39.91967 0.7156402 1.295286 -0.1521225

Degrees of freedom: 21 total; 17 residual
Residual standard error: 3.243364
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In addition, if the data argument is not supplied, the variables specified
in the formula object must be either a vector or a matrix, and they cannot
be a data frame nor a “timeSeries” object. For example:®

> stack.x.df = as.data.frame(stack.x)

> 1m(stack.loss™stack.x.df)

Problem: Length of stack.x.df (variable 2) is 3 != length of
others (21)

Use traceback() to see the call stack

> stack.loss.ts = timeSeries(stack.loss)

> Im(stack.loss.ts"stack.x)

Problem: Length of stack.loss.ts (variable 1) is 11 != length
of others (21)

Use traceback() to see the call stack

In S+FinMetrics, the formula is extended to support autoregressive
specification, moving average specification, distributed lags and polyno-
mial distributed lags for many modeling functions. These formulas will be
illustrated in the appropriate chapters.

1.83.2 Method

In addition to print and summary functions, many other functions in
S-PLUS are defined to be generic to work with modeling functions and
objects, such as plot for diagnostic plots, coefficients or simply coef
for extracting model coefficients, residuals for extracting model residu-
als, fitted.values or simply fitted for extracting model fitted values,
predict for out of sample prediction, etc. For example, for the “lm” ob-
ject test.mod, if the generic functions coef, predict or plot are applied,
S-PLUS will figure out the appropriate method to use:

> coef (test.mod)
(Intercept) Air.Flow Water.Temp
-50.35884 0.6711544 1.295351

> predict(test.mod, matrix(l, 5, 3))
[1] -48.39233 -48.39233 -48.39233 -48.39233 -48.39233

> plot(test.mod, ask=T)

Make a plot selection (or 0 to exit):

6In fact, many modeling functions in S+FinMetrics actually does allow a
“timeSeries” object on the left hand side of the formula, but not the right hand side of
the formula, if the data argument is not supplied. One example is the garch function.
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1: plot: All

2: plot: Residuals vs Fitted Values

3: plot: Sqrt of abs(Residuals) vs Fitted Values
4: plot: Response vs Fitted Values

5: plot: Normal QQplot of Residuals

6: plot: r-f spread plot

7: plot: Cook’s Distances

Selection:

In addition to the above generic functions, S+FinMetrics defines three
new generic functions for working with model objects: vcov for extracting
the variance-covariance matrix of estimated parameters, simulate for gen-
erating simulations according to the estimated model, and cpredict for
obtaining conditional forecasts of multivariate time series models.

1.4 S-PLUS Resources

1.4.1 Books

In addition to the S-PLUS manuals, there are a number of good books on
using and programming in S and S-PLUS as well as data and statistical
analysis using S-PLUS. The Insightful web page

http://www.insightful.com/support/splusbooks.asp

contains a listing of these books.

Using and Programming S-PLUS

Gentle introductions to S and S-PLUS are given in Spector (1994), Lam
(2001) and Krause and Olson (2005). The details of version four of the
S language are described in Chambers (1998), also known as the “green
book”. An indispensable guide to programming in the S language is Ven-
ables and Ripley (2000).

Data and Statistical Analysis in S-PLUS

S-PLUS provides extensive functionality for the statistical analysis of a wide
variety of data, and many books have been written on the use of S-PLUS for
particular applications. The following books describe statistical techniques
that are useful for the analysis of financial data. Carmona (2004) and Chan
(2002) describe the use of S-PLUS for the analysis of financial time series.
Scherer and Martin (2005) cover portfolio optimization and related topic.
An excellent guide to modern applied statistics using S-PLUS is Venables
and Ripley (2002). Harrell (2001) gives a thorough treatment of regression
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models, including generalized linear models and survival model. Heiberger
and Holland (2004) emphasize the importance of graphical techniques in
statistical analysis. Pinheiro and Bates (2000) detail the analysis of mixed
effects (panel data) models. Therneau and Grambsch (2000) survey survival
analysis models. Wilcox (1997), and Atkinson and Riani (2000) discuss
robust statistical methods. Bruce and Gao (1996) describe wavelet analysis.
Hastie, Tibshirani and Friedman (2001) cover aspects of statistical learning
and data mining. Davison and Hinkley (1997) survey bootstrap methods,
and Bowman and Azzalini (1997) disucss nonparametric and smoothing
methods.

1.4.2 Internet

There is a wealth of information about S-PLUS available on the internet.
The obvious place to start is the Insightful website at

http://www.insightful.com

S-News is an electronic mail discussion list for S and S-PLUS users. In-
formation about S-News may be found at

http://www.biostat.wustl.edu/s-news/s-news-intro.html

StatLib is a repository for software and extensions for the S language,
including many useful additions to S-PLUS. It can be found at

http://1lib.stat.cmu.edu/S

Eric Zivot maintains a website containing links to websites for S-PLUS
applications in econometrics and finance at

http://faculty.washington.edu/ezivot/splus.htm
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Time Series Specification,
Manipulation, and
Visualization in S-PLUS

2.1 Introduction

Time series data may be stored, manipulated and visualized in a variety of
ways in S-PLUS!. This chapter discusses the basics of working with finan-
cial time series data in the form of S-PLUS “timeSeries” objects. It begins
with a discussion of the specification of “timeSeries” and “timeDate” ob-
jects in S-PLUS and gives examples of how to specify common “timeDate”
sequences for financial time series. Basic manipulations of financial time
series are discussed and illustrated. These manipulations include aggregat-
ing and disaggregating time series, handling of missing values, creations of
lags and differences and asset return calculations. The chapter ends with
an overview of time series visualization tools and techniques, including the
S-PLUS plotting functions for “timeSeries” as well as specialized plotting
functions in S+FinMetrics.

2.2 The Specification of “timeSeries” Objects in
S-PLUS

Financial time series data may be represented and analyzed in S-PLUS in
a variety of ways. By far the most flexible way to analyze, manipulate

LChapters 25-27 in the S-PLUS Guide to Statistic (Vol. II) discusses the analysis of
time series in S-PLUS.
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and visualize time series data is through the use of S-PLUS calendar-based
“timeSeries” objects. A calendar-based “timeSeries” object, hereafter
referred to as simply a “timeSeries” is an S version 4 (sv4) object that
stores time and date information from a “timeDate” object in a positions
slot and time series data from any rectangular data object (vector, matrix
or data frame) in a data slot. Additionally, summary information about
the time series may be stored in the title, documentation, units and
attributes slots.

To illustrate a typical “timeSeries” object, consider the S+FinMetrics
“timeSeries” object singleIndex.dat which contains monthly closing
price data on Microsoft and the S&P 500 index over the period January
1990 through January 2001:

> class(singlelIndex.dat)
[1] "timeSeries"

> slotNames (singleIndex.dat)

[1] "data" "positions" "start.position"
[4] "end.position" "future.positions" "units"
[7] "title" "documentation" "attributes"

[10] "fiscal.year.start" "type"

> singlelndex.dat@title
[1] "Monthly prices on Microsoft and S&P 500 Index"

> singleIndex.dat@documentation

[1] "Monthly closing prices over the period January 1900"
[2] "through January 2001 adjusted for dividends and stock"
[3] "splits.

> singlelndex.dat@units
[1] "Monthly price"

> singleIndex.dat[1:5,]
Positions  MSFT SP500

Jan 1990 1.2847 329.08
Feb 1990 1.3715 331.89
Mar 1990 1.5382 339.94
Apr 1990 1.6111 330.80
May 1990 2.0278 361.23

The date information in the positions slot may be extracted directly
or by using the positions extractor function:

> singleIndex.dat@positions[1:5]
[1] Jan 1990 Feb 1990 Mar 1990 Apr 1990 May 1990
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> positions(singleIndex.dat) [1:5]
[1] Jan 1990 Feb 1990 Mar 1990 Apr 1990 May 1990

The generic start and end functions may be used to extract the start and
end dates of a “timeSeries” object:

> start(singlelIndex.dat)
[1] Jan 1990

> end(singleIndex.dat)
[1] Jan 2001

The date information in the positions slot is an object of class “timeDate”

> class(positions(singleIndex.dat))
[1] "timeDate"

Details on “timeDate” objects are given later on in this chapter.
The time series data in the data slot may be accessed directly or through
the seriesData extractor function:

> singleIndex.dat@datal1:5,]
MSFT SP500
.2847 329.08
.3715 331.89
.5382 339.94
.6111 330.80
.0278 361.23

gD WN -
N = =R

\2

seriesData(singleIndex.dat) [1:5,]
MSFT SP500
.2847 329.08
.3715 331.89
.5382 339.94
.6111 330.80
.0278 361.23

ad wN -
N B B e

In general, the time series data in the data slot is a “rectangular” data
object and is usually a data frame or a matrix. For example,

> class(seriesData(singleIndex.dat))
[1] "data.frame"

In fact, “timeSeries” objects themselves are “rectangular” data objects
and so the functions numRows, numCols, colIds and rowIds may be used
to extract useful information:

> is.rectangular(singleIndex.dat)
(11 T

> numRows (singleIndex.dat)

[1] 133
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> numCols(singleIndex.dat)

(1] 2

> colIlds(singleIndex.dat)

(1] "MSFT" "SP500"

> rowlds(singleIndex.dat) [1:5]

[1] Jan 1990 Feb 1990 Mar 1990 Apr 1990 May 1990

2.2.1 Basic Manipulations

Basic manipulation of “timeSeries” objects may be done in the same
way as other S-PLUS objects. Mathematical operations may be applied to
“timeSeries” objects in the usual way and the result will be a “timeSeries”
object. Subscripting a “timeSeries” works in the same way as subscript-
ing a data frame or matrix. For example, a “timeSeries” with the prices
on Microsoft may be extracted from singleIndex.dat using

msft.p = singlelIndex.dat[,"MSFT"]

msft.p = singlelIndex.dat[,1]

msft.p@title = "Monthly closing price on Microsoft"
msft.p@documentation =

c("Monthly closing price adjusted for stock",
"splits and dividends.")

msft.pOunits = "US dollar price"

class(msft.p)

[1] "timeSeries"

VvV V + + V V V V

Subsamples from a “timeSeries” may be extracted by creating an index of
logical values that are true for the times and dates of interest. For example,
consider creating a subsample from the “timeSeries” singleIndex.dat
over the period March 1992 through January 1993.

> smpl = (positions(singleIndex.dat) >= timeDate("3/1/1992") &
+ positions(singleIndex.dat) <= timeDate("1/31/1993"))

> singleIndex.dat [smpl,]

Positions MSFT SP500

Mar 1992 4.938 403.7
Apr 1992 4.594 414.9
May 1992 5.042 415.4
Jun 1992 4.375 408.1
Jul 1992 4.547 424.2
Aug 1992 4.656 414.0
Sep 1992 5.031 417.8
Oct 1992 ©5.547 418.7
Nov 1992 5.820 431.4
Dec 1992 5.336 435.7
Jan 1993 5.406 438.8
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S-PLUS 7 supports subscripting a “timeSeries” object directly with dates.
For example, the subsample from singleIndex.dat over the period March
1992 through January 1993 may be produced using

> singleIndex.dat [timeEvent ("3/1/1992","1/31/1993"),]

Most S-PLUS functions have methods to handle “timeSeries” objects.
Some common examples are the S-PLUS functions colMeans, colVars and
colStdevs which compute the mean, variance and standard deviation value
for each column of data:

> colMeans(singleIndex.dat)
MSFT SP500
26.74513 730.3805

For functions that do not have methods to handle “timeSeries” objects,
the extractor function seriesData should be used to extract the data slot
of the “timeSeries” prior to applying the function:

> colMeans(seriesData(singleIndex.dat))
MSFT SP500
26.74513 730.3805

All of the S+FinMetrics modeling and support functions are designed
to accept “timeSeries” objects in a uniform way.

2.2.2 S-PLUS “timeDate” Objects

Time and date information in S-PLUS may be stored in “timeDate” objects.
The S-PLUS function timeDate is used to create “timeDate” objects. For
example, to create a “timeDate” object for the date January 1, 2002 for
the US Pacific time zone use

> td = timeDate("1/1/2002",in.format="%m/%d/%Y",
+ zone="Pacific")

The date information is specified in a character string and the optional
arguments in.format and zone determine the input date format and the
time zone, respectively. The input formats are single-element character vec-
tors consisting of input fields which start with “%” and end with a letter.
The default input date format may be viewed with

> options("time.in.format")
$time.in.format:

(1] "Um[/10.1%d0/10, 1%y CAHC:7%ML:%SC.%N11] [ep] CLC1%3Z 11T

and examples of common date formats can be found in the S-PLUS object
format.timeDate

> names (format.timeDate)
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[1] "1/3/1998"
[2] "3/1/1998"

[32] "03 Jan 1998 14:04:32 (PST)"
> format.timeDate[[1]]$input
(1] "%m/%d/%Y"

The result of timeDate is an object of class “timeDate”

> class(td)

[1] "timeDate"

> td

(1] 1/1/02 0:00:00 AM

> slotNames (td)

[1] ".Data" ".Data.names" ".Data.classes"
[4] "format" "time.zone"

“timeDate” objects have a number of slots that are used to specify and
control time and date information. Full details may be seen using

> 7class.timeDate

The .Data slot is a list with components giving the Julian date represen-
tation of the day and time within the day. The Julian day represents the
number of days since January 1, 1960 and the Julian time within the day
indicates the number of milliseconds since midnight Greenwich mean time
(GMT)

> td@.Data
[[11]:
[1] 15341

[r21]:
[1] 28800000

Since the US Pacific Time Zone is 8 hours behind GMT, the number of
milliseconds since Greenwich mean time is 8 % 60 * 60 x 1000 = 28, 800, 000.
The output display format of the date information is specified in the format
slot

> td@format
[1] u%m/%d/%OQY %H:%OQM:%OQS %P"

Like input formats, output formats are single-element character vectors
consisting of output fields, which start with “%4” and end with a letter,
and other characters that are simply printed. The above format specifies
printing the date as month/day/year and then hour:minute:second and
AM or PM. The integers 02 before y, M and S fix the output width to 2
characters. All supported output fields are described in the help file for
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class.timeDate and a list of example output formats are given in the
S-PLUS object format.timeDate. For example,

> names (format .timeDate) [18]
[1] "03 Jan 1998"

> format.timeDate[[18]]$output
[1] "%02d %b %Y"

Time Zone Issues

The time and date information stored in a “timeDate” object is aligned to
the time zone specified in the time.zone slot

> tdQ@time.zone
[1] "Pacific"

To modify the output format of a “timeDate” object to display time zone
information simply add "%z"

> td@format = paste(td@format,"%z")
> td
[1] 1/1/02 0:00:00 AM Pacific

The object td is aligned to the US Pacific time zone. If the zone argument
to timeDate is omitted when the “timeDate” object is created the default
time zone in options(‘‘time.zone") is used?. For example,

> options("time.zone")

$time.zone:

[1] "Pacific"

> td2 = timeDate("Mar 02, 1963 08:00 PM",
+ in.format="%m %d, %Y %H:%M %p",

+ format="%b %02d, %AY %02I:%02M %p %z")
> td2

[1] Mar 02, 1963 08:00 PM Pacific

Note that the above example shows that the output format of the “timeDate”
object can be specified when the object is created using the argument
format.

All of the time zone specifications supported by S-PLUS are described
in the help file for class.timeZone and these specifications are defined
relative to times and dates given in GMT. The time zone specifications
include daylight savings time in various areas around the world. To see
how a time zone specification affects a timeDate object, consider what

20n Windows platforms, the time zone specification is obtained from the Windows
regional settings. The examples in this section were created on a Windows computer in
the U.S. Pacific time zone. Therefore, the default time zone taken from the Windows
regional settings is “Pacific”.



22 2. Time Series Specification, Manipulation, and Visualization in S-PLUS

happens when the time zone for the object td is changed to US Eastern
Time:

> tdOtime.zone = "Eastern"

> td

[1] 1/1/02 3:00:00 AM Eastern
> td@.Data

[[111:

[1] 15341

(r21]:
[1] 28800000

Since US Eastern Time is three hours ahead of US Pacific Time the dis-
played date is moved ahead three hours. That is, midnight US Pacific Time
on January 1, 2002 is the same as 3 AM US Eastern Time on January 1,
2002. Notice that changing the time zone information does not alter the
Julian date information in the .Data slot. To align the Julian date repre-
sentation to reflect the number of milliseconds from GMT on US Eastern
time the millisecond information in the second component of the .Data slot
must be adjusted directly.

If a “timeDate” object is created in GMT then the S-PLUS function
timeZoneConvert may be used to re-align the millisecond offset to a spec-
ified time zone. For example,

> tdGMT = timeDate("1/1/2002",zone="GMT",
+ format="%m/%d/%02y %H:%02M:%02S %p %z")
> tdGMT

[1] 1/1/02 0:00:00 AM GMT

> tdGMT@.Data

[[11]:

[1] 15341

[([217:
(11 o

> tdPST = timeZoneConvert (tdGMT,"PST")
> tdPST

[1] 1/1/02 0:00:00 AM PST

> tdPST@.Data

[[11]:

[1] 15341

[[21]:
[1] 28800000
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Be aware that timeZoneConvert is not designed to convert the millisecond
offsets from one arbitrary time zone other than GMT to another arbitrary
time zone.

Mathematical Operations with “timeDate” Objects

Since “timeDate” objects have a Julian date representation, certain math-
ematical operations like addition and subtractions of numbers may be per-
formed on them and the result will also be a “timeDate” object. For ex-
ample,

> tdl = timeDate("1/1/2002",in.format="%m/%d/%Y",

+ zone="GMT",format="%m/%d/%04Y ¥%H:%,02M:%02S %p %z")
> td2 = timeDate("2/1/2002",in.format="%m/%d/%Y",

+ zone="GMT",format="%m/%d/%04Y %H:%02M:%02S %p %z")
> tdil

[1] 1/1/2002 0:00:00 AM GMT
> td2
[1] 2/1/2002 0:00:00 AM GMT

> as.numeric(tdl)

[1] 15341

> tdl + 1

[1] 1/2/2002 0:00:00 AM GMT
> tdl + 0.5

[1] 1/1/2002 12:00:00 PM GMT
> tdl - 1

[1] 12/31/2001 0:00:00 AM GMT
> 2*tdl

[1] 30682

> td1l+td2

[1] 2/2/2044 0:00:00 AM GMT

Adding two “timeDate” objects together creates another “timeDate”
object with date given by the addition of the respective Julian dates. Sub-
traction of two “timeDate” objects, however, produces an sv4 object of
class “timeSpan”

> td.diff = td2 - tdi

> class(td.diff)

[1] "timeSpan"

> td.diff

[1] 31d Oh Om Os OMS

> slotNames(td.diff)

[1] ".Data" ".Data.names" ".Data.classes"
[4] "format"
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The “timeSpan” object td.diff gives the time difference between td1 and
td2 - 31 days, 0 hours, 0 minutes, 0 seconds and 0 milliseconds. The Julian
date information is kept in the .Data slot and the output format is in the
format slot. Details about “timeSpan” objects is given in The S-PLUS
Guide to Statistics, Vol. 1I, chapter 25.

2.2.83  Creating Common “timeDate” Sequences

Most historical financial time series are regularly spaced calendar-based
time series; e.g. daily, monthly or annual time series. However, some fi-
nancial time series are irregularly spaced. Two common examples of irreg-
ularly spaced financial time series are daily closing prices and intra-day
transactions level data. There are a variety of time and date functions in
S-PLUS that may be used to create regularly spaced and irregularly spaced
“timeDate” sequences for essentially any kind of financial data. These func-
tions are illustrated using the following examples®.

Regularly and irregularly spaced sequences may be created using the
S-PLUS functions timeCalendar, timeSeq and timeSequence. The func-
tion timeSeq is the most flexible. The following examples illustrate the use
of these functions for creating common “timeDate” sequences.

Annual Sequences

Creating a “timeDate” sequence for an annual time series from 1900 to
1910 may be done in a variety of ways. Perhaps, the simplest way uses the
S-PLUS timeCalendar function:

> td = timeCalendar (y=1900:1910,format="%Y")
> class(td)
[1] "timeDate"
> td
[1] 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910

The timeCalendar function produces an object of class “timeDate”.
The argument format="%Y" specifies the output format of the “timeDate”
object as a four digit year.

Since td contains a sequence of dates, the Julian date information for all
of the dates is available in the .Data slot

> td@.Data

[[11]:

[1] -21914 -21549 -21184 -20819 -20454 -20088 -19723 -19358
[9] -18993 -18627 -18262

3To avoid problems with time zone specifications, all examples in this sections were
created after setting the default time zone to GMT using options(time.zone="GMT").
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[[21]:
[t] 0O0O0O000000O00O

An annual sequence from 1900 to 1910 may also be computed using the
S-PLUS function timeSeq:

> timeSeq(from="1/1/1900", to="1/1/1910", by="years",
+ format="%Y")
[1] 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910

The argument by="years" specifies annual spacing between successive
values in the sequence starting at 1/1/1900 and ending at 1/1/1910. The
date formats for the starting and ending dates must conform to the default
input format for “timeDate” objects (see options("time.in.format")).

Finally, an annual sequence from 1900 to 1910 may be created using the
S-PLUS function timeSequence:

> tds = timeSequence("1/1/1900","1/1/1910",by="years",
+ format="%Y")

> class(tds)

[1] "timeSequence"

> tds

from: 1900

to: 1910

by: +1lyr

[1] 1900 1901 1902 ... 1910

timeSequence creates an object of class “timeSequence” which stores time
and date information in a compact fashion. The “timeSequence” object
may be converted to a “timeDate” object using the S-PLUS as function

> td = as(tds,"timeDate")
> td
[1] 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910

Quarterly Sequences

A quarterly “timeDate” sequence from 1900:1 through 1902:IV may be
created using timeSeq with the by="quarters" option:

> timeSeq(from="1/1/1900", to="10/1/1902", by="quarters",
+ format="%Y:%Q")

[1] 1900:1I 1900:II 1900:II1 1900:IV 1901:I 1901:1I1
[7] 1901:IIT 1901:IV 1902:1 1902:I1 1902:II1 1902:1IV

The output format character %Q displays the quarter information. Notice
that the dates are specified as the first day of the quarter.
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Monthly Sequences

Now consider creating a monthly “timeDate” sequence from January 1,
1900 through March 1, 1901. This may be done using timeCalendar

> timeCalendar (m=rep(1:12,length=15),y=rep(1900:1901,each=12,
+ length=15), format="%b %Y")
[1] Jan 1900 Feb 1900 Mar 1900 Apr 1900 May 1900 Jun 1900
[7] Jul 1900 Aug 1900 Sep 1900 Oct 1900 Nov 1900 Dec 1900
[13] Jan 1901 Feb 1901 Mar 1901

or timeSeq

> timeSeq(from="1/1/1900",t0="3/1/1901" ,by="months",
+ format="%b %Y")
[1] Jan 1900 Feb 1900 Mar 1900 Apr 1900 May 1900 Jun 1900
[7] Jul 1900 Aug 1900 Sep 1900 Oct 1900 Nov 1900 Dec 1900
[13] Jan 1901 Feb 1901 Mar 1901

To create a monthly sequence of end of month values from December 31,
1899 through February 28, 1901, subtract 1 from the above calculation:

> timeSeq(from="1/1/1900",to="3/1/1901" ,by="months",
+ format="%b %Y") - 1
[1] Dec 1899 Jan 1900 Feb 1900 Mar 1900 Apr 1900 May 1900
[7] Jun 1900 Jul 1900 Aug 1900 Sep 1900 Oct 1900 Nov 1900
[13] Dec 1900 Jan 1901 Feb 1901

Weekly Sequences

Weekly sequences are best created using timeSeq with by="weeks". For
example, a weekly sequence from Monday January 1, 1990 to Monday Feb
26, 1990 may be created using

> timeSeq(from="1/1/1990",t0="3/1/1990" ,by="weeks",

+ format="%a %b %d, %Y")

[1] Mon Jan 1, 1990 Mon Jan 8, 1990 Mon Jan 15, 1990
[4] Mon Jan 22, 1990 Mon Jan 29, 1990 Mon Feb 5, 1990
[7] Mon Feb 12, 1990 Mon Feb 19, 1990 Mon Feb 26, 1990

To create a weekly sequence starting on a specific day, say Wednesday,
make the starting date a Wednesday.

Daily Sequences

A regularly spaced daily sequence may be created using timeSeq with by =
"days". For an irregularly spaced daily sequence of weekdays use timeSeq
with by = "weekdays". For financial asset price data that trades on U.S.
exchanges, the relevant “daily” sequence of dates is an irregularly spaced



2.2 The Specification of “timeSeries” Objects in S-PLUS 27

sequence based on business days. Business days are weekdays excluding cer-
tain holidays. For example, consider creating a daily “timeDate” sequence
for the month of January, 2000 for a time series of asset prices that trade
on the New York stock exchange (NYSE). The NYSE is not open on week-
ends and on certain holidays and these dates should be omitted from the
“timeDate” sequence. The S-PLUS function holiday.NYSE returns the New
York Stock Exchange holidays for a given year, 1885-present, according to
the historical and current (as of 1998) schedule, not including special-event
closure days or partial-day closures. The NYSE holidays for 2000 are

> holiday.NYSE(2000)
[1] 1/17/2000 2/21/2000 4/21/2000 5/29/2000 7/4/2000
[6] 9/4/2000 11/23/2000 12/25/2000

Martin Luther King day on Monday January 17" is the only weekday

holiday. A “timeDate” sequence of business days excluding the holiday
1/17/2000 may be created using

> timeSeq(from="1/3/2000",to="1/31/2000" ,by="bizdays",
+ holidays=holiday.NYSE(2000),format="%a %b %d, %Y")

[1] Mon Jan 3, 2000 Tue Jan 4, 2000 Wed Jan 5, 2000

[4] Thu Jan 6, 2000 Fri Jan 7, 2000 Mon Jan 10, 2000

[7] Tue Jan 11, 2000 Wed Jan 12, 2000 Thu Jan 13, 2000
[10] Fri Jan 14, 2000 Tue Jan 18, 2000 Wed Jan 19, 2000
[13] Thu Jan 20, 2000 Fri Jan 21, 2000 Mon Jan 24, 2000
[16] Tue Jan 25, 2000 Wed Jan 26, 2000 Thu Jan 27, 2000
[19] Fri Jan 28, 2000 Mon Jan 31, 2000

The argument holidays=holiday.NYSE(2000) in conjunction with by =
"bizdays" instructs timeSeq to exclude the weekday dates associated with
the NYSE holidays for 2000. Notice that the date Mon Jan 17, 2000 has
been omitted from the sequence.

Intra-day Irregularly Spaced Sequences

Sequences of irregularly spaced intra-day dates may be created using the
function timeCalendar. For example, consider creating a sequence of hourly
observations only during the hypothetical trading hours from 9:00 AM to
3:00 PM from Monday January 3, 2000 through Tuesday January 4, 2000.
Such a sequence may be created using timeCalendar as follows

> timeCalendar (h=rep(9:15,2) ,d=rep(3:4,each=7),

+ y=2000,format="%a %b %d, %Y %02I:%02M %p")
[1] Mon Jan 3, 2000 09:00 AM Mon Jan 3, 2000 10:00 AM
[3] Mon Jan 3, 2000 11:00 AM Mon Jan 3, 2000 12:00 PM
[5] Mon Jan 3, 2000 01:00 PM Mon Jan 3, 2000 02:00 PM
[7] Mon Jan 3, 2000 03:00 PM Tue Jan 4, 2000 09:00 AM
[9] Tue Jan 4, 2000 10:00 AM Tue Jan 4, 2000 11:00 AM



28 2. Time Series Specification, Manipulation, and Visualization in S-PLUS

[11] Tue Jan 4, 2000 12:00 PM Tue Jan 4, 2000 01:00 PM
[13] Tue Jan 4, 2000 02:00 PM Tue Jan 4, 2000 03:00 PM

In a similar fashion, a sequence of minute observations from 9:00 AM to
3:00 PM on Monday January 3, 2000 and Tuesday January 4, 2000 may be
created using

> timeCalendar (min=rep(rep(0:59,6),2),

+ h=rep(9:14,each=60,length=360%2),

+ d=rep(3:4,each=360,length=360%2),

+ y=2000,format="%a %b %d, %Y %02I:%02M %p")
[1] Mon Jan 3, 2000 09:00 AM Mon Jan 3, 2000 09:01 AM
[3] Mon Jan 3, 2000 09:02 AM Mon Jan 3, 2000 09:03 AM

[359] Mon Jan 3, 2000 02:58 PM Mon Jan 3, 2000 02:59 PM
[361] Tue Jan 4, 2000 09:00 AM Tue Jan 4, 2000 09:01 AM

[719] Tue Jan 4, 2000 02:58 PM Tue Jan 4, 2000 02:59 PM

2.2.4 Miscellaneous Time and Date Functions

In addition to the time and date functions discussed so far, S-PLUS has a
number of miscellaneous time and date functions. In addition S+FinMetrics
provides a few time and date functions. These are summarized in Table 2.1.

2.2.5 Creating “timeSeries” Objects

S-PLUS “timeSeries” objects are created with the timeSeries function.
Typically a “timeSeries” is created from some existing data in a data
frame or matrix and a “timeDate” object. For example,

> my.df = data.frame(x=abs(rnorm(10,mean=5)),
+ y=abs (rnorm(10,mean=10)))

> my.td = timeCalendar (y=1990:1999,format="%Y")
> my.ts = timeSeries(data=my.df,pos=my.td)

> my.ts

Positions X y

1990 4.250 11.087

1991 5.290 11.590

1992 5.594 11.848

1993 5.138 10.426

1994 5.205 9.678

1995 4.804 11.120

1996 5.726 11.616

1997 6.124 9.781

1998 3.981 10.725
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S-PLUS function

Description

month.day.year
julian
quarters
months
days
weekdays
years
yeardays
hours
minutes
seconds
hms

mdy

wdydy
leap.year
holidays

holiday.fixed
holiday.weekday.number

Converts calendar dates to Julian dates

Converts Julian dates to calendar dates

Create an ordered factor corresponding to
quarters

Create an ordered factor corresponding to
months

Create an ordered factor corresponding to
days

Create an ordered factor corresponding to
weekdays

Create an ordered factor corresponding to
years

Extract year day from date

Extract hour from date

Extract minutes from date

Extract seconds from date

Create data frame containing hours,
minutes and seconds

Create data frame containing month, day
and year

Create data frame containing weekday,
year day and year

Determines if year number corresponds to
a leap year

Generate a collection of holidays

Generate holidays that occur on fixed dates

Generate holidays that occur on weekdays

S+FinMetrics function

Description

days.count
is.weekday
is.weekend
is.bizday
imm.dates

Count number of days between two dates
Tests if date is a weekday

Tests if date is a weekend

Tests if date is a business day

Create International Monetary Market dates

TABLE 2.1. Miscellaneous time and date functions
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1999 6.006 10.341

Information about the “timeSeries” object may be added to the title,
documentation and units slots:

my.ts@title = "My timeSeries"

my.ts@documentation = c("Simulated annual price data using ",
"the S-PLUS function rnorm")

my.tsQunits = c("US dollars","US dollars")

vV + Vv VvV

The title and units information is utilized in certain plot functions.

Creating “timeSeries” Objects from Time Series in Data Frames

Very often time series data that are in data frames have a date variable
with a formatted date string. The S-PLUS function timeDate has a vari-
ety of input formats that may be used to convert such date strings into
“timeDate” objects. For example, the S+FinMetrics data frame yhoo.df
contains daily high, low, open and close prices as well as volume information
for Yahoo stock for the month of February 2002

> yhoo.df[1:2,]

Date Open High Low Close Volume
1 1-Feb-02 17.26 17.3 16.35 16.68 6930100
2 4-Feb-02 16.55 16.6 15.60 15.75 8913700

The variable Date is a character vector containing the date strings. A
“timeDate” sequence created from the date strings in Date is

> td = timeDate(yhoo.df[,1],in.format="%d-Ymn-%y",
+ format="%a %b %d, %Y")

> td[1:2]

[1] Fri Feb 1, 2002 Mon Feb 4, 2002

A “timeSeries” object containing the data from yhoo.df is created using

> yhoo.ts = timeSeries(pos=td,data=yhoo.df[,-1])
> yhoo.ts[1:2,]

Positions Open High Low Close Volume
Fri Feb 1, 2002 17.26 17.3 16.35 16.68 6930100
Mon Feb 4, 2002 16.55 16.6 15.60 15.75 8913700

High frequency data, however, is often recorded using nonstandard time
formats. For example, consider the transactions level data for the month of
December 1999 for 3M stock in the S+FinMetrics data frame highFreq3m.df

> highFreq3M.df[1:2,]

trade.day trade.time trade.price
1 1 34412 94.688
2 1 34414 94.688
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The variable trade.day contains the integer trading day of the month,
the variable trade.time contains the integer trade time recorded as the
number of seconds from midnight and the variable trade.price contains
the transaction price in dollars. A “timeDate” sequence may be easily
created from the trade day and trade time information as follows

> td = timeDate(julian=(highFreq3M.df$trade.day-1),
+ ms=highFreq3M.df$trade.time*1000,

+ in.origin=c(month=12,day=1,year=1999) ,zone="GMT")
> td[1:2]

[1] 12/1/99 9:33:32 AM 12/1/99 9:33:34 AM

The function timeDate can create a “timeDate” sequence using Julian date
and millisecond information. The argument julian takes an integer vector
containing the number of days since the date specified in the argument
in.origin, and the argument ms takes an integer vector containing the
number of milliseconds since midnight. In the above example, in.origin
is specified as December 1, 1999 and the optional argument zone is used
to set the time zone to GMT. A “timeSeries” object containing the high
frequency data in highFreq3M.df is created using

> hf3M.ts = timeSeries(pos=td,data=highFreq3M.df)

2.2.6 Aggregating and Disaggregating Time Series

Often a regularly spaced financial time series of a given frequency may
need to be aggregated to a coarser frequency or disaggregated to a finer
frequency. In addition, aggregation and disaggregation may involve flow or
stock variables. The S-PLUS functions aggregateSeries and align may be
used for such purposes. To enhance and extend the disaggregation function-
ality in S-PLUS the S+FinMetrics function disaggregate is introduced.

Aggregating Time Series

Given a monthly “timeSeries” of end of month prices over a number of
years, suppose one would like to create an annual time series consisting of
the end of month December prices. Such a series may be easily constructed
by subsetting using the S-PLUS function months:

> dec.vals
> annual.p
> annual.p
Positions MSFT SP500
Dec 1990 2.090 330.2
Dec 1991 4.635 417.1
Dec 1992 5.336 435.7
Dec 1993 5.039 466.4

"Dec"==months (positions(singleIndex.dat))
singlelIndex.dat[dec.vals,]
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Dec 1994 7.641 459.
Dec 1995 10.969 615.
Dec 1996 20.656 740.
Dec 1997 32.313 970.
Dec 1998 69.344 1229.
Dec 1999 116.750 1469.
Dec 2000 43.375 1320.
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Another way to create the above annual time series is to use the S-PLUS
aggregateSeries function with a user-written function to pick off Decem-
ber values. One such function, based on the S-PLUS function hloc used to
compute high, low, open and close values, is

pickClose = function(x)
{
# return closing values of a vector
if (length(dim(x))) x = as.vector(as.matrix(x))
len = length(x)
if(!len)
as(NA, class(x))
else x[len]

The annual data is then constructed using aggregateSeries with op-
tional arguments FUN=pickClose and by="years"

> annual.p = aggregateSeries(singlelIndex.dat,
+ FUN=pickClose,by="years")

> positions(annual.p)@format = "%Y"

> annual.p

Positions MSFT SP500

1990 2.090 330.2
1991 4.635 417.1
1992 5.336 435.7
1993 5.039 466.4
1994 7.641 459.3
1995 10.969 615.9
1996 20.656 740.7
1997 32.313 970.4
1998 69.344 1229.2
1999 116.750 1469.3
2000 43.375 1320.3
2001 61.063 1366.0

The function aggregateSeries passes to the function pickClose data
from singleIndex.dat in blocks of year’s length. The function pickClose
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simply picks off the last value for the year. Since singleIndex.dat only
has data for January 2, 2001, the 2001 value for annual.p is this value.

The method described above may also be used to construct end-of-month
closing price data from a “timeSeries” of daily closing price data. For
example, the commands to create end of month closing prices from daily
closing prices for Microsoft, taken from the S+FinMetrics “timeSeries”
DowJones30, using aggregateSeries with FUN = pickClose and by =
"months" are

> msft.daily.p = DowJones30[,"MSFT"]
> msft.daily.p@title = "Daily closing price on Microsoft"
> msft.daily.p@units = "Dollar price"
> msft.monthly.p = aggregateSeries(msft.daily.p,FUN=pickClose,
+ by="months",adj=0.99)
> msft.monthly.p[1:12]

Positions MSFT

1/31/1991 2.726

2/28/1991 2.882

3/31/1991 2.948

4/30/1991 2.750

5/31/1991 3.049

6/30/1991 2.838

7/31/1991 3.063

8/31/1991 3.552

9/30/1991 3.708

10/31/1991 3.912

11/30/1991 4.052

12/31/1991 4.635

The option adj=0.99 adjusts the positions of the monthly data to the
end of the month. Notice that the end of month dates are not necessarily
the last trading days of the month.

The monthly closing price data may be extracted from the daily closing
price data by clever use of subscripting?. One way to do this is

> end.month.idx =
+ which(diff (as.numeric(months(positions(msft.daily.p)))) != 0)
> msft.monthly.p = msft.daily.pl[end.month.idx]
> msft.monthly.p[1:12]
Positions MSFT
1/31/1991 2.726
2/28/1991 2.882
3/28/1991 2.948
4/30/1991 2.750

4This method was suggested by Steve McKinney.
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5/31/1991 3.049
6/28/1991 2.838
7/31/1991 3.063
8/30/1991 3.552
9/30/1991 3.708
10/31/1991 3.912
11/29/1991 4.052
12/31/1991 4.635

A common aggregation operation with financial price data is to construct
a volume weighted average price (vwap). This may be easily accomplished
with aggregateSeries and a user-specified function to compute the vwap.
For example, consider the daily open, high, low and close prices and volume
on Microsoft stock from October 2, 2000 through August 31, 2001 in the
S+FinMetrics “timeSeries” msft.dat.

> smpl = (positions(msft.dat) >= timeDate("10/1/2000") &
+ positions(msft.dat) <= timeDate("8/31/2001"))
> msft.dat [smpl,]

Positions Open High Low Close Volume

10/2/2000 60.50 60.81 58.25 59.13 29281200

8/31/2001 56.85 58.06 56.30 57.05 28950400

A function that can be used to aggregate open, high, low and close prices,
volume and compute the open and close vwap is

vol.wtd.avg.price = function(x) {
VolumeSum = as.double(sum(x[, "Volume"]))
nrowx = numRows (x)
return(data.frame(Open = x[1, "Open"],
High = max(x[, "High"]l),
Low = min(x[, "Low"l),
Close = x[nrowx, "Close"],
vwap.Open = sum(x[, "Open"] * x[, "Volume"])/VolumeSum,
wap.Close = sum(x[, "Close"] * x[, "Volume"])/VolumeSum,
Volume = VolumeSum))

Using aggregateSeries and the function vol.wtd.avg.price one can
compute the monthly open, high, low, close prices, volume, and open and
close vwap

> msft.vwap.dat = aggregateSeries(x = msft.dat[smpl,],
+ by = "months",FUN = vol.wtd.avg.price,

+ together = T)

> positions(msft.vwap.dat)@format="%b %Y"

> msft.vwap.dat[,-7]
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Positions Open High Low Close vwap.Open vwap.Close

Oct 2000 60.50 70.13 48.44 68.88 59.10 59.48
Nov 2000 68.50 72.38 57.00 57.38 68.35 67.59
Aug 2001 66.80 67.54 56.30 57.05 62.99 62.59

Disaggregating Time Series

Consider the problem of creating a daily “timeSeries” of inflation adjusted
(real) prices on Microsoft stock over the period January 2, 1991 through
January 2, 2001. To do this the daily nominal prices must be divided by
a measure of the overall price level; e.g. the consumer price level (CPI).
The daily nominal stock price data is in the “timeSeries” msft.daily.p
created earlier and the CPI data is in the S+FinMetrics “timeSeries”
CPI.dat. The CPI data, however, is only available monthly.

> start(CPI.dat)
[1] Jan 1913

> end(CPI.dat)
[1] Nov 2001

and represents the average overall price level during the month but is
recorded at the end of the month. The CPI data from December 1990
through January 2001 is extracted using

> smpl = (positions(CPI.dat) >= timeDate("12/1/1990")
+ & positions(CPI.dat) <= timeDate("2/1/2001"))
> cpi = CPI.dat[smpl,]
> cpil1:3]

Positions CPI

Dec 1990 134.3

Jan 1991 134.8

Feb 1991 134.9

To compute real daily prices on Microsoft stock, the monthly CPI data
in the “timeSeries” object cpi must be disaggregated to daily data. This
disaggregation may be done in a number of ways. For example, the CPI for
every day during the month of January, 1991 may be defined as the monthly
CPI value for December, 1990 or the monthly CPI value for January, 1991.
Alternatively, the daily values for January 1991 may be computed by lin-
early interpolating between the December, 1990 and January, 1991 values.
The S-PLUS function align may be used to do each of these disaggrega-
tions.

The align function aligns a “timeSeries” object to a given set of po-
sitions and has options for the creation of values for positions in which
the “timeSeries” does not have values. For example, the disaggregated
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CPI using the previous month’s value for the current month’s daily data is
constructed using

> cpi.daily.before =

+ align(cpi,positions(msft.daily.p) ,how="before")

> cpi.daily.before[c(1:3,21:23)]

Positions  CPI
1/2/1991 134.
1/3/1991 134.
1/4/1991 134.
1/30/1991 134.
1/31/1991 134.
2/1/1991 134.8
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The new positions to align the CPI values are the daily positions of the
“timeSeries” msft.daily.p, and the argument how="before" specifies
that the previous month’s CPI data is to be used for the current month’s
daily CPI values. Similarly, the disaggregated CPI using the next month’s
value for the current month’s daily data is constructed using

> cpi.daily.after =

+ align(cpi,positions(msft.daily.p) ,how="after")

> cpi.daily.after[c(1:3,21:23)]

Positions CPI
1/2/1991 134.
1/3/1991 134.
1/4/1991 134.
1/30/1991 134.
1/31/1991 134.
2/1/1991 134.9

0 0 00 0

Finally, the disaggregated daily CPI using linear interpolation between the
monthly values is constructed using

> cpi.daily.interp = align(cpi,positions(msft.daily.p),

+ how="interp")

> cpi.daily.interp[c(1:3,21:23)]

Positions  CPI
1/2/1991 134.
1/3/1991 134.
1/4/1991 134.
1/30/1991 134.
1/31/1991 134.
2/1/1991 134.

0 00 P W W

[00]

The daily real prices on Microsoft stock using the interpolated daily CPI
values are then

> msft.daily.rp = (msft.daily.p/cpi.daily.interp)*100
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Disaggregating Time Series using the S+FinMetrics disaggregate
Function

With economic and financial time series, it is sometimes necessary to dis-
tribute a flow variable or time average a stock variable that is observed at
a low frequency to a higher frequency. For example, a variable of interest
may only be observed on an annual basis and quarterly or monthly val-
ues are desired such that their sum is equal to the annual observation or
their average is equal to the annual observation. The S+FinMetrics func-
tion disaggregate performs such disaggregations using two methods. The
first method is based on cubic spline interpolation and is appropriate if the
only information is on the series being disaggregated. The second method
utilizes a generalized least squares (gls) fitting method due to Chow and
Lin (1971) and is appropriate if information is available on one or more re-
lated series that are observed at the desired disaggregated frequency. The
arguments expected by disaggregate are

> args(disaggregate)
function(data, k, method = "spline", how = "sum", x = NULL,
+ out.positions = NULL, ...)

where data is a vector, matrix or “timeSeries” of low frequency data, k is
the number of disaggregtion periods, method determines the disaggregation
method (spline or gls), how specifies if the disaggregated values sum to the
aggregated values or are equal on average to the disaggregated values, x
respresents any related observed data at the disaggregated frequency and
out.positions represents a “timeDate” sequence for the resulting output.

To illustrate the use of disaggregate, consider the problem of disag-
gregating the annual dividend on the S&P 500 index to a monthly divi-
dend. Since the annual dividend is a flow variable, the sum of the monthly
dividends should equal the annual dividend. The annual S&P 500 div-
idend information over the period 1871 - 2000 is in the S+FinMetrics
“timeSeries” shiller.annual. The disaggregated monthly dividend val-
ues such that their sum is equal to the annual values is created using

monthly.dates = timeSeq(from="1/1/1871",to="12/31/2000",
by="months" ,format="%b %Y")

div.monthly =
disaggregate(shiller.annuall[,"dividend"],12,
out.positions=monthly.dates)
div.monthly[1:12]

Positions dividend

Jan 1871 0.02999

Feb 1871 0.01867

Mar 1871 0.01916

Apr 1871 0.01963

May 1871 0.02009

vV + + V + V
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Jun 1871 0.02054
Jul 1871 0.02097
Aug 1871 0.02140
Sep 1871 0.02181
Oct 1871 0.02220
Nov 1871 0.02259

Dec 1871 0.02296

> sum(div.monthly[1:12])

[1] 0.26

> shiller.annual[1l,"dividend"]
Positions dividend
1871 0.26

For the S&P 500 index, the index price is available in the S+FinMetrics
monthly “timeSeries” shiller.dat. This information may be utilized in
the disaggregation of the annual dividend using the gls method as follows

smpl = positions(shiller.dat) <= timeDate("12/31/2000")
price.monthly = as.matrix(seriesData(shiller.dat[smpl,"price"]))
div2.monthly =

disaggregate(shiller.annuall[,"dividend"], 12,

method="gls", x=price.monthly, out.positions=monthly.dates)
div2.monthly[1:12]

Positions dividend

Jan 1871 0.006177

vV + + V Vv V

Feb 1871 0.010632
Mar 1871 0.014610
Apr 1871 0.018104
May 1871 0.021104
Jun 1871 0.023569
Jul 1871 0.025530
Aug 1871 0.027043
Sep 1871 0.028063
Oct 1871 0.028508
Nov 1871 0.028548

Dec 1871 0.028111

> sum(div2.monthly[1:12])

[1] 0.26

> shiller.annualll,"dividend"]
Positions dividend
1871 0.26

2.2.7 Merging Time Series

Often one would like to combine several “timeSeries” objects into a
single “timeSeries” object. The S-PLUS functions c, concat and cbind
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do not operate on “timeSeries” objects. Instead, the S-PLUS function
seriesMerge is used to combine or merge a collection of “timeSeries”.
To illustrate, consider creating a new “timeSeries” object consisting of the
S+FinMetrics “timeSeries” CPI.dat and IP.dat containing monthly ob-
servations on the U.S. consumer price index and U.S. industrial production
index, respectively:

> CPI.dat
Positions CPI
Jan 1913 9.80
Feb 1913 9.80

Nov 2001 177.60
> IP.dat

Positions IP

Jan 1919 7.628

Feb 1919 7.291

Nov 2001 137.139

Notice that the start date for CPI.dat is earlier than the start date for
IP.dat,but the end dates are the same. A new “timeSeries” containing
both CPI.dat and IP.dat with positions aligned to those for IP.dat using
seriesMerge is

> IP.CPI.dat = seriesMerge(IP.dat,CPI.dat,
+ pos=positions(IP.dat))
> IP.CPI.dat[1:2,]

Positions IP CPI

Jan 1919 7.628 16.5

Feb 1919 7.291 16.2

To create a “timeSeries” with positions given by the union of the posi-
tions for CPI.dat and IP.dat set pos="union" in the call to seriesMerge.
Since IP.dat does not have observations for the dates January 1913 through
December 1918, NA values for IP for these dates will be inserted in the new
“timeSeries”.

2.2.8 Dealing with Missing Values Using the S+FinMetrics
Function interpNA

Occasionally, time series data contain missing or incorrect data values. One
approach often used to fill-in missing values is interpolation®. The S-PLUS

5More sophisticated imputation methods for dealing with missing values are available
in the library S+MISSINGDATA which is included with S-PLUS.
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align function may be used for this purpose. The S+FinMetrics func-
tion interpNA performs similar missing value interpolation as align but
is easier to use and is more flexible. The arguments expected by interpNA
are

> args(interpNA)
function(x, method = "spline")

where x is a rectangular object and method sets the interpolation method.
Valid interpolation methods are “before”, “after”, “nearest”, “linear”
and (cubic) “spline”. To illustrate the use of interpNA, note that the clos-
ing price for the Dow Jones Industrial Average in the S-PLUS “timeSeries”
djia has a missing value on January 18, 1990:

> djia.close = djial[positions(djia) >= timeDate("1/1/1990"),
+ "close"]
> djia.close[10:12,]
Positions close
01/17/1990 2659.1
01/18/1990 NA
01/19/1990 2677.9

To replace the missing value with an interpolated value based on a cubic
spline use

> djia.close = interpNA(djia.close)
> djia.close[10:12,]
Positions 1
01/17/1990 2659.1
01/18/1990 2678.7
01/19/1990 2677.9

2.3 Time Series Manipulation in S-PLUS

There are several types of common manipulations and transformations that
often need to be performed before a financial time series is to be analyzed.
The most important transformations are the creation of lagged and differ-
enced variables and the creation of returns from asset prices. The following
sections describe how these operations may be performed in S-PLUS.

2.3.1 Creating Lags and Differences

Three common operations on time series data are the creation of lags, leads,
and differences. The S-PLUS function shift may be used to create leads
and lags, and the generic function diff may be used to create differences.
However, these functions do not operate on “timeSeries” objects in the
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most convenient way. Consequently, the S+FinMetrics module contains
the functions tslag and diff.timeSeries for creating lags/leads and dif-
ferences.

Creating Lags and Leads Using the S+FinMetrics Function tslag

The S+FinMetrics function tslag creates a specified number of lag/leads
of a rectangular data object. The arguments expected by tslag are

> args(tslag)
function(x, k = 1, trim = F)

where x is any rectangular object, k specifies the number of lags to be
created (negative values create leads) and trim determines if NA values are
to be trimmed from the result. For example, consider the “timeSeries”
singleIndex.dat containing monthly prices on Microsoft and the S&P
500 index. The first five values are

> singleIndex.dat[1:5,]
Positions MSFT SP500
Jan 1990 1.285 329.1
Feb 1990 1.371 331.9
Mar 1990 1.538 339.9
Apr 1990 1.611 330.8
May 1990 2.028 361.2

The “timeSeries” of lagged values using tslag are

> tslag(singleIndex.dat[1:5,])
Positions MSFT.lagl SP500.lagl

Jan 1990 NA NA
Feb 1990 1.285 329.1
Mar 1990 1.371 331.9
Apr 1990 1.538 339.9
May 1990 1.611 330.8

Notice that tslag creates a “timeSeries” containing the lagged prices
on Microsoft and the S&P 500 index. The variable names are adjusted to
indicate the type of lag created and since trim=F, NA values are inserted
for the first observations. To create a “timeSeries” without NA values in
the first position, use tslag with trim=T:

> tslag(singleIndex.dat[1:5,],trim=T)
Positions MSFT.lagl SP500.lagl

Feb 1990 1.285 329.1
Mar 1990 1.371 331.9
Apr 1990 1.538 339.9
May 1990 1.611 330.8

Leads are created by setting k equal to a negative number:
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> tslag(singlelIndex.dat[1:5,],k=-1)
Positions MSFT.leadl SP500.leadl

Jan 1990 1.371 331.9
Feb 1990 1.538 339.9
Mar 1990 1.611 330.8
Apr 1990 2.028 361.2
May 1990 NA NA

To create a “timeSeries” with multiple lagged values, simply specify
the lags to create in the call to tslag. For example, specifying k=c(1,3)
creates the first and third lag

> tslag(singlelIndex.dat[1:5,],k=c(1,3))
Positions MSFT.lagl SP500.lagl MSFT.lag3 SP500.l1lag3

Jan 1990 NA NA NA NA
Feb 1990 1.285 329.1 NA NA
Mar 1990 1.371 331.9 NA NA
Apr 1990 1.538 339.9 1.285 329.1
May 1990 1.611 330.8 1.371 331.9

Similarly, specifying k=-1:1 creates

> tslag(singleIndex.dat[1:5,] ,k=-1:1)
Positions MSFT.leadl SP500.leadl MSFT.lagO SP500.lag0

Jan 1990 1.371 331.9 1.285 329.1
Feb 1990 1.538 339.9 1.371 331.9
Mar 1990 1.611 330.8 1.538 339.9
Apr 1990 2.028 361.2 1.611 330.8
May 1990 NA NA 2.028 361.2
MSFT.lagl SP500.lagl

NA NA
1.285 329.1
1.371 331.9
1.538 339.9
1.611 330.8

Creating Differences Using the S+FinMetrics Function diff.timeSeries

The S+FinMetrics function diff.timeSeries is a method function for
the generic S-PLUS function diff for objects of class “timeSeries” and
creates a specified number of differences of a “timeSeries” object. The
arguments expected by diff.timeSeries are

> args(diff.timeSeries)
function(x, lag = 1, differences = 1, trim = T, pad = NA)

where x represents a “timeSeries” object, lag specifies the number of
lagged periods used in the difference, differences specifies the number
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of times to difference the series, trim determines if the resulting series is
to have NA values removed and trimmed and pad specifies the value to
be padded to the series in the positions where the differencing operation
exceeds the start or the end positions. For example, consider again the
“timeSeries” singlelIndex.dat containing monthly prices on Microsoft
and the S&P 500 index. Let P; denote the price at time ¢. To create the
first difference AP, = P, — P, use diff with lag=1:

> diff(singleIndex.dat[1:5,],lag=1,trim=F)
Positions MSFT SP500

Jan 1990 NA NA

Feb 1990 0.0868 2.81

Mar 1990 0.1667 8.05

Apr 1990 0.0729 -9.14

May 1990 0.4167 30.43

To create the difference P, — P;_5 and pad the result with zeros instead of
NAs use diff with lag=2 and pad=0:

> diff(singleIndex.dat[1:5,],lag=2,trim=F,pad=0)
Positions MSFT SP500

Jan 1990 0.0000 0.00
Feb 1990 0.0000 0.00
Mar 1990 0.2535 10.86
Apr 1990 0.2396 -1.09

May 1990 0.4896 21.29

To create the 2" difference AP, = A(P;, — Py_1) = P, —2P;_1 + P,_5 use
diff with lag=1 and diff=2:

> diff(singleIndex.dat[1:5,],lag=1,diff=2,trim=F)
Positions MSFT SP500

Jan 1990 NA NA

Feb 1990 NA NA

Mar 1990 0.0799 5.24

Apr 1990 -0.0938 -17.19

May 1990 0.3438 39.57

Unlike tslag, diff.timeSeries does not rename the variables to indi-
cate the differencing operation performed. Additionally, diff.timeSeries
will not accept a vector of values for the arguments lag and differences.

2.3.2  Return Definitions

Simple Returns

Let P; denote the price at time ¢ of an asset that pays no dividends and
let P;_1 denote the price at time t — 1. Then the simple net return on an
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investment in the asset between times ¢ — 1 and ¢ is defined as

Py — Py

Ry = —— = %AP,. (2.1)
Py
Writing % = % — 1, we can define the simple gross return as
P
14+ R = . 2.2
‘=B (2.2)

Unless otherwise stated, references to returns mean net returns.
The simple two-period return on an investment in an asset between times
t — 2 and ¢ is defined as
re - PP B
P, P,
B _ P 1
Py Py

= (1+R)(1+R1) -1

Then the simple two-period gross return becomes
1+ R(2)=(1+R)(1+Ri—1) =14 Ri—1 + R; + Ry 1 Ry,

which is a geometric (multiplicative) sum of the two simple one-period gross
returns and not the simple sum of the one period returns. If, however, R;_
and R; are small then R;_1R; ~ 0 and 1+ R;(2) ~ 1+ R;—1 + R; so that
Rt(2) ~ Rtfl + Rt.

In general, the k-period gross return is defined as the geometric average
of k one period gross returns

L+ Ry(k) = (I+R)(1+ Re—1) (14 Ry—pt1) (2.3)
k-1

[Ta+r)

Jj=0

and the k-period net return is

k—1

Ri(k) = JJ(1+ Re—y) — 1. (2.4)

Continuously Compounded Returns

Let R; denote the simple one period return on an investment. The contin-
uously compounded one period return, 7y, is defined as

re=In(1+ Ry) =1In <P1:t1) (2.5)
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where In() is the natural log function. To see why r; is called the con-
tinuously compounded return, take exponentials of both sides of (2.5) to
give

15

e”:1—|—Rt:P .
t—1

Rearranging gives
o T
P =P _e™,

so that r; is the continuously compounded growth rate in prices between
periods t — 1 and ¢. This is to be contrasted with R; which is the simple
growth rate in prices between periods ¢ —1 and ¢ without any compounding.

Since In (%) = In(x) — In(y) it follows that

(75

Py
In(P;) — In(Ps—1)
= Pt —DPt-1

Tt

where p; = In(P;). Hence, the continuously compounded one period return,
r¢, can be computed simply by taking the first difference of the natural
logarithms of prices between periods ¢t — 1 and ¢.

Given a one period continuously compounded return ry, it is straightfor-
ward to solve back for the corresponding simple net return R;:

Rt:(?”—l

Hence, nothing is lost by considering continuously compounded returns
instead of simple returns.

The computation of multi-period continuously compounded returns is
considerably easier than the computation of multi-period simple returns. To
illustrate, consider the two period continuously compounded return defined
as

P,
+(2) = In(1 + Ry(2)) = In (P : > =Pt — P2
t—2
Taking exponentials of both sides shows that
P, = Py_se"®@

so that 7¢(2) is the continuously compounded growth rate of prices between
periods ¢ — 2 and ¢. Using Pf; = Pf’il . g:; and the fact that In(z - y) =

In(z) + In(y) it follows that
In ( P Pt—l)
Py P

P (Ptl)
In +In
(Pt—l) Py

T+ Te—1.

r+(2)
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Hence the continuously compounded two period return is just the sum of
the two continuously compounded one period returns.
The continuously compounded k-period return is defined as

P,
ro(k) = In(1 + Ry(k)) = In ( . ) . (2.6
t—k
Using similar manipulations to the ones used for the continuously com-
pounded two period return the continuously compounded k-period return
may be expressed as the sum of k continuously compounded one period
returns:

k—1
’I“t(k’) = ZTt_j. (27)
7=0

The additivitity of continuously compounded returns to form multiperiod
returns is an important property for statistical modeling purposes.

2.3.8  Computing Asset Returns Using the S+FinMetrics
Function getReturns

Given a data set with asset prices the S+FinMetrics function getReturns
may be used to compute discrete and continuously compounded returns.
The arguments to getReturns are

> args(getReturns)
function(x, type = "continuous", percentage = F, trim = T)

where x is any rectangular data object and type specifies the type of re-
turns to compute (discrete or continuously compounded). To illustrate, the
S+FinMetrics “timeSeries” singleIndex.dat contains monthly closing
prices on Microsoft stock and the S&P 500 index, adjusted for stock splits
and dividends, over the period January 1990 through January 2001.

> collds(singleIndex.dat)
[1] "MSFT" "SP500"

> singleIndex.dat[1:3,]
Positions MSFT SP500
Jan 1990 1.2847 329.08
Feb 1990 1.3715 331.89
Mar 1990 1.5382 339.94

A “timeSeries” of simple one-period discrete returns expressed as per-
centages is computed as

> ret.d = getReturns(singleIndex.dat,type="discrete",
+ percentage=T)

> ret.d[1:3,]

Positions MSFT  SP500
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Feb 1990 6.756 0.8539
Mar 1990 12.1556 2.4255
Apr 1990 4.739 -2.6887

By default the first observation in the “timeSeries” is trimmed. To retain
the first (NA) observation use the optional argument trim=F

> ret.d = getReturns(singleIndex.dat,type="discrete",trim=F)
> ret.d[1:3,]

Positions MSFT SP500

Jan 1990 NA NA

Feb 1990 0.067564 0.008539

Mar 1990 0.121546 0.024255

Continuously compounded returns are created by specifying the optional
argument type="continuous"

> ret.cc = getReturns(singleIndex.dat,type="continuous")
> ret.cc[1:3,]

Positions MSFT SP500

Feb 1990 0.065380 0.0085027

Mar 1990 0.114708 0.0239655

Apr 1990 0.046304 -0.0272552

Multiperiod returns may be computed from a “timeSeries” of one pe-
riod returns using the S-PLUS function aggregateSeries. Multiperiod re-
turns may be either overlapping or non-overlapping. For example, consider
computing a monthly “timeSeries” of overlapping annual continuously
compounded returns from the monthly continuously compounded returns
in the “timeSeries” ret.cc using aggregateSeries:

> retl2.cc = aggregateSeries(ret.cc,moving=12,FUN=sum)
> retl12.cc[1:3,]
Positions MSFT SP500
Feb 1990 0.75220 0.044137
Mar 1990 0.74254 0.100749
Apr 1990 0.65048 0.098743
> colSums(seriesData(ret.cc[1:12,]1))
MSFT SP500
0.7522 0.044137

The argument moving=12 and FUN=sum tells aggregateSeries to compute
a moving sum of twelve returns. Hence, the annual return reported for
Feb 1990 is the sum of the twelve monthly returns from February 1990
through January 1991. Non-overlapping annual returns are computed from
the monthly returns using aggregateSeries with the option by="years"

> retl2.cc = aggregateSeries(ret.cc,by="years",FUN=sum)
> retl12.cc[1:3,]



48 2. Time Series Specification, Manipulation, and Visualization in S-PLUS

Positions MSFT SP500
Jan 1990 0.48678 0.0034582
Jan 1991 0.79641 0.2335429
Jan 1992 0.14074 0.0436749
> colSums(seriesData(ret.cc[1:11,]))
MSFT SP500
0.48678 0.0034582

The “timeSeries” ret12.cc is now an annual series of non-overlapping
annual returns. Notice that the annual return for January 1990 is computed
using only the eleven returns from February 1990 through December 1990.

Multiperiod discrete returns (2.4) may be computed using the function
aggregateSeries with FUN=prod. For example, a monthly “timeSeries”
of overlapping annual discrete returns is computed as

> retl2.d = aggregateSeries((l+ret.d),moving=12,FUN=prod)-1
> ret12.d[1:3,]

Positions MSFT SP500

Feb 1990 1.12166 0.045126

Mar 1990 1.10128 0.105999

Apr 1990 0.91646 0.103783

> prod(seriesData(l+ret.d[1:12,1]))-1

[1] 1.1217

Notice that 1 is added to the return data and 1 is subtracted from the result
in order to compute (2.4) properly. Non-overlapping multiperiod discrete
returns may be computed using

> retl2.d = aggregateSeries((1l+ret.d),by="years",FUN=prod)-1
> ret12.d[1:3,]

Positions MSFT  SP500

Jan 1990 NA NA

Jan 1991 1.2176 0.26307

Jan 1992 0.1511 0.04464

2.4 Visualizing Time Series in S-PLUS

Time series data in “timeSeries” objects may be visualized by using the
S-PLUS generic plot function, the S-PLUS trellisPlot function, or by
using the S+FinMetrics plotting functions based on Trellis graphics.

2.4.1 Plotting “timeSeries” Using the S-PLUS Generic
plot Function

The S-PLUS generic plot function has a method function, plot.timeSeries,
for plotting “timeSeries” objects. To illustrate, consider the monthly clos-
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FIGURE 2.1. Monthly closing prices on Microsoft stock created using
plot.timeSeries.

ing prices of Microsoft stock over the period January 1990 to January 2001
in the “timeSeries” object msft.p created earlier:

> msft.pOtitle

[1] "Monthly closing price on Microsoft"
> msft.pQunits

[1] "US dollar price"

Figure 2.1 shows the output produced by the generic plot function
> plot(msft.p)

Notice how the information in the title and units slots is utilized
in the plot. To eliminate the horizontal and vertical grid lines specify
reference.grid=F in the call to plot. To show the price data on a loga-
rithmic scale specify log.axes="y" in the call to plot.

Multiple series (on the same scale) may also be plotted together on the
same plot using plot®. For example, the prices for Microsoft and the S&P
500 index in the “timeSeries” singleIndex.dat may be plotted together
using

6To create a scatterplot of two “timeSeries” use the extractor function seriesData
possibly in conjunction with the coersion function as.matrix on the “timeSeries” ob-
jects in the call to plot. Alternatively, the S+FinMetrics function rvfPlot may be used.
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Monthly prices on Microsoft and S&P 500 Index
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FIGURE 2.2. Monthly closing prices on Microsoft and the S&P 500 index created

using plot.timeSeries.

> plot(singlelndex.dat,plot.args=1list(1lty=c(1,3)))
> legend(0.1,1400,legend=colIds(singleIndex.dat),lty=c(1,3))

The plot is illustrated in Figure 2.2. Notice how the line types are specified
as a list argument to the optional argument plot.args. In the placement
of the legend, the x-axis units are treated as values in the unit interval.

Multipanel plots may be created by specifying the plot layout using the
S-PLUS function par. Figure 2.3 shows a two panel plot of the price data
in singleIndex.dat produced using

par (mfrow=c(2,1))
plot(singleIndex.dat[,"MSFT"],
main="Monthly price on Microsoft")
plot(singleIndex.dat[,"SP500"],
main="Monthly price on S&P 500 index")

+ V + Vv V

Two specialized plot types for financial data can be made with the func-
tion plot.timeSeries. The first is a high/low/open/close (hloc) plot and
the second is a stackbar plot. These plots are made by setting plot.type =
"hloc" or plot.type = "stackbar" in the call to plot.timeSeries. For
a hloc plot, the “timeSeries” to be plotted must have hloc information or
such information must be created using aggregateSeries with the S-PLUS
function hloc. Stackbar plots are generally used for plotting asset volume
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FIGURE 2.3. Two panel plot created using par (mfrow=c(2,1)) in conjunction
with plot.timeSeries.

information. To illustrate these plot types, consider the monthly data from
the Dow Jones Industrial Averages in the S-PLUS “timeSeries” djia:

> collds(djia)
[1] Ilopenll "high" "1OW" "ClOSG" "Volume"

Figure 2.4 gives a multipanel plot showing high, low, open, close and
volume information created by

> smpl = (positions(djia) >= timeDate("9/1/1987") &
+ positions(djia) <= timeDate("11/30/1987"))

> par(mfrow=c(2,1))

> plot(djialsmpl,1:4],plot.type="hloc")

> plot(djialsmpl,5],plot.type="stackbar")

Lines may be added to an existing time series plot using the S-PLUS
function lines.render and stackbar information may be added using the
S-PLUS function stackbar.render. See chapter 26 in the S-PLUS Guide
to Statistics Vol. II for details on using these functions.
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Dow Jones Industrial Average
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FIGURE 2.4. Monthly high, low, open, close and volume information for the
Dow Jones Industrial Average using plot.timeSeries with type="hloc" and
type="stackbar".

Function Description
seriesPlot | Trellis time series plot
histPlot Trellis histogram plot
qqPlot Trellis qg-plot for various distributions

TABLE 2.2. S+FinMetrics Trellis plotting functions

2.4.2 Plotting “timeSeries” Using the S+FinMetrics
Trellis Plotting Functions

S+FinMetrics provides several specialized Trellis-based plotting functions
for “timeSeries” objects. These functions extend the S-PLUS function
TrellisPlot.timeSeries and are summarized in Table 2.2.

All of the functions in the table can create multi-panel plots with text
labels in the panel strips. For the following examples, monthly return data
on six stocks from the S+FinMetrics “timeSeries” DowJones30 will be
used. This data is created using

> DJ.ret = getReturns(DowJones30[,1:6], percentage=T)
> collds(DJ.ret)
[1] IIAAII IIAXPII IITII IIBAII IlCATII IICII
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Monthly returns on six Dow Jones 30 stocks
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FIGURE 2.5. Multi-panel time plot created using the S+FinMetrics function
seriesPlot.

The function seriesPlot may be used to create single panel or multi-
panel time plots. To create the multi-panel time plot of the six Dow Jones
30 assets shown in Figure 2.5 use

> seriesPlot(DJ.ret,one.plot=F,strip.text=collds(DJ.ret),
+ main="Monthly returns on six Dow Jones 30 stocks")

Notice that each time plot has a different scale.

The function histPlot may be used to create either a single panel his-
togram of one data series or a multi-panel plot of histograms for multiple
series. The multi-panel plot in Figure 2.6 is created using

> histPlot(DJ.ret,strip.text=collds(DJ.ret),
+ main="Histograms of returns on six Dow Jones 30 stocks")

Notice that each histogram uses the same bins.

Single panel or multi-panel Trellis-based qqg-plots using Gaussian, Student-
t, and double exponential distributions may be created using the function
qgPlot. To illustrate, consider computing qq-plots for the six Dow Jones
30 assets using six Student-t reference distributions with degrees of free-
dom equal to 5, 6, 7, 8, 9 and 10. These qg-plots, shown in Figure 2.7, are
created using

> s.text = paste(collds(DJ.ret),5:10,sep=" ","df")
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Histograms of returns on six Dow Jones 30 stocks
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FIGURE 2.6. Multi-panel histogram plot created using the S+FinMetrics func-
tion histPlot.
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FIGURE 2.7. Multi-panel qg-plots created using

qqPlot.
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> qqPlot(DJ.ret,strip.text=s.text,
+ distribution="t",dof=c(5,6,7,8,9,10), id.n=FALSE,
+ main="Student-t QQ-plots for returns on six Dow Jones 30 stocks")

Notice how the degress of freedom for each Student-t distribution along
with the asset name is indicated in the strip text. The optional argument
id.n=FALSE suppresses the identification of outliers on the qg-plots.

2.5 References

CHow, G., AND LIN, A. (1971). “Best Linear Unbiased Interpolation,
Distribution, and Extrapolation of Time Series by Related Series,” Review
of Economics & Statistics, 53, 372-375.
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Time Series Concepts

3.1 Introduction

This chapter provides background material on time series concepts that
are used throughout the book. These concepts are presented in an informal
way, and extensive examples using S-PLUS are used to build intuition. Sec-
tion 3.2 discusses time series concepts for stationary and ergodic univariate
time series. Topics include testing for white noise, linear and autoregressive
moving average (ARMA) process, estimation and forecasting from ARMA
models, and long-run variance estimation. Section 3.3 introduces univariate
nonstationary time series and defines the important concepts of 7(0) and
I(1) time series. Section 3.4 explains univariate long memory time series.
Section 3.5 covers concepts for stationary and ergodic multivariate time
series, introduces the class of vector autoregression models, and discusses
long-run variance estimation.

Rigorous treatments of the time series concepts presented in this chap-
ter can be found in Fuller (1996) and Hamilton (1994). Applications of
these concepts to financial time series are provided by Campbell, Lo, and
MacKinlay (1997), Mills (1999), Gourieroux and Jasiak (2001), Tsay (2001),
Alexander (2001), and Chan (2002).
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3.2 Univariate Time Series

3.2.1 Stationary and Ergodic Time Series

Let {y:} = {.- . Yt—1,Ys,Yt+1,-..} denote a sequence of random variables
indexed by some time subscript ¢. Call such a sequence of random variables
a time series.

The time series {y:} is covariance stationary if

Ely] = pforallt
cov(ys, yi—j) = El(ye — p)(ye—j — p)] =7, for all ¢ and any j

For brevity, call a covariance stationary time series simply a stationary
time series. Stationary time series have time invariant first and second
moments. The parameter v, is called the 4t order or lag j autocovariance
of {y;} and a plot of 7, against j is called the autocovariance function. The
autocorrelations of {y;} are defined by

cov(yt, yt—j) _

var(ye)var(y—j) Yo

Pj

and a plot of p; against j is called the autocorrelation function (ACF).
Intuitively, a stationary time series is defined by its mean, variance and
ACF. A useful result is that any function of a stationary time series is also
a stationary time series. So if {y;} is stationary then {z} = {g(y:)} is
stationary for any function g(-).

The lag 7 sample autocovariance and lag j sample autocorrelation are
defined as

1 X

Y= T Z (e —9)(We—5 — ¥) (3.1)
t=j+1

/A)j = ,Ayo (32)

where § = % ZZ:l y¢ is the sample mean. The sample ACF (SACF) is a
plot of p; against j.

A stationary time series {y;} is ergodic if sample moments converge in
probability to population moments; i.e. if § 2 i, o 2 v, and p; 2 pj-

Example 1 Gaussian white noise (GWN) processes

Perhaps the most simple stationary time series is the independent Gaus-
sian white noise process y; ~ iid N(0,02) = GWN(0,0?). This process
has =, = p; =0 (j # 0). To simulate a GW N (0, 1) process in S-PLUS
use the rnorm function:
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Series : y

y
ACF
0.4
I

0.2
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FIGURE 3.1. Simulated Gaussian white noise process and SACF.
> set.seed(101)
> y = rnorm(100,sd=1)

To compute the sample moments g, 9;, p; (j = 1,...,10) and plot the
data and SACF use

y.bar = mean(y)

g.hat = acf(y,lag.max=10,type="covariance",plot=F)
r.hat = acf(y,lag.max=10,type="correlation",plot=F)
par (mfrow=c(1,2))

tsplot (y,ylab="y")

acf.plot(r.hat)

By default, as shown in Figure 3.1, the SACF is shown with 95% con-
fidence limits about zero. These limits are based on the result (c.f. Fuller
(1996) pg. 336) that if {y;} ~ iid (0,02) then

. A 1 .
b NN(O,T),]>O.

The notation p, AN (0, %) means that the distribution of p; is approxi-
mated by normal distribution with mean 0 and variance % and is based on

the central limit theorem result v/T' Pj 4N (0,1). The 95% limits about
zero are then jzl'—\/?.

V V. V V V V
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Quantiles of Standard Normal

FIGURE 3.2. Normal qg-plot for simulated GWN.

Two slightly more general processes are the independent white noise
(IWN) process, y; ~ IWN(0,02%), and the white noise (WN) process,
ys ~ WN(0,02). Both processes have mean zero and variance o2, but
the IWN process has independent increments, whereas the WN process
has uncorrelated increments.

Testing for Normality

In the previous example, y; ~ GWN(0,1). There are several statistical
methods that can be used to see if an iid process y; is Gaussian. The most
common is the normal quantile-quantile plot or qg-plot, a scatterplot of the
standardized empirical quantiles of y; against the quantiles of a standard
normal random variable. If y; is normally distributed, then the quantiles
will lie on a 45 degree line. A normal qg-plot with 45 degree line for y; may
be computed using the S-PLUS functions qgqnorm and qgline

> qqnorm(y)
> qqline(y)

Figure 3.2 shows the qg-plot for the simulated GWN data of the previous
example. The quantiles lie roughly on a straight line. The S+FinMetrics
function qgPlot may be used to create a Trellis graphics qg-plot.

The qqg-plot is an informal graphical diagnostic. Two popular formal
statistical tests for normality are the Shapiro- Wilks test and the Jarque-



3.2 Univariate Time Series 61

Bera test. The Shapiro-Wilk’s test is a well-known goodness of fit test for
the normal distribution. It is attractive because it has a simple, graphical
interpretation: one can think of it as an approximate measure of the cor-
relation in a normal quantile-quantile plot of the data. The Jarque-Bera
test is based on the result that a normally distributed random variable has
skewness equal to zero and kurtosis equal to three. The Jarque-Bera test
statistic is

T (—2 (kurt—3)2> 53)

JB = @ (skew + 1

where skew denotes the sample skewness and kurt denotes the sample kur-
tosis. Under the null hypothesis that the data is normally distributed

JB 2 v2(2).

Example 2 Testing for normality using the S+FinMetrics function
normalTest

The Shapiro-Wilks and Jarque-Bera statistics may be computed using
the S+FinMetrics function normalTest. For the simulated GWN data of
the previous example, these statistics are

> normalTest (y, method="sw")
Test for Normality: Shapiro-Wilks

Null Hypothesis: data is normally distributed
Test Statistics:

Test Stat 0.9703
p.value 0.1449

Dist. under Null: normal
Total Observ.: 100

> normalTest(y, method="jb")

Test for Normality: Jarque-Bera

Null Hypothesis: data is normally distributed
Test Statistics:

Test Stat 1.8763
p.value 0.3914
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Dist. under Null: chi-square with 2 degrees of freedom
Total Observ.: 100

The null of normality is not rejected using either test.

Testing for White Noise
Consider testing the null hypothesis
Hy :y; ~ WN(0,0?)

against the alternative that y; is not white noise. Under the null, all of the
autocorrelations p; for j > 0 are zero. To test this null, Box and Pierce
(1970) suggested the Q-statistic

k
k)y=T> p (3.4)

where p; is given by (3.2). Under the null, Q(k) is asymptotically dis-
tributed x?(k). In a finite sample, the Q-statistic (3.4) may not be well
approximated by the x?(k). Ljung and Box (1978) suggested the modified

Q-statistic
2

k
MQ(k) = T+2§: J (3.5)

-7
which is better approximated by the x?(k) in finite samples.
Example 3 Daily returns on Microsoft

Consider the time series behavior of daily continuously compounded re-
turns on Microsoft for 2000. The following S-PLUS commands create the
data and produce some diagnostic plots:

> r.msft = getReturns(DowJones30[,"MSFT"],type="continuous")
> r.msft@title = "Daily returns on Microsoft"

> sample.2000 = (positions(r.msft) > timeDate("12/31/1999")
+ & positions(r.msft) < timeDate("1/1/2001"))

> par (mfrow=c(2,2))

> plot(r.msft[sample.2000],ylab="r.msft")

> r.acf = acf(r.msft[sample.2000])

> hist(seriesData(r.msft))

> qqnorm(seriesData(r.msft))

The daily returns on Microsoft resemble a white noise process. The qq-
plot, however, suggests that the tails of the return distribution are fatter
than the normal distribution. Notice that since the hist and qgqnorm func-
tions do not have methods for “timeSeries” objects the extractor func-
tion seriesData is required to extract the data frame from the data slot
of r.msft.



3.2 Univariate Time Series

Series : r.msft[sample.2000]

Daily returns on Microsoft
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FIGURE 3.3. Daily returns on Microsoft with diagnostic plots.

63

The S+FinMetrics functions histPlot and qgqPlot will produce a his-
togram and qq-plot for a “timeSeries” object using Trellis graphics. For

example,

> histPlot(r.msft,strip.text="MSFT monthly return")
> qqPlot(r.msft,strip.text="MSFT monthly return")

However, Trellis plots cannot be displayed in a multipanel plot created

using par.

The S+FinMetrics function autocorTest may be used to compute the
Q-statistic and modified Q-statistic to test the null that the returns on

Microsoft follow a white noise process:

> autocorTest(r.msft, lag.n=10, method="1b")

Test for Autocorrelation: Ljung-Box
Null Hypothesis: no autocorrelation

Test Statistics:

Test Stat 11.7746
p-value 0.3004

Dist. under Null: chi-square with 10 degrees of freedom
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Total Observ.: 2527

The argument lag.n=10 specifies that k = 10 autocorrelations are used
in computing the statistic, and method="1b" specifies that the modified
Box-Pierce statistic (3.5) be computed. To compute the simple Box-Pierce
statistic, specify method="bp". The results indicate that the white noise
null cannot be rejected.

3.2.2 Linear Processes and ARMA Models

Wold’s decomposition theorem (c.f. Fuller (1996) pg. 96) states that any
covariance stationary time series {y;} has a linear process or infinite order
moving average representation of the form

Yt pw+ Z VrEt—k (3.6)
k=0

do = 1, > Uf<oo
k=0

g ~ WN(0,0?)
In the Wold form, it can be shown that

Ely] = n
Yo = var(y) =0 ¥}
k=0
v, = cov(yyi—j) = o Zwkwarj
k=0
P = Z;O:O 7/}k7/}k+j
’ Yo Vi

Hence, the pattern of autocorrelations in any stationary and ergodic time
series {y;} is determined by the moving average weights {1;} in its Wold
representation. To ensure convergence of the linear process representation
to a stationary and ergodic process with nice properties, it is necessary
to further restrict the behavior of the moving average weights {wj}. A
standard assumption used in the econometrics literature (c.f. Hamilton
(1994) pg. 504) is 1-summability

> il = 14 20| + 3Jasg| + -+ < oo,
j=0
The moving average weights in the Wold form are also called impulse
responses since
Y15

= =1,2,...
agt /11[}875 ) )
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For a stationary and ergodic time series limg_, %, = 0 and the long-run
cumulative impulse response Z;X;o Y, < 0o. A plot of 1, against s is called
the impulse response function (IRF).

The general Wold form of a stationary and ergodic time series is handy
for theoretical analysis but is not practically useful for estimation purposes.
A very rich and practically useful class of stationary and ergodic processes is
the autoregressive-moving average (ARMA) class of models made popular
by Box and Jenkins (1976). ARMA(p, ¢) models take the form of a pth
order stochastic difference equation

Yye—p = O(Ye1—p) o+ O (Ye—p — 1) (3.7)
+er+ 01601+ +04e1—4
gt WN(O,CT?)

ARMA (p, q) models may be thought of as parsimonious approximations
to the general Wold form of a stationary and ergodic time series. More
information on the properties of ARMA(p, q) process and the procedures
for estimating and forecasting these processes using S-PLUS are in the S-
PLUS Guide to Statistics Vol. II, chapter 27, Venables and Ripley (2002)
chapter 13, and Meeker (2001)!.

Lag Operator Notation

The presentation of time series models is simplified using lag operator no-
tation. The lag operator L is defined such that for any time series {y;},
Ly:; = ys—1. The lag operator has the following properties: L?y; = L- Ly; =
Yi—2, L = 1 and L™y, = y;41. The operator A = 1 — L creates the first
difference of a time series: Ay, = (1 — L)y: = y+ — y+—1. The ARMA(p, q)
model (3.7) may be compactly expressed using lag polynomials. Define
H(L)=1—¢L—-—¢,LP and O(L) =1+ 61 L+ ---+0,L9. Then (3.7)
may be expressed as
O(L)(ye — 1) = 0(L)ee

Similarly, the Wold representation in lag operator notation is

ye = pt+(Lle
(L) = Zkaka Yo =1
k=0

and the long-run cumulative impulse response is 1(1) (i.e. evaluate ¥ (L)
at L =1). With ARMA(p, ¢) models the Wold polynomial (L) is approx-

I1William Meeker also has a library of time series functions for the analysis of
ARMA models available for download at
http://www.public.iastate.edu/"stat451/splusts/splusts.html.
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imated by the ratio of the AR and MA polynomials

3.2.83 Autoregressive Models
AR(1) Model

A commonly used stationary and ergodic time series in financial modeling
is the AR(1) process

Yy —p=P(y—1 —p) +e, t=1,...,T

where &; ~ WN(0,0?) and |¢| < 1. The above representation is called the
mean-adjusted form. The characteristic equation for the AR(1) is

d(z)=1—¢2=0 (3.8)

so that the root is z = % Stationarity is satisfied provided the absolute
value of the root of the characteristic equation (3.8) is greater than one:
2
g

|é| > 1or |¢| < 1.1In this case, it is easy to show that Ely,] = p, 7o = 1557,

Y, =p; = ¢’ and the Wold representation is

Yt =M+ij5t—j-

Jj=0

Notice that for the AR(1) the ACF and IRF are identical. This is not true

in general. The long-run cumulative impulse response is ¥ (1) = ﬁ

The AR(1) model may be re-written in components form as
Yo = ptu

ur = Qup—1+ey
or in autoregression form as

Yy = ctoyi1+e
c = p(l-9)

An AR(1) with u =1, ¢ = 0.75, 0> = 1 and T' = 100 is easily simulated
in S-PLUS using the components form:

> set.seed(101)

> e = rnorm(100,sd=1)

> e.start = rnorm(25,sd=1)

> y.arl = 1 + arima.sim(model=1list(ar=0.75), n=100,
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Simulated AR(1) ACF and IRF for AR(1)
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FIGURE 3.4. Simulated AR(1), ACF, IRF and SACF.

+ innov=e, start.innov=e.start)
> mean(y.arl)

[1] 1.271

> var(y.arl)

[1] 2.201

The ACF and IRF may be computed as
> gamma.j = rep(0.75,10) “seq(10)
The simulated data, ACF and SACF are illustrated in Figure 3.4 using

par (mfrow=c(2,2))

tsplot(y.arl,main="Simulated AR(1)")

abline(h=1)

tsplot(gamma.j, type="h", main="ACF and IRF for AR(1)",
ylab="Autocorrelation", xlab="lag")

tmp = acf(y.arl, lag.max=10)

vV + V V V V

Notice that {y;} exhibits mean-reverting behavior. That is, {y;} fluctuates
about the mean value ¢ = 1. The ACF and IRF decay at a geometric rate.
The decay rate of the IRF is sometimes reported as a half-life — the lag
j"! at which the IRF reaches 3. For the AR(1) with positive ¢, it can be
shown that j"*f = 1n(0.5)/In(¢). For ¢ = 0.75, the half-life is

> 10g(0.5)/10g(0.75)
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USI/CA 30 day interest rate differential
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FIGURE 3.5. US/CA 30 day interest rate differential and SACF.

[1] 2.409

Many economic and financial time series are well characterized by an

AR(1) process. Leading examples in finance are valuation ratios (dividend-
price ratio, price-earning ratio etc), real exchange rates, interest rates,
and interest rate differentials (spreads). To illustrate, consider the 30-
day US/CA interest rate differential® constructed from the S+FinMetrics
“timeSeries” object lexrates.dat:

V VV V V V + V

uscn.id = 100*(lexrates.dat[,"USCNF"]-
lexrates.dat[,"USCNS"])

colIds(uscn.id) = "USCNID"

uscn.id@title = "US/CA 30 day interest rate differential"
par (mfrow=c(2,1))

plot(uscn.id,reference.grid=F)

abline (h=0)

tmp = acf(uscn.id)

The interest rate differential is clearly persistent: autocorrelations are

significant at the 5% level up to 15 months.

2By covered interest rate parity, the nominal interest rate differential between risk

free bonds from two countries is equal to the difference between the nominal forward
and spot exchange rates.
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AR(p) Models
The AR(p) model in mean-adjusted form is

Yo — =1 (Ye—1 — p) + -+ Op(Ye—p — 1) &

or, in lag operator notation,

A(L)(ys — i) = ¢

where ¢(L) =1~ ¢;L — -+ — ¢,LP. The autoregressive form is
P(L)yr = ¢+ &4

It can be shown that the AR(p) is stationary and ergodic provided the
roots of the characteristic equation

P(z) = 1_¢12_¢222 _"'_¢pzp =0 (3.9)

lie outside the complex unit circle (have modulus greater than one). A
necessary condition for stationarity that is useful in practice is that |¢; +
o+ ¢, < 1. If (3.9) has complex roots then y; will exhibit sinusoidal
behavior. In the stationary AR(p), the constant in the autoregressive form
is equal to (1 — ¢y — -+ — ).

The moments of the AR(p) process satisfy the Yule- Walker equations

Yo = Gt deva T+ Gy, +o” (3.10)
Y = ¢17j71 + ¢27j72 toeeet qﬁp’yjfp

A simple recursive algorithm for finding the Wold representation is based
on matching coefficients in ¢(L) and (L) such that ¢(L)y(L) = 1. For
example, in the AR(2) model

(1= &1L = L?) 1+ L+ L? +---) =1

implies
Y = 1
Yy = U1+ 9y
V3 = O1¥g+ Poty
Y = i T oY,

Partial Autocorrelation Function

The partial autocorrelation function (PACF) is a useful tool to help iden-
tify AR(p) models. The PACF is based on estimating the sequence of AR
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Series : irate.real
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FIGURE 3.6. Monthly U.S. real interest rate, SACF and SPACF.

models

2t = @121+ En

Po12t—1 + Poozt—2 + €0t

2t

2t = Qpzt-1t+ Ppzi—2t o+ Gppzip T Ept

where 2; = y; —p is the demeaned data. The coefficients ¢,; for j =1,...,p
(i.e., the last coefficients in each AR(p) model) are called the partial auto-
correlation coefficients. In an AR(1) model the first partial autocorrelation
coeflicient ¢, is non-zero, and the remaining partial autocorrelation coef-
ficients ¢;; for j > 1 are equal to zero. Similarly, in an AR(2), the first
and second partial autocorrelation coefficients ¢,; and ¢,, are non-zero
and the rest are zero for j > 2. For an AR(p) all of the first p partial
autocorrelation coefficients are non-zero, and the rest are zero for j > p.
The sample partial autocorrelation coeflicients up to lag p are essentially
obtained by estimating the above sequence of p AR models by least squares
and retaining the estimated coefficients gAbj Iz

Example 4 Monthly real interest rates
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The “timeSeries” object varex.ts in the S+FinMetrics module con-
tains monthly data on real stock returns, real interest rates, inflation and
real output growth.

> colIds(varex.ts)
[1] "MARKET.REAL" "RF.REAL" "INF" "IPG"

Figure 3.6 shows the real interest rate, RF.REAL, over the period January
1961 through December 2000 produced with the S-PLUS commands

smpl = (positions(varex.ts) > timeDate("12/31/1960"))
irate.real = varex.ts[smpl,"RF.REAL"]

par (mfrow=c(2,2))

acf.plot(acf(irate.real, plot=F))

plot(irate.real, main="Monthly Real Interest Rate")
tmp = acf(irate.real, type="partial")

vV V V V V V

The SACF and SPACF indicate that the real interest rate might be modeled
as an AR(2) or AR(3) process.

3.2.4  Moving Average Models
MA(1) Model
The MA(1) model has the form

Yr = pi+e + 041, & ~ WN(0,0?)

For any finite # the MA(1) is stationary and ergodic. The moments are
Elyi] = p, 7o = 02(146%), v, = 026, v; =0forj >1and p; = 0/(146%).
Hence, the ACF of an MA(1) process cuts off at lag one, and the maximum
value of this correlation is £0.5.

There is an identification problem with the MA(1) model since § = 1/6
produce the same value of p;. The MA(1) is called invertible if |#| < 1 and
is called non-invertible if |#] > 1. In the invertible MA(1), the error term
¢; has an infinite order AR representation of the form

€ = Za*j(yt,j — 1)
j=0

where 6% = —0 so that €; may be thought of as a prediction error based on
past values of y;. A consequence of the above result is that the PACF for
an invertible MA(1) process decays towards zero at an exponential rate.

Example 5 Signal plus noise model
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FIGURE 3.7. Simulated data, SACF and SPACF from signal plus noise model.

MA(1) models often arise through data transformations like aggregation
and differencing®. For example, consider the signal plus noise model

Yt = 2t +E¢, &t NWN(O,O’?)

Zt = 21 T T, Ny WN(0,0’%)

where ¢; and n, are independent. For example, z; could represent the funda-
mental value of an asset price and ¢; could represent an iid deviation about
the fundamental price. A stationary representation requires differencing y;,:

Ayp =y +er — e
It can be shown, e.g. Harvey (1993), that Ay, is an MA(1) process with § =
-1
— < 0.

—(q+2)+2£q2+4q o2 . . - . .
5 where ¢ = ;g'L is the signal-to-noise ratio and p; = ;)

Simulated data with 62 = 1 and o}, = (0.5)% created with the S-PLUS
commands

> set.seed(112)
> eps = rnorm(100,sd=1)
> eta = rnorm(100,sd=0.5)

3MA(1) type models for asset returns often occur as the result of no-trading effects
or bid-ask bounce effects. See Campbell, Lo and MacKinlay (1997) chapter 3 for details.
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z = cumsum(eta)
y = z + eps
dy = diff(y)

par (mfrow=c(2,2))

tsplot(y, main="Signal plus noise",ylab="y")
tsplot(dy, main="1st difference",ylab="dy")
tmp = acf(dy)

tmp = acf(dy,type="partial")

V V V V V V V vV

are illustrated in Figure 3.7. The signal-to-noise ratio ¢ = 0.25 implies a
first lag autocorrelation of p; = —0.444. This negative correlation is clearly
reflected in the SACF.

MA(q) Model
The MA(g) model has the form
Yy =p+er+ 016021+ - + 0484, where g, ~ WN(O, o?)

The MA(q) model is stationary and ergodic provided 6, .. .,0, are finite.
It is invertible if all of the roots of the MA characteristic polynomial

0(z) =14+012+---04,27=0 (3.11)

lie outside the complex unit circle. The moments of the MA(q) are

Ely] = n
Yo = 21467+ +0)
v, = (9j+9j+101 +0]‘+292+~"+9q9q,j)0'2 for j=1,2,...,q
J 0 for j > ¢q

Hence, the ACF of an MA(q) is non-zero up to lag g and is zero afterwards.
As with the MA(1), the PACF for an invertible MA(g) will show exponen-
tial decay and possibly pseudo cyclical behavior if the roots of (3.11) are
complex.

Example 6 Owverlapping returns and MA(q) models

MA(g) models often arise in finance through data aggregation trans-
formations. For example, let R; = In(P;/P;_1) denote the monthly con-
tinuously compounded return on an asset with price P;. Define the an-
nual return at time ¢ using monthly returns as Ry (12) = ln(P;/Pi_12) =
2;1:0 Ri—;. Suppose Ry ~ WN(p,0?%) and consider a sample of monthly
returns of size T, { Ry, Ra, ..., Rr}. A sample of annual returns may be cre-
ated using overlapping or non-overlapping returns. Let {R12(12), R13(12),
..., Rr(12)} denote a sample of T* = T — 11 monthly overlapping annual
returns and {R;2(12), R24(12),..., Rr(12)} denote a sample of T'/12 non-
overlapping annual returns. Researchers often use overlapping returns in
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analysis due to the apparent larger sample size. One must be careful using
overlapping returns because the monthly annual return sequence {R;(12)}
is not a white noise process even if the monthly return sequence {R;} is.
To see this, straightforward calculations give

E[R/(12)] = 12u
o = var(Ry(12)) = 1202
v, = cov(Ry(12), Ry—;(12)) = (12 — j)o® for j < 12
v, = O0forj>12

Since ; = 0 for j > 12 notice that {R;(12)} behaves like an MA(11)
process

Ri(12) = 12u+ei+b1ge-1+-+0ne—n
gt~ WN(O,O’2)

To illustrate, consider creating annual overlapping continuously com-
pounded returns on the S&P 500 index over the period February 1990
through January 2001. The S+FinMetrics “timeSeries” singleIndex.dat
contains the S&P 500 price data and the continuously compounded monthly
returns are computed using the S+FinMetrics function getReturns

> sp500.mret = getReturns(singleIndex.dat[,"SP500"],
+ type="continuous")
> sp500.mret@title = "Monthly returns on S&P 500 Index"

The monthly overlapping annual returns are easily computed using the
S-PLUS function aggregateSeries

> spb00.aret = aggregateSeries(sp500.mret,moving=12,FUN=sum)
> sp500.aret@title = "Monthly Annual returns on S&P 500 Index"

The optional argument moving=12 specifies that the sum function is to
be applied to moving blocks of size 12. The data together with the SACF
and SPACF of the monthly annual returns are displayed in Figure 3.8.

The SACF has non-zero values up to lag 11. Interestingly, the SPACF is
very small at all lags except the first.

3.2.5 ARMA(p,q) Models

The general ARMA(p, ¢) model in mean-adjusted form is given by (3.7).
The regression formulation is

Yye=ct oY1+t OY—p e+ 01+ 0 (3.12)

It is stationary and ergodic if the roots of the characteristic equation ¢(z) =
0 lie outside the complex unit circle, and it is invertible if the roots of the
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Monthly returns on S&P 500 Index Monthly Annual returns on S&P 500 Index
L] o
8 J AN i 8 I
S ¥ 3 TU T
{il Mvnv’ IW\V ﬂvA i iy i
8 I V V V ld | =3 I Y L Y I VA I 1A
N * =5 il ] Iy
Tl
© o |
I 1990 1992 1994 1996 1998 2000 ‘ 1990 1992 1994 1996 1998 2000
Series : sp500.aret Series : sp500.aret
g3 B
i MHH 3 L1 L [T
s T | ‘ T
l 0 5 10 1‘5 2‘0 q 0 5 10 15 20
Lag Lag

FIGURE 3.8. Monthly non-overlapping and overlapping annual returns on the
S&P 500 index.

MA characteristic polynomial ¢(z) = 0 lie outside the unit circle. It is
assumed that the polynomials ¢(z) = 0 and 6(z) = 0 do not have canceling
or common factors. A stationary and ergodic ARMA(p, q) process has a

mean equal to
c

:1_¢1_'.'_¢p

and its autocovariances, autocorrelations and impulse response weights sat-
isfy the recursive relationships

1 (3.13)

Y, = ¢17j71 + ¢2’Yj72 +oet (z)pf}/jfp
pj = O1pj_1t Papj_o Tt F Oppi,
Yy = 0t o st + oY,

The general form of the ACF for an ARMA(p, q) process is complicated.
See Hamilton (1994) chapter five for details. In general, for an ARMA(p, q)
process, the ACF behaves like the ACF for an AR(p) process for p > ¢, and
the PACF behaves like the PACF for an MA(q) process for ¢ > p. Hence,
both the ACF and PACF eventually show exponential decay.

ARMA(p, q) models often arise from certain aggregation transforma-
tions of simple time series models. An important result due to Granger
and Morris (1976) is that if y; is an ARMA(p1,q1) process and yor is
an ARMA((ps, q2) process, which may be contemporaneously correlated
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with y1¢, then y1; + yor is an ARMA(p, q) process with p = p; + p2 and
q = max(p; + g2,q1 + p2). For example, if y;; is an AR(1) process and ys
is a AR(1) process, then y; + y2 is an ARMA(2,1) process.

High order ARMA (p, q) processes are difficult to identify and estimate
in practice and are rarely used in the analysis of financial data. Low order
ARMA((p, q) models with p and ¢ less than three are generally sufficient for
the analysis of financial data.

ARIMA(p, d, q) Models

The specification of the ARMA (p, ¢) model (3.7) assumes that y; is station-
ary and ergodic. If y; is a trending variable like an asset price or a macroeco-
nomic aggregate like real GDP, then y; must be transformed to stationary
form by eliminating the trend. Box and Jenkins (1976) advocate removal of
trends by differencing. Let A = 1— L denote the difference operator. If there
is a linear trend in y; then the first difference Ay = y; —y;—1 will not have
a trend. If there is a quadratic trend in g, then Ay, will contain a linear
trend but the second difference A2y, = (1 — 2L+ L?)y; = ys — 2ys—1 + Yo
will not have a trend. The class of ARMA(p, q) models where the trends
have been transformed by differencing d times is denoted ARIMA (p, d, q)*.

3.2.6  Estimation of ARMA Models and Forecasting

ARMA (p, q) models are generally estimated using the technique of maxi-
mum likelihood, which is usually accomplished by putting the ARMA(p, q)
in state-space form from which the prediction error decomposition of the
log-likelihood function may be constructed. Details of this process are given
in Harvey (1993). An often ignored aspect of the maximum likelihood es-
timation of ARMA(p, ¢) models is the treatment of initial values. These
initial values are the first p values of y; and ¢ values of &; in (3.7). The ez-
act likelihood utilizes the stationary distribution of the initial values in the
construction of the likelihood. The conditional likelihood treats the p initial
values of y; as fixed and often sets the ¢ initial values of ¢; to zero. The exact
maximum likelihood estimates (MLEs) maximize the exact log-likelihood,
and the conditional MLEs maximize the conditional log-likelihood. The
exact and conditional MLEs are asymptotically equivalent but can differ
substantially in small samples, especially for models that are close to being
nonstationary or noninvertible.’

4More general ARIMA (p, d, q) models allowing for seasonality are discussed in chapter
27 of the S-PLUS Guide to Statistics, Vol. II.

5As pointed out by Venables and Ripley (1999) page 415, the maximum likelihood
estimates computed using the S-PLUS function arima.mle are conditional MLEs. Exact
MLESs may be easily computed using the S+FinMetrics state space modeling functions.
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For pure AR models, the conditional MLEs are equivalent to the least
squares estimates from the model

yr=ct+ oY1+ +QpU—pt+er (3.14)

Notice, however, that ¢ in (3.14) is not an estimate of E[y;] = p. The least
squares estimate of p is given by plugging in the least squares estimates of

¢, b1, ¢, into (3.13).

Model Selection Criteria

Before an ARMA(p, ¢) may be estimated for a time series y;, the AR and
MA orders p and ¢ must be determined by visually inspecting the SACF
and SPACF for y,. Alternatively, statistical model selection criteria may
be used. The idea is to fit all ARMA(p, ¢) models with orders p < ppax and
q < @max and choose the values of p and ¢ which minimizes some model
selection criteria. Model selection criteria for ARMA(p, ¢) models have the
form

MSC(p, q) = In(62(p, q)) + cr - ©(p, q)

where 2 (p, ¢) is the MLE of var(e;) = o2 without a degrees of freedom cor-
rection from the ARMA (p, ¢) model, cr is a sequence indexed by the sample
size T', and ¢(p, q) is a penalty function which penalizes large ARMA(p, q)
models. The two most common information criteria are the Akaike (AIC)
and Schwarz-Bayesian (BIC):

AIC(a) = WE(p0) + 20 +0)
BIC(p.q) = W(#*(p.q)) + ot (p+0)

The AIC criterion asymptotically overestimates the order with positive
probability, whereas the BIC estimate the order consistently under fairly
general conditions if the true orders p and q are less than or equal t0 ppyax
and gpax. However, in finite samples the BIC generally shares no particular
advantage over the AIC.

Forecasting Algorithm

Forecasts from an ARIMA(p, d,q) model are straightforward. The model
is put in state space form, and optimal h-step ahead forecasts along with
forecast standard errors (not adjusted for parameter uncertainty) are pro-
duced using the Kalman filter algorithm. Details of the method are given
in Harvey (1993).
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Estimation and Forecasting ARIMA(p, d, ¢) Models Using the S-PLUS
Function arima.mle

Conditional MLEs may be computed using the S-PLUS function arima.mle.
The form of the ARIMA(p, d, q) assumed by arima.mle is

Y = Y1+t Y
+&¢ — 01€t_1 — e = qut_q
+0'%

where x; represents additional explanatory variables. It is assumed that
y; has been differenced d times to remove any trends and that the uncon-
ditional mean p has been subtracted out so that y; is demeaned. Notice
that arima.mle assumes that the signs on the MA coefficients 6; are the
opposite to those in (3.7).

The arguments expected by arima.mle are

> args(arima.mle)
function(x, model = NULL, n.cond = 0, xreg = NULL, ...)

where x is a univariate “timeSeries” or vector, model is a list ob-
ject describing the specification of the ARMA model, n.cond sets the
number of initial observations on which to condition in the formation of
the log-likelihood, and xreg is a “timeSeries”, vector or matrix of ad-
ditional explanatory variables. By default, arima.mle assumes that the
ARIMA(p, d, q) model is stationary and in mean-adjusted form with an es-
timate of p subtracted from the observed data y;. To estimate the regression
form (3.12) of the ARIMA(p, ¢) model, simply set xreg=1. ARIMA(p, d, q)
models are specified using list variables the form

> mod.list = list(order=c(1,0,1))
> mod.list = list(order=c(1,0,1),ar=0.75,ma=0)
> mod.list = list(ar=c(0.75,-0.25),ma=c(0,0))

The first list simply specifies an ARMA(1,0,1)/ARMA(1,1) model. The
second list specifies an ARIMA(1,0,1) as well as starting values for the
AR and MA parameters ¢ and 6. The third list implicitly determines an
ARMA(2,2) model by giving the starting values for the AR and MA pa-
rameters. The function arima.mle produces an object of class “arima” for
which there are print and plot methods. Diagnostics from the fit can
be created with the S-PLUS function arima.diag, and forecasts may be
produced using arima.forecast.

Example 7 Estimation of ARMA model for US/CA interest rate differ-
ential

Consider estimating an ARMA(p,q) for the monthly US/CA interest
rate differential data in the “timeSeries” uscn.id used in a previous
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example. To estimate an ARMA(1,1) model for the demeaned interest rate
differential with starting values ¢ = 0.75 and 6 = 0 use

uscn.id.dm = uscn.id - mean(uscn.id)

armall.mod = list(ar=0.75,ma=0)

armall.fit = arima.mle(uscn.id.dm,model=armall.mod)
class(armall.fit)

[1] "arima"

>
>
>
>

The components of armall.fit are

> names (armall.fit)

[1] "model™" "var.coef" "method" "series"
[6] "aic" "loglik" "sigma2" "n.used"
[9] "n.cond" "converged" "conv.type" "call"

To see the basic fit simply type

> armall.fit

Call: arima.mle(x = uscn.id.dm, model = armall.mod)
Method: Maximum Likelihood

Model : 101

Coefficients:
AR : 0.82913
MA : 0.11008

Variance-Covariance Matrix:
ar(1) ma (1)

ar(1) 0.002046 0.002224

ma(1) 0.002224 0.006467

Optimizer has converged
Convergence Type: relative function convergence
AIC: -476.25563

The conditional MLEs are (Aﬁcmle = 0.829 and 0y = —0.110. Standard
errors for these parameters are given by the square roots of the diagonal
elements of variance-covariance matrix

> std.errs = sqrt(diag(armall.fit$var.coef))
> names(std.errs) = collds(armall.fit$var.coef)
> std.errs
ar(1) ma(l)
0.04523 0.08041

It appears that the 9cmle is not statistically different from zero.
To estimate the ARMA(1,1) for the interest rate differential data in
regression form (3.12) with an intercept use
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> armall.fit2 = arima.mle(uscn.id,model=armall.mod,xreg=1)
> armall.fit2

Call: arima.mle(x = uscn.id, model = armall.mod, xreg = 1)
Method: Maximum Likelihood

Model : 101

Coefficients:
AR : 0.82934
MA : 0.11065

Variance-Covariance Matrix:
ar (1) ma (1)
ar(1) 0.002043 0.002222
ma(1) 0.002222 0.006465
Coeffficients for regressor(s): intercept
[1] -0.1347

Optimizer has converged
Convergence Type: relative function convergence
AIC: -474.30852

The conditional MLEs for ¢ and 6 are essentially the same as before, and
the MLE for ¢ i8 ¢emie = —0.1347. Notice that the reported variance-
covariance matrix only gives values for the estimated ARMA coefficients

Demie A Oemie.
Graphical diagnostics of the fit produced using the plot method

> plot(armall.fit)

are illustrated in Figure 3.9. There appears to be some high order serial
correlation in the errors as well as heteroskedasticity.

The h-step ahead forecasts of future values may be produced with the
S-PLUS function arima.forecast. For example, to produce monthly fore-
casts for the demeaned interest rate differential from July 1996 through
June 1997 use

fcst.dates = timeSeq("7/1/1996", "6/1/1997",
by="months", format="%b %Y")

uscn.id.dm.fcst = arima.forecast(uscn.id.dm, n=12,
model=armall.fit$model, future.positions=fcst.dates)
names (uscn.id.dm.fcst)

[1] "mean" "std.err"

vV + V + V

The object uscn.id.dm.fcst is a list whose first component is a
“timeSeries” containing the h-step forecasts, and the second component
is a “timeSeries” containing the forecast standard errors:

> uscn.id.dm.fcst[[1]]
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The data, forecasts and 95% forecast confidence intervals shown in Figure
3.10 are produced by

+ + + VvV Vv

smpl = positions(uscn.id.dm) >= timeDate("6/1/1995")
plot(uscn.id.dm[smpl,],uscn.id.dm.fcst$mean,

uscn.id.dm.fcst$mean+2*uscn.id.dm.fcst$std.err,
uscn.id.dm.fcst$mean-2*uscn.id.dm.fcst$std.err,
plot.args=1list(1ty=c(1,4,3,3)))



82 3. Time Series Concepts
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FIGURE 3.10. Forecasts for 12 months for the series uscn.id.dm.

Estimating AR(p) by Least Squares Using the S+FinMetrics Function
OLS

As previously mentioned, the conditional MLEs for an AR(p) model may
be computed using least squares. The S+FinMetrics function OLS, which
extends the S-PLUS function 1lm to handle general time series regression,
may be used to estimate an AR(p) in a particularly convenient way. The
general use of OLS is discussed in Chapter 6, and its use for estimating an
AR(p) is only mentioned here. For example, to estimate an AR(2) model
for the US/CA interest rate differential use

> ar2.fit = OLS(USCNID"ar(2), data=uscn.id)
> ar2.fit

Call:
OLS(formula = USCNID ~ar(2), data = uscn.id)

Coefficients:
(Intercept) lagl lag?2
-0.0265 0.72569 0.0758

Degrees of freedom: 243 total; 240 residual
Time period: from Apr 1976 to Jun 1996
Residual standard error: 0.09105



3.2 Univariate Time Series 83

The least squares estimates of the AR coefficients are g%)l = 0.7259 and
¢y = 0.0758. Since ¢; + ¢ < 1 the estimated AR(2) model is stationary.
To be sure, the roots of ¢(z) = 1 — ¢,z — ¢p2% = 0 are

> abs(polyroot(c(l,-ar2.fit$coef[2:3])))
[11 1.222 10.798

are outside the complex unit circle.

3.2.7 Martingales and Martingale Difference Sequences

Let {y;} denote a sequence of random variables and let I; = {y; y1—1,...}
denote a set of conditioning information or information set based on the
past history of y;. The sequence {y:, I+ } is called a martingale if

o I, C I (I; is a filtration)
o Efly:l] < oo
o Ely:|I:—1] = y1—1 (martingale property)
The most common example of a martingale is the random walk model
Yt = Y1 + &1, &~ WN(0,07)

where yq is a fixed initial value. Letting I; = {yt, ..., yo} implies Ely:|[;—1] =
yi—1 since Ele¢|I_1] = 0.

Let {e:} be a sequence of random variables with an associated informa-
tion set I;. The sequence {4, I;} is called a martingale difference sequence

(MDS) if
oI, ,CI
e Elg|I;—1] = 0 (MDS property)
If {y:, I} is a martingale, a MDS {e, I;} may be constructed by defining
et =yt — Elye -]

By construction, a MDS is an uncorrelated process. This follows from the
law of iterated expectations. To see this, for any k > 0

Eleier—r] = E[Fletet—k|li-1]]
= FElgt rElet| 1]
0

In fact, if z, is any function of the past history of ; so that z, € I;_; then

E[Etzn] =0
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Although a MDS is an uncorrelated process, it does not have to be an
independent process. That is, there can be dependencies in the higher order
moments of ;. The autoregressive conditional heteroskedasticity (ARCH)
process in the following example is a leading example in finance.

MDSs are particularly nice to work with because there are many useful
convergence results (laws of large numbers, central limit theorems etc.).
White (1984), Hamilton (1994) and Hayashi (2000) describe the most useful
of these results for the analysis of financial time series.

Example 8 ARCH process

A well known stylized fact about high frequency financial asset returns
is that volatility appears to be autocorrelated. A simple model to capture
such volatility autocorrelation is the ARCH process due to Engle (1982).
To illustrate, let r; denote the daily return on an asset and assume that
E[r;] = 0. An ARCH(1) model for r; is

Ty = Ozt (315)
%~ iid N(0,1)
o} = whar? (3.16)

where w > 0 and 0 < o < 1. Let Iy = {ry,...}. The S+FinMetrics function
simulate.garch may be used to generate simulations from above ARCH(1)
model. For example, to simulate 250 observations on r; with w = 0.1 and
a = 0.8 use

> rt = simulate.garch(model=1list(a.value=0.1, arch=0.8),
+ n=250, rseed=196)

> class(rt)

[1] "structure"

> names (rt)

[1] "et" "sigma.t"

Notice that the function simulate.garch produces simulated values of
both r; and 0. These values are shown in Figure 3.11.
To see that {ry, I;} is a MDS, note that

E[Tt|It_1] = E[Zta-t|It—1]
UtE[Ztut—l]
0

Since r; is a MDS, it is an uncorrelated process. Provided |a] < 1, 7, is a
mean zero covariance stationary process. The unconditional variance of r;
is given by
_ 21 _ 2 2
var(re) = El[rj] = E[E[z0}|1-1]]
Elo}E[2f|Ii-1] = Elo}]
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FIGURE 3.11. Simulated values from ARCH(1) process with w = 1 and o = 0.8.

since E[22|I;_1] = 1. Utilizing (3.16) and the stationarity of r;, E[o?] may
be expressed as
w
Elo}] = ——
[o¢] I—a
Furthermore, by adding £? to both sides of (3.16) and rearranging it follows
that r? has an AR(1) representation of the form

2 2
€ =wtag;_ |+

where v; = €7 — 07 is a MDS.

3.2.8 Long-run Variance

Let y; be a stationary and ergodic time series. Anderson’s central limit
theorem for stationary and ergodic processes (c.f. Hamilton (1994) pg. 195)

states
o0

or
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The sample size, T', times the asymptotic variance of the sample mean is
often called the long-run variance of y,% :

Iv(y,) =T - avar(y) = Z Y-
Jj=—00

Since v_; = v, Irv(y:) may be alternatively expressed as

Irv(y) =0 +2 )7,
j=1

Using the long-run variance, an asymptotic 95% confidence interval for
1 takes the form

§41.96 /T rv(y,)
where l;;(yt) is a consistent estimate of lrv(y;).

Estimating the Long-Run Variance

If 4, is a linear process, it may be shown that

2
Z Vi = o? 27% = 02¢(1)2
j=—00 j=0
and so
Irv(y;) = o4p(1)? (3.17)

Further, if y; ~ ARMA(p, q) then
140+ 40, 0(1)

Y =g g, T )
so that
lrv( ):ﬂ (3.18)
VYt ¢(1)2 . .

A consistent estimate of lrv(y;) may then be computed by estimating the
parameters of the appropriate ARMA(p, ¢) model and substituting these
estimates into (3.18). Alternatively, the ARMA (p,q) process may be ap-
proximated by a high order AR(p*) process

Yt =C+ ¢1yt71 +--+ pr*ytfp* + &t

6Using spectral methods, Irv(7) has the alternative representation

Iro() = %2# £(0)

where f(0) denotes the spectral density of y; evaluated at frequency 0.
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where the lag length p* is chosen such that ¢; is uncorrelated. This gives
rise to the autoregressive long-run variance estimate
2
o

erAR(yt) = W (319)

A consistent estimate of Irv(y;) may also be computed using some non-
parametric methods. An estimator made popular by Newey and West
(1987) is the weighted autocovariance estimator

Mt
Irvw () = 5o +2 Y wir - 4; (3.20)
j=1

where w; 7 are weights which sum to unity and M7 is a truncation lag
parameter that satisfies My = O(T"/3). For MA(q) processes, 7v; = 0 for
j > q and Newey and West suggest using the rectangular weights w;r =1
for j < Mp = q; 0 otherwise. For general linear processes, Newey and West
suggest using the Bartlett weights w;r =1 — | with My equal to the

integer part of 4(7/100)/9.

J
Mr+1

Example 9 Long-run variance of AR(1)
Let y: be an AR(1) process created using

> set.seed(101)
> e = rnorm(100,sd=1)
> y.arl = 1 + arima.sim(model=1list(ar=0.75),innov=e)
_ 1 _ _1
Here 1,[}(1) = m = m and
2
o]
1 =—.
I‘V(yt) (1 — ¢)2
For ¢ = 0.75, 02 = 1, Irv(y;) = 16 implies for T = 100 an asymptotic
standard error for § equal to SE(y) = 0.40. If vz ~ WN(0,1), then the
asymptotic standard error for g is SE(7) = 0.10.
Irvar (y:) may be easily computed in S-PLUS using OLS to estimate the
AR(1) parameters:

arl.fit = OLS(y.arl"ar(1))

rho.hat = coef(arl.fit) [2]

sig2.hat = sum(residuals(arl.fit)"2)/arl.fit$df.resid
lrv.arl = sig2.hat/(1-rho.hat) "2

as.numeric(lrv.arl)

[1] 13.75

Here Irvar (y:) = 13.75, and an estimate for SE(g) is @AR(Q) =0.371.

The S+FinMetrics function asymp.var may be used to compute the
nonparameteric Newey-West estimate lrvnw (y:). The arguments expected
by asymp.var are

vV V V Vv V
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> args(asymp.var)
function(x, bandwidth, window = "bartlett", na.rm = F)

where x is a “timeSeries”, bandwidth sets the truncation lag My in
(3.20) and window specifies the weight function. Newey and West suggest
setting the bandwidth using the sample size dependent rule

My = 4(T/100)%/°

which is equal to 4 in the present case. The Newey-West long-run variance
estimate is then

> lrv.nw = asymp.var(y.arl, bandwidth=4)
> lrv.nw
[1] 7.238

and the Newey-West estimate of SE(g) is S/ENW(;Q) = 0.269.

3.2.9 Variance Ratios

There has been considerable interest in testing the so-called random walk
(RW) model for log stock prices (see chapter 2 in Campbell, Lo and MacKin-
lay (1997) for an extensive review). The RW model for log prices p; has the
form

Pe=p+pi—1+e, t=1,...,T

where ¢; is a random error term. Using 1, = Ap;, the RW model may be
rewritten as

re =+ &

Campbell, Lo and MacKinlay distinguish three forms of the random walk
model:

RW1 & ~ iid(0, 02)
RW2 ¢, is an independent process (allows for heteroskedasticity)

RW3 ¢; is an uncorrelated process (allows for dependence in higher order
moments)

For asset returns, RW1 and RW2 are not very realistic and, therefore, most
attention has been placed on testing the model RW3.

Some commonly used tests for RW3 are based on constructing variance
ratios. To illustrate, consider the simple two-period variance ratio

- 2002
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The numerator of the variance ratio is the variance of the two-period return,
r¢(2) = r4—1 + r+, and the deminator is two times the variance of the one-
period return, r;. Under RW1, is easy to see that VR(2) = 1. If {r¢} is an
ergodic-stationary process then

var(ri—1) + var(ry) + 2 - cov(re, re—1)
2 - var(ry)

VR(2) =

270 +2m
= _— 1
270 +m
There are three cases of interest depending on the value of p;. If p; =0
then VR(2) = 1; if p; > 1 then VR(2) > 1; if p; < 1 then VR(2) < 1.
The general g—period variance ratio is

var(r:(q))

VR(9) = q - var(ry)

(3.21)
where 7,(¢) = 7T—g+1 + -+ + 7. Under RW1, VR(q) = 1. For ergodic
stationary returns, some algebra shows that

VR(q):1+2~§<1—§>pk

When the variance ratio is greater than one, returns are called mean avert-
ing due to the dominating presence of positive autocorrelations. When the
variance ratio is less than one, returns are called mean reverting due to the
dominating presence of negative autocorrelations. Using the Wold repre-
sentation (3.6), it can be shown that

a2p(1)2 Irv(ry)

li = =
00 VR(4) Yo var(r)

That is, as ¢ becomes large the variance ratio approaches the ratio of the
long-run variance to the short-run variance. Furthermore, Under RW2 and
RW3 it can be shown that VR(q) — 1 as ¢ — oo provided

T

1

T Zvar(rt) —52>0
t=1

Test Statistics

Let {po,p1,...,prq} denote a sample of T'qg + 1 log prices, which produces
a sample of T'q one-period returns {ry,...,rrq}. Lo and MacKinlay (1988,
1989) develop a number of test statistics for testing the random walk hy-
pothesis based on the estimated variance ratio

var(ri(q))

VRO = )

(3.22)
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The form of the statistic depends on the particular random walk model
(RW1, RW2 or RW3) assumed under the null hypothesis.
Under RW1, (3.22) is computed using

5 5°(q)
VR(q) po
where
1
2 12
= T—kz_:l(rk—ﬂ)

5*(q) = T2Zrk —qp)’

poo= TqZTk— (prq — Po)
Lo and MacKinlay show that, under RW1,

g A
VTq(VR(g) —1) ~ N(0,2(q — 1))
Therefore, the variance ratio test statistic
. Tq )1/ 2
= ——= VR(q) — 1 3.23
W0 = (o) (R -1 (3.23)

has a limiting standard normal distribution under RW1.
Lo and MacKinlay also derive a modified version of (3.23) based on the
following bias corrected estimates of o2 and o2(q) :

. 1
# e S
1 &
) = —> (rela) —ap)?
k=q

m = ¢(Tq—q+1) (1—%})

Defining VR(q) = 52(q)/2, the biased corrected version of (3.23) has the
form

9 1/2
Blg) = (#) (VR(9) - 1) (3.24)

which has a limiting standard normal distribution under RW1.
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The variance ratio statistics (3.23) and (3.24) are not valid under the em-
pirically relevant RW3 and RW3 models. For this model, Lo and MacKinlay
derived the heteroskedasticity robust variance ratio statistic

¥*(q) = Q(q)*(VR(q) — 1) (3.25)
where

S e (2a=9)) 5

Q(Q) = ;( j )53

T L
A Zt:qj-i-l Qo e
2
Tq 4
(Zjil aOt)
ajr = (re—j = re—j1 — 1)

Under RW2 or RW3, Lo and MacKinlay show that (3.25) has a limiting
stardard normal distribution.

Example 10 Testing the random walk hypothesis using variance ratios

The variance ratio statistics (3.23), (3.24) and (3.25) may be computed
using the S+FinMetrics function varRatioTest. The arguments for
varRatioTest are

> args(varRatioTest)
function(x, n.periods, unbiased = T, hetero = F)

where x is the log return series (which may contain more than one series)
and n.periods denotes the number of periods ¢ in the variance ratio. If
unbiased=T and hetero=F the bias corrected test statistic (3.24) is com-
puted. If unbiased=T and hetero=T then the heteroskedasticity robust
statistic (3.25) is computed. The function varRatioTest returns an object
of class “varRatioTest” for which there are print and plot methods.

Consider testing the model RW3 for the daily log closing prices of the
Dow Jones Industrial Average over the period 1/1/1960 through 1,/1/1990.
To compute the variance ratio (3.21) and the heteroskedasticity robust test
(3.25) for ¢ = 1,...,60 use

> VR.djia = varRatioTest(djial[timeEvent("1/1/1960","1/1/1990"),
+ "close"], n.periods=60, unbiased=T, hetero=T)

> class(VR.djia)

[1] "varRatioTest"

> names(VR.djia)

[1] "varRatio" "std.err" ‘'stat" "hetero"

> VR.djia

Variance Ratio Test
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Variance Ratio Profile
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FIGURE 3.12. Variance ratios for the daily log prices of the Dow Jones Industrial
Average.

Null Hypothesis: random walk with heteroskedastic errors

Variable: close

var.ratio std.err stat
2 1.0403 0.06728 0.5994871
3 1.0183 0.10527 0.1738146

60 1.0312 0.36227 0.0861747

x : significant at 5% level
x% : significant at 17 level

None of the variance ratios are statistically different from unity at the 5%
level.

Figure 3.12 shows the results of the variance ratio tests based on plot
method

> plot(VR.djia)

The variance ratios computed for different values of ¢ hover around unity,
and the + 2 x standard error bands indicate that the model RW3 is not
rejected at the 5% level.
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Variance Ratio Profile
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FIGURE 3.13. Variance ratio statistics for daily log prices on individual Dow
Jones index stocks.

The RW3 model appears to hold for the Dow Jones index. To test the
RW3 model for the top thirty stocks in the index individually, based on
q=1,...,5, use

> VR.DJ30 = varRatioTest(DowJones30, n.periods=5, unbiased=T,
+ hetero=T)
> plot(VR.DJ30)

The results, illustrated in Figure 3.13, indicate that the RW3 model may
not hold for some individual stocks.

3.3 Univariate Nonstationary Time Series

A univariate time series process {y;} is called nonstationary if it is not
stationary. Since a stationary process has time invariant moments, a non-
stationary process must have some time dependent moments. The most
common forms of nonstationarity are caused by time dependence in the
mean and variance.
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Trend Stationary Process

{y:} is a trend stationary process if it has the form
yr =T Dy + 4

where T'D; are deterministic trend terms (constant, trend, seasonal dum-
mies etc) that depend on ¢ and {z;} is stationary. The series y; is nonsta-
tionary because E[TD;] = T'D; which depends on t. Since x; is stationary,
yt never deviates too far away from the deterministic trend 7'D;. Hence, y;
exhibits trend reversion. If T D; were known, y; may be transformed to a
stationary process by subtracting off the deterministic trend terms:

zy =y — T'Dy
Example 11 Trend stationary AR(1)

A trend stationary AR(1) process with T D, = p + 0t may be expressed
in three equivalent ways

Yo = A0+ U, u = Pusq ey
Ye—p—0t = dyi1—p—0(t—1)) +e
yr = c+pBt+dyi1+e

where |¢| < 1, c= u(l1—¢)+3, 8 =06(1—¢)t and g, ~ WN(0,0?). Figure
3.14 shows T = 100 observations from a trend stationary AR (1) with u = 1,
§ =0.25, ¢ = 0.75 and 02 = 1 created with the S-PLUS commands

> set.seed(101)

> y.tsarl = 1 + 0.25%seq(100) +

+ arima.sim(model=1ist(ar=0.75),n=100)
> tsplot(y.tsarl,ylab="y")

> abline(a=1,b=0.25)

The simulated data show clear trend reversion.

Integrated Processes

{y:} is an integrated process of order 1, denoted y; ~ I(1), if it has the form
Yt = Ye—1 + Uy (3.26)

where u; is a stationary time series. Clearly, the first difference of y; is
stationary
Ayt = uy

Because of the above property, I(1) processes are sometimes called differ-
ence stationary processes. Starting at yg, by recursive substitution y; has
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FIGURE 3.14. Simulated trend stationary process.

the representation of an integrated sum of stationary innovations
t
Ye=yo+ Y uy. (3.27)
j=1

The integrated sum Z;Zl u; is called a stochastic trend and is denoted
T'S;. Notice that

TS =TS 1+ uy

where T'Syp = 0. In contrast to a deterministic trend, changes in a stochastic
trend are not perfectly predictable.

Since the stationary process u; does not need to be differenced, it is called
an integrated process of order zero and is denoted u; ~ I(0). Recall, from
the Wold representation (3.6) a stationary process has an infinite order
moving average representation where the moving average weights decline
to zero at a geometric rate. From (3.27) it is seen that an I(1) process has
an infinite order moving average representation where all of the weights on
the innovations are equal to 1.

If ug ~ IWN(0,0?) in (3.26) then y; is called a random walk. In general,
an I(1) process can have serially correlated and heteroskedastic innovations
ug. If y¢ is a random walk and assuming yg is fixed then it can be shown



96 3. Time Series Concepts

that
Yo = *t
Y = (t— j)UQ
_Jt=J
P = 5

which clearly shows that y; is nonstationary. Also, if ¢ is large relative to
J then p; ~ 1. Hence, for an I(1) process, the ACF does not decay at a
geometric rate but at a linear rate as j increases.

An I(1) process with drift has the form

Yt = b+ Yi—1 + ug, where ug ~ I(0)
Starting at ¢ = 0 an I(1) process with drift © may be expressed as
¢
v = Yotpt+y w

j=1
TD; + TS,

so that it may be thought of as being composed of a deterministic linear
trend T'Dy = yo + pt as well as a stochastic trend T'S; = Z§:1 uj.

An I(d) process {y;} is one in which A%y, ~ I(0). In finance and eco-
nomics data series are rarely modeled as I(d) process with d > 2. Just as
an I(1) process with drift contains a linear deterministic trend, an I(2)
process with drift will contain a quadratic trend.

Example 12 Simulated I(1) processes

Consider the simulation of T'= 100 observations from various I(1) pro-
cesses where the innovations u; follow an AR(1) process u; = 0.75us—1 +&¢
with &, ~ GWN(0,1).

> set.seed(101)

> u.arl = arima.sim(model=1list(ar=0.75), n=100)
> y1 = cumsum(u.arl)

> yl.d = 1 + 0.25%seq(100)+ y1

> y2 = rep(0,100)

> for (i in 3:100) {

+  y2[i] = 2*xy2[i-1] - y2[i-2] + u.ar1[i]

+ 3

The simulated data are illustrated in Figure 3.15 .

Example 13 Financial time series
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FIGURE 3.15. Simulated I(d) processes for d =0, 1 and 2.

Many financial time series are well characterized by I(1) processes. The
leading example of an I(1) process with drift is the logarithm of an asset
price. Common examples of I(1) processes without drifts are the logarithms
of exchange rates, nominal interest rates, and inflation rates. Notice that
if inflation is constructed as the the difference in the logarithm of a price
index and is an I(1) process, then the logarithm of the price index is an
1(2) process. Examples of these data are illustrated in Figure 3.16. The
exchange rate is the monthly log of the US/CA spot exchange rate taken
from the S+FinMetrics “timeSeries” lexrates.dat, the asset price of
the monthly S&P 500 index taken from the S+FinMetrics “timeSeries”
object singleIndex.dat, the nominal interest rate is the 30 day T-bill rate
taken from the S+FinMetrics “timeSeries” object rf.30day, and the
monthly consumer price index is taken from the S+FinMetrics “timeSeries”
object CPI.dat.

3.4 Long Memory Time Series

If a time series y; is I(0) then its ACF declines at a geometric rate. As a
result, 1(0) process have short memory since observations far apart in time
are essentially independent. Conversely, if y; is I(1) then its ACF declines
at a linear rate and observations far apart in time are not independent. In
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Log US/CA spot exchange rate Log S&P 500 index
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FIGURE 3.16. Monthly financial time series.

between I(0) and I(1) processes are so-called fractionally integrated I(d)

process where 0 < d < 1. The ACF for a fractionally integrated processes

declines at a polynomial (hyperbolic) rate, which implies that observations

far apart in time may exhibit weak but non-zero correlation. This weak cor-

relation between observations far apart is often referred to as long memory.
A fractionally integrated white noise process y; has the form

(1 — L)%y, = &4, e ~ WN(0,0?) (3.28)

where (1 — L)% has the binomial series expansion representation (valid for
any d > —1)

a-pt = 3 (F) e

k=0
d(d — l)L2 d(d—1)(d - 2)
2! - 3!
If d =1 then y; is a random walk and if d = 0 then y; is white noise. For
0 < d < 1it can be shown that

= 1—dL+ L3+...

P X k2d7 1

as k — oo so that the ACF for y; declines hyperbolically to zero at a speed
that depends on d. Further, it can be shown y; is stationary and ergodic
for 0 < d < 0.5 and that the variance of y; is infinite for 0.5 < d < 1.
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FIGURE 3.17. Simulated values from a fractional white noise process with d = 0.3
and 0 = 1.

Example 14 Simulated fractional white noise

The S+FinMetrics function simulate.FARIMA may be used to generate
simulated values from a fractional white noise process. To simulate 500
observations from (3.28) with d = 0.3 and 02 = 1 use

> set.seed(394)
> y.fwn = simulate.FARIMA(list(d=0.3), 500)

Figure 3.17 shows the simulated data along with the sample ACF created
using

> par(mfrow=c(2,1))
> tsplot(y.fwn)
> tmp = acf(y.fwn,lag.max=50)

Notice how the sample ACF slowly decays to zero.
A fractionally integrated process with stationary and ergodic ARMA(p, q)
errors

(1 - L>dyt = Ut, Ut ~ ARMA(p> Q)

is called an autoregressive fractionally integrated moving average (ARFIMA)
process. The modeling of long memory process is described in detail in
Chapter 8.
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FIGURE 3.18. SACFs for the absolute value of daily returns on Microsoft and
the monthly 30-day interest rate differential between U.S. bonds and Canadian
bonds.

Example 15 Long memory in financial time series

Long memory behavior has been observed in certain types of financial
time series. Ding, Granger and Engle (1993) find evidence of long memory
in the absolute value of daily stock returns. Baillie and Bollerslev (1994)
find evidence for long memory in the monthly interest rate differentials
between short term U.S. government bonds and short term foreign govern-
ment bonds. To illustrate, consider the absolute values of the daily returns
on Microsoft over the 10 year period 1/2/1991 - 1/2/2001 taken from the
S+FinMetrics “timeSeries” DowJones30

> msft.aret = abs(getReturns(DowJones30[,"MSFT"]))

Consider also the monthly US/CA 30-day interest rate differential over the
period February 1976 through June 1996 in the “timeSeries” uscn.id
constructed earlier and taken from the S+FinMetrics “timeSeries” object
lexrates.dat. Figure 3.18 shows the SACFs these series create by

> par(mfrow=c(2,1))
> tmp = acf(msft.aret, lag.max=100)
> tmp = acf(uscn.id, lag.max=50)

For the absolute return series, notice the large number of small but ap-
parently significant autocorrelations at very long lags. This is indicative of
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long memory. For the interest rate differential series, the ACF appears to
decay fairly quickly, so the evidence for long memory is not as strong.

3.5 Multivariate Time Series

Consider n time series variables {y1t},...,{ynt}. A multivariate time se-
ries is the (n x 1) vector time series {Y;} where the i*" row of {Y,} is
{yit}. That is, for any time ¢, Y = (y1¢, . - . , Ynt)'- Multivariate time series
analysis is used when one wants to model and explain the interactions and
co-movements among a group of time series variables. In finance, multi-
variate time series analysis is used to model systems of asset returns, asset
prices and exchange rates, the term structure of interest rates, asset re-
turns/prices, and economic variables etc. Many of the time series concepts
described previously for univariate time series carry over to multivariate
time series in a natural way. Additionally, there are some important time
series concepts that are particular to multivariate time series. The follow-
ing sections give the details of these extensions and provide examples using
S-PLUS and S+FinMetrics.

3.5.1 Stationary and Ergodic Multivariate Time Series

A multivariate time series Y, is covariance stationary and ergodic if all of
its component time series are stationary and ergodic. The mean of Y; is
defined as the (n x 1) vector

ElY ) =p= (b, p)

where p; = Ely;] for i = 1,...,n. The variance/covariance matrix of Y,
is the (n x n) matrix

var(Yy) = To=E[(Y:— p)(Ye—p)]
var(yit) cov(yit,¥2t) -+ COV(Y1t, Ynt)
COV(y% yu) Vaf(?/%) te COV(Z/% ynt)
coV(Ynt, Y1¢)  COV(Ynts Y2t) - var(Ynt)

The matrix I'p has elements v;; = cov(¥yit, Yjt). The correlation matrix of
Y; is the (n x n) matrix

corr(Yy) =Ry =D 'I'y)D!

where D is an (n x n) diagonal matrix with j** diagonal element (y%;)!/2 =

SD(y;¢). The parameters p1, I'g and Ry are estimated from data (Y+,..., Yr)
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using the sample moments

_ 1 <&
‘{ = i;j{:‘(t
t=1
1 & _ _
o = 23 (Y- T)(Y, - ¥)
t=1
Ry = D'T,D!

where D is the (nxn) diagonal matrix with the sample standard deviations
of y;; along the diagonal. In order for the sample variance matrix I’y and
correlation matrix Ro to be positive definite, the sample size T must be
greater than the number of component time series n.

Example 16 System of asset returns

The S+FinMetrics “timeSeries” object DowJones30 contains daily clos-
ing prices on the 30 assets in the Dow Jones index. An example of a station-
ary and ergodic multivariate time series is the continuously compounded
returns on the first four assets in this index:

> Y = getReturns(DowJones30[,1:4],type="continuous")
> colIds(Y)
[1] IIAAII IIAXPII nn "BA"

The S-PLUS function colMeans may be used to efficiently compute the
mean vector of Y

> colMeans(seriesData(Y))
AA AXP T BA
0.0006661 0.0009478 -0.00002873 0.0004108

The function colMeans does not have a method for “timeSeries” ob-
jects so the extractor function seriesData is used to extract the data slot of
the variable Y. The S-PLUS functions var and cor, which do have methods
for “timeSeries” objects, may be used to compute I'o and Ry

> var(Y)
AA AXP T BA
AA 0.00041096 0.00009260 0.00005040 0.00007301
AXP 0.00009260 0.00044336 0.00008947 0.00009546
T 0.00005040 0.00008947 0.00040441 0.00004548
BA 0.00007301 0.00009546 0.00004548 0.00036829
> cor(Y)
AA AXP T BA
AA 1.0000 0.2169 0.1236 0.1877
AXP 0.2169 1.0000 0.2113 0.2362
T 0.1236 0.2113 1.0000 0.1179
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BA 0.1877 0.2362 0.1179 1.0000

If only the variances or standard deviations of Y are needed the S-PLUS
functions colVars and colStdevs may be used

> colVars(seriesData(Y))
AA AXP T BA
0.000411 0.0004434 0.0004044 0.0003683
> colStdevs(seriesData(Y))
AA AXP T BA
0.020272 0.021056 0.02011 0.019191

Cross Covariance and Correlation Matrices

For a univariate time series y; the autocovariances v, and autocorrelations
Py, summarize the linear time dependence in the data. With a multivariate
time series Y; each component has autocovariances and autocorrelations
but there are also cross lead-lag covariances and correlations between all
possible pairs of components. The autocovariances and autocorrelations of
y;¢ for j =1,...,n are defined as

7;6] = COV(yjt; yjt—k)>
k
Pj; = cort(Yst, Yjt—k) = —f)J
Vi

and these are symmetric in k: ’y;?j = 'y;jk , pé?j = p;jk. The cross lag covari-
ances and cross lag correlations between y;: and y;; are defined as

ij = cov(Yit; Yjt—k),

b
pfj = corr(Yje, Yji—k) = ﬁ

and they are not necessarily symmetric in k. In general,
—k
ij = cov(Yit, Yji—k) 7 COV(Yit, Yje+k) = cOV(Yjt, Yit—k) = Yij

If 'yfj # 0 for some k > 0 then y;; is said to lead y;+. Similarly, if 7;/“ #0
for some k > 0 then y;; is said to lead y;¢. It is possible that y;; leads v,
and vice-versa. In this case, there is said to be feedback between the two
series.
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All of the lag k cross covariances and correlations are summarized in the
(n x n) lag k cross covariance and lag k cross correlation matrices

Iy, = E[(Ye—p)(Y,_,—n)]
COV(yu, yltfk) COV<y1t7 y2t7k:) T COV(Z/u, yntfkr)
COV(?J% ylt—k) COV(y2t7 y2t—k) s COV(y2t7 ynt—k)
COV(ynt> yltsz) COV(ynt, y2t7k:) T COV(ynt> yntfk)
R, = D’lI‘kD’l

The matrices I'y, and Ry are not symmetric in k but it is easy to show that
I'_; =T} and R_; = R}. The matrices I'y and Ry are estimated from
data (Y1,...,Yr) using

T

- 1 _ _

b= = Z Y -Y)Y, .- Y)
t=k+1

Rk = ﬁilf‘k]’jil

Example 17 Lead-lag covariances and correlations among asset returns

Consider computing the cross lag covariances and correlations for & =
0,...,5 between the first two Dow Jones 30 asset returns in the “timeSeries”
Y. These covariances and correlations may be computed using the S-PLUS
function acf

> Ghat
> Rhat

acf(Y[,1:2],1ag.max=5,type="covariance",plot=F)
acf(Y[,1:2],1lag.max=5,plot=F)

Ghat and Rhat are objects of class “acf” for which there is only a print
method. For example, the estimated cross lag autocorrelations are

> Rhat
Call: acf(x = Y[, 1:2], lag.max = 5, plot = F)

Autocorrelation matrix:
lag AA.AA  AA.AXP AXP.AXP
0 1.0000 0.2169 1.0000
0.0182 0.0604 -0.0101
-0.0556 -0.0080 -0.0710
.0145 -0.0203 -0.0152
-0.0639 0.0090 -0.0235
0.0142 -0.0056 -0.0169

DO WN -
O W N
o

lag AXP.AA
1 0 0.2169
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Multivariate Series : Y[, 1:2]
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FIGURE 3.19. Cross lag correlations between the first two Dow Jones 30 asset

returns.
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The function acf.plot may be used to plot the cross lag covariances

and correlations produced by acf.

> acf.plot(Rhat)

Figure 3.19 shows these cross lag correlations. The matrices I'v and Ry
may be extracted from acf component of Ghat and Rhat, respectively. For

example,

> Ghat$acf[1,,]
[,1] [,2]
[1,] 0.00041079 0.00009256
[2,] 0.00009256 0.00044318
> Rhat$acf[1,,]
[,1] [,2]
[1,] 1.0000 0.2169
[2,] 0.2169 1.0000
> Ghat$acf[2,,]
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[,1] [,2]
[1,] 7.488e-006 2.578e-005
[2,] -6.537e-007 -4.486e-006
> Rhat$acf[2,,]
[,1] [,2]
[1,] 0.018229 0.06043
[2,] -0.001532 -0.01012

extracts f‘l, fil, fg and f{Q.

3.5.2  Multivariate Wold Representation

Any (n x 1) covariance stationary multivariate time series Y; has a Wold
or linear process representation of the form

Y, = pte+Pie 1 +Wei g+ --- (3.29)

n+ Z Wier—k
k=0

where ¥y = I,, and &; is a multivariate white noise process with mean zero
and variance matrix Ele:e;] = . In (3.29), Uy, is an (n X n) matrix with
(4, 7)th element wf] In lag operator notation, the Wold form is

Yt = M + ‘I’(L)Et

U(L) > ok
k=0

The moments of Y; are given by

ElY: = p
o0
var(Y:) = U, 30
k=0

VAR Models

The most popular multivariate time series model is the vector autoregressive
(VAR) model. The VAR model is a multivariate extension of the univariate
autoregressive model. For example, a bivariate VAR(1) model has the form

(o )=(a )= (2 ) (nn )+ ()
Yot c o1 Tag Yat—1 €2t

1 1
Y1t = C1+ T Y1e—1 T T1aY2t—1 + €1t

1 1
Yot = C2+ T Y1e—1 + ToolY2e—1 + €2t

N =

or
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(o)~ ((5)-(7 o))
~ iid ,
Eot 0 012 022

In the equations for y; and yo, the lagged values of both y; and y, are
present.
The general VAR(p) model for Y; = (y1¢, Y2t, - - - Yne) has the form

where

Yt:C-ﬁ-HlYt,l+H2Yt,2+"'+HPYt,p+Et, t= 1,...7T

where II; are (n x n) coefficient matrices and &; is an (n X 1) unobservable
zero mean white noise vector process with covariance matrix 3. VAR mod-
els are capable of capturing much of the complicated dynamics observed
in stationary multivariate time series. Details about estimation, inference,
and forecasting with VAR models are given in chapter eleven.

3.5.8 Long Run Variance

Let Y¢ be an (n x 1) stationary and ergodic multivariate time series with
E[Y:] = wp. Anderson’s central limit theorem for stationary and ergodic
process states

VI(Y —p) S N Zr

j=—0o0
or
_ 4 1 &
YAN u,fj;orj

Hence, the long-run variance of Yy is T times the asymptotic variance of
Y:
Irv(Y:) =T - avar(Y Z r;

j=—o00

Since I'—; = I}, Irv(Y;) may be alternatively expressed as
Irv(Yy) = To+ Y _(T;+T)
j=1
Using the Wold representation of Y; it can be shown that
Irv(Y,) = ¥(1)2w(1)

where W(1) =Y 72 [ ¥,



108 3. Time Series Concepts

VAR Estimate of the Long-Run Variance

The Wold representation (3.29) may be approximated by high order VAR(p*)
model

Y, =c+P,1Y; 1+ + @p*Yt_p* + &t

where the lag length p* is chosen such p* = O(T'Y/3). This gives rise to the
autoregressive long-run variance matrixz estimate

hvar(Y) = $(1)SE(1)
B(1) = L-d b,
. 1 <&
S = 5 > &g
t=1
where &, (k=1,...,p") are estimates of the VAR parameter matrices.

Non-parametric Estimate of the Long-Run Variance

A consistent estimate of Irv(Y;) may be computed using non-parametric
methods. A popular estimator is the Newey-West weighted autocovariance
estimator

Mt
Irvaw (Ye) = To + Y wyr - (B + 1)) (3.30)
Jj=1

where w; r are weights which sum to unity and M7 is a truncation lag
parameter that satisfies My = O(T1/3).

Example 18 Newey-West estimate of long-run variance matriz for stock
returns

The S+FinMetrics function asymp.var may be used to compute the
Newey-West long-run variance estimate (3.30) for a multivariate time series.
The long-run variance matrix for the first four Dow Jones assets in the
“timeSeries” Y is

> M.T = floor (4*(nrow(Y)/100)~(2/9))
> lrv.nw = asymp.var(Y,bandwidth=M.T)
> lrv.nw
AA AXP T BA
AA 0.00037313 0.00008526 3.754e-005 6.685e-005
AXP 0.00008526 0.00034957 7.937e-005 1.051e-004
T 0.00003754 0.00007937 3.707e-004 7.415e-006
BA 0.00006685 0.00010506 7.415e-006 3.087e-004
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4
Unit Root Tests

4.1 Introduction

Many economic and financial time series exhibit trending behavior or non-
stationarity in the mean. Leading examples are asset prices, exchange rates
and the levels of macroeconomic aggregates like real GDP. An important
econometric task is determining the most appropriate form of the trend in
the data. For example, in ARMA modeling the data must be transformed
to stationary form prior to analysis. If the data are trending, then some
form of trend removal is required.

Two common trend removal or de-trending procedures are first differ-
encing and time-trend regression. First differencing is appropriate for 7(1)
time series and time-trend regression is appropriate for trend stationary
1(0) time series. Unit root tests can be used to determine if trending data
should be first differenced or regressed on deterministic functions of time
to render the data stationary. Moreover, economic and finance theory often
suggests the existence of long-run equilibrium relationships among nonsta-
tionary time series variables. If these variables are I(1), then cointegration
techniques can be used to model these long-run relations. Hence, pre-testing
for unit roots is often a first step in the cointegration modeling discussed
in Chapter 12. Finally, a common trading strategy in finance involves ex-
ploiting mean-reverting behavior among the prices of pairs of assets. Unit
root tests can be used to determine which pairs of assets appear to exhibit
mean-reverting behavior.
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This chapter is organized as follows. Section 4.2 reviews I(1) and trend
stationary I(0) time series and motivates the unit root and stationary
tests described in the chapter. Section 4.3 describes the class of autoregres-
sive unit root tests made popular by David Dickey, Wayne Fuller, Pierre
Perron and Peter Phillips. Section 4.4 describes the stationarity tests of
Kwiatkowski, Phillips, Schmidt and Shinn (1992). Section 4.5 discusses
some problems associated with traditional unit root and stationarity tests,
and Section 4.6 presents some recently developed so-called “efficient unit
root tests” that overcome some of the deficiencies of traditional unit root
tests.

In this chapter, the technical details of unit root and stationarity tests are
kept to a minimum. Excellent technical treatments of nonstationary time
series may be found in Hamilton (1994), Hatanaka (1995), Fuller (1996)
and the many papers by Peter Phillips. Useful surveys on issues associated
with unit root testing are given in Stock (1994), Maddala and Kim (1998)
and Phillips and Xiao (1998).

4.2 Testing for Nonstationarity and Stationarity
To understand the econometric issues associated with unit root and sta-

tionarity tests, consider the stylized trend-cycle decomposition of a time
series yy:

ye = TDi+ 2z
TDt = K + (5t
2t = Qzi_1+eEp, £~ WN(O,O‘Q)

where T'D; is a deterministic linear trend and z; is an AR(1) process. If
|¢| < 1 then y; is I(0) about the deterministic trend T'D;. If ¢ = 1, then
2t =24—1 + €& =20+ 23:1 €, a stochastic trend and y, is I(1) with drift.
Simulated I(1) and I(0) data with k = 5 and 6 = 0.1 are illustrated in
Figure 4.1. The I(0) data with trend follows the trend T'D; = 5+ 0.1¢ very
closely and exhibits trend reversion. In contrast, the I(1) data follows an
upward drift but does not necessarily revert to T D;.

Autoregressive unit root tests are based on testing the null hypothesis
that ¢ = 1 (difference stationary) against the alternative hypothesis that
¢ < 1 (trend stationary). They are called unit root tests because under the
null hypothesis the autoregressive polynomial of z;, ¢(z) = (1 — ¢z) = 0,
has a root equal to unity.

Stationarity tests take the null hypothesis that y; is trend stationary. If
y¢ is then first differenced it becomes

Ay, = 64+ Az
Az = @Az 1+er—e1
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0 50 100 150 200 250

FIGURE 4.1. Simulated trend stationary (I(0)) and difference stationary (I(1))
processes.

Notice that first differencing y;, when it is trend stationary, produces a
unit moving average root in the ARMA representation of Az;. That is, the
ARMA representation for Az; is the non-invertible ARMA(1,1) model

Az = ¢Az_1 +e¢ +0ei1

with 8 = —1. This result is known as overdifferencing. Formally, stationar-
ity tests are based on testing for a unit moving average root in Az;.

Unit root and stationarity test statistics have nonstandard and nonnor-
mal asymptotic distributions under their respective null hypotheses. To
complicate matters further, the limiting distributions of the test statistics
are affected by the inclusion of deterministic terms in the test regressions.
These distributions are functions of standard Brownian motion (Wiener
process), and critical values must be tabulated by simulation techniques.
MacKinnon (1996) provided response surface algorithms for determining
these critical values, and various S+FinMetrics functions use these algo-
rithms for computing critical values and p-values.
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4.3 Autoregressive Unit Root Tests

To illustrate the important statistical issues associated with autoregressive
unit root tests, consider the simple AR(1) model

Yt = dyr—1 + €, where g, ~ WN (0, 02)
The hypotheses of interest are

Hy : ¢ =1 (unit root in ¢(z) =0) =y ~ I(1)
Hl : ‘¢|<1:>ytf\’](0)

The test statistic is

P-1

T SR

~—~

where qA[) is the least squares estimate and SE(QAZ)) is the usual standard error
estimate!. The test is a one-sided left tail test. If {y;} is stationary (i.e.,
|¢| < 1) then it can be shown (c.f. Hamilton 1994, p. 216)

VT($—¢) 5 N0, (1 ¢?))
or

64N (s.70-)

and it follows that ¢g—; AN (0,1). However, under the null hypothesis of
nonstationarity the above result gives

é~ N (1,0)

which clearly does not make any sense. The problem is that under the unit
root null, {y;} is not stationary and ergodic, and the usual sample moments
do not converge to fixed constants. Instead, Phillips (1987) showed that
the sample moments of {y;} converge to random functions of Brownian

IThe AR(1) model may be re-written as Ay; = 7y;—1 + us where m = ¢ — 1. Testing
¢ =1 is then equivalent to testing m = 0. Unit root tests are often computed using this
alternative regression and the S+FinMetrics function unitroot follows this convention.
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motion?:

T 1
T7-3/2 Zyt,l <, or/ W (r)dr
t=1 0
T 1
T2y 2 S 02/ W (r)dr
t=1 0
T 1
71 Zyt—m <, 52 / W (r)dW (r)
t=1 0

where W (r) denotes a standard Brownian motion (Wiener process) defined
on the unit interval. Using the above results Phillips showed that under the
unit root null Hy: ¢ =1

R fo W (r)dW (r)
T(h—1) % 4.1
N L (41)
t¢:1 i fO (T‘)dW(i/2 (42)
( W (r)2dr

The above yield some surprising results:

) (}5 is super-consistent; that is, gAf) 2 ¢ at rate T instead of the usual
rate T1/2.

) (}5 is not asymptotically normally distributed and ¢4—; is not asymp-
totically standard normal.

e The limiting distribution of t4—; is called the Dickey-Fuller (DF)
distribution and does not have a closed form representation. Conse-
quently, quantiles of the distribution must be computed by numerical
approximation or by simulation?.

e Since the normalized bias T(¢ — 1) has a well defined limiting distri-
bution that does not depend on nuisance parameters it can also be
used as a test statistic for the null hypothesis Hy : ¢ = 1.

2 A Wiener process W (-) is a continuous-time stochastic process, associating each date
r € [0,1] a scalar random variable W (r) that satisfies: (1) W(0) = 0; (2) for any dates
0<t <--- <t <1 the changes W(tz) 7W(t1), W(tg) — W(tg), ey W(tk) — W(tkfl)
are independent normal with W(s) — W (t) ~ N(0, (s — ¢t)); (3) W(s) is continuous in s.

3Dickey and Fuller (1979) first considered the unit root tests and derived the asymp-
totic distribution of t4—;. However, their representation did not utilize functions of
Wiener processes.
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4.8.1  Simulating the DF and Normalized Bias Distributions

As mentioned above, the DF and normalized bias distributions must be ob-
tained by simulation methods. To illustrate, the following S-PLUS function
wiener produces one random draw from the functions of Brownian motion

that appear in the limiting distributions of ty—1 and T'(¢ — 1):

wiener = function(nobs) {
e = rnorm(nobs)
y = cumsum(e)
yml = y[1: (nobs-1)]
intW2 = nobs”~(-2) * sum(ym1~2)
intWdW = nobs~(-1) * sum(yml*e[2:nobs])
ans = list(intW2=intW2,
intWdW=intWdw)
ans

}

A simple loop then produces the simulated distributions:

nobs = 1000
nsim = 1000
NB = rep(0,nsim)
DF = rep(0,nsim)
for (i in 1:nsim) {
BN.moments = wiener (nobs)
NB[i] = BN.moments$intWdW/BN.moments$intW2
DF[i] = BN.moments$intWdW/sqrt (BN.moments$intW2)

+ + + VvV V.V Vv V

(-

Figure 4.2 shows the histograms and density estimates of the simulated
distributions. The DF density is slightly left-skewed relative to the standard
normal, and the normalized bias density is highly left skewed and non-
normal. Since the alternative is one-sided, the test statistics reject if they
are sufficiently negative. For the DF and normalized bias densities the
empirical 1%, 5% and 10% quantiles are

> quantile(DF,probs=c(0.01,0.05,0.1))
1% 5% 10%

-2.451 -1.992 -1.603

> quantile(NB,probs=c(0.01,0.05,0.1))
1% 5% 10%

-11.94 -8.56 -5.641

For comparison purposes, note that the 5% quantile from the standard
normal distribution is -1.645.

The simulation of critical values and p-values from (4.1) and (4.2) is
straightforward but time consuming. The punitroot and qunitroot func-
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FIGURE 4.2. Histograms of simulated DF and normalized bias distributions.

tions in S+FinMetrics produce p-values and quantiles of the DF and nor-
malized bias distributions based on MacKinnon’s (1996) response surface
methodology. The advantage of the response surface methodology is that
accurate p-values and quantiles appropriate for a given sample size can be
produced. For example, the 1%, 5% and 10% quantiles for (4.2) and (4.1)
based on a sample size of 100 are

> qunitroot(c(0.01,0.05,0.10), trend="nc", statistic="t",
+ n.sample=100)

[1] -2.588 -1.944 -1.615

> qunitroot(c(0.01,0.05,0.10), trend="nc", statistic="n",
+ n.sample=100)

[1] -13.086 -7.787 -5.565

The argument trend="nc" specifies that no constant is included in the
test regression. Other valid options are trend="c" for constant only and
trend="ct" for constant and trend. These trend cases are explained be-
low. To specify the normalized bias distribution, set statistic="n". For
asymptotic quantiles set n.sample=0.

Similarly, the p-value of -1.645 based on the DF distribution for a sample
size of 100 is computed as

> punitroot(-1.645, trend="nc", statistic="t")
[1] 0.0945
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Case I: I(1) data Case I: 1(0) data
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Case II: I(1) data Case II: 1(0) data
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FIGURE 4.3. Simulated I(1) and I(0) data under trend cases I and II.

4.8.2  Trend Cases

When testing for unit roots, it is crucial to specify the null and alternative
hypotheses appropriately to characterize the trend properties of the data
at hand. For example, if the observed data does not exhibit an increasing
or decreasing trend, then the appropriate null and alternative hypotheses
should reflect this. The trend properties of the data under the alternative
hypothesis will determine the form of the test regression used. Further-
more, the type of deterministic terms in the test regression will influence
the asymptotic distributions of the unit root test statistics. The two most
common trend cases are summarized below and illustrated in Figure 4.3.

Case I: Constant Only

The test regression is
Yt =c+ Qyi—1 + et
and includes a constant to capture the nonzero mean under the alternative.
The hypotheses to be tested are
Hy : ¢=1 =y, ~I(1) without drift
Hy : |¢| <1= y ~ I(0) with nonzero mean

This formulation is appropriate for non-trending financial series like interest

rates, exchange rates, and spreads. The test statistics t4—; and T'(¢ — 1)
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are computed from the above regression. Under Hy : ¢ = 1 the asymptotic
distributions of these test statistics are different from (4.2) and (4.1) and
are influenced by the presence but not the coefficient value of the constant
in the test regression. Quantiles and p-values for these distributions can be
computed using the S+FinMetrics functions punitroot and qunitroot
with the trend="c" option:

> qunitroot(c(0.01,0.05,0.10), trend="c", statistic="t",

+ n.sample=100)

[1] -3.497 -2.891 -2.582

> qunitroot(c(0.01,0.05,0.10), trend="c", statistic="n",

+ n.sample=100)

[1] -19.49 -13.53 -10.88

> punitroot(-1.645, trend="c", statistic="t", n.sample=100)
[1] 0.456

> punitroot(-1.645, trend="c", statistic="n", n.sample=100)
[1] 0.8172

For a sample size of 100, the 5% left tail critical values for t4—; and
T(¢ — 1) are -2.891 and -13.53, respectively, and are quite a bit smaller
than the 5% critical values computed when trend="nc". Hence, inclusion

of a constant pushes the distributions of t4—; and T(¢ — 1) to the left.

Case II: Constant and Time Trend

The test regression is
Yy =c+0ol+gyi1 + e

and includes a constant and deterministic time trend to capture the deter-
ministic trend under the alternative. The hypotheses to be tested are

Hy : ¢=1 =y~ I(1) with drift
Hy : |¢| <1= y ~ I(0) with deterministic time trend

This formulation is appropriate for trending time series like asset prices or
the levels of macroeconomic aggregates like real GDP. The test statistics
typ=1 and T(¢ — 1) are computed from the above regression. Under Hy :
¢ = 1 the asymptotic distributions of these test statistics are different from
(4.2) and (4.1) and are influenced by the presence but not the coefficient
values of the constant and time trend in the test regression. Quantiles and
p-values for these distributions can be computed using the S+FinMetrics

functions punitroot and qunitroot with the trend="ct" option:

> qunitroot(c(0.01,0.05,0.10), trend="ct", statistic="t",
+ n.sample=100)
[1] -4.052 -3.455 -3.153
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> qunitroot(c(0.01,0.05,0.10), trend="ct", statistic="n",

+ n.sample=100)

[1] -27.17 -20.47 -17.35

> punitroot(-1.645, trend="ct", statistic="t", n.sample=100)
[1] 0.7679

> punitroot(-1.645, trend="ct", statistic="n", n.sample=100)
[1] 0.9769

Notice that the inclusion of a constant and trend in the test regression

further shifts the distributions of t4,—; and T'(¢—1) to the left. For a sample

size of 100, the 5% left tail critical values for ty—; and T'(¢ — 1) are now
-3.455 and -20.471.

4.3.8  Dickey-Fuller Unit Root Tests

The unit root tests described above are valid if the time series y; is well
characterized by an AR(1) with white noise errors. Many financial time
series, however, have a more complicated dynamic structure than is cap-
tured by a simple AR(1) model. Said and Dickey (1984) augment the basic
autoregressive unit root test to accommodate general ARMA (p, ¢) models
with unknown orders and their test is referred to as the augmented Dickey-
Fuller (ADF) test. The ADF test tests the null hypothesis that a time
series y; is I(1) against the alternative that it is I(0), assuming that the
dynamics in the data have an ARMA structure. The ADF test is based on
estimating the test regression

P
yr = B'Dy + ¢y 1 + ijAytfj + €&t (4.3)
j=1

where Dy is a vector of deterministic terms (constant, trend etc.). The p
lagged difference terms, Ay;_;, are used to approximate the ARMA struc-
ture of the errors, and the value of p is set so that the error ¢; is serially
uncorrelated. The error term is also assumed to be homoskedastic. The
specification of the deterministic terms depends on the assumed behavior
of y; under the alternative hypothesis of trend stationarity as described in
the previous section. Under the null hypothesis, y; is T(1) which implies
that ¢ = 1. The ADF t-statistic and normalized bias statistic are based on
the least squares estimates of (4.3) and are given by

ADF, = t¢—1=§E—_@1)
ADF, = T(¢_1) .
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An alternative formulation of the ADF test regression is

P
Ay = B'Dy + g1 + Z YAyt + & (4.4)

j=1

where m = ¢ — 1. Under the null hypothesis, Ay, is I(0) which implies that
m = 0. The ADF t-statistic is then the usual t-statistic for testing 7 = 0
and the ADF normalized bias statistic is 7% /(1 — ¢, — - - — 12)17). The test
regression (4.4) is often used in practice because the ADF t-statistic is the
usual t-statistic reported for testing the significance of the coefficient y;_1.
The S+FinMetrics function unitroot follows this convention.

Choosing the Lag Length for the ADF Test

An important practical issue for the implementation of the ADF test is the
specification of the lag length p. If p is too small then the remaining serial
correlation in the errors will bias the test. If p is too large then the power
of the test will suffer. Ng and Perron (1995) suggest the following data
dependent lag length selection procedure that results in stable size of the
test and minimal power loss. First, set an upper bound pp.x for p. Next,
estimate the ADF test regression with p = pmax. If the absolute value of the
t-statistic for testing the significance of the last lagged difference is greater
than 1.6 then set p = pmax and perform the unit root test. Otherwise,
reduce the lag length by one and repeat the process.

A useful rule of thumb for determining ppax, suggested by Schwert

(1989), is
1/4
Pmax = [12 . <%> ] (45)

where [z] denotes the integer part of . This choice allows ppax to grow
with the sample so that the ADF test regressions (4.3) and (4.4) are valid
if the errors follow an ARMA process with unknown order.

Example 19 Testing for a unit root in exchange rate data using ADF tests

To illustrate the ADF test procedure, consider testing for a unit root
in the logarithm of the US/CA monthly spot exchange rate, denoted s,
over the 30 year period 1976 - 1996. Figure 4.4 shows s;, As; as well as the
sample autocorrelations for these series. The data and plots are created
with the S-PLUS commands

uscn.spot = lexrates.dat[,"USCNS"]
uscn.spot@title = "Log US/CN spot exchange rate"
par (mfrow=c(2,2))

plot.timeSeries(uscn.spot, reference.grid=F,
main="Log of US/CN spot exchange rate")

+ V. V Vv VvV
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Series : uscn.spot
Log of US/CN spot exchange rate

e
o -
ISEE|
S °
E o
3 ©
© =]
S S
< 1 >3
E| =] I,
3 o
EE S
o1 T
L e e e A
1976 1980 1984 1988 1992 1996 0 5 10L 15 20
ag
Series : diff(uscn.spot)
First difference of log US/CN spot exchange rate
<
8 2
o =
3 @
=
o~ &
g 23
N
3 E O S T
i A
o T ‘ N ‘ \
i
S o
EA s L i il e i et i ¢ T T T
1976 1980 1984 1988 1992 1996 0 5 10 15 20

FIGURE 4.4. US/CN spot rate, first difference and SACF.

xx = acf(uscn.spot)

plot.timeSeries(diff (uscn.spot), reference.grid=F,
main="First difference of log US/CN spot exchange rate")
xx = acf(diff(uscn.spot))

vV + VvV V

Clearly, s; exhibits random walk like behavior with no apparent posi-
tive or negative drift. However, As; behaves very much like a white noise
process. The appropriate trend specification is to include a constant in the
test regression. Regarding the maximum lag length for the Ng-Perron pro-
cedure, given the lack of serial correlation in As; a conservative choice is
Pmax = 6. The ADF t-statistic computed from the test regression with a
constant and p = 6 lags can be computed using the S+FinMetrics function
unitroot as follows

> adft.out = unitroot(uscn.spot, trend="c", statistic="t",
+ method="adf", lags=6)

> class(adft.out)

[1] "unitroot"

The output of unitroot is an object of class “unitroot” for which there
are print and summary methods. Typing the name of the object invokes
the print method and displays the basic test result

> adft.out
Test for Unit Root: Augmented DF Test
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Null Hypothesis: there is a unit root
Type of Test: t-test
Test Statistic: -2.6
P-value: 0.09427

Coefficients:
lagl lag2 lag3 lag4d lagb lag6 constant
-0.0280 -0.1188 -0.0584 -0.0327 -0.0019 0.0430 -0.0075

Degrees of freedom: 239 total; 232 residual
Time period: from Aug 1976 to Jun 1996
Residual standard error: 0.01386

With p = 6 the ADF t-statistic is -2.6 and has a p-value (computed using
punitroot) of 0.094. Hence we do not reject the unit root null at the 9.4%
level. The small p-value here may be due to the inclusion of superfluous lags.
To see the significance of the lags in the test regression, use the summary
method

> summary (adft.out)
Test for Unit Root: Augmented DF Test

Null Hypothesis: there is a unit root
Type of Test: t test
Test Statistic: -2.6
P-value: 0.09427

Coefficients:
Value Std. Error t value Pr(>|t])
lagl -0.0280 0.0108 -2.6004 0.0099
lag2 -0.1188 0.0646 -1.8407 0.0669
lag3 -0.0584 0.0650 -0.8983 0.3700
lag4 -0.0327 0.0651 -0.5018 0.6163
lagbh -0.0019 0.0651 -0.0293 0.9766
lag6 0.0430 0.0645 0.6662 0.5060
constant -0.0075 0.0024 -3.0982 0.0022

Regression Diagnostics:

R-Squared 0.0462
Adjusted R-Squared 0.0215
Durbin-Watson Stat 2.0033

Residual standard error: 0.01386 on 235 degrees of freedom
F-statistic: 1.874 on 6 and 232 degrees of freedom, the
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p-value is 0.08619
Time period: from Aug 1976 to Jun 1996

The results indicate that too many lags have been included in the test
regression. Following the Ng-Perron backward selection procedure p = 2
lags are selected. The results are

> adft.out = unitroot(uscn.spot, trend="c", lags=2)
> summary(adft.out)
Test for Unit Root: Augmented DF Test

Null Hypothesis: there is a unit root
Type of Test: t test
Test Statistic: -2.115
P-value: 0.2392

Coefficients:
Value Std. Error t value Pr(>|t|)
lagl -0.0214 0.0101 -2.1146 0.0355
lag2 -0.1047 0.0635 -1.6476 0.1007
constant -0.0058 0.0022 -2.6001 0.0099

Regression Diagnostics:

R-Squared 0.0299
Adjusted R-Squared 0.0218
Durbin-Watson Stat 2.0145

Residual standard error: 0.01378 on 239 degrees of freedom
F-statistic: 3.694 on 2 and 240 degrees of freedom, the
p-value is 0.02629

Time period: from Apr 1976 to Jun 1996

With 2 lags the ADF t-statistic is -2.115, the p-value 0.239 and we have
greater evidence for a unit root in s;. A similar result is found with the
ADF normalized bias statistic

> adfn.out = unitroot(uscn.spot, trend="c", lags=2,
+ statistic="n")

> adfn.out

Test for Unit Root: Augmented DF Test

Null Hypothesis: there is a unit root
Type of Test: normalized test
Test Statistic: -5.193
P-value: 0.4129
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FIGURE 4.5. Log prices on the S&P 500 index, first difference and SACF.

Coefficients:
lagl lag2 constant
-0.0214 -0.1047 -0.0058

Degrees of freedom: 243 total; 240 residual
Time period: from Apr 1976 to Jun 1996
Residual standard error: 0.01378

Example 20 Testing for a unit root in log stock prices

The log levels of asset prices are usually treated as I(1) with drift. Indeed,
the random walk model of stock prices is a special case of an I(1) process.
Consider testing for a unit root in the log of the monthly S&P 500 index,
pt, over the period January 1990 through January 2001. The data is taken
from the S+FinMetrics “timeSeries” singleIndex.dat. The data and

various plots are created with the S-PLUS commands

1np = log(singlelIndex.dat[,1])

Inp@title = "Log of S&P 500 Index"

par (mfrow=c(2,2))

plot.timeSeries(lnp, reference.grid=F,
main="Log of S&P 500 index")

acf.plot(acf (lnp,plot=F))
plot.timeSeries(diff (lnp), reference.grid=F,

vV V + V V V V
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+ main="First difference of log S&P 500 Index")

> acf.plot(acf(diff (1lnp),plot=F))

and are illustrated in Figure 4.5. Clearly, the p; is nonstationary due to
the positive trend. Also, there appears to be some negative autocorrelation
at lag one in Ap;. The null hypothesis to be tested is that p; is I(1) with
drift, and the alternative is that the p; is I(0) about a deterministic time
trend. The ADF t-statistic to test these hypotheses is computed with a
constant and time trend in the test regression and four lags of Ap; (selecting

using the Ng-Perron backward selection method)

> adft.out = unitroot(lnp, trend="ct", lags=4)

> summary (adft.out)

Test for Unit Root: Augmented DF Test

Null Hypothesis: there is a
Type of Test: t test
Test Statistic: -1.315
P-value: 0.8798

Coefficients:
Value Std. Error

lagl -0.0540 0.0410
lag2 -0.1869 0.0978
lag3 -0.0460 0.0995
lagd 0.1939 0.0971
constant 0.1678 0.1040
time 0.0015 0.0014

Regression Diagnostics:

R-Squared 0.1016
Adjusted R-Squared 0.0651
Durbin-Watson Stat 1.9544

Residual standard error: 0.1087 on 125 degrees of freedom
F-statistic: 2.783 on 5 and 123 degrees of freedom, the

p-value is 0.0204

unit root

t value Pr(>|tl)

.3150
L9111
.4627
.9964
.6128
.0743

0.
.0583
.6444
.0481
.1094
.2848

O O O O O

Time period: from May 1990 to Jan 2001

ADF; = —1.315 and has a p-value of 0.8798, so one clearly does not reject

the null that p; is 1(1) with drift.

1910
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4.3.4  Phillips-Perron Unit Root Tests

Phillips and Perron (1988) developed a number of unit root tests that have
become popular in the analysis of financial time series. The Phillips-Perron
(PP) unit root tests differ from the ADF tests mainly in how they deal
with serial correlation and heteroskedasticity in the errors. In particular,
where the ADF tests use a parametric autoregression to approximate the
ARMA structure of the errors in the test regression, the PP tests ignore
any serial correlation in the test regression. The test regression for the PP
tests is
Ay, = B'Dy + 1 +

where u; is I(0) and may be heteroskedastic. The PP tests correct for
any serial correlation and heteroskedasticity in the errors w; of the test
regression by directly modifying the test statistics t,—o and T'7. These
modified statistics, denoted Z; and Z,, are given by

52\ ""* 1 (N -52\ (T SE(#)
Ze = (= “tr=o — 5 <2 ‘ 2
A A G
2 . oo ~
z, = Ti- 2TSE@) 52 o
2 o

N :2 . . .
The terms 62 and A~ are consistent estimates of the variance parameters

T
o = lim T7') Efuf]
T— o0 e}
T
2 _ : —1g2
A= Tlg%%:lE[T S3]

where St = Zle u;. The sample variance of the least squares residual
i; is a consistent estimate of 02, and the Newey-West long-run variance
estimate of u; using @ is a consistent estimate of A%,

Under the null hypothesis that = = 0, the PP Z; and Z, statistics have
the same asymptotic distributions as the ADF t-statistic and normalized
bias statistics. One advantage of the PP tests over the ADF tests is that
the PP tests are robust to general forms of heteroskedasticity in the error
term wus. Another advantage is that the user does not have to specify a lag
length for the test regression.

Example 21 Testing for a unit root in exchange rates using the PP tests

Recall the arguments for the S+FinMetrics unitroot function are

> args(unitroot)
function(x, trend = "c", method = "adf",
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statistic = "t",lags = 1, bandwidth = NULL,
window = "bartlett", asymptotic = F, na.rm = F)

The PP statistics may be computed by specifying the optional argument
method="pp". When method="pp" is chosen, the argument window speci-
fies the weight function and the argument bandwidth determines the lag
truncation parameter used in computing the long-run variance parameter
A%, The default bandwidth is the integer part of (4 - (1//100))%/® where T
is the sample size.

Now, consider testing for a unit root in the log of the US/CN spot ex-
change rate using the PP Z; and Z, statistics:

> unitroot(uscn.spot, trend="c", method="pp")
Test for Unit Root: Phillips-Perron Test

Null Hypothesis: there is a unit root
Type of Test: t-test
Test Statistic: -1.97
P-value: 0.2999

Coefficients:
lagl constant
-0.0202 -0.0054

Degrees of freedom: 244 total; 242 residual
Time period: from Mar 1976 to Jun 1996
Residual standard error: 0.01383

> unitroot(uscn.spot, trend="c", method="pp", statistic="n")
Test for Unit Root: Phillips-Perron Test

Null Hypothesis: there is a unit root
Type of Test: normalized test
Test Statistic: -4.245
P-value: 0.5087

Coefficients:
lagl constant
-0.0202 -0.0054

Degrees of freedom: 244 total; 242 residual
Time period: from Mar 1976 to Jun 1996
Residual standard error: 0.01383

As with the ADF tests, the PP tests do not reject the null that the log
of the US/CN spot rate is I(1) at any reasonable significance level.
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4.4 Stationarity Tests

The ADF and PP unit root tests are for the null hypothesis that a time
series y; is I(1). Stationarity tests, on the other hand, are for the null that
y¢ is I(0). The most commonly used stationarity test, the KPSS test, is due
to Kwiatkowski, Phillips, Schmidt, and Shin (1992). They derived their test
by starting with the model

ye = OB'Dp+p, +u (4.6)
Bt = g T Ety €t~ WN(O,U?)

where D; contains deterministic components (constant or constant plus
time trend), u; is I(0) and may be heteroskedastic. Notice that p, is a pure
random walk with innovation variance o2. The null hypothesis that y; is
1(0) is formulated as Hy : 02 = 0, which implies that p, is a constant.
Although not directly apparent, this null hypothesis also implies a unit
moving average root in the ARMA representation of Ay;. The KPSS test
statistic is the Lagrange multiplier (LM) or score statistic for testing o2 = 0

against the alternative that 02 > 0 and is given by
T 2
KPSS = <T2 > Sf) /A (4.7)
t=1

where S’t = Z;Zl Uj, Uy is the residual of a regression of y; on D; and 5\2
is a consistent estimate of the long-run variance of u; using ;. Under the
null that y; is I(0), Kwiatkowski, Phillips, Schmidt, and Shin showed that
KPSS converges to a function of standard Brownian motion that depends
on the form of the deterministic terms D; but not their coefficient values
B. In particular, if D; = 1 then

1
KPSS % / Vi(r)dr (4.8)
0

where Vi (r) = W(r)—rW(1) and W(r) is a standard Brownian motion for
r €[0,1]. If D, = (1,¢)’ then

1
KPSS % / Va(r)dr (4.9)
0

where Va(r) = W(r) + r(2 — 3r)W(1) + 6r(r? — 1) fol W (s)ds. Critical
values from the asymptotic distributions (4.8) and (4.9) must be obtained
by simulation methods, and these are summarized in Table 4.1.

The stationary test is a one-sided right-tailed test so that one rejects the
null of stationarity at the 100 - a% level if the KPSS test statistic (4.7) is
greater than the 100 - (1 — @)% quantile from the appropriate asymptotic
distribution (4.8) or (4.9).
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Right tail quantiles
Distribution 0.90  0.925 0.950 0.975 0.99

[ Va(r)dr 0.349 0.396 0446 0592 0.762
[, Va(r)dr 0120 0.133 0.149 0.184 0.229

TABLE 4.1. Quantiles of the distribution of the KPSS statistic

4.4.1 Simulating the KPSS Distributions

The distributions in (4.8) and (4.9) may be simulated using methods similar
to those used to simulate the DF distribution. The following S-PLUS code
is used to create the quantiles in Table 4.1:

wiener2 = function(nobs) {
e = rnorm(nobs)
# create detrended errors
el = e - mean(e)
e2 = residuals(0LS(e~seq(1,nobs)))
# compute simulated Brownian Bridges
yl = cumsum(el)
y2 = cumsum(e2)
intW2.1 = nobs~(-2) * sum(y1~2)
intW2.2 = nobs~(-2) * sum(y272)
ans = list(intW2.1=intW2.1,
intW2.2=intW2.2)

KPSS1 = rep(0,nsim)

KPSS2 = rep(0,nsim)

for (i in 1:nsim) {

BN.moments = wiener2(nobs)
KPSS1[i] BN.moments$intW2.1
KPSS2[i] BN.moments$intW2.2

ans

}

#

# simulate KPSS distributions
#

> nobs = 1000

> nsim = 10000

>

>

>

compute quantiles of distribution

vV H# H Y

quantile (KPSS1, probs=c(0.90,0.925,0.95,0.975,0.99))
90.0%  92.5% 95.0% 97.5%  99.0%

0.34914 0.39634 0.46643 0.59155 0.76174

> quantile(KPSS2, probs=c(0.90,0.925,0.95,0.975,0.99))
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90.0% 92.5% 95.0% 97.5%  99.0%
0.12003 0.1325 0.14907 0.1841 0.22923

Currently, only asymptotic critical values are available for the KPSS test.

4.4.2  Testing for Stationarity Using the S+FinMetrics
Function stationaryTest

The S+FinMetrics function stationaryTest may be used to test the null
hypothesis that a time series y; is I(0) based on the KPSS statistic (4.7).
The function stationaryTest has arguments

> args(stationaryTest)
function(x, trend = "c¢", bandwidth = NULL, na.rm = F)

where x represents a univariate vector or “timeSeries”. The argument
trend specifies the deterministic trend component in (4.6) and valid choices
are "c" for a constant and "ct" for a constant and time trend. The argu-
ment bandwidth determines the lag truncation parameter used in com-
puting the long-run variance parameter A\?. The default bandwidth is the
integer part of (4 - (7/100))%/? where T is the sample size. The output of
stationaryTest is an object of class “stationaryTest” for which there is
only a print method. The use of stationaryTest is illustrated with the
following example.

Example 22 Testing for stationarity in exchange rates

Consider the US/CN spot exchange data used in the previous examples.
To test the null that s; is I(0), the KPSS statistic is computed using a
constant in (4.6):

> kpss.out = stationaryTest(uscn.spot, trend="c")
> class(kpss.out)

[1] "stationaryTest"

> kpss.out

Test for Stationarity: KPSS Test
Null Hypothesis: stationary around a constant
Test Statistics:
USCNS
1.6411%x*

x : significant at 5% level
x% : significant at 17, level
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Total Observ.: 245
Bandwidth : 5

The KPSS statistic is 1.641 and is greater than the 99% quantile, 0.762,
from Table.4.1. Therefore, the null that s, is I(0) is rejected at the 1%
level.

4.5 Some Problems with Unit Root Tests

The ADF and PP tests are asymptotically equivalent but may differ sub-
stantially in finite samples due to the different ways in which they correct
for serial correlation in the test regression. In particular, Schwert (1989)
found that if Ay, has an ARMA representation with a large and negative
MA component, then the ADF and PP tests are severely size distorted
(reject I(1) null much too often when it is true) and that the PP tests are
more size distorted than the ADF tests. Recently, Perron and Ng (1996)
have suggested useful modifications to the PP tests to mitigate this size
distortion. Caner and Killian (2001) have found similar problems with the
KPSS test.

In general, the ADF and PP tests have very low power against I(0)
alternatives that are close to being I(1). That is, unit root tests cannot
distinguish highly persistent stationary processes from nonstationary pro-
cesses very well. Also, the power of unit root tests diminish as deterministic
terms are added to the test regressions. That is, tests that include a con-
stant and trend in the test regression have less power than tests that only
include a constant in the test regression. For maximum power against very
persistent alternatives the recent tests proposed by Elliot, Rothenberg, and
Stock (1996), and Ng and Perron (2001) should be used. These tests are
described in the next section.

4.6 FEfficient Unit Root Tests

Assume that T observations are generated by
yr = B'Dy 4wy, up = gy + 1y

where D, represents a vector of deterministic terms, Efug] < oo, and vy is
a 1-summable linear process with long-run variance A\%. Typically D, = 1
or D; = [1,t]. Consider testing the null hypothesis ¢ = 1 versus |¢| <
1. If the distribution of the data were known then the Neyman-Pearson
Lemma gives the test with best power against any point alternative ¢. The
power of this optimal test plotted as a function of ¢ gives an upper bound
(envelope) for the power of any test based on the same distribution of the
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data. An undesirable feature of this power envelope is that it depends on the
specific value of ¢, so that there is no uniformly most power full test that
can be used against all alternatives |¢| < 1. However, using asymptotic
approximations based on the local-to-unity alternative ¢ = 1 + ¢/T, for
¢ < 0, Elliot, Rothenberg, and Stock (2001) (hereafter ERS) derived a
class of test statistics that come very close to the power envelope for a
wide range of alternatives. These tests are referred to as efficient unit root
tests, and they can have substantially higher power than the ADF or PP
unit root tests especially when ¢ is close to unity.

4.6.1 Point Optimal Tests

The starting point for the class of efficient tests is the feasible test statistic
that is optimal (asymptotically) for the point alternative ¢ = 1—¢/T, ¢ < 0.
This test is constructed as follows. Define the T'—dimensional column vector
y¥¢ and T' x g dimensional matrix Dy by

Yo = (W,y2—oy1,...,yr — dyr—1)
D¢ = (Dll’D/Q - ¢Dlla .. 7DIT - ¢D/Tfl)l

All of the elements of y, and Dy, except the first, are quasi-differenced
using the operator 1 — ¢L. Next, for any value of ¢, define S(¢) as the sum
of squared residuals from a least squares regression of y4 on Dy. That is,

S(¢) =945

where ¥4 =y — Dy, and B, = (D), Dy) 'D/y,. ERS showed that the
feasible point optimal unit root test against the alternative ¢ = 1 —¢&/T has
the form

Pr = [5(3) - 38(1)] /A7 (4.10)

where ;\2 is a consistent estimate of A\%. ERS derived the asymptotic dis-
tribution of Pr for D; = 1 and D; = (1,t) and provided asymptotic and
finite sample critical values for tests of size 1%, 2.5%, 5% and 10%*.

Through a series of simulation experiments, ERS discovered that if ¢ =
1+¢/T is chosen such that the power of Pr is tangent to the power envelope
at 50% power then the overall power of Pr, for a wide range of ¢ values
less than unity, is close to the power envelope. For a given sample size T,
the value of ¢ that results in Pp having 50% power depends on ¢ and the
form of the deterministic terms in D;. ERS showed that if D; = 1 then
¢=—7,and if D; = (1,¢) then ¢ = —13.5.

The ERS Pr statistic may be computed using the function unitroot
with method="ers".

4These critical values are given in ERS Table I panels A and B.
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4.6.2 DF-GLS Tests

In the construction of the ERS feasible point optimal test (4.10), the un-
known parameters 3 of the trend function are efficiently estimated under
the alternative model with ¢ = 1+ ¢/7. That is, Bg; = (DéDé)_lD’d—)y&.
ERS used this insight to derive an efficient version of the ADF t-statistic,
which they called the DF-GLS test. They constructed this t-statistic as fol-
lows. First, using the trend parameters B& estimated under the alternative,
define the detrended data

d ~/
Y¢ =Yt — ﬁg;Dt

ERS called this detrending procedure GLS detrending®. Next, using the
GLS detrended data, estimate by least squares the ADF test regression
which omits the deterministic terms

p

Jj=1

and compute the t-statistic for testing # = 0. When D; = 1, ERS showed
that the asymptotic distribution of the DF-GLS test is the same as the
ADF t-test, but has higher asymptotic power (against local alternatives)
than the DF t-test. Furthermore, ERS show that the DF-GLS test has
essentially the same asymptotic power as the ERS point optimal test when
¢ = —7. When D, = (1,¢) the asymptotic distribution of the DF-GLS test,
however, is different from the ADF ¢-test. ERS and Ng and Perron (2001)
provided critical values for the DF-GLS test in this case. ERS showed that
the DF-GLS test has the same asymptotic power as the ERS point optimal
test with ¢ = —13.5, and has higher power than the DF t-test against local
alternatives.

The DF-GLS t-test may be computed using the function unitroot with
method="dfgls".

4.6.3 Modified Efficient PP Tests

Ng and Perron (2001) used the GLS detrending procedure of ERS to create
efficient versions of the modified PP tests of Perron and Ng (1996). These
efficient modified PP tests do not exhibit the severe size distortions of the
PP tests for errors with large negative MA or AR roots, and they can have
substantially higher power than the PP tests especially when ¢ is close to
unity.

5For deterministicly trending trend data with ergodic-stationary deviations from
trend, Grenander’s Theorem gives the result that least squares estimates of the trend
parameters ignoring serial correlation are asymptotically equivalent to the generalized
least squares estimates that incorporate serial correlation.
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Using the GLS detrended data y¢, the efficient modified PP tests are
defined as

T —1
- 3 2 _
MZ, (T 1y%—/\)<2T 222&1)
t=1

T 1/2
MSB = <T2ny_1/;\2>
t=1
MZ, = MZ, x MSB

The statistics MZ,, and MZ; are efficient versions of the PP Z,, and Z;
tests that have much smaller size distortions in the presence of negative
moving average errors. Ng and Perron derived the asymptotic distributions
of these statistics under the local alternative ¢ = 1 —¢/T for D; = 1 and
D; = (1,t). In particular, they showed that the asymptotic distribution of
MZ; is the same as the DF-GLS t-test.

The statistic MZ; may be computed using the function unitroot with
method="mpp".

4.6.4 Estimating \*

Ng and Perron (2001) emphasized that the estimation of the long-run vari-
ance A\? has important implications for the finite sample behavior of the
ERS point optimal test and the efficient modified PP tests. They stressed
that an autoregressive estimate of A% should be used to achieve stable finite
sample size. They recommended estimating A? from the ADF test regres-
sion (4.11) based on the GLS detrended data:

5 :‘}71202
- aw)

where (1) = Py @j and (712, = (T —p)~* ZtT:p_H &7 are obtained from
(4.11) by least squares estimation.

4.6.5 Choosing Lag Lengths to Achieve Good Size and Power

Ng and Perron also stressed that good size and power properties of the all
the efficient unit root tests rely on the proper choice of the lag length p used
for specifying the test regression (4.11). They argued, however, that tradi-
tional model selection criteria such as AIC and BIC are not well suited for
determining p with integrated data. Ng and Perron suggested the modified
information criteria (MIC) that selects p as pmic = argmin,<,, . MIC(p)
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where
. Cr(r +
MIC(p) = ln(0§)+—T;fg)) 2
L9 T d
LD max+1 Jt—1
TT(p) = : pAg 3
9p
1 T
= T D &
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with Cr > 0 and Cr/T — 0 as T — oo. The maximum lag, pmax, may be
set using (4.5). The modified AIC (MAIC) results when Cp = 2, and the
modified BIC (MBIC) results when Cr = In(T' — pmax)- Through a series
of simulation experiments, Ng and Perron recommended selecting the lag
length p by minimizing the MAIC.

Example 23 Efficient unit root tests

To illustrate the efficient unit root tests, consider testing for a unit root
in the 30-day interest rate differential formed from the difference between
monthly US and UK spot exchange rates:

> fd = lexrates.dat[,"USUKS"] - lexrates.dat[,"USUKF"]
> collds(fd) = "USUKFD"
> fd@title = "US/UK 30-day interest rate differential"

The interest rate differential, its SACF, and the SACF of its first differ-
ence are depicted in Figure 4.6. The graphs clearly show that the interest
rate differential has a high degree of persistence, and that there is little
persistence in the first difference.

The ERS Pr test, DF-GLS t-test and Ng-Perron MZ, test all with D; = 1
may be computed using the function unitroot as follows:

> ers = unitroot(fd,trend="c",method="ers",max.lags=12)
> dfgls = unitroot(fd,trend="c",method="dfgls",max.lags=12)
> mpp = unitroot(fd,trend="c",method="mpp",max.lags=12)

Since the optional argument lags is omitted, the lag length for the test
regression (4.11) is determined by minimizing the MAIC with ppax = 12
set by the optional argument max.lags=12. The results of the efficient unit
root tests are:

> ers.test
Test for Unit Root: Elliott-Rothenberg-Stock Test

Null Hypothesis: there is a unit root
Test Statistic: 1.772%*
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FIGURE 4.6. 30-day US/UK interest rate differential.

* : significant at 5% level
xx : significant at 1% level

Coefficients:
lagi
-0.07

Degrees of freedom: 244 total; 243 residual
Time period: from Mar 1976 to Jun 1996
Residual standard error: 0.00116

> dfgls.test
Test for Unit Root: DF Test with GLS detrending

Null Hypothesis: there is a unit root
Type of Test: t-test
Test Statistic: -2.9205%*
* : significant at 5% level
xx : significant at 1% level

Coefficients:
lagl

137
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-0.07

Degrees of freedom: 244 total; 243 residual
Time period: from Mar 1976 to Jun 1996
Residual standard error: 0.00116

> mpp.test
Test for Unit Root: Modified Phillips-Perron Test

Null Hypothesis: there is a unit root
Type of Test: t-test
Test Statistic: -2.8226%*
* : significant at 5% level
xx : significant at 1% level

Coefficients:
lagl
-0.07

Degrees of freedom: 244 total; 243 residual
Time period: from Mar 1976 to Jun 1996
Residual standard error: 0.00116

Minimizing the MAIC gives p = 0, and with this lag length all tests reject
the null hypothesis of a unit root at the 1% level.
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Modeling Extreme Values

5.1 Introduction

One of the goals of financial risk management is the accurate calculation of
the magnitudes and probabilities of large potential losses due to extreme
events such as stock market crashes, currency crises, trading scandals, or
large bond defaults. In statistical terms, these magnitudes and probabili-
ties are high quantiles and tail probabilities of the probability distribution
of losses. The importance of risk management in finance cannot be over-
stated. The catastrophes of October 17, 1987, Long-Term Capital Manage-
ment, Barings PLC, Metallgesellschaft, Orange County and Daiwa clearly
illustrate the losses that can occur as the result of extreme market move-
ments'. The objective of extreme value analysis in finance is to quantify
the probabilistic behavior of unusually large losses and to develop tools for
managing extreme risks.

Traditional parametric and nonparametric methods for estimating distri-
butions and densities work well in areas of the empirical distribution where
there are many observations, but they often give very poor fits to the ex-
treme tails of the distribution. This result is particularly troubling because
the management of extreme risk often requires estimating quantiles and tail
probabilities beyond those observed in the data. The methods of extreme
value theory focus on modeling the tail behavior of a loss distribution using
only extreme values rather than all of the data.

1See Jorian (2001) for a detailed description of these financial disasters.
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This chapter is organized as follows. Section 5.2 covers the modeling of
block maximum and minimum values using the generalized extreme value
(GEV) distribution. The maximum likelihood estimator for the parameters
of the GEV distribution is derived and analyzed, and graphical diagnostics
for evaluating the fit are discussed. The use of the GEV distribution is
illustrated with examples from finance, and the concept of return level
is introduced. Section 5.3 discusses the modeling of extremes over high
thresholds or “peaks over thresholds”. This technique is well suited for
the estimation of common risk measures like value-at-risk and expected
shortfall. Parametric models utilizing the generalized Pareto distribution
as well as non-parametric models are presented.

Two excellent textbooks on extreme value theory are Embrechts, Kliippel-
berg and Mikosch (1997) and Coles (2001). Both books provide many ex-
amples utilizing S-PLUS. Less rigorous treatments of extreme value theory
with many examples in finance are given in Alexander (2001), Jorian (2001)
and Tsay (2001). Useful surveys of extreme value theory applied to finance
and risk management are given in Diebold, Schuermann and Stroughair
(1997), Danielsson and de Vries (2001), McNeil (1998) and Longin (2000).

The S+FinMetrics functions for modeling extreme values described in
this chapter are based on the functions in the EVIS (Extreme Values In
S-PLUS) library written by Alexander McNeil, and the EVANESCE (Ex-
treme Value ANalysis Employing Statistical Copula Estimation) library
written by Rene Carmona and Julia Morrison and described in Carmona
and Morrison (2001) and Carmona (2004). The EVANESCE library also
contains an extensive set of functions for analyzing and fitting bivariate
copulas, which are described in Chapter 19.

5.2 Modeling Maxima and Worst Cases

To motivate the importance of the statistical modeling of extreme losses in
finance, consider the following example taken from McNeil (1998). Figure
5.1 shows the daily closing prices and percentage changes in the S&P 500
index over the period January 5, 1960 through October 16, 1987 taken from
the S+FinMetrics “timeSeries” object sp.raw

> spto87 = getReturns(sp.raw, type="discrete", percentage=T)
> par(mfrow=c(2,1))

> plot(sp.raw, main="Daily Closing Prices")

> plot(spto87, main="Daily Percentage Returns")

Before the October crash, the stock market was unusually volatile with
several large price drops in the index resulting in large negative returns. Of
interest is the characterization of the worst case scenario for a future fall
in S&P 500 index utilizing the historical data prior to the crash given in
Figure 5.1. To do this, the following two questions will be addressed:
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FIGURE 5.1. Daily closing prices and percentage returns on the S&P 500 Index
from January, 1960 through October 16, 1987.

e What is the probability that next year’s annual maximum negative
return exceeds all previous negative returns? In other words, what is
the probability that next year’s maximum negative return is a new
record?

e What is the 40-year return level of the negative returns? That is, what
is the negative return which, on average, should only be exceeded in
one year every forty years?

To answer these questions, the distribution of extreme negative returns
on S&P 500 index is required. The distribution theory required to analyze
maximum values is briefly discussed in the next section.

5.2.1 The Fisher-Tippet Theorem and the Generalized
Extreme Value Distribution

Let X7, Xs,... be iid random variables representing risks or losses with
an unknown cumulative distribution function (CDF) F(z) = Pr{X; < z}.
Examples of the random risks X; are losses or negative returns on a financial
asset or portfolio, operational losses, catastrophic insurance claims, and
credit losses. Throughout this chapter, a loss is treated as a positive number
and extreme events occur when losses take values in the right tail of the
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loss distribution F'. Define M,, = max (X,...,X,,) as the worst-case loss
in a sample of n losses. An important part of extreme value theory focuses
on the distribution of M,,. From the iid assumption, the CDF of M, is

Pr{M, <z} =Pr{X; <=z,..., X, Sz}:ﬁF(m) = F"(x)

Since F'™ is assumed to be unknown and the empirical distribution function
is often a very poor estimator of F"(x), an asymptotic approximation to
F"™ based on the Fisher-Tippet Theorem (Fisher and Tippett, 1928) is used
to make inferences on M,,. Furthermore, since F"(z) — 0 or 1 as n — oo
and z is fixed, the asymptotic approximation is based on the standardized
maximum value

M’ﬂ — Hn

On

Ly = (5.1)
where o, > 0 and p,, are sequences of real numbers such that o, is in-
terpreted as a scale measure and p,, is interpreted as a location measure.
The Fisher-Tippet Theorem states that if the standardized maximum (5.1)
converges to some non-degenerate distribution function, it must be a gen-
eralized extreme value (GEV) distribution of the form

| exp{—(1+&2)7 V¢ €#0,14+&62>0
Hg(z)—{ egxi){—exp(z—z)}} §=0, —c0<z< 00 (5-2)

If (5.1) converges to (5.2), then the CDF F of the underlying data is in
the domain of attraction of H¢. The Fisher-Tippet Theorem is the analog
of the Central Limit Theorem for extreme values. Whereas the Central
Limit Theorem applies to normalized sums of random variables, the Fisher-
Tippet Theorem applies to standardized maxima of random variables. The
parameter £ is a shape parameter and determines the tail behavior of He.
The parameter o = 1/¢ is called the tail indez if £ > 0.

The tail behavior of the distribution F' of the underlying data deter-
mines the shape parameter ¢ of the GEV distribution (5.2). If the tail of
F' declines exponentially, then H¢ is of the Gumbel type and £ = 0. Dis-
tributions in the domain of attraction of the Gumbel type are thin tailed
distributions such as the normal, log-normal, exponential, and gamma. For
these distributions, all moments usually exist. If the tail of F' declines by
a power function, i.e.

1— F(z) =2 Y¢L(x)

for some slowly varying function L(x), then H¢ is of the Fréchet type and
¢ > 02. Distributions in the domain of attraction of the Fréchet type include
fat tailed distributions like the Pareto, Cauchy, Student-t, alpha-stable with

2A function L on (0, 00) is slowly varying if limg— oo L(tz)/L(z) = 1 for ¢t > 0.
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characteristic exponent in (0, 2), as well as various mixture models. Not all
moments are finite for these distributions. In fact, it can be shown that
E[X*] = oo for k > o = 1/€. Last, if the tail of F is finite then Hg is of
the Weibull type and £ < 0. Distributions in the domain of attraction of
the Weibull type include distributions with bounded support such as the
uniform and beta distributions. All moments exist for these distributions.

The Fisher-Tippet Theorem applies to iid observations. However, the
GEV distribution (5.2) may be shown (e.g. Embrechts et. al. (1997)) to
be the correct limiting distribution for maxima computed from stationary
time series including stationary GARCH-type processes.

The GEV distribution (5.2) characterizes the limiting distribution of the
standardized maximum (5.1). It turns out that the GEV distribution (5.2)
is invariant to location and scale transformations such that for location and
scale parameters p and o > 0

He(2) = He (S ) = Heyur0 (53)

g

The Fisher-Tippet Theorem may then be interpreted as follows. For large
enough n

M, —
Pr{Z, < z} :Pr{n—'u" < z} ~ He(z)

On

Letting © = o2 + p,, then

T — Uy
P, <o) % Hepe (TS0 ) = Hoprnle) G
n

The result (5.4) is used in practice to make inferences about the maximum
loss M,,.

Example 24 Plots of GEV distributions

The S+FinMetrics/EVIS functions pgev, qgev, dgev and rgev compute
cumulative probability, quantiles, density, and random generation, respec-
tively, from the GEV distribution (5.3) for £ # 0 and general values for
x, u and o. For example, the S-PLUS code to compute and plot the GEV
CDF H¢ and the pdf he for a Fréchet (£ = 0.5), Weibull (§ = —0.5) and
Gumbell (£ =0) is

z.vals = seq(-5, 5, length=200)

cdf . f ifelse((z.vals > -2), pgev(z.vals,xi=0.5), 0)
cdf.w = ifelse((z.vals < 2), pgev(z.vals,xi=-0.5), 1)
cdf.g = exp(-exp(-z.vals))

plot(z.vals, cdf.w, type="1", xlab="z", ylab="H(z)")
lines(z.vals, cdf.f, type="1", 1lty=2)

lines(z.vals, cdf.g, type="1", 1lty=3)

legend(-5, 1, legend=c("Weibull H(-0.5,0,1)",

>
>
>
>
>
>
>
>
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FIGURE 5.2. Generalized extreme value
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"Frechet H(0.5,0,1)","Gumbel H(0,0,1)"), lty=1:3)

# pdfs

pdf.f = ifelse((z.vals > -2), dgev(z.vals,xi=0.5), 0)
pdf.w = ifelse((z.vals < 2), dgev(z.vals,xi=-0.5), 0)
pdf.g = exp(-exp(-z.vals))*exp(-z.vals)

plot(z.vals, pdf.w, type="1", xlab="z", ylab="h(z)")
lines(z.vals, pdf.f, type="1", 1lty=2)

lines(z.vals, pdf.g, type="1", 1lty=3)

legend(-5.25, 0.4, legend=c("Weibull H(-0.5,0,1)",
"Frechet H(0.5,0,1)","Gumbel H(0,0,1)"), 1ty=1:3)

+ V V V V V V V V +

The CDF and pdf values are illustrated in Figures 5.2 and 5.3. Notice
that the Fréchet is only defined for z > —2, and that the Weibull is only
defined for z < 2.

5.2.2  Estimation of the GEV Distribution

The GEV distribution (5.4) depends on three parameters: the shape pa-
rameter ¢ and the standardizing constants o, and p,,. These parameters
may be estimated using parametric maximum likelihood estimation (MLE).
The S+FinMetrics/EVIS functions gev and gumbel fit the GEV distribu-
tion (5.2) by MLE to block maxima data. The calculation of the parametric
MLE is briefly described below and illustrated with examples.

Parametric Maximum Likelihood Estimator

Let X1,..., X7 beidentically distributed losses from a sample of size T with
unknown CDF F' and let My denote the sample maximum. For inference
on My using (5.4) the parameters &, o and pup must be estimated. Since
there is only one value of Mp for the entire sample, it is not possible to
form a likelihood function for ¢, o and up. However, if interest is on the
maximum of X over a large finite subsample or block of size n < T, M,,,
then a sub-sampling method may be used to form the likelihood function
for the parameters £, o, and p,, of the GEV distribution for M,,. To do
this, the sample is divided into m non-overlapping blocks of essentially
equal size n = T'/m

(X1, Xal Xog1, - Xon| -+ [ X n—1yng1s -+ X

and Méj) is defined as the maximum value of X; in block j = 1,...,m.
The likelihood function for the parameters &, o, and p, of the GEV
distribution (5.4) is then constructed from the sample of block maxima
{Mél), cee M,(Lm)}. It is assumed that the block size n is sufficiently large
so that the Fisher-Tippet Theorem holds.
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The log likelihood function assuming iid observations from a GEV dis-
tribution with € # 0 is

m (@) _
Up,0,8) = —mln(a)—(1+1/§)21n 1+§<"f“>]
_i 1+€<M£¢)_M>]1/E

such that 0
M"Y —
()

The log-likelihood for the case £ = 0 (Gumbel family) is

m (@) _
l(p,0) = —mln(o) — <M>

. (o
=1
m (i) _
e ()
i=1 g

Details of the maximum likelihood estimation are discussed in Embrechts
et. al. (1997) and Coles (2001). For ¢ > —0.5 the MLEs for u, o and
& are consistent and asymptotically normally distributed with asymptotic
variance given by the inverse of the observed information matrix. The finite
sample properties of the MLE will depend on the number of blocks m and
the block size n, see McNeil (1998) for an illustration. There is a trade-off
between bias and variance. The bias of the MLE is reduced by increasing
the block size n, and the variance of the MLE is reduced by increasing the
number of blocks m.

Example 25 MLE of GEV CDF for block maxima from daily SEP 500

returns

Consider determining the appropriate GEV distribution for the daily
negative returns on S&P 500 index discussed at the beginning of this sec-
tion. A normal qg-plot of the returns computed using

> qqPlot (spto87,strip.text="Daily returns on S&P 500",
+ xlab="Quantiles of standard normal",
+ ylab="Quantiles of S&P 500")

is shown in Figure 5.4. The returns clearly have fatter tails than the normal
distribution which suggests the Fréchet family of GEV distributions with
& > 0 for the block maximum of negative returns.

Before the GEV distribution is fit by MLE, consider first some ex-
ploratory data analysis on the annual block maxima of daily negative
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FIGURE 5.4. Normal qg-plot for the daily percentage returns on the S&P 500
index over the period January 5, 1960 through October 16, 1987.

returns. The block maxima may be easily computed using the function
aggregateSeries:

> annualMax.sp500 = aggregateSeries(-spto87, by="years",
+ FUN=max)

Figure 5.5 created using

Xn = sort(seriesData(annualMax.sp500))

par (mfrow=c(2,2))

plot (annualMax.sp500)

hist(seriesData(annualMax.sp500) ,xlab="Annual maximum")
plot(Xn,-log(-log(ppoints(Xn))) ,xlab="Annual maximum")
tmp = records(-spto87)

V V V V V V

gives several graphical summaries of the annual block maxima. The largest
daily negative return in an annual block is 6.68% occurring in 1962. The
histogram resembles a Fréchet density (see example above). The qqg-plot
uses the Gumbel, Hy, as the reference distribution. For this distribution, the
quantiles satisfy Hy '(p) = — In(—In(p)). The downward curve in the plot
indicates a GEV distribution with £ > 0. The plot of record development
is created with the S+FinMetrics/EVIS function records and illustrates
the developments of records (new maxima) for the daily negative returns
along with the expected number of records for iid data, see Embrechts et.
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FIGURE 5.5. Annual block maxima, histogram, Gumbel qg-plot and records
summary for the daily returns on the S&P 500.

al. (1997) section 6.2.5. Apart from the somewhat large number of records
early on, the number of records appears consistent with iid behavior.

The MLEs for the parameters of the GEV distribution with £ # 0 using
block maxima may be computed using the S+FinMetrics/EVIS function
gev. For example, to compute the MLEs using annual blocks from the
daily (negative) returns on S&P 500 index use

> gev.fit.year = gev(-spto87, block="year")
> class(gev.fit.year)
[1] "gev"

The argument block determines the blocking method for the supplied
data. An integer value for block gives the number of observations in each
block. If the data supplied are a “timeSeries” then the value of block
can be also be the character strings “year”, “semester”, “quarter” or
“month”. If no value for block is given then the data are interpreted as
block maxima.

The function gev returns an sv3 object of class “gev” for which there
are print and plot methods. The components of gev.fit.year are

> names(gev.fit.year)
[1] "n.all" npn "eall" "block"
[5] "data" "par.ests"  "par.ses" "varcov"
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[9] "converged" "nllh.final"

and a description of these components is given in the online help for
gev.object. The component n gives the number of blocks m:

> gev.fit.year$n
[1] 28

The block maxima M" (i=1,...,m) are in the data component. Since
the data supplied to gev are in a “timeSeries”, the block maxima in
gev.fit.year$data are also a “timeSeries”. The MLEs and asymptotic
standard errors for the parameters y, o and & are:

> gev.fit.year
Generalized Extreme Value Distribution Fit --

28 blocks of maxima data
ML estimation converged.
Log-likelihood value: -38.34

Parameter Estimates, Standard Errors and t-ratios:
Value Std.Error t value
xi 0.3344 0.2081 1.6068
sigma 0.6716 0.1308 5.1337
mu 1.9750 0.1513 13.0549

The MLE for £ is 0.334 with asymptotic standard gl\i(é) = 0.208. An
asymptotic 95% confidence interval for £ is [—0.081,0.751] and indicates
considerably uncertainty about the value of &.

The fit to the GEV distribution may be evaluated graphically using the
plot method:

> plot(gev.fit.year)
Make a plot selection (or 0 to exit):
1: plot: Scatterplot of Residuals

2: plot: QQplot of Residuals
Selection:

Plot options 1 and 2 are illustrated in Figure 5.6. The plots show aspects

of the crude residuals
(@) - -1/€
W, = (1 +¢ M)
o

which should be iid unit exponentially distributed random variables if the
fitted model is correct. The scatter plot of the residuals, with a lowest esti-
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FIGURE 5.6. Residual plots from GEV distribution fit to annual block maxima
of daily negative return on the S&P 500 index.

mate of trend, does not reveal any significant unmodeled trend in the data.
The qg-plot, using the exponential distribution as the reference distribu-
tion, is linear and appears to validate the GEV distribution.

Using the MLEs of the GEV distribution fit to the annual block maxima
of the (negative) daily returns on S&P 500 index, the question

e What is the probability that next year’s annual maximum negative
return exceeds all previous negative returns?

may be answered using (5.4). Since the largest block maxima is 6.68%,
this probability is estimated using

6.68)

29 1 28
Pr (M2<60> > max (M2<6g7 . ,M2(60))> =1-H;,,

Using the S+FinMetrics/EVIS function pgev, the result is

> 1- pgev(max(gev.fit.year$data),

+ xi=gev.fit.year$par.ests["xi"],

+ mu=gev.fit.year$par.ests["mu"],

+ sigma=gev.fit.year$par.ests["sigma"])
0.02677

That is, there is a 2.7% chance that a new record maximum daily negative
return will be established during the next year.
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The above analysis is based on annual block maxima. The GEV distri-
bution fit to quarterly block maxima is obtained using

> gev.fit.quarter= gev(-spto87,block="quarter")
> gev.fit.quarter
Generalized Extreme Value Distribution Fit --

112 blocks of maxima data
ML estimation converged.
Log-likelihood value: -111.9

Parameter Estimates, Standard Errors and t-ratios:
Value Std.Error t value
xi 0.1910 0.0695 2.7472
sigma 0.5021 0.0416 12.0701
mu 1.4013 0.0530 26.4583

The MLEs for &, u and o using quarterly blocks are slightly smaller than
the MLEs using annual blocks. Notice, however, that the estimated asymp-
totic standard errors are much smaller using quarterly block. In particular,
an asymptotic 95% confidence interval for £ is [0.052,0.330] and contains
only positive values for £ indicating a fat-tailed distribution. An estimate of
the probability that next quarter’s maximum exceeds all previous maxima
is

> 1- pgev(max(gev.fit.quarter$data),

+ xi=gev.fit.quarter$par.ests["xi"],

+ mu=gev.fit.quarter$par.ests["mu"],

+ sigma=gev.fit.quarter$par.ests["sigma"])
0.003138

As expected, this probability is smaller than the corresponding probability
computed for annual maxima.

5.2.3 Return Level

For € (0,1) the 100 - a% quantile of a continuous distribution with
distribution function F' is the value ¢, such that

qa = F_l(a)'

A useful risk measure for block maxima that is related to a high quantile
is the so-called return level. The k n-block return level, R,, i, is defined to
be that level which is exceeded in one out of every k blocks of size n. That
is, Ry is the loss value such that

Pr{M, > R} = 1/k (5.5)
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The n-block in which the return level is exceeded is called a stress period.
If the distribution of the maxima M,, in blocks of length n is characterized
by (5.4) then R, j is simply the 1 — 1/k quantile of this distribution:

_ g _
Ryp~He ), (1—=1/k) = p— E (1—(—log(l—1/k))™%) (5.6)
By the invariance property of maximum likelihood estimation, given the
MLEs for the parameters £, 1 and o, the MLE for R,, j is

A g

Bap=i=% (1= (—tog(1 = 1/m)¢)

An asymptotically valid confidence interval for R,, ; may be computed using
the delta method (see Greene 2000, p. 118) or from the concentrated /profile
log-likelihood function. Given that (5.6) is a highly nonlinear function of
o, p and &, the delta method is not recommended. Details of constructing
a confidence interval for R, ; based on the profile log-likelihood are given
in chapter three of Coles (2001) and the appendix of McNeil (1998).

The return level probability in (5.5) is based on the GEV distribution
H¢ o of the maxima M,,. For iid losses X with CDF F, H¢ ,, » = F™ so
that

F(Rny) =Pr{X < Rux} ~ (1—1/k)"" (5.7)

Hence, for iid losses the return level R, ;, is approximately the (1 — 1/ k)l/ "
quantile of the loss distribution F'.

Example 26 Return levels for SEIP 500 negative returns

Given the MLEs for the GEV distribution fit to the annual block maxima
of the (negative) daily returns on S&P 500 index, the question

e What is the 40-year return level of the index returns?

may be answered using (5.6). The S+FinMetrics/EVIS function rlevel.gev
computes (5.6) as well as an asymptotic 95% confidence interval based on
the profile likelihood using the information from a “gev” object. To com-
pute the 40 year return level for the S&P 500 returns from the “gev” object
gev.fit.year and to create a plot of the 95% confidence interval use

> rlevel.year.40 = rlevel.gev(gev.fit.year, k.blocks=40,

+ type="profile")
> class(rlevel.year.40)
[1] "list"

> names(rlevel.year.40)
[1] "Range" "rlevel"

> rlevel.year.40%rlevel
[1] 6.833
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FIGURE 5.7. Asymptotic 95% confidence interval for the 40 year return level
based on the profile log-likelihood function.

When type="profile", the function rlevel.gev returns a “list” ob-
ject, containing the return level and range information used in the con-
struction of the profile log-likelihood confidence interval, and produces a
plot of the profile log-likelihood confidence interval for the return level.
The estimate of the 40 year return level is 6.83%. Assuming iid returns
and using (5.7), the estimated return level of 6.83% is approximately the
99.99% quantile of the daily return distribution. An asymptotic 95% con-
fidence interval for the true return level is illustrated in Figure 5.7. Notice
the asymmetric shape of the asymptotic confidence interval. Although the
point estimate of the return level is 6.83%, the upper endpoint of the 95%
confidence interval is about 21%. This number may seem large; however,
on Monday October 19th 1987 S&P 500 index closed down 20.4%.

By default, the function rlevel.gev produces a plot of the asymptotic
95% confidence level. Alternatively, if rlevel.gev is called with the op-
tional argument type="RetLevel":

> rlevel.year.40 = rlevel.gev(gev.fit.year, k.blocks=40,
+ type="RetLevel")

> names(rlevel.year.40)

[1] "LowerCB" "rlevel" "UpperCB"

> rlevel.year.40

$LowerCB:
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FIGURE 5.8. Estimated 40-year return level with 95% confidence band for the
S&P 500 daily negative returns.

[1] 4.646

$rlevel:
[1] 6.833

$UpperCB:
[1] 20.5

A plot of the estimated return level along with the block maxima, as
shown in Figure 5.8, is created, and the components of the returned list are
the estimated return level along with the end points of the 95% confidence
interval.

The 40 year return level may also be estimated from the GEV distribu-
tion fit to quarterly maxima. Since 40 years is 160 quarters, the 40 year
return level computed from the “gev” object gev.fit.quarter is

> rlevel.160.q = rlevel.gev(gev.fit.quarter, k.blocks=160,
+ type="RetLevel")

> rlevel.160.q

$LowerCB:

[1] 4.433

$rlevel:
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[1] 5.699

$UpperCB:
[1] 8.549

Here, the estimated return level and asymptotic 95% confidence interval
are smaller than the corresponding quantities estimated from annual data.

5.3 Modeling Extremes Over High Thresholds

Modeling only block maxima data is inefficient if other data on extreme val-
ues are available. A more efficient alternative approach that utilizes more
data is to model the behavior of extreme values above some high threshold.
This method is often called peaks over thresholds (POT). Another advan-
tage of the POT approach is that common risk measures like Value-at-Risk
(VaR) and expected shortfall (ES) may easily be computed?.

To illustrate the concepts of VaR and ES, review the daily S&P 500
returns analyzed in the previous section. Suppose the S&P 500 is the only
asset in a large portfolio for an investor and that the random variable X
with CDF F represents the daily loss on the portfolio. The daily VaR on
the portfolio is simply a high quantile of the distribution F' of daily losses.
For example, the daily 1% VaR on the portfolio is the 99% quantile of X

VaR g9 = F71(0.99).

That is, with 1% probability the loss in portfolio value over a day will
exceed VaR g9. Often the high quantile VaR g9 is computed assuming X ~
N(u,0?). In this case, the calculation of VaR g9 reduces to the simple
formula

VaR g9 = p1 + 0 - q.99 (5.8)

where ¢.g9 is the 99% quantile of the standard normal distribution. The
distribution of daily portfolio losses, however, generally has fatter tails than
the normal distribution so that (5.8) may severely under-estimate VaR gg.
Estimates of VaR based on the POT methodology are much more reliable.

The ES on the portfolio is the average loss given that VaR has been
exceeded. For example, the 1% ES is the conditional mean of X given that
X > VaRvgg

Es.gg = E[X|X > VaR.gg]

3Notice that VaR and ES are based on the distribution of the losses and not on the
distribution of the maximum losses. The analysis of block maxima based on the GEV
distribution allowed inferences to be made only on the maxima of returns. The POT
analysis will allow inferences to be made directly on the distribution of losses.
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FIGURE 5.9. Large fire loss insurance claims.

If X ~ N(u,0?) then ES g9 may be computed as the mean of a truncated
normal random variable:

¢(2)

ES'99:/L+U.1—7(D(,2’>

(5.9)
where z = (VaR g9 — p)/0, ¢(z) is the standard normal density function
and ®(z) is the standard normal CDF. Again, if the distribution of losses
has fatter tails than the normal, then (5.9) will underestimate ES g9. The
POT methodology estimates the distribution of losses over a threshold and
produces an estimate of ES as a by-product of the estimation.

For another example, consider the “timeSeries” danish representing
Danish fire loss data in S+FinMetrics, which is analyzed in McNeil (1999).
The data in danish consist of 2167 daily insurance claims for losses exceed-
ing one million Danish Krone from January 3, 1980 through December 31,
1990. The reported loss is an inflation adjusted total loss for the event con-
cerned and includes damages to buildings, damage to contents of buildings
as well as loss of profits. Figure 5.9 created using

> plot(danish, ain="Fire Loss Insurance Claims",
+ ylab="Millions of Danish Krone")

shows the data and reveals several extreme losses. For risk management
purposes, insurance companies may be interested in the frequency of occur-
rence of large claims above some high threshold as well as the average value
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of the claims that exceed the high threshold. Additionally, they may be in-
terested in daily VaR and ES. The statistical models for extreme values
above a high threshold may be used to address these issues.

5.3.1 The Limiting Distribution of Extremes Ouver High
Thresholds and the Generalized Pareto Distribution

As with the analysis of block maxima, let X1, Xo,... be a sequence of
iid random variables representing risks or losses with an unknown CDF
F and let M,, = max{Xj,...,X,}. A natural measure of extreme events
are values of the X; that exceed a high threshold u. Define the excess
distribution above the threshold u as the conditional probability:

(y +u) = F(u)

F.(y) =Pr{X —u<y|lX >u} = r 1= F(u)

, y>0 (5.10)

For the class of distributions F' such that the CDF of the standardized
value of M, converges to a GEV distribution (5.2), it can be shown (c.f.
Embrechts et. al. (1997)) that for large enough u there exists a positive
function S(u) such that the excess distribution (5.10) is well approximated
by the generalized Pareto distribution (GPD)

= (1 /BT fore£0
Ge.pu)(v) —{ 1(_ esxp(—y/B(u) f2r§:0 , Bw) >0 (5.11)

defined for y > 0 when £ > 0 and 0 <y < —f(u)/¢ when £ < 0.

Remarks:

e Operationally, for a sufficiently high threshold u, F,(y) = G¢ g(u)(v)
for a wide class of loss distributions F'. To implement this result, the
threshold value u must be specified and estimates of the unknown
parameters ¢ and S(u) must be obtained.

e There is a close connection between the limiting GEV distribution
for block maxima and the limiting GPD for threshold excesses. For a
given value of u, the parameters &, p and o of the GEV distribution
determine the parameters & and S(u). In particular, the shape pa-
rameter € of the GEV distribution is the same shape parameter ¢ in
the GPD and is independent of the threshold value u. Consequently,
if £ <0 then F'is in the Weibull family and G¢ (., is a Pareto type
II distribution; if § = 0 then F'is in the Gumbell family and G¢ g()
is an exponential distribution; and if £ > 0 then F is in the Fréchet
family and G¢ gy is a Pareto distribution.

e For £ > 0, the most relevant case for risk management purposes, it
can be shown that E[X*] = oo for £ > a = 1/¢. For example, if
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¢ = 0.5 then F[X?] = oo and the distribution of losses, X, does not
have finite variance. If £ = 1 then E[X] = occ.

e Consider a limiting GPD with shape parameter £ and scale param-
eter S(ug) for an excess distribution F,, with threshold ug. For an
arbitrary threshold u > wg, the excess distribution F, has a limit-
ing GPD distribution with shape parameter £ and scale parameter
B(u) = B(uo)+&(u—up). Alternatively, for any y > 0 the excess distri-
bution Fi,,, has a limiting GPD distribution with shape parameter
¢ and scale parameter ((ug) + £y.

Example 27 Plots of GPDs

The S+FinMetrics/EVIS functions pgpd, qgpd, dgpd and rgpd compute
cumulative probability, quantiles, density and random number generation,
respectively, from the GPD (5.11) for £ # 0 and general values for 5(u).
For example, the S-PLUS code to compute and plot the CDFs and pdfs
with S(u) =1 for a Pareto (£ = 0.5), exponential (£ = 0) and Pareto type
IT (¢ =-0.5) is

par (mfrow=c(1,2))

y.vals = seq(0,8,length=200)

cdf.p = pgpd(y.vals, xi=0.5)

cdf.p2 = ifelse((y.vals < 2), pgpd(y.vals,xi=-0.5), 1)
cdf.e = l-exp(-z.vals)

plot(y.vals, cdf.p, type="1", xlab="y", ylab="G(y)",
ylim=c(0,1))

lines(y.vals, cdf.e, type="1", 1lty=2)

lines(y.vals, cdf.p2, type="1", 1lty=3)
legend(1,0.2,legend=c("Pareto G(0.5,1)","Exponential G(0,1)",
"Pareto II G(-0.5,1)"),1lty=1:3)

# PDFs

pdf.p = dgpd(y.vals, xi=0.5)

pdf.p2 = ifelse((y.vals < 2), dgpd(y.vals,xi=-0.5), 0)
pdf.e = exp(-y.vals)

plot(y.vals, pdf.p, type="1", xlab="y", ylab="g(y)",
ylim=c(0,1))

lines(y.vals, pdf.e, type="1", 1lty=2)

lines(y.vals, pdf.p2, type="1", 1lty=3)
legend(2,1,legend=c("Pareto g(0.5,1)","Exponential g(0,1)",
"Pareto II g(-0.5,1)"),1lty=1:3)

+ VVV+VVVVYV +VVYV +VVVVVYV

The CDFs and pdfs are illustrated in Figure 5.10. Notice that the Pareto
type II is only defined for y < 2.

Example 28 qq-plots to determine tail behavior
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FIGURE 5.10. Generalized Pareto CDFs, G¢ 1, and pdfs, g¢1, for Pareto
(£ = 0.5), exponential (£ = 0) and Pareto type II (£ = —0.5).

A simple graphical technique to infer the tail behavior of observed losses
is to create a qg-plot using the exponential distribution as a reference dis-
tribution. If the excesses over thresholds are from a thin-tailed distribution,
then the GPD is exponential with £ = 0 and the qg-plot should be linear.
Departures from linearity in the qg-plot then indicate either fat-tailed be-
havior (£ > 0) or bounded tails (§£ < 0). The S+FinMetrics/EVIS function
gplot may be used to create a qq-plot using a GPD as a reference distri-
bution. For example, to create qqg-plots with the exponential distribution
as the reference distribution for the S&P 500 negative returns over the
threshold v = 1 and the Danish fire loss data over the threshold v = 10,
use

> par (mfrow=c(1,2))
> gplot(-spto87, threshold=1, main="S&P 500 negative returns")
> gplot(danish, threshold=10, main="Danish fire losses")

Figure 5.11 shows these qg-plots. There is a slight departure from linearity
for the negative S&P 500 returns and a rather large departure from linearity
for the Danish fire losses.
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FIGURE 5.11. QQ-plots with exponential reference distribution for the S&P 500
negative returns over the threshold v = 1 and the Danish fire losses over the
threshold v = 10.

Mean Excess Function

Suppose the threshold excess X —ug follows a GPD with parameters £ < 1
and B(up). Then the mean excess over the threshold ug is

E[X — uo|X > ug] = f(“og. (5.12)
For any u > ug, define the mean excess function e(u) as
e(u) = E[X — uX > u] = 20) Tg(g — o). (5.13)
Alternatively, for any y > 0
e(ug +y) = E[X — (uo +9)| X > up + 9] :%-géy' (5.14)

Notice that for a given value of £, the mean excess function is a linear
function of y = u — ug. This result motivates a simple graphical way to
infer the appropriate threshold value ug for the GPD. Define the empirical
mean excess function

enlw) = — 3z —w) (5.15)

n
=1
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Mean Excess

Threshold

FIGURE 5.12. Mean excess plot for the S&P 500 negative returns.

where z(;) (i =1,...,n,) are the values of z; such that x; > u. The mean
excess plot is a plot of e, (u) against v and should be linear in u for u > wuq.
An upward sloping plot indicates heavy-tailed behavior. In particular, a
straight line with positive slope above ug is a sign of Pareto behavior in
tail. A downward trend shows thin-tailed behavior, whereas a line with zero
slope shows an exponential tail.

Example 29 Mean excess plots for SEIP 500 and fire loss data

The S+FinMetrics/EVIS function meplot computes the empirical mean
excess function (5.15) and creates the mean excess plot. The mean excess
functions and mean excess plots for the S&P 500 negative returns and the
Danish fire losses are computed using

> me.sp500 = meplot(-spto87)
> me.dainsh = meplot(danish)
> class(me.sp500)

[1] "data.frame"

> colIds(me.sp500)

[1] "threshold" "me"

The function meplot returns a data frame containing the thresholds «
and the mean excesses ey, (u) and produces a mean excess plot. The mean
excess plots for the S&P 500 and Danish data are illustrated in Figures
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FIGURE 5.13. Mean excess plot for the Danish fire loss data.

5.12 and 5.13. The mean excess plot for the S&P 500 negative returns is
linear in w with positive slope for v > 1 indicating Pareto tail behavior.
The plot for the fire loss data is upward sloping and linear for almost all
values of u. However, there is a slight kink at v = 10.

5.3.2  FEstimating the GPD by Maximum Likelithood

Let z1,...,x, be iid sample of losses with unknown CDF F'. For a given
high threshold u, extreme values are those x; values for which z; — u >
0. Denote these values z(y),...,z() and define the threshold excesses as
yi = wy) —u for i = 1,... k. The results of the previous section imply
that if u is large enough then {yi,...,yr} may be thought of as a random
sample from a GPD with unknown parameters £ and fS(u). For £ # 0, the
log-likelihood function based on (5.11) is

k
1€, B(w) = —kIn(B(u)) — (14 1/¢) Zln(l +&yi/B(u))

provided y; > 0 when £ > 0 and 0 < y; < —f5(u)/€ when £ < 0. For £ =0
the log-likelihood function is

k
1(B(u)) = —kIn(B(w)) = Blu) ™ >y
=1
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5.3.3  FEstimating the Tails of the Loss Distribution

For a sufficiently high threshold wu, Fy,(y) = G¢ g, (y). Using this result
in (5.10) and setting © = u + y, an approximation to the tails of the loss
distribution F(z) for x > w is given by

F(z) = (1 = F(u))Ge g (y) + F(u) (5.16)

The CDF value F(u) may be estimated non-parametrically using the em-
pirical CDF

Flu) = (5.17)

where k denotes the number of exceedences over the threshold u. Combin-
ing the parametric representation (5.11) with the non-parametric estimate
(5.17) gives the resulting estimate of (5.16)

Flz)=1— S (1 +E- 9;;5) (5.18)

where € and 3(u) denote the MLEs of € and 3(u), respectively.
Example 30 FEstimating the GPD for the S&P 500 negative returns

Maximum likelihood estimation of the parameters £ and 8(u) of the GPD
(5.11) may be computed using the S+FinMetrics/EVIS function gpd. In
order to compute the MLE, a threshold value w must be specified. The
threshold should be large enough so that the GPD approximation is valid
but low enough so that a sufficient number of observations k are available
for a precise fit.

To illustrate, consider fitting GPD to the negative returns on the S&P
500 index. The S+FinMetrics/EVIS function gpd may be used to compute
the MLEs for the GPD (5.11) for a given threshold u. The mean excess
plot for the S&P 500 returns in Figure 5.12 suggests a value of u = 1 may
be appropriate for the GPD approximation to be valid. The MLE using
u = 1 is computed using

> gpd.sp500.1 = gpd(-spto87, threshold=1)
> class(gpd.sp500.1)
[1] "gpd"

The function gpd returns an object of class “gpd” for which there are
print and plot methods. The components of a “gpd” object are numerous,
and are described in the online help for gpd.object.

The MLEs for ¢ and (1) and asymptotic standard errors are

> gpd.spb500.1
Generalized Pareto Distribution Fit --
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Total of 6985 observations

Upper Tail Estimated with ml --

Upper Threshold at 1 or 8.518 % of the data
ML estimation converged.

Log-likelihood value: -183.6

Parameter Estimates, Standard Errors and t-ratios:
Value Std.Error t value
xi 0.0677 0.0397 1.7033
beta 0.4681 0.0267 17.5376

Notice that é = 0.068 is fairly close to zero and indicates that the return
distribution is not so heavy-tailed. Also, the GPD estimate of £ is quite a
bit smaller than the GEV estimate é = 0.334 based on annual data, but it
is very close to the GEV estimate é = 0.069 based on quarterly data.

Diagnostic plots of the GDP fit are created using the plot method

> plot(gpd.sp500.1)

Make a plot selection (or 0 to exit):

1: plot: Excess Distribution

2: plot: Tail of Underlying Distribution
3: plot: Scatterplot of Residuals

4: plot: QQplot of Residuals

Selection:

The four plot options are depicted in Figure 5.14. The first plot option
shows the GPD estimate of the excess distribution, and the second plot
option shows the tail estimate (5.18). The GPD appears to fit the dis-
tribution of threshold excesses fairly well. Note, the S+FinMetrics/EVIS
function tailplot may be used to compute plot option 2 directly.

The S+FinMetrics/EVIS function shape can be used to create a plot
showing how the MLE of the shape parameter ¢ varies with the selected
threshold w:

> shape(-spto87, end=600)

The optional argument end=600 specifies the maximum number of thresh-
old exceedences to consider. The resulting plot is shown in Figure 5.15. The
estimates of £ are fairly stable and close to zero for threshold values less
than 1.2, and increase slightly for threshold values between 1.2 and 2.

The S+FinMetrics/EVANESCE function shape.plot may also be used to
produce a plot similar to 5.15. For example

> shape.plot(-spto87, from = 0.9, to = 0.98)
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FIGURE 5.14. Diagnostic plots for GPD fit to daily negative returns on S&P 500
index.

estimates £ for threshold values starting at 90th percentile and ending
at the 98th percentile of the data.

Example 31 Estimating the GPD for lower and upper tails of SEP 500
returns

Sometimes it is desirable to estimate the parameters { and S(u) of the
GPD (5.11) separately for the lower and upper tails. This may be done
using the S+FinMetrics/EVANESCE function gpd.tail. In order to com-
pute the MLE, threshold values uiower and wupper must be specified. The
previous analysis found ujower = —1. A guess for the upper threshold may
be obtained from the mean excess plot

> me.sp500 = meplot(spto87)

illustrated in Figure 5.16. For wypper = 1, the plot appears linear with a
positive slope indicating Pareto tail behavior.
The two-tailed MLEs may then be computed using

> gpd.sp500.2tail = gpd.tail(spto87, upper = 1, lower = -1,

+ plot = T)
> class(gpd.sp500.2tail)
[1] "gpd"

> gpd.sp500.2tail
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FIGURE 5.15. Estimates of shape parameter £ for S&P 500 negative returns as
a function of the threshold value w.

Generalized Pareto Distribution Fit --
Total of 6985 observations

Upper Tail Estimated with ml --

Upper Threshold at 1 or 8.533 % of the data
ML estimation converged.

Log-likelihood value: -277.7

Parameter Estimates, Standard Errors and t-ratios:
Value Std.Error t value
xi 0.0415 NA NA
beta 0.5624 NA NA

Lower Tail Estimated with ml --

Lower Threshold at -1 or 8.518 J, of the data
ML estimation converged.

Log-likelihood value: -183.6

Parameter Estimates, Standard Errors and t-ratios:
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Value Std.Error t value
xi 0.0677 NA NA
beta 0.4681 NA NA

The lower tail estimates are the same as in the previous example*. The
upper tail estimates are similar. The optional argument plot=T, produces
qqg-plots of excesses over the specified thresholds versus GPD quantiles
using the estimated lower and upper tail shape parameters. The linear
nature of these plots, given in Figure 5.17, supports the assumption that
the lower and upper excesses have GPD distributions.

Example 32 FEstimating the GPD for the Danish fire loss data

The mean excess plot in Figure 5.13 suggests a threshold value of u = 10.
The MLEs of the GPD parameters for the Danish fire loss data using a high
threshold of 10 million Krone are computed using

> gpd.danish.10 = gpd(danish, threshold=10)
> gpd.danish.10
Generalized Pareto Distribution Fit --

4Currently, the function gpd.tail does not compute the estimated covariance matrix
for the estimated parameters. To get standard errors, use the function gpd on both tails
separately.
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Total of 2167 observations

Upper Tail Estimated with ml --

Upper Threshold at 10 or 5.03 % of the data
ML estimation converged.

Log-likelihood value: -374.9

Parameter Estimates, Standard Errors and t-ratios:
Value Std.Error t value
xi 0.4970 0.1363 3.6467
beta 6.9755 1.1135 6.2645

The estimate of £ shows heavy tails and suggests that the variance may
not be finite. The diagnostic plots in Figure 5.18, created using

> par(mfrow=c(1,2))
> tailplot(gpd.danish.10)
> shape(danish)

show that the GPD fits the data well and that the estimates of £ are fairly
stable for a wide range of threshold values.
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FIGURE 5.18. Diagnostic plots from GPD fit to Danish fire loss data.

5.3.4 Risk Measures

As mentioned in the introduction to this section, two common risk measures
are Value-at-Risk (VaR) and expected shortfall (ES). VaR is a high quantile
of the loss distribution. That is, for 0.95 < ¢ < 1, say, VaR, is the gth
quantile of the distribution F’

VaR, = F!(q) (5.19)

where F'~! is the inverse of F. For a given probability ¢ > F(u), an estimate
of (5.19) based on inverting the tail estimation formula (5.18) is

__ : -
VaR, = u + @ ((%(1 - q)) - 1) (5.20)
Expected shortfall is the expected loss size, given that VaR, is exceeded
ES, = E[X|X > VaR,] (5.21)
The measure ES, is related to VaR, via

ES, = VaR, + E[X — VaR,|X > VaR,). (5.22)

where the second term in (5.22) is simply the mean of the excess distri-
bution Fyagr,(y) over the threshold VaR,. By the translation property of
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the GPD distribution, the GPD approximation to Fyvur,(y) has shape pa-
rameter { and scale parameter §(u) + {(VaR, — u). Consequently, using
(5.13)

B(u) + &(VaRy — u)
1-¢
provided ¢ < 1. Combining (5.23) with (5.20) and substituting into (5.22)

gives the GPD approximation to ES,

E[X — VaRy|X > VaR,] = (5.23)

T S '

Example 33 Computing VaR and ES for negative SEP 500 returns

The S+FinMetrics/EVIS function riskmeasures computes estimates of
VaR, and ES; based on the GPD approximations (5.20) and (5.24), re-
spectively, using the information from a “gpd” object. For example, the
VaR, and ES, estimates for the negative S&P 500 negative returns for
q = 0.95,0.99 are computed using

> riskmeasures(gpd.sp500.1, p = ¢(0.95,0.99))
p quantile sfall

[1,]1 0.95 1.2539 1.7744

[2,] 0.99 2.0790 2.659%4

That is, with 5% probability the daily return could be as low as —1.254%
and, given that the return is less than 1.254%, the average return value is
—1.774%. Similarly, with 1% probability the daily return could be as low
as —2.079% with an average return of —2.659% given that the return is
less than —2.079%.

It is instructive to compare these results to those based on the assump-
tion of normally distributed returns. Using the formulas (5.8) and (5.9),
estimates of VaR, and ES, for ¢ = 0.95,0.99 may be computed using the
following function

riskmeasures.normal <- function(data,p=c(0.95,0.99)) {
mu = colMeans(data)
sd = colStdevs(data)
q = mu + sd*qgnorm(p)
sq = (q - mu)/sd
sf = mu + sd*dnorm(sq)/(1 - pnorm(sq))
cbind(p, quantile = q, sfall = sf)

}

> riskmeasures.normal (-spto87)
p quantile sfall

[1,] 5 1.299051 1.635526

2,] 9 1.847814 2.120681

0.9
2,1 0.9
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FIGURE 5.19.

The estimates of VaR, and ES, based on the normal distribution are fairly
close to the estimates based on the GPD for ¢ = 0.95. For ¢ = 0.99, VaR,
and ES, based on the normal distribution are a bit smaller than the values
based on the GPD.

Estimates and asymptotically valid confidence intervals for VaR, and
ES; may be computed using the S+FinMetrics/EVIS function gpd.q and
gpd.sfall, respectively. Wald-type confidence intervals based on the delta
method or likelihood ratio-type confidence intervals based on the profile
log-likelihood function may be computed, and these confidence intervals
may be visualized on a plot with the tail estimate (5.18). First create plot
of the excess distribution using the S+FinMetrics/EVIS function tailplot

> tailplot(gpd.sp500.1)

After the plot has been created, the asymptotic confidence intervals for
VaR, and ES, may be added using

> gpd.q(0.99,plot=T)
> gpd.sfall(0.99,plot=T)

The combined plots are illustrated in Figure 5.19.

Notice the slightly asymmetric confidence interval for ES g9. This result
is due to the uncertainty created by only a few observations in the extreme
tails of the distribution.
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The sensitivity of the VaR, estimates to changes in the threshold u may
be investigated using the S+FinMetrics/EVIS function quant. For exam-
ple, to see how the VaR g9 estimates vary with u, use

> quant (-spto87,p=0.99)

which produces the graph in Figure 5.20.
The VaR g9 estimates are stable for u < 2.

5.4 Hill’s Non-parametric Estimator of Tail Index

The shape parameter £, or equivalently, the tail index a = 1/¢, of the GEV
and GPD distributions (5.2) and (5.11) may be estimated non-parametrically
in a number of ways. A popular method due to Hill (1975) applies to the
case where £ > 0 (o > 0) so that the data is generated by some fat-tailed
distribution in the domain of attraction of a Fréchet type GEV. To describe
the Hill estimator, consider a sample of losses X1,..., Xt and define the
order statistics as
Xy 2 X 22X

For a positive integer k, the Hill estimator of £ is defined as

k
AHIH 1
=z Z log X(;) — log X 1)) (5.25)
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and the Hill estimator of « is

M (ky = 1/6M () (5.26)

The Hill estimators of £ and a depend on the integer k. Notice that k in
(5.26) plays the same role as k in (5.17) for the analysis of the GPD. It can
be shown that if F is in the domain of attraction of a GEV distribution,
then éHln(k:) converges in probability to & as k — oo and % — 0, and that

~Hill
' (k) is asymptotically normally distributed with asymptotic variance

SHill IS

avar(§ (k) = =+

By the delta method, dHiH(k;) is asymptotically normally distributed with
asymptotic variance

avar(aM (k) = ~

L Hill ;
In practice, the Hill estimators & (k) or @™ (k) are often plotted against
k to find the value of k such that the estimator appears stable.

5.4.1 Hill Tail and Quantile Estimation

Suppose that the loss distribution F' is such that 1 — F(x) = 2~ *L(x) with
a = 1/§ > 0, where L(x) is a slowly varying function. Let > X(p41)
where X(j 1) is a high order statistic. Then the Hill estimator of F(x) is
given by

7&Hill(k)
FHIy =1 — k < a ) x> Xgy) (5.27)
X(k+1))

Inverting the Hill tail estimator (5.27) gives the Hill quantile estimator

SHill
n —£

i (k)

Fgre = X(er1) — Xht) ((k (1- Q)) - 1) (5.28)
where ¢ > 1 —k/n. The Hill quantile estimator (5.28) is very similar to the
ML GPD quantile estimator (5.20) with u = X (1)

Example 34 Nonparametric estimation of & for Danish fire loss data

The Hill estimates of «, £ and the quantile z,; may be computed and
plotted using the S+FinMetrics/EVIS function hill. The arguments ex-
pected by hill are
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> args(hill)

function(data, option = "alpha", start = 15, end = NA,
p =NA, ci = 0.95, plot = T, reverse = F,

auto.scale = T, labels =T, ...)

where data is a univariate numeric vector or “timeSeries”, option de-
termines if o (“alpha”), £ (“xi”) or x4k (“quantile”) is to be computed,
start and end specify the starting and ending number of order statistics to
use in computing the estimates, p specifies the probability required when
option=\quantile", ci determines the probability for asymptotic confi-
dence bands, and plot determines if a plot is to be created. To illustrate
the use of hill, consider the computation of (5.25) for the Danish fire loss
data using all of the order statistics less than X(;5)

> hill.danish = hill(danish, option="xi")
> class(hill.danish)

[1] "data.frame"

> names (hill.danish)

[1] "xin "orderStat" "threshold"

The function hill returns a data frame with components xi containing
the estimates of &, orderStat containing the order statistic labels k, and
threshold containing the order statistic or threshold values X (). Since

the default option plot=T is used, hill also produces the plot shown in
~ Hill
Figure 5.21. For k > 120 (X < 9), £ (k) is fairly stable around 0.7.

The GPD estimate of £ with threshold v = 10 is 0.497. The Hill estimates
for threshold values near 10 are

> idx = (hill.danish$threshold >= 9.8 &
+ hill.danish$threshold <= 10.2)
> hill.danish[idx,]

xi orderStat threshold

2059 0.6183 109 9.883
2060 0.6180 108 10.011
2061 0.6173 107 10.072
2062 0.6191 106 10.137
2063 0.6243 105 10.178
2064 0.6285 104 10.185

The 99% quantile estimates (5.28) for 15 < k < 500 are computed using

> hill.danish.q = hill(danish, option="quantile", p=0.99,
+ end=500)

and are illustrated in Figure 5.22.
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6

Time Series Regression Modeling

6.1 Introduction

Time series regression techniques are widely used in the analysis of financial
data and for estimating and testing models for asset prices and returns like
the capital asset pricing model and the arbitrage pricing model. They are
used to uncover and exploit predictive relationships between financial vari-
ables. For example, the predictability of asset returns using valuation ratios
like dividend/price, earnings/price and book/market is usually established
using time series regression techniques, and the resulting regression mod-
els are used to forecast future returns. Time series regression techniques
are also used for testing the informational efficiency of financial markets.
Market efficiency often implies that certain financial variables should not
be predictable based on observable information, and time series regression
techniques may be used to verify efficiency implications.

Regression modeling with financial time series requires some care because
the time series properties of the data can influence the properties of stan-
dard regression estimates and inference methods. In general, standard re-
gression techniques are appropriate for the analysis of 1(0)/stationary data.
For example, asset returns are often treated as stationary and ergodic, and
standard regression techniques are then used to estimate models involving
asset returns. For nonstationary trending data like asset prices, however,
standard regression techniques may or may not be appropriate depending
on the nature of the trend. This chapter discusses regression modeling tech-
niques appropriate for 7(0)/stationary and introduces and illustrates the
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use of various S+FinMetrics functions designed for time series regression
analysis.

The rest of the chapter is organized as follows: Section 6.2 gives an
overview of the linear time series regression model and covers estimation,
goodness of fit, inference and residual diagnostics. Section 6.3 introduces
the S+FinMetrics function OLS that extends the S-PLUS linear model func-
tion 1m to handle general time series regression and illustrates the use of
OLS through examples. Section 6.4 reviews dynamic regression models in-
volving distributed lags of the dependent and explanatory variables and
gives examples of how OLS may be used analyze these models. Section 6.5
discusses heteroskedasticity and autocorrelation consistent coefficient co-
variance matrices and their use in constructing robust standard errors for
estimated regression coefficients. Section 6.6 ends the chapter with a discus-
sion of recursive regression techniques for assessing the parameter stability
of time series regression models.

In this chapter, the technical details of time series regression are kept to
a minimum. Excellent treatments of time series regression models from an
econometric perspective are given in Hamilton (1994) and Hayashi (2000).
Many applications of time series regression to financial data can be found
in Mills (1999).

6.2 Time Series Regression Model
Consider the linear time series regression model
yr=Bo+ iz + -+ B +er =x,8+e, t=1,...,T (6.1)

where x; = (1,214, ..., 25) is a (k4 1) x 1 vector of explanatory variables,
B =(By,B1,---,01) isa (k+1)x1 vector of coefficients, and &; is a random
error term. In matrix form the model is expressed as

y=XB8+e¢ (6.2)

where y and € are (T x 1) vectors and X is a (T x (k + 1)) matrix.
The standard assumptions of the time series regression model are (e.g.,
Hayashi 2000, Chaps. 1 and 2):

e The linear model (6.1) is correctly specified.
o {y:,x;} is jointly stationary and ergodic.

e The regressors x; are predetermined: Elx;se:] = 0 for all s <t and
i=1,...,k.

o FE[x;x}] = Xxx is of full rank k + 1.
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o {x:e:} is an uncorrelated process with finite (k+1) x (k+1) covariance
matrix Ele?x;x}] =S = 0?Sxx.

The second assumption rules out trending regressors, the third rules out
endogenous regressors but allows lagged dependent variables, the fourth
avoids redundant regressors or exact multicolinearity, and the fifth implies
that the error term is a serially uncorrelated process with constant uncondi-
tional variance 2. In the time series regression model, the regressors x; are
random and the error term &; is not assumed to be normally distributed.

6.2.1 Least Squares Estimation

Ordinary least squares (OLS) estimation is based on minimizing the sum
of squared residuals

T T
SSR(B) = > B = Y
t=1 t=1
and produces the fitted model
ye=x\B+¢&, t=1,...,T
where 3 = (X/X)_IX’y and & = y; — ¢ = 3 — X, 3. The error variance is
estimated as 6% = &'¢/(T — k — 1). A
Under the assumptions described above, the OLS estimates (3 are con-

sistent and asymptotically normally distributed. A consistent estimate of
the asymptotic variance of 3, avar(3), is given by!

avar(B) = 6*(X'X) ™" (6.3)

Estimated standard errors for Bl (i =0,...,k), denoted §:\E(Bl), are given
by the square root of the diagonal elements of (6.3).

6.2.2 Goodness of Fit

Goodness of fit is summarized by the R? of the regression

R*=1-

g'e
(y —91)'(y — 1)
1The following convention is used throughout this book. A consistent and asymptot-

ically normal estimator 3 satisfies vT(8 — 3) 4N (0, V) where <, denotes convergence
in distribution. Call V the asymptotic variance of \/T(ﬁ — B) and T~1V the asymptotic

variance of ﬁ Use the notation ﬁ AN (B, T~1V) to denote the asymptotic approximat-
ing distribution of 8 and avar(B) to denote the asymptotic variance T—1V.
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where § is the sample mean of y; and 1 is a (T' x 1) vector of 1’s. R?
measures the percentage of the variability of y; that is explained by the
regressors, X;. The usual R? has the undesirable feature of never decreasing
as more variables are added to the regression, even if the extra variables
are irrelevant. To remedy this, the R? statistic may be adjusted for degrees
of freedom giving
R 1 g'e/(T — k) 5
¢ (y —91)(y —g1)/(T'=1)  Var(y)

The adjusted R?, R2, may decrease with the addition of variables with
low explanatory power. If fact, it can be shown (e.g., Greene 2000, p. 240)
that R2 will fall (rise) when a variable is deleted from the regression if
the absolute value of the t-statistic associated with this variable is greater
(less) than 1.

6.2.3 Hypothesis Testing
The simple null hypothesis

Hoy: B, = ﬁ?
is tested using the t¢-ratio
5. — B9
p=Bizhi (6.4)
SE(8;)

which is asymptotically distributed N (0, 1) under the null. With the addi-
tional assumption of iid Gaussian errors and regressors independent of the
errors for all ¢, B is normally distributed in finite samples and the t-ratio
is distributed Student-t with T'— k — 1 degrees of freedom.

Linear hypotheses of the form

Hy:RB=r (6.5)

where R is a fixed ¢ X (k + 1) matrix of rank ¢ and r is a fixed ¢ x 1 vector
are tested using the Wald statistic
-1

Wald = (R3 — 1)’ [R@(B)R'] (RB 1) (6.6)

Under the null, the Wald statistic is asymptotically distributed x?(g). Un-
der the additional assumption of iid Gaussian errors and regressors inde-
pendent of the errors for all ¢, Wald/q is distributed F'(¢,T —k—1) in finite
samples.

The statistical significance of all of the regressors excluding the constant
is captured by the F-statistic

Rk
- R/(T— k1)

F:
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which is distributed F'(k,T —k — 1) under the null hypothesis that all slope
coefficients are zero and the errors are 7¢d Gaussian.

6.2.4 Residual Diagnostics

In the time series regression models, several residual diagnostic statistics
are usually reported along with the regression results. These diagnostics
are used to evaluate the validity of some of the underlying assumptions of
the model and to serve as warning flags for possible misspecification. The
most common diagnostic statistics are based on tests for normality and
serial correlation in the residuals of (6.1).

The most common diagnostic for serial correlation based on the esti-
mated residuals &; is the Durbin- Watson statistic

T ~ ~
pw = =2 = &)

T .2
D1 &t

It is easy to show that DW = 2(1 — p), where p is the estimated correlation
between and &; and é;—;. Hence, values of DW range between 0 and 4.
Values of DW around 2 indicate no serial correlation in the errors, values
less than 2 suggest positive serial correlation, and values greater than 2
suggest negative serial correlation?. Another common diagnostic for serial
correlation is the Ljung-Box modified Q statistic discussed in Chapter 3.

Although error terms in the time series regression model are not as-
sumed to be normally distributed, severe departures from normality may
cast doubt on the validity of the asymptotic approximations utilized for
statistical inference especially if the sample size is small. Therefore, an-
other diagnostic statistic commonly reported is the Jarque-Bera test for
normality discussed in Chapter 3.

6.3 Time Series Regression Using the
S+FinMetrics Function OLS

Ordinary least squares estimation of the time series regression model (6.1)
in S-PLUS is carried out with the S+FinMetrics function OLS. OLS extends
the S-PLUS linear model function 1m to handle time series regression in a

2The DW statistic is an optimal test only for the special case that e; in (1) follows
an AR(1) process and that the regressors x; are fixed. Critical values for the bounding
distribution of DW in this special case are provided in most econometrics textbooks.
However, in practice there is often little reason to believe that e; follows an AR(1)
process and the regressors are rarely fixed and so the DW critical values are of little
practical use.



186 6. Time Series Regression Modeling

more natural way. The arguments expected by OLS are similar to those for
1m:

> args(0OLS)
function(formula, data, weights, subset, na.rm = F, method
= "gr", contrasts = NULL, start = NULL, end = NULL,...)

The main arguments are formula, which is an S-PLUS formula with
the response variable(s) on the left hand side of the ~ character and the
response variables separated by + on the right hand side?, and data, which
is “timeSeries” or data frame in which to interpret the variables named in
the formula and subset arguments. The other arguments will be explained
and their use will be illustrated in the examples to follow.

The function OLS produces an object of class “OLS” for which there are
print, summary, plot and predict methods as well as extractor func-
tions coefficients (coef), residuals (resid), fitted.values (fitted),
vcov and IC. The extractor functions coef, resid and fitted are com-
mon to many S-PLUS model objects. Note that if “timeSeries” objects
are used in the regression then the extracted residuals and fitted values
are also “timeSeries” objects. The extractor functions vcov, which ex-
tracts zﬁEr(B), and IC, which extracts information criteria, are specific to
S+FinMetrics model objects and work similarly to the extractor functions
vcov and AIC from the MASS library.

There are several important differences between 1m and OLS. First, the
argument formula is modified to accept lagged values of the dependent
variable through the use of AR terms and lagged values of regressors through
the use of the S+FinMetrics functions tslag and pdl. Second, subset re-
gression for “timeSeries” data is simplified through the use of the start
and end options. Third, summary output includes time series diagnostic
measures and standard econometric residual diagnostic tests may be com-
puted from OLS objects. Fourth, heteroskedasticity consistent as well as
heteroskedasticity and autocorrelation consistent coefficient covariance ma-
trices may be computed from OLS objects.

The use of OLS for time series regression with financial data is illustrated
with the following examples

Example 35 FEstimating and testing the capital asset pricing model

The famous Capital Asset Pricing Model (CAPM) due to Sharpe, Litner
and Mosen is usually estimated using the excess return single index model

Rig — 7yt ZOéi—Fﬂi(RMt—’r‘ft)—Fé‘it, i=1,...,.N;t=1,...,T (6.7)

where R;; is the return on asset i (i = 1,...,N) between time periods
t — 1 and t, Rps is the return on a market index portfolio between time

3See Chapter 1 for details on specifying formulas in S-PLUS.
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periods ¢ — 1 and ¢, 74 denotes the rate of return between times ¢t — 1 and
t on a risk-free asset, and g;; is a normally distributed random error such
that e;; ~ GWN(0,0?). The market index portfolio is usually some well
diversified portfolio like the S&P 500 index, the Wilshire 5000 index or the
CRSP* equally or value weighted index. In practice, 7 is taken as the T-
bill rate to match the investment horizon associated with R;;. The CAPM
is an equilibrium model for asset returns and, if Ry, is the value-weighted
portfolio of all publicly traded assets, it imposes the relationship

B[R] — gt = Bi(E[Ryme] — re).

In other words, the above states that the risk premium on asset ¢ is equal
to its beta, (;, times the risk premium on the market portfolio. Hence,
B; is the appropriate risk measure for asset ¢. In the excess returns single
index model, the CAPM imposes the testable restriction that a; = 0 for
all assets.

The intuition behind the CAPM is as follows. The market index Ry
captures “macro” or market-wide systematic risk factors that affect all re-
turns in one way or another. This type of risk, also called covariance risk,
systematic risk and market risk, cannot be eliminated in a well diversified
portfolio. The beta of an asset captures the magnitude of this nondiversifi-
able risk. The random error term &;; represents random “news” that arrives
between time ¢ — 1 and ¢ that captures “micro” or firm-specific risk factors
that affect an individual asset’s return that are not related to macro events.
For example, ¢;; may capture the news effects of new product discoveries
or the death of a CEQO. This type of risk is often called firm specific risk,
idiosyncratic risk, residual Tisk or non-market risk. This type of risk can be
eliminated in a well diversified portfolio. The CAPM says that in market
equilibrium the risk premium on any asset is directly related to the mag-
nitude of its nondiversifiable risk (beta). Diversifiable risk is not priced;
i.e., diversifiable risk does not command a risk premium because it can be
eliminated by holding a well diversified portfolio.

In the CAPM, the independence between Ry and e;; allows the un-
conditional variability of an asset’s return R;; to be decomposed into the
variability due to the market index, ﬁfo?w, plus the variability of the firm
specific component, o7. The proportion of the variance R;; explained by
the variability in the market index is the usual regression R? statistic. Ac-
cordingly, 1 — R? is then the proportion of the variability of R;; that is due
to firm specific factors. One can think of R? as measuring the proportion
of risk in asset ¢ that cannot be diversified away when forming a portfolio
and 1 — R? as the proportion of risk that can be diversified away.

4CRSP refers to the Center for Research in Security Prices at the University of
Chicago.
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Estimating the CAPM Using the S+FinMetrics Function OLS

Consider the estimation of the CAPM regression (6.7) for Microsoft us-
ing monthly data over the ten year period January 1990 through January
2000. The S&P 500 index is used for the market proxy, and the 30 day
T-bill rate is used for the risk-free rate. The S+FinMetrics “timeSeries”
singleIndex.dat contains the monthly price data for Microsoft, and the
S&P 500 index and the “timeSeries” rf.30day contains the monthly 30
day T-bill rate. The excess return data are created using

> collds(singleIndex.dat)

[1] "MSFT" "SP500"

> collds(rf.30day)

[1] "RF"

ret.ts = getReturns(singleIndex.dat, type="continuous")
excessRet.ts = seriesMerge(ret.ts,log(1l+rf.30day))
excessRet.ts[,"MSFT"] = excessRet.ts[,"MSFT"] -
excessRet.ts[,"RF"]

excessRet.ts[,"SP500"] = excessRet.ts[,"SP500"] -
excessRet.ts[,"RF"]

excessRet.ts = excessRet.ts[,1:2]

vV + V + V VvV V

Time plots and a scatterplot of the excess returns created by

par (mfrow=c(2,1))

plot(excessRet.ts, plot.args=list(lty=c(1,3)),

main="Monthly excess returns on Microsoft and S&P 500 Index")
legend(0, -0.2, legend=c("MSFT","S&P 500"), lty=c(1,3))
plot(seriesData(excessRet.ts[,"SP500"]),
seriesData(excessRet.ts[,"MSFT"]),

main="Scatterplot of Returmns",

x1lab="SP500", ylab="MSFT")

+ + + VvV V 4+ Vv V

are given in Figure 6.1. The returns on Microsoft and the S&P 500 index
appear stationary and ergodic and tend to move in the same direction over
time with the returns on Microsoft being more volatile than the returns on
the S & P 500 index. The estimate of the CAPM regression for Microsoft
using OLS is:

> ols.fit = OLS(MSFT~SP500, data=excessRet.ts)
> class(ols.fit)
[1] "oLS"

OLS produces an object of class “OLS” with the following components

> names(ols.fit)
[1] "R" "coef" "df .resid" "fitted"
[6] "residuals" "assign" "contrasts" "ar.order"
[9] "terms" "call"
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Monthly excess returns on Microsoft
and S&P 500 Index
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FIGURE 6.1. Monthly excess returns on Microsoft and the S&P 500 index.

The results of the OLS fit are displayed using the generic print and
summary methods. The print method produces minimal output:

> ols.fit
Call:
OLS(formula = MSFT ~SP500, data = excessRet.ts)

Coefficients:
(Intercept) SP500
0.0128 1.5259

Degrees of freedom: 131 total; 129 residual
Time period: from Feb 1990 to Dec 2000
Residual standard error: 0.09027

Notice that since the object specified in data is a “timeSeries”, the start
and end dates of the estimation sample are printed. The summary method
produces the standard econometric output:

> summary(ols.fit)
Call:
OLS(formula = MSFT ~SP500, data = excessRet.ts)

Residuals:
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Min 1Q Median 3Q Max
-0.3835 -0.0566 0.0023 0.0604 0.1991

Coefficients:
Value Std. Error t value Pr(>|t|)
(Intercept) 0.0128 0.0080 1.6025 0.1115
SP500 1.5259 0.1998 7.6354 0.0000

Regression Diagnostics:

R-Squared 0.3113
Adjusted R-Squared 0.3059
Durbin-Watson Stat 2.1171

Residual Diagnostics:
Stat P-Value
Jarque-Bera 41.6842 0.0000
Ljung-Box 11.9213 0.9417

Residual standard error: 0.09027 on 129 degrees of freedom
Time period: from Feb 1990 to Dec 2000

F-statistic: 58.3 on 1 and 129 degrees of freedom, the
p-value is 4.433e-012

The estimated value for § for Microsoft is 1.526 with an estimated stan-

dard error gl\*](ﬂ) = 0.200. An approximate 95% confidence interval for (3
is B+ 2 S/E(B) = [1.126, 1.926], and so Microsoft is judged to be riskier
than the S&P 500 index. The estimated value of a is 0.013 with an esti-
mated standard error of SE(&) = 0.008. An approximate 95% confidence
interval for o is & £ 2- S:]:](éz) = [-0.003,0.029]. Since o = 0 is in the confi-
dence interval the CAPM restriction hold for Microsoft. The percentage of
nondiversifiable (market specific) risk is R? = 0.31 and the percentage of
diversifiable (firm specific) risk is 1 — R? = 0.69. The estimated magnitude
of diversifiable risk is & = 0.090 or 9% per month. Notice that the Jarque-
Bera statistic indicates that the residuals from the CAPM regression are
not normally distributed. The DW and Ljung-Box statistics, however, in-
dicate that the residuals are serially uncorrelated (at least at the first lag).

The extractor functions for an “0LS” object are used to extract the vec-
tors of estimated coefficients B, fitted values ¥, residuals & and asymptotic

variance matrix avar(3) :

> coef(ols.fit)
(Intercept) SP500
0.01281 1.526
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> fitted(ols.fit) [1:3]
Positions 1
Feb 1990 0.01711
Mar 1990 0.03965
Apr 1990 -0.03927

> resid(ols.fit) [1:3]
Positions 1
Feb 1990 0.04258
Mar 1990 0.06868
Apr 1990 0.07870

> vcov(ols.fit)
(Intercept) SP500
(Intercept) 0.00006393 -0.0002618
SP500 -0.00026181 0.0399383

191

Notice that to use the extractor functions residuals and fitted.values
one only has to type resid and fitted. Since the data used for estimation
is a “timeSeries” object, the extracted residuals and fitted values are also

“timeSeries” objects.

To illustrate the use of the extractor functions, the t-statistics for testing

the null hypothesis that the intercept is zero and the slope is unity are

> (coef(ols.fit)-c(0,1))/sqrt(diag(vcov(ols.fit)))
(Intercept) SP500
1.603 2.631

and summary statistics for the residuals using the S+FinMetrics function

summaryStats are

> summaryStats(residuals(ols.fit))
Sample Quantiles:
min 1Q median 3Q max
-0.3835 -0.05661 0.002342 0.06037 0.1991
Sample Moments:
mean std skewness kurtosis

-7.204e-018 0.08993 -0.7712 5.293

Number of Observations: 131

Testing Linear Restrictions

The CAPM regression (6.7) in matrix form is (6.2) with x; = (1, Rase—7 1)’
and B = («a, 8)’. Consider testing the joint null hypothesis Hy : @ = 0 and



192 6. Time Series Regression Modeling

B = 1. This hypothesis imposes two linear restrictions on the parameter
vector B = (a, 8)’ that may be written in the form (6.5) with

(1) (1)

The Wald statistic (6.6) may be computed directly as

Rmat = diag(2)

rvec c(0,1)

bhat = coef(ols.fit)

avarRbhat = Rmat}*),vcov(ols.fit)%*Jt (Rmat)
wald.stat =

t (Rmat%*%bhat-rvec)%*%solve (avarRbhat) %*% (Rmat*%bhat-rvec)
as.numeric(wald.stat)

[1] 11.17

> p.value = 1 - pchisq(wald.stat,2)

> p.value

[1] 0.003745

V + V V V Vv VvV

The small p-value suggests that null Hy : « = 0 and § = 1 should be
rejected at any reasonable significance level. The F-statistic version of the
Wald statistic based on normal errors is

> F.stat = wald.stat/2

> p.value = 1 - pf(F.stat,2,0ls.fit$df.resid)
> p.value

[1] 0.004708

and also suggests rejection of the null hypothesis.

The F-statistic version of the Wald statistic for general linear restrictions
of the form (6.5) may be conveniently computed using the S+FinMetrics
function waldTest. For example,

> waldTest(ols.fit,Intercept==0,SP500==1)
Wald Test of Coefficients:

Null Hypothesis: constraints are true
Test Statistic: 5.587
Dist. under Null: F with ( 2 , 129 ) degrees of freedom
P-value: 0.004708

produces the F-statistic version of the Wald test for the null hypothesis Hy :
a =0 and § = 1. Notice how the restrictions under the null being tested
are reflected in the call to waldTest. More complicated linear restrictions
like Hy : o+ 28 = 2 are also easily handled

> waldTest(ols.fit,Intercept-2xSP500==2)
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Wald Test of Coefficients:

Null Hypothesis: constraints are true
Test Statistic: 157.8
Dist. under Null: F with ( 1 , 129 ) degrees of freedom
P-value: O

Likelihood ratio (LR) statistics for testing linear hypotheses may also
be computed with relative ease since the OLS estimates are the maximum
likelihood estimates assuming the errors have a normal distribution. The
log-likelihood value of the OLS fit assuming normal errors may be extracted
using the S+FinMetrics function IC. For example, the log-likelihood for the
unrestricted CAPM fit is

> IC(ols.fit, "loglike")
[1] 130.2

Consider testing the CAPM restriction Hy : @ = 0 using a LR statistic.
The restricted OLS fit, imposing « = 0, is computed using

> ols.fit2 = OLS(MSFT~SP500-1,data=excessRet.ts)
The LR statistic is then computed as

> LR = -2*(IC(ols.fit2,"loglike")-IC(ols.fit,"loglike"))
> LR

[1] 2.571

> 1 - pchisq(LR,1)

[1] 0.1089

Given the p-value of 0.109, the CAPM restriction is not rejected at the 10%
significance level.

Graphical Diagnostics

Graphical summaries of the OLS fit are produced with the generic plot
function. By default, plot produces a menu of plot choices:

> plot(ols.fit)
Make a plot selection (or O to exit):

: plot: all

: plot: response vs fitted values

: plot: response and fitted values
: plot: normal QQ-plot of residuals
: plot: residuals

: plot: standardized residuals

: plot: residual histogram

: plot: residual ACF

00 ~NO O WN -
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Plot Function | Description

xygPlot Trellis xyplot with grid and strip.text options

rviPplot Trellis response vs. fitted plot with grid and
strip.text options

rafPlot Trellis plot of response and fitted values

histPlot Trellis density estimate with strip.text options

qqPlot Trellis QQ-plot with grid and strip.text options

residPlot Trellis plot of residuals

acfPlot Trellis ACF plot

TABLE 6.1. S+FinMetrics utility Trellis plotting functions

9: plot: residual PACF
10: plot: residual~2 ACF
11: plot: residual”2 PACF
Selection:

The plot choices are different from those available for “1m” objects and focus
on time series diagnostics. All plots are generated using Trellis graphics®.
Table 6.1 summarizes the utility plot functions used to create the various
OLS plots. See the help files for more information about the plot functions.
Figures 6.2 and 6.3 illustrate plot choices 3 (response and fitted) and 8
(residual ACF). From the response and fitted plot, it is clear that the
return on the S&P 500 index is a weak predictor of return on Microsoft.
The residual ACF plot indicates that the residuals do not appear to be
autocorrelated, which supports the results from the residual diagnostics
reported using summary.

Individual plots can be created directly, bypassing the plot menu, using
the which.plot option of plot.OLS. For example, the following command
creates a normal qqg-plot of the residuals:

> plot(ols.fit,which.plot=3)

Notice that number used for the qqg-plot specified by which.plot is one
less than the value specified in the menu. The qq-plot may also be created
by calling the Trellis utility plot function qgPlot directly:

> ggqPlot(resid(ols.fit), strip.text="ols.fit",
+ xlab="Quantile of Standard Normal",
+ ylab="Residuals",main="Normal QQ Plot")

Residual Diagnostics

The residual diagnostics reported by summary may be computed directly
from an “OLS” object. The normalTest and autocorTest functions in

5Unfortunately, the Trellis plots cannot be easily combined into multipanel plots.
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Response and Fitted Values
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FIGURE 6.2. Response and fitted values from the OLS fit to the CAPM regression
for Microsoft.

Residual Autocorrelation
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FIGURE 6.3. Residual ACF plot from the OLS fit to the CAPM regression for
Microsoft.
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S+FinMetrics may be used to compute test statistics for normality and
autocorrelation from the residuals of an OLS fit. For example, to compute
the Jarque-Bera normality test and the Ljung-Box test from the residuals
of the CAPM regression use

> normalTest (ols.fit,method="jb")

Test for Normality: Jarque-Bera

Null Hypothesis: data is normally distributed
Test Statistics:

Test Stat 41.68
p.value 0.00

Dist. under Null: chi-square with 2 degrees of freedom
Total Observ.: 131

> autocorTest(ols.fit,method="1b")
Test for Autocorrelation: Ljung-Box
Null Hypothesis: no autocorrelation
Test Statistics:

Test Stat 11.9213
p.value 0.9417

Dist. under Null: chi-square with 21 degrees of freedom
Total Observ.: 131

The Durbin-Watson statistic may be recovered using the S-PLUS function
durbinWatson as follows

> durbinWatson(residuals(ols.fit))
Durbin-Watson Statistic: 2.117063
Number of observations: 131

The Breusch-Godfrey LM test for residual autocorrelation may be com-
puted using autocorTest by specifying method=\1m". For example, to
compute the LM statistic for the null of no autocorrelation against the
alternative of serial correlation up to lag two use

> autocorTest(ols.fit,method="1m",lag.n=2)
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Test for Autocorrelation: Breusch-Godfrey LM
Null Hypothesis: no autocorrelation
Test Statistics:

Test Stat 2.9768
p.value 0.2257

Dist. under Null: chi-square with 2 degrees of freedom
Total Observ.: 131

Consistent with the Ljung-Box test, the LM test indicates no residual au-
tocorrelation.

Subset Regression

The estimated [ for Microsoft uses all of the data over the 11 year period
from January 1990 to December 2000. It is generally thought that 5 does
not stay constant over such a long time period. To estimate [ using only
the most recent five years of data the start option of OLS may be utilized

> OLS(MSFT~SP500, data=excessRet.ts,
+ start="Jan 1996", in.format="%m %Y")

Call:
OLS(formula = MSFT ~SP500, data = excessRet.ts, start =
"Jan 1996", in.format = "%m %Y")

Coefficients:
(Intercept) SP500
0.0035 1.7828

Degrees of freedom: 60 total; 58 residual
Time period: from Jan 1996 to Dec 2000
Residual standard error: 0.1053

Notice that date string passed to start uses the same display format as
the “timeDate” objects in the positions slot of excessRet.ts, and that
this format is specified directly using in.format="%m %Y". Estimation over
general sub-periods follows by specifying both the start date and the end
date of the sub-period in the call to OLS.

Regression estimates may be computed over general subsets by using the
optional argument subset to specify which observations should be used in
the fit. Subsets can be specified using a logical vector (which is replicated
to have length equal to the number of observations), a numeric vector
indicating the observation numbers to be included, or a character vector of
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the observation names that should be included. For example, to estimate
the CAPM only for the observations for which the excess return on the
S&P 500 is positive, use

> OLS(MSFT~SP500, data=excessRet.ts, subset=(SP500>=0))
Call:

OLS(formula = MSFT ~“SP500, data = excessRet.ts, subset = (
SP500 >= 0))

Coefficients:
(Intercept) SP500
0.0231 1.3685

Degrees of freedom: 80 total; 78 residual
Residual standard error: 0.08341

Regression with Dummy Variables

In the analysis of asset returns, it is often noticed that excess returns are
higher in January than in any other month. To investigate this claim, a
dummy variable is created which equals 1 if the month is January and 0
otherwise:

> is.Jan = (months(positions(excessRet.ts))=="Jan")
> Jan.dum = timeSeries(pos=positions(excessRet.ts),
+ data=as.integer(is.Jan))

Next, the January dummy variable is added to the time series of excess
returns:

> newdat.ts = seriesMerge(excessRet.ts,Jan.dum)
> collds(newdat.ts)[3] = "Jan.dum"

The CAPM regression allowing for a different intercept in January is
> summary (OLS(MSFT~SP500+Jan.dum, data=newdat.ts))

Call:
OLS(formula = MSFT ~“SP500 + Jan.dum, data = newdat.ts)

Residuals:
Min 1Q Median 3Q Max
-0.3804 -0.0532 0.0065 0.0604 0.2032

Coefficients:
Value Std. Error t value Pr(>|t])
(Intercept) 0.0090 0.0082 1.0953 0.2755
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SP500 1.5085 0.1986 7.5972 0.0000
Jan.dum 0.0513 0.0295 1.7371 0.0848

Regression Diagnostics:

R-Squared 0.3271
Adjusted R-Squared 0.3166
Durbin-Watson Stat 2.0814

Residual Diagnostics:
Stat P-Value
Jarque-Bera 43.4357 0.0000
Ljung-Box 12.1376 0.9358

Residual standard error: 0.08958 on 128 degrees of freedom
Time period: from Feb 1990 to Dec 2000

F-statistic: 31.11 on 2 and 128 degrees of freedom, the
p-value is 9.725e-012

The coefficient on the January dummy is positive and significant at the 9%
level indicating that excess returns are slightly higher in January than in
other months. To allow for a different intercept and slope in the regression,
use

> summary (OLS (MSFT~SP500*Jan.dum, data=newdat.ts))

Call:
OLS(formula = MSFT “SP500 * Jan.dum, data = tmpl.ts)

Residuals:
Min 1Q Median 3Q Max
-0.3836 -0.0513 0.0047 0.0586 0.2043

Coefficients:
Value Std. Error t value Pr(>|t])
(Intercept) 0.0095 0.0082 1.1607 0.2479
SP500 1.4307 0.2017 7.0917 0.0000
Jan.dum 0.0297 0.0317 0.9361 0.3510
SP500:Jan.dum 1.6424 0.9275 1.7707 0.0790

Regression Diagnostics:

R-Squared 0.3433
Adjusted R-Squared 0.3278
Durbin-Watson Stat 2.0722
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Residual Diagnostics:
Stat P-Value
Jarque-Bera 51.4890 0.0000
Ljung-Box 12.7332 0.9177

Residual standard error: 0.08884 on 127 degrees of freedom
Time period: from Feb 1990 to Dec 2000

F-statistic: 22.13 on 3 and 127 degrees of freedom, the
p-value is 1.355e-011

Notice that the formula uses the short-hand notation A*B = A+B+A:B.
Interestingly, when both the slope and intercept are allowed to be different
in January only the slope is significantly higher.

Predictions

Predictions or forecasts from an OLS fit may be computed using the generic
predict function. For example, consider computing forecasts of the excess
return on Microsoft conditional on specified values for the S&P 500 excess
return based on the CAPM fit. The excess returns on the S&P 500 for the
conditioinal forecasts are

> sp500.new = data.frame(c(-0.2,0,2))
> colIds(sp500.new) = "SP500"

These new data values must be in a data frame with the same name as
the variable containing the S&P 500 data in excessRet.ts. The forecasts
are computed using

> ols.pred = predict(ols.fit,n.predict=3,newdata=sp500.new)
> class(ols.pred)

[1] "forecast"

> ols.pred

Predicted Values:

[1] -0.2924 0.0128 3.0646

The result of predict is an object of class “forecast” for which there
are print, summary and plot methods. The print method shows just the
forecasts. The summary method shows the forecasts and forecast standard
errors (ignoring parameter estimation error)

> summary(ols.pred)
Predicted Values with Standard Errors:

prediction std.err
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FIGURE 6.4. Conditional forecasts for the excess returns on Microsoft from the
CAPM regression.

1-step-ahead -0.2924 0.0903
2-step-ahead 0.0128 0.0903
3-step-ahead 3.0646 0.0903

To view the forecasts and standard error band along with the historical
data use

> plot(ols.pred, xold=excessRet.ts[,1], n.old=5, width=2)

The argument xold contains the historical data for the response variable,
n.old determines how many historical observations to plot along with the
forecasts and width specifies the multiplier for the forecast standard errors
in the construction of the error bands. The created plot is illustrated in
Figure 6.4.

6.4 Dynamic Regression

Often the time series regression model (6.1) contains lagged variables as
regressors to capture dynamic effects. The general dynamic time series
regression model contains lagged values of the response variable y; and
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lagged values of the exogenous stationary regressors x1iy, . .., Tt

P a1 ax
Yt = o+ Zﬁbjytfj + Zﬁuxltﬂ' +ot Zﬁijktfj +é (6.8)

j=1 7=0 j=0

where the error term ¢, is assumed to be WN(0,0?). The model (6.8) is
called an autoregressive distributed lag (ADL) model and generalizes an
AR(p) by including exogenous stationary regressors.

The main issues associated with the analysis and interpretation of the
ADL model (6.8) can be illustrated using the following simple ADL model
with a single exogenous variable x;:

Y =+ oY1 + Bore + B1wi—1 + &4 (6.9)

Since z; is assumed to be stationary, and &; ~ WN(0,0?), y; behaves like
an AR(1) process
Yr = a+ ¢yr—1 + wy

where wy = Box: + B12:—1 + €+ is a composite error term. Therefore, the
ADL model (6.9) is stationary provided |¢| < 1. Given that y; is stationary
it has an infinite order moving average representation (impulse response
function) in terms of the composite errors wy

K+ Z¢jwt7j

=0
= pt+w+YPwi_1 +Powe_o 4+ -

Yt

where = 1/(1 — ¢) and ©; = ¢’. Substituting w; = Byxs + Byxe-1 + &
and ¢; = ¢’ into the above moving average representation gives

Yy = p+ (Bome + Brzi—1+ &) + d(Bozi-1 + Brzi—2 +Er-1)
+¢° (Bomi—2 + Brai—s + 1—2) + -
= p+Boxt + (B1 + Bo)xt—1 + ¢(By + #Bo)Tt—2+ -+ (6.10)
+¢" (B + dBo)Ti—j + e+ b1 + POeo +

Using (6.10), the interpretation of the coefficients in (6.9) becomes clearer.
For example, the immediate impact multiplier is the impact of a change in
Ty on Y
Oy _
8$t n

The first lag multiplier is the impact of a change in x;_1 on y;

Bo

Oyt _
axt_l - ﬁl + (ZS/BO
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which incorporates a feedback effect ¢, due to the lagged response variable
in (6.9). The second lag multiplier is

Oy B
0o B

¢ (B + 9Bo)

and is smaller in absolute value than the first lag multiplier since |¢| < 1.
In general, the kth lag multiplier is
dy. _
—— =" (B + 6Bo)

0z g

Notice that as k — oo, % — 0 so that eventually the effect of a change
in xz; on y; dies out. The long-run effect of a change in x; on y; is defined
as the cumulative sum of all the lag impact multipliers

Ayr | Oy Oy

long- flect =
ong-run etrec Oz, + 92 + D20y +

= Z¢k(5o +B1)

k=0
Bo + 81
1-9¢
The parameter ¢ on y;_1 determines the speed of adjustment between the

immediate impact of x; on y; and the long-run impact. If ¢ = 0, then the
long-run impact is reached in one time period since % =0 for k£ > 1.

In contrast, if ¢ ~ 1, then the long-run impact takes many periods. A
parameter often reported is the half-life of the adjustment; that is, the
lag at which one half of the adjustment to the long-run impact has been
reached. In the simple ADL (6.9), it can be shown that the half-life is equal
to In(2)/In(9).

For the general ADL model (6.8), stationarity of y; requires that all z;;
be stationary and that the roots of the characteristic polynomial ¢(z) =

1 — ¢z — -+ — ¢,2zP = 0 have modulus greater than one. The k immedi-
ate impact multipliers are the coefficients 5, ..., 3, and the k long-run
multipliers are
231'2:0 513‘ Z?k:o 51@‘
== =0, T—6,— 0,

The speed of adjustment to the long-run impacts is determined by the sum
of the coefficients on the lagged responses ¢; + -+ + ¢,,.

Example 36 Estimating a simple dynamic CAPM regression for Microsoft

Consider estimating a simple dynamic version of the CAPM regression

Rig—rpe = a+d(Rig—1 —7pe—1) + Bo(Rare —7pe) + Br(Rare—1 —7pe-1) +€ie
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using the monthly excess return data for Microsoft and the S&P 500 index.
The “short-run beta” for Microsoft is §, and the “long-run beta” is (8, +
B1)/(1 — ¢). The dynamic CAPM estimated using OLS is

> adl.fit = OLS(MSFT”SP500+aI(1)+tslag(SP500),
+ data=excessRet.ts)

In the regression formula, the lagged dependent variable (MSFT) is speci-
fied using the ar (1) term, and the lagged explanatory variable (SP500) is
created using the S+FinMetrics function tslag. The dynamic regression
results are

> summary(adl.fit)

Call:
OLS(formula = MSFT “SP500 + ar(1) + tslag(SP500), data =
excessRet.ts)

Residuals:
Min 1Q Median 3Q Max
-0.3659 -0.0514 0.0059 0.0577 0.1957

Coefficients:
Value Std. Error t value Pr(>|t])
(Intercept) 0.0156 0.0083 1.8850 0.0617
SP500 1.5021 0.2017 7.4474 0.0000
tslag(SP500) -0.0308 0.2453 -0.1257 0.9001
lagl -0.1107 0.0921 -1.2021 0.2316

Regression Diagnostics:

R-Squared 0.3248
Adjusted R-Squared 0.3087
Durbin-Watson Stat 1.9132

Residual Diagnostics:
Stat P-Value
Jarque-Bera 41.5581 0.0000
Ljung-Box 10.5031 0.9716

Residual standard error: 0.0904 on 126 degrees of freedom
Time period: from Mar 1990 to Dec 2000

F-statistic: 20.2 on 3 and 126 degrees of freedom, the
p-value is 9.384e-011
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_ The least squares estimates of dynamic CAPM parameters are & = 0.016,
¢ = —0.111, B, = 1.502 and B; = —0.031. The estimated “short-run beta”
for Microsoft is 1.502 and the estimated “long-run beta” is®

> bhat = coef(adl.fit)
> 1lr.beta = (bhat[2]+bhat[3])/(1-bhat[4])
> 1lr.beta

SP500

1.325

Notice that the “long-run beta” is smaller than the “short-run beta”. How-
ever, since the standard errors on the dynamic terms ¢ and (3, are large
relative to the estimated values, the data do not support the dynamic
CAPM model.

6.4.1 Distributed Lags and Polynomial Distributed Lags
A special case of the general ADL model (6.8) is the distributed lag model

q
y=a+ Y Bimj+e (6.11)
j=0

For simplicity, the model is shown with one exogenous variable z. The
extension to multiple exogenous variables is straightforward. Given the
results of the previous section, 3; is interpreted as the jth lag multiplier,
and the long-run impact on y of a change in z is 23:1 Bj-

Determining the Lag Length

In many applications, the lag length ¢ needs to be long to adequately cap-
ture the dynamics in the data. To determine the lag length, all models with
q < gmax are fit and the preferred model minimizes some model selection
criterion like the Akaike (AIC) or Schwarz (BIC). For the distributed lag
model, the AIC and BIC have the form

AIC(q) = ln(52(q))+%q
BIC(q) = 1n(52(q))+¥q

where &2 (q) is the least squares estimate of 0 without a degrees of freedom
correction. For objects of class “0LS”, S+FinMetrics provides the extractor
function IC to compute the AIC or BIC information criteria.

6Since the “long-run beta” is a nonlinear function of the least squares estimates,
estimated standard errors for the “long-run beta” may be computed using the so-called
“delta method”. See Greene (2000) page 118.
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If the exogenous variable x; is highly persistent, then lagged values
¢y Ti—1,.-.,Ti—q may be highly correlated and problems associated with
near multicollinearity may occur in (6.11)7. In this case, the S+FinMetrics
function collinearTest may be used to diagnose the extent of near multi-
collinearity in the data. The function collinearTest computes either the
condition number for X'X or the variance inflation statistics associated
with each variable.

Example 37 Distributed lag model for U.S. real GDP growth

The S+FinMetrics “timeSeries” policy.dat contains monthly data
on U.S. real GDP and the Federal Funds rate. Consider estimating a dis-
tributed lag model with ¢ = 12 for the growth rate in real GDP using the
Federal Funds rate as an exogenous variable over the period January 1990
to March 1998:

> dl.fit = OLS(diff (log(GDP)) “FFR+tslag(FFR,1:12) ,data=
+ policy.dat, start="Jan 1990",in.format="%m %Y",na.rm=T)

The AIC and BIC information criteria may be extracted using

> IC(dl.fit,type="AIC")

[1] -1271
> IC(dl.fit,type="BIC")
[1] -1235

The model may be re-fit with different values of ¢ and the preferred model
is the one which produces the smallest value of the chosen information
criterion.

The condition number and variance inflation statistics from the least
square fit are

> collinearTest(dl.fit, method="cn")
[1] 311.2
> collinearTest(dl.fit, method="vif")
FFR tslag(FFR, 1:12)lagl tslag(FFR, 1:12)lag2
111.8 278.7 293

tslag(FFR, 1:12)lag3 tslag(FFR, 1:12)lag4
304.9 331.8

tslag(FFR, 1:12)lagb tslag(FFR, 1:12)1lag6
344.9 370.5

tslag(FFR, 1:12)lag7 tslag(FFR, 1:12)lag8

7See Greene (2000) pages 255-259 for a discussion of the problems associated with
near multicollinearity.
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369 390

tslag(FFR, 1:12)1lag9 tslag(FFR, 1:12)1lagl0
389.5 410

tslag(FFR, 1:12)lagll tslag(FFR, 1:12)lagl2
424.5 162.6

The large condition number and variance inflation statistics indicate that
high correlation among the regressors is a potential problem.

6.4.2 Polynomial Distributed Lag Models

The unrestricted distributed lag model (6.11) may produce unsatisfactory
results due to high correlation among the lagged variables. If the sample size
is small and the lag length ¢ is large then these problems are exacerbated.
In these cases, one may want to restrict the behavior of the lag coefficients
f; in (6.11). One popular way to do this is to use the polynomial distributed
lag (PDL) model®. The PDL model specifies that pB; follows a polynomial

B =g+ o1j+ azf® + - + agj? (6.12)

for j = 1,...,q > d. Usually, the order of the polynomial, d, is small.
Whereas the general distributed lag model (6.11) has ¢ lag parameters the
PDL model has only d + 1 lag parameters. To see this more explicitly,
the distributed lag model with p lags under the restriction (6.12) may be
re-written as the linear regression with d variables

Yr = o+ qozor + 121t + - -+ QgRar + E¢ (6.13)

where
q

Zjs = Z Pz (6.14)

i=1
Example 38 PDL model for U.S. real GDP growth

To estimate a PDL model for U.S. GDP growth using the Federal Funds
rate with d = 2 and ¢ = 12 use

> pdl.fit = OLS(diff (log(GDP)) "pdl(FFR,d=2,q=12),
+ data=policy.dat, start="Jan 1990",

+ in.format="%m %Y", na.rm=T)

> pdl.fit

8The PDL model is also known as the Almon lag model.
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Call:
OLS(formula = diff(log(GDP)) ~“pdl(FFR, d = 2, q = 12),
data = policy.dat, na.rm = T, start = "Jan 1990",
in.format = "%m %Y")
Coefficients:
(Intercept) pdl(FFR, d = 2, q = 12)FFR.PDLO
0.0006 -0.0070
pdl1(FFR, d = 2, q = 12)FFR.PDL1
0.0031
pdl(FFR, d = 2, q = 12)FFR.PDL2
-0.0002

Degrees of freedom: 97 total; 93 residual
dropped 1 cases due to missing observations.
Time period: from Feb 1990 to Feb 1998
Residual standard error: 0.0003371

The S+FinMetrics function pdl used in the formula compute the regres-
sors (6.14) for the PDL regression (6.13).

6.5 Heteroskedasticity and Autocorrelation
Consistent Covariance Matrix Estimation

In the time series regression model, the efficiency of the least squares esti-
mates and the validity of the usual formulas for the estimated coefficient
standard errors and test statistics rely on validity of the underlying assump-
tions of the model outlined in the beginning of Section 6.2. In empirical
applications using financial time series, it is often the case that the error
terms €; have non constant variance (heteroskedasticity) as well as auto-
correlation. As long as the regressors x; are uncorrelated with the errors
e the least squares estimates of 3 will generally still be consistent and
asymptotically normally distributed. However, they will not be efficient
and the usual formula (6.3) for computing avar(3) will not be correct. As
a result, any inference procedures based on (6.3) will also be incorrect. If
the form of heteroskedasticity and autocorrelation is known, then efficient
estimates may be computed using a generalized least squares procedure®. If
the form of heteroskedasticity and autocorrelation is not known, it is possi-

9The S-PLUS function gls may be used to compute generalized least squares estimates
using a variety of models for heteroskedasticity and autocorrelation.
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ble to estimate 3@51”(,@) consistently so that valid standard errors and test
statistics may be obtained. This section describes the construction of het-
eroskedasticity and autocorrelation consistent estimates of @(B). First,
the heteroskedasticity consistent estimate of avar(3) due to Eicker (1967)
and White (1980) is discussed and then the heteroskedasticity and auto-

correlation consistent estimate of avar(3) due to Newey and West (1987)
is covered.

6.5.1 The Ficker-White Heteroskedasticity Consistent (HC)
Covariance Matriz Estimate

A usual assumption of the time series regression model is that the errors e,
are conditionally homoskedastic; i.e., E[¢?|X] = % > 0. In many situations
it may be more appropriate to assume that the variance of ¢; is a function
of x; so that g, is conditionally heteroskedastic: Ele?|x;] = o?f(x;) >
0. Formally, suppose the assumptions of the time series regression model
hold but that E[e?x,x}] = S # o°Xx x. This latter assumption allows the
regression errors to be conditionally heteroskedastic and dependent on Xy;
i.e., Ele?|x;] = 0?f(x;). In this case, it can be shown that the asymptotic
variance matrix of the OLS estimate, [3, is

avar(B) = T 25 SE - (6.15)

The above generalized OLS asymptotic variance matrix will not be equal to
the usual OLS asymptotic matrix 0’222_{%)(, and the usual estimate 2@"(,@) =
6%(X’'X)~" will not be correct. Hence, in the presence of heteroskedastic-
ity the usual OLS t-statistics, standard errors, Wald statistics cannot be
trusted.

If the values of f(x;) are known, then the generalized or weighted least
squares (GLS) estimator

Bars = (X'V(X) ' X) ' X'V(X)y,

where V(X) is a (T x T) diagonal matrix with f(x;) along the diagonal,
is efficient.

In most circumstances f(x:) is not known so that the efficient GLS es-
timator cannot be computed. If the OLS estimator is to be used, then a
consistent estimate for the generalized OLS covariance matrix is needed for

proper inference. A heteroskedasticity consistent (HC) estimate of avar((3)
due to Eicker (1967) and White (1980) is

avarge(B) = (X'X) ™ 'Spe(X'X) ! (6.16)
where

T
N 1 R
SHC = m t:E - Efxtxi (617)
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and &; is the OLS residual at time ¢. A
The square root of the diagonal elements of avarpc(3) gives the Eicker-
White heteroskedasticity consistent standard errors (HCSEs) for the least

squares estimates of ;. These are denoted SEHC (ﬁ ). Heteroskedasticity
robust t-statistics and Wald statistics are computed in the usual way using
(6 4) and (6.6) but with avargc(3) and SEHC(/BZ-) replacing avar(3) and
SE(B) respectively.

Example 39 Heteroskedasticity robust inference for the CAPM

Once a model has been fit using OLS, the HC estimate (6.16) may be
extracted using vcov and SEync(f;) may be computed using summary by
specifying the optional argument correction="white" as follows

> ols.fit = OLS(MSFT~SP500, data=excessRet.ts)
> avar.HC = vcov(ols.fit, correction="white")
> summary(ols.fit, correction="white")

Call:
OLS(formula = MSFT ~SP500, data = excessRet.ts)

Residuals:
Min 1Q Median 3Q Max
-0.3835 -0.0566 0.0023 0.0604 0.1991

Coefficients:
Value Std. Error t value Pr(>|t|)
(Intercept) 0.0128 0.0080 1.5937 0.1134
SP500 1.5259 0.1920 7.9463 0.0000

Regression Diagnostics:

R-Squared 0.3113
Adjusted R-Squared 0.3059
Durbin-Watson Stat 2.1171

Residual Diagnostics:
Stat P-Value
Jarque-Bera 41.6842 0.0000
Ljung-Box 11.9213 0.9417

Residual standard error: 0.09027 on 129 degrees of freedom
Time period: from Feb 1990 to Dec 2000

F-statistic: 58.3 on 1 and 129 degrees of freedom, the
p-value is 4.433e-012
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Here, the HCSE values SEpc (B;) are almost identical to the usual OLS
values SE(S;) which suggests that the errors are not heteroskedastic.

6.5.2 Testing for Heteroskedasticity

If the error terms in the time series regression model are heteroskedastic,
then the OLS estimates are consistent but not efficient and the usual for-
mula (6.3) for computing avar(3) is incorrect. As shown in the previous
section, avargc(3) given by (6.16) provides a consistent estimate of the
generalized asymptotic variance (6.15). If the errors are not heteroskedas-
tic, however, (6.15) is still consistent, but the usual formula (6.3) will gen-
erally give smaller standard errors and more powerful tests. Therefore, it
is of interest to test for the presence of heteroskedasticity. If the errors
are heteroskedastic and depend on some function of exogenous variables,
then tests for heteroskedasticity may help determine which variables affect
the error variance and how they might affect the variance. Finally, if the
time series regression model is misspecified, e.g. some important variables
have been omitted or the parameters are not constant over time, then of-
ten the errors will appear to be heteroskedastic. Hence, the presence of
heteroskedasticity may also signal inadequacy of the estimated model. In
this section, two common tests for heteroskedasticity are introduced. The
first is Breusch and Pagan’s (1979) LM test for heteroskedasticity caused
by specified exogenous variables and the second is White’s (1980) general
test for unspecified heteroskedasticity.

Breusch-Pagan Test for Specific Heteroskedasticity

Suppose it is suspected that the variance of &; in (6.1) is functionally related
to some known (p X 1) vector of exogenous variables z;, whose first element
is unity, via the relation

Elei|xi] = f(zi )

where f(-) is an unknown positive function. Let &; denote the least squares
residual from (6.1), and consider the auziliary regression

>

2
-t =z, + error (6.18)

Qi

where 62 = T-1 Zle &7. Since the first element of z; is unity, the null
hypothesis of homoskedasticity, E[¢?|x;] = o2, implies that all of the ele-
ments of a except the first are equal to zero. Under the homoskedasticity
null, Breusch and Pagan (1979) showed that the test statistic

%Rssaux ’é X2(p - 1)



212 6. Time Series Regression Modeling

where RSS,,x is the residual sum of squares from the auxiliary regression
(6.18).

The Breusch-Pagan LM test is based on the assumption that the error
terms are normally distributed. Koenker and Basset (1982) suggested a
modification of the Breusch-Pagan LM test that is robust to non-normal
errors and generally has more power than the Breusch-Pagan test when the
errors are non-normal.

White’s Test for General Heteroskedasticity

Suppose ¢; is generally heteroskedastic such that E[e?x,x}] = S, where S
is a (k x k) matrix. Recall, if &; is homoskedastic then S = 0?2 xx. Now,
under general heteroskedasticity Suc in (6.17) is a consistent estimate of
S and &Q(X'X)_1 is a consistent estimate of 02X xx and S # 0?Xxx.
However, under the null hypothesis of homoskedasticity, the difference be-
tween Spc and 6%(X’X) ! should go to zero as the sample size gets larger.
White (1980) utilized this result to develop a very simple test for general
heteroskedasticity. To describe this test, let 1, denote the (m x 1) vector of
unique and nonconstant elements of the (k x k) matrix x;x}. Let &; denote
the least squares residual from (6.1) and form the auxiliary regression

&, = Py + error (6.19)
Under the null hypothesis of homoskedasticity, White (1980) showed that

T- R} ~ X*(m)

aux

where R2

2 is the R? from the auxiliary regression (6.19).

Testing for Heteroskedasticity Using the S+FinMetrics Function
heteroTest

Once a model has been fit using OLS (or 1m), the Breusch-Pagan, Koenker-
Basset and White tests for heteroskedasticity may be computed using
the S+FinMetrics function heteroTest. For example, consider the sim-
ple CAPM regression for Microsoft

> ols.fit = OLS(MSFT~SP500, data=excessRet.ts)

To apply the Breusch-Pagan LM test, a set of variables z; for which var(e;)
is related must be identified. For illustrative purposes let z; = (Rppt —
7¢t, (Rae — 7¢)?)’. The LM may then be computed using

> z1 = as.matrix(seriesData(excessRet.ts[,"SP500"]))
> zmat = cbind(z1,z1°2)
> heteroTest(ols.fit, method="1lm", regressors=zmat)

Test for Heteroskedasticity: Breusch-Pagan LM Test
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Null Hypothesis: data is homoskedastic
Test Statistic: 0.152
Dist. under Null: chi-square with 2 degrees of freedom
P-value: 0.9268

Coefficients:
Intercept SP500 SP500°2
1.041 -1.320 -20.407

Degrees of freedom: 131 total; 128 residual
Residual standard error: 2.095

Notice that the regressors specified for the LM test must be in the form
of a matrix. The high p-value of the test clearly signals that the null of
homoskedasticity should not be rejected against the alternative that var(e;)
depends on z;. To compute the Koenker-Basset robust LM test, set the
optional argument robust=T in the call to heteroTest.

The application of White’s test for heteroskedasticity is more straight-
forward since var(e;) is assumed to be functionally related to the variables
used in the OLS fit:

> heteroTest(ols.fit, method="white")
Test for Heteroskedasticity: White General Test

Null Hypothesis: data is homoskedastic
Test Statistic: 0.152
Dist. under Null: chi-square with 2 degrees of freedom
P-value: 0.9268

Coefficients:
Intercept SP500 SP500°2
0.0084 -0.0106 -0.1638

Degrees of freedom: 131 total; 128 residual
Residual standard error: 0.01681

Notice that in this particular example the LM test and White’s test are
identical.
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6.5.3 The Newey-West Heteroskedasticity and
Autocorrelation Consistent (HAC) Covariance Matrix
Estimate

In some applications of time series regression, &; in (6.1) may be both
conditionally heteroskedastic and serially correlated. In this case, the er-
ror covariance matrix Elee’|X] is non-diagonal. Under certain assumptions
about the nature of the error heteroskedasticity and serial correlation a
consistent estimate of the generalized OLS covariance matrix can be com-
puted. The most popular heteroskedasticity and autocorrelation consistent
(HAC) covariance matrix estimate, due to Newey and West (1987), has the
form

avargac(B) = (X'X) 'Spac(X'X) ™! (6.20)
where
T q T
SHAC = Zé?xtxg + Zwl Z (Xtétét,lngl + xt,lét,létxg) (621)
t=1 I=1  t=I+1

is a nonparametric long-run variance estimate, and wy is the Bartlett weight

function

!
w=1- ——

The Bartlett weight function, w;, depends on a truncation parameter ¢ that
must grow with the sample size in order for the estimate to be consistent.
Newey and West suggested choosing ¢ to be the integer part of 4(7/100)/°.
In some cases, a rectangular weight function

[ 1, forl<gq
W= 0, forl>q

is used if it is known that autocovariances in (6.21) cut off at lag ¢q. The
square root of the diagonal elements of the HAC estimate (6.21) gives the
heteroskedasticity and autocorrelation consistent standard errors (HAC-
SEs) for the least squares estimates of ;. These are denoted §:\EHAC(BZ-).
Heteroskedasticity robust t-statistics and Wald statistics are computed in
the usual way using (6.4) and (6.6) but with avarpac(3) and SExac(3;)

replacing avar(3) and g}\i(ﬁz), respectively.

Example 40 Long horizon regressions of stock returns on dividend-price
ratio

There has been much interest recently in whether long-term stock returns
are predictable by valuation ratios like dividend-to-price and earnings-to-
price. See Chapter 7 in Campbell, Lo, and MacKinlay (1997), and Chapter
20 in Cochrane (2001) for reviews of this literature. Predictability is inves-
tigated by regressing future multiperiod stock returns on current values of
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valuation ratios. To illustrate, let r; denote the continuously compounded
real annual total return on an asset in year ¢t and and let d; — p; denote the
log dividend price ratio. The typical long-horizon regression has the form

Tt+1+"'+’l"t+K :aK+ﬁK(dt_pt)+5t+Ka t= 1,...7T (622)

where 141+ - -+ 71k is the continuously compounded future K-year real
total return. The dividend-price ratio predicts future returns if S5 # 0 at
some horizon. Since thesampling frequency of the data is annual and the
return horizon of the dependent variable is K years the dependent variable
and error term in (6.22) will behave like an MA(K — 1) process. This serial
correlation invalidates the usual formula for computing the estimated stan-
dard error of the least squares estimate of 5. The HACSE, SEHAC(B %),
however, will provide a consistent estimate.

The long-horizon regression (6.22) with K = 10 years is estimated using
the annual stock price and dividend data on the S&P 500 composite index
in the S+FinMetrics “timeSeries” object shiller.annual. The relevant
data are constructed as

> collds(shiller.annual)

[1] "price" "dividend" "earnings"

[4] "cpi® "real.price" "real.dividend"
[7] "real.earnings" "pe.10"

# compute log of real data

In.p = log(shiller.annuall[,"real.price"])
collds(ln.p) = "ln.p"

In.d = log(shiller.annual[,"real.dividend"])
colIds(ln.d) = "1ln.q4"

In.dpratio = 1In.d - 1ln.p

collds(ln.dpratio) = "ln.dpratio"

# compute cc real total returns

In.r = diff(ln.p) + log(l+exp(ln.dpratio[-1,1))
collds(ln.r) = "ln.r"

# create 10-year cc total returns

In.r.10 = aggregateSeries(ln.r,moving=10,FUN=sum)
collds(ln.r.10) = "Iln.r.10"

stockdiv.ts = seriesMerge(1n.p,1n.d,1n.dpratio,
In.r,ln.r.10,pos="union")

\4

+ VVV VVV VYV VVVYVYV

The continuously compounded real total return is computed as
= (B P
Py
In(P;/Pi—1) + In(1 + exp(In(Dy) — In(Py)))
where P, is the real price and D; is the real dividend. Notice how the S-PLUS

function aggregateSeries is used to compute the 10 year continuously
compounded real total returns.
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Residual Autocorrelation

I
als fit10

ACF

FIGURE 6.5. Residual ACF from regression of ten year real returns on divi-
dend-price ratio.

The long-horizon regression (6.22) usingl0 year real total return returns
over the postwar period 1947 - 1995 is computed using

> ols.fit10 = OLS(1ln.r.107tslag(ln.dpratio) ,data=stockdiv.ts,
+ start="1947", end="1995", in.format="%Y", na.rm=T)

Figure 6.5 shows the residual ACF. There is clearly serial correlation in
the residuals. The HACSEs are computed using summary with the optional
argument correction="nw". By default, the Newey-West HAC covariance
matrix is computed using a Bartlett kernel with automatic lag truncation
q = 4(T/100)?/°. In the present context, the serial correlation is known
to be of the form of an MA(9) process. Therefore, it is more appropriate
to compute the Newey-West HAC covariance using a rectangular weight
function with ¢ = 9 which is accomplished by specifying bandwidth=9 and
window="rectangular" in the call to summary:

> summary(ols.fit10, correction="nw", bandwidth=9,
+ window="rectangular")

Call:
OLS(formula = ln.r.10 “tslag(ln.dpratio), data =
stockdiv.ts, na.rm = T, start = "1947", end =

"1995", in.format = "%Y")
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Residuals:
Min 1Q Median 3Q Max
-0.6564 -0.2952 0.0030 0.1799 0.9997

Coefficients:
Value Std. Error t value Pr(>|t])
(Intercept) 5.7414 0.9633 5.9600 0.0000
tslag(ln.dpratio) 1.5604 0.3273 4.7668 0.0000

Regression Diagnostics:

R-Squared 0.5012
Adjusted R-Squared 0.4896
Durbin-Watson Stat 0.2554

Residual Diagnostics:
Stat P-Value
Jarque-Bera 1.7104  0.4252
Ljung-Box 105.9256  0.0000

Residual standard error: 0.4116 on 43 degrees of freedom
Time period: from 1947 to 1991

F-statistic: 43.21 on 1 and 43 degrees of freedom, the
p-value is 5.359e-008

Notice the low DW statistic and the large value of the Ljung-Box statistic
indicating serial correlation in the residuals. The regression results with the
corrected standard errors indicate that future 10 year real total returns are
highly predictable and positively related to the current dividend-price ratio.
The predictability coefficient is 3,, = 1.560 with SEnac (B10) = 0.416 and
R? = 0.501.

6.6 Recursive Least Squares Estimation

The time series regression model (6.1) assumes that the parameters of the
model, B, are constant over the estimation sample. A simple and intuitive
way to investigate parameter constancy is to compute recursive estimates
of 3; that is, to estimate the model

yr = Bix¢ + &4 (6.23)

by least squares recursively for t =k +1,...,T giving T' — k recursive least
squares (RLS) estimates (B, ,,...,87). If B is really constant then the
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recursive estimates ,@t should quickly settle down near a common value. If
some of the elements in B are not constant then the corresponding RLS
estimates should show instability. Hence, a simple graphical technique for
uncovering parameter instability is to plot the RLS estimates Bit (i =
0,...,k) and look for instability in the plots.

An alternative approach to investigate parameter instability is to com-
pute estimates of the model’s parameters over a fixed rolling window of a
given length. Such rolling analysis is discussed in Chapter 9.

6.6.1 CUSUM and CUSUMSQ Tests for Parameter Stability

Brown, Durbin and Evans (1976) utilize the RLS estimates of (6.23) and
propose two simple tests for parameter instability. These tests, know as
the CUSUM and CUSUMS(Q tests, are based on the standardized 1-step
ahead recursive residuals
~/
LG B
W = = ——=

fi Ji
where f? is an estimate of the recursive error variance
2 2 e -1
fr =07 |1+ x(X;_1 X¢-1) Xt}

and X; is the (¢ x k) matrix of observations on x; using data from s =
1,...,¢t.
The CUSUM test is based on the cumulated sum of the standardized
recursive residuals ,
oy
CUSUM, = —L
t Z 6w
j=k+1
where 7, is the sample standard deviation of w;. Under the null hypothesis
that B3 in (6.1) is constant, CUSUM, has mean zero and variance that is
proportional to t—k—1. Brown, Durbin and Evans (1976) show that approx-
imate 95% confidence bands for CUSUM; are given by the two lines which
connect the points (k,4+0.948y/T — k — 1) and (7,+£0.948 - 3vT — k — 1).
If CUSUM; wanders outside of these bands, then the null of parameter
stability may be rejected.
The CUSUMSAQ test is based on the cumulative sum of the squared stan-

dardized recursive residuals and is given by

t ~9
Zj:k+1 wy
T ~2 "

j=k+1 Wj

The distribution of CUSUMSQ; under the null of parameter stability is
given in Brown, Durbin and Evans (1976) where it is shown that 95% con-
fidence bands for CUSUMSQ), have the form c¢+t/+/T — k — 1. As with the

CUSUMSQ, =
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CUSUM; statistic, if CUSUMSQ; wanders outside the confidence bands,
then the null of parameter stability may be rejected.

6.6.2 Computing Recursive Least Squares Estimates Using
the S+FinMetrics Function RLS

Efficient RLS estimation of the time series regression model (6.1) may be
performed using the S+FinMetrics function RLS. The calling syntax of RLS
is exactly the same as that of OLS so that any model that may be estimated
using OLS may also be estimated using RLS. For example, to compute the
RLS estimates of the CAPM regression for Microsoft use

> rls.fit = RLS(MSFT~SP500, data=excessRet.ts)
> class(rls.fit)
[1] "RLS"

RLS produces an object of class “RLS” for which there are coef, plot,

print and residuals methods. The print method give a basic description
of the RLS fit

> rls.fit
Call:

RLS(formula = MSFT ~“SP500, data = excessRet.ts)
Time period: from Feb 1990 to Dec 2000

Coefficients:
(Intercept) SP500
mean 0.0284 1.2975
std. dev. 0.0121 0.1531

Recursive Residuals Summary:
mean std. dev.
-0.0157 0.0893

The recursive intercept and slope estimates do not seem to vary too
much. The plot method allows one to see the recursive coeflicients, CUSUM
and CUSUMSQ residuals

> plot(rls.fit)
Make a plot selection (or O to exit):

: plot: All

: plot: Coefficient Estimates

: plot: CUSUM of Residuals

: plot: CUSUM of Squared Residuals

D wWw N e
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FIGURE 6.6. RLS coefficient estimates from the CAPM regression for Microsoft.
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FIGURE 6.7. CUSUM of residuals from the CAPM regression for Microsoft.
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CUSUM of Squared Residuals
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FIGURE 6.8. CUSUMSQ of residuals from CAPM regression for Microsoft.

Selection:

Figures 6.6, 6.7 and 6.8 show the plots from options 2, 3 and 4. The RLS
estimates of a and 3 settle down in the middle of the sample but then
the estimates of a decrease and the estimates of § increase. The CUSUM;
statistics stay within the 95% confidence bands but the CUSUMSQ); statis-
tics wander outside the bands. Hence, there is some evidence for instability
in the CAPM coefficients.
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7
Univariate GARCH Modeling

7.1 Introduction

Previous chapters have concentrated on modeling and predicting the con-
ditional mean, or the first order moment, of a univariate time series, and
are rarely concerned with the conditional variance, or the second order mo-
ment, of a time series. However, it is well known that in financial markets
large changes tend to be followed by large changes, and small changes tend
to be followed by small changes. In other words, the financial markets are
sometimes more volatile, and sometimes less active.

The volatile behavior in financial markets is usually referred to as the
“volatility”. Volatility has become a very important concept in different
areas in financial theory and practice, such as risk management, portfolio
selection, derivative pricing, etc. In statistical terms, volatility is usually
measured by variance, or standard deviation. This chapter introduces the
class of univariate generalized autoregressive conditional heteroskedasticity
(GARCH) models developed by Engle (1982), Bollerslev (1986), Nelson
(1991), and others, which are capable of modeling time varying volatility
and capturing many of the stylized facts of the volatility behavior usu-
ally observed in financial time series. It will show how to formulate, esti-
mate, evaluate and predict from various types of GARCH models, such as
EGARCH, TGARCH, PGARCH, etc.

The outline of the chapter follows. Section 7.2 shows how to test for
ARCH effects in a time series, then section 22.16 introduces the basic
GARCH model and its properties. GARCH model estimation and diagnos-
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FIGURE 7.1. Daily Ford stock returns: ford.s.

tics using the S+FinMetrics family of GARCH functions are illustrated in
section 7.4. Section 7.5 extends the basic GARCH model to accommodate
some well-known stylized facts of financial time series. Prediction and sim-
ulation from various GARCH models are treated at the end of the chapter.

The statistical properties of GARCH models are nicely summarized in
Hamilton (1994), Tsay (2001) and the review papers by Bera and Hig-
gins (1986), Bolerslev, Engle and Nelson (1994) and Diebold and Lopez
(1996). Bollerslev, Chou and Kroner (1992) give a comprehensive survey
of GARCH modeling in finance. Alexander (2001) provides many examples
of the use of GARCH models in finance, and Engle (2001) and Engle and
Patton (2001) discuss the usefulness of volatility modeling.

7.2 The Basic ARCH Model

Figure 7.1 plots a daily time series of Ford stock returns as contained in
the “timeSeries” object ford.s in S+FinMetrics:

> class(ford.s)
[1] "timeSeries"
> plot(ford.s, reference.grid=F)
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FIGURE 7.2. ACF of ford.s and ford.s"2.

Although there is little serial correlation in the time series ford.s itself,
it seems that both large changes and small changes are clustered together,
which is typical of many high frequency macroeconomic and financial time
series. To confirm this conjecture, use the S-PLUS function acf to look at
the autocorrelation plot of Ford returns and its squared returns:

> par (mfrow=c(1,2))

> tmp = acf(ford.s, lag=12)
> tmp = acf(ford.s"2, lag=12)
> par (mfrow=c(1,1))

The plots are shown in Figure 7.2. Obviously there is no autocorrelation
in the return series itself, while the squared returns exhibit significant au-
tocorrelation at least up to lag 5. Since the squared returns measure the
second order moment of the original time series, this result indicates that
the variance of ford.s conditional on its past history may change over
time, or equivalently, the time series ford.s may exhibit time varying con-
ditional heteroskedasticity or volatility clustering.

The serial correlation in squared returns, or conditional heteroskedastic-
ity, can be modeled using a simple autoregressive (AR) process for squared
residuals. For example, let y; denote a stationary time series such as finan-
cial returns, then y; can be expressed as its mean plus a white noise if there
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is no significant autocorrelation in y; itself:
Yt =c+ € (7.1)

where c is the mean of y;, and ¢, is iid with mean zero. To allow for volatility
clustering or conditional heteroskedasticity, assume that Var,_1(€;) = o7
with Var;_1(-) denoting the variance conditional on information at time
t—1, and

ol =agtarel_ | -+ apef_p. (7.2)

since ¢; has a zero mean, Var;_1(¢) = E;_1(€?) = o7, the above equation
can be rewritten as:

€ =ap+a1€6 1 4+ ap€;_, + Uy (7.3)

where u; = € — F;_1(€7) is a zero mean white noise process. The above

equation represents an AR(p) process for €7, and the model in (7.1) and

(7.2) is known as the autoregressive conditional heteroskedasticity (ARCH)

model of Engle (1982), which is usually referred to as the ARCH(p) model.
An alternative formulation of the ARCH model is

Yo = cte

€ = Z0¢

2 _ 2 2
o = o+ ai€_1+ -+ ape_,

where z; is an iid random variable with a specified distribution. In the
basic ARCH model z; is assumed to be iid standard normal. The above
representation is convenient for deriving properties of the model as well as
for specifying the likelihood function for estimation.

Exercise 41 Simulating an ARCH(p) model

The S+FinMetrics function simulate.garch may be used to simulate
observations from a variety of time-varying conditional heteroskedastic-
ity models. For example, to simulate 250 observations from the ARCH(p)
model (7.1)-(7.2) with ¢ =0, p=1, ap = 0.01 and a; = 0.8 use

> sim.archl = simulate.garch(mode1=1ist(a.value=0.0l,arch=0.8),

+ n=250, rseed=196)
> names(sim.archl)
[1] et "sigma.t"

The component et contains the ARCH errors ¢; and the component sigma.t
contains the conditional standard deviations o;. These components are il-
lustrated in Figure 7.3 created using

> par (mfrow=c(2,1))
> tsplot(sim.archl$et,main="Simulated ARCH(1) errors",
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FIGURE 7.3. Simulated values of ¢; and o, from ARCH(1) process.

+ ylab="e(t)")
> tsplot(sim.archl$sigma.t,
+ main="Simulated ARCH(1) volatility",ylab="sigma(t)")

Some summary statistics for the simulated data are
> summaryStats(sim.archi$et)
Sample Quantiles:

min 1Q median 3Q max
-0.6606 -0.1135 0.0112 0.1095 0.6357
Sample Moments:

mean std skewness kurtosis

-0.003408 0.1846 -0.2515 4.041

Number of Observations: 250

Notice the somewhat high kurtosis value (relative to the kurtosis value of 3
for a normal distribution). Finally, Figure 7.4 shows the sample ACF's for
€; and o?. Both series exhibit almost identical serial correlation properties.
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FIGURE 7.4. Sample ACFs for €7 and o7 from simulated ARCH(1) process.

7.2.1 Testing for ARCH Effects

Before estimating a full ARCH model for a financial time series, it is usually
good practice to test for the presence of ARCH effects in the residuals.
If there are no ARCH effects in the residuals, then the ARCH model is
unnecessary and misspecified.

Since an ARCH model can be written as an AR model in terms of squared
residuals as in (7.3), a simple Lagrange Multiplier (LM) test for ARCH
effects can be constructed based on the auxiliary regression (7.3). Under
the null hypothesis that there are no ARCH effects: a; = az =--- =ap, =0,
the test statistic

LM =T - R? % x*(p)

where T is the sample size and R? is computed from the regression (7.3)
using estimated residuals.

The S+FinMetrics function archTest can be used to carry out the above
test for ARCH effects. For example, to test for the presence of ARCH effects
in ford.s, use the following command:

> archTest(ford.s, lag.n=12)
Test for ARCH Effects: LM Test

1We refer to Engle (1982) for details.
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Null Hypothesis: no ARCH effects

Test Statistics:
FORD
Test Stat 112.6884
p.value 0.0000

Dist. under Null: chi-square with 12 degrees of freedom
Total Observ.: 2000

In this case, the p-value is essentially zero, which is smaller than the con-
ventional 5% level, so reject the null hypothesis that there are no ARCH
effects. Note that archTest function takes a time series and an optional
argument lag.n specifying the order of the ARCH effects. Since S-PLUS
allows lazy evaluation, lag instead of lag.n could have been supplied as
the optional argument.

7.3 The GARCH Model and Its Properties

If the LM test for ARCH effects is significant for a time series, one could
proceed to estimate an ARCH model and obtain estimates of the time
varying volatility o; based on past history. However, in practice it is often
found that a large number of lags p, and thus a large number of parameters,
is required to obtain a good model fit. A more parsimonious model proposed
by Bollerslev (1986) replaces the AR model in (7.2) with the following
formulation:

P q
o7 =ap+ Zaief,i + Z bjaf,j (7.4)

i=1 j=1
where the coefficients a; (¢ = 0,--- ,p)and b; (j =1, -- ,¢q) are all assumed

to be positive to ensure that the conditional variance o? is always positive.?

The model in (7.4) together with (7.1) is known as the generalized ARCH
or GARCH(p, ¢) model. When ¢ = 0, the GARCH model reduces to the
ARCH model.

Under the GARCH(p, ¢) model, the conditional variance of €;, %, de-
pends on the squared residuals in the previous p periods, and the con-
ditional variance in the previous ¢ periods. Usually a GARCH(1,1) model
with only three parameters in the conditional variance equation is adequate
to obtain a good model fit for financial time series.

2Positive coefficients are sufficient but not necessary conditions for the positivity of
conditional variance. We refer to Nelson and Cao (1992) for the general conditions.
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7.8.1 ARMA Representation of GARCH Model

Just as an ARCH model can be expressed as an AR model of squared
residuals, a GARCH model can be expressed as an ARMA model of squared
residuals. Consider the GARCH(1,1) model:

0? =ag+arel_| +bo? . (7.5)
Since F;_1(€7) = o7, the above equation can be rewritten as:
6? = Qo + (a1 + b1)6?71 + up — bl’ut,1 (76)

which is an ARMA(1,1) model with u; = €7 — E;_1(e?) being the white
noise disturbance term.

Given the ARMA representation of the GARCH model, many proper-
ties of the GARCH model follow easily from those of the corresponding
ARMA process for 2. For example, for the GARCH(1,1) model to be sta-
tionary, requires that a; +b; < 1 as in (7.6). Assuming the stationarity of
GARCH(1,1) model, the unconditional variance of €; can be shown to be
Var(e;) = E(€?) = ag/(1 — a; — by), because from (7.6):

E(&]) = ao + (a1 + b1)E(e]_;)
and thus
E(E?) =ag + (a1 + b1)E(6t2)

based on the assumption that €? is stationary.

For the general GARCH(p, q) model (7.4), the squared residuals ¢; be-
have like an ARMA (max(p, q),q) process. Covariance stationarity requires
P ai+ Z?Zl b; < 1 and the unconditional variance of ¢ is

ag

Var(e) = 1 (zle a; + Z‘f-:l bi) |

(7.7)

7.3.2 GARCH Model and Stylized Facts

In practice, researchers have uncovered many so-called “stylized facts”
about the volatility of financial time series; Bollerslev, Engle and Nelson
(1994) gave a complete account of these facts. Using the ARMA repre-
sentation of GARCH models shows that the GARCH model is capable of
explaining many of those stylized facts. This section will focus on three im-
portant ones: volatility clustering, fat tails, and volatility mean reversion.
Other stylized facts are illustrated and explained in later sections.

Volatility Clustering

Consider the GARCH(1, 1) model in (7.5). Usually the GARCH coefficient
by is found to be around 0.9 for many weekly or daily financial time series.
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Given this value of by, it is obvious that large values of o?_; will be fol-
lowed by large values of o7, and small values of o7_; will be followed by
small values of 7. The same reasoning can be obtained from the ARMA
representation in (7.6), where large/small changes in €2 ; will be followed
by large/small changes in 7.

Fat Tails

It is well known that the distribution of many high frequency financial time
series usually have fatter tails than a normal distribution. That is, large
changes are more often to occur than a normal distribution would imply.
Bollerslev (1986) gave the condition for the existence of the fourth order
moment of a GARCH(1, 1) process. Assuming the fourth order moment ex-
ists, Bollerslev (1986) showed that the kurtosis implied by a GARCH(1, 1)
process is greater than 3, the kurtosis of a normal distribution. He and
Terdsvirta (1999a, 1999b) extended these results to general GARCH(p, q)
models. Thus a GARCH model can replicate the fat tails usually observed
in financial time series.

Volatility Mean Reversion

Although financial markets may experience excessive volatility from time
to time, it appears that volatility will eventually settle down to a long
run level. The previous subsection showed that the long run variance of
e¢ for the stationary GARCH(1, 1) model is ag/(1 — a1 — b1). In this case,
the volatility is always pulled toward this long run level by rewriting the
ARMA representation in (7.6) as follows:

ao ag

(¢7 ) = (a1 +b1) (€1 — )+ up — brug_.

71—@1—[)1 1—a1—b1

If the above equation is iterated k times, one can show that

B )= (ag +by)E(e? 0

P - m) + Mg

2
(€t+k 1 a1 — by
where 7, is a moving average process. Since a; + b1 < 1 for a stationary
GARCH(1,1) model, (a3 + b1)¥ — 0 as k — oco. Although at time ¢ there
may be a large deviation between €7 and the long run variance, ef e
ap/(1 — ay — by) will approach zero “on average” as k gets large, i.e., the
volatility “mean reverts” to its long run level ag/(1 — a3 —by). In contrast,
if a; + b1 > 1 and the GARCH model is non-stationary, the volatility will
eventually explode to infinity as & — oo. Similar arguments can be easily
constructed for a GARCH(p, ¢) model.
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7.4 GARCH Modeling Using S+FinMetrics

7.4.1 GARCH Model Estimation

This section illustrates how to estimate a GARCH model using functions
in S+FinMetrics. Recall, the general GARCH(p, ¢) model has the form

Y =+ € (7.8)
p q
U? =ag + Zaiefﬂ- + Z bjaffj (79)
i=1 j=1
fort = 1,---,T, where O’t = Vary_1(&). Assuming that €; follows nor-

mal or Gaussmn distribution conditional on past history, the prediction
error decomposition of the log-likelihood function of the GARCH model
conditional on initial values is:

T 2
Z _g‘ (7.10)

The unknown model parameters ¢, a; (¢ =0,---,p) and b; (j =1,---,q)
can be estimated using conditional maximum likelihood estimation (MLE).
Details of the maximization are given in Hamilton (1994). Once the MLE
estimates of the parameters are found, estimates of the time varying volatil-
ity o¢ (t =1,...,T) are also obtained as a side product.

For a univariate time series, S+FinMetrics provides the garch function
for GARCH model estimation. For example, to fit a simple GARCH(1,1)
model as in (7.8) and (7.9) to the “timeSeries” object ford.s, use the
command:

N)Ir—l

T T
1ogL———log (2m) Z ogaf—
=1

> ford.mod11l = garch(ford.s™1, “garch(1,1))

Iteration 0O Step Size = 1.00000 Likelihood = 2.62618
Iteration O Step Size = 2.00000 Likelihood = 2.61237
Iteration 1 Step Size = 1.00000 Likelihood = 2.62720
Iteration 1 Step Size = 2.00000 Likelihood = 2.62769
Iteration 1 Step Size = 4.00000 Likelihood = 2.59047
Iteration 2 Step Size = 1.00000 Likelihood = 2.62785
Iteration 2 Step Size = 2.00000 Likelihood = 2.62795
Iteration 2 Step Size = 4.00000 Likelihood = 2.62793

Convergence R-Square = 4.630129e-05 is less than tolerance
= 0.0001
Convergence reached.

In the above example, the garch function takes two arguments: the first ar-
gument is an S-PLUS formula which specifies the conditional mean equation
(7.8), while the second argument is also an S-PLUS formula which specifies
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the conditional variance equation (7.9). The specification of the conditional
mean formula is the same as usual S-PLUS formulas.? For the conditional
variance formula, nothing needs to be specified on the left hand side, and
the garch(1,1) term on the right hand side denotes the GARCH(1,1)
model. By default, the progress of the estimation is printed on screen. Those
messages can be suppressed by setting the optional argument trace=F in
the call to the garch function.

The object returned by garch function is of class “garch”. Typing the
name of the object at the command line invokes its print method:

> class(ford.mod11)
[1] "garch"
> ford.mod11

Call:
garch(formula.mean = ford.s ~ 1, formula.var = ~ garch(1l, 1))

Mean Equation: ford.s 7 1

Conditional Variance Equation: ~ garch(1l, 1)
Coefficients:

7.708e-04
6.534e-06
7.454e-02
9.102e-01

c
A
ARCH(1)
GARCH(1)

The print method for a “garch” object shows the formulas for the con-
ditional mean equation and conditional variance equation, together with
the estimated model coefficients. Note that in the output C corresponds
to the constant ¢ in the conditional mean equation (7.8), A, ARCH(1) and
GARCH(1) correspond to ag, a; and by in the conditional variance equa-
tion (7.9), respectively. Notice that the estimated GARCH(1) parameter is
close to one and the ARCH(1) parameter is close to zero. The sum of these
parameters is 0.985 which indicates a covariance stationary model with
a high degree of persistence in the conditional variance. Use the S-PLUS
function names to extract the component names for a “garch” object. For
example:

> names (ford.mod11)

[1] "residuals" "sigma.t" "df .residual" "coef" "model"
[6] "cond.dist" "likelihood" "opt.index" "cov" ‘'"prediction"
[11] "call" "asymp.sd"  "series"

3Chapter 1 provides a review of the usage of S-PLUS formulas and modeling functions.
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It should be clear what most of the components are and the on-line help file
for the garch function provides details for these components. Of particular
interest is the component asymp.sd, which gives an estimate of the uncon-
ditional standard deviation of the GARCH residuals provided the GARCH
model is stationary. That is,

> ford.modl1$asymp.sd
(1] 0.02068

is an estimate of the square root of ag/(1 — a3 — by).

For most components that a user is interested in, S+FinMetrics pro-
vides methods for generic functions such as coef, residuals, and vcov for
extracting those components. For example, the estimated coefficients can
be extracted by calling the generic coef function:

> coef (ford.mod11)

C 7.708418e-04
A 6.534363e-06
ARCH(1) 7.454134e-02
GARCH(1) 9.101842e-01

Similarly, call the generic vcov function to obtain the covariance matrix of
the estimated coefficients:

> vcov(ford.mod11)
C A ARCH(1) GARCH(1)
C 1.41574e-07 -1.21204e-13 -3.56991e-07 2.21310e-07
A -1.21204e-13 3.04607e-12 2.55328e-09 -1.24396e-08
ARCH(1) -3.56991e-07 2.55328e-09 2.87505e-05 -3.43277e-05
GARCH(1) 2.21310e-07 -1.24396e-08 -3.43277e-05 7.67660e-05

By default, the vcov method for “garch” objects uses the covariance ma-
trix based on the outer product of gradients. However, for maximum likeli-
hood estimation, there are three different ways of computing the covariance
matrix of model parameters which are asymptotically equivalent if the un-
derlying error distribution is Gaussian: one based on the outer product of
gradients, one based on the numerical Hessian matrix, and one based on
the asymptotic formula for quasi-maximum likelihood estimation (QMLE).
These different covariance matrices can be obtained by setting the optional
argument method to "op", "hessian", or "gmle", respectively. For exam-
ple, to obtain the covariance matrix of ford.mod11 parameters based on
QMLE formula, use the following command:

> vcov(ford.mod11l, method="qmle")
C A ARCH(1) GARCH(1)
C 1.26671e-07 -7.54398e-11 5.67606e-07 -7.71183e-08
A -7.54398e-11 2.69841e-11 1.37576e-07 -2.00363e-07
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ARCH(1) 5.67606e-07 1.37576e-07 1.28016e-03 -1.46718e-03
GARCH(1) -7.71183e-08 -2.00363e-07 -1.46718e-03 1.84173e-03

This covariance matrix is sometimes referred to as the robust covariance
matrix, because it is robust to possible misspecification of the error distri-
bution, or the sandwich estimate, because of the form of the asymptotic
formula (see Bollerslev and Wooldrige, 1992 or Davidson and MacKinnon,
1993).

The residuals method for a “garch” object takes an optional argument
standardize, which can be used to obtain estimates of the standardized
residuals €; /0. For example:

> residuals(ford.mod1l1l, standardize=T)

returns the standardized residuals of the fitted GARCH model ford.mod11.
S+FinMetrics also provides another function sigma.t for extracting the
fitted volatility series ;. Note that if the original data is a “timeSeries”
object, the calendar information of the original data is also retained in the
residual and volatility series.

7.4.2 GARCH Model Diagnostics

The previous subsection showed how to estimate a GARCH model using
the S+FinMetrics function garch and how to extract various components
of the fitted model. To assess the model fit, S+FinMetrics provides method
functions for two generic functions: summary and plot, one for statistical
summary information and the other for visual diagnostics of the model fit.

For example, to obtain a more detailed summary of ford.mod11, call the
generic summary function:

> summary(ford.mod11)

Call:
garch(formula.mean = ford.s ~ 1, formula.var = ~ garch(l, 1))

Mean Equation: ford.s 7 1
Conditional Variance Equation: =~ garch(1l, 1)

Conditional Distribution: gaussian

Value Std.Error t value Pr(>|tl)
C 7.708e-04 3.763e-04 2.049 2.031e-02
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A 6.534e-06 1.745e-06 3.744 9.313e-05
ARCH(1) 7.454e-02 5.362e-03 13.902 0.000e+00
GARCH(1) 9.102e-01 8.762e-03 103.883 0.000e+00

AIC(4) = -10503.79
BIC(4) = -10481.39

Normality Test:
Jarque-Bera P-value Shapiro-Wilk P-value
364.2 0 0.9915 0.9777

Ljung-Box test for standardized residuals:
Statistic P-value Chi~2-d.f.
14.82 0.2516 12

Ljung-Box test for squared standardized residuals:
Statistic P-value Chi"2-d.f.
14.04 0.2984 12

Lagrange multiplier test:
Lag 1 Lag 2 Lag 3 Lag 4 Lag b5 Lag 6 Lag 7 Lag 8
2.135 -1.085 -2.149 -0.1347 -0.9144 -0.2228 0.708 -0.2314

Lag 9 Lag 10 Lag 11 Lag 12 C
-0.6905 -1.131 -0.3081 -0.1018 0.9825

TR"2 P-value F-stat P-value
14.77 0.2545 1.352 0.2989

By default, the summary method shows the standard errors and p-values
for the t-statistics for testing that the true coefficients are zero, together
with various tests on the standardized residuals &;/5; for assessing the
model fit. The standard errors and p-values are computed using the default
covariance estimate. To use robust or numerical Hessian based standard
errors to compute the p-values, the summary method takes an optional
argument method just like the vcov method does.

The various tests returned by the summary method can also be performed
separately by using standard S+FinMetrics functions. For example, if the
model is successful at modeling the serial correlation structure in the condi-
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tional mean and conditional variance, then there should be no autocorrela-
tion left in the standardized residuals and squared standardized residuals.
This can be checked by using the S+FinMetrics function autocorTest:

> autocorTest(residuals(ford.modl1l, standardize=T), lag=12)
Test for Autocorrelation: Ljung-Box

Null Hypothesis: no autocorrelation

Test Statistics:

Test Stat 14.8161
p.value 0.2516

Dist. under Null: chi-square with 12 degrees of freedom
Total Observ.: 2000

> autocorTest(residuals(ford.modll, standardize=T)"2, lag=12)
Test for Autocorrelation: Ljung-Box

Null Hypothesis: no autocorrelation

Test Statistics:

Test Stat 14.0361
p.value 0.2984

Dist. under Null: chi-square with 12 degrees of freedom
Total Observ.: 2000

In both cases, the tests are the same as those returned by the summary
method, and the null hypothesis that there is no autocorrelation left can-
not be rejected because the p-values in both cases are greater than the
conventional 5% level. Note that lag was chosen to be 12 to match the
results returned by the summary method.

Similarly, one can also apply the ARCH test on the standardized residuals
to see if there are any ARCH effects left. For example, call archTest on
the standardized residuals of ford.mod11 as follows:

> archTest(residuals(ford.mod11l, standardize=T), lag=12)
Test for ARCH Effects: LM Test

Null Hypothesis: no ARCH effects



238 7. Univariate GARCH Modeling

QQ-Plot of Standardized Residuals
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FIGURE 7.5. Normal qqg-plot of standardized residuals: ford.mod11.

Test Statistics:

Test Stat 14.7664
p.value 0.2545

Dist. under Null: chi-square with 12 degrees of freedom
Total Observ.: 2000

Again, the results match the Lagrange Multiplier test as returned by the
summary method.

The basic garch model assumes a normal distribution for the errors ¢;.
If the model is correctly specified then the estimated standardized residu-
als €;/o0¢ should behave like a standard normal random variable. To eval-
uate the normality assumption, the summary method reports both the
Jarque-Bera test and the Shapiro-Wilks test for the standardized residuals,
which again can be performed separately using the S+FinMetrics function
normalTest. However, in the above example, the Jarque-Bera test and the
Shapiro-Wilks test lead to opposite conclusions, with one p-value close to
zero and the other close to one.

To get a more decisive conclusion regarding the normality assumption,
resort to the qg-plot by calling the generic plot function on a “garch”
object:



7.4 GARCH Modeling Using S+FinMetrics 239
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FIGURE 7.6. ACF of squared standardized residuals: ford.mod11.

> plot(ford.mod11)
Make a plot selection (or 0 to exit):

: plot: All

: plot: Series and Conditional SD

: plot: Series with 2 Conditional SD Superimposed

: plot: ACF of the Observations

: plot: ACF of Squared Observations

: plot: Cross Correlation between Squared Series and Series
: plot: Residuals

: plot: Conditional Standard Deviations

: plot: Standardized Residuals

10: plot: ACF of Standardized Residuals

11: plot: ACF of Squared Standardized Residuals

12: plot: Cross Correlation between Squared Std.Res and Std.
13: plot: QQ-Plot of Standardized Residuals

Selection:

© 00 N O d W N+~

By selecting 13, the qg-plot of standardized residuals can be obtained as
shown in Figure 7.5 In this case, there is significant deviation in both tails
from the normal qqg-line, and thus it seems that the normality assumption
for the residuals may not be appropriate. Section 7.5.6 will show how to
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FIGURE 7.7. Daily Ford stock returns and conditional volatility.

use alternative distributions.Other plots can also be chosen to visualize the
model fit. For example, choosing 11 generates the ACF plot of squared
standardized residuals as shown in Figure 7.6, which shows that there is
little autocorrelation left in the squared standardized residuals. Choosing
2 plots the original return series and the fitted volatility series as shown in
Figure 7.7.

7.5 GARCH Model Extensions

In many cases, the basic GARCH model (7.4) provides a reasonably good
model for analyzing financial time series and estimating conditional volatil-
ity. However, there are some aspects of the model which can be improved so
that it can better capture the characteristics and dynamics of a particular
time series. For example, the previous section showed that the normality
assumption may not be appropriate for the time series ford.s. This sec-
tion introduces several extensions to the basic GARCH model that make
GARCH modeling more flexible and shows how to estimate those models
using the S+FinMetrics garch function.
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7.5.1 Asymmetric Leverage Effects and News Impact

In the basic GARCH model (7.9), since only squared residuals €Z_, enter the
equation, the signs of the residuals or shocks have no effects on conditional
volatility. However, a stylized fact of financial volatility is that bad news
(negative shocks) tends to have a larger impact on volatility than good
news (positive shocks). Black (1976) attributed this effect to the fact that
bad news tends to drive down the stock price, thus increasing the leverage
(i.e., the debt-equity ratio) of the stock and causing the stock to be more
volatile. Based on this conjecture, the asymmetric news impact is usually
referred to as the leverage effect. All the GARCH variants implemented in
S+FinMetrics are capable of incorporating leverage effects. This subsection
focuses on the EGARCH, TGARCH and PGARCH models.

EGARCH Model

Nelson (1991) proposed the following exponential GARCH (EGARCH)
model to allow for leverage effects:

p q
Z let—il + 60— Z
ht =aqap + — aiT + 2 bjhtfj (711)
= j=

where h; = logo? or 07 = eht. Note that when €,_; is positive or there is

“good news”, the total effect of €;_; is (1 +y,)|e:—;|; in contrast, when €;_;
is negative or there is “bad news”, the total effect of e;_; is (1 — ~,)|er—;]-
Bad news can have a larger impact on volatility, and the value of v, would
be expected to be negative.

The garch function can be used to fit an EGARCH model by specifying
“egarch(p,q) as the conditional variance formula. For example, to fit an
EGARCH(1, 1) model with leverage effects using the daily Hewlett-Packard
stock returns contained in the S+FinMetrics “timeSeries” object hp.s,
use the following command:

> hp.egarch = garch(hp.s”1, “egarch(1,1), leverage=T, trace=F)
> hp.egarch

Call:

garch(formula.mean = hp.s ~ 1, formula.var = ~ egarch(l, 1),
leverage = T, trace = F)

Mean Equation: hp.s 7 1

Conditional Variance Equation: ~ egarch(l, 1)

Coefficients:
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C 0.000313

A -1.037907
ARCH(1) 0.227878
GARCH(1) 0.886652
LEV(1) -0.133998

Note that the optional argument trace=F is set to suppress the iteration
messages, and set leverage=T to impose leverage effects. In the output,
the estimated v, coefficient for the leverage effect is denoted by LEV(1)and
is negative in this case. The t-statistic for testing v; = 0 is

> coef (hp.egarch) [5]/sqrt(vcov (hp.egarch) [5,5])
[1] -2.159

Another advantage of the EGARCH model over the basic GARCH model
is that the conditional variance o7 is guaranteed to be positive regardless of
the values of the coefficients in (7.11), because the logarithm of o7 instead
of o2 itself is modeled.

TGARCH Model

Another GARCH variant that is capable of modeling leverage effects is the
threshold GARCH (TGARCH) model,* which has the following form:

p P q
o? =ag + Z a;e?  + Z’yiSt,iefﬂ- + Z bjaffj (7.12)
i=1 i=1 j=1

where

S o 1 if €r—q < 0
=Y 0 if ;>0

That is, depending on whether ¢;_; is above or below the threshold value
of zero, €2_, has different effects on the conditional variance o7: when ¢;_;
is positive, the total effects are given by a;e;_;; when €;—; is negative,
the total effects are given by (a; + ~;)e?_,. So one would expect 7; to be
positive for bad news to have larger impacts. This model is also known as
the GJR model because Glosten, Jagannathan and Runkle (1993) proposed
essentially the same model.

Use the garch function to estimate a TGARCH model by specifying
“tgarch(p,q) as the conditional variance formula. For example, to fit a
TGARCH instead of an EGARCH model to hp.s, use the following com-
mand:

> hp.tgarch = garch(hp.s”1, “tgarch(l,1), trace=F)
> hp.tgarch

4The original TGARCH model proposed by Zakoian (1994) models o instead of o2.
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Call:
garch(formula.mean = hp.s ~ 1, formula.var = ~ tgarch(l, 1),
trace = F)

Mean Equation: hp.s 7 1
Conditional Variance Equation: ~ tgarch(l, 1)
Coefficients:
C 3.946e-04
A 3.999e-05
ARCH(1) 6.780e-02

GARCH(1) 8.369e-01
GAMMA (1) 3.306e-02

Note that when using the TGARCH model, the leverage effects are au-
tomatically imposed, so it is not necessary to set leverage=T. Also, the
coefficient 7, for leverage effects is denoted by GAMMA (1) in the output to
distinguish it from the EGARCH-type formulation of leverage effects. The
estimated value of vy, is positive, indicating the presence of leverage effects,
and is statistically different from zero at the 5% significance level since its
t-statistic is greater than 2:

> coef (hp.tgarch) [5]/sqrt (vcov (hp.tgarch) [5,5])
[1] 2.5825

PGARCH Model

The basic GARCH model in S+FinMetrics is also extended to allow for
leverage effects. This is made possible by treating the basic GARCH model
as a special case of the power GARCH (PGARCH) model proposed by
Ding, Granger and Engle (1993):

p q
ol =ag+ Z ai(lec—i| + vi€e—i)® + Z bjaf,j (7.13)

i=1 j=1

where d is a positive exponent, and +; denotes the coefficient of lever-
age effects. Note that when d = 2, (7.13) reduces to the basic GARCH
model with leverage effects. Ding, Granger and Engle (1993) showed that
the PGARCH model also includes many other GARCH variants as special
cases.

To estimate a basic GARCH(1,1) model with leverage effects, specify
“garch(1,1) as the conditional variance formula and set the optional ar-
gument leverage=T:

> hp.garch = garch(hp.s”1, “garch(1,1), leverage=T, trace=F)
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> hp.garch

Call:

garch(formula.mean = hp.s ~ 1, formula.var = ~ garch(l, 1),
leverage = T, trace = F)

Mean Equation: hp.s 7 1

Conditional Variance Equation: =~ garch(1l, 1)

Coefficients:
C 4.536e-04
A 3.823e-05

ARCH(1) 7.671e-02
GARCH(1) 8.455e-01
LEV(1) -1.084e-01

The estimated value of v, is negative and its t-statistic

> coef (hp.garch) [5]/sqrt (vcov(hp.garch) [5,5])
[1] -2.2987

is less than 2 so one can reject the null of no leverage effects. If “pgarch(p,q)
instead of “garch(p,q) is used as the conditional variance formula, the
garch function will estimate the PGARCH model (7.13) where the expo-
nent d is also estimated by MLE.

One can fix the exponent d in PGARCH model at a value other than two.
For example, a popular choice is to set d = 1 so that the GARCH model is
robust to outliers. To fit such a model, simply use “pgarch(p,q,d) as the
conditional variance formula:

> hp.pgarch = garch(hp.s™1, pgarch(1,1,1),leverage=T,trace=F)
> hp.pgarch

Call:
garch(formula.mean = hp.s”1, formula.var = “pgarch(1l, 1, 1),
leverage = T, trace = F)

Mean Equation: hp.s 7 1
Conditional Variance Equation: ~ pgarch(1, 1, 1)
Coefficients:

003312

Cc 0.0
A 0.0015569
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GARCH(p, q) 0% = ao/[1 = 320, ai(1 +77) = 327 bj]
TGARCH(p, q) a%=ao/[l — Zf:l(ai +7:/2) — ?:1 by]

PGARCH(p, q,1) 7% =ap/[L = Y0 ai/2/m = 3_, b]?

EGARCH(p,q) | &% = exp{(ao + >7_; ai/2/m) /(1 = 327_, b))}

TABLE 7.1. Unconditional variance of GARCH processes

ARCH(1) 0.0892505
GARCH(1) 0.8612378
LEV(1) -0.1499219

> coef (hp.pgarch) [6]/sqrt(vcov(hp.pgarch) [5,5])
[1] -2.2121

News Impact Curve

The above subsections have shown that GARCH, EGARCH, TGARCH and
PGARCH models are all capable of modeling leverage effects. The choice
of a particular model can be made by using a model selection criterion such
as the Bayesian information criterion (BIC). Alternatively, Engle and Ng
(1993) proposed that the news impact curve could also be used to compare
these different models. Here is the definition of the news impact curve
following Engle and Ng (1993):

The news impact curve is the functional relationship between conditional
variance at time t and the shock term (error term) at time t — 1, hold-
ing constant the information dated t — 2 and earlier, and with all lagged
conditional variance evaluated at the level of the unconditional variance.

To facilitate the comparison of news impact curves of different GARCH
models, Table 7.1 summarizes the unconditional variance, 52, of various
GARCH models and Table 7.2 summarizes the news impact curves for
models with p =1 and ¢ = 1.

For example, to compare the news impact curves implied by hp.tgarch,
hp.pgarch and hp.garch, plot the corresponding news impact curves using
the following commands:

> a0 = hp.tgarch$coef [2]
> al = hp.tgarch$coef [3]
> bl = hp.tgarch$coef [4]
> gl = hp.tgarch$coef [5]
> A = a0 + bl * hp.tgarch$asymp.sd"2
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GARCH(1,1) 0?2 =A+ai(le—1| +y166-1)2
A = Qg + b152

TGARCH(l, ].) O'% =A + (a1 + 715t71)6371
A =aqg+ b52

PGARCH(1,1,1) U% =A+ 2\/Za1(|5t71| +y1€-1)
+ai(le—1| +71€-1)% A= (ao + b15)?

EGARCH(1,1) 0? = Aexp{ai(|e;—1| +v16-1)/7}
A =% exp{ao}

TABLE 7.2. News impact curves of GARCH processes

\4

epsilon = seq(-0.21, 0.14, length=100)
sigma2.t.TGARCH = A + (al+glx*(epsilon < 0))*(epsilon~2)

\4

> a0 = hp.pgarch$coef [2]
> al = hp.pgarch$coef [3]
> bl = hp.pgarch$coef [4]
> gl = hp.pgarch$coef [5]
> A = (a0 + bl * hp.pgarch$asymp.sd) "2

\4

error = abs(epsilon) + gl*epsilon

> sigma2.t.PGARCH = A + 2*sqrt(A)*al*xerror + (al*error)”2
> a0 = hp.garch$coef [2]

> al = hp.garch$coef [3]

> bl = hp.garch$coef [4]

> gl = hp.garch$coef [5]

> A = a0 + bl * hp.garch$asymp.sd"2

\4

error = abs(epsilon) + gl*epsilon
sigma2.t.GARCH = A + alx(error~2)

\4

> matplot(cbind(epsilon, epsilon, epsilon), cbind(
sigma2.t.TGARCH, sigma2.t.PGARCH, sigma2.t.GARCH), type="1")

> key(-0.05, 0.0045, lines=list(type="1", 1lty=1:3), text=
list(c("TGARCH", "PGARCH", "GARCH")), border=1, adj=1)

In this plot, the range of €; is determined by the residuals from the fitted
models. The resulting plot is shown in Figure 7.8. This plot shows that the
news impact curves are all asymmetric because leverage effects are allowed
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FIGURE 7.8. Camparison of news impact curves.

in all three models, and negative shocks or bad news have larger impacts
on volatility. The TGARCH model suggests larger impacts of shocks on
volatility than the GARCH model with leverage effects, regardless of the
size of the shock. Moreover, since the PGARCH model with d = 1 is more
robust to extreme shocks, impacts of small shocks implied by the PGARCH
model are larger compared to those from GARCH and TGARCH models,
whereas impacts of large shocks implied by the PGARCH model are smaller
compared to those from GARCH and TGARCH models.

7.5.2  Two Components Model

Section 7.3.2 illustrated that the GARCH model can be used to model
mean reversion in conditional volatility; that is, the conditional volatility
will always “mean revert” to its long run level if the GARCH model is
stationary. Recall the mean reverting form of the basic GARCH(1, 1) model:

(6 —0°) = (a1 +b)(ef_y — °) +up — brug—

where 62 = ag/(1 — a1 — by) is the unconditional long run level of volatil-
ity. As previous examples have shown, the mean reverting rate a; + by
implied by most fitted models is usually very close to 1. For example, the
ford.mod11 object fitted in Section 7.4,has the following mean reverting
rate:



248 7. Univariate GARCH Modeling

> ford.mod11$coef[3] + ford.modli$coef [4]
[1] 0.9847255

which is almost one. The half life of a volatility shock implied by this mean
reverting rate is:?

> 1log(0.5) /log(ford.mod11$coef [3] + ford.modl1$coef [4])
[1] 45.03192

which amounts to more than two calendar months. So the fitted GARCH
model implies that the conditional volatility is very persistent.

Engle and Lee (1999) suggested that the high persistence in volatility
may be due to a time-varying long run volatility level. In particular, they
suggested decomposing conditional variance into two components:

o = q+ st (7.14)

where ¢; is a highly persistent long run component, and s; is a transitory
short run component.

S+FinMetrics supports a wide range of two component models by ex-
tending all the previously discussed GARCH variants to incorporate the two
components form (7.14). The general form of the two components model is
based on a modified version of Ding and Granger (1996):

of =g + s¢ (7.15)
g = enlera|” + Brgiy (7.16)
s =ag + aales1|T + Bysd ;. (7.17)

That is, the long run component g; follows a highly persistent PGARCH(1, 1)
model, and the transitory component s; follows another PGARCH(1,1)
model. By expressing the above two PGARCH models using lag operator
notation

qg =(1- 51L)_1a1|6t71\d

s{ = ao + (1 — BoL) " aaler 1|

and then substituting them into (7.15), it can be shown that the reduced
form of the two components model is:

of = ao + (a1 + ag)lep—1|* — (1 By + asfy)|e—2|?

+ (81 + Bo)ot ) — B1By0t

which is in the form of a constrained PGARCH(2,2) model. However,
the two components model is not fully equivalent to the PGARCH(2, 2)

5See Chapter 2 for the definition of half life.
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model because not all PGARCH(2,2) models have the component struc-
ture. In fact, since the two components model is a constrained version
of the PGARCH(2, 2) model, the estimation of a two components model
is often numerically more stable than the estimation of an unconstrained
PGARCH(2,2) model.

Although the PGARCH(1, 1) model is used here as the component for the
two components model, S+FinMetrics actually allows any valid GARCH
variant as the component, and leverage effects are also allowed correspond-
ingly. For example, to fit a two components model using a GARCH compo-
nent, EGARCH component, or PGARCH component, simply use the condi-
tional variance formulas “garch.2comp, “egarch.2comp, “pgarch.2comp(d),
respectively. Since a two components model reduces to a GARCH(2,2)
model of the corresponding type, the orders of the ARCH and GARCH
terms need not be given in the formula specification. The only exception
is the PGARCH two components model, which can explicitly specify the
exponent d for the underlying PGARCH model. For example, to estimate
a two components PGARCH model with d = 2 using the daily Ford stock
returns ford.s, use the following command:

> ford.2comp = garch(ford.s™1, “pgarch.2comp(2))
> summary(ford.2comp)

Call:

garch(formula.mean = ford.s ~ 1, formula.var =
~ pgarch.2comp(2))

Mean Equation: ford.s ~ 1

Conditional Variance Equation: ~ pgarch.2comp(2)

Conditional Distribution: gaussian

Value Std.Error t value Pr(>|tl)

C 6.870e-04 3.795e-04 1.810 3.519e-02
A 1.398e-06 5.877e-07 2.379 8.716e-03
ALPHA(1) 2.055e-02 6.228e-03  3.300 4.925e-04
ALPHA(2) 1.422e-01 2.532e-02 5.617 1.110e-08
BETA(1) 9.664e-01 8.637e-03 111.883 0.000e+00
BETA(2) 3.464e-01 1.091e-01  3.175 7.617e-04

The coefficients for the two components, a, 5, a2 and (5, are identified by
ALPHA(1),BETA(1), ALPHA(2) and BETA(2) in the output. As expected, the
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long run component associated with ay and (3 is very persistent, whereas
the second component associated with ay and 5 is not persistent at all.
Also, all the coefficients are highly significant.

In the above example, fixing d = 2 for the two components PGARCH
model can be easily verified that the model is equivalent to a two compo-
nents GARCH model. If the exponent d is not specified in the formula, it
will be estimated by MLE. In addition, setting leverage=T when fitting
a two components model, the coefficients for leverage effects will also be
estimated, and the form of leverage effects is same as in (7.11) and (7.13).
However, for the two components PGARCH model, S+FinMetrics also al-
lows leverage effects to take the form as in the TGARCH model (7.12). The
resulting model can be estimated by using “two.comp(i,d) as the condi-
tional variance formula, with ¢ = 2 corresponding to the leverage effects as
in (7.12), and ¢ = 1 corresponding to the leverage effects as in (7.13). For
example, the following model is essentially the two components TGARCH
model:

> garch(ford.s™1, “two.comp(2,2), leverage=T, trace=F)
Call:
garch(formula.mean = ford.s ~ 1, formula.var =

~ two.comp(2, 2), leverage = T, trace = F)

Mean Equation: ford.s 7 1

Conditional Variance Equation: ~ two.comp(2, 2)
Coefficients:
C 5.371e-04
A 1.368e-06
ALPHA(1) 1.263e-02
ALPHA(2) 1.154e-01
BETA(1) 9.674e-01
BETA(2) 2.998e-01
LEV(1) 8.893e-02

LEV(2) -5.235e-02

7.5.3 GARCH-in-the-Mean Model

In financial investment, high risk is often expected to lead to high returns.
Although modern capital asset pricing theory does not imply such a simple
relationship, it does suggest there are some interactions between expected
returns and risk as measured by volatility. Engle, Lilien and Robins (1987)
proposed to extend the basic GARCH model so that the conditional volatil-
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g(ot) Formula name
o sd.in.mean
o? var.in.mean
In(0?) | logvar.in.mean

TABLE 7.3. Possible functions for g(o)

ity can generate a risk premium which is part of the expected returns.
This extended GARCH model is often referred to as GARCH-in-the-mean
(GARCH-M) model.

The GARCH-M model extends the conditional mean equation (7.8) as
follows:

yr = c+ ag(ot) + & (7.18)

where ¢(-) can be an arbitrary function of volatility o;. The garch func-
tion allows the GARCH-M specification in the conditional mean equation
together with any valid conditional variance specification. However, the
function g(o:) must be one of the functions listed in Table 7.3, where the
corresponding formula specifications are also given.

For example, to fit a GARCH-M model with g(c;) = o7 to Hewlett-
Packard stock returns using a PGARCH(1, 1, 1) model with leverage effects,
use the following command:

> hp.gmean = garch(hp.s”var.in.mean, “pgarch(1,1,1),leverage=T)

Iteration O Step Size = 1.00000 Likelihood = 2.40572
Iteration 0 Step Size = 2.00000 Likelihood = 2.40607
Iteration 0 Step Size = 4.00000 Likelihood = 2.38124
Iteration 1 Step Size = 1.00000 Likelihood = 2.40646
Iteration 1 Step Size = 2.00000 Likelihood = 2.40658
Iteration 1 Step Size = 4.00000 Likelihood = 2.40611
Iteration 2 Step Size = 1.00000 Likelihood = 2.40667
Iteration 2 Step Size = 2.00000 Likelihood = 2.40669
Iteration 2 Step Size = 4.00000 Likelihood = 2.40653

Convergence R-Square = 7.855063e-05 is less than tolerance
= 0.0001

Convergence reached.

> summary (hp.gmean)

Call:
garch(formula.mean = hp.s ~ var.in.mean, formula.var =
~ pgarch(1l, 1, 1), leverage = T)

Mean Equation: hp.s ~ var.in.mean

Conditional Variance Equation: ~ pgarch(1, 1, 1)
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Conditional Distribution: gaussian

Value Std.Error t value Pr(>|tl)

C -0.001712 0.0013654 -1.254 1.050e-01
ARCH-IN-MEAN 4.373179 2.8699425 1.524 6.386e-02
A 0.001648 0.0003027 5.444 2.920e-08

ARCH(1) 0.093854 0.0096380 9.738 0.000e+00
GARCH(1) 0.853787 0.0176007 48.509 0.000e+00
LEV(1) -0.161515 0.0648241 -2.492 6.399e-03

The coefficient « in (7.18) is identified by ARCH-IN-MEAN in the output.
In this case, the risk premium is positive which implies that high risk
(volatility) leads to high expected returns. However, the p-value for the
t-statistic is slightly larger than the conventional 5% level.

7.5.4 ARMA Terms and Ezxogenous Variables in Conditional
Mean Equation

So far the conditional mean equation has been restricted to a constant
when considering GARCH models, except for the GARCH-M model where
volatility was allowed to enter the mean equation as an explanatory vari-
able. The garch function in S+FinMetrics allows ARMA terms as well
as exogenous explanatory variables in the conditional mean equation. The
most general form for the conditional mean equation is

I s L
ye=c+ Y iyi-it Y Ojej+y Bixei+e (7.19)
i=1 j=1 I=1

where x; is a k x 1 vector of weakly exogenous variables, and 3; is the
k x 1 vector of coefficients. Note that distributed lags of the exogenous
variables in x; are also allowed. To include AR(r), MA(s), or ARMA(r, s)
terms in the conditional mean, simply add ar(r), ma(s), or arma(r,s) to
the conditional mean formula.

Example 42 Single factor model with GARCH errors

From the Capital Asset Pricing Model (CAPM), stock returns should be
correlated with the returns on a market index, and the regression coeflicient
is usually referred to as the “market beta”. S+FinMetrics comes with a
“timeSeries” object nyse.s which represents daily returns on a value
weighted New York Stock Exchange index and covers the same time period
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FIGURE 7.9. Daily Ford returns versus NYSE returns.

as ford.s. Use the S+FinMetrics function rvfPlot to generate a Trellis
scatter plot of ford.s versus nyse.s:

> rvfPlot(ford.s, nyse.s, strip.text="Market Beta",
id.n=0, hgrid=T, vgrid=T,
xlab="NYSE Returns", ylab="Ford Returns")

The plot is shown in Figure 7.9, from which a clear linear relationship can
be seen. To estimate the market beta for daily Ford returns allowing for a
GARCH(1,1) error, use the following command:

> ford.beta = garch(ford.s"ma(l)+seriesData(nyse.s),
“garch(1,1), trace=F)
> summary(ford.beta)

Call:
garch(formula.mean = ford.s ~ ma(l) + seriesData(nyse.s),
formula.var = ~ garch(1, 1), trace = F)

Mean Equation: ford.s ~ ma(l) + seriesData(nyse.s)
Conditional Variance Equation: ~ garch(l, 1)

Conditional Distribution: gaussian
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Value Std.Error t value Pr(>|tl)

C 8.257e-05 3.063e-04 0.2695 3.938e-01

MA(1) 4.448e-02 2.186e-02  2.0348 2.100e-02
seriesData(nyse.s) 1.234e+00 2.226e-02 55.4418 0.000e+00
A 1.406e-06 5.027e-07 2.7971 2.603e-03

ARCH(1) 3.699e-02 4.803e-03  7.7019 1.044e-14

GARCH(1) 9.566e-01 6.025e-03 158.7691 0.000e+00

Note that an MA(1) term has also been added in the mean equation to allow
for first order serial correlation in the daily returns caused by the possible
bid-ask bounce often observed in daily stock prices. The above summary
shows that both the MA(1) coefficient and market beta are highly signif-
icant. The estimated volatility is shown in Figure 7.10, which is obtained
by choosing choice 8 from the plot method. Compare this with the esti-
mated volatility without using nyse. s as shown in Figure 7.7: the estimated
volatility has the same pattern, but the magnitude of volatility has signif-
icantly decreased. Since the market effects are taken into consideration
here by using nyse.s as an explanatory variable, the resulting volatility
may be interpreted as the “idiosyncratic” volatility, while the volatility in
Figure 7.7 includes both the idiosyncratic component and the systematic
market component.

7.5.5 FExogenous Fxplanatory Variables in the Conditional
Variance Equation

Adding explanatory variables into the conditional variance formula may
have impacts on conditional volatility.® To illustrate, it is widely believed
that trading volume affects the volatility. The S+FinMetrics object dell.s
contains a time series of daily stock returns of Dell Computer Corporation,
and dell.v contains daily trading volume of Dell stocks spanning the same
time period. In the next example, use the percentage change in trading
volume to forecast volatility.

Example 43 Trading volume and volatility

First, use the S+FinMetrics function getReturns to compute rates of
changes in trading volume. Then look at the scatter plot of log absolute
returns versus the changes in trading volume:

6To guarantee that the conditional variance is always positive, one has to make sure
that exogenous variables are positive unless an EGARCH type model is selected.
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FIGURE 7.10. Idiosyncratic volatility of daily Ford returns.

> log.abs.ret = log(abs(dell.s-mean(dell.s))) [-1]

> d.volume = getReturns(dell.v)

> rvfPlot(log.abs.ret, d.volume, strip="Scatter Plot",
id.n=0, hgrid=T, vgrid=T,
xlab="%, Volume", ylab="Volatility")

The resulting plot is shown in Figure 7.11. There seems to exist a fairly
linear relationship between the changes in volume and the volatility as
measured by the log absolute returns. Based on this observation, use the
changes in volume as an explanatory variable in the EGARCH variance
equation:

> dell.mod = garch(dell.s™1, egarch(1,1)+seriesData(d.volume),
series.start=2)
> summary(dell.mod)

Call:
garch(formula.mean = dell.s ~ 1, formula.var = ~ egarch(l, 1)
+ seriesData(d.volume), series.start = 2)

Mean Equation: dell.s 7 1

Conditional Variance Equation:
seriesData(d.volume)

egarch(1l, 1) +
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FIGURE 7.11. Log absolute returns versus changes in volume: Dell.

Conditional Distribution: gaussian

Value Std.Error t value Pr(>|t])

C 0.15678 0.06539 2.3977 8.321e-03

A -0.02078 0.03927 -0.5293 2.984e-01

ARCH(1) 0.14882 0.03721  3.9992 3.364e-05

GARCH(1) 0.95140 0.01695 56.1226 0.000e+00
seriesData(d.volume) 1.39898 0.08431 16.5928 0.000e+00

The optional argument series.start=2 is used because the “timeSeries”
d.volume has one less observation than the “timeSeries” dell.s. From
the summary output, the coefficient on changes in volume is estimated to
be 1.4 and is highly significant with a p-value essentially equal to zero. The
estimated model implies a 1% change in trading volume causes about a
1.4% change in conditional variance.
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7.5.6 Non-Gaussian Error Distributions

In all the examples illustrated so far, a normal error distribution has been
exclusively used. However, given the well known fat tails in financial time
series, it may be more desirable to use a distribution which has fatter tails
than the normal distribution. The garch function in S+FinMetrics allows
three fat-tailed error distributions for fitting GARCH models: the Student’s
t distribution; the double exponential distribution; and the generalized error
distribution.

Student’s ¢t Distribution

If a random variable u; has a Student’s ¢ distribution with v degrees of
freedom and a scale parameter s;, the probability density function (PDF)
of u; is given by:

T(v+1)/2] si
(@) 1720 (v/2) [+ uf [ (50)] 4D /2

flug) =

where I'(+) is the gamma function. The variance of u; is given by:

StV

Var(u) = 5 V> 2.

If the error term ¢; in a GARCH model follows a Student’s t distribution
with v degrees of freedom and Vari_i(e) = Jf, the scale parameter s;
should be chosen to be
o?(v—2)

” .
Thus the log-likelihood function of a GARCH model with Student’s ¢ dis-
tributed errors can be easily constructed based on the above PDF.

St =

Generalized Error Distribution

Nelson (1991) proposed to use the generalized error distribution (GED) to
capture the fat tails usually observed in the distribution of financial time
series. If a random variable u; has a GED with mean zero and unit variance,
the PDF of u; is given by:

vexp[—(1/2)|us/A]"]
- 20+D)/vT(1/v)

flu) =

where Lo
[y /
L TB/MWw)
and v is a positive parameter governing the thickness of the tail behavior
of the distribution. When v = 2 the above PDF reduces to the standard
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normal PDF; when v < 2, the density has thicker tails than the normal
density; when v > 2, the density has thinner tails than the normal density.

When the tail thickness parameter v = 1, the PDF of GED reduces to
the PDF of double exponential distribution:

flu) = %e_ﬁ‘utl-

Based on the above PDF, the log-likelihood function of GARCH mod-
els with GED or double exponential distributed errors can be easily con-
structed. Refer to Hamilton (1994) for an example.

GARCH Estimation with Non-Gaussian Error Distributions

To estimate a GARCH model with the above three non-Gaussian error
distributions using the garch function, simply set the optional argument
cond.dist to "t" for the Student’s ¢ distribution, "ged" for the GED
distribution, and "double.exp" for the double exponential distribution,
respectively.

For example, to estimate a basic GARCH(1, 1) model with Student’s ¢
distribution using daily Ford stock returns ford.s, use the command:

> ford.mod11l.t = garch(ford.s”1, “garch(1l,1), cond.dist="t")

Iteration 0O Step Size = 1.00000 Likelihood = 2.64592
Iteration O Step Size = 2.00000 Likelihood = -1.00000e+10
Iteration 1 Step Size = 1.00000 Likelihood = 2.64788
Iteration 1 Step Size = 2.00000 Likelihood = 2.64367
Iteration 2 Step Size = 1.00000 Likelihood = 2.64808
Iteration 2 Step Size = 2.00000 Likelihood = 2.64797

Convergence R-Square = 4.712394e-05 is less than tolerance
= 0.0001
Convergence reached.

The distribution information is saved in the cond.dist component of the
returned object:

> ford.mod11l.t$cond.dist
$cond.dist:
[1] Iltll

$dist.par:
[1] 7.793236

$dist.est:
[11 T
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FIGURE 7.12. Student-t QQ-plot of standardized residuals: ford.mod11.t.

where the dist.par component contains the estimated degree of freedom
v for Student’s ¢ distribution. Calling the generic summary function on the
returned object will also show the standard error of the estimate of v.

To assess the goodness-of-fit of ford.mod11.t, generate the qg-plot based
on the estimated Student’s ¢ distribution by calling the plot function on
ford.mod11.t, which is shown in Figure 7.12. Compare this with Figure 7.5
and the Student’s t error distribution provides a much better fit than the
normal error distribution.

When using Student’s ¢t or GED distributions, the distribution parameter
v is estimated as part of the MLE procedure by default. One can also choose
to fix v at a certain value during the estimation. For example, to fix v = 1
for GED distribution, use the command:

> ford.modl1l.dexp = garch(ford.s”1, “garch(1,1),
+ cond.dist="ged", dist.par=1, dist.est=F)

where the optional argument dist.par is used to set the value, and dist.est
is used to exclude the distribution parameter for MLE. It can be easily ver-
ified that this is equivalent to setting cond.dist="double.exp".
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7.6 GARCH Model Selection and Comparison

The previous sections have illustrated the variety of GARCH models avail-
able in S+FinMetrics. Obviously selecting the best model for a particular
data set can be a daunting task. Model diagnostics based on standard-
ized residuals and news impact curves for leverage effects can be used to
compare the effectiveness of different aspects of GARCH models. In addi-
tion, since GARCH models can be treated as ARMA models for squared
residuals, traditional model selection criteria such as Akaike information
criterion (AIC) and Bayesian information criterion (BIC) can also be used
for selecting models.

To facilitate the selection and comparison of different GARCH models,
S+FinMetrics provides the function compare.mgarch to compare the fits
of different “garch” objects.” For example, to compare the GARCH(1,1)
fits of the “garch” objects ford.mod11 and ford.mod11.t, one fitted with
the Gaussian distribution and the other with the Student’s ¢ distribution,
use the following command:

> ford.compare = compare.mgarch(ford.mod11l, ford.modil.t)
> oldClass(ford.compare)
[1] "compare.garch" "compare.mgarch"
> ford.compare
ford.mod11 ford.modl1l.t

AIC -10504 -10582
BIC -10481 -10554
Likelihood 5256 5296

The returned object ford.compare is an S version 3 object with class
“compare.garch”, which inherits from the class “compare.mgarch”. The
print method for this class of objects shows the AIC, BIC, and log-
likelihood values of the fitted models. Since the BIC of ford.mod11.t is
much smaller than that of ford.mod11, Student’s ¢ distribution seems to
provide a much better fit than the normal distribution.

S+FinMetrics also provides a method for the generic plot function for
objects inheriting from class “compare.mgarch”. To see the arguments of
the plot method, use the args function as usual:

> args(plot.compare.mgarch)

function(x, qq = F, hgrid = F, vgrid = F, lag.max = NULL,
ci=2, ...

> plot(ford.compare)

7This is originally designed as a method function for the generic compare function for
an S version 3 object. However, for S-PLUS 6 which is based on S version 4, the generic
function compare does not work correctly when more than two objects are compared. So
we suggest calling compare.mgarch directly.
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FIGURE 7.13. Comparison of ACF of squared std. residuals.

The resulting plot is shown Figure 7.13. By default, the plot method com-
pares the ACF of squared standardized residuals from the fitted models.
This plot demonstrates that both models are successful at modeling condi-
tional volatility. If the optional argument is set at qq=T, then a comparison
of qg-plots is generated:

> plot(ford.compare, qg=T, hgrid=T, vgrid=T)

which is shown in Figure 7.14. Note that since ford.mod11 is fitted using
the normal distribution, the qg-plot is based on normal assumption. In
contrast, since ford.mod11.t is fitted using Student’s ¢ distribution, the
qqg-plot is based on a Student’s t distribution with degrees of freedom taken
from the cond.dist component of the object.

7.6.1 Constrained GARCH Estimation

For a GARCH model, some model parameters can also be fixed at certain
values to evaluate the fit of a particular model. Section 13.7 in Chapter 13
provides some examples.
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FIGURE 7.14. Comparison of QQ-plot of std. residuals.

7.7 GARCH Model Prediction

An important task of modeling conditional volatility is to generate accurate
forecasts for both the future value of a financial time series as well as its
conditional volatility. Since the conditional mean of the general GARCH
model (7.19) assumes a traditional ARMA form, forecasts of future values
of the underlying time series can be obtained following the traditional ap-
proach for ARMA prediction. However, by also allowing for a time varying
conditional variance, GARCH models can generate accurate forecasts of
future volatility, especially over short horizons. This section illustrates how
to forecast volatility using GARCH models.
For simplicity, consider the basic GARCH(1, 1) model:

O’? = ap + 0,16571 + b10?71
which is estimated over the time period t = 1,2,--- , T". To obtain Ep [U%+k],
the forecasts of future volatility o7, ,, for k > 0, given information at time

T. The above equation can easily obtain:

ET[U%H] = ag + a1 Er[e3] + b1 Er[o7]

2 2
=ap + a1€p + biop
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FIGURE 7.15. PGARCH forecasts of future volatility: hp.pgarch.

since it already has €% and o2 after the estimation.® Now for 7" + 2

ET[02T+2] =ap + alET[€2T+1] + blET[02T+1]

=ao+ (a1 + bl)ET[U?mrl]-

since Ep[ef, ] = Ep[o%., ). The above derivation can be iterated to give
the conditional volatility forecasting equation

k—2

Erlog ) =a0 Y (a1 +b1)" + (a1 + b1)* ' Erfo74] (7.20)
i=1

for k& > 2. Notice that as k — oo, the volatility forecast in (7.20) ap-
proaches the unconditional variance ag/(1 —az —b1) if the GARCH process
is stationary (i.e., if a3 + b1 < 1).

The forecasting algorithm (7.20) produces forecasts for the conditional
variance o2 4, The forecast for the conditional volatility, o1, is defined
as the square root of the forecast for 02T e

The predict method for “garch” objects in S+FinMetrics implements
the forecasting procedure as described above for all the supported GARCH
variants, allowing for leverage effects and the use of exogenous variables

8We are a little bit loose with notations here because er and a% are actually the
fitted values instead of the unobserved “true” values.
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in both the conditional mean and the conditional variance. The forecasts
can be easily obtained by calling the generic predict function on a fitted
model object with the desired number of forecasting periods. For example,
consider the PGARCH object hp.pgarch in Section 7.5.1. To obtain 10-
step-ahead forecasts, simply use the command:

> hp.pgarch.pred = predict (hp.pgarch,10)

> class(hp.pgarch.pred)

[1] "predict.garch"

> names (hp.pgarch.pred)

[1] "series.pred" "sigma.pred" "asymp.sd"

> hp.pgarch.pred

$series.pred:
[1] 0.0003312 0.0003312 0.0003312 0.0003312 0.0003312
[6] 0.0003312 0.0003312 0.0003312 0.0003312 0.0003312

$sigma.pred:
[1] 0.02523 0.02508 0.02494 0.02482 0.02470 0.02458 0.02448
[8] 0.02438 0.02429 0.02421

$asymp.sd:
[1] 0.02305

attr(, "class"):
[1] "predict.garch"

The returned object hp.pgarch.pred is of class “predict.garch” for which
there is only a plot method. Since the conditional mean was restricted to
a constant in hp.pgarch, the forecasts of the future values contained in
the component series.pred are simply the estimate of the mean. The
component sigma.pred contains the forecasts of o;, and the component
asymp.sd contains the estimate of the unconditional standard deviation if
the estimated model is stationary. If a very large number of steps lie ahead,
the forecasted volatility should approach the unconditional level. This can
be easily verified for hp.pgarch as follows:

> plot(predict (hp.pgarch, 100))

where the plot method for the returned object can be directly invoked
and the resulting plot is shown in Figure 7.15. Note that a plot of the
forecasted series values can also be obtained. See the on-line help file for
plot.predict.garch for details.

The forecasted volatility can be used together with forecasted series val-
ues to generate confidence intervals of the forecasted series values. In many
cases, the forecasted volatility is of central interest, and confidence inter-
vals for the forecasted volatility can be obtained as well. However, analytic
formulas for confidence intervals of forecasted volatility are only known for
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some special cases (see Baillie and Bollerslev, 1992). The next section will
show how a simulation-based method can be used to obtain confidence in-
tervals for forecasted volatility from any of the GARCH variants available
in S+FinMetrics.

7.8 GARCH Model Simulation

S+FinMetrics provides a method for the generic S-PLUS function simulate
for objects of class “garch”. This function, simulate.garch, allows obser-
vations as well as volatility to be simulated from a user-specified GARCH
model or from the model contained in a fitted “garch” object. This section
illustrates the use of simulate to create confidence intervals for volatility
forecasts from a fitted GARCH model.

Example 44 Simulation-based GARCH forecasts

To obtain volatility forecasts from a fitted GARCH model, simply sim-
ulate from the last observation of the fitted model. This process can be
repeated many times to obtain an “ensemble” of volatility forecasts. For
example, suppose 100-step-ahead volatility forecasts need to be generated
from hp.pgarch, take the residual term and fitted volatility of the last
observation:®

sigma.start = as.numeric(hp.pgarch$sigma.t[2000])
eps.start = as.numeric(hp.pgarch$residuals[2000])
eps.start = matrix(eps.start, 1, 1000)

error = rbind(eps.start, matrix(rnorm(100%1000), 100))

V V V V

Note that the first row of error contains the pre-sample values of ¢; to
start off the simulation for each of the 1000 replications, whereas the rest
of error are simply random variates with zero mean and unit variance
which will be updated by the simulation procedure to result in GARCH
errors. Now use these values to obtain the simulations as follows:

> set.seed(10)
> hp.sim.pred = simulate(hp.pgarch, n=100, n.rep=1000,
sigma.start=sigma.start, etat=error)$sigma.t

The argument n specifies the desire to simulate 100 steps ahead, and n.rep
specifies wanting to repeat this 1000 times. The simulation procedure re-
turns both the simulated GARCH errors and volatility. Only take the sim-
ulated volatility contained in the sigma.t component; thus hp.sim.pred
is a 100 x 1000 matrix with each column representing each simulation path.

91f the order of the fitted GARCH model is m = max(p, q), then m last observations
are required.
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FIGURE 7.16. Simulation-based volatility forecasts: hp.pgarch.

The simulation-based forecasts are simply the average of the 1000 simula-
tion paths. 95% confidence intervals for the forecasts may be computed in
two ways. They can be computed using the usual formula based on nor-
mally distributed forecasts; that is, mean forecast +2- standard deviation
of forecasts. Alternatively, the 95% confidence interval may be constructed
from the 2.5% and 97.5% quantiles of the simulated forecasts. Use the fol-
lowing code to compute the forecasts and plot the 95% confidence interval
based on the normal formula:

vol.mean = rowMeans(hp.sim.pred)

vol.stdev = rowStdevs(hp.sim.pred)

vol.cf = cbind(vol.mean+2*vol.stdev, vol.mean-2*vol.stdev)

tsplot(cbind(vol.mean, vol.cf))

points(predict (hp.pgarch, 100)$sigma.pred, pch=1)

title(main="Simulated Confidence Interval of Volatility",
xlab="Time", ylab="Volatility")

V V. V V V V

The resulting plot is shown in Figure 7.16. Note that analytic forecasts
are also added as points in the plot for comparison. The simulation-based
forecasts agree with the analytic ones produced by the predict method.

In the above example, the “standardized” errors were generated by ran-
dom sampling from the standard normal distribution. In practice, it may
be desirable to generate standardized errors by bootstrapping from stan-
dardized residuals.
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Formula Model

~garch(p,q) GARCH(p, ¢) model

~egarch(p,q) EGARCH(p, ¢) model

“tgarch(p,q) TGARCH(p, ¢) model

“pgarch(p,q) PGARCH(p, ¢) model with free exponent d

“pgarch(p,q,d) PGARCH(p, ¢) model with fixed exponent d

“garch.2comp GARCH TWO.COMP model

~egarch.2comp EGARCH TWO.COMP model

“pgarch.2comp PGARCH TWO.COMP model with free
exponent d

“pgarch.2comp(d) [ PGARCH TWO.COMP model with fixed
exponent d

“two.comp (i) PGARCH TWO.COMP model with choice of
leverage effects

“two.comp(i,d) PGARCH TWO.COMP model with choice of
leverage effects and exponent d

TABLE 7.4. GARCH Formula Specifications
7.9 Conclusion

This chapter illustrated how to estimate and forecast from various GARCH
models. The range of GARCH models supported by S+FinMetrics is very
broad. Table 7.4 summarizes all the conditional variance formulas sup-
ported by the garch function.
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8
Long Memory Time Series Modeling

8.1 Introduction

Earlier chapters have demonstrated that many macroeconomic and finan-
cial time series like nominal and real interest rates, real exchange rates,
exchange rate forward premiums, interest rate differentials and volatility
measures are very persistent, i.e., that an unexpected shock to the under-
lying variable has long lasting effects. Persistence can occur in the first
or higher order moments of a time series. The persistence in the first mo-
ment, or levels, of a time series can be confirmed by applying either unit
root tests or stationarity tests to the levels, while the persistence in the
volatility of the time series is usually exemplified by a highly persistent
fitted GARCH model. Although traditional stationary ARMA processes
often cannot capture the high degree of persistence in financial time series,
the class of non-stationary unit root or I(1) processes have some unap-
pealing properties for financial economists. In the last twenty years, more
applications have evolved using long memory processes, which lie halfway
between traditional stationary I(0) processes and the non-stationary I(1)
processes. There is substantial evidence that long memory processes can
provide a good description of many highly persistent financial time series.

This chapter will cover the concept of long memory time series. Sec-
tion 8.3 will explain various tests for long memory, or long range depen-
dence, in a time series and show how to perform these tests using functions
in S+FinMetrics module. In Section 8.4 will illustrate how to estimate
the long memory parameter using R/S statistic and two periodogram-
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based method. Section 8.5 will extend the traditional ARIMA processes
to fractional ARIMA (FARIMA) processes, which can be used to model
the long range dependence and short run dynamics simultaneously. The
semiparametric fractional autoregressive (SEMIFAR) process recently pro-
posed by Beran and his coauthors will also be introduced. Section 8.6 will
extend GARCH models to fractionally integrated GARCH models to al-
low for long memory in conditional volatility. Finally, section 8.7 will con-
sider the prediction from long memory models such as FARIMA and FI-
GARCH/FIEGARCH models. Beran (1994) gives an exhaustive treatment
of statistical aspects of modeling with long memory processes, while Bail-
lie (1996) provides a comprehensive survey of econometric analysis of long
memory processes and applications in economics and finance.

8.2 Long Memory Time Series

To illustrate the long memory property in financial time series, consider
the daily returns on the S&P500 index from January 4, 1928 to August 30,
1991 contained in the S+FinMetrics “timeSeries” object sp500. Since
daily returns usually have a mean very close to zero, the absolute return
is sometimes used as a measure of volatility. The sample autocorrelation
function of the daily absolute returns can be plotted using the following
commands:

> tmp = acf(abs(sp500), lag=200)

> sp500.ar = ar(abs(sp500))

> sp500.ar$order

(1] 37

> tmp.mod = list(ar=as.vector(sp500.ar$ar), sigma2=1, d=0)
> ar.acf = acf.FARIMA(tmp.mod, lag.max=200)

> lines(ar.acf$lags, ar.acf$acf/ar.acf$acf[1])

and the plot is shown in Figure 8.1. The autocorrelation of absolute re-
turns is highly persistent and remains very significant at lag 200. In the
above code fragment, the S-PLUS function ar is used to select the best fit-
ting AR process using AIC, which turns out to be an AR(37) model. The
S+FinMetrics function acf.FARIMA compares the theoretical autocorrela-
tion function implied by the AR(37) process with the sample autocorrela-
tion function. The following comments apply to this example:

1. Traditional stationary ARMA processes have short memory in the
sense that the autocorrelation function decays exponentially. In the
above example, the theoretical autocorrelation closely matches the
sample autocorrelation at small lags. However, for large lags, the
sample autocorrelation decays much more slowly than the theoretical
autocorrelation.
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FIGURE 8.1. ACF of daily absolute returns of S&P500 index.

2. When the sample autocorrelation decays very slowly, traditional sta-
tionary ARMA processes usually result in an excessive number of
parameters. In the above example, 37 autoregressive coefficients were
found necessary to capture the dependence in the data.

Based on the above observations, a stationary process y; has long mem-
ory, or long range dependence, if its autocorrelation function behaves like

p(k) = Cok™ as k — oo (8.1)

where C), is a positive constant, and « is a real number between 0 and 1.
Thus the autocorrelation function of a long memory process decays slowly
at a hyperbolic rate. In fact, it decays so slowly that the autocorrelations

are not summable:
> (k) = oo

k=—o00

For a stationary process, the autocorrelation function contains the same
information as its spectral density. In particular, the spectral density is
defined as:
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where w is the Fourier frequency (c.f. Hamilton, 1994). From (8.1) it can
be shown that

fw) = Crw* tasw—0 (8.2)

where C is a positive constant. So for a long memory process, its spectral
density tends to infinity at zero frequency. Instead of using «, in practice
use

H=1-0a/2€(05,1), (8.3)

which is known as the Hurst coefficient (see Hurst, 1951) to measure the
long memory in y;. The larger H is, the longer memory the stationary
process has.

Based on the scaling property in (8.1) and the frequency domain property
n (8.2), Granger and Joyeux (1980) and Hosking (1981) independently
showed that a long memory process y; can also be modeled parametrically
by extending an integrated process to a fractionally integrated process. In
particular, allow for fractional integration in a time series y; as follows:

(1- L)d(yt —p) = uy (8.4)

where L denotes the lag operator, d is the fractional integration or fractional
difference parameter, p is the expectation of y;, and w; is a stationary short-
memory disturbance with zero mean.

In practice, when a time series is highly persistent or appears to be
non-stationary, let d = 1 and difference the time series once to achieve
stationarity. However, for some highly persistent economic and financial
time series, it appears that an integer difference may be too much, which is
indicated by the fact that the spectral density vanishes at zero frequency
for the differenced time series. To allow for long memory and avoid taking
an integer difference of y;, allow d to be fractional. The fractional difference
filter is defined as follows, for any real d > —1:

1-0)*=>" < Z > (—D)kLF (8.5)

k=0

with binomial coefficients:

dy\ d B I(d+1)
< k ) kN d—k) T(k+DI(d-k+1)

Notice that the fractional difference filter can be equivalently treated as an
infinite order autoregressive filter.! It can be shown that when |d| > 1/2,
y¢ is non-stationary; when 0 < d < 1/2, y; is stationary and has long

1The S+FinMetrics function FARIMA.d2ar can be used to compute the autoregressive
representation of the fractional difference filter.
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FIGURE 8.2. Autocorrelation of fractional integrated process.

memory; when —1/2 < d < 0, y; is stationary and has short memory, and
is sometimes referred to as anti-persistent.
When a fractionally integrated series y; has long memory, it can also be
shown that
d=H-1/2, (8.6)

and thus d and H can be used interchangeably as the measure of long
memory. Hosking (1981) showed that the scaling property in (8.1) and the
frequency domain property in (8.2) are satisfied when 0 < d < 1/2.

Example 45 Theoretical ACF of fractionally integrated processes

In this example,use the S+FinMetrics function acf.FARIMA to plot the
theoretical autocorrelation function of a fractionally integrated process with
a standard normal disturbance u;, for d = 0.3 and d = —0.3, respectively:

d.pos = acf.FARIMA(list(d=0.3, sigma2=1), 100)
d.pos$act = d.pos$acf / d.pos$act[1]
d.neg = acf.FARIMA(list(d=-0.3, sigma2=1), 100)
d.neg$acf = d.neg$acf / d.neg$acf[1]

vV V V VvV

\4

par (mfrow=c(2,1))
plot(d.pos$lags, d.pos$acf, type="h", main="d = 0.3",
xlab="lags", ylab="ACF")

+ Vv
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> plot(d.neg$lags, d.neg$acf, type="h", main="d = -0.3",
+ xlab="lags", ylab="ACF")
> par (mfrow=c(1,1))

and the plot is shown in Figure 8.2. Notice that the signs of the ACF
coeflicients are determined by the sign of d.

8.3 Statistical Tests for Long Memory

Given the scaling property of the autocorrelation function, the frequency
domain property and the fractionally integrated process representation of a
long memory time series, various tests have been proposed to determine the
existence of long memory in a time series. This section introduces the R/S
statistic and GPH test. However, before getting into the details of those
test statistics, it is important to note that the definition of long memory
does not dictate the general behavior of the autocorrelation function or its
spectral density. Instead, they only specify the asymptotic behavior when
k — oo or w — 0. What this means is that for a long memory process, it
is not necessary for the autocorrelation to remain significant at large lags
as in the previous sp500 example, as long as the autocorrelation function
decays slowly. Beran (1994) gives an example to illustrate this property.

8.3.1 R/S Statistic

The best-known test for long memory or long range dependence is prob-
ably the rescaled range, or range over standard deviation, or simply R/S
statistic, which was originally proposed by Hurst (1951), and later refined
by Mandelbrot and his coauthors. The R/S statistic is the range of partial
sums of deviations of a time series from its mean, rescaled by its standard
deviation. Specifically, consider a time series y;, for t = 1,--- ,T. The R/S
statistic is defined as:

k

k
Qr = 1<k<TZ 15}@%;(% ) (8.7)
= =

ST

where § = 1/TZ _1 ¥ and st \/1/TZiT:1(y,- —g)2. If y’s are ii.d.

normal random variables, then

1
ﬁQT:V

where = denotes weak convergence and V' is the range of a Brownian bridge
on the unit interval. Lo (1991) gives selected quantiles of V.
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Lo (1991) pointed out that the R/S statistic is not robust to short range
dependence. In particular, if y; is autocorrelated (has short memory) then
the limiting distribution of Qr/ VT is V scaled by the square root of the
long run variance of y;. To allow for short range dependence in y;, Lo (1991)
modified the R/S statistic as follows:

k k
. 1 _ . _
Qr = 7@ 1I§nka§ij71(yj —9) - 152%71(% ) (8.8)

where the sample standard deviation is replaced by the square root of the
Newey-West estimate of the long run variance with bandwidth ¢.? Lo (1991)
showed that if there is short memory but no long memory in 1y, QT also
converges to V', the range of a Brownian bridge.

The S+FinMetrics function rosTest can be used to test for long memory
in a time series using the R/S statistic (8.7) or the modified R/S statistic
(8.8). For example, to test for long memory in the absolute returns of
S&P500 index, use the following command:

> rosTest (abs(sp500))
Test for Long Memory: Modified R/S Test
Null Hypothesis: no long-term dependence
Test Statistics:

7.8823%x

* : significant at 5% level
** : significant at 1% level

Total Observ.: 17054
Bandwidth : 14

By default, Lo’s modified R/S statistic is computed and the bandwidth ¢
for obtaining the long run variance is chosen to be [4(T/100)'/4], where T
is the sample size, and [-] denotes integer part of. In the above example, the
modified R/S statistic is significant at 1% level of significance. A different
bandwidth can be used by setting the optional argument bandwidth. If
bandwidth is set to zero, then classical R/S statistic is returned:

> rosTest (abs(sp500), bandwidth=0)

2S8ee Chapter 2 for the definition and estimation of long run variance and the online
help file for the S+FinMetrics function asymp.var.
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Test for Long Memory: R/S Test
Null Hypothesis: no long-term dependence
Test Statistics:

17.821%x*

* : significant at 5% level
** : significant at 1% level

Total Observ.: 17054

which is also significant at 1% level of significance in this case.

8.3.2 GPH Test

Based on the fractionally integrated process representation of a long mem-
ory time series as in (8.4), Geweke and Porter-Hudak (1983) proposed a
semi-nonparametric approach to testing for long memory. In particular, the
spectral density of the fractionally integrated process y; is given by:

Fw) = fsin®(5)] " fu(w) (8.9)

where w is the Fourier frequency, and f,(w) is the spectral density cor-
responding to u;. Note that the fractional difference parameter d can be
estimated by the following regression:

In f(w;) :6—d1n[4sin2(%)] tej, (8.10)

for j = 1,2,--- ,ny(T). Geweke and Porter-Hudak (1993) showed that
using a periodogram estimate of f(w;), the least squares estimate d using
the above regression is normally distributed in large samples if ny(T) = T

with 0 < a < 1:

a 2

d~ N g5 T, — o)

where W
U; =In{4 sin2(71)}

and U is the sample mean of Uj, j = 1,--- ,ns. Under the null hypothesis
of no long memory (d = 0), the t-statistic

—1/2
i 772 (8.11)
tao=d- . _ ,
6>;L,(U; —U)?
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has a limiting standard normal distribution.

The S+FinMetrics function gphTest can be used to estimate d from
(8.10) and compute the test statistic (8.11), which is usually referred to as
the GPH test. The arguments taken by gphTest are:

> args(gphTest)
function(x, spans = 1, taper = 0.1, pad = 0, detrend = F,
demean = T, alpha = 0.5, na.rm = F)

The optional arguments spans, taper, pad, detrend and demean are ac-
tually passed to the S-PLUS function spec.pgram to obtain a periodogram
estimate.? The optional argument alpha is used to choose the number of
frequencies ny(T). By default, ny(T") = T with a = 0.5. To illustrate the
use of gphTest, consider estimating d and testing for long memory in the
S&P 500 index absolute returns:

> gph.sp500 = gphTest (abs(sp500) ,taper=0)

> class(gph.sp500)

[1] "gphTest"

> names (gph.sp500)

[1] ngn npn "na" "n.freq" "std.err"

The result of gphTest is an object of class “gphTest” for which there is
only a print method:

> gph.sp500

Test for Long Memory: GPH Test
Null Hypothesis: d = 0

Test Statistics:

d 0.4573
stat 7.608%x*

* : significant at 5% level
xx : significant at 1% level

Total Observ.: 17054
Number of Freq: 130

The estimated value of d from (8.10) is d = 0.457, which suggests long
memory, and the gph test statistic (8.11) is 7.608. Hence, the null of no
long memory is rejected at the 1% significance level. The estimate of d is

3See S-PLUS Guide to Statistics for an introduction to the estimation of periodogram
and the usage of spec.pgram.
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close to the nonstationary range. In fact, a 95% confidence interval for d
based on the asymptotic standard error

> gph.sp500$std.err
[1] 0.06011

is [0.337,0.578] and contains d > 0.5.

8.4 Estimation of Long Memory Parameter

The previous section introduced the R/S statistic and the log-periodogram
regression to test for long memory in a time series. Cheung (1993) con-
ducted a Monte Carlo comparison of these tests. Obtaining an estimate of
the long memory parameter H or d is also of interest. The GPH test pro-
duces an estimate of d automatically. This section will show that the R/S
statistic can also be used to obtain an estimate of the Hurst coefficient H.
It will also introduce two periodogram-based methods for estimating the
long memory parameter: the periodogram method and Whittle’s method.
In addition, the fractional difference parameter d can also be estimated
by using a general FARIMA (p,d, ¢) model, which will be introduced in
the next section. Taqqu, Teverovsky and Willinger (1995) and Taqqu and
Teverovsky (1998) compared the performance of many different estimators
of the long memory parameter, including the above mentioned methods.

8.4.1 R/S Analysis

Section 8.3.1 mentioned that when there is no long memory in a stationary
time series, the R/S statistic converges to a random variable at rate T2,
However, when the stationary process y; has long memory, Mandelbrot
(1975) showed that the R/S statistic converges to a random variable at
rate TH, where H is the Hurst coefficient. Based on this result, the log-log
plot of the R/S statistic versus the sample size used should scatter around
a straight line with slope 1/2 for a short memory time series. In contrast,
for a long memory time series, the log-log plot should scatter around a
straight line with slope equal to H > 1/2, provided the sample size is large
enough.

To use the above method to estimate the long memory parameter H,
first compute the R/S statistic using k; consecutive observations in the
sample, where k; should be large enough. Then increase the number of
observations by a factor of f; that is, compute the R/S statistic using
k; = fk;_1 consecutive observations for i = 2,--- ;s. Note that to obtain
the R/S statistic with k; consecutive observations, one can actually divide
the sample into [T'/k;] blocks and obtain [T'/k;] different values, where []
denotes the integer part of a real number. Obviously, the larger k; is, the
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FIGURE 8.3. R/S estimate of long memory parameter.

smaller [T'/k;] is. A line fit of all those R/S statistics versus k;, i = 1,--- , s,
on the log-log scale yields an estimate of the Hurst coefficient H.

The S+FinMetrics function d.ros implements the above procedure for
estimating H. The arguments taken by d.ros are:

> args(d.ros)
function(x, minK = 4, k.ratio = 2, minNumPoints = 3,
method = "1s", output = "d", plot = F, ...)

where minK specifies the value for kq, k.ratio specifies the ratio factor
f, and minNumPoints specifies the minimum requirement for [T'/k]. For
example, if minNumPoints=3, s must be such that one can divide T" obser-
vations into three blocks with at least ks observations in each block. The
optional argument output specifies the type of output: if output="H", then
the Hurst coefficient is returned; if output="4", then the fractional differ-
ence parameter d is returned. For example, to estimate the Hurst coefficient
for absolute returns of S&P500 index using R/S statistic, use the following
command:

> d.ros(abs(sp500), minK=50, k.ratio=2, minNumPoints=10,
+ output="H", plot=T)
[1] 0.8393

By setting plot=T, the log-log plot of R/S statistics versus k; is generated,
as shown in Figure 8.3: the solid line represents the fitted line, and the
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dotted line represents the case for no long memory. In this case, the solid
line is far away from the dotted line, which is substantial evidence for long
memory. The estimate of d using (8.6) is 0.3393.

The weakness of the above procedure is that for a particular sample, it
is not clear what value of k; is “large enough”. In addition, for large values
of k;, few values of the R/S statistic can be calculated unless the sample
size is very large. To mitigate the latter problem, set the optional argument
method="11" when calling d.ros, which will direct the procedure to use
the L1 method or least absolute deviation (LAD) method, for the line fit,
and thus result in a robust estimate of the long memory parameter. For the
S&P 500 absolute returns, the results using the L1 method are essentially
the same as using the least squares method:

> d.ros(abs(sp500), minK=50, k.ratio=2, minNumPoints=10,
+ output="H", method="11", plot=F)
[1] 0.8395

8.4.2 Periodogram Method

Section 8.3 demonstrates that for a long memory process, its spectral den-
sity approaches C fw1_2H when the frequency w approaches zero. Since the
spectral density can be estimated by a periodogram, the log-log plot of pe-
riodogram versus the frequency should scatter around a straight line with
slope 1 — 2H for frequencies close to zero. This method can also be used
to obtain an estimate of the long memory parameter H, and it is usually
referred to as the periodogram method.

The S+FinMetrics function d.pgram implements a procedure to esti-
mate the long memory parameter using the periodogram method, which
calls the S-PLUS function spec.pgram to obtain an estimate of periodogram.
The arguments taken by d.pgram are:

> args(d.pgram)

function(x, spans = 1, taper = 0.1, pad = 0, detrend = F,
demean = T, method = "1ls", output = "d",
lower.percentage = 0.1, minNumFreq = 10, plot = F, ...)

Similar to the gphTest function, the optional arguments spans, taper,
pad, detrend and demean are passed to spec.pgram to obtain the peri-
odogram estimate. The optional argument lower.percentage=0.1 speci-
fies that only the lower 10% of the frequencies are used to estimate H. For
example, to estimate the long memory parameter H of abs(sp500) with
no tapering,use the following command:

> d.pgram(abs(sp500), taper=0, output="H", plot=F)
[1] 0.8741311

The implied estimate of d is then 0.3741.
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FIGURE 8.4. Periodogram estimates of long memory parameter using least
squares and LAD.

Just like with the R/S estimate of the long memory parameter, it can be
difficult to choose the value for lower.percentage. To obtain a more robust
line fit, set the optional argument method="11" when calling d.pgram, to
use L1 method or LAD method instead of the default least squares fit. For
example, to compare the least squares and L1 fits for abs (sp500)use

> par (mfrow=c(1,2))

> H.1ls = d.pgram(abs(sp500) ,taper=0, output="d4",plot=T)

> H.11 = d.pgram(abs(sp500) ,taper=0, output="d4",method="11",
+ plot=T)

> H.1ls

[1] 0.3741

> H.11

[1] 0.1637

8.4.8 Whittle’s Method

Whittle’s method for estimating d is based on a frequency domain max-
imum likelihood estimation of a fractionally integrated process (8.4). It
can be shown that the unknown parameters in (8.4) can be estimated by
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minimizing a discretized version of

" W)

= T ™

Q(0)

where 0 is the vector of unknown parameters including the fractional dif-
ference parameter d, I(w) is the periodogram of y;, and f(6,w) is the the-
oretical spectral density of y;. Refer to Beran (1994) for the derivation of
Whittle’s method.

To use Whittle’s method to estimate the fractional difference parameter
d, use the S+FinMetrics function d.whittle. The syntax of d.whittle is
similar to but more simple than that of d.pgram:

> args(d.whittle)
function(x, spans = 1, taper = 0.1, pad = 0, detrend = F,
demean = T, output = "d")

where again the arguments spans, taper, pad, detrend and demean are
passed to the S-PLUS function spec.pgram to obtain the periodogram. For
example, to estimate the fractional difference parameter d of abs(sp500)
with no tapering, use the command:

> d.whittle(abs(sp500), taper=0)
[1] 0.2145822

A caveat to using d.whittle is that although the Whittle’s method
is defined for a general fractionally integrated process y; in (8.4), it is
implemented assuming that u; is a standard normal disturbance and thus
y¢ follows a FARIMA(O0, d, 0) process.

8.5 Estimation of FARIMA and SEMIFAR Models

Previous sections illustrated how to test for long memory and estimate the
long memory parameter H or d. This section introduces the more flexible
fractional ARIMA models, which are capable of modeling both the long
memory and short run dynamics in a stationary time series. It will also
introduce a semiparametric model for long memory, which allows a semi-
parametric estimation of a trend component.

Many empirical studies have found that there is strong evidence for long
memory in financial volatility series, for example, see Lobato and Savin
(1998) and Ray and Tsay (2000). Indeed, Andersen, Bollerslev, Diebold and
Labys (1999) suggested to use FARIMA models to forecast daily volatility
based on logarithmic realized volatility. This section will focus on modeling
a volatility series for the examples.
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8.5.1 Fractional ARIMA Models

The traditional approach to modeling an I(0) time series y; is to use the
ARIMA model:

S(L)(1 = L) (ys — p) = 0(L)es (8.12)
where ¢(L) and 6(L) are lag polynomials

p

(L) =1-> oL

i=1

q
O(L)=1-> 0,10
j=1

with roots outside the unit circle, and ¢; is assumed to be an iid normal
random variable with zero mean and variance o2. This is usually referred to
as the ARIMA (p, d, ¢) model. By allowing d to be a real number instead of a
positive integer, the ARIMA model becomes the autoregressive fractionally
integrated moving average (ARFIMA) model, or simply, fractional ARIMA
(FARIMA) model?.

For a stationary FARIMA model with —1/2 < d < 1/2, Sowell (1992)
described how to compute the exact maximum likelihood estimate (MLE).
The S-PLUS function arima.fracdiff implements a very fast procedure
based on the approximate MLE proposed by Haslett and Raftery (1989),
and refer the reader to the S-PLUS Guide to Statistics for a discussion of
this procedure.

However, for many economic and financial time series, the data usually
seem to lie on the borderline separating stationarity from non-stationarity.
As a result, one usually needs to decide whether or not to difference the
original time series before estimating a stationary FARIMA model, and
the inference of unknown FARIMA model parameters ignores this aspect of
uncertainty in d. Beran (1995) extended the estimation of FARIMA models
for any d > —1/2 by considering the following variation the FARIMA
model:

S(L)(1 = L)°[(1 = L)y — p] = O(L)ex (8.13)

where —1/2 < 6 < 1/2, and ¢(L) and (L) are defined as above. The
integer m is the number of times that y; must be differenced to achieve
stationarity, and thus the difference parameter is given by d = § + m. In
the following discussions and in the S+FinMetrics module, restrict m to be
either 0 or 1, which is usually sufficient for modeling economic and financial
time series. Note that when m = 0, i is the expectation of ;; in contrast,
when m = 1, p is the slope of the linear trend component in ;.

4The S+FinMetrics module actually provides a convenience function FAR for estimat-
ing a FARIMA(p, d,0) model.
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FIGURE 8.5. Garman-Klass volatility of daily NASDAQ-100 returns.

The S+FinMetrics function FARIMA implements a procedure (based on
arima.fracdiff) to estimate the FARIMA model (8.13), and the standard
errors of unknown parameters are computed using the asymptotic distri-
bution derived by Beran (1995), which takes into account that m is also
determined by data rather than by a prior decision.

To illustrate the usage of the FARIMA function, consider modeling the
volatility of daily NASDAQ-100 index returns. In recent years, intra-day
security prices have been employed to compute daily realized volatility,
for example, see Andersen, Bollerslev, Diebold and Labys (2001a, 2001b).
Since intra-day security prices can be hard to obtain, compute daily volatil-
ity based on the daily opening, highest, lowest, and closing prices, as pro-
posed by Garman and Klass (1980) and implemented by the S+FinMetrics
function TA.garmanKlass.

Example 46 Long memory modeling of NASDAQ-100 index volatility

The S+FinMetrics “timeSeries” ndx.dat contains the daily opening,
highest, lowest and closing prices of NASDAQ-100 index from January 2,
1996 to October 12, 2001. First compute the volatility series using the
Garman-Klass estimator and visualize its sample ACF:

> ndx.vol = TA.garmanKlass(ndx.dat[,"Open"], ndx.dat[,"High"],
+ ndx.dat[,"Low"], ndx.dat[,"Close"])
> par (mfrow=c(2,1))
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> plot(ndx.vol, reference.grid=F)
> tmp = acf(log(ndx.vol), lag=200)
> par(mfrow=c(1,1))

The volatility series ndx.vol and the sample ACF of logarithmic volatility
are shown in Figure 8.5. The ACF decays very slowly and remains highly
significant at lag 200, which indicates that the series may exhibit long
memory.

First estimate a FARIMA(0, d, 0) model for logarithmic volatility as fol-
lows:

> ndx.d = FARIMA(log(ndx.vol), p=0, g=0)
> class(ndx.d)

[1] "FARIMA"

> names (ndx.d)
[1] "call" "model" "m" "delta"
[5] "n.used" "BIC" "loglike" "residuals"
[9] "fitted" "X .name" "cov" "CI"

The result of FARIMA is an object of class “FARIMA”, for which there are
print, summary, plot and predict methods as well as extractor functions
coef, fitted, residuals and vcov. The summary method gives

> summary (ndx.d)

Call:
FARIMA(x = log(ndx.vol), p =0, q = 0)

Coefficients:
Value Std. Error t value Pr(>|t])
d 0.3534 0.0205 17.1964 0.0000

Information Criteria:
log-likelihood BIC
-732.3 1471.9

Residual scale estimate: 0.4001

total residual
Degree of freedom: 1455 1453
Time period: from 01/04/1996 to 10/12/2001

The estimated model appears stationary and has long memory since 0 <
d < 1/2. Notice that m is estimated to be zero:

> ndx.d$m
[11 ©
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To allow for long memory and short memory at the same time, use a
FARIMA(p,d, q) model with p # 0 or ¢ # 0. However, in practice, it is
usually difficult to choose the appropriate value for p or ¢. The FARIMA
function can choose the best fitting FARIMA model based on finding val-
ues of p < Prax and ¢ < gmax which minimize the Bayesian Information
Criterion (BIC). For example, to estimate all the FARIMA models with
0 <p < 2and 0 < g < 2 use the optional arguments p.range and

q.range as follows:

q.range=c(0,2), mmax=0)
qQ=0

oottt + Vv
non
NNNPE R~ OOO

L 0 0 0 0 0 0 Q0
]
N~ ONFE ONF

ndx.bic = FARIMA(log(ndx.vol), p.range=c(0,2),

In the above example, set mmax=0 to restrict m to be zero because the pre-
vious FARIMA(0, d,0) model fit suggests that the data may be stationary.

A summary of the fitted model is

> summary (ndx.bic)

Call:

FARIMA(x = log(ndx.vol), p.range = c(0, 2), g.range
mmax = 0)

Coefficients:

Value Std. Error t value Pr(>|t])
d 0.4504 0.0287 15.6716 0.0000
MA(1) 0.2001 0.0359 5.5687 0.0000

Information Criteria:
log-likelihood BIC
-717.9342 1450.4325

Residual scale estimate: 0.3963
total residual

Degree of freedom: 1454 1451
Time period: from 01/05/1996 to 10/12/2001

c(0, 2),
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FIGURE 8.6. FARIMA residual QQ-plot of log(ndx.vol).

BIC of all models estimated:
q=0 q=1 q=2
p=0 1466.898 1450.432 1451.055
p=1 1457.319 1462.694 1455.590
p=2 1464.800 1457.243 1464.238

The BIC values for all the models considered are shown in the output.
The model minimizing the BIC is a FARIMA(0, d, 1) model. The estimates
of d and the moving average coefficient are very significant, but the 95%
Wald-type confidence interval of d includes 1/2 and thus the non-stationary
case.”

Further diagnostics of the model fit can be obtained by using the plot

method:
> plot(ndx.bic)

Make a plot selection (or O to exit):

1: plot: all
2: plot: response vs fitted values

5Currently the standard error of the mean parameter is not available because
arima.fracdiff concentrates out the mean and thus does not compute its standard
error.
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FIGURE 8.7. FARIMA residual ACF of log(ndx.vol).

: plot: response and fitted values
: plot: normal QQ-plot of residuals
: plot: residuals

: plot: standardized residuals

: plot: residual histogram

: plot: residual ACF

: plot: residual PACF

10: plot: residual~2 ACF

11: plot: residual~2 PACF

Selection:

© 00 N O O W

For example, if 4 is chosen at the prompt the normal qg-plot of the model

residuals €; will be shown as in Figure 8.6. It seems that the normality

assumption agrees well with the data. If 8 is chosen at the prompt, the ACF

of model residuals will be shown as in Figure 8.7, and the FARIMA model

is very successful at capturing the long memory in logarithmic volatility.
In the above example, m can also be allowed to be estimated:

> ndx.bic2 = FARIMA(log(ndx.vol),p.range=c(0,2),
+ q.range=c(0,2), mmax=1)
p=0 9g=0

p=2 q=2
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> ndx.bic2$m
[1]1 1

> summary(ndx.bic2)
Call:

FARIMA(x = log(ndx.vol), p.range = c(0, 2), q.range =
c(0, 2), mmax = 1)

Coefficients:
Value Std. Error t value Pr(>|t|)
d 0.5161 0.1056 4.8864 0.0000
AR(1) 1.1387 0.3753 3.0340 0.0025
AR(2) -0.1561 0.3724 -0.4193 0.6751
MA(1) 1.4364 0.4416 3.2628 0.0012
MA(2) -0.4309 0.7574 -0.5689 0.5695

Information Criteria:
log-likelihood BIC
-696.3 1429.0

Residual scale estimate: 0.3903

total residual
Degree of freedom: 1453 1447
Time period: from 01/08/1996 to 10/12/2001

BIC of all models estimated:
q=0 qg=1 qg=2

p=0 1467 1450 1451

p=1 1457 1459 1456

p=2 1456 1454 1429

Here the best fitting model is a FARIMA(2,0.52,2) model. However, the
values of the AR and MA coefficients indicate an explosive model. The
problem appears to be near canceling roots in the AR and MA polynomials.
If the model is re-fitted with p = ¢ = 1, the results make more sense:

> ndx.bic2 = FARIMA(log(ndx.vol), p=1, g=1, mmax=1)

> summary(ndx.bic2)

Call:
FARIMA(x = log(ndx.vol), p =1, q = 1, mmax = 1)

Coefficients:
Value Std. Error t value Pr(>|t])



292 8. Long Memory Time Series Modeling

Residual Autocorrelation

I
ndx.bic2.
1.0 r
0.8 r
0.6 r
w
Q
<
0.4 r
0.2 L
0.0 ‘ R Y
. T T T ‘ T T T T
T T T T T T T
0 5 10 15 20 25 30
Lag

FIGURE 8.8. Residual ACF from FARIMA (1,0.51, 1) model fit to log(ndx.vol).

d 0.5051 0.0436 11.5965 0.0000
AR(1) 0.2376 0.0687 3.4597 0.0006
MA(1) 0.4946 0.0367 13.4894 0.0000

Information Criteria:
log-likelihood BIC
-712.7 1447.3

Residual scale estimate: 0.3948

total residual
Degree of freedom: 1454 1450
Time period: from 01/05/1996 to 10/12/2001

Figure 8.8 gives the residual ACF from the above model. The long memory
behavior has been well captured by the model. However, the fitted model
has the undesirable property of being non-stationary.

8.5.2 SEMIFAR Model

The previous subsection demonstrated that for logarithmic volatility of
NASDAQ-100 index returns, the FARIMA model chosen by BIC suggests
that the underlying series may be non-stationary. In addition, from the time
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series plot in Figure 8.5, the volatility has become much larger since the
middle of 2000. To allow for a possible deterministic trend in a time series,
in addition to a stochastic trend, long memory and short memory compo-
nents, Beran, Feng and Ocker (1998), Beran and Ocker (1999), and Beran
and Ocker (2001) proposed the semiparametric fractional autoregressive
(SEMIFAR) model. The SEMIFAR model is based on the following exten-
sion to the FARIMA(p, d,0) model (8.12):

H(L)(1 — L)O[(1 — L)y, — g(iy)] = € (8.14)

for t =1,--- ,T. The above equation is very similar to (8.13), except that
the constant term p is now replaced by ¢(i¢), a smooth trend function on
[0,1], with 4; = t/T. By using a nonparametric kernel estimate of g(i;),
the S+FinMetrics function SEMIFAR implements a procedure to estimate
the SEMIFAR model, and it uses BIC to choose the short memory au-
toregressive order p. Refer to Beran, Feng and Ocker (1998) for a detailed
description of the algorithm.

Example 47 Estimation of SEMIFAR model for NASDAQ-100 index
volatility

To obtain a SEMIFAR model of logarithmic volatility of NASDAQ-100

index returns, use the following command:

> ndx.semi = SEMIFAR(log(ndx.vol), p.range=c(0,2), trace=F)
> class(ndx.semi)
[1] "SEMIFAR"

Note that the optional argument trace=F is used to suppress the mes-
sages printed by the procedure. The result of SEMIFAR is an object of class
“SEMIFAR” for which there are print, summary, plot and predict methods
as well as extractor functions coef, residuals and vcov. The components
of ndx.semi are

> names (ndx.semi)

[1] "model" "m" "delta" "BIC"
[56] "loglike"  "trend" "g.CI" "bandwidth"
[9] "cf" "nu" "residuals" "cov"

[13] "cI" "call"

The basic fit is

> ndx.semi

Call:
SEMIFAR(x = log(ndx.vol), p.range = c(0, 2), trace = F)

Difference:
0: estimates based on original series.
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FIGURE 8.9. SEMIFAR decomposition of log(ndx.vol).

FAR coefficients:
d
0.2928

Residual scale estimate: 0.3946

total residual
Degree of freedom: 1453 1452
Time period: from 01/08/1996 to 10/12/2001

From the above output, after accounting for a smooth nonparametric trend
component g(i;), the logarithmic volatility appears to be stationary and has
long memory.

The estimated trend component can be visualized by calling the plot
method of fitted model object:

> plot(ndx.semi)
Make a plot selection (or O to exit):
1: plot: all

2: plot: trend, fitted values, and residuals
3: plot: normal QQ-plot of residuals
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FIGURE 8.10. SEMIFAR residual ACF of log(ndx.vol).

4: plot: standardized residuals
5: plot: residual histogram

6: plot: residual ACF

7: plot: residual PACF

8: plot: residual”2 ACF

9: plot: residual”2 PACF
Selection:

If 2 is selected at the prompt, a plot as in Figure 8.9 will be shown, which
indicates the original time series, the estimated smooth trend component,
the fitted values and model residuals. The smooth trend component is also
plotted with a confidence band. If the trend falls outside the confidence
band, it indicates that the trend component is significant. In this case, the
trend in logarithmic volatility appears to be very significant, at least for
the time period investigated. The model fit can also be checked by choosing
6 at the prompt, which will generate the ACF plot of residuals, as shown
in Figure 8.10. Again, the SEMIFAR model seems to be very successful at
modeling the long memory in the original time series.
Prediction from SEMIFAR models will be discussed in section 8.7.
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8.6 Long Memory GARCH Models

8.6.1 FIGARCH and FIEGARCH Models

The previous section showed that the FARIMA or SEMIFAR model can be
used directly to model the long memory behavior observed in the volatility
of financial asset returns, given that a time series representing the volatility
exists. However, sometimes a reliable estimate of volatility may be hard to
obtain, or the user may want to model the dynamics of the asset returns
together with its volatility. In those situations, the GARCH class models
provide viable alternatives for volatility modeling.

Section 7.5.2 of Chapter 7 has illustrated that two components GARCH
models can be used to capture the high persistence in volatility by allowing
a highly persistent long run component and a short run transitory com-
ponent in volatility. This subsection shows how GARCH models can be
extended to allow directly for long memory and high persistence in volatil-

ity.
FIGARCH Model

Section 22.16 of Chapter 7 shows that a basic GARCH(1, 1) model can be
written as an ARMA(1,1) model in terms of squared residuals. In the same
spirit, for the GARCH(p, ¢) model:

P q
2 _ 2 o2
oy =a+ E ai€_; + E bjoy_;

i=1 j=1

easily shows that it can be rewritten as follows:
d(L)e? = a+b(L)uy (8.15)

where

up = €2 — o7

¢(L):1_¢1L_¢2L2_“'_¢ml/m
b(L)=1—byL—byL? - —b,L1

with m = max(p, ¢) and ¢; = a; + b;. Obviously equation (8.15) represents
an ARMA (m, q) process in terms of squared residuals €7 with u; being a
MDS disturbance term.

The high persistence in GARCH models suggests that the polynomial
¢(z) = 0 may have a unit root, in which case the GARCH model becomes
the integrated GARCH (IGARCH) model. See Nelson (1990) for which
the unconditional variance does not exist. To allow for high persistence
and long memory in the conditional variance while avoiding the complica-
tions of IGARCH models, extend the ARMA (m, q) process in (8.15) to a



8.6 Long Memory GARCH Models 297

FARIMA(m,d, q) process as follows:
H(L)(1 — L)% = a+ b(L)uy (8.16)

where all the roots of ¢(z) = 0 and b(z) = 0 lie outside the unit circle.
When d = 0, this reduces to the usual GARCH model; when d = 1, this
becomes the IGARCH model; when 0 < d < 1, the fractionally differenced
squared residuals, (1— L)%?, follow a stationary ARMA (m, q) process. The
above FARIMA process for €2 can be rewritten in terms of the conditional

variance o?:

b(L)o? = a+ [b(L) — ¢(L)(1 — L)€ (8.17)

Baillie, Bollerslev and Mikkelsen (1996) refered to the above model as
the fractionally integrated GARCH, or FIGARCH(m, d, ¢) model. When
0 < d < 1, the coefficients in ¢(L) and b(L) capture the short run dynamics
of volatility, while the fractional difference parameter d models the long run
characteristics of volatility.

FIEGARCH

The FIGARCH model directly extends the ARMA representation of squared
residuals, which results from the GARCH model, to a fractionally inte-
grated model. However, to guarantee that a general FIGARCH model
is stationary and the conditional variance o? is always positive, usually
complicated and intractable restrictions have to be imposed on the model
coefficients. For example, see Baillie, Bollerslev and Mikkelsen (1996) or
Bollerslev and Mikkelsen (1996) for a discussion.

Noting that an EGARCH model can be represented as an ARMA process
in terms of the logarithm of conditional variance and thus always guarantees
that the conditional variance is positive, Bollerslev and Mikkelsen (1996)
proposed the following fractionally integrated EGARCH (FIEGARCH)

model: .
(L)1 = L)' Ino} =a+ > (|| +v;me) (8.18)
j=1
where ¢(L) is defined as earlier for the FIGARCH model, v, # 0 allows
the existence of leverage effects, and z; is the standardized residual:
€t
== 8.19
Tt o (8.19)

Bollerslev and Mikkelsen (1996) showed that the FIEGARCH model is
stationary if 0 < d < 1.

8.6.2 Estimation of Long Memory GARCH Models

Given the iterative formulations of conditional variance as in (8.17) and
(8.18), the FIGARCH and FIEGARCH model coefficients can be estimated
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using maximum likelihood estimation (MLE), if the residuals follow a con-
ditional normal distribution. The S+FinMetrics function fgarch can be
used to estimate the long memory FIGARCH or FIEGARCH model.

The syntax of fgarch is very similar to that of the garch function, except
that “figarch(m,q) is used as the FIGARCH conditional variance formula
and “fiegarch(m,q) as the FIEGARCH conditional variance formula. For
example, to fit a FIGARCH(1,d, 1) model to daily stock returns of Dell
Computer contained in the S+FinMetrics “timeSeries” object dell.s,
simply use the following command:

> dell.figarch = fgarch(dell.s"1, “figarch(1,1))
Initializing model parameters.
Iteration No. 1: log-likelihood=-3282.303431

Iteration No. 10: log-likelihood=-3279.508705
Convergence in gradient.

> oldClass(dell.figarch)

[1] "fgarch" "garch"

The returned object is of class “fgarch”, which inherits the “garch” class.
Consequently, most of the method functions for a “garch” object (e.g.
print, summary, plot, predict, coef, residuals, sigma.t, vcov)also
work for a “fgarch” object. One exception is that currently there is no
simulate method for “fgarch” objects. For example, the print method
gives

> dell.figarch

Call:
fgarch(formula.mean = dell.s"1, formula.var = “figarch(l, 1))

Mean Equation: dell.s ~1
Conditional Variance Equation: ~“figarch(l, 1)
Coefficients:
C 0.4422
A 0.6488
GARCH(1) 0.6316

ARCH(1) 0.4481
fraction 0.2946

The estimate of d is 0.295, which indicates the existence of long memory.
However, the sum ARCH(1) and GARCH(1) is greater than one which
indicates a nonstationary model.
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If the FIEGARCH model instead of FIGARCH model is desired, the
optional argument leverage can be used to allow for leverage effects. For
example,

> dell.fiegarch = fgarch(dell.s"1, “fiegarch(1l,1), leverage=T)
Initializing model parameters.

Iteration No. 1: log-likelihood=-3286.169656

Iteration No. 20: log-likelihood=-3274.244677
Convergence in gradient.

> summary(dell.fiegarch)

Call:

fgarch(formula.mean = dell.s™1, formula.var = “fiegarch( 1, 1),
leverage = T)

Mean Equation: dell.s ~1

Conditional Variance Equation: ~“fiegarch(l, 1)

Value Std.Error t value Pr(>ltl)

C 0.39494 0.08981 4.397 5.946e-006

A -0.06895 0.04237 -1.627 5.195e-002
GARCH(1) 0.65118 0.17820 3.654 1.343e-004
ARCH(1) 0.15431 0.04578 3.370 3.867e-004
LEV(1) -0.09436 0.02691 -3.507 2.346e-004
fraction 0.34737 0.11408 3.045 1.188e-003

AIC(6) = 6560.5
BIC(6) = 6591.3

Normality Test:

Jarque-Bera P-value Shapiro-Wilk P-value
13.22 0.001348 0.9888 0.7888

Ljung-Box test for standardized residuals:
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Statistic P-value Chi~2-d.f.
13.13 0.3597 12

Ljung-Box test for squared standardized residuals:
Statistic P-value Chi~2-d.f.
14.51 0.2696 12

Lagrange multiplier test:
Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8
-0.925 0.6083 -1.581 0.2593 0.3943 0.6991 -0.03191 0.3339

Lag 9 Lag 10 Lag 11 Lag 12 C
1.959 -0.8794 2.422 0.1089 0.8896

TR"2 P-value F-stat P-value
15.1 0.2362 1.389 0.2797

In the above output, C corresponds to the constant term in the conditional
mean equation, A corresponds to the constant term a, GARCH(1) corre-
sponds to by, ARCH(1) corresponds to ¢;, LEV(1) corresponds to 7y; and
fraction corresponds to the fractional difference parameter d in the con-
ditional variance equation (8.18). Notice that the leverage term is negative
and significant, and the sum of ARCH(1) and GARCH(1) is now less than
one. It appears that the FIEGARCH model fits the data better than the
FIGARCH model.

Just like for “garch” objects, the generic plot function can be used vi-
sually to diagnose the model fit. Use compare.mgarch to compare multiple
model fits. For example, consider comparing the above two FIGARCH,
FIEGARCH with short memory GARCH and EGARCH models:

> dell.garch = garch(dell.s"1, “garch(1,1), trace=F)

> dell.egarch = garch(dell.s™1, “egarch(1,1),

+ leverage=T, trace=F)

> dell.comp = compare.mgarch(dell.garch,dell.egarch,

+ dell.figarch,dell.fiegarch)

> dell.comp

dell.garch dell.egarch dell.figarch dell.fiegarch

AIC 6564 6559 6569 6560
BIC 6585 6584 6595 6591

Likelihood -3278 -3274 -3280 -3274

Here, the EGARCH and FIEGARCH models seem to provide better fits
than the GARCH and FIGARCH models. The qg-plots of standardized
residuals for the four models can be compared using:
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QQ-Plot of Standardized Residuals

-2 0 2
I I
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dell.figarch dell fiegarcl h

dell garch dell egarch
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FIGURE 8.11. qg-plot of standardized residuals from long memory GARCH mod-
els.

> plot(dell.comp, qq=T)

and the plot is shown in Figure 8.11, where the FIEGARCH model seems
to provide a slightly better fit to the outliers in both tails.

8.6.83 Custom Estimation of Long Memory GARCH Models
ARMA Terms and Exogenous Variables

Just like with the garch function, the fgarch function also allows ARMA
terms and exogenous variables in the conditional mean equation, as well as
the conditional variance equation.

Example 48 Trading volume and volatility (extended)

The previous subsection shows that the fitted FIEGARCH model object
dell.fiegarch suggests that there may be long memory in the volatility
of Dell stocks. In Section 7.5 of Chapter 7, the changes in trading volume
were used to explain the volatility of Dell stocks. If there is a 1% change
in trading volume, it will cause about 1.4% change in conditional variance
using an EGARCH model for volatility. In this example, the analysis using
the FIEGARCH model instead of the EGARCH model is done again.

> dell.mod2 = fgarch(dell.s"1, “fiegarch(l,1) +
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+ seriesData(d.volume), series.start=2)
> summary(dell.mod?2)

Call:
fgarch(formula.mean = dell.s 1, formula.var = “fiegarch(1,1)
+ seriesData(d.volume), series.start = 2)

Mean Equation: dell.s 7 1

Conditional Variance Equation: ~ fiegarch(l, 1) +
seriesData(d.volume)

Value Std.Error t value Pr(>ltl)

C 0.14514 0.06245 2.3242 1.014e-002

A -0.13640 0.03117 -4.3761 6.542e-006

GARCH(1) 0.04123 0.10703 0.3852 3.501e-001

ARCH(1) 0.16600 0.03809 4.3583 7.091e-006
seriesData(d.volume) 1.49123 0.07814 19.0849 0.000e+000
fraction 0.80947 0.07523 10.7596 0.000e+000

First, compare the above output with dell.fiegarch, the FIEGARCH
model fitted in the previous subsection. After controlling for the effects of
trading volume, the GARCH coefficient has decreased significantly and be-
come insignificant, while the fractional difference parameter has increased
from 0.34 to 0.8. Second, compare this with the EGARCH model dell.mod
in Chapter 7: after allowing for long memory, the GARCH coefficient de-
creased from 0.95 to 0.04, while the effects of trading volume remain almost
the same.

Control of Model Estimation

For a “fgarch” object, all the model specific information is contained in the
model component of the object. For example, view the model information
of the fitted dell.figarch object as follows:

> dell.figarch$model
Mean Equation: dell.s ~ 1

Conditional Variance Equation: ~ figarch(l, 1)



8.6 Long Memory GARCH Models 303

Values

constant in mean 0.4422
constant in var 0.6488
GARCH(1) 0.6316

ARCH(1) 0.4481
fraction 0.2946

This model object can be edited to provide starting values for re-estimating
the same model with the same or a different time series.® For example, to
use this set of values as starting values for a FIGARCH model of the time
series hp.s, use the following command:

> hp.figarch = fgarch(series=hp.s*100,model=dell.figarch$model)
Iteration No. 1: log-likelihood=-4419.644144

Iteration No. 10: log-likelihood=-4390.179116
Convergence in gradient.
> hp.figarch

Call:
fgarch(series = hp.s * 100, model = dell.figarch$model)

Mean Equation: dell.s 7 1

Conditional Variance Equation: ~ figarch(l, 1)
Coefficients:

05776

55897

GARCH(1) 0.49103

ARCH(1) 0.40210
fraction 0.22533

C 0.
A O.

Unlike the garch and mgarch functions which use the BHHH algorithm
for MLE, the FIGARCH/FIEGARCH models are estimated using the BEFGS
algorithm (for example, see Press, Teukolsky, Vetterling, and Flannery,
1992 for details). Since daily financial returns are very small numbers, the
algorithm can become badly scaled and may fail to converge. That is why
in the above example the percentage returns are used to improve the con-
vergence.

6However, unlike “garch” and “mgarch” objects, currently the coefficients cannot
be fixed at certain values during the estimation of long memory GARCH models. See
Section 13.7 in Chapter 13 for discussions related to “garch” and “mgarch” objects.
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Other aspects of the BFGS algorithm can be controlled by passing the
optional argument control to the fgarch function, where control must
be set to an object returned by the fgarch. control function. For example,
to change the convergence tolerance of gradient zeroing from the default
value of 1e-5 to 1e-6 when fitting a FIGARCH model to dell.s, use the
following command:

> fgarch(dell.s"1, “figarch(1l,1), control=
+ fgarch.control(tolg=1e-6))

The on-line help file for fgarch.control provides more details for the
arguments accepted by the fgarch.control function.

Finally, introducing the FIGARCH/FIEGARCH models illustrated that
both models are essentially an ARMA model fitted to the fractionally differ-
enced squared residuals or fractionally differenced logarithmic conditional
variance. The fractional difference operator is defined in (8.5), which in-
volves an infinite order autoregressive filter. In practice, a very large num-
ber is usually chosen to approximate the fractional difference operator.
Following Bollerslev and Mikkelsen (1996), the fgarch function sets the
order to be 1000 by default. To change this number to another value, pass
the optional argument lag to fgarch.control. For example, the command

> fgarch(dell.s™1, “figarch(1,1), control=
+ fgarch.control(lag=500))

estimates a FIGARCH model using only 500 lags to approximate the frac-
tional difference operator.

8.7 Prediction from Long Memory Models

S+FinMetrics long memory modeling functions such as FARIMA, SEMIFAR
and fgarch all return objects for which there are corresponding predict
methods. Therefore, predictions from those fitted model objects can be
readily generated. This section gives an overview of how to predict from a
long memory process. In particular, the truncation method and the best
linear predictor will be introduced, see Bhansali and Kokoszka (2001). How
to predict from fitted model objects in S+FinMetrics module will be illus-
trated.

8.7.1 Prediction from FARIMA/SEMIFAR Models

To illustrate prediction from long memory processes, consider the FARIMA
model in (8.12), which can be rewritten as:

_1\d
W(%—M) =&
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The lag polynomial on the left hand side of the above equation can be
expressed as an infinite order polynomial so that a FARIMA(p, d, ¢) model
can be equivalently expressed as an AR(co) model. Once the parameters
of the FARIMA (p, d, ¢) model are known, one can solve for the parameters
of the equivalent AR(0c0) model. In practice, however, forecasting from the
AR(oc0) representation usually truncates the AR(co) model to an AR(p)
model with a very large value of p. This method is usually referred to as
the truncation method.

In the truncation method, the AR(p) coefficients are the first p coeffi-
cients of the AR(oc0) representation of the FARIMA (p, d, ¢) model. How-
ever, for any stationary process, choose to use p lagged values to predict
future values:

gre1 = v1yr + -+ Upyr—pi

where ¢, for ¢ = 1,--- ,p are chosen to yield the best linear predictor of
yr+1 in terms of yr, -, yr_py1 for any 7. Note that although both the
above method and the truncation method use an AR(p) model for predic-
tion, the AR(p) coefficients in the truncation method do not necessarily
correspond to best linear prediction coeflicients 1,. Brockwell and Davis
(1991) showed that the best linear prediction coefficients can be recursively
computed using the Durbin-Levinson algorithm given the autocovariance
function of the stationary process.”

The predict method for “FARIMA” objects in S+FinMetrics implements
the Durbin-Levinson algorithm to compute the forecasts. The arguments
taken by predict.FARIMA are:

> args(predict.FARIMA)
function(x, n.predict = 1, ar.approx = 50, kapprox = 100000,
series = NULL)

where n.predict indicates the number of steps to predict ahead, ar. approx
gives the order p of the AR representation used for prediction, kapprox is
passed to acf.FARIMA to obtain the theoretical autocovariance function of
the FARIMA model, and series can be used to pass the original time
series used to fit the model. For example, to predict 100 steps ahead using
an AR(100) representation from the fitted model object ndx.bic, use the
following command:

> ndx.predl = predict(ndx.bic, n.predict=100, ar.approx=100)
> class(ndx.predl)

7Although exact expressions of the autocovariance functions for FARIMA (p, d, q)
models have been given by Sowell (1992), the derivation assumes that all the roots of
the AR polynomial are distinct. The S+FinMetrics function acf.FARIMA implements a
numerical quadrature procedure based on fast Fourier transform to approximate the
autocovariance function of the FARIMA models, as proposed by Bhansali and Kokoszka
(2001).
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values
-3.5

-4.0
I

T T T T T T T
1250 1300 1350 1400 1450 1500 1550

index

FIGURE 8.12. Predictions from a FARIMA model.

[1] "forecast"
The returned object has class “forecast” and has components

> names (ndx.predl)
[1] "values" ‘'"std.err" "coef"

where the values contains the predicted values, std.err contains the stan-
dard errors of the predictions, and coef contains the best linear prediction
coefficients ¢; (i = 1,...,p). The predictions and standard errors can be
seen by calling the summary function on a “forecast” object. For example:

> summary(ndx.predl)
Predicted Values with Standard Errors:

prediction std.err

1-step-ahead -3.4713 0.3965
2-step-ahead -3.5407 0.4732
3-step-ahead -3.5638 0.5023
4-step-ahead -3.5792 0.5148

5-step-ahead -3.5883 0.5204



8.7 Prediction from Long Memory Models 307

0.6

0.4
I

coef

0.2

g, ‘HHHHMMHHHm‘mm‘

0 20 40 60 80 100

FIGURE 8.13. Best linear prediction coefficients.

A “forecast” object can be plotted together with the original data
to visualize the predictions. For example, since ndx.bic was fitted using
log(ndx.vol), the predictions can be visualized as follows:

> plot(ndx.predl, log(ndx.vol), n.old=200)

where the optional argument n.old specifies the number of observations
in the original data to be used in the plot. The plot is shown Figure 8.12.
Also, the best linear prediction coefficients can also be visualized to see the
effects of using more lags for prediction. For example:

> plot(ndx.predi$coef, type="h", ylab="coef")

generates the coefficient plot shown in Figure 8.13. Adding lags beyond 30
should not change the predictions very much.

In S+FinMetrics, predictions from SEMIFAR models are computed in
a similar fashion to predictions from FARIMA models, except that there
is a choice to use a constant extrapolation or linear extrapolation for the
trend component®

> args(predict.SEMIFAR)
function(x, n.predict = 1, ar.approx = 50, kapprox = 100000,

8We refer to Beran and Ocker (1999) for the details of predicting from a SEMIFAR
model.
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GARCH Predictions
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FIGURE 8.14. Predictions from FIGARCH model.
trend = "constant", series = NULL)

For example, to produce 100 steps ahead forecasts from the fitted model
object ndx.semi using constant extrapolation, use the following command:

> ndx.pred2 = predict(ndx.semi,n.predict=100,trend="constant")

The returned object is also a “forecast” object, so the predictions can be
visualized together with the original data

> plot(ndx.pred2, ndx.vol, n.o0ld=200)

8.7.2  Prediction from FIGARCH/FIEGARCH Models

Predictions from the S+FinMetrics long memory GARCH models are com-
puted using the truncation method because the user needs to generate fore-
casts for both the level and the volatility of the series at the same time.
The arguments taken by the predict method are:

> args(predict.fgarch)
function(object, n.predict = 1, n.lag = 1000)
NULL

where n.predict specifies the number of periods to predict ahead, and
n.lag specifies the order p of the AR(p) representation used in the trunca-
tion method. For example, to use an AR(100) representation to predict 100
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steps ahead from the fitted model object dell.figarch, use the following
command:

> dell.pred3 = predict(dell.figarch, n.predict=100, n.lag=100)
> oldClass(dell.pred3)
[1] "predict.fgarch" "predict.garch"

The returned object is of class “predict.fgarch”, which inherits from the
class “predict.garch”. So just like for a “predict.garch” object, use the
generic plot function to visualize the volatility forecast:

> plot(dell.pred3, hgrid=T, vgrid=T)

and the plot is shown in Figure 8.14. The volatility predictions approach
the long run level in a slowly decaying fashion for the long memory GARCH
model”.
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