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58183 Linköping, Sweden
E-mail: bom@ifm.liu.se

Herbert Venghaus
Heinrich-Hertz-Institut
für Nachrichtentechnik Berlin GmbH
Einsteinufer 37
10587 Berlin, Germany
E-mail: venghaus@hhi.de

Horst Weber
Technische Universität Berlin
Optisches Institut
Straße des 17. Juni 135
10623 Berlin, Germany
E-mail: weber@physik.tu-berlin.de

Harald Weinfurter
Ludwig-Maximilians-Universität München
Sektion Physik
Schellingstraße 4/III
80799 München, Germany
E-mail: harald.weinfurter@physik.uni-muenchen.de



M.Yamashita H. Shigekawa R.Morita
(Eds.)

Mono-Cycle Photonics
and Optical Scanning
Tunneling Microscopy
Route to Femtosecond Ångstrom Technology

With 241 Figures

123



Professor Mikio Yamashita
Hokkaido University
Department of Applied Physics
Kita-12, Nishi-8, Kita-ku
Sapporo 060-8628, Japan
E-mail: mikio@eng.hokudai.ac.jp

Professor Hidemi Shigekawa
University of Tsukuba
Institute of Applied Physics
1-1-1 Tennodai, Tsukuba, 305-8573 Japan
E-mail: hidemi@ims.tsukuba.ac.jp

Professor Ryuji Morita
Hokkaido University
Department of Applied Physics
Kita-13, Nishi-8, Kita-ku
Sapporo 060-8628, Japan
E-mail: morita@eng.hokudai.ac.jp

ISSN 0342-4111

ISBN 3-540-21446-1 Springer Berlin Heidelberg New York

Library of Congress Control Number: 2004111705

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or
parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in
its current version, and permission for use must always be obtained from Springer. Violations are liable to
prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.

EX-Production GmbH, Germany
Cover concept by eStudio Calamar Steinen using a background picture from The Optics Project. Courtesy of
John T. Foley, Professor, Department of Physics and Astronomy, Mississippi State University, USA.
Cover production: design & production GmbH, Heidelberg

Printed on acid-free paper 10948460 57/3141/YU 5 4 3 2 1 0

Typesetting and production: PTP-Berlin, Protago-T



To our families, our mentors, our colleagues and our
students.



Preface

Extreme technology has always opened new exciting fields in science and
technology. This book is mainly concerned with extreme technologies in the
ultrashort time scale (around sub-ten femtoseconds ; 10−14–10−15 s) and in
the ultrasmall space scale (around sub-nanometers ; ∼ 10−10 m). Unfortu-
nately, until recent years both technologies developed separately. This book is
the first attempt to describe recent advances in femtosecond technology and
the fusion of this to nanometer technology. That is, the purpose of this book
is to review contributions we have made to the fields of ultrafast optics as
well as optical scanning tunneling microscopy (STM) in recent years (1996-
2004). Also, in the introductions of several chapters, historical progresses
from various sights in this interdisciplinary field are summarized briefly with
tables.

Ultrashort optical pulse technology in the near-infrared, the visible and
the ultraviolet region is now in a time scale into the few femtosecond range
in the optical-mono-cycle region. The full-width at half-maximum (FWHM;
Tdu) of the temporal intensity profile in the mono-cycle pulse equals the single
cycle period Tper of the electric field, Tdu = Tper (Fig. 1). For example, the
mono-cycle pulse of a Gaussian profile with a 580 nm center wavelength has
a Tdu = 1.9 fs duration and a ∆νB = 228 THz FWHM bandwidth (the cor-
responding wavelength bandwidth of ∆λB = 269 nm) with a spectral broad-
ening from 370 to 1342 nm, according to a relationship of Tdu × ∆νB = k.
Here, k is a constant depending on the temporal intensity profile. This equa-
tion suggests that with the decrease in pulse duration the spectral bandwidth
rapidly increases.

“Few-to-Mono Cycle Photonics” means technology and science are neces-
sary for the realization and application of the few-to-mono cycle pulse in the
optical frequency region. In this book, among these widely and rapidly devel-
oping fields, four basic technologies of the ultrabroadband pulse generation,
the ultrabroadband chirp or phase compensation, the phase and amplitude
characterization of the ultrashort pulse, and the feedback field control of the
ultrabroadband, ultrashort pulse are dealt with. In addition, the theory of the
ultrashort pulse nonlinear prorogation beyond the slowly-varying-envelope
approximation is developed. In particular, the generation of the shortest pulse
with a 2.8 fs duration, a 1.5 cycle and a 460–1060 nm spectral broadening in
the near-infrared and visible region, and the computer-controlled feedback
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Fig. 1. Monocycle Gaussian pulse with a center wavelength of 580 nm and a du-
ration of 1.9 fs. The inset shows a 15-fs Gaussian pulse with the same center wave-
length, for the comparison
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manipulation that combines spectral-phase characterization and compensa-
tion should be noted. However, the carrier-envelope phase technology, which
is currently developing rapidly, is hardly described.

Ultrashort optical pulse technology, which is based on sophisticated laser
technology, has the following significant, unique capabilities: to clarify ultra-
fast phenomena in all fields of natural science and engineering at the highest
time resolution; to control ultrafast time-sequential phenomena; to produce
an ultra-high peak electric field; and to generate, transmit and process an
ultra-high density information signal. In addition, since time is one of essen-
tial parameters to describe temporal dynamic phenomena in any disciplines,
this fastest technology (among the human-developed ones) is called for across
all the fields and disciplines in natural science and engineering. However,
this optical technology has the drawback of relatively low spatial resolution
(� µm) because of the electro-magnetic wave with a finite wavelength.

On the other hand, STM has the highest spatial resolution of sub-nm,
which enables us to observe spatial dynamics at single-atomic and single-
molecular levels in real space. There have been a lot of studies using STM,
which is related to various phenomena that occur on conductive surfaces,
such as thin film growth, molecular adsorption, chemical reaction, electron
standing wave, charge density wave, Kondo effect, thermo-dynamics of vol-
tex at surface of high-Tc superconductors. For current researchers, nanoscale
science and technology is one of the most attractive and important fields,
and realizing new functional devices with nanoscale elements is one of their
main goals. In these cases, interactions between optical and electronic systems
play essential roles. When the scale of specimens was larger, photo-assisted
spectroscopy provided a very helpful way to investigate such structures in
materials. For example, photoelectron spectroscopy, photo-scattering spec-
troscopies and reflection methods have revealed various physical properties
of materials until now. However, since the device size is already as small as
a few tens of nanometers, these conventional optical methods are not appli-
cable because of the spatial resolutions limited by light source wavelengths,
which are generally more than 100 nm as mentioned before. At this moment,
only STM related technology is a promising candidate for the investigation
of the characteristics of nanoscale structures. Since tunneling current is used
as the probe, electronic structures are picked up. Therefore, when STM is
combined with the optical system, the analysis of the transient response of
photo-induced electronic structures is expected at the ultimate spatial reso-
lution. Therefore, the combination of optical systems with STM is considered
to be a very promising technique. However, STM has the inevitable disad-
vantage of very low time resolution (∼ sub ms) because of the slow response
time of the highly sensitive, integrated detector for the very low tunneling
current.

To overcome the problems of both technologies and to utilize both fea-
tures, a new technology and science is required. That is “optical STM”. Op-
tical STM means technology and science of the femtosecond-time resolved
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Femtosecond

Fig. 2. Femtosecond-time-resolved STM and its application

STM (FTR-STM) and the STM-level phenomena controlled by femtosecond
optical pulses, tunable laser excitation and laser excitation power including
nonlinear optical phenomena at the atomic level. One example of the princi-
ples for FTR-STM is shown in Fig. 2. Its upper part is the schematic of the
FTR-STM system, and the lower part is an example result measured for a
GaAs sample. Relaxation of the photoinduced current in the band structure
is picked up as the two components in the picosecond range. The vales are
close to those obtained by the conventional optical pump probe technique,
however, since the probe is the tunneling current, the spatial resolution is
atomic scale in this case. That is, the controlled delay time between two
femtosecond optical pulses for excitation is employed to get highly temporal
resolution. The integrated tunneling current of a tip at a fixed position for



Preface XI

each pulse-delay time is employed to get highly spatial resolution, This princi-
ple is similar to the conventional pump (a pulse pair) and probe techniques in
ultrafast optics. That is, two sequential photon energies of two optical pulses
with delay time play the role of the pump to induce or change the tunneling
current. And, the observed signal of the integrated tunneling current plays
the role of the probe to get information on the temporal surface phenom-
ena at the atomic level. As a result, the probe signal as a function of the
delay time provides nonlinear-optically induced dynamics at the spatiotem-
poral extreme level. Thus, this spatiotemporal-extreme frontier technology
has a possibility to open a new field by clarifying and manipulating ultrafast
dynamic phenomena at the atomic level, which have not been revealed so
far by conventional techniques because of measurements of the temporally
coarsened and spatially averaged information in addition to the statisical
treatment of a single element.

Accordingly, this book consists of two parts. The first part of few-cycle
photonics is organized into six chapters. The second part of optical STM is
organized into four chapters.

In Chap. 1, Karasawa, Mizuta and Fang discuss theoretically nonlinear
propagation of ultrashort, ultrabroadband optical pulses exceeding the con-
ventional approximation of the slowly-varying envelope in an electric field by
various methods of numerical computer analysis.

In Chap. 2, Yamashita, Karasawa, Adachi and Fang review the experi-
ments leading to the generation of ultrabroadband optical pulses with a near
or over one-octave bandwidth and a well-behaved spectral phase by uncon-
ventional methods including an induced phase modulation technique.

In Chap. 3, Yamashita, Morita and Karasawa focus experimentally and
theoretically on the active chirp compensation for ultrabroadband pulses us-
ing a spatial light modulator (SLM) technique.

In Chap. 4, Morita, Yamane and Zhang cover the phase and amplitude
characterization of the electric field in few-cycle pulses with some techniques.

In Chap. 5, Yamashita, Yamane, Zhang, Adachi and Morita detail experi-
mentally and theoretically the feedback control that combines spectral-phase
characterization and compensation for optical pulse generation in the few-to-
mono cycle region in the case of various kinds of fiber outputs.

In Chap. 6, Morita and Toda discuss experimentally and theoretically
wavelength-multiplex electric-field manipulation of ultrabroadband pulses
and its application to the vibration motion control of molecules.

In Chap. 7, Shigekawa and Takeuchi introduce the fundamentals of laser
combined STM after brief explanation of the STM bases.

In Chap. 8, Shigekawa and Takeuchi review light-modulated scanning tun-
neling spectroscopy for visualization of nano-scale band structure in semicon-
ductors.

In Chap. 9, Futaba focuses on the control experiment of semiconductor
surface phenomena by femtosecond optical pulse-pair excitation at the atomic
level.
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In Chap. 10, Shigekawa and Takeuchi discuss the development of FTR-
STM using a method of two optical pulse excitation and its application.

In Chap. 11, Yamashita, Shigekawa and Morita describe briefly near-
future subjects and directions in few-cycle photonics and optical STM.

Many works introduced here have been carried out by many Hokkaido
University and Tsukuba University postdoctoral fellows, visiting associates,
graduate (and undergraduate) students. And, most of those works were done
under the support of Japan Science and Technology Corporation (JST) as a
project of “Optical-wave technology in the cycle-time region and its applica-
tion to single-atomic and single-molecular dynamic phenomena” for 1997 to
2002.

Finally, the editors wish to thank all of the authors who have contributed
to the excellent individual chapters and sections of this book. One of the
editors (M. Yamashita) greatly acknowledges Mr. Naoya Nakagawa and Ms.
Noriko Yoshida for their secretarial assistance.

Sapporo, Mikio Yamashita
October 2004 Hidemi Shigekawa

Ryuji Morita
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1 Nonlinear Propagation Theory
for Few-to-Mono Optical-Cycle Pulses beyond
the Slowly-Varying-Envelope Approximation
(SVEA)

N. Karasawa, Y. Mizuta, and X. Fang

The recent development of ultrashort pulse lasers as well as spectral-broaden-
ing and pulse-compression techniques permit us to use optical pulses which
have a duration as short as few-to-mono optical cycles and a bandwidth
of several hundred terahertz. To describe propagation of these pulses in a
nonlinear optical medium, care must be taken to select what approximations
may be used. The slowly-varying-envelope approximation (SVEA) has been
used widely to describe nonlinear pulse propagation in an optical fiber [1].
However, it is applicable only to pulses whose temporal envelope changes
more slowly compared with optical cycles. The other issue is how to describe
correctly linear dispersion relations of the medium when the bandwidths of
these pulses become large such that the conventional Taylor expansion at the
center frequency and the use of only first several terms may not be applicable.
Here we show methods to include the linear dispersion relations rigorously.

Section 1 shows the fundamental equations of the slowly-evolving wave ap-
proximation (SEWA) method. Section 2 introduces different numerical meth-
ods that do not use an envelope function to describe the electric field of a
pulse. Section 3 compares between numerical results and experimental re-
sults. Section 4 concludes the chapter.

1.1 Wave Equations for Nonlinear Pulse Propagation

1.1.1 Introduction

We start from Maxwell’s equations without source terms:

∇ × E(x, y, z, t) = −µ0
∂H(x, y, z, t)

∂t
, (1.1)

∇ × H(x, y, z, t) =
∂D(x, y, z, t)

∂t
, (1.2)

D(x, y, z, t) = ε0ε∞E(x, y, z, t) + P (x, y, z, t), (1.3)

where E, H, D, and P are electric field, magnetic field, electric displace-
ment, and polarization respectively. ε0 and µ0 are permittivity and perme-
ability constants of a vacuum and ε∞ is the relative permittivity at infinite
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frequency. Numerical methods that do not use an envelope function to de-
scribe the electric field of an optical pulse are derived from these equations.
The polarization P consists of a linear part PL and a nonlinear part PNL.
By combining (1.1)–(1.3), we have

∇2E(x, y, z, t) − 1
c2 ∂2

t DL(x, y, z, t) = µ0∂
2
t P NL(x, y, z, t), (1.4)

where c is the speed of light and DL = ε0ε∞E + PL. Here, the linear polar-
ization and its Fourier transform are given by

P L(x, y, z, t) = ε0

∫ ∞

−∞
χ(1)(t − t′)E(x, y, z, t′)dt′, (1.5)

P̃L(x, y, z, ω) = ε0χ̃
(1)(ω)Ẽ(x, y, z, ω), (1.6)

where χ(1)(t) is the linear susceptibility, ω is the angular frequency, and the
Fourier transform is defined as P̃L(x, y, z, ω) =

∫ ∞
−∞ P L(x, y, z, t) exp(iωt)dt.

In these equations, the medium is assumed to be isotropic. Using (1.6), we
have the Fourier transform of (1.4) as follows:(

∇2
⊥ + ∂2

z +
ε(ω)ω2

c2

)
Ẽ(x, y, z, ω) = −µ0ω

2P̃NL(x, y, z, ω), (1.7)

where ∇2
⊥ = ∂2

x +∂2
y and ε(ω) = ε∞ + χ̃(1)(ω) is the linear dielectric constant.

This equation is a starting point for deriving pulse propagation equations
using an envelope function. The following derivation is based on [1] and [2].

From now on, we consider propagation of a pulse in the z direction and as-
sume that all fields are linearly polarized in the x direction and hence consider
only that component. Then we write E(x, y, z, t) = x̂[E(x, y, z, t) exp(−iω0t)+
c.c.]/2 where x̂ is the unit vector in the x direction, ω0 is the center angular
frequency, E(x, y, z, t) is the envelope function and c.c. specifies the complex
conjugate. We introduce the Fourier transform of the electric field E(x, y, z, t)
in the following form:

Ẽ(x, y, z, ω) = F (x, y, ω)Ã(z, ω − ω0) exp(iβ0z), (1.8)

where β0 ≡ β(ω0) is the real part of the propagation constant at ω0. In this
equation, the unperturbed cross-section field F (x, y, ω) is determined by (1.7)
without the nonlinear polarization,(

∇2
⊥ +

ε(ω)ω2

c2

)
F (x, y, ω) = γ2(ω)F (x, y, ω), (1.9)

where γ(ω) ≡ β(ω) + iα(ω)/2 is the propagation constant with α(ω) to be
the attenuation constant. For one dimensional propagation, γ(ω) is given by
γ(ω) =

√
ε(ω)ω/c, because in this case, ∇⊥F (x, y, ω) = 0. When γ(ω) is

determined by (1.9), both material dispersion and waveguide dispersion are
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included. γ(ω) can have an imaginary part even if the material does not have a
loss or gain as in the case of pulse propagation in a gas-filled hollow fiber [3].
For the nonlinear polarization, we consider only the third-order nonlinear
optical effect with a coefficient χ(3) and assume that the medium is isotropic.
In the most general form, P NL(x, y, z, t) is given by

P NL(x, y, z, t) = ε0

∫∫∫ ∞

−∞
χ(3)(t − t1, t − t2, t − t3)

× E(x, y, z, t1)E(x, y, z, t2)E(x, y, z, t3)dt1dt2dt3. (1.10)

In this section, we only consider the form

P NL(x, y, z, t) = ε0χ
(3)E(x, y, z, t)

×
∫ ∞

−∞
R(t − t′)|E(x, y, z, t − t′)|2dt′, (1.11)

where R(t) is a response function. By using this form, we can treat the instan-
taneous electronic response (with R(t) = δ(t)) and the delayed vibrational
response (the Raman response) of the nonlinear medium. We assume that
the nonlinear polarization envelope function can be written in the following
form:

P̃NL(x, y, z, ω) = ε0χ
(3)(ω)F 3(x, y, ω)p̃NL(z, ω − ω0) exp(iβ0z), (1.12)

By writing in this form, it is assumed that the frequency dependence of
the cross-section field F (x, y, ω) is small (in the sense that the convolution
integral is replaced by the product in the frequency domain). We further
assume that we can separate the forward propagating wave and the backward
propagating wave and consider only the forward propagating one. We consider
that the nonlinear term is small and that the perturbation theory can be used,
i.e., the unperturbed operator H0 = ∇2

⊥ + ε(ω)ω2/c2 in (1.9) is added by the
small perturbation operator

∆H =
ω2

c2 χ(3)(ω)
p̃NL(z, ω − ω0)
Ã(z, ω − ω0)

F 2(x, y, ω), (1.13)

which is obtained by (1.7), (1.8) and (1.12). Using the first-order perturbation
theory, the change of the propagation constant ∆γ2 is calculated to be

∆γ2 =
∫

F (x, y, ω)∆HF (x, y, ω)dxdy∫
F (x, y, ω)F (x, y, ω)dxdy

=
ω2

c2 χ(3)(ω)
p̃NL(z, ω − ω0)
Ã(z, ω − ω0)

N(ω), (1.14)

where N(ω) =
∫

F 4(x, y, ω)dxdy/
∫

F 2(x, y, ω)dxdy. By using the first-order
perturbation theory, we assume that the pulse propagates in a single spatial
eigenmode. Using this result in an equation for Ã(z, ω − ω0), we obtain
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(∂2
z + γ2)(Ã(z, ω − ω0) exp(iβ0z)) = −∆γ2Ã(z, ω − ω0) exp(iβ0z). (1.15)

Thus we have

(∂2
z + 2iβ0∂z − β2

0 + γ2(ω))Ã(z, ω − ω0) =

−ω2N(ω)χ(3)(ω)
c2 p̃NL(z, ω − ω0). (1.16)

Converting the unit of A to [watt1/2] by multiplying
(
∫

F 2(x, y, ω)dxdy)1/2/(2/ε0cn(ω))1/2 and using the relation
χ(3)(ω) = 4ε0cn

2(ω)nI
2(ω)/4, where nI

2(ω) (in [m2/W]) is the nonlinear index
of refraction of the medium, we have

(∂2
z + 2iβ0∂z − β2

0 + γ2(ω))Ã(z, ω − ω0) =

−8n(ω)nI
2(ω)ω2

3c2Aeff(ω)
p̃NL(z, ω − ω0), (1.17)

where the effective mode area Aeff is given by

Aeff(ω) =
(
∫

F 2(x, y, ω)dxdy)2∫
F 4(x, y, ω)dxdy

. (1.18)

By inverse Fourier transforming (1.17), we have

(∂2
z + 2iβ0∂z − β2

0 + D̂2)A(z, t) =

−8g(ω0)ω2
0

3c2

(
1 +

i
ω0

∂t

)2

(1 + i(∂ω(ln g(ω))|ω0)∂t)pNL(z, t), (1.19)

where g(ω) = n(ω)nI
2(ω)/Aeff(ω) and we include the dispersion of g(ω) up to

the first order terms in the Taylor expansion at ω0. D̂ is given by the Taylor
expansion of the propagation constant as

D̂ =
∞∑

n=0

in

n!

(
∂n

ω

(
β(ω) +

iα(ω)
2

)
|ω0

)
∂n

t . (1.20)

At this point, we convert time coordinate such that the center of the
pulse is always at time origin as T = t − β̇0z (β̇0 = ∂ω(β(ω))|ω0) and ξ = z
(∂t = ∂T , ∂z = ∂ξ − β̇0∂T ). Then we have[

∂2
ξ + 2iβ0

(
1 + i

β̇0

β0
∂T

)
(∂ξ − iD̂

′
) + D̂

′2

]
A(ξ, T ) =

−8g(ω0)ω2
0

3c2

(
1 +

i
ω0

∂T

)2

(1 + i(∂ω(ln g(ω))|ω0)∂T )pNL(ξ, T ), (1.21)

where D̂
′
= D̂ − β0 − iβ̇0∂T . Applying the operator (2iβ0(1 + iβ̇0∂T /β0))−1

to both sides of this equation, we have
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2iβ0

(
1 + i

β̇0

β0
∂T

)−1

(∂2
ξ + D̂

′2) + ∂ξ − iD̂
′

⎤⎦A(ξ, T )

= i
4g(ω0)ω2

0

3c2β0

(
1 + i

β̇0

β0
∂T

)−1 (
1 +

i
ω0

∂T

)2

×(1 + i(∂ω(ln g(ω))|ω0)∂T )pNL(ξ, T ). (1.22)

Up to this point, no approximations concerning the slowness of the change
of the pulse envelope function with respect to time nor position have been
introduced. Now we introduce the approximation with respect to position in
(1.22). The first term of the left hand side of this equation can be ignored
if |∂ξA| � β0|A|, which physically means that the spatial variation of the
envelope is negligible in the scale of the wavelength of the pulse. Also, we can
show that(

1 + i
β̇0

β0
∂T

)−1 (
1 +

i
ω0

∂T

)2

= 1 + i

(
2
ω0

− β̇0

β0

)
∂T −

(
β̇0

β0
− 1

ω0

)2

∂2
T

(
1 + i

β̇0

β0
∂T

)−1

.

The third term of the right hand side of the above equation can be neglected if
the difference between the group velocity (vg = 1/β̇0) and the phase velocity
(vp = ω0/β0) of the pulse is small. These two approximations are the same
as SEWA [4] but unlike SVEA, and in the former approximations there are
no conditions specifying the slowness of the temporal change of the envelope
compared with the optical cycle time. Thus this equation can be used for the
pulse as short as single optical cycle. By using these approximations, (1.22)
becomes

∂ξA(ξ, T ) = i(D̂
′
+ D̂corr)A(ξ, T )

+ i
4g(ω0)ω2

0

3c2β0
(1 + is∂T )pNL(ξ, T ), (1.23)

where D̂corr = (1 + iβ̇0∂T /β0)−1D̂
′2/(2β0) is a small correction term and

s = 2/ω0 − β̇0/β0 + ∂ω(ln g(ω))|ω0 is a coefficient for a steepening term.

1.1.2 Dispersion Terms

When the nonlinear polarization is not present (pNL = 0) and the correction
term D̂corr is neglected, we have

∂ξA(ξ, T ) = iD̂
′
A(ξ, T )

=
(

−α0

2
− i

α̇0

2
∂T − i

2
γ

(2)
0 ∂2

T +
1
6
γ

(3)
0 ∂3

T + ...

)
A(ξ, T ),(1.24)
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where α0 = α(ω0), α̇0 = ∂ωα(ω)|ω0 , and γ
(n)
0 = ∂n

ωγ(ω)|ω0 . If the loss or the
gain of the medium is not present (α = 0), we have the following equation in
the lowest order

∂ξA(ξ, T ) = − i
2
β

(2)
0 ∂2

T A(ξ, T ), (1.25)

where β
(2)
0 is a group velocity dispersion (GVD) parameter. Due to this pa-

rameter, a linear chirp is introduced to the pulse during propagation.

1.1.3 Nonlinear Terms

The nonlinear term pNL for the single pulse propagation is obtained by in-
serting the relation E(x, y, z, t) = x̂[E(x, y, z, t) exp(−iω0t)+c.c.]/2 in (1.11)
and keeping only terms that contain exp(−iω0t). The term that contains
exp(−3iω0t) (third-harmonic generation term) is ignored because the phase-
matching condition is not usually satisfied. Using (1.8) and (1.12) and con-
sidering only the forward propagating wave, we have

pNL(ξ, T ) =
1
4

∫ ∞

0
R(T ′)[2|A(ξ, T − T ′)|2A(ξ, T )

+ A2(ξ, T − T ′)A∗(ξ, T ) exp(2iω0T
′)]dT ′, (1.26)

where the response function R(t) is given by

R(T ) = (1 − fR)δ(T ) + fRhR(T ). (1.27)

This R(t) contains both the instantaneous Kerr nonlinearity (δ(T )) and the
delayed Raman response (hR(T )). For gas-filled hollow fiber experiments,
noble gas is used as the nonlinear medium. In this case, only the electronic
instantaneous term is present (fR = 0) and (1.26) becomes

pNL(ξ, T ) =
3
4
|A(ξ, T )|2A(ξ, T ). (1.28)

When an optical pulse propagates in the medium with this type of nonlinear
polarization, the phase of the pulse is modulated. This phase modulation is
called self-phase modulation (SPM). During the propagation of the pulse, the
refractive index of the medium is increased by the time-dependent intensity
of the pulse by the nonlinear polarization. This phase modulation results the
time-dependent nonlinear chirp and new frequency components are created
during propagation. This is a very important mechanism for the generation
of the ultrabroadband pulse. In (1.23), the term s∂T is called the steepening
term since it modifies the shape of the pulse such that it is steepened at the
trailing edge during propagation.

For a medium like fused-silica, the Raman response term hR(T ) that arises
from the molecular vibration must also be considered. This Raman term was
determined experimentally and for the fused-silica, fR = 0.3 and
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hR(T ) =
τ2
1 + τ2

2

τ1τ2
2

exp(−T/τ2) sin(T/τ1), (1.29)

where τ1 = 12.2 fs and τ2 = 32 fs [5]. Since the change of hR is much slower
than the optical cycles of 2ω0, (1.26) can be written as

pNL(ξ, T ) =
3
4
[(1 − fR)|A(ξ, T )|2

+
2
3
fR

∫ ∞

0
hR(T ′)|A(ξ, T − T ′)|2dT ′]A(ξ, T ). (1.30)

1.1.4 Induced Phase Modulation

If two pulses are co-propagating in the same medium, we have additional
nonlinear terms due to the interaction between these pulses. In this case, we
insert the electric field of the form

E(x, y, z, t) = x̂[E1(x, y, z, t) exp(−iω01t)
+ E2(x, y, z, t) exp(−iω02t) + c.c.]/2, (1.31)

where ω01 and ω02 are the center angular frequencies of the pulses 1 and 2,
in (1.11) and keeping only terms that contain exp(−iω01t) and exp(−iω02t).
Terms that contain exp(−i3ω01t) or exp(−i3ω02t) (third-harmonic terms)
and terms that contain exp(−i(2ω01 − ω02)t) or exp(−i(2ω02 − ω01)t) (four-
wave mixing terms) are ignored because the phase-matching conditions are
not usually satisfied. We obtain the following equation for each pulse j (j =
1 or 2):

∂ξj
Aj(ξj , Tj) = i(D̂

′
j + D̂corr,j)Aj(ξj , Tj)

+ iηj

[
(1 + isj∂Tj

)Sj +
hj(ω0j)
g(ω0j)

(1 + iuj∂Tj
)Ij

]
, (1.32)

where

Sj =
[
(1 − fR)|Aj(ξj , Tj)|2

+
2
3
fR

∫ ∞

0
hR(T ′)|Aj(ξj , Tj − T ′)|2dT ′

]
Aj(ξj , Tj), (1.33)

Ij =
[
2(1 − fR)|A3−j(ξ3−j , T3−j)|2

+
2
3
fR

∫ ∞

0
hR(T ′)|A3−j(ξ3−j , T3−j − T ′)|2dT ′

]
Aj(ξj , Tj). (1.34)

In this equation, ηj = ω2
0jg(ω0j)/c2β0j , ξj = z and Tj = t − ˙β0jz. D̂

′
j ,

D̂corr,j and sj are obtained from D̂
′
, D̂corr and s by replacing ω0 and
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∂n
ω(γ(ω))|ω0 with ω0j and ∂n

ω(γ(ω))|ω0j
respectively. Also, hj(ω) = n(ω)nI

2(ω)/
O(ω, ω03−j), uj = 2/ω0j − ˙β0j/β0j + ∂ω ln(hj(ω))|ω0j

, and the mode overlap
integral is given by

O(ω, ω03−j) =
∫

F 2(x, y, ω)dxdy
∫

F 2(x, y, ω03−j)dxdy∫
F 2(x, y, ω)F 2(x, y, ω03−j)dxdy

. (1.35)

In (1.32), Sj is the nonlinear term that arises from the intensity of the same
pulse, while Ij is the nonlinear term the arises from the intensity of the
other pulse. The phase modulation that arises from the latter term is called
the induced-phase modulation (IPM) or the cross-phase modulation (XPM).
Equation (1.34) shows that the instantaneous part of the IPM term is twice
as large as the SPM term if the mode overlap is the same. Due to the IPM
term, the phase of each pulse is modulated by the intensity of the other
pulse and the nonlinear chirp is created. Due to this nonlinear chirp, new
frequency components are created. The use of IPM for the generation of the
ultrabroadband optical pulse has been proposed [6–8].

1.1.5 Comparison with the Previous Derivation

SVEA Equation

In the SVEA, we neglect ∂2
z term in (1.17). Also it is assumed that γ2(ω) −

β2
0 = (γ(ω) + β0)(γ(ω) − β0) � 2β0(γ(ω) − β0) in (1.17). This implies that

|γ(ω) − β0| � |β0|. After these operations and dividing both sides of this
equation by 2iβ0, we obtain

(∂z − i(γ(ω) − β0))Ã(z, ω − ω0) =

i
4n(ω)nI

2(ω)ω2

3c2Aeff(ω)β0
p̃NL(z, ω − ω0). (1.36)

By inverse Fourier transforming this equation, neglecting terms containing
powers of ∂t/ω0 from the assumption |∂tA/ω0| � |A|, converting to the
moving time coordinate (T = t− β̇0z), and approximating D̂

′ � −β
(2)
0 ∂2

T /2−
iβ(3)

0 ∂3
T /6 for the fused-silica fiber (β(j)

0 = ∂j
ω(β(ω))|ω0), we have

∂ξA(ξ, T ) = (− i
2
β

(2)
0 ∂2

T +
1
6
β

(3)
0 ∂3

T )A(ξ, T )

+i
4g(ω0)ω2

0

3c2β0
pNL(ξ, T ). (1.37)

In addition to the assumptions |∂ξA| � β0|A| and |∂T A| � ω0|A|, |γ(ω) −
β0| � |β0| is conventionally assumed in the SVEA. The latter condition
implies that |ω − ω0| � |ω0| and this condition is clearly not satisfied for
the ultrabroadband pulse propagation. Also in the conventional SVEA, the
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Raman term is not considered in PNL (fR = 0 in (1.27)). If only the GVD
term is considered for dispersion and does not consider the Raman term, we
have

∂ξA(ξ, T ) = − i
2
β

(2)
0 ∂2

T A(ξ, T ) + i
g(ω0)ω2

0

c2β0
|A(ξ, T )|2A(ξ, T ). (1.38)

This equation is known as the nonlinear Schrödinger equation (NLSE). It
is well known that the optical soliton solutions can be obtained from this
equation when β

(2)
0 < 0 [1].

The Equation by Blow and Wood

In the paper by Blow and Wood [5], the right hand side of (1.17) is formally
defined as −Π̂Ã using the operator Π̂ and it is written as

(i∂z − β0 +
√

γ2(ω) + Π̂) × (i∂z − β0 −
√

γ2(ω) + Π̂)Ã = 0. (1.39)

It is identified that the first term corresponds to the forward propagating
wave and only the following equation is considered:

(i∂z − β0 +
√

γ2(ω) + Π̂)Ã = 0. (1.40)

By approximating
√

γ2(ω) + Π̂ � γ(ω) + Π̂/(2γ(ω)), we have

(∂z − i(γ(ω) − β0))Ã =
iΠ̂Ã

2γ(ω)
=

i4n(ω)nI
2(ω)ω2

3γ(ω)c2Aeff
p̃NL. (1.41)

For the fused-silica fiber case, we can set γ(ω) = ωn(ω)/c. The inverse Fourier
transformation and the conversion of the time coordinate yield

∂ξA(ξ, T ) = iD̂
′
A(ξ, T ) + i

4g′(ω0)ω0

3c
(1 + is′∂T )pNL(ξ, T ), (1.42)

where g′(ω0) = nI
2(ω0)/Aeff(ω0) and s′ = 1/ω0 + ∂ω(ln g′(ω))|ω0 . This equa-

tion does not assume neither |∂zA| � β0|A| nor |∂T A| � ω0|A|. However the

nonlinear term must be small to satisfy
√

γ2(ω) + Π̂ � γ(ω) + Π̂/(2γ(ω)).
In fact, for the most experimental situations covered in this section, the con-
dition |Π̂/γ2(ω)| � 1 does not hold. However, its form is almost identical to
the equation derived using the SEWA method.

1.2 Different Numerical Methods

In this section, various numerical methods to simulate the nonlinear prop-
agation of the ultrabroadband and/or few-optical-cycle pulse are shown. In
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the SEWA method derived in Sect. 1.1.1, an envelope function is used to
represent the electric field of an optical pulse as in the conventional SVEA
method. It makes numerical calculations more efficient than methods that
don’t use the envelope function. This is because the optical field of the pulse
is calculated only at discrete points and the number of points required to
represent the pulse is much lower in the method with the envelope function
than in the method without it. The step sizes for time and position must be
much smaller than the period and the wavelength of the carrier optical wave
in the method without the envelope function. In spite of this disadvantage,
it is desirable to use the method without the envelope function in some situ-
ations. For example, if the dispersion and/or the nonlinearity of the medium
is very strong, the condition |∂ξA| � β0|A| or vg � vp may not be satisfied.
Also, for a few-optical-cycle pulse, the influence of the carrier-envelope off-
set phase on the pulse waveform during propagation can become significant
and this effect cannot be included in the method with the envelope function.
Moreover, nonlinear polarization terms neglected due to the phase-mismatch
can become significant in some situations. In these cases, the direct inte-
grations of Maxwell’s equations may become necessary. The Fourier direct
method (FDM), the finite-difference frequency-domain (FDFD) method, and
the finite-difference time-domain (FDTD) method have been developed to
integrate Maxwell’s equations directly.

In Table 1.1, selected accomplishments in numerical methods to simulate
ultrashort optical pulses are summarized.

1.2.1 Split-Step Fourier Method

To simulate the nonlinear propagation of an optical pulse using an envelope
function by SEWA and SVEA methods, the split-step Fourier method [1] is
commonly used. In this method, we formally rewrite (1.23) with pNL given
in (1.30) in the following form:

∂ξA(ξ, T ) = D̂A(ξ, T ) + N̂A(ξ, T ), (1.43)

where D̂ = i(D̂
′
+ D̂corr) is the dispersion operator and N̂ is the nonlinear

operator that depends on A(ξ, T ) and its time derivative. Given the initial
field A(ξ, T ), we calculate the field A(ξ + ∆ξ, T ) in the following three steps,
where ∆ξ is a step size for position. In the first operation, we ignore the
nonlinear term and integrate (1.43) for a half step ∆ξ/2 as follows,

A(ξ + ∆ξ/2, T ) = exp(D̂∆ξ/2)A(ξ, T ). (1.44)

In the frequency domain, this equation becomes

Ã(ξ + ∆ξ/2, ω) = exp(D(ω)∆ξ/2)Ã(ξ, ω). (1.45)
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Table 1.1. Progress in numerical methods to simulate ultrashort laser pulses

Year Accomplishment Researcher References

1966 Finite-difference time-domain
method for the linear medium

Yee [9]

1973 Slowly-varying envelope
approximation for the nonlinear
Schrödinger equation to describe a
fiber soliton

Hasegawa, Tappert [10]

1973 Split-step Fourier method Hardin, Tappert,
Fisher, Bischel

[11,12]

1989 The extension of the
slowly-varying wave approximation
to include the analytic Raman
function and steepening

Blow, Wood [5]

1992 Finite-difference time-domain
method for the nonlinear medium

Goorjian, Taflove,
Joseph, Hagness

[13,14]

1997 Slowly-evolving wave
approximation

Brabec, Krausz [4]

2002 Fourier direct method Mizuta, Nagasawa,
Ohtani, Morita,
Yamashita

[15]

2002 Finite-difference frequency-domain
method

Karasawa [16]

In this equation, the dispersion operator becomes a function of angular fre-
quency and can be calculated easily. Also, the Fourier transform can be cal-
culated very efficiently using the fast Fourier transform (FFT) routine. Thus
we have

A(ξ + ∆ξ/2, T ) = FT−1[exp(D(ω)∆ξ/2)Ã(ξ, ω)], (1.46)

where FT−1 is the inverse Fourier transform. In the second operation, the
nonlinear operator is evaluated for the entire step at this point as

A′(ξ + ∆ξ/2, T ) = exp(N̂∆ξ)A(ξ + ∆ξ/2, T ), (1.47)

where the nonlinear operator N̂ is calculated using A(ξ + ∆ξ/2, T ) in (1.46).
In the third operation, only the dispersion operator is applied for the half
step as in the first operation as follows:

A(ξ + ∆ξ, T ) = FT−1[exp(D(ω)∆ξ/2)Ã′(ξ + ∆ξ/2, ω)]. (1.48)

By repeating these operations, optical fields at any distance can be calculated.
The dispersion terms in (1.23) can be evaluated in the frequency domain as:
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D̂
′
(ω) = β(ω) +

iα(ω)
2

− β0 − β̇0(ω − ω0), (1.49)

D̂corr(ω) =
D̂

′2(ω)
2(β0 + β̇0(ω − ω0))

. (1.50)

These functions can be obtained from the dispersion relation of the medium
and the waveguide using (1.9). The material dispersion of the fused-silica can
be obtained by the Sellmeier equation [17], where the refractive index n(λ) of
the fused-silica a as function of wavelength λ = 2πc/ω in µm (0.21 µm < λ <
3.71 µm) is given as

n2(λ) − 1 =
0.6961663λ2

λ2 − (0.0684043)2
+

0.4079426λ2

λ2 − (0.1162414)2

+
0.8974794λ2

λ2 − (9.896161)2
. (1.51)

In practice, only the limited number of frequency points used in the fast
Fourier transform routine are necessary in calculations and (1.49) and (1.50)
are evaluated once and stored in the memory, thus the calculation of this
method is very efficient.

1.2.2 Finite-Difference in the Frequency Domain Method

In the finite-difference frequency-domain (FDFD) method [16], an envelope
function is not used and the fields of the pulse are directly calculated with
Maxwell’s equations. Thus no assumptions regarding the slowness of the vari-
ation of the envelope function with respect to time or position are introduced.
Also, it is possible to investigate effects that cannot be treated in the method
with the envelope function, e.g., the effect of the carrier-envelope offset phase
or the effect of the four-wave mixing terms in the case of co-propagation of
multiple pulses. Compared with the FDTD method, the FDFD method has
an advantage that arbitrary linear dispersion relations can be incorporated
easily since all calculations are done in the frequency domain. On the other
hand, only simple Lorentz dispersion relations have been simulated in the
FDTD method.

To derive the FDFD equations, we start from Maxwell’s equations ((1.1)
to (1.3)) in one dimension:

∂µ0Hy(x, t)
∂t

=
∂Ez(x, t)

∂x
, (1.52)

∂Dz(x, t)
∂t

=
∂Hy(x, t)

∂x
, (1.53)

Dz(x, t) = ε0ε∞Ez(x, t) + Pz(x, t), (1.54)

where Ez, Hy, Dz, and Pz are electric field, magnetic field, electric displace-
ment, and polarization, respectively, and fields are assumed to be propagating
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in the x direction. Introducing a new time variable T = t − β1x and Fourier
transforming, we have

−iωµ0H̃y(x, ω) = iωβ1Ẽz(x, ω) +
∂Ẽz(x, ω)

∂x
, (1.55)

−iωD̃z(x, ω) = iωβ1H̃y(x, ω) +
∂H̃y(x, ω)

∂x
. (1.56)

To solve (1.55) and (1.56) using a finite-difference scheme, we use a small
position increment ∆x and write using a leap-frog scheme,

Ẽz(x + ∆x, ω) = Ẽz(x, ω) − iω∆xµ0H̃y(x +
∆x

2
, ω)

− iω∆x
β1

2
(Ẽz(x + ∆x, ω) + Ẽz(x, ω)), (1.57)

H̃y(x +
3∆x

2
, ω) = H̃y(x +

∆x

2
, ω) − iω∆xD̃z(x + ∆x, ω)

− iω∆x
β1

2
(H̃y(x +

3∆x

2
, ω) + H̃y(x +

∆x

2
, ω)).(1.58)

These equations are solved for the fields at new position from the fields at
previous position with the equation for D̃z(x + ∆x, ω) as follows,

D̃z(x + ∆x, ω) = ε0(ε∞ + χ̃(1)(ω))Ẽz(x + ∆x, ω)
+ (1 − fR)ε0χ

(3)FT [E3
z (x + ∆x, t)]

+ fRχ(3)FT [Ez(x + ∆x, t)G(x + ∆x, t)], (1.59)

where the nonlinear polarization of (1.11) and the response function of (1.29)
are used and G(x, t) is given by

G(x, t) = ε0

∫ ∞

0
hR(t − t′)E2

z (x, t′)dt′. (1.60)

Starting with initial fields Ẽz(x, ω) and H̃y(x + ∆x/2, ω), we obtain Ẽz(x +
∆x, ω) using (1.57). Then we calculate D̃z(x+∆x, ω) using (1.59). Finally, we
obtain H̃y(x + 3∆x/2, ω) using (1.58). By repeating these operations, fields
at an arbitrary position can be calculated.

1.2.3 Finite-Difference Time-Domain Method

In the finite-difference time-domain (FDTD) method, the electric field and
the magnetic field of a pulse are directly calculated in the time domain [13,
14,18]. For a one-dimensional case, equations to be solved are (1.52)–(1.54).
The finite-difference equations for optical fields are given as
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µ0

∆t
(Hy(x + ∆x/2, t + ∆t/2) − Hy(x + ∆x/2, t − ∆t/2))

=
1

∆x
(Ez(x + ∆x, t) − Ez(x, t)), (1.61)

1
∆t

(Dz(x, t + ∆t) − Dz(x, t))

=
1

∆x
(Hy(x + ∆x/2, t + ∆t/2) − Hy(x − ∆x/2, t + ∆t/2)), (1.62)

where ∆t is a step size for time. Starting from the initial fields Ez(x, t) and
Hy(x, t−∆t/2), we calculate Hy(x, t+∆t/2) from (1.61). Then we calculate
Dx(x, t + ∆t) from (1.62). Next, we obtain Ez(x, t + ∆t) from Dx(x, t + ∆t)
using (1.54). If we assume the nonlinear polarization given by (1.11), we have

Ez =
Dz − F − fRχ(3)EzG

ε0(ε∞ + (1 − fR)χ(3)E2
z )

, (1.63)

where F is the linear polarization given by

F (x, t) = ε0

∫ t

0
χ(1)(t − t′)Ez(x, t′)dt′ (1.64)

and G is given by (1.60). To calculate Ez(x, t + ∆x) by (1.63), we need to
know F (x, t + ∆t) and G(x, t + ∆t) in addition to Dz(x, t + ∆t). For the
Lorentz linear dispersion and the Raman response function given in (1.29),
second-order differential equations for both F and G can be obtained and
these equations are solved using the finite difference scheme. In the original
FDTD method, only the Lorentz linear dispersion with a single resonance
term was solved. Modified equations were derived for the linear dispersion
terms with three resonance terms. By using these modified FDTD equations,
nonlinear pulse propagation in the fused-silica material with the accurate
linear dispersion relation have been simulated [19] (See Sect. 1.3.3).

1.2.4 Fourier Direct Method

Preliminary Remarks

The Fourier Direct Method (FDM) was extended from the split-step Fourier
method that is generally employed for solving the nonlinear Schrödinger equa-
tion (NLSE). In the NLSE, the envelope of the electric field is the only variable
to be solved, and its solution is easily obtained by the exponential integral.
On the other hand, methods that directly solve Maxwell’s equations without
assumptions or approximations incorporate several linear and nonlinear ef-
fects. In addition, even if Maxwell’s equations are one-dimensionalized, they
are still multi-dimensional evolution equations to be solved for both the elec-
tric field and the magnetic field, and some terms are described by differentials
or integrals.
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In the FDM, Maxwell’s equations are re-composed into the “bi-directional
propagation equations” for the right-traveling forward wave and the left-
traveling backward wave. Since they are coupled through a nonlinear term
and solved simultaneously, the solution procedure must be multi-dimensional,
and the nonlinear term should be integrated by general methods other than
the exponential integral. In the FDM, the bi-directional propagation equa-
tions suggest proper initial conditions, and clarify how the slowly varying
envelope approximation (SVEA) is discarded.

Polarization-preserving fibers maintain the linear polarization of the light
launched with the polarization along one of the principal axes of the fiber.
We choose here the z-direction parallel to the fiber, the x-direction along
the axis of the polarization, and the y-direction normal to both the x- and
z-directions. Since the electric field E and the magnetic field H have, in
this case, only the components Ex and Hy, we derive averaged Maxwell’s
equations (notations in this section are consistently used also in Sect. 1.3.4):⎧⎪⎪⎨⎪⎪⎩

∂E

∂z
= −∂B

∂t
,

−∂H

∂z
=

∂D

∂t
.

(1.65)

These are a set of evolution equations for

E(z, t) ≡ {Ex(x, y, z, t)}AV , (1.66a)
H(z, t) ≡ {Hy(x, y, z, t)}AV , (1.66b)

where {· · · }AV means the average over a cross section normal to the fiber,
B(z, t) = µ0H(z, t) is an averaged component of the magnetic flux density,
and an averaged component of the electric flux density D(z, t) is related
with the linear and nonlinear parts of the induced polarization PL(z, t) and
PN(z, t) as

D(z, t) = ε0E(z, t) + PL(z, t) + PN(z, t).

Usually, the three-dimensional wave propagation equation is derived from
the full three-dimensional Maxwell’s equations, which are solved by the
method of separation of variables as

Ex(x, y, z, t) =
1
2π

∫ ∞

−∞
dωe−iωtF (x, y, ω)Ẽ(z, ω).

We stress here the importance of the core dispersion, the frequency-depen-
dence of the intensity distribution in the cross section F (x, y, ω), showing the
change of the effective core area according to the frequency of the field. The
form of F (x, y, ω) is determined from one of the equations separated from the
three-dimensional wave propagation equation. Thus, instead of Ex(x, y, z, t)
or E(z, t), we use
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Ẽ(z, ω) ≡ FE(z, t) = F {Ex(x, y, z, t)}AV

=
{

F (x, y, ω)Ẽ(z, ω)
}

AV

=
1

A(2)(ω)

∫∫
dxdy |F (x, y, ω)|2 Ẽ(z, ω), (1.67)

and H̃(z, ω) = −cµ0FH(z, t) as the proper dependent variables hereafter.
The operator F denotes the Fourier transform in time, and

{· · · }AV ≡ 1
A(2)(ω)

∫∫
dxdyF (x, y, ω) · · · , (1.68a)

A(n)(ω) ≡
∫∫

dxdy |F (x, y, ω)|n (1.68b)

defines the average over a cross section normal to the fiber. As with the basic
equations, we derive ⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂Ẽ

∂z
= − iω

c
H̃,

∂H̃

∂z
= − iω

c

(
n2

LẼ + F
PN

ε0

)
,

(1.69)

from the Fourier transform of (1.65), where the term including the frequency-
dependent complex linear refractive index nL(ω) = nR

L (ω) + inI
L(ω) coming

from PL(z, t) in (1.65) includes the effects of absorption and finite-time re-
sponse. Furthermore, for the nonlinear induced polarization, we use the fol-
lowing expression, third-order in Ex(x, y, z, t) or E(z, t) and including the
delayed Raman response represented by χ(3)R(t):

F
PN(z, t)

ε0
= F

{
χ(3)Ex(x, y, z, t)

∫ t

−∞
dt1R(t − t1)E2

x(x, y, z, t1)
}

AV
. (1.70)

Bi-directional Propagation Equation

Orthodoxly, a set of equations with a constant n0⎧⎪⎪⎨⎪⎪⎩
∂E

∂z
=

1
c

∂H

∂t
,

∂H

∂z
=

n2
0

c

∂E

∂t

(1.71)

are solved as the general solution

E(t, z) = g+ (t − n0z/c) + g− (t + n0z/c) (1.72)

of the second-order partial differential equation ∂2E/∂z2 = (n0/c)2 ∂2E/∂t2,
which is derived by eliminating H between the equations in (1.71). Each term
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in (1.72) means the forward wave and the backward wave, and is determined
from the initial E(t, z = 0) with its derivative in z. An alternative way is to
combine both equations in (1.71) as⎧⎪⎪⎨⎪⎪⎩

∂(E − H/n0)
∂z

= −n0

c

∂(E − H/n0)
∂t

,

∂(E + H/n0)
∂z

=
n0

c

∂(E + H/n0)
∂t

.

(1.73)

They are equations for a1 and a2 defined as below, and solved independent
of each other: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

a1 ≡ 1
2

(
E − H

n0

)
= g+

(
t − n0

c
z
)

,

a2 ≡ 1
2

(
E +

H

n0

)
= g−

(
t +

n0

c
z
)

.

(1.74)

Of course, a1 and a2 mean the forward wave and the backward wave, re-
spectively, and we can reproduce (1.72) by summing them up. (1.71) is the
simplification of (1.65) and (1.69). Hereafter, this approach is extended so
that the linear refractive index depends on the frequency, the nonlinear in-
teraction between the forward wave and the backward wave is included as
well within each of them, and so on.

For a high-power, ultrashort optical pulse to be propagated in a fiber, we
need to scale the spatial coordinate, the time, the frequency and the fields in
(1.69) by the characteristic length Z, the characteristic time T and the peak
power of the pulse P as follows:

ξ = z/Z, (1.75a)
τ = (t − z/v)/T, (1.75b)

ωC = Tω, (1.75c)(
Ẽ(z, ω)
H̃(z, ω)

)
= Ep(ω)

(
B1(ξ, ωC)
B2(ξ, ωC)

)
, (1.75d)

where v is the velocity of the coordinate system moving together with the
pulse. As T , Z and v, at present, the half-width of the envelope of the tem-
poral electric field profile (t1/1.665 for the Gaussian profile where t1 is its
full-width at half-maximum, FWHM), the dispersion length LD (see (1.92a))
and the group velocity are properly chosen, respectively. We scale the electric

and the magnetic fields by Ep(ω) ≡
√

P/[cε0nR
L (ω)A(2)(ω)] referring to

P = maxt

{
cε0n0

∫∫
dxdy|E(x, y, z, t)|2

}
� cε0n0A

(2)E2
pmaxτ

{|b1(ξ, τ)|2} ,

where maxt,τ {· · · } means the maximum in time, n0 is nR
L (ω) at the central

angular frequency ω0, and b1(ξ, τ) ≡ F−1B1(ξ, ωC) is the scaled electric field.
Then, maxτ

{|b1(ξ, τ)|2} is the order of one, and (1.69) reduces to
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∂B1

∂ξ
= −iωZ

(
B1

v
+

B2

c

)
,

∂B2

∂ξ
= −iωZ

(
B2

v
+

n2
LB1

c

)
+ GN,

(1.76a)

GN ≡ Z

Ep(ω)

(
− iω

c
F

PN

ε0

)
. (1.76b)

Here we define A1,2 from B1,2, and express B1,2 by A1,2 inversely as follows:

A =
(

A1
A2

)
=

1
nL + n∗

L

(
n∗

LB1 − B2
nLB1 + B2

)
, (1.77a)

B =
(

B1
B2

)
=

(
A1 + A2

n∗
LA2 − nLA1

)
. (1.77b)

Using these A1,2, we diagonalize the linear terms in the right side of (1.76a)
as ⎧⎪⎪⎨⎪⎪⎩

∂A1

∂ξ
= FL1 − FN, FL1 ≡ iZ

(
β − ω

v

)
A1,

∂A2

∂ξ
= FL2 + FN, FL2 ≡ iZ

(
−β∗ − ω

v

)
A2,

(1.78a)

where

β(ω) ≡ ωnL(ω)
c

, (1.79a)

FN ≡ GN

nL + n∗
L

≡ Z

2nR
L (ω)Ep(ω)

(
− iω

c
F

PN

ε0

)
(1.79b)

= −iγFDM(ω)Fb1(ξ, τ)F−1R̃(ω)F[b1(ξ, τ)]2, (1.79c)

γFDM(ω) ≡ ωZ

c

χ(3)

2nR
L (ω)

[Ẽp(ω)]2, (1.79d)

[Ẽp(ω)]2 ≡ P

cε0nR
L (ω)Aeff(ω)

, (1.79e)

Aeff(ω) ≡ [A(2)(ω)]2

A(4)(ω) {1 + ∆(ω)} . (1.79f)

For the linear refractive index, we adopt here the following modified Sell-
meier equation with the attenuation [20]

[nL(ω)]2 = 1 +
N∑

j=1

Sj

(
1

ωj − iΓj − ω
+

1
ωj + iΓj + ω

)
, (1.80)

where N = 2, ω1 = 0.21 rad/fs, S1 = 0.06 fs−1, Γ1 = 3.77 × 10−3 rad/fs,
ω2 = 18.9 rad/fs, S2 = 10.2 fs−1, and Γ2 = 0.00 rad/fs. At the wavelength
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λ0 = 800 nm (the frequency ω0 = 2.356 rad/fs), (1.80) gives nR
L (ω0) = 1.446.

The propagation constant β(ω) is extended to complex numbers together
with nL(ω). Both A1 and A2 attenuate with z, since Im β(ω) > 0.

Furthermore, the nonlinear response function, composed of the instanta-
neous part and the delayed Raman part, and its Fourier-transform are [5]:

R(t) = (1 − fR)δ(t) + fRhR(t), (1.81a)

R̃(ω) = FR(t) = (1 − fR) + fRFhR(t), (1.81b)

FhR(t) = H̃(ω − ω0) + H̃∗(−ω − ω0), (1.81c)

H̃(ω) = F
τ2
1 + τ2

2

τ1τ2
2

e−t/τ2 sin
(

t

τ1

)
=

τ2
1 + τ2

2

τ2
1 (1 − iωτ2)2 + τ2

2
. (1.81d)

The value of the nonlinear susceptibility was obtained from

n2 = (3χ(3))/(8nR
L (ω0)) = 1.220 × 10−22 (V/m)−2

(= 40πε0n2(esu), n2(esu) = 1.097 × 10−13 esu)

for the fused-silica fiber [21], and τ1 = 12.2 fs, τ2 = 32.0 fs and fR = 0.30 in
the nonlinear response function R(t) were used referring to [5].

In the expression for FN by the electric field as

Ex(x, y, z, t) = F−1F (x, y, ω)Ep(ω)Fb1(ξ, τ), (1.82)

the following SB(ω) needs to be approximated by SA(ω). Their relative dif-
ference ∆(ω) in (1.83c) is neglected even for the pulses with a wide spectrum
when F (x, y, ω)Ep(ω) depends on ω weakly compared with B1(ξ, ωC):

SB(ω) ≡
{

FEx(x, y, z, t)
∫ t

−∞
dt1R(t − t1)[Ex(x, y, z, t1)]2

}
AV

=
{

FEx(x, y, z, t)F−1R̃(ω)F[Ex(x, y, z, t)]2
}

AV
, (1.83a)

SA(ω) ≡
{

[F (x, y, ω)Ep(ω)]3Fb1(ξ, τ)F−1R̃(ω)F[b1(ξ, τ)]2
}

AV

=
A(4)(ω)
A(2)(ω)

[Ep(ω)]3Fb1(ξ, τ)F−1R̃(ω)F[b1(ξ, τ)]2, (1.83b)

∆(ω) ≡ SB(ω)/SA(ω) − 1. (1.83c)

Equation (1.79d) allows us to consider the frequency dependence of the
coefficient of the nonlinear term γFDM(ω), which causes “nonlinear disper-
sion”, leading to such effects as self-steepening or the core dispersion. Instead
of using (1.79d), we can evaluate γFDM(ω) as

γFDM(ω) = γFDM(ω0)
ω

ω0

[
nR

L (ω)
nR

L (ω0)

]−2 [
Aeff(ω)
Aeff(ω0)

]−1

(1.84)
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from the value of γFDM(ω) at the central frequency ω0 and the behavior of
nR

L (ω) and Aeff(ω) in that region.
A1 and A2 in (1.78) are the forward wave and the backward wave, re-

spectively. Thus, when we intend to set only the forward wave as the initial
condition, H̃(z, ω) = −nL(ω)Ẽ(z, ω) at z = 0 is appropriately used, which
is derived from (1.77a) with A2 = 0. Equation (1.78) can even describe a
situation in which two extremely short pulses propagating in opposite direc-
tions collide with a strong interaction, and leave a long distance from each
other. Even if this occurs, the term FN describes not only the nonlinear self-
interaction but also the nonlinear interaction between the pulses during the
collision. Therefore, we call (1.78a) “bi-directional propagation equations”.
This approach is more natural and general for analyzing the optical pulses
in fibers, compared with [5] where the formal decomposition and the Taylor
expansion were employed.

Direct Derivation of Nonlinear Schrödinger Equation

When the pulse spectrum localizes around the central frequency, we can dis-
tinguish the envelope wave from the carrier wave clearly. The forward wave
and the backward wave in (1.74) are a1(ξ, τ) = F−1A1 and a2(ξ, τ) = F−1A2.
We decompose each of them into the carrier wave and the envelope wave
a±(ξ, τ) as{

a1(ξ, τ) =
[
a+(ξ, τ)ei(β0Cξ−ω0Cτ ) + a∗

+(ξ, τ)ei(−β0Cξ+ω0Cτ )
]
/2,

a2(ξ, τ) =
[
a−(ξ, τ)ei(β0Cξ+ω0Cτ ) + a∗

−(ξ, τ)ei(−β0Cξ−ω0Cτ )
]
/2,

(1.85)

where ω0C = Tω0 and β0C = Zβ(ω0) ≡ Zβ0. They are Fourier-transformed
as{

A1(ξ, ωC)=
[
A+(ξ, ωC − ω0C)eiβ0Cξ + A∗

+(ξ,−ωC − ω0C)e−iβ0Cξ
]
/2,

A2(ξ, ωC)=
[
A−(ξ, ωC + ω0C)eiβ0Cξ + A∗

−(ξ,−ωC + ω0C)e−iβ0Cξ
]
/2,

(1.86)

where {
A±(ξ, ωC ∓ ω0C) = Fa±(ξ, τ)e∓iω0Cτ ,
A∗

±(ξ,−ωC ∓ ω0C) = Fa∗
±(ξ, τ)e±iω0Cτ .

(1.87)

For simplicity, we define here the “envelope-wave transform operator” E to
take out the envelope wave from the forward wave as Ea1(ξ, τ) = a+(ξ, τ),
EA1(ξ, ωC) = A+(ξ, ωC) and E(∂A1/∂ξ) = ∂A+/∂ξ + iβ0CA+.

Hereafter, we summarize the derivation of the nonlinear Schrödinger equa-
tion (NLSE) for a+(ξ, τ), composed of the lowest order linear-dispersion and
nonlinearity, under the following assumptions or approximations:

1. Quadratic linear dispersion: β(ω) is expanded into the Taylor series
around ω0, and β(ω) − β(ω0) � β1(ω − ω0) + β2(ω − ω0)2/2 where
βn ≡ β(n)(ω0). This expansion is valid only when the spectrum of the
pulse is localized around ω0 (Condition 1).
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2. Restricted frequency region: The terms proportional to e±3iω0t are
dropped. This restriction is effective as far as the spectrum of the pulse
is confined sufficiently within the region −2ω0 < ω < 2ω0 (Condition 2).

3. Nearly instantaneous nonlinear response: Only the terms up to the first-
order in the Taylor series in ω − ω0 of the Fourier-transform of the non-
linear response function in (1.81b) are left as R̃(ω) � 1 + R̃(1)(ω − ω0)
(Condition 3).

4. Weak nonlinear dispersion such as the self-steepening or the core dis-
persion: Only the terms up to the first-order in the Taylor series in
ω − ω0 of the coefficient of the nonlinear term are left as γSPM(ω) ≡
(3/4)γFDM(ω) � γ

(0)
SPM + γ

(1)
SPM(ω − ω0) (Condition 4).

In addition,

5. Unidirectional propagation approximation: Only a forward wave A1 is
considered throughout the propagation, and B1 � A1, b1 � a1 (Condi-
tion 5).

As seen from the second equation of (1.78a), the backward wave A2 can
be generated from A1 through FN even if A2 is initially absent. However, we
can derive the NLSE only from the first equation of (1.78a) for the forward
wave:

∂A1

∂ξ
= FL1 − FN, FL1 = iZ

(
β − ω

v

)
A1,

FN = −iγFDM(ω)Fb1(ξ, τ)F−1R̃(ω)F[b1(ξ, τ)]2. (1.88)

We operate EF−1 on both sides of (1.88), and use Conditions 1–5 (Condition 5
is used only in FN). Then, each term becomes:

EF−1 ∂A1

∂ξ
= F−1Z

(
∂A+

∂z
+ iβ0A+

)
=

∂a+

∂ξ
+ iβ0Ca+, (1.89a)

EF−1FL1= F−1Z

(
iβ − iω

v

)
A+ = F−1Z

[
i

∞∑
n=0

βn

n!
(ω − ω0)n − iω

v

]
A+

� iβ0Ca+ − β1C
∂a+

∂τ
− iβ2C

2
∂2a+

∂τ2 +
Z/T

v

(
∂a+

∂τ
− iω0Ca+

)
,

(1.89b)

EF−1(−FN) � i

(
γ

(0)
SPM +

iγ(1)
SPM

T

∂

∂τ

)
a+

(
1 − TR

T

∂

∂τ

)
|a+|2. (1.89c)

The following relation is used conveniently in these transformations:

EF−1(ω − ω0)nA1 =
(

i
T

∂

∂τ

)n

a+. (1.90)

As the result, the following extended NLSE with the effects of the nonlinear
dispersion and the Raman frequency shift is derived:
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∂a+

∂ξ
= −

(
β1C − Z/T

v

)
∂a+

∂τ
− iβ2C

2
∂2a+

∂τ2 − i(Z/T )ω0C

v
a+

+i

(
γ

(0)
SPM +

iγ(1)
SPM

T

∂

∂τ

)
a+

(
1 − TR

T

∂

∂τ

)
|a+|2, (1.91)

where

β1C ≡ Zβ1/T, β2C ≡ Zβ2/T 2 = Z/LD, LD ≡ T 2/β2, (1.92a)

γ
(0)
SPM ≡ γSPM(ω0) = Z

ω0

c

3χ(3)

8n0
[Ẽp(ω0)]2 = Z/LN, (1.92b)

LN ≡
{

ω0

c

3χ(3)

8n0

P

cε0n0Aeff(ω0)

}−1

, (1.92c)

γ
(1)
SPM ≡

[
dγSPM(ω)

dω

]
ω=ω0

, (1.92d)

TR ≡ 1
i
R̃(1) =

1
i

[
dR̃(ω)

dω

]
ω=ω0

=
∫ ∞

0
R(t)tdt =

2fRτ2
1 τ2

τ2
1 + τ2

2
. (1.92e)

LD and LN are the dispersion length and the nonlinear length, respectively.
When Z is chosen as LD, γ

(0)
SPM = LD/LN = N2 with the soliton order N .

Under the conditions that (1) v is adjusted to the group velocity 1/β1,
(2) the phase factor e−iω0β1z independent of t is separated from a+, and (3)
the terms with γ

(1)
SPM or TR are dropped, (1.91) reduces to the usual NLSE:

∂a+

∂ξ
= − iβ2C

2
∂2a+

∂τ2 + iγ(0)
SPM|a+|2a+. (1.93)

Unidirectional Propagation
Instead of Slowly Varying Envelope Approximation

In the conventional derivation of the extended NLSE (1.91) or the usual
NLSE (1.93) the following approximation is always employed:

6. Slowly-varying-envelope approximation (SVEA) [1,22]: The second deri-
vative of the envelop function is neglected by∣∣∂2A+/∂ξ2

∣∣ � |2β0C∂A+/∂ξ| (Condition 6).

In contrast, the present derivation from the first partial differential equation
(1.88) as shown above does not call for the SVEA.

The conventional derivation usually begins with the wave propagation
equation

∂2Ẽ

∂z2 + β2Ẽ = −ω2

c2 F
PN

ε0
= −2iβEp

Z
FN (1.94)
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with the nonlinear term expressed by (1.79b), which is derived by eliminating
H̃(z, ω) between the equations in (1.69). The Fourier-transform of the electric
field Ẽ(z, ω) in the left side of (1.94) is expressed as

Ẽ(z, ω) = Ep(ω)B1(ξ, ωC) = Ep(ω) {A1(ξ, ωC) + A2(ξ, ωC)}
=

Ep(ω)
2

{
[A+(ξ, ωC − ω0C) + A−(ξ, ωC + ω0C)] eiβ0Cξ

+
[
A∗

+(ξ,−ωC − ω0C) + A∗
−(ξ,−ωC + ω0C)

]
e−iβ0Cξ

}
≡ Ep(ω)

2
[
B+(z, ω)eiβ0z + B−(z, ω)e−iβ0z

]
(1.95)

by (1.75d), (1.77b) and (1.86). Furthermore,

∂B+

∂z
− i (β − β0) B+ = E

(
∂B1

∂z
− iβB1

)
= −i(β + β∗)EA2 = −i(β + β∗)A− (1.96)

by ∂B1/∂z = −iωB2/c, A2 = (nLB1 + B2)/(nL + n∗
L) and EA2 = A−

((1.76a), (1.77a) and (1.86)).
We operate EF−1Z/(2iβEp) on both sides of (1.94), which leads the right

side of (1.94) to EF−1(−FN) of (1.89c). On the other hand, the left side of
(1.94) becomes rigorously as follows:

EF−1 Z

2iβEp

(
∂2Ẽ

∂z2 + β2Ẽ

)

=F−1 Z

2iβ

[
∂2B+

∂z2 + 2iβ0
∂B+

∂z
+ (β2 − β2

0)B+

]
(1.97a)

=F−1 Z

2iβ

[
2iβ

(
∂B+

∂z
− i(β − β0)B+

)
+ Res

]
, (1.97b)

where the residual term Res is defined and transformed as:

Res ≡ ∂2B+

∂z2 − 2i(β − β0)
∂B+

∂z
− (β − β0)2B+

= ei(β−β0)z ∂2

∂z2 e−i(β−β0)zB+

=
(

ei(β−β0)z ∂

∂z
e−i(β−β0)z

)2

B+

= ei(β−β0)z ∂

∂z
e−i(β−β0)z

(
∂B+

∂z
− i (β − β0) B+

)
= −i(β + β∗)ei(β−β0)z ∂

∂z
e−i(β−β0)zA−. (1.98)

Equation (1.96) is used in the last line of (1.98). The NLSE is derived again if
Res can be neglected and B+ � A+ (from Condition 5) is used, since (1.97b)
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is equal to the difference between (1.89a) and (1.89b). The SVEA is nothing
but neglecting Res in comparison with the first term in (1.97b), since Res
approximately agrees with ∂2A+/∂z2 for

7. Infinitesimal β(ω) − β(ω0) (Condition 7).

In the above, we derived the NLSE in two ways: from the first-differential
equation for the forward wave in (1.88); and from the second-differential
wave propagation equation (1.94) by the use of the SVEA. Though the de-
rived equations agreed with each other, the latter used the unidirectional
propagation approximation (Condition 5) and Condition 7 in addition to the
SVEA (Condition 6). Therefore, the former derivation from the forward wave
equation is much more straightforward than the latter, which supposes more
restrictions in the range of validity.

1.3 Comparison between Theoretical
and Experimental Results

1.3.1 Split-Step Fourier Analysis beyond SVEA

Calculations for Fused-Silica Fiber

4.5-Cycle Pulse SPM Case

Calculations for 4.5-cycle pulses in a single-mode fused-silica fiber were per-
formed and compared with experimental results [2]. In the experiments, an
optical pulse from a Ti:Sapphire oscillator was introduced in a 2.5 mm-long
single-mode fiber (Newport F-SPV, the core radius a =1.32 µm). The pulse
width measured by an autocorrelator was 12 fs and the input-pulse peak
power calculated from the measured pulse energy at fiber output was 175 kW.
The input pulse was obtained by inverse Fourier transforming the spectrum
of the input pulse. However, the transform-limited pulse width (8.6 fs) was
smaller than the experimentally measured pulse width (12 fs) obtained by a
fringe-resolved autocorrelator. To use the pulse with the correct spectrum
and the pulse width in the calculation, the temporal duration was adjusted
by adding the quadratic spectral phase of the form φ(ω) = c1(ω − ω0)2 to
the experimental spectrum to make the inverse Fourier transformed pulse
width same as that of the measured one. It gave the value c1 = ±9.9 fs2/rad.
Both values were used in initial calculations. However, it was found that the
difference of spectra was negligible. Thus in the following, only the results
with the negative value are shown.

We consider the material dispersion of fused-silica using the Sellmeier
equation for the linear dispersion terms with zero loss. For a single-mode
fused-silica fiber, it is well known that the effective core area of the fiber
depends on the wavelength and it becomes larger as the wavelength becomes
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longer compared with the cut-off wavelength of the fiber [1]. For the fiber
used in this experiment, the cut-off wavelength and the numerical aperture
are 550 nm and 1.6 respectively which give the core radius a =1.32 µm. It
is evaluated that at the long wavelength, the effective core area becomes
quite large. For example, the effective core area Aeff , calculated from the
approximate fundamental mode distribution in [1] (F = J0(κr) (r < a), and
F = (a/r)1/2J0(κa)e−η(r−a) (r > a), where J0 is the zeroth order Bessel
function, r = (x2 + y2)1/2, κ2 = n2

1k
2
0 − β2 and η2 = β2 − n2

2k
2
0, n1 and n2

are refractive indices of the core and the clad, respectively) are 2.01πa2 at
wavelength 790 nm and 3.68πa2 at 1000 nm, respectively. Thus it is expected
that at longer wavelength, the nonlinear effect becomes smaller since the
effective core area becomes larger. To include this effect in the calculation,
the term ∂ω(ln g(ω))|ω0 in (1.23) was calculated at the center wavelength and
added for the steepening parameter. From the mode equation of the single-
mode fiber, the derivative of the effective core area was numerically calculated
as a function of wavelength and the value at center wavelength (798 nm) was
obtained as −ω0∂ω(lnAeff(ω))|ω0 = 2.06. We used the value of the nonlinear
refractive coefficient nI

2 = 2.48 × 10−20 m2/W from [23].
Calculations with different levels of approximations were performed. For

case (a), the Raman term as well as rigorous linear dispersion terms were
used in calculations (1.30). For case (b), to examine the effect of the Raman
term on the spectrum broadening, the Raman term was omitted (fR = 0
in (1.30)). For case (c), in addition, dispersion of the effective core area was
omitted (∂ω(ln g(ω))|ω0 = 0 in (1.30)), and for case (d), the SVEA was used
((1.37) and (1.30) with fR = 0).

In Fig. 1.1, experimental spectra as well as calculated spectra are shown.
It is seen that the agreement between the calculation with the equation in-
cluding all the terms (a) and the experiment is good. When the Raman term
is omitted (b), the spectrum broadening at the short wavelength is larger
in calculation than experiment. This is because the optical energy is trans-
ferred to that at the longer wavelength by exciting the molecular vibrations
when the Raman effect is present [1]. When the dispersion of the effective
core area is omitted (c), the spectrum broadening at the long wavelength is
larger in calculation than experiment. This is because this effect is included
as the additional steepening term in the calculation. When the steepening
term is present, the trailing edge of the pulse becomes steep because group
velocity of the pulse depends on its intensity [1]. And this steep trailing edge
generates large positive chirp from SPM. In this way, energy is transferred to
the shorter wavelength when the steepening term is present. For the SVEA
(d), the spectrum broadening at the long wavelength is larger in calculation
than in experiment. This is because no steepening term is included in the
SVEA. Also in this case, it was found that the spectrum including rigorous
dispersion terms and the spectrum including only up to third order terms
are almost identical. Thus, in this case, the approximation using up to third
order terms is sufficient.
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Fig. 1.1. The experimental and calculated spectra for 4.5-cycle pulse propagation
in a 2.5mm-long fused-silica fiber. The input power is 175 kW (soliton number
N = 2.085). (i) The experimental input (thick solid line) and output (dotted line)
spectra. (ii) The experimental spectrum (thick solid line) is compared with the
calculated spectrum including all terms (solid line). (iii) The calculated spectra: (a)
including all terms (solid line), (b) without the Raman term (dot-dashed line), (c)
without the effective core area dispersion (dotted line), and (d) the SVEA (dashed
line) [2]

Calculations of 2-Cycle and Monocycle Pulse SPM Cases

Calculations of spectra were performed for 2-cycle pulse and monocycle pulse
propagations [2]. The fiber parameters were the same as in the previous
subsection. Gaussian input pulses were used and the same soliton number of
1 for both cases was used in the calculations (N = 1). The input pulse width
and peak power were 5.32 fs and 204 kW for 2-cycle pulses and 2.66 fs and
815 kW for monocycle pulses, respectively.

Calculated spectra are shown in Fig. 1.2(i) for 2-cycle pulses. When the
Raman term is not included (b), the spectrum intensity at the short wave-
length is larger than that with all terms (a). On the other hand, when dis-
persion of the effective core area is not included (c), the spectrum intensity
at the long wavelength is larger than that with all terms.

The calculated spectra for the monocycle case are shown in Fig. 1.2(ii).
Similar but more pronounced tendencies are observed when the Raman term
is omitted (b) and dispersion of the effective core area is omitted (c) compared
with the calculations with all terms (a), like as the 2-cycle pulse calculations.
In this case, the additional calculation with the same terms as in (a) except
that only up to third order dispersion terms are included (D̂

′
= −β

(2)
0 ∂2

T /2−
iβ

(3)
0 ∂3

T /6, D̂corr = 0 in (1.23)) is shown (d). There is a difference in spectra
between this (d) and the one with all terms (a). Thus for this monocycle
case, the inclusion of the dispersion terms only up to third order terms is not
enough. For the 2-cycle calculation, the same calculation was performed and
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Fig. 1.2. The calculated spectra for 2-cycle (i) and monocycle (ii) pulses after
propagating 2.5mm-long fused-silica fiber. The soliton number N is 1 for both
cases corresponding to 204 kW and 815 kW input powers for 2-cycle and monocycle
cases, respectively. In this figure, (a) all terms are included (solid line), (b) without
the Raman term (dot-dashed line), (c) without the effective core area dispersion
(dotted line), and (d) only up to third order dispersion terms in (a) are included
(dashed line). Input spectra are shown by short dashed lines [2]

no difference was found between these two spectra. Thus for the calculation of
the monocycle pulse, it is important to include more than third order terms.

IPM+SPM Case

For the IPM experiments, the fundamental pulse (center wavelength 797 nm)
and the idler pulse (center wavelength 1087 nm) from the Ti:sapphire ampli-
fier system with the optical parametric amplifier (OPA) were co-propagated
in a 3.5 mm-long single-mode fiber (Newport F-SPV) [2]. The reflective ob-
jective was used to couple these pulses in the fiber and the relative delay time
between these pulses were adjusted by an optical delay line with a microm-
eter and a position sensor. This delay was calibrated by observing the sum-
frequency signal generated by both pulses using a 10 µm-thick β-barium bo-
rate (BBO) crystal. In this experiment, both input pulses were evaluated by a
second-harmonic generation frequency-resolved optical gating (SHG FROG)
apparatus [24]. The measured pulse widths were 75 and 79 fs for the funda-
mental pulse and the idler pulse, respectively. The spectra when each pulse
was propagated separately (i) and when both pulses were co-propagated with
the three different delay times of the fundamental pulse with respect to the
idler pulse (0 fs (ii), −27 fs (iii) and −67 fs (iv)) are shown in Fig. 1.3(a).
The effective core area Aeff and its dispersion −ω0∂ω(lnAeff(ω))|ω0 are in-
cluded as like in the SPM case, which are 2.05(4.92)πa2 and 2.06(3.80) for the
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Fig. 1.3. The experimental (a) and calculated (b) spectra after the fundamental
pulse (center wavelength 797 nm, pulse width 79 fs, peak power 225 kW) and the
idler pulse (center wavelength 1087 nm, pulse width 75 fs, peak power 480 kW)
from the Ti:sapphire laser amplifier OPA system are propagated in a 3.5mm-long
fused-silica fiber. In this figure: (i) pulses propagated separately, with input spectra,
are shown by dotted lines, (ii) co-propagation of both pulses where the delay time
of the fundamental pulse with respect to the idler pulse is set to be 0 fs, (iii) co-
propagation with delay time of −27 fs, and (iv) co-propagation with delay time of
−67 fs [2]

fundamental (idler) pulse, respectively. The mode overlap integral is given as
O(ω01, ω02) = 3.30πa2 and its derivatives −ω0j∂ω(lnO(ω, ω03−j))|ω0j

are cal-
culated to be 0.837 and 2.19 for the fundamental pulse (j = 1) and the idler
(j = 2) pulse, respectively. Due to the difficulty of separating the propagated
output pulse energy from the pulse energy propagating in the clad, the input
power for each pulse was estimated by the fitting of the self-phase modulation
measurements and determined to be 225 (480) kW for the fundamental (idler)
pulse. The calculated spectra from (1.32) are compared with the experimen-
tal ones in Fig. 1.3(b). It is shown in the both cases of the experiment and the
calculation that when these pulses are propagated separately (i), there is no
intensity between 880–970 nm. When both pulses are co-propagated (ii)–(iv),
the spectra for the fundamental wave and the idler wave are connected by
induced-phase modulation. The intensity of the middle position (indicated by
arrows in Fig. 1.3) is the largest when the delay time is −67 fs compared with
that when the delay time is 0 fs. The propagation time difference between
these two pulses for a 3.5 mm-long fiber is 58.6 fs. Thus when the delay time
is −67 fs, both pulses overlap near the fiber exit end. For the capillary fiber
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IPM using the fundamental and the second-harmonic pulses, we have ana-
lytically [25] and experimentally shown [26] that the spectrum overlapping
becomes largest when both pulses meet near the fiber exit end (see Sect. 2.3).
The fact that the intensity of the middle position is the largest when the de-
lay time is −67 fs indicates that the similar tendency holds for the fused-silica
fiber. It is observed that the delay time dependence of the spectra between
the experiment and theory agree qualitatively.

Calculations for the Argon-Filled Single-Mode Hollow Waveguide

Single-mode capillary fibers filled with noble gases have been used to broaden
the spectrum of optical pulses through dispersive SPM [27]. Because of the
chemical stability of the noble gases, the damage threshold of the capillary
fiber is relatively high compared with the glass fiber. Also, the large walk-off
length is advantageous for spectral broadening using IPM (see Sect. 2.3).

In the experiment [26], the output beam of a Ti:sapphire laser-amplifier
system (center wavelength ∼ 790 nm, pulse width 24 fs, repetition rate 1 kHz
and pulse energy 1 mJ) was passed through a 0.5-mm-thick β-barium borate
(BBO) crystal and the second-harmonic pulse was generated. The second-
harmonic pulse was combined with the fundamental pulse after a proper
delay time was added. Then, these pulses were co-propagated in a capillary
fiber with 34-cm length and 0.1-mm inner diameter filled with argon gas with
a pressure of 3.3 atm. For details of the experiment, see Sect. 2.3. The fun-
damental pulse of 40.8 µJ energy and the second-harmonic pulse of 37.8 µJ
energy were focused at the fiber entrance. Figures 1.4(a)–(c) show experi-
mental spectra at the output of a fiber and compare them with calculations.
In Fig. 1.4a, two spectra when both pulses were propagated separately are
shown. In this case, the spectral broadening is due to only SPM. When the
delay time between two co-propagated pulses was adjusted such that these
pulses overlapped inside the fiber, we observed the larger spectral broadening
due to IPM and SPM (Figs. 1.4(b)–(c)). In Fig. 1.4(b), the spectrum is shown
when both pulses met near the fiber entrance (Td = 13 fs) and in Fig. 1.4(c),
it is shown when both pulses met near the fiber exit (Td = −80 fs).

In the calculations, the following parameters are used: λc = 767.95 nm,
Tp = 24 fs, P0 = 1.03 GW and n2 = 2.99 × 10−23 m2/W for the fun-
damental pulse, and λc = 404.84 nm, Tp = 58 fs, P0 = 0.46 GW and
n2 = 4.78 × 10−23 m2/W for the second-harmonic pulse, where λc is the
center wavelength, Tp is the pulse width, P0 is the peak power and n2 is the
nonlinear refractive index [28]. The effective core area of the EH11 mode is
calculated to be 0.477πa2 where a is the radius of the capillary fiber. Here,
the spatial profile of the electric field is assumed to be J0(2.405r/a) [3],
where J0 is the zeroth-order Bessel function. The theoretical propagation
loss due to the waveguide itself [3] is 52% for the fundamental wave and
17% for the second-harmonic wave. If we consider only this loss, the net in-
put energy evaluated from the output energy (11.9 µJ) for the fundamental



30 N. Karasawa et al.

0

100

200

300

400 600 800 1000
0

100

200

300

400 600 800 1000
Wavelength (nm)

(d) SPM only

(e) IPM+SPM

(f) IPM+SPM

Td = 13 fs

Td = −80 fs

R
el

at
iv

e 
in

te
ns

ity

P
ha

se
 (

ra
d)

5001000 300
Frequency (THz)

1000 500 300
(a) SPM only

(b) IPM+SPM

(c) IPM+SPM

2ω

ω

Td = 13 fs

Td = −80
fs

In
te

ns
ity

1.51
fs

Time

2ω ω

Fig. 1.4. Experimental (a)–(c) and calculated (d)–(f) spectra when the funda-
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wave is 24.8 µJ (11.9 µJ/0.48). The calculated spectral broadening by SPM
using this value (24.8 µJ) agrees with the experimental broadening. For the
second-harmonic wave, the net input energy evaluated from the output en-
ergy by considering the theoretical waveguide loss is 13.4 µJ (11.1 µJ/0.83).
However, it was necessary to set 26.7 µJ as the practical input-pulse energy
to obtain the similar broadening by SPM experiments. In Figs. 1.4(d)–(f),
the numerically-calculated spectra using parameters thus determined are
shown. In Fig. 1.4(d), calculated spectra for SPM for fundamental and second-
harmonic waves are shown. In Figs. 1.4(e)–(f), calculated spectra for IPM +
SPM at two different delay times are shown. It is seen that the relative spec-
tral intensity around the central part between 400 and 800 nm is larger for (f)
compared with (e). In addition, the more homogeneous spectrum broadens
from 300 to 1000 nm for (f) than (e). These behaviors agree with the exper-
imental spectra. In Figs. 1.4(e)–(f), calculated wavelength-dependent phases
are shown. It is seen that the phase-variations are relatively smooth, which
is important for phase-compensation for pulse-compression and synchronous
multi-color shaping.
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Calculations for the Photonic Crystal Fiber

Photonic crystal fibers have attracted significant research interest in recent
years for their zero-dispersion wavelength shifted into the visible range and
hence efficient supercontinuum generation [29, 30]. To clarify both experi-
mentally and theoretically the mechanism of supercontinuum generation for
propagation of a-few-cycle pulses in a photonic crystal fiber, systematic infor-
mation regarding spectral and temporal evolutions of the pulses at different
propagation distances was obtained [31].

In the experiment, the photonic crystal fiber consisted of a 1.7-µm-
diameter undoped silica core surrounded by an array of 1.3-µm-diameter
air holes in a hexagonal close-packed arrangement [29]. 12-fs-duration pulses
with 800-mW average power centered at 795 nm were generated from a mode-
locked Ti:sapphire laser at the repetition rate of 75 MHz. Photonic crystal
fibers with four different lengths (4, 8, 15, and 61 mm) were prepared. Pulses
were coupled into these fibers by a reflective objective. The polarization axis
of the linearly-polarized pulses coincided with one of the principal axes of the
fibers. The spectra of the pulses before and after propagation are shown in
Fig. 1.5(a). In the insets of Fig. 1.6(a), the autocorrelation traces are shown.

In the calculations, the SEWA method of (1.23) was used with the rig-
orous dispersion relations of the photonic crystal fiber. Calculated spectral
intensities and temporal profiles are shown in Fig. 1.5(b) and Fig. 1.6(a). The
agreement between the experiment and the calculation is excellent. In ad-
dition, calculations with the SVEA method with the inclusion of the self-
steepening term and the delayed-nonlinear Raman term were performed. In
this method, only up to the third-order linear dispersion was included and
the D̂corr term was not included. Also, the self-steepening coefficient was set
to be s′ = 1/ω0 (ω0 : center angular frequency of the input pulse). The calcu-
lated result indicated that spectral broadening at a shorter wavelength was
much larger in this case than in the experimental result, especially at the
longest propagation distance, as shown by dotted lines of Fig. 1.6(b)(1)–(5).
Furthermore, even if the rigorous dispersion terms were used, the spectral
broadening at the short wavelength was still too large as shown by a dashed
line for the longest distance. The difference was mainly due to the neglect of
D̂corr term rather than the approximate self-steepening coefficient.

The mechanism of the superconinuum generation for propagation of a-
few-cycle pulses with peak power on the order of tens of kilowatts (67 kW:
soliton number N = 5.7) and a central wavelength (795 nm) slightly longer
than the zero dispersion wavelength (767 nm) is found out as follows. At
first (up to several millimeters), most of the pulse energy in the spec-
tral band forms a higher order soliton due to the SPM and the negative
group velocity dispersion. Since the third-order dispersion (TOD) of the
fiber is considerably large (critical parameter δ3 = 0.24 [1]), asymmet-
ric multifold splitting of the temporal-intensity profile occurs. In addition,
the spectrum is blue shifted due to the self-steepening effect (Fig. 1.5(2)



32 N. Karasawa et al.

R
el

at
iv

e 
in

te
n

si
ty

R
el

at
iv

e 
in

te
n

si
ty

Wavelength (nm)

Wavelength (nm)
P

h
as

e 
(r

ad
)

Fig. 1.5. (a) Experimental spectra generated from 4.5-cycle optical pulses in
different-length PCFs. (b) Numerically simulated intensity and phase spectra with
SEWA (solid lines), SVEA (dotted lines), and SVEA plus all-order dispersion for
only 61-mm case (dashed lines) [31]

and Fig. 1.6(a)). Around the 8-mm propagation distance (Fig. 1.5(3)), the
short-wavelength component in the positive group-velocity dispersion region
(< 767 nm) efficiently causes the intrapulse four-wave mixing. Here, the wave-
length component slightly shorter than the zero dispersion wavelength plays
the role of the pump (ωp) for the four-wave mixing processes (for exam-
ple, ωp(766 nm) + ωp(766 nm) = ωs(930 nm) + ωas(610 nm)). These processes
are phase-matched and nearly group-velocity matched. As a result, the anti-
Stokes (ωas) and Stokes (ωs) wavelength components appear and the spectral
gap is yielded. The further propagation (Fig. 1.5(4)) extends their wavelength
regions. However, the group-velocity matching worsens and the wavelength-
dependent parametric gain is reduced. The result of spectral broadening gives
rise to the temporal pulse broadening to form the wings because of the large
dispersion in their regions. In addition, large TOD causes the oscillatory
structure near the trailing edge of the pulse. Finally (Fig. 1.5(5)), the in-
tensified anti-Stokes and Stokes waves are spectrally modulated due to the
wavelength-dependent group-velocity matching and parametric gain. Conse-
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Fig. 1.6. (a) Numerically simulated temporal-intensity profiles with SEWA (solid
lines) and with SVEA (dashed lines). The insets are the experimental intensity
autocorrelation traces (solid lines) with the corresponding calculated results (dashed
lines) with increasing propagation distance. (b) Effect of self-steepening in spectral
broadening [31]



34 N. Karasawa et al.

quently, the ultrabroad-band pulse from 480 to 1020 nm is generated. These
findings suggest that the self-steepening effect is essential for the existance of
the spectral gap. Figure 1.6(b), indicating the comparison between the cal-
culated results without and with the self-steepening term, gives the evidence
for this point. The evolution of the supercontinuum generated by propagat-
ing a-few-cycle pulses in the photonic crystal fiber has been well explained
by a numerical analysis based on the extended nonlinear envelope equation
beyond the SVEA method.

1.3.2 Finite-Difference Frequency-Domain Analysis

Comparison with FDTD

By using the FDFD method derived in Sect. 1.2.2, propagation of an optical
pulse in the negative group velocity dispersion region in a dielectric medium
was simulated [16]. The parameters used in the simulation were taken from
[13, 14] where the FDTD method was used. In the calculations, the linear
permittivity in the frequency domain was given by

ε(ω) = ε∞ + χ̃(1)(ω) = ε∞ +
ω2

0(εs − ε∞)
ω2

0 − iδω − ω2 , (1.99)

where εs = 5.25, ε∞ = 2.25, ω0 = 4.0 × 1014 rad/s, δ = 2.0 × 109 1/s and
χ(3) = 7 × 10−2 (V/m)−2. An initial pulse had a sinusoidal carrier electric
field frequency fc = 1.37 × 1014 Hz (λc = 2.19 µm) with a unity amplitude
and a hyperbolic secant envelope function with a characteristic pulse width of
14.6 fs (full width at half maximum divided by 1.763). β1 was calculated to be
6.924 × 10−9 s/m at the carrier frequency. In the initial pulse, the phase was
chosen such that the maximum of the envelope function coincided with the
maximum of the sinusoidal function. At the end of calculations, waveforms
at position x = 126 µm were obtained in both time and frequency domains
using (inverse) Fourier transforms.

In Fig. 1.7(a), spectral intensities and phases from both FDFD and FDTD
calculations are shown. In these calculations, increment parameters selected
were ∆t = 0.02 fs and ∆x = 5 nm, by which correct results from the FDTD
calculations were obtained [13, 14]. As shown in the figure, both spectral
intensities and phases from these calculations are almost identical for these
small increment parameters. In Fig. 1.7(b), spectral intensities and phases
are shown when ∆t and ∆x were increased and compared with the FDTD
calculation in Fig. 1.7(a) (FDTD (0)). All calculations gave similar intensities.
However, phases calculated using ∆t = 0.2 fs and ∆x = 40 nm by the FDTD
method (FDTD (i)) were shifted by about 1.5 radian from FDTD (0) and had
an extra negative slope compared with FDTD (0). Phases calculated from
FDFD using these parameters (FDFD (i)) were almost identical to FDFD (0)
except that it was shifted by about 0.7 radian from FDTD (0). Calculations
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Fig. 1.7. Calculated spectral intensities and phases by FDTD and FDFD methods
at x = 126 µm. (a) Comparison between FDTD and FDFD, where ∆t = 0.02 fs
and ∆x = 5nm were used (FDTD (0) and FDFD (0)). (b) Comparison between
FDTD and FDFD, where ∆t = 0.2 fs, ∆x = 40 nm (FDTD (i) and FDFD (i)) were
used [16]

using ∆t = 0.4 fs and ∆x = 80 nm were tried and for the FDFD calculation,
results with almost identical spectral intensities were obtained. The FDTD
calculation for these parameters could not be performed due to the numerical
instabilities. For this model, the phase velocity of the pulse in the entire pulse
spectrum is larger than group velocity of the pulse, thus FDFD should be
stable independent of ∆x if we can consider pulse propagation to be almost
linear. This may be the reason why FDFD is more stable than FDTD in this
case. In Fig. 1.8, temporal waveforms of FDTD (0), FDTD (i) and FDFD (i)
are shown for different time scales. As shown in this figure, the results from
FDTD (0) and FDFD (i) calculations gave almost identical waveforms in the
middle part of the pulse, except that FDFD (i) was shifted by about 1 fs from
FDTD (0). The shape of the envelope function by FDTD (i) calculation was
different from that of FDTD (0) and there were larger phase shifts inside
the envelope function compared with FDFD (i). Calculation times for FDTD
(i) and FDFD (i) were 162 and 80 seconds, respectively, using a personal
computer with an Athlon 900 MHz processor.

IPM Calculations

In Sect. 1.3.1, the SEWA calculations of the co-propagation of two pulses in
a fused-silica fiber were shown. In these calculations, (1.32) was used for the
idler pulse (pulse 1, center angular frequency ω01) and the fundamental pulse
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(pulse 2, center angular frequency ω02). This equation includes both SPM
and IPM terms. However, it neglects the four-wave mixing terms based on
the assumption that the phase-matching conditions are not satisfied. If these
terms were taken into account, optical waves with center angular frequencies
of ω03 = 2ω01 −ω02 and ω04 = 2ω02 −ω01 could be generated. It is possible to
include these four-wave mixing waves in the SEWA method by including two
extra electric-field-envelope functions whose center angular frequencies are
ω03 and ω04. However, if these four-wave mixing waves are generated, other
four-wave mixing waves will also be generated (e.g., combinations of ω01 and
ω03, etc.). Thus it becomes difficult to include all these successively-generated
four-wave mixing waves by this method. On the other hand, whole four-wave
mixing interactions are automatically included in the methods that do not
use the envelope functions and integrate the Maxwell’s equations directly. To
evaluate the magnitude of these four-wave mixing terms, the results between
FDFD and SEWA calculations have been compared.

In calculations, center wavelength (λ0j), full width at half maximum pulse
width (Tpj), and peak power (Pj) of input pulse 1 (2) were set to be 1087
(797) nm, 75 (79) fs, and 480 (225) kW respectively. Initial pulse shapes were
assumed to be hyperbolic secant functions. For the FDFD calculations, the
initial electric field was given as follows,

E(0, t) = E1sech(t/T01) cos(−ω01t + φ01)
+ E2sech((t − td)/T02) cos(−ω02(t − td) + φ02),

where Ej =
√

2Pj/(ε0cn(ω0j)Aeff) was the amplitude of the pulse j. T0j

was related to Tpj by T0j = Tpj/1.763, and td was the delay time between
these two pulses. The initial phase of each pulse φ0j was set to be zero. For
the SEWA calculations, initial envelope functions were set to be A1(0, T1) =
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Fig. 1.9. (a) Comparison of spectral intensities and phases between the SEWA
method and the FDFD method after pulses were propagated 3.5mm in a fused-
silica fiber. The center angular frequencies of the input pulses (ω01 and ω02) and
the four-wave mixing pulses (ω03 and ω04) are indicated. (b) Plots of intensities at
ω01 and ω02 as a function of propagation distance calculated by the FDFD method

√
P1sech(T1/T01) and A2(0, T2) =

√
P2sech((T2 − td)/T02). The fiber used

in these calculations was made of fused-silica and its core radius and length
were 1.89 µm and 3.5 mm. (Aeff was set to be π (1.89 µm)2). The dispersion
of this fiber was calculated by the Sellmeier equation for fused-silica (1.51).
The linear susceptibility was given by 1 + χ̃(1)(ω) = n2(ω). Also χ(3) was
given by 4ε0cn

2nI
2/3 with n = 1.45 and nI

2 = 2.48 × 10−20 m2/W [23]. The
increment of distance and time were set to be 0.1 µm and 0.2 fs respectively
for the FDFD method, and these were set to be 1.0 µm and 0.5 fs for the
SEWA method.

The results of calculations are shown in Fig. 1.9(a), where the delay time
τd was set to be 0. As shown in the figure, the spectral components be-
low ω01 and above ω02 are observed when the FDFD method was used
and not observed when the SEWA method was used. These components
are considered to be generated by the four-wave mixing. The frequency of
the low frequency component corresponds to ω03 = 2ω01 − ω02 and that of
the high frequency component corresponds to ω04 = 2ω02 − ω01. The phase-
mismatches ∆k3 and ∆k4 that correspond to waves for ω03 and ω04, are given
by ∆k3 = β02 + β03 − 2β01 + ∆kNL and ∆k4 = β01 + β04 − 2β02 + ∆kNL,
where ∆kNL = η1P1 + η2P2 is the phase-mismatch due to the nonlinear po-
larization and ηj is defined in (1.32). The coherence lengths are calculated
to be Lcoh,3 = 2π/∆k3 = 0.427 mm and Lcoh,4 = 2π/∆k4 = 0.246 mm. Since
these lengths are much shorter than the fiber length of 3.5 mm, the phase-
matching conditions are not satisfied for both waves. To analyze the reason of
the generation of these four-wave mixing waves under the non-phase-matched
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conditions, the spectral intensities at ω01 and ω02 are calculated as the func-
tion of a propagation distance and are shown in Fig. 1.9(b). From this figure,
it is observed that the spectral intensity at ω01 oscillates with a period of
about 0.5 mm, which is about the same length as the coherence length for
four-wave mixing. Because of this oscillation, cancellation of the waves due
to the phase-mismatch is incomplete and relatively intense waves due to the
four-wave mixing are generated. Similar oscillation is observed for the inten-
sity at ω02. Thus it is found that the strong modulation of spectral intensity
due to SPM is responsible for the generation of these non-phase-matched four-
wave mixing optical waves. The length scale of this oscillation due to SPM
is given by LSPM,j = π/(ηjαP0,j) = πLNL,j , where LNL,j = 1/(ηjαP0,j) is
the nonlinear length. The generation of four-wave mixing waves can occur
if these lengths are about the same order as the coherence lengths for the
four-wave mixing. In the simulations shown above, LSPM,1 = 0.732 mm and
LSPM,2 = 1.15 mm and these conditions are indeed satisfied.

1.3.3 Finite-Difference Time-Domain Analysis

In this subsection, comparison between calculation using the FDTD method
and experiment for nonlinear propagation of a 12 fs pulse in a fused-silica
fiber is shown [19]. To accurately describe the linear dispersion relation of
the fused-silica fiber, the conventional FDTD method is extended such that
it is possible to use the Sellmeier equation (1.51) for the linear susceptibility.
In the FDTD method, the propagation of a pulse in a medium is described by
(1.61) and (1.62) as shown in Sect. 1.2.3. These equations are used to obtain
the fields Hy(x, t + ∆t/2) and Dz(x, t + ∆t) from Ez(x, t), Hy(x, t − ∆t/2)
and Dz(x, t). To calculate Ez(x, t + ∆t) from Dz(x, t + ∆t), Eq. (1.63) is
used with the linear polarization F (x, t + ∆t) and the nonlinear polarization
G(x, t+∆t). If the Lorentz linear susceptibility (1.99) is considered as in the
previous FDTD method [13,14], we obtain the equation,

∂2
t F + δ∂tF + ω2

0F = ε0ω
2
0(εs − ε∞)Ez, (1.100)

from the definition of F (x, t) in (1.64). Similarly, from (1.29) and (1.60), we
obtain the equation for the nonlinear polarization G(x, t),

∂2
t G + δ̄∂tG + ω̄2

0G = ε0ω̄
2
0E2

z , (1.101)

where δ̄ = 2/τ2 and ω̄2
0 = (1/τ1)2 + (1/τ2)2. To include the accurate linear

dispersion relations for the fused-silica fiber in the FDTD calculations, the
linear dielectric constant ε(ω) = ε∞+χ̃(1)(ω) should be given by the Sellmeier
equation (1.51) as follows,

ε(ω) = n2(ω) = 1 +
3∑

j=1

biω
2
i

ω2
i − ω2 = 1 +

3∑
j=1

χ̃
(1)
j (ω). (1.102)
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From this equation, we can set ε∞ = 1. Also, by defining

Fj(x, t) = ε0

∫ t

0
χ

(1)
j (t − t′)Ez(x, t′)dt′, (1.103)

we have

∂2
t Fj + ω2

j Fj = ε0ω
2
j Ez, (1.104)

and F (x, t) in (1.64) is given by F (x, t) = F1(x, t)+F2(x, t)+F3(x, t). Using
Ez in (1.63) in the right hand side of (1.104), we have the equation for F1 as
follows,

1
ω2

1
∂2

t F1 + (1 +
b1

1 + (1 − fR)χ(3)E2
z

)F1 +
b1fRχ(3)Ez

1 + (1 − fR)χ(3)E2
z

G

=
b1(Dz − F2 − F3)

1 + (1 − fR)χ(3)E2
z

. (1.105)

Similar equations can be obtained for F2 and F3. Also, we have the following
equation for G from (1.63) and (1.101),

1
ω̄2

0
∂2

t G +
δ̄

ω̄0
∂tG + (1 +

fRχ(3)E2
z

1 + (1 − fR)χ(3)E2
z

)G

+
Ez

1 + (1 − fR)χ(3)E2
z

(F1 + F2 + F3) =
Ez

1 + (1 − fR)χ(3)E2
z

Dz. (1.106)

The finite-difference forms of the second-order coupled equations (1.105) and
(1.106) are written and Fj(x, t + ∆t) and G(x, t + ∆t) are solved in terms of
Fj(x, t − ∆t), Fj(x, t), G(x, t − ∆t), G(x, t), Ez(x, t) and Dz(x, t − ∆t) [14].
Finally, Ez(x, t+∆t) is obtained by using (1.63), where in the right hand side,
all fields are at time t + ∆t except for Ez. This equation is used iteratively
until the value of Ez(z, t + ∆t) converges [14].

In the FDTD calculations, the time step is set as ∆t = 4.4475215 fs, and
the spatial step is set as ∆x = 0.018315 µm. bj and ωj are determined by
the Sellmeier equation of the fused-silica (1.51). χ(3) is determined from the
relation χ(3) = (4/3)ε0cn

2(ω0)nI
2, where ω0 is the center angular frequency

of the optical pulse. This gives χ(3) = 1.85 × 10−22 m2/V2 at 800 nm. The
parameters fR, τ1, and τ2 are set to be fR = 0.3, τ1 = 12.2 fs, and τ2 = 32 fs.
The total fiber length is L = 2.5 mm and 293000 time steps are required
to measure the electric field until the pulse tail passes completely. The peak
power of an input pulse is set to be 175 kW (soliton number N = 2.09). The
effective core area Aeff is set to be 5.47 µm2. Figure 1.10(a) shows the results
calculated by the FDTD method (A), the solution of the SVEA equation ob-
tained by the split-step Fourier method (B) (up to the third-order dispersion
terms with the Raman term using the Raman time constant of TR = 5 fs [1]
which is related to the slope of the Raman gain), and experimental result
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Fig. 1.10. (a) Spectra of a 12-fs laser transmission through a 2.5-mm silica fiber,
calculated by (A) the FDTD method considering all orders of dispersions and the
Raman response (fR = 0.3), (B) the solution of SVEA (considering up to the
third-order dispersion terms and the Raman term using the parameter TR = 5 fs),
and (C) experiment result. (b) Comparison between spectra calculated by (D) the
FDTD method without the Raman response (fR = 0) and (A) with the Raman
response. (A) and (C) are the same data as those in (a) [19]

(C). It is seen that with SVEA (B) the spectrum intensity at long wave-
length is much higher than those for FDTD (A) and the experimental result
(C). This indicates that the FDTD is superior to SVEA. The Raman gain is
approximated as a linear function in SVEA. Also, only up to the third-order
dispersion terms are included in SVEA (B). Furthermore, in SVEA, the sec-
ond derivative of the electric field with respect to position is neglected, which
corresponds to neglecting the backward propagation wave. In contrast to this,
the extended FDTD method (A) accurately includes the delayed Raman re-
sponse and all orders of the dispersion of silica using the Sellmeier equation.
Thus the difference between (A) and (B) is considered to be due to the Ra-
man effect, the higher order dispersion effect, or the backward propagation
wave. In order to clarify this, we performed a calculation using the FDTD
method without the Raman response (fR = 0) (D) in Fig. 1.10(b), where
(A) and (C) show the same data as those in Fig. 1.10(a). In Fig. 1.10(b), the
spectrum for case (A) is closer to the experimental result (C) than that of
the case of FDTD which does not consider the Raman effect (D). It is evident
that by including the Raman term (A), the spectral intensity at a shorter
wavelength is smaller and the agreement between the experimental and cal-
culated results becomes better than that in the case of (D). For example, the
spectral intensity at 700 nm in (D) is 48% higher than that in (A), which is
almost same as that in the experimental result (C). On the other hand, at a
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Fig. 1.11. Spectral intensity obtained experimentally (a) and numerically (b), and
spectral phase obtained numerically (c) as a function of angular frequency for a
12-fs laser transmission through a 2.5-mm silica fiber [19]

longer wavelength, for example, 850 nm, the spectral intensity of (A) is 15%
higher than that of (D). This feature of (A) shows a tendency analogous to
(C) because there is a larger peak at 850 nm than at the center wavelength of
800 nm in (C). These tendencies of the spectral characteristics indicate that
it is important to include the Raman term.

Figure 1.11 shows spectral intensities obtained experimentally (a) and nu-
merically (b), and the spectral phase obtained numerically (c) as a function of
angular frequency for 12-fs laser transmission through a 2.5-mm silica fiber.
From the calculation corresponding to Fig. 1.11(c), the group-delay dispersion
(GDD), the TOD, and the fourth-order dispersion (FOD) values are deter-
mined to be 136.5 fs2, 80.65 fs3, and −35.59 fs4, respectively. These values are
very important for single-cycle pulse generation via phase compensation of
the nonlinear-chirped supercontinuum generated in a silica fiber.

1.3.4 Analysis by Fourier Direct Method

Before showing the results concerning few-cycle pulse propagation in a fused-
silica fiber by the Fourier direct method (FDM: see Sect. 1.2.4), we first in-
vestigate the effects of several following assumptions or approximations used
up to now: the unidirectional propagation approximation instead of the bi-
directional propagation, the instantaneous response instead of the delayed
Raman response, as well as the assumptions concerning the nonlinear disper-
sions such as the neglected self-steepening or core dispersion.

The notations in Sect. 1.2.4 are consistently used in this section. The
conditions and parameter values for each figure in this section are tabulated in
Table 1.2 and the sub-table accompanying the figure. Throughout the figures
and tables in this section, (a), (b), (c), etc., (without parentheses in the
tables) denote case numbers executed under the respective conditions, instead
of (A), (B), (C), (D), etc., just indicating parts of the figure, as in for example
Fig. 1.12.
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Table 1.2. List of all conditions and parameter values. Fig.: figure number, Cs.: case
number (Sld: solid curve/ Dsh: dashed curve/ Dot: dotted curve), Mtd.: method
(FD: Fourier direct method/ SG: nonlinear Schrödinger (SPM-GVD) equation),
Pro.: propagation (1: unidirectional/ 2: bi-directional), Rng.: frequency range (B:
basic/ A: all), Nres.: nonlinear response (I: instantaneous/ D: delayed Raman),
Ndis.: nonlinear dispersion (S: self-steepening/ F: flat core dispersion/ T: theoretical
core dispersion/ E: experimental core dispersion), Ldis.: linear dispersion (N: no
dispersion/ 2: second order/ 3: third order/ 4: fourth order/ 5: fifth order/ S:
Sellmeier/ Sm: modified Sellmeier with absorption), Ini.: envelope of initial temporal
electric field profile (G: Gaussian/ S: sech/ E: experimental, 0.0: all of B/F , C0

and φI are zero), B/F : ratio of initial backward wave to forward wave, C0: initial
coefficient related to chirp, φI: initial phase of envelope wave relative to carrier
wave, λ0: central wavelength, P : initial peak power of pulse, Nsol: soliton order,
t1: initial FWHM pulse width, tmax: maximum time-domain size, Msam: number of
temporal division, LD: dispersion length, LN: nonlinear length, LS: shock length,
zmax: maximum fiber length, Mstp: maximum step number. The values replaced
with “—” are tabulated separately hereafter

Fig. Cs. Mtd. Pro. Rng. Nres. Ndis. Ldis. Ini.:
1.12 — FD 2 A D SE Sm G: —
1.12 — FD 1 A D SE Sm G: —
1.14 — FD 2 A D — Sm E: —
1.15 — FD 2 A — — Sm S:0.0
1.16 — FD 2 A D — Sm G:0.0

1.17–1.19 Sld FD 2 A D SE Sm G:0.0
1.17–1.19 Dsh SG 1 B I SF 2 G:0.0
1.17–1.19 Dot SG 1 B I F 2 G:0.0

1.21 — — — — — — — S:0.0
1.23–1.24 — FD 2 A D SE Sm G: —

Fig. Cs. λ0
(nm)

P
(kW) Nsol

t1
(fs)

tmax
(fs) Msam

LD
(mm)

LN
(mm)

LS
(mm)

zmax
(mm) Mstp

1.12 — 800 2290 4.99 5.00 500 2048 0.249 0.010 0.028 1.000 80000
1.14 — 798 175 3.30 12.00 400 2048 1.427 0.131 0.868 2.500 30000
1.15 — 830 2290 4.78 5.00 500 2048 0.238 0.010 0.029 1.000 80000
1.16 — 800 2290 4.99 5.00 500 2048 0.249 0.010 0.028 1.000 80000

1.17–1.19 Sld 800 — — — 500 2048 — — — 1.000 80000
1.17–1.19 Dsh 800 — — — 500 2048 — — — 1.000 80000
1.17–1.19 Dot 800 — — — 500 2048 — — — 1.000 80000

1.21 — 830 2290 4.78 5.00 500 2048 0.238 0.010 0.029 1.000 80000
1.23–1.24 — 800 6870 5.87 3.40 500 2048 0.115 0.003 0.006 0.006 800
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Fig. 1.12. Effect of bi-directional propagation for initial amplitude ratio B/F =
0.0 / 0.1 / 1.0 ((a) / (b) / (c)) at z = 1.0 mm. Upper row: (A) temporal profile of
backward wave a2(t); (B) temporal profile of forward wave a1(t); (C) ∆a1(t) ≡
a1(t) − aU

1 (t) where aU
1 (t) is forward wave calculated without action of backward

wave; (D) δ(t) ≡ {a1(t) − aU
1 (t)}/{|a1(t)| + |aU

1 (t)|}. Lower row: (A) intensity
spectrum of backward wave I2(ν) ≡ |A2(ν)|2; (B) intensity spectrum of forward
wave I1(ν) ≡ |A1(ν)|2; (C) ∆I1(ν) ≡ |A1(ν)|2 − |AU

1 (ν)|2 where AU
1 (ν) is Fourier

transform of aU
1 (t); (D) δ(ν) ≡ {I1(ν) − IU

1 (ν)}/{I1(ν) + IU
1 (ν)}
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The central wavelength is limited around λ0 = 800 nm, the initial FWHM
pulse width is t1 = 2.67–12.00 fs, and the initial peak power of pulse ranges
widely as P = 175–6870 kW, which is below the damage threshold 6 MW
[32]. We chose these values considering our current and future experimental
conditions. The initial temporal electric field profile is Gaussian in most cases,
and sech (hyperbolic secant) or experimental profiles are sometimes used for
comparison.

Effect of Bi-Directional Propagation

The present analysis allows bi-directional propagation, that is, components of
the wave propagating both in the right direction and the left direction. Then,
we can consider the effect of the unidirectional propagation approximation
starting with the arbitrary-changed ratio of the right-traveling forward wave
and the left-traveling backward wave as the initial pulse.

In Fig. 1.12(A) and (B), we show the temporal electric field profile of
the forward wave a1(t), the backward wave a2(t) and their intensity spectra
I1(ν) ≡ |A1(ν)|2, I2(ν) ≡ |A2(ν)|2, propagated in the fiber with the initial
amplitude ratio B/F = 0.0 / 0.1 / 1.0 of the backward wave to the forward
wave. In Fig. 1.12(C) and (D), we compare a1(t), A1(ν) with the temporal
amplitude aU

1 (t) and the spectral amplitude AU
1 (ν) of the forward wave calcu-

lated under FN with b1(ξ, τ) which was approximated by a1(ξ, τ) in (1.79c).
This means we neglect the action of the backward wave on the forward wave.
The compared results are represented by the following absolute differences
∆a1(t), ∆I1(ν) and the relative differences δ(t), δ(ν):⎧⎪⎪⎨⎪⎪⎩

∆a1(t) ≡ a1(t) − aU
1 (t),

δ(t) ≡ {a1(t) − aU
1 (t)}/{|a1(t)| + |aU

1 (t)|},
∆I1(ν) ≡ |A1(ν)|2 − |AU

1 (ν)|2,
δ(ν) ≡ {|A1(ν)|2 − |AU

1 (ν)|2}/{|A1(ν)|2 + |AU
1 (ν)|2}.

In the case of only the initial forward wave B/F = 0.0, the amplitude
of a2(t) generated after propagation is less than 10−4 of a1(t), and I2(ν)
rises slightly around 3.0ν0 (ν0: the central frequency of the input pulse). In
the region 1.3ν0 < ν < 2.2ν0 in ∆I1(ν), we find that the lower spectral
component in the forward wave increases slightly and the higher component
decreases slightly in the bi-directional propagation. This tendency is the same
for B/F = 0.1 but is reversed for B/F = 1.0. We also find that δ(ν) almost
vanishes in 1.3ν0 < ν < 2.2ν0 as well as close to the main peak and around
3.4ν0 where the higher harmonics are generated by the self-interaction of each
wave.

In spite of their many periodic overlaps due to the periodic boundary
condition in the time-domain, it is concluded that the backward wave absent
initially and generated naturally is quite weak, and the forward wave and the
backward wave propagate as if independent of the other. For the interaction
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between these waves to be observed more effectively, the relative group veloc-
ity should be controlled to come closer. Anyhow, the unidirectional propaga-
tion approximation can be used, if desired, when the backward wave leaves
far away from the forward wave fast enough, as now.

Effects of Delayed Raman Response and Nonlinear Dispersion

Figure 1.13 shows the Fourier-transform of the delayed Raman nonlinear re-
sponse function R̃(ω). It is unity at the central frequency ω0, but approaches
1 − fR outside of the Stokes frequency ωS or the anti-Stokes frequency ωA,
reducing the nonlinear effect. According to (1.92e), the gradient of its imag-
inary part at ω0 is TR = 2.44 fs, which gives rise to the infinite Raman
self-frequency shift in the extended NLSE (1.91).

To determine the core dispersion, we consulted the experimental input
spectrum Iin(ν) and the experimental output spectrum Iout(ν), as shown
by (d) and (c) in Fig. 1.14(B). They were generated by introducing an
optical pulse with (P, t1) = (175 kW, 12.00 fs) and λ0 = 798 nm into a
polarization-preserving single-mode fused-silica fiber (Newport, F-SP-V, the
length z = 2.5 mm, the core radius a = 1.35 µm, the numerical aperture
(NA) = 0.16) [2, 33]. Figure 1.14(A) shows the experimental and theoretical
scaled effective core radius w(ω)/a as a function of the normalized frequency
V (ω) ≡ (NA)aω/c. We modified the theoretical core dispersion (dotted
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Fig. 1.13. (A) Real part and (B) imaginary part of Fourier-transformed nonlinear
Raman response function. Region −1.5 rad/fs < ω < 1.5 rad/fs is omitted. Linear
approximation to its imaginary part around ω0 is also shown. ωS = 2.262 rad/fs,
ω0 = 2.356 rad/fs, ωA = 2.450 rad/fs and TR = 2.44 fs, respectively
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curve, [34]) mainly in the region 1.5 < V (ω) < 2.0 (900 nm > λ > 680 nm).
With each core dispersion, we calculated the output spectrum I(ν) as far
as z = 2.5 mm, starting with the initial temporal electric field profile
Ẽ(z = 0, ω) ∝ √

Iin(ν) exp[iC0(ν − ν0)2] where C0 = −12.0 rad fs2 is the
coefficient related to the linear down-chirp. Then, we chose the one which fits
best to Iout(ν). As (a) in Fig. 1.14(B) shows, I(ν) obtained in this way fits
better than (b) I(ν) obtained by the theoretical core dispersion. The experi-
mental core dispersion used then is shown in Fig. 1.14(A) (solid curve). In the
region shorter than the central wavelength of I(ν), sub-peaks grow or shrink
rather sensitively to the effective core radius w(ω). In this region, w(ω) should
be neither too large nor too small. When it is large and hence the nonlinearity
is reduced, the spectrum is hard to change. When it is small, the spectral
components pass through this region too fast toward the higher frequency
and no sub-peaks remain. The further difference between I(ν) and Iout(ν)
may be attributed to the axial asymmetry of the polarization-maintaining
and absorption reducing (PANDA) fiber used for this experiment. In the
long wavelength-region, however, the spectrum is rather insensitive to w(ω).

The combined effect of the delayed Raman response and the core dis-
persion is investigated in Fig. 1.15, under the same quantitative conditions
as Kalosha–Herrmann (hereafter K–H) [20], (P, t1) = (2290 kW, 5.00 fs),
λ0 = 830 nm and z = 1.0 mm. The spectrum I(ν) of (d) corresponds to that
obtained in [20] with the instantaneous response and the flat core dispersion.
The comparison between the delayed Raman response and the instantaneous
response — (a) and (b) or (c) and (d) in Fig. 1.15 — shows that the ef-
fect of the delayed Raman response is small whether with the experimental
core dispersion or without the core dispersion. It is limited between ωS and
ωA of Fig. 1.13, and the imaginary part of R̃(ω) vanishes outside of this re-
gion. Under the present condition of the broad initial spectrum and the short
propagation distance, only the slight deformation of the spectrum is observed
instead of the self-frequency shift. On the other hand, after the core disper-
sion is introduced ((a),(b)), the satellite in the lower frequency disappears,
the main peak sharpens, the sub-peak in the higher frequency appears and
the wing stretches. They are caused by the nonlinear effects decreased in the
low frequency region and increased in the high frequency region by the core
dispersion. On the other hand, the spectral phase in the right of Fig. 1.15 is
rather insensitive to these effects.

Figure 1.16 compares I(ν) for different nonlinear dispersions (the self-
steepening and the core dispersion). The delayed Raman response is con-
sidered in all of them. In (d) with no nonlinear dispersion, there are three
peaks around 0.12 / 0.43 / 0.54 PHz (D1 / D2 / D3), among which D2 and D3
are above ν0. From (d) to (c), only the self-steepening increasing proportion-
ally to the frequency is added. Then, D1 becomes a broad satellite around
0.19 PHz (C1), and D2 and D3 merge into one peak around 0.35 PHz (C2) with
the broad wing in the high frequency region. From (c) to (b), the theoretical
core dispersion is introduced, which weakens the nonlinearity in the lower fre-
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curve together with (d)

quency region and strengthens it in the higher frequency region more. Owing
to this, C1 vanishes, C2 sharpens into the main peak (B1) without the shift
of the position, and a slight shoulder appears around 0.43 PHz (B2). From
(b) to (a), the core dispersion is replaced with the experimental one, where
the core radius above ν0 is slightly larger (below λ0 in Fig. 1.14(A)). Then,
B2 is recognized as a sub-peak because the flow of the spectral components
from ν0 toward the higher frequency is relaxed. In the nonlinear dispersions,
the self-steepening forms the basic structure of I(ν), and the core dispersion
reforms it.

Analysis at Different Initial Peak Powers and Pulse Widths

In Figs. 1.17–1.19, we show the intensity spectra I(ν) (upper-left), the spec-
tral phases φ(ν) (lower-left), the temporal electric field profiles E(t) (upper-
right) as well as the pulses compressed after the complete phase compensation
Ec(t) (lower-right) at different propagation distances z = 0.1 / 0.5 / 1.0 mm,
which were calculated under the initial peak power P = 763 / 2290 / 5725 kW
and the initial pulse width t1 = 10.00 / 5.00 /2.67 fs.
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Fig. 1.16. Effect of nonlinear dispersion shown by intensity spectrum (left) and
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We compare here the results by the FDM (solid curve, (1.78)) with those
by the NLSE with self-steepening (dashed curve, (1.91), without term of TR)
and the NLSE without self-steepening (dotted curve, (1.93)). In some cases
of large P , the results by the NLSE with self-steepening are not shown due to
the breakdown of calculation. As for E(t), only the results by the FDM are
shown for simplicity. Part of φ(ν) is sometimes omitted in the region where
I(ν) is weak.

The nonlinear length LN, the shock length LS = 0.39LNω0t1 (the case
of the Gaussian temporal profile for the envelope of E(t)) and the disper-
sion length LD, are the measures for the nonlinear effects (SPM and self-
steepening) and the linear dispersion. They are directly calculated from the
initial peak power P and the initial FWHM pulse width t1, and are tabulated
in Fig. 1.20(B). For the case of t1 = 10.0 fs (LD = 0.995 mm), these LN, LS
and LD are plotted in Fig. 1.20(A) for different P , together with those for
P = 25 / 100 / 350 / 500 kW (LN = 0.917 / 0.229 / 0.065 / 0.046 mm). At
the propagation distance z below the lowest of them, which is LN in all the
cases shown, the results by the NLSE agree with those by the FDM. At the
propagation distance of z = 0.1 mm, it was confirmed that I(ν) obtained by



50 N. Karasawa et al.

0 1
0

1

2

3

4

0 1 0 1

0

1

2

3

4

0

1

2

3

4

I(
ν)

ν(PHz) ν(PHz) ν(PHz)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

I(
ν)

I(
ν)

10.00 fs

5725 kW

2290 kW

 763 kW
 5.00 fs  2.67 fs

ν0 2ν0 3ν0 ν0 2ν0 3ν0 ν0 2ν0 3ν0

−200 0 200
−0.5

0.0

0.5

−200 0 200 −200 0 200

−0.5

0.0

0.5

−0.5

0.0

0.5

E
(t

)

t(fs) t(fs) t(fs)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

E
(t

)
E

(t
)

5725 kW

2290 kW

 763 kW
10.00 fs  5.00 fs  2.67 fs

0 1
0

5

10

0 1 0 1

0

5

10

0

5

10

φ(
ν)

(1
02  r

ad
)

ν(PHz) ν(PHz) ν(PHz)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

φ(
ν)

(1
02  r

ad
)

φ(
ν)

(1
02  r

ad
)

10.00 fs

5725 kW

2290 kW

 763 kW
 5.00 fs  2.67 fs

ν0 2ν0 3ν0ν0ν0 2ν02ν0 3ν03ν0

−10 0 10

−2.0

0.0

2.0

−10 0 10 −10 0 10

−2.0

0.0

2.0

−2.0

0.0

2.0

E
c(

t)

t(fs) t(fs) t(fs)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

E
c(

t)
E

c(
t)

5725 kW

2290 kW

 763 kW
10.00 fs  5.00 fs  2.67 fs

Fig. 1.17. Effect of initial peak power and pulse width at z = 0.1 mm. Inten-
sity spectrum (upper-left). Spectral phase (lower-left). Temporal electric field pro-
file (upper-right). Temporal electric field profile of compressed pulse after com-
plete phase compensation (lower-right). Those calculated by FDM/NLSE with
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curves

the NLSE and the FDM agree well for P = 25 / 100 kW since z < LN, and
differ slightly for P = 350 / 500 kW since z ≥ LN.

In Figs. 1.17–1.19 or in Fig. 1.20(B) for P larger than 500 kW, z > LN
even at z = 0.1 mm since LN = 0.004–0.030 mm, and the nonlinear ef-
fects must appear in all the cases shown there. As for the dispersion length
LD = 0.071–0.995 mm and z = 1.0 mm, z � LD only for t1 = 10.00 fs
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Fig. 1.18. Same as Fig. 1.17 at z = 0.5 mm

and any P ((a),(d),(g)), and the linear dispersion cannot be dominant. For
t1 = 2.67 fs ((c),(f),(i)), on the other hand, even z = 0.1 mm exceeds LD
and the linear dispersion can appear. The distance z = 1.0 mm exceeds
LS = 0.006–0.166 mm in all the cases, but z = 0.1 mm exceeds LS only
for (g), (P, t1) = (763 kW, 10.00 fs). Thus, the SPM, the self-steepening and
the linear dispersion appear as the dominant, middle and slight effects for
the parameter values of P and t1 chosen here, respectively.

In all the cases in Fig. 1.17 at the propagation distance z = 0.1 mm, we
observe the difference of the intensity spectrum I(ν) by the FDM from that
by the NLSE, as expected from z > LN. It is asymmetric with respect to
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Fig. 1.19. Same as Fig. 1.17 at z = 1.0 mm

the central frequency ν0, and diminishes in the lower frequency, in contrast
to the NLSE results without self-steepening. It has a sharp main peak just
below ν0 and a broad wing in the high frequency region. For larger P , this
structure is clearer, but the shift of the main peak and the broadening of the
wing are reduced by the delayed Raman response and the core dispersion,
compared with I(ν) by the NLSE with self-steepening. The main peak splits
in the frequency region corresponding to the transitional region of the core
dispersion (below λ0 in Fig. 1.14(A)). When t1 is shorter, I(ν) looks magnified
similarly toward the higher frequency.
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Fig. 1.20. Nonlinear length LN, shock length LS, and dispersion length LD

(full / half-full / empty circle) as functions of initial peak power P for t1 = 10.0 fs.
Above LN, only FDM is applicable instead of NLSE

The spectral phase φ(ν) apart from ν0 rises. Among the numerical meth-
ods used in this monograph, φ(ν) by the FDM is the steepest in the high
frequency region.

As for the temporal electric field profile E(t), we find a main pulse with the
front steeper than the rear and following wave packets with a small amplitude.
In I(ν), we observe a sharp peak around ν0 and a broad wing in the higher
frequency region. Due to this spectral structure and the central wavelength
in the normal dispersion, nearly-coherent long-waves come around the steep
front, and the rear and the following wave packets are composed of random
short-waves.

As we proceed farther to z = 0.5 mm and 1.0 mm (Figs. 1.18 and 1.19), the
main peak of I(ν) broadens, and a hollow and a sub-peak develop between the
main peak and the wing due to the core dispersion. In addition, the split main
peak merges. These changes with propagation by the FDM are the slowest
compared with I(ν) by the other methods because of the nonlinearity reduced
by the delayed Raman response and the core dispersion. We attributed the
small sharp peak around 2.6ν0 in (a),(b),(c) of Fig. 1.19 to the numerical
origin because it diminished when we extended the maximum time-domain
size tmax. In the frequency region higher than this, we found also a third
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harmonics generated by the interaction of the main peak and the sub-peak.
However, in the real single-mode fiber with the delayed Raman response and
the core dispersion, its amplitude was much smaller than that of the third
harmonic wave predicted by Kalosha–Herrmann [20]. In the high frequency
region apart from ν0, the spectral phase φ(ν) rises with propagation, and
that obtained by the FDM is the highest in all the cases.

The temporal electric field profile E(t) spreads wide even before z reaches
LD because the spectrum broadened by the nonlinearity induces the disper-
sion combined with the fiber dispersion.

Pulse Compression by Complete Phase Compensation

Optical pulses are compressed below the initial width by the complete phase
compensation in addition to the spectral broadening by the SPM. When the
electric field profile at the exit of a fiber is expressed as

Ẽ(zmax, ω) = |Ẽ(zmax, ω)| exp {iφ(zmax, ω)} ,

the field after the compressor is

Ẽc(ω) = |Ẽ(zmax, ω)| exp {iφ(zmax, ω) + iφc(ω)} ,

with the phase compensated as φ(zmax, ω) + φc(ω) = 0. The temporal profile
of the compressed pulse Ec(t) is the inverse Fourier-transform of Ẽc(ω) and
the temporal intensity is Ic(t) which is proportional to |Ec(t)|2.

In Fig. 1.21(A), we compare the temporal electric field profiles obtained
by the FDM with those by Kalosha–Herrmann (K–H) [20] and the NLSE at
zmax = 0.1 / 0.5 / 1.0 mm, under the common condition of P = 2290 kW
and t1 = 5.00 fs. Figure 1.21(C) shows their FWHM tc measured from Ic(t)
as a function of the propagation distance.

In addition to the FWHM tc of Ic(t), we observe the breadth t
(e)
c of the

pulse concerned with the envelope wave. In contrast to t
(e)
c which is short

when I(ν) broadens, tc is short when the mean frequency of I(ν) shifts toward
the higher frequency.

As far as t
(e)
c is concerned, the pulse by the NLSE is shorter than that by

the FDM, because I(ν) by the NLSE broadens wider than that by the FDM,
as shown in Figs. 1.17–1.19. However, tc by the NLSE is longer, and tc by
K–H is shorter than tc = 0.476 fs by the FDM which is almost independent
of zmax. In the NLSE without self-steepening, I(ν) broadens symmetrically
toward the lower frequency across ν = 0 as well as the higher frequency.
Then, the central frequency of its I(ν) lowers, and tc is longer than those
obtained by the other numerical methods. Contrarily, in K–H’s results with
the nonlinearity reduced by neither the delayed Raman response nor the core
dispersion, the central frequency of I(ν) is kept higher, and tc is shorter than
that by the FDM.
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Fig. 1.22. Dependence on initial peak power P (MW) of parameters in compressed
pulses and intensity spectra according to Figs. 1.17-1.19. (A) FWHM tc (fs) of
temporal intensity of compressed pulse Ic(t). (B) Mean ν1 (PHz) of I(ν). (C)
Height of first lobe Rl relative to main peak in Ic(t). (D) RMS ν2 (PHz) of I(ν).
Those for initial pulse width t1 = 10.00 / 5.00 / 2.67 fs are shown by full / half-
full / empty circles. They are fitted against P as tc = eαwP βw , ν1 = eα1P β1 , Rl =
eαrP βr and ν2 = eα2P β2 for t1 = 5.00 fs and zmax = 0.100 / 0.500 / 1.0 mm. Fit
parameters are tabulated in (E)

In the lower-right part of Figs. 1.17–1.19, the compressed temporal electric-
field profiles for different P and t1 are shown. Their tc measured from
Ic(t) for P = 763 / 2290 / 5725 kW, t1 = 10.00 / 5.00 / 2.67 fs and zmax =
0.1 / 0.5 / 1.0 mm are shown in Fig. 1.22(A). The dependence of tc on P is
remarkably large compared with t1 and zmax. Its decrease with P is fitted
well as tc = eαwP βw with βw � −2.8. The mean frequency

ν1 ≡
∫ ∞

0
dνI(ν)ν

/∫ ∞

0
dνI(ν)

of I(ν) in Fig. 1.22(B), changing as ν1 = eα1P β1 with β1 � 0.13, is related
with tc. The height of the first lobe Rl relative to the main peak in Ic(t) is
shown in Fig. 1.22(C). It also depends on P most remarkably, on t1 but more
than tc, and hardly on zmax. The root mean square
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ν2 ≡
√∫ ∞

0
dνI(ν)(ν − ν1)2

/∫ ∞

0
dνI(ν)

as the measure for the breadth of I(ν) is shown in Fig. 1.22(D).
Short t1 diminishes Rl and refine the quality of the optical pulse. But it

contributes little to the compression of the pulse. Both tc and Rl are almost
independent of zmax after 0.1 mm much longer than LN. As we observe in
Figs. 1.17–1.19, φ(ν) to be compensated increases with zmax. Then, a short
zmax is preferable if we consider the limited range of the phase to be compen-
sated by the compressor. A large P refines the profile and the pulse quality
of the compressed pulse most effectively. The pulse is compressed to as short
as 0.3 fs at P = 6 MW.

Carrier-Envelope Phase

It is expected that the carrier-envelope phase (CEP), the initial phase of the
carrier wave relative to the envelope of the electric field, influences the propa-
gation behavior of few-optical-cycle pulses. We compare here the propagation
of pulses with different initial conditions as

Ej(z = 0, t) = Re E+(z = 0, t)e−i(ω0t+φj
I )

composed of only the right-traveling wave a1(ξ, τ) in (1.85), where the CEP
φj

I is 0 / π/2 / π for the cases j =(a) / (b) / (c). Instead of the direct difference
after propagation of a distance z, we use the function

Dj(z, ω) ≡ eiφj
FẼj(z, ω) − eiφ(a)

F Ẽ(a)(z, ω),

which extracts the essential differences caused by the CEP from the re-
sults apparently different owing to the initial conditions. In this equation,
Ẽj(z, ω) = FEj(z, t) from (1.67) and the value of the restoration phase φj

F is
φj

I (ω > 0) or −φj
I (ω < 0). We observe the difference between the two cases

j = (a) and j 
= (a) by the temporal profile ∆E(t) = F−1Dj(z, ω) and the
spectrum ∆I(ν) = |Dj(z, ω)|2.

In (B), (C) and (D) of Fig. 1.23, we compare E(t), φ(ν) and I(ν) of
pulses with different φj

I , where initial E(t) are shown in (A). ∆E(t) and
∆I(ν) are shown in (B’) and (D’), respectively. The condition (P, t1) =
(6870 kW, 3.40 fs) and the propagation distance z = 10.0λ are common where
λ = λ0/nR

L (ω0) is the wavelength in the fiber. The pulse duration was chosen
on the basis of the recent result of pulses generated experimentally by us (see
Sect. 5.2.3) [37]. We observe the generation of the third harmonics by the
wave packet in the rear of E(t) and also by φ(ν) flattened around ν0 and its
harmonics though slight in I(ν). However, the differences by the CEP are
hard to observe. By contrast, ∆E(t) and ∆I(ν) clearly show the differences
between (a) and (b) or (a) and (c). We find no differences between (a) and (c)
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Fig. 1.23. Effect of carrier-envelope phase (CEP) at P = 6870 kW and z = 10λ
for (a) φI = 0, (b) φI = π/2 and (c) φI = π. (A) Initial temporal electric field
profile. (B) Temporal electric field profile after propagation. (C) Spectral phase.
(D) Intensity spectrum at z = 10λ. Temporal electric field profile differences ∆E(t)
and spectral differences ∆I(ν) are shown in (B’) and (D’), respectively

because they are just the sign inversion of the other concerning the electric
field in the envelope. Then, we concentrate on the differences between (a)
and (b).

Figure 1.24 shows the evolution of ∆E(t) and ∆I(ν) between φI = 0
and φI = π/2 ((a) and (b)) as functions of the propagation distance from
z/λ = 0.0 to 10.0. This result was confirmed to be independent of the an-
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Fig. 1.24. Effect of CEP difference between φI = 0 and φI = π/2 for the respective
propagation distances z: Temporal electric field profile differences ∆E(t) (left).
Spectral intensity differences ∆(ν) (right)

alytic conditions such as the change from (tmax, Msam) = (500 fs, 2048) to
(tmax, Msam) = (1000 fs, 4096). Before z/λ = 3.0, a single wave packet in
∆E(t) and a peak around 3.0ν0 in ∆I(ν) grow gradually with the propa-
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gation. We can attribute them to the third harmonics, because they do not
appear when φj

F is modified as 3φj
I (2ω0 < ω < 4ω0) or −3φj

I (−4ω0 < ω <
−2ω0) to remove the differences in the region of the third harmonics fur-
thermore. After z/λ = 3.0, ∆E(t) tends to split into two wave packets, the
faster of which has the longer period than the slower. In ∆I(ν), the com-
ponents higher than the third harmonics appear, and the two peaks around
3.0ν0 and 3.8ν0 change their height alternately distance by distance. Above
z/λ = 10.0, ∆E(t) disperses, and the peak around 3.0ν0 splits into many
low peaks though the one at 3.8ν0 remains un-spread as far as z/λ = 1000.0.
These results clearly show that the CEP can be used as the marker to monitor
the evolution of the nonlinear process.

Though the present analysis considers the broad spectrum as well as
the delayed-Raman response and the core dispersion, we try to consider
newly observed results of Fig. 1.24 here simply on the basis of the coher-
ence length lc = π/{β(3ω0) − 3β(ω0)}, derived for the third-order nonlinear
interaction of coherent waves. By use of the modified Sellmeier equation,
lc/λ = n(ω0)/6 {n(3ω0) − n(ω0)} is evaluated as 4.3711. Though the wave,
due to the nonlinear process under consideration, is clearly defined at the
propagation distance below lc, it diminishes above lc by the phase mixing.
Figure 1.24 shows the generation of the third harmonics from the initial wave
around ν0 below z/λ = 3.0. Above this distance, the wave around 3.8ν0 con-
sidered to be generated from the initial wave and the third harmonics begins
to grow. Thus, the coherence length can be a measure of the distance for
the generation of the higher harmonics also in the present accurate analysis,
though its estimation is rough due to the presence of the spectral components
distributed continuously around ν0 in the initial I(ν).

To verify the above-found CEP effect, the following experimental setup
will be proposed. The beam from the few-cycle optical source [37] is split into
two, and the CEP and the temporal delay is given to one of them. They are
propagated in the extremely short fiber with the time difference to avoid the
interaction between them in the fiber. After the propagation, the CEP and
the temporal delay of that beam are restored, and interference by these beams
is observed. The broad spectral range up to the higher harmonics requires
some attention to avoid dispersion of the air and resonance of the fiber ma-
terial, and to calibrate the frequency-dependent characteristics of the optical
detectors. The fiber with a length as short as some times of the wavelength
is also necessary. This new simple technique to observe and control the CEP
will be valuable for upgrading the few-optical-cycle wave-packet source used
for experiments.

1.4 Conclusion

To simulate the nonlinear propagation of a few-to-mono optical-cycle and/or
ultrabroadband pulse, several novel numerical methods were developed. Con-
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ventionally, the electric field of an optical pulse was described by an envelope
function and an equation for the envelope function was derived using various
approximations. In the SVEA method, the variation of the envelope func-
tion in both the temporal scale of an optical period and the spatial scale
of a wavelength of a carrier wave was assumed to be negligible. From this
assumption, the second derivatives of the envelope function with respect to
time and position were neglected. Also, the spectral bandwidth of the pulse
was assumed to be much smaller than the carrier frequency. These assump-
tions break down for the few-to-mono optical-cycle and/or ultrabroadband
optical pulse. A novel equation for the envelope function was derived to simu-
late the propagation of the few-to-mono optical-cycle and/or ultrabroadband
pulse based on SEWA. This equation includes the rigorous linear dispersion,
the Raman effect and the dispersion of the effective core area. For the prop-
agation of a 4.5-cycle pulse in a fused-silica fiber, the calculation using the
newly-derived equation gave a spectrum that agreed well with the experi-
mental spectrum. The effects of omitting the Raman term and the dispersion
of the effective core area in the calculation were investigated and it was found
that when the Raman term was omitted, the relative intensity at the shorter
wavelength became larger and when the dispersion of the effective core area
was omitted, the relative intensity at the longer wavelength became larger.
The calculations for propagation of 2-cycle and monocycle pulses were per-
formed and it was shown that the inclusion of up to third-order dispersion
terms was enough for the 2-cycle pulse but not enough for the monocycle
pulse. Also, the co-propagation of the fundamental and the idler pulses from
the Ti:sapphire optical parametric amplifier (OPA) system was experimen-
tally performed and the spectra from IPM as well as SPM as a function of
delay time were measured and compared with calculated spectra. The de-
lay time dependence of the calculated spectra agreed qualitatively with the
experimental spectra. Similarly, calculations for the SPM and IPM spectral
broadening in the argon-filled capillary fiber were compared with the exper-
imental spectra using the newly-derived equation. In this case, the funda-
mental pulse and its second-harmonic pulse from a femtosecond Ti:sapphire
amplifier system were co-propagated inside the capillary fiber, and the ultra-
broadband (300–1000 nm) optical pulses were generated. The IPM + SPM
spectral broadening behavior as a function of the delay time was experimen-
tally clarified and the agreement with the calculated behavior was confirmed.
This method was also used for the calculations of the spectral broadening of
a-few-cycle pulses propagated in the photonic crystal fiber. Comparison be-
tween the calculated spectrum and the experimental ultrabroadband spectra
(480–1020 nm) showed excellent agreement. From this comparison, the mech-
anism of the supercontinuum generation was clarified.

In some situations, it is desirable to use a numerical method to integrate
Maxwell’s equations without introducing the envelope function. The conven-
tional method to solve Maxwell’s equations directly is the FDTD method.
Previously, this method was only applied to the medium which is modeled by



62 N. Karasawa et al.

a collection of harmonic-oscillators with one resonance frequency (the Lorentz
model). To calculate the propagation of a pulse accurately in the fused-silica
material, the medium must be modeled by a collection of harmonic-oscillators
with three different resonance frequencies, and these resonance frequencies are
determined by the Sellmeier equation. The FDTD method was extended to
handle this case. The spectral intensity after propagation for a 12-fs optical
pulse, input in a 2.5-mm fused-silica fiber, was calculated and compared with
the experimentally-obtained spectral intensity. The spectrum obtained in the
experiment agreed very well with the spectrum calculated by the extended
FDTD method.

In the FDFD method, Maxwell’s equations are integrated without intro-
ducing the envelope functions as in the FDTD method. But in this method,
all fields are calculated in the frequency domain, rather than time domain.
The advantage of this method is that any linear dispersion relations can be
incorporated in a simple manner if its functional form is known in the fre-
quency domain. It was shown that this method indeed gave the equivalent
results with the FDTD method for the nonlinear pulse propagation. Also,
it was shown that significant four-wave mixing waves could be generated
under non-phase-matched conditions when two pulses with different center
frequencies were co-propagated in a fiber.

The split-step Fourier method for solving the NLSE originally was ex-
tended to the Fourier Direct Method (FDM). Instead of the wave propaga-
tion equation of the second differential order, the one-dimensional Maxwell’s
equations were re-composed into the bi-directional propagation equations for
the forward and the backward wave, which are independent of each other
on the linear stage. They are easily solved by the straightforward extension
of the split-step Fourier method, though the nonlinear force F N including
differentials or integrals must be integrated by more general methods than
the exponential integral. In the FDM, the initial condition is easily prepared.
Furthermore, it was clarified that the SVEA restricting the range of validity
of the NLSE is replaced with the unidirectional propagation approximation.
The delayed Raman response and the nonlinear dispersion (self-steepening,
core dispersion) are naturally incorporated as well as arbitrary linear disper-
sions like the FDFD.

Since equations are solved as evolved in space, we obtain directly the
temporal electric field profile or the intensity spectrum at each spatial step,
favorable for comparing with experimental results. Calculations in the time
or frequency domain are accelerated by the fast Fourier transform (FFT).
The FDM shows the robustness even for long propagation distances with
many evolution steps, and facilitates tracing the cause of numerical troubles.

By this FDM, we can investigate the influence caused by several assump-
tions or approximations used conventionally for deriving the NLSE in fused-
silica-fiber propagation. Instead of bi-directional propagation, unidirectional
propagation approximation can be used, if desired, when the backward wave
leaves a distance from the forward wave. As already stated, it is unneces-
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sary to consider the SVEA with infinitesimal β(ω) − β(ω0) further in this
case. Among the effects on the nonlinearity, the self-steepening determines
the rough structure of the spectrum with the sharp peak and the broad wing.
The delayed Raman response reduces the nonlinear effects and just modifies
the spectrum. The core dispersion affects the spectrum most sensitively, es-
pecially in the frequency region higher than the main peak. In some cases, the
intensity spectrum or the temporal profile of the electric field spread wide.
The maximum size of the frequency domain must be much broader than the
basic frequency region −2ω0 < ω < 2ω0 to avoid the numerical breakdown.
The maximum size of the time domain with the periodic boundary condition
must cover the optical pulse wholly to avoid overlap with itself. The maxi-
mum time-domain size tmax and the number of temporal division Msam must
be chosen carefully to satisfy these contradictory requirements. In addition to
nonlinear dispersion, the results are sensitive to linear dispersion under the
wide-spread intensity spectrum. A realistic refractive index by the modified
Sellmeier equation is preferable rather than the quadratic dispersion modified
by the higher order terms.

For the pulses with initial peak power of 763 / 2290 / 5725 kW and initial
pulse width of 10.00 / 5.00 / 2.67 fs, the intensity spectrum by the FDM is
clearly different from the NLSE. The reduction of the nonlinearity by the
delayed Raman response and the core dispersion slows down the changes by
the FDM during the propagation. The dispersion induced by the nonlinear
spread of the spectra disperses the temporal electric field profiles even before
the linear dispersion length. In spite of that, they are compressed under
the initial width by the complete phase compensation. It was shown that
methods other than the FDM estimate the FWHM of the compressed pulse
tc too short. The dependence of tc on the initial peak power P is remarkable
compared with the initial width t1 and the propagation distance zmax. Large
P1 refines the compression and the quality of the pulse most effectively, and
the pulse is compressed as short as 0.3 fs at P1 = 6 MW. Both tc and the
quality hardly change even if the pulse is compressed after being propagated
in the fiber longer than zmax = 0.100 mm. Then, a short zmax is preferable if
we consider the limited range of the compressor phase.

The difference of the temporal profile and the spectrum after propaga-
tion were investigated with the different initial phases of the carrier wave
relative to the envelope wave (CEP). After extracting the essential difference
hidden behind the initial conditions, we confirmed that the difference is gen-
erated in the higher harmonics region of the spectra, which grows from the
third harmonics to more components with the propagation. Then, the CEP
is considered to be used as the marker to monitor the progress of the nonlin-
ear process. Experimentally, this phenomena will be observed by mixing two
beams with the interference after different CEPs and propagation in a fiber,
and its control serves for upgrading the pulse train.

In this chapter, we have only considered the numerical methods for one-
dimensional propagation of an optical pulse (or optical pulses) inside a waveg-
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uide under the non-resonant condition. As the temporal width of the pulse
becomes shorter, the peak power becomes larger and the spectral bandwidth
becomes broader. For the high peak power pulse propagation, the nonlinear-
ity becomes so large that the change of the spatial profile of the pulse should
be considered due to self-focusing [4, 35]. Also, for the broadband pulse, the
resonant interactions between the pulse and the medium can become impor-
tant [36]. These suggest that the numerical methods to integrate Maxwell’s
equations directly will become more important in the future.
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2 Generation
of Ultrabroadband Optical Pulses

M. Yamashita, N. Karasawa, M. Adachi, and X. Fang

2.1 Introduction

Since the first study of white-light-continuum generation in the field of pi-
cosecond nonlinear optics (1970) [1], extensive research for experimental and
theoretical development of mechanisms for the generation of coherent op-
tical pulses with an ultrabroad bandwidth and their technical applications
have been carried out in solids (including optical fibers), liquids and gases.
Most of those works until 1989 were reviewed in an excellent book edited by
R. R. Alfano [2]. It was found that such nonlinear optical phenomena are
mainly based on self-phase modulation (SPM) where an intense optical pulse
propagating in a medium with a refractive index interacts with the medium
and imposes a phase modulation on itself through a change in reflective index
by its light intensity [3]. That is, there are two important physical quanti-
ties for understanding of such ultrafast phenomena. One is a time-dependent
phase ϕ(t) (or the corresponding spectral phase φ(ω)) of the electric field in
the ultrashort pulses and another is a temporal pulse-intensity profile I(t).
But, until the early 1990s those optical quantities could not be measured
directly.

After that, however, the development of a high-powered femtosecond-
pulse Ti:sapphire laser in the period from 1991 to 1998 [4, 5] led the devel-
opment of sophisticated ultrashort-pulse measurement technology which en-
ables us to accurately evaluate the temporal phase ϕ(t) and intensity profiles
I(t) (or the corresponding spectral phase φ(ω) with the intensity spectrum
IF (ω)) [6–8]. Those two advanced technologies are opening a new field of
“few-to-mono cycle photonics” which requires coherent optical pulses hav-
ing a several-hundred THz bandwidth ∆νT = ∆ωT /2π and a well-defined
spectral phase φ(ω) over the entire bandwidth.

To produce extremely broadband pulses with a well-defined spectral
phase, their pulses must have no spatial chirp in which the spectral phase
and the intensity spectrum do not change along the radial direction of the
pulse beam cross-section. For this reason, single-mode optical fibers are con-
veniently employed as nonlinear media [9] (except for combined employment
of an SPM glass and nonlinear crystals for noncollinear parametetric amplifi-
cation [10]). Moreover, to avoid the optical damages of fibers and to efficiently
produce such well-defined ultrabroadband pulses, two new approaches of in-
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duced phase modulation (IPM:1996–1999) [11–15] and structure-controlled
fibers (1996–2000) [16–18] have been recently proposed and demonstrated.
The former is related to mutual phase interaction between two-color co-
propagated pulses with carrier phase locking [33] instead of SPM. The latter
is related to a gas-contained hollow fiber providing a high damage thresh-
old [18,19], and a photonic crystal glass fiber [16] and a tapered glass fiber [17]
significantly controlling a wavelength of zero group-delay dispersion (GDD).
Table 2.1 summarizes significant achievements in this field after 1990 (see [2]
for works before this year).

In this chapter we are concerned with the efficient generation of well-
defined ultrabroadband pulses with a near- or over-one-octave bandwidth
in the near-infrared to visible, ultraviolet region, which is based on IPM in
a conventional fused-silica fiber, IPM in a hollow fiber, SPM in a photonic
crystal fiber (PCF) or SPM in a tapered fiber (TF).

2.2 Conventional Glass Fiber Technique Using IPM

2.2.1 Theoretical Prediction

When 13-fs, 3-MW (40 nJ) pulses with a spectral width from 720 to 890 nm
(a center wavelength of 790 nm) at a 1-MHz repetition rate were injected
into a 3–4-mm-length fused-silica fiber with a single mode, the output pulse
spectrum was broadened from 630 to 1020 nm by the effect of dispersive SPM
(1997) [20]. However, further spectral broadening is greatly difficult because
the higher input-peak power to be required causes optical damage and the
optimum fiber length becomes shorter due to the dispersion effect. In addi-
tion, the input optical source generating shorter pulses with a higher peak
power, which is also required, is not easily obtainable. To overcome those
problems, the IPM technique, which was proposed in 1996 for the generation
of pulses ultrabroadened from near-infrared to near-ultraviolet [11, 12], is
useful, as shown later. That is, the IPM technique has some advantages com-
pared to the SPM technique as follows: the efficiency in phase modulation is
double, and the fiber-output electric fields with different central wavelengths
are constructively synthesized in the spectral region to efficiently broaden the
spectral width. Those permit us to use the lower input power and the longer
input-pulse duration, and hence to avoid optical damage to a glass fiber.

Let us introduce the principle of the IPM technique in a single-mode
fused-silica fiber. In Fig. 2.1, a schematic of a system concept for the efficient
generation of well-defined ultrabroadband pulses by the IPM technique is il-
lustrated [12]. IPM between two femtosecond pulses with a constant carrier-
phase difference is utilized. Those pulses are generated by the fundamental
wave (ω01: the carrier angular frequency of the I1 pulse) and its second-
harmonic (SH) wave (ω02 = 2ω01 : the carrier angular frequency of the
I2 pulse) from one common femtosecond pulse of a commercially available
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Table 2.1. Progress in ultrabroadband pulse generation and its related works after
1990

Year Accomplishment Researcher References

1991 The discovery of self-mode-locking
in a Ti:sapphire laser

Spence, Kean,
Sibbett

[4]

1993 Ultrashort pulse phase and ampli-
tude characterization by FROG

Trebino, Kane [6]

1995 Ultrabroadband pulse generation
ranging from near-infrared, visi-
ble to ultraviolet from multi-mode
gas-filled hollow fiber by TW opti-
cal pulses

Nishioka, Oda-
jima, Ueda,
Takuma

[19]

1996-2000 Proposal and demonstration of ef-
ficient ultrabroadband pulse gener-
ation from near-infrared, visible to
near-ultraviolet with well-behaved
phase by IPM technique

Yamashita, Sone,
Morita, Xu,
Karasawa

[11–15]

1996 High powered ultrabroadband
pulse generation with well-behaved
phase from single-mode gas-filled
hollow fiber

Nisoli, Silvestri,
Svelto

[18]

1997 Ultrabroadband pulse generation
from single-mode fused silica fiber

Baltuska, Wei,
Pshenichnikov,
Wiersma

[20]

1999 Ultrabroadband pulse generation
with well-behaved phase by non-
collinear OPA

Shirakawa,
Sakane,
Takasaka,
Kobayashi

[10]

2000 Efficient ultrabroadband pulse
generation (over one-octave band-
width) from photonic crystal fiber

Ranka, Windeler,
Stentz

[25]

2000 Efficient ultrabroadband pulse
generation (over one-octave band-
width) from tapered fiber

Birks,
Wadsworth, Rus-
sel

[17]

2001 Octave-scanning Ti:sapphire laser Morgner,
Kärtner, Fu-
jimoto, Ippen,
Scheuer et al

[31]

2003 Optical wave synthesis of two dif-
ferent femtosecond lasers

Schibli Kim,
Kuzucu,
Gopinath, Tan-
don, Petrich,
Kolodziejski, Fu-
jimoto, Ippen,
Kärtner

[32]
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Fig. 2.1. An experimental system concept for the efficient generation of ultrabroad-
band pulses with a well-behaved spectral phase by the IPM technique. SH and FB
denote second-harmonic generation and a single-mode fiber, respectively [12]

Ti:sapphire laser system. In this technique, the following points are essen-
tial. First, the carrier–phase difference between two waves is kept constant
according to an equation φ02 − φ01 = (2n + 1)π/2 + φ01 where φ0i denotes
the carrier phase of the Ii pulse (i = 1, 2 ; n is an integer) [21–24]. This
is because the conditions of phase matching and frequency conservation are
satisfied to ensure cumulative in-phase addition of the radiation power in
the second-order nonlinear processes. This enables us to synthesize construc-
tively two spectrally broadband waves at the fiber output after dispersive
IPM and SPM in a short fiber. Second, the relative values of input pulse
durations between the two pulses and the propagation distance are chosen
under the condition of equal input-peak powers between them so that at the
fiber output the broadened frequency bandwidth of the deduced spectrum
of each pulse becomes almost equal to the other and each pulse spectrum
slightly overlaps and interferes with the other at each spectral edge. For this
estimation of equal broadening, the ratio of the dispersion length for the I2
pulse to that for the I1 pulse is a useful parameter.

Let us describe the numerical analysis for nonlinear propagation of two
color pulses in a single-mode fused-silica fiber. We adapted a slowly-varying-
envelope approximation to the coupled-mode theory of nonlinear propa-
gation of the I1 and I2 pulses with the same linear polarization [11, 12].
The normalized envelopes u(i)(ξ1, τ1) = (γi(T0i)2/|k̈0i|)1/2 × Ai(z, t − ti0)
(= (Nsol.i/

√
P0i)Ai(z, t − ti0)) of the electric fields Ei(z, t) = 2−1Ai(z, t)

exp[i(k0iz−ω0it+φ0i)]+c.c. (i = 1, 2) in the group-velocity coordinate (ξ1, τ1)
of the I1 pulse satisfy the following set of modified nonlinear Schrödinger
equations with the normalized parameter Toi of the initial pulse duration tp,i:

∂u(1)(ξ1, τ1)
∂ξ1

= − i
2
sgn(k̈01)

∂2u(1)(ξ1, τ1)
∂τ2

1
+ β01

∂3u(1)(ξ1, τ1)
∂τ3

1

+i[|u(1)(ξ1, τ1)|2 + 2g12|u(2)(ξ1, τ1)|2]u(1)(ξ1, τ1), (2.1)
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∂u(2)(ξ1, τ1)
∂ξ1

= − i
2
sgn(k̈02)S12

∂2u(2)(ξ1, τ1)
∂τ2

1

+S22
∂3u(2)(ξ1, τ1)

∂τ3
1

+ S32
∂u(2)(ξ1, τ1)

∂τ1

+iS42[|u(2)(ξ1, τ1)|2 + 2g21|u(1)(ξ1, τ1)|2]u(2)(ξ1, τ1). (2.2)

Here the normalized variables are ξi = (|k̈0i|z)/(T0i)2 and τi = (t − ti0 −
k̇0iz)/T0i (ti0 = 0 if i = 1), z is the longitudinal coordinate of the fiber, and
t is time. For the Ii pulse, k0i is the propagation constant, λ0i is the center
wavelength, k̇0i is the inverse of the group velocity vg,i, k̈0i is the group veloc-
ity dispersion (GVD), β0i =

...
k 0i/(6|k̈0i|T0i) is the normalized third-order dis-

persion (
...
k 0i is the third-order dispersion (TOD)), T0i = tp,i/1.763 is the pa-

rameter of the initial pulse duration tp,i, P0i is the input peak power, Nsol,i =
[γiP0i(T0i)2/|k̈0i|]1/2 is the soliton number, γi = ω0in2/(2c2ε0n0iAeff) is the
nonlinear parameter, n2 is the nonlinear refractive index and n0i is the lin-
ear refractive index. ti0 is the initial delay time of the Ii pulse (i 
= 1)
relative to the I1 pulse, and Aeff is the effective core area of the fiber. c
and ε0 are the vacuum light velocity and dielectric constant, respectively.
u(2)(ξ1, τ1) ≡ u(2)(a2ξ1, b2τ1 + c2 + d2ξ1), b2 = T01/T02, c2 = −t20/T02,
d2 = (k̇01 − k̇02)T 2

01/(T02|k̈01|), gmn = |k̈0n|ω0m(T0m)2/[|k̈0m|ω0n(T0n)2] and
a2(= S42) = |k̈02|(T01)2/|k̈01|(T02)2 is the ratio of the dispersion lengths for
the I1, and I2 pulses. For the S coefficients, S12 = |k̈02|/|k̈01| is the ratio of
the GVD for the pulses I2 and I1, S22 = β02|k̈02|T02/(|k̈01T01|) is propor-
tional to the TOD for the I2 pulse, S32 = (k̇01 − k̇02)T01/|k̈01| is proportional
to the group-velocity mismatch between the pulses I1 and I2.

The first and second terms in the right-hand sides of (2.1) and (2.2) rep-
resent the GVD and the TOD due to the fiber, respectively. The third term
in (2.1) and fourth term in (2.2) represent SPM and the fourth term in (2.1)
and fifth term in (2.2) represent IPM, both of which originate from the effect
of the nonlinear refractive index in the third-order nonlinear polarization.
Accordingly, IPM is always accompanied by SPM. The third term in (2.2)
explicitly represents the effect of the group velocity mismatch between the
I1 and I2 pulses. In deriving (2.1) and (2.2) the following assumptions have
been made: (1) the nonlinear polarization terms other than the nonlinear-
refractive-index ones are neglected because their polarizations do not gener-
ally contribute significantly under the condition of non-phase-matching in the
four-wave-mixing processes in the fiber, [25]. (2) n2 is frequency-independent
in the non-resonant region, and (3) two different values for n0i, k0i, k̇0i, k̈0i,
and

...
k 0i at each carrier frequency are applied as representative ones in the

ultrabroadband frequency region and gmn � 1.
The above coupled equations were solved numerically for a fused-silica

fiber with a core diameter of 2 µm and a nonlinear refractive index n2 =
1.22 × 10−22 (m/V)2 [26] using the split-step Fourier method [25], under the
assumption that the initial pulse shapes Ii(τi) are sech2 at ξi = 0. Typical
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Table 2.2. Input pulse and fiber parameters [12]

1st pulse I1 2nd pulse I2

ω01 ω0c = 3ω01/2 ω02 = 2ω01

Input pulse
λ0i (nm) 750 500 375
tp.i (fs) 50 70.7
P0i (kW) 900 900
ti0 (fs) 0 −53.7

fiber
n2 (m2/V2) 1.22 × 10−22

d (µm) 2
z0 (mm) 0.5
k̈ (s2/m) 4.036 × 10−26 10.741 × 10−26

...
k (s3/m) 2.605 × 10−41 3.248 × 10−41

input pulse parameters employed for the calculations are shown in Table 2.2.
They are chosen by taking into account the output pulse characteristic ob-
tained from a commercially available Ti:sapphire laser system.

At the fiber output, z0 (= (T01)2ξ10/|k̈01|), the amplitude AT (z0, t) of
the total electric field ET (z0, t) = 2−1AT (z0, t) exp[−i3ω01t/2] + c.c. of the
composite wave is described as follows by regarding ω0c = (ω02 − ω01)/2 +
ω01 = 3ω01/2 as a carrier angular frequency:

AT (z0, t) = (n01/n0c)1/2A1(z0, t) exp[i(ω01t/2 + φT1)]
+(n02/n0c)1/2A2(z0, t − t20)
exp[i(−ω01t/2 + φT2)], (2.3)

where Ai(z0, t − ti0) ≡ (
√

P0i/Nsol,i)u(i)(ξi, τi) is the electric field enve-
lope of the Ii pulse at the fiber output z0 and n0c is the linear refrac-
tive index at ω0c. φT1 = k01z0 + φ01 and φT2 = k02z0 + φ02 + 2ω01t20
which represent the phase constants. The Fourier transform AT (ξ10, Ω) ≡
|AT (ξ10, Ω)| exp[iφT (ξ10, Ω)] of the total envelope AT (ξ10, τ1) at the normal-
ized fiber output distance ξ in the ξ1, τ1 coordinate is obtained from the
linear combination of the shifted Fourier transform U (i)(ξ10, Ω + δiω01T01/2)
(δi = −1, 1 for i = 1, 2) of u(i)(ξ10, τ1). Consequently, the intensity spec-
trum IT (Ω) and the frequency-dependent phase φT (Ω) (≡ φT (ξ10, Ω))
of the fiber output pulse are calculated from ε0cn0c|AT (ξ10, Ω)|2/2 and
tan−1(Im(AT (ξ10, Ω))/Re(AT (ξ10, Ω))), respectively. Figure 2.2 shows the
evolution of the intensity spectrum during propagation along the fiber. In
addition, Fig. 2.3 shows the intensity spectrum and the frequency-dependent
phase at the fiber output z0 = 0.5 mm, where ω01 = 2.513 × 1015 rad/s
(λ01 = 750 nm), ω02 = 5.027 × 1015 rad/s (λ02 = 375 nm), φ01 = 0, and
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Fig. 2.2. An evolution of the entire pulse-intensity spectrum IT (ν) during fiber
propagation under IPM (see the text concerning the values of the parameters) [12]

Fig. 2.3. The entire pulse-intensity spectrum IT (ν) (solid line), and the frequency-
dependent phase φT (ν) (dotted line) generated by the IPM technique [12]

φ02 = −π/2 (see Table 2.2). From this figure, it is seen that the spectrum is
extremely broad over the near-infrared, the visible, and the near-ultraviolet
wavelengths from 320.6 to 1426.4 nm which corresponds to the spectral full
width of ∆νT = 725 THz. Also, the chirp is moderately nonlinear and is
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composed of two linear chirps having different slopes. This transform-limited
pulse has a duration of 1.28 fs.

It should be pointed out that the group velocity difference between the two
pulses plays an important role in IPM because it limits the IPM interaction
length. For two pulses of width T ′

0 = T ′
01 = T ′

02 (where the intensity becomes
1/e), the walk-off length is defined as:

Lw =
T ′

0

|v−1
g1 − v−1

g2 | . (2.4)

It is easy to understand that IPM occurs only over distances ∼ Lw irrespec-
tive of the actual fiber length L. The Lw depends on the relative center-
wavelengths, and decreases as the center-wavelength difference δλ0 increases.
If the fiber length L satisfies the condition of L ≤ Lw, the IPM terms on the
right-hand sides of (2.1) and (2.2) show that the IPM effect is two times as
large as SPM and a broader spectrum with both IPM and SPM effects than
that with SPM alone could be generated. Furthermore, it was found that
the initial phase difference φ02 − φ01 between the I2 and I1 pulses does not
influence the output-pulse intensity and spectral phase (IT (Ω) and ΦT (Ω)),
except for the small interference part where the highest frequency edge of
the I1 spectrum and the lowest frequency edge of the I2 spectrum slightly
overlap.

In [11], similar numerical simulations were reported for the case of three-
color input pulses.

2.2.2 Experiment

Experimental Setup

The first experimental generation of ultrabroadband optical pulses by the
IPM technique was demonstrated in 1999 [13]. A schematic of the exper-
imental setup is shown in Fig. 2.4. The first pulse I1 was generated from a
Ti:sapphire regenerative amplifier at 1 kHz repetition rate. The pulse duration
was about 120 fs (full width at half maximum, FWHM) with a bandwidth of
12 nm (FWHM) centered at 795 nm and the output energy was 750 µJ (hence-
forth called fundamental pulse). The main output energy from the regenera-
tive amplifier was used to generate a continuum wave and pump an optical
parametric amplifier (OPA). The signal-pulse tuning range in OPA was from
480 to 740 nm with output energy beyond 10 µJ at 1 kHz. The wavelength of
the second pulse I2 was chosen to be 640 nm from OPA and the pulse dura-
tion was measured to be about 120 fs (FWHM) with a spectral bandwidth of
12 nm (FWHM) (henceforth called signal pulse). Since the continuum wave
was generated by SPM of the fundamental pulse under the single-filament
condition and was selectively amplified using its second harmonic pulse by
optical parametric process with the phase matching condition [27], the phase
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Fig. 2.4. Schematic of the experimental setup. Alpha 1000 is a 1 kHz regenerative
amplifier, and an optical parametric amplifier (OPA) is pumped by Alpha 1000. M1–
M6 are aluminum plane mirrors, M7 is a dichroic plane mirror highly transmitting
at 795 nm and highly reflecting at 640 nm; P1 is an aperture, N1, N2 are neutral
filters, R1, R2 are reflective objectives [13]

of the signal wave should have a relation to the phase of the fundamental
wave. This condition is critical for generating a stable combined spectrum
with IPM in a single-mode glass fiber, which will be confirmed later. From
(2.4) the calculated walk-off length between the signal pulse and the funda-
mental pulse is about 2.7 mm. The reason why the second pulse wavelength
is selected to be 640 nm lies in the fact that that the walk-off length of these
two pulses in a fused silica fiber (Lw = 2.7 mm) is around the length that
we are to cut well (∼3 mm) and then the IPM effect between the two pulses
could be observed clearly. The two pulses were combined by a dichroic mir-
ror, M7, which had high transmission for the fundamental pulse and high
reflection for the signal pulse. The optical path of the fundamental pulse was
varied by an optical delay stage formed by M2, M3, so that the delay of
the two pulses in the fiber was adjusted. N1 and N2 were variable neutral-
density filters and energies of the two pulses were controlled independently.
The beam size of the signal pulse was about 1.5 mm with a perfect Gaussian
distribution and an aperture P1 with a diameter of around 2.0 mm was added
in the fundamental pulse beam to improve beam quality. The combined two
pulses which had the same linear polarizations were coupled into a 3-mm
single-mode polarization-preserving fused-silica fiber (2.7 µm core diameter)
by a ×36 reflective objective R1. The advantage of this kind of reflective
objective is that no additional GVD is introduced to both pulses because of
its reflective components. The coupling efficiency was measured to be around



76 M. Yamashita et al.

35% and 40% for the fundamental and signal pulses, respectively. The output
from the fiber was collimated by the same type of reflective objective R2 to
a wavelength-calibrated spectrometer to monitor the output spectrum.

Observation of IPM Spectrum

Figure 2.5(a) shows the spectra of the input fundamental (solid line) and sig-
nal (dashed line) pulses. Figure 2.5(b) depicts the spectra of the two pulses
with SPM alone at the energy of 20 nJ in the fiber for each pulse. The solid
line represents the SPM-induced spectrum of the fundamental pulse and the
dashed line represents the SPM-induced spectrum of the signal pulse. From
Fig. 2.5(b) we observe the separated spectra for the two pulses with only
the SPM effect at 20 nJ energy levels. When the two pulses are launched
simultaneously into the same fiber with an optimum initial delay between
the two pulses (two pulses meet at the center of the fiber, to be discussed
later), because of the IPM effect of the two pulses, the two spectra meet
each other. It was observed that the output spectrum is significantly stable
including the overlapping part. This means that the phase of the spectral-
broadband fundamental wave and the phase of the spectral-broadband signal
wave have some relation. Accordingly, the output spectrum is constructively
synthesized. The optimized spectrum all over the range from 480 to 900 nm
was measured (Fig. 2.5(c)). The pulse energy measured after fiber propaga-
tion was about 40 nJ. The shortest pulse attainable by phase correction of
this ultra-broad spectrum is obtained by the Fourier transform of the spec-
trum of Fig. 2.5(c) assuming a constant spectral phase (see Sects. 3.3.1 and
5.2.1). This yields the pulse duration of ∼4 fs (Fig. 2.5(c) inset). It should be
noted that a well-behaved spectral phase of the generated broad spectrum is
significantly important for the bandwidth-limited-pulse generation.

Delay Effect Between Two Pulses

Because of the group velocity difference between the two optical pulses prop-
agating in the fiber, they travel at different speeds and after some distance
propagation they are separated. The IPM-induced spectra were measured for
different initial time delays between the two pulses. The results are shown in
Fig. 2.6. The initial time delay between the two pulses t20 = 0 fs represents
that the two pulses coincide at the fiber entrance (dashed line), and the delays
t20 = −40 fs and t20 = −80 fs represent that the two pulses meet at the center
(thicker solid line) and the end of the fiber (thinner solid line), respectively.
When the two pulses meet at the entrance of the fiber (t20 = 0 fs), because
the fundamental pulse travels faster than the signal pulse in the fused-silica
fiber, the leading edge of the signal pulse interacts with the trailing edge of
the fundamental pulse. As a result, the signal pulse has IPM-induced positive
chirp and the fundamental pulse has IPM-induced negative chirp. This leads
to larger modulation of the signal pulse spectrum at shorter wavelengths and
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Fig. 2.5. (a) The spectra of the input fundamental (solid line) and signal (dashed
line) pulses; (b) The measured spectra induced by SPM in a 3-mm single-mode
fused-silica fiber. The solid line represents the fundamental pulse spectrum by SPM
and the dashed line represents the signal pulse spectrum by SPM at the pulse
duration of 120 fs, energy of 20 nJ in the fiber for each pulse; (c) The measured
spectrum induced by IPM of the two pulses, the same parameters as in (b), the
initial time delay between the two pulses is chosen so the two pulses meet at the
center of the fiber. The Fourier transformed pulse intensity is shown in the inset [13]

larger spectral modulation of the fundamental pulse at longer wavelengths. A
larger gap between the two spectra is observed in this case (Fig. 2.6, dashed
line). On the contrary, when the two pulses meet at the end of the fiber
(t20 = −80 fs), the trailing edge of the signal pulse mainly interacts with the
leading edge of the fundamental pulse. As a result, the IPM-induced spectrum
of the signal pulse shifts towards its longer wavelengths and the IPM-induced
fundamental pulse spectrum shifts to shorter wavelengths and larger overlap
of the two pulse spectra is observed (thinner solid line in Fig. 2.6). It is found
that when the two pulses meet at the center of the fiber, the fundamental
pulse passes through the signal pulse in a symmetric manner. As a result,
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Fig. 2.6. The measured spectra induced by IPM for the two pulses with different
initial time delays under the same parameters as in Fig. 2.5. The thicker solid line
represents the spectrum when the two pulses meet at the center of the fiber, the
dashed line represents the spectrum when the two pulses meet at the entrance of
the fiber and the thinner solid line represents the spectrum when the two pulses
meet at the end of the fiber [13]

the spectra are broadened by the IPM effect to shorter and longer wave-
lengths simultaneously for both pulses and the broadest combined spectrum
is generated (thicker solid line in Fig. 2.6). This case is referred to as the
optimum initial time delay which was mentioned above. Note that an even
broader spectrum could be expected by tuning the second pulse to shorter
wavelength, and utilizing a shorter optical fiber owing to the walk-off length
Lw decreasing as the center wavelength difference δλ0 increases.

Spectral Phase Characterization

The similar experiment in the infrared region for obtaining information on
the spectral phase behavior of the fiber-output pulse was carried out using
a combination of two input pulses with center-wavelengths of 800 nm (the
fundamental pulse: the first pulse I1) and 1070 nm (the idler pulse: the sec-
ond pulse I2) [28, 30, 42]. The fundamental pulse had a 80-fs pulse duration
and 15-nJ energy per pulse, and the idler pulse had a 80-fs duration and
45-nJ energy, both at 1-kHz repetition rate. The output pulse from a 3-
mm-length fused-silica fiber was directed to a chirp compensator consisting
of a pair of fused-silica, 60-degree prisms with double paths. The distance
between prisms was 61 cm. A width- and position-controllable slit was set
between the second prism and a roof mirror for spectrally-resolved intensity-
autocorrelation (AC) measurements. The compensated pulse was guided to a
non-collinear intensity autocorrelator with a 10-µm-thick BBO crystal. The
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Fig. 2.7. The spectra (the vertical axis is a logarithmic scale) of output pulses
broadened by the SPM + IPM effects from a fused-silica fiber (the left column).
Each curves corresponds to different input timings between two-pulses; (a) t20 =
67 fs, two pulses meet at the output face of the fiber. (b) 0 fs, they are injected
simultaneously at the entrance of the fiber; (c) −67 fs, the idler pulse passes the fiber
without overlapping with the fundamental pulse. The curves in the right column,
corresponding to the left spectra, are traces of intensity autocorrelation for the
whole pulse spectrum after chirp compensation by a pair of prisms. The notations
(i), (ii), and (iii) correspond to the spectral region of 1100–1250 nm, 850–1010 nm
and 730–850 nm respectively.

61-cm distance of the prism pair was chosen to compensate for chirp due to
the dispersive SPM effect for only the fundamental pulse propagation. That
is, the 130-fs fundamental pulse at the fiber output was compensated for to
have a 35-fs duration of transform limitation. For chirp compensation of only
the idler pulse at this prism distance, the comparable pulse duration was ob-
served. The whole pulse spectrum was measured by two-forked-fiber-coupled
spectrometers with a Si-photodiode array for the spectral part of the short
wavelength and an InGaAs array for the spectral part of the long wavelength.

Figure 2.7 shows fiber-output spectra as a function of the delay-time t20
and their corresponding AC traces after chirp compensation. Spectra (a), (b)
and (c) (hence traces (a′), (b′) and (c′)) correspond to t20 = 67, 0 and −67 fs,
respectively. The fiber-propagation-time difference between the 80-fs idler
pulse and the 80-fs fundamental pulse due to the group-velocity difference
was 48 fs. In case (a), where two pulses meet almost at the fiber output
end, IPM as well as SPM occurs strongly and hence a stable continuous
spectrum from 710 to 1250 nm is observed. In case (b), where two pulse co-
propagate simultaneously at the fiber entrance, IPM also occurs. However,
the peaks around the center of the continuous spectrum from 710 to 1250 nm
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Fig. 2.8. Spectrally-resolved autocorrelation traces after chirp compensation by a
pair of prisms for the output from a fused-silica fiber. The spectrum of the output
pulses was divided into three spectral regions shown as (i) 1010–1250 nm, (ii) 850–
1010 nm, and (iii) 730–850 nm. The curves in the each column (a′), (b′), and (c′)
correspond to different input timings between two pulses; t20 = 67, 0, and −67 fs,
respectively

have different structures and become slightly weak compared with case (a).
In case (c), where the idler pulse propagates through the fiber in advance
of the fundamental pulse without overlapping, the spectra of two pulses are
broadened independently from 730 to 900 nm for the fundamental and from
1040 to 1220 nm for the idler by the dispersive SPM effect alone. The AC
traces of (a′) and (b′) in Fig. 2.7 have a three-peak shape and the separation
between sub-peaks decreases with decreasing the delay time. At the −67 fs
delay time (c′), the trace becomes a single-peak shape with a small pedestal.
The further decrease in delay time (t20 < −67 fs) indicated again an AC trace
of a three-peak shape. The former AC traces, (a′) and (b′), imply temporal
intensity profiles with two peaks, and the latter AC trace (c′) implies a single-
peak intensity profile with a small pedestal. Figure 2.8 shows the AC traces
after spectrally-resolved chirp compensation when keeping the same prism
distance, for the three delay-times corresponding (a), (b) and (c) in Fig. 2.7.
The fiber output spectra from 730 to 1250 nm were divided into three equal
bandwidths (∆ν ∼= 50 THz) : The spectral regions of (i) 1010 to 1250 nm,
(ii) 850 to 1010 nm and (iii) 730 to 850 nm (Fig. 2.7). In the two strong-IPM
cases ((a′) and (b′) in Fig. 2.8), the AC traces in the spectral regions (i) and
(iii) have a single peak with different widths between them, while that in the
region (ii) has three peaks. On the other hand, in the SPM-dominant case
((c′) in Fig. 2.8), the AC trace even in the region (ii) has a relatively weak
signal peak as well as those in the regions (i) and (iii) with the almost same
width.

To understand these results, a numerical analysis for two-pulse nonlin-
ear copropagation in a fused-silica fiber using a theory based on the slowly-
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varying-envelope approximation ((2.1), (2.2)) was performed. The IPM anal-
ysis includes all orders of linear dispersion effects, the delayed-nonlinear
Raman response and the dispersion effect of the effective core area (see
Sect. 1.3) [42]. In addition, the obtained spectral phase was compensated for
using the theoretically calculated dispersion applied by the double-pass prism
pair [62] with experimental parameters. Fig. 2.9 shows the results of calcu-
lated AC traces after chirp compensation for cases of (a′)-(i′), (a′)-(ii′) and
(a′)-(iii′). Comparison between the calculation (Fig. 2.9) and the experiment
(in Fig. 2.8(a′)) indicates the good agreement between them. This implies
for the IPM spectral phase that the group delay has a discontinuity around
the central wavelength of 930 nm, and the group delay dispersion in the low
frequency region is different from that in the high frequency region. This
funding will be confirmed in Sect. 3.3 [29] and 5.2 [28,30].

2.3 Gas-Filled Hollow Fiber Technique using IPM

In the original proposals of the generation of ultrabroadband optical pulses
using induced phase modulation (IPM) [11, 12], fused silica fibers were con-
sidered as nonlinear media. Fused silica fibers have been conventionally used
to broaden the spectrum of optical pulses through dispersive SPM and one
of the shortest pulses up to date was generated by this method [34]. Optical
propagation loss of a fused silica fiber is negligibly small for small distance.
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However, its damage threshold is relatively small, making applications re-
quiring large energy difficult. The maximum energy that can be allowed by
this method is about 40 nJ for a 13-fs input pulse [20].

In 1996, single-mode hollow fibers filled with noble gases have been used
to broaden the spectrum of optical pulses through dispersive SPM in single-
channel propagation [18, 35] and sub-5 fs, high powered pulses have been
generated using this technique [35]. Because of the chemical stability of the
noble gases, the damage threshold is relatively high and the maximum energy
that can be allowed is about 10 µJ. However, since the linear refractive index
of the noble gas (�1.0) is smaller than that of the glass used in the wall
of the hollow fiber, the optical field is not completely confined in the fiber
during propagation. Hence, a loss always occurs in this method. In addition,
the nonlinear refractive index and second-order dispersion of the noble gas
are smaller than those of fused silica by a factor of thousands.

2.3.1 Theoretical Prediction

We consider a case where two optical pulses with different center frequen-
cies and widths are co-propagating in a hollow fiber with a length zl whose
axis is parallel to the z-direction. For each pulse j (j = 1,2), the electric
field (linearly polarized in the x-direction) can be written as Ej(rj , t) =
(1/2)x̂{Fj(x, y)Aj(z, t) exp[i(β0jz −ωjt+φ0j)]+ c.c.}, where β0j , ωj and φ0j

are a wave number of the propagation mode, a center angular frequency and
a constant phase for a pulse j and c.c. represents the complex conjugate.
All notations defined here apply only within Sect. 2.3. Fj(x, y) represents the
transverse distribution of the mode and Aj(z, t) represents the slowly-varying-
envelope part of the field. For convenience, two time-coordinates that move
with the speed of a group velocity for each pulse are defined as Tj = t−β1jz,
where β1j is the inverse of the group velocity of the pulse j. By using a
slowly-varying-envelope approximation (SVEA), and if dispersion terms are
neglected, Aj(z, Tj) satisfies the following equations: [36, 37]

∂A1

∂z
= −α1

2
A1 + i

n2ω1

c
[f11|A1|2 + 2f12|A2|2]A1, (2.5)

∂A2

∂z
= −α2

2
A2 + i

n2ω2

c
[f22|A2|2 + 2f12|A1|2]A2, (2.6)

where αj represents a loss, n2 is a nonlinear refractive index. fjk is a mode
overlap integral between transverse modes of the pulses j and k. Writing Aj =√

Pj exp(−αjz/2)Uj(z, Tj), where Pj is the peak power of the pulse j, the
solutions of (2.5) and (2.6) are given by Uj(z, Tj) = exp[iφj(z, Tj)]Uj(0, Tj),
where φj(z, Tj) is the time-dependent nonlinear phase [14].

From the nonlinear phase, the nonlinear chirp, which represents the in-
stantaneous frequency shift from the carrier frequency, is calculated by the
equation δωj = −∂Tj φj . By assuming the Gaussian input-pulses of the



2 Generation of Ultrabroadband Optical Pulses 83

form A1(0, T1) =
√

P1 exp[−T 2
1 /(2T 2

01)] and A2(0, T2) =
√

P2 exp[−(T2 −
Td2)2/(2T 2

02)], where T0j is a pulse width where its intensity becomes 1/e
and Td2 is a delay time of the pulse 2 with respect to the pulse 1, the chirps
are calculated to be

δω1(zl, T1) =
2n2ω1

c

zl

T01

[
z1eff

zl
f11τ1 exp(−τ2

1 )P1

+
f12

δ1
exp[−2η2(τ2 − τd2) + η2

2 ]P2
√

πη2

× {erf(τ2 − τd2 − η2) − erf(τ2 − τd2 − η2 − δ2)}
+

f12

δ1
exp[−2η2(τ2 − τd2) + η2

2 ]P2

× {exp[−(τ2 − τd2 − η2 − δ2)2] − exp[−(τ2 − τd2 − η2)2]}
]
, (2.7)

δω2(zl, T2) =
2n2ω2

c

zl

T02

[
z2eff

zl
f22(τ ′

2 − τd2) exp[−(τ ′
2 − τd2)2]P2

− f12

δ2
exp(2η1τ

′
1 + η2

1)P1
√

πη1

× {erf(τ ′
1 + η1 + δ1) − erf(τ ′

1 + η1)}
− f12

δ2
exp(2η1τ

′
1 + η2

1)P1

× {exp[−(τ ′
1 + η1 + δ1)2] − exp[−(τ ′

1 + η1)2]}
]
. (2.8)

Here, erf(x) = 2√
π

∫ x

0 exp(−t2)dt is an error function and the following quan-
tities are defined by τj = T1/T0j , τ ′

j = T2/T0j , τd2 = Td2/T02, δj = zld/T0j ,
and ηj = αjT0j/(2d). Also, d = β12 − β11 is the difference between the in-
verses of the group velocities and zjeff = (1 − exp(−αjzl))/αj is the effective
fiber length for the pulse j. In (2.7) and (2.8), the first terms are due to SPM
and the second and the third terms are due to IPM. Especially, the second
term appears because of the loss during propagation. In Fig. 2.10, the chirps
are shown as functions of normalized time.

We set ω1 as the fundamental wave and ω2 = 2ω1 as the second-harmonic
wave. To cover fully the spectrum between ω1 and ω2, we wish to maximize
δω1 and −δω2 (δω2 < 0). From (2.7) and Fig. 2.10, the second term (IPM 1
in Fig. 2.10) is small if the loss is small, thus we ignore the second term.
From the conditions that the first term and the third term become maxima,
the optimum delay to maximize δω1 is given by

Td2 = T01/
√

2 − T02η2 − zld. (2.9)

Similarly, the condition of maximizing −δω2 is given by
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Fig. 2.10. Calculated chirps versus normalized time for (a) δω1 and (b) δω2 when
dispersion terms are neglected. Solid lines show chirps from SPM, long and short
dashed lines show chirps from IPM, and dotted lines show the total chirps. Pulse
centers are at 0 for (a) and -2.32 for (b). In these calculations, ω1 is the fundamental
wave and ω2 is the second-harmonic wave of a Ti:sapphire laser system (λ1 =
790 nm). These waves are co-propagated in an argon-filled (300K, 3.3 atm) hollow
fiber with a radius of 50 µm and a length of 29.2 cm. Also, P1 = P2 = 1.29 GW,
T01 = T02 = 30/(2

√
ln 2) fs (τ1 = τ2, τ ′

1 = τ ′
2), n2 = 3.234 × 10−23 m2/W and

Td2 = −41.8 fs (Td2 � −zld) are used [14]

Td2 = T02/
√

2 − T01η1 − zld. (2.10)

Comparison of (2.9) and (2.10) shows that for small η1 and η2, two conditions
above can be satisfied if both pulses have the same widths (T01 = T02). In
particular, if there are no loss (η1 = η2 = 0), these conditions can be satisfied
exactly. This condition Td2 = T02/

√
2 − zld specifies that both pulses meet

almost at the fiber exit end.
To fully cover the spectrum between ω1 and ω2, we set the condition:

(δω1)max + (−δω2)max = ω2 − ω1 = ω1, where (δω1)max and (−δω2)max are
obtained at the optimal delay time (2.9). Using this condition, the mini-
mum required powers of pulses were calculated for the propagation of the
fundamental (center wavelength 790 nm) and the second-harmonic (center
wavelength 395 nm) pulses in a hollow fiber (radius 50 µm, length 29.2 cm)
filled with 3.3-atm-argon [14]. When the width of each pulse was set to be
T0j = 30/(2

√
ln 2) fs, the required power of each pulse was calculated to be

1.29 GW with the optimal delay time Td2 = −41.8 fs. In Fig. 2.11, the spec-
tral intensity obtained by a numerical simulation for the above condition is
shown. As shown in the figure, the spectrum between ω1 and ω2 is indeed
fully covered.
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hollow fiber under the condition P1 = P2 = 1.29 GW, Td2 = −41.8 fs [14]

2.3.2 Experiment

The generation of ultrabroadband optical pulses by the use of induced phase
modulation in an argon-filled hollow fiber was experimentally demonstrated
[15]. The experimental setup is shown in Fig. 2.12. The output beam of a
Ti:sapphire laser-amplifier system (center wavelength ∼790 nm, pulse width
24 fs, repetition rate 1 kHz and pulse energy 1 mJ) was passed through a 0.5-
mm-thick β-barium borate (BBO) crystal (C1). The second-harmonic pulse
generated by the type-I phase-matching was separated from the fundamental
pulse by two harmonic separators (HS). The polarization direction of the fun-
damental pulse was rotated by 90 degrees by two periscopes (PS) to match
it with that of the second-harmonic pulse. The fundamental pulse and the
second-harmonic pulse were combined using a dichroic mirror (DM) and col-
limated by a spherical mirror with a 20-cm focal length. In a chamber, a
hollow fiber with 34-cm length and 0.1-mm inner diameter was positioned
and argon gas with a pressure of 3.3 atm was filled. The chamber had two
1 mm-thick sapphire windows (S1 and S2). A retro-reflector (RR) was used
to adjust the delay time of the second-harmonic pulse with respect to the
fundamental pulse. Input energies of these pulses were adjusted by variable
neutral-density filters (VND).

Both input pulses were redirected by flip mirrors (F1 and F2) and were
evaluated using a transient-grating frequency-resolved optical gating (TG-
FROG) apparatus [38]. To include the influence of the sapphire window S1,
the sizes of these beams were adjusted and the beams were passed through
the equivalent sapphire plate S3 before entering the TG-FROG apparatus.
The measured time-dependent intensities and phases were used for numeri-
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Fig. 2.12. Experimental set-up for the ultrabroadband optical pulse generation.
Here, BBO (C1 and C2) is β-barium borate crystal, HS is harmonic separator,
RR is retroreflector, PR is periscope, VND is variable neutral-density filter, DM
is dichroic mirror, and TG-FROG is transient-grating frequency-resolved optical
gating equipment. Flip mirrors (F1 and F2) are shown by dashed lines [15]

cal calculations. To calibrate the delay time between the fundamental pulse
and the second-harmonic pulse, a 10 µm-thick BBO crystal (C2) was used to
generate a sum-frequency pulse from these pulses. To avoid the necessity of
positioning the crystal inside the chamber, the pulse beams were redirected
by a flip mirror F2 and were focused at the crystal. The crystal was po-
sitioned such that the product of the path length and d = 1/vg2 − 1/vg1,
where vgj was the group velocity of the pulse j (1 for fundamental and 2 for
second-harmonic), was equivalent to the original path to the fiber entrance,
i.e., (a + b) × dair = c × dAr,3.3 atm in Fig. 2.12. Also, S3 was positioned such
that the path length from F1 to S1 was equal to that from F1 to S3. The de-
lay position that gave the largest sum-frequency signal was determined as the
delay time 0 (Td = 0), which corresponded to the situation where the funda-
mental pulse and the second-harmonic pulse coincided at the fiber input end.
The negative Td corresponded to the case where the second-harmonic pulse
entered the fiber before the fundamental pulse. The fundamental pulse of
40.8 µJ energy and the second-harmonic pulse of 37.8 µJ energy were focused
at the fiber entrance.

Figures 2.13(a)–(c) show the spectra at the output of the hollow fiber. In
Fig. 2.13(a), two spectra when both pulses were propagated separately are
shown. In this case, the spectral broadening was due to only SPM. When the
delay time between two co-propagated pulses was adjusted such that these
pulses overlapped inside the fiber, we observed the larger spectral broadening
due to IPM and SPM (Fig. 2.13(b) and (c)). Inside the fiber, d = 185 fs/m,
thus the propagation-time difference between the fundamental pulse and the
second-harmonic pulse for the entire fiber length of 34 cm was 63 fs (185 fs/m
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Fig. 2.13. Experimental spectral intensities in logarithmic scales (solid line) and
in linear scales (dashed line) when the fundamental pulse and the second-harmonic
pulse were propagated separately and were co-propagated in a fiber: (a) SPM only,
(b) IPM+SPM, Td = 13 fs, and (c) IPM+SPM, Td = −80 fs. In the inset in (c),
the temporal intensity of the inverse Fourier transform of the spectrum assuming
the constant phase is shown [15]

× 0.34 m). In Fig. 2.13(b), the spectrum is shown when both pulses met near
the fiber entrance (Td = 13 fs). It was observed that the spectral intensity
near both edges increased (the intensity of the shorter wavelength than the
second-harmonic and the longer wavelength than the fundamental), but it did
not increase much at the middle. In Fig. 2.13(c), the spectrum is shown when
both pulses met near the fiber exit (Td = −80 fs). In this case, in contrast to
the previous case, the intensity increase of the spectrum was observed at the
middle section (450–550 nm), especially a new peak was observed at around
480 nm. The best overlapping of the spectrum between two pulses with the
more homogeneous broadening from 300 to 1000 nm (700-THz bandwidth)
was observed at this delay time. This delay-time dependence of the spectral
broadening agreed well with the theoretical prediction (see Sect. 1.3). Also,
the peak powers required to obtain the spectrum-overlapping of both pulses
were consistent with those obtained from the theoretical analysis. The total
output pulse energy was 23.0 µJ (29.3% efficiency) corresponding to 11.9 µJ
for the fundamental pulse and 11.1 µJ for the second-harmonic pulse, respec-
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tively. These each gave throughput of 29.2% (11.9 µJ/40.8 µJ) for the fun-
damental pulse and 29.4% (11.1 µJ/37.8 µJ) for the second-harmonic pulse.
The output spectra were compared with the calculated spectra and the cou-
pling loss was estimated to be 39% for the fundamental wave and 29% for
the second-harmonic wave.

In the inset of Fig. 2.13(c), the inverse Fourier transform of the experimen-
tal spectrum of Fig. 2.13(c) when its spectral-phase was set to be constant
is shown. The evaluated pulse duration was 1.51 fs. Since this spectrum was
generated by the interaction between two pulses, the chirp was not expected
to be linear. To compress the ultrabroadband pulse, it is necessary to use a
method that can compensate for the nonlinear chirp. One such method is the
use of an adaptive spatial light modulator (see Chaps. 3 and 5), which has a
potential of generating a monocycle-like pulse.

2.3.3 The Oscillatory Spectrum Due to Only IPM

When the intense fundamental pulse from the Ti:sapphire laser amplifier
system and its second-harmonic pulse were co-propagated in an argon-filled
hollow fiber, the periodic oscillatory structure in the second-harmonic spec-
trum was observed [46].

The experimental setup was similar to the one shown in Fig. 2.12 (except
that the argon pressure was 2.8 atm in this experiment). Input pulse energies
were 40.8 µJ for the fundamental pulse and 27.0 µJ for the second-harmonic
pulse and output pulse energies were 15.5 µJ for the fundamental pulse and
10.5 µJ for the second-harmonic pulse, respectively. The temporal widths of
these input pulses were measured by the TG-FROG apparatus [38] and were
found to be 32 fs and 72 fs for the fundamental pulse and the second-harmonic
pulse, respectively.

Observed spectra for the second-harmonic pulse are shown in Fig. 2.14(a)–
(e). In Fig. 2.14(a), the delay time (Td2 = −207 fs) was selected such that both
pulses did not overlap inside a fiber. In this case, the IPM spectrum (solid
curve) was almost identical to the SPM spectrum (dotted curve, measured for
the propagation of only the second-harmonic pulse). The oscillatory structure
with a period of ∼20 THz was shown in the high frequency region. When the
delay time Td2 was increased (Fig. 2.14(b)–(d)), pulses began to overlap inside
a fiber, and a new oscillatory structure with the shorter period of ∼10 THz in
the low frequency region was observed as indicated by arrows. As the overlap
increased, this new structure became more pronounced. For the even larger
delay time Td2 (Fig. 2.14(e)), the overlap between the fundamental pulse and
the second-harmonic pulse became large such that the original SPM spectrum
shape was modified considerably. Although the oscillatory structure was still
present in this case, the strong modification of the main spectrum by the
SPM made the identification of the IPM oscillation difficult.

The instantaneous frequencies were calculated by (2.8) and were plotted
in Fig. 2.15 with the temporal pulse shapes at different delay times. As shown
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Fig. 2.14. ((a)–(e)) Experimental spectra where both fundamental pulse and
its second-harmonic pulse were co-propagated in an argon-filled hollow fiber with
different delay times. The oscillatory structure due to only IPM is indicated by
arrows. In (a), the spectrum where only the second-harmonic pulse was propagated
(SPM alone) is shown by a dotted line. (a′-e′) Numerically calculated spectra at
the same delay time. In calculations, the dispersion of the gas medium and the
waveguide and the steepening effect were taken into account [46]

in Fig. 2.15, the spectral components for the second-harmonic pulse whose
frequency is lower than the center frequency (740 THz) are created by both
SPM and IPM. However, it is found that the spectral components less than
the minimum frequency created by the SPM (∼720 THz, indicated by thin
horizontal lines in Fig. 2.15) are created only by the IPM from the intense
fundamental pulse (which is described by the third term of (2.8)) and these
frequencies are created twice at different times (hatched by thin lines in
Fig. 2.15). The novel oscillatory structure in the spectrum appears because of
the interference between these two electric field components with the identical
instantaneous frequencies by the IPM. When the delay is sufficiently negative
(Fig. 2.15(a)), the intensity of the second-harmonic pulse I2ω(t) in this region
is essentially zero, so that the interference is not observed. When the delay
times become less negative (Fig. 2.15(b)–(d)), the intensity in this region
(hatched by thick lines) becomes stronger and the interference patterns can be
observed. When the delay becomes even less negative (Fig. 2.15(e)), the chirps
due to SPM and IPM in the region from 675 to 775 THz are becoming similar
in magnitude because of the large intensity of the pulse and the interference
pattern shown here becomes difficult to identify.

In Fig. 2.14(a′)–(e′), the spectra calculated by numerically solving the
nonlinear fiber propagation equation at the same delay times as in the exper-
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ters [46]

iment are shown. In these calculations, the dispersion of the gas medium and
the waveguide (including loss dispersion) was rigorously included, and the
steepening effect was taken into account [42]. As shown in Fig. 2.14, the clear
oscillatory structure in the low frequency region, as observed in the experi-
ment for cases (b′)–(d′)), was obtained. The spectral feature, the oscillatory
period (∼10 THz) and the delay-time range show excellent agreement with
the experimental results.
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2.4 Unconventional Glass Fiber Technique Using SPM

2.4.1 Photonic Crystal Fiber

By periodically structuring a material in two or three dimensions with a
pitch of the order of the optical wavelength, one can fabricate new optical
materials with unusual properties [61]. The monomode waveguide based on
the use of a two-dimensional photonic crystal material is called photonic
crystal fiber (PCF) (Fig. 2.16) [16], which has a hexagonal array of air holes
running down its length. The pitch of the hexagonal crystal pattern is in
the range of 1–10 µm. By leaving a single lattice site without an air hole, we
can form a localized region that effectively has a higher refractive index than
the rest of the structure. The microstructure fiber was measured to have
net anomalous dispersion over this entire spectral range, owing to a large
anomalous waveguide dispersion, with the dependence of dispersion on the
PCF geometry (Fig. 2.17). This unusual dispersion property enabled us to
efficiently generate the supercontinuum (SC) light [16].

The behavior of SC generation in PCFs is qualitatively different from
SPM-induced broadening, and soliton dynamics plays a crucial role in the
propagation. However, the mechanisms in SC generation are extremely com-
plicated due to the interactions among many nonlinear optical processes such
as self-phase modulation (SPM), stimulated Raman Scattering (SRS), para-
metric four-ware mixing (FWM), soliton formation and self-steepening (SST)
as well as the unusual dispersion profile. Furthermore, the roles of these non-
linear effects strongly depend on the parameters of initial optical pulse, such
as peak power, pulse duration and central wavelength.

In 2000, the authors of [16] first demonstrated that the combined effects
of SPM and SRS in the long length of the fiber (75 cm) produced SC from 390
to 1600 nm, where 100-fs input pulses with 8-kW peak power and a center
wavelength (790 nm) slightly longer than zero-dispersion wavelength (ZDW:

1.7 µm

Air

(Silica)
Core

1.
3

µm

Fig. 2.16. Photonic crystal fiber consists of a 1.7-µm-diameter silica core sur-
rounded by an array of 1.3-µm-diameter air holes in a hexagonal close packed ar-
rangement. A small ellipticity in the fiber core results in a polarization-maintaining
birefringence [16]
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Fig. 2.17. Example for dispersion profiles of PCFs. (a) and (b) correspond to 1.7
and 2.6 µm core diameters, respectively [16]. GVD denotes group velocity dispersion

767 nm) were propagated. In 2001 another group [39] reported that the ex-
perimentally generated SC from 400 to 1000 nm with two spectrally sharp
peaks near the center wavelength was due to the combined effects of SRS
and conventional FWM with a negligible contribution from SPM in the longer
length of the fiber (10 m), where 60-ps pulses with 675-W peak power and a
center wavelength (647 nm) slightly-shorter than ZDW (675 nm) were prop-
agated. More recently, by a theoretical analysis for optical pulse propagation
in the short-length PCF (7.5 cm), it has been shown that the SC generation
from 400 to 1000 nm is due to the fission of high-order solitons into red-
shifted fundamental solitons and blue-shifted nonsolitonic radiation, where
100-fs input pulses with several-kilowatt peak power and a center wavelength
(830 nm) longer than ZDW (710 nm) are propagated [44]. Furthermore, nu-
merical analysis has indicated that 17.5-fs short-pulse propagation does not
cause dramatic spectral broadening. In its analysis, however, the employed
equation does not consider the effect of the delayed Raman response, which
has characteristic constants of several-ten femtoseconds [40].

In this subsection, let us describe the spectral evolution of a-few-cycle
pulses at different propagation distances in a PCF, which we have clarified
in [55] (see Sect. 1.3.1 for theoretical understanding). With ZDW at 767 nm
and negative group delay dispersion (GDD) at its longer wavelength, high-
delta PCFs used in our experiment consisted of a 1.7-µm-diameter undoped
silica core surrounded by an array of 1.3-µm-diameter air holes in a hexagonal
close-packed arrangement (the pitch of Λ = 1.65 µm, the radius of the omitted
hole of α = 0.65 µm), same as that used in [16]. The 12-fs-duration pulses
with 800-mW average power centered at 795 nm were generated from a mode-
locked Ti:sapphire laser at the repetition rate of 75 MHz. The corresponding
spectrum ranged from 700 to 910 nm with 69-nm width (FWHM), as shown in
Fig. 2.18(a)–(1). PCFs with different lengths (4, 8, 15, 61 mm) were carefully
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Fig. 2.18. (a) Experimental spectra generated from 4.5-cycle optical pulses in
different-length PCFs. (b) Dependence of full spectral width ∆νrms on fiber length
[55]

cleaved to produce both pristine and undamaged surface. Pulses were then
coupled into those PCFs by a reflective objective of ×36 magnification to
avoid additional dispersion from transmission in a dielectric medium. The
fibers were rotated to make the polarization axis of the linearly polarized
pulses coincide with one of the principal axes in the fibers. Outputs from the
fibers were collimated by another identical reflective objective. The spectra
of the pulses before and after propagation (Fig. 2.18(a)) were measured by a
calibrated spectrometer. The typical input and output average powers were
400 and 60 mW, respectively.

From Fig. 2.18(a) we find that the evolution of the intensity spectra during
propagation has the following notable features. At first (4 mm), the spectrum
broadens asymmetrically (625 to 915 nm) to form a shoulder on the blue side.
With an increase in propagation distance (8 mm), the asymmetric spectrum
continues to broaden (590 to 950 nm ) with small peaks at the blue (625 nm)
and red (915 nm) edges and the spectral gap appears near 660 nm. After the
15-mm distance, with the further asymmetric broadening the peak at the blue
edge (580 nm) grows in size and the red edge extends to 965 nm. In addition,
the spectral gap (650 nm) becomes more clear. Finally (the 61 mm distance),
the spectrum broadens the most (480 to 1020 nm) with two peaks on the blue
side (530 and 610 nm) and several peaks on the red side. For details of the
spectral broadening mechanism, see Sect. 1.3.1.

Finally, let us show briefly the core-diameter dependence of the output
spectrum from 3-mm long fibers (Fig. 2.19). The upper (a) and lower (b)
figures correspond to 2.6 (900 nm ZDW) and 1.7-µm (767 nm ZDW) core
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Fig. 2.19. Dependence of the output spectrum on the core diameter. (a) and (b)
are for 2.6 and 1.7 µm core diameters, respectively

diameters, respectively, for the same input-pulse condition of a 12-fs duration,
a 450-mW average power (including the objective reflective lens for focusing),
and a 800-nm center wavelength at a 75-MHz repetition rate. The output
average power (including the objective reflective lens for collimating) is 60 and
40 mW for 2.6- and 1.7-µm core diameter fibers, respectively. The difference
of the spectral broadening (630 to 970 nm and 520 to 1100 nm) is mainly due
to the ZDW and the power density in the fiber. The drawback of the PCF
SC generation for optical pulse compression is the point that the intensity
spectrum is greatly inhomogeneous with structures.

2.4.2 Tapered Fiber

A tapered silica fiber (TF), as well as a photonic crystal silica fiber (PCF),
has attracted much attention because of its unusual dispersion profile and
hence its efficient generation of ultrabroadband pulses [16,17,47–49,61]. Since
the first experimental demonstration of these fibers in 2000 [16, 17], a vari-
ety of applications such as pulse compression [16, 17], ultrabroadband and
frequency-conversion optical sources for spectroscopy and biomedicine [48],
optical frequency metrology [49], and telecommunication technologies have
been pointed out and investigated. Among them, it is expected that further
pulse compression of ultrashort laser pulses may open the way for monocycle
fiber optics.
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Fig. 2.20. Structure of the tapered fiber

A TF has the following advantages over a PCF: easier manufacturing,
more efficient coupling of the fiber input pulse, easier connection with the
conventional fiber (hence higher output power), a more stable continuum gen-
erating source and wider potential availability. However, it is difficult to use
for a reproducible experiment because the quality of TFs varies significantly
depending on the present fabrication technique. Therefore, it sometimes can
be difficult to have a quantitative discussion regarding spectral broadening
for TFs. In addition, TFs are mechanically quite weak at the waist, which
makes their handling relatively difficult.

A TF is made from a conventional single-mode fused-silica fiber (125 µm
outer diameter, 9 µm core diameter). Through precise heating with a gas
torch, a 10 mm segment of this optical fiber is slowly stretched to roughly
7 times its length. The typical structure is shown in Fig. 2.20. A fiber has
a total length of 74 mm and a 25 mm waist where it has a uniform 2 µm
diameter. At each end the diameters are the original outer and core diameters.

In the waist region, the residual fiber core is so small that the waist is
effectively a simple thread of silica suspended in air, which guides light from
the open ends. The original 125-µm cladding diameter now acts as the core
and the air surrounding it effectively acts as a new cladding. Hence, the
TF has the large difference in the refractive index between the silica and
air. The typical zero-dispersion wavelength (ZDW) of the TF obtained from
the material dispersion and waveguide dispersion is approximately 778 nm.
The measured dispersion profile of the TF (2 µm waist diameter) is shown in
Fig. 2.21 [60]. The ZDW is almost same as the Ti:sapphire laser wavelength.
The ultrabroad spectrum is efficiently generated by self-phase modulation
(SPM), because the pulses can propagate in the TF without temporal pulse
broadening due to the dispersion. (For the relation between waist diameter
and dispersion, see [17,61].)

The experimental setup for ultrabroadband spectrum generation by TF
is shown in Fig. 2.22. The pulses from a mode-locked Ti:sapphire laser (100-
MHz repetition rate, 150-fs pulse width, 295-mW average power, and 790-nm
center wavelength with up-chirp) were focused into the fiber (24% output
efficiency). The output pulses were measured by a spectrometer. We charac-
terized the input power dependence of spectral broadening by changing the
input average power. Figure 2.23 shows the dependence of the output spec-
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Fig. 2.22. Experimental setup for TF output pulse measurement. FM, flipper
mirror; ND, neutral density filter; L1, L2, reflective objective lenses (×36). (a)
SHG-FROG; BS, beam splitter; BBO, type I thickness 50 µm. (b) Autocorrelator;
BBO, type I thickness 45 µm

trum on the average input power. Spectral broadening due to dispersive SPM
in the fiber was found to occur when the average input power was greater
than 90 mW. In addition, increased input power resulted in rapidly increased
output spectral widths. The maximum spectral width was measured to range
from 425 to 945 nm, with an input power of 295 mW.

Next, the output pulses were characterized by a second-harmonic genera-
tion frequency-resolved optical gating (SHG-FROG) apparatus [6,38,52] that
was equipped with a spectrometer. The optical configuration of SHG-FROG
apparatus are shown in Fig. 2.22. A delay was introduced with a Michelson
interferometer arm for the fiber output pulses. After that, the pulses were
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Fig. 2.23. (a) Dependence of the output spectrum on the input average power. (b)
Input average power dependence of the full width in output spectrum

then focused onto a BBO crystal (type I; thickness 50 µm) by a parabolic
mirror (f =50 mm) for second harmonic generation. The second harmonic
wave was separated from the fundamental wave with a band pass-filter and
measured with a spectrometer. The temporal profile was reconstructed by
the analysis [6,38,52] based on these spectra as a function of the delay time.
Additionally, we measured output pulses by an autocorrelator in order to
compare autocorrelation traces with the SHG-FROG results.

The output power dependence (accordingly, input power dependence) of
the spectral phase and the temporal profile is shown in Fig. 2.24. We approx-
imated these spectral phases by a third order polynomial and calculated the
group delay time φ̇, the group delay dispersion (GDD) φ̈, and the third order
dispersion

...
φ including the up-chirp effect of the input pulses. When φ̈IN de-

notes the corresponding effective GDD at 785 nm (center wavelength) of the
input up-chirped pulses and φ̈ = φ̈IN + φ̈W+M +∆SPM at 785 nm, it was con-
firmed that φ̈IN > φ̈ > 0. Here, φ̈W+M and ∆SPM denote the effective GDD
due to the waveguide and material dispersions and SPM in TF, respectively.
This result suggests that the effective GDD of φ̈W+M + ∆SPM for the TF at
the central wavelength of the input pulse was negative, which is consistent
with the calculated GDD of φ̈W+M < 0 in [17] because of ∆SPM > 0. As the
output power from the fiber increases, the φ̈ and

...
φ decrease slowly (+2500

to +1800 fs2 for φ̈ at 785 nm; +3000 to +1000 fs3 for
...
φ at 78 nm).

When the output power from the fiber was large, the output pulse was
divided into three pulses, as shown in Fig. 2.24(b). Moreover, the larger the
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output power, the shorter the trailing pulse tended to be. The shortest trailing
pulse was a result of a soliton effect near the ZDW region at the minimum
group velocity.

The autocorrelation traces are shown in Fig. 2.24(c). Measured autocor-
relation traces are also in agreement with the reconstructed autocorrelation
traces, particularly in regards to the widths and the positions of the small
internal structure within the traces. For quantitative clarification of mecha-
nisms, an analysis of the nonlinear propagation equation such as Chap. 1 will
be needed.

2.5 Concluding Remarks

This chapter reviewed our recent studies (1996–2003) on the efficient genera-
tion of ultrashort optical pulses having a near or over one-octave bandwidth
with a well-behaved spectral phase by new methods (not by the conventional
method using SPM glass fibers). That is, for the pulse generation with a
several-hundred THz bandwidth in the near-infrared to the visible, ultravio-
let region, the IPM technique for glass fibers (480–900 nm; 710–1250 nm) and
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gas-filled hollow fibers (300–1000 nm) and the SPM technique for structure-
controlled glass fibers (480–1020 nm; 425–955 nm) with a shorter zero-GDD
wavelength were described in detail. Both of them enable us to more efficiently
broaden the bandwidth than the general SPM technique for conventional
glass fibers and hollow fibers. Moreover, comparison between both methods
shows that the former (IPM technique) has the advantage of the capability
to generate the continuum with an arbitrary center wavelength regardless of
fiber dispersion, by selective combinations of different wavelength signal and
idler pulses from an OPA, the fundamental pulse and its harmonic pulses
as different-color fiber-input pulses. On the other hand, the latter (structure-
controlled glass fiber technique) has the advantage of providing more efficient
generation at a high pulse-repetition rate under the limited center wavelength
of the input pulse. Therefore, the application of the IPM technique with high-
harmonic waves as input pulses for the structure-controlled fibers with un-
usual dispersion characteristics may lead to interesting possibilities as optical
sources of electric-field manipulation (see Chap. 6) for applications to optical
information technology and quantum state control.

Many interesting works concerning photonic crystal fibers (for exam-
ple: pulse generation with an over-two-octave bandwidth [59, 61]), tapered
fibers [16,17] and conventional SPM spectral broadening have been reported
recently, a very few of which have been mentioned in this chapter.

One of the authors (M. Yamashita) thanks L. Xu and M. Hirasawa for
their experimental works on IPM glass fiber.
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3 Active Chirp Compensation
for Ultrabroadband Optical Pulses

M. Yamashita, R. Morita, and N. Karasawa

3.1 Introduction

Frequency chirp refers to the physical phenomenon in which the electric-field
frequency ν(t) of an optical pulse is swept instantaneously during its pulse
dilation tp as a function of time t [1]. When the time-dependent frequency is
done constantly by techniques, the pulse has its shortest duration which is
limited by its spectral bandwidth ∆νT (Fig. 3.1) [2,3]. This process is called
chirp compensation, and its chirp-free pulse is said to be Fourier transform-
limited. Accordingly, for the generation of ultrashort optical pulses (from
picoseconds (ps) to femtoseconds (fs) :10−12 −10−15 s) having an ultrabroad-
band width (from sub terahertz (THz) to sub petahertz (PHz) :1011−1015 Hz)
with strong chirp, techniques for chirp compensation are needed.

Figure 3.2 shows an illustrated scheme of techniques developed for chirp
compensation. In the most simple case, linear up- or down-chirp occurs corre-
sponding to the linearly increasing or decreasing frequencies with the increase
of time, respectively. Among them, linear up-chirp is often observed owing to
pulse propagation through a medium with second-order positive phase dis-
persion and/or a positive nonlinear refractive index causing self-phase modu-
lation (SPM). Then, the first optical chirp compensation was carried out by a
pair of gratings providing second-order negative phase dispersion to generate
shorter pulses in 1969 [4]. After that (in 1980 to 1990), for intracavity chirp
compensation of a dye laser, two pairs of Brewster-angled prisms [5], or a
pair of Gires-Tournois interferometers [6], or double-stacked dielectric mir-
rors [7] were employed. In addition, for external optical pulse compression,
nonlinear chirp yielded by dispersive SPM in a fused-silica fiber was compen-
sated for by a combination of double pairs of prisms and double pairs of grat-
ings [8]. Moreover, in 1995 chirped-layer dielectric mirrors were demonstrated
to be useful for compensation of intracavity chirp in a Ti:sapphire laser for
the generation of sub-10 fs pulses [9]. Furthermore, improved double-chirped
mirrors were reported [10]. As pulses (to be compensated) become shorter
and shorter, however, it was found that those chirp compensators (which
we call passive elements) have problems as follows: a bandwidth limitation,
an inter-relation among different orders (φ(n)(ω0) ≡ dnφ(ω)/dωn|ω=ω0) of
phase dispersion φ(ω), and the requirement of physical realignment for the
adjustment of compensation. That is, it is significantly difficult for pulses
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Fig. 3.1. Linearly up-chirped pulse and its chirp compensation
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Fig. 3.2. Various passive and active chirp compensators. SLM: spatial light mod-
ulator
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with an ultrabroadband width of near or over one-octave to compensate for
their nonlinear chirps using those passive elements.

To overcome those problems, in 1996 it was pointed out [11] that a 4-f
pulse shaper [12] with a spatial light modulator (SLM) (which consists of
one-dimensional liquid-crystal-cell array with many pixels) can be applied
for chirp compensation of one-octave-exceeding pulses corresponding to few
or one optical-cycle pulses after its compensation. This SLM technique has
many advantages, including over one-octave bandwidth, compensation abil-
ity for arbitrary, complicated phase dispersion φ(ω), computer-programmable
phase control, quasi-real-time phase adjustment by applied DC electric fields
without any realignment and automatic-feedback control. We call this device
an active compensator. In 1997, it was demonstrated that the SLM technique
is available for a compensator of 80-fs chirped pulses (to 11 fs) directly from
a Ti:sapphire laser [13]. In 1999, another active compensator was reported,
which consists of membrane deformable mirrors controlled by a mechanical
activator [14]. However, this technique is inferior to the SLM one concern-
ing the following points: a low spatial and phase resolution, cumbersome and
imperfect phase calibration due to complex membrane deflection and high de-
flection losses. Recently, the SLM technique was applied for a programmable
pulse compression to the sub-6 fs regime [15] and the 4-fs regime [16]. This
is the first demonstration of few-cycle pulse generation by an SLM compen-
sator. More recently, the feedback phase compensation that combines the
SLM technique and a spectral-phase measurement technique has enabled us
to generate optical pulses in the monocycle region, which is the shortest one
in the near infrared to visible region [17] (see Chap. 5). Table 3.1 summarizes
the major accomplishments in this field over past 30 years.

In this chapter we focus on the practical SLM technique as an active
chirp compensator for the generation of few-cycle optical pulses (bandwidths
of up-to several hundred THz) including the description of its principle and
theory.

3.2 Principle and Theory: Chirp Compensator
with Spatial Light Modulator (SLM)

In order to obtain monocycle or few-cycle optical pulses, a nonlinear chirp
compensation technique for ultrabroadband femtosecond optical pulses is es-
sential. Conventionally, chirp compensation was performed by passive tech-
niques using prism-pairs, grating-pairs, chirped mirrors or the combination
of some of these. However, these passive techniques have some disadvantages
such as inter-dependence of different orders of dispersion compensation, in-
ability to fine-tune the phase in experimental setup and bandwidth limita-
tion. Thus, to overcome these disadvantages, a nonlinear chirp compensation
technique using a 4-f optical pulse shaper with a spatial light phase modu-
lator (SLM), which gives, inter-independent of different orders of dispersion,



3 Active Chirp Compensation for Ultrabroadband Optical Pulses 107

Table 3.1. Progress in chirp compensation and optical pulse compression

Year Accomplishment Researcher References

1969 Picosecond optical pulse
compression based on chirp
compensation by a grating pair

Treacy [4]

1981 Optical pulse compression
using single-mode fused silica
fiber

Grischkowsky,
Balant

[50]

1984 Dye laser chirp compensation
by Brewster-angled prism pairs
for pulse generation shorter
than 100 fs

Fork, Martinez,
Gordon

[5]

1986 Dye laser chirp compensation
by Gires–Tournois
interferometers

J. Kuhl, J. Heppner [6]

1986 Dye laser chirp compensation
by double-stacked laser-cavity
mirrors by themselves

Yamashita,
Ishikawa, Torizuka,
Sato

[7]

1987 6-fs pulse compression
consisting of fused silica fiber
and combination of
prism-pairs and grating-pairs
chirp compensators

Fork, Brito Cruz,
Becker, Shank

[8]

1988 Intracavity pulse compression
using nonlinear organic material

Yamashita,
Torizuka, Sato

[51]

1991 Efficient external pulse
compression using nonlinear
organic-crystal fiber

Yamashita,
Torizuka,
Umemiya, Shimada

[52]

1992 Chirp compensation by SLM
phase compensator

Weiner, Leaird,
Patel, Wullert

[12]

1994-1995 Ti:sapphire laser chirp
compensation by chirped
mirrors

Szipőcs, Ferencz,
Spielmann, Krausz,
Stingl, Lenzner

[9], [53]

1996 High powered pulse
compression using gas-filled
hollow fiber

Nisoli, Silvestri,
Svelto

[54]

1996-2003 4-6 fs pulse compression using
SPM and/or IPM techniques
and SLM phase compensation

Yamashita, Sone,
Morita, Xu,
Karasawa, Suguro

[11], [15],
[16], [21] [42],

[43]

1997 Chirp compensation by
doubled-chirped mirrors

Jung, Kärtner,
Matuschek, Sutter,
Grenoud, Zhang,
Keller, Scheuer,
Tilsch, Tschudi

[10]
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Table 3.1. (cont.)

Year Accomplishment Researcher References

1997 sub-5 fs compression of
cavity-dumped laser pulse using
fused silica fiber

Baltuska, Wei,
Szipőcs,
Pshenichnikov,
Wielsma

[55]

1997 Feedback chirp compensation of
Ti:sapphire laser pulse (80 fs to
11 fs) by combination of SLM
phase compensator and SHG
output

Yelin, Meshulach,
Silberberg

[13]

1998-1999 High powered 5-fs pulse
compression using gas-filled
hollow fiber

Cheng, Fürbach,
Sartania, Lenzner,
Spielmann, Krausz

[24], [25]

1999 Chirp compensation for laser
output pulse by deformable
mirror

Zeek, Maginnis,
Backus, Russek,
Murmane, Mourou,
Kapteyn

[14]

1999 Sub 5-fs compression for
non-collinear optical-parametric
amplified pulse

Shirakawa, Sakane,
Takasaka, Kobayashi

[36]

2001 5-fs pulse generation from
octave-scanning Ti:sapphire laser

Morgner, Kärtner,
Fujimoto, Ippen,
Scheuer, Angelow,
Tschudi, et al

[56]

2002 4-fs pulse generation based on
chirp compensation for OPA
pulse by combination of prisms,
chirped mirrors and deformable
mirror

Baltuska, Fuji,
Kobayashi

[57]

2003 Direct feedback 3.3-fs-pulse
compression using gas-filled
hollow fiber by combination of
SLM phase compensator and
M-SPIDER

Yamane, Zhang,
Oka, Morita,
Yamashita, Suguro

[17]

2003 Feedback pulse compression of
tapered fiber pulse by
combination of SLM phase
compensator and M-SPIDER

Adachi, Hirasawa,
Suguro, Karasawa,
Kobayashi, Morita,
Yamashita

[58]

2003 Feedback pulse compression of
photonic crystal fiber by
combination of SLM phase
compensator and M-SPIDER

Adachi, Yamane,
Morita, Yamashita

[59]

2004 Generation of 2.8-fs, 1.5 cycle,
single, clean TL pulse using
direct feedback compression
technique

Yamane, Kito,
Morita, Yamashita

[60]
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(quasi-arbitrary dispersion), in-situ adaptive phase control and has a broader
bandwidth, was proposed and demonstrated [11,15,16]. However, this active
method using an SLM has some restrictions such as (i) a frequency-dependent
time window due to finite beam size, (ii) the existence of pixel gaps, (iii) the
discreteness of the modulated phase in an SLM due to its finite pixel size,
and (iv) the maximum phase applied by SLM is limited and thus the phase is
applied in the wrapped form. The effects of these restrictions on the nonlinear
chirp compensation have not been studied so far.

First, we describe the principle and theory of the nonlinear chirp com-
pensation with an SLM in this section.

Second, to investigate the effects of above-mentioned restrictions on pulse
compression, we numerically analyze chirp compensation for ultrabroadband
femtosecond optical pulses using an SLM, especially taking these restrictions
into account.

Projection of Ultrabroadband Pulses on the Fourier Plane

First, we analyze the phase modulation using a 4-f pulse shaper [12,13] with
an SLM. The nonlinear chip compensation system composed of a 4-f pulse
shaper with an SLM is schematically shown in Fig. 3.3.

The real electric field E(t) can be decomposed into its complex electric
fields E(+)(t) and E(−)(t) using the following relations:

Ẽ(ω) =
∫ ∞

−∞
dt eiωtE(t), (3.1)

f f

z'

z

ξ x

ξ'

θ in θd

G1

L1

ff

ξ

θ outθ d

G2

L2

''

Input Output

SLMwave fronts

Fig. 3.3. 4-f chirp compensator. G1, G2: gratings, L1, L2: lenses, SLM: spatial
light modulator. Since the diffraction angle θd on G1 differs from the incident angle
θin, the wave front of the input beam is tilted after diffraction, resulting in the
temporal-to-spatial conversion
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E(+)(t) =
1
2π

∫ ∞

0
dω e−iωtẼ(ω), (3.2)

E(−)(t) =
1
2π

∫ 0

−∞
dω e−iωtẼ(ω), (3.3)

E(t) = E(+)(t) + E(−)(t) = 2Re[E(+)(t)]. (3.4)

Here, E(+)(t) and E(−)(t) are complex-conjugate with each other. This tem-
poral representation is related to a frequency representation by a Fourier
transform,

Ẽ(+)(ω) =
∫ ∞

−∞
dt eiωtE(+)(t), (3.5)

and vice versa (inverse Fourier transform),

E(+)(t) =
1
2π

∫ ∞

−∞
dωe−iωtẼ(+)(ω). (3.6)

Let us now consider an input complex electric field E
(+)
0 (ξ′, z′, t) expressed

by

E
(+)
0 (ξ′, z′, t) = R(ξ′)U(t − z′/c) exp[−iω0(t − z′/c)]

= R(ξ′)
∫ ∞

−∞

dω

2π
Ũ(ω − ω0) exp[−iω(t − z′/c)]. (3.7)

including the spatial coordinates explicitly. Here U(t) is the temporal shape
of the envelope and R(ξ′) is the spatial pattern of the input field, where ξ′ is
the spatial coordinate perpendicular both to the propagation direction z′ of
the input pulse and to the groove direction of the first grating G1 (Fig. 3.3).
The variable t is time, c is the velocity of light in a vacuum and ω0 is the
carrier angular frequency. Ũ(ω) is the Fourier transform of U(t) as defined
by

Ũ(ω) =
∫ ∞

−∞
dt U(t) exp(iωt) (3.8)

where ω is the optical angular frequency.
After diffraction by the grating G1, the diffracted complex field

E
(+)
1 (ξ, z = 0, t) on the grating (at z = 0) is expressed by

E
(+)
1 (ξ, z = 0, t)

= g(ξ)R(ξ cos θin)U(t − ξ sin θin/c) exp[−iω0(t − ξ sin θin/c)]

= g(ξ)R(ξ cos θin)
∫ ∞

−∞

dω

2π
Ũ(ω − ω0) exp[−iω(t − ξ sin θin/c)]

= exp(−iω0t)g(ξ)R(ξ cos θin)
∫ ∞

−∞

dω

2π
Ũ(ω)

× exp[−iω(t − ξ sin θin/c)], (3.9)
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where ξ is the spatial coordinate perpendicular both to the propagation di-
rection z of the diffracted pulse and to the groove direction of the first grating
G1, θin is the incident angle to the grating G1 and g(ξ) is the reflectivity of
the grating G1 at ξ. It should be noted that, since the diffraction angle θd
on G1 differs from the incident angle θin, the wave front of the input beam is
tilted (not normal to the propagation direction) after diffraction. This results
in the temporal-to-spatial conversion, which is seen as the replacement of the
argument t of the function U before diffraction in (3.7) with t − ξ sin θin/c
after diffraction in (3.9).

After passing through a lens L1 with a focal length f located at a distance
of f from the grating G1, the field of the pulse is spatially Fourier transformed.
The complex electric field E

(+)
2 (x, z = 2f, t) on the focal plane of z = 2f is

written by

E
(+)
2 (x, z = 2f, t)

∝ exp(−iω0t)
∫ ∞

−∞
dξ

∫ ∞

−∞

dω

2π
g(ξ)R(ξ cos θin)ωŨ(ω)

× exp[−iω(t − ξ sin θin/c)] exp(−iωxξ/cf)

= i exp (−iω0t)
∂

∂t

∫ ∞

−∞
dξ g(ξ)R(ξ cos θin)U

(
t − ξ

c
(sin θin − x/f)

)
(3.10)

on the basis of the Fourier optics [18], where x is the spatial coordinate
in the intersection of z = 2f and ξz-planes. In the diffraction theory of
monochromatic light for a specific frequency ω, the factor ω is sometimes
omitted [19,20]. However, it should be noted that, for ultrabroadband pulses,
it cannot be omitted and the integration with respect to ω is necessary.

Hereafter, we consider only the first-order diffraction by G1 and we put
the reflectivity function of the grating as g(ξ) ∝ exp(−i2πξ/d). Hence,

E
(+)
2 (x, z = 2f, t)

∝ i
c

sin θin − x/f

∂

∂t

∫ ∞

−∞

dk

2π
R̃(k)Ũ

(
c

sin θin − x/f

(
2π

d
− k cos θin

)
− ω0

)
× exp

{
−i

[
c

sin θin − x/f

(
2π

d
− k cos θin

)]
t

}
. (3.11)

Here, the function R̃(k) is defined as a spatial Fourier transform by

R̃(k) =
∫ ∞

−∞
dξ R(ξ) exp(−ikξ), (3.12)

where k is the spatial frequency.
Under the condition that tp � w0/c with the beam radius w0 and pulse

duration tp, the function Ũ varies more gently than the function R̃ does.



112 M. Yamashita et al.

This condition is satisfied, for the beam width w0 � 1 mm and cos θin � 1,
when the pulse duration less is less than ∼3 ps. Hence, E

(+)
2 (x, z = 2f, t) is

approximated by

E
(+)
2 (x, z = 2f, t)

∝ 2π

d

(
c

sin θin − x/f

)2

Ũ

(
2π

d

c

sin θin − x/f
− ω0

)
× exp

[
−i

(
2π

d

c

sin θin − x/f

)
t

]
. (3.13)

Here we suppose that the function R̃(k) has its maximum value at k = 0.
The function Ũ(ω) is the spectrum of the temporal shape of the input electric
field U(t), thus we consider a specific frequency ω̄ that satisfies

ω̄ =
2π

d

c

sin θin − x/f
(3.14)

and the corresponding wavelength λ̄ ≡ 2πc/ω̄. From (3.14),

x = f

(
sin θin − λ̄

d

)
. (3.15)

It shows that wavelength components, not frequency components, are pro-
jected linearly on the x-coordinate on the Fourier plane at z = 2f unlike the
conventional analysis for narrow band pulses [19,20].

In addition, when x � f , x/f can be approximated by

x

f
� − tan θd � − sin θd, (3.16)

where θd is the diffraction angle at the grating G1. Hence, from (3.13), we
obtain the well-known first-order diffraction formula

d(sin θin + sin θd) = λ. (3.17)

Principle of Chirp Compensation Using an SLM

To obtain the shortest pulse or the Fourier-transform-limited pulse for a given
spectrum, phase compensation is necessary. This phase compensation makes
the spectral phase φ(ω) of the pulse satisfy the condition that

dφ(ω)
dω

= const. (3.18)

or

φ(ω) = a(1)ω + a(0), (3.19)
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where the coefficients a(1) and a(0) are constant numbers. In the latter case,
the pulse after modulation is delayed by the constant group delay a(1). How-
ever, since it is not important the for pulse compression result, the perfect
phase compensation condition here is considered as (3.18). For the spectral
phase φin(ω) of the input pulse into the 4-f pulse shaper, we can apply the
arbitrary phase φSLM(ω) by SLM located on the Fourier plane (z = 2f) in
principle. When we apply the phase φSLM(ω) such that

d
dω

[φin(ω) + φSLM(ω)] = 0, (3.20)

we achieve the phase compensation and obtain the Fourier-transform-limited
pulse. The principle of this phase compensation is schematically shown in
Fig. 3.4.

On the Fourier plane (z = 2f), the input complex electric field E
(+)
in (t)

is approximately decomposed into the sum of plane waves exp(−iωkt) where
ωk is the center angular frequency projected on the kth pixel of the SLM.
That is,

E
(+)
in (t) �

±N∑
k=±1

∆ωk

2π
Ẽ(+)(ωk) exp(−iωkt)Wk(t), (3.21)

where ω−k is defined as −ωk, ∆ωk is the bandwidth projected on the kth
pixel, and Wk(t) is the time-window function for the ωk frequency component
written by

Wk(t) = W−k(t) =
{

1, if |t| ≤ Tw(|ωk|)/2,
0, if |t| > Tw(|ωk|)/2.

(3.22)

Here, Tw(ω) is the frequency-dependent time window expressed by

Tw(ω) =
2πw0

ωd cos θin
, (3.23)

where w0 is the beam size and θd(ω) is the frequency-dependent diffraction
angle. The frequency-dependent time window Tw(ω) is attributed to the tilted
wave front after diffraction by the grating G1.

For the chirped pulse, the maximum points of frequency-resolved waves
do not generally meet together at any specific time, as shown in Fig. 3.4(a).
Hence, to perform the chirp compensation, the frequency-dependent spectral
phase φSLM(ωk) satisfying (3.20) is applied at each pixel using SLM and the
electric field after this phase modulation is expressed by

E
(+)
mod(t) �

±N∑
k=±1

∆ωk

2π
Ẽ(+)(ωk) exp

{−i[ωk(t − φSLM(ωk)/ωk)]
}

× Wk(t − φSLM(ωk)/ωk).
(3.24)
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Fig. 3.4. Principle of phase compensation by 4-f pulse shaper. The phase φSLM(ωk)
and the delay φSLM(ωk)/ωk are abbreviated to φSLM

k and tk, respectively

Thus, by adjusting the delays of frequency-resolved waves, the maximum
points of frequency-resolved waves meet at a specific time t0. After passing
through the right-half of the 4-f system, as a sum, the chirp-compensated
pulse which peaks at t0 is obtained as shown in Fig. 3.4(b). This implies that
the maximum points of frequency-resolved waves do not necessarily coincide
at the center temporal point (t =0). That is, the phase variance at least 2π at
the pixel of each frequency, which can make maximum points coincide at least
at a certain time, is sufficient in principle. This is quite different from the
conventional techniques using prism-pairs, grating pairs or chirped mirrors.

Thus, after the phase modulation by the SLM, passing through the
second-half of the 4f -system, the second lens L2 and the second grating G2,
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the pulses are inverse-Fourier transformed and the compressed pulses in the
time domain are obtained.

Model for Calculation

Let us consider the following 4-f chirp compensator for femtosecond ultra-
broadband optical pulses (see Fig. 3.15). The 4-f system consists of a pair
of diffraction gratings with grating constant d =1/150 mm, a pair of con-
cave mirrors with focal length f =200 mm and an SLM with 150 pixels (pixel
width is 95 µm and gap width is 5 µm). These parameters are the same as
in a previously-reported study [16]. As an example of an optical pulse to
be chirp-compensated, we treat optical pulses with the spectrum shown in
Fig. 3.5, which was generated using an Ar-filled hollow optical fiber [15–17,21].
The spectrum was broadened from 509 to 891 nm owing to self-phase mod-
ulation. The duration of its Fourier-transform-limited pulse is evaluated to
be 4.37 fs with ideal chirp compensation. In addition, we use a beam size of
5 mm, which is a typical value for our experiment.

Results

The phase φSLM(ω) modulated by the SLM in our calculation is an up-to
fourth-order function of the angular frequency ω, and can be expressed by

φSLM(ω) = W
{

C2

2
(ω − ω0)2 +

C3

6
(ω − ω0)3 +

C4

24
(ω − ω0)4

}
, (3.25)

where ω0(≡ 2πc/λ0) is the center angular frequency of the Taylor expansion
(c is the velocity of light in a vacuum). The phase φSLM(ω) is assumed to be
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Fig. 3.5. The spectrum of generated ultrabroadband femtosecond optical pulses
using an Ar-filled hollow optical fiber. Duration of the corresponding Fourier-
transform-limited pulse is 4.37 fs [16]
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in the wrapped form, that is, in the range of 0 to 2π, where the Wrapping
operator W is expressed by

Wφ = φ − 2π × [φ/2π], (3.26)

where [ ] is the Gauss’ notation and [x] represents the maximum integer
that does not exceed a real number x. With this operator W, the absolute
phase is wrapped into the interval [0, 2π). Thus, the restriction (iv) that the
maximum phase applied by the SLM is limited is taken into account hereafter.
The group delay dispersion C2, third-order dispersion C3 and fourth-order
dispersion C4 values are put to be −217 fs2, −240 fs3 and 0 fs4, respectively,
at the expansion center wavelength λ0 = 800 nm, based on our best chirp-
compensated experiment [16] with the spectrum shown in Fig. 3.5.

We first investigate only (i) the frequency-dependent time window ef-
fect on nonlinear chirp compensation for ultrabroadband femtosecond opti-
cal pulses with the expansion center wavelength λ0 =800 nm. The frequency-
dependent time window Tw(ω) is expressed by (3.23). Our calculations show
that this effect gives very small side lobes of 0.019% in intensity that can be
neglected. The duration of the compensated pulse is 4.37 fs, almost equal to
that of the Fourier-transform-limited pulse. This result is reasonable because
the frequency-dependent time windows for all Fourier components of the in-
put pulse are easily wide enough compared with the duration of the pulse
before chirp compensation or the largest group-delay difference among the all
frequency components. While the pulse duration before chirp compensation
is few hundred femtoseconds, the width of the time window for λ = 509 and
891 nm is 1.27 and 2.24 ps, respectively. Namely, for pulse compression using
the 4-f system, the time window for the short-wavelength component should
be much longer than the duration before compensation. Inversely, we can
say that chirped pulses whose duration is less than the shortest time win-
dow of its frequency components can be compressed using this 4-f system
configuration with the SLM.

Second, we investigate (ii) the pixel gap effect, as well as effect (i), for the
expansion center wavelength λ0 = 800 nm. The pixel gap effect is assumed to
give no modulation and to be transparent. Our calculations show that this
effect, giving very small side pulses of 0.059% in intensity, is not significant.
The duration of the compensated pulse is 4.37 fs, being almost equal to that
of the Fourier-transform-limited pulse. In our case, the duty of unmodulated
and modulated area is 5/95 = 0.053. This low duty value does not affect the
performance of the pulse compression.

Third, we investigate (iii) the effect of discreteness of the modulated phase
in the spatial light phase modulator, as well as effects (i) and (ii), for the
expansion center wavelength λ0 = 800 nm. In this case, φSLM(ω) is discretized
in each wavelength-interval corresponding to each pixel size, as schematically
shown in Fig. 3.6. The calculated result is shown in Fig. 3.7. It is found that
this effect is the most significant because it gives a side pulse of 7.55% in
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intensity. In addition, the duration of the main pulse is 5.82 fs, which is larger
by 33% than that of the Fourier-transform-limited pulse.

This imperfection in nonlinear chirp compensation is due to the flat phase
modulation in each pixel, which leads to a step-like phase modulation in the
whole wavelength region of interest. The modulated phase φSLM(ω), as ex-
pressed by (3.25), is a nonlinear function of ω, but the projection of wave-
length components (as opposed to frequency) on the SLM (in the Fourier
plane) is almost linear. Thus the error height of the phase step due to the
discreteness at each pixel is higher in the short-wavelength region with re-
spect to the center expansion wavelength than in the long-wavelength region.
That causes worse chirp-compensation in the short-wavelength region than
in the long-wavelength region. To avoid this imbalance of chirp compensation
and to obtain a better chirp compensation in the short-wavelength region, we
perform the phase modulation by shifting the center expansion wavelength λ0
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Fig. 3.7. Numerically-calculated chirp-compensated optical pulse using the 4-f sys-
tem with an SLM. The effects (i)–(iii) are taken into consideration. The expansion
center wavelength is λ0 =800 nm. C2 =217 fs2, C3 =240 fs3 and C4 =0 fs4

to 600 nm and putting C2, C3 and C4 to be −405 fs2, −240 fs3 and −0.45 fs4,
respectively. Thus we obtain a better chirp-compensated pulse with a much
smaller side pulse of 0.522% in intensity, as shown in Fig. 3.8. The duration of
the main pulse is 4.82 fs, which is very close to that of the Fourier-transform-
limited pulse. An appropriate blue shift of the expansion center wavelength λ0
thus enables us to perform better effective nonlinear chirp compensation for
ultrabroadband femtosecond optical pulses, which has been in fact confirmed
by our experiment [16] (see Sect. 3.3.1).
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Fig. 3.8. Numerically-calculated chirp-compensated optical pulse using the 4-f
system with an SLM. The effects (i)–(iii) are taken into consideration. The expan-
sion center wavelength λ0 is blue-shifted to 600 nm. C2 =405 fs2, C3 =240 fs3 and
C4 =0.45 fs4
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3.3 Programmable Chirp Compensator
for Generation of Few-Optical Cycle Pulses

For the generation of extremely short optical pulses exceeding the laser gain
bandwidth such as a Ti:sapphire laser, the technique of extracavity pulse
compression is needed (Fig. 3.9). The technique is required to broaden the
spectrum of laser output pulses and subsequently to completely compensate
for the chirp of their pulses. The former can be realized by SPM or induced
phase modulation (IPM) (φ(ω) : the spectral phase after modulation) using
a single-mode fiber (see Chap. 2), while the latter can be realized by ad-
justable dispersive devices providing the opposite spectral phase −φ(ω) such
as negative group-delay dispersion (GDD) and higher-order phase dispersion
(after a Taylor expansion series of −φ(ω)). Since the spectral phases be-
come complicated rapidly with the increase of the spectral width, the latter
phase compensator should be adaptive with an ultrabroadband width, For
this purpose, a 4-f pulse shaper with a programmable SLM (we call this the
SLM compensator), whose principle was described in the previous section, is
the most suitable. In this section, we introduce two types of SLM compen-
sator, a grating-pair-formed one and a prism-pair-formed one. The former
is a dispersion-free system, and has a higher wavelength resolution, a better
linear wavelength distribution as a function of the spatial position at the
SLM phase mask and a higher flexibility by suitable selection of the grating
groove, the blaze wavelength and the grating coating. But, it has drawbacks
of diffraction losses and second-order diffraction (which can be avoided by
suitable selection of the blaze wavelength, as shown in Chap. 5). On the
other hand, the latter has a broader bandwidth of the transmission, smaller
losses, a better linear frequency distribution as a function of the spatial po-
sition and no requirement of for a large-size SLM. But, it also has drawbacks
of non-dispersion free system and a lower frequency resolution. Accordingly,
we can choose these two types depending on the application purpose.

3.3.1 Grating-Pair-Formed Compensator with SLM

Gas-Filled Hollow Fiber Experiment

Liquid Crystal Spatial Light Modulator

In our experiments, a liquid crystal device, where several hundred pixels were
positioned in one dimension, was used as the SLM [15–17]. The phase of each
frequency component of the pulse can be modified by changing the refractive
index of the liquid crystal. The liquid crystal device consists of rod-like liquid
crystal molecules and the average orientation of the liquid crystal molecules is
changed by the electric field between electrodes. The direction of the average
molecular alignment is determined by the strength of the electric field and the
refractive index of the liquid crystal is modified according to this direction.
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The electric field applied to the liquid crystal device can be a static field or
a field in the form of the electric pulse train. The phase change of the pixel
is controlled either by changing the amplitude (amplitude modulation) or
the pulse width (pulse-width modulation) of the electric field applied to the
pixel. To accurately control the phase, we measured the phase change as a
function of wavelengths and the strength of the electric field. Thus the SLM
was calibrated.

In experiments, three different liquid crystal SLMs with different pixel
numbers (128, 256, and 648) were used. The one with 648 pixels (made by
Citizen Co.) was used for the generation of a few-optical-cycle pulse by com-
pressing an ultrabroadband pulse from a gas-filled hollow fiber. The phase
change of this SLM was controlled by a pulse-width modulation and its mag-
nitude was specified by a number called a gray scale (GS) by a computer.
The gray scale ranged from 0 to 191, so 192 different phase changes were pos-
sible. Initially, this scale was determined by an electronic circuit such that
the phase change was approximately proportional to it. The size of each pixel
was 97 µm × 8 mm and a gap between the pixel was 5 µm. The liquid crystal
was birefringent and the phase change was observed only for a light whose
linear polarization direction was in the short axis (97 µm).

To measure the phase change as a function of wavelengths and gray scales,
a method based on a spectral interferometry was used (this method was
similar to one described in [22]). In this method, light beams with two linear
polarizations from a broadband light source (Xe-arc lamp) were obtained and
were interfered after these passed the SLM with an analyzer. And, the spectral
intensity of the interfered beams was measured by a spectrometer. During
one measurement, the gray scale of the liquid crystal was kept constant.
By analyzing the interference pattern in the spectral intensity, the phase
change dependence on wavelengths for the given gray scale was obtained.
The measured phase changes for different gray scales are shown in Fig. 3.10.
In the same figure, the transmission of the SLM is shown. By repeating
the measurements for all gray scales and using a least-square fitting, the
phase change dependence on wavelengths and gray scales was obtained. The
phase change dependence on gray scales is shown in Fig. 3.11 for different
wavelengths. As shown in this figure, the phase change is not a simple linear
function for this particular SLM. Also, it can be seen that it is not possible
to change the phase more than 2π if the wavelength is longer than about
1200 nm. It is possible to change the phase up to 5π for a short-wavelength
light. However, the phase change of the pixel when its gray scale is changed
by one becomes larger as the wavelength becomes shorter (i.e., the resolution
becomes worse as the wavelength becomes shorter).

Important points for selecting a liquid crystal SLM for a pulse compres-
sion are the pixel number, the pixel size, the maximum phase change, the
resolution, the gap size, and the transmission of the SLM. For a given pulse
bandwidth, the pixel number and the pixel size determine the frequency width
assigned for each pixel. To select this value, it is necessary to evaluate the
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value of a phase change per pixel for the pulse to be compressed. If the phase
change per pixel exceeds π, it becomes difficult to perform effective pulse
compression. The maximum phase change of the SLM should be more than
2π for the entire wavelengths of the pulse to compress it perfectly. The res-
olution, the gap size, and the transmission of the SLM influence the quality
of the compressed pulse waveform. Especially, as the gap size of the SLM
becomes larger, more pronounced side pulses tend to be generated.
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Combination of a Prism-Pair and a Spatial Light Modulator Compensator

Optical pulses of ∼5 fs have been generated using the external compression
of ultrabroadband pulses from a hollow fiber filled with a noble gas [23–25].
In these references, chirped mirrors have been utilized for chirp compensa-
tion. Chirped mirrors have the advantage of high throughput. However, the
difficulty of obtaining the large bandwidth, the interdependence of different
phase-dispersion orders φ(n)(ω0), and the inability to fine-tune the phase in
the experimental setup are disadvantages. A pulse-shaping technique [12] that
uses a liquid crystal SLM for pulse compression has the advantage of large
bandwidth and in situ adaptive phase control.

An experimental setup for the pulse compression of an ultrabroadband
pulse from a hollow fiber filled with argon using a prism-pair and an SLM
is shown in Fig. 3.12 [15]. A prism-pair and a 4-f pulse shaper were used
as phase compensators in this experiment. In the pulse shaper, two plane
mirrors, M7 and M8, were used to fold beams to make the folding angles
away from two spherical mirrors M10 and M11 as small as possible. The
SLM used (Meadowlark Optics, SLM 2256) had 128 pixels with each pixel
width of 97 µm and each interpixel gap of 3 µm. The transmittance of the
unbiased SLM was about 90%. Gratings, G1 and G2, were Al-coated with
the braze wavelength at 800 nm and the groove of 1/150 mm. The measured
diffraction efficiency was over 70% within the 550–900 nm range. We used a
multipass 1-kHz Ti:sapphire amplifier, which produced pulses with a duration
of 30 fs centered at 780 nm. A pulse of energy 300 µJ was focused by a 300-mm
focal lens L1 into an argon-filled glass hollow fiber with an inner diameter of
140 µm and a length of 60 cm. At the gas pressure of 2.0 bar, due to dispersive

Fig. 3.12. Layout of experimental setup. M2-M9, silver-coated plane mirrors; M1,
M10, and M11, Al-coated spherical mirrors, R = −400 mm; L1, f = 300 mm; P1
and P2, Brewster-angle cut BK7 prisms; G1 and G2, diffraction gratings with d =
150 lines/mm; SLM, a one-dimensional 128-pixel spatial light modulator. The SLM
chirp compensator is shown within the dashed frames [15]
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Table 3.2. Dispersion of an SLM and a prism-pair at 780 nm [15]

Optical components GDD (fs2) TOD (fs3) FOD (fs4)

SLM substrate (2mm silica) +75 +54 −22
BK7 glass (24mm in a prism-pair) +1116 +754 −235
BK7 prism-pair (50 cm) −1546 −2084 −3550

Total −355 −1276 −3807

SPM, an almost continuum broadbanded from 570 to 970 nm was produced.
The output mode was circular (fundamental mode) and the pulse energy was
around 38 µJ. The output pulse was measured to be of longer than 300-fs full
width at half-maximum (FWHM) with a strong chirp.

The chirped pulse was launched to a precompressor which consisted of a
pair of BK7 prisms cut at the Brewster angle at 780 nm. Since the maximum
phase shift that could be applied on the SLM was φmax = πN (N = 128 is
the pixel number) [12], the precompressor was explored to remove the ma-
jor linear chirp of the self-phase modulated pulse with a separation length
of 50 cm. The dispersion of the SLM and the prism-pair at 780 nm is shown
in Table 3.2. However, the prism-pair also lead in large negative third-order
dispersion (TOD) and fourth-order dispersion (FOD) resulting in the obser-
vation of big structures on the wings of the measured fringe-resolved auto-
correlation (FRAC) trace at its output (see Fig. 3.13(a)). These wing-shapes
of the FRAC could be reduced by launching the nonlinear-chirped pulse in
the pulse shaper for its nonlinear chirp compensation.

In order to realize the programmable phase control on the SLM, we wrote
the nonlinear phase dispersion applied on the SLM as

φSLM(ωj) =
1
2

d2φ

dω2 (ω − ω0)2 +
1
6

d3φ

dω3 (ω − ω0)3

+
1
24

d4φ

dω4 (ω − ω0)4 + · · ·

where ωj (j = 1, 2, . . . , 128) represented the angular-frequency spatially dis-
tributed on the SLM, and (d2φ/dω2)|ω0 , (d3φ/dω3)|ω0 , and (d4φ/dω4)|ω0

represented the GDD φ(2)(ω0), TOD φ(3)(ω0), and FOD φ(4)(ω0) at the cen-
ter angular-frequency, respectively. In practice, the center angular-frequency
ω0 (corresponding to λ0 = 780 nm) was set to ω0 = ω60. The imparted phase
shifts were folded back into the range −π ≤ ∆φ ≤ π. The SLM phase response
as a function of the applied voltage was calibrated by using a He–Ne laser,
and the maximum phase shift in excess of 6π was obtained. The output beam
from the SLM phase compensator had a good circular mode with the pulse
energy around 4–5 µJ. The output pulse was directed to the fringe-resolved
autocorrelator to monitor the pulse duration. Initially, the negative quadratic
phase of −400 fs2 at the center frequency was applied to the SLM and the
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Fig. 3.13. (a) Measured FRAC trace of the procompensated pulse using a pair
of BK7 prisms alone. (b) Measured FRAC trace of the shortest pulse (solid line).
The calculation from direct inverse Fourier-transform (IFT) of the measured pulse
spectrum presents 4.9 fs (FWHM) (circles). The measured spectrum of the shortest
compressed pulse is shown in the inset [15]

material path of the second BK7 prism was increased to recompensate for
the negative GVD. To compensate for the negative TOD and FOD of the
prism-pair (see Table 3.2), the positive cubic phase and the positive quartic
phase were applied on the SLM. As a result, better and shorter FRAC traces
were observed. When the cubic phase and the quartic phase were set to be
of 1100 fs3 and 2000 fs4 at the center frequency, respectively, the chirp of the
pulse was optimally compensated for and a short optical pulse was gener-
ated. The measured FRAC trace is depicted in Fig. 3.13(b) (solid line), and
the measured pulse spectrum is shown in the inset. The direct inverse Fourier-
transform (IFT) of the compressed-pulse spectrum resulted in a pulse of 4.9 fs
(FWHM) (circles). The good agreement between the measured FRAC trace
and the IFT-constructed FRAC trace in the main peak of the pulse indicated
the small residual phase errors existing in this region. The pulse was charac-
terized using a second-harmonic generation frequency-resolved optical gating
(SHG-FROG) apparatus [26] with a 10-µm thick BBO. The retrieved pulse
and pulse spectrum are shown in Fig. 3.14. The pulse duration was evaluated
to be 5.7 fs (FWHM). Compared with the measured spectrum, the retrieved
spectrum was little bit narrow. This was due to the fact that the SHG crystal
had a limited phase-matching bandwidth and resulted in the broadening of
the pulse width.
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Fig. 3.14. Retrieved pulse intensities in (a) the time domain and (b) the frequency
domain. Dashed curve indicates phases [15]

Only a Spatial Light Modulator Compensator

An ultrabroadband pulse generated from a gas-filled hollow waveguide was
compressed using only a 4-f phase compensator to obtain a 5.0 fs pulse with-
out using a pre-chirp compensator [16]. In this experiment, a spatial light
modulator (SLM) with a large pixel number (648) was used. Initially, we in-
vestigated the group delay of optical components used in the experimental
setup to estimate how much group delays must be compensated for by the
SLM for cases with and without a prism-pair. Especially, we compared the
required phase changes per pixel of the SLM for the pulse compression in
both cases. We found that this value could be smaller when the prism-pair
was not used if we chose the appropriate center wavelength of the Taylor ex-
pansion for determining the phase on the SLM. By not using the prism-pair,
the optical throughput of the setup increased and the alignment of the setup
became easier.

The experimental setup is shown in Fig. 3.15. The output beam of a
Ti:sapphire laser-amplifier system (center wavelength ∼790 nm, pulse width
30 fs, repetition rate 1 kHz and pulse energy adjusted by the neutral density
filter (ND) to be 140 µJ) was focused into a hollow fiber with 34-cm length
and 0.1-mm inner diameter, which was positioned in a chamber filled with ar-
gon. The chamber had two 1-mm-thick sapphire windows. The output beam
from the chamber was collimated by a spherical mirror and was directed to
the 4-f system with the SLM. The 4-f system consisted of two spherical mir-
rors with a focal length of f = 20 cm and two silver reflective gratings (G1
and G2) with a ruling distance of d = 1/150 mm. The optical path lengths
between the gratings to the spherical mirrors and those between the spheri-
cal mirrors to the SLM were all set to be f . The liquid crystal SLM (Citizen
Co.) consists of 648, 97-µm-wide pixels with the 5-µm gap. The phase change
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Fig. 3.15. Experimental setup for the generation of a 5.0-fs optical pulse. In this
figure, PS: periscope, VND: variable neutral density filter, G1, G2: gratings, FM:
flip mirror, RR: retroreflector, PM: parabolic mirror, and BS: beamsplitter [16]

dependence of the SLM on the wavelength and the gray scale was determined
as described in the previous paragraph (see Figs. 3.10 and 3.11). Pulse energy
after the fiber chamber was 22 µJ and the throughput of the 4-f system was
30%. In the setup, periscopes (PS) were used to change the height and/or
the linear polarization direction of the beam and a flip mirror (FM) was used
to change the beam direction for measurements of FRAC and SHG-FROG.

The SLM was used as a phase modulator and it could apply the phase
variation of 2π for the light whose wavelength was less than about 1200 nm
with the maximum resolution of 192. The applied phase φSLM(x) by the SLM
at the position x was given by the polynomial of the form:

φSLM(x) =
α

2
(ω(x) − ω0)2 +

β

6
(ω(x) − ω0)3 +

γ

24
(ω(x) − ω0)4, (3.27)

where ω0 was the center angular frequency for the Taylor expansion and
ω(x) was the angular frequency at the position x and was given by ω(x) =
2πc/(d sin(tan−1(x/f) + sin−1(λc/d))) (c : the speed of light). λc = 800 nm
was the the wavelength at the central position of the SLM, x = 0. This λc

did not have to be equal to the center wavelength for the Taylor expansion
λ0, where λ0 = 2πc/ω0. α, β, and γ were the group delay dispersion (GDD),
the third-order dispersion (TOD), and the fourth-order dispersion (FOD) at
ω0, respectively. The group delay td,SLM(x) applied by the SLM was given by

td,SLM(x) =
∂φSLM(ω)

∂ω

= α(ω(x) − ω0) +
β

2
(ω(x) − ω0)2 +

γ

6
(ω(x) − ω0)3. (3.28)
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by the SLM (dashed line). Inset shows the experimental (solid line) and 4.5-fs fitted
transform-limited (dotted line) FRAC traces at these parameters [16]

Parameters α, β and γ were initially estimated from the total group delay
td(ω) of the optical components from the hollow fiber (including SPM) to
the nonlinear crystal in the measuring apparatus. This td(ω) was fitted in
the form of (3.28) and α, β, and γ were obtained. Then, the negative val-
ues of these fitted parameters were initially applied by the SLM to satisfy
td,SLM(ω) + td(ω) � constant in the whole frequency range. Theoretically,
this condition should give the shortest pulses. However, in practice, it was
necessary to adjust the phase applied by the SLM to obtain the shortest
pulses because of the difference of group delays between the calculations and
the experiments mainly due to the approximations used in calculations. The
Taylor expansion used in (3.27) was found to be the natural way that al-
lowed fine adjustment of the phase. Parameters α, β, and γ were fine-tuned
using a computer to obtain the shortest pulse by the FRAC and later by the
SHG-FROG apparatus. In Fig. 3.16, the group delay of the total, as well as
each component in the optical path and its negative values applied by the
SLM, are shown for which the shortest FRAC trace (inset: the 4.5-fs fitted
transform-limited pulse) was obtained for conditions where λ0 and the argon
pressure were set to be 600 nm and 2.0 atm, respectively. As shown later,
FROG results of 5.0-fs pulses were obtained under these conditions. Here,
the effective group delay arising from propagation in the hollow fiber was ob-
tained from numerical nonlinear propagation calculations [27] (See Chap. 1).
For other optical components, it was calculated using the Sellmeier equations
for the fused-silica [28] (beamsplitters of FRAC/FROG, 0.7 mm), BK7 [29]
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the pulse spectrum [16]

(SLM substrates, 1.4 mm), sapphire [30] (a chamber window, 1 mm) and
air [31] (3.7 m). As shown in Fig. 3.16, the agreement between the calculated
group delay (thick solid line) and the negative of the group delay applied by
the SLM (dashed line) when the parameters were optimized was reasonably
good.

The value of λ0 in (3.27) was initially set to be 800 nm with different val-
ues of α, β and γ from the ones in Fig. 3.16, and the FRAC trace as shown in
Fig. 3.17, which was fitted well for the 4.1-fs transform-limited pulse, was ob-
tained at argon pressure of 2.8 atm. However in this case, it was found that the
measured pulse width by the FROG (∼6 fs) was longer than the transform-
limited value. This underestimate of the pulse width may be understandable
from the poor fit of the pedestals, the asymmetric temporal intensity pro-
file [32] and the filter effect of the nonlinear crystal (See Sects. 4.1 and 4.2)
in the autocorrelation trace, as well as the slightly different dispersion optics
between the FRAC and the FROG apparatuses. This motivated us to search
for better parameters for the SLM. Because of the finite pixel size, the phase
applied by the SLM in (3.27) was step-wise, and as the difference of the phase
between adjacent pixels (which we called ∆φ(λ)) became larger, phase com-
pensation became more difficult because of the phase error introduced by the
finiteness of the pixel width. For our experimental setup, the frequency-width
for each pixel became larger as the wavelength became shorter because of the
almost-linear relationship between the pixel number and the wavelength on
the SLM. This made |∆φ(λ)| tend to become larger as the wavelength became
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shorter than λ0. In Fig. 3.18, the applied phase as well as the phase variation
per pixel at SLM for λ0 = 600 nm (Fig. 3.16) and λ0 = 800 nm (Fig. 3.17) are
shown. In both cases, the fitted group delays td,SLM(ω) were almost identical.
However, the fitted phases were quite different as shown in this figure. We
analyzed |∆φ(λ)| of the SLM, and found that for λ0 = 800 nm it exceeded
π for the wavelength below 672 nm and it was difficult to perform the phase
compensation below this wavelength. This effect was pronounced since the
generated spectrum had a peak at 670 nm. When λ0 = 600 nm, |∆φ(λ)| in
the shorter wavelength range decreased considerably and it exceeded π only
for the wavelength below 540 nm. This resulted in a significantly better phase
compensation and pulses much closer to the transform-limit were obtained
in the FROG measurements (See Sect. 3.2).

In Fig. 3.19, the results of pulse measurements using the SHG-FROG
at λ0 = 600 nm are shown. Owing to the slight difference of optics used
in the FRAC and the FROG apparatuses, the SLM parameters were re-
adjusted slightly for the FROG measurements. In the SHG-FROG appara-
tus (Fig. 3.16), the 0.5-mm thick broadband (400–1300 nm) dielectric beam
splitter (BS) was used to separate the beam to the silver-coated retrore-
flector (RR) in the balanced configuration. The beam separation db at the
parabolic mirror (PM) was 2 mm with the beam diameter wm of 1 mm. It
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gave the time smearing [33] τd =
√

2 ln 2λdb/(πcwm) = 1.6 fs at the wave-
length λ = 650 nm on the assumption of the Gaussian space and time pro-
files. The 10-µm thick β-barium borate (BBO) crystal at the cutting angle
of 40 degree was used in the type I geometry. Owing to the limited band-
width of the crystal, the frequency marginal calculated from the FROG trace
MEx(ω) and that from the spectrum intensity autoconvolution MTh(ω) did
not match as shown in Fig. 3.19(a). To correct for this effect, each value in
the FROG trace was multiplied by a frequency-dependent factor such that
the marginal calculated from the FROG trace became identical to that ob-
tained from the spectrum [34]. After the marginal correction, the commercial
FROG software was used to retrieve the pulse intensity and phase. In the
measurements, the 1024-channel optical multichannel analyzer with the in-
tensified CCD was used. The step number was 256 with a delay time of
1.34 fs. The time required for the measurement was about one minute and
the stability of the pulses was excellent during this time period. Also we could
reproduce the pulse width measured by FROG usually within 10% using the
same parameters several hours after these were optimized. In Fig. 3.19(b)–
(c), the spectrum and the temporal waveform of the pulse are shown. The
FROG error was 0.0038. The measured and the calculated spectra agreed
quite well because of the marginal correction. However, the temporal width
was not changed by the marginal correction. The obtained pulse of 5.0-fs had
2.4 cycles at the center wavelength (633 nm) and its width was 14% longer
than the transform-limited pulse width (4.4 fs for FROG measurement). If
the geometrical smearing effect is taken into account, the pulse width was
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estimated to be 4.7 fs. The residual phase was within π/2 in the wavelength
range (550–800 nm) where the spectral intensity was significantly large.

Conventional Glass Fiber Experiment

Self-Phase Modulated Output Case

Ultrashort optical pulses in the 4–5 fs regime have been generated by exter-
nal pulse compression [15,16,23–25,35,36] with an amplifier at the repetition
rate of 1 kHz and directly from Ti:sapphire lasers at the repetition rate of
100 MHz [37,38]. For chirp compensations, combinations of prism pairs, grat-
ing pairs and chirped mirrors have been employed. However, such techniques
have the disadvantages of interdependence among the group-delay dispersion
(GDD), the third-order dispersion (TOD) and the higher-order dispersion, as
well as bandwidth limitation and the inability to realize in-situ large phase
adjustment without realignment. Therefore, accurate chirp compensation for
the compression of few-optical-cycle pulses with ultrabroad spectra becomes
increasingly difficult in the generation of shorter transform-limited pulses.

On the other hand, a pulse compression technique consisting of an Ar-gas-
filled hollow fiber, a prism pair and a 4-f phase compensator with an SLM
was demonstrated for the generation of sub-5 fs amplified pulses at a repeti-
tion rate of 1 kHz [15,16,21]. This technique has the ability to overcome the
above-mentioned problems. Using this technique, we clarify quantitatively
and experimentally a relationship between the chirped pulse and the applied
TOD under the obtained optimum GDD in the time region less than 10 fs,
and demonstrate the generation of 7.1-fs transform-limited pulses which are
output from a silica fiber (2.5 mm length) at a 75-MHz repetition rate [39].
Single-mode silica optical fibers are attractive nonlinear media because of
their low losses, small effective areas, low cost, commercial availability and
the capacity of broadband spectra generation by low energy pulses at a high
repetition rate. To demonstrate accurate compensation, it is particularly im-
portant to use high-repetition-rate pulses because their stability is higher
than that of an amplified pulse output from a hollow fiber at a low repetition
rate.

Experimental setup is shown in Fig. 3.20. The 12-fs, 10-nJ pulses with the
center wavelength of 800 nm were generated from a mode-locked Ti:sapphire
laser at the repetition rate of 75 MHz. The 12-fs pulses were coupled into a
2.5-mm silica fiber by a 36× reflective objective R1 which was made of gold
mirrors and introduced no additional phase dispersion for the 12-fs pulses.
The silica fiber was a polarization-preserving single-mode fused silica fiber
with a core diameter of 2.7 µm. The coupling efficiency was measured to be
27%. The output from the 2.5-mm fiber was collimated by another objective
R2 made of aluminum mirrors and its spectrum was measured by a spec-
trometer. In addition, the output pulse was characterized by an SHG-FROG
apparatus. With an input pulse power of 120 kW, the fiber output spectrum
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Fig. 3.20. Layout of the experimental setup. M1-6, M9-11, silver-coated plane
mirrors; M7 and M8, silver-coated spherical mirrors, R = −400 mm; P1 and P2,
Brewster-angle cut silica prisms; G1 and G2, gold-coated gratings, d=300 lines/mm;
R1 and R2, reflective objectives (×36); SLM, spatial light modulator controlled by
a computer (PC) [39]

was broadened due to the dispersive SPM effect. The chirped pulse was first
precompensated by a pair of fused-silica Brewster prisms P1 and P2 with
a separation length of 59 cm. The output pulse from the prism pair was
coupled into a 4-f phase compensator [13, 15, 16, 21, 40] which consisted of
a pair of 300 lines/mm gold-coated gratings G1 and G2 placed at the focal
planes of a pair of 200-mm-focal-length concave-spherical silver mirrors M7
and M8. A programmable one-dimensional 256-pixel SLM with a total effec-
tive width of 27 mm and a height of 10 mm was set on the Fourier plane
at the center of the two spherical mirrors between the gratings. In the SLM,
each pixel had a width of 100 µm and an inter-pixel gap of 7 µm. The total
transmission efficiency of the SLM phase compensator was about 20%. The
chirp-compensated pulses from the 4-f system were measured by a fringe-
resolved autocorrelator with a 25-µm-thick BBO crystal.

The spectral phase to be applied by the SLM, φ(ωj), is described by the
following equation:

φ(ωj) =
1
2
φ′′(ωj − ω0)2 +

1
6
φ(3)(ωj − ω0)3 + . . . , (3.29)

where j = 1, 2, . . . , 256 (the pixel number), φ′′ = d2φ(ω)/dω2|ω0 and
φ(3) = d3φ(ω)/dω3|ω0 at the center angular frequency ω0 = ω128 of the pulse
spectrum (the corresponding wavelength λ0 = 800 nm at the incidence angle
θi = 0) correspond to GDD and TOD, respectively, and ωj − ω0 represents
the angular frequency difference between the jth pixel and the 128th pixel.
The angular frequency ωj is given by ωj = 2πc/λj , where c is the velocity of
light in vacuum. The jth pixel wavelength λj is expressed with respect to the
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Table 3.3. Evaluated dispersion for 800 nm from FROG measurements and various
optical components, and applied GDD and TOD [39]

Optical components GDD (fs2) at 800 nm TOD (fs3) at 800 nm

Silica fiber output 342 187
Silica prism pair (59 cm) −342 −479
SLM substrate (4.6mm silica) 165 125
GDD, TOD applied by SLM −150 220
Total +15 +53

spatial position xj as λj = [d{sin(tan−1(xj/f) + sin(λc/d)) + sin θi}], where
xj = j∆x and ∆x is the pixel width for the SLM. f denotes the focal length
of the so-called 4-f configuration SLM compensator and d = 1/300 mm is a
ruling distance of the grating.

To find the optimum distance between two prisms for precompensation
and the optimum phase retardation to be applied by the SLM for main com-
pensation, we measured the intensity and phase profiles of the output pulses
from the silica fiber using the SHG-FROG apparatus. The pulse width of the
temporal intensity profile was 92 fs and the change in temporal phase was
nearly 100 radians. When the retrieved spectral phase φ(ω) was extrapolated
at the center angular frequency ω0 using an equation similar to (3.29), the
GDD and TOD values at λ0 = 800 nm were determined to be φ′′ = +342 fs2

and φ(3) = +187 fs3, respectively. In order to precompensate for the ob-
tained GDD of fiber output pulses, the prism distance was set at 59 cm to
apply a negative GDD value of −342 fs2 at 800 nm (calculation from [8]) with
the TOD value of −479 fs3. Similar calculations indicated that the GDD and
TOD values at 800 nm for the fused-silica SLM substrates of a total thickness
of 4.6 mm were +165 fs2 and +125 fs3, respectively. Based on these consid-
erations (see Table 3.3), the GDD of −150 fs2 and the TOD of +220 fs3 at
800 nm were applied by the SLM in the 4-f configuration for main chirp com-
pensation, as shown in Fig. 3.21, where the phase as a function of the pixel
number was folded at each pixel exceeding 2πN radians (N = 1, 2, 3, . . . ).
Regarding the GDD value, the optimum result was not obtained when the
GDD of −165 fs2 was applied.

As a result of applying the phase shown in Fig. 3.21, to the SLM, the
FRAC trace as shown in Fig. 3.22 (cross points) was obtained. This was
compared with the FRAC trace of the 7.1-fs transform-limited pulse (the
solid line) calculated from the measured spectrum ranging from 670 nm to
930 nm at the 4-f phase compensator output (the solid line of inset (a) in
Fig. 3.22). The good agreement between the two FRAC traces suggested that
7.1-fs transform-limited pulses were generated. These were the shortest pulses
generated with the combination of a silica fiber and the SLM compensator
by non-amplified pulses.
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We investigated the TOD dependence of the FRAC trace while keeping
the GDD (−150 fs2) constant (Fig. 3.23). The FRAC traces were measured by
changing only the TOD values and keeping the GDD value without any re-
alignment of the FRAC apparatus (except for (a) where no phase pattern was
applied by the SLM), using the computer-controlled SLM. When the applied
GDD and TOD were both zero (Fig. 3.23(a)), the large substructure appeared
in the FRAC trace, where the background in the far time region from the peak
was low. However, when only the GDD was set at −150 fs2 (Fig. 3.23(b)), the
relative amplitude of the off-center features decreased. With increasing only
the TOD from +120 to +220 fs3, a good peak-to-background ratio of 8:1 was
observed and the small wing corresponding to the transform-limited pulse
profile (the inset (b) in Fig. 3.22) appeared. A further increase of the TOD
from +280 to +360 fs3 again yielded off-center features which slightly differed
from earlier observations. These results suggest that even a small change in
TOD (+60 fs3 and −100 fs3) greatly affects the temporal intensity profile of
the pulse in the 7-fs regime.
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Induced Phase Modulated Output Case

As described in Chap. 2, the induced phase modulation (IPM) technique,
where two different-color femtosecond pulses with a carrier phase locking
are copropagated in a fiber, has the capability of more efficient broadband
spectrum generation compared with that of the SPM technique. However, the
spectral phase behavior is so complicated that it is difficult to compensate
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Fig. 3.24. Schematic drawing of the pulse group delay dφ(ω)/dω. Although in the
sense, the spectral phase of the pulse φ(ω) may be shown by the dashed line, it can
be approximately expressed by a combination of two cubic spectral phase functions
with respect to ω, as the solid line [41]

for chirp of IPM pulses by the conventional prism pair, the grating pair,
chirped mirrors or their combination. Instead of those passive compensators,
a preliminary experiment using a 4-f phase compensator with the SLM for
IPM pulses was carried out [41] (see Sect. 5.2.1 for shorter pulse compression
of few cycles by feedback compensation [42]).

The spectral-resolved autocorrelation experiment under prism phase-
dispersion compensation, as pointed out in Sect. 2.2.2, suggested that the
spectral phase φ(ω) of IPM fiber output pulses has the effective discontinuity
in group delay (GD) φ̇ and the effective discontinuity in group delay dispen-
sion (GDD) φ̈ (Fig. 3.24). To confirm this funding, the following interesting
experiment was performed. The experimental setup is shown in Fig. 3.25. The
two input pulses into the fiber originated from the same light source. One
pulse (the fundamental pulse) was generated by a Ti:sapphire regenerative
amplifier at a 1-kHz repetition rate and had a duration of 80 fs, 12-nJ en-
ergy per pulse and a spectrum centered at 800 nm. The other pulse (the idler
pulse), being centered at 1100 nm with an 80-fs duration and 48-nJ energy
per pulse, was converted from the fundamental pulse by an optical paramet-
ric amplifier with locking of the carrier phase difference. The delay time of
the fundamental pulse with respect to the idler pulse was adjusted for both
pulses to meet at the fiber entrance. Both pulses were copropagated along the
fiber. The output pulse from the fiber was directed to a pair of prisms with
a slit for spectrally resolved measurements of autocorrelation traces, or to a
SLM phase compensator. The distance between two fused-silica, 60-degree
prisms with double paths was 610 mm. The 4-f phase compensator consisted
of a pair of gratings (with grating constant d = (1/150) mm), a pair of con-
cave mirrors (focal length f = 350 mm) and a novel SLM. It has 648 pixels
and an 8-bit resolution. The output pulse was characterized by a noncollinear
autocorrelator with a 10-µm-thick BBO crystal.



138 M. Yamashita et al.

f=350 mm

d  =150 /mm
-1

648 pixels

f

f

SLM

Autocorrelator

REGEN
Ti:Sapphire
     Laser

OPA

silica fiber
   3 mm

delay stage

M1

DM

F1M4

M4
RM

M2

M3

M6

S

G1 G2

F2

M5

CM2CM1

RO1RO2P1

P2

Fig. 3.25. Experimental setup for spectrally resolved autocorrelation (dashed line)
and novel phase-dispersion compensation (solid line) of ultrabroadband femtosec-
ond optical pulses generated by induced- and self-phase modulations. M1–M7: plane
mirrors, DM: dichroic mirror (M2 is rotated by 90◦ when spectrally resolved mea-
surements are performed), F1, F2: flip mirrors, RO1,RO2: reflective objectives, P1,
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The spectral broadening from 730 to 1250 nm due to dispersive IPM and
SPM effects was observed (Fig. 3.26(a)). The corresponding autocorrelation
trace of the fiber output was measured to be a 150-fs FWHM (Fig. 3.26(b)).

The chirp compensation implies, in general, that d[φ(ω)+φSLM(ω)]/dω =
const., where φ(ω) and φSLM(ω) are the spectral phase of pulses and the
phase to be applied by a SLM, respectively. However, in the present case of
the induced- and self-phase-modulated pulse, unlike the conventional case of
the self-phase-modulated pulse, φ̇(ω) ≡ dφ(ω)/dω may include the effective
group-delay discontinuity of φ̇(ωdc + 0) − φ̇(ωdc − 0) at ωdc, where

φ̇(ωdc + 0) ≡ lim
ω→ωdc+0

dφ(ω)/dω, (3.30)

φ̇(ωdc − 0) ≡ lim
ω→ωdc−0

dφ(ω)/dω, (3.31)

as shown by the solid line in Fig. 3.24. Therefore, for perfect compensation
of the phase dispersion to generate the shortest pulse, the total group delay
tSLM
d (ω) to be applied by a SLM should be expressed by
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tSLM
d (ω) = dφSLM(ω)/dω

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
φ̈(1)(ω01) × (ω − ω01)

+
...
φ (1)(ω01) × (ω − ω01)2/2 ω < ωdc,

tg + φ̈(2)(ω02) × (ω − ω02)
+

...
φ (2)(ω02) × (ω − ω02)2/2 ω ≥ ωdc,

(3.32)

where ω01 and ω02 are the center angular frequencies of the Taylor expan-
sion corresponding to 1100 and 800 nm, respectively, and ωdc is the angular
frequency where the total group delay tSLM

d (ω) is discontinuous. The value
of ωdc is determined to be 930 nm from the calculation describing IPM and
SPM nonlinear propagation [11,43,44] (see Chap. 1). Parameters φ̈(i)(ω) and...
φ (i)(ω) (i = 1, 2) are the GDD and the third-order dispersion (TOD) in the
region of ω < ωdc or ω ≥ ωdc, respectively. The constant group delay tg is
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determined so that the discontinuity φ̇(ωdc + 0) − φ′(ωdc − 0) of the group
delay vanishes.

Two types of experiment using the SLM phase compensator were made.
Figure 3.27(a) shows the autocorrelation trace in the case where φ̈(1)(ω01) =
−500 fs2,

...
φ (1)(ω01) = −200 fs3, φ̈(2)(ω02) = −700 fs2 and

...
φ (2)(ω02) =

−700 fs3 with tg = 0 fs were applied by the SLM. They were determined
based on the fact that these values resulted in best chirp compensation when
only the fundamental pulse or the idler pulse propagated in the fiber with
only the SPM effect. The three-peak trace of Fig. 3.27(a), suggests the effec-
tive group-delay discontinuity. To cancel this frequency-independent group-
delay effect, the value of tg was applied to be −120 fs together with the same
φ̈(i)(ω0i) and

...
φ (i)(ω0i)(i = 1, 2) values. A single-peak autocorrelation trace

was obtained, as shown in Fig. 3.27(b). The correlation FWHM was 75 fs,
which was the same as that of the main peak of Fig. 3.27(a), and the dura-
tion of the compensated pulse was evaluated to be 49 fs on the assumption
of a sech2 pulse shape. The corresponding duration of the transform-limited
pulse is 8 fs, as shown in the inset of Fig. 3.26(a). The reason for this disagree-
ment is considered to be as follows. In this experiment, the applied GDD and
TOD dispersion parameters using the SLM were determined based on the
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experimental results where only SPM occurred. That is, either the idler or
the fundamental pulse propagated in a fiber. Moreover, fluctuation in pulse
intensity and phase during a comparable long accumulation time to improve
the signal to noise ratio for a low-intensity output from a fiber restricted the
resolvable correlation FWHM to be ∼35 fs.

The optimum value of tg = −120 fs was determined on the basis of the
time difference between the main peak and the sub-peak in the autocorre-
lation trace of Fig. 3.27(a). This group delay is significantly different from
the 48-fs propagation time difference of the idler pulse with respect to the
fundamental pulse due to the group-velocity difference. Therefore, this result
also suggests that the effective group-delay discontinuity originated from the
dispersive IPM and SPM effects.

Thus, it should be noted that pulse compression using IPM with two
phase-locked optical pulses requires not only conventional nonlinear-chirp
compensation but also frequency-independent group-delay adjustment. Both
compensations are simultaneously performed by a 4-f system with the SLM.
The successful pulse compression will be described in Sect. 5.2.1.

3.3.2 Prism-Pair-Formed Compensator with SLM

Relation between Wavelength (or Angular-Frequency)
and Spatial Position on SLM

Let us introduce the first experiment of the prism-pair-formed chirp compen-
sator with the SLM [21]. The schematic of the prism-pair formed 4-f chirp
compensator is shown in Fig. 3.28(a). It consists of a pair of highly disper-
sive TF5 (Pb-doped silica glass) prisms cut at Brewsters angle (60 deg.) at
780 nm, and a pair of concave spherical mirrors with a 200-mm focal length f.
The programmable one-dimensional liquid crystal SLM with 128-pixel num-
ber is placed at the Fourier plane of the compensator where frequencies are
spatially dispersed. The width of such pixel is 97 µm and the inter-pixel gap
is 3 µm. Using Fig. 3.28(b) we can calculate the spatial distribution x(λ) in
the masking plane, where θ is an incident angle on the prism and φr(λ) is
the refractive angle at the wavelength λ. The angle φr(λ) can be derived to
be [45]:

φr(λ) = arcsin
[
sin(θ) cos(π − α)

+ sin(π − α)
√

n(λ)2 − (sin(θ))2
]

(3.33)

where α is the apex angle of the prism and n(λ) represents the refractive
index dispersion of the prism material. For the TF5 prism, the refractive
index is 1.783 at 780 nm (α = 60◦, θ = 60◦). If the distance between the
prism and the masking plane is set to f , and Ωr = φr0 − φr(λ) where φr0
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Fig. 3.28. (a) Schematic of a prism-pair formed 4-f chirp compensator. A pulse is
spatially dispersed by a prism P1 and then collimated and focused by a spherical
mirror M1 onto a liquid-crystal phase modulator which is located at the Fourier
plane of a 4-f system. The output beam is recombined by a second mirror M2 and
prism P2. (b) Geometry for calculating the spatial distribution of Brewster prism
in the Fourier plane. θ represents the incident angle to the prism, φr(λ) is the
refractive angle of the wavelength λ, and φr0 is the refractive angle at the center
wavelength λ0 [21]

is the refractive angle at the center wavelength λ0, the position x(λ) at the
wavelength λ in the masking plane is given by

x(λ) = f tanΩr (= f tan(φr0 − φr(λ))) (3.34)

which is shown in Fig. 3.29(a) and (b). We expand x(λ) with respect to λ in
a Taylor series as follows:

x(λ) = x0 + x(1)(λ0) × (λ − λ0) +
1
2!

x(2)(λ0) × (λ − λ0)2

+ · · · +
1
n!

x(n)(λ0) × (λ − λ0)n + · · · (3.35)

where x(n)(λ0) = dnx(λ)/dλn|λ=λ0 and x0 is the position at the center wave-
length. By letting the position x correspond to the pixel number of the SLM
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Fig. 3.29. (a) Spatial wavelength dispersion and (b) spatial angular-frequency
dispersion at the Fourier plane of the TF5 prism-pair-formed chirp compensator.
The spatial dispersion features of a grating partner are shown in the insets (here,
d = 1/300 mm, f = 100 mm, and φr(λ0) = 6.9 deg) [21]

we can approach the practical wavelength distribution or the angular fre-
quency distribution (by a use of λ = 2πc/ω) on the 128-pixel SLM and the
acceptable range is from 570 to 1070 nm. Although the wavelength distribu-
tion is not linear, the angular-frequency distribution is almost linear over the
range of ∆ω = 1.5 × 1015 rad/s corresponding to ∆λ = 500 nm. This re-
sult sharply contrasts with the case of the grating-pair formed compensator,
which is shown in the insets of Fig. 3.29. It should be noted that this feature
benefits programmable phase control of the SLM because the phase to be
applied by the SLM is expanded in a Taylor series with respect to the angu-
lar frequency rather than the wavelength and the linear distribution means
that a constant angular frequency difference ∆ω exists between the adjacent
pixels.

How to Phase-Control by Programmable SLM

At first, we have to calibrate the phase response of the SLM as a function of
the voltage applied to liquid crystal pixels. One of the simple ways is to use
a He-Ne laser interferometer [46, 47]. When an input pulse spectrum is very
broad, calibrations for all wavelengths are needed. However, a uniformity of
the phase shift in the range of 0-2π for all wavelengths is found. Accordingly,
we can employ this feature and calibrate the SLM over the entire wavelength
range. For phase control of chirped pulses, the phase φSLM(ωj) to be applied
by the SLM is expressed as
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Fig. 3.30. (a) The phases applied on the SLM in the TF5 prism-formed chirp
compensator when d2φ/dω2|ω0 = −330 fs2 and d3φ/dω3|ω0 = +2000 fs3 (λ0 =
760 nm). (b) The folded phase within [−π, π] [21]

φSLM(ωj) =
1
2!

d2φ(ω)
dω2

∣∣∣∣
ω=ω0

× (ωj − ω0)2

+
1
3!

d3φ(ω)
dω3

∣∣∣∣
ω=ω0

× (ωj − ω0)3 + · · · (3.36)

where j = 1, 2, · · · , 128 (pixel number), φ̈(ω0) ≡ d2φ(ω)/dω2|ω=ω0 and...
φ (ω0) ≡ d3φ(ω)/dω3|ω=ω0 represent the group delay dispersion (GDD) and
the third-order dispersion (TOD), respectively. In this experiment, the center
angular frequency (corresponding to λ0 = 760 nm) is set to ω0 = ω70, this
ωj −ω0 means the angular-frequency difference between the jth pixel and the
70th pixel. If we can approximate a perfect linear angular-frequency distribu-
tion over the whole frequency range on the SLM, ωj −ω0 is (j −70)∆ω where
∆ω is the angular-frequency difference between arbitrary adjacent pixels.

When we set φ̈(ω0) = −330 fs2 and
...
φ (ω0) = +2000 fs3 at λ0 = 760 nm,

respectively, through programmably-controlled applied voltages, the phases
on the SLM are evaluated to be as shown is Fig. 3.30(a). Since the components
of the electric field spectrum of an ultrashort pulse are spectrally expanded on
the SLM, chirp compensation by the programmable SLM is carried out in the
frequency domain. The electric field in the frequency domain can be written
as E(ω) = |E(ω)| exp(iφ(ω)) ≡ |E(ω)| exp[i(∆φ(ω) + 2mπ)]. Here, ∆φ(ω) is
within [−π, π] and m = 0,±1,±2, · · · . As a result, we can fold a larger phase
φ(ω) into ∆φ(ω) ε [−π, π], which is shown in Fig. 3.30(b). It should be noted
that, in the case of chirp compensation, we do not need to adjust φ(ω0) (the
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absolute phase) and φ̇(ω0) (the group delay) unlike the phase compensation
of the CW wave, and hence does not include those terms as given in Fig. 3.30.

SLM Chirp Compensation for Ultrabroadband Pulses

A typical experimental setup is shown in Fig. 3.31. The output pulses with a
duration of 30 fs, a central wavelength of 780 nm, energy of 400 µJ at a repe-
tition rate of 1 kHz were launched into an argon-filled glass hollow fiber with
an inner diameter of 140 µm and a length of 60 cm. The fiber was placed in a
2.0-atom pressure chamber with 1-mm-thick sapphire windows. The output
spectrum broadened from 500 to 1000 nm due to the dispersive SPM had
pulse energy of 42 µJ with a pulse duration of 177 fs. The chirped pulses were
collimated by a spherical mirror M1 with a focal length of 200 mm and then
directed to a precompressor which consists of a pair of BK7 Brewster prisms.
The compressor was designed to compensate for material dispersions of the
TF5 prism pair and the SLM substrate glass. The GDD and TOD of TF5
glass, SLM substrate, BK7 glass and a pair BK7 prisms [48] at 780 nm are
shown in Table 3.4, where the optical paths within the TF5 prisms and the
BK7 prisms were assumed to be 4 and 24 mm (double passes), respectively.
The BK7 prism pair with a separation of 65 cm provided a net GGD = −80 fs2

and TOD = −1645 fs3 when pulses passed through the precompressor and
the SLM compensator (the SLM applied voltage is off). The output from
the precompressor was coupled into the main chirp compensator with the
SLM. In order to reduce the imaging distortion by astigmatic aberrations,
two plane mirrors M7 and M8 were used to fold the beams. That is, the
folding angles of the two spherical mirrors were kept as small as possible to
alleviate aberration. Two TF5 prisms were placed at the focal planes of a pair
of concave spherical mirrors of a 200-mm focal length to form a 4-f system.
The output pulse duration was measured by a fringe-resolved autocorrelator

P1

M 1

L 1

P2

M 2
M 4

M 3

P 3 P 4

M 5
M 6 Autocorrelator

Capillary filled with argon

SLM

M 7

M 1 0 M 1 1

M 8

M 9

30 fs, 400 J
1 kHz, @780 nm

µ

Fig. 3.31. Layout of experimental setup. M2-M9: Silver-coated plane mirrors; M1,
M10, and M11: Al-coated spherical mirrors; R = −400 mm; L1: f = 300 mm; P1,
P2 :Brewster-angle cut BK7 prisms; P3, P4: Brewster-angle cut TF5 prisms. SLM
chirp compensator is shown within the dashed frame [21]
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Table 3.4. The dispersion of the glass material, SLM substrate, and a prism pair
at 780 nm [21]

GVD (fs2) TOD (fs3)

TF5 glass (4 mm) +739 +257
SLM substrate (FS, 2mm) +75 +54
BK7 glass (24 mm) +1116 +754
BK7 prism-pair −2010 −2710
(separation length of 65 cm, double passes)

Total dispersion −80 −1645

with a 40-µm-thick BBO crystal to monitor the compensated pulse, as shown
in Fig. 3.32. Since the net negative GDD from the precompressor is not suffi-
cient for compensating for the linear part of the self-phase-modulated chirp,
we first apply a negative GDD = −330 fs2 at 760 nm by the SLM. The corre-
spondingly observed fringe-resolved autocorrelation (FRAC) trace is shown
in Fig. 3.32(a). The incorrect ratio of the peak to the background hints that
the nonlinear chirp is not compensated [49]. When the positive TOD of
+1000 fs3 was added by the SLM, we observed that the FRAC becomes bet-
ter and shorter (Fig. 3.32(b)). This means that the uncompensated pulses
have the residual negative TOD, which is mainly due to the large negative
TOD introduced by the precompressor and other optical elements (Table 3.4)
but not due to the nonlinear chirp from the dispersive SPM. The shortest
pulses were generated (Fig. 3.32(c)) when the applied TOD was +2000 fs3 (see
Fig. 3.30(a)). From the fitting under the assumption of a sech2(t) intensity
profile, we obtain a pulse duration of 6 fs (FWHM). The result is close to the
FRAC (Fig. 3.32(c)) of the 5.6-fs transform-limited pulses, which is calculated
from the compensated spectrum from 600 to 1000 nm (Fig. 3.33). In order to
compare the difference between the above-mentioned combined compensator
and a conventional prism pair compensator, the output pulses for the pre-
compensator were directly monitored by the autocorrelator. With more of the
second BK 7 prism inserted (Fig. 3.31), shorter pulses were produced. How-
ever, the larger structures on the wings of the FRAC were observed, as shown
in Fig. 3.34. This is attributed to some satellite pulses mainly originated from
the larger uncompensated negative TOD of the BK7 prism pair. These un-
pleasant wing shapes of the FRAC can not be removed by only the prism-pair
compensator due to its dispersion-interdependence feature. This fact suggests
definitely that a programmable SLM compensator is significantly useful as
an independent and accurate dispersion compensator.
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Fig. 3.32. The measured FRACs when applied phases of GDD = −330 fs2 and: (a)
TOD = 0 fs3, (b) TOD = +1000 fs3, and (c) TOD = +2000 fs3. On curve (c), the
fitting of a sech2 gives a 6-fs pulse (FWHM) (solid line), and the calculation from
the inverse Fourier transform of the measured pulse spectrum is 5.6 fs (FWHM)
(circles) [21]

3.4 Conclusion

In this chapter, a variety of chirp compensation experiments using the liquid
crystal SLM technique for the few-optical-cycle pulse generation as well as
its principle and theoretical investigation for practical problems have been
reviewed. It was clarified that the effect of the frequency-dependent time
window, the gap effect between pixels of the SLM and the discreteness effect
of the phase applied by the SLM do not seriously influence the chirp compen-
sation of ultrabroadband pulses. Moreover, it was demonstrated experimen-
tally that the programmable SLM technique of both types of prism-formed
and grating-formed 4-f configurations with a pre-compensator is greatly use-
ful for complete compensation for strongly chirped pulses with 600–1000 nm
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Fig. 3.34. Measured FRAC of the compressed pulse using a pair of BK7 prisms
alone (see text). The large structures on the wings of FRAC attribute to some
satellite pulses which mainly originate from the larger uncompensated negative
TOD of the BK7 prism-pair [21]

spectral broadening. That is, 5–7 fs transform limited pulses were generated
by applying independently different order phase dispersions φ(n)(ω). In ad-
dition, a use of the SLM with a large number of 648 pixels enabled us to
completely compensate for the ultrabroadband pulses with a 500–1000 nm
spectral broadening, without any pre-compensator, and to generate sub-5 fs
pulses. These achievements suggest that the SLM technique has a capabil-
ity of adaptive compensation for arbitrary spectral phase over the whole fre-
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quency region exceeding one octave under the condition of in-situ adjustment
without realignment of any optics.

Recently, alternative active compensation technique using a deformable
mirror has been reported [14]. However, the deformable mirror technique of
the smooth phase modulation has the following disadvantages compaired with
the SLM technique: the low spatial and phase resolution, the cumbersome and
imperfect phase calibration of membrane deflection, the small pixel number,
high deflection losses, and the limitation of the maximum phase shift due to
the deflection limit.

One of the subjects to be investigated in the near future for the SLM tech-
nique may be to develop the SLM that provides the deeper phase modulation
ability, the larger pixel number and the smaller pixel and gap widths, to avoid
the electric-field amplitude modulation at the 0–2π phase-modulation jump
occurring on some pixels of the present SLM.

One of authors (M. Yamashita) thanks L. Xu and S. Nakamura for their
experimental works of SLM chirp compensation.
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4 Amplitude and Phase Characterization
of Few-to-Mono Optical-Cycle Pulses

R. Morita, K. Yamane, and Z. Zhang

To characterize the amplitude and phase of optical pulses, many techniques
have been developed. The progress in amplitude and phase characterization
techniques of ultrashort optical pulses are summarized in Table 4.1. In this
chapter, we describe the amplitude and phase characterization of few-optical-
cycle pulses using various methods.

4.1 Introduction

We have several reasons for measuring ultrashort optical pulses. On the side of
the laser scientists, we need to measure the pulse for better understanding of
the lasers that emit such pulses to verify models of ultrashort pulse generation
and to determine whether pulses can be made even shorter.

On the user side, determining the temporal resolution of an ultrashort
optical pulse is important for designing an experiment. For example, we can
use pulses of specific intensity and phase versus time to control chemical
reactions as “coherent control”, or, if we know the light in and light out,
then we know the medium better.

Therefore we must measure the intensity and phase versus time or fre-
quency to define a pulse. However, if we do not have a detector or modula-
tor that is fast compared to the pulse width, we cannot measure the pulse
intensity and phase with only linear measurements, such as a detector, inter-
ferometer, or a spectrometer. If we know the intensity autocorrelation of a
pulse, there are still an infinite number of solutions for the spectral phase.

Many efforts have been made to retrieve the pulse field and phase by
combining the spectrum and autocorrelation which has been called: temporal
information via intensity (TIVI) [6]. It involves an iterative algorithm to find
an intensity consistent with the autocorrelation. Then it involves another
iterative algorithm to find the temporal and spectral phases consistent with
the intensity and spectrum. Neither step has a unique solution.

If we use a collinear beam geometry, and allow the autocorrelator signal
light to interfere in the SHG crystal from each individual beam, we will have
so-called fringe-resolved autocorrelation (FRAC). The fringes are the result
of the phase interference. It was claimed that FRAC, combined with the
pulse interferogram (i.e., the spectrum), could yield the pulse intensity and
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Table 4.1. Progress in amplitude and phase characterization techniques of ultra-
short optical pulses

Year Accomplishment Researcher References

1985 Fringe-resolved autocorrelation
(FRAC)

Diels et al. [1]

1989 Straightforward field retrieval from
the measurement of a linear and
second-order interferometric auto-
correlation

Naganuma et al. [2]

1993 Frequency resolved optical gating
(FROG)

Kane, Trebino [3]

1996 Temporal analysis, by dispersing a
pair of light e-field (TADPOLE)

Fittinghoff et al. [4]

1997 Sonogram Wong, Walmsley [5]
1998 Temporal information via intensity

with the Gerchberg-Saxton algo-
rithm (TIVI-GS)

Peatross,
Rundquist

[6]

1999 Cross-correaltion FROG (X-FROG) Linden, Kuhl,
Giessen

[7]

1999 Spectral interferometry for direct
electric field reconstruction (SPI-
DER)

Iaconis, Walm-
sely

[8]

1999 Phase and intensity from cross corre-
altion and spectrum only (PICASO)

Nicholson et al. [9]

2001 Grating-eliminated no-nonsense
observation of ultrafast incident
laser light e-field (GRENOUILLE)

O’Shea et al. [10]

2001 Homodyne optical technique for
SPIDER (HOT SPIDER)

Dorrer, Londero,
Walmsley

[11]

2001–2003 modified SPIDER and its improve-
ment

Hirasawa, Ya-
mane, Morita,
Yamashita et al.

[12–14]

2001 variant of SPIDER Zavelani-Rossi et
al.

[15]

phase [2]. But the required iterative algorithm rarely converges. The fact is
that the fringes yield little more information than the intensity autocorrela-
tion and spectrum. Therefore, even nice FRAC traces have ambiguities. Two
fatal limitations of FRAC are:

First, it is difficult to distinguish between different pulse shapes and,
especially, different phases from FRAC. It is even harder to distinguish the
traces when the pulses are shorter, when there are fewer fringes. Very different
pulses have very similar interferometric autocorrelations [16]. Retrieving the
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intensity from the FRAC is also difficult. We should not expect it to yield
the full pulse intensity and phase.

Second, like the intensity autocorrelation, it must be curve-fit to an as-
sumed pulse shape which should only be used for rough estimates. While in
many cases the pulse shapes are not typically Gaussian, or sech2, they may
be asymmetrical and complicated.

In recent years, more precise techniques of phase measurement have been
developed and demonstrated. The typical techniques include frequency re-
solved optical gating (FROG) [17] and spectral phase interferometery for
direct electric filed reconstruction (SPIDER) [8]. Still, FRAC is still a good
way of cross-checking of the retrieved intensity and phase, particularly when
the pulse is shortened to few-cycle regime in which the fringe number clearly
indicates the optical cycles. For this reason, FRAC is not replaceable. In
practice, issues in FRAC to be solved are:

1. The conversion efficiency of the crystal must be kept low, or distortions
due to “depletion” of input light fields will occur.

2. The amount of glass must be minimal in the beam before the crystal
to minimize the group delay dispersion introduced into the pulse by the
glass. This means that the pulses must be focused into the crystal by
reflective optics, rather than lenses.

3. It is easy to introduce systematic errors. The only check point on the
temporal measurement quality is that it should be maximal at t = 0 and
symmetrical in delay.

4. The group-velocity mismatch must be negligible, otherwise the measure-
ment will be distorted. In other words, the phase-matching bandwidth
must be sufficient. Therefore very thin crystals (<100 µm, or <10 µm
for monocycles) must be used. The crystal thickness for a Gaussian pulse
can be estimated by

L =
0.441 × λ0/δλ

dn(λ0)/dλ − 1
2dn0(λ0/2)/dλ

(4.1)

where δλ is the required bandwidth of the fundamental wavelength. On
the other hand, thin crystal reduces the efficiency and hence the sensi-
tivity of the device on the same time.

The last issue is very important, because the pulse duration may be estimated
to be shorter than that of its transform-limited duration on some conditions.
In the next subsection, we will discuss the influence of the phase-matching
bandwidth on the FRAC measurement.



156 R. Morita et al.

4.2 Experimental and Theoretical Demonstration
of Limitation in Fringe-Resolved
Autocorrelation (FRAC) Measurements

Here, we investigate the influence of the frequency-dependent efficiency of the
SH generation of few-cycle pulses to be measured by the FRAC method as
the main origin. For ultrabroad-band optical pulses, we cannot consider that
the SH electric field generated even in a thin nonlinear crystal is proportional
to the square of the incident temporal electric field, because of the limitation
of a phase matching bandwidth in the SH generation. We verify theoretically
and experimentally such bandwidth limitation effects in FRAC measurement
with type-I, 10-µm thick β-BaB2O4 (BBO) using two optical pulses of 5.3
and 3.6 fs. Furthermore, we demonstrate that the boundary pulse duration
between the validity and the limitation of the FRAC method is in the sub-5-fs
range.

4.2.1 Equations for FRAC Signals

FRAC signal is obtained by measuring the intensity of the SH wave generated
from a pair of incident pulses with a relative delay time τ as a function of its
τ by use of a “slow” detector. The ideal signal SFRAC(τ) is expressed by the
following well-known form [1]:

SFRAC(τ) = 2G(0) + 4G(τ) + 4Re [F1(τ)] + 2Re [F2(τ)] (4.2)

where

G(τ) =
∫ ∞

−∞

∣∣E(+)(t)
∣∣2∣∣E(+)(t − τ)

∣∣2dt,

F1(τ) =
∫ ∞

−∞

(
E(+)(t)2 + E(+)(t − τ)2

)
E(+)∗(t)E(+)∗(t − τ)dt,

F2(τ) =
∫ ∞

−∞
E(+)(t)2E(+)∗(t − τ)2dt, (4.3)

and the linearly polarized electric field E(+)(t) of the positive frequency ω
component in a complex representation is expressed by the real electric field
E(t) including a carrier-wave term with a time-dependent phase ϕ(t), as
follows:

E(+)(t) =
∫ ∞

0
Ẽ(ω) exp[−iωt]dω, Ẽ(ω) =

∫ ∞

−∞
E(t) exp[iωt]dt. (4.4)

However, the SH generation is limited by a phase-matching bandwidth in
a nonlinear crystal. Particularly, for few-optical-cycle pulses, the investiga-
tion of the bandwidth limitation effect is indispensable. Here, for the sake
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of simplicity, let us consider the frequency-dependent efficiency of the SH
generation from a thin nonlinear crystal in the frequency domain.

The SH electric field generated from a nonlinear crystal is derived by
a nonlinear propagation equation [24]. The intensity ISH(Ω, τ) of the SH
electric field at an SH frequency Ω and a delay time τ with respect to a
uniaxial negative nonlinear crystal such as BBO is given by,

ISH(Ω, τ) ∝ Ω

ne(Ω)

∣∣∣∫ ∞

−∞

√
ω(Ω − ω) exp[iV (Ω, ω)L]sinc[V (Ω, ω)L]

×(n2
e(Ω) − 1)(n2

o(Ω − ω) − 1)(n2
o(ω) − 1)

×Ẽ(+)(ω)Ẽ(+)(Ω − ω)(1 + exp[iωτ ])(1 + exp[i(Ω − ω)τ ])dω
∣∣∣2

≡ ISH,exact(Ω, τ), (4.5)

with a quantity concerning the type-I phase-matching condition

V (ω,Ω − ω) =
ko(ω) + ko(Ω − ω) − ke(Ω)

2
, (4.6)

where no(ω) and ne(ω) are linear refractive indices for ordinary and extra-
ordinary beams, respectively, ko(ω) and ke(ω) are wave numbers for ordinary
and extra-ordinary beams, respectively, L is the crystal length, and Ẽ(+)(ω)
is the Fourier transform of the incident pulse electric field E(+)(t).

Under approximations
√

ω (1 − ω/Ω) � √
Ω/2 and V (ω,Ω − ω) �

V (Ω/2, Ω/2) (we expanded ko(ω) and ko(Ω−ω) into the Taylor series around
Ω/2 up to the 1st-order) in (4.5) [24], the intensity of the SH field can be
conveniently decomposed to a product of a spectral filter function R(Ω) and
an ideal SH intensity ISH,ideal(Ω, τ) without taking account of the influence
of the bandwidth limitation due to the SH wave conversion, as follows (the
ISH,exact(Ω, τ) of (4.5) is the equation without those approximation):

ISH,exact(Ω, τ) � R(Ω)ISH,ideal(Ω, τ) ≡ ISH,approx(Ω, τ), (4.7)

where

R(Ω) =
Ω3

4ne(Ω)

[(
n2

e(ω) − 1
) (

n2
o(Ω/2) − 1

)2
sinc[V (Ω/2, Ω/2)L]

]2
(4.8)

ISH,ideal(Ω, τ) =∣∣∣∫ ∞

−∞
Ẽ(+)(ω)Ẽ(+)(Ω − ω)(1 + exp[iωτ ])(1 + exp[i(Ω − ω)τ ])dω

∣∣∣2.(4.9)

Three different signals SSH,α(τ)s are obtained by integrating ISH,α(Ω, τ)s
over the whole spectral range (α = exact, approx and ideal):

SSH,α(τ) =
∫ ∞

−∞
ISH,α(Ω, τ) dΩ (α = exact, approx and ideal). (4.10)
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In particular, it is easily confirmed that the FRAC signal SSH,ideal is equiva-
lent to (4.2).

Let us introduce the convenient value εα,β for the evaluation of the dif-
ference between FRAC signals SSH,α(τ)s,

RMS (root mean square) error εα,β

εα,β ≡
√∫ ∞

−∞
(sα(τ) − sβ(τ))2 dτ (α, β = exact, approx and ideal), (4.11)

and the value rα,β for the evaluation of the difference between full widths at
half maximum (FWHMs) of their envelopes,

ratio of FWHMs of the envelope rα,β

rα,β ≡ ∆tα
∆tβ

(α, β = exact, approx and ideal), (4.12)

where

sα(τ) ≡ 8SSH,α(τ)
SSH,α(0)

(α = exact, approx and ideal) (4.13)

and ∆tα is FWHM of the envelope of sα(τ). For Gaussian transform-limited
(TL) pulses, we have the well-known value ∆tideal/tTL

p,in = 1.7, where tTL
p,in is

its pulse duration. The envelope function is calculated by absolute values of
oscillating terms in sα(τ) (corresponding to F1(τ) and F2(τ) in (4.2)).

For example, in the case of α = ideal, the envelope function Senv(τ) is
exactly equivalent to the following equation in the temporal domain [1],

Senv(τ) = 2G(0) + 4G(τ) + 4|F1(τ)| + 2|F2(τ)|. (4.14)

4.2.2 Numerical Analysis: Deviation of Practical FRAC Signal
from Ideal FRAC Signal

Figure 4.1 shows an example of the difference among three FRAC signals
of sideal(τ), sexact(τ) and sapprox(τ), where tTL

p,in =4.01 fs, spectral FWHM
∆νin = 110 THz, the center wavelength λc = 600 nm, the angle between the
incident pulse-train beam and the optic axis of 10-µm-thick BBO θ = 25◦

(hereafter we call the θ crystal angle). The dispersion and related values of
no and ne of type-I BBO were referred from [30]. This case indicates that
the apparent pulse duration obtained from the FRAC signal sexact(τ), which
exactly considers the bandwidth-limited SH-generation effect, is shorter than
the correct pulse duration obtained from the FRAC signal sideal(τ), which is
not affected by its effect at all.



4 Amplitude and Phase Characterization 159

 0

 4

 8

-10  0  10

In
te

ns
ity

 [
a.

u.
]

Delay time [fs]

(a)
(b)
(c)

Fig. 4.1. Calculated FRAC traces for Gaussian TL pulses (tTL
p,in = 4.01 fs,

∆νin: 110THz, center wavelength: 600 nm, θ=25◦, εexact,ideal/εmax = 0.078,
εexact,approx/εmax = 0.0053, rexact,ideal = 0.88) (a) with taking account of the
bandwidth-limited SH-generation effect (sexact(τ)) without filter approximation,
(b) after filter approximation (sapprox(τ)) and (c) without the bandwidth limita-
tion effect (sideal(τ))

We investigated in detail the estimation values εα,β and rα,β as func-
tions of temporal FWHM tTL

p,in of Gaussian TL pulses to be measured (the
corresponding spectral FWHM ∆νin) and the crystal angle θ for different
pulse center wavelengths λcs (Figs. 4.2 and 4.3). In the following numerical
calculations, we assumed that the nonlinear crystal for the SH generation is
type-I 10-µm-thick BBO and limited the Gaussian spectrum to 400–2600 nm
in consideration of the fact that transparency range of BBO is ∼ 200–2600 nm
(we permitted the Gaussian pulses to have over-one-octave bandwidth). As
a result, the following important findings were obtained (Figs. 4.2–4.5).

1. The relations εexact,approx � εexact,ideal and |rexact,approx − 1| �
|rexact,ideal−1| are satisfied over the whole tTL

p,in−θ region (441 fs ≥ tp,in ≥
2.3 fs; 10◦ ≤ θ ≤ 45◦, λc = 600, 700 and 800 nm: see Fig. 4.2), and any
critical difference between sexact(τ) and sapprox(τ) is not found (for exam-
ple, see Fig. 4.1). Therefore, it is valid that we interpret results by using
the filter function R(Ω).

2. Notice the angle θopt where the value of εexact,ideal is minimum (=
εmin
exact,ideal). For example, εmin

exact,ideal/εmax = 0.155 at θopt = 39.2◦,
tTL
p,in = 5.0 fs ∆tideal = 8.51 fs and ∆νin = 88 THz) and λc = 600 nm,

where εmax = 7.083 × 10−15 indicated the greatest value of all the calcu-
lated εα,βs. This corresponds to the result that ∆texact = 8.99 fs is longer
than ∆tideal = 8.51 fs. For λc = 600, 700 and 800 nm, εexact,ideals become
the least (= εmin

exact,ideal) around θopt = 39◦, 31◦ and 24◦ in the range of
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Fig. 4.2. Contour plots of εα,β/εmax (εmax = 7.083×10−15) as functions of the
input pulse duration tTL

p,in and the crystal angle θ. εexact,ideal/εmax at (A) λc = 600,
(B) 700 and (C) 800 nm. (D) εapprox,ideal/εmax and (E) εexact,approx/εmax at λc =
600 nm

Table 4.2. θpm, θR, θopt, θmax for TL Gaussian pulses with λc = 600, 700 and
800 nm (see the text for notations)

For tTL
p,in = 5 fs pulses For tTL

p,in = 10 fs pulses
λc [nm] θpm [deg.] θR [deg.] θopt [deg.] θmax [deg.] θopt [deg.] θmax [deg.]

600 40.2 38.5 39.2 40.7 38.7 40.3
700 33.4 30 30.8 33.9 30.2 33.4
800 29 22.9 23.7 29.4 23.1 28.8

tTL
p,in of 2.3 – 441 fs, respectively (see dotted lines in Fig. 4.2). Each angle

almost corresponds to the angle θR where the wavelength at the maxi-
mum value of R(Ω) equals to half of λc (θR = 38.5◦, 30◦ and 22.9◦ for λc
= 600, 700 and 800 nm, respectively (see Table. 4.2)). It should be noted
that these optimal angles θopts do not agree with phase-match angles
θpm of the crystal (θpm = 40.2◦, 33.4◦ and 29◦ for 600, 700 and 800 nm,
respectively). In addition, their θopt values do not agree with the θmax
angles where the strength of the FRAC signal becomes maximum (see
Table 4.2).
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Fig. 4.3. Contour plots of rα,β as functions of the input pulse duration tTL
p,in and the

crystal angle θ. rexact,ideal at (A) λc = 600, (B) 700 and (C) 800 nm. (D) rapprox,ideal

and (E) rexact,approx at λc = 600 nm

3. The longer λc is, the smaller εexact,ideal is. It is because θR has the smaller
value for pulses with the longer λc, and the bandwidth of R(Ω) with the
smaller θR is the broader (see Fig. 4.4). That is, pulses with the longer
center wavelength are less affected by the filter effect of the nonlinear
crystal.

4. The duration ratio rexact,ideal at the angle θopt where εexact,ideal has
the minimum value with respect to tTL

p,in is shown in Fig. 4.5. The ra-
tio rexact,ideal is always larger than 1 and increases with the decrease of
tTL
p,in. That is, the apparent pulse duration at θ � θopt should be evaluated

to be slightly longer than the correct one.
5. Except the θ � θopt region, there is the region where rexact,ideal is less

than 1, that is, the apparent pulse duration should be shorter than the
true one (For example, see rα,β < 1 region in Figs. 4.3(A) and (B)).
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4.2.3 Experiments

We carried out few-cycle-pulse experiments for verification of the above-
mentioned filter effect. Our experimental setup was almost the same as [14].
Optical pulses from a Ti:sapphire laser amplifier system (repetition rate:
1 kHz, center wavelength: 790 nm, pulse duration: < 30 fs, pulse energy:
∼200 µJ/pulse) were broadened by self-phase modulation (SPM) in an Ar-
filled hollow fiber, and then guided into a feedback chirp compensation sys-
tem [14] which consists of a modified-SPIDER (M-SPIDER) apparatus with
a high sensitivity [13] and a 4-f phase compensator with a liquid crystal
spatial light modulator [31]. The bandwidth of the spectrum was limited
to 530–980 nm by use of a slit in the 4-f phase compensator, to avoid the
background-light noise due to fundamental pulses in FRAC measurements.
The chirp of the fiber output pulses was almost completely compensated for
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by this feedback system, and then compensated pulses were independently
measured by a FRAC apparatus with 10-µm-thick BBO (type I, θ=29◦). In
order to compare FRAC and M-SPIDER measurements precisely, we aligned
those apparatuses to equalize optical path lengths to nonlinear crystals, and
used beam splitters with the same properties (thickness: 0.5 mm, substrate:
fused-silica, 20% reflection and 80% transmission for s-polarization from 400
to 1300 nm) for symmetric Michelson interferometers [29] in both appara-
tuses.

To clarify the practical limitation of the FRAC method, experiments for
two cases (cases M-1 and M-2) were performed.

– Case M-1: 5.3-fs (tp,in), 2.2-cycle pulses with a center wavelength of
725.1 nm (λc) and a TL pulse duration of 4.42 fs (tTL

p,in) (Fig. 4.7(A) and
(B)). An Ar pressure of p = 1.0 atm.

– Case M-2: 3.6-fs (tp,in), 1.7-cycle pulses with a wavelength of 617.5 nm
(λc) and a TL pulse duration of 3.5 fs (tTL

p,in) (Fig. 4.8(A) and (B)). An Ar
pressure of p = 3 atm.

The center wavelength λc was calculated by the following equation:

2πc

λc
=

∫ ∞
−∞ ω|Ẽ(+)(ω)|2dω∫ ∞
−∞ |Ẽ(+)(ω)|2dω

. (4.15)

4.2.4 Comparison Between TL-Pulse FRAC Signals
Based on Measured and Corresponding Gaussian Spectra

First of all, we calculated and compared FRAC traces of TL pulses using
two measured spectral cases M-1 and M-2 and those using corresponding
Gaussian spectral cases G-1 and G-2. We discussed them using the same
pulse duration tTL

p,in and center wavelength λc.
It was confirmed that the θopt between cases M-i and G-i (i = 1 and 2)

has almost the same values as well as the θmax (see Table. 4.3) and θopt � θR,
but the εmin

exact,ideal and the rexact,ideal have different values between their cases.

Table 4.3. θpm, θR, θopt and θmax for Gaussian spectrum (G-i) and measured
spectrum (M-i) (i = 1: tTL

p,in = 4.42 fs λc = 725.1 nm, i = 2: tTL
p,in = 3.5 fs λc =

617.5 nm: see the text for notations). In all the cases except for the case of “PH”
where spectral phases measured by M-SPIDER were also used, the θopt and θmax

values were calculated by use of their transform-limited pulses

θpm [deg.] θR [deg.] θopt [deg.] θmax [deg.] λc [nm]
M-1 32.2 28.1 29.7 (PH: 28.9) 33.3 (PH: 32.5) 725.1
G-1 32.2 28.1 29.1 32.8 725.1
M-2 38.8 36.9 36.8 (PH: 36.7) 39.4 (PH: 39.5) 617.5
G-2 38.8 36.9 37.9 39.7 617.5
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Fig. 4.6. (A) Measured spectra at the pressure p = 1.0 and 3.0 atm. (B) Dependence
of εexact,ideal on the crystal angle θ for (a) TL pulse at p = 1atm, (b) retrieved one by
M-SPIDER measurement at p = 1atm, (c) TL pulse at p = 3atm and (d) retrieved
one by M-SPIDER measurement at p = 3 atm. (C) Dependence of rexact,ideal on
the crystal angle θ for (e) TL pulse at p = 1 atm, (f) retrieved one by M-SPIDER
measurement at p = 1atm, (g) TL pulse at p = 3atm and (h) retrieved one by
M-SPIDER measurement at p = 3 atm

However, for ∼ 10 fs TL pulses the θopt, the εmin
exact,ideal and the rexact,ideal for

measured and Gaussian spectral cases were not different. In addition, the
filter effect of the nonlinear crystal hardly caused evaluation errors for ∼10-
fs pulse durations.

Figures 4.6(B) and (C) show dependences of the normalized εexact,ideal and
the rexact,ideal on the crystal angle θ for cases M-1 and M-2. Those figures
suggest that the θopt values for cases M-1 and M-2 are 29.7◦ and 36.8◦, where
both measured apparent pulse durations become longer slightly than the cor-
rect pulse durations. Around θ = 34◦ (around S in Fig. 4.6(C)), the rexact,ideal
values are ∼1, although the εexact,ideal values do not have the minimum val-
ues. However, we should not measure the FRAC trace around such region
of θ ∼ 34◦. This is because except at θ ∼ θopt, the FRAC signal is often
distorted so remarkably that the spacing of the fringe differs, especially in
its two wings, from that at θ ∼ θopt, although the apparent FRAC-envelope
ratio rexact,ideal becomes ∼1.

Moreover, we find that when pulse durations are measured around θ � 40◦

for case M-1 and around θ � 20◦ for case M-2, both apparent durations
become shorter than the correct pulse durations, as previously reported [25–
27,31].
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4.2.5 Experimental Comparison between Directly-Measured
and Modified-SPIDER-Retrieved FRAC Signals

We compared measured FRAC traces with traces retrieved from modified
SPIDER (M-SPIDER) measurements [13, 14] for cases M-1 and M-2. The
experimental results are shown in Fig. 4.7(C) for M-1 and Fig. 4.8(C) for M-
2. Curves (a), (b) and (c) of (A) in those Figs. 4.7 and 4.8 show the intensity
spectrum (∝ |Ẽ(+)(ω)|2), the spectral phase before chirp compensation and
the spectral phase (φ(ω)) after compensation, respectively. Curves (a), (b)
and (c) of (B) show the temporal intensity (I(t)), the temporal phase (ϕ(t))
and the TL pulse profile, respectively. Curves (i) of (C) show FRAC traces
measured at the angle θ = 29◦ (close to the θopt for case M-1: see Table. 4.3) of
10-µm thick BBO, and curves (h) and (i) of (C) show FRAC traces retrieved
from sexact(τ) and sideal(τ) in (4.13) using M-SPIDER results of φ(ω) and
|Ẽ(+)(ω)|, respectively.

In case M-1 (tp,in = 5.3 fs, 2.2 cycles, tTL
p,in = 4.42 fs and λc = 725.1 nm),

we could not find explicit differences among curves (g)–(i), as expected from
calculated results of Figs. 4.6(B) and (C) (curves (b) and (f)). On the other
hand, in case M-2 (tp,in = 3.6 fs, 1.7 cycles, tTL

p,in = 3.50 fs and λc =617.5 nm),
the measured FRAC trace (curve (g)) agrees with the retrieved trace (curve
(h)) with taking account of the spectral filter effect exactly, but there is the
unignorable difference between curves (g) and (i) (the retrieved trace without
the spectral filter effect), as expected from calculated results of Figs. 4.6(B)
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Fig. 4.7. Experimental results (Ar-gas pressure: 1 atm, fiber input: 150 µJ/pulse,
fiber output: 16.5 µJ/pulse). (A) (a) Intensity spectrum and spectral phases (b)
before and (c) after feedback chirp compensation. (B) (d) Temporal intensity (pulse
duration: 5.3 fs, center wavelength: 725.1 nm) and (e) temporal phase after chirp
compensation. (f) Temporal intensity of the Fourier transform-limited pulse (pulse
duration: 4.42 fs). (C) (g) Measured FRAC trace and retrieved FRAC traces (h)
with and (i) without taking account of the filter effect by the nonlinear crystal
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Fig. 4.8. Experimental results (Ar-gas pressure: 3 atm, fiber input: 140 µJ/pulse,
fiber output: 18 µJ/pulse). (A) (a) Intensity spectrum and spectral phases (b) be-
fore and (c) after feedback chirp compensation. (B) (d) Temporal intensity (3.6 fs,
center wavelength: 617.5 nm) and (e) temporal phase after chirp compensation. (f)
Temporal intensity of the Fourier transform-limited pulse (3.50 fs). (C) (g) Mea-
sured FRAC trace and retrieved FRAC traces (h) with and (i) without taking into
account of the filter effect by the nonlinear crystal

and (C) (curves (d) and (h)). Therefore, it was verified that the FRAC trace
for sub-5 fs pulses was seriously distorted by the spectral filter effect due to the
nonlinear crystal. In addition, in comparing curves (h) and (i) in Fig. 4.8(C),
we found that ∆texact is 11 % smaller than ∆tideal. That is to say, the apparent
pulse duration may be evaluated to be 3.16 fs. This implies that the apparent
pulse duration evaluated by the FRAC measurement is shorter than that of
the TL pulse. This result agrees with not only the calculated result of Fig. 4.6
but also previously reported results [25–27,31].

4.3 Frequency Resolved Optical Gating (FROG)

4.3.1 Principle

Principle

Frequency-resolved optical gating (FROG) is a developed technique that uti-
lizes a phase retrieval algorithm to retrieve the amplitude and phase from
a measured spectrogram of the pulse to be characterized [3, 17–24]. Exper-
imentally, FROG data are obtained by taking the spectral intensity of the
signal field, generated by a nonlinear autocorrelation signal of two replicas
of the pulse to be measured with the time delay τ between them. Although
third-order nonlinear optical processes have been used in FROG apparatus
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to uniquely measure ultrashort optical pulses, in this section, we describe
second-harmonic generation (SHG) FROG because of its higher sensitivity.

The real electric field of an optical pulse can be represented by

E(t) = 2Re [
∣∣E(+)(t)

∣∣ exp{−i[ω0t − ϕ(t)]}], (4.16)

as in (5.12) and (5.20) in Sect. 5.3, where ϕ(t) as the time-dependent phase,
and ω0 is the carrier frequency. In the frequency domain, as with the Fourier-
transform, the field can be written by

Ẽ(ω) =
∫ ∞

−∞
dt eiωtE(t). (4.17)

Here, we treat only the positive-frequency component Ẽ(+)(ω) of Ẽ(ω) and
neglect the negative-frequency component Ẽ(−)(ω) of Ẽ(ω). The positive-
frequency component of Ẽ(ω) is defined by

Ẽ(+)(ω) =
∫ ∞

−∞
dt eiωtE(+)(t)

=
∣∣Ẽ(+)(ω)

∣∣ exp[iφ(ω)], (4.18)

and φ(ω) is the spectral phase.
From the measurement of a spectrally resolved autocorrelation by plotting

the signal spectral intensity versus delay instead of the signal energy versus
delay, FROG yields a spectrogram of the pulse. Hence, FROG gives the full
information in intensity and phase of the pulse in both the time and frequency
domains. In SHG-FROG, the signal from an SHG autocorrelator is spectrally
resolved. In the case of the ideal SHG, the signal field is

Esig(t, τ) ∝ E(t)E(t − τ), (4.19)

which yields the FROG trace

ISHG
FROG(ω, τ) ∝

∣∣∣∣∫ ∞

−∞
dtE(t)E(t − τ) exp(iωt)

∣∣∣∣2 . (4.20)

This experimentally measured FROG trace is then used as input to an
algorithm. The FROG algorithm is based on the iterative-Fourier-transform
algorithm and extracts the intensity and phase of the pulse from the FROG
trace by finding the electric field that best reproduces the trace.

The SHG-FROG signal field Esig(t, τ) is

Esig(t, τ) ∝ E(t)E(t − τ), (4.21)

which yields the relation

E(t) ∝
∫ ∞

−∞
dτEsig(t, τ). (4.22)
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E(k+1)(t) ∝
∫ ∞

−∞
dτE
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Ẽ
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Fig. 4.9. Iterative-Fourier-transform algorithm for inverting a trace to obtain the
intensity and phase of an ultrashort optical pulse. 1D-FT and 1D-inv. FT denote a
one-dimensional Fourier transform with respect to t and a one-dimensional inverse
Fourier transform with respect to ω, respectively

Thus an evaluation for Esig(t, τ) immediately gives an evaluation for E(t) by
means of (4.22).

The SHG-FROG algorithm is schematically shown in Fig. 4.9. It begins
with a trial solution E(1)(t) for the optical field E(t). In the kth iteration
process (k =1, 2, 3, · · · ), using (4.21), the kth iteration E

(k)
sig (t, τ) for Esig(t, τ)

is generated as

E
(k)
sig (t, τ) ∝ E(k)(t)E(k)(t − τ). (4.23)

Then, it is one-dimensional-Fourier-transformed with respect to t, into the
(ω, τ) domain to obtain Ẽ

(k)
sig (ω, τ). Now, the magnitude of Ẽ

(k)
sig (ω, τ) is con-

strained to that of the experimentally measured FROG trace. This is per-

formed by replacement of
∣∣Ẽ(k)

sig (ω, τ)
∣∣ with

√
ISHG
FROG(ω, τ) while the spectral

phase is unchanged. Namely,

Ẽ
(k)
sig (ω, τ) ←− Ẽ

(k)
sig (ω, τ)∣∣Ẽ(k)
sig (ω, τ)

∣∣
√

ISHG
FROG(ω, τ), (4.24)

where ←− means the replacement of the left-hand term with the right-hand
term. After the replacement in (4.24), Ẽ

(k)
sig (ω, τ) is one-dimensional inverse-

Fourier-transformed with respect to ω, back into the (t, τ) domain to obtain
E

(k)
sig (t, τ). Then, from the kth iteration E

(k)
sig (t, τ) for Esig(t, τ), the (k + 1)th

iteration E(k+1)(t) for E(t) is found with the use of (4.22). That is,

E(k+1)(t) ∝
∫ ∞

−∞
dτE

(k)
sig (t, τ). (4.25)

Thus, from kth evaluation E(k)(t) for E(t), a new evaluation E(k+1)(t) is con-
structed. In this manner, these processes are iterated. The FROG algorithm
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measures convergence by calculationg the FROG error, ε(k), defined as the
root-mean-square difference between the measured FROG trace ISHG

FROG(ω, τ)
and the FROG trace I

SHG, (k)
FROG,ret(ω, τ) of the retrieved field in the kth iteration:

ε(k) =

⎧⎨⎩ 1
N2

N∑
i=1

N∑
j=1

[
I
SHG, (k)
FROG,ret(ωi, τj) − ISHG

FROG(ωi, τj)
]2

⎫⎬⎭
1/2

, (4.26)

where N is the number of sampling points of the FROG trace, and ωi and τj

are the ith frequency and jth delay in (ω, τ) domain, respectively. Satisfying
convergence is assumed when ε(k) is of the order of 10−3 to 10−4 for the
experimentally measured data.

From a FROG trace with N2 sampling points, an electric field sampled
at N points, which has 2N degrees of freedom (N points of both amplitude
and phase), is retrieved. Thus there is a redundancy in the FROG trace.
Therefore, the optimum solution is searched for using the FROG algorithm
mentioned above.

Ambiguity of Temporal Direction

Extensive numerical testing has proven the robustness of the algorithm in its
ability to converge for test and experimental pulses. It is noted that, unlike
FROG using third-order nonlinear processes, the SHG trace is symmetrical
with respect to delay and hence has ambiguity in the direction of time. Elec-
tric fields E(t) and E(−t) give identical SHG-FROG traces and thus cannot
be distinguished in a single SHG-FROG trace. Of course, the ambiguity in
the direction of time can be simply eliminated by use of a second SHG-FROG
trace after chirping the pulse, for example, with a thick piece of glass.

Frequency Marginal

Since FROG uses a nonlinear process, the spectral filtering effect due to
nonuniformity of the conversion efficiency in the process results in the distor-
tions in the signal spectral intensity, especially for the ultrabroadband pulses.
However, the fact that the FROG trace contains redundant data enables us
to perform checks on the consistency of the experimental data. These checks
allow us to ensure that the entire pulse spectrum is converted to second-
harmonic light. This is done by comparing the frequency marginal of the
FROG trace with the independently-measured pulse spectral intensity. The
frequency marginal is the integral of the FROG trace with respect to ω, as
defined by

MSHG
FROG(ω) =

∫ ∞

−∞
dτISHG

FROG(ω, τ). (4.27)
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It should have a functional form identical to the autoconvolution of the pulse
spectral intensity, which is proportional to

∣∣Ẽ(+)(ω)
∣∣2:

MSHG
FROG(ω) ∝ ∣∣Ẽ(+)(ω)

∣∣2 ∗ ∣∣Ẽ(+)(ω)
∣∣2

=
∫ ∞

−∞
dω′∣∣Ẽ(+)(ω − ω′)

∣∣2 ∗ ∣∣Ẽ(+)(ω′)
∣∣2, (4.28)

where ∗ denotes convolution. Hence, one can easily check the consistency of
the FROG data by simply measuring the spectral intensity of the pulse to
be characterized. If the SHG-FROG frequency marginal does not agree with
the autoconvolution of the pulse spectral intensity, one can be asserted that
there is a systematic experimental error in the system, for example, a spec-
tral filtering effect in the nonlinear crystal, a spectrometer or CCD camera
response which depends on wavelength, wavelength or temporal calibration
of the FROG data, spatial chirp, spatio-temporal distortions of the pulse at
the focus and so forth.

There is also a delay marginal, which can be compared with the autocor-
relation trace. However, it is less useful.

Time Smearing Effect

Another experimental problem, particularly for measurement of below 5 fs-
optical pulses is smearing of the delay time owing to noncollinearity of the
beams in the nonlinear crystal for SHG. When two pulses intersect each
other at an angle in the horizontal plane, one pulse precedes the other on
the right, and the other precedes the one on the left. When the delay time is
assumed to be fixed at a single value at any one time, this effect smears out
the temporal information in the FROG trace. In the presence of this time
smearing, the FROG algorithm evaluates the resulting pulse duration tmeas

p
which is larger than the true pulse duration ttrue

p . For a Gaussian intensity
pulses with Gaussian spatial profile, tmeas

p is expressed [23] by

(tmeas
p )2 = (ttrue

p )2 + (δt)2, (4.29)

where

δt =

√
2 ln 2dbλ

πcw
, (4.30)

and db and w are the beam separation and beam diameter, respectively. c and
λ are the speed and wavelength of the light in a vacuum, respectively. Here,
the beam diameter is defined as the diameter of the 1/e2-intensity contour
and the pulse duration is defined as the full-width at half-maximum.
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4.3.2 Apparatus and Characteristcs

Apparatus

The SHG-FROG apparatus that we used [31] was based on a multishot auto-
correlator, as shown in Fig. 4.10. The input beam was split and recombined
by a 0.5-mm-thick broadband (50±10% reflectivity for 400–900 nm) dielectric
beam splitter (BS); each of the beams travels once through the beam splitter
with both reflections occurring on the same air-coating interfaces. In the two
arms of the autocorrelator, the silver-coated retroreflectors (RR) were used
in a balanced configuration. One of the the arms was movable with a stepping
motor which is controlled by a computer.

The pulses to be measured were focused in a nonlinear crystal β-barium
borate (BBO) by an off-axial parabolic mirror (PM) with a focal length f of
50 mm. The BBO crystal with a thickness of 10 µm at a cutting angle of 40◦

was employed for second-harmonic generation in type-I geometry. To detect
the FROG signals, a spectrometer with a 1024-channel, intensified CCD array
was used. The step number was 256 and the delay-time step was 1.34 fs.

Ultrashort and Ultrabroadband Pulse Generation

Now we describe an example of the characterization results of the ultrashort
or ultrabroadband optical pulses by FROG. The experimental setup for the
ultrashort or ultra-broadband optical pulse generation that we used [31,32] is
shown in Fig. 4.11. The output pulse of a Ti:sapphire laser-amplifier system
centered at 790 nm with duration of 30 fs and repetition rate of 1 kHz was
focused into a capillary fiber with 340-mm length and 0.1-mm inner diameter,
which is located in a chamber filled with argon gas [31,33]. The pulse energy
focused into the fiber was 140 µJ. The chamber had two 1-mm thick sapphire
windows. The output pulse from the chamber was collimated by a spherical
mirror and guided to a 4-f system with a spatial phase modulator (SLM).
The 4-f system was composed of two spherical mirrors with a focal length f =

RR

RR

BS

PM
BBO 10µm

Spectrometer

SHG-FROG

Fig. 4.10. Experimental setup of SHG-FROG BS: beam splitter, PM: parabolic
mirror, RRs: retroreflectors, BBO: β-barium borate crystal with a thickness of 10
mm [31,32]
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Ti:sapphire
laser-amplifier
system
790 nm, 30 fs
0.8 mJ, 1 kHz

f=200 mm
G1

G2

SLM

f=200
mm

1mm
ND

PS

FM

PS
PS

SHG-FROG
        or

f=150
mm

PS

 FRAC

x

SPIDER

Sapphire

Fig. 4.11. Experimental setup for the generation of ultrashort optical pulses.
of SHG-FROG. PSs: periscopes, ND: neutral-density filter, G1 and G2: reflective
diffraction gratings, SLM: spatial phase modulator, FM: flip mirror [31,32]

200 mm and two silver reflective gratings (G1 and G2) with a grating constant
d = 1/150 mm. The optical path lengths from the gratings to the spherical
mirrors and those from the spherical mirrors to the SLM were all adjusted to
be f = 200 mm. The liquid-crystal SLM consisted of 648 pixels with width of
97 µm. The gap between adjacent pixels was 5 µm. The transmission of the
SLM was more than 70% in 500–700 nm wavelength range, while it decreased
in the longer wavelength range (e.g. 50% at 1000 nm). The pulse energy after
passing the chamber was 22 µJ and the throughput of the 4-f system was
30%. In the setup we used periscopes (PSs) to change the height and/or the
polarization direction of the beam, and a flip mirror (FM) to change the beam
direction for measurements of FRAC and SHG-FROG. Here, in Fig. 4.11 as
a pulse characterization apparatus, SHG-FROG (a part surrounded by a
dashed line) as well as FRAC is used. In Sect. 4.4 or 4.5, it will be replaced
with SPIDER or modified SPIDER.

The SLM was employed as a phase modulator which can impose a phase
variation of 2π for light in the wavelength range less than 1400 nm with a
resolution of 192 steps. The relationship between phase and digital input of
192 steps, being nonlinear, was measured and calibrated using the spectral
interferometer [34, 35]. The phase φSLM(ω(x)) applied by SLM at position x
is given by
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φSLM(ω(x)) =
C2

2
[ω(x) − ω0]2 +

C3

6
[ω(x) − ω0]3 +

C4

24
[ω(x) − ω0]4,

(4.31)

where ω0 is the center angular frequency of the Taylor expansion, ω(x) is the
angular frequency at position x and is given by

ω(x) = 2πc [d {sin θin + sin [arctan (x/f) + arcsin (λc/d − sin θin)]}]−1
,

(4.32)

derived from the well-known diffraction formula of gratings [36]. Here, c is the
velocity of light in a vacuum and λc is the wavelength at the central position
of the SLM at x = 0. λc does not have to equal to the center wavelength for
the Taylor expansion λ0. θin is the incident angle of the beam to the grating.
The parameters C2, C3 and C4 are the group-delay dispersion (GDD), the
third-order dispersion (TOD) and the fourth-order dispersion (FOD) at ω0,
respectively. Thus, the group delay tSLM

d (ω(x)) imposed by the SLM was

tSLM
d (ω(x)) =

d
dω

φSLM(ω(x))

= C2[ω(x) − ω0] +
C3

2
[ω(x) − ω0]2 +

C4

6
[ω(x) − ω0]3.

(4.33)

The chirp compensation condition that gives Fourier-transform-limited (TL)
pulses is when the residual group delay tresd (ω(x)) at position x is independent
of the frequency ω, that is,

tresd (ω(x)) ≡ d
dω

[φ(ω) + φSLM(ω(x))] = const., (4.34)

where φ(ω) is the spectral phase of the pulse to be compensated for.
Initially the expansion wavelength λ0 ≡ 2πc/ω0 was set to be 800 nm

with the values of C2 = −329 fs2, C3 = −748 fs3 and C4 = 0 fs4. In this
case, the quasi-simultaneously measured FRAC trace at an argon pressure
of 2.8 atm indicated that the duration of the pulse to be measured was
4.1 fs and in the zero-time delay region, this trace agreed well with that of
the TL pulse obtained from the measured spectrum. In this case, we also
characterized the optical pulses by SHG-FROG. However, the pulse duration
measured by FROG was ∼6 fs, which is longer than that of the TL pulse
or that measured by FRAC. This underestimate of the duration may be
understandable from the poor agreement of the pedestal in the FRAC trace
[37] and the asymmetric FROG-retrieved temporal intensity profile, as well as
the slightly different dispersion optics in the FRAC and FROG apparatuses.
Thus we were motivated to search for better parameters for the phase applied
by the SLM.
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The imperfection in nonlinear chirp compensation is due to the flat phase
modulation in each pixel, which leads to a step-wise phase modulation in the
whole wavelength region of interest. The phase φSLM(ω) applied by SLM,
as expressed by (4.31), is a nonlinear function of ω, but the projection of
wavelength components (as opposed to frequency) on the SLM (on the Fourier
plane) is almost linear. Therefore, the error height of the phase step due to the
discreteness at each pixel is higher in the short-wavelength region with respect
to the center expansion wavelength λ0 than in the long-wavelength region.
That causes poorer chirp-compensation in the short-wavelength region than
in the long-wavelength region. To avoid this imbalance of chirp compensation
and to obtain a better chirp-compensation in the short-wavelength region, we
perform the phase compensation by shifting the center expansion wavelength
λ0 to 600 nm. Parameters C2, C3 and C4 were determined to be −400 fs2,
−100 fs3 and 250 fs4, respectively, with fine tuning by a computer so that the
FROG-retrieved result gave the shortest pulse.

Frequency Marginal Correction

The 10-µm-thick BBO crystal at a cutting angle of 40◦ was used in type-
I geometry. Owing to the limited bandwidth of the crystal, the frequency
marginal [23], MExp(ω), calculated from the FROG trace did not match that
from the spectrum intensity autoconvolution MTheo(ω), as seen in Fig. 4.12
(a). In order to correct this effect, we multiplied each value in the FROG trace
by a frequency-dependent factor such that the marginal calculated from the
FROG trace became identical to that obtained from the spectrum [23] After
the correction of the marginals, the pulse intensity and phase were retrieved
by use of commercial FROG software.

Evaluation of Time Smearing

The beam separation db at the parabolic mirror (PM) was 2 mm and the
beam diameter w was 1 mm. The time smearing τsm [24, 38] was evaluated
by use of (4.30) to be τsm =

√
2 ln 2λdb/(πcw) = 1.6 fs at the wavelength of

λ = 650 nm on the assumption of Gaussian spatial and temporal profiles.

Characterization Result

The time required for the measurement was ∼1 min, and the stability of
the pulses was excellent during that time. We could usually reproduce the
pulse duration measured by FROG within 10% by using the same parameters
several hours after they had been optimized. In Fig. 4.12(b), the measured
and retrieved spectra together with retrieved spectral phase are shown. In
Fig. 4.12(c), the temporal intensity and phase profiles are shown. The FROG
error was 0.0038. The measured and the calculated spectra agreed quite well
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Fig. 4.12. Results of the corrected frequency marginal FROG measurement
with SLM parameters. (a) Marginal calculated from the experimental spectrum
MTheo(ω) (solid line) and that obtained from the FROG trace MExp(ω) (dotted
line). (b) Spectrum Ĩ(λ) and spectral phase φ̃(λ). Experimental spectrum is de-
picted by the dotted line. (c) Temporal intensity I(t) and phase profiles ϕ(t) [31,32]

thanks to the correction of the marginals. However, the pulse duration was
not changed by that correction. The duration obtained was 5.0 fs which cor-
responded to 2.4 cycles at the center wavelength of 633 nm. It was 14% longer
than that of the TL pulse (4.4 fs). If the geometrical smearing effect is taken
into account, the duration is evaluated to be 4.7 fs. As seen in comparison be-
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tween the compression results for the expansion center wavelength λ0 = 800
and 600 nm, an appropriate blue shift of λ0 enabled us to perform better
effective nonlinear-chirp compensation for ultra-broadband femtosecond op-
tical pulses.

Characteristics

Let us now summarize the characteristics of SHG-FROG. Its disadvantages
are

(d-1) the bandwidth limitation below an octave owing to second-harmonic
generation,

(d-2) the complicated iteration algorithm for retrieving the spectral phase,
(d-3) the comparatively long acquisition time of spectrogram by moving an

optical delay,
(d-4) the effect of time smearing due to noncollinear configuration;

its advantages are

(a-1) the high sensitivity using the second-order nonlinear interaction,
(a-2) the capability of self-consistency check or correction using the frequency

marginal.

4.4 Spectral Interferometry
for Direct Electric-Field Reconstruction (SPIDER)

4.4.1 Principle

The technique of SPIDER is a specific implementation of spectral shearing
interferometry [8,39–43]. SPIDER utilizes nonlinear frequency mixing to gen-
erate a pair of identical but frequency-sheared replicas of the input pulse. The
interference between this pair of pulses is recorded with a spectrometer as
an interferogram. From this interferogram, the amplitude and phase of the
input pulse can be directly (noniteratively) reconstructed.

The principle of SPIDER is schematically shown in Fig. 4.13. The pulse
to be characterized is divided into two parts by a beam splitter. One forms a
pair of replicas which are separated in time by a delay τ using, for example,
two arms of a Michelson interferometer. The other passes through a disper-
sive medium to be linearly chirped. The two replicas with the time delay
τ are frequency-mixed with the chirped pulse in a nonlinear crystal. Each
pulse replica is frequency-mixed with a different time slice, and hence differ-
ent spectral slice of the linearly chirped pulse. As a result, the upconverted
pulses are frequency-sheared. The resulting interferogram is resolved with a
spectrometer.
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Fig. 4.13. Principle of SPIDER. NC represents a nonlinear crystal [32]

The measured interferogram S̃(ω) is given by

S̃(ω) ∝ ∣∣Ẽ(+)(ω)
∣∣2 +

∣∣Ẽ(+)(ω − Ω)
∣∣2

+2
∣∣Ẽ(+)(ω)Ẽ(+)(ω − Ω)

∣∣ cos [φ(ω) − φ(ω − Ω) + ωτ ] , (4.35)

where Ẽ(+)(ω) is the complex electric field defined by (4.18), and Ω and τ are
the amount of the spectral shear and the delay time between the two replicas,
respectively. S̃(ω) is a standard shearing interferogram which is composed of
fringes nominally spaced in frequency at ∼2π/τ . For simplicity, we write the
interferogram (4.35) as

S̃(ω) ∝ S̃(dc)(ω) + S̃(+ac)(ω) exp(iωτ) + S̃(−ac)(ω) exp(−iωτ), (4.36)

where

S̃(dc)(ω) =
∣∣Ẽ(+)(ω)

∣∣2 +
∣∣Ẽ(+)(ω − Ω)

∣∣2, (4.37)

S̃(+ac)(ω) =
∣∣Ẽ(+)(ω)Ẽ(+)(ω − Ω)

∣∣ exp{i [φ(ω) − φ(ω − Ω)]}, (4.38)

S̃(−ac)(ω) =
∣∣Ẽ(+)(ω)Ẽ(+)(ω − Ω)

∣∣ exp {−i [φ(ω) − φ(ω − Ω)]} . (4.39)

The dc portion S̃(dc)(ω) is the sum of the individual spectra of the pulse to
be characterized and its frequency-sheared spectra and include no spectral
phase information. The ac terms S̃(+ac)(ω) and S̃(−ac)(ω) are the interfer-
ence terms which give the spectral phase in the form of the phase difference
between spectral components separated by the shear Ω. These terms exhibit
perturbation from the nominal fringe spacing.

There are three steps for retrieving the spectral phase from the interfero-
gram as follows: (i) isolate one of the ac terms, and hence φ(ω)−φ(ω−Ω)+ωτ ,
with a Fourier transform and filtering, (ii) remove linear phase term ωτ by
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subtracting a calibration phase, (iii) reconstruct the spectral phase φ(ω) by
concatenating or integrating the spectral phase difference.

In order to isolate the spectral phase difference φ(ω)−φ(ω −Ω)+ωτ , the
interferogram S̃(ω) is inverse Fourier transformed with respect to the spec-
trometer frequency, filtered, and Fourier transformed. The Fourier transform
of S̃(dc)(ω), S(t) is

S(t) ∝ F−1[S̃(dc)(ω)](t) + F−1[S̃(+ac)(ω)](t − τ) + F−1[S̃(−ac)(ω)](t + τ),
(4.40)

where the inverse Fourier transform operator F−1 for an arbitrary function
f(ω), which yields a function of t, is defined by

F−1[f(ω)](t) =
1
2π

∫ ∞

−∞
dω exp[−iωt]f(ω). (4.41)

Equation (4.41) has components centered near t = ±τ and t =0. The compo-
nent at t =0 is the Fourier transform of the dc part of the spectrogram. The
t = ±τ components is the ac parts of the interferogram. If τ is sufficiently
large, dc and ac parts are well separated and the dc and one of ac parts can
be removed by filtering. Hence, only one ac part, which has the information
of the spectral phase φ(ω) − φ(ω − Ω) + ωτ , can be extracted.

In the second step of the phase reconstruction, the linear phase term ωτ
is removed from φ(ω) − φ(ω − Ω) + ωτ . This is done by directly measuring
the ωτ . The interferometer is calibrated by recording a spectrogram for the
pair of replica pulses without giving the spectral shear. In this case, the
inferred pulses are spectrally identical, thus only the phase contribution ωτ
is recorded. The linear phase term ωτ obtained from calibration is subtracted
from φ(ω) − φ(ω − Ω) + ωτ , hence the phase difference φ(ω) − φ(ω − Ω) is
extracted.

The third step is the reconstruction of the spectral phase φ(ω) from the
spectral difference defined by

θdiff(ω) ≡ φ(ω) − φ(ω − Ω). (4.42)

Usually θdiff(ω) includes an unknown constant phase which gives a linear
contribution to the reconstructed phase φ(ω) and results in an unimportant
temporal shift of the pulse. Thus the spectral phase at a certain frequency
ω0 can be set so that φ(ω0) = 0 and the spectral phase at · · · , ω0 − 2Ω, ω0 −
Ω, ω0, ω0 + Ω, ω0 + 2Ω, · · · are, respectively, expressed by
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...
φ(ω0 − 2Ω) = −θdiff(ω0 − Ω) − θdiff(ω0),
φ(ω0 − Ω) = −θdiff(ω0),

φ(ω0) = 0,

φ(ω0 + Ω) = θdiff(ω0 + Ω),
φ(ω0 + 2Ω) = θdiff(ω0 + Ω) − θdiff(ω0 + 2Ω),

... (4.43)

using concatenation. By adding up the phase differences, the spectral phase
for frequencies separated by the spectral shear Ω is reconstructed.

If the magnitude of the spectral shear |Ω| is sufficiently small, the spectral
phase can be reconstructed by integration of

φ(ω) � 1
Ω

∫ ω

dω′θdiff(ω′). (4.44)

The spectral step size of data is usually much smaller than the frequency
shear. Hence, the concatenation method uses only a subset of the available
data. In contrast to this, the integration method uses all of the data.

Parameters of Spectral Shear Ω and Delay Time τ

For a SPIDER apparatus, the spectral shear Ω and the delay time between
the two replicas are key parameters. In principle, these are not independent
because Ω � τ/|φ′′(ωc)| (ωc: center frequency of the pulse). Moreover, both
parameters are constrained individually as follows.

(i) The frequency shear Ω should be large so that the spectral phase differ-
ence is perceptible.

(ii) Inversely, Ω should be small so that the sampling step of the phase can
be smaller than the Nyquist limit.

(iii) Because the spectral interferogram fringes are nominally spaced at 2π/τ ,
τ should be small so that the employed spectrometer can resolve the
fringes.

(iv) On the other hand, τ should be large so that the ac terms can be sepa-
rated from the dc term in the process of the phase difference extraction.

In addition, another parameter φ′′(ωc) is also constrained: it should be
large so that each of the pulse replicas can be upconverted with a quasi-cw
slice of the chirped pulse.
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4.4.2 Apparatus and Characteristics

Apparatus

Figure 4.14 shows the SPIDER apparatus that we made [44]. In this appa-
ratus, specially-designed ultrabroadband beam splitters from 450 to 850 nm
for the s-polarization in the Michelson-interferometric arm, a BBO crystal of
25 µm thickness, and a highly sensitive spectrometer attached by intensified-
CCD with a high-wavelength resolution of 0.15 nm and the automatic and fast
angle-control function of the two gratings with grating constants of 1/1200
and 1/150 mm were employed.

The pulse to be characterized was generated in an argon gas-filled hollow
fiber and phase-compensated by a 4-f pulse shaper with an SLM in the simi-
lar manner to that used in Sect. 4.3. After the rotation to the s-polarization by
the silver-coated periscope, the input pulse E to be characterized was divided
into two equal-intensity beams by a specially-designed ultrabroadband dielec-
tric beam splitter, BS1, ranging 450 to 850 nm. The beam splitter BS1 had
50±3% reflectivity for the input pulse spectrum from 480 to 835 nm with the
single-stacking coating on a 0.5-mm-thick fused-silica glass. One beam was
reflected by a silver-coated retroreflector for the adjustment of the time delay

E

E1

E2

Ec

GDD

NC

SP

ICCD

BS1

BS2

BS3

PS1
PS2

PFM

TS1

TS3

TS2

M1M2

M3

Fig. 4.14. SPIDER setup; BS1-BS3: specially-designed beam splitters (450–
850 nm), GDD: TF5 glass block, TS1: translation stage for adjustment of temporal
overlap of the short pulse pair with the stretched pulse, TS2 and TS3: translation
stages for adjustment of delay time, PFM: aluminum 50-mm-focusing parabolic
mirror, NC: nonlinear crystal (25 mm-thick type-II BBO), SP: spectrometer, ICCD:
intensified charge-coupled device, PS1-2: periscopes, M1-3: mirrors [32,44]
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between the two beams and was sent to the Michelson-interferometric arm
to make two-pulse replicas, E1 and E2, with the delay of τ .

The value of τ was selected to be 857 fs on the basis of the sampling the-
orem and the numerical simulation result of the optimum τ � 2πNs/(Nt∆ω)
[45]. Here Ns is the pixel number corresponding to the FWHM bandwidth
∆ω/2π � 133 THz of the pulse spectrum and Nt is the pixel number per
interference fringe of the SPIDER signal.

The interferometer with balanced reflectivity and dispersion used two 500-
µm-thick dielectric beam splitters, BS2 and BS3, having the same reflection
and transmission property as that of BS1. Another beam was transmitted
twice through a 100-mm-thick TF5 dispersion glass, which is denoted by
GDD and gives group-delay dispersion of 4.6 × 104 fs2 at 665 nm. During
the pass, we rotated this beam to the p-polarization by a periscope to pro-
duce the strongly-chirped pulse Ec for the sum-frequency generation with
quasi-CW field. The two replica pulses, E1 and E2, were combined and non-
linearly mixed with the chirped pulse Ec by focusing on a 25-µm-thick type-II
BBO crystal [43]. The calculation showed the 25-µm BBO generate the sum-
frequency wave over the spectral range of 480 to 835 nm of the pulse E1 or E2.
As a result, the SPIDER signal of the interferometric sum-frequency beam,
E1Ec + E2Ec was generated with a spectral shear of Ω/2π = 2.81 THz, sat-
isfying the sampling theorem [45]. After the removal of these pulses E1, E2
and Ec by a 0.5-mm slit, the spectral interferogram signal E1Ec + E2Ec was
focused on a multimode fiber-coupling spectrometer of 0.5 m by a 220-mm
focal-length silica lens, and was detected by a 1024 × 256-pixel UV-enhanced
intensified-CCD array which allowed rapid data acquisition. An incident slit
of 150 µm and 1200 lines/mm grating resulted in the total wavelength reso-
lution of 0.15 nm at 400 nm and the limited bandwidth of 37.5 nm. Thus the
full bandwidth of the signal was automatically recorded by the synthesis of
seven spectral parts of different center wavelengths at update time of 7 ×
2.5 s = 17.5 s with the calibration in wavelength and sensitivity, as shown in
Fig. 4.15. This measurement time was much shorter than that of the FROG
technique which is typically five minutes [31].

Characterization by SPIDER

We measured the two sum-frequency spectra of E1Ec and E2Ec in the main
spectral region, as shown in Fig. 4.16(a), to determine the value of the spec-
tral shear Ω in angular frequency, and the interferometric second-harmonic
spectrum of (E1 +E2)2 in the main spectral region, as shown in Fig. 4.16(b),
by the 45◦ rotation of the BBO crystal in order to determine the value of
the delay time τ . We confirmed the clear similarity between the former two
spectra after smoothing. The visibility of the latter spectrum was sufficient
to determine the accurate value of τ . The input spectrum of E was measured
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Fig. 4.15. SPIDER interferogram signal [32,44]

by use of the 150 line/mm grating which was rapidly exchanged and automat-
ically controlled the same detection system, as shown in Fig. 4.16(c). All the
data recorded were analyzed by SPIDER software in which the dc and −ac
parts after the inverse-Fourier-transform in the quasi-time τ ′ region shorter
than τ ′ = 190 fs � 2π/Ω were eliminated and only the essential +ac part [8]
was extracted.

The spectral phase φ(ω) was reconstructed from the phase difference
θdiff(ω) after removing the linear term ωτ . The reconstructed temporal in-
tensity I(t) and phase ϕ(t) profiles and the corresponding spectrum Ĩ(λ) and
spectral phase φ̃(λ) as functions of wavelength λ are shown in Fig. 4.17(a) and
(b), respectively. This result indicates that a 5.0 fs pulse was measured and
that its group delay (derivative of spectral phase with respect to angular fre-
quency) was almost constant in the whole spectral region. The corresponding
TL pulse obtained from measured spectrum of E is also shown in the inset
of Fig. 4.16. The Ĩ(λ) reconstructed from the 256-point analysis for the hori-
zontal axis agrees well with the measured spectrum of Fig. 4.16(c) after being
smoothed to reduce the number of points from 1024 to 256. As an indepen-
dent check of the accuracy of this result, the FRAC trace was simultaneously
measured, as shown in Fig. 4.18, compared with that calculated from the SPI-
DER-reconstructed pulse. The agreement between them was good, indicating
an FWHM of 5.0 fs. However, the pedestal parts were slightly different with
each other. This may be due to the slight difference in dispersion optics be-
tween the SPIDER and FRAC apparatuses and the insensitivity to the low
intensity of subpulses in the case of the FRAC measurement.

Characteristics

As the pulse duration becomes shorter and the spectral modulation becomes
stronger, the pulse characterization by the SPIDER technique rapidly be-
comes more difficult because of the dispersion effect and the bandwidth lim-
itation of the optics in the Michelson-interferometric arm, the weak sum-
frequency interferometric signal resulting from the considerable decrease
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interferometric second-harmonic spectrum (E1 + E2)2. (c) Measured spectrum of
the input pulse E, and 4.4-fs Fourier-transform-limited pulse (inset) [32,44]

in intensity of the strongly chirped reference beam, and the wavelength-
resolution limitation of the broadband spectrometer.

In summary in this section, compared to FRAC or FROG, SPIDER has
the following advantages;

(a-1) the elimination of the necessity for moving components (except gratings
in the spectrometer for ultrabroadband pulse characterization),

(a-2) the non-iterative reconstruction algorithm,
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(a-3) the fast measurement time using a thicker nonlinear crystal, which
gives the high intensity signal as a result of the type-II phase matching
for the sum-frequency generation (SFG) between the spectrally ultra-
broadband pulse field and the quasi-CW field,
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(a-4) the lack of the time-smearing effect owing to use of the spectral interfer-
ometry, even in the noncollinear SFG configuration with the quasi-CW
field,

(a-5) the measurement capability of monocycle-like pulses with ultrabroad
spectra exceeding one-octave bandwidth, which is significant for the
shorter pulse characterization.

The last advantage is due to the utilization of the sum-frequency light with
the quasi-CW field as a signal, the insensitivity of the frequency dependences
of the detection system and the phase mismatching spectrally-filtering effect
of the nonlinear crystal owing to the measurement based on the spectral
interferometry (SI)).

On the other hand, the disadvantage of SPIDER is

(d-1) the low sensitivity because most of the energy of the pulse to be charac-
terized is used for the chirped pulse as a reference in the self-referencing
configuration.

4.5 Modified SPIDER

4.5.1 Principle and Effect of Parameter Error

Principle

Although the SPIDER technique has some advantages mentioned in Sect. 4.4,
it has a drawback of low sensitivity, particularly for the characterization of
ultrashort and ultrabroadband pulses. This is due to a drastic decrease in
peak intensity of the strongly-chirped self-reference pulse, which wastes most
of the energy of the pulse to be characterized. In order to overcome such a
drawback, a variant of the SPIDER [15] and a modified SPIDER1 [12, 13]
were developed independently. In the modified-SPIDER, instead of a chirped
reference pulse split directly from the pulse to be characterized, a powerful ex-
ternal pulse which is coherent with the pulse to be characterized is employed
as a highly-intensive chirped pulse. Thus, while the conventional SPIDER is
one of the self-referencing spectral interferometries, the modified SPIDER is
one of the cross-referencing spectral interferometries. The modified SPIDER
is sometimes abbreviated as M-SPIDER or XSPIDER.

Effect of Parameter Error

For the modified SPIDER as well as the conventional SPIDER, the important
parameters are the time delay τ between the two replicas of the pulse to be
1 Although a modified-SPIDER technique was not described in reference [12], the

experimental results using this technique were presented in the conference.
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characterized and the spectral shear Ω after sum-frequency generation with
the chirped pulse as a reference. The two replicas with the time delay τ are
usually produced by two arms of a Michelson interferometer. The replicas are
upconverted with the external reference chirped pulse, which passes through
a dispersive medium, in a nonlinear crystal. The interferogram with a spectral
shear Ω is measured by a spectrometer.

Here, we discuss the effect of the errors in the parameters Ω and τ on
the characterization results by the modified-SPIDER. In the process of the
phase reconstruction in the SPIDER, the derived phase difference θSPIDER(ω)
containing a delay-dependent linear term ωτ is expressed by

θSPIDER(ω) = φ(ω) − φ(ω − Ω) + ωτ. (4.45)

This linear term ωτ can be removed by measuring the delay time τ of the two
replica pulse pair. If the time delay is measured to be τ + δτ , which includes
an error of δτ , the phase difference θdiff(ω) defined (4.42) is evaluated as

θdiff(ω) = φ(ω) − φ(ω − Ω) + ωδτ, (4.46)

with an error of ωδτ . Hence, using (4.44) the evaluated spectral phase φm(ω)
in the measurement is written by

φm(ω) � φt(ω) +
δτ

2Ω
ω2, (4.47)

where φt(ω) is the true spectral phase. Thus, the error δτ would introduce
an additional second-order dispersion, which is a serious error for the phase
compensation to compress pulses.

In contrast, if the spectral shear Ω is measured to be Ω + δΩ with an
error of δΩ, the measured spectral phase φm(ω) is evaluated as

φm(ω) � Ω

Ω + δΩ
φt(ω) �

(
1 − δΩ

Ω

)
φt(ω), (4.48)

from (4.44). In this case, the error of δΩ results only in the factor error of the
spectral phase, which is not so serious for the feedback chirp compensation
described in the next subsection.

4.5.2 Apparatus and Characteristics

Appratus

Although the SPIDER technique has some advantages mentioned in Sect. 4.4,
it has a drawback of low sensitivity, particularly for the characterization of
ultrashort and ultrabroadband pulses. This is due to a drastic decrease in
peak intensity of the strongly-chirped self-reference pulse, which wastes most
of the energy of the pulse to be characterized. In order to overcome such a
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Fig. 4.19. Setup of the highly-sensitive modified-SPIDER apparatus. An external
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the sum-frequency generation with the pulse to be characterized. TS: telescope, DSi:
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drawback, a variant of the SPIDER [15] and a modified SPIDER [12,13] were
developed independently. In the same manner, instead of a chirped reference
pulse split directly from the pulse to be characterized, we employ a powerful
fundamental external pulse directly from a Ti:sapphire laser amplifier as a
highly-intensive chirped pulse. Thus, we demonstrated the experimental char-
acterization of femtosecond weak pulses propagated through a single-mode,
fused-silica fiber and evaluate the sensitivity and the signal-to-noise ratio of
the modified-SPIDER apparatus compared with the conventional one.

Figure 4.19 illustrates the modified-SPIDER apparatus. It has two optical
input parts; the one is for the pulse to be characterized, and the other is for the
intense light source to generate the chirped pulse. All the employed mirrors,
the periscopes PSi (i =1-3), the retroreflector RRi (i =1, 2) and the delay
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stage (DSi (i =1-3)) were aluminum-coated, except for a flip mirror FM. The
beam splitters BSi (i =1-3) are broadband dielectric multilayer mirrors. The
pulse to be characterized was reflected by the silver-coated flip mirror FM
and was input into a Michelson interferometer to make two-pulse replicas E1
and E2.

The mirror FM is used as a switch from the conventional-SPIDER mode
to the modified-SPIDER mode. When the mirror FM is flipped out and a
self-referencing interferometric technique is used, this apparatus becomes the
conventional-SPIDER mode. By flipping out the mirror FM before measure-
ments in the modified-SPIDER mode, the powerful external pulse (a dashed
line) reflected by a fused-silica beam splitter BS1 (96% transmission with
an anti-reflection coating) was sent to the Michelson-interferometer to pro-
duce two replicas. The interferometric second-harmonic spectrum of these two
replicas was measured in order to determine the value of the delay time τ .
In addition, this powerful, reflected pulse is conveniently used for an optical
guide of the weak pulse to be characterized in the modified-SPIDER mode.

After the powerful, transmitted external pulse passed through a highly
dispersive glass TF5 (100 mm in length), its linear polarization was changed
to the p-polarization by a periscope PS2 and the pulse passed again through
the dispersive glass (round-trip group-delay dispersion of 3.5×104 fs2 at
800 nm). Thus, a strongly chirped pulse Ec with a 3.7-ps duration was gener-
ated. The chirped pulse (Ec) and two replicas (E1 and E2) were focused onto a
BBO crystal NC (type II phase-matching; 50-µm in thickness) by an off-axial
parabolic mirror PFM (50-mm focal length) to produce the SPIDER signal
of the interferometric sum-frequency wave. After passing through a slit S, a
focusing lens L and a polarizer P, the signal spectra were measured by a 1200-
line/mm spectrometer with a 1024-pixel, intensified-CCD camera, where the
spectral resolution is 0.2 nm. Because of the limited bandwidth of the spec-
trometer in the modified-SPIDER as well as in the conventional SPIDER,
several spectral parts of different center wavelengths with the calibration in
wavelength and sensitivity were synthesized at update time of ∼10 s to obtain
SPIDER signals with the full bandwidth. This system enables us to easily
compare the sensitivity between the modified-SPIDER technique and the
conventional one under the same optical components without realignment.

Chracteristics

Figure 4.20 shows the SPIDER signal intensity as a function of energy of the
input pulse to be characterized for modified (open circles) and conventional
(open squares) techniques. The plotted relative intensity of the signal was
evaluated from the intensity of the positive ac(+τ) component of the inverse
Fourier transform of the observed interferometric SPIDER signal, which cor-
responds to the amplitude of the oscillating interferometric part. In the case
of the modified-SPIDER technique, energy of input pulse (90 fs, 800 nm) was
varied while energy of the 90-fs, 800-nm chirped reference pulse (1.2 µJ) was
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Fig. 4.20. SPIDER signal intensities of the conventional SPIDER and the modified
SPIDER as a function of the pulse energy to be characterized. Inset shows the signal
intensity as a function of chirped-pulse energy [13,32]

maintained. In the case of the conventional technique, energy of the 90-fs,
800-nm input pulse had been varied before energy of the input pulse was
split. Energy for the chirped reference pulse is 96 percents of incident energy
at BS4. From Fig. 4.20 we find that the intensity for the modified-SPIDER
mode indicates a linear function of input energy, while the intensity for the
conventional mode indicates a quadratic dependence. This result suggests
that the modified-SPIDER technique has a great advantage for the charac-
terization of the weak intensity pulse. In Fig. 4.20 we also plot three broken
lines (a), (b), and (c) that represent the experimental noise levels for (a) a
single-shot case, (b) a 5000-pulse-accumulation case (corresponding to the
five-second measurement time), and (c) a 100,000-pulse-accumulation mea-
surement. The sensitivity of the modified-SPIDER technique is one hundred
times higher than that of the conventional one. For a single-shot measure-
ment, the modified one is ten times higher and has 1 nJ/THz-bandwidth.
Moreover, in another experiment for output pulses from a tapered fiber (one
of the microstructure fibers) spectrally ranging 350 to 450 THz, their ampli-
tudes and phases were characterized with the sensitivity of 20 pJ/pulse by
our modified SPIDER.

All the analyses of the electric-field reconstruction for pulses to be charac-
terized were carried out using the measured Ω/2π = 3.87 THz and τ = 746 fs
in the same manner as [44]. It was confirmed that the reconstructed temporal-
intensity profile with the 90-fs duration agreed with the results of the inde-
pendent measurement of the autocorrelation trace under the assumption of
a sech2 shape.
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In addition to the high sensitivity, the modified-SPIDER technique has
another advantage in signal-to-noise ratio, that is, a great reduction of back-
ground light. In both conventional- and modified-SPIDER techniques, the
main origin of background light is due to the second harmonic generation at
the nonlinear crystal and its scattering at surface. For the modified-SPIDER
technique, unlike the conventional one, we can shift the frequency region of
the SPIDER signal to the arbitrary frequency region to avoid the background
by the independent choice of an appropriate chirped-pulse frequency ωc.

Moreover, unlike the conventional self-reference SPIDER, particularly for
ultrabroadband pulses, by an external reference, the wavelengths of upcon-
verted replicas can be shifted to be longer, hence to avoid the bandwidth
limitation of optics in the apparatus. It effectively results in broader measur-
able bandwidth for the pulses to be characterized [13].

The further merits of the modified SPIDER are the flexibility for pulses to
be characterized, especially for strongly- and complicatedly-chirped pulses.
The conventional SPIDER technique is poor in retrieving such pulses be-
cause the spectral shear Ω is not well-defined for those pulses. The strongly-
chirped pulse has a wide temporal width, which dims the corresponding
temporal frequency of the chirped reference pulse. To circumvent this sit-
uation, the spectrally-resolved, modified-SPIDER technique is promising.
An independently-introduced chirped pulse of the pulse to be characterized
greatly simplifies the characterization of the pulse in the entire spectral re-
gion.

Finally, we would like to point out a practical merit of the modified-
SPIDER technique concerning the more accurate and easier determination of
the delay time τ between two replicas, as we mentioned above. In the SPIDER
algorithm, the accuracy of the group-delay dispersion of the retrieved pulse
depends on that of the delay time. For a weak pulse, however, the accuracy
of the delay time can hardly be guaranteed in the conventional SPIDER
technique. In the modified-SPIDER technique, a high intensity, well-behaved
pulse is available for the determination of the delay time instead of the fragile,
weak one.

All the advantages of the modified-SPIDER technique, highly sensitive,
high-signal-to-noise ratio, etc. will enable us the single-shot characterization
of a weak pulse with an ultrabroadband.

Characterization by Sophisticated Modified-SPIDER

Here, we describe the pulse characterization of optical pulses with over-one-
octave bandwidths and monocycle-like pulses using a further-improved or
sophisticated modified-SPIDER [14]. For the details of the feedback phase
compensation experiment, see Sect. 5.2.3. The improved M-SPIDER is shown
in Fig. 4.21. The Ti:sapphire laser amplifier system as a light source, an Ar-
filled hollow fiber and a 4-f phase compensator with an SLM are the same
as in Sect. 5.2.3.
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Fig. 4.21. Schematics of experimental setup. PS, Periscopes; L1, L2, focusing lenses
(Fused silica, f = 50mm); FM, flip mirrors; BS1, BS2, wedged beam splitters; FL,
optical filter (cutoff: 500 nm)

The essential points for successful feedback are the accurate measurement
and the accurate phase compensation, for which we exerted much effort. In
order to accurately measure the phase φ(ω), we analyzed the phase errors
invoked by the inaccurately measured τ + δτ and Ω + ∆Ω. We found that
the inaccurate τ + δτ would introduce an additional second order dispersion
(φ(ω) + δτω2/2Ω), and the inaccurate Ω + ∆Ω would only result in an am-
plitude error of the phase ((1 − ∆Ω/Ω)φ(ω)), as described in the previous
subsection 4.5.1. Therefore we mainly concentrated our effort on increasing
the accuracy of τ .

In the SPIDER measurement, the derived phase difference θSPIDER(ω)
contains a delay-dependent linear term ωτ according to

θSPIDER(ω) = φ(ω) − φ(ω − Ω) + ωτ. (4.49)

This linear term can be removed by the measurement of the delay of the
two replica pulse pairs. However, as suggested by Iaconis and Walmsley [8],
if there is system error in the arms of the Michelson interferometer, it would
be best to measure the SPIDER signal for Ω = 0 and subtract it as the back-
ground. This can be achieved by the measurement of the second-harmonic
(SH) interferogram since the phase difference

θSH(ω) = ωτ, (4.50)

in the case of SH interferogram.
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Fig. 4.22. Results of modified-SPIDER measurements. (a) modified-SPIDER sig-
nal, (b) replicas and (c) the second harmonic interferogram. The interference fringes
are clearly resolved even in the weak signal regions [14,32]

The crystal for the sum frequency generation in the SPIDER is cut for
the type-II phase matching condition, which is insensitive to the bandwidth
limitation, whereas the SHG is easily achievable with type I phase matching.
Realignment of the crystal, the lens, the detector and the slit is required for
the best signal intensity. This alignment does not correspond to the same
conditions as measurement of the sum frequency waves of SPIDER. To avoid
the perturbation of the SPIDER signal measurement and to obtain the repro-
ducible signal, we built a separate optical path for the independent alignment
and measurement of the SH interferogram, as shown in Fig. 4.21, This per-
mitted highly reproducible measurements.

Next, we examined the error source in the previous system [13] and made
some important modifications as described below.

First, we improved the beam splitters in the Michelson interferometer. We
found that the SPIDER interferogram was spoiled by the interference between
front and back surface reflections of the beam splitters. An antireflection
coating on the backside should avoid this. However, it is difficult to make
an antireflection coating for an over-one-octave bandwidth. Therefore, we
replaced them with wedged beam splitters with the thickness of 0.5 mm and a
wedged angle of 0.5◦ (20% reflection and 80% transmission for s-polarization
from 400 to 1300 nm and fused silica substrates). Consequently, the back
reflection interference is completely eliminated. Moreover, replacement of two
retro-reflectors with two roof mirrors improved the spatial beam profiles of
the replicas on BBO crystals and hence greatly increased the intensities of
the two interferogram signals.
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Second, we significantly increased the SH signal intensity. The intensity
of the SH had been weak so far, and it had been difficult to measure over the
same wavelength range as in the SPIDER measurement. The input pulse has
a bandwidth from ∼ 470 to ∼ 1070 nm, corresponding to a SH signal from
235 to 535 nm. On the other hand, the SPIDER signal comes from ∼ 290 to ∼
450 nm. The SH signal is too broad to cover the SPIDER wavelength range.
Therefore, we initially reduced the pressure of Ar gas from 3.0 to 0.8 atm so
that the spectral range of the intensified SH interferogram has approximately
the same wavelength range as in the SPIDER (Fig. 4.22(c)). This enabled us
to subtract the linear term ωτ much more accurately than before.

In addition to these, we properly chose the blaze wavelength of the grat-
ings in order to reduce the influence of the second-order diffraction on the
output from the phase compensator.

On the basis of the above improvement, we conducted an M-SPIDER mea-
surement. First, we measured the SH spectral phase interference (Fig. 4.22(c))
and then after a few minuites the SPIDER interferogram (Fig. 4.22(a)). Be-
cause the pulses have very broad bandwidths, it was necessary for us to
obtain the signals by five rotations of grating in the spectrometer, which
were automatically controlled (exposure time was 0.1 s and accumulated for
100 times). It should be noted that the SH and SPIDER interferograms were
cleary resolved over the whole range from 300 to 460 nm, even in the weak
signal regions. Moreover, we found that the replicas became similar over the
whole range from 300 to 460 nm (Fig. 4.22(b)). This was due to the better
spatial overlapping of the replicas with the reference beam by the replace-
ment of the retro-reflectors with the roof-mirrors. Additionally, it should be
emphasized here that, thanks to the cross-reference SPIDER configuration
using a chirped reference pulse with a center wavelength of 792 nm, directly
generated from the Ti:sapphire laser amplifier, this spectral range from 300
to 460 nm was away enough from the short-wavelength edge of the bandwith
limit of the optical components, unlike in the configuration of the conven-
tional self-reference SPIDER.

The solid curve in Fig. 4.23(a) is the measured spectrum intensity Ĩ(λ)
of the pulse output from the phase compensator in the SLM-off case; the
dashed line in Fig. 4.23(a) represents the retrieved spectral phase φ(λ) from
the improved M-SPIDER measurement. The corresponding temporal inten-
sity I(t) and phase ϕ(t) profiles are depicted by the solid and dashed lines,
respectively, in Fig. 4.23(b). The τ and Ω/2π confirmed in this experiment
were 935 fs and 4.12 THz, respectively.

Conclusively, the improvements such as (i) building a separate optical
path for the independent alignment and measurement of the SH interfero-
gram, (ii) usage of the wedged beam splitters to eliminate back reflection,
(iii) better beam overlapping in sum-frequency generation by replacing the
retro-reflectors with the roof mirrors, (iv) measurement of the intensified SH
interferogram by reducing the Ar-pressure, and (v) proper selection of the
blazing wavelength of the gratings to reduce the influence of the second-order
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Fig. 4.23. Intensity spectrum Ĩ(λ) ((a) solid line) in the SLM-off case, and the
corresponding retrieved results of the spectral phase φ̃(λ) ((a) dashed line), the
temporal intensity profile I(t) ((b) solid line) and the temporal phase ϕ(t) ((b)
dashed line) from the sophisticated M-SPIDER measurement

diffraction on the output from the compensator, enabled us to characterize
the optical pulses with over-one-octave bandwidths with better accuracy than
before. Its better accuracy was supported by the fact that a 3.3-fs, 1.56 optical
cycle pulse, close to the 2.8-fs transform-limits pulse was succcessfully gener-
ated after the feedback phase compensation on the basis of this sophisticated
M-SPIDER measurement. The details of the feedback phase compensation
are described in Sect. 5.2.3.

4.6 Comparison and Characteristics

We compare the pulse characterization techniques, FRAC, FROG, SPIDER,
and modified SPIDER. Their characteristic features are summarized in Ta-
ble 4.4. The details are in the following.
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1. Bandwidth limitation: Using the interaction of second-harmonic gener-
ation, bandwidth of the pulses measured by FRAC and SHG-FROG is
limited below an octave. In good contrast to this, SPIDER and modified-
SPIDER using sum-frequency generation can characterize pulses with a
bandwidth exceeding an octave.

2. Retrieve algorithm: For retrieve, FRAC needs the assumption of the pulse
shape and phase or an iterative calculation using the information of the
spectral intensity. The reconstruction algorithm of FROG is iterative
and complicated. The reconstruction algorithm of SPIDER or modified-
SPIDER is simple and not iterative.

3. Sensitivity: FRAC, SHG-FROG, SPIDER and modified SPIDER all use
the second-order nonlinear interaction. However, in SPIDER, the sum-
frequency light of a pulse to be characterized and a chirped reference
pulse from it is employed. Hence, the decrease in intensity of this chirped
pulse causes the lower sensitivity than in FRAC and SHG-FROG. In-
stead of the chirped reference pulse directly split from the pulse to be
characterized, a highly-intensive chirped pulse as a reference pulse is in-
troduced in modified SPIDER. Thus the sensitivity of modified SPIDER
is high and controllable.

4. Data acquisition time: FRAC and FROG record the signal with the vary-
ing delay time. Hence they need longer data acquisition times. In gen-
eral, FROG needs more sampling points than FRAC. Hence, the data
acquisition time of FROG is longer than that of FRAC. On the other
hand, because of spectral interferometry measurements the data acqui-
sition times of SPIDER and modified-SPIDER are very short. This very
short acquisition time is greatly significant for the characterization of
below-two-cycle or monocycle pulses.

As noted in other remarks, FRAC tends to underestimate the pulse
pedestal because of the squared signal in intensity and FROG is with the

Table 4.4. Comparison of pulse characterization techniques

bandwidth retrieve sensitivity acquisition other
algorithm time remarks

FRAC below with high comparatively underestimation
an octave assumption, short tendency

or complicated
(with spectrum)

(SHG-) below complicated high comparatively with time
FROG an octave long smearing,

capability
of self-check

SPIDER over simple comparatively very
an octave low short

modified over simple high very capability of
SPIDER an octave short shifting signal

wavelength range
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time smearing effect owing to noncollinear interaction. Regarding FROG
technique, it has the capability of self-consistency check or correction using
the frequency marginal, and in order to overcome its bandwidth limitation,
the self-diffraction (SD) FROG or polarization-gate (PG) FROG using third-
order nonlinear interaction can be used. They also have a characterization
capability of pulses with the bandwidth over an octave. However, their sen-
sitivities are low because of the third-order interaction.

Since, for more accurate characterization of below-two-cycle or monocycle
optical pulses, single-shot measurement excluding the errors due to the pulse-
to-pulse fluctuation is desirable. Modified-SPIDER possessing the advantages
of high sensitivity and very short acquisition time is the most promising
technique for the characterization of monocycle pulses without the errors
due to pulse-to-pulse fluctuation.

4.7 Conclusion

Ultrabroadband optical pulses using the self-phase effect and the succeeding
phase compensation by use of a 4-f pulse shaper with a SLM was performed
to generate monocycle-like pulses. To characterize these pulses, we carried
out the FRAC, FROG and SPIDER measurements and compared the results
obtained from these measurements.

To characterize optical pulses more accurately by eliminating effects of
intensity fluctuation and carrier-envelope phase drifting, the development of
a single-shot pulse characterization technique is desirable. Except its low
sensitivity, the SPIDER technique has some advantages over the other tech-
niques in the following: (a) measurement capability of ultrabroadband pulses
exceeding an octave, (b) simple non-iterative reconstruction algorithm and
(c) short data acquisition time. The drawback of the SPIDER technique is
due to the generation of the strongly-chirped reference pulse from the pulse
to be characterized. In order to overcome such a drawback, the modified-
SPIDER technique was used. Instead of a chirped reference pulse split di-
rectly from the pulse to be characterized, a powerful external pulse directly
from a Ti:sapphire laser amplifier as a highly-intensive chirped pulse was em-
ployed. It was confirmed that the sensitivity of modified SPIDER is about
a hundred times higher (∼ 1 nJ/THz-bandwidth) than that of conventional
SPIDER. This modified-SPIDER method is the most powerfull and useful
for characterization of monocycle-like optical pulses. Further, by sophisticat-
ing this modified-SPIDER technique with improved hardware and retrieval
process, the 3.3-fs, 1.56-optical pulse with an over-one-octave bandwidth was
generated. To the best of our knowledge now, this is the shortest pulse in the
visible-to-infrared region.
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K.W. Delong, R. Trebino: Opt. Lett. 21, 884 (1996)
5. V. Wong, I.A. Walmsley: J. Opt. Soc. Am. 14, 944 (1997)
6. J. Peatross, A. Rundquist: J. Opt. Soc. Am. B 15, 216 (1998)
7. S. Linden, J. Kuhl, H. Giessen: Opt. Lett. 24, 569 (1999)
8. C. Iaconis, I.A. Walmsley: IEEE J. Quantum Electron. 35, 501 (1999)
9. J.W. Nicholson, J. Jasapara, W. Rudolph, F.G. Omenetto, A.J. Taylor: Opt.

Lett. 24, 1774 (1999)
10. P. O’Shea, M. Kimmel, X. Gu, R. Trebino: Opt. Lett. 26, 932 (2001)
11. C. Dorrer, P. Londero, I.A. Walmsley: Opt. Lett. 26, 1510 (2001)
12. M. Hirasawa, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, M. Ya-

mashita: Technical Digest of Conference on Lasers and Electro-Optics 270
(2001)

13. M. Hirasawa, N. Nakagawa, K. Yamamoto, R. Morita, H. Shigekawa, M. Ya-
mashita: Appl. Phys. B 74, S291 (2002)

14. K. Yamane, Z. Zhang, K. Oka, R. Morita, M. Yamashita, A. Suguro: Opt. Lett.
28, 2258 (2003)

15. M. Zavelani-Rossi, G. Cerullo, S. De Silvestri, I. Gallmann, N. Matuschek, G.
Steinmeyer, U. Keller, G. Angelow, V. Scheuer, T. Tschudi: Opt. Lett. 26, 1155
(2001)

16. J.-H. Chung, A.M. Weiner: IEEE J. Selected Topics Quantum Electron. 7, 656
(2001)

17. D.J. Kane, R. Trebino: Opt. Lett. 18, 823 (1993)
18. R. Trebino, D.J. Kane: J. Opt. Soc. Am. B 10, 1101 (1993)
19. K.W. Delong, R. Trebino, D.J. Kane: J. Opt. Soc. Am. B 11, 1595 (1994)
20. K.W. Delong, R. Trebino, J. Hunter, W.E. White: J. Opt. Soc. Am. B 11, 2206

(1994)
21. D.N. Fittinghoff, K.W. Delong, R. Trebino, C.L. Ladera: J. Opt. Soc. Am. B

12, 1955 (1995)
22. K.W. Delong, D.N. Fittinghoff, R. Trebino: IEEE J. Quantum Electron. 32,

1253 (1996)
23. G. Taft, A. Rudquist, M.M. Murnane, I.P. Christov, H.C. Kapteyn, K.W. De-
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5 Feedback Field Control
for Optical Pulse Generation
in the Monocycle Region

M. Yamashita, K. Yamane, Z. Zhang, M. Adachi, and R. Morita

5.1 Basic Concept: Combination
of Spectral Phase Compensation and Characterization

In Chap. 3, an active chirp compensation technique by 4-f configurations
with a spatial light modulator (SLM) was introduced. The chirp compensa-
tion is made by the SLM according to presumptively calculated dispersion of
the pulse using the cumbersome Taylor expansion. It is a typical open-loop
phase control. With this technique, the pulse duration compressed to sub
5 fs [1]. For a more complicated phase, more precise pulse characterization
technique should be employed. In Chap. 4, the spectral phase characteriza-
tion techniques (SPIDER and M-SPIDER) were described, which provide an
opportunity for closed-loop feedback compensation which will result in sub
3–4 fs generation in the monocycle region.

The open-loop phase compensation to few cycle regime experiments was
based on calculations: the dispersion of the intra-cavity and extra-cavity ele-
ments including material dispersion of crystal and glasses, prism pairs, grat-
ing pairs, glass fibers, and hollow fibers, etc. Most effective material disper-
sions and/or nonlinear phase modulation could be calculated through Sell-
meier equations and/or nonlinear pulse-propagation equations, respectively
(see Chap. 1). However, though there are formulas for calculation of a prism
pair and a grating pair, they are difficult to set for the desired dispersion in an
experiment because of an inter-relation among different orders of dispersion.
Furthermore, for example, the physical process in the microstructure optical
fibers which were recently developed is very complicated. In the photonic
crystal fiber, spectral broadening processes such as the soliton fission, non-
soliton radiation, high harmonic generation [2], Raman scattering, four wave
mixing [3], self-steepening, etc. [4] have been recognized. Those processes are
difficult to describe by simple functions. Therefore, a closed-loop feedback
becomes necessary.

The closed-loop phase control was proposed and demonstrated some years
ago [5]. In the experiment, the optical pulse was deliberately distorted to
∼80 fs. The state of a liquid crystal phase modulator array in a 4-f config-
uration was adaptively controlled using a simulated annealing algorithm in
order to maximize the average second harmonic signal measured after an ex-
ternal doubling crystal. The second harmonic was expected to be highest for
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Fig. 5.1. Basic concept of an approach to direct feedback control of spectral phase
without Taylor expansion for the optical pulse generation in the monocycle region

the shortest, most intense pulse. After 1000 iterations, the pulse was com-
pressed to near transform limited 11 fs [5], and the pulse quality was greatly
improved. The time required to run this experiment was roughly 15 minutes.
In this kind of adaptive chirp compensation, neither the input pulse nor the
output waveform need to be specified. One just needs to specify the target
outcome and the adaptive learning algorithm. It can be particularly suitable
to the case where the appropriate laser waveform is not known and the yield
is the only matter concerned.

However, in the one-octave bandwidth and few-cycle pulse regime, the
SHG intensity cannot be the unique target. As mentioned in Chap. 4, in the
intensity autocorrelation and the FRAC measurement, the similar autocor-
relation traces can have very different pulse shapes and phases. Likewise, the
same SHG intensity cannot always define a minimized pulse. Up to date, the
adaptive phase control has been applied to about < 200 nm bandwidth and
the minimum pulse width achieved by adaptive phase control has been only
in the >10 fs regime. Unless the pulse shape and phase are measured, the
pulse cannot be fully determined.

As the spectral phase measurement techniques are developed and mature
(see Chap. 4), the precise measurement and the prescribed phase control
become possible without the need for the Taylor expansion method. Then, the
adaptive control of the phase can be proceeded into the exact feedback and
precision phase compensation, as shown in Fig. 5.1 [6]. If the measured phase
is sufficiently accurate, the feedback immediately turns the pulse into the
specified shape, without undergoing an iteration process. We demonstrated
that the feedback technique led to the pulse be compressed to the sub 3–4 fs
monocycle regime [7]. The spectral phase of the optical pulses was measured
by M-SPIDER [7,8] or SPIDER [9] techniques.
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This chapter describes the feedback pulse compression that combines ac-
curate spectral-phase characterization and compensation for ultrabroadband
optical pulses with various types of complicated phase behaviors in the fre-
quency region near or over the one octave. Among them, it should be noted
that this precisely adaptive, sophisticated technique is shown to enable us
to generate 2.8-fs transform-limited optical pulses in the monocycle region.
This is the shortest optical pulse with a single clean temporal profile in
the infrared-to-visible region to the best of our knowledge. Also, the time–
frequency dynamic behavior of such monocycle-like pulses is clarified by an
analysis using the Wigner distribution function.

5.2 Feedback Spectral-Phase Control Technique

5.2.1 Conventional Glass Fiber Experiment

Self-Phase Modulation

Experimental Setup and Feedback Procedure

The first demonstration using a computer-controlled feedback system that
combines the active phase compensator with an SLM and the highly sensitive
M-SPIDER apparatus was carried out for weak, self-phase-modulated pulses
from a single-mode fused-silica fiber in 2002 [6]. The experimental setup is
shown in Fig. 5.2. The 3-mm long glass fiber with a 2.7-µm core diameter was
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2nd
Computer
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(c)(b)
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Fig. 5.2. Experimental set-up for adaptive compression for self-phase modulated
pulses or self-phase modulated + induced phase modulated pulses based on direct
feedback control of spectral phase. (a) Optical source for fiber input of 80-fs fun-
damental and signal pulses (Ti:sapphire, Ti:sapphire laser; REGEN, regenerative
amplifier; OPA, optical parametric amplifier). S1, S2, shutter. DS, delay stage. (b)
A fused-silica fiber (OF) for continuum generation using the SPM effect alone or the
SPM + IPM effects (R1, R2, reflective objectives). (c) 4-f phase compensator with
a feedback-controlled spatial light modular (SLM). (d) Quasi-real-time operative,
modified SPIDER apparatus.
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employed as a medium for spectral broadening due to the dispersive self-phase
modulation (SPM) effect. For two color pulses, 800 nm (the fundamental) and
670 nm (the signal), similar pulse compression experiments were performed.
The former and the latter had a duration of 80 fs and 41-nJ energy and a
duration of 80 fs and 45 nJ energy, respectively. They were originated from
a system consisting of a Ti-sapphire laser, a regenerative amplifier and an
optical parametric amplifier at a 1-kHz repetition rate. To focus the input
pulses into the fiber and to collimate the output from it, a pair of non-
dispersive reflective objectives (×36) was used. They provided 20% fiber-
output efficiency. The fiber output was directed to the feedback system for the
spectral-phase compensation and measurement. The 4-f phase compensator
was actively controlled by the programmable SLM, which was similar to that
described in Sect. 3.3.1. The phase compensator consisted of a pair of gold
(in)- and silver (out)- coated gratings (a 1/150-mm groove density), a pair
of silver-coated plane mirrors, a pair of aluminum-coated concave mirrors (a
350-mm focal length) and a specially made 648-pixel SLM (a 97-µm pixel
width and a 5-µm pixel gap). The throughput of the compensator including
several guiding aluminum mirrors was 25%.

The output from the compensator was characterized by a M-SPIDER ap-
paratus. The apparatus was almost the same as that introduced in Sect. 4.4.
The powerful reference pulses Ec with strong chirp were directly generated
by letting the split fundamental pulses (1.2 µJ energy, 800-nm center wave-
length, 80-fs duration) from the regenerative amplifier pass through a highly
dispersive glass (10-cm length TF-5 glass with a round-trip path: the group-
delay dispersion of 3.6 × 104 fs2 at 780 nm). The input pulses E to be char-
acterized were converted to two replicas E1, and E2 with a delay time τd
by means of a Michelson interferometer arm. Combined reference and two
replica pulses were focused on a type II. β-BaB2O4 (BBO) crystal (a 50-µm
thickness) by an aluminum parabolic mirror (a 50-mm focusing length) to
produce a SPIDER signal E1Ec + E2Ec. The signal was focused on a multi-
mode fiber-coupling spectrometer (a 1200 lines/mm grating with a 300 nm
blaze wavelength) of 50 cm and was detected by an intensified CCD camera
of 1024×256 channels. The total wavelength resolution was 0.05 nm at 400 nm
and the limited bandwidth was 37.5 nm. All the SPIDER signals were mea-
sured under the condition of 25 s accumulation time corresponding to 25000
pulses. The time for the spectral phase reconstruction from measured data
using the first computer was ∼ 0.3 s. The operation of the SLM took ∼ 0.8 s
to modulate the spectral phase on all the pixels using the second computer
where the reconstructed results were inputted. Totally, for one loop for the
SPIDER measurement and feedback compensation, it took ∼ 30 s.

The procedure of the feedback phase compensation was as follows: First
(1), the interference signal of second-harmonic waves (E1 +E2)2 of the repli-
cas E1, E2, was measured by the blocking of the reference beam Ec and
by the 45 degree rotation of the BBO crystal (Fig. 5.3 for the 800-nm input
pulse) so that the delay time τd was obtained to be 960 fs. This value was
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fixed for measurements of SPIDER signals in all the cases of the SLM-off
(before compensation) and the SLM-on (after compensation). Next (2), the
SPIDER signal in the SLM-off case was measured (Fig. 5.4(b) for the 800-
nm input pulse), and then (3) the two sum-frequency signals between the
replica and the reference, E1Ec and E2Ec, were measured (Fig. 5.4(c) for the
800-nm input pulse) to obtain the spectral shear Ω/2π = 5.23 and 5.69 THz
for the 800- and 670-nm input pulses, respectively. (4) After the spectral
phase was reconstructed (solid line in Fig. 5.5(a) for the 800-nm input pulse)
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by the first computer and was used as feedback to the second computer,
(5) the corresponding negative spectral phase was applied by the SLM con-
trolled by means of the second computer. The closed loop of (5) → (2) in the
SLM-on case → (4) → (5) was repeatedly performed several times for better
phase compensation. Finally, the two sum-frequency signals, E1Ec and E2Ec,
corresponding to the process (3), were again measured for confirmation of the
above-obtained spectral shear. It should be noted that this negative feedback
technique directly and quickly compensates for the spectral phase φ(ν) over
the whole frequency range without adjusting any order dispersion of φ(ν) by
the physical realignment of optical components and the usual method of the
cumbersome Taylor expansion for φ(ν) is not needed.

Results

As for the case of the 800-nm input pulse, the spectrum of the fiber out-
put pulses was broadened from 730 to 870 nm, as shown in Fig. 5.4(a). The
corresponding SPIDER signal and replicas in the SLM-Off case are shown
in Fig. 5.4(b) and (c), repetitively. Their spectral profiles are similar to the
fiber output spectrum, as expected in [10]. The spectral phase and temporal
intensity profile reconstructed using these results are shown by dashed lines
in Fig. 5.5(a) and (b), respectively. Those lines indicate that the phase varies
asymmetrically over 25 radians and the pulses broadens also asymmetrically
over 200 fs before compensation. In a similar manner, the reconstructed spec-
tral phases and temporal intensity profiles after first (dotted lines) and sec-
ond (solid lines) feedbacks are shown in Figs. 5.5(a) and (b), respectively. The
corresponding SPIDER signal after the second feedback is shown in Fig. 5.6.
Those solid lines (Fig. 5.5(a) and (b)) indicate that the spectral phase af-
ter the second feedback becomes flat over the whole spectral region and the
temporal pulse becomes nearly transform-limited with a duration of 22 fs.
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The similar experiment for the case of the 670 nm input pulses was car-
ried out. The corresponding SPIDER signal, the replicas, the reconstructed
spectral phase and temporal intensity profile before and after the first, second
and third feedbacks, and the SPIDER signal after the third feedback are also
shown in Figs. 5.7–5.9. The result indicates that the fiber output pulse having
a spectral broadening from 620 to 730 nm and a temporal broadening over
300 fs was compressed to 19 fs, which was close to the 16 fs transform-limited
one.

These experiments suggest that the spectral-phase feedback technique is
very powerful for quasi-real-time phase compensation. In addition, it is ro-
bust for pulse compression which avoids the effects of pulse fluctuation and
the inevitable modulation of the spectral amplitude in the SLM phase mod-
ulation. Hence, it will become a greatly useful tool to obtain extremely short
pulses, even for ones who are not familiar with ultrafast optical technologies.

Induced Phase Modulation

As described in Sect. 2.2, an induced phase modulation (IPM) technique
based on nonlinear co-propagation of two different-color femtosecond pulses
with a carrier-phase locking in a glass fiber enables us to broaden the spec-
tral width more efficiently than that in a self-phase modulation technique.
However, the spectral phase of the ultrabroadband pulse generated by the
dispersive IPM effect is complicated greatly owing to the combined effect
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of the two-pulse interaction and high dispersion of the glass fiber. In addi-
tion, the peak power is relatively low. Therefore, it is difficult to precisely
characterize and compensate for its spectral phase over the whole frequency
range. In spite of these facts, compression of induced phase-modulated pulses
has been demonstrated recently (2003) by the spectral-phase feedback tech-
nique [6, 11].
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Experiments

The experiment for IPM pulse compression was carried out using the almost
same apparatuses (the femtosecond optical source, the 4-f phase compensator
and the M-SPIDER apparatus including the feedback procedure for apply-
ing the phase shift: Fig. 5.2) as those for two SPM experiments described in
the previous sub-section, except for the following points. Two color pulses
with carrier-phase locking (800 nm, 80 fs, 64 nJ and 670 nm, 80 fs, 65 nJ for
a center wavelength, a pulse duration and pulse energy, respectively) were
co-propagated to a single-mode fused-silica fiber with a 4-mm length and a
2.7-µm core diameter. The delay time of the 800-nm fundamental pulse with
respect to the 640-nm signal pulse was adjusted to overlap in the middle of
the fiber and hence to yield the most efficient IPM effect. The typical fiber-
output efficiency was 20%. The output pulse was spectrally broadened from
530 to 880 nm (Fig. 5.10(a) and was directed to a programmable-SLM phase
compensator. As for the M-SPIDER measurements, the 1200 lines/mm grat-
ing in the spectrometer had to be rotated three times automatically because
of the limited bandwidth of 37.5 nm at each grating angle. The full band-
widths of the SPIDER signal, the replicas and the second-harmonic (SH)
interferogram were recorded automatically by the synthesis of three spectral
parts of different center wavelengths at updated times of 3 × 100 s = 300 s.
The delay time τd was determined to be 960 fs from the SH-interferogram
measurement, and the spectral shear Ω/2π was determined to be 5.68 THz
from the replica–spectra measurement.
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Results

The spectral phase reconstructed from the measured SPIDER signal
(Fig. 5.10(b)) with the values of τd and Ω/2π is shown by a solid line in
Fig. 5.11(a). It clarifies that the fiber output pulse has a significantly large
and complicated phase variation over 150 rads as a function of the frequency.
In addition, its group delay (a dashed line in Fig. 5.11(a)) as a function of the
frequency varies over 600 fs and indicates an effective discontinuity (∼ 50 fs
jump) around 740 nm where the two input pulses spectrally overlap at the
fiber output. This is mainly due to the delay time between the two pulses at
the fiber input and their group-velocity mismatch as well as the IPM+SPM ef-
fects. This finding corresponds to the result found out through the spectrally-
resolved autocorrelation study for near-infrared continuum generation (730
to 1250 nm) using the IPM effect (see Sects. 2.2 and 3.3) [12]. In general, such
novel behavior of the spectral phase is not compensated for by conventional
passive optics such as combinations of chirped mirrors, prism pairs and grat-
ing pairs. As for the reconstructed temporal behavior (Fig. 5.11(b)), the pulse
broadens over 500 fs due to the dispersion and the group-delay jump, and the
phase varies over 300 radians, both greatly asymmetrically and complicatedly.

Figures 5.12 and 5.13 show the spectral phase applied by the SLM at the
third feedback time and its correspondingly measured SPIDER signal with
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the intensity spectrum, respectively. Also, Fig. 5.14 shows its correspondingly
reconstructed results of the spectral phase φ(ν) and temporal profiles I(t),
φ(t). The results suggest that even the novel complicated phase behavior
is successfully compensated for over the nearly whole frequency range of
∆ν ∼= 110 THz. That is, the multi-structured, asymmetric output pulse with
a duration of about 500 fs from the fiber was compressed to 7.8 fs, which is
close to the 4.4-fs transform-limited pulse. This is the first demonstration
of the optical pulse compression for the white continuum generated by the
IPM effect. It seems that the small variation of about one radian in the
spectral phase after compensation (Fig. 5.14(a)) is caused by the intensity
fluctuations of the fundamental and signal fiber-input pulses. The difference
between the compressed and transform-limited pulses may be mainly due
to the imperfect compensation of the rapidly-varying spectral phase at the
low and high frequency edges (Fig. 5.11(a)). These occur because the applied
phase shift per one pixel at the edges exceeds π radians (Fig. 5.12). These
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problems will be solved by a suitable selection of components of an SLM
phase compensator such as longer focal-length concave mirrors and larger
1/d gratings.
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Discussion

Let us discuss the influence of the pulse intensity fluctuation and the group-
delay time change ∆tg of the input signal pulse (with respect to the input
fundamental pulse) on the compressed pulse during one feedback loop. For
this purpose, two additional experiments were carried out. One is measure-
ments for the long term stability of the averaged pulse intensity using a
photo-diode with an oscilloscope. The result showed that the pulse intensity
fluctuation of the fiber output was ±2.5%. Another is measurements (faster
than one second) for the difference between the fiber-output intensity spec-
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trum under the 100-Hz oscillatory change in group-delay time (∆tg = ±3.5 fs)
of the input signal pulse (its central angular frequency ωs,0) using a piezo-
transducer attached mirror and that under no change in group-delay time.
The result showed that only the spectral structure around 740 nm appearing
in the latter case (no change in group-delay time) was relatively smoothed
in the former case (change in group-delay time) and changed in intensity
(several percent) of its spectral region. This central region corresponds to
the overlapping region of the spectrally broadband signal and fundamental
pulses. Those findings suggest that even the group delay change exceeding
2π(= ∆tg ×ωs,0) causes only the several-percent intensity change in the cen-
tral region of the spectrum.

On the basis of these results, the computer simulation was carried out
to clarify the practical influence of the fluctuations of the pulse intensity
and group delay on the compressed pulse. That is, the spectral phase and
intensity of the fiber output as well as the phase compensated pulse were
calculated using two equations which describe IPM and SPM effects during
nonlinear pulse propagation (see Sect. 2.2 and [13, 14]) with experimental
parameters. The calculation is based on the model that the spectral phases
obtained after the intensity fluctuation ∆I/I and/or the group delay change
∆tg are compensated for by the use of the spectral phases obtained before
these fluctuations. As a result, the group-delay change yielded a small change
in only the fine structure in the central overlapping region of the output
intensity spectrum, which corresponds to the experimental result. Moreover,
the simultaneous fluctuations of the intensity (∆I/I = 2.5%) and the group
delay (∆tg = ±3.5 fs) caused only a slight increase of the sub-pulse intensity
and a less-than 1% broadening of the main pulse duration for the compressed
pulse. These fluctuations also indicated that the increase of the ratio of the
sub-pulse energy to the whole pulse energy was at most less than 4%.

The influence of the carrier-envelope phase fluctuation was also investi-
gated numerically. This influence was much less than that of the intensity and
group-delay fluctuations. The reason is as follows: first, nonlinear phenomena
of the IPM occur due to the pulse intensity but not the phase-sensitive elec-
tric field of the pulse; secondly, since both the present durations (80 fs) of the
input signal pulse and the input fundamental pulse having huge optical cycles
are remarkably long compared to the time shift due to the carrier-envelope
phase fluctuation, the ultrabroad spectra of the intensity I(ω) and the group
delay tg(ω) at the fiber output are greatly insensitive unlike the case of the
few-optical-cycle pulse.

Finally, let us consider the influence of the independent group-delay
change ∆tg,r in the reference chirped pulse on the M-SPIDER signal. When
the reference pulse has a group-delay change of ∆tg,r, the response func-
tion Np

e (t; Ω) of the temporally-linear phase modulation in [10] becomes
exp[−iΩ(t + ∆tg,r)]. This yields only a constant shift for the spectral-phase
pre-difference θ′

SPI(ω) [10] according to θ′
SPI(ω) = φ(ω)−φ(ω−Ω)+τdω+Ω×

∆tg,r. That is, the group delay change does not affect the reconstructed spec-
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tral phase except for a small constant shift of Ω×∆tg,r ∼= 10−3 rad) and hence
the reconstructed profile of the temporal intensity. This issue was also con-
firmed by the excellent agreement between the M-SPIDER measurement (for
a few hundreds seconds) and the independent autocorrelation measurement
for sub-7-fs pulses in another recent experiment [15] which will be introduced
in Sect. 5.2.2.

5.2.2 Unconventional Glass Fiber Experiment

Photonic Crystal Fiber

It was reported that ultrabroad-spectrum pulses were generated using a pho-
tonic crystal fiber (PCF) in 2000 [16,17] (see Sect. 2.4). The efficient genera-
tion was demonstrated by using low peak power pulses produced directly from
a femtosecond laser oscillator at 100 MHz repetition rate. It is based on the
use of unusual dispersion properties of a PCF. Furthermore, recently (2003),
pulse compression using a PCF was attempted by a passive chirp compen-
sator consisting of the combination of a prism pair and a chirped mirror [18].
It was investigated on the basis of the conventional measurement of only
the group-delay dispersion (GDD) of the fiber output (a 700–810 nm spectral
broadening) by a spectral gating method with the sum frequency generation.
The compressed pulse duration was estimated to be 25 fs by the measurement
of a fringe-resolved autocorrelation (FRAC) trace with relatively large wings
under the assumption of a pulse shape. This imperfect pulse compression far
from the 18-fs transform limited pulse is due to the following problems :

• the bandwidth limitation and the inter-relation between the GDD and
third-order phase dispersion of the employed chirp compensator.

• insufficient information on the complicated spectral phase φ(ω) of the
output from the PCF where several nonlinear phenomena occur simul-
taneously such as self-phase modulation, parametric four-wave mixing,
stimulated Raman scattering, soliton formation and self-steepening, as
well as the unusual dispersion profile [3].

• non-exact measurement of the temporal intensity profile of the com-
pressed pulse.

• the relatively low peak power of the output pulse from the PCF, which
is due to the ultrabroadening of its spectrum and the limitation of the
fiber-input power available directly from a Ti:sapphire laser.

In this subsection, let us show that the direct feedback technique of the
spectral phase without the Taylor expansion enables us to perfectly compress
much broader-band pulses from the PCF and to solve the above-mentioned
problems [15].

The main experimental setup (Fig. 5.15) consists of a 12-fs Ti:sapphire
laser, a 3-mm long PCF, a computer-controlled feedback system that com-
bines a 4-f chirp compensator with a spatial light modulator (SLM) and a
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Fig. 5.15. Experimental setup for adaptive photonic-crystal fiber pulse compres-
sion. (a) 4-f chirp compensator with a feedback-controlled spatial light modulator
(SLM); G1, G2, gratings; M1, M2, concave mirrors. (b) Quasi-real-time opera-
tive, modified SPIDER; BS, beam splitter; FM, flipper mirror. L1, collimating lens
(f=1000mm); L2, L3, objective lenses (×20) [15]

modified spectral-phase interferometer for direct electric-field reconstruction
(M-SPIDER) apparatus, and a fringe-resolved autocorrelator. The employed
feedback system is basically the same as the recently-developed one [7] (see
Sect. 5.2.3).

The pulse beam from a mode-locked Ti:sapphire laser (12 fs pulse du-
ration, 600 mW average power, 75 MHz repetition rate and 800 nm center
wavelength with a spectrum from 670 to 920 nm) was split with a 1:3 beam
splitter. The lower intensity pulse (150 mW) was passed through a focus-
ing lens (100 cm focal length) for collimation and then directed into the
M-SPIDER apparatus as an intensified chirped reference pulse. The higher
intensity pulse (450 mW) was coupled into the PCF (2.6 µm core diameter,
3 mm length, 900 nm zero dispersion wavelength) by a reflective objective
(× 36, Au coated), and the output pulse was recollimated by another re-
flective objective (×36, Al coated) to avoid the dispersion and astigmatism
effects of conventional glass lenses. The effective coupling and transmission
efficiency was 20%. The PCF output spectrum was measured by a 50-cm
spectrometer. The self-phase modulated output pulse (60 mW) with com-
plicated, large nonlinear chirp was directed into the 4-f chirp compensator
which consists of a pair of gold-coating gratings (300 lines/mm groove den-
sity), a pair of silver-coating mirrors, a pair of silver-coating concave mirrors
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Fig. 5.16. Optical configuration for highly sensitive and reproducible M-SPIDER.
When flipped mirrors FM1 is off and FM2 is on, the SH interferogram is measured
using a 25-µm thick BBO crystal (BBO2: type I). BS1, BS2; ultrabroadband beam
splitters. TF5; highly dispersive glass. BBO1; 50-µm thick BBO crystal (type II).
SM; multi-mode-fiber attached spectrometer [15]

(200 mm focal length) and an SLM (648 pixels, 97 µm pixel width, 5 µm pixel
gap, 66.1 mm total length, 85% transmission at 800 nm).

The pulse (15 mW) which passed the 4-f chirp compensator, was directed
into the M-SPIDER apparatus for characterization (Fig. 5.16). The input
pulse was divided into two beams with a 1:4 beam splitter, and the delay τ
between the two pulses was controlled by a Michelson interferometer arm. The
reference pulse, which was earlier split from the laser oscillator output, was
used to provide a strongly chirped pulse by round-trip transmission through
TF5 glass (2 × 10 cm length). The duration of the chirped reference pulse
was 20 ps. These three pulses were combined and focused onto a β-barium
borate (BBO) crystal (type II, 50 µm thickness) by an aluminum parabolic
mirror (50 mm focal length) to produce the sum-frequency wave of them.
The SPIDER signal was detected by a 50-cm spectrometer (1200 lines/mm
groove density, 800 nm blaze wavelength) with an intensified CCD camera of
1024×256 channels. The total wavelength resolution was less than 0.05 nm
at 400 nm. Since the limited bandwidth at a fixed angle of the grating was
37.5 nm at 400 nm, the grating was automatically rotated three times (center
wavelengths of 380, 410 and 440 nm) to detect the SPIDER signal with the
ultrabroadband spectrum (370–445 nm). Then, it took 3 × 10 s = 30 s to get
one signal.

The delay time was evaluated from the measurement of the second-
harmonic (SH) interferogram (Fig. 5.17(e)) of the intensified pulses split di-
rectly from the oscillator (Fig. 5.16) instead of the conventional measure-
ment of the SH interferogram of the replicas, because the former interfero-
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gram has a much better signal-to-noise ratio than that of the latter inter-
ferogram and the former spectral range (370–455 nm) is almost the same
as that (370–445 nm) of the SPIDER signal. In addition, the another SH
arm for the independently-adjustable measurement of the SH interferogram
was added with a flipped mirror, a parabolic mirror, a 25-µm thick BBO
(type I), a filter and a fused-silica lens. To accurately reconstruct the spec-
tral phase over the whole spectral range, we employed the following sub-
traction method [7, 10] which permits us to avoid the nonlinear wavelength
error appearing in measurements in the greatly broad spectral range with
the high wavelength resolution, but not employed the delay time of the con-
stant value (approximately τ ∼= 850 fs). The phase difference θSPI(ω) ob-
tained from the SPIDER signal [10] contains a delay-dependent linear term
τω (which must be removed for the spectral phase reconstruction) according
to θSPI(ω) = φ(ω) − φ(ω − Ω) + τω. On the other hand, the corresponding
phase difference θSH(ω) obtained from the SH interferogram contains only
the delay term τω according to θSH(ω) = τω. Therefore, if there is a system
error concerning the determination of the delay time, it is best to subtract
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θSH(ω) from θSPI(ω) over the whole spectral range as a background to cor-
rectly remove the term τω [7, 10].

The procedure for feedback chirp compensation is as follows.

1. Measure the SH interferogram.
2. Measure the SPIDER signal and the replica pair spectra in the SLM-off

case.
3. Reconstruct the spectral phase in the SLM-off case.
4. Apply the corresponding negative spectral phase by the SLM to compen-

sate for the chirp.
5. Return to step (2) in the SLM-on case.

After two further iterations in the SLM-on case, (2)→(3)→(4)→(2), the
pulse compression was accomplished. The PCF output spectrum with 60 mW
average power broadened from 600 to 965 nm, as shown in Fig. 5.17(a). The
SPIDER signal and replica spectra of the PCF output before feedback (SLM-
off case) are shown in Fig. 5.17(b),(c) and (d). The replica spectral structures
are similar to the PCF output one, implying that the thickness of the BBO
crystal does not affect the SPIDER signal. Moreover, the intensity of the
SPIDER interferogram is strong enough to characterize the spectral phase of
the PCF output pulse over the whole spectral region.

The value of the spectral shear Ω/2π was measured to be 8.24 THz. The
reconstructed spectral phase is shown by a dashed-dotted line in Fig. 5.18(a).
It indicates the complicated behavior in the 720 to 920 nm wavelength region
and the variation over 30 rads. A dotted line and a solid line in Fig. 5.18(a)
show the spectral phases after first and second feedbacks, respectively. The
compensated spectral phase after second feedback was converged within 1.3
rad throughout the pulse spectral region. The spectral phase applied by SLM
at the second feedback time is shown in Fig. 5.18(b). In actuality, the applied
phase change was wrapped between 0 to 4π due to limitations of the modu-
lation depth of the SLM.

The corresponding reconstructed temporal intensity and phase profiles are
shown in Fig. 5.19. The temporal intensity profile of the PCF output broadens
asymmetrically over 150 fs and the phase varies complicatedly over 30 rads.
After first and second feedback compensations its pulse width was reduced
to 7.1 fs (Fig. 5.19(b)) and 6.6 fs (Fig. 5.19(c)), respectively. This compressed
pulse almost corresponds to the 6.3 fs transform-limited one. To the best of
our knowledge, this is the first complete pulse compression of the PCF output
in the two-cycle region.

The compressed pulse after second feedback was also measured indepen-
dently by the FRAC method, as shown by a solid line in Fig. 5.20. The
employed fringe-resolved autocorrelator has a flipped mirror, a thin polar-
izer to select the p-polarization, a 25-µm thick BBO (type I) and a filter
to cut the fundamental pulse. The FRAC trace calculated from the recon-
structed spectral phase and measured spectral intensity is shown by a dotted
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line in Fig. 5.20. The agreement between the measured and calculated (us-
ing M-SPIDER data) FRAC traces is excellent. This result suggests that
the spectral-phase feedback technique without using any Taylor expansion
method for φ(ω) is significantly reliable and powerful even for complicated
nonlinear-chirp compensation. Moreover, this simple technique can be ap-
plied for chirp compensation of any unknown or fluctuated spectral phase
φ(ω) in the quasi-real time mode. This means that it has the potential to be
a greatly useful tool to generate extremely short pulses, even for those who
are not familiar with ultrafast optical technologies.

More recently (in 2004) we have generated shorter pulses with a dura-
tion of 5.8 fs (2.3 cycles) using a different PCF (853 nm ZDW, 2.6 µm core
diameter, 2 mm length) [43].

Tapered Fiber

The generation of ultra-broad spectrum by a tapered fused-silica fiber (TF)
is well known [19]. However, pulse compression using a tapered fiber has
not yet been achieved. One of the reasons is the fact that the behavior of
the spectral phase of the fiber output is so complicated that the output
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chirp is not compensated for by conventional passive compensators, such as
chirped mirrors, prism pairs, grating pairs or their combinations. Another
reason stems from the difficulty to characterize the spectral phase due to the
relatively low peak power.

Here, let us describe the first experimental demonstration of spectral
phase characterization of TF output and its pulse compression [20]. For this
purpose, the experimental system similar to the one described in the pre-
vious subsection was used (but the first tentative system [8, 20]). That is,
a modified spectral phase interferometer for direct electric-field reconstruc-
tion (M-SPIDER) apparatus [8,21] was employed for characterization of the
spectral phase. It was demonstrated that this technique has a high sensitiv-
ity comparable with the conventional fringe-resolved autocorrelator [8]. The
feedback system consisted of the M-SPIDER apparatus and an active chirp
compensator with a programmable spatial light modulator (SLM) [1,22].

The 74-mm-long TF with a waist diameter of 2 µm and a waist length
of 32.5 mm was manufactured from a standard telecommunication fiber (Fu-
jikura OST-8251) with a core diameter of 9 µm and a clad diameter of 125 µm
by means of heating and stretching in a flame. The zero-dispersion wavelength
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(ZDW) of our TF was evaluated to be 710 nm from the result calculated in a
similar manner to that in [19] (The nonlinear refractive index is the same as
that of a conventional fused-silica fiber). The slightly up-chirped pulse beam
from a mode-locked Ti:sapphire laser (185 fs pulse duration, 300 mW average
power, a normalized linear-chirp coefficient of 0.16, a 100 MHz repetition rate
and a 785 nm center wavelength with a spectral width of 30 nm) after pass-
ing through a focusing lens (100 cm focusing length) for collimation was split
into two beams with an intensity ratio of 2 : 1. The lower-intensity beam
with a p-linear polarization was coupled into the TF by an objective lens
(×20) and the same linear polarized output was collimated by another objec-
tive lens (×20). The effective coupling and transmission efficiency was 33%.
The higher-intensity beam was sent to the M-SPIDER apparatus as chirped
reference pulses Ec to observe weak SPIDER signals. The fiber output spec-
trum was measured using a calibrated spectrometer. It was confirmed that
when the full power (295 mW average power) from the laser was directly
propagated along the fiber, the output spectrum was broadened from 425 to
955 nm and had a significantly modulated structure. This suggested that the
output has a complicated spectral phase.

After the output pulse with strong chirp was collimated and passed
through an aperture, it was directed to the programmable chirp compen-
sator by aluminum-coated mirrors. The 4-f chirp compensator consisted of
a pair of gold-(in) and silver (out)-coated gratings (d = 1/150 mm), a pair of
plane mirrors with silver coating, a pair of concave mirrors with aluminum
coating (f = 350 mm), and a specially made large-pixel-number SLM (648
pixels, 97 µm pixel width, 5 µm pixel gap, 66.1 mm total size and 85% trans-
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mission at 800 nm). The throughput of the compensator including several
guiding mirrors was 25% [8,11,20].

The pulse after passing through the compensator, as well as the fiber
input pulse, was characterized using the highly sensitive M-SPIDER appa-
ratus equipped with a 30 cm spectrometer (a grating of 1200 lines/mm, a
blaze wavelength of 300 nm) having an intensified CCD camera of 1024×256
channels. The total wavelength resolution was 0.05 nm at 400 nm. The 100-
mW-average-power pulse that split directly from the laser oscillator provided
an intense reference pulse beam Ec with strong chirp after double-passing
through a dispersive TF5 glass of 10 cm length (the group-delay dispersion
of φ̈ = 3.7×104 fs2 at 785 nm, the pulse duration of 3.5 ps). The weak in-
put pulse E with 2 mW average power after a 2 mm entrance aperture of
the M-SPIDER apparatus was converted to two replicas E1 and E2 with a
delay time by means of a Michelson interferometer arm. Combined reference
and replica pulses were focused on a type II β-BaB2O4 (BBO) crystal with
50 µm thickness by an aluminum parabolic mirror (50 mm focusing length)
to produce a SPIDER signal E1 Ec + E2 Ec.

First (1), the interference signal (E1 + E2)2 of second-harmonic waves of
the replica was measured by blocking of the reference beam Ec and by the
45 degree rotation of the BBO crystal so that the delay time τd was obtained
to be 533.8 fs. This value was fixed for all the measurements of SPIDER
signals before and after chirp compensation as well as that for the fiber in-
put pulse. Next (2), the SPIDER signal was measured under the condition of
100 s accumulation time, and then (3) the two sum-frequency signals between
the replica and the reference, E1 Ec and E2 Ec, were measured under the
same accumulation condition to obtain spectral shear Ω/2π. The values of
the spectral shear were 2.45, 2.38 and 2.49 THz for the cases of the SLM-off
(before the feedback operation), the SLM-on (after the feedback operation)
and the fiber input, respectively. The slight difference among these values
may be due to a highly nonlinear chirp of the reference pulse. A theoreti-
cal relationship of Ω/2π = τd/φ̈, which is derived in the ideal case of the
linear-chirp pulse, is predicted to have a constant value of 2.30 THz. It was
confirmed that this slight difference hardly affects the reconstruction results
of the spectral phase and the temporal intensity profile. (4) After the spectral
phase was reconstructed by the first computer and was used as feedback to
the second computer, (5) the corresponding negative phase dispersion was
applied by the SLM controlled by means of the second computer to compen-
sate for the chirp. This laser system for pulse compression operated stably
for more than 1 h.

Figure 5.21(a) shows the fiber output spectrum with 20 mW average
power, which broadened from 658 to 889 nm for the 60 mW input average
power. The spectrum has split into two peaks at 760 and 818 nm with a sep-
aration of 28 THz. This spectral splitting is due to the effect of intrapulse
parametric four-wave mixing (ωp + ωp → ωs + ωas) occurring around the
zero-dispersion wavelength (ZDW) with phase matching, which was already
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Fig. 5.21. Modified SPIDER measurement in SLM-off case and imparted spectral
phase. (a) Pulse spectrum (solid line). (b) and (b’) SPIDER signal. (c),(d) replica
spectra. (e),(f) and (g) are reconstructed spectral phase (dashed line), temporal
intensity (solid line) and temporal phase (dashed line), respectively. (h) and (i)
are spectral phase imparted by SLM after feedback operation (dashed line) and its
folded phase (solid line), respectively [20]

reported for a photonic crystal fiber [3, 19, 23]. Figure 5.21(b)–(d) shows the
SPIDER signal and the two replica spectra of sum-frequency waves. This re-
sult for 2-mW-average-power pulses implies that the present M-SPIDER ap-
paratus has a sensitivity as high as 20 pJ/pulse (80 THz bandwidth), which is
the most highly sensitive apparatus ever developed by the SPIDER technique
to our knowledge. That is, the M-SPIDER technique has a higher sensitivity
than the recently proposed homodyne optical technique for SPIDER [24].
The reconstructed spectral phase and the reconstructed temporal intensity
and phase profiles are shown in Fig. 5.21(e)–(g). Since the frequency range
of the measured SPIDER signal and replica spectra was limited due to a
fixed grating angle of the ICCD spectrometer and feedback operation, the
spectral phase at the high (> 435 THz (= ωH/2π)) and low (< 362 THz
(= ωL/2π )) frequency wings was obtained by an extrapolation method on
the basis of quadratic frequency dependences at ωH(φ̈H = 2.08 × 103 fs2) and
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Fig. 5.22. Modified SPIDER measurement in SLM-on case. (a) Pulse spectrum
(solid line). (b) and (b’) SPIDER signal. (c),(d) replica spectra. (e),(f) and (g)
are reconstructed spectral phase (dashed line), temporal intensity (solid line) and
temporal phase (dashed line), respectively. (h) Calculated transform-limited pulse
profile (long-dashed line) [20]

ωL(φ̈L = 1.36 × 103 fs2). From Fig. 5.21(e), we see that the spectral phase
deviates from the sum of quadratic and cubic frequency functions, espe-
cially at around 395 THz (760 nm). The temporal pulse profile splits into
two peaks with a time separation of 330 fs. This large separation of two
pulse peaks causes the deviation from the similarity of the replica spectra
(Fig. 5.21(c)–(d); correspondingly the envelope spectrum of the SPIDER sig-
nal Fig. 5.21(b)) to the original pulse spectrum (Fig. 5.21(a)). The temporal
phase suggests a complicated, nonlinear up-chirp.

Figure 5.21(h) shows the phase dispersion applied by the SLM after the
feedback operation [8], which corresponds to the negative value of the spectral
phase in the SLM-off case (Fig. 5.21(e)). The SPIDER signal measured in the
case of the SLM-on, the replica spectra, the reconstructed spectra phase and
the reconstructed temporal intensity and phase profiles as well as the pulse
spectrum and its transform-limited pulse are shown in Fig. 5.22. The spectral
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phases at the high (> 450 THz (= ωH′/2π); φ̈H′ = 1.613×104 fs2) and low (<
362 THz (= ωL′/2π); φ̈L′ = 5.58 × 103 fs2) frequency wings were obtained by
a similar extrapolation method to the SLM-off case. The temporal intensity
profile (Fig. 5.22(f)) indicates that the 185 fs fiber-input pulse was compressed
to 16 fs with subpulses. This compressed pulse profile fairly corresponds to the
8 fs transform-limited one with subpulses. The 36 fs time separation between
the main pulse and one of the subpulses agrees with the inverse of the 28 THz
frequency difference between the two spectral peaks (Fig. 5.22(a)), suggesting
that the subpulses are due to the beat effect between their spectral compo-
nents. The slight difference between the compressed and transform-limited
pulse profiles may be due to the imperfect compensation of the rapidly vary-
ing spectral phase at the low and high frequency edges (Fig. 5.21(e)). This
occurs because the applied phase shift per one pixel at the edges exceeds π
radians (Fig. 5.21(i)). This problem will be solved by a suitable selection of
components of a 4-f phase compensator such as longer focal-length concave
mirrors, larger 1/d gratings and so on.

In 2004, we have succeeded in shorter pulse compression to 8.4 fs for TF
input pulses with a duration of 12 fs and an average power of 200 mW at a
75 MHz repetition rate [43].

5.2.3 Gas-Filled Hollow Fiber Experiment

Few-Optical-Cycle Pulse Generation

The key technologies to realize monocycle pulses are the generation of over-
one-octave ultrabroadband pulses, their phase and amplitude characteriza-
tion and precise phase compensation. The generation of sub-5.0 fs optical
pulses was achieved in recent years by several groups [1, 23, 25]. In 2002,
4 fs pulse compression in noncollinear optical parametric amplifiers (NOPAs)
with a bandwidth from 480 to 750 nm was reported [25,26]. However, further
compression using the NOPA technique is limited by the insufficient spec-
trum bandwidth and the difficulty in ultrabroadband phase matching and
compensation of the high-order spatial chirp. In addition, the filtering effect
of a nonlinear crystal in the employed second-harmonic generation frequency-
resolved optical gating (SHG-FROG) measurement results in a severe band-
width limitation. In this subsection, the experimental generation of sub-3-fs
optical pulses in the monocycle region will be introduced.

High pressure noble gas-filled hollow fiber is an attractive way of pro-
ducing ultrabroadband spectrum with intense laser pulses, with its advan-
tages of high transmission, long interaction length, and perfect spatial mode
(see Sect. 4.3.1). The noble gases offer the following important advantages:
(i) high threshold intensity for multiphoton ionization; (ii) pure electronic
third order nonlinearity for not extraordinarily high pressures; (iii) nonlin-
earity controlled by changing the gas pressures. In the argon-filled hollow
fiber, the nonlinear refractive index is n2/p = 9.8 × 10−24 m2/W atm [27],
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and the group velocity dispersion is k′′ ≈ 40 fs2/m [28]. The light propagates
in hollow fibers through grazing incidence reflection along the inner dielec-
tric surface of the fiber. For the hollow fiber, the lowest loss mode is EH11
hybrid mode, whose intensity cross section profile is given by a zero order
Bessel function I(r) = I0J

2
0 (2.405r/a), where I0 is the peak incident inten-

sity, a is the bore radius of the fiber. The real and the imaginary parts of the
propagation are given by [29]

β =
2π

λ

[
1 − 1

2

(
2.405λ

2πa

)2
]

(5.1)

α

2
=

(
2.405λ

2πa

)2
λ2

2a3

ν2 + 1√
ν2 − 1

(5.2)

where λ is the laser central wavelength in the gas medium and ν is the ratio
between the refractive indices of the external (fused silica) and the inner (gas)
media. The parameters that govern the bandwidth generated by self-phase
modulation (SPM) are: the fiber radius, the fiber length, the gas pressure
and the input pulse. The optimum fiber length Lopt is defined by [28]

Lopt ≈ 1.4
√

LDLNL (5.3)

where LD and LNL are the dispersion length and the nonlinear length, re-
spectively [28]. For Ar gas at a pressure of 3.3 atm, the group velocity disper-
sion is about 40 fs2/m. For the incident pulse energy of 200 µJ, pulse width
of 30 fs, the wavelength of 800 nm, and the fiber bore diameter of 100 µm,
LD = 22.5 m, LNL = 0.21×10−2 m, we have Lopt=30.2 cm. The actual length
was selected to be 34 cm.

For a Gaussian pulse, the maximum broadened bandwidth, either the low
or high frequency side, is given by [28]

δωmax = 0.86γP0zeff/τp (5.4)

where zeff = [1− exp (−αl)]/α, P0 the pulse peak power, τp the half width of
the pulse (at 1/e peak intensity), l the fiber length. The nonlinear coefficient
γ is defined as γ = n2ω0/c/Aeff , Aeff is the effective mode area. For argon
gas and the fiber diameter of 100 µm, Aeff=3.41×10−5 cm2, at the pressure
of 3 atm, and the peak power of 6.7 GW, the maximum bandwidth δωmax ≈
2.95 × 1015 rad/s, and δνmax ≈ 470 THz. This is slightly larger than the
measured 510 THz for the whole range. The overestimated bandwidth may
be attributed to the uncertainty of the quoted n2 value [27].

Although the spectral phase interferometry for direct electric-field recon-
struction (SPIDER) technique [10] has the potential of characterizing the
spectral phase which extends to over one octave, it has a low sensitivity
when measuring such ultrabroadband (low spectral density) signals. We de-
veloped a modified SPIDER (M-SPIDER) technique, which greatly improved
its sensitivity [8, 30] (see Sects. 4.3 and 4.4).
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On the other hand, it is difficult to compress broadband optical pulses
with an over-one-octave bandwidth by use of conventional passive chirp com-
pensators such as prism and/or grating combinations, chirped mirrors, be-
cause of their bandwidth limitation and high-order dispersion. 4-f phase com-
pensators with spatial light modulators have been shown to be flexible and
broadband phase compensators. The modulators include the liquid crystal
array (SLM) [1, 5, 22, 31, 32], acousto-optic modulator (AOM) [33], and de-
formable mirror (DM) [34]. All spatial-light-modulator phase-compensators
apply spatio-temporal distortions in the pulse, which are proportional to the
magnitude of the shaping.

Liquid crystal SLM is a superior candidate for a programmable phase
compensator of over-one-octave pulses. It has a transmission spectrum from
300 nm to 1500 nm. But it has dead spaces (see Sect. 3.2).

Acousto-optic modulators (AOMs) [33] have a very high number of effec-
tive “pixels” − the number of sound waves that fit across the aperture of the
crystal. However, the efficiency of AOM is less than other methods since it
relies on the diffracted light. In addition, AOMs have dispersion too large to
be used as compensators for ultrabroadband chirped pulses.

Deformable mirror [34] is a phase-only modulator. It has large pixels with-
out dead spaces, and is efficient, but it has the disadvantages of cumbersome,
imperfect phase calibration of the membrane deflection, low spatial and phase
resolutions and high deflection losses. There has been no sub-10-fs pulse re-
ported from the phase compensator with deformable mirrors [35,36] (except
for the combination with the other compensators in [26]) and AOMs [33].

We demonstrated that an SLM phase compensator enables us to com-
press pulses to sub 5–6-fs by inputting individual orders of dispersion into
the SLM [1, 31, 32] (see Sect. 3.3). It was expected that more precise phase
compensation by direct phase feedback technique (Sect. 5.1) leads to better
results. By the novel technique, we demonstrated a preliminary 4.0-fs optical
compression of output pulses from Ar-filled hollow fiber, as shown below [37].

The experimental setup is shown in Fig. 5.23. The output beam from a
Ti:sapphire laser amplifier system (pulse duration of <30 fs, center wave-
length at 790 nm, repetition rate of 1 kHz) was divided into two beams. One
beam with pulse energy of 230 µJ was coupled into a hollow fiber with 34-cm
length and 100-µm bore diameter, which was positioned in a chamber filled
with argon gas. The chamber had two 1-mm-thick fused-silica windows. The
other beam with pulse energy of 22 µJ was sent into the M-SPIDER as the
external reference beam.

After passing through the hollow fiber, the pulses (11.2 µJ energy) were
injected into an active phase compensator containing a specifically designed
liquid crystal SLM (number of pixels 648, pixel width 97 µm, gray-scale res-
olution 192), two aluminum coated gratings (blazing wavelength of 500 nm,
groove density of 150 lines/mm), and two concave mirrors (focal length of
350 mm). The output pulse (0.6 µJ energy, 470 to 1050 nm spectral broad-
ening (Fig. 5.25)) from the phase compensator was injected into the M-
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Fig. 5.23. System layout of direct feedback phase compensation for the 4-fs pulse
generation. GDD: 10-cm-long TF5 dispersive glass, L: focusing lens (f = 5 cm,
fused silica), FL: high pass filter, HF: hollow fiber (l = 340 mm, 2a = 100 mm)
PM1: parabolic mirror, BS1,BS2: 0.5-mm-thick beamsplitters, CM1,CM2: concave
mirrors (f = 350mm), G1,G2: reflective gratings (blazing wavelength λb = 500 nm,
150 lines/mm), BS: beamsplitter, PS: periscopes, FM: flip mirrors, FRAC: fringe-
resolved autocorrelator, SLM: liquid crystal spatial light modulator [37]

SPIDER. In the M-SPIDER, the two replicas with a delay time τ were pro-
duced by a Michelson interferometer. The replicas were up-converted with
the external reference chirped pulse, which passed through a 10-cm-long
TF5 glass twice, by a 10-µm-thick barium borate crystal (BBO; Type II,
68◦). The interferogram with a spectral shear Ω/2π was measured by a spec-
trometer (1200 lines/mm) with an intensified charge coupled device (ICCD;
1024×256 pixels). The experimental results are shown in Fig. 5.24. The spec-
tral shear Ω/2π was 2.63 THz, and the delay time τ was estimated at 887.2 fs
by measurements of the interference between replicas not-upconverted by
chirped pulses. The negative of the spectral phase measured by M-SPIDER
apparatus was applied by the liquid crystal SLM, After feedback phase com-
pensation, the reconstructed spectral phase was almost flattened (Fig. 5.25).
We found that the duration of compressed pulses is 4.0 fs (Fig. 5.26). We
couldn’t obtain further pulse shortening, although the duration of its Fourier
transform-limited pulse was evaluated to be 2.5 fs.
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System Improvement for Optical Pulse Generation
in Monocycle Regime

Since the light source was stable and the 4-f phase compensator had the
ability to compensate for chirp, the limitation in the previous subsection was
mainly attributed to measurement errors. Therefore, we clarified the problems
in our measurement apparatus thoroughly, and then demonstrated the 1.56
optical-cycle, 3.3-fs 1 pulse generation [7] using a significantly improved M-
SPIDER apparatus. In this subsection, we will mainly focus on the description
of this experiment.
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Fig. 5.24. Measured signals. (i) SPIDER signal and (ii), (iii) replicas before feed-
back compensation [37]

1 The pulse duration “3.4 fs” described in [7] was corrected to be “3.3 fs” as a result
of fine recalibration of measurement instruments.
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Fig. 5.26. Reconstructed pulse intensity and phase. Temporal intensities (i) before
and (ii) after feedbacks. (iii) Temporal phase after feedback. (iv) Fourier transform-
limited pulse intensity [37]

The essential needs for successful feedback are accurate measurement and
accurate phase compensation. We examined the error source in the previous
system [8,30,37] and made some important modifications (Fig. 5.27).

In SPIDER measurement, the phase difference contains a delay-dependent
linear term τ according to θ(ω) = φ(ω + Ω) − φ(ω) + ωτ [10]. The term ωτ
can be removed by measuring the delay of the two replica pulse pair. Let us
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Fig. 5.27. Improved M-SPIDER. BS1,BS2: 0.5-mm-thick wedged beamsplitters
(fused silica, 0.5◦), L1,L2: focusing lenses (fused silica, f = 5 cm) [7]

suppose that the delay time and the spectral shear have errors like τ + δτ ,
and Ω + ∆Ω, due to inaccurate measurements. We find that the influence
of these two parameters is different as shown below. For example, if τ is not
accurately determined, the resulting error in θ(ω) will appear to be term
of ωδτ :

θ(ω) = φ(ω + Ω) − φ(ω) + ωτ − ω(τ + δτ) ≈ Ω
dφ(ω)

dω
− ωδτ (5.5)

The resulted phase by integration of θ(ω) will be:

φ(ω) =
1
Ω

∫
θ(ω)dω +

δτ

2Ω
ω2 (5.6)

Clearly there is a quadratic phase error in the retrieved phase φ(ω). In
contrast, the error ∆Ω will only result in an amplitude error of the measured
phase φm(ω)

φm(ω) =
1

Ω + ∆Ω

∫
θ(ω)dω =

Ω

Ω + ∆Ω
φ0(ω) (5.7)

where φ0(ω) = (Ω)−1
∫

θ(ω)dω is supposed to be the correct phase. Since the
former additive error (δτ/2Ω)ω2 is serious compared with the latter multi-
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Fig. 5.28. Second-harmonic (SH) interferogram [7]

plicative error (−∆Ω/Ω)φ0(ω), we mainly concentrate our effort on increas-
ing the accuracy of τ .

As suggested by Walmsley [10], if there is a system error in the Michelson
interferometer, it will be best to measure the SPIDER signal for Ω = 0 and
to subtract it as a background. This can be achieved by measuring the second
harmonic (SH) interferogram between replicas since θSH(ω) = ωτ .

However, as the nonlinear crystal for the sum frequency generation in the
SPIDER was cut for the type II phase matching condition and not for type I
phase matching for the second harmonic generation (SHG) of the pulse pair.
To obtain the intense SH interferogram, the crystal has to be rotated for
type I phase matching. This also requires a fine realignment of the lens, the
detector and the slit, for the best signal intensity. This alignment will turn
the system conditions away from that for measuring the sum frequency waves
of SPIDER. To avoid the perturbation of the SPIDER measurement and to
get a reproducible signal, we built a separate optical path for the independent
alignment and measurement of the SH interferogram (Fig. 5.28). This enabled
highly reproducible measurements. The following improvements are also very
important:

1. We improved the beam splitters in the Michelson interferometer. We
found that the SPIDER interferogram was superimposed by the inter-
ference between front and back surface reflections of the beam splitters.
An anti-reflection coating on the backside should avoid this, however, it is
difficult to make an anti-reflection coating for over-one-octave bandwidth.
Therefore, we replaced them with wedged beam splitters with a thickness
of 0.5 mm, and a wedged angle of 0.5◦ (20% reflection and 80% trans-
mission for s-polarization from 400 to 1300 nm: fused silica substrate).
Consequently, the back reflection interference is completely eliminated.

2. We recalibrated the spectrometer. We calibrated the spectrometer using
a mercury lamp (less than 0.05 nm in the whole spectral range of 300
to 460 nm) at a sufficiently high accuracy. However, we found that the
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Fig. 5.29. Sum-frequency-wave spectra of replicas [7]

calibrated wavelength contains a nonlinear error that produces a very
small but not negligible distortion in measured spectral interference fringe
spacing. This error may cause an error of the delay time τ in the order of a
few femtoseconds that results in a group-delay dispersion error of several
tens of fs2. This error makes subtracting the ωτ from the measured phase
difference more crucial, rather than just determining the delay time τ
through the measured fringe period.

3. We significantly increased the SH signal intensity. The intensity of the SH
interferogram was very weak and it was difficult to measure over the same
wavelength range as in the SPIDER measurement. The input pulse has
a bandwidth from ∼470 to ∼1100 nm, corresponding to a SH signal from
∼235 to ∼550 nm. On the other hand, the SPIDER signal comes from 300
to 460 nm. The SH signal is too broad to cover the SPIDER wavelength
range. Therefore, we initially reduced the pressure of Ar gas from 3.0 to
0.8 atm so that the spectral range of the intensified SH interferogram is
roughly the same wavelength range as in the SPIDER (Figs. 5.28, 5.30
and 5.31).

4. Phase compensation with multiple feedbacks is very much required, es-
pecially in the case where the spectral shear Ω for each frequency com-
ponent cannot be regarded as a constant. This could happen when the
input pulse has a broader temporal width than the necessary ten percent
of the reference pulse width [10]. The first feedback could make the in-
put pulse narrow down such that the spectral shear Ω can be taken as a
constant. Then the second feedback with this Ω can remove the residual
errors. In general, n-multiple feedbacks rapidly decrease insufficiency of
phase compensation, which is due to any errors ∆Ω of the spectral shear,
according to

φn(ω) =
∣∣∣ ∆Ω

Ω + ∆Ω

∣∣∣nφ0(ω) (5.8)

where φ0(ω) and φn(ω) are the phases before and after n-times feedback
compensation, respectively.
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Fig. 5.31. SPIDER interferogram after 2nd feedback [7]

The following improvements had already been done in the experiments in
the previous subsection, but they are worth pointing out:

1. Since the pulse has an over-one-octave bandwidth, the first order diffrac-
tion of the gratings can overlap with the second order on the SLM. In the
4-f system, the second order diffraction can be modulated unexpectedly
by the SLM and reduces the accuracy of phase compensation. It was found
that the proper choice of a blazing wavelength could reduce the influence
of the second order diffraction on the output from the compensator. For
a spectrum of ∼470 – ∼1060 nm bandwidth, if the blazing wavelength is
chosen to be 500 nm, the intensity of the second order diffraction can be
reduced to only a few percent of the first order.

2. The use of the longer focal length (from f=200 mm in [1] to f=350 mm)
of two concave mirrors reduced the loaded bandwidth of each pixel (from
∆λ=3.0 to 1.9 nm) and hence the load of phase compensation per pixel.

Based on the above improvements, we conducted a further pulse com-
pression experiment. The experimental setup except pulse energy (fiber in-
put: 94 µJ, fiber output: 16 µJ, compensator output: 0.5 µJ, chirped reference
pulse: 2.4 µJ) was almost the same as in the previous subsection. Because
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Fig. 5.32. Measured intensity spectrum and reconstructed spectral phase with re-
spect to wavelength. (i) Intensity spectrum and spectral phases (ii) before feedback,
(iii) after 1st feedback and (iv) after 2nd feedback. (v) detail of (ii) [7]

the pulse had very broad bandwidths, it was necessary to take the signals
by five rotations of the grating in the spectrometer, which was automatically
controlled by a computer. The exposure time was 0.1 s×100 for each rotation.
The ICCD was synchronously gated for increasing the signal-to-noise ratio.

First, we measured the SH interferogram (Fig. 5.28) and then the SPIDER
signal (Fig. 5.30). The SH interferogram was used as ωτ for subtracting from
the SPIDER signal.

For determining the value of the spectral shear Ω/2π and checking the
validity of the SPIDER interferogram, we measured the spectrum of each
replica pulse. We found that both replica spectra became very similar to
the envelopes of the SPIDER signals over the whole spectral range from 300
to 460 nm (Figs. 5.29–5.31) and the pulse intensity spectrum (Fig. 5.32(i)),
which ensures the quality of SPIDER fringes. Figure 5.32(ii)–(v) is the re-
trieved spectral phase for before and after feedback compensation, with ωτ
subtracted. After two times feedback compensation, the spectral phase was
almost flat (curve (iv) in Fig. 5.32 and the enlarged section is curve (v)),
demonstrating the power of this feedback technique for extremely short pulse
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SPIDER measurement)

compression. The parameters τ and Ω/2π were confirmed to be 935 fs and
4.12 THz, respectively.

Figure 5.32(i) is the measured spectrum (475 to 1060 nm spectral broad-
ening) of the pulse output from the phase compensator. The retrieved tem-
poral intensity and phase of compensated pulses are shown in Figs. 5.33(ii)
and (iii) (and Fig. 5.33(i), before compensation). We found that side-lobes
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Fig. 5.35. Measured intensity spectrum and reconstructed spectral phases. (i)
Intensity spectrum. Spectral phases (ii) before, after (iii) 1st feedback and (iv)
2nd feedback. (v) detail of (iv)

were almost eliminated and the pulse duration was 3.3 fs, close to the 2.8 fs
transform-limited pulse with small side-lobes (Fig. 5.33(iv)). This pulse du-
ration corresponds to 1.6 cycles, for the central wavelength of 636.3 nm. This
pulse compression was also confirmed by an independent measurement of
fringe-resolved autocorrelation (FRAC) traces under the bandwidth limita-
tion (480–960 nm) by a slit on the SLM, although the small additional phase
(−20 fs2 for the group-delay dispersion and −20 fs3 for the third-order disper-
sion at 800 nm) was applied for optimization of FRAC measurement (which
was necessary for the difference between dispersion of optical components in
the SPIDER apparatus and that in the FRAC one (Fig. 5.34)).

Furthermore, we have recently succeeded to generate clean 2.8-fs, 1.5-
optical-cycle pulses nearly without side-lobes (Fig. 5.36(ii)) [42]. This has
been enabled by paying close attention to the following important points:
First, self-phase modulated pulses with a shorter and broader spectrum
(460 to 1060 nm: Fig. 5.35(i)) have been used as pulses to be feedback-
compensated. Second, the spectral phase function applied by the SLM has
been optimized by adding linear terms (a constant phase φ and a frequence-
independent group delay φ̇(ω0)) to reduce the phase-modulation load pixel
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of the SLM (such a modification does not influence the intensity time profile
at all). As a result, the structured spectral-amplitude modulation that some-
times occurs due to the 0-2π applied-phase jump in the shortest-wavelength
region (see Sects. 3.2 and 3.3), which disturbs the ability to get the robust
SPIDER signal in its wavelength region and hence makes it difficult to get
the reliable spectral phase of pulses, has been avoided completely. Third, the
exact alignment of the 4-f phase compensator has been done by a unique
procedure. That is, the 2nd-order wave (of the original input-pulse 1st-order
wave deflected by the input grating G1) deflected by the output grating G2
has interfered and overlapped angular-spatially with the 3rd-order wave (of
the original 2nd-order wave deflected by G1) deflected by G2 at the spatially
displaced position of the compensator output by moving slightly both the
distances of G2 and G1. Consequently, both the positions of the input G1
and output G2 gratings have been adjusted to make the 4-f configuration
precisely dispersion-free.

As shown in Fig. 5.35, the chirp of pulses has been almost completely com-
pensated for with only a slight fluctuation of the spectral phase over the entire
frequency range (Fig. 5.35(v)). The temporal intensity profile has been very
close to that of its Fourier-transform-limited pulse (2.75 fs) (Fig. 5.36(iii)).
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5.3 Characterization of Monocycle-Like Optical Pulses
Based on Wigner Distribution Function

Standard Fourier analysis manifests only the information in the time and
frequency domain. In good contrast to this, time-frequency distribution func-
tions enable us to intuitively interpret the characteristics of the pulse since
they can simultaneously describe the temporal and spectral behavior of opti-
cal pulses by showing time-resolved spectral structure or frequency-resolved
temporal structure. The Wigner distribution function (WDF) [38] is one of
these time-frequency distribution functions, and has a simple form. Thus, it
has been applied for the analysis of ultrashort pulses [39,40]. Here, character-
ization of monocycle-like pulses with over-one-octave bandwidths is discussed
on the basis of WDFs.

Time-Frequency Wigner Distribution Function for Electric Field

The real electric field E(t) can be decomposed into its complex electric field
E(+)(t) and E(−)(t) using the following relations:

Ẽ(ω) =
∫ ∞

−∞
dt eiωtE(t), (5.9)

E(+)(t) =
1
2π

∫ ∞

0
dω e−iωtẼ(ω), (5.10)

E(−)(t) =
1
2π

∫ 0

−∞
dω e−iωtẼ(ω), (5.11)

E(t) = E(+)(t) + E(−)(t) = 2Re[E(+)(t)]. (5.12)

Here, E(+)(t) and E(−)(t) are complex-conjugate with each other. This tem-
poral representation is related to a frequency representation by a Fourier
transform,

Ẽ(+)(ω) =
∫ ∞

−∞
dt eiωtE(+)(t), (5.13)

and vice versa (Inverse Fourier transform),

E(+)(t) =
1
2π

∫ ∞

−∞
dωe−iωtẼ(+)(ω). (5.14)

The Wigner distribution function for the complex electric field E(+)(t) in
the time domain is defined by
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W (t, ω) =
∫ ∞

−∞
dt′ eiωt′

E(+)(t + t′/2)E(+)∗(t − t′/2). (5.15)

An equivalent definition is possible using the electric field Ẽ(+)(ω) in the
frequency domain, and is written by

W (t, ω) =
1
2π

∫ ∞

−∞
dω′e−iω′tẼ(+)(ω + ω′/2)Ẽ(+)∗(ω − ω′/2). (5.16)

Equations (5.15) and (5.16) indicate that the Wigner distribution function is
a two-dimensional distribution function in the time-frequency domain. Hence
it takes into account both temporal and spectral properties of optical pulses.

Integrals of the Wigner distribution function over t and ω give intensity
functions as follows:

1
2π

∫ ∞

−∞
dωW (t, ω) =

∣∣E(+)(t)
∣∣2, (5.17)

∫ ∞

−∞
dtW (t, ω) =

∣∣Ẽ(+)(ω)
∣∣2, (5.18)

1
2π

∫ ∞

−∞
dω

∫ ∞

−∞
dtW (t, ω) = Epulse/2ε0c, (5.19)

where Epulse is the pulse energy and ε0, c are permittivity and velocity of light
in a vacuum, respectively. That is, the integrations with respect to ω, t, and
both ω and t represent the temporal intensity profile, the spectral intensity,
and the pulse energy (divided by 2ε0c), respectively.

For an electric field for an arbitrary pulse with the carrier frequency ω0
of

E(+)(t) =
∣∣E(+)(t)

∣∣ exp{−i[ω0t − ϕ(t)]}, (5.20)

in the time domain, which corresponds to

Ẽ(+)(ω) =
∣∣Ẽ(+)(ω)

∣∣ exp[iφ(ω)] (5.21)

in the frequency domain, the frequency averaged at time t is given by

〈ω〉t =
1
2π

∫ ∞

−∞
dω ωW (t, ω)

/
1
2π

∫ ∞

−∞
dωW (t, ω)

= ω0 − d
dt

ϕ(t)

≡ ω(t), (5.22)

where ω(t) is the instantaneous frequency.
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Similarly, the time averaged at frequency ω is given by

〈t〉ω =
∫ ∞

−∞
dt tW (t, ω)

/∫ ∞

−∞
dt W (t, ω)

=
d
dω

φ(ω). (5.23)

This is the frequency-dependent group delay (GD). Thus, Wigner represen-
tation directly expresses how the instantaneous frequency changes with the
time evolution and how the group delay varies with the frequency.

Time-Frequency Analysis of Monocycle-Like Optical Pulses
Using WDFs

We already demonstrated the generation of ultrabroadband optical pulses
(300–1000 nm) utilizing induced-phase modulation (IPM) as well as self-phase
modulation (SPM) in an argon-filled hollow fiber [41] (see Sect. 2.3), chirp
compensation of ultrabroadband optical pulses by only a spatial light mod-
ulator (SLM) [1] (see Sect. 3.3) and 3.3 fs, 1.56 optical-cycle pulse generation
with an over-one-octave bandwidth [7] (see Sect. 5.2). In the present section,
we analyze temporal and spectral properties of monocycle-like optical pulses
with over-one-octave bandwidth using WDFs, especially focusing attention
on the deviations from their Fourier transform-limited (TL) pulses. All the
monocycle-like pulses analyzed in this section were generated using the sys-
tem described in detail in Sect. 5.2. That is, the adaptive compression system
for 30-fs, 780-nm amplified pulses at a 1-kHz repetition rate consisted of an
Ar-filled hollow fiber, a feedback spectral-phase compensator with an SLM
and a spectral phase characterizer based on M-SPIDER [8].

We define the normalized Wigner distribution function by

W norm(t, ω) = W (t, ω)
/

1
2π

∫ ∞

−∞
dω

∫ ∞

−∞
dt W (t, ω). (5.24)

The integral with respect to t and ω satisfies

1
2π

∫ ∞

−∞
dω

∫ ∞

−∞
dt W norm(t, ω) = 1. (5.25)

Thus, W norm(t, ω)dtdω/2π represents ‘the intensity probability’ in the time-
frequency domain [t, t + dt] × [ω, ω + dω]/2π.

Figures 5.37–5.39 show typical results of phase compensation to obtain
monocycle-like optical pulses with over-one-octave bandwidths. Here, for
comparison, Wigner distribution functions W norm(t, ω) and W norm

TL (t, ω) of
a pulse and its corresponding TL pulse, respectively, are normalized by
Epulse/2ε0c as expressed by (5.24), where Epulse is their total pulse energy.
Hence the difference W norm

diff (t, ω)≡ W norm(t, ω) − W norm
TL (t, ω) denotes the
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Fig. 5.37.
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Fig. 5.38.
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Fig. 5.39.
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Fig. 5.37. (a) Spectral intensity (∼275 to ∼630THz) and spectral phase of a
4.0 fs-compressed pulse, (b) corresponding normalized WDF before phase compen-
sation, (c) corresponding normalized WDF W norm(t, ω) after phase compensation,
(d) normalized WDF W norm

TL (t, ω) for the corresponding TL pulse. Corresponding
temporal profiles (e) before (∼–330 to ∼210 fs) and (f) after phase compensa-
tion, and (g) temporal profile for the corresponding TL pulse. (h) W norm

diff (t, ω) ≡
W norm(t, ω) − W norm

TL (t, ω)

Fig. 5.38. (a) Spectral intensity (∼285 to ∼600THz) of a 3.7 fs-compressed pulse,
(b) corresponding normalized WDF before phase compensation, (c) correspond-
ing normalized WDF W norm(t, ω) after phase compensation, (d) normalized WDF
W norm

TL (t, ω) for the corresponding TL pulse. Corresponding temporal profiles (e)
before (∼–140 to ∼ 450 fs) and (f) after phase compensation, and (g) temporal pro-
file for the corresponding TL pulse. (h) W norm

diff (t, ω) ≡ W norm(t, ω) − W norm
TL (t, ω)

Fig. 5.39. (a) Spectral intensity (∼280 to ∼620THz) and spectral phase of a
3.3 fs-compressed pulse, (b) corresponding normalized WDF before phase compen-
sation, (c) corresponding normalized WDF W norm(t, ω) after phase compensation,
(d) normalized WDF W norm

TL (t, ω) for the corresponding TL pulse. Corresponding
temporal profiles (e) before (∼–300 to ∼220 fs) and (f) after phase compensa-
tion, and (g) temporal profile for the corresponding TL pulse. (h) W norm

diff (t, ω) ≡
W norm(t, ω) − W norm

TL (t, ω)

WDF deviation after phase compensation from the TL pulse and can be
compared with those of other pulses. Figure 5.37 shows a result of phase
compensation for a 4.0 fs-compressed pulse with an over-one-octave band-
width (from ∼275 to ∼630 THz). Figure 5.37(a) shows the spectral intensity
of the pulses with spectral phases before and after phase compensation. The
normalized Wigner distribution functions are depicted in Fig. 5.37(b), (c) and
(d) for the pulse before phase compensation, the pulse after phase compensa-
tion and the TL pulse, respectively. The corresponding temporal profile are
shown in Fig. 5.37(e), (f) and (g), respectively. The W norm

diff (t, ω) is shown in
Fig. 5.37(h). For the case before compensation, it is found from the nearly lin-
early inclined WDF ranging from ∼275 to ∼630 THz and ∼–330 to ∼210 fs,
or the almost quadratic spectral phase that the pulse has group-delay disper-
sion with a significantly large linear-chirp coefficient of ∼0.68 THz/fs. Corre-
sponding to the complicated structure of the temporal profile, the WDF also
is very complicated. After phase compensation to make the spectral phase
almost flat in the range of ∼300 to 540 THz, by the 4-f system with the SLM
based on the modified SPIDER measurement, a 4.0 fs pulse was obtained.
The normalized Wigner distribution function W norm(t, ω) or W norm

diff (t, ω) is
greatly asymmetric and indicates that slight third- or higher-order disper-
sion, which is seen from a trail of the local maxima (from ∼500 to ∼570 THz
and ∼5 to ∼60 fs) in W norm(t, ω) or W norm

diff (t, ω), remains. This gives a long
tail in the temporal pulse profile, particularly in the positive temporal region
(∼5 to ∼60 fs). Moreover, the large value in |W norm

diff (t, ω)| around t =0 corre-
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sponds to the deviation of the pulse duration from that of the TL pulse with
a duration of 2.5 fs.

Figure 5.38 indicates a different result of phase compensation for a
3.7 fs-compressed pulse with an over-one-octave bandwidth (from ∼285
to ∼600 THz). Figure 5.38(a) shows the spectral intensity of the pulses
with spectral phases before and after phase compensation. The normal-
ized Wigner distribution functions are depicted in Fig. 5.38(b), (c) and (d)
for the pulse before phase compensation, the pulse after phase compensa-
tion and the TL pulse, respectively. The corresponding temporal profiles are
shown in Fig. 5.38(e), (f) and (g), respectively. The W norm

diff (t, ω) is shown in
Fig. 5.38(h). For the case before compensation, it is found from the nearly
linearly inclined WDF ranging from ∼285 to ∼600 THz and ∼–140 to ∼
450 fs or the almost quadratic spectral phase that the pulse has group-delay
dispersion with a significantly large linear-chirp coefficient of ∼0.47 THz/fs.
After phase compensation to make the spectral phase comparatively flat in
the range of ∼300 to 520 THz, by the 4-f system with the SLM based on
the modified SPIDER measurement, a 3.7 fs pulse was obtained. The nor-
malized WDF W norm(t, ω) or W norm

diff (t, ω) is greatly asymmetric and quite
complicated. It also indicates that partial second-, third- and higher-order
dispersions, which are found from a trail of the local maxima (from ∼510 to
∼520 THz and ∼5 to ∼35 fs, ∼470 to ∼510 THz and ∼5 to ∼35 fs, and ∼460
to ∼510 THz and ∼–20 to ∼–5 fs) in W norm(t, ω) or W norm

diff (t, ω), are left in
the whole temporal range. This results in subpulses in ∼–20 to ∼30 fs range.

Figure 5.39 shows another different result of phase compensation for a
3.3 fs-compressed pulse with an over-one-octave bandwidth (from ∼280 to
∼620 THz). Figure 5.39(a) shows the spectral intensity of the pulses with
spectral phases before and after phase compensation. The normalized WDFs
are depicted in Fig. 5.39(b), (c) and (d) for the pulse before phase compensa-
tion, the pulse after phase compensation and the TL pulse, respectively. The
corresponding temporal profiles are shown in Fig. 5.39(e), (f) and (g), respec-
tively. The W norm

diff (t, ω) is shown in Fig. 5.39(h). For the case before compen-
sation, it is found from the nearly linearly inclined WDF ranging from ∼280 to
∼620 THz and ∼–300 to ∼220 fs or the almost quadratic spectral phase that
the pulse has group-delay dispersion with a significantly large linear-chirp
coefficient of ∼0.65 THz/fs. In good contrast to results for 4.0 fs- and 3.7 fs-
compressed pulses, for a 3.3 fs-compressed pulse, W norm(t, ω) or W norm

diff (t, ω)
is comparatively symmetric and |W norm

diff (t, ω)| has the small value in the whole
temporal and frequency range. Whereas the values of W norm

diff (t, ω) for the 4.0
and 3.7 fs-compressed pulses range from –1 to 0.8, the 3.3 fs-compressed pulse,
in good contrast, ranges only from –0.7 to 0.6. This means the phase com-
pensation for the 3.3 fs-compressed pulse was much better performed. It is
found that the second-order dispersion around ∼480 to ∼550 THz and ∼–20
to ∼20 fs region is slightly left. This gives the small pedestal in the ∼–20 to
∼20 fs region of the temporal profile.
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Conclusively, the normalized difference W norm
diff (t, ω) sensitively, intuitively

and usefully gives more detailed time-frequency information than other rep-
resentations, especially for monocycle-like pulses which are almost ultimately
close to the corresponding TL pulses. Even for pulses which are ultimately
close to the TL pulse and have very small temporal pedestals, from WDFs we
can see the fine time-frequency structures that are attributed to the temporal
pedestals. On the basis of the fine time-frequency structures in WDFs, we
can perform phase compensation using the SLM by concentrating on only the
corresponding frequency regions to remove the pedestals and compress the
pulses more. With the incorporation of this WDF analysis into the feedback
phase compensation process, this technique is useful in the stage where the
temporal pulse profiles, after several steps of feedback phase compensation
over the whole frequency range, hardly change.

5.4 Conclusion

An advanced photonic system was created by combining a programmable
SLM technique for spectral phase control (Chap. 3) and highly sensitive
M-SPIDER for spectral phase characterization (Chap. 4), both of which
have capabilities of quasi-real-time operation and a one-octave exceeding
bandwidth in the near infrared to visible, near-ultraviolet region. The so-
phisticated system enables us to adaptively compensate for various kinds of
complicated spectral phases φ(ω) over the frequency range of the more-than
three-hundred THz bandwidth. That is, this direct feedback technique with-
out using the conventional Taylor expansion method for the spectral phase
φ(ω) was successfully applied for different chirped pulses from the glass fiber
SPM output, the glass fiber IPM output, the photonic crystal fiber SPM out-
put, the tapered fiber SPM output and the hollow fiber SPM output, whose
spectral phases were unknown. Consequently, all the compensated pulses in-
dicated the nearly transform-limited ones within the pulse durations from 2.8
to 20 fs (corresponding to 460–1060 nm to 740–860 nm spectral broadening)
at the few feedback operations. It should be noted that the 2.8-fs, 1.5-cycle
pulses generated by compensation for the hollow fiber output are the shortest
optical pulses with a single clean profile in the near-infrared to the visible
wavelength region to the best of our knowledge

For such extremely short and broadband pulses in the mono-cycle region,
the Wigner function analysis quantitatively provided the detailed information
on the time-frequency dynamic behavior.

This computer-controlled ultrabroadband phase compensator, which is
an adaptive apparatus of the next generation, has significant potential for
wide availability, automatic adjustability, high accuracy and robust opera-
tion. That is, the spectral phase feedback controller will become a greatly
convenient tool even for those who are unfamiliar with the optics field. More-
over, the present technique can be extended to an automatic generator of
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Fig. 5.40. Intuitive concept of optical-wave musical instrument and/or optical
function generator. That is arbitrary time-sequential, automatic manipulator of
optical electric-field wavepackets

high-power monocycle pulses by use of IPM output from a hollow fiber [41],
and an arbitrary time-sequential, automatic manipulator of optical electric-
field wavepackets such as an optical function generator. Thus, an optical-wave
musical instrument (Fig. 5.40) similar to an ordinary acoustic-wave musical
instrument will open new fields in quantum state control technology, infor-
mation technology, ultrafast coherent engineering technology for biomolecular
dynamics as well as nanometer phenomena and so on.

One of the authors (M. Yamashita) thanks M. Hirasawa for his experi-
mental works concerning conventional glass fibers.
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6 Field Manipulation
of Ultrabroadband Optical Pulses

R. Morita and Y. Toda

6.1 Principle and Theory

To obtain a terahertz-rate pulse train using a pulse shaping technique, pe-
riodic spectral phase modulation is used [1–3]. Here, the typical periodic
spectral phase modulation of the binary code periodic phase modulation and
trigonometric-function phase modulation are described.

The real electric field E(t) can be decomposed into its complex electric
field E(+)(t) and E(−)(t) using the following relations:

Ẽ(ω) =
∫ ∞

−∞
dt eiωtE(t), (6.1)

E(+)(t) =
1
2π

∫ ∞

0
dω e−iωtẼ(ω), (6.2)

E(−)(t) =
1
2π

∫ 0

−∞
dω e−iωtẼ(ω), (6.3)

E(t) = E(+)(t) + E(−)(t) = 2Re[E(+)(t)]. (6.4)

Here, E(+)(t) and E(−)(t) are complex-conjugate with each other. This tem-
poral representation is related to a frequency representation by a Fourier
transform,

Ẽ(+)(ω) =
∫ ∞

−∞
dt eiωtE(+)(t), (6.5)

and vice versa (Inverse Fourier transform),

E(+)(t) =
1
2π

∫ ∞

−∞
dωe−iωtẼ(+)(ω). (6.6)

For the spectral phase modulation function m̃(ω), the spectral amplitude
of the complex electric field Ẽ

(+)
m (ω) after spectral phase modulation is ex-

pressed as
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ω

φ (ω)

φ∆

0

N∆ωpix

M∆ωpix

Fig. 6.1. Phase for modulation of binary-code periodic modulation. A frequency
period of the modulation is composed of M pixels for modulation and N pixels for
non-modulation

Ẽ(+)
m (ω) = m̃(ω)Ẽ(+)(ω). (6.7)

Hence, the complex electric field E
(+)
m (t) in the time domain corresponding

to Ẽ(+)(ω) is given by

E(+)
m (t) = m(t) ∗ E(+)(t) ≡

∫ ∞

−∞
dt′m(t − t′)E(+)

m (t′), (6.8)

where m(t) is the inverse Fourier transform of m̃(ω) and the symbol ∗ denotes
the convolution integral. Therefore, the real electric field Em(t) after spectral
phase modulation is yielded by

Em(t) = 2Re[E(+)
m (t)] = 2Re[m(t) ∗ E(+)(t)]. (6.9)

Binary-Code Periodic Phase Modulation

Let us now consider the spectral phase modulation by periodic binary codes
as follows:

m̃(ω) = exp[iφ(ω)], (6.10)

R(ω) =
{

1, (|ω| ≤ M∆ωpix/2),
0, (|ω| > M∆ωpix/2), (6.11)

φ(ω) = ∆φ

∞∑
n=−∞

R(ω − n(M + N)∆ωpix), (6.12)

where the non-negative integers M and N represent the number of mod-
ulated and unmodulated pixels of the SLM, and ∆φ is the magnitude of
the binary modulation, as described in Fig. 6.1. The parameter ∆ωpix is the
loaded bandwidth for each pixel of the SLM. In a strict sense, ∆ωpix is not
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constant, but ∆ωpix is assumed to be constant here for simplicity. Thus m̃(ω)
can be written by

m̃(ω) = 1 + [exp(i∆φ) − 1]
∞∑

n=−∞
R(ω − n(M + N)∆ωpix). (6.13)

Using the period of the spectral phase modulation defined by

Ω = (M + N)∆ωpix, (6.14)

the inverse Fourier transform of R(ω − n(M + N)∆ωpix) = R(ω − nΩ) is

F−1[R(ω − n(M + N)∆ωpix)] = F−1[R(ω − nΩ)]

=
1
2π

∫ ∞

−∞
dωR(ω − nΩ) =

1
2π

exp(−inΩ)
∫ ∞

−∞
dωR(ω)

=
M∆ωpix

2π
exp(−inΩ)sinc

(
M∆ωpix

2
t

)
, (6.15)

where the sinc-function is defined by

sincx =
sin x

x
. (6.16)

By using the Fourier series of the Dirac delta-function δ(x) for the region of
x ∈ [−π, π], the formula

∞∑
n=1

cos nx = πδ(x) − 1
2

(6.17)

is derived and it can be expanded to the region of x ∈ (−∞,∞), owing to its
periodicity of 2π, as

∞∑
n=1

cos nx = π

∞∑
n=−∞

δ(x − 2nπ) − 1
2
. (6.18)

Thus, the summation
∑∞

n=−∞ exp(−inΩt) for the region t ∈ (−∞,∞) can
be written in the form of the Dirac delta-function as

∞∑
n=−∞

exp(−inΩt) = 1 + 2
∞∑

n=1

cos(nΩt) =
2π

Ω

∞∑
n=−∞

δ

(
t − 2nπ

Ω

)
.

(6.19)

Thus, from (6.13)–(6.15) and (6.19), the inverse Fourier transform of m̃(ω)
is yielded by
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m(t) = F−1[m̃(ω)]

= δ(t) +
M

M + N
[exp(i∆φ) − 1] sinc

(
M∆ωpix

2
t

) ∞∑
n=−∞

δ

(
t − 2nπ

Ω

)
.

(6.20)

Hence, from (6.8), the complex electric field E
(+)
m (t) after spectral phase

modulation is given by

E(+)
m (t)

= E(+)(t) +
M

M + N
[exp(i∆φ) − 1]

∞∑
n=−∞

sinc
(

nπM

M + N

)
E(+)

(
t − 2nπ

Ω

)
.

(6.21)

Thus, it is seen that, when the pulse duration of the complex electric field
tp is much less than T ≡ 2π/Ω = 2π/(M + N)∆ωpix, a pulse train with
the repetition rate of T is obtained. The highest repetition rate is limited to
the total pixel number of SLM or the pulse duration of the shaped pulses. In
contrast, the lowest repetition rate is determined by the time window of the 4-
f pulse shaper system as described in Chap. 3. In addition, the intensity of the
nth pulse at t = nT is modulated by the factor of sinc2(nMΩT/2(M + N)).
The durations of the constituent pulses are the same as that of the input
pulse. Hence when a Fourier-transform-limited pulse is used as an input, the
pulse train composed of the Fourier-transform-limited pulses is generated.

Here, it is assumed that the loaded bandwidth ∆ωpix in frequency for
each pixel of the SLM is constant. Strictly speaking, from the theory of pulse
shaping for ultrabroadband pulses, whereas the loaded bandwidth ∆λpix in
wavelength for each pixel of the SLM is constant, the loaded bandwidth
∆ωpix in frequency is a non-constant function of ω. This should be taken into
account in the case of pulse shaping for ultrabroadband pulses.

Trigonometric-Function Phase Modulation

Here, we consider the trigonometric-function spectral phase modulation and
define the spectral phase modulation function as

m̃(ω) ≡ exp[iφ(ω)] = exp(iA cos ωT ), (6.22)

as shown in Fig. 6.2. Using the formula of the Bessel function Jn(z)

exp(iz sin θ) =
∞∑

n=−∞
Jn(z) exp(inθ), (6.23)

m̃(ω) is written by
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Fig. 6.2. Phase for modulation of trigonometric-function modulation of φ(ω) =
A cos(ωT )

m̃(ω) =
∞∑

n=−∞
Jn(A) exp

[
in

(
ωT +

π

2

)]
. (6.24)

Hence the inverse Fourier transform of m̃(ω) is

m(t) = F−1[m̃(ω)] =
∞∑

n=−∞
Jn(A) exp

(
i
nπ

2

)
δ(t − nT ). (6.25)

Therefore, from (6.8), the complex electric field E
(+)
m (r) in the time domain

after the spectral phase modulation is given by

E(+)
m (t) =

∞∑
n=−∞

Jn(A) exp
(
i
nπ

2

)
E(+)(t − nT ). (6.26)

When the pulse duration of the complex electric field tp is much less than T ,
the pulse train with the repetition rate of T−1 is obtained and the intensity of
the nth pulse at t = nT is modulated by the factor of [Jn(A)]2. The durations
of the constituent pulses are the same as that of the input pulse. Hence
when a Fourier-transform-limited pulse is used as an input, the pulse train
composed of the Fourier-transform-limited pulses is generated. Of course, the
spectral phase modulation by SLM is discretized because of its finite pixel
size. However, the loaded bandwidth for each pixel is usually much less than
the whole bandwidth of the pulse to be shaped. Thus, (6.26) well explains
the experimental results using the SLM. By adjusting the parameter T , pulse
trains with a desired repetition rate are obtained. In practice, the highest
repetition rate of the shaped pulse train is limited to be in the order of a
tenth of the bandwidth of the pulse to be shaped, and the lowest repetition
rate is roughly determined by twice loaded bandwidth in frequency for each
pixel of the SLM or the time window.
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6.2 Two-Color Beam Generation
with Tunable THz-Pulse Trains

In this section, simultaneous coherent multicolor pulse shaping using a two-
dimensional spatial light amplitude- and phase-modulator is demonstrated.
Our experimental setup for simultaneous coherent multicolor pulse shaping
is shown in Fig. 6.3. The light source that we used was a multi-pass 1-kHz
Ti:sapphire amplifier, which can produce pulses having a duration of 30 fs
centered at 780 nm and energy up to 1 mJ. A pulse of energy of 160 µJ was
focused by a 200-mm-focal spherical lens L into an argon-filled glass capil-
lary fiber with an inner diameter of 140 µm and a length of 600 mm. The
fiber was located in a high-pressure chamber with 1-mm-thick uncoated sap-
phire windows. In the same manner as our previous reports [12–14], owing
to self-phase modulation at the gas pressure of 2.0 bar, an almost continuum
pulse broadened from 600 to 850 nm was produced as shown in Fig. 6.4. After
propagating in the fiber, the beam was collimated by a spherical mirror SM
with a focal length of 200 mm. The output mode was circular (fundamental
mode) and pulse energy is around 38 µJ corresponding to 13% coupling effi-
ciency. This somewhat lower efficiency attributed to losses of non-AR-coated
sapphire windows and bending and surface-roughness of the capillary fiber.
The output pulse was measured to be longer than ∼ 200 fs full width at half-
maximum (FWHM) with strong chirp (the prism compensator surrounded
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Fig. 6.3. Experimental setup for simultaneous coherent multicolor pulse shaping.
L: spherical lens; SM: spherical mirror; M1-M10: plane mirrors; BS: beam splitter;
G1, G2: gratings; CL1: concave cylindrical lens; CL2-4: convex cylindrical lenses;
2D-SLM: two-dimensional spatial light phase modulator with a spatial filter; P1,
P2: prisms; RM: roof mirror
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Fig. 6.4. Broadened spectrum by self-phase modulation in an Ar-gas filled fiber
before amplitude and phase modulation for two-color beam generation with tunable
THz-pulse trains

by the dashed line in Fig. 6.3, which was set later for three-color simultane-
ous pulse shaping, was not used for two-color simultaneous pulse shaping).
This spectrally-broadened laser beam was spread in the vertical direction and
collimated by a cylindrical lens pair CL1 and CL2 with the focal lengths of
−20 and 70 mm. The vertically-spread beam was guided into the 4-f sys-
tem consisting of two diffraction gratings G1 and G2 with a grating constant
d = 1/600 mm, cylindrical lenses CL3 and CL4 with a focal length f =150 mm
and a two-dimensional (2D) spatial light phase modulator (SLM) with 648
× 4 pixels. The pixel size of the SLM was 2 mm × 97 µm and the inter-pixel
gap is 5 µm. The 2D SLM was accompanied with a spatial filter in order
to modulate amplitudes or select the spectral components, independently in
the vertical direction. After the selection of spectral components, by making
phase modulation using 2D SLM, pulses whose center wavelengths were dif-
ferent from one another in the vertical direction were shaped independently
and simultaneously. After simultaneous multicolor pulse shaping, vertically-
independent pulses were characterized by the intensity cross-correlator with
a pre-shaped pulse directly split from the laser amplifier by a beam splitter
BS (transmission 99: reflection 1), using a 100 µm-thick β−barium borate
crystal.

A typical example of simultaneously shaped two-color pulse trains using
648 × 4 pixels of the SLM is shown in Fig. 6.5. Figure 6.5(a) and (c) indi-
cate the intensity cross-correlation trace and the spectrum of a vertically-
independent shaped pulse in the upper two horizontal lines of the SLM, re-
spectively. Figure 6.5(b) and (d) indicates the intensity cross-correlation trace
and the spectrum of a vertically-independent shaped pulse in the lower two
horizontal lines of the SLM, respectively. The patterns of phase modulations,
being typical periodic binary code patterns, were (111000) for the upper and
(10) for the lower lines. Here, 0 and 1 represent to 0- and 1.1π-phase modu-
lation for each frequency component, respectively. The pulse intervals of the
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Fig. 6.5. (a) Intensity cross-correlation trace and (c) spectrum of a simultaneous
coherent multicolor shaped pulse with a center wavelength λ1 = 760 nm in the
upper side of the SLM. (b) Intensity cross-correlation trace and (d) spectrum of a
simultaneous coherent multicolor shaped pulse with a center wavelength λ2 = 670
nm in the lower side of the SLM

shaped pulse trains are 330 fs for the upper and 800 fs for the lower side. They
correspond to repetition rates of 3.0 and 1.3 THz (100 and 42 cm−1), respec-
tively. The center wavelengths after passing through the spatial filter were
λ1 = 760 nm (ω1/2π = 13160 cm−1) for the upper and λ2 = 670 nm (ω2/2π =
14930 cm−1) for the lower side. This corresponds to a frequency difference of
|ω1 −ω2|/2π = 1770 cm−1. The loaded bandwidth ∆λ in wavelength for each
pixel of the SLM was evaluated to be 1.0 nm. Thus theoretically expected
repetition rates for shaped pulses are 3.0 and 1.3 THz, respectively, for the
upper and lower sides. They well agree with those obtained experimentally.

The time window for the wavelength λ component of the normal incident
beam to the grating for our 4-f system with an input beam diameter ω0 of
10 mm was evaluated to be over 10 ps from (3.23). However, since the n-th
shaped pulse intensity was modulated by a factor of [sin(1.1nρπ)/(1.1nρπ)]2

and became low at the large |n|, only the temporal range from ∼ −1 to ∼ 1 ps
are shown in Fig. 6.5. Here, ρ = M/(M + N) where M and N are numbers
of modulated and nonmodulated pixels, respectively, in a periodical phase-
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modulation pattern. The pulse at time t = 0 is labeled as n = 0, and the pulse
for t > 0 and t < 0 are labeled as n = 1, 2, 3 . . . and n = −1,−2,−3, . . . ,
respectively. The obtained repetition rates were limited by the duration of
constituent pulses that equals to the duration of the pre-shaped pulses. The
asymmetry of the shaped-constituent pulses was considered to be due to
that of the pre-shaped pulses. The strong chirp of the pre-shaped pulse and
the spectral slicing by the spatial filter resulted in the somewhat weak cross
correlation signals.

Although the SLM was not used for chirp compensation here, we can addi-
tionally modulate the phase using the SLM for chirp compensation as well as
for pulse shaping. Using our experimental setup with the d =1/600 mm grat-
ing pair, the f =150 mm lens pair and the 66 mm-wide SLM, we can perform
a pulse shaping of up to 392 THz-bandwidth (455–1125 nm) coherent optical
pulses which are generated through self- and induced-phase modulation. Our
simultaneous coherent multicolor pulse shaping technique has an advantage
that the repetition rate and the center frequency can be almost arbitrarily
controlled. In addition, our technique has two remarkable features unlike a
technique using a 1D SLM as follows; the simultaneously shaped multicolor
beams are spatially separated and the frequency components of shaped pulses
can be overlapped partially or perfectly. This technique becomes a powerful
tool for a quantum interference experiment for example, where shaped opti-
cal pulses are needed to be partially-spectrally overlapped with each other
having different instantaneous frequency evolutions and different propagation
direction.

6.3 Three-Color Beam Generation
with Tunable THz-Pulse Trains

To increase the power of the multicolor simultaneously-shaped pulses, the sys-
tem was improved by adding the prism compensator (surrounded by dashed
lines in Fig. 6.3). The pair of prisms used were made of quartz. The apex angle
was 67◦. The separation of the prisms was set to be 600 mm. Thus, through
simultaneous three-color shaping, three-color generation with tunable THz-
pulse train was demonstrated. The primary part of the experimental setup
for the simultaneous three-color shaping is depicted in Fig. 6.6(a).

A pulse of the energy of 210 µJ was focused by a 200-mm-focal spherical
lens into an argon-filled glass capillary fiber with an inner diameter of 140 µm
and a length of 600 mm. The pressure of the argon gas was 2.0 bar. The pulse
was spectrally broadened 500 to 900 nm thanks to the self-phase modulation
effect, as shown in Fig. 6.7. The output pulse from the fiber was spread in
the vertical direction and collimated by a cylindrical lens pair CL1 and CL2
with the focal lengths of −20 and 70 mm. The vertically-spread beam was
guided into the 4-f system consisting of two diffraction gratings G1 and G2
with a grating constant d =1/600 mm, cylindrical lenses CL3 and CL4 with a
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Fig. 6.6. (a) Primary part of the simultaneous three-color shaping setup. M: plane
mirrors (corresponds to M5 and M6 in Fig. 6.3); G1, G2: gratings; CL1: concave
cylindrical lens; CL2-4: convex cylindrical lenses; 2D-SLM: two-dimensional spatial
light phase modulator with a spatial filter. (b) The Fourier plane projected on the
SLM. (c) Individual and simultaneous spatial filtering and phase modulation on
the SLM

focal length f =150 mm and a 2D SLM with 648 × 4 pixels. The pixel size of
the SLM was 2 mm × 97 µm and the inter-pixel gap was 5 µm. The 2D SLM
was accompanied with a spatial filter in order to modulate amplitudes or
select the spectral components independently in the vertical direction. After
the selection of spectral components, by making phase modulation using 2D
SLM, pulses whose center wavelengths were different from one another in the
vertical direction were shaped independently and simultaneously. In the case
of the simultaneous three-color pulse shaping, on the Fourier plane projected
on the SLM (Fig. 6.6(b)), the spectral slicing was done by the spatial filter
as follows. The first and second horizontal lines were used for the middle and
the shorter wavelength region, respectively. The third and fourth lines were
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Fig. 6.8. (a) Intensity cross-correlation trace and (d) spectrum of a simultaneous
coherent multicolor shaped pulse with a center wavelength λ1 = 692 nm passing the
first horizontal line on the SLM. (b) Intensity cross-correlation trace and (e) spec-
trum of a simultaneous coherent multicolor shaped pulse with a center wavelength
λ2 = 619 nm passing the second horizontal line on the SLM. (c) Intensity cross-
correlation trace and (f) spectrum of a simultaneous coherent multicolor shaped
pulse with a center wavelength λ3 = 765 nm passing the third and fourth horizontal
lines on the SLM
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used for longer wavelength region to compensate for the weakness in the cross
correlation signal in the longer wavelength region, as depicted an Fig. 6.6(c).

A typical example of simultaneously shaped three-color pulse trains using
648 × 4 pixels of the SLM is shown in Fig. 6.8. The intensity cross-correlation
trace and the spectrum of a vertically-independent shaped pulse using the
first horizontal line of the SLM are depicted in Fig. 6.8(a) and (d), respec-
ticely. The pattern of the phase modulations was a periodic binary pattern
of (1100). Here, 0 and 1 represent to 0- and 1.1π-phase modulation for each
frequency component, respectively. The pulse interval of the shaped pulse
train was 400 fs corresponding to the repetition rate of 2.5 THz. The center
frequency λ1 was 692 nm (ω1/2π = 14450 cm−1).

Figure 6.8(b) and (e) shows the intensity cross-correlation trace and the
spectrum of a vertically-independent shaped pulse using the second horizontal
line of the SLM, respectively. The pattern of the phase modulations was a pe-
riodic binary pattern of (1110). The pulse interval of the shaped pulse train
was 300 fs corresponding to the repetition rate of 3.3 THz. The center fre-
quency λ2 was 619 nm (ω2/2π = 16160 cm−1). The intensity cross-correlation
trace and the spectrum of a vertically-independent shaped pulse using the
third and fourth horizontal lines of the SLM are indicated in Figs. 6.8(c) and
(f), respectively. The pattern of the phase modulations was a periodic binary
pattern of (10). The pulse interval of the shaped pulse train was 1000 fs cor-
responding to the repetition rate of 1.0 THz. The center frequency λ3 was
765 nm (ω1/2π = 13070 cm−1). From the loaded bandwidth ∆λ in wave-
length of 1.0 nm for each pixel of the SLM, theoretically expected repetition
rates for shaped pulses are 2.5, 3.1 and 1.0 THz, respectively, for the upper,
middle and lower sides. Their agreement with those obtained experimentally
was excellent. Fig. 6.8 shows only in the range of ∼ −1 to ∼ 1 ps owing to
the same reason as the one mentioned in the case of the two-color experi-
ment. The frequency differences in this case were |ω1 −ω2|/2π = 1710 cm −1,
|ω2 − ω3|/2π = 3090 cm −1, and |ω3 − ω1|/2π = 1380 cm −1.

The present maximum repetition rates are limited by the same reason as
the one in the case of the two-color experiment. However, when we addition-
aly modulate the phase using the SLM for chirp compensation as described
in Chap. 3, as well as for pulse shaping, these limitations will be solved.
Then, using our experimental setup with the d = 1/600 mm grating pair,
the f = 150 mm leans pair, the 66 mm-wide SLM and the center wavelength
λ0 = 790 nm, from (3.15), we shall be able to perform a pulse shaping of
up to 430 THz-over-octave-spanning-bandwidth (430–1150 nm) coherent op-
tical pulses which are generated through self- and induced-phase modulations
[14]. In addition, we shall be able to generate up to ∼ 200 THz-repetition rate
pulse trains with up to four different center wavelengths and bandwidths.
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6.4 Application for Vibrational Motion Control
of Molecules

6.4.1 Principle and Theory

The recent development of ultrafast technology has enabled us to gener-
ate optical pulses whose duration is shorter than the molecular vibration or
rotation period. Typical values of the vibrational or rotational period cor-
responding to the Stokes shift in many Raman scattering media are of the
order of 10−13 − 10−14 s. This means that with the use of laser pulses whose
duration is ∼10–100 fs, many Raman modes can be excited in a time-resolved
stimulated Raman scattering (SRS) experiment simultaneously [4–6], but not
selectively. On the other hand, selective excitation of a specific Raman mode
or quantum control of molecular motion with a high time resolution has been
carried out using femtosecond shaped optical pulse sequences (consisting of
N -pulse trains) whose repetition rate are equal to their vibrational or ro-
tational frequency [7, 8]. In addition, an analysis of this selective excitation
with the N -pulse train has been done only under the assumption that each
constituent pulse is a δ-function in time [9, 10]. However, a more realistic
analysis of the selective excitation with the N -pulse train consisting of pulses
with a finite duration is essential for proper analysis of experimental results.

In this section, it is shown that the practical analysis of selective excitation
of molecular vibration or rotation using an N -pulse train with finite pulse du-
ration leads to a low selectivity or efficiency due to the envelope spectral mod-
ulation arising from the finite pulse duration [11]. In order to overcome this
problem we propose an ultrafast vibrationally-synchronized pumping tech-
nique with frequency-difference resonance where not only the pulse repetition
rate (T−1) but also the center frequency difference ((ω1 − ω2)/2π) between
carrier phase-locked two-color femtosecond-pulse-train beams are tuned to
the corresponding resonance frequency (ωR,int/2π) of a specific vibrational
or rotational mode. With this detailed analysis that accounts for the finite
pulse duration, it is demonstrated that this novel technique allows efficient
selective excitation.

Principle

Here we propose a vibrationally-synchronized pumping technique with fre-
quency-difference resonance for efficient selective molecular vibrational or
rotational excitation that can be applied up to the high-frequency region.
The basic concept of the vibrationally-synchronized pumping technique with
frequency-difference resonance is that both the center frequency difference
and the repetition rates of two-color N -pulse train beams can be simultane-
ously tuned to the resonance of a specific molecular vibrational or rotational
frequency of interest. For example, this vibrationally-synchronized pumping
technique with frequency-difference resonance can be implemented as shown
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Fig. 6.9. Schematic diagram of the vibrationally-synchronized pumping technique
with frequency-difference resonance [11]

in Fig. 6.9. After the amplified femtosecond optical pulses are spectrally-
broadened by self- or induced-phase modulation [12–14], they are guided
into a two-dimensional (2D) pulse shaper consisting of a 4f -system in which
a 2D spatial light amplitude- and phase-modulator are located in the Fourier
plane. By use of this 2D-pulse shaper, simultaneous two-color pulse shaping
is carried out with an arbitrary center frequency (wavelength) selection (ω1
and ω2) and with arbitrary control of the pulse intervals T (pulse repetition
rates: T−1). Thus we generate two-color shaped N -pulse train beams whose
center frequencies are ω1 and ω2, with the same repetition rates T−1 as the
pump beams (pump1 and pump2) which are focused into the medium under
study. When we adjust the center frequency difference of these beams ω1−ω2
to a specific molecular vibrational or rotational frequency of interest ωR,int
and the pulse repetition rates T−1 to ωR,int/2π, we can achieve vibrationally-
synchronized pumping excitation with frequency-difference resonance. In this
vibrationally-synchronized pumping technique with frequency-difference res-
onance, the pulse-repetition-rate synchronization with vibration leads to selec-
tive excitation and the center-frequency difference resonance brings Raman-
signal enhancement of the selective excitation. That is, the ωR,int-vibrational
or rotational mode is selectively excited with a relatively high signal intensity.
When the probe pulse having time delay τD between the pump1 and pump2
is also focused into the medium, we can observe behavior characteristic of
temporally stimulated Raman scattering of a selected Raman mode. A local
oscillator pulse LO, derived from a portion of the signal before detection, is
used for optical heterodyne detection (OHD). We term φ the relative phase
of the pump2 with respect to the pump1 or probe and ψ the phase of the
local oscillator with respect to the probe. The phase difference between the
pump1 and the probe is arbitrary. When one adjusts φ and ψ to the appro-
priate values, the real and imaginary parts of the Raman response can be
obtained.
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Theory

Proposal

In order to clarify the advantage of selective excitation using two-color pulse
trains, we first describe the analysis of selective excitation by a N -pulse train
with finite duration including the two-color pump case as well as the one-
color pump case here. Consider a thin medium interacting with an external
electric field:

E(r, t) = Epu(r, t) + Epr(r, t), (6.27)

Epu(r, t) =
1
2
Ēpu1(t) exp[i(k1 · r − ω1t)]

+
1
2
Ēpu2(t) exp[i(k2 · r − ω2t − φ)] + c.c., (6.28)

Epr(r, t) =
1
2
Ēpr(t − τD) exp[i(k3 · r − ω3t)] + c.c., (6.29)

ELO(r, t) =
1
2
ĒLO(t − τD) exp[i(ks · r − ωLOt − ψ)] + c.c. (6.30)

Here, Ēpu1(t), Ēpu2(t), Ēpr(t) and ĒLO denote the temporal envelopes of
pump1, pump2, probe and local oscillator pulses with different center fre-
quencies ωj (j = 1, 2, 3 or LO), respectively. The probe pulse is delayed by
the time interval τD with respect to pump1 and pump2.

Pump1 and pump2 interfere in the medium, creating a transient grating
with a wavevector k1 − k2. The probe beam then is Bragg-diffracted by this
grating, resulting in the scattered beam in the ks = k1 − k2 + k3 direction.
The center frequency of the scattered signal is ωs = ω1 − ω2 + ω3. An ex-
perimental setup of the box-CARS geometry for coherent Raman scattering
is one of the cases of this configuration. In addition to these three pulses,
a fourth pulse that can be used as a local oscillator for optical heterodyne
detection is included here [16–18].

We here focus on Raman processes, with off-resonant electronic-state ex-
citation such that

ωeg ± ω1 � 1/tp,1, ωeg ± ω2 � 1/tp,2, ωeg ± ω3 � 1/tp,3, (6.31)

where �ωeg is the energy difference between the electronic excited and ground
states, and tp,i(i = 1, 2, 3) is the pulse duration of pump1, pump2 and the
probe pulses, respectively. In this case, the optical-heterodyne-detected co-
herent Raman scattering signal in the ks-direction is given by

Shetero(ks, τD) ∝ −2ωsIm
{∫ ∞

−∞
dt

∣∣Ēpr(t − τD)
∣∣2

×
∫ ∞

0
dτĒpu1(t − τ)Ē∗

pu2(t − τ) exp[i(ω1 − ω2)τ ]
∑

j

rj(τ) exp[i(φ + ψ)]
}

,

(6.32)
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integrated over all times t, on the assumption that ELO(t) ∝ exp[i(ks · r −
ωst)]+ c.c. rj(t) is the Raman response function of the medium exhibiting
the jth vibrational mode (j = 1, · · · , m), expressed by

rj(t) = Aj exp(−γjt/2) sin(ω̄R,jt), (6.33)

ω̄R,j =
√

ω2
R,j − (γj/2)2, (6.34)

where Aj , γj and ωR,j are the relative strength, the damping rate and the
natural vibrational frequency of the jth mode, respectively. In accordance
with the philosophy of selective excitation, m modes are classified into a
mode of interest (ωR,int) and m − 1 modes of no particular interest (ωR,ni 1,
· · · , ωR,ni m−1), hereafter. We do not include the electronic response function
here.

The Fourier transform of a function f(t) is defined by

F{f(t)} =
∫ ∞

−∞
dt eiωtf(t). (6.35)

Hence, the optical-heterodyne-detected coherent Raman Scattering signal is
expressed by

Shetero(ks, τD) ∝ −2ωsIm
[ ∫ ∞

−∞
dt

∣∣Ēpr(t − τD)
∣∣2 ∫ ∞

−∞

dω

2π
e−iωt

× F
{

Ēpu1(t)Ē∗
pu2(t)

}
F
{

exp[i(ω1 − ω2)t]u(t)
∑

j

rj(t)
}

exp[i(φ + ψ)]
]
,

(6.36)

from (6.32). Here, u(t) is the unit step function, represented by

u(t) =
{

0 if t < 0 ,
1 if t ≥ 0 .

(6.37)

Mode Selection

The coherent Raman scattering signal produced by the vibrationally-syn-
chronized pumping technique with frequency-difference resonance is analyzed
by describing the profiles of the pump pulses, using a shaped-pulse train in
the form

Ēpu1(t) = Ēpu2(t) =
N∑

n=1

F ([t + (n − 1)T ]/T0)/
√

W, (6.38)

W =
∫ ∞

−∞
dt

∣∣∣∣∣
N∑

n=1

F ([t + (n − 1)T ]/T0)

∣∣∣∣∣
2

, (6.39)
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Fig. 6.10. (a) An example of an N -pulse train (F (t/T0) = sech(t/T0), tp =
1.763T0 = 30 fs, N = 6 and T = 333.56 fs). (b) Its spectra is represented by the
solid line. The dashed line corresponds to a spectra of a tp = 30 fs-single pulse. The
wavenumber 0 cm−1 corresponds to the center wavelength. (c) The spectral peak
around T −1 = 100 cm−1 is magnified. The full width at half maximum δω1 of the
peak approximately equals δω2, which is the difference between the peak and the
first adjacent zero point [11]

where F (t/T0) denotes the profile of each constituent pulse composing an
N -pulse train with the constituent-pulse duration parameter T0, and T is the
time interval between pulses, as shown by Fig. 6.10(a). Considering practical
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cases for selective excitation using pulse trains, the electric field is normalized
by

√
W under the condition that the total pulse energy is constant. In the

case where T0 < T ,

Ēpu1(t)Ē∗
pu2(t) �

{
N∑

n=1

∣∣∣F ([t + (n − 1)T ]/T0)
∣∣∣2

+
N−1∑
n=1

F ([t + (n − 1)T ]/t0)F ∗([t + nT ]/t0)

+
N∑

n=2

F ([t + (n − 1)T ]/t0)F ∗([t + (n − 2)T ]/t0)

}
/W.

(6.40)

When T0 � T , the second and the third terms in (6.40) can be neglected.
Thus, the Fourier transform of the first term in (6.40) is

F
{

Ēpu1(t)Ē∗
pu2(t)

}
� 1

W

sin(NωT/2)
sin(ωT/2)

e−i(N−1)ωT/2F
{∣∣∣F (

t/T0
)∣∣∣2}.(6.41)

The spectrum of (6.41) is almost discretized with the frequency spacing
∆ω = 2π/T , determined by the time interval T of the N -pulse train. This dis-
cretization enables us to excite coherent phonons selectively, that is, to excite
only a specific vibrational mode. This is in stark contrast to the single-pulse
(non-pulse-train; N = 1) case where many Raman modes are excited simulta-
neously. This selective excitation can be explained through (6.36): among the
Raman modes represented by rj(t), only a specific vibrational mode ω̄R,int is
filtered by the spectrum

F
{

Ēpu1(t)Ē∗
pu2(t)

}
,

when m∆ω = ω̄R,int (m: integer) in (6.34).

Fundamental Analysis

In the case where pump1 and pump2 have the same pulse-train envelopes
and T0 � T , as shown in Fig. 6.10(a), the factor

F
{

Ēpu1(t)Ē∗
pu2(t)

}
in (6.36) has the form

sin(NωT/2)e−i(N−1)ωT/2F
{∣∣∣F (

t/T0
)∣∣∣2}/W sin(ωT/2).
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From this, it should be noted that, because of the finite pulse duration, the
spectrum of an N -pulse train is modulated by a factor

F
{∣∣∣F (

t/T0
)∣∣∣2}.

This corresponds to the spectrum of the constituent pulse, unlike in the
delta-function pulse train case. The conventional analysis using an infinites-
imal duration is impractical because it could excite a mode strongly in an
arbitrarily high vibrational frequency region. As an example, in our analysis
here, we consider F (t/T0) as a hyperbolic secant function. Then

C(ω) ≡ F
{∣∣∣F (

t/T0
)∣∣∣2} = F

{
sech2(t/T0

)}
= πωT 2

0 cosech (πωT0/2) ,

(6.42)

as shown in Fig. 6.10(b). Since spectral filtering for selective excitation at
ωR,int is done by the peak of ω = ωR,int = 2π/T , the stimulated Raman
signal for N -pulse train beams with a finite duration is reduced by a factor of
C(ωR,int)/C(ω = 0) compared to that for delta-function N -pulse train beams.
For the example described in Sect. 6.4 (ωR,int/2π = 448.2 cm−1 and T0 =
30/1.763 = 17.0 fs), the analysis using the N -pulse train with an infinitesimal
duration overestimates the power spectrum of the coherent Raman scattering
signal excited selectively at ωR,int/2π = 448.2 cm−1 by about a factor of five
compared to our analysis using the N -pulse train with finite duration. Thus
the analysis using the N -pulse train with a finite duration is essential for an
accurate interpretation of the experimental results.

Optimum Number of an N-Pulse Train

For a practical consideration of the selective excitation using an N -pulse train
with finite duration, the condition that the total energy of the N -pulse train
is constant should be considered. Stimulated Raman scattering is a third-
order nonlinear process governed by the pulse peak intensities. Thus, under
the constant total-energy condition, it is important to derive the formula
that determines the minimum pulse number for efficient selective excitation
in both cases of one- and two-color N -pulse train beams. Figure 6.10(c) shows
the magnification of the first positive-frequency (or negative-frequency) sub-
spectrum of F

{
Ēpu1(t)Ē∗

pu2(t)
}

at ω = ±2π/T , which is used for conventional
selective excitation. From (6.41), the shape of this sub-spectrum is expressed
mainly through the factor sin(NωT/2)/W sin(ωT/2). Adjacent spectral zero
points are at ω = 2π(1 ± 1/N)/T . Approximating the shape around the
first positive-frequency sub-spectrum to that of an isosceles triangle, we can
evaluate the full width at half maximum (FWHM; δω1) of the first positive-
frequency (or negative-frequency) sub-spectrum to be 2π/NT , which is equal
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to half of the base width δω2 of the triangle. Considering that only the Raman
spectral component almost within the FWHM of the first positive-frequency
(or negative-frequency) sub-spectrum can be excited effectively, we find that
the condition for efficient selective excitation is that the FWHM should be
smaller than the minimum interval (∆ωR)min of the intervals between the
Raman line ωR,int of interest and the lines ωR,ni j (j = 1, · · · , m − 1) of no
interest. That is,

N � 2π

(∆ωR)minT
. (6.43)

This is the criterion for the optimum pulse number N for efficient selec-
tive excitation using an N -pulse train. It should be noted that the opti-
mum pulse number does not depend on the shape of each pulse that consti-
tutes the N -pulse train, because the width of the first positive-frequency (or
negative-frequency) sub-spectrum is determined by the factor sin(NωT/2)/
W sin(ωT/2).

Efficient Selective Excitation

As mentioned above, the spectral modulation of F{Ēpu1(t)Ē∗
pu2(t)} in (6.36)

leads to a low selective-excitation efficiency of a specific Raman mode in the
high frequency region in the case of ω1 − ω2 = 0. In order to avoid this low
selective-excitation efficiency, due to the factor F{Ēpu1(t)Ē∗

pu2(t)}, we take
notice of another factor of

F
{

exp[i(ω1 − ω2)t]u(t)
∑

j

rj(t)
}

in (6.36). While the spectral modulation due to F{Ēpu1(t)Ē∗
pu2(t)} decreases

the spectral amplitude at ω = ωR,int, especially in the high frequency region,
the spectral amplitude at ω = 0 is not modulated even in the finite dura-
tion case. Moreover, shifting the Raman spectrum is possible with a factor
exp[i(ω1 − ω2)t] in

F
{

exp[i(ω1 − ω2)t]u(t)
∑

j

rj(t)
}

by varying the ω1 − ω2 value. When we adjust ω1 − ω2 = ωR,int, we can
shift the Raman spectrum by ±ωR,int, thus we can use the un-modulated
spectral component at ω = 0 of the N -pulse train for selective Raman-mode
excitation. That is, to greatly improve on the low efficiency of selective exci-
tation in the high frequency region, we employ the vibrationally-synchronized
pumping technique with frequency-difference resonance. We use two-color N -
pulse train beams with a frequency difference of ω1 − ω2 which corresponds
to the Raman frequency ωR,int and for which the pulse interval T satisfies
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ωR,int = 2π/T . These two-color N -pulse train beams, as well as one-color N -
pulse train beams, can selectively excite the specific Raman mode of ωR,int.
Moreover, when adjusting the center frequencies of the two-color beams that
satisfy ω1 − ω2 = ωR,int, we can shift the spectrum of the Raman response
effectively to make them resonant with the central spectral peak of the N -
pump-pulse trains. Thus, we can perform efficient selective excitation even
in the high frequency region, with complicated Raman lines, using two-color
N -pulse train beams.

As an example, we investigate the efficient selective excitation of tetra-
chloroethylene that has Raman modes at 236.6, 346.5, 448.2 and 511.9 cm−1

in the high frequency region [15], as shown in Fig. 6.11(a). Here, we consider
the selective excitation of the 448.2 cm−1 Raman line. The pulse interval T
for selective excitation at 448.2 cm−1 is 74.4 fs, and the minimum frequency
interval (∆ω)min/2π is 63.7 cm−1. To avoid a decrease in power of each con-
stituent pulse for selective excitation under the condition that the total en-
ergy of the N -pulse train is constant, N should be at least 7 to satisfy the
inequality (6.43).

The power spectrum of (6.41) in the case where Ēpu1(t) = Ēpu2(t), ω1 =
−ω2, F (t/T0) = sech(t/T0), N = 7, T = 74.4 fs and every pulse duration
tp = 2T0 ln(1+

√
2) = 30 fs (T0 = 17.0 fs) for selective excitation at 448.2 cm−1

is shown in Fig. 6.11(b). The height of the first peak at the positive or negative
frequency (ω/2π = ±448.2 cm−1) is much lower than that of the peak at the
center of ω = 0 cm−1.

As a measure of the selectivity and efficiency of excitation, we define a
factor ηS, such that

ηS =

∣∣∣∣∣ S̃hetero(ks, ωR,int)
S̃hetero(ks, ωmax

R,ni)

∣∣∣∣∣
2

. (6.44)

The ratio of the power spectrum |S̃hetero(ks, ωR,int)|2 of the stimulated Ra-
man scattering signal S̃hetero(ks, ω) at the specific frequency of interest
ωR,int to |S̃hetero(ks, ω

max
R,ni)|2 at another Raman frequency ωmax

R,ni that max-
imizes the spectral intensity among the Raman frequencies ωR,ni,j (j =
1, · · · , m − 1; S̃hetero(ks, ω) is the Fourier transform of Shetero(ks, τD)). In
Sect. 6.4, the efficient selective excitation by the vibrationally-synchronized
pumping technique with frequency-difference resonance will be discussed to-
gether with the ηS values. Figure 6.12 shows the calculated coherent Raman
scattering signals as a function of delay time in the optical heterodyne detec-
tion scheme for four cases ((A) N = 1, ω1 −ω2, (B) N = 7, ω1 = ω2, (C) N =
1, (ω1−ω2)/2π = 448.2 cm−1 and (D) N = 7, (ω1−ω2)/2π = 448.2 cm−1), on
the assumption that the damping rates γ of all Raman modes in (6.33) are all
20 cm−1. To obtain maximum signal intensities in the optically-heterodyne
detection scheme, we set the φ+ψ values to π/2 and 0 for the ω1−ω2 = 0 and
448.2 cm−1 cases, respectively. In the N = 1 (Fig. 6.12(A) and (C)) cases, it
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Fig. 6.11. (a) Raman spectra of tetrachloroethylene. (b) The spectra of an N = 7
pulse train for selective excitation at 448.2 cm−1 mode. The wavenumber 0 cm−1

corresponds to the center wavelength [11]

is found that the signals exhibit combined oscillation of more than one fre-
quency. In the N = 7 and ω1 − ω2 = 0 case (Fig. 6.12(B)), it is seen that the
signal oscillates with a specific frequency at ωR,int but the signal oscillating
at ωR,int is weak. In the N = 7 and (ω1−ω2)/2π = 448.2 cm−1 (Fig. 6.12(D)),
it is seen that the signal is dominated by a non-oscillating component. This
non-oscillating part corresponds to the selectively-excited mode of interest
owing to the frequency shift of (ω1 − ω2)/2π = 448.2 cm−1. By considering
the integral of the non-oscillating part with respect to the time delay, the
selectively-excited Raman signal at ωR,int = 448.2-cm−1 mode is found to
be comparatively large. (See the inset of Fig. 6.12(D).) To further clarify the
selectivity of the excitation, the corresponding power spectra are shown in
Fig. 6.13. Signal intensities when ω1 − ω2 = 0 (Fig. 6.13 (A) and (B)) are
low owing to the spectrum modulation factor F{|F (t/T0)|2} in (6.36). On
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Fig. 6.12. Temporal profiles of heterodyne-detected coherent Raman scattering
signals with pump pulses of (A) ω1−ω2 = 0 and N = 1, (B) ω1−ω2 = 0 and N = 7,
(C) (ω1 − ω2)/2π = 448.2 cm−1 and N = 1, and (D) (ω1 − ω2)/2π = 448.2 cm−1

and N = 7. The comparison of the signals in the (B) and (D) cases is shown in the
inset [11]

the other hand, signal intensities when (ω1 − ω2)/2π = 448.2 cm−1 (Fig. 6.13
(C) and (D)) are much more enhanced than those when ω1 − ω2 = 0. For
Fig. 6.13(C) and (D), the horizontal axis represents wavenumber correspond-
ing to [ω− (ω1 −ω2)]/2π. Thus, the peak at 0 cm−1 corresponds to the vibra-
tional mode of 448.2 cm−1. That is, by adjusting (ω1 − ω2)/2π to the mode
frequency ωR,int/2π of interest, we can effectively shift the Raman mode fre-
quencies by −(ω1 − ω2)/2π so that the only the signal intensity of interest
is strengthened. As a result we can achieve much more efficient excitation at
ω = 0 cm−1. In addition, the N = 7 pulse train enables the further selective
excitation of only the 448.2 cm−1 mode (Fig. 6.13 (D)), while the N = 1 pulse
excites all the Raman modes simultaneously (Fig. 6.13 (C)). The quantitative
comparison of the selection factor ηS defined by (6.44) makes it clear that
the ηS values are 0.285, 7.35, 12.2 and 199 for Fig. 6.13(A), (B), (C) and
(D), respectively. Thus, it is found that, even in the high frequency region,
efficient selective excitation can be made with two-color synchronized shaped-
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Fig. 6.13. Power spectra of heterodyne-detected coherent Raman scattering signals
with pump pulses of (A) ω1 − ω2 = 0 and N = 1, (B) ω1 − ω2 = 0 and N = 7,
(C) (ω1 − ω2)/2π = 448.2 cm−1 and N = 1, and (D) (ω1 − ω2)/2π = 448.2 cm−1

and N = 7. The selectivity is determined by ηS, which is defined by (6.44). This is
evaluated to be (A) 0.285, (B) 7.35, (C) 12.2 and (D) 199 [11]

N -pulse train beams whose frequency difference is adjusted to the phonon
mode frequency of interest (Fig. 6.13(D)). The calculated results show that
this vibrationally-synchronized pumping technique with frequency-difference
resonance (Fig. 6.13(D)) has the advantage of exhibiting an enhancement
factor about twenty-times larger in the power spectrum of Raman signal for
selective excitation than the conventional one-color pulse shaping technique
(Fig. 6.13(B)).

6.4.2 Experiment

Two-pulse excitations with different polarization combinations have been
demonstrated for selective excitation of molecular vibrations in CCl4 liquid.
Selective enhancements as well as suppressions of the two asymmetric vibra-
tion motions were achieved by changing the separation time of the two-pump
pulses. In addition, the anti-correlated selective excitations were observed
in the opposite configuration of polarization between the two-pump pulses.
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The results can be understood in terms of classical oscillator model using
impulsive stimulated Raman scattering.

Selective control of molecular motions using a femtosecond pulse laser
is a promising technique for controlling photochemical reactions in the time
domain [19]. So far, various experimental techniques have advanced this field
dramatically. Optical pulse shaping has made it possible to produce complex
excitation light fields for manipulating the specific motions and interactions in
the target molecules [20]. In this technique, pulse shaping can be optimized by
learning the algorithm [21–27]. By means of coherent anti-stokes Raman scat-
tering (CARS), multiple color excitations enable us to control the vibration
motions both in the time and frequency domains [28–30]. In addition, recent
progress of pulse shaping techniques allows for multi-dimensional coherent
control, such as excitations for vibration motions with higher-order [31], gen-
eration of multimode vibration modes [32], and spatio-temporal controls [33].
On the other hand, since the polarization in excitation and detection is sen-
sitive to the symmetry of vibration motions, polarization-selective measure-
ments in the time domain is used to prepare fine selectivity for controlling
the molecular motions [18, 34–43]. In addition to the vibration motions, po-
larized measurements have also provided information about nonlinear optical
responses of electron motions in molecules [44–50].

In this subsection, we introduce the experimental results of a simple two-
pump-pulse excited Raman spectroscopy. Raman signals in the time domain
were observed by the optical heterodyne detected (OHD) Raman induced
Kerr effect spectroscopy (OHD-RIKES(OKE)). Although OHD-RIKES pro-
vides only anisotropic elements of molecular motions, we can compare the se-
lectivities in the different excitation conditions because of its linear response
with respect to the molecular motions. Experimental section describes the
vibration motions of CCl4 and our experimental set-up. In results and dis-
cussion, we compare the experimental results of time-resolved Raman with
steady state Raman. We also discuss the selective excitations by two-pump
pulse excitations. The experimental results indicate the enhancements and
suppressions of each vibration motion according to the separation time be-
tween the two pump pulses and the combinations of polarizations.

Experimental Section

The sample used in this study is carbon tetrachloride (CCl4) in liquid form.
This is an excellent sample for demonstrating the molecular dynamics because
of its simple vibrational motions. ν1 (A1) at 460 cm−1 the symmetric stretch
is a Raman active, ν2 (E) at 214 cm−1 the Cl-C-Cl bend is Raman active, ν3
(T2) at 793 cm−1 the asymmetric stretch is both IR and Raman active, and
ν4 (T2) at 314 cm−1 another bend mode is both IR and Raman active.

Figure 6.14 shows a schematic illustration of our experimental set-up. The
time-resolved analysis of molecular vibration motions was achieved by OHD-
RIKES. The light source is a mode-locked Ti:sapphire laser (center wave-
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Fig. 6.14. Experimental set-up for two-pump pulse excitations. The time sepa-
rations of probe and two-pump pulses are achieved by the delay stage 1 and 2,
respectively

length ∼ 800nm, pulse width ∼10–30 fs, repetition rate 76 MHz). The output
from the laser is split by a partially reflected thin glass plate (reflectivity
5%) to provide the pump and probe pulses. For the two-pulse excitations,
the pump is again divided into two beams by another half-beam splitter.
The polarized pump pulses and probe pulse are focused by a plano-convex
lens (f = 50 mm) onto the same point inside the 1 mm-thick fused glass cell.
It is important to note that the difference of the spot size of the incoming
three pulses leads to the relative phase shift of the signals. In order to in-
crease the spatial overlap of the incoming fields at the focal point, the three
beams are positioned at the triangular geometry in front of the lens. The
polarizations between pulses are controlled by two half-wave plates for op-
timizing the signals. The polarization of the transmitted probe is selected
by a Grand–Thompson prism. In order to reduce the contributions of the
stray light, the probe pulse goes through the spatial filter. The pump(s) are
chopped and induced polarization changes of the probe are detected at the
chopping frequency by a lock-in amplifier.

Results and Discussions

OHD-RIKES of CCl4

The OHD-RIKES (OKE) is a widely used time-resolved technique and the
details of the measurements and their theoretical treatments are described in
detail elsewhere [35–37,44–50]. Briefly, we give an overview of the character-
istics of OHD-RIKES spectra by comparison with the steady state Raman.
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Fig. 6.15. Raman spectra of CCl4 in different polarization configurations

We consider the interactions between the light and molecular vibrations.
Because the vibration motions change the polarizability of molecule, the in-
cident light is scattered with the shift of its polarization together with the
shift of its energy. This is the so-called Raman process. The depolarization of
the scattered light ρ = I⊥/I‖, calculated by the intensities from perpendicu-
lar (I⊥) and parallel (I‖) polarization light, is connected with the symmetry
of Raman active vibration mode. For totally symmetric vibrations ρ takes a
value smaller than 3/4 and the value of 1 for asymmetric ones.

Figure 6.15 shows typical Raman spectra of CCl4 liquid, recorded in 90 de-
gree geometry with different polarization configurations. The excitation laser
is a continuous-wave (CW) Ti:Sapphire laser operating at 800ṅm. Disper-
sion and detection of the scattered light was achieved by a 1-m long double
monochromator with a charge-coupled device (CCD) camera. The Raman
peak around 14 THz shows small depolarization ratio, thus indicating the
totally symmetric stretch mode of CCl4. In contrast, lower two modes, both
of which are attributed to the asymmetric bend mode, show 3/4 depolariza-
tion. Another depolarized signal around 24 THz is the asymmetric stretch
mode. The relative intensities of the lower two modes are estimated to be
Iν2 :Iν4 = 1:1.3.

Based on the results of the steady state Raman, we discuss the results
of time-resolved measurements of CCl4. Figure 6.16 shows a typical OHD-
RIKES signal as a function of delay time between pump and probe pulses.
Here we used only one-pump pulse excitation. The data consists of a large
signal at zero time delay and oscillatory damped signals with longer decay
time. The instantaneous change agrees with the autocorrelation of the laser,
which is attributable to the non-resonantly excited electron response of the
sample. After the instantaneous electron response, the signal is dominated by
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Fig. 6.16. OHD-RIKES data in the one-pulse excitation. The data involve two
oscillation modes, which can clearly be seen in FFT power spectrum in the inset

the mixing of oscillations superimposed on the small signal with slow decay.
The inset of Fig. 6.16(b) shows the Fourier transformed power spectrum of
the data, in which we can directly compare with the steady state Raman
in Fig. 6.15. In the figure, the frequencies of two intense peaks are identical
with the asymmetric modes in the Raman, indicating the fact that the OHD-
RIKES signal only reflects the asymmetric motions of a molecule. In the
higher frequency, another tiny feature can be seen at 15 THz and may be
attributed to the symmetric mode from the contribution of the ISRS signal.
In the lower frequency, the signal shows a less structured band, which has
been attributed to the intermolecular response of CCl4 [35–37,49].

The relative intensity ratio of the two intense peaks is Iν2 :Iν4 = 1:1.4,
which is also identical with the steady state Raman discussed above. Be-
cause OHD gives a signal over the local oscillator field, the detected intensity
has linear correspondence to the molecular response while the normal OKE
reflects the second power of the pump field. Thus we can directly investigate
the molecular motions in the Fourier transformed OHD-RIKES spectrum.

Selective Enhancement and Suppression by Using Three-Pulse Excitation

According to the Heisenberg uncertainty principle, a transform-limited pulse
shorter than the vibration period has a bandwidth larger than the vibration
frequencies. Therefore impulsive stimulated Raman scattering (ISRS) can
be generated if the vibration motion is Raman active [51]. This stimulated
Raman process yields a driving force for the coherent molecular vibration [52].
In the simple oscillator model, the dynamic equation of a molecular motion
is described by
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d2Q

dt2
+ 2γ

dQ

dt
+ ω2

0Q =
1
2
N

(
dα

dQ

)
0
E2, (6.45)

where Q is the displacement of molecule from the equilibrium, ω0 is a
fundamental frequency of a molecular vibration, γ is the decay rate, and
N is the number density of molecules. The (dα/dQ)0 is the polarizability
change of a molecule induced by ISRS. When the pulse width is short com-
pared to the oscillation period of the molecular vibration and gamma is
smaller than omega, the time dependence of the molecular motion is given
by Q ∝ exp(−γt) sin(ωt), indicating the damped oscillation. When we intro-
duce the second pulse soon after the first pulse excitation, the second pulse
produces the driving force again through the ISRS process. The molecular
motion in the time domain is thus expressed by

Q ∝ exp
(

− t

Γ

)
sin(ωt) + exp

(
− t − ∆t

Γ

)
sin(ω(t − ∆t)), (6.46)

where Γ = 1/γ, ω = (ω2
0 − γ2)1/2, and ∆t indicates the separation time

between the two pulses. From the expression, one can easily understand that
the total oscillation amplitude is enhanced when ω∆t = π, which indicates
the selective excitation, in which only the vibration with the frequency of
two-pump pulses is enhanced, whereas the vibrations with other frequencies
are suppressed. On the other hand, the total oscillation amplitude is canceled
when ω∆t = π/2, indicating the selective suppression of the vibration motion.

In Fig. 6.17, several OHD-OKE signals of CCl4 taken with the two-pulse
excitation are plotted as a function of the delay time for various separation
times with different polarization geometries. Since the time widths of incident
pulses are as large as 80 fs in this one-pulse excitation, the relative intensities
Iν2 : Iν4 are estimated to be 4:1 from Fourier analysis. At ∆t = π/ν2, the ν2
mode is dominant after the second pulse excitation, while at ∆t = π/(2ν2),
the ν2 mode is almost canceled and the ν4 mode becomes dominant. In con-
trast, the ν2 mode is enhanced again at ∆t = π/(2ν2) but with the crossed
polarization geometry in which the polarization of the second pump pulse is
set perpendicular to that of first pump. Since the RIKES signal reflects the
anisotropic change of nonlinear susceptibility depending on the pump field,
the two pump pulses with crossed polarization results in an oscillation with
opposite sign in each excitation. The time evolution of the molecular motion
in the double pulse excitation with crossed polarization is thus given by

Q ∝ exp
(

− t

Γ

)
sin(ωt) − exp

(
− t − ∆t

Γ

)
sin(ω(t − ∆t)), (6.47)

where the total oscillation is suppressed when ω∆t = π while ω∆t = π/2
enhances the oscillation.

The selective excitation (suppression) in each vibrational motion is con-
firmed in Fourier analysis of the data. Figure 6.18 shows a series of FFT



280 R. Morita and Y. Toda

0 1 2 3
Delay time [ps]

In
te

ns
ity

[a
rb

.u
ni

ts
]

∆t = 1/ 2 ,

∆t = 1/2 2 ,

∆t = 1/2 2 ,

Fig. 6.17. OHD-RIKES data with different time separations and polarization con-
figurations between two-pump pulses

power spectra for double pulse excitations with various separation times as
well as different polarization configurations. The data clearly demonstrate
the mode-selective amplifications and cancellations. Furthermore, inversely
correlated spectra can be observed between parallel and crossed polarization
excitation. While the imperfection of selective control remains in the data,
which is mainly due to the incompleteness of the spatial overlap of the three
incoming field, the anti-correlation spectra in each polarization combination
suggests the feasibility of coherent control of the vibration motion using the
polarization changes of the excited pulses.

6.5 Future Direction

In this chapter, the field manipulation of ultrabroadband optical pulses, that
is the principle and theory of the generation of the pulse train using a 4-
f pulse shaper, experiments of two- and three-color beam generation with
tunable THz pulse trains, and application for vibrational motion control of
molecules was described. Finally, the future direction of the field manipulation
of ultra-broadband optical pulses is mentioned here.

1. Repetition rate of shaped pulses: The highest repetition rate of the shaped
pulses is determined by the bandwidth of the input pulse. The broader
the bandwidth of the input pulse, the higher the repetition rate of the
shaped pulse. For example, when a monocycle-like pulse with a duration
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Fig. 6.18. FFT power spectra with different separation times between two-pump
pulses. (a) parallel polarization between two-pump pulses and (b) crossed polar-
izations

of ∼3 fs and a bandwidth of ∼300 THz is used as an input, the highest
repetition rate can be several tens of THz. Of course, when the spectral
slicing is done in shaping, the highest repetition rate of the multicolor
shaped pulses are reduced.

2. Shaping temporal range: The temporal range controlled in pulse shaping
is limited to the time window Tw(ωhigh) of the highest frequency compo-
nent of the input pulse. The time window Tw(ω) is proportional to w0/d,
where w0 is the radius of the input beam and d is the grating constant of
the 4-f pulse shaper. Hence, when the wide temporal range is necessary,
by adjusting the beam radius w0 and the grating constant d, the shaping
temporal range can be broadened.

3. Frequency tunability: The broader the pulse bandwidth is, the broader
the tunable range of the simultaneously shaped multicolor pulses.

4. Polarization shaping: By adding two more SLMs on the Fourier plane in a
4-f pulse shaper, polarization shaping as well as simultaneous multicolor
shaping can be done.

5. Simultaneous performing of pulse compression and shaping: The 4-f pulse
shaper can be used for both pulse shaping and pulse compression. Hence,
by simultaneously applying the phases for compression and shaping on
the SLM, the pulse shaping of the monocycle-like pulse or the multicolor
pulse shaping whose constituent pulses are the Fourier-transform-limited
pulses can be performed even from the chirped pulse.
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Conclusively, our simultaneous coherent multicolor pulse shaping technique
has an advantage that the repetition rate and the center frequency can be
almost arbitrarily controlled. In addition, our technique has two remark-
able features unlike a technique using a 1D SLM, that is, the simultaneously
shaped multicolor beams are spatially separated and the frequency compo-
nents of shaped pulses can be overlapped partially or perfectly. Such multi-
color shaped-pulse trains will enable us to apply to not only the selective and
efficient excitation of a specific Raman mode even in the high vibration fre-
quency region, but also the multi-selective coherent wave-packet control with
multicolor tailored pulse sequences. For example, the experiment of the in-
terference of the electronically-excited wave packets using the simultaneously
shaped multicolor pulses with the partially overlapped spectra will be promis-
ing. Further, this simultaneous multicolor shaping technique is applicable to
the source of the basic experiment of the coherent optical communication
with multicolor high-repetition-rate pulses.
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7 Fundamental of Laser-Assisted Scanning
Tunneling Microscopy (STM)

O. Takeuchi and H. Shigekawa

7.1 Introduction

In the previous chapters, we have discussed how we can make the tempo-
ral width of the currently shortest laser pulse even shorter. For the purpose,
three key techniques are developed. Firstly, an ultrabroadband laser pulse was
generated by using the self-phase modulation and/or induced phase modu-
lation effect in a fiber and its phase and amplitude properties were theoret-
ically studied. Secondly, a new measurement technique that can experimen-
tally determine the spectral phase and amplitude of an ultrabroadband laser
pulse with moderate power is developed as the modified SPIDER. Thirdly,
active chirp compensation system for ultrabroadband optical pulses is de-
veloped with a computer-feedback-controlled spatial light modulator. With
these techniques, a laser pulse with less than two optical cycles has been
generated.

Such extremely short laser pulses, by themselves, improve the temporal
resolution of ultrafast optical measurements that use the pulse as their light
source. This is because, in general, the temporal resolution of such measure-
ments is, by virtue of the pump-probe technique, only limited by the pulse
width of their light source. Thus, shortening the laser pulse benefits all the
ultrafast optical measurements.

In the rest of this book, we will concentrate our discussion on improving
the spatial resolution of conventional optical measurements. It is not to be ar-
gued that the optical measurement techniques have their unique advantages
over other measurement techniques. They are generally nondestructive, en-
able high energy resolution and are not interfered with by other signals. Above
all, the picosecond/femtosecond time resolution that must be necessary for
future device development can be only realized by the optical pump-probe
measurements using ultrashort laser pulses. On the other hand, the spatial
resolution of optical measurement is, in general, not very high. One can re-
solve features in 0.1 mm dimension with his/her eyes. An optical microscope
will resolve sub-micron objects. As is well known, the resolution of an optical
microscope is limited in the dimension of the wavelength. The development of
scanning nearfield optical microscopy (SNOM) overcame this limitation with
detecting non-propagating electromagnetic waves. The resolution of state-
of-the-art SNOMs reaches several tens of nanometers. This is, however, not
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sufficient for the research of future nanodevices such as self-organized nanos-
tructures and molecular devices. In order to have even better resolution, we
have been developing a very new technique, laser-assisted scanning tunneling
microscopy (STM), the systematic exposition of which is the main theme of
the second part of this book.

In this chapter, after reviewing the fundamentals of STM techniques, the
possible setup to realize the laser-assisted STM and their difficulties will
be discussed. Next, in Chap. 8, our effort to realize a noble characterization
technique of nano band structure in nanoscale semiconductor structures is
presented, which is based on the modulation of the laser assisted scanning
tunneling spectroscopy. Chapters 9 and 10 will be devoted to the introduction
of our effort for the development of femtosecond–angstrom technologies. Fem-
tosecond time resolution of the ultrashort pulse laser and ångstrom spatial
resolution of STM technologies will be successfully combined there.

7.2 Potentialities of Laser Combined STM

In order to demonstrate the high potential of laser-assisted STMs for basic
research of next generation nanodevices, let us present our recent study of
optical control of single molecule, briefly, which is investigated by combina-
tion of laser excitation and STM observation. Indeed, the understanding and
control of molecular functions at a single-molecule level is extremely impor-
tant in nanoscale science and technology. When performing SPM experiments
under photoillumination, structural change due to optical control of a single
molecule could be directly observed.

The study shown here is regarding the control and direct observation of
the cis-trans photoisomerization of Azobenzen [1]. The Azo molecule is a
typical photoactive isomer and has been widely studied because of its simple
structure and reversible cis-trans isomerization under photoillumination. Ir-
radiation with ultraviolet (UV) (∼350 nm) and blue (Vis) (∼440 nm) lights
induces isomerization to metastable “cis” and stable “trans” conformations,
respectively, as shown in Fig. 7.1. Schematic of the potential barrier is shown
in Fig. 7.2 [2]. The absorption characteristic is easily controllable by the addi-
tion of polar groups on the Azo molecule. From these characteristics, the Azo
molecule is promising for not only photoswitching and storage materials, but
also photoactive biomaterials that, for example, control DNA hybridization.

The sample was prepared as following. Figure 7.3 shows the schematic
structures of [4-(Phenyldiazenyl)phenyl]-N -(2-sulfanylethyl)carboxyamide
(Azo) and n-dodecanethiol (C12). C12 self-assembled monolayer (SAM) films
were formed by dipping the Au(111) substrate into a toluene solution with
C12 molecules. After rinsing to remove the physisorbed molecules, the C12/Au
system was immersed in a toluene solution containing Azo molecules, result-
ing in the formation of C12 SAM including isolated Azo molecules. Figure 7.4
shows a typical STM image of the Azo-embedded C12 film. Bright protrusions
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440nm

360nm

Fig. 7.1. Cis-trans photoisomerization of Azo-molecule

Fig. 7.2. Schematic of potential barrier in the photoisomerization of Azo-molecule

Trans/cis-
Azo molecule

C12 molecule

Fig. 7.3. Molecular structures of [4-(Phenyldiazenyl)phenyl]-N -(2-
sulfanylethyl)carboxyamide (Azo) and n-dodecanethiol (C12)

correspond to the Azo molecules. A schematic of the isolated Azo molecular
structure is shown in Fig. 7.5.

As is shown in the schematic of the experimental setup, Fig. 7.6, pho-
toisomerization of the isolated Azo molecules was controlled by illumination
with ultraviolet (UV) (325 nm) and visible (Vis) (440 nm) lights using a He-
Cd laser during STM measurements. All STM images were obtained in N2
atmosphere at room temperature using a Pt/Ir tip.
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Fig. 7.4. STM topograph of Azo-embedded C12 film
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Fig. 7.5. Schematic of Azo-embedded C12 film
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Fig. 7.6. Experimental setup of laser-assisted STM

Figure 7.7 shows a typical example of a series of STM images representing
the cis-trans change in isolated Azo molecules induced by alternating UV and
Vis photoillumination. The Azo molecules show cis and trans structures, as
expected, under UV and Vis photoillumination, respectively.

High potential of the laser-assisted STM for the local structural analysis
of materials is clear. Furthermore, in addition to the nanoscale observation of
the light induced physical properties, lasers have been combined with STM
to realize the selective and swift fabrication and structuring of the target
materials in nanoscale range.
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3nm

Fig. 7.7. Series of STM images showing the Azo molecule switching embedded in
C12 film

7.3 Fundamental of Scanning Probe Microscopy

Scanning tunneling microscopy (STM) was developed in 1982 by Binnig and
Rohrer [3], and is well known as a microscopy that can truly image atoms, as
was demonstrated in their first paper to image the Si(111)-7×7 surface struc-
ture with atomic resolution. With further development of this technique, it
has been providing the atom-resolved images of all kinds of conductive mate-
rials, such as metal surfaces, semiconductor surfaces and molecules adsorbed
on conductive materials. Since only the scanning probe technique can give
us information about the locally modulated structures, the high potential of
this technique for the development of future nanoscience and technology is
certain. Here we review the fundamental issues of the STM technique.

7.3.1 How to Visualize the Nanoscopic World

STM is one of the variations of so-called scanning probe microscopy (SPM).
Today, various kinds of SPM have been developed and most of them provide
nanometer to sub-̊angstrom resolutions. In principle, an SPM measurement
uses some nanoprobe that can acquire a particular local physical property of
the sample. The physical property measured differs from one SPM to another,
but one point is common for all SPMs; the sensitivity of the nanoprobes
only ranges from sub-̊angstrom to a hundred nanometers. Thus, when the
nanoprobe is scanned over a region of the sample surface with an adequate
precision, one can map the physical property on the sample surface. As shown
in Fig. 7.8, the set of measured values is often visualized with some color (or
gray) scale, as a function of the position of the nanoprobe on the sample
surface, and it is shown as the image of the sample surface observed by the
SPM.

As can be seen, the images obtained in such methods are not directly re-
lated to the corrugation of the sample surface. It is always a map of the phys-
ical property. However, since the sensitivity of the nanoprobes only reaches a



290 O. Takeuchi and H. Shigekawa

Nanoprobe

sample

x-axis

 y-
axis

x-axis

 y
-a

xi
s

M
ea

su
re

d 
V

al
ue

Large

Small

Fig. 7.8. Schematic of SPM imaging

Fig. 7.9. Two different working modes in SPM imaging: (a) Constant height mode
and (b) constant value mode

very short distance, the measured value diminishes rapidly when the probe is
further from the sample. So, when scanning the probe in parallel to the av-
eraged slope of the sample surface, we observe larger signals when the probe
is on bumps of the sample surface and smaller signals above dips. The sit-
uation is illustrated in Fig. 7.9(a). As a result, the obtained images more or
less represent the corrugation of the sample surface unless a very inhomoge-
neous sample is measured because, without inhomogeniety, the probe-sample
distance dominates the contrast in the measured images. Of course, any in-
homogeneity of the sample also affects the images. Interpretation of SPM
results on such samples should be done carefully.

There is another, and often better, way of obtaining sample corrugation
by SPM: plotting the isovalue surface of the physical property over the sample
surface. In these measurements, the probe-sample distance is controlled by a
feedback circuit to maintain the measured value of the sample property equal
to some reference value continuously during the scan. Then, the trajectory
of the probe motion is recorded as the isovalue trace along the scan line as
illustrated in Fig. 7.9(b). The probe displacement perpendicular to the surface
is plotted in a color scale as a function of the lateral position of the probe.
This method also assumes the measured signal mainly depends on the probe-
sample distance. Indeed, this assumption is often valid and, in such cases, the
tip–sample distance is kept constant during the scan and the obtained images
allow us to know the exact morphology of the sample surface with precise
height information. The measurement method shown in Fig. 7.9(a) is often
called as “constant height” mode and that in Fig. 7.9(b) as “constant value”
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Fig. 7.10. Schematic of scanning probe spectroscopy (SPS)

mode. The “constant value” mode is better for most applications because
it provides the actual surface morphology while avoiding crashing the probe
into the sample surface with large corrugations.

Besides its imaging ability, the spectroscopic measurement is also very
useful in SPM technology. This time, the measurement is simple. The SPM
probe is fixed at a specific point on the surface with a specific separation
between the probe and the surface as shown in Fig. 7.10. Then the sample
property is probed while some measurement parameter is swept over a range
of values; the parameter can be the bias voltage between probe and sample,
the tip-sample distance, the direction or magnitude of magnetic field, the
intensity of the optical excitation, etc. In any case, the sample property at
well defined sampling point can be detected by the nanoprobe as a function
of the parameter.

In both imaging and spectroscopy using SPM, the excellent spatial res-
olution down to subatomic level is the most prominent attribute compared
to that of other experimental methods. Then, what determines the spatial
resolution in these measurements? Two factors, how rapidly the sensitivity
of the probe diminishes with the probe-sample distance and how precisely
the relative position of probe and sample can be controlled, dominate the
resolution. The former is obvious. If the probe sensitivity extends a long dis-
tance, such as several microns, no atomic resolution can be expected. The
radius of the probe apex together with the physical principle, with which we
pick up the signal, determines the range of sensitivity. The latter is also easy
to understand. If the tip position fluctuates during measurement, the image
will become diffuse. However, fluctuation of the probe position does not only
result in a lesser spatial resolution. Since the probe signal is very sensitive
to the tip-sample distance, fluctuation of tip position perpendicular to the
sample surface also causes intolerable amplitude of noise in the detected sig-
nal. In the worst case, too much fluctuation will crash the tip apex into the
sample surface. Thus, good SPM instruments are carefully designed to in-
sulate the microscope from the external vibrations both from the floor and
from the acoustic environment, and to avoid thermal fluctuation of the tip-
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sample distance by allocating multiple materials to compensate the thermal
expansion.

7.3.2 Tunnel Current as a Probe Signal

In a conventional STM experiment, a well sharpened metal tip is used as the
nanoprobe. A finite bias voltage is applied between this metal tip and the
sample surface. Then the tip and surface are brought close to contact. The
tunnel current flowing between the tip and the sample is measured as the
probe signal. Typical measurement conditions are tunnel current It of 1 nA
at sample bias voltage Vs of 50 mV for a metallic sample and It = 1 nA at
Vs = 1.5 V for a semiconductive sample. As described below, the amount of
tunnel current represents “the amount of the spatial and energetic overlap
between the electron states of the STM tip and that of the sample” and
“to which energy level the electron states are filled by electrons (local Fermi
level)”. Thus, STM provides both the morphology of the sample surface and
its electric properties.

The tunnel effect is defined in a textbook as a phenomenon where an
electron in a low energy state penetrates an energy barrier that is higher
than the energy of the electron and appears on the other side of the barrier.
In a STM setup, the electron at first exists either in the STM tip or in the
sample, depending on the polarity of the bias voltage. The energy of the
electron is smaller than the vacuum level at least by the work function of the
tip/sample material. Thus, the gap between the tip and the sample surface,
the tunnel junction, that is sometimes filled with some gas or liquid, works
as the energy barrier. And the other side is again the sample or the tip. The
situation can be illustrated in a schematic like Fig. 7.11.

The lateral axis denotes the spatial distance measured perpendicular to
the sample surface and the vertical axis denotes energy level for electrons.
The three regions are, from left to right, the metallic tip, the tunnel gap
and the sample. In the regions in the tip and the sample, there are plenty
of energy states for electrons, which form the band structures. The electron
states are occupied by electrons up to the Fermi levels and those above the
Fermi levels are empty. The Fermi levels of the tip and the sample are shifted
by the amount of eVs, with the elementary charge e and the sample bias
voltage Vs. In this schematic, both the tip and the sample are metallic.

In the most cases, the electron tunnels through energy barriers elastically.
In other words, the electron does not gain or lose its energy during the tunnel
process. Thus, only when the electron state is filled on one side and is empty
on the other side at a same energy level, the electron in the filled state can
tunnel into the empty state with a finite probability. At zero temperature, this
condition stands only in the case when the energy state is between energy
levels between the two Fermi levels, as is shown in Fig. 7.11. At a finite
temperature, however, the amount of filled/empty states can be obtained by
multiplying Fermi functions to the density of state. Thus, in a simple model
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Fig. 7.11. Energy diagram of STM measurement

with WKB approximation, the total tunnel current It can be expected as the
next rather inaccurate but useful form:

It ∝
∫ ∞

−∞
f(E)ψt(E){1 − f(E + eVs)}ψs(E + eVs)T (E, eVs, d)dE

−
∫ ∞

−∞
{1 − f(E)}ψt(E)f(E + eVs)ψs(E + eVs)T (E, eVs, d)dE

(7.1)

=
∫ ∞

−∞
{f(E) − f(E + eVs)}ψt(E)ψs(E + eVs)T (E, eVs, d)dE, (7.2)

with the Fermi function f , the charge of an electron −e, the electronic state
density of tip ψt and the sample ψs, the tunnel transmission coefficient T and
the tip–sample distance d. Note that the filled state density in the tip is repre-
sented by multiplying Fermi function to the density of state as f(E)ψt(E) and
the empty state density in the sample is represented as {1−f(E−eVs)}ψs(E).
Thus, the first term in (7.1) denotes the current flowing from the sample to
the tip (i.e., electrons tunneling from the tip to the sample), while the second
term denotes the current flowing in the opposite direction. The transmis-
sion coefficient T will be a function of the effective energy barrier height
(φt + φs + eVs)/2 − E and the barrier width d:

T (E, eVs, d) = T ({φt + φs + eVs}/2 − E, d)

= exp
(
−2d

√
2me/�

√
{φt + φs + eVs}/2 − E

) (7.3)

with the work functions of the tip, φt and the sample, φs, Planck’s constant
over 2π, � and mass of the electron me. This equation tells us that the
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tunnel coefficient decreases drastically when the barrier height or barrier
width (tip–sample distance) increases. With assigning typical parameters for
STM conditions, it shows that the tunnel current is reduced by a factor of ten
when increasing the tip-sample distance by only a few angstroms. The strong
dependence of tunnel current on the tip–sample distance gives the excellent
spatial resolution of STM.

In a more precise description, the transmission coefficient T is no longer
independent of individual electron states. Bardeen described the tunnel cur-
rent as:

It =
2πe

�

∑
µν

{f(Eµ) − f(Eν + eV )}|Mµν |2δ(Eµ − Eν) (7.4)

Mµν ≡ �
2

2m

∫
S0

dS · (ψ∗
µ∇ψν − ψν∇ψ∗

µ) (7.5)

with the eigen functions of the tip ψµ and the sample ψν calculated with-
out counting the interaction between them, element of the transition matrix
Mµν arbitrary surface that divides the tip and the surface S0 and the delta
function δ. Here we know the tunnel coefficient is indeed determined by the
spatial overlap of tip and sample electron states at the same energy level.
The exponential decay of the tunnel coefficient in (7.3) comes from the ex-
ponential decay of local density of states on the outside of tip and sample
materials.

7.3.3 Scanning Tunneling Spectroscopy

As we learned in the previous section, the tunnel current depends on the
spatial and energetic overlaps of local density of states (LDOS) exuding out
from tip and sample surfaces, together with the charge distribution in these
electron states. Experimentally, the former depends on the tip–sample dis-
tance, local corrugation and LDOS distribution on the sample surface and
effective bias voltage and the latter depends on the local Fermi level. In
other words, STM can detect all these properties of sample surfaces at sub-
angstrom spatial resolution. There have been a lot of studies using STM,
which studied various phenomena that occurs on conductive surfaces, such
as thin film growth, molecular adsorption, chemical reaction, electron stand-
ing wave, charge density wave, thermodynamics of vortex at the surface of
high-Tc superconductors.

In addition to using STM for imaging, we can also do spectroscopy with
an STM instrument. The method is called scanning tunneling spectroscopy
(STS). From (7.2), spectroscopic data can be obtained as

(dI/dV ) ∝ eρt(0) · ρs(eV ) · T (eV, eV, z)

+
∫ eV

0
ρt(E − eV ) · ρs(E) · ∂T (E, eV, z)

∂V
dE

(7.6)



7 Fundamental of Laser-Assisted Scanning Tunneling Microscopy (STM) 295

Fig. 7.12. STS curves measured on different adatoms on Si(111)-7×7 clean surface

Very often, the normalized (dI/dV )/(I/V ) form is used to reduce the effect
of the tunnel coefficient T and the second term to extract the factor ρt(0) ·
ρs(eV ). A noteworthy point is that although only filled or empty state is
studied by conventional spectroscopic techniques, both of the filled and empty
states near the Fermi level can be analyzed by STS.

Figure 7.12 shows an example of STS measurement of a Si(111)-7×7 clean
surface [4]. Three spectra corresponds to the probe position at (A) rest atom,
(B) corner adatom and (C) center adatom. These spectra are clearly distin-
guishable reflecting the different electronic environment of each Si atom.

7.3.4 Characteristic of the STM Measurement System

Tip Control: Circuit Response and Thermal Noise

In principle, what an STM instrument does is to move the STM tip over the
sample surface and to detect the tunnel current. Thus, the STM measure-
ment requires two fundamental techniques: 1) precise control of the relative
positioning between the STM tip and the sample surface and 2) noiseless
detection of tunnel current that ranges from subpicoamperes to a hundred
nanoamperes.

Regarding to the latter issue, STM electronics should also supply the bias
voltage and power for the preamplifier in a stable manner. This is, today, not
a difficult task. To have suitable balance between the time constant for the
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Fig. 7.13. Circuit diagram of an STM current-voltage converter

detection and the noise level of the signal is considered more important. This
section is devoted to a brief overview of this point.

STM preamplifier generally has an I/V converter circuit with an opera-
tional amplifier (OP amp.), as is shown in Fig. 7.13, in its first stage. This
circuit ideally has a relation of Vout = −IinRf between the input current Iin
and the output voltage Vout, where Rf is the feedback resistance. However,
in the actual circuits, its transfer function depends on the signal frequency
due to the fact that the characteristic of the OP amp. is not ideal for the
high frequency region. In the case of STM operation, the characteristic of
the preamplifier influences the closed loop gain of the feedback system for
the z-piezo. Therefore, the preamplifier gain in the high frequency region is
designed to decrease like a first order low pass filter with a certain time con-
stant tc. In order to realize this condition, a bypass condenser Cf is located
in parallel to Rf as shown in Fig. 7.13 to keep the phase characteristic at high
frequency region behaving properly. In addition, since the input impedance of
the OP amp. is finite in the high frequency region, the stray capacitance Cs

at the tunnel gap and signal-line also influences the response of the circuit.
The time constant of the actual circuit with a properly adjusted frequency
characteristic is generally given by

tc ∼ 10µs · Rf/100GΩ. (7.7)

Therefore, in order to realize the fast response of the preamplifier, multiple
stage amplification is adopted. For instance, a two stage amplifier with the
first amplification of ×105–106 and the second amplification of ×10–100 re-
alizes the total amplification of ×107–108 with much shorter response time
compared to a single stage preamplifier.

Furthermore, when four stages of ×100 amplification elements are com-
bined, the frequency response beyond 1 GHz range is expected for a total
amplification of ×108. This type of amplification is, however, not realistic
because of the disadvantage of its high noise level. In principle, the lowest
thermal noise level produced at a resistance R at temperature T is theoreti-
cally given as
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∆V =
√

4kTRB, (7.8)

with the Boltzman constant k and the bandwidth of the amplifier B. In a
current–voltage converter circuit, this noise level governs the lowest noise level
of the Vout signal. Since ∆V is proportional to R1/2 and the magnification
of the amplifier is proportional to R, the noise level converted into the input
current scale is proportional to R−1/2. Hence, a ×100 amplifier has 103 times
larger noise level than a ×108 amplifier.

In consideration of the trade-off between the circuit response and noise
level, ×106–108 amplifications are used for the first stage, which results in
the cut-off frequency of 1 MHz–10 kHz (1 µs–100 µs). Apparently, STM is not
a fast measurement technique by itself.

Stability of the Tip Position: Thermal Drift and Acoustic Noise

The three dimensional STM tip positions are controlled by the piezo elements.
A scan area of 200 nm–2 µm (x, y directions) is covered by applying ±100 ∼
200 V to the piezo device. The change in the piezo length is usually 1–
10 nm/V. The motion in the z-direction, perpendicular to the sample surface,
is controlled by the piezo elements with less ratio in order to have more precise
control. When the tip position is moved a large distance, such as ∼1 µm,
hysteresis of the piezo element may influence the positioning, however, for
the range of several tens of nm, accurate control of the tip position can
be realized assuming proportional dependence between tip position and the
applied voltage.

The controllability of the tip position described above is in the short time
scale. Namely, to keep the tip position at the same point longer than several
tens of seconds is a different issue. Due to the thermal drift and creep of piezo
elements, change in the relative position between the STM tip and sample
surface in the scale of nano and angstrom range is inevitable. This problem
is reduced for the low temperature system (T < 100 K), as is well known.

Fluctuation in the tip–sample distance is also an important factor for
the analysis of the local structures. In addition to the feedback condition,
acoustic noises from the floor or air influence the stability of the tip sample
distance. In order to get rid of the effects, STM is generally set on a certain
vibration isolation system, and has a hood against acoustic noise from the
air.

The influence of the vibration isolator is represented by the two-spring
oscillator model as shown in Fig. 7.14. Although the STM head is generally
designed to be rigid, it is impossible to form a resonance-free structure and
it must have some mechanical resonances. Usually, the lowest resonance fre-
quency f1 exists at several kilohertz. Thus, without a vibration isolator, the
transfer function from floor vibration to tip–sample distance, T1(f) is 1 at
f > f1, has a peak at f = f1 and decreases rapidly at f < f1, as shown
in Fig. 7.15(a). On the other hand, the resonant frequency of the vibration
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Fig. 7.14. Double spring model for vibration analysis of an SPM
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Fig. 7.15. Transfer functions of vibration (a) of vibration isolator and (b) of STM
head

isolator f2 is generally designed as low as possible. The transmission function
from the floor to the top of the vibration isolator, T2(f) is 1 at f < f2, has
a peak at f = f2 and decreases rapidly at f > f2, as shown in Fig. 7.15(b).
Thus, when the two resonant frequencies f1 and f2 are far apart, the com-
posite transfer function from the floor to the tip–sample distance that is
obtained by multiplying T1 and T2, can be largely suppressed in particular
at the frequency f2 < f < f1. In particular, in the case of STM for a vac-
uum, since the structure of the STM head becomes complicated in order to
enable in-vacuum exchange of the tip and the sample, its resonant frequency
becomes low. Thus, reduction of the resonant frequency of the vibration iso-
lator is very important. The resonant frequency of a nicely designed vibration
isolator is about 1–5 Hz.
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For the development of the laser-assisted STM, however, the lowering of
the isolator resonant frequency brings another problem; aiming. When the
sample surface is illuminated to study the photo-induced effect, the light spot
is focused to just below the tip position in order to get rid of the thermal
effect. Even in the case of the UHV-type STM, it is possible to focus the light
spot down to ∼10 µm by using the combination of the lenses and laser light
source. In such cases, if the STM head is on the very soft vibration isolator,
the spot position is easily influenced by the oscillation of the isolator. In order
to avoid the problem, the total system of STM and light source should be set
on the same vibration isolator. By this procedure, the light spot size can be
reduced to ∼100 µm, unless very strong light intensity is needed.

7.4 Previous STM Studies in Various Fields

In this section, we review some examples of STM studies from various
nanoscience fields, for the purpose of understanding the wide applicability
of the STM technique.

Figure 7.16(a) shows an STM image of a low dimensional organic conduc-
tor, β−(BEDT-TTF)2PF6 [5–7]. Two kinds of molecular rows were observed
along c-axis, as indicated by C and A in Fig. 7.16(a). These rows should
be, however, identical if the bulk structure is simply terminated by the sur-
face. This suggests that the surface is reconstructed. Reconstruction of the
surface structure from the ideal bulk terminated structure is generally ob-
served for inorganic crystals. The surface reconstruction of an organic crys-
tal was confirmed for the first time. Furthermore, the reconstruction of the
molecular shape was also confirmed by the same experiment. Figure 7.16(b)
shows the spatial distribution of density of states for the molecular structure

Fig. 7.16. (a) Surface structure of β−(BEDT-TTF)2PF6 observed by STM, (b)
theoretically predicted density of states for two different molecular conformations
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with two different conformations. These results reproduce the experimentally-
obtained two molecular features on this surface. Although self-assembled
monolayer (SAM) has been attracting researchers’ interest as a technique of
self-organization, this result strongly indicates the importance of the interac-
tions between molecular elements in order to realize the desired macroscopic
functions. The detailed analysis of intra molecular structures is not so easy
by the conventional methods. When modulation is caused by the local struc-
tures such as defects or surface steps, its analysis becomes almost impossible
except through the STM technique.

By combining low temperature experimental techniques with SPM, phys-
ical properties in materials such as electronic structures inducing Kondo ef-
fect, super conductivity and low dimensional characteristics of materials, have
been analyzed with atomic spatial resolution in deeper levels [6]. Figure 7.17
shows an example of STM study on the charge density wave (CDW) observed
on the surface of β−(BEDT-TTF)2PF6 [6]. Instead of the 2 kF CDW state
along the c axis which appears in the bulk state, 3, 4 and 5 fold CDWs were
observed on the surface as some of them are shown in Fig. 7.17. Instability of
the charge density wave in organic material surfaces had been a controversy
for a long time. The STM study suggested the answer to the question. In
the bulk state, there is a considerable charge transfer between BEDT-TTF
molecule and PF6 molecule. Since the topmost molecules at the surface do
not have the other molecule on the vacuum side, however, the charge trans-
fer is incomplete for these molecules. Hence, the Fermi surface of the surface
layer becomes different from that of the bulk state as shown in Fig. 7.18, re-
sulting in the appearance of the different and unstable CDWs on the surface.
Since such CDW states are unstable and observed locally at the molecular
defects and steps, it had been difficult to analyze the structures without SPM
techniques.

Recently, the local band structural modulation of a carbon nanotube (CN)
peapod was successfully demonstrated by using STM [8]. This modulation is
also a very locally modulated structure induced by the C60 introduced inside
the CN.

As an example of the study of adsorbates, Fig. 7.19 shows a typical STM
image of Kr atoms adsorbed on Si(111)-7×7 surfaces obtained at 6 K [9,10].
With the analysis of spatial distribution of the Kr atoms, existence of a long-
range interaction between Kr atoms was suggested. The adsorption of the first
adatom modulates the substrate property slightly and the adsorption of the
next adatom is affected by the modulation, which results in the correlation
between Kr adsorption sites. If the adsorbates’ distribution were periodic,
the surface structure could be analyzed by diffraction methods. When the
structure lacks long range periodicity, like the present case, SPM is the only
available method to analyze such surfaces.

The very initial nuclear formations and stability of the local surface struc-
tures such as structures in phase transitions, and adsorbate growth on semi-
conductor or metal substrate surfaces widely attract attention from both
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Fig. 7.17. STM images of two different CDW phases observed on β−(BEDT-
TTF)2PF6 surface at 285K and their schematic moldels of (c) bulk CDW state,
(d) that observed in (a), that observed in (b). The black rectangles indicate the
unit cells of surface structure while the dotted rectangles indicate the unit cells of
CDW

fundamental and practical points of view [11–15]. And these local structures
can also be analyzed by the technique of SPM.

As an example, Fig. 7.20 shows a schematic for the analysis of the flip-
flop motion of an Si(100) dimer structure. Since this material is an essential
element for present and future industrial nanodevices, understanding of its
surface property is indispensable. On the Si(100) surface, neighboring two Si
atoms form a dimer structure, and the dimer plays an extremely important
role in determining the characteristic properties of the surface [16]. A dimer
has two metastable conformational positions and flip-flop between them at
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Fig. 7.18. (a) Band filling of the surface and bulk states of β−(BEDT-TTF)2PF6

and (b) their Fermi surfaces
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Fig. 7.19. STM observation on Kr/Si(111)-7 × 7 surface: STM topograph (upper
left), structural model (lower left) and the analysis of the adsorbate distribution
(right)

a certain frequency depending on the local electronic and elastic conditions
surrounding it. Therefore, analyzing the flip-flop motion at a single dimer
level gives us very important information which can not be obtained by the
conventional techniques. In the study, the flip-flop frequency was analyzed
by hovering the STM tip above the one of the two Si atoms in a dimer and
measuring the change in the tunneling current as a function of the time, as
Fig. 7.21. The flip-flop motion causes the change in the height of the Si atom
under the STM tip, which results the change of the tip-atom separation so
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Fig. 7.20. Schematic of hovering STM experiment [17]

Fig. 7.21. Flip-flop motion of silicon dimer on Si(001) at 70K observed in STM
tunnel current signal [17]

as the change in the tunnel current. From the statistical analysis of the flip-
flop frequency, the very local potential for the motion of a single dimer, in
the order of 10–100 meV, can be obtained, which can be related to the local
electronic and elastic structures [17].

In addition, by applying the higher voltage between the STM tip and
sample, the dimer flip-flop motion can be induced in the local area on the
surface. STM observation of the surface following the modification also gives
us the information about the surface dynamics in a visual form [18,19]. This
technique can be applied also for the analysis of the conformational change
of a single molecule [1].

As will be explained later in this book, local spectroscopy is also pos-
sible by STM. From the results of spectroscopic analysis of Xe adsorbates
on Cu(111) surface, modulation of the band structure of the substrate due
to charge transfer with the adsorbed layer was clearly shown [20, 21], even
though the rare gas atoms are generally very inert due to their closed shell
electronic structures.

Recently, single molecular observation is performed by several techniques,
but in order to understand and realize the functional materials at a single
molecular level, detailed study of the intramolecular structure is important
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Fig. 7.22. (a) An STM image of Si nanoparticle on HOPG and (b) its cross sections
at different bias voltages

even for the single molecular case. Figure 7.22 shows an STM image of a
Si nanoparticle, and its cross sections at different bias voltages. Since an
Si nanoparticle is emissive, it is expected to be a future nanoscale optical
element.

The figure clarifies that an Si nanoparticle is not homogeneous and has
internal structure in its local density of electron state. Furthermore, the
cross sections at different bias voltages have different structures as shown
in Fig. 7.22(b). As is well known, since STM images at different voltages re-
flect the local density of electronic states at the different energy levels, the
observed results indicate that there exist different distributions of local elec-
tronic structures. This example clearly shows the high potential of STM for
the analysis of intrananostructure/intramolecular property of nanodevices.

In the case of more complex materials such as functional polymers, under-
standing of the molecular function on the basis of the molecular structures
becomes more difficult despite its importance.

For example, π-conjugated polymers have been developed as advanced
materials for photonic or electronic applications. If the π-conjugated poly-
mer chain can be controlled in the higher order structure, novel functions at
the molecular level will become available due to the characteristic π-electron
system. Many studies confirming the fact that a π-conjugated polymer has
a helical structure have already been completed. Most of these studies have
provided us with data on molecular aggregates or data on the average of many
molecules. Although we now understand that the main chain of the polymer
takes the form of a helix, does one chain have both right- and left-handed he-
lices? What is the ratio of the right-handed helices to the left-handed ones?
What about the regions where the helix is reversed and how does it dy-
namically change? The answers already provided to all these fundamental
questions have been based only on conjecture. Therefore, it is necessary to
establish a technique that can determine the structure at the single-molecule
level in order to achieve the above-mentioned objective.
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Fig. 7.23. STM image of [(-)-poly(MtOCAPA)] and its schematic model

Fig. 7.24. STM manipulation of molecular necklace

Figure 7.23 shows an STM image of a π-conjugated polymer, an op-
tically active polyphenylacetylene bearing menthoxycarbonylamino groups
[(-)-poly(MtOCAPA)]. A hierarchical structure such as the presence of a qua-
ternary structure was clearly observed with the fact that the main chain of
the (-)-poly(MtOCAPA) was flexible in spite of the π-conjugated system.

We have seen the potential of STM to visualize nanoscale materials with
atomic resolution, but there is another extremely noteworthy point, i.e., a
technique for an atomic and molecular manipulation by STM. Since Eigler’s
pioneering research, STM and related techniques have been recognized as the
most powerful tools for the manipulation of atoms and molecules on the sur-
faces. The possibility of developing a molecular counting device was demon-
strated by repositioning C60 molecules along the steps of a Cu metal sur-
face [22]. Here, the selected α-cyclodextrin (CyD) molecule(s) in the molecu-
lar necklace, with the structure of polyrotaxane, was reversibly shuttled using
a STM [23] as schematically shown in Fig. 7.24.
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Fig. 7.25. STM observation of molecular necklace

In previous manipulation of atoms and molecules using a STM, strictly
controlled conditions (ultrahigh vacuum (UHV), low-temperature (e.g., liquid
He temperature), and/or specifically structured substrates) were required.
However, the present manipulation of α-CyDs is expected to be stable in
air at room temperature, mainly due to the characteristic structure of the
polyrotaxane.

Figure 7.25 shows a typical STM image of the molecular necklace on a
MoS2 substrate. As schematically shown in Fig. 7.24, the main chain con-
sisting of a poly(ethyleneglycol) (PEG) molecule runs along the surface of
the substrate, and the α-CyDs lie with their longitudinal axis parallel to the
surface. The rotaxane structure of the molecular necklace is clearly visualized
on an atomic scale.

Then, one of the α-CyDs in the molecular necklace was mechanically
pushed by the STM tip along the main chain of PEG, as has been performed
previously to manipulate atoms/molecules on the substrate surfaces. An ex-
ample of the shuttling is shown in Fig. 7.26. The images were acquired before
and after each manipulation, respectively. The target α-CyD molecule (des-
ignated by the arrow in Fig. 7.26) was moved by the tip-sweep from right to
left and vice versa. Since the PEG chain is railed diagonal in these images,
the target α-CyD stably moved in the direction along the chain.

As will be explained in detail later, molecular structure and even chemical
reactions can be manipulated by STM using the inelastic tunneling processes.
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Fig. 7.26. Manipulation of a CyD molecule in a molecular necklace

Fig. 7.27. Excitation of molecular vibration by inelastic tunnel effect

The excitation effect of a selected vibrational mode can be investigated by
the process with atomic resolution as schematically shown in Fig. 7.27. A se-
lective excitation of a specific vibrational mode may be realized and analyzed
by combining the excitation of the molecule with THz pulse trains and the
analysis with STM.

As has been shown, locally modulated inhomogeneous structures can be
investigated only by the technique of STM. In fact, STM has been playing
important roles in the scientific and technological development until now.
Therefore, for the future development of nano-scale based functionalities of
materials, exploring and constructing the world by STM is undoubtedly one
of the most important and promising key technologies.

7.5 Development of Laser-Assisted STM

7.5.1 Performance of Optical Measurements

Here, we consider the performance of conventional optical measurements in
comparison with STM. The simplest optical measurement is looking at ob-
jects by eyes. We can resolve 0.1 mm separation and distinguish slight dif-
ferences in color, i.e., wave length of reflected/transmitted light. With using
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optical microscopy, the spatial resolution can be improved down to sub mi-
crometers. This resolution is good for looking at cells but never for looking
atoms or molecules. The ideal resolution is limited by numerical aperture
(NA) and the wavelength. We can look at individual molecules by an opti-
cal microscope with dispersing molecules very dilutely. Then, molecules are
well separated from each other so that we can distinguish the emission from
each molecule. However, the spatial resolution can not be improved down to
nanometer scale because of the long wavelength of the light, ∼100 nm. This
spatial resolution is far from the spatial resolution of STM.

On the other hand, the resolution of optical measurements in energy scale
or in time scale can be excellent. The energy resolution of a monochromator
or laser source can be much better than the thermal energy. That means an
experiment using them does not broaden the spectrum, unlike STS, where
the electron distribution is diffused by thermal energy. In addition, we can
choose the wavelength from a very wide region: IR for molecular vibration
spectroscopy, UV-Vis for electron excitation, gamma ray for nuclear excita-
tion.

As seen in the previous chapters, the time resolution of pump-probe meth-
ods using ultrashort pulsed lasers reaches a few femtoseconds. This is much
better than the time resolution of STM. The time resolution of STM current
detection is usually limited to ∼10 µs. If we make it better, we lose signal-
to-noise ratio. The femtosecond time resolution allows us to see the ultrafast
decay of photo-excited carriers in materials and the accompanying excitation
of coherent phonons, quantum interference effects and so on.

7.5.2 Combination of STM with Optical Methods

Both STM and optical measurement methods have their own advantages
and drawbacks. Our purpose is developing better measurement techniques
by combining these two techniques. We will combine their advantages and
supplement their drawbacks with each other. Namely, we make use of the
spatial resolution of STM and the energy/time resolution of optical measure-
ments. It will realize optical spectroscopy at atomic/molecular resolution and
ultrafast experiment in femtosecond time scale at atomic/molecular resolu-
tion. But how should we combine them?

There might be two contrasting approaches. One is exciting samples with
optical methods and detecting the signal with tunnel current. The other is
exciting samples with tunnel current and detecting the signal with optical
methods. Although the latter might sounds strange, such techniques have
already been suggested [31]. It is called light-STMs. The principle is as fol-
lows. The tunnel electrons have generally higher energy than the Fermi level
of destination materials. Thus, these electrons will lose energy in some form.
There are cases where the energy decay accompanies light emission and can
be detected by spectrometers. The spatial resolution of the measurement is
characterized by the length for which the injected carriers diffuse before they
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decay and the spectrometer can measure the energy of the emission precisely.
Local band structures of materials are investigated by such methods [31].
However, time resolution might be difficult to achieve with this setup.

We adopted the other method; we excite our sample by irradiation and
detect the signal with STM. When detecting the signal with STM, ångstrom
spatial resolution of the measurement is guaranteed. By saying it, we do
not insist that we will always acquire as small futures as ångstrom scale in
our images because the physical phenomena caused by the irradiation do
not necessarily have ångstrom spatial variation. What we insist here is that
when the physical property has spatial variation at the angstrom scale, we
will be able to see it with light-excited STMs. We can tune the wavelength of
irradiation to have spectroscopic resolution and use pulse lasers to have time
resolution as shown in Chaps. 9 and 10.

7.5.3 How to Combine the Two Techniques?

Various Ways of Combining STM with Optical Methods

Even after we decided to excite samples with light and look at the result
with STM, we still have many options of measurement setup. Here, we will
discuss systematics of possible setups of light-excited STM measurements.
We classify measurement methods by (1) when the sample is excited by light
and when it is observed by STM, (2) what kind of change in the sample is
detected by STM and (3) how such change is caused by the irradiation. This
discussion clarifies the existence of a variety of ways of combining STM with
optical excitation and their great possibilities.

Temporal Order of Excitation and Observation

We can choose one of these:

1. To compare the STM signals before and after light illumination.
2. To compare the STM signals with and without light illumination.
3. To compare the STM signals with different parameters of light illumina-

tion.

The first one is simple. We observe the sample with STM in dark condi-
tion, illuminate sample with some light source, turn off the light and observe
it again with STM. Although the measurement is very simple, in changing
the condition of illumination, we can still obtain spectroscopic, time-resolved
and atom-resolved characteristics of the sample. Technically speaking, since
the STM observation and light illumination are independently done in this
method, there is not much to be discussed. However, it is still not too easy
because illumination of the sample causes a slight increase of the system tem-
perature, resulting in the variation of relative tip–sample position. Thus, one
can very easily lose the imaging frame. It is generally difficult to compare
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images of the same area before and after illumination. In order to overcome
this difficulty, one possible solution is to make use of statistical methods. If
the change of the sample caused by the illumination is homogeneous, it is
meaningful to compare statistical values of different image frames. A statis-
tical approach also solves the problem of the inability to repeat experiments.
Since this type of experiment often causes irreversible change in the mea-
sured system, one needs to re-prepare the sample each time. In fact, in such
cases, surveying large areas with the statistical method is almost the only
way to check the reproducibility and the accuracy of the obtained result. An
example will be presented in Chap. 9.

The second and third ones observe the change in STM signal with varying
intensity or some other property of light illumination. Although these meth-
ods have potential to provide all benefits of the spectroscopic, time-resolved
and spatial resolutions in nondestructive way, in this case one has to consider
the interference of the STM observation with light irradiation. In particular,
when intense illumination is applied to the system, we can never modulate
the intensity of illumination. Because a large change in the amount of heat
brought by the illumination to the STM tip causes large amplitude of elonga-
tion/shrinking of STM tip, this results in a crash of tip apex into the sample
surface. This point is discussed in detail in Sect. 7.5.4. When the modulation
is applied some other property of illumination, the existence of illumination
does not affect STM observation too much.

What Change in the Sample Property Is Detected by STM?

As we learned above, an STM observation detects spatial/energetic overlap
of electron states of tip and of sample, and their local Fermi levels. Thus, if
irradiation of the sample affects the STM signal, at least one of the following
changes should occur in the sample:

A) change in the amount of spatial overlap between tip and sample electron
states

B) change in the amount of energetic overlap between tip and sample electron
states

C) change in the charge distribution in the electron states

The first one, spatial overlap of electron states, can be affected by the
change in the tip–sample distance by irradiation, although which is almost
always better to be avoided. It can be also effected by the change in the
shape of specimen due to rebonding of atomic structure or deformation of
molecular shape, and the change in the distribution of electronic states due to
charge transfer caused by photo excitation. The last issue might also cause the
change in the distribution of the electronic states against the energy scale.
Energetic overlap of the electron state is also affected, in addition, by the
change in the effective bias voltage due to the penetration of the electric field
between tip and sample into the subsurface region of the sample. The electric
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field of the light wave also causes a modulation of bias voltage at very high
frequency. Since the frequency of the modulation is too high, the modulation
in the tunnel current synchronized to the light wave can not be detected
by STM. However, nonlinearity of I/V characteristics of the tunnel junction
partially rectifies the high frequency modulation of bias voltage and results in
a small direct current component in tunnel current as shown following. Here,
the bias voltage as a function of time is assumed to be Vs = V 0

s +∆Vs sin(ωt).
Then the tunnel current will be as follows.

It(Vs) = It(V 0
s ) + ∆Vs

∂It

∂Vs
sin(ωt) +

1
2
∆V 2

s

∂2It

∂V 2
s

sin2(ωt) + O(∆V 3
s ) (7.9)

The time-averaged signal is not affected by the second term in the right hand
side but depends on the third term.

It(Vs) ∼ It(V 0
s ) +

1
4

∂2It

∂V 2
s

∆V 2
s (7.10)

Thus, the averaged signal also contains a small but finite component that is
proportional to the amplitude of bias modulation.

Change of the charge distribution in the electron states can be caused
by the photoinduced electron transfer in a molecule or the diffusion/drift
of photoexcited carriers in semiconductor materials. Change of the charge
distribution affects the effective density of state at the initial and final state
of tunneling transition.

How Does the Light Excitation Modulate the Sample Property?

The interaction between photons and the sample material, and sometimes
also tip material, is dependent on the wavelength and the physical properties
of the exact system. Physical properties by photostimulation, such as band
structural modulation, excitation of electrons in single and collective modes,
molecular vibrations, have been studied by various techniques. In particu-
lar, ultrafast reactions have been studied by optical pump-probe techniques.
Figure 7.28 and 7.29 show examples of band structural modulation of GaAs
and phonon dynamics of highly oriented pyrolytic graphite (HOPG). In the
former case, following the carrier excitation by the pump probe, relaxations
in the conduction band and from the conduction to the valence band result in
the observed change in the probe pulse reflectivity [24]. In the latter case, an
observed change in the reflectivity reflects the phonon relaxation processes
caused by the excited electron-phonon interactions [25]. These changes in
the materials are supposed to influence the tunnel current and produce the
signal of the light-combined STM measurement as will be described in the
following sections. In addition, manipulation of the material structures by
light-combined STM will be shown in Chap. 9.
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Fig. 7.28. Pump-probe reflectivity measurement on low temperature grown GaAs
sample using 805 nm laser pulses [24]

Fig. 7.29. Pump-probe reflectivity measurement on HOPG using 800 nm laser
pulses [25]

7.5.4 Specific Issues in Combining Light Irradiation and STM

Thermal Expansion/Shrinking of STM Tip

There are several barriers to be overcome for the development of the light-
combined STM. The most critical one is caused by the thermal expansion
of tip and sample due to photo illumination of the tunnel gap. Since the
tunneling current is sensitive to the tip–sample distance, this effect strongly
influences the STM/STS measurement.

When an optical chopper is used for the lock in detection, or a strong light
source is needed, change in the light intensity due to chopping or fluctuation
of the strong light source causes the apparent thermal expansion effect. How-
ever, the thermal expansion effect is reduced when the photoillumination is
stably performed and the thermal equilibrium condition is achieved. Let us
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Fig. 7.30. Frequency dependence of thermal expansion/shrinking of STM tip by
chopped laser illumination

consider the case of the modulation of an optical chopper. The STM tip is
lengthened and shortened when the photoillumination is on and off, respec-
tively. Therefore, although the actual change is a little bit more complicated,
if the on/off frequency is fast enough, the tip length is considered to be kept
at the thermal equilibrium value.

Figure 7.30 shows the frequency dependence of the thermal expansion
effect [26]. An experiment was performed for a W tip of 0.25 mm diameter
and Au sample combination with the photo illumination of a 17 µm-spot-light.
As shown in the figure, the amount of thermal expansion decreases with the
chopping frequency, however, it strongly depends on the tip shape. And when
the photoillumination is focused on the tip apex, the thermal expansion is
not reduced even at the frequency of 100 kHz.

Photoelectron Emission by Multi-photon Absorption

When photoelectrons are emitted from the sample surfaces, these electrons
influence the tunneling current measurements. In particular, in the case of
short pulse lasers, since the signal is supposed to be extremely weak and each
pulse has a strong intensity, multiphoton absorption must have a strong effect
on the STM measurement. In fact, this effect was confirmed by measuring
the signal intensity as a function of the tip–sample distance [27]. As expected,
an STM signal was observed even for the tip–sample distance of 20 µm. This
effect is strong for the UHV-STM, however that decreases with surrounding
pressure, and can be neglected for the case of the experiment in air.

Shadowing Effect by Tip

In general, photoillumination is performed with a certain angle to the tip-
sample gap. On the other hand, the STM tip is sharpened by such processes
as chemical etching. However, it has a certain curvature. Figure 7.31 shows
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1µm

Fig. 7.31. SEM observation of chemically-etched tungsten STM tip

Fig. 7.32. Field enhancement effect under the STM tip

an example of an STM tip chemically etched with NaOH solution observed
by scanning electron microscopy (SEM).

Does shadowing by the STM tip influence the photoillumination of the
sample surface just below the tip? Generally, the curvature of the tip apex
can be reduced down to less than 100 nm, and the light wavelength is longer
then 100 nm even when UV light is used. When infrared light is used, the
wave length becomes ∼1 µm. Therefore, the dominant effect of the tip is not
shadowing but scattering. The tunnel gap can be illuminated even when the
STM tip exists.
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Field Enhancement Effect

When the STM tunnel gap is illuminated by laser under a certain condition,
the local electric field is strongly enhanced due to the effect of tip–sample
shape characteristic. This is called the field enhancement effect. For example,
×500 amplification of the field enhancement was observed with the condition
of the plasmon resonance on the tip surface [28–30].

This field enhancement effect becomes prominent with the following con-
ditions: 1) polarization is parallel to the incident plane (p-polarization), 2)
small tip–sample distance, 3) small tip apex curvature, 4) at plasma resonant
frequency. This effect can cause ×1000 magnification for specific conditions,
and theoretical analysis has been performed actively [28–30]. Since the STM
signal is expected to be enhanced together with the enhancement of the
electric field of illumination, the field enhancement effect is preferable for
the light-combined STM measurement. The field enhancement effect is also
caused by the corrugation of metalic sample surfaces as the nanoscale Ag
particles are utilized in an enhanced Raman spectroscopy. Thus, combina-
tion of sharp STM tip with a metalic substrate with appropriate corrugation
will be ideal for enhancement of electric field at tunnel junction.
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8 Spatially-Resolved Surface Photovoltage
Measurement

O. Takeuchi and H. Shigekawa

8.1 Background

As the dimension of semiconductor devices shrinks down to nanometer scales,
control of the dopant and defect profiles in the device material is getting more
and more important. In addition, the surface effect and/or quantum effect,
which have not appeared in larger devices, show considerable influences on
the electric properties of the entire devices. Consequently, there have been
urgent needs for the noble evaluating techniques that can investigate the pre-
cise band structure including localized energy levels within nanoscale semi-
conductor devices. In addition, such techniques might be also applicable to
the basic research of the future organic/inorganic molecular devices, which
has completely new physical mechanisms for realizing its noble functions.

When the scale of specimen was much larger, photo-assisted spectroscopy
provided valuable information for the electronic structures in materials. For
example, photoelectron spectroscopy (UPS, XPS) revealed the filled state
density of the surface states and the surface photovoltage (SPV) measure-
ment gave the information of the subsurface band structures. However, now
the device size is already as small as a few tens of nanometers. These conven-
tional optical methods are no longer applicable. The spatial resolution of these
methods is generally limited to the dimension of their wavelengths, which are
larger than 100 nm. At this moment, the best candidate for investigating the
electric structure within such nanostructures is scanning probe microscopy
(SPM) technology. Hence, many researchers have been devoting efforts for
developing noble characterization techniques of local band structures using
SPM instruments: such as scanning tunneling spectroscopy (STS), SPV mea-
surement, Kelvin force microscopy (KFM), barrier height (BH) measurement
and standing wave measurements using SPM.

Among these SPM techniques, local SPV measurement using STM is su-
perior in one sense that it can provide not only the static but the dynamic
properties of band structures. It inherits all advantages from the conventional
macroscopic SPV measurement and also posesses the spatial resolution of
STM. In general, it measures the difference in the amount of surface band
bending on dark and illuminated conditions. As is known, in the one dimen-
sional model for a homogeneous semiconductor material, the surface band
bending is caused by the pinning of Fermi level at the surface by the mid-gap
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surface states and/or by the characteristic carrier recombination/generation
rate at the surface. On real device surfaces, band bending is also caused
by the inhomogeneity of the materials. The amount of bending reflects the
composition of semiconductor materials, the densities of dopant/defect states
and the generation rate of photo carriers.

Historically, SPV measurement in macroscopic dimension originated in
the early 1950s [1] and, up to now, the method has been fairly established [2].
It provides important electric properties of semiconductor materials, such as
the polarity and magnitude of surface band bending, the recombination rate
of photocarriers, surface conductivity, dopant/defect density and localized
quantum levels. Hence, combining the conventional photo-assisted technique,
SPV measurement with SPM technology to acquire spatially resolved SPV
(SR-SPV) simultaneously with an atomic topograph of sample surface by
STM will lead to a greater understanding of the electric functions of future
nanodevices on the basis of their atomic structures. In this chapter, we in-
troduce our recent achievement in the study of SPV measurement technique
by STM.

8.2 Surface Photovoltage (SPV)

In order to explain the basic concept of SPV, the band structure in the
surface region of a one dimensional n-type semiconductor is illustrated for
dark and illuminated conditions in Fig. 8.1(a) and (b). In this schematic, the
lateral axis indicates the position perpendicular to the surface and the ver-
tical axis indicates the potential energy for the electrons. The semi-infinite
sample extends from the surface at the right end of the figure towards the
left hand side. Generally, the band structure in the dark condition bends in
the surface region. In many cases, the bending is governed by the pinning
of the Fermi level by the mid-gap surface states at the surface. Some other

Fig. 8.1. Surface photovoltage effect
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factors can also affect the band bending, such as the difference in the gen-
eration/recombination rate of thermal carriers at the surface in comparison
to the bulk. The bent band structure indicates the existence of the depletion
layer and the built-in electric field there. In the figure, the white circles in-
dicate the ionized donor states and the filled circles indicate the electron as
the major carriers. In the bulk region, the density of the donor states and
that of the carrier electrons are equal so that the net charge density is zero.
However, in the depletion layer, the net charge density is almost equal to the
donor density. Thus with a condition of fully ionized dopant levels, which is
often realized at room temperature, the amount (height) of the band bending
eVbb and the depth of the depletion layer d has a relationship as

d =
√

2εε0Vbb/eNA, (8.1)

with the dopant concentration in the bulk NA, relative dielectric constant ε,
vacuum dielectric constant ε0 = 8.85×10−12F/m and elementary charge e =
−1.6×10−19C. Thus, small dopant concentration results in a thick depletion
layer and large dopant concentration results in a thin depletion layer. Typical
values of d range from 10 to more than 100 nm. In the thermal equilibrium,
this electric field compensates the difference in the chemical potential of the
electrons so that the net flux of the carriers is zero everywhere in the material.
Namely, the Fermi level is constant all through the semiconductor material.

When the sample is illuminated by a super-bandgap light, as illustrated
in Fig. 8.1(b), the photo-excited carriers are generated in the surface region.
Although the light intensity diminishes from the surface into the bulk due
to the absorption, often the decay length of the light intensity as a function
of the depth in the semiconductor is larger than the thickness of the deple-
tion layer. In such cases, the light intensity is almost constant through the
depletion layer. Generated carriers drift due to the electric field of the band
bending and cause the charge separation. When the sample is n-type, elec-
trons drift into the bulk and holes drift towards the surface. As a result, the
positive charge builds up at the surface, which results in the reduction of the
electric field of the bandbending. Since, when the band bending is reduced,
the drift of the photoexcited carriers is also reduced, the charge build-up
eventually saturates and the system reaches a steady state. Do not mistake
this steady state with the thermal equilibrium. The word of “steady” just
denotes that the amount of the band bending is temporally constant. In this
situation, the Fermi level can not be defined in the illuminated area and the
quasi-Fermi levels independently defined for electrons and for holes take dif-
ferent values to each other. When the intensity of illumination is sufficiently
large, the band bending is almost flattened and further increases of light
intensity do not change the band structure. As can be seen, the relaxation
of the band bending causes the shift of the potential energy of the surface
from its equilibrium position. This shift is defined as SPV. Hence, SPV is
generally smaller than or equal to the amount of original band bending. It is
notable that, with sufficient illumination, SPV is equal to the amount of the
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Fig. 8.2. Surface photovoltage as a function of illumination intensity with changing
nonideality factor n from 1.0 to 1.4

original band bending. With moderate intensity of illumination, SPV is not
determined only by the original band bending but also reflects dynamic prop-
erties of the samples: such as carrier generation/recombination rates, carrier
mobilities, density of localized states and so on.

We can describe the above situation with the analogy to a metal semicon-
ductor interface (Schottky contact), treating the surface states as a very thin
metal layer. In the steady state, there must not exist a net charge transfer,
which is realized only when the drift current due to the photo-excited minority
carriers arriving at the surface Jpc is exactly compensated by the thermionic
emission current of the majority carriers across the depletion region Jth [3].
Generally, with not too large illumination intensity, Jpc is proportional to
the illumination intensity P and the depth of the depletion layer d. Jth is
given with the nonideality factor n ≥ 1 that allows for deviations from pure
thermionic emission as

Jth = J0 exp(eVSPV/nkT )[1 − exp(−eVSPV/kT )], (8.2)

with J0 = A∗T 2 exp(−eφh/kT ). Here, A∗ denotes the effective Richardson
constant and φh the Schottky barrier height. For Si, A∗ ∼ 30 Acm2K2 for
holes and A∗ ∼ 100 Acm2K2 for electrons [3]. Assuming Jth is equal to Jpc,
we obtain the amount of the SPV as in Fig. 8.2. If n = 1, the result can be
written in a simple form as

VSPV = (kT/e) ln(Jpc/J0 + 1). (8.3)

If n 
= 1, SPV in the small and large signal limits,

VSPV = (kT/e)(Jpc/J0) Jpc � J0

VSPV = (nkT/e) ln(Jpc/J0) Jpc � J0
(8.4)
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Note that these equations does not saturate but continuously increase with
increasing Jpc. However, in reality, Jpc itself saturates for high illumination
intensity P because of the reduction of the depth of the depletion layer d.

The model we discussed above is the simplest one. In reality, there might
be some other factors to be considered, such as the defect concentration, ex-
ternal fields and inhomogenuity of sample properties. To extract such prop-
erties from the SPV signal, more precise theoretical analysis is required.

8.3 Macroscopic Measurement of SPV

In macroscopic measurements, SPV is often measured by the Kelvin probe
method or the metal-insulator-semiconductor (MIS) approach. The former
method originally measures the difference between the work functions of a
sample and a metal probe. Since the surface dipole is usually insensitive to
the illumination, the change in the surface bandbending causes the same
amount of change in the work function. Thus, the SPV can be measured by
comparing the work functions of the sample with and without illumination.
To measure the work function, a metal plate electrode is faced against the
semiconductor surface and the gap distance between the two surfaces is peri-
odically modulated. When the two surfaces are short-circuited, even though
their Fermi levels are in equilibrium, there exists a finite electric field between
them. This is due to the difference between their work functions, which causes
the difference of the vacuum levels at their surfaces. This is called as contact
potential difference (CPD). Since the CPD is inherent for the combination of
the two surfaces, the gap modulation causes the modulation of the electric
field between them. Consequently, the displacement current flows from the
capacitor consisting of the metal plate and the sample surface. When a bias
voltage is applied to the sample, the electric field is changed and so is the
displacement current. Only when the bias voltage compensates for the CPD
is the displacement current nullified. Thus, measuring the bias voltage where
the displacement current becomes zero, one can measure the CPD between
the sample and the probe. One can perform the CPD measurement both in
the dark and illuminated conditions and obtain the SPV from the difference
of the CPD in the two cases.

On the other hand, the metal-insulator-semiconductor approach measures
the photo voltage directly. Imagine a metal plate electrode is placed close to
the sample suface but without contact. At first, the two electrodes are short-
circuited to have equilibrium in dark conditions, where their Fermi levels
becomes equal to each other. When the sample is illuminated after open-
circuiting them, the surface potential changes by the amount of SPV. This
change can be measured as the photo-induced voltage change between the
two electrodes.
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8.4 Photovoltage and Photocurrent Measurement
by STM

With using a smaller probe electrode, the spatial resolution of the SPV mea-
surement can be improved. In particullar, the MIS method combined with
STM has a potential of probing the SPV and the surface morphology at an
atomic resolution. Thus, since the pioneering work by Hamers and Mark-
ert [5], much research has been done for measuring spatially resolved SPV by
using STM.

The experimental methods developed so far can be classified into two
categories, namely, those for measuring intrinsic (zero bias) SPV [5–8] and
those for measuring SPV under finite bias voltages [9–12]. In both cases, the
measurement setup is very similar to the macroscopic MIS approach, except
for the following two points; there exists finite tunnel current flowing between
the sample and the metal probe, and the shape of the probe is not a plate
but a needle, i.e., the STM tip. Although these two points make the inter-
pretation of the obtained signal more difficult compared to the conventional
MIS approach, the one dimensional MIS model is still useful for the first
order approximation. Figure 8.3 shows the schematic of the measurement of
the intrinsic SPV using STM. In the dark condition, it is obvious that the
tunnel current is zero when the bias voltage is zero, i.e., the Fermi levels of
the sample and of the tip coincide each other. In the illuminated condition,
on the other hand, the photovoltage, i.e., the amount of bending of the quasi-
Fermi level in the surface region, works as an additional bias voltage. Thus,
the same amount of bias voltage with opposite polarity is required to nullify
the tunnel current, in order to align the Fermi level of the sample surface
and that of the probe. Consequently, when using the STM probe as the volt-
meter under the illuminated condition, atomic scale SPV variation can be
obtained. By simply extending this argument, the STS curve under an illu-
minated condition will have a same shape of that in the dark condition but

Fig. 8.3. Intrinsic surface photovoltage measurement using STM
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Fig. 8.4. Lateral shift of IV curves under dark/illuminated conditions

just shifted in the lateral direction by the amount of the SPV. However, in
reality, since the SPV is generally bias voltage dependent, the two STS curves
are not just shifted in the lateral direction but have different shapes as shown
in Fig. 8.4. Measuring the lateral shift of IV curves under dark/illuminated
conditions for each bias voltage, one can obtain the bias voltage dependence
of the spatially-resolved SPV.

As seen in the above, the simplest SPV measurement by using STM can
be performed by obtaining the two STS curves under illuminated and dark
conditions. However, this is not an easy task for two main reasons. One is
that when the sample and the tip are illuminated, a finite amount of heat
is brought by the light to the measurement system. In particular, warming
up of STM tip easily causes the extention of the tip length, resulting in the
unfavorable decrease of the tunnel gap distance. Thus, if you obtain an IV
curve in the dark condition and then illuminate the sample to obtain an
illuminated IV curve, the tip–sample distance is no longer as same as that
under the dark condition. The other issue is the measurement time to obtain
an SPM image of spatially resolved SPV. Usually, the measurement of an
IV curve takes 0.1–1.0 s. If IV curves are measured for every pixel of a high
resolution image, the number of IV curves required to construct an image
becomes several ten thousands. It would take hours to obtain a single image.
Thus, the reduction of measurement time is important. To overcome these
issues, a variety of technical methods to measure SPV with using STM have
been proposed.

Before summarizing such methods, let us give a short consideration for
the accuracy of an SPV measurement with STM. Since we measure the lateral
shift of two IV curves, the accuracy of the obtained value ∆VSPV is given by
the noise level on the tunnel current signal ∆It divided by the slope of the IV
curve at the interested point, i.e., differentiated tunnel conductance dI/dV .

∆VSPV = ∆It/(dI/dV ) (8.5)
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Thus, when the intrinsic SPV is measured, the disappearance of the differen-
tial tunnel conductance dI/dV at the low bias voltage region enhances the
small noise and possible offset in tunnel current detection, resulting in a large
noise/artifact in the obtained intrinsic SPV signal. Thus, SPV measurement
is now often performed under finite bias voltages. In such cases, however, the
local band structure beneath the STM probe can be affected by the strong
electric field and high current density required for the tunnel current detec-
tion of STM. Hence, the measurement conditions must be carefully taken
into consideration in interpreting the obtained results.

In order to obtain the intrinsic SPV value, we do not have to measure the
dark tunnel current but we can just seek the zero crossover of the tunnel cur-
rent under illuminated conditions. In the simplest method, this can be done
by acquiring IV curves. However, it takes a long time and the measurement
accuracy is limited because of the small dIt/dV around the zero effective bias
voltage. Hamers and Markert designed a special electronics to measure the in-
trinsic SPV for the first SPV measurement using STM. At each measurement
point, the z-feedback for the normal STM operation is opened and, instead,
bias voltage feedback that seeks zero tunnel current is applied. With this
method, the settled point of the bias voltage gives the SPV value directly.
Compared to obtaining whole IV curves, a method that can take a longer
time to find the exact zero, this method is expected to give better accuracy
with less time. However, it was still slow because of the small error signal
level for the bias voltage feedback, due to very small dIt/dV , and suffered
from the artifact from a very small tunnel current offset and/or remaining
tunnel current after a finite period of the bias voltage feedback. Actually, the
spatially resolved SPV image they reported turned out to have originated
from the measurement artifact. Hagen et al. improved the Hamers’ method
by using the z-feedback to keep the differentiated tunnel conductance dIt/dV
to be constant during imaging instead of the tunnel current It [8]. With this
method, the two feedback circuits, one for the bias voltage to cancel It and
one for the z piezo to keep dIt/dV constant can be enabled simultaneously.
Thus, they could avoid the switching time of the two feedback circuits and
greatly reduce the total imaging time. In addition, the tip–sample distance
for the current nulling operation in their method is, in general, much smaller
than that of Hamers’ method, which was realized much higher accuracy. With
any experimental method, however, a sample that has no surface state density
at the Fermi level can not be investigated by the measurement of the intrinsic
SPV with STM, because when the differentiated tunnel conductance is truly
zero at the Fermi level, the zero crossover of the IV curve is undeterminable.
In such cases, we must think of measuring the SPV under finite bias voltage,
where the differentiated tunnel conductance is not zero.

Along with the strategy described above, obtaining the SPV value at finite
bias voltage is more complicated than obtaining the intrinsic SPV, because,
now, we must at least know the dark and illuminated tunnel current for the
two different bias voltages. There have been two methods introduced in order
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to do this task. One is called the double-modulation method, introduced by
Cahill and Hamers. They chopped the photo illumination with a frequency f1
and, simultaneously, modulated the bias voltage with a sinusoidal wave at a
frequency f2 (
= f1). These frequencies are higher than the cut-off frequency
of the z-feedback loop that keeps the tip–sample separation constant during
the imaging or sweep of bias voltage, i.e., the z-feedback tries to keep the av-
eraged tunnel current to be the reference value. The resultant tunnel current
contained two oscillating components; one is the square-wave component at
f1 due to the SPV effect and one is the sinusoidal component at f2 due to the
bias modulation. When using two lock-in amps, these two components are
separated and the oscillation amplitudes ∆I1 and ∆I2 are measured, inde-
pendently. Since the photo-induced change of the tunnel current is not only
dependent on SPV but also dependent on the differential tunnel conductance
dIt/dV , i.e., ∆I1 = dIt/dV · VSPV, SPV can not be obtained only from ∆I1.
However, from the ∆I2 and the amplitude of the bias modulation ∆V , we
can obtain an approximated value for dIt/dV by dividing ∆I2 by ∆V . When
assigning this experimentally obtained differentiated tunnel conductance, we
can obtain the SPV value by

VSPV = (∆V/∆I2) · ∆I1. (8.6)

Strictly speaking, this equation is valid only when the dark and illuminated
IV curves are linear and their slopes are exactly the same. Although these
conditions are not met in reality, when the photo-induced current is small,
this method works pretty well.

McEllistrem et al. improved this double modulation method by synchro-
nizing the two modulations [10,11]. They applied additional bias voltage only
when the illumination was on. In the SPV measurement, they adjusted the
polarity and amplitude of this additional bias voltage component so that
the photo-induced change in the tunnel current was compensated. Remem-
ber that we are assuming SPV works as an additional component for the
effective bias voltage at the tunnel gap. Thus, the tunnel current under
the illumination can be written as It(V0 + VSPV), where It(V0) represents
the tunnel current under the dark condition. They introduced an additional
bias component of ∆V and adjusted the polarity and amplitude so that
It(V0) = It(V0 + VSPV + ∆V ). Since It(V ) is monotone increasing function,
when this condition is established we can assume the −∆V is equal to VSPV.
Actually, even when the proper ∆V is applied, the tunnel current contains
sharp spikes when the illumination and the bias voltage are switched. This is
due to the slow response of the tunnel current preamplifier and the displace-
ment current from the capacitance existing between the tip and the sample.
Thus, the feedback for the additional bias component was temporally gated
so that the transient current was filtered out. The z-feedback to keep the
tip–sample distance constant was also temporally gated so that it was only
active during the middle part of the dark period. The SPV value obtained by
this method is not an approximated value unlike the old double modulation
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method. The control of the tip–sample distance is also improved because the
former method could only keep the averaged tunnel current between dark
and illuminated condition to be constant, which means that the tip–sample
distance was dependent on the amount of photo induced current even for
the same bias voltage. Also, these double modulation methods are suitable
for imaging because they require less time for measuring the SPV value for
each point. These two double modulation methods are also capable of doing
spectroscopy. Namely, we can fix the lateral position of the STM tip at a
specific point of the sample surface and sweep the bias voltage while mea-
suring SPV as a function of bias voltage. An important aspect of these two
methods is that, even when the bias voltage is swept, the tip–sample distance
is adjusted so that the (averaged) tunnel current is kept constant, unlike the
basic approach where the illuminated and dark IV curves are independently
measured.

Instead of measuring the dark and illuminated IV characteristics, Kuk
et al. pointed out that comparison between the positions of peaks in the two
(dI/dV )/(I/V ) spectra for dark and illuminated conditions gives amount of
SPV, when the dependence of SPV on the bias voltage is rather small. The
(dI/dV )/(I/V ) spectra obtained in the STS measurement corresponds to
the local density of electron states (LDOS). Thus, when the surface potential
is shifted by the SPV effect, the peak positions in the spectrum also shift
by the same amount. In this experiment, there is no need to have the tip–
sample distance be constant for measuring both illuminated and dark spectra;
the measurement is not very complicated. However, the measurement of the
spectrum for each measurement point takes a long time and it has limited
resolution in the bias voltage dependence of the SPV value.

By applying these methods, SPV measurements on several systems have
been reported. As pointed out above, however, the obtained SPV are found
to be generally affected by bias voltage and the tip–sample distance, reflect-
ing the strong electric field and current density under the STM tip. Indeed,
some of the previous studies reported apparently conflicting results for the
dependence of SR-SPV on the experimental conditions.

First, Cahill et al. described the SPV dependence on the tip–sample dis-
tance by using the concept of charging effect [9]. The tunnel current flow-
ing during the measurement was thought to determine the amount of space
charge under the STM probe mainly under the dark condition and to gov-
ern the deviation of SPV from the intrinsic value. Accordingly, until now,
most SPV measurements have been performed under constant tunnel cur-
rent conditions using the double modulation method. However, McEllistrem
et al. reported that SPV was strongly dependent on bias voltage even with
a constant tunnel current, when the surface had a lower density of states
at the Fermi level, while SPV for metallic surfaces was not affected by bias
voltage [10]. It was suggested that, since the less metallic surface state does
not screen the electric field from the STM probe, the penetration of the elec-
tric field into the subsurface region affected the surface potential under dark
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conditions. On the other hand, Sommerhalter et al. insisted that both tun-
nel current and bias voltage affect surface potential when the surface has a
negligible surface state density [13]. In particular, they suggested that it is
not the surface potential under a dark condition, but rather that under an
illuminated condition that is strongly affected by the tip–sample distance.

For the realization of local band structure characterization, suitable exper-
imental conditions for SR-SPV measurement and a procedure for the analysis
of the obtained results must be established. In order to clarify the disagree-
ments among the results of previous studies, exhaustive studies of the SPV
dependence on experimental conditions will be required. In this chapter, we
introduce a simple experimental method, light-modulated scanning tunneling
spectroscopy (LM-STS), as a powerful method for such studies.

8.5 Light-Modulated Scanning Tunneling Spectroscopy

LM-STS has three advantages compared to the previous SPV measurement
techniques. First, it gives the SPV dependence on experimental conditions
complementary to those obtained in previous methods. Namely, it measures
the SPV dependence on bias voltage under the condition of a constant tip–
sample distance, in contrast to previous methods in which the condition of
constant tunnel current is maintained. Secondly, it provides not only SR-
SPV but also the complete illuminated and dark I-V curves simultaneously,
providing a deeper insight into the sample properties. Thirdly, it can be
performed using unmodified, commercially available STM electronics, making
itself easily accessible to researchers.

Typical LM-STS measurement is performed as follows [15]. Mechanically
chopped illumination is provided from 45 degrees off-normal to the surface
and focused onto a spot of ∼0.05 mm diameter at the tunnel junction as illus-
trated in Fig. 8.5. The problematic thermal expansion/shrinkage of the STM
tip (electrochemically etched tungsten wire, φ0.25 mm) is negligible with a
chopping frequency higher than 40 Hz and an illumination power less than
1 mW (HeCd laser, 325 nm and 441 nm) in this condition. STM topographs
can be stably obtained under these conditions, although small modulation is
observed due to the intermittent SPV effect. In order to obtain an SPV spec-
trum, the scanning is stopped and a conventional STS measurement is per-
formed under the chopped illumination. Part of a typical result for an n-type
Si(111)-7×7 sample (30 Ωcm) is shown in Fig. 8.6(a). The I-V curve (thick
solid) oscillates widely between the two virtual I-V curves (thin dotted), cor-
responding to the dark and illuminated conditions. The SPV spectrum is
acquired by plotting the lateral separation between these two virtual curves
against the bias voltage under the dark condition, as shown in Figs. 8.6(b)
and 8.6(c).

More specifically, an I-V curve consisting of two thousand points is ob-
tained in 1–2 seconds with a chopping frequency of ∼40 Hz. The tunnel cur-
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rent for 30–80% of each illuminated/dark period was averaged to extract
the illuminated/dark current at the corresponding bias voltage, which are
shown by the black/gray circles, respectively, in Fig. 8.6(b). The gate time
is introduced to eliminate the artifacts due to the finite transient time of
illumination during which the laser power changes from 0% to 100% and vice
versa, from the displacement current as a result of capacitance change of the
tunnel junction, and from the recovery time of the MIS junction [16]. Finally,
the illuminated/dark I-V curves for calculating SPV, which are shown by the
thin dotted lines in Fig. 8.6(a), are obtained by interpolating the measured
points using the smoothing spline function. In the present case, the preci-
sion of the tunnel current detection is limited by a few percent of relative
error due to mechanical vibration and a few picoamperes of absolute error
due to broadband noise in the signal. These errors in the tunnel current,
together with the magnitude of dI/dV , determine the accuracy of measured
SPV. When the tip–sample distance is longer, dI/dV in the low-bias-voltage
regime becomes too small. Accordingly, SPV could be measured only for the
high-bias-voltage regime in such cases.

8.6 Point Spectroscopy

The left-hand column of Fig. 8.7 shows SPV spectra for a p-type Si(001)-
2×1 surface (0.03 Ωcm) with various tip–sample distances [15]. The distances
were determined by the servo action of conventional STM electronics under
chopped illumination. The bias voltage was changed from (a) 0.3 V (b) 0.4 V
(c) 0.5 V (d) 0.6 V with a fixed current reference of 1.0 nA. Twenty-five spectra
were measured at random points on the surface under each servo condition.
The dotted lines represent individual SPV spectra and the solid black ones
represent the averaged ones. It can be seen that, even under a same servo
condition, the SR-SPV spectra scatter widely. This is not because of the
spatially varying SPV but mainly because of the uncertainty in determining
the tip–sample distance. In our procedure, the tip–sample distance fluctuates
due to the servo action under the periodic illumination, because the servo
action tries to compensates the periodic SPV effect. Thus, when the servo is
deactivated for an STS measurement asynchronously to the chopping, the tip–
sample distance has finite variation. To visualize the amount of the variation,
the dotted spectra are colored by the tunnel current at a bias voltage of
−0.5 V. The gray scale of black to white corresponds to 70–150% of the
tunnel current compared with the averaged value. In the right-hand column
of Fig. 8.7, the SR-SPV at zero bias voltage (intrinsic SR-SPV) is summarized
in histograms.

In the remainder of this section, we discuss the above results. Figure 8.6
clearly shows that SR-SPV can be strongly dependent on bias voltage even
for a surface with a metallic surface state, such as the Si(111)-7×7 surface.
Namely, the SPV value increased linearly as a function of the sample bias
voltage in the low-voltage regime (|Vs| < 0.1 V) but showed saturation in
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Fig. 8.7. SPV spectra of p-type Si(001)-2×1 surface (0.03Ωcm)

the high-voltage regimes (Vs < −0.1 V and 0.1 V< Vs). The linear segments
in these three regimes, with different slopes, were also confirmed in SR-SPV
spectra for a nonmetallic Si(001)-2×1 surface, as shown in Fig. 8.7. These
spectra cannot be simply explained in terms of the charging effect because
the tunnel current changes more in the high-bias-voltage regimes than in
the low-bias-voltage regime. Instead, penetration of the electric field due to
the bias voltage into the subsurface region under dark condition and the
amount of accumulated carriers under illuminated condition should be con-
sidered. Sommerhalter et al. reported that the surface band bending of the
nonmetallic p-type WS2 surface under STM measurement can be qualita-
tively represented by a simple one-dimensional MIS junction model [13]. The
three regimes observed in the SPV spectra for p-type Si(001) surface can
be explained in accordance with their result as follows. In the high-positive-
voltage regime (0.1 V< Vs), sufficient accumulation of majority carrier occurs
under dark conditions. Hence, the little band bending under the dark condi-
tion results in a small SPV. At a negative bias voltage, depletion of majority
carrier occurs and the amount of surface band bending is proportional to
bias voltage under the dark condition. Thus, in the low-bias-voltage regime
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(|Vs| < 0.1 V), the band bending is fully relaxed by illumination, resulting in
the linear dependence of SPV on bias voltage. At high negative bias voltages
(Vs < −0.1 V), however, the amount of band-bending relaxation saturates
because of the limited back-diffusion of minority carrier.

In addition to bias voltage dependence, the SPV dependence on the tip–
sample distance can also be explained by the same model. In Fig. 8.7, a small
tip–sample distance resulted in a small SPV. In addition, the same tendency
was obtained in the comparison of the dotted spectra in a same plot; the one
with a larger current showed a smaller SPV. When the tip–sample distance
is small, the photogenerated carriers tunnel efficiently into the STM tip and
the accumulation of carriers at the surface region is insufficient, preventing
the complete relaxation of band bending.

Furthermore, the SR-SPV at zero bias voltage was also dependent on the
tip–sample distance, as shown in the right-hand column of Fig. 8.7. This is
rather surprising, since there is no tunnel current between the tip and the
sample in this situation. We conjecture that the very high tunnel transmis-
sion coefficient between the tip and the sample pins the surface potential,
preventing the band-bending relaxation. In some of the previous studies on
the SPV at zero bias voltage, shortening of the tip–sample distance was at-
tempted in order to increase the measurement accuracy [8,12]. The presented
result revealed the fundamental limitation of such an approach to measure
the precise SPV at zero bias voltage.

8.7 Nanoscale Spatial Variation of SPV

In the previous section, the sample surface was homogeneous. Thus, the LM-
STS spectrum did not have spatial variation. Here, we apply the LM-STS
technique to an inhomogeneous surface to confirm and to make use of the
spatial resolution of this technique. We prepare an unsaturated silver mono-
layer on Si(001) surface [15,17].

The interface of Ag/Si(001) has been studied intensively as a prototype
of metal/semiconductor interfaces. This is because its interface shows an
abrupt transition from semiconductor to metal, almost within one atomic
layer. Its well-defined interface is supposed to be ideal for the detailed study
of a metal/semiconductor interface, unlike the rather diffuse interface of
Au/Si(001) system. According to previous studies [18–25], silver films grow
in Stranski-Krastanov mode on Si(001) substrate. The initial monolayer of
silver has been reported to have several different structures depending on
the growth and/or anneal temperature. Among them, a 2×3 structure is the
most stable structure. Figure 8.8 shows an STM image of this structure. As
can be seen, the 2×3 structure lacks mirror symmetry in the direction of ×2
translation symmetry. The structure grows as characteristic two-dimensional
islands with a diamond shape on Si(001) terraces. It is reported that the 2×3
structure contains 0.4–0.6 ML of silver atoms and 0.5 ML of Si atoms in it,
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Fig. 8.8. STM topograph of Ag/Si(100)-2×3

i.e., the island is not made of pure silver. It is two dimensional alloy of silver
and Si.

For the LM-STS experiment, partially covered Ag/Si(100)-2×3 structure
is prepared by depositing ∼0.2 ML of silver onto clean Si(100) substrate (n-
type ∼0.005 Ωcm) at room temperature. Then the sample is annealed at
700 K for 1 min. STM observation was done at 80 K with a chemically-etched
tungsten tip. Illumination was done by a HeCd laser beam with an intensity
of 2 mW focused into a 0.1 mm diameter spot. Chopping frequency was 80 Hz.

Figure 8.9(a) shows an STM topograph of the 2×3 structure grown from
the lower edge of SB steps. Since the image is scanned at negative bias volt-
age, the 2×3 islands are not as apparent as in Fig. 8.8. To help the reader’s
eye, the islands are outlined by the black dotted lines. During the acquisition
of Fig. 8.9(a), the STM tip is stopped at 27×27 grid points and LM-STS
measurement is done at each point. The SPV values at bias voltage of 2.4 V
were extracted from the 729 spectra and displayed by the contour lines su-
perimposed onto the topograph. The SPV values for the area between the
grid points are calculated by linear interpolation of neighboring grid points.
As is clearly seen, the SPV value is affected by the existence of the two di-
mensional silver island. The resulting spatial variation of SPV has the char-
acteristic dimension of several nanometers. It is suggested that this length
scale is determined by the screening length of the electric field at the sample
surface.

Since the whole LM-STS spectrum is measured at every grid point, SPV
mappings for different bias voltages are also available from a single set of
acquired data. To see the spatial variation and bias voltage dependence of
SPV value in detail, the line profile of SPV mapping for the region indicated
by the white hatch in Fig. 8.9(a) is plotted in Fig. 8.9(c). In general, a larger
bias voltage gave a smaller SPV value, unlike what was observed in previous
section. The area covered by the island gave a larger SPV. The characteristic
length scale of the spatial variation is 5–10 nm. The SPV value does not show
an abrupt change at the edge of the islands or Si step edges. This is reasonably
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Fig. 8.9. (a) STM topograph of Ag/Si(100)-2×3 observed with a sample bias
voltage of -2.0V. (b) SPV for a sample voltage of 2.4V is indicated by the contour
lines. (c) SPV values for variety of sample bias voltages measured in the hached
area in (a) are projected to the horizontal axis and plotted

expected because the spatial variation of band bending should be governed by
the screening length of the electric field in the surface region. The continuity
of SPV value suggests that the LM-STS technique is not affected very much
by the local corrugation of the sample morphology nor local density of states.

Why and how much the SPV value increases with the existence of the
silver island is still under discussion. If the island is truly metallic, the exis-
tence of a metallic layer should suppress the SPV effect. The 2×3 structure
is, however, not very metallic. It is alloy of silver and Si. The existence of the
2×3 island varies the work function, local density of states, surface conduc-
tance and carrier recombination/generation rate. At this time which effect
dominates the SPV variation remains to be studied.

8.8 Conclusion

LM-STS was proposed as an easily accessible and very powerful method for
investigating SR-SPV under various experimental conditions. Unlike previous
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methods, it can obtain not only the SR-SPV spectrum but also the entire il-
luminated/dark IV characteristics with a constant tip–sample distance, with-
out the need for specially-designed STM electronics. The spatial variation of
SPV with a length scale of a few nanometers was successfully observed while
a STM topograph with atomic resolution was simultaneously obtained.
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9 Atomic-Level Surface Phenomena
Controlled by Femtosecond Optical Pulses

D.N. Futaba

9.1 Introduction

Bonding at surfaces holds fundamental importance in our understanding and
manipulation of chemistry and materials. For example, femtosecond (fs) laser-
induced breaking or forming chemical bonds can provide crucial insight into
these surface-related processes. Not only is it a great challenge in the pursuit
of detailed experimental investigations of chemical reactions, the advent of
new experimental technologies allows for a multitude of new possibilities by
combining the strengths of separate techniques and tremendously impacting
chemical physics. For this purpose, a considerable amount of research has
already been done on the study of the interaction between light and solid-
state surfaces [1–3] in particular, on semiconducting surfaces, for both the
fundamental understanding and the technological importance to solid-state
devices. Structural changes have been observed as a result of this interaction
using lasers, and electronic processes have been shown to play important
roles when the laser intensity was below the melting threshold [4–6]. Charge
transfer and rearrangement are also thought to be key in making and breaking
surface chemical bonds. In addition, the coupling of photoexcited electrons
to the nuclear motion of the surface species and the time scale involved in
bond dissociation and formation are two important issues. However, such
optically-induced dynamic surface phenomena have not been well studied
experimentally at the atomic scale [7].

In ultrafast laser technology, temporal resolution down to the femtosec-
ond has been achieved. Moreover, not only are the dynamics of chemical
reactions now observable, reactions can now be controlled. Short pulse lasers
have been used to control reaction branching ratios of an organometallic
molecule through the coherent control of independent chemical reaction chan-
nels [8]. Furthermore, microscopic techniques, particularly proximal probe
microscopes, have reached the ultimate in spatial resolution in attaining sub-
atomic lateral resolution. However, the complexity of the research drives us
to use the combination of these two techniques in ultimately obtaining true
experimental investigation of surface reactions.

We wish to address such questions as: What role does the surface struc-
ture, such as surface dislocations, surface contaminants, and atomic coordi-
nation, play in the reaction of interest? Beyond the fact that a structural
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change occurred on the surface, we hope to gain a microscopic understand-
ing of the process. Without question, energy transfer is a key issue, but the
nature of the surface bonding, i.e., surface geometry, is critically involved in
how that energy is transfered to a particular location, such as an adsorbate.

The advent of the scanning tunneling microscope (STM) [9] brought the
reality of imaging the surface microscopically more closely than previously
achieved. Based on the principle of quantum mechanical tunneling from a
conducting or semiconducting sample to a sharpened metal tip, the STM
generated a contour map of the surface local density of states near at the
Fermi energy of the surface with atomic resolution [10]. This instrument is
ideal for locally probing surface morphology due to changes of the surface
layer. In this chapter we discuss the use of scanning tunneling microscopy
(STM) to locally probe surface structure induced by femtosecond optical
pulses. To this point, very little research has been done using an STM as
a final states probe, which limits our detailed microscopic understanding of
fs-induced reactions at surfaces.

The goals, therefore, of using an STM as a final-states probe for fs laser
excitation is to gather sub-nanometer resolved imaging of the reacted surface
and to not only investigate what has microscopically occurred on the surface
but where it occurred as well. While the ultimate goal in combining ultrafast
laser technology and STM is to obtain the dynamics of laser-mediated surface
reactions with the ultimate lateral specificity, this is outside the realm of
this chapter. In contrast to laser-assisted STM [11,12] or time-resolved STM
[7, 13–15], final states probing avoids the many problems associated with
irradiation of the tunneling junction, such as thermal effects [16–18] and
light-induced nanomodifications [19–22].

9.2 Femtosecond Pulse Pair Controlled Phenomena
at Surfaces

Because a large portion of physics occurs at solid-state surfaces, it is natural
to study the electronic interaction between the surface and the adsorbed
species. Adsorption to solid-state surfaces results in a significant change in
the electronic structure as well as the local environment of the adsorbed
species from that found in the gas state. Depending on the coverage, the
proximity of neighboring adsorbates can be particularly high compared to
that in the gas state, which holds particular significance on the probability of
intermolecular reactions. In addition, the adsorbate falls within binding site
potential wells, which determine preferential bonding geometries and plays
an important role in energy and electron transfer. Moreover, adsorption to
such surfaces as late transition metals can act to lower reaction barriers and
perhaps make otherwise inaccessible reaction channels possible. Perhaps most
importantly with regards to this chapter, surfaces can provide an additional
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channel where photon energy can be absorbed and redirected, which may not
be possible in the gas phase [23,24].

When directed onto a surface, it is understood that laser pulses, with du-
rations much shorter than the electron–phonon coupling time and the electron
diffusion time in the substrate, create a high density of energetic electrons
within a cold atomic lattice. This results in a highly nonequilibrium state in
the substrate that can lead to very different chemical reactions and phase
transitions on the surface from those induced by other excitation sources.

For metal substrates with a single monolayer of adsorbates, the adsorbate
layer can adsorb only a small fraction of the incident laser energy while the
remainder is either reflected or absorbed by the substrate. Thus, the excita-
tion of the substrate is inevitable. In short, assuming that the photoexcited
electrons in the substrate thermalize instantaneously, the two coupled subsys-
tems, e.g., the electrons and the phonons, are in internal equilibrium [25,26].
These two systems are coupled through electron–phonon interactions [27]. Be-
cause all the energy is initially deposited into the electrons and the electron
heat capacity is about two orders of magnitude smaller than the phonon heat
capacity, the temperature associated with the electrons peaks for a couple of
picoseconds while the phonon temperature remains much colder. After 10 ps
the electrons and phonons come to thermal equilibrium, and after about 100
ps, the surface cools through electron diffusion into the bulk.

A variety of interesting surface phenomena have been already been ob-
served using fs lasers on surfaces. To mention a few, fs-induced surface melt-
ing and surface disorder have been observed on silicon and GaAs [28–30].
Intriguing surface restructuring has been done with fs excitation of a CO
overlayer on Pt(111) [31] as well as the creation of silicon microspikes [32].
In addition, numerous groups have reported on the desorption of adsorbed
molecular species, such as NO from Pd(111) [33], CO from Cu(111) [34],
benzene multilayers and O2 from Pt(111) [35,36]. However, the study of fem-
tosecond induced reactions of molecular adsorbates have been highly limited
perhaps due to the complexity of the energy coupling or the lack of funda-
mental understanding involving bond scission and formation. Despite these
obstacles, the oxidation of carbon monoxide has been observed on a Pt and
Ru in a number of experiments [25,37,38] as well as the dissociation of O2 on
Pd(111) [39]. While not technically an adsorbate–substrate system, the pref-
erential characteristics of silicon adatom desorption from the Si(111)-7 × 7
surface have been studied with time-of-flight mass spectrometry and STM
using nanosecond and fs single pulses [4–6].

While these probes can provide much useful information, only STM is
capable of providing microscopic information at the sub-nanometer scale.
Because the adsorption site and geometry can play a significant role in the
energy transfer from the orbital hybridization with the surface, a more local
investigation regarding the local environment is essential in order for a more
complete understanding of surface chemistry at the molecular level. STM can
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provide a microscopic look at the surface electronic structure, revealing such
things as bonding sites, defects and local order/disorder.

The use of STM with femtosecond laser-induced chemistry has been very
limited perhaps due to the technological obstacles or limited spectroscopic
capability. While final states imaging elucidates little regarding the dynamics
of the reaction, it does not suffer from other unwanted drawbacks resulting
from in-situ irradiation, such as thermal bending and expansion of the STM
probe [16–18].

9.2.1 Experiment: Site-Selective Silicon Adatom Desorption
Using Femtosecond Laser Pulse Pairs and STM

To investigate the possible adatom desorption selectivity through pulse pair
excitation, we performed an experimental study of silicon adatom desorption
from the Si(111)-7×7 surface. We used fs laser pulse pairs with 80-fs pulse
duration, 800-nm center wavelength, 300-mW average power and a 100-MHz
repetition rate. After excitation, we observed microscopic changes induced
to the surface with STM and directly recorded the desorption characteristics
at each delay setting for each of the four adatom binding sites. The study
revealed a preferential dependence between the delay time and the adatom
sites within a 66.6–1000 fs delay range. In addition, we observed a dependence
on the polarization of the incident pulse pairs. The experimental findings of
this section demonstrate that the femtosecond delay time in optical pulse
pair excitation plays a role in the site-selective desorption of Si adatoms
below melting point irradiation. These findings can provide a basis for a new
selective fabrication technique for nanometer-scale devices as well as physical
and chemical insight into ultrafast dynamic processes at surfaces with atomic
scale resolution.

The Si(111)-7×7 surface, whose structure consists of distortions from the
ideal bonding tetrahedral sp3 bonding geometry, relies heavily on electron-
lattice interaction for structural stability [40]. This reconstructed silicon sur-
face presents four distinct adatom sites, which differ both electronically and
dynamically [41, 42] and it is thought they could serve as sites to excite lo-
calized vibrations.

This experiment was performed at room temperature using a fs laser-STM
system as illustrated in Fig. 9.1. The STM was a commercially purchased low-
temperature ultrahigh vacuum instrument by UNISOKU Co., Ltd., Japan,
and was operated at a base pressure of 8.0 × 10−11 Torr. Si(111) samples
were cut from an n-type, As-doped (r = 0.001–0.005 Ω/cm) Si(111) wafer and
degassed under ultrahigh vacuum conditions at 600◦ for 10 hours. The sam-
ples were subsequently flash-heated at 1150◦ for 10 seconds in order to form
the 7×7 reconstruction. During flash-heating, the pressure never exceeded
1.5 × 10−10 Torr. Linearly polarized pulses from a mode-locked Ti:sapphire
laser (100-MHz repetition rate, 80-fs pulse width, 300-mW average power,
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Fig. 9.1. Pulses from a mode-locked Ti:sapphire laser (100-MHz repetition rate,
80-fs pulse width, 300-mW average power, and 800-nm central wavelength) are
directed into the STM vacuum chamber after being diverted through Michelson-
type interferometric delay. Flip mirrors (F1–F4) allow for pulse characterization
during the experiment

and 800-nm central wavelength) were directed into a Michelson-type inter-
ferometric delay and were then focused to a 300-mm diameter spot on the
sample surface by a silver concave mirror (focal length of 300 mm). The air to
vacuum transition presented a unique problem in that we were forced to pass
the pulses through a medium other than air. The choice of viewports is fairly
limited, but for our pulse width, we found that a borosilicate glass demon-
strated both high transmission as well as negligible dispersion qualities when
tested. The p-polarized (parallel to the reflection plane) laser pulses were in-
cident to the surface at approximately 45◦. During laser irradiation, the tip
was withdrawn out of the path of the laser to avoid the possibility of des-
orbing any adsorbed species that may have resided on the tip. Although tips
were routinely annealed before insertion into the STM, gradual adsorption
of residual gases is unavoidable. The pulse pair delays ranged from 66.6 to
1000 fs (15.0 to 1.0 THz) with an irradiation time of 60 minutes. The adatom
removal yield was found roughly to be on the order of 5 vacancies per 20 unit
cells.

After verifying sample cleanliness by STM, we characterized the number
of pre-existing adatom vacancies by examining several thousand unit cells.
Subsequently we irradiated the surface. The surface was once again examined
by STM. Similar to the initial states imaging, the final states images were
taken in both polarities in order to rule out the possibility that apparent va-
cancies, which appear as dark spots, were due to adsorbed gases, which can
appear as vacancies in one polarity and not the other [43,44]. An example of
such a case is marked with a circle in Fig. 9.2. Accordingly, by using this as
a rule, we are confident that the dark spots are adatom vacancies. The des-
orption yield was determined by counting the number of vacancies for images
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Fig. 9.2. (a) An STM image of the 7 × 7 surface before irradiation. I = 0.2 nA;
Bias = 1.5V. Both polarities were taken for each location to identify adsorbed
gases; (b) An STM image after one hour of irradiation of two pulses. I = 0.2 nA;
Bias = 1.5V. The circle indicates an adsorbed gas as identified from the negative
bias image

both before and after irradiation, and this procedure was repeated several
times for each delay setting to confirm reproducibility. All STM observations
were done using PtIr tips and were taken in constant-current mode 0.20 nA,
1.5 V).

Initial attempts at desorption using 800 nm (1.55 eV) light yielded no
measurable desorption yield because it was thought that the 1.55 eV photons
were insufficiently energetic to induce the 2.0 or 2.5 eV surface band transi-
tion believed to be a principle contributor to the desorption process [4–6].
However, using 800 nm pulse pairs showed desorption of adatoms from both
center and corner sites, with fluences 100,000 times lower than previously
reported. While not as dramatic as with higher fluences, the increase in the
number of vacancies per unit area between the pre-exposed surface and irra-
diated surface is quite distinct.

STM images of sampled regions before and after laser irradiation of 4-
mJ/cm2 fluence revealed that the number of vacancies increases after laser
exposure (Fig. 9.2). We repeated the experiment for a variety of delay and
found that as we decreased the delay (increased the pulse pair frequency),
we observed that the total desorption yield tended to increase. As shown in
Fig. 9.3(a), this trend is clearly apparent except for the unexplained anomaly
at 25 fs (12 THz). In addition, the profile of the total desorption yield sug-
gested that significant desorption occurred only below 333 fs (above 3 THz).

We then examined the images further and compared the relative amount
of desorption from center sites to corner sites at each delay setting. We found
that the center-to-corner ratio ranged in value from as low as 0.876 to as
high as 22.7 for each delay setting (Fig. 9.3(b)). This revealed a desorption
preference which varied with the excitation delay time. In addition, it showed
one delay setting (8 THz) to have a particularly high selectivity for center
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Fig. 9.3. (a): Total net yield as a function of excitation frequency. The trend
indicates a general increase with higher frequencies (shorter delays); (b) The center
to corner adatom ratio for each of the same excitation frequencies showing the
preferential desorption between binding sites changes despite showing differences
in total yield

sites. It seems that this result corresponds to the fact that the faulted-half
(FH)-center adatoms have the most prominent peak at 8 THz for the surface
phonon spectrum (one of the vibrational frequencies of localized phonons at
adatom sites), while the FH-corner adatoms have no peaks at this frequency.
This discovery prompted us to further investigate the adatom site-dependence
on the desorption yield.

As summarized in Fig. 9.4, a detailed investigation of the desorption yields
for each binding site revealed subtle trends for each frequency setting and
for each adatom site. This breakdown of data is presented with the binding
sites arranged in increasing binding energy site (i.e., FH-center, unfaulted-
half (UH)-center, FH-corner, and UH-corner) [45] to make any related trends
more easily identifiable. The most obvious trends are the individual desorp-
tion profile for each binding site and the desorption profile at each excitation
delay setting. Generally, FH-center sites showed the greatest level of des-
orption. This seems to correlate with the fact that the FH-center sites have
the lowest binding energy among the four adatom sites. Throughout the ex-
citation frequency spectrum, save the 1–3 THz (to be discussed later) and
the 12 THz setting, the efficiency for the FH-center sites was roughly un-
varying. The UH-center sites, however, showed a slightly varying behavior,
being strongly efficient at 8 THz and considerably less efficient at 10, 12, and
15 THz. Similarly distinct peaks existed at 10 and 15 THz for the FH-corner
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Fig. 9.4. Desorption yield as a function of binding site and excitation frequency
with a pulse pair (1/delay time)

sites. The UH-corner sites exhibited maxima in the desorption yield at 12
and 15 THz.

Examining the profiles for each excitation setting, we observed that at
lower frequencies, such as 1–3 THz, not only was there an insignificant level
of desorption, there appeared to be no prominent site-preferred vacancies
(Fig. 9.4). With higher frequencies, 6–12 THz, not only did the desorption ef-
ficiency increase, but also site-preferences emerged. At 6 THz, the desorption
levels at all sites increased with a prominent peak for the FH-center sites.
At 8 THz, highly selective profiles appeared with negligible desorption at two
higher binding-energy sites (FH-corner and UH-corner) and distinct peaks
at the two lower ones (FH-center and UH-center). At 10 THz and 12 THz, in
contrast to prior trends where we observed preferences between center and
corner sites, we observed a preference between subunits. At 10 THz, there was
a marked preference to the FH-center and FH-corner sites desorption, while
at 12 THz this tendency was reversed. Finally, at 15 THz, the desorption at
all sites showed increased yields while showing no clear preferential behavior.

9.2.2 Interpretation

We believe that the process governing desorption is a two-step excitation. The
first pulse excites an electron in a surface bonding state to an intermediate
state with a lifetime τ , which is characteristic to the local electronic properties
of the binding site. Additionally, as deduced from Fig. 9.4, this lifetime is
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shorter than 333 fs. Using a single 1.55 eV photon, with the intensity below
the melting threshold, the probability for removing an adatom is virtually
zero. However, if a second pulse interacts with the medium within the lifetime
of the excited surface bonding state, its energy can add to the first. In such
a case, local phonons around the adatom, whose electron contributes to the
substrate bonding, are further excited, which gives rise to the possibility of
bond breakage. This two-photon process must therefore depend on the delay
time. Further, we believe that differences in the desorption preferences stem
from differences in the local dynamic properties surrounding each adatom site
[42]. To be complete, detailed energy-band-structure calculations are needed
to locate the precise energy levels involved.

A polarization dependent study comparing the experimental results of
s-polarized and the previously mentioned p-polarized fs-pulses showed differ-
ences in delay-time dependent yield and binding site preferences (Figs. 9.5
and 9.6). Total yield with p-polarization demonstrated a definite monotonic
trend with the excitation frequency while the yield from s-polarization is
negligible and appears independent of the excitation frequency (Fig. 9.5).
Moreover, while the calculated center-to-corner adatom ratio for excitation
with p-polarization showed a definite preference at 8 THz, the s-polarization
showed negligible levels and the fluctuation in the values were due mostly
to the low yield. These results strongly suggested that surface heating as-
sociated with fs-laser irradiation is not the dominant desorption mechanism
particularly at short delay times. Furthermore, it also suggests a dipole-like
interaction between the adatom sites (including the dangling bonds) and the
electric field of the laser. Consequently, this gives rise to localized phonons
modes oriented along the surface normal direction [42].
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Fig. 9.5. Comparison of the total desorption between p- and s-polarization for
several excitation frequencies
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In summary, the desorption characteristics of silicon adatoms from the
Si(111)-7×7 surface were investigated using fs laser pulse pair excitation and
direct observation with STM. A delay-time dependence on the overall des-
orption yield and desorption character was observed. With shortened delay
time (increased excitation frequency), the total desorption yield increased. In
addition, preferences among adatom binding sites were observed as a function
of the delay time.

Inspired by these results for silicon adatom desorption, we have now set
out to induce chemical reactions on a late transition metal surface. The two
experiments we are exploring are the fs laser induced reactions of adsorbed
organic hydrocarbons on Pt(111) using the fs laser as an excitation source.
The first is the dehydrogenation of p-xylene adsorbed on the platinum surface
and the second is the polymerization of styrene to polystyrene. The ultra-
short laser pulses, which are well-below damage thresholds, are incident on
the surface and used to promote a chemical reaction. We then compare it to
the known product formation using different excitation sources, such as ther-
mal desorption spectroscopy [49, 50]. For p-xylene, partial dehydrogenation
occurred at 350 K from the methyl groups and aromatic CH bond breakage
did not occur until about 550 K. At 300 K, of ethylbenzene have been ob-
served to immediately dissociate to styrene upon adsorption to the Pt(111)
surface. It has been observed that at heating to 400 K with a background
pressure of ethylbenzene or styrene, the styrene polymerizes to polystyrene.
Therefore, we wish to characterize the reaction changing various excitation
laser parameters, such as polarization, pulse pairs, etc., investigate the role
the surface states play in these reactions, and ultimately gain an empirical
understanding for selecting the reaction pathway. Both molecules have a dis-
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tinct molecular shape that is discernable in STM images. Additionally, it
is expected that the p-xylene molecule will reorient itself to a tilt from the
surface if the initial dehydrogenation occurs from the same methyl group.

9.3 Future Directions

The use of STM as a final states probe for femtosecond-induced surface phe-
nomena is very much in its infancy. As such, there are numerous directions
for improvement. First, the current availability of highly stable and low-noise
commercial ultrahigh vacuum, air, and liquid microscopes allow for more
complex experiments, such as at low temperature to reduce unwanted ther-
mal effects, or in a liquid environment for an increased background density
of adsorbates. Second, the feedback between excitation and reaction is ex-
tremely slow. Depending on the stability of the system, this could be on the
order of hours, which leads to the next point. Third, in situ laser irradiation
seems most desirable because of the simplicity in observing the same region
before and after reaction. However, in order to avoid detrimental tip effects,
such as thermal expansion [16–18] and contamination from tip residue, a
highly clean tip is required. Such techniques have been developed to rou-
tinely prepare highly sharpened and highly cleaned tips [46], but there also
exists the problem of choosing a proper experimental system where no re-
action occurs before changing some character of the excitation source, such
as delay time, polarity, or phase. Fourth, numerous recent advances in ultra-
fast laser technology give rise to a number of new excitation sources, such as
shaped optical pulses through spatial light modulation of fs laser pulses [47].
Such technology has already been used for such purposes as laser cooling of
molecular internal degrees of freedom [48]. In that experiment, the phase of
the radiation was found to be the active control parameter, which promotes
the transfer energy into certain vibrational levels and not others. By using
such techniques, the radiation can be tailored such that energy is directed to
avoid an undesired molecular vibration and thus drive the molecule along a
different reaction path.

To conclude, as with reaction processes, the support of theoretical mod-
eling is crucial in fully understanding the interaction between the surface
and adsorbed species as well as the energy transfer between the two. Such
theoretical support is also essential in choosing appropriate systems for study.
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10 Femtosecond-Time-Resolved Scanning
Tunneling Microscopy

O. Takeuchi and H. Shigekawa

10.1 Femtosecond-Ångstrom Technology

As discussed in Chap. 7, scanning tunneling microscopy (STM) has realized
atomic scale spatial resolution using the sensitivity of a tunneling current
on as small a change in the tip-sample distance as 0.1 ångstrom. The spa-
tial resolution of STM in parallel to the sample surface reaches 1 ångstrom
and that perpendicular to the sample surface reaches 0.1 ångstrom. On the
other hand, the time resolution of ultrafast experiments using ultrashort laser
pulses is being improved continuously. Since the time resolution is determined
by the pulse width of the lasers, the shorter the pulses we generate, the bet-
ter time resolution we can obtain. As described in this book, noble quantum
optics can provide laser pulses consisting of only few cycles of electric field
oscillation. Time resolution realized by such lasers can be in the order of
several femtoseconds. Until recently, these spatial resolution and time res-
olution were, however, independently developed and had not been realized
simultaneously in one experiment. In this chapter, the recent achievement
in combining these two techniques to develop a measurement system that
possesses both ångstrom spatial resolution and femtosecond time resolution
is introduced, namely, the pioneering of a new research field of femtosecond-
ångstrom technology. The technology will assist the trend of future device
development, which is getting smaller and smaller, and faster and faster.
The time-resolved-atom-resolved microscopy will be absolutely imperative
to investigate the ultrafast dynamics of carriers in nanoscale semiconductor
devices and the charge transfer in future molecular devices.

In fact, the atomic resolution and femtosecond resolution had never been
compatible. The time resolution of conventional STM is limited by the band-
width of the current–voltage converter of STM, which is about 10 kHz–1 MHz,
which corresponds to the time scale of 1–100 µs. Improvement in the circuit
diagram can make it better [1–3] but it is still in the order of 0.1 µs. In fact,
the femtosecond time resolution will never be realized by means of an electric
method. The switching time of any transistor takes about a few picoseconds.
The dispersion of a metallic wire is too high in the terahertz range, so that
a femtosecond electric pulse will easily lose its shape when traveling a very
short length. We definitely need an optical method to achieve femtosecond
time resolution. On the other hand, the spatial resolution of an optical mi-
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croscope can not be much better than the wavelength of the light being used,
because the resolution is given by the product of the wavelength and the
numeric aperture (NA) of the optics. Generally, the NA can not be as small
as 1/100 or 1/1000. We can still observe the emission from a single molecule
with such optics with a spatial resolution of sub micrometers if the molecules
are sparsely scattered on a substrate. However, this does not mean the im-
provement of the spatial resolution. The best spatial resolution in optical
observation is, at this moment, realized by the detection of a nearfield elec-
tromagnetic wave. The method is called scanning nearfield optical microscopy
(SNOM) or nearfield optical scanning microscopy (NSOM). Since nearfield
waves decay exponentially in the length scale of a few tens of nanometers, no-
ble SNOM setup can achieve 10–20 nm spatial resolution. At the same time,
since SNOM is a purely optical technique, a variety of the conventional ultra-
fast techniques may also be applicable to SNOM measurement [4,5], although
the chirp compensation for the long fiber optical path, which is commonly
used in SNOM setup, might be a critical experimental problem. The spatial
resolution of SNOM, however, will not be as good as that of STM. The de-
cay length of a nearfield electromagnetic wave is much longer than that of
the electron wave function. Therefore, sub-molecular resolution will not be
achieved by the SNOM techniques.

In order to pioneer the ångstrom-femtosecond technology, a combination
of STM with ultrashort pulsed laser is the most promising method to observe
ultrafast transient processes (∼ several femtoseconds) that occurs in ångstrom
region.

10.2 Previous Studies in This Field

Since the development of STM in 1980 [6], many researchers have been mak-
ing efforts to accomplish the difficult task [7–12] of pioneering ångstrom-
femtosecond technology. The ultimate goal is to analyze and control the elec-
tronic and/or structural dynamics of materials with atomic resolution on a
femtosecond time scale. There have been two major concepts proposed for
achieving this goal.

One is to introduce an ultrafast photoconductive gate into the current
detection line of STM as shown in Fig. 10.1. Weiss et al. called this type
of microscope a photoconductively gated STM and presented that it gener-
ates a time-resolved current signal in the order of 1 ps [7]. They used two
laser beams, namely, one to excite the samples, which also had photocon-
ductive gate in their demonstrative experiment so that the tunnel current
was sensitively modulated by the illumination, and the other to switch the
photoconductive gate in the current detection line. In each beam, a train of
laser pulses with the exactly same repetition rate ∼100 MHz impinges the
sample and the gate, respectively. Without the photoconductive gate, since
the repetition rate of laser pulses is much higher than the bandwidth of the
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Fig. 10.1. Schematic of photoconductively gated STM

tunnel current detector, the periodic tunnel current modulation by each laser
pulses exciting the sample can not be detected. What will be observed is the
change in the averaged tunnel current. However, with the photoconductive
gate in the current detection line, the system will detect the transient current
value just at the moment when the gate is in the on-state. In reality, the sig-
nal sampled by the gate is also time-averaged by the slow current detector.
Thus, although the signal level will become very low, a signal proportional
to the transient tunnel current can be measured. When the current value is
recorded as a function of the delay time between the excitation and gating,
the transient tunnel current will be reproduced in real time scale.

The basic concept described above is the same as the optical pump-probe
experiments. Thus, if this were indeed the case, the system would be a time-
resolved STM. However, Groeneveld and van Kempen pointed out that the
detected signal should have been primarily due, instead of tunneling current,
to the displacement current generated by the coupling of two stray capaci-
tances, one at the tunneling junction and the other at the photoconductive
gate [13]. When the signal arises from the displacement current, the lateral
resolution of measurement is given by the geometric dimension that defines
the capacitance at the junction and is much worse than that of STM; it is
typically about 1 µm. Up to now, several attempts have been made to improve
this type of STM [8,9]. Junction mixing STM has exhibited 1 ps time resolu-
tion with 1 nm spatial resolution. However, this spatial resolution originates
from the nanoscale variation of the tunnel-current-voltage dependence of the
sample while the ultrafast phenomenon itself does not have an atomic-scale
structure. It is of rather limited application. Moreover, the time resolution
of this type of STM, in principle, cannot overcome the response time of the
photoconductive gate, which is typically about 1 ps.

The other approach relies on the direct excitation of the tunneling junc-
tion by a sequence of laser pulses and the detection of the induced tunneling
current as a function of interpulse spacing. Hamers and Cahill, in their pi-
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Fig. 10.2. Photovoltage values for various repetition rates of pulse laser illumina-
tion measured on Si(111)-7×7 surface [10]

oneering work, determined the carrier relaxation time at the Si(111)-7×7
surface with about 10 ns time resolution and 1 µm spatial resolution by this
approach [10]. They positioned their STM tip above their sample with tip–
sample separation of ∼100 nm. Thus, to be accurate, their experiment was
indeed not a STM experiment. But, it addresses other important issues in
time resolved STM. They illuminated the sample surface just below their
tip, with a chopped illumination consisting of a train of laser pulses with the
repetition rate of 80 MHz. Since the surface potential is modulated by illu-
mination due to surface photovoltage (SPV) effect, the STM tip detects the
displacement current when the illumination turns on to off and vice-versa,
due to the charge/discharge process of stray capacitance at the tip–sample
separation. They measured this displacement current by a lock-in amplifier,
which is proportional to the magnitude of SPV. Then, they changed the rep-
etition rate of laser pulses with eliminating one of every two, two of every
three, n − 1 of every n pulses from the original pulse train. By elimination,
the repetition period becomes n×∆t, where n is a natural number and ∆t is
the repetition period of the original pulse train. Figure 10.2 plots the signal
level as a function of the repetition period. From this plot, they concluded
that the carrier lifetime in their sample is about 1 µs because of the following
argument. When the interpulse period is longer than the carrier lifetime, the
surface bandbending of the sample is always fully relaxed. However, as the
interpulse period becomes shorter than the lifetime, the surface bandbending
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Fig. 10.3. Schematic of pulse-pair excited STM

remains until the next pulse injects new photo carriers. Thus, the amount of
bandbending depends on the interpulse period of the laser pulses. Therefore,
change in the signal as a function of the repetition time gives us information
about the band relaxation mechanism. A method similar to this will have a
time resolution as good as the repetition rate of the laser pulse train.

In order to obtain a time resolution better than the repetition rate, pulse-
pair-excited STM is proposed, where the illumination is composed of a se-
quence of pulse pairs and the tunneling current is measured as a function
of the delay time between the two laser pulses in a pulse pair as shown
in Fig 10.3. The signal from this kind of setup is dependent on individual
physical systems; thus the interpretation of the obtained signal will be com-
plicated compared to more straightforward approaches such as photoconduc-
tively gated STM, but it will be free from the drawback of slow response of the
electronic circuit. In addition, the time resolution is determined by the time
delay between the two pulses, instead of the repetition rate of the original
laser. Thus, the resolution can be improved without any limitation by short-
ening the laser pulse width. Consequently, in principle, pulse-pair-excited
STM has the potential of achieving femtosecond and angstrom resolution.
We have chosen this type of measurement setup.

10.3 Fundamentals of the Pulse-Pair-Excited STM

In the pulse-pair-excited STM experiment, we expect the tunnel current
changes as a function of the delay time between the pulse pair. Here, let
us discuss in which situation the dependency of tunnel current on the delay
time appears.

We start with reminding the general conditions. The tunnel gap of an
STM is illuminated by laser pulses. We, of course, expect the tunnel current
to be changed by the pulse illumination. There are a variety of physical origins
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Fig. 10.4. Time evolution of laser intensity (upper) and tunnel current response
(lower) for (a) pulse and (b) pulse-pair illumination

causing such changes in tunnel current, such as photocarrier excitation and
excitation of plasmon/polariton. Here, however, we are not concerned with
the specific origin of the change in the tunnel current. We just assume the
tunnel current is affected by the illumination. Since our STM preamplifier has
relatively narrow bandwidth, the photo-induced change in the tunnel current
can not be accurately observed. The situation is illustrated in Fig. 10.4(a).
The true change in tunnel current (solid line) will be deformed as a broken
line. Moreover, when the response of the preamplifier is much slower, slower
than the repetition rate of laser pulses, what we observe will be the averaged
tunnel current (dotted line). We will no longer distinguish each laser pulse
in the tunnel current signal. When we use the pulsed lasers with ∼100 MHz
repetetion rate, this condition indeed stands.

The situation is same for the pulse-pair-excited STM. This time, pulse
pairs with a delay time of 10 fs–100 ps impinge the tunnel gap at the repete-
tion rate of the original laser source, as illustrated in Fig. 10.4(b). An STM
preamplifier can never resolve the two paired pulses in the tunnel current
signal. What we can observe will be, again, the deformed or averaged tunnel
current signal as shown by the broken and dotted lines.

What happens when we change the delay time between the paired two
pulses in this situation? Look at Fig. 10.5. When the delay time is longer
than the lifetime of the excited state of the sample, as shown in Fig. 10.5(a),
the sample excited by the first pulse relaxes before the second pulse impinges
it. Thus, the total tunnel current deviation caused by the two pulses will be
exactly twice of that by one pulse. However, when the delay time is reduced
as shown in Fig. 10.5(b)–(d), the second pulse impinges an excited sample.
Hence, the current deviation caused by the second pulse (shadowed area)
might be different from that caused by the first pulse. The figure illustrates
the case where the current deviation becomes smaller when the pulse impinges
an excited sample. In reality, it might become larger, depending on the specific
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Fig. 10.5. Delay time dependence of current deviation due to the second pulse
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Fig. 10.6. Delay time dependence of the averaged current

physical system. The important point is that, when this type of dependency
exists, we can observe the decay of the excited sample just by measuring the
integrated or averaged tunnel current without knowing the exact shape of
tunnel current change, in other words, with a narrow bandwidth preamplifier.
By plotting the averaged tunnel current against the delay time, we will obtain
a result like Fig. 10.6. The vertical axis has a zero point at the tunnel current
without laser illumination and the signal is normalized by the tunnel current
deviation when only one of the two pulses impinges the tunnel gap. When
the two pulses have the same intensity, the plot will be symmetric against
zero delay time, td = 0. When the delay time is close to zero, the signal will
decay on both the td < 0 and td > 0 sides. The life time of the excited state
of the sample can be obtained from this region.
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It is not surprising that such a relationship between the averaged tunnel
current and the delay time exists. As described above, when the delay time is
long enough, the photoinduced tunnel current component caused by a pulse
pair will be exactly equal to twice that caused by a single pulse. On the
other hand, when the delay time is zero, the photoinduced tunnel current is
generated by a single pulse twice as intense as the original pulse. Thus, the
tunnel currents for these two cases are equal only when the photoinduced
tunnel current has perfectly linear dependency on the excited laser intensity.
Conversely, however, any nonlinearity in the relationship will result in the
difference between the two cases. Thus, when the delay time is swept, we will
obtain a time-resolved tunnel current signal by the pulse-pair-excited STM.

In summary, in the pulse-pair-excited STM, the first laser pulse works as
the pump pulse to excite and modulate the sample surface and the tunnel
current deviation caused by the second laser pulse will be measured as the
probe signal. The method will really combine the ultimate temporal resolu-
tion of the optical pump probe approach and the ultimate spatial resolution
of scanning tunnel microscopy. It is a very promising way to explore the new
field of femtosecond-̊angstrom technology.

10.4 Design of the Measurement System

The setup of the pulse-pair-excited STM is illustrated in Fig. 10.7 [15]. In
the prototype system, a Ti:Sapphire oscillator with 80 MHz repetition rate is
used as the laser source. Its center wavelength is 800 nm and the width of the
spectrum was ∼30 nm. When combined with a chirp compensation circuit
with a prism pair, laser pulses with a pulse width of 25 fs and averaged
power of 200 mW can be obtained. When replacing this laser source with
the monocycle optics with a fiber and a spatial light modulator that was
described in the previous chapters, the temporal resolution of the system
could be further improved. However, there might be a trade off between the
pulse width and the power/stability of the laser source.

The repetition rate of the laser source should be carefully chosen. For
example, when we use a regenerative amplifier to have much higher peak
intensity of laser pulses, the repetition rate decreases and that may cause
the thermal expansion/shrinkage of STM tip, synchronized with the laser
repetition rate. Use of a laser system with a repetition rate less than 100 kHz
is not realistic when we need to use high intensity excitation. It should also
be considered that the very high peak intensity obtained by a regenerative
amplifier might cause multiple photon excitation of sample/tip electrons,
resulting in photoelectron emission from these materials. This considerably
affects the measurement of tunnel current. When the tip–sample distance is
short, a laser intensity as small as 0.5 MW/cm2 can cause electron emission
in vacuum conditions [16]. When a laser beam with a repetition rate of 1 kHz
and a pulse width of 100 fs is focused in 1 mm diameter, only an averaged
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Fig. 10.7. Schematic of our shaken-pulse-pair-excited STM system

power of 1 µW corresponds to the threshold peak intensity of 0.5 MW/cm2.
Although the threshold must be largely increased when the experiment is
done in the air, a regenerative amplifier may not be used in the time-resolved
STM experiment.

Another issue in choosing the repetition rate of the laser illumination is
the signal level of the time-resolved component of the tunnel current. Assume
that the tunnel current increases with laser illumination by 1 nA and decays
in 10 ps and the pulses impinge every 10 ns which corresponds to the repeti-
tion rate of the laser pulses, i.e., 100 MHz. Then, the change in the averaged
tunnel current will be 1 pA. The time resolved component of the tunnel cur-
rent change is a part of this 1 pA. If the component was 10% of it, we can
expect a 0.1 pA signal. This is a reasonable signal level to detect with a noble
measurement system. On the other hand, when we simply substitute 1 kHz
for the repetition rate, the signal level decreases five orders of magnitude.
Such a small signal is no more detectable. Thus, it should be determined
which of the increase of peak intensity and the decrease of repetition rate
dominates the signal level.

Each laser pulse emitted by the laser source is split into two pulses by the
beam splitter in the delay circuit. The two pulses made by the delay circuit
are output onto the identical beam path so that the pump pulses and the
probe pulses can be easily focused into the very same spot. The end mirror
of one of the two arms in the delay line can be translated by a piezo device
in the range of ±2 cm as fast as 20 Hz.

The STM head is a commercial desktop STM system working in the
air, which is placed on the same optical bench to which the whole optical
setup is fixed. To isolate vibration and air flow, an rubber isolator is inserted
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between the STM head and optical bench, and a hood with a small hole
covers the whole STM head. The laser beam illuminates the sample surface
from a direction ∼45 degrees from normal through the hole on the hood. The
distance between the sample and the objective lens was about 100 mm. It can
not be shortened very much because of the physical dimension of instruments.
In order to obtain a small numerical aperture (NA), the laser beam is widened
by the diverging lens up to a diameter of 10 mm and finally focused by the
objective lens. With these optics, the spot size of a few tens of micrometer is
obtained. The maximum average power of the laser is ∼20 mW for both pump
and probe beams. This power corresponds to the peak power of ∼1 GW/cm2.

10.5 Shaker Method

Now, we discuss how to detect time-resolved tunnel current signals as small
as a few tens of femto-ampere from the noisy tunnel current signals. It is
common to use a lock-in amplifier to reduce the broadband noise in the
signal and to have a good signal-to-noise (S/N) ratio.

For example, the conventional pure-optical pump-probe experiments often
modulate the intensity of the pump laser beam by using an optical chopper
and use a lock-in amplifier to detect the variation of the probe signal syn-
chronized to the pump intensity modulation. Such methods increase the S/N
ratio several orders of magnitude. When we combine the pump-probe tech-
nique with STM, the modulation of pump laser intensity causes a critical
problem. Imagine an optical chopper to be inserted into one of the two arms
of the delay line and the tunnel current is lock-in detected at the modula-
tion frequency. Then, the obtained signal will be the difference in the tunnel
current between the two conditions of one pulse excitation and of two pulses
excitation. Since the difference becomes very large even if the tunnel cur-
rent has no nonlinear dependence on the laser intensity, in order to detect
a relatively small component of the time-resolved tunnel current, one will
need unrealistic dynamic range for the lock-in detection. Moreover, chopping
the laser illumination causes the thermal expansion/shrinking problem of the
STM tip. In particular, when the lock-in detection is done synchronized to
the chopping frequency, it is impossible to avoid the thermal problem even
with the increase of the chopping frequency, because the chopping frequency
cannot exceed the bandwidth of the STM preamplifier, which is commonly
as narrow as 100 kHz.

In order to overcome these problems, a noble technique, double lock-in
technique, was proposed, where the pump and probe beams are chopped
with similar but different frequencies f1 and f2, and the tunnel current is
detected by a lock-in amplifier at the difference frequency |f1 − f2| [12]. The
detected signal is proportional to the difference between the tunnel current
under the condition where the two pulses impinge independently and that
under the condition where the two pulses impinge as a pulse pair. In other
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words, the signal is proportional to the nonlinear component of the tun-
nel current against the laser illumination. With this technique the dynamic
range of the detection can be improved. Moreover, since the lock-in detection
is not performed at the chopping frequencies f1 and f2 but at the difference
frequency |f1 − f2|, the chopping frequency can be increased to reduce the
thermal expansion/shrinking problem of the STM tip, without the limitation
of preamplifier bandwidth [12]. In the previous study, although the nonlin-
ear component of the tunnel current was acquired, the time resolved signal
was not distinguished. Since this method also modulates the laser intensity,
thermal expansion and shrinking of the STM tip cannot be avoided. Measure-
ment with high intensity of the exciting laser, which generally gives larger
nonlinearity in the tunneling current, can not be performed in this setup.

The new setup we proposed is fundamentally not affected by the thermal
problem. In this method, instead of the laser intensity, the delay time of
the pulse pair is periodically modulated and the tunnel current is lock-in
detected at the modulation frequency. We call this shaken-pulse-pair-excited
STM (SPPX-STM). When the delay time of the two pulses td is modulated
with a small value ∆td around the center position t0d at frequency ω, the
tunnel current can be represented as

It(t0d + ∆td sin ωt) = It(t0d) + ∆td sin ωt
dIt

dtd
+ O(∆t2d). (10.1)

With the use of a lock-in amplifier, the coefficient of the term sinωt, dIt/dtd,
can be obtained. In this system, when the tunneling current is independent of
the delay time, the output is zero. There is no background at all. Thus, the
signal-to-background ratio is maximized. The fluctuation of laser intensity
can be reduced by lock-in detection. Finally, since the laser intensity is not
modulated, thermal expansion and shrinking of the STM tip does not occur.

10.6 Performance of the System

In order to confirm the validity of delay-time-modulated method, the perfor-
mance of the system was examined using a surface photovoltage effect. A non-
doped n-GaAs(001) was used as the sample (carrier density ∼ 1×1015 cm−3).
Figure 10.8 shows the I-V curves obtained with and without laser illumination
(set point Vs = −2.5 V, Is = 0.10 nA). Because of the low doping level, when a
positive sample bias voltage is applied, the wide depletion layer formed at the
tunneling gap prevents the tunneling current under a dark condition. With
illumination, however, the photoinduced carriers decrease the depletion layer,
allowing the tunneling current to flow. The tunnel current increases with the
intensity of the excitation laser. Since the sample is nondoped, small changes
in the photoillumination intensity at the tunnel junction can be sensitively
detected as changes in the tunnel current. According to the independence of
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Fig. 10.8. I-V curves obtained for n-type GaAs(100) with and without laser illu-
mination

the current difference between illuminated and dark conditions on the fre-
quency of switching, the displacement current component is determined to
be negligible. In addition, the absence of the photoinduced tunnel current
difference for negative sample bias voltages indicates the thermal expansion
effect of the tip is also negligible under our experimental condition. Thus,
almost all of the current change at positive sample bias voltage is attributed
to a change of the tunneling current.

Figure 10.9 shows an experiment for evaluating the temporal resolution
of our system. The tunneling current was recorded during sweeping of the
temporal delay of the paired laser pulses with a static tip–sample separation.
When the delay time is small compared to the pulse width and the two pulses
are temporarily overlapped, sweeping the delay time causes the oscillation of
the total laser intensity at the periodicity of the carrier wave owing to the
interference between the two pulses. The oscillation decreases as the portion
of the overlap decreases, and when the two laser pulses are separated, the
oscillation vanishes. The oscillation of illumination intensity at the tunneling
junction can be detected as an oscillation in tunneling current as shown
in Fig. 10.9. The wavelength of the laser pulse is centered at 800 nm, and
the pulse width is 25 fs. As is shown in Fig. 10.9(a), the tunneling current
oscillates at 2.6 fs, which corresponds to the periodicity expected from the
wavelength of 800 nm.

Similar measurement was performed by Gerstner et al. [12]. However, in
their case, thermal expansion of the STM tip was used for the analysis. In
the present case, by using a nondoped n-GaAs(001) as the sample, the laser
intensity could be kept low so that the thermal expansion effect could be
avoided. As a result, not the total power of the illumination impinging on
the STM tip, but rather the laser intensity exactly at the tunneling junction,
could be obtained.

Now let us see the performance of the newly developed shaker method.
Figure 10.9(b) shows the lock-in amplifier signal (time constant = 30 ms)
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Fig. 10.9. Results of the temporal resolution of our system; (a) delay-time-
dependent tunneling current, (b) SPPX-STM signal

plotted versus delay time, where the delay time was modulated by 0.5 fs
around the center value at 400 Hz. The derivative of the graph in Fig. 10.9(a)
was successfully obtained with a lower noise level, indicating the expected
performance of our time-resolved STM. Its temporal resolution is limited
by the pulse width, in the range of femtoseconds. In the actual experiment,
one has to maintain a delay time longer than the pulse width to avoid the
interference effect shown here.

10.6.1 Discussion of the Interference Effect

Here, we notice a critical problem. The delay time modulation method is
superior to other methods in that it does not modulate the illumination
intensity in order to avoid the thermal expansion/shrinking problem of the
STM tip and to realize a stable measurement even under a high intensity
excitation. As is discussed above, however, the constant excitation intensity
is not preserved when the delay time becomes close to zero. When the delay
time is as small as the pulse width, the interference between the two pulses
causes an oscillation of the average power. This might cause the crash of the
STM tip apex into the sample surface. Even if the crash can be avoided, it will
considerably affect the tunnel current. The interference can be diminished
by having the polarizations of the pump or probe pulse perpendicular. As
pointed out previously [12], however, this technique does not fully get rid of
the problem. Since the scattering effect is very strong near the STM tip apex,
the polarization of pump and probe pulses is not perfectly preserved.
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Fig. 10.10. (a) Simulated interference intensity signal of 25 fs wide sech pulses.
(b) Expected tunnel current response

How does the interference affect the measurement? In the ideal case, the
averaged laser power oscillates from zero to twice the original power as shown
in Fig. 10.10(a). Although this oscillation will also result in an oscillation in
the tunnel current signal, if the tunnel current has a linear dependency on
the laser intensity, the averaged current signal shows no effect from this os-
cillation and the measurement does not suffer from interference. In reality,
however, the relationship between tunnel current and laser intensity is highly
nonlinear. As illustrated in Fig. 10.10(b), the averaged tunnel current is also
affected by the interference. In the figure, the thin solid line shows the actual
tunnel current signal and the thick one shows the low-passed signal. In par-
ticular, the component caused by the thermal expansion of the tip is effective
because of the strong nonlinearlity depending on the tip–sample distance.
Similarly, when the sample is a semiconductor, and a large photovoltage ef-
fect is expected, there is a large influence on the measurement because of
the fact that the tunneling current has a nonlinear dependence on the bias
voltage.
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On the other hand, for the time-resolved STM with the delay time mod-
ulation method, the amplitude of the modulation is larger than the pulse
width. Otherwise, the signal in the tunneling current becomes too small for
detection. Therefore, with rough approximation, the change in the tunneling
current due to the interference can be considered as a delta function com-
pared to the amplitude of the delay time modulation. Then the observed
change in the tunneling current can be represented as

It(t0d + ∆td sin ωt) = It(t0d) + ∆td
dIt

dtd
sin ωt + I0

t δ(t0d + ∆td sin ωt) (10.2)

here, since
∫

δ(f(x))dx =
∑

f(xn)=0 |1/f ′(xn)|, the output of the lock-in sig-
nal when −∆td < t0d < ∆td is represented as

S(t0d) =
ω

2π

∫
It(t0d + ∆td sin ωt) · sin ωtdt

=
1
2
td

dIt

dt0
+

4π

∆td
I0
t

t0d/∆td√
1 − (t0d/∆td)2

.
(10.3)

The value obtained for dIt/dtd = 0 and ∆td = 1 ps is shown as a dotted lined
in Fig. 10.10(a). In this equation, the value diverges when t0d ∼ ∆td, which
does not happen, however, for a finite pulse width. The theoretical result,
obtained for a pulse width of 25 fs, is shown by the solid line. The integration
of those curves results in half ellipses with a lateral width of 2∆td, as shown
in Fig. 10.10(b).

As is known by the equation, the interference effect is proportional and
inversely proportional to I0

t and ∆td, respectively. Furthermore, when the
change in I0

t is due to the thermal expansion of the STM tip, the ampli-
tude of the signal is also inversely proportional to ω∆td. Consequently, the
interference signal rapidly decreases with the increase of ∆td and ω.

10.7 Time-Resolved STM Experiment on GaNAs

10.7.1 Sample Preparation

The first experiment using the SPPX-STM was performed on a GaNAs sam-
ple [15]. GaNAs has been investigated as a good candidate for the laser
emitting material that can be used in future fast information transfers with
the 1.3 µm/1.55 µm band of quartz fiber, similar to the other III-V-N com-
pound semiconductors such as GaInNAs. These materials are superior in the
several points to the conventional III-V compound semiconductors, such as
GaInAsP and AlGaInAs. Namely, they can form mixed crystals epitaxially
grown on the low-cost Si or GaAs substrates. The emitting wavelength can be
widely tuned by controlling the composition of nitrogen. They operate much
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Fig. 10.11. (a) Interference signal in the derivative curve for ideally short laser
pulse (dotted) and for that of 25 fs width (solid). (b) Integrated signals

more stably at high working temperatures. Besides usage in semiconductor
lasers, the III-V-N compound semiconductor is also known as an excellent
material to make high efficiency solar cells. However, in order to make use of
these valuable properties in realistic device applications, the introducing pro-
cess of nitrogen should be further investigated. Currently, the introduction
of nitrogen often accompanies a considerable amount of defects, which act
as non-emitting recombination sites of carriers. Basic research for increasing
the crystal quality is intensively being performed.

In such studies, atomic hydrogen exposure during the crystal growth is be-
ing given attention. Until recently, hydrogen exposure was generally thought
to affect the growth of compound semiconductors negatively. It was reported
to passivate the acceptors in p-type semiconductors, to decrease the indium
composition in InGaN crystals and to reduce the crystal quality of GaIn-
NAs. However, recent studies suggest that it is not molecular hydrogen but
atomic hydrogen that can improve eptaxial growth of compound semicon-
ductors [17–19].

GaNαAs1−α (α =0.36%) crystal was used as a specimen, which was grown
at low temperature (480◦C) with hydrogen exposure (0.3 SCCM) and succes-
sively annealed (500–650◦C) for reduction of crystal defects.
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10.7.2 Analysis by the Optical Pump-Probe Technique

For a better understanding of the sample properties, let us first see the results
obtained by the conventional optical pump-probe reflectivity measurement.
A schematic of the system setup is shown in Fig. 10.12. Light source is a
Ti:Sapphire laser (800 nm wave length, 25 fs pulse width, 80 MHz, <300 mW).
The intensity of the pump pulses was adjusted to ∼5 mW. The pump pulses
were chopped by an optical chopper. The intensities of the probe pulses before
and after reflected by the sample surface are measured by the photodiode-
1 (PD1) and photodiode-2 (PD2). Finally, the difference of these signals is
detected by the lock-in amplifier synchronously to the chopping frequency.
The polarities of the pump and probe pulses were set to be orthogonal, and
only the probe signal was selectively detected by using a polarizer in front of
each photodiode. The obtained signal was divided by the PD2 value to give
the relative change in the sample reflectivity, ∆R/R, caused by the excitation
by the pump pulse.

Figure 10.13 shows a typical result obtained for the sample grown at
480◦C and annealed at 500–650◦C, both in atomic hydrogen environment.
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Fig. 10.12. Experimental setup for optical pump-probe reflectance measurement
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Fig. 10.13. Optical pump-probe reflectivity measurement for GaNαAs1−α (α =
0.36%) sample grown at 470◦C and annealed at 500–650◦C

∆R/R signal is plotted as a function of the delay time. As can be seen, two
exponential components of a few picoseconds and a few tens of picoseconds
decay times were obtained. From the exponential fitting, it was revealed that
the shorter decay time is reduced from 2.3 ps for as-grown to 0.71 ps for 650◦C
by annealing and the amplitude of the slow component of ∼22 ps decay time
decreases by annealing.

10.7.3 Results Obtained by the SPPX-STM

Results obtained by the SPPX-STM measurement [15] are discussed in this
section. Typical experimental conditions are as follows; Ti:Sapphire excita-
tion laser of 300 mW, central wavelength: 800 nm, bandwidth: 30 nm, pulse
width: 25 fs, pulse repetition rate: 80 MHz, delay line: 150 ps, delay line mod-
ulation frequency: 20 Hz. Defocusing the laser beam with a concave lens in-
creases the NA of the objective lens to ∼20. The incident angle of the laser
pulses is 40–50 degrees from the surface normal, and the pump and probe
pulses are s-polarized. The light intensity at the tip–sample gap is ∼10 mW.
The first step of the STM preamplifier is ×109, namely 1 nA/V multiplication
with low noise. Weak feedback to the STM z-piezo is applied with the cut-off
frequency less than 0.2 Hz, and the STM set point is adjusted to 100 pA for
sample bias voltage −2 V. The delay time is modulated at ∼20 Hz, and the
central value of the modulation is swept linearly with ∼200 sec periodicity.
The time constant of the lock-in amplifier is 100 ms and slope of the decay is
−24 dB/oct.

Figure 10.14 shows a typical result obtained for the GaNAs sample grown
at 480◦C and annealed at 600◦C in atomic hydrogen environment. The STM



10 Femtosecond-Time-Resolved Scanning Tunneling Microscopy 367

Fig. 10.14. (a) Tunnel current, (b) in-phase current oscillation amplitude, (c)
out-of-phase current oscillation amplitude, (d) delay time sweep during FTS-STM
measurement

measurement was performed in air. Tunnel current, in-phase and out-of-phase
lockin signals and delay time are measured as a function of the time and
plotted by the gray lines for the first 1.5 scans of delay time. Although high
and low frequency noises are included, the peak-to-peak amplitude of the
tunnel current deviation is less than ±10% of the reference value (100 pA).
In actual measurement, 10–100 sweeps of delay time were performed and the
result was averaged in order to reduce the broadband noise. The black lines
in the figure represent the results obtained by 32 scans average. As is well
known, the noise level decreases with the inverse of the root mean square of
the number of scans. Since the thermal drift of tip–sample position affects
the experiment, high stability of the tip position must be achieved to analyze
the local structure with large amount of averaging.

Figure 10.15(a) shows the obtained signal as a function of the delay time.
The up scan and down scan represent the data obtained with increasing
and decreasing the delay time, respectively. Generally, there is a slight shift
between the two signals due to the lock-in time constant.

Since the measured signal is the derivative, it must be numerically in-
tegrated to obtain the delay-time-dependent tunneling current as shown in
Fig. 10.15(b). Since the integral constant can not be obtained by the exper-
iment, the absolute value of the tunnel current is undetermined. Here, the
value at the left end of the graph is taken to be zero for plotting the data. In
general, graphs have a peak or a dip at the zero delay time. The vertical axis
represents the amount of change in the tunneling current. Namely, in the case
of GaNAs, the tunneling current increased by a few percent when the delay
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Fig. 10.15. (a) Raw and (b) integrated signal of FTS-STM from a GaNAs sample

time is reduced to zero. Since sample bias is negative, the tunnel current is
measured from the tip to the sample in this experiment. According to the
plot, there are two exponential components with a fast (<2 ps) and a slow
(∼50 ps) decay time. The plot is asymmetric for positive and negative delay
time, due to the difference of the light intensities of the pump and probe
pulses (1:2 in this case). When the delay time is negative, the stronger pulse
impinges the sample first.

10.7.4 Localized Sensitivity
of Time-Resolved Tunnel Current Signal

There may be doubts if this signal is really a tunnel current or not. Namely,
various problems have been reported for the laser combined STM measure-
ment until now, such as displacement current due to the stray capacitance
of the tunneling gap and photo electrons produced by multiple photon ab-
sorption. In particular, there has been a similar result reported by Pfeiffer et
al. [20]. They found a delay-time-dependent current signal in their pulse-pair-
excited STM experiment with Tantalum and GaAs(110) as samples in UHV.
They, however, concluded that their signal was due to the electron emission
from the surfaces, which was caused by the multiple photon absorption. In
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Fig. 10.16. Dependence of FTS-STM signal intensity on tip–sample distance

such cases, spatial resolution is reduced because of the fact that a large area
is included in the processes. And the superior space resolution of STM cannot
be used. In order to clarify this point, it is important to check if the probe
signal is truly spatially localized or not.

Figure 10.16 shows the change in the time-resolved signal as a function of
the averaged tunnel current which is related to the tip–sample distance. As
is shown in Fig. 10.16, there is a clear linear relationship, and this indicates
the signal is really obtained from the area just below the STM tip similar to
the ordinary STM measurement.

10.7.5 Relative Intensity of Pump and Probe Pulses

The plots in Fig. 10.15 have peaks at zero delay time and decays towards
both left and right sides. However, the plots are not symmetric against left-
to-right-flipping. This asymmetry is considered in detail here.

As mentioned above, this asymmetry comes from the light intensity dif-
ference between pump and probe pulses. Figure 10.17(a) shows the results
obtained by changing the intensity ratio between the intensities of the two
pulses from 1 to 4, with one of two being kept constant [21]. When the ratio
is 1:1, there remains only a little asymmetry, probably due to the slight mis-
alignment of the tip apex and the spot positions. When the intensities are
different, negative delay time represent that the more intense pulse hits the
sample first and the weaker one comes later. As shown in Fig. 10.17, the com-
bination of the weak pump and strong probe pulses (td > 0) shows a strong
time dependence and that of the strong pump and weak probe (td < 0) shows
a weak time dependence. In particular, when the ratio becomes 4 : 0.5, almost
no time dependence could be observed when td < 0.

As seen in Fig. 10.17, in spite of the change in the amplitude, the decay
times of the spectra are all similar. To verify this point more clearly, let us
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Fig. 10.17. Change in the spectrum shape when the relative intensity of pump
and probe pulses are changed

compare the temporal evolution of each spectrum in the td < 0 and td >
0 regions. The solid lines in Fig. 10.18(a) to (c) show the tunnel current
dependence on the decay time, It(td), obtained for the intensity ratios of 1:1,
2:1 and 4:1 as seen in Fig. 10.17. The dotted lines are obtained by multiplying
(negative delay time region) and dividing (positive delay time region) the
inverted signals against zero decay time, It(−td), by the specific factors. As
can be seen in each plot, the factors of 1.6, 2.0, 2.9 give the best fit, which
reproduces the original curves very well. This result indicates that the curves
for td < 0 and td > 0 have similar temporal evolution against the various
values of the intensity ratios, besides the prefactors determined by the pulse
intensities.

When the intensity of one pulse is increased, as shown in Fig. 10.17(a),
the signals increase and decrease for td > 0 and td < 0, respectively. Under-
standing of the phenomena is left for future analysis.
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Fig. 10.18. Comparison between the spectrum shapes for negative and posi-
tive delay time. The negative/positive delay time region of dotted curve is di-
vided/multiplied by the scale factor
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10.7.6 Accurate Fitting Procedure
of Time-Resolved Current Signal

Figure 10.19 shows the schematic for the fitting components of the observed
graph. As has been seen, the time-dependent STM signal has two exponential
components with two different decay constants. And the base lines for the
positive and negative delay time region should have the same value, which
was approximately represented by a step function as shown in Fig. 10.19. This
difference of the base line indicates the existence of a long time scale physical
process in the system.

Now, let us discuss the method for accurate analysis of the time constant
of the fast response system. Experimental results strongly depend, for exam-
ple, on the pulse width, parameters of the delay time modulation, and the
lock-in time constant. So how do these elements influence the experimental
results?

In this case, the pulse width is 25 fs and is small enough compared to
the decay time constants of ∼0.5 ps and ∼50 ps so that its influence is not so
large. Figure 10.20 shows the autocorrelation of pulse intensity. The difference
between the tunnel current signal with and without consideration of the pulse
width is shown in Fig. 10.21. As expected, a slight influence appears on the
shape of the function around the zero point of the delay time as shown in the
magnified graph in the inset.

Next, let us see the relation between the delay time modulation and the
lock-in detection. As shown in Fig. 10.22, the delay time was swept between
−40 ps and +40 ps at ∼200 s periodicity with ±0.7 ps modulation. When the
tunneling current has a delay time dependence as shown in Fig. 10.21, the
change in the tunneling current with the sweep will have a structure as shown
in Fig. 10.23. In actual measurement, since the slow change of tunneling cur-
rent is compensated by the weak feedback applied to the z-motion of the
piezo, only the high frequency component osscillating at the modulation fre-
quency, whose amplitude is proportional to the derivative of the tunneling
current as a function of the delay time sweep appears as a signal. Since
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Fig. 10.23. Tunnel current as a function of time
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Fig. 10.24. Internal signal in the lock-in amplifier generated by multiplying the
tunnel current signal by the sinusoidal modulation signal

the amount of the feedback is about 1% of the tunneling current (typically
100 pA), the influence of the feedback on the measurement can be neglected.

In the lock-in amplifier, the signal shown in Fig. 10.23 is multiplied by a
sine wave with the modulation frequency of the same phase, which results
in the signal shown in Fig. 10.24. The modulation frequency is too fast to be
resolved in the plot. The graph looks as if it is being painted out. This signal
appears as the output of the lock-in amplifier after passing through a low
pass filter.

A low pass filter is characterized by the time constant tc and the decay
slope in the higher frequency region. For example, the first order low pass
filter has slope of −6 dB/oct and the second, third and fourth order filters
have −12 dB/oct, −18 dB/oct and −24 dB/oct, respectively. The transmis-
sion function of the nth order low pass filter is represented as

Tn(s) = 1/(1 + stc)n (10.4)
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Fig. 10.26. The output of lockin amplifier

And the impulse response of the transmission function becomes

I(t) = Ctn−1 exp(−t/tc). (10.5)

As examples, the impulse responses of the filters for the time constant of
100 ms are represented as those in Fig.10.25.

The output of the lock-in amplifier can be obtained by convoluting the
impulse response of the low pass filter to the input signal after multiplying
by a sine wave. The calculated result is represented by the black line in
Fig. 10.26. The detailed shape is influenced by the time constant, and the
appearance of asymmetry explains the experimental results well.

Then, optimal fitting of the experimental result by adjusting the fitting
parameters will give us the set of accurate parameters to explain the relax-
ation system of the sample. All the graphs shown in the figures are those
obtained by this procedure.

In comparison of the numerically integrated result with that obtained by
the fitting process, the shape of the former becomes dull, for the large delay
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Fig. 10.27. Experimental data and the best fit

time region. This is due to the fact that the original derivative values are
obtained by the average of the intensity, which changes over the delay time
modulation.

As has been shown, much more accurate values can be obtained by the
proposed fitting procedure. Indeed, lifetimes as short as the amplitude of
delay time modulation can be derived accurately by the procedure. The ob-
tained parameters are summarized in Table 10.1.

Although these were two exponential components found in the spectra in
both experiments, when comparing this result to that of the optical pump-
probe reflectivity measurement, the time constants did not coincide. The time
constants obtained for the reflectivity measurement were 1.2 ps and 30 ps for
a sample annealed at 600◦C. Both the lifetimes are longer by a factor of two
for the reflectivity measurement. We believe this disagreement is not due to
any accidental error. It probably indicates that what we observed by time-
resolved STM is not a same physical property of a sample as the measured
in the reflectivity measurement.

Table 10.1. Parameters extracted from FT-STM data for GaNAs

Amplitude of the fast decay component 0.55 ± 0.014 pA
Lifetime of the fast decay component 0.653 ± 0.025 ps
Amplitude of the slow decay component 2.36 ± 0.15 pA
Lifetime of the slow decay component 55.1 ± 5.0 ps
Shift of the base line at td = 0 2.66 ± 0.15 pA

10.8 Conclusion

A noble method, shaken-pulse-pair-excited time-resolved STM was developed
to integrate the ultimate time resolution of the optical pump-probe method
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with the ultimate spatial resolution of STM technology. When modulating
the delay time instead of laser intensity, the method operates stably under
the extraordinarily high power excitation of the tunnel gap. When applied
to a low temperature grown GaNAs sample, it successfully detected a time-
resolved tunnel current signal in subpicosecond transient time. According to
the comparison of the time-resolved STM result with that of the conventional
optical pump-probe reflectivity measurement, it is suggested that the physical
property that is detected by the new method is not the same as what can be
obtained by the conventional method.
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11 Outlook

M. Yamashita, H. Shigekawa, and R. Morita

We, the editors, would like to briefly point out near-future subjects and di-
rections in few-to-mono cycle photonics (Fig. 11.1) and optical STM. Some
details have been already described in the last sections of several chapters.

In few-to-mono cycle photonics, first of all, the complete characterization
of the electric field E(t) in few-to-mono cycle pulses should be investigated.
For example, when a temporal intensity profile of a sub-two cycle pulse is
extremely asymmetric with multi-structures, sub-pulses and side-lobes, its
temporal electric field seriously depends on ambiguous quantities of the cen-
ter angular-frequency ω0, the group delay tg,0 = dφ(ω)/dω|ω=ω0 and the
constant phase φ(ω0). The generation of completely transform-limited, clean
mono-cycle pulses by the improvement of the feedback technique and the
application of IPM technique is also an urgent subject. In addition, a study
of the coherent synthesis of ultrabroad, high spectral-amplitudes of electric
fields with different center wavelengths will play a important role in the near-
future development of this field. Moreover, the independent or simultaneous
temporal control of different optical parameters in electric fields such as the
amplitude Ẽ(t), the polarization e(t), the deflection k(t) and the phase ϕ(t)
will offer new aspects to the quantum-state control application as well as the
information technology application. The extension of this various-parameters
control to the four dimensions (t, r) might lead to interesting phenomena.
Furthermore, one might expect a study on high-field mono-cycle wavepack-
ets to be useful for the development of efficient attosecond x-ray generation
and the compact x-ray laser.

On the other hand, the theoretical extension to the nonlinear interaction
between optical wavepackets and media including multi-resonant systems
without the rotational-wave approximation will be desirable. For example,
the extension to the complicated dispersion medium for the super-luminal
control, the four dimensional (t, r) extension for the spatiotemporal soliton
and the interaction with time-sequential manipulated fields in phase and am-
plitude for selective biomolecular quantum-state controls will be required.

As is well known, progress in nanoscience and nanotechnology has lowered
the barrier height between different fields, and has been realizing the fusion
of interdisciplinary research fields day by day. In the last half of this book, we
introduced our effort for the development of a new extreme technology that
has both capabilities of the ultimate temporal resolution of the ultrashort
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Fig. 11.1. Future directions in “Few-to-Mono Cycle Photonics”
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laser pulse technology and of the ultimate spatial resolution of the scanning
tunneling microscopic technology. The new technology enables us not only to
analyze optically induced electronic and elastic responses of the local struc-
ture in a single element, but also to control and manipulate material elements
with highly selective and swift performances. Since the interaction between
material elements and light plays extremely important roles in the physical
properties of material functions, the new technology is expected to be more
essential for the nanoscale structures where quantum processes become more
effective.

A summary concerning the variety of scanning probe microscopy (SPM)
and related techniques (Table 11.1) just presents the future directions that
will be realized by the fusion between STM and laser technologies. SPMs are
roughly summarized into four categories depending on the type of probes,
namely, tunneling current (electrons), photons, atomic or molecular forces
and the others. In each category, they are further divided according to the
detailed type of external fields, variable parameters or modulations. Although
they are all based on positional control methods of the STM tip, physics ob-
served by each technique depends on the type of the probe or the parameters
adopted for each. For example, in the case of scanning tunneling spectroscopy
(STS), the tunneling current is measured as a function of the bias voltage.
And generally, the differentiated signal can be compared with the local den-
sity of states (LDOS) of the sample material. On the other hand, when the
tunneling current is differentiated as related to the tip-sample distance, the
local barrier height for the tunneling process, and the decay constant of the
electron wave function can be acquired (BH-STM). Atomic force microscopy
(AFM) and related techniques pick up the information of the interaction
between the sharp tip on the cantilever and the sample surface just below
the tip. In this case, since the interactive force is used as a feedback control
instead of tunneling current, low conductive materials can be probed. The
tunneling current can be measured simultaneously.

If we measure the force under a laser modulation, we can pick up the
dynamics of the system that, for example, influences the interaction between
two single molecules. Analysis of the spin-related phenomena (SP-STM, ESR-
STM : Table 11.1) must play an important role for the understanding of the
nanoscale magnetic characteristic of materials and for the development of
fields such as spintronics. In the case of P-STM and SNOM (Table 11.1), the
photon is already combined, which technique is expected to give us comple-
mentary information. Development in a time scale may bring further pos-
sibilities. Recently, carbon nanotube tips have been developed for use as a
probe of a more clearly definite local structures under more stable condi-
tions. Besides that, a more applicable probe technique, using multiple tips,
has been realized. Combinations of these techniques with our system must
open further possibilities.
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Table 11.1. Variety of scanning probe microscopy [1–5]

name probe modulation, param-
eter, external field

STM: scanning tunneling microscopy It tunnal current V:bias voltage

STS: scanning tunneling spectroscopy (dIt/dV )/(It/V ):LDOS

IETS: inelastic tunneling spectroscopy

BH-STM: barrier height STM ((dIt/dz):LDOS) gap distance

KPM: Kelvin probe microscopy

BEEM: ballistic electron emisson microscopy photon

ESTM: electrochemical STM EC current

STP: scanning tunneling potensiometry

SP-STM: spin polarized STM electron-spin magnetic field

ESR-STM: electron spin resonance STM electron-spin

O-STM: optical STM photon

PM-STM: photomodulated STM time

FS-STM: femtosecond time resolved STM electron-spin

P-STM: photon STM photon tunnel electron

SNOM: scanning nearfield optical microscopy photon

AFM: atmomic force microscopy force gap distance

c-AFM: contact AFM

T-AFM: tapping AFM

nc-AFM: noncontact AFM

D-AFM: dynamic AFM

LFM: lateral force microscopy friction

CFM: chemical force microscopy molecule

DFS: dynamic force spectroscopy loading rate

SCM: scanning capacitance microscopy V: bias voltage

SMM: scanning maxwell stress microscopy

EFM: electrostatic force microscopy

MFM: magnetic force microscopy magnetic field

TAM: tunneling acoustic microscopy phonon phonon

SThP: scanning thermal profiler heat temperature

SHM: scanning hall-probe microscopy hall voltage magnetic field
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β-BaB2O4 (BBO) 85, 202
β-barium borate

see β-BaB2O4 (BBO)
β−(BEDT-TTF)2PF6 299
π-conjugated polymer 304
III-V compound semiconductor 363
III-V-N compound semiconductor 363
4-f chirp compensator 213, 214, 220
– configuration 199
– phase compensator 202, 207, 226,

228, 237
– pulse shaper 106, 109, 180, 196, 254,

280, 281
– system 171, 172, 233, 244, 245, 257,

259

acoustic noise 297
active phase compensator 201
adaptive chirp compensation 200
AOM 226
atomic hydrogen exposure 364
attosecond x-ray generation 379
autoconvolution 170, 174
autocorrelation 153–155, 166, 167,

170, 189
azobenzen 286

band bending 317
bandwidth limitation 176, 182, 190,

195, 196
BBO

see β-BaB2O4 (BBO)
Bessel function 254
bi-directional propagation 15, 16, 44

C60 300
carbon nanotube 300
carrier frequency 239
carrier generation rate 318

carrier recombination rate 318
carrier-envelope phase 57, 212
CDW

see charge density wave
charge density wave 300
chirp VII, 84, 103
– coefficient 244
– compensation XI, 103, 104, 107, 112,

350
– compensator 78, 105, 106
circuit response 295
closed-loop phase control 199
complex electric field 177, 238, 251,

252, 254, 255
compression 54
computer-controlled feedback system

213
constant height mode 290
constant value mode 291
contact potential difference 321
core dispersion 15, 19, 21, 45, 47
CPD 321
creep of piezo element 297
cross-phase modulation 8
cyclodextrin 305
CyD molecule 305

decay slope 374
deformable mirror 106, 226
delta-function 253, 263, 269
diffraction 173, 193
– formula 112
dispersion length 22, 49, 225
displacement current 351, 368
double lock-in technique 358
down-chirp 103

energy diagram of STM 293
external vibration 291
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feedback compensation 186, 199, 202
– control 200
– phase compensation 106, 202, 227
– pulse compression 201
– Spectral-Phase Control Technique

201
– system 219
– technique 234
femtosecond-̊angstrom technology 349
femtosecond-time resolved STM

(FTR-STM) X, XII
few-to-mono cycle photonics VII, XI,

67, 379
field enhancement effect 315
finite-difference frequency-domain

method 10
– time-domain method 10
flip-flop motion 302
four-wave mixing 12, 91, 92
Fourier direct method 14
– plane 174, 260, 264, 281
– transform 167, 168, 177, 178, 182,

188, 238, 251–253, 255, 266, 268,
271

– -transform-limited pulse 103, 173,
183, 201, 209, 227, 236, 237, 240,
244, 245, 254, 255, 281

fourth-order dispersion 116, 173
FRAC 153–155, 172, 173, 182–184,

194–196, 217, 236
frequency marginal 169, 170, 174–176,

196
FROG (frequency-resolved optical

gating) 85, 96, 125, 155, 166–176,
181, 183, 194–196

– algorithm 167–170
– error 169, 174
FTR-STM

see femtosecond-time resolved STM
fused-silica fiber 68, 71
FWM

see four-wave mixing

GaNAs 363
GDD

see group delay dispersion
grating 172, 173, 180–183, 193, 256,

257, 259, 260, 265

group delay 81, 97, 173, 182, 208, 211,
240, 379

– – dispersion (GDD) 81, 92, 96, 97,
116, 144, 173, 181, 187, 188, 190,
213, 232, 244

group velocity 83, 86
– – difference 74
– – dispersion 6, 71
– – mismatch 71, 208
GVD

see group velocity dispersion

hollow fiber 68, 82, 85, 86, 119, 123,
224, 226

impulse response 375
induced phase modulation 8, 68, 74,

76, 77, 79, 81, 83–88, 98, 99, 205,
240, 259, 264

– – – pulse compression 207
induced polarization 15
inelastic tunneling 306
instantaneous frequency 239
interference effect 361
IPM

see induced phase modulation

junction mixing STM 351

Kelvin probe 321
Kondo effect 300

LDOS 294
lens 181, 187, 188, 192, 256, 257, 259,

260
light-modulated scanning tunneling

spectroscopy 327
linear chirp 74
LM-STS 327
local density of states

see LDOS
lock-in amplifier 352, 358
lock-in time constant 367, 372
low dimensional organic conductor

299
low pass filter 374

M-SPIDER 172, 185, 187, 192, 196,
200–202, 207, 212, 214, 215, 221,
222, 225–228, 244, 245

manipulation by STM 305
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manipulator of optical electric-field
wavepackets 247

metal-insulator-semiconductor 321
MIS 321
– junction 329
modified spectral-phase interfero-

meter for direct electric-field
reconstruction

see M-SPIDER
– SPIDER

see M-SPIDER
molecular necklace 305
monocycle pulse VII, 195, 196, 224,

379
– regime 228
– -like pulse 185, 190, 196, 201, 238,

240, 246
multicolor pulse shaping 256, 257,

259, 281, 282
multiple photon absorption 368
– – excitation 356

NA 308, 350
nearfield optical scanning microscopy

350
– wave 350
nonlinear dispersion 19, 21, 47
– length 22, 49, 225
– refractive index 71, 224
– Schrödinger equation 9, 14, 22, 70
NSOM 350
numeric aperture

see NA

OHD-RIKES 275
one-octave bandwidth XI, 98, 200
– exceeding bandwidth 246
optical chopper 358
– function generator 247
– scanning tunneling microscopy (STM)

VII, IX, XI, 379
– STM

see optical scanning tunneling
microscopy

– wave musical instrument 247
oscillatory structure 89, 90
over-one-octave bandwidth 192, 196,

226, 238, 240, 244, 245
– ultrabroadband pulses 224

parametric four-ware mixing 91
passive chirp compensator 213, 226
PCF 31, 68, 91, 92, 95, 213, 214, 217
phase compensation VII, 54, 174, 186,

191, 196, 199, 232, 233, 240, 244,
245

– compensator 202, 235
– dispersion 103
– modulation 251–255, 257, 260–262
photoconductively gated STM 350
photoelectron 368
– emission 356
photoisomerization 286
photonic crystal fiber

see PCF
photonic crystal glass fiber

see PCF
piezo effect 297
polyrotaxane 305
propagation constant 19
pulse compression 107, 120, 233
pulse train 251, 254, 255, 257–259,

261–274, 280, 282
pulse-pair-excited STM 353
pump (a pulse pair) and probe

techniques XI
pump probe technique X

quantum-state control 379

Raman induced Kerr effect 275
Raman response 3, 16, 19, 21, 45
Raman scattering 264, 266, 269, 271,

273, 274
Raman spectroscopy 275
real electric field 167, 238, 251, 252
reflective objective 75, 93, 132, 202,

214
regenerative amplifier 356
repetition rate 350, 356
rotaxane 305

S/N ratio 358
SAM 286, 300
sampling theorem 181
scanning electron microscopy 314
– nearfield optical microscopy

see SNOM, NSOM
– probe microscopy 289
– probe spectroscopy 291
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– tunneling microscopy (STM) IX,
XI, 289, 349

– tunneling spectroscopy (STS) 294
Schottky contact 320
second-harmonic generation frequency-

resolved optical gating
(SHG FROG) 27

selective excitation 263–266, 268–274,
279, 282

self-assembled monolayer 300
self-phase modulation (SPM) 6, 67,

76, 77, 81–84, 86–88, 91, 92, 95, 96,
99, 103, 201, 225, 256, 259, 261,
264, 289

self-steepening (SST) 6, 19, 21, 47, 91
Sellmeier equation 12, 18
SEM 314
SH interferogram 215, 231, 234
shadowing effect 313
shaken-pulse-pair-excited STM 359
shaker method 358
SHG 153, 167–173, 176, 192, 195
shock length 49
Si nonoparticle 304
Si(100) 301
Si(111)-7×7 300
sinc-function 253
SLM

see spatial light modulator
slowly-evolving wave approximation

(SEWA) 1
slowly-varying-envelope approximation

(SVEA) VII, 1, 22
SNOM 350
soliton effect 98
– formation 91
spatial chirp 67, 170
spatial light modulator (SLM) 105,

106, 112, 201, 202, 208, 215, 218,
220, 226, 240, 244, 245

– – – technique XI
– phase modulator 171–175, 180, 196,

252, 254–262, 281, 282
spatially resolved SPV 318
spectral filtering effect 169, 170
– phase XI, 67, 76, 97, 98, 167, 168,

173–179, 182, 184, 186, 203, 204,
208, 213, 222, 227, 237

– phase characterization 199

– phase difference 178, 179
– shear 177–179, 181, 186, 190, 207,

227, 232
– slicing 259, 260, 281
– -phase characterization and

compensation XI, 201
– -phase compensation 202
– -phase feedback technique 205
spectrally-resolved

intensity-autocorrelation 78
SPIDER 155, 172, 176, 177, 179–190,

192–196, 200, 225
– interferogram 217
– signal 202–204, 207, 208, 217, 222,

231, 232, 234
split-step Fourier method 10, 14
SPM

see self-phase modulation
SPPX-STM 359
SPV 317, 352
SR-SPV 318
SRS

see stimulated Raman Scattering
SST

see self-steepening (SST)
steepening

see self-steepening (SST)
stimulated Raman Scattering (SRS)

91, 92
STM

see scanning tunneling microscopy
stray capacitance 368, 368
STS

see scanning tunneling spectroscopy
sum-frequency generation 181, 184,

186, 187, 195
surface photovoltage 317, 352

tapered fiber (TF) 68, 94–96, 218, 219
Taylor expansion 173
tetrachloroethylene 271, 272
TF

see tapered fiber
thermal drift 297
– expansion/shrinking of STM tip 358
– fluctuation 291
– noise level 295, 296
– emission current 320
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third-order dispersion (TOD) 71, 97,
116, 144, 173, 213

– nonlinear polarization 71
– phase dispersion

see third-order dispersion (TOD)
Ti:sapphire laser 67, 72
time constant 374
– smearing 170, 174, 176, 195, 196
– window 113, 255, 281
– -dependent phase 67
TIVI 153
TL pulse

see Fourier-transform-limited pulse
TOD

see third-order dispersion
transform-limited pulse

see Fourier-transform-limited pulse
tunnel effect 292
– junction 292, 311
– transmission coefficient 293
two-spring oscillator model 297

UHV 306
ultrabroadband 169, 171, 176, 180,

183–186, 190, 196, 254, 280
– pulse generation 69
ultrahigh vacuum (UHV)

see UHV
unidirectional propagation 22, 44
up-chirp 103
up-chirped pulse 220

vibration isolation 297
vibrationally-synchronized pumping

263, 264, 266, 270, 271, 274

walk-off length 74, 75, 78
Wigner distribution function 238–240,

244, 245
WKB approximation 293

zero group-delay dispersion 68
zero-dispersion wavelength (ZDW)

91, 93, 95, 98, 220
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