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Preface 

Measurements through quantitative experiments are one of the most fun-

damental tasks in all areas of science and technology.  Astronomers ana-

lyze data from asteroid sightings to predict orbits.  Computer scientists de-

velop models for recognizing spam mail.  Physicists measure properties of 

materials at low temperatures to understand superconductivity.  Materials 

engineers study the reaction of materials to varying load levels to develop

methods for prediction of failure.  Chemical engineers consider reactions

as functions of temperature and pressure.  The list is endless.  From the 

very small-scale work on DNA to the huge-scale study of black holes, 

quantitative experiments are performed and the data must be analyzed. 

Probably the most popular method of analysis of the data associated with 

quantitative experiments is least squares.  It has been said that the method 

of least squares was to statistics what calculus was to mathematics. Al-

though the method is hardly mentioned in most engineering and science

undergraduate curricula, many graduate students end up using the method 

to analyze the data gathered as part of their research.  There is not a lot of f

available literature on the subject.  Very few books deal with least squares 

at the level of detail that the subject deserves.  Many books on statistics in-

clude a chapter on least squares but the treatment is usually limited to the

simplest cases of linear least squares.  The purpose of this book is to fill

the gaps and include the type of information helpful to scientists and engi-

neers interested in applying the method in their own special fields.

The purpose of many engineering and scientific experiments is to deter-

mine parameters based upon a mathematical model related to the phe-

nomenon under observation.  Even if the data is analyzed using least 

squares, the full power of the method is often overlooked.  For example, 

the data can be weighted based upon the estimated errors associated with 

the data.  Results from previous experiments or calculations can be com-

bined with the least squares analysis to obtain improved estimate of the 

model parameters.  In addition, the results can be used for predicting val-

ues of the dependent variable or variables and the associated uncertainties 

of the predictions as functions of the independent variables. 



The introductory chapter (Chapter 1) includes a review of the basic statis-

tical concepts that are used throughout the book.  The method of least 

squares is developed in Chapter 2.  The treatment includes development of 

mathematical models using both linear and nonlinear least squares.  In

Chapter 3 evaluation of models is considered.  This chapter includes meth-

ods for measuring the "goodness of fit" of a model and methods for com-

paring different models. The subject of candidate predictors is discussed in 

Chapter 4.  Often there are a number of candidate predictors and the task 

of the analyst is to try to extract a model using subspaces of the full candi-

date predictor space.  In Chapter 5 attention is turned towards designing 

experiments that will eventually be analyzed using least squares.  The sub-

ject considered in Chapter 6 is nonlinear least squares software.  Kernel 

regression is introduced in the final chapter (Chapter 7).  Kernel regression 

is a nonparametric modeling technique that utilizes local least squares es-

timates. 

Although general purpose least squares software is available, the subject of 

least squares is simple enough so that many users of the method prefer to 

write their own routines.  Often, the least squares analysis is a part of a lar-

ger program and it is useful to imbed it within the framework of the larger 

program.  Throughout the book very simple examples are included so that 

the reader can test his or her own understanding of the subject.  These ex-

amples are particularly useful for testing computer routines.

The REGRESS program has been used throughout the book as the primary 

least squares analysis tool.  REGRESS is a general purpose nonlinear least 

squares program and I am its author.  The program can be downloaded 

from www.technion.ac.il/wolberg.

I would like to thank David Aronson for the many discussions we have had 

over the years regarding the subject of data modeling.  My first experi-

ences with the development of general purpose nonlinear regression soft-

ware were influenced by numerous conversations that I had with Marshall

Rafal.  Although a number of years have passed, I still am in contact with

Marshall.  Most of the examples included in the book were based upon 

software that I developed with Ronen Kimchi and Victor Leikehman and I

would like to thank them for their advice and help.  I would like to thank 

Ellad Tadmor for getting me involved in the research described in Section 

7.7.  Thanks to Richard Green for introducing me to the first English trans-

lation of Gauss's Theoria Motus in which Gauss developed the foundations 

of the method of least squares.  I would also like to thank Donna Bossin 

for her help in editing the manuscript and teaching me some of the cryptic 

subtleties of WORD. 
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I have been teaching a graduate course on analysis and design of experi-

ments and as a result have had many useful discussions with our students 

throughout the years.  When I decided to write this book two years ago, I 

asked each student in the course to critically review a section in each chap-

ter that had been written up to that point.  Over 20 students in the spring of 

2004 and over 20 students in the spring of 2005 submitted reviews that in-

cluded many useful comments and ideas.  A number of typos and errors

were located as a result of their efforts and I really appreciated their help. 

John R. Wolberg 

Haifa, Israel

July, 2005
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Chapter 1   INTRODUCTION  

1.1 Quantitative Experiments  

Most areas of science and engineering utilize quantitative experiments to 

determine parameters of interest.  Quantitative experiments are character-

ized by measured variables, a mathematical model and unknown parame-

ters.  For most experiments the method of least squares is used to analyze 

the data in order to determine values for the unknown parameters.

As an example of a quantitative experiment, consider the following: meas-

urement of the half-life of a radioactive isotope.  Half-life is defined as the 

time required for the count rate of the isotope to decrease by one half.  The 

experimental setup is shown in Figure 1.1.1.  Measurements of Counts

(i.e., the number of counts observed per time unit) are collected from time 

0 to time tmax.  The mathematical model for this experiment is: 

background
ttantdecay_cons

eamplitudeCounts ++++++++++++++++−−−−−−−−−−−−−−−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅================      (1.1.1)

For this experiment, Counts is the dependent variable and time t is thet

independent variable.  For this mathematical model there are 3 unknown 

parameters (amplitude, decay_constant and background).  Possible dd

sources of the background "noise" are cosmic radiation, noise in the in-

strumentation and sometimes a second much longer lived radioisotope

within the source.  The analysis will yield values for all three parameters 

but only the value of decay_constant is of interest.  The half-life is deter-t

mined from the resulting value of the decay constant:

21 /
life_halftantdecay_cons

e ====⋅⋅⋅⋅−−−−

y_constantdeca
life_half

.====  (1.1.2) 
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The number 0.69315 is the natural logarithm of 2.  This mathematical 

model is based upon the physical phenomenon being observed: the number 

of counts recorded per unit time from the radioactive isotope decreases ex-

ponentially to the point where all that is observable is the background 

noise. 

There are alternative methods for conducting and analyzing this experi-

ment.  For example, the value of background could be measured in a sepa-d

rate experiment.  One could then subtract this value from the observed val-

ues of Counts and then use a mathematical model with only two unknown

parameters (amplitude and decay_constantd ): tt

ttantdecay_cons
eamplitudebackgroundCounts

−−−−−−−−−−−−−−−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅================−−−−−−−−−−−−−−−−  (1.1.3) 

The selection of a mathematical model for a particular experiment might 

be trivial or it might be the main thrust of the work.  Indeed, the purpose of 

many experiments is to either prove or disprove a particular mathematical

model.  If, for example, a mathematical model is shown to agree with ex-

perimental results, it can then be used to make predictions of the dependent 

variable for other values of the independent variables. 

Figure 1.1.1

Another important aspect of experimental work relates to the determina-

tion of the unknown parameters.  Besides evaluation of these parameters

by experiment, there might be an alternative calculation of the parameters 

based upon theoretical considerations.  The purpose of the experiments for 

such cases is to confirm the theoretical results.  Indeed, experiments go

hand-in-hand with theory to improve our knowledge of the world around 

us.

Experiment to Measure Half-life of a Radioisotope
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Equations (1.1.1) and (1.1.3) are examples of mathematical models with

only one independent variable (i.e., time t) and only one dependent vari-t

able (i.e., Counts).  Often the mathematical model requires several inde-

pendent variables and sometimes even several dependent variables.  For 

example, consider classical chemical engineering experiments in which re-

action rates are measured as functions of both pressure and temperature:

),(_ etemperaturpressurefratereaction = (1.1.4)

The actual form of the function f is dependent upon the type of reactionf

being studied. 

The following example relates to an experiment that requires two depend-

ent variables.  This experiment is a variation of the experiment illustrated 

in Figure 1.1.1.  Some radioactive isotopes decay into a second radioiso-

tope.  The decays from both isotopes give off signals of different energies 

and appropriate instrumentation can differentiate between the two different 

signals.  We can thus measure count rates from each isotope simultane-

ously.  If we call them c1 and c2, assuming background radiation is negli-

gible, the appropriate mathematical model would be:

td
eac

⋅−⋅= 1
11  (1.1.5)

( )td
e

td
e

d-d

d
a

td
eac

⋅−−⋅−+⋅−⋅= 21

12

2
1

2
22  (1.1.6)

This model contains four unknown parameters: the two amplitudes (a1 and 

a2) and the two decay constants (d1 and d2dd ).  The two dependent variables 

are c1 and c2, and the single independent variable is time t.  The time de-

pendence of c1 and c2 are shown in Figure 1.1.2 for one set of the parameters.
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Figure 1.1.2 Counts versus Time for Equations 1.1.5 and 1.1.6

a1=1000, a2=100, d1=0.05, d2dd =0.025

The purpose of conducting experiments is not necessarily to prove or dis-

prove a mathematical model or to determine parameters of a model.  For 

some experiments the only purpose is to extract an equation from the data

that can be used to predict values of the dependent variable (or variables) 

as a function of the independent variable (or variables).  For such experi-

ments the data is analyzed using different proposed equations (i.e., mathe-

matical models) and the results are compared in order to select a "best" 

model. 

We see that there are different reasons for performing quantitative experi-

ments but what is common to all these experiments is the task of data 

analysis.  In fact, there is no need to differentiate between physical ex-

periments and experiments based upon computer generated data.  Once

data has been obtained, regardless of its origin, the task of data analysis

commences.  Whether or not the method of least squares is applicable de-

pends upon the applicability of some basic assumptions.  A discussion of 

the conditions allowing least squares analysis is included in Section 1.5:

Basic Assumptions.
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1.2 Dealing with Uncertainty  

The estimation of uncertainty is an integral part of data analysis.  It is not 

enough to just measure something.  We always need an estimate of the ac-

curacy of our measurements.  For example, when we get on a scale in the 

morning, we know that the uncertainty is plus or minus a few hundred 

grams and this is considered acceptable.  If, however, our scale were only

accurate to plus or minus 10 kilograms this would be unacceptable.  For 

other measurements of weight, an accuracy of a few hundred grams would 

be totally unacceptable.  For example, if we wanted to purchase a gold bar,

our accuracy requirements for the weight of the gold bar would be much 

more stringent.  When performing quantitative experiments, we must take 

into consideration uncertainty in the input data.  Also, the output of our 

analysis must include estimates of the uncertainty of the results.  One of 

the most compelling reasons for using least squares analysis of data is that 

uncertainty estimates are obtained quite naturally as a part of the analysis. 

For almost all applications the standard deviation (σσσσ) is the accepted σσσσσσσσσσ
measure of uncertainty.  Let us say we need an estimate of the uncertainty

associated with the measurement of the weight of gold bars.  One method 

for obtaining such an estimate is to repeat the measurement n times and re-

cord the weights wi , i = 1 toi n.  The estimate of σσσσ (the estimated standard σσσ
deviation of the weight measurement) is computed as follows: 

===============
−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−
===============

ni ===============

i
avgi

ww
n

1

2

1

12σσσσ (1.2.1)

In this equation wavg is the average value of the g n measurements of w.  The 

need for n-1 in the denominator of this equation is best explained by con-

sidering the case in which only one measurement of w is made (i.e.,w n = 1).  

For this case we have no information regarding the "spread" in the meas-

ured values of w.

Fortunately, for most measurements we don’t have to estimate σσσσ by repeat-

ing the measurement many times.  Often the instrument used to perform 

the measurement is provided with some estimation of the accuracy of the

measurements.  Typically the estimation of σ σ σ σ is provided as a fixed per-

centage (e.g., σσσσ = 1%) or a fixed value (e.g., σσσσ = 0.5 grams).  Sometimes 

the accuracy is dependent upon the value of the quantity being measured in 

a more complex manner than just a fixed percentage or a constant value. 

For such cases the provider of the measurement instrument might supply 
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this information in a graphical format or perhaps as an equation.  For cases 

in which the data is calculated rather than measured, the calculation is in-r

complete unless it is accompanied by some estimate of uncertainty.

Once we have an estimation of σσσσ, how do we interpret it?  In addition to σσσσ,

we have a result either from measurements or from a calculation.  Let us

define the result as x and the true (but unknown value) of what we are try-x

ing to measure or compute as µµµµ.  Typically we assume that our best esti-µµµµµµ
mate of this true value of µµµµ isµµµµµµ x and that µµµµ is located within a region µµµµµµ
around x.  The size of the region is characterized by σσσσ.  A typical assump-σσσσσσ
tion is that the probability of µµµµ being greater or less thanµµµµµµ x is the same.  In x

other words, our measurement or calculation includes a random error char-

acterized by σσσσ. Unfortunately this assumption is not always valid!

Sometimes our measurements or calculations are corrupted by systematic 

errors.  Systematic errors are errors that cause us to either systematically 

under-estimate or over-estimate our measurements or computations.  One

source of systematic errors is an unsuccessful calibration of a measuring

instrument.  Another source is failure to take into consideration external

factors that might affect the measurement or calculation (e.g., temperature

effects).  Data analysis of quantitative experiments is based upon the as-

sumption that the measured or calculated independent and dependent vari-

ables are not subject to systematic errors.  If this assumption is not true, 

then errors are introduced into the results that do not show up in the com-

puted values of the σσσσ s.  One can modify the least squares analysis to study 

the sensitivity of the results to systematic errors but whether or not sys-

tematic errors exist is a fundamental issue in any work of an experimental 

nature.

1.3 Statistical Distributions 

In nature most quantities that are observed are subject to a statistical distri-

bution.  The distribution is often inherent in the quantity being observed 

but might also be the result of errors introduced in the method of observa-

tion.  An example of an inherent distribution can be seen in a study in 

which the percentage of smokers is to be determined.  Let us say that one 

thousand people above the age of 18 are tested to see if they are smokers.  

The percentage is determined from the number of positive responses.  It is 

obvious that if 1000 different people are tested the result will be different. 

If many groups of 1000 were tested we would be in a position to say some-

’s
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thing about the distribution of this percentage.  But do we really need to

test many groups?  Knowledge of statistics can help us estimate the stan-

dard deviation of the distribution by just considering the first group!

As an example of a distribution caused by a measuring instrument, con-

sider the measurement of temperature using a thermometer.  Uncertainty 

can be introduced in several ways: 

1) The persons observing the result of the thermometer can introduce

uncertainty.  If, for example, a nurse observes a temperature of a pa-

tient as 37.4°C, a second nurse might record the same measurement as 

37.5°C.  (Modern thermometers with digital outputs can eliminate this

source of uncertainty.) 

2) If two measurements are made but the time taken to allow the tem-

perature to reach equilibrium is different, the results might be differ-

ent.  (Taking care that sufficient time is allotted for the measurement 

can eliminate this source of uncertainty.)

 
3) If two different thermometers are used, the instruments themselves 

might be the source of a difference in the results.  This source of un-

certainty is inherent in the quality of the thermometers.  Clearly, the 

greater the accuracy, the higher is the quality of the instrument and 

usually, the greater the cost.  It is far more expensive to measure a 

temperature to 0.001°C than 0.1°C! 

We use the symbol ΦΦΦΦ to denote a distribution.  ThusΦΦΦΦΦΦ ΦΦΦΦ (((((ΦΦ ((ΦΦ((((ΦΦΦΦ ((((ΦΦΦ x(((( ) ) ) )))))))))))) is the distribu-

tion of some quantity x.  If x is a discrete variable then the definition of x

ΦΦΦΦ ((((((Φ ((((((Φ ((((x(((( ) ) ) )))))))))))) is: 

 

1)( =
xmax

xmin

x (1.3.1)

If x is a continuous variable: x

1)( =
xmax

xmin

dxx (1.3.2)
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Two important characteristics of all distributions are the mean µµµµ and the

variance σσσσ 2222222222222222.  The standard deviation σσσσσσσσσ is the square root of the variance.

For discrete distributions they are defined as follows: 

=
xmax

xmin

xxµ )( (1.3.3) 

)()( xµx
xmax

xmin

22 −−−−==== (1.3.4) 

For continuous distributions: 

====
xmax

xmin

dxxx )(µµµµ  (1.3.5) 

dxxµx

xmax

xmin

22 −−−−==== )()( (1.3.6)

The normal distribution 

When x is a continuous variable the normal distribution is often applicable.  rr

The normal distribution assumes that the range of x is from -∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞ to ∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞ and 

that the distribution is symmetric about the mean value µµµµ.  These assump-µµµµµµ
tions are often reasonable even for distributions of discrete variables, and 

thus the normal distribution can be used for some distributions of discrete 

variables.  The equation for a normal distribution is: 

)(
2

2

21
2

)(

)2(

1
)(

σσσσ
µµµµ

ππππσσσσ
−−−−−−−−====

x
expx

/
(1.3.7) 

The normal distribution is shown in Figure 1.3.1 for various values of the

standard deviation σσσσ.  We often use the term σσσσσσ standard normal distribu-

tion to characterize one particular distribution: a normal distribution with

mean µµµµ = 0 and standard deviation µµµµµµ σσσσ = 1.  The symbol σσσσσσ u is usually used to

denote this distribution.  Any normal distribution can be transformed into a

standard normal distribution by subtracting µµµµ from the values of µµµµµµ x and then x

dividing this difference by σσσσ.
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Figure 1.3.1  ΦΦΦΦ (((((ΦΦ ((ΦΦ(((ΦΦΦΦ ((((ΦΦΦ x((((  ) ))))))))))))))  vs  x-µµµµµµµ for Normal Distribution (σσσσ =0.5, 1 and 2).σσσσσσ

 
We can define the effective range of the distribution as the range in which 

a specified percentage of the data can be expected to fall.  If we specify the 

effective range of the distribution as the range between µµµµ ± σσσσ , then 68.3%

of all measurements would fall within this range.  Extending the range to µµµµ
± 2σσσσ , 95.4% would fall within this range and 99.7% would fall within the

range µµµµ ± 3σσσσ.  The true range of any normal distribution is always -∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞ to ∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞. 

Values of the percentage that fall within 0 to u (i.e., (x(( -µµµµ)/µµµµµµµµµµ σσσσ) are included σσσσσσσσσσ
in tables in many sources [e.g., AB64, FR92].  The standard normal table is

also available online [ST03].  Approximate equations corresponding to a 

given value of probability are also available (e.g., See Appendix B).

The normal distribution is not applicable for all distributions of continuous

variables.  In particular, if the variable x can only assume positive valuesx

and if the mean of the distribution µµµµ is close to zero, then the normal dis-µµµµµµ
tribution might lead to erroneous conclusions.  If however, the value of µµµµ
is large (i.e., µ/σµ/σµ/σµ/σ >> 1) then the normal distribution is usually a good ap-σσσσ
proximation even if negative values of x are impossible.x

We are often interested in understanding how the mean of a sample of n

values of x (i.e.,x xavg) is distributed.  It can be shown that the standard de-

viation of the value of xavg has a standard deviation of g σσσσ / n .  Thus the 

quantity (x(( avg-µµµµ) / (µµµµµµµµµµ σ σ σ σ / n ) follows the standard normal distribution u.  For 
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example, let us consider a population with a mean value of 50 and a stan-

dard deviation of 10.  If we take a sample of n = 100 observations and then

compute the mean of this sample, we would expect that this mean would 

fall in the range 49 to 51 with a probability of about 68%.  In other words, 

even though the population σσσσ is 10, the standard deviation of an average of σσσσσσ
100 observations is only 10/ 100 = 1.

The binomial distribution 

When x is a discrete variable of values 0 to n (where n is a relatively small 

number), the binomial distribution is usually applicable.  The variable x is x

used to characterize the number of successes in n trials where p is the 

probability of a single success for a single trial.  The symbol ΦΦΦΦ(((((Φ((ΦΦ(((ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ((((ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ x(((( ) ) ))))))))))))) is thus

the probability of obtaining exactly x successes.  The number of successes 

can theoretically range from 0 to n.  The equation for the distribution is: 

 

xnx
pp

!xn!x

!n
x −−−−

−−−−
==== )1(

)(
)( (1.3.8)

 
As an example, consider the following problem: what is the probability of 

drawing the Ace of Spades from a deck of cards if the total number of tri-

als is 3.  After each trial the card drawn is reinserted into the deck and the 

deck is shuffled.  For this problem the possible values of x are 0, 1, 2 and x

3.  The value of p is 1/52 as there are 52 different cards in a deck: the Ace

of Spades and 51 other cards.  The probability of not drawing the Ace of 

Spades in any of the 3 trials is:

 

9434.0)
52

51()1(
)!3(!0

!3
)0(

330 ========−−−−==== pp  

The probability of drawing the Ace of Spades once is:

0555.0)
52

51()
52

1(
2

6
)1(

)!2(!1

!3
)1(

2121 ========−−−−==== pp  
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The probability of drawing the Ace of Spades twice is: 

00109.0)
52

51()
52

1(
2

6
)1(

)!1(!2

!3
)2(

1212 ========−−−−==== pp  

The probability of drawing the Ace of Spades all three times is:

000007.0)
52

1()1(
)!0(!3

!3
)3(

303 ========−−−−==== pp  

 
The sum of all 4 of these probable outcomes is one.  The probability of 

drawing the Ace of Spades at least once is 1 - 0.9434 = 0.0566.

The mean value µµµµ and standard deviation σσσσ of the binomial distribution

can be computed from the values of n and p:

 
np=µµµµ (1.3.9)

2/1))1(( pnp −=σσσσ (1.3.10)

 
Equation 1.3.9 is quite obvious.  If, for example, we flip a coin 100 times,

what is the average value of the number of heads we would observe?  For 

this problem, p = ½, so we would expect to see on average 100 * 1/2 = 50 

heads.  The equation for the standard deviation is not obvious, however the

proof of this equation can be found in many elementary textbooks on sta-

tistics.  For this example we compute σσσσ as (100*1/2*1/2)σσσσσσ 1/2  = 5.  Using the

fact that the binomial distribution approaches a normal distribution for 

values of µµµµ  >> 1µµµµµµ , we can estimate that if the experiment is repeated many 

times, the numbers of heads observed will fall within the range 45 to 55

about 68% of the time. 

The Poisson distribution

The binomial distribution (i.e., Equation 1.3.8) becomes unwieldy for large 

values of n.  The Poisson distribution is used for a discrete variable x that x

can vary from 0 to ∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞.  If we assume that we know the mean value µµµµ of theµµµµµµ
distribution, thenΦΦΦΦ ((((((Φ ((((((ΦΦ ((((x(((( ) ) ) )))))))))))) is computed as:

 

!
)(

x

e
x

xµµµµµµµµµµµµµµµµµµµµ−−−−−−−−−−−−−−−−

====  (1.3.11)



12    Chapter 1   INTRODUCTION  

 

It can be shown that the standard deviation σσσσ of the Poisson distribution is:σσσσσσ
 

2/1µµµµσσσσ = (1.3.12)

 

If µµµµ is a large value, the normal distribution is an excellent approximation µµµµµµ
of a Poisson distribution. 

As an example of a Poisson distribution, consider the observation of a rare

genetic problem.  Let us assume that the problem is observed on average 

2.3 times per 10000 people.  For practical purposes n is close to ∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞ so we

can assume that the Poisson distribution is applicable.  We can compute

the probability of observing x people with the genetic problem out of ax

sample population of 10000 people.  The probability of observing no one 

with the problem is:

 

 1003.0!0/3.2)0(
32032

32 32 ============ ee  

 
The probability of observing one person with the problem is: 

 

 2306.03.2!1/3.2)1(
32132

32 32 ============ ee  

 
The probability of observing two people with the problem is: 

 

 2652.02/3.2!2/3.2)2(
322232

32 32 ============ ee  

 
The probability of observing three people with the problem is: 

 

 2136.06/3.2!3/3.2)3(
323332

32 32 ============ ee  

 

From this point on, the probability ΦΦΦ(((((((Φ((Φ(((ΦΦΦ((((ΦΦΦ x(((( ) ) ))))))))))))) decreases more and more rapidly 

and for all intents and purposes approaches zero for large values of x. 

 
Another application of Poisson statistics is for counting experiments in

which the number of counts is large.  For example, consider observation of 

a radioisotope by an instrument that counts the number of signals emanat-

ing from the radioactive source per unit of time.  Let us say that 10000 

counts are observed.  Our first assumption is that 10000 is our best esti-
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mate of the mean µµµµ of the distribution.  From equation 1.3.12 we can thenµµµµµµ
estimate the standard deviation σσσσ of the distribution as 10000σσσσσσ 1/2 = 100.  In 

other words, in a counting experiment in which 10000 counts are observed,

the accuracy of this observed count rate is approximately 1% (i.e., 

100/10000 = 0.01).  To achieve an accuracy of 0.5% we can compute the

required number of counts: 

 
2/12.1 //005.0 −=== µµµµµµµµµµµµµµµµσσσσ  

 

Solving this equation we get a value of µµµµ = 40000.  In other words to dou-µµµµµµ
ble our accuracy (i.e., halve the value of σσσσ) we must increase the observed σσσσσσσσσσσσ
number of counts by a factor of 4.

The χχχχ2
distribution

The χχχχ 22222222222222 (chi-squared) distribution is22222222  defined using a variable u that is nor-

mally distributed with a mean of 0 and a standard deviation of 1.  This u

distribution is called the standard normal distribution.  The variable χχχ 2χχχχχχ (k) 

is called the χχχχ 222222222222222 value with k degrees of freedom and is defined as follows: k

 

=
ki=

1i=

2

i

2
uk)(  (1.3.13)

 
In other words, if k samples are extracted from a standard normal distribu-k

tion, the value of χχχχ 2222222222222222(k(( ) is the sum of the squares of the kk u values.  The dis-

tribution of these values of χχχχ 222χχχχχχ 22222222χχχχχχχχχχ 2222χχχ (k) is a complicated function:

 

)2/exp(
)2/(2

)(
))((

2

2/

12/2
)2 χχχχχχχχχχχχ −−−−

ΓΓΓΓ
====

k
k

k
(1.3.14)

 

In this equation ΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓ is called the gamma function and is defined as follows: 

 

even k for kkk 1*2*3)...22/)(12/()2/( −−=Γ
odd k for kkk

2/1*2/1*2/3)...22/)(12/()2/( ππππ−−=Γ     (1.3.15) 

 
Equation 1.3.14 is complicated and rarely used.  Of much greater interest 

is determination of a range of values from this distribution.  What we are
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more interested in knowing is the probability of observing a value of 

χχχχ 222 222222χχχ 2222 from 0 to some specified value.  This probability can be computed from 

the following equation [AB64]: 

 

dtet
k/22

1
/kP t/2

0

1k/2

k/2

2

2

=
)(

)( (1.3.16) 

 

For small values of k (typically up to k k=30) values of χχχχ 222χχχχχχ 2222222χχχχ 2222
are presented in a 

22222222

tabular format [e.g., AB64, FR92, ST03] but for larger values of k, approxi-

mate values can be computed (using the normal distribution approximation 

described below).  The tables are usually presented in an inverse format 

(i.e., for a given value of k, the values of χχχχ 222χχχχ22222222222
corresponding to various prob-

22222222

ability levels are tabulated).  As an example of the use of this distribution,

let us consider an experiment in which we are testing a process to check if 

something has changed.  Some variable x characterizes the process.  Wex

know from experience that the mean of the distribution of x isx µµµµ and the µµµµµµ
standard deviation is σσσσ.  The experiment consists of measuring 10 valuesσσσσσσ
of x.  An initial check of the computed average value for the 10 values of x

is seen to be close to the historical value of µµµµ but can we make a statement µµµµµµ
regarding the variance in the data?  We would expect that the following

variable would be distributed as a standard normal distribution ((((µµµµ =0, σσσσ =1):

 

σσσσ
µµµµ )( −= x

u  (1.3.17) 

 
Using Equation 1.3.17, 1.3.13 and the 10 values of x we can compute a x

value for χχχχ 22χχχχ .  Let us say that the value obtained is 27.2.  The question that 22

we would like to answer is what is the probability of obtaining this value 

or a greater value by chance?  From [ST03] it can be seen that for k = 10,k

there is a probability of 0.5% that the value of χχχχ 222222222222222
will exceed 25.188.  

222222222

(Note that the value of k f used was 10 and not 9 because the historical value 

of µµµµ was used in Equation 1.3.17 and not the mean value of the 10 µµµµµµ
observations.)  The value observed (i.e., 27.2) is thus on the high end of 

what we might expect by chance and therefore some problem might have

arisen regarding the process under observation. 

Two very useful properties of the χχχχ 222χχ 22222222χχχχ 2222
 distribution are the mean and standard 

22222222

deviation of the distribution.  For k degrees of freedom, the mean is k and k

the standard deviation is k2 .  For large values of k, we can use the fact 
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that this distribution approaches a normal distribution and thus we can eas-

ily compute ranges.  For example, if k = 100, what is the value of k χχχχ 22222222222χχχ 2222 for 22222222

which only 1% of all samples would exceed it by chance?  For a standard 

normal distribution, the 1% limit is 2.326.  The value for the χχχχ 2222222222χχχ 2222 distribution 22222222

would thus be µµµµ + 2.326*µµµµµµ σσσσ =σσσσ k + 2.326*(2k k)1/2 = 100 + 31.2 = 131.2.

An important use for the χχχχ 222χχχχχχ 2222222χχχχ 2222
 distribution is analysis of variance.  The 

22222222
vari-

ance is defined as the standard deviation squared.  We can get an unbi-

ased estimate of the variance of a variable x by using x n observations of 

the variable.  Calling this unbiased estimate as s
2, we compute it as fol-

lows:

==============
−−−−

−−−−
====

n

i

avg)xx(
n

s
1

22

1

1
(1.3.18) 

The quantity (n-1)s2/σσσσ2σσσσσσσσσσσσσσσ  is distributed as χχχχ 222χχχ 222222222χχχχχ 2222
with n-1 degrees of freedom. 

This fact is fundamental for least squares analysis.

The t distributiont

The t distribution (sometimes called the student-t t distribution) is used for 

samples in which the standard deviation is not known.  Using n observa-

tions of a variable x, the mean value xavg and the unbiased estimateg s of the 

standard deviation can be computed.  The variable t is defined as: t

)//()( nsxt avg µµµµ−= (1.3.19) 

The t distribution was derived to explain how this quantity is distributed. t

In our discussion of the normal distribution, it was noted that the quantity 

(x(( avg-µµµµ) / (µµµµµµµµµµ σ σ σ σ / n ) follows the standard normal distribution u.  When σσσσ of σσσσσσ
the distribution is not known, the best that we can do is use s instead.  For 

large values of n the value of s approaches the true value of σσσσ of the distri-σσσσσσ
bution and thus t approaches a standard normal distribution.  The mathe-t

matical form for the t distribution is based upon the observation that Equa-

tion 1.3.19 can be rewritten as:
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sn/

x
t

avg σσσσ
σσσσ

µµµµ−−−−
==== (1.3.20) 

The term σσσσσσσσσσσσσσσσ/σσσσ s// is distributed as ((n-1) //// χ χ χ χ 222222222222222 )22222222 1/2 where χχχχ 222χ 222222222χχχχ 2222 has n-1 degrees of 

freedom.  Thus the mathematical form of the t distribution is derived from 

the product of the standard normal distribution and ((n-1)/  χ χ χ χ 222χχχχχχ 22222222χχ 2222( n-1) )1/2.  

Values of t for various percentage levels for t n-1 up to 30 are included in

tables in many sources [e.g., AB64, FR92].  The t table is also available t

online [ST03].  For values of n > 30, the t distribution is very close to the t

standard normal distribution. 

 
For small values of n the use of the t distribution instead of the standard 

normal distribution is necessary to get realistic estimates of ranges.  For 

example, consider the case of 4 observations of x in which x xavg and g s of the 

measurements are 50 and 10.  The value of s / n is 5.  The value of t for 

n - 1 = 3 degrees of freedom and 1% is 4.541.  We can use these numbers

to determine a range for the true (but unknown value) of µµµµ:µµµµµµµµ

7177554145055414503027 * 775541 775541*541541 ++++=<=<<===<=<<<=<=====<<<<<<<============<=<<===<=<<<=<=====<<<<<<<=========== µµµµ

In other words, the probability of µµµµ being below 27.30 is 1%, above 77.71µµµµµµ
is 1% and within this range is 98%.  Note that the value of 4.541 is consid-

erably larger than the equivalent value of 2.326 for the standard normal 

distribution.  It should be noted, however, that the t distribution approachest

the standard normal rather rapidly.  For example, the 1% limit is 2.764 for 

10 degrees of freedom and 2.485 for 25 degrees of freedom.  These values

are only 19% and 7% above the standard normal 1% limit of 2.326. 

The F distributionF

The F distribution plays an important role in data analysis.  This distribu-F

tion was named to honor R.A. Fisher, one of the great statisticians of the

20th century.  The F distribution is defined as the ratio of two F χχχχ 222χχχχ 2222222χχ 2222
distribu-

22222222

tions divided by their degrees of freedom: 

 

22
2

11
2

)(

)(

k/k

k/k
F

χχχχ
χχχχ==== (1.3.21) 
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The resulting distribution is complicated but tables of values of F for vari-F

ous percentage levels and degrees of freedom are available in many f

sources (e.g., [AB64, FR92]). Tables are also available online [ST03].  Sim-

ple equations for the mean and standard deviation of the F distribution are F

as follows: 

  

22

2

−
=

k

kµµµµ for k2k > 2 (1.3.22)

)4()2(

)2(2

2
2

21(

12
2
22

()2 ()2
=

kkk

kkkσσσσ for k2k > 4 (1.3.23)

 

From these equations we see that for large values of k2 µµµµ approaches 1 and 

σσσσ 2 approaches 2(1/2
k1 + 1/k2).  If k1 is also large, we see that σσσσ 2 approaches

zero.  Thus if both k1 and k2 are large, we would expect the value of F toF

be very close to one. 

1.4 Parametric Models        

Quantitative experiments are usually based upon parametric models.  In 

this discussion we define parametric models as models utilizing a 

mathematical equation that describes the phenomenon under observation. 

The model equation (or equations) contains unknown parameters and the 

purpose of the experiment is often to determine the parameters including

some indication regarding the accuracy of these parameters.  There are 

many situations in which the values of the individual parameters are of no f

interest.  All that is important for these cases is that the parametric model 

can be used to predict values of the dependent variable (or variables) for 

other combinations of the independent variables.  In addition, we are also

interested in some measure of the accuracy of the predictions.

We need to use mathematical terminology to define parametric models.  

Let us use the term y to denote the dependent variable (or variables).  Usu-

ally y is a scalar, but when there is more than one dependent variable, y can 

denote a vector.  The parametric model is the mathematical equation that 

defines the relationship between the dependent and independent variables.  

For the case of a single dependent and a single independent variable we

can denote the model as: 
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);( 21 pa..,a,axfy ==== (1.4.1)

The ak's are the p unknown parameters of the model.  The function f isf

based on either theoretical considerations or perhaps it is based on the be-

havior observed from the measured values of y and x.

When there is more than one independent variable, we can use the follow-

ing to denote the model: 

);..,,( 2121 ,, pm a..,a,axxxfy ==== (1.4.2) 

The xjx 's are the m independent variables.  If there is more than one depend-

ent variable, we require a separate function for each element of the y vec-

tor: 

);..,,( 2121 ,, pmll a..,a,axxxfy ==== l = 1 to l d     (1.4.3)d

 
For cases of this type, y is a d dimensional vector and the subscript d l refers 

to the l
th

l term of the y vector.  It should be noted that some or all of the xjx  

and the ak s may be included in each of the d equations.  The notation for d

the i
th

i  data point for this lth
l term would be:

);..,,( 211 ,, pimii 2,lil
a..,a,axxxfy ====

Equations 1.1.5 and 1.1.6 illustrate an example of an experiment in which 

there are two dependent variables (c1 and c2), four unknown parameters 

(a1, a2, d1 and d2dd ) and a single independent variable time t. 

 
A model is recursive if the functions defining the dependent variables yi

are interdependent.  The form for the elements of recursive models is as 

follows: 

 

);..,,;..,,( 2121 ,,21 ,, pdmll a..,a,ayyyxxxfy ====  (1.4.4)

 
As an example of a recursive model consider the following:

’s
’  s
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2211 ayxay 211 21 +++++++++++ (1.4.5)

4132 ayxay 132 13 ++++++++++ (1.4.6) 

Both of these equations are recursive: there is one independent variable x,

four unknown parameters (a1 to a4) and two dependent variables (y(( 1 and 

y2).  We see that y1 is dependent upon y2 and y2 is dependent upon y1.

Once a parametric model has been proposed and data is available, the task 

of data analysis must be performed.  There are several possible objectives 

of interest to the analyst:

1) Compute the values of the p unknown parameters a1, a2 ,… ap

2) Compute estimates of the standard deviations of the p unknown

parameters. 

3) Use the p unknown parameters to compute values of y for desired 

combinations of the independent variables x1, x2 , … xm

4) Compute estimates of the standard deviations σσσσfσσσσσσ  for the values of f

y = f (ff x(( ) computed in 3.

It should be mentioned that the theoretically best solution to all of these 

objectives is achieved by applying the method of maximum likelihood.

This method was proposed as a general method of estimation by the re-

nowned statistician R. A. Fisher in the early part of the 20th century [e.g.,

FR92]. The method can be applied when the uncertainties associated with 

the observed or calculated data exhibit any type of distribution.  However,

when these uncertainties are normally distributed or when the normal dis-

tribution is approximately correct, the method of maximum likelihood re-

1.5 Basic Assumptions        

The method of least squares can be applied to a wide variety of analyses of 

experimental data.  The common denominator for this broad class of prob-

lems is the applicability of several basic assumptions.  Before discussing

these assumptions let us consider the measurement of a dependent variable 

YiYY .  For the sake of simplicity, let us assume that the model describing the

, , … ap

,  

duces to the method of least squares [WO67, HA01].  A detailed proof of 

[ME77]. Fortunately, the assumption of normally distributed random errors

is reasonable for most situations and thus the method of least squares is

applicable for analysis of most quantitative experiments.

this statement is included in a book written by Merriman over 100 years ago
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behavior of this dependent variable includes only a single independent 

variable.  Using Equation 1.4.1 as the model that describes the relationship

between x andx  y d then yi is the computed value of i y at xi.  We define the dif-

ference between the measured and computed values as the residual Ri:

 

ippiiiii iii Ra,...a,axfRyY +=+= );( 21 a,a, (1.5.1) 

It should be understood that neither YiYY  nor i yi are necessarily equal to the i

true value ηiη .  In fact there might not even be a single true value if the de-

pendent variable can only be characterized by a distribution.  However, for 

the sake of simplicity let us assume that for every value of xi there is ai

unique true value (or a unique mean value) of the dependent variable that 

is ηiη .  The difference between YiYY and i ηiη is the error i εiεε : 

 

iiiY ηηηη +=  (1.5.2) 

 
The development of the method of least squares in this book is based upon 

the following assumptions:

1) If the measurement at xi were to be repeated many times, then the i

values of the error εεεεiεεεεεεε would be normally distributed with an aver-i

age value of zero.  Alternatively, if the errors are not normally 

distributed, the approximation of a normal distribution is reason-

able. 

2) The errors are uncorrelated.  This is particularly important for 

time-dependent problems and implies that if a value measured at 

time tit includes an error i εεεεiεεεεεεε  and at time i tit +k includes an error k εεεεiεεεεεεε +k

these errors are not related. 

3) The standard deviations σσσσiσσσσσσσ of the errors can vary from point toi

point.  This assumption implies that σσσσiσσσσσσσ is not necessarily equal to i

σσσσjσσσσσσσ . 

The implication of the first assumption is that if the measurement of YiYY is i

repeated many times, the average value of YiYY  would be the true (i.e., error-i

less) value ηηηηiηηηη .  Furthermore, if the model is a true representation of the 

connection between y and xd and if we knew the true values of the unknown x

parameters the residuals Ri would equal the errorsi εεεεiεεεεεεε :

 

εεεε



1.5 Basic Assumptions 21

ippiiiii ),...,;x(fY εεεεααααααααααααεεεεηηηη ++++====++++==== 21 ,, (1.5.3) 

In this equation the true value of the ak is represented as k ααααkαααααααα .  However, 

even if the measurements are perfect (i.e., εεεεiεεεεεεε = 0), if i f does not truly de-f

scribe the dependency of y upon x, then there will certainly be a difference 

between the measured and computed values of y.

The first assumption of normally distributed errors is usually reasonable. 

Even if the data is described by other distributions (e.g., the binomial or 

Poisson distributions), the normal distribution is often a reasonable ap-

proximation.  But there are problems where an assumption of normality 

causes improper conclusions.  For example, in risk analysis the probability

of catastrophic events might be considerably greater than one might pre-

dict using a normal distribution.  To site one specific area, earthquake pre-

dictions require analyses in which normal distributions cannot be assumed. 

Another area that is subject to similar problems is the modeling of insur-

ance claims.  Most of the data represents relatively small claims but there 

are usually a small fraction of claims that are much larger, negating the as-

sumption of normality.  In this book such problems are not considered. 

One might ask when the second assumption (i.e., uncorrelated errors) is

invalid?  There are areas of science and engineering where this assumption 

is not really reasonable and therefore the method of least squares must be

modified to take error correlation into consideration [DA95].  Davidian and 

Giltinan discuss problem in the biostatistics field in which repeated data

measurements are taken.  For example, in clinical trials, data might be

taken for many different patients over a fixed time period.  For such prob-

lems we can use the term YijYY  to represent the measurement at time j tit for pa-i

tient j.  Clearly it is reasonable to assume that εεεεijεεεεεεε  is correlated with the error j

at time ti+1t  for the same patient.  In this book, no attempt is made to treat 

such problems. 

Many statistical textbooks include discussions of the method of least 

squares but use the assumption that all the σσσσ iσσσ s are equal.  This assumption 

is really not necessary as the additional complexity of using varying σσσσiσσσσσσσ s is 

minimal.  Another simplifying assumption often used is that the models

are linear with respect to the ak .  This assumption allows a very simple

mathematical solution but is too limiting for the analysis of many real-

world experiments.  This book treats the more general case in which the

function f (or functionsf flff ) can be nonlinear.l

’  s s

’s

’s
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1.6 Systematic Errors   

I first became aware of systematic errors while doing my graduate re-

search.  My thesis was a study of the fast fission effect in heavy water nu-

clear reactors and I was reviewing previous measurements of this effect 

[WO62].  Experimental results from two of the national laboratories were

curiously different.  Based upon the values and quoted σσσσ s, the numbers 

were many σσσσ s apart.  I discussed this with my thesis advisors and we 

agreed that one or both of the experiments was plagued by systematic er-

rors that biased the results in a particular direction.  We were proposing a

new method which we felt was much less prone to systematic errors. 

One of the basic assumptions mentioned in the previous section is that the 

errors in the data are random about the true values.  In other words, if a 

measurement is repeated n times, the average value would approach the 

true value as n approaches infinity.  However, what happens if this as-

sumption is not valid?  We call such errors systematic errors and they 

will of course cause errors in the results.  Systematic errors can be intro-

duced in a variety of ways.  For example, if an experiment lasting several

days is undertaken, the results might be temperature dependent.  If there is 

a significant change in temperature this might result in serious errors in the

results.  A good experimentalist will consider what factors might affect the 

results of a proposed experiment and then take steps to either minimize 

these factors or take them into consideration as part of the proposed model. 

We can make some statements about combining estimates of systematic 

errors.  Let us assume that we have identified nsys sources of systematic

errors and that we can estimate the maximum size of each of these error 

sources.  Let us define εεεεjkεεεεεεε as the systematic error in the measurement of k aja

caused by the kth
k source of systematic errors.  The magnitude of the value 

of εεεεjεεεεεεε (the magnitude of the systematic error in the measurement of j aja

caused by all sources) could range from zero to the sum of the absolute 

values of all the εεεεjkεεεεεεε s.  However, a more realistic estimate of k εεεεjεεεεεεε is the fol-j

lowing:

 

================
====

nsysk===============

k
jkj

1

22 εεεεεεεε (1.6.1) 

 
In the following chapter the method of least squares is developed and es-

timates of the uncertainties in the results of the least squares analysis are 

’s

’s

s
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included.  It should be remembered that the basic assumption of the

method is that the data is not plagued by systematic errors.  For example,

let us say we use the method of least squares to determine the constants a1

and a2 of a straight line (i.e., y = a1 + a2x22 ) and let us say that the results in-

dicate that the uncertainties σσσσaσσσσ 1 and σσσσaσσσσ 2 have been determined to 1% accu-

racy.  Let us also say that we estimate that εεεε1εεεεεεεε  is approximately equal to

C1CC σσσσaσσσσ 1 and εεεε2εεεεεεεε is approximately equal to C2C σσσσaσσσσ 2, how do we report our re-

sults?  If we assume independence of σσσσajσσσσ and j εεεεjεεεεεεε a more accurate estimate of 

the uncertainties associated with the results is: 

 (1.6.2)

Clearly, the experimentalist should make an effort to ensure that the εεεεjεεεεεεε  s j

are small when compared  to the σσσσajσσσσ s  (i.e, make the CjCC s as small as

 possible).

One might ask the question: how do I go about estimating the values of the 

εεεεjεεεεεεε s?  Often it is possible to use the least squares software to help make j

these estimates.  For example, if you suspect the maximum systematic er-

ror in the values of the x s isx δδδδxδδδδδδδδδδ , then you could change all the x s by δδδδ x

and repeat the least squares analysis.  Comparing the results with the pre-

vious analysis reveals how the results are affected by the δδδδxδδδδδδδδδδ change.  This

εε
ror.  Note that δδδδxδδδδδδδδδδ     is not the same as σσσσxσσσσσσσσ .  The values of σσσσxσσσσσσσσ are random errors x

whereas the systematic error is a fixed error in all the values of x some-x

where in the range ±δδδδ x.   For the straight-line fit, we can see from Figure 

1.6.1 that the effect of a systematic error of magnitude δδδδxδδδδδδδδδδ  in the values of x x

will cause a contribution to εεεε1εεεε equal to –a2δδδδxδδδ and will have no effect upon

the value of a2 (i.e., εεεε 2εε = 0).  Similarly, a systematic error of magnitude δδδδ yδδδ
in the values of y will cause a contribution to εεεε1εεεε equal to δδδδyδδδδ and will have 

no effect upon the value of a2 (i.e., εεεε2εεεεεεεε = 0).  Assuming the these effects are 

εε1εεεε

222
2

2
1 yxa δδδδδδδδεεεε ++++====     (1.6.3) 

2 ++++==== 2εεεεσσσσ jσσσσ 2σσσσaj jεε ==== (1 + C )2
jC 2σσσσajσσσ

independent, we can combine these two sources of systematic error to

estimate a value foff r :εεεε :

’

’ ’

’

is in fact a direct measurement of the ε s associated with this type of er-εε ’’εεε
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Figure 1.6.1 Effect of systematic error in x (x δδδδxδδδδδδδδδδδδ ) and in y (δδδδyδδδδδδδδδδδδ ) 

1.7 Nonparametric Models        

There are situations in which it is quite useless to attempt to describe the 

phenomenon under observation by a single equation.  For example, con-

sider a dependent variable that is the future percentage return on stocks 

traded on the NYSE (New York Stock Exchange).  One might be inter-

ested in trying to find a relationship between the future returns and several 

indicators that can be computed using currently available data.  For this

problem there is no underlying theory upon which a parametric model can 

be constructed.  A typical approach to this problem is to allow the historic 

data to define a surface and then use some sort of smoothing technique to

make future predictions regarding the dependent variable.  The data plus

the algorithm used to make the predictions are the major elements in what 

we define as a nonparametric model.

Nonparametric methods of data modeling predate the modern computer era 

[WO00].  In the 1920’s two of the most well-known statisticians (Sir R. A. 

Fisher and E. S. Pearson) debated the value of such methods [HA90].  

Fisher correctly pointed out that a parametric approach is inherently more 

efficient.  Pearson was also correct in stating that if the true relationship
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between X and X Y is unknown, then an erroneous specification in the func-Y

tion f (ff X(( )XX  introduces a model bias that might be disastrous. 

Hardle includes a number of examples of successful nonparametric models 

[HA90].  The most impressive is the relationship between change in height 

(cm/year) and age of women (Figure 1.7.1).  A previously undetected 

growth spurt at around age 8 was noted when the data was modeled using 

a nonparametric smoother [GA84].  To measure such an effect using para-

metric techniques, one would have to anticipate this result and include a 

suitable term in f(ff X(( )XX .

 

 
Figure 1.7.1  Human growth in women versus Age.  The top graph is

in cm/year.  The bottom graph is acceleration in cm/year
2
.  The solid 

lines are from a model based upon nonparametric smoothing and the 

dashed lines are from a parametric fit [GA84, HA90].

Clearly, one can combine nonparametric and parametric modeling tech-

niques.  A possible strategy is to use nonparametric methods on an ex-

ploratory basis and then use the results to specify a parametric model. 

However, as the dimensionality of the model and the complexity of the 

surface increases, the hope of specifying a parametric model becomes 

more and more remote.  An example of a problem area where parametric 
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methods of modeling are not really feasible is the area of financial market 

modeling.  As a result, there is considerable interest in applying nonpara-

metric methods to the development of tools for making financial market 

predictions.  A number of books devoted to this subject have been written 

in recent years (e.g., [AZ94, BA94, GA95, RE95, WO00]). 

The emphasis on neural networks as a nonparametric modeling tool is par-

ticularly attractive for time series modeling.  The basic architecture of a 

single element (called a neuron) in a neural network is shown in Figure 

1.7.2.  The input vector X may include any number of variables.  The net-X

work includes many nonlinear elements that connect subsets of the input 

variables.  All the internal elements are interconnected and the final output 

is a predicted value of Y.  There is a weighting coefficient associated withYY

each element.  If a particular interaction has no influence on the model

output, the associated weight for the element should be close to zero.  As 

new values of Y become available, they can be fed back into the network Y

to update the weights.  Thus the neural network can be adaptive for time 

series modeling: in other words the model has the ability to change over 

time.

 
Figure 1.7.2 A typical element in a neural network.  The ΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣ block ΣΣΣΣ
sums the weighted inputs and the bias b.  The f  block is a nonlinear 

transfer function.

 
There is one major problem associated with neural network modeling: the

amount of computer time required to generate a model.  If the model is to 

be based upon a small number of predictor variables, then even if the 

number of data records is large, the required computer time is usually 
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manageable.  However, if one wishes to use tens or even hundreds of thou-

sands of data records and hundreds of candidate predictors, the required f

computer time can be monumental.  If one is to have any hope of success,

techniques are required to preprocess the data in such a manner as to re-

duce the number of candidate predictors to a reasonable number.  The 

definition of reasonable varies, of course, depending upon the available

computing power.  However, regardless of the hardware available, pre-

processing strategies are essential to successfully apply neural nets to suchff

problems (for example, financial market modeling).  Use of kernel regres-

sion is an alternative modeling strategy that can be many orders of magni-

tude faster than the more compute intensive methods such as neural net-

works.  It is certainly not as adaptive as neural networks but it can be used 

to very rapidly obtain the information rich subsets of the total candidate 

predictor space.  These subspaces can, in turn be used as inputs to a neural

network modeling program.  The kernel regression method is based upon

least squares and is discussed in detail in Chapter 7.

1.8 Statistical Learning 

The term statistical learning is used to cover a broad class of methods and g

problems that have become feasible as the power of the computer has 

grown.  An in-depth survey of this field is covered in a fairly recent book 

by Hastie, Tibshirani and Friedman entitled The Elements of Statistical 

Learning: Data Mining, Inference and Prediction [HA01].  Their book 

covers both supervised and unsupervised learning.  The goal of supervised d

learning is to predict an output variable as a function of a number of input 

variables (or as they are sometimes called: indicators or predictors).  In un-

supervised learning there is no particular output variable and one is inter-

ested in finding associations and patterns among the variables.  The cor-

nerstone of statistical learning is to learn from the data.  The analyst has 

access to data and his or her goal is to make sense out of the available in-

formation. 

Supervised learning problems can be subdivided into regression and clas-

sification problems.  The goal in regression problems is to develop quanti-

tative predictions for the dependent variable.  The goal in classification

problems is to develop methods for predicting to which class a particular 

data point belongs.  An example of a regression problem is the develop-

ment of a model for predicting the unemployment rate as a function of 
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economic indictors.  An example of a classification problem is the devel-

opment of a model for predicting whether or not a particular email mes-

sage is a spam message or a real message.  In this book, although classifi-

cation problems are discussed (see Sections 2.8 and 7.8), the emphasis is

on regression problems.

In this book we assume that the structure of the data is known (to some de-

gree).  Many problems in science and engineering fall within this category. 

Our typical starting point is a model that describes the relationship be-

tween the dependent and independent variables.  The model includes some 

unknown parameters or parameters that we wish to determine to a greater 

accuracy than currently known.  Sometimes the purpose of the experiment 

is to use the data as the basis for comparing different theoretical ap-

proaches to a particular problem.  Sometimes the purpose of the experi-

ment is to develop an equation that can be used for interpolation or ex-

trapolation.  The data might lead us to a modified form of the model, but 

the existence of a fair degree of structure is assumed. 

In data mining applications, there are often a fairly large number of candi-

date predictors and the structure of the relationship between the dependent 

variable and the candidate predictors is not known or hardly known.  The

data miner searches for information-rich subsets of the candidate predic-

tors that can be used for making predictions.  One problem associated with 

such efforts is the curse of dimensionality, a concept first identified by 

Bellman in 1961 [BE61].  As the number of candidate predictors increases, 

the density of the data decreases exponentially.  Stated in an alternative 

manner, if we wish to maintain the density of the data, for every added 

predictor, we must double the number of data points.  Thus the number of 

available data points limits the number of candidate predictors that can be f

included in a model.  As a result, data mining software typically includes

methods for identifying the information-rich lower dimensional subsets of 

the total candidate predictor space.  These subsets can be used individually 

for making predictions or can be combined to create a super-model if such 

a combination proves to be a better predictor than the individual subset 

models.

In this book, we assume that we know which independent variables must 

be included in the final model.  For example, when studying chemical re-

action rates, we consider the effects of temperature, pressure and time 

upon the concentrations of the chemical species undergoing the reaction. 

We know that the problem is dependent upon these variable and we also

know the mathematical model relating the dependent variables with these
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independent variables.  What we would like to know are some of the pa-

rameters that are included within the model.  The approach to problems of 

this type is fundamentally different than the model searching techniques 

used in data mining applications.



Chapter 2  THE METHOD OF LEAST SQUARES 

2.1 Introduction 

The first published treatment of the method of least squares was included 

in an appendix to Adrien Marie Legendre's book Nouvelles methods pour 

la determination des orbites des cometes.  The 9 page appendix was enti-

tled Sur la methode des moindres quarres.  The book and appendix was 

published in 1805 and included only 80 pages but gained a 55 page sup-

plement in 1806 and a second 80 page supplement in 1820 [ST86].  It has 

been said that the method of least squares was to statistics what calculus 

had been to mathematics.  The method became a standard tool in astron-

omy and geodesy throughout Europe within a decade of its publication.  

The method was also the cause of a dispute between two giants of the sci-

entific world of the 19th century: Legendre and Gauss.  Gauss in 1809 in

his famous Theoria Motus claimed that he had been using the method 

since 1795.  That book was first translated into English in 1857 under the

authority of the United States Navy by the Nautical Almanac and Smith-

sonian Institute [GA57].  Another interesting aspect of the method is that it 

was rediscovered in a slightly different form by Sir Francis Galton.  In 

1885 Galton introduced the concept of regression in his work on heredity.  

But as Stigler says: "Is there more than one way a sum of squared devia-

tions can be made small?"  Even though the method of least squares was

discovered about 200 years ago, it is still "the most widely used nontrivial 

technique of modern statistics" [ST86]. 

The least squares method is discussed in many books but the treatment is 

usually limited to linear least squares problems.  In particular, the empha-

sis is often on fitting straight lines or polynomials to data.  The multiple

linear regression problem (described below) is also discussed extensively 

(e.g., [FR92, WA93]).  Treatment of the general nonlinear least squares

problem is included in a much smaller number of books.  One of the earli-

est books on this subject was written by W. E. Deming and published in 
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the pre-computer era in 1943 [DE43].  An early paper by R. Moore and R.

Zeigler discussing one of the first general purpose computer programs for 

solving nonlinear least squares problems was published in 1960 [MO60]. 

The program described in the paper was developed at the Los Alamos

Laboratories in New Mexico.  Since then general least squares has been 

covered in varying degrees and with varying emphases by a number of au-

thors (e.g., DR66, WO67, BA74, GA94, VE02).  

For most quantitative experiments, the method of least squares is the "best"

analytical technique for extracting information from a set of data.  The 

method is best in the sense that the parameters determined by the least 

squares analysis are normally distributed about the true parameters with

the least possible standard deviations.  This statement is based upon the as-

sumption that the uncertainties (i.e., errors) in the data are uncorrelated and 

normally distributed.  For most quantitative experiments this is usually true 

or is a reasonable approximation.  When the curve being fitted to the data

is a straight line, the term linear regression is often used.  For the more 

general case in which a plane based upon several independent variables is 

used instead of a simple straight line, the term multiple linear regression

is often used [FR92, WA93].  Prior to the advent of the digital computer, 

curve fitting was usually limited to lines and planes.  For the simplest 

problem (i.e., a straight line), the assumed relationship between the de-

pendent variable y and the independent variable x is: x

 

xaay 21 aa+aa (2.1.1) 

 
For the case of more than one independent variable (multiple linear regres-

sion), the assumed relationship is: 

12211 2211 ... +++++= mmm + axaxaxay (2.1.2) 

 
For this more general case each data point includes m+1 values: yi, x1i, x2i,

..,
imx .

The least squares solutions for problems in which Equations 2.1.1 and 

2.1.2 are valid fall within the much broader class of linear least squares 

problems.  In general, all linear least squares problem are based upon an 

equation of the following form: 
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In other words, y is a function of X (a vector with m terms).  Any equation 

in which the p unknown parameters (i.e., the ak's) are coefficients of func-

tions of only the independent variables (i.e., the m terms of the vector X)

can be treated as a linear problem.  For example in the following equation, 

the values of a1, a2, and a3 can be determined using linear least squares: 

2
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This equation is nonlinear with respect to x but the equation is linear withx

respect to the ak's.  In this example, the X vector contains only one term so 

we use the notation x rather thanx x1.  The following example is a linear 

equation in which X is a vector containing 2 terms:
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The following example is a nonlinear function:
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The fact that a4 is embedded within the last term makes this function in-

compatible with Equation 2.1.3 and therefore it is nonlinear with respect to

the ak's. 

For both linear and nonlinear least squares, a set of p equations and p un-

knowns is developed.  If Equation 2.1.3 is applicable then this set of equa-

tions is linear and can be solved directly.  However, for nonlinear equa-

tions, the p equations require estimates of the ak's and therefore iterations

are required to achieve a solution.  For each iteration, the ak's are updated,

the terms in the p equations are recomputed and the process is continued 

until some convergence criterion is achieved.  Unfortunately, achieving 

convergence is not a simple matter for some nonlinear problems. 

For some problems our only interest is to compute y = f(X)ff  and perhaps

some measure of the uncertainty associated with these values (e.g., σσσσfσσσσσσ ) for ff

various values of X.  This is what is often called the prediction problem.  

We use measured or computed values of x and x y to determine the parame-

ters of the equation (i.e., the ak's) and then apply the equation to calculate

///////

1xx 2
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values of y for any value of x.  For cases where there are several (let us say

m) independent variables, the resulting equation allows us to predict y for 

any combination of x1, x2, .., xm.  The least squares formulation developed 

in this chapter also includes the methodology for prediction problems.

2.2 The Objective Function 

The starting point for the method of least squares is the objective func-

tion.  Minimization of this function yields the least squares solution.  The

simplest problems are those in which y (a scalar quantity) is related to an

independent variable x (or variables xjx 's) and it can be assumed that there is 

no (or negligible) errors in the independent variable (or variables).  The

objective function for these cases is: 
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1i ===============
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ni ===============
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In this equation n is the number of data points, YiYY is the i i

th
i input value of 

the dependent variable and yi is the i i
th

i computed value of the dependent 

variable.  The variable Ri is called the i i
th

i  residual and is the difference be-

tween the input and computed values of y for the ith
i data point.  The vari-

able Xi (unitalicized) represents the independent variables and is either ai

scalar if there is only one independent variable or a vector if there is more 

than one independent variable.  The function f is the equation used to ex-f

press the relationship between X and y.  The variable wi is called the i

"weight" associated with the i
th

i  data point and is discussed in the next sec-

tion.  A schematic diagram of the variables for point i is shown in Figure i

2.2.1.  In this diagram there is only a single independent variable so the no-

tation x is used instead of x X.  The variable EiE  is the true but unknown error i

in the i
th

i value of y.  Note that neither the value of YiYY  nor i yi is exactly equal i

to the unknown ηηηηiηηηη  (the true value of i y) at this value of xi.  However, a fun-

damental assumption of the method of least squares is that if YiYY is deter-i

mined many times, the average value would approach this true value. 

 
The next level of complexity is when the uncertainties in the measured or 

calculated values of x are not negligible.  The relevant schematic diagram x

is shown in Figure 2.2.2.  For such cases the objective function must also 

include residuals in the x as well as thex y direction: 
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In this equation, XiXX (italicized) is the measured value of the i

th
i independent 

variable and xi is the computed value.  Note that i XiXX is not the same asi Xi ini

Equation 2.2.1.  In that equation capital X (unitalicized) represents the vec-

tor of independent variables.

 

 
Figure 2.2.1 The True, Calculated and Measured Data Points with

no Error in x
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Figure 2.2.2 The True, Calculated and Measured Data Points with 

Errors in X

 
It can be shown [WO67] that we can create a modified form of the weights 

so that the objective function reduces to the following simple form: 

================================

================

===============

++

ni ================

i

iii

ni ================

i

iii

ni ================

i
ixixiyiy

XfYwyYw w −−−−−−= −−−−−−−−−−=====− ==========−−−−−−−−−−−−−−− iiiii i

RwRwS ++++++++++++++++===============
ixiyiy

1

2

1

2

1

22

  (2.2.3) 

 
In other words, Equation 2.2.1 is valid even if the uncertainties in the x

variables are not negligible.  All that is required is a modified form of the 

weighting function used to determine the values of wi.  Note that if there is 

more than one independent variable, an additional summation is required: 
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Note that in Eq 2.2.4 Xi is unitalicized because it represents the vector of i

the independent variables.  The italicized XiXX  used in Eq 2.2.3 represents the i

scalar independent variable.  If y is a vector quantity, then we must further 

modify the objective function by including a sum over all the y terms.  As-

suming that there are d terms in the d y vector (i.e., yi is a i d dimensional vec-d

tor), the objective function is:
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In a later section we discuss treatment of prior estimates of the unknown ak

parameters.  To take these prior estimates into consideration we merely

make an additional modification of the objective function.  For example,

assume that for each of the p unknown ak's there is a prior estimate of the 

value.  Let us use the notation bk as the prior estimate of ak and k
kbkk

σσσσ  as the

uncertainty associated with this prior estimate.  In the statistical literature 

these prior estimates are sometimes called Bayesian estimators.  (This 

terminology stems from the work of the Reverend Thomas Bayes who was 

a little known statistician born in 1701.  Some of his papers eventually 

reached the Royal Society but made little impact until the great French 

mathematician Pierre Laplace discovered them there.)  The modified form 

of Equation 2.2.1 is: 
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If there is no Bayesian estimator for a particular ak the value of k
kbkk

σσσσ  is set 

to infinity.

Regardless of the choice of objective function and scheme used to deter-

mine the weights wi, one must then determine the values of the p unknown 

parameters ak that minimizek S.  To accomplish this task, the most common 

procedure is to differentiate S with respect to all theS ak's and the resulting 

expressions are set to zero.  This yields p equations that can then be solved 

to determine the p unknown values of the ak's.  A detailed discussion of 

this process is included in Section 2.4.  An alternative class of methods to 

find a “best” set of ak's is to use an intelligent search within a limited range



38    Chapter 2  THE METHOD OF LEAST SQUARES  

of the unknown parameter space.  A number of such stochastic algorithms

are discussed in the literature (e.g., TV04).

2.3 Data Weighting 

In Section 2.2, we noted that regardless of the choice of the objective func-

tion, a weight wi is specified for each point.  The "weight" associated withi

a point is based upon the relative uncertainties associated with the different 

points.  Clearly, we must place greater weight upon points that have 

smaller uncertainties, and less weight upon the points that have greater un-

certainties.  In other words the weight wi must be related in some way toi

the uncertainties 
iyi

σσσσ and 
ixσσσσ .

The alternative to using wi's associated with the σσσσ 's of the ith data point is 

to simply use unit weighting (i.e.,g wi=1) for all points.  This is a reasonable 

choice for wi if the i σσσσ 's for all points are approximately the same or if we 

have no idea regarding the values (actual or even relative) of σσσσ for the dif-σσσσσσ
ferent points.  However, when the differences in the σσσσ 's are significant, σσσσσσ
then use of unit weighting can lead to poor results.  This point is illustrated 

in Figure 2.3.1.  In this example, we fit a straight line to a set of data.  Note

that the line obtained when all points are equally weighted is very different 

than the line obtained when the points are "weighted" properly.  Also note

how far the unit weighting line is from the first few points. 

 

 
Figure 2.3.1 Two least squares lines with  different 

weighting schemes  
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The question that must be answered is how do we relate wi to the i σ σ σ σ 's asso-

ciated with the i 
th data point?  In Section 2.2 we noted that the objective

function is of the form: 

 

−−−−====−−−−====

========

ni ===============

1i ===============
iii ii

ni ================

1i ================
iii iii

ni ================

1i ================

2
ii

ni ===============

1i ================

fYwyYw

RwSS

22
))(X()(

  (2.3.1) 

 
We will see that the least squares solution is based upon adjusting the un-

known values of the ak's that are included in the function f such that f S isS

minimized.  If the function f is representative of the dataf , this minimiza-

tion process yields values of SiS that tend to be distributed around an aver-

age value with some random error ε ε ε ε iεεε : 

 

iiii iii ii SRwS ++++======== avg
2

 (2.3.2)

 
For cases in which the uncertainties associated with the values of xi are 

negligible our objective should be that the residuals Ri are proportional toi

the values of 
iyi

σσσσ .  If we define the relative error at point i (i Rel_Error(( ir ) as 

Ri / 
iyi

σσσσ
uted about 0. To accomplish this, we choose the following weighting 

function:

 

2/1
iyiiw σσσσ=  (2.3.3) 

 
We call this type of weighting statistical weighting and we will see that it 

has many attractive properties.  Substituting Equation 2.3.3 into 2.3.1 and 

2.3.2 we obtain the following expression:

 

iavgiiiyi SSError_lRe/R εεεεσσσσ ++++============ (2.3.4) 

 
We define RMS(R(( ) as the "root mean square" error: 

 

, our objective should be to have relative errors randomly distrib-
i
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(((( ))))
1/2

ni

1i

2
iRRRMS ====  (2.3.5)

 
What we expect is that RMS(R(( ) approaches zero as the noise component 

of the y values approaches zero.  In reality, can we expect this from the

least squares analysis?  The answer to this question is yes but only if sev-

eral conditions are met:

 
1) The function f is representative of the data.  In other words, the data f

falls on the curve described by the function f with only a random f

"noise" component associated with each data point.  For the case 

where the data is truly represented by the function f (i.e., there is nof

"noise" component to the data), then all the values of Ri will be zero i

and thus the values of SiS will be zero. i

2) There are no erroneous data points or if data errors do exist, they are r

not significantly greater than the expected noise component.  For ex-

ample, if a measuring instrument should be accurate to 1%, then er-

rors several times larger than 1% would be suspicious and perhaps

problematical.  If some points were in error far exceeding 1% then the

results of the analysis will probably lead to significant errors in the fi-

nal results.  Clearly, we would hope that there are methods for detect-

ing erroneous data points.  This subject is discussed in detail in Chap-

ter 3 in the section dealing with Goodness-of-Fit. 

To illustrate the first point, consider the data shown in Table 2.3.1.  This 

data was created using the following model:

 

iu.*xxY 050..67 2 ++++++++−−−−==== (2.3.6) 

 
Ten values of x were chosen as 1 thru 10 and the values of x ui were takeni

randomly from a u (i.e., standard normal) distribution.  In other words, this

model is a parabola with a noise component that is approximately 5% of 

the "true" value of y.  It should be emphasized that we don’t know and 

can't measure the values of ui.  All that we know is that the values of Y in-Y

clude about 5% random noise.  Our weighting function for this case would 

be: 
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22

050

11

iiy

i
Y*.

w ========
σσσσ

 

 
The same data is shown in graphical form in Figure 2.3.2.  Fitting a parab-

ola to this data using the method of least squares we get the following

curve: 
22

321 321 999002660867 x99900266086 00266086xaxaaxfy ++0266 0266 0260266====++++++++========  

 
The values of the relative errors are seen in Table 2.3.1 to vary from –1.04

to 1.483 and seem to be distributed around zero as one would expect be-

cause the chosen model is representative of the data.  In Table 2.3.2 we fit 

the data using a straight line and get the following curve:

xxaaxfy 51606611 .. .21 aa ++====++++========  

The values of the relative errors are seen to be much greater (from –17.86

to 30.37) and they are clearly not distributed randomly about zero.  This 

type of result is due to the choice of a function f that is clearly not repre-

sentative of the data.

x Y σσσσyσσσσσσσσ y Rel_Error

 1.0  2.047 0.102  2.060 -0.126 
 2.0 -0.966 0.048 -0.967  0.023 
 3.0 -1.923 0.096 -1.995  0.750 
 4.0 -1.064 0.053 -1.024 -0.749 
 5.0  2.048 0.102  1.946  0.998 
 6.0  6.573 0.329  6.915 -1.040 
 7.0 13.647 0.682 13.883 -0.345 
 8.0 24.679 1.234 22.850  1.483 
 9.0 34.108 1.705 33.816  0.171 
10.0 44.969 2.248 46.780 -0.806 

Table 2.3.1 Data generated using Equation 2.3.6 and fit using  

y = a1 + a2x+ a22 3x33
2
.   Rel_Error is (r Y - y) / σσσσyσσσσσσσσ . y

 



42    Chapter 2  THE METHOD OF LEAST SQUARES  

x Y σσσσyσσσσσσσσ y Rel_Error

 1.0  2.047 0.102 -1.062  30.37
 2.0 -0.966 0.048 -0.746  -4.56
 3.0 -1.923 0.096 -0.430 -15.54
 4.0 -1.064 0.053 -0.114 -17.86
 5.0  2.048 0.102  0.202  18.03
 6.0  6.573 0.329  0.518  18.42
 7.0 13.647 0.682  0.834  18.78
 8.0 24.679 1.234  1.150  19.07
 9.0 34.108 1.705  1.466  19.14
10.0 44.969 2.248  1.781  19.21

Table 2.3.2 Data generated using Equation 2.3.6 and fit using 

y = a1 + a2x22 .  Rel_Error is (r Y - y) / σσσσyσσσσσσσσ . y

 

 
Figure 2.3.2 Parabola: Table 2.3.1,   Straight Line: Table 2.3.2

 
The effect of erroneous data points is discussed in the section on "outliers".

(Section 3.6).  This is a real concern of all experimentalists and care should 

be taken to search for outliers in any data set.  The cause of outliers can be 

errors in data collections, errors in computer pre-processing of the data or 

even human error.  However, one must not overlook the possibility that the

outliers are real (i.e., not errors) and are perhaps due to an unexpected phe-

nomenon.  As an example of the effect of an erroneous data point, using 

the data from the previous example, the point Y5YY was changed from 2.048 

to 20.48.  This can happen, for example, when data is being collected by

hand and the person recording the data misplaces the decimal point.  The 

results of a least-squares analysis of this data are shown in Table 2.3.3. 
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Note the very large value of the relative error for point 5.  In the discussion

of Goodness-of-Fit (Section 3.2), statistical tests are discussed that allow 

us to measure the goodness of the fit without the need to examine all the 

relative errors.

 

 

x Y σσσσyσσσσσσσσ y Rel_Error

1.0  2.047 0.102  2.061 -0.135 
2.0 -0.966 0.048 -0.972  0.118 
3.0 -1.923 0.096 -1.993  0.724 
4.0 -1.064 0.053 -1.002 -1.168 
5.0 20.480 1.024  2.000 18.046 
6.0  6.573 0.329  7.014 -1.343 
7.0 13.647 0.682 14.040 -0.576 
8.0 24.679 1.234 23.077  1.298 
9.0 34.108 1.705 34.126 -0.010 
10.0 44.969 2.248 47.187 -0.986

Table 2.3.3 Data generated with Eq. 2.3.6, error in Y5YY , fit with 

y = a1 + a2x+ a22 3x33
2
. Rel_Error is (r Y - y) / σσσσyσσσσσσσσ  . 

 
We can explore the effect of not using Equation 2.3.3 when the values of 

σσσσyσσσσσσσσ vary significantly from point to point.  The data used to generate Figure

2.3.1 are shown in Table 2.3.4.  Note the large relative errors for the first 

few points when unit weighting (i.e., wi = 1) is used. i

 

x Y σσσσ yσσσσ (Y-y)/))///σσσσ yσσσσy (wi=1) (Y-y)/))///σσσσ yσσσσy (wi=1////σσσσyσσσσσσσσ 2
)

1  6.90 0.05 15.86  0.19
2 11.95 0.10  3.14 -0.39 
3 16.800 0.20 -1.82 -0.44
4 22.500 0.50 -0.38 1.23 
5 26.200 0.80 -2.53 -0.85
6 33.500 1.50 -0.17 1.08 
7 41.000 4.00  0.43 1.03

Table 2.3.4 Fitting Fig 2.3.1 data using y = a1 + a2x22 : differentx

weighting schemes. 

 
In the discussion preceding Equation 2.3.3 it was assumed that the errors

in the independent variable (or variables) were negligible.  If this assump-

tion cannot be made, then if we assume that the noise component in the



44    Chapter 2  THE METHOD OF LEAST SQUARES  

data is relatively small, it can be shown [WO67] that the following equa-

tion can be used instead of 2.3.3 for the weights wi: 

 

================ ∂∂∂∂
∂∂∂∂++++

====
mj ================

j
ijx

j
iy

i

x

f

w

1

2

2

1

σσσσσσσσ

 (2.3.7)

 
This equation is a more generalized form of statistical weighting than

Equation 2.3.3.  The derivation of this equation is based upon the assump-

tion that higher order terms can be neglected in a Taylor expansion in the 

region near the minimum value of S.  As an example of the application of 

2.3.7 to a specific problem, the weighting function for the parabolic fit 

would be the following if the σσσσxσσσσσσσσ 's are included in the analysis:

 

 

2
))((

1

ixi32 )
2

iy

i
x2aa

w
++++++++

====  

 
In this equation, since there is only one independent variable, we can

eliminate the subscript j and use only j x rather thanx x1.  As a 2nd example,

consider the following function: 

 

 22121 xaxaay ++=  

 
This equation has two independent variables and the weights wi would be i

computed as follows: 

 

222 )()(

1

i2x3
i1x2

2

iy

i
aa

w
++++++++

====  

 

2.4 Obtaining the Least Squares Solution  

ter" space at which the objective function S is minimized.  Thus, if there 
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are p unknown parameters (ak, k = k 1 to p), the solution yields the values of 

the ak's that minimize S.  To find this minimum point we set the p partial

derivatives of S to zero yieldingS p equations for the p unknown values of 

ak: 

 

0=
∂
∂

ka

S
k = 1 to k p (2.4.1)

 
In Section 2.2 the following expression (Equation 2.2.3) for the objective

function S was developed:

 
ni=

1i=

2

iiiwS f= ii ))(X( ifY −i  

 
In this expression the independent variable Xi can be either a scalar or ai

vector. The variable YiYY can also be a vector but is usually a scalar.  Using 

this expression and Equation 2.4.1, we get the following p equations:
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        k = 1 tok p (2.4.2) 

 
For problems in which the function f is linear, Equation 2.4.2 can be

solved directly.  In Section 2.1 Equation 2.1.3 was used to specify linear 

equations:

 

 ===
pi=

1i=
m21kk

pi=

1i=

....xx,xgagafy )((X)(X)  

 
The derivatives of ff  are simply: f

 

(X)
(X)

k

k

g
a

f ================
∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂

∂∂∂ff∂ffff∂∂∂∂∂∂∂∂∂∂∂fffffff
   k = 1 tok p (2.4.3)
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Substituting 2.4.3 into 2.4.2 we get the following set of equations:

====
ni================

1i================

ni===============

1i===============
ikiij

pj===============

1j================
j gYwggwa )(X)(X)(X k = 1 tok p      (2.4.4) 

Simplifying the notation by using gkgg  instead of k gkgg (X(( iXX ) we get the following

set of equations: 

p to k

kiikpipkiki gYw ii iggwa...ggwaggwa kpip pikiaggw ki

 

2k ak1 aaaaaa...aaaaaa
   (2.4.5)

We can rewrite these equations using matrix notation: 

VCA  (2.4.6)

In this equation C is aC p by p matrix and A and V are vectors of length p.

The terms CjkCC and k VkVV are computed as follows:k

===============
====

ni===============

i

kjijk ggwC
1

(2.4.7)

===============
====

ni===============

i

kiik gYwV
1

(2.4.8)

The terms of the A vector (i.e., the unknown parameters ak) are computed 

by solving the matrix equation 2.4.6: 

VCA 1
 (2.4.9)

In this equation,  is the inverse matrix of C.  As an example, let us con-

sider problems in which a straight line is fit to the data:

xaaxfy 21 aa)(xx aaf xx  (2.4.10) 

For this equation g1 = 1 and g2 = x so thex C matrix is: 

C
-1
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The V vector is: V

====

================
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ni===============

i

iii

ni===============

i

ii

xYw

Yw

V

1

1 (2.4.12)

To apply these equations to a real set of data, let us use the 7 points in-

cluded in Table 2.3.4 and let us use the case in which all the values of wi

are set to 1 (i.e., unit weighting).  For this case, the C and C  matrices and 

the V vector are:V

==============
14028

287
C      

−−−−−−−−−−−−−−−
================−−−−−−−−−−−−−−−−

728

28140 −−−−−−−−−−−−−−−−

196

11
C ===============

790.20

158.85
V

Solving Equation 2.4.9: 

++++
++++
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−

5.5286

0.5786

2
1

221 ++++++1
21

2
1

121 ++++++1
111

VCVC

VCVC
VCA         (2.4.13) 

For problems in which the f function is nonlinear, the procedure is similar f

but is iterative.  One starts with initial guesses a0k for the unknown values k

of ak.  Simplifying the notation used for Equation 2.4.2, we see that the

equations for terms of the C matrix and C V vector are:V

================ ∂∂∂∂∂∂∂∂∂∂∂∂∂
∂∂∂∂∂∂∂∂∂∂∂∂∂∂
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f∂∂∂∂∂∂∂∂
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(2.4.15) 

C
-1
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In the equation for VkVV the parameter k YiYY  is no longer the value of the de-i

pendent variable.  It is value of the dependent variable minus the computed 

values using the initial guesses (i.e., the a0k 's).  For linear problems we k

don’t need to make this distinction because the initial guesses are zero and 

thus the computed values are zero.  The A vector is determined using 

Equation 2.4.9 but for nonlinear problems, this vector is no longer the so-

lution vector.  It is the vector of computed changes in values of the initial 

guesses a0k:

 

kkk kk Aaa ++++====    k = 1 to k p (2.4.16)

 
The values of ak are then used as initial guesses k a0k for the next iteration.  k

This process is continued until a convergence criterion is met or the proc-

ess does not achieve convergence.  Typically the convergence criterion re-

quires that the fractional changes are all less than some specified value of 

εεεε: εεεεεεεεεεεε
 

/aA kk /a0 ≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤ k  = 1 tok p (2.4.17)

Clearly this convergence criterion must be modified if a value of a0k isk

zero or very close to zero.  For such terms, one would only test the abso-

lute value of Ak and not the relative value.  This method of converging to-k

wards a solution is called the Gauss-Newton algorithm and will lead to

convergence for many nonlinear problems [WO67].  It is not, however, the 

only search algorithm and a number of alternatives to Gauss-Newton are

discussed in Section 6.4. 

 
As an example, of a nonlinear problem, let us once again use the data in

Table 2.3.4 but choose the following nonlinear exponential function for f :f

 
xa

eaxfy 2
1========  (2.4.18)

 
The two derivatives of this function are:
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2.4 Obtaining the Least Squares Solution   49 

Let us choose as initial guesses a01=1 and a02=0.1 and weights wi=1.  

(Note that if an initial guess of a01=0 is chosen, all values of the derivative 

of f with respect tof a2 will be zero.  Thus all the terms of the C matrix ex-

cept C11CC will be zero.  The C matrix would then be singular and no solution 

could be obtained for the A vector.)  Using Equations 2.4.14 and 2.4.15

and the expressions for the derivatives, we can compute the terms of the C

matrix and V vector and then using 2.4.9 we can solve for the values of V A1

and A2.  The computed values are 4.3750 and 2.1706 therefore the initial 

values for the next iteration are 5.3750 and 2.2706.  Using Equation 2.4.17

as the convergence criterion and a value of εεεε =  0.001, final values of εεεεεε
a1 = 7.7453 and a2 = 0.2416 are obtained.  The value of S obtained using

final values of a1 2

 

x y f =1.0e0.1x Y = y - f 

1  6.900 1.105 5.795
2 11.950 1.221 10.729 
3 16.800 1.350 15.450 
4 22.500 1.492 21.008 
5 26.200 1.649 24.551 
6 33.500 1.822 31.678 
7 41.000 2.014 38.986 

xa
ea)x(f 2

1====  with initial guesses

a1=1, a2=0.1

 

 

Point 2
11 )f(
'

 
2

22 )f(
' ''

ff 21 ff ff Yf
'
1ff Yf

'
2ff  

1 1.221 1.221 1.221 6.404 6.404
2 1.492 5.967 2.984 13.104 26.209 
3 1.822 16.399 5.466 20.855 62.565 
4 2.226 35.609 8.902 31.340 125.360
5 2.718 67.957 13.591 40.478 202.390
6 3.320 119.524 19.921 57.721 346.325 
7 4.055 198.705 28.386 78.508 549.556 
Sum 16.854 445.382 80.472 248.412 1318.820 

 C11C C22C C12 C V1 V   V2VV

C matrix andC V vectorV

iteration are included in Tables 2.4.1.and 2.4.2. 

the and a is 17.61. Details of the calculation for the first 2

initial guesses is approximately 1,260,000.  The value obtained usingthe 
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Using the values of the terms of the C matrix and Vd vector from TableV

2.4.2, and solving for the terms of the A vector using Equation 2.4.9, we

get values of a1 = 4.3750 and a2 = 2.1706.  Using Equation 2.4.16, the val-

ues of the initial guesses for the next iteration are therefore 5.3750 and 

2.2706.  This process is repeated until convergence is obtained.  As the ini-

tial guesses improve from iteration to iteration, the computed values of the 

dependent variable (i.e., f ) become closer to the actual values of the de-)

pendent variable (i.e., y) and therefore the differences (i.e., Y) become YY

closer to zero.  From Equation 2.4.15 we see that the values of VkVV becomek

smaller as the process progresses towards convergence and thus the terms 

of the A vector become smaller until the convergence criterion (Equation 

2.4.17) is achieved.

A question sometimes asked is: if we increase or decrease the weights how 

does this affect the results?  For example, for unit weighting what happensmm

if we use a value of w other than 1?  The answer is that it makes no differ-w

ence.  The values of the terms of the V vector will be proportional to V w and w

all the terms of the C matrix will also be proportional to C w.  The C
-1

matrix,
1

however, will be inversely proportional to w and therefore the terms of the w

A vector (i.e., the product of C
-1
V) will be independent of VV w.  A similar ar-

gument can be made for statistical weighting.  For example, if all the val-

ues of σσσσyσσσσσσσσ are increased by a factor of 10, the values of wi will be decreased i

by a factor of 100.  Thus all the terms of V and C d will be decreased by a 

factor of 100, the terms of C
-1

will be increased by a factor of 100 and the
1

terms of A will remain unchanged.  What makes a difference are the rela-

tive values of the weights and not the absolute values.  We will see, how-

ever, when Goodness-of-Fit is discussed in Chapter 3, that an estimate of 

the amplitude of the noise component of the data can be very helpful.  Fur-

thermore, if prior estimates of the unknown parameters of the model are

included in the analysis, then the weights of the data points must be based 

upon estimates of the absolute values of the weights.

2.5 Uncertainty in the Model Parameters 

In Section 2.4 we developed the methodology for finding the set of ak's

that minimize the objective function S.  In this section we turn to the task 

of determining the uncertainties associated with the ak's.  The usual meas-

ures of uncertainty are standard deviation (i.e., σσσσ) or variance (i.e.,σσσσσσσσσσσ σσσσ222σσσσσσσσσσσσ22222222σσσσσσσσσσσσσσ2222σσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσ ) so 

we seek an expression that allows us to estimate the 
kak

σσσσ ’s.  It can be
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shown [WO67, BA74, GA92] that the following expression gives us an un-

biased estimate of 
kak

σσσσ :

12 −−−−−−−−−−−−−−−−

−−−−
==== kka C

pn

S

kaσσσσ

211 /
kka C

pn

S
k

−−−−−−−−−−−−−−−−

−−−−
====σσσσ (2.5.1)

We see from this equation that the unbiased estimate of 
kak

σσσσ   is related to

the objective function S and theS k
th diagonal term of the inverse matrix .

The matrix C
-1 is required to find the least squares values of the ak's and 

once these values have been determined, the final (i.e., minimum) value of 

S can easily be computed.  Thus the process of determining the S ak's leads 

painlessly to a determination of the 
kak

σσσσ ’s. 

As an example, consider the data included in Table 2.3.4.  In Section 2.4

details were included for a straight-line fit to the data using unit weighting:

xxaa)x(fy 5286557860 ..21 aa ++================aa)x(f )x(f (2.5.2)

The C and C C -1 matrices were:

===============
14028

287
C

−−−−−−−−−−−−−−−−
===============−−−−−−−−−−−−−−−

728

28140 −−−−−−−−−−−−−−−−

196

11
C

The  value for S / (n–p) = S / (7–2) is 1.6019.  We can compute the 
kak

σσσσ ’s
k

from Equation 2.5.1: 

1.070140/196*1.6019 ==============================
1aσσσσ    and 0.23927/196*1.6019 ==============================

2aσσσσ

The relative error in a1 is 1.070 / 0.5786 = 1.85 and the relative error in a2

is 0.2392 / 5.5286 = 0.043.  If the purpose of the experiment was to deter-

mine, a2, then we have done fairly well (i.e., we have determined a2 to 

about 4%).  However, if the purpose of the experiment was to determine,

a1, then we have done terribly (i.e., the relative error is about 185%).  

C
-1
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What does this large relative error imply?  If we were to repeat the experi-

ment many times, we would expect that the computed value of a1 would 

fall within the range 0.5786 ± 2.57 * 1.85 = 0.5786 ± 4.75 ninety-five per-

cent of the time (i.e., from -4.17 to 5.33).  This is a very large range of 

probable results.  (The constant 2.57 comes from the t distribution with 5 t

degrees of freedom.)

If we use statistical weighting (i.e., wi=1////σσσσyσσσσσσσσ 2), can we improve upon these 

σσσσyσσσσσσσσ

 

xxaa)x(fy 4.99821.892621 aa ++++++++++++++++================aa)x(f )x(f (2.5.3)

 

The computed value of 
1a1

σσσσ  is 0.0976 and the value for 
2aσσσσ is 0.0664. 

These values are considerably less than the values obtained using unit 

weighting.  The reduction in the value of 
1a1

σσσσ is more than a factor of 10 

and the reduction in 
2aσσσσ is almost a factor of 4.  This improvement in the

accuracy of the results is due to the fact that in addition to the actual dataff

(i.e., the values of x and yd ) the quality of the data (i.e., σσσσyσσσσσσσσ ) was also taken 

into consideration.

We should also question the independence of a1 and a2.  If for example, we

repeat the experiment many times and determine many pairs of values for 

a1 and a2, how should the points be distributed in the two-dimensional 

space defined by a1 and a2?  Are they randomly scattered about the point 

[a1 = 0.5786, a2 = 5.5286] or is there some sort of correlation between

these two parameters?  An answer to this question is also found in the least 

squares  formulation.  The notation jkσσσσ  is used  for  the covariance

 

1−−−−−−−−−−−−−−−−

−−−−
==== jkC

pn

S
jkσσσσ  (2.5.4)

 
A more meaningful parameter is the correlation coefficient between the 

parameters j and  j k.  Denoting  this parameter  as jkρρρρ , we compute it as

included in the table, we get the following straight line:

results?  Reanalyzing the data in Table 2.3.4 using the values of 

between the parameters j and j k and is computed as follows: k

follows:
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kaja

jk

jk σσσσσσσσ
σσσσ

ρρρρ ==== (2.5.5) 

 
The correlation coefficient is a measure of the degree of correlation be-

tween the parameters.  The values of jkρρρρ  are in the range from –1 to 1.  If 

the value is zero, then the parameters are uncorrelated (i.e., independent),

if the value is 1, then they fall exactly on a line with a positive slope and if 

the value is –1 then the fall exactly on a line with a negative slope.  Exam-

ples of different values of jkρρρρ  are seen in Figure 2.5.1. 

Returning to our example using unit weighting, let us compute 12σσσσ and 

12ρρρρ :

 

0.228828/196*1.6019 −−−−−= −−−−−−−−−−===============−−−−−−= −−−−−−−−−−===============12σσσσ

0.894
0.2392*1.070

0.2288
−−−−−−= −−−−−−−−−−==============

−−−−−−−−−−−−−−−
================12ρρρρ

 
In other words, a1 and a2 are strongly negatively correlated.  Larger-than-

average values of a1 are typically paired with smaller-than-average values 

of a2.

 

 
Figure 2.5.1 Correlation Coefficients for Several Different Data 

Distributions

As will be seen in Section 2.6, the covariance is used in evaluating the 

standard deviations of the least squares curves.  For example, we can use 

Equation 2.5.2 or 2.5.3 to predict the value of y for any value of x.  The
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covariance is needed to estimate the uncertainty σ σ σ σfσσσσσσ associated with the pre-f

dicted value of y (i.e., f(X)ff ). 

2.6 Uncertainty in the Model Predictions 

In Section 2.5 the uncertainties in the model parameters were considered. 

If the only purpose of the experiment is to determine the parameters of the 

model, then only these uncertainties are of interest.  However, there are 

many situations in which we are interested in using the model for making 

predictions.  Once the parameters of the model are available, then the

equation f(X)ff can be used to predict y for any combination of the inde-

pendent variables (i.e., the vector X).  In this section attention is turned 

towards the uncertainties σσσσfσσσσσσ of these predictions.f

 
Typically, one assumes that the model is “correct” and thus the computed 

values of y are normally distributed about the true values.  For a given set 

of values for the terms of the X vector (i.e., a combination of the inde-

pendent variables x1, x2,.., xm), we assume that the uncertainty in the pre-

dicted value of y is due to the uncertainties associated with the ak's.  The

predicted value of y is determined by substituting X into f (X)ff :

 

)(X; 21 pa,..,a,afy = (2.6.1)

 

Defining ∆∆∆∆a∆∆∆∆∆∆∆∆ k as the error in k ak, we can estimate ∆∆∆∆y∆∆∆∆∆∆∆∆ (the error in y) by ne-

glecting higher order terms in a Taylor expansion around the true value of r

y: 

p

p

a
a

f
...a

a

f
a

a

f
f ∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆

∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂
∂∂∂ff∂ffff∂∂∂∂∂∂∂∂∂∂∂fffffff+++++++ ...++++++++++++++∆a +++++++∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆

∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂
∂∂∂ff∂ffff∂∂∂∂∂∂∂∂∂∂∂fffffff++++++∆a ++++++++++∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆

∂∂∂∂∂∂∂∂∂∂∂∂∂∂
∂∂∂ff∂ffff∂∂∂∂∂∂∂∂∂∂∂fffffff≅≅≅≅≅≅∆ff ≅≅≅≅≅≅≅≅≅≅∆∆ffffff∆∆∆f∆∆∆∆∆∆fffffff 2

2

1

1

 (2.6.2)

 
To simplify the analysis, let is use the following definition: 

 

k
k

k a
a

f
T ∆∆∆∆

∂∂∂∂
∂∂∂∂==== (2.6.3)

 
Thus:
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===============
====++++++++++++≅≅≅≅∆∆∆∆

pk ================

k

kkpp TT...TTf
1

21 TT +++++++ (2.6.4)

 
If we square Equation 2.6.2 we get the following:

 

pp pppp TT..TTTTT..TTf 3121 TTTT TTTT22
2TT2

1TT2 222 ..TT TT TT TTTT TT TTTp..TTT≅≅≅≅∆∆∆∆  (2.6.5)

================ ++===============

∆∆∆∆∆∆∆∆∆∆∆∆∆
pj ================

j

pk ===============

jk

pk ================

k

kjTT kjf ≅≅≅≅≅≅∆ ≅≅≅≅≅≅≅≅≅∆∆∆∆∆∆∆∆∆
1 1+++++++++++++jk ==============1

2
22

(2.6.6)

 
If the experiment is repeated many times and average values of the terms

are taken, we obtain the following from Equation 2.6.6: 

 

=============== ++===============

++++++++++++++++∆∆∆∆
pj ===============

j

pk ===============

jk

pk ===============

k

avgkjavgkavgf

1+++++++++++++1 jk ==============1

)(2 kjTT kj))(()( ≅≅≅≅≅≅∆ ≅≅≅≅≅≅≅≅≅≅∆∆∆∆∆∆∆∆∆∆∆∆ kavg Tkf∆∆∆∆∆∆∆∆∆∆ 22
(2.6.7) 

 

Recognizing that ((∆∆∆∆a∆∆∆∆∆∆∆∆ k)
2)avg is just (

kak
σσσσ )2 and (∆∆∆∆a∆∆∆∆∆∆∆∆ j a ∆∆∆∆a∆∆∆∆∆∆∆∆ k)avg is σσσσjkσσσσσσσ  we get the k

following:

jk
kj

a
k

f

pj

j

pk

jk

pk

k
k a

f

a

f

a

f σσσσσσσσσσσσ
=============== ++===============

∂∂∂∂∂∂∂∂∂∂∂∂
∂∂∂ff∂ffff∂∂∂∂∂∂∂∂∂∂∂fffffff

∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂
∂∂∂ff∂ffff∂∂∂∂∂∂∂∂∂∂fffffff+++++++++++++++

∂∂∂∂∂∂∂∂∂∂∂
∂∂ffff∂∂∂∂∂∂∂∂∂∂∂fffffff===============

1 1jk ++++j ++++++++++1

2)( a
f σσσσσσσσσ

∂∂∂∂∂∂∂∂∂∂
∂∂ff∂∂∂∂∂∂fffffff 22

(2.6.8) k

 

The number of cross-product terms (i.e., terms containing σσσσjkσσσσσσσ ) is p (p(( -1) /

2.  If we use the following substitution:

 
2

k
a
k

kk σσσσσσσσ ====  (2.6.9) 

and recognizing that jkσσσσ =  kjσσσσ we can simplify equation 2.6.8:

jk

pj

j

pk

k kj

f
a

f

a

f σσσσσσσσ
=============== ∂∂∂∂

∂∂∂∂
∂∂∂∂
∂∂∂∂====

1 1k================

2
(2.6.10) 

 

Using Equations 2.5.1 and 2.5.4, we can relate σσσσfσσσσσσ  to the terms of thef C
-1

matrix:
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1

1 1

2 −−−−−−−−−−−−−−−−

================ ∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

−−−−
==== jkC

a

f

a

f

pn

S pj================

j

pk================

k kj ∂∂∂∂∂a
fσσσσ  (2.6.11) 

As an example of the application of this equation to a data set, let us once

again use the data from Table 2.3.4 and wi = 1.  The data was fit using ai

straight line: 

xaaxfy 21 aaxx ++++========

so the derivatives are: 

1
1

====
∂∂∂∂
∂∂∂∂
a

f
 and  x

a

f ====
∂∂∂∂
∂∂∂∂

2

We have seen that the inverse matrix is:

−−−−−−−−−−−−−−−
===============−−−−−−−−−−−−−−−

728

28140 −−−−−−−−−−−−−−−

196

11
C

and the value of S / (n – p) is 1.6019.  Substituting all this into Equation

2.6.11 we get the following expression:

)2(
1

12

21

1
22

22

1
11

11

2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂++++

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂++++

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

−−−−
==== C

a

f

a

f
C

a

f

a

f
C

a

f

a

f

pn

S
fσσσσ

)2(
1

12
1

22
21

11
2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ++++++++

−−−−
==== xCCxC

pn

S
fσσσσ

)567140( 56
196

60191 22 xxf 7====σσσσ  (2.6.12) )

(Note that the matrix is always symmetric so we can use 
1

2
−−−−−−−−−−−−−−−
jkC  instead 

of
11−1−−−−−−−−−−−−−−− ++++ kjjk ++++++ CC .)

C
-1
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Equations 2.5.2 and 2.6.12 are used to predict values of y and σσσσfσσσσσσ  for severalf

values of x and the results are seen in Table 2.6.1.  Note the curious fact x

that the values of σσσσfσσσσσσ  are symmetric about f x = 4.  This phenomenon is easily x

explained by examining Equation 2.6.12 and noting that this equation is a

parabola with a minimum value at x = 4. x

 

x y=f(x) σσσσfσσσσσσ  
1.5 8.871 0.766
2.5 14.400 0.598
3.5 19.929 0.493
4.5 25.457 0.493
5.5 30.986 0.598
6.5 36.514 0.766

Table 2.6.1 Predicted values of y and σσσσfσσσσ usingf wIw =1.II

 
In the table, we see that the values of x that have been chosen are all within x

the range of the values of x used to obtain the model (i.e., 1 to 7).  The use x

of a model for purposes of extrapolation should be done with extreme cau-

tion!  (More will be said about extrapolation in Chapter 3.)  Note that the

σσσσfσσσσ  values tend to be least at the midpoint of the range and greatest at the f

extreme points.  This is reasonable.  Instinctively if all the data points are

weighted equally, we would expect σσσσfσσσσσσ  to be least in regions that are sur-f

rounded by many points.  Table 2.6.1 was based upon a least squares 

analysis in which all points were weighted equally.  However, when the 

points are not weighted equally, the results can be quite different.  Table 

2.6.2 is also based upon the x and yd values from Table 2.3.4 but using sta-

tistical weighting (i.e., wi=1////σσσσyσσσσσσσσ 2). 

 
Table 2.6.2 presents a very different picture than Table 2.6.1 (which is

based upon unit weighting).  When unit weighting is used differences in 

the quality of the data are ignored, and we see (in Table 2.3.4) that the rela-

tive errors for the first few data points are large.  However, when the data 

is statistically weighted, the relative errors (also seen in Table 2.3.4) are all 

comparable.  In Table 2.6.2 we observe that the values of σσσσfσσσσσσ  are much lessf

than the values in Table 2.6.1 even for points at the upper end of the range.  

This improvement in accuracy is a result of taking the quality of the data 

into consideration (i.e., using statistical weighting).  Furthermore, the most 

accurate points (i.e., least values of σσσσfσσσσσσ ) are near the points that have theff

smallest values of σσσσyσσσσσσσσ .
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x y=f(x) σσσσfσσσσσσ  

1.5  9.390 0.044
2.5 14.388 0.089 
3.5 19.386 0.151 
4.5 24.384 0.215 
5.5 29.383 0.281 
6.5 34.381 0.347 

Table 2.6.2 Predicted values of y and σσσσfσσσσσσ usingf wi=1////σσσσyσσσσσσσσ 2
.

 
In Section 2.4 we noted that increasing or decreasing weight by a constant 

factor had no effect upon the results (i.e., the resulting A vector).  Simi-

larly, changes in the weights do not affect the computed values of σσσσfσσσσσσ and f

kak
σσσσ .  The value of S and the terms of theS C matrix will change propor-C

tionally if the w’s are changed by a constant factor and the changes in the 

terms of the C -1 matrix will be inversely proportional to the changes in 1 w.  

The computation of both σσσσfσσσσσσ and f kak
σσσσ are based upon the products of S and S

terms of the C
-1

matrix so they will be inde
1

pendent of proportional changes 

in w.  What does makes a difference is the relative values of the weights 

and not the absolute values.  This does not imply that estimates of the ac-

tual rather than the relative uncertainties of the data are unimportant.

It should be emphasized that values offff σ σ σ σfσσσσσσ computed using Equation 2.6.11 f

are the σσσσ 's associated with the function f and are a measure of how close f

the least squares curve is to the "true" curve.  One would expect that as the

number of points increases, the values of σσσσfσσσσσσ decreases and if the functionf f

is truly representative of the data σσσσf σσσσσσ will approach zero as n approaches in-

finity.  Equation 2.6.11 does in fact lead to this conclusion.  The term S / 

(n – p) approaches one and the terms of the C matrix become increasingly C

large for large values of n.  The terms of the C
-1 matrix therefore become 1

increasingly small and approach zero in the limit of n approaching infinity. 

In fact one can draw a "95% confidence band" around the computed func-

tion f.  The interpretation of this band is that for a given value of ff x the x

probability that the "true" value of f falls within these limits is 95%. f

Sometimes we are more interested in the "95% prediction band".  Within 

this band we would expect that 95% of new data points will fall [MO03].  

When Goodness-of-Fit is discussed in Chapter 3, we will see that an

estimate of the amplitude of the noise component of the data can be very 

helpful.
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This band is definitely not the same as the 95% confidence band and the 

effect of increasing n has only a small effect upon the prediction band. 

Assuming that for a given x the deviations from the true curve and from x

the least squares curve are independent, the σσσσ 's associated with the predic-σσσσσσ
tion band are computed as follows:

222
yfpred σσσσσσσσσσσσ ++++==== (2.6.13)

 

Knowing that as n increases, σσσσfσσσσσσ becomes increasingly small, the limiting f

value of σσσσpredσσσσσσσσ isd σσσσyσσσσσσσσ .  In Table 2.6.3 the values of σσσσpredσσσσσσσσ are computed for the d

same data as used in Table 2.6.2.  The values of σσσσyσσσσσσσσ are interpolated from 

the values in Table 2.3.4.  The 95% prediction band is computed using 

σσσσpredσσσσσσσσ and the value of d t corresponding to 95% limits for t n – p degrees of 

freedom.  From Table 2.3.4 we see that n = 7 and for the straight line fit p

=2.  The value of t for αααα = 2.5% and 5 degrees of freedom is 2.571.  Inαααααα
other words, 2.5% of new points should fall above f(ff x(( ) + 2.571σσσσpredσσσσσσσσ and d

2.5% should fall below f (ff x(( ) – 2.571σσσσpredσσσσσσσσ .  The remaining 95% should fall 

within this band.  As n increases, the value of t approaches the value for t

the standard normal distribution which for a 95% confidence limit is 1.96.  

The 95% confidence and prediction bands for this data are seen in Figure

2.6.1.

 

x y=f (x) σσσσyσσσσσσσσ  σσσσfσσσσσσ  σσσσpred σσσσσσσσ
1.5  9.390 0.075 0.044 0.087
2.5 14.388 0.150 0.089 0.174 
3.5 19.386 0.350 0.151 0.381 
4.5 24.384 0.650 0.215 0.685 
5.5 29.383 1.150 0.281 1.184 
6.5 34.381 2.750 0.347 2.772 

Table 2.6.3 Values of σσσσpredσσσσσσσσ  using data from Table 2.3.4 and  d

statistical weighting 
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Figure 2.6.1 Confidence and Prediction Bands for Data from 

Table 2.6.3

2.7 Treatment of Prior Estimates 

In the previous sections we noted that a basic requirement of the method of 

least squares is that the number of data points n must exceed p (the number 

of unknown parameters of the model).  The difference between these two 

numbers n-p is called the "number of degrees of freedom".  Very early in

my career I came across an experiment in which the value of n-p was in

fact negative!  The modeling effort was related to damage caused by a cer-

tain type of event and data had been obtained based upon only two events.  

Yet the model included over ten unknown parameters.  The independent 

variables included the power of the event and other variables related to po-

sition.  To make up the deficit, estimates of the parameters based upon

theoretical models were used to supplement the two data points.  The prior 

estimates of the parameters are called Bayesian estimators and if the num-

ber of Bayesian estimators is nb then the number of degrees of freedom is 

n+nb-p.  As long as this number is greater than zero, a least squares calcu-

lation can be made. 
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In Section 2.2 Equation 2.2.6 is the modified form that the objective func-

tion takes when prior estimates of the ak parameters are available: k

 

−−−−++++−−−−====
pk===============

1k ================

2

kbkk

2
kk

ni===============

1i===============

2
iii /bafYwS )())(X(

In this equation bk is the prior estimates of k ak and k
kbσσσσ is the uncertainty 

associated with this prior estimate.  The parameter bk is typically used as k

the initial guess a0k for k ak.  We see from this equation that each value of bk

is treated as an additional data point.  However, if 
kbkk

σσσσ is not specified, 

then it is assumed to be infinite and no weight is associated with this point.  

In other words, if 
kbkk

σσσσ  is not specified then bk is treated as just an initial k

guess for ak and not as a prior estimate.  The number of values of bk that k

are specified (i.e., not infinity) is nb.

In the previous sections it was stated that the weights wi could be based i

upon relative and not absolute values of the uncertainties associated with f

the data points.  When prior estimates of the ak’s are included in the analy-

sis, we are no longer at liberty to use relative weights.  Since the weights

associated with the prior estimates are based upon estimates of absolute 

values (i.e., 1 / (
kbσσσσ )2 ), the wi values must also be based upon estimates i

of absolute values. 

To find the least squares solution, we proceed as in Section 2.4 by setting

the p partial derivatives of S to zero yielding S p equations for the p un-

known values of ak:

 
=

∂
∂−

ni

1i=

pk=

1k=

2

bkk

k
ka

f∂
0)( =(

2

bkk k
/ba −−k
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2  k = 1 to p 

 
The terms in the last summation can be expanded: 

2

bkk

2

bk

2

bkkkk

2

bkk kkbkbkb //// 2

bA/ 2 Abbaaa kkk kk aakk )( kk ba k)()( bkk kb/ 2

b/bak k / 2

b//A/ 2

b//kb ka)ak)k b///b
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 (2.7.1)

As in Section 2.4 this equation is best treated as a matrix equation: 

VCA =

The diagonal terms of the C matrix are modified but the off-diagonal termsC

remain the same: 
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The terms of the V vector are also modified:V
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Solution of the matrix equation CA = V yields the vector V A which is then 

used to compute the unknown ak's (Equation 2.4.16).  The computation of 

the
kak

σσσσ terms must be modified to include the additional data points.  The 

modified form of  Equation 2.5.1 is: 
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In this equation nb is the number of Bayesian estimations included in the 

k

ing, Equation 2.6.11 must also be modified:

analysis (i.e., the number of b ’s that are specified).  Using the same reason-k



2.7 Treatment of Prior Estimates   63 

1

1 1

2 −−−−−−−−−−−−−−−

=============== ∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

−−−−++++
==== jk

pj ================

j

pk ===============

k kj ∂∂∂∂∂b
f C

a

f

a

f

pnn

Sσσσσ  (2.7.6) 

 

 
As an example of the application of prior estimates, let us once again use 

the data in Table 2.3.4 but only for the case of statistical weighting (i.e., 

w=1////σσσσyσσσσσσσσ 2).  The straight line computed for this case was:

xxaaxfy 4.99821.892621 aaaa +=+==  

 

The computed value of 
1a1

σσσσ and 
2aσσσσ were 0.0976 and 0.0664.  The C ma-

trix and Vd  vector for this case are: V

 

 ================
1147.125701.917

701.917531.069
C  and  ===============

7016.96

4513.39
V  

 
Let us say that we have a prior estimate of a1:

 

 0.101.00= 1.001b  

 
The only term in the C matrix that changes isC C11CC .  The terms of the V vec-V

tor are, however, affected by the changes in the values of YiYY .  Since we 

start from the initial guess for a1, all the values of YiYY are reduced byi a1 (i.e.,  

1.00) : 

 

 ================
1147.125701.917

701.917631.069
C  and  ===============

6360.04

3982.32
V  

 
Solving for the terms of the A vector we get A1 = 0.4498 and A2 = 5.2691. 

The computed value of a1 is therefore 1.4498 and a2 is 5.2691.  Note that 

the prior estimate of a1 reduces the value previously computed from 

1.8926 towards the prior estimate of 1.00.  The values of 
1a1

σσσσ  and 
2aσσσσ for 

this calculation were 0.1929 and 0.1431.  These values are greater than the

values obtained without the prior estimate and that indicates that the prior 

estimate of a1 is not in agreement with the experimental results.  Assuming 

that there is no discrepancy between the prior estimates and the experimen-
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tal data, we would expect a reduction in uncertainty.  For example, if we 

repeat the analysis but use as our prior estimate:  0.102.00= 2.001b :

 

The resulting values of a1 and a2 are: 

 

 0.06701.9459 ±= 1.94591a  0.04974.9656 ±= 4.96562a  

 
If we repeat the analysis and use prior estimates for both a1 and ad 2:

 

0.102.00= 2.001b 0.055.00= 5.002b

The resulting values of a1 and ad 2 are: 

0.05081.9259 ±= 1.92591a 0.03254.9835 ±= 4.98352a

The results for all these cases are summarized in Table 2.7.1.

 

b1 b2 n+nb a1
1

aσσσσ a2 
2

aσσσσ
none None 7 1.8926 0.0976 4.9982 0.0664

1.00±0.1 None 8 1.4498 0.1929 5.2691 0.1431
2.00±0.1 None 8 1.9459 0.0670 4.9656 0.0497
2.00±0.1 5.00±0.05 9 1.9259 0.0508 4.9835 0.0325

Table 2.7.1 Computed values of a1 and a2 for combinations of b1

and b2.

 

We see in this table that the best results (i.e., minimum values of the σσσσ ' s) σσσσσσ
are achieved when the prior estimates are in close agreement with the re-

sults obtained without the benefit of prior estimates of the unknown pa-

rameters a1 and ad 2. 

2.8 Applying Least Squares to Classification Problems 

In the previous sections the dependent variable y was assumed to be a con-

tinuous numerical variable and the method of least squares was used to de-

velop models that could then be used to predict the value of y for any com-

bination of the independent x variable (or variables).  There are, however, x

problems in which the dependent variable is a "class" rather than a con-
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tinuous variable.  For example the problem might require a model that dif-

ferentiates between two classes: "good" or "bad" or three levels: "low",

"medium" or "high".  Typically we have nlrn learning points that can be 

used to create the model and then ntst test points that can be used to test t

how well the model predicts on unseen data.  The method of least squares

can be applied to classification problems in a very straight-forward man-

ner. 

The trick that allows a very simple least squares solution to classification 

problems is to assign numerical values to the classes (i.e., the y values) and 

then make predictions based upon the computed value of y for each test 

point.  For example, for two class problems we can assign the values 0 and 

1 to the two classes (e.g., "bad" = 0 and "good" = 1).  We then fit the learn-

ing data using least squares as the modeling technique and then for any 

combination of the x variables, we compute the value of x y.  If it is less than

0.5 the test point is assumed to fall within the "bad" class, otherwise it is 

classified as "good".  For 3 class problems we might assign 0 to class 1,

0.5 to class 2 and 1 to class 3.  If a predicted value of y is less than 1/3 then 

we would assign class 1 as our prediction, else if the value was less than 

2/3 we would assign class 2 as our prediction, otherwise the assignment 

would be class 3.  Obviously the same logic can be applied to any number 

of classes. 

It should be emphasized that the least squares criterion is only one of many

that can be used for classification problems.   In their book on Statistical 

Learning, Hastie, Tibshirani and Friedman discuss a number of alternative

criteria but state that "squared error is analytically convenient and is the

most popular" [HA01].  The general problem is to minimize a loss function

L(Y,YY f(X))ff that penalizes prediction errors.  The least squares loss function

is ΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣ(Y -Y f(X))ff
2 but other loss functions (e.g. ΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣ Y -Y f(X)ff ) can also be used. 

A different approach to classification problems is based upon nearest 

neighbors.  This approach is considered in Section 7.8.

To understand how one would apply least squares to classification prob-

lems, consider the data in Table 2.8.1 and shown in Figure 2.8.1.  The X

vector of the independent variables is two dimensional.  The first six points 

in the table are the learning points used to create the model and the last 

three points are the test points used to check to see how the model predicts 

on data not used in the development of the model.  The Y variable used in Y

the least squares analysis is the class of the data points (i.e., 0 or 1).   
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Point Type x1 x2 Y = Class

1 Learning 0.50 0.00 0

2 Learning 0.75 0.25 0

3 Learning 1.00 0.50 0

4 Learning 0.00 0.50 1

5 Learning 0.25 0.75 1

6 Learning 0.50 1.00 1

7 Test 0.50 0.25 0

8 Test 0.50 0.75 1

9 Test 0.75 0.50 1

Table 2.8.1 Data for a 2D classification problem 

Figure 2.8.1 Display of Data from Table 2.8.1 

Assuming a linear model, the following equation is fit to the data: 

32211 axaxay ++++++++====            (2.8.1)

Weighting all points equally, the least squares solution is:

5021 xxy ++++++++−−−−====           (2.8.2) 
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The value of y for test point 7 is -0.5 + 0.25 + 0.5 = 0.25 and since this 

number is less than 0.5 this point would be classified correctly as belong-

ing to class 0.  The value of y for test point 8 is 0.75 so this point would be

classified correctly as belonging to class 1.  Test point 9 would be misclas-

sified as belonging to Class 0.  In Figure 2.8.1 we see the line in the x1 - x2

plane in which y is exactly 0.5.  Any test point falling above this line 

would be classified as belonging to class 1 and any point below the line

would be classified as belonging to class 2. 

Clearly the simple linear model can be extended to d dimensions:d

12211 ++++++++++++++++++++++++++++++++==== ++++++ axa...xaxay          (2.8.3)

Another alternative is to use a higher order model.  For example, a 2nd or-

der polynomial model in two dimensions would be:

6215
2
24

2
132211 axxaxaxaxaxay ++++++++++++++++++++====       (2.8.4)

In Figure 2.8.2 Equation 2.8.4 has been fit to 8 data points from class 0 and 

10 from class 1.  This model predicts that points falling in the shaded area

are from Class 0 and otherwise they are from Class 1.  Note that 3 of the 

Class 1 learning points fall within the Class 0 region and one of the Class 0

learning points (the point at 0.75, 0.75) falls within the Class 1 region. 

Also note that two of the learning points are from different classes al-

though both are located at approximately the same position (near 0.5, 0.5).

The main problem with classification models is the fraction of misclassifi-

cations.  For example, for a two class problem (Classes 0 and 1) what frac-

tion of Class 0 cases is misclassified as Class 1 and visa-versa?  For some 

problems it is important to reduce misclassifications in one direction and 

less important in the other direction.  For example, consider a problem in

which we are building a model to decide which people to inoculate against 

a certain disease.  The two classes are those who have a high probability 

(Class 1) and a low probability (Class 0) of getting the disease.  Clearly, it 

is much more important to reduce misclassifications for people in Class 1.   
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Figure 2.8.2 Fit to 8 Class 0 and 10 Class 1 Points Using Eq. 2.8.4

In Figures 2.8.1 and 2.8.2 the two-dimensional independent variable space 

was separated into two classes by a single line.  For three-class problems

two lines would be required.  For three-dimensional spaces, two-

dimensional surfaces are used to separate the classes.  In general for d di-d

mensional spaces, d-1dd dimensional surfaces are used to separate the 

classes.  The number of surfaces is num_classes -1.  If there is only one

independent variable x, the separations are just num_classes -1 points

along the x axis.  If there are only two classes then the separation is just a x

single point.  The subject of misclassification can be illustrated using a 

two-class problem and a single independent variable.  Fitting a straight line

to the data we get a simple equation relating y and x : x y = a1 + a2x22 .  The

value at which y is 0.5 is xsx (the value of x separating the two classes): x

2111 )( a/axs −−−−====            (2.8.5) 

Assume that the Class 1 data points are normally distributed about x = 1,x

the Class 0 data points are normally distributed about x = -1 and the values x

of σσσσ for both distributions are one.  The two distributions are seen in Fig-

ure 2.8.3.  For cases in which the number of data points in each class is n,

then as n becomes large, the line fitted to the data approaches 0.5 + 0.25x

and from Equation 2.8.5, the values of xsx approaches zero.  The misclassi-

fication rate for both classes should be about 15.9% because the fraction of 
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a normal distribution beyond one σσσσ  is 15.9%.  From Figure 2.8.3, the frac-

tion of Class 0 points that are correctly classified is the shaded fraction un-

der the Class 0 distribution.  The unshaded fraction to the right of x = 0 is x

the misclassification fraction and is equal to about 0.159.

 Figure 2.8.3 Values of x for Both Classes are taken randomly fromx

Normal Distributions with σσσσ = 1σσσσσσ

Another important consideration is the relative number of data points in

each of the classes.  What happens when the x values are taken from thex

same distributions but there are many more from one class than the other?  

For example assume that 90% of the data points come from Class 1 (Fig-

ure 2.8.3).  Running a simulation using 10000 points, the fitted line was

0.792 + 0.134x44  and the value ofx xf sx  was -2.183.  This value is over one σσσσ  to 

the left of the center of the Class 0 distribution and as a result over 88% of 

the Class 0 test points were misclassified while only 0.03% of the Class 1

test points were misclassified.  These results show that the method de-

scribed above must be modified if there are a significantly unequal number 

of learning points in the different classes.  There is a simple solution to this 

problem!  By adjusting the weights used for each point based upon the

relative class populations, the separation can be accomplished so that the 

misclassification rates can be approximately equalized.  For example, for 

the above simulation with 90% Class 1 data points, when the weight for 

Class 0 was increased to 9 (compared to 1 for Class 1), the fitted line was 
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close to the y = 0.5 + 0.25x line noted when the number of data points in x

each class were equal.  Thus the value of xsx  was close to zero and the mis-

classification rate for both classes was about 15.9%.

Clearly, the same technique can be used when it is desirable to achieve a 

misclassification rate for one of the classes less than some specified value.   

To reduce the misclassification rate for a class, one must raise the weight 

attributed to points within this class.  For example, for the two-class, one-

dimensional problem with distributions shown in Figure 2.8.3, what 

weight would we have to assign to Class 1 so that the misclassification rate 

is reduced to less than 0.05?  If n is the same for both classes, if the Class 

1 weights are raised to 2, then the misclassification rate for Class 1 is re-

duced to 0.088 while the rate for Class 0 is increased to 0.26.  Increasing

the weights to 3 the misclassification rates become approximately 0.046 

and 0.36.  Thus for this particular one dimensional problem the Class 1r

weight should be about 3 to achieve the desired misclassification rate. 

For some problems, it makes sense to consider a "middle ground": Class 0,

Class 1 or N.C. (i.e., "Not Clear").  For example, consider once again the

classification of people who should receive inoculation for a disease.  

Class 1 is defined as those with a high probability of getting the disease 

and Class 0 are those with a low probability of getting the disease. 

δδδδδδδδδδδδδδδδ Correct Not Clear Misclassified 

0.00 0.841 0.000 0.159

0.05 0.790 0.095 0.115

0.10 0.729 0.190 0.081

0.15 0.658 0.288 0.054

0.20 0.581 0.382 0.037

0.25 0.498 0.478 0.024

tion of δδδδ for Figure 2.8.3 distributions.  Classification is Not-Clear δδδδ
when 0.5 - δδδδ <δδδδ y < 0.5 + δδδδ.  

Let us say that there is a more expense test to decide whether or not a per-

son should be inoculated.  This test would only be used for those falling in 

the N.C. category.  The criterion for identifying a person as falling within 

Class 1 would be a value of y  0.5 + δδδδ, Class 0 for δδδδ y  0.5 - δδδδ, and N.C. δδδδ
for  0.5 - δδδδ <δδδδ y < 0.5 + δδδδ.  The value of δδδδ δδδδ would be set based upon the ac-δδδδ
ceptable misclassification rates.  For the class distributions considered in
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distributions, a value of δδδδ of 0.25 results in a situation in which the model δδδδ
properly identifies only about half of the people examined.  About 2.4% 

are misclassified and the remaining people fall within the N.C. category.  

Another problem encountered when attempting to find a point or line or 

surface to separate classes is based upon the distribution of the classes 

within the independent variable space.  There are distributions that can't be 

separated so simply.  For example, consider the two-class problem in Fig-

ure 2.8.4.  There are two independent variables and the two classes are dis-

tributed in such a way so that separation of the classes cannot be accom-

plished with a single line.  Problems such as this are better handled using a

"nearest neighbor" approach as described in Section 7.8. 

Figure 2.8.4 Problematic Distribution:  Separation cannot be ac-

complished with a single line  

Figure 2.8.3, the effect of δδδδ is seen in Table 2.8.1.  We see that for theseδδδδ
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3.1 Introduction 

Once a least squares analysis has been completed, we turn our attention to

an evaluation of the results.  Is the model an adequate representation of the

data?  Modeling data is not always based upon a "correct" mathematical 

model.  Sometimes one is interested in comparing alternative theoretical

models to determine which theory is most applicable to the experimental 

data.  Sometimes the model is proposed as a series and one needs to make 

a decision regarding the number of terms to keep to best represents the

data.  There are many situations in which all that one is interested in is an 

analytical equation that can be used to describe the data.  One might start 

with a simple model and then progressively add terms.  At what point do 

the additional terms lead to a poorer model?   

If the data is to be analyzed using the method of least squares, and if we

have n data points, the maximum number of unknown parameters that can

be determined is n–1.  If we also have nb Bayesian estimators, then the 

maximum is increased to n+nb–1.  As the number of unknown parameters

is increased, S (the weighted sum of the residuals) decreases so at first S

glance one might think that the more unknown parameters included in the 

model, the better the fit.  However, we reach a point where additional

terms begin to model the noise in the data rather than the true signal.  For-

tunately, statistical methods are available for determining when we should 

stop adding terms to a model.  In this chapter, statistical methods for 

evaluation of models are presented.   
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3.2 Goodness-of-Fit 

In Section 1.3 the χχχχ 222χχ 22222222χχχχ 2222
 (chi-squared) distribution was discussed.  Under cer-22222222

tain conditions, this distribution can be used to measure the goodness-of-

fit of a least squares model.  To apply the χχχχ 222χχχχ 22222222χχχχχχχχχ 2222χχχχχχχχχ  distribution to the measure-22222222

ment of goodness-of-fit, one needs estimates of the uncertainties associ-

ated with the data points.  In Sections 2.5 and 2.6 it was emphasized that 

only relative uncertainties were required to determine estimates of the un-

certainties associated with the model parameters and the model predic-

tions.  However, for goodness-of-fit calculations, estimates of absolute 

uncertainties are required. When such estimates of the absolute uncer-f

tainties are unavailable, the best approach to testing whether or not the 

model is a good fit is to examine the residuals.  This subject is considered 

in Section 3.9.

The goodness-of-fit test is based upon the value of S/(SS n-p).  Assuming that 

S is based upon reasonable estimates ofS  the uncertainties associated with f

the data points, if the value of S/(SS n-p) is much less than one, this usually 

implies some sort of misunderstanding of the experiment.  If the value is 

much larger than one, then one of the following is probably true:

1) The model does not adequately represent the data.

2) Some or all of the data points are in error.

3) The estimated uncertainties in the data are erroneous. 

Assuming that the model, the data and the uncertainty estimates are cor-

rect, the value of S (the weighted sum of the residuals) will be distributed 

according to a χχχχ 222222222222222
distribution with 

22222222
n-p degrees of freedom.  Since the ex-

pected value of a χχχχ 222222222222222
 distribution with 
22222222

n-p degrees of freedom is n-p, the 

expected value of S/(SS n-p) is one.  If one assumes that the model, data and 

estimated uncertainties are correct, the computed value of S/(SS n-p) can be

compared with χχχχ 22222222222222 /  // /2222//2222222222////22222222
(n-p) to determine a probability of obtaining or exceed-

ing the computed value of S.  If this probability is too small, then the 

goodness-of-fit test fails and one must reconsider the model and/or the

data. 

 
Counting experiments in which the data points are numbers of events re-a

corded in a particular time window are a class of experiments in which es-

timates of the absolute uncertainty associated with each data point are 
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available.  Let us use YiYY to represent the number of counts recorded in thei

time interval tit .  According to Poisson statistics the expected value of 
2
iσσσσ

(the variance associated with YiYY ) is just YiYY  and the weight associated withi

this point is 1/ YiYY .    From Equation 2.2.1 we get the following expression i

for S:

==============================================
−−−−====−−−−========

ni================

i

iii iii

ni===============

i

iii iii

ni===============

i

Y/tfYyYwRwS
1

2

1

2

1

2        (3.2.1) 

 

Since the expected value of (YiYY - yi i) is
2
iσσσσ = = = = YiYY the expected value ofi

2
ii Rw is one.  The expected value of S is not S n as one might expect from 

this equation.  If the function f includes f p unknown parameters, then the 

number of degrees of freedom must be reduced by p and therefore the ex-

pected value of S isS n–p– .  This might be a confusing concept but the need 

for reducing the expected value can best be explained with the aid of a

qualitative argument.  Lets assume that n is 3 and we use a 3 parameter 

model to fit the data.  We would expect the model to go thru all 3 points

and therefore, the value of S would be zero which is equal to n–p– . 

To illustrate this process, let us use data included in Bevington and Robin-

son's book Data Reduction and Error Analysis [BE03].  The data is pre-

sented graphically in Figure 3.2.1 and in tabular form in Table 3.2.1.  The

data is from a counting experiment in which a Geiger counter was used to 

detect counts from an irradiated silver piece recorded in 15 second inter-

vals.  The 59 data points shown in the table include two input columns (tit

and Yd iYY ) and one output column that is the residual divided by the standard 

deviation of YiYY (i.e., i Ri / i σσσσiσσσσσσσ  ): i

 iiiii Y/yY/R −−−−====σσσσ            

The data was modeled using a 5 parameter equation that included a back-

ground term and two decaying exponential terms: 

 54
21 3

a/t
ea

a/t
eaay

−−−−++++−−−−++++====           

 

 

2
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i tit Yi i YY Ri / i σσσσσσσσσσσσσσσσσσσσi σσσσσσσσ i tit Yi i YY Ri / i σσσσσσσσσσσσσσσσi σσσσσσσσ
1 15 775 0.9835 31 465 24 -0.0208

2 30 479 -1.8802 32 480 30 1.2530 

3 45 380 0.4612 33 495 26 0.7375 

4 60 302 1.6932 34 510 28 1.2466

5 75 185 -1.6186 35 525 21 0.0818

6 90 157 -0.4636 36 540 18 -0.4481 

7 105 137 0.3834 37 555 20 0.1729

8 120  119 0.7044 38 570 27 1.6168

9 135 110 1.3249 39 585 17 -0.2461

10 150  89 0.4388 40 600 17 -0.1141 

11 165 74 -0.2645 41 615 14 -0.7922

12 180 61 -1.0882 42 630 17 0.1231

13 195 66 0.2494 43 645 24 1.6220

14 210 68 1.0506 44 660 11 -1.4005

15 225 48 -1.0603 45 675 22 1.4360

16 240 54 0.2938 46 690 17 0.5068 

17 255 51 0.3200 47 705 12 -0.7450

18 270 46 0.0160 48 720 10 -1.3515 

19 285 55 1.5750 49 735 13 -0.0274

20 300 29 -2.2213 50 750  16 0.5695

21 315 28 -2.0393 51 765 9 -1.4914

22 330  37 0.0353 52 780 9 -1.4146

23 345 49 2.0104 53 795 14 0.2595

24 360 26 -1.4128 54 810 21 1.7830 

25 375  35 0.5740 55 825 17 1.0567 

26 390  29 -0.2074 56 840 13 0.1470 

27 405 31 0.4069 57 855 12 -0.0891

28 420 24 -0.7039 58 870 18 1.3768

29 435 25 -0.2503 59 885 10 -0.6384 

30 450 35 1.6670     

Table 3.2.1 Input data (t and t Y ) from Table 8.1, Bevington and

Robinson [BE03].   

The input data in the table was analyzed using the REGRESS program [see

Section 6.8] and yielded the following equation: 

 68209
29128

24434
7795713410

./t 209
e29

./t 34
e77957134 957134y

−−−−−−−−−−−−−−−−−−−++++++++++++++++−−−−−−−−−−−−−−−−−−−++= 13410 134=============  

For example, for the first data point (i.e., t =15), the computed value of t y

according to this equation is 747.62.  The relative errors included in the 
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relative error for the first point is (775 – 747.62) / 775 = 0.9835.  Note

that the relative errors are distributed about zero and range from -2.2213 to

2.0104.  The value of S is the sum of the squares of the relative errors and S

is 66.08.  The number of points n is 59 and the number of unknown pa-

rameters p is 5 so the value of S / (n – p) is 1.224.  The goodness-of-fit test 

considers the closeness of this number to the most probable value of one

for a correct model.  So the question that must be answered is: how close 

to one is 1.224?  

 
Figure 3.2.1 Bevington and Robinson data [BE03] 

 

In Section 1.3 it was mentioned that for the χχχχ 22222222222222 distribution with 22222222
k degreesk

of freedom, the mean is k and the standard deviation is k k2 .  Furthermore 

as k becomes larger, the k χχχχ 222222222222222
distribution approaches a normal distribution.  

22222222

We can use these properties of the distribution to estimate the probability

of obtaining a value of S greater or equal to 66.08 for aS χχχχ 222χχ 2222222χχχχ 2222
 distribution with

22222222

54 degrees of freedom:

 66.08 = 54 + xpx * 54*2  = 54 + xpx * 10.39

 

 xpx  = (66.08 - 54)  / 10.39 = 1.163 

 

In other words, 66.08 is approximately xpx  = 1.16 standard deviations above 

the expected value of 54.  From a table of the normal distribution we can 

verify that the integral from 0 to 1.163 standard deviations is 0.3777, so

the probability of exceeding this value is 0.5 – 0.3777 = 0.1223 (i.e., about 

12%).  Typically one sets a value of the probability at which one would re-

ject the model.  For example, if this probability is set at 1%, then the lower 

table (i.e., Ri /i ///σσσσiσσσσσσσ ) are computed using Equation 3.2.2.  Thus the value of the 
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value of xpx is much less than 2.326, we have no reason to reject the five pa-

rameter model.

If we really want to be pedantic, we can make a more accurate calculation.  

From the Handbook of Mathematical Functions [AB64], Equation 26.4.17

is suggested for values of k > 30: k

 

3

2

9

2

9

2
1 ++++−−−−====

k
x

k
k pχχχχ           (3.2.4) 

In this equation xpx is the number of standard deviations for a standard 

normal distribution to achieve a particular probability level.  For example, 

if we wish to determine the value of  the χχχχ 222222222222222 distribution with22222222 k degrees of k

freedom for which we could expect 1% of all values to exceed this level,

we would use the standard normal distribution value of xpx  = 2.326.  Using

Equation 3.2.4 we can compute the value of xpx corresponding to a χχχχ 222χχ 22222222222
value

22222222

of 66.08: 

 3
]54)*2/(954)*2/(954[166.08 px++++++++++++++++= 54[1===============

Solving this equation for xpx we get a value of 1.148 which is close to the 

value of 1.163 obtained above using the simple normal distribution ap-

proximation.

Equation 3.2.3 is a 5 parameter model that includes a background term and 

two decaying exponential terms.  If we were to simplify the equation to in-

clude only a single exponential term, would we still have a "reasonable"

model?  Would this equation pass the goodness-of-fit test?   The proposed 

alternative model is: 

3
21

a/t
eaay

−−−−−−−−−−−−−−−++++====            (3.2.5) 

Once again using the REGRESS program the resulting equation is: 

  98962
9975230818

./t 62
e99752308 752308y

−−−−−−−−−−−−−−−−−−−++= 30818 308=============  

limit of xpx for rejecting the model would be 2.326.  Since our computed 
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 226.7 = 54 + xpx  * 542 *

 xpx  = (226.7 – 54) / 10.39 = 16.62 

This value is so large that we would immediately reject the proposed 

model.  The probability of getting a value of S that is over 16 standard de-

viations above the expected value for a correct model is infinitesimal. 

3.3 Selecting the Best Model 

When modeling data, we are often confronted with the task of choosing the

best model out of several proposed alternatives.  Clearly we need a defini-

tion of the word "best" and criteria for making the selection.  At first 

glance one might consider using S (the weighted sum of the squares of the S

residuals) as the criterion for choosing the best model but this choice is 

flawed.  As p (the number of unknown parameters included in the model)

increases, the values of S decreases and becomes zero if S p is equal to n

(the number of data points).  

To illustrate this point, consider the data shown in Figure 2.3.2.  This data

was generated based upon a parabolic model (p(( = 3) and included 5% ran-

dom noise.  The 10 data points were fit using the following polynomial 

model with values of p varying from 2 to 8: 

 
================

−−−−−−−−−−−−−−−++++====
pk===============

k

k
kk xaay

2

1
1             (3.3.1) 

Results are included in Table 3.3.1.  Note that the value of S decreases asS p

increases but that the minimum value of S / (/ n-p) is achieved for p=3.  

This is encouraging because the minimum value of S / (/ n-p) was obtained 

for the value of p upon which the data was generated.  However, can we

use this criterion (i.e., choose the model for which S / (n-p) is minimized)

as the sole criterion for selecting a model? 

and the value of S is 226.7.  The value of xpx corresponding to this value of 

S is estimated as follows: 
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3   6.22   0.888  0.831  0.789
4   6.21   1.035  0.835  0.788
5   5.86   1.171  0.696  0.765 
6   5.50   1.375  0.531  0.742 
7 5.12   1.706  0.446  0.715 
8 3.66   1.829  0.652  0.605

Table 3.3.1   Using Equation 3.3.1 to model data in Table 2.3.1

In this table the RMS-Error (the root-mean-square error) is computed asr

follows:

 
n

yY

 Error-RMS

ni

i

ii yYY 2

1================
−−−−

====          (3.3.2) 

The RMS-Rel-Error (the root-mean-square relative error) is computed asr

follows:

 
n

/yY

)ErrorlReRMS(

ni

i
iyii /yY yY

2

12 ===============lRe lRe

−−−−
====

σσσσ
 

Comparing these equations with the definition of S (Equations 2.3.1 and S

2.3.3), we see that RMS-Error and r RMS-Rel-Error are just modified r

forms of S:

 n/SErrorRMS ====−−−−−−−−−−−−−−−   ( 1====iw )      (3.3.3) 

 n/SErrorlReRMS ====lRe lRe  (
2/1
iyiiw σσσσ= )      (3.3.4) 

Note that for p=2 (i.e., a straight line fit to the parabolic data) all the results 

are terrible.  When the model under-fits the data we expect to see large

values of S / (n-p) and the RMS error measures.  However, when the data S

is over-fitted (i.e., p > 3 for this example), S andS  RMS-Rel-Errord  should r

decrease with increasing p.  (Since S was based upon statistical weighting,S

we expect RMS-Rel-Error to decrease monotonically with increasing r p

p S S/(// n-p) RMS-Error RMS-Rel_Error 

2 3619.19 452.418 19.239 19.025 



3.3 Selecting the Best Model      81

two curves appear quite similar up to about x = 8 but this is an illusion due x

to the scale of the graph.  In reality for p = 8, the fitted curve is actually 

modeling the noise in the data.  We see this quite clearly for x greater than x

8.    

 
Figure 3.3.1 Table 3.3.1 Least Squares curves for p = 3 and 8

p S S/(// n-p) RMS-Error RMS-Rel_Error 

2 359971.1 400.4131 18.1951 19.9881
3 873.8   0.9730  0.9368  0.9848
4 873.0   0.9732  0.9306  0.9843 
5 871.3   0.9724  0.9252  0.9834
6 871.2   0.9734  0.9247  0.9833
7 871.0   0.9743  0.9249  0.9832 
8 870.9   0.9753  0.9247  0.9831

Table 3.3.2   Using Equation 3.3.1 to model parabolic data with 5%

random noise and n=901 ranging from 1 to 10 with increments of 0.01. 

We have established that S is distributed according to a χχχχ 222χχ 222222222222
 distribution with 

22222222

n-p degrees of freedom.  Let us consider a series of models in which an in-

crease in p represents an increase in the complexity of the model.  In other 

words, if we increase p from 3 to 4, we are adding an additional term to the

3 parameter model.  Let us use the notation SpS 1 and SpS 2 to represent two 

values of S with differing values of S p but based upon the same n data

but RMS-Error does not necessarily decrease monotonically.)  In Figurer

3.3.1 the data is shown with the curves for p = 3 and p = 8.  Note that the
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uted according to a χχχχ 22222 distribution with2222 p1-p2 degrees of freedom [FR92]. 

In Section 1.3 the F distribution was defined as the ratio of two χχχχ 222χχχ 22222222χχχχχ 2222
distribu-22222222

tions divided by their degrees of freedom.  Thus the following ratio should 

follow an F distribution: 

 
1

21

11

112

pnS

ppSS

p

pp22

−
−−

=
/

/
F           (3.3.5) 

We can use this value of F to decide whether or not the model based uponF

p1 is significantly better than the model based upon p2.  Values of F areF

tabulated based upon 3 parameters, αααα (αααααα the confidence parameter), νννν11111111111ννννν1111νν  (the 

degrees of freedom of the numerator) and νννν 2222222222222222 (the degrees of freedom of 

the denominator).  Solving Equation 3.3.5 for the ratio of SpS 2 / SpS 1, we get 

the following:  

 1
1

121
21

1

2 ++++
−−−−

−−−−−−−−−−−−====
pn

pn,pp,F
pp

S

S

p

p αααα
        (3.3.6) 

This ratio is the ratio of the S values that corresponds to a significanceS

level of αααα.  In other words, if the extra p1-p2 terms in the p1 parameter 

model neither add nor detract from the original p2 model, we would expect

the ratio to exceed this value 100αααα %αααααα of the time.  To illustrate how this

Equation is used, let us first compare the two values of S for S p1 = 3 and p2

= 2 from Table 3.3.2.  Let us use a value of αααααααααααααααα = 0.01.  Table 3.3.2 is based αααα
upon a value of n - p1 = 898 which is very large and we can therefore use

the following approximation:

 11
2

21 ννννννννααααχχχχνννννννναααα /,,,F →→→→    as   →→→→νννν              (3.3.7)  

The value of F(0.01, 1, 898) is thus approximately FF χχχχ (0.01, 1) / 1 = 6.63 

so we would expect that if the model with p1 = 3 parameters is signifi-

cantly better than the model with two parameters, then the ratio SpS 2 / Sp1S

would be greater than : 

 00711
3901

636
23

3

2 .
.

S

S ====++++
−−−−

−−−−====  

points.  Choosing p1 to be greater than p2, then SpSS 2 > SpSS 1.  An interesting

and useful property of χχχχ 222χχχχχ 2222222χχ 2222
 distributions is the following:

22222222
SpSS 2 - SpSS 1 is distrib-

2χχ ((
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The observed ratio (i.e., 359971 / 873.8) is about 412 which is much

greater than 1.007 so the 3 parameter model is clearly an improvement 

upon the two parameter model.  We can repeat the analysis comparing the

4 and 5 parameter models to the 3 parameter models:

 00711
4901

636
34

4

3 .
.

S

S
====++++

−−−−
−−−−====  (1% confidence limit)  

 

 01011
5901

614
35

5

3 .
.

S

S
====++++

−−−−
−−−−====  (1% confidence limit) 

(The value of F(0.01, 2, 896) is approximately 4.61.)  The measured val-FF

ues of these ratios are 873.8 / 873.0 = 1.001 and 873.8 / 871.3 = 1.003.  

Since neither of these values exceeds the relevant 1% confidence limit we 

conclude that the reduction in S going to 4 and 5 parameter models is not S

significant.  In other words, increasing the number of unknown parameters 

beyond 3 does not yield a significantly better model.

We can also use the previous test to consider totally different models with

differing values of p1 and p2.  For such cases, if we choose p1 to be

greater than p2, SpS 2 is not necessarily greater than SpS 1.  Clearly, if SpS 2 SpS 1

then we would immediately choose Model 2 as not only does it have less

parameters, it also exhibits a smaller value of S.

Another question that we should consider is how do we compare models in

which the numbers of unknown parameters are the same?  Clearly, since

the degrees of freedom are the same for both models, a direct comparison 

of the S values is sufficient to determine which is the better model.  How-S

ever, when the values of S are close, we should then consider the issue of 

significance.  Let us define Model 1 as the model with the smaller value of 

S.  We can then ask the question: is Model 1 significantly better than 

distribution.   Let us use the notation S1 and S2SS  to represent the weighted 

sum of the squares for the two models, both with n – p degrees of freedom. 

Regardless of whether or not the weights are based upon actual or relative 

σσσσ's,   the ratioσσσσσσσσσσσσ S2SS / S1 is F distributed: 

Model 2? Once again, our test of significance is based upon the F
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Our significance test for this case is simply: 

   

 νννννννναααα ,,F
S

S ====
1

2           (3.3.9) 

where νννν is the number of degrees of freedom (i.e., νννννν n – p).  Values of 

F(FF(α,ν,α,ν,α,ν,α,ν,νννν)))))))))))ννννν))))ννννννν  are included in Table 3.3.3 for various values of νννν and for values νννννν
of  ααααααααααααααα equal to 0.01 and 0.05. αααα

To illustrate the use of Table 3.3.3, consider the 63 data points shown in

Figure 3.3.2.  We have no information regarding the uncertainty associated 

with these data points so the analysis is based upon unit weighting.  In Ta-

ble 3.3.4 the values of S/(// n-p) are listed for 3 different models each with n-

p = 60. 

νννννννννννννννν F(FF 0.05, ν, ν0.05, ν, ν(0.05, ν, ν, ,0.05, ν, ν(0 050 050000(0.05, ν, ν0.05, ν, ν0.05, ν, ν0.05, ν, ν))))))))))νννννννν))))νννννννννννν F(FF 0.01, ν, ν0.01, ν, ν(0.01, ν, ν, ,0.01, ν, ν(0 010 010000(0.01, ν, ν0.01, ν, ν0.01, ν, ν0.01, ν, ν)))))))))νννννννν))))νννννννννννν
  5 5.05 11.00 
 10 2.98  4.85 
 15 2.40  3.52 
 20 2.12  2.94 
 30 1.84  2.39 
 40 1.69  2.11 
 60 1.53  1.84 
120 1.35 1.53 

Table 3.3.3 Values of F(FF α, ν, να, ν, να, ν, να, ν, ν)))))))))))ννννν))))ννννννν

Model Number Model S / (n-p)

1 
321 a)xaexp(a ++++−−−−  33567

2 
3

2
21 axaxa ++++++++  86385

3 
3

2
21 ax/ax/a ++++++++ 1170356

 Table 3.3.4 S/(// n-p) values for 3 models for Figure 3.3.2 data  

1

2

S

S
F ====            (3.3.8) 
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Figure 3.3.2 Input Data for Models in Table 3.3.4 

Since unit weighting was used, the absolute values of S / (/ n-p) are not 

meaningful.  Clearly Model 3 is much worse than either Model 1 or Model

2.  We can however use Equation 3.3.9 to decide whether or not Model 1 

is significantly better than Model 2.  The value of S2SS / S1 is 2.57 and the

number of degrees of freedom (n-p) is 60.  From Table 3.3.3 we see that 

2.57 is far above the confidence limit of 1.84 for αααα = 1%, so we can con-αααααα
clude that Model 1 is significantly better than Model 2.  Since the absolute 

value of S / (/ n-p) is meaningless, we can't say that Model 1 is the "correct" 

model for this data.  All we can say is that it is significantly better than the

other 2 models considered.

 

3.4 Variance Reduction 

Variance reduction (VR) is one of the most commonly used measures of 

the value of a model.  The most attractive feature of VR is that it can be 

used for any model, linear or nonlinear, in which one or more independent 

variables are used to describe the behavior of a dependent variable Y. YY VR

is typically defined as the percentage of the variance in the dependent vari-

able that is explained by the model.  Variance is defined as the standard 

deviation squared, so the variance of the dependent variable is computed 

as follows: 
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where YiYY is the dependent variable for the i
th

i data point and YavgYY is the av-

erage value of all the data points.  We can define a similar quantity that is

based upon the differences between the values of YiYY and the calculated val-

ues yi as determined using the model:i
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Let us call this quantity the model variance.  Variance reduction is based 

upon the ratio of the model variance to the variance in the dependent vari-

able and is computed as follows:
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        (3.4.3) 

From this equation we see that if we have a perfect model (i.e., the calcu-

lated values of yi are exactly equal to the actual values of i YiYY ) then the value 

of VR is exactly equal to 100.  If the model is useless (i.e., has no predic-

tive power), then we would expect a value of VR approximately equal to

zero.  Models can actually be negative, implying that the values predicted 

by the model are worse than just using YavgYY  as the predictor for all points.g

As an example, consider the data in Table 2.3.1.  Table 3.4.1 summarizes

the values of VR obtained for two different models and two different 

weighting schemes:
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For the 3 parameter models the results in Table 3.4.1 show that both 

weighting schemes explain more than 99% of the variance in the data. 

These high values of VR are reasonable because the data was based upon a 

parabolic model with some random noise and regardless of the weighting

scheme, both models reasonably represent the data.  However, the results 

for the 2 parameter models are vastly different.  The model obtained using

unit weighting explains more than 80% of the variance but the model ob-

tained using statistical weighting is terrible.  To understand why this hap-

pened, note that the value of VR is maximized when the model variance is

minimized.  Examining Equation 3.4.2 it can be seen that if unit weighting 

(i.e., wi = 1) is used, the model variance is just S / (/ n-1).  Thus the model

obtained using unit weighting is also the model that minimizes model vari-

ance.  Does this imply that unit weighting is preferable to statistical

weighting?  Not at all!  It only implies that VR is a useful measure of 

model performance only when all data points are equally (or approxi-

mately equaled) weighted.

It is useful to be able to apply a test of significance to values of VR.  The 

usual procedure for testing the significance of a model is to test the null 

hypothesis: if the model has no predictive value, what is the value of VR

that we would exceed 100αααα % of the time?  The model variance is αααααα
χχχχ 22222222222χχ 2222distributed with n-p degrees of freedom and the variance in the data is 

χχχχ 22222222222χχ 2222distributed with n-1 degrees of freedom, therefore the following ratio is

F distributed:F
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          (3.4.4) 

Solving for the ratio of the variances:

Model 1===========================iw 2/1
iyiiw σσσσ=

y=a1+a2x 22 80.29 -48.19 
y= a1+a2x+a22 3x33

2 99.76  99.72

Table 3.4.1   Values of VR for data in Table 2.3.1 
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For models with some value, this ratio will be greater than one.  If the ratio 

is less than one, then the model exhibits negative VR and can be consid-

ered worthless.  We can use this equation to test the significance of the 2

parameter model based upon unit weighting.   Let us choose a value of 

αααα = 0.01. The value of F(0.01, 9, 8) = 5.91 can be determined from ap-FF

propriate tables [AB64,FR92].  Thus we would expect that the variance ra-

tio would exceed 8*5.91 / 9 = 5.25 one percent of the time if the null hy-

pothesis is true (i.e., the model has no predictive power).  The value of VR

corresponding to this ratio is 100 * (1 – 1/5.25) = 80.9.  Surprisingly, the

value of VR obtained for the 2 parameter model with unit weighting does

not pass this significance test although it is very close (i.e., 80.29).  When

the number of degrees of freedom for the model is small, it is possible to 

get large values of VR even for useless models.  However, as the number 

of data points increases, the upper limit for the null hypothesis decreases 

dramatically.  For example, if the value of VR = 80.29 was based upon 30

points, then F(0.01, 29, 28) = 2.40 which corresponds to a ratio of 2.32 FF

A value of 80.29 would therefore be highly significant. 

3.5 Linear Correlation 

Linear correlation is a concept used to measure the linear (straight-line) re-

lationship between variables.  The correlation coefficient ρρρρ can vary be-

tween -1 and 1.  If ρ =ρ =ρ =ρ = 0 the variables are unrelated (in the linear sense).  If ====
ρρρρ = 1 the variables fall exactly upon a straight line with a positive slopeρρρρρρ
and if ρρρρ = -1 they fall upon a straight line with a negative slope.  Typical ρρρρρρ
data for several different values of ρρρρ are seen in Section 2.5 (Figure 2.5.1).  ρρρρρρ
If we have two variables u and v, the correlation coefficient is defined as

follows: 
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(frff om Equqq ation 3.4.5) which corrrr esponds to a VRVV = 100 * (1 – 1/2.32) = 56.8.
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where )(  is the bivariate distribution function for the variables u and

v, and µµµµuµµµµµµ andd µ µ µ µvµµµµµµµµ  are the mean values of u and vd .  When the covariance is

close to zero, then a straight line relationship between u and vd  is not a rea-v

sonable assumption.  If we have paired data {ui , vi i ; i = 1 .. ni }, we can 

compute r (an unbiased estimate of r ρρρρ) as follows: ρρρρρρ

 

==============================

===============

−−−−−−−−

−−−−−−−−
====

ni===============

i

avgi

ni===============

i

avgi

ni===============

i

avgiavgi

vvuu

vvuu

r

1

2

1

2

1

)()(

))((

        (3.5.3) 

To facilitate the calculation we use the following equalities: 
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As an application of the use of Equation 3.5.3, consider the data in Table

3.5.1.  This data includes the heights (in meters) and weights (in kilo-

grams) of 7 individuals on a basketball team.

The terms σσσσuσσσσ and σσσσvσσσσσσσσ are standard deviations of the variables u and v and v

σσσσuvσσσσ is called the covariance between u and v.  The covariance is defined as

follows: 



90    Chapter 3  MODEL EVALUATION   

i u = height u*u v = weight v*v u * v

1 1.87 3.4969 83   6889 155.21 
2 1.92 3.6864  97   9409 186.24 
3 2.04 4.1616  86   7396 175.44

2.10 4 4.4100 105 11025 220.50 
1.98 5 3.9204 101 10201 199.98

6 2.02 4.0804 92   8464 185.84 
7 1.77 3.1329 79   6241 139.83

Sum 13.70 26.8886 643 59625 1263.04 
Avg 1.9571 3.8412 91.857  8517.9 180.434 

Using Equation 3.5.3 thru 3.5.6 the correlation coefficient is: 

 7050

85791759625195717888626

85791957117041263

22
* 9191*78886 78886

** 9195711704 9195711704
r ===============================  

It can be shown that r2 is the same as variance reduction VR (expressed as

a fraction) when the equation for y is a straight line using unit weighting 

[FR92].  In other words, r
2 is the fraction of the variance in the data ex-

plained by the unit weighted least squares straight line.   Applying least 

squares to the data in Table 3.5.1 we get the following linear relationship

between height and t weight:

 weightheight *.. 00819660204221 .. .++= 1.=============  

Using this equation, the VR computed using Equation 3.4.3 is 49.7 which 

The correlation coefficient is a measure of the linear relationship between

two variables.  It does not answer the question: are the two variables re-

lated?  Consider, for example, the data in Table 3.5.2.   

Table 3.5.1   Heights and Weights for 7 Basketball Players.  

expressed as a frff action is 0.497 = 0.705 * 0.705. Thus we see that

r = 0.705 implies that approximately 50% of the variance in the data is

accounted for by this line. 
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i y y*y x x*x x*y

1 19 384 -3  9 -57
2  9  81 -2  4 -18 
3  3   9 -1  1  -3 
4  1   1  0  0   0 
5  3   9  1  1   3 
6  9  81  2  4  18 
7 19 384  3  9  57 

Sum 63 949  0 28   0 

Avg 9 135.57  0  4   0

Table 3.5.2   y = 2x
2

+ 1    (a perfect parabolic fit) 

Note the perfect parabolic relationship between the dependent variable y

and the independent variable x.  Using y as the u variable and xd  as thex v 

variable, and substituting into Equations 3.5.3 through 3.5.6, we compute r

as follows: 

 00
2

0728
2

97949

0970

**

** 99
r ==============================  

 
Although the data exhibits a perfect relationship between x andx y, we com-

pute a correlation coefficient of zero.  If however, we use the relationship y

= a1 + a2x+a22 3x33
2 and apply least squares to the data in Table 3.5.1, we ob-

tain the values a1 = 1, a2 = 0 and a3 = 2 with VR = 100.  We can use corre-

lation to compare the actual values of y with the computed values.  Since 

the relationship is a perfect fit, YiYY =i yi for all points.  The data is summa-

rized in Table 3.5.3: 

i Y (actual) Y*Y y (computed) y*y Y*y

1 19 384 19 384 384 
2  9  81  9  81  81 
3  3   9  3   9   9 
4  1   1  1   1   1 
5  3   9  3   9   9 
6  9  81  9  81  81 
7 19 384 19 384 384 
Sum 63 949 63 949 949
Avg 9 135.57  9 135.57 135.57

Table 3.5.3  Comparing actual and computed values of yf
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The computed value of r is one: r

  01
2

97949
2

97949

997949

**

** 99
r ================================  

Thus for relationships that are other than straight lines, correlation is 

meaningful only when comparing actual and computed values of the vari-

able. 

We next turn our attention to the significance of the computed value of the

correlation coefficient.   We first define a new variable z based upon z r: 

 
r

r
lnz

−−−−
++++====

1

1

2

1
           (3.5.7) 

Remembering that ρ ρ ρ ρ is the true value of the correlation coefficient, it can

be shown that z is approximately normally distributed with the followingz

properties [WI62, FR92]: 

  
ρρρρ
ρρρρµµµµ

−−−−
++++====

1

1

2

1
lnz            (3.5.8) 

 

 

  
3

12

−−−−
====

n
zσσσσ             (3.5.9) 

As an example, we can apply these equations to the data included in Table 

3.5.1.  The null hypothesis for this example is that the heights and weights

of the basketball players are uncorrelated (i.e., ρ ρ ρ ρ is zero).  If this hypothe-

sis is true, the mean of the distribution (from 3.5.8) is zero and the variance 

(from 3.5.9) is 1/4.  The value of r is 0.705, so from Equation 3.5.7 the r

value of z is 0.5 *z ln(1.705/0.295) = 0.877.  The following parameter 

should be t distributed with n - 3 degrees of freedom:

 751
50

8770

)37(1

08770)()(

z

zrz
t ======= ======================================================

−−−−
σσσσ

ρρρρ
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At a 5% level of confidence the value of t would have to exceed 2.132 to t

be deemed significant, so there is a probability greater than 5% that the 

putation had been based upon 4 times as many data points (i.e., n =28)

then the t parameter would be 0.877/0.2 = 4.385 which is highly significant t

even at a confidence level of 0.5%. 

In summary, when one is interested in building a model to compute y as a

function of an independent variable x, the linear correlation coefficient is

only useful when the proposed model is a straight line.  The linear correla-

tion coefficient is a measure of how close the relationship is to a straight 

line and the sign indicates the slope of the line.  However, if the model is

something other than a straight line, linear correlation is not a useful meas-

ure of the power of the model.  When a model other than a straight line is 

proposed, the linear correlation coefficient can be used to compare actual

and computed values of the dependent variable y.

 

3.6 Outliers 

The term outlier is used to denote a data point that differs considerably

from the bulk of the data.  We see an example of an outlier in the value of 

Y5YY  in Table 2.3.3.  This is an example of an outlier in the dependent vari-

able.  Of course, there can also be outliers in the independent variable or 

variables. An outlier may be due to an error in data collection or it might 

represent a true event.  If an outlier is identified and if it is determined to

be erroneous, then the situation can usually be rectified by either correct-

ing the error or rejecting the data point.  However, when an outlier repre-

sents a true event, we might prefer not to reject the data point.  Unfortu-

nately, if we are using least squares analysis of the data, the outlier might 

cause results that are highly skewed in the direction that accommodates the

outlier. 

computed value of mm r = 0.705 could have happened by chance.  If the com-r
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Figure 3.6.1 Data with a Single Outlier

To illustrate this point, consider the data shown in Figure 3.6.1 and tabu-

lated in Table 3.6.1.  Notice in the figure that the signs of the residuals 

(i.e., YiYY – yi) for all points other than the outlier have the same sign.

x Y (actual)ll  y (computed)dd  y (exclude x=4)

1 10.0 11.41 9.99
2 11.8 13.41 11.99 
3 14.2 15.40 13.99 
4 25.9 17.40 excluded 
5 18.1 19.40 17.98 
6 19.8 21.39 19.98 
7 22.0 23.39 21.97 

Fitting this data with a straight line and weighting all points equally, the 

resulting line is: 

 xy 9964141439 .. ++++===================  

and the VR (variance reduction) is 56.9%.  Eliminating point 4 and repeat-

ing the analysis, the resulting line is: 

 xy 9964199767 .. ++++===================  

and the VR is 99.9%!!
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As an example of an application that includes a significant number of out-

liers, consider the problem of modeling one day fractional changes in the

prices of shares appearing on the major stock exchanges.  If our database

includes several thousands of companies listed on the exchanges, there are

usually several everyday that exhibit extremely large changes (either posi-

tive or negative) based upon some sort of news or announcement.  For ex-

ample, when the Enron scandal first made the news, the price of the Enron 

shares plunged.  Positive news, (for example FDA approval for a new

drug) can also cause huge increases in the price of the shares of the com-

pany mentioned in the announcement.  To reduce the effect of these outly-

ing events, one strategy is to clip the data.  Clipping implies setting upper 

and lower limits on the changes included in the data to be modeled.  For 

example, for stock market modeling, a typical strategy is to clip all points 

that exhibit a fractional increase greater than 0.25 to 0.25 and all points

that exhibit a fractional decrease greater than -0.25 to -0.25.  As an exam-

ple, if Company X is granted a patent and the stock rises 37% when the 

news is announced, the fractional change used in the analysis for that date 

would be reduced to 0.25 instead of the change of 0.37 actually observed.

 
Figure 3.6.2 Clustered Data 

Figure 3.6.2 illustrates a different problem associated with outliers.  In this 

figure the data seems to include 3 clusters of data each falling upon a dif-

ferent straight line.  Some possible explanations come to mind when exam-

ining such data: 
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1) The differences might have been due to the use of several dif-

ferent measuring instruments exhibiting differing biases. 

2) The measurements were taken at different times or locations

and were affected by changes in a variable not recorded in the

data set.  For example, the measurements might be tempera-

ture sensitive and the explanation for the differences might be

simply changes in temperature.

3) The clusters might be real and due to some other overlooked 

variable.  Sometimes strange results such as seen in Figure 

3.6.2 lead to interesting discoveries.  However, the usual ex-

planation is that there is some problem with the experiment. 

If the first explanation explains the clustering, then the experimenter must 

pay more attention to the calibration of the instruments and perhaps repeat 

the experiment or correct the data.  If the second explanation explains the 

clustering, then one must determine the cause of the differences and in-

clude the missing variable in the data acquisition and modeling phases of 

the analysis.  If the clusters are real and are due to excluded regions in one

or more of the variables, one approach might be to remap the variable val-

ues.  Pyle discusses different strategies for remapping variables [PY99]. 

 

 

3.7 Using the Model for Extrapolation 

Often the purpose of an experiment is to predict the value of the dependent 

variable at a value of the independent variable that cannot be obtained ex-

perimentally.  Extrapolation can be dangerous if the model is not based 

upon a true understanding of the underlying theoretical considerations.  

For some problems where one is only interested in finding a model that 

represents the data and there is no attempt to build a model based upon

theory, extrapolation can be disastrous. 

As an example of a prediction based upon experimental data, consider one 

of the earliest sets of experimental data that was analyzed by the method of 

least squares: the motion of the planets.  Johannes Kepler (1571-1630) had 

access to voluminous amounts of data regarding the motion of the planet 

Mars that had been recorded by astronomers over many centuries.  Kepler 
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used this data to postulate that the motion of the planets were elliptical and 

not circular as was believed until then.  During the early years of the 19th

century, both Gauss and Legendre worked independently to develop the 

method of least squares.  The motivation for this work was to use the 

method to compute the parameters that describe the planetary ellipses.  Us-t

ing the ellipses, we should theoretically be able to predict planetary motion

into the future.  However, better measurements were made and slight er-

rors were noted.  As the time between the calculation of the ellipse pa-

rameters and the actual predicted location of a planet increased, the ex-

trapolation error became greater.  As the tools of astronomy became more

sophisticated, the reason for the extrapolation error became clear: the mo-

tion of the planets was not only affected by the gravitational pull of the 

sun, but also by the gravitational pull of nearby planets.  Kepler's elliptical

model of planetary motion was a brilliant leap forward in the science of as-

tronomy but the model neglects the very small effects of other planets.  As

a result, using only the uncorrected elliptic model, the extrapolation into

the future led to greater and greater errors.    

When there is no theoretical basis for choosing a model, typically one 

looks at the data and chooses a model that seems reasonable.  To illustrate 

how disastrous this can be when using such a model for extrapolation, the

following artificial data set was constructed.  Two hundred values of x

were generated starting from 0.01 and increasing to 2.00 in increments of 

0.01.  The values of Y were generated using the following model:Y

 xxxY xx xx 23 xx ++xxxx          (3.7.1) 

The curve generated by this equation is shown in Figure 3.7.1.  Looking at 

only the portion of the curve from 0.01 to 0.5 (i.e., the first 50 points in the 

data set), one might reasonably assume that the data is represented by a pa-

rabola.  Using the method of least squares with all 50 points weighted 

equally, the following parabola is obtained: 

 14050848670019 8486 8 86
2

08486700 08486700 8486 xxxfy ++8486 8486++−−−−−= −−−−−−−−−−=====xf ==========         (3.7.2) 

 
The VR (variance reduction) is a very respectable 99.37% and the RMS

error is 0.047.  However, when this equation is used to extrapolate to val-r

ues of x outside the modeling range, we see a very different picture.  Re-x

sults in Table 3.7.1 illustrate this point.  In this table the value of σσσσfσσσσ were f

calculated using Equation 2.6.11.  Note in the Y - y column the increasing 

error in the results.  The first point in this table is at x=0.6 and although
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this point is only slightly outside the modeling range, the error is 0.56 

semblance to the actual value of 40.  Note that the estimated standard de-

viation for this point is only 1.12 while the actual error is almost 105!  In 

other words the actual error is approximately 100 times the estimated stan-

dard deviation as computed using Equation 2.6.11.  

 
Figure 3.7.1  Cubic Data Fit with a Parabola using Points up to x = 0.5 x

This example illustrates what can happen when a model that seems to ade-aa

quately estimate Y for values of Y x within the modeling range is used to ex-x

trapolate to values of x outside the range.  For this example, as x x increases x

the computed y values become increasingly different then the actual Y val-

ues.  The conclusion that should be taken from this example is that ex-

trapolation should be avoided whenever one is not certain that the model is 

firmly based upon theory.  Furthermore, the further the value of the inde-

pendent variable (or variables) is outside the modeling range, the greater is 

the potential error.

which is about 12 times the RMS error noted for the modeling data.  For r

x = 2 we see that the computed value of y is -64.964 and this bears no re-
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x Y   y σσσσσσσσσσσσσσσσfσσσσσσσσσ Y-y

0.6 -2.28  -2.843 0.040   0.56
0.7 -3.29  -4.719 0.069   1.43
0.8 -4.16  -6.989 0.106   2.83
0.9 -4.77  -9.653 0.149   4.88
1.0 -5.00 -12.712 0.201   7.71
1.1 -4.73 -16.164 0.259  11.43 
1.2 -3.84 -20.010 0.325  16.17 
1.3 -2.21 -24.250 0.399  22.04 
1.4  0.28 -28.885 0.480  29.16
1.5  3.75 -33.913 0.568  37.66
1.6  8.32 -39.335 0.663  47.65
1.7 14.11 -45.151 0.766  59.26 
1.8 21.24 -51.361 0.877  72.60 
1.9 29.83 -57.966 0.995  87.79 
2.0 40.00 -64.964 1.120 104.96 

Table 3.7.1  Extrapolation results using Eqs. 3.7.1 and 3.7.2 

 

 

3.8 Out-of-Sample Testing 

For many sets of data there are a large number of data points and thus is it 

feasible to exclude some of the data from the analysis for subsequent out-

of-sample testing.  Once a model has been developed, the excluded data is 

used to determine if the model holds up using the unseen data.   

The use of out-of-sample testing is particularly advantageous when the 

true structure of the model (if there is a true structure) is unknown.  For 

problems in which a number of candidate predictors have been proposed, 

one might try different combinations in a search for a model that "fits" the

data.  As an example, consider the problem of attempting to develop a 

model that predicts the one-day percentage change in the S & P (Standard 

and Poors) common stock index.  The candidate predictors proposed might 

include various moving averages, volume based parameters, interest rate

parameters, etc.  One can easily propose tens if not hundreds of candidate

predictors for this problem.



100    Chapter 3  MODEL EVALUATION   

The methodology is to break up the data into two (or sometimes three)

sets.  If the number of candidate predictors is small then two data sets are

sufficient.  However, if a large number of candidate predictors are being 

considered, then a third data set is often used.  The data sets are typically 

called the learning and test data sets and if a third set is used it is called 

the evaluation set.  We use the notation nlrn, ntst, and nevld  for thel number 

of data records in each of the data sets.  Using the nlrn learning points, a 

model is determined using an appropriate modeling technique.  The aa ntst

test data points are then used with the model and the variance reduction as-

sociated with this data set is computed. 

The problem with this technique is that if the number of candidate predic-

tors is large, the number of potential models can be huge.  As an example,

let us again consider the problem of modeling the one-day change in the S 

& P index and let us assume that 100 candidate predictors are being con-

sidered.  Let us consider every combination of the candidate predictors up 

to three dimensions.  For every combination we could of course explore 

many different potential models but to simplify matters let us consider 

only one model per combination.  The total number of models that would 

have to be considered is all 1 dimensional models (i.e., 100 models), all

two dimensional models (i.e., 100*99/2 = 4950 models) and all three di-

mensional models (i.e., 100*99*98/6 = 161700 models) which altogether 

is 166750 models!  Hopefully, some of the models will show significant f

VR (variance reduction) using the nlrn learning points and also exhibit 

significant VR using the ntst test points.  If more than one model is t

deemed acceptable, one might then consider how to combine models into a

single super model. 

The problem associated with this procedure is what Aronson calls the data

mining bias [AR04].  In the S & P index analysis, if over 166 thousand 

models are considered, isn't there a possibility that a totally irrelevant 

model might be deemed acceptable purely by chance?  To protect against 

such a possibility, one can use the nevl evaluation points as a final test of l

the power of the model.  Failure to pass this final test is fairly conclusive: 

the objective of the modeling process has not succeeded. 

One might ask a simple question: Why limit the search for a model to a

fixed number of dimensions?  If there are ncp candidate predictors, why

not try to build a model with ncp dimensions?  This approach is sometimes

used by practitioners of neural networks.  A weight is associated with each

input and the theory states that for irrelevant candidate predictors the com-

puted weights will be close to zero.  The problem with this approach is that 
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the density of the data decreases exponentially with the number of dimen-

sions [WO00].  It is thus a far better strategy to limit the number of dimen-

sions to a value for which the data density is reasonable.  Then, if several

sub-spaces are found to have predictive power, use a multi-stage method 

for combining the spaces. 

The concept of "data density" is not obvious and requires additional con-t

sideration.   In Figure 3.8.1 we see a desirable distribution of learning data

points for a problem in which there are two independent variables x1 and 

x2.  The points are distributed evenly between the four quadrants of the

data space and cover the range of both x1 and x2.  A model built using this

data set should perform reasonably well regardless of where a test point 

might fall.   In Figure 3.8.2 we see a distribution in which most of the 

learning points are located in the upper right quadrant.  Note that the num-

ber of learning points and the ranges for x1 and x2 are the same as in Figure

3.8.1.  Yet test points falling in any of the quadrants other than the upper 

right quadrant have many fewer nearby neighbors and we would expect r

that the predicted values for these test points would be less accurate than t

the values for points in the upper right quadrant. Clearly the data density in

the upper right quadrant is much greater than in any of the other quadrants.  

Now let us distribute the same number of learning points within a three-

dimensional space.  Instead of four quadrants we have 8 distinct regions:  

the same four quadrants for x1 and x2x but the data in each of these regions 

would have to be distributed in two sub-regions:  x3  x3avg and g x3 >

x3avg.  In other words, the average data density in each region is halved 

when the number of dimensions in increased by one!

For problems in which the number of candidate predictors is limited, out-

of-sample testing might still be advantageous if many different models are 

considered.  For example, consider a problem with four candidate predic-

tors and 1000 data points.  The purpose of the analysis is to develop a 

model to predict performance based upon the candidate predictors.  As-

sume that 30 different model are proposed.  Do we use all 1000 points to 

develop 30 different models?  Then how do we choose which model to 

adopt?  We could, of course, choose the model exhibiting the greatest vari-

ance reduction but is this the best that we can do?  For such problems, out-

of-sample testing provides a reasonable alternative.  For example, we 

might leave 300 to 500 data points out of the initial modeling phase and 

then use each model to test how well the model behaves using the test data

set.  We might then choose the model exhibiting the best out-of-sample

variance reduction.  Once the model has been chosen, then all 1000 points 

could be used to recompute the parameters of the chosen model.  
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In Section 3.7 the subject of extrapolation was considered.  For out-of-

sample testing one should avoid extrapolation.  Any points in the test data 

set that fall outside the range of data points in the learning data set should 

be rejected and not considered in the analysis.  When considering many

different candidate predictors, some points will be included in some sub-

spaces but not in others.  There is no need to attempt to find test data sets

in which all points fall within the ranges of all the learning point candidate

predictors. 

It is instructive to consider what we might expect from a model in which

there is absolutely no predictive power.  The first thought that comes to

mind is that the VR for the test data set should be zero.  It turns out that 

this is overly optimistic!  From equation 3.4.3 the equation for m VR for the

test data set is: 
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In this equation, the YiYY 's are the actual values and the yi's are the computed 

values of y for the test data points.  The simplest possible model that we 

can propose using the learning data set is just the average of the learning 

values of y.  Let us denote this average value as ylrn and the average value 

of the test data as ytst.    In other words, the yi's in Equation 3.8.1 would 

simply be ylrn and substituting this into 3.8.1 we get the following:  

Figure 3.8.1 Desirable Distribution Figure 3.8.2 Skewed Distribution 
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         (3.8.2)

For models other than just ylrn, we will obtain values of VR distributed 

about this slightly negative value. We also see in this equation why it is 

useful to choose the learning and test data sets so that they will be compa-

rable.  If there is a significant difference in the average values of Y theY VR

of the test data might be significantly less than the value obtained for the

learning data even if the model is a reasonable representation of data. 

To illustrate the points raised in this section, the following artificial data

set was generated using the following equation: 

 )(
2
2

22
121 12121 21 502 2 xxx*xxxy −−−−++++−−−−++++====         (3.8.3) 

Sixteen combinations of x1 and xd 2 were chosen as shown in Table 3.8.1 

with values of y computed using the above equation.  The equation used to 

fit the data was a plane: 

 32211 axaxay ++++++++====   
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All points were equally weighted.  Three separate cases were considered.  

The data was first analyzed using all 16 points as the learning points.  The

least squares plane obtained using this data was: 

 1253253752 253752 211 35375 375 xxy ++253 253752 75   (Case 1) 

For the second case, the first 8 points were used as the learning points and 

points 9 thru 16 as the test points.  The least squares plane obtained for this 

case was:

 3753252252 252252 211 355 xxy ++252 252252 25   (Case 2) 

The third case used points 1, 3, 6, 8, 9, 11, 14 and 16 as the learning points 

and the remaining eight points as the test points.  The least squares plane

obtained for this case was:

 0003253752 253752 53 211 35375 375 xxy ++253 253752 75   (Case 3) 

The results for all three cases are summarized in Table 3.8.2.  Note that for 

all three experiments the learning set VR is greater than 95%.  Note in

Case 2 the large deterioration in VR of the test data set.  This deterioration 

is due to the large difference in the average values of y for the two data 

sets.  In Case 3, the choice of learning set data points resulted in much

closer average values of y and this resulted in VR for the test data set ap-

proximately equal to the learning set VR. 
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Point x1 x2 Y

1 1 1  2.5
2 2 1  1.5
3 3 1 -0.5
4 4 1 -3.5
5 1 2  5.5
6 2 2  4.0
7 3 2  1.5
8 4 2 -2.0
9 1 3  9.5

10 2 3  7.5
11 3 3  4.5
12 4 3  0.5
13 1 4 14.5
14 2 4 12.0
15 3 4  8.5
16 4 4  4.0

Y computed using Equation 3.8.3 Y

Case Learning 

Points

Test 

Points

VRlrn VRtst yt lrn ytst

1 All 16 None 96.22 N.A. 4.375 N.A. 
2 1 -- 8 9 -- 16 95.86 63.55 1.125 7.625
3 1,3,6,8,9,11,14,16 Others 95.41 96.65 4.250 4.500

Table 3.8.2   Results for 3 cases.  N.A. is "not applicable"

3.9 Analyzing the Residuals 

In Section 3.2 the subject was goodness-of-fit testing based upon estimates 

of the absolute uncertainties associated with the data.  The test involved an 

analysis of S / (/ n-p) (the weighted sum of the squares divided by the num-

ber of degrees of freedom).  In Section 3.3 techniques for selecting the best 

of several proposed models was discussed.  Estimates of absolute uncer-

tainties associated with the data were not necessary in choosing the best of 

several competing models.  In this section our attention is turned to the
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problem of evaluating a single model in which we do not have knowledge

regarding the absolute uncertainties associated with the data. 

The runs test is applicable to problems in which the independent variable x

is a scalar variable.  The basic assumption that is essential for the follow-

ing analysis is that the residuals are randomly distributed about the result-

ing least squares curve.  After all, if the model is a decent descriptor of the f

data, we would expect such a random distribution of residuals.  This point 

is illustrated in Figure 3.9.1.  The residuals for the 2nd and 8th points are 

shown for the straight line fit. The residual Ri is defined asi YiYY - yi i wherei yi

is the calculated value of YiYY .  Note that R2 is positive and R8 is negative.   

Figure 3.9.1: Fitting the same data with two different models.

We see in this figure that the residuals seem to be randomly distributed 

about the parabola but the same points are not randomly distributed about 

the straight line.  This is a qualitative observation but what is needed is a

quantitative measure of "randomness".  The well-known runs test is appli-

cable to this task [SI88, DA90, FR92].

The runs test is based upon analysis of binary data.  When applying this 

test to the residuals of a least-squares fit, the sign of the residual is a binary 

indicator (i.e., either positive or negative).  In Table 3.9.1 the signs of the 

residuals are listed for the 13 points for both models.  A run is defined as a 

series of points in which the sign does not change.  Examining both Figure

3.9.1 and Table 3.9.1 we see that the first 2 points of the straight line fit are

a run of positive points followed by a run of a single negative point, a sin-

gle positive point, 6 negative points and 3 positive points for a total of 5 

runs.  Similarly, we note 10 runs for the parabolic fit.  Just by looking at 

Figure 3.9.1 we see that the straight line fit does not adequately represent 
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the data whereas the parabolic fit seems to pass thru the data with ran-

domly distributed residuals.  The runs test considers only the number of 

runs to test the randomness of the residuals.

Point i Ri  (line) Runs (line) Ri  (parabola) Runs (parabola)

 1 + 1 - 1
2 + 1 + 2
 3 - 2 - 3
 4 + 3 + 4
 5 - 4 - 5
 6 - 4 - 5
 7 - 4 + 6
 8 - 4 - 7
 9 - 4 + 8
10 - 4 +  8 
11 + 5 +  8 
12 + 5 -  9 
13 + 5 + 10

Table 3.9.1   Residuals and runs for data seen in Figure 3.9.1

The test is based upon calculation of the probability of observing a number 

of runs less than or equal to a given limit.  For example, what is the prob-

ability of observing 5 or less runs for the straight line model and 10 or less

runs for the parabolic model?  If runs is an even number than the number 

of both positive and negative runs is equal to k which must be exactlyk runs

/ 2.  If runs is an odd number than one of the groups will have k runs and k

plies that all possible orderings of the residuals are equally probable.  If 

there are N data points and N n1 of the first type and n2 of the second type, 

the total number of combinations of orderings is 
N
nC
1

 (where N = n1+n2).

(Note that 
N
nC
1

is exactly equal to
N
nC

2
).  For example, if n1=3 (number of 

2

5
3C3 =

5*4*3/(3*2*1) = 10.  This is exactly equal to
5
2C2 = 5*4/(2 1).  The ten

possible orderings are shown in Table 3.9.2.  Note that there are two com-

binations with 2 runs, three with 3 runs, four with 4 runs and one with 5 rr

runs.  Let us first consider the case of an even number of runs (e.g., runs =

and + | ++.  There is only one way to partition the 2 –'s: - | -.  In general we

want to place k-1 bars (i.e., | symbols) in the n1 - 1 gaps between the +'s.  

the other k-1 runs where runs = 2k-1.  The assumption of randomness im-

+'s) and n  = 2 (number of –'s), the number of combinations is 2

4 and therefore k = 2).  There are two possible partitions of the 3 +'s:  ++ | + k
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The number of partitions is therefore 
11
11

−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−

n

k
C    For example, if n1=4 and 

k=3,
3
2C2 =3 and the three partitions are: +|++|+. ++|+|+ and +|+|++.  We are 

now in a position to state the probability of achieving runs for N dataN

points when N is an even or odd number:N

(((( ))))
N

n

n

k

nn

k

C

CC
runsProb

1

12

1

11

1
2

−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−==== runs even, k =k runs /2               (3.9.1)

(((( ))))
N

n

n

k

nn

k

nn

k

nn

k

C

CCCC
runsProb

1

11

2

12

1

12

2

11

1

−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−

++++
====         (3.9.2) 

   runs odd,  2k-1=runs

The 2 in the numerator of Equation 3.9.1 is required because the runs can 

start with either a positive or negative run.  From Table 3.9.2 we see that 

the probability of observing exactly 4 runs is 0.4 (i.e., 4 out of 10 of the

combinations have 4 runs).  Checking this with Equation 3.9.1: 

(((( )))) 40
10

1222

5

3

1

1

2

14
** 22

C

CC
Prob ==============================================       (3.9.3)

Combination Order Runs

1 +++-- 2
2 --+++ 2
 3 +--++ 3
4 ++--+ 3
 5 -+++- 3
 6 +-++- 4
7 ++-+- 4
 8 -++-+ 4
 9 -+-++ 4
10 +-+-+ 5

Table 3.9.2 All possible orderings for n1=3 and n2=2.  

n1 is number of +’s, n2 is number of -’s
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Equations 3.9.1 and 3.9.2 are used and tabulations for combinations of n1

and n2 are included in many books.  For example, Freund [FR92] includes 

a table that contains 2.5% lower and upper bounds for all combinations up

to n1 and n2 = 15.  Siegel and Castellan [SI88] include a table that extends 

the range up to n1 and n2 = 20.  If n1 and n2 are greater than or equal to 10, 

the normal approximation can be used.  The mean and variance of the dis-

tribution is: 

1
2

21

21 ++++
++++

====
nn

nnµµµµ       (3.9.4) 

(((( ))))
(((( )))) (((( ))))1

22

21

2

21

212121 ((((((2

−−−−++++++++
−−−−−−−−====

nnnn

nnnnnnσσσσ        (3.9.5)

When analyzing residuals, if they are randomly distributed it is a reason-

able assumption that the values of n1 and n2 are approximately equal to

N/2// so the equations reduce to the following:

1
2

++++====
Nµµµµ        (3.9.6) 

(((( ))))
(((( ))))12

122

−−−−
−−−−====

N

/NNσσσσ         (3.9.7) 

For example, assume that N = 40 and we observe 13 runs.  What is theN

probability of observing this number of runs if the residuals are randomly

distributed?  The mean value µ of the distribution is 21 and σσσσ isσσσσσσ
(20*19/39)1/2 = 3.12.  The probability of observing 13 runs is the area un-

der the normal curve from x = 12.5 tox x = 13.5.  We can convert these val-x

ues to the standard normal curve by subtracting µ and dividing by σσσσ.  The σσσσσσ
range is therefore: 

4042
123

21513
7242

123

21512
u −−−−−= −−−−−−−−−−===============≤≤≤≤≤≤≤ u ≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤− 7242 ≤≤≤≤≤≤≤≤≤−−−= −−−−−−−−−===============

From a table of the standard normal distribution 2.724 corresponds to a 

probability of 0.49675 and 2.404 corresponds to a probability of 0.4919 so 

the probability of falling within this range is 0.49675 – 0.4919 = 0.00485.  



110    Chapter 3  MODEL EVALUATION   

We can also compute the probability of observing 13 or less runs.  The 

probability is 0.5 – 0.4919 = 0.0081 which is less than 1%.  For values of 

N < 20, the normal approximation is not recommended.  Values of the N

maximum number of runs for rejecting the randomness hypotheses com-

puted using Equations 3.9.1 and 3.9.2 are included in Table 3.9.3.  For 

even values of N,NN n1 and n2 = N/2.  For odd values of NN N,NN n1 = n2 ± 1.  The

runs limits in the table are based upon a confidence limit of 2.5%.  In other 

words, if the residuals are randomly distributed, the probability of observ-

ing the values listed in the table or less is less than or equal 2.5% (i.e.,

Prob(runs runs limit) t 0.025). 

N runs limit N runs limit 

9 2 17 5
10  2  18 5
11  3  19 5
12  3  20 6
13  3  21 6
14  3  22 7
15  4  23 7
16 4 24 7

Table 3.9.3   2.5% limit fort runs. (Reject randomness hypothesis if 

runs runs_limit) tt

As an example of the use of the runs test, consider the data in Figure 

3.9.2.  The data was tested using the REGRESS program with four differ-

ent models.  No information was available regarding the uncertainties as-

sociated with the values of Y so unit weighting was used.  For this reasonY

the resulting values of S / (/ n-p) are only meaningful on a relative basis. 

The resulting values for S / (/ n-p) and runs are included in Table 3.9.4.  We

see from the results in the table that Model 1 is best on the basis of both S /

(n-p) and runs but looking only at S / (/ n-p), we cannot conclude whether 

or not this model is an adequate representation of the data.  However, the 

value of runs confirms that the residuals are randomly distributed about 

the least squares curve and therefore the model passes this goodness-of-fit ff

test.  Notice the value of runs for Model 1 is very close to the expected av-

erage of 51 as computed using Equation 3.9.6.  The runs values for the 

other models are well below the 2.5% confidence limit of 40.  The 

REGRESS output for Models 1 and 2 is shown in Figure 3.9.3. 
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Figure 3.9.2: Data analyzed with 4 different models (Table 3.9.4)

Model Equation S/(// n-p) Runs 

1 A1*EXP(-((X - A3) / A2)
2
) + A4 23.27 50

2 A1*EXP(-((X – A3) / A2)
2
) 86.84 24

3 A1 + A2*X + A3*X
2 362.83 10

4 A1 + A2*X + A3*X
2
+ A4*X

3 366.41 10

Table 3.9.4   Results for 4 different models for data in Fig 3.9.2 
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Figure 3.9.3    REGRESS output for Figure 3.9.2 data, Models 1 & 2
PARAMETERS USED IN REGRESS ANALYSIS: Wed Nov 17 
14:42:31 2004
 INPUT PARMS FILE: fig392.par
 INPUT DATA  FILE: fig392.dat
 REGRESS  VERSION: 4.10, Nov 15, 2004 

 N - Number of recs used to build model  :   100
 NCOL - Number of data columns           :     4
 NY   - Number of dependent variables    :     1
 YCOL1 - Column for dep var Y               :  2
 SYTYPE1 - Sigma type for Y              :     1
    TYPE 1:  SIGMA Y = 1
 M - Number of independent variables     :     1
 Column for X1                           :     1
 SXTYPE1 - Sigma type for X1             :     0
    TYPE 0:  SIGMA X1 = 0 

Analysis for Model 1 
 Function Y:  A1*EXP(-((X-A3)/A2)^2)+A4

  K     A0(K)   AMIN(K)   AMAX(K)      A(K)   SIGA(K)
  1  50.00000  Not Spec  Not Spec  99.15170   1.36402
  2  10.00000  Not Spec  Not Spec  19.97158   0.38467
  3  40.00000  Not Spec  Not Spec  50.19843   0.19424
  4   0.00000  Not Spec  Not Spec  20.22799   0.95556

Variance Reduction:         98.22
S/(N - P)         :      23.27434
RMS (Y - Ycalc)   :       4.72688
Runs Test: Number runs = 50 Must be > 40 to pass test. 
This limit is based upon 2.5% confidence level.
Expected avg number of runs if residuals random: 51.0. 
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Analysis for Model 2 
 Function Y:  A1*EXP(-((X-A3)/A2)^2)

  K     A0(K)   AMIN(K)   AMAX(K)      A(K)   SIGA(K)

  1  50.00000  Not Spec  Not Spec 111.39400   1.96153
  2  10.00000  Not Spec  Not Spec  27.18914   0.55796
  3  40.00000  Not Spec  Not Spec  50.17885   0.39033

Variance Reduction:         93.27
S/(N - P)         :      86.83555
RMS (Y - Ycalc)   :       9.17772
Runs Test: Number runs = 24 Must be > 40 to pass test. 
This limit is based upon 2.5% confidence level.
Expected avg number of runs if residuals random: 51.0. 

Figure 3.9.3 (continued)   REGRESS output: Model 2
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4.1 Introduction 

For many experimental data sets, we do not have a well-defined mathe-

matical model nor are we sure which independent variables should be in-

cluded in the model.  Examples of such problems can be found in econo-

metrics, medicine, agriculture and many other areas of science and 

engineering.  We use the term candidate predictors to classify potential

variables that might or might not appear in the final model.  The selection

of the candidate predictors is of course problem dependent.  The group col-

lecting the data has knowledge of the problem area and can usually suggest 

variables that should be considered as candidates for inclusion in a model. 

Consider as an example, the following problem in the field of pharmacol-

ogy.  A drug company wishes to develop a model for predicting the effec-

tiveness of a drug to reduce blood pressure.  Clearly, the amount of the 

drug given to each patient is an important candidate for predicting the drug

effectiveness and will most certainly appear in the model.  Other candidate 

predictors should include variables related to the patient: blood pressure, 

age, weight, variables related to his or her medical history, etc.  The drug 

itself might include some variability in its chemical composition and this

variability might be included as additional candidate predictors.  One can

see that the number of candidate predictors can rise rapidly.  The greater 

the number of candidate predictors, the greater the probability that an im-

portant predictor is not overlooked. However, as the number of candidate 

predictors rises, the difficulty in finding the best model also rises.

A second example is taken from the field of econometrics.  Consider the

problem of attempting to develop a model for predicting the change in the

United States unemployment percentage over the next month.  Vast 

amounts of data are collected to measure many variables related to the per-

formance of the U.S. economy and some of this data might be relevant for 
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the desired model.  For example, changes in the unemployment percent-

ages over the past months would certainly be prime candidate predictors.  

Other changes might also be relevant: changes in the number of housing 

starts, changes in retail sales, changes in the gross national product, etc. 

Other measures of the strength of the economy might include changes in

the stock market indices, changes in interest rates, etc.  Measures related to 

the world-wide economy might also be included in the list of candidate 

predictors.  Once again, the list of candidate predictors can grow as the 

analyst considers a widening range of variables that might or might not af-

fect the rate of unemployment. 

Before attempting to build a model, the analyst should attempt to answer 

some basic questions regarding candidate predictors.  Specifically can we

say anything regarding the worth of a particular candidate predictor?  Are 

some candidate predictors redundant?  Do some subsets of the candidate 

predictor space contain more information than others?  In this chapter 

some useful tools for answering such questions are considered.  If the set 

of candidate predictors can be reduced to a subset with greater potential for n

being included in the final model, the entire modeling process will be sim-

plified and the potential for success will be increased.  In the statistical lit-

erature the term measures of association is used to describe tools that 

have been developed for measuring the dependence of one variable upon

another [e.g., SI88, DA90].  In this chapter some of the most powerful and 

useful measures of association are discussed and examples are included to

illustrate how they can be applied to specific problems. 

4.2 Using the F Distribution 

In Section 1.3 the F distribution was discussed.  We can use the F F distribu-F

tion to answer the following question: Does a particular subspace contain

information related to a dependent variable y?  The term "subspace" 

applies to subspaces of the candidate predictor space.  Each candidate pre-

dictor is a single dimension in the larger ncp (number of candidate predic-

tors) space.  If a particular subspace does not have "predictive power" it 

does not necessarily imply that it should be immediately rejected from fur-

ther consideration.  It might, when combined with another subspace, be a

powerful predictor.  However, when looking for ways to reduce ncp, one

tends to choose candidate predictors which on their own as one-

dimensional spaces or combined with other candidate predictors show that 

they do contain information regarding y.
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To analyze a subspace using the F distribution, the space is partitioned into F

cells.  The number of cells is set by the analyst and should be based upon 

the number of available data points.  Clearly, the greater the number of 

data points, the greater can be the number of cells.  The number of dimen-

sions in the subspace is irrelevant. We see cells for one and two dimen-

sional spaces in Figures 4.2.1 and 4.2.2.  Note that there is no need to 

make the cell sizes constant.  A worthwhile strategy is to choose the cell

sizes such that the cells are approximately equally populated.  To accom-

plish this for one dimensional spaces, the data is first sorted and then the

cell dimensions are chosen to achieve approximate equality.  For example 

if 1000 data points are available and we wish to partition the data into 10

cells, we would sort the data so that x1 is the smallest value of x and x x1000 is

the largest value.  The upper limit of cell 1 would be (x(( 100 + x101) / 2, the

upper limit of cell 2 would be (x(( 200 + x201) / 2, etc.  One might ask: What 

happens if there are duplicates?  For example, if x99 thru x105 have exactly

the same value?  The cell limit would be this value and points 99 and 100

would be included in cell 1 and points 101 thru 105 would be in cell 2. 

 

 
Figure 4.2.1   Partitioning a one dimensional space with 16 points.  No-

tice that each cell is equally populated.  Notice points 5 & 6 and 9 & 10 

have same values.

For two or more dimensional spaces, the selection of the cell sizes can be

more complicated.   First of all, if we want to compare spaces of varying 

dimensions, it is statistically reasonable to try to maintain equally popu-a

lated cells over all spaces.  From the preceding discussion of the one-

dimensional partition, how would we proceed to 10 equally populated two 

dimensional cells?  A general solution to this problem for p dimensions is 

included in my last book [WO00].  A data structure called the p-tree is de-

scribed that is used to generate cell limits when the number of cells is 2h

(where h is the tree height).  Thus this data structure cannot be used to di-

vide a space into 10 cells but it could be used to divide it into 8 (i.e. h=3)

or 16 (i.e. h=4) cells.  Figure 4.2.2 is an example of a two dimensional 

space divided into 8 cells.  In this example the number of data points per 
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cell is 2.  For real problems we would want a much larger cell density. The

p-tree is a generalization of a two-dimensional data structure called a

quadtree.  The quadtree, is used extensively in computer graphics, com-

puter aided design, image processing, etc. [SA90]. 

 

Figure 4.2.2   Partitioning data in x1-x2 space.  Notice that each cell is

equally populated with 2 points per cell. 

 
One might ask the question: For a two dimensional space, why not just sort 

both dimensions into r equally populated regions creatingr r
2 cells?  Simi-

larly, for a three dimensional space, why not just sort each dimensions into 

r equally populated regions creating r r
3 

r cells?  To maintain equality in aver-

age cell density over varying dimensional spaces, we would have to

choose different values of r for different numbers of dimensions.  For ex-

for these spaces would be 64 and the average cell density would be the

same regardless of the dimensionality up to three dimensions.  This ap-

proach is reasonable if the values of the x's in the different dimensions are 

ample, if we used r = 64 for one dimensional spaces, r r = 8 for two dimen-r

sional spaces, and r = 4 for three dimensional spaces, the number of cells r
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uncorrelated.  However, if there is a measurable level of correlation, the 

cells would certainly not be equally populated.  For a two dimensional 

space, the problem using this technique is illustrated in Figure 4.2.3. This 

figure is based upon the same data as used in Figure 4.2.2 where the values

1 2

points and 16 cells so the average cell density is 1.  For this example, this 

partitioning scheme leaves 9 cells empty and one cell with four points. As

the correlation increases, the disparity between the most and least popu-

lated cells increases.  It should be emphasized that the correlation need not 

be linear.  The concept of nonlinear correlation is introduced in the next 

section.  This problem is avoided by using the p-tree data structure for par-

titioning the space. 

 

Figure 4.2.3   Partitioning data in x1-x2 space.  Each dimension is par-

titioned independently.  Notice that in each row and in each column 

there are 4 points.

Once we have divided our data into cells, the first step in the analysis is to 

compute the mean and variance of the dependent variable over all cells. 

We then compute the mean and variance within each cell.  We can com-

of x and x are clearly correlated. Using 2 r = 4,r there are a total of 16 data 
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pute the variance between cells 
2
bσσσσ and the variance within cells

2
wσσσσ  as

follows: 
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In these equations nc is the number of cells, yavg is the average value of theg

dependent variable for all n data points and yavg,j is the average value for all j

points within cell j.  In Equation 4.2.2, yavg,j refers to the average value for j

the cell in which point i falls.    The ratio of these two variances is distrib-i

uted according to the F distribution with F nc-1 degrees of freedom in the 

numerator and n-nc in the denominator:

 
2

2

w

bF
σσσσ
σσσσ====             (4.2.3) 

 
Once F has been computed, it can then F be tested for significance in the 

usual manner.  If a space is a very good predictor, we would expect that 

the value of F would be much greater than 1.F

The use of Equations 4.2.1 through 4.2.3 requires some explanation.  By 

partitioning the data into cells, we are essentially creating a very simple

model: we use the cell average as the computed value of y for all the points 

falling within the cell.  We are then testing to see if there are significant 

differences in the average values of y in the different regions (i.e., cells) of 

the space.  To illustrate this process consider the data in Table 4.2.1.  We

have partitioned 200 data points into four cells, each cell containing 50

points.  (It should be emphasized that it is not essential that the number of 

points per cell be the same for all cells.)  The table includes the average 

value of y and s (the unbiased estimate of σσσσ)σσσσσσ for each cell.       Note that no 

mention is made regarding the dimensionality of this space.  It could be 4

cells in a one dimensional or a two dimensional space.  (To partition data 

in a three dimensional space we would need at least 8 cells.)
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j yavg , j nj n sj s

1 12.0 50 2.0
2  4.0 50 1.0
3  5.0 50 1.5
4 11.0 50 3.0

 
The average value yavg for this data is (12+4+5+11) / 4 = 8. To compute g

2
bσσσσ we use Equation 4.2.1: 

    
833.332500/3
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We can use the following equality to compute
2
wσσσσ :
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The value of F is 833/4.06 = 205 which is a very large number.  The 1% F

confidence limit for F (that is,F F(0.01, 3, 196)) is about 3.9 so 205 is or-FF

ders of magnitude above this limit.  This result should not be surprising as 

we see that the average values of y in cells 1 and 4 are much larger than the

values in cells 2 and 3 indicating that this space is a true predictor for y.  
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4.3 Nonlinear Correlation 

Shannon introduced the concept of nonlinear correlation in his ground-

breaking paper A Mathematical Theory of Communication [SH48].  This

paper was published by the Bell Laboratories in 1948 and has had far-a

reaching consequences.  Nonlinear correlation was only one of several im-

portant concepts and ideas included in the paper.  In this paper Shannon

described a method for measuring nonlinear correlation on a scale from 

zero to one.  A value of zero implies that two variables are unrelated: for 

example, knowledge of v1 provides no knowledge of v2.  A value of one 

implies that the two variables are completely related: for example, knowl-

edge of v1 provides exact knowledge of the value of v2 and knowledge of 

v2 provides exact knowledge of the value of v1. 

Nonlinear correlation can be used to accomplish several tasks.  It can be 

used to determine whether an independent variable x (perhaps one of many x

candidate predictors) contains useful information for building a model for 

a dependent variable y.  It can also be used to determine if candidate pre-

dictors x1 and xd 2 are related.  If, for example, there is a high degree of 

nonlinear correlation between these two candidate predictors, then one of 

them might be eliminated from the set of candidate predictor variables. 

To understand the concept of nonlinear correlation consider an experiment 

in which 100 data points are observed and for each data point values of 

both x1 and x2 are recorded.  The values of both x1 and x2 are integers from 

1 to 5, so there are 25 possible combinations.  Consider the distributions of 

points shown in Figures 4.3.1 through 4.3.3.

In Figure 4.3.1 we see that if the data is truly indicative of the population,

then all we need to know is the value of x1 and we would automatically

know the value of x2.  For example, if x1 is 1, then x2 is 3 and if x1 is 2, 

then x2 is 5, etc.  Conversely, knowledge of x2 yields the value of x1.  For 

example, if x2 is 2, then x1 is 4.  The nonlinear correlation coefficient (CC)

for this example is one.  Clearly, if we increase the number of data points 

beyond 100, we might discover that cells unpopulated by the initial 100

data points become populated.  If this happens, then a recalculation of CC

would yield a value less than one.  But based only upon the information 

contained in the first 100 points, our best estimate of CC is one.C
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In Figure 4.3.2 we see an entirely different picture.  Knowledge of x1 does

not add to our knowledge of x2.  The most probable value of x2 is 2 (i.e., 

30% of all data points have a value x2 = 2).  We see, however, that this 

percentage is true for all values of x1.  (For x1 = 1 and 4, 9 out of 30 data 

points, for x1 = 2, 6 out of 20 data points and for x1 = 3 and 5, 3 out of 10 

data points have values of  x2 = 2.)  Similarly, knowledge of x2 does not 

add to our knowledge of x1.  For this case, CC is thus zero. C

 
Figure 4.3.1   Distribution of 100 data points.  This distribution  

exhibits nonlinear correlation CC =C  1.
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Figure 4.3.2   Distribution of 100 data points.  This distribution 

exhibits nonlinear correlation CC =C  0.

 

 
Figure 4.3.3   Distribution of 100 data points.  This distribution 

exhibits nonlinear correlation CC between zero and one. 
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In Figure 4.3.3 we see that knowledge of x1 does add to our knowledge of 

x2 and visa versa.  For example, if x1 = 1 then there is a 50% probability

that x2 = 2 and a 50% probability that x2 = 5.  If x1 = 2 then there is a 100%

probability that x2 = 2.  If x1 = 3 then there is a 50% probability that x2 = 1

and a 25% probability that x2 = 3 or 5.  If x1 = 4 then there is a 100% prob-

ability that x2 = 4.  And finally, if x1 = 5 two-thirds of the values of x2 will

be 1 and one-third will be 4.  For this case CC is between zero and one. C

For continuous data one must partition the data into cells.  The partitioning 

scheme shown in Figure 4.2.3 rather than in Figure 4.2.2 is preferable.  For 

the purpose of examining correlation, equally populated cells are of no in-

terest.  However, if each variable is divided into equally populated bins, 

then our partitioning is optimum (in the sense of maximizing entropy or 

uncertainty) [PY99].  The term entropy was taken from thermodynamics 

and was applied by Shannon to the field of information theory.  We can

consider the information content of a particular value (or cell) of a variable

as –p·log– 2gg (p) where p is the probability of the variable taking on the value.  

(The minus sign is required because log2gg (p) is negative.)  An explanation

of this formulation for information content is included in Pyle's book on

Data Mining [PY99].  As an example of the information content of a cell, 

consider the variable x1 in Figure 4.3.3.  The probability that its value is 1

is 0.2 (i.e., 20 out of 100 data points have the value x1 = 1).  The informa-

tion content for x1 = 1 is thus -0.2·log2(0.2).  Using the notation of H(v)HH to 

denote the entropy associated with the variable v, we compute the entropy 

as the sum of the information content for all possible values of v:

 
              (4.3.1) 

In this equation r is the number of values that r v can assume and pi is the i

probability that it assumes the i th value.  Note that the sum of all pi's must 

equal 1: 

 1
1

====
===============

ri===============

i

ip             (4.3.2)

To understand why equally populated cells maximize entropy, consider the

5 cases shown in Table 4.3.1.  In this table the probabilities of v assuming 

4 different values are listed for each case.  Note that case 1 exhibits maxi-

mum entropy (maximum uncertainty) and case 5 exhibits minimum en-

1

===
================

ri================

i

ip− log2 ip( )H (v)
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tropy.  In case 5 there is no uncertainty: the value of v is always one.  As 

examples of the calculations, the value of log2gg (0.25) = -2 so H(v)HH for case

1 is 4*0.25*2 = 2.00.  For case 3 the value of log2gg (0.5) = -1 so H(v)HH   is 0.5

+ 0.5 + 0 + 0 = 1.00.  Comparing cases 1 and 2 we see that case 2 is

slightly more informative and therefore its entropy is slightly less. 

case v=1 v=2 v=3 v=4 H(v) 
1 0.25 0.25 0.25 0.25 2.000
2 0.30 0.20 0.25 0.25 1.985
3 0.50 0.50 0.00 0.00 1.000
4 0.60 0.40 0.00 0.00 0.971
5 1.00 0.00 0.00 0.00 0.000

Table 4.3.1   Entropy calculations for 5 different cases   

When we are interested in computing the nonlinear CC associated with C

two variables, we compute the entropy of each variable separately and then

combined. For example, if we wish to compute CC for variablesC x1 and x2

we must first compute 3 entropies.  The entropies for x1 and x2 computed 

separately are:

−=
r1i=

1i=
i2i 2i plogpxH )( 1   &  −=

r2j=

1j=
j2j 2j plogpxH )()( 2       (4.3.3) 

In these equations r1 and r2 can be different.  A difference might occur if x1

and x2 are discrete variables with different ranges.  However, if they are 

continuous variables, they must be "discretized" by dividing each variable 

into separate regions or bins and typically the value of r1 and r2 would be

chosen to be the same.  We compute the entropy associated with the two

dimensional partitioning of the data as follows:

 −=
r1i=

1i=

r2j=

1j=
ij2ij plogpxxH )()( 21 x         (4.3.4) 

We are now in a position to compute CC: 

21

221

xHxH

xHxHxH
CC

++++
++++====    (0  CC 1) 
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As an example, consider the data shown in Figure 4.3.1.  We can present 

this data in the form of probabilities as shown in Table 4.3.2:

 

 x2=1 x2=2 x2=3 x2=4 x2=5 Row Sum

x1 = 1   0.05  0.05

x1 = 2     0.35 0.35

x1 = 3 0.15     0.15

x1 = 4  0.25   0.25

x1 = 5    0.20 0.20

ColumnSum 0.15 0.25 0.05 0.20 0.35 1.00 

Table 4.3.2   Recasting Figure 4.3.1 into probabilities and summing 

rows and columns.    Note that the sum of all rows and all columns is

one.

The values of all three entropies (i.e., H(HH x(( 1), H(HH x(( 2), and H(HH x(( 1 x2)) are equal 

to 2.121: 

 

121222 ..log......log..log. 2350 23523502502250150 0152H ....−−−−−= −−−−−−−−−−=============== ((((0 log. 215

Substituting into Equation 4.3.5 we see that CC is indeed 1: C

 1
12121212

121212121212
================

++

++
===============

.. 2121 2121 ++

.. 21212 2121.121 ++
CC  

In a similar manner we can show that CC for the data in Figure 4.3.2 is C

zero.  Now let us compute CC for the data in Figure 4.3.3.  The data inC

Figure 4.3.3 is presented as probabilities as shown in Table 4.3.3:

 x2=1 x2=2 x2=3 x2=4 x2=5 Row Sum

x1=1  0.10   0.10 0.20

x1=2  0.10   0.10

x1=3 0.10  0.05  0.05 0.20

x1=4    0.20 0.20

x1=5 0.20   0.10  0.30

ColumnSum 0.30 0.20 0.05 0.30 0.15 1.00 

Table 4.3.3   Recasting Figure 4.3.3 into probabilities and summing 

rows and columns.  Note that the sum of all rows and all columns is 1.
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The three entropies are computed as follow: 

2462221 ..log..log..log.*xH 230 2323010 0121020 022203 01  

13320

052222

...log.. 21500 215021500

..log...log..log.*xH 00 02050020 00222030 032302 02 ++++++++++++++++

02222

22221

...log..* 30500 305020500 00

.log.*.log.*xxH 0220210 02121021 ++++++++++++++++
 

 
The resulting value of CC (from Equation 4.3.5) is 0.620.  This value im-

plies a high degree of nonlinear correlation and implies that knowledge of 

x1 helps us predict the value of x2 and visa versa.

Can we say anything about the significance of CC ?  If there is no connec-?

tion between x1 and x2 (the null hypothesis) what is the probable range of 

values that we should expect?  We define a new variable T as follows: T

 
21

21212

xHxH*CC*N

xxHxH)xHNT

++++====
−−−−++++====

       (4.3.6) 

The variable T approaches a T χχχχ 222222222222222distribution with222222222 νννν degrees of freedom as N

becomes large [RA73]: 

  

 11 21 −−−−−−−−==== rrνννν           (4.3.7) 
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x1 x1-bin x2 x2-bin Y y-bin 
0.3190 2 0.0368 1 0.7214 4 
0.7537 4 0.0397 1 0.0586 2 
0.7792 4 0.4907 2 0.5695 2 
0.1009 1 0.4552 1 0.3921 1 
0.3132 2 0.7657 3 0.7186 4 
0.8893 4 0.8450 3 0.4974 1 
0.6939 3 0.8685 4 0.6245 3 
0.0720 1 0.4763 2 0.3007 1 
0.4743 2 0.8673 4 0.7313 4 
0.8069 4 0.8278 3 0.5513 2 
0.6763 3 0.8457 4 0.6355 3 
0.7189 3 0.8264 3 0.6087 3 
0.1071 1 0.9068 4 0.4099 1 
0.2513 1 0.4275 1 0.6721 3 
0.3770 2 0.5003 2 0.7389 4 
0.8297 4 0.7338 3 0.5363 2 
0.5519 3 0.6293 2 0.7033 3 
0.5177 2 0.8470 4 0.7175 4 
0.7256 3 0.2964 1 0.6044 2 
0.0021 1 0.5832 2 0.0107 1 

Table 4.3.4   20 Data points and associated bins 

As an example of the use of CC as a precursor to modeling, consider theC

data in Table 4.3.4.  The table includes actual values of x1, x2 and y and 

"binned" values from 1 to 4.  The bin values were assigned by first sorting 

the variable and then assigning a value of one to the first quarter, two to 

the second quarter, etc.  For example, all values of x1  0.2513 were as-

signed bin values of one, all values of x1 > 0.2513 and x1 0.5177 were as-

signed values of two, etc.  The number of data points in each bin is equal

to n (the number of data points) divided by nb (the number of bins) which

is 20/4 = 5.  The number of cells is nb * nb = 16.  The average cell density

is very small (20/16 = 1.25) but the purpose of this example is to just illus-

trate the procedure.  What we are interested in determining is if either x1 or 

x2 or both are useful independent variables for a model for y.  Note that the 

scheme used to divide the data into bins creates 4 equally populated bins 

for each variable.  So from Case 1 of Table 4.3.1 the entropies H(HH x(( 1),

H(HH x(( 2) and H(HH y(( ) are all exactly 2.00.

The first question to be answered is whether or not x1 and x2 are correlated 

(in the nonlinear sense).  To compute CC we therefore need the value of C
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H(HH x(( 1x2).  We can create a table similar to Table 4.3.3 from the data in

4.3.4: 

 

 x2=1 x2=2 x2=3 x2=4 Row Sum

x1=1 0.10 0.10  0.05 0.25

x1=2 0.05 0.05 0.05 0.10 0.25

x1=3 0.05 0.05 0.05 0.10 0.25

x1=4 0.05 0.05 0.15  0.25

ColumnSum 0.25 0.25 0.25 0.25 1.00

Table 4.3.5   Recasting the data from Table 4.3.4 into probabilities 

From this table we see that the value of H(HH x(( 1x2)is 3.684:

68429

152221

...log..* 30500 305020500 00

.log..log.*xxH 0215010 0121021 +++++++++++++++
 

Using Equation 4.3.5 the computed value of CC is 0.158 and we next con-C

sider whether or not this value is significant.  From Equations 4.3.6 and 

4.3.7 the value of T = 12.6 and the number of degrees of freedom νννν = 9. 

The 5% confidence limit for the χχχχ 222χχχχχ 22222222χχχχχχχ 2222 distribution with 9 degrees is 16.9 so22222222

this value in not significant at this confidence level.  We can conclude that 

there is no reason to assume that x1 and x2 are correlated (in the nonlinear 

sense). 

We next turn our attention towards the relationship between x1 and y.  In a

similar manner the entropy H(HH x(( 1y11 ) is computed to be 2.541 and CC isC

0.729.  This value of CC appears to be quite high but does it pass the test C

of significance?  The value of T is 58.3 and this number is far beyond the 

5% confidence limit.  It is also far beyond the 1% confidence limit (21.7) 

so we can conclude the x1 and y are definitely related.  Is y also related to

x2?  The entropy H(HH x(( 2y22 ) is computed to be 3.821 and CC is 0.089.  ThisC

value is even less than 0.159 computed for x1 and x2 so we conclude that it 

is also not significant and there is no evidence that a relationship between

x2 and y exists.  Perhaps with many more data points we might be able to

detect a significant (but weak) relationship between these 2 variables but 

with the available evidence we can only conclude that at this point we can-

not detect a significant effect.  We should, however, note that this analysis

does not exclude the possibility that a two dimensional model (i.e., y as a

function of both x1 and x2) might be a better model then y as just a function

of x1. 
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What if we had detected the same value of CC = 0.089 between x2 and y

but based upon 1000 data points after dividing each variable into 10

equally populated bins?  Would this value be significant?  The values of 

H(HH x(( 2) and H(HH y(( ) would be 3.322:

    322221022 ..log.log.* 310 312102100yHxH −−−−−= −−−−−−−−−−=====yH ========= (((  

The value of T would be 591:

5913223322308901000))()(( 2 322++============================== ++++ 33223 3322 3** 0890 0890yHxH*CC*nT

The number of d.o.f. (degrees of freedom) is 81.  The average value for a 

χχχχ 222222222222222 distribution with22222222 νννν  d.o.f. isνννννν νννν = (10-1)νννννν 2 = 81 and the σ σ σ σ of the distribu-

tion is 12.7381*22 ======== so we see that 591 is (591-81)/12.73 = 40

σ σ σ σ 's above the average value of the distribution.  We would thus conclude

that a value of CC = 0.089 based upon 1000 data points using 10 equally

populated bins is highly significant. 

4.4 Rank Correlation 

For many applications we are interested in locating variables among the

candidate predictors that help us explain trends in the dependent variable. 

There are many examples of trends in most areas of science and technol-

ogy.  As examples, consider the following:

Agriculture: The effect upon crop yield as a function of the 

amount of pesticides used. 

Chemistry: The relationship between reaction rate and the density 

of a particular species. 

Econometrics: The effect of interest rate upon the rate of infla-

tion. 

Medicine: The relationship between cancer and long-term expo-

sure to radiation.  

Production Engineering: The relationship between rejection rate 

and process time per part.

The simplest measure of a trend is the linear correlation coefficient ρρρρ as 

described in Section 3.5.  A trend can be either positive or negative and 
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ρρρρ is limited to the range -1 to 1. Consider the 3 relationships for y as a

function of x as shown in Figure 4.4.1.  Curvex A would yield a value of 

ρρρρ between 0 and 1 and curve B would yield a value of ρρρρ between 0 and -1.  

The value of ρρρρ for curve C would be close to zero.  C

If our purpose is to identify trends, then we would like a measure that 

would yield a value of one for curve A because any increase in x results inx

an increase in y throughout the entire range of x.  Similarly this measure 

should yield a value of -1 for curve B and a value close to zero for curve 

C.  One might ask the question, why not just use the linear correlation co-t

efficient ρρρρ as our measure of a trend?  When there are a number of candi-

date predictors for y it is useful to have a nonparametric measure that is

more sensitive to trends than ρρρρ. We use the term "nonparametric" because

no specific  relationship (like a straight line) is assumed between x andx y.  

It thus becomes easier to find the candidate predictor (or predictors) that 

are most responsible for causing trends in y.

Probably the most well-known and widely used nonparametric measure of 

trends was proposed in 1904 by Spearman and is called the Spearman

Rank Correlation Coefficient (i.e., rsr ).  Many books on statistics include

a discussion of this measure of association between variables [e.g., SI88,

DA90, FR92, ME92, WA93].  The method uses the ranks of the variables

rather than the actual values.  If several data points have the same value of 

either x orx yr , then the average rank is used.



4.4 Rank Correlation   133 

 
Figure 4.4.1   Three curves with differing trends

As an example, consider the data in Table 4.4.1.  A rank of 1 is assigned to

the lowest value of x and x y and a value of nf (the number of data points) is 

assigned to the highest value.  The data in this table is based upon an ex-

periment in sociology discussed by Siegel and Castellan [SI88].   For ex-

ample, in this table the highest value of x is 13 and since there are 12 sub-x

jects it is assigned a rank of x = 12.  The lowest value is 0 but since therex

are two subjects with x = 0 they are both assigned a rank of 1.5.  Thex

minimum and maximum values of y are 37 and 92 so the ranks of these

two subjects are 1 and 12.
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Subject x (actual) x (rank) Y (actual)  y (rank)

A 0  1.5 42  3 
B 0  1.5 46  4 
C 1  3.5 39  2 
D 1  3.5 37  1 
E 3  5.0 65  8 
F 4  6.0 88 11 
G 5  7.0 86 10 
H 6  8.0 56  6 
I 7  9.0 62  7 
J 8 10.5 92 12 
K 8 10.5 54  5 
L 13 12.0 81  9

Table 4.4.1   Actual and ranked data for 2 variables and 12 subjects.    

The Spearman Rank Correlation Coefficient rsr is based upon the same

equation as used for linear correlation (i.e., Equation 3.5.3): 
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Using the following equality (based upon the fact that  xavg = g yavg):
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In this equation, both xavg and yd avg are (g n+1)/2 and didd  is the difference be-i

tween the xi and yi.  The details required for the calculation of rsr are in-

cluded in Table 4.4.2: 

Subject x (rank) y (rank) d d
2

dd (x-x(( avg)
2

(y-y(( avg)
2

A 1.5  3 -1.5  2.25 25.00 12.25
B 1.5  4 -2.5  6.25 25.00  6.25
C 3.5  2  1.5  2.25  9.00 20.25
D 3.5  1  2.5  6.25  9.00 30.25
E 5.0  8 -3.0  9.00  2.25  2.25
F 6.0 11 -5.0 25.00  0.25 20.25
G 7.0 10 -3.0  9.00  0.25 12.25
H 8.0  6  2.0  4.00  2.25  0.25
I 9.0  7  2.0  4.00  6.25  0.25
J 10.5 12 -1.5  2.25 16.00 30.25
K 10.5  5  5.5 30.25 16.00  3.25
L 12.0  9  3.0  9.00 30.25  6.25

Total 78  78  0.0 109.5 141.5 143.0

Table 4.4.2   Actual and ranked data for 2 variables and 12 subjects.

For this example, the average value of the ranks of both x and y is 6.5.  For 

subject A the value of didd  is 1.5–3 = -1.5, the value of i xi –xavg is 1.5–6.5 = -5 g

and the value of yi –yavg is 3–6.5 = -3.5.  The value of g rsr  for this example is:

 0.615
142.2*2

175

143*141.52

109.5143141.5
======================================

−−−−−−−−−−−−−−−−−−−+++++++++++++++++++
===================sr  

 
This seems like a fairly large correlation coefficient, but is it significant? 

Siegel includes critical values of rsr for testing significance for n up to 50 

[Table Q in SI88].  For example, for n equal to 12, the critical value for a

2.5% level of confidence is 0.587 and for 1% it is 0.671.  In other words, at 

a 2.5% level of confidence, 0.615 is significant, but it is not significant at a 

1% level of confidence.  If x andx y are totally independent variables and 

we repeat the experiment many times, we would expect to compute a value

of rsr 0.615 between 1% and 2.5% of the time.   For large values of n the 

parameter z is approximately normally distributed:z

 1−−−−==== nrz sr  (normally distributed for large n)      (4.4.3) 



136    Chapter 4  CANDIDATE PREDICTORS  

For example, for n = 1000, the critical value for a 1% level of confidence 

would require a z value = 2.326:z

0.07369992.326/ ========sr (critical value for 1% level of confidence) 

Thus using a 1% level of confidence, if n = 12 only values of rs r greater 

than 0.671 are considered significant but if n is increased to 1000, values 

greater than only 0.0736 are considered significant. 

Even though Equation 4.4.3 is valid for large n can it be used for fairly

small values of n?  For example, from Siegel's table we know that the 1% 

confidence limit for n = 12 is 0.671.  What value would we get using Eq 

4.4.3?  Surprisingly, the value is very close:   

67401123621 / 011236 011236n/zrsr ===============−−−−    (for 1% confidence level)

In Table 4.4.3 critical values of rsr for a 1% confidence level are listed for 

various values of n.  A critical value of one implies that any value of rsr  less 

than one is not significant.  

n rsr (Siegel table(( )  rs r (Equation 4.4.3(( )

5 1.000 >1.000
6 0.943 1.000
7 0.893 0.913
8 0.833 0.845
9 0.783 0.791

10 0.745 0.745
11 0.709 0.707
12 0.671 0.674
15 0.604 0.598
20 0.520 0.513
50 0.329 0.320

Table 4.4.3   Critical values of rsr  for 1% confidence level.    

   



Chapter 5  DESIGNING QUANTITATIVE 

EXPERIMENTS 

5.1 Introduction 

Designing a quantitative experiment implies choosing the number of data mm

points, selecting the values of the independent variable (or variables), and 

when possible, setting the accuracy to which the individual data points are

to be obtained.  What is assumed is the mathematical model that is the ba-

sis of the proposed experiment.  The design process predicts the accuracy 

of the results that the least squares process should yield prior to actually 

obtaining any data.  By varying the experimental variables, the analyst can

determine what has to be done so that the experiment should meet the pro-

posed accuracy objectives.  Alternatively, the analyst might conclude that 

As an example, consider an experiment to determine the half-life of a ra-

dioactive isotope.  What is known is that the half-life is about 1 second, 

and the purpose of the experiment is to accurately measure this half-life to

an accuracy of about 1%.  This experiment was discussed in Section 1.1

and the proposed mathematical model is Equation 1.1.1.  Let us recast this

equation using simpler notation: 

3
2

1 a
ta

eay ++++⋅⋅⋅⋅−−−−⋅⋅⋅⋅====         (5.1.1)

The half-life is inversely proportional to a2 (see Equation 1.1.2) so to meet 

the experimental requirements we would have to determine a2 to 1% accu-

racy.  The value of a1 can be controlled to a certain extent by controlling 

the time the specimen is irradiated.  But clearly there is a practical limit 

based upon the resources available to the experimenter.  The background 

the experiment, as proposed, will not succeed (i.e., meet the accuracy 

objectives). 
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count-rate (i.e., a3) can be estimated or even measured prior to actually 

running the experiment using the radioactive isotope. 

The actual experiment will be performed by using apparatus that measures 

the number of counts in a time window of ∆f ∆∆∆∆∆∆∆∆∆∆ t seconds.  This experiment ist

best understood if the units of y, a1 and a3 are all in cps (counts per sec-

ond).  To convert the Y 's (the measured values of counts in the time win-

dows) to cps we must divide by ∆∆∆∆∆∆∆∆∆∆∆∆∆∆ t (i.e., t yi = YiYY  / i ∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆ t).  Thust a1 is the number 

of cps at time t equal to zero and t a3 is the background rate in units of cps.  

The number of data-points that can be obtained is limited because the

count-rate decreases with time until it approaches the background count-

rate.  A more practical limit is to select a "reasonable" number of half-lives 

to run the experiment.  For example, if the half-life is 1 second, it makes 

no sense to run the experiment for 100 seconds because the first term in 

Equation 5.1.1 is infinitesimal after 100 seconds.  If the half life is about 1 

second, then after 5 seconds this term has decreased to a value that is only 

about 3% of the value at time zero.  In other words, after 5 half lives, the 

signal is reduced by a factor of 25 = 32.  Let us say we set the total time of 

the experiment to 5 seconds, thus the number of data points is 5 / ∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆ t.  For 

counting experiments we know that the estimated standard deviation σσσσYσσσσσσσσ of Y

each value of Y isY sqrt(Y ) so the relative uncertainties of the data points)

are:

ytty

ty

Y

Y

y

y

∆∆∆∆
====

∆∆∆∆
∆∆∆∆

========
1σσσσ

(5.1.2)

Note that the relative uncertainly in y is inversely proportional to the

square root of ∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆ t.  Thus if ∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆t is halved, then the number of data points ist

doubled, but the relative uncertainty of each point is increased by a factor 

of sqrt(2). 

The experimentalist planning an experiment of this type would first esti-

mate the background term a3 and the expected value of a1 (i.e., the actual 

signal).  The maximum value of signal to noise is a1 /a3.  The next task is

1 3 ∆
tio σσσσaσσσσ 2 /a2.  The target value for this ratio is 0.01.  At the design level we

should be able to either choose the experimental variables so that this tar-

get can be achieved or conclude that the target is unattainable using the 

available resources.  In this chapter the methodology for estimating ex-

pected accuracy is developed.  The method of Prediction Analysis [WO67]

to estimate the effects of a11 /a33 , n and t upon the expected value of the ra-t
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is described and examples of its application are included.  A more detailed 

analysis of this experiment is included in Section 5.3. 

5.2 The Expected Value of the Sum-of-Squares 

The method of least squares is based upon the minimization of S, the

weighted sum of the squares of the differences between actual and com-

puted values of the dependent variable.  In Section 2.2 several different 

formulations of S are presented.  In Section 3.2 the goodness-of-fit of aS

least squares model is discussed and it is shown that under certain condi-

tions  the  expected value of S is χχχχ 2222 (chi-squared) distributed with222 n – p

Under the assumption that the weights wi are based upon reasonable esti-i

mates of the standard deviations of the residuals Ri (i.e., the difference be-i

tween actual and computed values),  the  expected  value of  S isS n – p and 
S / S n/ / –p–  is one.  Substituting this value into Equation 2.5.1 we see that the 
predicted value of the standard deviation of ak is: 

 211 /
kka C

k

−−−−−−−−−−−−−−−================σσσσ             (5.2.1) 

In this equation 
1−−−−−−−−−−−−−−−−

kkC is the predicted value of the k
th

k diagonal term of the

inverse C matrix.  From Equation 2.5.4, the predicted value of the covari-

ance between the parameters aj a and ak is: k

1−−−−−−−−−−−−−−−−==== jkCjkσσσσ              (5.2.2)

We thus see that the design of experiments is based upon prediction of the

C matrix.  The terms of theC C matrix are computed using Equation 2.4.14. C

Once the terms of the C matrix have been computed, the matrix can then C

be inverted and all variances associated with the results of the experiment 

can be predicted.  By varying the experimental variables, we can study the

effect that these variables will have upon the resulting accuracy of the pro-

degrees of freedom.  This fact can be exploited to design experiments.

rational design of the experiment.  

posed experiment.  An understanding of these effects is the basis of a
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5.3 The Method of Prediction Analysis 

Prediction Analysis is the name that I used to describe a technique that I 

developed for designing quantitative experiments [WO67].  As explained in 

the previous section, the method of prediction analysis requires prediction 

of the C matrix.  The terms of this matrC ix are computed as described in 

Section 2.4 by Equation 2.4.14:  

 
∂
∂

∂
∂

=

ni=

i kj ∂ijk
a

f∂
a

f∂
wC =jk

1

        (2.4.14)

To demonstrate the method, let us consider the experiment discussed in 

Section 5.1: measurement of the half-life of a radioactive isotope in the

presence of some background radiation.  The function f for this experiment f

includes a decaying exponential term:

3
2

1 a
ta

eatfy ++++⋅⋅⋅⋅−−−−⋅⋅⋅⋅========      (5.3.1)

The experimental variables for this particular class of experiments are the 

three unknown parameters, a1, a2 and a3, the times of the initial and final 

measurements t0tt and tmaxt , the number of data points n and the time window

∆∆∆∆∆∆∆∆∆∆∆∆∆∆ t.tt  The three partial derivatives are: 

 
ta

e
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          (5.3.2) 
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          (5.3.3)

 

 1
3

================
∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂
∂∂∂∂∂∂∂∂∂∂∂∂∂∂
a

f∂∂∂∂∂∂∂∂
           (5.3.4)

The weights wi are computed as follows using Equation 5.1.2:i

 iiiyyii y/t/w ∆∆∆∆======== 2
1 σσσσ          (5.3.5)
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The terms of the C matrix are computed according to Equation 2.4.14.  Us-

ing Equation 5.3.5:

 
============================== ∂∂∂∂∂∂∂∂∂∂∂∂∂
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ni===============

i kj ∂∂∂∂∂∂∂∂∂∂∂ijk
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a

f∂∂∂∂∂∂∂∂
a

f∂∂∂∂∂∂∂∂
wC ================jk

11

1
        (5.3.6)

Equation 5.3.6 is straightforward.  All that one must do is select a set of 

the experimental variables and then compute the terms of the C matrix by C

substituting Equation 5.3.1 through 5.3.4 into 5.3.6.  The matrix is sym-

metric so only 6 terms must be computed: C11CC , C12CC , C13CC , C22CC , C23CC and Cd 33CC . 

Once these terms have been computed the matrix is inverted and then 

Equations 5.2.1 and 5.2.2 can be used to make predictions regarding the d

expected accuracy of the proposed experiment.

The seven variables mentioned above are a1, a2, a3, t0tt , tmaxt , n and ∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆t.  If we 

assume that t0tt = 0 and tmaxt =x n*∆∆∆*∆∆∆*∆∆∆∆∆*∆∆∆∆t we are left with 5 independent variables.  t

There are two approaches that one might consider before initiation of the 

calculations:

1) Try to develop analytical expressions for the 6 terms of the C ma-C

trix, and if successful, then try to develop analytical expressions

for the terms of the C-1 matrix.

2) Use computer simulations to compute the terms of the C and C C
-1

matrices for various combinations of the variables.

The first approach is only feasible for very simple experiments.  An exam-

too cumbersome to be useful.  Results, however, can easily be obtained us-

ing the second approach: computer simulations.  A computer simulation 

for this class of experiments is discussed in Section 5.6.

To understand the complexity of trying to develop analytical expressions

for the terms of the C matrix, consider just the term C11CC : 

ple of this approach is considered in Sections 5.4 and 5.5.  The class of 

experiments discussed in this section is, unfortunately, too complicated to 

attempt an analytical approach.  Equations can be developed, but they are
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       (5.3.7) 

We can get an estimate of the average value in Equation 5.3.7 for large n

by integrating from 0 to tn∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆  and then dividing the result by tn∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆ :

∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆
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         (5.3.8)

Using T= tn∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆ and b=a3/a33 1, the integral in Equation 5.3.8 is 

++++−−−−
++++−−−−−−−−−−−−====

++++−−−−

−−−−
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log
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aTa
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a
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32

0 22

2 1
1

1
2

Although we can get an analytical expression for C11CC it is complicated and 

when combined with similar expressions for the other terms of the C ma-C

trix, we are left with a matrix that term by term can be estimated analyti-

cally but when we invert this matrix, the analytical expressions are too

complicated to be useful.

our initial set of 7 variables to 5 by assuming that the experiments start at 

time t = 0 and that tmaxt  is equal tox tn∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆ .  We can do a lot better than 5 vari-

ables if we combine the variables into dimensionless groups.  Two obvious 

dimensionless groups that characterize this experiment are the dimen-

sionless background a3 / a/ 1 and the dimensionless duration of the experi-

ment z (i.e.,z a2 * tmaxt ).  In Section 5.6 results are presented graphically as

functions of only these two variables. 

 

An important aspect of the prediction analysis is presentation of the 

results.  For the class of experiments discussed in this section we reduced 
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5.4 A Simple Example: A Straight Line Experiment 

Probably the most frequently used experimental model is a straight line in

which x is the independent variable and y is the dependent variable: 

21 axay 1 +++++++++++++      (5.4.1) 

The purpose of the experiment might be computation of the parameter a1

and/or a2 or perhaps the purpose might be determination of an equation

The starting points for an analysis are models for the expected uncertain-

ties associated with the measured values of x and y (i.e.,
ixσσσσ and

iyi
σσσσ ). 

Let us assume that both variables can be characterized as having constant 

uncertainty: 

yiy

xix

K

K

===============
===================

σσσσ
σσσσ

      (5.4.2)

From Equation 2.3.7 we see that the weights for all points are the same: 
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                 (5.4.4)

that can be used for interpolation.  Whatever the purpose, to design the 

experiment it is important to understand how the expected accuracy of the

results should be dependent upon the experimental variables. 

Examining Equations 2.4.10 and 2.4.11 we see that the terms of the C 

matrix can easily be determined: 

(5.4.3)
iw = = = W

1 1

σσσσ 2 + σσσσ
iy ix

2f∂
∂x

+ 22

2a
y x

K K+2

2a
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We are now in a position to estimate the values of 
1aσσσσ and 

2aσσσσ that we 

can expect from the straight-line experiment using Equation 5.2.1:
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All that remains is to choose values of xi and then determine the averagei

values of x and x2.  For example, assume that the experiment will be per-

formed using values of x equally spaced from x x1 to xn.

111 −−−−−−−−====−−−−====∆∆∆∆ ++ n/xxxxx ni1i++++++++++++ xx xx1 ======+++++++++++ (5.4.7)

The average value of x is simply (x x(( 1+ xn)/2.  The average value of x2 can

be estimated using the following equation: 
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For small values of n the accuracy of this estimation can be improved by

using x1-∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆x/2 and xn+∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆x/2 as the limits of integration:  
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22
33

22

3

1

3

1
abab

ab

ab

ab

bx

ax
avg

xxxx
xx

xx

xx/dxxx

++++++++====
−−−−
−−−−====

−−−−====
     (5.4.10)

Substituting 5.4.10 into 5.4.5 and 5.4.6, after some algebraic manipulations 

[WO67] we get the following estimations of the standard deviations that f

can be expected from a straight line experiment with equally spaced points 

and constant values of 
ixσσσσ and

iyi
σσσσ : 
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Noting that xb – xa = n∆∆∆∆x∆∆∆∆∆∆∆ , we can put Equation 5.4.11 into a physically 

meaningful form using the following dimensionless parameter:

xn
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xx

x
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This parameter is the midpoint of the x values normalized by the range of x

the x values.   It can be shown that Ex quation 5.4.11 is equivalent to the fol-

lowing [WO67]: 

21
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nW
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+++++++++++++++
===============σσσσ     (5.4.14) 

We thus see that if the purpose of the experiment is to measure a1, the best 

design is to set rxr  = 0 by centering the points about x x = 0.  Clearly this is x

Using these limits of integration we get the following: 
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not always possible.  For example, if only positive values of x are possible, x

then the best that we could do is set rxr = 1/2. x

Figure 5.4.1 An Experiment to Measure the Coefficient of Elasticity

of a Bar  

The purpose of the preceding analysis is to develop equations that can be

used for the design of an experiment.   To demonstrate how one would use 

the equations, let us design an experiment to measure the coefficient of 

elasticity of a bar in compression as shown in Figure 5.4.1.  The independ-

tic range, the behavior is assumed to be linear (i.e., Equation 5.4.1) and the

elastic coefficient is the slope of the line (i.e., a2 with units cm/n).  Let us

assume that the uncertainty of the weights are negligible (i.e., KxKK = 0) and x

the uncertainty of the measured values of y are 0.1 (i.e., KyKK = 0.1).  Using

Equation 5.4.3) the value of W is therefore 100.  Let us assume that weW

wish to measure a2 to an accuracy of 0.01 cm/n and that the range of 

weights that is feasible for this experiment is 10 newtons.  How many dif-

ferent weights are needed to achieve the desired accuracy?  Inserting these 

numbers into Equation 5.4.12 we get the following: 
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          (5.4.15)

Solving 5.4.15 for n we get a value of n =12.  Note that this value is not a 

function of rxr .   Thus the resulting slope could theoretically be measured 

dependent variable y is the measured compression (in cms).  Within the elas-y

ent variable x is the weight placed upon the bar (in newtons) and the 
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from 0 to 10 newtons or from 5 to 15 newtons and the resulting accuracy 

of the measured value of a2 could be expected to be about the same.  To 

improve the accuracy we have 3 possibilities:

1) Improve the accuracy of measured values of y (i.e., reduce KyKK ). 

2) Extend the range (i.e., increase xb – xa).

3) Increase n.

A byproduct of the experiment is the resulting value of a1 and we would 

expect this value to be close to zero. If this value is significantly different 

from zero we would have to question the applicability of Equation 5.4.1. 

Let us assume that the experiment uses a range starting close to x = 0 and x

therefore rxr would be 1/2.  From Equation 5.4.12 we would expect a valuex

of 
1aσσσσ = 0.058.  If after the experiment has been performed, if the least 

squares analysis of the data yields a value of a1 that is outside a reasonable

range (for example a 2σσσσ range:σσσσ  -0.058 * 2 < a1 < 0.058 * 2), then one

should seriously question all aspects of the experiment including the appli-

cability of the mathematical model (i.e., Equation 5.4.1).

 

5.5 Designing for Interpolation 

The purpose of some experiments is to create a function that can be used 

of interest when taken together to be used for interpolation for any combi-

nation of the independent variable (or variables) within the range of the 

experiment.  To illustrate how one would go about designing such an ex-

periment, we can continue the analysis started in the previous section: the

straight line.  In this section, the analysis is directed towards the resulting 

line that is to be used for interpolation.

Using Equation 5.4.1 and the constant weight assumption (Eqs. 5.4.2 and t

5.4.3), we start our analysis from Equation 5.4.4: the expressions for the

terms of the C matrix.  This matrix can be inverted to yield the terms of the C

C
-1 matrix: 

for interpolation.  For such experiments the values of the unknown

parameters of the function are not of particular interest.  They are, however, 
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where Det is the determinant of the t C matrix:C
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Substituting 5.5.2 into 5.5.1 we get the following expression for the in-

verse C matrix: C
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We can now proceed to predict the σσσσ s associated with interpolations that 

should result from a straight line experiment.  We use Equation 2.6.11 as 

our starting point:
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∂∂∂∂

∂∂∂∂
∂∂∂∂

−−−−
==== jkC

a

f

a

f

pn

S pj===============

j

pk================

k kj ∂∂∂∂∂a
fσσσσ      (2.6.11)

Noting that the expected value of S / (n – p) is 1, the predicted σσσσ are 

computed using the modified form of 2.6.11:

1

1 1

2 −−−−−−−−−−−−−−−−

=============== ∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂==== jkC

a

f

a

f
pj===============

j

pk================

k kj ∂∂∂∂∂∂a
fσσσσ         (5.5.4) 

’s

’ s 
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For the straight line experiment we can carry this equation through to an

analytical solution, but for most relationships between x and x y the best that 

we can do is to simulate the experiment.  For the straight line, the partial

derivatives are: 

 1
1

====
∂∂∂∂
∂∂∂∂
a

f
 and  x

a

f ====
∂∂∂∂
∂∂∂∂

2

        (5.5.5)

Substituting 5.5.5 into 5.5.4 and noting that
1

12
−−−−−−−−−−−−−−−C =

1
21
−−−−−−−−−−−−−−−−C

1
22

21
12

1
11

2 2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ++++++++==== CxxCCfσσσσ          (5.5.6) 

Using the equations developed in Section 5.4 for the average values of x

and xd 2 and then substituting them into Equation 5.5.3 and then 5.5.6, we 

get the following equation for the variance that can be expected for any

value of x: 

22222

2

2 33
4

xxxxxxxx
xxnW

ab xxabab xxx xxx
ab x

f ++++++++−−−−++++++++
−−−−

====σσσσ  (5.5.7) 

This equation is parabolic with minimum variance at the midpoint of the 

range (i.e., x = (x(( a+xb) / 2). Substituting this value of x into 5.5.7 we get x

the expected minimum value of the variance:

baaab ab

ab

f xxxx
xxnW 2

14 22 xx
2

2 −−−−++++
−−−−

====σσσσ        (5.5.8) 

The expected maximum variance is noted at the extremes of the range (i.e.,

x = xa and x = xd b): 

22

2

2 2
4

abab 2
ab

f xxxx
xxnW

++++−−−−
−−−−

====σσσσ       (5.5.9)

To design an experiment we should establish the maximum variance as a

design objective.  For example, let us assume that the measurements of y

will be accurate to 0.1 (i.e., KyKK  = 0.1) and therefore W = 100 (i.e., 1 / KyKK
2).  

we get the following:
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Let us further assume that the data points will be equally spaced from x =x

0.1 to 0.3.  Setting a design objective of maximum standard deviation =

0.04 (i.e., σσσσfσσσσσσ 0.04), we can use equation 5.5.9 to determine the number of 

nn

n

*.

*

..*.*.
.*

/
f

040.

040.

040040 .*. *

2
1030102 ..*.* .*.*

2
30.

2
20.

1004 /2
040.

2

==============================

++======= 040. =======================σσσσ
             (5.5.9) 

Solving for n we get a value of n = 1 / 0.04 = 25.  In other words, if we 

equally space 25 point in the range x from 0.1 to 0.3, we should obtain ax

line that if used for interpolation will yield values of y with σσσσfσσσσσσ  no worse f

than 0.04.  It should be remembered that for the purpose of designing the

experiment we have assumed a value of S / (n – p) = 1, so when the ex-

perimental data is actually analyzed, the values of σσσσfσσσσσσ might be larger or f

smaller than the design values.  Nevertheless, the design process helps us

choose the experimental variables that should yield results that are rea-

sonably close to our design objectives. 

In this section the mathematical model was simple enough to allow us to 

develop analytical equations that were useful in designing for interpola-

tion.  When the mathematical model is complicated, the use of computer 

simulations is the obvious approach to design.  In the following section a 

more complicated experiment is analyzed and predicted values for interpo-

lations at 10 points are included in a simulation (i.e., Figure 5.6.2).  In the

figure the column headed PRED-SIGY are the predicted values of σσσσfσσσσσσ .   f

5.6 Design Using Computer Simulations 

In Section 5.3 we discussed an experiment to measure half-life of a radio-

active isotope based upon the following exponentially decaying mathe-

matical model: 

(((( )))) 3
2

1 a
ta

eatfy ++++⋅⋅⋅⋅−−−−⋅⋅⋅⋅========          (5.3.1) 

points needed to theoretically meet this objective (at least in the design

of the experiment): 
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The experiment is performed by observing the number of counts recorded 

in n time windows of length ∆∆∆∆ t∆∆∆∆∆∆∆ .  We noted that two dimensionless groups

that characterize this experiment are the dimensionless background a3 / a/ 1

and the dimensionless duration of the experiment z (i.e.,z a2 tmaxt =x a2 n∆∆∆∆ t∆∆∆∆ ).t

In Section 5.4 we developed analytical expressions for the unknown pa-

rameters in a simple straight-line experiment but for experiments based 

upon Equation 5.3.1, the complexity of the equations led to the conclusion 

that for these experiments, the most reasonable approach is to use com-

puter simulations.  This conclusion was reached after examining the equa-

tions needed to compute terms of the C matrix (e.g., Equation 5.3.7 thru C

5.3.9).  Not only is this a 3 by 3 matrix, it must also be inverted to obtain
1

22
−−−−−−−−−−−−−−−C

measure a2 including an estimate of its standard deviation.  The predicted 

value of this standard deviation is : 

1
22

2
2

−−−−−−−−−−−−−−−−−−−==== Caσσσσ             (5.6.1)

To perform the simulation, it should be realized that the n values of the titt

should be set at the middle of the time windows rather than at the begin-

ning or the end.  If n is large then this effect is negligible, but for small n 

the effect can be noticeable.  Thus if the experiment is started at t =0, the t

value of t1t = ∆∆∆∆ t∆∆∆∆∆∆∆ /2 and tt tn t = tmaxt ∆∆∆∆ t∆∆∆∆∆∆∆ /2.  Results from a series of simulations tt

confirm that the following dimensionless group ΨΨΨΨΨΨΨΨΨΨΨΨΨΨΨΨΨΨ is only a function of 

a3/a1 and z:

(( ) (((( )))) 1

/
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//
/aa  z,Fta

a
tna

a

aa ========∆∆∆∆====ΨΨΨΨ 21

1

2

21

1

2

2ΨΨΨΨ 22 σσσσσσσσ
       (5.6.2)

In Figure 5.6.1 ΨΨΨΨΨΨΨΨΨΨΨΨΨΨΨΨΨΨΨ22222222222222222222222222 is plotted as a function of 22222222222222222 z for several different values z

of a3 / a/ 1.  The results in the figure were based upon simulations.  An ex-

ample of a simulation of one combination of the experimental parameters 

1

2 3

using the Prediction Analysis feature of the REGRESS program [see Sec-

tion 6.8].  In the figure PRED_SA(K) is "predicted σσσσakσσσσ " and PRED_SIGY 

is "predicted σσσσfσσσσσσ  ".  Note that for this particular combination of f a2, z andz n d

the value of ∆∆∆∆ t ∆∆∆∆∆∆∆ is one and tmaxt is 10.  The 10 values of T and Y were gener-Y

ated using ∆∆∆∆ t∆∆∆∆ =t 1 and the input equation for Y starting from the mid-point Y

. This term is needed because the purpose of the experiment is to 

’  s

–

2ΨΨΨΨΨΨΨ

3

is shown in Figure 5.6.2.  This simulation is for the combination a = 10000,

a  =  1, a  =  500, z = 10  and n = 10.  The simulation was generated 
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of the first time window (i.e., t1 = 0.5).  Note that the predicted value of 

σσσσaσσσσ 2222222222222222 /a2 is 0.01799.  Using Equation 5.6.2 the value of ΨΨΨΨΨΨΨΨΨΨΨΨΨΨΨ is 0.01799 *

(10000 * 10)1/2 = 5.69.  Comparing this to the value of 5.107 listed in Ta-

ble 5.6.1 we see that there is a difference of about 10%.  This difference is 

due to the fact that the values in the table (and in Figure 5.6.1) were gener-

ated using a large value of n and can thus be considered as the asymptotic 

timates of the predicted value of σσσσaσσσσ 2222222222222222 /a2 even for n as small as 10.

Figure 5.6.1 ΨΨΨΨΨΨΨΨΨΨΨΨΨΨΨ22222222222222 versus z for Several Values of z a3 / a1

These results can be used to predict the value of σσσσaσσσσ 2222222222222222 /a2 that can be ex-

pected from any combination of the experimental parameters.  Using Fig-

ure 5.6.1 and Equation 5.6.2, the value of σσσσaσσσσ 2222222222222222 /a2 can be estimated for a 

range of combinations of 3 dimensionless parameters: a3/a1, z, and a1tmaxt .  

It should be noted that our objective was to measure half-life but Equation 

5.6.2 shows results for the relative uncertainty that we should expect for 

a2.  Since half-life is inversely proportional to the decay constant a2 (Equa-

tion 1.1.2), the relative uncertainty in the half-life h is the same as the rela-

tive uncertainty in a2 : 

2

2

ah

ah
σσσσσσσσ ====            (5.6.3) 

2

values.  It is reassuring to see that  using Figure 5.6.1 yields reasonable

estt
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As an example of the use of Equation 5.6.2, consider the experimental de-

sign problem posed in Section 5.1: the measurement of a2 to 1% accuracy

for a radioactive isotope with a half-life of approximately 1 second.  We

see from Figure 5.6.1 that ΨΨΨΨΨΨΨΨΨΨΨΨΨΨΨΨ222222222222222 is close to its minimum value at z = 10 so let z

us choose this value of z as the design value.  Since z a2 is approximately

equal to 0.693 / half-life,   a2 = 0.693 / 1.0, and tmaxt =x z / a2 = 10 / 0.693 =

14.4 seconds.  In Table 5.6.1 values of ΨΨΨΨΨΨΨΨΨΨΨΨΨΨΨΨ222222222222222  are listed for different values of 

the ratio a3 / a/ 1 and then the value of a1 required to obtain σσσσaσσσσ 2222222222222222 /a2 = 0.01 are 

computed.  If the value of a3 is estimated by a separate experiment, we can 

thus estimate the value of a1 that yields the required accuracy.  It should be

remembered that we are not guaranteed that the resulting accuracy will be

exactly 1%.  The actual results of experiments based upon this design 

should be χ χ χ χ 222222222222222 distributed about this average value of 1%. 222222222

From the table we see that if the value of the noise ratio a3 / a/ 1 is close to 

zero, then the design value of a1 is about 7500 counts per second.  As the

noise ratio increases, the design value of a1 must be increased.   Let us say 

that we are limited to a value of a1 equal to 15000.  We would thus be lim-

ited to a noise ratio of about 0.04.  In other words, the value of a3 would 

have to be limited to about 0.04 * 15000 = 600 counts per second. 

Whether or not this is achievable is dependent upon the actual experimen-

tal equipment and environment.  However, it is extremely useful to know 

this prior to actually running the experiment.   
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PARAMETERS USED IN REGRESS ANALYSIS: Thu Jun 24
08:58:27 2004 
  INPUT PARMS FILE: tab561.par 
  INPUT DATA  FILE: tab561.par 
  REGRESS  VERSION: 4.08, Dec 22, 2003

  Prediction Analysis Option  (MODE='P') 
  N - Number of recs used to build model  :    10
  NCOL - Number of data columns           :     0
  NY   - Number of dependent variables    :     1
  Y VALUES - computed using A0 & T values
  SYTYPE -   SIGMA Y = CY1 * sqrt(Y)   CY1: 1.000
  X Values - computed using interpolation table
  STTYPE - Sigma type for T               :     0

  Function Y:  A1*EXP(-A2*T) + A3 
   K       A0(K)        A(K)  PRED_SA(K) 
   1    10000.00    10000.00   186.04627 
   2     1.00000     1.00000     0.01799 
   3   500.00000   500.00000    10.03220 

 POINT           T       YCALC   PRED_SIGY 
     1     0.50000  6565.30660    78.44070 
     2     1.50000  2731.30160    33.92022 
     3     2.50000  1320.84999    23.05382 
     4     3.50000   801.97383    13.06935 
     5     4.50000   611.08997     8.96969 
     6     5.50000   540.86771     8.81757 
     7     6.50000   515.03439     9.35975 
     8     7.50000   505.53084     9.71965 
     9     8.50000   502.03468     9.89662 
    10     9.50000   500.74852     9.97538 

Figure 5.6.2: Prediction Analysis for z =10 and z a3 / a1 = 0.05.

a3 / a1 ψψψψψψψψψψψψψψ22ψψψψ2ψψ222222ψψψψψψψψ2222 a1 = (ψ(ψ(ψψ((((((((ψ(ψ(ψ(ψ222ψψ222ψ222222ψψψψ2222 )/0.01)/0.01)/0.01))0 01)0 01)0 01)////0.01)/0.01)/0.01)/0.01)222222222222222 / tmax t

0.00 3.292  7526 
0.05 5.107 18112 
0.10 5.856 23814 
0.20 6.941 33457 
0.30 7.792 42163 
0.40 8.526 50481 
0.50 9.183 58564 

Table 5.6.1  a1 as function of a3 / a1 for z = a2tmaxt  = 10   x
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5.7 Designs for Some Classical Experiments 

In the book Prediction Analysis [WO67] I analyzed a number of classical 

experiments and included equations and graphs that allow the user to pre-

dict the 
kaσσσσ s for combinations of the experimental variables.  The 

mathematical models considered in that book included polynomial func-

tions (Chapter 5), exponential functions (Chapter 6), sine series (Chapter 

7) and Gaussian functions (Chapter 8).  Three alternative uncertainty mod-

els were analyzed for each mathematical model: 

1) Constant uncertainty: yiy K====σσσσ
2) Constant fractional uncertainty: iyiy yK====σσσσ

3) Counting statistical uncertainty: 
21 /

iyiy yK====σσσσ

The uncertainties for the independent x variable were assumed to be either x

0 or a constant value KxKK .  In this chapter two different cases were discussed 

in the previous section: 

1) The first order polynomial function (i.e., the straight line) with 

constant uncertainty in the values of xi andi yi (Section 5.4 and i

5.5). 

2) The exponential function with background (Equation 5.3.1)

and with counting statistics as the uncertainty model for the 

values of yi (Sections 5.3 and 5.6).i

The first case was chosen to illustrate an analytical approach to design in 

which equations used to predict the
kaσσσσ s were developed.  The second 

case was chosen to illustrate the use of simulations to develop graphs for 
predicting the

kaσσσσ 's when development of equations is too cumbersome.  

In this section three additional models are considered.  The choice of mod-

els is based upon their usefulness and includes the following: 

1) Experiment 1:  A straight-line model with equally spaced x values x

and constant fractional uncertainty in the values of y.

2) Experiment 2:  A decaying exponential model with equally spaced t

(time) values and uncertainty in the values of y based upon counting

’ s

’s
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statistics.  For this experiment the background term is assumed to be

negligible.  

3) Experiment 3:  A Gaussian peak model with equally spaced x values x

and uncertainty in the values of y based upon counting statistics.

Experiment 1 :

A useful variation of the model considered in Sections 5.4 and 5.5 is the

straight line but with constant fractional uncertainty for the data points.  It 

is assumed that the n data points will be equally spaced along the x axis x

and all values of x are greater or equal to zero.  The simple equations de-x

veloped for constant uncertainty can be used when the range of the y val-

ues is not large.  However, when there are considerable differences in the 

values of y (for example, yn / y1 is either much greater or much less than 1, 

the simple equations are not applicable.  Figure 5.7.1 illustrates the type of 

data that one might expect in such experiments.  A common usage for such 

experiments is to fit a line to the data in order to determine the value of a1

many experiments are performed in which the purpose is to determine the 

slope of the line.

Figure 5.7.1 Straight Line Fit to Data with Constant 

Fractional Error 

Analysis of this class of experiments yields equations that are extremely 

complicated and are therefore not particularly useful.  Results are pre-

sented graphically in Figures 5.7.2 and 5.7.3 for two dimensionless groups:

(i.e., y for x = 0) when it is impossible to measure the value directly.  Also,x
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maxy
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====

σσσσθθθθ          (5.7.2)

The denominator of these groups is the value of σσσσ yσ  for the data point withy

the greatest uncertainty (either KyKK yyy 1 or Kr yKK yyy n). The results for these groups

are presented as functions of ynyy /ynn 1. The results are asymptotic values as n 

approaches infinity but are good approximations even for small values of 

n.   The first group is also a function of rxr  (see Equation 5.4.13).  Note that x

the results are exactly the same as computed using Equations 5.4.14 and 

5.4.15 when yn /y1 = 1 if we use KyKK ymax in place of KyKK in these equations. 

Figure 5.7.2 θθθθ  versus yn / y1 for several values of rxr1 
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Figure 5.7.3  θθθθ  versus yn / y1

As an example of the use of Figures 5.7.2 and 5.7.3, assume that we are 

planning an experiment to fit a line to measurements of y versus x from x x =x

5 to x =15.  Assume that thex x s will be equally spaced with ∆∆∆∆x∆∆∆∆∆∆∆ =0.5 and x

therefore n = 21.  If the values of y are measured to 5% accuracy and the 

range of y values is from about 2 to about 20 (i.e., yn / y1 = 10), what sort 

of accuracy can we expect in the resulting values of a1 and ad 2?  The value 

of rxr  for this experiment is x xavg / g (x(( n – x1) = 10 / 10 = 1 so from Figure

5.7.2 the value of θθθθ111111θθθ111111θθθ1111 is about 1.1.  Using Equation 5.7.1 the expected value 

of 1aσσσσ  = 1.1*0.05*20 / 211/2 = 0.24.  From Figure 5.7.3 the value of θθθθ 2222222222222222 is

about 1.5 so from Equation 5.7.2 the expected value of 2aσσσσ = 1.5*0.05*

20 / (10*211/2) = 0.033.

Experiment 2:

used: 

(((( )))) ta
eatfy

⋅⋅⋅⋅−−−−⋅⋅⋅⋅======== 1           (5.7.3)

2 

’s

Equation 5.3.1, the following mathematical model is

Another usefuff l experiment is similar to the experiment described in Section

5.3 (i.e., measuring the count rate of a radioactive isotope as a function of 

time) but without a significant background count rate. The uncertainties for 

the values of y are assumed to be based upon counting statistics.  In place of 
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Since there is no background count rate, we can define a1 as the number of 

counts per ∆∆∆∆t∆∆∆∆∆∆∆∆ seconds and therefore the uncertainties in the measured val-t

ues of y will be
21 /

iy . Defining z as in Section 5.6 (i.e., z z =z a2 tmaxt =x a2n∆∆∆∆ t∆∆∆∆ ),t

 an equation can be developed for estimating 2aσσσσ  [WO67]:

(((( )))) (((( )))) 21

21

1

2

2

12

/

/

Det

ez
na

a

a −−−−========ΨΨΨΨ
σσσσ

        (5.7.4)

Where the determinant of the C matrix is computed as follows: C

21221 2 ++++++++++++−−−−==== −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− zezzeeDet zzz
      (5.7.5) 

As an example of the usage of Equation 5.7.4, consider an experiment in

which a2 is expected to be approximately 2 (sec-1) but we wish to measure 

it to 1% accuracy.  Let us choose a design value of z =10 based upon z n =

100 and ∆∆∆∆ t∆∆∆∆ = 0.05 t sec.  (Note: z = a2n∆∆∆∆ t∆∆∆∆ ). t  Substituting this number into

Equation 5.7.5 we see that Det is very close to 1 and therefore t ΨΨΨΨΨΨΨΨΨΨΨΨΨΨΨΨΨΨΨ222222222222222 is very

close to 101/2.  Solving for a1 : 

(((( )))) (((( ))))
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010100
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2

1

2

,
.a/n

a

a

========
ΨΨΨΨ====

σσσσ
         (5.7.6) 

Is there an optimum value of z for running this experiment?  The optimum 

value is the value that minimizes a1.  Values of 2ΨΨΨΨ are shown in Table 

5.7.1 for various values of z.  We see that 2ΨΨΨΨ  is minimized at about z = 4. z

For this value of z we only need about 585 counts in the first time window z

to achieve an expected accuracy of 1% in the measured value of a2.  
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z 
2ΨΨΨΨ a1

 1.0 4.465 1994 
 2.0 2.895  838 
 3.0 2.503  627 
 3.5 2.439  595 
 4.0 2.419  585 
 4.5 2.431  591 
 5.0 2.463  607 
10.0 3.169 1004
15.0 3.871 1498
20.0 4.447 1978

Table 5.7.1 2ΨΨΨΨ and a1 versus z.  a is computed using Equation 5.7.6.

Experiment 3:

The final experiment discussed in this section is based upon data that is

modeled using a Gaussian peak with unknown height (a1), peak width (a2),

and peak location (a3).  The mathematical model for the values of y as a 

function of x is:x

2

2

3

1

−−−−−−−−−−−−−−−
==== a

ax−−−−−−−−−−−−−−−

eay            (5.7.7) 

Typically for experiments that are based upon this model data is recorded 

in some sort of multi-channel analyzer for some fixed time duration of the

experiment.  The x s are the mid-points of the channels.  At the end of the 

experiment the number of counts recorded in each channel is analyzed 

based upon Equation 5.7.7.  The uncertainties for the values of y are as-

sumed to be based upon counting statistics:
21 /

iiy y====σσσσ .  In Figure 5.7.4,

y is shown as a function of u (a dimensionless variable):

2

3

a

ax
u

−−−−====             (5.7.8)

As shown in 5.7.4 we assume that the data will be centered near the loca-

tion of the peak (i.e., at u = 0). In other words, umin will be approximately 

1

’s
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equal to -umax.  Results are shown in Figure 5.7.5 for ΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩk (k = 1, 2 and 3)k

versus umax.  The ΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩk s are defined as follows: 
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na
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aσσσσ====ΩΩΩΩ           (5.7.9) 
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na
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k

σσσσ====ΩΩΩΩ  for k = 2 and 3.            (5.7.10) k

As an example of the usage of these results, consider an experiment in

which we want to measure a3 (the peak location) to an accuracy of 0.01. 

The value is somewhere near x = 20 and our data ranges from 15 to 25.  x

The approximate  value of a2 is 2  therefore the  value of  umax is (25-20) /x

2 = 2.5.  Although it is difficult to read the value of ΩΩ3 from Figure 5.7.5 it 3

channel analyzer, what value of a1 is required to obtain the desired accu-

racy of 0.01?  From Equation 5.7.10 : 
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ΩΩΩΩ
.*an

a
a

σσσσ
      (5.7.11) 

Figure 5.7.4 A Gaussian Peak with no Background 

These results indicate that the experiment should be run long enough so 

that about 221 counts are recorded in the central channel.  We can also ask 

’ s

appears to be about 1.2.  (The result from an actual simulation for this 

experiment is 1.19).  Assuming the experiment will be performed using a 256
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how accurately the results for a1 and a2 should be in the same experiment. 

Since ΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩ2 and ΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩ3 are approximately the same, the value of 2aσσσσ should also

be about 0.01.  The value of ΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩ1 for this experiment is 2.07 so from Equa-

tion 5.7.9 we estimate that 1aσσσσ  should be about 2.07 * 2211/2 / 2561/2 = 1.92. 

Figure 5.7.5 ΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩk versus k umax

5.8 Choosing the Values of the Independent Variables 

In the previous sections of this chapter we assumed that the values of the 

independent variable x were equally distributed along the x x axis (i.e., ∆∆∆∆x∆∆∆∆∆∆∆ is x

constant).  However, the choice of constant ∆∆∆∆x ∆∆∆∆∆∆∆∆ is not necessary and might 

not be the best choice for the selection of the values of the x variable.  In x

particular, for experiments in which there is a large expense associated 

with each data point, it is worth studying the effect of the choice of the x

variables upon the resulting accuracy of the proposed experiment.
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Figure 5.8.1 Experiment to Measure Effectiveness of a Radiation 

Shield 

As an example, consider an experiment to measure the effectiveness of a 

radiation protection shield.  The experiment will be run by placing 10 de-

tectors within the shield.  The radiation level will be measured at the 10

detector points simultaneously by recording radiation pulses at the detec-

tors.  The total number of counts at detector i located at point i xi isi yi withi

uncertainty 
21 /

iiy y====σσσσ .  The experimental setup is shown in Figure 5.8.1.  

The applicable mathematical model is similar to Equation 5.7.3 but for this 

experiment the independent variable is x measured in units of length (x cm) 

rather than t time units (e.g.,t sec):

xa
eaxfy

⋅⋅⋅⋅−−−−⋅⋅⋅⋅======== 2
1xxxx          (5.8.1)

We are interested in determining the values of both a1 and ad 2.  The units of 

a2 are in cm-1 and the intensity a1 is in units of counts. Upon completion of 

the experiment the value of a1 can be converted into a count rate by divid-

ing the measured value by the duration of the experiment.  Let us assume

that the closest that we can get to the left side of the shield is 1 cm.  If we
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were to choose a constant value of ∆∆∆∆ x∆∆∆∆  = 1 then the detectors would be x

placed at x = 1, 2, 3, .. 10.  If, however, we don’t insist upon constant ∆∆∆∆ x∆∆∆∆ ,

can we improve the accuracy of the proposed experiment?  A preliminary 

measurement using only 2 points indicates that a2 is approximately 0.5. 

To study the problem of placement of the detectors, let us assume the fol-

lowing model starting from x1:

xxx ∆∆∆∆++++==== 12 x

(((( ))))rxxx ++++∆∆∆∆++++==== 1x

(((( ))))2
14 1 rrxxx ++++++++∆∆∆∆++++====

(((( ))))22
1 1(((( −−−−−−−−−−−−−−−−++++++++++++∆∆∆∆++++==== n

n r...rrxxx

If we wish to have more points closer to the left side of the shield, we 

would choose a value of r > 1.  Conversely, if we wish to have more points 

closer to the right side of the shield, we would choose a value of r < 1.  In

Figure 5.8.2 values of the dimensionless groups 1ΨΨΨΨ and 2ΨΨΨΨ are plotted 

for various combinations of r and r ∆∆∆∆ x∆∆∆∆ .xx 2ΨΨΨΨ  is defined in Equation 5.7.4.  

1ΨΨΨΨ is defined as follows: 

(((( )))) 21

1

1

1
1 /

na
a

aσσσσ
====ΨΨΨΨ          (5.8.2) 



5.8 Choosing the Values of the Independent Variables   165 

Figure 5.8.2  1ΨΨΨΨ and 2ΨΨΨΨ versus ∆∆∆∆x∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆  for 3 values of x rr

These results were obtained using simulations with the REGRESS pro-

gram.  The simulation output for ∆∆∆∆ x∆∆∆∆∆  = 1.25 and x r = 0.9 is shown in Figurer

5.8.3.  The curves in Figure 5.8.2 indicate that there is an optimum value 

of ∆∆∆∆x∆∆∆∆∆∆∆∆ that minimizes x 1ΨΨΨΨ and another optimum value that minimizes 2ΨΨΨΨ
for each value of r.  However, comparing the results in the table for r = 0.9 r

and 1.1 to r = 1 (i.e., constant ∆∆x∆∆∆∆ ), we note that the effect of r upon bothr

1ΨΨΨΨ and 2Ψ is not very dramatic.

As an example of the usage of these results, let us design the experiment so 

1

x = 1 is about 607 (regardless of the choice of x ∆∆∆∆ x ∆∆∆∆ and r), so the value of a1

should be increased by a factor of 1000 / 607 to 1648.  If we use ∆∆∆∆ x ∆∆∆∆ = 1.25, 

that we run it long enough so that 1000 counts are recorded at the point 

= 1.  From Figure 5.8.3 we see that if a = 1000, then the number of counts at x
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and r = 0.9, the values of r 1ΨΨΨΨ and 2ΨΨΨΨ  are 4.47 and 2.74.  From Equation

5.8.2 the expected value of 
1aσσσσ is 4.47 * (1648/10)1/2 = 57.4. From Equa-

tion 5.7.4 the expected value of 
2aσσσσ is 2.74 * 0.5 / (1648*10)1/2 = 0.0107.  

Figure 5.8.3  Simulation results for  x = 1.25,  x r = 0.9, a1 = 1000,  a 2 = 0.5 

PARAMETERS USED IN REGRESS ANALYSIS: Wed Nov 03  
  INPUT PARMS FILE: fig583.par 
  INPUT DATA  FILE: fig583.dat 
  REGRESS  VERSION: 4.10, Nov 1, 2004 
 Prediction Analysis Option  (MODE='P') 
  STARTREC - First record used            :     1
  N - Number of recs used to build model  :    10
  NCOL - Number of data columns           :     1
  Y VALUES - computed using A0 & X values
  SYTYPE - Sigma type for Y               :     4
     TYPE 4: SIGMA Y = CY * sqrt(Y)     CY: 1.000
  M - Number of independent variables     :     1
  Column for X                            :     1
  SXTYPE - Sigma type for X               :     0
Analysis for Set 1
  Function Y:  A1*EXP(-A2*X) 

 POINT           X           Y        SIGY       YCALC 
     1     1.00000   606.53066    24.62784   606.53066 
     2     2.25000   324.65247    18.01811   324.65247 
     3     3.37500   184.98140    13.60079   184.98140 
     4     4.38750   111.49785    10.55925   111.49785 
     5     5.29875    70.69538     8.40805    70.69538 
     6     6.11888    46.91396     6.84938    46.91396 
     7     6.85699    32.43572     5.69524    32.43572 
     8     7.52129    23.26873     4.82377    23.26873 
     9     8.11916    17.25627     4.15407    17.25627 
    10     8.65724    13.18573     3.63122    13.18573 

   K       A0(K)        A(K)  PRED_SA(K) 
   1     1000.00     1000.00    44.71479 
   2     0.50000     0.50000     0.01372 
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POINT           X       YCALC   PRED_SIGY
    1     1.00000   606.53066    20.99456
    2     2.25000   324.65247     8.74574
    3     3.37500   184.98140     5.24246
    4     4.38750   111.49785     3.98922
    5     5.29875    70.69538     3.19238
    6     6.11888    46.91396     2.56505
    7     6.85699    32.43572     2.06701
    8     7.52129    23.26873     1.67806
    9     8.11916    17.25627     1.37711
   10     8.65724    13.18573     1.14454

Figure 5.8.3 (cont)  Results for x = 1.25, x r = 0.9,  a1 = 1000,  a2 = 0.5 

5.9 Some Comments about Accuracy 

In this chapter expected or predicted accuracy is discussed.  Design of ex-

periments for several classes of well known experiments is facilitated by 

providing equations or graphs for predicted uncertainty.  For experiments 

not covered in this chapter, the methodology for obtaining similar predic-

tion tools is developed.  What should be understood is the accuracy of 

these uncertainty predictions.

In Section 5.2 it is explained that if the uncertainty models for the individ-

ual data points are reasonable, the expected value of Sf isS n–p–  and S / S n–p–  is

one so therefore the predicted value of the standard deviation of ak is:  k

211 /
kka C

k

−−−−−−−−−−−−−−−−−−−====σσσσ             (5.2.1)

and not the actual value as formulated in Equation 2.5.1:

211 /
kka C

pn

S
k

−−−−−−−−−−−−−−−−−−−

−−−−
====σσσσ           (2.5.1) 

As explained in Section 3.2 the value of S isS  χ χ χ χ 22222222222222 (chi-squared) distributed 22222222

with a mean value of n–p– , so in actuality, we can predict a range of values

for the
kaσσσσ s.  To appreciate the magnitude of this range, values of S / S n–p–

are listed for various values of n–p–  and α α α α in Table 5.9.1.  The parameter 

α α α α is the fraction of the distribution above the values listed in the columns. 

Clearly, as n–p–  increases the range decreases and therefore the predicted 

’s
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values for
kaσσσσ are more accurate.  However, this begins to appear as over-

kill!  When planning most experiments all we usually need are "ball-park" 

estimates of the values for
kaσσσσ that we can expect from the experimental 

results.  The values in this table can be extended to larger values of k = n-p

by using the normal approximation to the  χ χ χ χ222χχχχχχχχχχχχ22222222χχχχχχχχχχχχχχ2222χχχχχχχχχχχχχχχχχχχχχχχχχχχχχχχχχχχχχχχχχχχχχχχχχχχχχχχχχχχχχχχχχχ  distribution.  The standard 

deviation of the distribution is approaches k2 for large values of k sok

the standard deviation of  S / S k  is k2 / k = k/2 .  For example, for k = k

100, the standard deviation is (2/100)1/2 = 0.141.  For a standard normal

distribution the 99% and 1% limits are at 2.326 and +2.326 so the limits

for S / S k are 1 0.141 * 2.326 = 0.672 and 1 + 0.141 * 2.326 = 1.328 as

listed in the table). 

n-p αααα=0.99ααααααααααααα αααα=0.95 ααααααααααααα αααα=0.05 ααααααααααααα αααα=0.01 ααααααααααααα
  4 0.074 0.178 2.372 3.319 
  6 0.145 0.273 2.099 2.802 
  8 0.205 0.342 1.938 2.511 
 10 0.256 0.394 1.831 2.321 
 15 0.349 0.484 1.666 2.039 
 20 0.413 0.543 1.571 1.878 
 25 0.461 0.584 1.506 1.773 
 30 0.498 0.615 1.459 1.696 
 50 0.535 0.671 1.329 1.465 
100 0.672 0.724 1.276 1.328 

Table 5.9.1 Values of S / S n–p– for combinations of n–p– and αααα.αααααααααααα

As an example of the usage of the results in this table, consider the ex-

periment analyzed in Section 5.8.  In the experiment it was proposed to 

gather radiation data at 10 detector locations and the expected accuracies 

for the values of 
1aσσσσ and 

2aσσσσ were predicted to be 57.4 and 0.0107.  Us-

ing Table 5.9.1, we can add ranges to these values.  The value of n–p–  is 10

– 2 = 8 so we can expect that if the experiment is repeated many times,

90% of the values of S / S n–p– will be in the range 0.342 to 1.938.  Substitut-

ing these values into Equation 2.5.1 the resulting 90% range for 
1aσσσσ would 

be 19.6 to 111 and the resulting range for 
2aσσσσ would be 0.00365 to 0.0207.  

In other words, the ratio of the maximum and minimum values of these

ranges is greater than a factor of 5 (i.e., 1.938 / 0.342 = 5.67).  We see that 

for this experiment the predicted values of 
1aσσσσ and 

2aσσσσ are really just ball-

park estimates!
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6.1 Introduction 

One of the earliest applications of digital computers was least squares 

analysis of experimental data.  The Manhattan Project during World War 

II included a large emphasis on experiments to determine basic properties

such as half lives of radioactive isotopes, radiation shielding parameters,

biological effects of radiation and many other properties of vital interest.  

The fundamentals of nonlinear least squares analysis was known then and 

was summarized in a book by W. E. Deming in 1943 [DE43].  An unclassi-

fied Los Alamos publication in 1960 by R. Moore and R. Zeigler described 

the software used at Los Alamos for solving nonlinear least squares prob-

lems [MO60].  Besides describing their general purpose software, they dis-

cussed some of the problems encountered in converging to a solution for 

some mathematical models. 

software.  Some readers, however, will be interested in writing their own

software to solve a specific problem.  Chapter 2 includes sufficient details 

to allow a user to rapidly get a system up and running.  For all readers it 

should be useful to survey features that one would expect to see in a gen-

eral purpose NLR program.  It should be emphasized that there is a differ-

ence between a general purpose NLR program and a program written to 

quickly solve a specific problem.  Indeed, using a language like 

MATLAB, some of my students in a graduate course that I have been 

teaching for a number of years (Design and Analysis of Experiments) have

produced NLR code to solve specific homework problems. 

Statistical software is available through the internet from a massive variety

of sources.  A Google search for "statistical software" turned up 9.5 mil-

lion hits!  Some of the software is free and other software programs are 

Most readers of this book are either users of available NLR (nonlinear 

regression) software or are interested in evaluating and/or obtaining NLR 
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available for a price that can vary over a wide range.  Some of the software 

includes nonlinear regression applications.  Refining the search by adding 

"nonlinear regression" turned up over 600,000 hits.  Many of these hits de-

scribe nonlinear regression modules that are part of larger statistical pack-

ages.  Further refining the search to S-plus, the number of hits was over 

26,000. Nonlinear regression software in S-plus is described by Venables 

and Ripley [VE02].  Huet et. al. describe a program called NLS2 that runs

Advanced Statistics Manual includes details for nonlinear regression 

analyses within SPSS [ZE98].  Refining the search to SAS, the number of 

hits was about 51,000.  The NLIN procedure in the SAS system is a gen-

eral purpose nonlinear regression program and is described in a paper by

Oliver Schabenberger [SC98].  Refining the search to MATLAB, over 

41,000 hits were noted.  MATLAB m files for performing nonlinear re-

gression analyses are included in [CO99].  The MATLAB Statistical Tool-

box includes a function called nlinfit for performing nonlinear regression 

[www.mathworks.com/products/statistics]. 

In Section 6.2 features that are common to general purpose NLR programs 

are described and features that are desirable but not available in all the

programs are also described.  In Section 6.3 the NIST Statistical Reference

Datasets are discussed.  These well-known datasets are used to evaluate 

NLR programs and search algorithms.  In Section 6.4 the subject of con-

vergence is discussed.  For most users, performance of NLR programs is

primarily based upon a single issue: does the program achieve conver-

gence for his or her problems of interest?  In Section 6.5 a problem associ-

ated with linear regression is discussed.  Multi-dimensional modeling is 

discussed in Section 6.6 and software performance is discussed in Section 

6.7. 

6.2 General Purpose Nonlinear Regression Programs 

There are a number of general purpose nonlinear regression programs that 

can easily be obtained and allow the user to run most problems that he or 

she might encounter.  Some of the programs are offered as freeware and 

some of the programs must be purchased.  Some programs are offered on a

free trial basis but must then be purchased if the user is satisfied and 

wishes to use the program after termination of the trial period.  This sec-

tion includes a survey of features that one encounters while reviewing 

under the R statistical software environment as well as S-plus [HU03].  

Refining the search to SPSS, the number of hits was over 30,000.  The SPSS 
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nonlinear regression software.  The purpose of this chapter is to provide

the reader with the necessary background required to make a reasoned 

choice when deciding upon which program to use for his or her specific 

applications.  

When one works within the framework of a general purpose statistical k

software environment (e.g., SAS, SPSS, S-plus, MATLAB Statistical

Toolbox), a reasonable choice for nonlinear regression is a program that is

compatible with the environment.  Data created by one module of the sys-

tem can then be used directly by the nonlinear regression module.  Alterna-

tively one can use a general purpose nonlinear regression program that 

runs independently (i.e., not within a specific statistical software environ-

ment).  One problem with this alternative is data compatibility but this

need not be a major obstacle.  Most statistical software environments are 

Excel compatible, so if the nonlinear regression program is also Excel

compatible, then data can be easily moved from the statistical software en-

vironment through Excel to the nonlinear regression program.  In addition, 

ASCII text files can be used by almost all general purpose programs and 

statistical environments. 

To qualify as a general purpose nonlinear regression program I feel that as

a minimum, the following features should be included:  

1) Mathematical models should be entered as input parameters. 

2) The program should accept nonlinear models with respect to

the unknown parameters (and not just nonlinear with respect to 

the independent variables). 

3) There should be no need for the user to supply derivatives 

(neither analytical nor numerical) of the mathematical model.

4) The program should be able to accommodate mathematical

models that are multi-dimensional in both the dependent and 

independent variables. 

5) The user should be able to weight the data according to any

weighting scheme of his or her choosing. 

6) The program should include a sophisticated convergence algo-

rithm.  The National Institute of Standards nonlinear regres-

sion datasets (described in Section 6.3) provide a rich variety 

of problems that can be used to test the quality of a program s 

ability to achieve convergence.

In addition, there are a number of desirable features that one would like to 

see in a general nonlinear regression program: 

s
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1) Allow the user to name the dependent and independent vari-

ables and the unknown parameters. 

2) Allow the user to define symbolic constants.

3) Allow specification of Bayesian estimators for the unknown 

parameters.  

4) Include a simulation feature useful for designing experiments. 

(See Chapter 5 for a discussion and examples related to this

feature.)

5) Allow input of Excel text files. 

6) Include a feature to generate an interpolation table that lists

values of the dependent variable and their standard deviations

for a specified set of the independent variable or variables.  

7) Allow program usage from within a general purpose statistical

or programming environment. 

8) Include a feature for generation of graphical output.

Treating mathematical models as input parameters is probably the most 

important feature of a general purpose NLR program.  If the user is forced 

to program a function for every problem encountered, then the NLR pro-

gram is not really "general purpose". If the user is working in an interac-

having to exit the NLR program to reprogram the function. 

The need for symbolic constants is a feature that can be most useful for 

problems in which convergence is difficult.  This subject is discussed in 

Section 6.4.

There are several debatable features that are really a matter of user prefer-

ence.  Should the program use a parameter file for specifying the parame-

programs) are interactive and allow the user to specify what he or she

wishes to do thru a menu driven series of questions.  For nonlinear regres-

sion, the number of parameters can be considerable so if the program is

accessed through a GUI interface, there should be some method for short-

cutting the process when the change from a previous analysis is minor.  

This particular problem is avoided if parameter files are used.  All one has 

to do is edit the parameter file and make changes or perhaps copy the file 

under a new name and then change the new file. 

tive mode and notes that a particular function does not yield results of 

sufficient accuracy, he or she should be able to enter a new function without 

ters of a particular analysis or should the program work through a GUI

interface?  Today, most computer programs (not just nonlinear regression 
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The need for graphic output is a very reasonable user requirement, but 

should it be an integral part of an NLR general purpose program?  As long 

as one can easily port the data to another program that supports graphics, 

then this should be a reasonable compromise.  For example, if the NLR 

program outputs text data, this output can then be inputted to a program 

like Excel to obtain the necessary graphical output. 

6.3 The NIST Statistical Reference Datasets 

The U.S. National Institute of Standards and Technology (NIST) initiated 

a project to develop a standard group of statistical reference datasets 

(StRD s).   In their words the object of the project was "to improve the ac-

curacy of statistical software by providing reference datasets with certified 

computational results that enable the objective evaluation of statistical

software."   One of the specific areas covered was datasets for nonlinear 

regression.  The NIST StRD project home page can be accessed at: 

http://www.itl.nist.gov/div898/strd/index.html 

Name Difficulty Parms Num
pts 

Function

Misrala Lower 2  14 b1*(1-exp[-b2*x]) 

Chwirut1 Lower 3 214 exp[-b1*x]/(b2+b3*x)

Chwirut2 Lower 3  54 exp(-b1*x)/(b2+b3*x) 

Lanczos3 Lower 6  24 b1*exp(-b2*x) + 

b3*exp(-b4*x) + b5*exp(-b6*x) 

Gauss1 Lower 8 250 b1*exp( -b2*x ) +  

b3*exp( -(x-b4)**2 / b5**2 ) +

b6*exp( -(x-b7)**2 / b8**2 ) 

s

To examine the datasets, go into Dataset Archives and then Nonlinear

cluded in Table 6.3.1: 

gression.  A summary of the NIST nonlinear regression datasets is
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Name Difficulty Parms Num 

pts

Function

Nelson Average 3 128 b1 - b2*x1 * exp[-b3*x2]

MGH17 Average 5  33 b1 + b2*exp[-x*b4] +  

b3*exp[-x*b5]

Lanczos1 Average 6  24 b1*exp(-b2*x) + b3*exp(-b4*x)

+ b5*exp(-b6*x) 

Lanczos2 Average 6   24 Same as Lanczos1

Gauss3 Average 8 250 Same as Gauss1

Misralc Average 2  14 b1 * (1-(1+2*b2*x)**(-.5)) 

Misrald Average 2  14 b1*b2*x*((1+b2*x)**(-1))

Roszman1 Average 4  25 b1 - b2*x - arctan[b3/(x-b4)]/pi

ENSO Average 9 168 b1 + b2*cos( 2*pi*x/12 ) +

b3*sin( 2*pi*x/12 )  + 

b5*cos( 2*pi*x/b4 ) + 

b6*sin( 2*pi*x/b4 )  + 

b8*cos( 2*pi*x/b7 ) + 

b9*sin( 2*pi*x/b7 ) 

MGH09 Higher 4  11 b1*(x**2+x*b2) / 

(x**2+x*b3+b4) 

MGH10 Higher 3  16 b1 * exp[b2/(x+b3)] 

Thurber 

Higher 7  37 (b1 + b2*x + b3*x**2 +

b4*x**3) / 

Gauss2 Lower 8 250 Same as Gauss1 

DanWood Lower 2   6 b1*x**b2

Misralb Lower 2  14 b1 * (1-(1+b2*x/2)**(-2))

Kirby2 Average 5 151 (b1 + b2*x + b3*x**2) / 

(1 + b4*x + b5*x**2)

Hahn1 Average 7 236 (b1+b2*x+b3*x**2+b4*x**3)  /   

(1+b5*x+b6*x**2+b7*x**3)
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NIST/ITL StRD
Dataset Name:  BoxBOD            (BoxBOD.dat) 
Description:   These data are described in detail in
Box, Hunter and Hunter (1978).  The response variable 
is biochemical oxygen demand (BOD) in mg/l, and the 
predictor variable is incubation time in days.

Reference: Box,G.P., W.G.Hunter, and J.S.Hunter(1978). 
          Statistics for Experimenters.
          New York, NY: Wiley, pp. 483-487. 

Data:      1 Response  (y = biochemical oxygen demand) 
          1 Predictor (x = incubation time) 
          6 Observations
          Higher Level of Difficulty
          Observed Data 

Model:     Exponential Class
          2 Parameters (b1 and b2)

          y = b1*(1-exp[-b2*x])  +  e 
Start 1 Start 2    Parameter     Standard Deviation 
b1=1      100   2.1380940889E+02  1.2354515176E+01 
b2=1     0.75   5.4723748542E-01  1.0455993237E-01 

Residual Sum of Squares:       1.1680088766E+03 
Residual Standard Deviation:   1.7088072423E+01 
Degrees of Freedom:            4
Number of Observations:        6

Data:   y             x
     109             1
     149             2
     149             3
     191             5
     213             7
     224            10

Figure 6.3.1 Data and Results for NIST Dataset BoxBOD



176  Chapter 6  SOFTWARE

to converge to a solution.  However, the choice of datasets is limited to

mathematical models that include a single independent variable x.  An-

other limitation is that only unit weighting is used for the all problems.

Details for one of the datasets (BoxBOD) are shown in Figure 6.3.1. 

The BoxBOD problem has onlym two unknown parameters (i.e., b1 and b2) 

and only six data points and yet it is listed as higher in level of difficultyr

because of the difficulty of converging to a solution from the Start m 1 initial

values.

One of the most well-known general purpose nonlinear regression pro-

grams is NLREG (www.nlreg.com).  They describe their results using the

NIST datasets as follows: "The NIST reference dataset suite contains 27 

datasets for validating nonlinear least squares regression analysis software.

NLREG has been used to analyze all of these datasets with the following

results: NLREG was able to successfully solve 24 of the datasets, producing

(1 + b5*x + b6*x**2 + b7*x**3)

BoxBOD Higher 2   6 b1*(1-exp[-b2*x])

Ratkwoskykk 3 Higher 3   9 b1 / (1+exp[b2-b3*x]/ )

Ratkowskykk 4 Higher 4  15 b1 / ((1+exp[b2-b3*x]/ )**(1/b4))//

Eckerle4 Higher 3 35 (b1/b2) *//

exp[-0.5*((x-b3)/b2)**2]//

Bennett5 Higher 3 154 b1 * (b2+x)**(-1/b3)//

Table 6.3.1 Datasets from the NIST Nonlinear Regression Library

There are 27 different data sets included in the library including the actual 

data files (in text format) and results from least squares analym ses of the 

data.  The datasets are classified by Level of Difficulty (lower, average and

higher), number of paramm eters (varying from 2 to 9), and numm ber of datam

points (varying from 6 to 250).  The datasets including the mathematical

models are listed in Table 6.3.1.  Each data set includes two different start-

ing points: one near the solution and one further away from the solution.

Also included are the least squares values and their estimated standard de-

viations.  Results also include the sum of the squares of the residualsm (i.e.,

S)SS and the Residual Standard deviation (i.e., sqrt(S / (/ n-p)).  The datasets

include a numberm of challenging problems that test the ability of a program

Name Difficulty Parms Num

ptstt

Function
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Results for the NLR program Stata 8.1 can be seen at 

http://www.stata.com/support/cert/nist/.  They achieved convergence for

all of the datasets but for one dataset of average difficulty (MGH17) and 4

of higher difficulty (MGH09, MGH10, Eckerle4 and Ratkowsky4) they

only achieved convergence from the nearer starting points. m Stata is a

"complete, integrated statistical pmm ackage that provides everything needed 

for data analysis, data management, and graphics".  The NLR module is 

only one feature of the Stata package.

Results for the program Datafix (a product of Oakdale Engineering) are

available at http://www.curvefitting.com/datasets.htm.  They achieved 

convergence for all datasets "without using analytical derivatives" but do

not specify if this was from the primm ary or secondary starting points. 

An Excel based NLR program is included as part m of the XLSTAT pack-

age. Details can be obtained at http://www.xlstat.com/indexus.html.  This 

digits. Three of the datasets (Gauss1, Gauss2 and Gauss3) did not con-

verge, and NLREG stopped with the message: Singular convergence. Mu-

tually dependent parameters?  The primary suggested starting values were 

used for all datasets except for MGH17, Lanczos2 and BoxBOD which did 

not converge with the primary suggested starting values but did converge

with the secondary suggested starting values."

The differences between the three Gauss datasets are in the data.  A plot of 

the Gauss1 data is shown in Figure 6.3.2. All three models include two

Gaussian peaks with an exponentially decaying background.  The peaks in 

the Gauss3 dataset are much closer together than the peaks in the other two

datasets and that is why its level of difficulty is considered higher.  How-

ever, NIST lists all three datasets as either lower or average level of diffi-

culty. I ran Gauss1, Gauss2 and Gauss3 using REGRESS and had no

problem converging from the primary suggested starting values.  My guess

is that somehow an error was introduced in the NLREG tests for these 

three datasets because it isn't logical that NLREG would fail for these and

yet pass all the tests for the higher level of difficulty.

Another available NLR general purpose program is LabFit which can be

located at http://www.angelfire.com/rnb/labfit/index.htm.  Results for all

the NIST datasets are included on the website. In their words they

"achieved convergence for all the primary starting values for all the data-

sets and the results are statistically identical to the certified values".

results that agree with the validated results within 5 or 6 significant 
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package runs within Excel and they include the Ratkowsky4 example in mm

their demonstration.  Their solution requires programming of the deriva-

tives of the modeling function and therefore cannot be considered as a

general purpose NLR program.  However, they have programmed com-

plete solutions including derivatives for a limited number of functions. m
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Figure 6.3.2 Gauss1 data from NIST Nonlinear Regression Library

http://www.tspintl.com/products/tsp/benchmarks/nlstab.txt 

They achieved convergence on all the datasets except Lanczos1.  No men-

tion is made regarding the starting points for the various tests.

The LIMDEP program (a product of Econometric Software) is another 

general purpose statistical econometric package.  Details regarding the 

LIMDEP program can be obtained at: 

http://www.limdep.com/programfeatures_accuracy.shtml 

The LIMDEP NLR module was tested using the NISP datasets as well as 

other benchmark datasets described by McCullough [MC99].  In their own

words: "LIMDEP was able to solve nearly all the benchmark problems us-

ing only the program default settings, and all of the rest with only minor 

additional effort."  This statement makes a lot of sense.  Most general pur-

pose NLR programs have default settings but for difficult problems, some 

minor adjustments in the parameters can lead to convergence.  This subject 

is considered in Section 6.4. 

6.4 Nonlinear Regression Convergence Problems  

In Section 6.3 the NIST dataset library of NLR problems is discussed.  The

library has been used extensively to test NLR computer programs.  The

An NLR program is included in the TSP econometrics package.  The 

results for the NIST nonlinear reference datasets can be seen on the TSP

International website:
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algorithm is a fundamental issue when developing NLR software and there

are a number of options open to the software developer.  It should be em-

phasized that there is no single algorithm that is best for all problems. 

What one hopes to achieve is an algorithm that performs well for most 

problems.  In addition, for problems that are difficult to converge, a good 

NLR program should offer the user features that can help achieve conver-

gence.  In this section some of the features that enhance convergence are 

discussed using examples from the NIST library.

There are two basic classes of search algorithms that can be used for NLR 

problems: 

1) Algorithms based upon usage of function derivatives to compute a 

vector of changes in the manner described in Section 2.4.

2) Stochastic algorithms that intelligently search thru a defined un-

known parameter space. 

The straight forward Gauss-Newton (GN) algorithm (Equations 2.4.16 and 

2.4.17) is the starting point for most algorithms of the first type.  This sim-

ple algorithm leads to convergence for many NLR problems but is not suf-

ficient for more difficult problems like some of those encountered in the 

NIST datasets.  To improve the probability of achieving convergence, 

Equation 2.4.16 can be replaced by:

kkk kk A*cafaa ++++==== k = 1 to k p        (6.4.1)

where caf is called the convergence acceleration factor.  As a default f caf isf

one, but for difficult problems, using a value of caf < 1 can sometimes lead f

to convergence.  A more sophisticated approach is to calculate the value of aa

S computed using the new values of S ak and compare this value with the

new > Sw oldSS ) the value of d caf is decreased (even to a nega-f

tive number).  It should be emphasized that caf is an input parameter and 

all changes of caf should be done algorithmically within the program for a f

given iteration.  For the next iteration the value of caf is restarted at the in-f

put value.  Sometimes it turns out that along the direction suggested by the 

A vector, S rises in both directions (i.e.,S caf >f 0 and caf <f 0).  When this 

happens the algorithm can be modified to alter the direction.  The 

Marquardt algorithm (sometimes called the Levenberg-Marquardt algo-

value of S computed using the old values.  As long as the value of S S 

decreases, continue along this line (i.e., increase caf ).  However, if the

reverse is true (i.e.,  Sn  

library has also been used to test convergence algorithms.  The choice of an 
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rithm) is very popular and is used to modify the basic Gauss Newton algo-

rithm [LE44, MA63, GA92].  Equations 2.4.16 or 6.4.1 are still used but the

A vector is computed using a modified procedure.  Instead of computing

the A vector using Equation 2.4.9, the following equation is used:

((( ))) VDCA
1−−−−++++==== λλλλ           (6.4.2) 

The matrix D is just the diagonal of the C matrix (with all off diagonal C

terms set to zero) and λλλλ is a scalar parameter.  By trying several different 

λλ

Tvrdik and Krivy survey several standard algorithms using the higher dif-

ficulty problems from the NIST datasets [TV04].  This paper can also be 

accessed online at http://albert.osu.cz/tvrdik/down/files/comp04.pdf. The

algorithms used are those included in several NLR standard packages: 

and an algorithm based upon the simplex method.  Their results are shown 

in Table 6.4.1. 

4.5 which uses a GN algorithm, SPSS 10.0 which uses a modified LM 

algorithm and SYSTAT 8.0 which includes both a modified GN algorithm 

values of λλ a new direction can often be found which leads to a better λλλλ
reduction of S then achieved using Equation 2.4.16 or 6.4.1. S

NCSS 2001 which uses a Levenberg-Marquardt (LM) algorithm, S-PLUS 
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NCSS SYST 

GN 

SYST 

Sim

S-Plus SPSS 

Start: 1            2 1           2 1           2 1           2 1           2 

Bennett5 2            1 OK      OK F           F OK    OK OK    OK 

BoxBOD F           F OK      OK F           F OK    OK F        OK 

Eckerle4 F           3 OK      OK F           F F        OK OK    OK 

MGH09 F           F F         OK OK      OK F          2 OK    OK 

MGH10 F           F OK      OK F         OK F        OK F           F 

Ratkowsky3 OK      OK OK      OK F           F F        OK OK    OK 

Ratkowsky4 F           3 OK      OK F           F F        OK OK    OK 

Thurber F           F OK      OK OK      OK F           F F           F

Table 6.4.1  Comparison of algorithms for NIST datasets. 

For each dataset, the programs were started from the far (1) and near (2) 

points as listed in the NIST reference datasets.  An entry of F means that 

the program failed to converge and OK means that it did converge and S 

was accurate to at least 4 significant digits.  A numerical entry means that 

it converged to 1, 2 or 3 significant digits.  Clearly the SYSTAT program 

using the modified GN algorithm outperformed the other program but this

does not mean that a GN algorithm is necessarily best.  It does, however,

prove that by cleverly modifying the basic algorithm one can achieve bet-

ter results. 

One of the easiest features that can be employed in an NLR program is to

limit the search for some or all of the unknown parameters.  For example,

consider the BoxBOD dataset from the NIST library.  Details are shown in 

Figure 6.3.1.  Results obtained using the REGRESS program with only the 

default parameters are shown in Figure 6.4.1. An examination of the re-

sults shows that the value of B2 becomes a huge negative number.  Look-

ing at the data in Figure 6.3.1 and the function used to specify Y we see

that Y increases with X so B2 must be a positive number.  Setting a value

of B2MIN = 0.001 and rerunning the program, the results in Figure 6.4.2 
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PARAMETERS USED IN REGRESS ANALYSIS: Thu Dec 02, 2004 
  INPUT PARMS FILE: boxbod.par
  INPUT DATA  FILE: boxbod.par
  REGRESS  VERSION: 4.10, Nov 15, 2004

 STARTREC - First record used            :     1 
 N - Number of recs used to build model  :     6 
 NO_DATA - Code for dependent variable    -999.0 
 NCOL - Number of data columns           :     2 
 NY   - Number of dependent variables    :     1 
 YCOL1 - Column for dep var Y               :  1 
 SYTYPE1 - Sigma type for Y              :     1 
    TYPE 1:  SIGMA Y = 1
 M - Number of independent variables     :     1 
 Column for X1                           :     2 
 SXTYPE1 - Sigma type for X1             :     0 
    TYPE 0:  SIGMA X1 = 0 
Analysis for Set 1
 Function Y:  B1*(1-EXP[-B2*X]) 
 EPS - Convergence criterion           : 0.00100 
 CAF - Convergence acceleration factor :   1.000 

ITERATION          B1          B2  S/(N.D.F.) 
        0     1.00000     1.00000    46595.60 
        1    89.08912   114.70610    12878.94 
        2   185.20000     <-10^49      >10^09 
Singular matrix condition 

Figure 6.4.1 Results for BoxBOD using Default Settings

There are some problems in which the values of the unknown parameters

vary slowly but convergence is very difficult to achieve.  For such prob-

lems setting upper and lower bounds on the parameters accomplishes noth-

ing.  The Bennett5 problem from the NIST datasets is an example of such

a problem.  Using the far starting points for the 3 unknowns, REGRESS

required over 536,000 iterations to achieve convergence!  Using the near 

starting points the results were not much better: over 390,000 iterations t

were required.  REGRESS uses a modified GN algorithm but if the pro-

gress for an iteration is not sufficient it then uses an LM algorithm.  A bet-

ter approach for problems of this type is to use a stochastic algorithm. 

Stochastic algorithms avoid the need for function derivatives.  A search 

are obtained after 80 iterations.  The ability to specify minimum and 

maximum values for the unknown parameters is an essential feature in a

general purpose NLR program.

space is defined by setting minimum and maximum values for all the 
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datasets as listed in Table 6.4.1.  Their results show large performance dif-

ferences from problem to problem and algorithm to algorithm.  Four of the 

five managed to achieve solutions for the Bennett5 problem. 

PARAMETERS USED IN REGRESS ANALYSIS: Thu Dec 02, 2004 
 ITERATION          B1          B2  S/(N.D.F.) 
        0     1.00000     1.00000    46595.60
        1    89.08912   114.70610    12878.94
        2   185.20000     0.00100    46567.68
        3     9985.49     0.05420  7946907.22
        4    -1977.29     0.07206   917128.67
        5  -907.83514     0.00172    51485.53
        6     7854.00     0.00100    28275.45
        7    15098.02     0.00193     6215.57
        8    14635.85     0.00203     6194.60
        - - - - - - - - - - - - - - - - - - -
        - - - - - - - - - - - - - - - - - - -
       79   213.87781     0.54643   292.00568
       80   213.82425     0.54706   292.00238

POINT          X1           Y        SIGY       YCALC 
    1     1.00000   109.00000     1.00000    90.10764 
    2     2.00000   149.00000     1.00000   142.24097 
    3     3.00000   149.00000     1.00000   172.40360 
    4     5.00000   191.00000     1.00000   199.95134 
    5     7.00000   213.00000     1.00000   209.17267 
    6    10.00000   224.00000     1.00000   212.91397 

PARAM INIT_VALUE  MINIMUM  MAXIMUM   VALUE     SIGMA 
   B1    1.00000 Not Spec Not Spec 213.81258  12.35691
   B2    1.00000  0.00100 Not Spec   0.54720   0.10452
Variance Reduction:         88.05
S/(N - P)         :     292.00223
RMS (Y - Ycalc)   :      13.95235

       Figure 6.4.2   Results for BoxBOD using B2MIN = 0.001 

Another option for problems that are difficult to converge is to use sym-

bolic constants.  For example, the parameter file for the REGRESS runs

for the Bennett5 problem included the following function specification:

unknown b1, b2, b3;
  y ='b1 * (b2+x)^(-1/b3)'

point within the space and then a heuristic is used to find the next point.  In 

the same paper as mentioned above [TV04], Tvrdik and Krivy describe 5 

different stochastic algorithms and then compare them using the same 

unknown parameters.  A random number generator is used to set a starting
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much greater than the 154 data records associated with this dataset, the 

time required to reach convergence would have been very large indeed. 

An alternative to this approach is to use symbolic constants.  For example,

one could hold b1 constant and do a two parameter fit using the following 

function specification:  

constant b1;
  unknown b2, b3; 
   y ='b1 * (b2+x)^(-1/b3)'

Once least square values of b2 and b3 are located for the inputted value of 

b1 the value can be changed and a new combination can be located.  Com-

paring the values of S obtained for the different values of S b1, one can 

home in on a region likely to contain the best value of b1.  Once this re-

gion has been identified, one could then return to the original function 

specification to make the final 3 parameter search.  The number of itera-

tions using this procedure is much less than starting the process searching 

for all 3 parameters but requires a lot of user intervention and judgment.

For very difficult problems a combination approach is sometimes used. 

The process is started by doing a very course grid search through the entire

space just computing S at all points in the grid.  The best region to start theS

search is around the point for which S is a minimum.  All the unknownsS

are then bounded within this region and a detailed search is then initiated. 

If convergence is still a problem, then the use of symbolic constants and/or 

a stochastic algorithm can be used to further reduce the size of the search 

space.  

 

6.5 Linear Regression: a Lurking Pitfall 

A general purpose NLR (nonlinear regression) program can easily handle 

linear regression problems.  Software developed for nonlinear problems

can be used with no change to solve linear problems.  However, there is a 

hidden danger in using linear models that often plagues new users of 

Knowing the solution in advance, and noticing that the values of the un-

knowns were progressing in the correct direction, I just let REGRESS run 

until convergence was achieved.  However, if the amount of data had been 
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12
321

−−−−−−−−−−−−−−−−++++++++++++++++==== p
p xa...xaxaay          (6.5.1)

If one is only looking for an adequate function to predict y for any value of 

x then why not just start with a straight line (i.e., x p = 2) and increase p until

the average root-mean-square (RMS) error is acceptable?  This approach,

although theoretically very appealing, can lead to very difficult numerical 

problems that arise due to the fact that computers work to a finite number 

of significant digits of accuracy. 

To explain the problem, consider data in which the values of x are equally x

spaced from 0 to 1 and unit weighting is used.  The derivative of Equation 

6.5.1 with respect to ak is simply k x
k 1

x so from Equations 2.4.14 and 2.4.151

the terms of the C matrix and the C V vector are: V
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Once we have computed the terms of the C matrix and theC V vector we use V

Equation 2.4.9 to solve for the vector A:

VCA 1=            (2.4.9)  

This vector includes all p values of the ak's.  We can estimate the value of 

CjkCC by using the following approximation: k
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1

1

0

22
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For example, for  p = 4 the C matrix is approximately: C

kk

curve-fitting software.  When data is available and there is no physically

meaningful mathematical model to explain the variation of a dependent 

variable y as a function of x, the most tempting approach to the problem is

to use a simple polynomial: 
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====

71615141

61514131
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nC          (6.5.5) 

For those readers familiar with linear algebra, they will recognize this ma-

trix as the well known Hilbert matrix and it has the following property:

(((( )))) ((( )((((((( )))))))))) p.ln/p.p.
eCcond

51.((((((ln/p..3.
1010 ≡≡≡≡====≈≈≈≈ (6.5.6)

In other words, as the number of unknowns (i.e., p) increases, the condi-

tion of the matrix (the ratio of the largest to smallest eigenvalues of the

matrix) increases exponentially.  Using cond(C)CC we can estimate the errors 

in the ak's due to errors from the terms of the V vector: V

(((( ))))
V

V
Ccond

A

A δδδδδδδδ
≤≤≤≤            (6.5.7)

This equation means that the fractional errors in the terms of the A vector 

are no more than cond(dd C ) times the fractional errors in the V vector.  For 

example, let us assume that the values of Y are accurate to 5 decimal digits Y

so that the fractional errors in the terms of the V vector are of the order of V

10-5.  If cond(dd C ) is about 100, then the fractional errors in the terms of the )

A vector are at worst of the order of 10-3.  This loss of accuracy comes 

about due to the process of inverting the C matrix.  In other words, if C

cond(dd C ) is about 100 we can expect a loss of about 2 digits of accuracy in)

solving Equation 2.4.6 (i.e., CA = V ).  A set of linear equations like Equa-

tion 2.4.6 is said to be "ill-conditioned" when the value of the condition 

become a large number. 

Examining Equations 6.5.6 and 6.5.7, the pitfall in using Equation 6.5.1 

for curve fitting can be seen.  As p increases, C becomes increasingly ill-C

conditioned.  The log10 of cond(dd C ) is the maximum number of decimal )

digits that might be lost in solving Equation 2.4.6.  So if p = 5, 6 or 7 then

the condition is 107.5, 109 or 1010.5 and the number of digits of accuracy that 

might be lost are 7.5, 9 or 10.5!  We see that even though Equation 6.5.1 is 

a very tempting solution for obtaining a simple equation relating y to y x, it 

is increasingly numerically problematical as p increases. 
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The NIST datasets include linear as well as nonlinear problems.  The most 

difficult problem is the 'Filippelli problem'.  This dataset has 82 point and 

the proposed model is Equation 6.5.1 with p =11.  The LIMDEP website 

includes their solution to this problem and they describe the problem as 

follows: 

 

"LIMDEP's linear regression computations are extremely accurate. The

'Filippelli problem' in the NIST benchmark problems is the most difficult 

of the set. Most programs are not able to do the computation at all. The as-

sessment of another widely used package was as follows: Filippelli test: 

XXXXX found the variables so collinear that it dropped two of them  that 

is, it set two coefficients and standard errors to zero. The resulting esti-

mates still fit the data well. Most other statistical software packages have 

done the same thing and most authors have interpreted this result as ac-

ceptable for this test.  We don't find this acceptable. First, the problem is

solvable. See LIMDEP's solution below using only the program defaults - 

just the basic regression instruction. Second, LIMDEP would not, on its 

own, drop variables from a regression and leave behind some arbitrarily 

chosen set that provides a 'good fit.' If the regression can't be computed 

within the (very high) tolerance of the program, we just tell you so. For this 

problem, LIMDEP does issue a warning, however. What you do next is up

to you, not the program." 

It should be emphasized that the Filippelli problem is a problem that was 

proposed to test software and not a real problem in which Mr. Filippelli

was actually trying to get usable numbers.  If one proceeds using Equation 

6.5.1 directly, consider the loss of accuracy using a 10th order polynomial 

(i.e., p = 11) to fit the data.  The number of digits of accuracy lost is at a

maximum 16.5!  Even if the values of Y are true values with no uncer-Y

tainty, just inputting them into double precision numbers in the computer 

limits their accuracy to about 15 digits.  So a loss of 16.5 digits makes the

results completely meaningless.  The C matrix is so ill-conditioned that it 

is no wonder that most packages fail when trying to solve the Filippelli

problem.  I tried running this problem using REGRESS and could not pro-

gress beyond p = 9. 

So how did LIMDEP succeed while others have failed?  I don’t know the

algorithm used by LIMDEP to solve problems based upon Equation 6.5.1,

but if I was interested in creating software to solve such problems I would 

use orthogonal polynomials [RA78, WO71].  The idea originally proposed 

by G. Forsythe [FO57] is to replace Equation 6.5.1 with the following:

–
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The uk(x(( ) terms are a set of p polynomials all orthogonal to one another.  

Orthogonality for a particular set of data and a particular weighting scheme 

implies the following: 
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Equation 2.4.5 is applicable to all linear models and is therefore applicabler

to Equation 6.5.8.  Substituting u for g in Equation 2.4.5 we get g p+1 equa-

tions of the following form (where the index k is from 0 to k p):

====++++++++++++ kii iikpip kpipki ki uYwuuwa...uuwauuwa0    (6.5.10) 

Applying Equation 6.5.9 to 6.5.10 we end up with p+1 equations for ak

that can be solved directly:

====kkik uYwuuwa    k = 0 to k p      (6.5.11)

====
kki

kii

k
uuw

uYw
a    k = 0 to k p        (6.5.12)

If a set of polynomials can be constructed with this property (i.e., Equation

6.5.9), then we can compute the terms of the A vector without inverting the
-1

diagonal terms are zero.  Forsythe suggests the following scheme for com-

puting polynomials satisfying Equation 6.5.9:

C

matrix are the inverses of the diagonal terms of the C matrix and all the off-C

C matrix.  Or looking at it another way, the diagonal terms of the
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1)(0 ====xu         (6.5.13a)
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)()()()( 0112 ))2 xuxuxxu ββββαααα −−−−−−−−====      (6.5.13c) 

.

)()()()( 2211 xuxuxxu pp 11pp ))))p 1−−−−−−−−==== ββββαααα    (6.5.13d)

The αααααααα and ββββ s are computed as follows: ββββ
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ββββ         (6.5.15) 

The order of the computations is to first compute αααα1αααααααα and the values of u1,

then ββββ1ββ ,,, α α α α 2 and  the values of u2, then ββββ2βββ , etc. until all the u s are known. 

Using Equation 6.5.12 the ak s can be computed and thus all terms required 

by Equation 6.5.8 are known.  As an example consider the data in Table

6.5.1.

Point Y x 

1   7.05 0 

2 16.94 1 

3 31.16 2 

4 48.88 3 

5 71.31 4 

6 96.81 5 

7 127.21 6

Table 6.5.1 Data for Orthogonal Polynomial Example 

’s s

’s

’s 
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Assuming unit weighting (i.e., wi = 1), since u0 = 1, from Equation 6.5.14 

we compute αααα 1 as follows: 

(((( ))))
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and therefore from Equation 6.5.13b u1 = x – 3.  We next compute ββββ1 and 

αααα 2 using Equations 6.5.15 and 6.5.14: 
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and therefore from Equation 6.5.13c u2 =(x-3)(x – 3) – 4 = x2 - 6x + 5.  In 

a similar manner we can compute ββββ2 =3 and ααα3 = 3 and thus u3 = (x-3)u2 – 

3(x-3) = x3-9x
2+20x-6.  To use the uk s to fit the data we next must com-

pute a0, a1, a2 and a3 using Equation 6.5.12.  The details of the calculation 

are included in Table 6.5.2. 

The results in Table 6.5.2 include four different fits to the data: 
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6.5 Linear Regression: a Lurking Pitfall
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The terms S / (n-p-1) are the sums of the squares of the residuals divided 

by the number of degrees of freedom.  Using the goodness-of-fit criterion 

explained in Section 3.3 we note that the parabolic equation yields the best 

results because S /(// n-p-1) is minimized for p = 2 (i.e., 3 terms).  We can 

convert this equation to the simple form of Equation 6.5.1:

(((( )))) (((( ))))
2

2

00429867047

004200426012000425012030557

x.x..y

x.x.*..*.*.y

++++++++====

++++−−−−++++++++−−−−====

i Yi YY xi u0 u1 u2 u3

1   7.05 0 1 -3  5 -6 

2  16.94 1 1 -2  0  6

3  31.16 2 1 -1 -3  6 

4  48.88 3 1  0 -4  0

5  71.31 4 1  1 -3 -6

6  96.81 5 1  2  0 -6

7 127.21 6 1  3  5  6

kiuY 393.36 560.37 168.37 0.84

2
ku 7 28 84 216 

ak 57.05 20.01 2.004 0.0038

9 

S 11552.5 337.7 0.198 0.194

S/(// n-p-1) 1925.4 67.54 0.049 0.065

Table 6.5.2 Fitting Data using Orthogonal Polynomials

Regardless of the value of p the resulting equation derived using orthogo-

nal polynomials can be converted to the simple very appealing polynomial

form (i.e., Equation 6.5.1).  For difficult linear problems such as the Filip-

pelli problem this technique avoids the numerical pitfalls arising from the 

direct use of 6.5.1.

6.6 Multi-Dimensional Models 

An important feature of general purpose NLR (nonlinear regression) pro-

grams is the ability to handle multi-dimensional problems.  Throughout the
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book the discussion has primarily been about the relationship between a 

dependent scalar variable y and an independent scalar variable x.  How-

ever, there are many problems throughout many fields of science and en-

gineering where either x or x y or both are vector variables.  To test NLR 

programs it is useful to have a few examples of problems of these types.  

Unfortunately the nonlinear regression NIST datasets are limited to prob-

lems in which x and x y are both scalars. 

The theory and use of the GraphPad Prism program is included in a book 

written by H. Motulsky and A. Christopoulos [MO03].  The book can be

downloaded from the GraphPad Software website (www.graphpad.com) 

and includes a very nice example of a problem in which the dependent 

variable y is a vector.  Although GraphPad Prism is a general purpose

NLR program, the book emphasizes analysis of biological and pharmaceu-

tical experiments.  Using GraphPad terminology, global models are models 

in which y is a vector and some of the unknowns are shared between they

separate models for the components of y.  A GraphPad example relevant 

to the pharmaceutical industry is the use of global models to analyze the

dose-response curves of two groups (a treated group and a control group).  

The purpose of the experiment is to measure what they call ec50 (the dose

concentration that gives a response half-way between the minimum and 

maximum responses).  For this experiment the x variable is the log of the 

dose, the first component of the y vector is the response of the control 

group and the second component is the response of the treated group.  The 

problem is well documented in their book and data is included so that the

problem can be used as a test dataset for any NLR program. 

The experiment was analyzed using REGRESS and the results are very 

close to the results obtained with Graphpad Prism.  The equations were 

specified as follows: 

dependent ycont, ytreat; 
independent x;
unknown  bottom, top, hillslope, logec50c,
         logec50t; 
ycont  = 'bottom+(top-bottom)/ 
         (1+10^((logec50c-x)*hillslope))' 
ytreat = 'bottom+(top-bottom)/ 
         (1+10^((logec50t-x)*hillslope))' 

The two components of the y vector are y ycont and ytreat.  The unknown

parameters shared by both equations are bottom, top and hill-
slope.  The two remaining unknowns are the logs of ec50 for the control
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global approach for this problem is to treat each curve separately.  The rea-

son for treating this problem using a global model is explained in the

Graphpad document: the resulting accuracies for the values of ec50 are

reduced considerably using global modeling.  The number of degrees of 

freedom for this problem (i.e., n-p- ) is 10 – 5 = 5.

Point x (log dose) Ycont Ytreat

1 -7.0 165 124 

2 -6.0 284 87

3 -5.0 442 195 

4 -4.0 530 288 

5 -3.0 573 536 

e curve analysis from Graphpad.

and treatment groups (i.e., logec50c and logec50t).  The data is

included in Table 6.6.1.  The results are seen in Figure 6.6.1.  REGRESS

required 9 iterations to converge to the solution.  The alternative to the 
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REC Y-INDEX    X       YCONT     SIGYCONT  CALC_VALUE
  1     1   -7.00000  165.000     1.00000   152.28039
  2     1   -6.00000  284.000     1.00000   271.95980
  3     1   -5.00000  442.000     1.00000   455.54116
  4     1   -4.00000  530.000     1.00000   549.35957
  5     1   -3.00000  573.000     1.00000   573.06096

REC Y-INDEX    X       YTREAT   SIGYTREAT  CALC_VALUE
  1     2   -7.00000  124.000     1.00000   112.35928
  2     2   -6.00000   87.000     1.00000   123.13971
  3     2   -5.00000  195.000     1.00000   172.89774
  4     2   -4.00000  288.000     1.00000   321.78672
  5     2   -3.00000  536.000     1.00000   491.61468

PARAMETER INIT_VALUE  MINIMUM  MAXIMUM   VALUE    SIGMA 
   BOTTOM    0.00000 Not Spec Not Spec  109.781  27.807 
      TOP    1000.00 Not Spec Not Spec  578.939  34.182 
HILLSLOPE    1.00000 Not Spec Not Spec  0.72458  0.1845 
 LOGEC50C   -7.00000 Not Spec Not Spec -5.61755  0.1963 
 LOGEC50T   -2.00000 Not Spec Not Spec -3.88429  0.1909 

 Variance Reduction:         97.67 (Average)
    VR:        YCONT         99.26 
    VR:       YTREAT         96.08 
 S/(N - P)         :       1181.32 
 RMS (Y - Ycalc)   :      24.30351 (all data) 
      RMS(Y1-Ycalc):      13.15230 
      RMS(Y2-Ycalc):      31.75435

Figure 6.6.1  Results from REGRESS analysis of data in Table 6.6.1. 

A problem that demonstrates modeling with two independent variables

was included in my first book [WO67].  This problem was related to a 

)1)(1(

)1)(1(

2221

1211

xaxa

xaxa
y

++++++++
++++++++====           (6.6.1) 

The unknowns a1 and a2 must be positive but there is no guarantee that the 

method of least squares will satisfy this requirement.  However, we can

force positive values by simply using b2 in place of a.  The modified equa-

tion is thus:  

measurement of parameters related to the neutronics of heavy water 

nuclear reactors.  The model was based upon the following equation: 
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The two unknowns are now b1 and b2 and regardless of the resulting signs 

of b1 and b2, the squared values are always positive.  It should be noted 

that there are four possible solutions: both b1 and b2 can be positive or 

negative.  Depending upon the initial guesses for b1 and b2, if convergence 

is achieved, the solution will be close to one of the four possibilities.  The 

data for this problem is included in Table 6.6.2 and the results of the 

REGRESS analysis are seen in Figure 6.6.2.  Note that for this problem 

since theσ s vary from point to point Equation 2.3.7 must be used to prop-

erly weight the data.  The initial guesses were b1 = 1 and = b2 = 10 and con-=

vergence was achieved with 3 iterations.

PARAM INIT_VALUE MINIMUM  MAXIMUM    VALUE      SIGMA
   B1  1.00000  Not Spec Not Spec  1.61876     0.22320 
   B2 10.00000  Not Spec Not Spec  5.29172     0.34342 

   Variance Reduction:         99.32 
   S/(N - P)         :       6.98221 
   RMS (Y - Ycalc)   :       0.01946 
   RMS ((Y-Ycalc)/Sy):       2.62056 

Figure 6.6.2 Results from REGRESS analysis of data in Table 6.6.2. 

Point Y σσσσyσσσσσσσσ x1 σσσσx1σσσσσσσσ /x11 1 x2 σσσσx2σσσσσσσσ /x22 2

1 0.7500 0.01000 0.0137 0.0056 0.0258 0.0057 

2 0.5667 0.00833 0.0137 0.0056 0.0459 0.0065 

3 0.4000 0.00620 0.0137 0.0056 0.0741 0.0070 

4 0.8750 0.01243 0.0240 0.0086 0.0320 0.0068 

5 0.7000 0.01022 0.0240 0.0086 0.0453 0.0057 

6 0.5750 0.00863 0.0240 0.0086 0.0640 0.0054 

7 0.3800 0.00586 0.0240 0.0086 0.0880 0.0055 

8 0.5750 0.00863 0.0260 0.0093 0.0666 0.0122 

9 0.2967 0.00777 0.0260 0.0093 0.1343 0.0134 

10 0.1550 0.00290 0.0260 0.0093 0.2291 0.0140 

11 0.0900 0.00189 0.0260 0.0093 0.3509 0.0143 

Table 6.6.2 Modeling Data for Analysis of Equation 6.6.2. 

Note that the value of b1 is measured to 100 * 0.223 / 1.619 = 13.8% accu-

racy and b2 is measured to 6.5% accuracy, but what we are really inter-

’s 
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ested in are the values of a1 and ad 2 and their associated σ s.  In general if 

we have v as a function of v u we can relate σσσσv to v σσσσuσσσσ as follows: 

2

2

∂∂∂∂
∂∂∂∂==== uv
u

f σσσσσσσσ      where  (((( ))))ufv ====        (6.6.3)

For v = v u
2 from Equation 6.6.3 we get:

(((( ))))22
2 uv uσσσσσσσσ ====     where  

2uv ====          (6.6.4) 

Dividing the equation by v2 = u
4 we end up with the following simple rela-4

tionship: 

22
2

====
uv

v σσσσσσσσ
    where 

2uv ====          (6.6.5) 

In other words the relative uncertainty in v is twice as large as that for v u.  

Using Equation 6.6.5 we see that the relative uncertainties of the a s are 

twice those of the b s.  Thus for the problem in Figure 6.6.2, a1 = 1.6192 =

2.621 and σσσσaσσσσ 1 = 2.621*2*0.138 = 0.723.  Similarly, a2 = 27.99 and σσσσaσσσσ 2 =

))(1)()(1(

))(1)()(1(

22 ))21 ))

12 ))11 ))

xaabsxaabs

xaabsxaabs
y

++++++++
++++++++====

The abs (absolute) operator is a valid REGRESS operator that can be used 

in any function specification.   

6.7 Software Performance 

There are many ways to measure the performance of NLR (nonlinear re-

gression) programs but for most problems the only relevant measure is the

ability to converge to a solution for difficult problems.  The NIST datasets

are very useful for testing the ability of NLR programs to converge and 

this subject was considered in Sections 6.3 and 6.4.  However, there are 

3.64.  It is interesting to note that REGRESS can solve this problem 

directly for the a 's by replacing Equation 6.6.1 by the following alternative:

’s

’s

’s
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some problems where software performance metrics other than conver-

gence are important.  In particular, problems in which the amount of data

is large, the time required to converge to a solution may become important.  

Another area where time is important is for calculations embedded within 

real time systems (e.g., anti-missile missile systems).  When decisions 

must be made within a fraction of a second, if an NLR calculation is part 

of the decision making process, it is important to make the calculation as

fast as possible.  For real time applications general purpose NLR software 

would never be used.  The calculation would be programmed to optimize

speed for the particular system and mathematical model under considera-

tion.

Since time is dependent upon hardware, one would prefer measures that 

are hardware independent.  In this section some useful measures of per-

formance (other than the ability to converge) are discussed.  The total time

that a program requires to achieve convergence for a particular program 

and a particular computer is approximately the following: 

  Converge_Time = Num_Iterations * Avg_Time_ per_IterII        (6.7.1) r

The number of iterations required to achieve convergence is of course 

problem dependent but it can be used as a measure of performance when

used for comparisons with common data sets such as the NIST datasets.  

The average time per iteration is of course computer dependent, but the ef-

fect of the computer is only a multiplicative speed factor: 

 Avg_Time_ per_Iter = Speed_Factor * Avg_Calcs_ per_Iter           (6.7.2)

For traditional algorithms such as Gauss-Newton (GN) or Levenberg-

Marquardt (LM) or some sort of combination, the average number of cal-

culations per iteration can be broken down into 2 major terms:

 Avg_Calcs_ per_Iteration = Avg_CA_Calcs + Avg_S_Calcs       (6.7.3)

The first term is a measure of the effort to compute the C matrix and then C

the A vector times the average number of times this operation is performed 

per iteration.  The second term is a measure of the effort to compute the

weighted sum-of-squares S times the average number of times this opera-S

tion is performed per iteration.  Both terms are proportional to n, the num-

ber of data points. The first term also has a component that is proportional

to p
3 (the complexity of solving p simultaneous equations).
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These equations are meaningless for people evaluating existing software as 

the actual numbers for a given problem are usually unavailable to the nor-

mal user.  However, for those interested in developing software for per-

forming NLR analyses for problems with important speed requirements, 

For stochastic algorithms, these equations are not applicable. The concept 

of iterations is not really relevant.  The entire calculation becomes essen-

tially a series of calculations of S.  Whether or not this results in a faster 

overall computation is not obvious and clearly the speed of such algo-

rithms is problem dependent.

6.8 The REGRESS Program 

Throughout the book results for a number of examples have been obtained 

using the REGRESS program.  The reason why I have chosen REGRESS 

is quite simple: I wrote it.  The program can be downloaded from: 

www.technion.ac.il/wolberg. The history of the development of this pro-

gram goes back to my early career when I was in charge of designing a

sub-critical heavy water nuclear reactor facility.  One of the experiments

that we planned to run on the facility involved a nonlinear regression based 

upon Equation 6.6.2.  In the 1960 s commercial software was rare so weuu

had no choice other than writing our own programs.  It became quite ap-

parent that I could generalize the software to do functions other than Equa-

tion 6.6.2.  All that had to be done was to supply a function to compute 

f(ff x(( ) and another function to compute the required derivatives.  We would 

then link these functions to the software and could thus reuse the basic

program with any desired function.  At the time we called the program 

ANALYZER. 

In the early 1970's I discovered a language called FORMAC that could be 

used for symbolic manipulation of equations.  FORMAC was compatible 

with FORTRAN and I used FORTRAN and FORMAC to write a program 

similar to ANALYZER and I called the new program REGRESS.  The 

REGRESS program accepted equations as input quantities. Using

FORMAC, the program automatically generated equations for the deriva-

tives and created FORTRAN subroutines that could then be used to per-

these equations give some indication where one should concentrate the

effort at achieving speed.

s

form the nonlinear regression (NLR).  All these steps, including compilation
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In the mid 1970 s I realized that with languages that support recursive pro-

sion, it became a doable task to write a routine to symbolically 

differentiate functions.  Using PL/1 I rewrote REGRESS and added many 

new features that I realized were desirable from conversations with a num-

ber of users of REGRESS.  I've returned to the REGRESS program on

many occasions since the original version.  In the 1980's I started teaching

a graduate course called Design and Analysis of Experiments and I sup-

plied REGRESS to the students.  Many of the students were doing experi-

mental work as part of their graduate research and the feedback from their 

experiences with REGRESS stimulated a number of interesting develop-

ments. In the early 1990's I rewrote REGRESS in the C language.  

Through the many version changes REGRESS has evolved over the years

and is still evolving. 

The REGRESS program lacks some features that are included in other 

general NLR programs.  Some students who have recently used REGRESS 

have suggested that the program should have a GUI (Graphic User Inter-

face) front end.  Such a GUI would give REGRESS the look and feel of a 

modern program.  Personally I have my doubts that this will make the pro-

gram appreciably more user-friendly and have so far resisted creating such

an interface.  A more serious problem with REGRESS was the need to

create data files in a format that the program could understand.  Many us-

ers of the program gather data that ends up in an Excel Spread Sheet.  The 

problem for such users was how to get the data into REGRESS.  It turned 

out that the solution was quite simple: Excel allows users to create text 

files.  A feature was added to accept Excel text files.  Another important 

issue was the creation of graphic output.  One of the features of REGRESS 

is that the entire interactive session is saved as a text file.  The current 

method for obtaining graphics output is to extract the output data from the

text file and then input it into a program such as Excel that supports graph-

ics.  Since this turns out to be a relatively painless process, the need for 

REGRESS to generate graphic output is not a pressing issue.

s

gramming, I could avoid the need to externally compile subroutines. 

Recursion is the ability to call a subroutine from within itself.  Using recur-

and link-editing of the subroutines, were performed automatically without

any user intervention.  The REGRESS program became a commercial

product on the NCSS time-sharing network and I had the opportunity

to work with a number of NCSS clients and learned about many different

applications of NLR. 
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that distinguishes it from other general purpose NLR programs is the Pre-

diction Analysis (experimental design) feature described in Chapter 5.  

Another important feature that I have not seen in other general purpose

NLR programs is the int operator.  This is an operator that allows the user t

to model initial value nonlinear integral equations.  For example consider 

the following set of two equations: 

4
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132
0

132
0
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adxyay

adxyay

x

x

++++====

++++====

These highly nonlinear and recursive equations can be modeled in

REGRESS as follows: 

y1 = a1 * int(y(( 2, 0, x) + a2

y2 = a3 * int(y(( 1, 0, x) + a4

This model is recursive in the sense that y1 is a function of y2 and y2 is a 

function of yf 1.  Not all general purpose NLR programs support recursive 

models.  The user supplies values of x, y1 and y2 for n data points and the

program computes the least squares values of the ak s.

Another desirable REGRESS feature is a simple method for testing the re-

sulting model on data that was not used to obtain the model.  In REGRESS

the user invokes this feature by specifying a parameter called NEVL 

(number of evaluation points).  Figure 6.8.1 includes some of the

REGRESS output for a problem based upon Equation 6.8.1 in which the

number of data records for modeling was 8 and for evaluation was 7.  Each 

data record included values of x, y1 and y2 (i.e., a total of 16 modeling and 

14 evaluation values of y).   The program required 15 iterations to con-

verge.

’s

included in other NLR programs.  The most important feature in REGRESS

The REGRESS program includes some features that are generally not

’

’ 

‘

‘



Function Y1:   A1 * INT(Y2,0,X) + A2
Function Y2:   A3 * INT(Y1,0,X) + A4

K    A0(K)   AMIN(K)   AMAX(K)      A(K)   SIGA(K)
1  0.50000  Not Spec  Not Spec   1.00493   0.00409
2  1.00000  Not Spec  Not Spec   2.00614   0.00459
3  0.00000  Not Spec  Not Spec  -0.24902   0.00079
4 -1.00000  Not Spec  Not Spec  -3.99645   0.00663

Evaluation of Model for Set 1:
  Number of points in evaluation data set:     14 
  Variance Reduction (Average)             100.00 

   VR:           Y1                  100.00 
   VR:           Y2                  100.00 

  RMS (Y - Ycalc)     (all data)          0.01619 
   RMS (Y-Yc) - Y1                  0.02237 
   RMS (Y-Yc)/Sy) - Y1              0.00755 
   RMS (Y-Yc) - Y2                  0.00488 
   RMS (Y-Yc)/Sy) - Y2              0.00220 

  Fraction Y_eval positive               :  0.214 
  Fraction Y_calc positive               :  0.214 
  Fraction Same Sign                     :  1.000 

  Data Set  Variable    Min     Max  Average Std_dev 
  Modeling       X1  0.0100  6.2832   1.6970  2.3504 
  Modeling       Y1 -7.9282  2.0000  -1.2393  3.7499 
  Modeling       Y2 -4.1189  4.0000  -2.2600  3.1043 

  Evaluate       X1  0.1500  5.2360   1.6035  1.8876 
  Evaluate       Y1 -8.0000  1.3900  -2.1940  3.4524 
  Evaluate       Y2 -4.1169  2.9641  -2.6260  2.7180 

Figure 6.8.1  Recursion, the int operator & evaluation points 
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Chapter 7  KERNEL REGRESSION 

7.1 Introduction 

Kernel regression is one class of data modeling methods that fall within 

the broader category of smoothing methods.  The method of least squaresg

is used within a kernel regression analysis to fit the data within the regions

of interest.  The general purpose of smoothing is to find a line or surface 

which exhibits the general behavior of a dependent variable (lets call it y) 

as a function of one or more independent variables.  No attempt is made to

find a single mathematical model for y.  If there is only one independent 

variable, then the resulting smoothing is a line.  If the number of independ-g

ent variables is greater than one, the smoothing is a surface.  Smoothing g

methods that are based upon a mathematical equation to represent the line

or surface are called parametric methods.  The method of least squares is 

one such parametric method.  On the other hand, data driven methods that 

only smooth the data without trying to find a single mathematical equation

are called nonparametric methods.  An excellent review of nonparmetric 

smoothing method for data modeling.

The distinguishing feature of kernel regression methods is the use of a ker-

nel to determine a weight given to each data point when computing thel

smoothed value at any other point on the surface.  There are many ways to

choose a kernel.  Wolfgang Hardle reviews the relevant literature in his 

book on this subject [HA90].  Another overview of the subject by A. Ullah

and H. D. Vinod is included in Chapter 4 of the Handbook of Statistics 

Volume 11 [UL93].  Usually the kernel includes one free parameter that 

may be adjusted to obtain the "best" fit to the data.

Even though kernel regression utilizes the method of least squares, it is an 

alternative technique to standard least squares modeling.  It is particularly

methods is included The Elements of Statistical Learning by Hastie, 

Tabshirani and Friedman [HA01].   Kernel regression is a nonparametric
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useful for problems in which there is no basis for selecting a mathematical 

model.  All that one requires is some method for using the available data

for making predictions regarding the dependent variable as a function of 

the independent variable or variables.  Kernel regression is a method for 

using the data to define a surface that can then be used to obtain estimatest

of y and the uncertainty associated with y for desired combinations of the

xjx 's.j

Typically kernel regression is applied to multi-dimensional modeling in 

which there are several independent variables.  One application area is 

econometric modeling [WO00].  Econometric problems are characterized 

by time series data in which the analyst attempts to use the historical data 

to make future predictions.  The underlying assumption is that historical 

behavior has relevance regarding the future.  Another area in which kernel 

regression is quite useful is for some medical problems.  Medical problems

ticular disease as a function of personal and environmental variables.

Although the method is usually used for multi-dimensional modeling, to

explain the problem consider the data in Figure 7.1.1.  The dependent vari-

able y is a function of a single variable x but we have no theoretical basis x

for suggesting a mathematical model.  We also have no basis for suggest-

ing a model for the uncertainties σσσσ yσσσσ associated with each of the data points. 

We would like to have some f(ff x(( ) that we can use to make predictions for 

any value of y within the range of observable values (i.e., from x =x 2.7 to 

11.7) and we also require some estimate of the accuracy of the predictions

(i.e., σσσσ fσσσσ ).  What we can see from the data is that noise (i.e.,ff σσσσ y) increases

with x, but how can we include this in our model?  To weight the data

properly we would have to know how σσσσ yσσσσ is related to x.  Only then would 

the resulting values of σσσσfσσσσσσ be meaningful.  For this simple one-dimensionalf

problem, we could suggest a relationship to estimate σσσσyσσσσσσσσ  as a function of x

but for multi-dimensional problems this becomes more difficult.  This 

whole issue is avoided when the modeling method is kernel regression. 

rarely involve time series data.  A typical example might involve an

attempt to develop a model to predict the probability of contracting a par-
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Figure 7.1.1 Observations of y versus xx

7.2 Kernel Regression Order Zero 

The simplest kernel regression method is what is called the Order Zero

method [WO00].  The term order zero is used because a zero-order poly-

nomial is the local fitting function regardless of the dimensionality of the

model.  A zero order polynomial is just a constant.  To make a prediction t

at any point one first finds the nn nearest neighbors of the point (where nn

is a user specified constant).  The weighted average of the values of y for 

to select a kernel for weighting the nearest neighbor points.  Usually the 

exponential kernel is used: 

(((( ))))2
ijij kdexpw −−−−====            (7.2.1) 

In this equation the index i represents the point at which a value of y is to 

be estimated.  The index j represents a point within the nearest neighbor j

set.  The term dijdd  is the distance between the two points.  The square of j dijdd

is used for computational convenience since it is always positive. For 

multi-dimensional models, if the scales of the different dimensions are

very different, the usual procedure is to scale all the dimensions so that 

their ranges are equivalent and thus all values of xjx  are in the range 0 to 1.j

these nearest neighbors is then used to predict the value at the point of

interest. The uncertainty at this point can also be estimated. The fiff rst step is
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We can use least-squares notation to explain the method for predicting the 

values of y and σσσσfσσσσσσ : f

1axfy ========            (7.2.2) 

===============
====

nnj===============

j

ijwC
1

11           (7.2.3)
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j
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1
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Note that i is the index of the point at which an estimate is to be made and i

is not one of the nn nearest neighbors.  From Equation 2.6.11:
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       (7.2.6) 

As an example, consider the data in Table 7.2.1.  The first 4 points are 

used as the nearest neighbors for making predictions on the next 3 points.  

We call the first 4 points the learning points and the next 3 points theg test

2

value of a1 (computed using Equation 7.2.5) and is equal to 3.50 for all 3 

test points for the case k = 0.  From Equation 7.2.1 we see that for this casek

all the weights are equal so ycalc for any point using only learning points 1

to 4 is their average value (i.e., 3.50).  Similarly, for point 6 the distance to 

1points. The model is two dimensional (i.e., y = f (x1(( ,x )). For the kernel

we will try 3 different values of k (k k((  = 0, 1, and 2).  A summary of thek

results is shown in Table 7.2.2.  Note that the calculated value of y is the 
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each of the 4 learning points is the same, so the weights are equal regard-

less of the value of k and the value of k ycalc is 3.50.  

Point x1 x2 Y 

1 0.0 0.0 4.00 
2 2.0 0.0 5.00 
3 2.0 2.0 3.00 
4 0.0 2.0 2.00 
5 0.5 0.5 3.75 
6 1.0 1.0 3.50 
7 1.5 1.5 3.25 

Points 1 to 4 are learning points and 5 to 7 are test points. 

Point Y   ycalc (k=0)  ycalc (k=1) ycalc (k=2)

5 3.75 3.50 3.88 3.98
6 3.50 3.50 3.50 3.50
7 3.25 3.50 3.12 3.02

Table 7.2.2 Calculated Values of y for 3 different values of k. 

The calculation of y for Point 5 for k = 1 is shown in Table 7.2.3.  Thek

squared distanced are computed as follows:

jijiij xxxxd 2211
2 −−−−++++−−−−==== . 

The value of ycalc is 3.034 / 0.7818 = 3.88 as seen in Table 7.2.2.  The

σσfσσσσ
values are equal since all the weights are equal and the values of ycalc 

(i.e., a1) all equal 3.50.  From Equation 7.2.6 : 

(((( )))) (((( )))) (((( )))) (((( ))))

2
0.6455

12

5

4

2222

3

1

======================================

===================2
fσσσσ

calculations of σσ aref summarized in Table 7.2.4.  Note that for k = 0 all the k
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Learning 

Point  j 

2
5 jd w5j Yj YY w5j Yj jYY

1 0.5 0.6065 4.0 2.4260 
2 2.5 0.0821 5.0 0.4105 
3 4.5 0.0111 3.0 0.0333 
4 2.5 0.0821 2.0 0.1642 
Sum  0.7818  3.0340

Table 7.2.3 Details for Calculation of y for Point 5 and k = 1. 

Test Point Y  σσσσfσσσσσσ (k=0) σσσσfσσσσσσ (k=1) σσσσfσσσσσσ (k=2)

5 3.75 0.6455 0.4183 0.1716 
6 3.50 0.6455 0.6455 0.6455 
7 3.25 0.6455 0.4183 0.1716 

Table 7.2.4 Calculated Values of σσσσfσσσσ  for 3 different values of f k. 

7.3 Kernel Regression Order One 

The Order One method of kernel regression is based upon a first-order 

polynomial as the local fitting function regardless of the dimensionality of 

the model.  To make a prediction at any point one first finds the nn nearest 

neighbors of the point (where nn is a user specified constant).  The algo-

rithm used for order-one is similar to the order zero algorithm.  Equation

1

1

(X) ++++++++++++++++
===============

++++======== d

dk===============

k

kk axafy        (7.3.1)

In this equation X is a d dimensional vector of d the independent variables x1

thru xd.  There are d+1 unknown values of dd ak and thereforek nn must be 

greater than d+1 to permit a least squares local fit.  For the order zero algo-dd

rithm, the C matrix and C V vector contains only a single term.  For order 

one, Equation 7.2.3 is replaced by a matrix in which the terms are speci-

fied using Equation 2.4.14 and Equation 7.2.4 is replaced by a vector in

which the terms are specified using Equation 2.4.15 :

7.2.1 can be used to specifyff the kernel but Equation 7.2.2 must be

expanded to specify a first order polynomial:
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From Equation 7.3.1 the partial derivatives are:

k
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The vector A is computed by solving the matrix equation CA = V.  The VV

values of σσσσfσσσσσσ  are computed as follows: f
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The weighted sum of the squares S is computed as follows: S
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Note that i is the index of the point at which an estimate is to be made and i

is not one of the nn nearest neighbors.

As an example, once again consider the data in Table 7.2.1.  The first 4 

points are used as the nearest neighbors for making predictions on the next 

3 points.  We call the first 4 points the learning points and the next 3g
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points the test points.  The model is two dimensional (i.e., t y = f (ff x(( 1, x2)).  

For the kernel we will try 3 different values of k (k k = 0, 1, and 2).  A sum-k

mary of the results is shown in Table 7.3.1.  Note that the values of ycalc

are all exactly equal to y for all the values of k.  The explanation for this

somewhat surprising result is that the 4 learning points fall exactly on the 

plane y = 0.5y x1 – x2 + 4.  Thus regardless of how the points are weighted, 

the calculated test points will fall on this plane. 

Point Y   ycalc (k=0)  ycalc (k=1) ycalc (k=2)

5 3.75 3.75 3.75 3.75
6 3.50 3.50 3.50 3.50
7 3.25 3.25 3.25 3.25

Table 7.3.1 Values of ycalc for 3 different values of k.  Data from

Table 7.2.1.  

To make the calculation more interesting let us change y for the first learn-

ing data point from 4 to 5.  Table 7.2.1 is thus replaced by Table 7.3.2.  

The results are summarized in Table 7.3.3.  The calculations of σσσσfσσσσ  are f

summarized in Table 7.3.4.  For all 3 values of k the value of k ycalc = 3.75

for Point 6.  Since all 4 of the learning points are equidistant from Point 6,

the weights are all equal regardless of the value of k.  The same plane is 

computed for all these cases (i.e., y = 0.25y x1 1.25x2 + 4.75) and the value 

at x1 = 1 and x2 = 1 is 3.75.  The values for σσσσfσσσσσσ  for Point 6 are all 0.25.f   This 5.

value is obtained from Equation 7.3.7: 

1
23

1
13

1
12

1
33

1
22

1
11

2

1
232

1
131

1
1221

1
33

1
22

2
2

1
11

2
1

2

2

2

124

−−−−−−−1 −−−−−−−−−−−−−−−−1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−1 −−−−−−−−−−−−−−−−1 −−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

++++++++++++++++++++====

++++++++++++

++++++++
−−−−−−−−

====

CCCCCCS

CxCxCxx

CCxCx
S

f

f

σσσσ

σσσσ

The value of S is 0.25 and the matricesS C andC
1−−−−−−−−−−−−−−−−C are:

====
444

484

448

C  and  

−−−−−−−−
−−−−
−−−−

====−−−−−−−−−−−−−−−

750250250

2502500

2500250
1

...

..

..

C

 



7.3 Kernel Regression Order One    211

points are not equally weighted (i.e., k = 1 and 2), the planes are different k

for the different test points.  The different planes are listed in Table 7.3.5. 

Note once again that the planes for Point 6 are the same regardless of the 

value of k because this point is equidistant from the 4 learning points. k

Point x1 x2 y 

1 0.0 0.0 5.00 
2 2.0 0.0 5.00 
3 2.0 2.0 3.00 
4 0.0 2.0 2.00 
5 0.5 0.5 3.75 
6 1.0 1.0 3.50 
7 1.5 1.5 3.25 

Point Y   ycalc (k=0)  ycalc (k=1) Ycalc (k=2)

5 3.75 4.25 4.30 4.26 
6 3.50 3.75 3.75 3.75 
7 3.25 3.25 3.30 3.26 

Table 7.3.3 Values of ycalc for 3 different values of k.  Data from 

Table 7.3.2.  

Point Y σσσσfσσσσσσ (k=0) σσσσfσσσσσσ (k=1) σσσσfσσσσσσ (k=2)

5 3.75 0.3062 0.1209 0.0470
6 3.50 0.2500 0.2500 0.2500
7 3.25 0.3062 0.3062 0.0470

Table 7.3.4 Calculated Values of σσσσfσσσσσ for 3 different values of f k.  

It should be emphasized, that although the same four points are used to

define a plane for this two dimensional problem, for the cases where the
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Pt x1  x2 Plane (k=1) Plane (k=2)
5 0.5 0.5 0.0596x1-

1.4404x2+4.9558
0.0090x1-

1.4910x2+4.9997 
6 1.0 1.0 0.2500x1-

1.2500x2+4.7500
0.2500x1-

1.2500x2+4.7500 
7 1.5 1.5 0.4404x1-

1.0596x2+4.2242
0.4910x1-

1.0090x2+4.0356 

Table 7.3.5 Planes for each Test Point (k = 1 and 2). k

7.4 Kernel Regression Order Two 

The Order Two method of kernel regression is based upon a second-order 

polynomial as the local fitting function regardless of the dimensionality of 

the model.  This algorithm is the next logical step after the order-zero and 

order-one algorithms discussed in the previous sections.  Clearly we can 

continue to propose higher and higher order algorithms but this is not a 

reasonable approach to modeling.  The number of constants required by 

the local fitting function increases dramatically as the number of inde-

pendent variables increases.  The local complete second order fitting func-

tion for a d dimensional space is: d

kjj

d

1j

d

jk

jkjk

d

1j

jjj11jjj11 xxbxaafy
===1 k=========================

++++++++======== (X)        (7.4.1)

In this equation X is a d dimensional vector.  The number of constants p in 

2
111121 xbxaay ++++++++====           (7.4.2) 

For p = 2 this equation reduces to: 

2
2222112

2
11123121 xbxxbxbxaxaay ++++++++++++++++++++====       (7.4.3) 

The number of constants in the fitting function is listed in Table 7.4.1 for 

the orders zero, one and two algorithms as a function of d.

this equation is 1 + d +d d(d+1) / 2.  For example for dd d = 1 this equationd

reduces to: 
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d Order-zero Order-one Order-two 

1 1 2 3
2 1 3 6
3 1 4 10 
4 1 5 15 
5 1 6 21 
6 1 7 28 

Table 7.4.1 Number of Constants p in Fitting Function as a 

As with the order zero and one algorithms, to make a prediction at any 

point one first finds the nn nearest neighbors of the point (where nn is a

user specified constant).  From Table 7.4.1 we see that as the number of 

independent variables d increases, the value of nn must also be increased 

to maintain the same number of degrees of freedom (i.e., nn – p) which of 

course must be greater than one.  For noisy data, order-two is not particu-

larly useful for larger values of d unless d nn is large.  The large number of 

constants in the fitting function tends towards a fit that accommodates the

noise in the data.

The A vector is the vector of the unknown constants.  The vector A is 

computed by solving the matrix equation CA = V.  The VV C matrix and C V 

vector are computed in the usual manner.  For example, for d = 1 the d A

vector is [a1 a2  b11]
t and C and C V are:V
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           (7.4.5) 

The summations in these equations are over all nn points (i.e., i = 1 to i nn).  

For d = 1 the values of σσσσfσσσσσσ are computed as follows:f

Function of the number of independent variables d.dd
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Note that i is the index of the point at which an estimate is to be made and i

is not one of the nn nearest neighbors.  

As an example, consider the data in Table 7.4.2.  Let us use the 4 near-

est neighbors to predict the value of y for the all the points.  

Point x1 Y Nearest Neighbors 

1 0.0 10.00 2,3,4,5
2 0.5  6.06 1,3,4,5
3 1.0  3.68 1,2,4,5
4 1.5  2.23 2,3,4,6
5 2.0  1.35 3,4,6,7
6 2.5  0.82 3,4,5,7
7 3.0  0.50 3,4,5,6

Table 7.4.2 Data for Kernel Regression Order-Two Demonstration

 For the kernel we will try 3 different values of k (k k = 0, 1, and 2).  Notek

that a value of k =k  0 results in all points being equally weighted.  A sum-

mary of the results is shown in Table 7.4.3.  For this particular example,

(((( )))) /nycalcYerror_rms
2−−−−====           (7.4.8) 

The summation in this equation is over all the points.  We can use the rms

error as a criterion for selecting the best value of k.  Increasing k in incre-k

12.  The comparison of values of the rms error is interesting, but are the 

ments of one, the value of the rms error is a minimum equal to 0.262 at
k =

we see that based upon the root mean square error, the best results are

obtained for k = 2.  Thek rms error is computed as follows:
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0.418 / 0.262 = 1.59.  The F test described in Section 3.3 can be used toF

test significance.  For this example, the F statistic is : F

(((( ))))
(((( )))) 532591

2

12

2

0 ..
error_rms

error_rms
F

k

k ============

The number of degrees of freedom in both the numerator and denominator 

is n = 7 and the value for 1% significance is 6.99 so the observed value of 

F is very far from this 1% significance level.  It is not even significant at F

the 10% level which is 2.78 [ME92].  The problem here is that we just have 

too few data points to make a definitive statement about an optimum value 

of k.

Point Y  ycalc (k=0)  ycalc (k=1) ycalc (k=2)

1 10.00 9.100 9.247 9.338
2  6.06 6.527 6.397 6.313 
3  3.68 3.955 3.876 3.826 
4  2.23 2.352 2.334 2.317 
5  1.35 1.337 1.337 1.337 
6  0.82 0.713 0.735 0.756 
7  0.50 0.805 0.715 0.660 

Rms-error  0.418 0.335 0.283 

Table 7.4.3 Values of ycalc for 3 different values of k.  Data from 

Table 7.4.2.  

7.5 Nearest Neighbor Searching 

In the previous sections we described three kernel regression algorithms: 

Orders Zero, One and Two.  The first step for each of these algorithms is

to specify nn, the number of nearest neighbors used to compute the local 

least squares value for the dependent variable.  When the number of inde-

pendent variables d is one, the search for nearest neighbors is trivial.  All d

one need do is sort the data based upon the values of the independent vari-

able.  For d greater than one the problem is more complicated.  However,d

if the number of data points is not excessively large, all one needs to do is

to compute the distance to each point and then sort by distance.  To avoid 

problems associated with the sign of the distance, the usual procedure is to

results significant?  Comparing the values at k = 0 and k k = 12 the ratio isk
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use distance squared.  Another problem that arises when d is greater thand

one is related to the scale of each of the independent variables.  If these 

scales are very different, then the distances in the different directions must 

be normalized in some manner.  The most obvious method of normaliza-

tion is to specify the minimum value of x as zero, the maximum value as x

one and every other point as:

minmax

min
normalized

xx

xx
x

−−−−
−−−−====           (7.5.1) 

Kernel regression is a very attractive modeling method for many applica-

tions in which the relationship between the dependent and independent 

variables is complicated and unknown.  For example, kernel regression has

been applied to econometric and financial market modeling [WO00]. 

However, if n, the number of data points is large, then the nearest neighbor 

search requires n * (n-1) calculations of distance (or distance squared). 

Note that using distance squared avoids the need to perform a square root 

operation in every distance calculation.  For each point we would have to 

compute the distance to every other point.  We could, of course, save all 

the distances (or distances squared) in a gigantic matrix and that would 

save half of the calculations.  However, we see that the time devoted to

computing distances increases as O(n ).  When n is large, a popular model-

ing strategy is to divide the data into learning and test data where nlrn +

ntst = n.  This reduces the number of calculations of distance to nlrn * ntst

but if both are proportional to n the number of calculations still increases 

with n2.

If one is willing to accept an approximate nearest neighbor search, then the 

time required to find the nearest neighbors can be reduced dramatically

[WO00].  If nn is large compared to one, then it is not really necessary to 

get the exact nn nearest neighbors.  For example if nn is 50, if we miss the 

7th, 23rd and 34th nearest neighbors and instead use the 51st, 52nd and 53rd

nearest neighbors, the effect upon the local least squares solution should be 

small.  The key to an approximate nearest neighbor search is to organize 

the data into a suitable data structure that can be used over and over again 

for each search.  If the data has been subdivided into learning and test data, 

then the learning data is first inserted into the data structure and this data

structure is used to find the approximate nearest neighbors for each of the

test data points.  If all n points are treated as test points, then all the points 

would be included in the data structure and nn+1 points would be found 

2

for each point (including the point itself).  For example, if n = 100 and 
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6 points might turn up points 14, 23, 27, 38,  84 and 92.  After rejecting 

point 27 we would be left with the 5 approximate nearest neighbors: 14, 

23, 38, 84 and 92.  

The nearest neighbor problem (often called the K nearest neighbor prob-

lem) has been studied by many researchers [e.g., HA90, SK97, SM00].  A

library called "ANN: Library for Approximate Nearest Neighbor Search-

ing" can be downloaded from the internet [MO98].  In my last book I de-

scribed a program called FKR that uses the p-tree approach to nearest 

full binary tree of height h and thus contains 2h leaves.  Each leaf of the 

tree contains information about a region in the independent variable space.  

If the number of independent variables is d then the height d h of the tree 

must be greater than or equal to d.  It is easiest to explain this approach to

nearest neighbor searching if we assume that d = 2.  d

In Figures 7.5.1 and 7.5.2 we see 24 points distributed in a p-tree of height 

h = 3.  There are 23 = 8 cells in this tree.  The distances OA and OR are 

normalized to a value of 1.  The tree is constructed by first finding the

point on the normalized x1 axis in which half the data points fall to the left 

and half fall to the right.  If the number of data points n is odd (i.e., n =

ACPO and CDRP.  Both of these spaces contain 12 data points.  These 

spaces are then subdivided along the x2 axis.  For example ACPO is subdi-

vided into EGPO and ACGE.  Each of these subspaces contains 6 data 

points.  For higher dimensional spaces, this procedure is continued until 

every direction has been subdivided once.  Once the space has been subdi-

vided in every direction, then the next subdivision for each subspace is 

along the longest normalized direction.  For example, cell ACGE is longer 

in the x1 than the x2 direction so it is divided into two subspaces along the 

x1 axis (i.e., cells 3 and 4).  Cell CDLJ is longer in the x2 direction so it is

divided into two subspaces along the x2 axis (i.e., cells 7 and 8).  

nn = 5 and we are looking for the 5 nearest neighbors to points 27, a search for 

neighbor searching to perform kernel regression analyses based upon

either the Order Zero, One or Two KR algorithm [WO00].  The p-tree is a

2m+1), then m will fall on one side and m+1 on the other side.  In the

example we see that the space ADRO is first subdivided into two subspaces
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Figure 7.5.1   Cell Distribution in Normalized 2D Space

The p-tree data structure includes the dimensions of each of the cells and a 

list of data points in each of the leaf cells.  To find the nn approximate

nearest neighbors for a given test point, one must first find in which leaf 

cell the test point resides.  To find the test cell, one enters the tree at the 

root cell and then follows the tree down to the appropriate leaf cell through

a series of if statements (e.g., if f x2 > 0.56 go to right-son, else go to left-

son).  The search for nearest neighbors is limited to a maximum of num-f

cells cells in which only the test cell and adjacent cells are included in the

search.  If numcells = 1 then the search is limited to the test cell.  If num-

cells = 2, then the search is limited to the test cell and the closest adjacent 

cell.  If numcells  2h then the search is performed in the test cell and all 

adjacent cells.  Clearly, the greater the value of numcells, the more accu-

rate is the search but the time required to perform the search is greater.  

Figure 7.5.2   p-tree Representation of Cells in Figure 7.5.1
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To understand the approximate nature of this method of locating nearest 

neighbors, consider Figure 7.5.3.  In this figure three test points are con-

sidered: one in cell 1, one in cell 2 and one in cell 6.   Consider first the

test point in cell 1.  If numcells = 8, and nn = 4, then the search would 

take place only in cells 1, 2 and 5 and the four points that would result 

from the search would be a, b, d and i but not c (since c is not in an adja-

cent cell).  Even if nn = 24, the search would only locate 9 learning points

(i.e., all the points in cells 1, 2 and 5).  The test point in cell 2 presents a 

different problem.  If numcells = 3, and nn = 2, then the search would be 

in cells 2, 4 and 7 and points e and fd would be located. However, if num-

cells = 2 then the search would locate e and c (because the 2nd cell included 

in the search would be 7 rather than 4).  For the test point in cell 6, if num-

cells = 8, and nn = 3 then the search would locate the 3 points in cell 6.  If 

nn is increased to 4 then point g would also be located.  If nn is increased 

to 10, then only the 9 points in cells 5, 6 and 7 would be located.  Points a 

and bd  are closer to the test point than point h but they would not be located 

because they are not in an adjacent cell.

Figure 7.5.3 Data Point Distribution in p-tree with h = 3 and 24 

learning points. 
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28

the test cell to make a prediction for the dependent variable of the test 

point.  Furthermore, if all the points in the cell are equally weighted, then

the surface for the cell (using Order Zero, One or Two) can be saved and 

used for every test point falling within the same cell.  This procedure al-

lows very rapid predictions but at the price of reduced accuracy.  The loss 

of accuracy is greatest for points near the cell boundaries.  To reduce this 

loss, one can increase numcell to 2 and use all the points in the test cell l

and the closest adjacent cell.  Since all points in the two cells are used, 

there would be no need to perform a nearest neighbor search within this set 

of learning points.  For very large problems (like modeling financial mar-

kets) the timing considerations for nearest neighbor searching and then

least squares fitting to perform kernel regression analyses becomes crucial.  

This subject is considered in detail in my last book [WO00].  The time for a

complete analysis can be divided into two components: preparation-time

and run-time.  The preparation time is the time required to create the p-tree

data structure.  For most large problems, the run-time is much greater than 

the preparation time and optimization is thus directed towards reducing the 

run-time to an acceptable level without a serious degradation in accuracy. 

For time dependent problems, as new data is obtained, one can choose to 

add the new data to the set of learning points.  Another alternative is to use 

a moving window in which as new points are added, the oldest points are 

discarded.  If the learning data set is allowed to grow or if the moving 

window option is used, the number of points per leaf cell can eventually 

vary considerably from cell to cell.  For this reason, one should periodi-

cally rebuild the p-tree with the latest data. 

The methodology of nearest neighbor searching described above is general

and is not affected by the dimensionality d of the problem.  However, di-d

mensionality plays a crucial role in the effectiveness of the resulting mod-

els.  Bellman coined the phrase "the curse of dimensionality" in his book 

on adaptive control processes in 1961 [BE61].  As the dimensionality in-

creases, the average distance from a test point to the nearest neighbors in-

creases dramatically.  To understand the problem, let us organize n points

such that n/2 are learning points and n/2 are test points and the points are 

placed within a hypercube of dimension 1 per side.  Furthermore the points

are placed alternatively at equal distances.  For example if we have a single

When n is large, there can be many points in each cell.  For example, if 
8

n = 10,000 and h = 8, then the average number of points per cell is 10000 /2

which is between 39 and 40.  One option is to just use all the points in 

dimension (i.e., d = 1), the distance from a test point to the closest learningd

points would be 1/n.  If n =100 then the distance would be 0.01.  In two
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1/2 points per side and the distance 2

from a test point to the closest learning points would be 1/n1/2.  For exam-

ple, for n = 100, the layout of the 100 points is shown in Figure 7.5.4.  We

see that the distance between points is 0.1 (i.e., 1/1001/2).  For  d=3 the dis-

tance increases  to  0.215  ((i.e., 1/1001/3

see that the distance to the closest learning point increases rapidly with in-

creasing d.  For example, comparing the distances for d=10 and d=2 for n

= 10,000, we see that the ratio is almost 40 (i.e., 0.3981 / 0.01).  For n =

1,000,000 the ratio is over 250.  In other words, for a given value of n, the

data becomes increasingly sparse as d increases.  In fact, the data density d

decreases exponentially with increasing d.  Thus our search for nn nearest 

neighbors results in a volume that increases in size exponential with in-

creasing d.  For large values of n our nearest neighbors are quite far away

thus the basic assumption that the model produces predictions based upon 

behavior of nearby points becomes suspect.  The "nearby points" are not so 

nearby!   This effect is called the curse of dimensionality. 

dimensions (i.e., d = 2), there would bed n

).  Distances are summarized in 

Table 7.5.1 for n = 100, 10,000 and 1,000,000 for values of d up to 10.  Wed
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Figure 7.5.4 Layout of 100 data points, 50 learning and 50 test 

points.  Points are equidistant.  For each test point the distance to the

nearest learning points is 0.1.

d n=100 n=10,000 N=1,000,000

1 0.0100 0.0001 0.000001 

2 0.1000 0.0100 0.0010

3 0.2154 0.0464 0.0100

4 0.3162 0.1000 0.0316

5 0.3981 0.1584 0.0631

6 0.4642 0.2154 0.1000

7 0.5179 0.2682 0.1389

8 0.5623 0.3612 0.1778

9 0.5994 0.3594 0.2154

10 0.6309 0.3981 0.2512

in an equidistant grid as a function of dimensionality d and the totald

number of points n (with n/2 learning and n/2 test points). Distance = 

1 / n
1/d

. 
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7.6 Kernel Regression Performance Studies 

In this section two studies are considered. Both are based upon a compli-

cated function of four independent variables.  Each of the independent 

variables was generated using a random number generator from zero to 

one.  The values of y for the first case were computed directly from they

function.  The values of y for the second case are the same as for the first y

case but a large random noise component was added to the values of y.  

The equation for y (without noise) is: 
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This equation has multiple peaks and valleys and an average value of zero. 

The variable y is a function of 4 independent variables.  For Case One,y

10000 points were generated and 7000 were used as learning points.  Pre-

dictions were made for each of the remaining 3000 test points and the vari-

ance reduction was computed using all the test points: 
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100         (7.6.2)

A p-tree of height h = 8 was used so the learning points were distributed 

into 256 approximately equally populated cells.  The average number of 

learning points per cell was 7000 / 256 = 27.3.  Nearest neighbor searches 

was repeated using eight different values of k.  The values of k varied from k

calculation to calculation.  The k's were computed using Equation 7.6.3 

and eight different values of C  (i.e.,C C = 1, 2, 4, 8, 16, 32, 64 and 128) : 

were conducted in all adjacent cells to each test cell.  The nn points

located in the searches were weighted using Equation 7.2.1.  The calculation 
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(((( ))))1
min kdexpw

C
−−−−========          (7.6.3)

In this equation dmaxdd  is the distance from test point x i to the furthest of the i

nn learning points.  For example, if C = 4, then the minimum weight is C

0.25.  All the other nn – 1 learning point are weighted between 1 and 0.25. 

For C = 1,C k is zero, and all the learning points are equally weighted.  Ta-k

ble 7.6.1 includes results using nn = 20 and 100 for all three algorithms.  

Note that all the values of VR are close to 100%.  Only results for C = 1C

and 128 are included in the table, because VR varies smoothly and mono-

tonically between these two values.  The results show that there is a slight 

advantage to using a higher value of C (for all three algorithms) because C

the higher the value of C the lower the weight for distant points.  Also, theC

nn Order VR (C=1)CC VR (C=128)CC

20 0 99.239 99.497 
20 1 99.932 99.969 
20 2 99.999 99.999 
100 0 97.930 99.203
100 1 99.670 99.912
100 2 99.998 99.999

Table 7.6.1 Values of Variance Reduction for Combinations of nn

and Order.  (h = 8,  nlrn = 7000,   ntst = 3000) t

In Case 2, Equation 7.6.1 was used to generate values of y but these valuesy

were then corrupted with random noise.  Defining rnum(n) as a function

that generates n random numbers between -1 and 1, the following method 

was used to generate the  values of y10 :

10

90
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zy y10 

nrnumz

z

y

σσσσ
σσσσ

++++====

====

The variable y10 is 10% signal (i.e., y) and 90% noise.  If independent test 

data is used, then one expects VR to be less than 10%.  Using Equation 

7.6.4, 50,000 data points were generated.  Thirty-five thousand were used 

as learning points to make predictions on the remaining fifteen thousand. 

Results are seen in Table 7.6.2.  The values of C in the table are the values C

results indicate that accuracy is improved as the order of the algorithm 

increases.  
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for which VR is maximized.  The results show that the Order 0 algorithm 

For all algorithms, it can be seen that if enough learning points are used to

make predictions, then results approach the maximum expected value of 

VR = 10%.  

underlying mathematical model, kernel regression can be used to make 

predictions for combinations of the independent variables within the range 

of the learning data.  The method can be used for problems in which the 

Order 0 Order 0 Order 1 Order 1 Order 2 Order 2 

nn VR C VR C VR C 
  50 7.923   1 6.963 1 -11.021 1
 100 8.812   1 8.074 1   0.514 1
 200 9.379   1 9.096 1   5.063 1
 400 9.502   2 9.462 1   7.628 1
 800 9.537   8 9.686 1   8.799 1
1600 9.491 128 9.737 4   9.454 1

Table 7.6.2 Values of VR and Best C for Combinations of C nn and

Order  .  (r h = 8,  nlrn = 35000,    ntst = 15000) t

7.7 A Scientific Application 

Kernel regression can be applied to problems is many fields of science.  I 

was involved in a study related to the behavior of materials under deforma-

tion [TA03].  Clearly, this is not a subject that is of interest to most readers.  

However, I am including it to illustrate the performance aspects of apply-

ing kernel regression to a very compute intensive application. 

Typically materials are treated as a continuum but a growing field of study

considers the behavior of materials at the atomic level.  In many cases,

both the finite dimensions of the system as well as the microscopic atomic-

scale interactions contribute equally to the overall system response. This 

is least sensitive to nn and Order 2 is most sensitive.  As nn increases, 

Order 0 requires a greater value of C to reduce the effect of distant points.  C

The purpose of these two studies is to demonstrate the power of kernel

regression as a modeling tool.  For problems in which there is no obvious 

data exhibits very little noise as well as for problems in which the data 

includes considerable noise. 
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makes modeling difficult since continuum tools appropriate to the larger 

distance scales are unaware of atomic detail and atomistic models are too

computationally intensive to treat the system as a whole.  One approach is 

to model such systems using quasicontinuum techniques.  Quasicontinuum 

methods mix continuum and atomistic approaches to modeling.  Our study

applied a kernel regression Order Two model to simulate the behavior in

the atomic region. 

The overall strategy is to consider the energetics of the entire system with

the aim of finding the configuration in which the stored energy is mini-

energetics point of view, the atoms are considered as representative of 

their immediate neighborhood. 

In the atomistic regions, what are required are the displacements of the at-

oms as functions of the positions of the atoms.  In three dimensions the po-

sition of an atom is denoted as x1, x2, x3 and the displacements are denoted 

as u1, u2, u3.  Crucial to the energetics calculations are the first and second 

derivatives of the u variables.  Each of the u 's are modeled separately.  For 

each atom, the first task is to find a set of nn nearest neighbors.  Once the

nearest neighbors have been located, the method of least squares is used to 

find the coefficients of the following equation: 

2
39328

2
27

316215
2
14332211

xaxxaxa

xxaxxaxaxaxaxau

++++++++++++

++++++++++++++++++++====
        (7.7.1) 

In the neighborhood of each atom of interest we use the x 's and the x u 's 

relative to this atom. In other words, the values of x1, x2, x3 and u for the 

atom of interest are zero and thus there is no need for a constant in the 

equation.  This equation is a complete second order polynomial in three 

dimensions.  Since this equation includes 9 coefficients, the method of 

least squares requires a value of nn greater than 9.    For each atom there 

are 9 aja  values for j u1, 9 values for u2 and 9 values for u3.  The first and 

second derivatives for each u in each direction can be computed by differ-

entiating the equation.  For example, the derivatives in the x1 direction

within the region near the atom of interest are:

are used further from these regions.  To mm ove smoothly from the m atomistic

mized.  Atomistic simulations are performed in the critical regions (for

example, near propagating cracks in the material) and continuum methods

to the continuum regions, as the distance from the critical regions

increases, the number of atoms used in the simulation decreases.  From an 
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         (7.7.2)

Since we are only interested in the derivatives at each atom of interest, the 

x values are all zero and so the first derivative is just x a1

rivative is just 2a4.  Similar expression can be determined for the deriva-

2 3

by minimization of the energy equation.  This is a non-trivial matter as the 

number of degrees of freedom is very large.  We worked with about 

10,000 degrees of freedom (3 times the number of atoms used to represent 

the system).

An interesting aspect of the study was the validation process used to test 

the software and measure the effect of the input parameters upon system 

performance.  A test data set was generated and was based upon a random 

set of x values but x u values were based upon a known second order poly-

nomial (in 3 dimensions).  Thus computed and actual derivatives could bemm

The input parameters considered in the study included: 

1. n : This parameter is the number of data points used in the analy-

sis.  All n points were used to build the p-tree (required for nearest 

neighbor searching) and then the same points were each used indi-

vidually as test points. 

2. numcells : This parameter is the number of cells used in the search 

for nearest neighbors.  Each test point falls into a test cell.  If 

numcells = 1, then only the test cell is used.  However, if numcells

> 1 then adjacent cells may be used.  The value num_adjacent ist

the number of adjacent cells and varies from cell to cell.  It is a 

computed parameter and not an input parameter.  If numcells >

num_adjacent, then all adjacent cells are used.  If, however, num-

cells < num_adjacent then the cells are first sorted on the basis of t

the distance from their centers to the test point and the closest cells 

are used up to a total of numcells.

and the second de-

tives in the x and x33 directions.  Using the derivatives an expression for

total energy can be obtained and then the actual u values can be computed 

compared to make sure that the software was behaving properly.  (The 

expected errors should be close to zero and due only to round-off errors.) 
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3. numleaves : This parameter is the number of leaves in the binary

tree and must be equal to 2h where h is an integer and is a measure 

of the tree height.  The number of leaves determines the number of 

data points included in each cell (n / numleaves).  If n / numeaves

is not an integer number than the number of data points per cell is

this number rounded up or down by one. 

4. nn : This parameter is the number of nearest neighbors that are to

be located in the search and then used in the least squares analyses.  

This number is a maximum in the sense that the actual number re-

turned might be less than nn.  This can happen if the values of n,

numleaves, and numcells, result in the number of points under 

consideration being less than nn.  For example, if n = 2560 and 

numleaves = 256, then there will be 10 points per leaf cell.  If 

numcells = 2, then only the test cell and the nearest adjacent cell 

will be used in the search for nearest neighbors.  So if nn > 20, 

then only the 20 points in these two cells will be returned.  If nn is

not specified (n.s.), then all points in all the numcells are used. 

5. C : This parameter is called the C weighting parameter. The weights g

are used in the least squares calculation of the derivatives.  Once 

the nearest neighbors (called the learning points) have been deter-

mined, the normalized distance to the furthest point is known.  The 

)( 2
ijij kdexpw −−−−====           (7.7.3) 

where dijdd  is the distance between the points and the value of j k isk

computed based upon C as follows:C

)(
1 2

maxkdexp
C

−−−−====           (7.7.4) 

where dmaxdd is the distance to the furthest point.  For example, if x

weight used for learning point i and test pointi j is computed as

follows: 

smallest weight (i.e., 0.5) is given to the learning point that is 

farthest away from the test point. 

C = 2 then the weight for all points will be between 1 and 0.5.  TheC
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The effect of n and numcells are shown in Table 7.7.1.  The values of run-

time are in CPU seconds measured using a Pentium II – 400 processor.  

 
N numcells Nn runtime

12500 All adj 100   9
25000 All adj 100  30 
50000 All adj 100 109
12500 1 n.s. 2
25000 1 n.s.   6
50000 1 n.s. 27

n.  For all cases 

numleaves was 256 and C was 1.  n.s. is "not specified".C

In this table we see that the runtime increases at a rate that is much greater 

than linear.  The runtime consists of two main components: the time to 

find the nearest neighbors and then the time to complete the least squares

analysis.  For the first 3 cases in which all adjacent cells were included in 

the search for the 100 nearest points, the number of points considered in-

creases as O(n) and thus the search for the 100 points increases as O(n 

log2gg n).  Since this search is repeated for all n points, the total time for this 

activity increases as O(n2
log2gg n).  The least squares analysis for each point 

is the same since all 3 cases were based upon 100 points.  However since 

this analysis is performed for each point, the total time for the least squares 

calculations is O(n).  The next three cases in the table are based upon using

only the points in the test cells to perform the least squares analysis.  Since 

nn is not specified, then all points in the cell are used.  Thus each analysis 

is O(n) and the total time for this activity is  O(n2).  However, since there 

is no need for a nearest neighbor search, the times for these 3 cases arer

considerably less than the times when all adjacent cells were used to find 

the 100 nearest neighbors. 

In Table 7.7.2 we look more closely at the effect of numcells.  At first 

glance the results look counter-intuitive.  The average number of points in

each cell is 50000 / 256 which is about 195.  We see that going from 1 cell 

(i.e., the test cell) to 2 or 3 cells (i.e., the test cells plus the one or two clos-

est cells) causes a large increase in the runtime.  However, using all adja-

cent cells actually causes a slight decrease in runtime.  When all adjacent 

cells are used the calculation required to find the closest cells is eliminated 

and this compensates for the increase in the number of points required to

find the 100 nearest neighbors. 
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The next four cases use all points in the included cells to perform the least 

squares analyses.  For numcells = 1, about 195 points are used, for num-

cells = 2, about 390 points are used until we reach a maximum when all

points in all the adjacent cells are used.  The last two cases show that most 

of the time spent (i.e., 335 – 39 = 296 seconds) was on the least squares

analysis required to compute the derivatives. 

Numcells Nn runtime derivatives

1 100  26 Yes 
2 100 112 Yes 
3 100 112 Yes 

All adj 100 109 Yes 
1 n.s.  4 Yes 
2 n.s.  54 Yes 
3 n.s.  81 Yes 

All adj n.s. 335 Yes 
All adj n.s.  39 No 

nuncells.  For all 

cases n = 50000,  numleaves = 256 and C = 1.  n.s. is "not specified".C

 
Note the incredible speed attained when numcells = 1, C = 1, and C nn is not 

specified.  We call this fast mode because the points in the cell are only

used once.  The least squares calculation is performed using the absolute

values of the x 's and thex u 's rather than relative values the first time a test 

point lands in a cell and then the computed coefficients are saved.  Thus amm

single complete second order polynomial is saved for each test cell and is 

used for all test points within the cell.  Using this polynomial the first and 

second derivatives in all three directions can be computed for all points in

the cell without repeating the least squares calculation.  Of course, if new 

points are added to the cell, then the coefficients must be recomputed.  The 

book-keeping required for this operation is included in the program code.

The effect of numleaves is seen in Table 7.7.3.  In this table preptime (the 

time to create the p-tree needed for the nearest neighbor searching) is also 

included.  By increasing the number of leaves, we see an increase in prep-

time (the time to build the tree) but this is insignificant when compared to

the dramatic decrease in runtime.  The decrease in runtime is due to the 

decrease in the total number of data points considered in the search for 

nearest neighbors.  By increasing the number of leaf cells, we decrease the 

fraction of the total volume of the space used in the search.  A word of 

caution should be added here.  If we are looking for nn nearest neighbors,
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if numleaves is very large, the number of points per leaf cell might be so 

small that even if all adjacent leaves are considered, the total number of 

points examined will be less than nn.  Clearly, as the number of points

used in the least squares calculation decreases, the accuracy of the com-

puted derivatives is adversely affected. 

numleaves nn preptime Runtime

 256 100 2 109 
 512 100 3  72 
1024 100 3  53
2048 100 4  33

nunleaves.  For all 

cases n = 50000, numcells = All adjacent cells and C = 1. C

The effect of C is seen in Table 7.7.4.  When C C > 1 weights must be calcu-C

lated (based upon distance from learning to the test points) and this ex-

plains the small increase in time required to compute derivatives (80 – 10

= 70 seconds for C = 1 and 74 seconds when C C > 1).  WhenC C > 1 the dis-C

tances to the test point must be computed because the distance to the fur-

computed.  The runtime increased from 10 to 21 seconds due to this added 

calculation.

C preptime runtime derivatives

1.0 1 80 Yes
1.0 1 10  No 
2.0 1 95 Yes
2.0 1 21  No 

C.  For all casesCC n = 

25000, numleaves = 256, numcells = All adjacent cells and nn is not

specified.

In conclusion, this application illustrates the usage of kernel regression to

obtain first and second order derivatives in three-dimensional space.  To

obtain realistic deformations, many atoms are required to describe the sys-

tem.  This is a very compute intensive application so a lot of attention to

computational complexity is required.  The key to reducing the time per 

calculation is in the reduction of the time required for nearest neighbor 

searching.

thest point is used in subsequent weight calculations.  This additional

calculation is performed regardless of whether or not derivatives are



232    Chapter 7  KERNEL REGRESSION   

7.8 Applying Kernel Regression to Classification 

Classification problems arise in many branches of science and technology. 

be good predictors as to the quality of the part.  Can we use these two 

measurements to decide in which class (accept or reject) a part falls? 

In Section 2.8 application of least squares to classification problems was 

discussed.  In general, for problems in which there are d independent vari-d

ables, surfaces of d-1 dimensions were located to separate the classes.  

Thus if there are 2 independent variables and 2 classes, a single line is lo-

cated to separate the classes.  If there is only one independent variable,

then the separation is accomplished with a single point.  There are how-

ever, problems in which this approach cannot be used.  An example of a 

distribution of two classes in a two dimensional space that cannot be sepa-

rated in such a simple manner is seen in Figure 2.8.4. 

Rather than trying to locate surfaces, the approach considered in this sec-

tion is applicable to all types of distributions.  As in Section 2.8, the 

classes are assigned numeric values.  For example, for a two class prob-

lem, the values of y = 0 or 1 can be assigned to the data points from the y

two classes.  The model is built using the nlrn points and tested using ntst

test points.  To predict the class of a test point, the methodology described 

in this chapter may be applied.  For example, if we use the Order 0 algo-

rithm, nn nearest neighbors from the nlrn set of points are first located and 

then a value of y is computed as described in Section 7.2.  The learning y

points can be weighted according to Equation 7.2.1 based upon the dis-

tance to the test point or they can all be assumed to have equal weight.  In

addition, if the numbers of learning points from the classes is considerably

different, the classes with lower numbers of cases can be assigned higher 

weights.  This approach is discussed in Section 2.8 and is also applicable 

when kernel regression is used for classification.  For two class problems if 

the computed value of y for the test point is less than 0.5 if would be pre-

dicted as a Class 0 point, otherwise it would be considered a Class 1 point. 

Alternatively, the δδδδ technique (see Table 2.8.1) in which a "not clear" des-δδδδ
ignation is assigned to some of the test points can be used.  The use of Or-

der 1 and 2 algorithms is certainly acceptable; however they should only

be used if they outperform the simpler Order 0 algorithm.

As an example, consider a production problem in which a simple test is

required to decide whether or not a particular part should be accepted or

rejected.  Let us say that we have two very simple measurements that might 
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For real problems in which there are a large number of available data

points, one can experiment using various values of nn and perhaps using 

several different values of C (see Equation 7.6.3).  The parameters could C

be selected based upon a criterion such as misclassification rate for the test 

data set.  If there are enough data points available, it is useful to leave an 

evaluation data set untouched until the parameters have been set.  This data

set can be used to verify that the selected parameters lead to reasonable 

classifications for the as yet unseen data. 

Figure 7.8.1 A Two-Class Two-dimensional Example 

As an example, consider the two-class two-dimensional problem shown in 

Figure 7.8.1.  In this example nlrn (the number of learning points) is 4 : 2 

1 2

sume that the correct (but unknown model) is that all points in the shaded 

areas are from Class 0 and all points in the unshaded areas are from Class 

1.  The ranges of x1 and x2 are limited to -1 to 1.  Using the Order Zero Al-

gorithm and nn (the number of nearest neighbors) equal to one, all test 

points will be classified correctly.  However, if we use nn = 2, for every 

test point we will locate one Class 1 learning point (Y = 1)Y and one Class 0

(Y = 0) learning point.  If all points are weighted equally then the value of Y

Class 0 points on the line x = 0 and two Class 1 points on line1 x  = 0.  As-2
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ycalc for every test point is 0.5.  Points are classified as belonging to Class 

0 if ycalc < 0.5 δδδδ, Class 0 if δδδδ ycalc > 0.5 + δδδδ and otherwise N.C. (not δδδδ
clear).  Thus even if δδδδ = 0, all test points would fall into the N.C. category. δδδδ
If the 2 learning points are weighted according to Equation 7.6.3, for any 

value of C > 1 (i.e.,C k > 0) all points would be classified correctly.  k

If nn = 3, the situation becomes bizarre.  If all points are weighted equally, 

then all test points will be misclassified!   If the points are weighted using

C > 2, then there will be a region near each learning point that test points C

in the region are classified correctly.  As C increases beyond 2 these re-C

gions become larger.  As C approaches infinity the situation approaches C

the case of nn = 1.  If all four learning points are used, then the situation is

very similar to the case of nn = 2 : if all the learning points are weighted 

> 1, then all test points will be classified correctly. 

For a given set of data the first task of the analyst is to separate the data 

into learning and test sets and perhaps an evaluation data set.  The parame-

ters that are typically varied are nn, C and C δδδδ (if there is a need to create an δδδδ
N.C. category).  Typically the classes overlap within the independent vari-

able space so there will be a certain fraction that will fall within the mis-

classified or N.C. categories.  The purpose of varying the parameters is to 

try to minimize the fraction that is misclassified.

To demonstrate the type of information that we would like to obtain, the 

following artificial two-class two-dimensional problem was developed.  

Ten thousand data points were created using four bivariate normal distri-

butions: two for Class 0 points and two for Class 1.  The locations of the

centers of the distributions were positioned in a manner similar to the dis-

tribution in Figure 7.8.1.  The Class 0 distributions were located on the line 

x1 = 0 (at x2 = 3 and  3).  The Class 1 distributions were located on the line 

x2 = 0 (at x1 = 3 and 3).  A value of σσσσ = 1 was used in the bivariate distri-σσσσσσ
butions.  Thus for the 2500 Class 1 points centered at x1 = 3 and x2 = 0,

about 95% of the values of x1 were in the range 3 – 1.96 to 3 + 1.96 and 

about 95% of the values of x2 for this distribution were in the range 1.96 

to 1.96.  Results from a series of simulations are shown in Table 7.8.1. 

–

equally, then all test points will fall into the N.C. category.  However, if 

C

–
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nn δδδδ Correct Not Clear Misclassified 

1 0.0 0.9505 0.0000 0.0495

1 0.1 0.9505 0.0000 0.0495

1 0.2 0.9505 0.0000 0.0495

3 0.0 0.9610 0.0000 0.0390

3 0.1 0.9610 0.0000 0.0390

3 0.2 0.9140 0.0685 0.0175

10 0.0 0.9730 0.0000 0.0270

10 0.1 0.9650 0.0100 0.0250

10 0.2 0.9455 0.0355 0.0190

20 0.0 0.9705 0.0000 0.0295

20 0.1 0.9630 0.0145 0.0225

20 0.2 0.9500 0.0310 0.0190

Table 7.8.1 Correct, Not-Clear and Misclassified Rates as a Func-

tion of nn and δδδδ.   For this example δδδδδ C = 1 (i.e., all learning points were

equally weighted.

Once the data from the four distributions were combined, every fifth data 

point was put into the test data set and all the others were put into the

learning data set.  Thus the value of nlrn was 8000, and ntst was 2000.  t

Results are shown in Table 7.8.1.  We see that for this problem there is not 

a very dramatic difference as a function of nn but the results for nn = 10

are marginally best. For all values of nn the misclassification rate de-

creases as δδδδ increases because some of the δδδδ misclassified test points are 

transferred to the N.C. category.  Also, some points that had been classi-

fied correctly are transferred to the N.C. category.  Note that for nn = 1 the

N.C. rate is 0 for all values of δδδδ because the value of δδδδ ycalc is either 0 or 1 

depending upon the nearest neighbor. 

The parameter C is used to set the value of C k needed to calculate the k

weights of the learning points.  From Equation 7.6.3 when C = 1 the value C

of k = 0 and therefore all points are equally weighted.  Whenk C = 2, theC

weight of the furthest point (from the nn nearest neighbors) gets a weight 

of 1/2 and all the other nn - 1 points get weights between 1/2 and 1.  The 

effect of varying C is seen in Table 7.8.2.  Note that the effect is not very C

dramatic for this particular problem.  In fact, the results show a small ad-

vantage using C = 1 (i.e., weigh all points equally). C
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C δδδδ Correct Not Clear Misclassified 

1 0.0 0.9730 0.0000 0.0270

1 0.1 0.9650 0.0100 0.0250

1 0.2 0.9455 0.0355 0.0190

2 0.0 0.9690 0.0000 0.0310

2 0.1 0.9605 0.0130 0.0265

2 0.2 0.9440 0.0355 0.0205

3 0.0 0.9690 0.0000 0.0310

3 0.1 0.9605 0.0125 0.0270

3 0.2 0.9445 0.0345 0.0205

4 0.0 0.9695 0.0000 0.0305

4 0.1 0.9615 0.0110 0.0275

4 0.2 0.9445 0.0345 0.0210

Table 7.8.2 Correct, Not-Clear and Misclassified Rates as a Func-

tion of C and C δδδδ.   For this exampleδδδδδδ nn = 10.

The order of the algorithm was also tested for this problem.  Using Order 1

the results were close but not quite as good as results for Order 0.  The best 

results were obtained using the simplest algorithm and simplest weighting

scheme (i.e., all points are equally weighted).  For problems in which the

data density is high, the nearest neighbors are close to the test points and 

thus there is no particular advantage to going to higher order algorithms

and decreasing weights for the further points.  For this particular test prob-

lem, 8000 learning points were distributed in a two dimensional space and 

so in most regions of the space there were a sufficient number of nearest 

neighbors to make accurate classifications.  However, for problems in

higher dimensional spaces the data density decreases exponentially with 

the number of dimensions and one might expect that the higher order algo-t

rithms would be beneficial for such problems.

7.9 Group Separation: An Alternative to Classification 

For some problems the analyst is interested in identifying groups with spe-

cial properties.  For example, an insurance company might want to develop

a model for predicting whether or not a person applying for life insurance

falls into a high risk or low risk group.  A hedge fund operator might be

looking for stocks which should outperform or under-perform the market. 

The traditional classification approach to problems of this type was dis-



7.9 Group Separation: An Alternative to Classification    237 

cussed in Section 7.8.  In this section the concept of "group separation" is

introduced [WO00].

In Section 7.6 kernel regression performance studies were considered.  The

criterion for choosing parameters was maximization of VR (Variance Re-

duction).  However, for some problems we are less interested in how a 

model performs for all the test points and are more interested in the per-

formance of the top and bottom percentiles.  For example, let us consider a 

model that uses kernel regression to predict the performance of stocks rela-

tive to the market.  For a given date and stock the model yields a predicted 

relative return which can then be compared to the actual relative return. 

The question that the analyst is most interested in answering is whether or 

not the stocks with high predicted returns perform significantly better than

stocks with low predicted returns.  The group separation SEP is a criterion P

that may be used to answer this question:

2

2
2

1

2
1

21 )()(

nn

GAvgGAvg
SEP

GG σσσσσσσσ −−−−

−−−−====           (7.9.1)

In this equation G1 is the top group and G2GG  is the bottom group.  If Y is the Y

1

2
1Gσσ is the variance of 1 Y for this group.Y

Typically the values of n1 and n2 are the same (i.e., n) and are computed as

a fraction of ntst (the number of test points):t

100/GroupPcnt*ntstn ====           (7.9.2)

If the model does not predict, then as the value of n becomes large we

would expect SEP to be normally distributed with a mean of zero and aP

standard deviation of one.  Thus SEP is a measure of separation of the P

groups that can easily be interpreted for significance.

For example, assume that we develop a model that predicts the relative

one-day return of stocks and we test it over a period of 60 trading days.t

be compared to how the stocks actually performed for the days included in 

the study.  Let us now question whether or not the top 5% of the stocks 

outperformed the bottom 5%.  The value of n for each group is 24000.  Let 

actual variable that we are modeling, then for example, Avg(G )  is the

average value of Y for group 1 and Y

Further assume that the average number of stocks followed during this 

period is 8000 per day.  We thus have 480 thousand data points that can each 
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us assume that the mean and standard deviation for group 1 is 0.00037 ±

0.042 and for group 2 is 0.00024  ± 0.056.  The value of SEP is:P

1.35

24000

0.0560.042

0.000240.00037

22
================

+++++++++++++++

+++++++++++++++====SEP

This result is not very significant.  If the model predicts in a random man-

ner, the probability of getting a value of 1.35 or greater is about 9%.  For f

the same model, what happens when we limit the groups to 1%?  Assume

that the results for group 1 are 0.0070 ± 0.038 and for group 2 are  0.0088ff

± 0.034.  The value of SEP is: P

21.5

4800

0.0340.038

0.00880.0070

22
================

++++++++++++++++

+++++++++++++++====SEP

This number is extremely significant and suggests that there is a very large 

difference between the top and bottom 1% of the stocks when ranked on

quite striking! 

the basis of their predicted performance.  For this example, the contrast

between the top and bottom 1% as compared to the top and bottom 5% is



Appendix A:  Generating Random Noise 

 
When evaluating any type of modeling software, it is useful to be able to 

create data sets that can be used for testing the software.  Most general

purpose statistical software packages contain random number generators.  

For example, MATLAB includes a function called rand that generates 

random numbers in the range 0 to 1 and another function called randn that 

generates random numbers from a normal distribution with a mean of zero 

and a standard deviation of one.  These functions or their equivalents can 

be used to generate random noise satisfying the requirements of most data 

sets.

Let us assume rand(n) and randn(n) generate vectors of n random num-

bers.  (The functions in MATLAB are quite general and can generate sca-

lars, vectors or matrices.)  Assume that we wish to create a Y vector from a

vector f(ff x(( ) of n data points and we wish to add noise so that on average the

noise component is 5% and the noise is normally distributed.  The noise

vector would be:

 

noise  =  0.05 * f (x) * randn(n)          (A.1) 

 

and the Y vector would just be f(x)  + noise. 

 

As a second example, assume that we wish to add noise to the f(x) 

vector so that if the entire data set is modeled the noise is on average 

P times the actual signal.  Assume that the noise is not a function of 

f (x) and should be uniformly distributed within the range C to C.  

For this example, rand rather than randn is used.  We must first 

generate a basic noise vector with a mean of zero: 

 

noise = C ( 2 rand(n) – 1)           (A.2) 

 

–
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To compute C we note that the values of noise will be betweenC C and C C

with a variance of C / 3.  It is reasonable to assume that the noise will be 

uncorrelated with the Y vector so the variance in theY Y vector is:Y

 322222 /CfnoisefY ++++====++++==== σσσσσσσσσσσσσσσσ           (A.3) 

 
If we want to create a data set in which the average noise is P times theP

signal (i.e., f(ff x(( )), we would first compute σσσσfσσσσσσ  and then f C as follows:C

 

 PPC ff 3
2 σσσσσσσσ ========            (A.4) 

 
For example, if we wish to create a data set that is 80% noise, then the 

value of P would be 4 and P C would be 3.464σσσσfσσσσ .ff

If we wish to repeat this example but prefer that the noise is generated us-

ing a normal distribution, Equation A.2 thru A.4 would be replaced by:

 

    noise = C * randn(n)           (A.5) 

 

 22222 CfnoisefY ++++====++++==== σσσσσσσσσσσσσσσσ            (A.6) 

 

 PC fσσσσ====              (A.7) 

 

For the case of 80% noise, C would be 2C σσσσfσσσσσσ .f

If there is no available equivalent to the randn function, randn can be 

generated from rand.  The randn function generates random numbers 

from the standard normal u distribution.  This distribution is tabulated in

many sources (e.g., AB64, FR92, ST03).  The tables include the probability

of a point falling within the range from 0 to u.  Theoretically u can range 

from

close to 0.5.  Using Equation A.8 (i.e., Equation 26.2.23 from AB64)  n

random probabilities in the range 0.5 to 0.5 are first generated: p =

rand(n)  0.5.  A vector of signs is then created:  ( if p < 0 sign = 1  else 

sign =1 ).  At this point only the absolute values of p are used (p(( = abs(p(( )).  

Equation 26.2.23 computes the value of upu  such that the probability of a 

point falling above upu is p.  The normally distributed random numbers up u

corresponding to the random values of p are generated as follows: 

2
–

–  to , but for values of u above about 3 the probabilities are very– 
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====
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lnt  

 

(((( ))))p
tdtdtd

tctcc
t*signup εεεε++++

++++++++++++
++++++++−−−−====

3
3

2
21 dt dt d++t

2
210 ctc ctc ++tc++

1
        (A.8) 

 

where (((( ))) 41054 −−−−−−−−−−−−−−−−<<<< *.pεεεε .  The values of the constants are:

 

 c0 = 2.515517  d1dd  = 1.432788 

 c1 = 0.802853  d2dd  = 0.189269 

 c2 = 0.010328  d3dd  = 0.001308   

 
For values of p approaching zero, t and therefore t upu  becomes large. For 

example, for p = 0.0001, t = 4.7985 and t upu

p

1.1776 and upu  = 0.00025.

=  4.2684.  For  values of p

approaching 0.5, upp  approaches zero.  For example,  for p = 0.4999,

t =t



Appendix B:  Approximating the Standard Normal 

Distribution 

The standard normal distribution is probably the most widely used distri-

bution in statistics.  Indeed, many other distributions can be approximated 

by the standard normal as the number of events or data points becomes 

large.  In classical statistics, the usage of the standard normal required the

user to look up values in standard normal tables (e.g., AB64, FR92, ST03). 

To avoid the table lookup process, approximations to the standard normal

are available and can be accessed as calls to functions from within soft-

The normal distribution was defined in Section 1.3 by Equation 1.3.7: 

)
2

)(
exp(

)2(

1
)(

2

2

2/1 σσσσ
µµµµ

ππππσσσσ
−−−−−−−−==== x

x            (1.3.7)

The standard normal distribution (denoted as the u distribution) is the 

normal distribution with a mean of zero and a standard deviation of one:

2
2

1 2

21
/xexpxu

/
−−−−====

ππππ
              (B.1)

The probabilities listed in the standard normal tables are the areas under 

the curve from 0 to upu : 

dxxuuP

pu

p ====
0

)()(               (B.2) 

We can also define the Q(upu ) as the area under the curve from upu to :

ware.  General purpose statistical software packages include such 

functions.
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dxxuuQ

p

p

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

====
u

xuu xuu               (B.3)

Note that P(upu )  + Q(upu ) = 0.5.  In Appendix A, Equation A.8 is used to es-

timate the value of upu  for a given value of Q(upu ).  In this appendix, we con-

sider the inverse problem: estimating either Q(upu ) or P(upu ) for a given 

value of upu .  In the Handbook of Mathematical Functions [AB64], Equation

26.2.17 can be modified to approximate Q(upu ): 

pu*.
t

234641901

1

++++
====

/2)( 2
puexpz ====

)()()( 5
5

4
4

3
3

2
21 pp utbtbtbtbtb*zuQ εεεε++++++++++++++++++++====            (B.4)

where
8

1057)( 57)
−−−−−−−−−−−−−−−<<<< *.upεεεε .  The values of the constants are:

b1 = 0.319381530   b2 =-0.356563782 
 b3 = 1.781477937   b4 =-1.821255978 

b5 = 1.330274429
 
The equivalent value of P(upu ) is just 0.5 Q(upu ).  As an example, for upu =

1.96, the value of Q(upu ) using B.4 is 0.024998 and P(upu ) is 0.475002 

which is in agreement with the value in the standard normal tables. 

–
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