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Preface

Measurements through quantitative experiments are one of the most fun-
damental tasks in all areas of science and technology. Astronomers ana-
lyze data from asteroid sightings to predict orbits. Computer scientists de-
velop models for recognizing spam mail. Physicists measure properties of
materials at low temperatures to understand superconductivity. Materials
engineers study the reaction of materials to varying load levels to develop
methods for prediction of failure. Chemical engineers consider reactions
as functions of temperature and pressure. The list is endless. From the
very small-scale work on DNA to the huge-scale study of black holes,
quantitative experiments are performed and the data must be analyzed.

Probably the most popular method of analysis of the data associated with
quantitative experiments is least squares. It has been said that the method
of least squares was to statistics what calculus was to mathematics. Al-
though the method is hardly mentioned in most engineering and science
undergraduate curricula, many graduate students end up using the method
to analyze the data gathered as part of their research. There is not a lot of
available literature on the subject. Very few books deal with least squares
at the level of detail that the subject deserves. Many books on statistics in-
clude a chapter on least squares but the treatment is usually limited to the
simplest cases of linear least squares. The purpose of this book is to fill
the gaps and include the type of information helpful to scientists and engi-
neers interested in applying the method in their own special fields.

The purpose of many engineering and scientific experiments is to deter-
mine parameters based upon a mathematical model related to the phe-
nomenon under observation. Even if the data is analyzed using least
squares, the full power of the method is often overlooked. For example,
the data can be weighted based upon the estimated errors associated with
the data. Results from previous experiments or calculations can be com-
bined with the least squares analysis to obtain improved estimate of the
model parameters. In addition, the results can be used for predicting val-
ues of the dependent variable or variables and the associated uncertainties
of the predictions as functions of the independent variables.
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The introductory chapter (Chapter 1) includes a review of the basic statis-
tical concepts that are used throughout the book. The method of least
squares is developed in Chapter 2. The treatment includes development of
mathematical models using both linear and nonlinear least squares. In
Chapter 3 evaluation of models is considered. This chapter includes meth-
ods for measuring the "goodness of fit" of a model and methods for com-
paring different models. The subject of candidate predictors is discussed in
Chapter 4. Often there are a number of candidate predictors and the task
of the analyst is to try to extract a model using subspaces of the full candi-
date predictor space. In Chapter 5 attention is turned towards designing
experiments that will eventually be analyzed using least squares. The sub-
ject considered in Chapter 6 is nonlinear least squares software. Kernel
regression is introduced in the final chapter (Chapter 7). Kernel regression
is a nonparametric modeling technique that utilizes local least squares es-
timates.

Although general purpose least squares software is available, the subject of
least squares is simple enough so that many users of the method prefer to
write their own routines. Often, the least squares analysis is a part of a lar-
ger program and it is useful to imbed it within the framework of the larger
program. Throughout the book very simple examples are included so that
the reader can test his or her own understanding of the subject. These ex-
amples are particularly useful for testing computer routines.

The REGRESS program has been used throughout the book as the primary
least squares analysis tool. REGRESS is a general purpose nonlinear least
squares program and I am its author. The program can be downloaded
from www.technion.ac.il/wolberg.

I would like to thank David Aronson for the many discussions we have had
over the years regarding the subject of data modeling. My first experi-
ences with the development of general purpose nonlinear regression soft-
ware were influenced by numerous conversations that I had with Marshall
Rafal. Although a number of years have passed, I still am in contact with
Marshall. Most of the examples included in the book were based upon
software that I developed with Ronen Kimchi and Victor Leikehman and I
would like to thank them for their advice and help. I would like to thank
Ellad Tadmor for getting me involved in the research described in Section
7.7. Thanks to Richard Green for introducing me to the first English trans-
lation of Gauss's Theoria Motus in which Gauss developed the foundations
of the method of least squares. I would also like to thank Donna Bossin
for her help in editing the manuscript and teaching me some of the cryptic
subtleties of WORD.



Preface IX

I have been teaching a graduate course on analysis and design of experi-
ments and as a result have had many useful discussions with our students
throughout the years. When I decided to write this book two years ago, I
asked each student in the course to critically review a section in each chap-
ter that had been written up to that point. Over 20 students in the spring of
2004 and over 20 students in the spring of 2005 submitted reviews that in-
cluded many useful comments and ideas. A number of typos and errors
were located as a result of their efforts and I really appreciated their help.

John R. Wolberg
Haifa, Israel
July, 2005
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Chapter 1 INTRODUCTION

1.1 Quantitative Experiments

Most areas of science and engineering utilize quantitative experiments to
determine parameters of interest. Quantitative experiments are character-
ized by measured variables, a mathematical model and unknown parame-
ters. For most experiments the method of least squares is used to analyze
the data in order to determine values for the unknown parameters.

As an example of a quantitative experiment, consider the following: meas-
urement of the half-life of a radioactive isotope. Half-life is defined as the
time required for the count rate of the isotope to decrease by one half. The
experimental setup is shown in Figure 1.1.1. Measurements of Counts
(i.e., the number of counts observed per time unit) are collected from time
0 to time tmax. The mathematical model for this experiment is:

Counts = amplitude - ¢~ decay_constant - t

+ background  (1.1.1)
For this experiment, Counts is the dependent variable and time 7 is the
independent variable. For this mathematical model there are 3 unknown
parameters (amplitude, decay constant and background). Possible
sources of the background "noise" are cosmic radiation, noise in the in-
strumentation and sometimes a second much longer lived radioisotope
within the source. The analysis will yield values for all three parameters
but only the value of decay constant is of interest. The half-life is deter-
mined from the resulting value of the decay constant:

o decay_constant - half _life _ 1/2

L6931
half _life = — 2831 (1.1.2)
decay constant
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The number 0.69315 is the natural logarithm of 2. This mathematical
model is based upon the physical phenomenon being observed: the number
of counts recorded per unit time from the radioactive isotope decreases ex-
ponentially to the point where all that is observable is the background
noise.

There are alternative methods for conducting and analyzing this experi-
ment. For example, the value of background could be measured in a sepa-
rate experiment. One could then subtract this value from the observed val-
ues of Counts and then use a mathematical model with only two unknown
parameters (amplitude and decay constant):

Counts — background = amplitude - e~ decay_constant -t

(1.1.3)
The selection of a mathematical model for a particular experiment might
be trivial or it might be the main thrust of the work. Indeed, the purpose of
many experiments is to either prove or disprove a particular mathematical
model. If, for example, a mathematical model is shown to agree with ex-
perimental results, it can then be used to make predictions of the dependent
variable for other values of the independent variables.

Radioactive Source

Recorder

00000

Detector

Figure 1.1.1 Experiment to Measure Half-life of a Radioisotope

Another important aspect of experimental work relates to the determina-
tion of the unknown parameters. Besides evaluation of these parameters
by experiment, there might be an alternative calculation of the parameters
based upon theoretical considerations. The purpose of the experiments for
such cases is to confirm the theoretical results. Indeed, experiments go
hand-in-hand with theory to improve our knowledge of the world around
us.
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Equations (1.1.1) and (1.1.3) are examples of mathematical models with
only one independent variable (i.e., time #) and only one dependent vari-
able (i.e., Counts). Often the mathematical model requires several inde-
pendent variables and sometimes even several dependent variables. For
example, consider classical chemical engineering experiments in which re-
action rates are measured as functions of both pressure and temperature:

reaction _rate = f(pressure,temperature) (1.1.4)

The actual form of the function f is dependent upon the type of reaction
being studied.

The following example relates to an experiment that requires two depend-
ent variables. This experiment is a variation of the experiment illustrated
in Figure 1.1.1. Some radioactive isotopes decay into a second radioiso-
tope. The decays from both isotopes give off signals of different energies
and appropriate instrumentation can differentiate between the two different
signals. We can thus measure count rates from each isotope simultane-
ously. If we call them cI and ¢2, assuming background radiation is negli-
gible, the appropriate mathematical model would be:

—d1t

—d2t | 42 (e—dl-t_e—dZ-t)
d2-dl

cl=al-e (1.1.5)

c2=a2-e (1.1.6)

This model contains four unknown parameters: the two amplitudes (a1 and
a2) and the two decay constants (d1 and d2). The two dependent variables
are c1 and ¢2, and the single independent variable is time . The time de-
pendence of ¢l and ¢2 are shown in Figure 1.1.2 for one set of the parameters.
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Figure 1.1.2  Counts versus Time for Equations 1.1.5 and 1.1.6
al=1000, a2=100, d1=0.05, d2=0.025

The purpose of conducting experiments is not necessarily to prove or dis-
prove a mathematical model or to determine parameters of a model. For
some experiments the only purpose is to extract an equation from the data
that can be used to predict values of the dependent variable (or variables)
as a function of the independent variable (or variables). For such experi-
ments the data is analyzed using different proposed equations (i.e., mathe-
matical models) and the results are compared in order to select a "best"
model.

We see that there are different reasons for performing quantitative experi-
ments but what is common to all these experiments is the task of data
analysis. In fact, there is no need to differentiate between physical ex-
periments and experiments based upon computer generated data. Once
data has been obtained, regardless of its origin, the task of data analysis
commences. Whether or not the method of least squares is applicable de-
pends upon the applicability of some basic assumptions. A discussion of
the conditions allowing least squares analysis is included in Section 1.5:
Basic Assumptions.
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1.2 Dealing with Uncertainty

The estimation of uncertainty is an integral part of data analysis. It is not
enough to just measure something. We always need an estimate of the ac-
curacy of our measurements. For example, when we get on a scale in the
morning, we know that the uncertainty is plus or minus a few hundred
grams and this is considered acceptable. If, however, our scale were only
accurate to plus or minus 10 kilograms this would be unacceptable. For
other measurements of weight, an accuracy of a few hundred grams would
be totally unacceptable. For example, if we wanted to purchase a gold bar,
our accuracy requirements for the weight of the gold bar would be much
more stringent. When performing quantitative experiments, we must take
into consideration uncertainty in the input data. Also, the output of our
analysis must include estimates of the uncertainty of the results. One of
the most compelling reasons for using least squares analysis of data is that
uncertainty estimates are obtained quite naturally as a part of the analysis.
For almost all applications the standard deviation (o) is the accepted
measure of uncertainty. Let us say we need an estimate of the uncertainty
associated with the measurement of the weight of gold bars. One method
for obtaining such an estimate is to repeat the measurement » times and re-
cord the weights w; , i =1 to n. The estimate of o (the estimated standard
deviation of the weight measurement) is computed as follows:

o' =—— E w. -w )2 (1.2.1)

In this equation w,,, is the average value of the n measurements of w. The
need for n-1 in the denominator of this equation is best explained by con-
sidering the case in which only one measurement of w is made (i.e., n = 1).
For this case we have no information regarding the "spread" in the meas-
ured values of w.

Fortunately, for most measurements we don’t have to estimate o’by repeat-
ing the measurement many times. Often the instrument used to perform
the measurement is provided with some estimation of the accuracy of the
measurements. Typically the estimation of ois provided as a fixed per-
centage (e.g., 0= 1%) or a fixed value (e.g., o= 0.5 grams). Sometimes
the accuracy is dependent upon the value of the quantity being measured in
a more complex manner than just a fixed percentage or a constant value.
For such cases the provider of the measurement instrument might supply
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this information in a graphical format or perhaps as an equation. For cases
in which the data is calculated rather than measured, the calculation is in-
complete unless it is accompanied by some estimate of uncertainty.

Once we have an estimation of ¢; how do we interpret it? In addition to o;
we have a result either from measurements or from a calculation. Let us
define the result as x and the true (but unknown value) of what we are try-
ing to measure or compute as 4. Typically we assume that our best esti-
mate of this true value of g is x and that 4 is located within a region
around x. The size of the region is characterized by 0. A typical assump-
tion is that the probability of 4 being greater or less than x is the same. In
other words, our measurement or calculation includes a random error char-
acterized by 0. Unfortunately this assumption is not always valid!

Sometimes our measurements or calculations are corrupted by systematic
errors. Systematic errors are errors that cause us to either systematically
under-estimate or over-estimate our measurements or computations. One
source of systematic errors is an unsuccessful calibration of a measuring
instrument. Another source is failure to take into consideration external
factors that might affect the measurement or calculation (e.g., temperature
effects). Data analysis of quantitative experiments is based upon the as-
sumption that the measured or calculated independent and dependent vari-
ables are not subject to systematic errors. If this assumption is not true,
then errors are introduced into the results that do not show up in the com-
puted values of the ¢’s. One can modify the least squares analysis to study
the sensitivity of the results to systematic errors but whether or not sys-
tematic errors exist is a fundamental issue in any work of an experimental
nature.

1.3 Statistical Distributions

In nature most quantities that are observed are subject to a statistical distri-
bution. The distribution is often inherent in the quantity being observed
but might also be the result of errors introduced in the method of observa-
tion. An example of an inherent distribution can be seen in a study in
which the percentage of smokers is to be determined. Let us say that one
thousand people above the age of 18 are tested to see if they are smokers.
The percentage is determined from the number of positive responses. It is
obvious that if 1000 different people are tested the result will be different.
If many groups of 1000 were tested we would be in a position to say some-
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thing about the distribution of this percentage. But do we really need to
test many groups? Knowledge of statistics can help us estimate the stan-
dard deviation of the distribution by just considering the first group!

As an example of a distribution caused by a measuring instrument, con-
sider the measurement of temperature using a thermometer. Uncertainty
can be introduced in several ways:

1)

2)

3)

The persons observing the result of the thermometer can introduce
uncertainty. If, for example, a nurse observes a temperature of a pa-
tient as 37.4°C, a second nurse might record the same measurement as
37.5°C. (Modern thermometers with digital outputs can eliminate this
source of uncertainty.)

If two measurements are made but the time taken to allow the tem-
perature to reach equilibrium is different, the results might be differ-
ent. (Taking care that sufficient time is allotted for the measurement
can eliminate this source of uncertainty.)

If two different thermometers are used, the instruments themselves
might be the source of a difference in the results. This source of un-
certainty is inherent in the quality of the thermometers. Clearly, the
greater the accuracy, the higher is the quality of the instrument and
usually, the greater the cost. It is far more expensive to measure a
temperature to 0.001°C than 0.1°C!

We use the symbol @ to denote a distribution. Thus @(x) is the distribu-
tion of some quantity x. If x is a discrete variable then the definition of
D(x) is:

xmax

D d(x)=1 (13.1)

xmin

If x is a continuous variable:

jqi(x)dx =1 (13.2)

xXmin
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Two important characteristics of all distributions are the mean g and the
variance . The standard deviation o is the square root of the variance.
For discrete distributions they are defined as follows:

xmax

u= Zx¢(x) (1.3.3)
o’ = xf:x(x — u)’d(x) (1.3.4)

xmin

For continuous distributions:

U= j x®(x)dx (1.3.5)
o’ = j(x— 1)’ D(x)dx (1.3.6)

xmin

The normal distribution

When x is a continuous variable the normal distribution is often applicable.
The normal distribution assumes that the range of x is from -oo to oo and
that the distribution is symmetric about the mean value g These assump-
tions are often reasonable even for distributions of discrete variables, and
thus the normal distribution can be used for some distributions of discrete
variables. The equation for a normal distribution is:

_x-p?
Qx)"? exp( 20°

®(x) = (13.7)
(o]

The normal distribution is shown in Figure 1.3.1 for various values of the
standard deviation o We often use the term standard normal distribu-
tion to characterize one particular distribution: a normal distribution with
mean & = 0 and standard deviation o= 1. The symbol # is usually used to
denote this distribution. Any normal distribution can be transformed into a
standard normal distribution by subtracting 4 from the values of x and then
dividing this difference by o
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0 x-p 1 2 3

Figure 1.3.1 @&(x) vs x-u for Normal Distribution (6=0.5, 1 and 2).

We can define the effective range of the distribution as the range in which
a specified percentage of the data can be expected to fall. If we specify the
effective range of the distribution as the range between 4 ¢, then 68.3%
of all measurements would fall within this range. Extending the range to y
+ 20, 95.4% would fall within this range and 99.7% would fall within the
range 4+ 30. The true range of any normal distribution is always -ee to co.
Values of the percentage that fall within 0 to u (i.e., (x-4)/0) are included
in tables in many sources [e.g., AB64, FR92]. The standard normal table is
also available online [ST03]. Approximate equations corresponding to a
given value of probability are also available (e.g., See Appendix B).

The normal distribution is not applicable for all distributions of continuous
variables. In particular, if the variable x can only assume positive values
and if the mean of the distribution # is close to zero, then the normal dis-
tribution might lead to erroneous conclusions. If however, the value of u
is large (i.e., #/0>> 1) then the normal distribution is usually a good ap-
proximation even if negative values of x are impossible.

We are often interested in understanding how the mean of a sample of n
values of x (i.e., X,,) 18 distributed. It can be shown that the standard de-

viation of the value of x,,, has a standard deviation of o/ \/; . Thus the

quantity (Xa,e-t) / (o°/ \/; ) follows the standard normal distribution #. For
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example, let us consider a population with a mean value of 50 and a stan-
dard deviation of 10. If we take a sample of » = 100 observations and then
compute the mean of this sample, we would expect that this mean would
fall in the range 49 to 51 with a probability of about 68%. In other words,
even though the population ¢is 10, the standard deviation of an average of

100 observations is only 10/4/100 = 1.

The binomial distribution

When x is a discrete variable of values 0 to n (where # is a relatively small
number), the binomial distribution is usually applicable. The variable x is
used to characterize the number of successes in n trials where p is the
probability of a single success for a single trial. The symbol @(x) is thus
the probability of obtaining exactly x successes. The number of successes
can theoretically range from 0 to n. The equation for the distribution is:

n!
D(x)=———p*A-p)"™* 3.
(x¥)=— n—xy? (I-p) (1.3.8)

As an example, consider the following problem: what is the probability of
drawing the Ace of Spades from a deck of cards if the total number of tri-
als is 3. After each trial the card drawn is reinserted into the deck and the
deck is shuffled. For this problem the possible values of x are 0, 1, 2 and
3. The value of p is 1/52 as there are 52 different cards in a deck: the Ace
of Spades and 51 other cards. The probability of not drawing the Ace of
Spades in any of the 3 trials is:

__ 3 51/ v
¢(0)—0!(3)!p (1-p)’ =( Az) =0.9434

The probability of drawing the Ace of Spades once is:

3! 1 2 6 1 2
o) =5y P (=P =5 (V) Gly)* = 00585




1.3 Statistical Distributions 11

The probability of drawing the Ace of Spades twice is:

3! 2 1 6 2 1
P(2)=, ol (1-p) =E(%Z) (5%2) =0.00109

The probability of drawing the Ace of Spades all three times is:

3! 3 0 3
P(3) = Tl (1-p)' = (%2) =0.000007

The sum of all 4 of these probable outcomes is one. The probability of
drawing the Ace of Spades at least once is 1 - 0.9434 = 0.0566.

The mean value g and standard deviation oof the binomial distribution
can be computed from the values of # and p:

MU =np (1.3.9)

o =(np(1- p))"? (1.3.10)

Equation 1.3.9 is quite obvious. If, for example, we flip a coin 100 times,
what is the average value of the number of heads we would observe? For
this problem, p = %4, so we would expect to see on average 100 * 1/2 = 50
heads. The equation for the standard deviation is not obvious, however the
proof of this equation can be found in many elementary textbooks on sta-
tistics. For this example we compute oras (100%1/2*1/2)"* = 5. Using the
fact that the binomial distribution approaches a normal distribution for
values of 4 >> 1, we can estimate that if the experiment is repeated many
times, the numbers of heads observed will fall within the range 45 to 55
about 68% of the time.

The Poisson distribution

The binomial distribution (i.e., Equation 1.3.8) becomes unwieldy for large
values of n. The Poisson distribution is used for a discrete variable x that
can vary from 0 to eo. If we assume that we know the mean value g of the
distribution, then @(x) is computed as:

s
d(x)=* f‘
X.

(1.3.11)
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It can be shown that the standard deviation o of the Poisson distribution is:

o=u"? (1.3.12)

If u is a large value, the normal distribution is an excellent approximation
of a Poisson distribution.

As an example of a Poisson distribution, consider the observation of a rare
genetic problem. Let us assume that the problem is observed on average
2.3 times per 10000 people. For practical purposes u is close to oo so we
can assume that the Poisson distribution is applicable. We can compute
the probability of observing x people with the genetic problem out of a
sample population of 10000 people. The probability of observing no one
with the problem is:

D(0)=e"23"/0=¢ =0.1003

The probability of observing one person with the problem is:
d(1)=e23"/11=2.3¢7 =0.2306

The probability of observing two people with the problem is:
D(2)=e2.37/21=2.3%¢ /2 =10.2652

The probability of observing three people with the problem is:
D(3)=e2.3/31=23%"/6=0.2136

From this point on, the probability @(x) decreases more and more rapidly
and for all intents and purposes approaches zero for large values of x.

Another application of Poisson statistics is for counting experiments in
which the number of counts is large. For example, consider observation of
a radioisotope by an instrument that counts the number of signals emanat-
ing from the radioactive source per unit of time. Let us say that 10000
counts are observed. Our first assumption is that 10000 is our best esti-
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mate of the mean x of the distribution. From equation 1.3.12 we can then
estimate the standard deviation ¢ of the distribution as 10000"* = 100. In
other words, in a counting experiment in which 10000 counts are observed,
the accuracy of this observed count rate is approximately 1% (i.e.,
100/10000 = 0.01). To achieve an accuracy of 0.5% we can compute the
required number of counts:

0.005=0/p=p"?/p=pu""?

Solving this equation we get a value of g =40000. In other words to dou-
ble our accuracy (i.e., halve the value of 0) we must increase the observed
number of counts by a factor of 4.

The 4 distribution

The ;(2 (chi-squared) distribution is defined using a variable u that is nor-
mally distributed with a mean of 0 and a standard deviation of 1. This u
distribution is called the standard normal distribution. The variable ;gz(k)
is called the * value with k degrees of freedom and is defined as follows:

i=k
1K ky=>u (1.3.13)

In other words, if & samples are extracted from a standard normal distribu-
tion, the value of Zz(k) is the sum of the squares of the u# values. The dis-
tribution of these values of Zz(k) is a complicated function:

(ZZ)k/Z—l

W(k/z)w‘p(—,l’2 /2) (13.14)

P(y’ (k) =

In this equation I" is called the gamma function and is defined as follows:

I'(k/2)=(k/2-1)(k/2-2)..3*2*]1 for k even
T(k/2)=(k/2-1)(k/2-2)..3/2%1/2%7x"* forkodd  (13.15)

Equation 1.3.14 is complicated and rarely used. Of much greater interest
is determination of a range of values from this distribution. What we are
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more interested in knowing is the probability of observing a value of
% from 0 to some specified value. This probability can be computed from
the following equation [AB64]:

1

PEB= 2

IZ
j‘t"/z’le”/zdt (1.3.16)
0

For small values of k (typically up to k=30) values of ZZ are presented in a
tabular format [e.g., AB64, FR92, ST03] but for larger values of k, approxi-
mate values can be computed (using the normal distribution approximation
described below). The tables are usually presented in an inverse format
(i.e., for a given value of k, the values of ,1/2 corresponding to various prob-
ability levels are tabulated). As an example of the use of this distribution,
let us consider an experiment in which we are testing a process to check if
something has changed. Some variable x characterizes the process. We
know from experience that the mean of the distribution of x is g and the
standard deviation is 0. The experiment consists of measuring 10 values
of x. An initial check of the computed average value for the 10 values of x
is seen to be close to the historical value of g but can we make a statement
regarding the variance in the data? We would expect that the following
variable would be distributed as a standard normal distribution (#=0, o=1):

_(x-p
o

u (1.3.17)

Using Equation 1.3.17, 1.3.13 and the 10 values of x we can compute a
value for Zz_ Let us say that the value obtained is 27.2. The question that
we would like to answer is what is the probability of obtaining this value
or a greater value by chance? From [STO03] it can be seen that for £ = 10,
there is a probability of 0.5% that the value of ;(2 will exceed 25.188.
(Note that the value of k used was 10 and not 9 because the historical value
of 4 was used in Equation 1.3.17 and not the mean value of the 10
observations.) The value observed (i.e., 27.2) is thus on the high end of
what we might expect by chance and therefore some problem might have
arisen regarding the process under observation.

Two very useful properties of the %’ distribution are the mean and standard
deviation of the distribution. For k degrees of freedom, the mean is k and

the standard deviation is+/2k . For large values of k, we can use the fact
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that this distribution approaches a normal distribution and thus we can eas-
ily compute ranges. For example, if k& = 100, what is the value of g for
which only 1% of all samples would exceed it by chance? For a standard
normal distribution, the 1% limit is 2.326. The value for the y?distribution
would thus be g+ 2.326* o= k + 2.326*%(2k)"* = 100 + 31.2 = 131.2.

An important use for the ZZ distribution is analysis of variance. The vari-
ance is defined as the standard deviation squared. We can get an unbi-
ased estimate of the variance of a variable x by using n observations of
the variable. Calling this unbiased estimate as s°, we compute it as fol-
lows:

2 1 - 2
§ T =— xX—-Xx 1.3.18
n—l,;( w) (13.18)

The quantity (n-1)s’/c is distributed as Zzwith n-1 degrees of freedom.
This fact is fundamental for least squares analysis.

The t distribution

The ¢ distribution (sometimes called the student-# distribution) is used for
samples in which the standard deviation is not known. Using n observa-
tions of a variable x, the mean value x,,, and the unbiased estimate s of the
standard deviation can be computed. The variable 7 is defined as:

t=(x,, — @) /(s/n) (1.3.19)

The ¢ distribution was derived to explain how this quantity is distributed.
In our discussion of the normal distribution, it was noted that the quantity

(Xavg-t) / (O°/ \/; ) follows the standard normal distribution . When ¢ of
the distribution is not known, the best that we can do is use s instead. For
large values of n the value of s approaches the true value of ¢ of the distri-
bution and thus ¢ approaches a standard normal distribution. The mathe-
matical form for the # distribution is based upon the observation that Equa-
tion 1.3.19 can be rewritten as:
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g — 2 9/) 1.3.20
(0'/\/_) / ( )

The term o/s is distributed as ((n-1) /x?)"* where y* has n-1 degrees of
freedom. Thus the mathematical form of the # distribution is derlved from
the product of the standard normal distribution and ((n-1)/ ¥ ( n-1))"
Values of 7 for various percentage levels for n-1 up to 30 are included in
tables in many sources [e.g., AB64, FR92]. The ¢ table is also available
online [ST03]. For values of n > 30, the ¢ distribution is very close to the
standard normal distribution.

12

For small values of n the use of the # distribution instead of the standard
normal distribution is necessary to get realistic estimates of ranges. For
example, consider the case of 4 observations of x in which x,,, and s of the

measurements are 50 and 10. The value of s / \/; is 5. The value of ¢ for
n - 1 = 3 degrees of freedom and 1% is 4.541. We can use these numbers
to determine a range for the true (but unknown value) of u:

2730 =50-4.541*5<= 4 <=50+4541*5="717.71

In other words, the probability of x4 being below 27.30 is 1%, above 77.71
is 1% and within this range is 98%. Note that the value of 4.541 is consid-
erably larger than the equivalent value of 2.326 for the standard normal
distribution. It should be noted, however, that the # distribution approaches
the standard normal rather rapidly. For example, the 1% limit is 2.764 for
10 degrees of freedom and 2.485 for 25 degrees of freedom. These values
are only 19% and 7% above the standard normal 1% limit of 2.326.

The F distribution

The F distribution plays an important role in data analysis. This distribu-
tion was named to honor R.A. Fisher, one of the great statisticians of the
20th century. The F distribution is defined as the ratio of two 12 distribu-
tions divided by their degrees of freedom:

_ X))/ Ky

1.3.21
1 (ky)/ K, (1320
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The resulting distribution is complicated but tables of values of F for vari-
ous percentage levels and degrees of freedom are available in many
sources (e.g., [AB64, FR92]). Tables are also available online [ST03]. Sim-
ple equations for the mean and standard deviation of the F distribution are
as follows:

k2
kz _2

M= for k,>2 (1.3.22)

ot = 2k + ke =2)

= . for ky > 4 (1.3.23)
ky(ky —2)"(k, —4)

From these equations we see that for large values of k, x4 approaches 1 and
o approaches 2(1/k; + 1/ky). If ky is also large, we see that o approaches
zero. Thus if both k; and k, are large, we would expect the value of F to
be very close to one.

1.4 Parametric Models

Quantitative experiments are usually based upon parametric models. In
this discussion we define parametric models as models utilizing a
mathematical equation that describes the phenomenon under observation.
The model equation (or equations) contains unknown parameters and the
purpose of the experiment is often to determine the parameters including
some indication regarding the accuracy of these parameters. There are
many situations in which the values of the individual parameters are of no
interest. All that is important for these cases is that the parametric model
can be used to predict values of the dependent variable (or variables) for
other combinations of the independent variables. In addition, we are also
interested in some measure of the accuracy of the predictions.

We need to use mathematical terminology to define parametric models.
Let us use the term y to denote the dependent variable (or variables). Usu-
ally y is a scalar, but when there is more than one dependent variable, y can
denote a vector. The parametric model is the mathematical equation that
defines the relationship between the dependent and independent variables.
For the case of a single dependent and a single independent variable we
can denote the model as:
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y=f(x;a,,a,..,a,) (1.4.1)

The a;'s are the p unknown parameters of the model. The function f is
based on either theoretical considerations or perhaps it is based on the be-
havior observed from the measured values of y and x.

When there is more than one independent variable, we can use the follow-
ing to denote the model:

y=f(x1,X00X,,501,05.,a,) (1.4.2)

The xj's are the m independent variables. If there is more than one depend-
ent variable, we require a separate function for each element of the y vec-
tor:

=[x X0 x,,50,,a5.,a,) [=1tod (1.4.3)

For cases of this type, y is a d dimensional vector and the subscript / refers
to the I™ term of the y vector. It should be noted that some or all of the x;’s
and the a,’s may be included in each of the d equations. The notation for
the i data point for this I term would be:

yli = f}(xli,xZi "’xmi;alJaZ"}ap)

Equations 1.1.5 and 1.1.6 illustrate an example of an experiment in which
there are two dependent variables (¢l and ¢2), four unknown parameters
(al, a2, d1 and d2) and a single independent variable time #.

A model is recursive if the functions defining the dependent variables y;
are interdependent. The form for the elements of recursive models is as
follows:

V1= J1(X05 X500 X3 V15 Py oo V38158500, ) (1.4.4)

As an example of a recursive model consider the following:
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Vi=a1xyyy +ay (1.4.5)
Y2 =azxqy1 tay (1.4.6)

Both of these equations are recursive: there is one independent variable x,
four unknown parameters (a; to a4) and two dependent variables (y; and
12). We see that y; is dependent upon y, and y, is dependent upon y;.

Once a parametric model has been proposed and data is available, the task
of data analysis must be performed. There are several possible objectives
of interest to the analyst:

1) Compute the values of the p unknown parameters a;, a,, ..., a,

2) Compute estimates of the standard deviations of the p unknown
parameters.

3) Use the p unknown parameters to compute values of y for desired
combinations of the independent variables x1, X2, ...y Xm

4) Compute estimates of the standard deviations oy for the values of
y =f(x) computed in 3.

It should be mentioned that the theoretically best solution to all of these
objectives is achieved by applying the method of maximum likelihood.
This method was proposed as a general method of estimation by the re-
nowned statistician R. A. Fisher in the early part of the 20" century [e.g.,
FR92]. The method can be applied when the uncertainties associated with
the observed or calculated data exhibit any type of distribution. However,
when these uncertainties are normally distributed or when the normal dis-
tribution is approximately correct, the method of maximum likelihood re-
duces to the method of least squares [WO67, HAO1]. A detailed proof of

this statement is included in a book written by Merriman over 100 years ago
[ME77]. Fortunately, the assumption of normally distributed random errors

is reasonable for most situations and thus the method of least squares is
applicable for analysis of most quantitative experiments.

1.5 Basic Assumptions

The method of least squares can be applied to a wide variety of analyses of
experimental data. The common denominator for this broad class of prob-
lems is the applicability of several basic assumptions. Before discussing
these assumptions let us consider the measurement of a dependent variable
Y. For the sake of simplicity, let us assume that the model describing the
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behavior of this dependent variable includes only a single independent
variable. Using Equation 1.4.1 as the model that describes the relationship
between x and y then y; is the computed value of y at x;, We define the dif-
ference between the measured and computed values as the residual R;:

Y=y, +R;, = f(x,-;al,az,...ap)+R,. (1.5.1)

It should be understood that neither ¥; nor y; are necessarily equal to the
true value 77. In fact there might not even be a single true value if the de-
pendent variable can only be characterized by a distribution. However, for
the sake of simplicity let us assume that for every value of x; there is a
unique true value (or a unique mean value) of the dependent variable that
is 7. The difference between ¥; and 7; is the error &:

Y;=mn;+¢ (1.5.2)

The development of the method of least squares in this book is based upon
the following assumptions:

1) If the measurement at x; were to be repeated many times, then the
values of the error & would be normally distributed with an aver-
age value of zero. Alternatively, if the errors are not normally
distributed, the approximation of a normal distribution is reason-
able.

2) The errors are uncorrelated. This is particularly important for
time-dependent problems and implies that if a value measured at
time #; includes an error & and at time ¢, includes an error &
these errors are not related.

3) The standard deviations ¢; of the errors can vary from point to
point. This assumption implies that ¢; is not necessarily equal to
o.

The implication of the first assumption is that if the measurement of ¥; is
repeated many times, the average value of ¥; would be the true (i.e., error-
less) value 7. Furthermore, if the model is a true representation of the
connection between y and x and if we knew the true values of the unknown
parameters the residuals R; would equal the errors &;:
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Yi=1m,+¢& = f(x;;00,0,,..0,) + & (1.5.3)

In this equation the true value of the a; is represented as a;. However,
even if the measurements are perfect (i.e., & = 0), if f does not truly de-
scribe the dependency of y upon X, then there will certainly be a difference
between the measured and computed values of y.

The first assumption of normally distributed errors is usually reasonable.
Even if the data is described by other distributions (e.g., the binomial or
Poisson distributions), the normal distribution is often a reasonable ap-
proximation. But there are problems where an assumption of normality
causes improper conclusions. For example, in risk analysis the probability
of catastrophic events might be considerably greater than one might pre-
dict using a normal distribution. To site one specific area, earthquake pre-
dictions require analyses in which normal distributions cannot be assumed.
Another area that is subject to similar problems is the modeling of insur-
ance claims. Most of the data represents relatively small claims but there
are usually a small fraction of claims that are much larger, negating the as-
sumption of normality. In this book such problems are not considered.

One might ask when the second assumption (i.e., uncorrelated errors) is
invalid? There are areas of science and engineering where this assumption
is not really reasonable and therefore the method of least squares must be
modified to take error correlation into consideration [DA95]. Davidian and
Giltinan discuss problem in the biostatistics field in which repeated data
measurements are taken. For example, in clinical trials, data might be
taken for many different patients over a fixed time period. For such prob-
lems we can use the term ¥j; to represent the measurement at time #; for pa-
tientj. Clearly it is reasonable to assume that g; is correlated with the error
at time #;;; for the same patient. In this book, no attempt is made to treat
such problems.

Many statistical textbooks include discussions of the method of least
squares but use the assumption that all the o;’s are equal. This assumption
is really not necessary as the additional complexity of using varying o;’s is
minimal. Another simplifying assumption often used is that the models
are linear with respect to the a;’s. This assumption allows a very simple
mathematical solution but is too limiting for the analysis of many real-
world experiments. This book treats the more general case in which the
function f'(or functions f;) can be nonlinear.



22 Chapter 1 INTRODUCTION

1.6 Systematic Errors

I first became aware of systematic errors while doing my graduate re-
search. My thesis was a study of the fast fission effect in heavy water nu-
clear reactors and I was reviewing previous measurements of this effect
[WO62]. Experimental results from two of the national laboratories were
curiously different. Based upon the values and quoted ¢”’s, the numbers
were many o’s apart. [ discussed this with my thesis advisors and we
agreed that one or both of the experiments was plagued by systematic er-
rors that biased the results in a particular direction. We were proposing a
new method which we felt was much less prone to systematic errors.

One of the basic assumptions mentioned in the previous section is that the
errors in the data are random about the true values. In other words, if a
measurement is repeated n times, the average value would approach the
true value as n approaches infinity. However, what happens if this as-
sumption is not valid? We call such errors systematic errors and they
will of course cause errors in the results. Systematic errors can be intro-
duced in a variety of ways. For example, if an experiment lasting several
days is undertaken, the results might be temperature dependent. If there is
a significant change in temperature this might result in serious errors in the
results. A good experimentalist will consider what factors might affect the
results of a proposed experiment and then take steps to either minimize
these factors or take them into consideration as part of the proposed model.

We can make some statements about combining estimates of systematic
errors. Let us assume that we have identified nsys sources of systematic
errors and that we can estimate the maximum size of each of these error
sources. Let us define g as the systematic error in the measurement of a;
caused by the k™ source of systematic errors. The magnitude of the value
of & (the magnitude of the systematic error in the measurement of g;
caused by all sources) could range from zero to the sum of the absolute
values of all the g ’s. However, a more realistic estimate of & is the fol-
lowing:

ej = e (1.6.1)

In the following chapter the method of least squares is developed and es-
timates of the uncertainties in the results of the least squares analysis are
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included. It should be remembered that the basic assumption of the
method is that the data is not plagued by systematic errors. For example,
let us say we use the method of least squares to determine the constants a;
and a, of a straight line (i.e., y = a; + a»x) and let us say that the results in-
dicate that the uncertainties @;,; and &, have been determined to 1% accu-
racy. Let us also say that we estimate that & is approximately equal to
Ci0,1 and & is approximately equal to C,0,;, how do we report our re-
sults? If we assume independence of @;; and &a more accurate estimate of
the uncertainties associated with the results is:

o =oy+e=(1+CHo, (1.6.2)

Clearly, the experimentalist should make an effort to ensure that the &’s
are small when compared to the o,’s (i.e, make the C;’s as small as
possible).

One might ask the question: how do I go about estimating the values of the
&’s? Often it is possible to use the least squares software to help make
these estimates. For example, if you suspect the maximum systematic er-
ror in the values of the x’s is &, then you could change all the x’s by &
and repeat the least squares analysis. Comparing the results with the pre-
vious analysis reveals how the results are affected by the &, change. This
is in fact a direct measurement of the &’ associated with this type of er-
ror. Note that &, is not the same as @,. The values of o, are random errors
whereas the systematic error is a fixed error in all the values of x some-
where in the range +6,. For the straight-line fit, we can see from Figure
1.6.1 that the effect of a systematic error of magnitude & in the values of x
will cause a contribution to & equal to —a,0, and will have no effect upon
the value of a; (i.c., & = 0). Similarly, a systematic error of magnitude J,
in the values of y will cause a contribution to & equal to d, and will have
no effect upon the value of a, (i.e., &= 0). Assuming the these effects are
independent, we can combine these two sources of systematic error to
estimate a value for & :

& =a;0.+ 65, (1.6.3)



24 Chapter 1 INTRODUCTION
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Figure 1.6.1  Effect of systematic error in x (&) and in y (&)

1.7 Nonparametric Models

There are situations in which it is quite useless to attempt to describe the
phenomenon under observation by a single equation. For example, con-
sider a dependent variable that is the future percentage return on stocks
traded on the NYSE (New York Stock Exchange). One might be inter-
ested in trying to find a relationship between the future returns and several
indicators that can be computed using currently available data. For this
problem there is no underlying theory upon which a parametric model can
be constructed. A typical approach to this problem is to allow the historic
data to define a surface and then use some sort of smoothing technique to
make future predictions regarding the dependent variable. The data plus
the algorithm used to make the predictions are the major elements in what
we define as a nonparametric model.

Nonparametric methods of data modeling predate the modern computer era
[WOO00]. In the 1920’s two of the most well-known statisticians (Sir R. A.
Fisher and E. S. Pearson) debated the value of such methods [HA90].
Fisher correctly pointed out that a parametric approach is inherently more
efficient. Pearson was also correct in stating that if the true relationship
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between X and Y is unknown, then an erroneous specification in the func-
tion f(X) introduces a model bias that might be disastrous.

Hardle includes a number of examples of successful nonparametric models
[HA90]. The most impressive is the relationship between change in height
(cm/year) and age of women (Figure 1.7.1). A previously undetected
growth spurt at around age 8 was noted when the data was modeled using
a nonparametric smoother [GA84]. To measure such an effect using para-
metric techniques, one would have to anticipate this result and include a
suitable term in f(X).

12
10

= N oda & oo

0 4 8 12 16 20
Agein Years
Figure 1.7.1 Human growth in women versus Age. The top graph is
in cm/year. The bottom graph is acceleration in cm/year’. The solid
lines are from a model based upon nonparametric smoothing and the
dashed lines are from a parametric fit [GA84, HA90].

Clearly, one can combine nonparametric and parametric modeling tech-
niques. A possible strategy is to use nonparametric methods on an ex-
ploratory basis and then use the results to specify a parametric model.
However, as the dimensionality of the model and the complexity of the
surface increases, the hope of specifying a parametric model becomes
more and more remote. An example of a problem area where parametric
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methods of modeling are not really feasible is the area of financial market
modeling. As a result, there is considerable interest in applying nonpara-
metric methods to the development of tools for making financial market
predictions. A number of books devoted to this subject have been written
in recent years (e.g., [AZ94, BA94, GA95, RE95, WOO00]).

The emphasis on neural networks as a nonparametric modeling tool is par-
ticularly attractive for time series modeling. The basic architecture of a
single element (called a neuron) in a neural network is shown in Figure
1.7.2. The input vector X may include any number of variables. The net-
work includes many nonlinear elements that connect subsets of the input
variables. All the internal elements are interconnected and the final output
is a predicted value of Y. There is a weighting coefficient associated with
each element. If a particular interaction has no influence on the model
output, the associated weight for the element should be close to zero. As
new values of ¥ become available, they can be fed back into the network
to update the weights. Thus the neural network can be adaptive for time
series modeling: in other words the model has the ability to change over
time.

Input Neuron with Vector Input

SV \

r=num elements
in input vector

n a

N

/] J

a=f(Wx+b)

Figure 1.7.2 A typical element in a neural network. The X block
sums the weighted inputs and the bias b. The f block is a nonlinear
transfer function.

There is one major problem associated with neural network modeling: the
amount of computer time required to generate a model. If the model is to
be based upon a small number of predictor variables, then even if the
number of data records is large, the required computer time is usually
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manageable. However, if one wishes to use tens or even hundreds of thou-
sands of data records and hundreds of candidate predictors, the required
computer time can be monumental. If one is to have any hope of success,
techniques are required to preprocess the data in such a manner as to re-
duce the number of candidate predictors to a reasonable number. The
definition of reasonable varies, of course, depending upon the available
computing power. However, regardless of the hardware available, pre-
processing strategies are essential to successfully apply neural nets to such
problems (for example, financial market modeling). Use of kernel regres-
sion is an alternative modeling strategy that can be many orders of magni-
tude faster than the more compute intensive methods such as neural net-
works. It is certainly not as adaptive as neural networks but it can be used
to very rapidly obtain the information rich subsets of the total candidate
predictor space. These subspaces can, in turn be used as inputs to a neural
network modeling program. The kernel regression method is based upon
least squares and is discussed in detail in Chapter 7.

1.8 Statistical Learning

The term statistical learning is used to cover a broad class of methods and
problems that have become feasible as the power of the computer has
grown. An in-depth survey of this field is covered in a fairly recent book
by Hastie, Tibshirani and Friedman entitled The Elements of Statistical
Learning: Data Mining, Inference and Prediction [HAO01]. Their book
covers both supervised and unsupervised learning. The goal of supervised
learning is to predict an output variable as a function of a number of input
variables (or as they are sometimes called: indicators or predictors). In un-
supervised learning there is no particular output variable and one is inter-
ested in finding associations and patterns among the variables. The cor-
nerstone of statistical learning is to learn from the data. The analyst has
access to data and his or her goal is to make sense out of the available in-
formation.

Supervised learning problems can be subdivided into regression and clas-
sification problems. The goal in regression problems is to develop quanti-
tative predictions for the dependent variable. The goal in classification
problems is to develop methods for predicting to which class a particular
data point belongs. An example of a regression problem is the develop-
ment of a model for predicting the unemployment rate as a function of
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economic indictors. An example of a classification problem is the devel-
opment of a model for predicting whether or not a particular email mes-
sage is a spam message or a real message. In this book, although classifi-
cation problems are discussed (see Sections 2.8 and 7.8), the emphasis is
on regression problems.

In this book we assume that the structure of the data is known (to some de-
gree). Many problems in science and engineering fall within this category.
Our typical starting point is a model that describes the relationship be-
tween the dependent and independent variables. The model includes some
unknown parameters or parameters that we wish to determine to a greater
accuracy than currently known. Sometimes the purpose of the experiment
is to use the data as the basis for comparing different theoretical ap-
proaches to a particular problem. Sometimes the purpose of the experi-
ment is to develop an equation that can be used for interpolation or ex-
trapolation. The data might lead us to a modified form of the model, but
the existence of a fair degree of structure is assumed.

In data mining applications, there are often a fairly large number of candi-
date predictors and the structure of the relationship between the dependent
variable and the candidate predictors is not known or hardly known. The
data miner searches for information-rich subsets of the candidate predic-
tors that can be used for making predictions. One problem associated with
such efforts is the curse of dimensionality, a concept first identified by
Bellman in 1961 [BE61]. As the number of candidate predictors increases,
the density of the data decreases exponentially. Stated in an alternative
manner, if we wish to maintain the density of the data, for every added
predictor, we must double the number of data points. Thus the number of
available data points limits the number of candidate predictors that can be
included in a model. As a result, data mining software typically includes
methods for identifying the information-rich lower dimensional subsets of
the total candidate predictor space. These subsets can be used individually
for making predictions or can be combined to create a super-model if such
a combination proves to be a better predictor than the individual subset
models.

In this book, we assume that we know which independent variables must
be included in the final model. For example, when studying chemical re-
action rates, we consider the effects of temperature, pressure and time
upon the concentrations of the chemical species undergoing the reaction.
We know that the problem is dependent upon these variable and we also
know the mathematical model relating the dependent variables with these
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independent variables. What we would like to know are some of the pa-
rameters that are included within the model. The approach to problems of
this type is fundamentally different than the model searching techniques
used in data mining applications.
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2.1 Introduction

The first published treatment of the method of least squares was included
in an appendix to Adrien Marie Legendre's book Nouvelles methods pour
la determination des orbites des cometes. The 9 page appendix was enti-
tled Sur la methode des moindres quarres. The book and appendix was
published in 1805 and included only 80 pages but gained a 55 page sup-
plement in 1806 and a second 80 page supplement in 1820 [ST86]. It has
been said that the method of least squares was to statistics what calculus
had been to mathematics. The method became a standard tool in astron-
omy and geodesy throughout Europe within a decade of its publication.
The method was also the cause of a dispute between two giants of the sci-
entific world of the 19" century: Legendre and Gauss. Gauss in 1809 in
his famous Theoria Motus claimed that he had been using the method
since 1795. That book was first translated into English in 1857 under the
authority of the United States Navy by the Nautical Almanac and Smith-
sonian Institute [GA57]. Another interesting aspect of the method is that it
was rediscovered in a slightly different form by Sir Francis Galton. In
1885 Galton introduced the concept of regression in his work on heredity.
But as Stigler says: "Is there more than one way a sum of squared devia-
tions can be made small?" Even though the method of least squares was
discovered about 200 years ago, it is still "the most widely used nontrivial
technique of modern statistics" [ST86].

The least squares method is discussed in many books but the treatment is
usually limited to linear least squares problems. In particular, the empha-
sis is often on fitting straight lines or polynomials to data. The multiple
linear regression problem (described below) is also discussed extensively
(e.g., [FR92, WA93]). Treatment of the general nonlinear least squares
problem is included in a much smaller number of books. One of the earli-
est books on this subject was written by W. E. Deming and published in
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the pre-computer era in 1943 [DE43]. An early paper by R. Moore and R.
Zeigler discussing one of the first general purpose computer programs for
solving nonlinear least squares problems was published in 1960 [MO60].
The program described in the paper was developed at the Los Alamos
Laboratories in New Mexico. Since then general least squares has been
covered in varying degrees and with varying emphases by a number of au-
thors (e.g., DR66, WO67, BA74, GA94, VE02).

For most quantitative experiments, the method of least squares is the "best"
analytical technique for extracting information from a set of data. The
method is best in the sense that the parameters determined by the least
squares analysis are normally distributed about the true parameters with
the least possible standard deviations. This statement is based upon the as-
sumption that the uncertainties (i.e., errors) in the data are uncorrelated and
normally distributed. For most quantitative experiments this is usually true
or is a reasonable approximation. When the curve being fitted to the data
is a straight line, the term linear regression is often used. For the more
general case in which a plane based upon several independent variables is
used instead of a simple straight line, the term multiple linear regression
is often used [FR92, WA93]. Prior to the advent of the digital computer,
curve fitting was usually limited to lines and planes. For the simplest
problem (i.e., a straight line), the assumed relationship between the de-
pendent variable y and the independent variable x is:

y=a +ax (2.1.1)

For the case of more than one independent variable (multiple linear regres-
sion), the assumed relationship is:

y=ax ta,x,+..+a,x, ta,., (2.1.2)

For this more general case each data point includes m+1 values: y;, X1, X2i
o X, .

The least squares solutions for problems in which Equations 2.1.1 and
2.1.2 are valid fall within the much broader class of linear least squares
problems. In general, all linear least squares problem are based upon an
equation of the following form:
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k=p k=p
y=rX= Zakgk(x) = Zakgk(xl’xZ""xm) (2.1.3)
k=1 k=1

In other words, y is a function of X (a vector with m terms). Any equation
in which the p unknown parameters (i.e., the a;'s) are coefficients of func-
tions of only the independent variables (i.e., the m terms of the vector X)
can be treated as a linear problem. For example in the following equation,

the values of @, a,, and a3 can be determined using linear least squares:

y=a sin(xf/z)/ cosh(x —1)+ az(cos(xf/2 —x*))¥?

+ay/In/x+1/x%)

This equation is nonlinear with respect to x but the equation is linear with
respect to the a's. In this example, the X vector contains only one term so
we use the notation x rather than x;. The following example is a linear
equation in which X is a vector containing 2 terms:
. 3/2 5/2 3
y =a, sin(x,"" %)/ cosh(x, — 1)+ a,(cos(x,”* —x,”))}"?

+ay/In(1/ x, +1/x,7)

The following example is a nonlinear function:

/ 3))3/2

y =a, sin(x,>"*)/ cosh(x, —1)+a,(cos(x,”"* - x,

+a,/In(1/ x,+a,/ x,")
The fact that a4 is embedded within the last term makes this function in-

compatible with Equation 2.1.3 and therefore it is nonlinear with respect to
the a;'s.

For both linear and nonlinear least squares, a set of p equations and p un-
knowns is developed. If Equation 2.1.3 is applicable then this set of equa-
tions is linear and can be solved directly. However, for nonlinear equa-
tions, the p equations require estimates of the a;'s and therefore iterations
are required to achieve a solution. For each iteration, the a;'s are updated,
the terms in the p equations are recomputed and the process is continued
until some convergence criterion is achieved. Unfortunately, achieving
convergence is not a simple matter for some nonlinear problems.

For some problems our only interest is to compute y = f{X) and perhaps
some measure of the uncertainty associated with these values (e.g., oy) for
various values of X. This is what is often called the prediction problem.
We use measured or computed values of x and y to determine the parame-
ters of the equation (i.e., the a;'s) and then apply the equation to calculate
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values of y for any value of x. For cases where there are several (let us say
m) independent variables, the resulting equation allows us to predict y for
any combination of xy, X3, .., X,,. The least squares formulation developed
in this chapter also includes the methodology for prediction problems.

2.2 The Objective Function

The starting point for the method of least squares is the objective func-
tion. Minimization of this function yields the least squares solution. The
simplest problems are those in which y (a scalar quantity) is related to an
independent variable x (or variables x;'s) and it can be assumed that there is
no (or negligible) errors in the independent variable (or variables). The
objective function for these cases is:

S=l=znwiRi2 =I=ani(Y,- - ) =I=ani(Y,- - fX)’ (2.2.1)
i=1 i=1 i=1

In this equation # is the number of data points, ¥; is the i input value of
the dependent variable and y; is the i computed value of the dependent
variable. The variable R; is called the i™ residual and is the difference be-
tween the input and computed values of y for the i data point. The vari-
able X; (unitalicized) represents the independent variables and is either a
scalar if there is only one independent variable or a vector if there is more
than one independent variable. The function f'is the equation used to ex-
press the relationship between X and y. The variable w; is called the
"weight" associated with the i data point and is discussed in the next sec-
tion. A schematic diagram of the variables for point i is shown in Figure
2.2.1. In this diagram there is only a single independent variable so the no-
tation x is used instead of X. The variable E; is the true but unknown error
in the i™ value of y. Note that neither the value of ¥; nor y; is exactly equal
to the unknown 7; (the true value of y) at this value of x;. However, a fun-
damental assumption of the method of least squares is that if ¥; is deter-
mined many times, the average value would approach this true value.

The next level of complexity is when the uncertainties in the measured or
calculated values of x are not negligible. The relevant schematic diagram
is shown in Figure 2.2.2. For such cases the objective function must also
include residuals in the x as well as the y direction:
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S=>(w, R, +w R.)
=l (2.2.2)

= Z(wyl(yl _yi)z +wxi(Xi _xi)Z)
i=1

In this equation, X; (italicized) is the measured value of the i independent
variable and x; is the computed value. Note that Xj is not the same as X; in
Equation 2.2.1. In that equation capital X (unitalicized) represents the vec-
tor of independent variables.

* True Point
= Calculated Point
x Data Point W st

q/mr/

True Curve

T T T > X
Xit X; Xi+1

Figure 2.2.1 The True, Calculated and Measured Data Points with
no Error in x
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* True Point
Calculated Point
x Data Point

True Curve
Calculated Curve
}1
T T T + X
Xi1 X Xir1
Figure 2.2.2 The True, Calculated and Measured Data Points with
Errors in X

It can be shown [WO67] that we can create a modified form of the weights
so that the objective function reduces to the following simple form:

I=n

S= Z(wyiRii + wxiRii)
=l , (2.2.3)
I=n I=n
= zwi(Yi - .Vi)2 =Z w;(¥; — f(X;) )?
i=1 i=1

In other words, Equation 2.2.1 is valid even if the uncertainties in the x
variables are not negligible. All that is required is a modified form of the
weighting function used to determine the values of w;. Note that if there is
more than one independent variable, an additional summation is required:

i= j=m i=n
S = {wn Ry + > w. R, J => w, (¥, - (X)) (22.4)
i=1

j=1

S

~

i=
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Note that in Eq 2.2.4 X is unitalicized because it represents the vector of
the independent variables. The italicized X; used in Eq 2.2.3 represents the
scalar independent variable. Ify is a vector quantity, then we must further
modify the objective function by including a sum over all the y terms. As-
suming that there are d terms in the y vector (i.e., y; is a d dimensional vec-
tor), the objective function is:

= d n d i=n
(=22 w (Y =y, =33 w, (¥, - £,(X;))? (225
I= I=1i=1 I=1i=1

In a later section we discuss treatment of prior estimates of the unknown ay,
parameters. To take these prior estimates into consideration we merely
make an additional modification of the objective function. For example,
assume that for each of the p unknown a;'s there is a prior estimate of the

value. Let us use the notation by as the prior estimate of a; and 07, as the

uncertainty associated with this prior estimate. In the statistical literature
these prior estimates are sometimes called Bayesian estimators. (This
terminology stems from the work of the Reverend Thomas Bayes who was
a little known statistician born in 1701. Some of his papers eventually
reached the Royal Society but made little impact until the great French
mathematician Pierre Laplace discovered them there.) The modified form
of Equation 2.2.1 is:

i=ni=n k=
ZZ = FXDY + Y g —b )V fol, (226
=I = k=l

If there is no Bayesian estimator for a particular a; the value of Oy, is set

to infinity.

Regardless of the choice of objective function and scheme used to deter-
mine the weights w;, one must then determine the values of the p unknown
parameters ay that minimize S. To accomplish this task, the most common
procedure is to differentiate S with respect to all the a;'s and the resulting
expressions are set to zero. This yields p equations that can then be solved
to determine the p unknown values of the a;'s. A detailed discussion of
this process is included in Section 2.4. An alternative class of methods to
find a “best” set of a,'s is to use an intelligent search within a limited range
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of the unknown parameter space. A number of such stochastic algorithms
are discussed in the literature (e.g., TV04).

2.3 Data Weighting

In Section 2.2, we noted that regardless of the choice of the objective func-
tion, a weight w; is specified for each point. The "weight" associated with
a point is based upon the relative uncertainties associated with the different
points. Clearly, we must place greater weight upon points that have
smaller uncertainties, and less weight upon the points that have greater un-
certainties. In other words the weight w; must be related in some way to
the uncertainties 0, and O .

The alternative to using w;'s associated with the o's of the i" data point is
to simply use unit weighting (i.c., w=1) for all points. This is a reasonable
choice for w; if the ¢'s for all points are approximately the same or if we
have no idea regarding the values (actual or even relative) of o for the dif-
ferent points. However, when the differences in the ¢ 's are significant,
then use of unit weighting can lead to poor results. This point is illustrated
in Figure 2.3.1. In this example, we fit a straight line to a set of data. Note
that the line obtained when all points are equally weighted is very different
than the line obtained when the points are "weighted" properly. Also note
how far the unit weighting line is from the first few points.

Fit using unit weighting

|

)}

I

Fit using statistical weighting

X

Figure 2.3.1 Two least squares lines with different
weighting schemes
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The question that must be answered is how do we relate w; to the o's asso-
ciated with the i ™ data point? In Section 2.2 we noted that the objective
function is of the form:

w(Y i) —Zw(Y fX))?

||
M i

U
ST~

2.3.1)

~ o~

1l

~
N

We will see that the least squares solution is based upon adjusting the un-
known values of the a,'s that are included in the function f such that S is
minimized. If the function fis representative of the data, this minimiza-
tion process yields values of ; that tend to be distributed around an aver-
age value with some random error &;:

2
S; =w;R} = Spq+& (2.32)

For cases in which the uncertainties associated with the values of x; are
negligible our objective should be that the residuals R; are proportional to

the values of o, . If we define the relative error at point i (Rel_Error;) as
Ri/0o,,, our objective should be to have relative errors randomly distrib-

uted about 0. To accomplish this, we choose the following weighting
function:

w,=1/0, (2.3.3)

We call this type of weighting statistical weighting and we will see that it
has many attractive properties. Substituting Equation 2.3.3 into 2.3.1 and
2.3.2 we obtain the following expression:

(R;/0,)* =(Rel _Error,)* =S,=8,,, +& (2.3.4)

We define RMS(R) as the "root mean square" error:
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- 12
RMS(R):(Z RfJ (2.3.5)
i=1

What we expect is that RMS(R) approaches zero as the noise component
of the y values approaches zero. In reality, can we expect this from the
least squares analysis? The answer to this question is yes but only if sev-
eral conditions are met:

1) The function f'is representative of the data. In other words, the data
falls on the curve described by the function f with only a random
"noise" component associated with each data point. For the case
where the data is truly represented by the function f (i.e., there is no
"noise" component to the data), then all the values of R; will be zero
and thus the values of §; will be zero.

2) There are no erroneous data points or if data errors do exist, they are
not significantly greater than the expected noise component. For ex-
ample, if a measuring instrument should be accurate to 1%, then er-
rors several times larger than 1% would be suspicious and perhaps
problematical. If some points were in error far exceeding 1% then the
results of the analysis will probably lead to significant errors in the fi-
nal results. Clearly, we would hope that there are methods for detect-
ing erroneous data points. This subject is discussed in detail in Chap-
ter 3 in the section dealing with Goodness-of-Fit.

To illustrate the first point, consider the data shown in Table 2.3.1. This
data was created using the following model:

Y =(7-6x+x)*(1+0.05u4,) (2.3.6)

Ten values of x were chosen as 1 thru 10 and the values of u; were taken
randomly from a u (i.e., standard normal) distribution. In other words, this
model is a parabola with a noise component that is approximately 5% of
the "true" value of y. It should be emphasized that we don’t know and
can't measure the values of u;. All that we know is that the values of Y in-
clude about 5% random noise. Our weighting function for this case would
be:
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_ 1 1
W, =—"7%5 = ( % 2
o, (0.05*Y)

The same data is shown in graphical form in Figure 2.3.2. Fitting a parab-
ola to this data using the method of least squares we get the following
curve:

y=f(x)=a, +a,x+a;x" =7.086—6.026x + 0.999.x

The values of the relative errors are seen in Table 2.3.1 to vary from —1.04
to 1.483 and seem to be distributed around zero as one would expect be-
cause the chosen model is representative of the data. In Table 2.3.2 we fit
the data using a straight line and get the following curve:

y=f(x)=a,+a,x=1.661+0.516x

The values of the relative errors are seen to be much greater (from —17.86
to 30.37) and they are clearly not distributed randomly about zero. This
type of result is due to the choice of a function f that is clearly not repre-
sentative of the data.

X Y o, y Rel Error
1.0 2.047 0.102 2.060 -0.126
2.0 -0.966 0.048 -0.967 0.023
3.0 -1.923 0.096 -1.995 0.750
4.0 -1.064 0.053 -1.024 -0.749
5.0 2.048 0.102 1.946 0.998
6.0 6.573 0.329 6.915 -1.040
7.0 13.647 0.682 13.883 -0.345
8.0 24.679 1.234 22.850 1.483
9.0 34.108 1.705 33.816 0.171
10.0 44.969 2.248 46.780 -0.806

Table 2.3.1 Data generated using Equation 2.3.6 and fit using
y=a; + ayx+ asx’. Rel Erroris (Y -y)/ g.
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X Y o, y Rel Error
1.0 2.047 0.102 -1.062 30.37
2.0 -0.966 0.048 -0.746 -4.56
3.0 -1.923 0.096 -0.430 -15.54
4.0 -1.064 0.053 -0.114 -17.86
5.0 2.048 0.102 0.202 18.03
6.0 6.573 0.329 0.518 18.42
7.0 13.647 0.682 0.834 18.78
8.0 24.679 1.234 1.150 19.07
9.0 34.108 1.705 1.466 19.14
10.0 44.969 2.248 1.781 19.21

Table 2.3.2 Data generated using Equation 2.3.6 and fit using
y=a,+ax. Rel Erroris(Y-y)/ o,.

50
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Figure 2.3.2  Parabola: Table 2.3.1, Straight Line: Table 2.3.2

The effect of erroneous data points is discussed in the section on "outliers".
(Section 3.6). This is a real concern of all experimentalists and care should
be taken to search for outliers in any data set. The cause of outliers can be
errors in data collections, errors in computer pre-processing of the data or
even human error. However, one must not overlook the possibility that the
outliers are real (i.e., not errors) and are perhaps due to an unexpected phe-
nomenon. As an example of the effect of an erroneous data point, using
the data from the previous example, the point ¥5 was changed from 2.048
to 20.48. This can happen, for example, when data is being collected by
hand and the person recording the data misplaces the decimal point. The
results of a least-squares analysis of this data are shown in Table 2.3.3.
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Note the very large value of the relative error for point 5. In the discussion
of Goodness-of-Fit (Section 3.2), statistical tests are discussed that allow
us to measure the goodness of the fit without the need to examine all the
relative errors.

X Y (o y Rel Error
1.0 2.047 0.102 2.061 -0.135
2.0 -0.966 0.048 -0.972 0.118
3.0 -1.923 0.096 -1.993 0.724
4.0 -1.064 0.053 -1.002 -1.168
5.0 20.480 1.024 2.000 18.046
6.0 6.573 0.329 7.014 -1.343
7.0 13.647 0.682 14.040 -0.576
8.0 24.679 1.234 23.077 1.298
9.0 34.108 1.705 34.126 -0.010
10.0 44.969 2.248 47.187 -0.986

Table 2.3.3 Data generated with Eq. 2.3.6, error in Y5, fit with
y=a; + ayx+ asx*. Rel Erroris (Y-y)/ o, .

We can explore the effect of not using Equation 2.3.3 when the values of
o, vary significantly from point to point. The data used to generate Figure
2.3.1 are shown in Table 2.3.4. Note the large relative errors for the first
few points when unit weighting (i.e., w; = 1) is used.

x Y o, | (o, w=l) | (Y-po, w=l/c)
1 6.90 0.05 15.86 0.19
2 11.95 0.10 3.14 -0.39
3 16.800 0.20 -1.82 -0.44
4 22.500 0.50 -0.38 1.23
5 26.200 0.80 -2.53 -0.85
6 33.500 1.50 -0.17 1.08
7 41.000 4.00 0.43 1.03

Table 2.3.4 Fitting Fig 2.3.1 data using y = a; + a,x : different
weighting schemes.

In the discussion preceding Equation 2.3.3 it was assumed that the errors
in the independent variable (or variables) were negligible. If this assump-
tion cannot be made, then if we assume that the noise component in the
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data is relatively small, it can be shown [WO67] that the following equa-
tion can be used instead of 2.3.3 for the weights w;:

w, = ! (2.3.7)

i . 2
j=m
ol + {afa ]

Vi ox; i

Jj=1

This equation is a more generalized form of statistical weighting than
Equation 2.3.3. The derivation of this equation is based upon the assump-
tion that higher order terms can be neglected in a Taylor expansion in the
region near the minimum value of S. As an example of the application of
2.3.7 to a specific problem, the weighting function for the parabolic fit
would be the following if the @;'s are included in the analysis:

_ 1

i 2 2
o, +((a; +2a;x;)0,.)

In this equation, since there is only one independent variable, we can
eliminate the subscript j and use only x rather than x;. As a 2™ example,
consider the following function:

y=aq + a,Xx,; + a,Xx,

This equation has two independent variables and the weights w; would be
computed as follows:

1
w;=—; 2 2
O-.Vi +(a20-x1i ) +(a30-x2i )

2.4 Obtaining the Least Squares Solution

The least squares solution is defined as the point in the "unknown parame-
ter" space at which the objective function § is minimized. Thus, if there
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are p unknown parameters (@, kK =1 to p), the solution yields the values of
the a;'s that minimize S. To find this minimum point we set the p partial
derivatives of § to zero yielding p equations for the p unknown values of
ay:

9 0 k=t1top 2.4.1)
oa,

In Section 2.2 the following expression (Equation 2.2.3) for the objective
function § was developed:

S=3 Wit~ X))

In this expression the independent variable X; can be either a scalar or a
vector. The variable ¥; can also be a vector but is usually a scalar. Using
this expression and Equation 2.4.1, we get the following p equations:

af(X )

k

—2Zw(Y fX)T=—2=0 k=1top

8f(X) z af(X)

a,

2 JSX)

k=1top (2.4.2)

For problems in which the function f is linear, Equation 2.4.2 can be
solved directly. In Section 2.1 Equation 2.1.3 was used to specify linear
equations:

= FX)=Y 0,8 (0= Y 4,8, (%, X,%,,)

The derivatives of fare simply:

U X) _
oa,

2.(X) k=1top (2.4.3)
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Substituting 2.4.3 into 2.4.2 we get the following set of equations:

Jj=p i=n i=n
Yy wig (X)gX)=Y wY¥g,(X;) k=1top (2.4.4)
j=1 =l i=1

Simplifying the notation by using g, instead of g,(X;) we get the following
set of equations:

alzwiglgk +“zzwigzgk +.. +apzwigpgk =Z w; Y, g,
k=1t p

(2.4.5)

We can rewrite these equations using matrix notation:
CA=V (2.4.6)

In this equation C is a p by p matrix and 4 and V are vectors of length p.
The terms Cj, and V are computed as follows:

Ci = z W88k (2.4.7)
i=1
Ve=> wYg, (2.4.8)
=1

The terms of the A4 vector (i.e., the unknown parameters a;) are computed
by solving the matrix equation 2.4.6:

A=Ccv (2.4.9)

In this equation, C "is the inverse matrix of C. As an example, let us con-
sider problems in which a straight line is fit to the data:

y=f(x)=a, +ayx (2.4.10)

For this equation g;= 1 and g, = x so the C matrix is:
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[ i=n i=n
PRI NILS
=] =1

c=|.~ =l (24.11)
S S 2

zwixi zwixi

i=1 i=1

The V vector is:

[ i=n
2 wiY;
=1

V=, (24.12)
zinixi
i=1

To apply these equations to a real set of data, let us use the 7 points in-
cluded in Table 2.3.4 and let us use the case in which all the values of w;
are set to 1 (i.e., unit weighting). For this case, the C and C "' matrices and
the V vector are:

7 28 — 1 | 140 -28 158.85
C-= cl-— V=
28 140 196 —-28 7 790.20
Solving Equation 2.4.9:

AeCY - CLV,+CiV, | [05786 (2.4.13)
O lamrcan, ] e ;

For problems in which the f function is nonlinear, the procedure is similar
but is iterative. One starts with initial guesses a0, for the unknown values
of a;. Simplifying the notation used for Equation 2.4.2, we see that the
equations for terms of the C matrix and V vector are:

<. o
c,=Sw L I 2.4.14
s ;w, da; da, ( )
I=n
Vi =) w;Y; i/ (2.4.15)

i=1 Ak
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In the equation for Vj the parameter ¥; is no longer the value of the de-
pendent variable. It is value of the dependent variable minus the computed
values using the initial guesses (i.e., the af 's). For linear problems we
don’t need to make this distinction because the initial guesses are zero and
thus the computed values are zero. The A vector is determined using
Equation 2.4.9 but for nonlinear problems, this vector is no longer the so-
lution vector. It is the vector of computed changes in values of the initial
guesses aly:

a,=a0, +A, k=1top (2.4.16)

The values of a; are then used as initial guesses a0 for the next iteration.
This process is continued until a convergence criterion is met or the proc-
ess does not achieve convergence. Typically the convergence criterion re-
quires that the fractional changes are all less than some specified value of
&

|4, /a0,|<e k=1top (2.4.17)

Clearly this convergence criterion must be modified if a value of al; is
zero or very close to zero. For such terms, one would only test the abso-
lute value of 4, and not the relative value. This method of converging to-
wards a solution is called the Gauss-Newton algorithm and will lead to
convergence for many nonlinear problems [WO67]. It is not, however, the
only search algorithm and a number of alternatives to Gauss-Newton are
discussed in Section 6.4.

As an example, of a nonlinear problem, let us once again use the data in
Table 2.3.4 but choose the following nonlinear exponential function for f:

y=f(x)=a,e” (2.4.18)
The two derivatives of this function are:

= o =e®* and le = o = xa;e™
adl aaz

/i
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Let us choose as initial guesses af;=1 and a0,=0.1 and weights wi~=1.
(Note that if an initial guess of a0;=0 is chosen, all values of the derivative
of f'with respect to a, will be zero. Thus all the terms of the C matrix ex-
cept Cyq will be zero. The C matrix would then be singular and no solution
could be obtained for the 4 vector.) Using Equations 2.4.14 and 2.4.15
and the expressions for the derivatives, we can compute the terms of the C
matrix and V vector and then using 2.4.9 we can solve for the values of A,
and A,. The computed values are 4.3750 and 2.1706 therefore the initial
values for the next iteration are 5.3750 and 2.2706. Using Equation 2.4.17
as the convergence criterion and a value of £ = 0.001, final values of
a,=7.7453 and a, = 0.2416 are obtained. The value of .§ obtained using
the initial guesses is approximately 1,260,000. The value obtained using
the final values of @; and a, is 17.61. Details of the calculation for the first
iteration are included in Tables 2.4.1.and 2.4.2.

X y f=1.0€0'1x Y=y-f
1 6.900 1.105 5.795
2 11.950 1.221 10.729
3 16.800 1.350 15.450
4 22.500 1.492 21.008
5 26.200 1.649 24 .551
6 33.500 1.822 31.678
7 41.000 2.014 38.986

Table 2.4.1  Fitting Data using f(x)=aye”*™ with initial guesses

a1=1, a2=0.1
2 ’ ’ ’ ’ ’ ’
Point | g2 (f2)* J1./2 S1Y 1Y
1 1.221 1.221 1.221 6.404 6.404
2 1.492 5.967 2.984 | 13.104 26.209
3 1.822 16.399 5.466 | 20.855 62.565
4 2.226 35.609 8.902 | 31.340 125.360
5 2.718 67.957 | 13.591 | 40.478 202.390
6 3.320 | 119.524 | 19.921 | 57.721 346.325
7 4.055| 198.705| 28.386 | 78.508 549.556
Sum 16.854 445.382 80.472 | 248.412 1318.820
Cii Cy; Cr Vi V>

Table 2.4.2 Computing terms of the C matrix and V vector
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Using the values of the terms of the C matrix and V vector from Table
2.4.2, and solving for the terms of the 4 vector using Equation 2.4.9, we
get values of @; =4.3750 and a, = 2.1706. Using Equation 2.4.16, the val-
ues of the initial guesses for the next iteration are therefore 5.3750 and
2.2706. This process is repeated until convergence is obtained. As the ini-
tial guesses improve from iteration to iteration, the computed values of the
dependent variable (i.e., f) become closer to the actual values of the de-
pendent variable (i.e., y) and therefore the differences (i.e., ¥) become
closer to zero. From Equation 2.4.15 we see that the values of V) become
smaller as the process progresses towards convergence and thus the terms
of the A vector become smaller until the convergence criterion (Equation
2.4.17) is achieved.

A question sometimes asked is: if we increase or decrease the weights how
does this affect the results? For example, for unit weighting what happens
if we use a value of w other than 1?7 The answer is that it makes no differ-
ence. The values of the terms of the V vector will be proportional to w and
all the terms of the C matrix will also be proportional to w. The C ! matrix,
however, will be inversely proportional to w and therefore the terms of the
A vector (i.e., the product of C™'V) will be independent of w. A similar ar-
gument can be made for statistical weighting. For example, if all the val-
ues of g are increased by a factor of 10, the values of w; will be decreased
by a factor of 100. Thus all the terms of V and C will be decreased by a
factor of 100, the terms of C™' will be increased by a factor of 100 and the
terms of 4 will remain unchanged. What makes a difference are the rela-
tive values of the weights and not the absolute values. We will see, how-
ever, when Goodness-of-Fit is discussed in Chapter 3, that an estimate of
the amplitude of the noise component of the data can be very helpful. Fur-
thermore, if prior estimates of the unknown parameters of the model are
included in the analysis, then the weights of the data points must be based
upon estimates of the absolute values of the weights.

2.5 Uncertainty in the Model Parameters

In Section 2.4 we developed the methodology for finding the set of a;'s
that minimize the objective function S. In this section we turn to the task
of determining the uncertainties associated with the a;'s. The usual meas-
ures of uncertainty are standard deviation (i.e., 0) or variance (i.e., 6°) so
we seck an expression that allows us to estimate the 0y,’s. It can be
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shown [WO67, BA74, GA92] that the following expression gives us an un-
biased estimate of O, :

s .
Ca, =n_ka;c
s
Gy =(n_pck}€)‘/2 2.5.1)

We see from this equation that the unbiased estimate of &, is related to

the objective function § and the ™ diagonal term of the inverse matrix C".
The matrix C™' is required to find the least squares values of the a's and
once these values have been determined, the final (i.e., minimum) value of
S can easily be computed. Thus the process of determining the a;'s leads

painlessly to a determination of the 0, ’s.

2
ag

As an example, consider the data included in Table 2.3.4. In Section 2.4
details were included for a straight-line fit to the data using unit weighting:

y=f(x)=a,+a,x =0.5786 + 5.5286 x (2.5.2)

The C and C ' matrices were:

7 28 _ 1 | 140 -28
C = C 1 = —
28 140 196 =28 7

The value for S/ (n-p) = §/(7-2) is 1.6019. We can compute the 0,’s
from Equation 2.5.1:

Oy, = v1.6019 *140/196 =1.070 and Oy, = 1.6019 *7/196 = 0.2392

The relative error in a; is 1.070 / 0.5786 = 1.85 and the relative error in a,
is 0.2392 / 5.5286 = 0.043. If the purpose of the experiment was to deter-
mine, a,, then we have done fairly well (i.e., we have determined a, to
about 4%). However, if the purpose of the experiment was to determine,
a,, then we have done terribly (i.e., the relative error is about 185%).
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What does this large relative error imply? If we were to repeat the experi-
ment many times, we would expect that the computed value of a; would
fall within the range 0.5786 + 2.57 * 1.85 = 0.5786 % 4.75 ninety-five per-
cent of the time (i.e., from -4.17 to 5.33). This is a very large range of
probable results. (The constant 2.57 comes from the # distribution with 5
degrees of freedom.)

If we use statistical weighting (i.e., w,-=1/o;2), can we improve upon these
results? Reanalyzing the data in Table 2.3.4 using the values of o
included in the table, we get the following straight line:

y=f(x)=a, +a,x =1.8926 + 4.9982x (2.5.3)

The computed value of 0, is 0.0976 and the value for o, is 0.0664.

These values are considerably less than the values obtained using unit
weighting. The reduction in the value of &, is more than a factor of 10

and the reduction in 0, is almost a factor of 4. This improvement in the

accuracy of the results is due to the fact that in addition to the actual data
(i.e., the values of x and y) the quality of the data (i.e., 6;) was also taken
into consideration.

We should also question the independence of a; and a,. If for example, we
repeat the experiment many times and determine many pairs of values for
a; and a,, how should the points be distributed in the two-dimensional
space defined by a; and a,? Are they randomly scattered about the point
[a; = 0.5786, a, = 5.5286] or is there some sort of correlation between
these two parameters? An answer to this question is also found in the least

squares formulation. The notation &y is used for the covariance
between the parameters j and k and is computed as follows:
S

oy = P Cik (2.5.4)

A more meaningful parameter is the correlation coefficient between the
parameters j and k. Denoting this parameter as p; , we compute it as

follows:
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O ji
Pix=—""" (2.5.5)
Cu;Oay,
The correlation coefficient is a measure of the degree of correlation be-
tween the parameters. The values of pj, are in the range from —1 to 1. If
the value is zero, then the parameters are uncorrelated (i.e., independent),
if the value is 1, then they fall exactly on a line with a positive slope and if
the value is —1 then the fall exactly on a line with a negative slope. Exam-

ples of different values of p;, are seen in Figure 2.5.1.

Returning to our example using unit weighting, let us compute 0, and

Pz’

O, =-1.6019 *28/196 = —-0.2288

P 02288 o
27 1070%02392

In other words, a; and a, are strongly negatively correlated. Larger-than-
average values of a; are typically paired with smaller-than-average values
of a;.

| + * r‘
i sl 4 * -
L]
pk=l #” +
ot b Pi=-07 T—T ;
K3 ! ¥
- »
- . o »
- R N e e A e
Vo] e 4
K
v . .
v
s
i, a; aj

Figure 2.5.1 Correlation Coefficients for Several Different Data
Distributions

As will be seen in Section 2.6, the covariance is used in evaluating the
standard deviations of the least squares curves. For example, we can use
Equation 2.5.2 or 2.5.3 to predict the value of y for any value of x. The
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covariance is needed to estimate the uncertainty oy associated with the pre-
dicted value of y (i.e., f(X)).

2.6 Uncertainty in the Model Predictions

In Section 2.5 the uncertainties in the model parameters were considered.
If the only purpose of the experiment is to determine the parameters of the
model, then only these uncertainties are of interest. However, there are
many situations in which we are interested in using the model for making
predictions. Once the parameters of the model are available, then the
equation f(X) can be used to predict y for any combination of the inde-
pendent variables (i.e., the vector X). In this section attention is turned
towards the uncertainties oy of these predictions.

Typically, one assumes that the model is “correct” and thus the computed
values of y are normally distributed about the true values. For a given set
of values for the terms of the X vector (i.e., a combination of the inde-
pendent variables xy, x3,.., X,,), We assume that the uncertainty in the pre-
dicted value of y is due to the uncertainties associated with the a;'s. The
predicted value of y is determined by substituting X into f(X):

y=rXsa,,a,,.,a,) (2.6.1)

Defining A4ay as the error in a;, we can estimate 4y (the error in y) by ne-
glecting higher order terms in a Taylor expansion around the true value of

y:

afA + fA +.. +aiAa (2.6.2)

A
/= oa, oa, da,

To simplify the analysis, let is use the following definition:

of

T,
k= aak

—~_Aay (2.6.3)

Thus:
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k=p
A =T+ T, +..+T,= DT, (2.6.4)

k=1

If we square Equation 2.6.2 we get the following:

Af? =T +(T) o+ (T,)? + 21T, + 21T+ 2T, T, (2.6.5)
Af? = Z(Tk) +Z ZZT T, (2.6.6)
j=lk=j+1

If the experiment is repeated many times and average values of the terms
are taken, we obtain the following from Equation 2.6.6:

5 k=p 5 j=p k=p
A Dang = DT g + 2 22T jT1) g (267

k=1 j=lk=j+1

Recognizing that ((Aay))ayg is just (Og, )* and (4a; Aay)ayg is O We get the
following:

k=p j=p k=p
Z a_f Y 2a_faiajk (2.6.8)
k=1 k

j=lk=j+1 J

The number of cross-product terms (i.e., terms containing o) is p (p-1) /
2. If we use the following substitution:

O = c;;k (2.6.9)

and recognizing that 6 3 = 0y;

; we can simplify equation 2.6.8:

07 =225 "> O (2.6.10)

Using Equations 2.5.1 and 2.5.4, we can relate o; to the terms of the C™'
matrix:
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S QLo of

n—p ‘5 i50a; da,

2
ol = Z-Cj 2.6.11)

As an example of the application of this equation to a data set, let us once
again use the data from Table 2.3.4 and w; = 1. The data was fit using a
straight line:

y=f(x)=a, +ayx

so the derivatives are:

of of
e Y -
: and : X

We have seen that the inverse matrix is:
c1_ [0 -28
196 | — 28 7

and the value of S/ (n — p) is 1.6019. Substituting all this into Equation
2.6.11 we get the following expression:

2 _ S (afafc—l o afC 42 I

O, =
7" n—p da, da, oa, da, da, da, )
2 _ S -1 2 -1 -1
or= (Cy; +x°C5, +2xC,)
n—p
,  1.6019 s
o’ = (140 + 7x? - 56x) (2.6.12)
77 196

(Note that the C™' matrix is always symmetric so we can use 2C; jk instead

Oka+C )
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Equations 2.5.2 and 2.6.12 are used to predict values of y and oy for several
values of x and the results are seen in Table 2.6.1. Note the curious fact
that the values of oyare symmetric about x = 4. This phenomenon is easily
explained by examining Equation 2.6.12 and noting that this equation is a
parabola with a minimum value at x = 4.

x y=fx) o

1.5 8.871 0.766
2.5 14.400 0.598
3.5 19.929 0.493
4.5 25.457 0.493
5.5 30.986 0.598
6.5 36.514 0.766

Table 2.6.1 Predicted values of y and oy using w=1.

In the table, we see that the values of x that have been chosen are all within
the range of the values of x used to obtain the model (i.e., 1 to 7). The use
of a model for purposes of extrapolation should be done with extreme cau-
tion! (More will be said about extrapolation in Chapter 3.) Note that the
oy values tend to be least at the midpoint of the range and greatest at the
extreme points. This is reasonable. Instinctively if all the data points are
weighted equally, we would expect gy to be least in regions that are sur-
rounded by many points. Table 2.6.1 was based upon a least squares
analysis in which all points were weighted equally. However, when the
points are not weighted equally, the results can be quite different. Table
2.6.2 is also based upon the x and y values from Table 2.3.4 but using sta-
tistical weighting (i.e., w,-=1/0jv2).

Table 2.6.2 presents a very different picture than Table 2.6.1 (which is
based upon unit weighting). When unit weighting is used differences in
the quality of the data are ignored, and we see (in Table 2.3.4) that the rela-
tive errors for the first few data points are large. However, when the data
is statistically weighted, the relative errors (also seen in Table 2.3.4) are all
comparable. In Table 2.6.2 we observe that the values of gy are much less
than the values in Table 2.6.1 even for points at the upper end of the range.
This improvement in accuracy is a result of taking the quality of the data
into consideration (i.e., using statistical weighting). Furthermore, the most
accurate points (i.e., least values of ¢j) are near the points that have the
smallest values of g;.
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x =) g

1.5 9.390 0.044
2.5 14.388 0.089
3.5 19.386 0.151
4.5 24.384 0.215
5.5 29.383 0.281
6.5 34.381 0.347

Table 2.6.2  Predicted values of y and oy using w,=1/0;’.

In Section 2.4 we noted that increasing or decreasing weight by a constant
factor had no effect upon the results (i.e., the resulting 4 vector). Simi-
larly, changes in the weights do not affect the computed values of oy and
O, - The value of § and the terms of the C matrix will change propor-

tionally if the w’s are changed by a constant factor and the changes in the
terms of the C' matrix will be inversely proportional to the changes in w.
The computation of both gyand 07, are based upon the products of S and

terms of the C™' matrix so they will be independent of proportional changes
in w. What does makes a difference is the relative values of the weights
and not the absolute values. This does not imply that estimates of the ac-
tual rather than the relative uncertainties of the data are unimportant.
When Goodness-of-Fit is discussed in Chapter 3, we will see that an
estimate of the amplitude of the noise component of the data can be very
helpful.

It should be emphasized that values of gy computed using Equation 2.6.11
are the o's associated with the function f and are a measure of how close
the least squares curve is to the "true" curve. One would expect that as the
number of points increases, the values of oy decreases and if the function f
is truly representative of the data oywill approach zero as n approaches in-
finity. Equation 2.6.11 does in fact lead to this conclusion. The term S /
(n — p) approaches one and the terms of the C matrix become increasingly
large for large values of #. The terms of the C™ matrix therefore become
increasingly small and approach zero in the limit of # approaching infinity.
In fact one can draw a "95% confidence band" around the computed func-
tion f. The interpretation of this band is that for a given value of x the
probability that the "true" value of f falls within these limits is 95%.
Sometimes we are more interested in the "95% prediction band". Within
this band we would expect that 95% of new data points will fall [MOO03].
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This band is definitely not the same as the 95% confidence band and the
effect of increasing » has only a small effect upon the prediction band.
Assuming that for a given x the deviations from the true curve and from
the least squares curve are independent, the o's associated with the predic-
tion band are computed as follows:

Ored =07 + 0, (2.6.13)

Knowing that as n increases, 0y becomes increasingly small, the limiting
value of G, is 0,. In Table 2.6.3 the values of 6. are computed for the
same data as used in Table 2.6.2. The values of ¢ are interpolated from
the values in Table 2.3.4. The 95% prediction band is computed using
O,rea and the value of ¢ corresponding to 95% limits for n — p degrees of
freedom. From Table 2.3.4 we see that n = 7 and for the straight line fit p
=2. The value of # for &= 2.5% and 5 degrees of freedom is 2.571. In
other words, 2.5% of new points should fall above f(x) + 2.5716.s and
2.5% should fall below f(x) — 2.571G,eq. The remaining 95% should fall
within this band. As n increases, the value of # approaches the value for
the standard normal distribution which for a 95% confidence limit is 1.96.

The 95% confidence and prediction bands for this data are seen in Figure
2.6.1.

x y=f(x) oy or Opred
1.5 9.390 0.075 0.044 0.087
2.5 14.388 0.150 0.089 0.174
3.5 19.386 0.350 0.151 0.381
4.5 24 .384 0.650 0.215 0.685
5.5 29.383 1.150 0.281 1.184
6.5 34 .381 2.750 0.347 2.772

Table 2.6.3 Values of 0., using data from Table 2.3.4 and
statistical weighting
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LY — Upper Prediction line
L2 — Upper Confidence line
L3 — f)

L4 — Lower Confidence line
L5 — Lower Prediction line

1 2 3 x 4 5 6 7

Figure 2.6.1 Confidence and Prediction Bands for Data from
Table 2.6.3

2.7 Treatment of Prior Estimates

In the previous sections we noted that a basic requirement of the method of
least squares is that the number of data points # must exceed p (the number
of unknown parameters of the model). The difference between these two
numbers n-p is called the "number of degrees of freedom". Very early in
my career | came across an experiment in which the value of n-p was in
fact negative! The modeling effort was related to damage caused by a cer-
tain type of event and data had been obtained based upon only two events.
Yet the model included over ten unknown parameters. The independent
variables included the power of the event and other variables related to po-
sition. To make up the deficit, estimates of the parameters based upon
theoretical models were used to supplement the two data points. The prior
estimates of the parameters are called Bayesian estimators and if the num-
ber of Bayesian estimators is n, then the number of degrees of freedom is
ntng-p. As long as this number is greater than zero, a least squares calcu-
lation can be made.
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In Section 2.2 Equation 2.2.6 is the modified form that the objective func-
tion takes when prior estimates of the a; parameters are available:

i=n k=p
S=3wi = fX) + 3 (@, —b,) /oy,
i=1 k=1

In this equation by is the prior estimates of a; and O, . is the uncertainty
associated with this prior estimate. The parameter by is typically used as
the initial guess a0, for a,. We see from this equation that each value of by
is treated as an additional data point. However, if Oy, is not specified,

then it is assumed to be infinite and no weight is associated with this point.
In other words, if Oy, is not specified then by is treated as just an initial

guess for a; and not as a prior estimate. The number of values of b, that
are specified (i.e., not infinity) is .

In the previous sections it was stated that the weights w; could be based
upon relative and not absolute values of the uncertainties associated with
the data points. When prior estimates of the a,’s are included in the analy-
sis, we are no longer at liberty to use relative weights. Since the weights
associated with the prior estimates are based upon estimates of absolute

values (i.e., 1/ (O'bk )’ ), the w; values must also be based upon estimates
of absolute values.
To find the least squares solution, we proceed as in Section 2.4 by setting

the p partial derivatives of § to zero yielding p equations for the p un-
known values of a;:

—ZZw(Y [, ))af(X)+ZZ(ak—b)/ab =0 k=1top

k
The terms in the last summation can be expanded:

(a, - b, )/o',fk =(a, —ao0, +a0, - b, )/o',fk = Ak/o',fk + (a0, — b, )/a,fk



62 Chapter 2 THE METHOD OF LEAST SQUARES

Z SX) + -

a k=1 Oy

As in Section 2.4 this equation is best treated as a matrix equation:
CA=V

The diagonal terms of the C matrix are modified but the off-diagonal terms
remain the same:

- OJ 9
Ci=Cy = Z af af (j# k) 2.7.2)
Cik = L+ af o (2.7.3)
O-b aa aak
k

The terms of the V vector are also modified:
V, w;Y. (2.7.4)
k= z iti aak

Solution of the matrix equation C4 = V yields the vector 4 which is then
used to compute the unknown a;'s (Equation 2.4.16). The computation of

the O, terms must be modified to include the additional data points. The

modified form of Equation 2.5.1 is:

S C-! )1/2

= (2.7.5)
n+ I’lb - p

Oq :(
k

In this equation n, is the number of Bayesian estimations included in the
analysis (i.e., the number of b/ ’s that are specified). Using the same reason-
ing, Equation 2.6.11 must also be modified:
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2 s ISPy o
_ Y Y - 2.7.6
% ”"‘"b—l’jz]kzﬂaaj oay, 7k (2.7.6)

As an example of the application of prior estimates, let us once again use
the data in Table 2.3.4 but only for the case of statistical weighting (i.e.,
w=1/0;"). The straight line computed for this case was:

y=f(x)=a, +a,x =1.8926+4.9982x

The computed value of 0, and 0,, were 0.0976 and 0.0664. The C ma-

trix and V vector for this case are:
531.069 701.917 4513.39
C= and V=
701917 1147.125 7016.96
Let us say that we have a prior estimate of a;:

b, =1.00£0.10

The only term in the C matrix that changes is Cy;. The terms of the V vec-
tor are, however, affected by the changes in the values of ¥;. Since we
start from the initial guess for a, all the values of ¥; are reduced by «; (i.e.,
1.00) :

631.069 701.917 3982.32
C= and V=
701.917 1147.125 6360.04

Solving for the terms of the 4 vector we get 4; = 0.4498 and 4, = 5.2691.
The computed value of a; is therefore 1.4498 and a, is 5.2691. Note that
the prior estimate of a; reduces the value previously computed from

1.8926 towards the prior estimate of 1.00. The values of 6, and 0, for

this calculation were 0.1929 and 0.1431. These values are greater than the
values obtained without the prior estimate and that indicates that the prior
estimate of a; is not in agreement with the experimental results. Assuming
that there is no discrepancy between the prior estimates and the experimen-
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tal data, we would expect a reduction in uncertainty. For example, if we
repeat the analysis but use as our prior estimate: b, =2.00£0.10 :

The resulting values of a; and a; are:
a, =1.9459+0.0670 a, =4.9656 +0.0497

If we repeat the analysis and use prior estimates for both a; and a,:
b, =2.00%0.10 b, =5.00+0.05

The resulting values of a; and a, are:
a, =1.9259£0.0508 a, =4.9835+0.0325

The results for all these cases are summarized in Table 2.7.1.

b, b, ntn, a Oy, a O,
none None [ 7 [ 1.8926 [ 0.0976 | 4.9982 | 0.0664
.00+£0.1 None 8 1.4498 0.1929 5.2691 0.1431
.0040.1 None | 8 | 1.9459 | 0.0670 | 4.9656 | 0.0497
.00+0.1 5.00+0.05 9 1.9259 0.0508 | 4.9835 0.0325

Table 2.7.1 Computed values of a; and a, for combinations of b,
and b,.

We see in this table that the best results (i.e., minimum values of the o' s)
are achieved when the prior estimates are in close agreement with the re-
sults obtained without the benefit of prior estimates of the unknown pa-
rameters a; and a,.

2.8 Applying Least Squares to Classification Problems

In the previous sections the dependent variable y was assumed to be a con-
tinuous numerical variable and the method of least squares was used to de-
velop models that could then be used to predict the value of y for any com-
bination of the independent x variable (or variables). There are, however,
problems in which the dependent variable is a "class" rather than a con-
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tinuous variable. For example the problem might require a model that dif-
ferentiates between two classes: "good" or "bad" or three levels: "low",
"medium" or "high". Typically we have nlrn learning points that can be
used to create the model and then ntst test points that can be used to test
how well the model predicts on unseen data. The method of least squares
can be applied to classification problems in a very straight-forward man-
ner.

The trick that allows a very simple least squares solution to classification
problems is to assign numerical values to the classes (i.e., the y values) and
then make predictions based upon the computed value of y for each test
point. For example, for two class problems we can assign the values 0 and
1 to the two classes (e.g., "bad" = 0 and "good" = 1). We then fit the learn-
ing data using least squares as the modeling technique and then for any
combination of the x variables, we compute the value of y. If it is less than
0.5 the test point is assumed to fall within the "bad" class, otherwise it is
classified as "good". For 3 class problems we might assign 0 to class 1,
0.5 to class 2 and 1 to class 3. If a predicted value of y is less than 1/3 then
we would assign class 1 as our prediction, else if the value was less than
2/3 we would assign class 2 as our prediction, otherwise the assignment
would be class 3. Obviously the same logic can be applied to any number
of classes.

It should be emphasized that the least squares criterion is only one of many
that can be used for classification problems. In their book on Statistical
Learning, Hastie, Tibshirani and Friedman discuss a number of alternative
criteria but state that "squared error is analytically convenient and is the
most popular" [HAO1]. The general problem is to minimize a loss function
L(Y, f(X)) that penalizes prediction errors. The least squares loss function
is (Y - AX))* but other loss functions (e.g. | ¥ - AX) | ) can also be used.
A different approach to classification problems is based upon nearest
neighbors. This approach is considered in Section 7.8.

To understand how one would apply least squares to classification prob-
lems, consider the data in Table 2.8.1 and shown in Figure 2.8.1. The X
vector of the independent variables is two dimensional. The first six points
in the table are the learning points used to create the model and the last
three points are the test points used to check to see how the model predicts
on data not used in the development of the model. The Y variable used in
the least squares analysis is the class of the data points (i.e., 0 or 1).
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Point Type X1 X Y = Class
1 Learning 0.50 0.00 0
2 Learning 0.75 0.25 0
3 Learning 1.00 0.50 0
4 Learning 0.00 0.50 1
5 Learning 0.25 0.75 1
6 Learning 0.50 1.00 1
7 Test 0.50 0.25 0
8 Test 0.50 0.75 1
9 Test 0.75 0.50 1

Table 2.8.1 Data for a 2D classification problem

Class 0 :
Class1: » JYestPt: «
1

0.75 |

0.5 x
/é—;-=0.5

0.25 / !

0

0o 025 05 075 1

Xy

Figure 2.8.1 Display of Data from Table 2.8.1

Assuming a linear model, the following equation is fit to the data:

y=a;x;+a,x, +a,
Weighting all points equally, the least squares solution is:

y=-x+x,+05

(2.8.1)

(2.8.2)
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The value of y for test point 7 is -0.5 + 0.25 + 0.5 = 0.25 and since this
number is less than 0.5 this point would be classified correctly as belong-
ing to class 0. The value of y for test point 8 is 0.75 so this point would be
classified correctly as belonging to class 1. Test point 9 would be misclas-
sified as belonging to Class 0. In Figure 2.8.1 we see the line in the x; - x;
plane in which y is exactly 0.5. Any test point falling above this line
would be classified as belonging to class 1 and any point below the line
would be classified as belonging to class 2.

Clearly the simple linear model can be extended to d dimensions:
y=ax,+a,x, +..+a,x,+a,, (2.8.3)

Another alternative is to use a higher order model. For example, a 2" or-
der polynomial model in two dimensions would be:

y=a;x,+a,x, +a3x12 + a4x§ t+asx,x, +ag (2.8.4)

In Figure 2.8.2 Equation 2.8.4 has been fit to 8 data points from class 0 and
10 from class 1. This model predicts that points falling in the shaded area
are from Class 0 and otherwise they are from Class 1. Note that 3 of the
Class 1 learning points fall within the Class 0 region and one of the Class 0
learning points (the point at 0.75, 0.75) falls within the Class 1 region.
Also note that two of the learning points are from different classes al-
though both are located at approximately the same position (near 0.5, 0.5).

The main problem with classification models is the fraction of misclassifi-
cations. For example, for a two class problem (Classes 0 and 1) what frac-
tion of Class 0 cases is misclassified as Class 1 and visa-versa? For some
problems it is important to reduce misclassifications in one direction and
less important in the other direction. For example, consider a problem in
which we are building a model to decide which people to inoculate against
a certain disease. The two classes are those who have a high probability
(Class 1) and a low probability (Class 0) of getting the disease. Clearly, it
is much more important to reduce misclassifications for people in Class 1.
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Class0: -
Class1:

0.75

Xz /’”’"’-\
0.5 g /
0.25
/A y=0.5
0 .

|
0 0.25 0.5 0.75 1
Xy

Figure 2.8.2  Fit to 8 Class 0 and 10 Class 1 Points Using Eq. 2.8.4

In Figures 2.8.1 and 2.8.2 the two-dimensional independent variable space
was separated into two classes by a single line. For three-class problems
two lines would be required. For three-dimensional spaces, two-
dimensional surfaces are used to separate the classes. In general for d di-
mensional spaces, d-1 dimensional surfaces are used to separate the
classes. The number of surfaces is num_classes -1. If there is only one
independent variable x, the separations are just rum_classes -1 points
along the x axis. If there are only two classes then the separation is just a
single point. The subject of misclassification can be illustrated using a
two-class problem and a single independent variable. Fitting a straight line
to the data we get a simple equation relating y and x : y = a; + a,x. The
value at which y is 0.5 is x; (the value of x separating the two classes):

x,=05-a,)/a, (2.8.5)

Assume that the Class 1 data points are normally distributed about x = 1,
the Class 0 data points are normally distributed about x = -1 and the values
of o for both distributions are one. The two distributions are seen in Fig-
ure 2.8.3. For cases in which the number of data points in each class is n,
then as n becomes large, the line fitted to the data approaches 0.5 + 0.25x
and from Equation 2.8.5, the values of x, approaches zero. The misclassi-
fication rate for both classes should be about 15.9% because the fraction of
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a normal distribution beyond one ¢ is 15.9%. From Figure 2.8.3, the frac-
tion of Class 0 points that are correctly classified is the shaded fraction un-
der the Class 0 distribution. The unshaded fraction to the right of x = 0 is
the misclassification fraction and is equal to about 0.159.

/|Class 0} > [Class 1]

AR

-3 -2 -1 0 1 2 3
X

Figure 2.8.3 Values of x for Both Classes are taken randomly from
Normal Distributions with =1

Another important consideration is the relative number of data points in
each of the classes. What happens when the x values are taken from the
same distributions but there are many more from one class than the other?
For example assume that 90% of the data points come from Class 1 (Fig-
ure 2.8.3). Running a simulation using 10000 points, the fitted line was
0.792 + 0.134x and the value of x; was -2.183. This value is over one o to
the left of the center of the Class 0 distribution and as a result over 88% of
the Class 0 test points were misclassified while only 0.03% of the Class 1
test points were misclassified. These results show that the method de-
scribed above must be modified if there are a significantly unequal number
of learning points in the different classes. There is a simple solution to this
problem! By adjusting the weights used for each point based upon the
relative class populations, the separation can be accomplished so that the
misclassification rates can be approximately equalized. For example, for
the above simulation with 90% Class 1 data points, when the weight for
Class 0 was increased to 9 (compared to 1 for Class 1), the fitted line was
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close to the y = 0.5 + 0.25x line noted when the number of data points in
each class were equal. Thus the value of x; was close to zero and the mis-
classification rate for both classes was about 15.9%.

Clearly, the same technique can be used when it is desirable to achieve a
misclassification rate for one of the classes less than some specified value.
To reduce the misclassification rate for a class, one must raise the weight
attributed to points within this class. For example, for the two-class, one-
dimensional problem with distributions shown in Figure 2.8.3, what
weight would we have to assign to Class 1 so that the misclassification rate
1s reduced to less than 0.05? If n is the same for both classes, if the Class
1 weights are raised to 2, then the misclassification rate for Class 1 is re-
duced to 0.088 while the rate for Class 0 is increased to 0.26. Increasing
the weights to 3 the misclassification rates become approximately 0.046
and 0.36. Thus for this particular one dimensional problem the Class 1
weight should be about 3 to achieve the desired misclassification rate.

For some problems, it makes sense to consider a "middle ground": Class 0,
Class 1 or N.C. (i.e., "Not Clear"). For example, consider once again the
classification of people who should receive inoculation for a disease.
Class 1 is defined as those with a high probability of getting the disease
and Class 0 are those with a low probability of getting the disease.

o Correct Not Clear Misclassified
0.00 0.841 0.000 0.159
0.05 0.790 0.095 0.115
0.10 0.729 0.190 0.081
0.15 0.658 0.288 0.054
0.20 0.581 0.382 0.037
0.25 0.498 0.478 0.024

Table 2.8.1 Correct, Not-Clear and Misclassified Rates as a Func-
tion of J for Figure 2.8.3 distributions. Classification is Not-Clear
when 0.5 - 6<y <05+ 4

Let us say that there is a more expense test to decide whether or not a per-
son should be inoculated. This test would only be used for those falling in
the N.C. category. The criterion for identifying a person as falling within
Class 1 would be a value of y > 0.5 + &, Class 0 for y < 0.5 - 8, and N.C.
for 0.5-d<y<0.5+ 8 The value of dwould be set based upon the ac-
ceptable misclassification rates. For the class distributions considered in
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Figure 2.8.3, the effect of d'is seen in Table 2.8.1. We see that for these
distributions, a value of & of 0.25 results in a situation in which the model
properly identifies only about half of the people examined. About 2.4%
are misclassified and the remaining people fall within the N.C. category.

Another problem encountered when attempting to find a point or line or
surface to separate classes is based upon the distribution of the classes
within the independent variable space. There are distributions that can't be
separated so simply. For example, consider the two-class problem in Fig-
ure 2.8.4. There are two independent variables and the two classes are dis-
tributed in such a way so that separation of the classes cannot be accom-
plished with a single line. Problems such as this are better handled using a
"nearest neighbor" approach as described in Section 7.8.

Class 0 : o
Class1: -«
1 o
0.8 o
0.6
* *
.\12 * : * b4 : *
0.4
0.2 a
0 o
0 0.2 0.4 \ 0.6 0.8 1
Xy

Figure 2.8.4  Problematic Distribution: Separation cannot be ac-
complished with a single line
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3.1 Introduction

Once a least squares analysis has been completed, we turn our attention to
an evaluation of the results. Is the model an adequate representation of the
data? Modeling data is not always based upon a "correct” mathematical
model. Sometimes one is interested in comparing alternative theoretical
models to determine which theory is most applicable to the experimental
data. Sometimes the model is proposed as a series and one needs to make
a decision regarding the number of terms to keep to best represents the
data. There are many situations in which all that one is interested in is an
analytical equation that can be used to describe the data. One might start
with a simple model and then progressively add terms. At what point do
the additional terms lead to a poorer model?

If the data is to be analyzed using the method of least squares, and if we
have n data points, the maximum number of unknown parameters that can
be determined is n—1. If we also have n, Bayesian estimators, then the
maximum is increased to n+n;—1. As the number of unknown parameters
is increased, § (the weighted sum of the residuals) decreases so at first
glance one might think that the more unknown parameters included in the
model, the better the fit. However, we reach a point where additional
terms begin to model the noise in the data rather than the true signal. For-
tunately, statistical methods are available for determining when we should
stop adding terms to a model. In this chapter, statistical methods for
evaluation of models are presented.
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3.2 Goodness-of-Fit

In Section 1.3 the ;{2 (chi-squared) distribution was discussed. Under cer-
tain conditions, this distribution can be used to measure the goodness-of-
fit of a least squares model. To apply the ;{2 distribution to the measure-
ment of goodness-of-fit, one needs estimates of the uncertainties associ-
ated with the data points. In Sections 2.5 and 2.6 it was emphasized that
only relative uncertainties were required to determine estimates of the un-
certainties associated with the model parameters and the model predic-
tions. However, for goodness-of-fit calculations, estimates of absolute
uncertainties are required. When such estimates of the absolute uncer-
tainties are unavailable, the best approach to testing whether or not the
model is a good fit is to examine the residuals. This subject is considered
in Section 3.9.

The goodness-of-fit test is based upon the value of S/(n-p). Assuming that
S is based upon reasonable estimates of the uncertainties associated with
the data points, if the value of S/(n-p) is much less than one, this usually
implies some sort of misunderstanding of the experiment. If the value is
much larger than one, then one of the following is probably true:

1) The model does not adequately represent the data.
2) Some or all of the data points are in error.
3) The estimated uncertainties in the data are erroneous.

Assuming that the model, the data and the uncertainty estimates are cor-
rect, the value of S (the weighted sum of the residuals) will be distributed
according to a 12 distribution with n-p degrees of freedom. Since the ex-
pected value of a ;{2 distribution with n-p degrees of freedom is n-p, the
expected value of S/(n-p) is one. If one assumes that the model, data and
estimated uncertainties are correct, the computed value of S/(n-p) can be
compared with 12/ (n-p) to determine a probability of obtaining or exceed-
ing the computed value of §. If this probability is too small, then the
goodness-of-fit test fails and one must reconsider the model and/or the
data.

Counting experiments in which the data points are numbers of events re-
corded in a particular time window are a class of experiments in which es-
timates of the absolute uncertainty associated with each data point are
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available. Let us use ¥; to represent the number of counts recorded in the

time interval #. According to Poisson statistics the expected value of 0',-2

(the variance associated with ¥;) is just ¥; and the weight associated with
this point is 1/ ¥;.  From Equation 2.2.1 we get the following expression
for S

S=;WiRi2=;W,-(Y,-—yi)2 =;(Y,-—f(t,-))2/Y,- (3.2.1)

Since the expected value of (¥; - y,-)2 is O',-2 =

WiRi2 is one. The expected value of § is not # as one might expect from
this equation. If the function f includes p unknown parameters, then the
number of degrees of freedom must be reduced by p and therefore the ex-
pected value of § is #—p. This might be a confusing concept but the need
for reducing the expected value can best be explained with the aid of a
qualitative argument. Lets assume that # is 3 and we use a 3 parameter
model to fit the data. We would expect the model to go thru all 3 points
and therefore, the value of § would be zero which is equal to n—p.

Y; the expected value of

To illustrate this process, let us use data included in Bevington and Robin-
son's book Data Reduction and Error Analysis [BE03]. The data is pre-
sented graphically in Figure 3.2.1 and in tabular form in Table 3.2.1. The
data is from a counting experiment in which a Geiger counter was used to
detect counts from an irradiated silver piece recorded in 15 second inter-
vals. The 59 data points shown in the table include two input columns (¢
and ¥;) and one output column that is the residual divided by the standard
deviation of ¥; (i.e., R;/ G} ):

R, /o, =Y, —y)/\JY; (3.2.2)

The data was modeled using a 5 parameter equation that included a back-
ground term and two decaying exponential terms:

(3.2.3)
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i t Y; R;/ o; i t; Y; R;/ o;
1 15 775 0.9835 31 465 24 -0.0208
2 30 479 -1.8802 32 480 30 1.2530
3 45 380 0.4612 33 495 26 0.7375
4 60 302 1.6932 34 510 28 1.2466
5 75 185 -1.6186 35 525 21 0.0818
6 90 157 -0.4636 36 540 18 -0.4481
71 105 137 0.3834 37 555 20 0.1729
8 120 119 0.7044 38 570 27 1.6168
91 135 110 1.3249 39 585 17 -0.2461
10 | 150 39 0.4388 40 600 17 -0.1141
11 165 74 -0.2645 41 615 14 -0.7922
12| 180 61 -1.0882 42 630 17 0.1231
13 195 66 0.2494 43 645 24 1.6220
14| 210 68 1.0506 44 660 11 -1.4005
15| 225 48 -1.0603 45 675 22 1.4360
16 | 240 54 0.2938 46 690 17 0.5068
17 | 255 51 0.3200 47 705 12 -0.7450
18 | 270 46 0.0160 48 720 10 -1.3515
19 [ 285 55 1.5750 49 735 13 -0.0274
20 | 300 29 -2.2213 50 750 16 0.5695
21 315 28 -2.0393 51 765 9 -1.4914
22 | 330 37 0.0353 52 780 9 -1.4146
23 | 345 49 2.0104 53 795 14 0.2595
24 | 360 26 -1.4128 54 810 21 1.7830
25| 375 35 0.5740 55 825 17 1.0567
26 | 390 29 -0.2074 56 840 13 0.1470
27 | 405 31 0.4069 57 855 12 -0.0891
28 | 420 24 -0.7039 58 870 18 1.3768
29 | 435 25 -0.2503 59 885 10 -0.6384
30 | 450 35 1.6670

Table 3.2.1  Input data ( and Y) from Table 8.1, Bevington and
Robinson [BE03].

The input data in the table was analyzed using the REGRESS program [see
Section 6.8] and yielded the following equation:

—1/34.244 —1/209.68

Yy =10.134 + 957.77¢ +128.29¢

For example, for the first data point (i.e., # =15), the computed value of y
according to this equation is 747.62. The relative errors included in the
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table (i.e., R; /0;) are computed using Equation 3.2.2. Thus the value of the
relative error for the first point is (775 — 747.62) / ﬁ = 0.9835. Note
that the relative errors are distributed about zero and range from -2.2213 to
2.0104. The value of S is the sum of the squares of the relative errors and
is 66.08. The number of points n is 59 and the number of unknown pa-
rameters p is 5 so the value of § /(n — p) is 1.224. The goodness-of-fit test
considers the closeness of this number to the most probable value of one
for a correct model. So the question that must be answered is: how close
to one is 1.224?
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Figure 3.2.1 Bevington and Robinson data [BE03]

In Section 1.3 it was mentioned that for the g*distribution with k degrees

of freedom, the mean is k and the standard deviation is «/ﬁ . Furthermore
as k becomes larger, the Zz distribution approaches a normal distribution.
We can use these properties of the distribution to estimate the probability
of obtaining a value of § greater or equal to 66.08 for a Zz distribution with
54 degrees of freedom:

66.08 = 54 + X,* V2 * 54 =54 + Xp* 10.39
Xp =(66.08 - 54) /10.39=1.163

In other words, 66.08 is approximately x, = 1.16 standard deviations above
the expected value of 54. From a table of the normal distribution we can
verify that the integral from 0O to 1.163 standard deviations is 0.3777, so
the probability of exceeding this value is 0.5 — 0.3777 = 0.1223 (i.e., about
12%). Typically one sets a value of the probability at which one would re-
ject the model. For example, if this probability is set at 1%, then the lower
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limit of x;, for rejecting the model would be 2.326. Since our computed
value of x,, is much less than 2.326, we have no reason to reject the five pa-
rameter model.

If we really want to be pedantic, we can make a more accurate calculation.
From the Handbook of Mathematical Functions |AB64], Equation 26.4.17
is suggested for values of k > 30:

3
2 [2
¥’ =k[1—9—k+xp 9—k} (3.2.4)

In this equation x, is the number of standard deviations for a standard
normal distribution to achieve a particular probability level. For example,
if we wish to determine the value of the g2 distribution with k degrees of
freedom for which we could expect 1% of all values to exceed this level,
we would use the standard normal distribution value of x,, = 2.326. Using
Equation 3.2.4 we can compute the value of x,, corresponding to a Zz value
of 66.08:

66.08 = S4[1— 2/(9 * 54) + x 1/ 2/(9 * 54)]

Solving this equation for x, we get a value of 1.148 which is close to the
value of 1.163 obtained above using the simple normal distribution ap-
proximation.

Equation 3.2.3 is a 5 parameter model that includes a background term and
two decaying exponential terms. If we were to simplify the equation to in-
clude only a single exponential term, would we still have a "reasonable"
model? Would this equation pass the goodness-of-fit test? The proposed
alternative model is:

y=a, + aze_t/a3 (3.2.5)

Once again using the REGRESS program the resulting equation is:

¥ =18.308 + 752,99, 1/ 62989
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and the value of § is 226.7. The value of x,, corresponding to this value of
S is estimated as follows:

226.7=54+X, * V2% 54
Xp = (226.7 - 54) / 10.39 = 16.62

This value is so large that we would immediately reject the proposed
model. The probability of getting a value of § that is over 16 standard de-
viations above the expected value for a correct model is infinitesimal.

3.3 Selecting the Best Model

When modeling data, we are often confronted with the task of choosing the
best model out of several proposed alternatives. Clearly we need a defini-
tion of the word "best" and criteria for making the selection. At first
glance one might consider using S (the weighted sum of the squares of the
residuals) as the criterion for choosing the best model but this choice is
flawed. As p (the number of unknown parameters included in the model)
increases, the values of § decreases and becomes zero if p is equal to n
(the number of data points).

To illustrate this point, consider the data shown in Figure 2.3.2. This data
was generated based upon a parabolic model (p = 3) and included 5% ran-
dom noise. The 10 data points were fit using the following polynomial
model with values of p varying from 2 to &:

k=p

y=a,+ Y a,x*" (3.3.1)
k=2

Results are included in Table 3.3.1. Note that the value of § decreases as p
increases but that the minimum value of § / (n-p) is achieved for p=3.
This is encouraging because the minimum value of S / (n-p) was obtained
for the value of p upon which the data was generated. However, can we
use this criterion (i.e., choose the model for which S / (n-p) is minimized)
as the sole criterion for selecting a model?
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4 S S/(n-p) RMS-Error RMS-Rel_Error
2 3619.19 452.418 19.239 19.025
3 6.22 0.888 0.831 0.789
4 6.21 1.035 0.835 0.788
5 5.86 1.171 0.696 0.765
6 5.50 1.375 0.531 0.742
7 5.12 1.706 0.446 0.715
8 3.66 1.829 0.652 0.605

Table 3.3.1 Using Equation 3.3.1 to model data in Table 2.3.1

In this table the RMS-Error (the root-mean-square error) is computed as
follows:

i=1

li’:,(yz _.Vi)z

RMS - Error = (3.3.2)

n

The RMS-Rel-Error (the root-mean-square relative error) is computed as
follows:

:E:((Iﬁ".yi)/‘7yi)2
(RMS - Rel - Error )* ==

n

Comparing these equations with the definition of § (Equations 2.3.1 and
2.3.3), we see that RMS-Error and RMS-Rel-Error are just modified
forms of S:

RMS - Error =~ S/ n (w;=1) (3.3.3)

RMS - Rel - Error =S/ n (w; =1/0'i,) (3.3.4)

Note that for p=2 (i.e., a straight line fit to the parabolic data) all the results
are terrible. When the model under-fits the data we expect to see large
values of S / (n-p) and the RMS error measures. However, when the data
is over-fitted (i.e., p > 3 for this example), § and RMS-Rel-Error should
decrease with increasing p. (Since § was based upon statistical weighting,
we expect RMS-Rel-Error to decrease monotonically with increasing p
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but RMS-Error does not necessarily decrease monotonically.) In Figure
3.3.1 the data is shown with the curves for p = 3 and p = 8. Note that the
two curves appear quite similar up to about x = 8 but this is an illusion due
to the scale of the graph. In reality for p = 8, the fitted curve is actually
modeling the noise in the data. We see this quite clearly for x greater than
8.

50

40 J,’
+ Data Points g /
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—-— 3 Parm Fit y
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10
0 Sa //
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Figure 3.3.1 Table 3.3.1 Least Squares curves for p =3 and 8

p S S/(n-p) RMS-Error RMS-Rel Error
2 359971.1 400.4131 18.1951 19.9881
3 873.8 0.9730 0.9368 0.9848
4 873.0 0.9732 0.9306 0.9843
5 871.3 0.9724 0.9252 0.9834
6 871.2 0.9734 0.9247 0.9833
7 871.0 0.9743 0.9249 0.9832
8 870.9 0.9753 0.9247 0.9831

Table 3.3.2 Using Equation 3.3.1 to model parabolic data with 5%
random noise and #=901 ranging from 1 to 10 with increments of 0.01.

We have established that S is distributed according to a 12 distribution with
n-p degrees of freedom. Let us consider a series of models in which an in-
crease in p represents an increase in the complexity of the model. In other
words, if we increase p from 3 to 4, we are adding an additional term to the
3 parameter model. Let us use the notation S, and S, to represent two
values of § with differing values of p but based upon the same n data
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points. Choosing p1 to be greater than p2, then S,, > S,;. An interesting
and useful property of 12 distributions is the following: Sy, - S, is distrib-
uted according to a 12 distribution with p1-p2 degrees of freedom [FR92].
In Section 1.3 the F distribution was defined as the ratio of two > distribu-
tions divided by their degrees of freedom. Thus the following ratio should
follow an F distribution:

5o 80 =8, p1-p2) (3.3.5)
S, /(n— pl)

We can use this value of F to decide whether or not the model based upon
pl is significantly better than the model based upon p2. Values of F are
tabulated based upon 3 parameters, ¢ (the confidence parameter), v1 (the
degrees of freedom of the numerator) and v2 (the degrees of freedom of
the denominator). Solving Equation 3.3.5 for the ratio of Sy, / Sp1, we get
the following:

)F(a,pl—pZ,n—pl) ‘1

S
22 —(pl- p2
n—pl

(3.3.6)

This ratio is the ratio of the § values that corresponds to a significance
level of a. In other words, if the extra p1-p2 terms in the pI parameter
model neither add nor detract from the original p2 model, we would expect
the ratio to exceed this value 100a % of the time. To illustrate how this
Equation is used, let us first compare the two values of S for p1 = 3 and p2
= 2 from Table 3.3.2. Let us use a value of o = 0.01. Table 3.3.2 is based

upon a value of n - p1 = 898 which is very large and we can therefore use
the following approximation:

F(a,v,,v,) = y (a,v) /v, as v, > © (3.3.7)

The value of F(0.01, 1, 898) is thus approximately ,1/2(0.01, 1)/1=6.63
so we would expect that if the model with p1 = 3 parameters is signifi-
cantly better than the model with two parameters, then the ratio S,, / S,;
would be greater than :

&=(3_2) 6.63

s, 901-3

+1=1.007
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The observed ratio (i.e., 359971 / 873.8) is about 412 which is much
greater than 1.007 so the 3 parameter model is clearly an improvement
upon the two parameter model. We can repeat the analysis comparing the
4 and 5 parameter models to the 3 parameter models:

55 _ (4-3) 6.63 | 1=1.007 (1% confidence limit)
S, 901 -4

S 4.61 .
=3 =(5-3) 6 +1=1.010 (1% confidence limit)
S 901-5

(The value of F(0.01, 2, 896) is approximately 4.61.) The measured val-
ues of these ratios are 873.8 / 873.0 = 1.001 and 873.8 / 871.3 = 1.003.
Since neither of these values exceeds the relevant 1% confidence limit we
conclude that the reduction in § going to 4 and 5 parameter models is not
significant. In other words, increasing the number of unknown parameters
beyond 3 does not yield a significantly better model.

We can also use the previous test to consider totally different models with
differing values of p1 and p2. For such cases, if we choose pl to be
greater than p2, S, is not necessarily greater than S,;. Clearly, if Sy, < S
then we would immediately choose Model 2 as not only does it have less
parameters, it also exhibits a smaller value of S.

Another question that we should consider is how do we compare models in
which the numbers of unknown parameters are the same? Clearly, since
the degrees of freedom are the same for both models, a direct comparison
of the § values is sufficient to determine which is the better model. How-
ever, when the values of §' are close, we should then consider the issue of
significance. Let us define Model 1 as the model with the smaller value of
S. We can then ask the question: is Model 1 significantly better than
Model 2? Once again, our test of significance is based upon the F
distribution. Let us use the notation §; and S, to represent the weighted
sum of the squares for the two models, both with n — p degrees of freedom.
Regardless of whether or not the weights are based upon actual or relative
o's, theratio S, /S, is F distributed:
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=3 (33.8)
S
Our significance test for this case is simply:
S,
5 - F(a,v,v) (3.3.9)

1

where v is the number of degrees of freedom (i.e., » — p). Values of
F(a,v,V) are included in Table 3.3.3 for various values of vand for values
of a equal to 0.01 and 0.05.

To illustrate the use of Table 3.3.3, consider the 63 data points shown in
Figure 3.3.2. We have no information regarding the uncertainty associated
with these data points so the analysis is based upon unit weighting. In Ta-
ble 3.3.4 the values of S/An-p) are listed for 3 different models each with n-
p=060.

v F(0.05, v, V) F(0.01, v, V)

5 5.05 11.00
10 2.98 4.85
15 2.40 3.52
20 2.12 2.94
30 1.84 2.39
40 1.69 2.11
60 1.53 1.84
120 1.35 1.53

Table 3.3.3 Values of F(e, v, V)

Model Number Model S/ (n-p)
1 a, exp(—a,x)+a, 33567
2 a,x +a,x* +a, 86385
3 a]/x+az/x2+a3 1170356

Table 3.3.4 S/ n-p) values for 3 models for Figure 3.3.2 data
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Figure 3.3.2  Input Data for Models in Table 3.3.4

Since unit weighting was used, the absolute values of S / (n-p) are not
meaningful. Clearly Model 3 is much worse than either Model 1 or Model
2. We can however use Equation 3.3.9 to decide whether or not Model 1
is significantly better than Model 2. The value of S, /.S, is 2.57 and the
number of degrees of freedom (n-p) is 60. From Table 3.3.3 we see that
2.57 is far above the confidence limit of 1.84 for &= 1%, so we can con-
clude that Model 1 is significantly better than Model 2. Since the absolute
value of S / (n-p) is meaningless, we can't say that Model 1 is the "correct"
model for this data. All we can say is that it is significantly better than the
other 2 models considered.

3.4 Variance Reduction

Variance reduction (VR) is one of the most commonly used measures of
the value of a model. The most attractive feature of VR is that it can be
used for any model, linear or nonlinear, in which one or more independent
variables are used to describe the behavior of a dependent variable ¥. VR
is typically defined as the percentage of the variance in the dependent vari-
able that is explained by the model. Variance is defined as the standard
deviation squared, so the variance of the dependent variable is computed
as follows:
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% (Yt - Yavg)2
i=1

2 i

o (3.4.1)

n—1

where ¥; is the dependent variable for the i data point and Y, is the av-
erage value of all the data points. We can define a similar quantity that is
based upon the differences between the values of ¥; and the calculated val-
ues y; as determined using the model:

§(Yz - yi)2
i=1

ol=21____ (3.4.2)
n—1

Let us call this quantity the model variance. Variance reduction is based
upon the ratio of the model variance to the variance in the dependent vari-
able and is computed as follows:

0_2 Z(Yt _yi)2
VR =100* (1 - —";J =100%(1--=1 (3.4.3)
o

Z(Yt - Yavg)2
i=1

From this equation we see that if we have a perfect model (i.c., the calcu-
lated values of y; are exactly equal to the actual values of ¥;) then the value
of VR is exactly equal to 100. If the model is useless (i.e., has no predic-
tive power), then we would expect a value of VR approximately equal to
zero. Models can actually be negative, implying that the values predicted
by the model are worse than just using Y,,, as the predictor for all points.

As an example, consider the data in Table 2.3.1. Table 3.4.1 summarizes
the values of VR obtained for two different models and two different
weighting schemes:
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Model w; =1 w, =1 /O'i-
y=a1+a2x 80.29 -48.19
Y= aytaxtax’ 99.76 99.72

Table 3.4.1 Values of VR for data in Table 2.3.1

For the 3 parameter models the results in Table 3.4.1 show that both
weighting schemes explain more than 99% of the variance in the data.
These high values of VR are reasonable because the data was based upon a
parabolic model with some random noise and regardless of the weighting
scheme, both models reasonably represent the data. However, the results
for the 2 parameter models are vastly different. The model obtained using
unit weighting explains more than 80% of the variance but the model ob-
tained using statistical weighting is terrible. To understand why this hap-
pened, note that the value of VR is maximized when the model variance is
minimized. Examining Equation 3.4.2 it can be seen that if unit weighting
(i.e., w; = 1) is used, the model variance is just S / (n-1). Thus the model
obtained using unit weighting is also the model that minimizes model vari-
ance. Does this imply that unit weighting is preferable to statistical
weighting? Not at all! It only implies that VR is a useful measure of
model performance only when all data points are equally (or approxi-
mately equaled) weighted.

It is useful to be able to apply a test of significance to values of VR. The
usual procedure for testing the significance of a model is to test the null
hypothesis: if the model has no predictive value, what is the value of VR
that we would exceed 100 % of the time? The model variance is
ydistributed with n-p degrees of freedom and the variance in the data is
y’distributed with n-1 degrees of freedom, therefore the following ratio is
F distributed:

if(y,. ~Y,,.)* /(n-1)
F =1
2. ¥~ )" /(n—p)
i=1

(3.4.4)

Solving for the ratio of the variances:
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Z(Yt _yavg)2

=L =""P p(g,n-1,n-p) (3.4.5)
Z(I/l _.Vi)z 8

i=1

For models with some value, this ratio will be greater than one. If the ratio
is less than one, then the model exhibits negative VR and can be consid-
ered worthless. We can use this equation to test the significance of the 2
parameter model based upon unit weighting. Let us choose a value of
a=0.01. The value of F(0.01, 9, 8) = 5.91 can be determined from ap-
propriate tables [AB64,FR92]. Thus we would expect that the variance ra-
tio would exceed 8*5.91 / 9 = 5.25 one percent of the time if the null hy-
pothesis is true (i.e., the model has no predictive power). The value of VR
corresponding to this ratio is 100 * (1 — 1/5.25) = 80.9. Surprisingly, the
value of VR obtained for the 2 parameter model with unit weighting does
not pass this significance test although it is very close (i.e., 80.29). When
the number of degrees of freedom for the model is small, it is possible to
get large values of VR even for useless models. However, as the number
of data points increases, the upper limit for the null hypothesis decreases
dramatically. For example, if the value of VR = 80.29 was based upon 30
points, then F(0.01, 29, 28) = 2.40 which corresponds to a ratio of 2.32
(from Equation 3.4.5) which corresponds to a PR =100 * (1-1/2.32) = 56.8.
A value of 80.29 would therefore be highly significant.

3.5 Linear Correlation

Linear correlation is a concept used to measure the linear (straight-line) re-
lationship between variables. The correlation coefficient p can vary be-
tween -1 and 1. If p =0 the variables are unrelated (in the linear sense). If
p = 1 the variables fall exactly upon a straight line with a positive slope
and if p = -1 they fall upon a straight line with a negative slope. Typical
data for several different values of p are seen in Section 2.5 (Figure 2.5.1).
If we have two variables u# and v, the correlation coefficient is defined as
follows:

p=—" (3.5.1)
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The terms o, and o; are standard deviations of the variables # and v and
O, 1s called the covariance between u and v. The covariance is defined as
follows:

co oo

O = [ JCu= )0~ 1, ) (u,v)dudy (3:5.2)

—o0 —00

where ®(u,v) is the bivariate distribution function for the variables # and

v, and g, and g, are the mean values of # and v. When the covariance is
close to zero, then a straight line relationship between u and v is not a rea-
sonable assumption. If we have paired data {u;, v;; i =1 .. n}, we can
compute r (an unbiased estimate of p) as follows:

i(ui - uavg )(vi - vavg)
r=—"! : (3.5.3)

i=n X i=n )
Z (ui — Uy Z (vi - vavg)
i=1 i=1

To facilitate the calculation we use the following equalities:

1=n i=n

Z (ui - uavg )(vi - vavg) = Z u,'vi - nuavgvavg (354)
i=1 i=1

i=n 5 i=n 5

Z(u,- —Uu,) = Z u; —nu,, (3.5.5)
i=1 i=1

i=n ) i=n )

Z (vi - vavg) = Z V; — nvavg (356)
i=1 i=1

As an application of the use of Equation 3.5.3, consider the data in Table
3.5.1. This data includes the heights (in meters) and weights (in kilo-
grams) of 7 individuals on a basketball team.
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i u = height u*u v = weight vy u*y
1 1.87 3.4969 83 6889 155.21
2 1.92 3.6864 97 9409 186.24
3 2.04 4.1616 86 7396 175.44
4 2.10 4.4100 105 11025 220.50
5 1.98 3.9204 101 10201 199.98
6 2.02 4.0804 92 8464 185.84
7 1.77 3.1329 79 6241 139.83
Sum |[13.70 26.8886 643 59625 1263.04
Avg 1.9571 3.8412 91.857 8517.9 180.434

Table 3.5.1 Heights and Weights for 7 Basketball Players.

Using Equation 3.5.3 thru 3.5.6 the correlation coefficient is:

1263.04 — 7 * 1.9571 * 91.857

= 0.705

r =
\/26.8886 — 719571 \/59625 —7+91.857"

It can be shown that #* is the same as variance reduction VR (expressed as
a fraction) when the equation for y is a straight line using unit weighting
[FR92]. In other words, #* is the fraction of the variance in the data ex-
plained by the unit weighted least squares straight line. Applying least
squares to the data in Table 3.5.1 we get the following linear relationship
between height and weight:

height =1.20422 + 0.0081966 * weight

Using this equation, the VR computed using Equation 3.4.3 is 49.7 which
expressed as a fraction is 0.497 = 0.705 * 0.705. Thus we see that
r = 0.705 implies that approximately 50% of the variance in the data is
accounted for by this line.

The correlation coefficient is a measure of the linear relationship between
two variables. It does not answer the question: are the two variables re-
lated? Consider, for example, the data in Table 3.5.2.
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i y y¥y X xX*x x*y
1 19 384 -3 9 -57
2 9 81 -2 4 -18
3 3 9 -1 1 -3
4 1 1 0 0 0
5 3 9 1 1 3
6 9 81 2 4 18
7 19 384 3 9 57
Sum 63 949 0 28 0
Avg 9 135.57 0 4 0

Table 3.5.2 y=2x*+1 (a perfect parabolic fit)

Note the perfect parabolic relationship between the dependent variable y
and the independent variable x. Using y as the u variable and x as the v
variable, and substituting into Equations 3.5.3 through 3.5.6, we compute r
as follows:

0-7*9*0

=0.0

J =
V949 7% 9% 28— 7% 02

Although the data exhibits a perfect relationship between x and y, we com-
pute a correlation coefficient of zero. If however, we use the relationship y
= a; + ayx+asx* and apply least squares to the data in Table 3.5.1, we ob-
tain the values a; =1, @, = 0 and a3 = 2 with VR = 100. We can use corre-
lation to compare the actual values of y with the computed values. Since
the relationship is a perfect fit, ¥; = y; for all points. The data is summa-
rized in Table 3.5.3:

i Y (actual) Y*y y (computed) yEy Y*y

1 19 384 19 384 384

2 9 81 9 81 81

3 3 9 3 9 9

4 1 1 1 1 1

5 3 9 3 9 9

6 9 81 9 81 81

7 19 384 19 384 384
Sum 63 949 63 949 949
Avg 9 135.57 9 135.57 135.57

Table 3.5.3 Comparing actual and computed values of y
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The computed value of r is one:

949-7%9%9

=1.0

r =
V949 — 7+ 92 949 7% 92

Thus for relationships that are other than straight lines, correlation is

meaningful only when comparing actual and computed values of the vari-
able.

We next turn our attention to the significance of the computed value of the
correlation coefficient. We first define a new variable z based upon r:

1 1+r
7z =—1In(
2 1-r

) (3.5.7)

Remembering that pis the true value of the correlation coefficient, it can
be shown that z is approximately normally distributed with the following
properties [WI62, FR92]:

1 1+p
=—In(—£ 3.5.8
U, 2n(l_p) (3.5.8)
o2 =1 (3.5.9)
z_n_3 D.

As an example, we can apply these equations to the data included in Table
3.5.1. The null hypothesis for this example is that the heights and weights
of the basketball players are uncorrelated (i.e., pis zero). If this hypothe-
sis is true, the mean of the distribution (from 3.5.8) is zero and the variance
(from 3.5.9) is 1/4. The value of r is 0.705, so from Equation 3.5.7 the
value of z is 0.5 * /n(1.705/0.295) = 0.877. The following parameter
should be ¢ distributed with # - 3 degrees of freedom:

_z(r)—z(p) 0.877-0 0877

o, J1/(7-3) 05

t

=175
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At a 5% level of confidence the value of # would have to exceed 2.132 to
be deemed significant, so there is a probability greater than 5% that the
computed value of = 0.705 could have happened by chance. If the com-
putation had been based upon 4 times as many data points (i.e., n =28)
then the # parameter would be 0.877/0.2 = 4.385 which is highly significant
even at a confidence level of 0.5%.

In summary, when one is interested in building a model to compute y as a
function of an independent variable x, the linear correlation coefficient is
only useful when the proposed model is a straight line. The linear correla-
tion coefficient is a measure of how close the relationship is to a straight
line and the sign indicates the slope of the line. However, if the model is
something other than a straight line, linear correlation is not a useful meas-
ure of the power of the model. When a model other than a straight line is
proposed, the linear correlation coefficient can be used to compare actual
and computed values of the dependent variable y.

3.6 Outliers

The term outlier is used to denote a data point that differs considerably
from the bulk of the data. We see an example of an outlier in the value of
¥;5 in Table 2.3.3. This is an example of an outlier in the dependent vari-
able. Of course, there can also be outliers in the independent variable or
variables. An outlier may be due to an error in data collection or it might
represent a true event. If an outlier is identified and if it is determined to
be erroneous, then the situation can usually be rectified by either correct-
ing the error or rejecting the data point. However, when an outlier repre-
sents a true event, we might prefer not to reject the data point. Unfortu-
nately, if we are using least squares analysis of the data, the outlier might
cause results that are highly skewed in the direction that accommodates the
outlier.
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Figure 3.6.1 Data with a Single Outlier

To illustrate this point, consider the data shown in Figure 3.6.1 and tabu-
lated in Table 3.6.1. Notice in the figure that the signs of the residuals
(i.e., ¥; —yy) for all points other than the outlier have the same sign.

X Y (actual) y (computed) y (exclude x=4)
1 10.0 11.41 9.99

2 11.8 13.41 11.99

3 14.2 15.40 13.99

4 25.9 17.40 excluded

5 18.1 19.40 17.98

6 19.8 21.39 19.98

7 22.0 23.39 21.97

Table 3.6.1 Figure 3.6.1 data.

Point 4 is an outlier.

Fitting this data with a straight line and weighting all points equally, the

resulting line is:

Y =9.4143 + 1.9964x

and the VR (variance reduction) is 56.9%. Eliminating point 4 and repeat-
ing the analysis, the resulting line is:

Yy =7.9976 + 1.9964x

and the VR is 99.9%!!
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As an example of an application that includes a significant number of out-
liers, consider the problem of modeling one day fractional changes in the
prices of shares appearing on the major stock exchanges. If our database
includes several thousands of companies listed on the exchanges, there are
usually several everyday that exhibit extremely large changes (either posi-
tive or negative) based upon some sort of news or announcement. For ex-
ample, when the Enron scandal first made the news, the price of the Enron
shares plunged. Positive news, (for example FDA approval for a new
drug) can also cause huge increases in the price of the shares of the com-
pany mentioned in the announcement. To reduce the effect of these outly-
ing events, one strategy is to clip the data. Clipping implies setting upper
and lower limits on the changes included in the data to be modeled. For
example, for stock market modeling, a typical strategy is to clip all points
that exhibit a fractional increase greater than 0.25 to 0.25 and all points
that exhibit a fractional decrease greater than -0.25 to -0.25. As an exam-
ple, if Company X is granted a patent and the stock rises 37% when the
news is announced, the fractional change used in the analysis for that date
would be reduced to 0.25 instead of the change of 0.37 actually observed.
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Figure 3.6.2 Clustered Data

Figure 3.6.2 illustrates a different problem associated with outliers. In this
figure the data seems to include 3 clusters of data each falling upon a dif-
ferent straight line. Some possible explanations come to mind when exam-
ining such data:
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1) The differences might have been due to the use of several dif-
ferent measuring instruments exhibiting differing biases.

2) The measurements were taken at different times or locations
and were affected by changes in a variable not recorded in the
data set. For example, the measurements might be tempera-
ture sensitive and the explanation for the differences might be
simply changes in temperature.

3) The clusters might be real and due to some other overlooked
variable. Sometimes strange results such as seen in Figure
3.6.2 lead to interesting discoveries. However, the usual ex-
planation is that there is some problem with the experiment.

If the first explanation explains the clustering, then the experimenter must
pay more attention to the calibration of the instruments and perhaps repeat
the experiment or correct the data. If the second explanation explains the
clustering, then one must determine the cause of the differences and in-
clude the missing variable in the data acquisition and modeling phases of
the analysis. If the clusters are real and are due to excluded regions in one
or more of the variables, one approach might be to remap the variable val-
ues. Pyle discusses different strategies for remapping variables [PY99].

3.7 Using the Model for Extrapolation

Often the purpose of an experiment is to predict the value of the dependent
variable at a value of the independent variable that cannot be obtained ex-
perimentally. Extrapolation can be dangerous if the model is not based
upon a true understanding of the underlying theoretical considerations.
For some problems where one is only interested in finding a model that
represents the data and there is no attempt to build a model based upon
theory, extrapolation can be disastrous.

As an example of a prediction based upon experimental data, consider one
of the earliest sets of experimental data that was analyzed by the method of
least squares: the motion of the planets. Johannes Kepler (1571-1630) had
access to voluminous amounts of data regarding the motion of the planet
Mars that had been recorded by astronomers over many centuries. Kepler
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used this data to postulate that the motion of the planets were elliptical and
not circular as was believed until then. During the early years of the 19"
century, both Gauss and Legendre worked independently to develop the
method of least squares. The motivation for this work was to use the
method to compute the parameters that describe the planetary ellipses. Us-
ing the ellipses, we should theoretically be able to predict planetary motion
into the future. However, better measurements were made and slight er-
rors were noted. As the time between the calculation of the ellipse pa-
rameters and the actual predicted location of a planet increased, the ex-
trapolation error became greater. As the tools of astronomy became more
sophisticated, the reason for the extrapolation error became clear: the mo-
tion of the planets was not only affected by the gravitational pull of the
sun, but also by the gravitational pull of nearby planets. Kepler's elliptical
model of planetary motion was a brilliant leap forward in the science of as-
tronomy but the model neglects the very small effects of other planets. As
a result, using only the uncorrected elliptic model, the extrapolation into
the future led to greater and greater errors.

When there is no theoretical basis for choosing a model, typically one
looks at the data and chooses a model that seems reasonable. To illustrate
how disastrous this can be when using such a model for extrapolation, the
following artificial data set was constructed. Two hundred values of x
were generated starting from 0.01 and increasing to 2.00 in increments of
0.01. The values of ¥ were generated using the following model:

Y =20x° - 35x7 +10x (3.7.1)

The curve generated by this equation is shown in Figure 3.7.1. Looking at
only the portion of the curve from 0.01 to 0.5 (i.e., the first 50 points in the
data set), one might reasonably assume that the data is represented by a pa-
rabola. Using the method of least squares with all 50 points weighted
equally, the following parabola is obtained:

y = f(x)=-19.700x" + 6.848x + 0.1405 (3.7.2)

The VR (variance reduction) is a very respectable 99.37% and the RMS
error is 0.047. However, when this equation is used to extrapolate to val-
ues of x outside the modeling range, we see a very different picture. Re-
sults in Table 3.7.1 illustrate this point. In this table the value of oy were
calculated using Equation 2.6.11. Note in the ¥ - y column the increasing
error in the results. The first point in this table is at x=0.6 and although
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this point is only slightly outside the modeling range, the error is 0.56
which is about 12 times the RMS error noted for the modeling data. For
x = 2 we see that the computed value of y is -64.964 and this bears no re-
semblance to the actual value of 40. Note that the estimated standard de-
viation for this point is only 1.12 while the actual error is almost 105! In
other words the actual error is approximately 100 times the estimated stan-
dard deviation as computed using Equation 2.6.11.

G0

40
Data Points %
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.YU N T
( 045 15 y
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\
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€0

-80

=

X

Figure 3.7.1 Cubic Data Fit with a Parabola using Points up to x = 0.5

This example illustrates what can happen when a model that seems to ade-
quately estimate ¥ for values of x within the modeling range is used to ex-
trapolate to values of x outside the range. For this example, as x increases
the computed y values become increasingly different then the actual Y val-
ues. The conclusion that should be taken from this example is that ex-
trapolation should be avoided whenever one is not certain that the model is
firmly based upon theory. Furthermore, the further the value of the inde-
pendent variable (or variables) is outside the modeling range, the greater is
the potential error.
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X Y Yy oy Yoy
0.6 -2.28 -2.843 0.040 0.56
0.7 -3.29 -4.719 0.069 1.43
0.8 -4.16 -6.989 0.106 2.83
0.9 -4.77 -9.653 0.149 4.88
1.0 -5.00 -12.712 0.201 7.71
1.1 -4.73 -16.164 0.259 11.43
1.2 -3.84 -20.010 0.325 16.17
1.3 -2.21 -24.250 0.399 22.04
1.4 0.28 -28.885 0.480 29.16
1.5 3.75 -33.913 0.568 37.66
1.6 8.32 -39.335 0.663 47 .65
1.7 14.11 -45.151 0.766 59.26
1.8 21.24 -51.361 0.877 72.60
1.9 29.83 -57.966 0.995 87.79
2.0 40.00 -64.964 1.120 104.96

Table 3.7.1 Extrapolation results using Eqs. 3.7.1 and 3.7.2

3.8 Out-of-Sample Testing

For many sets of data there are a large number of data points and thus is it
feasible to exclude some of the data from the analysis for subsequent out-
of-sample testing. Once a model has been developed, the excluded data is
used to determine if the model holds up using the unseen data.

The use of out-of-sample testing is particularly advantageous when the
true structure of the model (if there is a true structure) is unknown. For
problems in which a number of candidate predictors have been proposed,
one might try different combinations in a search for a model that "fits" the
data. As an example, consider the problem of attempting to develop a
model that predicts the one-day percentage change in the S & P (Standard
and Poors) common stock index. The candidate predictors proposed might
include various moving averages, volume based parameters, interest rate
parameters, etc. One can easily propose tens if not hundreds of candidate
predictors for this problem.
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The methodology is to break up the data into two (or sometimes three)
sets. If the number of candidate predictors is small then two data sets are
sufficient. However, if a large number of candidate predictors are being
considered, then a third data set is often used. The data sets are typically
called the learning and test data sets and if a third set is used it is called
the evaluation set. We use the notation nlrn, ntst, and nevl for the number
of data records in each of the data sets. Using the nlrn learning points, a
model is determined using an appropriate modeling technique. The ntst
test data points are then used with the model and the variance reduction as-
sociated with this data set is computed.

The problem with this technique is that if the number of candidate predic-
tors is large, the number of potential models can be huge. As an example,
let us again consider the problem of modeling the one-day change in the S
& P index and let us assume that 100 candidate predictors are being con-
sidered. Let us consider every combination of the candidate predictors up
to three dimensions. For every combination we could of course explore
many different potential models but to simplify matters let us consider
only one model per combination. The total number of models that would
have to be considered is all 1 dimensional models (i.e., 100 models), all
two dimensional models (i.e., 100¥99/2 = 4950 models) and all three di-
mensional models (i.e., 100*99*98/6 = 161700 models) which altogether
is 166750 models! Hopefully, some of the models will show significant
VR (variance reduction) using the mlrn learning points and also exhibit
significant VR using the ntst test points. If more than one model is
deemed acceptable, one might then consider how to combine models into a
single super model.

The problem associated with this procedure is what Aronson calls the data
mining bias [AR04]. In the S & P index analysis, if over 166 thousand
models are considered, isn't there a possibility that a totally irrelevant
model might be deemed acceptable purely by chance? To protect against
such a possibility, one can use the nevl evaluation points as a final test of
the power of the model. Failure to pass this final test is fairly conclusive:
the objective of the modeling process has not succeeded.

One might ask a simple question: Why limit the search for a model to a
fixed number of dimensions? If there are ncp candidate predictors, why
not try to build a model with ncp dimensions? This approach is sometimes
used by practitioners of neural networks. A weight is associated with each
input and the theory states that for irrelevant candidate predictors the com-
puted weights will be close to zero. The problem with this approach is that
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the density of the data decreases exponentially with the number of dimen-
sions [WOO00]. It is thus a far better strategy to limit the number of dimen-
sions to a value for which the data density is reasonable. Then, if several
sub-spaces are found to have predictive power, use a multi-stage method
for combining the spaces.

The concept of "data density" is not obvious and requires additional con-
sideration. In Figure 3.8.1 we see a desirable distribution of learning data
points for a problem in which there are two independent variables x; and
x;. The points are distributed evenly between the four quadrants of the
data space and cover the range of both x; and x,. A model built using this
data set should perform reasonably well regardless of where a test point
might fall. In Figure 3.8.2 we see a distribution in which most of the
learning points are located in the upper right quadrant. Note that the num-
ber of learning points and the ranges for x; and x, are the same as in Figure
3.8.1. Yet test points falling in any of the quadrants other than the upper
right quadrant have many fewer nearby neighbors and we would expect
that the predicted values for these test points would be less accurate than
the values for points in the upper right quadrant. Clearly the data density in
the upper right quadrant is much greater than in any of the other quadrants.
Now let us distribute the same number of learning points within a three-
dimensional space. Instead of four quadrants we have 8 distinct regions:
the same four quadrants for x; and x;, but the data in each of these regions
would have to be distributed in two sub-regions: x3 < xzavg and x3 >
xsavg. In other words, the average data density in each region is halved
when the number of dimensions in increased by one!

For problems in which the number of candidate predictors is limited, out-
of-sample testing might still be advantageous if many different models are
considered. For example, consider a problem with four candidate predic-
tors and 1000 data points. The purpose of the analysis is to develop a
model to predict performance based upon the candidate predictors. As-
sume that 30 different model are proposed. Do we use all 1000 points to
develop 30 different models? Then how do we choose which model to
adopt? We could, of course, choose the model exhibiting the greatest vari-
ance reduction but is this the best that we can do? For such problems, out-
of-sample testing provides a reasonable alternative. For example, we
might leave 300 to 500 data points out of the initial modeling phase and
then use each model to test how well the model behaves using the test data
set. We might then choose the model exhibiting the best out-of-sample
variance reduction. Once the model has been chosen, then all 1000 points
could be used to recompute the parameters of the chosen model.
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Figure 3.8.1 Desirable Distribution Figure 3.8.2 Skewed Distribution

In Section 3.7 the subject of extrapolation was considered. For out-of-
sample testing one should avoid extrapolation. Any points in the test data
set that fall outside the range of data points in the learning data set should
be rejected and not considered in the analysis. When considering many
different candidate predictors, some points will be included in some sub-
spaces but not in others. There is no need to attempt to find test data sets
in which all points fall within the ranges of all the learning point candidate
predictors.

It is instructive to consider what we might expect from a model in which
there is absolutely no predictive power. The first thought that comes to
mind is that the VR for the test data set should be zero. It turns out that
this is overly optimistic! From equation 3.4.3 the equation for VR for the
test data set is:

i=ntst

Z(Yi_y,')z
=100*|1—--—=! (3.8.1)

tst i=ntst

Z (Yt - yavg)2
i=1

VR

In this equation, the ¥;'s are the actual values and the y;'s are the computed
values of y for the test data points. The simplest possible model that we
can propose using the learning data set is just the average of the learning
values of y. Let us denote this average value as yj, and the average value
of the test data as y,. In other words, the y;'s in Equation 3.8.1 would
simply be yy,,, and substituting this into 3.8.1 we get the following:
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i=ntst

Z(Yl _ylrn)2
=100*|1--=L

st i=ntst

Z (Y, = ¥y )?
i=1

VR

With a few simple algebraic steps we get the following expression for VR
for the test data:

i=ntst

Z (Yt —Vist ¥ Vst _ylrn)2

VR, =100%|1——=1

st i=nftst

z ¥, - .Vtst)2

i=1

(3.8.2)

ntst * (ytst -y )?
i = ntst

2,

i=1

Irn

=-100*

For models other than just y;.,,, we will obtain values of VR distributed
about this slightly negative value. We also see in this equation why it is
useful to choose the learning and test data sets so that they will be compa-
rable. If there is a significant difference in the average values of ¥ the VR
of the test data might be significantly less than the value obtained for the
learning data even if the model is a reasonable representation of data.

To illustrate the points raised in this section, the following artificial data
set was generated using the following equation:

V=X +2X, —05(x; ¥ X, + X{ — X5) (3.8.3)

Sixteen combinations of x; and x, were chosen as shown in Table 3.8.1
with values of y computed using the above equation. The equation used to
fit the data was a plane:

y=ax + a,X, + as
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All points were equally weighted. Three separate cases were considered.
The data was first analyzed using all 16 points as the learning points. The
least squares plane obtained using this data was:

y =-275x, +3.25x, + 3.125 (Case 1)

For the second case, the first 8 points were used as the learning points and
points 9 thru 16 as the test points. The least squares plane obtained for this
case was:

y =-2.25x, +2.25x, +3.375 (Case 2)

The third case used points 1, 3, 6, 8,9, 11, 14 and 16 as the learning points
and the remaining eight points as the test points. The least squares plane
obtained for this case was:

Y =-275x; +3.25x, + 3.000 (Case 3)

The results for all three cases are summarized in Table 3.8.2. Note that for
all three experiments the learning set VR is greater than 95%. Note in
Case 2 the large deterioration in VR of the test data set. This deterioration
is due to the large difference in the average values of y for the two data
sets. In Case 3, the choice of learning set data points resulted in much
closer average values of y and this resulted in VR for the test data set ap-
proximately equal to the learning set VR.
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Point X1 X Y
1 1 1 2.5
2 2 1 1.5
3 3 1 -0.5
4 4 1 -3.5
5 1 2 5.5
6 2 2 4.0
7 3 2 1.5
8 4 2 -2.0
9 1 3 9.5
10 2 3 7.5
11 3 3 4.5
12 4 3 0.5
13 1 4 14.5
14 2 4 12.0
15 3 4 8.5
16 4 4 4.0

Table 3.8.1 Values of Y computed using Equation 3.8.3

Case Learning Test VR, VR Virn Vist
Points Points
1 All 16 None 96.22 N.A. 4.375 N.A.
2 1--8 9--16 95.86 63.55 | 1.125 | 7.625
3 1,3,6,8,9,11,14,16 | Others | 95.41 | 96.65 | 4.250 | 4.500

Table 3.8.2 Results for 3 cases. N.A. is ""not applicable"

3.9 Analyzing the Residuals

In Section 3.2 the subject was goodness-of-fit testing based upon estimates
of the absolute uncertainties associated with the data. The test involved an
analysis of § / (n-p) (the weighted sum of the squares divided by the num-
ber of degrees of freedom). In Section 3.3 techniques for selecting the best
of several proposed models was discussed. Estimates of absolute uncer-
tainties associated with the data were not necessary in choosing the best of
several competing models. In this section our attention is turned to the
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problem of evaluating a single model in which we do not have knowledge
regarding the absolute uncertainties associated with the data.

The runs test is applicable to problems in which the independent variable x
is a scalar variable. The basic assumption that is essential for the follow-
ing analysis is that the residuals are randomly distributed about the result-
ing least squares curve. After all, if the model is a decent descriptor of the
data, we would expect such a random distribution of residuals. This point
is illustrated in Figure 3.9.1. The residuals for the 2" and 8" points are
shown for the straight line fit. The residual R; is defined as ¥; - y; where y;
is the calculated value of ¥;. Note that R, is positive and Ry is negative.

+* +*
Straight Line fit Parabolic fit
b +*
Y Ry *% ) 4
. o R
*e
X X

Figure 3.9.1: Fitting the same data with two different models.

We see in this figure that the residuals seem to be randomly distributed
about the parabola but the same points are not randomly distributed about
the straight line. This is a qualitative observation but what is needed is a
quantitative measure of "randomness". The well-known runs test is appli-
cable to this task [SI88, DA90, FR92].

The runs test is based upon analysis of binary data. When applying this
test to the residuals of a least-squares fit, the sign of the residual is a binary
indicator (i.e., either positive or negative). In Table 3.9.1 the signs of the
residuals are listed for the 13 points for both models. A run is defined as a
series of points in which the sign does not change. Examining both Figure
3.9.1 and Table 3.9.1 we see that the first 2 points of the straight line fit are
a run of positive points followed by a run of a single negative point, a sin-
gle positive point, 6 negative points and 3 positive points for a total of 5
runs. Similarly, we note 10 runs for the parabolic fit. Just by looking at
Figure 3.9.1 we see that the straight line fit does not adequately represent
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the data whereas the parabolic fit seems to pass thru the data with ran-
domly distributed residuals. The runs test considers only the number of
runs to test the randomness of the residuals.

Pointi | R; (line) | Runs (line) | R; (parabola) | Runs (parabola)
1 + 1 - 1
2 + 1 + 2
3 - 2 - 3
4 + 3 + 4
5 - 4 - 5
6 - 4 - 5
7 - 4 + 6
8 - 4 - 7
9 - 4 + 8

10 - 4 + 8
11 + 5 + 8
12 + 5 - 9
13 + 5 + 10

Table 3.9.1 Residuals and runs for data seen in Figure 3.9.1

The test is based upon calculation of the probability of observing a number
of runs less than or equal to a given limit. For example, what is the prob-
ability of observing 5 or less runs for the straight line model and 10 or less
runs for the parabolic model? If rums is an even number than the number
of both positive and negative runs is equal to k& which must be exactly runs
/2. If runs is an odd number than one of the groups will have k runs and
the other k-1 runs where runs = 2k-1. The assumption of randomness im-
plies that all possible orderings of the residuals are equally probable. If
there are /V data points and »; of the first type and n, of the second type,

the total number of combinations of orderings is C,ll\ll (where N = n;tn;).

(Note that C,],\lf is exactly equal to C,Z,\; ). For example, if n;=3 (number of

. . . 5
+'s) and n, = 2 (number of —'s), the number of combinations is C3 =

5*%4*3/(3*2*1) = 10. This is exactly equal to C; = 5%4/(2*1). The ten
possible orderings are shown in Table 3.9.2. Note that there are two com-
binations with 2 runs, three with 3 runs, four with 4 runs and one with 5
runs. Let us first consider the case of an even number of runs (e.g., runs =
4 and therefore k = 2). There are two possible partitions of the 3 +'s: ++ |+
and + | ++. There is only one way to partition the 2 —'s: - | -. In general we
want to place k-1 bars (i.e., | symbols) in the n; - 1 gaps between the +'s.
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The number of partitions is therefore C,':]l__ll For example, if n;=4 and

3 .-
k=3, C5 =3 and the three partitions are: +[++[+. ++++ and +[+|++. We are

now in a position to state the probability of achieving runs for N data
points when NN is an even or odd number:

2Cn1 - lan -1
Prob(runs) = k-1 . k=1 yunseven, k=runs /2 (3.9.1)
C

ny

Cnl—lCn2—1+Cn2—lCn1—l
Prob(runs)= k-1 k-2 k-1 k-2 (3.9.2)
cV

n

runs odd, 2k-1=runs

The 2 in the numerator of Equation 3.9.1 is required because the runs can
start with either a positive or negative run. From Table 3.9.2 we see that
the probability of observing exactly 4 runs is 0.4 (i.e., 4 out of 10 of the
combinations have 4 runs). Checking this with Equation 3.9.1:

2 ~1
2C1C1 _2*2*1

Prob(4) = = 0.4 (3.9.3)
C5 10
3
Combination Order Runs
1 O 2
2 -ttt 2
3 +- -+t 3
4 ++-—+ 3
5 -+++- 3
6 +-++- 4
7 T 4
8 -++-+ 4
9 -+-++ 4
10 +o+-+ 5

Table 3.9.2  All possible orderings for »,=3 and n,=2.
n; is number of +’s, n, is number of -’s
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Equations 3.9.1 and 3.9.2 are used and tabulations for combinations of n;
and n, are included in many books. For example, Freund [FR92] includes
a table that contains 2.5% lower and upper bounds for all combinations up
to n; and n, = 15. Siegel and Castellan [SI88] include a table that extends
the range up to n; and n, = 20. If n; and n, are greater than or equal to 10,
the normal approximation can be used. The mean and variance of the dis-
tribution is:

2n,n
=12 41 (3.9.4)
2 _ 2nn, (2”1"2 -n - ”2)

(”1 +n, )2(”1 +n, _1)

(3.9.5)

When analyzing residuals, if they are randomly distributed it is a reason-
able assumption that the values of n; and n, are approximately equal to
N/2 so the equations reduce to the following:

ﬂ=%+1 (3.9.6)

2 _ M (3.9.7)
2(N -1)

For example, assume that N = 40 and we observe 13 runs. What is the
probability of observing this number of runs if the residuals are randomly
distributed? The mean value g of the distribution is 21 and o is
(20%19/39)"? = 3.12. The probability of observing 13 runs is the area un-
der the normal curve from x = 12.5 to x = 13.5. We can convert these val-
ues to the standard normal curve by subtracting u# and dividing by o. The
range is therefore:

12.5-21 13.5-21
——— =274 u<—=-2.404
3.12 3.12

From a table of the standard normal distribution 2.724 corresponds to a
probability of 0.49675 and 2.404 corresponds to a probability of 0.4919 so
the probability of falling within this range is 0.49675 — 0.4919 = 0.00485.
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We can also compute the probability of observing 13 or less runs. The
probability is 0.5 — 0.4919 = 0.0081 which is less than 1%. For values of
N < 20, the normal approximation is not recommended. Values of the
maximum number of runs for rejecting the randomness hypotheses com-
puted using Equations 3.9.1 and 3.9.2 are included in Table 3.9.3. For
even values of IV, n; and n, = N/2. For odd values of NV, n; =n, £ 1. The
runs limits in the table are based upon a confidence limit of 2.5%. In other
words, if the residuals are randomly distributed, the probability of observ-
ing the values listed in the table or less is less than or equal 2.5% (i.e.,
Prob(runs < runs limit) < 0.025).

N runs limit N runs limit
9 2 17 5

10 2 18 5

11 3 19 5

12 3 20 6

13 3 21 6

14 3 22 7

15 4 23 7

16 4 24 7

Table 3.9.3 2.5% limit for runs. (Reject randomness hypothesis if
runs < runs_limit)

As an example of the use of the runs test, consider the data in Figure
3.9.2. The data was tested using the REGRESS program with four differ-
ent models. No information was available regarding the uncertainties as-
sociated with the values of ¥ so unit weighting was used. For this reason
the resulting values of .S / (n-p) are only meaningful on a relative basis.
The resulting values for S / (n-p) and runs are included in Table 3.9.4. We
see from the results in the table that Model 1 is best on the basis of both § /
(n-p) and runs but looking only at § / (n-p), we cannot conclude whether
or not this model is an adequate representation of the data. However, the
value of runs confirms that the residuals are randomly distributed about
the least squares curve and therefore the model passes this goodness-of-fit
test. Notice the value of runs for Model 1 is very close to the expected av-
erage of 51 as computed using Equation 3.9.6. The runs values for the
other models are well below the 2.5% confidence limit of 40. The
REGRESS output for Models 1 and 2 is shown in Figure 3.9.3.
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Figure 3.9.2: Data analyzed with 4 different models (Table 3.9.4)

Model Equation S/An-p) Runs
1 AI*EXP(-((X - A3) / A2)®) + A4 23.27 50
2 AT*EXP(-((X — A3) / A2)) 86.84 24
3 Al + A2%X + A3*X’ 362.83 10
4 Al + A2*X + A3*X’+ A4*X° 366.41 10

Table 3.9.4 Results for 4 different models for data in Fig 3.9.2
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Figure 3.9.3 REGRESS output for Figure 3.9.2 data, Models 1 & 2
PARAMETERS USED IN REGRESS ANALYSIS: Wed Nov 17
14:42:31 2004

INPUT PARMS FILE: fig392.par

INPUT DATA FILE: fig392.dat

REGRESS VERSION: 4.10, Nov 15, 2004

N - Number of recs used to build model : 100
NCOL - Number of data columns : 4
NY - Number of dependent variables : 1
YCOL1l - Column for dep var Y : 2
SYTYPE1l - Sigma type for Y : 1
TYPE 1: SIGMA Y = 1
M - Number of independent wvariables : 1
Column for X1 : 1
SXTYPEl - Sigma type for X1 : 0
TYPE O: SIGMA X1 = 0
Analysis for Model 1
Function Y: ALl*EXP (- ((X-A3)/A2)"2)+A4
K A0 (K) AMIN (K) AMAX (K) A (K) SIGA (K)
1 50.00000 Not Spec Not Spec 99.15170 1.36402
2 10.00000 Not Spec Not Spec 19.97158 0.38467
3 40.00000 Not Spec Not Spec 50.19843 0.19424
4 0.00000 Not Spec Not Spec 20.22799 0.95556
Variance Reduction: 98.22

s/ (N - P) : 23.27434

RMS (Y - Ycalc) : 4.72688

Runs Test: Number runs = 50 Must be > 40 to pass test.
This limit is based upon 2.5% confidence level.
Expected avg number of runs if residuals random: 51.0.
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Analysis for Model 2

Function Y: Al*EXP(-((X-A3)/A2)"2)

K A0 (K) AMIN (K)

(=]

50.00000 Not Spec
10.00000 Not Spec
40.00000 Not Spec

w N

Variance Reduction:
S/ (N - P) :
RMS (Y - Ycalc) :
Runs Test: Number runs =

AMAX (K) A (K)

Not Spec 111.39400
Not Spec 27.18914
Not Spec 50.17885

93.27
86.83555
9.17772

SIGA (K)

1.96153
0.55796
0.39033

24 Must be > 40 to pass test.
This limit is based upon 2.5% confidence level.
Expected avg number of runs if residuals random: 51.0.

Figure 3.9.3 (continued) REGRESS output: Model 2
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4.1 Introduction

For many experimental data sets, we do not have a well-defined mathe-
matical model nor are we sure which independent variables should be in-
cluded in the model. Examples of such problems can be found in econo-
metrics, medicine, agriculture and many other areas of science and
engineering. We use the term candidate predictors to classify potential
variables that might or might not appear in the final model. The selection
of the candidate predictors is of course problem dependent. The group col-
lecting the data has knowledge of the problem area and can usually suggest
variables that should be considered as candidates for inclusion in a model.

Consider as an example, the following problem in the field of pharmacol-
ogy. A drug company wishes to develop a model for predicting the effec-
tiveness of a drug to reduce blood pressure. Clearly, the amount of the
drug given to each patient is an important candidate for predicting the drug
effectiveness and will most certainly appear in the model. Other candidate
predictors should include variables related to the patient: blood pressure,
age, weight, variables related to his or her medical history, etc. The drug
itself might include some variability in its chemical composition and this
variability might be included as additional candidate predictors. One can
see that the number of candidate predictors can rise rapidly. The greater
the number of candidate predictors, the greater the probability that an im-
portant predictor is not overlooked. However, as the number of candidate
predictors rises, the difficulty in finding the best model also rises.

A second example is taken from the field of econometrics. Consider the
problem of attempting to develop a model for predicting the change in the
United States unemployment percentage over the next month. Vast
amounts of data are collected to measure many variables related to the per-
formance of the U.S. economy and some of this data might be relevant for
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the desired model. For example, changes in the unemployment percent-
ages over the past months would certainly be prime candidate predictors.
Other changes might also be relevant: changes in the number of housing
starts, changes in retail sales, changes in the gross national product, etc.
Other measures of the strength of the economy might include changes in
the stock market indices, changes in interest rates, etc. Measures related to
the world-wide economy might also be included in the list of candidate
predictors. Once again, the list of candidate predictors can grow as the
analyst considers a widening range of variables that might or might not af-
fect the rate of unemployment.

Before attempting to build a model, the analyst should attempt to answer
some basic questions regarding candidate predictors. Specifically can we
say anything regarding the worth of a particular candidate predictor? Are
some candidate predictors redundant? Do some subsets of the candidate
predictor space contain more information than others? In this chapter
some useful tools for answering such questions are considered. If the set
of candidate predictors can be reduced to a subset with greater potential for
being included in the final model, the entire modeling process will be sim-
plified and the potential for success will be increased. In the statistical lit-
erature the term measures of association is used to describe tools that
have been developed for measuring the dependence of one variable upon
another [e.g., SI88, DA90]. In this chapter some of the most powerful and
useful measures of association are discussed and examples are included to
illustrate how they can be applied to specific problems.

4.2 Using the F Distribution

In Section 1.3 the F distribution was discussed. We can use the F distribu-
tion to answer the following question: Does a particular subspace contain
information related to a dependent variable y? The term "subspace"
applies to subspaces of the candidate predictor space. Each candidate pre-
dictor is a single dimension in the larger ncp (number of candidate predic-
tors) space. If a particular subspace does not have "predictive power" it
does not necessarily imply that it should be immediately rejected from fur-
ther consideration. It might, when combined with another subspace, be a
powerful predictor. However, when looking for ways to reduce ncp, one
tends to choose candidate predictors which on their own as one-
dimensional spaces or combined with other candidate predictors show that
they do contain information regarding y.
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To analyze a subspace using the F distribution, the space is partitioned into
cells. The number of cells is set by the analyst and should be based upon
the number of available data points. Clearly, the greater the number of
data points, the greater can be the number of cells. The number of dimen-
sions in the subspace is irrelevant. We see cells for one and two dimen-
sional spaces in Figures 4.2.1 and 4.2.2. Note that there is no need to
make the cell sizes constant. A worthwhile strategy is to choose the cell
sizes such that the cells are approximately equally populated. To accom-
plish this for one dimensional spaces, the data is first sorted and then the
cell dimensions are chosen to achieve approximate equality. For example
if 1000 data points are available and we wish to partition the data into 10
cells, we would sort the data so that x; is the smallest value of x and x99 1S
the largest value. The upper limit of cell 1 would be (x199 + X101) / 2, the
upper limit of cell 2 would be (x99 + X201) / 2, etc. One might ask: What
happens if there are duplicates? For example, if X9 thru x95 have exactly
the same value? The cell limit would be this value and points 99 and 100
would be included in cell 1 and points 101 thru 105 would be in cell 2.

Cell T —¥4— Cell2 Celly HW+——— Celld —H
Points 5 & 6
Point 2 + Point 11 Point 15
- [ ] +
xI-min xJ-rricoc

Figure 4.2.1 Partitioning a one dimensional space with 16 points. No-
tice that each cell is equally populated. Notice points 5 & 6 and 9 & 10
have same values.

For two or more dimensional spaces, the selection of the cell sizes can be
more complicated. First of all, if we want to compare spaces of varying
dimensions, it is statistically reasonable to try to maintain equally popu-
lated cells over all spaces. From the preceding discussion of the one-
dimensional partition, how would we proceed to 10 equally populated two
dimensional cells? A general solution to this problem for p dimensions is
included in my last book [WO00]. A data structure called the p-tree is de-
scribed that is used to generate cell limits when the number of cells is 2"
(where h is the tree height). Thus this data structure cannot be used to di-
vide a space into 10 cells but it could be used to divide it into 8 (i.e. A=3)
or 16 (i.e. h=4) cells. Figure 4.2.2 is an example of a two dimensional
space divided into 8 cells. In this example the number of data points per
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cell is 2. For real problems we would want a much larger cell density. The
p-tree is a generalization of a two-dimensional data structure called a
quadtree. The quadtree, is used extensively in computer graphics, com-
puter aided design, image processing, etc. [SA90].

x 2-micox -

x2-min
x1-min x J-mieex

Figure 4.2.2 Partitioning data in x;-x, space. Notice that each cell is
equally populated with 2 points per cell.

One might ask the question: For a two dimensional space, why not just sort
both dimensions into r equally populated regions creating #* cells? Simi-
larly, for a three dimensional space, why not just sort each dimensions into
r equally populated regions creating 7 cells? To maintain equality in aver-
age cell density over varying dimensional spaces, we would have to
choose different values of r for different numbers of dimensions. For ex-
ample, if we used r = 64 for one dimensional spaces, r = 8 for two dimen-
sional spaces, and r = 4 for three dimensional spaces, the number of cells
for these spaces would be 64 and the average cell density would be the
same regardless of the dimensionality up to three dimensions. This ap-
proach is reasonable if the values of the x's in the different dimensions are
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uncorrelated. However, if there is a measurable level of correlation, the
cells would certainly not be equally populated. For a two dimensional
space, the problem using this technique is illustrated in Figure 4.2.3. This
figure is based upon the same data as used in Figure 4.2.2 where the values
of x; and x; are clearly correlated. Using r = 4, there are a total of 16 data
points and 16 cells so the average cell density is 1. For this example, this
partitioning scheme leaves 9 cells empty and one cell with four points. As
the correlation increases, the disparity between the most and least popu-
lated cells increases. It should be emphasized that the correlation need not
be linear. The concept of nonlinear correlation is introduced in the next
section. This problem is avoided by using the p-tree data structure for par-
titioning the space.

x 2-miax

x2-min -

x =i x 2-max

Figure 4.2.3 Partitioning data in x;-x, space. Each dimension is par-
titioned independently. Notice that in each row and in each column
there are 4 points.

Once we have divided our data into cells, the first step in the analysis is to
compute the mean and variance of the dependent variable over all cells.
We then compute the mean and variance within each cell. We can com-
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pute the variance between cells O‘,f and the variance within cells O',i as

follows:

Jj=nc

2
znj(yavg,j - yavg)

ol =2 4.2.1)
nc—1

Z(yl - yavg,j)2
ol =1 (4.2.2)
n-—nc

In these equations nc is the number of cells, y,, is the average value of the
dependent variable for all n data points and y,,,; is the average value for all
points within cell j. In Equation 4.2.2, y,,,; refers to the average value for
the cell in which point # falls.  The ratio of these two variances is distrib-
uted according to the F distribution with nc-1 degrees of freedom in the
numerator and n-nc in the denominator:

F="%t (4.2.3)

Once F has been computed, it can then be tested for significance in the
usual manner. If a space is a very good predictor, we would expect that
the value of F would be much greater than 1.

The use of Equations 4.2.1 through 4.2.3 requires some explanation. By
partitioning the data into cells, we are essentially creating a very simple
model: we use the cell average as the computed value of y for all the points
falling within the cell. We are then testing to see if there are significant
differences in the average values of y in the different regions (i.e., cells) of
the space. To illustrate this process consider the data in Table 4.2.1. We
have partitioned 200 data points into four cells, each cell containing 50
points. (It should be emphasized that it is not essential that the number of
points per cell be the same for all cells.) The table includes the average
value of y and s (the unbiased estimate of &) for each cell. Note that no
mention is made regarding the dimensionality of this space. It could be 4
cells in a one dimensional or a two dimensional space. (To partition data
in a three dimensional space we would need at least 8 cells.)
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J Yavg,j n; Sj
1 12.0 50 2.0
2 4.0 50 1.0
3 5.0 50 1.5
4 11.0 50 3.0

Table 4.2.1 Data Partitioned into 4 Cells

The average value y,,, for this data is (12+4+5+11) / 4 = 8. To compute
0',3 we use Equation 4.2.1:

02 =50%(12-8)2 +(4-8)2 +(5-8)> + (11-8)2)(4—1)
= 2500/3 = 833.33

We can use the following equality to compute O'i :

Jj=nc

(n—nc)o?l = Z;(nj - l)sjz- (4.2.4)
=

02 =292 +12 +1.52 +32)(200 - 4)

= 796.25/196 = 4.0625

The value of F is 833/4.06 = 205 which is a very large number. The 1%
confidence limit for F (that is, F(0.01, 3, 196)) is about 3.9 so 205 is or-
ders of magnitude above this limit. This result should not be surprising as
we see that the average values of y in cells 1 and 4 are much larger than the
values in cells 2 and 3 indicating that this space is a true predictor for y.
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4.3 Nonlinear Correlation

Shannon introduced the concept of nonlinear correlation in his ground-
breaking paper 4 Mathematical Theory of Communication [SH48]. This
paper was published by the Bell Laboratories in 1948 and has had far-
reaching consequences. Nonlinear correlation was only one of several im-
portant concepts and ideas included in the paper. In this paper Shannon
described a method for measuring nonlinear correlation on a scale from
zero to one. A value of zero implies that two variables are unrelated: for
example, knowledge of v; provides no knowledge of v,. A value of one
implies that the two variables are completely related: for example, knowl-
edge of v; provides exact knowledge of the value of v, and knowledge of
v, provides exact knowledge of the value of v;.

Nonlinear correlation can be used to accomplish several tasks. It can be
used to determine whether an independent variable x (perhaps one of many
candidate predictors) contains useful information for building a model for
a dependent variable y. It can also be used to determine if candidate pre-
dictors x; and x, are related. If, for example, there is a high degree of
nonlinear correlation between these two candidate predictors, then one of
them might be eliminated from the set of candidate predictor variables.

To understand the concept of nonlinear correlation consider an experiment
in which 100 data points are observed and for each data point values of
both x; and x; are recorded. The values of both x; and x, are integers from
1 to 5, so there are 25 possible combinations. Consider the distributions of
points shown in Figures 4.3.1 through 4.3.3.

In Figure 4.3.1 we see that if the data is truly indicative of the population,
then all we need to know is the value of x; and we would automatically
know the value of x,. For example, if x; is 1, then x; is 3 and if x; is 2,
then x; is 5, etc. Conversely, knowledge of x, yields the value of x;. For
example, if x, is 2, then x; is 4. The nonlinear correlation coefficient (CC)
for this example is one. Clearly, if we increase the number of data points
beyond 100, we might discover that cells unpopulated by the initial 100
data points become populated. If this happens, then a recalculation of CC
would yield a value less than one. But based only upon the information
contained in the first 100 points, our best estimate of CC is one.
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In Figure 4.3.2 we see an entirely different picture. Knowledge of x; does
not add to our knowledge of x,. The most probable value of x;, is 2 (i.e.,
30% of all data points have a value x, = 2). We see, however, that this
percentage is true for all values of x;. (For x; = 1 and 4, 9 out of 30 data
points, for x; = 2, 6 out of 20 data points and for x; = 3 and 5, 3 out of 10
data points have values of x, = 2.) Similarly, knowledge of x, does not
add to our knowledge of x;. For this case, CC is thus zero.

x2=1 x2=2 x2=3 x2=4 x2=5
x1=1 3

x1=2 35
xI1=3 I 5

x1=4 25

xI=5 20

Figure 4.3.1 Distribution of 100 data points. This distribution
exhibits nonlinear correlation CC = 1.
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xi=1

xi1=2

xI=3

xI=4

xI=5

x2=1 x2=2 x2=3 x2=4 x2=5
6 9 6 6 3
4 6 4 4 2
2 3 2 2 1
6 9 6 6 3
2 3 2 2 1

Figure 4.3.2 Distribution of 100 data points. This distribution

xI=71

xI=2

x1=3

xi=4

xI=5

exhibits nonlinear correlation CC = 0.

x2=1 x2=2 x2=3 x2=4 x2=5
10 10
10
10 5 5
20
20 10

Figure 4.3.3 Distribution of 100 data points. This distribution
exhibits nonlinear correlation CC between zero and one.
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In Figure 4.3.3 we see that knowledge of x; does add to our knowledge of
x; and visa versa. For example, if x; = 1 then there is a 50% probability
that x, =2 and a 50% probability that x, = 5. If x; = 2 then there is a 100%
probability that x, = 2. If x; = 3 then there is a 50% probability that x, = 1
and a 25% probability that x, =3 or 5. If x; = 4 then there is a 100% prob-
ability that x, = 4. And finally, if x; = 5 two-thirds of the values of x, will
be 1 and one-third will be 4. For this case CC is between zero and one.

For continuous data one must partition the data into cells. The partitioning
scheme shown in Figure 4.2.3 rather than in Figure 4.2.2 is preferable. For
the purpose of examining correlation, equally populated cells are of no in-
terest. However, if each variable is divided into equally populated bins,
then our partitioning is optimum (in the sense of maximizing entropy or
uncertainty) [PY99]. The term entropy was taken from thermodynamics
and was applied by Shannon to the field of information theory. We can
consider the information content of a particular value (or cell) of a variable
as —p-log,(p) where p is the probability of the variable taking on the value.
(The minus sign is required because log,(p) is negative.) An explanation
of this formulation for information content is included in Pyle's book on
Data Mining [PY99]. As an example of the information content of a cell,
consider the variable x; in Figure 4.3.3. The probability that its value is 1
is 0.2 (i.e., 20 out of 100 data points have the value x; = 1). The informa-
tion content for x; = 1 is thus -0.2-10g,(0.2). Using the notation of H(v) to
denote the entropy associated with the variable v, we compute the entropy
as the sum of the information content for all possible values of v:

i=r

H) =—;p,- log, (Vi) 4.3.1)

In this equation r is the number of values that v can assume and p; is the
probability that it assumes the i value. Note that the sum of all p;'s must
equal 1:

li pi =1 (4.32)
i=1

To understand why equally populated cells maximize entropy, consider the
5 cases shown in Table 4.3.1. In this table the probabilities of v assuming
4 different values are listed for each case. Note that case 1 exhibits maxi-
mum entropy (maximum uncertainty) and case 5 exhibits minimum en-
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tropy. In case 5 there is no uncertainty: the value of v is always one. As
examples of the calculations, the value of log,(0.25) = -2 so H(v) for case
1 is 4*0.25*%2 = 2.00. For case 3 the value of /og,(0.5) = -1 so H(v) is 0.5
+ 0.5+ 0+ 0=1.00. Comparing cases 1 and 2 we see that case 2 is
slightly more informative and therefore its entropy is slightly less.

case v=1 v=2 v=3 v=4 H(v)
1 0.25 0.25 0.25 0.25 2.000
2 0.30 0.20 0.25 0.25 1.985
3 0.50 0.50 0.00 0.00 1.000
4 0.60 0.40 0.00 0.00 0.971
5 1.00 0.00 0.00 0.00 0.000

Table 4.3.1 Entropy calculations for 5 different cases

When we are interested in computing the nonlinear CC associated with
two variables, we compute the entropy of each variable separately and then
combined. For example, if we wish to compute CC for variables x; and x,
we must first compute 3 entropies. The entropies for x; and x, computed
separately are:

i=rl j=r2

H(x,)= _Zpilogz(pi) & H(x,)= _Z p;log,(p;) (4.3.3)

i1 =1

In these equations r; and r, can be different. A difference might occur if x;
and x, are discrete variables with different ranges. However, if they are
continuous variables, they must be "discretized" by dividing each variable
into separate regions or bins and typically the value of r; and r, would be
chosen to be the same. We compute the entropy associated with the two
dimensional partitioning of the data as follows:

i=rl j=r2
H(x,x,)=-Y> p,log,(p;) (4.3.4)
i=1 j=1

We are now in a position to compute CC:

_ 2(H(x,)+ H(x,)- H(x,x,))
H(x,)+ H(x,)

cc (0< CC<l) (4.3.5)
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As an example, consider the data shown in Figure 4.3.1. We can present
this data in the form of probabilities as shown in Table 4.3.2:

x=1 | x=2 | =3 | x;=4 | x,=5 | Row Sum
x =1 0.05 0.05
x1=2 0.35 0.35
x1=3 0.15 0.15
x1=4 0.25 0.25
x1=5 0.20 0.20
ColumnSum | 0.15 0.25 0.05 0.20 0.35 1.00

Table 4.3.2 Recasting Figure 4.3.1 into probabilities and summing
rows and columns. Note that the sum of all rows and all columns is
one.

The values of all three entropies (i.e., H(x), H(x;), and H(x; x,)) are equal
to 2.121:

H = —(0.15l0g5 (0.15) + 0.25 log5 (0.25) + .... + 0.35 log (0.35) ) = 2.121

Substituting into Equation 4.3.5 we see that CC is indeed 1:

2(2.121 + 2.121 - 2.121) 1
2.121+ 2.121

cC

In a similar manner we can show that CC for the data in Figure 4.3.2 is
zero. Now let us compute CC for the data in Figure 4.3.3. The data in
Figure 4.3.3 is presented as probabilities as shown in Table 4.3.3:

X2=1 x2=2 x2=3 X2=4 x2=5 Row Sum
xi=1 0.10 0.10 0.20
x=2 0.10 0.10
x1=3 0.10 0.05 0.05 0.20
x1=4 0.20 0.20
x1=5 0.20 0.10 0.30
ColumnSum | 0.30 | 0.20 | 0.05 | 0.30 | 0.15 1.00

Table 4.3.3 Recasting Figure 4.3.3 into probabilities and summing
rows and columns. Note that the sum of all rows and all columns is 1.



128 Chapter 4 CANDIDATE PREDICTORS

The three entropies are computed as follow:

H(xq) =—(3*0.210g5(0.2) + 0.1l0g5(0.1) + 0.3 log5(0.3)) = 2.246
H(xy) = —(2%0.310g5(0.3) + 0.2 log, (0.2) + 0.0.05 log (0.0.05) +
0.0.15 log(0.0.15)) = 2.133
H(x;x9) = —(5%0.1l0g5(0.1) + 2 * 0.2 log5 (0.2) +
2 %0.0.05 log, (0.0.05)) = 3.022

The resulting value of CC (from Equation 4.3.5) is 0.620. This value im-
plies a high degree of nonlinear correlation and implies that knowledge of
x; helps us predict the value of x, and visa versa.

Can we say anything about the significance of CC? If there is no connec-
tion between x; and x, (the null hypothesis) what is the probable range of
values that we should expect? We define a new variable T as follows:

T=2N(H(x,)+ H(x,)— H(x,x,))

=N*CC*(H(x,)+ H(x,)) (4.3.6)

The variable T approaches a szistribution with vdegrees of freedom as V
becomes large [RA73]:

v=(r—1) (1) 43.7)
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X1 x1-bin X3 X2-bin Y y-bin
0.3190 2 0.0368 1 0.7214 4
0.7537 4 0.0397 1 0.0586 2
0.7792 4 0.4907 2 0.5695 2
0.1009 1 0.4552 1 0.3921 1
0.3132 2 0.7657 3 0.7186 4
0.8893 4 0.8450 3 0.4974 1
0.6939 3 0.8685 4 0.6245 3
0.0720 1 0.4763 2 0.3007 1
0.4743 2 0.8673 4 0.7313 4
0.8069 4 0.8278 3 0.5513 2
0.6763 3 0.8457 4 0.6355 3
0.7189 3 0.8264 3 0.6087 3
0.1071 1 0.9068 4 0.4099 1
0.2513 1 0.4275 1 0.6721 3
0.3770 2 0.5003 2 0.7389 4
0.8297 4 0.7338 3 0.5363 2
0.5519 3 0.6293 2 0.7033 3
0.5177 2 0.8470 4 0.7175 4
0.7256 3 0.2964 1 0.6044 2
0.0021 1 0.5832 2 0.0107 1

Table 4.3.4 20 Data points and associated bins

As an example of the use of CC as a precursor to modeling, consider the
data in Table 4.3.4. The table includes actual values of x;, x, and y and
"binned" values from 1 to 4. The bin values were assigned by first sorting
the variable and then assigning a value of one to the first quarter, two to
the second quarter, etc. For example, all values of x; < 0.2513 were as-
signed bin values of one, all values of x; > 0.2513 and x; <0.5177 were as-
signed values of two, etc. The number of data points in each bin is equal
to n (the number of data points) divided by nb (the number of bins) which
is 20/4 = 5. The number of cells is nb * nb = 16. The average cell density
is very small (20/16 = 1.25) but the purpose of this example is to just illus-
trate the procedure. What we are interested in determining is if either x; or
x, or both are useful independent variables for a model for y. Note that the
scheme used to divide the data into bins creates 4 equally populated bins
for each variable. So from Case 1 of Table 4.3.1 the entropies H(x),
H(x,) and H(y) are all exactly 2.00.

The first question to be answered is whether or not x; and x, are correlated
(in the nonlinear sense). To compute CC we therefore need the value of
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H{(x;x;). We can create a table similar to Table 4.3.3 from the data in
4.3.4:

x=1 X= X2= x,=4 Row Sum
x,=1 0.10 0.10 0.05 0.25
X1= 0.05 0.05 0.05 0.10 0.25
X1= 0.05 0.05 0.05 0.10 0.25
x=4 0.05 | 0.05 0.15 0.25
ColumnSum 0.25 0.25 0.25 0.25 1.00

Table 4.3.5 Recasting the data from Table 4.3.4 into probabilities

From this table we see that the value of H(x;x;)is 3.684:

H(x;x5) =—(4*0.1l0g5(0.1) + 0.15 log (0.15) +
9 % 0.0.05 log, (0.0.05)) = 3.684

Using Equation 4.3.5 the computed value of CC is 0.158 and we next con-
sider whether or not this value is significant. From Equations 4.3.6 and
4.3.7 the value of T = 12.6 and the number of degrees of freedom v = 9.
The 5% confidence limit for the x? distribution with 9 degrees is 16.9 so
this value in not significant at this confidence level. We can conclude that
there is no reason to assume that x; and x, are correlated (in the nonlinear
sense).

We next turn our attention towards the relationship between x; and y. In a
similar manner the entropy H(x;y) is computed to be 2.541 and CC is
0.729. This value of CC appears to be quite high but does it pass the test
of significance? The value of T is 58.3 and this number is far beyond the
5% confidence limit. It is also far beyond the 1% confidence limit (21.7)
so we can conclude the x; and y are definitely related. Is y also related to
Xx,? The entropy H(x,y) is computed to be 3.821 and CC is 0.089. This
value is even less than 0.159 computed for x; and x, so we conclude that it
is also not significant and there is no evidence that a relationship between
X, and y exists. Perhaps with many more data points we might be able to
detect a significant (but weak) relationship between these 2 variables but
with the available evidence we can only conclude that at this point we can-
not detect a significant effect. We should, however, note that this analysis
does not exclude the possibility that a two dimensional model (i.e., y as a
function of both x; and x;) might be a better model then y as just a function
of x;.
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What if we had detected the same value of CC = 0.089 between x, and y
but based upon 1000 data points after dividing each variable into 10
equally populated bins? Would this value be significant? The values of
H{(x,) and H(y) would be 3.322:

H(x,)=H(y)=-(10%0.1log5(0.1)) = - log,(0.1) = 3.322
The value of T would be 591:
T =n*CC*(H(x,)+ H(y))=1000%0.089 * (3.322 + 3.322) = 591

The number of d.o.f. (degrees of freedom) is 81. The average value for a
,1'2 distribution with v d.o.f. is v= (10-1)* = 81 and the oof the distribu-

tion isv2v =4/2*81 =12.73 so we see that 591 is (591-81)/12.73 = 40

o's above the average value of the distribution. We would thus conclude
that a value of CC = 0.089 based upon 1000 data points using 10 equally
populated bins is highly significant.

4.4 Rank Correlation

For many applications we are interested in locating variables among the
candidate predictors that help us explain trends in the dependent variable.
There are many examples of trends in most areas of science and technol-
ogy. As examples, consider the following:

Agriculture: The effect upon crop yield as a function of the
amount of pesticides used.

Chemistry: The relationship between reaction rate and the density
of a particular species.

Econometrics: The effect of interest rate upon the rate of infla-
tion.

Medicine: The relationship between cancer and long-term expo-
sure to radiation.

Production Engineering: The relationship between rejection rate
and process time per part.

The simplest measure of a trend is the linear correlation coefficient p as
described in Section 3.5. A trend can be either positive or negative and
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p is limited to the range -1 to 1. Consider the 3 relationships for y as a
function of x as shown in Figure 4.4.1. Curve 4 would yield a value of
pbetween 0 and 1 and curve B would yield a value of p between 0 and -1.
The value of p for curve C would be close to zero.

If our purpose is to identify trends, then we would like a measure that
would yield a value of one for curve A because any increase in x results in
an increase in y throughout the entire range of x. Similarly this measure
should yield a value of -1 for curve B and a value close to zero for curve
C. One might ask the question, why not just use the linear correlation co-
efficient p as our measure of a trend? When there are a number of candi-
date predictors for y it is useful to have a nonparametric measure that is
more sensitive to trends than p. We use the term "nonparametric' because
no specific relationship (like a straight line) is assumed between x and y.
It thus becomes easier to find the candidate predictor (or predictors) that
are most responsible for causing trends in y.

Probably the most well-known and widely used nonparametric measure of
trends was proposed in 1904 by Spearman and is called the Spearman
Rank Correlation Coefficient (i.c., ;). Many books on statistics include
a discussion of this measure of association between variables [e.g., SI88,
DA90, FR92, ME92, WA93]. The method uses the ranks of the variables
rather than the actual values. If several data points have the same value of
either x or y, then the average rank is used.
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Figure 4.4.1 Three curves with differing trends

As an example, consider the data in Table 4.4.1. A rank of 1 is assigned to
the lowest value of x and y and a value of n (the number of data points) is
assigned to the highest value. The data in this table is based upon an ex-
periment in sociology discussed by Siegel and Castellan [SI88]. For ex-
ample, in this table the highest value of x is 13 and since there are 12 sub-
jects it is assigned a rank of x = 12. The lowest value is 0 but since there
are two subjects with x = 0 they are both assigned a rank of 1.5. The
minimum and maximum values of y are 37 and 92 so the ranks of these
two subjects are 1 and 12.
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Subject X (actual) X (rank) Y (actual) y (rank)
A 0 1.5 42 3
B 0 1.5 46 4
C 1 3.5 39 2
D 1 3.5 37 1
E 3 5.0 65 8
F 4 6.0 88 11
G 5 7.0 86 10
H 6 8.0 56 6
I 7 9.0 62 7
J 8 10.5 92 12
K 8 10.5 54 5
L 13 12.0 81 9

Table 4.4.1 Actual and ranked data for 2 variables and 12 subjects.

The Spearman Rank Correlation Coefficient r, is based upon the same
equation as used for linear correlation (i.e., Equation 3.5.3):

z(xi _xavg) (yl _yavg)
i=1

r =

2\/i(xi - xavg)zi(yi - yavg)2
i=1 i=1

(4.4.1)

Using the following equality (based upon the fact that Xu, = Yave):

%( )( ) i(xi_xavg)z+i(yi_yavg)2_idi2
Xi = Xpg\Vi = Vag/ = = l=2 =
i=1

We obtain the following expression for #;:

f(xi - xavg)2 + f(yz - yavg)2 - %dtz
M= =l i=1 (4.42)

2\/§(xi - xavg)zg(yi - yavg)2
i=1 i=1
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In this equation, both x,,, and y,, are (n+1)/2 and d; is the difference be-
tween the x; and y;. The details required for the calculation of r¢ are in-
cluded in Table 4.4.2:

Subject | x (rank) | y (rank) | d & | %) | 0me)’
A 1.5 3 -1.5 2.25 25.00 12.25
B 1.5 4 -2.5 6.25 25.00 6.25
C 3.5 2 1.5 2.25 9.00 20.25
D 3.5 1 2.5 6.25 9.00 30.25
E 5.0 8 -3.0 9.00 2.25 2.25
F 6.0 11 -5.0 | 25.00 0.25 20.25
G 7.0 10 -3.0 9.00 0.25 12.25
H 8.0 6 2.0 4.00 2.25 0.25
1 9.0 7 2.0 4.00 6.25 0.25
J 10.5 12 -1.5 2.25 16.00 30.25
K 10.5 5 5.5 ] 30.25 16.00 3.25
L 12.0 9 3.0 9.00 30.25 6.25

Total 78 78 0.0 [109.5 141.5 143.0

Table 4.4.2 Actual and ranked data for 2 variables and 12 subjects.

For this example, the average value of the ranks of both x and y is 6.5. For
subject 4 the value of d; is 1.5-3 = -1.5, the value of x;—x,, is 1.5-6.5 = -5
and the value of y;—p,, 1s 3—6.5 = -3.5. The value of r, for this example is:

_141.5+143-1095 175
2+/141.5*143 2%142.2

=0.615

F

This seems like a fairly large correlation coefficient, but is it significant?
Siegel includes critical values of r¢ for testing significance for » up to 50
[Table Q in SI88]. For example, for n equal to 12, the critical value for a
2.5% level of confidence is 0.587 and for 1% it is 0.671. In other words, at
a 2.5% level of confidence, 0.615 is significant, but it is not significant at a
1% level of confidence. If x and y are totally independent variables and
we repeat the experiment many times, we would expect to compute a value
of r,>0.615 between 1% and 2.5% of the time. For large values of n the
parameter z is approximately normally distributed:

z=rn—1 (normally distributed for large n) (4.4.3)
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For example, for n = 1000, the critical value for a 1% level of confidence
would require a z value = 2.326:

r, =2.326/4999 =0.0736  (critical value for 1% level of confidence)

Thus using a 1% level of confidence, if # = 12 only values of r, greater
than 0.671 are considered significant but if # is increased to 1000, values
greater than only 0.0736 are considered significant.

Even though Equation 4.4.3 is valid for large n can it be used for fairly
small values of n? For example, from Siegel's table we know that the 1%
confidence limit for n = 12 is 0.671. What value would we get using Eq
4.4.3? Surprisingly, the value is very close:

r,=z/vn—-1=2236/411=10.674  (for 1% confidence level)

In Table 4.4.3 critical values of r, for a 1% confidence level are listed for
various values of n. A critical value of one implies that any value of r; less
than one is not significant.

n r, (Siegel table) ry,(Equation 4.4.3)
5 1.000 >1.000
6 0.943 1.000
7 0.893 0.913
8 0.833 0.845
9 0.783 0.791
10 0.745 0.745
11 0.709 0.707
12 0.671 0.674
15 0.604 0.598
20 0.520 0.513
50 0.329 0.320

Table 4.4.3 Critical values of r, for 1% confidence level.



Chapter 5 DESIGNING QUANTITATIVE
EXPERIMENTS

5.1 Introduction

Designing a quantitative experiment implies choosing the number of data
points, selecting the values of the independent variable (or variables), and
when possible, setting the accuracy to which the individual data points are
to be obtained. What is assumed is the mathematical model that is the ba-
sis of the proposed experiment. The design process predicts the accuracy
of the results that the least squares process should yield prior to actually
obtaining any data. By varying the experimental variables, the analyst can
determine what has to be done so that the experiment should meet the pro-
posed accuracy objectives. Alternatively, the analyst might conclude that
the experiment, as proposed, will not succeed (i.e., meet the accuracy
objectives).

As an example, consider an experiment to determine the half-life of a ra-
dioactive isotope. What is known is that the half-life is about 1 second,
and the purpose of the experiment is to accurately measure this half-life to
an accuracy of about 1%. This experiment was discussed in Section 1.1
and the proposed mathematical model is Equation 1.1.1. Let us recast this
equation using simpler notation:

-a, -t
y=a,-e "} +

a, (5.1.1)
The half-life is inversely proportional to a, (see Equation 1.1.2) so to meet
the experimental requirements we would have to determine a, to 1% accu-
racy. The value of a; can be controlled to a certain extent by controlling
the time the specimen is irradiated. But clearly there is a practical limit
based upon the resources available to the experimenter. The background
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count-rate (i.e., @3) can be estimated or even measured prior to actually
running the experiment using the radioactive isotope.

The actual experiment will be performed by using apparatus that measures
the number of counts in a time window of Azseconds. This experiment is
best understood if the units of y, a; and a; are all in ¢ps (counts per sec-
ond). To convert the ¥'s (the measured values of counts in the time win-
dows) to cps we must divide by Az(i.e., y;= ¥;/ Af). Thus a, is the number
of ¢ps at time ¢ equal to zero and a; is the background rate in units of ¢ps.
The number of data-points that can be obtained is limited because the
count-rate decreases with time until it approaches the background count-
rate. A more practical limit is to select a "reasonable" number of half-lives
to run the experiment. For example, if the half-life is 1 second, it makes
no sense to run the experiment for 100 seconds because the first term in
Equation 5.1.1 is infinitesimal after 100 seconds. If the half life is about 1
second, then after 5 seconds this term has decreased to a value that is only
about 3% of the value at time zero. In other words, after 5 half lives, the
signal is reduced by a factor of 2° = 32. Let us say we set the total time of
the experiment to 5 seconds, thus the number of data points is 5 / Az. For
counting experiments we know that the estimated standard deviation oy of
each value of ¥ is sqre(Y) so the relative uncertainties of the data points
are:

O'y=\/7_w/yAt_ 1

y Y yAt Aty

Note that the relative uncertainly in y is inversely proportional to the
square root of Az. Thus if Azis halved, then the number of data points is
doubled, but the relative uncertainty of each point is increased by a factor
of sqre(2).

(5.1.2)

The experimentalist planning an experiment of this type would first esti-
mate the background term a3 and the expected value of a; (i.c., the actual
signal). The maximum value of signal to noise is a; /a;. The next task is
to estimate the effects of @ /&, n and At upon the expected value of the ra-
tio g,, /a;. The target value for this ratio is 0.01. At the design level we
should be able to either choose the experimental variables so that this tar-
get can be achieved or conclude that the target is unattainable using the
available resources. In this chapter the methodology for estimating ex-
pected accuracy is developed. The method of Prediction Analysis [WO67]
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is described and examples of its application are included. A more detailed
analysis of this experiment is included in Section 5.3.

5.2 The Expected Value of the Sum-of-Squares

The method of least squares is based upon the minimization of §, the
weighted sum of the squares of the differences between actual and com-
puted values of the dependent variable. In Section 2.2 several different
formulations of § are presented. In Section 3.2 the goodness-of-fit of a
least squares model is discussed and it is shown that under certain condi-
tions the expected value of § is 12 (chi-squared) distributed with n — p
degrees of freedom. This fact can be exploited to design experiments.

Under the assumption that the weights w; are based upon reasonable esti-
mates of the standard deviations of the residuals R; (i.e., the difference be-
tween actual and computed values), the expected value of S is n — p and
S /n—p is one. Substituting this value into Equation 2.5.1 we see that the
predicted value of the standard deviation of a; is:

o, =(Cg )2 (5.2.1)

In this equation C ,;;c is the predicted value of the k™ diagonal term of the

inverse C matrix. From Equation 2.5.4, the predicted value of the covari-
ance between the parameters a;and ay is:

o, = c]-.;‘ (5.2.2)

We thus see that the design of experiments is based upon prediction of the
C matrix. The terms of the C matrix are computed using Equation 2.4.14.
Once the terms of the € matrix have been computed, the matrix can then
be inverted and all variances associated with the results of the experiment
can be predicted. By varying the experimental variables, we can study the
effect that these variables will have upon the resulting accuracy of the pro-
posed experiment. An understanding of these effects is the basis of a
rational design of the experiment.
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5.3 The Method of Prediction Analysis

Prediction Analysis is the name that I used to describe a technique that I
developed for designing quantitative experiments [WO67]. As explained in
the previous section, the method of prediction analysis requires prediction
of the C matrix. The terms of this matrix are computed as described in
Section 2.4 by Equation 2.4.14:

i=n of o
Ciy = Zwiii (2.4.14)
i=l ~ da; day
To demonstrate the method, let us consider the experiment discussed in
Section 5.1: measurement of the half-life of a radioactive isotope in the
presence of some background radiation. The function f for this experiment
includes a decaying exponential term:

y=f(t)=a1-e_a2't

+a, (5.3.1)
The experimental variables for this particular class of experiments are the
three unknown parameters, a,, a, and a3, the times of the initial and final
measurements # and #,,.., the number of data points # and the time window
At. The three partial derivatives are:

o _,art (53.2)
da,
o et (5.3.3)
oda,
s (5.3.4)
da,

The weights w; are computed as follows using Equation 5.1.2:

w,=1/0, =At/y, (5.3.5)
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The terms of the C matrix are computed according to Equation 2.4.14. Us-
ing Equation 5.3.5:

i=n i=n 1

da; y; 0a; da,

: 5.3.6
Vi da; da, (5:36)

i=1 i=1
Equation 5.3.6 is straightforward. All that one must do is select a set of
the experimental variables and then compute the terms of the C matrix by
substituting Equation 5.3.1 through 5.3.4 into 5.3.6. The matrix is sym-
metric so only 6 terms must be computed: Cyy, Cya, Ci3, Cyz, C3 and Cs;.
Once these terms have been computed the matrix is inverted and then
Equations 5.2.1 and 5.2.2 can be used to make predictions regarding the
expected accuracy of the proposed experiment.

The seven variables mentioned above are a;, a,, as, ty, tua, 7 and At. If we
assume that 7y = 0 and #,,,, = n*At we are left with 5 independent variables.
There are two approaches that one might consider before initiation of the
calculations:

1) Try to develop analytical expressions for the 6 terms of the C ma-
trix, and if successful, then try to develop analytical expressions
for the terms of the C”" matrix.

2) Use computer simulations to compute the terms of the C and C”’
matrices for various combinations of the variables.

The first approach is only feasible for very simple experiments. An exam-
ple of this approach is considered in Sections 5.4 and 5.5. The class of
experiments discussed in this section is, unfortunately, too complicated to
attempt an analytical approach. Equations can be developed, but they are
too cumbersome to be useful. Results, however, can easily be obtained us-
ing the second approach: computer simulations. A computer simulation
for this class of experiments is discussed in Section 5.6.

To understand the complexity of trying to develop analytical expressions
for the terms of the C matrix, consider just the term Cy; :
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—Atl 1 of of —Atlz: —2a,t,

i=1 Vi da, da, i=1 .Vz
_ (5.3.7)
_ nAt e 2a,t
@ | "N Ly, /a, -

We can get an estimate of the average value in Equation 5.3.7 for large n
by integrating from 0 to nAf¢ and then dividing the result by nAf#:

1

—a,t
tas/a; |, nAt § ,m

n

T dt (5.3.8)

e +a;/a,

Using T=nAt and b=ay/a,, the integral in Equation 5.3.8 is

f e_2”2 1| —a,T a 1+b
I 1-e - 2logl ————
b e~ %! al 4 el +b

e
Although we can get an analytical expression for Cy; it is complicated and
when combined with similar expressions for the other terms of the C ma-
trix, we are left with a matrix that term by term can be estimated analyti-
cally but when we invert this matrix, the analytical expressions are too
complicated to be useful.

An important aspect of the prediction analysis is presentation of the
results. For the class of experiments discussed in this section we reduced
our initial set of 7 variables to 5 by assuming that the experiments start at
time ¢ = 0 and that #,,, is equal to nAf. We can do a lot better than 5 vari-
ables if we combine the variables into dimensionless groups. Two obvious
dimensionless groups that characterize this experiment are the dimen-
sionless background a; / a; and the dimensionless duration of the experi-
ment z (i.e., @y * t,4). In Section 5.6 results are presented graphically as
functions of only these two variables.
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5.4 A Simple Example: A Straight Line Experiment

Probably the most frequently used experimental model is a straight line in
which x is the independent variable and y is the dependent variable:

y=a,+x-a, (5.4.1)

The purpose of the experiment might be computation of the parameter a,
and/or a, or perhaps the purpose might be determination of an equation
that can be used for interpolation. Whatever the purpose, to design the
experiment it is important to understand how the expected accuracy of the
results should be dependent upon the experimental variables.

The starting points for an analysis are models for the expected uncertain-

ties associated with the measured values of x and y (i.e., o, andO'yi).

Let us assume that both variables can be characterized as having constant
uncertainty:

(5.4.2)

From Equation 2.3.7 we see that the weights for all points are the same:

1 1
w; = = =W
(0, + (—af c.)) (Ky2 +(a,K,)) (5.4.3)
i ax i

Examining Equations 2.4.10 and 2.4.11 we see that the terms of the C
matrix can easily be determined:

i=n i=n i=n
w; z W;X; nW W) x;
_| i=1 i=1 _ i=1
C= i=n i=n - i=n i=n
2 2
W;X; Z W;X; WZ x; W) x; (5.4.4)
i=1 i=1 i=1 i=1

1 X g
=nW )
xavg (x )avg
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We are now in a position to estimate the values of 0, and 0, that we

can expect from the straight-line experiment using Equation 5.2.1:

( 2) 1/2
X / nW
o, =(CiV 2 = » g . (5.4.5)
o
avg avg
1/2
=(c;HV2 - . L/nW (5.4.6)

—(x )2
GO

All that remains is to choose values of x; and then determine the average
values of x and x*. For example, assume that the experiment will be per-
formed using values of x equally spaced from x; to x,,.

Ax=x;,—-x; =(x,—x,)/(n-1) (5.4.7)

The average value of x is simply (x;+x,)/2. The average value of x* can
be estimated using the following equation:

(x?) 1y = o xzdx /(x, —x,)

1 (x ) as n—w (5.4.8)

K} (x,, —xl)

For small values of n the accuracy of this estimation can be improved by
using x;-Ax/2 and x,,+Ax/2 as the limits of integration:

X, =x;—Ax/2

(5.4.9)
X, =x,+Ax/2



54 A Simple Example: A Straight Line Experiment 145

Using these limits of integration we get the following:

(x?) 1y = rb xldx /(x, - x,)
(5.4.10)

10 -x) 1
=—(x2+x x, +x%)
3 (xb xa) 3 b a’vb a

Substituting 5.4.10 into 5.4.5 and 5.4.6, after some algebraic manipulations
[WO67] we get the following estimations of the standard deviations that
can be expected from a straight line experiment with equally spaced points

and constant values of 0, ando, :

3 1/2
4 Xp
o, =| ——2 2 (5.4.11)
1 nW (x )3
1/2
1
o, = 27 v (5.4.12)
2 nW (x —x )2
b a

Noting that x, — x, = ndx, we can put Equation 5.4.11 into a physically
meaningful form using the following dimensionless parameter:

X avg X avg

r. = = 5.4.13
Y x,—-x, nAx ( )

This parameter is the midpoint of the x values normalized by the range of
the x values. It can be shown that Equation 5.4.11 is equivalent to the fol-
lowing [WO67]:

) 172
12r7 +1
X

Oy = 7 (5.4.14)

We thus see that if the purpose of the experiment is to measure a;, the best
design is to set r, = 0 by centering the points about x = 0. Clearly this is
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not always possible. For example, if only positive values of x are possible,
then the best that we could do is set r, = 1/2.

b
==
T T
= =
kY]
= |- 3
S S
~ O \
7 l = 7
Figure 5.4.1 An Experiment to Measure the Coefficient of Elasticity

of a Bar

The purpose of the preceding analysis is to develop equations that can be
used for the design of an experiment. To demonstrate how one would use
the equations, let us design an experiment to measure the coefficient of
elasticity of a bar in compression as shown in Figure 5.4.1. The independ-
ent variable x is the weight placed upon the bar (in newtons) and the
dependent variable y is the measured compression (in cms). Within the elas-
tic range, the behavior is assumed to be linear (i.e., Equation 5.4.1) and the
elastic coefficient is the slope of the line (i.e., @, with units cm/n). Let us
assume that the uncertainty of the weights are negligible (i.e., K, = 0) and
the uncertainty of the measured values of y are 0.1 (i.e., K, = 0.1). Using
Equation 5.4.3) the value of W is therefore 100. Let us assume that we
wish to measure a, to an accuracy of 0.01 cm/n and that the range of
weights that is feasible for this experiment is 10 newtons. How many dif-
ferent weights are needed to achieve the desired accuracy? Inserting these
numbers into Equation 5.4.12 we get the following:

1/2
o |12 1
az B nW (x —x )2
b~ "a (5.4.15)
1/2
12 1 3.464
= — =————=0.01
100~ 102 100n1 /2

Solving 5.4.15 for n we get a value of n =12. Note that this value is not a
function of r,. Thus the resulting slope could theoretically be measured
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from 0 to 10 newtons or from 5 to 15 newtons and the resulting accuracy
of the measured value of a, could be expected to be about the same. To
improve the accuracy we have 3 possibilities:

1) Improve the accuracy of measured values of y (i.e., reduce K,).
2) Extend the range (i.e., increase x; — X,).
3) Increase n.

A byproduct of the experiment is the resulting value of a; and we would
expect this value to be close to zero. If this value is significantly different
from zero we would have to question the applicability of Equation 5.4.1.
Let us assume that the experiment uses a range starting close to x = 0 and
therefore r, would be 1/2. From Equation 5.4.12 we would expect a value
of Og, = 0.058. If after the experiment has been performed, if the least
squares analysis of the data yields a value of a; that is outside a reasonable
range (for example a 2o range: -0.058 * 2 < a; < 0.058 * 2), then one
should seriously question all aspects of the experiment including the appli-
cability of the mathematical model (i.e., Equation 5.4.1).

5.5 Designing for Interpolation

The purpose of some experiments is to create a function that can be used
for interpolation. For such experiments the values of the unknown
parameters of the function are not of particular interest. They are, however,
of interest when taken together to be used for interpolation for any combi-
nation of the independent variable (or variables) within the range of the
experiment. To illustrate how one would go about designing such an ex-
periment, we can continue the analysis started in the previous section: the
straight line. In this section, the analysis is directed towards the resulting
line that is to be used for interpolation.

Using Equation 5.4.1 and the constant weight assumption (Egs. 5.4.2 and
5.4.3), we start our analysis from Equation 5.4.4: the expressions for the
terms of the C matrix. This matrix can be inverted to yield the terms of the
C”" matrix:
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1 z W;X; - Z W;X;
Cc' = i=1 i=1
Det I1=n I=n
2 Wiki Zw.- (5.5.1)
| =1 i=1
(.2
= ﬂ (x avg Xave
Det | - x,,, 1

where Det is the determinant of the C matrix:

Det-Zw,x ZW —(zw x;)?
i=1

=n'W*( (xz),,vg —(X4e)%)

(5.5.2)

Substituting 5.5.2 into 5.5.1 we get the following expression for the in-
verse C matrix:

C—l — 1 [(xz )avg _')iavg:| (5.5.3)

nW( (xz)avg - (xavg)Z) ~ Xug

We can now proceed to predict the ¢’s associated with interpolations that
should result from a straight line experiment. We use Equation 2.6.11 as
our starting point:

S [zpk=p af af

/
n-piiizoa; da,

o} & (2.6.11)

Noting that the expected value of § / (n — p) is 1, the predicted o’s are
computed using the modified form of 2.6.11:

j=pk=p
ZZ af af (5.5.4)

k
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For the straight line experiment we can carry this equation through to an
analytical solution, but for most relationships between x and y the best that
we can do is to simulate the experiment. For the straight line, the partial
derivatives are:

of of
2, and o0, X (5.5.5)

Substituting 5.5.5 into 5.5.4 and noting that Cy; = C5, we get the following:
o} =Cy +2xC; +x°Cy; (5.5.6)

Using the equations developed in Section 5.4 for the average values of x

and x* and then substituting them into Equation 5.5.3 and then 5.5.6, we

get the following equation for the variance that can be expected for any
value of x:

4

nW(x, —x,)*

o} (x; +x,x, + x> =3x(x;, +x,)+3x%) (55.7)

This equation is parabolic with minimum variance at the midpoint of the
range (i.e., x = (x,+x;) / 2). Substituting this value of x into 5.5.7 we get
the expected minimum value of the variance:

4 1 1
(02)in = C(xp+x)-=x,x,) 55.8
s nW(x,—x,)" 4 b 2 et (5:38)

The expected maximum variance is noted at the extremes of the range (i.e.,
X =x, and x = Xxp):

4

o) (xj =2x,x, + x) (5.5.9)
b~ a

2
(O-f)max =

To design an experiment we should establish the maximum variance as a
design objective. For example, let us assume that the measurements of y
will be accurate to 0.1 (i.e., K, = 0.1) and therefore W =100 (i.e., 1 /Kyz).
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Let us further assume that the data points will be equally spaced from x =
0.1 to 0.3. Setting a design objective of maximum standard deviation =
0.04 (i.e., 0y <0.04), we can use equation 5.5.9 to determine the number of
points needed to theoretically meet this objective (at least in the design
of the experiment):

4/100
(03 )pax = 0.047 = (032 —2%0.0%03+0.1%)
%
n+*0.2
0.04%0.04 004

N 0.04*n n

(5.5.9)

Solving for n we get a value of m =1/ 0.04 = 25. In other words, if we
equally space 25 point in the range x from 0.1 to 0.3, we should obtain a
line that if used for interpolation will yield values of y with oy no worse
than 0.04. It should be remembered that for the purpose of designing the
experiment we have assumed a value of § / (n — p) = 1, so when the ex-
perimental data is actually analyzed, the values of oy might be larger or
smaller than the design values. Nevertheless, the design process helps us
choose the experimental variables that should yield results that are rea-
sonably close to our design objectives.

In this section the mathematical model was simple enough to allow us to
develop analytical equations that were useful in designing for interpola-
tion. When the mathematical model is complicated, the use of computer
simulations is the obvious approach to design. In the following section a
more complicated experiment is analyzed and predicted values for interpo-
lations at 10 points are included in a simulation (i.e., Figure 5.6.2). In the
figure the column headed PRED-SIGY are the predicted values of oy .

5.6 Design Using Computer Simulations

In Section 5.3 we discussed an experiment to measure half-life of a radio-
active isotope based upon the following exponentially decaying mathe-
matical model:

_az't

y=f(t)=a1-e +a, (5.3.1)
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The experiment is performed by observing the number of counts recorded
in n time windows of length A¢. We noted that two dimensionless groups
that characterize this experiment are the dimensionless background a; / a,
and the dimensionless duration of the experiment z (i.e., @; fyux = @ RAY).

In Section 5.4 we developed analytical expressions for the unknown pa-
rameters in a simple straight-line experiment but for experiments based
upon Equation 5.3.1, the complexity of the equations led to the conclusion
that for these experiments, the most reasonable approach is to use com-
puter simulations. This conclusion was reached after examining the equa-
tions needed to compute terms of the C matrix (e.g., Equation 5.3.7 thru
5.3.9). Not only is this a 3 by 3 matrix, it must also be inverted to obtain
Cz_zl . This term is needed because the purpose of the experiment is to
measure a, including an estimate of its standard deviation. The predicted
value of this standard deviation is :

o, =Cy, (5.6.1)
To perform the simulation, it should be realized that the n values of the #’s
should be set at the middle of the time windows rather than at the begin-
ning or the end. If n is large then this effect is negligible, but for small n
the effect can be noticeable. Thus if the experiment is started at # =0, the
value of #; = At/2 and ¢, = t,,..— At/2. Results from a series of simulations
confirm that the following dimensionless group W, is only a function of
az/a;and z:

g o
\Pz = aaz (alnAt)l/z = aaz (altmax )1/2 = F(z; a3/a1) (562)
2 2

In Figure 5.6.1 W3 is plotted as a function of z for several different values
of a3 / @;. The results in the figure were based upon simulations. An ex-
ample of a simulation of one combination of the experimental parameters
is shown in Figure 5.6.2. This simulation is for the combination a; = 10000,
a =1, az = 500, z =10 and » =10. The simulation was generated
using the Prediction Analysis feature of the REGRESS program [see Sec-
tion 6.8]. In the figure PRED SA(K) is "predicted o,;" and PRED SIGY
is "predicted oy ". Note that for this particular combination of a,, z and n
the value of At is one and ¢,,,.is 10. The 10 values of T and Y were gener-
ated using Az =1 and the input equation for ¥ starting from the mid-point
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of the first time window (i.e., 4 = 0.5). Note that the predicted value of
Op/ay is 0.01799. Using Equation 5.6.2 the value of W, is 0.01799 *
(10000 * 10)"? = 5.69. Comparing this to the value of 5.107 listed in Ta-
ble 5.6.1 we see that there is a difference of about 10%. This difference is
due to the fact that the values in the table (and in Figure 5.6.1) were gener-
ated using a large value of n and can thus be considered as the asymptotic
values. It is reassuring to see that using Figure 5.6.1 yields reasonable
estimates of the predicted value of 6;,/a, even for n as small as 10.
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az/a;=0—

: |
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Figure 5.6.1 W, versus z for Several Values of a; / a,

These results can be used to predict the value of o;,/a, that can be ex-
pected from any combination of the experimental parameters. Using Fig-
ure 5.6.1 and Equation 5.6.2, the value of o,,/a, can be estimated for a
range of combinations of 3 dimensionless parameters: as/ay, z, and ai,qy.
It should be noted that our objective was to measure half-life but Equation
5.6.2 shows results for the relative uncertainty that we should expect for
a,. Since half-life is inversely proportional to the decay constant a, (Equa-
tion 1.1.2), the relative uncertainty in the half-life 4 is the same as the rela-
tive uncertainty in a, :

Q

(o)
Zho - Za2 (5.6.3)

h a,
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As an example of the use of Equation 5.6.2, consider the experimental de-
sign problem posed in Section 5.1: the measurement of a, to 1% accuracy
for a radioactive isotope with a half-life of approximately 1 second. We
see from Figure 5.6.1 that W, is close to its minimum value at z = 10 so let
us choose this value of z as the design value. Since a, is approximately
equal to 0.693 / half-life, a,=0.693/1.0, and t,,sx =72/ a,=10/0.693 =
14.4 seconds. In Table 5.6.1 values of W, are listed for different values of
the ratio a; / @, and then the value of @, required to obtain g,,/a, = 0.01 are
computed. If the value of a3 is estimated by a separate experiment, we can
thus estimate the value of a, that yields the required accuracy. It should be
remembered that we are not guaranteed that the resulting accuracy will be
exactly 1%. The actual results of experiments based upon this design
should be y*distributed about this average value of 1%.

From the table we see that if the value of the noise ratio a; / a; is close to
zero, then the design value of a; is about 7500 counts per second. As the
noise ratio increases, the design value of a; must be increased. Let us say
that we are limited to a value of @, equal to 15000. We would thus be lim-
ited to a noise ratio of about 0.04. In other words, the value of a3 would
have to be limited to about 0.04 * 15000 = 600 counts per second.
Whether or not this is achievable is dependent upon the actual experimen-
tal equipment and environment. However, it is extremely useful to know
this prior to actually running the experiment.
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PARAMETERS USED IN REGRESS ANALYSIS: Thu Jun 24
08:58:27 2004

INPUT PARMS FILE: tab56l.par

INPUT DATA FILE: tab56l.par

REGRESS VERSION: 4.08, Dec 22, 2003

Prediction Analysis Option (MODE='P')

N - Number of recs used to build model : 10
NCOL - Number of data columns : 0
NY - Number of dependent variables : 1
Y VALUES - computed using A0 & T values
SYTYPE - SIGMA Y = CY1l * sqrt(Y) CYl: 1.000
X Values - computed using interpolation table
STTYPE - Sigma type for T : 0
Function Y: Al*EXP(-A2*T) + A3
K A0 (K) A (K) PRED_SA (K)
1 10000.00 10000.00 186.04627
2 1.00000 1.00000 0.01799
3 500.00000 500.00000 10.03220
POINT T YCALC PRED SIGY
1 0.50000 6565.30660 78.44070
2 1.50000 2731.30160 33.92022
3 2.50000 1320.84999 23.05382
4 3.50000 801.97383 13.06935
5 4.50000 611.08997 8.96969
6 5.50000 540.86771 8.81757
7 6.50000 515.03439 9.35975
8 7.50000 505.53084 9.71965
9 8.50000 502.03468 9.89662
10 9.50000 500.74852 9.97538
Figure 5.6.2: Prediction Analysis for z =10 and a5/ a; = 0.05.
as/ a; W, a1 = (Y2/0.01)> / by
0.00 3.292 7526
0.05 5.107 18112
0.10 5.856 23814
0.20 6.941 33457
0.30 7.792 42163
0.40 8.526 50481
0.50 9.183 58564

Table 5.6.1 a; as function of a;/ a; for 7 = axt,;.. = 10
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5.7 Designs for Some Classical Experiments

In the book Prediction Analysis [WO67] I analyzed a number of classical
experiments and included equations and graphs that allow the user to pre-
dict the Oq,’s for combinations of the experimental variables. The
mathematical models considered in that book included polynomial func-
tions (Chapter 5), exponential functions (Chapter 6), sine series (Chapter
7) and Gaussian functions (Chapter 8). Three alternative uncertainty mod-
els were analyzed for each mathematical model:

1) Constant uncertainty: 0, = K,

2) Constant fractional uncertainty: o, = K, y;
1/2

3) Counting statistical uncertainty: o, = K yYi
The uncertainties for the independent x variable were assumed to be either
0 or a constant value K,. In this chapter two different cases were discussed
in the previous section:

1) The first order polynomial function (i.e., the straight line) with
constant uncertainty in the values of x; and y; (Section 5.4 and
5.5).

2) The exponential function with background (Equation 5.3.1)
and with counting statistics as the uncertainty model for the
values of y; (Sections 5.3 and 5.6).

The first case was chosen to illustrate an analytical approach to design in
which equations used to predict the Oy, s were developed. The second

case was chosen to illustrate the use of simulations to develop graphs for
predicting the Og;, ' when development of equations is too cumbersome.

In this section three additional models are considered. The choice of mod-
els is based upon their usefulness and includes the following:

1) Experiment 1: A straight-line model with equally spaced x values
and constant fractional uncertainty in the values of y.

2) Experiment 2: A decaying exponential model with equally spaced #
(time) values and uncertainty in the values of y based upon counting
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statistics. For this experiment the background term is assumed to be
negligible.

3) Experiment 3: A Gaussian peak model with equally spaced x values
and uncertainty in the values of y based upon counting statistics.

Experiment 1 :

A useful variation of the model considered in Sections 5.4 and 5.5 is the
straight line but with constant fractional uncertainty for the data points. It
is assumed that the » data points will be equally spaced along the x axis
and all values of x are greater or equal to zero. The simple equations de-
veloped for constant uncertainty can be used when the range of the y val-
ues is not large. However, when there are considerable differences in the
values of y (for example, y, / y; is either much greater or much less than 1,
the simple equations are not applicable. Figure 5.7.1 illustrates the type of
data that one might expect in such experiments. A common usage for such
experiments is to fit a line to the data in order to determine the value of a,
(i.e., y for x = 0) when it is impossible to measure the value directly. Also,
many experiments are performed in which the purpose is to determine the
slope of the line.

300 3+
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Figure 5.7.1  Straight Line Fit to Data with Constant
Fractional Error

Analysis of this class of experiments yields equations that are extremely
complicated and are therefore not particularly useful. Results are pre-
sented graphically in Figures 5.7.2 and 5.7.3 for two dimensionless groups:
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1/2
O, n
6, =41 (5.7.1)
K,y
1/2
0' —
6, = a2 Xy = XN (5.7.2)
K,y

The denominator of these groups is the value of g, for the data point with
the greatest uncertainty (either K,y; or K,y,). The results for these groups
are presented as functions of y,/1. The results are asymptotic values as n
approaches infinity but are good approximations even for small values of
n. The first group is also a function of r, (see Equation 5.4.13). Note that
the results are exactly the same as computed using Equations 5.4.14 and
5.4.15 when y,/y1 = 1 if we use K, pma in place of K|, in these equations.
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Figure 5.7.2 6, versus y, /y; for several values of r,
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Figure 5.7.3 6, versus y,/y;

As an example of the use of Figures 5.7.2 and 5.7.3, assume that we are
planning an experiment to fit a line to measurements of y versus x from x =
5 to x =15. Assume that the x’s will be equally spaced with Ax =0.5 and
therefore m = 21. If the values of y are measured to 5% accuracy and the
range of y values is from about 2 to about 20 (i.e., y, /y; = 10), what sort
of accuracy can we expect in the resulting values of a; and a,? The value
of r, for this experiment is Xy, / (x, —x1) = 10 / 10 = 1 so from Figure
5.7.2 the value of @, is about 1.1. Using Equation 5.7.1 the expected value
of 0,y = 1.1%0.05%20 / 21"?= 0.24. From Figure 5.7.3 the value of 8, is
about 1.5 so from Equation 5.7.2 the expected value of 0,5 = 1.5%0.05*
20 /(10%21"%)=0.033.

Experiment 2:

Another useful experiment is similar to the experiment described in Section
5.3 (i.e., measuring the count rate of a radioactive isotope as a function of
time) but without a significant background count rate. The uncertainties for
the values of y are assumed to be based upon counting statistics. In place of
Equation 5.3.1, the following mathematical model is used:

y=ft)=a,-e " (5.7.3)
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Since there is no background count rate, we can define a; as the number of
counts per Af seconds and therefore the uncertainties in the measured val-
ues of y will be y}/z. Defining z as in Section 5.6 (i.€., 2 = @3 by =a2nA41),
an equation can be developed for estimating @, [WO67]:

o f-e)]”
\PZ = Lz(aln)l/z = [zTeti| (574)

Where the determinant of the C matrix is computed as follows:

Det=(0—-e%)2-e (22 +27+2)-(1-e % (z+1))? (5.7.5)

As an example of the usage of Equation 5.7.4, consider an experiment in
which a, is expected to be approximately 2 (sec”’) but we wish to measure
it to 1% accuracy. Let us choose a design value of z =10 based upon n =
100 and A £=0.05 sec. (Note: z=a,nAf). Substituting this number into
Equation 5.7.5 we see that Det is very close to 1 and therefore W, is very
close to 10", Solving for a; :

Y, 10
n(o,, /a,)  100(0.01)°

a, = =1,000 (5.7.6)

Is there an optimum value of z for running this experiment? The optimum
value is the value that minimizes a,. Values of ¥, are shown in Table
5.7.1 for various values of z. We see that ¥, is minimized at about z = 4.
For this value of z we only need about 585 counts in the first time window
to achieve an expected accuracy of 1% in the measured value of a,.
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2 qa a
1.0 4.465 1994
2.0 2.895 838
3.0 2.503 627
3.5 2.439 595
4.0 2.419 585
4.5 2.431 591
5.0 2.463 607
10.0 3.169 1004
15.0 3.871 1498
20.0 4.447 1978

Table 5.7.1 ¥, and a, versus z. a; is computed using Equation 5.7.6.

Experiment 3:

The final experiment discussed in this section is based upon data that is
modeled using a Gaussian peak with unknown height (a,), peak width (a5),
and peak location (a;). The mathematical model for the values of y as a
function of x is:

2
_(ﬂ]
y=ae (5.7.7)

Typically for experiments that are based upon this model data is recorded
in some sort of multi-channel analyzer for some fixed time duration of the
experiment. The x’s are the mid-points of the channels. At the end of the
experiment the number of counts recorded in each channel is analyzed

based upon Equation 5.7.7. The uncertainties for the values of y are as-

sumed to be based upon counting statistics: o, = y; /2 InF igure 5.7.4,

y is shown as a function of # (a dimensionless variable):

(5.7.8)

As shown in 5.7.4 we assume that the data will be centered near the loca-
tion of the peak (i.e., at # = 0). In other words, u,,;, will be approximately
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equal to -2,,,. Results are shown in Figure 5.7.5 for Qi (k = 1, 2 and 3)
VErSuS U, The Q’s are defined as follows:

1/2
(o)
Q, _ Gui(na))"” (5.7.9)
a
1/2
Q, _oulma) s, (5.7.10)
a,

As an example of the usage of these results, consider an experiment in
which we want to measure a; (the peak location) to an accuracy of 0.01.
The value is somewhere near x = 20 and our data ranges from 15 to 25.
The approximate value of a, is 2 therefore the value of #,,, is (25-20)/
2=2.5. Although it is difficult to read the value of Q3 from Figure 5.7.5 it
appears to be about 1.2. (The result from an actual simulation for this
experiment is 1.19). Assuming the experiment will be performed using a 256
channel analyzer, what value of a; is required to obtain the desired accu-
racy of 0.01? From Equation 5.7.10 :

2 )2
a, =(93“;) - (“9*2)2 - 221 (5.7.11)
no,;  256%0.01
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Figure 5.7.4 A Gaussian Peak with no Background

These results indicate that the experiment should be run long enough so
that about 221 counts are recorded in the central channel. We can also ask
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how accurately the results for a; and a, should be in the same experiment.
Since €, and Q3 are approximately the same, the value of o, should also
be about 0.01. The value of ; for this experiment is 2.07 so from Equa-
tion 5.7.9 we estimate that @, should be about 2.07 * 221"%/256'* = 1.92.
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Figure 5.7.5  Q, versus u,,,,

5.8 Choosing the Values of the Independent Variables

In the previous sections of this chapter we assumed that the values of the
independent variable x were equally distributed along the x axis (i.e., Ax is
constant). However, the choice of constant Ax is not necessary and might
not be the best choice for the selection of the values of the x variable. In
particular, for experiments in which there is a large expense associated
with each data point, it is worth studying the effect of the choice of the x
variables upon the resulting accuracy of the proposed experiment.
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Figure 5.8.1 Experiment to Measure Effectiveness of a Radiation
Shield

As an example, consider an experiment to measure the effectiveness of a
radiation protection shield. The experiment will be run by placing 10 de-
tectors within the shield. The radiation level will be measured at the 10
detector points simultaneously by recording radiation pulses at the detec-

tors. The total number of counts at detector i located at point x; is y; with

uncertainty 0, = y; "2 The experimental setup is shown in Figure 5.8.1.

The applicable mathematical model is similar to Equation 5.7.3 but for this
experiment the independent variable is x measured in units of length (cm)
rather than 7 time units (e.g., sec):

y=f(x)=a1-e_a2'x (5.8.1)
We are interested in determining the values of both a; and a,. The units of
a, are in cm” and the intensity a; is in units of counts. Upon completion of
the experiment the value of a; can be converted into a count rate by divid-
ing the measured value by the duration of the experiment. Let us assume
that the closest that we can get to the left side of the shield is 1 cm. If we
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were to choose a constant value of A x = 1 then the detectors would be
placed at x =1, 2, 3, .. 10. If, however, we don’t insist upon constant 4 x,
can we improve the accuracy of the proposed experiment? A preliminary
measurement using only 2 points indicates that a, is approximately 0.5.

To study the problem of placement of the detectors, let us assume the fol-
lowing model starting from x;:

X, =x; +Ax

X3 =X +Ax(1+r)

X, =X, +Ax(1+r+r2)

X, =X, +Ax(1+r+r2 +...r”'2)

If we wish to have more points closer to the left side of the shield, we
would choose a value of > 1. Conversely, if we wish to have more points
closer to the right side of the shield, we would choose a value of r < 1. In
Figure 5.8.2 values of the dimensionless groups ¥, and ¥, are plotted
for various combinations of r and Ax. ¥, is defined in Equation 5.7.4.
P, is defined as follows:

(o}
¥, =4 (q,n)"? (5.8.2)
a,
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Figure 5.8.2 ¥, and ¥, versus Ax for 3 values of r

These results were obtained using simulations with the REGRESS pro-
gram. The simulation output for Ax= 1.25 and » = 0.9 is shown in Figure
5.8.3. The curves in Figure 5.8.2 indicate that there is an optimum value
of Ax that minimizes ¥, and another optimum value that minimizes 'V,
for each value of r. However, comparing the results in the table for r = 0.9
and 1.1 to r = 1 (i.e., constant 4x), we note that the effect of » upon both
¥, and P, is not very dramatic.

As an example of the usage of these results, let us design the experiment so
that we run it long enough so that 1000 counts are recorded at the point
x=1. From Figure 5.8.3 we see that if @; = 1000, then the number of counts at
x =1 is about 607 (regardless of the choice of Ax and r), so the value of a,
should be increased by a factor of 1000 / 607 to 1648. If we use Ax = 1.25,
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and r = 0.9, the values of W;and W, are 4.47 and 2.74. From Equation
5.8.2 the expected value of 0, is 4.47 * (1648/10)"* = 57.4. From Equa-

tion 5.7.4 the expected value of &, is 2.74 * 0.5/ (1648*10)"* = 0.0107.

Figure 5.8.3 Simulation results for x =1.25, r = 0.9, a, =1000, a, = 0.5

PARAMETERS USED IN REGRESS ANALYSIS: Wed Nov 03
INPUT PARMS FILE: fig583.par
INPUT DATA FILE: fig583.dat
REGRESS VERSION: 4.10, Nov 1, 2004
Prediction Analysis Option (MODE='P')

STARTREC - First record used : 1
N - Number of recs used to build model : 10
NCOL - Number of data columns : 1
Y VALUES - computed using A0 & X values
SYTYPE - Sigma type for Y : 4
TYPE 4: SIGMA Y = CY * sqrt(Y) Ccy: 1.000
M - Number of independent variables : 1
Column for X : 1
SXTYPE - Sigma type for X : 0
Analysis for Set 1
Function Y: Al*EXP(-A2*X)
POINT X Y SIGY YCALC
1 1.00000 606.53066 24.62784 606.53066
2 2.25000 324.65247 18.01811 324.65247
3 3.37500 184.98140 13.60079 184.98140
4 4.38750 111.49785 10.55925 111.49785
5 5.29875 70.69538 8.40805 70.69538
6 6.11888 46.91396 6.84938 46.91396
7 6.85699 32.43572 5.69524 32.43572
8 7.52129 23.26873 4.82377 23.26873
9 8.11916 17.25627 4.15407 17.25627
10 8.65724 13.18573 3.63122 13.18573
K A0 (K) A (K) PRED SA (K)
1 1000.00 1000.00 44.71479

2 0.50000 0.50000 0.01372
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POINT X YCALC PRED SIGY
1 1.00000 606.53066 20.99456
2 2.25000 324.65247 8.74574
3 3.37500 184.98140 5.24246
4 4.38750 111.49785 3.98922
5 5.29875 70.69538 3.19238
6 6.11888 46.91396 2.56505
7 6.85699 32.43572 2.06701
8 7.52129 23.26873 1.67806
9 8.11916 17.25627 1.37711

10 8.65724 13.18573 1.14454

Figure 5.8.3 (cont) Results for x =1.25, r=0.9, a,=1000, a, =0.5

5.9 Some Comments about Accuracy

In this chapter expected or predicted accuracy is discussed. Design of ex-
periments for several classes of well known experiments is facilitated by
providing equations or graphs for predicted uncertainty. For experiments
not covered in this chapter, the methodology for obtaining similar predic-
tion tools is developed. What should be understood is the accuracy of
these uncertainty predictions.

In Section 5.2 it is explained that if the uncertainty models for the individ-
ual data points are reasonable, the expected value of §'is n—p and S/ n—p is
one so therefore the predicted value of the standard deviation of a is:

o, =(Cp)t? (5.2.1)
and not the actual value as formulated in Equation 2.5.1:

—1)1/2

S
Oy = (m Cik (2:5.1)

As explained in Section 3.2 the value of § is ;{2 (chi-squared) distributed
with a mean value of n—p, so in actuality, we can predict a range of values
for the Og, ’s- To appreciate the magnitude of this range, values of S / n—p
are listed for various values of n—p and erin Table 5.9.1. The parameter
ais the fraction of the distribution above the values listed in the columns.
Clearly, as n—p increases the range decreases and therefore the predicted
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values for o, ., are more accurate. However, this begins to appear as over-
kill! When planning most experiments all we usually need are "ball-park"
estimates of the values for 0, that we can expect from the experimental

results. The values in this table can be extended to larger values of k = n-p
by using the normal approximation to the Zz distribution. The standard

deviation of the distribution is approaches +/2k for large values of k so

the standard deviation of S/ k is \/ﬁ /k=~2/k . Forexample, for k =
100, the standard deviation is (2/100)"* = 0.141. For a standard normal
distribution the 99% and 1% limits are at-2.326 and +2.326 so the limits
for S/ kare1-0.141 * 2326 =0.672 and 1 + 0.141 * 2.326 = 1.328 as
listed in the table).

n-p 0=0.99 0=0.95 0=0.05 0=0.01
4 0.074 0.178 2.372 3.319
6 0.145 0.273 2.099 2.802
8 0.205 0.342 1.938 2.511
10 0.256 0.394 1.831 2.321
15 0.349 0.484 1.666 2.039
20 0.413 0.543 1.571 1.878
25 0.461 0.584 1.506 1.773
30 0.498 0.615 1.459 1.696
50 0.535 0.671 1.329 1.465

100 0.672 0.724 1.276 1.328

Table 5.9.1 Values of S / n—p for combinations of »—p and «

As an example of the usage of the results in this table, consider the ex-
periment analyzed in Section 5.8. In the experiment it was proposed to
gather radiation data at 10 detector locations and the expected accuracies
for the values of &, and o,, were predicted to be 57.4 and 0.0107. Us-
ing Table 5.9.1, we can add ranges to these values. The value of n—p is 10
— 2 = 8 so we can expect that if the experiment is repeated many times,
90% of the values of § / n—p will be in the range 0.342 to 1.938. Substitut-
ing these values into Equation 2.5.1 the resulting 90% range for o, would

be 19.6 to 111 and the resulting range for 0, would be 0.00365 to 0.0207.

In other words, the ratio of the maximum and minimum values of these
ranges is greater than a factor of 5 (i.e., 1.938 / 0.342 = 5.67). We see that
for this experiment the predicted values of 0, and &, are really just ball-
park estimates!
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6.1 Introduction

One of the earliest applications of digital computers was least squares
analysis of experimental data. The Manhattan Project during World War
II included a large emphasis on experiments to determine basic properties
such as half lives of radioactive isotopes, radiation shielding parameters,
biological effects of radiation and many other properties of vital interest.
The fundamentals of nonlinear least squares analysis was known then and
was summarized in a book by W. E. Deming in 1943 [DE43]. An unclassi-
fied Los Alamos publication in 1960 by R. Moore and R. Zeigler described
the software used at Los Alamos for solving nonlinear least squares prob-
lems [MO60]. Besides describing their general purpose software, they dis-
cussed some of the problems encountered in converging to a solution for
some mathematical models.

Most readers of this book are either users of available NLR (nonlinear
regression) software or are interested in evaluating and/or obtaining NLR
software. Some readers, however, will be interested in writing their own
software to solve a specific problem. Chapter 2 includes sufficient details
to allow a user to rapidly get a system up and running. For all readers it
should be useful to survey features that one would expect to see in a gen-
eral purpose NLR program. It should be emphasized that there is a differ-
ence between a general purpose NLR program and a program written to
quickly solve a specific problem. Indeed, using a language like
MATLAB, some of my students in a graduate course that I have been
teaching for a number of years (Design and Analysis of Experiments) have
produced NLR code to solve specific homework problems.

Statistical software is available through the internet from a massive variety
of sources. A Google search for "statistical software" turned up 9.5 mil-
lion hits! Some of the software is free and other software programs are
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available for a price that can vary over a wide range. Some of the software
includes nonlinear regression applications. Refining the search by adding
"nonlinear regression" turned up over 600,000 hits. Many of these hits de-
scribe nonlinear regression modules that are part of larger statistical pack-
ages. Further refining the search to S-plus, the number of hits was over
26,000. Nonlinear regression software in S-plus is described by Venables
and Ripley [VE02]. Huet et. al. describe a program called NLS2 that runs
under the R statistical software environment as well as S-plus [HUO3].
Refining the search to SPSS, the number of hits was over 30,000. The SPSS
Advanced Statistics Manual includes details for nonlinear regression
analyses within SPSS [ZE98]. Refining the search to SAS, the number of
hits was about 51,000. The NLIN procedure in the SAS system is a gen-
eral purpose nonlinear regression program and is described in a paper by
Oliver Schabenberger [SC98]. Refining the search to MATLAB, over
41,000 hits were noted. MATLAB m files for performing nonlinear re-
gression analyses are included in [CO99]. The MATLAB Statistical Tool-
box includes a function called n/infit for performing nonlinear regression
[www.mathworks.com/products/statistics].

In Section 6.2 features that are common to general purpose NLR programs
are described and features that are desirable but not available in all the
programs are also described. In Section 6.3 the NIST Statistical Reference
Datasets are discussed. These well-known datasets are used to evaluate
NLR programs and search algorithms. In Section 6.4 the subject of con-
vergence is discussed. For most users, performance of NLR programs is
primarily based upon a single issue: does the program achieve conver-
gence for his or her problems of interest? In Section 6.5 a problem associ-
ated with linear regression is discussed. Multi-dimensional modeling is
discussed in Section 6.6 and software performance is discussed in Section
6.7.

6.2 General Purpose Nonlinear Regression Programs

There are a number of general purpose nonlinear regression programs that
can easily be obtained and allow the user to run most problems that he or
she might encounter. Some of the programs are offered as freeware and
some of the programs must be purchased. Some programs are offered on a
free trial basis but must then be purchased if the user is satisfied and
wishes to use the program after termination of the trial period. This sec-
tion includes a survey of features that one encounters while reviewing
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nonlinear regression software. The purpose of this chapter is to provide
the reader with the necessary background required to make a reasoned
choice when deciding upon which program to use for his or her specific
applications.

When one works within the framework of a general purpose statistical
software environment (e.g., SAS, SPSS, S-plus, MATLAB Statistical
Toolbox), a reasonable choice for nonlinear regression is a program that is
compatible with the environment. Data created by one module of the sys-
tem can then be used directly by the nonlinear regression module. Alterna-
tively one can use a general purpose nonlinear regression program that
runs independently (i.e., not within a specific statistical software environ-
ment). One problem with this alternative is data compatibility but this
need not be a major obstacle. Most statistical software environments are
Excel compatible, so if the nonlinear regression program is also Excel
compatible, then data can be easily moved from the statistical software en-
vironment through Excel to the nonlinear regression program. In addition,
ASCII text files can be used by almost all general purpose programs and
statistical environments.

To qualify as a general purpose nonlinear regression program I feel that as
a minimum, the following features should be included:

1) Mathematical models should be entered as input parameters.

2) The program should accept nonlinear models with respect to
the unknown parameters (and not just nonlinear with respect to
the independent variables).

3) There should be no need for the user to supply derivatives
(neither analytical nor numerical) of the mathematical model.

4) The program should be able to accommodate mathematical
models that are multi-dimensional in both the dependent and
independent variables.

5) The user should be able to weight the data according to any
weighting scheme of his or her choosing.

6) The program should include a sophisticated convergence algo-
rithm. The National Institute of Standards nonlinear regres-
sion datasets (described in Section 6.3) provide a rich variety
of problems that can be used to test the quality of a program’s
ability to achieve convergence.

In addition, there are a number of desirable features that one would like to
see in a general nonlinear regression program:
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1) Allow the user to name the dependent and independent vari-
ables and the unknown parameters.

2) Allow the user to define symbolic constants.

3) Allow specification of Bayesian estimators for the unknown
parameters.

4) Include a simulation feature useful for designing experiments.
(See Chapter 5 for a discussion and examples related to this
feature.)

5) Allow input of Excel text files.

6) Include a feature to generate an interpolation table that lists
values of the dependent variable and their standard deviations
for a specified set of the independent variable or variables.

7) Allow program usage from within a general purpose statistical
or programming environment.

8) Include a feature for generation of graphical output.

Treating mathematical models as input parameters is probably the most
important feature of a general purpose NLR program. If the user is forced
to program a function for every problem encountered, then the NLR pro-
gram is not really "general purpose". If the user is working in an interac-
tive mode and notes that a particular function does not yield results of
sufficient accuracy, he or she should be able to enter a new function without
having to exit the NLR program to reprogram the function.

The need for symbolic constants is a feature that can be most useful for
problems in which convergence is difficult. This subject is discussed in
Section 6.4.

There are several debatable features that are really a matter of user prefer-
ence. Should the program use a parameter file for specifying the parame-
ters of a particular analysis or should the program work through a GUI
interface? Today, most computer programs (not just nonlinear regression
programs) are interactive and allow the user to specify what he or she
wishes to do thru a menu driven series of questions. For nonlinear regres-
sion, the number of parameters can be considerable so if the program is
accessed through a GUI interface, there should be some method for short-
cutting the process when the change from a previous analysis is minor.
This particular problem is avoided if parameter files are used. All one has
to do is edit the parameter file and make changes or perhaps copy the file
under a new name and then change the new file.



6.3 The NIST Statistical Reference Datasets 173

The need for graphic output is a very reasonable user requirement, but
should it be an integral part of an NLR general purpose program? As long
as one can easily port the data to another program that supports graphics,
then this should be a reasonable compromise. For example, if the NLR
program outputs text data, this output can then be inputted to a program
like Excel to obtain the necessary graphical output.

6.3 The NIST Statistical Reference Datasets

The U.S. National Institute of Standards and Technology (NIST) initiated
a project to develop a standard group of statistical reference datasets
(StRD’s). In their words the object of the project was "to improve the ac-
curacy of statistical software by providing reference datasets with certified
computational results that enable the objective evaluation of statistical
software." One of the specific areas covered was datasets for nonlinear
regression. The NIST StRD project home page can be accessed at:

http://www.itl.nist.gov/div898/strd/index.html

To examine the datasets, go into Dataset Archives and then Nonlinear
gression. A summary of the NIST nonlinear regression datasets is
cluded in Table 6.3.1:

Name Difficulty | Parms | Num Function
pts
Misrala Lower 2 14 | bl1*(1-exp[-b2*x])
Chwirutl Lower 3 214 | exp[-b1*x]/(b2+b3*x)
Chwirut2 Lower 3 54 | exp(-b1*x)/(b2+b3*x)
Lanczos3 Lower 6 24 | bl*exp(-b2*x) +

b3*exp(-b4*x) + b5*exp(-b6*x)
Gaussl Lower 8 250 | bl*exp(-b2*x )+

b3*exp( -(x-b4)**2 / b5**2 ) +
b6*exp( -(x-b7)**2 / b8**2 )
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Name Difficulty | Parms | Num Function
pts
Gauss2 Lower 8 250 | Same as Gaussl
DanWood Lower 2 6 b1*x**b2
Misralb Lower 2 14 | bl * (1-(14b2*x/2)**(-2))
Kirby2 Average 5 151 | (bl +b2*x + b3*x**2)/
(1 + b4*x + b5*x**2)
Hahnl Average 7 236 | (bl+b2*x+b3*x**2+b4*x**3) /
(1+b5*x+b6*x**2+b7*x**3)
Nelson Average 3 128 | bl - b2*x1 * exp[-b3*x2]
MGH17 Average 5 33 bl + b2*exp[-x*b4] +
b3*exp[-x*b5]
Lanczosl Average 6 24 | bl*exp(-b2*x) + b3*exp(-b4*x)
+ b5*exp(-b6¥x)
Lanczos2 Average 6 24 [ Same as Lanczosl
Gauss3 Average 8 250 | Same as Gaussl
Misralc Average 2 14 | bl * (1-(14+2*b2*x)**(-.5))
Misrald Average 2 14 | b1*b2*x*((1+b2*x)**(-1))
Roszmanl Average 4 25 | bl - b2*x - arctan[b3/(x-b4)]/pi
ENSO Average 9 168 | bl +b2*cos( 2*pi*x/12) +
b3*sin( 2*pi*x/12) +
b5*cos( 2*pi*x/b4 ) +
b6*sin( 2*pi*x/b4d ) +
b8*cos( 2*pi*x/b7 ) +
b9*sin( 2*pi*x/b7)
MGHO09 Higher 4 11 b1*(x**2+x*b2) /
(x**2+x*b3+b4)
MGHI10 Higher 3 16 | bl * exp[b2/(x+b3)]
Higher 7 37 | (bl +b2*x + b3*x**2 +
Thurber b4*x**3) /
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NIST/ITL StRD

Dataset Name: BoxBOD (BoxBOD.dat)
Description: These data are described in detail in
Box, Hunter and Hunter (1978). The response variable

is biochemical oxygen demand (BOD) in mg/l, and the
predictor variable is incubation time in days.

Reference: Box,G.P., W.G.Hunter, and J.S.Hunter(1978).
Statistics for Experimenters.
New York, NY: Wiley, pp. 483-487.

Data: 1l Response (y biochemical oxygen demand)
1 Predictor (x = incubation time)
6 Observations
Higher Level of Difficulty
Observed Data

Model: Exponential Class
2 Parameters (bl and b2)

y = bl*¥(l-exp[-b2*x]) + e

Start 1 Start 2 Parameter Standard Deviation
bl=1 100 2.1380940889E+02 1.2354515176E+01
b2=1 0.75 5.4723748542E-01 1.0455993237E-01
Residual Sum of Squares: 1.1680088766E+03
Residual Standard Deviation: 1.7088072423E+01
Degrees of Freedom: 4
Number of Observations: 6
Data: Yy x

109 1

149 2

149 3

191 5

213 7

224 10

Figure 6.3.1 Data and Results for NIST Dataset BoxBOD
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Name Difficulty | Parms | Num Function
pis

(1 +b5*x + bO*x**2 4+ b7*x**3)
BoxBOD Higher 2 6 b1*(1-exp[-b2*x])
Ratkwosky3 | Higher 3 9 bl / (1+exp[b2-b3*x])
Ratkowsky4 | Higher 4 15 bl / ((1+exp[b2-b3*x])**(1/b4))
Eckerle4 Higher 3 35 (b1/b2) *

exp[-0.5*((x-b3)/b2)**2]
Bennett5 Higher 3 154 | bl * (b2+x)**(-1/b3)

Table 6.3.1 Datasets from the NIST Nonlinear Regression Library

There are 27 different data sets included in the library including the actual
data files (in text format) and results from least squares analyses of the
data. The datasets are classified by Level of Difficulty (lower, average and
higher), number of parameters (varying from 2 to 9), and number of data
points (varying from 6 to 250). The datasets including the mathematical
models are listed in Table 6.3.1. Each data set includes two different start-
ing points: one near the solution and one further away from the solution.
Also included are the least squares values and their estimated standard de-
viations. Results also include the sum of the squares of the residuals (i.e.,
S) and the Residual Standard deviation (i.e., sqr#(S / (n-p)). The datasets
include a number of challenging problems that test the ability of a program
to converge to a solution. However, the choice of datasets is limited to
mathematical models that include a single independent variable x. An-
other limitation is that only unit weighting is used for the all problems.
Details for one of the datasets (BoxBOD) are shown in Figure 6.3.1.

The BoxBOD problem has only two unknown parameters (i.e., bl and b2)
and only six data points and yet it is listed as higher in level of difficulty
because of the difficulty of converging to a solution from the Start 1 initial
values.

One of the most well-known general purpose nonlinear regression pro-
grams is NLREG (www.nlreg.com). They describe their results using the
NIST datasets as follows: "The NIST reference dataset suite contains 27
datasets for validating nonlinear least squares regression analysis software.
NLREG has been used to analyze all of these datasets with the following
results: NLREG was able to successfully solve 24 of the datasets, producing
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results that agree with the validated results within 5 or 6 significant
digits. Three of the datasets (Gaussl, Gauss2 and Gauss3) did not con-
verge, and NLREG stopped with the message: Singular convergence. Mu-
tually dependent parameters? The primary suggested starting values were
used for all datasets except for MGH17, Lanczos2 and BoxBOD which did
not converge with the primary suggested starting values but did converge
with the secondary suggested starting values."

The differences between the three Gauss datasets are in the data. A plot of
the Gaussl data is shown in Figure 6.3.2. All three models include two
Gaussian peaks with an exponentially decaying background. The peaks in
the Gauss3 dataset are much closer together than the peaks in the other two
datasets and that is why its level of difficulty is considered higher. How-
ever, NIST lists all three datasets as either lower or average level of diffi-
culty. I ran Gaussl, Gauss2 and Gauss3 using REGRESS and had no
problem converging from the primary suggested starting values. My guess
is that somehow an error was introduced in the NLREG tests for these
three datasets because it isn't logical that NLREG would fail for these and
yet pass all the tests for the higher level of difficulty.

Another available NLR general purpose program is LabFit which can be
located at http://www.angelfire.com/rnb/labfit/index.htm. Results for all
the NIST datasets are included on the website. In their words they
"achieved convergence for all the primary starting values for all the data-
sets and the results are statistically identical to the certified values".
Results for the NLR program Stata 8.1 can be seen at
http://www.stata.com/support/cert/nist/. They achieved convergence for
all of the datasets but for one dataset of average difficulty (MGH17) and 4
of higher difficulty (MGHO09, MGH10, Eckerle4 and Ratkowsky4) they
only achieved convergence from the nearer starting points. Stata is a
"complete, integrated statistical package that provides everything needed
for data analysis, data management, and graphics". The NLR module is
only one feature of the Stata package.

Results for the program Datafix (a product of Oakdale Engineering) are
available at http://www.curvefitting.com/datasets.htm.  They achieved
convergence for all datasets "without using analytical derivatives" but do
not specify if this was from the primary or secondary starting points.

An Excel based NLR program is included as part of the XLSTAT pack-
age. Details can be obtained at http://www.xlstat.com/indexus.html. This
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package runs within Excel and they include the Ratkowsky4 example in
their demonstration. Their solution requires programming of the deriva-
tives of the modeling function and therefore cannot be considered as a
general purpose NLR program. However, they have programmed com-
plete solutions including derivatives for a limited number of functions.
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Figure 6.3.2 Gaussl data from NIST Nonlinear Regression Library

An NLR program is included in the TSP econometrics package. The

results for the NIST nonlinear reference datasets can be seen on the TSP

International website:
http://www.tspintl.com/products/tsp/benchmarks/nlstab.txt

They achieved convergence on all the datasets except Lanczosl. No men-

tion is made regarding the starting points for the various tests.

The LIMDEP program (a product of Econometric Software) is another
general purpose statistical econometric package. Details regarding the
LIMDEP program can be obtained at:
http://www.limdep.com/programfeatures_accuracy.shtml

The LIMDEP NLR module was tested using the NISP datasets as well as
other benchmark datasets described by McCullough [MC99]. In their own
words: "LIMDEP was able to solve nearly all the benchmark problems us-
ing only the program default settings, and all of the rest with only minor
additional effort." This statement makes a lot of sense. Most general pur-
pose NLR programs have default settings but for difficult problems, some
minor adjustments in the parameters can lead to convergence. This subject
is considered in Section 6.4.

6.4 Nonlinear Regression Convergence Problems

In Section 6.3 the NIST dataset library of NLR problems is discussed. The
library has been used extensively to test NLR computer programs. The
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library has also been used to test convergence algorithms. The choice of an
algorithm is a fundamental issue when developing NLR software and there
are a number of options open to the software developer. It should be em-
phasized that there is no single algorithm that is best for all problems.
What one hopes to achieve is an algorithm that performs well for most
problems. In addition, for problems that are difficult to converge, a good
NLR program should offer the user features that can help achieve conver-
gence. In this section some of the features that enhance convergence are
discussed using examples from the NIST library.

There are two basic classes of search algorithms that can be used for NLR
problems:

1) Algorithms based upon usage of function derivatives to compute a
vector of changes in the manner described in Section 2.4.

2) Stochastic algorithms that intelligently search thru a defined un-
known parameter space.

The straight forward Gauss-Newton (GN) algorithm (Equations 2.4.16 and
2.4.17) is the starting point for most algorithms of the first type. This sim-
ple algorithm leads to convergence for many NLR problems but is not suf-
ficient for more difficult problems like some of those encountered in the
NIST datasets. To improve the probability of achieving convergence,
Equation 2.4.16 can be replaced by:

a, =ao, +caf * A, k=1top (6.4.1)

where caf'is called the convergence acceleration factor. As a default caf'is
one, but for difficult problems, using a value of caf' < 1 can sometimes lead
to convergence. A more sophisticated approach is to calculate the value of
S computed using the new values of a; and compare this value with the
value of § computed using the old values. As long as the value of §
decreases, continue along this line (i.e., increase caf’). However, if the
reverse is true (i.e., Syev™> Syia) the value of caf'is decreased (even to a nega-
tive number). It should be emphasized that caf is an input parameter and
all changes of caf should be done algorithmically within the program for a
given iteration. For the next iteration the value of caf'is restarted at the in-
put value. Sometimes it turns out that along the direction suggested by the
A vector, S rises in both directions (i.e., caf'> 0 and caf' < 0). When this
happens the algorithm can be modified to alter the direction. The
Marquardt algorithm (sometimes called the Levenberg-Marquardt algo-
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rithm) is very popular and is used to modify the basic Gauss Newton algo-
rithm [LE44, MA63, GA92]. Equations 2.4.16 or 6.4.1 are still used but the
A vector is computed using a modified procedure. Instead of computing
the 4 vector using Equation 2.4.9, the following equation is used:

A=(C+AD)'V (6.4.2)

The matrix D is just the diagonal of the C matrix (with all off diagonal
terms set to zero) and A is a scalar parameter. By trying several different
values of 4 a new direction can often be found which leads to a better
reduction of § then achieved using Equation 2.4.16 or 6.4.1.

Tvrdik and Krivy survey several standard algorithms using the higher dif-
ficulty problems from the NIST datasets [TV04]. This paper can also be
accessed online at http://albert.osu.cz/tvrdik/down/files/comp04.pdf. The
algorithms used are those included in several NLR standard packages:
NCSS 2001 which uses a Levenberg-Marquardt (LM) algorithm, S-PLUS
4.5 which uses a GN algorithm, SPSS 10.0 which uses a modified LM
algorithm and SYSTAT 8.0 which includes both a modified GN algorithm
and an algorithm based upon the simplex method. Their results are shown
in Table 6.4.1.




182 Chapter 6 SOFTWARE

NCSS SYST SYST S-Plus SPSS
GN Sim

Start: 1 2 1 2 1 2 |1 2 (1 2
Bennetts 2 1 |OK OK| F F [ OK OK | OK OK
BoxBOD F F |OK OK | F F [OK OK |F OK
Eckerle4 F 3 |0OK OK| F F | F OK | OK OK
MGHO09 F F |F OK |OK OK | F 2 | OK OK
MGH10 F F |OK OK|F OK | F OK [ F F
Ratkowsky3 | OK  OK |OK OK | F F | F OK | OK OK
Ratkowsky4 | F 3 |OK OK| F F | F OK | OK OK
Thurber F F |OK OK|OK OK|F F|F F

Table 6.4.1 Comparison of algorithms for NIST datasets.

For each dataset, the programs were started from the far (1) and near (2)
points as listed in the NIST reference datasets. An entry of F means that
the program failed to converge and OK means that it did converge and S
was accurate to at least 4 significant digits. A numerical entry means that
it converged to 1, 2 or 3 significant digits. Clearly the SYSTAT program
using the modified GN algorithm outperformed the other program but this
does not mean that a GN algorithm is necessarily best. It does, however,
prove that by cleverly modifying the basic algorithm one can achieve bet-
ter results.

One of the easiest features that can be employed in an NLR program is to
limit the search for some or all of the unknown parameters. For example,
consider the BoxBOD dataset from the NIST library. Details are shown in
Figure 6.3.1. Results obtained using the REGRESS program with only the
default parameters are shown in Figure 6.4.1.  An examination of the re-
sults shows that the value of B2 becomes a huge negative number. Look-
ing at the data in Figure 6.3.1 and the function used to specify Y we see
that Y increases with X so B2 must be a positive number. Setting a value
of B2ZMIN = 0.001 and rerunning the program, the results in Figure 6.4.2
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are obtained after 80 iterations. The ability to specify minimum and
maximum values for the unknown parameters is an essential feature in a
general purpose NLR program.

PARAMETERS USED IN REGRESS ANALYSIS: Thu Dec 02, 2004

INPUT PARMS FILE: boxbod.par

INPUT DATA FILE: boxbod.par

REGRESS VERSION: 4.10, Nov 15, 2004
STARTREC - First record used
N - Number of recs used to build model
NO DATA - Code for dependent variable -999.
NCOL - Number of data columns
NY - Number of dependent variables
YCOL1l - Column for dep var Y
SYTYPEl1l - Sigma type for Y :

TYPE 1: SIGMA Y = 1

HRRNMOOGOHR

M - Number of independent variables : 1
Column for X1 : 2
SXTYPEl - Sigma type for X1 : 0
TYPE O: SIGMA X1 =0
Analysis for Set 1

Function Y: Bl*(1-EXP[-B2*X])
EPS - Convergence criterion : 0.00100
CAF - Convergence acceleration factor : 1.000
ITERATION Bl B2 S/(N.D.F.)

0 1.00000 1.00000 46595.60

1 89.08912 114.70610 12878.94

2 185.20000 <-10"49 >10709

Singular matrix condition

Figure 6.4.1  Results for BoxBOD using Default Settings

There are some problems in which the values of the unknown parameters
vary slowly but convergence is very difficult to achieve. For such prob-
lems setting upper and lower bounds on the parameters accomplishes noth-
ing. The Bennett5 problem from the NIST datasets is an example of such
a problem. Using the far starting points for the 3 unknowns, REGRESS
required over 536,000 iterations to achieve convergence! Using the near
starting points the results were not much better: over 390,000 iterations
were required. REGRESS uses a modified GN algorithm but if the pro-
gress for an iteration is not sufficient it then uses an LM algorithm. A bet-
ter approach for problems of this type is to use a stochastic algorithm.
Stochastic algorithms avoid the need for function derivatives. A search
space is defined by setting minimum and maximum values for all the
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unknown parameters. A random number generator is used to set a starting
point within the space and then a heuristic is used to find the next point. In
the same paper as mentioned above [TV04], Tvrdik and Krivy describe 5
different stochastic algorithms and then compare them using the same
datasets as listed in Table 6.4.1. Their results show large performance dif-
ferences from problem to problem and algorithm to algorithm. Four of the
five managed to achieve solutions for the Bennett5 problem.

PARAMETERS USED IN REGRESS ANALYSIS: Thu Dec 02, 2004
ITERATION Bl B2 S/(N.D.F.)
0 1.00000 1.00000 46595.60
1 89.08912 114.70610 12878.94
2 185.20000 0.00100 46567.68
3 9985.49 0.05420 7946907.22
4 -1977.29 0.07206 917128.67
5 -907.83514 0.00172 51485.53
6 7854.00 0.00100 28275.45
7 15098.02 0.00193 6215.57
8 14635.85 0.00203 6194.60

79 213.87781 0.54643 292.00568
80 213.82425 0.54706 292.00238
POINT X1 Y SIGY YCALC
1 1.00000 109.00000 1.00000 90.10764
2 2.00000 149.00000 1.00000 142.24097
3 3.00000 149.00000 1.00000 172.40360
4 5.00000 191.00000 1.00000 199.95134
5 7.00000 213.00000 1.00000 209.17267
6 10.00000 224.00000 1.00000 212.91397

PARAM INIT VALUE MINIMUM MAXIMUM VALUE SIGMA
Bl 1.00000 Not Spec Not Spec 213.81258 12.35691
B2 1.00000 0.00100 Not Spec 0.54720 0.10452

Variance Reduction: 88.05

s/ (N - P) 292.00223

RMS (Y - Ycalc) 13.95235

Figure 6.4.2 Results for BoxBOD using B2MIN = 0.001

Another option for problems that are difficult to converge is to use sym-
bolic constants. For example, the parameter file for the REGRESS runs
for the Bennett5 problem included the following function specification:

unknown bl, b2, b3;
y ='bl * (b2+x)”*(-1/b3)"
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Knowing the solution in advance, and noticing that the values of the un-
knowns were progressing in the correct direction, I just let REGRESS run
until convergence was achieved. However, if the amount of data had been
much greater than the 154 data records associated with this dataset, the
time required to reach convergence would have been very large indeed.
An alternative to this approach is to use symbolic constants. For example,
one could hold b1 constant and do a two parameter fit using the following
function specification:

constant bl;
unknown b2, b3;
y ='bl * (b2+x)”*(-1/b3)"

Once least square values of b2 and b3 are located for the inputted value of
b1 the value can be changed and a new combination can be located. Com-
paring the values of § obtained for the different values of b1, one can
home in on a region likely to contain the best value of bl. Once this re-
gion has been identified, one could then return to the original function
specification to make the final 3 parameter search. The number of itera-
tions using this procedure is much less than starting the process searching
for all 3 parameters but requires a lot of user intervention and judgment.

For very difficult problems a combination approach is sometimes used.
The process is started by doing a very course grid search through the entire
space just computing § at all points in the grid. The best region to start the
search is around the point for which § is a minimum. All the unknowns
are then bounded within this region and a detailed search is then initiated.
If convergence is still a problem, then the use of symbolic constants and/or
a stochastic algorithm can be used to further reduce the size of the search
space.

6.5 Linear Regression: a Lurking Pitfall

A general purpose NLR (nonlinear regression) program can easily handle
linear regression problems. Software developed for nonlinear problems
can be used with no change to solve linear problems. However, there is a
hidden danger in using linear models that often plagues new users of
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curve-fitting software. When data is available and there is no physically
meaningful mathematical model to explain the variation of a dependent
variable y as a function of x, the most tempting approach to the problem is
to use a simple polynomial:

y=a,+a,x+a,x’ +...+apx”_1 (6.5.1)

If one is only looking for an adequate function to predict y for any value of
x then why not just start with a straight line (i.e., p = 2) and increase p until
the average root-mean-square (RMS) error is acceptable? This approach,
although theoretically very appealing, can lead to very difficult numerical
problems that arise due to the fact that computers work to a finite number
of significant digits of accuracy.

To explain the problem, consider data in which the values of x are equally
spaced from O to 1 and unit weighting is used. The derivative of Equation
6.5.1 with respect to ay is simply x* " so from Equations 2.4.14 and 2.4.15
the terms of the C matrix and the V vector are:

i=n af af i=n . ~ i=n ke
Ciy= Zlaa ou, —;x’ Tkt =§x’ k=2 (6.5.2)
n_ZY Zyﬂ1 (6.5.3)

Once we have computed the terms of the C matrix and the V' vector we use
Equation 2.4.9 to solve for the vector A:

A=C'v (2.4.9)
This vector includes all p values of the a;'s. We can estimate the value of

Ci« by using the following approximation:

i=n . 1 .
Cjk — ank—z _ n(xj+k—2 )avg ~ nj‘x1+k—2dx _ # (6.5.4)

For example, for p= 4 the C matrix is approximately:
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1 1/2 1/3 1/4
1/2 1/3 1/4 1/5
"1/3 174 1/5 1/6
1/4 1/5 1/6 1/7

(6.5.5)

For those readers familiar with linear algebra, they will recognize this ma-
trix as the well known Hilbert matrix and it has the following property:

cond(C) = &*37 =10%37/"010) = 19157 (6.5.6)

In other words, as the number of unknowns (i.e., p) increases, the condi-
tion of the matrix (the ratio of the largest to smallest eigenvalues of the
matrix) increases exponentially. Using cond(C) we can estimate the errors
in the a;'s due to errors from the terms of the V vector:

|64 _ 24
T S cond(C)— (6.5.7)
|4 4

This equation means that the fractional errors in the terms of the 4 vector
are no more than cond(C) times the fractional errors in the V vector. For
example, let us assume that the values of ¥ are accurate to 5 decimal digits
so that the fractional errors in the terms of the ¥ vector are of the order of
10”. If cond(C) is about 100, then the fractional errors in the terms of the
A vector are at worst of the order of 10°. This loss of accuracy comes
about due to the process of inverting the C matrix. In other words, if
cond(C)is about 100 we can expect a loss of about 2 digits of accuracy in
solving Equation 2.4.6 (i.e., CA = V). A set of linear equations like Equa-
tion 2.4.6 is said to be "ill-conditioned" when the value of the condition
become a large number.

Examining Equations 6.5.6 and 6.5.7, the pitfall in using Equation 6.5.1
for curve fitting can be seen. As p increases, C becomes increasingly ill-
conditioned. The log;y of cond(C) is the maximum number of decimal
digits that might be lost in solving Equation 2.4.6. So if p =15, 6 or 7 then
the condition is 10"°, 10° or 10'* and the number of digits of accuracy that
might be lost are 7.5, 9 or 10.5! We see that even though Equation 6.5.1 is
a very tempting solution for obtaining a simple equation relating y to X, it
is increasingly numerically problematical as p increases.
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The NIST datasets include linear as well as nonlinear problems. The most
difficult problem is the 'Filippelli problem'. This dataset has 82 point and
the proposed model is Equation 6.5.1 with p =11. The LIMDEP website
includes their solution to this problem and they describe the problem as
follows:

"LIMDEP's linear regression computations are extremely accurate. The
'Filippelli problem' in the NIST benchmark problems is the most difficult
of the set. Most programs are not able to do the computation at all. The as-
sessment of another widely used package was as follows: Filippelli test:
XXXXX found the variables so collinear that it dropped two of them — that
is, it set two coefficients and standard errors to zero. The resulting esti-
mates still fit the data well. Most other statistical software packages have
done the same thing and most authors have interpreted this result as ac-
ceptable for this test. We don't find this acceptable. First, the problem is
solvable. See LIMDEP's solution below using only the program defaults -
just the basic regression instruction. Second, LIMDEP would not, on its
own, drop variables from a regression and leave behind some arbitrarily
chosen set that provides a 'good fit." If the regression can't be computed
within the (very high) tolerance of the program, we just tell you so. For this
problem, LIMDEP does issue a warning, however. What you do next is up
to you, not the program."

It should be emphasized that the Filippelli problem is a problem that was
proposed to test software and not a real problem in which Mr. Filippelli
was actually trying to get usable numbers. If one proceeds using Equation
6.5.1 directly, consider the loss of accuracy using a 10™ order polynomial
(i.e., p = 11) to fit the data. The number of digits of accuracy lost is at a
maximum 16.5! Even if the values of ¥ are true values with no uncer-
tainty, just inputting them into double precision numbers in the computer
limits their accuracy to about 15 digits. So a loss of 16.5 digits makes the
results completely meaningless. The C matrix is so ill-conditioned that it
is no wonder that most packages fail when trying to solve the Filippelli
problem. I tried running this problem using REGRESS and could not pro-
gress beyond p = 9.

So how did LIMDEP succeed while others have failed? I don’t know the
algorithm used by LIMDEP to solve problems based upon Equation 6.5.1,
but if I was interested in creating software to solve such problems I would
use orthogonal polynomials [RA78, WO71]. The idea originally proposed
by G. Forsythe [FO57] is to replace Equation 6.5.1 with the following:
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k=p
y=Y au,(x) (6.5.8)
k=0

The u,(x) terms are a set of p polynomials all orthogonal to one another.
Orthogonality for a particular set of data and a particular weighting scheme
implies the following:

iwiuj(xi)uk(xi)=0 forj #k. (6.5.9)
i=1

Equation 2.4.5 is applicable to all linear models and is therefore applicable
to Equation 6.5.8. Substituting # for g in Equation 2.4.5 we get p+1 equa-
tions of the following form (where the index k is from 0 to p):

aOZwiuouk +a12wiu1uk + ...+ap2wiupuk =z w;Y;u, (6.5.10)

Applying Equation 6.5.9 to 6.5.10 we end up with p+1 equations for ay
that can be solved directly:

akZWiukuk =2w,~Y,~uk k=0top (6.5.11)

ZWiYi”k
a, ==2—""% [k=0tp (6.5.12)

Z Wil Uy

If a set of polynomials can be constructed with this property (i.e., Equation
6.5.9), then we can compute the terms of the 4 vector without inverting the
C matrix. Or looking at it another way, the diagonal terms of the C~
matrix are the inverses of the diagonal terms of the C'matrix and all the off-
diagonal terms are zero. Forsythe suggests the following scheme for com-
puting polynomials satisfying Equation 6.5.9:
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uy(x)=1
u (x) = (x—a)uy(x)
Uy (x) = (x — @) uy (x) — Biuy(x)

u,(x)=(x—a,)u, (x)- B, u, ,(x)

The e’s and B’s are computed as follows:

z x;wi(uy_ (x; )’
=0

a, =

Z w; (i (%))’
i=0

n

2w (m (x,)*
,Bk = ;:0
D wiuy ()

i=0

(6.5.132)
(6.5.13b)
(6.5.13¢)

(6.5.13d)

(6.5.14)

(6.5.15)

The order of the computations is to first compute ¢4 and the values of uy,
then B, azand the values of u,, then f,, etc. until all the #’s are known.
Using Equation 6.5.12 the a,’s can be computed and thus all terms required
by Equation 6.5.8 are known. As an example consider the data in Table

6.5.1.
Point Y X
1 7.05 0
2 16.94 1
3 31.16 2
4 48.88 3
5 71.31 4
6 96.81 5
7 127.21 6
Table 6.5.1 Data for Orthogonal Polynomial Example
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Assuming unit weighting (i.e., w; = 1), since uy = 1, from Equation 6.5.14
we compute a; as follows:

and therefore from Equation 6.5.13b u; = x — 3. We next compute f; and
@, using Equations 6.5.15 and 6.5.14:

- 2
§("‘) _9+4+140+144+9 28
() ! !

4

< 2

.Zx"("‘) _0+4+2+0+4++420+54 84

(] © 9+4+1+0+1+4+9 28
1

i=0

and therefore from Equation 6.5.13¢ u, =(x-3)(x —3) —4=x*-6x+ 5. In
a similar manner we can compute £, =3 and a; = 3 and thus u; = (x-3)u; —
3(x-3) = x*-9x*+20x-6. To use the uy’s to fit the data we next must com-
pute ay, a1, a; and a; using Equation 6.5.12. The details of the calculation
are included in Table 6.5.2.

The results in Table 6.5.2 include four different fits to the data:
y=ayu, =57.05
y=aguy+au; =57.05+ 20.01(x - 3)
y=agu,+au +au,
= 57.05+20.01(x — 3)+ 2.004(x? - 6x +5)
y=aguyt+au +au, +azu,
=57.05+20.01u, + 2.004u, + 0.00389u,
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The terms § / (n-p-1) are the sums of the squares of the residuals divided
by the number of degrees of freedom. Using the goodness-of-fit criterion
explained in Section 3.3 we note that the parabolic equation yields the best
results because § /An-p-1) is minimized for p=2 (i.e., 3 terms). We can
convert this equation to the simple form of Equation 6.5.1:

» =(57.05-3%20.01+5*2.004)+ (20.01 - 6 * 2.004)x + 2.004x"
y =7.04+7.986x + 2.004x*

i Y; X; U Uy U 3
1 7.05 0 1 3 5 -6
2 16.94 1 1 2 0 6
3 31.16 2 1 -1 3 6
4 48 .88 3 1 0 4 0
5 71.31 4 1 1 3 -6
6 96.81 5 1 2 0 -6
7 127.21 6 1 3 5 6
Z Y.u, 393.36 560.37 168.37 0.84
z ”13 7 28 84 216
a 57.05 20.01 2.004 0.0038
9
S 11552.5 337.7 0.198 0.194
S/An-p-1) 1925.4 67.54 0.049 0.065

Table 6.5.2  Fitting Data using Orthogonal Polynomials

Regardless of the value of p the resulting equation derived using orthogo-
nal polynomials can be converted to the simple very appealing polynomial
form (i.e., Equation 6.5.1). For difficult linear problems such as the Filip-
pelli problem this technique avoids the numerical pitfalls arising from the
direct use of 6.5.1.

6.6 Multi-Dimensional Models

An important feature of general purpose NLR (nonlinear regression) pro-
grams is the ability to handle multi-dimensional problems. Throughout the
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book the discussion has primarily been about the relationship between a
dependent scalar variable y and an independent scalar variable x. How-
ever, there are many problems throughout many fields of science and en-
gineering where either x or y or both are vector variables. To test NLR
programs it is useful to have a few examples of problems of these types.
Unfortunately the nonlinear regression NIST datasets are limited to prob-
lems in which x and y are both scalars.

The theory and use of the GraphPad Prism program is included in a book
written by H. Motulsky and A. Christopoulos [MO03]. The book can be
downloaded from the GraphPad Software website (www.graphpad.com)
and includes a very nice example of a problem in which the dependent
variable y is a vector. Although GraphPad Prism is a general purpose
NLR program, the book emphasizes analysis of biological and pharmaceu-
tical experiments. Using GraphPad terminology, global models are models
in which y is a vector and some of the unknowns are shared between the
separate models for the components of y. A GraphPad example relevant
to the pharmaceutical industry is the use of global models to analyze the
dose-response curves of two groups (a treated group and a control group).
The purpose of the experiment is to measure what they call ec50 (the dose
concentration that gives a response half-way between the minimum and
maximum responses). For this experiment the x variable is the /og of the
dose, the first component of the y vector is the response of the control
group and the second component is the response of the treated group. The
problem is well documented in their book and data is included so that the
problem can be used as a test dataset for any NLR program.

The experiment was analyzed using REGRESS and the results are very
close to the results obtained with Graphpad Prism. The equations were
specified as follows:

dependent ycont, ytreat;

independent x;

unknown bottom, top, hillslope, logec50c,
logec50¢t;

ycont = 'bottom+ (top-bottom)/
(1410” ((logec50c-x) *hillslope)) '
ytreat = 'bottom+ (top-bottom) /

(1410” ((logec50t-x) *hillslope))

The two components of the y vector are ycont and ytreat. The unknown
parameters shared by both equations are bottom, top and hill-
slope. The two remaining unknowns are the logs of ec50 for the control



194 Chapter 6 SOFTWARE

and treatment groups (i.e., logec50c and logec50t). The data is
included in Table 6.6.1. The results are seen in Figure 6.6.1. REGRESS
required 9 iterations to converge to the solution. The alternative to the
global approach for this problem is to treat each curve separately. The rea-
son for treating this problem using a global model is explained in the
Graphpad document: the resulting accuracies for the values of ec50 are
reduced considerably using global modeling. The number of degrees of
freedom for this problem (i.e., n-p) is 10 — 5= 5.

Point X (log dose) Ycont Ytreat
1 -7.0 165 124
2 -6.0 284 87
3 -5.0 442 195
4 -4.0 530 288
5 -3.0 573 536

Table 6.6.1 Data for dose-response curve analysis from Graphpad.
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REC Y-INDEX X YCONT SIGYCONT CALC VALUE
1 1 -7.00000 165.000 1.00000 152.28039
2 1 -6.00000 284.000 1.00000 271.95980
3 1 -5.00000 442.000 1.00000 455.54116
4 1 -4.00000 530.000 1.00000 549.35957
5 1 -3.00000 573.000 1.00000 573.06096
REC Y-INDEX X YTREAT SIGYTREAT CALC VALUE
1 2 -7.00000 124.000 1.00000 112.35928
2 2 -6.00000 87.000 1.00000 123.13971
3 2 -5.00000 195.000 1.00000 172.89774
4 2 -4.00000 288.000 1.00000 321.78672
5 2 -3.00000 536.000 1.00000 491.61468
PARAMETER INIT VALUE MINIMUM MAXIMUM VALUE SIGMA
BOTTOM 0.00000 Not Spec Not Spec 109.781 27.807
TOP 1000.00 Not Spec Not Spec 578.939 34.182
HILLSLOPE 1.00000 Not Spec Not Spec 0.72458 0.1845
LOGEC50C -7.00000 Not Spec Not Spec -5.61755 0.1963
LOGEC50T -2.00000 Not Spec Not Spec -3.88429 0.1909
Variance Reduction: 97.67 (Average)
VR: YCONT 99.26
VR: YTREAT 96.08
s/(N - P) : 1181.32
RMS (Y - Ycalc) : 24.30351 (all data)
RMS (Y1-Ycalc) : 13.15230
RMS (Y2-Ycalc) : 31.75435

Figure 6.6.1 Results from REGRESS analysis of data in Table 6.6.1.

A problem that demonstrates modeling with two independent variables
was included in my first book [WO67]. This problem was related to a
measurement of parameters related to the neutronics of heavy water
nuclear reactors. The model was based upon the following equation:

_ (A+ax)1+a,x,)
(1+a,x,)(1+a,x,)

(6.6.1)

The unknowns @, and a, must be positive but there is no guarantee that the
method of least squares will satisfy this requirement. However, we can
force positive values by simply using b” in place of a. The modified equa-
tion is thus:
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_ (1+bix)(A+b; x,)
(1+ b} x,)A +bix,)

(6.6.2)

The two unknowns are now b; and b, and regardless of the resulting signs
of by and b,, the squared values are always positive. It should be noted
that there are four possible solutions: both by and b, can be positive or
negative. Depending upon the initial guesses for b, and b,, if convergence
is achieved, the solution will be close to one of the four possibilities. The
data for this problem is included in Table 6.6.2 and the results of the
REGRESS analysis are seen in Figure 6.6.2. Note that for this problem
since the o’s vary from point to point Equation 2.3.7 must be used to prop-
erly weight the data. The initial guesses were b; =1 and b, = 10 and con-
vergence was achieved with 3 iterations.

PARAM INIT VALUE MINIMUM MAXIMUM VALUE SIGMA
Bl 1.00000 Not Spec Not Spec 1.61876 0.22320
B2 10.00000 Not Spec Not Spec 5.29172 0.34342
Variance Reduction: 99.32
s/(N - P) : 6.98221
RMS (Y - Ycalc) : 0.01946
RMS ((Y-Ycalc)/Sy): 2.62056

Figure 6.6.2 Results from REGRESS analysis of data in Table 6.6.2.

Point Y o, X O./X1 X2 G./X;
1 0.7500 0.01000 0.0137 0.0056 0.0258 0.0057
2 0.5667 0.00833 0.0137 0.0056 0.0459 0.0065
3 0.4000 0.00620 0.0137 0.0056 0.0741 0.0070
4 0.8750 0.01243 0.0240 0.0086 0.0320 0.0068
5 0.7000 0.01022 0.0240 0.0086 0.0453 0.0057
6 0.5750 0.00863 0.0240 0.0086 0.0640 0.0054
7 0.3800 0.00586 0.0240 0.0086 0.0880 0.0055
8 0.5750 0.00863 0.0260 0.0093 0.0666 0.0122
9 0.2967 0.00777 0.0260 0.0093 0.1343 0.0134

10 0.1550 0.00290 0.0260 0.0093 0.2291 0.0140
11 0.0900 0.00189 0.0260 0.0093 0.3509 0.0143

Table 6.6.2 Modeling Data for Analysis of Equation 6.6.2.

Note that the value of b; 1s measured to 100 * 0.223 / 1.619 = 13.8% accu-
racy and b, is measured to 6.5% accuracy, but what we are really inter-
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ested in are the values of a; and a, and their associated o’s. In general if
we have v as a function of # we can relate o, to g; as follows:

2
ol = (giau) where  v= f(u) (6.6.3)
u

For v = u’ from Equation 6.6.3 we get:
ol =(2uc,) where v=u’ (6.6.4)

Dividing the equation by v’ = &’ we end up with the following simple rela-
tionship:

. 2 20 2
(—") = ( ”) where v =u’ (6.6.5)
v u

In other words the relative uncertainty in v is twice as large as that for u.
Using Equation 6.6.5 we see that the relative uncertainties of the a’s are
twice those of the #’s. Thus for the problem in Figure 6.6.2, a; = 1.619°=
2.621 and o7 = 2.621*2*0.138 = 0.723. Similarly, a, = 27.99 and o,; =
3.64. 1t is interesting to note that REGRESS can solve this problem
directly for the a 's by replacing Equation 6.6.1 by the following alternative:

_ (I +abs(a))x )1+ abs(a,)x,)
"~ (1+abs(a,)x,)(1 + abs(a,)x,)

(6.6.6)

The abs (absolute) operator is a valid REGRESS operator that can be used
in any function specification.

6.7 Software Performance

There are many ways to measure the performance of NLR (nonlinear re-
gression) programs but for most problems the only relevant measure is the
ability to converge to a solution for difficult problems. The NIST datasets
are very useful for testing the ability of NLR programs to converge and
this subject was considered in Sections 6.3 and 6.4. However, there are
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some problems where software performance metrics other than conver-
gence are important. In particular, problems in which the amount of data
is large, the time required to converge to a solution may become important.
Another area where time is important is for calculations embedded within
real time systems (e.g., anti-missile missile systems). When decisions
must be made within a fraction of a second, if an NLR calculation is part
of the decision making process, it is important to make the calculation as
fast as possible. For real time applications general purpose NLR software
would never be used. The calculation would be programmed to optimize
speed for the particular system and mathematical model under considera-
tion.

Since time is dependent upon hardware, one would prefer measures that
are hardware independent. In this section some useful measures of per-
formance (other than the ability to converge) are discussed. The total time
that a program requires to achieve convergence for a particular program
and a particular computer is approximately the following:

Converge_Time = Num_lIterations * Avg_Time_per Iter (6.7.1)

The number of iterations required to achieve convergence is of course
problem dependent but it can be used as a measure of performance when
used for comparisons with common data sets such as the NIST datasets.
The average time per iteration is of course computer dependent, but the ef-
fect of the computer is only a multiplicative speed factor:

Avg Time_per Iter = Speed Factor * Avg Calcs _per Iter (6.7.2)

For traditional algorithms such as Gauss-Newton (GN) or Levenberg-
Marquardt (LM) or some sort of combination, the average number of cal-
culations per iteration can be broken down into 2 major terms:

Avg Calcs per Iteration = Avg CA_Calcs + Avg S Calcs (6.7.3)

The first term is a measure of the effort to compute the C matrix and then
the A4 vector times the average number of times this operation is performed
per iteration. The second term is a measure of the effort to compute the
weighted sum-of-squares S times the average number of times this opera-
tion is performed per iteration. Both terms are proportional to n, the num-
ber of data points. The first term also has a component that is proportional
to p’ (the complexity of solving p simultaneous equations).
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These equations are meaningless for people evaluating existing software as
the actual numbers for a given problem are usually unavailable to the nor-
mal user. However, for those interested in developing software for per-
forming NLR analyses for problems with important speed requirements,
these equations give some indication where one should concentrate the
effort at achieving speed.

For stochastic algorithms, these equations are not applicable. The concept
of iterations is not really relevant. The entire calculation becomes essen-
tially a series of calculations of §. Whether or not this results in a faster
overall computation is not obvious and clearly the speed of such algo-
rithms is problem dependent.

6.8 The REGRESS Program

Throughout the book results for a number of examples have been obtained
using the REGRESS program. The reason why I have chosen REGRESS
is quite simple: I wrote it. The program can be downloaded from:
www.technion.ac.il/wolberg. The history of the development of this pro-
gram goes back to my early career when I was in charge of designing a
sub-critical heavy water nuclear reactor facility. One of the experiments
that we planned to run on the facility involved a nonlinear regression based
upon Equation 6.6.2. In the 1960’s commercial software was rare so we
had no choice other than writing our own programs. It became quite ap-
parent that I could generalize the software to do functions other than Equa-
tion 6.6.2. All that had to be done was to supply a function to compute
f{x) and another function to compute the required derivatives. We would
then link these functions to the software and could thus reuse the basic
program with any desired function. At the time we called the program
ANALYZER.

In the early 1970's I discovered a language called FORMAC that could be
used for symbolic manipulation of equations. FORMAC was compatible
with FORTRAN and I used FORTRAN and FORMAC to write a program
similar to ANALYZER and I called the new program REGRESS. The
REGRESS program accepted equations as input quantities. Using
FORMAC, the program automatically generated equations for the deriva-
tives and created FORTRAN subroutines that could then be used to per-
form the nonlinear regression (NLR). All these steps, including compilation
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and link-editing of the subroutines, were performed automatically without
any user intervention. The REGRESS program became a commercial
product on the NCSS time-sharing network and I had the opportunity
to work with a number of NCSS clients and learned about many different
applications of NLR.

In the mid 1970’s I realized that with languages that support recursive pro-
gramming, | could avoid the need to externally compile subroutines.
Recursion is the ability to call a subroutine from within itself. Using recur-
sion, it became a doable task to write a routine to symbolically
differentiate functions. Using PL/1 I rewrote REGRESS and added many
new features that I realized were desirable from conversations with a num-
ber of users of REGRESS. I've returned to the REGRESS program on
many occasions since the original version. In the 1980's I started teaching
a graduate course called Design and Analysis of Experiments and I sup-
plied REGRESS to the students. Many of the students were doing experi-
mental work as part of their graduate research and the feedback from their
experiences with REGRESS stimulated a number of interesting develop-
ments. In the early 1990's I rewrote REGRESS in the C language.
Through the many version changes REGRESS has evolved over the years
and is still evolving.

The REGRESS program lacks some features that are included in other
general NLR programs. Some students who have recently used REGRESS
have suggested that the program should have a GUI (Graphic User Inter-
face) front end. Such a GUI would give REGRESS the look and feel of a
modern program. Personally | have my doubts that this will make the pro-
gram appreciably more user-friendly and have so far resisted creating such
an interface. A more serious problem with REGRESS was the need to
create data files in a format that the program could understand. Many us-
ers of the program gather data that ends up in an Excel Spread Sheet. The
problem for such users was how to get the data into REGRESS. It turned
out that the solution was quite simple: Excel allows users to create text
files. A feature was added to accept Excel text files. Another important
issue was the creation of graphic output. One of the features of REGRESS
is that the entire interactive session is saved as a text file. The current
method for obtaining graphics output is to extract the output data from the
text file and then input it into a program such as Excel that supports graph-
ics. Since this turns out to be a relatively painless process, the need for
REGRESS to generate graphic output is not a pressing issue.
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The REGRESS program includes some features that are generally not
included in other NLR programs. The most important feature in REGRESS
that distinguishes it from other general purpose NLR programs is the Pre-
diction Analysis (experimental design) feature described in Chapter 5.
Another important feature that I have not seen in other general purpose
NLR programs is the int operator. This is an operator that allows the user
to model initial value nonlinear integral equations. For example consider
the following set of two equations:

N =a J; ydx +a, )
68.1

A2} =a3L »ndx+a,

These highly nonlinear and recursive equations can be modeled in
REGRESS as follows:

yl =‘al *int(y2, 0, x) + a2’
y2="‘a3 * int(y1, 0, x) + a4’

This model is recursive in the sense that y1 is a function of y2 and y2 is a
function of y1. Not all general purpose NLR programs support recursive
models. The user supplies values of x, y1 and y2 for n data points and the
program computes the least squares values of the a;’s.

Another desirable REGRESS feature is a simple method for testing the re-
sulting model on data that was not used to obtain the model. In REGRESS
the user invokes this feature by specifying a parameter called NEVL
(number of evaluation points). Figure 6.8.1 includes some of the
REGRESS output for a problem based upon Equation 6.8.1 in which the
number of data records for modeling was 8 and for evaluation was 7. Each
data record included values of x, y1 and y2 (i.e., a total of 16 modeling and
14 evaluation values of y). The program required 15 iterations to con-
verge.
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Function Y1l:
Function Y2:

K A0 (K)
1 0.50000
2 1.00000
3 0.00000
4 -1.00000

AMIN (K)
Not Spec
Not Spec
Not Spec
Not Spec

Al * INT(Y2,0,X) + A2
A3 * INT(Y1,0,X) + A4

AMAX (K)

Not Spec
Not Spec
Not Spec
Not Spec

Evaluation of Model for Set 1:
Number of points in evaluation data set: 14
Variance Reduction (Average)

VR:
VR:

RMS (Y - Ycalc)
RMS (Y-Yc)

RMS (Y-Yc)/Sy) - Y1

RMS (Y-Yc)

RMS (Y-Yc)/Sy) - Y2

Y1l
Y2

(all data)

- Y1

- Y2

Fraction Y eval positive
Fraction Y calc positive
Fraction Same Sign

Data Set
Modeling
Modeling
Modeling

Evaluate
Evaluate
Evaluate

Variable
X1
Y1l
Y2

X1
Y1
Y2

Min
0.0100
-7.9282
-4.1189

0.1500
-8.0000
-4.1169

Max
6.2832
2.0000
4.0000

5.2360
1.3900
2.9641

A (K) SIGA (K)

1.00493 0.00409
2.00614 0.00459
-0.24902 0.00079
-3.99645 0.00663

100.00
100.00
100.00
0.01619
0.02237
0.00755
0.00488
0.00220
0.214
0.214
1.000

Average Std dev

1.6970 2.3504
-1.2393 3.7499
-2.2600 3.1043

1.6035 1.8876
-2.1940 3.4524
-2.6260 2.7180

Figure 6.8.1 Recursion, the inf operator & evaluation points
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7.1 Introduction

Kernel regression is one class of data modeling methods that fall within
the broader category of smoothing methods. The method of least squares
is used within a kernel regression analysis to fit the data within the regions
of interest. The general purpose of smoothing is to find a line or surface
which exhibits the general behavior of a dependent variable (lets call it y)
as a function of one or more independent variables. No attempt is made to
find a single mathematical model for y. If there is only one independent
variable, then the resulting smoothing is a line. If the number of independ-
ent variables is greater than one, the smoothing is a surface. Smoothing
methods that are based upon a mathematical equation to represent the line
or surface are called parametric methods. The method of least squares is
one such parametric method. On the other hand, data driven methods that
only smooth the data without trying to find a single mathematical equation
are called nonparametric methods. An excellent review of nonparmetric
methods is included The Elements of Statistical Learning by Hastie,
Tabshirani and Friedman [HAO1]. Kernel regression is a nonparametric
smoothing method for data modeling.

The distinguishing feature of kernel regression methods is the use of a ker-
nel to determine a weight given to each data point when computing the
smoothed value at any other point on the surface. There are many ways to
choose a kernel. Wolfgang Hardle reviews the relevant literature in his
book on this subject [HA90]. Another overview of the subject by A. Ullah
and H. D. Vinod is included in Chapter 4 of the Handbook of Statistics
Volume 11 [UL93]. Usually the kernel includes one free parameter that
may be adjusted to obtain the "best" fit to the data.

Even though kernel regression utilizes the method of least squares, it is an
alternative technique to standard least squares modeling. It is particularly
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useful for problems in which there is no basis for selecting a mathematical
model. All that one requires is some method for using the available data
for making predictions regarding the dependent variable as a function of
the independent variable or variables. Kernel regression is a method for
using the data to define a surface that can then be used to obtain estimates
of y and the uncertainty associated with y for desired combinations of the
x;'s.

Typically kernel regression is applied to multi-dimensional modeling in
which there are several independent variables. One application area is
econometric modeling [WOO00]. Econometric problems are characterized
by time series data in which the analyst attempts to use the historical data
to make future predictions. The underlying assumption is that historical
behavior has relevance regarding the future. Another area in which kernel
regression is quite useful is for some medical problems. Medical problems
rarely involve time series data. A typical example might involve an
attempt to develop a model to predict the probability of contracting a par-
ticular disease as a function of personal and environmental variables.

Although the method is usually used for multi-dimensional modeling, to
explain the problem consider the data in Figure 7.1.1. The dependent vari-
able y is a function of a single variable x but we have no theoretical basis
for suggesting a mathematical model. We also have no basis for suggest-
ing a model for the uncertainties o, associated with each of the data points.
We would like to have some f(x) that we can use to make predictions for
any value of y within the range of observable values (i.e., from x = 2.7 to
11.7) and we also require some estimate of the accuracy of the predictions
(i.e., oy). What we can see from the data is that noise (i.e., 0}) increases
with x, but how can we include this in our model? To weight the data
properly we would have to know how o, is related to x. Only then would
the resulting values of oy be meaningful. For this simple one-dimensional
problem, we could suggest a relationship to estimate g as a function of x
but for multi-dimensional problems this becomes more difficult. This
whole issue is avoided when the modeling method is kernel regression.
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Figure 7.1.1 Observations of y versus x

7.2 Kernel Regression Order Zero

The simplest kernel regression method is what is called the Order Zero
method [WOO00]. The term order zero is used because a zero-order poly-
nomial is the local fitting function regardless of the dimensionality of the
model. A zero order polynomial is just a constant. To make a prediction
at any point one first finds the nn nearest neighbors of the point (where nn
is a user specified constant). The weighted average of the values of y for
these nearest neighbors is then used to predict the value at the point of
interest. The uncertainty at this point can also be estimated. The first step is
to select a kernel for weighting the nearest neighbor points. Usually the
exponential kernel is used:

Wy = exp(— kd,;-) (7.2.1)

In this equation the index i represents the point at which a value of y is to
be estimated. The index j represents a point within the nearest neighbor
set. The term dj; is the distance between the two points. The square of dj
is used for computational convenience since it is always positive. For
multi-dimensional models, if the scales of the different dimensions are
very different, the usual procedure is to scale all the dimensions so that
their ranges are equivalent and thus all values of x; are in the range 0 to 1.
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We can use least-squares notation to explain the method for predicting the
values of y and o :

y=fx)=aqa (7.2.2)
2 w; (7.2.3)
Jj=1
Jj=nn
= Zwin,- (7.2.4)
j=1
Jj=nn Jj=nn
TV, = Zw,,Y / Zw (7.2.5)

Note that 7 is the index of the point at which an estimate is to be made and
is not one of the nn nearest neighbors. From Equation 2.6.11:

S (af afC_1J= S

O, =
" nn-1\9a, 9a, " n-1"
ZWV(Y —a,)’ (7.2.6)
1 ]—]

—nn

nn—1 ZW

As an example, consider the data in Table 7.2.1. The first 4 points are
used as the nearest neighbors for making predictions on the next 3 points.
We call the first 4 points the /earning points and the next 3 points the zest
points. The model is two dimensional (i.e., y = f (x1,x2)). For the kernel
we will try 3 different values of £ (k =0, 1, and 2). A summary of the
results is shown in Table 7.2.2. Note that the calculated value of y is the
value of a; (computed using Equation 7.2.5) and is equal to 3.50 for all 3
test points for the case k = 0. From Equation 7.2.1 we see that for this case
all the weights are equal so ycalc for any point using only learning points 1
to 4 is their average value (i.e., 3.50). Similarly, for point 6 the distance to
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each of the 4 learning points is the same, so the weights are equal regard-
less of the value of k and the value of ycalc is 3.50.

Point X1 X2 Y
1 0.0 0.0 4.00
2 2.0 0.0 5.00
3 2.0 2.0 3.00
4 0.0 2.0 2.00
5 0.5 0.5 3.75
6 1.0 1.0 3.50
7 1.5 1.5 3.25
Table 7.2.1 Data for Kernel Regression Calculation.

Points 1 to 4 are learning points and 5 to 7 are test points.

Point Y yealc (k=0) yeale (k=1) yeale (k=2)
5 3.75 3.50 3.88 3.98
6 3.50 3.50 3.50 3.50
7 3.25 3.50 3.12 3.02
Table 7.2.2 Calculated Values of y for 3 different values of k.

The calculation of y for Point 5 for k = 1 is shown in Table 7.2.3. The
squared distanced are computed as follows:

The value of ycalc is 3.034 / 0.7818 = 3.88 as seen in Table 7.2.2. The
calculations of gyare summarized in Table 7.2.4. Note that for k£ = 0 all the
values are equal since all the weights are equal and the values of ycalc
(i.e., @) all equal 3.50. From Equation 7.2.6 :

1 4-35) +(5-35) 2 + (3-35)" + (2-3.5)
3 4
S
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Learning dsz- Ws; Y; ws; Y;
Point j /
1 0.5 0.6065 4.0 2.4260
2 2.5 0.0821 5.0 0.4105
3 4.5 0.0111 3.0 0.0333
4 2.5 0.0821 2.0 0.1642
Sum 0.7818 3.0340

Table 7.2.3  Details for Calculation of y for Point 5 and k= 1.

Test Point Y o; (k=0) oy (k=1) oy (k=2)
5 3.75 0.6455 0.4183 0.1716
6 3.50 0.6455 0.6455 0.6455
7 3.25 0.6455 0.4183 0.1716

Table 7.2.4 Calculated Values of oy for 3 different values of k.

7.3 Kernel Regression Order One

The Order One method of kernel regression is based upon a first-order
polynomial as the local fitting function regardless of the dimensionality of
the model. To make a prediction at any point one first finds the nn nearest
neighbors of the point (where nn is a user specified constant). The algo-
rithm used for order-one is similar to the order zero algorithm. Equation
7.2.1 can be used to specify the kernel but Equation 7.2.2 must be
expanded to specify a first order polynomial:

k=d

y=fX)=> a,x, +a,, (73.1)
k=1

In this equation X is a d dimensional vector of the independent variables x;
thru x;. There are d+1 unknown values of a; and therefore nn must be
greater than d+1 to permit a least squares local fit. For the order zero algo-
rithm, the C matrix and V vector contains only a single term. For order
one, Equation 7.2.3 is replaced by a matrix in which the terms are speci-
fied using Equation 2.4.14 and Equation 7.2.4 is replaced by a vector in
which the terms are specified using Equation 2.4.15 :
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Cpi = S, o of j=1todH, k=1tod+l (73.2)
=1 ' da; da,
Vi = Zw, ; aak k=1to d+1 (7.3.3)

From Equation 7.3.1 the partial derivatives are:

Y v k-ltod (7.3.4)
da,

s _, (1.3.5)
aad+1

The vector A4 is computed by solving the matrix equation CA = V. The
values of oyare computed as follows:

k=d+1 j=d+1
s Y Y

(72 = .
T " mn-d-14 < da;da, (7.3.6)

The weighted sum of the squares S is computed as follows:

j=nn
S = Z w; (Y —ycalcj)2
=1
’ (73.7)

J=nn

2
ZW(Y Zakxk] adﬂj

Note that 7 is the index of the point at which an estimate is to be made and
is not one of the nn nearest neighbors.

As an example, once again consider the data in Table 7.2.1. The first 4
points are used as the nearest neighbors for making predictions on the next
3 points. We call the first 4 points the /earning points and the next 3
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points the fest points. The model is two dimensional (i.e., y = f(x1, X3)).
For the kernel we will try 3 different values of k (k =0, 1, and 2). A sum-
mary of the results is shown in Table 7.3.1. Note that the values of ycalc
are all exactly equal to y for all the values of &. The explanation for this
somewhat surprising result is that the 4 learning points fall exactly on the
plane y = 0.5x; — x; + 4. Thus regardless of how the points are weighted,
the calculated test points will fall on this plane.

Point Y yealc (k=0) yealc (k=1) yealc (k=2)
5 3.75 3.75 3.75 3.75
6 3.50 3.50 3.50 3.50
7 3.25 3.25 3.25 3.25
Table 7.3.1 Values of ycalc for 3 different values of k. Data from

Table 7.2.1.

To make the calculation more interesting let us change y for the first learn-
ing data point from 4 to 5. Table 7.2.1 is thus replaced by Table 7.3.2.
The results are summarized in Table 7.3.3. The calculations of oy are
summarized in Table 7.3.4. For all 3 values of k the value of ycalc = 3.75
for Point 6. Since all 4 of the learning points are equidistant from Point 6,
the weights are all equal regardless of the value of k. The same plane is
computed for all these cases (i.e., y = 0.25x; -1.25x, + 4.75) and the value
at x; = 1 and x, =1 is 3.75. The values for oy for Point 6 are all 0.25. This
value is obtained from Equation 7.3.7:

5

4-2-1
+2(x,x,Cp) + x,Cp7 +x,C51))

o} =S(Cy +C3) +C55 +2(C; +C3 +C33))

2 2l 21 -1
o= (x;Cpy +x,Co, +C3;

The value of S is 0.25 and the matrices C and C " are:

8 4 4 0.25 0 -0.25
C=|4 8 4| and C7'=| 0 0.25 -10.25
4 4 4 -0.25 =025 0.75
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It should be emphasized, that although the same four points are used to
define a plane for this two dimensional problem, for the cases where the
points are not equally weighted (i.e., k = 1 and 2), the planes are different
for the different test points. The different planes are listed in Table 7.3.5.
Note once again that the planes for Point 6 are the same regardless of the
value of k because this point is equidistant from the 4 learning points.

Point X1 X2 y
1 0.0 0.0 5.00
2 2.0 0.0 5.00
3 2.0 2.0 3.00
4 0.0 2.0 2.00
5 0.5 0.5 3.75
6 1.0 1.0 3.50
7 1.5 1.5 3.25
Table 7.3.2 Data for Kernel Regression Calculation.
Point Y yeale (k=0) yeale (k=1) Ycalc (k=2)
5 3.75 4.25 4.30 4.26
6 3.50 3.75 3.75 3.75
7 3.25 3.25 3.30 3.26
Table 7.3.3 Values of ycalc for 3 different values of k. Data from
Table 7.3.2.
Point Y oy (k=0) oy (k=1) o (k=2)
5 3.75 0.3062 0.1209 0.0470
6 3.50 0.2500 0.2500 0.2500
7 3.25 0.3062 0.3062 0.0470
Table 7.3.4 Calculated Values of oy for 3 different values of k.
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Pt X1 X; Plane (k=1) Plane (k=2)

5 0.5 0.5 0.0596x;- 0.0090x; -
1.4404x,+4.9558 1.4910x,+4.9997

6 1.0 1.0 0.2500x; - 0.2500x;-
1.2500x,+4.7500 1.2500x,+4.7500

7 1.5 1.5 0.4404x,- 0.4910x; -
1.0596x,+4.2242 1.0090x,+4.0356

Table 7.3.5 Planes for each Test Point (k=1 and 2).

7.4 Kernel Regression Order Two

The Order Two method of kernel regression is based upon a second-order
polynomial as the local fitting function regardless of the dimensionality of
the model. This algorithm is the next logical step after the order-zero and
order-one algorithms discussed in the previous sections. Clearly we can
continue to propose higher and higher order algorithms but this is not a
reasonable approach to modeling. The number of constants required by
the local fitting function increases dramatically as the number of inde-
pendent variables increases. The local complete second order fitting func-
tion for a d dimensional space is:

d d d
=1

j=1k=j

In this equation X is a d dimensional vector. The number of constants p in
this equation is 1 +d + d(d+1) / 2. For example for d = 1 this equation
reduces to:

y=a,+a,x, +b,x; (7.4.2)
For p =2 this equation reduces to:
y=a, +a,x; +a;x, + b, x; +b;,x,x, + by x; (7.4.3)

The number of constants in the fitting function is listed in Table 7.4.1 for
the orders zero, one and two algorithms as a function of d.
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d Order-zero Order-one Order-two
1 1 2 3
2 1 3 6
3 1 4 10
4 1 5 15
5 1 6 21
6 1 7 28

Table 7.4.1 Number of Constants p in Fitting Function as a
Function of the number of independent variables d.

As with the order zero and one algorithms, to make a prediction at any
point one first finds the nn nearest neighbors of the point (where nn is a
user specified constant). From Table 7.4.1 we see that as the number of
independent variables d increases, the value of nn must also be increased
to maintain the same number of degrees of freedom (i.e., nn — p) which of
course must be greater than one. For noisy data, order-two is not particu-
larly useful for larger values of d unless nn is large. The large number of
constants in the fitting function tends towards a fit that accommodates the
noise in the data.

The A vector is the vector of the unknown constants. The vector A4 is
computed by solving the matrix equation CA = V. The C matrix and V
vector are computed in the usual manner. For example, for d = 1 the 4
vector is [a; @, by;]' and C and V are:

-Z Wi Zwixli Zwixlzi
C= Zwixl,. Zw,.xlz,- Zwixfi (7.4.4)

2 3 4
_Z W; Xy Zwixli Zwixli
2w,

V=Y wxY, (7.4.5)
_Z w XY,

The summations in these equations are over all nn points (i.e., i = 1 to nn).
For d = 1 the values of oy are computed as follows:
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-1 2 ~—1 4 -1 -1 2 ~—1 3,1

o} = p— (7.4.6)
The weighted sum of the squares § is computed as follows:
j=nn
S = z wij(Yj —ycalcj)2
; =nln (7.4.7)

= 2 \2
j=1
Note that 7 is the index of the point at which an estimate is to be made and
is not one of the nn nearest neighbors.

As an example, consider the data in Table 7.4.2. Let us use the 4 near-
est neighbors to predict the value of y for the all the points.

Point X1 Y Nearest Neighbors
1 0.0 10.00 2,3,4,5
2 0.5 6.06 1,3,4,5
3 1.0 3.68 1,2,4,5
4 1.5 2.23 2,3,4,6
5 2.0 1.35 3,4,6,7
6 2.5 0.82 3,4,5,7
7 3.0 0.50 3,4,5,6
Table 7.4.2 Data for Kernel Regression Order-Two Demonstration

For the kernel we will try 3 different values of & (kK =0, 1, and 2). Note
that a value of k = 0 results in all points being equally weighted. A sum-
mary of the results is shown in Table 7.4.3. For this particular example,
we see that based upon the root mean square error, the best results are
obtained for k£ = 2. The rms error is computed as follows:

rms _error = \/ Z (Y - ycalc)z/n (7.4.8)

The summation in this equation is over all the points. We can use the rms
error as a criterion for selecting the best value of k. Increasing & in incre-
ments of one, the value of the rms error is a minimum equal to 0.262 at
k =12. The comparison of values of the rms error is interesting, but are the
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results significant? Comparing the values at k = 0 and k = 12 the ratio is
0.418 / 0.262 = 1.59. The F test described in Section 3.3 can be used to
test significance. For this example, the F statistic is :

2
Fe (rms _errork=0)2 =1.592 =2.53

(rms _error,_q, )

The number of degrees of freedom in both the numerator and denominator
is n =7 and the value for 1% significance is 6.99 so the observed value of
F is very far from this 1% significance level. It is not even significant at
the 10% level which is 2.78 [ME92]. The problem here is that we just have
too few data points to make a definitive statement about an optimum value
of k.

Point Y yealc (k=0) yeale (k=1) | ycalc (k=2)

1 10.00 9.100 9.247 9.338

2 6.06 6.527 6.397 6.313

3 3.68 3.955 3.876 3.826

4 2.23 2.352 2.334 2.317

5 1.35 1.337 1.337 1.337

6 0.82 0.713 0.735 0.756

7 0.50 0.805 0.715 0.660

Rms-error 0.418 0.335 0.283
Table 7.4.3 Values of ycalc for 3 different values of k. Data from

Table 7.4.2.

7.5 Nearest Neighbor Searching

In the previous sections we described three kernel regression algorithms:
Orders Zero, One and Two. The first step for each of these algorithms is
to specify nn, the number of nearest neighbors used to compute the local
least squares value for the dependent variable. When the number of inde-
pendent variables d is one, the search for nearest neighbors is trivial. All
one need do is sort the data based upon the values of the independent vari-
able. For d greater than one the problem is more complicated. However,
if the number of data points is not excessively large, all one needs to do is
to compute the distance to each point and then sort by distance. To avoid
problems associated with the sign of the distance, the usual procedure is to
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use distance squared. Another problem that arises when d is greater than
one is related to the scale of each of the independent variables. If these
scales are very different, then the distances in the different directions must
be normalized in some manner. The most obvious method of normaliza-
tion is to specify the minimum value of x as zero, the maximum value as
one and every other point as:

x _ X" Xmin__ (7.5.1)

normalized =
Xmax ~ Xmin

Kernel regression is a very attractive modeling method for many applica-
tions in which the relationship between the dependent and independent
variables is complicated and unknown. For example, kernel regression has
been applied to econometric and financial market modeling [WOO00].
However, if n, the number of data points is large, then the nearest neighbor
search requires n * (n-1) calculations of distance (or distance squared).
Note that using distance squared avoids the need to perform a square root
operation in every distance calculation. For each point we would have to
compute the distance to every other point. We could, of course, save all
the distances (or distances squared) in a gigantic matrix and that would
save half of the calculations. However, we see that the time devoted to
computing distances increases as O(n2?). When n is large, a popular model-
ing strategy is to divide the data into learning and test data where nlrn +
ntst = n. This reduces the number of calculations of distance to nlrn * ntst
but if both are proportional to n the number of calculations still increases
with n?,

If one is willing to accept an approximate nearest neighbor search, then the
time required to find the nearest neighbors can be reduced dramatically
[WOO00]. If nn is large compared to one, then it is not really necessary to
get the exact nn nearest neighbors. For example if nn is 50, if we miss the
7% 23" and 34™ nearest neighbors and instead use the 51%, 52" and 53"
nearest neighbors, the effect upon the local least squares solution should be
small. The key to an approximate nearest neighbor search is to organize
the data into a suitable data structure that can be used over and over again
for each search. If the data has been subdivided into learning and test data,
then the learning data is first inserted into the data structure and this data
structure is used to find the approximate nearest neighbors for each of the
test data points. If all # points are treated as test points, then all the points
would be included in the data structure and nn+1 points would be found
for each point (including the point itself). For example, if n = 100 and
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nn =5 and we are looking for the 5 nearest neighbors to points 27, a search for
6 points might turn up points 14, 23, 27, 38, 84 and 92. After rejecting
point 27 we would be left with the 5 approximate nearest neighbors: 14,
23, 38, 84 and 92.

The nearest neighbor problem (often called the K nearest neighbor prob-
lem) has been studied by many researchers [e.g., HA90, SK97, SM00]. A
library called "ANN: Library for Approximate Nearest Neighbor Search-
ing" can be downloaded from the internet [MO98]. In my last book I de-
scribed a program called FKR that uses the p-tree approach to nearest
neighbor searching to perform kernel regression analyses based upon
either the Order Zero, One or Two KR algorithm [WO00]. The p-tree is a
full binary tree of height 4 and thus contains 2" leaves. Each leaf of the
tree contains information about a region in the independent variable space.
If the number of independent variables is d then the height A of the tree
must be greater than or equal to d. It is easiest to explain this approach to
nearest neighbor searching if we assume that d = 2.

In Figures 7.5.1 and 7.5.2 we see 24 points distributed in a p-tree of height
h=3. There are 2° = 8 cells in this tree. The distances OA and OR are
normalized to a value of 1. The tree is constructed by first finding the
point on the normalized x; axis in which half the data points fall to the left
and half fall to the right. If the number of data points n is odd (i.e., n =
2m+1), then m will fall on one side and m+1 on the other side. In the
example we see that the space ADRO is first subdivided into two subspaces
ACPO and CDRP. Both of these spaces contain 12 data points. These
spaces are then subdivided along the x; axis. For example ACPO is subdi-
vided into EGPO and ACGE. Each of these subspaces contains 6 data
points. For higher dimensional spaces, this procedure is continued until
every direction has been subdivided once. Once the space has been subdi-
vided in every direction, then the next subdivision for each subspace is
along the longest normalized direction. For example, cell ACGE is longer
in the x; than the x; direction so it is divided into two subspaces along the
x; axis (i.e., cells 3 and 4). Cell CDLJ is longer in the x, direction so it is
divided into two subspaces along the x, axis (i.e., cells 7 and 8).



218 Chapter 7 KERNEL REGRESSION

A . B C D
3 . 4" 8
. = — |
E F G
I 7
u [l
= K L
|l|r.| N L] ™
. 1 5 6
(0] P Q R
X,

Figure 7.5.1 Cell Distribution in Normalized 2D Space

The p-tree data structure includes the dimensions of each of the cells and a
list of data points in each of the leaf cells. To find the nn approximate
nearest neighbors for a given test point, one must first find in which leaf
cell the test point resides. To find the test cell, one enters the tree at the
root cell and then follows the tree down to the appropriate leaf cell through
a series of if statements (e.g., if x, > 0.56 go to right-son, else go to left-
son). The search for nearest neighbors is limited to a maximum of num-
cells cells in which only the test cell and adjacent cells are included in the
search. If numecells = 1 then the search is limited to the test cell. If num-
cells = 2, then the search is limited to the test cell and the closest adjacent
cell. If numcells > 2" then the search is performed in the test cell and all
adjacent cells. Clearly, the greater the value of numcells, the more accu-
rate is the search but the time required to perform the search is greater.

[EGPO| IACGE] lJLRP |  [CDLJ

Mm@ & o

Figure 7.5.2 p-tree Representation of Cells in Figure 7.5.1
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To understand the approximate nature of this method of locating nearest
neighbors, consider Figure 7.5.3. In this figure three test points are con-
sidered: one in cell 1, one in cell 2 and one in cell 6. Consider first the
test point in cell 1. If numcells = 8, and nn = 4, then the search would
take place only in cells 1, 2 and 5 and the four points that would result
from the search would be a, b, d and i but not ¢ (since ¢ is not in an adja-
cent cell). Even if nn=24, the search would only locate 9 learning points
(i.e., all the points in cells 1, 2 and 5). The test point in cell 2 presents a
different problem. If numcells = 3, and nn = 2, then the search would be
in cells 2, 4 and 7 and points e and f would be located. However, if num-
cells = 2 then the search would locate e and ¢ (because the 2™ cell included
in the search would be 7 rather than 4). For the test point in cell 6, if num-
cells = 8, and nn = 3 then the search would locate the 3 points in cell 6. If
nn is increased to 4 then point g would also be located. If nn is increased
to 10, then only the 9 points in cells 5, 6 and 7 would be located. Points a
and b are closer to the test point than point h but they would not be located
because they are not in an adjacent cell.

Learning Point =
Test Point «x

] 4 - 8

= If Ih

X2 2

x d. n

X1

Figure 7.5.3 Data Point Distribution in p-free with 7 = 3 and 24
learning points.
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When n is large, there can be many points in each cell. For example, if
n = 10,000 and & = 8, then the average number of points per cell is 10000/2°
which is between 39 and 40. One option is to just use all the points in
the test cell to make a prediction for the dependent variable of the test
point. Furthermore, if all the points in the cell are equally weighted, then
the surface for the cell (using Order Zero, One or Two) can be saved and
used for every test point falling within the same cell. This procedure al-
lows very rapid predictions but at the price of reduced accuracy. The loss
of accuracy is greatest for points near the cell boundaries. To reduce this
loss, one can increase numcell to 2 and use all the points in the test cell
and the closest adjacent cell. Since all points in the two cells are used,
there would be no need to perform a nearest neighbor search within this set
of learning points. For very large problems (like modeling financial mar-
kets) the timing considerations for nearest neighbor searching and then
least squares fitting to perform kernel regression analyses becomes crucial.
This subject is considered in detail in my last book [WOO00]. The time for a
complete analysis can be divided into two components: preparation-time
and run-time. The preparation time is the time required to create the p-tree
data structure. For most large problems, the run-time is much greater than
the preparation time and optimization is thus directed towards reducing the
run-time to an acceptable level without a serious degradation in accuracy.

For time dependent problems, as new data is obtained, one can choose to
add the new data to the set of learning points. Another alternative is to use
a moving window in which as new points are added, the oldest points are
discarded. If the learning data set is allowed to grow or if the moving
window option is used, the number of points per leaf cell can eventually
vary considerably from cell to cell. For this reason, one should periodi-
cally rebuild the p-tree with the latest data.

The methodology of nearest neighbor searching described above is general
and is not affected by the dimensionality d of the problem. However, di-
mensionality plays a crucial role in the effectiveness of the resulting mod-
els. Bellman coined the phrase "the curse of dimensionality" in his book
on adaptive control processes in 1961 [BE61]. As the dimensionality in-
creases, the average distance from a test point to the nearest neighbors in-
creases dramatically. To understand the problem, let us organize n points
such that n/2 are learning points and n/2 are test points and the points are
placed within a hypercube of dimension 1 per side. Furthermore the points
are placed alternatively at equal distances. For example if we have a single
dimension (i.e., d = 1), the distance from a test point to the closest learning
points would be 1/n. If n =100 then the distance would be 0.01. In two
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dimensions (i.e., d = 2), there would be n" points per side and the distance
from a test point to the closest learning points would be 1/n'”. For exam-
ple, for n = 100, the layout of the 100 points is shown in Figure 7.5.4. We
see that the distance between points is 0.1 (i.e., 1/100”?). For d=3 the dis-
tance increases to 0.215 ((i.e., 1/100”%). Distances are summarized in
Table 7.5.1 for n =100, 10,000 and 1,000,000 for values of d up to 10. We
see that the distance to the closest learning point increases rapidly with in-
creasing d. For example, comparing the distances for d=10 and d=2 for n
= 10,000, we see that the ratio is almost 40 (i.e., 0.3981 / 0.01). For n =
1,000,000 the ratio is over 250. In other words, for a given value of n, the
data becomes increasingly sparse as d increases. In fact, the data density
decreases exponentially with increasing d. Thus our search for nn nearest
neighbors results in a volume that increases in size exponential with in-
creasing d. For large values of n our nearest neighbors are quite far away
thus the basic assumption that the model produces predictions based upon
behavior of nearby points becomes suspect. The "nearby points" are not so
nearby! This effect is called the curse of dimensionality.
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Figure 7.5.4 Layout of 100 data points, 50 learning and 50 test
points. Points are equidistant. For each test point the distance to the
nearest learning points is 0.1.

d n=100 7=10,000 'N=1,000,000
l 0.0100 0.0001 0.000001
2 0.1000 0.0100 0.0010
3 0.2154 0.0464 0.0100
4 0.3162 0.1000 0.0316
5 0.3981 0.1584 0.0631
6 0.4642 0.2154 0.1000
7 0.5179 0.2682 0.1389
8 0.5623 0.3612 0.1778
9 0.5994 0.3594 0.2154
10 0.6309 0.3981 0.2512

Table 7.5.1 Distance from test points to the nearest learning points
in an equidistant grid as a function of dimensionality 4 and the total
number of points n (with n/2 learning and »/2 test points). Distance =
1/n",
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7.6 Kernel Regression Performance Studies

In this section two studies are considered. Both are based upon a compli-
cated function of four independent variables. Each of the independent
variables was generated using a random number generator from zero to
one. The values of y for the first case were computed directly from the
function. The values of y for the second case are the same as for the first
case but a large random noise component was added to the values of y.
The equation for y (without noise) is:

2 2
- Z(x - 0.25] - Z(x - 0.75]
e e

= 1 B 1
+ e_ Z(x2 -0 5)2 3 e_ Z(x3 - 0.5)2 76.0)
Y 2[x4 - 0.25]2 - 2(x4 - 0.75]2

This equation has multiple peaks and valleys and an average value of zero.
The variable y is a function of 4 independent variables. For Case One,
10000 points were generated and 7000 were used as learning points. Pre-
dictions were made for each of the remaining 3000 test points and the vari-
ance reduction was computed using all the test points:

ntst

> (v; - yealc,)’

VR =100-=L (7.6.2)

nist

Z](yt _yavg)z

A p-tree of height h = 8 was used so the learning points were distributed
into 256 approximately equally populated cells. The average number of
learning points per cell was 7000 / 256 = 27.3. Nearest neighbor searches
were conducted in all adjacent cells to each test cell. The mm points
located in the searches were weighted using Equation 7.2.1. The calculation
was repeated using eight different values of k. The values of k varied from
calculation to calculation. The k's were computed using Equation 7.6.3
and eight different values of C (i.e., C=1,2, 4,8, 16, 32, 64 and 128) :
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% =W, = exp(— kd,fmx) (7.6.3)

In this equation d,,,, is the distance from test point i to the furthest of the
nn learning points. For example, if C = 4, then the minimum weight is
0.25. All the other nn — 1 learning point are weighted between 1 and 0.25.
For C =1, k is zero, and all the learning points are equally weighted. Ta-
ble 7.6.1 includes results using #r = 20 and 100 for all three algorithms.
Note that all the values of VR are close to 100%. Only results for C = 1
and 128 are included in the table, because VR varies smoothly and mono-
tonically between these two values. The results show that there is a slight
advantage to using a higher value of C (for all three algorithms) because
the higher the value of C the lower the weight for distant points. Also, the
results indicate that accuracy is improved as the order of the algorithm
increases.

nn Order VR (C=1) VR (C=128)
20 0 99.239 99.497
20 1 99.932 99.969
20 2 99.999 99.999
100 0 97.930 99.203
100 1 99.670 99.912
100 2 99.998 99.999

Table 7.6.1 Values of Variance Reduction for Combinations of nn
and Order. (h=8, nlrn=7000, ntst=3000)

In Case 2, Equation 7.6.1 was used to generate values of y but these values
were then corrupted with random noise. Defining rnum(n) as a function
that generates » random numbers between -1 and 1, the following method
was used to generate the values of y10 :

z = rnum(n)

o, 0.9 (7.6.4)
10=y+z7—" |—
sy o, Vo.1

The variable y10 is 10% signal (i.e., y) and 90% noise. If independent test
data is used, then one expects VR to be less than 10%. Using Equation
7.6.4, 50,000 data points were generated. Thirty-five thousand were used
as learning points to make predictions on the remaining fifteen thousand.
Results are seen in Table 7.6.2. The values of C in the table are the values
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for which VR is maximized. The results show that the Order 0 algorithm
is least sensitive to nn and Order 2 is most sensitive. AsS nn increases,
Order 0 requires a greater value of C to reduce the effect of distant points.
For all algorithms, it can be seen that if enough learning points are used to
make predictions, then results approach the maximum expected value of
VR = 10%.

The purpose of these two studies is to demonstrate the power of kernel
regression as a modeling tool. For problems in which there is no obvious
underlying mathematical model, kernel regression can be used to make
predictions for combinations of the independent variables within the range
of the learning data. The method can be used for problems in which the
data exhibits very little noise as well as for problems in which the data
includes considerable noise.

Order 0 | Order 0 Order 1 Order 1 Order 2 Order 2
nn VR C VR C VR C
50 7.923 1 6.963 1 -11.021 1
100 8.812 1 8.074 1 0.514 1
200 9.379 1 9.096 1 5.063 1
400 9.502 2 9.462 1 7.628 1
800 9.537 8 9.686 1 8.799 1
1600 9.491 128 9.737 4 9.454 1

Table 7.6.2 Values of VR and Best C for Combinations of nn and

Order . (h=38, nlrn=35000, ntst=15000)

7.7 A Scientific Application

Kernel regression can be applied to problems is many fields of science. I
was involved in a study related to the behavior of materials under deforma-
tion [TA03]. Clearly, this is not a subject that is of interest to most readers.
However, I am including it to illustrate the performance aspects of apply-
ing kernel regression to a very compute intensive application.

Typically materials are treated as a continuum but a growing field of study
considers the behavior of materials at the atomic level. In many cases,
both the finite dimensions of the system as well as the microscopic atomic-
scale interactions contribute equally to the overall system response. This
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makes modeling difficult since continuum tools appropriate to the larger
distance scales are unaware of atomic detail and atomistic models are too
computationally intensive to treat the system as a whole. One approach is
to model such systems using quasicontinuum techniques. Quasicontinuum
methods mix continuum and atomistic approaches to modeling. Our study
applied a kernel regression Order Two model to simulate the behavior in
the atomic region.

The overall strategy is to consider the energetics of the entire system with
the aim of finding the configuration in which the stored energy is mini-
mized. Atomistic simulations are performed in the critical regions (for
example, near propagating cracks in the material) and continuum methods
are used further from these regions. To move smoothly from the atomistic
to the continuum regions, as the distance from the critical regions
increases, the number of atoms used in the simulation decreases. From an
energetics point of view, the atoms are considered as representative of
their immediate neighborhood.

In the atomistic regions, what are required are the displacements of the at-
oms as functions of the positions of the atoms. In three dimensions the po-
sition of an atom is denoted as xy, X3, X3 and the displacements are denoted
as uy, U, uz. Crucial to the energetics calculations are the first and second
derivatives of the u variables. Each of the u 's are modeled separately. For
each atom, the first task is to find a set of nn nearest neighbors. Once the
nearest neighbors have been located, the method of least squares is used to
find the coefficients of the following equation:

2
u=a,x;t+a,x, +a;x;+a,x; +asx,xX, +agx;x; 771
2 2 o
+a,x; +agx,x; +ayx;

In the neighborhood of each atom of interest we use the x 's and the u 's
relative to this atom. In other words, the values of x;, X3, x3 and u for the
atom of interest are zero and thus there is no need for a constant in the
equation. This equation is a complete second order polynomial in three
dimensions. Since this equation includes 9 coefficients, the method of
least squares requires a value of nn greater than 9.  For each atom there
are 9 a; values for u, 9 values for u, and 9 values for u3. The first and
second derivatives for each u in each direction can be computed by differ-
entiating the equation. For example, the derivatives in the x; direction
within the region near the atom of interest are:
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ou
ox,
(7.7.2)
0’u
ox;

Since we are only interested in the derivatives at each atom of interest, the
x values are all zero and so the first derivative is just a; and the second de-
rivative is just 2a,. Similar expression can be determined for the deriva-
tives in the x; and x3 directions. Using the derivatives an expression for
total energy can be obtained and then the actual u values can be computed
by minimization of the energy equation. This is a non-trivial matter as the
number of degrees of freedom is very large. We worked with about
10,000 degrees of freedom (3 times the number of atoms used to represent
the system).

An interesting aspect of the study was the validation process used to test
the software and measure the effect of the input parameters upon system
performance. A test data set was generated and was based upon a random
set of x values but u values were based upon a known second order poly-
nomial (in 3 dimensions). Thus computed and actual derivatives could be
compared to make sure that the software was behaving properly. (The
expected errors should be close to zero and due only to round-off errors.)
The input parameters considered in the study included:

1. n: This parameter is the number of data points used in the analy-
sis. All n points were used to build the p-tree (required for nearest
neighbor searching) and then the same points were each used indi-
vidually as test points.

2. numecells : This parameter is the number of cells used in the search
for nearest neighbors. Each test point falls into a test cell. If
numcells = 1, then only the test cell is used. However, if numcells
> 1 then adjacent cells may be used. The value num_adjacent is
the number of adjacent cells and varies from cell to cell. It is a
computed parameter and not an input parameter. If numcells >
num_adjacent, then all adjacent cells are used. If, however, num-
cells < num_adjacent then the cells are first sorted on the basis of
the distance from their centers to the test point and the closest cells
are used up to a total of numcells.
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3.

numleaves : This parameter is the number of leaves in the binary
tree and must be equal to 2" where / is an integer and is a measure
of the tree height. The number of leaves determines the number of
data points included in each cell (rn / numleaves). 1f n / numeaves
is not an integer number than the number of data points per cell is
this number rounded up or down by one.

nn : This parameter is the number of nearest neighbors that are to
be located in the search and then used in the least squares analyses.
This number is a maximum in the sense that the actual number re-
turned might be less than nn. This can happen if the values of n,
numleaves, and numecells, result in the number of points under
consideration being less than nn. For example, if n = 2560 and
numleaves = 256, then there will be 10 points per leaf cell. If
numecells = 2, then only the test cell and the nearest adjacent cell
will be used in the search for nearest neighbors. So if nrn > 20,
then only the 20 points in these two cells will be returned. If nn is
not specified (n.s.), then all points in all the numcells are used.

C : This parameter is called the weighting parameter. The weights
are used in the least squares calculation of the derivatives. Once
the nearest neighbors (called the learning points) have been deter-
mined, the normalized distance to the furthest point is known. The
weight used for learning point 7 and test point j is computed as
follows:

Wy = exp(—kd;) (7.7.3)

where dj; is the distance between the points and the value of k& is
computed based upon C as follows:

% = exp(—kd ,fmx) (7.7.4)

where d,u.. 1s the distance to the furthest point. For example, if
C = 2 then the weight for all points will be between 1 and 0.5. The
smallest weight (i.e., 0.5) is given to the learning point that is
farthest away from the test point.
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The effect of » and numcells are shown in Table 7.7.1. The values of run-
time are in CPU seconds measured using a Pentium II — 400 processor.

N numcells Nn runtime
12500 All adj 100 9
25000 All adj 100 30
50000 All adj 100 109
12500 1 n.s. 2
25000 1 n.s. 6
50000 1 n.s. 27

Table 7.7.1 Timing results for several values of n. For all cases
numleaves was 256 and C was 1. n.s. is ""not specified".

In this table we see that the runtime increases at a rate that is much greater
than linear. The runtime consists of two main components: the time to
find the nearest neighbors and then the time to complete the least squares
analysis. For the first 3 cases in which all adjacent cells were included in
the search for the 100 nearest points, the number of points considered in-
creases as O(n) and thus the search for the 100 points increases as O(n
log,n). Since this search is repeated for all n points, the total time for this
activity increases as O(n* log,n). The least squares analysis for each point
is the same since all 3 cases were based upon 100 points. However since
this analysis is performed for each point, the total time for the least squares
calculations is O(n). The next three cases in the table are based upon using
only the points in the test cells to perform the least squares analysis. Since
nn is not specified, then all points in the cell are used. Thus each analysis
is O(n) and the total time for this activity is O(n”). However, since there
is no need for a nearest neighbor search, the times for these 3 cases are
considerably less than the times when all adjacent cells were used to find
the 100 nearest neighbors.

In Table 7.7.2 we look more closely at the effect of numcells. At first
glance the results look counter-intuitive. The average number of points in
each cell is 50000 / 256 which is about 195. We see that going from 1 cell
(i.e., the test cell) to 2 or 3 cells (i.e., the test cells plus the one or two clos-
est cells) causes a large increase in the runtime. However, using all adja-
cent cells actually causes a slight decrease in runtime. When all adjacent
cells are used the calculation required to find the closest cells is eliminated
and this compensates for the increase in the number of points required to
find the 100 nearest neighbors.
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The next four cases use all points in the included cells to perform the least
squares analyses. For nmumcells = 1, about 195 points are used, for num-
cells = 2, about 390 points are used until we reach a maximum when all
points in all the adjacent cells are used. The last two cases show that most
of the time spent (i.e., 335 — 39 = 296 seconds) was on the least squares
analysis required to compute the derivatives.

Numcells Nn runtime derivatives

1 100 26 Yes

2 100 112 Yes

3 100 112 Yes
All adj 100 109 Yes

1 n.s. 4 Yes

2 n.s 54 Yes

3 n.s. 81 Yes
All adj n.s 335 Yes
All adj n.s 39 No

Table 7.7.2  Timing results for several values of nuncells. For all
cases n =50000, numleaves =256 and C = 1. n.s. is ""not specified".

Note the incredible speed attained when numcells = 1, C = 1, and nn is not
specified. We call this fast mode because the points in the cell are only
used once. The least squares calculation is performed using the absolute
values of the x 's and the u 's rather than relative values the first time a test
point lands in a cell and then the computed coefficients are saved. Thus a
single complete second order polynomial is saved for each test cell and is
used for all test points within the cell. Using this polynomial the first and
second derivatives in all three directions can be computed for all points in
the cell without repeating the least squares calculation. Of course, if new
points are added to the cell, then the coefficients must be recomputed. The
book-keeping required for this operation is included in the program code.

The effect of numleaves is seen in Table 7.7.3. In this table preptime (the
time to create the p-tree needed for the nearest neighbor searching) is also
included. By increasing the number of leaves, we see an increase in prep-
time (the time to build the tree) but this is insignificant when compared to
the dramatic decrease in runtime. The decrease in runtime is due to the
decrease in the total number of data points considered in the search for
nearest neighbors. By increasing the number of leaf cells, we decrease the
fraction of the total volume of the space used in the search. A word of
caution should be added here. If we are looking for nn nearest neighbors,
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if numleaves is very large, the number of points per leaf cell might be so
small that even if all adjacent leaves are considered, the total number of
points examined will be less than nn. Clearly, as the number of points
used in the least squares calculation decreases, the accuracy of the com-
puted derivatives is adversely affected.

numleaves nn preptime Runtime
256 100 2 109
512 100 3 72
1024 100 3 53
2048 100 4 33
Table 7.7.3 Timing results for several values of nunleaves. For all

cases n = 50000, numcells = All adjacent cells and C=1.

The effect of C is seen in Table 7.7.4. When C > 1 weights must be calcu-
lated (based upon distance from learning to the test points) and this ex-
plains the small increase in time required to compute derivatives (80 — 10
=70 seconds for C =1 and 74 seconds when C > 1). When C > 1 the dis-
tances to the test point must be computed because the distance to the fur-
thest point is used in subsequent weight calculations. This additional
calculation is performed regardless of whether or not derivatives are
computed. The runtime increased from 10 to 21 seconds due to this added
calculation.

C preptime runtime derivatives
1.0 1 80 Yes
1.0 1 10 No
2.0 1 95 Yes
2.0 1 21 No
Table 7.7.4 Timing results for several values of C. For all cases n =

25000, numleaves = 256, numcells = All adjacent cells and nn is not
specified.

In conclusion, this application illustrates the usage of kernel regression to
obtain first and second order derivatives in three-dimensional space. To
obtain realistic deformations, many atoms are required to describe the sys-
tem. This is a very compute intensive application so a lot of attention to
computational complexity is required. The key to reducing the time per
calculation is in the reduction of the time required for nearest neighbor
searching.
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7.8 Applying Kernel Regression to Classification

Classification problems arise in many branches of science and technology.
As an example, consider a production problem in which a simple test is
required to decide whether or not a particular part should be accepted or
rejected. Let us say that we have two very simple measurements that might
be good predictors as to the quality of the part. Can we use these two
measurements to decide in which class (accept or reject) a part falls?

In Section 2.8 application of least squares to classification problems was
discussed. In general, for problems in which there are d independent vari-
ables, surfaces of d-1 dimensions were located to separate the classes.
Thus if there are 2 independent variables and 2 classes, a single line is lo-
cated to separate the classes. If there is only one independent variable,
then the separation is accomplished with a single point. There are how-
ever, problems in which this approach cannot be used. An example of a
distribution of two classes in a two dimensional space that cannot be sepa-
rated in such a simple manner is seen in Figure 2.8.4.

Rather than trying to locate surfaces, the approach considered in this sec-
tion is applicable to all types of distributions. As in Section 2.8, the
classes are assigned numeric values. For example, for a two class prob-
lem, the values of y = 0 or 1 can be assigned to the data points from the
two classes. The model is built using the nlrn points and tested using ntst
test points. To predict the class of a test point, the methodology described
in this chapter may be applied. For example, if we use the Order 0 algo-
rithm, nn nearest neighbors from the nlrn set of points are first located and
then a value of y is computed as described in Section 7.2. The learning
points can be weighted according to Equation 7.2.1 based upon the dis-
tance to the test point or they can all be assumed to have equal weight. In
addition, if the numbers of learning points from the classes is considerably
different, the classes with lower numbers of cases can be assigned higher
weights. This approach is discussed in Section 2.8 and is also applicable
when kernel regression is used for classification. For two class problems if
the computed value of y for the test point is less than 0.5 if would be pre-
dicted as a Class 0 point, otherwise it would be considered a Class 1 point.
Alternatively, the &technique (see Table 2.8.1) in which a "not clear" des-
ignation is assigned to some of the test points can be used. The use of Or-
der 1 and 2 algorithms is certainly acceptable; however they should only
be used if they outperform the simpler Order 0 algorithm.
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For real problems in which there are a large number of available data
points, one can experiment using various values of nn and perhaps using
several different values of C (see Equation 7.6.3). The parameters could
be selected based upon a criterion such as misclassification rate for the test
data set. If there are enough data points available, it is useful to leave an
evaluation data set untouched until the parameters have been set. This data
set can be used to verify that the selected parameters lead to reasonable
classifications for the as yet unseen data.

Class0: -
Class1:

X2

-1
-1 0 xI 1

Figure 7.8.1 A Two-Class Two-dimensional Example

As an example, consider the two-class two-dimensional problem shown in
Figure 7.8.1. In this example nlrn (the number of learning points) is 4 : 2
Class 0 points on the line x; = 0 and two Class 1 points on line x,=0. As-
sume that the correct (but unknown model) is that all points in the shaded
areas are from Class 0 and all points in the unshaded areas are from Class
1. The ranges of x; and x;, are limited to -1 to 1. Using the Order Zero Al-
gorithm and nn (the number of nearest neighbors) equal to one, all test
points will be classified correctly. However, if we use nn = 2, for every
test point we will locate one Class 1 learning point (¥ = 1) and one Class 0
(Y = 0) learning point. If all points are weighted equally then the value of
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yealc for every test point is 0.5. Points are classified as belonging to Class
0 if ycale < 0.5 — &, Class 0 if ycalc > 0.5 + & and otherwise N.C. (not
clear). Thus even if §= 0, all test points would fall into the N.C. category.
If the 2 learning points are weighted according to Equation 7.6.3, for any
value of C>1 (i.e., k> 0) all points would be classified correctly.

If nn=3, the situation becomes bizarre. If all points are weighted equally,
then all test points will be misclassified! If the points are weighted using
C > 2, then there will be a region near each learning point that test points
in the region are classified correctly. As C increases beyond 2 these re-
gions become larger. As C approaches infinity the situation approaches
the case of mn = 1. If all four learning points are used, then the situation is
very similar to the case of nn = 2 : if all the learning points are weighted
equally, then all test points will fall into the N.C. category. However, if
C > 1, then all test points will be classified correctly.

For a given set of data the first task of the analyst is to separate the data
into learning and test sets and perhaps an evaluation data set. The parame-
ters that are typically varied are nn, C and & (if there is a need to create an
N.C. category). Typically the classes overlap within the independent vari-
able space so there will be a certain fraction that will fall within the mis-
classified or N.C. categories. The purpose of varying the parameters is to
try to minimize the fraction that is misclassified.

To demonstrate the type of information that we would like to obtain, the
following artificial two-class two-dimensional problem was developed.
Ten thousand data points were created using four bivariate normal distri-
butions: two for Class 0 points and two for Class 1. The locations of the
centers of the distributions were positioned in a manner similar to the dis-
tribution in Figure 7.8.1. The Class 0 distributions were located on the line
x1 =0 (at x, = 3 and —-3). The Class 1 distributions were located on the line
x2 =0 (at x; = 3 and -3). A value of o= 1 was used in the bivariate distri-
butions. Thus for the 2500 Class 1 points centered at x; = 3 and x, = 0,
about 95% of the values of x; were in the range 3 — 1.96 to 3 + 1.96 and
about 95% of the values of x;, for this distribution were in the range —1.96
to 1.96. Results from a series of simulations are shown in Table 7.8.1.
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nn o Correct Not Clear | Misclassified
1 0.0 0.9505 0.0000 0.0495
1 0.1 0.9505 0.0000 0.0495
1 0.2 0.9505 0.0000 0.0495
3 0.0 0.9610 0.0000 0.0390
3 0.1 0.9610 0.0000 0.0390
3 0.2 0.9140 0.0685 0.0175
10 0.0 0.9730 0.0000 0.0270
10 0.1 0.9650 0.0100 0.0250
10 0.2 0.9455 0.0355 0.0190
20 0.0 0.9705 0.0000 0.0295
20 0.1 0.9630 0.0145 0.0225
20 0.2 0.9500 0.0310 0.0190

Table 7.8.1 Correct, Not-Clear and Misclassified Rates as a Func-
tion of nn and 4. For this example C = 1 (i.e., all learning points were
equally weighted.

Once the data from the four distributions were combined, every fifth data
point was put into the test data set and all the others were put into the
learning data set. Thus the value of nlrn was 8000, and ntst was 2000.
Results are shown in Table 7.8.1. We see that for this problem there is not
a very dramatic difference as a function of nn but the results for nn = 10
are marginally best. For all values of mn the misclassification rate de-
creases as d increases because some of the misclassified test points are
transferred to the N.C. category. Also, some points that had been classi-
fied correctly are transferred to the N.C. category. Note that for nn =1 the
N.C. rate is 0 for all values of dbecause the value of ycalc is either 0 or 1
depending upon the nearest neighbor.

The parameter C is used to set the value of k needed to calculate the
weights of the learning points. From Equation 7.6.3 when C = 1 the value
of k = 0 and therefore all points are equally weighted. When C = 2, the
weight of the furthest point (from the nn nearest neighbors) gets a weight
of 1/2 and all the other nn - 1 points get weights between 1/2 and 1. The
effect of varying C is seen in Table 7.8.2. Note that the effect is not very
dramatic for this particular problem. In fact, the results show a small ad-
vantage using C =1 (i.e., weigh all points equally).
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C o Correct Not Clear | Misclassified
1 0.0 0.9730 0.0000 0.0270
1 0.1 0.9650 0.0100 0.0250
1 0.2 0.9455 0.0355 0.0190
2 0.0 0.9690 0.0000 0.0310
2 0.1 0.9605 0.0130 0.0265
2 0.2 0.9440 0.0355 0.0205
3 0.0 0.9690 0.0000 0.0310
3 0.1 0.9605 0.0125 0.0270
3 0.2 0.9445 0.0345 0.0205
4 0.0 0.9695 0.0000 0.0305
4 0.1 0.9615 0.0110 0.0275
4 0.2 0.9445 0.0345 0.0210

Table 7.8.2 Correct, Not-Clear and Misclassified Rates as a Func-
tion of C and 8. For this example nn = 10.

The order of the algorithm was also tested for this problem. Using Order 1
the results were close but not quite as good as results for Order 0. The best
results were obtained using the simplest algorithm and simplest weighting
scheme (i.e., all points are equally weighted). For problems in which the
data density is high, the nearest neighbors are close to the test points and
thus there is no particular advantage to going to higher order algorithms
and decreasing weights for the further points. For this particular test prob-
lem, 8000 learning points were distributed in a two dimensional space and
so in most regions of the space there were a sufficient number of nearest
neighbors to make accurate classifications. However, for problems in
higher dimensional spaces the data density decreases exponentially with
the number of dimensions and one might expect that the higher order algo-
rithms would be beneficial for such problems.

7.9 Group Separation: An Alternative to Classification

For some problems the analyst is interested in identifying groups with spe-
cial properties. For example, an insurance company might want to develop
a model for predicting whether or not a person applying for life insurance
falls into a high risk or low risk group. A hedge fund operator might be
looking for stocks which should outperform or under-perform the market.
The traditional classification approach to problems of this type was dis-
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cussed in Section 7.8. In this section the concept of "group separation" is
introduced [WOO00].

In Section 7.6 kernel regression performance studies were considered. The
criterion for choosing parameters was maximization of VR (Variance Re-
duction). However, for some problems we are less interested in how a
model performs for all the test points and are more interested in the per-
formance of the top and bottom percentiles. For example, let us consider a
model that uses kernel regression to predict the performance of stocks rela-
tive to the market. For a given date and stock the model yields a predicted
relative return which can then be compared to the actual relative return.
The question that the analyst is most interested in answering is whether or
not the stocks with high predicted returns perform significantly better than
stocks with low predicted returns. The group separation SEP is a criterion
that may be used to answer this question:

Avg(G,) - Avg(G,)
7=

In this equation G is the top group and G; is the bottom group. If ¥ is the
actual variable that we are modeling, then for example, Avg(Gy) is the

SEP =

(7.9.1)

average value of ¥ for group 1 and O'él is the variance of ¥ for this group.
Typically the values of n; and n, are the same (i.e., n) and are computed as
a fraction of m#st (the number of test points):

n = ntst * GroupPcnt /100 (7.9.2)

If the model does not predict, then as the value of » becomes large we
would expect SEP to be normally distributed with a mean of zero and a
standard deviation of one. Thus SEP is a measure of separation of the
groups that can easily be interpreted for significance.

For example, assume that we develop a model that predicts the relative
one-day return of stocks and we test it over a period of 60 trading days.
Further assume that the average number of stocks followed during this
period is 8000 per day. We thus have 480 thousand data points that can each
be compared to how the stocks actually performed for the days included in
the study. Let us now question whether or not the top 5% of the stocks
outperformed the bottom 5%. The value of n for each group is 24000. Let
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us assume that the mean and standard deviation for group 1 is 0.00037 +
0.042 and for group 2 is—0.00024 + 0.056. The value of SEP is:

0.00037 + 0.00024
=1.35

10.0422 +0.056°
24000

This result is not very significant. If the model predicts in a random man-
ner, the probability of getting a value of 1.35 or greater is about 9%. For
the same model, what happens when we limit the groups to 1%? Assume
that the results for group 1 are 0.0070+ 0.038 and for group 2 are —0.0088

+0.034. The value of SEP is:
0.0070 + 0.0088
SEP = =215

0.038% +0.034>

4800

SEP =

This number is extremely significant and suggests that there is a very large
difference between the top and bottom 1% of the stocks when ranked on
the basis of their predicted performance. For this example, the contrast
between the top and bottom 1% as compared to the top and bottom 5% is
quite striking!



Appendix A: Generating Random Noise

When evaluating any type of modeling software, it is useful to be able to
create data sets that can be used for testing the software. Most general
purpose statistical software packages contain random number generators.
For example, MATLAB includes a function called rand that generates
random numbers in the range 0 to 1 and another function called randn that
generates random numbers from a normal distribution with a mean of zero
and a standard deviation of one. These functions or their equivalents can
be used to generate random noise satisfying the requirements of most data
sets.

Let us assume rand(n) and randn(n) generate vectors of # random num-
bers. (The functions in MATLAB are quite general and can generate sca-
lars, vectors or matrices.) Assume that we wish to create a ¥ vector from a
vector f{x) of n data points and we wish to add noise so that on average the
noise component is 5% and the noise is normally distributed. The noise
vector would be:

noise = 0.05 * f(x) * randn(n) (A.1)
and the ¥ vector would just be f(x) + noise.

As a second example, assume that we wish to add noise to the f{x)
vector so that if the entire data set is modeled the noise is on average
P times the actual signal. Assume that the noise is not a function of
f(x) and should be uniformly distributed within the range-C to C.
For this example, rand rather than randn is used. We must first
generate a basic noise vector with a mean of zero:

noise = C (2 rand(n) — 1) (A.2)
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To compute C we note that the values of noise will be between —C and C
with a variance of C?/ 3. It is reasonable to assume that the noise will be
uncorrelated with the Y vector so the variance in the ¥ vector is:

Oy =0} + 0. =0, +C* /3 (A.3)

noise

If we want to create a data set in which the average noise is P times the
signal (i.e., f(x)), we would first compute oy and then C as follows:

C= 1/3P0'} =0, V3P (A.4)

For example, if we wish to create a data set that is 80% noise, then the
value of P would be 4 and C would be 3.464 oy

If we wish to repeat this example but prefer that the noise is generated us-
ing a normal distribution, Equation A.2 thru A.4 would be replaced by:

noise = C * randn(n) (A.5)
Oy =0} + 0 =0 +C’ (A.6)
C=0,JP (A.7)

For the case of 80% noise, C would be 205

If there is no available equivalent to the randn function, randn can be
generated from rand. The randn function generates random numbers
from the standard normal u distribution. This distribution is tabulated in
many sources (e.g., AB64, FR92, ST03). The tables include the probability
of a point falling within the range from 0 to u. Theoretically # can range
from — oo to —oo, but for values of # above about 3 the probabilities are very
close to 0.5. Using Equation A.8 (i.e., Equation 26.2.23 from AB64) n
random probabilities in the range —0.5 to 0.5 are first generated: p =
rand(n) —0.5. A vector of signs is then created: (if p <0 sign=-1 else
sign =1). At this point only the absolute values of p are used (p = abs(p)).
Equation 26.2.23 computes the value of u, such that the probability of a
point falling above u, is p. The normally distributed random numbers u,
corresponding to the random values of p are generated as follows:
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t= ln(%)
¥4

Cq + it + ot
u, =sign*| t— 0 1 2 +& A8
=8 ( 1+d1t+d2t2+d3t3) () (A.5)

where |8(p)‘ <4.5%107*. The values of the constants are:

c=2.515517 d=1.432788
c1=0.802853 d,=0.189269
c2=0.010328 d;=0.001308

For values of p approaching zero, ¢ and therefore u, becomes large. For
example, for p = 0.0001, # = 4.7985 and u, = 4.2684. For values of p
approaching 0.5, u, approaches zero. For example, for p = 0.4999,
t =1.1776 and u, = 0.00025.



Appendix B: Approximating the Standard Normal
Distribution

The standard normal distribution is probably the most widely used distri-
bution in statistics. Indeed, many other distributions can be approximated
by the standard normal as the number of events or data points becomes
large. In classical statistics, the usage of the standard normal required the
user to look up values in standard normal tables (e.g., AB64, FR92, ST03).
To avoid the table lookup process, approximations to the standard normal
are available and can be accessed as calls to functions from within soft-
ware. General purpose statistical software packages include such
functions.

The normal distribution was defined in Section 1.3 by Equation 1.3.7:

__ 1 _x-p)
d(x)= Ry exp( 20" ) (1.3.7)

The standard normal distribution (denoted as the u distribution) is the
normal distribution with a mean of zero and a standard deviation of one:

1 2
u(x)=——>—-exp(-x-/2) (B.1)
The probabilities listed in the standard normal tables are the areas under

the curve from 0 to u),:

up

P(u,)= ju(x) dx (B.2)
0

We can also define the Q(u,) as the area under the curve from u, to co:
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oo

Q(u,)= [u(x)dx (B3)

Up

Note that P(u,) + Q(u,) = 0.5. In Appendix A, Equation A.8 is used to es-
timate the value of u, for a given value of O(u,). In this appendix, we con-
sider the inverse problem: estimating either Q(u,) or P(u,) for a given
value of u,. In the Handbook of Mathematical Functions [AB64], Equation
26.2.17 can be modified to approximate Q(u,):

1
{1 =
1+0.2346419% u,,

z=exp(- u;/Z)
Qu,)=z* (bt +b,t* + byt +b,t* +bst°) + £(u,) (B.4)

where ‘e(u » )' <7.5%107®. The values of the constants are:

b, 0.319381530 b, =-0.356563782
b; 1.781477937 b, =-1.821255978
bs = 1.330274429

The equivalent value of P(u,) is just 0.5 — Q(u,). As an example, for u, =
1.96, the value of Q(u,) using B.4 is 0.024998 and P(u,) is 0.475002
which is in agreement with the value in the standard normal tables.
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