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Personal Reminiscences of Georges Matheron

Dietrich Stoyan

Institut für Stochastik, TU Bergakademie Freiberg

I am glad that I had the chance to meet Georges Matheron personally once
in my life, in October 1996. Like many other statisticians, I had learned a
lot in the years before from his books, papers, and research reports produced
in Fontainebleau. From the very beginning, I had felt a particular solidarity
with him because he worked at the Ecole des Mines de Paris, together with
Bergakademie Freiberg one of the oldest European mining schools.

The first contact to his work occurred in talks with Hans Bandemer, who
in the late 1960s had some correspondence with Georges Matheron. Proudly
he showed me letters and reprints from Georges Matheron. He also had a
copy of Georges Matheron’s thesis of 1965, 300 pages narrowly printed. Its
first part used Schwartz’ theory of distributions (Laurent Schwartz was the
supervisor) in the theory of regionalized variables, while the second part de-
scribed the theory of kriging. Hans Bandemer was able to read the French
text, translated it into German language and tried, without success, to find
a German publisher. Unfortunately, the political conditions in East Germany
prevented a meeting between Hans Bandemer and Georges Matheron.

A bit later, in 1969, I saw George Matheron’s book “Traité de Géostatis-
tique Appliquée”. It is typical of the situation in East Germany at the time
that this was a Russian translation published in 1968, based on the French
edition of 1967. (We could not buy Western books and most of us could not
read French. At the time the Soviet Union ignored the copyright laws.) I was
very impressed by the cover illustration showing a gold-digger washing gold.

Georges Matheron’s Traité is a fascinating book, and for me and many
others it was the key reference in geostatistics at the time. The progress
achieved in this work is perhaps best expressed by the following quote from
the postscript (written by A.M. Margolin) of the Russian translation:

“We find in the monograph the fundamental ideas and notions of a
mathematical theory of exploration, called by Matheron ‘geostatistics’.
Geostatistics is characterized by a concept which corresponds to the
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mathematical problems of exploration, by fundamental basic notions
and by a large class of solvable problems.

In comparison to classical methods of variation statistics [the sim-
ple methods using mean and variance and Gaussian distribution],
which were until the 1950s nearly the only way of application of math-
ematics in geological exploration, geostatistics is directed to the true
mathematical nature of the objects and tools of exploration. . .

According to geostatistics, the uncertainty which is characteristic
for results of exploration is a consequence of incompleteness of ex-
ploration of the object but not of its randomness. In this probably the
increasing possibilities of the geostatistical theory consist and the prin-
cipal difference to variation statistics, which is based on the analysis
of geological variables irrespectively to the locations of observation. . . ”

Not at the time, but later on when I had learnt more about public relations
in science, I admired Matheron’s cleverness in coining terms: It was very
smart to call statistics for random fields ‘geostatistics’ (to use a very general
word, which suggests ‘statistics for the geosciences’, for a more limited class of
problems) and least squares linear interpolation ‘kriging’ (originally ‘krigeage’;
in Freiberg it was for a long time not clear whether it should be pronounced
‘krig-ing’ or ‘kraig-ing’ – as suggested by the Russian translation – or ‘kreedge-
ing’.)

Georges Matheron’s “Random Sets and Integral Geometry” of 1975 was a
landmark in my own scientific development. The mid 1970s were a great time
for stochastic geometry and spatial statistics, which then became more than
just geostatistics. In that time mathematical morphology was also shaped,
and Jean Serra’s work in image analysis became known outside Fontainebleau,
both in theory and in applications. The first image analyser, the famous Leitz
TAS, was produced, based on ideas of Georges Matheron and Jean Serra.

We, the scientists in East Germany, were unable to order the book in a
book store, but I got a copy from Dieter König in exchange for a book on
queueing theory. Up to this day, for me (and many others, I believe) Georges
Matheron’s book is the key reference in random set theory; the cover of my
copy is now in pieces, and many pages are marked with notes. Unfortunately,
the book has not been reprinted since.

This book gives an excellent exposition of the topics named in the title, it is
very clearly written, and of just the right theoretical level. Georges Matheron’s
work also led me to Hadwiger’s, whose monograph on set geometry is now
one of my most beloved mathematical books in German language. So Georges
Matheron had an excellent base for the integral-geometric part of his work. It
is a great combination of many mathematical fields, such as integral geometry,
set geometry, Choquet’s theory of capacities (in fact Matheron developed
it independently), and ideas of Poisson process based stochastic geometry
(created in particular by Roger Miles) to obtain a new, rich and fruitful theory.
Georges Matheron’s book contains many gems. I name here only the theory
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of the Boolean model (he writes ‘boolean model’, with small ‘b’), the Poisson
polyhedron, and the granulometries.

It was Georges Matheron who made notions of measurability properties
rigorous in the context of random sets. This can be explained in terms of
Robbins’ formula for the mean volume of a compact random set:

Eν(X) =
∫
Rd

p(x)dx

where p(x) = P (x ∈ X). Its proof is based on Fubini’s theorem and was
already given – in part – in Kolmogorov’s famous book of 1933. It was Georges
Matheron who showed that the mapping set → volume is measurable. The
σ-algebra with respect to which measurability is considered (based on Fell’s
topology) is today called Matheron’s σ-algebra. Some of his results for models
related to Poisson processes were the starting point for further scientific work,
when it became clear that methods from the theory of marked point processes
can be used to generalize them. Through his book, Georges Matheron has been
a teacher and inspirer for a large number of mathematicians in the last three
decades.

In 1989 Georges Matheron published the book “Estimating and Choosing”.
Grown older, I was offered the honour to serve as one of its reviewers. This is a
philosophical book, discussing the fundamental question of spatial statistics:
“Why does it make sense to perform statistical inference for spatial data,
when only a sample of size n = 1 is given?” Indeed, very often a statistician
has only data from one mineral deposit, or from one forest stand; a second
sample taken close to it can typically not be considered as a sample from
the same population, because of different geological or ecological conditions.
He developed the idea of ‘local ergodicity’, which is plausible and justifies
the statistical approach. Each spatial statistician should read the book. I also
enjoyed its sarcastic humor.

In June 1983 Dominique Jeulin came to Freiberg as an invited speaker
at a conference. For me and colleagues like Joachim Ohser and Karl-Heinz
Hanisch this was the first chance to meet a scientist from Georges Matheron’s
school. Dominique Jeulin spoke about multi-phase materials, rough surfaces,
and image transformations. He is likely the first French person I ever met, and
I learned that French English differs greatly from German English. Dominique
had to repeat three times his ‘Stojáng’ until I understood that he asked for
me. The contact to him, which is still lively, finally led to the meeting with
Georges Matheron.

After the big changes of 1989/90 we had many West German PhD students
at Freiberg. One of them, one of the best, was Martin Schlather. Martin
had studied one year at Fontainebleau, had written a diploma thesis there,
and had been given oral exams by Georges Matheron personally. Thus, he
could tell me first hand about Georges Matheron’s personality and about
the situation at Fontainebleau. Like anybody who ever had personal contact
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with Georges Matheron Martin admired him, both as a mathematician and
as a person. Martin told me that Georges Matheron’s work is much more
comprehensive than his books and journal publications suggest. So we are all
extremely grateful to Jean Serra for publishing a CD with the reports and
papers by Georges Matheron. I agree with Martin and Jean that one will
find wonderful ideas and solutions to hard problems as one goes through this
material.

It was Martin Schlather who encouraged me to travel to the Fontainebleau
conference in 1996. This conference was organized by Dominique Jeulin in hon-
our of Georges Matheron, and the lectures are published in the volume Jeulin
(1997). There we met Georges Matheron, who did not give a lecture, but was
sitting in the front row in the lecture room, obviously listening with attention.
One afternoon there was a reception in the municipal hall of Fontainebleau.
The maire decorated Georges Matheron (and others) with a medal, for reasons
that I did not completely understand, either scientific or political. Georges
Matheron was polite enough to bear the ceremony, but quite obviously he did
not take it very seriously. He told me anecdotes, and his body language was
clear enough. I had no difficulty in communicating with him, he accepted my
poor English, and I understood him very well.

In the evening I was honoured by an invitation to the family of Jean Serra,
where I also met Mesdames Matheron and Serra. It was an enjoyable, not very
long evening, with friendly non-mathematical talk, and a bit of French wine.

In the end, I never orally discussed mathematical problems with Georges
Matheron, but I appreciated the contact over many years, through studying
his work, and through a few comments that he made on my work. I believe that
there is only a small number of international mathematical conferences which
Georges Matheron attended. His example shows that a mathematician who
does not visit conferences can be nevertheless be influential and widely known.
Perhaps, Georges Matheron could have had even more influence. However, did
he really want this?

Back to Freiberg, I had the idea of honouring him there. At the time I was
the president of the little Technische Universität Bergakademie Freiberg and
saw the chance of honouring him with a Dr.h.c. degree. I asked Dominique
Jeulin. He liked the idea but warned me that Georges Matheron would proba-
bly never come to Freiberg, and if he did, I could not expect his collaboration
in a public relations event to the benefit of my university, as I was hoping for.
To my regret, I did not pursue the idea any further.

In October 2000, the sad news of Georges Matheron’s death spread. I re-
gretted that I had not seen him again after 1996. As a keepsake to Georges
Matheron, I asked Jean Serra for Georges Matheron’s personal copy of Had-
wiger’s book – expecting a book with many pencil notes. To my surprise I
learned that Georges Matheron had used a library copy.

I am very happy that this volume is now ready, which will honour Georges
Matheron, one of the great mathematicians of the 20th century.



A few words about Georges Matheron
(1930-2000)

Jean Serra

Centre de Morphologie Mathématique, Ecole des Mines de Paris

That day, Paris was steaming hot, as it may happen in July when there is
not the slightest breeze of wind to cool the air. Despite the vigour of his
nineteen years, Georges Matheron, while waiting for his turn, was suffocating
and finally lost his composure before the board of examiners of the Ecole
Normale Supérieure. Fortunately, he came second at the Ecole Polytechnique,
which he entered a few weeks later. That was in 1949. He probably had missed
the opportunity to work in the best possible environment for him, and at the
time he did not know that the path he was heading for would involve him in
earth sciences for the rest of his professional life.

Those who have practised geostatistics all know how fascinating it is to
discover the mineral world underground, to figure the structures from drillhole
variograms, like a blind person fingering an object to guess its shape. However
G. Matheron was the first one to know that excitement, all the more as he
was creating the mathematical tool while using it to comprehend the earth
substratum. Moreover he designed it so that the description of the mineral
space and the estimation of mining resources be indissolubly linked, like the
two sides of the same coin.

After two years spent at the Ecole Polytechnique, two more years at the
Ecole des Mines and another one in the military service, it was in Algeria that
the Corps des Mines sent him for his first appointment. He had married one
year before, and landed in Algeria with wife and child. He quickly took over
the scientific management (1956), then the general management (1958) of the
Algerian Mining Survey.

It takes imagination to realize how important it was for a young French
engineer. The huge Algerian territory stretches as far as the Saharan South
and abounds in orebodies of all kinds. It is one of the reasons why the Inter-
national Geological Congress has been held in Algiers in 1952, just two years
before he arrived. It was also in the early 50’s that papers written by three
South-African authors, Krige, Sichel and de Wijs, laid the statistical founda-
tions from which G. Matheron would base his theory of geostatistics, that was
revolutionary at the time.
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What does not kill you makes you stronger. In the early 60’s, French
Algeria collapsed, France recalled its executives to the home country and
reorganized its mining research by creating the BRGM (Geological and Mining
Survey) in Paris. G. Matheron was assigned a “Geostatistical department”,
practically reduced to himself. The BRGM did not believe in geostatistics, and
the only mining partners came from the CEA (∼ Atomic Energy Commission),
namely A. Carlier and Ph. Formery. This solitude was in fact a blessing which
enabled him to devote himself to the final development of what will be called
later linear geostatistics.

The genesis of the following works is instructive, and tells a lot about
the personality of G. Matheron. In Algeria, he invented the random func-
tions with stationary increments, while being sceptical about the probabilistic
framework. Every deposit is a unique phenomenon, that occurred once only
in geological times; besides, when one estimates its reserves, one does not
compare its drillings with those of more or less similar deposits. This unique
phenomenon, studied in itself, does not offer any more hold to probabilities,
than if one wanted to know the proportion of hearts in a deck of cards by
drawing only one card once.

It was within that “semi-random” framework that G. Matheron wrote the
first volume of his “Traité de Géostatistique Appliquée” (treatise of applied
geostatistics) in 1962, which was based upon the Algerian experience, then the
second volume (1963) on kriging, which solved the problems of local estimation
raised by the uranium deposits of the CEA. Even today, the reader is amazed
at such a skilful mastery of first the mathematics, then of the physics of
the topic, with the right simplifying approximations. The rule of one-to-one
correspondence for instance, in volume I, is still a masterpiece, where each
term of the limited expansion of the theoretical variogram (whose estimation
is empirically accessible) corresponds, with a known invariable weight, to a
term of the limited expansion of the deposit estimation variance (which is
sought for).

However this rule could be formulated in a deterministic framework as
well as in probabilistic terms. Hence a third book, entitled “La théorie des
variables régionalisées et leur estimation”, which became his PhD thesis in
1963. The deterministic and random parts were developed successively, with
much rigour, and all theoretical conclusions drawn. But G. Matheron waited
twenty years before expressing himself, in “estimating and chosing”, upon the
choice of either approach according to the context – the mathematician was
ahead of the physicist.

As the BRGM continued to ignore the practical interest of his sextuple
integrals, G. Matheron looked elsewhere to collect followers, through teach-
ing. A “geostatistical option” was created at the Ecole des Mines de Nancy,
which provided him with his first PhD student. The latter, Jean Serra, rapidly
branched off and oriented methods and applications towards the new field of
mathematical morphology (random event or deterministic fate?). The quality
of the iron ore of Lorraine was defined as much by its grade as by its suit-
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ability to grinding, which could only be quantified from the mosaic of the
petrographic phases, as they appear under the microscope. Hence the idea of
measuring petrographic variograms, and extending the concept of variogram
to that of the hit-or-miss transformation, then to that of opening, etc. For
more than one year, the master and the disciple, though separated by three
hundred kilometers, met each month, sharing their enthusiasm, their notes,
and the advancement state of the “texture analyser”, which the student was
developing with Jean-Claude Klein. Many years later, in 1998, when describ-
ing this intense period at the research committee of the Ecole des Mines de
Paris, G. Matheron would say : “these were the most beautiful years of my
life”.

In april 1968, the Ecole des Mines de Paris gave G. Matheron the opportu-
nity to create the “Centre de Morphologie Mathématique” in Fontainebleau,
with J. Serra as the other permanent researcher. The events of may 1968 were
favourable to them, thanks to all the public founds they released, so that in
two years the team grew from two to twelve persons. It spread on both fronts of
geostatistics and mathematical morphology. From that time, the first gained
international recognition, and proposals for mining estimations coming from
the five continents arrived at the Centre. Moreover, from the early 70’s, the
CMM had been asked to map the sea bed, atmospheric pressures, etc. The
application fields broadened and with them the variety of the problems to be
solved ; for example, that of submarine hydrography led G. Matheron to in-
vent the universal kriging (1969), then the random functions with generalized
covariances (FAI-k, 1973), which both released the constraint of the stationar-
ity hypothesis. Another example : the integration of local mining estimations
into operating management programs led G. Matheron to conditional simula-
tions, less accurate than kriging, but which did not smooth the data. Finally,
during the 70’s, G. Matheron formalised and proposed a definitive answer to
the major issue of mining estimation, namely the change of support. In this
case, the problem is no longer to estimate the variance of panels with respect
to their size, as in linear statistics, but to be able to predict their whole distri-
bution function, in order to fit mining exploitations to the economic conditions
(1976).

In parallel with these developments, the mathematical morphology group
became independent and evolved to an autonomous centre in the early 80’s.
Indeed, from the beginning, its applications covered the whole field of optical
microscopy, and while metallography and porous media still pertained to earth
sciences, medical histology and cytology addressed quite another audience.

G. Matheron did not show more than a polite interest in such applications
of mathematical morphology. He did not penetrate them like he had done
with mining technology. Morphological applications were too varied, and what
excited him was to extract from them some general approaches, which could
be conceptualised. This is why were produced the theories of granulometries,
of increasing operators, of Poisson hyperplanes and of Boolean sets, which
he gathered into the book Random sets and Integral Geometry, in 1975. The
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topic of porous media was the sole exception. This application already had a
whole specific physical framework, varying according to the considered scale
(Navier-Stokes equation at the microscopic level, Darcy equation at larger
scales). How can such changes be linked ? To what extent can random sets
provide tractable models ? Throughout his career at the CMM, G. Matheron
kept involved with these questions and indicated fruitful directions.

At the beginning of the 80’s, his professional life took a more “morpho-
logical” turn. On the theoretical level, the geostatistical vein seemed to be
exhausted, whereas morphologists had just designed new operators, products
of openings and closings, which had the property of being both increasing
and idempotent (here the word “morphologists” refers to the members of the
CMM team as well as to the American S.R. Sternberg, the German D. Stoyan
or the Australian G.S. Watson, among others). As these operators used to ap-
ply to both frameworks of sets and numerical functions, G. Matheron situated
his approach at the broader level of the complete lattices and constructed a
general theory of the increasing and idempotent operators that he called mor-
phological filtering (1982-1988). In spite of appearances, these new levels can
easily be integrated into the structure of his overall work. Morphological fil-
tering gave a simplified and denoised vision of the numerical functions, as did
kriging for mapping. Increasingness and idempotence had replaced linearity
and the master observed the consequences of that genetic change.

Since the 90’s, multimedia have been the dominant theme in Mathemati-
cal Morphology, bringing into focus the three topics of motion, segmentation
and colour. Today, these topics still concentrate most of the CMM activities.
However, G. Matheron did not take interest in them. Since he inserted mathe-
matical morphology into the lattice framework, he pursued the idea to extend
also his random set theory. In order to do so, complete lattices must be first
equipped with adequate topologies. G. Matheron’s efforts were devoted to this
task until his retirement, which was punctuated by an unpublished and last
book on compact lattices (1996).

Jean Serra
September 2004
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Part I

Geostatistics



The genesis of geostatistics in gold and
diamond industries

Danie Krige1 and Wynand Kleingeld2

1 Florida Hill, South Africa
2 De Beers MRM, UK

1 Introduction

Geostatistics has had a phenomenal half a century of development and achieve-
ments, and to which George Matheron has made invaluable contributions
throughout. The genesis of geostatistics is clearly linked to South Africa and
more specifically to gold mining in the Witwatersrand basin, which started
towards the end of the 19thcentury. In the later stages of the development
of geostatistics the problems inherent in the valuation of diamond deposits
presented a new field for geostatistical contributions.

2 The Influence of Gold and the Origin of Geostatistics

For economic reasons this gold mining was and still is conducted on a selective
block basis and calls for intensive and regular sampling of underground expo-
sures of the ore bodies. This resulted in the accumulation over many years of
massive data sets conducive to statistical analysis and the study of frequency
distribution models. In the pre-geostatistics period ore reserve blocks were
valued on the arithmetic averages of samples from the block peripheries; as
these blocks were being mined the advancing stope faces inside the blocks were
also sampled regularly to yield extensive follow-up block values. Comparisons
of these follow-up grades with the original block estimates provide an obvious
opportunity for statistical analyses such as frequency distribution studies and
classical correlations. However, this opportunity remained dormant until the
1940’s.

At that time, extensive exploration of virgin properties in the new South
African gold fields by deep drilling was also taking place. Grade estimates
for these new mines had to be based on limited sets of drill hole grades with
no proper basis for estimating the effects of selective mining to economic
cut-off grades. Fortunately, the ideal venue for access to all this data from
numerous existing mines and from the new gold fields was provided by the
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records in the Government Mining Engineer’s Department where the first
author was privileged to be employed in the late 1940’s. He was introduced
to the statistical approach for the processing of this data by the earlier initial
work by Sichel [27], Ross [26] and De Wijs [3, 4]. This led to a first set
of publications ([8, 9]) which in turn introduced, inter alia, Allais [1] and
Matheron [15] to the subject.

This paper is, thus confined to ore valuations in the mining field.

2.1 Frequency Distribution Models

The skew nature of the gold grade frequency distributions was first observed
by Watermeyer [33] and later studied by Truscott [32]. But these studies were
done without the knowledge of the lognormal model and were unsuccessful.

Real progress was absent until the 1940’s when Sichel [27] suggested the
use of the lognormal model. He was a classical statistician and in the
mining field he concentrated his efforts on frequency distribution models. He
developed the T-estimator with its appropriate confidence limits [28]. This es-
timator is more efficient than the arithmetic mean, but is strictly valid only for
a random set of data which follows the lognormal model exactly. Departures
from the 2-parameter lognormal model, as observed in practice, were largely
overcome with the introduction in 1960 of the 3-parameter lognormal model
[10] which requires an additive constant before taking logarithms. However,
there were still cases which could not be covered properly by the 3-parameter
lognormal, and led to the introduction of the more flexible Compound Lognor-
mal Distribution [30], originally developed by Sichel for diamond distributions.
This model is very flexible and caters specifically for a tail of high values which
is much longer than that for earlier models. This development is covered in
the second part of this paper.

2.2 The genesis and early development of geostatistics

Geostatistical concepts originated in the late 1940’s when Ross applied the
lognormal model to a variety of actual gold grade data [26], de Wijs showed
how the differences between individual grades depended on their distances
apart [3, 4] and particularly when the basic concept of gold ore grades as a
variable with a spatial structure was introduced in 1951/2 [8, 9]. The objective
of this latter work was to develop more efficient grade estimates for new mines
and for ore blocks on existing mines.

The first paper [8] was aimed at finding an explanation for the experience
on all the gold mines for many decades, of ore reserve estimates during subse-
quent mining consistently showing a significant under-valuation in the lower
grade categories and the reverse for estimates in the higher grade categories.
Classical statistical correlation and regression analyses proved this to be an
unavoidable result of block estimates subject to error and to conditional biases
[8]. In the proper perspective it was essential to no longer view the peripheral



Genesis of geostatistics 7

data used for individual block estimates and the ore blocks themselves in iso-
lation. It was essential to see the peripheral data as part of an extensive
spread of data (the data population) in stopes and development ends in
the relevant mine section; also to accept the grade of the ore block concerned
as part of a collection of block grades (both intact and already mined out),
i.e. as a member of a population of oreblock grades.

In this way, the spatial concept was introduced as well as the con-
cept of support in moving from individual sample grades (point supports),
to block grades. A mathematical model was first set up of the lognormal
distribution of actual block values in a mine section. The errors in assign-
ing the limited peripheral grades to the blocks were super imposed on the
actual grades to yield the corresponding distribution of block estimates. On
correlating these two sets of block values on a classical statistical basis, the
averages of the actual block values relative to the corresponding block esti-
mates in grade categories could be observed, i.e. the curvilinear regression of
actuals on estimates. This was a theoretical follow-up exercise to simulate the
results actually observed in practice. It provided the statistical explanation of
the natural phenomena of the unavoidable under- and over-valuation features
as mentioned above, i.e. the inherent conditional biases. The use of the
lognormal model also covered the curvilinear nature of the regression
trend as observed in practice.

The very fact that a correlation exists between the block estimates and
the internal actual grades emphasises the presence of a spatial structure. With
the explanation of these conditional biases, the initial application in practice
was to apply the trend, or regression, of actuals (or follow-ups) versus esti-
mates –as observed from the mine records or modelled geostatistically– to
the orthodox block estimates so as to eliminate these biases. As the regressed
estimates were, in effect, weighted averages of the peripheral estimates and
the global mean grade of the mine section, it was the first application of
what became known as kriging. It can be labelled Simple Elemen-
tary Kriging, being based on the spatial correlation between the peripheral
values and the actual grades of the ore inside the ore blocks, and giving proper
weight to the data outside the block periphery via the mean.

During the 1950’s several large gold mines introduced regression techniques
for their ore reserve estimates on a routine basis. It is instructive to observe
that on the gold mines the improvement in the standard of block valuations
due to the elimination of conditional biases accounts for some 70% of the total
level of improvement achievable today with the most sophisticated geostatis-
tical techniques. It is for this reason, that so much stress is placed on the
elimination of conditional bias (so called “conditional unbiasedness”).

In the second paper [9], the spatial structure of the grade data from
91 drill holes in the main sector of the new Orange Free State gold field was
defined by the log-variance/log-area relationship (see Fig. 1). This demon-
strated the so-called Krige formula (point variance within a large area minus
the average point variance within ore blocks = the variance of block values
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within the large area) as well as the so-called permanence of the lognor-
mal model for different support sizes. On this basis the lognormal model
for the expected distribution of ore block grades was modelled with a global
mean grade as estimated from the 91 drill hole grades. It led successfully to
meaningful tonnage and grade estimates for a range of cut-off grades, i.e. the
first version of the now well known tonnage-grade curve. Without
a proper block distribution model the orthodox approach would have based
the tonnage-grade estimates directly on the individual drill hole grades with
seriously misleading results globally and for individual mines.
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Fig. 1. Dispersion variance versus domain size: example of gold data from the Or-
ange Free State. The horizontal axis represents the area of the domain in logarithmic
scale, from 10−5 to 1010 ft2

These developments were published in 1951/1952 and aroused world-wide
interest in the subject now known as geostatistics, particularly in French cir-
cles. Matheron and Duval translated these two papers and re-published them
in 1955 together with two personal contributions by them ([15, 5]). This was
followed by a paper on exploration prospects in the Sahara by Allais [1]. Math-
eron [15] in particular covered the more theoretical background underlying the
two basic South African papers and the models involved in all this work. He
showed, for example, that the permanence of the lognormal model can
only logically apply where a spatial structure is present and that the positive
correlation between the log variances and the mean grades of lognormal dis-
tributions – the so-called proportional effect – is an inherent feature of the
lognormal model. This contribution by Matheron was accompanied and/or
followed in the 1950’s and 1960’s by numerous other notes and publications
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in French and the introduction of the theory of regionalised variables.
Matheron’s first geostatistical papers in English were in the 1960’s ([16, 17]),
followed by an English monograph in 1971 ([18]) which covered the theory in
detail.

Modelling of the spatial structure is basic to any geostatistical approach.
The original approach in South Africa [9] was followed by extensive correla-
tions of pairs of grades for different lags and the results were modelled by
correlograms and covariograms [11, 12] and used in multiple regression
techniques to arrive at the relative weights to be applied to the data avail-
able for a block valuation. This was already introduced on a routine basis on
some of the large gold mines for ore reserve estimates in the early 1960’s and
was called weighted moving average estimates until at Matheron’s insistence
the term kriging prevailed. In the mean time Matheron covered a continu-
ous series of further developments of geostatistical models based on the now
generally applied variogram for defining spatial structures.

The critical need for identifying likely changes in the characteristics of
the spatial structure between sections within the ore body, such as grade
continuity levels, anisotropy directions, etc. was also already stressed during
the 1960’s. This basic tenet of geostatistics has been and is still widely met
in practice via the linkage of these characteristics with changes in geological
and/or mineralogical parameters which can more readily be modelled.

2.3 The main basic tenets of geostatistics

Virtually all the fundamental concepts and tenets of geostatistics were estab-
lished in these early years and are still applicable today.

1. The use of appropriate parametric distribution models when prac-
tical for confidence limits of estimates of the mean grade. Various non-
parametric approaches have been developed, but face the common prob-
lem that the pattern of the observed point distribution accepted as the
model can be misleading for the upper tail of the distribution unless a
very large data base is available.

2. Spatial structures generally present in ore bodies and with character-
istics associated with geological and mineralogical features.

3. The concepts of support sizes and types, the proportionally effect
and models for estimating the SMU (Selected Mining Unit) block
distribution parameters directly or indirectly from the point value dis-
tribution.

4. Kriging for block estimates. Many types of kriging have been developed
but all allow to eliminate - or at least reduce - the conditional bias.

5. If block valuations are done before the actual selective mining stage - when
the final data becomes available - the estimates will be smoothed and
have to be post-processed. Meaningful post-processing techniques were
set up after the early stages of the development of geostatistics, as well
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as the so-called non-linear geostatistics (see the paper by Rivoirard in the
present volume, page 17).

2.4 Conditional unbiasedness

Early developments in South Africa generally retained strong links with classi-
cal statistics, particularly through the preference on the gold mines for simple
kriging. This is essentially a classical multiple regression technique based on
the mean grade for the ore body or local part thereof and on the correspond-
ing spatial structure to provide the necessary covariance’s for the solution of
the matrix equations involved. However, where block valuations are based on
exploratory data to be supplemented at the final mining stage by additional
data more closely spaced, the earlier block estimates will be smoothed com-
pared to the final estimates and have to be post-processed before declaring
ore reserves and doing mine planning and feasibility studies.

Arising from this problem and the fact that the mean grade as used in sim-
ple kriging itself changes within an ore body, a general preference developped
for ordinary kriging, which relies only on the data as accessed for the kriging
of each block. There is no objection, in principle, to this approach provided
the data accessed is adequate to effectively provide a close grade level for the
local area encompassing the block. This will ensure conditional unbiasedness
but will not overcome the smoothing problem. Also the effort time and cost
involved in kriging each block on a relatively large data base required to meet
this objective (say 50 instead of only 5, 10 or even 20 values), led to the
widespread use of a limited search routine, and lately also to simulation as
an alternative. These practices can reduce or eliminate smoothing, but unfor-
tunately, re-introduce conditional biases as prevailed in the pre-geostatistical
period and cannot be post-processed unless the conditional biases are first
removed. Although such estimates could provide acceptable global tonnage-
grade figures for the whole ore body, they could still be seriously conditionally
biased for sections of the ore body as will be mined sequentially over short
time periods [13] and thus be unacceptable.

3 The influence of the specificity of the diamond mining
industry on the development of geostatistics

3.1 Introduction

Diamonds are a unique commodity in the realms of mining and its associated
disciplines. The particulate nature of the diamond affects the processes of ex-
ploration, evaluation, mining and metallurgy and especially the way in which
diamonds are valued and sold.

The evaluation of alluvial diamond deposits specifically drew the attention
of some of the greatest minds in the field of geostatistics and this would
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eventually give rise to novel ways of dealing with sampling and estimation
techniques in the case of discrete particle deposits.

The diagram shown in Fig. 2 illustrates the complex nature of diamond
deposits compared with other mineral commodities. The average grade for
diamond deposits is generally very low and a high degree of geological discon-
tinuity exists, particularly in the case of marine placer deposits where selective
mining is absolutely essential.

Fig. 2. Plotting the average grade versus the mineralization continuity of various
minerals

Groundbreaking work by Sichel during the early seventies [29] gave rise
to a statistical approach on how to evaluate these deposits, and models such
as the compound Poisson for diamond density distributions [20, 21] and the
Compound Lognormal for diamond size distributions were developed. The
adaptation of these models had significant impact later on the estimation of
other minerals [31].

In the 10 years from 1980 to 1990 a substantial research effort [24] was
directed towards understanding the following issues;

1. The complex nature of the geology that gave rise to the discrete particle
mineral deposit.

2. The problems associated with the sampling of deposits of this nature and
the fact that the sampling could produce non representative results since
the sample size is smaller than the trap sites in which the particles occur.
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3. The statistical models required to cater for the extremely skewed sampling
data, with the emphasis on smoothing the shape of the curve, and to
increase sample representavity.

4. Methods to obtain local reserve estimates, including confidence limits,
which require a local distribution density function.

5. The need to produce bivariate representation of the probability mass func-
tions for the non-linear kriging procedures used.

The outcome of the research culminated in a geostatistical approach to
the development of the ideas of cluster sampling, discrete isofactorial models
that could be used in the Disjunctive Kriging estimation process to develop
estimates and the Cox Process for discrete particle simulation.

In essence it could thus be stated that the research undertaken on the
evaluation of alluvial diamond deposits gave rise to discrete geostatistics.

The research would not have been possible without the substantial input
from people such as Matheron, Sichel and others such as Lantuéjoul and
Lajaunie.

3.2 Geology

In the research, ancient beach deposits were considered where mineralization
is largely confined to basal gravel horizons. Those are located in one or more
marine abrasion platforms, usually cut into schists and phyllites.

The shist bedrock is extensively gullied by wave action assuming a char-
acteristic pattern well developped. The gullies are controlled by the slope and
the structure of the bedrock and by the presence of boulders and gravel. The
pot-holes and gullies act as particle trap sites and can contain high concen-
trations of the mineral.

Though some trap sites can contain high concentrations they could be
surrounded by sites that have low concentration or even be barren. This high
degree of variability is related to the complex interaction of geological controls
during deposition. The chance of finding a particle in this type of deposit is
related to the chance of sampling a trap site and the distribution of particles
in the trap site.

The distribution of particles is different for each beach, corresponding to
the different marine transgressions and is related to the length of stillstand of
the sea which influenced the degree of abrasion of the marine platform and
the degree of reworking that took place. It is also influenced by the amount
of mineral bearing gravel that was available during the transgression period.

Thus the distribution of particles is directly related to the presence of
particles in the gravel, the quantity and quality of the trap sites and to the
degree of reworking of the gravel.

In a certain area a characteristic gully pattern is normally formed with
parallel gullies at relatively constant distances apart. The trap sites in these
gullies also show characteristic patterns with the typical size of a trap site 5m
along and 3m across a gully, but variable from area to area.
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Fig. 3. Mining an alluvial deposit. The diamonds are trapped in the pot-holes and
the gullies of the bedrock

3.3 Sampling

From the outset the sampling of these types of deposits posed significant prob-
lems, even at elevated sample support sizes (5 square meters) up to 90% of the
samples did not contain any particle. In contrast, there are rare occurrences
where several hundred particles were recovered in one sample unit located
over a natural trap site such as a deep pot-hole.

Based on the geological model it became obvious that normal sampling
theory as applied to homogeneous mineralization was not applicable in the
case of marine placers where mineralization was concentrated in trap sites
[29].

Other examples occur in vein and alluvial deposits of diamonds and gold.
In such deposits, two different factors account for the grade variability at two
different scales, firstly the spatial distribution of the trap sites, and secondly
the dispersion of the mineralization within the trap sites.

The existence of several scales of variability makes sampling a very complex
operation. As a matter of fact, a set of samples of a given size may not account
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for all the scales of variability. Using many small samples, traps are well
detected, but their mineralization contents are poorly assessed. Using a limited
number of larger samples, the quality of the traps is better known, but it
becomes more difficult to assess the distribution of the traps sites.

The methodology involved in sampling such highly dispersed type ore bod-
ies was addressed in [7]. The paper presents several results on the sampling
of highly dispersed type ore bodies and highlights the two major problems
encountered when sampling under such conditions.

It also addresses the problem of defining a representative sample support
size and making it operatory by resorting to a cluster sampling approach.

During the research it became evident that limited experience exists in the
field of in situ sampling, especially when stratification is present.

3.4 Estimation

In his book ”Estimer et choisir” [19], Matheron discusses certain fundamental
differences between the approaches adopted in statistics and geostatistics.
Fundamentally statistics is involved in the estimation of parameters for a
chosen probability model, whereas geostatistics is involved with the estimation
of a spatial average for a natural phenomenon.

However, in the case of discrete particle deposits where the bases for es-
timation (variogram and histogram) are not well defined due to the non rep-
resentative nature of sampling, the necessity of using statistical models in
estimation was evident [6]. Matheron highlights that the model is not the de-
posit and notes that substantial research is needed to explain the variation of
model parameters with the geology of a deposit. Such work was carried out
by Oosterveld et al. [25].

The need for introducing a statistical model for local reserve estimation
was clearly indicated and research was done to provide a method to estimate
the number of particles expected in an in situ reserve block of specific support
size.

The introduction of geostatistics contributed to the understanding and
quantification of the risk associated with grade estimation. Uncertainty was
defined in terms of confidence limits derived from a modelled probability dis-
tribution for the grades of the mining blocks.

The skewness of the sample grades gave rise to skew distributions for the
block estimates and their error distributions. This led to research in the field
of non-linear kriging, more specifically disjunctive kriging under appropriate
discrete isofactorial models [22]. A suitable statistical model which represents
a discrete type of particle density distribution had to take into account the
distributional characteristics of the trap sites as well as the particles contained
within the trap sites. The most important problem in mining geostatistics, i.e.
that of change of support, was also addressed. The inference of the parame-
ters is a challenging problem and practical aspects of implementing discrete
isofactorial methodology are presented in [14].
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The high degree of geological discontinuity also led to research towards a
connectivity index in mining. This problem occurs when mining at high cut-off
grades where only a fraction of the selective units is above cut-off and where
the blocks are split into disjoint patches that cannot be accessed economically
during mining [2].

4 Conclusion

The immensity of the South African deposits amongst others that of gold and
diamonds has produced the background to the development of geostatistics.
The evaluation of deposits drew the attention of the most prominent geo-
statisticians of our time. Fortunately, we had people such as Matheron and
Sichel to assist in the phenomenal development that took place in the last 50
years.
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ments. Annales des Mines, 12, 50–75 (1955)

16. Matheron, G.: Principles of geostatistics. Econ. Geol., 58, 1246-1266 (1963)
17. Matheron, G.: Kriging, or polynomial interpolation procedures? Can. Min. Met.

Bull., 11, 240–244 (1967)
18. Matheron, G.: The theory of regionalized variables and its applications. School

of Mines, Paris (1971)
19. Matheron, G.: Estimer et choisir. School of Mines, Paris (1978)
20. Matheron, G.: Quatre familles discrètes. Technical Report N-703. Centre de
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Concepts and Methods of Geostatistics

Jacques Rivoirard

Centre de Géostatistique, Ecole des Mines de Paris

1 Introduction

A mathematician but also an engineer, Professor Georges Matheron has shown
an exceptional ability to formalize practical problems, edict relevant concepts
and methods in order to find workable solutions. From 1954 to 1963, while
working with the French Geological Survey in Algeria and in France, he dis-
covered the pioneering work of the South African school on the gold deposits
of the Witwatersrand, and formalized the major concepts of the theory that he
named Geostatistics. The “classical” geostatistics (linear geostatistics based
on stationary covariance and variogram) was fully developed in his thesis [11].
The regionalized variable under study, as Matheron called it, is then conve-
niently modelled as a Random Function. However one should not consider the
model as the reality, and the analysis of the role to be assigned to the model
led Matheron to write “Estimating and Choosing”, an essay on probability in
practice ([18] for the French version, [20] in English). In the mean time, the
bases of both non-linear geostatistics and non-stationary geostatistics were
laid out. The reader will find a detailed description of the different geosta-
tistical methods, as well as a valuable bibliography, in the reference book by
Chilès and Delfiner [1]. The present article describes the basic concepts of
geostatistics, from today’s perspective.

2 Linear geostatistics

2.1 The origin

Matheron discovered the work of the South African school during his first
professional appointment with the French Geological Survey in Algeria in
1954. One year later, a paper written by R. Duval [4] in collaboration with
R. Lévy and G. Matheron, presented the work by Krige [6] in a very concise
way in the French journal “Annales des Mines”.
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The basic ingredients of geostatistics (currently referred to as the support,
the dispersion variances, the conditional bias, see further on) were already
present in the South-African work (see the paper by Krige and Kleingeld in
this volume, page 5). The variances of gold sample values were observed to be
higher when these samples were taken within a larger area, e.g. the variance
of samples within a mine being higher than the variance of samples within a
mining block or panel (here a “sample” is given its physical meaning or its
corresponding ore value, which is different from the statistical meaning, i.e. the
collection of such sample values). In addition, those variances (more exactly
the logarithmic variances, see further on) are linked by Krige’s additivity
relationship:

variance of samples within mine
= variance of samples within panels + variance of panels within mine.

The fact that the variance of gold values within a given area depends on
the “support” on which the variable is defined (sample, panel. . . , i.e. the 2D
generic area in size and orientation, or the generic volume in 3D), has serious
consequences when selecting panels from their sampling. As panels are less
variant than samples, it follows that the mining panels, selected as being rich
according to their samplings, are naturally less rich than these samplings.
Similarly panels considered to be poor are richer than their samplings. No
bias on samples is necessary to explain this overestimation of rich panels and
underestimation of poor ones. It simply corresponds to a particularly danger-
ous case of conditional bias: conditionally to its samples, the expectation of
the value of a panel is not equal to its sampled value, it is lower when the
sampled value is high, higher when this value is low.

To avoid the overestimation of selected reserves caused by such a condi-
tional bias, corrected estimators of panels from samples have been developed
by the South-African school, based on the lognormal distribution. The log-
normal distribution was observed to provide a good fit to gold content values.
Let us recall that it is skewed positively, with a tail of large values, and a
shape factor given by the logarithmic variance, i.e. the variance of the loga-
rithm of the variable. The higher the logarithmic variance, the more dispersed
the values relatively to their mean. Because of the skewness of the distribu-
tion, lognormal estimators of the mean of the distribution (computed from the
arithmetic mean of log values, i.e. the geometric mean of values) from a lim-
ited number of samples, can be significantly better than the arithmetic mean
of values. Krige’s methodology assumes the permanence of the lognormality
of the distributions, e.g. the distributions of sample values within a panel,
or within a mine, are lognormal, as well as the distribution of panel values
within the mine. The variations of the values of such distributions are then
described by their logarithmic variances, these being linked by the additivity
relationship mentioned previously.

In addition to the article by Duval, Lévy and Matheron on Krige’s work,
the same issue of Annales des Mines contained another remarkable article
written by Matheron alone [8]. In particular, he derived the permanence of
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lognormality from a principle of self-similarity when splitting blocks itera-
tively as considered by de Wijs [3]. This synthesis allowed him to distinguish
two terms within the dispersion variance of the support v within the domain
V : a term depending on the sole geometry of v and V ; and a coefficient of
“absolute dispersion” (as he called it) which is an intrinsic characteristic of
the mineralization (this parameter will be later replaced by the more general
structural tool given by the variogram). During these early years, Matheron
produced several statistical reports and studies of deposits. It is worth notic-
ing that the term “geostatistics” appeared explicitly in the title of a study of
a lead deposit dated 1955 [9].

Next, Matheron stepped to the linear geostatistics, based on the additiv-
ity of variables and linear estimators, without any assumption on the type of
statistical distribution. As a matter of fact, the gold content variable initially
studied by Krige was the metal accumulation taken vertically across a reef ex-
tending in 2D. Supposing that a panel is partitioned into samples with same
support v, the mean value over the panel is equal to the arithmetic average of
sample values, whatever the statistical distribution of the values, lognormal or
not. In other words, the accumulation is an additive variable (this is also the
case for the thickness of the reef which gives the ore quantity, but not for the
grade, equal to the ratio between the metal and the ore quantities - or equiv-
alently between accumulation and thickness: the grade has to be weighted by
the thickness when averaged). In the early South-African school, the estima-
tion of a given block value was brought down to the estimation of the mean
value of the statistical distribution made of all possible samples constituting
the block, from the samples available at the periphery of the block, and the
spatial aspect was not modelled. By contrast, Matheron rather addressed the
estimation of the mean value over any block or domain, using located sam-
ple data and taking explicitly into account the geometrical configuration of
all the elements. This enabled him to formalize the concepts at the basis of
geostatistics in a very simple manner.

2.2 Additivity, support and dispersion variances

Let z(x) be a “regionalized variable”, as Matheron called it, depending on the
location x, traditionally a point in 2D or 3D. In practice such a point often
corresponds to the sample support. Assuming that the variable is additive,
its “regularized” value over v (e.g. a block) is the arithmetic average of its
points:

z(v) =
1
|v|

∫
v

z(x) dx

Similarly we have:

z(V ) =
1
N

∑
z(vi)

when considering the regularized value over V , this being partitioned into N
blocks vi with same support v.
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The variation of the vi values within V can be measured by the “dispersion
variance” of support v within domain V :

s2(v|V ) =
1
N

∑
i

[z(vi)− z(V )]2

Similarly the dispersion variance of a point within V is:

s2(O|V ) =
1
|V |

∫
V

[z(x)− z(V )]2 dx

We also have:
s2(O|vi) =

1
|v|

∫
vi

[z(x)− z(vi)]
2
dx

and the mean of these quantities over the different vi’s within V gives the
dispersion variance s2(O|v) of a point within v. It is easy to demonstrate that
such dispersion variances are linked through the additivity relationship:

s2(O|V ) = s2(O|v) + s2(v|V )

This formula is similar to the relationship obtained by Krige on logarithmic
variances, but is satisfied for any statistical distribution of the variable, pro-
vided that this variable is additive.

In addition, such dispersion variances, which are of crucial importance
when the sample support does not coincide with the support of interest (min-
ing block, area to be depolluted. . . ), are related to the “spatial structure”
represented by the variogram. But this will be more conveniently developed
later within the framework of Random Function.

2.3 Intrinsic approach versus transitive approach

When developing linear geostatistics, Matheron distinguished two approaches,
the transitive approach (seldom used), and the intrinsic approach. In the tran-
sitive approach, the phenomenon to be studied (orebody, fish stock. . . ) is
supposed to be known, for instance, on a regular rectangular grid defined
by its orientation, its mesh size, and its origin. The exact boundaries of the
phenomenon are considered to be unknown, and the grid is supposed to ex-
tend beyond them. The transitive approach allows for instance to estimate
the global abundance from such a grid, with an error variance derived from a
structural tool called the transitive covariogram (similar to a noncentered co-
variance, where terms are summed instead of being averaged). The approach
can be particularly useful when studying resources with diffuse limits such as
some fish or larvae densities in the sea, or when estimating the extension area
or the volume of a phenomenon only known at the nodes of a grid. In the case
of a regular grid with a given orientation, the only element of randomness is
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the origin of the grid, which is supposed uniformly distributed over the mesh
size.

By contrast, in the traditional intrinsic approach, the domain is consid-
ered to be known, and the variable is supposed to have an intrinsic behaviour,
independent of the geometry and of the boundaries of the domain. The do-
main can be considered as a window, allowing to see the variable, which is
assumed to extend with the same behaviour beyond the window boundaries.
To describe such an intrinsic behaviour, the methodology relies on a form of
stationarity, i.e. invariance under translations. Although classical linear geo-
statistics was essentially completed by the early 60’s [10], Matheron did not
introduce the convenient framework of Random Function until he completed
his thesis [11].

2.4 The intrinsic model and the variogram

The regionalized variable z(x) is then considered as a realization, a possi-
ble outcome, of a Random Function (RF in short) Z(x), whose specifications
constitute the RF model. This framework allows a simple formulation of sta-
tionarity. Thanks to de Wijs’s work [3], and to Krige’s observation of variance
increasing with the area, Matheron privileged the stationarity of the incre-
ments over the stationarity of the variable itself. In linear geostatistics the
most common model is the intrinsic RF model, defined by the increments
Z(x+ h)− Z(x) having a zero expectation and a stationary variance (de-
pending on vector h, not on location x ):

E[Z(x+ h)− Z(x)] = 0

Var[Z(x+ h)− Z(x)] = E{[Z(x+ h)− Z(x)]2} = 2γ(h)

The intrinsic RF model is then completely specified by its structural tool γ(h),
the variogram, which expresses the mean variability between two points as a
function of the vector between them, and which depicts the more or less reg-
ular behaviour of Z(x). In practice, a set of distances is chosen, in accordance
with the sampling grid. For each distance an experimental variogram value is
computed from pairs of data separated by this distance, using implicitly the
invariance of increments under translation. This experimental variogram is
then interpreted (e.g. some variations being considered as insignificant fluctu-
ations) and fitted by a mathematical function, the variogram model, assuming
additional hypotheses on its regularity for instance. As the variogram directly
measures the variability between pairs of points, Matheron called it the in-
trinsic dispersion function in early times. The intrinsic RF model, based on
increments, allows to express the expectation and variance of linear combina-
tions

∑
α
λαZ(xα), but only when

∑
α
λα = 0 (as a matter of fact, such linear

combinations can be seen as linear combinations of increments; the expec-
tation and the variance of other linear combinations, in particular Z(x), are
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simply not defined in the model). These admissible linear combinations have
a zero expectation, and a variance which depends on the variogram:

Var
∑
α

λαZ(xα) = −
∑
α

∑
β

λαλβγ(xβ − xα)

To ensure the positivity of such variances, the function –γ(h) must be condi-
tionally positive definite. The fitting task is usually simplified by considering
a sum of known authorized model components (one of them being the white
noise or “nugget effect”, a simple discontinuity at the origin).

Such a measurement of variability is not specific to geostatistics. The nov-
elty introduced by Matheron consisted in establishing it within a simple model
while accounting for the important concepts of support, regularization, and
not the least, the two different following types of variances, and to make all
this available to the practitioner: the engineer and the mathematician are in
perfect agreement.

If Z(x) is an intrinsic RF, so is the regularized Z(v) over support v, with a
“regularized” variogram deduced from the variogram of Z(x). The dispersion
variance of the support v within the domain V also depends on the variogram
of Z(x):

D2(v|V ) = γ̄(V, V )− γ̄(v, v)

and in particular for a point support:

D2(O|V ) = γ̄(V, V )

where γ̄(V1, V2) stands for 1
|V1||V2|

∫
V1

∫
V2

γ(x− y) dx dy

Such dispersion variances are linked by the additivity relationship, e.g.:

D2(O|V ) = D2(O|v) +D2(v|V )

In practice this explains, or makes it possible to predict the drop of variance
when changing the support, from a quasi point sample support to a larger
interest support, for instance:

D2(O|V )−D2(v|V ) = D2(O|v) = γ̄(v, v)

The other type of variance is the estimation variance, or variance of the
error when estimating for instance the value Z(V ) over V by the value Z(v)
over v (or the contrary). The estimation error Z(v)− Z(V ) is an admissible
linear combination. Therefore its mean is 0 (estimation is unbiased), and its
variance is:

Var[Z(v)− Z(V )] = 2 γ̄(v, V )− γ̄(v, v)− γ̄(V, V )

Using a variation of this formula, the “global estimation variance” can be
computed when estimating a whole domain with a regular sampling grid for
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instance. Conversely, assuming a given variogram, this can help define a sam-
pling grid in order to obtain a given estimation variance.

If we now consider the estimation of Z(V ) by a linear combination of
samples

∑
α
λαZ(xα), the estimation error is Z(V )−∑

α
λαZ(xα). It is an ad-

missible linear combination iff
∑
α
λα = 1 (if not, the error is simply not defined

in the intrinsic RF model). Then its expectation is 0 and its variance can be
developed:

Var

[
Z(V )−

∑
α

λαZ(xα)

]
= 2

∑
α

λαγ̄(xα, V )−
∑
α

∑
β

λαλβ γ̄(xα, xβ)− γ̄(V, V )

By minimizing this estimation variance, one gets an estimator, usually called
Ordinary Kriging (OK). Kriging is a generic term for optimal – and generally
linear – estimators in geostatistics, and the minimized variance is referred to
as the kriging variance (not to be confused with the variance of the kriging
estimator, which anyway is not defined in the intrinsic model). One will find an
interesting historical study on the origins of kriging compared to other similar
methods in a paper by Cressie [2]. The ordinary kriging weights, constrained
by the above condition, are solution of a linear system. Such an Ordinary
Kriging can be used to estimate the value at a point, the mean value over
a block or a domain, or, in the case of mapping, a grid of points or a set of
blocks.

2.5 The stationary case

The variogram γ(h) may be unbounded and can increase infinitely. When it is
bounded (for instance stabilizing on a “sill” level beyond a “range” distance),
the IRF can be reduced to a 2nd order stationary RF, characterized by its
first two moments being stationary:

E[Z(x)] = m

Cov[Z(x), Z(x + h)] = C(h)

In particular the a priori variance VarZ(x) is equal to C(0) and we have
γ(h) = C(0) − C(h). The dispersion variance D2(O|V ) = γ̄(V, V ) tends to-
wards the a priori variance C(0) (absent from a purely intrinsic model) when
V increases infinitely in an appropriate way. Then:

VarZ(V ) = E[(Z(V )−m)2] = C̄(V, V ) =
1
|v|2

∫
v

∫
v

C(x − y) dx dy
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tends to zero and Z(V ) tends to the mean m (supposed to be ergodic).
The stationary model allows to develop the variance of any linear combi-

nation:
Var

∑
α

λαZ(xα) =
∑
α

∑
β

λαλβC(xβ − xα)

(the covariance being a positive definite function to ensure the positivity of
such variances). The best linear estimator in this model is usually called Sim-
ple Kriging (SK). Being unbiased it can be written:

∑
α

λαZ(xα) +

[
1−

∑
α

λα

]
m

and the kriging weights minimizing the estimation variance are solution of a
linear system.

2.6 Questioning the model

For practical applications, an interesting question is whether the mean pa-
rameter m is known, and even what meaning it has when we only have a
single realization of the RF model, defined over a finite domain (think of the
metal grade of an orebody for instance). If the mean is considered to be un-
known, it can be removed from the above estimation by setting the condition∑

λα = 1: we are then back to Ordinary Kriging. In practice, stationarity, as
usually detected by the variogram stabilizing on a sill, is often not guaranteed
for large distances, e.g. throughout the whole domain: stationarity is then
only local. In that case Ordinary Kriging is preferred, using datapoints within
a moving neighbourhood around the target (point or block of a grid), i.e. a
neighbourhood that moves with the target (as opposed to a unique neighbour-
hood including all datapoints). In practice the choice of the neighbourhood is
still a difficult and much debated question on which we will come back later:
in theory the larger the neighbourhood, the better the estimation, but also
the stronger the stationarity hypothesis. In particular, while Ordinary Kriging
is a weighted average of data within the neighbourhood, Simple Kriging also
makes use of the mean m, with a complementary weight. This compensates
for a possible sparseness of data with respect to the spatial structure, by at-
tracting the local estimate towards the mean in accordance to the stationarity
hypothesis.

Now, assuming stationarity over the whole domain does not guarantee
that m can be known, nor that it even exists outside the model. It is interest-
ing to follow the evolution of Matheron’s thoughts on models through time.
Matheron introduced the RF framework for the intrinsic approach in 1965.
Although the transitive approach does not use the randomization of the re-
gionalized variable, Matheron ([13], p. 39) described the transitive methods
as “being rich in implicit probabilistic contents”, as he considered that the
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operations used for fitting a transitive covariogram “constitute a disguised
passage to expectations”. Finally Matheron ([18, 20]) went back, stating that,
if a methodology is performant, it should mean something on the regionalized
variable (the reality !): this questions the objective contents of the RF model,
by subordinating it to the regionalized variable. He proposed the operational
indexrandom set of methods. The operations of fitting a variogram or a co-
variogram are then considered as resulting from the choice of anticipating
hypotheses (which may or may not be correct, as could possibly be checked
later), that allow to tell more than the data alone. Parameters of the mod-
els, that cannot have their counterpart in terms of the regionalized variable,
are considered to be purely conventional and must disappear from the final
estimation results. This is of course the case of the mean parameter m of the
stationary model if the domain V is not large enough to identify the average
Z(V), representing z(V ), with this mean. Such epistemological developments
are worth being considered, if one aims at applying mathematical models.

2.7 Additional remarks

Before going on the other parts of geostatistics, let us go back in more details
to some difficult points that concern the choice or the use of models.

Back to conditional unbiasness

Let Z(V )� be an estimator of the panel Z(V ). Moreover suppose that it is
unbiased:

E[Z(V )− Z(V )�] = 0

Conditional unbiasness can be written:

E[Z(V )− Z(V )�|Z(V )�] = 0

or equivalently:

E[Z(V )|Z(V )�] = Z(V )�

i.e. the regression of Z(V ) on Z(V )� is linear and coincides with the first
bisector. This desirable property ensures that the results obtained when taking
a decision on the basis of Z(V )� are, on average, as expected (e.g. values
selected for being rich, being as rich as expected). This is not the case of the
estimator Z(V )� taken as the sampled value of Z(V ). Having a variance higher
than that of Z(V ) due to the support effect, it is conditionally biased, with
E[Z(V )|Z(V )�] < Z(V )� when Z(V )� is high. This causes overestimation of
panels considered as rich, e.g. above a cut-off z:

E[Z(V )|Z(V )� > z] < E[Z(V )�|Z(V )� > z]
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Krige’s lognormal estimator aims at correcting this conditional bias. Ide-
ally, if we denote data = {Z(x1), Z(x2), ...} the values of samples (possibly
located outside the panel), the best estimator (unbiased with minimum error
variance) is the Conditional Expectation (CE): E[Z(V )|data]. If the mul-
tivariate distribution (Z(V ), data) were normal (any linear combination of
these being normally distributed), this regression would be linear, and would
coincide with Simple Kriging in a stationary model. However, and particu-
larly with skewed distributions, there is no reason for this regression to be
linear. Assuming for instance multilognormality (multivariate distribution of
logarithms being normal), the best regression is lognormal, hence based on
the geometric mean of the sample values. Although linear kriging was pro-
posed by Matheron as a means to correct in practice the above conditional
bias [13], there is no reason why it should do it fully. A practical advantage of
linear kriging comes from the reduced hypotheses: only the spatial structure,
and possibly the value of the mean parameter are required. As a matter of
fact, an expression such as E[Z(V )|data] is simply not defined within the 2nd

order stationary RF model. On the other hand, Matheron has shown that
the very shape of CE within a model may be used as a heuristic candidate
for the estimation, but that it rapidly gets beyond a realistic meaning with a
few conditioning datapoints ([18, 20]): CE is guaranteed to be the best esti-
mator only in theory. In addition (Z being additive), if V is partitioned into
congruent samples, the best estimator of Z(V ) when increasing the number
of samples, converges towards the true value, which is the (linear) arithmetic
mean. While strict conditional unbiasness seems an unreachable ideal, one
can try to approach it. One way is to look for a linear regression of Z(V )
on Z(V )� close to the first bisector (slope close to 1). In Simple Kriging, the
estimation error is uncorrelated with data and therefore:

VarZ(V ) = VarZ(V )� + Var[Z(V )− Z(V )�]

So Simple Kriging reduces the variability, and the theoretical slope of the lin-
ear regressionCov(Z(V ), Z(V )�)/VarZ(V )� equals 1. The mean compensates
for the lack of information in the neighbouring data (with a pure nugget effect,
Simple Kriging reduces to the mean m: no local estimation is really possible).
In Ordinary Kriging, assuming 2nd order stationarity with unknown mean,
things are different. The theoretical slope can be notably less than 1, in par-
ticular when the spatial structure is poor and the data sparse. In many cases
however, this slope takes low values when the neighbourhood is too small (Or-
dinary Kriging then has too high a variability, with an important conditional
bias), but may have a value close to 1 if the neighbourhood is large enough.
Hence this slope can be used as a criterion for choosing the neighbourhood.

Back to variances

A question considered by Krige was whether the log variance of samples within
a panel could be considered a constant for panels in identical configurations
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within a given mine. The same question formulated on the dispersion variance
of samples within a given panel, in linear geostatistics, would generally receive
a negative answer for skewed distributions. Rich panels would generally con-
tain richer and more variant samples: this corresponds to a proportional effect
(between the variance and the mean, or a function of the mean), or in statis-
tical language, a heteroscedasticity. This does not imply non-stationarity as
is often thought: exponentiating a 1D stationary autoregressive Gaussian pro-
cess yields to a stationary lognormal process presenting such a proportional
effect. When writing D2(O|V ) = γ̄(V, V ) for instance, linear geostatistics con-
siders an expectation, or average over all possible panels with same support
V , then taking the average of different values.

Similarly the kriging variance (the variance of the error which is mini-
mized by kriging) has the meaning of an average of the estimation variance
when translating the geometrical configuration (respective locations of data
and target to be estimated). It is not conditional on values of the variable
observed locally and thus can appear as locally unrealistic: for instance, it
is unrealistically small when the estimate is high, and conversely. To have a
variance more realistic locally, a correction can be applied, based on the mod-
elling of the proportional effect. On the other hand, non-linear geostatistics
can give theoretical access to conditional variances.

Back to lognormal

Lognormality was central in the early development of geostatistics in the 50’s.
Permanence of lognormality was in particular advocated when working on
different supports or within nested areas. In theory however, the average of
independent variables with the same lognormal distribution, for instance, is
not lognormal. Then, assuming that the variable is lognormal on a given
support, it would not remain true for multiple or dividing supports. In other
words, assuming that an additive variable is lognormal on some support, there
is no chance that this very support coincides with any support available in
practice. Since lognormality is not stable, Matheron [12] explored the family
of stable distributions that would remain stable with a change of support.
However this alternative has not led to practicable results. As one says, sim-
ple models are false, but complex models are useless. . . Lognormality, and
its permanence, can be expected to hold, although deviations from supposed
lognormality can have serious consequences (a third translation parameter in
addition to mean and variance, is often considered to enlarge the model). The
question of lognormality arises again from time to time. In a note with an
eloquent title, Matheron [16] has proposed a variety of enlarged lognormal
estimators, obtained notably by exponentiating a linear combination of loga-
rithms with sum of weights equal to 1 such as OK, and assuming or not the
permanence of lognormality when changing support. The sensitive estimator
referred to as “lognormal kriging” can take many different forms.
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3 Multivariate geostatistics

Linear geostatistics can naturally be extended to several variables (such as
different concentrations, or a variable and its gradient, etc.) Cokriging allows
estimating linearly one variable from a set of variables, known at the same
datapoints (isotopic case) or at different datapoints (heterotopic case). Cross
structural tools (covariance, variogram) will measure the correlated parts be-
tween two variables, or between increments, as a function of the vector sep-
arating pairs of points. In the frequently used linear models of coregionali-
sation, the set of simple and cross covariances (or variograms) is modelled
from a linear combination of structural basic components which usually rep-
resent different scales. Efficient filtering techniques (kriging analysis) make it
possible to extract such a scale component by cokriging from the different
variables. One advantage of these filtering techniques, and more generally of
kriging and cokriging, is their capability to handle points in irregular geomet-
rical configurations, and not only on regular grids.

Very often, the statistical features of the regionalized variables have a
limited scope, since they change with the support on which the variables
are considered (this is the case of lognormality, as we have seen before). In
particular, the correlation coefficient between two given variables may be small
on a small support, and much larger on a larger support – or the contrary.
On the opposite, the correlation may be an intrinsic measure of the linear
dependency between two variables. This is the case in the model of intrinsic
correlation, where simple and cross variograms are proportional to each other,
and where the correlation coefficient within a domain does not depend on
the support, nor on the domain [11]. Then, in the isotopic case, cokriging is
equivalent to kriging.

Similarly, the linear regression aY (x) + b of one variable Z(x) on an-
other variable Y (x) at the same location generally presents little interest,
since it changes with the support. However, in the model with residual
Z(x) = aY (x) + b+R(x) where R(x) is spatially not correlated with Y (x) –
a hierarchical model where Z(x) is subordinated to the master variable Y (x),
the linear regression is independent from the support and then has an intrinsic
signification. This is the case when the cross-structure between Y (x) and Z(x)
is proportional to the structure of Y (x). The decomposition of Z(x) into Y (x)
and R(x) has interesting properties in cokriging. When Y (x) is available at
every datapoint of Z(x), and in particular when Y (x) and Z(x)are available
at the same datapoints, the cokrigings of Y and Z can be obtained by kriging
Y and R separately.

An instructive example of coregionalisation (that makes the link with non-
linear geostatistics) is the case of a concentration Z(x) where the positive
values correspond to a geometrical set A with unknown delimitation within
the domain under study (ex: metal grade in a vein-type deposit). This set A
can be represented by its indicator 1x∈A , equal to 1 if the point x belongs
to A, and to 0 otherwise. If we consider this variable separately, its ideal
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estimator at point x from datapoints consists in its Conditional Expectation,
that is, its probability to belong to A conditionally to the datavalues. The
mathematical shape of such a conditional probability is generally unknown.
In the context of simulations, it is suggested to introduce such conditional
probabilities under given configurations from training images, using multi-
point statistics [22]. But most often a pseudo-probability is obtained by kriging
the indicator, with a post-processing to eliminate values outside the interval
[0, 1]. In addition a relationship may exist between variables, say grade and
geometry: for instance the low grades may be preferentially located near the
frontiers of the veins. Then the estimation of the indicator can be improved by
considering values of Z in addition to values of the indicator. A straightforward
exception corresponds to the positive values of Z(x) being distributed within
A, independently from its geometry. Then the estimation of the indicator,
which has the meaning of a probability, can be performed separately, and
complemented by an estimation of Z(x) assuming it is positive (and using
only the positive data values). Another exception is cokriging the indicator and
Z within a model with residual Z(x) = m1x∈A +R(x) where we assume the
absence of spatial correlation between residual and indicator. This corresponds
to a reduced hypothesis of independence: internal independence between the
variable Z(x) and the set A [11] or absence of border effect, in the sense that
the expected value of Z(x) at a point x of A does not depend on whether a
neighbouring point x+h belongs to A or not. When data consist in Z values,
the cokriging of Z can be obtained by kriging separately the indicator and
the residual, and the ratio between the estimate of Z(x) and the estimate of
the indicator has the meaning of an estimation of Z(x) in case it would be
positive. We will come back to such considerations when dealing with non-
linear geostatistics.

4 Non stationary geostatistics

4.1 Kriging with external drift

Consider the model with residual Z(x) = aY (x) + b+R(x) . In some circum-
stances the master variable Y is known everywhere and is used as an auxiliary
variable for the estimation of a sparsely sampled target variable Z. Assuming
that the coefficients a and b of the linear regression of Z(x) on Y (x) at the
same point x are known, Simple Kriging of the residual gives the estimation
of Z. If b is unknown, then an Ordinary Kriging of the residual is what is
needed. When working with a single realization, the auxiliary variable can be
considered deterministic, say f(x) to be consistent with literature, and the
model can be written Z(x) = af(x) + b+R(x). This is helpful when a and b
are not known (either globally when using a unique neighbourhood, or locally
within a moving neighbourhood). A trick when estimating Z(x) as a linear
combination

∑
α
λαZ(xα) of data (borrowed from Universal Kriging described
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further on), consists in imposing the following conditions:∑
α

λαf(xα) = f(x)

∑
α

λα = 1

This ensures that the mean error is 0 whatever the coefficients a and b. In the
model, the drift E(Z(x)) = af(x) + b of Z(x) depends upon f(x), hence the
name of kriging with external drift (KED). This can be naturally extended
to drifts

∑
l

alfl(x) where fl(x) are known shape functions, for instance (1,

f(x), f2(x)): this was actually the origin of KED when mapping a geological
depth with f(x) representing the seismic travel time [1]. This KED method is
very popular, probably because of its flexibility: kriging implicitly estimates
the coefficients al that best fit the drift onto the shape functions. The difficult
point may be the estimation of the residual structure to be used in kriging.
Indeed, if the coefficients a and b are unknown, the value of the residual is
unknown even at points where Y and Z are known. Coefficients and residuals
can be estimated, but the structure of the estimated residual is not the true
one. The residual structure is often determined indirectly e.g. through cross-
validation.

4.2 Universal kriging

By considering increments, the model of intrinsic RF seen previously is far
more general than the stationary one, which is constrained to vary around its
mean. This freedom is visible when looking at 1D random walks such as a
Brownian motion (which is intrinsic but not stationary). However the intrin-
sic model cannot force the function to show systematic variations (e.g. the
sea floor depth increasing from coast line, or the dome-shape top of an oil
reservoir). Then it can be helpful to consider a drift of the form

∑
l

alfl(x),

where the fl’s are known. For instance using the monomials 1, x2, y2, xy (in
2D space) corresponds to a quadratic drift centred on the origin. Most often,
there is no point to be distinguished as the origin, and the family of functions
fl is taken invariant by translation: the drift can be written

∑
l

alfl(x − x0),

whatever the choice of the origin x0, e.g. 1, x, y, x2, y2, xy for a quadratic
drift. More generally, monomials of coordinates with degree ≤ k allow repre-
senting a polynomial drift of degree k (sets of sine and cosine functions with a
fixed period, and more generally sets of exponential polynomials, also have this
property of invariance under translation). When making the assumption of a
polynomial drift of order k, the coefficients al’s of the drift should be consid-
ered unknown a priori. Imposing universality conditions

∑
α
λαfl(xα) = fl(x)
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to the linear estimation
∑
α
λαZ(xα) of Z(x) will ensure the absence of bias,

whatever the values of the coefficients: this gives the Universal Kriging.
Yet the remaining problem lies in the estimation of the residual structure

when it is not small compared to the variations caused by the drift, since the
drift coefficients, and therefore the drift, are unknown. Fitting the drift on the
data tends to include some part of the true residual variability, and therefore
leads to an underestimation of the residual structure. The variogram of the
estimated residuals may in particular display a finite or a small range, whereas
this is not the case for the true residual.

4.3 Intrinsic Random Functions of order k

A solution to this problem was offered by the theory of Intrinsic Random
Functions of order k (“IRF-k “, [14]). By considering increments, the usual
intrinsic RF model studied initially was more general than the stationary one:
the constant mean, if any, disappeared, and the family of admissible structures
was enlarged from stationary covariances to variograms. Similarly the IRF-k
model is defined by considering increments of increments, . . . , or generalized
increments, that filter out any polynomial drift of order k, and the tools are
enlarged to generalized covariances (-γ(h) being a generalized covariance of
order 0). An IRF-k constitutes an equivalence class of RF that have a given
structure and differ by a polynomial of order k. Only those linear combina-
tions that are generalized increments are defined in the model. Their variances
can be developed using the generalized covariance and allow linear estimation
by kriging, unbiased with minimum variance. In practice the difficult point is
determining the structure (the generalized covariance), which is not direct as
for the usual variogram, except with regularly spaced data. Indirect fitting of
generalized covariances that are admissible linear combinations of odd mono-
mials of |h| is often used. Other generalized covariances are also admissible,
in particular some for which kriging coincides with splines.

The interest of the model of Intrinsic Random Functions of order k is
not limited to its theoretical clarity, in breaking the vicious circle between
drift and residual. As integrating a stationary RF yields an IRF-0, similarly
integrating an IRF-k yields an IRF-k+1, and IRF-k’s appear as the perfect
tool in some Partial Derivative Equations problems where the set of solutions
exactly corresponds to the set of RF defining an IRF-k (for instance the
set of Random Functions whose laplacian is a given stationary RF exactly
constitutes a unique IRF-1).

5 Non-linear geostatistics

5.1 Estimation on point support

While requiring few hypotheses, linear geostatistics has a limited range cor-
relatively. The need for non-linear geostatistics can be felt in different cir-
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cumstances. Firstly the best estimator of a regionalized variable may be non
linear (although any estimation of the regularized variable should be asymp-
totically linear, as seen above). Secondly, even when using a linear estimation
such as kriging, the kriging variance is not conditional on the neighbouring
data: with skewly distributed variables, local measures of uncertainties such
as estimation variances should depend on the neighbouring data. Finally, and
this was the very origin of the development of the non-linear geostatistics in
the 70’s (after the early lognormal framework of geostatistics), in some cases
(selective mining, pollution. . . ), the practical problem is not to estimate the
variable itself, but a non-linear function of it: for example its exceeding a
given threshold z, which is represented by the indicator 1Z(x)≥z. Note that
thresholding an estimated value of Z(x) would be an incorrect answer to this
problem, as this may very well exceed the threshold while the true unknown
value does not.

When its assumptions are acceptable, a very convenient model is the
(multi-)gaussian Random Functions one (denoted Y for reasons explained
further on), where any linear combination on any finite set of points is nor-
mally distributed (which is far more demanding than to require the marginal
or even the bivariate distributions to be normal). Firstly, the best estimator
of Y (x) from data Y (xα) coincides with the linear regression, i.e. Simple Krig-
ing (assuming stationarity). Secondly the conditional variance coincides with
the unconditional one, i.e. the kriging variance. And finally, the conditional
distribution is normal, which makes the best estimation of any function of
Y possible through its Conditional Expectation. In particular the CE of the
indicator 1Y (x)≥y is equal to the conditional probability of exceeding y, given
the data.

Assuming stationarity and a large domain, the marginal distribution corre-
sponds to the histogram of the datavalues. In many cases it is quite different
from the famous bell shape curve, and therefore the multi-gaussian model
is most frequently used together with a Gaussian anamorphosis: the target
variable Z(x) is written as Z(x) = φ(Y (x)), where φ is a non decreasing func-
tion and Y (x) a stationary standard Gaussian RF, hence the notation. For
instance, a lognormal distribution corresponds to an exponential anamorpho-
sis. When the inversion from Z to Y is straightforward (φ strictly increasing
or nearly so), data and estimation on Z can be expressed in terms of Y .
This gives access to the conditional distribution of Z(x) and therefore to the
CE of Z(x) or any function, e.g. 1Z(x)≥z. The requirements for this theoreti-
cally best estimator are severe, as not only the marginal distribution but also
the bivariate (Z(x), Z(x + h)) or the n-variate ones must be normal (after
transformation). Another method for estimating an indicator above a given
threshold consists in kriging directly this indicator. The method has been
made popular by Journel [5] for its simplicity and the few hypotheses ap-
parently required. Extension to several thresholds allows estimating variables
obtained from linear combinations of the different indicators, such as the dis-
cretized variable under study or any function of it. On the other hand, kriging
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an indicator ignores the extra information contained in the Z data or in the
other indicators. As a matter of fact, indicators at different thresholds are
not independent. The Disjunctive Kriging (DK), proposed early by Matheron
[15], is the estimator based on the cokriging of all indicators. This requires
the simple and cross structures of indicators, or equivalently the bivariate dis-
tributions [Z(x), Z(x + h)]. DK is simplified in isofactorial models, where it
is obtained by Simple Kriging of factors common to all the bivariate distribu-
tions of the model. Through a number of reports, Matheron has undertaken
a considerable work developing such models, including the change of support
seen in next section. An extensive bibliography can be found in Chilès and
Delfiner [1]. Most models correspond to diffusion processes, and refer to a
specified statistical distribution (e.g. Gaussian, gamma, binomial negative,
with Hermite, Laguerre, and Meixner polynomials as factors). Discrete diffu-
sion models have been developed specifically for diamond mining (see Krige
and Kleingeld in this volume). Another model is a hierarchical mosaic model,
where the indicators correspond to sets that are nested without border effects
and are factorized by indicator residuals [21].

One very particular model consists in a mosaic with independent valuation:
each tile of a stationary partition of the space is given an i.i.d. value. The
variographic structure of indicators or other functions is entirely based on
the probability for two points to belong to the same tile or not. In particular
there is no destructuring phenomenon when the cut-off increases or decreases,
contrary to what is currently observed on real data. In this particular model,
cokriging of indicators equals to their kriging, and DK of any function equals
its kriging, with the same kriging weights.

5.2 The change of support

Very often, the question of whether a threshold value is exceeded or not,
concerns areas much larger than the quasi point sample support: this may be
the whole domain itself, subdomains with specific geometries, or blocks with
same support v partitioning the domain. A general solution can be obtained
through conditional simulations mentioned further on. However simulations
are very demanding in terms of hypotheses.

The case of blocks with same support v partitioning the domain has been
studied in details by Matheron. Due to the support effect, the global distribu-
tion of values on such blocks is different from the distribution with a point sup-
port. They both have the same mean, and their variances are related through
the additivity relationship seen above. In addition other relations link the two
distributions, which can be derived from the key Cartier’s relationship [19, 7]:

E [Z(x) | Z(v)] = Z(v)

This stipulates that, conditionally to a block value, the expected value of a
random point uniformly distributed within this block, is equal to the block
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value. This relation, or equivalent ones, makes it possible to build change of
support models under various hypotheses (Gaussian, mosaic, etc.) which aim
at predicting the distribution of values on blocks when the point support dis-
tribution is known. They can be used in particular to predict global quantities
like the proportion of blocks above a cut-off.

The local estimation, i.e. predicting whether a given block Z(v) of the
domain, or the N blocks Z(vi) within a panel, exceeds a cut-off value or not, is
a difficult problem. In addition to the simulation approach, different methods
have been proposed. A direct approach consists in assuming a given type of
distribution (e.g. normal or lognormal) for the block value, only depending
upon an estimated value of the block with an appropriate estimation variance.
This is in particular justified within a Gaussian model, as the distribution of
a block, conditionally to the data, only depends on its simple kriging estimate
and variance, and provides the conditional probability of exceeding a cut-off,
or more generally the CE estimator of any function of the block. In the usual
case where an anamorphosis must be used, things are more complex, but CE
can be developed when coupled with a Gaussian change of support model.
Similarly, disjunctive kriging can be used under different models equipped
with a change of support. EC and DK provide a local estimation consistent
with their corresponding global change of support.

The previous non-linear methods are conveniently developed in a station-
ary framework. In an area with sparse data, the estimation is then strongly
attracted by the global characteristics of the domain, just like Simple Krig-
ing is attracted by the mean m. This is in accordance with the stationarity
hypothesis, but may be considered too strong. For estimations on point sup-
port, the stationary hypothesis made in kriging or cokriging indicators can be
reduced if an Ordinary Kriging is used instead of a Simple Kriging for indica-
tors or factors. However, things are more complex when a change of support is
used. Alternative methods, more flexible in this respect, have been proposed.
One of them consists in firstly estimating the value of the indicator of each
block that contains a sample data, and secondly performing the Ordinary
Kriging or Cokriging of such a service variable. Another method considers
the distribution of blocks within a given panel as being uniformly conditioned
by the sole estimate of this panel, then using a change of support model up to
the panel support. Still another approach is to derive the block distribution
within a panel from the more easily estimated distribution of points.

5.3 Information effect and geometrical constraints

Geostatistics is more than the development of mathematical - generally proba-
bilistic - models and methods, and their application. It also includes analyzing
the practical problems to be solved, and formalizing them in terms of con-
cepts, which Matheron considered very important. In the mining domain that
he studied in details, Matheron proposed an advanced formalization of re-
serves, in particular for selective mining. As an illustration, consider the case
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of an orebody divided into equal blocks, each one being possibly selected as ore
independently (free selection). It is necessary to account for the support effect
in order to predict the number of blocks above a cutoff, from the distribution
of point sample values: selectivity on block support is less than it would be
on points. Moreover, when a block is to be mined, the decision of selecting it
as ore or waste is not made on its true value which is unknown. It is made on
an estimate based on the data that are available at this stage (estimation by
kriging for instance). The result of such a selection is necessarily worse than
it would have been in the ideal case of a selection on the true values: this is
the information effect [19]. In practice, additional data will be available at the
pre-exploitation stage. When predicting the reserves months ahead, one has
to estimate the chances for the future estimated block values to exceed the
cutoff, and the correlative true quantity of metal that they contain.

In free selection, blocks are assumed to be possibly selected independently
from one another and from their location. In the opposite case, another effect –
geometrical constraints - must be considered. An example is given by vertical
constraints in a stratiform exploitation, when at a given 2D location, all blocks
between the lower and the upper selected blocks must be mined. Another com-
mon example is that of the open pit, where mining a given block implies that
of all the blocks ahead in the cone defined by the stability slope have been
previously mined. Matheron [17] has developed methods for the parameteri-
zation of reserves, which allow optimizing such contours of exploitation. They
provide a family of technically optimal projects, among which it is possible
to choose the best ones under present or hypothetical economical conditions.
No probabilistic framework is used here.

6 Simulations

Non-linear methods are more powerful than linear ones. They are however
more demanding in terms of hypotheses, reducing the robustness of models
with respect to reality. Hence the economy principle of geostatistics, i.e. not
using more than is necessary to solve a practical problem [20]. But in many
cases, the problem is too complex to be solved directly, even by non-linear
methods. Then stronger hypotheses are required, and a solution is to call
for simulations, that is, realizations of a complete RF model, considered as
plausible versions of the reality - in particular conditional simulations, which
honour the values at data points (see the article by Chilès and Lantuéjoul in
this volume). The increase in computational power and the possibilities of vi-
sualisation have boosted the use of simulations. The proper use of simulations
in terms of the practical problem to be addressed, and the choice of the model,
i.e. the hypotheses made on reality, are important points to be considered.
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7 Perspectives

The need to model complex environments realistically calls for the develop-
ment of new models, possibly process-based (e.g. diamonds deposited within
traps of the sea floor), or defined in a non Euclidean system (stream lines)
or in a higher dimensional space. In particular, spatio-temporal models must
be considered for variables such as fish or contaminants which vary in space
and time. Enlarging to new types of non-stationarity or to new multivariate
models is also a promising challenge. A Bayesian approach for geostatistics
is convenient to account for uncertainties in the model. It also constitutes a
powerful framework for inverse problems in hydrogeology for instance. In this
case and in many others, geostatistics offers a consistent approach to analyse
several variables jointly and to deal with measurements on different supports.
It also provides a flexible approach to combine, merge or filter different vari-
ables, measured at the same locations or not, whether on a regular sampling
design (e.g. grids, images) or not. Finally geostatistics can also be used for
the coupling between observation data and physical models.
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Ecole des Mines de Paris, Centre de Géostatistique, Fontainebleau, 26 p.
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Prediction by conditional simulation: models
and algorithms

Jean-Paul Chilès and Christian Lantuéjoul
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1 Introduction

Prediction here refers to the behavior of a regionalized variable: average ozone
concentration in April 2004 in Paris, maximum lead concentration in an indus-
trial site, recoverable reserves of an orebody, breakthrough time from a source
of pollution to a target, etc. Dedicating a whole chapter of a book in honor to
Georges Matheron to prediction by conditional simulation is somewhat para-
doxical. Indeed performing simulations requires strong assumptions, whereas
Matheron did his utmost to weaken the prerequisites for the prediction meth-
ods he developed. Accordingly, he never used them with the aim of predict-
ing and they represented a marginal part of his activity. The turning bands
method, for example, is presented very briefly in a technical report on the
Radon transform to illustrate the one-to-one mapping between d-dimensional
isotropic covariances and unidimensional covariances1 [44]. As for the tech-
nique of conditioning by kriging, it is nowhere to be found in Matheron’s
entire published works, as he merely regarded it as an immediate consequence
of the orthogonality of the kriging estimator and the kriging error.
Although he himself did not use conditional simulations for predicting, he
nonetheless supported the researchers of the Centre de Géostatistique who
did. As an engineer, Matheron indeed admitted that in real-world situations
prediction algorithms can be used heuristically, provided that the conclusions
drawn are sifted out with a critical eye. Beyond the presentation of models,
methods, and algorithms, this chapter is also an opportunity to examine what
conditional simulations really represent.

1 Matheron submitted a paper on the turning bands method to the Advances in
Applied Probability, which he later merged with another paper [46]. This project
paper, available as [45], mainly focuses on the turning bands operator. It is worth
noticing that Matérn [33] already had a similar attitude, presenting the principle
of the turning bands in a few lines as an illustration of the relation between
covariances in IRd and IR.
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2 Predicting by a Monte Carlo method

2.1 General principle

Reality is considered as a regionalized variable (RV) z =
(
z(x), x ∈ V0

)
defined

at each point of a domain V0 of IRd. This RV may be a permeability, a grade, a
geological facies, etc. This is already an idealized representation of the reality
but we will not question this simplification. Suppose that this RV is known at
some points xα, α = 1, ..., N . We want to know the value of some functional
F(z, q) of that RV as a function of parameters represented by the vector q. For
example, z(x) is the permeability at x, q represents a pollutant source, and
F is the breakthrough time to access a protected zone V1 (lake, catchment
area). This breakthrough time largely depends on the heterogeneities of the
medium, particularly the continuity of the high-permeability zones – which
can act as conduits, or the low-permeability zones – which are flow barriers.
The problem is too complex to be addressed analytically. One approach is
thus to generate a pseudo-reality that possesses the same type of variability
as the real field, and compute the breakthrough time corresponding to that
pseudo-reality. That breakthrough time is then considered as a possible value
for the true breakthrough time. We call this pseudo-reality an image.
If the pollutant source is of limited extent, its impact is very different de-
pending on whether it is located in a low-permeability pocket – acting as a
containment zone, or in a high-permeability zone. It is thus important to take
all the information on local permeabilities into account. This can be achieved
by using an algorithm producing images that honor the data.
A single image gives a single answer and does not tell us how far it departs
from reality. This calls for a Monte Carlo method [64]: several images are
built, which give different breakthrough times; the distribution of their values
can then be used to build confidence limits for the true value – this is at least
what we hope.

2.2 Conditional simulations

Since it is difficult to conceive deterministic algorithms generating realistic
and varied images, stochastic algorithms are used instead. The conditional
simulations produced are defined within a probabilistic context. The RV z is
considered as a realization of some random function (RF) Z =

(
Z(x), x ∈ V0

)
.

In other words, denoting by
{
Zω, ω ∈ Ω

}
the set of realizations of Z, the RV

z is the realization corresponding to a particular state ω0 of Ω: z = Zω0 .
A non-conditional simulation is any realization Zω. For some states of Ω,
the realization honors the data, namely satisfies Zω(xα) = z(xα) for each
α = 1, ..., N . A conditional simulation is any of these realizations.
If a large number of independent conditional simulations are built, and if
each of them has its value F(Zω, q) computed, then the distribution of the
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obtained values tends to the conditional distribution of F(Z, q). In particular,
their average tends to the conditional expectation. The prediction by Monte
Carlo is thus a very general and powerful method.

2.3 Kriging or simulating?

Predicting by a Monte Carlo method is however a heavy approach (a large
number of simulations must be generated). Moreover, it is optimal only when
the spatial distribution of Z is known, which is not the case for usual appli-
cations. Three questions arise:

– Is it possible to avoid the Monte Carlo method for estimating the distri-
bution of F(Z, q), or at least its mean and variance, even at the price of
an approximation?

– Are there model classes for which all models of a given class lead to the
same results, at least in a first approximation? If so, how to choose the
most appropriate class and its parameters?

– And if not, how to choose the most appropriate model and its parameters?

The answer to the first two questions is generally negative, and we will see
that the answer to the third one mainly depends on the ”thematician”’s or
geostatistician’s skill. This is why Matheron never showed much interest in the
latter question, which cannot get a definite statistical answer. He expended
much effort to obtain positive answers to the first two questions, for problem
classes as broad as possible.
The first problem concerns the prediction of the value taken by z at an un-
observed point x0, or more generally by a linear functional of the RV z, for
example its average z(v) in a block v. If only linear predictors are considered,
a quadratic optimum minimizing the estimation variance is given by simple
kriging. This optimum is an approximation to the conditional expectation,
and coincides with it if Z is a Gaussian RF (GRF). Only the mean and the
covariance of Z are required to derive this optimum. These parameters are
reasonably accessible from the data provided some homogeneity assumption
(stationarity) that can be weakened by various means. Consequently, kriging
does not depend on the other characteristics of the RF and is a robust answer
to the problem at hand.
The prediction of a nonlinear function of z(x0) or z(v), such as the indicator
above a threshold, can similarly be obtained by disjunctive kriging (DK),
provided that predictors of the form

∑
α fα

(
z(xα)

)
are considered. Except in

special, more favourable cases, DK provides an approximation to the condi-
tional distribution. Its implementation requires only bivariate distributions.
When Matheron defined DK, the research about possible bivariate distribution
models was in its infancy. He therefore devoted much effort to the development
of bivariate models covering the various needs of applications (continuous or
discrete variables, diffusive, mosaic, or intermediate models, support effect,
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etc.). As Matheron showed it, choosing a type of bivariate distribution and
its parameters remains reasonably possible. Since DK does not depend on
multivariate distributions beyond bivariate ones, it remains a robust solution
to the problem at hand.
When problems increase in complexity, it is no longer possible to call for
similar simplifications (note in particular that a breakthrough time measured
on a kriged model has nothing to do with the actual breakthrough time,
due to the smoothing effect of kriging). We then resort to the Monte Carlo
approach. In either case (direct calculation of the conditional expectation or
Monte Carlo), the result depends on the whole spatial distribution of the
RF, a distribution whose choice remains largely arbitrary (beyond bivariate
distributions). Conditional simulations thus possess a more or less heuristic
character, which will have to be kept in mind when analyzing the results of a
prediction by Monte Carlo.

2.4 Applications of simulations

Simulations are used first of all for methodological purposes. Matheron re-
sorted to non-conditional simulations to quantify how conditional expectation
is approximated by DK, or to assess the validity of a change of support model
[54]. Simulations can also be used to explore the range of fluctuations that
can be expected from a model – when no direct calculation is possible, or
inversely to determine the type of information about the model that can be
retrieved from a single realization, thus leading to efficiency tests of inference
procedures or a posteriori validation tests of a model.
The other application of simulations, more precisely of conditional simula-
tions, is prediction by numerical means. The objective is usually to predict the
result of a complex process applied to the simulated field: flow and transport
simulation (hydrogeology, petroleum reservoir), exploitation scenario (min-
ing), etc. It can also consist of assigning a precision to the predicate in terms
of variance or confidence limits. More simply the objective can be to visualize
what the reality looks like.

2.5 Necessity of a model

Three arguments can be put forward to justify resorting to a stochastic model:

Data representativity

Any trained geostatistician knows that assessing the marginal distribution of
a variable is not a trivial task. When data are scattered, the sample histogram
may present artefacts which are simply due to the presence of clusters in spe-
cific areas. And even though a fine grid of data may be available in some
domain V , thus enabling us to know the regional histogram in V , the repre-
sentativity of that histogram for another domain remains questionable if V
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is not much larger than the range of the RV under study: in particular, the
tails of the distribution may be under- or over-represented. The situation is of
course much more critical for multivariate distributions. Sample distributions,
e.g. from a training image, may capture the anecdote of a specific situation
rather than the essence of the phenomenon.

Distributional consistency

Multivariate distributions are usually no longer directly accessible when their
number of support points becomes large. However, they may be required in
the prediction exercise. To overcome this difficulty, the simplest approach is
to resort to a stochastic model. Once the model type has been chosen and its
few parameters have been fixed, the whole spatial distribution, and hence all
its multivariate distributions are specified. If the model depends on a limited
number of parameters, we can expect them to be reasonably estimated from
the data. For a GRF for example, no other parameters than the mean and
the covariance are required. For a Boolean model, rather than the covariance,
the object distribution and the Poisson process intensity can be used. The
advantage of this approach is that it automatically delivers a consistent set of
multivariate distributions.

Predictable quantities

More formally, a stochastic model is completely specified by a probability
space (Ω,A, P ) where Ω is the set of all possible realizations, A is a family
of subsets of Ω (called ”events”) satisfying all the axioms of a σ-algebra and
P is a probability on A. Besides its role in the definition of P , A determines
what quantities are measurable; it other words, it determines what quantities
can be predicted by Monte Carlo techniques. Indeed, everything cannot be
predicted. For instance, the standard definition of arc-connectivity is not a
measurable concept. It must be slightly restricted if we want to predict the
probability that two given points belong to the same connected component of
a random set [29].

The crucial choice is that of the model type. As it will be shown below,
such a choice cannot be easily made using geostatistical tools. In practical
applications, the model type is a priori chosen. For that choice to be as relevant
as possible, the geostatistician must have a large variety of models at his
disposal as well as a good knowledge of their properties (including when the
model is implicit) and of the algorithms to simulate them.

3 Models

3.1 Design

A general survey of Matheron’s list of publications readily shows that he de-
voted much effort to the design of prototype models but very little to their
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possible extensions or ramifications. A typical example is the Boolean model
that he introduced in [36] as a porous medium prototype while he was investi-
gating the emergence of Darcy’s law starting from the Navier-Stokes equation.
Such a model can be extended by releasing the independence assumption on
the object locations (attraction or repulsion between objects...) and on the
objects themselves (correlations between closely located objects). If a numer-
ical marker is assigned to each object, then new models can be designed by
replacing the union between objects with another composition rule such as
addition (shot noise model [33, 76]), supremum (Boolean random function
[25, 67, 77]) or superimposition (valued dead leaves model [24]).
Prototype models are interesting in that they depend on a small number of
parameters and possess very good stability properties (algebraic, morphologi-
cal, stereological, etc.), which make them mathematically tractable. Matheron
often resorted to them to test physical assumptions.
A few elaborate models have also been designed by Matheron in the context
of specific applications, such as Ambarzumian processes for modeling the evo-
lution of fluvio-deltaic sedimentation as a function of marine subsidence [40],
or generalizations of Sichel distribution for modeling the sample distribution
of diamonds in alluvial deposits [50, 51].

3.2 Statistical characterization

The most celebrated contribution of Matheron in this domain is undoubtly his
introduction of a hitting functional to characterize the statistical properties
of a closed random set (see [47] and also the paper by Molchanov [65] in
this volume). Closed random sets are put forward rather than open random
sets because they include locally finite point, line and flat processes which
are very useful for applications. This standpoint is also shared by Kendall
[26], even though both random set families can be deduced from each other
by complementation. More specific is the characterization of the equivalence
classes of random sets that have the same topological opening and the same
topological closure. It can be used to describe natural phenomena such as
porous media [36].
Matheron did not work much on the statistical characterization of random
functions, except on three occasions. Following Doob’s ideas [12], he showed
that a closed random set can be equivalently characterized by its hitting func-
tional or the spatial distribution of its indicator function when it is separable.
He also addressed the problem of predicting the extrema of a random function
on a compact subset. A maximum (resp. a minimum) does exist if the random
function has upper semicontinuous (resp. lower semicontinuous) realizations,
which boils down to saying that its subgraph (resp. supergraph) is a random
closed set [38]. The interest that he later developed for a theory of lipchitzian
random functions appears in [63].
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Matheron also studied the statistical characterization of certain random struc-
tures, including random tessellations [35], random measures and capacities
[37], random filters and topologies [38]. Structures like random populations of
objects were surprisingly not specifically investigated, but they can be seen
as closed random sets on the space K(IRd) of the compact subsets of IRd [72].
The characterization obtained differs from that of Carter and Prenter [8].

3.3 Internal consistency

Only in rare circumstances is a model specified by the functional (spatial
distribution, hitting functional) that characterizes it. For instance a two-
dimensional Boolean model of random disks is preferably specified by its
Poisson intensity as well as its radius distribution, rather than by its hit-
ting functional. A drawback of this approach is that the different ingredients
used in the specification of the model may not be compatible. This problem
of internal consistency was investigated by Matheron in several papers and
reports [52, 56, 59]. A few examples encountered in geostatistical studies are
given below:

Covariance of a random set

Is any function of positive type allowed as a covariance model for a stationary
random set? It is well known (e.g. [36]) that the average directional deriva-
tive at the origin of a random set covariance is proportional to the specific
boundary content of the random set2. This automatically excludes the Gaus-
sian covariance h −→ exp{−|h|2} as a set covariance because all its directional
derivatives vanish at the origin. In contrast to this, the exponential covariance
is authorized whatever the workspace dimension (see the first two examples
of Fig. 3). The spherical covariance is authorized in one dimension as a con-
vex function on [0,∞[ [58]. Whether or not it is authorized in more than one
dimension is still questionable.

Covariances and point distributions

More generally, which covariance models are compatible with a given point
distribution? At present, only very partial answers are available. For instance,
a lognormal random function cannot admit a spherical covariance if its coef-
ficient of variation is too large3 [59].

2 The specific boundary content of a stationary random set (specific perimeter in
2D, specific surface area in 3D) is the mean (d− 1)-volume of its boundaries per
unit volume.

3 It should be pointed out however that this example is not critical because such a
lognormal random function is usually specified by the parameters of its lognormal
distribution and the covariance of its underlying GRF (for which every covariance
model is allowed).
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Distributions on different supports

The change of support problem can be seen as another internal consistency
problem. In many fields of applications (mining, epidemiology...), it frequently
happens that samples of different sizes (or supports) are available, or that the
support of the quantity to be predicted is different from that of the samples.
To fix ideas, let Z be a stationary random function defined on IRd. Let also
Z(v) and Z(V ) denote the average of Z on supports v and V :

Z(v) =
1
|v|

∫
v

Z(x)dx Z(V ) =
1
|V |

∫
V

Z(x)dx

If |v| < |V |, one expects the distribution Fv of Z(v) to be more scattered
than that FV of Z(V ). Indeed, there exists a stochastic ordering relating the
distributions of Z at various supports [52]. More precisely, if v ”divides” V ,
then ∫ +∞

−∞
ϕ(z)dFv(z) ≥

∫ +∞

−∞
ϕ(z)dFV (z) (1)

for all convex numerical function ϕ. From this set of inequalities, it is easy
to see that Z(v) and Z(V ) have the same mean, that the variance of Z(v)
is greater than that of Z(V ). Of course, many other inequalities relating the
moments of Z can be derived.

0 2000 4000 6000 8000 10000

0
4

8

Fig. 1. Realization of an exponential diffusion process

As an illustration, consider an exponential diffusion process, a realization of
which is shown on Fig. 1. It turns out that an explicit formula is available
for the distribution of Z on all supports [53]. Fig. 2 shows the distributions
obtained on support sizes ranging from 0 to 32. A continuous transition from
an exponential distribution to a quasi-normal one can be observed.

3.4 Statistical inference

In the book ”Estimating and Choosing” dealing with probability in prac-
tice, Matheron [59] makes a clear distinction between the prediction of a
regional phenomenon (”Estimating”) and the estimation of model parameters
(”Choosing”) that possess not a real but only a conventional significance. In
what follows, we examine first how to estimate the parameters of a model,
then we turn to the problem of how to choose one model.
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Fig. 2. Distributions at supports of size 0, 1, 2, 4, 8, 16 and 32

Estimation of model parameters

Here the stochastic model type (Gaussian, Boolean, etc.) is supposed to be
known. If its parameters are few, then they may have an actual counterpart in
the reality and thus can be reasonably estimated provided that data are nu-
merous enough [59]. In the case of a GRF, Matheron shows that the behavior
of the variogram at the origin has an objective significance. Similarly, Switzer
proposes several methods for testing the objectivity of variogram parame-
ters (sill, shape and nugget effect), which enables him to generate confidence
regions for these parameters [79]. In contrast to this, a decomposition of the
variogram in nested components has not the same level of objectivity, because
different models can fit similarly the sample variogram.
Once the model parameters have been fixed, the results of the Monte Carlo
procedure are conditional on that model. They do not take the uncertainty on
these parameters into account, and the confidence limits obtained may look
too narrow. An alternate approach is to work within a bayesian framework:
(i) postulate a prior distribution for the model parameters;
(ii) determine their posterior distribution from the data;
(iii) generate simulations with model parameters independently selected for
each simulation according to that posterior distribution.
The results are then conditional on the chosen prior distribution (and on the
data). As an illustration, Handcock and Wallis [18] present a nice analysis of
a meteorological field in a Bayesian framework, even though their choice of
a prior distribution is questionable from a physical standpoint. In order to
cope with this difficulty, a noninformative prior distribution is often chosen
in accordance with the physics of the problem (see Mosegaard and Tarantola
[66] for a discussion on the concepts of noninformative prior distribution and
homogeneous distribution).
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The statistical inference problem may be complicated by the fact that closely
located data produce redundant information. Consider for instance a stan-
dard Gaussian process Y with mean m and exponential covariance (unit scale
factor). The average of Y on a segment of length �

Y
(
[0, �]

)
=

1
�

∫ �

0

Y (x)dx

is an unbiased predictor of m. One may wonder what should be the value of �
to have a probability above 95% that the absolute difference between Y

(
[0, �]

)
and m is less than 0.05. The answer is much larger than one would usually
expect (� ≥ 3000). However this does not constitute a problem for Matheron
insofar as he considers that the quantity of interest is the spatial integral

y
(
[0, �]

)
=

1
�

∫ �

0

y(x)dx

and not the mean m itself.

Choice of RF model type

Regarding the choice of the stochastic model type, the situation is quite dif-
ferent. There is no general tool for discriminating between several candidate
model types. In flow studies, for example, the connectivity of low (or high)
permeability zones is an important factor. The variogram is not an indicator
of connectivity since random sets with very different connectivities can share
the same point distribution and the same variogram (an enlightning example
with its consequences on flow and transport is given by Zinn and Harvey [83]).
Resorting to multivariate distributions is often considered, but the sparsity
of data in usual situations makes the differenciation between possible model
types somewhat illusory.
To fix ideas, consider the following three random set models, a realization of
which is depicted on Fig. 3:

– a standardized GRF with covariance sin
(

π
2 e

−|h|) that is thresholded at 0;
– a tessellation of Poisson polyedra that are randomly and independently

valued to 0 or 1;
– a dead leaves model [39, 24] of balls. These balls have random radii with

complementary distribution function

1− F (r) =
1
r

sinh r
cosh3 r

and are also randomly and independently valued to 0 or 1.

All three models are stationary with the same point distribution and the same
exponential covariance. Consequently, they have exactly the same bivariate



Prediction by conditional simulation 49

Fig. 3. Realizations of three random sets with the same trivariate distributions.
Left, a thresholded GRF; middle, a Poisson tessellation; right, a dead leaves model

distributions. Indeed, being autodual4, they have also the same trivariate dis-
tributions.
Even though all models do not look plausible from the application standpoint,
we may nonetheless wonder how they can be discriminated.
Some attempts with quadrivariate distributions (4 vertices of a regular tetra-
hedron or 4 points regularly arranged on a line) turned out to be unsuccessful.
At the end of the day, 1000 simulations of each model were drawn. On each
simulation, the proportions p0 and p1 occupied by the largest connected com-
ponent of each phase are determined. This gives two points (p0, p1) and (p1, p0)
that are reported on a scatterplot. Fig. 4 shows the 3 scatterplots obtained.
Clearly the model based on Poisson polyhedra distinguishes clearly from both
other models. The dead leaves model and the thresholded GRF can also be
discriminated, but the difference is not so important.
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Fig. 4. Scatterplots of the proportions occupied by the largest components for the
three models of Fig. 3

4 A separable random set is said to be autodual if it has the same spatial distribu-
tion as its complement. The inclusion-exclusion formula shows that the trivariate
distributions of an autodual random set are completely specified by its bivariate
distributions.
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Except situations where good quality training images are available, the choice
of the model type is left to the user. This choice may be made easier by
additional knowledge, such as the geology of the site under study, or hydraulic
test results. The model type contains rich information that it conveys to the
simulations. Correlatively, there is a risk incurred in the choice of a model
type, especially if it has not been propped up. If in doubt, several contending
models can be considered in order to compare the variability of the results
produced.

4 Algorithms

4.1 Model or algorithm?

Many algorithms can be found in the ”stochastic imaging” literature to pro-
duce images with some randomness (e.g. the sequential indicator simulation5

[11]). According to the authors, those algorithms have the potent advantage
of avoiding the design of a model, some attributes of which fail to be exper-
imentally accessible. The model is implicitly and completely specified by the
algorithm.
In a sense, this argument is valid. When considering all outputs produced by
the algorithm, one obtains a family of multivariate distributions that satisfies
all of the consistency relationships of a spatial distribution. Now, one may
wonder which model is actually simulated. Suppose for instance that the al-
gorithm is applied to an autodual random set with exponential covariance. Is
this one of the three models of Fig. 4, or a mixture of them, or even a totally
different model? Answering that question is all the more difficult since Emery
established that the multivariate distributions obtained do not have a clear
status; they can be considered as deriving from a model, but not necessarily
from a spatial model [13]. All things considered, it does not seem reasonable to
recommend using such an algorithm without a careful study of its properties.
It may be interesting to mention that Matheron suggested using stochastic
imaging algorithms, not for producing spatial simulations but for heuristically
5 The sequential indicator simulation, or SIS, is an algorithm designed for simulat-

ing conditionally an indicator random function. It is based on the approximation
of the conditional distribution at x by a Bernoulli distribution with a mean equal
to the indicator kriging at x. It can be shown that the indicator covariance is well
reproduced if simple kriging is used and if the kriged values are in [0, 1]. This latter
condition is very restrictive (unidimensional completely monotonic covariances).
As shown by Emery [13], the indicator kriging approximates the conditional ex-
pectation reasonably well for a mosaic model with i.i.d. valuations, but rather
crudely for a truncated GRF. This suggests that SIS produces outcomes close to
those of a mosaic model. As a matter of fact, this is generally not the case, unless
drastic conditions are satisfied (unidimensional exponential covariances; points
are orderly simulated).
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Fig. 5. Tentative simulation of a random set with a Gaussian variogram. This figure
shows the outcomes produced at the initial stage and after 106, 2 × 106, 4 × 106,
8 × 106, 16 × 106, 32 × 106 and 64 × 106 iterations
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Fig. 6. Regional variograms of the outcomes of Fig. 5. The model variogram is
represented by points overlaid by a line

testing the internal consistency of a model. Consider for instance the tentative
simulation of an autodual random set with a Gaussian variogram6 Initially
all pixels of the simulation field (300 × 200) are independently set to 0 or 1
at random. Then an iterative procedure starts. At each iteration, a random
number of pixels (on average 1.5) are selected. All of them have their value
complemented if this reduces the discrepancy between the experimental vari-
ogram and the Gaussian one, or left unchanged if not. Fig. 5 shows realizations
obtained at the initial stage and after 106, 2× 106, 4× 106, 8× 106, 16× 106,
32 × 106 and 64 × 106 iterations (beyond this, only limited changes can be
observed). The corresponding variograms are given on Fig. 6. After a few it-
erations, a linear behavior can be observed in the neighborhood of the origin,
and this linear behavior persists even after several millions iterations. This
tentative simulation suggests that a parabolic behavior at the origin cannot
be reached, which is perfectly compatible with theory.
The same algorithm has also been applied to other variograms. For instance,
outcomes with an exponential or a spherical regional variogram can be ob-
tained in less than one million iterations (see Fig. 7). This suggests that there
actually exist random sets with exponential (which was already known) or

6 Considering autodual random sets only is not a limitation. If X is a stationary
random set with proportion p and variogram p(1 − p)γ, then the random set Y
equal to X or Xc with the same probability 0.5 is autodual with variogram 0.25γ.



Prediction by conditional simulation 53

spherical variograms. Of course, this approach is not constructive; it gives a
clue, but cannot be considered as a proof of existence.

Fig. 7. Tentative simulation of random sets with an exponential (left) or a spheri-
cal (right) variogram. The scale factors of both variograms have been chosen to give
them the same integral range (or correlation area). As a result, the exponential out-
come has its specific perimeter 2.1 times larger than that of the spherical outcome,
which is expressed by its broken aspect

From now onward, all algorithms considered are assumed to derive from spa-
tial models.

4.2 Sequential or parallel?

Several algorithms are sometimes available to simulate a given model. Which
one should be chosen? Among all possible criteria (correctness, accuracy, sta-
bility, speed, memory requirement,...), an important one is its capability to
be implemented on parallel processors. One can distinguish between

1. sequential algorithms, for which the distribution used to simulate the
nth point of the simulation field depends on the available conditioning
data as well as the simulated values at the n−1 points already processed.

2. parallel algorithms, for which each point is simulated conditionally to the
available data but irrespectively of the values taken by the other points
of the simulation field.

3. distributed algorithms, which are intermediate between sequential and
parallel algorithms.

A sequential algorithm is applicable only when the simulation field is finite.
It requires its points to be linearly ordered. This order relation can be chosen
arbitrarily; in particular it can be either deterministic or random. However its
choice is not indifferent insofar as it determines the conditional distributions
to be simulated. One particular choice may lead to notable simplifications.
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Usually the expression for a conditional distribution becomes more and more
complicated (if not intractable) as the number of already processed points
increases. Here lies the main criticism against sequential algorithms. In prac-
tice, the conditional distributions are replaced by approximate ones, e.g. by
accounting only for the conditioning information in a close vicinity of the
point to be simulated. The consequences of such approximations are difficult
to assess.
It should also be pointed out that sequential algorithms cannot accommodate
all types of constraints. Suppose for instance that the stochastic model is a
random set and the simulation field consists of the vertices of a graph. Two
points of the simulation field are said to be connected if they are linked by
an arc of the graph, all vertices of which belong to the same phase. Such a
connectivity constraint cannot be addressed sequentially because it does not
say which arc or which population of arcs connects both points. More generally
”regional” contraints cannot be taken into account by sequential algorithms.

4.3 Discrete or continuous?

The previous section has already pointed out the importance of the simulation
field. In common practice, three different types of field can be encountered,
namely a limited number of points with arbitrary locations, a regular grid,
and a compact subset with nonempty interior. An algorithm is said to be
continuous if it is applicable to the third type of simulation field; otherwise,
it is said to be discrete.
Discrete and continuous algorithms do not work the same way. A discrete
algorithm is designed to assign a value directly to each point of the simula-
tion field. In contrast to this, a continuous algorithm produces a set of basic
ingredients that summarizes the simulation content. These ingredients can
subsequently be used to derive the value at each point of the simulation field.
The main advantage of continuous algorithms is that they make simulations
available at any spatial resolution. The impact of spatial resolution on certain
measurements can therefore be tested. This is important in practice because
the scale that affects measurements may not be well known.
All continuous algorithms can be used to simulate discretely, but the converse
is not true. There exist discrete algorithms that cannot be extended to con-
tinuous ones. For instance, Cholesky’s algorithm can be used to simulate a
GRF at a limited number of points. Several thousand points can be considered
provided that the covariance matrix is not too badly conditioned. In the case
of a regular grid, an algorithm based on FFT techniques can be recommended
[10]. Both algorithms express the fact that a GRF is the Fourier transform of
an orthogonal Gaussian measure.
All algorithms developed by Matheron are continuous. The most typical ex-
ample is the so-called turning bands algorithm to simulate a GRF [44, 46].
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In the stationary case, the covariance C (supposed to be continuous) can be
written as

C(h) =
∫

Sd−1

Cθ(< h, θ >) d(θ)

where d is the orientation distribution of the spectral measure associated
to C, and Cθ is a unidimensional covariance for each orientation θ ∈ Sd−1.
The turning bands method is in fact a stereological device for reducing a
multidimensional simulation into unidimensional ones. If θ1, ..., θn have been
independently drawn from d, and if X1, ..., Xn are independent stochastic
processes with respective covariances Cθ1 , ..., Cθn , then the central limit the-
orem asserts that the random function

Y (n)(x) =
1√
n

n∑
k=1

Xk(< x, θk >) x ∈ IRd

tends to be Gaussian as n tends to infinity.
The practical implementation of this algorithm was not exactly Matheron’s
primary concern. Indeed, he never studied its rate of convergence towards
gaussianity. Assuming that the covariance Cθ of Xθ is proportional to the
autoconvolution7 of some numerical function f , he proposed to simulate Xθ

as a shot-noise process

Xθ(t) ∝
∑
p∈P

f(t− p) t ∈ IR

starting from a homogeneous Poisson point process P . If Cθ has a bounded
support, say [−a, a], then replacing P with a periodic point process with
period a simplifies the implementation (see Fig. 8) and reduces the execution
time dramatically [30]. If Cθ has no bounded support, then the simulation of
Xθ is only approximate because the support of f is also unbounded. In such
a case, other techniques for simulating Xθ are required. The spectral method
[75]

Xθ(t) ∝ cos(Ut+ V ) t ∈ IR

where U ∼ dXθ (the spectral measure of Cθ) and V ∼ U([0, 2π[) is effective
only when Cθ is differentiable at the origin. In three dimensions, Emery [14]
remarks that an exponential covariance can be seen as a mixture of spherical
covariances8. This allows him to simulate the stochastic processes with uni-
dimensional covariances associated to exponential, or mixtures of exponential
covariances like those of a spherical covariance with a randomized scale factor.
Migration techniques are also available [30].
7 The autoconvolution of f is the convolution of f by its reflection f̌ around the

origin.
8 This result can also be seen as a direct consequence of the algorithm proposed by

Hammersley and Nelder [17] for simulating shot-noise processes with exponential
covariance.
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Fig. 8. Simulation of a stochastic process to get a three-dimensional GRF with
spherical covariance

4.4 Conditional or not?

Even if the predictor presented in this paper is based on conditional simula-
tions, non conditional simulations are nonetheless worthwhile being consid-
ered. At least three arguments can be put forward:

1. Many models can often be devised to represent a natural phenomenon
or some physical reality. Selecting one among them is not always easy
on account of their complexity and of the number of parameters they in-
volve. Using non conditional simulations and their display can facilitate
the choice of the most appropriate model. Moreover, this gives the possi-
bility to better grasp the role of each parameter, the range of values it can
take, its sensitivity... Finally, it provides information about the statistical
fluctuations that one should expect from a model.

2. A posterior validation of the model can be obtained by replicating non
conditional simulations at the data locations. Each data value is then
assigned a score using the histogram produced at its location. The score
histogram can serve to quantify the adequation of the model to the data
set.

3. Conditional simulation algorithms are often constructed starting from
non-conditional ones. The most classical example is the kriging tech-
nique (or regression technique) for simulating a GRF Z defined on IRd and
subject to the conditions

(
Z(xα) = zα, α ∈ A

)
. It rests on the fact that

Z can be written as the sum of two independent GRF, namely the (prob-
abilist versions) of the simple kriging on the data and a residual. Since
the kriging is linear, its calculation is straightforward. As for the residual,
it can be obtained as the difference between a non-conditional simulation
zS and its kriging estimate on the simulated values

(
zS(xα) = zS

α , α ∈ A
)

at the data location. Finally, the conditional simulation algorithm can be
written as

zCS(x) = zS(x) +
∑
α∈A

λα(zα − zS
α) x ∈ IRd

which involves the kriging coefficients (λα, α ∈ A).
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Fig. 9. A conditional simulation of a GRF can be obtained by adding a simulated
residual to the simple kriging (middle) on the data (left). The result is depicted on
the right

4.5 Iterative or non-iterative?

As seen above, the algorithm for simulating a GRF conditionally is straight-
forward. This is more the exception than the rule. Most often algorithms are
iterative:

1. Iterative algorithms are simpler to design than non-iterative ones. They
rest on simple principles. Their construction is often based on pre-existent
algorithms such as the Metropolis-Hastings algorithm or the Gibbs sam-
pler.

2. They can accommodate a wide range of conditions and need minor modi-
fications as a new set of conditions or constraints is added. They can also
handle compatibility problems between the model and the data.

In order to illustrate both arguments, the Markov chain restriction principle
is presented. Let Ω a state space, supposed here to be discrete to simplify
notation. Each state ω ∈ Ω is assigned a probability p(ω). Because of a set
of conditions or constraints, only the states within the subset Ωc of Ω are
allowed. The objective is to simulate the conditional distribution pc that p
induces on Ωc.
Suppose that p can be simulated as the limit distribution of a Markov chain
on Ω with transition kernel P . This suggests the following iterative algorithm.
The transition kernel P is applied to the current (allowed) state to generate
a candidate state. This state is accepted as a new state only if it is allowed
(see Fig. 10). Such an algorithm defines a Markov chain on Ωc with transition
kernel

Pc(ω, ω′) = P (ω, ω′) + 1ω=ω′P (ω,Ω\Ωc) ω, ω′ ∈ Ωc

The pc-irreductility of Ωc and the p-reversibility of P are sufficient conditions
to ensure that the limit distribution simulated by this algorithm is precisely
pc [30].
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Fig. 10. Conditional simulation by restricting a transition kernel. Starting from the
current state ω, a transition kernel is run on Ω to generate a candidate state ω′.
The new generated state is ω′ if ω′ ∈ Ωc and ω if not

The question that now comes is how to initialize this algorithm. A natural
idea is to run the transition kernel P starting from an arbitrary state of Ω
until an allowed state has been generated. This idea is all the more interesting
because in many practical situations the compatibility between the model and
the data cannot be ascertained beforehand. Indeed, the number of iterations
required to get an allowed state indicates how little compatible they both are.
In the non compatibility case, this algorithm never terminates.
Other case by case initialization procedures can be considered, such as in the
following two examples.

Conditional simulation of a Voronoi tessellation

Consider a Poisson point process P in IRd with intensity function θ. Associate
to each point of P (or ”germ”) a subset of IRd (or ”cell”) defined as follows.
This is the set of all points strictly closer to its germ than to any other germ.
The cells along with their boundaries constitute a partition of IRd called a
Voronoi tessellation.
The problem addressed here is the simulation of a Voronoi tessellation, subject
to the condition that each pair of points of a finite subset C ∈ IRd is known
to belong either to the same cell or to two different cells.
A Voronoi tessellation is characterized by its population of germs. To avoid
edge effects, the intensity function is assumed to have a finite integral, say ϑ.
In that case, it is possible to define a typical germ as a germ with random
location (p.d.f. θ/ϑ), and a population of germs is made of a Poisson number
(mean ϑ) of independent typical germs. A simple way to simulate iteratively
this model is based on Metropolis algorithm. Let ω be the current population,
and let 	ω be the number of germs it contains. With respective probabilities

ϑ

ϑ + 	ω + 1
	ω

ϑ+ 	ω

ϑ

(ϑ + 	ω)(ϑ + 	ω + 1)

a new germ is added to the population, an old germ is randomly selected to
be removed, or an old germ is randomly selected to be replaced by a new one.
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This algorithm is reversible (inheritance from the Metropolis algorithm).
Moreover, the set Ωc of allowed populations is irreducible (because germs
can be replaced). Accordingly, this algorithm can be made conditional by ap-
plying the restriction principle (see Fig. 11). To initialize it, it is convenient
to introduce the partition (Ci, i ∈ I) of C defined by the equivalence relation
cRc′ iff c and c′ share the same cell. For any i ∈ I, let Xi be the set of all
points in IRd strictly closer to each point of Ci than to any point of C\Ci.
An initial population can be obtained by picking one point in each Xi. This
procedure is effective provided that all Xi are non-empty, which holds iff the
conditioning data are compatible with the tessellation model.

Fig. 11. Three conditional simulations of a Voronoi tessellation. The intensity func-
tion of the germs is θ(x, y) = 180 − 100x − 60y for 0 ≤ x, y ≤ 1

Conditional simulation of a Boolean model

Two ingredients are required for the construction of this model. The first one
is a Poisson point process P in IRd (intensity function θ). The second one is
a family

(
A(x), x ∈ IRd

)
of objects, i.e. random non-empty compact subsets.

These objects are independent but not necessarily identically distributed (the
hitting functional of A(x) is denoted by Tx). By definition, a Boolean model
is the union of the objects located at the points of the Poisson process

X =
⋃

x∈P
A(x)

The problem considered here is the simulation of the Boolean model, subject
to the condition that two finite subsets C0 and C1 must belong to Xc and X
respectively.
The Boolean model X is specified by the population of objects that constitutes
it. If θ is assumed to have a finite integral9, say ϑ, then it is possible to define
9 This situation occurs when θ is locally integrable and the simulation field is

bounded.
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a typical object as a randomly located object (p.d.f. θ/ϑ), and a population of
objects is made of a Poisson number (mean ϑ) of independent typical objects.
As a consequence, the same iterative algorithm as in the previous example
can be applied to get a non-conditional simulation of the Boolean model, up
to the fact that 	ω acts as a number of objects instead of a number of germs.
As previously, this algorithm is reversible. The set Ωc of allowed populations
of objects is also irreducible due to the fact that the concatenation of two
allowed populations is also allowed10. Accordingly, the restriction principle
can be applied to produce conditional simulations (see Fig. 12). Regarding
the initialization, a simple procedure consists of simulating typical objects
one after the other. Any object that hits C0 is automatically discarded. The
procedure is continued until all the remaining objects completely cover C1.
In order to avoid starting with too many objects, it can be recommended to
keep only the objects that are the first ones to cover points of C1. It can be
shown that the conditioning data are almost surely not compatible with the
Boolean model iff ∑

C⊂C1

(−1)	C

T (C0 ∪ C)
= 0

where T is the hitting functional of the typical objects, i.e.

T (K) =
∫

IRd

θ(x)
ϑ

Tx(K)dx K ∈ K

Fig. 12. Three conditional simulations of a Boolean model. The objects are disks
with exponential radius (mean 5). On average 100 objects are hitting the simulation
field (100 × 100)

The description of both algorithms is not complete without a proper specifi-
cation of their rate of convergence towards their limit distribution. It turns
out that this rate of convergence is specified by the second largest eigenvalue
10 This stability property makes the object replacement in the algorithm not strictly

necessary.
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of the transition kernel that rules the evolution of the number of germs or
objects during the conditional simulation. This eigenvalue can be estimated
empirically by finding the function of the number of germs that possesses the
maximal autocorrelation and determining its integral range [7, 30].

5 And now?

5.1 Model enrichment

The models presented above are simple prototypes. In practical applications,
the parameters often display some spatial evolution: the marginal distribution
(e.g. the proportions of the various facies) varies vertically, and even laterally;
the size of the objects of a Boolean model as well as its intensity may also vary,
etc. The spatial evolution of these parameters can be represented either by
ordinary functions or by random functions. Most simulation algorithms can be
adapted to account for such generalizations (e.g. [30] for several generalizations
of the Boolean model, and [1] for plurigaussian simulations).
The inference of the model parameters, however, calls for special tools and
methods. Spatial variations of the proportions of both facies of a truncated
Gaussian simulation can be obtained by means of a regionalized truncation
threshold. The inference of the stationary covariance of the underlying GRF
is addressed by Matheron et al. [57]. That approach can be generalized to
several facies of a plurigaussian simulation, but the inference of the coding
parameters remains a difficult task. Boolean models can also accommodate
spatially variable facies proportions, for example by regionalizing the Poisson
intensity or the object distribution. Benito Garcia-Morales proposes a method
for the inference of the regionalized intensity of a Boolean model based on a
deconvolution process [2, 3].

5.2 Process-based and stochastic models

The geological formations as well as their properties result from complex pro-
cesses (crystallization, sedimentation, alteration, etc.) which, unlike physics,
are not always ruled by well established laws. Nevertheless, an increasing
number of geological and geochemical processes are understood and can be
modelled. These models do not deliver reliable deterministic predictions –
too many parameters remain poorly known, – but they contain a valuable
source of information about the morphology of the formations and the spa-
tial variability of their properties. Since this information is qualitatively much
richer than that of the simple stochastic models currently used, the challenge
is to mix the process-oriented and stochastic approaches. The first attempts
to conduct that type of work are due to Matheron [40], Jacod and Joathon
[22, 23] in the simulation of sedimentary sequences. Their potentialities were
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then rather limited. Supported by a better understanding of sedimentary pro-
cesses and the fast improvement of data processing capabilities, this approach
has recently known a new surge of interest. In particular, Lopez simulates the
deposition of meandering channelized sedimentary architectures at the scale
of oil reservoirs [32]. A space-time evolution model of the meandering chan-
nel centreline is derived from hydraulic equations. This channel centreline is
then wrapped using a facies model that combines geometrical models, field
observations and stochastic processes, to mimic the development of point-bar
deposits, oxbow lake deposits, crevasse splays, overbank deposits, etc. Suc-
cessive channel migrations, controlled by the erodibility of the terrain, and
aggradation contribute to progressively build the whole fluvial architecture.
This model is flexible and realistic enough even if it is based on a limited num-
ber of parameters. Current work is devoted to the conditioning on borehole
and low-resolution seismic data.
A similar approach needs to be developed for other reservoir environments,
above all carbonate reservoirs, which represent 60% of oil resources. These
reservoirs are very heterogeneous and of a great complexity. The processes
generating the calcareous rocks (biological growth and sedimentation) present
a large variability and must be complemented by diagenetic alteration pro-
cesses. These are often guided by conduits allowing the migration of fluids,
the latter being determined by the reservoir architecture.

5.3 Data integration

In the Earth sciences as well as in other domains, measurement methods bring
increasingly rich and varied information (remote sensing, petroleum seismic,
borehole imagery, core sample analysis, flow tests, production data, etc.). Geo-
statistics provides a framework for the development of solutions to integrate
that information. The methods are adapted to the diversity of data. In simple
situations a cosimulation in the framework of a standard multivariate model
is the solution. MCMC algorithms are useful to honor global constraints such
as production data. The principle is to generate a series of conditional simula-
tions according to a Metropolis dynamics allowing the maximization of some
criterion of adequacy to that global information. Hu [19] developed the gradual
deformation method to fasten the iterative process. In the case of a GRF, the
principle is to consider the set of simulations defined by St = S1 cos t+S2 sin t,
where S1 and S2 are two independent Gaussian simulations, and t ∈ [0, 2π[
is a parameter. The optimal value of t wrt some objective function is se-
lected. The process is iterated after replacing S1 by St and generating a new
independent simulation S2. This algorithm can be generalized to more than
two basic simulations. It can also be used globally or locally, and has been
extended to several types of nongaussian RFs [20]. A similar approach has
been developped by Sénégas [73] to quantify the errors incurred while recon-
structing a relief from pairs of stereoscopic images. It does not rely on any
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optimisation procedure, and can be seen as a multichoice generalization of the
Metropolis-Hastings algorithm.
Physical systems are ruled by physical equations. When several variables are
linked by a system of partial differential equations and boundary conditions,
their statistical properties are closely linked. Much effort has been devoted to
the development of consistent models and simulation methods, especially to
solve inverse problems in stochastic hydrology (RamaRao et al. [69]; LaVenue
et al. [31]; Gómez-Hernández et al. [16]; Roth et al. [71, 70]) and geophysics
(Tarantola [80]; Iooss et al. [21]).

5.4 Sequential data assimilation

Complex space-time phenomena are characterized by the strongly nonlinear
dynamics of processes involving a large number of variables. The system of
partial differential equations with space and time boundary conditions does
not master the complexity of these processes totally, either because it is based
on simplifying assumptions or because the boundary conditions are not exactly
known. It is thus wise to introduce statistical techniques that can guide these
models to assimilate the flow of measurements emanating from automatic de-
vices. This is the aim of data assimilation techniques. From the point of view
of the designer of deterministic numeric models, data assimilation can be seen
as an algorithm for updating the model state as new data are available. From
the statistician’s point of view that numerical model may help us in improv-
ing the operational predicting by using knowledge of nonlinear relationships
between the various data sources. The simplest data assimilation technique is
the Kalman filter, which amounts to a series of cokriging and applies to linear
processes. The Ensemble Kalman Filter is based on conditional simulations.
Like for autoregressive processes, the evolution of the system is described by
error terms or innovations. The sequential assimilation of the data (in time)
allows an updating of the model parameters and therefore gives robustness to
the method with regard to a misspecification of the parameters. There is of
course some limitation to that robustness and it is advisable to use consistent
models for the covariances of the various error terms, especially when there
are interferences between the structures of different variables, which is a com-
mon situation. Geostatistical concepts were shown to contribute to improve
sequential data analysis techniques in several applications to oceanography
and air quality (Sénégas et al. [74]; Wolf et al. [82]; Bertino [4]; Bertino et al.
[5, 6]).

5.5 Exact simulations

Despite the publication of an abundant and important literature over the last
twenty years, determining the rate of convergence of an iterative simulation
algorithm remains an arduous task. This prompted Propp and Wilson to de-
sign an algorithm with backwards iterations and coupling in the past in order
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to get an ”exact” simulation after a finite number of iterations [68]. Their
pioneering paper has opened the door to new methodological and applica-
tive developments, and several authors designed more general or different
algorithms for simulating various models from stochastic geometry exactly.
Among them, Kendall and Thönnes successfully simulated exactly a Boolean
model with bounded objects [27], whereas Kendall and Møller did the same
for a wide class of point processes [28]. It should be noted that Kendall prefers
referring to ”perfect” rather than ”exact” simulations to express the fact that
the number of iterations required may be rather large. This should not be a
major problem as it suffices to run an iterative algorithm starting from one
exact simulation to get as many as desired. Exact simulation algorithms un-
doubtly constitute an exciting field of investigation even though it is probably
too early to get a precise idea of the real possibilities they can offer regarding
conditioning and data integration.
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1 A brief assessment

During the last three decades of the 20th century, the application of a stochas-
tic approach to flow in porous media has certainly been a very active research
area, all over the world. Most of the eminent scientists working abroad in the
domain (e.g., Dagan, Neuman, Gelhar, Gutjahr...) happened to visit the Ecole
des Mines de Paris before 1980 and, more precisely, they spent some time in
two small research labs that were located close to each other in Fontainebleau:
the Laboratory for Mathematical Hydrogeology, and the Center for Geostatis-
tics. All of them therefore had the opportunity to meet Georges Matheron who
was, at that time, heading the Center for Geostatistics. Strangely enough,
these visitors then perceived Matheron more as the inventor of kriging than
as the author of “Elements pour une Théorie des Milieux Poreux”, a book
he had written as early as 1967[41], i.e. only two years after his first book on
random functions (RF) and on the estimation of regionalized variables.

Georges Matheron’s interest in porous media was formed quite early in
his career. His pioneering work in both geostatistics and mathematical mor-
phology definitely originated in mining industry problems, but in the 60s,
the petroleum industry offered Georges Matheron one of those problems with
a high potential for both down-to-earth applications and abstract specula-
tion that always triggered his best theoretical work. The question was: was it
possible to characterize the geometry of a porous medium (i.e., its texture)
through some image analysis technique and derive its permeability from the
textural characteristics? Appearing in thin sections as a binary (pore/grain)
two-dimensional image, a porous rock could be described by the mathematical
morphology techniques that Matheron was developing at that time. There is
no doubt that this aspect dominated in Matheron’s attraction for this research
topic. The connection between pore morphology and fluid flow parameters
was never satisfactorily established, but Matheron unraveled the knot of how
Darcy’s law comes out of Navier-Stokes’ law. Carried along by his momentum,
he then investigated the scale change (or effective permeability) problem, and
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created a first link between geostatistics and physics in his 1967 book on flow
in porous media. This book was initially published as a series of four articles
in 1966-1968 in the “Revue de l’Institut Français du Pétrole”.

The initial limited impact of this book on the researchers working on
groundwater flow did not only proceed from the fact that it was quite diffi-
cult to read – a common feature of most of Matheron’s theoretical writings.
Another reason was that this work somehow missed the main problems in
subsurface flow. Hydrogeologists had little interest in thin-section analysis
or even in local-scale issues. In their daily practice, they were dealing with
shallow aquifers in unconsolidated sediments, coarse alluvium or chalk. Their
problems were those of full-scale aquifers, with large-scale heterogeneities re-
lated to the sediment deposition processes and complex boundary conditions,
not that of the pore scale. Even the oil industry, where plugs were taken on
cores to measure local permeability values and thin-sections were sometimes
analyzed, Matheron’s contribution was used mostly for the upscaling prob-
lem; the passage from pore-scale 2D images to the permeability tensor was
only obtained in the late 1990s, with scanning images and the development
of parallel super-computing tools.

In the final analysis, if Georges Matheron has undoubtedly been instru-
mental in the development of a stochastic approach to flow in porous media, it
is in many other ways than by his 1967 book on porous media. Although he did
not personally publish much on fluid flow afterwards, i.e. only two papers on
dispersion, in 1980 with Marsily [47] and in [16], an article on Darcy’s Law in
1984 [48], one on 1-D macroscopic dispersion in [49], a last note on upscaling in
[50], and a late paper on the inverse problem with Roth, Fouquet and Chilès in
[59], Matheron’s decisive influence is to be found in the theoretical guidance
he constantly provided to the Fontainebleau researchers, from Delhomme’s
initial introduction of kriging and geostatistics into groundwater hydrology
[10, 11, 12, 13] to Dong’s work on the application of generalized covariances
[17], in his constant ability to suggest new ideas and, when needed, to correct
misconceptions, for example, when some researchers initially attempted, in
their enthusiasm for the new stochastic approach, to erroneously impose a
stationary covariance on the head fluctuations around a regional slope. But,
in the end, Georges Matheron’s main impact on stochastic hydrogeology may
well reside in the fact that, without kriging and conditional simulations, this
domain may simply never have come into being, at least not in the shape it
now has. See also Neuman [55] on this aspect.

In this paper, we will first summarize Matheron’s work at the pore scale,
about Darcy’s law, upscaling and hydrodynamic dispersion, and then his ma-
jor contributions to the field of macroscopic stochastic hydrogeology.
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2 Emergence of Darcy’s law

The term “emergence” was, we believe, first used by Matheron to mean that
Darcy’s law “emerged” from the underlying Navier-Stokes law, which applies
at the pore scale. “Emerging” means here that it is the outcome of the aver-
aging which is made by the flow in a large volume of porous medium, just as,
for instance, the normal distribution “emerges” from the averaging of random
numbers, through the Central Limit Theorem.

Darcy’s law is an empirical linear relationship between the macroscopic
filtration velocity 〈u〉, and the macroscopic pressure gradient 〈grad p : 〈u〉 =
−(k/μ) 〈gradp〉. Here, 〈.〉 stands for a spatial or an ensemble average. k
is called the permeability (dimension squared length), a parameter specific
to each soil or rock, which can be a scalar or a second-order tensor if the
medium is anisotropic, and μ is the dynamic viscosity. Physically, Darcy’s
law is the result of the integration of the Navier-Stokes equations in the very
complex geometry of the pore space. Navier-Stokes is the general equation
of fluid mechanics for Newtonian fluids. However, since this pore geometry
is, in general, unknown, it is impossible to systematically derive Darcy’s law
and the value of the tensor k from Navier-Stokes, except when a very simple
geometry of the pore space is assumed (e.g., cylindrical tubes or fissures of
constant aperture, see e.g. [36].

The general linear form of Darcy’s law, and some properties of the per-
meability tensor k, can however be rigorously established. This is done for an
incompressible fluid in steady-state flow while assuming that the microscopic
velocity u is small enough to neglect the inertial term in the Navier-Stokes
equations (this is quite acceptable in practice since the flow velocity in porous
media is, in general, very small). Furthermore, these equations are written
without the body forces F , only for the sake of simplicity. With these assump-
tions, the Navier-Stokes equations are reduced to a linear version, namely the
Stokes equations. In the pore space, these equations then reduces to :

μ∇2u = grad p and div u = 0

Here,∇2 is the Laplace differential operatorΣi∂
2/∂x2

i , p is the microscopic
fluid pressure, and u the microscopic fluid velocity vector. Let the porous
medium be considered as a stationary and ergodic random set, and let ω(x)
be the microscopic porosity –ω(x) = 1 in the pores and 0 in the grains. The
solution of the microscopic flow problem in the entire domain can be described
as finding a stationary random velocity u(x) that satisfies :

μ∇2u = ω(x) grad p; div u = 0

u(x) = ω(x)u(x); E(u) = 〈u〉
To establish the existence and uniqueness of this solution, Matheron [41]

proposed the use of a variational principle to represent the energy dissipation
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by the viscous forces. The power dissipated per unit volume at the microscopic
level is :

W = −u · grad p (1)

It is then possible to show that the random velocity u, which minimizes the
mathematical expectation E(W ) = −E(u · grad p) while satisfying divu = 0
and u(x) = u(x)ω(x), is also the solution of the Stokes equation. If u is then
extended to the grains (u = 0 (in the grains), the relationship E(W ) = −E(u·
grad p) = −μE(u ·∇2u)) can be extended over the whole space. Furthermore,
for a stationary grad p and a stationary u with div u = 0, we have:

E(u · gradp) = E(u) ·E(grad p) . (2)

Then :
E(W ) = −E(u · grad p) = −〈u〉 · 〈gradp〉 (3)

which means that the averaging conserves the energy : the average of
the microscopic energy dissipation is equal to the energy dissipation at the
macroscopic level.

It can then be shown that the macroscopic Darcy’s law 〈u〉 = −(k/μ)〈gradp〉
derives from the linearity of the Stokes equation μ∇2u = gradp and from this
conservation of energy. Furthermore, it can be shown that the permeability
tensor k is symmetric and positive definite.

This contribution by Matheron in his 1967 book is a major theoretical
result.

3 Upscaling

At the macroscopic level, the permeability k(x) can also be regarded as a
Random Function, for studying the behavior of heterogeneous porous media
where the macroscopic parameter k(x) varies in space. It is then of interest to
again average the permeability in order to obtain the equivalent homogeneous
permeability at a larger scale. Again, using the variational principle, Matheron
gives an upper and a lower bound to this average permeability 〈k〉 at the large
scale:

[E(k−1)]−1 < 〈k〉 < E(k) (4)

Expressed in words, the average 〈k〉 always lies between the harmonic and
the arithmetic mean of the local permeability value. The harmonic mean is
the obvious average for one-dimensional flow. This result had been known
since the early 1940s, but Matheron re-established it in a different way with
the variational principle.

Furthermore, it is possible to show [41], for porous media; [32] in electrody-
namics) that, in two dimensions, and for macroscopic parallel flow conditions,
the average permeability 〈k〉 is exactly the geometric mean if the multivariate
probability distribution functions of k is log-symetric, e.g. log-normal :
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ln〈k〉 = E(ln k)

The geometric mean, which is an arithmetic averaging in the log space,
always lies between the harmonic and the arithmetic means. This result has
been extended to three dimensions, using a perturbation approach, initially as
a conjecture, e.g. by King [29], Dagan [8], Indelman and Abramovich [27], de
Wit [15], and now confirmed by Noetinger [56]. According to these authors,
the general expression for the average value of a log-normal permeability dis-
tribution is thus, for an isotropic medium in 1, 2 or 3 dimensions:

1/〈k〉 = 〈1/k〉 in 1-D, the harmonic mean
ln〈k〉 = 〈ln k〉 in 2D, the geometric mean

〈k〉 = 〈k1/3〉R3 in 3-D, a power average with exponent 1/3

These expressions are of course approximations (higher-order developments),
but Matheron in 1993 stated that the 1/3 power is authorized in 3-D. Most
field studies show that the experimental PDF of the permeability of rocks is
indeed log-normal, therefore these expressions are now commonly used. For
radial flow systems, or for transient conditions, average permeabilities have
not yet been established theoretically but the above results have been shown
to be applicable by numerical experiments with flow models. See also [58, 51, 9]
for the problem of up-scaling permeabilities.

For the radial flow case, Matheron worked in steady-state following the
approach developed by Schwydler [63, 64, 65, 66, 67], as he could read the
Russian literature. He concluded that the average permeability can vary any-
where between the harmonic and the arithmetic mean, depending on the local
value at the well, and on the distance to the outer (assumed circular) limit of
the domain. More generally, for the non-uniform flow, Matheron [41] stated :

“Unfortunately, one has to conclude that in a medium with regional-
ized permeabilities, there is no macroscopic Darcy law able to gener-
ally describe non-uniform flow”.

This statement has been questioned many times, since the mathematical de-
velopment on which it is based is unpublished, most likely lost, and according
to Matheron himself, particularly cumbersome.

In 1993, Matheron produced a last paper on this issue, giving bounds for
the average permeability form the Schwarz inequalities.

4 The work on dispersion

Matheron’s interest for the Theory of Dispersion probably resulted from a
series of discussions in the early 1990s with Jean Fried, a member of Em-
sellem’s group in Fontainebleau who also worked with Matheron, when Jean
Fried published his book on dispersion [22].
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His interest arose because the classical dispersion theory assumes that the
heterogeneity of the velocity field generates a dispersive flux with respect to
the average velocity, which is Fickian, i.e. can be expressed according to Fick’s
Law :

F = −D · gradC (5)

where F is the solute dispersive flux, D is the anisotropic dispersion tensor,
and C the volumetric concentration. In a certain way, this theory states that
Fick’s law “emerges” from the distribution of the microscopic velocity, just
as Darcy’s law “emerges” from Navier-Stokes’ law. In Bear’s classical book
[1], it is stated that this dispersion tensor may need a certain time to reach
its “asymptotic” value, but that effect had always been ignored. Matheron
questioned the statement that there was necessarily a constant asymptotic
value and worked on a stochastic definition of the velocity field.

As hydrodynamic dispersion is the result of the heterogeneity of the veloc-
ity field, the stochastic approach seemed particularly well suited to represent
this variability. Transport was studied in the ordinary space Rn (n = 1, 2, 3)
with the following simplifying assumptions :

1. The velocity variations of the fluid in the medium is the dominant mech-
anism, molecular diffusion is negligible.

2. The Eulerian microscopic velocity field u, which is assumed unknown, can
be regarded as a stationary random process, i.e. u is a vectorial stationary
random function, and u is conservative, i.e. div u = 0. This means that
the flow is in steady state conditions and that the porosity is constant.

3. A slug of tracer is injected at time t = 0 at the origin X = 0 of the system
(here, u and X are vectors, with components ui or X i). A subscript t
denotes the time : Xt). The transport can be described by giving, as a
function of time, the position Xt of a particle injected at time t = 0 at the
origin. Kolmogorov [31] has shown that if the particle is transported by
advection and diffusion (Brownian motion), the probability density ρ(Xt)
of the particle is identical to the concentration obtained by solving the
classical transport equation for a slug injection of tracer.

Let V(t) = u(Xt) be the Lagrangian velocity, i.e. the velocity of a particle
following its trajectory along a flow path. Matheron (unpublished note, 1981;
see also [16] has shown that if u satisfies assumptions 1, 2, 3 given above,
then V is a stationary random function with the same probability distribution
function as u. We can now write :

Xt =

t∫
0

V(τ)dτ .

We then have :

E(Xt) =

t∫
0

E [V(τ)]dτ = tE(V) = tE(u) = ūt
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where ū = E(u). Thus the average position of the particle is just the average
velocity multiplied by the time. Let us now determine the variance of this
position; this variance is now an n × n matrix. Superscript T denotes the
transposition of a vector :

V ar(Xt) = E
{

[Xt − E(Xt)]
T [Xt − E(Xt)]

}
V ar(Xt) =

t∫
0

t∫
0

{
E

[
V(τ)T V (τ ′)

]
− ūT ū

}
dτdτ ′

V ar(Xt) =
t∫
0

t∫
0

E
{
[V(τ) − ū]T [V(τ ′)− ū]

}
dτdτ ′

V ar(Xt) = 2
t∫
0

(t− τ)C(τ)dτ

where C(t) is the n×n covariance matrix of the components of the Lagrangian
velocity V taken with a time lag t.

The variance of the position of the particle is the equivalent of the “spread-
ing” of the pulse of tracer around its mean position; it is therefore related to
the dispersion tensor, as shown by Einstein [18] :

D =
1
2
d

dt
[V ar(Xt)] =

t∫
0

C(τ)dτ

Matheron drew very important conclusions from this simple result :

1. The dispersion tensor D is a function of time, and not a constant. As
each component of the tensor varies with time, there is a priori no reason
why the principal directions of this tensor should remain constant, as
was generally thought. The longitudinal direction (the major principal
component of the tensor) will in general not coincide with the direction
of the average velocity, as was usually assumed.

2. If the covariance matrix C of the Lagrangian velocity is well behaved, i.e.
C(t)→0 sufficiently rapidly as t → ∞, one can assume that the integral
of C(t) will become constant as t→∞. Thus one can, in general, expect
that after a certain time, a constant dispersion tensor will emerge, which
would be called an asymptotic Fickian behavior.

3. The dispersion tensor is a direct function of the Lagrangian velocity field.
It is not a function of the properties of the porous medium only. If a
new Eulerian velocity field is created, e.g. going from parallel flow to
radial flow, or changing the vertical/horizontal velocity ratio, then the
Lagrangian velocity field (and the flow path) will be changed and also the
covariance matrix of this velocity. The dispersivity tensor (the components
of the dispersion tensor divided by the average velocity) is therefore not an
intrinsic property of the medium, independent of the flow field. This was
a major contribution to the dispersion theory, not sufficiently recognized.
See also [36].
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4. Only in the case where the probability distribution function of the Eulerian
velocity field u is multi-Gaussian is it possible to show that the transport
equation equivalent to the particle position is :

∑
j

∑
k

t∫
0

Cjk(τ)dτ
∂2C

∂xj∂xk
−

∑
j

ūj ∂C

∂xj
=

∂C

∂t

5. This is similar to the dispersion equation where the dispersion tensor is
made a function of time. For all other distributions of velocity, there is
no equivalent dispersion equation for early times until the asymptotic be-
havior is reached. There is in fact very little reason why the Eulerian
velocity field should have a Gaussian distribution. One can therefore con-
clude that there is no correct dispersion equation representing transport
for early times.

In 1980, Matheron and Marsily published an example of this theory applied
to the stratified case [47], where the velocity field was perfectly parallel to the
stratification. They therefore considered a 2D velocity field, u(z), constant in
the x direction, parallel to the bedding, but random in the perpendicular z
direction. The formal calculation of the longitudinal dispersion coefficient in
the x direction as a function of time is then relatively straightforward. This
random velocity field was assigned a covariance function in the z direction.
Using the above approach, but with the inclusion of a local diffusion by adding
a Brownian motion to the particle displacement, it was easy to show that
the existence of a constant asymptotic dispersion was only possible if the

integral of the covariance
∞∫
0

C(z)dz of the velocity was zero. Otherwise, the

dispersion coefficient would increase constantly. A similar result had been
obtained by Gelhar et al [24], but in a different form. The type of covariance
with a zero integral is called a “hole effect” covariance in geostatistics (because
it is initially positive, then becomes negative and then tends towards zero, in
order that the integral be zero), and is relatively rare. Thus, for stratified
media, there would not, in general, be an asymptotic constant dispersion
coefficient. Although the case of a stratified medium with a velocity not strictly
perpendicular to the bedding (i.e. with a component of the velocity orthogonal
to the bedding) was shown to give a constant asymptotic dispersion coefficient,
for any type of covariance of the velocity field, the “abnormal” case without
any asymptotic behavior opened the way for very profound changes in the
analysis of dispersion, taken over by physicists, and used for other media, for
which Matheron’s and Marsily’s 1980 paper [47] is considered as the initiator
of the work on “abnormal diffusion” (see [3, 4], and has been cited more than
200 times in the literature.
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5 The very beginning of macroscopic stochastic
hydrogeology

In the early 1970s, researchers in hydrogeology were facing a dual problem in
their first attempts to use computers to build numerical models of aquifers:
how to estimate, from the scarce data obtained by pumping tests, the trans-
missivity (T) values to put as a first guess into each mesh of the discretized
models, and how to estimate, from more easily available and therefore more
numerous piezometric data, the head (H) values to use as calibration data for
the models. Two other concerns were: initially, to assess the confidence level
to ascribe to the head values used in the model calibration, and eventually
to evaluate the uncertainty attached to the head level and flow rate forecasts
given by the numerical models.

The closeness of Matheron’s research team was a real blessing for Del-
homme, who was by then a new PhD student, arriving in the small research
group on Mathematical Hydrogeology headed by Emsellem and Marsily. Hav-
ing benefited from Matheron’s teaching of geostatistics, he started to compute
variograms and to use kriging, soon observing that it was better to work on
transmissivity data in log scale, and that the existence of a drift in piezom-
etry had to be faced with adapted tools. Concurrently, Marsily was starting
to tackle the inverse problem: i.e., find a permeability (or rather transmissiv-
ity, i.e. permeability times thickness) field that, at the same time, matches
the pumping test data and is consistent with the piezometric measurements.
Matheron’s kriging technique was also to prove, later on, to be fundamental
in this work, as will be shown below.

Whereas the range (or integral scale) values initially found from raw trans-
missivity variograms were desperately small, it soon appeared, through the
work on Y=lnT, that, apart from the very small scale variability captured by
the nugget effect, quite large ranges existed in aquifers. Delhomme [12] men-
tions values from one kilometer for unconsolidated alluvial aquifers to more
than 10 km for consolidated aquifers, such as limestone or chalk. In an exten-
sive survey of 20 unconsolidated aquifers and 10 consolidated ones, Hoeksema
and Kitanidis [26] give similar orders of magnitude.

Matheron in his 1974 note [45] on proportional effect and lognormality
gave a clue to this need to work in log-transmissivity. If Y(x) = ln T(x) is
multinormal with averagem(x) and variance σ2, then: the variogram ΓT (h) of
T is proportional to (1− exp(−γY (h))), where γY is the variogram of Y . This
explained why short ranges could be observed in raw T variograms, even in
cases where the lnT variogram was unbounded, at least within the size of the
aquifer: if γY (h) is linear at the scale of the study, then ΓT (h) is exponential
and the apparent range of T is actually related to the slope of the linear
variogram, i.e. to the variability of T .

Another issue was not clear at that point and became so only after more
thinking. Rewriting for instance the partial differential equation describing an
aquifer in steady-state flow in the absence of recharge or pumping, i.e. :
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div(T gradH) = 0

as :

ΔH = − grad(lnT ) gradH

made it clear that the gradient of lnT was intrinsically involved in the
flow equation, regardless of whether T is lognormally distributed or not. But
such deep insight into the partial differential equation was not current in
the early 70s. Regarding piezometry, the focus was still on the impact of a
drift on the raw variogram. The variogram constructed from the head data
of the Crau aquifer (South of France) shown by Delhomme [10] is apparently
anisotropic, with a rapid increase in the NE-SW direction that corresponds
to the general groundwater flow. In this particular case, one may consider
the NW-SE variogram as free of the drift effect. But is the assumption of
an isotropic underlying variogram for H correct? Furthermore, there is not
always a direction without a drift. It was thus necessary to reconstruct the
underlying variogram by separating the drift from the residuals in order to use
universal kriging for the head, and ad hoc methods were imagined. However,
the solution was not unique.

An overall conceptual framework that could handle both transmissivity
and head problems was slow to emerge. Georges Matheron appears to have
been instrumental in developing it, through his work on intrinsic random func-
tions of higher orders (IRF-k). An IRF-k is a random function with stationary
increments of order k. It soon became apparent that this was particularly well
suited to represent the non-stationary head. Automated identification tech-
niques were developed for the generalized covariance (GC) functions of IRF-
k’s, which made it possible to routinely use kriging for piezometric surfaces,
based on local head measurements [10, 11]. Boundary conditions which are
very strong constraints on piezometric surfaces were introduced in kriging, by
specifying that the gradient component normal to a no-flow boundary is zero
[13, 6] p.322-323).

6 The importance of the conditioning effect

Before the end of the 70s, another technique, besides kriging, also due to
Matheron’s creative mind, caused a breakthrough in hydrogeology: condi-
tional simulations. The principle is: first, construct a non-conditional simu-
lation of a Gaussian random function, i.e., a realization of an RF that has
the same (generalized) covariance function as the studied phenomenon but
does not otherwise take the data into account; then, pass to a conditional
one by adding kriging errors picked from the non-conditional simulation to
the kriging estimator of the studied phenomenon. The latter simulation re-
tains the structural features of the former and is calibrated on the data at
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the same time. To construct non-conditional simulations of a Gaussian ran-
dom function, Matheron also invented the turning band method (1973) that
consists in adding up a large number of independent simulations defined on
lines scanning the plane and with constant values orthogonal to those lines.
This method was later made known in the English-language literature by [34]
and became quite popular. Journel’s sequential simulation algorithm, which
directly generates conditional simulations, was only developed in the 1980’s
[28, 14], see also Delfiner and Haas, this volume, page 89).

In 1975, Freeze had the idea of using Monte-Carlo simulations to study
how the uncertainty on transmissivity could translate into an uncertainty on
head, through a flow simulator. He had however disregarded two aspects :
the spatial correlation of transmissivity and the conditioning on lnT local
measurements. The authors vividly remember Matheron, after having read
Freeze’s paper which concluded that the uncertainty in flow modeling was
enormous due to the uncertainty on transmissivity, urging them to perform
conditional transmissivity simulations to estimate the reduction on the un-
certainty brought by conditioning on T measurements. He was also aware of
Gelhar’s approach, initiated in 1976 [23], where he included spatial correla-
tion and used the perturbation method to solve analytically the stochastic
flow equations, but Matheron considered that the variance of lnK or lnT in
real media was much too large for the perturbation method to be used. Only
stochastic Mont-Carlo simulations were, to Matheron, appropriate. Delhomme
(1979a) used conditional simulations to characterize the effect of condition-
ing, by studying a head field (HC) that corresponds to a log-transmissivity
field (YC) conditioned on lnT measurements. His paper was a breakthrough in
stochastic modeling and, with more than 200 citations to date, is probably one
of the most cited references resulting from Matheron’s ideas in hydrogeology.

Looking for the reduction of the head variance due to conditioning by Y
data, Delhomme [12] considered a rectangular aquifer with no-flow conditions
on three boundaries and a prescribed head condition on the 4th one, with
a uniform recharge over the rectangle, the variogram of log-transmissivity
Y being linear with a nugget effect. From the same 30 data, he generated
50 different conditional simulations YC of Y . After generating the values of
YC over the grid meshes of a discretized aquifer model, he solved the flow
equation numerically and determined the head values HC for each realization.
From those 50 grids, the second-order statistical moments of the head were
computed, and maps of the expected value and standard deviation of HC

were drawn. Delhomme stated that the conditioning effect was small in his
case study. The reason was that most data points were located in the central
part of the aquifer. Therefore, little conditioning was exerted on Y near the
aquifer outlet boundary that was controlling the head in the entire domain.
This demonstrates, if needed, that an aquifer problem is a whole, where head
boundary conditions are of paramount importance. In his concluding remarks,
Delhomme mentioned the need for conditioning to the measured values of both
transmissivity and head, which implicitly leads to solving an inverse problem.
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In an internal report [2], p.3-8), Delhomme also described conditional sim-
ulations that were directly computed, this time, from head data; the prob-
lem there was to prepare different plausible piezometric maps to be used
as input for the inverse problem of the Oise aquifer, near Origny-Sainte-
Benoite, France. A single generalized covariance was initially used over the
whole aquifer. Surprisingly, in low-gradient areas, the head surfaces showed
some local troughs and humps that could not be related to any pumping or
recharge. The idea emerged to locally adjust the generalized covariance, so as
to get rid of the unwarranted fluctuations.

The underlying problem was in fact that, when a single variogram is used
for kriging over the whole domain, the kriging standard deviation map re-
flects merely the spatial pattern of data points, and the same holds true for
the amplitude of fluctuations around the kriging estimates in conditional sim-
ulations. What was wrong in the initial assumption of a unique variogram
was that, in the Oise aquifer, the hydraulic gradient was not as constant as,
for instance, in the Crau aquifer and that the variogram, for the piezometric
head, must actually be proportional to the square of the hydraulic gradient
(the drift magnitude). The smaller this gradient, the smaller the amplitude of
the head fluctuations around the drift. But all that had not yet been formally
established, by the time of the Origny study.

7 From IRF-k’s to stochastic PDE’s

As described above, a general conceptual framework was slow to emerge.
Matheron [43], in his 1971 article on the IRF-k theory, had noted that if
Q is a continuous IRF-k, there exists a unique twice differentiable IRF-(k+2)
H satisfying the Poisson equation ΔH = Q. Matheron also stated that there
was a relation between the generalized covariances of H and Q and the gener-
alized cross-covariance of Q and H . For instance, if Q is a stationary RF with
zero mean and covariance CQ(h), the generalized covariance of H is solution
of: Δ2CH(h) = CQ(h), and the generalized cross-covariance of Q and H is
−ΔCH(h).

The Poisson equation could have represented the fluid flow in a porous
medium of constant unit permeability, H being the head and Q the pumping
rate. But this was a temporary dead-end in hydrogeology: a uniform per-
meability and a spatially continuous pumping rate were not very realistic
assumptions and Matheron did not address the problem of boundary condi-
tions, which is an essential one in groundwater flow.

Although Matheron did not initially suggest addressing the aquifer prob-
lem with his theory, IRF-k’s provided the correct conceptual model to rep-
resent the non-stationary solutions of stochastic PDE’s. A description of the
groundwater flow problem using stochastic PDE’s had been introduced, by
the end of the 1970’s, by researchers like Gutjahr and Gelhar [25] or Dagan
[7]. In response to their first attempts, Matheron helped them to clarify the
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approach, showing that, for a globally unidirectional flow in a 2D infinite
aquifer, if the log-tranmissivity Y is stationary, the head perturbation H is
not: it is an IRF-0. The variogram of H is smooth at the origin and, even if
the covariance of Y is isotropic, the variogram of the head fluctuations H is
anisotropic and increases faster perpendicularly to the direction of flow than
parallel to it.

Some additional interesting properties of stochastic partial differential
equations were found in the 1980’s, regarding the stochastic relationship be-
tween log-transmissivity and head gradient fluctuations. First, they are locally
uncorrelated in the sense that the cross-covariance of Y (x) and H(x+h)−H(x)
is by definition zero at h = 0. Parallel to the flow, it is positive for all non-
zero lags in the downstream direction, and negative in the upstream direction,
starting by a linear increase (resp. decrease), then reaching a maximum (resp.
minimum) and finally decaying to zero at infinity. The gradH disturbance cre-
ated by a local change in Y is thus localized. Conversely, this cross-covariance
is zero for all lags, perpendicular to flow.

This important remark has to be put in relation with what Neuman
observed in 1980 [54] about the spatial structure of the errors on log-
transmissivity estimates, after numerically solving an inverse problem. He
found that, in the case of a marked head gradient in one direction, the cor-
relation between errors on log-transmissivity decreased more slowly parallel
to flow than perpendicularly to it. Head fluctuations actually do not bring
information on log-transmissivity across streamlines, only along them. It was
also found that the regional hydraulic gradient is involved linearly in the
cross-covariance, which means that the information brought by the head was
inversely proportional to this regional hydraulic gradient. In a large but finite
aquifer, the regional hydraulic gradient depends on the location with respect
to the boundaries and the nature of those boundaries. The steeper the head
gradient, the bigger the amplitude of the head fluctuations around the drift,
as stated above, and the more information on log-transmissivity is carried by
the head when solving the inverse problem.

Coping with aquifer boundary conditions has always been a difficult
problem. The derivation of the head generalized covariance and the cross-
covariance by Dong [17], using the perturbation approach, was still based
on infinite aquifer conditions, and tricks were used to handle the boundary
conditions. For prescribed head boundaries, an array of fictitious head mea-
surement points along the boundaries was used. For no-flow ones, Delhomme’s
technique [13] could have been used, with an array of pairs of fictitious data
points, perpendicular to the boundaries. Only in 1997, did Roth et al. present a
semi-empirical approach to the problem where a numerical solution of the flow
equation was used to derive the generalized covariance and cross-covariance
models under prescribed head conditions [59]. But, contrary to Dong’s, their
work was done in the broader context of the inverse problem.
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8 Inverse problems, kriging, and cokriging

The inverse problem, i.e. the identification of the transmissivity field from the
head field by “inverting” the flow equation, has been the object of numerous
publications in the groundwater literature and the reader is referred to a re-
cent review by [37]. In a nutshell, Matheron’s contribution was to provide a
method to constrain the resulting transmissivity field to be a “regionalized
variable” characterized by a mean, a variance and a covariance. Before Math-
eron’s input, the inverse problem was known to be ill-posed, and to require
additional constraints to obtain stable and robust transmissivity field esti-
mates (insensitive to small variations in the input head data, and “plausible”,
as defined by Neuman, [53]. These constraints were seen as “regularization
constraints”, see [19], such as smoothness, zoning (zones of constant values),
upper and lower bounds, etc. By showing that transmissivity fields could be
seen as regionalized variables, Matheron opened the way for better stability,
robustness and plausibility constraints. One approach [53] was to first krige
the transmissivity field based on the local measurements, and then to mini-
mize, in the objective function, a weighted sum of the quadratic errors in head
and of the “distance” between the initial transmissivity field given by kriging
and the final transmissivity field calculated by the inverse problem. Another
approach [35, 20, 5], was to define the unknown transmissivity field by kriging,
based on a known variogram, the local known tranmissivity values given by
well tests, and on additional unknown values assigned to fictitious wells, which
had to be identified by solving the inverse problem. This method, known as
the “pilot point method”, automatically generated conditioned transmissiv-
ity fields, with a prescribed variogram; the number and location of the pilot
points (i.e. of the unknowns) was the tool to constrain the regularity of the
transmissivity field. This method was later extended to Monte-Carlo condi-
tionally simulated fields (i.e. multiple solutions of the inverse problem) by [57]
and [33].

Intrinsically, however, the inverse problem can be seen as a cokriging prob-
lem, if the flow equation can be linearized, i.e. if the variance of lnT is small
enough, lower than e.g. 1, and in the Gaussian case. The problem is to iden-
tify the tranmissivity based on the local measurements of transmissivity, and
on an additional variable, the hydraulic head. These two variables are linked
by the linearized flow equation, and, based on the analytical solution of the
stochastic flow equation, the knowledge of the covariance of the transmissivity
field is enough to calculate the cross-covariance of transmissivity and head,
and the covariance of the head (see [17], as mentioned above). The estimation
of the transmissivity field by cokriging is then straightforward. Matheron did
not suggest cokriging as a means to solve the inverse problem but, in 1983,
Kitanidis proposed to use an approach based on cokriging, first in 1D with
Vomvoris [30] and, one year later, in 2D with Hoeksema. The first step was
to evaluate the cross-covariance, CY H , and the covariance, CH , from CY , the
unconditional covariance of Y , taking advantage of the linearization; in fact,
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at the same time, these authors also identified CY from the available data on
both Y = lnT and H ; the second step was cokriging itself. Rubin and Dagan
(in [60, 61] further developed the approach. But, contrary to the Pilot Point
method, this approach requires the variance of lnT to be small, which is a
strong limitation in practice.

9 Conclusion

To summarize, Matheron’s contributions to flow and transport in natural me-
dia are much greater than the number of papers related to fluid flow that
he wrote or was a co-author of. In order of importance, we consider that the
introduction of geostatistics into the definition, estimation and simulation of
the properties and variables used in hydrogeology and hydrocarbon reservoir
engineering was a major breakthrough. Without Matheron’s work, the con-
cept of regionalized variables in these disciplines may have been delayed by a
number of years, maybe never applied. It made it possible to estimate with
greater accuracy aquifer or reservoir properties, and to develop the concept
of Monte-Carlo simulations, conditioned on the available information. It also
impacted tremendously on the methods used to address the inverse problem.

Although not discussed in this chapter (see Delfiner and Haas, this vol-
ume, page 89), an additional major contribution to fluid flow in natural me-
dia is the definition of reservoir architecture by the facies simulation method
(HERESIM r©3). Proceeding from the estimation of properties (e.g. perme-
ability) to that of the geologic formation geometry in space made it possible
to include much more geological knowledge in aquifer or reservoir studies,
and this is a line of research still very active today; it is being combined with
the genetic approach, where the aquifers and reservoirs are represented by
methods simulating the physical processes of the rock genesis [38]. Boolean
methods, as applied e.g. to fractured media, and genetic methods are also an
outcome of Matheron’s work (see Delfiner and Haas, this volume).

Finally, Matheron’s work at the pore scale and on upscaling, although it
brought rigor to the definition of the fundamental laws of flow and transport
in porous media, was less of a breakthrough in its applications as it remained
rather theoretical and still slightly apart from practical applications. But it
had a major influence on other fields of physics, e.g. for the basis of the study
of abnormal diffusion and more generally for the homogenization of physical
properties of random media.
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36. Marsily, G. de (1986) Quantitative Hydrogeology. Groundwater Hydrology for
Engineers. Academic Press, New-York, 440 p.

37. Marsily G. de, Delhomme J.P., Coudrain-Ribstein A. and Lavenue A.M. (2000)
Four decades of inverse problems in hydrogeology, in Zhang D. and Winter
C.L. eds, Theory, Modeling, and Field Investigation in Hydrogeology, Geological
Society of America Special Paper 348, p.1-17.

38. Marsily, G. de, Delay, F., Goncalvez, J., Renard, Ph., Teles, V., Violette, S.
(2004) Dealing with spatial heterogeneity. Hydrogeology J., to appear.

39. Matheron, G. (1965) Les variables régionalisées et leur estimation. Masson,
Paris.



86 J.P Delhomme and G. de Marsily

40. Matheron, G. (1966, 1967, 1968) Structure et composition des perméabilités.
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Mathématique de Fontainebleau, Fasc.1, Ecole des Mines de Paris.
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Note Géostatistique N˚117, Technical Report N-252, Centre de Géostatistique,
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Izv. Akad. Nauk. SSSR, mekh. I mas, n˚ 3, 185-190.

64. Schwydler, M.I. (1962b) Courants d’écoulement plans dans les milieux à
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Over Thirty Years of Petroleum Geostatistics

Pierre Delfiner and André Haas

Total

1 Introduction

If someone made a survey at the three major annual petroleum conferences,
the AAPG for geologists, the SEG for geophysicists, and the SPE for reser-
voir engineers, and asked the participants if they knew who Georges Matheron
was, the most likely answer would be “no”. Yet the words variograms, krig-
ing, multi-realizations, object models, etc., are ubiquitous in the technical
sessions of these meetings. Geostatistical concepts and tools have become so
widespread in the industry that people tend to treat them as common knowl-
edge, as if they had always been around. But at the origin of these ideas there
is Georges Matheron, an exceptional man who had a profound impact on the
diffusion of probabilistic thinking in the Geosciences.

We will give a short overview of the history of Petroleum Geostatistics,
highlighting its most significant milestones, the breakthroughs that made this
approach essential for geology, geophysics, and reservoir. We will illustrate
the account with a few representative examples, emphasizing why they were
innovative at the time and how we see their limitations, and also their exten-
sions, today in light of our current knowledge. Since this volume is a tribute to
Georges Matheron we will deliberately focus on his work or work that he initi-
ated, thus leaving out important topics such as Bayesian methods for example.
To conclude we will outline the current trends in Petroleum Geostatistics and
say a word about the future. The presentation will remain non-mathematical.

2 Kriging Techniques

Statistical techniques have long been used to estimate mining deposits. Geo-
statistics as such has been set on firm probabilistic ground during the sixties
by Georges Matheron [40, 39] first at the French Geological Survey (BRGM)
and then at the Center for Geostatistics of the Ecole des Mines de Paris,



90 Pierre Delfiner and André Haas

in Fontainebleau. One key feature was the introduction of a covariance or a
variogram function to quantify spatial variability.

The first applications to petroleum took place in the early seventies and
made use of kriging to interpolate structural or petrophysical properties in 2D
[18]. Traditional methods such as inverse distance weighting only consider the
distances between the data point and the estimated point and take no account
of lateral continuity. The analysis of seismic data shows a great difference in
variability between travel times to a given seismic marker, which vary contin-
uously, and stacking velocities, which tend to be very noisy. Kriging uses this
information and ‘adapts’ to the interpolated variable, performing as an exact
interpolator or as a smoothing operator, whichever is more appropriate. As a
bonus it also delivers a variance quantifying the uncertainty attached to the
estimate.

Kriging provided a consistent framework for integrating data of different
kinds –exact or uncertain measurements, slope information, trends– and also
for combining different variables in order to compute hydrocarbon accumu-
lations from grids of thickness, net-to-gross, porosity, saturation, and so on
[19].

Commercial computer packages such as Krigepack (Elf, Total, Center for
Geostatistics) and Bluepack (Center for Geostatistics) were developed and
made geostatistical techniques readily accessible to the petroleum industry.
They enabled the construction of reservoir models regarded as a stack of
2D maps of continuous variables. This elementary representation is perhaps
sufficient to compute in-place volumes but nowadays appears too simplistic
to account for heterogeneities governing underground fluid movement, and
therefore the production of hydrocarbons. This led to the development of
stochastic methods discussed below.

It may be interesting to step back for a moment and recall that the ap-
plication of geostatistics to petroleum problems faced two apparently insur-
mountable difficulties. First, there was the number of wells. At the appraisal
or early development stage of a field very few wells are available, typically
less than ten, not enough for a meaningful statistical inference of the vari-
ogram. Second, there was the stationarity issue. Simple and ordinary kriging
and the variogram itself assume the stationarity of the variable or at least of
its increments, while most parameters of a petroleum reservoir show spatial
trends. The geometry of an oil or gas reservoir must have a shape that ensures
trapping of hydrocarbons, for example an anticline. Petrophysical parameters
such as porosity or net-to-gross thickness often also show patterns that re-
flect the depositional mechanism. And of course all geological variables are in
some relationship with depth. The keys that unlocked these two doors were
the development of a new form of kriging capable of handling the presence of
a trend, and the external drift method.
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Kriging with a trend

This form of kriging takes into account the presence of a trend function de-
scribed by a linear combination of space-dependent functions, such as a poly-
nomial in the X- and Y-coordinates. Matheron (1971) called it “Universal
Kriging”, not because it is universally applicable but because it ensures that
the error has zero mean whatever the true unknown polynomial coefficients.
This technique is now often called by the more suggestive name of “Kriging
with a trend”, but Matheron took great care initially to distinguish the no-
tion of ‘trend’, which is generic and vague, from the notion of ‘drift’ defined
mathematically as the (space-dependent) expected value of the parent random
function. In the Universal Kriging model the parent random function Z(x) is
modeled as the sum of two components

Z(x) = m(x) + Y (x) (1)

where m(x) is a polynomial (deterministic) function representing the drift
and Y (x) is the ‘residual’, a zero-mean random function with appropriate sta-
tionarity properties. This model is very appealing for geological applications
because it accounts both for an interpretable large scale trend and for corre-
lated small scale fluctuations. With Universal Kriging an estimate of Z(x) is
obtained without an explicit determination of the two components, and the
uncertainty on the drift is reflected in a large kriging variance in extrapolated
areas. The only difficulty, a serious one from a theoretical point of view, is
the statistical inference of the variogram of Y (x) because the experimental
variogram of residuals tends to be biased. Much work has been devoted in
the early seventies to the solution of this problem and Matheron [44] even de-
veloped a new theory that weakened stationary assumptions to higher-order
increments. From a practical point of view, however, this inference problem
is not really blocking.

Kriging with an external drift

A modification to Universal Kriging made it possible to address mapping
problems with a small number of wells [9]. The idea is to use indirect but
densely sampled data to make up for the scarcity of well information. Seismic
is the most common and most useful source of additional information, thanks
to spectacular advances in acquisition and processing technologies, going from
2D sections to 3D cubes, and now even 4D (time-lapse seismic) showing the
modifications of reservoir fluid saturations through time. Seismic data allow
the geophysicist to define the geometry of reservoirs, but also and increasingly
to interpret seismic images in terms of lithology, petrophysics and fluid content
by analysis of seismic attributes [17].

Seismic data are introduced in the Universal Kriging model through the
drift. To take a specific example, suppose that Z(x) is the depth to a given
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geological horizon measured at a few well locations and T (x) the seismic travel
time to that horizon sampled virtually everywhere. In the simplest case we
can write the model as

Z(x) = a0 + a1T (x) + Y (x) (2)

where a1 is the average velocity and a0 a datum plane correction. This looks
like a standard regression equation with the important difference that Y (x) is
a spatially correlated residual. As a consequence the interpolated map honors
the well data, unlike the traditional time-depth functions used by geophysi-
cists. By and large it may be considered that seismic measurements describe
the shape of the reservoir, whereas borehole data provide depth control. This
approach is also used extensively to map petrophysical variables using seismic
attributes as an external drift.

Collocated cokriging

Another popular technique to estimate the value of a target variable, such as
the depth of a geological horizon, using seismic data is the so-called ‘collocated
cokriging’ [55]. This is a particular implementation of co-kriging (multivariate
kriging) in which seismic only contributes one value co-located with the esti-
mated point. The underlying idea is that once the seismic value is known at
the target point, seismic data at other locations bring little additional informa-
tion. The cross-covariance between the two variables is assumed proportional
to the covariance of the target variable. With this model the co-kriging system
is simplified considerably and only requires the specification of a correlation
coefficient between seismic and target data at the same point. The approach
has been used for mapping porosity from well porosity data and seismic at-
tribute values [12].

An alternative, and more effective, implementation of collocated cokriging
is one that also uses the seismic values co-located with the well data [22, 6].
Rivoirard [54] showed that this implementation does not result in any loss
of information, i.e. coincide with the full co-kriging solution, provided that
the cross-covariance is proportional to the covariance of seismic (which is
generally smoother than the target variable). Whatever its implementation,
the collocated version of co-kriging is by far the most used in the petroleum
industry.

Factorial kriging

Geostatistical techniques are routinely used for Quality Control of seismic
data, and in particular velocity analyses [52], [37]. The principle is to dis-
tinguish several components in the 3D variogram and interpret them either
as processing artifacts or as genuine geological features. For example a var-
iogram of stacking velocity may display three components: a nugget effect
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representing white noise, an anisotropic short-range component attributed to
an in-line acquisition artifact, and a long-range isotropic component carrying
true geological information. Once these ranges are identified the technique
of ‘Factorial Kriging’ [46] allows the geophysicist to extract from the data
the component representing the geological signal. When compared with filter-
ing in the spectral domain, this spatial filtering technique has the advantage
of not requiring data in a regular grid, not requiring tapering or padding to
make the input grid periodic, and also of remaining local (whereas the Fourier
transform smears a local anomaly over all frequencies).

3 Stochastic Methods

Despite its probabilistic setting kriging is a deterministic method in the sense
that it provides a single answer, for example the most accurate, or the most
likely, map given the data. Such map, however, is a far too smooth represen-
tation of reality. Most geological variables display erratic spatial variations at
a small scale, which is the motivation for using a probabilistic model in the
first place. The kriged map is not a possible map but rather the average of all
possible maps. Stochastic methods provide these possible maps.

The need for realistic maps appeared initially in mining with the search
for optimum selective mining methods, which required simulations of average
grades over blocks the size of the selection unit. In petroleum, multiple real-
izations of top reservoir were first used to determine the distribution of oil-in-
place despite the nonlinearity introduced by the truncation of volumes below
an oil-water contact [19]; [8]. The need to reproduce reservoir heterogeneity,
which is known to largely control the flow of fluids, also led practitioners to
walk away from kriging and turn to stochastic simulation.

The Fourier transform or moving averages are classical methods for sim-
ulating a stationary Gaussian random function with a given covariance. In
the early seventies Matheron developed another general algorithm, ‘Turning
Bands’, simplifying the simulation in n-dimensional space to a simulation in
1D. However there remained the problem of constraining the realizations to
honor the data. Matheron’s brilliant idea, mentioned only incidentally in his
1973 paper1 [44], was to take advantage of the orthogonality of the kriging
error and the kriging estimator, equivalent to independence in the Gaussian
case, to pick the kriging error from a non-conditional simulation of the field
and add it to the kriging estimate. This conditioning kriging was the break-
through that launched stochastic simulation as a credible modeling tool.

The Sequential Gaussian Simulation (SGS) algorithm developed at Stan-
ford University [31] made direct conditioning possible. Because of its simplicity
it has become so popular as to make other methods look obsolete. However,

1 Originally Matheron had submitted two papers but unfortunately was forced to
condense them into one, which became difficult to read.
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this algorithm has its own problems. As simulated points become data points,
the size of the kriging system keeps growing until it becomes necessary to
use moving neighborhoods; this can generate numerical artifacts or require
large computation times. Non-conditional simulations techniques have gained
renewed interest especially due to the extremely efficient Fast Fourier Trans-
form (FFT) now also available in 3D.

In any case an essential requirement is the possibility of transforming phys-
ical quantities into Gaussian variables and the other way around. Even so, the
above methods are suited to the simulation of continuous variables and are
inadequate to represent major heterogeneities. This led to the development of
specific methods to simulate categorical variables such as lithofacies or rock
types. We will review only three. In the early nineties these approaches, ad-
vocated by different geostatistical schools, seemed to be in competition. A
few years later it has become obvious that they are in fact complementary.
The choice of the most appropriate method depends on the type and scale of
the deposit. The combination of different methods can even prove useful to
represent different levels of heterogeneity (Begg et al., 1996; Dubrule, 1998).

Indicator simulation

The simplest method, developed primarily at Stanford University, is to code
the presence/absence of the facies of interest with a binary indicator function.
The variogram of this indicator is supposed to capture the spatial distribu-
tion of the facies. It has a geometric interpretation as the probability that
two points h apart belong to different facies. The algorithm used most is
the Sequential Indicator Simulation algorithm (SIS) which is a variant of the
sequential simulation method [1]; [30, 29]. This algorithm provides great flexi-
bility since the facies can be characterized by variograms with different ranges
and specific anisotropies. When there are several facies its main limitation is to
ignore the relations between the facies. On the other hand, taking these into
account would involve full indicator co-kriging, a formidable task requiring
the determination of all indicator cross-covariances. Furthermore, there are
no theoretical models available for representing a set of indicators in a con-
sistent manner (this led Matheron, [45], to develop ‘Disjunctive Kriging’, but
this approach is not used in the petroleum industry and will not be discussed
here).

Truncated Gaussian

Matheron objected to the use of indicator covariances to describe the geometry
of geological facies. He pointed out that a covariance is not a powerful tool for
describing the geometry of a random set model. For example, in a two-phase
medium made of grains and pores, the connectivity of the pores is generally
very different from that of the grains, but their indicator covariances are
identical. So, indicator covariances cannot give information on connectivity. In
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addition there are complex mathematical conditions that a covariance function
must satisfy to serve as a valid model for an indicator covariance [47]. In view
of these difficulties and in order to ensure mathematical consistency, Matheron
preferred to start from a 3D model and derive indicators. He proposed the
truncated Gaussian simulation method.

This method defines the different facies by applying multiple thresholds
to a continuous Gaussian random function. To give a simple example in 1D,
consider a gamma-ray log in a vertical well in a sandstone reservoir. A high
value of gamma-ray indicates shale, a low value indicates sand, and interme-
diate values indicate shaly sand. If suffices to simulate a continuous curve
representing the gamma-ray log and apply the thresholds to obtain at once
the vertical arrangement of all lithofacies.

This approach was implemented in the HERESIM r© package (IFP, Cen-
ter for Geostatistics) and enabled the construction of facies models in very
realistic fluvio-deltaic environments, taking into account variations in verti-
cal and horizontal facies proportions [48]; [53]. In a 3D model the thresholds
are adapted so as to respect vertical facies proportion curves. Likewise the
parameters of the continuous Gaussian curve are selected to match the facies
indicator variograms. In this model facies transitions necessarily take place be-
tween facies i to i+1 or to i−1, which requires the facies to be rank-ordered.
This limitation is meaningful only in the case of simple sequences such as
shoreface environments –but is more questionable in the case of complex en-
vironments. A generalization of the model is to use two or more Gaussians, for
example the first Gaussian may represent the geometry of fluviatile channels
and a second one that of eolian systems [34].

Boolean Objects

Indicator simulation and truncated Gaussian construct simulations at every
point and are often called ‘pixel-based’ methods, by opposition with ‘object-
based’ methods which are more global. Object-based simulation populates the
space with geological objects such as channels or sand bars, levees, etc. them-
selves sampled from relevant statistical distributions. In the Boolean model,
objects are placed at random independently and are amalgamated if they
overlap (Boolean union). This model has two main parameters: the mean
number of objects per unit of volume and the shape, size and orientation of
the objects, which are to match observed facies proportions and shapes of
sedimentary bodies.

Matheron developed the general theory of Boolean models in his 1967 land-
mark book on porous media. He derived the relations between the parameters
of the model and the statistical properties of the resulting process, such as the
distribution of the number of primary objects intersecting an arbitrary finite
set B (this was an early use of multi-point statistics, even with an infinite
number of points!). At the time, however, Matheron’s aim was not simula-
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tion but description (mathematical morphology) and he did not consider the
critical problem of conditioning.

[23] used a Boolean model to simulate rectangular stochastic shales in
sandstone reservoirs. These discontinuous shales set a tortuous environment
for fluid flow and the authors computed the permeability of large grid blocks
from the disposition of the shales within the block. It was a breakthrough in
the oil industry because it introduced heterogeneity as a major factor control-
ling permeability. Subsequent developments considered more complex shapes
such as channels [51]. The main difficulty in this approach is the evaluation
of the numerous parameters defining the shapes of the channels (a sinusoidal
strip for example has six parameters: amplitude, wavelength, width, thickness,
orientation, and length). Once these parameters are known the simulation of
a Boolean model is straightforward. However, conditioning a simulation by
observations is not so easy and remained a hurdle for quite some time. Some
commercial packages used the brute force method of trial and error: gener-
ate simulations until finding one that satisfies the constraints. Another ap-
proach relied on simulated annealing. Following a suggestion by Matheron in
1990, Lantuéjoul [32], [33] proposed a rigorous conditioning algorithm based
on birth-and-death processes (the trick is the possibility to delete previous
objects).

The geological realism of the Boolean model opens the door to a variety of
petroleum applications. A good model of meandering channels, for example,
can be used to determine the percentage of channels connected to a given
well, and therefore the remaining potential for in-fill drilling. On this subject,
it is interesting to note the existence of a percolation threshold. There is a
critical value of the density of objects above which all objects are connected.
A similar effect also occurs with the truncated Gaussian model [2].

Uncertainty studies

The development of free geostatistical software such as GSLIB [11] popular-
ized geostatistics among oil companies and familiarized production geologists
with the notion of conditional simulation. However, the ability to produce
a large number of realizations remained little used for quite some time, in
part due to computing limitations and more importantly to the difficulty of
exploiting the results. With the advent of fast computers and the develop-
ment of 3D geomodelers, multiple realizations of reservoir characteristics can
be generated easily and combined into realistic 3D stratigraphic models (e.g.
[13]. Hundreds or thousands of realizations of reservoir geometry, geological
facies distribution at different scales, and petrophysical variables, are rou-
tinely produced to determine the probability distribution of hydrocarbon in
place volumes, as well as the sensitivity of the results to model parameters.
Caveat: experience with such studies indicates that uncertainty tends to be
underestimated, in particular because realizations are generated under the
same geological model [38].
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Multiple realizations studies are now mainstream in the petroleum indus-
try. Methodologies have been defined to integrate static and dynamic uncer-
tainties in a comprehensive uncertainty assessment workflow [7]. The difficulty
is to pass from static uncertainty, typically a distribution of oil originally in
place (OOIP), to recoverable reserves and production profiles, which are ob-
tained by running a flow simulator. In practice the number of runs has to
be limited (a typical run may take from 2 to 4 days on a single CPU). This
is achieved by careful selections of realizations –which are not equiprobable–
and by use of Experimental Design techniques.

4 Geostatistics as an Integral Part of Geosciences

Looking back at the evolution of Petroleum Geostatistics we see a trend toward
specialization of the methods and integration of the geostatistical approach
and algorithms into domain-specific applications. Let us illustrate this trend
in each of the three traditional métiers of petroleum geosciences: geology,
geophysics, and reservoir.

4.1 Geology

Indicator simulation, truncated Gaussian, or object models methods attempt
to capture the complex shapes and arrangements of geological bodies by way
of a purely descriptive approach. In order to improve geological realism the
next step is to incorporate the natural processes governing deposition and
erosion into the simulation model itself.

Early process-based stochastic models

Early work used Markov chain analysis to model facies sequences along a
vertical. Matheron [42] and Jacod and Joathon [27] developed process-based
random models where the sedimentation process is governed by a differential
equation relating sediment thickness to influx of sedimentary material and
sea depth. This model had the advantage to be in 3D and have geologically
meaningful control parameters: rate of influx of sedimentary material, com-
paction, subsidence, meandering. In some cases these models could also be
conditioned on well data [28]. For some reason it seems that Matheron and
his group lost interest in the subject for about thirty years until it was revived
by the simulation of channels.

Current research

In meandering channelized reservoirs the natural meandering of the channel
controls the deposition of sandy point bars and other sedimentary bodies. Me-
andering rivers have long been of interest to scientists, and hydraulic studies
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dating back to the eighties [25] have enabled the development of 2D equations
that reproduce in a realistic manner the evolution of the channel migrating
on its floodplain. These equations capture physical laws such as mass and
momentum conservation and are deterministic, but still rapidly capable of
reproducing varied shapes, even starting from an initial channel represented
by a plain broken line. A recent thesis [35, 36] combines this genetic approach
with a stochastic model introducing randomness through the variations of
erodibility within the floodplain, and the occurrence, intensity or size of the
different elements.

Lopez extended the process to 3D and added associated sedimentary bod-
ies, which in turn can be used to model meandering channelized reservoirs
at the scale of the reservoir. Migration of the channel leads to the deposition
of point bars, occasional cut-offs create oxbow lakes filled in with mudplugs,
while levee breaching leads to crevasse splays and possibly avulsions. In addi-
tion, occasional overbank floods lead to the deposition of silt and shales over
the aggradating floodplain, while wetland facies may be deposited in lowlands.

The direct construction of a realization is only one aspect of a process-
based stochastic approach. For the model to be operational the construction
must be controlled by a limited number of key parameters such as channel
section or overbank flood frequency. Various architectures can be reproduced
by varying the parameters. In practice these parameters can be selected to
honor data statistics (e.g. vertical proportion curves of facies from wells).
Given a set of parameters, different realizations can be generated. The final
challenge, still at the research stage, is to condition these realizations, either
on soft regional data such as seismic time slices, or on well data.

4.2 Geophysics

Because of its large volume of data seismic has long been a domain of choice
for the application of geostatistics. New challenges are posed by the fast pace
of innovation in acquisition and processing technology. High resolution surveys
can provide images of stunning quality, allowing the identification of ‘archi-
tectural elements’ in turbiditic systems, such as channels, levees, lobes, bars,
etc. Dubrule [15] gives a comprehensive account of the contribution of geo-
statistics to the integration of seismic data in Earth Models. We will highlight
two important developments.

Geostatistical inversion

Inversion of seismic data to acoustic impedance (the product ρv of density by
velocity) is an efficient tool for the integration of geological and geophysical
data. Well logs provide geological data with a vertical resolution of 0.5 to 1m
whereas seismic data have a vertical resolution of the order of 30m (sometimes
better under exceptional conditions). Standard optimization-based determin-
istic inversion produces acoustic impedance values at the scale of seismic and
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calibrated to the measured well log impedances. Geostatistical inversion, also
named ‘stochastic inversion’, aims at doing the opposite, namely providing
acoustic impedance values at the scale of logs and constrained by seismic.

The algorithm [20] is an extension of SGS. At a given grid node a number of
vertical acoustic impedance traces are generated by geostatistical simulation
conditioned on well log data. Each of these traces is convolved with a seismic
wavelet and compared to the actual seismic trace observed at that location.
The acoustic impedance trace providing the best match is selected and used
as conditioning data for the next simulated point. In the end the whole space
is filled with traces, thus providing a realization of acoustic impedance in 3D
with the high frequencies present in the log data. This technique which was
developed ten years ago is still not routine in the industry, perhaps because
it is one step short of the final goal of reservoir characterization, which is the
translation of seismic attributes into geological and petrophysical properties.

Velocity fields

An essential step in the processing of seismic reflection data is repositioning
reflectors observed in time sections at their correct horizontal and vertical po-
sition. This process, called ‘migration’, requires a model of the velocity field.
In the simplest case the velocity field is assumed constant, so that the seismic
rays are straight, and velocity is estimated by a deterministic method. The
problem with this approach is that it only captures the large scale compo-
nent of the velocity field. Even weak perturbations of this field can result in
important migration errors. Matheron [49] developed a probabilistic model in
which he could relate the migration errors to the covariance of the velocity
perturbations. This research note initiated and inspired three theses at the
Ecole des Mines de Paris (Touati 1996, Iooss 1998, Geraets 2002) and a num-
ber of publications listed in the bibliography of Iooss et al. [26]. Their focus
shifted from the study of migration errors to the characterization of hetero-
geneities in the velocity field. In particular, an inversion method has been
developed allowing estimation of the velocity covariance from the covariance
of the observed travel times, thus giving information on the size and orien-
tation of velocity heterogeneities. This literature is very technical and geared
toward an audience of geophysicists. Here the power of geostatistics lies in its
blending with physics.

4.3 Reservoir

Upscaling

In 1967 Matheron published a highly original book entitled ‘Elements for a
theory of porous media’. It was only 166 pages long but it laid both the foun-
dations of Mathematical Morphology and the foundations of the relationship
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between geostatistics and fluid mechanics. After all these years this book is
still a bible for researchers in the field of porous media.

On the dynamic part the book discussed the problem of upscaling, that
is, the derivation of physical properties of heterogeneous media as the scale
increases. At the microscopic scale of the pores the flow is governed by the
Navier Stokes equation; at the macroscopic scale of a core Darcy’s law appears,
defining a key parameter, the permeability k ; at the megascopic scale of a
large grid block in a dynamic model a global permeability K appears. In
reservoir engineering applications, upscaling concerns the change from macro
to megascopic scale, computing K from the spatial distribution of k. Matheron
established that geometric averaging is correct for lognormally distributed
(scalar) permeabilities but only in 2D flow. In 3D, and contrary to common
practice, the upscaled permeability cannot be the geometric mean; it is closer
to the arithmetic mean, approximately at two-thirds of the distance separating
the arithmetic and harmonic means. Matheron conjectured an exact upscaling
formula that is still being discussed today (see paper by J.P. Delhomme and
G. de Marsily in this same volume, page 69). He always kept an interest in the
subject and published a last note on it in 1993, two years before retirement.

Integration of production data

Integration of production data in petroleum reservoir models is a major objec-
tive for petroleum geostatistics. A dynamic model of the reservoir matching
the data and the available production history is expected to provide reliable
forecasts of the quantity of hydrocarbon produced at the various stages of
field development. Such integration, however, is an extremely difficult chal-
lenge because the relations between production data, either scalar or function
of time, and petrophysical fields are very complex and highly nonlinear.

Well tests are the easiest data to integrate and much work has been de-
voted to this subject. Using simple methods one can take into account appar-
ent permeabilities deduced from well tests and regarded as spatial averages.
Simulated annealing appears as an interesting solution, the method being very
versatile and capable of handling diverse constraints [10]; however it should
be used with care because imposing inconsistent constraints may lead to ar-
tifacts. Simpler methods based on kriging constrained by spatial averages are
also available [21]. Finally, optimization methods using dynamic simulations
with gradients make it possible to carry out an inversion of the complete
time-pressure curve [5]. Estimated parameters may be local (limits, shapes)
or global (facies proportions, averages, etc.)

These inversion methods can be generalized for production history match-
ing. Stochastic models are updated using algorithms such as pilot points or
Markov Chain Monte Carlo (MCMC). The results obtained in the scope of
the EC-sponsored PUNQ project seem extremely interesting but are difficult
to compare and to generalize to real life cases involving a large number of
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parameters to be fitted [16]. It is difficult at this time to tell which method
will emerge as the best among all those tested.

Today the limiting factor for the integration of production data is the
speed of dynamic reservoir simulators. Fast simulators, such as streamline
simulators, provide a partial solution [3]. Their combination with an iterative
calibration of stochastic models using a gradual deformation approach looks
promising [24].

5 The Future of Petroleum Geostatistics

We have insisted on the need for geostatistics to be integrated with the disci-
plines where it is applied. To make meaningful contributions geostatisticians
must understand the problems and the context of the problems, and therefore
become geoscientists themselves. They are encouraged to do so by another
factor, the lack of attractive career paths lined up for them. In oil companies
geostatistics is usually not recognized as part of “core business” but more as
a support activity. As a result many (if not most) very competent geostatis-
ticians recycle themselves as geophysicists, reservoir engineers, sometimes ge-
ologists, and actually do well in their new métier.

Professional mobility is a good thing, provided that the outflow of talents is
compensated by an inflow of recruits. Unfortunately that is not necessarily the
case. The perception that geostatistics is a competency, as opposed to a dis-
cipline such as geology or geophysics, and therefore can be acquired if needed
by proper on-the-job training, makes it difficult to justify hiring academi-
cally trained geostatisticians. They come in competition with much sought
for reservoir engineers for example. In conclusion, the future of petroleum
geostatistics lies in the willingness of oil companies to open the door to young
talented geostatisticians, and to fund with research contracts the academic
departments that train them.

Acknowledgement. This paper borrows from a presentation to the IAMG in Trond-
heim in 1999 entitled: ”Petroleum Geostatistics, from stone age to industrial times”,
by André Haas and Olivier Dubrule. The authors are indebted to Jacques Rivoirard
for his help in writing the section on process-based models.
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Technical Report N-732, Centre de Géostatistique, Fontainebleau, France.

47. Matheron, G. (1987). Suffit-il, pour une covariance, d’être de type positif ?
Sciences de la Terre, Série Informatique Géologique, 26, 51–66.
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1 Introduction

Environment, and more precisely pollution, appeared very early among the
initial applications of geostatistics [15, 19, 33], but is seldom mentioned in
Matheron’s writing. Nevertheless, it is indeed in reference to the pollution
context that he examines, at the end of his essay on the practice of proba-
bilities, “Estimating and choosing”, the operational character of non-linear
estimators [25, 31].

For a mathematician, the conclusion may seem disappointing. Indeed,
Matheron suggests regarding the different expressions of the conditional ex-
pectation given by various probabilistic models as a mere set of algorithms,
each one depending on a limited number of parameters. The practician has
then only to choose the algorithm best suited to his problem [31], p. 137.

Drawing a guideline between the pragmatism imposed by practice, and
mathematical rigor, Matheron stipulates for never granting a blind confi-
dence to the model. Indeed geostatistical modeling consists in constructing
a simplified but operational representation of the studied phenomenon, which
nevertheless imposes to take into account all the available information, quali-
tative as well as quantitative. The model relevance is its aptitude to describe
the phenomenon correctly.

Most geostatistical concepts and models were first created to solve esti-
mation and selection problems for mining exploitation. But the operational
concepts forged by Matheron were soon extended to a wide range of domains.
Indeed the priority given to the physical phenomenon, the modeling adapted
to each specific case, i.e. the “monoscopic” modeling according to Matheron’s
terminology, explains the expansion of geostatistics in disciplines as varied as
pollution studies, fisheries, agronomy, biodiversity. . .

With just a slight adaptation of the terminology, pollution problems in
different environments (soils, water or air) can thus be formulated using min-
ing concepts such as estimation and especially selection, developed more than
thirty years ago [20, 21, 22]. Typically, the studied problems deal with:
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• characterization and quantification of spatial or space-time variability, gen-
erally in a multivariate context;

• estimation, to map a quantity or to assess the accuracy of the obtained
maps;

• optimization of a sampling pattern, to reach a given accuracy, or to find
an acceptable compromise between accuracy and sampling cost;

• comparison of the concentrations with quality threshold, taking into ac-
count the different spatial or time “supports” of measurements and “se-
lection” units;

• identification of volume / tonnage of soil involved in pollution removal, as
a function of the threshold and of the reference support. More generally,
“selectivity curves” should be determined;

• evaluation of the information effect, that is the consequences of estimation
errors when delimitating a polluted area;

• “risk assessment”, such as the evaluation of the population exposed to
concentrations exceeding a threshold in air pollution, or the first arrival
time of a pollutant to drinking water pumping.

At the beginning of environmental geostatistics, the theoretical solution of
a wide range of problems was then already available and, from a shallow point
of view, “environment” could have appeared as a new field of application or
adaptation for well-known methods. For example, multivariate problems gave
an opportunity to reconsider the cokriging. The very convenient external drift
method has been widely used to introduce some a priori knowledge in the
estimation process. The time component of phenomena has been taken into
account by widening a little the class of usual covariance models. Nevertheless,
estimating pollutant concentrations in rivers, as well as the need for specific
space-time models are making new developments necessary.

Before presenting some geostatistical approaches to environmental prob-
lems, let us clarify what this term means here.

In the broad sense, “environment” appoints a natural or more often an
anthropised media, and environmental studies aim at quantifying its state or
assessing its evolution. The studied questions come from soil sciences (cartog-
raphy of depth of different horizons, quantification of physical-chemical pa-
rameters for “precision” agriculture); from agronomy (forest inventory, count-
ing of vegetal or animal species); from pluviometry or climatology (namely
characterizing temperature fields), from ecology... Applications of geostatistics
to epidemiologic studies aim at detecting or quantifying the regionalization
of disease risk, trying to split the influence between the surrounding medium
and individual parameters.

The time evolution of relief and seismic risk are also studied. The very
interesting field of stochastic hydrology, in which Matheron did pioneer work,
is dealt with in another chapter of the present book.

In a quite restricted sense, environmental geostatistics deals with rela-
tionships between variables depicting the various media (population density,
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actual or previous land use, altitude) and concentrations of diverse substances
in the air, in superficial waters like oceans and rivers or in aquifers, in soils and
sediments. The questions are treated at various scales: atmospheric pollution
can be characterized on a continental or a national scale, or in the immedi-
ate surrounding of a factory chimney. Pollutant concentrations in aquifers are
studied on the regional scale, or locally near a pollution “source”.

As for all ranking, the “environmental” qualifier remains somewhat ar-
bitrary. Thus for agriculture, nitrates are first nutriments; when streaming
toward rivers they become pollutants. Apparently analogous problems, such
as exposure quantification to dust or noise, fall within industrial hygiene for
professional nuisances or “environment” in urban context.

Therefore, for more than a decade the development of environmental geo-
statistics has been reflecting the evolution of our society concerns. In the
absence of specialized journals, the quadrennial international geostatistical
conferences make it possible to summarize this evolution: the “environment”
theme, missing in the Avignon conference in 1988, is present among “other
applications” in Troia (1992); autonomous in Wollongong (1996), it represents
more than 25% of the presentations in Cape Town (2000). Meanwhile, since
1996, numerous case studies were presented at the biennial “Geoenv” confer-
ences. Most of the previously mentioned subjects are treated in the acts of
these congresses.

We do not intend to build here a state of the art of environmental geo-
statistics. In the first part, we investigate some characteristics common to
many environmental problems, and examine their consequences on the mod-
els choice. Conversely, the setting of some technical aspects, namely normative
ones, would gain in clarity by using geostatistical concepts. Looking at the
major classes of problems, we show the adaptation of geostatistical models
to the environmental context. In a second section, original examples, relative
to problems met in various media, illustrate the power of geostatistical con-
cepts. Thus, “simple” methodological transpositions (change of workspace,
variations on kriging choosing additional constraints or using ad hoc covari-
ances) bring conceptual solutions to a wide variety of problems. In conclusion,
methodological development prospects are presented.

2 Characteristics and methods of environmental studies

Environmental studies presents some common characteristics, such as the vari-
ables properties, the multivariate or space-time context, and the important
question of exceeding a threshold. Before presenting some useful or widely
used models, let us first return to “the mean”, an apparently simple concept.



108 Roberto Bruno and Chantal de Fouquet

2.1 The mean: operational mode or physical quantity?

The distinction between physical quantity and statistical parameter shows its
relevance in the regulation context of water or air quality, as introduced in
the following example.

In order to assess river water quality, nitrate (NO3) and other fertilizer con-
centrations are regularly measured at some monitoring stations. To compare
concentrations in different areas or examine their evolution, a few synthetic
quantitative indicators are calculated, based on the water framework Euro-
pean directive. These calculations use the classical statistical inference of the
distribution parameters for independent and identically distributed variables:
the expectation of the distribution is obtained as the arithmetical average of
experimental data measured during one year, and the variance of the associ-
ated estimation error is taken equal to σ2

n−1 , with n the number of data and σ2

their experimental variance.
In temperate climates, the concentrations of most substances in rivers show

an annual periodicity due to seasonal flow and tributaries variations. For ex-
ample, in France, surface streaming carrying the fertilizers toward rivers is
more important in winter. Therefore, nitrates concentrations are higher in
winter and lower in summer, a ratio between these values being commonly
larger than 10. In many stations, for a better survey, sampling frequency is
doubled during the periods of high nitrates concentrations, from November to
April. The “statistical” annual mean and the computed quantiles of the dis-
tribution necessarily increase when the 12 regular monthly measurements are
completed by 6 additional winter measurements. Indeed preferential sampling
obviously induces a bias on the estimation of these “synthetic indicators”.

If the underlying model of successive and independent drawings from the
same random variable is acceptable for the successive values obtained using
a die, it is no more valid for the successive concentration measurements at a
stream station. Why?

First, assuming an identical distribution of concentrations all year long is
physically unrealistic in agricultural areas, because of the seasonal variations
of nitrate concentrations. In addition, due to the time correlation of concentra-
tions that has been effectively demonstrated, the hypothesis of independence
is all the less relevant as the measurements are close in time.

Thus the underlying probabilistic model, usual in classical statistics, is
here not suitable. Moreover what quantity do we really want to estimate?

Let z(t) denotes the concentration during time at one given station.
The yearly mean zT of concentration z during year T, is the time integral
zT = 1

T

∫ z

T
(t)dt. The physical quantity to be estimated is thus defined re-

gardless any model, whether stochastic or deterministic, chosen to depict the
concentrations, and does not require any hypothesis of time stationarity. The
geostatistical estimation of zT consists in computing an approximate value of
this integral by an “optimal” weighted average of the experimental data.
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For this, the concentration z(t) at this station is considered as a realiza-
tion of a one dimensional Random Function (a stochastic process) Z(t). The
unknown yearly mean concentration is then estimated, for example using a lin-
ear combination of the data. “Kriging” corresponds to the optimal weighting,
ensuring the minimum of the estimation variance.

Let us now consider a large time interval, for example thirty years. In
the absence of major changes during this period (which is not the case for
nitrates), the “expectation” parameter E[Z(t)]=m(t) is supposed to be a con-
stant m, whereas the thirty annual means of the concentrations will all be
different. For an ergodic model of Stationary Random Function, the expec-
tation parameter m is the limit of the time average of concentrations over
larger and larger time intervals, or equivalently, the limit of the average of all
“annual means of the concentrations” on these intervals.

What we want to calculate in practice is indeed the annual average con-
centration for each year, and not the expectation of these values.

To summarize, the yearly mean zT = 1
T

∫ z

T (t)dt represents a physical quan-
tity, whereas the arithmetical mean of the measurements during one year and
the “statistical” calculation of the associated variance rather represent an op-
erational algorithm. Matheron pointed out other confusions between concept
and operational mode, for example concerning the “drift” [21, 7].

2.2 “Environmental” context

Environmental problematic present specific characteristics mostly linked to
some classes of variables and properties. Their joint recurrence defines what
we can call the “environmental context”. In the following, three general char-
acteristics are examined: additivity, multivariability and temporality.

Additive variables or not?

Many “environmental” variables do not verify the important property of ad-
ditivity.

Most of the parameters which characterize soils are intrinsically non-
additive. For example, pH is equal to the logarithm of the H+ ions concen-
tration, up to the sign. The “cationic exchange capacity”, which gives the
total quantity of exchangeable cations that the soil can adsorb, is expressed
in milliequivalents per 100g of soil or clay, and is a function of pH.

For non additive variables kriging remains pertinent as long as only one
support is considered: the quantity to be estimated must then be defined
on the same support as the data, supposed to be identical for all samples.
To estimate non additive quantities on supports different from that of the
sampling, a numerical approach, possibly based on simulations, can sometimes
be used. Most often additional information about the phenomenon remains
indispensable.
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An example: on a field, the biodiversity can be quantified by the number of
different species on it this number is not an additive variable and cannot be
reached from the number of species counted on sample plots (or “placettes”)
of areas s of few square meters. Indeed, without any other information, we
only know that the number of species existing in the union of two sample
plots stands between the maximum and the sum of the number of species
counted for each plot. This depends on whether the species found in the less
diversified plot are present in the other, or no species is common to both
sample plots. “Block” kriging of the number of species present in the whole
field would radically underestimate the wanted quantity. Moreover, in an area
S, the number of species estimated in that way would be quite often lower than
the number of species counted in some of the sample plots located within S.
In reality, “block” kriging gives an estimator of the average number of species
existing in the sample plots s whose union gives the area S.

Without further information, the number of species can be estimated only
for areas having the same geometry as the sample plots. In the absence of
“phenomenological” information, simulations cannot help solve the problem.

A blind application of kriging, which does not take into account the proper-
ties of the studied variables, can obviously lead to absurd results. A detailed
investigation of the variable properties is hence necessary, before applying
kriging to a new domain.

Variables such as concentrations are not always additive, and sometimes
have to be weighted or complemented with other variables to provide addi-
tive quantities suitable for a linear estimation. Let us for example consider a
thin horizontal layer of variable thickness, sampled by vertical boreholes with
a unique sample measured over the thickness of the layer. To estimate the
concentration, one uses the thickness and the “accumulation”, defined as the
product of the thickness by the associated mean concentration. In soil sci-
ences, grades (of organic material, of clay. . . ) are usually given with reference
to the mass of fine materials in the samples. The estimation is made coming
back to additive quantities such as the mass of clay or organic material, and
the mass of fine materials within the sample.

Multivariate analysis

A second characteristic is the great number of factors occurring in “environ-
mental” problems, and then the multivariate modeling. Let us leave aside the
classification problems [31]; it is however possible to distinguish, though not
exhaustively, various kinds of relationships.

Relationships between homologous variables

As an example, let us consider the concentrations of various pollutants in
the soils of former industrial sites. A given activity generates a “pollutant
plume”, but diverse activities may be simultaneously or successively present
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on a site. For instance, a petrochemical plant can simultaneously generate a
metallic pollution (from lead or other added products) and an organic one
(PAH or polycyclic aromatic hydrocarbons, among others). The evolution of
each product depends on its physic-chemical properties, mainly solubility, but
also on the soils type, the history of the site. . . Spatial correlations between
the concentrations reflect the relationships between the various substances.

As regards air pollution, complex photochemical reactions can be induced
between ozone and nitrogen oxides, reactions that need to be taken into ac-
count for short term previsions.

Relationships between “explicative variables” and “concentrations”

Auxiliary variables such as type and density of ground occupancy partially
depict the urban medium or indicate some economic activity (density of the
buildings, characteristics of transport or industry infrastructures). One aims
at assessing the “predictive” degree of these “explicative” variables for some
pollutant concentrations. Putting in evidence and modeling these relationships
help improve the estimation of the concentrations when the medium is known
with enough details at the studied scale. It is the case for air pollution at the
scale of an urban area, or for agricultural pollution of rivers or aquifers at a
regional scale.

Relationships between “markers” and “concentrations”

”Organoleptic” observations (presence of filling materials, visible tar traces,
smell. . . ) do not explain the pollution, but, as its consequence, can help detect-
ing it. If their correlation with concentrations is high enough, these qualitative
or semi-quantitative measurements, imprecise but easy to acquire, can be used
to improve the precision of the estimations, at low additional sampling cost.
An example in organic soil pollution is presented below.

Variables linked by partial derivative equations

In hydrology, for example, the diffusivity equation links transmissivity and
piezometric head. Joint modeling of head and transmissivity must consider
these phenomenological relationships. First order linearization of this equa-
tion leads, for a macroscopic flow with a constant head gradient, to a linear
equation between the transmissivity perturbation and the Laplacian of the
head perturbation. From initial works by Matheron [23], Dong [9] deduced
relationships between generalized covariances of perturbations terms, as well
as the corresponding degree of stationarity.

Numerical approaches based on simulations allow breaking some restrictive
hypotheses on one hand but necessitate an accurate specification of the whole
limit conditions on the other hand (see the paper on hydrogeology in this
book,page 69).
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Variables describing a complex dynamic system

When calculating possible climatic evolutions or making short-term predic-
tions for air quality on urban areas, it is necessary to take into account the
dynamics of the system. In these models, the number of parameters returns
a very complex system, and it seems illusory to directly deduce a consistent
set of simple and cross space-time covariances between the variables. Quite
often, only some of these variables are “interesting” for the studied problem:
in ecology for example, we are interested in pluviometry, and not in pressure
field, which is nevertheless necessary to predict the rain height. The geosta-
tistical modeling of the interest variables concentrates then on the differences
between the predictions from a model (usually deterministic) and the data.
These “data assimilation” methods are presented in the following.

The classical set of multivariate models is shown to be very rich. Its flexi-
bility allows adapting it in order to model most of the previous relationships.
In particular, the modeling of a non-linear regression of a concentration Z
on some “explicative variables” y = {y1, ..., yn}, offers several variants from
a deterministic to a stochastic depiction of the links between these variables.
We detail some typical examples:

• Deterministic relationships using models “with residual” of the type
Z (x) = f (y (x))+R (x), where R is a stationary Random Function. When
the variability of the residuals depends on the local characteristics of the
environment, a model of the type Z (x) = f (y (x)) + g (y (x))R (x) is pre-
ferred.
Some “dexterities” allow simplifying the previous models. For example, the
linearization of the relationships between concentration and auxiliary vari-
ables is often acceptable with a good approximation using the translated
logarithm log

(
1 + y

m

)
of these variables.

• Deterministic relationships that are not completely specified, as the exter-
nal drift model. The relationship Z (x) = a0 +

∑
i

aifi (yi (x)) + R (x) is

then valid locally, that is in a kriging neighborhood; the coefficients ai, not
available in practice, are filtered by the non-bias conditions of the kriging.

• Stochastic relationships of a linear type, as the linear coregionalisation
model. Within this model, simple and cross-covariances are written as lin-
ear combinations of elementary structures: γij(h) =

∑
�

c�
ijγ�(h). The vari-

ables are linear combinations of space (or time) components corresponding
to different variability scales.

• Stochastic shifted relationships. These models deal with relations of type:
Z(x) = Y (x−x0)+R(x). This class of models can be widened to the corre-
lation between a random function Y and its derivatives ∂Y

∂xi
, null when the

variables Y and ∂Y
∂xi

are taken at the same point. Other coregionalisation
models are built by regularization, derivation, substitution etc.
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• Non-linear stochastic relationships. This includes relationships between
transformed variables such as indicators, translated logarithms, anamor-
phosis, or truncated variables such as concentrations in the presence of a
“detection limit”.

This class of multivariate models requires that more than the first two
moments of the random functions are specified.

Time component

The time component constitutes a third important characteristic of envi-
ronmental context. Schematically, several classes of modeling can be distin-
guished, depending on the way time is treated.

Phenomena where time can be taken out of the stochastic modeling

Time discretization may allows returning a space-time problem to a multi-
variate modeling. In air pollution, seasonal measurements can be modeled
as “winter” and “summer” concentrations. The multivariate approach offers
great flexibility, by allowing a fine modeling of time non-stationarity. This
can be useful when the variability irregularly evolves with time, or in the
presence of seasonal effects. However the time component of the estimation
variance should not be neglected, when only a part of the considered period
is monitored.

In some decompositions of the type “deterministic prediction plus inno-
vation term”, the system dynamics is taken into account by the determinis-
tic mode and the stochastic model works only on “residuals”. Concentration
Z at date ti is split in two terms, a prediction, calculated by a determin-
istic dynamic model, and a random residual, spatially correlated:Z(x, ti) =
f(x, ti) + Ri(x). The main spatial non-stationarities are taken into account
by the deterministic model, whilst stationarity hypotheses can be stricter on
the residuals than on the concentration Z.

In the advanced version of “data assimilation” methods, the covariance
matrix of the errors between the predictions of the phenomenological model
and the “observations” at some measurement stations evolves with time. Some
simplified prototypes (ecological modeling of a population evolution) or oper-
ational ones (prediction of the pollution level at the scale of urban areas) are
used to constrain the predictions by the last available measurements [1;37;4]
(see further on).

Phenomena without specific modeling of the dynamics

The space-time models first presented in the literature were often a simple
extension of usual spatial models, time being treated as an additional coordi-
nate. The covariances C (h, τ), h and τ being respectively the space and the
time increment, were using a geometric or a zonal anisotropy, respectively of



114 Roberto Bruno and Chantal de Fouquet

the form C

(√
h2

a2 + τ2

b2

)
or Cs(h) +Ct(τ). The often-used factorized covari-

ances, product of a spatial and a time component, correspond to the follow-
ing markovian property (or “screen effect” in the geostatistical terminology):
conditionally to Z(x,t), the variables Z(x’,t) and Z(x,t’) are independent. This
model, previously proposed by Matheron for sedimentary facies simulations
[10], has very efficient Markov properties: when measurements are synchronous
and always located at the same stations, the estimation of the concentration Z
at any measurement date depends for any point only on the measurements at
this same date. Hence, this very specific model is not adapted for depicting a
propagation phenomenon, whose covariance in the propagation direction (at
constant velocity v) would admit a component of type C (h− vτ). Several
authors [for example 12] have examined the separability of space and time in
geostatistical modeling.

Working on the cartography of the bathymetry near a coast from measure-
ments taken during almost three decades, [6] gave a nice example of covariance
factorization. The covariance is decomposed in three terms: two exponential
terms, respectively for the time and for the spatial component parallel to the
coast (notation ||), and a cardinal sine covariance for the spatial component
perpendicular to the coast (notation ⊥). This attenuated periodic component
represents the location of the various sand bars met when moving away from
the coast (in fact, it is the covariance of the residuals normalized by the 28
years average depth). This covariance is written:

C
(
h‖, h⊥, τ

)
= σ2. exp

(
− |h‖|

a‖

)
.
a⊥
h⊥

sin
(

h⊥
a⊥

)
. exp

(
− τ

aτ

)
This model of time component is convenient only when discretised with a mesh
of one year. In fact, it does not take into account the sand movement, and
specifically the bars migration at short time intervals; their modeling would
necessitate the fitting of a propagation component at small space and time
distances.

Generalizing the anamorphosed Gaussian model, Matheron [24] proposed
a space-time modeling of air pollutant concentrations, which allows taking into
account the spatial non-stationarity. In this model, detailed in the following,
time intervenes just as a coordinate.

Dynamic phenomena

A full space-time modeling is necessary, for example, to make short-term pre-
dictions of air pollution level, or to study a pollutant transfer from the soil
to an aquifer and evaluate the first arrival time at drinkable water pumping.
Specific probabilistic modeling is only beginning.

The theoretical solutions of some very general equations can be used to
enlarge the class of available models. In 1992, Matheron presented generic
models of space-time intrinsic random functions, built as solutions of some
physical equations; unfortunately, these models have never been published.
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Another approach, purely numerical, consists in associating geostatistical
simulations of one or several “parameters”, such as permeability, concentra-
tions, etc. and “phenomenological” softwares to deduce the associated flows,
ecological state or even meteorological fields.

So a great number of geostatistical simulations of transmissivity fields have
been used as entry for flow simulators that compute the associated head in
transient flow. Simple and cross-covariances of flow and transmissivity, nu-
merically computed on the whole set of joint realizations of flow and trans-
missivity, are automatically consistent with the border constraints and the
flow equations. These bivariate covariances, space-time concerning the head
and space only concerning the transmissivity, are used for conditioning the
transmissivity from the head values.

In oil reservoir modeling, the calculated permeability values are con-
strained by the results of well tests. Flow simulators are used to establish
the strongly non-linear relationships between the variables. This procedure
associates geostatistics and phenomenological modeling, thanks to the present
calculation capacities. If this purely numerical approach appears to be very
useful, it still holds some limitations, namely the definition of “border con-
straints”, sometimes poorly known. Sensitivity studies can help identify the
influence of this non controllable part of the modeling.

However this approach should be extended to other disciplines, such as
hydrogeology or geotechnics.

2.3 A typical non-linear problem: comparison to a threshold

Non linear problems are not specific to environment, selectivity constituting
a major part of mining geostatistics. Comparing concentrations to a quality
threshold, a recurrent question for pollution studies, is in fact essentially a
selectivity problem. This question includes different aspects.

• What does a threshold represent, when the support of the concentrations
is not specified?

• How to foresee the global (i.e. on the entire site) or local (i.e. on a given
dense sampled area) proportion of values exceeding a threshold? Usually
the selection support differs from the support of the experimental data.

• What are the consequences of the unavoidable selection errors when de-
limitating polluted areas on estimated concentrations instead of real ones,
which in practice always remain unknown?

Support effect

The notion of support seems more intuitive for time than for space phenomena.
Then, let us go back to time means in the case of air pollution.

A daily concentration is the mean of twenty-four hourly concentrations. So
it is necessarily included between their minimum and their maximum values.
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For a given observation period, a month for example, the mean of all daily
concentrations is equal to the mean of the hourly concentrations, but the daily
minimum is necessarily superior to the hourly minimum, and conversely, the
daily maximum is necessarily inferior to the hourly maximum. During the
month, the experimental variance (the “dispersion” variance) of the hourly
concentrations is then greater than the variance of the daily concentrations.
Hence, the proportion of concentrations exceeding a given threshold differs
between hourly and daily values. Hourly and daily concentrations have not
the same histogram.

The European regulation for air quality systematically specifies the time
support, namely distinguishing between yearly and hourly limit values. For
limit values concerning the protection of human health, defined by quantiles
on hourly values, the field is specified: it is the civil year. This regulation,
very precise for time values, is muted concerning the spatial support. Now,
spatially the support effect has the same consequences: in a given area, when
the volume or the surface of the considered “units” increases, the proportion
of their high or low values decreases.

For soil pollution, the volume of the samples, generally about a few liters,
is much smaller than the volume of the selection blocks during remediation,
usually units ranging from a few to dozens of cubic-meters, or more. Deducing
the tonnage of selection blocks exceeding a threshold concentration from the
histogram of the samples concentrations gives a boorishly erroneous evaluation
of the volumes to remediate (Fig. 1(a)).

The choice of the pertinent support should depend on the future usage
of the site. In case of strong quality constraints, as for setting up schools or
lots, retaining the support of the experimental data consists in imposing that
after remediation none of the samples taken on the site will exceed the thresh-
old. For the same threshold, a larger support can be chosen when industrial
implants are foreseen on the site.

In soil pollution regulation is still deficient concerning the spatial support
related to threshold values.

Matheron has proposed several “ change of support models”, to forecast
the histogram of block values knowing the histogram of samples values (see
Rivoirard in this book, page 17).

2.4 Information effect

The “information effect” refers to the consequences of selection errors. The
delineation of polluted zones, comparing estimated values to quality threshold,
leads to two types of error, corresponding in statistics to the so-called risks of
first and second type (Fig. 1(b) cases C and D):

• When the estimated value is higher than the threshold, whereas the actual
concentration is lower (case D), the selection of such zones generates un-
necessary additional costs. In case of repeated too pessimist predictions,
the credibility of these alerts can eventually be questioned.
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(a) Support effect: his-
togram of samples (thick
grey line) and histogram
of block values (fine line)
superimposed. The vertical
line indicates the mean,
indentical for both support

(b) Information effect: scatter
diagram of estimated concen-
trations (abscissa) and actual
ones (ordinate)

Fig. 1. Support and information effect

• The case when the estimation is lower than the threshold, whereas the
real concentration is higher (case C), is more problematic, because it can
produce a sanitary risk. After a site remediation, controls will show the ne-
cessity of additional works, making in balance the economy of the project.
Furthermore a too important discrepancy between prediction and reality
can lead, for soil pollution, to an erroneous choice of a remediation process.

Unavoidable, selection errors are reduced when the scatter diagram be-
tween the real value Z(x) in ordinate and its estimation Z∗(x) in abscissa is
close to the first bisector line. In particular, it is the case when the accuracy of
the estimation is improved: the variance of the estimation error indicates the
distance between Z(x) and the first bisector line at point with abscissa Z∗(x).
Estimators such as kriging or disjunctive kriging, which ensure “best accu-
racy” among a class of estimators, usually have a conditional bias: regression
of Z on Z∗goes away from the first bisector line. It is often possible to reduce
this conditional bias by choosing an appropriate kriging neighborhood.
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2.5 Probability of exceeding a threshold

Once the selection support chosen (“points” or “blocks” of a few to several
quadrate-meters or cubic-meters) the polluted zone is delineated by “marking”
the blocks (or the points) with concentrations exceeding a given threshold.
This is done using an indicator variable. The regularization of the indicator
is the local proportion of values exceeding the threshold.

As the indicator variable is not known except on the few experimental data,
it has to be estimated. The “best estimator” is the conditional expectation
which, for an indicator variable, coincides with the conditional probability.
Thus, mapping this probability should indicate the local proportion of values
exceeding the threshold.

In practice, from the experimental data, it is impossible to verify the va-
lidity of the whole probabilistic model used for this estimation. For example
the bivariate spatial distribution (the distribution in two points simultane-
ously) is only inferred for a few distances, according to the sampling schema.
The conditional expectation can then be replaced by a less requiring estima-
tor, namely disjunctive kriging , but without guaranteeing that the estimated
probability remains within the [0, 1] interval.

The algorithm for calculating the conditional probability within a “rea-
sonable” probabilistic model can also be used. This probability should rather
be interpreted as a conventional measure of the uncertainty when classifying
the block (or the point) as polluted or not polluted.

In practice, it is wise to examine this probability map when comparing
an estimated map to a threshold value, in addition to the map of estimation
variance: the “polluted zone” will sometimes be difficult to precisely delineate.

1. Calculation of the “recoverable” pollution

In mining geostatistics, the “selectivity” of a distribution represents the ca-
pacity to recover as much “metal” as possible by extracting as little ore as
possible. Namely, the selectivity can be characterized by the following recov-
ering functions [29]:

• The Q(T) curve, giving the mass of “metal” or pollutant recovered when
selecting the T volume of “ore” or soil containing the highest concentra-
tions;

• The curve B(s), expressing the conventional benefit, defined as the mass
of recovered pollutant beyond the threshold s.

These curves supply a synthetic information on the lost of selectivity due to
support or information effect. Still little used in environment, they are useful
to choose the threshold or the selection support.

The anamorphosed multigaussian model

Frequently calculations are made using the anamorphosed multigaussian
model, which often proves to be well suited to pollution phenomena. In this
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model the concentration Z(x) is written as the transformation by an anamor-
phosis function ϕ, of a stationary random function Y(x) with standard multi-
normal spatial distribution: Z(x) = ϕ (Y (x)). We suppose here for simplicity
that ϕ is strictly increasing on its definition domain. Within this classic model
the conditional distribution at a given location can be directly calculated,
without any simulation process.

Conditional distribution

For a random function with standardized multigaussian spatial distribution,
the distribution of Y (x) conditionally to the data Yα = Y (xα) is simply a
normal variable, with expectation equal to kriging (with known mean) Y ∗(x)
from the Yα, and with residual variance equal to kriging variance.

Knowing the experimental data Zα being equivalent knowing the Gaus-
sian transform Yα = ϕ−1 (Zα), the conditional random function Z(x) can be
written:

Z(x) = ϕ (Y ∗(x) + σK(x)W (x))

where Y ∗(x) denotes the kriging of Y (x) from the Yα, and σ2
K(x) the kriging

variance; W is a random function with normal spatial distribution, with zero
mean and a unit variance, spatially independent from Y ∗. The covariance of
W is not stationary, but for many calculations, this does not intervene.

With this conditional distribution, the calculation of different quantities
is immediate.

Probability of exceeding a threshold

Thanks to the bijectivity of the anamorphosis, the threshold value on Gaus-
sian transforms becomes simply ϕ−1 (s). The conditional probability is easily
derived at any point:

P (Z(x) > s) = P
(
Y ∗(x) + σk(x)W (x) > ϕ−1 (s)

)
= 1−G

(
ϕ−1(s)−Y ∗(x)

σK(x)

)
G denoting the distribution function of the reduced normal distribution.

Kriging being an exact estimator, estimated values are equal to the data
at any experimental point Y ∗(xα) = Yα and the kriging variance is null.
The probability value is then 0 or 1 whether Zα is inferior or superior to
the threshold. Far from the experimental points, kriging converges toward the
expectation of Y, which is null in the model, as well as the kriging variance
converges toward the a priori variance, which equals one in the model. Then,
we retrieve the a priori probability 1−G

(
ϕ−1 (s)

)
.

This probability indicates then the reliability of the selection for a given
threshold. With well-differentiated results near to 0 or 1 an imperfect but
realistic selection can be envisaged.
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Quantiles

Let q� be the quantile of order  of a Gaussian variable, i.e. the value ex-
ceeded with probability 1-. The anamorphosis being increasing, it is easy
to deduce from the normal conditional distribution that the quantile of or-
der  of Z(x) is ϕ (Y ∗(x) + σK(x)q�) : mapping the quantiles of the local
distribution of the concentrations is very easy.

Probability interval is deduced in the same way. The anamorphosis be-
ing non-linear, this interval is generally no longer symmetrical around the
estimation of Z(x).

This model is easy to generalize to take into account some auxiliary infor-
mation.

A space-time model

To represent some pollution phenomena, supposed to be stationary in time
but not in space, Matheron proposed a very flexible model [Matheron, 1974],
which is a generalization of the previous one. The concentrations of various
pollutants, possibly completed by some other information, are supposed to be
measured at some experimental points xα, supplying for each substance i, a
long enough time serie Z (i, xα, tβ). The phenomenon being supposed to be
stationary in time, the Z (i, x, t) are considered point by point as the trans-
formed of a standard Gaussian by an anamorphosis function spatially non-
stationary: Z (i, x, t) = ϕix (Yixt). In addition, let us suppose that the Yixt

have a bigaussian distribution. The Hermitian development of the anamor-
phosis ϕix(y) =

∑
k

ψk(i, x)ηk(y) defines non-stationary fields of coefficients

ψk(i, x) which have to be estimated. For example, the non-stationary expec-
tation of the variable i is given by the ψ0(i, x), and its non-stationary variance

by
∞∑

k=1

(ψk(i, x))2.

The estimation is then split in two phases:

• The time series at the experimental point xα, allow fitting the anamorpho-
sis that is the estimation of the ψk(i, xα) coefficients, by assuming time
stationarity for each variable at each experimental point. Out of the ex-
perimental points, the ψk(i, x) coefficients are then estimated by kriging
or cokriging.

• The calculation and the fitting of the space-time variograms of the Gaus-
sian variables Yixαt built at each experimental point xα give a multivariate
model of stationary covariance ρij (h, τ ). These covariances make it pos-
sible to estimate Z (i, x, t), or to calculate the probability that the con-
centration exceeds a given limit value, using non linear estimators such as
disjunctive kriging or conditional expectation.

How to check the validity of this model?
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The time variograms at the experimental points xα will or will not invali-
date the hypothesis of time stationarity. The spatial variograms of the ψ0(i, .)
coefficients allow controlling their regionalization. We can also verify the pos-
itivity of the calculated anamorphosis of the concentration apart from the
experimental points, or compute a low order quantile of this concentration.
Finally, several criteria allow checking the bigaussian character of the Yixt.

This model type can be extended to a spatially stationary phenomenon
with time non-stationarity, due for example to seasonality. An anamorphosis
varying with time will be inferred and then interpolated between the various
measurement dates.

As for most approaches, these space-time models are compatible with the
classical covariance models.

3 The potentialities of the geostatistical approach

In the second part, we examine –not exhaustively of course– the diversity
of problems that geostatistics can help solve. The chosen examples, either
applicative or methodological, are taken in various contexts.

3.1 Mapping using auxiliary variables

Bobbia et al [5] were among the first to map the concentrations of urban
air pollutants with the help of auxiliary variables as emissions inventories or
population density, in order to improve the precision of the estimation and
obtain more realistic maps.

For mapping of annual median of the NO2 daily concentration over the
Paris urban area within the period 1997-1999, measurements are available at
only 20 sites located mainly in Paris and the near suburbs. Kriging gives then
a poorly contrasted map due to the small number of monitored sites. The
NO2 concentration is linked with the nitrogen oxides emission, locally known
from inventories (fig. 2(a)) and notated NOx in the following. Due to chemical
reactions in the air, and to the diffusion and transport process of the nitrogen
oxides from the sources, the relation between the NO2 concentration median
and the NOx inventory is not linear. But the linearity with the logarithm
of the emissions is quite acceptable, with a high correlation coefficient equal
to 0.93 (fig 2(b)). As emission inventories are not available on the whole of
the studied area, a cokriging is then performed. In comparison to kriging,
cokriging emphasizes the increase in concentrations close to the main road
axes (fig. 2(c).).

3.2 Changing the workspace for pluviometry

Quite often environmental characteristics rather than geographic proximity
account for the similarities between the observed values of a variable. This
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(a) Logarithm of annual NOx

emissions (kriging map).
(b) Scatter diagram between
NO2 median measurements (or-
dinate) and NOx emisions loga-
rithm (abscissa).

(c) Kriging (left) and Cokriging (right) of NO2 using emissions loga-
rithm

Fig. 2. Estimation of NO2 concentrations on Paris urban area.

is why several authors have tried to estimate some variables of interest (rain
height, air pollution. . . ) using a deformation of the geographic space. But
the criteria defining this deformation are partly arbitrary, and consistency
conditions are tricky to ensure, such as the bijectivity of the transformation.
Dealing with a bivariate problem, the relationship between rain height and
atmospheric pressure in south-west Europe, Biau [2] proposes an elegant so-
lution: the change of working space by means of explicative variables.

A Principal Component Analysis made on pressure measurements during
several decades shows that the two first factors explain an important part of
the pressure variability. The mapping of these factors indicates that the first
one corresponds to the gradient from low pressure above Iceland to high pres-
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sure above Azores, while the second one shows the West-Atlantic “abnormal-
ity” [3]. At any point, these first two factors are known from the climatologic
models.

Let us now consider a fixed location. Similar pressure situations then cor-
respond to close points in the first two factors space. Since rainfall height is
largely determined by the pressure, the differences between rainfalls heights
at two dates are better described by the “distance” of the corresponding pres-
sure fields, measured in the plane of the first two factors, than it is by the
time interval between the two events.

At each location, the 1D modelling of rainfall in time is therefore replaced
by a 2D modelling in the factors space. The rainfall variogram is then com-
puted and kriged in this 2D space.

The authors show that most of the variograms thus obtained at different
measurement stations present a structure and are consistent with the local
characteristics of the rainfall. Besides, this description takes into account the
strongly marked contrasts observed between local rainfalls due to the con-
trasted geography of southern Europe.

In this case, authors are interested only by the temporal and not by the
spatial interpolation of rainfalls heights.

3.3 Using qualitative observations in soil pollution

The soils on former industrial sites present sometimes high organic pollution
by “tar” or more precisely polycyclic aromatic hydrocarbons (PAH). Too often
the areas to be processed are delimited from estimations based on a poor
number of chemical samples. As a high pollution by PAH is partly detected
on the field by the smell, tar traces, etc., can these qualitative observations
(or organoleptic drawings) be exploited to improve the estimates precision at
a low cost?

On the site of an old coking plant, Jeannée et al. [16] have qualitative
observations and a factorial analysis shows their redundancy. Given the tar-
get of analyzing the benzo(a)pyrene concentrations, which is a PAH often
sampled because of its pathogen properties, the authors try to improve the
estimation by using the correlations between concentration and organoleptic
observations.

None of these observations allows detecting exhaustively the whole set
of the sampled high concentration values. The organoleptic observation best
correlated with concentrations is the presence of tar traces. All the traces cor-
respond to high concentrations even though some high concentrations samples
do not present tar traces (fig. 3).

The modality coding of a qualitative variable is arbitrary. But it is known
that the qualitative function best statistically correlated with a quantitative
variable is the mean per class, i.e. the regression of concentration on the
qualitative observation. With only two modalities, the correlation is obviously
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Fig. 3. Histogram of B(a)P concentration, with indication of the presence of tar
traces (in dark grey).

the same with the concentration, using the indicator variable or the mean by
class.

The experimental variograms and their modeling show the good spatial
correlation of these variables (fig. 4).

Fig. 4. Fitting simple variograms of B(a)P concentration (right), of the mean per
class (left), and of the cross-variogram (middle).

Cross-validation is used to quantify the utility of these observations when
estimating the concentrations. For this, 50% of measurements are eliminated
and estimated again by cokriging, the observations being considered known
in every point. Beside the scatter plot analysis (not shown), the synthetic
criterion of the mean squared estimation error shows that, compared to the
kriging, cokriging using the auxiliary data lowers the estimation errors. The
results obtained by exploiting the tar presence prove to be better than those
obtained using the other qualitative observations.

An economic sampling can thus improve the precision. But large enough
sampling for chemical analyses remains essential.
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3.4 Modeling directional data by complex random Functions

Wind speed, flow in an aquifer, dip or direction, gradient of a scalar quan-
tity. . . all are vectorial variables which can be described by complex variables.
Lajaunie et al. [17], citing results obtained by Matheron examined the interest
of a specific treatment of these variables: is the kriging of a complex variable
better than the cokriging of its components?

The covariance of a stationary complex variable Z, supposed to have a
zero mean, is a Hermitian form C(h) = E

[
Z(x+ h)Z̄(x)

]
such as:

V ar

(∑
i

λiZ(xi)

)
=

∑
i,j

λiλ̄jC(xi − xj) ≥ 0 .

It is easy to see that the real part CR of the complex covariance is a real
covariance.

The stationarity of the variable Z = X + iY is not equivalent to the
stationarity of the real part X and the imaginary part Y respectively. When
both these variables are mutually stationary, the real part of the complex
covariance is the sum of both simple covariances: CR(h) = CX(h) + CY (h),
and the imaginary part CI(h) = CXY (−h) − CXY (h) corresponds to the
odd part of the cross-covariance of the X and Y components. The bivariate
spatial structure of the pair (X,Y) then holds more precise information than
the covariance of the complex variable.

When the cross-covariance CXY of the components is symmetrical, the
imaginary part of the complex covariance is zero and C(h) is then identical to
its real part. The kriging weights are then real numbers. Therefore the complex
kriging can bring some improvement compared to monovariate kriging of real
and imaginary part only when their cross-covariance CXY is not symmetrical.

Cokriging of the components usually gives a more accurate estimation
than the complex kriging of Z. Indeed the latter minimizes the sum of the
estimation variances for real and imaginary parts, while cokriging minimizes
each term separately, for a wider class of covariances.

Is the “performing” modeling by complex Random Functions then to be
rejected in favour of a more “classical” bivariate modeling? The authors show
that the gain brought by complex kriging is precisely due to the economy of
this model, in particular when a consistent fitting of the simple and cross-
covariances is problematic. It is namely the case for a non symmetrical cross-
covariance CXY .

3.5 Estimating or simulating variables linked by linear partial
differential equations

Derivative or gradient data can be used in a simpler way considering the co-
variance models deduced from the differential relationships between variables.
If the derivability properties of Random Functions of order two were known
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well before the beginning of geostatistics (see for example [18]), Matheron has
generalized the results, using the theory of the Intrinsic Random Function of
order k (IRF-k) [23].

He demonstrated namely the following result: if Z is IRF-k p times deriv-
able, and D an order p derivative operator, then DZ is an IRF-(k−p) if k ≤ p
and it is a stationary Random Function if k > p. In particular, the solution
Z of the Poisson equation ΔZ = Y is an IRF-1 if Y is a Stationary RF, and
an IRF-(k + 2) if Y is an IRF-k.

Theory shows that the relationships between covariances are simply ob-
tained by exchanging expectation and derivation relatively to each term: if Z
is a stationary RF with a covariance K (h), its derivative are stationary and
with zero mean; the simple and cross-covariances between Z and its gradient
components can be written

E
[

∂Z
∂xi

(x).Z(x′)
]

= ∂
∂xi

E [Z(x).Z(x′)] and

E
[

∂Z
∂xi

(x). ∂Z
∂xj ′ (x′)

]
= ∂2

∂xi∂x′
j
E [Z(x).Z(x′)] which gives

E
[

∂Z
∂xi

(x).Z(x + h)
]

= − ∂
∂hi

K(h) and

E
[

∂Z
∂xi

(x). ∂Z
∂x′

j
(x+ h)

]
= − ∂2

∂hi∂hj
K(h) .

When covariance K is decreasing with h, Z(x+ h) is positively correlated
to the derivative ∂Z

∂xi
at point x. These relationships remain valid for IRF-k.

In particular, as each derivation reduces the IRF-k degree by one unit, the
degree of the derivative covariance is reduced by 2 units, in consistency with
the polynomial indetermination of the generalized covariances.

The integration of the stationary RF offers in fact a quite intuitive ap-
proach to the IRF-k theory. In this model, only some “allowable linear com-
binations” also called “generalized increments” are supposed to be stationary
with finite variance. Indeed these linear combinations mean filtering some
polynomial integration constants.

These relationships allow estimating [9] or simulating [11] some variables
linked by linear partial differential equations. For example, estimating or sim-
ulating a gradient can be done independently of any discretisation, thus avoid-
ing the smoothing effect of methods such as finite differences.

For example, let us examine the gradient estimation from the data Z (xα)
within a stationary Random Function model. λα

i denotes the weight attributed
to Z (xα) when estimating the derivative ∂Z

∂xi
at point x, and λαthe weight

when estimating the variable Z itself. When the mean of Z is unknown, the

non-bias condition E

[
∂Z∗
∂xi

(x) −∑
α
Rλα

i Z (xα)
]

= 0 imposes that the sum of

the weights attributed to all experimental values of Z is zero when estimating
one derivative :

∑
α
λα

i = 0, instead of one when estimating Z itself. As usual,
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the first term of the kriging system depends on the covariance between the
data, and the second term on the covariances between the data and the vari-
able to be estimated, the system being completed according to the non bias
conditions. From the linearity of the covariance with regard to each variable,
it is easy to show that the kriging weights for the estimation of the derivative
are equal to the derivative of the kriging weights for the estimation of the

variable Z: λα
i = ∂

∂xi
λα. Hence, any realization verifies: ∂(z∗)

∂xi
=

(
∂z
∂xi

)∗
, as

long as the kriging of Z and its derivatives are performed using a covariance
model consistent with the derivation and using the same set of experimental
points.

These relationships allow estimating the (perturbation of) transmissivity
in a way consistent with the (perturbation of) head. In practice, for complex
flows, purely numerical solutions based on simulation techniques are some-
times unavoidable.

3.6 Data assimilation

Data assimilation allows incorporating (“assimilating”) some measurements in
a space-time numerical model which depicts some phenomena as complicated
as the evolution of meteorological or oceanographic conditions, in order to
improve the predictions. Schematically, the system state Zn at discretized
time tn is supposed to be entirely given by the previous step n-1 via a non
linear function f depicting the system evolution, associated to a correction of
modeling errors. This can be written: Zn = fn(Zn−1) + εm

n or more generally
Zn = fn (Zn−1 + εm

n ). The measurements, supposed to be known at some of
these instants n, can be written as a function of the system, associated with
some measurement errors: Yn = h(Zn) + εo

n. The function h, non necessarily
linear, takes into account among others the often huge support difference
existing between the mesh of the phenomenological numeric model on which
Zn is regularized (for example one or more km) and the quasi-punctual volume
of the measurements.

There exists a great number of variations on the data assimilation tech-
niques. A review can be found in [1]. The sequential methods make the spatial
correlation matrixes of the “prediction” errors evolve, by propagating the un-
certainties on the successive steps. The advantage is that the error matrixes
obtained that way are consistent with the modeling of the phenomenon. For
example a non linear prediction method with a linear correction can be split
in two stages:

• “forecasting” which consists in letting the system evolves numerically fol-
lowing its own dynamics, from the estimation Z∗

n−1 obtained at the pre-
vious step: Zf

n = fn(Z∗
n−1);

• correcting, by cokriging of Zn − Zf
n from the difference between this

“sketch” and the observations: Z∗
n = Zf

n + Kn

(
Yn − h

(
Zf

n

))
; Kn then

refers to a linear operator.
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The difficulty consists in computing the covariance used for this cokriging.
For example the evolution equation are linearized, and the dimension of the
covariance matrix is reduced by keeping only the higher eigenvalues (filter
called “RRSQRT” short for “reduced rank square root”); or a purely numer-
ical approach is used, based on simulations (“En KF” short for “Ensemble
Kalman filter”). The operational versions of these methods are in fact based
on simplifications.

These methods finely associate geostatistical techniques and phenomeno-
logical equations.

4 Conclusion

The vast majority of papers concerning environmental geostatistics are thus
based on concepts and methods created prior to the 1980’s. Matheron’s target
in Estimating and choosing got a final answer: the validation is the “sanction
by the practice”.

Which direction will the new methodological developments take? Using
auxiliary variables as coordinates, as well as changing the work space (for
modeling concentration along the river flows or on large domains that re-
quire taking into account the earth roundness) should significantly widen the
validity field of existing models.

Coupling geostatistics to phenomenological models (short term forecast
of air quality, modeling of basin shedding pollutants, modeling of reactive
transport of pollutants . . . ) should improve the relevance of the estimations.
Taking into account the physical context and the current capacities of mod-
eling is essential for integrating geostatistics in many “predicting” processes,
avoiding thus the risk of misevaluating some first order effects.

Let us finish with some words by Matheron [31, p 7]: [in this book]

“there will not be found any “world view”, whether explicit or
implicit, but only methodological advice for practitioners of probabil-
ity. One can, if necessary, distinguish between the prime mover and
the code. The prime mover, i.e. the “dialectic”, is always implicitly
present. It incites us to progress, to start new endeavors, without ever
remaining at rest. It enables us to “understand” all of the previous de-
velopments in a vast retrospective synthesis, but only with hindsight,
like the Minerva bird which rises after sunset. It may be that this is
just an anthropomorphic illusion. At any rate, this point of view is
only suitable for an historian or a philosopher (. . . ). Not so to the
practitioner: in his work he rather needs a code, a sort of plumb line
to help him build straight walls. This does not mean that he subscribes
to any particular philosophy of the plumb line, but only that he likes
his job”.
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lution atmosphérique. Thèse de doctorat de l’Ecole Polytechnique, Palaiseau,
France.

5. Bobbia M. Mietlicki F., Roth C. 2000. Surveillance de la qualité de l’air par
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Centre de Géostatistique, Ecole des Mines de Paris, Fontainebleau.
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1 Early years of random sets

Concepts and results involving random sets appeared in probabilistic and
statistical literature long time ago. The origin of the modern concept of a
random set goes as far back as the seminal book by A.N. Kolmogorov [22]
(first published in 1933) where he laid out the foundations of probability
theory. He wrote [22, p. 46]

Let G be a measurable region of the plane whose shape depends on
chance; in other words let us assign to every elementary event ξ of a
field of probability a definite measurable plane region G.

In modern terminology, G is said to be a random set, which is not necessar-
ily closed, see [37, Sec. 2.5]. It should be noted also that even before 1933
statisticians worked with confidence regions that can be naturally described
as random sets.

The next major contribution was due to H.E. Robbins [43, 44] who dis-
covered the formula

Eμ(X) =
∫

P{x ∈ X}μ(dx) , (1)

which relates expectation of a σ-finite measure of a random set with the in-
tegral of its coverage function. Despite being a simple application of Fubini’s
theorem, Robbins’ formula marked the first rigorous result concerning ran-
dom sets. Actually, the special case of this formula appears already in [23]
(published in 1933 in a physical journal).

For a while results concerning random sets remained scattered in the liter-
ature. A rapid development and growing interest in geometric probabilities in
the late sixties called for formalisation of the concept of a random set. Devel-
opments in mathematical theories of cones and capacities by G. Choquet and
the growing literature on set-valued functions greatly facilitated this task.
On the other hand, advances in microscopy and image analysis stimulated



136 I. Molchanov

appearance of new models for random sets and subsequent developments of
statistical tools suitable for their formal analysis.

2 The definition of a random set

The crucial breakthrough done by G. Matheron was to concentrate on random
sets with closed values and formally define them as random elements whose
values belong to the family F of closed subsets of a given space E. The formal
definition required endowing F with a σ-algebra generated by the topology
on F that is now commonly known under the name of the Fell topology, see
[4] and [9] for discussion of this and many other topologies on the space of
closed sets. The idea behind the definition of a random closed set is that a
random closed set is accessible through the knowledge of the fact whether or
not it hits any given compact set. Matheron’s definition of a random closed
set in [30] is formulated as follows.

Definition 1. A map X : Ω → F from a probability space (Ω,F,P) to the
family F of closed subsets of a locally compact separable Hausdorff space E is
called a random closed set if {X ∩K �= ∅} ∈ F for every K from the family
K of compact subsets of E.

The main idea behind Definition 1 is that it is observable if X hits or
misses given deterministic sets. Because of this reason the underlying topology
on F is sometimes called the hit-or-miss topology. Note that the book [30]
rests on several previous publications of G. Matheron. In particular, in [26]
the measurability issues for random closed sets are considered together with
the first characterisation theorem for their distributions using the avoidance
functional. The report [27] contains the concept of the hit-or-miss topology
and the characterisation results for distributions of random closed sets using
the capacity functionals.

From the contents of the book [30] it appears that G. Matheron was un-
aware of the parallel work in set-valued analysis, where E.G. Effros [7] studied
the Borel σ-algebra on F for the case when the carrier space E is a complete
separable metric space that is not necessarily locally compact. Since then it is
typical to speak about Effros-measurable set-valued functions (also known as
multivalued functions or correspondences). Another serious breakthrough was
due to C. Himmelberg [19] who proved the following Fundamental Measurabil-
ity theorem that established equivalence of various definitions of measurability
for set-valued functions in Polish spaces.

Theorem 1. Let E be a separable metric space and let X be a function on
(Ω,F,P) with values in the family of closed subsets of E. Consider the fol-
lowing statements.
(1) {ω : X ∩B �= ∅} ∈ F for every Borel set B ⊂ E.
(2) {ω : X ∩ F �= ∅} ∈ F for every F ∈ F .
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(3) {ω : X ∩G �= ∅} ∈ F for every open G ⊂ E (in this case X is said to be
Effros-measurable).
(4) �(y,X) = inf{�(y, x) : x ∈ X} is a random variable for each y ∈ E.
(5) There exists a sequence {ξn} of E-valued random elements (measurable
selections of X) such that X almost surely coincides with the closure of
{ξn, n ≥ 1}.
(6) The graph of X, i.e. the set {(ω, x) ∈ Ω × E : x ∈ X(ω)}, belongs to the
product σ-algebra of F and the Borel σ-algebra on E.
Then the following results hold.
(i) (1)⇒(2)⇒(3) ⇔ (4)⇒(6)
(ii) If E is a Polish space (i.e. E is also complete) then (3)⇔(5).
(iii) If E is a Polish space and the probability space (Ω,F,P) is complete, then
(1)–(6) are equivalent.

Although it is possible to deduce numerous measurability results concern-
ing operations with random sets from Theorem 1, it was G. Matheron who
first realised the importance of semicontinuity concept for random closed sets.
Many operations with sets are not continuous but only semicontinuous, so
that measurability can be deduced by establishing semicontinuity of the cor-
responding maps. The semicontinuity concept also relates random closed sets
to problems in stochastic optimisation [45, 46], where random closed sets nat-
urally appear as epigraphs of lower semicontinuous functions.

3 Distributions of random sets

The next issue dealt by G. Matheron after formally defining a random closed
set was to describe its distribution in an “economical” way. This is a highly
important question since the Borel σ-algebra on F is so rich that it is infeasible
to explicitly allocate probabilities to every event that belongs to it. This was
a typically probabilistic question which is not usually dealt with in the set-
valued analysis literature.

G. Matheron followed the traditional approach of constructing a probabil-
ity measure by extending its values from a semi-algebra of sets to the corre-
sponding σ-algebra. This semi-algebra consists of finite unions of the events
{X ∩ K �= ∅} for all K ∈ K. Note that the families {F ∈ F : F ∩ K �= ∅}
also generate the Borel σ-algebra on F . In other words, G. Matheron found
necessary and sufficient condition for a functional

TX(K) = P{X ∩K �= ∅} , K ∈ K ,

to be extendible to a probability measure on F . The functional TX is called
a capacity functional of X . It is sometimes called the hitting (or trapping)
functional or plausibility functional. An immediate observation is that TX is
sub-additive, but typically non-additive (unless X is a random singleton), i.e.
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TX(K1∪K2) is less but not necessarily equal to TX(K1)+TX(K2) for disjoint
K1 and K2.

The capacity functional has several basic properties
(i) TX(∅) = 0 and 0 ≤ TX(K) ≤ 1 for every K ∈ K;
(ii) TX is upper semicontinuous on K, i.e. TX(Kn) ↓ TX(K) if Kn ↓ K;
(iii) TX is completely alternating (also called alternating of infinite order), i.e.
the following recurrently defined functionals

ΔK1TX(K) = TX(K)− TX(K ∪K1)
. . .

ΔKn · · ·ΔK1TX(K) = ΔKn−1 · · ·ΔK1TX(K)−ΔKn−1 · · ·ΔK1TX(K ∪Kn)

are non-positive for every n ≥ 1 and K,K1, . . . ,Kn ∈ K.
It is easy to see that

ΔKn · · ·ΔK1TX(K) = −P{X ∩K = ∅, X ∩K1 �= ∅, . . . , X ∩Kn �= ∅} ,

so that condition (iii) generalises the monotonicity concept for multivariate
cumulative distribution functions. Note that the above notation for the suc-
cessive differences is taken from the harmonic analysis literature [5] and so
differs from the notation used in [30].

A function φ on the family of all subsets of E with values in the extended
real line is called a capacity if it is monotone, Mn ↑M implies φ(Mn) ↑ φ(M)
for arbitrary sets M,Mn ⊂ E, and φ(Kn) ↓ φ(K) if Kn ↓ K are compact sets.
The above properties single out those capacities (obtained by extending T
onto the family of all subsets of E) that correspond to distributions of random
closed sets. The key result in random sets theory says that every functional T
satisfying (i)-(iii) above corresponds to the distribution of a unique random
closed set.

Theorem 2 (Choquet-Kendall-Matheron theorem). Let T : K �→
[0, 1]. There exists a unique random closed set X with capacity functional
T such that P{X ∩K �= ∅} = T (K) for every K ∈ K if and only if T satisfies
conditions (i)-(iii).

G. Matheron [30] attributed this theorem to G. Choquet [6], where it in-
deed appears but not in such an explicit form. It was observed by D.G. Kendall
[21] that the trapping probabilities define the distribution of a random set
with not necessarily closed values provided the family K is replaced by an-
other appropriately chosen family of trapping sets. G. Matheron gave a clear
formulation of this theorem given above and provided an independent proof
based exclusively upon the first principles of extending a probability measure
from a semi-algebra to a σ-algebra. Later on with advances of harmonic anal-
ysis on semigroups [5] and the theory of lattices [11, 40] new proofs of this
result appeared. Indeed, the family of closed sets is a semigroup and a lattice
with the main operation being union. Within both of these frameworks, defin-
ing a measure on a semigroup or lattice is one of the key issues. The original
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Choquet’s proof of Theorem 2 is based on a representation of positive defi-
nite functions on cones and is similar to the harmonic analysis proof outlined
below.

Proof. The family K of compact sets is an Abelian semigroup with respect to
the union operation. Let I be the set of all sub-semigroups I of (K,∪), which
satisfy

K,L ∈ I ⇒ K ∪ L ∈ I and K ⊆ L, L ∈ I ⇒ K ∈ I .

Define K̃ = {I ∈ I : K ∈ I} and equip I with the coarsest topology in which
the sets K̃ and I \ K̃ are open for all K ∈ K. It is possible to prove that the
map

c(I) = E \
⋃

K∈I

IntK

is continuous on I (IntK is the interior of K), and

c−1(FK) =
⋃

L∈K, K⊂IntL

L̃ ,

where FK = {F ∈ F : F ∩K = ∅}. Indeed, c(I) ∩K = ∅ if and only if there
exists L ∈ I such that K ⊂ IntL. It follows from (ii) that

Q(K) = sup{Q(L) : L ∈ K, K ⊂ IntL} ,
where Q(K) = 1− T (K).

Note that I (with identical involution) is isomorphic to the set of semi-
characters on (K,∪), i.e. complex-valued maps on K satisfying χ(∅) = 1 and
χ(K∪L) = χ(K)χ(L). Property (iii) implies that T is a completely alternating
function on (K,∪). It is possible to prove that the corresponding function Q
is negative definite on K, i.e.

n∑
i,j=1

aj ākQ(Kj ∪Kk) ≤ 0

for any complex numbers a1, . . . , an, n ≥ 1. By [5, Prop. 4.17], there exists
a measure ν on I such that Q(K) = ν(K̃). Now the continuity property of
(Radon) measures (supα μ(Gα) = μ(∪αGα) for upward filtering family of open
sets Gα) yields

ν(∪L∈K, K⊂IntLL̃) = sup{ν(L̃) : L ∈ K, K ⊂ IntL} = ν(c−1(FK)) ,

so that Q(K) = μ(FK), where μ is the image measure of ν under the contin-
uous mapping c : I �→ K.

The uniqueness part follows from the fact that the families {F ∈ F :
F ∩K = ∅, F ∩K1 �= ∅, . . . , F ∩Kn �= ∅} generate the Borel σ-algebra on F .

The lattice-theoretic proof [40] is even more powerful, since it is applicable
for a non-Hausdorff space E. However, it is generally unknown how to char-
acterise distributions of random closed sets in a space E that is either not
locally compact or not separable, see [38].
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4 Further developments

When random closed sets have been properly defined, their distributions char-
acterised and measurability properties of some operations established, the the-
ory of random sets was brought to a stage when it was desirable to obtain
results parallel to those well-known in probability theory for random variables
and stochastic processes. This was not easy however as the space of all closed
(or compact) sets is not a linear space, while most of conventional techniques
in probability theory are adapted to studies of random elements in linear
spaces.

4.1 Special random sets and models

The capacity functional TX(K) defined for all compact sets K is a complicated
object. In simple cases it is possible to define it using direct probabilistic
arguments. For example, if X = {ξ} is a random singleton, then TX(K) =
P{ξ ∈ K} is a probability measure that can be efficiently defined. More
complicated examples of random sets appear from stochastic processes as
excursion sets, e.g. X = {x ∈ E : ξ(x) ≥ t}, where t is a real number and
ξ is a real-valued random process indexed by E with upper semicontinuous
paths (in order to ensure that X is closed). However, it remains an important
task to develop new models for random sets, provide manageable expressions
for their capacity functionals and relate properties of capacity functionals to
those of the corresponding random closed sets.

For instance, it is possible to characterise random closed sets with almost
surely convex realisations in terms of their capacity functionals. A random
closed set X is almost surely convex if and only if

TX(K) + TX(K ∪K1 ∪K2) = TX(K ∪K1) + TX(K ∪K2) (2)

for every convex compact sets K,K1 and K2 such that K1 and K2 are sepa-
rated by K in a sense that the segment joining any two points of K1 and K2

hits K, see [30].
G. Matheron introduced one extremely important model for random sets

called the Boolean model. The basic idea follows the concept of a point process,
which is a collection of points in a carrier space. The principal new feature is
that the carrier space becomes the family of compact sets, so that one works
with a collection of sets instead of collection of points, see Chap. 1.2 of this
volume for an in-depth survey of this important model.

A Poisson point process {F1, F2, . . .} on F is determined by a measure
on F , that is not necessarily finite. Similarly to the Choquet theorem, it is
possible to show that every such measure ν uniquely corresponds to a function
Ψ(K) = ν({F ∈ F : F ∩K �= ∅}), which is upper semicontinuous, completely
alternating, satisfies Ψ(∅) = 0, but not necessarily is bounded by 1 from above
and may even be infinite. Then
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TX(K) = 1− exp{−Ψ(K)} (3)

is the capacity functional of a random closed set X that is the union of the
sets F − 1, F − 2, . . . that form the underlying Poisson process on F . If the
functional Ψ satisfies (2), then X is called the semi-Markov random closed
set. It was shown by G. Matheron [28] that these sets include Boolean models
with convex grains and also unions of Poisson flats.

Many other important random closed sets are related to paths of a Brow-
nian motion Wt, t ≥ 0, or other stochastic processes with values in R

d. As-
sume that Wt starts at x from a compact set D and is killed whenever it
leaves D. Denote by X the path of Wt (the set of points visited at least
once). This is an example of a random fractal set [8, Chap. 15,16]. The
corresponding capacity functional is related to hitting probabilities of the
Wiener process. For instance, if the initial position x is distributed accord-
ing to the equilibrium probability measure on D, then TX(K) is the ratio
C(K)/C(D), where C(·) stands for the Newton capacity of the corresponding
set. If Xt = {Ws : s ≤ t} is the part of the path up to time t, then its r-
neighbourhood Xr

t = {x : �(x,Xt) ≤ r} is called the Wiener sausage. Results
on volumes of the Wiener sausage are closely related to the probability that
the Wiener process hits obstacles that form a Boolean model, see [50].

Further recent results concern such concepts like capacity equivalence for
random sets. Two random closed sets X and Y are called capacity equivalent
if there are positive constants c1 and c2 such that

c1TX(K) ≤ TY (K) ≤ c2TX(K)

for every K ∈ K. It is shown in [41] that the path of the Wiener process is
capacity equivalent to a sequence of sets related to some branching processes
on a tree generated by successive partitions of the unit square. This concept if
closely related to Radon-Nikodym derivatives of capacities considered in [15].

4.2 Expectation

The concept of averaging for random sets was not mentioned at all in [30],
although the relevant ideas in set-valued analysis (concerning integration of
set-valued functions) appeared well before 1975 in R.J. Aumann’s pioneering
work [2]. Aumann defined the integral of a set-valued function F as the set of
integrals of all measurable functions f such that f(t) ∈ F (t) for all parameter
values t. In application to random sets the idea of the corresponding expec-
tation was first explicitly spelt out in [1]. The crucial step was to consider all
random singletons ξ that almost surely belong to a random closed set X . Such
ξ is called a selection of X . It is well-known that an almost surely non-empty
random closed set possesses a selection under rather mild conditions on the
carrier space E.

A random closed set X in a Banach space E is called integrable if it has at
least one integrable selection. The selection expectation (also called Aumann
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or set-valued expectation) of an integrable random closed set X is defined as
the closure of the set of expectations of all integrable selections of X

EX = cl{Eξ : ξ ∈ X a.s., ξ integrable} .

Taking closure in the right-hand side is essential as the family of all Eξ is not
necessarily closed if the carrier space E is infinite dimensional.

Numerous results concerning the selection expectation include dominated
convergence theorem and the Fatou lemma. It is possible to define the con-
ditional expectation that leads to the concept of set-valued martingales [17].
However, the selection expectation has a serious drawback that reduces the
range of its practical applications for averaging of sets. On a non-atomic
probability space it always returns convex results, i.e. EX coincides with
the expectation of the convex hull of X . Furthermore, if X is bounded, then
Eh(X,u) = h(EX,u), where

h(K,u) = sup{u(x) : x ∈ K}

is the support function of K, and u is a linear continuous functional on E.
Alternative definitions of expectation [34, 36] make it possible to work with

non-convex set, although these expectations do not have so nice mathematical
properties as the selection expectation.

4.3 Minkowski sums

Despite Minkowski addition and related morphological operations with sets
were described and the corresponding measurability results established in [30],
the corresponding limit theorems remained beyond the scope of G. Matheron’s
attention. These limit theorem were derived first for random compact sets
in Euclidean spaces and then generalised for random closed sets in Banach
spaces without the compactness and boundedness assumptions, see e.g. [14,
18]. For simplicity we consider here only the case of random compact sets in
the Euclidean space E = R

d. Recall that K ⊕ L = {x + y : x ∈ K, y ∈ L}
denotes the Minkowski sum of K and L.

Let X,X1, X2, . . . be a sequence of independent identically distributed
random compact sets in R

d. Assume that X is integrably bounded, i.e. ‖X‖ =
sup{‖x‖ : x ∈ X} is an integrable random variable. In this case all selections
of X are integrable. The strong law of large numbers for random compact sets
[1] establishes

n−1(X1 ⊕ · · · ⊕Xn) → EX , (4)

where the convergence is understood with respect to the Hausdorff metric �H .
Recall that the Hausdorff distance between two sets K and L is the smallest
positive r such that K is contained in the r-neighbourhood of L and L is
contained in the r-neighbourhood of K.
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The central limit theorem concerns the speed of convergence in (4). Since
it is not possible to subtract EX from the Minkowski average in the left-
hand side of (4), one usually formulates the central limit theorem for square
integrable (i.e. E‖X‖2 < ∞) random sets as the following convergence in
distribution property

√
n�H(n−1(X1 ⊕ · · · ⊕Xn),EX) d→ sup

‖u‖=1

|ζ(u)| , (5)

where ζ is a Gaussian random field on the unit sphere with the covariance
explicitly determined by the distribution of the support function h(X, ·) of X ,
see [51]. Related works include characterisation of stable and infinite divisible
for Minkowski addition random sets [12, 13]. It should be noted that the
limiting random field (5) does not have an explicit geometrical meaning, and
it is an open problem to provide a sensible geometric interpretation of ζ.

4.4 Weak convergence

Weak convergence of random closed sets is a special case of weak conver-
gence of probability measures. Along the same line with the Choquet-Kendall-
Matheron theorem, it is possible to show that a sequence of random closed
set {Xn, n ≥ 1} converges weakly to a random closed set X if and only if
TXn(K) = P{Xn ∩K �= ∅} converges to TX(K) = P{X ∩K �= ∅} as n→∞
for eachK ∈ K satisfying TX(K) = TX(IntK). These sets K correspond to the
families of closed sets {F ∈ F : F ∩K �= ∅} that are continuous with respect
to the probability measure on F that describes the distribution of X , see [39].
In an internal report [29] G. Matheron suggested an equivalent definition that
relies on the convergence of the capacity functionals lim supTXn(K) ≤ TX(K)
for all compact sets K and lim inf TXn(G) ≥ TX(G) for all open sets G.

It is well-known that the weak convergence of random variables is metrised
by the Lévy metric. The weak convergence of random compact sets can be
also described using the Lévy distance between their distributions. For random
closed sets X and Y define

L(X,Y ) = inf{r > 0 : TX(K) ≤ TY (Kr)+r, TY (K) ≤ TX(Kr)+r, K ∈ K} .

It is shown in [33] that Xn weakly converges to a random compact set X if
and only if L(Xn, X) → 0 as n→∞.

4.5 Unions

While the Minkowski addition of random sets generalises conventional sums
of random vectors, unions of random sets have their parallel interpretation in
the studies of extremes of random variables. Consider a random half-line X =
(−∞, ξ] and independent realisations Xn = (−∞, ξn], n ≥ 1, of the random
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closed set X . Then X1 ∪ · · · ∪Xn is the half-line bounded by max(ξ1, . . . , ξn),
while X1 ⊕ · · · ⊕Xn is the half-line bounded by ξ1 + · · ·+ ξn.

A random closed set X is infinite divisible for unions if, for every n, X
can be represented as a union of n independent identically distributed ran-
dom closed sets. Infinite divisible random closed sets were characterised by
G. Matheron in [30] as having the capacity functional of the form (3), where
Ψ is a capacity that satisfies the same conditions (i)-(iii) as T with the only
exception of the range of values that can now be [0,∞]. The infinite values
of Ψ appear due to the fixed points x that belong to X almost surely. The
modern proof of (3) for infinitely divisible sets rests on the theory of lattices,
see [40].

If, for every n ≥ 1, there is a number an > 0 such that anX has the same
distribution as X1 ∪ · · · ∪ Xn for X1, . . . , Xn being independent identically
distributed realisations of X , the random set X is called union-stable. Union-
stable sets are infinite divisible, and it is possible to show that (3) holds with
an additional requirement that Ψ(sK) = sαΨ(K) for some α �= 0 and every
s > 0, K ∈ K. The case of X without fixed points [30] is much easier to handle
than the general case. This is due to the fact that non-trivial random sets with
fixed points (e.g. the set of zeroes for the Wiener process or a randomly rotated
cone) may satisfy TX(sK) = TX(K) for every s > 0 and so it is difficult to
turn the union-stability condition into a functional equation for TX , see [33].

The characterisation of union-stable sets is naturally accompanied by a
spectrum of limit theorems where union-stable random closed sets appear as
weak limits, see [33]. These limit theorems are typically formulated in terms
of capacity functionals of random sets, e.g. using the function f(x) = TX(xK)
that should be regularly varying at infinity (or zero) for a sufficiently large
family of compact sets K.

4.6 Functionals of random sets

A measurable functional of a random closed set automatically becomes a
random variable. The earliest result concerning functionals of random sets
is Robbins’ formula (1) that is applicable to relate the expectation of μ(X)
for a general σ-finite measure μ to the covering probabilities P{x ∈ X} of
X . While the assumption of σ-finiteness of μ is absolutely essential, it was
apparently overlooked in [30]. However, many interesting functionals of X can
be represented as values μ(X) for a not necessarily σ-finite μ. The most well-
known examples of such functionals are the surface area and the cardinality
of X . As the capacity functional is the ultimate characteristics of a random
closed set, it is quite natural to conjecture that the expected value of μ(X)
for a general measure μ can be expressed using the capacity functional of X .
Although this problem remains open, some preliminary results can be found
in [3].

Another family of functionals of random sets is closely related to problems
that appear in stochastic optimisation. For a real-valued random function
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ξ(x), x ∈ E, with almost surely lower semicontinuous realisations, its epigraph

epi ξ = {(x, t) : ξ(x) ≤ t}
becomes a random closed set in E × R. The crucial point is to notice that
the infimum of ξ(x) for x from a compact set K is a random variable and
the points, where this infimum is achieved, form another random closed set.
This observation sparked a considerable activity in stochastic optimisation
literature, see [45, 46]. For instance, to ensure weak convergence of infima, it
suffices to prove that the sequence of the corresponding epigraphs converges
weakly as random closed sets.

Further results on functionals of random sets rely on assuming particular
models for random sets. Examples of these results are integral geometrical
formulae for Boolean models of random sets [49], Boolean random functions
[20, 48] and results for convex hulls of random points [47].

4.7 Statistics

Despite the fact that G. Matheron’s book [30] does not deal explicitly with
any statistical issue concerning random sets, the developed probabilistic tools
formed a platform for further developments of statistical techniques. While
statistical issues for point processes had been in the focus of attention of
statisticians for quite a while before 1975, the first statistical paper on random
sets [42] appeared later in 1977. It concerned estimation of a domain accessed
though Poisson points inside it. The natural estimator is the convex hull of
these Poisson points. This estimator is however biased and has to be rescaled
to eliminate the bias. Modern developments in this problem are surveyed in
[24].

Realisations of random sets are available through values of some function-
als or numerical measurements. Determining of sets using values of functionals
or measurements was initiated in [25] and further put into the framework of
mathematical morphology in [16].

For general random sets, it is possible to build the empirical capacity
functional in the same manner as empirical measures are defined. Let Xn,
n ≥ 1, be i.i.d. realisations of a random closed set X . Define the empirical
capacity functional as

T ∗
n(K) =

1
n

n∑
i=1

1Xi∩K �=∅ , K ∈ K .

The strong law of large numbers immediately implies that T ∗
n(K) converges

almost surely to T (K) for any givenK. However, the uniform convergence may
fail even over a simple family of sets K. For instance, let X be a random closed
subset of R defined as ξ+M , where ξ is normally distributed (say) and M is a
nowhere dense set of a positive Lebesgue measure. Then it is easy to see that
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|T ∗
n({x}) − T ({x})| does not converge uniformly to zero over x ∈ [0, 1]. The

uniform convergence properties have been explored in [31], where it was shown
that the empirical capacity functional converges uniformly over the family of
all compact sets if X coincides almost surely with the closure of its interior,
IntX , and P{IntX ∩ K �= ∅} = T (K) for each K ∈ K. The corresponding
central limit theorem and applications to estimation of quantiles of random
sets were discussed in [32]. Further results on weak convergence of families
of probability measures dominated by empirical capacity functionals can be
found in [10].

While statistical techniques for general random closed sets are still quite
scarce, more is known for particular models of random sets. This concerns,
in particular, the Boolean model, where a range of statistical tools exists
[35, 49], and union-stable random sets [33]. Statistical techniques for random
sets commonly rely on minimisation of minimum contrast or method of mo-
ments. This means that parameters are estimated by matching moments of
some functionals of the sample with the moments calculated (theoretically,
numerically or by simulations) for the underlying model. Approaches based
on likelihood are understandably quite complicated to work out, since the
complete likelihood function is very difficult to write even for models based
on the Poisson assumption.

5 Final remarks

The range of citation of Matheron’s random sets book [30] is extremely wide
and stretches far beyond the literature specifically concerned random sets.
Apart from a tremendous impact on mathematical morphology and image
analysis, its random sets chapters have been cited by many authors who wrote
on harmonic analysis on semigroups, sample paths properties of stochastic
processes, set-indexed processes, set-valued analysis, stochastic optimisation
and integral geometry. The up-to-date state of the random sets theory is
presented in [37].

Matheron’s book on random sets left enough open ends in random sets
theory to ensure its fruitful development for nearly thirty years. I am pleased
to note that this book was translated into Russian and published in 1978, very
soon after its English edition appeared in 1975. The translator, V.P. Nosko,
and the editor, V.M. Maksimov, did a great job going through the uneasy
text and supplying their comments to occasional unclear or difficult places.
When it came to writing my second year undergraduate project in 1980, I
discovered the Russian translation of Matheron’s book in a book shop and
was impressed by the way topology, convex geometry and probability theory
merge together. And I am still fascinated by it.
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1 Introduction

Until the 1970s random sets were only a marginal or exotic part of prob-
ability theory. This situation has changed completely since the publication
of the fundamental and seminal book by Matheron [43]. This book has laid
the fundamentals of the theory of random closed sets, provided the suitable
measure-theoretic machinery and offered the fundamental theorems. It also
presented an excellent introduction to the theory of the Boolean model.

The Boolean model appeared early in applied probability, typically in the
context of attempts to describe random geometrical structures of physics and
materials science. In most of these papers, only the case of spherical grains was
studied in ad hoc approaches. It was Matheron who created the general theory
of the Boolean model. Already in [39] the stationary and non-stationary ver-
sions of the model were studied. Even the case of a Cox process for the germs
was considered, and the grains were not necessarily convex. In [40] the Boolean
model is introduced in its stationary form, for any kind of grains; the case of
convex grains is studied in relation with the important semi Markov property.
This property is developed further in [42], where the Boolean model for non
convex and convex grains is studied, the intensity λ(x) being a measure, so
that the non stationary case is covered. Finally, in [43] the Boolean model ap-
pears in three different places: first, a Poisson point process on closed sets in
considered (pp. 57–61), generating abstract Boolean models in general spaces
(even non euclidean); then (pp. 61–62) the euclidean case in considered, and
detailed in the stationary case; the convex case is specialized in connection
with the semi Markov property (pp. 137–139).

The present paper describes in its first three sections briefly the classi-
cal results such as given in [43] and [61], beginning with some remarks on
random closed sets, together with some modern concepts for the characteri-
sation of their distribution. It then informs in section 4 about results for the
Boolean model under reduced invariance conditions. While in the classical
papers the model was stationary and isotropic, later also the non-isotropic
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and even non-stationary case has been investigated. In the physical literature
the idea of a Boolean model on a lattice appeared, which is briefly sketched
in section 5. Also physical problems have led to the study of percolation for
the Boolean model. A very successful heuristic approach to this difficult prob-
lem is described in section 6. Finally, important statistical methods for the
Boolean model are described in section 7. A lot of papers have been pub-
lished on statistical problems for the Boolean model, but a good part of them
presents practically unrealistic and instable methods. The authors go back to
the sources, in particular to Serra’s classical work, and describe briefly those
methods they consider as stable and powerful.

2 Characterising the Distribution of a Random Closed
Set

Matheron [41, 43] showed that the distribution of a random closed set Ξ is
given by the probabilities

T (K) = P (Ξ ∩K �= ∅) for K ∈ K ,

where K denotes the system of compact subsets of the space in which Ξ exists;
in the present paper this is the d-dimensional Euclidean space R

d. Sometimes,
T is called the capacity functional , because T is a so-called alternating capacity
of infinite order in the sense of Choquet.

It is easy to show that invariance properties of random closed sets can be
expressed in terms of the capacity functional. A random closed set Ξ is called
stationary if its distribution is translation invariant, i.e. Ξ and Ξh = {y : y =
x+ h, x ∈ Ξ} have the same distribution for all h ∈ R

d. This is equivalent to

T (K) = T (K + h)

holding for all K ∈ K and all h ∈ R
d. Isotropy is an analogous property

connected with rotations around the origin. Also here, a characterisation by
means of the capacity functional is possible.

The system K is so large that in non-trivial cases it is hopeless to specify
T (K) for all K ∈ K. A natural idea is therefore to consider only K’s belong-
ing to subsets of K. In particular, families of compact sets K are used which
are parametrised (preferably) by real parameters. This leads to functions that
can be presented graphically. Such families of compact subsets of R

d are e.g.
the systems of all singletons {x} for x ∈ R

d, pairs {x, y} for x and y in R
d,

triplets {x, y, z} for x, y and z in R
d, segments, and spheres.

The first case corresponds to the covering function defined by

p(x) = P (x ∈ Ξ) .
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If the random closed set is stationary, then p(x) is a constant, which here is
denoted by p. This value can be interpreted as the volume fraction, i.e.

p = E(νd(Ξ ∩ U))

where U is the unit cube, U = [0, 1]d. For a compact random set, the function
p(x) can be considered as a kind of mean or expectation of Ξ.

The function C given by

C(x, y) = P (x ∈ Ξ, y ∈ Ξ)

is called covariance or two-point probability function. In the stationary and
isotropic case, the covariance only depends on the distance r between the two
points x and y and is denoted as C(r).

A generalisation to three or more points is natural — however, closed-
form expressions for higher-order probability functions are known only for
very special models. Third-order probability functions play an important role
in the study of physical bulk properties of two-phase random materials, see
Jeulin & Ostoja-Starzewski [29], Jeulin [28], and Torquato [66].

Also the case where K is the ball of radius r centred at the origin o,
K = b(o, r), or a segment of length r with one endpoint in the origin and
some specified direction, K = s(o, r), is practically important. However, for
a stationary random closed set Ξ with positive volume fraction it is more
natural to consider the intersections of the ball or segment with Ξ when the
centre or endpoint does not belong to Ξ. The functions

Hs(r) = P (Ξ ∩ b(o, r) �= ∅ | o /∈ Ξ)
Hl(r) = P (Ξ ∩ s(o, r) �= ∅ | o /∈ Ξ) for r ≥ 0

are called spherical and linear contact distribution functions. In the anisotro-
pic case Hl depends on the direction of the segment s(o, r). In most practically
interesting cases, these functions are indeed distribution functions. They have
a nice geometrical interpretation: Hs(r) is the distribution of the random
distance from o to the nearest point of the random set Ξ, under the condition
that the origin o is not in Ξ. Analogously, Hl(r) belongs to the directional
distance from o to Ξ, where the direction is given by the segment direction.

Both functions Hs and Hl are closely related to volume fractions of dilated
sets. For example, it is

p+Hs(r)(1 − p) = volume fraction of Ξ ⊕ b(o, r) .

Therefore, the following idea of generalisation introduced by Mecke [44, 46,
47, 49], Mecke et al. [51], and Jacobs et al. [26, 27] seems to be natural:
Consider, for any stationary random closed set Ξ, the set Ξ ⊕ b(o, r) and
use the corresponding intensities of the curvature or Minkowski measures wk

(see Stoyan, Kendall & Mecke, [63], p. 235; Mecke & Wagner[53]), treated as
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functions wk(r) of r, in order to describe the distribution of Ξ. Brodatzki &
Mecke [10, 11] developed computer algorithms for the calculation of the wk(r).
Additionally, it is useful to consider also Ξ�b(o, r) and so to use functions of a
variable r taking both positive and negative values. This approach turned out
to be very fruitful. While often Hs(r) and equivalently w0(r) does not present
sufficient information, the whole family of w0(r), . . . , wd(r) characterises the
structure of Ξ very well, as demonstrated e.g. in Arns et al. [3, 4, 5] and
Jacobs et al. [26].

Furthermore, the Minkowski measures wk can directly be related to phys-
ical performance of heterogeneous materials where the spatial structure Ξ is
essential for the material properties. In König et al. [35] it could be shown
that for a fluid in an arbitrarily shaped container modelled, for instance, by
a Boolean model the surface tension and other thermodynamic properties de-
pend only linearly on the Minkowski measures wk(r) and not on other shape
descriptors such as powers of Gaussian and mean curvatures (see also Mecke
& Arns[50]).

3 Formulas for the Boolean Model

The Boolean model is the most famous and most frequently used random set
model. It is a mathematically rigorous formulation of the idea of an infinite
system of randomly scattered particles, see Hadwiger & Giger [21]. So it is a
fundamental model for geometrical probability and stochastic geometry. The
Boolean model has a long history; the first relevant papers appeared in the
beginning of the 20th century in the physical literature, see the references in
Stoyan, Kendall & Mecke [63]. The name ‘Boolean model’ appeared first in
Matheron [40] to discriminate this set-theoretic model from (other) random
field models, which appear in geostatistical applications.

The Boolean model is constructed by means of two components: a system
of grains and a system of germs. The germs are the points x1, x2, . . . of a
homogeneous Poisson process of intensity λ. The grains form a sequence {Ξn}
of i.i.d. random compact sets. Typical examples are spheres, discs, segments,
and Poisson polyhedra. A further random compact set Ξ0 having the same
distribution as the Ξn is sometimes called the ‘typical grain’. The Boolean
model Ξ is the union of all grains shifted to the germs,

Ξ =
∞⋃

n=1

(Ξn + xn) .

Its existence as a random closed set is given if

E(νd(Ξ0 ⊕K)) <∞ for all K ∈ K ;

a sufficient condition is
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ERd <∞

for the radius of the circumscribing sphere of Ξ0, see Heinrich (1993). In the
following it is always assumed that the typical grain Ξ0 is convex. This does
not mean that non-convex grains are unimportant. For example, the case
where Ξ0 is a finite point set corresponds to Poisson cluster point processes.

The basic parameters of a Boolean model are intensity λ and several pa-
rameters characterising the typical grain Ξ0. While for simulations the com-
plete distribution of Ξ0 is necessary, for a statistical description it often suf-
fices to know that the basic assumption of a Boolean model is acceptable and
to have some mean values of geometrical characteristics of Ξ0, e.g. its mean
volume.

The capacity functional of the Boolean model Ξ is given by the simple
formula

P (Ξ ∩K �= ∅) = 1− exp(−λE(νd(Ξ0 ⊕ Ǩ))) for K ∈ K , (1)

where Ǩ is the set {−k : k ∈ K}. The derivation of this formula is given in
Matheron (1975). Its structure is quite similar to the emptiness probability of
the Poisson process or to the probability that a Poisson random variable does
not vanish. It can perhaps be partially explained when applied to the partic-
ular case Ξ0 = {o}. Then, the Boolean model is nothing else but the random
set consisting of all points of the Poisson process of germs. Consequently,

P (Ξ ∩K �= ∅) = 1− exp(−λνd(K)) .

The calculation of the capacity functional of a Boolean model poses a
non-trivial geometrical problem, viz. the determination of the mean

E(νd(Ξ0 ⊕ Ǩ)) .

Here, integral geometry ([60], and [34]) helps if K is convex. If Ξ0 is a ball,
then the classical Steiner formula gives the result. If Ξ0 is not spherical but
isotropic (with distribution invariant with respect to rotations around the
origin o), a generalisation of this formula found by Matheron leads to a formula
in which the so-called Minkowski functionals Wk or intrinsic volumes appear.
For example, in the three-dimensional case it is

E(ν3(Ξ0 ⊕ Ǩ)) = V +
1
π
M(K)S +

1
π
MS(K) + V (K)

where M(K) = 3W2(K), S(K) = 3W1(K) and V (K) = W0(K) are integral
of mean curvature, surface area and volume of K, and M , S and V are the
corresponding means of Ξ0. For the non-isotropic case see section 4 and for
lattice configurations see section 5.

For non-convex K, the numerical determination of T (K) is rather difficult.
Already the numerical determination of the covariance C(r), which belongs to
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the case where the set K is a pair of points of distance r, is a difficult problem
unless Ξ0 is a ball or a Poisson polyhedron, since it needs the set covariance
of Ξ0. For some particular cases, also formulas for three-point probabilities
are given, i.e. probabilities of the form

P (x1 ∈ Ξ, x2 ∈ Ξ, x3 ∈ Ξ),

namely in the planar case for circular, rectangular and Poisson polygonal
grains and for the spatial case with spherical and Poisson polyhedral grains.

By means of the formula for the capacity functional and the generalised
Steiner formula it is easy to give formulas for the spherical and linear contact
distribution functions. The spherical contact distribution function satisfies

Hs(r) = 1− exp(−λ
d∑

k=1

(
d

k

)
W kr

k) for r ≥ 0

where the W k are the expectations of the Minkowski functionals of Ξ0. The
linear contact distribution function Hl(r) is an exponential distribution func-
tion with parameter λ bd−1

bd
W 1, where bk is the volume of the unit sphere of

R
k.

Formula (1) also leads to the result that the intersection of a Boolean
model with a linear subspace of R

d is again a Boolean model; formulas for
the intensity and the mean Minkowski functionals of the grains of the induced
lower-dimensional Boolean model are given in Matheron [43], p. 146.

Finally, for the densities of the Minkowski functionals or intensities wk

of the Minkowski or curvature measures of the Boolean model formulas are
known (for variances see section 5, Mecke [48] for general grain shapes, and
Kerscher et al. [33] for spheres in three-dimensional Euclidean space). The
simplest characteristic of this type is volume fraction VV , which is given by
the formula

VV = 1− e−λV , (2)

where V is the mean d-dimensional volume of the typical grain. This is an
easy consequence of formula (1) for the capacity functional.
Also for specific surface area SV a nice general formula holds, namely

SV = λSe−λV , (3)

where S is the mean (d− 1)-dimensional surface area of the typical grain.
In the other cases the Minkowski measures are signed measures, and thus the
intensities can be negative. The following gives the intensities for d = 2 and 3
in a stereological notation, similarly as in Stoyan, Kendall & Mecke [63], pp.
76–77.
To d = 3 and k = 1 corresponds the specific mean curvature MV , which
satisfies

MV = λ
(
M − π2

32
λS

2
)
e−λV , (4)
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where M is the mean integral of mean curvature of the typical grain.

The intensity related to the Euler-Poincaré characteristic is often called
specific connectivity number and will be denoted here by NA(d = 2) and
NV (d = 3). It holds

NA = λ
(
1− λL

2

4π

)
e−λA (5)

and

NV = λ
(
1− λM S

4π
+

π

384
λ2S

3
)
e−λV , (6)

where L is the mean boundary length of the typical grain. These formulas
were first given by Miles [55]. The general formulas for the d-dimensional
case are best presented in Weil [72], his formulas (6) and (7). Brodatzki &
Mecke [10, 11] developed computer algorithms for the calculation of Minkowski
functionals Wk(Ξ) for a configuration Ξ which allow in addition to the mean
values wk the numerical estimation of second order moments of Wk(Ξ) for
the Boolean model - analytically calculated by Mecke [48] (see Kerscher et al.
[33] for variances in the Boolean model with spheres).

Since Ξ0 ⊕ b(o, r) is convex and isotropic if Ξ0 has these properties, the
formulas above yield explicit expressions for the functions wk(r) for r > 0
introduced in section 2. Thus it is clear that for the Boolean model these
functions for r > 0 depend only on the mean Minkowski functionals of Ξ0

and λ.
There are also positive or absolute curvature measures, which were intro-

duced by Matheron [43] and Schneider [59]. In the cases d = 2 and 3 those
measures related to the Euler-Poincaré characteristic and to the integral mean
curvature are of particular interest, see Stoyan, Kendall & Mecke [63], pp. 238–
242. The corresponding intensity is called the specific convexity number N+

V ,
which satisfies in all dimensions

N+
V = λe−λV , (7)

as shown by Matheron [43].
We mention here a famous application of the Boolean model which goes

back to another hero of probability theory in the 20th century, Kolmogorov. He
used it in the context of modelling of crystallisation processes, see Kolmogoroff
[36] and Capasso et al. [12]. Consider a Poisson process system of germ points
in which radial growth starts at time t = 0. The speed of growth α is the
same for all germs. So at time t, each germ becomes a sphere of radius αt if
enough space is available. The volume fraction of the corresponding Boolean
model is

VV (t) = 1− exp
(
−λ4

3
πα3t3

)
for t ≥ 0 . (8)

One can assume that growth is stopped where two spheres come into contact,
while otherwise growth into empty space still is possible. A nice visualisation
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Fig. 1. Series of photographs of a dewetting liquid film viewed through a reflection
light microscope: the 80 nm thick polystyrene film (dark) beads off the non-wettable
Si substrate (bright) by forming holes at random defects which grow in time given
in the left upper corner (see Jacobs et al., 2000).

of the growing germs can be obtained by a dewetting process of thin liquid
films. Films rupture at random distributed defects (see Figure 1) and form
holes, which grow in time, until the fluid material is pushed completely in
thin filaments, which finally break up in droplets. In Figure 2) the time de-
pendence of the experimentally measured Minkowski functionals of the film
region is compared with the theoretical expectations of the Minkowski func-
tionals given by Eqs. (2) - (6). The good agreement is a clear indication for an
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initial Poisson process of holes and a constant speed of growth α. Equation (8)
and some generalisations are called Kolmogorov-Johnson-Mehl-Avrami equa-
tions. By the way, several authors have studied the empty space regions for
very large t, when the volume fraction of the Boolean model is close to one.
Hall [22] and Aldous [1] have shown that the distribution of a typical empty re-
gion is asymptotically the same as that of a Poisson polygon (or polyhedron),
which is the typical cell of a tessellation generated by a system of random
lines (or planes) called Poisson line (plane) process. A generalisation of Hall’s
result can be found in Molchanov [56]. Chiu [14] studied the probability of
complete coverage of cubes. A paper by Erhardsson [17] adds to the body
of evidence that asymptotically the union of all uncovered regions has a dis-
tribution similar to that of a Boolean model with Poisson polygonal grains.
This may perhaps explain why such models turned out to be good models for
systems of pores, see Serra [61]. Of course, there are also other arguments for
the use of this particular Boolean model, namely its polygonal nature and the
form of the corresponding covariance.

Fig. 2. The time evolution of the Minkowski functionals of the liquid polystyrene
film (dark region in Figure 1) can be well captured by the Eqs. (2), (3) and (5),
i.e., by the intensities wk assuming a linear growth behavior of the radii R = αt of
Poisson distributed holes (solid lines; see Jacobs et al., 2000).
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4 The Non-isotropic and Non-stationary Boolean Model

A fundamental assumption in the use of formula (1) is that the typical grain
Ξ0 is isotropic. In this case Matheron’s generalised Steiner formula can be
applied; the Boolean model is not only stationary but also isotropic.

If Ξ0 is not isotropic, then the Boolean model is still stationary, but many
calculations become rather difficult. Clearly, volume fraction VV still is given
by

VV = 1− e−λV ,

since VV is obtained from Eq. (1) by setting K = {o}. But the determination
of the other characteristics discussed in section 2 is difficult, and so it is useful
that analytical expressions for particular cases are given by Charollais et al.
[13] and Mecke [44, 47].
Weil [71] has thoroughly studied the non-isotropic case and found that it is
necessary to use methods of translative integral geometry. Indeed, the follow-
ing generalisation by Minkowski of the Steiner formula, in which the polyno-
mial form is retained,

νd(K ⊕ rM) =
d∑

j=0

rd−j

(
d

j

)
V (K[j],M [d− j])

for convex K and M and r > 0 includes so-called mixed volumes V (K[j],
M [d− j]). They are particular cases of so-called mixed functionals V (j)

m1,...,mk ,
which appear as coefficients in the following iterated translative formula for
the intrinsic volume Vj :∫

Rd

· · ·
∫
Rd

Vj(K1 ∩ (K2 + x2) ∩ . . . ∩ (Kk + xk))νd(dx2) · · · νd(dxk)

=
d∑

m1,...,mk=j
P

i
mi=(k−1)d+j

V (j)
m1,...,mk

(K1, . . . ,Kk) for j = 0, 1, . . . , d .

Weil [71] defined constants called ‘mixed densities’ for these functionals, which
appear in the formulas for the intensities of curvature measures of stationary
Boolean models. For example, NA in the planar case satisfies

NA = (λ −A(X,X∗))e−λA ,

where A(X,X∗) is a mixed area (instead of volume) density, which can be
written as an integral which is determined by the support function and the
boundary length measure of the typical grain Ξ0. In the isotropic case it is
A(X,X∗) = λ2L

2
/4π.
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There is another practically interesting case of reduced invariance prop-
erties of the Boolean model, which was already studied by Matheron [39] of
practical interest: The grains can be i.i.d. disks (d = 2) or spheres (d = 3),
but the Poisson process of germ points is inhomogeneous with intensity func-
tion λ(x). In this case the Minkowski measures are not stationary, i.e., it
does not make sense to speak about intensities. Instead, intensity functions
are used, i.e. Radon-Nikodym densities of the Minkowski measures with re-
spect to the Lebesgue measure. Examples are the location dependent volume
fraction VV (x) given for x ∈ R

d by

VV (x) = P (x ∈ Ξ) = lim
r↓0

Eνd(Ξ ∩ b(x, r))
bdrd

or location dependent specific surface area SV (x) given analogously by

SV (x) = lim
r↓0

EHd−1(Ξ ∩ b(x, r))
bdrd

,

where Hd−1 is the (d−1)-dimensional Hausdorff measure or surface area mea-
sure. Several authors were able to give formulas for VV (x) and SV (x) for the
case discussed here by means of ad hoc methods, see the references in Weil [72]
and Mecke [44, 47]. A systematic approach is presented by Weil [72], section
6. He shows that in the planar case the three relevant intensity functions are
essentially convolutions of λ(x) and functions related to the grain diameter
distribution if the grains are i.i.d., see Lantuejoul [37], p. 156. This result can
be considered as a particular case of a more general theory for Boolean mod-
els with an inhomogeneous Poisson process of germs and location dependent
non-isotropic grain distribution, which was created in Mecke [44, 47], Fallert
[18] and Weil [72]. Here again mixed functionals play a role.

Thus the situation today is so that theoretically intensity (or intensity
function) formulas for rather general Boolean models can be derived and that
it is known which price one has to pay for deviations from the usual invariance
properties of stationarity and isotropy. The only non-trivial case of anisotropic
grains in which explicit formulas can be obtained is that of parallelepipeds,
with sides parallel to the coordinate axes as in Mecke [45]. Non-isotropic and
non-stationary Boolean models should be exploited further, since many ap-
plications are possible on complex fluids, colloidal dispersions and composite
and porous media, which show qualitatively rich phase diagrams and spatial
structures; see Mecke [47], Brodatzki & Mecke [10] and Groh & Mecke [20].
Other applications are possible in the analysis of inhomogeneous distributions
of galaxies or in the estimation of percolation thresholds in inhomogeneous
and anisotropic porous rocks, see Arns et al. [3, 4, 5].
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5 The Discrete Boolean Model

Since Lenz and Ising introduced the so-called Ising model in the early 1920s,
lattice models became the backbone of statistical physics, for instance, for the
description of magnets and fluids as well as for morphological image analysis
and percolation phenomena. Instead of distributing convex bodies continu-
ously in Euclidean space, these models place cubes, for instance, at discrete
spacings. So it is natural to define a discrete Boolean model on a lattice. This
discrete model generates spatial sets by unions of i.i.d. unions of polyhedra
(‘grains’) which are centred at lattice points (‘germs’); see Figure 3.

Fig. 3. Realization of a two-dimensional discrete Boolean model (shown in grey)
on a 2-dimensional lattice Λ(2) . In the left lower corner there is a single unit cube
C

(2)
i (in white) centred at a site xi.

For theoretical studies of the discrete Boolean model a discrete variant
of integral geometry has been developed by Voss [69] and independently by
Mecke [44], see also Likos et al. [38] and Mecke [45, 47]. Since discrete objects
can be translated and rotated according finite lattice spacings and angles,
notions and definitions of integral geometry may be adopted straightforwardly
for lattice configurations and lattice groups of motions.

The main idea is as follows. Consider the d-dimensional hypercubic lattice
Λ(d) = Z

d. At a point xi ∈ Λ(d) (lattice site) a d-dimensional unit cube
C

(d)
i can be centred, called a ‘cell’. The non-empty intersection of two cells

C
(d)
i ∩ C

(d)
j is called an l-cell, if it has dimension l ≤ d. In the case d = 3 the

l-cells are corners C(0), edges C(1) and plaquettes C(2) of the cubes C(3). The
sets considered are of the form (see Figure 3)

A =
⋃

(l,m)

C(l)
m ,
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i.e. finite unions of cubes C(d)
m and l-cells C(l)

m of any dimensions l. For these
discrete objects additive Minkowski functionals Wk can be defined by

Wk(A) =
1(
d
k

) ∑
E(k)

χ(A ∩E(k)) for k = 0, . . . , d− 1 (9)

and

Wd(A) = χ(A),

where E(k) denotes a k-dimensional lattice hyperplane, i.e. E(k) ∩ Λ(d) is
congruent to Λ(k), and χ(B) is the Euler-Poincaré characteristic of B. They
are related to simple geometrical quantities of the discrete set A, namely
the number W0 of occupied cells C

(d)
i of A, the number 2dW1 of boundary

plaquettes C(d−1)
k etc. In particular, for a l-dimensional cube C(l) it is

Wk(C(l)) = k! l!
d!(k+l−d)! for d− l ≤ k ≤ d and Wk(C(l)) = 0 otherwise.

These functionals Wk differ from the Minkowski functionals defined in con-
tinuous integral geometry only by the factor bk, the volume of the k-dimen-
sional unit sphere. The definition (9) leads to

Wk(A) =
d∑

i=d−k

(−1)d−k+ik!i!
d!(k + i− d)!

#i(A) , (10)

where #i(A) is the number of i-cells C(i) belonging to A. Analogous to the
kinematic formula of continuous integral geometry, for integrals over the lat-
tice group of motions the following kinematic formula holds∫

Wk(A ∩A′)dA′ =
k∑

i=0

i∑
j=0

(
k

i

)(
i

j

)
Wi(A)Wk−j(A′) (11)

for k = 0, . . . , d and discrete sets A and A′ (shown in Figure 3), see
Mecke (1994). The integral

∫
dA′ denotes a sum

∑
A′ over all discrete ro-

tations and translations of A′ by lattice vectors of Λ(d). In particular, for
k = 0 (volume) W0(A)W0(A′) is obtained and for k = 1 (surface area)
W0(A)W1(A′) + W1(A)W0(A′) + W1(A)W1(A′). Note the difference to the
usual kinematic formula, where the last term W1(A)W1(A′) does not appear.

Consider now the discrete Boolean model where grains Ξn with mean
Minkowski functionals W i are placed randomly and independently on the
lattice Λ(d) with intensity λ, i.e. λ is the mean number of germs per lattice
point. Applying the kinematic formula (11), the differential equation

dwk(λ)
dλ

= W k −
k∑

i=0

i∑
j=0

(
k

i

)(
i

j

)
wi(λ)W k−j (12)
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can be derived straightforwardly for the densities wk(λ) of the discrete Min-
kowski functionals for these lattice-homogeneous and isotropic configurations
seen as functions of λ, see Mecke [44]. With the initial condition wk(0) = 0 for
all k, the differential equation (12) can be solved readily for any dimension d
yielding

w0(λ) = 1− e−λV

and

wk(λ) =
k∑

ı=0

(−1)i+k+1

(
k

i

)
e−λ

Pi
j=0 (i

j)W j(A) for k = 1, . . . , d . (13)

These densities are of great value for lattice models in statistical physics when
studying percolation phenomena [53], [52], fluid phase behaviour ([44] and
[38]) or porous media ([2, 3, 4, 5]).

Application of Eq. (10) also yields second-order moments of Minkowski
functionals. For example, Mecke (1994) derived a formula for the variance of
the Euler-Poincaré characteristic in the case where the typical grain Ξ0 is the
unit-cube of the lattice. Let A be a cubic set of positive volume V (A). Then
the normalised variance

σ2(χ) = E(χ(A ∩ Ξ)− E(χ(A ∩ Ξ)))2/V (A)

satisfies independently on A

σ2(χ) =
d∑

i=0

(
d

i

)
f2

i (q2d−i

) gd−i(q2d−i

) (14)

with

q = e−λ, p = 1− q, fi(q) =
i∑

j=0

(
i

j

)
(−2)jq2j

and

gi(q) = (−1)i+1 +
i∑

j=0

(
i

j

)
(−2)jq−2−j

for i = 0, 1, . . . , d .

Figure 4 shows σ2(χ) for d = 1, 2 and 3 [44]. Second order moments can also
be derived for more complex primary discrete grains than a unit cube.

Such normalised variances and also product densities can be calculated
also for continuous Boolean models, in particular, with discs and spheres as
typical grains Ξ0 in Euclidean space[48] ; an interesting application in physics
is given in Kerscher et al. [33]. Figure 5 shows σ2

k ( = normalised variances for
the Wk) for a planar Boolean model, where Ξ0 is a disc of constant radius R.
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Fig. 4. Normalised variance of the Euler-Poincaré characteristic for the discrete
Boolean model described in the text, as function of volume fraction p for d = 1, 2
and 3.

Note that the functional form of these characteristics becomes more complex
with increasing index k. Figure 6 shows the normalised product density (= pair
correlation function) corresponding to W2 for the same model. Note the pole
at r = 0 and the discontinuity at 2R. The calculations leading to these results
are rather difficult (for details and explicit expressions see Mecke[48], while the
lattice case is a bit simpler and thus more convenient for physical applications.
Also for the case of the surface measure corresponding to a Boolean model
with identical spheres the product density is known since Doi [16], see also
Torquato [66], formula (6.18); the formula can be seen as a generalisation of
the well-known relation

SV = (1− p)H ′
s(0).

The main advantage of the discrete Boolean model compared to the con-
tinuous version is the simplicity of analytic calculations and the feasibility
of computer simulations when applied to Gibbs processes as discussed in the
following section.
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Fig. 5. Normalised variance σ2
k of area (k = 0), boundary length (k = 1) and

Euler-Poincaré characteristic (k = 2) for a planar continuous Boolean model with
identical discs of radius R as function of intensity λ.

6 Beyond the Boolean Model: Morphological Gibbs
Processes

For many physical applications the Boolean model of randomly and indepen-
dently distributed grains is insufficient to describe typical spatial configura-
tions, for instance, of fluids or composite materials. Models with correlations
between the grains are necessary in order to capture the correct physical be-
haviour of measurable quantities such as pressure or specific heat as function
of temperature. Therefore, in 1993 a Gibbs process model was introduced
based on the Minkowski functionals of overlapping grains Ξi in Mecke [44, 46]
and Likos et al. [38] for the lattice case, and in Brodatzki & Mecke [10] for
the continuous case.

In the canonical case of n bodies the construction is as follows: Each con-
figuration Ξ is assumed to be the union of mutually penetrable convex bod-
ies (‘grains’) Ξi, Ξ =

⋃n
i=1 giΞi, where the gi are elements of the group G

of motions (translations and rotations) in the R
d. The Boltzmann weights

exp{−βH} of the Gibbs process are specified by the inverse β = 1/kBT of
the temperature T and the Hamiltonian

H(Ξ) =
d∑

k=0

hk

(
Wk

(
n⋃

i=1

giΞi

)
−

n∑
i=1

Wk(Ξi)

)
(15)
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Fig. 6. The normalised pair correlation function g22(r) corresponding to the Euler
characteristic W2 for the Boolean model of overlapping discs of radius R and inten-
sity λ (n = πR2λ). Note the pole at r = 0 and the discontinuity at 2R. Integrating
w2

k(gkk(r) − 1) over the distances r gives the variances σ2
k shown in Fig. 5.

with suitable weights hk, which are model parameters. It constitutes a very
general model for composite media assuming additivity of the energy H of
the mesoscopic components. The configurational partition function (the nor-
malising constant of the Gibbs distribution) is given by

Zn =
1
n!

∫
G

exp
{
− βH(Ξ)

} n∏
j=1

dgj (16)

where the integral denotes averages over the motions of the grains with respect
to the invariant Haar measure on the group G. Due to the additivity of the
Minkowski functionals the partition sum is well defined even for negative
values of the Hamiltonian, e.g., for negative Euler-Poincaré characteristics.
This model can be generalised to the grand canonical case and the stationary
case.

Thermodynamic quantities such as pressure or phase diagrams of this
model are then given in terms of additive morphological measures of its con-
stituents. Depending on the relative strength of the energies related to volume,
surface area, mean curvature and Euler characteristic of the domains, one finds
qualitatively different phase diagrams and spatial structures which resembles
the behaviour of microemulsions, for instance ([38, 44, 46]).

In Figure 7, for instance, typical planar stationary (spatially homogeneous)
configurations obtained by Monte-Carlo simulations using the Metro- polis



168 Dietrich Stoyan and Klaus Mecke

algorithm as described in Brodatzki & Mecke [10, 11] are shown for the special
case of circular grains with constant radius. Only the midpoints of disks are
drawn and solely the Euler-Poincaré characteristic Wd is used as energy H ,
i.e. hk = 0 for k < d in Eq. (15). Depending on temperature T and intensity
λ of the process, one finds not only homogeneous phases but quite complex
structured distributions such as solid phases, where the discs are located on
regular periodic lattice sites, and even configurations of close-packed strings
of discs. This ‘glassy’ phase shown in Figure 7 reminds of a dense packing of
styrene spheres.
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Fig. 7. Typical configurations of the centres of overlapping discs generated by the
morphological Gibbs process given by Eqs. (15)-(16) with a Hamiltonian depending
only on the Euler-Poincaré characteristic [10]. In the upper (lower) row the tem-
perature T (intensity λ) of the stationary Gibbs process is fixed and the intensity
(temperature) increases to the right.

Further Monte Carlo simulations and density functional theory for this
morphological interaction model have shown a rich phase behaviour and com-
plex spatial structures, see Brodatzki & Mecke[10] and Groh & Mecke[20].
Although physically inspired (see Widom & Rowlinson[73] and Mecke[44]),
the Gibbs process defined above in terms of Minkowski functionals is impor-
tant also in spatial statistics. The analogous models have appeared under the
names ‘area interaction’ and ‘quermass’ process, see Baddeley & van Lieshout
[6], Baddeley et al. [6], Kendall [31] and Kendall et al. [32]. Statisticians have
also studied other forms of interaction, for example nearest neighbour Markov
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processes, where the interaction is expressed by the corresponding Voronoi
tessellation, see Baddeley and Møller [7] and van Lieshout [67]

While in the statistical literature the problem of existence of these models
and of model parameter estimation has been studied, standard methods of
statistical physics such as expansion of the partition sum (16) of the Hamil-
tonian (15) in powers of inverse temperature β = 1

kBT lead to approximate
analytical expressions for the partition sum, i.e. for first- and second-order
moments, but also for experimentally measurable correlation functions and
phase diagrams for colloidal systems, see Mecke [47] and Groh & Mecke [20].

7 Percolation in the Boolean model

The geometry of Boolean models can be rather complicated: the voids between
the grains and the clumps of overlapping grains may have quite interesting
shapes and topologies. Its systematic investigation in the mathematical liter-
ature began with Kellerer [30] and Hall [22].

One of the most important problems in this context is percolation. Since
the introduction of ‘percolation processes’ to describe gelation and fluids in
porous media, percolation models became important for the understanding
of many physical properties, see Stauffer & Aharony [62]. Most of the effort
is focused on critical exponents of the percolation transition, which show a
universal behaviour and can therefore be described by the simplest model
exhibiting a percolation threshold. But in designing composite materials it
is more important to understand the non-universal behaviour of transport
quantities such as electrical and thermal conductivity, diffusion constants or
elastic moduli, for instance, in the Boolean model. These non-universal fea-
tures include the location of the critical threshold and also the dependence
of physical quantities on the spatial structure of the component phases away
from the critical region. In particular, the prediction of the percolation thresh-
old as a function of volume fraction, shape, orientation, and correlations of the
component phases is a key problem in studying random multiphase structures.

In the case of a Boolean model, two features are associated with the word
‘percolation’:
(i) an ‘arbitrary’ grain of the Boolean model belongs with positive probability
to a clump of infinite order (there are infinitely many Ξi +xi being connected
by overlapping);
(ii) the mean number of members of the clump containing an ‘arbitrary’ grain
of the Boolean model is infinite.
Usually, percolation is studied for a fixed typical grain Ξ0 in dependence on
intensity λ. One expects that there is a threshold λc such that for λ > λc

there is percolation and for λ ≤ λc not, and many authors believe that the
critical value of λc is the same for the two cases (i) and (ii) above.

While mathematicians proved until now mathematically strict bounds
for λc mainly for spherical grains (see Hall[22], Meester & Roy[54] and
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Grimmet[19]), physicists derived approximations which are consider to be
more useful for applications. The following presents two such approaches.

The first one uses the ‘excluded’ volume Vex or the volume of the difference
body´, i.e. Vex = νd(Ξ0⊕Ξ̌0). The idea is that in a percolating Boolean model
each particle should have in the average (at least) one neighbor, therefore
λcVex = 1 is a reasonable percolation criterion.

In the case of isotropic grains, Matheron’s generalized Steiner formula
yields Vex. It is

Vex = 2A+
U

2

2π
for d = 2 (17)

and

Vex = 2V +
MS

2π
for d = 3 . (18)

In the particular case of segments of length l in the plane, Eq. (17) yields
the approximation λc = α/l2 with α = π/2. Computer simulations showed
however over a wide range of lengths l a percolation threshold λc ∼ 5.7/l2, i.e.
the predicted qualitative behaviour but a somewhat larger coefficient α. So
perhaps the excluded volume approach provides a first insight of the threshold
dependence on size, shape and orientation of the grains, but it is far from being
satisfactory.

A more interesting approach applies topological arguments based on the
observation of Mecke & Wagner [53] that the specific connectivity number NV

of configurations vanishes near the percolation threshold, see also Bretheau &
Jeulin [9]. The mean values NV are polynomials in λ and coincide with the
matching polynomials used in percolation theory to calculate exact thresholds
for self-matching lattices. Moreover, the connectivity number is positive for
isolated cluster configurations but negative for connected sponge-like struc-
tures, so that the smallest zero λ0 of the function NV (λ) given by formula
(5) taking λ as variable may provide a good estimation of the percolation
threshold λc. Often it is more elegant to use n0 and nc defined by n0 = λ0A
or λ0V and nc = λcA or λcV . For d = 2 and 3, the zeros are

n
(2)
0 =

4πA

U
2 (19)

and

n
(3)
0 =

48M V

π2S
2

(
1−

(
1− π3S

6M
2

)1/2
)

. (20)

Table 1 gives some values of λc and nc in comparison to λ0 and n0 showing
again the good quality of the topological approach. Figure 8 shows for the case
of random cylinders of length L and radius r empirical values of λc obtained
by Monte-Carlo simulations in comparison with the zero λ0 of the specific
connectivity number and percolation estimates obtained by means of Vex.
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Table 1. λc and nc compared with λ0 and n0 for segments and discs.

d = 2 d = 3
discs segments balls discs

nc = 1.12 l2λc = 5.7 nc = 0.34 λc = 0.19

n0 = 1 l2λ0 = π n0 = 0.38 λ0 = 0.22

1 10 100
L / r

1

10

100
1 

/ λ
c

percolation threshold
excluded volume criterion
zero λ0 of  NV(λ)

Fig. 8. Percolation thresholds λc (dots) for Boolean models with isotropic cylinders
of length L and radius r obtained by simulation. The zero λ0 of NV (λ) given by Eq.
(20) (full line) is a good estimate of the percolation threshold. The excluded volume
criterion yields in general a less accurate estimate.

Various other grain shapes were tested numerically by Mecke & Wag-
ner [53] and Mecke & Seyfried [52] in order to confirm the assumption that
the analytically available zero of NV (λ) is a good estimate of λc. Of course,
analytic calculations based, for instance, on the cluster expansion of the pair-
connectedness function can in principle provide more accurate values (Stauffer
& Aharony [62]separately. The advantage of the heuristic zero criterion is the
explicit availability of the formula and its dependence on the geometry of the
typical grain. Furthermore, one can show that the specific connectivity num-
ber has in the case of some particular lattice sets a behaviour already known
in site percolation theory, see Mecke & Wagner [53].

The percolation threshold is an extremely important quantity for transport
properties of fluids in porous media, because a fluid flow is impossible for
porosities below this threshold. Since configurations of Boolean models are
often used to mimic porous media, a statistical analysis as presented in the
following section is essential for the prediction of percolation thresholds and
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transport properties based on the measurement of the morphology of a porous
media.

8 Statistical Analysis for the Boolean Model with
Convex Grains

The aim of statistical analysis for the Boolean model is the estimation of
model parameters and testing the distributional hypothesis. In the following
we describe methods which solve these problems. They are a small selection
from a vast literature, which is better discussed in Molchanov [57] and Stoyan
[64]. It is our aim to present methods which are numerically stable, suitable
for automatic analysis and conceptionally simple. Methods which work well
only in the case of manual measurement or which are otherwise sophisticated
are omitted, e.g. methods using curvatures or tangents.

The solution of the test problem goes back to the early 1980s, see the book
Serra [61] and its forerunners and the references on p. 85 in Stoyan, Kendall &
Mecke [63]. The idea is to use contact distribution functions such asHl and Hs.
For these functions formulas are known in the case of the Boolean model (see
section 3), and so it is possible to compare empirical functions Ĥl and Ĥs with
their theoretical counterparts. Usually the logarithm of 1−Hl(r) and 1−Hs(r)
is taken, which yields polynominals. Division by r yields for Hl a constant
value and, in the planar case, for Hs a linear function, see Serra [61], p. 495,
and Stoyan, Kendall & Mecke [63], p. 87. For testing the model hypothesis,
these functions are plotted and inspected visually. If they are (approximately)
constant and linear, respectively, the Boolean model hypothesis is supported.
It is obviously very difficult to construct a rigorous significance test for this
problem. Probably, simulation tests as described for the case of point process
statistics in Stoyan & Stoyan [65] are the appropriate method, see Kerscher
et al. [33]. But such tests include simulations of Boolean models and need not
only numerical values of λ but also the complete probability distribution of
Ξ0, including size and shape assumptions.

Under such assumptions, the power of the test can be increased by replac-
ing Hs(r) by the volume fraction of Ξ⊕b(o, r) and Ξ�b(o, r), so obtaining the
function w0(r) for arbitrary real r, i.e. volume fraction as a function of r (see
Mecke et. al. [51], Jacobs et al. [26, 27], Arns et al. [3, 4, 5]). This function can
be determined analytically for a Boolean model Ξ for r > 0 since Ξ ⊕ b(o, r)
is a Boolean model with grains Ξ0⊕ b(o, r), which are convex if Ξ0 is convex;
it is not quite simple to determine the curvature intensities of Ξ � b(o, r),
which in general requires numerical algorithms. In order to demonstrate the
application of this test, it is applied to the termite nest shown in Figure 9.
Its morphology seems to be reminiscent of the structure of level sets of Gaus-
sian random fields, which is therefore a natural model choice for describing the
morphology of this system, see Arns et al. [2], [3, 4, 5]. Consequently, there are
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Fig. 9. Tomographic image of a termite nest. Courtesy of Tim Senden.

two alternative classes of models for the structure, namely level sets of Gaus-
sian random fields and Boolean models. The simplest case of a Boolean model
is that with Ξ0 = b(o, r0), called IOS (“identical overlapping spheres”). For
the termite nest, the sphere radius r0 was estimated by means of the methods
described below as r0 = 3.3 mm, while the parameters for the random field
models were estimated using the covariance function. Figure 10 shows the
empirical covariance for the termite nest data and theoretical covariances for
the identical overlapping spheres model (IOS) and two different level sets of
Gaussian random fields. Obviously, this second order characteristic is not very
helpful in deciding about a suitable model.

In Figure 11 the function w0(r) is shown as function of the erosion/dilation
radius r. Although the volume fraction seems to be matched well by all mod-
els, one may observe differences for negative values of r. Thus, the identical
overlapping spheres model (IOS) may be ruled out as a model for the termite
nest structure. Note that the values of w0(r) for r < 0 were obtained by simu-
lating identical overlapping spheres and erosion; the eroded Boolean model is
not a Boolean model – in contrast to a dilated. In order to allow a comparision
with voxelized experimental datasets, the discrete Boolean model (section 5)
is used here where spheres are approximated by discrete lattice grains. There-
fore, one observes in the intensities shown in Figs 11- 13 deviations from the
equations given in section 3. The shape of − log(1−Hs(r))/r for the data pre-
sented in Figure 12 are consistent with may indicates that perhaps another
typical grain Ξ0 (e.g. a sphere with random radius) yields a better fit; this
problem is not further considered here. Still the two Gaussian field models are
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Fig. 10. Empirical and theoretical covariances for the termite nest data. The
IOS model is a Boolean model with identical spherical grains. A 1-level-Cut is a
thresholded image of a Gaussian random field. In contrast a 2-level-cut denotes the
black/white image obtained from a Gaussian random field by thresholding at two
different values and viewing only spatial regions with field values in between.

in accordance with the termite nest data. But the model test can be continued
by considering also the other curvature intensities, i.e., the functions wk(r).
The corresponding empirical functions are shown in normalized form in Figure
13 both for the termine nest data and for the three models. The conclusion is
that none of the models is completely appropriate for the termite nest.

For parameter estimation we recommend the method of intensities, which
is a variant of the moment method of statistics and was succesfully applied
in many cases. It is described here for the planar case; the case of three-
dimensional porous media is considered in Arns et al. [3, 4, 5] and Mecke &
Arns [50]. It is based on the following three formulas:

AA = 1− exp(−λA) , (21)
LA = λ(1 −AA)U , (22)

and

NA = λ(1 −AA)
(
1− λU

2

4π

)
. (23)

Here AA is area fraction, i.e. the same as p in section 3. LA denotes the specific
boundary length, i.e. the mean boundary length of the Boolean model per unit
area and NA is the specific connectivity number. All these intensities can be
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Fig. 11. Volume fraction w0(r) for the termite nest, the Boolean model of identical
overlapping spheres (IOS), and two Gaussian random field models in dependence of
r. Positive values of r are related to dilation, negative to erosion.
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Fig. 12. The function − log(1−Hs(r))/r for the termite nest and the various models
rules out the IOS model.

estimated by means of image analysis. The method yields estimators of λ and
of A and U , mean area and perimeter of the typical grain Ξ0. Thus in the
case of spherical grains the first two moments of the diameter distribution can
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Fig. 13. The functions (a) w1(r), (b) w2(r) and (c) w3(r) for the termite nest
(Arns et al., 2004). These functions show very clearly the morphological differences
between the nest structure and the various models, clearer than C(r) or w0(r).
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be obtained. Various simulation experiments have shown that the intensity
method yields reliable results, even at high volume fractions; the newest are
reported in Arns et al. (2002, 2003, 2004) and Mecke & Arns (2004).
The method of intensities has a long history. For the isotropic case it first
appeared in Santaló (1976), p. 284, and then in Kellerer (1983). A paper where
the specific convexity number N+

V was used, is Bindrich & Stoyan (1990), while
the stationary (non-isotropic) case was considered in Weil (1988).

An alternative, which can yield more model parameters, is the minimum
contrast method. The idea of that method is to minimize a contrast functional,
for example

Δ(θ) =

b∫
a

(f̂(r) − f(r, θ))2dr ,

so using least squares fitting.
Here f(·, θ) is a function describing a characteristic of the Boolean model,

which depends on some parameters θ; f̂ is the empirical counterpart of this
function estimated from the data. The idea is to minimize Δ(θ) over the set
of parameters leading to an optimal choice θ̂, which is called the minimum
contrast estimator for θ. A possible choice of f , which we recommend, is f(r) =∑d

i=0 aiwi(r) with suitable coefficients ai. As above, wi(r) is the intensity of
the i-th curvature measure depending on radius r. (We admit that until now
we cannot report on good choices of the ai; perhaps we would start with ai = 1
or ai = 1/(1 + i).) The particular case of f(r) = Hs(r) was used in Serra
[61]. Heinrich [24] gave a mathematical foundation of this estimation method
applied to random sets and investigated the asymptotic behaviour of minimum
contrast estimators when the sampling window becomes large. If only C(r) can
be measured (perhaps by scattering methods), then the choice f(r) = C(r) is
natural, see Stoyan, Kendall & Mecke [63], p. 93. A classical paper is Diggle
[15], who used this method for ecological data. Particular methods have been
developed for the case of spherical grains, where the diameter distribution
function has to be determined, see Heinrich & Werner [25].

Examples of statistical analyses with ellipsoidal grains are Charollais et
al. [13] and Arns et al. [3, 4, 5]. In the latter papers it could be shown that
a Boolean model with two types of ellipsoids yields a good fit of a sample
of homogeneous Fontainebleau sandstone. These papers are also methodolog-
ically interesting because of the consequent use of lattice methods, based on
discrete Boolean models; see also Mecke [44], Likos et al. [38], Arns et al. [2],
and Mecke & Arns [50].

9 Conclusion

The Boolean model has become one of the most important stochastic models
of stochastic geometry and spatial statistics and probably the most impor-
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tant random set model. It is Matheron’s merit that he understood very early
its potential and that he developed a general theory, which extends the case
considered before, namely that of identical spherical grains. In particular, it
has found widespread application in physics, because it allows to generate
very diverse spatial patterns, allows elegant calculation of many quantities
and structure characteristics, and can explain a wealth of features observed
in real physical systems such as porous media (which was the case of Math-
eron’s original interest), composite materials, complex fluids, foams, and even
galaxy distributions in the universe. Still there are many problems open for
the Boolean model, in particular in the context of its geometry.
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Random Structures in Physics
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1 Introduction

One of the major contributions of Georges Matheron to the Sciences of the
20th century concerns the field of Physics of random media. This important
aspect of the work of Georges Matheron is not so well known by the com-
munities of Geostatistics and Mathematical Morphology, but it has a large
impact in many domains of engineering sciences. In parallel to his work on
flows in porous media, Georges Matheron developed in collaboration with Jean
Serra the basis of mathematical morphology (like operations of erosion, dila-
tion, opening, ), having in mind the geometrical characterization of complex
porous media [48].

He first developed a general methodology for the composition of perme-
ability at different scales through homogenization [48, 49]. This approach,
based on perturbation techniques, can be applied to any physical process in-
volving a conservation law and a linear constitutive behavior, such as thermal,
electrostatic, or elastic properties. A theoretical study of the genesis of per-
meability of porous media was made, proving the existence and unicity of the
solution of the linearized version of the Navier-Stokes equation (namely the
Stokes equation) for random closed sets, and providing useful upper bounds
for some random media [53]. Important results were obtained at that time
about the dispersion of flows in random media. Later, he studied the proper-
ties of geodesics in media with a random refraction index [55], and he derived
in a very elegant way bounds of the effective permeability modeled by random
functions [57].

In this paper is given a short survey on recent work made on the prediction
of physical properties of random media, modelled by random sets or random
functions. In the first part, the methodology is recalled and the main results
obtained in the field of homogenization of random media. The second part is
concerned by the study of fluctuations of effective properties and its important
consequences for numerical simulations, in terms of ”Representative Volume
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Element”. The last part introduces some probabilistic models of fracture,
which involve the use of specific classes of models of random functions.

2 Homogenization of random media

2.1 Introduction

From a macroscopic point of view, the behavior of a physical system can be
considered as the responses of a medium to solicitations. For current engineer-
ing practice, standard physical variables are well defined (for instance stresses
and strains in mechanics) and are related by constitutive equations expressing
physical laws.

The meaning of the used physical variables, and the validity of the con-
stitutive equations always depend on the scale of observation of physical phe-
nomena: for instance in fluid mechanics it is possible to work on a ”micro-
scopic scale”, at which the physical system is made of a population of moving
particles in interaction. At this scale it is possible to speak about velocity
momentum, but not about pressure or temperature. These last two ”macro-
scopic” variables have a physical meaning for a volume of matter containing a
high number of particles, where only the collective behavior of a population is
kept. By a change of scale, we change the physical model, replacing a discrete
system by a continuum, for which are defined new variables such as pressure,
temperature, concentration...

From a general point of view, we mean by change of scale the
problem of the prevision of the macroscopic behavior of a physical
system from its microscopic behavior.

This problem is very wide, and is of interest for a large area of applied
physics. In this part we limit our purpose to the case of the dielectric properties
of composite random media.

What can be expected from a model of change of scale? In addition to
the change of physical status and to the emergence of new variables or of
macroscopic behavior laws, as mentioned about fluid mechanics, a model of
change of scale should give answers to the following problems.

• Does a macroscopic behavior law exist for a given heterogeneous medium
(problem of emergence)?

• If it exists, what is its expression and what are its coefficients (or the
effective properties of the medium)?

• What is the variability of effective properties measured on specimens with
a finite size, as a function of their microscopic variability (scale effect on
the fluctuations of properties)?

In the next subsections, heterogeneous media are first defined and illus-
trated, based on the example of electrostatics. Then the principle of calcu-
lation of effective properties of heterogeneous media is recalled. The next
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subsection gives a perturbation expansion of the field developed in a hetero-
geneous medium, from which a formal calculation of the effective properties
of random media is worked out. Finally bounds of the effective properties of
random media are reviewed.

2.2 Homogeneous medium and heterogeneous medium

In this subsection, we consider a continuum embedded inside a domain (usu-
ally bounded) B within the euclidean space Rd. In every point x of B, we
can consider a set of physical properties P (x) (for instance a stress or strain
tensor, a velocity, a temperature,...). P (x) builds a field defined on the do-
main B. The field P (x) is the solution of a problem built from the following
conditions:

• application of conservation principles (for instance momentum, energy),
which from a local balance generally involves systems of partial differential
equations (equation 6 for electrostatics);

• choice of boundary conditions most often given on the boundary ∂B
of the domain B;

• use of constitutive equations linking several variables. For instance,
for electrostatics of a dielectric medium, the electric displacement D
is proportional to the electric field E, ε being the dielectric permittivity
tensor, and φ the potential:

D = εE = −ε gradφ (1)

It is possible to give a short physical explanation of the origin of these
variables: consider a capacitor filled with vacuum. The relationship between
its electric charge Q and the applied difference of potential V is given by

Q = C0V (2)

where C0 is its capacity in vacuum. When replacing the vacuum by a ho-
mogeneous dielectric (insulating material) with dielectric permittivity ε, its
capacity increases to become C = ε

ε0
C0, where ε0 is the dielectric permittivity

of vacuum. In the capacitor an electric field E is generated by the charge Q. E
is proportional to V . The conservation of the charge Q into a closed domain
B can be expressed as the conservation of the flux of a vector D (the electric
displacement) on the boundary. This conservation law is the Gauss law. As
a consequence, when there is no charge in the domain B (Q = 0), the vector
D satisfies the partial differential equation 6. From equation 2 and from the
Gauss law, D is proportional to E (the proportionality constant being equal
to ε0 in vacuum and to ε in a dielectric material).

The law (1) is defined for each point x, where only the local informa-
tion takes part to the relations between the variables. For a homogeneous
medium, the variable ε (which is a positive definite tensor) in equation (1)
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remains constant in space. For the quoted linear constitutive equations, the
existence and uniqueness of the solution for a given geometry can be proved.
The geometry can be involved in a complex way in the solution; consider for
instance a porous medium, for which elastic properties or flow properties are
studied (in this last case, usual boundary conditions prescribe a null velocity
for the fluid at the grain boundaries).

The medium is heterogeneous when the constitutive equations can
change in space, as a result of:

• different types of constitutive equations (for instance linear for some places
and non linear for other places within the domain B);

• variations in space of the coefficients of the equations. They can be mod-
elled either by random functions [48, 72], or by periodic fields [72].

In the case of heterogeneous media, the change of scale problem can be
formulated as follows:

• Is it possible to replace an heterogenous medium (with support B) by an
equivalent homogeneous medium from a macroscopic point of view?

• If yes, what is the macroscopic constitutive equation and what are the
values of its macroscopic coefficients (or effective properties)?

It is generally not straightforward to answer to these questions. To be
convinced of that point, it is enough to recall the case of the composition
of permeability studied by Georges Matheron [48], for which a macroscopic
Darcy’s law and a macroscopic permeability exist in the case of uniform flows,
while for radial flows between two concentric contours, the macroscopic per-
meability depends on the geometry and remains different from the case of
uniform flows. These difficulties are usually forgotten from the abundant lit-
erature on effective properties.

2.3 Principle of calculation of effective properties

For simplicity we will illustrate the case of the dielectric permittivity in-
volving the vector fields E and D (it can be replaced by the composi-
tion of permeability, coefficient of diffusion, or thermal conductivity). In
[3, 4, 20, 21, 23, 36, 38, 39, 45, 58, 72, 83], results are presented on ten-
sor fields that occur in the linear elasticity of random media. This class of
problems involves second order elliptic partial differential equations with ran-
dom coefficients. The average of any field P (x) in B with the volume V is
defined as:

〈P 〉 =
1
V

∫
B

P (x)dx (3)

For instance the average of the electric field E and of the displacement field
D is:
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〈E〉 =
1
V

∫
B

E(x)dx

〈D〉 =
1
V

∫
B

D(x)dx =
1
V

∫
B

ε(x)E(x)dx
(4)

The effective dielectric tensor ε∗ of the equivalent homogeneous medium
contained in B is defined in such a way that equation (1) is satisfied on a
macroscopic scale:

〈D〉 = ε∗ 〈E〉 (5)

In general, ε∗ will depend on the applied boundary conditions on ∂B, as
mentioned earlier about radial flows [48], on the local permittivity of the
components and on the geometry of the medium.

The relations given by equations (4-5) can be applied to any heterogeneous
medium in a bounded region B, provided the field E(x) is expressed from
the applied boundary conditions and from the partial differential equation
expressing the Gauss’ law:

div(D) =
∑

i

∂

∂xi
(Di(x)) = 0 (6)

This procedure can be used for a periodic medium from the knowledge of the
cell building the period [38, 72].

When applying periodic boundary conditions on the period, or homoge-
neous boundary conditions on a finite domain B (namely imposing either a
constant electric field E0, or a constant displacement field D0), we get the
averages [38, 72]:

〈E〉 = E0

〈D〉 = D0

Starting from the local energy U(x) = 1
2E(x)ε(x)E(x) = 1

2E(x)D(x) and
averaging over the domain B, the following relation is satisfied, from which
the effective dielectric tensor can equivalently be defined:

〈U〉 =
1
2
〈ED〉 =

1
2
〈E〉 〈D〉 =

1
2
〈E〉 ε∗ 〈E〉 (7)

This result [38], which can be interpreted as a null statistical correlation
between E and D, is called the Hill lemma in elasticity of heterogeneous media
[21, 45, 72]). It holds for any divergence free field D(x) and any gradient of
potential E(x), satisfying the homogeneous or periodic boundary conditions.
When a constant electric field E0 is applied on ∂B, equation (7) yields

〈D〉 = ε∗E0 (8)

When a constant displacement field D0 is applied on ∂B, equation (7) yields

〈E〉 =
(
ε−1

)∗
D0 (9)



188 Dominique Jeulin

Therefore, in the case of periodic or of homogeneous boundary conditions
applied on ∂B, the effective dielectric permittivity ε∗, (or its inverse

(
ε−1

)∗)
is obtained from the average 〈D〉 (or 〈E〉). In practice it can be implemented
from a numerical solution of the electrostatic problem, knowing the geometry
of the medium and the boundary conditions. We will come back to this point
in section 3.2.

2.4 Perturbative expansion

From a perturbation expansion is derived an approximate solution of equation
(6) for the vector fields D and E [4, 11, 22, 45, 48, 49]. This approximation
can be used as input in equations (7-9) to estimate the effective ε∗. It can also
enter into a variational principle as seen in section 2.6. We consider a domain
B containing a heterogeneous medium, submitted to a constant macroscopic
field E (with components Ei) applied on ∂B.

We note E′(x) = E(x) − E and ε′(x) = ε(x) − 〈ε〉. The field E′(x) is
solution of the following equation, derived from equation (6):

div(E{ε}E′) = −div(ε′E) (10)

This comes from the fact that

div(D) = 0 = div(ε′E) + E{ε}div(E) = div(ε′E) + E{ε}div(E′)

When the medium satisfies 〈εij〉 = εδij (for instance if the medium is isotropic,
like a polycrystal with a uniform distribution of orientations, or if εij(x) =
ε(x)δij with any macroscopic anisotropy), equation (10) can be interpreted as
a Poisson equation, after introduction of a potential φ′ with E′ = −gradφ′

εΔφ′ = div(ε′E) (11)

A formal solution of equation (11) is given by means of the Green function
G(x, y) (or harmonic potential) solution of:

ΔxG(x, y) = −δ(x− y) for x ∈ B
G(x, y) = 0 for x ∈ ∂B

(12)

The solution of equation (11) can be written

εφ′(x) = −
∫

B

G(x, y)div(ε′(y)E(y)) dy (13)

After integration by parts, and accounting for the condition given in equation
(12), the potential follows

εφ′(x) =
∑

i

∫
B

∂

∂yi
G(x, y)(ε′(y)E(y))i dy
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The components of E′ = −gradφ′, and therefore the components of E are
obtained by partial derivation of φ′

εEj(x) = εEj −
∑
ik

∫
B

∂2

∂xj∂yi
G(x, y)ε′ik(y)Ek(y) dy

= εEj − (Γε′E)j(x)

(14)

where we introduced the operator Γ . Equation (14) has the form of the
Lippman-Schwinger equation of the quantum mechanical scattering theory
[45]. For infinite media with homogeneous boundary conditions, or for peri-
odic media, the operator Γ acts by a convolution, and therefore the solution
of Equation (14) can be obtained numerically by iterations (starting from an
initial field Ek(y) in the integral), using Fourier transforms on images of the
field ε(x) [16, 64].

From equation (14) is deduced

ε

[
I + Γ

ε′

ε

]
E(x) = εE

I being the identity operator. The following formal expansion gives E(x):

E(x) = E +
n=∞∑
n=1

(−1)n

(
Γ
ε′

ε

)n

E =
n=∞∑
n=0

E(n)(x) (15)

It can be shown that the expansion of equation (15) converges if the dielectric
permittivity ε can be expressed as ε = ε0(I+γ) with ‖γ‖ < 1 [56] (with ε0 = ε,

the present development converges if
∥∥∥∥ε′ε

∥∥∥∥ < 1). This happens if ε and ε−1

remain bounded (and this excludes media where at some places ε(x) = 0 or
ε(x) = ∞). The reason for this criterion of convergence comes from the fact
that the operator Γ is a projector (with a norm less than one) on the subspace
of gradients, when E(x) is defined in the Hilbert space with the scalar product
E1.E2 =

〈
E1εE2

〉
.

2.5 Formal calculation of the effective properties of random media

If the field ε(x) is modelled by a stationary ergodic random multivariate
function, it turns out that for domains B converging to Rd the spatial av-
erages involving ε′ converge towards mathematical expectations. In these
conditions the random field E(x) (and then D(x) = ε(x)E(x)) given by
equation 15 is stationary and ergodic: from equation (15) it is easy to
check that E{E(n)

j (x)} = 0, since the central correlation function of order
n, E

{
ε′i2k2

(xn)...ε′i1k1
(x1)

}
, does not depend on x and provides a null con-

tribution after integration by parts. Therefore E{E(x)} = E. In addition we
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have 〈E〉 = E. As a consequence, the averages 〈.〉 in equations (5, 7, 8, 9)
become mathematical expectations E{.}, and we get:

E{D} = ε∗E{E}
E{U} = E

{
1
2E(x)D(x)

}
= 1

2E{E}E{D} = 1
2E{E}ε∗E{E}

(16)

The two definitions of ε∗ given in equation (16) are equivalent. The factor-
ization of E

{
1
2E(x)D(x)

}
, derived here from equation (7), can also be de-

rived from the stationarity of D and E [48, 49]: E′(x) is a stationary random
field E′, with a zero average, deriving from a stationary potential φ′ with
E′(x) = −gradφ′; we have:

U(x) =
1
2
E(x)D(x) =

1
2
ED(x) +

1
2
E′(x)D(x)

By expectation,

E{U} = E

{
1
2
E(x)D(x)

}
=

1
2
EE{D}+ E

{
1
2
E′(x)D(x)

}
The second term is equal to zero since E′(x)D(x) = −div(φ′(x)D(x)) from ap-
plication of equations (1,6). Then E {E′(x)D(x)} = −E{div(φ′(x)D(x))} =
−div(E{φ′(x)D(x)}) = 0 from the stationarity of φ′(x)D(x).

For a random medium, the effective dielectric tensor defined in equation
(16) can therefore be obtained from the expectation E{D} = E{εE} when a
constant macroscopic field E{E} is applied on ∂B. If the random medium is
statistically isotropic, all the orientations are equivalent and therefore ε∗ is an
isotropic second order tensor that can be summarized by a scalar.

To estimate the effective properties of the random medium, we need to
calculate E{D(x)} (cf. equation (16)). We have

E{D(x)} = E{ε(x)E(x)} = E{(ε′(x) + ε)(E′(x) + E)}
= E{ε′(x)E′(x)} + εE = ε∗E(x)

E{Di(x)} =
∑

j

ε∗ijEj = εEi + E{
∑

j

ε′ij(x)E′
j(x)}

= εEi + E{
∑
jn

ε′ij(x)E(n)
j (x)}

By introduction of the perturbation expansion for E(n)
j (x) and by identifica-

tion and rearrangement, we obtain

ε∗ik1
= εδik1 +

n=∞∑
n=1

(−1)n

εn

∑
ji1k1...inkn

∫
Bn

∂2

∂xj∂xn
in

G(x, xn)...

∂2

∂x2
i2
∂x1

i1

G(x2, x1)E
{
ε′ij(x)ε′i1k1

(x1)...ε′i2k2
(xn)

}
dx1...dxn (17)
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The coefficient of order n of the expansion (17) for ε∗ik1
involves central cor-

relation functions of order n + 1 of the random field εij(x). It is expected to
introduce more and more information on the random medium by increasing
the order of the development. In [49] it is assumed that ε′ = εαγ with a small
scalar α and a tensor γ. The coefficient of αn in the expansion is called the
Schwydler tensor of order n, generalizing the work of this author made at the
order 2 [73, 74].

When the random medium is statistically isotropic, and when B = Rd,
it can be shown that the second term of the perturbation expansion (for
n = 1) does not depend on the details of the second order correlation function
E

{
ε′ij(x)ε′i1k1

(x1)
}
. In that case, it is necessary to introduce at least the term

depending on third order correlation functions to get estimates of effective
properties depending on the microstructure. This point motivated the work
of Georges Matheron [49], when he was criticizing the rule of geometrical
averaging which was in his time more or less systematically applied for the
composition of permeability.

The expansion given by Equation (15) can be used to estimate the covari-
ance of Ei(x) and of Ej(x + h) [4] and as a particular case the variance of
Ei(x) limited to the first term [48]. In [5] bounds of the variance are derived.

In [41, 42], the propagation of elastic or of electromagnetic waves in random
media is studied in a similar way (with appropriate Green functions), from
a second order perturbation expansion. Electromagnetic wave propagation is
studied by related techniques in [17, 69].

2.6 Bounds and ”optimal” random sets

In general, it is not possible to know exactly the effective (or macroscopic)
permittivity ε∗, except for some specific geometries (some examples are given
below). In fact, the exact prediction of ε∗ requires a very large amount of in-
formation (the set of all n point correlation functions, which naturally appear
in the perturbation expansion (15) of the solution of equation (6) combined
to equation (1) for infinite domains B containing realizations of ergodic ran-
dom media [4, 45, 48, 49]). Using a limited amount of statistical information,
bounds (upper bound ε+ and lower bound ε−) are derived from the pertur-
bation expansion of the electric field and a variational principle on the stored
electrostatic energy [3, 4]. From this principle, which is equivalent to the con-
servation law (6), the replacement of the unknown solution E(x) by a suitable
approximation (or trial field) E∗(x) provides an estimate 〈U∗〉 of the energy,
with 〈U∗〉 ≥ 〈U〉, where 〈U〉 is obtained for the solution (equation 6). The
same inequality is obtained by replacing the unknown D(x) by a trial field
D∗(x) with div(D∗) = 0.

Wiener and Hashin- Shtrikman bounds

A first application of the classical variational principle gives the generalized
Wiener bounds [22]. If the trial field is E(x) = E{E} = E, we get
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2U = E{Eε(x)E} ≥ 2U0 = Eε∗E

and
EE{ε}E ≥ Eε∗E

For a trial field D(x) = D,

2U = E{Dε−1(x)D} ≥ 2U0 = D(ε∗)−1D

and
DE{ε−1}D ≥ D(ε∗)−1D

The obtained inequalities show that the tensors E{ε}−ε∗ and E{ε−1}−(ε∗)−1

are positively definite. It results:

(E{ε−1})−1 ≤ ε∗ ≤ E{ε} (18)

For the scalar case (for instance in the case of a statistically isotropic random
medium), equation (18) is applied to the scalars ε, ε−1 = 1/ε, ε∗. For a lo-
cally isotropic medium with E{ε(x)} = ε, the eigenvalues ε∗i of ε∗ satisfy the
following inequalities, resulting from equation (18):

(E{ε−1})−1 ≤ ε∗i ≤ ε (19)

This corresponds to the well known arithmetic and harmonic averages.
Consider now the case of an isotropic multiphase material in Rd, where for

every component i (with the volume fraction pi), εi is a scalar. The Hashin and
Shtrikman (H-S) bounds [19, 20] are obtained after introduction of a reference
homogeneous medium (with the permittivity ε0 satisfying εm = infi(εi)≤ ε0 ≤
εM = supi(εi)) from

K =
j=N∑
j=1

pj

(εj − ε0)−1 + 1/(ε0d)
(20)

Choosing ε0 = εm or alternatively ε0 = εM ,

ε∗ ≥ ε− = εm +
K

1− K

dε0

(21)

ε∗ ≤ ε+ = εM +
K

1− K

dε0

The (H-S) bounds are closer than the Wiener bounds (they introduce
additional information about the microstructure, namely the assumption of
isotropy). Wiener and (H-S) bounds depend only on the volume fractions and
on the values of the properties of the components, and therefore will be the
same for very different microstructures.

These first and second order bounds were derived in a very elegant way
by Georges Matheron [57], without resorting to any variational principle.
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Method of computations of order n bounds

By using the following trial field in the classical variational principle [3, 4]

EN
j (x) = Ej +

n=N∑
n=1

λnE
(n)
j (x)

where E(n)
j (x) is the term of order n of the perturbative expansion of the elec-

tric field (15), the λn minimizing the upper bound of the effective permittivity
are obtained as the solution of a linear system with coefficients depending on
correlation functions up to the order 2N + 1 (order 3 for N = 1). Similarly
for a trial field

DN
j (x) = Dj +

n=N∑
n=1

λnD
(n)
j (x)

With for n > 1

D
(n)
j (x) = εE

(n)
j (x) + ε′E(n−1)

j (x) − E{ε′E(n−1)
j (x)}

we get the lower bound of order 2N + 1. By increasing the order N of the
expansion, narrower bounds are obtained, since they involve an increasing
amount of information about the microstructure. In practice, the expansion
is stopped to the first term, to get third order bounds, correlation functions
of higher order being usually unknown.

Third order bounds

The general approach to bounds considers multiphase and even continuous
models (scalar or multivariate) [26], for which the calculation of third order
bounds can be carried out using the general derivation based on the third
order correlation function [4, 22, 33, 45, 59]. An extension of bounds to the
complex dielectric permittivity was developed by D. Bergman [8] and by G.
Milton [61]. It was applied to various types of random textures [32], showing
that third order bounds could generate separate domains in the complex plane.

We consider now random composites made of two phases A1 (with fraction
p) and A2 (with fraction q = 1−p) having a scalar real dielectric permittivity
ε1 and ε2 (with ε2 > ε1) (the case of tensor permittivity is detailed in [22]).
The composite is modelled by a stationary and isotropic random set A (with
A = A1 and Ac = A2). The third order bounds are expressed in Rd as a
function of ε1, ε2 and of the three-point probability P (h1, h2) = P{x ∈ A1, x+
h1 ∈ A1, x + h2 ∈ A1}. In Rd (d = 2, 3), using G. Milton’s [61, 62] and S.
Torquato’s [81, 82] notations,

ε−/ε1 =
1 + ((d− 1)(1 + q) + ζ1 − 1)β21 + (d− 1) (((d− 1)q + ζ1 − 1))β2

21

1− (q + 1− ζ1 − (d− 1))β21 + ((q − (d− 1)p) (1− ζ1)− (d− 1)q)β2
21
(22)
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ε+/ε2 =
1 + ((d− 1)(p+ ζ1)− 1)β12 + (d− 1) (((d− 1)p− q) ζ1 − p)β2

12

1− (1 + p− (d− 1)ζ1)β12 + (p− (d− 1)ζ1)β2
12

(23)

βij =
εi − εj

εi + (d− 1)εj
(24)

where the function ζ1(p) introduced by G. Milton [62] is obtained from the
probability P (h1, h2) = P (|h1| , |h2| , θ), with u = cos θ, θ being the angle
between the vectors h1 and h2. We have:

ζ1(p) =
9

4pq

∫ +∞

0

dx

x

∫ +∞

0

dy

y

∫ +1

−1

(3u2 − 1)P (x, y, θ)du in R3 (25)

ζ1(p) =
4
πpq

∫ +∞

0

dx

x

∫ +∞

0

dy

y

∫ π

0

P (x, y, α) cos(2α) dα in R2 (26)

The integrals in equations (25) and (26) can be evaluated analytically,
but most often numerically (after replacement of P (x, y, θ) by P (x, y, θ) −
P (x)P (y)/p, with P (h) = P{x ∈ A1, x+ h ∈ A1}.

After exchanging the phases A1 and A2 we define the function ζ2(q) with
ζ2(q) = 1− ζ1(p). The function ζ1(p) satisfies 0 ≤ ζ1(p) ≤ 1. When ζ1(p) = 1
or ζ1(p) = 0 (and only in these cases), the two bounds ε+ and ε− coincide,
and are equal to the upper (H-S) bound (for ζ1(p) = 1), or to the lower
(H-S) bound (for ζ1(p) = 1). For these two cases, we obtain from the third
order bounds an estimation of the effective permittivity. For given p, ε1 and
ε2 (with ε1 > ε2), ε+ and ε− increase with ζ1(p), so that higher values
of the effective properties are expected. This gives a guideline to compare
the properties of random media from the comparison of their corresponding
geometrical function ζ1(p). If the two phases A1 and A2 are symmetric, the
case of p = 0.5 produces an autodual random set (the two phases having the
same probabilistic properties, as for the mosaic model introduced below), for
which the third order central correlation function is equal to zero. Therefore
in two and three dimensions, the third order bounds of a symmetric medium
present a fixed point at p = 0.5. In addition, it is known [43, 48, 49] that for
an autodual random set in two dimensions the effective permittivity is exactly
equal to the geometrical average of the two permittivities (ε∗ =

√
ε1ε2). More

generally, it was proved by Georges Matheron that this result holds for a log-
symmetrical random function, as for instance a permittivity field modelled by
a lognormal random function [48, 49].

Recent developments on composites with a non linear behavior propose
bounds using the function ζ1(p), after introduction of comparison media with
a linear behavior [67, 84].

Third order bounds of the Boolean model

We give now examples of application of third order bounds in the case of the
Boolean model introduced by Georges Matheron [48, 51], and studied by many
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authors [25, 26, 75, 76, 77]. It is obtained by implantation of random primary
grains A′ (with possible overlaps) on Poisson points xk with the intensity θ:
A = ∪xk

A′
xk

. Any shape (convex or non convex, and even non connected) can
be used for the grain A′.

Fig. 1. Realization of a planar section
of a Boolean model of spheres (VV =
0.5).

Fig. 2. Section of a Boolean variety
model (thick flats) from Poisson flats
in 3D.

An example is shown in fig 1 in the case of spheres. In [68], Poisson polyhe-
dra are used for the grains of WC-Co composites, while in [35], parallelepiped
random grains are used for the microstructure of gypsum. Replacing the Pois-
son points by Poisson varieties [51], enables us to generate random sets models
with fiber or strata textures [26] (fig. 2). This version of the Boolean model
is used in subsection 2.6. Anisotropic versions of this model can be easily
proposed, from anisotropic primary grains, as for instance ellipsoids in R3.

The Choquet capacity T (K) of this model can be deduced from the fact
that the number of primary grains hit by K follows a Poisson distribution with
average θμd(A′ ⊕ Ǩ), where μd is the average (over the realizations of A′) of
the Lebesgue measure in Rd and Ǩ = {−x, x ∈ K}; denoting q = P{x ∈ Ac},
we have:

T (K) = P{K ∩A �= ∅} = 1−Q(K)

= 1− exp
(
−θμd(A

′ ⊕ Ǩ)
)

= 1− q

μd(A
′ ⊕ Ǩ)

μd(A′)

(27)

The three point probability for the random set Ac is given by (A′
h being the

set A′ after translation by vector h)
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Q(h1, h2) = P{x ∈ Ac, x+ h1 ∈ Ac, x+ h2 ∈ Ac} (28)

= exp
(
−θμd(A

′ ∪A′
−h1

∪A′
−h2

)
)

= q3−r(h1)−r(h2)−r(h2−h1)+s(h1,h2)

with the geometrical covariogram

K(h) = μd(A
′ ∩A′

−h) and r(h) =
K(h)
K(0)

(29)

and with

s(h1, h2) =
μd(A′ ∩A′

−h1
∩A′

−h2
)

K(0)
(30)

From equation (28) it is easy to derive P (h1, h2) = P{x ∈ A, x + h1 ∈
A, x+ h2 ∈ A}, required for the calculation of the third order bounds.

The function ζ1(p) for the Boolean model is obtained by numerical inte-
gration of equations (25) or (26,) using equations (28) and (30). With a good
approximation, we get a linear expression with coefficients α and β:

ζ1(p) � αp + β

ζ1(0) is obtained when p → 0. We have ζ1(0) = a with a given by equation
(33) below for the random grain A′ (or for any size distribution of A′):

• in R3 ζ1(0) = 0 for spheres, and ζ1(0) = 1
4 for Poisson polyhedra

• in R2, ζ1(0) = 0 for disks and ζ1(0) = 3 − 4 ln 2 � 0.2274 for Poisson
polygons.

The complementary function ζ2(p) = 1−ζ1(1−p) is obtained by exchange
of the two phases:

ζ1(p) � 0.5615p for spheres [9, 79, 80, 81]
ζ2(p) � 0.5615p+ 0.4385 for (spheres)c

ζ1(p) � 2
3p for discs in R2[30, 46, 81]

ζ2(p) � 2
3p + 1

3 for (discs)c in R2

ζ1(p) � 0.5057p+ 0.2274 for Poisson polygons in R2[46]
ζ2(p) � 0.5057p+ 0.2669 for (Poisson polygons in)c

R2

(31)

For the Boolean model, different sets of bounds are obtained when ex-
changing the properties of A and Ac (which is not the case for the second
order H-S bounds), as seen in equation (31). This is illustrated for the case of
the thermal conductivity λ of ceramic materials [66], modelled by two Boolean
models of spheres with a constant radius (in fig. 3 3 (a) and 3 (b), the mor-
phology of the low conducting bright phase is exchanged): here, the third
order bounds increase when λ(x) = λ1 > λ2 for x ∈ Ac (fig. 4. This is due
to the fact that it is easier for the ”matrix” phase Ac to percolate than for
the overlapping inclusions building A. We see here that third order bounds
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Fig. 3. AlN textures (AlN in black; Y rich phase in white).

are sensitive to the morphology in a more accurate way than the H-S bounds
[19].

In [30, 46], various morphologies are studied in two and three dimensions,
including the two-phase dead leaves model [31]. Two-scale hierarchical models
accounting for local fluctuations of the volume fraction of a Boolean model
can be optimized with respect to the third order bounds, as seen below in
subsection 2.6.
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AlN=complement

Fig. 4. Bounds of the thermal conductivity (in W/(m.K) of AlN materials (λ1 = 100
for AlN λ2 = 10 for the second phase). ’AlN = spheres’: Boolean model of spheres
for the AlN (black phase in fig. 3); ’AlN = complement’: Boolean model of spheres
for the Y rich phase (in white in fig. 3.
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The mosaic model

The mosaic (or cell) model [26, 49, 59] is obtained from a random tessella-
tion of space into classes (each class or grain is denoted by A′). Any class is
allocated to the random set A with the probability p and to the set Ac with
the probability q = 1 − p. The medium is symmetrical in A and Ac (after
permutation of p and q). The third order bounds depend on a parameter G
introduced by Miller [59, 60], obtained from the function s(|h1| , |h2| , θ):

G =
1
9

+
1
2

∫ +∞

0

dx

x

∫ +∞

0

dy

y

∫ +1

−1

(3u2 − 1)s(x, y, θ)du in R3 (32)

we have 1
9 ≤ G ≤ 1

3 in R3. From the equation (25) we obtain [59, 60, 62]:

ζ1(p) = p+ a(q − p) with a =
9G− 1

2
ζ2(p) = ζ1(p)

(33)

and ζ1(p) is a linear function of p, with the slope 1− 2a (0 ≤ a ≤ 1).
The coefficient G was obtained for several types of tessellation with

spheroidal grains, and are given in the next table, where needles are cylin-
ders with infinite length, and plates are domains between two parallel planes
(it is rather difficult to imagine an isotropic random tessellation of space from
these two types of grains).

grain spheres needles plates
G 1/9 1/6 1/3

The parameter G is not sensitive to the scale of the grain A′, and is
therefore invariant for a population of similar grains. Using equation (33), we
get ζ1(p) = p for spheres, and ζ1(p) = 1 − p for plates. In [46, 49] are given
the functions ζ1(p) for the Poisson mosaic, built from a tessellation of space
by Poisson lines in R2 and by Poisson planes in R3.

Combination of basic random sets

More complex models can be built from elementary ones. We consider here
multi-scale models. An interesting construction is obtained for the union or
the intersection of independent random sets [30, 32]. For A = A1 ∩ A2 with
p1 = P{x ∈ A1}, p2 = P{x ∈ A2}, and three points probability P1(h1, h2)
and P2(h1, h2), we have:

P (h1, h2) = P1(h1, h2)P2(h1, h2)

for widely separate scales (in particular for A2 with a lower scale), we get the
following approximate relationship between ζH1(p) (corresponding to A1∩A2),
ζ11(p1) (corresponding to A1), and ζ12(p2) (corresponding to A2) [30]:
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pqζH1(p) � p1p2q2ζ12(p2) + p3
2p1q1ζ11(p1)

If the two structures are built from the same random set with p1 = p2, we
obtain after n iterations of the process involving intersections:

ζ
(n)
H1 (p) =

1 + p

1 + p1/n
ζ1(p1/n)

for n → ∞ we get asymptotically ζ
(n)
H1

(p) → 1 + p

2
ζ1(1). Starting from a

mosaic model with a = 1 (plates in R3), or starting from a Boolean variety
of dilated flats [26] (as in fig. 2, we have ζ1(1) = 0 and therefore ζ(∞)

H1
(p) = 0.

The complementary set is a union of mosaics (or a union of dilated flats), for
which ζ

(∞)
H1

(p) = 1. The obtained limit structure admits two equal third order
bounds [36] for the effective permittivity ε∗. If ε2 > ε1 is attributed to the
union of Boolean variety models, we get

ε∗ = ε− = ε+ = εHS+

and if ε2 > ε1 is attributed to the intersection of Boolean models, we get

ε∗ = ε− = ε+ = εHS−

We obtain the construction of an optimal structure corresponding to these
bounds, based on the mosaic model, or on the Boolean variety model. This
result is valid for a porous medium (with ε1 = 0), where the upper (H-S) bound
becomes the effective permittivity. We have similar results when considering
the case of the linear elasticity [36]. These third order bounds were used to
predict the elastic properties of gypsum in [35]. The geometrical construction
of these multiscale structures is unknown for the mosaic, but is easily obtained
and simulated for the Boolean layered random model (fig. 2). This geometry
differs from two other kinds of microstructures showing the same optimal
properties: the Hashin sphere assemblage [18], made of coated spheres with
the two phases and different radii in order to cover the 3D space, and the
layered materials proposed by G. Milton [63].

3 Fluctuations of properties, and the Representative
Volume Element

3.1 Homogenization of random media from numerical simulations

An alternative way to solve the problem of homogenization is based on the use
of numerical solutions of the corresponding partial differential solutions, before
estimating the effective properties by spatial averaging of the solution. The
input image can be a 3D image of the studied medium obtained by various
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techniques, like confocal microscopy or microtomography. When such a 3D
reconstruction is not available, use can be made of simulations of realizations
of an appropriate model of random structure, after identification from 2D
images obtained on sections. Numerical simulations open the way to so-called
”Digital materials”, for which can be predicted a complex non linear behavior.

One of the techniques used to solve the homogenization problem is based
on the finite element method, as illustrated in [2]. A convenient way to solve
numerically the homogenization problem is to use periodic boundary condi-
tions applied on a periodic cell. For this purpose, we developed simulations
of periodic random media, like the Voronoi 3D polycrystal in fig. 5 [14]. Be-
side the finite element method, efficient iterative techniques operating by Fast
Fourier Transform on periodic media were recently developed for microme-
chanics problems [15, 16, 37]. This numerical approach is based on the con-
volution form of the Lippman-Schwinger equation (14).

Let us mention that in a pioneering work, Georges Matheron proposed
forty years ago a way to estimate the effective permeability by generating
appropriate random walks from the permeability field [47].

Fig. 5. Simulation of a 3D Voronoi mosaic, with periodic boundary conditions [14].

3.2 Fluctuations of effective properties

When using numerical simulations as in 3.1, a natural question arises: what
is the representativeness of the effective property estimated on a bounded
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domain of a microstructure? In other words, what is the size of a so-called
”Representative Volume Element” RVE [39]? A similar question appears for
engineering purpose, when working on parts with dimension of the same or-
der as the microstructure: this occurs for instance for some devices like mi-
crobeams in micro-electronics, where a few grains only are seen across the
beam [1]. In that case the effective properties of different parts (like the elas-
tic moduli of the beam) fluctuate, so that a specific procedure may be required
for the quality control in production, with a more or less important amount
of rejected parts.

To answer to these questions, higher order statistical information than
average values is required, but unfortunately is not available.

The second order moment of the field over an infinite domain can be
worked out when the effective property is known [8, 10, 44, 49, 57, 78], but it
does not provide any information on the fluctuations of the average made over
a finite domain. This moment of the field is obtained by partial derivation of
the effective permittivity ε∗ with respect to the permittivity of phases, starting
from equation (16).

A first order formal estimation of the variance of the average flow rate in
porous medias over a finite domain is given by Georges Matheron [48]. It is
derived from the first order term of the perturbation expansion of the flow
rate. Bounds of the variance are worked out in the same reference, for radial
flows and specific covariances of the permeability random function.

Recent developments use a geostatistical approach based on the experi-
mental determination of the integral range [50, 52] from numerical simulations
[12, 39, 40].

The integral range

We consider fluctuations of average values over different realizations of a ran-
dom medium inside the domain B with the volume V . In geostatistics, it is
well known that for an ergodic stationary random function Z(x), one can
compute the variance D2

Z(V ) of its average value Z̄(V ) over the volume V as
a function of the central covariance function Q(h) of Z(x) [50] by :

D2
Z(V ) =

1
V 2

∫
V

∫
V

Q(x− y) dxdy (34)

For a large specimen (with V � A3), equation (34) can be expressed to the
first order in 1/V as a function of the integral range in the space R3, A3, by

D2
Z(V ) = D2

Z

A3

V
(35)

with A3 =
1
D2

Z

∫
R3

Q(h) dh (36)

where D2
Z is the point variance of Z(x) and A3 is the integral range of the

random function Z(x), defined when the integral in equations (34) and (36)
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is finite. The asymptotic scaling law (35) is valid for an additive variable Z
over the region of interest V .

In the case of a two-phase material with a scalar dielectric permittivity
Z1 for phase 1 (with the volume fraction p), and Z2 for phase 2, the point
variance D2

Z of the random variable Z is given by :

D2
Z = p(1− p)(Z1 − Z2)2 (37)

To estimate the effective dielectric permittivity ε∗ from equations (8) and
(9), we have to compute the averages 〈D〉 or 〈E〉. For an appropriate choice of
the constant electric field E0 applied on ∂B (namely of the constant displace-
ment field D0) and in the isotropic case, ε∗ is obtained from the estimations
of a single component of 〈D〉 or 〈E〉. Therefore the variance of the effective
property ε∗ follows the equation (35) when the integral range A3 of the rele-
vant field is known, which requires the stationarity of the fields D and E, as
obtained when using homogeneous boundary conditions (see subsection 2.5).

Since the theoretical covariance of the field (E or D) is not available,
the integral range can be estimated according to the procedure proposed by
Georges Matheron for any random function [52, 54]: working with realizations
of Z(x) on domains B with an increasing volume V , we can estimate the
parameter A3 by fitting the obtained variance according to the expression
(35).

Practical determination of the size of the RVE

When considering a material as a realization of a random set or of a
random function RF, the idea that there exists one single possible minimal
RVE size must be left out. Instead, the size of a RVE can be defined for
a physical property Z, a contrast and, above all, a given precision in the
estimation of the effective properties depending on the number of realizations
that one is ready to generate. By means of a standard statistical approach,
the absolute error εabs and the relative error εrela on the mean value obtained
with n independent realizations of volume V are deduced from the interval of
confidence by:

εabs =
2DZ(V )√

n
; εrela =

εabs

Z
=

2DZ(V )
Z
√
n

(38)

The size of the RVE can now be defined as the volume for which for in-
stance n = 1 realization is necessary to estimate the mean property Z with
a relative error εrela = 1%, provided we know the function DZ(V ). Alter-
natively, we can decide to operate on smaller volumes (provided no bias is
introduced), and consider n realizations to obtain the same relative error. In
the case of effective elastic moduli, the exact mean value and variance for a
given domain size are a priori unknown. Using the equation (38), the absolute
error on the mean value can be evaluated. This methodology was applied to
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the case of the dielectric permittivity of various random media [15], and to
the elastic properties and thermal conductivity of a Voronöı mosaic [39], and
of real microstructures [40].

From various simulations [15, 39, 40], it was shown that the dispersion of
the results decreases when the size V of the domain increases for all boundary
conditions. The obtained mean values depend on the volume size, but also
on the type of boundary conditions. For any property (dielectric permittivity,
elastic moduli, or thermal conductivity), the average values converge towards
the same limit for large volumes V , which is the wanted effective property.
We noticed that the mean value given by the periodic boundary conditions
varies slightly as a function of the size of the domain, as compared to the
other boundary conditions. Finally, an important bias, due to the effect of the
boundaries ∂B, is found in the mean value given by all boundary conditions
for small volume sizes, the value being different from the effective one obtained
for large specimens, so that the law (35) must be applied with some caution.
For small volumes, the average moduli obtained by simulations depend on the
boundary conditions: for instance, in the case of the dielectric permittivity,
imposing E0 on ∂B produces results close to the upper Wiener bound, while
imposing D0 on ∂B gives results close to the lower Wiener bound. This bias is
well–known [23, 65, 71], and corresponds to the case of the two homogeneous
trial fields from which these bounds are derived. It must be taken into account
for the definition of the RVE. The result is that the mean value computed on
small specimens cannot represent the effective response for the composite
material even using the periodic boundary conditions and a sufficient number
of realizations. From simulations, it appears also that the mean value obtained
with the periodic boundary conditions is unbiased for smaller sizes of B than
for the other boundary conditions, but it leads in general to higher variances
than for the two other conditions. This requires a larger number of simulations
to get a given precision for the effective property.

To illustrate this point, we report in 1 the obtained integral ranges from
the estimation of the dielectric permittivity of a 2D random set (a two phase
symmetrical dead leaves model [31] with discs with radius 5) [15]. The electro-
static problem was solved for periodic boundary conditions. From the scheme
given by equation (14), we obtained the field E(x) on realizations ε(x) by
iterations of Fast Fourier transforms on images, starting with an initial ap-
proximation of the solution given by the average E in the second member of
the equation. The effective permittivity ε∗ was estimated on images of ε(x)
with increasing sizes and for an increasing contrast of properties. Since in this
case the effective permittivity is obtained by a geometrical average, it is easy
to check for which minimal size the simulations give an unbiased estimate of
the effective permittivity. For this model, the integral range of ε∗ is lower
than the integral range of the volume fraction (46), and seems to decrease
slightly with the contrast (however only 7 realizations were used for the 5122

simulations). In another situation (3D Voronöı mosaic in [39]), the integral
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range of effective properties (elastic moduli and thermal conductivity) was of
the order of twice the integral range of the volume fraction.

Table 1. Variation of the empirical integral range of the dielectric permittivity with
the contrast of a two-phase autodual 2D dead leaves model.

Contrast 10 100 1000 10000
Theoretical ε∗ 3.162 10 31.622 100
Minimal size 642 1282 2562 5122

Integral range of ε∗ 41 31.36 25.7 14.36

4 Fracture statistics models

Usually, a wide dispersion of strength is observed on brittle materials like ce-
ramics or like steels at low temperature. In addition, size effects are observed
in experiments: there is most often a decrease of the average strength with
the size of specimens. This is of practical importance for engineers, who have
to design parts with a given reliability. Therefore, models based on random
structures and accounting for the dispersion of strength and for scale effects
are required [26, 27, 28]. The main purpose is to estimate the probability of
fracture of a specimen under given loading conditions, as a function of the
probabilistic properties of a population of defects. Differently from the case
of effective properties involving space averaging, there is in fracture a great
sensitivity of the macroscopic fracture behavior to local defects, and mainly to
the tail of their probabilistic distribution. One of the main points of fracture
statistics approaches deals with scale effects. This point is of major importance
when we need to predict the strength of large parts (like in aeronautics, dams
or buildings in engineering...) from data available at a laboratory scale; the
fact that the average strength may decrease (or sometimes increase) with the
size of parts must be known and evaluated in practice. This can be accounted
for by models based on the reproduction, at a point scale, of the variations of a
fracture criterion (critical stress σc, or critical stress intensity factor KIc, local
fracture energy γ, for brittle materials). These models are based on different
macroscopic fracture criteria: the weakest link assumption is suitable for the
sudden fracture of brittle materials; the models with a damage threshold al-
low several sites with a crack initiation before fracture; models based on the
fracture energy (Griffith’s criterion) account for the propagation and arrest
of cracks in a random medium; finally, models of random damage mimic the
generation of damage zones in quasi-brittle materials. Formally, the different
assumptions correspond to various changes types of change of support of the
random point-scale criterion:

• Change of support of σc(x) by the infimum operator ∧ for the weakest link
model;
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• Change of support of σc(x) by convolution (moving average) for the dam-
age threshold;

• Change of support of γ(x) by the supremum operator ∨ along the crack
path for the crack arrest criterion.

The strategy followed to solve this problem is to work out efficient models
for which these changes of support are available. For every family of models,
the probability of fracture is computed as a function of the loading conditions
and of the parameters of the selected random structure models. Some inter-
esting aspects for applications, such as the prediction of expected scale effects,
are derived. The proposed models can be tested at different scales (including
the microscopic scale, by use of image analysis). The diversity of the obtained
theoretical distributions for fracture statistics and for scale effects offers new
possibilities for the microstructure based interpretation and modelling of me-
chanical data obtained on materials. A more detailed presentation is given in
[36].

4.1 Weakest link model and Boolean random functions

Consider first the case of the weakest link model, where there is a sudden
propagation of a crack after its initiation. In this case, the fracture statistics
is governed by the most critical defects. The fracture probability is expressed
by

P{non fracture} = P{inf(σc(x) − σ(x)) ≥ 0} (39)

where σc(x) is the random critical stress, σ(x) is the applied stress field, and
inf is the minimal value over the sample.

Explicit expressions of the fracture probability are available for uncoupled
critical and applied stress fields and for specific models (like Boolean RF).
They are more general than the standard Weibull model. The expected scale
effect is a decrease of strength (to a constant for large samples) with the size
of specimens.

For illustration, consider a medium where defects are introduced in a ma-
trix with an infinite strength (σc = +∞). For instance defects with a critical
stress σc being a random variable σ′

c inside a closed random set A′
0, implanted

in space on Poisson points xk with the intensity θ(σc). We take for σc the
minimum of the values of σ′

c on overlapping grains, building by this process a
infimum (∧) Boolean RF [24, 25, 26, 75], as illustrated in fig. 6.

In the present case, the resulting field σc(x) is a mosaic with domains
where σc is constant. In brittle tensile fracture, we can restrict the purpose
to the scalar case with σ > 0 (σ being the maximal main stress). For a uni-
form applied stress field, the probability distribution of the apparent fracture
stress σR = infx∈B{σc(x)} of a specimen B is obtained from equation (40),
generalizing equation (27) obtained for the Boolean random set:

P{σR ≥ σ} = P{non fracture of B} = exp(−μ(A′
0 ⊕ B̌)Φ(σ)) (40)
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(a) (b)

Fig. 6. Infimum Boolean RF with cone primary grains (a) and Boolean Variety RF
(b). The infimum of observed grey values (dark points corresponding to low values,
and bright points to high values) is taken in every point of the image.

where μ is the volume V for grains, π/4S (S being the surface area) for fibers,
and the integral of mean curvature M for strata, averaged over the realizations
of the random set A′

0, and Φ(σ) is the intensity of the corresponding Poisson
point process (average number of defects per unit volume with strength lower
than σ in the case of grain defects):

Φ(σ) =
∫ σ

0

θ(t)dt (41)

A model of this kind was used for fracture of ceramics, the function Φ(σ)
being estimated by image analysis by some transformation of the distribution
function of defects (inclusions and porosities ranging from 20 μm to 70 μm)
[6].

When applying a non uniform stress field σ(x) and for point defects,

P{non fracture of B} = exp(−
∫

B

Φ(σ(x))dx) = exp(−Φ(σeq)) (42)

with Φ(σeq) =
∫

B

Φ(σ(x))dx. This formulation with the equivalent stress σeq

makes possible to put together results of different types of fracture tests, for
the identification of a model, as made in the ”local approach” [7] for the
Weibull statistics, σeq being the so-called Weibull stress.

For defects with θ(σ) = θ1m(σ − σ0)m−1 and m > 1 and σ > σ0, we have
Φ(σ) = (σ− σ0)mθ1, and in the case of a homogeneous stress field, σR follows
a Weibull distribution with σm

u = 1/θ:

P{σR ≥ σ} = exp(−μ̄d(A′
0 ⊕ B̌)

(
σ − σ0

σu

)m

) (43)
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This distribution is well known in the practice of fracture statistics, in the
case of point defects, but most users of this model for experimental data are
not aware of the underlying Boolean RF model. When σ0 = 0, the coefficient
of variation of σR,

√
V ar[σR]/E[σR] does not depend on V , which can be

easily checked from data. Scale effects can be seen from the variation of the
median strength σM , as a function of the specimen volume V :

σM = σ0 +KV −1/m (44)

When replacing grains on Poisson points by fibers of strata, the scale effect
depend on the surface or on the integral mean curvature of the specimen,
which differs from the standard model.

For a mixture of two populations of defects following Weibull distribu-
tions with parameters (θ1, σ01,m1) and (θ2, σ02,m2), resulting into a bimodal
Weibull distribution when a uniform stress field is applied:

Φ(σ) = θ1(σ − σ01)m1 + θ2(σ − σ02)m2 (45)

Other distributions functions can be derived from other functions θ(σ),
like the Pareto distribution, the sigmoid distribution, and so on [26, 28, 36].

4.2 Critical defect fraction

We can relax the weakest link assumption in two different ways, letting the
defects (where a potential crack can initiate) reach a critical volume fraction
of the domain where σc(x) < σ(x) or a critical density (number of defects
per unit volume) [26, 28, 36]. This assumption involves a change of scale by
convolution. In both cases, no size effect is expected for the median strength,
while the dispersion of the observed strength decreases with the size of the
specimen.

4.3 Griffith crack arrest criterion

Fracture statistics models were derived for two dimensional media with a
random fracture energy Γ (x) [13, 28, 36]. These models can be applied to
thin specimens, where the microstructure changes can be neglected across
the thickness. The extension to general 3D crack fronts is an open problem,
since in that case various fracture criteria based on the fracture energy are
generally proposed for homogeneous materials. In the two dimensional case,
for a fracture path with length a in a material with fracture energy γ, the
energy used in the fracture path is equal to 2γa. According to the Griffith
criterion, a possible fracture path P (s, d) connecting a source s to a destination
d must satisfy for every point x of the path:

2Γ (x) ≤ G(x) (46)
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where the energy release rate G(x) depends on the location of the crack front
x, on the loading conditions, and on the crack path connecting s to x. From
equation (46) a potential crack path P must satisfy

∨{2Γ (x)−G(x);x ∈ P} ≤ 0 (47)

where ∨ is the supremum. For a random medium, the condition (47) is a
random event, and

P{fracture} = P{∨{2Γ (x)−G(x);x ∈ P} ≤ 0} (48)

where the fracture path P (s, d) separates the specimen in two parts. In gen-
eral, P{fracture} is difficult to calculate, due to a very complex crack path
geometry, related to the microstructure. Usually G(x) is a realization of a ran-
dom function correlated to Γ (x). For simplification, the following situations
were considered: straight crack propagation according to the mode I opening
of the crack (which propagates in a plane orthogonally to the applied tensile
stress) under various loading conditions, resulting in stable or unstable crack
propagation. With this assumption, equation (48) implies a change of support
by the supremum. The case of a microcrack initiation on defects, followed by
an advance or arrest of the crack, was also examined. For a given model of
RF concerning the fracture energy Γ (x), the following types of probability
distributions can be expressed as a function of the model and of the loading
conditions: fracture stress σR, toughness (standard Gc, and at crack arrest
Ga), critical length of defects (unstable microcrack ac or crack after arrest
la). Since these probability distributions are related in a coherent way, it is
possible to use them in practice to test models from data at different scales:

• mechanical data (σR, Gc, σa, Ga),
• size distribution of cracks observed for given loading conditions (ac, la).

Calculations made on a Poisson mosaic, and on a Boolean random mosaic,
with the distribution function F (γ) = P{Γ < γ} provide various scale effects.
An interesting example concerns a model of random fracture energy Γ (x)
corresponding to the situation of a polycrystal, every crystal showing its own
fracture energy. A convenient model for this case is the Poisson mosaic: we
start from a Poisson random tessellation with parameter λ delimiting grain
boundaries (Poisson lines in the plane in 2D); independent realizations of the
fracture energy Γ are attributed to each grain of the tessellation, with the
cumulative distribution function

F (γ) = P{Γ < γ}

As a result, it is known that F (γ) is the distribution function of the RF
Γ (x). We consider now the unstable propagation of a surface crack with the
initial length 2a in a random medium, until it reaches the length 2(a+ b). For
any loading where G increases with x,
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Pa+b{fracture} = F (G(a)/2) exp

[
−λ

∫ 2(a+b)

2a

(1− F (G(u)/2))du

]
(49)

From equation (49), the fracture probability Pa+b{fracture} increases (and
converges to 1)

• with the crack length 2a, or the applied stress σ
• for lower λ (corresponding to a coarser microstructure): small grains im-

prove the ability to resist the crack growth, as a result of a higher prob-
ability to meet grains with a large fracture energy γ, blocking the crack
propagation.

The predicted scale effect depends on the distribution F (γ) for specimens
with a variable size (constant a/b):

• for a finite range of F (γ) (F (γ) = 1 for γ ≥ γc), P{fracture} → 1 when
a ≥ ac with 2ac = 4γcE/(πσ2)

• for a distribution F (γ) with a tail for large fracture energies:

1− F (γ) � γ−α for γ →∞
the scale effects depend on the positive coefficient α
– if α = 1, there is asymptotically no scale effect for P{fracture }

Pa+b{fracture} = yλc with y = a/(a+ b) and c = E/(2πσ2) (50)

– if α �= 1, the large scale behavior of P{fracture } is given by

Pa+b{fracture} = exp
[
−λ(2c)αa1−α(1− yα−1)/(α− 1)

]
Therefore, if α < 1, corresponding to a slow growth of F (γ) towards
1, the crack is almost surely stopped during its straight propaga-
tion by reinforcing obstacles with a high fracture energy. If α > 1,
Pa+b{fracture} → 1 for increasing sizes, as in the case of a distribu-
tion function of a bounded RV γ.

The scale effect for the median strength σM of similar specimens (y re-
maining constant) depends on α:

• if α = 1, there is no scale effect

σM �
√
− log y

• if α �= 1,

σM � L

1− α

2α
∣∣1− yα−1

∣∣1/(2α)

where L = a+ b is the size of the specimen: σM increases with L for α < 1
and σM decreases with L for α > 1.

The probability distributions of the other variables (toughness Gc and Ga,
critical length lc and length at arrest la) are found in [28]. Similar conclusions,
concerning size effects, were obtained for a model where Γ (x) is a Boolean
random function [27].
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4.4 Models of random damage

The occurrence of damage in a loaded material is followed by a progressive
loss of integrity, ending by its ruin. This damage is the result of a local degra-
dation of weaker parts in the material, that can be generated by the presence
of defects, which can be accounted for by a probabilistic approach. This is
generally made in the case of brittle materials by the weakest link model, as
described above. In what follows, we propose probabilistic models of damage
based on the presence of random defects. After a presentation of our main
assumptions, we consider the case of a random damage generated under a
homogeneous loading. More details are given in [34].

We consider a homogeneous elastic material (with the elasticity tensor C)
containing point defects. Under the action of a stress field σ(x) (σ(x) = σ in
the case of a uniform load), any defect located at x, with a critical stress σc

lower than σ(x), generates a damaged zone with volume v centered in x. The
damaged zone can be replaced by a domain v with a constant elasticity ten-
sor CD. We consider here the extreme case where damage zones behave like
pores (CD ≡ 0). This is equivalent to the notion of statistical volume element
(containing at least a critical defect) introduced in section 4.5 for the finite
elements simulation of damage in composites [29]. One model of this type is
obtained as a tessellation of space into statistically independent cells with a
volume v, the cell covering x remaining unbroken with probability p(σ(x)),
and generating an evolving two-phase mosaic model. Another model consid-
ers point defects distributed according to a Poisson point process, Φ(σ) being
the average number of defects with a critical stress lower than σ, per unit

volume of material. The function Φ(σ) =
(
σ

σu

)m

gives the Weibull distribu-

tion for the ”weakest link” model. Here, critical defects at Poisson points xk

generate damaged zones A′
k (namely pores in what follows) with centers in

xk. Therefore the damaged part of a specimen builds a Boolean model with
primary grain A′. This primary grain can be random, and can be oriented in
a given direction, in the case of anisotropic damage. In examples below, we
consider isotropic and uniformly damaged zones, generating a Boolean model
with spheres having a constant volume v. If overlaps between damage zones
at different points xk are forbidden, a hard-core process is generated.
The next assumption in the model concerns the redistribution of stress in
the non damaged zone. As in the case of the damage of bundles of fibers, we
assume a uniform load sharing, the damage generating a uniform amplification
of stresses over the non damaged parts. With this simplification, the damage
behaves as if it was totally diffuse, no localization being permitted. This is
typical of a quasi brittle material, in opposition to a brittle material submitted
to the weakest link assumption.
The progression of damage in the material processes as follows: defects are
ranked with an increasing severity (σc − σ(x)); the most critical defect is



Random Structures in Physics 211

converted into a damaged domain; the load is then redistributed over the
matrix, and the process goes on for the remaining defects.
We consider now a continuous model in the case of large homogeneous speci-
mens. The average volume fraction of the specimen with a critical stress larger
than σ is given by p(σ). For the previous cell model, this is the probability
for one cell to remain undamaged. For the Poisson point defects, generating
a Boolean model, we have:

p(σ) = exp (−Φ(σ)v) (51)

Consequently, when the non damaged parts of the material are loaded with
the homogeneous stress field σ, the average macroscopic stress σM acting on
the material is:

σM = σp(σ) (52)

From equation (52), the average macroscopic stress is expected to reach a
maximum σult, when it exists, since p(σ) decreases with σ. For a specimen
of volume V , fluctuations of p(σ) (and therefore of p(σult)) are expected. Its
variance V ar(σ, V ) is given, as a function of the covariance Q(h) of the non
damaged material (with Q(0) = q = p(σ)), by

V ar(σ, V ) =
1
V 2

∫
V

∫
V

(Q(x− y)− q2) dxdy (53)

For a large specimen (with V � A3), equation (53) can be expressed as a
function of the integral range in the space R3, A3, by

V ar(σ, V ) =
q(1− q)A3

V
(54)

with A3 =
1

q(1− q)

∫
R3

(Q(h)− q2) dh

For a model with cells having a constant volume v, we get A3 = v. For a
Boolean model of spheres, we illustrate this point in 2 by the value of two
standard deviations (giving the confidence interval of q ± 2

√
V ar(σ, V ) for q

expected on realizations) when the specimen is a cube with the volume V = L3

and when the diameter a of spheres (damaged zones) is such that a/L = 0.1.
The same statistical property follows for σult, since from equation (52), the
variance of σult is obtained from the variance of p(σult), after multiplication
by σ2

ult.

Table 2. Variability of the proportion of undamaged material p(σult)

p(σult) 0.95 0.9 0.8 0.7 0.5

2
p

V ar(σult, V ) 0.0054 0.00865 0.0134 0.0167 0.02

The macroscopic average relationship between the stress σM and the defor-
mation ε is known, provided the effective elastic tensor C(σ) is known as a
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function of the damage induced in the material at the level of stress σ act-
ing on the matrix. It depends on the geometrical arrangement of the damage
(and therefore on its configuration for a given volume V ). For simplification,
we consider large specimens and assume that C(σ) is given by the effective
tensor of an infinite porous medium with the solid volume fraction p(σ). It
is therefore obtained by homogenization of a random medium. We can use
as estimate the upper third order bound of the elastic moduli. The average
stress-strain relation is deduced in a parametric way (as a function of σ) from

σM = σp(σ), ε = (C(σ))−1
σp(σ) (55)

For an isotropic elastic medium in traction, we get the relation between the
elongation ε, the traction σ and the Young’s modulus E(σ): ε = σp(σ)/E(σ).
To illustrate the approach, we consider specimens in tension, with defects on
Poisson points. For defects obeying to the Weibull distribution, the ultimate
stress σult and the fraction of non damaged material are given by

σult = σu

(
1
mv

)1/m

(56)

p(σult) = exp(− 1
m

)

In 3 is given the variation, as a function of the Weibull modulus m, of
σult/σu (taking v = 1), of p(σult) and of the reduced coefficient of varia-

tion c =
√

1−p(σult)
p(σult)

, from which the ratio standard deviation
average of p(σult) and of

σult is deduced by c

√
A3

V
. The ultimate strength increases with m, while the

proportion of damaged material 1− p(σult) and the fluctuations decrease. In-
creasing m results in a more deterministic behavior. For m ≥ 3, the volume
fraction of the damaged material is lower than the percolation threshold of
the phase made of spheres for the Boolean model ( pc = 0.2895±0.0005 [70]),
which means that the physical behavior of the model is correct. Concerning
the σM − ε curve, high values of m generate a more brittle elastic material,
while a low value of m results in a ductile type macroscopic behavior, as il-
lustrated on 4.4. The curves own a common point obtained for σ = σu. Note
that it should be possible to estimate the parameters of the statistical model
by identification from an experimental σM − ε curve.

Table 3. Effect of m on the ultimate strength, p(σult), and c (Weibull distribution).

m 1 2 3 4 5 10 25 50
σult/σu 1 0.707 0.693 0.707 0.725 0.794 0.879 0.925
p(σult) 0.368 0.606 0.716 0.779 0.819 0.905 0.961 0.980
c 1.311 0.805 0.629 0.533 0.470 0.324 0.202 0.142
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Fig. 7. Average macroscopic stress-strain (σM/σu) relation for Weibull populations
of defects with various m and a constant median σu log 2.

For defects obeying to a Pareto distribution, we have Φ(σ) = m log
σ

σu
and

p(σ) =
(σu

σ

)mv

for σ ≥ σu. When mv > 1, we have σult = σu and p(σult) = 1:
large specimens of the material are brittle with a constant ultimate stress.
When mv < 1, we have σult = +∞ and there is no bounded maximum for
σM = σp(σ).

4.5 Fracture statistics models and simulations

When considering damaging materials at different scales, like fiber composites
or metals under a ductile fracture, the fracture process must be studied by
means of numerical simulations [29], since it is difficult to account for the com-
plex stress field resulting from the interaction between various damage sites.
In the case of composite materials, we used realizations of the random fracture
criterion, combined with finite elements calculations. The following method-
ology was developed to study the fracture statistics unidirectional composites
for fiber fracture [29], for transverse fracture, and finally for the fracture of
laminate composites. The first step is based on the experimental identification
of the population of defects (point defects are considered here), by appropriate
mechanical tests and by calculation of the local stress field seen by the mi-
crostructure; in this experimental part, a statistical volume element (SVE) is
determined, as the elementary volume element broken during the progression
of damage. Then, the statistical information and the fracture criterion are
introduced in a FE calculation: to every SVE is attributed a random strength
σR corresponding to the population of defects; during the calculation, it is
broken if the average stress in the SVE, or more rigorously the equivalent
stress σeq defined by equation (42) is larger than σR. Random simulations
enable us to study the fracture behavior on a first scale, namely a represen-
tative volume element RVE. If necessary, the material can be considered as
a set of RVE to study its behavior on the next scale. The main difficulty in
running simulations is to determine the appropriate microstructural element
converted into a SVE, and to know its fracture statistics. When operating on
scales with increasing lengths, the statistical models proposed in the previ-
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ous sections can be used to generate the necessary random variables. However,
the correct corresponding type of assumption (weakest link, critical density,...)
has to be introduced on a physical basis corresponding to the behavior of the
material, as known from experiments. Similar approaches are developed for
ductile fracture statistics in steels (see the chapter by A. Pineau in the book
[36]).

From these examples of simulations, general guidelines can be derived.
Firstly, a damage parameter (density of point defects, microcrack network
parameter, cavity volume fraction, cavity growth rate,...), connected to the
microstructure, should be selected at a given scale, the SVE. Secondly, sta-
tistical properties of this parameter should be obtained by image analysis
(or by micromechanical tests); until now this information was limited to the
probability distribution function over domains with a given size, but higher
order information can be estimated to recover probabilistic information on
the damage parameter, considered as the realization of a random function.
Finally, simulations of the damage parameter as initial conditions for the pre-
diction of its evolution by means of finite elements have to be performed; for
this step, morphological models of random media, as well as change of scale
models to generate correct simulations on different scales, can be useful.

5 Conclusion

From his pioneering work on the composition of permeability in random
porous media, Georges Matheron initiated a major contribution for solving
change of scale problems in random media. He always considered this field as
an important research axis, beside his work on geostatistical estimation, on
random sets and on mathematical morphology.

This is still a very active domain, with progress involving more and more
simulations and investigations in non linear physics. Efforts are in progress
to integrate the models summarized in this paper in numerical simulation
techniques and in the design of microstructures. There is no doubt that new
developments will be of practical interest in many areas of applications for
engineering purpose.
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hétérogènes’, Izv. Akad. Nauk SSSR, Mekh. i; Mas, N◦ 3, pp. 185-190; N◦ 6,
pp. 65-7.

74. Schwydler M.I. (1963): ’Sur les caractéristiques moyennes des courants
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Mekh. i; Mas, N◦ 4, pp. 127-129; N◦ 5, pp. 148-150.

75. Serra, J. (1982): Image analysis and mathematical morphology. (Academic
Press, London).

76. Stoyan, D., W.S. Kendall, J. Mecke (1987): Stochastic Geometry and its Appli-
cations. (J. Wiley, New York).

77. Stoyan D., Mecke K., this volume.
78. Suquet P., Ponte Castañeda P. (1993): ’Small contrast perturbation expansions

for the effective properties of nonlinear composites’, C.R. Acad. Sc. Paris, 317,
Série II, pp. 1515-1522.



Random Structures in Physics 219

79. Torquato, S., G. Stell (1983): ’Microstructure of two-phase random media III.
The n-point matrix probability functions for fully penetrable spheres’, J. Chem.
Phys. 79, pp. 1505-1510.

80. Torquato, S., F. Lado (1986): ’Effective properties of two phase disordered com-
posite media: II Evaluation of bounds on the conductivity and bulk modulus of
dispersions of impenetrable spheres’, Phys. Rev. B 33, pp. 6428-6434.

81. Torquato, S. (1991): ’Random heterogeneous media: microstructure and im-
proved bounds on effective properties’, Appl. Mech. Rev. 44, pp. 37-76.

82. Torquato, S. (2002): Random heterogeneous materials: microstructure and
macroscopic properties. (Springer Verlag, New York, Berlin).

83. Willis, J.R. (1981): ’Variational and related methods for the overall properties
of composites’, Advances in Applied Mechanics, 21, pp. 1-78.

84. Willis, J.R. (1991): ’On methods for bounding the overall properties of nonlinear
composites’, J. Mech. Phys. Solids 39, 1, pp. 73-86.



Part III
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Mophological Operators for the Segmentation
of Colour Images

Jean Serra

Centre de Morphologie Mathématique, Ecole des Mines de Paris

1 Introduction

During his long and fruitful career, Georges Matheron never tackled the two
themes of segmentation and colour processing of images. At the beginning of
the nineties, when I was entering the first theme via connected filters, I asked
him why he had avoided them. He told me that he could not take up working
on all possible problems, and after a silence, added with his marvellous tactful
smile: ”besides, I guess it is already left to you”.

Indeed, G. Matheron was partly right. The work on connected filters con-
tained the seed of a morphological theory of segmentation that arose ten years
later [31]. But by this time, my knowledge about colour processing was just
a matter of two ideas. First, one represents colour by three grey images, in
RGB or HLS modes, second, the compressed bit streams of grey tone images
have to be multiplied by two (and not by three) when passing to colour.

I entered the field of colour processing quite accidentally. In 1999, Allan
Hanbury, who was one of my Phd students, was developing a methodology
for an automatic classification of pieces of woods according to their textures
(veins, knots, ...). The directional features were, of course, preponderant and
led us to elaborate morphological tools for circular data [11]. Now, in imagery,
the two major situations where such data appear, are orientations and hues.
Therefore, we decided to try also our algorithms on colour representations
involving hue, i.e. on the two HSV and HLS systems. It rapidly led us to a
critical analysis of both systems, and to propose more consistent ones [30][15].
In the meantime, A. Hanbury defended his thesis and left the Centre de Mor-
phologie Mathématique (CMM, in brief) in 2002. I carried on the approach
with Jesus Angulo, another Phd student at CMM, whose thesis subject did
not really involve colour processing, but who was enthusiastic about the ques-
tion. Together, we started from the new colour systems and discovered that,
in the 3-D histograms generated by the L1 norm representations, the pixels of
an arbitrary image used to present specific alignments [4]. What did it mean ?
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The new representations had particularly modified the definition of the
saturation parameter, allowing us to perceive his meaning more clearly. With
J. Angulo, we decided to exploit this parameter to balance luminance versus
hue, when segmenting colour images [2].

This thread of ideas is not the only one we developed during these recent
years. Since I was thrown into colour problems, it was an excellent opportunity
to have a look at RGB representations and to those based upon palettes. I
developed the first theme jointly with Marcin Iwanowski [12], and the second
with Mariuscz Mlynarczuk [29], both polish Phd students at CMM.

The text which follows surveys these studies on colour image processing.
I shall try and show how my way of thinking was pervaded by G. Matheron’s
one; and since Matheron used to say that the pedagogical order must be the
reverse of that of the discovery, we will begin by the most recent developments.

2 The 3-D polar representations of the colour

2.1 Light intensities and gamma correction

Consider a television receiver. It uses three different colour representations.
On the one side, the input Hertzian signal is coded as one grey image plus
two other ones, associated to green-red and blue-yellow contrasts (i.e. one lu-
minance and two chrominances). On the other side, the image on the monitor
is obtained from three electrical signals, which excite three layers of green,
red and blue photo-receivers. These two representations are quite different,
although technically sound for their respective purposes. However, the man-
ufacturers take none of them for the user’s interface, and prefer human ad-
justments based on light (luminance), contrast (saturation), and, in case of
an old receiver, from hue. Hence, this last triplet turns out to be the simplest
one for human vision.

What are the relationships between these various representations? Do the
technological steps modify the initial light that enters a device? Colour im-
age processing rests on a few basic operations (addition, comparison,..) and
properties (increasingness, distances..). Have these tools a physical meaning?
In colour imagery the basic notion is the spectral power distribution (SPD)
of the light radiating from or incident on a surface. This intensity has the
dimension of an energy per unit area, such as watt per m2. When the light
arrives at a photo-receiver, this sensor filters the intensities of each frequency
by weighting them according to fixed values. The sum of the resulting intensi-
ties generates a signal that exhibits a certain “colour”. The CIE (Commission
Internationale de l’Eclairage), in its Rec 709, has standardized the weights
which yield the triplet R709, G709,B709 [8]. As energies, the intensities are ad-
ditive, so that all colours accessible from an RGB basis are obtain by sums
of the primary colours R,G, and B and by multiplications by non negative
constants.
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Fig. 1. Gamma correction function.

The exploration of the spectrum is lower bounded by R = G = B = 0 (zero
energy) higher bounded by a maximum red R0, green G0 and blue B0 that
are given by the context (illumination, technological limits of the sensors, or
of the eye, etc.) in which we work. Generally, each technology fixes the three
bounds, which therefore define the reference white, and then introduces the
reduced variables

r =
R

R0
, g =

G

G0
, b =

B

B0
. (1)

The digital sensitive layers of cameras transform the light intensities into
proportional voltages; conversely, the cathodic tubes (CRT) and the flat
screens that display images return photons from the electrical current. Now,
their response is not linear, but a power function of the input voltage whose
exponent γ, (gamma), varies around 2.5 according to the technologies. If we
want the light intensities of the CRT to be proportional to those of the scene
itself, the gamma effect has to be compensated. In video systems, this gamma
correction is universally implemented in the camera itself. The Rec. 709 of
CIE proposes the following correction function

r′ = 4.5r r ≤ 0.018
r′ = 1.099r0.45 − 0.099 r > 0.018 (2)

that we write here for the reduced red intensity r, and where1/γ = 0.45. The
same transfer function is applied to both green and blue bands.

Fig. 1, drawn from the excellent book [24] depicts the graph of Rel.(2).
The variation domain [0, 1] is the same for the reduced intensities (r) as for
the video colours (r′), which implies that the white point R0 G0 B0 is left
invariant. The linear beginning in Rel.(2) minimizes the effect of the sensor
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noise. An ideal monitor should invert the transform Rel.(2). Indeed, they
generally have neither linear segment, nor gamma exponent equal to1/0,45
[24].

Figure (1) shows that for r closed to1, the graph looks like a straight line.
More precisely, the limited expansion

(1− u)1/γ = 1− u

γ
+ ε (u) (3)

for small u, leads us to replace the second equation (2) by

r’* = (0.55 + 0.45r)1.099− 0.099 (4)

i.e., numerically

r 0.9 0.8 0.7 0.6 0.5
r’ 0.949 0.895 0.837 0.774 0.705
r’* 0.950 0.901 0.851 0.802 0.753

r’- r’*

r’ 0.1% 0.6% 1.4% 2.8% 4.8%

In comparison with the noise of the video systems, we can consider the
approximation r’* is perfect for r ≥ 0.8 and excellent for 0.6 ≤ r ≤ 0.8.

2.2 Colour Vector Spaces

Their linearity provide the intensities r, g, b with the structure of a 3 dimen-
sions vector space, or rather of the part E which is limited to the unit cube
[0, 1] × [0, 1] × [0, 1] of R

3. For colour image processing purposes, it would
be wise to go back from the video bands (r′, g′, b′) to the reduced intensities
(r, g, b) by the inverse transform of Rel.(2). When starting from the usual 3×8
bits (r′, g′, b′) images, the best should probably be to code in 3× 16 bits for
computation (or in floating variables). But as a matter of fact, people keeps
the (r′, g′, b′) video space, which is implicitly modelled as a part of a vec-
tor space, from which one builds arithmetic means, projections, histograms,
Fourier transforms, etc.... which often gives significant results.

What are the real consequences of the gamma correction Rel.(2) on the
processing of colour data? Formally speaking, one can always consider the unit
video cube (r′, g′, b′) as a part, E′ say, of a 3-dimensions vector space. This
allows us to formulate operations, but their physical interpretations demand
we come back to the intensities (r, g, b).

Fig. 2 depicts the unit cube E′. The vector x′, of coordinates (r′, g′, b′)
can also be decomposed into two orthogonal vectors c′ and l′ of the chromatic
plane and the a-chromatic (or gray) axis respectively. The latter is the main
diagonal of the cube going through the origin O and the chromatic plane
is perpendicular to the gray axis in O. The two vectors c′ and l′ have the
following coordinates
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Fig. 2. Chromatic plane and a-chromatic axis.

3c′ = (2r′ − g′ − b′, 2g′ − b′ − r′, 2b′ − r′ − g′)
3l′ = (r′ + g′ + b′, r′ + g′ + b′, r′ + g′ + b′) (5)

Consider the red band r′(z) over a zone Z in a colour image. What mean-
ing can we give to the average red in Z ? As we just saw, the only average
that has a physical meaning is the quantity r̄ = 1

Z

∫
(r′(z))γ

dz, which needs
to be corrected into r̄1/γ for display purposes (for the moment we neglect the
constants 1,099 and 0,099 in Rel.(2)). On the other hand, the usual segmenta-
tions aim to split the space into regions Z where the colour is nearly constant.
Then at each point z ∈ Z, we can approximate r(z) by the limited expansion

r(z) = r′(z)γ = r′γ
[
1− r′ − r′(z)

r′

]γ

= r′γ
[
1− γ

(
r′ − r′(z)

r′

)
+ ε(r′)

]
where r̄′ = 1

Z

∫
Z r′(z)dz. Under averaging in Z, the coefficient of the γ term

in the right member becomes zero, so that

(r̄)1/γ = r̄′ + ε̄ (r′) (6)

Therefore, the arithmetic mean of the video red r′ equals, at the second
order, the mean of the red intensity r followed by the gamma correction. The
result remains true when the coefficients of Rel.(2) are added, when the the
average is weighted, and also for the dark zones Z where the first Rel.(2)
applies. It extends to the greens and blues. Rel.(6) turns out to be a theo-
retical justification of the ”mosaic” based image segmentations (e.g. waterfall
algorithm).

2.3 Brightness

From the point of view of physics, brightness is nothing but the integral of
the power spectrum, i.e., here, the sum of the three components r, g, and b,
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that stand for this spectrum. For colorimetric purposes, this sum has to be
weighted relatively to the spectral sensitivity of the eye. The CIE Rec. 709
defines a white point and three weighting functions of the spectrum which
lead to the variables R709, G709 and B709, then to the luminance

Y709 = 0.212R709 + 0.715G709 + 0.072B709 (7)

and to the luminance YW of the associated white point. The three coefficients
of Rel.(7) are related to the brightness sensitivity of the human vision and
have been estimated by colorimetric measurements on a comprehensive pop-
ulation. The luminance Y709, as a linear function of intensities, is an energy
(watts/m2).

Human vision responds to intensities in a logarithmic way, according to
laws of the type di/i = constant. Just as we took into account the spectral
sensitivity of the eye, we should not ignore its energetic sensitivity. Now, by an
amazing coincidence vision response to intensity is closed to the gamma cor-
rection of Rel.(2) : for example, when the luminance of a source is reduced to
20%, the eye perceives an intensity reduction of 50% only. Therefore, following
many authors, we can consider the transforms

r′ = r1/γ g′ = g1/γ b′ = b1/γ (8)

for γ � 2.2 as generating perceptual intensities. For example, the Rec. BT
601-E proposes the luma y′601 as a perceptual brightness measurement

y′601 = 0.299r′ + 0.587g′ + 0.144b′. (9)

However, this luma, as established from video values has not an energy dimen-
sion, and not any more the deriving additivity properties. The CIE follows
the same direction, but defines the lightness l∗ by taking a slightly different
exponent

l∗ = 116(
Y709

YW
)1/3 − 16 Y ≥ 0.0089YW .

As regards the operations of segmentation in image processing, the situa-
tion is different. They do not hold on a perceived brightness, but on that of
the object under study. In microscopy, the histological staining usually ranges
from blue to violet; the spectrum of a sunset, or that of a human face have
nothing to do with the weights given to r, g, and b in Rel.(7) or (9). Thus in the
absence of a priori informations on the spectra of the objects under study, the
purpose of segmentation leads us to take as brightness a symmetrical function
of primary colours.

As regards the perceived energies now, consider, in the intensity space E,
a vector x whose direction is given by xo = ro, go, bo but whose intensity
varies, i.e.

x = (λr0, λg0, λb0) λ ∈ [0, λmax]
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The point x describes the segment S which begins in O, goes through
(ro, go, bo) and ends on the edge of cube E. In the video space E′ there corre-
sponds to x the point x′ :

x′ =
(
(λr0)

1/γ
, (λg0)

1/γ
, (λb0)

1/γ
)

= λ1/γx′0 (10)

with x′0 = r
1/γ
0 , g1/γ

0 , b1/γ
0 . Similarly, the point x′ describes a segment S′ in

E′. When x varies, if we want its perceptual brightness to seem additive, then
Rel.(10) implies that the corresponding brightness of x′ is a linear function of
the three primary components. Finally, since this ”image processing bright-
ness” has to vary from 0 to 1, as r and r′ do, the only possibility is to take
for it the arithmetic mean m′ of the primary colours :

m′ =
1
3
(r′ + g′ + b′). (11)

Put λ′ = λ1/γ . The two expressions

|m(x1)−m(x2)| = |λ1 − λ2|m (x0)

|m′(x′1)−m′(x′2)| =
∣∣∣λ1/γ

1 − λ
1/γ
2

∣∣∣m′ (x′0)

turn out to be different distances in segments S and S′ respectively. The expo-
nent 1/γ provides the second one with a meaning of perceptual homogeneity.
But image processing is more demanding, as we must be able to express that
a colour point E′ (or more generally a set of points) gets closer to another
even when these two points are not aligned with the origin. Now, the mean
(11) is nothing but the restriction to the cube E′ of the L1 norm, which is
defined in the whole space R

3 (i.e. for r′, g′, h′ ∈ [−∞,+∞]) by taking α = 1
in the relation

n (x′) =
(
|r′ (x)|α + |g′ (x)|α + |b′ (x)|α

)1/α
α ≥ 1 (12)

(This Rel.(12) introduces indeed a family of norms as soon as α ≥ 1. For α =
2, we obtain the Euclidean norm L2, and for α = ∞, the ”max” norm). In a
vector space V , any norm n generates a distance dn (see [9], section VII-1-4)
by the relation

dn (x′1, x
′
2) = n (x′1 − x′2) x′1, x

′
2 ∈ V (13)

Therefore L1 is a distance, as well, of course, as its restriction to the unit cube
E′.

Thus, for α = 1, both brightness m′(x′) of Rel. (11) and distance
d (x′1, x

′
2) = m′ (|x′1 − x′2|) in E′ derive from a unique concept. This latter

relation is important, as in segmentation a number of algorithms which were
established for numerical functions extend to vector functions when a distance
is provided (e.g. watershed).
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2.4 Saturation

The CIE was more interested in various formulations of the brightness (lumi-
nance, lightness ...) than in saturation, that it defines as ”the colourfulness
of an area judged in proportion to its brightness”. In other words, it is the
concern of the part of uniform spectrum (i.e. of gray) in a colour spectrum,
so that any maximal monochromatic colour has a unit saturation and so that
any triplet r = g = b has a zero saturation.

Intuitively, what the CIE means here is clear, but its definition of the
saturation lends itself to various interpretations. From a given point x ∈ E,
one can draw several paths along which the colour density varies in proportion
to brightness. For example, in Fig. 2, supposed to represent cube E, we can
take the perpendicular xc to the chromatic plane, or the perpendicular xl to
the gray axis, or again the axis Ox, etc.. Which path to choose?

Indeed, these ambiguities vanish as soon as we set the context in the
chromatic plane. By projecting the cube E onto the chromatic plane, perpen-
dicularly to the a-chromatic axis, we obtain the hexagon H depicted in Fig. 3,
which is centered in O.

Fig. 3. Chromatic plane and saturation

Consider a point xo ∈ E, of projection c0 in H , and such that c0 �= O.
Following the CIE, we define as a saturation any non negative function along
the axis Oc0 that increases from O; in O, it equals zero (pure gray) and
has its maximum value when the edge of Hexagon H is reached, in cmax say
(saturated colour). The hue remains constant along the segment [0, cmax], and
the hue of the opposite segment [0, c̄max] is said to be complementary of that
of segment [0, cmax]. For a point c ∈ [0, cmax], we have c = λc0, 0 ≤ λ ≤ 1.
Thus, given c0 ∈ H , the saturation s (c) = s (λc0) is a function of λ only, and
this function is increasing.

We have to go back to the 3-D cube E, as point c0, projection of x0, is
just an intermediary step (moreover c0 /∈ E).The saturation s (x0) of point
x0 ∈ E is then defined by

s (x0) = s (c0)

Note that when a point x ∈ E moves away from the chromatic plane along
the perpendicular c0x0 to this plane, its gray proportion increases, but its
saturation s (x) does not change: it is indeed a matter of chromatism and not
of energy of the light intensity.
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As point c describes the radius [0, c̄max] which is at the opposite of [0, cmax]
in the chromatic plane, we have

c ∈ [0, c̄max] ⇐⇒ c = λc0 λ(c̄max) ≤ λ ≤ 0

where λ indicates the proportionality ratio, now negative, between c and c̄0.
This purely vector equivalence admits a physical interpretation if we extend
the definition of the saturation to all diameters D (c0) = [0, cmax] ∪ [0, c̄max] ,
c0 ∈ H , of the hexagon H (saturation was previously introduced for radii
only). This can be done by putting c ∈ D (c0), s (c) = s (λc0) = s (|λ| c0) . Two
opposite points have the same saturation, and more generally if c1 ∈ [0, cmax]
and c2 ∈ [0, c̄max], then c1 + c2 = (λ1 + λ2) c0, with λ1 ≥ 0 and λ2 ≤ 0. As s
is increasing we have

c1 ∈ [0, cmax] , c2 ∈ [0, c̄max] =⇒ s (c1 + c2) ≤ s (c1) + s (c2) .
(14)

When c1 = cmax and c2 = c̄max we find in particular Newton’s disc experiment,
reduced to two complementary colours.

When considering the saturation in the video cube E′, the conditions of
increasingness of s′ along the radii (now of H ′) and of its nullity on the gray
axis are still valid. They must be completed by the two constraints of image
processing, namely the symmetry w.r.t. r′, g′, b′ and the fact that s′(x′1 − x′2)
must be a distance in E′.

We saw that the mean m′, in Rel.(11), was the L1 norm expressed in the
unit cube E′, and that 3m′ (x′) was both the norm of x′ and of its projection
l′ on the gray axis, i.e.

L1 (x′) = L1 (l′) = 3m′ (x′)

It is tempting to keep the same norm for the hexagon H ′ of the chromatic
plane. By using Rel.(5) we find

s′ (x′) = L1 (c′) =
1
3

[|2r′ − g′ − b′|+ |2g′ − b′ − r′|+ |2b′ − r′ − g′|] . (15)

By symmetry, s′ (x′) depends on the three functions max′ = max(r′, g′, b,′ ),
min′ = min(r′, g′, b,′ ), and med′ = median(r′, g′, b,′ ) only, which gives

s′ =

⎧⎨⎩
3
2 (max′ −m′) if m′ ≥ med′

3
2 (m′ −min′) if m′ ≤ med′

(16)

On can find in [30] the derivation yielding s′, and that of the following ex-
pression h′ of the hue (which avoids to bring trigonometric terms into play)

h′ =
π

3

[
λ+

1
2
− (−1)λmax′ +min′ − 2med′

2s′

]
(17)
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with

λ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if r > g ≥ b
1 if g ≥ r > b
2 if g > b ≥ r
3 if b ≥ g > r
4 if b > r ≥ g
5 if r ≥ b > g

The hue h′, as a coordinate on the unit circle, is defined modulo 2π. The
value h′ = 0 in Eq.(17) corresponds to the red. For s′ = 0, colour point
lies on the gray axis, so that its hue is meaningless. The polar system of the
three equations (11), (16) and (17) is called the L1 norm representation. It is
inversible. The inverse formulae are given in [15], and the detailed proofs may
be found in [30].

The relations (15) and (13) entail that s (c′1 − c′2) = L1 (c′1 − c′2) is a dis-
tance in the chromatic plane, which therefore brings into play both saturation
and hue. On the other hand, as L1 is a norm, Rel.(14) becomes true for all
triplets c′1, c

′
2 and c′1+c′2 that are on a same diameter of H ′. Remark that here

the L1 norm is the concern of the projections c′, the norm of the vectors x′

themselves being their arithmetic mean. Finally, the above comments apply
also to the Euclidean norm and to the max-min, which both induce distances
in the chromatic hexagon H ′.

When passing from the video variables to the intensities, a first result is
obtained by observing that the averaging of the saturation s′ follows the same
law than that of the brightness m′, namely Rel.(6), in the zones Z where
the colour varies weakly. Moreover, the mapping x′0 = (r′0, g

′
0, b

′
0) → x0 =(

r′γ0 , g′γ0 , b
′γ
0

)
shows that x′ = λx′0 becomes x = λγx0, hence

s′(x′) = L1 (c′) = λL1 (c′0) = λs′(x′0) ⇔ s(x) = L1 (c) = λγL1 (c0) = λs(x0).

In other words, the L1 norm is increasing on the radii, and is zero for the
grays, on both chromatic hexagons H of the intensities and H ′ of the video
variables. Thus it represents a saturation in both spaces. It seems difficult to
go further, as two points x′0, x′1 ∈ E′ whose projections c′0 and c′1 lie on a same
radius of H ′ may have homolog points x0 and x1 ∈ E whose projections are
not always aligned with O.

2.5 Two other norms

How to build polar representations which be not contradictory with the pre-
vious requirements? Besides the L1 norm, we can think of two ones. Firstly,
the Euclidean norm L2. In practical image processing, it turns to be less
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convenient than the L1 norm, which suits particularly well to linear and mor-
phological operations, and provides nice inverses. In addition, the associated
2-D histograms are rather unclear (see Fig. 5).

Another possibility is to correct the classical HLS system [16], by replacing
its saturation by max (r, g, b)−min(r, g, b). In the whole space, the quantity
max−min is a semi-norm only: two distinct vectors c and c′, whose difference
c - c′ is a gray have the same max−min [15]. However, in the chromatic plane,
max−min becomes a norm. It can be used for the saturation in parallel with
m′ for the brightness. This is what we will do below each time max −min
norm is introduced.

Finally, the norm and distance based approach presents the significant
advantage that it separates the variables : two points x′1 and x′2 ∈ E′ which
have the same projection on the chromatic plane (resp. on the gray axis) have
the same saturation (resp. the same brightness). However, the last property,
on brightness, vanishes when the three bands are given different weights in
the means m or m′.

2.6 The classical polar representations

Even though the transformation from RGB to hue, saturation and brightness
coordinates is simply a transformation from a rectangular colour coordinate
system (RGB) to a three-dimensional polar (cylindrical) coordinate system,
one is faced with a bewildering array of such transformations described in the
literature (HSI, HSB,HSV, HLS, etc. ). Most of them date from the end of the
seventies [33], and were conceived neither for processing purposes, nor for the
current computing facilities. This results in a confusing choice between models
which essentially all offer the same representation. The most popular one is
the HLS triplet of System (18), which appears in many software packages.
The comments which follow hold on this particular model, but they apply to
the other ones. The HLS triplet derives from RGB by the following system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l′HLS =
max(r′,g′,b′)+min(r′,g′,b′)

2

s′HLS =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
max(r′,g′,b′)−min(r′,g′,b′)
max(r′,g′,b′)+min(r′,g′,b′) if l′HLS ≤ 0.5

max(r′,g′,b′)−min(r′,g′,b′)
2−max(r′,g′,b′)−min(r′,g′,b′) if l′HLS ≥ 0.5

(18)

One easily checks that the HLS expressions do not preserve the above
requirements of linearity (for the brightness), of increasingness (for the satu-
ration) and of variables separation. The HLS luminance both RGB triplets
(1/2, 1/2, 0) and (0, 1/2, 1/2) equals 1/4, whereas that of their mean equals
3/8, i.e. it is lighter than both terms of the mean. The HLS saturations of the
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Fig. 4. Two test images.

RGB triplets (4/6, 1/6, 1/6) and (2/6, 3/6, 3/6) equals 3/5 and 1/5 respec-
tively, whereas that of their sum is 1: it is just Newton’s experiment denial!
Finally the independence property is no more satisfied. Take the two RGB
triplets (1/2, 1/2, 0) and (3/4, 3/4, 1/4). One passes from the first to the sec-
ond by adding the gray r′ = g′ = b′ = 1/4. Hence both triplets have the same
projection on the chromatic plane. However, the HLS saturation of the first
one equals 1 and that of the second 1/2.

3 2-D histograms and linearly regionalized spectra

In practice, is it really worth deviating from beaten tracks, and lengthening
the polar triplets list? What for? We may answer the question by comparing
the luminance/saturation bi-dimensional histograms for HLS system and for
L1, L2 and max−min norms. J.Angulo did so on a dozen images [3]. Two of
them are depicted below, in Fig.4.

3.1 Bi-dimensional histograms

In the first image, we observe strong reflections on the rubber ring, and various
types of shadows. The corresponding histograms are reported in Fig.5, with
luminance on the x axis and saturation on y axis. No information can be drawn
from HLS histogram, some structures begin to appear in L2 and max−min
norms, but the most visible ones come from L1 norm.

By coming back to the images, we can localize the pixels which give align-
ments, as depicted in Fig.6. They correspond to three types of areas :

• shadows with steady hue,
• graduated shading on a plane,
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Fig. 5. Bi-dimensional histograms of the ”rubber ring” image. The x-axis corre-
sponds the luminance and the y-axis to the saturation.

• reflections with a partial saturation.

Consider now the more complex image of ”Ana Blanco”, in Fig.4b. It
includes various sources light (television monitor, alpha-numerical incrusta-
tions..), and the light diffused by the background is piecewise uniform over
the space. However, there are still alignments, which do not always go through
points (0, 0), or (1, 0), and are sometimes parallel. In the lum/hue plane of the
L1 norm representation, several horizontal lines (constant hue) are located at
different hue levels, and alternate with elongated clouds of points (Fig.7b).

All in all, we draw from the above histograms four main informations.

1. In the lum/sat histogram, there is no accumulation of pixels at point (1,0).
It means that the sensors we use are not physically saturated, which make
realistic the proposed linear approach;

2. Still in the lum/sat histogram, some well drawn alignments can be ex-
trapolated to point (0,0) or point (1,0). The others are parallels to the
first ones;

3. However, most of the pixels form clouds in both lum/sat and lum/hue
histograms are not aligned at all, whether the model does not apply, or
the homogeneous zones are too small;
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Fig. 6. Zones of ”Rubber ring” associated with alignments. The left two images show
the supports of the alignments detected in Fig.5 for the L1 norm, and the right two
images indicate the locations of the aligned pixels in the space of the initial picture.

Fig. 7. (a) and (b) the two histograms of ”Ana Blanco”, in the lumi-
nance/saturation and the luminance/hue plane respectively, both in L1 norm.

4. In the lum/hue histogram, most often the aligned pixels exhibit a (quasi)
constant hue, i.e. draw horizontal lines. But sometimes, these ”lines” turn
out to be a narrow horizontal stripe.
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Such characteristic structures, such distinct lines suggest we seek a physical
explanation of the phenomenon. This is what we will do now. But besides any
physical model, a first point is worth to be noticed: the only norm that enables
us the extraction of reflection areas, of shadows and gradations is L1. No other
polar model results in such an achievement.

3.2 Linearly regionalized spectra (LR model)

If we assume that the alignments are a property of the spectrum, and not
an artefact due to some particular representation, we have to express the
spectrum in such a way that the sequence

(spectrum) → (r′g′b′) → (m′s′h′) → (m′ = αs′ + β)

be true (in the alignments) whatever the weights generating r, g and b are, and
also whatever the spectrum itself is. Consider a zone Z of the space whose
all pixels yield an alignment in the L1 histogram. Denote by sp (ν; z) the
spectrum of the light intensity at point z ∈ Z. We will say that this spectrum
is linearly regionalized in Z when for each point z ∈ Z one can decompose
sp (ν; z) into the sum of a first spectrum sp0 (ν), independent of point z, and
of a second one, ω(z)sp1(ν), which proportionally varies in Z from one point
to another. For all z ∈ Z, we have

sp (ν; z) = sp0 (ν) + ω(z)sp1(ν) (19)

where ω (z) is a numerical function which depends on z only, and where sp0

and sp1 are two fixed spectra.
In the spectrum sp (ν; z), though sp0 usually corresponds to diffuse light

and sp1 to specular one, we do not need to distinguish between the emit-
ted and reflected components of the light. It can be the concern of the light
transmitted through a net curtain, for example, or of that of a TV moni-
tor; but it can also come from passive reflectance, such as those described by
Shafer’s dichromatic model [32], or by Obein’s model of glossiness [22]. But
unlike these two models, the term ω(z)sp1 may also represent an absorption,
when it is negative. Similarly, we do not need to distinguish between diffuse
and specular lights. The term sp0 may describe a diffuse source over the zone
Z, as well as a constant specular reflection stemming from the same zone. But
above all, the emphasis is put here on the space variation of the spectrum. It is
introduced by the weight ω(z), that depends on point z, but not on spectrum
sp1. This weight may bring into play cosines, when the angle of the incident
beam varies, or the normal to a glossy surface, etc...

The three spectra sp, sp0 and sp1 are known only through the weight
functions that generate a (R,G,B) triplet. We use here the notation (R,G,B)
in a canonical manner, i.e. it may designate the (X,Y, Z) coordinates of the
CIE, or the perceptual system (L,M, S) [35], as well as the (Y, U, V ) and
(Y, I,Q) TV standards. In all cases it is a matter of scalar products of the
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spectra by such or such frequency weight In particular, the white colour given
by r = g = b = 1 can be obtained from a spectrum which is far from being
uniform. We write

r (z) =
∫

sp (ν; z) ξ(ν)dν =
∫

[sp0 (ν) + ω(z)sp1 (ν)] ξ (ν) dν = r0 + r1ω (z)

(20)

g (z) =
∫

sp (ν; z)χ (ν) dν = g0 + g1ω (z) (21)

and

b (z) =
∫

s (ν; z)ψ (ν) dν = b0 + b1ω (z) (22)

where ξ, χ and ψ are the three weighting functions that generate the primary
colours r, g and b.

As sp0 and sp1 are power spectra, they induce intensities r, g, and b. Now,
in the above histograms, the L1 norm applies to the video variables r′ = r1/γ ,
g′ = g1/γ , and b′ = b1/γ (if we neglect the behaviour near the origin). Then
we draw from Rel.(20)

r′ (z) = [r (z)]1/γ = [r0 + ω (z) r1]
1/γ

,

with similar derivations for the video green and blue bands.
Is the linearly regionalized model able to explain the alignments in video

histograms, despite the gamma correction? For the sake of simplicity, we will
tackle this question by fixing the order of the video bands as r′ ≥ g′ ≥ b′, and
m′ ≥ g′. Then we have

3m′(z) = r′(z) + g′(z) + b′(z)
2s′(z) = 2r′(z)− g′(z)− b′(z)

Alignments with the dark point

In the luminance/saturation histograms in L1 norm, several alignments are
in the prolongation of the point (0, 0), of zero luminance and saturation. The
shadow regions of the “rubber ring” image illustrate this situation.

Suppose that, in the relation (19) which defines the LR spectrum, the term
sp0(ν; z) is identically zero. Then r(z) reduces to ω(z)r1, which gives

r′(z) = r1/γ = ω1/γr
1/γ
1 = ω1/γ(z)r′1,

with similar derivations for two other bands. Therefore we have
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3m′(z) = ω1/γ(z)
[
r
1/γ
1 + g

1/γ
1 + b

1/γ
1

]
= 3ω1/γ(z)m′

1

and

2s′(z) = 2r′(z)− g′(z)− b′(z) = ω1/γ(z)
[
2r1/γ

1 − g
1/γ
1 − b

1/γ
1

]
hence m′(z)s′1 = m′

1s
′(z). In the space E of the intensities, we find in the same

way that m(z)s1 = m1s(z). Therefore the nullity of the constant spectrum
sp0(ν) entails that both m′ and s′ on the one hand, and m and s on the
other one, are proportional. Each video alignment indicates a zone where the
intensities spectrum varies proportionally from one point to another.

Alignments with the white point

The “rubber ring” image generates also an alignment along a line going
through the point (1, 0), i.e. the point with maximum luminance and zero
saturation. That suggests to suppose the spectrum sp0(ν; z) constant and
equal to 1, and in addition that the three colors r1, g1, b1 are not identical (if
not, the saturation s′ should be zero). We have

r(z) = 1 + ω(z)r1 (23)

and the two sister relations for g(z) and b(z). Under gamma correction, r(z)
becomes

r′(z) = (1 + ω(z)r1)1/γ .

Now, to say that the alignment is closed to a point of maximum luminance
comes down to saying that r1, g1, and b1 are small with respect to 1, or again
that

r′(z) = 1 +
ω(z)
γ

r1 + ε(r1), (24)

hence m′(z) = 1+ ω(z)
γ m1 and s′(z) = ω(z)

γ [2r1−g1−b1]. We observe that the
two conditions r1 ≥ 0 and r′1 ≤ 1, jointly with Rel.(24) imply that the coeffi-
cient ω(z) is negative. Moreover, as the three colours r1, g1, b1 are distinct, the
condition s′(z) ≥ 0 implies in turn that the quantity 2r1 − g1 − b1 is strictly
negative. By putting σ1 = −(2r1 − g1 − b1) > 0 (σ1 is not the saturation at
point z1), we obtain the following linear relation with positive coefficients

m′(z) = 1− m1

σ1
s′(z). (25)

As in the previous case, but without approximations, the mean m(z) and
the saturation s(z) of the intensities are linked by the same equation (25): it
is a direct consequence of Eq.(23). Again, both video and intensity histograms
carry the same information, and indicate the zones of almost white reflections.
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Alignments with a gray point

There appears in some images, as “AnaBlanco”, series of parallel alignments.
Their supports go through points of (quasi) zero saturation but their lumi-
nance is strictly comprised between 0 and 1. The interpretation we just gave
for the case of reflections extends to such a situation. It is still assumed that
r0 = g0 = b0, but with 0 < r0 ≤ 1, and that the terms ω(z)r1, ω(z)g1, and
ω(z)b1 are small with respect to r0. Then we have,

r′(z) = (r0 + ω(z)r1)1/γ = r
1/γ
0 + r

1/γ−1
0

ω(z)
γ

r1,

and the two sister relations for g′ and b′. Hence

m′(z) = r
1/γ
0 + r

1/γ−1
0

ω(z)
γ

m1,

s′(z) = −r1/γ−1
0

ω(z)
γ

σ1,

so that, finally
m′(z) = r

1/γ
0 − m1

σ1
s′(z).

When the colour component (r1, g1, b1) remains unchanged, but that the
gray component (r0, g0, b0) takes successively various values, then each of them
induces an alignment of the same slope m1

s1
. The property extends to the

histograms of the intensities themselves. Finally, we derive from Eq.(17) that,
in the three cases, the hue remains constant in each of these zones.

4 Saturation weighted segmentations

The most radical change between the classicalHLS system and those based on
norms holds on the saturation equation. In system (18), when min(r, g, b) = 0,
(with l ≤ 0.5) or when max(r, g, b) = 1 (with l ≥ 0.5), then the saturation
equals 1. Now for human vision, the most significant parameter is the hue in
high saturated areas, and it turns to luminance when saturation decreases.
Any person whose reaction to colours is normal can easily check it. In the dark-
ness, or, at the opposite, in white scenes (e.g. a landscape of snowy mountains),
the eye grasps the contours by scrutinizing all small grey variations, whereas
when the scene juxtaposes spots of saturated colours, then the eye localizes
the frontiers at the changes of the hue. But how to transcribe quantitatively
such a remark by a saturation function that takes its maxima precisely when
the colours loose their saturation, as the classical HLS system does?

The norms based representations correct this drawback, so that their sat-
urations may serve to split the space into hue-dominant versus grey-dominant
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Fig. 8. Representation of the”Parrots” image 14 in L1 norm : a) luminance, b)
saturation, c) hue.

regions. This very convenient key to entering the segmentation of colour im-
ages was initially proposed by C.Demarty and S.Beucher [10]. They introduce
the function max−min on the image under study, and threshold it at a level
s0 that depends on the context. Then they adopt the HSV representation, but
they replace its saturation by 1 in the regions above s0 and by 0 elsewhere.
Their downstream segmentations become easier and more robust.

However, they did not take the plunge of a new representation, and they
worked at the pixel level, which is not the most informative. In order to go
further in the same way of thinking, J.Angulo and J.Serra propose, in [2], the
following two steps segmentation procedure:

1. to separately segment the luminance, the saturation and the hue in a
correct Newtonian representation;

2. to combine the obtained partitions of the luminance and of the hue by
means of that of the saturation: the later is taken as a criterion for
choosing at each place either the luminance class, or the hue one.

The three bands of the ”parrots” image of Fig.14, in L1 representation,
are depicted in Fig.8(a-c). Each band is segmented by the jump connection
algorithm [31] (one groups in same classes all points x where f(x) differs by
less than k of an extremum in the same connected component, these classes
are then withdrawn from the image, and one iterates). The method depends
only on the jump positive value k.

As the parameter k increases, the over-segmentations reduce, but in com-
pensation heterogeneous regions appear. A satisfactory balance seems to be
reached for k = 20 (for 8-bits images), up to the filtering of a few very small
regions. We obtain the two segmentations depicted in Fig.9.

4.1 Synthetic partition

How to combine the two partitions of images 9a and 9b? The idea consists
in splitting the saturation image into two sets Xs and Xc

s of high and low
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Fig. 9. Grey segmentations of the luminance (a) and the hue (b). Both are depicted
in false colour.

Fig. 10. a) Segmentation of the saturation (presented in grey tones); b)optimal
threshold of a); c) final synthetic partition, superimposed to the initial image.

saturations respectively, and in assigning the hue partition to the first set,
and the luminance one to the second. A class of the synthetic partition is
either the intersection of a luminance class with the low saturation zone Xc

s ,
or the intersection of a hue class with the high saturation zone Xs. If the
classes of the luminance, the hue, and the synthetic partition at point x are
denoted by Am(x), Ah(x), and A(x) respectively, we have

A(x) = Am(x) ∩Xc
s when x ∈ Xc

s (26)
A(x) = Ah(x) ∩Xs when x ∈ Xs.

The simplest way to generate the set Xs consists, of course, in thresh-
olding the saturation image. But this risks to result in an irregular set Xs,
with holes, small particles, etc. Preferably, one can start from the mosaic im-
age of the saturation provided by the same segmentation algorithm as for
the the hue and the luminance (Fig.10a). An optimal threshold on the satura-
tion histogram determines the value for the a-chromatic/chromatic separation
(Fig.10b). By applying Rel.(26) we finally obtain the composite partition de-
picted in Fig.10c, which is excellent.
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5 The unit circle and the hue

The unit circle, like the round table of King Arthur’s knights, has no order of
importance, and no dominant position. In mathematical terms, this signifies
that we cannot construct a lattice on the unit circle, unless assigning it an
arbitrary origin. This is a severe verdict against morphological treatments (i.e.
operators relying on lattices) when we use them on the unit circle.

However, is it really impossible to bypass this interdiction? If we consider
the standard morphological operators, three paths at least seem possible, that
A. Hanbury and J. Serra investigated in [11]. Only he first path is presented
here, because it was designed it by transposing Matheron’s idea of working on
increments, that underlies the whole linear geostatistics. He did it because the
range of fluctuations of the grades, in some mineral deposits, seems practically
infinite, although the increments at finite distances remain finite. In the case
of the hue, we are not disturbed by the infinity, but by the choice of an origin,
which arbitrarily forces the reds to be the smallest values and the purples
largest ones (see for example the histogram of Fig.12). Can we transfer to the
circular case the class of operators which bring into play differences only, such
as gradients, top-hats, medians, etc.?

5.1 Circular centered operators

We fix an origin a0 on the unit circle C with centre o by, for example, choosing
the topmost point, and indicate the points ai on the circle by their curvilinear
coordinate in the trigonometric sense between 0 and 2π from a0. Given two
points a and a′, we use the notation a÷ a′ to indicate the value of the acute
angle aoa′, i.e.

a÷ a′ =
{
|a− a′| if |a− a′| ≤ π
2π − |a− a′| if |a− a′| ≥ π

(27)

If the ai are digital values between 0 and 255 (for example), the expression
”≤ π” becomes ”≤ 127”, and ”2π” becomes ”255”. However, we continue
using the notation in terms of π, as it is more enlightening. Rel.(27) appears
in [23] applied to the treatment of the hue band of colour images.

5.2 Circular hue gradient

We know that in the Euclidean space R
n, to determine the modulus of the

gradient, at point x, of a numerical differentiable function f , one considers a
small sphere S (x, r) centered on x with radius r. Then one takes the supre-
mumq of the increments |f (x)− f (y)|, where y describes the small sphere
S (x, r), i.e.

g (x, r) = [∨{|f (x)− f (y)| , y ∈ S (x, r)}] /r (28)

Finally, one determines the limit of the function g (x, r) as r tends to zero.
This limit exists as the function f is differentiable in x. In the two-dimensional
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Fig. 11. a) Pere Serra’s Painting of the Virgen (detail, St Cugat Monastery,
Barcelona); b) corresponding image of the hue in HLS system (image size 352× 334
pixels).

digital case, it is sufficient to apply Rel.(28), taking for S (x, r) the unit circle
centered on x (square or hexagon). This is the classic Beucher algorithm for
the gradient.

Consider now an image of hues or of directions, i.e. a function h : E → C,
where E is an Euclidean or digital space, and C is the unit circle. As the
previous development only involves increments, we can transpose Rel.(28) to
the circular function h by replacing all the |h (x) − h (y)| by |h (x) ÷ h (y)|.
This transposition then defines the modulus of the gradient of the circular
distribution. For example, in Z

n, K (x) indicates the set of neighbours at
distance one from point x, hence

|grad h| (x) = [∨{|h (x)÷ h (y)| , y ∈ K (x)}] (29)

As an illustration, consider the hue component of Fig.11a, shown in
Fig.11b. This image was chosen as it is mostly red in colour, and in the
angular hue encoding, red usually has hue values around 0◦. This means that
pixels which appear red could have low hue values (for example, 0◦ to 30◦)
and high hue values (330◦ to 360◦). A large discontinuity is therefore visible in
the hue image, with red pixels appearing at the extremities of the histogram
(Fig.12). A classical gradient on this hue band produces a large number of
spurious high-valued pixels, as shown in Fig.13a.

These high-values are present even though the neighbouring pixels appear
very similar in colour, and are due to the discontinuity in the hue encoding. A
good illustration of this is the outer part of the halo, which appears smooth in
Fig.11a, but results in very high gradients in Fig.13a. The gradient calculated
using Eq.(29), shown in Fig.13b, overcomes this problem. As its range is rela-
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Fig. 12. Histogram of the hue band.

Fig. 13. a) Classical morphological gradient on the hue band; b) Circular centered
gradient on the hue band. The gradients were calculated using a 3 × 3 structuring
element

tively small, we reinforced its contrast for the display, and the texture of the
underlying canvas becomes visible. Note that if we rotate the hue band pixel
values by π, the classical gradient will be the same as the angular gradient.
The angular gradient is, however, invariant to rotations of the pixel values.

5.3 A use of the circular hue gradient

Consider a colour function f , and its L1 norm representation. The circular
gradient of the hue of f can be inserted in a global gradient |grad f| which
takes the three components of f into account. There are number of such
gradients, but the above comments on the saturation of Eq. (16) in L1 norm
representation suggests us to construct a barycentric gradient, where the L1

saturation balances the effects of luminance and hue gradients, i. e.

|grad f| = s× |grad h|+ (1− s)× |grad l| . (30)
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Fig. 14. a) Initial ”Parrots” image; b) watershed partition at level 4 of the waterfall
pyramid (superimposed to the initial image).

It is well known that the watershed of the gradient |grad f| of a numerical
function f provides us with the contours of f [19]. This property extends
to the vector functions of the space, because then the term |grad f| is still a
numerical function, which is sufficient for the theory. We can then use Rel.(30)
to segment the parrots image, and compare the result with that we obtained
by combined partitions in Fig.10c .

Under iteration, the watershed operator turns out to generate the so-called
waterfall pyramid, which is non parametric, and increases the partitions [19].
For the parrots, the best fit occurs at the fourth level of the hierarchy, see
Fig.14b. The obtained segmentation is fair, but less convincing than that
by combined partitions of Fig.10c : in the watershed process, the reduction
(colour)→(numerical) by Rel.(30) arises too early.

6 Colour Interpolation

6.1 Morphological interpolators

During the nineties, the need for image interpolation arose with the devel-
opment of video coding. Several proposed algorithms were efficient, though
no theory justified them; one could not say whether they were optimal in
some sense, just as kriging derives from a variance minimization for example.
I asked G.Matheron which concept could serve as a substitute for variance
in morphological interpolation, and he suggested me to see whether Haudorff
metric admitted geodesics. The Hausdorff distance ρ is a metric defined on
the class of the non empty compact sets of R

n by the relation

ρ (X,Y ) = inf {λ : X ⊆ δλ (Y ) ; Y ⊆ δλ (X)} (31)

where δλ stands for the Minkowski dilation by the ball of size λ. The value ρ
indicates a degree of similarity between the two sets. A geodesic (if it exists)
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between sets X and Y from distance μ apart is an ordered family {Zλ,
0 ≤ λ ≤ μ} of sets. Each Zλ is at distance λ from X and ρ− λ from Y . They
are optimal interpolators in the sense that for any λ the sum ρ (X,Zλ) +
ρ (Zλ, Y ) = λ+ (μ− λ) is minimum.

Matheron’s intuition was right: the Hausdorff distance admits geodesics,
and more than one [28]. However:

1. the intermediary sets Zλ are always inflated, but one geodesic swells less
than the others;

2. they are not self dual, as the interpolator of Xc and Y c differs from the
complement of the interpolator between X and Y ;

3. when one of the two sets,X say, is shifted or rotated, the Zλ’s are modified.

Moreover, the duality between dilation and erosion w.r.t. complementation
suggests to play with both Hausdorff distances by dilations, on X ∩ Y, and
by erosions, on X ∪ Y . Then, the less inflating geodesic permits a self dual
variant which gives, for λ = 0.5ρ, the so called morphological median

M(X,Y ) =
⋃
σ>0

[(X ∩ Y )⊕ σB] ∩ [(X ∪ Y )� σB] (32)

(assuming X ∩Y �= ∅). Concerning the third point, one can always find a dis-
placement that minimizes the distance ρ (X,Y ), hence optimizes the median
[28]. Rel.(32) establishes a common theoretical basis to the previous works
of F. Meyer [20], and S. Beucher [5]. Nice developments based on distance
function have also been proposed by P. Soille [34], J.R. Casas [7] and by P.
Moreau and Ch. Ronse [18].

M. Iwanowski found a method to determine the best displacement, and
generated sequences of geodesics by subdividing morphological medians [14]
[13]. A binary example is depicted in Fig.15.

6.2 A false colour case

In Rel.(32), the passage to the corresponding numerical version is straight-
forward. As the operator increases with both arguments, it suffices to replace
all ∪ and ∩ by ∨ and ∧ respectively. The extension to colour images is more
subtle. For the first time in this paper, we have to produce a colour image,
and neither a partition, nor a modulus of gradient. By treating separately the
three bands, of any representation, we would obtain new colours that risk to
parasite the quality of the result. The only way to be sure that every colour
vector of the transform is already present in the initial image consists in totally
ordering the set of the colour vectors. There are many ways to generate such a
lattice. For the scenes of the everyday life M. Iwanowski tried several possibil-
ities and finally adopted an ordering with the luminance l = 0.3r+0.6g+0.1b
first, then g and finally r [12].
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Fig. 15. Morphological interpolations based on the Hausdorff distance.

Fig. 16. Maps of the temperatures at two consecutive days.

But the reference to G. Matheron leads me propose an example in the
themes of geostatistics. The two maps depicted in Fig.16 come from the web-
site of the American Meteorological Institute, and indicate the daily maximum
temperature on January the 5th and the 6th, 1996. They are themselves in-
terpolations from point measurements, but we do not mind about it and take
them as an input. The complete series comprises seven maps, for one week,
and which cover the whole country. The final interpolated sequence contains
102 images. Here we just calculate the morphological median between the two
maps of Fig.16.

The gamut of colours, artificial, has been established in such a way that the
temperatures linearly decrease with the hue. Moreover, for graphic reasons,
the saturation is maximum everywhere. Not only the circularity argument



Mophological Operators for the Segmentation of Colour Images 249

Fig. 17. a) Morphological median between the two maps of figure 16; b) linear
interpolation between the same maps.

against the hue vanishes, but this parameter is the most representative of the
physics of the phenomenon. Therefore the convenient ordering is as follows:

f ′(h, l, s, ) ≥ f(h, l, s)when either h′ < h

or h′ = h and l′ > l

or h′ = h, l′ = l and s′ > s

It results in the morphological median depicted in Fig.17a. The arithmetic
mean of the same maps is placed at the right (Fig.17b) for the sake of com-
parison. The morphological operator better follows the fronts because it keeps
unchanged the number of gradations of the temperatures scale.

7 A morphological approach to multivariate analysis

This last study on colour imagery commemorates G. Matheron less by the
approach than by the theme of the application. Indeed mathematical mor-
phology is born on the occasion petrographical problems [17], and it is my
pleasure to conclude the survey by an example which recalls our beginnings.

In digital processing, it occurs that a series of different descriptors be
attached to each pixel, and that one wishes to segment the space into the
homogenous regions on the basis of this information. The descriptors may
combine data that are physically heterogeneous. For example, in geographic
information systems (G.I.S.), each pixel is sometimes assigned a slope and a
population density. These two quantities, although connected, are physically
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Fig. 18. a) and b) two polarized views of the Lipka sandstone thin section.

non comparable, and their mean, hence a linear descriptor, is just a physi-
cal nonsense. Such an heterogeneity becomes more complicated again when
some of the quantities vary over the unit circle (as the colours obtained by
various polarization angles), and when the colour information has been coded
by palettes. It will be the case here, but our approach, though designed for
this current case, applies to any type of heterogeneous multivariate data. The
underlying idea is the following. By segmenting separately each of the n vari-
ables, we obtain n partitions, which are data of the same type, and without
the initial heterogeneity. The goal then consists in combining these partitions
for producing a synthetic one. One possible solution is developed below: a
numerical function is generated by adding indicator functions associated with
each partition, then this numerical function is segmented.

7.1 Polarized thin sections

Polarized light is a useful tool for examination of rock thin sections. It assigns a
specific hue to each rock component and allows distinguishing and separating
the grains according to the crystalline orientations [21]. But it is generally
used in a qualitative way.

In this section we purpose to use a partition based approach for reaching
the same goal, but in a quantitative manner. In other words, starting from
a sequence of polarized images of a same microscopic field, we propose to
determine automatically the contours of the grains.

J. Serra and M.Mlynarczuk have treated four rocks of different microscopic
appearance, in order to base the proposed method on a significant spectrum
of rock structures [29]. They are two sandstones from Tumlin and Lipka,
one quartzite from Wísniówka and one dolomite from Redziny. From each
selected rock a thin section was prepared. Then a chosen field was observed in
a polarized microscopy, in such a way that the polarization prism was turned
15 times by 12 degrees. The obtained sequence (15 images of 8 bits depth
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Fig. 19. a) artificial grey tone image which is associated with the palette of Fig.
18a; b) flat zones filtering of image a), namely image fi.

and of size 352 x 268), was digitized by means of a CCD camera. The colour
of each image has been coded on 256 levels by using a specific palette for
each image. Fig.18 gives an outline of the obtained images. By observing the
images, one can notice that:

- for the same thin section, the variations of colours between the images
observed in different polarizations are considerable;

- for a same grain, and under a given polarization, the hue remains more or
less uniform;

- the crystals are placed side by side, without any visible border;
- finally, we can notice that the images are of poor quality.

7.2 Proposed approach

A palette is a look-up table, i.e. a mapping [0, 255]× [0, 255]× [0, 255] →
[0, 255]. Therefore, the 256 output values do not constitute a perceptual grey-
tone axis. In a same image the luminance associated with the level 120, say,
may be higher or lower than that of level 140. Moreover, if at point x, two
different images of a same sequence have the same numerical value, this does
not mean that the two images have the same colour or the same luminescence
at point x, because the palette changes from one image to another. But, for-
tunately, in each image, the majority of points of the same crystals admit the
same numerical values. This happens in most cases, but not always, because
the crystals are not absolutely pure.

Classically, a processing of multidimensional data begins by reducing the
number of dimensions by means of linear multivariate analysis techniques,
such as principal component analysis or the Karunen-Loève transformation.
When there are no more than one or two major variables, different filters and
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Fig. 20. a) Black and white image mi obtained by partition erosion ; b) Sum of all
mi images of the sequence, resulting in a probability map.

segmentations conclude the processing. Here linearity is inadvisable and we
have to invent another approach [29].

Our procedure turns out to be the exact opposite of multivariate analysis.
If we want an approach to be valid for dimensionally heterogeneous data, it is
recommended not to try and mix them in a first stage, which should be more
or less linear. On the contrary, we must:

i) first associate a partition of the space with each individual image.
A partition D of a space E is a segmentation of E into classes D(x) that do
not overlap, and that cover the whole space E. For this stage, we will have
to erode partitions, in order to enhance boundaries, by applying the following
result

Proposition 1. Given an arbitrary set E, every set erosion ε∗ : P(E) →
P(E) for which ε∗(∅) = ∅ induces, on the lattice D of the partitions of E, a
unique erosion ε defined by:

(εD)(x) =

{
ε∗[D(x)] when x ∈ ε∗[D(x)]
{x} when not .

ii) and on the second stage only, group the obtained partitions into
a synthetic one. To do this, one considers them as different realizations of a
random partition, and one estimates the probability for each pixel to be at
a given distance d from the border of its class. In this probability map, the
closer to the border a pixel is, the higher is its numerical value. Finally, the
watershed of this probability map provides the wanted segmentation.

7.3 An example

We will illustrate the algorithm by means of the Lipka sandstone sequence.
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Fig. 21. a) Watershed of the probability map Fig. 20 b), in superimposition with one
of the polarized views. Same procedure, and same parameters applied to a quartzite
from Wisniowka.

First stage:

Filter each image of the sequence by flat structuring elements. The optimal
filter is the smaller that eliminates the various defects, since the defects are
always smaller than the grains. The solution adopted here consists an al-
ternating sequential filter by reconstruction of size two [26]. We call fi the
images after filtering, where i indicates the label of the image in its sequence
(Fig.19b). The obtained flat zones are then eroded by applying Proposition
1 for an hexagonal erosion of size two. In such a process, each class of the
partition, i.e. each flat zone, is narrowed independently of the others, and the
rest of the space is occupied by classes reduced to points. In Fig.20a, the non
point classes are given value zero, and the others value one. Let mi denote
the obtained image.

Second stage

The border probability map is estimated by the estimate m = 255−15(
∑
mi).

Fig.20b depicts the image m associated with Lipka sequence. The final detec-
tion of the contours is provided by the watersheds of image m. Since we are
interested in large regions without internal details, we take as a marker, for
watershed, the set of the maxima of function m, after an opening of size 3. On
Fig.21a the final watershed lines are superimposed on one of the polarized im-
ages of the initial sequence. Fig.21b depicts the result of the same algorithm,
with the same parameters, for Wísniówka quartzite sequence.
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22. G. Obein, K. Knoblauch, F. Viénot, Perceptual scaling of the gloss of a one-
dimensional series of painted black samples, Perception, Vol. 31, Suppl., 2002,
p.65.

23. R. A. Peters II. Mathematical morphology for angle-valued images, in Non-
Linear Image Processing VIII. SPIE volume 3026, 1997.

24. Ch. Poynton A technical Introduction to Digital Video. New York: Wiley, 1996.
Chapter 6, ”Gamma” is available online at
http://www.poyton.com/PDFs/TIDV/Gamma.pdf

25. J. Pokorny, V.C. Smith, S.J. Starr, Variability of color mixture data I. The
effect of viewing field size on the unit coordinates, Vision Research, Vol. 16,
1976, p.1095–1098.

26. P. Salembier and J. Serra, Flat Zones Filtering, Connected Operators, and Fil-
ters by Reconstruction, IEEE Transactions on Image Processing. Aug. 1995,
vol. 4, n◦ 8, 1153-1160 .

27. J. Serra Connectivity for sets and functions, Fundamenta Informaticae, 41
(2000) 147-186

28. J. Serra, Hausdorff distance and Interpolations, Mathematical Morphology and
its applications to image and signal processing, H.Heijmans and J. Roerdink eds
Kluwer,1998, pp.107-115

29. J. Serra and M.Mlynarczuk, Morphological merging of multidimensional data,
Proc. STERMAT’2000, Cracow, Sept. 2000, pp.385-390 and 455.

30. J. Serra, Espaces couleur et traitement d’images, Rapport Technique CMM-Ecole
des Mines de Paris, N-34/02/MM, Oct.2002.

31. J. Serra, A lattice approach to Image segmentation, Rapport Technique CMM-
Ecole des Mines de Paris, N-02/04/MM, 87 p. Janv. 2004 (to be published by
JMIV)

32. S.A. Shafer, Using color to separate reflection components from a color image,
Color Research and Applications, Vol. 10, No. 4, 1985, p. 210–218.

33. A.R. Smith, Color gammet transform pairs, Computer Graphics, Vol. 12, No. 3,
1978, p.12–19.

34. P. Soille, Spatial Distribution from Contour Lines: An efficient Methodology
based on Distance Transformations, J. Vis. Com. and Im. Under. Vol.2 n◦2 ,
June 1991, pp.128-150.

35. A.Tremeau, Ch. Fernandez-Maloigne, P. Bonton, Image numérique couleur, Ed.
Dunod, Paris, 2004.



Automatic design of morphological operators

Junior Barrera1, Gerald J. F. Banon2, and Edward R. Dougherty3

1 Departamento de Ciência da Computação. Universidade de São Paulo
2 Divisão de Processamento de Imagens, Instituto Nacional de Pesquisas Espaciais
3 Department of Electrical Engineering, Texas A & M University

1 Introduction

A central paradigm in mathematical morphology is the decomposition (rep-
resentation) of complete lattice operators ( mappings) in terms of four classes
of elementary operators: dilations, erosions, anti-dilations and anti-erosions.
The rules for performing these representations can be described as a formal
language, the morphological language [4]. The vocabulary of this language is
composed of the four classes of elementary operators and the lattice oper-
ations of intersection and union. A phrase of the morphological language is
called a morphological operator.

The adequacy of morphological operators to solve image and signal pro-
cessing problems show that the morphological language is expressive, meaning
that many useful operators can be represented by relatively few words. The
completeness of the morphological language was first studied by Matheron in
1975, in his classical book, Random Sets and Integral Geometry [35], p.219).
In the context of translation invariant set operators (operators that commute
with translation), Matheron introduced the notion of the operator kernel,
which is a family of sets whose images by the operator cover the origin. He
proved that any increasing (i.e., inclusion preserving) and translation invari-
ant set operator can be represented by a union of erosions, with structuring
elements in the operator kernel. Ten years later, in 1985, Maragos [33], and
Dougherty and Giardina [16], independently, proved that Matheron’s decom-
position result could be simplified in the sense that just a minimal subset
of the kernel, called the operator basis, is enough to perform the decomposi-
tion. Maragos included a topological condition for the existence of the basis,
that operator to be decomposed be upper semicontinuous under the hit-miss
topology. Maragos extended these results to function operators [34].

Some years later, in 1991, Banon and Barrera proved that any translation
invariant set operator could be decomposed as the union of sup-generating
operators (i.e., intersections of erosions and anti-dilations), with structuring
elements that are extremities of intervals included in the operator kernel [2].
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Banon and Barrera also proved the existence of a basis for the family of
upper semi-continuous operators under the hit-miss topology. The results of
Matheron, Maragos, and Dougherty and Giardina for increasing set operators
are particular cases of the general result. From a suggestion of Matheron,
Banon and Barrera also applied their decomposition to operators that can be
built as the intersection of an increasing and a decreasing operator (i.e., an
operator that inverts the inclusion relation).

A couple of years later, in 1993, Banon and Barrera found the notion
of morphological connection, which extends the notion of Galois connection.
While a Galois connection induces a dual isomorphism between the set of
dilations and erosions, the morphological connection induces an isomorphism
between the set of morphological sup-generating operators and a set formed
by the Cartesian product of dilations and anti-dilations. This property and
the generalization of the notion of kernel are the keys to finding a constructive
representation for any lattice operator in terms of a union of sup-generating
operators. This decomposition also admits a simplified form parameterized
by the operator basis. All previous decomposition results become particular
cases of this general decomposition of lattice operators [3].

A remarkable property of the lattice-operator decomposition is that it ap-
plies for both continuous and discrete lattices. The decomposition of discrete
operators that are both translation invariant and locally defined, meaning the
value of a transformed signal in a given point depends just of a neighborhood
of this point in the input signal, permits the development of a technique for
the design of morphological operators based on the observation of examples
of the desired transformation, the sequence being of pairs formed from the
input and the desired ideal output. This technique consists essentially in the
estimation of the basis of an operator that minimizes a given statistical er-
ror measure. After about a decade of research Dougherty, Barrera and their
collaborators have obtained theoretical and applied results that prove the ad-
equacy of discrete techniques for solving many image and signal processing
problems [12], [8], [10], [14]. A salient example is the design of debluring fil-
ters that have better performance than the classical optimal Wiener filter [27].
Two points are at issue here. First, the Wiener filter is optimal among linear
filters, and linear filters cannot provide sufficient restoration for many types
of blur. Second, the morphological deblurring operators are not increasing,
which is what gives them the ability to perform optimal nonlinear deblurring.

The techniques developed by Dougherty and Barrera can also be included
in the context of automatic programing for image processing. In this case, the
input and ideal output image pairs are the program formal specification and
the designed program is expressed as a morphological operator. In fact, the in-
tuition for the development of this automatic operator design approach comes
from years of experience designing morphological operators by the classical
approach developed by Serra and his cooperators. They design image transfor-
mations to solve image processing problems from a toolbox of morphological
operators, that are integrated by operator composition and lattice operations.
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The choice of the appropriate tools and their integration is guided by the expe-
rience and intuition of the morphologist. The morphological operator created
is tested against a dataset of typical images and the ones that produce small-
est error are chosen. In the sense of the morphologist, error is an intuitive
visual notion. Dougherty and Barrera modeled the design process considering
that image pairs are realizations of join processes and the goal is designing
an operator that predicts ideal output images from a transformation of the
corresponding input images. A critical issue for choosing good operators was
finding a statistical measure that could mimic the morphologist intuition. In
general the formal measures do not agree with intuitive human criteria, but at
the limit they do. Human intuition and formal measures agree at least when
two images are very similar and, happily, this is enough to design useful opera-
tors. However, the knowledge of the morphologist remains crucial in automatic
design. Complex problems would require prohibitive amount of training data,
what is overcome by optimization constraints based on operators properties
studied in mathematical morphology.

Following this introduction, Section 2 recalls the canonical decomposition
of set W-operators. Section 3 recalls the design of set W-operators. Section 4
recalls the morphological and loose canonical decompositions of lattice oper-
ators. Section 5 presents applications of the canonical lattice decompositions
to gray-scale image operators design. Finally, Section 6 discusses the impact
of this research and shows some future perspectives of the field.

2 Set W-operator decomposition

In this section, we present the family of set W-operators and give their repre-
sentation, in terms of sup-generating operators, and characterization, in terms
of Boolean functions.

2.1 Set W-operator

The set E is assumed to be an Abelian group with respect to a binary opera-
tion denoted +. The zero element of (E,+) is denoted by o. This zero element
is also called the origin of E.

Let Xt denote the transpose of a subset X of E, that is, Xt �= {y ∈ E :
y = −x, x ∈ X}.

For any h ∈ E and X ⊆ E, the set Xh
�= {x ∈ E : x − h ∈ X} is called

the translation of X by h. In particular, Xo = X .
Let P(E) denote the power set of E. A set operator is any mapping

defined from P(E) into itself. The set Fun(P(E),P(E)) of all the opera-
tors from P(E) to P(E) inherits the complete lattice structure of (P(E),⊆)
on setting, ∀Ψ1, Ψ2 ∈ Fun(P(E),P(E)), Ψ1 ≤ Ψ2 ⇔ Ψ1(X) ⊆ Ψ2(X),
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∀X ∈ P(E). The supremum and infimum of a subset T of the com-
plete lattice (Fun(P(E),P(E)),≤) verify (

∨ T )(X) =
⋃ {Υ (X) : Υ ∈ T } and

(
∧
T )(X) =

⋂
{Υ (X) : Υ ∈ T }, ∀X ∈ P(E).

A set operator Ψ is called translation invariant (t.i.) if and only if (iff),
∀h ∈ E, Ψ(Xh) = Ψ(X)h, ∀X ∈ P(E).

Let W be a finite subset of E. A set operator Ψ is called locally defined on
W iff, ∀h ∈ E, h ∈ Ψ(X) ⇔ h ∈ Ψ(X ∩Wh), ∀X ∈ P(E).

Let TW denote the collection of t.i. operators locally defined on W . The
elements of TW are called set W-operators or, simply, W-operators. The pair
(TW ,≤) constitutes a sublattice of the lattice (Fun(P(E),P(E)),≤).

2.2 Representation

The kernel K(Ψ) of a W-operator Ψ is the subcollection of P(W ) defined by
K(Ψ) �= {X ∈ P(W ) : o ∈ Ψ(X)}.

Proposition 1. The mapping K from TW to P(P(W )) defined by, for any
Ψ ∈ TW ,

K(Ψ) �= {X ∈ P(W ) : o ∈ Ψ(X)}
constitutes a lattice isomorphism between the lattices (TW ,≤) and (P(P(W )),⊆
). The inverse of the mapping K is the mapping K−1 defined by, for any
X ⊆ P(W ) and X ∈ P(E),

K−1(X )(X) �= {x ∈ E : X−x ∩W ∈ X} .

As a consequence of the last proposition, the following equalities hold: for
any Ψ1, Ψ2 ∈ TW , K(Ψ1∧Ψ2) = K(Ψ1)∩K(Ψ2) and K(Ψ1∨Ψ2) = K(Ψ1)∪K(Ψ2).

The set operator Γ , defined by Γ (X) = Xc, ∀X ∈ P(E), is called negation.
Let A,B ∈ P(E). The operations

A⊕B
�=
⋃
{Ab : b ∈ B} and A�B

�=
⋂
{A−b : b ∈ B}

are called, respectively, Minkowski addition and subtraction. Let B ∈ P(E).
The t.i. set operators ΔB and EB defined by ΔB(X) = X ⊕B and EB(X) =
X � B, for any X ∈ P(E), are called, respectively, dilation and erosion by
B. The parameter B that characterizes a dilation or an erosion is called a
structural element or a structuring element .

Let A,B ∈ P(W ) such that A ⊆ B. The t.i. set operator Λ[A,B] defined
by, for any X ∈ P(E),

Λ[A,B](X) �= {x ∈ E : A ⊆ X−x ∩W ⊆ B} ,

is called sup-generating operator. This operator was first stated by Serra ([42],
p.39) in the form Λ[A,Bc] and called hit-miss operator.
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Note that Λ[A,B] is locally defined on W and can be, equivalently, repre-
sented by, for any X ∈ P(E),

Λ[A,B](X) = EB(X) ∩ ΓΔBtc(X),

where the complement of B is taken relative to W .
Given A,B ∈ P(W ), the subcollection [A,B] of P(W ) defined by

[A,B] �= {X ∈ P(W ) : A ⊆ X ⊆ B}
is called an interval.

Proposition 2. The kernel of a sup-generating operator is an interval, that
is,

K(Λ[A,B]) = [A,B].

Theorem 1. If Ψ is a W-operator, then, for any X ∈ P(E),

Ψ(X) =
⋃{

Λ[A,B](X) : [A,B] ⊆ K(Ψ)
}

.

Proof. K(Ψ) =
⋃ {[A,B] ⊆ P(W ) : [A,B] ⊆ K(Ψ)}, since any subset of a

complete lattice can be built by the union of its intervals; thus, K(Ψ) =⋃{K(Λ[A,B]) : [A,B] ⊆ K(Ψ)}, by Proposition 2, and

Ψ =
∨{

Λ[A,B] : [A,B] ⊆ K(Ψ)
}

,

since K is a lattice isomorphism between (TW ,≤) and (P(P(W )),⊆).

The decomposition of the last theorem is called canonical sup-decomposition.
Though this decomposition is quite general, it may lead to inefficient computa-
tional representation for most W-operators, in the sense that a smaller family
of sup-generating operators may be sufficient to represent the same operator.

An interval [A,B] is called maximal in a collection of intervals I iff, [A,B] ∈
I and, ∀[A′, B′] ∈ I, [A,B] ⊆ [A′, B′] implies that [A,B] = [A′, B′]. The set
B(Ψ) of all maximal intervals contained in K(Ψ) is called basis of Ψ .

Theorem 2. If Ψ is a W-operator, then, for any X ∈ P(E),

Ψ(X) =
⋃{

Λ[A,B](X) : [A,B] ∈ B(Ψ)
}

.

Proof. Once W is finite, we can express K(Ψ) in terms of its maximal intervals,
that is,K(Ψ) =

⋃{
K(Λ[A,B]) : [A,B] ∈ B(Ψ)

}
. The result follows by the same

arguments used to prove Theorem 3.
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We should observe that there are also dual representations in terms of
the kernel and basis of a W-operator. These dual representations are called
inf-canonical, since they are the intersection of inf-generating operators (i.e.,
dual of sup-generating operators).

In particular, when the set W-operator Ψ is increasing [A,B] ∈ B(Ψ)
implies that B = W and the canonical sup-decomposition reduces to an union
of erosions, that is, for any X ∈ P(E),

Ψ(X) =
⋃
{EA(X) : A ∈ B(Ψ)} ,

B(Ψ) = {A : [A,B] ∈ B(Ψ)}. This last representation is exactly the one
proposed by Matheron in ([35], p.219).

2.3 Characterization

We have seen that W-operators can be represented by their kernel or basis.
We will study now a third way of representing W-operators: the equivalent
Boolean function.

Let T be the mapping defined from TW to Fun(P(W ), {0, 1}) defined by,
for any X ∈ P(E),

T (Ψ)(X) �=
{

1 if o ∈ Ψ(X)
0 otherwise

The mapping T constitutes a lattice isomorphism between the complete
lattices (TW ,≤) and (Fun(P(W ), {0, 1}),≤) and its inverse T−1 is defined by,
for every ψ ∈ Fun(P(W ), {0, 1}), for any X ∈ P(E),

T−1(ψ)(X) �= {x ∈ E : ψ(X−x ∩W ) = 1} .

3 Set W-operator design

The morphological representation theory provides a natural framework for
automatic operator design. An operator is desired to optimally estimate an
image when it is observed after going through a system.

3.1 Unconstrained design

To frame the problem, binary digital images are modeled as discrete random
sets. The task is to design an operator Ψ so that, given an observed random
set S, Ψ(S) is probabilistically close to a desired (ideal) random set I. The
closeness of the ideal and the estimator Ψ(S) is measured by some proba-
bilistic error measure Er[I, Ψ(S)]. Assuming the operator belongs to some
family I, an optimal operator relative to I is an operator Ψopt ∈ I for which
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Er[I, Ψopt(S)] ≤ Er[I, Ψ(S)], for all Ψ ∈ I. If every operator Ψ ∈ I has a
representation, then optimization can be viewed as finding the representation
defining an operator possessing minimum error Er[I, Ψopt(S)].

When I is the family of set W-operators, estimation of I from S by a
W-operator Ψ requires finding a Boolean function ψ to minimize error. Since,
Ψ is translation-invariant, we make the modeling assumption that I and S
are jointly strict sense stationary. Hence, if X is the random vector of binary
values in the translate of W to z and Y

�= I(z), then the joint probabil-
ity distribution for X and Y is independent of z, so that estimating Y from
X yields a translation invariant operator. We denote random variables and
random vectors by upper-case italic and bold face letters, respectively. Real-
izations of the random variable Y and the random vector X will be denoted
by y and x, respectively.

For operator optimization we require a loss function l : {0, 1}2 → [0,∞),
where l(a, b) measures the cost of the difference between a and b, with l(0, 0) =
l(1, 1) = 0. Relative to the loss function (and owing to stationarity), filter
error, Er(Ψ), is given by the expected loss from estimating Y

�= I(z) by
ψ(X) �= Ψ(S)(z), where z is an arbitrary pixel:

Er(Ψ) �= E[l(Y, ψ(X)] =
∑

{x:ψ(x)=0}
l(1, 0)P (Y = 1|x)P (x)

+
∑

{x:ψ(x)=1}
l(0, 1)P (Y = 0|x)P (x)

where P (x) denotes P (X = x). An optimal operator is one whose Boolean
function ψ minimizes Er(Ψ). Although there can be more than one opera-
tor achieving minimal error, we shall denote ”the” optimal operator and its
Boolean function by Ψopt and ψopt, respectively, the convention being that,
from the optimization view point, operators having minimal error are equiv-
alent.

The mean-absolute error (MAE) loss function is defined by l(y, ψ(x)) =
|y − ψ(x)|. Since y and ψ(x) are binary-valued, the loss function is given
by l(1, 0) = l(0, 1) = 1 and l(0, 0) = l(1, 1) = 0. An optimal operator is
determined by ψopt(x) = 1 if P (Y = 1|x) > 0.5 and ψopt(x) = 0 if P (Y =
1|x) ≤ 0.5. The MAE for an optimal operator is given by

MAE[Ψopt] =
∑

{x:ψ(x)=1}
P (Y = 0|x)P (x) +

∑
{x:ψ(x)=0}

P (Y = 1|x)P (x)

If a suboptimal operator Ψ is used instead of Ψopt, then there is an increase
in error. To quantify the error increase, if P (x) > 0, define the advantage of
x by
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Adl(x) �= (E[l(Y, 0)|x])− E[l(Y, 1)|x]))P (x)

Adl(x) > 0 iff x ∈ K[ψopt]. An increase in error can arise in two ways from
using Ψ instead of Ψopt: x ∈ K[ψopt] but x /∈ K[ψopt], or x /∈ K[ψopt] but
x ∈ K[ψopt]. The total error increase from using Ψ instead of Ψopt is

Δ(Ψ, Ψoopt)
�= Er[Ψ ]− Er[Ψopt] =

∑
x∈K[ψopt]ΔK[ψ]

|Adl(x)|

the last sum being over the symmetric difference between the kernels. For
MAE, the absolute advantage for x is given by |1− 2P (Y = 1|x)P (x)|.

In practice, the optimal operator is statistically estimated from image
realizations. Operator design involves using a random sample Sn of pairs
(X(1), Y (1)), (X(2), Y (2)) , ..., (X(n), Y (n)) to form an estimate ψn of ψopt.
The error Er[ψn] can not be less than the error Er[ψopt]. Letting Δn

�=
Er[ψopt]−Er[ψn] denote the design cost (operator estimation error), the er-
ror of the designed operator is decomposed as Er[ψn] = Er[ψopt]+Δn. Hence,
the expected error of the designed operator is E[Er[ψn]] = Er[ψopt] +E[Δn].
The standard design approach is to estimate the conditional probabilities com-
posing the decision criterion (ψopt(x) = 1 if P (Y = 1|x) > 0.5) and to use
these estimates to determine ψn. This method yields a consistent estimate of
Er[ψn], that is, E[Δn] → 0 as n→∞.

Example 1. This example [10] presents a solution for the classical problem of
detection of defect lines on euthetic alloy images. The window considered is
the 5 × 5 square centered at the origin and the training images used are the
ones of Figure 1. The training data gives 29040 examples from which 11785
are distinct. The basis of the designed operator has 418 intervals. Some results
of application of the designed operator are given in Figure 2.

3.2 Constrained design

Satisfactory image filtering typically requires large windows, and it is often im-
possible to get large enough samples to sufficiently reduce E[Δn]. To ease the
design problem, optimization is constrained to some subclass C of operators. If
ψC is an optimal operator in C with error Er[ψC ] and design error Δn,C , then
Er[ψC ] ≥ Er[ψopt] and E[Δn,C ] ≤ E[Δn]. The error of a designed constrained
operator, ψn,C , possesses the decomposition Er[ψn,C ] = Er[ψC ] + Δn,C . The
cost of constraint is given by ΔC = Er[ψC ] − Er[ψopt]. Hence, Er[ψn,C ] =
Er[ψopt] +ΔC +Δn,C , and

E[Er[ψn,C ]] = Er[ψopt] +ΔC + E[Δn,C ]

A constraint is statistically beneficial iff E[Er[ψn,C ]] ≤ E[Er[ψn]], which is
true iff
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ΔC ≤ E[Δn]− E[Δn,C ]

The saving in design error must exceed the cost of constraint. Since for a
consitent estimator E[Δn]−E[Δn,C ] → 0 as n→∞, a constraint can only be
beneficial for samples that are not too large.

A fundamental problem is to find constraints for which ΔC ≤ E[Δn] −
E[Δn,C ]. The benefit of a constraint depends on the class of ideal and observed
signals under consideration. For instance, suppose a signal is degraded by an
extensive operator (the transformed set always includes the input set). Then,
letting C be the class of anti-extensive operators (the transformed set always is
included in the input set) yields ΔC = 0, so that there is no constraint error.
Such situations rarely occur in practice. Here we describe some constraints
that have been studied and proven useful. In many cases the error has been
analyzed and quantified; however, we leave that to the literature.

The most studied constraint is that the operator be increasing [12]. Several
design methods have been employed to design increasing operators. One way
is to find the kernel of the optimal operator and then apply a switching algo-
rithm that derives the optimal increasing operator from the optimal operator
by switching structuring elements in and out of the kernel of the designed
optimal operator to obtain an increasing operator for which the switching
error is minimal [36][25][43]. Once the increasing operator is designed, its ba-
sis representation in terms of erosions can be obtained by logically reducing
the kernel expansion. A second way to proceed is to estimate the erosion
expansion directly. This is achieved by first obtaining MAE estimates for
single erosion operators and then recursively obtaining MAE estimates for
multiple-erosion operators[31]. The MAE of an m-erosion operator Ψm can be
expressed in terms of a single-erosion operator with structuring element Bm

and two (m− 1)-erosion operators Ψm−1 and Φm−1:

MAE[Ψm] = MAE[Ψm−1]−MAE[Φm−1] +MAE[Bm],

where the bases are given by B(Ψm−1) = {B1, B2, ..., Bm−1}, B(Ψm) =
{B1, B2, ..., Bm} and B(Φm−1) = {B1∪Bm, B2∪Bm, ..., Bm−1∪Bm}. Further
constraint can be imposed by limiting the basis size or constraining the search
to a subclass of potential structuring elements [30]. Two adaptive procedures
have been proposed to design increasing operators. One is based on gradient-
type structuring-element adaptation akin to the classical LMS algorithm for
linear filters [39]. Another utilizes genetic algorithms to adjust the structuring
elements [22]. Comparison of design error for increasing and non-increasing
operators has been investigated [17].

One way to classify constraints is to verify whether they are independent
or dependent[14]. A constraint is independent if the decision whether to place
a vector x in the kernel is constrained by a condition involving only x itself,
and no other vectors. A dependent constraint is one that cannot be applied
to each vector independently. This means there are required relations among
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vectors that do not reduce to independent constraints. Increasingness is a
dependent constraint.

Envelope constraint is an independent constraint that involves two hu-
manly designed operators α and β, such that α ≤ β. C is the class of all
operators ψ such that α ≤ ψ ≤ β. Envelope design is a form of human-
machine operator design [6]. If the human designed envelope contains the
optimal operator, then ΔC = 0; if not, then ΔC > 0 and the constraint is
beneficial iff ΔC ≤ E[Δn]−E[Δn,C]. The key to design is having a sufficiently
tight envelope so that design error is reduced with overly increasing constraint
error.

In image processing, it is often the case that the variables near the center
of the window contribute most to the operator, whereas those on the window
periphery contribute less, while enormously increasing the demand for data.
In this case, one can apply secondary constraint [41]. The variables near the
window center are used in an unconstrained manner, whereas those at the pe-
riphery are constrained in how they contribute to the operator. The situation
here is that ΔC is not too large owing to the lesser importance of peripheral
variables in determining Y .

Iterative design involves an operator-decomposition constraint. A large
window W is decomposed into a Minkowski sum of windows, W = W1⊕W2⊕
... ⊕Wq, and C constrains operators of the form Ψ = ΨqΨq−1...Ψ1 , where ψk

is defined on Wk [40], [26]. Not only do iterative operators require less sample
data, they can also possess implementation advantages. ΔC depends on the
degree to which the optimal operator can be approximated by an iterative
operator, relative not only to algebraic decomposition, but also relative to the
action of the operator on the random signal process. Iteration can be utilized
in conjunction with increasing constraint [20].

Rather than operating on an image at a given resolution, a mapping can be
applied to reduce the resolution [15]. While information is lost with resolution
reduction, thereby introducing a constraint error, the number of pixels in the
window is reduced and this results in smaller design error. One way to take
advantage of this is to try to find a resolution at which the optimal operator
has minimum error. A better way is, for each observation, decide whether
it has been observed sufficiently in training to be confident in the optimal
operator at its resolution. If it has been, then apply the operator designed at
that resolution; if not, then take lower resolution versions of the vector until
it has been observed sufficiently, and then apply an operator designed at an
appropriate lower resolution.

Constrained design represents a use of prior information: based on an im-
age degradation model or experience, the cost of constraint is known to be
small. Another way to utilize prior knowledge is to begin with a heuristically
chosen operator and redefine the kernel if there is sufficient data to indicate a
change [7]. Specifically, if ψpri is the prior operator, define ψopt(x) = ψpri(x)
unless the estimate of P (Y = 1|x) is sufficiently precise to change the defini-
tion. The method has been used successfully in digital document processing
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with the prior operator being the identity, in which case it is known as the
method of differencing filters [18].

A more sophisticated form of prior knowledge assumes the conditional
probability P (Y = 1|x) posses a prior distribution and the data is used to
obtain the Bayes estimate of P (Y = 1|x) relative to the prior distribution [13].
The method is difficult to use owing to the large number of prior distributions
required. To help alleviate this problem, it has been used in conjunction with
multi-resolution analysis, where its potential effectiveness has been demon-
strated [28].

4 Decomposition of lattice operators

In the lattice theory, a subset X of a lattice (L,≤) is a sup-generating family
for (L,≤) if any element of L is the supremum of elements of X . Dually, X
is an inf-generating family for (L,≤) if any element of L is the infimum of
elements of X ([23], p.28).

The concepts of sup- and inf-generating family apply directly to the prob-
lem of decomposition of a lattice element in terms of some predefined lattice
elements.

We denote by
∨X (resp.

∧X ) the supremum (resp. infimum) of a subset
X of a lattice (L,≤).

One can prove the following general result.

Proposition 3. (decomposition in terms of a sup-generating family) - The
subset X of L is a sup-generating family for the lattice (L,≤) iff, for any Y
in L,

Y =
∨
{X ∈ X : X ≤ Y } .

Dually, we have the decomposition in terms of an inf-generating family.
A very nice and now historical example of sup-generating family for a

special class of image operators is the Matheron’s decomposition ([35], p.219)
recalled in Section 2.

We know that the set of translation invariant increasing operators on bi-
nary images is a complete sub-lattice of the binary image operator lattice
([24], Proposition 3.1).

Hence, Matheron’s decomposition can be stated by saying that the bi-
nary image erosions form a sup-generating family for the lattice of translation
invariant increasing operators on binary images.

Banon and Barrera’s decomposition [2] which is an extension of Matheron’s
decomposition to non necessarily increasing operators, also recalled in Section
2, provides another example of sup-generating family.

They have proved that the set of Hit-or-Miss operators form a sup-gene-
rating family for the lattice of the translation invariant operators on binary
images.
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In this section, we show that the decomposition of binary image operators,
presented in Section 2, is a special case of two types of decomposition of lattice
operators (i.e., mappings between complete lattices).

In the next two subsections, we introduce the so-called loose sup-genera-
ting operators and then the so-called morphological sup-generating operators.

4.1 Loose sup-generating operators

Let (L1,≤) and (L2,≤) be two complete lattices. We denote by O and I,
respectively, the least and greatest elements of these lattices. From now on,
we will consider the set of operators from L1 to L2 equipped with the point-
wise ordering. This structure is again a complete lattice by inheritance of the
complete lattice structure of (L2,≤). It is denoted by (Fun(L1,L2),≤) and
called power lattice.

Let α and β be two mappings from L2 to L1, we denote by αβ the expres-
sion defined by, for any X in L1:

αβ (X) �=
∨
{Y ∈ L2 : α (Y ) ≤ X ≤ β (Y )} .

Definition 1. (loose sup-generating operator) - Let (L1,≤) and (L2,≤) be
two complete lattices. An operator φ is a loose sup-generating operator from
(L1,≤) to (L2,≤) if there exist two mappings α and β from L2 to L1, such
that φ = αβ.

The set of loose sup-generating operators is denoted by Φ.
Let us give examples of loose sup-generating operators. Let U and V be

two elements, respectively, in L1 and L2, and let ψ(U,V ) be the operator from
L1 to L2 defined by, for any X in L1,

ψ(U,V )(X) �=
{
V if X = U
O otherwise .

Proposition 4. (examples of loose sup-generating operators) - For any U and
V , respectively, in L1 and L2, the operator ψ(U,V ) is a loose sup-generating
operator, that is ψ(U,V ) ∈ Φ.

Proof. Let U and V be two elements, respectively, in L1 and L2, and let α(U,V )

and β(U,V ) be two mappings from L2 to L1 defined by, for any Y in L2,

α(U,V )(Y ) �=
{
U if Y = V
I otherwise and β(U,V )(Y ) �=

{
U if Y = V
O otherwise .

For any U and V , respectively, in L1 and L2, and any X in L1,
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Y ∈ L2 : α(U,V )(Y ) ≤ X ≤ β(U,V )(Y )

}
=

∨{
{V } if X = U
∅ otherwise

(definition of α(U,V ) and β(U,V ))

=
{
V if X = U
O otherwise

(supremum definition)
= ψ(U,V )(X)

(definition of ψ(U,V )).

That is, there exist α and β, namely α
�= α(U,V ) and β

�= β(U,V ) such that
ψ(U,V ) = αβ, in other words ψ(U,V ) ∈ Φ.

We observe that more than one pair of mappings α and β may lead to the
same loose sup-generating operator. For example, if α1(Y ) = O and β1(Y ) = I
and if the pair of mappings α2 and β2 differs from the pair α1 and β1 just at
Z ≤ Y , Z �= Y , then we still have α1β1 = α2β2.

The loose sup-generating operators have the following nice property.

Proposition 5. (decomposition in terms of loose sup-generating operators) -
The set Φ of loose sup-generating operators from L1 to L2 is a sup-genera-
ting family for the power lattice (Fun(L1,L2),≤). Equivalently, for any ψ in
Fun(L1,L2),

ψ =
∨
{φ ∈ Φ : φ ≤ ψ} .

Proof. From Proposition 3 it is sufficient to prove the second assertion. Let
us divide the proof in two parts.

i. For any ψ in Fun(L1,L2), {φ ∈ Φ : φ ≤ ψ} has ψ as an upper bound and∨ {φ ∈ Φ : φ ≤ ψ} as the least upper bound, therefore, we have,∨
{φ ∈ Φ : φ ≤ ψ} ≤ ψ.

ii. For any ψ in Fun(L1,L2) and U in L1, by definition of ψ(U,V ) and
by Proposition 4, there exists a φ ∈ Φ such that φ ≤ ψ and ψ(U) ≤ φ(U),
namely φ �= ψ(U,V ) with V = ψ(U). Therefore, by the supremum definition, for
any U in L1, ψ(U) ≤ ∨ {φ(U) : φ ∈ Φ and φ ≤ ψ} that is, by the pointwise
ordering definition and the pointwise union definition, ψ ≤

∨
{φ ∈ Φ : φ ≤ ψ}.

Hence, by the anti-symmetry of ≤, we have ψ =
∨ {φ ∈ Φ : φ ≤ ψ}.

4.2 Morphological sup-generating operators

We now recall another class of operators ([3], Definition 4.1).
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Definition 2. (morphological sup-generating operator) - Let (L1,≤) and (L2,≤
) be two complete lattices. An operator λ is a morphological sup-generating
operator from (L1,≤) to (L2,≤) if λ satisfies, for any nonempty subset X of
L1, the following property:

λ (
∧X ) ∧ λ (

∨X ) =
∧
λ (X ) .

The set of morphological sup-generating operators is denoted by Λ.
From Proposition 5.5 in [3], we know that any morphological sup-genera-

ting mapping is the intersection of an erosion and an anti-dilation.
As it has been shown in [3] (see proof of Lemma 6.1), the operators of the

type ψ(U,V ) are also examples of morphological sup-generating operators.
As for the loose sup-generating operators, the morphological sup-genera-

ting operators have the following nice property.

Proposition 6. (decomposition in terms of morphological sup-generating op-
erators) - The set Λ of morphological sup-generating operators from L1 to L2

is a sup-generating family for the power lattice (Fun(L1,L2),≤). Equivalently,
for any ψ in Fun(L1,L2),

ψ =
∨
{λ ∈ Λ : λ ≤ ψ} .

Proof. See proof of Lemma 6.1 in [3].

At this stage, we have introduced two sup-generating families for the power
lattice. We already know that they intersect each other since the operators of
the type ψ(U,V ) belong to both. Let’s be more conclusive.

In order to make the proof of the next proposition simpler to write, we
recall, at once, the concept of operator kernel [3].

Let ψ be an operator in Fun(L1,L2), a mapping ·K from Fun(L1,L2) to
Fun(L2,P(L1)) defined by, for any Y in L2,

·K(ψ) (Y ) �= {X ∈ L1 : Y ≤ ψ (X)} .

is called the left kernel mapping with respect to the complete lattice (L2,≤).
The mapping ·K(ψ) from L2 to P(L1) is called the left kernel (or simply,
kernel) of ψ.

Proposition 7. (comparison between the loose and morphological sup-gene-
rating operators) - The set Λ of morphological sup-generating operators is
included in the set Φ of loose sup-generating operators, in other words Λ ⊂ Φ.
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Proof. Let ψ be the operator from L1 to L2, and let ·ψ and ·ψ be the mappings
from L2 to L1 defined by, for any Y in L2,

·ψ (Y ) �=
∧
·K(ψ) (Y ) and ·ψ (Y ) �=

∨
·K(ψ) (Y ) .

By Theorem 5.1 in [3], for any λ ∈ Λ, there exist two mappings α and β

from L2 to L1, such that λ = αβ, namely α
�= ·λ and β

�= ·λ, that is, by loose
sup-generating operator definition, λ ∈ Φ, in other words, Λ ⊂ Φ.

Actually, the previous proposition is a consequence of a property of the
so-called morphological connection ([3], Definition 5.2). Furthermore, if αβ
is a morphological sup-generating operator, then, by Theorem 5.1 in [3], α
and β are, respectively, a dilation and an anti-dilation. This means that α is
necessarily increasing and β is necessarily decreasing.

We have chosen to qualify the sup-generating operators in Φ as loose be-
cause they don’t necessarily have to be derived from an increasing and a
decreasing mappings. Even though two inputs are comparable, in the loose
case, the α and β outputs don’t need to be comparable

We have chosen to qualify the sup-generating operators in Λ as morpho-
logical because they are derived from a dilation and an anti-dilation which
are two elementary morphological mappings.

At first glance, one could think that the morphological decomposition is
better than the loose one in the sense that we don’t need to consider all the
loose sup-generating operators to construct any lattice operator; the morpho-
logical sup-generating operators are sufficient.

Nevertheless, one can expect that more morphological than loose sup-gene-
rating operators may be needed in a minimal construction.

4.3 Constructive decompositions

In order to state the constructive decomposition of a lattice operator, we have
to recall the concept of interval function ([3], Definition 6.2).

I is an interval function from L2 to P(L1) if for any Y in L2, I(Y ) is a
interval of P(L1) or the empty set. We denote by IntFun(L2,P(L1)) the set
of interval functions from L2 to P(L1).

We denote by ·Al (ψ) the interval function collection defined by, for any
ψ from L1 to L2,

·Al(ψ) �= {I ∈ IntFun(L2,P(L1)) : I ≤ ·K(ψ)} .

In the above statement, ≤ is the pointwise ordering on Fun(L2,P(L1)),
that is the extension of the inclusion ⊆ on P(L1) to Fun(L2,P(L1)).

Let I be an interval function from L2 to P(L1), we denote by αI and βI
the mappings from L2 to L1 defined by, for any Y in L2,

αI (Y ) �=
∧
I (Y ) and βI (Y ) �=

∨
I (Y ) .
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We call the mappings αI and βI the extremity functions of I. For any Y
in L2, we have αI(Y ) ≤ βI(Y ) or (exclusive) (αI(Y ) = I and βI(Y ) = O).

By observing that for any X in L1, ψ(X) =
∨
{Y ∈ L2 : Y ≤ ψ(X)}, we

can prove the following theorem.

Theorem 3. (constructive decomposition in terms of loose sup-generating op-
erators) - Let (L1,≤) and (L2,≤) be two lattices. Any operator ψ from L1 to
L2 can be decomposed by a set of loose sup-generating operators and its con-
structive decomposition is

ψ =
∨{

αIβI : I ∈ ·Al (ψ)
}

.

Let Δ and Δa be, respectively, the set of dilations and anti-dilations from
L2 to L1.

We denote by ·Am (ψ) the interval function collection defined by, for any
ψ from L1 to L2,

·Am (ψ) �= {I ∈ IntFun(L2,P(L1)) : I ≤ ·K(ψ), αI ∈ Δ and βI ∈ Δa} .

When using only the morphological sup-generating operators, we have the
following theorem.

Theorem 4. (constructive decomposition in terms of morphological sup-gene-
rating operators) - Let (L1,≤) and (L2,≤) be two lattices. Any operator ψ
from L1 to L2 can be decomposed by a set of morphological sup-generating
operators and its constructive decomposition is

ψ =
∨{

αIβI : I ∈ ·Am (ψ)
}

.

Proof. See proof of Theorem in [3].

We now make a comparison between the loose and morphological sup-
generating operators in terms of their kernels.

Let α and β be two mappings from L2 to L1, we denote by [α, β] the
interval function from L2 to P(L1) defined by, for any Y in L2,

[α, β](Y ) �=
{

[α(Y ), β(Y )] if α(Y ) ≤ β(Y )
∅ otherwise .

From the definitions of αβ and morphological connection ([3], Proposition
5.2), we can prove the following proposition.

Proposition 8. (loose and morphological sup-generating operator kernel prop-
erties) - We have the following properties.

i) Let ψ be a loose sup-generating operator from (L1,≤) to (L2,≤), and
let α and β be two mappings from L2 to L1, such that ψ = αβ, then [α, β] ≤
·K (ψ).

ii) Let ψ be an operator from L1 to L2, and let α �= ·ψ and β
�= ·ψ, then

·K (ψ) ≤ [α, β]. Furthermore, ψ is a morphological sup-generating operator
from (L1,≤) to (L2,≤) if and only if ·K (ψ) = [α, β].
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The above proposition shows that the equality holds for and only for the
morphological sup-generating operators.

4.4 Minimal decompositions

Since ·Am (ψ) is included in ·Al (ψ), the morphological decomposition is slim-
mer than the loose one. Nevertheless, when the decompositions are based on
the maximal interval functions of ·Al (ψ) and ·Am (ψ), then we may come to
the opposite conclusion.

For the sake of simplicity, we will assume, from now on, that the sets L1

and L2 are finite. We denote by MaxA the set of maximal elements of a subset
A of a lattice.

Let ·Bl (ψ) and ·Bm (ψ) be, respectively, the collection of maximal interval
functions of ·Al (ψ) and ·Am (ψ), that is, ·Bl (ψ) = MaxAl (ψ) and ·Bm (ψ) =
Max·Am (ψ). We call them, respectively, the loose (left) basis and the mor-
phological (left) basis of ψ.

For any I and J in IntFun(L2,P(L1)), I ≤ J implies αIβI ≤ αJ βJ .
Hence if I and J are two interval functions in ·Al (ψ) (resp., ·Am (ψ)) and
I ≤ J , then αIβI has no contribution in the constructive loose (resp., mor-
phological) decomposition of ψ. Therefore, in the finite case, we have the
following two theorems.

Theorem 5. (minimal decomposition in terms of loose sup-generating oper-
ators) - Let (L1,≤) and (L2,≤) be two finite lattices. Any operator ψ from
L1 to L2 can be decomposed by a set of loose sup-generating operators and its
minimal decomposition is

ψ =
∨{

αIβI : I ∈ ·Bl (ψ)
}

.

Theorem 6. (minimal decomposition in terms of morphological sup-genera-
ting operators) - Let (L1,≤) and (L2,≤) be two finite lattices. Any operator
ψ from L1 to L2 can be decomposed by a set of morphological sup-generating
operators and its minimal decomposition is

ψ =
∨{

αIβI : I ∈ ·Bm (ψ)
}

.

The minimal loose decomposition can still be slimmed since it may involve
redundant loose sup-generating operators:

ψ =
∨

Max
{
αIβI : I ∈ ·Bl (ψ)

}
.

For any operator ψ in Fun(L1,L2), we denote by ·B (ψ) the mapping from
L2 to P(P(L1)) such that, for any Y in L2, ·B (ψ) (Y ) is the subcollection of
maximal intervals of ·K(ψ) (Y ), that is, ·B (ψ) (Y ) = Max ·K(ψ) (Y )

We write I (∈) ·B (ψ) to mean that, for any Y in L2, I (Y ) ∈ ·B (ψ) (Y ).
We can prove that I (∈) ·B (ψ) is equivalent to I ∈ ·Bl (ψ) and consequently,
for any X in L1,
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ψ(X) =
∨
{Y ∈ L2 : ∃I ∈ ·B (ψ) (Y ) : X ∈ I} .

This expression, derived from the minimal loose decomposition, is attrac-
tive because it is computationally simple. It has been extensively used in [10]
and [5].

When L2 is simply a chain with two elements then the minimal loose
decomposition becomes a minimal morphological decomposition. This is a
consequence of the fact that, in this case, for any I ∈ ·Bl (ψ), αI ∈ Δ and
βI ∈ Δa.

In other words, the decomposition of binary image operators is a special
case of the two decompositions presented above.

5 Gray-scale operator design

Optimizing gray-scale operators is inherently more difficult than optimizing
binary operators owing to the much greater complexity of gray-scale charac-
teristic functions; nevertheless the problem has been addressed, for quite some
time, for increasing operators, and more recently for non-increasing operators
[19]. Owing to space limitations, we will confine ourselves to brief descriptions
of the kind of gray-scale designs that have been studied. From the standpoint
of representation, the lattice representations are again involved, with lattices
being discrete-integer valued rather than binary.

The optimization problem for increasing gray-scale operators has been
studied in several ways. Among the first issue addressed was finding the max-
imal search space for the structuring elements. Later, MAE theorems were
derived in different settings, and these were used in much the same way as
the MAE theorem in the binary case [31], [32]. The gradient-type adaptation
mentioned earlier for binary operators has also been applied.

A constrained class of increasing operators are those that satisfy the
threshold decomposition property. For any random variable X , define the
binary random variable Xk by Xk �= 1 if X ≥ k and Xk �= 0 if X < k.
ψ satisfies the threshold decomposition property if there exists an increasing
binary operator ζψ such that

ψ(X) =
m∑

k=1

ζψ(Xk)

where X �= (X1, X2, ..., Xd) and Xk �= (Xk
1 , X

k
2 , ..., X

k
d ). Since ψ is defined via

a single binary operator, it is in effect a binary operator. Its basis representa-
tion consists of erosions with flat structuring elements. Thus, such filters are
called flat filters or stack filters. The design cost for flat filters is reduced in
comparison to general increasing filters, but the constraint error is increased.
The increase is sufficiently severe in most cases that flat filters are essentially
confined to restoring signals degraded by additive noise. In operator design it
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is assumed that all threshold vectors Xk are identically distributed. Numerous
design methods have been developed for flat filters [11], [1], [21], [29].

Up till recently the statistical design of non-increasing operators had been
kept to very small windows or to operators that are combinations of increas-
ing operators. The opportunities have been expanded with the introduction of
aperture filters [27]. These are windowed in both domain and range, thereby
reducing design complexity resulting from the gray-scale. Owing to reduced
design error and larger windows, aperture filters have been shown to outper-
form unconstrained gray-scale operators. Indeed, they have been shown to
outperform linear inverse (Wiener) filters for restoring images corrupted by
nonlinear smoothing [27]. Active research on aperture filters is continuing,
with various special types of aperture filters under investigation.

Example 2. In this example[10], the noise to be filtered consists of a compo-
sition of impulse plus horizontal dropout noise. The two-side impulse noise is
uniformely distributed with probability of occurrence of 10% and has ampli-
tude 200. Values greater than 255 and smaller than 0 were saturated, respec-
tively, to 255 and 0. The dropout noise consists of horizontal line segments
of intensity 255 with probability of occurrence 0.35% . The length of these
segments follows a normal distribution with mean 5 and variance 49. Figure 3
shows the observed-ideal pairs of images used for the training of a stack filter.
Image (a) in Figure 4 shows another realization of the same noise process,
and image (b) and image (c) show, respectively, the same image filtered by
a 1 and 5-iterations stack filter designed over a 17 points window. Just for
comparision pouposes, image (d) shows the result produced by the median
filter by the 5× 5 window in the same image. Note that the median blurs the
image. The disgned operator was also tested on another image, corrupted by
a realization of the same noise process, shown in Figure 5.

6 Conclusion

The study of the morphological language, initiated by Matheron in the seven-
ties, has led to the construction of a solid algebraic framework for the design
of non-linear discrete signal and image processing operators. Compared to
other algebraic structures as neural networks or decision trees, this approach
has an important advantage: the adequacy for modeling prior information
(i.e., user’s knowledge about the problem studied). This point is absolutely
fundamental for practical application of the technique, otherwise the amount
of training data necessary would be prohibitive. Examples of techniques for
modeling prior information in morphological operators design are envelopes,
multi-resolution and apertures. These approaches have been successfully ap-
plied in the design of document image processing procedures.

Usually, the basis estimation algorithms construct the basis components
from which can be derived the loose canonical representation. However, this
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canonical representation may not be efficient for computing the operators.
Trying to overcome this difficulty, recent studies present techniques for the
transformation of some canonical morphological representations into more ef-
ficient morphological operators [38], [9], [37]. Even in the simple cases studied,
these techniques require the solution of complex combinatorial optimization
problems.

There are many challenges for future work in this field, mainly in rela-
tion to modeling of prior knowledge and to creating specialized basis estima-
tion algorithms. Perhaps the greatest future challenge is the generalization of
theese ideas to the identification of discrete-time discrete-range dynamical sys-
tems. This advance would have many applications in the modeling of genetic
networks from observation of expression patterns by microarray technology,
which is among the greatest scientific challenges of the twenty-first century.
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1 Introduction

Multiresolution methods in signal and image processing are very useful for
the following reasons: (i) there is substantial evidence that the human visual
system processes visual information in a ‘multiresolution’ fashion; (ii) often,
images contain features of physically significant structure at different reso-
lutions; (iii) sensors may provide data of the same source at multiple reso-
lutions; (iv) multiresolution image processing algorithms offer computational
advantages and, moreover, appear to be robust.

This chapter, which is based on our work in [18, 25], introduces a general
signal decomposition system with perfect reconstruction. By concatenating
several instances of such a system, one obtains a multistage signal decom-
position scheme, which covers two well-known signal representations, namely
pyramids and wavelets. We discuss both representations at length.

In a pyramid representation, every analysis operator that brings a signal
from a given level to the next coarser level reduces information. This infor-
mation is captured by the detail signal, which is the difference between the
original signal and the approximation obtained by applying a synthesis oper-
ator on the coarser signal. In general, a pyramid representation, comprising
the coarsest signal along with detail signals at all levels, is redundant.

In a wavelet representation, the detail signal lives at the same level as
the coarse signal itself, and it is obtained from a second family of analysis
operators. In this case, the analysis and synthesis operators need to satisfy
a condition that is very similar in nature to the biorthogonality condition
known from the theory of linear wavelets (note, however, that this condition
is formulated in operator terms only, and does not require any sort of linearity
assumption or inner product). A major property of the wavelet representation
is that it is non-redundant.

To design the multiresolution signal decomposition schemes discussed in
this chapter, we need to find operators that satisfy constraints characteris-
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tic to the particular scheme. It is a relatively easy and direct task to de-
sign operators that satisfy the constraints required by pyramidal signal de-
composition schemes. However, designing operators that lead to legitimate
wavelet decomposition schemes is a more difficult and delicate task, which
requires the use of special mathematical tools. For example, to design lin-
ear wavelet decomposition schemes, the Z-transform is used to transform
the required constraints into a system of polynomial equations, whose so-
lution provides the impulse responses of the underlying linear operators [44].
On the other hand, the lifting scheme, introduced by Sweldens [40, 41, 42],
provides a powerful tool for constructing nonlinear wavelet decompositions.
The enormous flexibility and freedom that the lifting scheme offers has
challenged researchers to develop various nonlinear wavelet decomposition
schemes [6, 10, 7, 8, 9, 13, 15, 14, 17, 16, 22, 20, 21, 23, 24]. In this chapter,
the lifting scheme is introduced for general decomposition schemes, and as
such it can also be applied to pyramids.

We would like to emphasize here the enormous influence that G. Math-
eron’s work had on the material presented in this chapter, and on virtually
all work we have published in mathematical morphology. During the last 40
years G. Matheron contributed a rich collection of scientific results, which pro-
vided a solid foundation to mathematical morphology. Moreover, he produced
numerous ideas and concepts that have been used by others and ourselves
to further the area of mathematical morphology. In particular, our work on
morphological multiresolution systems is a direct consequence of a number of
concepts pioneered by G. Matheron in his seminal book on ‘Random Sets and
Integral Geometry’ [32] and in [37], such as granulometries and morphological
filters. We are deeply indebted to him and respectfully honor his memory.

2 Preliminaries

In this section, we briefly recall some concepts from mathematical morphology
that we use in the sequel. We refer to [26] for a comprehensive discussion.
Recall first that a partially ordered set or poset L is a set endowed with a
partial ordering. A poset L is called a lattice if every finite subset in L has a
supremum (least upper bound) and an infimum (greatest lower bound). It is
called a complete lattice if every (finite or infinite) subset of L has an infimum
and a supremum. If K ⊆ L, then we denote the supremum and infimum
of K by

∨K and
∧K, respectively. Instead of

∨{x1, x2, . . . , xn} we write
x1 ∨ x2 ∨ · · · ∨ xn (same for the infimum).

A fundamental concept in mathematical morphology is that of an adjunc-
tion. Consider two partially ordered sets (posets) L,M and two operators ε:
L →M and δ: M→ L. The pair (ε, δ) defines an adjunction between L and
M if

δ(y) ≤ x ⇔ y ≤ ε(x), x ∈ L, y ∈M.
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It is easy to show that, in an adjunction, both operators ε and δ are increasing;
i.e., x1 ≤ x2 implies that ε(x1) ≤ ε(x2) (the same for δ). If (ε, δ) is an
adjunction between two lattices L and M, then

ε(x1 ∧ x2 ∧ · · · ∧ xn) = ε(x1) ∧ ε(x2) ∧ · · · ∧ ε(xn), x1, x2, . . . , xn ∈ L

and, dually,

δ(y1 ∨ y2 ∨ · · · ∨ yn) = δ(y1) ∨ δ(y2) ∨ · · · ∨ δ(yn), y1, y2, . . . , yn ∈ M.

In a complete lattice, this relationship also holds for infinite infima and
suprema, respectively. Operators ε and δ, with the properties stated above,
are called erosion and dilation, respectively. In the following, id denotes the
identity operator. It can be easily demonstrated that, if (ε, δ) is an adjunction
between two posets L and M, then

εδε = ε and δεδ = δ

εδ ≥ id and δε ≤ id.

A basic adjunction on the set Fun(Zd, T ) of all functions from Z
d to a

complete lattice T is formed by the flat dilation δA and the flat erosion εA,
given by:

δA(x)(n) = (x ⊕A)(n) =
∨

k∈A

x(n− k) (1)

εA(x)(n) = (x �A)(n) =
∧

k∈A

x(n + k). (2)

Here, A ⊆ Z
d is a given set, the so-called structuring element.

Let ψ be an operator from a poset L into itself.

• ψ is called idempotent, if ψ2 = ψ.

• If ψ is increasing and idempotent, then ψ is called a (morphological) filter.

• A filter ψ that satisfies ψ ≤ id (ψ is anti-extensive) is called an opening.

• A filter ψ that satisfies ψ ≥ id (ψ is extensive) is called a closing.

Now, if (ε, δ) is an adjunction between two posets L and M, then, εδ is a
closing on M and δε is an opening on L. We have seen that the pair (εA, δA),
given by (1) and (2), constitutes an adjunction on Fun(Zd, T ). Thus, we may
conclude that the compositions

x◦A = (x�A)⊕A and x•A = (x⊕A)�A

form an opening and closing, respectively.
An operator ν on a complete lattice L is a negation, if it is a bijection that

reverses ordering (i.e., x ≤ y ⇒ ν(y) ≤ ν(x)) such that ν2 = id, the identity
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Fig. 1. A signal decomposition scheme with perfect reconstruction (from [25]).

operator. For example, for every x ∈ Fun(E, T ), ν(x) = −x, if T = IR, whereas
ν(x) = N −1−x, if T = {0, 1, . . . , N −1}. Let L, M be two complete lattices
with negations νL, νM, respectively. With an operator ψ: L → M, we can
associate the negative operator ψ∗ = νMψνL. When no confusion about the
respective negation seems possible, we set ψ∗(x) = [ψ(x∗)]∗. If (ε, δ) forms an
adjunction between two complete lattices L and M and if both lattices have
a negation, then the pair (δ∗, ε∗) forms an adjunction between M and L as
well.

3 Decomposition Systems with Perfect Reconstruction

3.1 Signal Decomposition

To analyze a signal, it is sometimes useful to decompose it into different parts
in such a way that no information is removed from the signal. In Fig. 1, we
depict a general scheme for the decomposition of an input signal x0 ∈ V0

into two parts, (x1, y1) ∈ V1 × W1. Here, x1 has the interpretation of an
approximation or simplification of signal x0, whereas y1 represents a kind of
detail or error signal. The operators ψ↑: V0 → V1 and ω↑: V0 → W1 are
called analysis operators, whereas the operator Ψ↓: V1 ×W1 → V0 is called
the synthesis operator.

Our previous assumption that no information is lost by the decomposition
is expressed by the condition that Ψ↓ is the left inverse of Ψ↑ = (ψ↑, ω↑); i.e.,

Ψ↓(ψ↑(x0), ω↑(x0)) = x0 , for x0 ∈ V0.

This condition will be referred to as the perfect reconstruction condition.
We do not intend to elaborate much further on a general theory of de-

composition systems. In the following sections, we treat two special types of
decomposition systems, namely pyramids and wavelets, and we present sev-
eral examples of such decompositions. Before restricting attention to these
two special cases however, we discuss a general method, called lifting, which
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Fig. 2. Prediction lifting scheme (from [25]).

can be exploited to modify a given decomposition system. Subsequently, we
discuss multistage decomposition systems obtained by concatenating several
systems of the form depicted in Fig. 1.

3.2 Lifting

We now describe a general and flexible technique to modify a given decom-
position system (which can be a trivial one) into another one, possibly with
some improved characteristics. This technique, called lifting, was developed
about six years ago by W. Sweldens in the context of wavelets [40, 41, 42] (see
also [3], for a predecessor to this scheme, known as a ‘ladder network’). As
we shall see below, this technique extends readily to general decomposition
systems. The formulation given here is based on our previous work in [25].

Two types of lifting schemes can be distinguished: prediction lifting and
update lifting. We will treat both cases separately.

Prediction lifting.

This scheme, depicted in Fig. 2, modifies the detail analysis operator ω↑ as well
as the synthesis operator Ψ↓. We assume that W1 is closed under addition and
subtraction (see [25], for a more general formulation) and that π is a mapping
from V1 into W1. The detail signal y1 is modified by subtracting π(x1):

y′1 = y1 − π(x1);

see the left part of Fig. 2. This modification is called ‘prediction,’ since π is
often chosen in such a way that π(x1) is an estimate (i.e., a prediction) of y1;
hence, their difference y′1 is a detail or error signal. Obviously, the original
signal x0 can be reconstructed from x1 and y′1 by means of:

x0 = Ψ↓(x1, y1) = Ψ↓(x1, y
′
1 + π(x1)).

Thus, we arrive at the modified decomposition system with analysis and syn-
thesis operators given by (the subscript ‘p’ means ‘prediction’)
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Fig. 3. Update lifting scheme (from [25]).

ψ↑
p(x) = ψ↑(x), x ∈ V0 (3)

ω↑
p(x) = ω↑(x) − πψ↑(x), x ∈ V0 (4)

Ψ↓
p (x, y) = Ψ↓(x, y + π(x)), x ∈ V1, y ∈W1. (5)

Update lifting.

This scheme, depicted in Fig. 3, modifies the signal analysis operator ψ↑ as well
as the synthesis operator Ψ↓. We assume that V1 is closed under addition and
subtraction (see [25], for a more general formulation) and that λ is a mapping
from W1 into V1. The approximation signal x1 is modified by subtracting
λ(y1):

x′1 = x1 − λ(y1);

see the left part of Fig. 3. Operator λ is called the update operator. In practice,
the update operator is chosen in such a way that the resulting signal x′1
satisfies a certain constraint. For example, one might require that the mapping
x0 �→ x′1 preserves a given signal attribute, such as the average or the (local)
maximum. If the unmodified signal x1 does not satisfy the constraint, we may
choose λ in such a way that x′1 does.

As before, the original signal can be reconstructed from x′1 and y1:

x0 = Ψ↓(x1, y1) = Ψ↓(x′1 + λ(y1), y1).

Thus, we find the modified decomposition system with analysis and synthesis
operators given by (the subscript ‘u’ means ‘update’)

ψ↑
u(x) = ψ↑(x)− λω↑(x), x ∈ V0 (6)

ω↑
u(x) = ω↑(x), x ∈ V0 (7)

Ψ↓
u(x, y) = Ψ↓(x+ λ(y), y), x ∈ V1, y ∈ W1. (8)

So far, we have shown that an existing decomposition system with perfect
reconstruction can be modified by an arbitrary prediction or update lifting
step. Perfect reconstruction is guaranteed by the very structure of this scheme
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Fig. 4. A 3-level decomposition system: (a) signal analysis, and (b) signal synthesis
(from [25]).

and does not require any particular assumptions on the lifting operators in-
volved. Obviously, we can concatenate any number of lifting steps in order
to modify a given decomposition system. In the context of linear wavelets, it
has been shown that any system (using finite filters) can be decomposed into
elementary lifting steps [11].

3.3 Multilevel Decomposition

As we said before, x1 and y1 can be interpreted as the approximation and the
detail signals of a signal x0, respectively. In other words, x1 is a sort of a ‘sim-
plification’ of x0, inheriting many of its properties, whereas y1 contains (at
least) the information that has been discarded in order to obtain this simplifi-
cation. In various signal and image processing applications, the decomposition
x0 �→ (x1, y1) is only a first step towards an analysis of x0. Subsequent steps
comprise a decomposition of x1 into x2 and y2, of x2 into x3 and y3, and so
forth.

To formalize this procedure, assume that there exists a sequence of signal
spaces V0, V1, V2, . . . and detail spaces W1,W2, . . .. At each level j ≥ 0 we
have two analysis operators, ψ↑

j : Vj → Vj+1 and ω↑
j : Vj → Wj+1, and a

synthesis operator Ψ↓
j : Vj+1×Wj+1 → Vj , satisfying the perfect reconstruction
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condition:
Ψ↓

j (ψ↑
j (x), ω↑

j (x)) = x, for x ∈ Vj . (9)

A given input signal x0 ∈ V0 can be decomposed by the recursive scheme

x0 → {x1, y1} → {x2, y2, y1} → · · · → {xk, yk, yk−1, . . . , y1} (10)

depicted in Fig. 4 (for the case when k = 3), where xj+1 = ψ↑
j (xj) and

yj+1 = ω↑
j (xj). We refer to this scheme as a multilevel decomposition system.

If the analysis operator ψ↑
j involves sampling, then such a scheme is also

called a multiresolution or multiscale decomposition scheme.
The original signal x0 can be perfectly reconstructed from xk and y1, y2, . . .,

yk by means of the following recursive synthesis scheme:

xj = Ψ↓
j (xj+1, yj+1), j = k − 1, k − 2, . . . , 0, (11)

where x0, x1, . . . , xk−1 are the signals reconstructed at each level. This is also
depicted in Fig. 4, for the case when k = 3.

4 Morphological Pyramids

4.1 The Pyramid Transform

In the particular case when Wj+1 ⊆ Vj and

Ψ↓
j (x, y) = ψ↓

j (x) + y, for x ∈ Vj+1, y ∈Wj+1, (12)

for some synthesis operator ψ↓
j : Vj+1 �→ Vj satisfying the perfect reconstruc-

tion condition (see (9) and (12))

ψ↓
jψ

↑
j (x) + ω↑

j (x) = x, for x ∈ Vj ,

we have that
ω↑

j (x) = x− ψ↓
jψ

↑
j (x).

Note that we have implicitly assumed that Vj is closed under addition and
subtraction. In this case, a given input signal x0 ∈ V0 can be decomposed by
the recursive scheme (10), where{

xj+1 = ψ↑
j (xj) ∈ Vj+1

yj+1 = xj − ψ↓
j (xj+1) ∈ Wj+1

, j = 0, 1, . . . , k − 1. (13)

The detail signal yj+1 = xj − ψ↓
j (xj+1) contains information about xj that

is not present in x̂j = ψ↓
j (xj+1). Clearly, the signal x0 ∈ V0 can be exactly

reconstructed from xk and y1, y2, . . . , yk by means of the backward recursion
(see (11) and (12))
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Fig. 5. (a) A three-level pyramid transform, and (b) its inverse (from [18]).

xj = ψ↓
j (xj+1) + yj+1, j = k − 1, k − 2, . . . , 0. (14)

It is not difficult to see that the multiscale signal decomposition scheme
proposed by Burt and Adelson in [4] is a special case of the scheme in (13),
(14) [18]. They called the sequence {xj} of approximation signals the Gaussian
pyramid and the sequence {yj} of detail signals the Laplacian pyramid. We
follow their nomenclature and refer to the process of decomposing a signal
x0 ∈ V0 into {xk, yk, yk−1, . . . , y1} by means of (13) as the pyramid transform
of x0. On the other hand, the process of synthesizing x0 by means of (14) is
called the inverse pyramid transform. Block diagrams illustrating the pyramid
transform and its inverse, for the case when k = 3, are depicted in Fig. 5.

It is worthwhile noticing here that, if V (j)
i = Ran(ψ̂i,j) (i.e., the range

of the approximation operator ψ̂i,j = ψ↓
i ψ

↓
i+1 · · ·ψ

↓
j−1ψ

↑
j−1ψ

↑
j−2 · · ·ψ

↑
i , j > i),

then it is desirable that

V
(j)
i ⊆ V

(j−1)
i ⊆ Vi, j > i+ 1. (15)

In this case, operator ψ̂i,j maps the signal space Vi into nested subspaces
· · · ⊆ V

(i+2)
i ⊆ V

(i+1)
i ⊆ Vi, each subspace V (j)

i containing all ‘level j’ (j > i)
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approximations of signals in Vi. Equation (15) is a basic requirement for a
multiresolution signal decomposition scheme [12, 44, 30] that agrees with our
intuition that the space V (j−1)

i , which contains the approximations of signals
at level i obtained by means of operator ψ̂i,j−1, contains the approximations
of signals at level i obtained by means of ψ̂i,j as well. It has been shown in [18]
that (15) is satisfied, if we assume that

ψ↑
jψ

↓
j = id on Vj+1. (16)

If (16) is satisfied, then we say that the analysis and synthesis operators ψ↑
j and

ψ↓
j satisfy the pyramid condition. In this chapter, we only consider pyramid

transforms for which the pyramid condition is satisfied for all j. Furthermore,
we focus our attention on pyramid transforms based on morphological op-
erators (e.g., erosions, dilations, openings, and closings). We refer to these
pyramids as morphological pyramids. In the rest of this section, we provide
many examples of morphological pyramids. It is straightforward to verify that,
for all these examples, the pyramid condition is satisfied (see [18]).

The lifting scheme, introduced in Section 3.2 for arbitrary decomposition
systems, can be applied to pyramid decompositions. Update and prediction
lifting both give rise to a modified pyramid scheme. However, it is not a priori
clear whether lifting keeps the pyramid condition intact. In fact, it is not
difficult to show that the pyramid condition is not invalidated by an update
lifting step. In this case, the updated analysis operator is given by

ψ↑
u(x) = ψ↑(x) − λ(x− ψ↓ψ↑(x)) ,

where λ: V0 → V1 is the update operator. The synthesis operator is not
modified by the update. Obviously, the pair (ψ↑

u, ψ
↓) satisfies the pyramid

condition if the pair (ψ↑, ψ↓) does so. Unfortunately, similar results cannot
be established in the case of a prediction lifting step: in general, the pyramid
condition will no longer be valid after prediction lifting.

4.2 Pyramids without Sample Reduction

In this subsection, we present several examples of pyramid transforms based
on morphological analysis and synthesis operators that preserve the number
of data samples at each level. As stated before, all pyramids considered in this
chapter do satisfy the pyramid condition.

Example 1 (Granulometries)

Recall that a discrete family of operators {αj | j ≥ 0} on the complete lattice L
is called a granulometry if it satisfies the semigroup property (see [32, 26])

αiαj = αjαi = αj , j ≥ i .
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Here, we consider a discrete granulometry {αj | j ≥ 0} on the complete lattice
L = Fun(E, T ), where T ⊆ IR. Set V0 = L and Vj+1 = Ran(αj), j > 0, and
define ψ↑

j = αj and ψ↓
j = id. It is evident that ψ↑

j maps Vj into Vj+1 and ψ↓
j

maps Vj+1 into Vj , since Vj+1 ⊆ Vj . Given an input signal x0, we arrive at
the signal analysis scheme (recall (13)):{

xj+1 = αj(xj) ∈ Vj+1

yj+1 = xj − xj+1

, j ≥ 0. (17)

For synthesis, we find that (recall (14))

x0 =
∞∑

j=1

yj . (18)

Now, consider the anti-granulometry {βj = α∗
j | j ≥ 0} on L = Fun(E, T ).

This leads to the following signal analysis and synthesis schemes (compare
with (17), (18))⎧⎪⎨⎪⎩

x′0 = x0 ∈ V0

x′j+1 = βj(x′j) ∈ Vj+1

y′j+1 = x′j+1 − x′j

, j ≥ 0, x0 =
∞∑

j=1

y′j.

In the literature, the decomposition of a signal x0 into the detail signals
{. . . , y′2, y′1, y1, y2, . . .} is called the discrete size transform of x0 [31]. If the
space E is finite or countably infinite, then {. . . , |y′2|, |y′1|, |y1|, |y2|, . . .}, where
|x| =

∑
n |x(n)|, is called the pattern spectrum of x0 [31].

A particular case of a discrete granulometry can be obtained by the fol-
lowing scheme. Set T = {0, 1}; in this case, L = P(E), which is the complete
Boolean lattice of all subsets of E. Assume that we are given a nested family
of subspaces of P(E):

· · · ⊆ C2 ⊆ C1 ⊆ C0 ⊆ P(E), (19)

and define the openings αj : Vj → Vj+1 by

αj(x) =
⋃
{c ∈ Cj | c ⊆ x}.

Interpreting Cj as ‘components’ at level j, we may think of αj(x) as the union
of all components in Cj that are contained inside x. The family {αj | j ≥ 0}
forms a discrete granulometry, and Vj comprises all sets that can be obtained
as a union of components in Cj .

Let now E be the d-dimensional Euclidean space IRd. A subset x ⊆ IRd

will be called r-connected if any two points in x can be connected by an arc
that lies entirely inside the dilation x ⊕ br, where br is the closed ball with
radius r. Recall that x⊕ br comprises all points in IRd that lie at distance ≤ r
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Fig. 6. Three-levels of the object-oriented pyramid decomposition of Example 1.

of a point in x. Suppose that we are given a non-increasing sequence rj ≥ 0
and a set m ⊆ IRd to be called the marker set. Let Cj be the rj-connected
sets that intersect the marker set m. It is obvious that Cj forms a nested
family as in (19). The resulting discrete granulometry {αj | j ≥ 0}, where αj

is given by (19), can be used to generate a pyramidal decomposition scheme
with analysis and synthesis operators given by (17) and (18), respectively (in
(17), − should be replaced by the set difference \, whereas in (18), the sum
should be replaced by set union).
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An example of such a pyramidal decomposition scheme is depicted in
Fig. 6. Note that this is an object-oriented decomposition scheme that acts
on individual objects in an image rather than on individual pixels. See [1] for
more details on such decomposition schemes.

Example 2 (Morphological Skeletons)

Consider the complete lattice Fun(E, T ), where T ⊆ IR, and an adjunction
(ε, δ) on L. Define Vj = Ran(εj), where ε0 = id and εj = εε · · · ε (j times).
Let ψ↑

j : Vj �→ Vj+1 and ψ↓
j : Vj+1 �→ Vj be given by

ψ↑
j = ε and ψ↓

j = εjδj+1,

where δj = δδ · · · δ (j times). This leads to the following signal analysis scheme
(recall (13)): {

xj+1 = ε(xj) ∈ Vj+1

yj+1 = xj − εjδj+1(xj+1)
, j ≥ 0. (20)

For synthesis, we find that (recall (14))

xj = εjδj+1(xj+1) + yj , j ≥ 0. (21)

Notice that the detail signal yj can be written as

yj+1 = εj(x) − (εjδj)(δε)εj(x). (22)

On the other hand, Lantuéjoul’s formula for discrete skeletons, well-known
from mathematical morphology [36], produces skeleton subsets yj from a sig-
nal x0 ∈ Fun(E, T ), given by (see [18])

yj+1 = εj(x)− (δε)εj(x), j ≥ 0. (23)

Comparing (22) with (23), we see that the decomposition scheme (20), (21)
has an extra closing εjδj . As a result, the detail signal yj in (20) is never
larger than the detail signal in the Lantuéjoul formula (23). Therefore, the
decomposition scheme (20), (21) may give rise to a more efficient compression
scheme than Lantuéjoul’s skeleton. The decomposition scheme (20), (21) has
been proposed earlier by Goutsias and Schonfeld in [19]. Fig. 7(c) depicts the
result of applying this decomposition to the binary image in Fig. 7(a). The
resulting image is different than the one depicted in Fig. 7(b) in 66 pixels.
Since the image depicted in Fig. 7(b) is non-zero at 1,453 pixels, this amounts
to 4.5% data reduction.

Example 3 (Curve Evolution Pyramid)

In the literature, one finds many different algorithms for curve evolution.
A drawback of curve evolution methods for curve denoising is that they tend to
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(a) (b) (c)

Fig. 7. (a) A binary image, (b) the decomposition
S

yj obtained by means of (23),
and (c) the decomposition

S
yj obtained by means of (20). In this case, the operation

− in (20) and (23) is taken to be set difference.

shrink the original curve. In [28, 29], it is explained in detail how morphological
pyramids can help to circumvent this problem. Here, we present a condensed
version of the account in [28, 29].

The basic idea is to apply inverse flow to the outcome of a forward flow.
In practice, however, the inverse flow is highly unstable. Below, we see that a
pyramid approach can help us to circumvent this problem. In the following, we
restrict ourselves to polygons x0 with N vertex points p0(0),p0(1), . . . ,p0(N−
1) ∈ IR2. The curve evolution algorithm introduced below can be performed
most easily in the Fourier domain; hence, we use the (cyclic) Fourier transform
of p0. In fact, we use the polar representation [r0(k), θ0(k)] of the Fourier
transform of p0. Here, r0 is the radius and θ0 is the phase. Because of rounding
effects in our computations, we assume that the radius r0(·) is quantized.
For simplicity, we assume that the radius is integer-valued. As we will see,
quantization of the phase is not necessary.

Now, assume that Vj = V , for all j ≥ 0, where V is the set of all N -vertex
polygons for which the radius function r(·) is integer-valued. The j+1’th step
of the (discrete-time) curve evolution considered here maps a polygon with
vertex points pj(·) into another N -vertex polygon with vertices

pj+1(i) =
1
3
[
pj(i− 1) + pj(i) + pj(i+ 1)

]
,

where i ± 1 are taken modulo N . Denoting by F (k) the frequency response
of the filter (1

3 ,
1
3 ,

1
3 ), which is a real-valued function, we find that the polar

representation of the Fourier transform of pj+1 looks as follows:

rj+1(k) = &|F (k)|rj(k)' (24)

θj+1(k) = θj(k) + phase(F (k)) mod 2π. (25)
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Fig. 8. Forward and inverse curve evolution of a polygon flow (from [29]).

Note that, since F is real-valued, its phase can only assume the values 0
and π (and hence quantization is not required here). The expression in (24),
(25) defines the analysis operator ψ↑.

A synthesis operator ψ↓ can be defined by determining a solution xj of
the equation ψ↑(xj) = xj+1, for every xj+1 ∈ Vj+1. One such solution map is
given by

rj(k) =
⌈
|F̃−1(k)|rj+1(k)

⌉
θj(k) = θj+1(k) + phase(F̃−1(k)) mod 2π,

where

F̃−1(k) =

{
1/F (k), if F (k) �= 0

0, otherwise
.

In [28], it is argued that the choice of this operator is triggered by a mini-
mization of some energy function.

The pair (ψ↑, ψ↓) forms an adjunction (relative to some partial order-
ing that is not specified here). Moreover, the pyramid condition is satisfied
in this case as well. The resulting pyramid is referred to as the curve evo-
lution pyramid. In this case, the decomposition {x0, x1, . . . , xk}, by means
of xj+1 = ψ↑(xj), j = 0, 1, . . . , k − 1 is a (discrete-time) forward flow,
whereas the decomposition {x̂0, x̂1, . . . , x̂k}, by means of x̂j = ψ↓(x̂j+1),
j = k − 1, k − 2, . . . , 0, x̂k = xk, is the corresponding ‘inverse’ flow.

Fig. 8 depicts the result of applying the forward and inverse flows to two
‘noisy’ polygons (thin, solid curves). The dotted curves result after 30 itera-
tions of a forward flow, whereas the bold-faced curves result after 30 iterations
of the ‘inverse’ flow applied on the dotted curves.
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4.3 Pyramids with Sample Reduction

We now present several examples of pyramid transforms based on morpho-
logical analysis operators that contain, at each level, half the number of data
samples. Again, all examples considered here do satisfy the pyramid condition.

Example 4 (Toet pyramid)

Let T be a complete chain and t ∈ T . Consider the operators σ↑, σ↓
t , both

mapping Fun(Zd, T ) into itself:

σ↑(x)(n) = x(2n)

σ↓
t (x)(2n) = x(n) and σ↓

t (x)(m) = t, if m �∈ 2Z
d,

Here 2Z
d denotes all vectors in Z

d with even coordinates. Define

ψ↑
j = βασ↑ and ψ↓

j = βασ↓
�, j ≥ 0,

where α and β are the opening and closing by the structuring element
A = {0, 1}d (for the d–dimensional case), respectively, and t = ( is the
greatest element in T . One can show [18] that the pyramid condition holds.
The resulting pyramidal signal decomposition scheme has been suggested by
Toet in [43] for use in contrast enhancement applications.

Example 5 (Median pyramids)

Assume that T is a complete chain, and consider a pyramid for which Vj =
Fun(Z, T ), for every j, and the same analysis and synthesis operators are used
at every level j, given by

ψ↑(x)(n) = median{x(2n− 1), x(2n), x(2n + 1)} (26)

ψ↓(x)(2n) = ψ↓(x)(2n + 1) = x(n). (27)

This leads to a 1-D pyramid that is referred to as the median pyramid.
An alternative 1-D median pyramid can be constructed by considering the

following analysis and synthesis operators:

ψ↑(x)(n) =

{
x(2n), if x(2n− 1) ∧ x(2n) ∧ x(2n+ 1) = x(2n)

median{x(2n− 1), x(2n), x(2n+ 1)}, otherwise
(28)

ψ↓(x)(2n) = x(n), ψ↓(x)(2n + 1) = x(n) ∨ x(n + 1). (29)

In this case, the synthesis operator is a dilation from Vj+1 into Vj . The median
pyramid based on operators (28), (29) may provide a better approximation
ψ↓ψ↑(x) of x than the pyramid based on operators (26), (27), since the former
pyramid utilizes more information from signal x in order to obtain the sample
values ψ↓(x)(2n + 1) (compare (26) with (28)).
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A 2-D median pyramid can be obtained by using the same analysis and
synthesis operators at every level j, and by setting

ψ↑(x)(m,n) = median{x(2m+ k, 2n+ l) | (k, l) ∈ A}, (30)

where A is the 3× 3 square centered at the origin, and

ψ↓(x)(2m, 2n) = x(m,n) (31)

ψ↓(x)(2m, 2n+ 1) = x(m,n) ∧ x(m,n + 1) (32)

ψ↓(x)(2m + 1, 2n) = x(m,n) ∧ x(m + 1, n) (33)

ψ↓(x)(2m + 1, 2n+ 1) = x(m,n) ∨ x(m,n + 1) ∨
x(m + 1, n+ 1) ∨ x(m + 1, n). (34)

An example, illustrating the resulting 2-D median pyramid, is depicted in
Fig. 9. For clarity of presentation, the size of the images depicted in Fig. 9
(and subsequent figures) is larger than their actual size.

It has been suggested in [38] that median pyramids preserve details and
produce decompositions that can be compressed more efficiently than other
(linear) hierarchical signal decomposition schemes.

Example 6 (Morphological Haar pyramid)

Assume that T is a complete chain, and consider a pyramid for which Vj =
Fun(Z, T ), for every j, and the same analysis and synthesis operators are used
at every level j, given by

ψ↑(x)(n) = x(2n) ∧ x(2n + 1) (35)

ψ↓(x)(2n) = ψ↓(x)(2n + 1) = x(n). (36)

It turns out that the analysis operator (35) is the morphological counterpart
the analysis operator of the linear Haar wavelet decomposition scheme, given
by [12, 44, 30]

ψ↑(x)(n) =
1
2
(x(2n) + x(2n + 1)).

Moreover, the synthesis operators of both schemes are identical. For this rea-
son, the nonlinear scheme governed by (35) and (36) is referred to as the
morphological Haar pyramid.

A 2-D version of the morphological Haar pyramid is obtained by analysis
and synthesis operators given by

ψ↑(x)(m,n) = x(2m, 2n)∧x(2m, 2n+1)∧x(2m+1, 2n+1)∧x(2m+1, 2n) (37)

ψ↓(x)(2m, 2n) = ψ↓(x)(2m, 2n + 1) = ψ↓(x)(2m + 1, 2n+ 1)

= ψ↓(x)(2m + 1, 2n) = x(m,n). (38)

An example of this decomposition is depicted in Fig. 10. In the following
section, where we deal with wavelet decompositions, we meet these operators
again.
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Fig. 9. Multiresolution image decomposition based on the median pyramid (30)–
(34).

Example 7 (Symmetrized Version of Morphological Haar Pyramid)

A more interesting example than the morphological Haar pyramid is obtained
by considering the case when

ψ↑(x)(n) = x(2n− 1) ∧ x(2n) ∧ x(2n + 1)

ψ↓(x)(2n) = x(n) and ψ↓(x)(2n + 1) = x(n) ∨ x(n + 1).

This leads to a symmetrized version of the morphological Haar pyramid.
A 2-D version of the previous decomposition is obtained by setting

ψ↑(x)(m,n) =
∧

−1≤k,l≤1

x(2m+ k, 2n+ l), (39)
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simplifications reconstructions details

Fig. 10. Multiresolution image decomposition based on the morphological Haar pyra-
mid (37), (38).

ψ↓(x)(2m, 2n) = x(m,n) (40)

ψ↓(x)(2m, 2n+ 1) = x(m,n) ∨ x(m,n + 1) (41)

ψ↓(x)(2m + 1, 2n) = x(m,n) ∨ x(m + 1, n) (42)

ψ↓(x)(2m + 1, 2n+ 1) = x(m,n) ∨ x(m,n + 1) ∨
x(m + 1, n+ 1) ∨ x(m + 1, n). (43)

An example of this decomposition is depicted in Fig. 11.
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simplifications detailsapproximations

Fig. 11. Multiresolution image decomposition based on the symmetrized morpholog-
ical Haar pyramid (39)–(43).

4.4 Morphological Adjunction Pyramids

Examples 6–7 are particular cases of the family of adjunction pyramids, which
has been discussed in [18]. Here, we briefly recall one of the results derived in
that paper.

Assume that V0 = V1 = Fun(Zd, T ). We are interested in analysis and
synthesis operators ψ↑, ψ↓ with the following three properties:

1. The pair (ψ↑, ψ↓) is an adjunction (see Section 2); hence, ψ↑ is an erosion
and ψ↓ is a dilation.

2. The operators ψ↑ and ψ↓ are both flat (see [26]), meaning that their
structuring elements are sets rather than grayscale functions.
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3. The operators ψ↑ and ψ↓ are translation invariant in the following sense:
for every translation operator τ = τk, with k ∈ Z

d, we have

ψ↑τ2 = τψ↑ and ψ↓τ = τ2ψ↓.

Recall that the translation operator τk is given by (τkx)(n) = x(n − k),
for k, n ∈ Z

d.

This last property means that the analysis operator ψ↑ involves subsampling
by 2 in every spatial direction. In [18], it is shown that ψ↑ and ψ↓ can only
be of the following form:

ψ↑(x)(n) =
∧
k∈A

x(2n+ k) (44)

ψ↓(x)(k) =
∨

n∈A[k]

x(
k − n

2
) , (45)

where A ⊆ Z
d is the structuring element. Here, we use the following notation:

for n ∈ Z
d, set

Z
d[n] = {k ∈ Z

d | k − n ∈ 2Z
d},

where 2Z
d denotes all vectors in Z

d with even coordinates. The sets Z
d[n]

form a disjoint partition of Z
d into 2d parts. For A ⊆ Z

d and n ∈ Z
d, we

define
A[n] = A ∩ Z

d[n],

which yields a partition of A.
In order that the pyramid condition is satisfied for the pair in (44), (45), it

is necessary that the structuring element A satisfies the following condition:

A[a] = {a}, for some a ∈ A , (46)

or, equivalently,

∃ a ∈ A : ∀ k ∈ Z
d \ {0}, a + 2k �∈ A .

In the 1-D version of Example 7, we have d = 1 and A = {−1, 0, 1}. Thus, in
this case, A[0] = {0}, meaning that the condition in (46) is satisfied.

In [28], it is argued that, in many cases, the pyramid condition means that
the analysis and synthesis operators form an adjunction. For example, to show
that (ψ↑

j , ψ
↓
j ) in Example 1 defines an adjunction between Vj and Vj+1, we

must show the following relation:

y ≤ ψ↑
j (x) ⇔ ψ↓

j (y) ≤ x, for x ∈ Ran(αj−1) and y ∈ Ran(αj).

Indeed, writing x = αj−1(x′) and y = αj(y′), we find that
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y ≤ ψ↑
j (x) ⇔ αj(y′) ≤ αjαj−1(x′)

⇔ αj(y′) ≤ αj−1(x′)

⇔ ψ↓
j (y) ≤ x.

If the analysis and synthesis operators (ψ↑
j , ψ

↓
j ) of a pyramidal decompo-

sition scheme form an adjunction, then the pyramid is called a morphological
adjunction pyramid [18]. The analysis operator ψ↑

j of a morphological adjunc-
tion pyramid is necessarily an erosion, whereas the synthesis operator ψ↓

j is
necessarily a dilation. It has been shown in [18] that, in this case, the pyramid
condition is satisfied if and only if ψ↑

j is surjective or ψ↓
j is injective. Moreover,

ψ↓
jψ

↑
j is an opening and hence ψ↓

jψ
↑
j ≤ id, which, together with (13), implies

that yj+1 ≥ 0, for all j ≥ 0. This property is important in signal compression
and coding applications, since it implies that the detail signals assume no
negative values, thus saving one bit of information, required for coding the
sign of yj.

Finally, the analysis and synthesis operators used in the previous exam-
ples map integers into integers. This is a very desirable property, since these
operators preserve the integer form of signals in most data compression and
coding applications [5].

5 Morphological Wavelets

5.1 The Wavelet Transform

This section is concerned with another interesting family of decomposition
systems with perfect reconstruction, the wavelet decomposition. Later, we
show that every wavelet decomposition includes a pyramid decomposition (or
rather, an entire family of pyramid decompositions).

A general wavelet decomposition has the same structure as in Fig. 1. But,
besides the perfect reconstruction condition

Ψ↓(ψ↑(x0), ω↑(x0)) = x0 , for x0 ∈ V0, (47)

it also satisfies the additional constraints

ψ↑(Ψ↓(x1, y1)) = x1 , for x1 ∈ V1, y1 ∈W1 (48)

ω↑(Ψ↓(x1, y1)) = y1 , for x1 ∈ V1, y1 ∈W1, (49)

which guarantees that the wavelet decomposition is non-redundant. Note that
(47)–(49) imply that the analysis operator Ψ↑ = (ψ↑, ω↑) and the synthesis
operator Ψ↓ are inverses. Concatenation of a series of analysis steps, as in Sec-
tion 3.3, yields a multilevel decomposition which, in the literature, is called
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Fig. 12. The signal synthesis part of a 3-level uncoupled wavelet decomposition
(from [25]).

the wavelet transform. In the examples to be discussed later, the analysis oper-
ators involve downsampling (or decimation), which is ‘undone’ by upsampling
(or interpolation) in the synthesis part.

Fixing an element y ∈W1 and defining the operator ψ↓: V1 → V0 as

ψ↓(x) = Ψ↓(x, y) , x ∈ V1 ,

we derive from (48) the pyramid condition ψ↑ψ↓(x) = x, for x ∈ V1. This
proves our claim that every wavelet decomposition ‘includes’ a pyramid de-
composition.

Of particular interest is the case when the synthesis operator Ψ↓ is of the
special form

Ψ↓(x, y) = ψ↓(x) + ω↓(y), x ∈ V1, y ∈ W1 ,

in which case we speak of an uncoupled wavelet decomposition. Now, conditions
(47)–(49) reduce to

ψ↓ψ↑(x) + ω↓ω↑(x) = x, x ∈ V0 (50)

ψ↑(ψ↓(x) + ω↓(y)) = x, x ∈ V1, y ∈ W1 (51)

ω↑(ψ↓(x) + ω↓(y)) = y, x ∈ V1, y ∈ W1 . (52)

We refer to ψ↓, ω↓ as the signal synthesis and the detail synthesis operator,
respectively. In the multilevel case, the corresponding synthesis scheme is de-
picted in Fig. 12.

A trivial example of an uncoupled wavelet decomposition is the lazy
wavelet transform that splits a 1-D discrete signal x into its odd and even
samples. Here, the analysis operators are given by

ψ↑(x)(n) = x(2n)
ω↑(x)(n) = x(2n + 1) .

Reconstruction is achieved through the synthesis operators
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Fig. 13. The 2-D morphological Haar wavelet transforms an input signal x to a
scaled signal x′ and the vertical, horizontal, and diagonal detail signals yv, yh, yd,
respectively (from [25]).

ψ↓(x)(2n) = x(n) and ψ↓(x)(2n + 1) = 0

ω↓(y)(2n) = 0 and ω↓(y)(2n + 1) = y(n) .

This decomposition is better known in the signal processing community as
the polyphase transform of order 2 [44]. The lazy wavelet transform is not of
great interest by itself; however, it is often used as a starting point for the
lifting scheme to be discussed below.

A more interesting example is the decomposition that we have called
the morphological Haar wavelet, since it resembles the classical linear Haar
wavelet. The major difference is that the linear signal analysis filter of the
latter is replaced by a morphological operator (e.g., by an erosion). Let
V0 = V1 = W1 = IRZZ be the lattice of doubly infinite real-valued sequences.
Define the analysis operators

ψ↑(x)(n) = x(2n) ∧ x(2n + 1)

ω↑(x)(n) = x(2n)− x(2n+ 1) ,

and the synthesis operators

ψ↓(x)(2n) = ψ↓(x)(2n + 1) = x(n)

ω↓(y)(2n) = y(n) ∨ 0 and ω↓(y)(2n + 1) = −(y(n) ∧ 0) .

It is rather straightforward to verify that conditions (50)–(52) are satisfied.
Observe that the operators ψ↑, ψ↓ form the morphological Haar pyramid dis-
cussed in Example 6.

The previous example can be easily extended to two dimensions. Indeed,
let us define a simple 2-D wavelet. Let V0 and V1 consist of all functions from
Z

2 into IR and let W1 consist of all functions from Z
2 into IR3. We introduce

the following notation. By n, 2n, we denote the points (m,n), (2m, 2n) ∈ Z
2,

respectively, and by 2nh, 2nv, 2nd, we denote the points (2m+1, 2n), (2m, 2n+
1), (2m+ 1, 2n+ 1), respectively; see Fig. 13. Define
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ψ↑(x)(n) = x(2n) ∧ x(2nh) ∧ x(2nv) ∧ x(2nd) (53)

ω↑(x)(n) = (ωv(x)(n), ωh(x)(n), ωd(x)(n)), (54)

where ωv, ωh, ωd represent the vertical, horizontal, and diagonal detail signals,
given by:

ωv(x)(n) = 1
2 (x(2n)− x(2nv) + x(2nh)− x(2nd)) (55)

ωh(x)(n) = 1
2 (x(2n)− x(2nh) + x(2nv)− x(2nd)) (56)

ωd(x)(n) = 1
2 (x(2n)− x(2nh)− x(2nv) + x(2nd)). (57)

The synthesis operators are given by

ψ↓(x)(2n) = ψ↓(x)(2nh) = ψ↓(x)(2nv) = ψ↓(x)(2nd) = x(n),

and

ω↓(y)(2n) = (yv(n) + yh(n)) ∨ (yv(n) + yd(n)) ∨ (yh(n) + yd(n)) ∨ 0

ω↓(y)(2nh) = (yv(n)− yh(n)) ∨ (yv(n)− yd(n)) ∨ (−yh(n)− yd(n)) ∨ 0

ω↓(y)(2nv) = (yh(n)− yv(n)) ∨ (−yv(n)− yd(n)) ∨ (yh(n)− yd(n)) ∨ 0

ω↓(y)(2nd) = (−yv(n)− yh(n)) ∨ (yd(n)− yv(n)) ∨ (yd(n)− yh(n)) ∨ 0,

where we have written y ∈ W1 as y = (yv, yh, yd). It is not difficult to show
that conditions (50)–(52) are all satisfied. The analysis operators ψ↑ and ω↑

in (53), (54) map a quadruple of signal values, as the ones depicted on the left
hand-side of Fig. 13, to the quadruple at the right hand-side; here x′ = ψ↑(x)
and yv = ωv(x) (the same for yh, yd).

An example, illustrating one step of this decomposition, is depicted in
Fig. 14. As in the 1-D case, the minimum in the expression for ψ↑ can be
replaced by a maximum.

In fact, it has been shown in [25] that the minimum can also be replaced
by an arbitrary positive Boolean function without destroying the perfect re-
construction property. As an example, we consider a 2-D wavelet transform on
binary images, where the ‘low-pass’ analysis operator is the median operator:

ψ↑(x)(n) = median(x(2n), x(2n), x(2nh), x(2nv), x(2nd)). (58)

Take ω↑ as in (54), with

ωv(x)(n) = x(2n) ) x(2nv) (59)

ωh(x)(n) = x(2n) ) x(2nh) (60)

ωd(x)(n) = x(2n) ) x(2nd), (61)

where ) denotes ‘exclusive or.’ In [25], it has been shown that the inverse
synthesis operators are given by
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(a) (b)

Fig. 14. Multiresolution image decomposition based on the 2-D morphological Haar
wavelet transform: (a) An image x, and (b) its decomposition into the scaled image
ψ↑(x), given by (53), and the detail images ωv(x), ωh(x) and ωd(x), given by (55)–
(57).

ω↓(y)(2n) = yv(n) ∧ yh(n) ∧ yd(n)

ω↓(y)(2nh) = yh(n) ) (yv(n) ∧ yh(n) ∧ yd(n))

ω↓(y)(2nv) = yv(n) ) (yv(n) ∧ yh(n) ∧ yd(n))

ω↓(y)(2nd) = yd(n) ) (yv(n) ∧ yh(n) ∧ yd(n)).

Clearly, conditions (50)–(52) are satisfied. An example, illustrating one step
of this decomposition, is depicted in Fig. 15.

5.2 Lifting

In Section 3.2, we have described the technique of lifting for general decompo-
sition systems. This technique can also be applied for wavelet decompositions.
In [25], it has been shown that the modified scheme resulting from lifting, i.e.,
(3)–(5) for prediction and (6)–(8) for update, satisfies the additional con-
straints for a wavelet scheme, i.e., (48), (49). It is important to note, however,
that lifting may turn a wavelet decomposition that is uncoupled into one that
does no longer have this property. Again, refer to [25] for a precise statement.
Here, we present one rather simple example. In the next subsection, we discuss
a rather special wavelet decomposition scheme, called the max-lifting scheme,
which can be obtained by two lifting steps.

Example 8 (Lifting based on the median operator)

In this example, we lift the lazy wavelet by means of the prediction operator
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(a) (b)

Fig. 15. Multiresolution binary image decomposition based on the 2-D median
wavelet transform: (a) A binary image x, and (b) its decomposition into the scaled
image ψ↑(x), given by (58), and the detail images ωv(x), ωh(x) and ωd(x), given by
(59)–(61).

π(x)(n) = x(n) , (62)

and the update operator

λ(y)(n) = −median(0, y(n− 1), y(n)) . (63)

Thus, we arrive at the uncoupled wavelet decomposition with analysis opera-
tors

ψ↑(x)(n) = x(2n) + median(0, x(2n− 1)− x(2n− 2), x(2n+ 1)− x(2n))

ω↑(x)(n) = x(2n+ 1)− x(2n) ,

and synthesis operators

ψ↓(x)(n) = x(n)

ω↓(y)(2n) = −median(0, y(n− 1), y(n))

ω↓(y)(2n+ 1) = y(n)−median(0, y(n− 1), y(n)) .

It is not difficult to see that this wavelet decomposition is invariant under grey-
scale translations and multiplications (also with respect to negative values).
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We mention two alternative choices for the prediction operator π. First,
we may choose the linear prediction operator

π(x)(n) =
1
2

(x(n) + x(n + 1)) . (64)

This choice leads to an uncoupled wavelet decomposition scheme that has
two ‘vanishing moments.’ This means that the detail signal, resulting from a
‘linear’ input signal x(n) = an+ b, will be zero.

Second, we may set

π(x)(n) = median(x(n − 1), x(n), x(n + 1)) . (65)

This last choice, in combination with the update operator in (63), leads to a
coupled wavelet decomposition scheme.

Fig. 16 depicts examples of all three decompositions. The decompositions
depicted in Fig. 16(a) and Fig. 16(c) are quite similar, but the one depicted
in Fig. 16(b) needs more attention. In this case, the detail signal y′1 is small
at points where the input signal x0 is linear-like (e.g., at points 0 ≤ n ≤ 18
and 60 ≤ n ≤ 80). This is not surprising, since the resulting decomposition
has two ‘vanishing moments,’ as we explained above.

5.3 Max-Lifting

In this subsection, we construct a particular wavelet decomposition scheme
using one prediction and one update lifting steps; it is called the max-lifting
scheme, since the scheme has the intriguing property that its analysis operator
preserves local maxima. We first give the most general formulation of this
scheme. Afterwards, we show how it can be applied in the 1-D and the 2-D
cases.

Consider a set S of samples, which is the disjoint union of two other sets
Q and R. Assume that we have a symmetric binary adjacency relation ∼ on S
such that p ∼ p′ is never satisfied if p, p′ lie both in Q or R. Such a relation
defines a so-called bi-graph with vertex sets Q and R; see Fig. 17. If q ∼ r,
then we say that q and r are neighbors. Every sample is assumed to have at
most finitely many neighbors. We write r ∼∼ p, if there exists an element q
such that r ∼ q and q ∼ p; see Fig. 17. In particular, r ∼∼ r, if r possesses at
least one neighbor.

An input signal x0 on S is first split into the approximation signal x1,
defined on R, and a detail signal y1, defined on Q; i.e.,{

x1(r) = x0(r), r ∈ R

y1(q) = x0(q), q ∈ Q
.

Consider the coupled wavelet transform obtained by applying a prediction
and an update lifting step. The prediction step looks as follows:
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Fig. 16. One-stage decomposition of a signal x0 by means of two lifting steps. The
prediction operators are given by: (62) in (a), (64) in (b), and (65) in (c). The
subsequent update step is given by (63) in all three cases. Observe that the detail
signal in (b) is small at points where the input signal is linear-like. This is due to
the fact that, in (b), the decomposition has two ‘vanishing moments.’



308 Henk J.A.M. Heijmans and John Goutsias

q p~r q~
r p~~

Q

R

p

q

r

Fig. 17. A bi-graph with vertex sets R (white nodes) and Q (gray nodes). Neighbors
are connected with edges.

π(x1)(q) =
∨

r: r∼q

x1(r) , q ∈ Q .

This means that the prediction of the signal at a point q is given by the maxi-
mum of its neighbors, which, by definition, all lie in R. The update operator is
chosen in such a way that local maxima of the input signal x0 are mapped to
the next level x′1. It turns out that such a property, a more precise formulation
of which will be given below, can be achieved if we choose the update lifting
step

λ(y1)(r) = −max{0,
∨

q: q∼r

y1(q)} , r ∈ R .

Thus, we arrive at the decomposition of a signal x0 with domain S into an
approximation signal x′1 on R and a detail signal y′1 on Q, given by

x′1(r) = x1(r) − λ(y′1)(r), r ∈ R and y′1(q) = y1(q)− π(x1)(q), q ∈ Q .

For a point p ∈ S, we denote by A(x0 | p) the set of neighbors p′ of p such that
x0(p′) ≥ x0(p′′), for all neighbors p′′ of p. Note that this set is nonempty, since
p has finitely many neighbors. In [25], we have shown the following results:

(a) x0(r) ≤ x′1(r) ≤ max{x0(q) | q = r or q ∼ r}, for r ∈ R.

(b) x0(q) ≤ max{x′1(r) | r ∼ q}, for q ∈ Q.

(c) Assume that q ∈ Q is such that x0(q) ≥ x0(r), for r ∼ q, and r ∼∼ q;
then, x′1(p) = x0(q), for every p ∈ A(x0 | q).
Indeed, this result expresses the fact that local maxima of x0 ‘survive’

to the next level. If x0 has a local maximum at r ∈ R, in the sense that
x0(r) ≥ x0(q), for q ∼ r, then x′1(r) = x0(r). If x0 has a local maximum
at q ∈ Q, in the sense that x0(q) ≥ x0(r), for r ∼ q and r ∼∼ q, then
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Fig. 18. A diagram illustrating the 2-D max-lifting scheme. The white nodes contain
the scaled signal x1 (resp. x′

1), whereas, the gray nodes contain the detail signal y1

(resp. y′
1). In this scheme, local maxima (indicated by circles) are preserved.

x′1(p) = x0(q), for all ‘largest neighbors’ p of q. In this case, ‘largest neighbor’
means that x0(p) ≥ x0(p′), for all other neighbors p′ of p.

Not only does the max-lifting scheme preserve local maxima, we can also
show that this scheme will never create new maxima. To be more specific,
assume that the approximation signal x′1 has a local maximum at r ∈ R; i.e.,
x′1(r) ≥ x′1(r

′), for r′ ∈ R, with r′ ∼∼ r. Then, x0 has a local maximum at
some p ∈ S, with p = r or p ∼ r, and x0(p) = x′1(r). For a detailed proof, we
again refer to [25].

In the 1-D case, where S = Z, we can take for R,Q the even and odd
samples, respectively, and define r ∼ q if |r−q| = 1. Here, we restrict ourselves
to the 2-D case, and more specifically to the quincunx sampling scheme. In
this case, R and Q consist of points (m,n) ∈ Z

2, with m + n even and odd,
respectively. Moreover, (m1, n1) ∼ (m2, n2) if and only if |m1 −m2| + |n1 −
n2| = 1.

An important feature of lifting schemes is that they allow in-place calcula-
tions. In this case, the original signal values can be replaced by the transformed
ones without having to allocate additional memory. This is clearly illustrated
in Fig. 18, where we apply the 2-D max-lifting scheme on the quincunx lattice
to a 6 × 6 square matrix. This provides also an illustration of our previous
assertion that the max-lifting scheme preserves local maxima; in Fig. 18, these
local maxima are indicated by circles.

Note that R can be mapped onto S through a rotation of the form
(r1, r2) �→ 1

2 (r1 − r2, r1 + r2), after which the same scheme can be applied
again. In Fig. 19, we apply the 2-D max-lifting scheme to a particular image.
Here, the scaled signal x1 and the detail signal y1 are both defined on a quin-
cunx grid. To properly depict these signals, we perform a 45◦ counterclockwise
rotation.
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x0

�x1 �y1

��x1 ��y1

Fig. 19. Image decomposition based on the two-dimensional max-lifting scheme with
quincunx sampling. Bottom row: original image x0. Middle row: transformed images
x′

1 and y′
1 (after 45◦ counterclockwise rotation). Top row: images x′′

1 and y′′
1 obtained

by applying max-lifting to x′
1. Notice that the detail image may contain positive

(bright) as well as negative (dark) values.
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6 Conclusions

In this study of morphological decomposition systems with perfect recon-
struction, we have presented an axiomatic treatise on pyramid and wavelet
decomposition schemes. Many multiresolution signal decomposition schemes
proposed in the literature are special cases of the general schemes discussed
here.

The nonlinear schemes discussed as examples in this chapter enjoy some
useful and attractive properties:

• Implementation can be done extremely fast by means of simple operations
(e.g., addition, subtraction, max, min, median, etc.). This is partially due
to the fact that only integer arithmetic is used in calculations and that use
of prediction/update steps in the decomposition produces computationally
efficient implementations.

• If the input to the proposed schemes is integer-valued, the output will be
integer-valued as well. Clearly, these schemes can avoid quantization, an
attractive property for lossless data compression.

• The proposed schemes can be easily adopted to the case of binary images.
This is of particular interest in document image processing, analysis, and
compression applications, but it is also important on its own right (e.g.,
see [39, 27], for works on constructing wavelet decomposition schemes for
binary images).

• Due to the nonlinear nature of the proposed signal analysis operators,
important geometric information (e.g., edges) is well preserved at lower
resolutions.

Morphological pyramids and wavelets comprise a relatively new and largely
unexplored research area. In this chapter, we have only been able to give the
reader a glimpse of this field and the underlying mathematics. For more com-
prehensive discussions, one may refer to [18, 25]. In [27], Kamstra introduces
an even more general framework for finite-valued wavelets. One of his major
conclusions is the combinatoric explosion of the number of wavelets with fi-
nite filter length. In two recent papers, Piella, Pesquet, and Heijmans [34, 35]
present results on constructing adaptive wavelets based on the lifting scheme.

Finally, the material presented in this chapter forms the basis for further
developments in nonlinear multiscale signal decomposition schemes and more
particularly for the construction of morphological scale-spaces [29, 2].
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Morphological segmentation revisited
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1 Introduction

Morphological segmentation is now 25 years old, and is presented in textbooks
and software libraries. It relies first on the watershed transform to create con-
tours and second on markers to select the contours of interest [12]. Separating
the segmentation process into two parts constitutes its main interest: find-
ing the markers is the intelligent part, since it requires an interpretation of
the image, but the difficulty is counterbalanced by the fact that the result-
ing segmentation is largely independent of the precise shape or position of the
markers. Furthermore, the tedious part, that is finding the contours is entirely
automatic. The advantages of the method are good localization, invariance
to lighting conditions, absence of parameters, high sensitivity as strongly or
weakly contrasted objects are equally segmented. It has been used with suc-
cess in many circumstances, in any number of dimensions and has become
extremely popular. Searching the webpages containing the word watershed
and segmentation, Google finds more than 15000 pages ! Another reason for
its popularity is the speed of the watershed transform : hierarchical queues
allow to mimic the flooding of a topographic surface from a set of markers,
and require only one pass through the image [3, 16, 22]. The watershed has
also successfully been implemented on dedicated hardware, on DSPs and on
parallel architectures [8, 4]. Morphological segmentation being a success story,
is it necessary to devote a new paper to a method so widely known ? Indeed
yes, for the research in the domain is more active than ever. The present paper
aims at presenting some main streams of this research.

Morphological segmentation may be reinterpreted as a 2-stage process.
First, a hierarchy, that is a series of nested partitions, is created. From finer
to coarser partitions only fusions of tiles take place, which means that a con-
tour present in a coarse partition is also present in any finer partition. For
this reason, the strength of a piece of contour is equal to the level of coarse-
ness at which it disappears. During the second stage of the segmentation the
strongest contours separating the markers are selected. This analysis indicates
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Fig. 1. 11 : Image of bubbles to be segmented ; 12: Modulus of the gradient
21: Watershed line of the gradient ; 22: Final contour

two directions for generalizing the approach, which will both be outlined in
the present paper. First create new types of hierarchies, better adapted to
particular types of images to segment. For instance, a hierarchy which is op-
timal for segmenting microcalcifications in breast mammographies will yield
poor results for segmenting the speaker in a videoconference sequence. Micro-
calcifications are tiny contrasted spots, and their optimal segmentation would
work poorly for most other types of images. A second direction will explore
new ways for extracting useful contours from the hierarchy.

2 Classical morphological segmentation

2.1 Birth of the watershed transform for segmentation

The watershed transform was first used to segment dark bubbles like those rep-
resented in fig.1 [7]. Thresholding such an image is impossible due to blurred
contours and varying background. On the gradient image, seen as a topo-
graphic surface, each blob boundary appears as a chain of mountains, with
a regional minimum inside the blob and another outside. Thresholding the
gradient image to get the contour does not lead to the solution either: a too
low threshold produces a thick contour, whereas a too high threshold misses
parts of the contour, where the boundary of the blob is somewhat fuzzy.
The watershed line appears to be the good solution: if a drop of water falls
on a topographic surface, it follows a line of steepest descent and reaches a
regional minimum. The attraction zone of a regional minimum is called its
catchment basin (CB). Two adjacent catchment basins have in common a
portion of the watershed line. Hence a drop of water falling on the watershed
line has as much chance to reach one or another of the adjacent minima. In
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simple cases like these, the watershed line is a thin line, following the ex-
pected contour, independently of the intensity or contrast of the bubble. The
advantages of the watershed is good localization of the contour, invariance to
lighting conditions, absence of parameters, high sensitivity since strongly or
weakly contrasted objects are equally segmented.

2.2 Watershed and Topographic Distance

In a digital framework, images are represented on a regular graph (square or
hexagonal grid for 2D images) where the nodes represent the pixels and the
edges the neighborhood relations. A connected component of uniform grey
tone is called a plateau. A plateau without lower (resp. higher) neighbors is a
regional minimum (resp. maximum). Consider for the moment a topographic
surface g without other plateaus than the regional minima. A drop of water
falling on g glides along a path of steepest descent until it reaches a regional
minimum. If the altitude of a pixel x is g(x), the altitude of its lowest neighbor
defines the erosion ε(g)(x) of size 1 at pixel x. Hence the altitude of the
steepest descending slope at pixel x is slope(x) = g(x) − ε(g)(x).

If π is a path (x = p1, p2, ..., y = pn) between two pixels x and y, we define
the topographic variation along the path π as the sum

∑
i=2,n

slope(pi) of the

elementary topographic variations along the path π. The topographic distance
between two pixels x and y is defined as the minimal topographic variation
along all paths between x and y. Obviously the lines of steepest descent are
the geodesics of the topographic distance. Putting all regional minima of g to
the same altitude does not change its CBs.

Definition 1. We call catchment basin CB(mi) of a regional minimum mi

the set of pixels which are closer to mi than to any other regional minimum
for the topographic distance.

In this framework the construction of the catchment basins becomes a
shortest path problem, i.e., finding the path between a marker and an image
point that corresponds to the minimum weighted distance. Computing this
minimum weighted distance at all image points from any marker is also equiv-
alent to finding the grey-weighted distance transform (GWDT) of the image.
There are several types of discrete algorithms to compute the GWDT which
include iterated (sequential or parallel) min-sum differences [20] and hierar-
chical queues[3]. For images with plateaus, or images defined on a continuous
domain, see [14, 11].

As long one stays within the catchment basin of a minimum m, of altitude
0, the set of pixels at a topographic distance smaller or equal to h are all pixels
at an altitude below h. For this reason, the most efficient implementation of
the watershed, is based on the idea of flooding a topographic surface. The
relief is flooded from sources placed at each regional minimum. The flood
level is uniform all over the relief and increases, as shown on fig.2a. The pixels
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Fig. 2. a) flooding from all minima b) the watershed line is the line where adjacent
lakes meet c) a catchment basin without source is flooded through a neighboring
basin.

where two lakes meet are a the same topographic distance of two minima:
hence they belong to the watershed line (fig.2b).

Flooding with markers

Let us now apply the method which was successful for the bubbles on a more
complex image, represented by a grey tone function f and illustrated in fig.3a.
For segmenting f , first its edges are highlighted by computing its gradient
magnitude (see fig.3b), approximated by the discrete morphological gradient
δ(f)− ε(f), where δ(f) = f ⊕B is the flat dilation of f by a small disk B and
ε(f) = f � B is the flat erosion of f by B. The watershed line is presented
in fig.3c, showing a severe oversegmentation. Even the sky, apparently rather
homogeneous in the initial image is cut into multiple small pieces. As a matter
of fact, the gradient image is extremely sensitive to noise and its minima are
extremely numerous ; each minimum will give birth to a catchment basin,
leading to an oversegmentation. In order to overcome this oversegmentation
one could imagine retaining only the watershed lines on top of high gradient
zones. This solution would be unsatisfactory in general: the buildings visible in
the background of the cameraman image produce only low gradient intensities.

To select the contours to be retained, the best solution is to mark the
objects of interest, including the background. Each marker becomes a source
for flooding the topographic surface. The flood of the sources is tuned in such
a way that the flooding level is uniform all over the topographic surface and
grows with constant speed. As the flood level becomes higher, lakes formed
from different sources meet, and a dam is erected in order to avoid that they
mix [3]. In this case, catchment basins without sources are flooded from
already flooded neighboring regions (see fig.2c). Segmenting the cameraman
image with two markers (one of the markers is formed by two connected
components) yields the segmentation of fig.6c.

2.3 A hierarchy of contours

In this section we analyze more precisely which contours are selected when
markers are used. As a matter of fact, the strongest contours of the gradi-
ent image between the markers have been selected. Fig.4 shows the simplest
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a                                b                ca                                b                c

Fig. 3. a) initial image ; b) morphological gradient ; c) watershed of the gradient
image

Fig. 4. a : initial topographic surface
b-d : 3 levels of flooding and delimitation of the catchment basins below
e : g is a function maximal everywhere except in the position of 3 markers.
f : largest flooding of f below g: the remaining minima correspond to the markers

way to assign a strength to the contours of a gradient image. We present a
topographic surface before any flooding and 3 increasing levels of uniform
flooding. For each resulting surface the catchment basins are presented below
the corresponding figure with different shades of grey ; as the level of flooding
increases, neighboring catchment basins merge, yielding a coarser partition.
In fig.4, associated to 4 levels of increasing flooding, we have 4 decreasing par-
titions with respectively 6, 5, 3 and 2 regions. Such nested partitions where,
from a finer level to a coarser level, only fusions of regions take place, is called
a hierarchy. For this reason, a piece of contour present in a given partition is
also present in all coarser partitions ; it can be weighted by the flooding level
for which it disappears.
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Applied to the cameraman image, the same process of flooding the gra-
dient image yields the partitions illustrated by fig.5. On the left, the flooded
gradient image, in the centre we find a mosaic image obtained by replacing
each catchment basin by its mean grey value in the initial image, on the right
the contours ; the whole process being repeated for 3 levels of flooding. It ap-
pears that the strongest contours of this hierarchy only select small contrasted
regions, which are not the most important from a perceptual point of view.
This is a general situation: the lowest level of the hierarchy presents all pos-
sible contours, generally an oversegmentation. Higher levels of the hierarchy
present far less regions, but not necessarily the regions of interest.

Using markers constitutes an efficient tool to select the sole objects one is
interested in and construct their contours. Let us consider again the figures
4 a to d, where the increasing levels of flooding induce a hierarchy of nested
partitions, with respectively 6, 5, 3 and 2 regions. We would like 3 regions, but
not the 3 regions present in fig.4c. In fig.4e, we have indicated which regions
we are interested in by creating a function g ≥ f , identical with f at three
positions and equal to the maximal grey value elsewhere. The positions where
f = g exactly correspond to the markers, marking an internal zone inside
each of the objects of interest. Fig.4 presents the highest flooding possible of
f entirely below the function g : it presents 3 minima, corresponding exactly
to the 3 chosen markers. The lakes produced by this flooding have varying
altitudes. The associated catchment basins, delineated below fig.4 correspond
to the desired segmentation. The contours which have been retained are the
strongest contours separating the markers. Segmenting the cameraman image
with two markers (one of the markers is formed by two connected compo-
nents) yields the segmentation of fig.6c. Fig.6b presents the corresponding
flooding of the gradient image, a topographic surface with only two minima,
corresponding to the markers.

The remaining part of the paper will be entirely devoted to the use of
hierarchies for morphological segmentation.

3 On partitions and hierarchies

The preceding section has shown that morphological segmentation relies on
hierarchies of partitions. We will now define both terms and establish their
lattice structure.

3.1 The lattice of partitions

We are interested in segmenting images, that is functions of Fun(E,T ) where
E represents the support of the images (a continuous domain or a discrete
grid, in any number of dimensions) with value in a lattice T (in practice the
set of reals or integers). The power set P(E) of E contains all subsets of E. The
result of any segmentation of an image f of Fun(E,T ) will be a partition S
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Fig. 5. Catchment basins associated to increasing levels of flooding. Left: flooded
gradient image. Center: Mosaic image. Right : segmentation

Fig. 6. Left : 3 markers placed on the cameraman image
Center : result of swamping
Right : resulting segmentation
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of E, that is a family (Ci) of elements of P(E) verifying : Ci ∧ Cj = ∅ for
i �= j and

⋃
Cj = E.

Partitions as equivalence classes

Equivalence relations are the easiest way to define partitions. They allow to
shift from a local to a global point of view and vice-versa.

Definition 2. An equivalence relation R on E is defined as a binary relation
on E × E verifying:
(i) Reflexivity: for all x ∈ E : xRx
(ii) Symmetry: for all x, y ∈ E : xRy ⇒ yRx
(iii) Transitivity: for all x, y, z ∈ E : xRy and yRz ⇒ xRz

To any partition S of E, we may associate an equivalence relation R
defined by xRy ⇔ ∃Ci ∈ S such that x, y ∈ Ci.

Conversely, to any equivalence relation may be associated the partition of
the equivalence classes associated to R. The equivalence class of x ∈ E being
the set of all elements y of E such that xRy.

The complete lattice of partitions

Partitions of a same set E may be more or less coarse. Two partitions S1 and
S2 are nested if each tile of S2 is a union of tiles of S1 ; or equivalently, each
tile of S1 is included in a tile of S2. In this case the partition S1 is said to
be finer than the partition S2, which is coarser. We write S1 ≤ S2

To be finer is an order relation : it is reflexive, transitive and anti-
symmetric : S1 ≤ S2 and S1 ≥ S2 implies S1 = S2. The corresponding
equivalence relations verify : for all x, y ∈ E : xR1y ⇒ xR2y.

The infimum of a family of partitions

There is one partition which is finer than all others : it is the partition made
of the singletons {x} of E. Hence the family of partitions which are finer than
all partitions of (Si)i∈I is not empty. This family has a largest element, called
infimum of (Si)i∈I . It is characterized by Rmin =

∧
i∈I

Ri where R1∧R2 means

R1 and R2. It is easy to verify that Rmin is still an equivalence relation.

The supremum of a family of partitions

There is one partition which is coarser than all others : it is the partition
that is equal to E itself. Hence the family of partitions which are coarser
than all partitions of (Si)i∈I is not empty. This family has a smallest ele-
ment, called supremum of (Si)i∈I . The problem now is that if R1 and R2
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are two equivalence relations, then {R1 or R2} is no longer transitive. In or-
der to obtain Rmax one has to construct the transitive closure of

∨
i∈I

Ri. We

will write Rmax =
︷ ︸︸ ︷∨
i∈I

Ri . The transitive closure is obtained as follows :

x

︷ ︸︸ ︷∨
i∈I

Ri y. ⇔there exists a sequence (x = z1, z2, ..., zn = y) such that

zk

∨
i∈I

Ri zk+1 for all k.

3.2 On hierarchies, trees and ultrametric distances

We now give an axiomatic definition of hierarchies [1] and study their prop-
erties. Hierarchical classification has become famous with the classification of
species. On one hand one defines partitions such that two elements of a same
class are closer or more similar than two elements belonging to distinct classes.
On the other hand one defines a classification tree, or dendrogram, that is a
series of partitions compatible with each other: the classes of a partition are
included in the classes of any coarser partition. In other words, the partitions
are nested.

Definition of a dendrogram and its elements

Let A be a subset of P(E), on which we consider the inclusion order relation.
A is a dendrogram if the following axiom is verified :

Axiom 1 (Dendrogram axiom) A,U, V ∈ A :
A ⊂ U and A ⊂ V ⇒ U ⊂ V or V ⊂ U

We remark that the dendrogram axiom is weaker than the axiom defining
partitions: if U, V are classes of a partition and there exists a set A included
in both U and V then U = V.

If A is a dendrogram, we may define :
- the summits : Sum(A) = {A ∈ A | ∀B ∈ A : A ⊂ B ⇒ A = B}
- the leaves : Leav(A) = {A ∈ A | ∀B ∈ A : B ⊂ A ⇒ A = B}
- the nodes : Nod(A) = A− Leav(A)

A is a hierarchy, if the two following axioms are verified:

Axiom 2 (Intersection axiom) : two elements of A which are not com-
parable for the inclusion order have an empty intersection: A,B ∈ A :
A ∩B ∈ {A,B, ∅}

Axiom 3 (Union axiom ) Any element A of A is the union of all other
elements of A contained in A:
∀A ∈ A :

⋃
{B ∈ A | B ⊂ A ;B �= A} = {A, ∅}
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Proposition 1. The intersection axiom implies that A is a dendrogram for
the inclusion order.

Proof. If A �= ∅, A ⊂ U and A ⊂ V , then U ∩V �= ∅, implying that U ∩V = U
or U ∩ V = V, that is V ⊂ U or U ⊂ V showing that the dendrogram axiom
is satisfied.

Grouping all tiles belonging to all partitions in a series of nested partitions
(Si) , obviously yields a hierarchy A.

Stratified hierarchies, ultrametric distances and nested partitions

A is a stratified hierarchy, if it is equipped with an index function st from A
into R which is strictly increasing with the inclusion order : ∀A,B ∈ A
A ⊂ B and B �= A ⇒ st(A) < st(B). Stratification offers the possibility of
thresholding a hierarchy: the elements A of a hierarchy verifying st(A) ≥ λ
are all coarser than λ.

Given a stratified hierarchy A, verifying st(A) = 0 for each A ∈ Leav(A),
a distance between the elements of P(E) is defined by:
∀C,D ∈ P(E), d(C,D) = inf {st(A) | A ∈ A : C ⊂ A and D ⊂ A} .

Properties : d is an ultrametric distance :

∀A,B ∈ A d(A,B) = 0 ⇒ A = B

∀C,D ∈ P(E) d(C,D) = d(D,C)
∀B,C,D ∈ P(E) d(C,D) ≤ max {d(C,B), d(B,D)}

This last inequality is called ultrametric inequality, it is stronger than the
triangular inequality. It expresses that the index of the smallest tile containing
C and D is smaller or equal than the index or the smallest tile containing all
three elements B,C and D.

For X ∈ P(E) the closed ball of centre X and radius ρ is defined by
Ball(X, ρ) = {D ∈ P(E) | d(X,D) ≤ ρ} .

Hierarchies as balls of an ultrametric distance

The balls of an ultrametric distance verify rather peculiar properties:

- Two closed balls Ball(X, ρ) and Ball(Y, ρ) with the same radius are either
disjoint or identical.

- Each element of a closed ball Ball(X, ρ) is centre of this ball
- The diameter of a ball is smaller or equal to its radius !

For this reason, given an ultrametric distance index d, the closed balls
of radius λ form a partition. For increasing values of λ, these partitions are
nested and become coarser and coarser and form a stratified hierarchy.
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Hierarchies associated with a dissimilarity index

Any partition A for which a dissimilarity between adjacent regions has been
defined can be represented as a region adjacency graph (RAG) G = (X,Θ),
where X is the set of nodes and Θ is the set of edges. The nodes represent re-
gions of the partition. Adjacent regions i and j are linked by an edge u = (i, j)
with a weight sij expressing the dissimilarity between them. As an example,
in case of a topographic surface we may choose as partition the set of its
catchment basins, the dissimilarity between two adjacent basins being the al-
titude of the pass separating them. A path μ = (i1, i2, ....ik) is a sequence of
neighboring nodes. The adjacency matrix A = (αij) of the graph is defined
by:

αij =

{
sij if (i, j) ∈ Θ

∞ if not

For any λ ≥ 0, one defines a derived graph Gλ = [X,Θλ] with the same
nodes but only a subset of edges : Θα = {(i, j) | αij ≤ λ} . The connected com-
ponents of this graph create a partition of the objects X into classes. They
constitute the classes of the classification at level λ. If L = (i, i2, ...ip, j) is this
path, the maximal dissimilarity along L verifies max(αii1 , αi1i2 , ...αipj) ≤ λ.
Two nodes belong to the same class at level λ if and only if there exists a path
in G linking these two nodes along which all dissimilarity indices are below λ:
α∗

ij = min
L∈Cij

(max(αii1 , αi1i2 , ...αipj)) ≤ λ where Cij is the set of all paths be-

tween i and j. Going back to morphological flooding : two catchment basins be-
long to the same class at level λ if and only if the corresponding minima belong
to the same lake at flooding level λ. It is easy to verify that α∗

ij is an ultrametric

distance, called max-distance, verifying for any i, j, k : α∗
ik ≤ max

(
α∗

ij , α
∗
jk

)
.

If k and l are neighboring nodes, the shortest path connecting them is (k, l)
itself, with a weight akl. Hence α∗

kl = min
L∈Ckl

(max(αki1 , αi1i2 , ...αipl)) ≤ akl.

The ultrametric distance α∗
kl is the largest ultrametric distance below αkl, it

is called the subdominant ultrametric distance associated with aij . The closed
balls Ball(i, ρ) =

{
j ∈ X | α∗

ij ≤ ρ
}

form the classes of the partition at level
ρ. For increasing levels of ρ one obtains coarser classes.

Minimum spanning tree and forests

We will now extract the minimum spanning tree from the graph G . We start
from a graph (X,T ) made only of isolated nodes: T is initially an empty set
of edges. We consider all edges of Θ in increasing order of weight:

- if eij is the current edge, and the nodes i and j are not yet linked in T,
add eij to T . Otherwise discard this edge

- stop when T becomes a tree, spanning all nodes of X.



326 Fernand Meyer

The resulting tree is the minimum spanning tree (MST), and the algorithm
for constructing it is due to Bohuslav (1927). Among all trees spanning the
nodes of X, the sum of the weights of T is minimal. The construction of the
minimum spanning tree defines a distance between the nodes: the distance
between two nodes k and l is the weight of the edge whose adjunction to T
has created a connected path between them within T . In other words, it is
the weight of the highest edge on the unique path connecting k and l within
T.One can easiliy see that it is exactly the subdominant ultrametric distance
associated to aij defined in the previous section. The MST conveys the same
information as the RAG itself with respect to the hierarchy: cutting all edges
with a threshold higher than λ in the MST or in the RAG yields the same
hierarchy. Using the MST rather than the RAG is economical in processing
speed and memory requirements since it has n− 1 edges for n nodes.

From a weighted tree to a hierarchy

Conversely, let us consider a spanning tree Θ. To any distribution of weights
W = (wjk) on the edges of Θ is associated an ultrametric distance dW (xi, xj),
equal to the weight of the highest edge on the unique path between xi and
xj .

3.3 The lattice of hierarchies

It is often interesting to combine several hierarchies, in order to combine
various criteria or merge the information obtained from various sources (color
or multispectral images for instance).

Supremum and infimum of two hierarchies

Let A and B be two stratified hierarchies, with their associated distances: dA
and dB. The following relation defines an order relation between the hierar-
chies: B < A ⇔ ∀C,D ∈ P(E) dA (C,D) ≤ dB (C,D) .

With this order relation the stratified hierarchies of P(E) form a complete
lattice. The maximal element is the hierarchy having E as only element and
the smallest hierarchy contains only singletons {x} .

The infimum of two hierarchies A and B is written A ∧ B and is de-
fined by its ultrametric distance dA∧B = dA ∨ dB. Its balls are defined by :
BallA∧B(X, ρ) = BallA(X, ρ) ∧ BallB(X, ρ)

The supremum of two hierarchies A and B is written A ∨ B and is the
smallest hierarchy larger than A and B ; as dA ∧ dB is not an ultrametric
distance, dA∨B is the subdominant ultrametric distance associated to dA∧dB.
If Aλ, Bλ and Aλ ∨ Bλ are the partitions obtained by taking the balls of
radius λ in each of the three hierarchies, then the boundaries of Aλ ∨ Bλ are
all boundaries existing in both Aλ and Bλ. The infimum and supremum of
two hierarchies are illustrated in fig.7. In fig.8 to segment a color image, a
separate hierarchy has been created for two color components. The infimum
of both provides a better segmentation than each taken separately.
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Fig. 7. Two hierarchies HA and HB and their derived supremum and infimum

Initial Image H component V component InfimumInitial Image H component V component Infimum

Fig. 8. Infimum of two hierarchies.

4 Creating hierarchies

4.1 Agglomerative and divisive techniques

A hierarchy being a series of nested partitions, it may obviously be constructed
by two opposite approaches. In a top-down approach we start from a coarse
segmentation and refine it by successive regions splitting in order to produce
finer levels of hierarchy. This approach has been used by Philippe Salembier
in order to produce an object oriented coder [17]: the coarse segmentation is
encoded first and resegmented in order to encode additional details at finer
levels. Far more common is the bottom-up approach in which a fine segmen-
tation is produced first ; coarser segmentations are produced by merging the
most similar adjacent regions. Criteria of similarity may vary as the segmen-
tation becomes coarser. In his thesis Olivier Monga proposed a number of
criteria and an optimal order in which to use them [13]. Béatriz Marcotegui
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used a similar bottom-up approach in order to segment a video sequence [9].
Many aggregative approaches have been published in the literature.

In the present paper we will explore the possibilities offered by levelings
toconstruct hierarchies. We have already met floodings : the watershed of
increasing floodings produces a hierarchy. Tailoring the rhythm of the flood-
ing of the various basins to our need will yield hierarchies with the desired
properties.

Levelings are more general than floodings. They symmetrically erase the
peaks and flood the valleys, enlarging the flat-zones. We will see how we may
associate a hierarchy to a series of successive levelings. Before presenting both
methods to create hierarchies we will recall a number of useful properties of
levelings and floodings.

4.2 Quasi-flat zones, contours and levelings.

From quasi-flat zones to the definition of levelings

Image segmentation partitions an image into mutually exclusive subsets, called
regions, each one of which is uniform and homogeneous with respect to some
property such as grey-tone, color, texture or motion and whose property value
differs in some significant way from the property value of each neighbor-
ing regions”. Extracting homogeneous regions is indeed the most elemen-
tary method of segmentation. Two homogeneous zones are separated by a
transition zone. A down transition between the neighboring pixels p and q
happens if (gp > gq + λ) ; its amplitude increases with λ. We first define the
negation of the up relation : Not [gp > gq + λ] ⇔ gp ≤ gq + λ. The relation∣∣∣∣ gp ≤ gq + λ
gq ≤ gp+ λ

∣∣∣∣ ⇔ (|gp − gq| ≤ λ) ⇔ (gp � gq) is symmetrical. The transitive

closure of this relation is an equivalence relation whose equivalence classes are
the quasi-flat zones of slope λ of function f.

We wish to construct a filter Φ able to produce a simplification of f, such
that the partition in quasi-flat zones of Φf is coarser than the partition of
the quasi-flat-zones of f. Such a filter Φ should transform an image f into an
image g with less details and simpler to segment. Furthermore, the contours
of any segmentation produced on g should exactly match the contours of the
same objects as seen in f. In other words, there should be no displacement
of the contours when one goes from f to g. Suppose now that gp > gq + λ.
As we require that no contour is displaced when going from f to g, a similar
contour (by similar we mean that to an up transition should correspond an
up transition) should exist between pixels p and q for the image f. This basic
requirement is at the heart of the definition of levelings:

Definition 3. A function g is a leveling of a function f if and only if: for
any couple of neighboring pixels (p, q): gp > gq + λ⇒ fp ≥ gp and gq ≥ fq
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Fig. 9. The function g is a leveling of function f. On the left, a flat leveling is
obtained for λ = 0 ; whereas λ = 1 produces a slope leveling on the right.

Hence if g is a leveling of f , then to any transition gp > gq +λ corresponds
an even bigger transition, since the interval [gq, gp] is included in the interval
[fq, fp]. This may be verified in fig.9 for the couples of pixels (s, t) and (p, q).
Fig.9a represents a flat leveling, obtained for λ = 0, whereas fig.9b represents
a slope leveling, obtained for λ = 1

The parameter λ is equal to the maximal slope of the quasi-flat zones: a
transition verifying |gp − gq| ≤ λ is considered to be smooth. For λ = 0, the
smooth zones are flat. Calling α the extensive dilation [g ∨ (δg − λ)] and β
the anti-extensive erosion [g ∧ (εg + λ)], we obtain a criterion characterizing
levelings f ∧ αg ≤ g ≤ f ∨ βg [10]
Levelings verify the following algebraic properties:

- if h is a leveling of f, then f ∨ h and f ∧ h also are levelings of f
- if both g and h are levelings of f, then g ∨ h, g ∧ h are also levelings of f

The relation ”to be a leveling” is a preorder relation, that is a reflexive and
transitive relation. In particular if h is a leveling of g and g is a leveling of f ,
then h is a leveling of f.

Levelings of f generated from a marker function

After describing the desirable properties of levelings, we now present how to
construct them. The class of levelings of a function f is extremely huge: in
fact we may associate to any function g a leveling of f . The result will be
particularly interesting if we take for g an already simplified function of f ,
such as a low pass filter or an alternate sequential morphological filter. In this
case, the leveling will retain the major simplification characteristics of the
marker function but at the same time restore the boundaries sharpness and
position so as to coincide with the boundaries of f. Taking a function g as a
marker, we will progressively transform it into a leveling of f. An arbitrary
function g will most surely not be a leveling of f, hence it will not verify the
criterion:

f ∧ αg ≤ g ≤ f ∨ βg (1).
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We will modify g as little as possible, until condition (1) is satisfied every-
where. Repeat until convergence the following modification:

- on {g > f} replace g by f ∨ βg
- on {g < f} replace g by f ∧ αg

The algorithm converges as the values of g become closer and closer to f.
Repeating until convergence g = (f ∧ αg) ∨ βg produces the same result.

Fig.9 shows two levelings obtained respectively for λ = 0 on the left and
λ = 1 on the right ; for λ = 0, we obtain flat zones, and for λ = 1, quasi-flat
zones with a slope equal to 1. We start with the reference function f and the
marker function g. The function g is transformed into a leveling g′ of f. On
{g < f}, the leveling raises g as little as possible until a flat zone is created
or the function g′ hits function f : hence on {g < f}, the function g′ is quasi-
flat. On {g > f}, the leveling reduces g as little as possible until a flat zone is
created or the function g′ hits function f : hence on {g > f}, function g′ also
is quasi-flat.

To simplify image 1011) before segmentation, we first simplify it using an
alternate sequential filter (fig.1012). The contours of this image are displaced,
specially in the corners. But if we use this image as a marker and construct
a leveling (λ = 1), we keep the simplification of the image but restore the
contours (fig.1013)

Useful properties of levelings

All these characteristics make the levelings vary interesting as preprocessing
filters for the segmentation:

- they are auto-dual, as they treat white and black objects in a similar way
- they simplify the image : all connected particles where g < f or where

g > f are quasi flat.
- they extend the quasi-flat zones of f
- the remaining contours in image g also correspond to contours present in

image f.

Flat levelings, obtained for λ = 0 have another very interesting property: they
do not generate regional minima or maxima. That means if X is a regional
minimum (resp. maximum) of g, g being a leveling of f, then X contains a
set Z which is a regional minimum (resp. maximum) of f.

Creating hierarchies with levelings

Levelings are particularly suited for constructing hierarchies because they
enlarge the quasi-flat zones, and enlarge or suppress minima and maxima
without ever creating new extrema. We will use both properties to construct
hierarchies.
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Fig. 10. Line 1 : initial image ; marker ; leveling; flat zones
Line2 : Large-flat zones in false color ; large flat zones with mean grey value ;
gradient ; watershed

Construction of a hierarchy based on the quasi-flat zones.

Since levelings enlarge the quasi flat zones, the quasi-flat zones of a family
of increasing levelings itself form a hierarchy. However, as fig.1013 shows, the
quasi-flat zones have two different natures: on one hand large homogeneous
zones, and in the transition zones of high gradient tiny quasi-flat zones. For
this reason, a more useful hierarchy is obtained if one gets rid of these tran-
sition zones. This may be carried out in two stages. First a fine partition is
constructed without transition zones. Then coarser partitions are constructed
by merging regions of the finest level.

A slope leveling is applied to the initial image (fig.1011) using as marker
an alternate sequential filter (fig.1012). On the resulting leveling (fig.1013)
there are still 12532 quasi flat zones (fig.1014), but they obviously are of two
different natures : tiny quasi flat zones within the transition zones, and larger
quasi flat zones within the objects of interest. Let Z be the union of all smaller
flat zones, hence Z represents the contour zones of the image on one hand,
and some tiny details of the image on the other hand. In fig.1021 (false color)
and fig.1022 (mean grey value in each region) only the largest flat zones have
been retained ; they will serve as markers for flooding a topographic surface
(fig.1023), equal to the restriction to Z of the modulus of the gradient. The
resulting watershed segmentation (fig.1024) is a tesselation S0 in which each
large flat zone has given rise to a region.

The remaining levels of the hierarchy (Si) are constructed as follows. Re-
call that Z represents the contour zone of the image ; Ξi represents the quasi
flat zones of the leveling Λif. We associate to Ξi a new partition Ξ ′

i obtained
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Fig. 11. Hierarchy associated to increasing levelings.
Line1 : 3 increasing levelings
Line2 : Associated increasing partitions

by replacing each pixel x of the contour zone Z by a singleton {x}. As a
result, we obtain a partition which is coarser than Ξ0 on Z, but finer on Z.
The partition union of Ξ ′

i with S0 yields a partition Si which is coarser than
both Ξ ′

i and S0. This construction is a good illustration of the use of partition
unions. Fig.11 presents in the first row 3 increasing slope levelings associated
to alternate sequential filters of sizes 3, 6 and 9 and in the second row the
associated segmentations.

Construction of a hierarchy based on the extrema

Extrema play a particular perceptual role : they are the top of the peaks and
bottom of the wells in an image. Sometimes they carry the essential informa-
tion, like the minima in electrophoretic gels, or the maxima for the detection
of microcalcification in mammographies. In such cases, it is interesting to
construct hierarchies based on these extrema.

Levelings enlarge or suppress minima and maxima without ever creating
new extrema. Hence we may construct a hierarchy based on minima, maxima
or extrema (union of minima and maxima) used as markers for a classical
watershed segmentation.

Let us take as an example a construction based on the extrema. Suppose
that we have applied to f a series of increasing levelings Λi. From one level-
ing to the next one some extrema have vanished, others have been enlarged,
covering sometimes several extrema of the previous levels. This behavior of
the extrema allows to construct a hierarchy (Ξi). If we use the extrema as
markers for a watershed segmentation, the following changes will occur from
one level to the next one:
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- if an extremum of Λif has vanished, the corresponding catchment basin of
Ξi will merge with its closest (in terms of flooding distance) neighboring
catchment basins and together they form a region of Ξi+1.

- if an extremum of Λi+1f covers several extrema of Λif, the corresponding
catchment basins of Ξi will be merged in one region of Ξi+1.

The next section comes back to floodings, already introduced in the first
section. Flooding a gradient image is certainly the most versatile tool of mor-
phological segmentation. To each particular progression of the flood will cor-
respond a particular hierarchy of catchment basins.

4.3 Catchment basins and floodings

Definition of a flooding

Floodings are anti-extensive levelings : g is a flooding of f if and only if g is a
leveling of f and g ≥ f . In what follows we will use λ = 0, implying that the
quasi-flat zones are really flat. The following definition of floodings is easily
derived:

Definition 4. A function g is a flooding of a function f if and only if g ≥ f
and for any couple of neighboring pixels (p, q) : gp > gq ⇒ gp = fp

Fig. 12. A: a physically possible flooding ; B : an impossible flooding, where a lake
is limited by a wall of water at position p

Any flooding g of a function f creates a number of lakes on the topographic
surface of f . All connected components where g > f are flat, as the following
property immediately derived from the definition shows:

for any couple of neighboring pixels (p, q) :
∣∣∣∣ gq > fq

gp > fp

∣∣∣∣⇒ gp = gq

Let L be such a lake. If all neighbors of L have a higher altitude, then L is
a regional minimum. On the contrary, if L has a lower neighbor it is called full
lake: there exists a couple of neighboring pixels (p, q), p belonging to L and
gp > gq. According to the definition of floodings, this implies that gp = fp,
meaning that the level of the flooding g and the level of the ground f are the
same at pixel p ; hence the interpretation of the definition is simply that a lake
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Fig. 13. Fl(f, h) is the flooding of g (blue function) constrained by the function h
(red function)

cannot form a wall of water without solid ground in front to hold the water.
This is clearly illustrated in fig.12, where the right figure cannot be a valid
flooding, whereas the left figure is a valid one. The pixel p is then necessarily
a pass point of g: the altitude of g decreases from p to the outside and the
inside of the lake, and increases in both directions along the watershed line.

It is easy to check using their definition that:
* If g and h are two floodings of f , then g∨h and g∧h also are floodings of f
* If g and h are floodings of f and g ≥ h then g is also a flooding of h.
* The relation {g is a flooding of f} is reflexive, antisymmetric and transitive:
it is an order relation.
In particular, if f and h are two functions such that f ≤ h, then the family
of floodings

(
gi
)

of f verifying gi ≤ h form a complete lattice for this order
relation. The smallest element is f itself. The largest is called flooding of f
constrained by h and is written Fl(f, h)(see fig.13). It is obtained by repeating
the geodesic erosion of h above f : h(n+1) = f ∨ εh(n) until stability, that is
until h(n+1) = h(n). At convergence h∞ = f∨εh∞, characterizing the floodings
f. This operation also is known as reconstruction of f using h as a marker [21].
We have already met this type of flooding, when we imposed a set of minima
to a topographic surface. In fig.4e, we have indicated which regions we are
interested in by creating a function g ≥ f , identical with f at three positions
and equal to the maximal grey value elsewhere. The positions where f = g
exactly correspond to the markers, marking an internal zone inside each of the
objects of interest. Fig.4 presents the highest flooding possible of f entirely
below the function g : it presents 3 minima, corresponding exactly to the 3
chosen markers. This operation is known as swamping in the literature [3].

These properties allow various constructions of increasing families of flood-
ings (gi): it is necessary and sufficient that gj is a flooding .of gj−1.

Hierarchy associated to an ordered series of floodings

Floodings are an easy and flexible way to construct hierarchies. If g is a
flooding of f, then the partition of catchment basins of g is coarser than the
partition of catchment basins of f, as we will establish now.
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Let f be a function and g a flooding of f. Consider a regional minimum m1

of f and its associated catchment basin X. Let x be the smallest pass point
separating X from its neighboring catchment basins. x will be the pass point
between X and the catchment basin Y associated to a regional minimum m2.
Let us examine what happens with X with respect to g, a flooding of f. Three
cases are to be considered :

- X contains no lake at all or contains a lake which is a regional minimum
of g. In this case the corresponding catchment basin for g contains X.

- X contains a lake whose altitude is fx of the pass point x. This full lake is
no longer a regional minimum of g and X will have merged at least with
the catchment basin Y of the minimum m2.

- X contains a lake with an altitude larger than fx. This lake covers several
regional minima of f whose catchment basins have all merged. Hence the
catchment basins of the family (gi) are nested and form a hierarchy.

Useful families of floodings

The principal and most useful families of floodings used in morphological
and multiscale segmentations will now be described. As a matter of fact,
the quality of segmentation will depend to a great extent on the family of
floodings it is built on. Uniform flooding is the simplest : it is the family fλ

of floodings where the level of water grows uniformly and is equal to λ. It is
implicitly used in any classical morphological segmentation with markers, as
we have established earlier. However, as illustrated in fig.4 and 5 it selects
only small and contrasted regions in the coarsest levels of hierarchy and is
not well suited to multimedia applications. Size oriented floodings permit to
select regions which make more sense in such applications.

Size oriented flooding

Size oriented flooding may be visualized as a process where sources are placed
at each minimum of a topographic surface and pour water in such a way that
all lakes share some common measure (height, volume or area of the surface).
As the flooding proceeds, some lakes finally get full, when the level of the
lowest pass point is reached. Let L be such a full lake. The source of L stops
pouring water and its lake is absorbed by a neighboring catchment basin X ,
where an active source is still present. Later the lake included in X will reach
the same level as L, both lakes merge and continue growing together. Finally
only one source remains active until the whole topographic surface is flooded.
The series of floodings, indexed by the measure of the lakes, generates a size-
oriented hierarchy.

In fig.14, a flooding starts from all minima in such a way that all lakes al-
ways have a uniform depth, as long as they are not full. The resulting hierarchy
is called dynamics in case of depth driven flooding and was first introduced
by M.Grimaud [6]. Deep catchment basins correspond to contrasted objects ;
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Fig. 14. Example of a height synchronous flooding. Four levels of flooding are illus-
trated ; each of them is topped by a representation of the corresponding catchment
basins.

it will take time before they are absorbed by a neighboring catchment basin.
The most contrasted one will absorb all others. This criterion obviously only
takes the contrast of objects into account and not their size. If the flooding
is controlled by the area or the volume of the lakes, the size of the objects
is also considered. This method was introduced by C. Vachier for detecting
opacities in mammographies [18]; in multimedia applications [23], good re-
sults are often obtained by using the volume of the lakes as measure, as if
each source would pour water with a constant flow. This is illustrated on
fig.15. The topographic surface to be flooded is a color gradient of the initial
image (maximum of the morphological gradients computed in each of the R,
G and B color channels). Synchronous volumic flooding has been used, and 3
levels of fusion are represented, corresponding respectively to 15, 35 and 60
regions.

Fig. 15. Initial image. Volume oriented flooding and 3 levels of the hierarchy with
15, 35 and 60 regions
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In short, the depth criterion ranks the regions according to their contrast,
the area, according to their size. The volume offers a nice balance between
size and contrast as depicted in fig.16 where we have illustrated the differ-
ences between the criteria used to control the progression of the lakes. The
initial image and its gradient are illustrated on the top row. Three types of
synchronous flooding are compared. In the first one (bottom left) the lakes
grow with uniform depth, resulting in a pyramid where the most contrasted
regions survive longest. In the second one(bottom center) the area is used and
the largest regions are favoured. In the last one(bottom right) the volume of
the lakes is used, offering a good balance between size and contrast of the
regions. For each hierarchy the partition with 70 tiles is selected and each tile
is replaced by its mean grey tone, for the purpose of illustration.

Fig. 16. Top : initial image and inverted gradient image
Bottom : 3 partitions with 70 regions each. 3 different geometric criteria have been
used during synchronous flooding : on the left, the depth of the lakes, in the centre
the area and on the right the volume of the lakes.

Tailored flooding ro favor some types of regions

In some cases, while using one of the size criteria, it may also be desirable
to favor some particular regions. This happens when one knows beforehand
which regions are particularly important. As an example: in many cases, the
topographic surface to be flooded is the gradient image ‖*h‖ of an image h.
The catchment basins of ‖*h‖ correspond to flat zones in h, which may be
regional minima, maxima or step zones. However minima and maxima of h
are perceptually more important than transition flat zones. For this reason, it
may be worthwhile to push minima and maxima of h higher in the hierarchy.

It is easy to obtain this result during synchronous flooding: by reducing
the rate of flow in the corresponding minima. The more important a region
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Fig. 17. 4 levels of tailored synchronous flooding, where the minimum marked red
is slowed down by a factor 5. As a result we show the corresponding segmentation
into 3 regions compared to the segmentation into 3 regions if no source is slowed
down.

is, the more the flow of its minima has to be reduced. In fig.17 we have a
case where depth synchronous flooding is performed. However the depth of
the minimum marked by a black bar grows five times slower than the depth in
the other catchment basins. For this reason, this particular minimum survives
any absorption much longer. As a result the coarsest segmentation into 3
regions is completely different in the presence or absence of this slowed down
flooding. See also fig.18, where two segmentations without and with slowing
down the flooding are compared. A fine partition is created first ; the flat zones
are detected and the largest of them serve as markers for flooding a gradient
image (upper right picture). Then a second gradient image is constructed on
the boundaries of the fine partition and this new image is flooded according
volumic criteria. The result is illustrated by the lower pictures. On the left,
the rate of flood is the same in all minima, on the right, regions have been
selected by hand in the faces of the angels, and their rate of flow reduced by
a factor 50. Then 2 partitions have been selected in the hierarchy with the
same number of regions showing that the faces of the angels merge with the
background if their flooding is not slowed down.

Flooding in the presence of markers

Markers are a limit case of the preceding situation. One wishes that the marked
regions are present at the top of the hierarchy. This will be the case if the
rate of flow in the marked minima is infinitely slowed down ; in other terms
such minima have no source at all. Hence they remain minima for ever, and
catch their neighboring basins as illustrated in fig.19 If there are N minima,
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Fig. 18. Top row : Initial image and fine segmentation
Bottom row : On the right, the flooding in the regions corresponding to the faces of
the angels has been slowed down. Both partitions have the same number of regions.

cutting the N−1 highest edges of the MST yields a partition ofN regions, each
containing a marker. Cutting more than N−1 edges shows how the regions are
further subdivided into finer segmentations ; in this case, the criterion used for
controlling the flooding of the basins without markers (depth, area or volume
of the lakes) has an effect on finer segmentations. It is interesting to observe
the resulting flooding at convergence: the only remaining minima are the
marked minima, all others are full lakes. Finally, size oriented flooding, tailored
flooding and flooding with markers may be grouped: each minimum may be
considered as a fuzzy marker, by assigning it a fuzzy level: 1 means a hard
marker, where no source is placed ; 0 means no marker at all, and the source
is not slowed down ; λ means a fuzzy marker, and the corresponding source
is slowed down by a factor λ. Fuzzy markers allow to establish a continuum
between traditional multiscale segmentation and segmentation with markers.
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Fig. 19. Flooding in the presence of markers. The catchment basins with markers
have no source at all. The arrows show in which order the catchment basins are
absorbed one by another.

Fig. 20. Two levels of cataclysmic flooding of a topographic surface

Cataclysmic floodings or waterfalls

A flooding g of a function f is cataclysmic if each catchment basin of f is
occupied by a full lake. Some of these lakes are regional minima of g ; others
are not. The catchment basins of g constitute the first level of the hierarchy (
see fig.20). The resulting function g itself may then be submitted to a new cat-
aclysmic flooding and again the number of catchment basins will be strongly
reduced. Repeating this flooding in sequence a few times produces an image
where only one region remains. A cataclysmic flooding of an image f is easy
to produce through a constrained flooding. The constraining function is equal
to f on the watershed line of f and equal to ∞ everywhere else. The pro-
cess is illustrated in 1 dimension in fig.21. Repeating again the same extremal
flooding on the result of the first extremal flooding will drastically reduce
the number of catchment basins. This process may then be repeated until a
partition is created with only one catchment basin. In this way we obtain a
series of nested partitions which decreases extremely rapidly. Serge Beucher
introduced this type of hierarchy and illustrated the flooding process by using
the image of waterfalls ; this hierarchy is also named waterfall hierarchy [2].
He used it to segment the road in videosequences : the first level of hierarchy
already brings a dramatic improvement in the segmentation (see fig.22).
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Fig. 21. Constrained flooding for producing a cataclysmic flooding.

aa bb c   caa bb c   c

Fig. 22. a) initial image ; b) watershed of the gradient ; c) first level of waterfalls
hierarchisation

Which hierarchy to use ?

We have presented a number of means for constructing hierarchies. There is
obviously no one best solution, one which would be optimal for each segmen-
tation problem. Given a problem, one has to choose the hierarchy which is
best suited. The preceding section shows that we have a large choice to tailor
a hierarchy well adapted to our problem.

We have seen three major classes of hierarchies. The first one starts with
an initial fine partition and proceeds with progressive fusions of similar re-
gions. This approach is extremely versatile, as we may choose any criterion for
governing the successive fusions, including for instance similarity of texture
or of motion. Furthermore, one may change criteria as one moves to coarser
regions.

The last class, based on floodings is extremely fast: one flooding of a
gradient image allows to construct a complete hierarchy. It is also versatile,
as one may adjust the rate of flooding so as to optimize the segmentation
for size, contrast, or a balance between size and contrast. Furthermore, it is
possible to interfere with the flooding by slowing down the rate of flooding in
areas of particular interest. These areas are pushed towards higher levels of
the hierarchy. There is however a drawback to this method, since it is based
on the gradient image: it is unable to detect narrow details. A detail which
is too narrow will not produce a minimum in the gradient image but a thick
gradient zone. Hence it will disappear from the final segmentation.
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In such cases, the second class of methods, based on the quasi-flat zones
of levelings is well adapted. Narrow stripes are detected as flat zones and thus
will be present as regions in the hierarchy.

5 Segmenting with hierarchies

The simplest use of the hierarchies is choosing a number of regions or a level
of subdivision which is satisfactory. This technique is useful in object oriented
coding as it allows to adapt the level of detail to the targeted compression
ratio. See for instance fig.23 presenting an image and 3 levels in a volume
oriented flooding hierarchy. This technique is particularly useful if the objects
to be segmented are characterized by some features which may be embodied
into the hierarchy. This was the case in the detection of microcalcification in
mammographies [18]. They are tiny contrasted spots which may be detected
by a contrast driven hierarchy : synchronous flooding governed by the depth
of the lakes. If there are no microcalcification in the 20 most prominent ob-
jects detected in the image, one may discard it as negative. Such situations
are nevertheless rare, and most often one has to combine various levels of
a hierarchy in order to construct a satisfactory result. The following sections
present various means to interactive segmentation and have been incorporated
in an interactive segmentation program [23] .

Fig. 23. Initial image and 3 levels of a hierarchy based on volume oriented flooding

5.1 Local resegmentations or mergings

The simplest refinement consists in adapting locally the coarseness of the
representation. In fig.24, a first level of the hierarchy is not satisfactory as the
background is oversegmented and the person undersegmented. For this reason,
one chooses a coarser level of the hierarchy within the background region and
on the contrary a finer level within the person. This may be recursively applied
to all regions until a good result is obtained.

5.2 Magic wand

To extract a region with uniform color, most drawing/painting software pack-
ages have a function called ”magic wand”. For each position of the mouse, the
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Fig. 24. Initial image followed by a progressive refinement, local resegmentations
or mergings

color is determined and the connected region composed of all pixels with more
or less the same color, depending on some tolerance threshold, is selected. This
procedure is often helpful, but fails in some situations, when there is a progres-
sive change of color shade, as is the case with the yellow apple in fig.25. The
darker part of the apple is not selected and an irregular contour produced. On
the contrary, using a hierarchy has the advantage of providing well defined
contours. The hierarchy based magic wand selects the largest region in the
hierarchy such that its mean color remains within some predefined limits.

Initial image Hierarchy based resultResult with PhotoPaint Initial image Hierarchy based resultResult with PhotoPaint 

Fig. 25. On the left, initial image ; center: all pixels which are within a colour
tolerance of an initial pixel. On the right, result of the magic wand.

5.3 Lasso

Another classical interactive tool is the lasso : the user draws an approximate
contour around the real contour as shown in fig.26a. The classical solution
consists in applying the magic wand defined above to each pixel belonging
to the approximate contour. For each such position one gets a piece of the
background. The union of all such pieces constitutes the background. As shown
on fig.26b, the result is not very satisfactory. Using a hierarchy, one may select
the union of all regions of the hierarchy contained in the contour yielding a
much better result as shown on fig.26c.
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Result using 
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Fig. 26. Construction of all tiles of a hierarchy entirely included in an approximate
outside contour

5.4 Intelligent brush

An intelligent brush segments an image by ”painting” it: it first selects a zone
of interest by painting. Contrary to conventional brushes, the brush adapts
its shape to the contours of the image. The shape of the brush is given by
the region of the hierarchy containing the cursor. Moving from one place to
another changes the shape of the brush, when one goes from one tile of a
partition to its neighboring tile. Going up and down the hierarchy modifies
the shape of the brush. In fig.27, on the left, one shows the trajectory of the
brush ; in the centre, the result of a fixed size brush, and on the right the result
of a self-adapting brush following the hierarchy. This method has been used
with success in a package for interactive segmention of organs in 3D medical
images.

Mouse trajectory Fixed size brush Intelligent brushMouse trajectory Fixed size brush Intelligent brush

Fig. 27. Comparison of the drawing with a fixed size brush and a self adaptive
brush.
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Fig. 28. Image simplification by levelings

6 Automatic tracking of the speaker in a videosequence

Our last section presents the algorithms developed within the Eureka Medea
project ”Multimedia for Mobile (M4M)”, in which we developed a demon-
strator able to track the speaker in a video-conference sequence under realis-
tic conditions : poor lighting conditions, moving camera, moving background
[5]. Fig.29 presents the flowchart of the algorithm in steady state. Inputs of
the algorithms are the frames t − 1 and t and the mask produced for frame
t− 1. Motion analysis and compensation allow to predict the position of the
mask at time t. The contours of the real mask are within a distance ρ of the
contours of the predicted mask. We will use this knowledge for simplifying the
image t to segment. Two successive levelings illustrated in fig.28 will suppress
almost all information in frame t + 1 except the contours of the new region
of interest. We produce a ribbon like mask around the boundary of the mask:
we take all pixels which are within a distance ρ of this boundary. The marker
of both levelins is obtained by cutting out the content of frame t+1 within
the ribbon ; the first marker takes a white value (255) outside the ribbon and
the second marker a black value (0). The white leveling uses the white mask.
The second leveling is applied on the result of the first leveling, using the
black mask. As result, we obtain an image, where only the contour of the ob-
ject of interest appears with its original strength, whereas the contours of all
other objects of the scene have vanished or their contrast has been drastically
reduced.

A hierarchical segmentation is applied to the leveled image, using volumic
criteria. Marker segmentation is applied to this hierarchy for producing the
segmentation of frame t. The inside marker is obtained by eroding the pre-
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Fig. 29. Flow chart of the tracking algorithms

dicted mask and the outside mask by dilating it, using as structuring element
a disk of radius ρ. The algorithm performs well and is able to process a se-
quence at a rate of 10 QSIF images per second on a 500 MHz Pentium III
laptop PC.

7 Conclusion

The morphological approach to image segmentation based on the watershed
and markers has proved to be useful and has become a sound theory and an
efficient practice.

It is extremely fast as the construction of a complete hierarchy based on
flooding may be obtained with only one pass through the image. It allows
to inject knowledge in various ways in the process of segmentation, by using
markers or by adapting the hierarchy to the type of objects to be segmented.
It also permit regularizing the contours which are produced [19, 15]. Since the
segmentation is based on the finding the strongest contours in a hierarchy, it
is extremely robust to changes of contrast or illumination.

The method may be used in the same way whatever the number of di-
mensions. Moreover, the segmentation process evolves rapidly from the pixel
and image level and does most of the work on a graph and tree level, which
further accelerates the computation.
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mentation basés sur la Morphologie Mathématique. PhD thesis, E.N.S. des Mines
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Ubiquity of the Distance Function in
Mathematical Morphology

Michel Schmitt

Ecole des Mines de Paris

1 Distance Function: a Historical Tool

Distance has been the key notion for usual Euclidean geometry and the def-
inition of geometrical objects. For instance, a circle is the locus of points at
the same distance of a given one, an ellipsis is the locus of points whose sum
of distances to two given points is a constant, a parabola is the locus of points
whose sum of distances to a given point and a given straight line is a constant.
Also, the shortest path between two points is the line segment.

Mathematical morphology deals with set (or function) transformations,
whose main applications include image processing, graph analysis, motion
planning... In this framework, one very natural tool is the distance to sets,
defined as the minimum of distances to any point in the set. Given a set X ,
we call distance function the distance to the complementary set to X , denoted
by Xc. This function takes value 0 outside X and positive values on X (0 on
the boundary of X).

In order to illustrate the way mathematical morphology uses this dis-
tance function, consider the archetypal problem of coffee beans separation
(see fig. 1). How many beans can be counted in this picture? By sight, the
answer is almost unambiguous. However, due to the overlaps of beans, it is not
sufficient to count the number of connected components (number of objects).
The solution to the problem took many years of research in order to design a
robust algorithm.

Common sense ideas may not work. For instance, let us assume that the
beans are approximate disks and let us take the largest disks included in X .
Which meaning do we associate with the word “largest”? They are maximal
in the mathematical sense, i.e. they are not contained in another disk. Fig. 2
shows that some maximal disks are not an approximation of a single bean.
This problem is not due to the approximation of the beans by disks: the idea
does not work even if the beans are perfect (overlapping) circles.

However, if we examine the distance function (fig. 1.b), we see that it
takes larger values near the “center” of the beans. So, if we define the centers
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(a) (b)

(c) (d)

Fig. 1. Coffee beans separation: (a) original image, (b) distance function, (c) re-
gional maxima of distance function, (d) regional maxima of the transformed distance
function.

(a) (b)

Fig. 2. Coffee beans separation: the maximal disk in (a) does not approximate a
single bean, whereas the maximal disk in (b) does.
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of the beans as the local maxima of our distance function, we observe that
each maximum precisely corresponds to the center of one bean. Counting the
number of maxima yields the number of beans. The link with the common
sens idea of maximal disks is very close. At a point x, the distance function
corresponds to the radius of the largest disk centered at x and totally included
in X (for a rigorous assertion, one has to suppose the disks and set X to be
topologically closed). A local maximum of the distance function corresponds
to a largest locally centered disk. In other words, if one wants to displace a
disk from one bean to another, the radius of the disk has first to decrease in
order to travel through the gap and then to increase again. Note that during
the whole travel, the disk always remains maximal.

From a digital point of view, things are not so simple. Disks are squares,
octagons (square sampling lattice) or hexagons (hexagonal sampling lattice).
As seen on fig. 1.c, some beans may contain many local maxima of the distance
function. First, we must consider regional maxima instead of local maxima.
Regional maxima correspond to flat regions on the distance function which
are surrounded by pixels with strictly lower values. But this distinction is not
sufficient: some beans still exhibit “many centers”. In fact, this phenomenon
is due to the digital nature of the images, where the breadth of a bean may
exhibit a variation of one pixel, limit of the image precision. If we agree that
this variation corresponds to sampling noise, a robust solution is obtained
by decreasing the height of the regional maxima by one. Then the resulting
regional maxima of the transformed distance function really describe centers
of beans.

This “coffee beans separation” algorithm has been used in many similar
situations. It is also known as the perceptual graph [14]. The purpose is here
to connect a set, typically a contour, which has been broken in some places.
If we name X the set, connecting X corresponds to disconnecting Xc, which
can be achieved by the preceding algorithm.

Another illustration of the use of distance function in mathematical mor-
phololgy is the concept of granulometries [6, 24, 11]. To the question, what is
the typical size of a coffee bean and what is the size distribution of the beans,
one could answer the following way. Let again be X the set representing the
beans. A given bean size r is obtained by use of a disk with radius r and X
is replaced by the union of all disks of radius r included in X , say Xr (mor-
phological opening of X by a disk of radius r). The beans of size less than r
are those which disappear in Xr. The important point to notice is that this
statement remains true even if the beans are pairwise overlapping (see fig. 3).
Then the function

σX(r) = Area (Xr+1)−Area (Xr) (1)

gives a precise idea of the size distribution of the objects in X . Large values
correspond to typical sizes of particles, like 20 (i.e. 41 pixels in diameter) in
the example presented in fig. 3.c. This curve is called granulometric curve.
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(a)
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(c)

Fig. 3. Coffee beans size: (a) original image, (b) some openings of different sizes,
(c) granulometric curve. Here, for computing purpose, the disk has been replaced
by a square.

For a mathematical definition, see [6, 24], for characterizations, see [10]. This
granulometric curve can also be used for image discrimination, see [12].

This paper aims at illustrating some of the concepts which have emerged
with the notion of distance function. It is organized as follows: first, we define
the distances we will use in a digital setting and link it with graph theory.
Then we present some algorithms which have completely changed the com-
puting of morphological operators and allowed the use of morphology on large
scale applications. A short section illustrates the link between skeletons and
distance functions. Afterward, we introduce the geodesic framework and show
the antagonism that may exist between connectivity and distances on a lat-
tice, due to its digital nature. Finally, some new insight into distance functions
as solutions of evolutionary equations is addressed.
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2 Distance, Erosions and Weighted Graphs

We first investigate the links between erosions and distance functions in the
continuous plane and then address the discrete case, which is the natural
framework for digital images.

2.1 Distance Function and Erosions

Suppose, the plane (or more generally an Euclidean vector space of any finite
dimension) is equipped with a distance d(x, y), non necessarily the Euclidean
one. The ball of radius r and center x, denoted by B(x, r), is defined as the
set of points y such that d(x, y) ≤ r. This distance leads to the definition of a
family of erosions:

εr(X) = {x, d(x,Xc) ≥ r} . (2)

The interesting case arises when these erosions build up a semi-group, i.e.
εr(εr′(X)) = εr+r′(X). Then all the balls defined by the distance are convex
sets and if we add the translation invariance, the usual notion of structuring
element appears and the balls have the same shape anywhere in the space:
B(x, r) + y = B(x+ y, r).

The interest in this link is first the algorithmical part (fast distance al-
gorithms yield fast erosion algorithms) and second the theoretical part (an
abundant mathematical literature on distances exists).

2.2 Digital Distances and Weighted Graphs

A digital lattice (square, hexagonal or other) can always be considered as a
subset of the continuous space and the digital distance is then the restriction
of the distance in the continuous space. Mainly from a computational view-
point however, image processing has always been looking for local operators
involving nearby pixels.

The constructive principle is to define the distance only for certain pairs
of pixels, called edges. Each edge (a, b) is assigned a weight, its length d(a, b).
The set of weighted edges defines a weighted graph denoted by G. Then the
distance is extended to any pair of pixels by taking the shortest path inside
the graph. More precisely:

d(x, y) = min

{
n∑

i=1

d(xi−1, xi), (xi−1, xi) ∈ G, x0 = x, xn = y

}
. (3)

Fig. 4 depicts some usual graphs and the associated balls.
Three types of graphs have been investigated in mathematical morphology

and have given rise to theoretical as well as practical applications:

• arbitrary graphs for the analysis of architecture of objects, like cells in
histology. In this case the notion of underlying continuous distance is not
used.
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Fig. 4. Some examples of graphs and associated balls: (a) hexagonal lattice and unit
hexagon, (b) square lattice in 4-connectivity and unit diamond, (c) square lattice in
8-connectivity and unit square, (d) weighted square lattice and octagon of size 2.5.

• graphs induced by some continuous distances,
• more recently, segmentation graphs, where vertices are regions and edges

are dissimilarity measures (see the paper by F. Meyer in this book (page
315).

An important class of continuous distances inducing locally connected weigh-
ted graphs is the following. Take a convex polygon B which is symmetrical
with respect to the origin. The continuous distance between x and y is defined
as the size λ (homotethy factor) of the smallest ball λB centered at x and
containing y. For example, on the square lattice, important cases include the
square, the diamond and octagons. This type of digital distance derived from
a continuous one plays a central role in the geodesic framework.

3 Digital Algorithms

Digital distances derived from weighted graphs have given rise to very efficient
algorithms, some of them are described in this section. They take advantage
of this local structure of the distance. They all require some restrictions on the
weighted graph structure. For the first description of shortest path algorithm
through these graphs, see for instance [16]. A complete review of distance
algorithms may be found in the forthcoming book [23]. We describe the al-
gorithms for the hexagonal distance, i.e. for images on an hexagonal lattice,
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each pixel having six neighbors at distance 1, as presented in fig. 5, and give
some hints for the generalization to other graphs.

U

UU

U

U U

0

54

3

2 1

Fig. 5. Unit vectors in hexagonal grids.

3.1 Sequential Algorithms

The basic principle is here the use of only one image data. A scanning order is
then defined, which has to be independent from the image content. Then each
pixel is updated in turn, according to the predefined scanning order. This type
of algorithm has been first proposed and extensively studied by Rosenfeld in
[17].

For computing the distance function, the sequential algorithm requires
only two scans of the image, one in raster order, one in antiraster order, yield-
ing a computation time which is almost constant. The proof of the correctness
of this algorithm is non-trivial and relies on complex properties of shortest
path on the lattice. A complete description may be found in [3].

Sequential distance function

Input and output:
I, binary image as input, gray-scale image as output
/& The distance function is computed in I directly &/

Scan I in raster order and let p be the current pixel {
If I(p) �= 0 then

I(p) ← inf{I(p+ u1) + 1, I(p+ u2) + 1, I(p+ u3) + 1};
}
Scan I in anti-raster order and let p be the current pixel {

If I(p) �= 0 then
I(p) ← inf{I(p), I(p + u4) + 1, I(p+ u5) + 1, I(p+ u0) + 1};

}
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By changing the size of the neighborhood and the values given to the
neighbors, this algorithm is very easily extended to more circular distances.
Fig. 6 gives the values and associated balls in some cases on the square lattice.
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Fig. 6. More isotropic distances with sequential algorithms by increasing the size
of the neighborhood and shape of a large disk in each case.

3.2 Fifo Algorithms

The basic principle is to use an auxiliary data structure, namely a first-in
first-out queue in order to keep track of the order in which the pixels have to
be updated (see [26]). In fact, the distances are computed in increasing values
from the boundary of the set.

distance function using a queue of pixels

Input: I, binary image;
/& The distance function is computed in I directly &/

For every pixel p ∈ DI, do {
/& detection of the pixels to be initially put on the queue &/

If I(p) = 1 and ∃p′ neighbor of p and I(p′) = 0 {
fifo add(p); I(p) ← 2;
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point

Starting

Fig. 7. Chain structure of the boundary. The sequence of directions from the starting
point is here (0, 0, 4, 5, 3, 3, 2, 1).

}
}
While fifo empty() = false {

p← fifo first();
For every p′ neighbor of p {

If I(p′) = 1 then {I(p′) ← I(p) + 1; fifo add(p′); }
}

}
Subtract 1 to image I;

3.3 Loop and Chain Algorithms

This type of algorithm, based on geometrical considerations, is very similar to
the fifo ones. The main difference lies in the data structure which is now one
or several chains, which is a list of directions from one pixel to the next on
the boundaries (see fig. 7). The directions are depicted in fig. 5. The distances
are also computed in increasing order, but the computing of the new chains
is computationally less complex [19]. The basic idea is that the boundary of
the eroded set is contained in the parallel curve to the boundary of the set.
The principle of the algorithm relies on two properties:

1. Parallel curves can be computed very simply on the list of directions.
Fig. 8 presents the local computation of the parallel curve at distance
one.

2. The unwanted parts of the parallel curve, i.e. the parts which do not
belong to the boundary of the eroded set, are exactly composed of the
pixels which already have been computed in previous steps and thus are
removed by writing the parallel curve into the image.
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Fig. 8. Computation of the parallel curve. Every pair of successive directions is
transformed according to the rules depicted here. The grey areas show on which
side of the boundary the object lies.

distance function by chains and loops

Input: I, binary image;
/& distance directly computed in I &/

/& Track the contours of I and encode them as chains &/
Chains← Track All Boundaries(I);

/& Compute the eroded chains &/
dist← 2; /& variable containing the current distance &/
Repeat while there remain chains {

Chains← Chain Erode(Chains);
Chains← AdjustChain(Chains, dist);
dist← dist+ 1;

}

The AdjustChain step simply consists in writing the chains on the im-
age and in keeping the parts of the chains which are on pixels not having
been visited before. See [23] for a precise statement and [19] for the proof of
correctness.

3.4 An Approximate Euclidean Algorithm

We are able to compute the hexagonal distance so far. However, some ap-
plications require exact or nearly exact Euclidean distances between pixels.
The sequential algorithm very easily allows the computation of almost exact
Euclidean distances between pixels. It relies on the approximate idea that
the region of pixels which are nearer from a given pixel (Voronoi region) is
connected according to the lattice. This statement is true in the continuous
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space, but there are some counter examples on lattices. However, the com-
puted distance is really Euclidean everywhere, except for a few pixels which
are assigned a good approximation [4].

Euclidean distance vector in 4-connectivity⎧⎨⎩
− input : I, binary image (image (a)),
− output : J, vector image,

J(p) points to one nearest pixel outside X ;
/& Initializations &/

For every pixel p ∈ I do {
If I(p) = 1 then J(p) ← o;
else J(p) ← v∞;

}
Assign value v∞ to the frame of J;

/& See image (b) &/
/& Top to bottom scan of the image &/

Scan the lines of I from top to bottom {
Scan the current line from left to right {

Let p the current pixel;
J(p) ← v such that{

v ∈ {J(p),J(p− j) + j,J(p− ı) + ı};
||v|| = minimal norm of the above vectors;

/& Note that v is not necessarily unique... &/
}
Scan the current line from right to left {

Let p the current pixel;
If ||J(p)||2 > ||J(p + ı)− ı||2 then J(p) ← J(p+ ı)− ı;

}
}

/& See image (c) &/
/& Bottom to top scan of the image &/

Scan lines of DI from bottom to top {
Scan the current line from right to left {

Let p the current pixel;
J(p) ← v such that{

v ∈ {J(p),J(p+ j)− j,J(p + ı)− ı};
||v|| = minimal norm of the above vectors;

}
Scan the current line from left to right {

Let p the current pixel;
If ||J(p)||2 > ||J(p− ı) + ı||2 then J(p) ← J(p− ı) + ı;

}
}
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/& See image (d) &/

v∞ is the vector with two infinite coordinates, ı is the unit horizontal
vector pointing to the right and j is the unit vertical vector pointing to the
bottom.

The different steps of the algorithm are depicted in fig. 9.

3.5 An Exact Algorithm

For computing the true Euclidean distance, the algorithms are more complex.
Several have been proposed, based on loop and chains [26] or on the idea that
the square of the Euclidean distance can be computed successively on rows
and then on columns [13].

4 Some theoretical Uses of Distance function

Distance function has many other links with mathematical tools. We briefly
present two of them:

- the link with skeletons [8] and the design of a digital powerful and novel
algorithms [15],

- the link with Hausdorf distance on compact sets.

4.1 Distance Function and Skeletons

Loosely speaking, the skeleton is a set of (thin) lines describing an object.
The main feature of this description is connectivity. If a set is connected, so
is its skeleton. Any hole in a shape produces a closed loop in its skeleton.
Mathematically speaking, the skeleton is defined as the locus of the maximal
balls included in the set. Recall that a ball is maximal in X if it cannot be
strictly contained in another ball also included in X . Let us denote by Sq(X)
the skeleton of an open set X . This assumption of openness is a technical but
essential one.

On the other hand, the distance function dX exhibits very strong regularity
features. First, it is Lipschitz:

‖dX(x) − dX(y)‖ ≤ d(x, y). (4)

This inequation is an equality in the following sense: for all x such that
dX(x) > 0, there exists y �= x such that dX(y) > 0 verifying

‖dX(x) − dX(y)‖ = d(x, y). (5)

The geometrical structure of such y is known: it is a union of line segments
emanating from x.
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Fig. 9. Different steps in the Euclidean algorithm. m represents infinity. Positive
directions for the coding of the vectors are left and above.

This last equation characterizes the distance function of an open set: dX

is the distance function on the set {x, dX(x) > 0}.
More important is that outside the closure of the skeleton, the distance

function is differentiable with unit gradient. In a reciprocal way, the closure
of the skeleton is the closure of the points where the distance function is not
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differentiable. Loosely speaking, the skeleton corresponds to the crest points
in the graph of the distance function or angular points in its level lines.

For a complete description and proofs of these non-trivial theorems, see [7,
8].

These very nice properties do not hold in a digital framework, because we
do not have the notion of differentiability on a lattice. However, these ideas
can be used and transformed on lattices, giving rise to the notion of digital
crest points [15] which are the digital analog of non differentiable points. The
main problem is that these crest points are generally not connected, so a very
clever connection procedure, different from the perceptual graph, based on
a detailed analysis of the digital structure of the distance function on the
hexagonal lattice, has been designed. This algorithm needs three scans of the
image and no auxiliary memory so that it is today one of the fastest skeleton
algorithms.

4.2 Distance Function and Hausdorf Distance

Distances between sets is mainly of theoretical interest for the characteriza-
tion of convergence of sequences of sets and for the definition of lower and
upper semi-continuity for morphological operators. It may also be used in set
optimization.

Many distances between compact sets may be defined, these distances
being not equivalent (see for instance [18] for examples based on stereology).
One of the commonly used distances is the Hausdorf distance �(X,Y ) [6],
defined as the maximum distance between a point in one set to the other set:

�(X,Y ) = max (max (d(x, Y ), x ∈ X) ,max (d(y,X), y ∈ Y )) . (6)

The computation of this distance using the distance function is straightfor-
ward: compute the distance function to Xc and take the maximum over Y ,
then compute the distance function to Y c and thake the maximum over X .
The Hausdorf distance is the maximum of these two values.

5 The Geodesic Framework

Up to now, we have only investigated distances in the whole space or in
the whole lattice. One very powerful tool developed in morphology has been
geodesy [5]. The idea behind this notion is a generalization of the fact that
the Euclidean distance between two points is the length of the line segment
(shortest path) joining the two points. In the geodesic framework, the path is
subject to some constraints: it has to lie inside a given set M , usually called
the mask. When measuring the length of path inside M , the distance of points
better reflects the shape of M , as depicted in fig. 10.
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Geodesic distance

Euclidean distance

x y

Fig. 10. In this elongated object, points x and y are at large geodesic distance,
although they are close according to the Euclidean distance.

5.1 Digital-Continuous Antagonism

Mathematically speaking, given a mask M , a path is any continuous function
from an interval [a, b] into M . Then the geodesic distance dM (x, y) in M , is
defined as:

dM (x, y) = min {L(γ), γ path inside M, γ(a) = x, γ(b) = y} , (7)

where L(γ) stands for the length of the path. We do not enter into details in
the continuous case, the interested reader may consult [22].

On a digital lattice, things are simpler, since in its definition, the distance
derived from a weighted graph is the length of the shortest path inside the
graph. This shortest path always exists, but may not be unique. In the geodesic
framework with respect to a given mask M , the definition of the geodesic
distance seems straightforward: we restrict the graph to the set of vertices
belonging to M . For the hexagonal lattice equipped with 6-connectivity and
the square lattice with the 4- or 8-connectivity, things work nicely and the
three types of algorithms proposed at the beginning of the paper are easily
extended. However, for more complicated graphs, the results are in opposition
to the intuition. As depicted in fig. 11, a path may “jump” from one connected
component to another.

How do we overcome this difficulty? On a theoretical basis, we propose the
following solution [20] when the digital distance is the restriction of a distance
in the continuous plane, which is always the case in practice: we should take
advantage of the continuous case, where this jumping phenomenon does not
appear. Two different steps are involved:

1. define a set C(M) in the continuous space associated with M ,
2. compute the length of continuous paths entirely lying in C(M).
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Fig. 11. (a): Points x and y are in two different connected components but their
geodesic distance is not infinite according to the dodecagonal distance function de-
fined on the square lattice in (b).

The first step is usually done by means of the hexagonal or square lattice,
where C(M) is a polygon (fig. 12). The second consists in “drawing” the
digital path used for the computing of the discrete distance as a polygonal
line in the continuous plane. Only the polygonal lines entirely lying inside
C(M) are considered in the minimum length.

M

C(M)

Fig. 12. Construction of a polygon in the continuous plane which respects the
connectivity properties of the hexagonal lattice equipped with 6-connectivity.

The sequential algorithm extends to this setup and a connectivity compu-
tation of the neighborhood has to be done in each step.

5.2 An Example of Geodesic Transformation

As an example of the use of a geodesic transformation, we present now the
propagation function and its use for tip extraction. Loosely speaking, a tip is
a point at the very end of a particle, i.e. a point which is far away from the
others.

Given a set X , the propagation function TX(x) is defined as the largest
geodesic distance of x to any point in X according to the geodesic distance:
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(a)

(b) (c)

Fig. 13. Tip extraction as the regional maxima of the propagation function: (a) orig-
inal image, (b) regional maxima of the propagation function, (c) regional minimum
of the propagation function.

TX(x) = max {dX(x, y), y ∈ X} . (8)

This function gives rise to very interesting features:

- geodesic length: maximal value of TX(x), giving some idea of the “real
length” of the object,

- tips: regional maxima of TX(x), points which are the farthest apart inside
the set (see fig. 13),

- geodesic center: regional minimum of TX(x), (unique in each connected
component) point inside X being in the “middle”.
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The principle of fast algorithm is that only a very few points y ∈ X are useful
in equation 8. For precise algorithms and other properties, see [20, 21].

6 Distance Function as Solution to an Evolutionary
Equation

In this last section, we illustrate a very old remark on erosions and dilations
with a disk and its outstanding developments with partial differentiable equa-
tions, known as the level set paradigm [25].

The remark is the following: the boundary of a dilated (or eroded) set by a
disk of radius r is contained in the curve which is parallel to the boundary of
the set and at distance r. The parallel curve is obtained by taking the point at
distance r on the outer normal to the set boundary. In mathematical terms,
care must be taken: the set has to be bounded by a differentiable curve, which
is somewhat restrictive, since the boundary of a polygon is not everywhere
differentiable. Some extensions have been proposed, the most complete using
set-valued analysis (see [1, 9]). Note also that loop and chain algorithms are
also based on the same idea.

Let us now take the viewpoint of front evolution and consider the size of
the dilation as time. So, let γ(s) = (x(s), y(s)) be a closed smooth curve in
the plane. The new curve at time t will be denoted by γt(s) = (xt(s), yt(s)).
Define now a speed function, say F , which may depend on local and global
properties of γt, expressing the speed at which the curve evolves along it
normal. In other words, denoting by nt(s) the normal vector at γt(s):

d

dt
(γt(s)) = F (γt) · nt(s). (9)

For a parallel curve F = 1. There are two main difficulties appearing:

1. If γt is not convex, γt+h will always exhibit some singular points (cusps)
for sufficiently large h, where the curve is no more differentiable.

2. Fish tails appear, which are not part of the boundary of the dilated set.

For the first item, some mathematical solutions may be found and are not of
interest here. For the second one, a very nice solution is proposed by viscosity
solutions. They can be interpreted as the limit solution when adding some
regularization term, a viscous term ε:

F (γt(s)) = 1− ε · κ (γt(s)) , (10)

where κ(γt(s)) is the curvature of γt at point γt(s). As ε goes to 0, the usual
dilated curve appears. For literature on viscosity solutions, see [2].

Now, other and useful F functions can be designed for defining new tran-
formations (see [25] as well in physics as in image processing).
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From a computational viewpoint, efficient algorithm have been designed,
like “fast marching” ones.

For coping with connectivity (merging of two connected components into
one for instance), level set techniques have been introduced, defining the
curves as the zero level of a given function. Then equation 10 is extended
to the evolution of this function.

The paper “PDE for Morphological Operators” by F. Guichard, P. Mara-
gos and J.-M. Morel in the present book (page 369 explains in details these
concepts.

7 Conclusion

In this paper we have shown that distance functions have been one very fruitful
notion for mathematical morphology. They include:

- theoretical aspects, like skeletons or set distances,
- algorithmical aspects with new classes of algorithms and new digital no-

tions especially in the geodesic framework,
- new links with completely different areas like partial differential equations,

which have their own scientific developments as level sets techniques.
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23. M. Schmitt and L. Vincent. Morphological image analysis: a practical and al-
gorithmic handbook. Cambridge University Press, To appear in 2005.

24. J. Serra. Image Analysis and Mathematical Morphology. Academic Press, Lon-
don, 1982.

25. J.A. Sethian. Level Sets Methods. Cambridge University Press, 1996.
26. L. Vincent. Algorithmes morphologiques à base de files d’attente et de lacets :
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1 Introduction

Two of G. Matheron’s seminal contributions have been his development of
size distributions (else called ‘granulometries’) and his kernel representation
theory. The first deals with semigroups of multiscale openings and closings of
binary images (shapes) by compact convex sets, a basic ingredient of which
are the multiscale Minkowski dilations and erosions. The second deals with
representing increasing and translation-invariant set operators as union of
erosions by its kernel sets or as an intersection of dilations.

The semigroup structure of the basic multiscale morphological operators
led to the development (by Alvarez et al. [2], Brockett & Maragos [9], and
Boomgaard & Smeulders [60]) of Partial Differential Equations (PDEs) that
can generate them on a continuum of scales. In parallel, the representation
theory was extended by Maragos [36] to function operators as sup-inf of min-
max filterings by elements of a kernel basis. These two seemingly unrelated
research directions were later rejoined by Catte et al. [11] and by Guichard &
Morel [22, 23] who used the basis representation of multiscale sup-inf opera-
tors to develop PDEs that can generate them based on variants of the mean
curvature motion.

Many information extraction tasks in image processing and computer vi-
sion necessitate the analysis at multiple scales. Influenced by the work of
Marr (and coworkers) [42], Koenderink [31] and Witkin [63], for more than a
decade the multiscale analysis was based on Gaussian convolutions. The popu-
larity of this approach was due to its linearity and its relationship to the linear
isotropic heat diffusion PDE. The big disadvantage of the Gaussian scale-space
approach is the fact that linear smoothers blur and shift important image fea-
tures, e.g., edges. There is, however, a variety of nonlinear smoothing filters,
including morphological open-closings (of the Minkowski type [43, 56] or of
the reconstruction [53] and leveling type [47, 39]) and anisotropic nonlinear
diffusion [51], which can smooth while preserving important image features
and can provide a nonlinear scale-space.
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Until the end of the 1990s, morphological image processing had been based
traditionally on modelling images as sets or as points in a complete lattice
of functions and viewing morphological image transformations as set or lat-
tice operators. Further, the vast majority of implementations of multiscale
morphological filtering had been discrete. In 1992, inspired by the modelling
of the Gaussian scale-space via the linear heat diffusion PDE, three teams
of researchers independently published nonlinear PDEs that model the con-
tinuous multiscale morphological scale-space. Specifically, Alvarez, Guichard,
Lions and Morel [1] obtained PDEs for multiscale flat dilation and erosion,
by compact convex structuring sets, as part of their general work on devel-
oping PDE-based models for multiscale image processing that satisfy certain
axiomatic principles. Brockett and Maragos [8] developed PDEs that model
multiscale morphological dilation, erosion, opening and closing by compact-
support structuring elements that are either convex sets or concave functions
and may have non-smooth boundaries or graphs, respectively. Their work
was based on the semigroup structure of the multiscale dilation and erosion
operators and the use of morphological sup/inf derivatives to deal with the
development of shocks (i.e., discontinuities in the derivatives). In [59, Ch. 8],
Boomgaard and Smeulders obtained PDEs for multiscale dilation and erosion
by studying the propagation of the boundaries of 2D sets and the graphs of sig-
nals under multiscale dilation and erosion. Their work applies to convex struc-
turing elements whose boundaries contain no linear segments, are smooth and
possess a unique normal at each point. Refinements of the above three works
for PDEs modelling multiscale morphology followed in [2, 3, 9, 38, 40, 60]. Ex-
tensions also followed in several directions including asymptotic analysis and
iterated filtering by Guichard & Morel [22, 23], a unification of morphologi-
cal PDEs using Legendre-Fenchel ‘slope’ transforms by Heijmans & Maragos
[25], a common algebraic framework for linear and morphological scale-spaces
by Heijmans & Boomgaard [26] and PDEs for morphological reconstruction
operators with global constraints by Maragos and Meyer [47, 39].

To illustrate the basic idea behind morphological PDEs, we consider a 1D
example, for which we define the multiscale flat dilation and erosion of a 1D
signal f(x) by the set [−t, t] as the scale-space functions

δ(x, t) = sup
|y|≤t

f(x− y), ε(x, t) = inf
|y|≤t

f(x+ y).

The PDEs generating these multiscale flat dilations and erosions are [9]

∂δ/∂t = |∂δ/∂x|, ∂ε/∂t = −|∂ε/∂x|,
δ(x, 0) = ε(x, 0) = f(x). (1)

In parallel to the development of the above ideas, there have been some
advances in the field of differential geometry for evolving curves or surfaces us-
ing level set methods. Specifically, Osher & Sethian [50] have developed PDEs
of the Hamilton-Jacobi type to model the propagation of curves, embedded
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as level curves (isoheight contours) of functions evolving in scale-space. The
propagation was modelled using speeds along directions normal to the curve
that contain a constant term and/or a term dependent on curvature. Further-
more, they developed robust numerical algorithms to solve these PDEs by
using stable and shock-capturing schemes to solve similar, shock-producing,
nonlinear wave PDEs that are related to hyperbolic conservation laws [32].
Kimia, Zucker & Tannenbaum [29] have applied and extended these curve evo-
lution ideas to shape analysis in computer vision. Arehart, Vincent & Kimia
[4] and Sapiro et al. [54] implemented continuous-scale morphological dila-
tions and erosions using the numerical algorithms of curve evolution to solve
the PDEs for multiscale dilation and erosion. There are several relationships
between curve evolution and multiscale morphology, since the evolution with
constant normal speed models multiscale set dilation, and the correspond-
ing Hamilton-Jacobi PDEs contain the PDE of multiscale dilation/erosion by
disks as a basic ingredient. Furthermore, the level sets used in curve evolu-
tion have previously been used extensively in mathematical morphology for
extending set operations to functions [56], [41].

Multiscale dilations and erosions of binary images can also be obtained
via distance transforms. Using Huygens’ construction, the boundaries of mul-
tiscale dilations–erosions by disks can also be viewed as the wavefronts of
a wave initiating from the original image boundary and propagating with
constant normal speed in a homogeneous medium [7]. This idea can also be
extended to heterogeneous media by using a weighted distance function, in
which the weights are inversely proportional to the propagation speeds. In
geometrical optics, these distance wavefronts are obtained from the isolevel
contours of the solution of the Eikonal PDE. This ubiquitous PDE (or its so-
lution as weighted distance) has been applied to solving various problems in
image analysis and computer vision [27] such as shape-from-shading [52, 30],
gridless halftoning, and image segmentation [61, 46, 49, 38, 40].

Modelling linear and morphological scale-space analysis via PDEs has sev-
eral advantages, mathematical, physical, and computational. In particular,
there exist several efficient numerical algorithms which implement morphology-
related PDEs on a discrete grid [50, 58, 23]. Thus, one can have both the
advantages of continuous modelling and discrete processing.

This chapter is organized as follows. In section 2, we review all first-order
PDEs coming from the asymptotic form of classical multiscale dilations and
erosions. In section 3, we state the most general results about PDEs asso-
ciated with the rescaling of any local increasing operator. Section 4 treats
the opposite viewpoint : instead of constructing the PDE by iterating local
morphological operators, it starts with a scale space abstract set of axioms
on multiscale image analysis. A scale space in this abstract setting is nothing
but a scale indexed family of operators Tt, understood as operators smoothing
more and more the image when the scale t increases. Under sound axioms,
it can be proved that scale spaces are equivalent to the action of nonlinear
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or linear parabolic PDEs. A further classification of the PDEs is sketched,
according to their invariance properties. Section 5 takes the last turn by fo-
cusing on the curve evolution interpretation of all that. Actually, all contrast
invariant image scale spaces can be described as curve scale spaces applied
to each level line of the image. This point of view has become popular under
the name of “level set methods” and yields the nice geometric interpretation
of contrast invariant scale spaces as “curvature flows”. Needless to be said,
this rich subject cannot be but sketched in one book chapter and actually
deserves a long and mathematically clean presentation. Probably the presen-
tations closest to our viewpoint here are F. Cao’s book [10] and the book to
appear [23].

2 PDEs for Multiscale Morphological Operators

The main tools of low-level morphological image processing are a broad class
of nonlinear signal operators formed as parallel and/or serial interconnections
of the two most elementary morphological signal operators, the Minkowski
dilation ⊕ and the erosion �:

(f ⊕ g)(x) �
∨
y∈E

f(y) + g(x− y)

(f � g)(x) �
∧
y∈E

f(y)− g(y − x),

where
∨

and
∧

denote supremum and infimum, and the signal domain can
be continuous E = R

d or discrete E = Z
d. The signal range is a subset of

R = R ∪ {−∞,+∞}. Compositions of erosions and dilations yield two useful
smoothing filters: the opening f �→ (f � g)⊕ g and closing f �→ (f ⊕ g)� g.

2.1 PDEs Generating Dilations and Erosions

Let k : R
2 → R be a unit-scale upper-semicontinuous concave structuring

function, to be used as the kernel for morphological dilations and erosions.
Scaling both its values and its support by a scale parameter t ≥ 0 yields a
parameterized family of multiscale structuring functions

kt(x, y) �
{
tk(x/t, y/t), for t > 0 ,
0 at (x, y) = (0, 0) and −∞ else, for t = 0,

(2)

which satisfies the semigroup property

ks ⊕ kt = ks+t. (3)

Using kt in place of g as the kernel in the basic morphological operations
leads to defining the multiscale dilation and erosion of f : R

2 → R by kt as
the scale-space functions
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δ(x, y, t) � f ⊕ kt(x, y), ε(x, y, t) � f � kt(x, y), (4)

where δ(x, y, 0) = ε(x, y, 0) = f(x, y).
In practice, a useful class of functions k consists of flat structuring func-

tions

k(x, y) =

{
0 for (x, y) ∈ B,
−∞ for (x, y) �∈ B,

(5)

which are the 0/ − ∞ indicator functions of compact convex planar sets B.
The general PDE4 generating the multiscale flat dilations of f by a general
compact convex symmetric B is [2, 9, 25]

∂δ

∂t
= sptfB(δx, δy), (6)

where sptfB(·) is the support function of B:

sptfB(x, y) �
∨

(a,b)∈B

ax+ by. (7)

Useful cases of structuring sets B are obtained by the unit balls Bp = {(x, y) :
‖(x, y)‖p ≤ 1} of the metrics induced by the Lp norms ‖·‖p, for p = 1, 2, . . . ,∞.
The PDEs generating the multiscale flat dilations of f by Bp for three special
cases of norms ‖ · ‖p are as follows:

B = rhombus (p = 1) =⇒ δt = max(|δx|, |δy|) = ‖∇δ‖∞, (8)

B = disk (p = 2) =⇒ δt =
√

(δx)2 + (δy)2 = ‖∇δ‖2, (9)

B = square (p = ∞) =⇒ δt = |δx|+ |δy| = ‖∇δ‖1, (10)

with δ(x, y, 0) = f(x, y). The corresponding PDEs generating mutliscale flat
erosions are

B = rhombus =⇒ εt = −‖∇ε‖∞, (11)
B = disk =⇒ εt = −‖∇ε‖2, (12)

B = square =⇒ εt = −‖∇ε‖1, (13)

with ε(x, y, 0) = f(x, y).
These simple but nonlinear PDEs are satisfied at points where the data

are smooth, that is, the partial derivatives exist. However, even if the initial
image or signal f is smooth, at finite scales t > 0 the above dilation or erosion
evolution may create discontinuities in the derivatives, called shocks, which
then continue propagating in scale-space. Thus, the multiscale dilations δ or
erosions ε are weak solutions of the corresponding PDEs, in the sense put
4 Notation often used for PDEs: ut = ∂u/∂t, ux = ∂u/∂x, uy = ∂u/∂y, Du =
∇u = (ux, uy), div(v, w)) = ∇ · (v, w) = vx + wy.
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forth by Lax [32]. Ways to deal with these shocks include replacing standard
derivatives with morphological derivatives [9] or replacing the PDEs with dif-
ferential inclusions [44]. The most acknowledged viewpoint on this, however,
is to use the concept of viscosity solutions. For first-order PDEs, a good expo-
sition is given in Barles [5] or in the classic [14]. Probably the shortest, more
pedagogic and up to date presentation of viscosity solutions is the recent one
by Crandall [13].

Next, we provide two examples of PDEs generating multiscale dilations by
graylevel structuring functions. First, if we use the compact-support spherical
function

k(x, y) =

{√
1 + x2 + y2 for x2 + y2 ≤ 1,

−∞ for x2 + y2 > 1,
(14)

the dilation PDE becomes

δt =
√

1 + (δx)2 + (δy)2. (15)

As shown in [9], this can be proven by using the semigroup structure of di-
lations and the first-order Taylor’s approximation for the difference between
dilations at scales t and t+dt. Alternatively, it can be proven using slope trans-
forms, as explained in the next section. As a second example of structuring
function, if k is the infinite-support parabola

k(x, y) = −r(x2 + y2), r > 0, (16)

the dilation PDE becomes

δt = [(δx)2 + (δy)2]/4r. (17)

This can be proven using slope transforms.

2.2 Slope Transforms and Dilation PDEs

All of the above dilation (and erosion) PDEs can be unified using slope trans-
forms. These transforms [37, 15] are simple variations of the Legendre-Fenchel
transform. The word ‘slope’ was given only for insights because the eigenfunc-
tions of a morphological dilation-erosion system are straight lines parameter-
ized by their slope. Further, for morphological systems we can consider a new
domain, called a ‘slope domain’, where morphological sup-inf convolutions
in the time-space domain become addition of slope transforms in the slope
domain.

Let the unit-scale kernel k(x, y) be a general upper-semicontinuous concave
function and consider its upper slope transform5

5 In convex analysis, given a convex function h(x) there uniquely corresponds an-
other convex function h∗(a) =

W
x a · x − h(x), called the Legendre-Fenchel con-

jugate of h. The lower slope transform of h, defined as H∧(a) =
V

x h(x) − a · x,
is the dual of the upper slope transform. Obviously, the former is closely related
to the conjugate function since h∗(a) = −H∧(a).
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K∨(a, b) �
∨

(x,y)∈R2

k(x, y)− (ax+ by) (18)

Then, as shown in [25, 44], the PDE generating multiscale signal dilations by
k is

∂δ/∂t = K∨(δx, δy) (19)

Thus, the rate of change of δ in the scale (t) direction is equal to the upper
slope transform of the structuring function evaluated at the spatial gradient
of δ. Similarly, the PDE generating the multiscale erosion by k is

∂ε/∂t = −K∨(εx, εy). (20)

For example, the PDE (6) modelling the general flat dilation by a compact
convex set B is a special case of (19) since the support function (7) of B is the
upper slope transform of the 0/ − ∞ indicator function of B. Likewise, the
PDE (17) modelling multiscale dilations by parabolae results simply from (19)
by noting that the upper slope transform of a concave parabola is a convex
parabola.

All of the dilation and erosion PDEs examined are special cases of
Hamilton-Jacobi equations, which are of paramount importance in physics.
Such equations usually do not admit classic (i.e., everywhere differentiable)
solutions. Viscosity solutions of Hamilton-Jacobi PDEs have been extensively
studied by Crandall et al. [14]. The theory of viscosity solutions has been ap-
plied to morphological PDEs by Guichard & Morel [23]. Finally, Heijmans &
Maragos [25] have shown via slope transforms that the multiscale dilation by
a general upper-semicontinuous concave function is the viscosity solution of
the Hamilton-Jacobi dilation PDE of Eq. (19).

2.3 PDEs Generating Openings and Closings

Let u(x, y, t) = [f(x, y)� tB]⊕ tB be the multiscale flat opening of an image
f by the disk B. This standard opening can be generated at any scale r > 0
by running the following PDE [2]

ut = −max (sgn(r − t), 0) ‖∇u‖2 + max (sgn(t− r), 0) ‖∇u‖2, (21)

from time t = 0 until time t = 2r with initial condition u(x, y, 0) = f(x, y),
where sgn(·) denotes the signum function. This PDE has time-dependent
switching coefficients that make it act as an erosion PDE during t ∈ [0, r]
but as a dilation PDE during t ∈ [r, 2r]. At the switching instant t = r this
PDE exhibits discontinuities. This can be dealt with by making appropriate
changes to the time scale that make time ‘slow down’ when approaching the
discontinuity at t = r, as suggested by Alvarez et al. [2]. Of course, the solution
u of the above PDE is an opening only at time t = r, whereas the solutions at
other times is not a opening. In a different work, Brockett & Maragos [9] have
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developed a partial differential-difference equation that models at all times
the evolutions of multiscale openings of 1D images by flat intervals. This does
not involve only local operations but also global features such as the support
geometry of peaks of f at various scales.

The reconstruction openings have found many more applications than the
standard openings in a large variety of problems. We next present a nonlinear
PDE that can model and generate openings and closings by reconstruction.
Consider a 2D reference signal f(x, y) and a marker signal g(x, y). If g ≤ f ev-
erywhere and we start iteratively growing g via incremental flat dilations with
an infinitesimally small disk ΔtB but without ever growing the result above
the graph of f , then in the limit we shall have produced the reconstruction
opening of f (with respect to the marker g). The infinitesimal generator of
this signal evolution u(x, y, t) can be modelled via the following PDE, studied
by by Maragos & Meyer [47, 39],

ut(x, y, t) = ‖∇u‖sgn[f(x, y)− u(x, y, t)],
u(x, y, 0) = g(x, y), (22)

where sgn(r) equals 1 if r > 0, −1 if r < 0 and 0 if r = 0. The mapping from
the initial value u0(x, y) = u(x, y, 0) to the limit u∞(x, y) = limt→∞ u(x, y, t)
is the reconstruction opening filter. If we reverse the roles of f and g, in the
limit we obtain the reconstruction closing of f with respect to the marker
g. Now, if there is no specific order between f and g, the PDE has a sign-
varying coefficient sgn(f − u) with spatiotemporal dependence, which acts as
a global constraint that controls the instantaneous growth. The final result
u∞(x, y) is equal to the output from a more general class of morphological
filters, called levelings [47], which have many useful scale-space properties and
contain as special cases the reconstruction openings and closings. For stability
of the solution of the leveling PDE, g has to be uniformly continuous in the
viscosity sense.

3 Asymptotic of Increasing Operators

We consider a family F of functions from E into R representing a class of
images. An operator S, from F into F , is said increasing or monotone if
∀f, g ∈ F , (∀x ∈ E, f(x) ≥ g(x)) =⇒ (∀x, Sf(x) ≥ Sg(x)).

In all the following we will assume that S commutes with spatial transla-
tions of the image, in other words we assume that S is invariant by translation.

Note: It is a general property of the increasing and translation invariant
operators to preserve the Lipschitz property of any Lipschitz function. Conse-
quently, a possible choice for F can be made by considering the set of Lipschitz
functions.
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3.1 Increasing Operators

The following formulae, inspired from work of Matheron [43], Serra [56], and
Maragos [36] gives us a general form for any increasing and translation invari-
ant operator:

Let S be a increasing function operator defined of F , invariant by trans-
lation and commuting with the addition of constants. There exists a family
IF 1(S) of functions from E into R ∪ {−∞,+∞} such that for all functions f
of F , we have

Sf(x) =
∧

g∈IF 1(S)

∨
y∈E

f(y)− g(x− y).

Similarly, there exists another family of functions IF 2(S) such that

Sf(x) =
∨

g∈IF 2(S)

∧
y∈E

f(y)− g(x− y).

The special cases where IF are made of a single function g correspond to
the classical Minkowski dilation and erosion that have already been presented
in section 2.

Examples of classical increasing operators (or “filters”) that cannot be
represented with a IF made of a single function are e.g. the “median” filter
or the “mean” filter. In fact, it would be probably vain to try to classify all
possible increasing filters. So, in this section, we wish to specify the general
forms of the PDEs related to increasing filters.

3.2 Scaled and Local Increasing Operators

We consider a scaled increasing operator Sh, where the scale h is a positive
real number. We say that Sh is a local increasing operator if for all u and
v such that u(y) > v(y) for y in a neighborhood of x and y �= x, then for h
small enough we have

(Shu)(x) ≥ (Shv)(x)

Roughly speaking, a local increasing operator is a scale operator whose
action is reduced when its scale decreases. Easy way to construct a local
increasing operator Sh from an increasing operator S is to localize the action
of the family of functions IF : e.g., one can set Sh as in [24]:

Sh(u)(x) =
∧

g∈IF

∨
y∈E

(u(x + y)− hβg(y/hα)), (23)

for some α, β ≥ 0. This construction, with adequate choices of α and β will
transform e.g. the mean, median, erosion or dilation filters on a disk of radius
1, into their corresponding respective localized versions on a radius h disk.
However, in general, this construction is not sufficient to get a local increasing
operator from any increasing operator S.
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We finally need some technical assumption stating that a very smooth
image must evolve in a smooth way with the considered operator. Let us
recall that we initially assume that the operator is translation-invariant, so
that the analysis on its asymptotic could be done at x=0 or any other point x.
So choosing any point x, let QA,p,c(y) = 1

2 (A(y−x),y−x)+ (p,y−x)+ c be
a quadratic form on E. (If E = R

N then A is a N ∗N matrix (A = D2Q(x)),
p a vector of R

N (p = DQ(x)) and c a constant.)
We shall say that a local increasing operator is regular if there exists a

function F (A, p, c), continuous with respect to A, such that

∀QA,p,c,
(ShQ−Q)(x)

h
→ F (A, p, c) when h→ 0.

In [2], Alvarez et al gave the general asymptotic shape of any local and
increasing operator:
Fundamental Asymptotic Theorem: Let Sh be a local regular increasing
operator and F the real function associated with the regularity assumption.
Then Sh satisfies

((Shu− u)/h)(x) → F (D2u(x), Du(x), u(x)) (24)

as h tends to 0+ for every C2 function u and every x. In addition, F is
nondecreasing with respect to its first argument : If A ≥ Ã, for the ordering
of symmetric matrices,

then, F (A, p, c) ≥ F (Ã, p, c)). (25)

This easy to prove theorem reduces the classification of all iterated local
and increasing operators to the classification of all interesting functions F . In
dimension 2, these real functions have six arguments. This number, however,
can be drastically reduced when we impose obvious and rather necessary and
useful invariance properties to the increasing operator.

This theorem also shows that the study of the asymptotic behavior of an
increasing operator can be reduced to the study of its action on a parabolic
function (QA,p,c).

4 The Scale-Space Framework

In this section, we consider an abstract framework, the “scale space”, which
at the end boils down, from the algorithmic viewpoint, to iterated filtering.
Now, this framework will make it easier to classify and model the possible
asymptotic behaviors of iterated increasing operators.

The scale space theory was founded (in a linear framework) by Witkin [63],
Marr [42], and Koenderink [31]. Many developments have been proposed, see
e.g. [33] for further references on that particular field.



Partial Differential Equations for Morphological Operators 379

We can see a “scale space” as a family of increasing operators {Tt}t≥0,
depending on a scale parameter t. Given an image u0(x), (Ttu0)(x) = u(t,x)
is the “image u0 analyzed (in fact : smoothed) at scale t”. For simplicity, F
will be the set of Lipschitz functions on E = R

N .
We assume that the output at scale t can be computed from the output

at a scale t − h for very small h. This is natural, since a coarser analysis of
the original picture is likely to be deduced from a finer one without any de-
pendence upon the original picture. By that way the finest picture smoothing
is the identity. Tt is obtained by composition of “transition filters”, which
we denote by Tt+h,t. For simplicity, we will assume here that Tt+h,t will not
depend on t, so that one can set Sh = Tt+h,t. (The general case can be found
in [23]). We then say that the scale space {Tt}t≥0 is pyramidal if there exists
an operator Sh such that for all t one has:

Tt+h = Sh ◦ Tt

Note that a much stronger version of the pyramidal structure is the semigroup
property already presented in section 2.

Since the visual pyramid is assumed to yield more and more global in-
formation about the image and its features, it is clear that when the scale
increases, no new feature should be created by the scale space : the image at
scale t’>t must be simpler than the image at scale t. Furthermore, the tran-
sition operator Sh is assumed to act “locally”, that is, to look at a small part
of the processed image and in a monotone way. In other terms, Sh should be
a regular and local increasing operator.

At last, we say that a scale-space {Tt}t≥0 is causal if it is pyramidal and if
its transition operator Sh is a translation invariant, regular and local increas-
ing operator. To some extent, as increasing operators are the “basic” tools
of morphology, causal scale-spaces can be seen as Morphological Flows.
Operators seen in section 2.2 defined examples of causal scale-spaces or “mor-
phological flows”.

4.1 Causal Scale Space, Increasing Operators and PDEs

We consider a causal scale space {Tt}t≥0 that commutes with addition of
constants; i.e., for any constant C, we have Tt(u+C) = Tt(u)+C. We denote
by F the asymptotic of the transition operator associated to Sh. We know from
Eqn. (24) that F has the shape: F (A, p, c). The commutation with addition of
constants removes the dependence on c, which therefore yields for F a F (A, p)
shape.

The next theorems state the equivalence between causal scale-space and
viscosity solutions of parabolic PDE. They require some technical assumptions
on the shape of the function F that will be given later.
Theorem 1

Let Tt be a causal scale-space. Then for any Lipschitz function u0: u(t, .) =
Tt(u)(.) is the viscosity solution of
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∂u

∂t
= F (D2u,Du) (26)

with initial condition u(0, .) = u0.
Theorem 2

The operator Tt that associates to a Lipschitz function u0 the (unique)
viscosity solution of the equation (26) at scale t is a increasing operator on
Lipschitz functions and Tt defines a causal scale-space.

Proofs of these theorem has been given under some regularity condi-
tions on function F . E.g. in [23], Guichard & Morel prove that the pre-
ceding theorems hold if F is assumed continuous for all A, p �= 0 and
such that there exists two continuous functions G+(A, p) and G−(A, p), with
G+(0, 0) = G−(0, 0) = 0; ∀A ≥ 0, G+(A, 0) ≥ 0 and G−(−A, 0) ≤ 0 and
∀A, p, G−(A, p) ≤ F (A, p) ≤ G+(A, p). These conditions are in fact not so
restrictive since they are satisfied by all equations mentioned in the present
chapter.

4.2 Geometric and Contrast Invariant Scale Spaces

We shall now list a series of axioms which state some invariance for the scale
space. We begin by considering a “contrast invariance” assumption, that the
scale space should be independent from the (arbitrary) graylevel scale. We
shall say that a scale space is contrast invariant if

g ◦ Tt = Tt ◦ g, (27)

for any nondecreasing and continuous function g from R into R. The con-
trast invariance is a particular formalization of the invariance of image anal-
ysis with respect to changes of illumination. This invariance has been stated
in perception theory by Wertheimer [62], as early as 1923. In Mathematical
Morphology, the contrast invariance is commented and used e.g. in Serra [56],
or by Maragos et al [41]. Within the scale-space framework, Koenderink [31]
insists on that invariance but did not proceed due to incompatibility with
some imposed linearity property. We will see, in section 5, that in addition to
this link with perception, “contrast invariance” generates an interesting link
between function evolution and set or curve evolution.

Let R be an isometry of R
N and denote by Ru the function Ru(x) =

u(Rx). We shall say that a scale space Tt is euclidean invariant if for every
isometry R of R

N into R
N , RTt = TtR.

Finally, we state an axiom which implies the invariance of the scale space
under any affine projection of a planar shape. Set for any such transform
Af(x) = f(Ax). We shall say that a scale space Tt is affine invariant if for
any linear application A of R

N with det(A) = 1, we have ATt = TtA.
If we impose the euclidean and contrast invariance, then Ttu0 obeys a

restricted form of the equation (26). A general study in dimension N can be
found in [20]. We just recall from [2] the two dimensional case.
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(i) Let Tt be a euclidean and contrast invariant causal scale space and u0

be a Lipschitz function, then u(t) = Tt(u0) is the viscosity solution of

∂u

∂t
= |Du|β(curv(u)), (28)

where β is a continuous nondecreasing real function.
(ii) If the scale space is, in addition, affine invariant, then the only possible
equation is, up to a rescaling,

∂u

∂t
= |Du|(curv(u))1/3. (29)

where, for any C2 function f and where Df �= 0, curv(f) = κ(f) = div( Df
|Df | ),

is the curvature of the level line at the considered point.
Conversely, as proved in [23], the operator Tt that associates to a function

u0 the (unique) viscosity solution of the preceding equations at scale t is
a euclidean and contrast invariant increasing operator on Lipschitz functions
and the family Tt defines a euclidean and contrast invariant causal scale-space.

4.3 Iterations of Increasing Operators and PDEs

We have seen that the causal scale space framework ends up with some par-
ticular parabolic equations. However, this very formal definition of scale space
might seem very restrictive to be of any interest. Question occurs on how to
get a scale space from any scaled increasing operator ?

The following heuristic answers the question:

• choose a increasing operator S, e.g the mean, the median, the dilation, the
erosion, etc...

• localize it: Sh, e.g by using equation (23),
• iterate it: Set (Tn)t = (Sh)n with hn = t.

When n → ∞ if the sequence (Tn)t converges to some operator Tt, then Tt

is a causal scale-space. More precisely, consider u0 a Lipschitz function and
set un(t) = (Tn)t(u0). If un(t) converges when n tends to ∞, then u(t) =
limn→∞un(t) is the viscosity solution of equation (26) with F given by the
asymptotic of Sh (equation (24)).

The shape of function F will necessary inherit from the invariance property
of the increasing operator S. E.g. if S is contrast and euclidean invariant,
then F is necessarily of the form F (D2u,Du) = |Du|β(curv(u)), for some
increasing function β.

Unfortunately convergence has not been proved for general forms of local
and increasing operators Sh. Let us cite some basic examples: if Sh is the
mean filter on a disk of radius h2, then Tt will solve the heat equation

∂u

∂t
= Δu
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which confirms a well known result. If Sh is a median filter on a disk of radius
h2, then Tt will solve the mean curvature motion

∂u

∂t
= |Du|curv(u) = |Du|κ

This last equation will be more deeply considered in the following section.

5 Curve Evolution and Morphological Flows

Consider at time t = 0 an initial simple, smooth, closed planar curve Γ (0)
that is propagated along its normal vector field at speed V for t > 0. Let this
evolving curve (front) Γ (t) be represented by its position vector C(p, t) =
(x(p, t), y(p, t)) and be parameterized by p ∈ [0, J ] so that it has its interior
on the left in the direction of increasing p and C(0, t) = C(J, t). The curvature
along the curve is

κ = κ(p, t) � yppxp − ypxpp

(x2
p + y2

p)3/2
. (30)

A general front propagation law (flow) is

∂C(p, t)
∂t

= VN(p, t), (31)

with initial condition Γ (0) = {C(p, 0) : p ∈ J}, where N(p, t) is the in-
stantaneous unit outward normal vector at points on the evolving curve and
V = Ct ·N is the normal speed, with Ct = ∂C/∂t. This speed may depend
on local geometrical information such as the curvature κ, global image prop-
erties, or other factors independent of the curve. If V = 1 or V = −1, then
Γ (t) is the boundary of the dilation or erosion of the initial curve Γ (0) by a
disk of radius t.

An important speed model, which has been studied extensively by Osher
and Sethian [50, 58] for general evolution of interfaces and by Kimia et al.
[29] for shape analysis in computer vision, is

V = 1− εκ, ε ≥ 0. (32)

As analyzed by Sethian [58], when V = 1 the front’s curvature will develop
singularities, and the front will develop corners (i.e., the curve derivatives
will develop shocks—discontinuities) at finite time if the initial curvature is
anywhere negative. Two ways to continue the front beyond the corners are
as follows: (1) If the front is viewed as a geometric curve, then each point
is advanced along the normal by a distance t, and hence a “swallowtail” is
formed beyond the corners by allowing the front to pass through itself. 2) If the
front is viewed as the boundary separating two regions, an entropy condition
is imposed to disallow the front to pass through itself. In other words, if the



Partial Differential Equations for Morphological Operators 383

front is a propagating flame, then “once a particle is burnt it stays burnt” [58].
The same idea has also been used to model grassfire propagation leading to
the medial axis of a shape [7]. It is equivalent to using Huygens’ principle to
construct the front as the set of points at distance t from the initial front. This
can also be obtained from multiscale dilations of the initial front by disks of
radii t > 0. Both the swallowtail and the entropy solutions are weak solutions.
When ε > 0, motion with curvature-dependent speed has a smoothing effect.
Further, the limit of the solution for the V = 1−εκ case as ε ↓ 0 is the entropy
solution for the V = 1 case [58].

To overcome the topological problem of splitting and merging and numer-
ical problems with the Lagrangian formulation of Eq. (31), an Eulerian for-
mulation was proposed by Osher and Sethian [50] in which the original curve
Γ (0) is first embedded in the surface of an arbitrary 2D Lipschitz continu-
ous function φ0(x, y) as its level set (contour line) at zero level. For example,
we can select φ0(x, y) to be equal to the signed distance function from the
boundary of Γ (0), positive (negative) in the exterior (interior) of Γ (0). Then,
the evolving planar curve is embedded as the zero-level set of an evolving
space-time function φ(x, y, t):

Γ (t) = {(x, y) : φ(x, y, t) = 0} (33)
Γ (0) = {(x, y) : φ0(x, y, 0) = φ(x, y) = 0}. (34)

Geometrical properties of the evolving curve can be obtained from spatial
derivatives of the level function. Thus, at any point on the front the curvature
and outward normal of the level curves can be found from φ (assume φ < 0
over curve interior):

N =
∇φ
‖∇φ‖ , κ = div

( ∇φ
‖∇φ‖

)
. (35)

The curve evolution PDE of Eq. (31) induces a PDE generating its level
function:

∂φ/∂t = −V ‖∇φ‖,
φ(x, y, 0) = φ0(x, y). (36)

If V = 1, the above function evolution PDE is identical to the flat circular
erosion PDE of Eq. (12) by equating scale with time. Thus, we can view this
specific erosion PDE as a special case of the general function evolution PDE
of Eq. (36) in which all level curves propagate in a homogeneous medium with
unit normal speed. Propagation in a heterogeneous medium with a constant-
sign V = V (x, y) leads to the eikonal PDE.

5.1 Dilation Flows

In general, if B is an arbitrary compact, convex, symmetric planar set of unit
scale and if we dilate the initial curve Γ (0) with tB and set the new curve
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Γ (t) equal to the outward boundary of Γ (0) ⊕ tB, then this action can also
be generated by the following model [4, 54] of curve evolution

∂C
∂t

= sptfB(N)N (37)

Thus, the normal speed V , required to evolve curves by dilating them with B,
is simply the support function of B evaluated at the curve’s normal. Then, in
this case the corresponding PDE (36) for evolving the level function becomes
identical to the general PDE that generates multiscale flat erosions by B,
which is given by (6) modulo a (−) sign difference.

5.2 Curvature Flows

Another important case of curve evolution is when V = −κ; then,

∂C
∂t

= −κN =
∂2C
∂s2

(38)

where s is the arc length. This propagation model is known as Euclidean geo-
metric heat (or shortening) flow, as well as mean curvature motion. According
to some classic results in differential geometry, smooth simple curves, evolv-
ing by means of (38), remain smooth and simple while undergoing the fastest
possible shrinking of their perimeter [18], [19]. Furthermore, any non-convex
curve converges first to a convex curve and from there it shrinks to a round
point.

If the function φ(x, y, t) embeds a curve evolving by means of (38), as its
level curve at a constant level, then it satisfies the evolution PDE

∂φ/∂t = div(∇φ/||∇φ||)||∇φ|| = κ||∇φ||

This smooths all level curves by propagation under their mean curvature. It
has many interesting properties and has been extensively studied by many
groups of researchers, including Osher & Sethian [50], Evans & Spruck [17],
Chen, Giga & Goto [12] and Alvarez et al. [2].

Solutions of the Euclidean geometric heat flow (38) are invariant with re-
spect to the group of Euclidean transformations (rotations and translations).
Extending this invariance to affine transformations creates the affine geomet-
ric heat flow introduced by Sapiro and Tannenbaum [55]

∂C
∂t

= −κ1/3N =
∂2C
∂α2

(39)

where α is the affine arc length, i.e., a re-parameterization of the curve such
that det[Cα Cαα] = xαyαα − xααyα = 1. Any smooth simple non-convex
curve evolving by the affine flow (39) converges to a convex one and from
there to an elliptical point [55]. This PDE was also independently developed
by Alvarez et al. [2] in the context of the affine morphological scale-space,
already seen in section 4.2.
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5.3 Morphological Representations of Curvature Flows

Matheron’s famous representation theorem [43] states that any set operator Ψ
on P(Rd) that is translation-invariant (TI) and increasing can be represented
as the union of erosions by all sets of its kernel Ker(Ψ) = {X : 0 ∈ Ψ(X)} as
well as an intersection of dilations by all sets of the kernel of the dual operator:

Ψ is TI and increasing =⇒ Ψ(X) =
⋃

A∈Ker(Ψ)

X �A, X ⊆ R
d.

This representation theory was extended by Maragos [35, 36] to both function
and set operators by using a basis for the kernel. As we have seen in section
3.1, according to the basis representation theory, every TI, increasing, and
upper-semicontinuous (u.s.c.) operator can be represented as a supremum of
morphological erosions by its basis functions. Specifically, let ψ be a signal
operator acting on the set of extended-real-valued functions defined on E = R

d

or Z
d. If Ker(ψ) = {f : ψ(f)(0) ≥ 0} defines the kernel of ψ, then its basis

Bas(ψ) is defined as the collection of the minimal (w.r.t. ≤) kernel functions.
Then [36]:

ψ is TI, increasing, and u.s.c. =⇒ ψ(f) =
∨

g∈Bas(ψ)

f � g

Dually, ψ can be represented as the infimum of dilations by functions in the
basis of its dual operator ψ∗(f) = −ψ(−f).

If the above function operator ψ is also flat (i.e., binary inputs yield binary
outputs), with Ψ being its corresponding set operator, and commutes with
thresholding, i.e.,

Xλ[ψ(f)] = Ψ [Xλ(f)], λ ∈ R (40)

where Xλ(f) = {x ∈ R
d : f(x) ≥ λ} are the upper level sets of f , then ψ is a

supremum of flat erosions by the basis sets of its corresponding set operator
Ψ [36]:

ψ(f) =
∨

S∈Bas(Ψ)

f � S

where the basis Bas(Ψ) of the set operator Ψ is defined as the collection of
the minimal elements (w.r.t. ⊆ ) of its kernel Ker(Ψ).

Equation (40) implies that [57, p. 188] the operator ψ is ‘contrast-invariant’
or ‘morphologically-invariant,’ which means that [56, 1, 22]

ψ(g(f)) = g(ψ(f))

where g : R → R is any monotone bijective function, and g(f) is the image
of f under g. Such a function g is called an ‘anamorphosis’ in [56, 57], or a
‘contrast-change’ in [1, 22].
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The above morphological basis representations have been applied to vari-
ous classes of operators, including morphological, median, stack, and linear fil-
ters [35, 36, 41]. Moreover, one can define TI, increasing and contrast-invariant
filters as supremum (or infimum) of flat erosions (or dilations) by sets belong-
ing to some arbitrary basis B. Catté, Dibos & Koepfler [11] selected as a basis
the scaled version of a unit-scale isotropic basis (the set of all symmetric line
segments of length 2)

B � {{(x, y) : y = x tan(θ), |x| ≤ | cos(θ)|} : θ ∈ [0, π)} (41)

and defined the following three types of multiscale flat operators It,St, Tt:

It(f)=
∨
S∈B

f �
√

2tS ⇐⇒ ∂C/∂t=−max(κ, 0)N (42)

St(f)=
∧
S∈B

f ⊕
√

2tS ⇐⇒ ∂C/∂t=min(κ, 0)N (43)

Tt(f)=[I2t(f) + S2t(f)]/2 ⇐⇒ ∂C/∂t=−κN (44)

If these operators operate on a level function embedding a curve C as one of its
level lines, then this curve evolves according to the above following three flows
[11]. Hence, the above multiscale operators, which are sup-of-erosions and inf-
of-dilations by linear segments in all directions, are actually curvature flows. A
generalization of this result was obtained, within the framework described in
section 4, in Guichard and Morel [22], by assuming that B is any bounded and
isotropic collection of planar sets. Furthermore, in slightly different settings it
has been shown that, by iterating n times a median filter, based on a window
of scale h, we asymptotically converge (when h→ 0, n→∞, with nh = t) to
the curvature flow. The mathematical proof was given in [16], [6], following a
conjecture of [45].

The above morphological representations deal with Euclidean curvature
flow. Furthermore, by defining a unit-scale morphological basis B as a collec-
tion of convex symmetric sets invariant under the special linear group, it has
been shown in [22] and in [20] that n iterations of morphological flat oper-
ators at scale h, which are sup-of-erosions, inf-of-dilations, or their alternate
compositions, converge (when h→ 0, n→∞, with nh = t) to the affine cur-
vature flow. An efficient implementation of the iterated affine invariant curve
evolution has been proposed in [48]. It yields a fast implementation of the
curve affine scale space and has proved its effectiveness in shape recognition
[34]. An example of shape smoothing using this affine scale-space is shown in
Fig. 1.

6 Conclusion

In this chapter we have presented some basic results from the theory of non-
linear geometric PDEs that can generate multiscale morphological operators.
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Fig. 1. Smoothing curves with the Affine Scale Space. Top: a text image corrupted
by noise. Middle: thresholding the image reveals characters as irregular level lines.
Bottom: the same level lines, smoothed with the affine scale space. The smoothing
process produces curves almost independent of the noise, which is a requirement for
robust pattern recognition. Algorithm used follows the affine erosion introduced in
[48]. -Experiment courtesy of Lionel Moisan-

Further, we have outlined the relationships of these results with G. Matheron’s
development of size distributions and kernel representation theory.

Interpreting and modelling the basic morphological operators via PDEs
opens up several new promising directions along which mathematical mor-
phology can both assist and be assisted by other PDE-based theories and
methodologies of image analysis and computer vision. Examples include scale-
space analyses, variational methods of vision, level sets implementations of
2D/3D geometric flows, and their applications to major research problems
such as image segmentation, object detection & tracking, and stereopsis.
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