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Preface

Multidimensional scaling (MDS) is a technique for the analysis of similarity
or dissimilarity data on a set of objects. Such data may be intercorrelations
of test items, ratings of similarity on political candidates, or trade indices
for a set of countries. MDS attempts to model such data as distances among
points in a geometric space. The main reason for doing this is that one wants
a graphical display of the structure of the data, one that is much easier to
understand than an array of numbers and, moreover, one that displays the
essential information in the data, smoothing out noise.

There are numerous varieties of MDS. Some facets for distinguishing
among them are the particular type of geometry into which one wants to
map the data, the mapping function, the algorithms used to find an optimal
data representation, the treatment of statistical error in the models, or the
possibility to represent not just one but several similarity matrices at the
same time. Other facets relate to the different purposes for which MDS
has been used, to various ways of looking at or “interpreting” an MDS
representation, or to differences in the data required for the particular
models.

In this book, we give a fairly comprehensive presentation of MDS. For the
reader with applied interests only, the first six chapters of Part I should
be sufficient. They explain the basic notions of ordinary MDS, with an
emphasis on how MDS can be helpful in answering substantive questions.
Later parts deal with various special models in a more mathematical way
and with particular issues that are important in particular applications of
MDS. Finally, the appendix on major MDS computer programs helps the
reader to choose a program and to run a job.
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Contents of the Chapters
The book contains twenty-four chapters, divided into five parts. In Part I,
we have six chapters:

• Chapter 1 is an introduction to MDS that explains the four pur-
poses of MDS: MDS as a technique for data explorations, MDS as a
method for testing structural hypotheses, MDS as a methodology for
the discovery of psychological dimensions hidden in the data, and,
finally, MDS as a model of mental arithmetic that explains how sim-
ilarity judgments are generated. Depending on the particular field of
interest, researchers have typically concentrated on just one of these
purposes.

• Chapter 2 shows how MDS solutions can be constructed—in simple
cases—by purely geometric means, that is, with ruler and compass.
Although, in practice, one would almost always use a computer pro-
gram for finding an MDS solution, this purely geometric approach
makes some of the fundamental notions of MDS much clearer than
to immediately look at everything in terms of algebraic formulas and
computations. It shows, moreover, that the geometric model comes
first, and coordinate systems, coordinates, and formulas come later.

• Chapter 3 introduces coordinates and distinguishes different MDS
models by the particular functions one chooses for mapping data into
distances. Relating data to distances in a particular way also leads to
the question of measuring misfit. The Stress index is introduced. An
extensive discussion follows on how to evaluate this index in practice.

• Chapter 4 discusses three real-life applications of MDS. The examples
are fairly complex but do not require much substantive background.
They serve to show the reader some of the trade-off decisions that
have to be made when dealing with real data and also some of the
most important ways of interpreting an MDS solution.

• Chapter 5 deals with a particular class of MDS applications where
the emphasis lies on establishing or testing correspondences of regions
in MDS space to classifications of the represented objects in terms of
some content facets. It is asked whether objects classified as belonging
to type X, Y, Z, . . . can be discriminated in MDS space such that they
lie in different regions. A variety of regional patterns that often arise
in practice is discussed and illustrated.

• Chapter 6 describes how to collect similarity or dissimilarity data.
Four approaches are distinguished: direct similarity judgments and
how to possibly reduce the labor to collect them; deriving similar-
ity measures from the usual cases-by-variables data; converting non-



Preface ix

similarity measures into similarity measures; and some similarity mea-
sures defined for co-occurrence data.

Part II discusses technical aspects of MDS:

• Chapter 7 builds some matrix algebra background for later chapters.
Eigendecompositions and singular value decompositions, in partic-
ular, are essential tools for solving many of the technical problems
in MDS. These tools are put to work immediately for constructing
a coordinate matrix from a distance matrix, and for principal axes
rotations.

• Chapter 8 concentrates on algorithms for optimally solving MDS
problems. To that end, basic notions of differentiation of functions
and, in particular, of matrix traces are introduced. Then, the ma-
jorization method for minimizing a function is explained and applied
to solve the MDS problem. This algorithm, known as the Smacof
algorithm, is presented in detail.

• Chapter 9 generalizes the approach of Chapter 8 by allowing for trans-
formations of the dissimilarity data. First, ordinal transformations
are discussed, both by monotone regression and rank-images. Then,
monotone spline and power transformations are considered in some
detail.

• Chapter 10 focuses on confirmatory MDS, where external constraints
are enforced onto the MDS solution. These constraints typically are
derived from a substantive theory about the data, and it is then tested
to what extent this theory is compatible with the data. Two types
of constraints are discussed: those imposed on the coordinates and
those on the distances of the MDS solution.

• Chapter 11 considers some varieties of indices that assess the good-
ness of an MDS representation (such as different forms of Stress and
the alienation coefficient) and shows some of their relations. Also, we
discuss using weights on the dissimilarities and show their effects on
MDS solutions.

• Chapter 12 is devoted to one of the first models used for MDS, Clas-
sical Scaling. This form of MDS attempts to transform given dis-
similarity data into scalar products for which an optimal Euclidean
distance representation can be found algebraically without an itera-
tive algorithm.

• Chapter 13 discusses some technical problems that may occur in MDS
applications. MDS solutions may degenerate, that is, they become
almost perfect in terms of the fit criterion but, nevertheless, do not
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represent the data in the desired sense. Another important problem
is how to avoid local minimum solutions in iterative procedures. Var-
ious conditions and solutions for both problems are presented and
discussed.

Part III is devoted to unfolding:

• Chapter 14 is concerned with unfolding, a special case of MDS. In
unfolding, one usually has preference data from different individuals
for a set of objects. Such data are represented by distances between
two sets of points that represent individuals and objects, respectively.
The model is psychologically interesting but poses a number of dif-
ficult technical problems when transformations are allowed on the
data.

• Chapter 15 describes a variety of approaches designed to overcome
the problem of degenerate solutions in unfolding. We discuss how to
replace missing data with reasonable values, how to make the trans-
formation that maps the data into the distances of the model more
rigid, and how to properly adjust the loss function to avoid degen-
eracies.

• Chapter 16 introduces a number of special models for unfolding
such as external unfolding, the vector model of unfolding, individual-
differences unfolding with weighted dimensions and anti-ideal points,
and a metric unfolding model that builds on scale values constructed
within a particular (BTL) choice theory.

Part IV treats the geometry of MDS as a substantive model:

• Chapter 17 concentrates on one particular tradition of MDS where
the MDS space is equated with the notion of a “psychological” space.
Here, the formula by which we compute distances from point coor-
dinates is taken as a model of the mental arithmetic that generates
judgments of dissimilarity. Some varieties of such models (in par-
ticular, the Minkowski distance family) and their implications are
investigated in some detail.

• Chapter 18 studies a particular function on pairs of multi-valued ob-
jects or vectors, scalar products. Scalar products have attractive prop-
erties. For example, one can easily find an MDS space that explains
them. Hence, various attempts were made in the psychological litera-
ture to generate similarity judgments that can be directly interpreted
as scalar products (rather than distance-like values).

• Chapter 19 concentrates on the most important distance function in
practice, the Euclidean distance. It is asked what properties must
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hold for dissimilarities so that they can be interpreted as distances
or even as Euclidean distances. We also discuss what transformations
map such dissimilarities into Euclidean distances. A further question
is how to find a linear transformation that leads to approximate Eu-
clidean distances in a small dimensionality.

Part V discusses some techniques and models that are closely associated
with MDS:

• Chapter 20 treats Procrustean problems. Given one particular config-
uration or target, X, it is asked how one can fit another configuration,
Y, to it without destroying meaningful properties of Y. Procrustean
solutions are important in practice because they serve to eliminate
irrelevant—and often misleading—differences between different MDS
solutions.

• Chapter 21 looks at generalized Procrustes analysis, where one wants
to fit several configurations to a target or to each other. We also
consider extensions where further fitting parameters are admitted
that do not preserve the configurations’ shapes but that have some
meaning in terms of individual differences (e.g., different dimensional
weights).

• Chapter 22 focuses on the question of how we can scale a set of
K dissimilarity matrices into only one MDS solution and explain
the differences among the K data sets by different weights on the
dimensions of the “group space” of all K data sets. One algorithm
for solving this problem, Indscal, is considered in some detail. Some
algebraic properties of such models are also investigated.

• Chapter 23 concentrates on asymmetric proximities. They require
special considerations or models. We show that asymmetric data
can always be decomposed in a symmetric and a skew-symmetric
part. Some models for visualizing asymmetry only study the skew-
symmetric part and others try to represent both parts at the same
time. We discuss several models such as Gower’s decomposition for
skew-symmetry, a model that represents the skew-symmetries as force
vectors in an MDS solution of the the symmetries, unfolding, the
slide-vector model, a hill-climbing model, and the radius-distance
model.

• Chapter 24 focuses on two methods that are closely related to MDS:
principal component analysis and correspondence analysis. We present
their formal properties, show some applications to empirical data sets,
and discuss how they are related to MDS.

In the Appendix, we cover two issues:
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Basic MDS course
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Data
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FIGURE 1. Some suggestions for reading this book.

• Appendix A describes in some detail the major computer pro-
grams available today for doing MDS. The programs selected are
Ggvis, Permap, the MDS modules in SAS, SPSS (Proxscal and
Alscal), Statistica, and Systat, as well as the standalone pro-
grams Newmdsx c©, Fssa, and the classics Kyst, Minissa, and
Multiscale.

• Appendix B contains a summary of the notation used throughout
this book.

How to Read This Book
Beginners in MDS should first study Chapters 1 through 6. These chap-
ters make up a complete introductory course into MDS that assumes only
elementary knowledge of descriptive statistics. This course should be sup-
plemented by reading Sections 13.1–13.4 because they cover, in the same
nontechnical way, two technical problems (degenerate solutions, local min-
ima) of which every MDS user should be aware.

The basic course can be extended by adding Chapters 14 to 16, if tech-
nical sections are skipped. These chapters add the idea of unfolding and
discuss some variants of this model.

After mastering the fundamentals, the reader may either read on se-
quentially or first consider his or her primary interests. If these interests
are primarily in the psychology of similarity and choice, then the reader
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should move to the chapters on the right-hand side in Figure 1. That is, af-
ter reviewing some basic matrix algebra, the reader should move on to one
of the topics of particular substantive interest. The most natural place to
start is Chapter 17, which focuses directly on different attempts to model
similarity by distance functions; to Chapter 18 which is concerned with
how to assess scalar products empirically; and to Chapter 19 which stud-
ies some of the basic issues involved in modeling proximities in geometric
models. Then, the essential ideas of of Chapters 21 and 22 are interesting
candidates for further study. Also, the substantively relevant material in
Chapter 10 should be of particular interest.

A student whose primary interest is data analysis should first study the
matrix algebra in Chapter 7 in somewhat more detail to prepare for Chap-
ter 12 (classical MDS). From Chapter 12, one can proceed to Chapter 23
(asymmetric models) and Chapter 24 (PCA and correspondence analysis)
or to Chapters 20–22 (Procrustean methods, three-way models, individual-
differences models). A different or additional route in Figure 1 is to turn
to Chapter 8 (algorithms) after having studied Chapter 7. The discussion
of how to find optimal transformations of the proximities (as in ordinal
MDS) in Chapter 9 can be read, to a large extent, without knowledge of
Chapter 8. Knowing how to solve MDS problems numerically is, however, a
prerequisite for studying a number of advanced issues in Chapter 10 (con-
firmatory MDS and how to do it) and Chapter 11 (fit measures). From
Chapter 11, one should proceed to the technical sections of Chapter 13,
which discuss local minima problems.

History of the Book
One could say that the present book is the third edition of a book on multi-
dimensional scaling. The book appeared in German in 1981 under the name
Anwendungsorientierte Multidimensionale Skalierung by Ingwer Borg (Hei-
delberg, Germany: Springer). This book served as a basis for an English
version. It was called, somewhat cryptically, Multidimensional Similarity
Structure Analysis. Authored by Ingwer Borg and the late Jim Lingoes,
it appeared in 1987 (New York: Springer). As the copies of this book sold
out, a revised reprint was considered to bring the book up to date, but then
this revision led to a complete overhaul and substantial additions, in par-
ticular on the algorithmic side. We have changed the order of presentation,
excluded or shortened some material, and included recent developments in
the area of MDS. To reflect these changes, we have added “Modern” to
the book’s title. We also replaced the term “Similarity Structure Analy-
sis” by the better-known term “Multidimensional Scaling”. Proponents of
SSA may feel that this is an unfortunate regression in terminology, but the
term MDS is simply much better known in general. In any case, the shift
from SSA to MDS does not imply a change of perspective. We still con-
sider all aspects of MDS representations as potentially interesting, not just
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“dimensions.” The present book is the second revised edition of Modern
Multidimensional Scaling.

Preface to the Second edition
The second edition of Modern Multidimensional Scaling differs from the
first edition on several aspects. The changes have increased the number of
pages from 471 to 611 pages and the number of figures from 116 to 176. Two
new chapters were added to the book. The first new chapter is devoted to
the problem of how to avoid degeneracies in unfolding. New developments
in this area are covered and several solutions are presented. One of these
solutions, the PrefScal program, is scheduled to become available soon
in SPSS.

The other new chapter is an expansion of a section on asymmetric models
into a full chapter. There, we discuss several models for visualizing asym-
metry and skew-symmetry in MDS. Some of these models are new and
others are known in the literature.

In addition, we have updated, extended, and added several sections in
existing chapters. Some of these additions reflect new insights from the
literature; others are aimed at clarifying existing material. The appendix
on MDS software contains the description of four new MDS programs.

Also, exercises have been added to each chapter. They should help the
reader to better learn MDS by, first of all, actually doing MDS on empirical
data sets, or by rethinking the various issues within a particular scientific
context. The exercises differ, of course, with respect to their level. Some
emphasize more practical skills such as actually using one or another MDS
computer program; others are more demanding and have no simple right-
or-wrong answers. These exercises make the book easier to use in a course
on MDS. All data in the book are available on the Internet at

http://www.springeronline.com/0-387-25150-2.
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Part I

Fundamentals of MDS



1
The Four Purposes of
Multidimensional Scaling

Multidimensional scaling (MDS) is a method that represents measurements
of similarity (or dissimilarity) among pairs of objects as distances between
points of a low-dimensional multidimensional space. The data, for example,
may be correlations among intelligence tests, and the MDS representation
is a plane that shows the tests as points that are closer together the more
positively the tests are correlated. The graphical display of the correlations
provided by MDS enables the data analyst to literally “look” at the data
and to explore their structure visually. This often shows regularities that
remain hidden when studying arrays of numbers. Another application of
MDS is to use some of its mathematics as models for dissimilarity judg-
ments. For example, given two objects of interest, one may explain their
perceived dissimilarity as the result of a mental arithmetic that mimics
the distance formula. According to this model, the mind generates an im-
pression of dissimilarity by adding up the perceived differences of the two
objects over their properties.

In the following, we describe four purposes of MDS: (a) MDS as a method
that represents (dis)similarity data as distances in a low-dimensional space
in order to make these data accessible to visual inspection and exploration;
(b) MDS as a technique that allows one to test if and how certain criteria
by which one can distinguish among different objects of interest are mir-
rored in corresponding empirical differences of these objects; (c) MDS as
a data-analytic approach that allows one to discover the dimensions that
underlie judgments of (dis)similarity; (d) MDS as a psychological model
that explains judgments of dissimilarity in terms of a rule that mimics a
particular type of distance function.
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TABLE 1.1. Correlations of crime rates over 50 U.S. states.

Crime No. 1 2 3 4 5 6 7
Murder 1 1.00 0.52 0.34 0.81 0.28 0.06 0.11
Rape 2 0.52 1.00 0.55 0.70 0.68 0.60 0.44
Robbery 3 0.34 0.55 1.00 0.56 0.62 0.44 0.62
Assault 4 0.81 0.70 0.56 1.00 0.52 0.32 0.33
Burglary 5 0.28 0.68 0.62 0.52 1.00 0.80 0.70
Larceny 6 0.06 0.60 0.44 0.32 0.80 1.00 0.55
Auto theft 7 0.11 0.44 0.62 0.33 0.70 0.55 1.00

murder

assault

rape
larceny

burglary

auto theft
robbery

FIGURE 1.1. A two-dimensional MDS representation of the correlations
in Table 1.1.

1.1 MDS as an Exploratory Technique

Exploratory data analysis is used for studying theoretically amorphous
data, that is, data that are not linked to an explicit theory that predicts
their magnitudes or patterns. The purpose of such explorations is to help
the researcher to see structure in the data. MDS, too, can be used for such
data explorations.

Consider an example. The U.S. Statistical Abstract 1970 issued by the
Bureau of the Census provides statistics on the rate of different crimes
in the 50 U.S. states (Wilkinson, 1990). One question that can be asked
about these data is to what extent can one predict a high crime rate of
murder, say, by knowing that the crime rate of burglary is high. A partial
answer to this question is provided by computing the correlations of the
crime rates over the 50 U.S. states (Table 1.1). But even in such a fairly
small correlation matrix, it is not easy to understand the structure of these
coefficients. This task is made much simpler by representing the correlations
in the form of a “picture” (Figure 1.1). The picture is a two-dimensional
MDS representation where each crime is shown as a point. The points are
arranged in such a way that their distances correspond to the correlations.
That is, two points are close together (such as murder and assault) if their
corresponding crime rates are highly correlated. Conversely, two points are
far apart if their crime rates are not correlated that highly (such as assault
and larceny). The correspondence of data and distances is tight in this
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example: the product-moment correlation between the coefficients in Table
1.1 and the distances in Figure 1.1 is r = −.98.

The reader need not be concerned, at this point, with the question of
how such an MDS representation, X, is found. We return to this issue in
considerable detail in later chapters. For now, it suffices to assume that the
data are fed to an MDS computer program and that this program provides
a best-possible solution in a space with a dimensionality selected in advance
by the user. The quality of this solution can be checked without knowing
how it was found. All one has to do is measure the distances between the
points of X and compare them with the data.1 If distances and data are
highly correlated in the sense of the usual product-moment correlation,
say, then the distances represent the data well in a linear sense.2 This is
obviously true in the given case, and so the distances in Figure 1.1 represent
the correlations in Table 1.1 very precisely.

What does the MDS picture in Figure 1.1 tell us? It shows that the
crimes are primarily distributed along a horizontal dimension that could
be interpreted as “violence vs. property” crimes. Moreover, the “property
crimes” are less homogeneous, exhibiting some spread along the vertical
axis, a dimension that could be interpreted as “hidden vs. street” crimes.

Although here we looked at dimensions, it is important to keep in mind
that any property of the MDS representation that appears unlikely to result
from chance can be interesting. The points may, for example, form certain
groupings or clusters. Or, they may fall into different regions such as a
center region surrounded with bands. The points may also lie on certain
manifolds such as curved lines (a circle, for example) or on some surface
in a higher-dimensional space. Looking for particular directions that would
explain the points’ distribution is just one possibility to search for structure.
Later on in this book, we explore a variety of geometric regularities that
have been found useful in practical research.

1Consider an analogy. Anyone can check the proposition that the number 1.414 ap-
proximates

√
2 simply by multiplying 1.414 by itself. The result shows that the proposi-

tion is nearly correct. For checking it, it is irrelevant how the number 1.414 was found.
Indeed, few would know how to actually compute such a solution, except by trial and
error, or by pushing a button on a calculator.

2With few points, one can even do (two-dimensional) MDS by hand. To find an MDS
solution for the data in Table 1.1, first cut out seven small pieces of paper and write
onto each of them one of the labels of the variables in Table 1.1, i.e., “murder”, “rape”,
..., “auto theft”, respectively. Place these pieces of paper arbitrarily in a plane and
then move them around in small steps so that higher correlations tend to correspond to
smaller distances. Repeat these corrective point movements a few times until the match
of distances and data is satisfactory or until it cannot be improved anymore. Such a
manual approach is typically quite easy to perform as long as the number of variables is
small. With many variables, computer algorithms are needed for doing the work. Good
algorithms also make it more likely that one ends up with an optimal MDS solution, that
is, a configuration whose distances represent the given data “best” (in some well-defined
sense).
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Such insights into the data structure are aided by the visual access made
possible by the simple MDS picture. Of course, as it is true for exploratory
data analysis in general, it is left to further studies to test whether the
patterns thus detected are stable ones. Moreover, it is desirable to also
develop a theory that provides a rationale for the findings and enables one
to predict such structures.

1.2 MDS for Testing Structural Hypotheses

When more is known about a field of interest, exploratory methods be-
come less important. The research items, then, are well designed and the
general interest lies in studying effect hypotheses. That is, in particular,
what one wants to know is if and how the facets (dimensions, factors, fea-
tures, etc.) by which the items are conceptually distinguished are reflected
in corresponding differences among observations on these items. MDS may
be useful for studying such questions. Consider a case.

Levy (1983) reports a study on attitudes towards political protest behav-
ior. She distinguished 18 types of attitudes towards political protest acts.
These types correspond to the 3 · 3 · 2 = 18 different ways of reading the
following design scheme (mapping sentence):

The

A: modality of attitude⎧⎨⎩
a1 = evaluation
a2 = approval
a3 = likelihood of own overt action

⎫⎬⎭ behavior of respondent x

with respect to

B: strength of execution⎧⎨⎩
b1 = demanding
b2 = obstructive
b3 = physically damaging

⎫⎬⎭ protest acts of

C: way to carry out{
c1 = omission
c2 = commission

}
→

R: direction⎧⎨⎩
very positive

to
very negative

⎫⎬⎭ behavior towards acts.

Thirty items were selected from a study by Barnes et al. (1979), using this
mapping sentence as a culling rule. Short verbal labels and the codings for
the selected items with respect to the three facets of the mapping sentence
are given in Table 1.2. For example, item no. 6 effectively asked: “To what
extent is ‘painting slogans on walls’ effective when people use this act in
pressing for change?” The respondent’s answer was, for this item, recorded
on a scale from “very effective” to “not effective”. (This scale is the “range”
R of the observational mapping.) According to Levy, this item asks about
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TABLE 1.2. A classification of protest acts by three facets; numbers in table refer
to item numbers.

Item a1 a2 a3

Petitions 1 11 21 b1 c2
Boycotts 2 12 22 b2 c1
Lawful demonstrations 3 13 23 b1 c2
Refusing to pay rent 4 14 24 b2 c1
Wildcat strikes 5 15 25 b2 c1
Painting slogans on walls 6 16 26 b3 c2
Occupying buildings 7 17 27 b2 c2
Blocking traffic 8 18 28 b2 c2
Damaging property 9 19 29 b3 c2
Personal violence 10 20 30 b3 c2

an effectiveness evaluation (= a1) of a physically damaging act (= b3) of
commission (= c2).

How are these 18 different forms of attitudes towards protest behavior
related to each other? Will the facets used by Levy for conceptually classi-
fying the items show up in the survey data? The distinction “omission vs.
commission”, for example, is, after all, an organizing principle that comes
from Levy. It may be clear enough and even useful to other researchers in
the field of political behavior. However, that does not mean that the unini-
tiated respondent would use similar notions, especially not implicitly when
making his or her ratings. In fact, it is not even guaranteed that evaluating
protest acts in terms of “effectiveness”, “approval”, and “likelihood of own
overt action” will lead to different ratings.

Levy (1983) approached these questions by MDS. The intercorrelations of
the items from surveys taken in five different countries were first “scaled” by
MDS. It turned out that three-dimensional spaces were needed in each case
to adequately represent the correlations of the 30 items by corresponding
distances. Figure 1.2 shows the MDS space for the German data.

One could inspect this space in an exploratory manner, as above. How-
ever, three-dimensional MDS configurations are hard to understand, in par-
ticular when projected onto paper or onto the computer screen. What we
want here is, in any case, not exploration. Rather, we want to link the
MDS configuration to the item design. For that purpose, it is easier not to
look at the complete three-dimensional space at once, but only at certain
projection planes. Such planes are, for example, the planes spanned by the
three coordinate axes, that is, the plane spanned by axes X and Y , or by X
and Z. Inspecting the X–Y plane or the “bottom” plane of Figure 1.2, one
finds that Figure 1.3 can be split in two ways that clearly reflect the dis-
tinctions a1, . . . , a3 and b1, . . . , b3, respectively, made by the first two facets
of the mapping sentence. The solid vertical lines show, for example, that
all “demanding” items lie on the left-hand side, all “obstruction” items lie
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in the middle, and all “damaging” items lie on the right-hand side of the
space. Figure 1.4 makes clear that the “omission” points are placed above
the “commission” items along the Z-axis. Putting these findings together,
one notes that the three-dimensional MDS space is thus cut into box-like
regions that result from projecting the conceptual codings of the items
onto the MDS configuration. Hence, Levy’s distinctions on protest acts are
not only conceptually possible, but they are also useful for explaining data
variance.

1.3 MDS for Exploring Psychological Structures

MDS has been used primarily in psychology. Psychologists usually have
psychological questions in mind. Even when used in an exploratory man-
ner, MDS thus typically carried with it, as an implicit purpose, the search
for “underlying dimensions” that would explain observed similarities or dis-
similarities. In the exploratory MDS application on crime rates considered
above, such notions were absent or had, at least, a much lower priority. The
purpose of MDS, in the above crime context, was simply to enable the data
analyst to look at the data structure in order to find rules that would help
to describe the distribution of the points. One could thus say that in pure
data-analytic MDS, one attempts to find rules of formation that allow one
to describe the data structure in as simple terms as possible, whereas in the
kind of exploratory MDS that is typical for psychologists the researcher is
interested in discovering psychological dimensions that would meaningfully
explain the data.

In psychology, the data used for MDS are often based on direct similarity
judgments by the respondents. Wish (1971), for example, asked 18 students
to rate the global similarity of different pairs of nations such as France and
China on a 9-point rating scale ranging from 1 = very different to 9 = very
similar. Table 1.3 shows the mean similarity ratings.

The similarity data of Table 1.3 are, roughly, represented by the distances
of the two-dimensional MDS configuration in Figure 1.5. It thus holds that
the higher the similarity measures, the smaller the corresponding distance.
The dashed lines in this figure were not generated by MDS. Rather, they
are an interpretation by Kruskal and Wish (1978) that can help to explain
the distribution of the points. Interpreting an MDS representation means
linking some of its geometric properties to substantive knowledge about
the objects represented by the points. One such geometric property is the
scatter of the points along a straight line or dimension. The lines are chosen
by first identifying points that are far apart and about which one already
knows something. Based on this prior knowledge, one attempts to formulate
a substantive criterion that could have led the subjects to distinguish so
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TABLE 1.3. Matrix of average similarity ratings for 12 nations (Wish, 1971).

Nation 1 2 3 4 5 6 7 8 9 10 11 12
Brazil 1 –
Congo 2 4.83 –
Cuba 3 5.28 4.56 –
Egypt 4 3.44 5.00 5.17 –
France 5 4.72 4.00 4.11 4.78 –
India 6 4.50 4.83 4.00 5.83 3.44 –
Israel 7 3.83 3.33 3.61 4.67 4.00 4.11 –
Japan 8 3.50 3.39 2.94 3.83 4.22 4.50 4.83 –
China 9 2.39 4.00 5.50 4.39 3.67 4.11 3.00 4.17 –
USSR 10 3.06 3.39 5.44 4.39 5.06 4.50 4.17 4.61 5.72 –
U.S.A. 11 5.39 2.39 3.17 3.33 5.94 4.28 5.94 6.06 2.56 5.00 –
Yugoslavia 12 3.17 3.50 5.11 4.28 4.72 4.00 4.44 4.28 5.06 6.67 3.56 –

Brazil
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FIGURE 1.5. MDS for data in Table 1.3; dashed lines are an interpretation of
the point scatter.
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FIGURE 1.6. Design configuration for Broderson’s one-spoked wheels; a specimen
for such a stimulus is shown in the insert on the right-hand side.

clearly between these objects, placing them at opposite ends of a dimension.
This is known as interpreting a dimension.

Interpreting an MDS space, therefore, involves data-guided speculations
about the psychology of those who generated the similarity data. Testing
the validity of the conclusions is left to further studies.

1.4 MDS as a Model of Similarity Judgments

Finally, the mathematics of MDS can serve as a model of similarity judg-
ments. The most common approach is to hypothesize that a person, when
asked about the dissimilarity of pairs of objects from a set of objects, acts
as if he or she computes a distance in his or her “psychological space” of
these objects.

Questions of this sort are studied mostly in the context of well-designed
stimuli. One such example is the following. Broderson (1968) studied the
dissimilarity of stimuli that looked like one-spoked wheels. That is, his
stimuli were circles varying in diameter from 12.5 mm to 32.5 mm; they
also had a drawn-in radius line at angles varying from 21◦ to 69◦. Figure 1.6
shows an example of such a stimulus, together with a geometric description
of the 10 stimuli selected for experimentation. (The line connecting the
points in this figure has no particular meaning. It only helps to better
understand the structure of the point configuration.)

Each of the 45 pairs of the one-spoked wheels 1, . . . , 10 from Figure 1.6
was drawn on a card and presented to subjects with the instruction to
rate this pair’s global similarity on a scale from 1 = minimal similarity to
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TABLE 1.4. Mean similarity scores for one-spoked wheels described in
Figure 1.6.

Item 1 2 3 4 5 6 7 8 9 10
1 –
2 5.10 –
3 3.86 5.42 –
4 3.24 4.74 5.30 –
5 3.52 4.98 4.56 5.06 –
6 4.60 3.76 3.06 3.68 4.86 –
7 4.02 3.08 2.88 3.26 4.82 5.06 –
8 3.42 3.42 2.94 4.44 3.34 3.44 4.90 –
9 3.98 3.36 4.30 3.26 2.92 3.06 4.64 5.48 –

10 5.30 4.78 3.70 3.36 3.12 4.36 4.68 4.40 5.06 –
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FIGURE 1.7. MDS representation of similarity data in Table 1.4; the combined
lengths of the dashed line segments is the city-block distance of points 4 and 6.

7 = maximal similarity. This led to a 10×10 matrix of similarity scores for
each subject. The mean scores for all 50 subjects are shown in Table 1.4.

It was hypothesized that a subject arrives at a similarity judgment by
computing a particular distance in his or her psychological space. This
space should essentially correspond to the physical design space in Figure
1.6. Given two points in this space, their city-block distance is the sum of
their distances along the X- and Y -axes, respectively.

Figure 1.7 shows an MDS representation of the values in Table 1.4. One
notes immediately that this spatial representation of the subjects’ similarity
scores is very similar to the design configuration in Figure 1.6.

The MDS representation has been computed so that its city-block dis-
tances correspond to the similarity scores in Table 1.4. In Figure 1.7, it
is shown how such a city-block distance is computed. For points 4 and 6,
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it is equal to the sum of the lengths of the dashed line segments connect-
ing points 4 and 6: 0.68 + 1.14 = 1.82. Broderson claims that his subjects
arrived at their similarity ratings by comparing each pair of one-spoked
wheels dimension by dimension, adding the perceived dimensional differ-
ences, and converting the resulting global dissimilarity impressions into the
format of the response scale.

Do the similarity values in Table 1.4 support this theory? The answer is
quite positive, because the (city-block) distances between any two points i
and j in Figure 1.7 are highly correlated (r = −.92) with the similarity val-
ues in Table 1.4. Hence, this particular two-dimensional distance geometry
is indeed a possible model of judgment of similarity for the given stimuli.

Such psychological model building goes considerably beyond a mere
searching for structure in the data. It also differs from testing an abstract
structural hypothesis. Rather, it involves a particular distance function that
is defined on particular dimensions and is interpreted quite literally as a
psychological composition rule.3

1.5 The Different Roots of MDS

The different purposes of MDS, and the existence of an enormous variety
of related geometric models, have led to unnecessary confusion over the
question of how MDS should be used. Social scientists such as sociologists,
political scientists, or social psychologists, for example, are often interested
in using MDS to test hypotheses on correlations in a way similar to what
we saw above in Section 1.2. Consequently, they often do not even use the
term multidimensional scaling but rather speak of smallest space analysis
(Guttman, 1968) or of multidimensional similarity structure analysis (Borg
& Lingoes, 1987).

Psychophysicists, on the other hand, are usually concerned not with cor-
relations but with models that relate stimuli with well-known physical prop-
erties to their perceptual or cognitive representations. For them, the notion
of multidimensional scaling has a very direct meaning in the sense that they
study how known physical dimensions are represented psychologically. Be-
cause psychophysics is the domain where MDS came from [see De Leeuw

3There are theories closely related to MDS modeling that do not concentrate very
much on the distance function, but instead concentrate on other properties of mul-
tidimensional geometry such as “incidence”, “perpendicularity”, or “inclusion”. Often,
geometries are chosen that appear very strange to the nonmathematician, such as curved
spaces, bounded spaces, or finite geometries [see, for example, Drösler (1979) and Müller
(1984)]. Such models are, however, typically highly specialized and thoroughly bound to
a particular substantive field of interest (such as “monocular space perception” or “color
vision”). There is usually no reason to use them for general data-analytic purposes, and
so very little attention is given to them in this book.
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and Heiser (1982) on the history of MDS], it is enlightening to read what
Torgerson (1952) thought about MDS:

The traditional methods of psychophysical scaling presuppose
knowledge of the dimensions of the area being investigated. The
methods require judgments along a particular defined dimension,
i.e., A is brighter, twice as loud, more conservative, or heavier
than B. The observer, of course, must know what the exper-
imenter means by brightness, loudness, etc. In many stimulus
domains, however, the dimensions themselves, or even the num-
ber of relevant dimensions, are not known. What might appear
intuitively to be a single dimension may in fact be a complex
of several. Some of the intuitively given dimensions may not be
necessary... Other dimensions of importance may be completely
overlooked. In such areas the traditional approach in inadequate.

Richardson, in 1938 (see also Gulliksen, 1946) proposed a model
for multidimensional scaling that would appear to be applicable
to a number of these more complex areas. This model differs
from the traditional scaling methods in two important respects.
First, it does not require judgments along a given dimension,
but utilizes, instead, judgments of similarity between the stimuli.
Second, the dimensionality, as well as the scale values, of the
stimuli is determined from the data themselves.

This clearly shows that early MDS was strongly dominated by notions
of dimensional modeling of similarity judgments. Later consumers of MDS,
even when they used MDS for purely exploratory purposes, were apparently
so much influenced by this dimensional thinking that they often almost
automatically looked for interpretable dimensions even though they set
out to generally explore the data structure.

Data analysts, in contrast to psychophysicists, are generally not inter-
ested in building models for a particular substantive domain. Rather, they
want to provide general-purpose tools for empirical scientists that will help
the substantive researchers to better understand the structure of their data.
For this purpose, of course, it would make no sense to employ a distance
function such as the city-block distance used in Section 1.4 above, because
the relations among the points of such geometries often are not what they
appear to be. For example, the city-block distance between points 4 and 6
in Figure 1.7 is about the same as the city-block distance between points
1 and 6. The natural (Euclidean) distance between 4 and 6 is, in contrast,
considerably shorter than the distance between 1 and 6. Hence, MDS rep-
resentations that employ distance functions other than the Euclidean tend
to be misleading when inspected intuitively. Therefore, they are useless for
exploratory purposes.
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1.6 Exercises

Exercise 1.1 Consider the following correlation matrix of eight intelligence
test items (Guttman, 1965).

Item 1 2 3 4 5 6 7 8
1 1.00 .40 .25 .12 .67 .39 .26 .19
2 .40 1.00 .31 .39 .50 .24 .18 .52
3 .25 .31 1.00 .46 .28 .38 .42 .49
4 .12 .39 .46 1.00 .20 .14 .29 .55
5 .67 .50 .28 .20 1.00 .38 .26 .26
6 .39 .24 .38 .14 .38 1.00 .40 .22
7 .26 .18 .42 .29 .26 .40 1.00 .25
8 .19 .52 .49 .55 .26 .22 .25 1.00

(a) Use the procedure outlined in Footnote 2 on page 5 to find an MDS
representation of these data in the plane by hand. That is, items
should be represented as points, and the distances between any two
points should be smaller the higher the corresponding items are cor-
related.

(b) The MDS representation will exhibit a particularly simple structure
among the items. Use this structure to reorder the above correlation
matrix. What pattern does this matrix exhibit?

(c) A typical beginner’s mistake when using MDS is to incorrectly specify
how the MDS distances should be related to the data. Correlations are
indices of similarity, not of dissimilarity, and so correlations should be
inversely related to MDS distances. Check what happens when you
tell your MDS program that you want larger correlations represented
by larger distances. (Hint: Depending on the MDS computer program,
you may have to request something like “Regression=ascending” or
you may have to specify that the correlations are “similarities.” For
a description of MDS programs, see Appendix A.)

Exercise 1.2 Consider the following correlation matrix of seven vocational
interest scales (Beuhring & Cudeck, 1985).

Scale Health Science Techn. Trades Bus.O. Bus.C. Social
Health 1.00
Science .65 1.00
Technology .45 .64 1.00
Trades .25 .44 .76 1.00
Business Operations .12 .16 .55 .49 1.00
Business Contact .22 .21 .57 .46 .75 1.00
Social .50 .26 .37 .20 .47 .65 1.00

(a) Use the procedure outlined in Footnote 2 on page 5 to find an MDS
representation of these data in the plane by hand.
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(b) Interpret the resulting MDS representation: What does it tell you
about interests?

Exercise 1.3 Consider the data in Table 1.4 on page 12. They were scaled
in Figure 1.7 by using the city-block distance, not the “usual” (that is,
Euclidean) distance. What happens to city-block distances if the coordinate
system is rotated by, say, 30 degrees? What happens to Euclidean distances
in the same case? Based on your answers to these two questions above,
what can you say about the coordinate system when dealing with city-
block distances?

Exercise 1.4 Representing proximity data such as correlations in an MDS
plane is often useful for an exploratory investigation of the data structure.
Yet, the MDS configuration can also be misleading. When?

Exercise 1.5 Replicate the experiment of Section 1.3 with 10 U.S. States
or countries of your choice.

(a) Prepare a list of all possible pairs of states. Rate the similarity of
the states in each pair on a scale from 0=not different to 10=very
different. (You may want to begin by first picking the two states that
appear most different and by setting their similarity equal to 10. This
establishes a frame of reference for your judgments.)

(b) Scale the resulting similarity ratings by hand or by an MDS computer
program.

(c) Study the MDS solution and search for a dimensional interpretation.

Exercise 1.6 Consider the matrix below (Lawler, 1967). It shows the cor-
relations among nine items. The items assess three performance criteria
(T1 = quality of job performance, T2 = ability to perform the job, T3 =
effort put forth on the job) by three different methods (M1 = superior
ratings, M2 = peer ratings, M3 = self ratings). Such a matrix is called a
multitrait-multimethod matrix.

Item No. 1 2 3 4 5 6 7 8 9
T1M1 1 1.00
T2M1 2 .53 1.00
T3M1 3 .56 .44 1.00
T1M2 4 .65 .38 .40 1.00
T2M2 5 .42 .52 .30 .56 1.00
T3M2 6 .40 .31 .53 .56 .40 1.00
T1M3 7 .01 .01 .09 .01 .17 .10 1.00
T2M3 8 .03 .13 .03 .04 .09 .02 .43 1.00
T3M3 9 .06 .01 .30 .02 .01 .30 .40 .40 1.00
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(a) Check whether the facets trait and method are reflected as regions in
an MDS representation of the correlations.

(b) What substantive conclusions can you derive with respect to the
facets trait and method? Is there, for example, reason to conclude
that the facets may be ordered rather than just categorical?

(c) What other insights can you derive from the MDS solution concern-
ing performance appraisals? How do the different kinds of appraisals
differ?

Exercise 1.7 Consider Table 1.5 on page 18. It shows data from an exper-
iment where 10 experienced psychiatrists each fabricated archetypal psy-
chiatric patients by characterizing them on the 17 variables of the Brief
Psychiatric Rating Scale (Mezzich, 1978). The variables are A = somatic
concern, B = anxiety, C = emotional withdrawal, D = conceptual disorga-
nization, E = guilt feelings, F = tension, G = mannerism and posturing,
H = grandiosity, I = depressive mood, J = hostility, K = suspiciousness, L
= hallucinatory behavior, M = motor retardation, N = uncooperativeness,
O = unusual thought content, P = blunted affect, Q = excitement.

(a) Correlate the rows of this data matrix to get similarity coefficients
for the 40 patients. Then use MDS to explore the structure of the
correlations.

(b) Does a 2D MDS representation allow you to distinguish the four
psychiatric types?

(c) The MDS representation indicates that the four types are ordered in
certain ways. Describe and explain that order.

Exercise 1.8 Consider the data in Table 1.5 on page 18.

(a) Compute the Euclidean distance of any two rows. Use these distances
as proximities and do a two-dimensional MDS with them. Compare
the resulting solution to an MDS solution that uses correlations as
proximity measures.

(b) Repeat the above for city-block distances as proximity measures.

(c) Are the MDS solutions very different? Discuss why this is so.
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TABLE 1.5. Severity ratings (on 0..6 scale) of four prototypical psychiatric pa-
tients on 17 symptoms by 10 psychiatrists (Mezzich, 1978).

Type No. A B C D E F G H I J K L M N O P Q
1 4 3 3 0 4 3 0 0 6 3 2 0 5 2 2 2 1
2 5 5 6 2 6 1 0 0 6 1 0 1 6 4 1 4 0
3 6 5 6 5 6 3 2 0 6 0 5 3 6 5 5 0 0
4 5 5 1 0 6 1 0 0 6 0 1 2 6 0 3 0 2

De- 5 6 6 5 0 6 0 0 0 6 0 4 3 5 3 2 0 0
pressive 6 3 3 5 1 4 2 1 0 6 2 1 1 5 2 2 1 1

7 5 5 5 2 5 4 1 1 6 2 3 0 6 3 5 2 3
8 4 5 5 1 6 1 1 0 6 1 1 0 5 2 1 1 0
9 5 3 5 1 6 3 1 0 6 2 1 1 6 2 5 5 0

10 3 5 5 3 2 4 2 0 6 3 2 0 6 1 4 5 1
11 2 2 1 2 0 3 1 6 2 3 3 2 1 4 4 0 6
12 0 0 0 4 1 5 0 6 0 5 4 4 0 5 5 0 6
13 0 3 0 5 0 6 0 6 0 3 2 0 0 3 4 0 6
14 0 0 0 3 0 6 0 6 1 3 1 1 0 2 3 0 6

Manic 15 3 4 0 0 0 5 0 6 0 6 0 0 0 5 0 0 6
16 2 4 0 3 1 5 1 6 2 5 3 0 0 5 3 0 6
17 1 2 0 2 1 4 1 5 1 5 1 1 0 4 1 0 6
18 0 2 0 2 1 5 1 5 0 2 1 1 0 3 1 0 6
19 0 0 0 6 0 5 1 6 0 5 5 4 0 5 6 0 6
20 5 5 1 4 0 5 5 6 0 4 4 3 0 5 5 0 6
21 3 2 5 2 0 2 2 1 2 1 2 0 1 2 2 4 0
22 4 4 5 4 3 3 1 0 4 2 3 0 3 2 4 5 0
23 2 0 6 3 0 0 5 0 0 3 3 2 3 5 3 6 0
24 1 1 6 2 0 0 1 0 0 3 0 1 0 1 1 6 0

Schizo- 25 3 3 5 6 3 2 5 0 3 0 2 5 3 3 5 6 2
phrenic 26 3 0 5 4 0 0 3 0 2 1 1 1 2 3 3 6 0

27 3 3 5 4 2 4 2 1 3 1 1 1 4 2 2 5 2
28 3 2 5 2 2 2 2 1 2 2 3 1 2 2 3 5 0
29 3 3 6 6 1 3 5 1 3 2 2 5 3 3 6 6 1
30 1 1 5 3 1 1 3 0 1 1 1 0 5 1 2 6 0
31 2 4 3 5 0 3 1 4 2 5 6 5 0 5 6 3 3
32 2 4 1 1 0 3 1 6 0 6 6 4 0 6 5 0 4
33 5 5 5 6 0 5 5 6 2 5 6 6 0 5 6 0 2
34 1 4 2 1 1 1 0 5 1 5 6 5 0 6 6 0 1

Paranoid 35 4 5 6 3 1 6 3 5 2 6 6 4 0 5 6 0 5
36 4 5 4 6 2 4 2 4 1 5 6 5 1 5 6 2 4
37 3 4 3 4 1 5 2 5 2 5 5 3 1 5 5 1 5
38 2 5 4 3 1 4 3 4 2 5 5 4 0 5 4 1 4
39 3 3 4 4 1 5 5 5 0 5 6 5 1 5 5 3 4
40 4 4 2 6 1 4 1 5 3 5 6 5 1 5 6 2 4



2
Constructing MDS Representations

An MDS representation is found by using an appropriate computer pro-
gram. The program, of course, proceeds by computation. But one- or two-
dimensional MDS representations can also be constructed by hand, using
nothing but a ruler and compass. In the following, we discuss such con-
structions in some detail for both ratio MDS and for ordinal MDS. This
leads to a better understanding of the geometry of MDS. In this context,
it is also important to see that MDS is almost always done in a particular
family of geometries, that is, in flat geometries.

2.1 Constructing Ratio MDS Solutions

An MDS representation is in practice always found by using an appropriate
computer program (see Appendix A for a review of such programs). A
computer program is, however, like a black box. It yields a result, hopefully
a good one, but does not reveal how it finds this solution.

A good way to build an intuitive understanding for what an MDS pro-
gram does is to proceed by hand. Consider an example. Table 2.1 shows
the distances between 10 cities measured on a map of Europe. We now
try to reverse the measurement process. That is, based only on the values
in Table 2.1, we want to find a configuration of 10 points such that the
distances between these points correspond to the distances between the 10
cities on the original map. The reconstructed map should be proportional
in size to the original map, which means that the ratios of its distances
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TABLE 2.1. Distances between ten cities.

1 2 3 4 5 6 7 8 9 10
1 0 569 667 530 141 140 357 396 570 190
2 569 0 1212 1043 617 446 325 423 787 648
3 667 1212 0 201 596 768 923 882 714 714
4 530 1043 201 0 431 608 740 690 516 622
5 141 617 596 431 0 177 340 337 436 320
6 140 446 768 608 177 0 218 272 519 302
7 357 325 923 740 340 218 0 114 472 514
8 396 423 882 690 337 272 114 0 364 573
9 569 787 714 516 436 519 472 364 0 755

10 190 648 714 622 320 302 514 573 755 0

should correspond to the ratios of the values in Table 2.1. This defines the
task of ratio MDS. We find the solution of this task as follows.

A Ruler-and-Compass Approach to Ratio MDS
For convenience in laying out the map, we first identify those cities that are
farthest from each other. Table 2.1 shows that these are the cities 2 and 3,
whose distance is d23 = 1212 units. We then want to place two points on a
piece of paper such that their distance is proportional to d23 = 1212 units.
To do this, we choose a scale factor, s, so that the reconstructed map has a
convenient overall size. If, for example, we want the largest distance in the
map to be equal to 5 cm, then s = 0.004125 so that s · 1212 = 5. All values
in Table 2.1 are then multiplied by s. The scale factor s leaves invariant
the proportions or ratios of the data in Table 2.1.

Having fixed the scale factor, we draw a line segment with a length of
s · 1212 cm on a piece of paper. Its endpoints are called 2 and 3 (Figure
2.1).

We now elaborate our two-point configuration by picking one of the re-
maining cities for the next point. Assume that we pick city 9. Where must
point 9 lie relative to points 2 and 3? In Table 2.1 we see that the distance
between cities 2 and 9 on the original map is 787 units. Thus, point 9 must
lie anywhere on the circle with radius s · 787 cm around point 2. At the
same time, point 9 must have a distance of s · 714 cm to point 3. Conse-
quently, point 9 also must lie on the circle with radius s · 714 cm around
point 3 (Figure 2.2). Hence, for point 9, there are exactly two solutions—
labeled as 9 and 9′, respectively, in Figure 2.1—that satisfy the conditions
d29 = s · 787 cm and d39 = s · 714 cm. We arbitrarily choose point 9.

We continue by adding further points to our MDS configuration. It does
not matter which city we pick next. Assume that it is city 5. Where, relative
to points 2, 3, and 9, should point 5 lie? It should lie on (a) the circle
around point 2 with radius s · d25, (b) on the circle around point 3 with
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2=Stockholm

10=Dublin

1=London

5=Paris

6=Amsterdam

9=Rome

4=Madrid

3=Lisboa

7=Berlin

8=Prague

Sou
th

East

Nor
th

W
est

FIGURE 2.5. Identification of points
and geographical compass.

2=Stockholm

10=Dublin

1=London

5=Paris
9=Rome

4=Madrid

3=Lisboa

7=Berlin

South
Eas

t

North
W

es
t

6=Amsterdam 8=Prague

FIGURE 2.6. Horizontal reflection of
configuration in Fig. 2.5 so that East
is to the right.

S
outh

East

N
orth

West

3=Lisboa

4=Madrid 9=Rome

5=Paris

8=Prague

7=Berlin
6=Amsterdam

1=London

10=Dublin

2=Stockholm

FIGURE 2.7. Rotation of configuration
in Fig. 2.5 so that North is up.

A
m

st
er

da
m

Lisboa Madrid

Paris

Berlin

Dublin

London

Rome

Prague

Stockholm
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radius s · d35, and (c) on the circle around point 9 with radius s · d95, as
in Figure 2.3. Point 5 satisfies all three conditions and, in contrast to the
above construction for point 9, there is only one solution point.

Once all of the cities have been considered, the configuration in Figure 2.4
is obtained. The configuration solves the representation problem, because
the distances between its points correspond to the distances in Table 2.1,
except for an overall scale factor s.

If we replace the numbers with city names, then Figure 2.5 shows that
the reconstructed map has an unconventional orientation. But this can be
easily adjusted. We first reflect the map along the horizontal direction so
that West is on the left-hand side, and East is on the right-hand side (Figure
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2.6). Second, we rotate the map somewhat in a clockwise direction so that
the North–South arrow runs in the vertical direction, as usual (Figure 2.7).

Admissible Transformations of Ratio MDS Configuration
The final “cosmetic” transformations of the MDS configuration—rotation
and reflection—are obviously without consequence for the reconstruction
problem, because they leave the distances unchanged (invariant). Rotations
and reflections are thus said to be rigid motions. Another form of a rigid
motion is a translation, that is, a displacement of the entire configuration
relative to a fixed point. A translation of the configuration in Figure 2.7
would, for example, move all points the same distance to the left and leave
the compass where it is.

There are two ways to think of rigid motions, the alibi and the alias. The
former conceives of the transformation as a motion of the points relative
to a fixed frame of reference (e.g., the pages of this book) and the latter as
a motion of the frame of reference relative to points that stay put in their
positions in space.

Transformations often make MDS representations easier to look at. It
is important, though, to restrict such transformations to admissible ones,
that is, to those that do not change the relations among the MDS dis-
tances that we want to represent in the MDS configuration. Inadmissible
transformations are, on the other hand, those that destroy the relationship
between MDS distances and data. For the problem above, rigid motions are
certainly admissible. Also admissible are dilations, that is, enlargements or
reductions of the entire configuration. Dilations do not affect the ratios of
the distances.

Rigid motions and dilations together are termed similarity transforma-
tions, because they leave the shape (but not necessarily the size) of a figure
unchanged. For a better overview, a summary of these transformations is
given in Table 2.2. The term invariance denotes those properties of geomet-
rical objects or configurations that remain unaltered by the transformation.
Instead of rigid motions, one also speaks of isometries or, equivalently, of
isometric transformations. This terminology characterizes more directly
what is being preserved under the transformation: the metric properties of
the configuration, that is, the distances between its points.

2.2 Constructing Ordinal MDS Solutions

The ruler-and-compass construction in the above attempted to represent
the data such that their ratios would correspond to the ratios of the dis-
tances in the MDS space. This is called ratio MDS. In ordinal MDS, in
contrast, one only requires that the order of the data is properly reflected
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TABLE 2.2. Two important transformation groups and their invariances.

Transformation Group Transformations Invariance
Rigid motion Rotation Distances
(isometry) Reflection

Translation
Similarity Rotation Ratio of
transformation Reflection distances

Translation
Dilation

TABLE 2.3. Ranks for data in Table 2.1; the smallest distance has rank 1.

1 2 3 4 5 6 7 8 9 10
1 – 26 34 25 3 2 14 16 27 5
2 26 – 45 44 31 20 11 17 41 33
3 34 45 – 6 29 40 43 42 36 36
4 25 44 6 – 18 30 38 35 23 32
5 3 31 29 18 – 4 13 12 19 10
6 2 20 40 30 4 – 7 8 24 9
7 14 11 43 38 13 7 – 1 21 22
8 16 17 42 35 12 8 1 – 15 28
9 27 41 36 23 19 24 21 15 – 39

10 5 33 36 32 10 9 22 28 39 –

by the order of the representing distances. The reason for such a weaker
requirement is usually that the scale level of the data is taken as merely
ordinal. If only greater than and equal relations are considered informative,
we could simplify Table 2.1 and replace its values by ranking numbers, be-
cause the original data are (order-)equivalent to their ranking numbers.
This replacement renders Table 2.3.

Ordinal MDS is a special case of MDS, and possibly the most important
one in practice. Thus, we may ask how we can proceed with our geometrical
tools, ruler and compass, in constructing such an ordinal MDS solution.

A Ruler-and-Compass Approach to Ordinal MDS
The first step in ordinal MDS remains the same as above. That is, we
begin by picking a pair of cities that define the first two points of the
configuration. If the cities 2 and 3 are picked as before, we can use Figure
2.1 as our starting configuration. Assume now that we want to add point 9
to this configuration. What can be derived from the data to find its position
relative to points 2 and 3?

Clearly, the following holds: point 9 must be closer to 3 than to 2, because
the distance d39 must be smaller than d29. This follows from Table 2.3,
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because the ranking number for the distance of 3 and 9 is 36, whereas the
ranking number for the distance of 2 and 9 is 41. (Note that the ranking
numbers here are dissimilarities or distance-like measures; hence, a greater
ranking number should lead to a greater distance.) The distances in the
MDS configuration are ordered as the data are only if d39 < d29. Thus,
the plane in Figure 2.9 is divided into two regions by the perpendicular
line through the middle of the line segment that connects points 2 and 3.
The shaded area indicates that point 9 must lie in the region below the
horizontal line if the condition d39 < d29 is to be met. We call the set of
points below this line the solution set or the solution space for the problem
of placing point 9. Each point of this region, for example, 9, 9′, or 9′′, could
be chosen as point 9.

But Table 2.3 also requires that point 9 must be closer to 2 than the
distance between point 2 and 3, because the rank of pair 2 and 9 is 41 and
that of pair 2 and 3 is 45. Hence, d29 < d23, which means that point 9
must be placed within a circle around point 2 whose radius is somewhat
smaller than d23. This condition is graphically illustrated in Figure 2.10
by the circle with radius max(d29), where max(d29) is “somewhat” smaller
than d23. Moreover, point 9 must also be placed such that d39 < d23. This
leads to the second circle in Figure 2.10, a circle whose radius is somewhat
smaller than d23.

Of course, point 9 must satisfy all three conditions at the same time.
Therefore, the desired solution space in Figure 2.11 results from superim-
posing Figures 2.9 and 2.10.

Comparing Figure 2.2 with Figure 2.11, we see that the second solution is
much more indeterminate, offering infinitely many possible candidates for
point 9, not just two. The reason for this increased indeterminacy lies in
the weaker constraints that ordinal MDS puts onto the MDS configuration:
only the order of the data, not their ratios, determines the distances in
MDS space. In spite of that, point 9 cannot lie just anywhere. Rather, the
inequalities have led to “some” reduction of freedom in placing point 9 in
the given plane.

We now arbitrarily select one point from the solution set to represent
object 9: let this be point 9 in Figure 2.11. We then add a fourth point
representing object 5 to the present configuration consisting of points 2,
3, and 9. Table 2.3 says that the resulting configuration must satisfy (a)
d25 < d29, because the corresponding ranking numbers in Table 2.3 are
31 and 41, and because the distances in the MDS representation should
be ordered as the data are; (b) d35 < d39, because for the corresponding
ranking we find 29 < 36; (c) d59 < d35, because 19 < 29; (d) d59 < d25,
because 19 < 31; and (e) d35 < d25, because 29 < 31. These conditions
each induce a boundary line bisecting the plane in Figure 2.12 into a region
whose points all satisfy one of the inequalities, and a complementary region
whose points violate it. Point 5 must then be so placed that it satisfies all
inequality conditions, (a) through (e).
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d2,10 < d2,9''d3,10 < d9'',10

2

3

9''

FIGURE 2.13. No point 10 can be placed into the configuration {2, 3, 9′′} so that
it satisfies the shown inequalities.

Figure 2.12 shows the solution space for point 5 as a shaded area. We
note that this area is smaller than the solution space for point 9 in Figure
2.11. Hence, the freedom with which we can choose a point for object 5 is
less than it was for point 9 in Figure 2.11.

Proceeding in this way, we end up with an MDS representation whose
distances are ordered as the ranking numbers in Table 2.3. However, finding
this solution turns out not to be as straightforward as it may seem, because
our construction method, in practice, would run into dead-end alleys over
and over again. We show this in the next section.

Solution Spaces in Ordinal MDS
It may happen that the solution space is empty. In the example above, this
occurs, for example, if we pick a “wrong” point for 9 in the sense that the
chosen point will make it impossible to add further points in the desired
sense. Consider an example. Assume that we had picked point 9′′ in Figure
2.11. We then would try to add a point for object 10 to the configuration
{2, 3, 9′′}. From Table 2.3 we note that point 10 must be closer to 2 than to
9′′, and so it must lie within the shaded circle in Figure 2.13. At the same
time, point 10 must also lie below the line that is perpendicular through
the midpoint of the line connecting points 3 and 9′′, because point 10
must satisfy the condition d3,10 < d9′′,10. But no point can simultaneously
lie below this line and within the shaded circle, and so we see that the
solution space for point 10 is empty. Thus, had we decided on point 9′′, we
later would have had to reject this point as unacceptable for the enlarged
representation problem and start all over again with a new point 9.

We also note that the solution space for each newly added point shrinks
in size at a rapidly accelerating rate. Therefore, the chances for picking
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wrong points for later construction steps also go up tremendously as each
new point is added. Indeed, new points also have, in a way, a backwards
effect: they reduce the size of the solution spaces for the old points. Every
new point that cannot be properly fitted into a given configuration (as in
Figure 2.13) forces one to go back and modify the given configuration until
all points fit together.

The shrinkage of the solution spaces as a consequence of adding further
points occurs essentially because the number of inequalities that determine
the solution spaces grows much faster than the number of points in the
configuration. We see this easily from our example: the solution space in
Figure 2.11 is defined by three inequalities, namely, d29 > d39, d23 > d29,
and d23 > d39. When point 5 is added, we have four points and six dis-
tances. Because every distance can be compared to any other one, the MDS
configuration must pay attention to 15 order relations.

More generally, with n points, we obtain n·n = n2 distances dij . Of these
n2 distances, n are irrelevant for MDS, namely, all dii = 0, i = 1, . . . , n.
This leaves n2 −n distances. But dij = dji, that is, the distance from i to j
is always equal to the distance from j to i, for all points i, j. Thus, we obtain
(n2−n)/2 = (n)(n−1)/2 relevant distances. This is equal to the number of
pairs out of n objects, which is denoted by

(
n
2

)
[read: n-take-2]. But all of

these
(
n
2

)
distances can be compared among each other. Consequently, we

have (n-take-2)-take-2 or
((n

2)
2

)
order relations (assuming that all values of

the data matrix are different). Hence, the ranking numbers for n = 4 objects
imply 15 inequalities; for n = 50, we obtain 749,700 inequalities, and for
n = 100 there are 12,248,775 inequalities. We can understand intuitively
from the sheer number of independent constraints why the ordinal MDS
solution is so strongly determined, even for a fairly small n.

Isotonic Transformations
Isotonic transformations play the same role in ordinal MDS as similarity
transformations in ratio MDS. Isotonic transformations comprise all trans-
formations of a point configuration that leave the order relations of the
distances unchanged (invariant). They include the isometric transforma-
tions discussed above as special cases.

An ordinal MDS solution is determined up to 1 isotonic transformations—
just as the ratio MDS configurations are fixed up to similarity transforma-
tions—because as long as the order of the distances is not changed, any
configuration is as good an ordinal MDS representation as any other. How-
ever, unless only a very small number of points is being considered, isotonic
transformations allow practically no more freedom for changing the point

1“Up to” means that weaker transformations which leave even more properties in-
variant are also admissible.
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FIGURE 2.14. Comparing ratio MDS (solid points) and ordinal MDS (open cir-
cles) after fitting the latter to the former.

locations than isometric transformations. This is a consequence of the rapid
shrinkage of the solution sets for the points.2

2.3 Comparing Ordinal and Ratio MDS Solutions

The solutions of both the ratio MDS and the ordinal MDS are shown
together in Figure 2.14. The solid black points are the ratio MDS solution,
and the open circles are the ordinal MDS configuration. We notice that the
two configurations are very similar. This similarity has been brought out by
admissibly transforming the ordinal MDS configuration so that it matches
the ratio MDS configuration as much as possible. That is, leaving the former
configuration fixed, we shifted, rotated, reflected, and dilated the ordinal
MDS configuration so that its points 1, . . . , 10 would lie as close as possible
to their respective target points 1, . . . , 10 in the ratio MDS configuration.
(How this fitting is done is shown in Chapter 20.)

The fact that we obtain such highly similar structures demonstrates that
treating the data as ordinal information only may be sufficient for recon-
structing the original map. This seems to suggest that one gets something
for free, but it really is a consequence of the fact that the order relations
in a data matrix like Table 2.3 are on pairs of pairs of objects, not just
on pairs of objects. In the second case, we would have weak information,
indeed, and in the first, obviously not.

2The solution sets in ordinal MDS are also called isotonic regions, because the dis-
tances of each point in this set to a set of particular points outside of this set are ordered
in the same way.
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Ratio and ordinal MDS solutions are almost always very similar in prac-
tice. However, there are some instances when an ordinal MDS will yield a
degenerate solution (see Chapter 13). Also, the positions of the points in
an ordinal MDS are practically just as unique as they are in ratio MDS,
unless one has only very few points. With few points, the solution spaces
remain relatively large, allowing for much freedom to position the points
(see, e.g., Figure 2.11).

But why do ordinal MDS at all? The answer typically relates to scale
level considerations on the data. Consider the following experiment: a sub-
ject is given a 9-point rating scale; its categories range from 1 = very poor
to 9 = very good; the subject judges three pictures (A, B, and C) on this
scale and arrives at the judgments A = 5, B = 7, and C = 1. Undoubtedly,
it is correct to say that the subject has assigned the pictures A and B more
similar ratings than A and C, because |A−B| = 2 and |A−C| = 4. But it is
not so clear whether the subject really felt that pictures A and B were more
alike in their quality than pictures A and C. The categories of the rating
scale, as used by the subject, need not correspond in meaning to the arith-
metical properties of the numbers 1, 2, . . . , 9. For example, it is conceivable
that the subject really only makes a poor-average-good distinction, or that
she understands the category “very good” as “truly extraordinary”, which
might mean that 8 is much farther from 9 than 5 is from 6. In this case,
the assigned scores 5, 7, and 1 would have a much weaker interpretability,
and we could really only assert that the subject regarded B as best, A as
next best, and C as worst.

2.4 On Flat and Curved Geometries

Taking a closer look at the European map in Figure 2.8, one notes that
Stockholm has about the same Y -coordinate as points in Scotland. Ge-
ographically, however, Stockholm lies farther to the north than Scotland.
Hence, the map is incorrect in the sense suggested by the compass in Figure
2.8, because points with the same Y -coordinates generally do not have the
same geographical latitude. The distances in Table 2.1 are, on the other
hand, correctly represented in Figure 2.8. But these distances were mea-
sured on a map printed on the pages of an atlas, and not measured over
the curved surface of the globe.

Any geographical map that is flat is wrong in one way or another. Con-
sider the globe in Figure 2.15, and assume that we want to produce a flat
map of a relatively small region of its surface such as, for example, one of
the shown spherical rectangles. This can only be done by projecting this
region onto a flat plane, and any such projection will distort some fea-
ture of the original geometry. The usual method, for example, projects the
globe’s surface (except for the areas close to the poles) by rays emanating
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FIGURE 2.15. Globe with meridians (North–South lines) and parallels
(East–West lines).

from the globe’s center onto the surface of a cylinder that encompasses the
globe and touches it on the Equator. The converging meridians—the lines
running from the North Pole to the South Pole in Figure 2.15—thus are
mapped onto parallel lines on the flat map. This projection properly repre-
sents the points’ North–South coordinates on the Y -axis of the flat map. It
also preserves the points’ meridians as lines with the same X-coordinates.
However, although the map is quite accurate for small areas, the size of
the polar regions is greatly exaggerated so that, for example, Alaska looks
much larger than it is. There are many other projections, which are used
for different purposes. The map in Figure 2.8 is a projection that preserves
area, but it is misleading when one naively reads its X−Y -coordinates as
geographical longitude and latitude, respectively.

Anyone who approaches a point configuration first looks at it in the
Euclidean sense. Euclidean geometry is flat geometry, with the flat plane as
its most prominent example. Euclidean geometry is the natural geometry,
because its properties are what they appear to be: circles look like circles,
perpendicular lines look perpendicular, and the distance between two points
can be measured by a straight ruler, for example. Euclidean geometry is a
formalization of man’s experience in a spatially limited environment. Other
geometries besides the Euclidean one were discovered only by a tremendous
effort of abstraction that took some 2000 years.3 The surface of the globe

3Euclid, in his Elements, had systematically explained and proved well-known theo-
rems of geometry such as the theorem of Pythagoras. The proofs rely on propositions
that are not proved (axioms). One of these axioms is the parallel postulate. It says that
through a point outside a straight line there passes precisely one straight line parallel to
the first one. This seems to be a very special axiom. Many attempts were made to show
that it is superfluous, because it can be deduced from the other axioms. “The mystery
of why Euclid’s parallel postulate could not be proved remained unsolved for over two
thousand years, until the discovery of non-Euclidean geometry and its Euclidean models
revealed the impossibility of any such proof. This discovery shattered the traditional
conception of geometry as the true description of physical space . . . a new conception
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in Figure 2.15 is an example for a curved geometry. Distance is measured
on the globe not with a straight ruler but with a thread stretched over
its surface. This yields the shortest path between any two points and thus
defines their distance. Extending the path of the thread into both directions
defines a straight line, just as in Euclidean geometry. (From the outside,
this path appears curved, but for the earthbound, it is “straight”.) On the
globe, any two straight lines will meet and, hence, there are no parallels in
this kind of plane. Moreover, they will intersect in two points. For example,
any two meridians meet both at the North and the South pole. Following
any straight line brings you back to the point you started from, and so the
globe’s surface is a finite but unbounded plane. Another one of its “odd”
properties is that the sum of the angles in a triangle on this plane is not a
fixed quantity, but depends on the size of the triangle, whereas in Euclidean
geometry these angles always add up to 180◦.

Thus, the globe’s surface is a geometry with many properties that differ
from Euclidean geometry. Indeed, most people would probably argue that
this surface is not a plane at all, because it does not correspond to our
intuitive notion of a plane as a flat surface. Mathematically, however, the
surface of the sphere is a consistent geometry, that is, a system with two sets
of objects (called points and lines) that are linked by geometrical relations
such as: for every point P and for every point Q not equal to P there exists
a unique line L that passes through P and Q.

Some curved geometries are even stranger than the sphere surface ge-
ometry (e.g., the locally curved four-dimensional space used in modern
physics) but none ever became important in MDS. MDS almost always is
carried out in Euclidean geometry. If MDS is used as a technique for data
analysis, then it is supposed to make the data accessible to the eye, and
this is, of course, only possible if the geometric properties of the representa-
tion space are what they seem to be. Conversely, if MDS is non-Euclidean,
then it is never used as a tool for data explorations. Rather, in this case,
the properties of the representing geometry are interpreted as a substan-
tive theory. Curved geometries play a minor role in this context. Drösler
(1981), for example, used the properties of a particular two-dimensional
constant-curvature geometry to model monocular depth perception. Most
non-Euclidean modeling efforts remained, however, restricted to flat ge-
ometries such as the city-block plane discussed in Chapter 1, Section 1.4.
In this book, we only utilize flat geometries and, indeed, mostly Euclidean
geometry, unless stated otherwise.

emerged in which the existence of many equally consistent geometries was acknowledged,
each being a purely formal logical discipline that may or may not be useful for modeling
physical reality” (Greenberg, 1980, p. xi).



2.5 General Properties of Distance Representations 33

2.5 General Properties of Distance Representations

A geometry—whether flat or curved—that allows one to measure the dis-
tances between its points is called a metric geometry. There are usually
many ways to define distances. In the flat plane, the natural way to think
of a distance is the Euclidean distance that measures the length of the ruler-
drawn line between two points. Another example is the city-block distance
as shown in Figure 1.7. These two variants of a distance, as well as all other
distances in any geometry, have a number of properties in common. These
properties are important for MDS because they imply that proximities can
be mapped into distances only if they too satisfy certain properties.

Consider a plane filled with points. For any two points i and j, it holds
that

dii = djj = 0 ≤ dij ; (2.1)

that is, the distance between any two points i and j is greater than 0 or
equal to 0 (if i = j). This property is called nonnegativity of the distance
function. Furthermore, for any two points i and j, it is true that

dij = dji; (2.2)

that is, the distance between i and j is the same as the distance between j
and i (symmetry). Finally, for all points i, j, k, it holds that

dij ≤ dik + dkj . (2.3)

This triangle inequality says that going directly from i to j will never be
farther than going from i to j via an intermediate point k. If k happens to
be on the way, then (2.3) is an equality.

These properties, which are obviously true for distances in the familiar
Euclidean geometry, are taken as the definitional characteristics (axioms)
of the notion of distance. One can check whether any given function that
assigns a numerical value to pairs of points (or to any pair of objects)
possesses these three properties.

Consider, for example, the trivial distance defined by dij = 1 (if i �= j)
and dij = 0 (if i = j). To prove that this function is a distance, we have to
show that it satisfies the three distance axioms. Starting with nonnegativity,
we find that we have dii = 0 for all i by the second part of the definition,
and that dij > 0 for all i �= j by the first part of the definition. Symmetry
also holds because the function is equal to 1 for all i �= j. Finally, for the
triangle inequality, we obtain 1 < 1 + 1 if i, j, and k are all different;
1 = 1+0 if k = j and so on. Hence, the left-hand side of the inequality can
never be greater than the right-hand side.

Naturally, the trivial distance is not a particularly interesting function.
Even so, it can still serve as a nontrivial psychological model. If it is used
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as a primitive model for liking, it may turn out empirically wrong for a
given set of persons if there are persons who like somebody else more than
themselves.

We may also have proximities where pij = pji does not hold for all i and
j. The proximities, in other words, are not symmetric. Such proximities
are rather typical for the social relation “liking” between persons. If such
nonsymmetry is observed and if it cannot be interpreted as due to error,
then the given data cannot be represented directly in any metric geometry.
Symmetry, thus, is always a precondition for MDS.

The other properties of distances may or may not be necessary conditions
for MDS. If one has observed “self”-proximities for at least two piis and if
they are not all equal or if any pii is greater than any pij (for i �= j) prox-
imity then, strictly speaking, one cannot represent these proximities by any
distance. If the proximities violate the triangle inequality, it may or may
not be relevant for MDS. In ordinal MDS, it is no problem because adding
a sufficiently large constant to all pijs eliminates all violations (see Section
18.2). In ratio MDS, however, the proximities are assumed to have a fixed
origin and no such arbitrary additive constants are admissible. Hence, vio-
lations of the triangle inequality are serious problems. If they are considered
large enough, they exclude any distance representation for the data.

2.6 Exercises

Exercise 2.1 If you square the correlations in Exercises 1.1, 1.2, or 1.4, and
then do ordinal MDS, you obtain exactly the same solutions as for the
original values.

(a) Explain why.

(b) Specify three other transformations that change the data values sub-
stantially but lead to the same ordinal MDS solutions as the raw
data.

(c) Specify a case where such a transformation of the data values changes
the ordinal MDS solution.

Exercise 2.2 Specify the admissible transformations for the city-block or-
dinal MDS solution in Figure 1.7.

Exercise 2.3 Consider the table of distances between five objects below.

Object 1 2 3 4 5
1 0 1.41 3.16 4.00 8.06
2 1.41 0 2.00 3.16 8.54
3 3.16 2.00 0 1.41 8.06
4 4.00 3.16 1.41 0 7.00
5 8.06 8.54 8.06 7.00 0
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(a) Use the ruler-and-compass method described in Section 2.1 to con-
struct a ratio MDS solution. Choose the scale factor s equal to 1, so
that the distance between points 1 and 4 should be equal to 4 cm in
your solution.

(b) Connect points 1 to 2 by a line, points 2 and 3, etc. What pattern
emerges?

(c) Verify your solution by using an MDS program. Explain possible dif-
ferences between the two solutions obtained by hand and by using
the computer program.

Exercise 2.4 A psychologist investigates the dissimilarity of the colors red,
orange, green, and blue. In a small experiment, she asks a subject to rank
the six pairs of colors on their dissimilarity (1 = most similar, 6 = most
dissimilar). The resulting table of ranks is given below.

Item R O G B
Red –
Orange 1 –
Green 3 2 –
Blue 5 6 4 –

The psychologist wants to do an ordinal MDS in two dimensions on these
data but does not have an MDS program for doing so. So far, she has found
the coordinates for Red (0, 3), Orange (0, 0), and Green (4, 0).

(a) Use the ruler-and-compass method described in Section 2.2 to find
a location for point Blue that satisfies the rank-order of the data.
Specify the region where Blue may be located.

(b) Interpret your solution substantively.

(c) Suppose that none of the coordinates were known. Try to find an
ordinal MDS solution for all four points. Does this solution differ
from the one obtained in (a)? If so, explain why.



3
MDS Models and Measures of Fit

MDS models are defined by specifying how given similarity or dissimilarity
data, the proximities pij , are mapped into distances of an m-dimensional
MDS configuration X. The mapping is given by a representation func-
tion f(pij) that specifies how the proximities should be related to the dis-
tances dij(X). In practice, one usually does not attempt to strictly satisfy
f . Rather, what is sought is a configuration (in a given dimensionality)
whose distances satisfy f as closely as possible. The condition “as closely
as” is quantified by a badness-of-fit measure or loss function. The loss func-
tion is a mathematical expression that aggregates the representation errors,
eij = f(pij)−dij(X), over all pairs (i, j). A normed sum-of-squares of these
errors defines Stress, the most common loss function in MDS. How Stress
should be evaluated is a major issue in MDS. It is discussed at length in
this chapter, and various criteria are presented.

3.1 Basics of MDS Models

In this section, MDS models are defined and discussed on a level sufficient
for most practical applications. In later chapters, we revisit some of the
relevant issues in greater detail.

Assume that measures of similarity or dissimilarity, for which we use the
general term proximity, pij , are given for the pairs (i, j) of n objects. Some
examples for such proximities were discussed in Chapter 1: similarities of
crimes, assessed by the correlations of their frequencies over different U.S.
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FIGURE 3.1. A Cartesian plane with some points; the length of the line segment
connecting points i and j is the (Euclidean) distance of points i and j.

states; correlations among attitudes towards political protest behaviors;
direct ratings of the overall similarity of pairs of different countries; and
similarity judgments on one-spoked wheels. All of these cases are examples
of measures of similarity, because the higher a correlation (or a rating
of similarity), the more similar the objects i and j. However, instead of
asking for judgments of similarity, it is just as easy—or even easier—to
ask for judgments of dissimilarity, for example, by presenting a rating scale
ranging from 0 = no difference to 10 = very dissimilar.

Coordinates in the MDS Space
MDS attempts to represent proximities by distances among the points of
an m-dimensional configuration X, the MDS space. The distances can be
measured by a ruler, up to a certain level of precision, and if the MDS
space is at most three-dimensional. But distances can also be computed
with arbitrary precision, and this can be done in a space of arbitrarily high
dimensionality. Computation is made possible by coordinating the MDS
space. The most common such coordination is first to define a set of m di-
rected axes that are perpendicular to each other and intersect in one point,
the origin O. These axes—in the applied context often called dimensions—
are then divided up into intervals of equal length so that they represent, in
effect, a set of perpendicular “rulers”.

Each point i, then, is uniquely described by an m-tuple (xi1, xi2, . . . , xim),
where xia is i’s projection onto dimension a. This m-tuple is point i’s coor-
dinate vector. The origin O is given the coordinates (0, 0, . . . , 0). Figure 3.1
shows some points and their coordinate vectors in a Cartesian plane, that
is, in a plane coordinated by a set of perpendicular dimensions.
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Computing Distances
Given a Cartesian space, one can compute the distance between any two
of its points, i and j. The most frequently used and the most natural
distance function is the Euclidean distance. It corresponds to the length
of the straight line1 segment that connects the points i and j. Figure 3.1
shows an example.

The Euclidean distance of points i and j in a two-dimensional configu-
ration X is computed by the following formula:

dij(X) =
√

(xi1 − xj1)2 + (xi2 − xj2)2. (3.1)

Thus, dij(X) is equal to the square root of the sum of the intradimensional
differences xia − xja, which is simply the Pythagorean theorem for the
length of the hypotenuse of a right triangle. For Figure 3.1, thus, formula
(3.1) yields dij =

√
(3 − 1)2 + (3 − 2)2 =

√
5. Formula (3.1) can also be

written as

dij(X) =

[
2∑

a=1

(xia − xja)2
]1/2

, (3.2)

which can easily be generalized to the m-dimensional case as

dij(X) =

[
m∑

a=1

(xia − xja)2
]1/2

. (3.3)

MDS Models and Their Representation Functions
MDS maps proximities pij into corresponding distances dij(X) of an MDS
space X. That is, we have a representation function

f : pij → dij(X), (3.4)

where the particular choice of f specifies the MDS model. Thus, an MDS
model is a proposition that given proximities, after some transformation f ,
are equal to distances among points of a configuration X:

f(pij) = dij(X). (3.5)

1The term “straight” corresponds to what we mean by straight in everyday language.
In Euclidean geometry, a straight line can be drawn by tracing with a pen along a ruler.
More generally, a straight line is the shortest path (geodesic) between two points. The
notion of straightness, therefore, presupposes a distance measure. With different distance
measures, straight lines often do not look straight at all. An example is the straight line
between points 4 and 6 in Figure 1.7, which consists of the two dashed line segments
that look like a “corner” line.
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The distances dij(X) in (3.4) and (3.5) are always unknowns. That is,
MDS must find a configuration X of predetermined dimensionality m on
which the distances are computed. The function f , on the other hand, can
either be completely specified or it can be restricted to come from a particu-
lar class of functions. Shepard (1957), for example, collected similarities pij

for which he predicted, on theoretical grounds, that they should be related
to distances in an unknown two-dimensional space X by the exponential
function. That is, it was hypothesized that pij = exp[−dij(X)]. Similarly,
Thurstone (1927) predicted that choice probabilities pij should be equal
to unknown distances between points i and j on a line (“scale values”) af-
ter transforming the pijs by the inverse normal distribution function. This
choice of f , again, was theoretically justified.

In most applications of MDS, there is some looseness in specifying f .
That is, for example, f is only restricted to be “some” exponential function
or “some” linear function. The exact parameters of these functions are not
specified. An important case is interval MDS. It is defined by

pij → a + b · pij = dij(X), (3.6)

for all pairs (i, j). The parameters a and b are free and can be chosen such
that the equation holds. Another case is ordinal MDS, where f is restricted
to be a monotone function that preserves the order of the proximities.
That means—assuming, for simplicity, that the proximities are dissimilarity
scores—that

if pij < pkl, then dij(X) ≤ dkl(X). (3.7)

If pij = pkl, (3.7) requires no particular relation of the corresponding dis-
tances. This is known as the primary approach to tied proximities, where
ties can be “broken” in the corresponding distances. The secondary ap-
proach to ties requires that if pij = pkl, then also dij = dkl. The primary
approach is the default in most ordinal MDS programs. A slight modifica-
tion of (3.7) is to replace the relation ≤ by <. The first relation specifies
a weak monotone function f , the second one a strong monotone function.
Most often, ordinal MDS is used with a weak monotone function.

How should one choose a particular representation function? If no par-
ticular f can be derived by theoretical reasoning, one often restricts f to
a particular class of functions on the basis of the scale level of the proxim-
ities. For example, if the proximities are direct similarity ratings on, say,
pairs of nations, one might feel that only their rank-order yields reliable in-
formation about the respondent’s true cognitions. Differences (“intervals”)
between any two ratings, in contrast, would not represent any correspond-
ing psychological quantities. Under these assumptions, there is no reason
to insist that these intervals be faithfully represented by distances in the
MDS space. Moreover, a weak scale level makes it easier to approximately
represent the essential information in an MDS space of low dimensionality.
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Conversely, starting from an MDS model, one can choose a representation
function g in the regression hypothesis g : dij(X) → pij . This hypothesis
needs to be tested against the data. One can pick any g: if it leads to a model
that is empirically satisfied—and provided that the model does not hold
for formal reasons only—one has shown a nontrivial empirical regularity.
No further justification is needed for picking a particular function g.

3.2 Errors, Loss Functions, and Stress

MDS models require that each proximity value be mapped exactly into its
corresponding distance. This leaves out any notion of error. But empirical
proximities always contain noise due to measurement imprecision, unreli-
ability, sampling effects, and so on. Even the distances used in Table 2.1
are not completely error-free, because reading off values from a ruler only
yields measures of limited precision. Hence, one should not insist, in prac-
tice, that f(pij) = dij(X), but rather that f(pij) ≈ dij(X), where ≈ can
be read as “as equal as possible”. Given that the proximities contain some
error, such approximate representations make even better representations—
more robust, reliable, replicable, and substantively meaningful ones—than
those that are formally perfect, because they may smooth out noise.

If one has a theory about the proximities, one would be interested to see
how well this theory is able to explain the data, and so a best-possible MDS
representation (of some sort) is sought. If the error of representation is “too
large,” one may reject or modify the theory, but obviously one first needs
to know how well the theory accounts for the data. Any representation that
is precise enough to check the validity of this theory is sufficiently exact. A
perfect representation is not required.

Further arguments can be made for abandoning the equality requirement
in f(pij) = dij(X). Computerized procedures for finding an MDS represen-
tation usually start with some initial configuration and improve this con-
figuration by moving around its points in small steps (“iteratively”) to ap-
proximate the ideal model relation f(pij) = dij(X) more and more closely.
As long as the representation is not perfect, one only has f(pij) ≈ dij(X),
where ≈ means “equal except for some small discrepancy”.

The Stress Function
To make such notions as “almost”, “nearly”, and so on, more precise, we
employ the often used statistical concept of error. A (squared) error of
representation is defined by

e2
ij = [f(pij) − dij(X)]2. (3.8)
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Summing e2
ij over all pairs (i, j) yields a badness-of-fit measure for the

entire MDS representation, raw Stress,

σr = σr(X) =
∑
(i,j)

[f(pij) − dij(X)]2. (3.9)

The raw Stress value itself is not very informative. A large value does
not necessarily indicate bad fit. For example, suppose that the dissimilari-
ties are road distances between cities in kilometers. Suppose that an MDS
analysis on these data yields σr(X1) = .043. Redoing the analysis with
dissimilarities expressed in meters yields the same solution, but on a scale
that is 1000 times as large, and so one gets σr(X2) = 43, 000. This does not
mean that X2 fits the data worse than X1; it merely reflects the different
calibration of the dissimilarities. To avoid this scale dependency, σr can,
for example, be normed as follows,

σ2
1 = σ2

1(X) =
σr(X)∑
d2

ij(X)
=

∑
[f(pij) − dij(X)]2∑

d2
ij(X)

. (3.10)

Taking the square root of σ2
1 yields a value known as Stress-1 (Kruskal,

1964a). The reason for using σ1 rather than σ2
1 is that σ2

1 is almost always
very small in practice, so σ1 values are easier to discriminate. Thus, more
explicitly,

Stress-1 = σ1 =

√∑
[f(pij) − dij(X)]2∑

d2
ij(X)

. (3.11)

The summations extend over all pij for which there are observations. Miss-
ing data are skipped. In the typical case of symmetric proximities, where
pij = pji (for all i, j), it suffices to sum over one half of the data-distance
pairs only. Obviously, σ1 = 0 only if dij(X) = f(pij).

Minimizing Stress-1 always requires finding an optimal X in a given
dimensionality m. Moreover, if f is only specified up to certain free param-
eters, then optimal values for these parameters must also be found. This
problem typically is solved by regressing the proximities onto the distances
computed on X. In interval MDS, one uses linear regression, in ordinal
MDS monotone regression (see Section 9.2). The regression yields trans-
formed proximities, f(pij)s, that are “approximated distances” or “d-hats”
(d̂ijs) also referred to as disparities in the MDS-literature.

3.3 Stress Diagrams

Loss functions such as Stress are indices that assess the mismatch of (admis-
sibly transformed) proximities and corresponding distances. Stress is, in a
way, similar to a correlation coefficient, except that it measures the badness-
of-fit rather than the goodness-of-fit. Experienced researchers know that
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FIGURE 3.2. Shepard diagram for MDS solution shown in Fig. 1.5.

correlations can be high or low for various reasons. For example, a correla-
tion can be artificially high because of outliers. It can also be misleadingly
low because the regression trend is not linear. What one usually does to
study such questions is to take a look at the scatter diagram.

Exactly the same approach is also customary in MDS. The most infor-
mative scatter diagram plots proximities on the X-axis against the cor-
responding MDS distances on the Y -axis. Typically, a regression line that
shows how proximities and approximated distances (d̂ijs) are related is also
shown. This plot is known as a Shepard diagram.

Figure 3.2 gives an example. The Shepard diagram exhibits, as open
circles, the similarities of Table 1.3 plotted against the corresponding dis-
tances of Figure 1.5. The filled circles represent the (pij , d̂ij) pairs. They
all lie on a monotonically descending line, as requested by the ordinal MDS
model used to scale these data. The vertical distance of each (pij , dij) point
(open circle) from the (pij , d̂ij) point (filled circle) represents the error of
representation for this particular proximity, eij . The Y -axis of the Shepard
diagram has two labels: distances (dijs) and approximated distances (d̂ijs).

What can be learned from this Shepard diagram? First, it gives an overall
impression of the scatter around the representation function. In Figure 3.2,
one notes that there is quite a bit of scatter around the monotone regression
curve. The vertical distances of the points from the step function (eijs)
are generally quite large, and thus σ1 = .186. Then, one notes that there
are no real outliers, although some points contribute relatively much to
Stress. The most prominent case is the point with coordinates (3.44, 0.82).
Its error or “residual,” which enters the Stress function quadratically, is
−0.877, and the second greatest residual is only 0.636. One finds in Table
1.3 that there are two dissimilarity estimates of 3.44, one for India vs.
France and one for Brazil vs. Egypt. The MDS program keeps track of
each and every proximity and informs us that the large residual is related
to the pair India–France. Hence, this observation is explained worst by



44 3. MDS Models and Measures of Fit

proximities
2 3 4 5 6 7

d-
ha

ts
3

2

1

0

FIGURE 3.3. A transformation plot
(scatter diagram of proximities vs.
d-hats) for the MDS solution shown in
Fig. 1.5.

di
st

an
ce

s

d-hats
0

0

1

2

3

1 2 3

FIGURE 3.4. A residual plot (scatter
diagram of d-hats vs. distances) for the
MDS solution shown in Fig. 1.5.

the MDS space in Figure 1.5, possibly because it brings in an additional
dimension.

A Shepard diagram is particularly informative in the case of ordinal
MDS. This model requires a monotone representation function f , but its
particular shape is left open. It is often interesting to see which shape it
acquires in scaling real data. [Indeed, this question motivated the invention
of ordinal MDS (see Chapter 17).] In Figures 3.2 and 3.3, we note that the
regression curve is roughly linear, although it shows a number of marked
steps.

Some MDS programs also provide scatter plots of the d̂ijs vs. the corre-
sponding dijs. Figure 3.4 gives an example for the data in Table 1.3. The
points in such a plot scatter around the bisector from the lower left-hand
corner to the upper right-hand corner. If Stress is zero, they all lie on this
bisector; otherwise, they do not. The vertical distance of the points from
the bisector corresponds to the error of approximation, but the horizontal
distances have the same magnitude, |eij |. The outlier discussed above, the
proximity for France vs. India, has coordinates 0.815 on the vertical axis
and 1.69 on the horizontal axis. It lies farthest from the bisector. Generally,
what one studies in such plots is the distribution of the points around this
bisector for possible outliers, anomalies, gaps, and so on.

3.4 Stress per Point

In the previous section, we have looked at how well each proximity pij or
its transformation d̂ij is fitted by the corresponding distance dij . The error
for one particular proximity is the vertical distance between d̂ij and the dij
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TABLE 3.1. Squared error for the solution in Figure 1.5 of the similarity ratings
for 12 nations (Wish, 1971). The last row (and column) contains the average per
row (or column) and is called Stress per point.

Nation 1 2 3 4 5 6 7 8 9 10 11 12 SPP
Brazil 1 – .02 .24 .09 .00 .08 .08 .02 .00 .00 .07 .00 .05
Congo 2 .02 – .01 .07 .00 .03 .00 .04 .01 .00 .00 .05 .02
Cuba 3 .24 .01 – .09 .01 .05 .05 .02 .01 .00 .00 .00 .04
Egypt 4 .09 .07 .09 – .01 .02 .07 .01 .01 .00 .08 .00 .04
France 5 .00 .00 .01 .01 – .23 .21 .17 .01 .02 .01 .01 .06
India 6 .08 .03 .05 .02 .23 – .00 .04 .03 .01 .01 .00 .04
Israel 7 .08 .00 .05 .07 .21 .00 – .04 .00 .00 .00 .02 .04
Japan 8 .02 .04 .02 .01 .17 .04 .04 – .10 .01 .00 .02 .04
China 9 .00 .01 .01 .01 .01 .03 .00 .10 – .00 .00 .06 .02
USSR 10 .00 .00 .00 .00 .02 .01 .00 .01 .00 – .04 .00 .01
U.S.A 11 .07 .00 .00 .08 .01 .01 .00 .00 .00 .04 – .00 .02
Yugoslavia 12 .00 .05 .00 .00 .01 .00 .02 .02 .06 .00 .00 – .01
Stress per point .05 .02 .04 .04 .06 .04 .04 .04 .02 .01 .02 .01 .03

in the Shepard diagram. Instead of looking at a single error only, it may
be more interesting to consider all errors of one object to all others. We
examine the definition of raw Stress in (3.9) more closely. Clearly, raw Stress
is a sum of the squared errors over all pairs of objects. Table 3.1 contains
the squared error for the solution in Figure 1.5 of the similarity ratings for
twelve nations (Wish, 1971). Note that for convenience, this table shows
the squared errors below and above the diagonal, although because of the
symmetry the errors below (or above) the diagonal would suffice. Now, a
simple measure to indicate how badly each individual point is fitted can be
obtained by averaging the squared errors between the current object and
all other objects. We call this measure Stress per point and it is shown in
the last column (and the last row) of Table 3.1. For example, the Stress
per point for France can be obtained by averaging all the squared errors in
the row of France in Table 3.1. Equivalently, the same value is obtained by
averaging column 5 for France in this table. An additional feature of Stress
per point is that their average equals the total Stress. Because Stress per
point is defined on the squared errors, we must square σ1 to compare it
with the average Stress per point. In the previous section, we found that
σ1 = .186, so that σ2

1 = .0346 ≈ .03 is the same value indeed as the element
in the lower right-hand corner of Table 3.1.

Several conclusions can be drawn from this table. First, most points are
fitted rather well by this solution, because their Stress per point is rea-
sonably low. Second, the best fitting points are Yugoslavia and the USSR,
followed by U.S.A., China, and Congo. Third, the worst fitting points are
France and Brazil. When interpreting the solution, this information should
be kept in mind. Apparently, the MDS solution in Figure 1.5 is not very
well able to represent the points for France and Brazil. Their Stress per
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FIGURE 3.5. Bubble plot of fit per point derived from Stress per point of the
similarity nations data of Wish (1971). Big bubbles indicate points with good fit,
small bubbles indicate points with poor fit.

point is relatively high because there is quite some difference between the
distances and the transformed data with all other countries. It can be ver-
ified in Table 3.1 that the high Stress per point for France is caused, in
particular, by high errors of France with India, Israel, and Japan. A high
Stress per point indicates that we cannot be certain about the exact loca-
tion of this point. It may be an indication that an additional dimension is
needed for these points to reduce the error.

To inspect the Stress per point graphically, it is simpler to switch to the
fit per point that is defined as one minus the Stress per point. Generally,
the fit per point is a value between zero and one. Usually, the fit per point
is close to one. In our example, the fit per point varies between .99 for
Yugoslavia and USSR and .94 for France. In Figure 3.5, the fit per point is
expressed by the radius of the bubble representing the point. The centers of
the bubbles are the locations of the points, just as in Figure 1.5. To avoid
too little discrimination in the size of the bubbles, we linearly transformed
the radii such that the worst fitting point (France) has a radius twice as
small as the best fitting point (Yugoslavia). It can be seen in Figure 3.5
that the best fitting points (with the largest bubble) are mostly located
around the edges (with the exception of Brazil) and that the worst fitting
points are located towards the center (such as, for example, France). To
interpret the solution, Figure 3.5 shows immediately which points should
be emphasized in the interpretation because of their good fit per point, and
which points should not be emphasized because of their bad fit.
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3.5 Evaluating Stress

How should one evaluate the Stress of a given MDS solution? One approach
is to study the Shepard diagram. It shows the number of points that have
to be fitted, the optimal regression line, the size of the deviations, possible
outliers, and systematic deviations from the requested regression line. Thus,
Shepard diagrams are highly informative. Nevertheless, it is customary to
condense all of this information into a single number, Stress.

In ordinal MDS, any matrix of proximities pij (i < j) can be represented,
with zero Stress, in m = n− 2 dimensions (see Chapter 19). However, such
perfect solutions are not desired, as we saw above. Therefore, one seeks an
MDS representation with considerably fewer dimensions. The problem is
how to choose the “proper” dimensionality. Scaling with too few dimensions
may distort the true (reliable) MDS structure due to over-compression or
may lead to technical problems (see Chapter 13). Being too generous on
dimensions may, on the other hand, blur the MDS structure due to over-
fitting noise components. If information is available about the reliability of
the data, one should choose a dimensionality whose Stress corresponds to
the random component of the data. Inasmuch as this information is rarely
given, one has to resort to other criteria.

Simple Norms for Stress
Beginners in multivariate data analysis typically ask for simple (often overly
so) norms. In MDS, a number is requested so that whenever Stress is less
than that benchmark value, the MDS solution should be considered ac-
ceptable. Guttman (in Porrat, 1974) proposes such a norm for a coefficient
closely related to Stress: he required that the coefficient of alienation K
should be less than 0.15 for an acceptably precise MDS solution. He later
added that what he had in mind when he made this proposal were “the
usual circumstances”(Guttman, personal communication). [Note that here
and in the following, we are considering ordinal MDS only.]

It is easy to see that such circumstances are important. Any global fit
measure will be low, for example, when the number of points n is small
relative to the dimensionality of the space, m. Guttman thus assumed for
the K < 0.15 rule that n “clearly” exceeds m (as another rule of thumb, at
least fourfold: Rabinowitz, 1975; Kruskal & Wish, 1978). Conversely, if n is
much larger than m (more than 10 times as large, say), higher badness-of-fit
values might also be acceptable.

Another rough criterion is to pick that solution “for which further in-
crease in [m] does not significantly reduce Stress” (Kruskal, 1964a, p. 16).
To find that m, one should first compute MDS solutions for different di-
mensionalities (e.g., for m = 1, 2, . . . , 5) and then plot the resulting Stress
values (on the Y -axis) against the m-values (on the X-axis). If the points
in this diagram are connected by a line, starting at m = 1 and ending at
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m = max, one obtains a scree plot. (An example of a scree plot is given in
Figure 4.5.)

The curve in a scree plot is generally monotonically decreasing, but at an
increasingly slower rate with more and more dimensions (convex curve).2

What one looks for is an elbow in this curve, a point where the decrements
in Stress begin to be less pronounced. That point corresponds to the di-
mensionality that should be chosen. The rationale of this choice is that the
elbow marks the point where MDS uses additional dimensions to essentially
only scale the noise in the data, after having succeeded in representing the
systematic structure in the given dimensionality m.

For the Stress-1 coefficient σ1 using ordinal MDS, Kruskal (1964a), on
the basis of his “experience with experimental and synthetic data” (p. 16),
suggests the following benchmarks: .20 = poor, .10 = fair, .05 = good,
.025 = excellent, and .00 = perfect.3 Unfortunately, such criteria almost
inevitably lead to misuse by suggesting that only solutions whose Stress
is less than .20 are acceptable, or that all solutions with a Stress of less
than .05 are good in more than just a formal sense. Neither conclusion is
correct. An MDS solution may have high Stress simply as a consequence
of high error in the data, and finding a precise representation for the data
does not imply anything about its scientific value.

Obviously, one needs more systematic insights into how Stress depends
on the number of points, the dimensionality of the MDS solution, the kind
and amount of error in the proximities, the type of the underlying true
configuration, and so on. Computer simulation studies can help to answer
such questions. In the following, we consider some such studies.

Stress for Random Data
The most extreme case that can be studied is concerned with the “nullest
of all null hypotheses” (Cliff, 1973), that is, with the question of whether
the Stress for some given data is significantly lower than for random data.
Stenson and Knoll (1969) and Klahr (1969) compute the distribution of
Stress values for ordinal MDS under H0 as follows: (a) pick some values
for n, the number of the points, and m, the dimensionality of the MDS
space; (b) randomly insert the numbers 1, 2, 3, . . . ,

(
n
2

)
into the cells of a

lower-half proximity matrix; (c) use ordinal MDS on these proximities and

2An exception to that rule can result, for example, when the MDS computer program
does not succeed in finding the optimal solution for some dimensionality. The scree test
can, therefore, occasionally be useful to identify such suboptimal solutions.

3A Stress value of .20, say, is often written as 20%. Why this language became popular
is not entirely clear. However, if one replaces Stress by squared Stress, then one can show
that, for example, 20% (squared) Stress means that 80% of the variance of the d-hats is
explained by the distances (see Section 11.1).
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compute Stress; and (d) repeat the above for many permutations of the
data, so that a distribution of Stress values results.

These simulations show that if n grows, then expected Stress also grows
and its variance becomes smaller; if m grows, then expected Stress becomes
smaller. If the data contain ties, the primary approach leads to lower Stress
(because ties are optimally broken) than the secondary (where ties in the
data must be preserved in the distances); the more ties there are, the larger
the difference.

Spence and Ogilvie (1973) conduct a similar investigation for n =
12, 13, . . . , 48 points and m = 1, 2, . . . , 5 dimensions, a useful range for
many practical purposes. Figure 3.6 shows the average Stress curves for
various n values, using ordinal MDS. The curves indicate again that Stress
depends on n and m. One also notes that each additional dimension reduces
Stress increasingly less. The confidence intervals of the expected Stress val-
ues are quite narrow, as the standard deviations of the Stress distributions
in Figure 3.7 show. The standard deviations are so small that lowering the
curves by about 0.03 should result in reliable cutoff values for testing this
H0.

Spence (1979) has shown that one can closely approximate the curves
in Figure 3.6 and curves interpolated therein for n = 12, 13, . . . , 48 by the
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formula

σ1 = .001(a0 + a1m + a2n + a3 ln(m) + a4
√

ln(n)), (3.12)

where a0 = −524.25, a1 = 33.8, a2 = −2.54, a3 = −307.26, and a4 =
588.35. A comparison of the results with those from Stenson and Knoll
(1969) shows very good agreement, so that formula (3.12) can be used
to estimate expected “random” Stress for the range n = 10, . . . , 60 and
m = 1, . . . , 5.

We show that the Stress values in all real-data MDS applications dis-
cussed in this book lie definitely under the values expected for H0. This
also shows that this kind of null hypothesis represents a very small hurdle
indeed. On the other hand, if one does not even succeed in rejecting this
H0, then it seems unreasonable to study the MDS representation further.

The Hefner Model
Simulations that study the distribution of Stress for random data (of some
sort) are useful from a data-analytic point of view. They do not attempt
to simulate an MDS model in the sense of a psychological theory about
similarity judgments. If MDS is used in this way, then one also needs a
more explicit model for what is meant by the “random” component of the
data.

Consider the similarity-of-nations example in Section 1.3. We may want
to assume that a respondent arrives at his or her overall similarity judg-
ment by first computing the distance of two nations in his or her system
of dimensions or perceptual space, and then mapping this distance into the
response format provided by the researcher. Moreover, we could postulate
that the perceptual space is not static, but that its points “oscillate” about
their characteristic position over time. The oscillations could be due to un-
systematic variations in attention, fluctuating discrimination thresholds,
activation and decay processes on the memory traces, and so on. Under
these conditions, the respondent would compute a distance at each point in
time, but these distances would not fit together in a plane, because each dis-
tance depends on the particular positions of the points at time t, and these
positions are not constant over time. An observed proximity, after trans-
formation by f , is thus conceived as f(pij) = d

(e)
ij =

∑m
a=1[x

(e)
ia −x

(e)
ja )2]1/2,

where x
(e)
ia = xia + eia and eia is a value from the random distribution of

point i.
For the “error” terms eia, one can postulate a particular distribution

over time. A commonly used assumption is that the points oscillate sym-
metrically in all directions of the MDS space around their characteristic
(true) locations. It is usually assumed that these distributions are normal,
of equal size, and uncorrelated among each other, so that eia is modeled as
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FIGURE 3.8. Expected Stress for distances in evenly scattered 2D (left panel)
and 3D (right panel) configurations of 36 points with random error ranging from
.0 to ∞, when represented in 1D through 5D (Spence & Graef, 1974).

a value sampled randomly from N(0, σ2). These definitions constitute the
Hefner (1958) generalization of the Thurstone (1927) Case-V model.

Wagenaar and Padmos (1971) and Spence and Graef (1974) report sim-
ulation studies based on the Hefner model. They randomly pick n points
from within a unit (hyper-)square or (hyper-)disk, and add error com-
ponents sampled from N(0, σ2) to each of its coordinates. This leads to
error-affected distances that are subsequently taken as proximities.

In contrast to the study by Spence and Ogilvie (1973) described above,
this simulation allows one to specify the true (underlying) MDS space as
the point configuration used in computing the proximities. Wagenaar and
Padmos (1971) simulate this case for n = 12, 18, 26, 36; in m = 1, . . . , 4
dimensions; and with error variances of σ = 0.0, 0.0625, 0.125, 0.25, and
∞ (i.e., pure random data).

Figure 3.8 shows the Stress curves obtained for proximities computed
from 36 points in 2D and 3D MDS spaces, respectively, and represented
in MDS spaces of one to five dimensions. One notes that all Stress curves
are convex downwards. The upper curves in both diagrams almost have
the same shape: they result from the condition of pure error. For the other
conditions, we note elbows in the Stress curves for MDS dimensionalities of
2 and 3, respectively, that is, for the true dimensionalities of the underlying
MDS spaces. These elbows are most pronounced in the error-free case, but
are washed out with more and more error.
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How large is the error component in these studies? One can check, by
computer simulation, that the absolute difference of an error-affected dis-
tance (computed in an evenly scattered configuration of points within a unit
disk) and the corresponding true distance, |d(e)

ij −dij |, can be expected to be
somewhat larger than the σs utilized by Spence and Graef (1974). That is,
for example, for m = 2 and σ = 0.25, one finds that the expected absolute
difference is 0.27, whereas for σ = 0.0625 and m = 3 it is 0.07. An error
of judgment of about 25% does not seem excessive for many data in the
social sciences. This may explain why elbows in scree plots are virtually
never observed in practice, because, for σ = 0.25 or smaller σs, they are
not obvious in Figure 3.8 either.

For real data, Spence and Graef (1974) propose comparing the Stress
values for MDS solutions in different dimensionalities with their simulation
curves in order to determine both the portion of error as well as the true
dimensionality of the observations.

If one has an independent estimate of the error component in the data,
the true dimensionality may be found by identifying that simulation curve
among all those for the given error level that most closely matches the
Stress curve for the given data. If the true dimensionality is known, one can
proceed analogously for the error level. The conclusion depends, however,
on the validity of the simulated error model.

Taking a closer look at the Hefner model, one notes that the normal
error distribution is only a convenient approximation, because it puts no
restrictions on the range of the point oscillations. Apart from that, how-
ever, the Hefner model has some interesting properties. It implies that
error-affected distances tend to over-estimate true distances, because, by
expanding the definition of d

(e)
ij , E[(d(e)

ij )2] = d2
ij +2mσ2. Indeed, the error-

affected distances are distributed as the noncentral χ2 distribution (Suppes
& Zinnes, 1963; Ramsay, 1969). Thus, a true distance of zero will only be
over-estimated; small true distances can be expected to be more often over-
than under-estimated; and the larger the true distance, the more balanced
over- and under-estimation. This is a plausible model that prevents distance
estimates from becoming negative.

Empirically, however, one often finds that dissimilarity judgments for
very similar objects are more reliable than those for very dissimilar ob-
jects. Ramsay (1977), therefore, suggests making the error on the distances
proportional to their size. In one particular model, the true distances are
multiplied by a random factor whose logarithm has a normal distribution
with mean 0 and standard deviation σ. This leads to a log-normal distri-
bution for the error-affected distances where: (a) d

(e)
ij ≥ 0; (b) the larger

the true distance, the larger the noise; and (c) error-affected distances are
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more likely to be over-estimated than under-estimated.4 These properties
seem to hold for many empirical contexts. However, what remains less clear
is how this error model could be conceived in terms of what is going on in
the psychological space.

Recovering Distances Under Noise
Simulation studies with error-perturbed distances do not assess how pre-
cisely the true distances are recovered by ordinal MDS. This question is
investigated in the early days of MDS by Young (1970), Sherman (1972),
Isaac and Poor (1974), and Cohen and Jones (1973), among others. Young
(1970) proceeds as follows. (a) A true configuration with dimensionality t
is defined by randomly sampling point coordinates. This yields true dis-
tances and, after adding error to the point coordinates, error-perturbed
distances, as above. (b) The error-perturbed distances are monotonically
transformed. (c) The resulting values are taken as data for an ordinal MDS
procedure. (d) An MDS representation is then assessed with respect to the
degree to which it recovers the true distances.

Young’s simulations for different numbers of points, error levels, and
monotone transformations—always setting m = t, so that the MDS analysis
is in the true dimensionality—show that the precision of recovered distances
grows with the number of points, and decreases with a higher error level
in the data and with larger dimensionality of the solution space. This is
intuitively plausible, because the isotonic regions in ordinal MDS shrink
dramatically as a function of the number of points. Indeed, in the distances-
among-cities example of Chapter 2, we found that the distances of the
original map were almost perfectly reconstructed in a metric sense by the
ordinal 2D MDS solution.

The effect of error on recovery precision is also easy to understand. More
error simply reduces the correspondence of true distances and proximi-
ties. However, the harmful effect of error on recovery decreases with more
points, because, with many points, the error-affected distances randomly
over-estimate and under-estimate the true distances in so many ways that
the effect of error on the configuration is balanced out and the solution
essentially reconstructs the true distances. Stress, on the other hand, in-

4This error model, and related ones, is incorporated into the program Multiscale
(see Appendix A). Multiscale does not minimize a loss function such as Stress. Rather,
it tries to find that configuration X which, given a particular error model, maximizes
the likelihood to yield d

(e)
ij s that correspond to the observed dissimilarities (maximum

likelihood estimation). Given that the assumed error model holds, this allows one to
determine confidence regions for the points and to make a number of inferential decisions,
such as one on the proper dimensionality. Maximum likelihood MDS methods also exist
for the Hefner error model (Zinnes & MacKay, 1983) and for ordinal MDS (Takane &
Carroll, 1981).
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creases when the number of points goes up, other conditions being equal!
Cox and Cox (1990) even showed, by simulation, that Stress is an almost
perfectly linear function of noise, given some special circumstances such as
m = t = 2, but independently of the spatial pattern of points (ranging
from extremely regular patterns through complete spatial randomness to
cluster-like aggregations of points) and also independently of n. Cox and
Cox (1992) report similar results for m > 2, but without such a strong
linear relation between Stress and noise.

These findings have important practical implications. Global fit indices
such as Stress are closely related to the proportion of error in the data. They
are largely useless as measures of how well an MDS solution represents the
“true” structure of the data. Therefore, it is quite possible that one obtains
an MDS representation that has high Stress but that, nevertheless, is highly
reliable over replications of the data. This means that a given Stress value
should always be evaluated against some rough estimate of how much error
is contained in the data.

An interesting further investigation on recovering true MDS spaces by
means of ordinal MDS is presented by Sherman (1972), who studied, in par-
ticular, the effects of over- and under-compression. These notions refer to
the question of whether the MDS dimensionality (m) is smaller or greater
than the dimensionality of the space from which the proximities were de-
rived (t). Sherman finds that picking the wrong dimensionality (m �= t)
has a pronounced effect: although Stress goes down monotonically when m
goes up, the metric determinacy is best when m = t and decreases with
the extent of both over- and under-compression. There are slight differ-
ences though: under-compression, especially when there are many points
in a relatively low-dimensional space, is somewhat less serious. This again
shows that lower Stress (as a consequence of higher dimensionality) does
not imply better metric recovery.

Summary on Stress
Stress is a badness-of-fit measure that depends, as we saw, on many factors.
Some of them are:

• n, the number of points: the higher n, the higher Stress in general;

• m, the dimensionality of the MDS space: the higher m, the lower
Stress;

• the error in the data: more error means higher Stress;

• the number of ties in the data (for ordinal MDS with weak mono-
tonicity): more ties allow for lower Stress in general;

• the number of missing data: more missing data lead to lower Stress,
in general;
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TABLE 3.2. Average recovery coefficients, r2s, for proximities related to true
distances by pij = dk

ij , under choice of different MDS models (Green, 1974).

Power k Ratio MDS Interval MDS
1.2 .99 .99
2.2 .94 .99
3.2 .85 .97
4.2 .78 .96
5.2 .72 .94

• the MDS model: interval MDS generally leads to higher Stress than
ordinal MDS, particularly if f is markedly nonlinear and/or has major
steps.

All of these criteria are mechanical ones. They are not sufficient for eval-
uating Stress, nor are they always important. Kruskal (1964a) writes: “A
second criterion lies in the interpretability of the coordinates. If the m-
dimensional solution provides a satisfying interpretation, but the (m + 1)-
dimensional solution reveals no further structure [our emphasis], it may be
well to use only the m-dimensional solution” (p. 16). It is in this sense
that Guttman (personal communication) called Stress a mere “technical
measure.” A measure of scientific significance, in contrast, would take into
account the degree to which an MDS solution can be brought into a mean-
ingful and replicable correspondence with prior knowledge or with theory
about the scaled objects.

3.6 Recovering True Distances by Metric MDS

So far, we have investigated the performance of ordinal MDS only. In metric
MDS, many of the above questions can be answered rather directly. For
example, for interval MDS and error-free proximities, increasing the number
of points has no effect on the goodness of recovery. If we scale under t = m,
we can expect that Stress is zero for any n. Moreover, the correlation of
the true and the recovered distances should be one. In ordinal MDS, in
contrast, we cannot easily infer from the obtained Stress value how high
the metric recovery is. This depends, among other things, on n, because the
number of points is related to the size of the isotonic regions. If the data
are not error-free, then interval MDS succeeds in representing somewhat
more error variance in general when n is small, so that the metric recovery
is likely to be less than perfect. If n grows, then both Stress and metric
recovery go up, just as in ordinal MDS. Thus, it can be seen that the
behavior of metric MDS is quite predictable without simulation studies.

The situation is not as easily diagnosed if we ask how well interval MDS
does if the true relation between proximities and distances is not linear.
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FIGURE 3.9. Recovery performance of MDS under choice of different models,
number of dimensions, and distortions on proximities (after Weeks & Bentler,
1979).

Some answers are given by Green (1974). He selects n = 10, 20, and 30
points in t = 2 and t = 3 dimensions. Distances were computed and trans-
formed into proximities by the function pij = dk

ij , with k = 1.2, 2.2, 3.2,
4.2, and 5.2. Interval and ratio MDS were used to recover the underlying
configurations from these proximities. The recovery coefficients in Table
3.2 show that ratio MDS is quite robust against such monotonic distor-
tions of the function relating distances and proximities, as long as they
are not extremely nonlinear. Interval MDS is almost unaffected by these
(appreciable) nonlinear transformations.

Green (1974) demonstrates further that if we first substitute ranking
numbers for the pij values, and then use ratio or interval MDS on these
numbers, recovery is even better. The idea of rank-interval MDS was stud-
ied in more detail by Weeks and Bentler (1979). They used the following
parameters for their simulations: n = 10, 20, 30; t = 1, 2, 3, 4; and e = 0.25,
0.75, 2.0, defined as the proportion of the error variance to the variance of
the true distances. The proximities were derived from the error-perturbed
distances by (a) pij = d

(e)
ij , (b) pij = [d(e)

ij ]4 , (c) pij = [d(e)
ij ]1/4, or (d)

pij = rank[d(e)
ij ]. Condition (d) is Green’s ranking number substitution,

and condition (a) simply means that the error-perturbed distances were
taken directly as data, without any further distortions. These data were
represented by both ordinal and interval MDS. The dimensionality of the
solution space, m, varied from 1 to 6.

Figure 3.9 shows the main result of the study. The various curves are
defined by the average values of the (squared) metric determinacy coeffi-
cient under the different conditions. As expected, all curves drop as t = m



3.7 Further Variants of MDS Models 57

goes up, because the higher the dimensionality, the more error variance can
be represented by MDS, which negatively affects the metric determinacy
of the solution. Ordinal MDS leads to the same recovery curve under all
conditions. For (a), interval MDS does slightly better than ordinal MDS,
but its recovery performance is definitely worse than that of ordinal MDS
under the nonlinear distortions (b) and (c), as expected. However, with the
ranking number substitutions, interval MDS leads to virtually the same
recovery curve as ordinal MDS, as one can see from comparing the two
lines with the solid black points in Figure 3.9. (Note that ranking number
substitutions make all of the data sets used by Weeks and Bentler (1979)
equivalent.) This replicates the finding of Green (1974). The “linearizing”
effect of ranking number substitutions was also known to Lingoes (1965),
who used this method in constructing initial configurations for ordinal MDS
procedures.

Two conclusions can be derived from these results. (1) If proximities and
distances are related in a linear way, then the metric information contained
in the data is only marginally more powerful than the ordinal information
contained in the data for recovering the true distances. (2) If proximities
and data are related in a monotonic way, then ordinal and rank-interval
MDS can be expected to lead to essentially the same solutions. This is
important insofar as metric MDS methods are more robust in a numeri-
cal sense; that is, they generally are more likely to yield globally optimal
solutions and are less likely to produce degenerate solutions (see Chapter
13).

3.7 Further Variants of MDS Models

The generic model relation (3.4) leaves room for many variants of MDS
models not discussed so far. The most obvious way to generate such models
is to specify the representation function f in different ways. There are
many possibilities, and some of them are considered in Chapter 9. Further
possibilities arise out of considering particular patterns of missing data. A
whole model class, called unfolding, is discussed at length in Chapters 14
to 16. Then, one could partition the proximities into subsets, and specify
independent fs or even different fs for each such subset rather than just
one single f for all proximities as in (3.4).

At this point, we need not go into such models. We introduce, however,
one generalization of (3.4) that allows us to introduce some notions useful
for further classifying MDS models. Assume that we have more than one
proximity for each pair (i, j). Such a case can arise, for example, if the data
collection is replicated K times or if there are K persons, each giving rise
to one set of proximities. In such a case, the proximities can be given three
indices, pijk (i, j = 1, . . . , n; k = 1, . . . , K). This means that they can be
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FIGURE 3.10. Symbolic representation of a three-way proximity array; r = 1
indicates replication 1.

collected in a three-way data array, as illustrated in Figure 3.10. This array
can be conceived as a “deck” of K proximity matrices, where each “card”
comes from one replication or person.

One could analyze such data by scaling each replication separately and
then comparing or aggregating the different MDS solutions (see Chapter
20), or by first averaging the proximities over the replications and then
scaling the aggregated scores. Another possibility is the following model,

f : pijk → dij(X), (3.13)

for all pairs (i, j) and all ks, given that pijk is nonmissing. Note that this
model relation differs from (3.4) only with respect to the proximities: it
maps K proximities pijk (rather than just a single pij) into just one distance
dij .

The three-way proximity block in Figure 3.10 suggests further possibili-
ties for MDS models. Carroll and Arabie (1980) developed a taxonomy for
MDS models according to which the three-way data in Figure 3.10 would
also be characterized as two-mode data: “A mode is defined as a particular
class of entities. . . . Entities could be, for example, subjects, stimuli, test
items, occasions, experimental conditions, geographical areas, or compo-
nents of a ‘multiattribute stimulus’. . . . A K-way array is defined as the
Cartesian product of a number of modes, some of which may be repeated.
For example, an array associated with three-way multidimensional scaling
might be of the form A×B ×B, where A denotes subjects, and B stimuli”
(p. 610). Hence, the “ways” of a proximity array refer, in a sense, to the
number of subscripts of its proximities, whereas the “modes” distinguish
whether these ways are qualitatively different ones.

There exist particular MDS models for three-way two-mode proximities,
especially those where the “third” way denotes different individuals (see
Chapters 21 and 22). There are also special models for two-way two-mode
proximities, where one mode represents individuals and the other denotes
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choice objects (see Chapter 17). Typical MDS data are, however, two-way
one-mode proximities such as item intercorrelations or direct similarity
ratings.

3.8 Exercises

Exercise 3.1 Consider the configuration in Figure 3.1. Compute the Eu-
clidean distances among its n = 6 points.

(a) From these distances, generate dissimilarities by adding random error
to each value. That is, δij = dij +eij , where eij is a value taken from a
normal distribution N(0, σ). (Alternatively, add random error to the
point coordinates and then compute the distances. This may be easier
to do within your statistics package.) Use different σs to simulate data
with small, medium, and large error components. Run ordinal MDS
with these dissimilarities. Compare the MDS solutions to Figure 3.1
and check the ability of ordinal MDS to recover the dijs from the δijs.

(b) Repeat (a) using interval MDS.

(c) Repeat with n = 20 and n = 40 points that you choose at random
in the plane shown in Figure 3.1, that is, with points (x, y), where
x, y ∈ [−4,+4].

Exercise 3.2 Suppose that the solution of Exercise 2.4 is given by the co-
ordinates

Dim 1 Dim 2
Red 0 3
Orange 0 0
Green 4 0
Blue 6 6

(a) Make a scatter plot of these points. Compute the distances between
the points.

(b) Summarize the results in a table that has as its rows the six pairs of
colors. Then, add a column that contains the proximity data for these
pairs (see Exercise 2.4). Add a second column with the corresponding
distances, computed from the table above. Finally, order the rows so
that the row with the smallest proximity value is on top, and the
row with the largest proximity at the bottom. Does the rank-order of
the proximities match the rank-order of the distances? What do you
conclude about the quality of the MDS solution?
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Exercise 3.3 Consider data from 13 stock market indices of 784 daily mea-
sures from January 1, 1995, to December 31, 1997 (Groenen & Franses,
2000). From these data, the so-called return values are derived by tak-
ing the difference of the log of two subsequent index values. A correlation
matrix of these stock market indices is given below.

Stock
market 1 2 3 4 5 6 7 8 9 10 11 12 13
1 Brus 1.00
2 CBS .62 1.00
3 DAX .64 .69 1.00
4 DJ .29 .36 .21 1.00
5 FTSE .52 .69 .54 .38 1.00
6 HS .43 .40 .50 .11 .35 1.00
7 Madrid .51 .61 .57 .31 .59 .33 1.00
8 Milan .49 .50 .60 .15 .41 .37 .47 1.00
9 Nikkei .25 .28 .29 .04 .24 .33 .24 .23 1.00

10 Sing .34 .26 .36 .05 .25 .67 .26 .29 .29 1.00
11 SP .28 .35 .20 .96 .37 .09 .29 .14 .05 .04 1.00
12 Taiwan .04 .05 .07 -.03 .03 .15 .05 .07 .10 .19 -.03 1.00
13 VEC .52 .71 .62 .33 .63 .37 .61 .45 .25 .27 .32 .04 1.00

Now, the question is how different (or similar) the fluctuations are among
the indices of the 13 stock markets.

(a) Use a computer program to do an interval MDS in 1 to 6 dimensions.
Make a scree plot of the Stress values. Motivate your choice for the
dimensionality of the solution.

(b) Can the Stress values be compared to the ones obtained for random
data (see Figure 3.6) and the Hefner model? Explain why.

(c) Inspect Stress diagrams of your solution. What can you say about
the fit? Do all points fit equally well?

(d) Interpret the solution. Can you distinguish groups of stock markets
that have similar fluctuations?

(e) In what stock markets should you invest your money, if you want to
spread the risks of your investment? Motivate.

(f) Redo the analysis with an ordinal transformation. Is the resulting
configuration different? Compare the Shepard plots or the transfor-
mation plots. Is the difference in Stress small or large? Explain why
this is so.

Exercise 3.4 Use the solution you like best from the previous exercise and
compute the Stress per point and the fit per point. Produce a bubble plot
that shows the fit per point either by hand or by a graphics program. Which
are the worst fitting points? Which are the best fitting points? Interpret
the solution again. Is it different from your first interpretation?



3.8 Exercises 61

Exercise 3.5 Run an ordinal MDS analysis with your MDS program on the
data from Table 2.3. The Stress of the resulting MDS solution is most likely
not equal to zero even though we know that the distances were measured
on a flat map.

(a) Explain why Stress is not zero.

(b) Try to get your MDS program to come up with a smaller Stress value.

(c) Compare the solution generated under the program’s default settings
with any one that has an even lower Stress. What do you conclude?



4
Three Applications of MDS

Three applications of MDS are discussed in some depth. Emphasis is given
to the questions of how to choose a particular MDS solution and how to
interpret it. First, data on the perceived similarity of colors are studied. The
predicted MDS configuration is a color circle, which is indeed found to be
the best representation for the data. Second, confusion data on Morse codes
are investigated. The MDS space shows two regional patterns, which reflect
two physical properties of the signals. Third, global similarity judgments
on different facial expressions are studied. A dimensional system can be
found that relates to three empirical scales for the faces.

4.1 The Circular Structure of Color Similarities

We now look at some applications of MDS in somewhat more depth and
not just in an illustrative way. We start with a classic case where the MDS
solution is particularly revealing.

Some Data on the Perceived Similarity of Colors
A person asked to somehow orderly arrange chips of different colors will
almost certainly come up with an order from orange over yellow, green,
blue, to blue-violet, corresponding to the order of the electromagnetic wave-
lengths of these colors. For the color red-violet, the respondent would prob-
ably not be sure whether it should lie on the red end or the violet end of
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the scale (or on both). This problem is solved by arranging the colors in a
horseshoe or circle. It may be supposed that most persons confronted with
this ordering task would sooner or later arrive at such a solution.

Both perceptual and intellectual components seem to be involved in solv-
ing this task, but to what relative extent? It could be argued that the color
circle is already implied by the way we perceive the similarity of colors.
Let us look at some data by Ekman (1954). Ekman used 14 colors differing
only in their wavelengths, but not in their brightness or saturation. Each of
all possible 91 pairs of different colors was projected onto a screen, and 31
subjects were asked to rate the “qualitative similarity” of each such pair on
a scale from 0 (no similarity) to 4 (identical). The ratings for each pair were
averaged over all subjects. Finally, the resulting scores were divided by 4,
that is, scaled down to the interval from 0 to 1. This led to the similarity
matrix in Table 4.1 (lower half). Note that only one-half of the matrix was
collected empirically, and so it suffices to show this half: the complete ma-
trix, if needed, can be constructed by setting pii = 1.00 and pij = pji, for
all i, j. (Most MDS programs need only a half-matrix as input.)

The proximities in Table 4.1 could be interpreted as correlations, so that
a principal component analysis (PCA; see also Chapter 24) is possible. A
PCA yields five different factors. These factors correspond to five differ-
ent groups of points on the electromagnetic spectrum. The factors com-
prise the colors 434–445, 465–490, 504–555, 584–600, and 610–674, which
roughly correspond to the subjective color qualities blueish-purple, blue,
green, yellow, and red, respectively. Chopping up the colors into qualita-
tive categories, however, does not throw much light on the question we are
asking.

An inspection of the coefficients in Table 4.1 shows that the data do
not support the notion of discrete color categories. Rather, they possess a
simple pattern of interrelatedness, a peculiar gradient of similarities, with
larger coefficients towards the main diagonal and the lower left-hand cor-
ner, respectively. So, using MDS, which establishes a direct relationship
between dissimilarity measures and geometric distance (unlike PCA), we
would possibly get a simple geometric expression for this data gradient.

MDS Representations of the Color Similarities
For the MDS analysis, we use ordinal MDS, the usual choice for a first
approximation. Thus, a configuration of 14 points is sought such that the
rank-order of the distances between these points corresponds (inversely) to
the rank-order of the data.

Any MDS program requires the user to specify the dimensionality (m)
of the desired representation. What value m should be chosen in the given
case? Surely, setting m ≥ 13 would be an uninteresting choice, because
dissimilarities among n objects can always be perfectly represented in a
space with dimensionality m ≥ n − 1. For example, in a plane with points
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TABLE 4.1. Similarities of colors with wavelengths from 434 to 674 nm (lower
half) of Ekman (1954); residuals of 1D MDS representation (upper half).

nm 434 445 465 472 490 504 537 555 584 600 610 628 651 674
434 – .14 .17 .38 .22 -.73 -1.07 -1.21 -.62 -.06 .42 .38 .28 .26
445 .86 – .25 .11 -.05 -.75 -1.09 -.68 -.35 -.04 .44 .65 .55 .53
465 .42 .50 – .08 -.32 -.57 -.47 -.06 .00 -.32 .17 .12 .91 .82
472 .42 .44 .81 – .12 -.36 -.26 .15 .00 -.11 .00 .33 .23 1.03
490 .18 .22 .47 .54 – -.07 .08 .48 .40 .00 .22 .17 .07 .00
504 .06 .09 .17 .25 .61 – .31 .28 .45 .68 .01 .00 .00 -.15
537 .07 .07 .10 .10 .31 .62 – .13 .35 .09 .31 .00 .00 -.75
555 .04 .07 .08 .09 .26 .45 .73 – -.05 .17 -.09 -.22 -.32 -.34
584 .02 .02 .02 .02 .07 .14 .22 .33 – -.05 -.01 -.06 -.16 -.18
600 .07 .04 .01 .01 .02 .08 .14 .19 .58 – .21 .07 -.39 -.40
610 .09 .07 .02 .00 .02 .02 .05 .04 .37 .74 – -.08 -.13 -.11
628 .12 .11 .01 .01 .01 .02 .02 .03 .27 .50 .76 – -.03 -.16
651 .13 .13 .05 .02 .02 .02 .02 .02 .20 .41 .62 .85 – -.11
674 .16 .14 .03 .04 .00 .01 .00 .02 .23 .28 .55 .68 .76 –

A, B, and C, it is possible, by moving the points around, to eventually arrive
at a configuration whose distances perfectly represent any given proximities
p(A, B), p(A, C), p(B,C), no matter what values they have. Analogously,
for four points, a perfect representation always exists in three dimensions,
and so on.

The minimal dimensionality for a perfect MDS representation is only of
formal interest. In practice, we always try to represent the data in an MDS
space of considerably lower dimensionality. The rationale for choosing a low
dimensionality is the expectation that this will cancel out over- and under-
estimation errors in the proximities, thus smoothing the representation (see
Chapter 3). Moreover, a low-dimensional and preferably two-dimensional
solution is often precise enough for a first interpretation. For the data in
Table 4.1, we first try solutions in 1D, 2D, and 3D space (using the MDS
module of Systat 5.0).

With three solutions, we have to decide which one we should consider
most appropriate. We first look at the 2D solution in Figure 4.1. It shows
a circular arrangement of the points representing the colors. Moreover,
the points are perfectly ordered along the drawn-in line in terms of their
wavelengths. This circular structure corresponds to the color circle.

How well does this configuration represent the data? The best answer to
this question is provided by looking at the Shepard diagram of the 2D MDS
solution (Figure 4.2). The plot shows a tight correspondence of proximities
and distances. The points lie very close to the monotone regression line.
The regression line is almost straight, and so the dissimilarities of Table
4.1 are almost linearly and almost perfectly related to the distances in
Figure 4.1. In contrast, in the Shepard diagram for the 1D solution (Figure
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4.4), the deviations of the points from the shown best-possible monotonic
decreasing line are excessive.

Measured in terms of Stress, the badness-of-fit of the 1D, 2D, and 3D
solutions is 0.272, 0.023, and 0.018, respectively. These values are a rare
example for a definite elbow in the scree test. The 1D solution has high
Stress, and adding one additional dimension leads to a major Stress re-
duction. Adding yet another dimension has very little further effect and,
indeed, cannot have much of an effect because the 0.023 for the 2D solution
is so close to zero already.

Thus, the 2D solution appears to be a reasonably precise representation
of the data. Adding a third dimension is not sensible, because of several
reasons: (a) the point configuration in the X–Y -plane of the 3D solution
(Figure 4.3) corresponds closely to the 2D configuration (Figure 4.1); (b)
the decrement in Stress by allowing for a third dimension is negligible, satis-
fying the elbow criterion; (c) the scattering of the points in 3D space along
the third dimension appears to be uninterpretable in substantive terms;
and (d) no a priori theory exists for a 3D solution. Analogous arguments
hold for comparing the 1D and 2D solutions. Hence, we have formal and
substantive reasons to consider the 2D representation in Figure 4.1 as the
best MDS representation of the given data.

A Closer Look at Model Fit
The Shepard diagram in Figure 4.4 shows that the 1D solution is a relatively
poor representation of the data. Why there cannot exist a really good 1D
solution can be seen from Figure 4.1. If we had to locate a straight line in
this plane so that the distances between the projections of the points onto
this line mirror most closely the order of the data, then this line would be
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oriented roughly horizontally. Such a line is the best 1D approximation to
the given 2D distance structure, because most of the straight lines connect-
ing any two points in Figure 4.1 run more or less in this direction. For point
610, for example, we see in Figure 4.1 that the projections of the rays from
this point to all other points onto a horizontal line are ordered (in length)
almost as the rays themselves. However, there would also be misrepresen-
tations on this line. For example, the points 434 and 555, if projected onto
a horizontal line, would be very close to each other, whereas the similarity
between 434 and 555 is among the lowest ones observed. Hence, this datum
is not represented well by the points’ distance on this 1D subspace.

We should expect, then, that a 1D MDS solution for the color data
represents the proximities of such colors as 610 and 472 with respect to all
other colors quite well, but that it runs into problems with pairs such as 434
and 555. One could assess such effects quantitatively by computing, for each
color C in turn, the correlation between the similarities of C to all other
colors and the distances of point C to all other points. To be consistent with
the ordinal approach, an ordinal correlation (e.g., Spearman’s ρ) would be
appropriate. Each such coefficient is a conditional fit measure, because it
hinges on one fixed point or variable (C, here).

Using Spearman correlations, one finds that they are, for each point C,
close to −1.00 for the 2D and 3D solutions. For the 1D case, in contrast,
there is much more variance. The coefficients are particularly low for points
434 (r = −.075) and 445 (r = −.360) at the upper end of the horseshoe in
Figure 4.1. Low conditional fit measures imply that the overall precision of
the 1D MDS representation (as measured by Stress, e.g.) cannot be very
good, because conditional agreements between distances and data are a
necessary condition for a globally good solution.
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Spearman’s correlation is, however, not very robust, because it is based
on the ranks of the data, and major changes of the rank-order sometimes
result from minor changes of the data. A correlation coefficient that as-
sesses the degree of monotone correspondence directly on the data is µ2
(Guttman, 1968; see also Chapter 14). For the given data, however, one
arrives at the same conclusion using µ2: points 434 and 445 are the major
sources of Stress.

An even more fine-grained analysis of the sources of Stress is possible by
studying the residuals, eij , for all i, j. Table 4.1 (upper half) shows these
residuals for the 1D MDS representation of the color data. One notes, for
example, that the similarity measures for the pairs (434, 555) and (434, 537)
are relatively poorly represented by their corresponding distances, as ex-
pected. For the pair (610, 472), in contrast, the residual is zero.

Most MDS computer programs provide these residuals upon request.
Some also compute some kind of average residual value — such as the
root mean squared residual — for each point in turn. Such coefficients are
conditional fit measures closely related to the Stress formula (Borg, 1978b).

4.2 The Regionality of Morse Codes Confusions

The next example we consider is also from perception on stimuli that are
physically well structured. This most complex data matrix requires spe-
cial considerations and some simplifications. The MDS configuration, then,
clearly reflects the structural properties of the stimuli.

Morse Code Confusions and Their Representability by
Distances
Consider now the data matrix in Table 4.2 (Rothkopf, 1957). The scores
are confusion rates on 36 Morse code signals (26 for the alphabet; 10 for
the numbers 0, . . . , 9). Each Morse code signal is a sequence of up to five
“beeps.” The beeps can be short (0.05 sec) or long (0.15 sec), and, when
there are two or more beeps in a signal, they are separated by periods
of silence (0.05 sec). For example, the signal for A is “short-silence-long,”
with a total temporal length of 0.25 seconds. We code such a signal as 12
(1 = short and 2 = long, or “di-da”).

Rothkopf (1957) asked 598 subjects to judge whether two signals, pre-
sented acoustically one after another, were the same. The values given in
Table 4.2 are the percentages with which the answer “Same!” was given in
each combination of row stimulus i and column stimulus j, where i was the
first and j the second signal presented. Each stimulus pair was presented
in two orders, for example, B following A (confusion rate is 4%) and also A
following B (5%). Moreover, the rate of confusion of each signal with itself
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was assessed. For example, the relative frequency of confusing A with itself
is 92%, and for B, 84%.

If we attempt an MDS representation, we notice several problems. First,
we observe that the nonnegativity axiom does not hold, because the values
in the main diagonal of the data matrix are not all the same. Because the
distance from any point to itself is always 0, we will therefore necessarily
incur a misrepresentation of the empirical data in the MDS space. On the
other hand, the second part of the nonnegativity axiom poses no problem,
because all data values in the main diagonal are greater than any off-
diagonal value, and this can be properly expressed by distances in an MDS
space.

Then, we see that the symmetry condition [axiom (2.2)] also does not
hold for the data. For example, the signal I is more frequently confused
with a subsequent A (64%) than A is with a subsequent I (46%). But if
we represent I and A by one point each, then we will necessarily have the
relation dIA = dAI , so that the asymmetry of the observed relation is lost,
that is, not represented.

Finally, the triangle inequality can be checked only if the data are on
a ratio scale. For all weaker MDS models, it is always possible to find a
constant k so that every pij+k satisfies the triangle inequality. The minimal
constant k is found by first identifying the triangle inequality violated most
and then computing the value that, when added to each proximity in this
inequality, turns the inequality into an equality. Thus, unless we consider
the Rothkopf data as ratio-scaled distances (apart from error), axiom (2.3)
is immaterial.

Distance axioms (2.1) and (2.2), on the other hand, remain violated even
if one allows for ordinal transformations of the data. Yet, we should take
into account that none of Rothkopf’s subjects knew Morse codes. It is a
very demanding task for an untrained subject to distinguish consistently
between different signals, and we might, therefore, argue that the violations
of these axioms are unsystematic and due to error. (We test this in Chapter
24.) Under this assumption, we can think of the data for each (i, j) and
(j, i) pair as replicated observations of a basically symmetric relation, and
then obtain a better estimate of the true relation by averaging the two
observed values. In other words, from Table 4.2 we form a new proximity
matrix, where, say, pAB = pBA = (.05 + .04)/2 = .045. The main diagonal
could then be filled with the value 1.00, say, although this is immaterial,
because MDS programs ignore these values anyway.
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TABLE 4.2. Confusion percentages between Morse code signals (Rothkopf,
1957).
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An MDS of the Symmetrized Morse Code Data
Let us now study the symmetrized data by ordinal MDS.1 In comparison
with the color data examined above, we start here from a weaker position.
Previously, we had a clear expectation about the MDS configuration and
its dimensionality; here we make no attempt to predict anything. Hence,
we must proceed in a purely descriptive way at the beginning.

Proceeding as Kruskal (1964a) did, we compute solutions in 1D through
5D, for which we obtain the Stress values shown graphically in Figure 4.5.
The figure shows that the 1D solution has about .28 Stress. These values lie
way below the expected Stress for random data reported in Figure 3.6, but
that is always true for structured proximities. Adding one more dimension
reduces Stress considerably to .18. By Kruskal’s criteria (see Section 3.5),
this would still be evaluated as a “poor” goodness-of-fit value. However,
this simple norm does not take n, the number of points, into account, and
what we have here is a relatively big data set compared to, say, the color
data in Table 4.1. Fitting proximities for more objects to distances in an
MDS space always requires a higher dimensionality if the data contain a
certain amount of experimental error.

But how large is this error? We could take up the proposal of Spence and
Graef (1974) and compare the observed Stress values to those obtained from
simulating the Hefner model. This should allow us to determine both the
true dimensionality and the error level. The observed Stress values are 0.35,
0.20, 0.14, 0.10, and 0.08 for m = 1, . . . , 5, respectively. Their scree plot
(Figure 4.5) shows no elbow. Turning to Figure 3.8, we note that the curves
that most closely approximate the observed Stress values are the ones for
an error level of 0.13. However, the Spence and Graef (1974) simulations do
not clearly indicate what the true dimensionality of the MDS configuration
is for these data.

Turning to interpretability, we first consider the 2D MDS configuration in
Figure 4.6. Interpretation means to link some of the configuration’s geomet-
rical properties to known or assumed features of the represented objects.
In the given case, we find that the points arrange themselves in a pattern
that reflects the composition of the represented Morse signals, as shown
in Figure 4.7. Following a suggestion by Wish (1967), we note that the
2D MDS space can be cut by the solid lines such that each region of the
space contains signals of the same total duration. For example, this puts
M (coded as 22), R (=121), D (=211), U (=112), and H (=1111) into the
same equivalence class, because their signals all last 35/100 sec.

1The first MDS analysis of these data was done by Shepard (1963) and then by
Kruskal (1964a) with the program M-D-SCAL (Kruskal & Carmone, 1969). M-D-SCAL
has been replaced, in the meantime, by Kyst (Kruskal, Young, & Seery, 1978). Most
modern MDS programs (see Appendix A for an overview) usually lead to very similar
solutions (Spence, 1972).
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FIGURE 4.5. Scree plot (Stress vs. dimensionality) for MDS of color and Morse
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Technically, cutting a space into regions is called partitioning the space.
Generally, partitioning a set means splitting it into subsets such that each
element belongs to exactly one such subset. The resulting subsets are ex-
haustive and disjoint.

The configuration can also be partitioned in other ways by using other
criteria. The dashed lines partition the space into regions that contain
signals with only short (coded as 1) beeps, more short than long (coded as
2) beeps, a balanced number of short and long beeps, more long than short
beeps, and long beeps only, respectively. The structure of this partitioning
could be simplified—provided we are admitting some minor and one major
misclassification of points—to a North–South slicing of the MDS plane into
parallel stripes. The one major misclassification would result from point E.
E, the Morse code that consists of one short beep only, seems to play a
particular role. It is close to T, the other one-beep Morse code.

Without E, a typical dimensional interpretation of the MDS space would
suggest itself: after a little rotation, the Y -axis could be interpreted as
“duration”, the X-axis as “kind of composition”, ranging from signals con-
sisting of short beeps only over signals with both short and long beeps to
signals with long beeps only. Hence, at this stage, further research should
first clarify the reliability of E’s position. If E turns out to be reliable, we
could possibly design a theory that explains the subjective similarity of
Morse codes not by two independent dimensions but by two dimensions
where the points’ variance with respect to one dimension depends on the
scale values on the other dimension, giving rise to a fan-like partitioning.

In any case, we see that the 2D MDS configuration can be interpreted in
a simple but nontrivial way. Known properties of the signals, not just plau-
sible posthoc insights, are used to explain the point scatter. The simplicity
of the resulting geometric structure suggests, moreover, that we have found
something real, not just an apparent structure in random data.

If we go on to higher-dimensional solutions, the points do not appear
to reflect further systematic structure. Because no substantive hypothesis
could be derived on the dimensionality of the MDS configuration, we may
decide to give considerable weight to this simple interpretability of the
solution over a formal precision-of-representation criterion such as Stress.
This turns out to be a fruitful strategy in general. In any case, the data
could be replicated, and then we would hope to find the same organizational
patterns again. Without several such replications, we should be wary of
making fine-grained interpretations.

4.3 Dimensions of Facial Expressions

There are many principles that can be used for interpreting an MDS con-
figuration. What one always looks for is some way to organize the point
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scatter, to account for it or to “explain” it by a parsimonious but substan-
tively meaningful generating function. The typical, often almost mechani-
cal approach to this question in the literature has been the interpretation
by dimensions. Dimensional interpretations assign substantive meaning to
coordinate axes. We now examine a relatively refined example where a
dimensional theory is given a priori.

Rating Facial Expressions on Simple Scales
Some of the early research on the psychology of facial expressions was oc-
cupied with the question of whether subjects could correctly identify the
intended emotional message from a person’s facial expression. It was found
that misinterpretations were not random; the perceived emotion usually
seemed “psychologically similar” (Woodworth, 1938) to the one actually
expressed by the sender. Schlosberg and others then attempted to develop
a theory of the differentiability of facial expressions, concluding that three
perceptual “dimensions” were needed for a meaningful classification of fa-
cial expressions: pleasant–unpleasant (PU); attention–rejection (AR); and
tension–sleep (TS). In different studies, it could be shown that subjects
were able to classify facial expressions on these dimensions.

Engen, Levy, and Schlosberg (1958) published scale values, empirically
arrived at, for the 48 photographs of the Lightfoot Series. This series shows
the face of a woman acting out a series of different situations. Some of the
situations and their coordinate values are given in Table 4.3. If these values
are taken as Cartesian coordinates, distances between the different expres-
sions can be computed and used to predict confusion rates. However, “. . .
the particular three dimensions used by Schlosberg are not necessarily the
only dimensions or the best dimensions for explaining confusion data . . ..
There is the possibility that one or more of Schlosberg’s scales, while under-
standable when made explicit to judges, are unimportant in uninstructed
perception of facial expression; or conversely, that one or more important
scales have been omitted . . .. [The experimenter] imposes particular di-
mensions of his own choosing and is arbitrarily forced to give them equal
weight” (Abelson & Sermat, 1962, p. 546).

MDS of Facial Expressions and Internal Scales
MDS offers another way of testing the theory of three dimensions. We
can ask the subjects to globally judge, without external criteria provided
by the experimenter, the overall similarities of different facial expressions.
The proximities are then mapped into MDS distances. The resulting con-
figuration should be three-dimensional, with dimensions that correspond
to the Schlosberg scales.

Abelson and Sermat (1962) asked 30 students to rate each pair of the 13
pictures described in Table 4.3 on a 9-point scale with respect to overall
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TABLE 4.3. Scale values on three scales for faces of a woman acting different
scenes (Engen et al., 1958); values are medians on 9-point scales.

Scene PU AR TS
1 Grief at death of mother 3.8 4.2 4.1
2 Savoring a Coke 5.9 5.4 4.8
3 Very pleasant surprise 8.8 7.8 7.1
4 Maternal love–baby in arms 7.0 5.9 4.0
5 Physical exhaustion 3.3 2.5 3.1
6 Something wrong with plane 3.5 6.1 6.8
7 Anger at seeing dog beaten 2.1 8.0 8.2
8 Pulling hard on seat of chair 6.7 4.2 6.6
9 Unexpectedly meets old boyfriend 7.4 6.8 5.9

10 Revulsion 2.9 3.0 5.1
11 Extreme pain 2.2 2.2 6.4
12 Knows plane will crash 1.1 8.6 8.9
13 Light sleep 4.1 1.3 1.0

dissimilarity. Dissimilarity was defined as “a difference in emotional expres-
sion or content.” For each subject, 78 proximities resulted, which were then
rescaled over individuals by the method of successive intervals (Diederich,
Messick, & Tucker, 1957). The means of these intervals were taken as the
proximity data (Table 4.4).

We now analyze the data in Table 4.4 by ordinal MDS. The resulting
Stress values for 1D up to 5D solutions are .24, .11, .06, .04, and .02,
respectively. On purely formal grounds, we would probably decide that the
2D solution is reasonably accurate. However, because we are particularly
interested in testing Schlosberg’s theory of three dimensions, we should also
consider the 3D solution. To make things simpler, we first start with the
2D solution.

The point coordinates of the 2D solution (Figure 4.9) are shown in Table
4.5. One can check that the values in each column add up to zero. Geomet-
rically, this means that the MDS configuration is centered; that is, its center
of gravity lies at the origin of the coordinate axes. The coordinate vectors
are also uncorrelated. This is so because the MDS configuration has been
rotated to its principal axes orientation or, expressed differently, because
the dimensions X and Y are the principal axes (see also Section 7.10) of
this plane. Principal axes (PAs) are always uncorrelated.2 The PAs can be
found by locating an axis so that it accounts for as much of the points’
scattering as possible. That is, an axis is located such that it lies as close
as possible to all points in the sense that the sum of squared distances of

2One can formulate the problem of finding PAs as finding that rotation of a given
Cartesian dimension system that makes the point coordinates uncorrelated [see, for
example, Strang (1976)].
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TABLE 4.4. Proximities for faces from Table 4.3.

1 2 3 4 5 6 7 8 9 10 11 12 13
1 –
2 4.05 –
3 8.25 2.54 –
4 5.57 2.69 2.11 –
5 1.15 2.67 8.98 3.78 –
6 2.97 3.88 9.27 6.05 2.34 –
7 4.34 8.53 11.87 9.78 7.12 1.36 –
8 4.90 1.31 2.56 4.21 5.90 5.18 8.47 –
9 6.25 1.88 0.74 0.45 4.77 5.45 10.20 2.63 –

10 1.55 4.84 9.25 4.92 2.22 4.17 5.44 5.45 7.10 –
11 1.68 5.81 7.92 5.42 4.34 4.72 4.31 3.79 6.58 1.98 –
12 6.57 7.43 8.30 8.93 8.16 4.66 1.57 6.49 9.77 4.93 4.83 –
13 3.93 4.51 8.47 3.48 1.60 4.89 9.18 6.05 6.55 4.12 3.51 12.65 –

TABLE 4.5. Coordinates for points in 2D MDS space.

Point/Picture Dim 1 (X) Dim 2 (Y )
1
2
3
4
5
6
7
8
9

10
11
12
13

−0.41
0.54
1.22
0.97
0.06

−0.67
−1.34

0.48
1.05

−0.59
−0.62
−1.02

0.32

−0.46
0.14
0.75

−0.21
−0.72

0.24
0.45
0.62
0.27

−0.69
−0.31

0.98
−1.04

the points from it is minimal. The second PA then is fixed automatically,
because it must be perpendicular to the first axis.

Internal and External Scales
We now test whether the external scales of Table 4.3 account for the relative
locations of the points. A crude first test is to correlate each of the columns
of Table 4.5 (internal scale) with the columns in Table 4.3. Table 4.6, left
panel, shows that there is a considerable correlation, r = .94, between the
coordinates of the points on the X-axis and the values of the corresponding
facial expressions on the PU scale. Similarly, the point coordinates on the
Y -axis correlate highly with both the AR (r = .86) and the TS (r = .87)
scales.
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TABLE 4.6. Correlations between principal axes of 2D and 3D MDS solutions
and Schlosberg scales in Table 4.3.

2D MDS 3D MDS
Scale Dim 1 Dim 2 R2 Dim 1 Dim 2 Dim 3 R2

PU .94 .21 .92 .93 .20 -.09 .91
AR -.02 .86 .74 -.05 .83 -.34 .81
TS -.38 .87 .90 -.37 .89 .06 .96

Yet, Schlosberg’s theory does not claim that the principal axes should
be of particular substantive importance. Maybe there are other dimensions
that better satisfy the theory and, in particular, correlate higher with the
scales of Table 4.3. This question can be answered as follows. Using multi-
ple correlation, we can assess how well an optimal linear combination of the
principal axes explains the scales. Because principal axes are uncorrelated,
the squared multiple correlations are simply the sum of the squared bivari-
ate correlations in Table 4.6. For example, for the PU scale on the one hand
and the principal axes of the 2D solution, we find R(PU.12) = .921/2 from
R2 = (0.94)2+(0.21)2 = 0.92. Thus, because the multiple correlation of the
PU scale with the principal axes is higher than any bivariate correlation
of PU with a given principal axis, there must exist an axis (i.e., another
internal scale) in the MDS space that correlates even higher with PU than
the X-axis. This is now investigated.

Optimally Fitting External Scales
In addition to correlating the points’ coordinates on some internal scale
with an external scale, we can also express their relationship geometrically.
This is done by representing an external scale S by a directed line3 Q
located such that the point projections on it (Q-values or Q-coordinates)
mirror as closely as possible the corresponding scale values of S. This can
mean, for example, that the point projections on Q are spaced such that
the ordinal Stress between the Q- and the S-values is minimal. Or, because
we have treated the S scales above as interval scales, we could require
that the intervals of the Q- and the S-values correspond most closely in
their proportions. Thus, Q should be located such that, over all points
i, [si − (a + b · qi)]2 = min, where qi is the coordinate value of point i’s
projection on line Q. This looks like a linear regression problem, except
that not only the weights a and b, but also the qi values are unknowns.
But any line Q is simply a linear combination of the coordinate vectors in

3A directed line is a line on which the direction from one end to the other has been
indicated as positive, and the reverse direction as negative. The points on this line are
ordered.
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TABLE 4.7. Multiple regression problem to account for external PU scale by
MDS coordinate vectors. Weights w1, w2 and additive constant a are to be
chosen such that ≈ means “as nearly equal as possible.” Optimal values are
g1 = 2.679, g2 = 0.816, a = 4.523.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.8
5.9
8.9
7.0
3.3
3.5
2.1
6.7
7.4
2.9
2.2
1.1
4.1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≈ g1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.41
0.54
1.22
0.97
0.06

−0.67
−1.34

0.48
1.05

−0.59
−0.62
−1.02

0.32

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ g2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.46
0.14
0.75

−0.21
−0.72

0.24
0.45
0.62
0.27

−0.69
−0.31

0.98
−1.04

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ a

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
1
1
1
1
1
1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1
q2
q3
q4
q5
q6
q7
q8
q9
q10
q11
q12
q13

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.05
6.08
8.40
6.95
4.10
2.92
1.30
6.32
7.56
2.38
2.61
2.59
4.53

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Table 4.7. Hence, for each point i, it holds that qi = w1 · xi + w2 · yi, where
xi and yi are the coordinate values of point i on the given X- and Y -axes,
respectively, and wk is a weight.

Inserting this expression for qi into the above loss function, we note that
b can be pulled into the wis so that the multiple regression problem in
Table 4.7 emerges, where gi = b · wi. Because X and Y are uncorrelated,
the weights in Table 4.7 are simple regression weights. The additive con-
stant a is simply the mean of the external scale. (One can eliminate a
entirely by transforming the si-values into deviation scores.) The regres-
sion equation thus says that, given some point P such as point 1 with
coordinates (−0.41,−0.46), its corresponding q1-value is 2.679 · (−0.41) +
0.816 · (−0.46) + 4.523 = 3.05.

Overall, the resulting point coordinates on Q correlate with the external
scale PU with .96, which checks with the R2 = .92 from Table 4.6.

For the origin O = (0.00, 0.00), we get qO = 0.00, and so it is convenient
to run Q through the origin O. For actually drawing Q in an MDS space,
we have to find a second point on Q besides the origin. It can be shown
that the regression weights gi are the coordinates of such a point, provided
Q runs through the origin O. Hence, we have two points that lie on Q, and
this determines the line. In the given case, these points are O = (0.00, 0.00)
and (2.679, 0.816).

A second possibility is locating the line Q on the basis of its angles to the
coordinate axes. The direction cosine4 of line Q with the ath coordinate

4The direction cosine of Q with the coordinate axis Ai is the cosine of the angle that
rotates the positive end of Q onto the positive end of Ai.
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TABLE 4.8. Coordinates of points 1, . . . , 13 of Fig. 4.8 projected onto the axes
A1, A2, and A3 of Fig. 4.8; r is the correlation of axis Ai with the PU values in
Table 4.3.

A1 A2 A3

1 -0.564 0.136 0.526
2 0.802 -0.421 -0.368
3 1.748 -0.719 -1.133
4 1.479 -0.980 -0.338
5 0.165 -0.417 0.475
6 -1.029 0.722 0.170
7 -2.049 1.426 0.356
8 0.655 -0.121 -0.672
9 1.544 -0.810 -0.709

10 -0.811 0.185 0.774
11 -0.895 0.399 0.528
12 -1.635 1.412 -0.173
13 0.590 -0.811 0.564

r = 0.920 -0.780 -0.800

axis can be computed directly by the formula αa = cos−1(ga/
∑m

a=1 g2
a),

where ga is the regression weight of the ath coordinate axis.
Because of the close relationship between regression weights and direction

angles, we can conceive of the problem of representing an external scale by
a line as a rotation problem: the task is to turn a line running through the
origin such that the projections of the points on it correspond best to a
given external scale. Figure 4.8 demonstrates this notion. A line or, rather, a
directed axis is spun around the origin until it reaches an orientation where
the points of the MDS configurations project on it so that these projections
correlate maximally with the external scale. Three axes (A1, A2, and A3)
are shown graphically. The corresponding point projections are exhibited
in Table 4.8. The table also shows the correlations of the projections with
the scale values for the external PU scale from Table 4.3. One notes that
A1 has a high positive correlation with the PU scale, which indicates that
the X-axis of the MDS solution can be interpreted as a continuum ranging
from unpleasant to pleasant (see also Figure 4.9).

3D MDS of the Faces Data with Embedded External Scales
Because Schlosberg’s theory is a theory of three dimensions, we also take
a look at the 3D MDS solution. Figure 4.10 exhibits this configuration,
together with the embedded external scales. Before going into further in-
terpretations, we note that such a 3D configuration is not easy to look at,
because what we see here is only a projection of this configuration onto
a plane. The reader always has to mentally reconstruct the original con-
figuration from this projection, which is often a difficult task. We note,
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FIGURE 4.9. 2D MDS of faces data,
with optimally fitted external scales.

for example, that it is almost impossible to see from Figure 4.10 how the
embedded scales are oriented in the space.

One gets a clearer picture from the correlations of the embedded scales
with the coordinate axes (Table 4.6). In addition, it is sometimes worth-
while to make use of features offered by the graphical environment of some
MDS programs, in particular the possibility of rotating 3D configurations
online in space. This allows one to inspect the configuration from different
perspectives on the computer screen, which may suffice to understand the
spatial relationships.

Figure 4.10, in any case, seems to suggest that the external scales PU
and TS essentially correspond to Cartesian dimensions, whereas AR does
not explain much additional variance. This is not surprising because r(TS,
AR) = .75 in Table 4.3. Yet, there is quite a bit of scatter of the points
in the third dimension. That this can only be partially explained by the
external scales may be a consequence of the different psychology involved in
generating the global similarity judgments and the ratings on the external
scales. The given evidence is at least not contradictory to Schlosberg’s
theory of three dimensions.

4.4 General Principles of Interpreting
MDS Solutions

The above MDS applications are chosen to show the reader some real-
data examples, with substantive questions linked to them. The question of
interpretation asked for connections of geometric properties of the MDS
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FIGURE 4.10. 3D MDS of faces data, with fitted external scales.

representation and substantive aspects of the represented objects. In the
case of the color data, we found that the electromagnetic wavelengths of
the colors were reflected in a corresponding array of the points in MDS
space along a (curved) line. For the Morse code signals, we found that
certain physical properties of the signals had a systematic relationship to
various regions of the MDS space. The facial expression data led to an MDS
configuration whose dimensions were strongly related to external scales for
the same stimuli.

These examples illustrate the three most common principles used in in-
terpreting MDS solutions. The color circle is an instance of a particular
manifold, which is any set of points that form objects in space that are
nearly “flat” in the neighborhood of any of their points (“locally” Eu-
clidean). Most often, manifolds refer to points that form smooth curves or
surfaces in space.

The regional interpretation of the Morse code data resulted from parti-
tioning the space in multiple ways. The criteria used were different physical
properties of the Morse code stimuli. In each case, the goal was to split the
space such that each region would contain only points representing stim-
uli with equivalent properties on the partitioning criterion. Nothing else
is required by this interpretational approach and, therefore, many differ-
ent regional patterns may arise. Special cases are clusters—that is, very
dense regions separated from each other by “empty space”—and dimen-
sions. The latter partition the space into intervals, checkerboard patterns,
box-like cells, and so on, depending on the dimensionality m. A regional
interpretation is also possible for the color data: if we use wavelength as the
physical property of the stimuli, each region contains but a single point,
but coarser partitionings result from lumping together the stimuli into such
classes as red, blue, yellow, and green.



82 4. Three Applications of MDS

Finally, the facial expression example illustrated the dimensional ap-
proach, the most common interpretation in practice. Note, however, that
interpreting dimensions means that one is trying to link a very particular
geometric feature to substantive features of the represented objects. One
should not expect that this will always be successful.

These applications were, in a sense, confirmatory ones, because, in each
case, there was at least an implicit expectation about certain properties of
the MDS configuration. But even in a more exploratory context, interpret-
ing MDS configurations complies with the same logic, except that some of
the features of the stimuli one links to the MDS geometry are hypothe-
sized or assumed. That is, looking at an MDS configuration and trying to
make sense out of it simply means that one projects various forms of prior
knowledge onto this space in order to explain the configuration. If this prior
knowledge is solid, then exploratory MDS is also solid. Otherwise, one has
to test the stability of such interpretations over replications.

In principle, any geometric property of an MDS solution that can be
linked to substance is an interesting one. However, in the literature, certain
standard approaches for interpretation are suggested, that is, particular
geometric properties that one should consider. By far, the most popular
approach is to look for meaningful directions or dimensions in the MDS
space. Naturally, dimensions may not be related in any interesting way to
the objects’ substance, nor is any other feature of an MDS configuration.

4.5 Exercises

Exercise 4.1 In this exercise, we have a closer look at the choice of dimen-
sionality for the color data of Ekman (1954) from Section 4.1.

(a) Compute MDS solutions for the data in Table 4.1 in 1, 2, 3, 4, 5, and
6 dimensions. Make a scree plot. What do you conclude with respect
to the proper dimensionality of the MDS solution?

(b) Discuss a few criteria from Section 3.5 for choosing the proper di-
mensionality of the MDS solution.

Exercise 4.2 Figure 4.1 gives an MDS representation for the subjective
similarity assessments of different colors. These colors are characterized by
their electromagnetic wavelengths. Yellow corresponds to about 570 nm,
green to 520 nm, blue to 480 nm, and violet to about 380–450 nm. Orange
starts at about 600 nm and turns into red at the end of the visible spectrum
(above 650 nm). For answering (b) and (c), you may want to consult an
introductory psychology textbook.

(a) With this background, interpret the MDS configuration in terms of
two meaningful color dimensions.
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(b) What kind of MDS configuration could be expected if the color stimuli
would vary not only in hue, but also in saturation?

(c) What color would you expect to lie at the center of the circle?

Exercise 4.3 Consider the facial expression data of Section 4.3.

(a) Compute the angle between the X-axis and the lines that best rep-
resent the scales PU, AR, and TS, respectively, of Table 4.3 in the
MDS configuration of Table 4.5.

(b) The angles for AR and TS are similar. What does that mean in terms
of the data?

(c) What substantive conclusions do you draw from (b)?

Exercise 4.4 Rosenberg and Kim (1975) studied the similarity of 15 kinship
terms. College students sorted the terms on the basis of their similarity
into groups. Each student generated a dissimilarity matrix where a pair of
objects was coded as 1 if the objects were sorted in different groups and as
0 if the objects were sorted in the same group. The table below gives the
percentage of how often terms were not grouped together over all students.

Kinship Term 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 Aunt –
2 Brother 79 –
3 Cousin 53 67 –
4 Daughter 59 62 74 –
5 Father 73 38 77 57 –
6 Granddaughter 57 75 74 46 79 –
7 Grandfather 77 57 76 77 51 57 –
8 Grandmother 55 80 78 54 70 32 29 –
9 Grandson 79 51 72 72 54 29 31 57 –

10 Mother 51 63 79 31 29 56 75 50 79 –
11 Nephew 56 53 51 74 59 74 58 79 51 81 –
12 Niece 32 76 53 52 81 51 79 58 74 60 27 –
13 Sister 58 28 70 37 63 50 79 57 75 39 76 53 –
14 Son 80 38 73 29 32 72 55 78 47 57 52 74 62 –
15 Uncle 27 57 51 80 51 80 55 77 58 73 33 56 79 59 –

In addition, for each of the kinship terms, external scales can be set up for
gender (1 = male, 2 = female, 9 = missing), generation (-2 = two back,
-1 = one back, 0 = same generation, 1 = one ahead, 2 = two ahead), and
degree (1 = first, 2 = second, etc.) of the kinship term. The table below
presents these external scales.
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Kinship Term Gender Generation Degree
1 Aunt 2 -1 3
2 Brother 1 0 2
3 Cousin 9 0 4
4 Daughter 2 1 1
5 Father 1 -1 1
6 Granddaughter 2 2 2
7 Grandfather 1 -2 2
8 Grandmother 2 -2 2
9 Grandson 1 2 2

10 Mother 2 -1 1
11 Nephew 1 1 3
12 Niece 2 1 3
13 Sister 2 0 2
14 Son 1 1 1
15 Uncle 1 -1 3

(a) Do an ordinal multidimensional scaling analysis in two dimensions.
Interpret the solution.

(b) Inspect the Shepard diagram or the transformation and residual dia-
grams. Are all proximities properly fitted?

(c) Compute the correlations between the dimensions and the external
scales generation and degree, respectively. Use a multiple regression
program to find optimal weights g1 and g2 to predict each external
scale out of the two dimensions. Plot the two external scales in the
solution. How can you interpret the solution in terms of generation
and degree?

(d) Suppose that we would also like to represent gender in the MDS
solution. Explain how this could be done. Elaborate your solution in
the plot.

Exercise 4.5 Wolford and Hollingsworth (1974) were interested in the con-
fusions made when a person attempts to identify letters of the alphabet
viewed for some milliseconds only. A confusion matrix was constructed
that shows the frequency with which each stimulus letter was mistakenly
called something else. A section of this matrix is shown in the table below.

Letter C D G H M N Q W
C –
D 5 –
G 12 2 –
H 2 4 3 –
M 2 3 2 19 –
N 2 4 1 18 16 –
Q 9 20 9 1 2 8 –
W 1 5 2 5 18 13 4 –

(a) Are these data similarity or dissimilarity measures?



4.5 Exercises 85

(b) Use MDS to show their structure.

(c) Interpret the MDS solution in terms of regions. What do you con-
clude with respect to letter confusion? (Hint: Letter confusion may
be based, e.g., on visual features or on the similarity of sounds.)

Exercise 4.6 Consider the data on the subjective similarity of different
countries in Table 1.3. The table below supplements these data by two
external scales. The first scale consists of rankings on “economic develop-
ment” that one particular student could have assigned to these countries
in the 1960s. The second scale shows the population of these countries in
about 1965.

Economic Population
Country No. Development (ca. 1965)
Brazil 1 3 87
Congo 2 1 17
Cuba 3 3 8
Egypt 4 3 30
France 5 8 51
India 6 3 500
Israel 7 7 3
Japan 8 9 100
China 9 4 750
USSR 10 7 235
U.S.A. 11 10 201
Yugoslavia 12 6 20

(a) Find the coordinates of a two-dimensional ordinal MDS representa-
tion of the data in in Table 1.3.

(b) Fit the external scales into this MDS space by linear regression. Plot
the embedded scales as directed lines.

(c) Interpret the MDS solution in terms of the external scales, if possible.
Discuss how successful these two scales are in explaining the MDS
configuration.



5
MDS and Facet Theory

Regional interpretations of MDS solutions are very general and particu-
larly successful approaches for linking MDS configurations and substantive
knowledge about the represented objects. Facet theory (FT) provides a sys-
tematic framework for regional interpretations. FT structures a domain of
interest by partitioning it into types. The typology is generated by coding
the objects of interest on some facets of their content. The logic is simi-
lar to stratifying a sample of persons or constructing stimuli in a factorial
design. What is then tested by MDS is whether the distinctions made on
the conceptual (design) side are mirrored in the MDS representation of the
objects’ similarity coefficients such that different types of objects fall into
different regions of the MDS space.

5.1 Facets and Regions in MDS Space

Interpreting an MDS solution means linking geometric properties of the
configuration to substantive features of the represented objects. A very
general approach is to interpret regions of an MDS space. Regional inter-
pretations are put into a systematic framework in facet theory (Guttman,
1959, 1991; Borg & Shye, 1995).
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Elements of Facet Theory
The central notion of facet theory (FT) is that of a facet. A facet is a scheme
used to classify the elements of a domain of interest into types. The facet
“gender”, for example, classifies persons into males and females. Similarly,
the facet “behavior modality” classifies attitudinal behavior into emotional,
cognitive, and actional behavior. Using several facets at the same time par-
titions a domain of interest into multifaceted types. Consider the tasks
contained in an intelligence test, for example. In FT, such tasks are intel-
ligence items, defined as questions that ask about an individual’s behavior
and assess it on a scale from “very right” to “very wrong” according to an
objective rule (Guttman, 1965). A particular case of intelligence items are
the tests in paper-and-pencil intelligence test batteries. Such tests require
the testee to find verbal analogies, solve arithmetic problems, and iden-
tify patterns that complete series of figures, for example. Hence, they can
be classified by the facet “language of presentation” into numerical, ver-
bal, and geometrical ones. At the same time, such tests relate to different
abilities, which gives rise to a second facet, “required mental operation”.
It classifies tests into those where the testee has to infer, apply, or learn
a rule, respectively (Guttman & Levy, 1991). In combination, these two
facets distinguish nine types of intelligence: numerical tests requiring the
testee to infer a rule, numerical tests requiring the testee to apply a rule,
. . ., geometrical tests requiring the testee to learn a rule.

In FT, facets are typically not just listed but rather expressed in the
framework of a mapping sentence. It shows the roles the facets play relative
to each other and relative to what is being observed, that is, the range of
the items. An example is the following.

Person {p} performs on a task presented in

language⎧⎨⎩
verbal

numerical
geometrical

⎫⎬⎭ language and requiring

requirement⎧⎨⎩
learning
applying
inferring

⎫⎬⎭ an

objective rule →

range⎧⎨⎩
very right

to
very wrong

⎫⎬⎭ according to that rule.

The terms enclosed in braces denote the facets.1 The set of persons, p, is
not stratified further in this example, whereas the questions are structured

1Instead of braces, one often uses vertical arrays of parentheses. Braces, however,
correspond to the usual mathematical notation for listing the elements of a set. Formally,
a facet is a set or, more precisely, a component set of a Cartesian product.
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by the two facets from above, “requirement” and “language”. The range of
the mapping sentence is the scale on the right-hand side of the arrow. The
arrow symbolizes an observational mapping of every person in p crossed
with every (doubly coded) test into the range (data). Each such mapping
specifies the response of a given person to a particular type of question. For
each question type, there are generally thousands of concrete items.

Facets are invented for a particular purpose, that is, for systematically
breaking up a domain of interest into subcategories or types in order to
conceptually structure this domain. Take plants, for example. Botanists,
painters, children, perfume makers, and the like, all invented category sys-
tems that allow them to order plants in some way that is meaningful for
them. Good classification systems allow the user to unambiguously place
each and every object into one and only one category. But good classifi-
cation systems also serve a particular purpose beyond providing concep-
tual control: the different types distinguished by the classification system
should, in one way or another, “behave” differently in real life. Whether
this is true can be tested empirically and, hence, implies a hypothesis.

Facet Theory and Regions in MDS Spaces
A traditional specification of the hypothesis of empirical usefulness of a
facet is that it should explain the data in some way. One way of testing
this is to check whether the distinctions made by the facets are mirrored,
facet by facet, in corresponding differences of the data. For example, tests
that require the testee to infer, apply, or learn a rule, should lead to different
responses of the testee. One particular specification of what is meant by
“different” is that inferential tests are most difficult, in general, and learning
tests are least difficult, with application tests in between. Another form of
hypothesis is that different item types fall into different regions of an MDS
representation of the item intercorrelations.

A regional hypothesis thus links content facets to regions of the empirical
MDS space. The hypothesis is that the MDS space can be partitioned such
that each region represents a different facet element.2 That is, all points
within a particular region should be associated with the same facet element,
and points in different regions should be associated with different facet
elements.

Consider an example. Table 5.1 shows the intercorrelations of eight in-
telligence test items, together with structuples, that is, codings of the items
on the facets “language” and “requirement” discussed above. Item 1 in Ta-

2In a plane, a region is defined as a connected set of points such as the inside of a
rectangle or a circle. More generally, a set of points is connected if each pair of its points
can be joined by a curve all of whose points are in the set. Partitioning a set of points
into regions means to split the set into classes such that each point belongs to exactly
one class.
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TABLE 5.1. Intercorrelations of eight intelligence tests, together with content
codings on the facets “language” = {N = numerical, G = geometrical} and
“requirement” = {A = application, I = inference} (Guttman, 1965).

Language Requirement Test 1 2 3 4 5 6 7 8
N A 1 1.00 .67 .40 .19 .12 .25 .26 .39
N A 2 .67 1.00 .50 .26 .20 .28 .26 .38
N I 3 .40 .50 1.00 .52 .39 .31 .18 .24
G I 4 .19 .26 .52 1.00 .55 .49 .25 .22
G I 5 .12 .20 .39 .55 1.00 .46 .29 .14
G A 6 .25 .28 .31 .49 .46 1.00 .42 .38
G A 7 .26 .26 .18 .25 .29 .42 1.00 .40
G A 8 .39 .38 .24 .22 .14 .38 .40 1.00

3=NI

2=NA

1=NA

8=GA

7=GA

6=GA

5=GI

4=GI

FIGURE 5.1. 2D MDS of correlations
in Table 5.1.
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4=GI

applications
inference

lacirtemoeg

laciremun

FIGURE 5.2. MDS space with four re-
gions resulting from G- vs. N-, and A-
vs. I-distinctions, respectively.

ble 5.1 is coded as numeric (on the facet “language”) and as application
(on the facet “requirement”), whereas item 5 is geometrical and inference.
Rather than looking at these correlations directly, we represent them in a
2D MDS space (Figure 5.1). This can be done with the low Stress of .015.

Figure 5.2 demonstrates that the MDS configuration can indeed be cut
such that each partitioning line splits it into two regions containing only
points of one type: points of the N-type lie above the solid line, and points
of the G-type below that line. The dashed line separates I-type points from
A-type points. One notes in Figure 5.2 that there is considerable leeway
in choosing the partitioning lines. Why, then, was a curved line chosen for
separating I-type points from A-type points? The reason is that this line
yields a structure that looks like a slice from the universe of all possible
item types discriminated by the given two facets. If items of all nine types
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FIGURE 5.4. Cylindrex of intelligence
items (after Guttman & Levy, 1991).

had been observed, one can predict that the MDS configuration would
form a pattern similar to a dart board, or radex, shown schematically in
Figure 5.3. If, in addition, one adds another facet, “communication”, which
distinguishes among oral, manual, and paper-and-pencil items, one obtains
a 3D cylindrex, shown in Figure 5.4. In the cylindrex, “communication”
plays the role of an axis along which the radexes for items using a fixed
form of communication are stacked on top of each other.

Summarizing, we see that every facet contains additional information on
the items in MDS. In a way, a facet can be seen as a design variable of
the items: every item belongs to one of the categories of each and every
facet. The facets are combined into a mapping sentence so that every item
corresponds to one particular way of reading this mapping sentence. Some
combinations of the categories may not be expressed by items, whereas
other combinations may have more than one item. The facets and their
categories (elements) are chosen on substantive grounds. Given a set of
items classified by such facets, MDS tests whether the classification is re-
flected in a corresponding regionality of the representation space.

5.2 Regional Laws

The cylindrex structure has been confirmed so often for intelligence test
items that now it is considered a regional law (Guttman & Levy, 1991).
What Figure 5.2 shows, therefore, is a partial replication of the cylindrex
law.
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What does such a regional law mean? First of all, it reflects regularities in
the data. For example, restricting oneself to items formulated in a particular
language (such as paper-and-pencil tests) and, thus, to a radex as in Figure
5.3, one notes that inference items generally correlate higher among each
other than application items, and learning items are least correlated. Thus,
knowing that some person performs well on a given inference item allows
one to predict that he or she will most likely also perform well on other
inference items, whereas good performance on a given learning item says
little about the performance on other learning items. One can improve the
predictions, however, if one constrains them to learning tasks that use a
particular language of presentation such as numerical tasks.

One notes, moreover, that the MDS regions for inference, application,
and learning are ordered. This order cannot be predicted or explained from
the properties of the qualitative facet “requirement”, but it reliably shows
up in hundreds of replications (Guttman & Levy, 1991). Thus, it seems
unavoidable to ask for an explanation for this lawfulness. Ideally, what
one wants is a definitional system that allows one to formally derive such
ordered regions from its facets.

Snow, Kyllonen, and Marshalek (1984) proposed an explanation in this
direction. They report a factor analysis that suggests that items which re-
late to points in the center of the radex (i.e., inference tasks) are “complex”
items and those represented at the periphery (such as learning tasks) are
“specific” items. This repeats, to some extent, what the radex says: items
whose points are closer to the origin of the radex tend to be more highly
correlated with other items. Snow et al. (1984) add, however, that more
complex tasks show “increased involvement of one or more centrally impor-
tant components.” Hence, their explanation for the inference-application-
learning order seems to be that these facet elements are but discrete se-
mantic simplifications of a smooth gradient of complexity.

One can ask the complexity question in a different way and define a task
t1 as more complex than t2 if “it requires everything t1 does, and more”
(Guttman, 1954, p. 269). Formally, this implies an interlocking of content
structuples, which is analogous to the perfect Guttman scale. Specifying
such structuples requires one to identify basic content facets with a common
range, where the concepts “inference”, “application”, and “learning” then
become only global labels for comparable (hence ordered) content structu-
ples of these underlying facets. For a fixed element of the “language” facet,
such a system would allow one to predict a particular order of regions
(simplex).

But this leads to the question of what pulls the different simplexes—one
for each type of required mental operation, that is, one for items that require
application, learning, or inference of an objective rule, respectively—to a
common origin? To explain this empirical structure requires an additional
pattern in the structuples. Formally, for the three directions of the intelli-
gence radex, it would suffice to have an additional coding of the items in



5.3 Multiple Facetizations 93

meaningful work

working cond.

spare timeinteresting work
independence

responsibility

security
incomehelp others

contact people

recognition

advancement
contribute society

FIGURE 5.5. Radex partitionings of 13 work value items.

terms of the extent to which they require each of the three mental opera-
tions. In any case, with many points and/or differentiated facets, a simple
correspondence between regions and structuples is a remarkable finding.
Arbitrary assignments of structuples to the points do not, in general, lead
to such lawfulness. Partitionings with relatively smooth cutting lines are
generally also more reliable. Moreover, they help clarify the roles the var-
ious facets play with respect to the data. Such roles are reflected in the
particular ways in which they cut the space.

5.3 Multiple Facetizations

A given object of interest can always be facetized in more than one way.
Every new facet offers a new alternative. But then one may ask whether
each such facetization is reflected in different statistical effects on the data
side. Consider work values, for example. Work value items ask the respon-
dent to assess the importance of different outcomes of his or her work. An
example is the questionnaire item: “How important is it to you personally
to make a lot of money?” with the range “very important . . . not important
at all.” Conceptually, two different kind of facets have been proposed for
organizing such items: one facet distinguishes the work outcomes in terms
of the need they satisfy, and the other facet is concerned with the allocation
criterion for rewarding such outcomes. Consider Table 5.2, in which Borg
and Staufenbiel (1993) coded 13 work value items in terms of seven facets.
The facets and the structuples were taken from the literature on organi-
zational behavior. Moorhead and Griffin (1989) argue, for example, that
security in Maslow’s sense interlocks with both Alderfer’s relatedness and
existence, but an item that is both Maslow-type security and Alderfer-type
relatedness (item 10 in Table 5.2) is missing in the given sample of items.
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TABLE 5.2. Work value items with various facet codings: H(erzberg) = {h =
hygiene, m = motivators}; M(aslow) = {p = physiological, s = security, b =
belongingness, r = recognition, a = self-actualization }; A(lderfer) = {e = ex-
istence, r = relations, g = growth}; E(lizur) = {i = instrumental-material, k =
cognitive, a = affective-social}; R(osenberg) = {e = extrinsic, i = intrinsic, s =
social}; L(evy-Guttman) = {i = independent of individual performance, g = de-
pends on group performance, n = not performance dependent}; B(org-Elizur) =
{1 = depends much on individual performance, 2 = depends more on individual
performance than on system, 3 = depends both on individual performance and
on system, 4 = depends on system only}.

Item H M A E R L B Work Value
1 m a g k i g 3 Interesting work
2 m a g k i g 3 Independence in work
3 m a g k i g 3 Work that requires much responsibility
4 m a g k i n 4 Job that is meaningful and sensible
5 m r g k e i 1 Good chances for advancement
6 m r r a s i 1 Job that is recognized and respected
7 h b r a s n 4 Job where one can help others
8 h b r a s n 4 Job useful for society
9 h b r a s n 4 Job with much contact with other people

10 - s r - - - - (No item of this type asked in study)
11 h s e i e i 2 Secure position
12 h s e i e i 1 High income
13 h p e i e n 4 Job that leaves much spare time
14 h p e i e n 4 Safe and healthy working conditions
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Figure 5.5 shows a 2D MDS representation for the correlations of the
13 work value items assessed in a representative German sample. The
radex partitioning is based on the facets “M(aslow)” (solid radial lines),
“R(osenberg)” (dashed radial lines), and “L(evy-Guttman)” (concentric
ellipses). It is easy to verify that the other facets also induce perfect and
simple partitionings of this configuration. These partitionings are, more-
over, quite similar: the respective regions turn out to be essentially congru-
ent, with more or fewer subdivisions. Differences of the various wedge-like
partitionings are primarily related to the outcome advancement, which is
most ambiguous in terms of the need that it satisfies. Hence, one can con-
clude that all of these theories are structurally quite similar in terms of
item intercorrelations. This suggests, for example, that Herzberg’s motiva-
tion and hygiene factors correspond empirically to Elizur’s cognitive and
affective/instrumental values, respectively.

We note, moreover, that such similar partitionings of the MDS space
into wedge-like regions—induced by different facets that are formally not
equivalent—give rise to a partial order of the induced sectors. The inter-
locking of the Herzberg and the Maslow facets implies, for example, that
the hygiene region contains the subregions “physiological”, “security”, and
“belongingness”, and the motivators’ region contains the subregions “es-
teem” and “self-actualization”. Hence, the subregions are forced into a
certain neighborhood relation that would not be required without the hier-
archical nesting. Similarly, the conceptual interlocking of the Maslow and
the Alderfer facet requires “esteem” to fall between “self-actualization” and
‘belongingness”.

Elizur, Borg, Hunt, and Magyari-Beck (1991) report further studies on
work values, conducted in different countries, which show essentially the
same radex lawfulness. Note that this does not imply similarity of MDS
configurations in the sense that these configurations can be brought, by
admissible transformations, to a complete match, point by point (for such
matchings; see Chapter 20). Rather, what is meant here is that several
configurations (which do not even have to have the same number of points)
exhibit the same law of formation: they can all be partitioned in essentially
the same way (i.e., in the sense of a radex) by just one fixed coding of the
items, thus showing similar contiguity patterns (Shye, 1981).

5.4 Partitioning MDS Spaces Using
Facet Diagrams

Partitioning an MDS space is facilitated by using facet diagrams. Facet
diagrams are simply subspaces—usually 2D projection planes—of the MDS
space where the points are labeled by their structuples or, better, by their
codings on just one facet (structs). This usually enables one to see the
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distribution of the points in terms of the particular typology articulated by
each facet.

Consider an example that also explicates further aspects of facet theory
(Galinat & Borg, 1987). In experimental investigations a number of prop-
erties of a situation have been shown, one by one, to have an effect on
judgments of duration of time. The following mapping sentence shows four
of these properties within a design meant to measure symbolic duration
judgments, that is, duration judgments on hypothetical situations.

Person {p} believes that the

positivity⎧⎨⎩
p1 = pleasant
p2 = neutral
p3 = unpleasant

⎫⎬⎭ situation with

number{
m1 = many
m2 = few

} variability{
v2 = monotonous
v1 = variable

}
events that are

difficulty{
s1 = difficult
s2 = easy

}
to handle is felt as →

reaction⎧⎨⎩
very short in duration

to
very long in duration

⎫⎬⎭ .

The mapping sentence first shows a placeholder for the population of re-
spondents {p}. In each particular way of reading the mapping sentence, one
element of {p} is picked and crossed with one particular combination of the
elements of the content facets. The content facets distinguish among dif-
ferent situations by considering four properties of its events: “positivity of
events”, “number of events”, “variability of events”, and “difficulty to han-
dle events”. With the number of facet elements we have specified here—3
on “positivity”, 2 on “number”, 2 on “variability”, and 2 on “difficulty”—
we have 3 · 2 · 2 · 2 = 24 different situation types. For example, a situation
with structuple (p3, m2, v1, s2) or, for short, 3212 is defined to be an un-
pleasant one, where few things are happening, with much variability, and
no problems to cope with what is going on.

What we are interested in is how persons judge the duration of these 24
situation types. The mapping sentence identifies the characteristics of these
situations in a relatively abstract way. For each type of situation, concrete
examples must be constructed in order to have items that can be presented
to respondents for assessment. The following story illustrates a concrete
item for a situation of type p1m1v1s2. “You are playing a simple card game
with your children. It is quite easy for you to win this game because your
kids are no serious opponents. The game requires you to exchange many
different cards. The game is fun throughout the three minutes that it lasts.”
This description is supplemented by the question, “What do you think; how
long would this card game seem to last? Would it seem longer or shorter
than three minutes?”
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A sample of persons rated this and 23 other hypothetical situations on
a 7-point scale from “a lot shorter” (coded as 1) to “a lot longer.” This
bipolar scale, together with the question, “What do you think: how long
. . .?”, is a concrete specification for the generic response range “very long
. . . very short in duration” in the above mapping sentence.

The intercorrelations of the 24 items are mapped into a 4D MDS space
(with Stress = .13). Four dimensions are chosen because we assume that
each facet can be completely crossed with any other. We now look at this
space in terms of two projection planes. Figure 5.6 shows the plane spanned
by the first two principal axes of the MDS configuration. Its points are
labeled by the structs of each point on the facet “positivity”. That is,
points labeled as – in this facet diagram represent situations defined as p3
= unpleasant. (Instead of –, one could also have chosen p3, “unpleasant”,
“neg”, “3”, or any other symbolism, of course.) The facet diagram shows
immediately that the points marked as +, o, and – are not distributed
randomly. Rather, the plane can be partitioned into regions so that each
region contains only or almost only points of one particular type. Figure
5.7 shows such a partitioning. It contains two minor errors: the two solid
arrows indicate where these points “should” lie to be in the appropriate
regions. Obviously, they are not far from the boundaries of these regions.
There is also one further, and gross, error: a “positive” point located in the
“negative” region. The dashed arrow attached to this point indicates the
direction of required shifting.

Figure 5.8 represents an alternative partitioning that is error-free. This
partitioning depends, however, very much on the position of the one point
marked by an arrow. Thus, it may be less reliable in further replications.
Moreover, the two partitionings imply different things. The concentric re-
gions of Figure 5.8 predict that the duration ratings on unpleasant situa-
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FIGURE 5.9. MDS projection plane
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tions should correlate higher among each other, on the average, than those
for pleasant situations. The parallel regions of Figure 5.7 do not thus re-
strict the correlations. Nevertheless, both partitions are similar in splitting
the plane into ordered regions, where the neutral region lies in between the
positive and the negative regions. Hence, the regions are ordered as the
facet “positivity” itself. Neither the spatial organization induced by the
straight lines nor that induced by concentric circular lines would therefore
have problems in accommodating a “positivity” facet, which distinguishes
many more than just three levels. This is important because what we want,
eventually, is not a theory about some particular sample of stimuli but one
about the universe of such situation types. We thus see that the facet “pos-
itivity” is reflected in the structure of the duration ratings. The decision on
which of the two partitionings is ultimately correct requires further data.

Figure 5.9 shows another plane of the 4D MDS space. It is spanned by
principal axes 3 and 4 of the space and is therefore orthogonal to the plane
in Figures 5.6–5.8. That is, each of its axes is perpendicular to both axes
used in Figures 5.6–5.8. One recognizes from the respective facet diagrams
(not shown here) that the configuration in this plane can be partitioned by
the facet “number”—without error—and also by “variability”—with two
errors.

The facet “difficulty” does not appear to show up in the MDS config-
uration; that is, the points representing easy and difficult situations, re-
spectively, seem to be so scrambled that they can be discriminated only
by very “irregular” partitionings. Such partitionings are, however, rarely
useful. Note, though, that just looking at various orthogonal planes does
not guarantee that one will detect existing regional patterns because such
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patterns may be positioned obliquely in space. This remains an unsolved
problem that is particularly relevant in higher-dimensional spaces. In any
case, using various spatial rotations and projections, we at least could not
identify any simple regions related to the facet “difficulty” (Galinat & Borg,
1987).

MDS thus shows that the structure of the duration ratings can, in a way,
be explained by three of the four facets of the design. This explanation is,
moreover, compatible with considerations that extend beyond the sample
of the given 24 concrete situations and that relate to their universe.

5.5 Prototypical Roles of Facets

With the partitionings shown in Figures 5.7 and 5.9, one arrives at an em-
bryonic Cartesian coordinate system spanned by the three facets “positiv-
ity”, “number”, and “variability”. Another coordinate system is suggested
if we accept the circular partitioning shown in Figure 5.8. In this case, we
have some evidence for a polar coordinate system of these facets.

The coordination of the MDS configuration in these examples is not
chosen arbitrarily. Rather, it relates naturally to content. We stress this
point here because the data determine only the distances among the points,
not any dimensions. Dimensions are either superimposed onto the distance
geometry in order to be able to replace ruler-and-compass construction
methods by computation, or they may result from projecting content onto
the geometry, as we saw earlier.

The content facets often play one of three prototypical roles in this con-
text. This is shown in the three panels of Figure 5.10. The panels exhibit
schematic facet diagrams, whose points are labeled as a, b, and c. In the
panel on the left-hand side, the space is partitioned in an axial way. The
panel in the center shows a modular partitioning. The panel on the right-
hand side shows a polar facet. An axial facet is one that corresponds to
a dimension; that is, the partitioning lines cut the space into subspaces
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that look like parallel stripes of the plane (axial simplex of regions; see also
Figure 5.7). A modular facet leads to a pattern that looks like a set of
concentric bands (radial simplex of regions; see also Figure 5.8). Finally, a
polar facet cuts the space, by rays emanating from a common origin, into
sectors, similar to cutting a pie into pieces (circumplex of regions; see also
Figure 5.3).

A number of particular combinations of facets that play such roles lead
to structures that were given special names because they are encountered
frequently in practice. For example, the combination of a polar facet and
a modular facet in a plane, having a common center, constitutes a radex
(see Figure 5.3). Adding an axial facet in the third dimension renders a
cylindrex. Another interesting structure is a multiplex, a conjunction of at
least two axial partitionings (see Figure 5.9). Special cases of the multi-
plex are called duplex (two axial facets), triplex (three axial facets), and so
on. The multiplex corresponds to the usual (Cartesian) coordinate system
(“dimensions”) as a special case if the facets are (densely) ordered and the
partitioning lines are straight, parallel, and orthogonal to each other.

There is also a variety of structures that are found less frequently in
practice, for example, the spherex (polar facets in three-dimensional space)
or the conex (similar to the cylindrex, but with radexes that shrink as one
moves along its axial facet).

5.6 Criteria for Choosing Regions

Partitionings of geometric configurations that consist of only a few points
are relatively easy to find. However, there is often so much leeway for
choosing the partitioning lines that their exact shape remains quite in-
determinate. More determinacy and greater falsifiability are brought in
by increasing the number of items. Another principle for restricting the
choice of partitioning lines is to think beyond the sample. In Figure 5.2,
the partitioning lines were chosen, in part, by considering the universe of
all intelligence items, a cylindrex.

Thinking beyond what was observed is always desirable, although it is,
of course, impossible to say in general how this could be done. Most re-
searchers typically are interested in generalizing their findings to the entire
content universe, to additional populations, and over replications. The sys-
tem of partitioning lines therefore should be robust in this respect, and
not attend too much to the particular sample. Simple partitionings with
relatively smooth cutting lines are typically more robust. But what is sim-
ple? Surely, a regionalization consisting of simply connected regions as in
an axial or an angular system is simple, but so are the concentric bands
of a circumplex. Hence, simple means, above all, that the partitioning is
simple to characterize in terms of the roles of the facets that induce the
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regions. Naturally, if one admits greater irregularities (i.e., not requiring
the lines to be so stiff locally), then the number of errors of classification
can generally be reduced or even eliminated. However, such error reduc-
tion typically makes it more difficult to describe the structure and, as a
consequence, makes it harder to express how the facets act on the MDS
space. Moreover, irregular ad hoc partitionings also reduce the likelihood
of finding similar structures in replications and in the universe of items.
One thus faces a trade-off decision of the following kind. Should one use
relatively simple partitionings at the expense of more errors? Or should one
choose more irregular lines to avoid classification errors, and then leave it
to the reader to simplify these patterns? Obviously, one has to decide what
seems most appropriate in the given context.

Irregular lines cast doubts on the falsifiability of regional hypotheses.
Partitionings become less likely to result from chance the more points they
classify correctly, the more differentiated the system of facets is, the sim-
pler the partitioning lines are, and the greater the stability of the pattern
is over replications. For arbitrary structuples, one should not expect to
find regional correspondences in the data. To see this, we simulate this
case by randomly permuting the structuples in Table 5.1. Assume that this
has led to the assignments 1 = GA, 2 = NI, 3 = GA, 4 = NA, 5 = GI,
6 = NA, 7 = GI, and 8 = GA. If we label the points in Figure 5.2 by
these structuples, we find that the plane can be partitioned in a modular
way by the facet {A, I}, but that the A-points are now in the center in
between the I-points. That does not correspond to the structure of the con-
tent universe, the cylindrex, which was replicated in hundreds of data sets
(Guttman & Levy, 1991). The second facet, {G, N}, leads to a partitioning
line that winds itself snake-like through the circular MDS configuration.
It thus shows that separating the G- from the N-points with a reasonably
regular line is only possible because we have so few points. It can hardly
be expected that such an artificial partitioning can be replicated in other
and richer data sets.

In addition to these formal criteria, one must request that the pattern of
regions also ultimately makes sense. Yet, irregular lines are already difficult
to describe as such and, as a consequence, complicate the search for explain-
ing the way in which the regions are related to the facets. Moreover, in the
given case, the radial order of inference, application, and learning is not
only replicable, but also seems to point to an ordered facet “complexity”,
where inference is the most complex task (see above). If application items,
then, come to lie in the radex center, such further search for substantive
meaning is thwarted.

To avoid seemingly arbitrary partitionings or to aid in partitioning MDS
spaces, Shye (1991) proposed a computerized method for partitioning facet
diagrams in three ways: (1) in an axial way, by parallel and straight lines;
(2) in a modular way, by concentric circles; and (3) in a polar way, by
rays emanating from a common origin. The program yields graphical dis-
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plays of three optimal partitionings, and measurements of the goodness
of these partitionings by providing a facet separation index based on the
sum of distances of the “deviant” points from their respective regions
and normalized by the separability that can be expected for random data
(Borg & Shye, 1995). Using this procedure suggests, for example, that a
concentric-circles partitioning is best in terms of separability for the facet
E = {i = instrumental-material, k = cognitive, a = affective-social} for the
configuration in Figure 5.5. This finding conflicts with our previous decision
to use polar partitioning for the very similar facet suggested by Rosenberg.
On closer inspection, one notes, however, that it hinges on the location of
one point, that is “good chances for advancement.” This work value was
categorized by Elizur as cognitive, but for a representative sample it may
be better categorized as instrumental-material, because higher pay, more
job security, and better working conditions may be more what most people
have in mind when they assess the importance of advancement. Another
criterion that speaks against the concentric-circles partitioning is that it
induces ordered regions. The concentric circles that lead to the best sep-
arability index for facet E with respect to the given MDS configuration
place the affective region in between the instrumental region and the cog-
nitive region. Hence, the regions are ordered in this partitioning, while the
facet only makes nominal distinctions, and no rationale for this order seems
obvious a posteriori, except that affective values may be more highly inter-
correlated than cognitive or instrumental values, in general. Naturally, such
content considerations, as well as generalizability and replicability, must be
considered in addition to formal separability measures for a given sample
representation.

5.7 Regions and Theory Construction

Definitions and data are intimately linked through correspondence hypothe-
ses not only at a particular point in time, but they are also related to each
other over time in a “partnership” (Guttman, 1991) of mutual feedback.
The definitions serve to select and structure the observations. The data
then lead to modifications, refinements, extensions, and generalizations in
the definitional framework. There is no natural beginning of this partner-
ship between data and definitions. Hence, a correspondence between data
and definitions can also be established a posteriori. That is, one may rec-
ognize certain groupings or clusters of the points, and then think about a
rationale afterwards to formulate new hypotheses. When the definitional
framework is complex, one typically does not predict a full-fledged regional
system (such as a cylindrex) unless past experience leads one to expect such
a system. Rather, one uses a more modest strategy with exploratory char-
acteristics, and simply tries to partition the space, facet by facet, with mini-
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mum error and simple partitioning lines. Even more liberal and exploratory
is the attempt to identify space partitions according to new content facets
that were not conceived in advance. The stability of such partitions is then
tested in replications.

Replicating a regional correspondence, and thereby establishing an em-
pirical law, is not sufficient for science. Researchers typically also want
to understand the law. Why, for example, are work values organized in a
radex? An answer to this question can be derived, in part, from reason-
ing in Schwarz and Bilsky (1987). These authors studied general values.
One of the facets they used was “motivational domain” = {achievement,
self-direction, security, enjoyment, . . .}. These distinctions were considered
nominal ones, but there was an additional notion of substantive opposition.
Four such oppositions were discussed, for example, achievement vs. secu-
rity: “To strive for success by using one’s skills usually entails both causing
some change in the social or physical environment and taking some risks
that may be personally or socially unsettling. This contradicts the concern
for preserving the status quo and for remaining psychologically and physi-
cally secure that is inherent in placing high priority on security values” (p.
554). Hence, the region of achievement values was predicted to lie opposite
the security region. If we use this kind of reasoning post hoc on the work
value radex of Figure 5.5, we could explain the opposite position of the
sectors v and a (in Maslow’s sense) by a certain notion of “contrast” of
striving for self-actualization and for recognition, respectively. This notion
of contrast is derived from a basic facet analysis of action systems (Shye,
1985). The same facet analysis also explains the neighborhood of regions
like recognition and security, for example.

To predict regional patterns requires one to clarify the expected roles of
the facets in the definitional framework. This involves, first of all, classify-
ing the scale level of each facet. For ordered facets, one predicts a regional
structure whose regions are also ordered so that the statement that some
region R comes “before” another region R′ has meaning. The order of the
regions should correspond to the order specified for the elements of the
corresponding facet. For qualitative facets, any kind of simple partition-
ability of the point configuration into regions is interesting. The distinction
of facets into qualitative and ordinal ones represents a “role assignment”
(Velleman & Wilkinson, 1994) that is “not governed by something inherent
in the data, but by interrelations between the data and some substantive
problem” (Guttman, 1971, p. 339), that is, by certain correspondence hy-
potheses linking the observations and the definitional system. Hence, if one
can see a conceptual order among the facet’s elements and hypothesize
that this order is mirrored in the observations collected on corresponding
items, then the facet “is” ordered—for testing the hypothesis. Scale level
thus remains context-related.

Consider as an example the facet “color” = {red, yellow, green, blue,
purple}. One would be tempted to say, at first, that this “is” a nominal
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facet. Yet, with respect to similarity judgments on colors, “color” has been
shown to be ordered empirically in a circular way (see Chapter 4). Further-
more, with respect to the physical wavelength of colors, “color” is linearly
ordered.

5.8 Regions, Clusters, and Factors

As is often true with concepts used in FT relative to similar ones in data
analysis, the FT notion is more general. An important example is that re-
gions include clusters as a special case. Lingoes (1981) proposes a faceted
way to distinguish among different types of regions. He suggests that a
cluster is a particular region whose points are all closer to each other than
to any point in some other region. This makes the points in a cluster look
relatively densely packed, with “empty” space around the cluster. For re-
gions, such a requirement generally is not relevant. All they require is a
rule that allows one to decide whether a point lies within or outside the re-
gion. The points 5 and 6 in Figure 5.2 are in different regions, but complete
linkage clustering (a common type of cluster analysis), for example, puts
them into one cluster together with point 4, and assigns points 7 and 8 to
another cluster. For regions, the distance of two points—on which cluster-
ing is based—does not matter. Indeed, two points can be very close and
still be in different regions. Conversely, two points may be far apart and
still belong to the same region. As an analogy, consider Detroit (Michigan)
and Windsor (Ontario). These cities are much closer than Detroit and Los
Angeles, for example, but Detroit and Los Angeles are both in the same
country, whereas Detroit and Windsor are not. In regions, all that counts is
discriminability. Moreover, clusters are usually identified on purely formal
criteria, whereas regions are always based on substantive codings of the
represented objects. Guttman (1977) commented therefore as follows: “. . .
theories about non-physical spaces . . . generally call for continuity, with no
‘vacuum’ or no clear separation between regions. . . The varied data analy-
sis techniques going under the name of ‘cluster analysis’ generally have no
rationale as to why systematic ‘clusters’ should be expected at all... The
term ‘cluster’ is often used when ‘region’ is more appropriate, requiring an
outside criterion for delineation of boundaries” (p. 105).

Factors from factor analyses are not directly related to regions or to clus-
ters. However, it is often asked in practice what one would have found if one
had analyzed a correlation matrix by factor analysis rather than by MDS.
Factor analysis, like cluster analysis, is a procedure that is substantively
“blind” (Guttman, 1977) or that, if used in a confirmatory way, forces a
preconceived formal structure onto the data representation, namely “fac-
tors”. The factors are (rectilinear) dimensions that are run through point
clusters, usually under the additional constraint of mutual orthogonality.
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For Table 5.1, a factor analysis yields three factors with eigenvalues greater
than 1. After varimax rotation, one finds that these factors correspond to
three clusters in Figure 5.1, {1,2,3}, {4,5,6}, and {6,7,8}. Hence, in a way,
the factors correspond to a polar partitioning of the MDS configuration in
the given case, with three factors or “regions” in a 2D MDS space. With
positive correlation matrices, this finding is rather typical; that is, one can
expect m + 1 factor-induced regions in an m-dimensional MDS space. The
reason for this is that positive correlations are conceived of in factor analy-
sis as a vector bundle that lies in the positive hyperoctant of the Cartesian
representation space, whereas MDS—which does not fix the origin of the
space—looks only at the surface that contains the vector endpoints. Thus,
Figure 5.1 roughly shows the surface of a section of the sphere whose origin
lies somewhere in the center of the points but behind (or above) the plane
(Guttman, 1982). The factors then correspond to a tripod fixed to the ori-
gin and rotated such that its axes lie as close as possible to the points.
Hence, one notes that the location of this dimension system is highly de-
pendent on the distribution of the points in space, whereas this is irrelevant
for regions, although, of course, a very uneven distribution of the points in
space will influence the MDS solution through the Stress criterion.

5.9 Exercises

Exercise 5.1 Consider the multitrait-multimethod matrix below (Bagozzi,
1993). It shows the correlations among nine items. The items assess the
traits global self-esteem, social self-esteem, and need for order. Each trait
is measured by three methods: true–false, multipoint, and simple self-rating
scales.

Item No. 1 2 3 4 5 6 7 8 9
T1M1 1 (.83)
T2M1 2 .58 (.85)
T3M1 3 .17 .14 (.74)
T1M2 4 .75 .45 .23 (.93)
T2M2 5 .72 .74 .16 .65 (.91)
T2M2 6 .09 .06 .68 .25 .08 (.85)
T1M3 7 .58 .53 .14 .62 .68 .09 (.63)
T2M3 8 .47 .74 .10 .40 .69 .07 .58 (.74)
T3M3 9 .22 .18 .63 .34 .22 .56 .30 .23 (.82)

(a) Do an MDS of this data matrix and check the configuration for pos-
sible correspondences to the trait and the method facet, respectively.
Try both 2D and 3D solutions.

(b) What can you conclude about the relative weight of trait and method
in these data?
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(c) Characterize the roles of facets T and M in this MDS configuration.

(d) Compare the roles of facets T and M to the roles that T and M play
in Exercise 1.6.

Exercise 5.2 Consider the data matrix below based on a representative
survey in the U.S.A. It shows the intercorrelations of items asking about
satisfaction with different aspects of one’s life. According to Levy (1976),
one can classify these items by the following mapping sentence. The extent
of satisfaction of respondent x with the {a1 = state of, a2 = resources
for} his or her activities in area of life {b1 = education, b2 = economy, b3
= residence, b4 = spare time, b5 = family, b6 = health, b7 = work, b8 =
general} → {very positive . . . very negative} satisfaction with life.

Item A B 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 City as place to live 2 3
2 Neighborhood 2 3 54
3 Housing 2 3 44 49
4 Life in the U.S. 2 3 33 28 29
5 Amount of educat. 2 1 19 18 23 12
6 Useful education 2 1 14 14 19 15 54
7 Job 1 7 22 21 26 23 25 24
8 Spare time 1 4 22 19 27 23 26 23 33
9 Health 2 9 05 00 06 06 18 17 13 21
10 Standard of living 1 2 33 32 45 24 32 24 35 37 17
11 Savings, investmt. 2 2 25 23 29 19 28 20 27 32 17 59
12 Friendships 2 4 24 19 23 21 16 17 25 40 09 25 24
13 Marriage 2 5 14 13 21 13 09 12 25 30 12 25 23 21
14 Family life 1 5 24 19 23 21 18 18 27 40 14 32 25 31 48
15 Life in general 1 8 28 23 30 24 28 24 34 50 26 45 36 32 38 50

(a) According to Levy facets A and B establish a radex in a 2D MDS
representation of these data. Verify.

(b) Characterize the roles of facets A and B in the MDS space.

(c) What item lies at the origin of the radex? Can you give a substantive
explanation of why this makes sense?

(d) Items that lie more at the center of the radex are more similar to
each other. What does that mean in this particular context?

Exercise 5.3 Consider the data matrix below. It shows the correlations for
12 intelligence tasks from the Wechsler test. The coefficients below the main
diagonal are based on 2200 U.S. children; the coefficients above the main
diagonal come from 1097 Israeli children. Following Guttman and Levy
(1991), the tasks can be described by the following mapping sentence. The
correctness of the response of testee x to a task that requires {I = inference,
A = application, L = learning} of an objective rule through {o = oral, m =
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manual manipulation, p = paper and pencil} expression → {high . . . low}
correctness.

Item Rule Exp 1 2 3 4 5 6 7 8 9 10 11 12
1 Information A o 51 52 58 46 36 40 38 42 34 31 30
2 Similarities I o 62 42 58 49 31 36 41 41 35 29 25
3 Arithmetic A o 54 47 44 36 43 34 33 44 33 33 32
4 Vocabulary A o 69 67 52 60 35 41 44 41 37 31 27
5 Comprehension I o 55 59 44 66 24 38 40 38 36 30 30
6 Digit span L o 36 34 45 38 26 28 28 32 23 29 26
7 Picture completion A o 40 46 34 43 41 21 45 47 45 25 31
8 Picture arrangement A m 42 41 30 44 40 22 40 45 48 28 35
9 Block design A m 48 50 46 48 44 31 52 46 57 32 39
10 Object assembly A m 40 41 29 39 37 21 48 42 60 27 40
11 Coding L p 28 28 32 32 26 29 19 25 33 24 23
12 Mazes L p 27 28 27 27 29 22 34 32 44 37 21

(a) Do an MDS analysis of both the U.S. and the Israeli correlation ma-
trices.

(b) Check whether the facets rule and expression allow you to structure
(“explain”) the MDS configurations.

(c) Characterize the roles these facets play in the MDS spaces.

(d) Which tasks are more central ones in terms of the spatial regions?
Discuss in substantive terms what it means that “the closer an in-
telligence item is to being a ‘rule inference’, the weaker its affinity is
to a single kind of material” (Shye, Elizur, & Hoffman, 1994)[p. 112].
(“Material” here corresponds to what Guttman calls “expression”.)

Exercise 5.4 Consider the MDS configuration in Figure 5.5. Its interpreta-
tion is based on regions induced by some of the facets exhibited in Table
5.2. A special case of a region is a cluster. Clusters may emerge “out of
substance” when one partitions an MDS space by facets defined for the en-
tities represented by the points. However, clusters sometimes are also used
in the MDS context in a purely exploratory way to help interpret MDS
solutions. For that purpose, the proximities are subjected to a hierarchi-
cal cluster analysis, and the emerging cluster hierarchy is superimposed
onto the MDS plane by expressing each cluster as a convex hull around
the points that belong to the cluster. With hierarchical clusters, this often
leads to families of such hulls that look like altitude or contour lines on a
geographic map. We now use this approach on the data on which Figure
5.5 is based. These data are shown in the table below.
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No. Work Value 1 2 3 4 5 6 7 8 9 10 11 12 13
1 Interesting
2 Independence .44
3 Responsibility .61 .58
4 Meaningful work .49 .48 .53
5 Advancement .32 .44 .33 .39
6 Recognition .39 .34 .41 .47 .38
7 Help others .38 .35 .41 .45 .27 .65
8 Contribute society .36 .29 .44 .43 .16 .49 .64
9 Contact people .21 .10 .22 .21 .16 .29 .35 .45
10 Security .28 .18 .30 .39 .15 .36 .37 .49 .61
11 Income .37 .32 .36 .46 .21 .33 .45 .45 .43 .68
12 Spare time .32 .29 .35 .34 .23 .56 .49 .44 .40 .47 .49
13 Working cond. .50 .37 .39 .40 .30 .45 .44 .35 .26 .37 .37 .60

(a) Do a hierarchical cluster analysis on the work values correlations.
Plot the resulting clusters as nested “altitude” lines onto the MDS
plane for the same data.

(b) Compare the cluster structure to the regions in Figure 5.5. Discuss
where they agree and where they differ.

(c) Cluster analysis is sometimes used to check whether the clusters that
one sees in an MDS solution are but scaling artifacts. Green & Rao
write: “As a supplementary step, the . . . data . . . were submitted to
. . . [a] clustering program . . . the program was employed to determine
how well the low-dimensional scaling solutions preserved the original
relationships in the input data” (Green & Rao, 1972, p. 33). Discuss
what they mean by that statement.

(d) Superimpose hierarchical clusters onto the similarity of nations data
in Table 1.3.

(e) Test out different clustering criteria (in particular, single linkage and
average linkage) and check how they differ in clustering the points of
Figure 1.5. Discuss why they differ.

Exercise 5.5 Facets are often superimposed by the substantive researcher
on a theoretical basis. The facets, then, are typically not obtrusive ones,
and many alternative facetizations are possible using different theories.
Yet, facets can also be obtrusive features of the entities. That is true,
for example, for the items in factorial surveys (“vignettes”) or for stimuli
within a factorial design. In these cases, the objects possess a certain facet
profile by construction. It is also true for the following matrix which shows
rank-order correlations of favorite leisure activities for groups defined by
gender, race, and self-defined social class (Shinew, Floyd, McGuire, & Noe,
1995).
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No. Group 1 2 3 4 5 6 7 8
1 Lower-class black women –
2 Middle-class black women .71 –
3 Lower-class black men .54 .54 –
4 Middle-class black men .35 .45 .61 –
5 Lower-class white women .23 .52 .17 .55 –
6 Middle-class white women .29 .66 .20 .52 .77 –
7 Lower-class white men .20 .33 .51 .87 .54 .41 –
8 Middle-class white men .11 .07 .25 .81 .51 .26 .26 –

(a) Represent these data in an MDS plane.

(b) Partition the space by the facets gender, race, and class, respectively.

(c) Discuss the resulting regions. Which facets show up in simple regions;
which facets do not? What do you conclude about the leisure activi-
ties of these groups?



6
How to Obtain Proximities

Proximities are either collected by directly judging the (dis-)similarity of
pairs of objects, or they are derived from score or attribute vectors asso-
ciated with each of these objects. Direct proximities typically result from
similarity ratings on object pairs, from rankings, or from card-sorting tasks.
Another method, called the anchor stimulus method, leads to conditional
proximities that have a restricted comparability and require special MDS
procedures. Derived proximities are, in practice, most often correlations of
item scores over individuals. Because there is so much work involved in
building a complete proximity matrix, it is important to know about the
performance of incomplete proximity matrices (with missing data) in MDS.
It turns out that MDS is quite robust against randomly distributed missing
data. MDS is also robust when used with coarse proximities, for example,
dichotomous proximities.

6.1 Types of Proximities

MDS procedures assume that proximities are given. How one collects these
proximities is a problem that is largely external to the MDS procedures
discussed in this book.1 However, because proximities are obviously needed,

1Some authors (e.g., Müller, 1984) approach MDS axiomatically. They formulate
relational systems that, if satisfied, guarantee the existence of certain forms of MDS
representations. Ideally, these axioms can be directly assessed empirically by asking the
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and because the way these proximities are generated has implications for
the choice of an MDS model, we devote some space to this topic.

In the previous chapters, we encountered different forms of proximities.
For example, the proximities in Table 2.1 were distances generated by di-
rect measurement on an atlas. In all other cases, the proximities were but
distance estimates related to distances by some MDS model. The color
similarity data in Table 4.1 were collected by averaging similarity ratings
(0 = no similarity, . . ., 4 = identical) for all different pairs of colors over all
subjects. The Morse code proximities in Table 4.2 were obtained by com-
puting the relative frequencies of “same” and “different” judgments for all
pairs of Morse codes over different subjects. The data in Table 4.4 that
indicate the similarity of facial expressions are based on scaling dissimi-
larity assessments for all pairs of faces over all subjects by the method of
successive intervals.

These examples all involve some form of direct (dis-)similarity assess-
ment for its object pairs, be it ratings on a scale from “no similarity” to
“identical”, judgments of “same” or “different”, or orderings of object pairs
on a similarity scale.

In practice, such direct approaches are rather atypical. Proximities usu-
ally are not based on direct similarity judgments, but rather are indices
derived from other information. The most prominent ones are correlation
coefficients, such as the product-moment correlations in Table 5.1 that as-
sess the similarity of intelligence test items.

6.2 Collecting Direct Proximities

Direct proximities arise from directly assessing a binary relation of simi-
larity or dissimilarity among the objects.2 There are many possible ways
to collect such data. The most obvious method is to ask respondents for a
similarity judgment.

Some Varieties of Collecting Direct Proximities
The most popular method for collecting direct proximities is to rate the
object pairs with respect to their overall similarity or dissimilarity. Krantz

subjects for simple judgments, such as partitioning every subset of at least three stimuli
into two groups of relatively similar stimuli. In such an approach, the data collection is
intimately related to the axiomatization of the MDS model.

2In order to keep the discussion uncluttered, we skip the case of dominance data
in this section. Dominance data assess which object in a pair of objects dominates the
other one in some sense, such as, for example, preference. They are treated later when
discussing unfolding models in Part III.
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and Tversky (1975), for example, wanted proximities for pairs of rectangles.
They read the following instruction to their subjects (p. 14).

In this experiment we will show you pairs of rectangles and we’ll
ask you to mark an X in the appropriate cell on the scale from 1
to 20 [answer booklet was before subject] according to the degree
of dissimilarity between rectangles.

For example: if the rectangles are almost identical, that is, the
dissimilarity between them is very small, mark X in a low-
numbered cell. In the same fashion, for all intermediate levels of
dissimilarity between the rectangles, mark X in an intermediate-
numbered cell.

We are interested in your subjective impression of degree of dis-
similarity. Different people are likely to have different impres-
sions. Hence, there are no correct or incorrect answers. Simply
look at the rectangles for a short time, and mark X in the cell
whose number appears to correspond to the degree of dissimi-
larity between the rectangles.

This method of gathering proximities is called pairwise comparison. The
subject rates every pair of objects on a dissimilarity scale.

Instead of ratings, market researchers often use some method of ranking
the object pairs in terms of their overall similarity. For that purpose, each
object pair is typically presented on a card. The subject is then asked to
sort these cards so that the most similar object pair is on top of the card
stack and the most dissimilar one at the bottom.

A complete ranking often may be too demanding a task or too time-
consuming. Indeed, respondents often have difficulty ranking nonextreme
objects. Thus, the “intermediate” ranks may be unreliable. It therefore
makes sense to soften the ranking procedure as follows. The respondent is
asked first to sort the cards into two stacks (not necessarily of equal size)
one containing “similar” pairs and the other containing “dissimilar” pairs.
For each stack, this sorting can be repeated until the respondent feels that
it becomes too difficult to further partition a given stack into similar and
dissimilar objects. The stack with the most similar objects is then scored
as 1, the stack containing the next most similar objects as 2, and so on.
The object pairs are given as proximities the score of the stack to which
they belong. This usually leads to a weak rank-order (i.e., one containing
ties), but that is no problem for MDS.

In Q-sort techniques (Stephenson, 1953), the respondents are asked to
sort the cards with the object pairs into the categories of a scale that ranges,
for example, from “very similar” to “not similar at all”. The sorting must
be done so that the stack on each scale category contains a preassigned
number of cards. Typically, these numbers are chosen such that the card
stacks are approximately normally distributed over the scale, with few cards
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at the extremes and many cards in the middle. Computer programs exist
that support this type of data collection.

Free sorting, in contrast, imposes a minimum number of constraints onto
the respondents. They are simply asked to sort the cards onto different
stacks so that cards showing object pairs that appear similar in some sense
are in the same stack. The number of stacks is not specified. It can range
from just one stack for all cards to the case where each stack contains
only one card. To pairs of objects that are on the same stack, we assign a
dissimilarity of 0, and for pairs of objects on different stacks, a 1 (see below,
Section 6.5 on co-occurrence data). The advantage of this method is that
the subject’s task is not demanding, even for a large number of objects,
and subjects report to enjoy the task.

Another technique for collecting direct proximities is the anchor stimulus
method. Given n objects, one object is picked as a fixed comparison A, and
the subject is asked to judge the similarity of all other n − 1 objects to
A. Each and every object serves, in turn, as an anchor. This leads to n
sets with n−1 proximities each. The proximities resulting from the anchor
stimulus method are conditional ones. Two proximities resulting from the
anchor stimulus method have a meaningful relation only if they have the
anchor stimulus as a common element. Thus, for example, the proximity
for A and X and the proximity for A and Y can be compared because
they share the anchor stimulus A. However, comparing the proximity for
A and X with the proximity for B and Y (with A and B anchor stimuli)
does not make sense, because the anchor stimuli are different. Hence, such
data require particular MDS methods, with weaker loss functions that only
assess, point after point, how well the distances of each anchor point to all
other points represent the respective proximities. The relations of distance
pairs that involve four different points are irrelevant.

Conditional data have the advantage that less data have to be ranked at
the same time. Instead of ranking

(
n
2

)
different pairs of objects, the anchor

method only needs to rank n − 1 pairs of objects at one time. The task
of conditional ranking relative to fixed anchors is easier and yields more
reliable data. These data, however, require more judgments altogether and
are less comparable.

A systematic comparison among several methods for collecting direct
proximities was done by Bijmolt and Wedel (1995). They found that free
sorting and pairwise comparisons rate positively with respondents whereas
collecting conditional data was considered to be boring and fatiguing. In
terms of the data quality and the quality of the MDS solution, pairwise
comparisons ranked best followed by free sorting.

On Ordering Object Pairs for Collecting Direct Proximities
The perceived similarity of two objects may depend on the order in which
they are presented. For example, we note in Table 4.2 that the Morse code
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signal for I is more frequently confused with a subsequent A (64%) than A is
with a subsequent I (46%). Tversky (1977) gives another example: it seems
likely that North Korea is assessed as similar to Red China, but unlikely
that someone feels that Red China is similar to North Korea. Other order
effects may arise if certain objects are presented relatively often in a given
section of the data collection. For example, if the Morse code for A appears
in the first 20 comparisons, it is most likely to have some anchoring effect.

Position effects can be reduced by randomly picking which of the objects
of a pair will be in first position. This method avoids that a given object is
always first or second in those pairs where it appears. Timing effects can
be balanced by picking a random order for the object pairs.

An alternative approach is to balance position and timing effects by
explicit planning. Ross (1934) developed a method for that purpose. It
generally should be superior to the random method if the number of objects
is relatively small. A computer program for Ross ordering was written by
Cohen and Davison (1973).

Planned Incomplete Data Designs
One of the more obvious obstacles for doing an MDS analysis is that one
needs many proximities, which are expensive to collect. The cheapest way
to reduce the labor involved in data collection is to replace data by assump-
tions. Two assumptions are typical in MDS applications. First, it is taken
for granted that the proximities are essentially symmetric. This obviates
the need to collect both pij and pji. Second, the proximity of an object to
itself, pii, is also not assessed empirically, because it seems even more jus-
tified to consider this information trivial: the dissimilarity of an object to
itself is assumed to be essentially zero. For an MDS program, it is sufficient
to have the proximities for one half-matrix.

However, even with a half-matrix, one needs to assess
(
n
2

)
= n(n − 1)/2

proximities. The quantity
(
n
2

)
grows rapidly with n. For example, for n = 10

one needs to collect 45 proximities, whereas for n = 20 one needs 190 prox-
imities. Few subjects would be willing or able to rank 190 pairs of objects
with respect to their global similarity. Hence, the need for incomplete data
collection becomes obvious. Some structured incomplete designs are dis-
played in Table 6.1 (after Spence, 1983).

How should one plan an incomplete data design? A good solution is to
randomly eliminate a certain proportion of cells in the proximity matrix
and define them as missing data. Spence and Domoney (1974) studied this
question in detail. They computed the distances in a given MDS space
with dimensionality t, and then took these distances as input to MDS in
order to see how well they would be reconstructed by MDS in t dimensions
under a variety of conditions. One of these conditions was to add random
error to the distances. Another one was to define some of the proximities as
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FIGURE 6.1. Recovery of MDS distances (Y -axis) among 48, 40, and 32 points,
respectively, under different error levels (upper curves = no error, lower curves
= high error) and percentages of nonmissing data (X-axis) (after Spence &
Domoney, 1974).



6.2 Collecting Direct Proximities 117

TABLE 6.1. Examples of some incomplete designs (after Spence, 1983). A 0
indicates absence of a proximity, a 1 presence of the proximity.

(a) Cyclic design (b) Random design (c) Block design
1 2 3 4 5 6 7 8

1 -
2 1 -
3 0 1 -
4 0 0 1 -
5 1 0 0 1 -
6 0 1 0 0 1 -
7 1 0 1 0 0 1 -
8 1 1 0 1 0 0 1 -

1 2 3 4 5 6 7 8
1 -
2 1 -
3 0 1 -
4 0 1 0 -
5 1 0 1 0 -
6 1 1 0 0 1 -
7 0 0 1 0 1 0 -
8 1 0 1 1 0 0 1 -

1 2 3 4 5 6 7 8
1 -
2 1 -
3 1 1 -
4 1 1 1 -
5 0 0 1 1 -
6 0 0 1 1 1 -
7 0 0 0 1 1 1 -
8 0 0 0 1 1 1 1 -

missing data. It was found that the MDS-reconstructed distances remain
highly correlated (r2 = .95) with the original distances if one-third of the
proximities are randomly eliminated (i.e., defined as missing data) and the
error component in the proximities is about 15%. For high error (30%),
r2 is still .75, which compares well with r2 = .83 for complete data. A
significantly greater loss is incurred if two-thirds of the data are missing.
However, if the error level is low, excellent recovery is possible even with
80% (!) missing data, given that we scale in the “true” dimensionality t, and
given that the number of points is high relative to the dimensionality of the
MDS space (see Figure 6.1, upper panels, curves for “no” and “medium”
error).

Graef and Spence (1979) showed, moreover, that MDS configurations
are poorly recovered if the proximities for the largest distances are miss-
ing, whereas missing data for intermediate or short distances are not that
crucial. Hence, a missing data design could be improved by making sure
that missing data are rare among the proximities for the most dissimilar
objects.

These simulation studies show that robust MDS is possible even with
many missing data. The user is well advised, nevertheless, to make sure
that the missing cells do not form clusters in the proximity matrix.

One should keep in mind, however, that the above simulation results
rest on some conditions (many points, reasonable error in the data, known
“true” dimensionality, etc.) which are, in practice, often rather difficult to
assess. It may be easiest to determine the error level of the data. For di-
rect proximities, it could be estimated by replicating the data collection for
some subjects; for correlations, one could consider statistical confidence in-
tervals. Other conditions, however, are less easily diagnosed. For example,
the very notion of “true” dimensionality remains obscure in most appli-
cations, except in rare cases such as, for example, perceptual studies in a
psychophysical context (see Chapter 17). This makes it impossible to come
up with a simple answer to the question of how many missing data can be
accommodated in MDS.
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FIGURE 6.2. Synthetic configuration (after Green & Wind, 1973).

Collecting Coarse Data
Another possibility to make the task of collecting proximities simpler in
case of direct proximities is to ask the respondents for simpler judgments.
One extreme case is the “same” and “different” judgments on the Morse
codes (see Chapter 4). Rothkopf (1957) aggregated these judgments over
respondents and then analyzed the confusion probabilities as proximities.
But is aggregation necessary? Would it make sense to do an MDS on the
same–different data of a single individual? At first sight, such data seem
“too coarse,” but are they?

Green and Wind (1973) report a simulation study that throws some light
on this question. They measure the distances of a 2D MDS configuration
consisting of 25 points (Figure 6.2). These distances are classified into a
small set of intervals. The same ranking number is substituted for all dis-
tances within the same interval. The resulting “degraded” distances are
taken as proximities in MDS. Using the primary approach to ties (see Sec-
tions 3.1, p. 40, and 9.4), it is found that degrading distances into nine
ranking numbers still allows one to recover almost perfectly the original
configuration (Figure 6.3, Panel b). Even under the most extreme degra-
dation, where the distances are mapped into only two ranking numbers,
the original configuration is roughly recovered. One can conclude, there-
fore, that data that only represent the true distances in terms of distance
groupings or blocks can be sufficient for recovering an underlying MDS
configuration.

Of course, the granularity of the data may also be too fine in the sense
that the data are not reliable to the same extent. For example, in the case
of the above 21-point similarity scale employed by Krantz and Tversky
(1975), one may well question that the respondents are able to make such
fine-grained distinctions. If they are not, then they may not use all of
the 21 categories; or if they do, their ratings may not be very reliable.
One should not expect that persons are able to reliably distinguish more
than 7 ± 2 categories (Miller, 1956). Confronting the individual with a 21-
point similarity scale may then actually make his or her task unreasonably
difficult.
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FIGURE 6.3. Ordinal MDS representations of distances derived from Fig. 6.2,
with Shepard diagrams (after Green & Wind, 1973): (a) uses distances as prox-
imities; (b) uses distances degraded to nine values; (c) uses distances degraded
to two values.

Again, there is no rule by which the issue of an optimal granularity could
be decided in general. The issue lies outside of MDS, but it is comforting
to know that even coarse data allow one to do an MDS analysis. What is
important is the reliability of the data.

6.3 Deriving Proximities by Aggregating over
Other Measures

Derived proximities are typically correlations or distances computed for a
pair of variables, X and Y . A common way to organize the various coef-
ficients available in this context is to consider the scale levels of X and
Y . However, in the following, we do not intend to give an encyclopedic
overview, but rather present some of the coefficients found most often in
the MDS literature. We also discuss a few of the more exotic cases, be-
cause they help us to show some of the considerations involved in choosing
a proper proximity measure. The obvious scale-level issues are largely ig-
nored.
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Correlations over Individuals
Probably the most common case of derived proximities is the one illustrated
by the item intercorrelations in Table 5.1. The correlation between item X
and item Y is computed over N individuals; that is,

r =
∑N

i=1(xi − x̄)(yi − ȳ)

(
∑N

i=1(xi − x̄)2)1/2(
∑N

i=1(yi − ȳ)2)1/2
,

where x̄ (resp. ȳ) is the average over all xis (resp. yis). A correlation ex-
presses the extent to which the individuals’ responses to two items tend to
have a similar pattern of relatively high and low scores.

Correlation coefficients exist for assessing different types of trends. The
Pearson correlation measures the extent to which two items are linearly
related. Substituting ranks for the raw data yields a rank-linear coefficient,
Spearman’s ρ. It assesses the monotonic relationship of two items. An al-
ternative that responds more smoothly to small changes of the data is the
µ2 coefficient (Guttman, 1985). It is often used in combination with ordi-
nal MDS (see, e.g., Levy & Guttman, 1975; Elizur et al., 1991; Shye, 1985)
because (weak) monotonic coefficients are obviously more consistent with
ordinal MDS than linear ones. The formula for µ2 is

µ2 =

∑N
i=1

∑N
j=1(xi − xj)(yi − yj)∑N

i=1
∑N

j=1 |xi − xj ||yi − yj |
.

The relationship of µ2 to the usual product-moment coefficient r becomes
most transparent if we express r as

r =

∑N
i=1

∑N
j=1(xi − xj)(yi − yj)(∑N

i=1
∑N

j=1(xi − xj)2
)1/2 (∑N

i=1
∑N

j=1(yi − yj)2
)1/2

(Daniels, 1944). One notes that the denominator of r is never smaller than
the denominator of µ2, which follows from the Cauchy–Schwarz inequal-
ity for nonnegative arguments:

∑
k akbk ≤ (

∑
k a2

k)1/2(
∑

k b2
k)1/2. Hence,

|µ2| ≥ |r|. One obtains µ2 = r exactly if X and Y are linearly related
(Staufenbiel, 1987).

Proximities from Attribute Profiles
Correlations typically are computed over individuals; that is, the data in
the typical person × variables data matrix are correlated over the rows to
yield the intercorrelations of the variables.

Assume now that we want to assess the perceived similarities among a
number of cars. One way of doing this is to ask N respondents to assess each
of the cars with respect to, say, its attractiveness. Proximities could then be
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computed by correlating over the respondents’ scores. One notes, however,
that this approach completely hinges on the criterion of attractiveness. We
may get more meaningful proximities if we do not rely that much on just
one criterion but rather on a large selection of attributes on which cars
are differentiated. Thus, we could ask the respondents to scale each car
with respect to several criteria such as performance, economy, luxury, and
so on. (In order to avoid redundancy, one could first factor-analyze these
attributes and replace them by supposedly independent criteria or factors.)
This would yield a person × cars × attributes matrix. The similarities of
cars would then be derived as some function of how similar these cars are
over the various attributes.

One possibility is to correlate the attribute profiles of the cars, either for
each person in turn (yielding one similarity matrix per person) or over all
attributes and all persons (yielding but one global similarity matrix).

An alternative is to measure dissimilarity by computing distances among
attribute vectors. Assume, for example, that X is a cars × attributes matrix
that contains average attribute assessments of N persons for each car on
m attributes. For example, an element of X could be the average of the
subjective prestige ratings that N persons gave car i. A “simple” distance of
any two cars, i and j, in this m-dimensional attribute space is the city-block
distance,

d
(1)
ij (X) =

m∑
a=1

|xia − xja|,

where i and j are two objects of interest, and xia and xja are the scores of
these objects on attribute a. Other distances (e.g., the Euclidean distance)
are also conceivable but probably less attractive for deriving proximities
because they all involve some kind of weighting of the intraattribute differ-
ences xia − xja. For example, in the Euclidean distance,

d
(2)
ij (X) =

(
m∑

a=1

(xia − xja)2
)1/2

,

the difference terms xia − xja are weighted quadratically into the distance
function.

An overview of popular proximity measures is given in Table 6.2. To see
how the coefficients are related to the attributes, Figure 6.4 shows various
isoproximity contours for the case where point xj is fixed at position (1, 2)
and point xi takes on different positions in the attribute space. The con-
tour lines show the sets of positions where xi has the same proximity to
xj . In the case of the Euclidean distance, these contours correspond to the
usual notion of circles. In the case of the city-block distance, these circles
look unfamiliar (see Section 17.2 for more details). On the other hand, the
composition rule by which the differences of i and j are aggregated into
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TABLE 6.2. Summary of measures of proximities derived from attribute data.
The symbol δij denotes a dissimilarity and sij a similarity.

Measure Formula

P1 Euclidean distance δij =
(∑m

a=1(xia − xja)2
)1/2

P2 City-block distance δij =
∑m

a=1 |xia − xja|

P3 Dominance distance δij = maxm
a=1 |xia − xja|

P4 Minkowski distance δij =
(∑m

a=1(xia − xja)p
)1/p

with p ≥ 1

P5 Canberra distance δij =
m∑

a=1

|xia − xja|
|xia + xja|

P6 Bray–Curtis distance δij =

∑m

a=1 |xia − xja|∑m

a=1(xia + xja)

P7 Chord distance δij =
(∑m

a=1(x1/2
ia − x

1/2
ja )

)1/2

P8 Angular separation, con-
gruence coefficient

sij =

∑m

a=1 xiaxja(∑m

a=1 x2
ia

)1/2 (∑m

a=1 x2
ja

)1/2

P9 Correlation sij =

∑m

a=1(xia − x̄i)(xja − x̄j)(∑m

a=1(xia − x̄i)2
)1/2 (∑m

a=1(xja − x̄j)2
)1/2

P10 Monotonicity coefficient
µ2

sij =

∑N

i=1

∑N

j=1(xi − xj)(yi − yj)∑N

i=1

∑N

j=1 |xi − xj ||yi − yj |

the overall distance is extremely simple: the distance is just the sum of
the intradimensional differences. The dominance distance, in contrast, is
completely determined by just one intradimensional difference of i and j,
the largest one. Note that P1 to P3 are special cases of the Minkowski
distance P4: p = 1 gives the city-block distance P2, p = 2 the Euclidean
distance P1, and p = ∞ the dominance distance P3. The distances P1 to P4
combine dimensional differences directly. Consequently, if the dimensions
are attributes measured on different scales, the attributes with the largest
variance will dominate the distance measure. Therefore, it is usually bet-
ter to standardize the attributes so that their variances become equal by
converting each attribute to z-scores. Alternatively, each attribute can be
divided by another measure for dispersion such as the range (the difference
of maximum and minimum).

The proximity measures P5 to P10 all have some provision for controlling
the dispersion either for each variable separately or for all variables simulta-
neously. The Canberra distance corrects the absolute difference along each
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FIGURE 6.4. Contour plots for the different proximity measures defined in Table
6.2, setting xj = (1, 2). Contour lines close to xj have low values, whereas further
away they have higher values. For the contour lines of the Minkowski distance,
the value p = 3 was used. Note that µ2 has no contour lines in this grossly
simplified example, because all values are exactly one. The grey areas correspond
to negative xi1 or xi2 which are usually excluded for these measures.
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dimension for the size of the coordinates along the axis. In addition, if neg-
ative values of xia are allowed, then δij reaches an asymptote of infinity, in
Figure 6.4 at xi1 = −1. Therefore, the Canberra distance is best used when
all xia are positive. The Bray–Curtis distance is often used in ecology and
corrects the sum of absolute differences along the axes by the sum of all
coordinates over which the differences are taken. Again, this measure seems
most useful for nonnegative xia. In this case, the Bray–Curtis distance cor-
rects large absolute differences when the coordinates are large, too. The
chord distance requires positive xia. Usually, xia equals the frequency, so
that it is positive by nature. Note that for drawing the contour lines in
Figure 6.4 for the chord distance, the absolute values of xia were used.
The angular separation is a similarity index between −1 and 1 because it
computes the cosine of the angle between the lines from the origin to xi

and the origin to xj . The contour lines for the correlation are exactly the
same as for the angular separation because we changed the axes to xia − x̄i.
Note that both the correlation and µ2 are best used when the number of
dimensions m is reasonably large, certainly larger than in the simplified
case of m = 2 in Figure 6.4. For µ2 this simplification leads to µ2 = 1 for
all xia which explains why there are no contour lines for µ2. Thus, µ2 is
only meaningful if m ≥ 3.

Another type of distance function often used in the literature is to count
the number of common elements in the data profiles and subtract this
sum from the total number of attributes on which observations were made.
This distance function could be employed, for example, where attributes
are coded as either present or absent. An example from archaeology is data
on sites where certain artifacts such as pottery, jewelry, bones, and the like,
are or are not found (e.g., Kendall, 1971). Sites are considered similar if
they share many artifacts.

Restle (1959) suggested this distance function in order to model the per-
ception of similarity: conceiving stimuli X and Y in terms of “feature” sets
(i.e., as collections of the things associated with them), we have the distance
dXY = m(X ∪Y )−m(X ∩Y ), where m is a measure function.3 Hence, the
dissimilarity of X and Y , dXY , is the number of their noncommon features,
m(Y − X) + m(X − Y ).

When collecting object × attribute data sets in real life, some attributes
may be binary; others may be numerical. The general similarity measure
of Gower (1971) is particularly suited for this situation. Let sija be the
similarity between objects i and j on variable a. For binary attributes, we
assume that only values xia = 0 and xia = 1 occur. In this case, sija = 1
if xia and xja fall in the same category and sija = 0 if they do not. If

3A simple measure function is, for example, the number of elements in the set. X ∪Y
is the union of X and Y ; X ∩Y is the intersection of X and Y ; X −Y is the set consisting
of the elements of X that are not elements of Y .
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the attribute is numerical, then we compute sija = 1 − |xia − xja|/rk

with rk being the range of attribute a. This definition ensures again that
0 ≤ sija ≤ 1 for all combinations of i, j, and a. The general similarity
measure can be defined by

sij =
∑

a wijasija∑
a wija

,

where the wija are given nonnegative weights. Usually wija is set to one
for all i, j, and a. However, if either xia or xja is missing (or both), then
wija should be set to zero so that the missing values do not influence the
similarity. Here, too, 0 ≤ sij ≤ 1 so that dissimilarities can be obtained
by taking 1 − sij . However, Gower (1971) suggests to use (1 − sij)1/2 as it
can be shown that these values can be perfectly represented in a Euclidean
space of high dimensionality.

6.4 Proximities from Converting Other Measures

Derived proximities are not always computed by aggregating over individ-
uals or from aggregating over attribute vectors associated with the objects
of interest. They can also be generated by appropriate conversion of given
scale values for the objects. The conversion is arrived at by theoretical
considerations.

Consider the following case. Glushko (1975) was interested in the “good-
ness” of patterns. He constructed a set of different dot patterns and printed
each possible pair on a separate card. Twenty subjects were then asked to
indicate which pattern in each pair was the “better” one. The pattern
judged better in a pair received a score of 1, the other one a 0. These
scores were summed over the subjects, and a dissimilarity measure was
constructed on the basis of the following logic. “Since dissimilar goodness
between two patterns is implied by frequent choice of either one over the
other, the absolute value of the difference between the observed and the
expected frequency of a goodness preference represents the dissimilarity of
the pattern of goodness of the two patterns . . .” (Glushko, 1975, p. 159).
Because there were 20 subjects, the expected (random) preference value is
10 for each pair. Hence, proximities were derived by subtracting 10 from
each summation score and taking its absolute value.

A similar conversion is the following. Thurstone (1927), Coombs (1967),
and Borg (1988) asked N students to indicate in a pair-comparison design
which of two offenses (such as murder, arson, or theft) was more “serious.”
Scoring the more serious one as 1 and the other one as 0, adding these
scores over individuals, and dividing by N , one obtains a matrix of dom-
inance probabilities (Pij). These data typically are scaled by Thurstone’s
Law of Comparative Judgment model, which relates the Pijs to scale val-
ues by a cumulative normal density function. However, one can also convert
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the probabilities into dissimilarities δij and then use ordinal MDS. [Ordi-
nal MDS does not assume a particular (monotonic) model function and,
thus, leaves it to the data to exhibit the exact shape of the transformation
function.] The conversion formula is δij = |Pij − 0.5|.

Tobler and Wineburg (1971) report another interesting proximity, a mea-
sure of social interaction between towns or “places” called the gravity model:
Iij = kPiPj/d2

ij , where “Iij is the interaction between places i and j; k is a
constant, depending on the phenomena; Pi is the population of i; Pj is the
population of j; and dij is the distance between places i and j. Distance
may be in hours, dollars, or kilometers; populations may be in income,
numbers of people, numbers of telephones, and so on; and the interaction
may be in numbers of letters exchanged, number of marriages, similarity of
artifacts or cultural traits, and so on.” (p. 2). With measures for Iij , Pi, and
Pj , the gravity model can be used to solve for the distance dij . Tobler and
Wineburg (1971) report an application from archaeology. Cuneiform tables
from Assyria were the database. The number of occurrences of a town’s
name on these tables was taken as Pi, the number of co-occurrences on
the tables as a measure of Iij . The resulting distance estimates were taken
as input for a 2D ordinal MDS in an effort to find the (largely unknown)
geographical map of these towns.

6.5 Proximities from Co-Occurrence Data

An interesting type of proximities is co-occurrence data. Coxon and Jones
(1978), for example, studied the categories that people use to classify oc-
cupations. Their subjects were asked to sort a set of 32 occupational titles
(such as barman, statistician, and actor) into as many or as few groups as
they wished. The result of this sorting can be expressed, for each subject, as
a 32 × 32 incidence matrix, with an entry of 1 wherever its row and columns
entries are sorted into the same group, and 0 elsewhere. The incidence ma-
trix can be considered a proximity matrix of dichotomous (same–different)
data.4

Are such co-occurrence data direct proximities? The answer depends on
how one wants to define “direct”. In the above study on occupation titles,
the criterion of similarity should have been obvious to the respondents.
Hence, by sorting the occupation titles into groups, they were directly ex-

4Burton (1975) further suggests some forms of weighting such as replacing 1 by the
number of objects in the category to which a given object pair belongs, or by replacing 1
by the inverse of this number. The former is supposed to emphasize gross discrimination,
the latter fine discrimination. Such weightings of global and local discriminations are,
however, better introduced as part of the MDS modeling criteria, rather than building
them into the data.
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pressing their notions of pairwise similarity relations for these stimuli. But
consider another case.

England and Ruiz-Quintanilla (1994) asked respondents to check those
characteristics in a list that would define work for them. The characteristics
were “if it is not pleasant”, “if it is physically strenuous”, “if you have to
do it”, and so on. The co-occurrences of these characteristics were defined
as the characteristics’ proximities. Its seems that this definition is more
an interpretation of the researcher, because the respondents never directly
assessed the similarity of the characteristics in the context of work, but
their relevance with respect to the notion of work. Hence, these proximities
seem somewhat more derived than the former ones, which shows that the
direct-derived distinction denotes more a continuum than a dichotomy.

Studies that use co-occurrence data typically aggregate incidence matri-
ces over individuals. The most natural way to do this is simply to add these
matrices so that the aggregate proximity matrix contains in its cells the
frequencies with which two objects were sorted into the same group.

However, it is well worth the effort to consider whether it would be better
if these raw frequencies were normed. Let X and Y be two items of interest.
An item X can be empirically present or absent, denoted as X = 1 and
X = 0, respectively. With X and Y , there are four possible present–absent
combinations. Let z = f(X, Y ) be the frequency of an event (X, Y ). In
particular, let a = f(1, 1) be the frequency of the event where both X
and Y are present. Similarly, b = f(1, 0), c = f(0, 1), and d = f(0, 0) (see
also Table 6.3). Gower (1985) distinguishes a variety of possible similarity
coefficients, all of which vary between 0 and 1. One possibility is

s2 = a/(a + b + c + d),

the frequency of events where both X and Y occur relative to the total fre-
quency of all present–absent combinations of X and Y . Another possibility
is

s3 = a/(a + b + c),

the proportion of events where both X and Y occur, given at least one of
them occurs (Jaccard similarity measure).

To see the consequences of choosing s2 or s3, consider the following
example. Bilsky, Borg, and Wetzels (1994) studied forms of conflict tactics
among family members, ranging from calm debates over throwing things
to physical violence inflicting injuries to other persons. A survey asked
the respondents to indicate which forms of behavior had occurred among
members of their families in the last five years. If co-occurrence of behavior
forms is assessed by s3, MDS yields a one-dimensional solution where the
different behavior forms are simply arrayed in terms of their aggressiveness,
with a major gap between behaviors that involve shouting, throwing things,
and the like, and those that involve any form of physical violence. Using s2
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TABLE 6.3. Types of combinations of two events X and Y , together with their
frequencies (cells entries).

X = 1 X = 0 Total
Y = 1 a b a + b
Y = 0 c d c + d

Total a + c b + d a + b + c + d

coefficients, however, has the effect that the behaviors that involve physical
violence drop dramatically in similarity because they are so rare, that is,
because d is so great. This essentially wipes out the clear scale obtained for
s3 proximities.

There are amazingly many ways to combine the four frequencies a, . . . , d
into an overall proximity measure for each pair of objects (see, e.g., Gower,
1985; Gower & Legendre, 1986; Cox & Cox, 1994). However, most of these
proximities make sense only in highly specific contexts, so that it serves
no purpose to discuss all of them here. It may suffice to consider just one
further proximity, the simple matching coefficient,

s4 = (a + d)/(a + b + c + d),

which counts both co-occurrence and co-nonoccurrence as indices of simi-
larity. In the case of the forms of violent behaviors, s4 would bring up the
question of whether rare forms of behavior, in particular, should be con-
sidered very similar simply because of their high rate of co-nonoccurrence.
More details about many of the possible binary coefficients and their scal-
ability in MDS can be found in Gower and Legendre (1986).

An small overview of the most frequently used co-occurence measures is
presented in Table 6.4, together with the range for each of these indexes.
It is easy to convert these similarity measures into dissimilarities by com-
puting δij = 1 − sk, for k = 2, . . . , 6.

6.6 Choosing a Particular Proximity

The availability of so many varieties of proximities seems to make life con-
fusing for the user. Which proximity should be chosen? An answer to this
question depends on many considerations, but is typically not that difficult.

An important decision criterion is usually the practical feasibility of a
particular data collection method. Consider surveys, for example, where re-
spondents are asked by questionnaires about their attitudes towards various
political issues. It would be inconceivable to replace the usual item-by-item
ratings by a task where the respondent has to compare the n(n−1)/2 pairs
of items, because this is simply too time consuming. Moreover, it would be
difficult to explain to the respondents what exactly they are supposed to
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TABLE 6.4. Overview of some popular co-occurrence measures.

Measure Bounds of sk

s2 s2 =
a

a + b + c + d
0 ≤ s2 ≤ 1

s3 Jacard similarity measure s3 =
a

a + b + c
0 ≤ s3 ≤ 1

s4 Simple matching coefficient s4 =
a + d

a + b + c + d
0 ≤ s4 ≤ 1

s5 Hamman s5 =
(a + d) − (b + c)

a + b + c + d
−1 ≤ s5 ≤ 1

s6 Yule s6 =
ad − bc

ad + bc
−1 ≤ s5 ≤ 1

do in such a task, that is, in which sense they are supposed to compare the
items.

Another case is the proximity of intelligence test items, assessed above
in terms of how similarly the testees perform on the items. Here, it remains
unclear how direct proximities could be defined at all without changing the
research question. Assume that we would ask test psychologists to evaluate
directly the global similarity of the test items. Such a question, obviously,
studies the perception of test psychologists and not the structure of the
test item performance of testees.

Direct proximities are more a task for laboratory studies on perceptual
structures than, for example, for survey studies. Most of the examples dis-
cussed earlier (e.g., Morse code confusions, color similarities) belong to this
category. The card-sorting procedures often used by market researchers is
another example.

In the context of such research questions, direct proximities typically are
collected to explain how they are generated. If the subjects were asked to
first assess the objects of interest on scales invented by the researcher, the
proximities would be based on these scales, not on criteria freely chosen
by subjects themselves. In the facial expressions study by Engen et al.
(1958), the direct proximities were, therefore, collected along with ratings
on certain dimensions in order to check whether the structure of the former
could be explained by the latter (see Section 4.3).

So, the question of what proximity to choose typically is decided to a
large extent by the research question and its context. However, this is more
true for direct proximities. If one decides to derive proximities, one has a
less substantive foothold for choosing a particular measure.

Deriving proximities requires one to decide, first of all, if one wants a
correlation coefficient or a distance measure on the observations on two
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variables, X and Y . The former assesses the similarity of X and Y in
terms of their “profiles”, the latter the (dis-)similarity in terms of their
element-by-element differences. That is, if X = 2 · Y , for example, then
rXY = 1, but the distance of X and Y is not zero. On the other hand, if
the distance of X and Y is zero, then rXY = 1 always.

However, the choice between these measures is not that important in
practice. The reason is that if proximities are computed by aggregating
over attribute scales, it usually makes sense to first standardize the differ-
ent attribute scales rather than using raw scores. In this case, Euclidean
distances are related to Pearson’s r by a monotonic function. This can be
seen as follows. Assume that we have two variables, X and Y , that are both
standardized so that their means are zero and their sum-of-squares is equal
to 1. As a result, rXY =

∑
i xiyi. Then, the Euclidean distance between X

and Y is

dXY =

(
N∑

i=1

(xi − yi)2
)1/2

=

(
N∑

i=1

x2
i +

N∑
i=1

y2
i − 2

N∑
i=1

xiyi

)1/2

= (2 − 2rXY )1/2
. (6.1)

Hence, when using ordinal MDS, it becomes irrelevant which proximity is
used, because both yield (inversely) equivalent rank-orders.

City-block distances, moreover, are typically highly correlated with Eu-
clidean distances, so that they, too, are monotonically closely related to r
in practice. It is also true that Pearson correlations and monotonic corre-
lations such as ρ or µ2 are highly correlated if the relationship of the items
is not extremely nonlinear. Moreover, the structural information contained
in a matrix of proximities is very robust against variations in the individ-
ual proximity coefficients. For that reason, Pearson rs are often chosen in
practice rather than the formally more attractive µ2s. In summary, then,
the user need not worry that much about the particular choice for com-
puting proximities from score vectors: the usual measures, such as r or the
Euclidean distance, are most often quite appropriate in an MDS context.

6.7 Exercises

Exercise 6.1 Consider the matrix of dominance probabilities Pij below
(Borg, 1988). It shows the relative frequencies with which a group of male
students judged that the crime/offense in row i is more serious than the
crime/offense in column j. Thurstone (1927) and Coombs (1967) report
similar data. They analyze them with the Law-of-Comparative-Judgment
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model. This model maps dominance probabilities Pij into scale value differ-
ences xi −xj by the inverse normal distribution ogive; that is, N−1(Pij) =
xi − xj , where N−1 denotes the function that maps probabilities into z-
scores.

Item 1 2 3 4 5 6 7 8 9 10
1 Abortion .50 .65 .32 .30 .42 .12 .20 .36 .45 .49
2 Adultery .35 .50 .20 .19 .25 .02 .11 .28 .31 .33
3 Arson .68 .80 .50 .41 .62 .13 .22 .45 .61 .67
4 Assault/battery .70 .81 .59 .50 .67 .16 .29 .51 .70 .72
5 Burglary .58 .75 .38 .33 .50 .09 .14 .40 .58 .58
6 Homicide .88 .98 .87 .84 .91 .50 .59 .74 .87 .90
7 Rape .80 .89 .78 .71 .86 .41 .50 .63 .83 .83
8 Seduction .64 .72 .55 .49 .60 .26 .37 .50 .66 .69
9 Theft .55 .69 .39 .30 .42 .13 .17 .34 .50 .53
10 Receiving stolen goods .51 .67 .33 .28 .42 .10 .17 .31 .47 .50

(a) Davison (1983) suggests that these data can be modeled by ordinal
MDS. In fact, he claims that one can solve for a more general class
of models called Fechner models. All Fechner models require that (1)
Pij = 0.5 �→ dij = |xi − xj | = 0 and that (2) dij = |xi − xj | grows
strictly monotonically as a function of δij = |Pij − 0.5|.] Thurstone’s
model is but one particular Fechner model that relies on the nor-
mal function. Use ordinal MDS to find one-dimensional scales for the
crime/offense data sets without relying on any particular monotonic
function.

(b) Study the empirical relation of dominance probabilities to the cor-
responding scale differences (=signed distances) and discuss whether
the normal mapping function used in the Law-of-Comparative-Judgment
model is empirically supported here.

(c) Repeat the MDS analysis with five different random starting config-
urations. Compare the five solutions. What does your finding imply
for unidimensional scaling?

Exercise 6.2 Consider Table A.1 on page 545 in Appendix A that compares
several properties of MDS programs. Drop the rows “max. number of ob-
jects”, “min. number of objects”, and “max. dimensionality” as computer
constraints that have little to do with the substance of the different MDS
programs described here. Turn the remaining matrix into a 1–0 incidence
matrix. Then compute at least three different types of similarity coefficients
for the set of MDS programs and discuss your choices. Finally, scale these
similarity data in 2D MDS spaces and compare the resulting solutions.

Exercise 6.3 Consider Table 1.5 used in Exercise 1.7.

(a) Derive proximity matrices for the row entries by using (1) monotone
correlations, (2) city-block distances, and (3) Euclidean distances.
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(b) For each set of proximities, find 2D ordinal and interval MDS solu-
tions.

(c) Compare the solutions: How similar are they? Give reasons for their
relative similarities or dissimilarities.

Exercise 6.4 Pick ten countries from at least four different continents. For
these countries, derive a proximity matrix by card sorting, where you are
the respondent yourself. Discuss which problems you encountered in sort-
ing the cards. Replicate the experiment with a different respondent and
compare the outcomes.

Exercise 6.5 Consider the data matrix below. It shows the results of a free
sorting experiment reported by Dunn-Rankin (1983, p.47). Fifteen persons
clustered 11 words that all begin with the letter “a”. The entries in the
data matrix are cluster numbers.

Ad- Al- Aim-
Person A mits Aged most ing And As At Areas Army Away

1 1 2 3 2 4 3 1 1 5 6 6
2 1 2 3 2 2 1 1 1 3 2 2
3 1 2 1 2 2 3 1 1 3 3 3
4 1 2 3 4 4 1 5 6 7 8 8
5 1 2 3 4 4 1 5 6 7 8 8
6 1 2 3 3 4 5 1 6 7 8 8
7 1 2 3 2 2 3 1 1 2 2 2
8 1 2 2 4 5 6 7 7 8 9 9
9 1 2 3 2 4 5 1 6 4 4 4
10 1 2 3 4 5 2 1 1 2 6 6
11 1 2 3 2 4 1 1 1 3 5 5
12 1 2 3 4 2 3 1 1 3 3 3
13 1 2 3 2 4 5 1 1 6 7 5
14 1 2 3 2 4 5 1 1 6 7 7
15 1 2 3 2 2 3 1 1 3 2 3

(a) Do the persons sort the words into the same number of clusters?
Which person makes the finest distinctions and which person the
coarsest?

(b) Compute a matrix of reasonable proximity indices for the 11 words.
Analyze the similarities by MDS.

(c) Compute proximity indices for the 15 persons and analyze the indices
by MDS. (Hint: Make a list of all pairs of words. If person x throws
word i and word j into the same cluster, assign a proximity score of
1. Else, score 0.)

Exercise 6.6 Merkle (1981) studied the frequencies with which product x
is bought together with product y, as measured by the sales registry in a
set of German clothing stores. He reports the following co-occurrence data.
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Product 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 Expensive suit 28
2 Expensive trad. shirt 18 68
3 Expensive tie 13 17 0
4 Cheap tie 6 8 0 13
5 Imported shirt 10 25 10 0 20
6 Medium-priced shirt 2 23 0 15 3 0
7 Cheap suit 2 27 6 22 6 13 26
8 Cheap shirt 3 9 10 25 25 13 26 57
9 Cheap knitwear 17 46 22 24 5 109 222 275 487

10 Stylish shirt 10 0 4 8 1 48 146 88 57 109
11 Colored socks 24 21 3 18 7 281 197 117 178 8 273
12 Jeans 25 10 23 9 5 43 167 146 46 8 46 110
13 Modern jacket 1 14 3 33 0 3 12 21 87 42 15 14 508
14 Modern pants 0 0 0 46 16 0 18 67 12 19 20 24 45 88

(a) Discuss how the values on the main diagonal of this matrix are to be
interpreted. Are the data similarities or dissimilarities?

(b) Some products are bought more often than others. Discuss what ef-
fects this has if one were to submit these data to an MDS analysis.
In which ways would the result be influenced by buying frequencies?
Where in the MDS plot would a product move that people tend to
buy very often?

(c) Merkle (1981) suggests normalizing these data for their different basic
frequencies by using Yule’s coefficient of colligation: Yxy = [

√
ad −√

bc]/[
√

ad +
√

bc], where a denotes the frequency of all sales that
contain both x and y, d is the frequency of sales that contain neither
x nor y, b are sales of x but not y, and c are sales of y without x.
Compute the Yxy coefficients for co-sales of products 1 through 4.

(d) The coefficient Yxy is not easily interpretable. If, however, one skips
the square roots in the formula for Y , another coefficient due to Yule
results, called Q (see s6 in Table 6.4). What does Q assess? How can
this be expressed in words?

(e) Assume we wanted to do an ordinal MDS of the normalized data.
Would it make much, or any, difference whether we use Y or Q?

(f) Describe alternatives for normalizing the data matrix for different
overall sales frequencies of the different products.

(g) Compute MDS solutions for these data, both raw and normalized.
Discuss the solutions in terms of what features of these products
determine whether they tend to be bought jointly or not.

(h) Make a proposal of how the different values of the main diagonal
could be represented graphically in the MDS plots.
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7
Matrix Algebra for MDS

In this chapter, we build a basis for a more technical understanding of MDS.
Matrices are of particular importance here. They bring together, in one sin-
gle mathematical object, such notions as a whole configuration of points,
all of the distances among the points of this configuration, or a complete
set of proximities. Mathematicians developed a sophisticated algebra for
matrices that allows one to derive, for example, how a configuration that
represents a matrix of distances can be computed, or how the distances
among all points can be derived from a configuration. Most of these oper-
ations can be written in just a few lines, in very compact notation, which
helps tremendously to see what is going on. The reader does not have to
know everything in this chapter to read on in this book. It suffices to know
the main concepts and theorems and then later come back to this chapter
when necessary. Proofs in this chapter are meant to better familiarize the
reader with the various notions. One may opt to skip the proofs and accept
the respective theorems, as is common practice in mathematics (“It can be
shown that . . .”).

7.1 Elementary Matrix Operations

The term matrix denotes a rectangular array of objects such as numbers. A
data matrix, for example, may consist of measurement scores for n persons
on m items. Usually, a data matrix is written so that the persons form the
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rows and the items the columns. A simple example is the 3 × 2 matrix A,

A =

⎡⎣ 1 2
3 5
4 7

⎤⎦ .

It is customary to denote a matrix by a boldface capital letter (such as
A) and to use brackets around its elements. Sometimes, it is useful to
characterize a matrix by a typical element, which is written as A = (aij).
The symbol aij denotes the element in row i and column j of A.

The number of rows, n, and the number of columns, m, of a matrix define
its order . The matrix A above has order 3 by 2. Occasionally, an n × m
matrix A is denoted by An×m to show its order explicitly. If n = m, we
have a square or quadratic matrix.

Matrices where m = 1 or n = 1 are also called vectors. They are denoted
by small boldface letters such as a. A k ×1 vector is called a column vector
and a 1 × k vector a row vector. For example, the matrix A above consists
of two column vectors and three row vectors. A row vector typically is
written with a prime sign (e.g., as a′), a column vector without the prime.
The third row vector of A is r′

3 = [4 7], and the first column vector of A is

c1 =

⎡⎣ 1
3
4

⎤⎦ .

A row vector x′ is also written as the m-tuple (x1, x2, . . . , xm). Thus
x′ = (3, 2, 5) is equivalent to x′ = [3 2 5].

Transposing, Adding, and Multiplying Matrices
One obtains the row vector x′ from the column vector x simply by writing
it as a row vector, an operation called transposition. More generally, one
can also form the transpose of a matrix A by writing its rows as columns.
The transpose is written as A′. For the matrix A from above, we get

A′ =
[

1 3 4
2 5 7

]
.

Obviously, (A′)′ = A.
A matrix A is symmetric if aij = aji for all i, j, or, equivalently, if

A′ = A. In data analysis, symmetric matrices (e.g., correlation matrices)
are commonplace.

Elementary matrix algebra is concerned with when and how matrices
and vectors can be added, subtracted, multiplied, and divided. Addition
and subtraction are easily defined. Matrices are added (subtracted) by
simply adding (subtracting) corresponding elements. Expressed formally
for addition, A + B = (aij + bij) = (cij) = C. Table 7.1 gives an example.
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Addition (subtraction) is possible only if A and B have the same order,
because otherwise there are elements in one matrix for which there are
no corresponding elements in the other matrix. Table 7.1 also shows how
the product of a matrix with a simple number (called a scalar in matrix
algebra) is defined: kA = (k · aij); that is, each element of A is multiplied
by the scalar k. (Note that the scalar k differs from the 1×1 matrix M = [k]
whose only element is k.)

In contrast to multiplying a matrix by a scalar, multiplying a matrix
by another matrix is quite complicated. It would seem natural to define
AB = C as [aij · bij ] = [cij ], but this type of product plays only a very
minor role in most applications of matrix algebra. Rather, what is known
as “the” product of two matrices is defined as AB = [

∑
k aik · bkj ] = [cij ].

The formula says that each element of row i in A is to be multiplied by
the corresponding element of column j in B, and then all of these products
are to be summed to yield cij . Table 7.1 shows a concrete case, where c21
results from 1 · 2 + 2 · 0 + 0 · 1 = 2.

Matrix multiplication requires that A has as many columns as B has
rows; that is, if A’s order is n × r, then B’s order must be r × m. C’s
order is given directly by canceling r; that is, C is of order n × m. Hence,
if A and B are both square matrices, then both AB and BA exist and
are of the same order. It is important, however, to realize that AB �= BA
in general, as can be checked easily by trying some cases. We therefore
use special terms and speak of premultiplication or multiplication from the
left and postmultiplication or multiplication from the right. For example, in
AB, A premultiplies B or, expressed differently, B multiplies A from the
right.

Matrix Inverses
We now come to division. To begin, consider a real number k. If k is divided
by k, then 1 results: k/k = (k)(k−1) = (k−1)(k) = 1. The number 1
plays a special role in the multiplication of real numbers: it is the neutral
element for multiplication, because 1 · k = k · 1 = k, for all k. Similarly, the
inverse of a matrix A, A−1, should neutralize A in a product expression
so that A−1AB = B and AA−1B = B. But then both A−1A and AA−1

should be equal to a matrix that plays the role of the neutral element
in matrix multiplication. This matrix is called the identity matrix and is
denoted by I. Because pre- and postmultiplying A by A−1 is possible only
if both A and A−1 are square matrices, it follows that I is square, too.
Furthermore, as could be checked by some numerical examples, I must
consist of 0s everywhere, except for the main diagonal, which contains only
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1s. For example, the 3 × 3 identity matrix is

I =

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ . (7.1)

It is easily verified that, for any 3 × 3 matrix, IA = AI = A, which shows
that I is a neutral element in matrix multiplication.

As to the existence of A−1, we have already noted that A must be
square. Moreover, A must have full rank. The rank r of an n × m matrix
is the number of linearly independent rows or columns of this matrix. It
cannot be greater than the number of rows or columns, whichever is less.
That is, r ≤ min(n, m). A set of rows (columns) is linearly independent if
no row (column) is equal to a weighted sum of the other rows (columns).
Whether this is true for all rows (columns) of a matrix is generally not easy
to diagnose without doing some computations (see Section 7.4).1

For some special matrices it is easy to compute the inverse. One case is
the diagonal matrix whose off-diagonal elements are all equal to zero; that
is, A is diagonal if aij = 0 for all i �= j. An example of a diagonal matrix is
the matrix I in (7.1). One can check that if A is diagonal, then A−1 is also
diagonal, with 1/aii as its diagonal elements. Obviously, A−1 exists only if
aii �= 0, for all i. If this is true and A is diagonal, then A has full rank.

A second type of matrix whose inverse is easily found is an n×n matrix A
that satisfies A′A = I. A matrix with that property is called orthonormal.2

But if A′A = I, then A′ = A−1 and, because A is square, we also have
AA−1 = AA′ = I. Hence, a square matrix with orthonormal columns
also has orthonormal rows. A special case of an orthonormal matrix is the
identity matrix I.

In Table 7.2, we list some properties of matrix addition and scalar multi-
plication of a matrix, and in Table 7.3 we summarize properties of matrix
multiplications, transposes, and inverses.

1A−1 denotes, strictly speaking, “the” inverse or the regular inverse. There also exist
specialized inverses that possess some but not all of the properties of the regular inverse.
Examples are the “left” and the “right” inverses. They solve the equations LA = I and
AR = I, respectively, for A-matrices that need not be quadratic. Yet, L and R require
that A has full column rank or full row rank, respectively. There are even more general
types of inverses that do not require such full-rank properties (see below, Section 7.7).
Operating with a nonregular inverse on a given matrix always entails loss of information,
so that the operation cannot be undone.

2Mathematicians typically speak of orthogonal matrices. For example, Strang (1976,
p. 119) writes: “An orthogonal matrix is simply a square matrix with orthonormal
columns . . . Perhaps orthonormal matrix would have been a better name, but it is
too late to change.” Data analysts build on much less tradition and are perhaps allowed
more freedom in their choice of terms.
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TABLE 7.1. Examples of matrix addition, scalar multiplication, and multiplica-
tion.

A + B =

[
a11 a12
a21 a22

]
+

[
b11 b12
b21 b22

]

=

[
a11 + b11 a12 + b12
a21 + b21 a22 + b22

]
= C

[
3 6
7 2

]
+

[
1 −6
4 −3

]
=

[
4 0

11 −1

]

kA = k ·
[

a11 a12
a21 a22

]
=

[
ka11 ka12
ka21 ka22

]

2 ·
[

3 5
7 2

]
=

[
6 10

14 4

]

AB =

[
a11 a12 a13
a21 a22 a23
a31 a32 a33

][
b11 b12
b21 b22
b31 b32

]
=

[
c11 c12
c21 c22
c31 c32

]
= C

[
3 0 2
1 2 0
0 0 −1

][
2 1
0 1
1 1

]
=

[
8 5
2 3

−1 −1

]

TABLE 7.2. Some properties of matrix addition and scalar multiplication of
matrices.

A = B aij = bij for all i, j
A + B = C cij = aij + bij for all i, j
A + B = B + A Commutative property
(A + B) + C = A + (B + C) Associative property
cA Has elements c · aij for all i, j
c(kA) = (ck)A = (kc)A = k(cA) Associative property
c(A + B) = cA + cB Distributive property for matrices
(c + k)A = cA + kA Distributive property for scalars
A + 0 = A Adding a null matrix



142 7. Matrix Algebra for MDS

TABLE 7.3. Some properties of matrix multiplication, transposes, and matrix
inverses.

An×rBr×m = Cn×m if and only if cij =
∑r

k=1 aikbkj

(AB)C = A(BC)
AA = A2

(A + B)(C + D) = A(C + D) + B(C + D)
= AC + AD + BC + BD

(A′)′ = A
(AB)′ = B′A′

(ABC)′ = C′B′A′
(A + B)′ = A′ + B′

IA = A = AI
B = A−1 if and only if BA = I = AB

(A−1)−1 = A
(A′)−1 = (A−1)′

(AB)−1 = B−1A−1

7.2 Scalar Functions of Vectors and Matrices

One can take a matrix or a vector and assign to it, by some rule, a simple
number. In mathematics, such a rule is called a function. There are in-
finitely many functions, and each of them serves a different purpose. Here
we discuss some functions that are important in the MDS context.

Functions that have many arguments but only one value are frequently
used in all fields of science. A familiar example is the product-moment
correlation, which has two vector-valued arguments x and y, and a value
r that lies in the interval [−1,+1]. The correlation is closely related to the
scalar product of two vectors. Given two real-valued vectors x and y, both
of the same order, their scalar product is

< x,y >= x1y1 + · · · + xnyn.

One notes that this is computationally the same as x′y. The difference is
that the vector product is algebraically a 1×1 matrix with element < x,y >
and not just a number. In an applied context, however, one does not run
into problems by ignoring this distinction. Thus, for example,

< x,y >= x′y = [ 1 3 4 ]

⎡⎣ 2
5
7

⎤⎦ = 45.

Scalar products arise naturally in matrix multiplication. In A′B = C,
each element cij of the product matrix C is the scalar product of the ith
row vector of A and the jth column vector of B.

Of particular importance is the case where x′y = 0. Vectors whose scalar
product is zero are called orthogonal. For example, the vectors (2, 0) and
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(0, 1) in the usual Euclidean plane are orthogonal. Geometrically, these
two vectors correspond to points on the X- and Y -axes, respectively. If
one connects these points with line segments to the origin, one notes that
these lines are perpendicular, just like the coordinate axes with which they
coincide. Perpendicularity of the lines that connect the points x and y with
the origin is the geometric interpretation of orthogonality of two coordinate
vectors x and y.

Another example of a function with more than one argument is the dis-
tance between two points. Distances are closely related to the norm of a
vector, a notion that captures the intuitive meaning of length,

‖x‖ =
√

x′x = (x2
1 + . . . + x2

n)1/2. (7.2)

A whole family of norms arises by first substituting xr
i for x2

i and replacing
1/2 by 1/r and then choosing other positive numbers instead of r = 2. For
r = 1, for example, we obtain the absolute norm ‖x‖1 = |x1| + . . . + |xn|.
For a large r, the greatest absolute xi dominates the norm, so that ‖x‖∞ =
maxi |xi|. The natural norm, however, is the Euclidean norm, where r = 2
as in the formula above. Without any special comments to the contrary,
the term norm always refers to the Euclidean norm.

All norms satisfy four properties:

‖x‖ ≥ 0 for x �= 0 and
‖x‖ = 0 precisely when x = 0 (nonnegativity),

‖kx‖ = |k|‖x‖, for any scalar k,

‖x + y‖ ≤ ‖x‖ + ‖y‖ (triangle inequality).

The norm of a vector is used, for example, to normalize a given vector to
unit length. If x is any real-valued vector, then u = (1/‖x‖)x is a normal
or unit vector so that ‖u‖ = 1.

Norms can be used to express the distance between two points in vector
terms. Let x and y be the coordinate vectors of some points x and y. Then,
‖x − y‖, the norm of the difference vector x − y, is equal to the Euclidean
distance between x and y. This is easy to see by checking formula (3.3) for
the Euclidean distance.

Norms are closely related to loss functions, as we will see. Here, the
natural extension of vector norms to matrices is also helpful. The norm
of a matrix A is simply the square root of its sum-of-squares. Thus, the
function ‖A‖ is a familiar measure of A.

Another matrix function often found in the context of optimization prob-
lems is the trace. The trace function of an n × n matrix A is defined as

tr A =
n∑

i=1

aii, (7.3)
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TABLE 7.4. Some properties of the trace function.

(1) tr A =
∑n

i=1 aii Definition of trace function

(2) tr A = tr A′ Invariance under transposing A

(3) tr ABC = tr CAB = tr BCA Invariance under “cyclic” permutation

(4) tr (A′B) = tr (A′B)′ =
tr B′A = tr AB′ Combining properties (2) and (3)

(5) tr ab′ = a′b

(6) tr (A + B) = tr A + tr B Summation rule

the sum of A’s elements in the main diagonal. This function becomes partic-
ularly interesting when we are studying the difference of two corresponding
matrices, such as, for example, two configurations X and Y whose points
have a 1–1 correspondence. A common case is where X and Y are two
MDS configurations for replicated data. The function tr (X − Y)(X − Y)′

assesses, then, the sum of squared differences of the coordinates of the
corresponding points of X and Y. This is considered in detail in Chapter
21.

Later on, we need some properties of matrix traces that are conveniently
summarized together in Table 7.4. These properties are easy to verify by
considering some simple numerical examples.

7.3 Computing Distances Using Matrix Algebra

An important concept in MDS is the distance between two points. Let
Xn×m be the matrix of coordinates of the points. Each row i of X gives the
coordinates of point i on m dimensions, that is, xi1, xi2, . . . , xim. In MDS
we are concerned with the distances among all n points. We can use the
matrix algebra from the previous section to obtain a compact expression
for computing the squared Euclidean distances between all points. The
squared Euclidean distance is defined by

d2
ij(X) = d2

ij =
m∑

a=1

(xia − xja)2 =
m∑

a=1

(x2
ia + x2

ja − 2xiaxja). (7.4)

Suppose that X contains the coordinates of three points in two dimensions.
Now the matrix of squared distances, denoted by D(2)(X), is

D(2)(X) =

⎡⎣ 0 d2
12 d2

13
d2
12 0 d2

23
d2
13 d2

23 0

⎤⎦ =
m∑

a=1

⎡⎣ x2
1a x2

1a x2
1a

x2
2a x2

2a x2
2a

x2
3a x2

3a x2
3a

⎤⎦
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+
m∑

a=1

⎡⎣ x2
1a x2

2a x2
3a

x2
1a x2

2a x2
3a

x2
1a x2

2a x2
3a

⎤⎦−2
m∑

a=1

⎡⎣ x1ax1a x1ax2a x1ax3a

x2ax1a x2ax2a x2ax3a

x3ax1a x3ax2a x3ax3a

⎤⎦
= c1′ + 1c′ − 2

m∑
a=1

xax′
a = c1′ + 1c′ − 2XX′, (7.5)

where xa is column a of matrix X, 1 is an n × 1 vector of ones, and c is
a vector that has elements

∑m
a=1 x2

ia, the diagonal elements of XX′. The
matrix B = XX′ is called a scalar product matrix.

Suppose that

X =

⎡⎣ 1 2
3 1
2 0

⎤⎦ =

x1 x2
p1 1 2
p2 3 1
p3 2 0

(7.6)

is a coordinate matrix. Its rows show the coordinates of three points on
dimensions 1 (the first column of X) and 2 (the second column of X),
respectively, of Figure 7.1. The distances can be computed using (7.5). The
first step is to compute the scalar product matrix B = XX′; that is,

XX′ =

⎡⎣ 1 2
3 1
2 0

⎤⎦[
1 3 2
2 1 0

]
=

⎡⎣ 5 5 2
5 10 6
2 6 4

⎤⎦ = B. (7.7)

The second step is to find c. It can be verified that the diagonal elements
of XX′ are

∑m
a=1 x2

ia, which are the elements of c. Thus c′ = (5, 10, 4).
Inserting these results into (7.5) gives

D(2)(X) =

⎡⎣ 0 d2
12 d2

13
d2
12 0 d2

23
d2
13 d2

23 0

⎤⎦ =

⎡⎣ 5 5 5
10 10 10
4 4 4

⎤⎦
+

⎡⎣ 5 10 4
5 10 4
5 10 4

⎤⎦−2

⎡⎣ 5 5 2
5 10 6
2 6 4

⎤⎦=

⎡⎣ 0 5 5
5 0 2
5 2 0

⎤⎦.
Taking the square root of all elements gives the distance matrix

D(X) =

⎡⎣ 0
√

5
√

5√
5 0

√
2√

5
√

2 0

⎤⎦ ≈
⎡⎣ .000 2.236 2.236

2.236 .000 1.414
2.236 1.414 .000

⎤⎦.
In Section 7.9, we show how we can solve the reverse problem, that is, how
to find the coordinates X from a given scalar product matrix B.
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x2

x1

p1

p2

p3

FIGURE 7.1. Geometrical representation of configuration in (7.6).

7.4 Eigendecompositions

Every n × n matrix A of real numbers can be decomposed into a product
of several matrices. We now consider a particularly useful case, the eigen-
decomposition, which can be constructed for most matrices, but always for
symmetric ones. Formally,

A = QΛQ′, (7.8)

with Q orthonormal (i.e., Q′Q = QQ′ = I) and Λ diagonal. Equation (7.8)
is often written as a system of eigenequations

Aqi = λiqi, with qi �= 0 (i = 1, . . . , n). (7.9)

These equations can also be written more compactly as

AQ = QΛ. (7.10)

The column vectors of Q are called the eigenvectors of A. The λis in
the diagonal of Λ are the eigenvalues of A. It is customary to order the
eigenvalues (and the corresponding eigenvectors) so that λ1 ≥ λ2 ≥ . . . ≥
λn. For example, for matrix

A =
[

23 36
36 2

]
we get

Q =
[

0.8 −0.6
0.6 0.8

]
and Λ =

[
50 0
0 −25

]
.

A slightly different view of eigendecompositions leads to the important
spectral decomposition theorem. Consider again equation (7.8). We can
think of the product QΛQ′ as a product of two vectors: the row vector
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consisting of the column vectors in the product QΛ, and the column vec-
tor made up of the row vectors in Q′,

A = [ λ1q1 λ2q2 . . . λnqn ]

⎡⎢⎢⎢⎣
q′

1
q′

2
...

q′
n

⎤⎥⎥⎥⎦
= λ1q1q′

1 + λ2q2q′
2 + · · · + λnqnq′

n. (7.11)

The right-hand side of (7.11) says that A can be decomposed into a sum
of matrices. To illustrate, consider again matrix A from above. Here, the
decomposition is

A = 50
[

0.8
0.6

] [
0.8 0.6

] − 25
[ −0.6

0.8

] [ −0.6 0.8
]

=
[

32 24
24 18

]
−

[
9 −12

−12 16

]
=

[
23 36
36 2

]
. (7.12)

Some Properties of Spectral Decompositions
Eigenvalues and eigenvectors are important in practice, because they have
numerous useful properties. Some of them are listed in the following. Also,
some theorems are discussed that should help to better understand such
decompositions.

(1) Not every n × n real matrix possesses an eigendecomposition over
the real numbers, even if nonorthogonal eigenvectors are admitted. That
is, some matrices can be spectrally decomposed only if one allows for com-
plex eigenvalues and/or eigenvectors, which, in any case, complicates in-
terpretations. An example is the matrix A in the following. Consider the
eigenequation

Aq =
[

1 −1
1 1

] [
q1
q2

]
= λ

[
q1
q2

]
.

This says that q1−q2 = λq1, so that q2 = q1−λq1. Substituting this into the
second equation, q1 + q2 = λq2, yields q1 = 0, and back-substitution yields
q2 = 0. Thus, the only real vector that solves the eigenequation is the null
vector 0. If one allows for complex numbers, then, for example, λ1 = 1 + i
and q1 = (i, 1), with i2 = −1, solve the eigenequation Aq1 = λ1q1.

(2) Eigenvectors are not unique. They can, for example, be multiplied by
−1, because, if Aqi = λiqi, then also A(−1)qi = (−1)Aqi = λi(−1)qi =
(−1)λiqi. Therefore, reflections of the eigenvectors are admissible. One also
notes that choosing Q such that QQ′ = I is an arbitrary (although useful)
convention. Consider (7.8) and assume that we scale Λ by the factor 3.
This is accomplished by replacing Λ in equation (7.8) by Λ∗ = KΛ, where
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K = diag(3, 3, . . . , 3), a diagonal matrix with all nonnull elements equal
to 3. We note that KΛ can be written as K1/2ΛK1/2, where K1/2 is the
same as raising the diagonal elements of K to the power 1/2 because K is
diagonal. Hence, we must replace Q in equation (7.8) by Q∗ = QK−1/2 to
compensate for the scaling of the eigenvalues. Thus, Q∗Λ∗(Q∗)′ is another
eigendecomposition of A. One cannot, however, replace K by a matrix
that is not diagonal, because this would destroy the requirement that Λ be
diagonal.

(3) The number of eigenvalues that are not equal to zero is equal to
the rank r of a matrix. If no eigenvalue of A is equal to zero, A has full
rank. If there are eigenvalues equal to zero, the matrix has a null space
with dimensionality greater than zero. It is spanned by the eigenvectors
associated with the eigenvalues that are equal to zero.

(4) It can be shown (e.g., Searle, 1982) that if A is symmetric (A = A′),
its eigenvalues and eigenvectors are always real-valued. Because symmetric
matrices are so predominant in MDS, we always assume in the sequel that
this condition is satisfied unless stated otherwise. If A is symmetric, it also
has orthogonal eigenvectors. If we assume what is almost always true in
practice, namely, that λi �= λj , the orthogonality of eigenvectors follows
from λiq′

jqi = q′
jλiqi = q′

jAqi = q′
iA

′qj = q′
iAqj = q′

iλjqj = λjq′
iqj =

λjq′
jqi. That is, λiq′

jqi = λjq′
jqi. Because λi �= λj , q′

jqi = 0, so qj and
qi are orthogonal. If λi = λj , the eigenvectors can also be constructed
orthogonally.

(5) It is natural to ask to what extent the sum-of-squares of A is ac-
counted for by each of its component matrices, λiqiq′

i. In equation (7.12)
we have ‖A‖2 = (232 + · · · + 22) = 3125. For the spectral sum of A, we
get ‖λ1q1q′

1 + · · ·+λnqnq′
n‖2 = 3125. This expression can be split up into

‖λ1q1q′
1‖2+· · ·+‖λnqnq′

n‖2. Using (7.3), this is equal to λ2
1‖q1q′

1‖2+· · ·+
λ2

n‖qnq′
n‖2. But each ‖qiq′

i‖2 = 1, which follows as a consequence of choos-
ing Q so that QQ′ = I. Hence, the sum-of-squares of A is equal to the sum
of the squared eigenvalues. In our example in equation (7.12), we therefore
have 502 + (−25)2 = 3125, the same value as before for ‖A‖2. Hence, the
first component matrix in (7.12), λ1q1q′

1, accounts for 502/(502+252) = .80
or 80% of A’s sum-of-squares.

(6) The eigendecomposition of A can be understood in many ways. One
way is that it is an attempt to approximate A by a matrix of lower rank k.
The best-possible approximation is the matrix λ1q1q′

1+ · · ·+λkqkq′
k. Each

component matrix λiqiq′
i has rank 1, and adding k such matrices leads to

a matrix with rank k.
(7) Matrices may not only be understood as configurations but also as

transformations. For example, formula (7.9) says that the matrix A acts
on the vector qi just like a scalar, the eigenvalue λi, a particularly simple
transformation. Usually, things are not that simple. Consider the case where
we want to reflect the vector x in the plane about the line x = y. This is
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accomplished by premultiplying x by a reflection matrix T so that Tx = x∗

is the reflected vector:

Tx =
[

0 1
1 0

] [
x1
x2

]
=

[
x2
x1

]
=

[
x∗

1
x∗

2

]
= x∗.

If we replace T by its spectral decomposition, we have split up the trans-
formation T into a sum of operations. We can understand each operation
λiqiq′

i by noting some peculiar properties of its matrix qiq′
i. Let Pi = qiq′

i

for short. First, we observe that (λiPi)(λiPi) = λ2
i Pi. A matrix A for

which AA=A is called idempotent or a projector. Pi projects the vector x
onto the eigenvector qi. The length of x on this eigenvector is λi. Second,
PiPj = 0, for i �= j, because QQ′ = I. Hence, the projections effected
by P1, . . . ,Pr are onto r orthogonal dimensions, the eigenvectors. Third,
P1+. . .+Pr = I, which means that the total length of the projected vector
is equal to the original vector. For our example and a vector x = (2, 3), we
get

Tx =
[

0 1
1 0

] [
2
3

]
= (λ1q1q′

1 + λ2q2q′
2)x

=
(

(−1)
[

.5 −.5
−.5 .5

]
+ (1)

[
.5 .5
.5 .5

])[
2
3

]
=

[
3
2

]
= x∗.

One can check here geometrically that the transformation T is such that
x is projected onto the two bisector lines of the plane that can be gener-
ated from multiplying the two eigenvectors by all possible real numbers.
Postmultiplying the first component matrix by x means projecting x onto
the eigenvector q1, which lies on the line x = −y, and then reflecting this
projection by multiplying it by λ1 = −1. The analogous is true for the
second component matrix and the second eigenvector. The reflected vector
x∗, then, is built from these two vectors that lie on the eigenvalue lines.

(8) An n × n real symmetric matrix is called positive definite if for every
x �= 0 we have x′Ax > 0. This definition implies that all eigenvalues of
A are strictly greater than 0. This can be seen as follows. If we choose a
particular vector x, namely, an eigenvector qi of A, then q′

iAqi = λiq′
iqi =

λi, because q′
iqi = 1. Thus, λi > 0 because q′

iAqi is positive. If λi ≥
0, we call A positive semidefinite.3 Similarly, a negative definite matrix
has eigenvalues λa < 0 and consequently x′Ax < 0 for every x, whereas
a negative semidefinite matrix has eigenvalues λa ≤ 0 and consequently
x′Ax ≤ 0.

3Positive definite matrices are closely related to sums-of-squares and, thus, play an
important role in multivariate data analysis and in MDS. For example, we can write the
sum of squared deviations as

∑
i
(xi − x̄)2 =

∑
i
x2

i − nx̄2 = x′x − nx̄2 = x′Jx, where
J is the “centering” matrix J = I − (1/n)11′ and 11′ is an n × n matrix of ones.
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Finding a Matrix Inverse via Eigendecomposition
The eigendecomposition can be used for computing the inverse of a matrix.
Suppose that we have the eigendecomposition A = QΛQ′ and we want to
compute the inverse B = A−1. From Table 7.3, we know that A−1A = I,
so that BA = I. Replacing A by QΛQ′ gives

BQΛQ′ = I. (7.13)

The unknown B can be derived by using the orthonormality of Q and the
diagonality of Λ. Because Q is orthonormal and square, we have Q′Q =
QQ′ = I. Hence, postmultiplying (7.13) by Q gives

BQΛ = Q.

The matrix of eigenvalues Λ is diagonal so that its inverse is simply
diag(1/λ1, . . . , 1/λn) = Λ−1. If we postmultiply both sides by Λ−1 (us-
ing ΛΛ−1 = I), we get

BQ = QΛ−1.

Using the orthonormality of Q again and postmultiplying both sides by
Q′, we obtain an expression for the inverse of A:

A−1 = B = QΛ−1Q′.

From this expression, one can see that if Λ contains zero eigenvalues, Λ−1

does not exist, because its diagonal elements 1/λi are undefined for the
λi = 0. In other words, if A is not of full rank, then its inverse does not
exist.

7.5 Singular Value Decompositions

A decomposition closely related to the eigendecompositions and even more
useful in algebra and for computational purposes is the singular value de-
composition, SVD, of a matrix. The SVD is also known as the Eckart–Young
theorem. The main idea of the SVD is that every n × m matrix A can be
decomposed into

A = PΦQ′ (7.14)

with P an n × m matrix of left singular vectors, all orthonormal to each
other (i.e., P′P = I), Φ an m × m diagonal matrix with singular values
φi ≥ 0, and Q an m × m matrix of right singular vectors, all orthonormal
to each other (i.e., Q′Q = I).
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By exploiting the properties of the SVD, it becomes clear how we may
compute the SVD. Assume for the moment that we know the SVD of A as
given in (7.14). Then,

A′A = QΦP′PΦQ′ = QΦΦQ′ = QΦ2Q′,

which is just the eigendecomposition of A′A. This proves that the eigen-
values of A′A are all nonnegative because they consist of φ2

i and squared
numbers are always nonnegative. Thus, for computing the SVD of A we
start by computing the eigendecomposition of A′A = QΦ2Q′, which gives
us Φ and Q as a result. Using the orthonormality of Q and the diagonality
of Φ, we obtain P; that is,

A = PΦQ′

AQ = PΦQ′Q = PΦ

AQΦ−1 = PΦΦ−1 = P. (7.15)

As an example, we want to find the SVD of

X =

⎡⎣ 1 2
3 1
2 0

⎤⎦ .

First, we have to find the eigendecomposition of X′X; that is,

X′X = QΦ2Q′ =
[

14 5
5 5

]
=

[
.91 −.41
.41 .91

] [
16.03 0.00
0.00 2.77

] [
.91 .41

−.41 .91

]
, (7.16)

which gives us Φ (with φ1 = 4.03 and φ2 = 1.67) and Q. With (7.15) we
can compute P; that is,

P = XQΦ−1

=

⎡⎣ 1 2
3 1
2 0

⎤⎦[
.91 −.41
.41 .91

] [
4.03 0.00
0.00 1.67

]−1

=

⎡⎣ .43 .85
.78 −.19
.45 −.49

⎤⎦ .

Combining these results shows that the SVD of X is given by

X = PΦQ′

=

⎡⎣ .43 .85
.78 −.19
.45 −.49

⎤⎦[
4.03 0.00
0.00 1.67

] [
.91 .41

−.41 .91

]
. (7.17)
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It may be verified that the product PΦQ′ does indeed reconstruct X. Let
us check whether P′P = I. This means that the columns p1 and p2 must
satisfy p′

1p1 = 1, p′
2p2 = 1, and p′

1p2 = 0: p2
11 + p2

21 + p2
31 = .432 +

.782 + .452 = 1.00, p2
12 + p2

22 + p2
32 = .852 + (−.19)2 + (−.49)2 = 1.00, and

p11p12 + p21p22 + p31p32 = .43 · .85 + .78 · (−.19) + .45 · (−.49) = .00. This
shows that P′P = I. In the same way, the orthonormality of Q can be
checked.

The number of nonzero singular values is equal to the rank of A. Thus,
if A has one or more zero singular values, it is singular or rank deficient,
which means that the columns (rows) are linearly dependent. That is, any
column (row) of A is equal to a weighted sum (linear combination) of
the other columns (rows). If A has rank 2, for example, then exactly two
columns (rows) can be identified, which, with appropriate weights, allows
one to reproduce all other columns (rows) of A. Consider the matrix

A = [a1|a2|a3] =

⎡⎣ 3 2 4
1 4 −2
4 1 7

⎤⎦ ,

where a1,a2,a3 are column vectors. The singular values of A are 9.672,
4.738, 0.000, which implies that any one of the columns is a weighted sum
of the other two. For example, b1a1 + b2a2 = b3a3. It may be verified that
choosing b1 = 2, b2 = −1, and b3 = 1 solves the equation. Note that we
might as well have chosen b2a2 + b3a3 = b1a1, which gives an equivalent
solution for b1 = 1, b2 = 1/2, and b3 = 1/2.

7.6 Some Further Remarks on SVD

In the following, we list some properties of SVD that are useful in the
remaining sections of this book.

(1) An SVD of a real n × m matrix can be written in several ways.
The most parsimonious way is called full rank decomposition. It uses only
those parts of the three component matrices that are needed to reconstruct
A. That is, we choose P and Q so that P′P = Q′Q = Ir, and of Φ we
only use the upper left-hand corner r × r submatrix, where r = rank(A).
The version used above in (7.14) or (7.17) is a potentially rank deficient
case, because here P, for example, may have unnecessary columns if there
are zero singular values in Φ. An often-used rank deficient case is when
we augment both P and Q with appropriate vectors so that they become
n × n and m × m orthonormal matrices, respectively. We symbolize this as
follows.

A = Pn×n

[
Φr×r 0
0 0

]
n×m

Qm×m.
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The leading submatrix Φr is square and positive definite. As an example,
consider equation (7.17), which becomes

X = P3×3Φ3×2Q′
2×2

=

⎡⎣ .43 .85 .30
.78 −.19 −.18
.45 −.49 .75

⎤⎦⎡⎣ 4.03 0.00
0.00 1.67

0 0

⎤⎦[
.91 .41

−.41 .91

]
.

Obviously, the third column of P3×3 is needed to make P3×3 orthonormal,
but it is not needed to reconstruct X, because it is eliminated by the zero
singular value in the SVD matrix product.

The full rank case allows one to reduce the three-matrix SVD product to
two matrices, for example, by splitting Φr×r into two matrices Φ1/2

r×r and
then setting L = Pn×rΦ

1/2
r×r and R′ = Φ1/2

r×rQ
′
r×m. Thus, X = LR′. The

factors L and R′ are unique up to an arbitrary but full rank transformation
Tr×r, because LR′ = (LT)(T−1R′) if T has full rank r. Factorizations of
this sort are used in unfolding and in correspondence analysis, for example.
The rank-deficient case of SVD is often useful in algebraic manipulations,
because it always has orthogonal matrices P and Q.

(2) If all singular values are different—which is almost always true with
real data—then the singular vectors in P and Q are uniquely determined
except for reflections.

(3) If A is symmetric, then its SVD is simply A = TΦT′. If A = A′,
we have PΦQ′ = QΦP′, which, after pre- and postmultiplying by P and
Q and using their orthogonality, yields P′Q = I and thus P = Q. Thus,
if A is symmetric and positive semidefinite, the SVD corresponds to an
eigendecomposition.

(4) The SVD, like the spectral decomposition, provides an optimal least-
squares approximation of a matrix A by a matrix of lower rank. For
rank(A) = r ≥ k, the best approximating matrix results from retaining
the first k singular values in Φ and replacing the remaining k − r by zeros.
A is thus approximated by the matrix sum φ1p1q′

1 + · · · + φkpkq′
k, where

pi and qi are the ith column vectors of P and Q, respectively. This matrix
sum has similar properties as the spectral decomposition discussed above.
To illustrate, consider the picture in Figure 7.2a. This picture is gener-
ated from a 200-by-320 matrix that contains the codes for its pixels. One
can approximate this matrix with matrices of much lower rank than 200
in the sense of the above SVD. Figures 7.2b and 7.2c show that some 10
to 20 SVD components suffice to recognize the picture (Gramlich, 2004).
Hence, the essential information of the 200-dimensional space of the picture
is contained in a space of only about 20 dimensions, and the SVD shows
how to obtain this reduced space. This not only provides a solution of a
technical compression problem: it also suggests a bottom-up model for the
recognition of faces in psychology (see Section 17.7).
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a. b. c.

FIGURE 7.2. A 200-by-320 pixel picture (left side), approximated by 10 (center)
and 20 (right side) SVD components (Gramlich, 2004).

7.7 Linear Equation Systems

Matrices are closely related to systems of linear equations. Consider an
example:

−x1 + 2x2 + x3 = −2,
3x1 − 8x2 − 2x3 = 4,
x1 + 4x3 = −2.

(7.18)

The system is called linear because each equation is a weighted sum of the
unknowns x1, x2, and x3. The graph of such an equation in a Cartesian
coordinate system corresponds to a straight line. The equations in (7.18)
consist of the unknowns x1, x2, x3, the coefficients −1, 2, . . . , 4, and the
constants −2, 4, and −2. If we remove all symbols from (7.18) except the
coefficients, we obtain the matrix

A =

⎡⎣ −1 2 1
3 −8 −2
1 0 4

⎤⎦ . (7.19)

We can also array the unknowns and the constants from (7.18) in vectors:

x =

⎡⎣ x1
x2
x3

⎤⎦ and b =

⎡⎣ −2
4

−2

⎤⎦ . (7.20)

Combining (7.19) and (7.20), we can write the equation system (7.18) in
matrix notation, very compactly, as

Ax = b

or, more explicitly, as⎡⎣ −1 2 1
3 −8 −2
1 0 4

⎤⎦⎡⎣ x1
x2
x3

⎤⎦ =

⎡⎣ −2
4

−2

⎤⎦ . (7.21)

That (7.21) is equivalent to (7.18) can be seen by multiplying A by x
according to the multiplication rule for matrices.
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Solving a System of Linear Equations
The linear equation system Ax = b can be solved by premultiplying both
sides of the equation with A−1 so that A−1Ax = A−1b or x = A−1b. The
vector A−1b is a solution, because inserting this vector for x into Ax = b
leads to b = b.

Let the SVD of A be given by PΦQ′, where as usual P′P = I, Φ is
diagonal, and Q′Q = I. Making extensive use of these properties allows us
to solve the linear system Ax = b as follows.

Ax = b,

(PΦQ′)x = b,

P′PΦQ′x = P′b,

ΦQ′x = P′b,

Φ−1ΦQ′x = Φ−1P′b,

QQ′x = QΦ−1P′b,

x = QΦ−1P′b. (7.22)

The linear system Ax = b is solved by x = QΦ−1P′b. Note that if A
is not square or of full rank, then Φ has diagonal elements that are zero,
so that Φ−1 does not exist. If this is true, then there is no unique x that
solves Ax = b.

Let us apply (7.22) to solve (7.21). The SVD of A is given by[
.27 .07 -.96

-.96 .11 -.26
.09 .99 .10

][
9.12 .00 .00
.00 4.08 .00
.00 .00 .32

][
-.34 .90 .28
.30 -.17 .94
.89 .40 -.22

]
.

For x = QΦ−1P′b, we thus find

x =

[
-.34 .30 .89
.90 -.17 .40
.28 .94 -.22

][
.11 .00 .00
.00 .25 .00
.00 .00 3.10

][
.27 -.96 .09
.07 .11 .99

-.96 -.26 .10

][
-2
4

-2

]
=

[
2.0
0.5

-1.0

]
.

Hence, x = (2, 0.5, –1) solves (7.18). Here, QΦ−1P′ is equal to its inverse
A−1. It may be verified that the condition A−1A = AA−1 = I holds, as
is required for the inverse.

Uniqueness, Existence, and g-Inverses
Consider the simple equation ax = b, where a, b, and x are scalars. One
tends to say that the solution of this equation is x = b/a. However, there
are three possibilities: (1) if a �= 0, then x = b/a and b/a is the unique
solution whatever the value of b; (2) if a = 0 and b = 0, then any number
x is a solution because 0x = 0; (3) if a = 0 and b �= 0, then 0x �= 0
and no solution exists, because the equation is inconsistent, implying the
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contradiction 0 = b �= 0. Exactly the same three possibilities exist for a
system of linear equations Ax = b.

The natural approach to solving Ax = b is to ask for the inverse A−1 so
that x = A−1b. If this inverse exists, we have a unique solution. But the
inverse may not exist because (a) we have “too few” independent equations
or (b) because we have “too many” independent equations. Case (a) is
illustrated by the following example.

A1x1 =
[ −1 2 1

3 −8 −2

]⎡⎣ x1
x2
x3

⎤⎦ =
[ −2

4

]
= b1. (7.23)

Obviously, this system is underdetermined, so that if we solve it for two un-
knowns, the solutions will always contain the third unknown. For the third
unknown, we can pick any value. The system, therefore, is not uniquely
solvable. Case (b) is illustrated as follows.

A2x2 =

⎡⎣ −1 2
3 −8
1 0

⎤⎦[
x1
x2

]
=

⎡⎣ −2
4

−2

⎤⎦ = b2. (7.24)

This system is inconsistent. It has no solution. But consider also the fol-
lowing case.

A3x3 =

⎡⎣ −1 2 1
3 −8 −2
1 −2 −1

⎤⎦⎡⎣ x1
x2
x3

⎤⎦ =

⎡⎣ −2
4

−2

⎤⎦ = b3. (7.25)

Even though this system has three equations and three unknowns, it has
no solution. The three equations contain only two different pieces of infor-
mation, because one notes that the third row in A3 is just −1 times the
first row. Hence, the rank of A is only 2, and we could, at best, have an
under-determined system. It turns out, however, that the system is also
inconsistent, because the first and the third equations, being the same ex-
cept for a multiplier of −1, do not have the same relationship on the side
of the coefficients. That is, we do not have b1 = −b3. This example shows,
therefore, that having as many equations as unknowns or, in other words,
having a square matrix A is only necessary but not sufficient for a unique
solution to exist.

The case where no solution exists is typical in empirical research. For
example, in regression problems where one claims that one dependent vari-
able y is a linear combination of a set of independent variables X, this
is typically only “approximately” true. In this case, the equation system
y = Xw is inconsistent and we are looking for an optimal approximate
solution for w that minimizes ‖Xw−y‖. Assuming that X has full column
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rank, the best Xw is ŷ = X(X′X)−1X′y, where X(X′X)−1X′ projects4

the vector y onto the space spanned by the columns of X. If X is rank
deficient, however, we cannot directly compute this solution but first must
eliminate linear dependencies from the predictors X.

It is not easy to keep track of all of this, but, fortunately, there exists a
unified treatment that makes things pleasantly simple. Instead of A−1, one
can use a generalized inverse, which is equal to the usual inverse if it exists
and provides a least-squares solution in that case. One such generalized
inverse is the Moore–Penrose inverse or pseudoinverse, A+. It is the unique
matrix that can be computed from the full rank SVD A = PΦr×rQ′ as
A+ = QΦ−1

r×rP
′. The above regression problem is solved even if there are

linear dependencies in X by replacing the term (X′X)−1 by (X′X)+. For
linear equation systems Ax = b in general, optimal solutions are found by
setting x = A+b. If an exact solution exists—as in (7.23)—then x = A+b
will yield it. (One can show that a system Ax = b has an exact solution
if and only if AA+b = b.) If no exact solution exists—as in (7.24) and
(7.25)—x = A+b gives the optimal least-squares solution.

There are plenty of generalized inverses. They are usually denoted by
A−. They all share the property that A = AA−A, which obviously also
holds for the regular inverse A−1. The Moore–Penrose has a number of
additional properties. They are not always needed, and other forms of gen-
eralized inverses may suffice and may be cheaper to compute for a particular
purpose. However, not all generalized inverses have the property that they
provide least-squares solutions to Ax = b.

7.8 Computing the Eigendecomposition

We now show how an eigendecomposition can be computed. We consider a
typical case, the symmetric matrix B used previously in (7.7). To find B’s
eigenvalues, we can use one of the many sophisticated iterative procedures
available in modern computer packages. It would take too much time to
explain any of these, but we can convey a sense of how they work by
demonstrating the simple power method.

For scalar product matrices in the empirical sciences, we can safely as-
sume that their eigenvalues are all positive and distinct so that λ1 > · · · >
λk ≥ 0. The number k is either equal to m or is the last eigenvector of in-
terest. We then arbitrarily define some starting vector q[0] �= 0 and iterate
the system

q[t+1] = ‖Bq[t]‖−1Bq[t]

4The solution is derived by geometric arguments in Chapter 22. See Figure 22.2 and
the accompanying text.
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TABLE 7.5. Computing eigenvalues and eigenvectors by the power method. The
product q[t]′Bq[t] estimates the eigenvector λ at iteration t, λ[t].

B q[0] q[1] q[2] q[3] q[4] q1

5 5 2 1/
√

3 .444 .431 .429 .429 .429
5 10 6 1/

√
3 .778 .781 .781 .781 .781

2 6 4 1/
√

3 .444 .452 .453 .454 .454
λ[t] 15.000 16.215 16.227 16.227 16.227 16.227

λ1q1q′
1 =

[
2.986 5.437 3.160
5.437 9.898 5.754
3.160 5.754 3.345

]

B − λ1q1q′
1 q[0] q[1] q[2] q2

2.016 -.437 -1.156 1/
√

3 .853 .853 .853
-.437 .095 .251 1/

√
3 -.185 -.185 -.185

-1.156 .251 .663 1/
√

3 -.489 -.489 -.489
λ[t] .030 2.776 2.776 2.776

λ2q2q′
2 =

[
2.020 −.438 −1.158
−.438 .095 .251

−1.158 .251 .664

]

λ1q1q′
1 + λ2q2q′

2 =

[
2.99 5.44 3.16
5.44 9.90 5.75
3.16 5.75 3.34

]
+

[
2.02 −.44 −1.16
−.44 .10 .25

−1.16 .25 .66

]

=

[
5 5 2
5 10 6
2 6 4

]

a few times until q[t+1] remains essentially invariant over the iterations.5

The scalar factor ‖Bq[t]‖−1 normalizes Bq[t] which prevents the values
of q from becoming extremely large or small over the iterations. After
convergence, q is equal to the first eigenvector and q′Bq = λ1 is the first
eigenvalue. An example is shown in Table 7.5.

Starting with q[0] = (1/
√

3, 1/
√

3, 1/
√

3) in Table 7.5, Bq[0] =
(6.928, 12.124, 6.928) and ‖Bq[0]‖ = q[0]′B′Bq[0] =

√
242.986 = 15.588,

so that q[1] = (1/15.588) · (6.928, 12.124, 6.928) = (.444, .778, .444). Further
iterations of the same kind yield q[2], q[3], and so on. After four itera-
tions, the results have stabilized. We obtain q[4] = (.429, .781, .454) and
an estimate of the eigenvalue λ1 of q[4]′Bq[4] = 16.227.

5The notation q[t] indicates that we are dealing with vector q at time t. Vector q[0],
thus, is q at time t = 0, that is, the starting vector.
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How can we find the second eigenvector? Remember that the eigende-
composition of a square 3 × 3 matrix amounts to

B = λ1q1q′
1 + λ2q2q′

2 + λ3q3q′
3.

At this stage, we know the first eigenvalue λ1 and the first eigenvector q1.
Moving the known part to the left-hand side of the equations gives

B − λ1q1q′
1 = λ2q2q′

2 + λ3q3q′
3.

To compute the second eigenvalue and eigenvector, we apply the procedure
to B − λ1q1q′

1. This is shown in the second part of Table 7.5. Eigenvector
q2 is (.853,−.185,−.489) and λ2 equals 2.776. To find the third eigenvalue,
we have to repeat the procedure to B − λ1q1q′

1 − λ2q2q′
2, which in this

example is equal to zero everywhere. Therefore, the third eigenvalue must
be zero and the first two components suffice to specify B.

Finally, we show why the power method works at all. We started by
assuming that |λ1| > |λj |, j = 2, . . . , k. Also, for scalar product matrices,
it holds that B = B′. The iterations can be written6 explicitly as

q[1] = ‖Bq[0]‖−1Bq[0],

q[2] = ‖Bq[1]‖−1Bq[1]

= ‖BBq[0]‖−1B(Bq[0]), etc., or as

q[t] = ‖Btq
[0]‖−1Btq[0]. (7.26)

But because B = QΛQ′, B2 = (QΛQ′)(QΛQ′) = QΛ(Q′Q)ΛQ′ =
QΛ2Q′ and, in general, Bt = QΛtQ′. If λ1 dominates all other eigen-
values, then Bt will be more and more approximated by the additive fac-
tor λ1q1q′

1 in the eigendecomposition as t → ∞. Hence, we get Btq[0] ≈
(λt

1q1q′
1)q

[0] = λt
1q1(q′

1q
[0]) = λt

1q1k = constant · q1. So, the iterations
eventually grind out the first eigenvector, q1. The irrelevant scaling con-
stant is removed through normalization. The corresponding eigenvalue re-
sults from q′

1Bq1 = λ1 which follows from equation (7.9).
Apart from its assumptions concerning the distribution of the eigenval-

ues, the power method is not without problems. Suppose that the matrix
to which the power method is applied is not a scalar product matrix, but
any square symmetric matrix. Then it may happen that some eigenval-
ues are negative. Assume that the eigenvalues are ordered decreasingly, so
that the largest eigenvalue is λ1 and the smallest negative eigenvalue is
λn. If the largest eigenvalue is smaller than minus the smallest eigenvalue,
that is, λ1 < |λn|, then the power method converges to the smallest nega-
tive eigenvalue λn and not to λ1. A second problem occurs if by accident

6Bt is the product of B multiplied t times with itself. Thus, Bt = BBB . . . B, with
t times B.
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the start vector q[0] is chosen exactly equal to an eigenvector. Then, the
power method finishes in one iteration, but the obtained eigenvalue is not
necessarily the largest one. The third problem of the power method is its
slow convergence if two eigenvalues are almost equal. In general, the power
method can be accelerated by using BB instead of B, so that the power
method converges to the largest squared eigenvalue. The use of BB makes
differences between the eigenvalues larger.

7.9 Configurations that Represent Scalar Products

We now return to the problem of finding a point configuration that repre-
sents a given scalar-product matrix. In matrix notation, this amounts to
solving the equation

B = XX′, (7.27)

where X is the n×m coordinate matrix of n points in m-dimensional space.
Let

X =

⎡⎣ 1 2
3 1
2 0

⎤⎦ and B = XX′ =

⎡⎣ 5 5 2
5 10 6
2 6 4

⎤⎦ , (7.28)

as in Sections 7.3 and 7.5. Suppose that we do an eigendecomposition of B
= QΛQ′. We know that scalar product matrices are symmetric and have
nonnegative eigenvalues (see Section 7.5). Therefore, we may write B =
(QΛ1/2)(QΛ1/2)′ = UU′, where Λ1/2 is a diagonal matrix with diagonal
elements λ

1/2
i . Thus, U = QΛ1/2 gives coordinates that reconstruct B. In

Table 7.5 the eigendecomposition of matrix B is given. The coordinates are

U = QΛ1/2

=

⎡⎣ .43 .85
.78 −.19
.45 −.49

⎤⎦[ 4.03 0.00
0.00 1.67

]
=

⎡⎣ 1.73 1.42
3.15 −.31
1.83 −.81

⎤⎦. (7.29)

The coordinates in U differ from those of X in (7.28). This simply means
that they are expressed relative to two different coordinate systems, which,
however, can be rotated into each other. For the problem of finding a vector
configuration for given scalar products, it is irrelevant how the coordinate
axes are rotated. What matters is the configuration.

7.10 Rotations

For the purpose of easy interpretation, some rotations are more useful than
others, especially if one wants to check hypotheses about the dimensions. In
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FIGURE 7.3. Rotation of coordinate system by α◦.

factor analysis where dimensions play a dominant role, numerous criteria
for rotating a configuration have been proposed (see, e.g., Mulaik, 1972).
Probably the best known of these criteria is the varimax principle. It seeks
to rotate a given configuration X such that the sum of the variances of the
x2

ij in each column j of X is maximized across all columns. This criterion is
designed to make the “loadings” xij either very small or very large so that
each point of X lies, ideally, on or very close to just one of the dimensions.

This type of simple structure rotation is motivated by a particular theory
about the dimensional structure of the configuration X and by consider-
ations about the robustness of this dimensional structure (Kaiser, 1958).
Another rotation criterion of a more formal nature is rotation to principal
axes. Principal axes are the dimensions of a particular orthogonal coor-
dinate system. It has the property that its first dimension (1st principal
axis or 1st PA) lies closest to all points of the configuration X. The second
PA accounts for most of the points scatter that is orthogonal to the first
PA, and so on. If the coordinates in X refer to a coordinate system whose
dimensions are principal axes, then XX′ is diagonal, and the norm of the
first column of X, ‖x1‖, is larger than the norm for any column of any
rotation of X. The norm of the second column is similarly the largest one,
subject to the condition that x2 is orthogonal to x1, and so on.

Let us consider rotations in matrix terms. Rotations can be conceived
of in two different ways. (1) The points (say, p1, . . . , p3 in Figure 7.1) are
transformed, but the coordinate system remains fixed. This is called the
alibi interpretation of the transformation, because the points are moved
somewhere else. (2) The points remain fixed, but the coordinate axes are
transformed. This is the alias interpretation, because the points change
their coordinates or names.

Consider Figure 7.3. The point p1 has coordinates (x11, x12) relative to
the axes x1 and x2. In an alias interpretation of rotation, p1 is now to be
coordinatized relative to new axes, such as the 1st PA and the 2nd PA,
which result from x1 and x2 by a counterclockwise rotation through the
angle α. The new coordinates, x∗

11 and x∗
12, must depend, in some way, on

the old coordinates, x11 and x12, and the angle α.
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First, we note in Figure 7.3 that x11 = d cos(β), x12 = d sin(β), x∗
11 =

d cos(β−α), and x∗
12 = d sin(β−α), whence, using the well-known formulas

for the sine and the cosine of the difference of two angles,

x∗
11 = d cos(β − α) = d[cos(β) cos(α) + sin(β) sin(α)]

= [d cos(β)] cos(α) + [d sin(β)] sin(α)
= x11 cos(α) + x12 sin(α), and

x∗
12 = d sin(β − α) = d[sin(β) cos(α) − cos(β) sin(α)]

= [d sin(β)] cos(α) − [d cos(β)] sin(α)
= x12 cos(α) − x11 sin(α).

Expressing this in matrix notation yields[
x∗

11 x∗
12

]
=

[
x11 x12

] [ cos(α) − sin(α)
sin(α) cos(α)

]
. (7.30)

The matrix on the right-hand side of (7.30) is the rotation matrix T. If
we collect the point coordinates in an n × m matrix as usual, the new
coordinate matrix X∗ is related to the old X by X∗ = XT. The rotation
matrix T is orthonormal.

A general m×m rotation matrix can be composed as the product of all
planewise rotations. In m-dimensional space, there are

(
m
2

)
= m(m − 1)/2

such rotations. For example, in 4D the rotation in the plane spanned by
the first and the fourth coordinate axes, T14, is

T14 =

⎡⎢⎢⎣
cos(α14) 0 0 − sin(α14)

0 1 0 0
0 0 1 0

sin(α14) 0 0 cos(α14)

⎤⎥⎥⎦ .

The rotation of the entire 4D space is accomplished by

T = T12T13T14T23T24T34.

That rotations leave all of the distances in a configuration unchanged
is easy to see. Consider (7.5). Replacing X by XT has no effect on XX′,
because XTT′X′ = XX′. Also, the vector c is simply the collection of the
diagonal elements of XX′, and they are not affected by T, as we just saw.

A particular choice of T is the matrix of Q from the SVD of X = PΦQ′.
With T = Q, XT yields a principal axes orientation of the coordinate axes,
because XQ = PΦ, with orthogonal columns of maximal norm (Gower,
1966). Consider a case of rotating the coordinate axes x1 and x2 in Figure
7.1 to principal axes. We begin with the given coordinates

X =

⎡⎣ 1 2
3 1
2 0

⎤⎦ .
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Using the Q from (7.16) we have

XQ =

⎡⎣ 1 2
3 1
2 0

⎤⎦[
.91 −.41
.41 .91

]
=

⎡⎣ 1.73 1.42
3.15 −.31
1.83 −.81

⎤⎦ . (7.31)

How does Q rotate the plane? The answer is found by comparing Q with
the symbolic rotation matrix in formula (7.30). Because .91 corresponds to
cos(α), the rotation angle α is arccos(.91) = 24◦. The same α results, for
example, from arcsin−1(.41). Hence, Q rotates X by 24◦ in the positive
sense, that is, anticlockwise.

If we compare the coordinates in XQ of (7.31) with those in Figure 7.3,
we note that XQ = X∗ does indeed contain the PA coordinates of the
points. The squared coordinates on x∗

1 now sum to 1.732 + 3.152 + 1.832 =
16.26. This sum is not only greater than the corresponding sum on x1
(12 + 32 + 22 = 14), but is also the maximum possible for any coordinate
axis.

7.11 Exercises

Exercise 7.1 The following exercises cast some additional light on the sym-
metry and asymmetry of a matrix.

(a) Compute A = 0.5(M + M′) and B = 0.5(M − M′) for the upper
left-hand corner submatrix A, . . ., G in Table 4.2.

(b) A square matrix M is called skew-symmetric if M′ = −M. Show that
B = 0.5(M − M′) is skew-symmetric.

(c) Show that M = A + B.

(d) Characterize the decomposition of M into A and B in words. Into
what two components is M decomposed here?

Exercise 7.2 Specify the 2 × 2 matrix T that effects a counterclockwise
rotation of the 2D plane through an angle of 45 degrees.

Exercise 7.3 The square of a matrix M is defined by M2 = MM.

(a) What properties must M possess so that M2 exists?

(b) Assume T is a rotation matrix. Characterize what T2 means geomet-
rically.

(c) If Q is orthogonal, is the same true of Q3?
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Exercise 7.4 Find all 3×3 orthogonal matrices whose entries are zeros and
ones.

Exercise 7.5 Use a computer package that does matrix algebra, for exam-
ple, MatLab, S-plus, R, and Ox. (Note that some statistics packages such
as SPSS and SAS can also do matrix algebra.)

(a) Find the pseudoinverse of A =
[

3 2
]

through the SVD compo-
nents of A.

(b) Find the pseudoinverses for A1, A2, and A3 in (7.23), (7.24), and
(7.25).

Exercise 7.6 What 2 × 2 matrix projects the X−Y plane onto the X-axis?

Exercise 7.7 Let A =
[

1 x
y −1

]
. Specify x and y so that

(a) AA′ is symmetric;

(b) AA′ is skew-symmetric;

(c) A is orthogonal.

Exercise 7.8 Define A =

⎡⎣ 1 2 3
4 0 1

−5 −2 6

⎤⎦ and B =

⎡⎣ 7 −4 0
3 2 1
1 −1 6

⎤⎦.

(a) Compute (A + B)2.

(b) Compute (A + B)(A − B).

Exercise 7.9 Construct a 2 × 2 matrix with nonzero entries that does not
have an inverse.

Exercise 7.10 Find 2×2 matrices A and B, both unequal to the null matrix
0, so that A2 + B2 = 0.

Exercise 7.11 Find 2 × 2 matrices A and B with nonzero entries so that
AB = 0.

Exercise 7.12 Suppose that X is a matrix in which the third column is
equal to twice the first column. Show that the same must be true for any
product YX.

Exercise 7.13 Let X be a 3 × 2 matrix. Try a few cases and demonstrate
that tr X′X = tr XX′. Show that this property holds in general.
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Exercise 7.14 Consider the matrices A and B of Exercise 7.8.

(a) Find the eigenvalues and eigenvectors of AA′, A′A, BB′, and B′B.

(b) Verify that the trace of these four matrix products is equal to the
sum of the respective eigenvalues.

(c) Explain what the traces A′A and B′B represent geometrically. (Hint:
What do the elements in the main diagonal of these product matrices
represent? They are measures of what?)

Exercise 7.15 Consider the equation (7.23).

(a) Interpret this equation geometrically in terms of image vectors, pre-
image vectors, and transformations. What vectors are mapped here
onto what images? What affects the mapping?

(b) Can you decompose the transformations into a set of more basic trans-
formations?

Exercise 7.16 For matrix B of equation (7.28), use the power method with
at least five iterations to find the dominant eigenvalue.

Exercise 7.17 Consider matrix A2 of equation (7.24). How many nonzero
eigenvalues exist for A2A′

2? Why? (You don’t have to do any computa-
tions.)

Exercise 7.18 Consider the matrices

A =

⎡⎢⎢⎣
1 2 3
2 3 4
3 4 5
4 5 6

⎤⎥⎥⎦ and B =

⎡⎢⎢⎣
1 2 3
2 4 6
3 6 9
4 8 12

⎤⎥⎥⎦ .

(a) Plot the first two coordinates of each row of A and B as vectors in
the X−Y plane.

(b) Find the ranks of A and of B. Explain why the rank of A is not
equal to 1, even though the second and the third column of A can be
generated from the first column by a2 = a1+1·1 and by a3 = a1+2·1,
respectively.

(c) Find the linear combinations that generate the third column from the
first two columns of A and of B, respectively.

Exercise 7.19 Matrix B below is a permutation of matrix A. Therefore,
there exists a row permutation matrix P and a column permutation matrix
Q such that B = PAQ. Note that any permutation matrix P has in each
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row and column a single value of one and all other values zero. Find the
permutation matrices that turn B back into A. (Hint: Build the desired
permutation matrices as products of elementary permutation matrices. You
get the permutation matrix P that exchanges rows i and j of X in PX by
exchanging columns i and j of an identity matrix.)

A =

⎡⎣ a b c
d e f
g h i

⎤⎦ and B =

⎡⎣ e f d
h i g
b c a

⎤⎦ .

Exercise 7.20 Show that (AB)′ = B′A′.

Exercise 7.21 Demonstrate that (AB)−1 = B−1A−1 for the matrices A
and B in Exercise 7.8.

Exercise 7.22 Consider the matrices A and B in Exercise 7.8.

(a) Normalize the column vectors of A and B numerically.

(b) Express this normalization in matrix notation.

Exercise 7.23 Consider the matrices A in Exercise 7.8.

(a) Compute the correlation matrix of the column vectors of matrix A.

(b) Express the operations that generate this correlation matrix in matrix
notation.

(c) Spectrally decompose the correlation matrix as in (7.11).

(d) Specify what sum-of-squares is accounted for by each component.

(e) Check whether the correlation matrix is positive semidefinite or pos-
itive definite.

Exercise 7.24 Compute the distances among the rows of matrix A of Ex-
ercise 7.18 by using formula 7.5.

Exercise 7.25 Consider Figure 7.3.

(a) The coordinate axes in this plot are almost optimal in terms of simple
structure. Explain why.

(b) The best simple structure orientation of the plane leads to

X∗ =

⎡⎣ 0.60 2.15
2.76 1.56
1.96 0.38

⎤⎦ .

Show that X∗ more closely satisfies the simple structure criterion
than the point coordinates of both the system spanned by x1 and x2,
and the system of principal axes in Figure 7.3.
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(c) Find the rotation matrix that turns the system spanned by x1 and
x2 so that X∗ results.

Exercise 7.26 Prove that the least-squares solution for x in the equation
system Ax = b coincides with the one and only solution for x if A is invert-
ible. (Hint: Use theorems of Table 7.2 to simplify the regression projector.)

Exercise 7.27 Find the solution vector x in the equation system (7.18) by

(a) inverting A;

(b) by solving Ax = b as if it were a regression problem with the un-
known x, that is, by determining the least-squares solution for x;

(c) by solving the system using the generalized inverse based on the SVD
of A.

(d) Discuss the findings.

Exercise 7.28 Assume you have five vectors with four elements each. What
can you conclude about their linear dependency?

Exercise 7.29 Let P be a projector.

(a) Show that PP = P (idempotency).

(b) Explain why a projector is idempotent by geometric arguments.

Exercise 7.30 Consider the picture compression problem illustrated in Fig-
ure 7.2 on page 154. If you have MatLab, you can easily replicate this ex-
ample with a few commands. The data for this picture are provided by
MatLab under the name “clown.mat”. Hence, all you need to do is type
the commands

load clown % Load matrix X with pixel codes
image(X) % Display original picture
[U,S,V]=svd(X); % SVD of the 200-by-320 pixel matrix
k=10; % Set compression factor k
image(U(:,1:k)*S(1:k,1:k)*V(:,1:k)’) % Approximate picture
colormap(gray) % Set image to grayscale

If you do not have MatLab, download the data from our website and do
the exercise in your favorite matrix language.

(a) Test out the performance of some additional ks.

(b) Determine the compression rate accomplished by choosing k SVD
components rather than the original matrix of pixels. (Hint: The orig-
inal matrix contains 64,000 pieces of information; the rank-reduced
matrix contains as many pieces as there are elements in its SVD
components.)
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(c) Try the above problem in color by inserting colormap(map) after
image(X) in the above set of commands.

(d) Measure objectively how well the various matrices of rank k “explain”
the original data.

(e) Attempt an interpretation of the SVD approximations. What infor-
mation is picked up first?



8
A Majorization Algorithm for
Solving MDS

An elegant algorithm for computing an MDS solution is discussed in this
chapter. We reintroduce the Stress function that measures the deviance of
the distances between points in a geometric space and their corresponding
dissimilarities. Then, we focus on how a function can be minimized. An
easy and powerful minimization strategy is the principle of minimizing
a function by iterative majorization. An intuitive explanation for iterative
majorization in MDS is given using a simplified example. Then, the method
is applied in the Smacof algorithm for minimizing Stress.

8.1 The Stress Function for MDS

We now place the concepts introduced into a common framework to al-
low the derivation of mathematically justifiable rather than just intuitively
plausible methods for solving the MDS construction problem. The methods
can then be extended and generalized to MDS models not considered so
far. We need the following six basic definitions, most of which have been
introduced before.

D1 n denotes the number of empirical objects (stimuli, variables, items,
questions, and so on, depending on the context).

D2 If an observation has been made for a pair of objects, i and j, a
proximity value pij is given. If pij is undefined, we speak of a miss-
ing value. The term proximity is used in a generic way to denote
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both similarity and dissimilarity values. For similarities, a high pij

indicates that the objects i and j are similar.

D3 A dissimilarity is a proximity that indicates how dissimilar two ob-
jects are. A small score indicates that the objects are similar, a high
score that they are dissimilar. A dissimilarity is denoted by δij .

D4 X denotes (a) a point configuration (i.e., a set of n points in m-
dimensional space) and (b) the n × m matrix of the coordinates of
the n points relative to m Cartesian coordinate axes. A Cartesian
coordinate system is a set of pairwise perpendicular straight lines
(coordinate axes). All axes intersect at one point, the origin, O. The
coordinate of a point on axis a is the directed (signed) distance of
the point’s perpendicular projection onto axis a from the origin. The
m-tuple (xi1, . . . , xim) denotes the coordinates of point i with respect
to axes a = 1, . . . , m. The origin has the coordinates (0, . . . , 0).

D5 The Euclidean distance between any two points i and j in X is the
length of a straight line connecting points i and j in X. It is computed
by the value resulting from the formula dij = [

∑m
a=1(xia −xja)2]1/2 ,

where xia is the coordinate of point i relative to axis a of the Carte-
sian coordinate system. We also use dij(X) for the distance to show
explicitly that the distance is a function of the coordinates X.

D6 The term f(pij) denotes a mapping of pij , that is, the number as-
signed to pij according to rule f . This is sometimes written as f :
pij �→ f(pij). We also say that f(pij) is a transformation of pij . (The
terms function, transformation, and mapping are synonymous in this
context.) Instead of f(pij) we often write d̂ij .

So far, the task of MDS was defined as finding a low-dimensional config-
uration of points representing objects such that the distance between any
two points matches their dissimilarity as closely as possible. Of course, we
would prefer that each dissimilarity should be mapped exactly into its cor-
responding distance in the MDS space. But that requires too much, because
empirical data always contain some component of error (see, e.g., Section
3.2). We define an error of representation by

e2
ij = (dij − δij)2. (8.1)

Summing (8.1) over i and j yields the total error (of approximation) of an
MDS representation,

σr(X) =
n∑

i=1

n∑
j=i+1

(dij − δij)2, for all available δij , (8.2)

which is often written as

σr(X) =
∑
i<j

(dij − δij)2, for all available δij . (8.3)
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The relation i < j in (8.3) simply says that it is sufficient, in general, to sum
over half of the data, because dissimilarities and distances are symmetric.

What does “for all available δij” mean? In practical research, we some-
times have missing values, so that some δij are undefined. Missing values
impose no restriction on any distances in X. Therefore, we define fixed
weights wij with value 1 if δij is known and wij = 0 if δij is missing. Other
values of wij are also allowed, as long as wij ≥ 0. This defines the final
version of raw Stress (Kruskal, 1964b),

σr(X) =
∑
i<j

wij(dij(X) − δij)2. (8.4)

We use the notations σr and σr(X) interchangeably to denote raw Stress.
For every set of coordinates X, a Stress value can be computed. Clearly,

we do not want just any X, but we want to find an X such that the
errors (8.1) are small or even zero. Mathematically spoken, we want to
minimize σr(X) over X. For that purpose, we first introduce the concept
of differentiating a function, which is explained in the next section.

8.2 Mathematical Excursus: Differentiation

Our aim is to find a coordinate matrix X such that σr(X) is minimal.
This is a rather complex problem because it requires us to pick n · m
coordinates optimally with respect to the Stress function. Therefore, we
start by looking at a more simple problem, that is, finding the minimum
of a function f(x) with one variable x only. This requires some notions of
differential calculus. Consider an example. Let y be the dependent variable
and x the independent variable in the function

f(x) = y = .3x4 − 2x3 + 3x2 + 5, (8.5)

and find the x value for which y attains its smallest value. A first rough
estimate of the solution can be derived by looking at some points from the
graph of this function, that is, points with the coordinates (x, f(x)) in a
Cartesian coordinate system. A set of such points can be easily found by
choosing some x values, plugging them into the right-hand side of (8.5),
and solving for y. If we compute the coordinates of some such points on the
graph, we arrive at Figure 8.1 and, with more and more points, at Figure
8.2.

It is clear that point E in Figure 8.2 represents the solution of the min-
imization problem. For x = 3.6 the smallest y value of function (8.5) is
obtained: y = 0.96. However, point B has, in a sense, the same properties
as E, provided we consider a limited interval of x values only, such as only
those x values to the left of C. B is called a local minimum of the function,
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x

y

FIGURE 8.1. Some points for y =
0.3x4 − 2x3 + 3x2 + 5.

F

D

E

C

B

A

FIGURE 8.2. Graph of y = 0.3x4 −2x3

+ 3x2 + 5, with tangent lines at points
B, C , D, and E.

and E is the global minimum. Analogously, C is a local maximum. Function
f(x) has no global maximum.

If we determine the tangents for each point on the graph, it becomes
evident that they are horizontal lines at the extrema of the displayed por-
tion of the graph. Figure 8.2 shows this for the minima B and E, and
the maximum C. The tangents for other points are not horizontal; that
is, their slopes are not zero. This is a property that distinguishes extrema
from other points and can be used to find extrema by computation rather
than by inspection. If we know all of the extrema, we can select the point
with the smallest y-coordinate.

The Slope of a Function
What exactly is a tangent and its slope? Consider Figure 8.3, where the
points P and Q are distinguished on the graph for y = f(x). P and Q have
the coordinates (xP , yP ) and (xQ, yQ), respectively, or, because y = f(x),
(xP , f(xP )) and (xQ, f(xQ)), respectively. The straight line through P and
Q has the slope

slope(PQ) =
yQ − yP

xQ − xP
. (8.6)

We now set xQ − xP = ∆x. Then (8.6) can be written as

slope(PQ) =
f(xP + ∆x) − f(xP )

∆x
, (8.7)
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FIGURE 8.3. Some notions for finding tangent line at P .

or, more generally, for any point P = (x, f(x)),

slope(PQ) =
f(x + ∆x) − f(x)

∆x
. (8.8)

To find the tangent at point P on the graph, it is necessary to move Q very
close to P . However, Q should not become equal to P , because we need two
points to uniquely identify the tangent line. This is expressed as follows:

dy

dx
= lim

∆x→0

f(x + ∆x) − f(x)
∆x

, (8.9)

where lim∆x→0 is the limit operator. The limit operator makes the differ-
ence term ∆x in the function [f(x+∆x)−f(x)]/∆x smaller and smaller, so
that ∆x approaches 0 without ever reaching it. We say that ∆x is made ar-
bitrarily or infinitesimally small. The symbol dy/dx denotes the resulting
limit of this operation. Note carefully that the limit dy/dx is not gener-
ated by setting ∆x = 0, but by approximating ∆x = 0 arbitrarily closely.
[Setting ∆x = 0 would turn the right-hand side of (8.9) into 0/0.]

Equations (8.8) and (8.9) are formulated for any point P , not just the
particular one in Figure 8.3. Hence, by choosing different P s, a function of
the respective limits is obtained, that is, a function giving the slope of the
tangents or the growth rate of y relative to x at each point P . This function
is called the derivative of y = f(x), usually denoted by y′. To illustrate
this, let y = x2. The derivative of y = x2 can be found by considering the
slope of the tangent at point P :

dy

dx
= lim

∆x→0

(x + ∆x)2 − (x)2

∆x

= lim
∆x→0

x2 + (∆x)2 + 2x∆x − x2

∆x
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= lim
∆x→0

(
(∆x)2

∆x
+

2x∆x

∆x

)
= lim

∆x→0
(∆x + 2x)

= lim
∆x→0

(∆x) + lim
∆x→0

(2x) = 2x. (8.10)

Because x is not restricted to a particular point P , we have established a
function that gives the slope of y = x2 for any x-value. Hence, y′ = 2x; that
is, the slope of the tangent at each point is simply twice its x-coordinate.
For x = 5, say, we obtain the slope dy/dx = 10, which means that y = x2

grows at this point at the rate of 10 y-units per 1 x-unit (compare Figure
8.3). We can check whether these derivations are correct by setting x = 5
and ∆x = 3, say, and then making ∆x ever smaller; the smaller ∆x gets,
the more the limiting value y′ = 10 is approximated.

Finding the Minimum of a Function
The slope at the minimum must be equal to 0. The derivative gives us an
expression for the slope, and thus we can find a minimum by checking all
points where the derivative is zero. Points with a zero derivative are called
stationary points. Given the derivative y′ = 2x, we can find the minimum of
y = x2. We first set y′ = 2x = 0. But 2x = 0 only if x = 0. So we know that
y = x2 has a tangent with slope 0 at x = 0. Whether this is a minimum can
be checked by looking at the graph of the function. Alternatively, we can
compute what the function yields at two1 neighboring points at x = 0. For
x1 = 1 and x2 = −1, say, we determine y1 = 12 = 1 and y2 = (−1)2 = 1,
respectively, both values greater than the y at x = 0, which indicates that
we have found a minimum at x = 0.

The method of setting the derivative of a function equal to zero and
then finding the values that solve this equation has identified only one
point. This turned out to be a minimum. We might ask where the maxima
are. They can be found by considering the bounds of the interval that x
should cover. If we do not restrict x, then these bounds are −∞ and +∞,
and this is where the maxima are, as we can see by inserting larger and
larger x values into y = x2. Therefore, we also must always test the bounds
of the x-interval in which we are interested.

Just as we did in equations (8.10) for the function y = x2, we can find
the derivative for any other (continuous and smooth) function. Because
differentiation (i.e., finding the derivative) is useful in many fields of math-

1We test two rather than just one neighboring point at x = 0 because the tangent has
a zero slope not only at extreme points but also in other cases. Consider, for example, a
function that first increases, then runs on a plateau, and then increases again. For all of
the points on the plateau, the function has a zero slope. Thus, the zero slope condition
for stationarity is only necessary, but not sufficient, for identifying an extremum.
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TABLE 8.1. Some rules of differentiation.

Rule Function Derivative
1 y = constant = a dy/dx = 0
2 y = x dy/dx = 1
3 y = a · x dy/dx = a
4 y = a · xn dy/dx = a · n · xn−1

5 y = ex dy/dx = ex

6 y = sin(x) dy/dx = cos(x)
7 y = cos(x) dy/dx = − sin(x)

Let u = f (x) and v = h(x) be functions of x. Then:
8 y = u + v dy/dx = du/dx + dv/dx
9 y = u · v dy/dx = u(dv/dx) + v(du/dx)

10 y = u/v dy/dx = [v(du/dx) − u(dv/dx)]/v2

Let y = f (z) and z = g(x). Then (chain rule):
11 y = f (g(x)) dy/dx = (dy/dz) · (dz/dx)

ematics, rules have been derived that greatly simplify finding y′. Some such
rules are summarized in Table 8.1. Some of them are patent; others are ex-
plained later when we need them. For the example above, y = x2, we find y′

by applying rule 4: y′ = dy/dx = 1 ·2 ·x2−1 = 2x. For (8.5) we find by rules
1, 4, and 8: dy/dx = (0.3)(4)x3 − (2)(3)x2 + (3)(2)x = 1.2x3 − 6x2 + 6x.
Setting this derivative equal to 0 yields the equation 1.2x3 − 6x2 + 6x = 0.
After factoring, we have (x)(1.2x2 −6x+6) = 0. So, the sought x-values re-
sult from the equations x = 0 and 1.2x2−6x+6 = 0. We find x1 = 0 as one
solution, which we identify immediately as a local minimum in the graph
in Figure 8.2. The quadratic equation yields x2 = 3.618 and x3 = 1.382 for
the other solutions. They correspond to points B and E in the graph.

Second- and Higher-Order Derivatives
The derivative of a function y = f(x) is itself a function of x, y′′ = f ′(x).
One therefore can ask for the derivative of y′, y′′ = f ′′(x), the derivative
of y′′, and so on. The second derivative, y′′, indicates the rate of change
of the rate of change of f(x). For example, for y = x3 we get y′ = 3x2.
That is, at any point x, the cubic function grows by the factor 3x2. Now,
differentiating y′ = 3x2 with respect to x (using rule 4 in Table 8.1), we
get y′′ = 3.2x. This means that the rate of change of the growth rate also
depends on x: it is 6 times the value of x. So, with large x values, the growth
of x3 “accelerates” quite a bit. As a second example, the rate of change
of the growth rate of y =

√
x = x1/2, x > 0, is y′′ = f ′(1/2 · x−1/2) =

(−1/4) ·x−3/2 = −1/(4
√

x3). So, y′ shows that this function has a positive
slope at any point x, and y′′ indicates that this slope decreases as x becomes
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larger. Another way of saying this is that y =
√

x is concave downwards,
whereas y = x3 is convex downwards.

The second derivative is useful to answer the question of whether a sta-
tionary point is a minimum or a maximum. Consider Figure 8.2, where we
have three stationary points: B, C, and E. C differs from B and E because
the speed of growth of f(x) is continuously shrinking when we approach C
from the left. To the right of C, the growth rate of f(x) is even negative
(“decline”), and becomes more negative as a function of x. The opposite
is true for points B and E. This means that if y′′ < 0 at some stationary
point x, then x is a maximum; if y′′ > 0, x is a minimum. Thus, for the
function in Figure 8.2, we have y′′ = 3.6x2 − 12x + 6, so that at x = 0
(stationary point B) we have y′′ = 6, for example. Because 6 > 0, B is a
minimum. For x = 1.382 (point C), we get −3.708, so that this point is a
maximum by the second derivative test.

8.3 Partial Derivatives and Matrix Traces

We often deal with functions that have more than one variable. Such func-
tions are called functions with several variables, multivariable functions,
vector functions, or functions with many arguments. An example of such a
function is raw Stress, σr(X). Because we attempt to minimize this func-
tion over every single one of its n · m coordinates, we naturally encounter
the question of how to find the derivative of multivariable functions. The
answer is simple: such functions have as many derivatives as they have argu-
ments, and the derivative for each argument xi is found by holding all other
variables fixed and differentiating the function with respect to xi as usual.
For example, the derivative of the function f(x, y, z) = x2y + y2z + z2x
with respect to variable y is x2 + 2yz, using rules 4 and 8 of Table 8.1 and
treating the term z2x as a “constant” (i.e., as not dependent on y). The
derivative to one argument of a function of several variables is called the
partial derivative. The vector of partial derivatives is called the gradient
vector.

In the following, we focus on one particular multivariable function that
becomes important in much of the remainder of this book, the trace func-
tion, tr A =

∑n
i=1 aii discussed earlier in Section 7.2 and Table 7.4. The

trace can be used to simplify expressing a multiargument linear function
such as f(x11, . . . , xik, . . . , xnn) =

∑n
k=1

∑n
i=1 akixik, where the aik terms

denote constants and xik are variables:
n∑

k=1

n∑
i=1

akixik = tr AX = f(X).

Here, the constants are collected in the matrix A, the variables in X (see,
e.g., Table 8.2 for an example). Suppose that we want to find the partial
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TABLE 8.2. Example of differentiating the linear function tr AX with respect
to an unknown matrix X.

(1) AX =

[
a11 a12
a21 a22

][
x11 x12
x21 x22

]
(2) f (X) = tr (AX) = a11x11 + a12x21 + a21x12 + a22x22

(3) ∂f (X)/∂X = (∂f (X)/∂xij)

(4)

[
∂f (X)/∂x11 = a11 ∂f (X)/∂x12 = a21
∂f (X)/∂x21 = a12 ∂f (X)/∂x22 = a22

]
= A′

(5) rule: ∂tr (AX)/∂X = A′

derivative of the linear function f(X) with respect to the matrix X. The
partial derivative of f(X) with respect to X is the matrix consisting of
the derivatives of f(X) with respect to each element of X (i.e., the matrix
with elements ∂f(X)/∂xik). The notation ∂f(X)/∂xik denotes the partial
derivative. It replaces df(X)/dxik used previously in Section 8.2 to make
clear that we are dealing with a multivariable function f rather than with
a function of just one variable, as in Section 8.2. All variables except xik

are considered constant in ∂f(X)/∂xik. The matrix of partial derivatives
is also denoted by ∇f(X), by ∇tr AX, or by ∂tr AX/∂X.

To find ∇f(X), we have to take the first derivative of f(X) with respect
to every xik separately. That is, ∂tr AX/∂xik = aki, so that ∂tr AX/∂X =
A′. The steps needed to find the partial derivative of tr AX are illustrated
in Table 8.2. (For properties of matrix traces, see Table 7.4.) More rules
for differentiating a matrix trace function are presented in Table 8.3.

Matrix traces are also useful for expressing a quadratic function such as

n∑
i=1

m∑
k=1

x2
ik = tr X′X.

Because tr (XX′) is equal to
∑

k

∑
i x2

ki, tr X′X = tr XX′. Hence, the
gradient of tr X′X is equal to 2X by rule 4, Table 8.3, setting A = I.

As another example, assume that we want to minimize

f(X) = tr (X − Z)′(X − Z)

=
n∑

i=1

m∑
k=1

(xik − zik)2

by an appropriate choice of X. We solve this problem formally by first
finding the gradient ∇f(X) and then setting ∇f(X) = 0 and solving for



178 8. A Majorization Algorithm for Solving MDS

TABLE 8.3. Some rules for differentiating a matrix trace with respect to an
unknown matrix X; matrix A is a constant matrix; matrices U, V, W are
functions of X (Schönemann, 1985).

(1) ∂tr (A)/∂X = 0

(2) ∂tr (AX)/∂X = A′ = ∂tr [(AX)′]/∂X

(3) ∂tr (X′AX)/∂X = (A + A′)X

(4) ∂tr (X′AX)/∂X = 2AX if A is symmetric

(5) ∂tr (U + V)/∂X = ∂tr (U)/∂X + ∂tr (V)/∂X

(6) ∂tr (UVW)/∂X = ∂tr (WUV)/∂X = ∂tr (VWU)/∂X
Invariance under “cyclic” permutations

(7) ∂tr (UV)/∂X = ∂tr (UcV)/∂X + ∂tr (UVc)/∂X
Product rule: Uc and Vc is taken as a constant matrix when
differentiating

X. The gradient can be obtained as follows. If we expand f(X), we get

f(X) = tr X′X + tr Z′Z − 2tr X′Z,

and, by using the rules from Table 7.4,

∇f(X) = ∇tr X′X + ∇tr Z′Z − ∇2tr X′Z
= 2X + 0 − 2Z = 2X − 2Z.

To find the minimum of f(X), its gradient ∇f(X) = 2X − 2Z must be
equal to 0, so that X = Z at the minimum.

In the sequel, we often make use of trace minimizations. For the difficult
problem of minimizing the Stress function, we need an additional mini-
mization method, iterative majorization, which is explained in the next
section.

8.4 Minimizing a Function by Iterative
Majorization

For finding the minimum of a function f(x), it is not always enough to com-
pute the derivative f ′(x), set it equal to zero, and solve for x. Sometimes
the derivative is not defined everywhere, or solving the equation f ′(x) = 0
is simply impossible. For such cases, we have to refer to other mathematical
techniques. A useful method consists of trying to get increasingly better es-
timates of the minimum. We call such a numerical method an algorithm. It
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consists of a set of computational rules that are usually applied repeatedly,
where the previous estimate is used as input for the next cycle of computa-
tions which outputs a better estimate. An elegant method is called iterative
majorization,2 which is based on the work of De Leeuw (1977). We first
present the main principles of iterative majorization. In the next section,
we apply it to the Stress function.

Principles of Majorization
One of the main features of iterative majorization (IM) is that it gen-
erates a monotonically nonincreasing sequence of function values. If the
function is bounded from below, we usually end up in a stationary point
that is a local minimum. An early reference to majorization in the context
of line search can be found in Ortega and Rheinboldt (1970, pp. 253–255).
Majorization has become increasingly popular as a minimization method;
see, for example, Kiers (1990), Bijleveld and De Leeuw (1991), Verboon
and Heiser (1992), and Van der Lans (1992). In the field of multidimen-
sional scaling, it has been applied in a variety of settings by, among others,
De Leeuw (1977, 1988), De Leeuw and Heiser (1977, 1980), Meulman (1986,
1992), Groenen (1993), Groenen, Mathar, and Heiser (1995), and Groenen,
Heiser, and Meulman (1999). Some general papers on iterative majorization
are De Leeuw (1994), Heiser (1995), Lange, Hunter, and Yang (2000), Kiers
(2002), and Hunter and Lange (2004). Below, we provide an introduction
to iterative majorization.

The central idea of the majorization method is to replace iteratively the
original complicated function f(x) by an auxiliary function g(x, z), where
z in g(x, z) is some fixed value. The function g has to meet the following
requirements to call g(x, z) a majorizing function of f(x).

• The auxiliary function g(x, z) should be simpler to minimize than
f(x). For example, if g(x, z) is a quadratic function in x, then the
minimum of g(x, z) over x can be computed in one step (see Section
8.2).

• The original function must always be smaller than or at most equal
to the auxiliary function; that is, f(x) ≤ g(x, z).

• The auxiliary function should touch the surface at the so-called sup-
porting point z; that is, f(z) = g(z, z).

To understand the principle of minimizing a function by majorization,
consider the following. Let the minimum of g(x, z) over x be attained at

2The term iterative majorization and its abbreviation (IM) was coined by Heiser
(1995). Before, the method was called simply majorization. In MDS the method goes
back to the work of De Leeuw (1977).
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x0x1

f(x2)
g(x2,x1)

g(x1,x0)
f(x1)=g(x1,x1)

f(x0)=g(x0,x0)

x2

g(x,x1)

f(x)g(x,x0)

FIGURE 8.4. Illustration of two iterations of the iterative majorization method.
The first iteration starts by finding the auxiliary function g(x, x0), which is lo-
cated above the original function f(x) and touches at the supporting point x0.
The minimum of the auxiliary function g(x, x0) is attained at x1, where f(x1) can
never be larger than g(x1, x0). This completes one iteration. The second iteration
is analogous to the first iteration.

x∗. The last two requirements of the majorizing function imply the chain
of inequalities

f(x∗) ≤ g(x∗, z) ≤ g(z, z) = f(z). (8.11)

This chain of inequalities is named the sandwich inequality by De Leeuw
(1993), because the minimum of the majorizing function g(x∗, z) is squeezed
between f(x∗) and f(z). A graphical representation of these inequalities is
presented in Figure 8.4 for two subsequent iterations of iterative majoriza-
tion of the function f(x). The iterative majorization algorithm is given
by

1. Set z = z0, where z0 is a starting value.

2. Find update xu for which g(xu, z) ≤ g(z, z).

3. If f(z) − f(xu) < ε, then stop. (ε is a small positive constant.)

4. Set z = xu and go to 2.

Obviously, by (8.11) the majorization algorithm yields a nonincreasing se-
quence of function values, which is an attractive aspect of iterative ma-
jorization. If the function f(x) is not bounded from below, and if there are
no sufficient restrictions on x, then the stop criterion in step 3 may never
be met. In the sequel, this situation does not arise. Although the function
value never increases, the majorization principle does not say how fast the
function values converge to a minimum. In most applications, an algorithm
based on iterative majorization is not very fast. As shown in Section 8.2,
a necessary condition for a minimum at point x∗ is that the derivative of
f(x) at x∗ is 0. Using the inequalities of (8.11), this also implies that x∗
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FIGURE 8.5. Graph of the concave
function x1/2.
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FIGURE 8.6. An example of linear
majorization of the concave function
f(x) = x1/2 by the linear majorizing
function g(x, z).

minimizes g(x, x∗) over x, with g(x∗, x∗) as the minimum. Thus, the nec-
essary condition of a zero derivative at a local minimum may be replaced
by the weaker condition that g(xu, y) = f(y) and xu = y. In general, the
majorization algorithm can stop at any stationary point, not necessarily
at a local minimum. However, Fletcher (1987) notes that, for algorithms
that reduce the function value on every iteration, it usually holds that “the
stationary point turns out to be a local minimizer, except in rather rare
circumstances” (p. 19).

Linear and Quadratic Majorization
We distinguish two particularly useful classes of majorization: linear and
quadratic (De Leeuw, 1993). The first one is majorization of a function
that is concave. A concave function f(x) is characterized by the inequality
f(αx + (1 − α)z) ≥ αf(x) + (1 − α)f(z) for 0 ≤ α ≤ 1. Thus, the line that
connects the function values at f(x) and f(z) remains below the graph
of a concave function. An example of the concave function f(x) = x1/2 is
given in Figure 8.5. But for such a function f(x), it is always possible to
have a straight line defined by g(x, z) = ax + b (with a and b dependent
on z) such that g(x, z) touches the function f(x) at x = z, and elsewhere
the line defined by g(x, z) is above the graph of f(x). Clearly, g(x, z) =
ax+ b is a linear function in x. Therefore, we call this type of majorization
linear majorization. Any concave function f(x) can be majorized by a linear
function g(x, z) at any point z. Thus, g(x, z) satisfies all three requirements
of a majorizing function. An example of a linear majorizing function g(x, z)
with supporting point z of the concave function f(x) = x1/2 is given in
Figure 8.6.

The second class of functions that can be easily majorized is characterized
by a bounded second derivative. For a function f(x) with a bounded second
derivative, there exists a quadratic function that has, compared to f(x), a
larger second derivative at any point x. This means that f(x) does not have
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FIGURE 8.7. Graph of the function
f(x) = |x − 1| + |x − 3| + |x − 4| +
|x − 7| + |x − 8|.
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FIGURE 8.8. A quadratic majorizing
function g(x, x0) of f(x) with support-
ing point x0 = 9.

very steep parts, because there always exists a quadratic function that is
steeper. This type of majorization can be applied if the function f(x) can
be majorized by g(x, z) = a(z)x2 − b(z)x + c(z), with a(z) > 0, and a(z),
b(z), and c(z) functions of z, but not of x. We call this type of majorization
quadratic majorization.

Example: Majorizing the Median
Heiser (1995) gives an illustrative example of iterative majorization for
computing the median. The median of the numbers x1, x2, . . . , xn is the
number for which f(x) =

∑n
i=1 |x − xi| is a minimum. For example, the

median of the numbers x1 = 1, x2 = 3, x3 = 4, x4 = 7, and x5 = 8 is 4.
Thus, the median is the value for which 50% of all observations is smaller.
The function f(x) is shown in Figure 8.7.

How can we majorize f(x)? We begin by noting that g(x, z) = |z|/2 +
x2/|2z| majorizes |x| (Heiser, 1988a). The three majorization requirements
are fulfilled by this g(x, z). First, g(x, z) is a simple function because it is
quadratic in x. Second, we have f(x) ≤ g(x, z) for all x and fixed z. This
can be seen by using the inequality (|x| − |z|)2 ≥ 0, which always holds,
because squares are always nonnegative. Developing this inequality gives

x2 + z2 − 2|x||z| ≥ 0
2|x||z| ≤ x2 + z2

|x| ≤ 1
2

x2

|z| +
1
2
|z|, (8.12)

which proves |x| ≤ g(x, z). The third requirement of a majorizing function is
that there must be equality in the supporting point; that is, f(z) = g(z, z).
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If we substitute x = z in (8.12), we obtain

1
2

z2

|z| +
1
2
|z| =

1
2
|z| +

1
2
|z| = |z|,

which shows that all three requirements for a majorizing function hold.
f(x) is majorized by replacing x and z in (8.12) by the separate terms

in f(x). This means that |x − 1| is majorized by g1(x, z) ≤ |z − 1|/2 +
(x − 1)2/|2(z − 1)|. Similarly, the second term |x − 3| of f(x) is majorized
by g2(x, z) ≤ |z − 3|/2 + (x − 3)2/|2(z − 3)|, and so on. Summing the
majorization functions for each term in f(x) yields the majorizing function
of f(x); that is,

g(x, z) = g1(x, z) + g2(x, z) + g3(x, z) + g4(x, z) + g5(x, z)

=
1
2
|z − 1| +

(x − 1)2

|2(z − 1)| +
1
2
|z − 3| +

(x − 3)2

|2(z − 3)|
+

1
2
|z − 4| +

(x − 4)2

|2(z − 4)| +
1
2
|z − 7| +

(x − 7)2

|2(z − 7)|
+

1
2
|z − 8| +

(x − 8)2

|2(z − 8)| . (8.13)

To start the iterative majorization algorithm, choose the initial value to
be x0 = 9, although any other value would be equally valid. This implies
that the first supporting point x0 in the IM algorithm is z = x0 = 9. After
substitution of z = 9 into (8.13) and simplification, we obtain

g(x, 9) =
1
2
|9 − 1| +

(x − 1)2

|2(9 − 1)| +
1
2
|9 − 3| +

(x − 3)2

|2(9 − 3)| +
1
2
|9 − 4|

+
(x − 4)2

|2(9 − 4)| +
1
2
|9 − 7| +

(x − 7)2

|2(9 − 7)| +
1
2
|9 − 8| +

(x − 8)2

|2(9 − 8)|
=

8
2

+
(x − 1)2

16
+

6
2

+
(x − 3)2

12
+

5
2

+
(x − 4)2

10
+

2
2

+
(x − 7)2

4
+

1
2

+
(x − 8)2

2

=
8
2

+
(x − 1)2

16
+

6
2

+
(x − 3)2

12
+

5
2

+
(x − 4)2

10
+

2
2

+
(x − 7)2

4
+

1
2

+
(x − 8)2

2

=
239
240

x2 − 517
40

x +
4613
80

. (8.14)

This example of quadratic majorization is illustrated in Figure 8.8. Because
g(x, x0) is quadratic in x, its minimum can be easily obtained by setting
the derivative equal to zero (see Section 8.2). The minimum of g(x, x0) is
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attained at x1 ≈ 6.49. Due to the majorization inequality, we must have
that f(x1) ≤ g(x1, x0) ≤ g(x0, x0) = f(x0). Thus, we have found an x1 with
a lower function value f(x). The next step in the majorization algorithm
is to declare x1 to be the next supporting point, to compute g(x, x1) and
find its minimum x2, and so on. After some iterations, we find that 4 is the
minimum for f(x); hence 4 is the median.

The key problem in quadratic majorization is to find a majorizing in-
equality such as (8.12). Unlike concave functions, which can always be
linearly majorized, it is an art to find quadratic majorizing functions. Note
that linear and quadratic majorization can be combined without any prob-
lem as long as the majorization conditions hold.

8.5 Visualizing the Majorization Algorithm for
MDS

To get an idea what the iterative majorization algorithm does in MDS, we
consider a mini example from the data of Exercise 3.3. These data contain
the correlations among the returns of 13 stock markets. To analyze these
data, we converted the correlations into dissimilarities by (6.1), so that
δij = (2−2rij)1/2. Then we performed ratio MDS by the Smacof algorithm
(see the next section). The resulting configuration is given in Figure 8.9.
We see, for example, that the Dow Jones (dj) and Standard & Poors (sp)
indices correlate highly, because they are very close together. We also see
that the European indices (brus, dax, vec, cbs, ftse, milan, and madrid) are
reasonably similar because they are located together. The Asian markets
(hs, nikkei, taiwan, and sing) do not seem to correlate highly among one
another as they are lying at quite some distance from one another.

To see how the iterative majorization algorithm for MDS works, consider
the situation where the coordinates of all stock indices are kept fixed at
the positions of Figure 8.9 except for the point nikkei. To minimize raw
Stress, we can only vary the two coordinates xi1 and xi2 of nikkei. This
simplification allows us to visualize the raw Stress function as a surface
in 3D with xi1 and xi2 in the xy plane and the raw Stress value on the
z-axis. Figure 8.10 shows the raw Stress surface in both panels. The ground
area shows the position of all the fixed points and, for reference, also the
optimal position of nikkei. It is clear that in this situation, the coordinates
for nikkei where raw Stress finds its global minimum are indeed located
at the point with label nikkei. However, a computer is “blind” and cannot
“see” where these optimal coordinates of nikkei with the lowest raw Stress
function is found. Therefore, it needs an optimization algorithm such as
iterative majorization to compute the location of minimal raw Stress.

Iterative majorization for MDS works in this example as follows. Suppose
that the initial guess for the coordinates of nikkei is the origin. Then,



8.6 Majorizing Stress 185

Dimension 1

brus

cbs

dax

dj

ftse

hs

madrid
milan

nikkei

sing

sp

taiwan

vec

D
im

en
si

on
 2

FIGURE 8.9. Ratio MDS solution of correlations between returns of 13 stock
markets. The data are given in Exercise 3.3.

the majorizing function must touch the raw Stress function at the origin
(with coordinates xi1 = 0 and xi2 = 0) and must be located above it (or
touch it) at other locations. The parabola in Figure 8.10a satisfies these
restrictions and is therefore a valid majorizing function. At the location of
the minimum of this majorizing function, the raw Stress function is lower.
Thus, choosing this location as the next estimate of the coordinates for
nikkei reduces the raw Stress. At this location, a new majorizing function
can be found that again touches the raw Stress function at this location
and is otherwise located above the raw Stress function. The minimum of
this new majorizing function can be determined and will again decrease
raw Stress. This process is iterated until the improvement in raw Stress is
considered small enough. This final situation is shown in Figure 8.10b with
the last majorizing function. We note that the majorizing algorithm has
correctly identified the best local minimum possible. The estimates for the
location of point nikkei in the different iterations is shown by the trail of
points in the xy plane between the origin and the final location of nikkei.

Here, we focused on the special case that only two coordinates need to
be estimated and all others are kept fixed. The next section explains how
the iterative majorization algorithm works when all coordinates need to be
found simultaneously.

8.6 Majorizing Stress

So far, we have discussed the principle of iterative majorization for functions
of one variable x only. The same idea can be applied to functions that
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a. First majorizing function

b. Final majorizing function

x1

x2

x1

x2

FIGURE 8.10. Visualization of the raw Stress function for the Stock market data
where all coordinates are kept fixed except those of nikkei. For reference, the
optimal position of nikkei is also shown. The upper panel shows the majorizing
function with the origin as current estimate for the location of nikkei. The lower
panel shows the final majorizing function and a trail of points in the xy-plane
showing the positions of point nikkei in the different iterations.
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have several variables. As long as the majorizing inequalities (8.11) hold,
iterative majorization can be used to minimize a function of many variables.

We now apply iterative majorization to the Stress function, which goes
back to De Leeuw (1977), De Leeuw and Heiser (1977), and De Leeuw
(1988). The acronym Smacof initially stood for “Scaling by Maximizing
a Convex Function,” but since the mid-1980s it has stood for “Scaling
by Majorizing a Complicated Function.” Algorithms other than Smacof
have been derived to minimize Stress. For example, using approaches from
convex analysis, the same algorithm for minimizing Stress was obtained by
De Leeuw (1977), Mathar (1989), and Mathar and Groenen (1991). Earlier,
Stress was minimized by steepest descent algorithms by Kruskal (1964b)
and Guttman (1968) that use the gradient of Stress. However, the Smacof
theory is simple and more powerful, because it guarantees monotone con-
vergence of Stress. Hence, we pursue the majorization approach and show
how to majorize the raw Stress function, σr(X), following the Smacof
theory.

Components of the Stress Function
The Stress function (8.4) can be written as

σr(X) =
∑
i<j

wij (δij − dij(X))2

=
∑
i<j

wijδ
2
ij +

∑
i<j

wijd
2
ij(X) − 2

∑
i<j

wijδijdij(X)

= η2
δ + η2(X) − 2ρ(X), (8.15)

where dij(X) is the Euclidean distance between points i and j; see also
(3.3). From (8.15) we see that Stress can be decomposed into three parts.
The first part, η2

δ , is only dependent on the fixed weights wij and the
fixed dissimilarities δij , and not dependent on X; so η2

δ is constant. The
second part, η2(X), is a weighted sum of the squared distances d2

ij(X).
The final part, −2ρ(X), is a weighted sum of the “plain” distances dij(X).
Before we go on, we have to make one additional assumption: we assume
throughout this book that the weight matrix W is irreducible, that is, there
exists no partitioning of objects into disjoint subsets, such that wij = 0
whenever objects i and j are in different subsets. If the weight matrix
is reducible, then the problem can be decomposed into separate smaller
multidimensional scaling problems, one for each subset. Let us consider
η2(X) and ρ(X) separately to obtain our majorization algorithm.

A Compact Expression for the Sum of Squared Distances
We first look at η2(X), which is a sum of the squared distances. For the
moment, we consider only one squared distance d2

ij(X). Let xa be column
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a of the coordinate matrix X. Furthermore, let ei be the ith column of the
identity matrix I. Thus, if n = 4, i = 1, and j = 3, then e′

i = [1 0 0 0]
and e′

j = [0 0 1 0], so that (ei − ej)′ = [1 0 −1 0]. But this means that
xia − xja = (ei − ej)′xa, which allows us to express the squared distance
d2
13(X) as

d2
13(X) =

m∑
a=1

x′
a(e1 − e3)(e1 − e3)′xa

=
m∑

a=1

x′
a

⎡⎢⎢⎣
1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0

⎤⎥⎥⎦xa =
m∑

a=1

x′
aA13xa

= tr X′A13X. (8.16)

The matrix Aij is simply a matrix with aii = ajj = 1, aij = aji = −1, and
all other elements zero. Note that Aij is row and column centered, so that
Aij1 = 0 and 1′Aij = 0′. But η2(X) is a weighted sum of these squared
distances. One term of η2(X) is

wijd
2
ij(X) = wijtr X′AijX

= tr X′(wijAij)X,

and summing over all i < j terms gives

η2(X) =
∑
i<j

wijd
2
ij(X) = tr X′

⎛⎝∑
i<j

wijAij

⎞⎠X

= tr X′VX. (8.17)

In a 3 × 3 example, the matrix V defined in (8.17) becomes

V =
∑
i<j

wijAij

=

⎡⎣ w12 + w13 −w12 −w13
−w12 w12 + w23 −w23
−w13 −w23 w13 + w23

⎤⎦ , (8.18)

or, in general, vij = −wij if i �= j and vii =
∑n

j=1,j �=i wij for the diagonal
elements of V. By (8.17) we have obtained a compact matrix expression
for η2(X). Furthermore, η2(X) is a quadratic function in X, which is easy
to handle. Because V is the weighted sum of row and column centered
matrices Aij , it is row and column centered itself, too. Because of our
assumption that the weights are irreducible, the rank of V is n − 1, the
zero eigenvalue corresponding to the eigenvector n−1/21.
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Majorizing Minus a Weighted Sum of Distances
We now switch to −ρ(X), which is minus a weighted sum of the distances;
that is,

−ρ(X) = −
∑
i<j

(wijδij)dij(X).

For the moment, we focus on minus the distance. To obtain a majorizing
inequality for −dij(X), we use the Cauchy–Schwarz inequality,

m∑
a=1

paqa ≤
(

m∑
a=1

p2
a

)1/2 (
m∑

a=1

q2
a

)1/2

. (8.19)

Equality of (8.19) occurs if qa = cpa. If we substitute pa by (xia −xja) and
qa by (zia − zja) in (8.19), we obtain

m∑
a=1

(xia − xja)(zia − zja) ≤
(

m∑
a=1

(xia − xja)2
)1/2 (

m∑
a=1

(zia − zja)2
)1/2

= dij(X)dij(Z), (8.20)

with equality if Z = X. Dividing both sides by dij(Z) and multiplying by
−1 gives

−dij(X) ≤ −
∑m

a=1(xia − xja)(zia − zja)
dij(Z)

. (8.21)

If points i and j have zero distance in configuration matrix Z, then (8.21)
becomes undefined, but because of the positivity of dij(X) it is still true
that −dij(X) ≤ 0. Proceeding as in (8.16)–(8.18), a simple matrix expres-
sion is obtained:

m∑
a=1

(xia − xja)(zia − zja) = tr X′AijZ. (8.22)

Combining (8.21) and (8.22), multiplying by wijδij , and summing over
i < j gives

−ρ(X) = −
∑
i<j

(wijδij)dij(X)

≤ −tr X′

⎛⎝∑
i<j

bijAij

⎞⎠Z

= −tr X′B(Z)Z, (8.23)
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where B(Z) has elements

bij =

⎧⎨⎩ − wijδij

dij(Z)
for i �= j and dij(Z) �= 0

0 for i �= j and dij(Z) = 0

bii = −
n∑

j=1,j �=i

bij . (8.24)

Because equality occurs if Z = X, we have obtained the majorization
inequality

−ρ(X) = −tr X′B(X)X ≤ −tr X′B(Z)Z.

Thus, −ρ(X) can be majorized by the function −tr X′B(Z)Z, which is a
linear function in X.

Consider an example for the computation of B(Z). Let all wij = 1, the
dissimilarities be equal to

∆ =

⎡⎢⎣ 0 5 3 4
5 0 2 2
3 2 0 1
4 2 1 0

⎤⎥⎦ , (8.25)

and the matrix of coordinates Z and their distances be

Z =

⎡⎢⎣ −.266 −.539
.451 .252
.016 −.238

−.200 .524

⎤⎥⎦ and D(Z) =

⎡⎢⎣ .000 1.068 .412 1.065
1.068 .000 .655 .706
.412 .655 .000 .792

1.065 .706 .792 .000

⎤⎥⎦ . (8.26)

The elements of the first row B(Z) are given by

b12 = −w12δ12/d12(Z) = −5/1.068 = −4.682
b13 = −w13δ13/d13(Z) = −3/0.412 = −7.273
b14 = −w14δ14/d14(Z) = −4/1.065 = −3.756
b11 = −(b12 + b13 + b14) = −(−4.682 − 7.273 − 3.756) = 15.712.

In the same way, all elements of B(Z) can be computed, yielding

B(Z) =

⎡⎢⎣ 15.712 −4.682 −7.273 −3.756
−4.682 10.570 −3.052 −2.835
−7.273 −3.052 11.588 −1.263
−3.756 −2.835 −1.263 7.853

⎤⎥⎦ .

The Smacof Algorithm for Majorizing Stress
Combining (8.17) and (8.25) gives us the majorization inequality for the
Stress function; that is,

σr(X) = η2
δ + tr X′VX − 2tr X′B(X)X

≤ η2
δ + tr X′VX − 2tr X′B(Z)Z = τ(X,Z). (8.27)
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Thus τ(X,Z) is a simple majorizing function of Stress that is quadratic in
X. Its minimum can be obtained analytically by setting the derivative of
τ(X,Z) equal to zero; that is,

∇τ(X,Z) = 2VX − 2B(Z)Z = 0,

so that VX = B(Z)Z. To solve this system of linear equations for X,
we would usually premultiply both sides by V−1. However, the inverse
V−1 does not exist, because V is not of full rank. Therefore, we revert
to the Moore–Penrose3 inverse. The Moore–Penrose inverse of V is given
by V+ = (V + 11′)−1 − n−211′. The last term, −n−211′, is irrelevant in
Smacof as V+ is subsequently multiplied by a matrix orthogonal to 1,
because B(Z) also has eigenvector 1 with eigenvalue zero. This leads us to
the update formula of the Smacof algorithm,

Xu = V+B(Z)Z. (8.28)

If all wij = 1, then V+ = n−1J with J the centering matrix I− n−111′, so
that the update simplifies to

Xu = n−1B(Z)Z. (8.29)

De Leeuw and Heiser (1980) call (8.28) the Guttman transform, in recog-
nition of Guttman (1968).

The majorization algorithm guarantees a series of nonincreasing Stress
values. When the algorithm stops, the stationary condition X = V+B(X)X
holds. Note that after one step of the algorithm X is column centered, even
if Z is not column centered.

The Smacof algorithm for MDS can be summarized by

1. Set Z = X[0], where X[0] is some (non)random start configuration.
Set k = 0. Set ε to a small positive constant.

2. Compute σ
[0]
r = σr(X[0]). Set σ

[−1]
r = σ

[0]
r .

3. While k = 0 or (σ[k−1]
r − σ

[k]
r > ε and k ≤ maximum iterations) do

4. Increase iteration counter k by one.

5. Compute the Guttman transform X[k] by (8.29) if all wij = 1,
or by (8.28) otherwise.

6. Compute σ
[k]
r = σr(X[k]).

3Gower and Groenen (1991) report some computationally very efficient Moore–
Penrose inverses for some special weight matrices, such as those of a cyclic design and a
block design (see Table 6.1).
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FIGURE 8.11. The flow of the majorization algorithm (Smacof) for doing MDS.

7. Set Z = X[k].

8. End while

A flowchart of the Smacof algorithm is given in Figure 8.11.

An Illustration of Majorizing Stress
To illustrate the Smacof algorithm, consider the following example. We
assume that all wij = 1, that the dissimilarities ∆ are those in (8.25), and
the starting configuration X[0] = Z by (8.26). The first step is to compute
σr(X[0]), which is 34.29899413. Then, we compute the first update Xu by
the Guttman transform (8.29),

Xu = n−1B(Z)Z

=
1
4

⎡⎢⎣ 15.712 −4.683 −7.273 −3.756
−4.683 10.570 −3.052 −2.835
−7.273 −3.052 11.588 −1.263
−3.756 −2.835 −1.263 7.853

⎤⎥⎦
⎡⎢⎣ −.266 −.539

.451 .252

.016 −.238
−.200 .524

⎤⎥⎦ ,

Xu=

⎡⎢⎣ −1.415 −2.471
1.633 1.107
.249 −.067

−.468 1.431

⎤⎥⎦ with D(Xu)=

⎡⎢⎣ .000 4.700 2.923 4.016
4.700 .000 1.815 2.126
2.923 1.815 .000 1.661
4.016 2.126 1.661 .000

⎤⎥⎦.
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TABLE 8.4. The Stress values and the difference between two iterations k of the
Smacof algorithm.

k σ
[k]
r σ

[k−1]
r − σ

[k]
r k σ

[k]
r σ

[k−1]
r − σ

[k]
r

0 34.29899413 21 .01747237 .00001906
1 .58367883 33.71531530 22 .01745706 .00001531
2 .12738894 .45628988 23 .01744477 .00001229
3 .04728335 .08010560 24 .01743491 .00000986
4 .02869511 .01858823 25 .01742700 .00000791
5 .02290353 .00579158 26 .01742066 .00000634
6 .02059574 .00230779 27 .01741557 .00000509
7 .01950236 .00109338 28 .01741150 .00000408
8 .01890539 .00059698 29 .01740823 .00000327
9 .01853588 .00036951 30 .01740561 .00000262

10 .01828296 .00025292 31 .01740351 .00000210
11 .01809735 .00018561 32 .01740183 .00000168
12 .01795518 .00014217 33 .01740048 .00000135
13 .01784363 .00011155 34 .01739941 .00000108
14 .01775498 .00008866 35 .01739854 .00000086
15 .01768406 .00007092
16 .01762716 .00005690
17 .01758144 .00004572
18 .01754469 .00003675
19 .01751516 .00002953
20 .01749143 .00002373
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The next step is to set X[1] = Xu and compute σr(X[1]) = 0.58367883,
which concludes the first iteration. The difference of σr(X[0]) and σr(X[1])
is large, 33.71531530, so it makes sense to continue the iterations. The
second update is

X[2] =

⎡⎢⎣ 1.473 −2.540
1.686 1.199
.154 .068

−.366 1.274

⎤⎥⎦ ,

with σr(X[2]) = .12738894. We continue the iterations until the difference
in subsequent Stress values is less than 10−6. With this value, it can be
expected that the configuration coordinates are accurate up to the third
decimal. The history of iterations is presented in Table 8.4. After 35 itera-
tions, the convergence criterion was reached with configuration

X[35] =

⎡⎢⎣ −1.457 −2.575
1.730 1.230

−0.028 0.160
−0.245 1.185

⎤⎥⎦ .

Various nice results can be derived from the Smacof algorithm. For
example, De Leeuw (1988) showed that X[k] converges linearly to a sta-
tionary point. In technical terms, linear convergence means that ||X[∞] −
X[k−1]||/||X[∞] − X[k]|| → λ, where 0 < λ < 1 is the largest eigenvalue
not equal to 1 of the matrix of the second derivatives of the Guttman
transform. Another attractive aspect of Smacof is that zero distances are
unproblematic, because of the definition of bij in (8.24). In gradient-based
algorithms, ad hoc strategies have to be applied if zero distances occur.
If no zero distances are present, then it can be shown that the Guttman
transform is a steepest descent step with a fixed stepsize parameter.

8.7 Exercises

Exercise 8.1 Consider the function f(x) = 2x3 − 6x2 − 18x + 9.

(a) Tabulate the values of the function f(x), its derivative f ′(x), and
f ′′(x) for x equal to −4,−3,−2, 1, 0, 1, . . . , 6.

(b) Plot all three functions in the same diagram.

(c) Find the minima and maxima of f(x) in the interval [−4,+6] through
inspection of the function graph and through computation, respec-
tively.

(d) Interpret f ′′(x).
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Exercise 8.2 Find local and absolute maxima and minima of the following
functions.

(a) y = x2 − 3x, for 0 ≤ x ≤ 5.

(b) v = 1 + 2t + 0.5t2, for −3 ≤ t ≤ 3.

(c) u = 1/(2v + 3), for 1 ≤ v ≤ 3.

(d) y = x3 − 3x, for −3 ≤ x ≤ 3.

Exercise 8.3 Repeat Exercise 8.2 for

(a) f(x, y) = 4xy − x2 − y2.

(b) f(x, y) = x2 − y2.

(c) f(x, y) = x2 + 2xy + 2y2 − 6y + 2.

Exercise 8.4 Use a computer program that does function plots.

(a) Plot f(x, y) = x2 + xy − y.

(b) Find the minimum value of f(x, y) by graphical means.

(c) Find the minimum of f(x, y) by differentiation techniques. [Hint: Use
partial differentiation with respect of f(x, y) with respect to x and y,
respectively, to obtain the x- and y-coordinates of the minimal point
of the function.]

Exercise 8.5 Use matrix differentiation to solve the regression problem y ≈
Xb, where y is the criterion vector, X is the battery of predictor vectors
(columns), and b is the vector of unknown weights. Find b such that ||y −
Xb||2 =min. (Hint: Express the norm as a trace function.)

Exercise 8.6 Use the solution from Exercise 8.5 to solve the following prob-
lems.

(a) Find the vector x1 that solves (7.23) on p. 156 in a least-squares
sense. That is, minimize f(x1) = ||A1x1 − b1||2 by an appropriate
xi.

(b) What is the value of f(x1) at the optimal x1?

(c) Repeat (a) for A2,b2, and x2 from (7.24).

(d) Repeat (a) for A3,b3, and x3 from (7.25).
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Exercise 8.7 Suppose that we want to approximate the list of values 0, 2, 6, 5,
and 9 by a single value x. One option is to put these values in the vector
z = [0 2 6 5 9]′ and minimize the least-squares function f(x) = ‖z − x1‖2

over x.

(a) Derive f ′(x) and express the result in the matrix algebra. [Hint: Start
by expanding f(x) into separate terms. Then apply the rules for dif-
ferentiation to the individual terms.]

(b) Equate the derivative to zero. Can an analytic solution for x be ob-
tained?

(c) For what value of x is f(x) at its minimum?

(d) What can you say about the x that minimizes f(x)?

Exercise 8.8 Consider the matrix V in (8.18) on p. 188.

(a) What do you expect to be the outcome of V1 and 1′V? Compute
the results for the small example of (8.18). Does this result hold for
V being of any size?

(b) Suppose Y = Z + 1a′. Explain why VZ = VY.

(c) Show that V is double centered.

(d) Is the matrix B(Z) in (8.24) also double centered? Explain why or
why not.

(e) As a consequence of (d), how do you expect that a translation of
the type Z + 1a′ changes a single iteration (8.29) of the Smacof
algorithm?

Exercise 8.9 In the so-called Median-center problem, the objective is to
find a point such that the Euclidean distance to all other points is minimal.
Let Y be the matrix of n given points. The function that needs to be
minimized is

f(x) =
n∑

i=1

di(x),

where di(x) = ‖x − yi‖ and yi is row i of Y.

(a) Use the results from the section on majorizing the median to find a
majorizing function g(x, z) that is a weighted sum of d2

i (x) and where
the weights are dependent on the d2

i (z), where z is the vector with
the previous estimates of x.

(b) Determine the derivative of g(x, z).
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(c) Set the derivative of g(x, z) equal to zero. Solve this equation for x.
(Hint: you will have to use results from Section 7.7.)

(d) Use a program that can do matrix computations and program your
majorization algorithm. Choose a random Y and apply your algo-
rithm to this y. Verify that every subsequent iteration reduces f(x).



9
Metric and Nonmetric MDS

In the previous chapter, we derived a majorization algorithm for fixed dis-
similarities. However, in practical research we often have only rank-order
information of the dissimilarities (or proximities), so that transformations
that preserve the rank-order of the dissimilarities become admissible. In
this chapter, we discuss optimal ways of estimating this and other trans-
formations. One strategy for ordinal MDS is to use monotone regression.
A different strategy, rank-images, is not optimal for minimizing Stress, but
it has other properties that can be useful in MDS. An attractive group
of transformations are spline transformations, which contain ordinal and
linear transformations as special cases.

9.1 Allowing for Transformations of
the Proximities

So far, we have assumed that the proximities are ratio-scaled values. How-
ever, in the social sciences often only the rank-order of the proximities is
considered meaningful. In such cases, the dissimilarities δij are replaced in
the Stress function by disparities, d̂ij (d-hats)1. Disparities are an admis-
sible transformation of the proximities, chosen in some optimal way. For
example, if only the rank-order of the proximities is considered informative,

1Other frequently used terminology for disparities is pseudo distances (Kruskal, 1977;
Heiser, 1990) or target distances.
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then the disparities must have the same rank-order as the proximities. In
this case, we speak of ordinal MDS or nonmetric MDS. If the disparities
are related to the proximities by a specific continuous function, we speak of
metric MDS. The proximities are in both cases transformed into disparities.
In this chapter, we discuss various metric and nonmetric transformations of
the proximities, when to use them, and how to calculate them. To simplify
the presentation, we assume throughout this chapter that the proximities
are dissimilarities, unless stated otherwise.

Stress with d-Hats
Disparities are incorporated in the Stress function as

σr(d̂,X) =
∑
i<j

wij(dij(X) − d̂ij)2

=
∑
i<j

wij d̂
2
ij +

∑
i<j

wijd
2
ij(X) − 2

∑
i<j

wij d̂ijdij(X)

= η2
d̂

+ η2(X) − 2ρ(d̂,X), (9.1)

where d̂ denotes the s × 1 vector of disparities with s = n(n − 1)/2. In
Section 8.6, we saw how to minimize Stress over the configuration matrix
X by the Smacof algorithm. We follow De Leeuw (1977), De Leeuw and
Heiser (1977), and De Leeuw (1988) in extending this algorithm to include
disparities by iteratively alternating an update of X with an update of d̂.
Clearly, if we optimize over both d̂ and X, a trivial solution is d̂ = 0 and
X=0, which makes (9.1) equal to zero. To avoid this degenerated solution,
we norm d̂ to some fixed length, such as

η2
d̂

= n(n − 1)/2. (9.2)

Metric MDS Models
We now formulate several types or models of MDS. In the simplest case
(absolute MDS), proximities (here dissimilarities) and disparities are related
by pij = d̂ij . Thus,

σr(d̂,X) =
∑
i<j

wij(dij(X) − d̂ij)2 =
∑
i<j

wij(dij(X) − pij)2, (9.3)

so that each proximity value pij should correspond exactly to the distance
between points i and j in the m-dimensional MDS space.

Absolute MDS is, from an applications point of view, irrelevant, because
it is of no interest, for example, to exactly reconstruct from Table 2.1 the
European map in its original size. Instead, we settled on ratio MDS, where
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d̂ij = b · pij . In this case, the proximities must be dissimilarities. Then,
Stress equals

σr(d̂,X) =
∑
i<j

wij(dij(X) − d̂ij)2 =
∑
i<j

wij(dij(X) − bpij)2

=
∑
i<j

wijd
2
ij(X) + b2

∑
i<j

wijp
2
ij − 2b

∑
i<j

wijp
2
ijd

2
ij(X)

= η2(X) + b2η2
p − 2bρ(X). (9.4)

We see that it is not very difficult to optimize (9.4) over b. Setting the
derivative of σr(d̂,X) with respect to b equal to zero yields

∂σr(d̂,X)
∂b

= 2bη2
p − 2ρ(X) = 0,

b =
ρ(X)
η2

p

,

which gives the update of b for ratio MDS.
It is easy to generate further MDS models from d̂ij = f(pij) by defining

f in different ways. One generalization of ratio MDS is interval MDS,

d̂ij = a + b · pij , (9.5)

where an additive constant, a, has been added. Ratio and interval MDS are
linear MDS models, because the f(pij)s are linear transformations of the
pijs. This carries certain linear properties of the data into the corresponding
distances. If the pijs are dissimilarities, we require that b > 0, because larger
dissimilarities should correspond to larger distances. Conversely, if the pijs
represent similarities, then b < 0, because a large similarity corresponds
to a small distance. In ratio MDS, the ratio of any two disparities should
be equal to the ratio of the corresponding proximities, because d̂ij/d̂kl =
(b ·pij)/(b ·pkl) = pij/pkl. Thus, although it is always possible to assess the
ratio of distances in any MDS space and to note that, say, dij is twice as
large as dkl, in ratio MDS such relations should mirror corresponding ratios
of the data. In interval MDS, then, the ratio of differences (“intervals”) of
distances should be equal to the corresponding ratio of differences in the
data.

Naturally, f does not have to be linear. In principle, we may choose
any function we like. However, some functions have been found to be par-
ticularly useful in various contexts of psychology. Among them are the
logarithmic function

d̂ij = b · log(pij), (9.6)

or, more generally,

d̂ij = a + b · log(pij),
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FIGURE 9.1. Transformation plot of several transformations.

and the exponential function

d̂ij = a + b · exp(pij). (9.7)

Sometimes, we might even consider nonmonotonic functions such as a poly-
nomial function of second degree,

d̂ij = a + b · pij + c · p2
ij . (9.8)

There are no limits to the variety of MDS models that can be constructed
in this way. These functions can be viewed in a transformation plot, where
the horizontal axis is defined by the proximities (pij) and the vertical axis is
defined by the transformed proximities (d̂ij). Some of the transformations
discussed so far are graphed in Figure 9.1.

One problem may occur when fitting some of these models (Heiser, 1990).
In the step for finding optimal disparities d̂ij , negative disparities can occur.
For example, this happens in (9.6) when some pijs are smaller then 1 and
some larger than 1, because log(x) < 0 for 0 < x < 1. More importantly, in
interval MDS, model (9.5), negative disparities can and do occur. Because
distances can never be negative, a zero residual in the Stress function is
unreachable for negative disparities. Moreover, the majorization algorithm
may fail to converge because the inequalities that are used to derive (8.23)
are reversed for negative disparities, thereby destroying the convergence
proof. This problem can be repaired in two ways: first, on top of the re-
strictions implied by the model, the disparities are restricted to be positive
(which makes updating the disparities more complicated), or, second, the
Smacof algorithm is extended to deal with negative disparities. For more
details on this issue, we refer to Heiser (1990).
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TABLE 9.1. Some MDS models ordered by the scale level of the proximities
(from strong to weak).

Transformation d̂ij

Absolute pij

Ratio b · pij with b > 0
Interval a + b · pij with a ≥ 0, b ≥ 0
Spline A sum of polynomials of pij

Ordinal Preserve the order of pijs in d̂ijs

Nonmetric MDS
All of the models from (9.3) to (9.8) are metric; that is, they represent
various properties of the data related to algebraic operations (addition,
subtraction, multiplication, division). In contrast, nonmetric models rep-
resent only the ordinal properties of the data. For example, if p12 = 5 and
p34 = 2, an ordinal model reads this only as p12 > p34 (assuming here that
the data are dissimilarities) and constructs the distances d12 and d34 so
that d12 > d34.

Ordinal models typically require that

if pij < pkl, then d̂ij ≤ d̂kl, (9.9)

and no particular order of the distances for pij = pkl (weak monotonicity2

and the primary approach to ties). Notice that the models (9.3) to (9.7) also
lead to distances ordered in the same way as the corresponding proximities.
But they are all special cases of (9.9), where no particular function f is
required for the monotone relation. In Table 9.1 some common MDS models
are ordered by the scale level of the proximities.

Even weaker MDS models are conceivable. If, for example, we had prox-
imities coded as a, b, or c, we only may require that there be three classes
of distances, one for each data code. All that the distances represent then is
the qualitative distinctness, and the model could be called nominal MDS,
where the disparities are restricted by

if pij = pkl, then d̂ij = d̂kl,

which is implemented in the program Alscal. However, we discourage the
use of nominal MDS because when interpreting an MDS solution we usually
assume that the closer two points are, the more similar the objects they
represent. The nominal MDS model thwarts this interpretation. Moreover,
it admits transformations that may radically change the appearance of the

2Requiring strong monotonicity or d̂ij < d̂kl rather than just d̂ij ≤ d̂kl does not
lead to stronger models in practice, because one can always turn an equality into an
inequality by adding a very small number ε to one side of the equation.
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MDS configuration. Finally, strict equality in empirical proximities is often
rather exceptional, and, indeed, it is just the case that is excluded in the
usual ordinal MDS (primary approach to ties) because of its presumed
empirical unreliability.

Ad Hoc MDS Models
In addition to such textbook models of MDS, more complicated models
are occasionally necessary in real applications. Typically, they involve a
function d̂ = f(p) that is itself a combination of several component func-
tions. Consider, for example, the case of ordinal MDS in (9.9). We may
not be satisfied with simply requiring that the data be mapped by “some”
monotonic function into distances. We may also want to insist that this
function be negatively accelerated, say, because we have a theory about
what is going on behind the data. We then have to restrict the d̂ijs to be
negatively accelerating. Such additional restrictions on f come from sub-
stantive considerations and, therefore, are without limit in their number
and variety.

Smacof with Admissibly Transformed Proximities
The Smacof algorithm with transformation of the proximities can be sum-
marized by

1. Set Z = X[0], where X[0] is some (non)random start configuration.
Set iteration counter k = 0. Set ε to a small positive constant.

2. Find optimal disparities d̂ij for fixed distances dij(X[0]).

3. Standardize d̂ij so that η2
d̂

= n(n − 1)/2.

4. Compute σ
[0]
r = σr(d̂,X[0]). Set σ

[−1]
r = σ

[0]
r .

5. While k = 0 or (σ[k−1]
r − σ

[k]
r > ε and k ≤ maximum iterations) do

6. Increase iteration counter k by one.

7. Compute Guttman transform X[k] by (8.29) if all wij = 1,
or by (8.28) otherwise, where δij is replaced by d̂ij .

8. Find optimal disparities d̂ij for fixed distances dij(X[k]).

9. Standardize d̂ij so that η2
d̂

= n(n − 1)/2.

10. Compute σr(d̂,X[k]).

11. Set Z = X[k].
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FIGURE 9.2. The flow of the majorization algorithm (Smacof) for doing MDS
with optimal transformations.

12. End while.

A flowchart of this algorithm is presented in Figure 9.2. Note that when
computing the Guttman transform the places of the δijs are taken by d̂ijs.
The allowed transformation of the disparities determines how the update
for the disparities in Steps 2 and 7 should be calculated. In the next sections,
we discuss the optimal update for ordinal MDS and MDS with splines.

9.2 Monotone Regression

In ordinal MDS, we have to minimize σr(d̂,X) over both X and d̂, where
the disparities must have the same order as the proximities pij ; that is,

if pij < pkl, then d̂ij ≤ d̂kl (9.10)

if the proximities are dissimilarities, and an inverse order relationship if
they are similarities. We switch to Step 7 in the Smacof algorithm, where
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TABLE 9.2. Pairs, ranks, symbolic proximities, numeric proximities (=ranks),
numeric distances of starting configuration X, symbolic distances, and target
distances for X.

Pair Rank Sym. pij pij dij Sym. dij d̂ij

Humphrey–McGovern 1 pHM 1 7.8 dHM 3.38
McGovern–Percy 2 pMP 2 3.2 dMP 3.38
Nixon–Wallace 3 pNW 3 0.8 dNW 3.38
Nixon–Percy 4 pNP 4 1.7 dNP 3.38
Humphrey–Percy 5 pHP 5 9.1 dHP 5.32
Humphrey–Nixon 6 pHN 6 7.9 dHN 5.32
Humphrey–Wallace 7 pHW 7 7.4 dHW 5.32
McGovern–Nixon 8 pMW 8 2.3 dMW 5.32
Percy–Wallace 9 pPW 9 2.3 dPW 5.32
McGovern–Wallace 10 pMW 10 2.9 dMW 5.32

better-fitting d̂ijs with respect to fixed dij(X) have to be found, subject to
the constraints (9.10). Suppose that the order of the dij(X)s is exactly the
same as the order of the proximities pij . Then, simply choosing d̂ij = dij(X)
defines the optimal update. If the fixed dij(X)s are not in the same order
as the proximities, the optimal update is found by monotone regression of
Kruskal (1964b).

The Up-and-Down-Blocks Algorithm

We discuss the solution of minimizing σr(d̂) by monotone regression with
Kruskal’s up-and-down-blocks algorithm. Consider an example. Rabinowitz
(1975) describes a hypothetical experiment where a subject was asked to
rank-order all possible pairs of the following politicians from most to least
similar: Humphrey (H), McGovern (M), Percy (P), Nixon (N), and Wallace
(W). The subject generated the ranking numbers exhibited in the second
column of Table 9.2. They are shown in the form of the familiar proximity
matrix in Table 9.3.

Now, assume that we have a first configuration X, which leads to the
distances in Table 9.2. How are the d̂ijs computed? Consider the distances
dij for the pairs Humphrey–McGovern and McGovern–Percy, dHM and
dMP . The corresponding proximities are ordered as pHM < pMP . Because
the proximities are dissimilarities (i.e., the smaller the p-value, the larger
the similarity), dHM ≤ dMP should hold in a perfect MDS representation.
This is obviously not true for the configuration X, because it yields dHM =
7.8 and dMP = 3.2. Thus, the points of X must be moved so that dHM

becomes smaller and dMP larger. Now, given two numbers, the arithmetical
mean yields the number that is closest to both of them in the least-squares
sense. Thus, setting (dHM + dMP )/2 = d̂HM = d̂MP defines target values
that satisfy the requirements.
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TABLE 9.3. Proximity matrix for politicians.

H M P W N
H – 1 5 7 6
M 1 – 2 10 8
P 5 2 – 9 4

W 7 10 9 – 3
N 6 8 4 3 –

TABLE 9.4. Derivation of the disparities in Table 9.2 by monotone regression.

Trial Solutions for d̂ij Final
Pair pij d̂ij I II III IV V VI VII d̂ij

Humphrey–McGovern 1 7.8 5.5 3.93 3.38 3.38 3.38 3.38 3.38 3.38
McGovern–Percy 2 3.2 5.5 3.93 3.38 3.38 3.38 3.38 3.38 3.38
Nixon–Wallace 3 0.8 0.8 3.93 3.38 3.38 3.38 3.38 3.38 3.38
Nixon–Percy 4 1.7 1.7 1.7 3.38 3.38 3.38 3.38 3.38 3.38
Humphrey–Percy 5 9.1 9.1 9.1 9.1 8.5 8.13 6.68 5.8 5.32
Humphrey–Nixon 6 7.9 7.9 7.9 7.9 8.5 8.13 6.68 5.8 5.32
Humphrey–Wallace 7 7.4 7.4 7.4 7.4 7.4 8.13 6.68 5.8 5.32
McGovern–Nixon 8 2.3 2.3 2.3 2.3 2.3 2.3 6.68 5.8 5.32
Percy–Wallace 9 2.3 2.3 2.3 2.3 2.3 2.3 2.3 5.8 5.32
McGovern–Wallace 10 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 5.32
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FIGURE 9.3. Shepard diagram of monotone regression as calculated in Tables
9.2 and 9.4. The open points represent pairs of corresponding proximities and
distances (pij , dij), the solid points disparities d̂ij . The solid line is the best-fitting
monotone regression curve.

Beginning with the first pair of distances in Table 9.4, we get a first trial
solution for the disparities by setting 5.5 = d̂HM = d̂MP and d̂ij = dij

for all remaining distances. This yields the values in column I of Table 9.4.
This trial solution, however, satisfies the monotonicity requirement only for
its first two elements, and the third disparity value is too small, because
dNW = 0.8 is smaller than both of the preceding values. So, we create a
new block by computing the average of the first three distances (5.5 + 5.5
+ 0.8)/3 = 3.93. We then use 3.93 for d̂HM , d̂MP , and d̂NW , and again
hope that everything else is in order, thus setting d̂ij = dij for all other
distances. This yields the second trial solution for the disparities (column
II). This sequence still violates the monotonicity requirement in row 4.
Hence, a new block is formed by joining the previous block and dNP . The
resulting disparities in column III form a weakly monotonic sequence up to
and including row 5. In row 6, a value 7.9 turns up, however, that is smaller
than the preceding one, 9.1. So, we join 9.1, 7.9, and all preceding values
into one block, average these values, and so on. Table 9.4 shows all of the
steps leading to the final disparity sequence of d̂ijs in the last column. This
completes monotone regression for the first iteration.

A Shepard diagram is given in Figure 9.3. In the main algorithm, we
then have to normalize the d̂ij such that their sum-of-squares is equal to
n(n−1)/2. Then, we start the second iteration by computing an update for
the configuration X. This gives new distances for which we can compute
new disparities by monotone regression, as we have done above.

Smoothed Monotone Regression
A more restrictive version of ordinal MDS is smoothed monotone regression
(Heiser, 1985, 1989a). Apart from the order restrictions implied by ordinal
MDS, we also impose the restriction that the difference between differences
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of adjacent disparities is never larger than the average disparity. Thus, if
the s = n(n − 1)/2 elements of vector d̂ are ordered as the proximities,
then smoothed monotone regression requires

|(d̂k − 0) − (0 − 0)| ≤ s−1 ∑s
l=1 d̂l, for k = 1,

|(d̂k − d̂k−1) − (d̂k−1 − 0)| ≤ s−1 ∑s
l=1 d̂l, for k = 2,

|(d̂k − d̂k−1) − (d̂k−1 − d̂k−2)| ≤ s−1 ∑s
l=1 d̂l, for k = 3, . . . , s.

(9.11)

Thus, the restrictions are imposed on the difference of subsequent differ-
ences. The advantage of this internally bounded form of monotone regres-
sion is that the steps between two adjacent disparities can never get large.
Therefore, the Shepard diagram always shows a smooth relation of pijs and
d̂ijs without irregular steps in the curve. For k = 1, the first restriction of
(9.11) implies that d̂k should be between zero and the average d-hat. There-
fore, a smoothed monotone transformation has a first d-hat that is quite
close to zero and will be increasing in a smooth way. It can be verified that
a quadratically increasing transformation and a logarithmically increasing
transformation satisfy the maximal stepsizes as defined in (9.11). Unfortu-
nately, Heiser reports that it is not easy to compute optimal disparities for
given distances using smoothed monotone regression. Also, the smoothed
monotone regression problem tends to become computationally demanding
if n is large (say n > 25).

9.3 The Geometry of Monotone Regression

In the previous section, we saw how monotone regression is performed.
Here, we give a geometrical explanation of monotone regression. Consider
an example. Suppose that we have

P =

⎡⎣ − 1 3
1 − 2
3 2 −

⎤⎦ , and D(X) =

⎡⎣ − 1 2
1 − 3
2 3 −

⎤⎦ ,

and wij = 1 for each pair i, j. Let us reformulate the problem in simpler
notation. Denote the unknown d̂ij as xl, and the known dij(X) as al. Also,
we order the al in the rank-order of the proximities. This leads to Table
9.5. Rewriting σr accordingly, the monotone regression problem becomes
minimizing

σr(x) =
s∑

l=1

(xl − al)2

under the restriction that 0 ≤ x1 ≤ x2 ≤ · · · ≤ xs, where s = n(n − 1)/2.
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TABLE 9.5. Reformulation of the monotone regression problem.

s Pair i, j Proximity as = dij(X) xs = d̂ij

1 12 p12 a1 = 1 x1 = d̂12

2 23 p23 a2 = 3 x2 = d̂23

3 13 p13 a3 = 2 x3 = d̂13

x1
2 4
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FIGURE 9.5. The area for which
0 ≤ x1 ≤ x2 ≤ x3.

To see what these restrictions imply geometrically, consider the case
where we have the restrictions 0 ≤ x1 ≤ x2. The shaded area in Figure
9.4 shows the area in which these inequalities hold. Here, each axis denotes
one of the variables xl. The first part of the inequalities implies that all xl

should be nonnegative, because we do not want the disparities to become
negative. The elements a1 = 1 and a2 = 3 fall in the shaded area, so that
choosing x∗

1 = a1 = 1 and x∗
2 = a2 = 3 gives σr(x) where the order re-

striction on x1 and x2 is not violated. If a were outside the shaded area,
then we would have to find an x on the border of the shaded area that is
closest to a by the up-and-down-blocks algorithm. The triple of inequalities
0 ≤ x1 ≤ x2 ≤ x3 of our simple example can be represented graphically
as in Figure 9.5. After orthogonal projection on each pair of axes, the area
in which the inequalities hold is similar to that of Figure 9.4. The three
inequalities combined give the inner part of the ordered cone in Figure 9.5.
Monotone regression amounts to projecting a onto this cone. If a is ordered
with increasing values, then it is located inside the cone. In this example,
the x with the shortest distance to a that is in or on the ordered cone
equals x∗ = [1, 2.5, 2.5]′.

Geometrically, monotone regression amounts to finding the d̂ that is in
the ordered cone (defined by the proximities) and as close as possible to
the vector of distances.
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TABLE 9.6. Calculation of the primary and the secondary approaches to ties in
ordinal MDS for given distances dij .

Primary Approach Secondary Approach
Pair pij dij I II III d̂ij I II d̂ij

3,2 1 3 3 2.50 2.50 2.50 3 2.50 2.50
4,1 2 2 2 2.50 2.50 2.50 2 2.50 2.50
3,1 3 6 6 6 4.50 4.50 6 6 4.66
4,2 4 5 3 3 4.50 5 5 4 4.66
2,1 4 3 5 5 5 4.50 3 4 4.66
4,3 5 7 7 7 7 7 7 7 7

9.4 Tied Data in Ordinal MDS

In ordinal MDS, the relevant data information is the rank-order of the
proximities. But consider the rank-order of the proximities in the following
matrix.

P =

⎡⎢⎢⎣
− 4 3 2
4 − 1 4
3 1 − 5
2 4 5 −

⎤⎥⎥⎦ .

We see that the proximities p21 and p42 have the same ranks; that is, they
are tied. How should such ties be represented in an MDS configuration?
It would seem natural to represent them by equal distances in an MDS
solution, but this is known as the secondary approach to ties. For our sim-
ple example, it means that d̂21 = d̂42, so that d̂31 ≤ d̂21 = d̂42 ≤ d̂43. In
the primary approach, tied proximities impose no restrictions on the cor-
responding distances. In other words, it is not necessary to map tied data
into equal distances. For our example, the primary approach to ties implies
d̂31 ≤ d̂21 ≤ d̂43 and d̂31 ≤ d̂42 ≤ d̂43. Nothing is required of the distances
representing equal proximities, except that they must be smaller (larger)
than the distances corresponding to smaller (larger) proximities. Ties in
the data thus can be broken in the representing distances.

In Table 9.6, an example is presented of the calculation for the primary
and secondary approaches to ties for given distances. The resulting Shepard
diagrams are shown in Figure 9.6. In the primary approach, the first esti-
mate of the disparities is obtained by setting d̂ij = dij and then reordering
these d̂ij wherever they correspond to tied pij values so that they increase
monotonically. Then, standard monotone regression is applied (see Section
9.2). Finally, the resulting disparities are permuted back into the original
order of the distances. The secondary approach to ties follows the same
strategy as monotone regression, except that the first disparity estimates
for tied data are replaced by their average values.
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FIGURE 9.6. Shepard diagram of monotone regression calculated with the pri-
mary approach to ties (a), or the secondary approach to ties (b) (see Table 9.6).
The solid points are the disparities d̂ij , and the open points are the distances
dij(X).

How do ties arise in proximity data? There are several possibilities. Con-
sider the following case. Assume that we want to find out how people
perceive cars by studying their similarity impressions. A stack of cards is
prepared, where each card shows one pair of cars. The subject is asked to
split the stack into two piles, one containing the more similar pairs, the
other the more dissimilar pairs. Then, the subject is asked to repeat this
exercise for each pile in turn, and repeat again, and so on, until he or she
feels that it is not possible to discriminate any further between the pairs
of cars in any pile. If the subject stops when each pile has only one card
left, then we get a complete similarity order of the pairs of cars and no ties
occur. It is more likely, however, that some of the final piles will have more
than one card. Most likely, the piles for the extremely similar pairs will
be quite small, whereas those for pairs with intermediate similarity will be
larger. This means that if we assign the same proximity value to all pairs in
a pile, ties will arise for every pile containing one or more cards. However,
we would not want to assume that these data are tied because the subject
feels that the respective pairs of cars are exactly equal. Rather, the subject
stops the card sorting only because the pairs in some piles do not appear to
be sufficiently different for a further meaningful or reliable ordering. Hence,
the primary approach to ties should be chosen in analyzing these data.

Consider another example, a pilot study on the perception of nations
(Wish, Deutsch, & Biener, 1970; Wish, 1971), where the respondents had
to judge the degree of similarity between each pair of 12 nations on a
9-point rating scale with endpoints labeled as “very different” and “very
similar”, respectively. Here, the proximities for each respondent must have
ties, because there are 66 pairs of nations, and, thus, it would require a
rating scale with at least 66 categories in order to be able to assign a
different proximity value to every stimulus pair. The 9-point rating scale
works as a relatively coarse sieve on the true similarities, so the data would
be best interpreted as indicators for intervals on a continuum of similarity.
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The primary approach to ties is again indicated, inasmuch ties must result
due to the data collection method.

A further way for ties to occur is when the proximities are derived from
other data. Consider the correlation matrix of intelligence tests in Table
5.1. Several ties occur here, so that with the primary approach to ties, the
distances d17, d24, and d27, say, are merely required to be less than d37 and
greater than d26. However, we can compute the correlation coefficients to
more decimal places. Assume that we get, by using three decimal places,
r17 = .261, r24 = .263, and r27 = .259. In ordinal MDS, it should then hold
that d24 < d17 < d27, and so the MDS solution must satisfy additional
properties. But is it worthwhile to place such stronger demands on the
solution? Clearly not. The correlations may not even be reliable to three
decimal places. Even the value of r = .26 should be read as r ≈ .26. Hence,
the secondary approach to ties makes no sense here.

9.5 Rank-Images

A completely different way of computing disparities in ordinal MDS is based
on rank-images. The basic idea is that if a perfect fit exists in ordinal MDS,
then the rank-order of the distances must be equal to the rank-order of the
proximities. To compute the disparities, a switch is made to a loss function
that is different from Stress; that is,

τ(d̂) = (Rpd̂ − Rdd)′(Rpd̂ − Rdd), (9.12)

where we assume for simplicity that all the weights wij are one in the
Stress function. Rp is a permutation matrix (that has only a single one in
each row and column, and zeros elsewhere) such that Rpp is the vector
of proximities ordered from small to large. Similarly, Rd is a permutation
matrix that orders the distances d from small to large. Rp is known, the
vector of distances d is known, and thus Rd is known. The only unknown
vector is the vector of disparities d̂ that we intend to find. To find the
minimum of (9.12) we use the fact that R′R = I for any permutation
matrix R. Equation (9.12) is a quadratic function in d̂, so that its minimum
can be found in one step by setting the gradient (first derivative)

∇τ(d̂) = 2R′
pRpd̂ − 2R′

pRdd = 2d̂ − 2R′
pRdd

equal to zero for all elements: ∇τ(d̂) = 0 implies d̂ = R′
pRdd (and Rpd̂ =

Rdd). If the proximities are already ordered increasingly, then Rp = I and
the rank-image transformation amounts to setting the disparities equal to
the ordered distances.

A flaw of using rank-images for ordinal MDS is that convergence of the
overall algorithm cannot be guaranteed. This is caused by the switch from
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TABLE 9.7. Derivation of rank-image disparities from the politicians data given
in Tables 9.2 and 9.3.

Pair Rpp Rpd Rdd Rpd̂
Humphrey–McGovern 1 7.8 0.8 0.8
McGovern–Percy 2 3.2 1.7 1.7
Nixon–Wallace 3 0.8 2.3 2.3
Nixon–Percy 4 1.7 2.3 2.3
Humphrey–Percy 5 9.1 2.9 2.9
Humphrey–Nixon 6 7.9 3.2 3.2
Humphrey–Wallace 7 7.4 7.4 7.4
McGovern–Nixon 8 2.3 7.8 7.8
Percy–Wallace 9 2.3 7.9 7.9
McGovern–Wallace 10 2.9 9.1 9.1

the Stress loss function to the loss function (9.12). This could be solved by
trying to minimize the same function (9.12) for updating the configuration
X. However, because Rd is dependent on the distances and thus on X,
it is very hard to minimize (9.12) over X. Nevertheless, we can still use
rank-images in the Smacof algorithm, although convergence is no longer
guaranteed. As De Leeuw and Heiser (1977) remark: “It is, of course, per-
fectly legitimate to use the rank-images . . . in the earlier iterations (this
may speed up the process, cf. Lingoes & Roskam, 1973). As long as one
switches to [monotone regression] in the final iterations convergence will
be achieved” (p. 742). Lingoes and Roskam (1973) do exactly this in their
Minissa program, because they claim that “the rank-image transformation
is more robust against trivial solutions and local minima” (Roskam, 1979a,
p. 332).

As an example of the calculation of rank-images, we again use the data
on the similarity of politicians from Table 9.2. The proximities are already
ordered from small to large, so that Rp = I. The disparities according to
the rank-image transformation are given in Table 9.7.

In Guttman (1968) and in some computer programs, rank-images are
denoted by d∗

ij (d-star) as opposed to d̂ij (d-hat) obtained by monotone
regression. Here, we retain the notation of d̂ij for a disparity, even if the
disparity is a rank-image.

9.6 Monotone Splines

Quite flexible transformations are obtained by using splines. We show that
special cases of (monotone) splines include interval transformations, poly-
nomial transformations, and ordinal transformations. In this section, we
limit ourselves to the class of monotone splines, which are also called I-
splines (integrated splines) in the literature. Whenever we refer to a spline
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in the sequel, we mean a monotone spline. One of its main characteristics is
that the resulting transformation is smooth. For a good review of applica-
tions of monotone splines in statistics, we refer to Ramsay (1988). For more
general references on splines, see De Boor (1978) and Schumaker (1981).

There are three reasons for wanting a smooth transformation in MDS.
First, ordinal MDS can result in a crude transformation. For example, in
Figure 9.3 the rank-order of ten different proximities was transformed in
only two different disparities. Such crude transformations neglect much of
the variation in the proximities. A second reason is that we want to retain
more than ordinal information of the data. For example, if the proximities
are correlations, we may want to consider more than just the rank-orders of
the correlations (as in ordinal MDS), but less than the interval information
(as in interval MDS). Third, degenerate solutions (see Chapter 13) can be
avoided by imposing smooth transformations. In general, a spline trans-
formation yields a much smoother transformation curve than an ordinal
transformation. Compare, for example, the nonsmooth ordinal transforma-
tion in Figure 9.1 and the smooth spline transformation in the same figure.
Thus, splines can be used to obtain smooth transformation curves, while
keeping the ordinal information of the proximities intact.

Characterization of Monotone Splines
What does a spline transformation look like? In general, the transformation
is a smooth monotone increasing curve. The conceptual idea is that it is not
possible to map all proximities into disparities by one simple function (such
as the linear transformation in interval MDS). Then, splines can be used to
specify such simple mappings for several intervals. The additional restric-
tion on the separate transformation of each interval is that they should
be smoothly connected and monotone increasing. We discuss later that
interval and ordinal transformations are two extreme cases of monotone
spline transformations. Hence, other spline mappings can be seen as more
restrictive than ordinal mappings and less restrictive than linear mappings.

The endpoints (extrema) of the intervals are called knots. Because splines
are required to be smooth, the endpoint of one interval coincides with
an extremal point of the adjacent interval, so that a knot ties together
the two intervals. The size of the intervals is characterized by the knot
sequence of the knots ti. As before in this chapter, we string out the s =
n(n−1)/2 proximities in the vector p and index its elements by i, where i =
1, 2, . . . , s. We also assume that the elements in p are ordered increasingly.
Two knots are reserved, one for the smallest value of the proximities t0 =
pmin and the other for the largest value tm = pmax. The other knots, if
present, are called interior knots, because they must be greater than t0
and smaller than tm. Thus, the ordered knot sequence of the m knots
t0 = pmin, t1, t2, . . . , tm = pmax defines the intervals [t0, t1], [t1, t2], . . . ,
[tm−1, tm], so that every observed value pij falls into one of these intervals.
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FIGURE 9.7. Example of a spline transformation with three interior knots.

Usually, the interior knots are placed at K − 1 quantiles so that the K
intervals are equally filled with proximities. Figure 9.7 shows an example of
a spline transformation with three interior knots that define four intervals.

The smoothness within an interval is guaranteed by choosing the trans-
formation as a polynomial function of the proximities. Examples of poly-
nomial functions are f(p) = 3p2 − 2p + 1 (a second degree polynomial),
and f(p) = 6p − 3 (a first degree polynomial). In general, a polynomial
function of degree r is defined as f(p) =

∑r
k=0 akpk, where ak are weights

and p0 = 1. The degree r of the polynomial is specified by the order of the
spline, or the degree of the spline. Because the entire spline transformation
must be smooth, we must also have smoothness between the intervals at
the knots. The smoothness at the knots is also determined by the order of
the spline in the following way: at knot ti, the first r − 1 derivatives of two
polynomials of the adjacent intervals [ti−1, ti] and [ti, ti+1] must be equal.
For a spline of order 1, this property implies that the lines are joined at
each interior knot, so that the transformation is continuous. A quadratic
spline has—apart from continuity—equal first derivatives at each interior
knot. A third-order spline has continuity up to the second derivatives at
the interior knots, and so on. Note that a spline of order 0 is not even
continuous.

It remains to be seen how a spline transformation can be computed.
Suppose that we specify a spline of degree r with k interior knots. It turns
out that the spline transformation (with the properties outlined above)
can be computed by using a special s × (r + k) matrix M that can be
derived from p. The spline transformation is defined simply as d̂ = Mb
for any vector of nonnegative weights b. Viewed this way, finding a spline
transformation is nothing more than solving a multiple regression problem
for optimal weights b. These weights are used to predict the fixed distances
d by the weighted sum d̂ = Mb. We restrict b to be nonnegative, which
ensures that the transformation is monotone increasing.
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FIGURE 9.8. Separate columns of spline bases M belonging to a monotone spline
of order 2 with three interior knots. The plot on the bottom right is a transfor-
mation resulting from a weighted sum of the previous five columns of M plus an
intercept.

Specifying the Matrix M

The crux of a spline transformation lies in how the matrix M is set up. It
turns out that for monotone splines each column is a piecewise polynomial
function of p, in such a way that any linear combination satisfies the re-
quired smoothness restrictions at the knots. To accomplish this, matrix M
has a special form. The elements of column j of M in the first max(0, j −r)
intervals are equal to 0, and the elements in the last max(0, k−j +1) inter-
vals are equal to 1. The remaining intervals contain a special polynomial
function of degree r, which we specify below for splines of orders zero, one,
and two. Figure 9.8 shows an example of the columns of M as a function of
p for k = 3 and r = 2. The first column m1 has elements equal to 1 in the
last three intervals, the second column m2 has elements 1 in the last two
intervals, the third column m3 has 0s in the first interval and 1s in the last
interval, the fourth column m4 has 0s in the first and second intervals, and
the fifth and final column has 0s in the first, second, and third intervals.
The values in the intervals that are not 0 or 1 are a quadratic function in
pij that is continuous and has equal derivatives at the knots.

We now come to explicit expressions for splines of orders zero, one, and
two. The columns of M for an order-zero spline are defined by an indicator
function that is 0 if pi is smaller than knot j and 1 otherwise; that is, the
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spline basis M is an s × k matrix with elements

mij =
{

0 if t0 ≤ pi < tj ,
1 if tj ≤ pi < tk+1.

If the number of interior knots k is 0, then M is not defined in a zero-
order spline, because all values pi fall in the same interval [t0, t1], so that
mi = 1 for all i. Clearly, for our purpose, the transformation d̂ij = 1 for
all i, j is not acceptable, because it ignores the variability in the observed
proximities.

The columns of M of an order-one spline are defined by a piecewise linear
function; that is,

mij =

⎧⎪⎨⎪⎩
0 if t0 ≤ pi < tj−1,
pi − tj−1
tj − tj−1

if tj−1 ≤ pi < tj ,

1 if tj ≤ pi ≤ tk+1.

For a monotone spline of order two, we can write a direct formulation of
the elements of M; that is,

mij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if t0 ≤ pi < tj−2,
(tj−2 − pi)2

(tj−1 − tj−2)(tj − tj−2)
if tj−2 ≤ pi < tj−1,

1 − (tj − pi)2
(tj − tj−1)(tj − tj−2)

if tj−1 ≤ pi < tj ,

1 if tj ≤ pi < tk+1,

after Ramsay (1988). Note that for j = 1 we have reference to tj−2 = t−1,
which we define as t−1 = t0. Equivalently, for j = k + 1 we define knot
tj = tk+1. The lower-right plot in Figure 9.8 plots the proximities against
d̂ = Mb for some given vector b. For the calculation of monotone splines
of higher order and for more general information on splines, we refer to
Ramsay (1988) and De Boor (1978).

Let the proximity matrix P be given by

P =

⎡⎢⎢⎣
0 1.0 1.5 3.2
1.0 0 2.0 3.8
1.5 2.0 0 4.5
3.2 3.8 4.5 0

⎤⎥⎥⎦ ,

or in vector notation p′ = (1.0, 1.5, 2.0, 3.2, 3.8, 4.5). Let the knots be given
by t0 = 1.0, t1 = 3.0, t2 = 4.5, so that the number of interior knots k equals
1. For these data Table 9.8 shows M for a zero-order spline, a first-order
spline, and a second-order spline.

The spline basis M of p is invariant under linear transformation of p.
It turns out that by choosing the two extrema as knots, we obtain a row
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TABLE 9.8. Example of spline bases M for a zero-order spline, a first-order
spline, and a second-order spline. The knots are t0 = 1.0, t1 = 3.0, t2 = 4.5.

r = 0 r = 1 r = 2
p m1 m1 m2 m1 m2 m3

1.0 0 0.00 0.00 0.00 0.00 0.00
1.5 0 0.25 0.00 0.44 0.04 0.00
2.0 0 0.50 0.00 0.75 0.14 0.00
3.2 1 1.00 0.13 1.00 0.68 0.02
3.8 1 1.00 0.53 1.00 0.91 0.28
4.5 1 1.00 1.00 1.00 1.00 1.00

of 0s for the smallest proximity and a row of 1s for the largest proximity,
as can be verified in the examples of Table 9.8. This implies that whatever
the weights b, the disparity of the smallest proximity will be 0. This is
not desirable in MDS, because the smallest proximity does not necessarily
have to be represented by a zero distance. Therefore, we include a positive
intercept in our spline transformation; that is, d̂ = b01 + Mb. For MDS,
we need the intercept, so that the disparity corresponding to the smallest
proximity can be transformed into any nonnegative value.

Special Cases of Monotone Splines
Let us look at two special cases of monotone splines. The first case is a
spline with order larger than zero (r > 0) and no interior knots (k = 0),
so that there are only two knots, one at the smallest value of p and one at
the largest value of p. For this case, monotone splines have the property
that the row sum of M is equal to cp (with c > 0 an arbitrary factor);
that is, cpi =

∑
j mij . An example of a transformation plot for this case is

given in Figure 9.9a. A second property is that such spline transformations
are equivalent to transformations obtained by polynomial regression of the
same degree. If we deal with a first-order spline, then M consists of one
column only that is linearly related to p. Therefore, a first-order spline with
two knots and an intercept is equivalent to an interval transformation, as
can be seen in Figure 9.9b.

The second special case of a monotone spline occurs if exactly k = n − 1
interior knots and the order r = 0 are specified. If an intercept is included,
then this is equivalent to performing monotone regression. A small example
clarifies this statement. Let the proximities be p′ = (1, 2, 3, 4, 5) and the
knots be at t′ = (0.5, 1.5, 2.5, 3.5, 4.5, 5.5). Then, the matrix M of a
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FIGURE 9.9. Special cases of spline transformation: (a) all weights bi = 1, two
knots, and order larger than zero; (b) spline with two knots and order one, which
is equal to an interval transformation if an intercept is included.

zero-order spline is equal to

M =

⎡⎢⎢⎢⎢⎣
0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

⎤⎥⎥⎥⎥⎦ .

For monotone splines, we require weights b to be larger or at most equal
to 0, so that Mb plus an intercept b01 (with b0 ≥ 0) is always larger than
0. The matrix multiplication plus the intercept results in

d̂ = b01 + Mb = b0

⎡⎢⎢⎢⎢⎣
1
1
1
1
1

⎤⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎣
0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣

b1
b2
b3
b4

⎤⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
b0
b0 + b1
b0 + b1 + b2
b0 + b1 + b2 + b3
b0 + b1 + b2 + b3 + b4

⎤⎥⎥⎥⎥⎦ . (9.13)

But the restrictions bj ≥ 0 for j = 0 to 4 in (9.13) imply that 0 ≤ d̂1 ≤ d̂2 ≤
d̂3 ≤ d̂4 ≤ d̂5, which is exactly the same restriction as in monotone regres-
sion. Thus, a zero-order monotone spline transformation with appropriately
chosen knots is exactly equal to a monotone regression transformation.

Therefore, a monotone spline transformation can be seen as a general
transformation with linear and ordinal transformations as extreme cases.
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Solving the Nonnegative Least-Squares Problem for
Monotone Splines

How can we calculate the disparities d̂ for a monotone spline transforma-
tion? Remember that the disparities for splines with intercept are defined
by d̂ = Mb, where M here is augmented with a column of 1s for the
intercept and the weight vector b is augmented with element b0 for the
intercept. We have to find weights bj such that they are as close as possible
to the (fixed) distance vector d, subject to the constraints that bj ≥ 0.
Thus, we have to minimize

τ(b) = (d − d̂)′(d − d̂) = (d − Mb)′(d − Mb), (9.14)

subject to bj ≥ 0. Minimizing τ(b) over b is a nonnegative least-squares
problem. It can be solved by alternating least squares (ALS), which, in this
case, amounts to the following strategy. First, start with an initial weight
vector b, with bj ≥ 0. Then, fix all weights except bj . Then, compute
r = d − ∑

l �=j blml, where mj denotes column j of matrix M. Problem
(9.14) simplifies into

τ(bj) = (r − bjmj)′(r − bjmj) = r′r + b2
jm

′
jmj − 2bjm′

jr,

which reaches its unconstrained minimum at bj = m′
jr/m

′
jmj . If bj < 0,

then we set bj = 0. Then, we update the next weight, while keeping the
other weights fixed, compute the unconstrained minimum (if negative, then
set it to zero), and so on, until we have updated all of the weights once.
These steps define one iteration of the alternating least-squares algorithm,
because every weight bj has been updated once. Iterate over this process
until the weights b do not change anymore. It can be proved that this
alternating least-squares algorithm always reaches a global minimum of the
nonnegative least-squares problem. A different strategy for solving (9.14)
under nonnegative constraints is described in Lawson and Hanson (1974,
p. 161).

9.7 A Priori Transformations Versus Optimal
Transformations

In data analysis it is not uncommon to preprocess the data to make their
distribution more “normal.” The researcher may want to preprocess his
or her dissimilarity data with a similar goal in mind. It may appear more
attractive from a theoretical point-of-view not to optimally transform dis-
similarities into d-hats by “some” monotonic function, but to apply a fixed
a priori transformation on them. One such choice was suggested by Buja
and Swayne (2002): they recommend using a power transformation of the
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0 25 50 75 100
Data

FIGURE 9.10. Distribution of the Morse code dissimilarities.

dissimilarities; that is, d̂ij = δq
ij with q any positive or negative value. A

positive value of q yields a convex transformation that stretches the larger
dissimilarities and shrinks the smaller ones. In the case where the distribu-
tion of the dissimilarities is negatively skewed (thus with relatively many
large values and few small values), then a positive q will make the d̂ijs
more evenly distributed. For negative q, the power transformation has a
concave form thereby shrinking the larger dissimilarities and stretching the
smaller ones. For dissimilarities that have a positively skewed distribution
(i.e., data with few large and many small values), a negative q stretches the
larger values and shrinks the smaller ones. The larger (or smaller) q, the
stronger the shrinking and stretching. Values of q close to zero or exactly
equal to zero are not very informative as all d-hats become the same; that
is, d̂ij = δ0

ij = 1 for all ij. These d-hats can be seen as totally uninformative
because they do not depend on the data (see also Section 13.3).

Let us consider the Morse code data from Section 4.2. To apply MDS, we
first have to symmetrize the similarities in Table 4.2. To apply the power
transformation, we also need to transform the similarities into dissimilar-
ities. This was done by setting δij = maxij((sij + sji)/2) − (sij + sji)/2
thereby ensuring that the smallest δij is zero and the largest is equal to
maxij((sij + sji)/2). Note that Buja and Swayne (2002) also extensively
discuss the Morse code data but use a different way of constructing the
dissimilarities. Figure 9.10 shows the distribution of the dissimilarities ob-
tained this way. This distribution has a tail to the left (a negatively skewed
distribution), so that there are more large dissimilarities than small dissim-
ilarities. A power transformation using q = 3.1 yields the distribution in
Figure 9.11e which seems to be reasonably evenly distributed. One way to
find out how to choose the value of q is simply trying out different values
and see which one gives the best Stress value. In our case, the optimal value
for q was 3.1.

We now compare the power transformation to an ordinal MDS on these
data. Figure 9.11 exhibits the results for both analyses with the left panels
showing the results of a power transformation and the right panels the
ordinal MDS results. The Stress-1 for the power transformation is .2290
and for ordinal MDS 0.2102 indicating that only a little information is
lost by switching from ordinal to a power transformation. Looking at the
distributions of the d̂ijs, the ordinal transformation seems to be better able
to stretch the smaller values than the the power transformation. Thus, the
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a. Solution power transformation. b. Solution ordinal MDS.

c. Shepard diagram power
    transformation.

d. Shepard diagram ordinal MDS.

e. Distribution of d-hats of the power
    transformation.

f. Distribution of d-hats of ordinal
   MDS.
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FIGURE 9.11. MDS of the Morse code data using the power transformation with
q = 3.1 (left panels) and an ordinal MDS (right panels).
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gain in fit is due to the better ability of the ordinal MDS to properly
represent the smaller dissimilarities, because their errors in the Shepard
plot are smaller for ordinal MDS than for the power transformation. The
solutions in Figures 9.11a and 9.11b are highly similar. Close inspection
reveals small differences in location, perhaps most notably so for points “–
– – – .” (9), “.” (e), and “–” (t).

The example shows that a power transformation using only a single pa-
rameter can yield an MDS solution that is close to ordinal MDS. Clearly,
a power transformation is a more parsimonious function than an ordinal
transformation. A strong point of Buja and Swayne (2002) is to consider
the distribution of the d̂ijs. We conjecture that good transformations tend
to give d-hats that are evenly distributed. For dissimilarities that have an
“irregular” shape (e.g., a bimodal shape), we expect that the power trans-
formation will not be able to yield a solution close to an ordinal one. For
regularly shaped but skewed distributions, we expect the power transfor-
mation to work fine.

Applying the power transformation in MDS is easily done in the Ggvis
software discussed extensively in Buja and Swayne (2002) (see also, Ap-
pendix A). In an interactive way, Ggvis allows you to determine the opti-
mal q. Note that Systat has a special option to find the optimal q by the
program itself.

9.8 Exercises

Exercise 9.1 Consider the dissimilarity data in Exercise 2.4 and the MDS
coordinates for these data in Exercise 3.2. For convenience, they are both
reproduced in the table below.

Dissimilarities MDS Coordinates
Color Red Orange Green Blue Dim.1 Dim. 2
Red - 1 3 5 0 2
Orange 1 - 2 6 0 0
Green 3 2 - 4 4 0
Blue 5 6 4 1 6 6

(a) String out the dissimilarities for the different pairs of colors in a
column vector.

(b) Compute the MDS distances from the points’ coordinates, and ap-
pend a column with these distances to the vector of dissimilarities
from above.

(c) Derive the d̂ijs for the data-distance pairs, proceeding as we did above
in Table 9.4.
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(d) Plot a Shepard diagram for the data, distances, and d̂ijs.

(e) Find the rank-images of the distances.

(f) Make a scatter plot of the distances vs. the rank-images. What does
that plot tell you about the MDS solution?

Exercise 9.2 Discuss the Lingoes–Roskam conjecture that rank-images are
less prone to degenerated solutions than monotone regression in Kruskal’s
sense. What is the rationale for this conjecture?

Exercise 9.3 Consider the notion of primary and secondary approaches to
ties in ordinal MDS.

(a) List arguments or describe circumstances where the primary approach
makes more sense than the secondary approach.

(b) Collect and discuss arguments in favor of the secondary approach.

Exercise 9.4 Consider the transformation plots in Figure 9.1. Sketch some
monotone functions that satisfy the primary approach to ties. How do they
differ from functions for the secondary approach to ties? (Hint: Consider
Figure 3.3.)
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Confirmatory MDS

If more is known about the proximities or the objects, then additional re-
strictions (or constraints) can be imposed on the MDS model. This usually
means that the MDS solutions must satisfy certain additional properties
of the points’ coordinates or the distances. These properties are derived
from substantive considerations. The advantage of enforcing such additional
properties onto the MDS model is that one thus gets direct feedback about
the validity of one’s theory about the data. If the Stress of a confirmatory
MDS solution is not much higher than the Stress of a standard (“uncon-
strained”) MDS solution, the former is accepted as an adequate model.
Several procedures that allow one to impose such external constraints are
described and illustrated.

10.1 Blind Loss Functions

In most MDS applications discussed so far, we did not just represent the
data geometrically and then interpret the solutions, but started by formu-
lating certain predictions on the structure of the MDS configuration. For
example, in Section 4.1, it was conjectured that the similarity scores on the
colors would lead to a circular point arrangement in a plane (color circle).
In Section 4.3, it was predicted that the similarity data on facial expres-
sions could be explained by a 3D coordinate system with specified axes.
However, these predictions had no influence on the MDS solution. Rather,
structural hypotheses were dropped when the data were handed over to
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an MDS computer program. The MDS program optimizes Stress, which is
substantively blind; that is, it is not tailored to the particular questions
that are being asked. The program mechanically grinds out “some” opti-
mal distance representation under a few general restrictions such as the
dimensionality m and the admissible transformations on the proximities.

Minimizing Stress gives a solution that is locally optimal. Yet, other local
minimum solutions may exist with a similar Stress, or possibly even with
lower Stress (see also Section 13.4). The question is which solution should
be preferred. If a hypothesis for the data is available, then, of course, we
would be particularly interested in the solution that most directly speaks
to this hypothesis. This is obviously the solution that most closely satisfies
the hypothesis, even if its Stress is somewhat higher than the Stress for
other solutions.

Assume, for example, that we had not obtained the color circle in Figure
4.1 because the computer program succeeded in finding a solution with
a lower Stress value. Assume further that the formally optimal but theo-
retically unintelligible solution had Stress .05, but the one matching our
predictions had .06. Having had only the Stress-optimal solution, we prob-
ably would have concluded—incorrectly—that the predictions were wrong.
Thus, what we want is a method that guarantees that the solution satisfies
our expectations. Once we have it, we can decide whether this solution has
an acceptable fit to the data.

10.2 Theory-Compatible MDS: An Example

Consider an example. Noma and Johnson (1977) asked subjects to assess
the similarity of 16 ellipses having different shapes and sizes. The ellipses
were constructed according to the design shown in Figure 10.1. The hori-
zontal dimension of this design configuration is eccentricity (“shape”), and
the vertical, area (“size”).1 The design shows, for example, that ellipse 4 is
very flat and long, but 13 is more circular and also larger.2 The subjects
had to rate each pair of ellipses on a scale from 1 (“most similar”) to 10
(“least similar or most different”). This rating was replicated three times,
with the pairs presented in different random orders. Table 10.1 gives the
aggregated scores for one individual.

1Eccentricity is defined as [1− (h/n)2]1/2 and area is π/4 ·h ·n, where h is the length
of the ellipse’s major axis and n is the length of its minor axis. Hence, eccentricity is a
function of the ratio of h and n, and area depends on the product of h and n.

2Noma and Johnson (1977, p. 31) characterize the design as follows: “A factorial
design with four equally spaced levels of area crossed with four equally spaced levels of
eccentricity was employed in constructing the stimuli. The largest ellipse was in a 3:1
ratio to the smallest, and the most eccentric was in a 1.66:1 ratio to the least eccentric.”
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

FIGURE 10.1. Design configuration for ellipses in Noma–Johnson study. X-axis
is eccentricity (“shape”); Y -axis is area (“size”).

TABLE 10.1. Dissimilarities for 16 ellipses; summed over three replications of
subject DF (Noma & Johnson, 1977).

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 –
2 18 –
3 26 9 –
4 23 14 12 –
5 4 17 17 25 –
6 15 6 13 13 18 –
7 16 17 10 6 21 17 –
8 24 20 13 10 24 17 12 –
9 8 16 20 22 4 16 24 24 –

10 16 9 16 14 21 8 11 10 14 –
11 20 13 11 9 18 12 8 11 22 12 –
12 22 18 17 12 21 21 12 6 23 13 11 –
13 16 16 21 24 13 16 22 23 4 16 21 22 –
14 17 14 16 19 20 9 14 17 13 4 14 17 17 –
15 21 20 15 9 25 14 8 11 19 19 4 16 22 17 –
16 26 19 14 15 24 16 11 12 22 16 10 6 30 17 9 –

From related research (see Section 17.4) it could be expected that an
MDS configuration similar to the design configuration would result from
the proximities. That is, the MDS configuration should form a rectangular
grid as in Figure 10.1, although not necessarily with the same spacing of the
vertical and horizontal lines. This would allow us to explain the similarity
judgments by the dimensions “shape” and “area”. Ordinal MDS of the data
in Table 10.1 yields, however, a configuration (Figure 10.2) that is in def-
inite disagreement with these predictions. But, then, a theory-conforming
configuration does not necessarily have to have the lowest-possible Stress.
Rather, it would be sufficient if it had an acceptably low Stress. Indeed, such
a solution exists. It is shown in Figure 10.3. Its Stress is .185, as compared
to .160 for the theory-incompatible solution in Figure 10.2. This example
shows that there can be different MDS configurations that all represent a
given set of data with roughly the same precision.
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FIGURE 10.2. Minimal-Stress MDS
representation for data in Table 10.1.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

FIGURE 10.3. Minimal-Stress the-
ory-compatible MDS.

10.3 Imposing External Constraints on
MDS Representations

We now show how a confirmatory MDS procedure can be constructed. We
begin by considering the task of constructing an ordinal MDS representa-
tion of the facial expression data from Table 4.4 of Abelson and Sermat
(1962) in 2D so that (a) the Stress is as low as possible, and (b) all points
can be coordinated by dimensions that are a linear combination of the three
external scales of Engen et al. (1958). Condition (b) is an additional re-
quirement imposed on the MDS representation. It is called a side constraint
or an external constraint to distinguish it from the internal constraints due
to the data and the general representation function.

The restriction that is imposed on the configuration is

X = YC,

where Y is the 13 × 3 matrix with the three external scales of Table 4.3,
and C is a 3 × 2 matrix of unknown weights. This matrix equation is
shown explicitly in Table 10.2. The mathematical problem to be solved is
to minimize σ2

r(X) by an appropriate choice of C, subject to the condition
X = YC. Solutions for this problem were given by Bentler and Weeks
(1978), Bloxom (1978), and De Leeuw and Heiser (1980). We follow the
approach of De Leeuw and Heiser (1980), because they show that this and
more general constrained MDS models can be handled easily within the
majorization framework (see Chapter 8).

As shown in (8.27), raw Stress can be majorized by

τ(X,Z) = η2
δ + tr X′VX − 2tr X′B(Z)Z, (10.1)

which is equal to σr(X) if Z = X; that is, σr(X) = τ(X,X). Let X =
V+B(Z)Z be the Guttman transform (8.28) of Z, where Z satisfies the
imposed constraints. Then (10.1) equals

τ(X,Z) = η2
δ + tr X′VX − 2tr X′VX

= η2
δ + tr (X − X)′V(X − X) − tr X

′
VX. (10.2)
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TABLE 10.2. Matrix equation X = YC in (10.1), with Y taken from Table 4.3;
X is the desired 13× 2 MDS configuration; C is an unknown matrix of weights.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 x12
x21 x22
x31 x32
x41 x42
x51 x52
x61 x62
x71 x72
x81 x82
x91 x92
x10,1 x10,2
x11,1 x11,2
x12,1 x12,2
x13,1 x13,2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.8 4.2 4.1
5.9 5.4 4.8
8.8 7.8 7.1
7.0 5.9 4.0
3.3 2.5 3.1
3.5 6.1 6.8
2.1 8.0 8.2
6.7 4.2 6.6
7.4 6.8 5.9
2.9 3.0 5.1
2.2 2.2 6.4
1.1 8.6 8.9
4.1 1.3 1.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
c11 c12
c21 c22
c31 c32

]

For a given configuration Z, only the second term of τ(X,Z) is dependent
on X, whereas the first and last terms are constant with respect to X. Using
σr(X) = τ(X,X), (10.2) shows that, for every configuration X, raw Stress
is the sum of lack of model fit, η2

δ − tr X
′
VX, and lack of confirmation fit,

tr (X − X)′V(X − X). The latter is best expressed as a percentage of the
total raw Stress. For example, if there are no constraints on X, then the
lack of confirmation fit is 0%.

Finding a constrained update amounts to minimizing

tr (X − X)′V(X − X), (10.3)

subject to the restrictions on X, in each iteration. The X that minimizes
(10.3) and satisfies the constraints is used as the update. Thus, step 6
(computation of the Guttman transform) in the majorization algorithm of
Chapter 9 (see also Figure 9.2) is followed by step 6a, in which (10.3) is
minimized over X, subject to the constraints on X. De Leeuw and Heiser
(1980) note that it is not necessary to find the global minimum of (10.3).
The decrease of Stress is guaranteed as long as

tr (Xu − X)′V(Xu − X) ≤ tr (Y − X)′V(Y − X) (10.4)

holds for the update Xu.
For the faces data, we simply substitute X by YC in (10.3), which yields

L(C) = tr (YC − X)′V(YC − X)

= tr X
′
VX + tr C′Y′VYC − 2tr C′Y′VX.

L(C) needs to be minimized over C, because Y is fixed (see also Section
8.3). Finding the optimal weights Cu is a simple regression problem that
is solved by

Cu = (Y′VY)−1Y′VX,
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FIGURE 10.4. Theory-consistent solution by constrained MDS of the facial ex-
pression data of Abelson and Sermat (1962) with Stress .14.

so that

Xu = YCu.

The unconstrained 2D solution of the faces data in Figure 4.9 has σ1 =
.11. The theory-compatible solution (where the dimensions are constrained
to be linear combinations of three external scales) has σ1 = .14 (see Figure
10.4). The unconstrained and constrained solutions only differ with respect
to point 8. The raw Stress of the constrained solution is 0.0186 (= σr),
of which .0182 (=97%) is the lack of model fit and .0004 (=3%) is Stress
due to the constraints. Therefore, the theory-consistent solution can be
accepted at the cost of a slightly higher Stress value. The optimal C equals

C =

⎡⎣ .219 .031
−.035 .137
−.024 .053

⎤⎦ .

What does C do to Y? One way of interpreting C as an operator on Y
is to decompose C into its singular value components:

C = PΦQ′ =

⎡⎣ .985 .168
−.140 .919
−.102 .357

⎤⎦[
.224 .000
.000 .150

] [
1.000 −.029
.029 1.000

]
.

C first rotates Y by P, because P is orthonormal,3 and takes out the third
dimension. Then, Φ multiplies the X-axis by .224 and the Y -axis by .150.

3In fact, the orthonormality of P only implies that P′P = I, but not that P′P = I,
as required for a rotation matrix. However, P can be interpreted as a matrix that rotates
Y to two dimensions.
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Finally, Q′ rotates the space somewhat, but only in the X–Y -plane. Note
that the final rotation by Q′ could as well be omitted, because it does not
change the distances. Thus, C can be understood as a transformation of
the 3D space of the external scales that rotates this space into a plane and
also stretches this plane differentially along its coordinate axes so that the
resulting configuration has minimal Stress.

The three external variables are plotted as lines such that the angles
of the lines correspond to correlations between the variables and the X-
and Y -axes, respectively (Figure 10.4). In comparison to Figure 4.9 (where
the external variables were fitted afterwards, not simultaneously), variable
pleasant/unpleasant has about the same direction, whereas the variables
sleep/tension and attention/rejection have been interchanged. Because the
latter two variables are highly intercorrelated, however, this interchange
does not lead to a much different interpretation.

External Constraints and Optimal Scaling
Instead of the linear constraints used above, a multitude of other con-
straints can be used for which the least-squares solution of (10.4) can be
computed, each constraint leading to a different model. De Leeuw and
Heiser (1980) discuss many sorts of constraints, some of which are shown
below. Apart from the general majorization result that Stress is reduced
in every iteration, they also prove several other convergence results if the
global minimum of (10.4) can be established. A more accessible overview
of constrained MDS and its applications is given by Heiser and Meulman
(1983b).

The facial expression data were analyzed by Heiser and Meulman (1983b)
in a slightly different way. They used only the ordinal information of the
three external variables of the faces data. Let Y = [y1 y2 y3] be the matrix
of the three external variables. The constraints on the MDS solution are
X = ŶC, where Ŷ = [ŷ1 ŷ2 ŷ3] and each column ŷk can be optimally
scaled (see, e.g., Young, 1981; Gifi, 1990). In optimal scaling of an ordinal
variable, the original variable yk is replaced by a different variable ŷk that
has the same order as the original variable and reduces the loss function,
hence the name optimal scaling. Ordinal transformations on the external
variables are computed using monotone regression, and implemented in the
programs Smacof-II (Meulman, Heiser, & De Leeuw, 1983) and Proxscal
(see Appendix A). Thus, (10.4) was not only optimized over C, but also
over Ŷ, where every column of Ŷ is constrained to have the order of the
corresponding external variable yk. Apart from finding an optimal trans-
formation of the proximities, an optimal transformation of the external
variables is also found here. In their analysis of the facial expression data,
Heiser and Meulman (1983b) conclude that pleasant–unpleasant is a more
basic dimension than attention–rejection, which is a nonlinearly related ef-
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fect. Optimal scaling of external variables allows interesting models to be
specified, such as the one below.

If only two external variables are involved in a 2D MDS space, then
the ordinal restrictions on the two external variables result in dimensional
restrictions or in an axial partitioning of the space. For example, the hy-
pothesized grid-like structure in Figure 10.3 was enforced onto the MDS
configuration by the two external variables

y′
1 = [1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4] and

y′
2 = [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4].

Then, X is obtained by X = ŶC, with the secondary approach to ties (i.e.,
ties remain tied). The external variables y1 and y2 are derived from the
design configuration in Figure 10.1. Thus, the 2-tuple (f1(yi1), f2(yi2)) con-
tains the coordinates of each point i, where f1 and f2 are Stress-minimizing
monotonic functions that use the secondary approach to ties. These require-
ments come from psychophysics. We do not expect that an ellipse that is
twice as eccentric in terms of the ratio of its axes is also perceived as twice
as eccentric, for example. Rather, we would expect by the Weber–Fechner
law that perceived eccentricity should be related to “objective” eccentric-
ity in a roughly logarithmic way, in general. Indeed, that is exactly what
the data show in Figure 10.3. Note that we did not enforce a logarithmic
spacing on the horizontal axis. Rather, this function was found by MDS as
the best in terms of Stress.4

Regionally Constrained MDS
Optimal scaling of the external variables can also be used to impose regional
constraints on the MDS solution. For example, we know for each point two
facets and use MDS to separate the different classes of points by two sets
of parallel lines, where each set corresponds to one facet. This constraint
only works if the number of dimensions is equal to the number of external
variables and only for axial partitioning of the MDS space. In addition, the
facets should be ordered.

Consider the following example. The ordinal MDS solution (Figure 4.7) of
the Morse code data of Rothkopf (1957) was interpreted using two physical
properties of the signals. The two properties are signal length (varying from
.05 to .95 seconds) and signal type (the ratio of long vs. short beeps). Figure
4.7 shows that the unconstrained MDS solution can be partitioned by these
two facets. However, the dashed lines (partitioning the plane by signal type)
have a rather irregular curvature. We now ask whether an MDS solution

4On the dimension “size”, in contrast, this spacing is not obvious, which may be
due to the size range of the ellipses. See also Figure 17.8 for a similar experiment with
rectangles.
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FIGURE 10.5. Theory-consistent solution by constrained MDS of the Morse code
data of Rothkopf (1957) with Stress .21.

exists that can be partitioned by straight lines while still being acceptable
in terms of Stress. We use Proxscal to answer this question.

The external variables for signal type y1 and the signal length y2 have
a value for every Morse code. The 2D MDS space is constrained to be a
linear combination of signal length and signal type; that is, X = ŶC, with
Ŷ = [ŷ1 ŷ2] where ŷ1 and ŷ2 are monotonic transformations of y1 and
y2, respectively. In contrast to the example above, we now allow that tied
coordinates can be untied (primary approach to ties). This combination of
restrictions implies that there is a direction in the MDS space that repre-
sents ŷ1, and all projections of the points onto this line satisfy the order of
the signal lengths, so that perpendicular lines separate the space into re-
gions with equal signal lengths. The same holds for ŷ2, so that a separation
of the space for signal types is obtained. Figure 10.5 shows the solution of
the ordinal MDS analysis with the external constraints described above.
This theory-consistent configuration has Stress .21 (σr = .043), and the
unconstrained solution in Figure 4.7 has Stress .18. The raw Stress can
be decomposed into model Stress (=.0429, .997%) and Stress due to the
constraints (=.00011, .003%). Apart from theory-consistency, Figures 10.5
and 4.7 differ with respect to the location of the points representing the
Morse codes E and T (labeled as 1 and 2, respectively, in both figures).
These points are less well represented, which is reflected by their Stress
per point (see Section 3.4) of .095 and .082, respectively, the largest con-
tributions to overall Stress. In summary, however, the difference in Stress
of the constrained and the unconstrained solutions is rather small, so that
the theory-consistent solution seems acceptable.
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Cluster Differences Scaling
A different type of constraint was suggested by Heiser (1993), who pro-
posed a mixture of an MDS analysis and a cluster analysis. This method
was called cluster differences scaling. Every object is assigned to a cluster,
and every cluster is represented by a point in the space. In cluster differ-
ences scaling, Stress is optimized over the coordinates and over the cluster
memberships. Groenen (1993) showed that this method can be interpreted
as MDS with the restriction that the configuration is of the type GX, where
G is an n × k indicator matrix (which has a single one in each row, and all
other values zero), and X is a k × m matrix of the k cluster coordinates.
Heiser and Groenen (1997) elaborate on this model, give a decomposition
of the dispersion (sum of squared dissimilarities), and present a convergent
algorithm. The assignment of objects to clusters (by matrix G) gives rise
to many local minima. Groenen (1993) and Heiser and Groenen (1997)
managed to avoid such local minima by repeatedly computing a fuzzy form
of cluster differences scaling until the fuzzy form yields the same result as
the crisp form.

The Extended Euclidean Model
Suppose that the proximities are not very well explained by an MDS in low-
dimensional space. One reason could be that some objects are quite unique.
One could account for this and allow each object to retain its uniqueness
in MDS by assigning a uniqueness dimension to each object, in addition
to the low-dimensional space common to all objects (Bentler & Weeks,
1978). A uniqueness dimension xi for object i has coordinates of zero for
all objects, except for object i. Thus, the matrix of coordinates consists of
the usual n×m matrix of coordinates X common to all objects, augmented
by a diagonal n × n matrix U of uniqueness coordinates. The augmented
coordinate matrix is denoted by [X|U]. The distance between objects i and
j is

dij(X|U) =

(
m∑

a=1

(xia − xja)2 + u2
ii + u2

jj

)1/2

,

which is called the extended Euclidean distance (Winsberg & Carroll, 1989).
The distance consists of a common part and a part determined by the
uniqueness of the objects i and j.

This special coordinate matrix also can be viewed as an example of a
constrained configuration. The constraints simply consist of fixing the off-
diagonal elements of U to zero while leaving the diagonal elements free
(Bentler & Weeks, 1978).
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10.4 Weakly Constrained MDS

We now consider a weaker form of constraining an MDS solution. It puts
additional external restrictions on the configuration that are not strictly
enforced. Rather, they may be violated, but any violation leads to higher
Stress. Weakly constrained MDS attempts to minimize such violations.

Let us try to represent the color data from Table 4.1 ordinally by dis-
tances in a plane so that (a) the Stress is as low as possible, and (b) all
points lie on a perfect circle. Condition (b) is the external constraint im-
posed on the MDS representation.

Figure 4.1 shows that the usual MDS result already satisfies condition (b)
very closely, so we use this solution in the following as a starting configura-
tion. The confirmatory scaling problem then consists of finding a projection
of the points onto a circle such that the Stress value goes up as little as
possible. If we pick a point somewhere close to the center of the color circle
in Figure 4.1 and construct a circle around this point such that it encloses
all points of the configuration, then an approximate solution to our scaling
problem could be found simply by projecting all points radially towards
the outside onto this circle. An optimal solution can be constructed in a
similar fashion.

First, augment the proximity matrix in Table 4.1 with a “dummy” object
Z. Z does not stand for an additional concrete stimulus, but serves an auxil-
iary purpose here and represents the circle center in the MDS configuration.
The proximities between Z and any of the real stimuli 434, 445, . . . , 674 are
defined as missing data. This leads to the 15 × 15 data matrix P1 in Table
10.3.

Second, define another 15× 15 proximity matrix P2 which expresses the
side constraints. No external constraints are to be imposed on the distances
between any two color points. However, all should lie on a circle and so all
must have the same distance to point Z. This gives the constraint pattern
P2 shown in Table 10.4, where all elements except those in row Z and in
column Z are missing values. All elements in row and column Z are set
equal to 10, but any other number would do as well.

Third, use the configuration in Figure 4.1 as a starting configuration,
after adding proper coordinates for one further point, Z. The coordinates
of Z should be chosen so that Z lies somewhere in the center of the circular
manifold in Figure 4.1. This can be done most easily by centering the MDS
configuration in Figure 4.1, that is, shifting it so that the centroid of all
14 points coincides with the origin, or, computationally, by subtracting
the mean from the values in each column of X in turn. Z then has the
coordinates (0.0, 0.0).

Fourth, define a loss criterion for the scaling procedure. We choose

σT (X;P1;P2) = σr(X;P1) + a · σr(X;P2), (10.5)
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TABLE 10.3. Similarities for colors with wavelengths 434 to 674 nm (Ekman,
1954); Z is a dummy variable; – denotes a missing value; the matrix is called P1

in the text.

nm 434 445 465 472 490 504 537 555 584 600 610 628 651 674 Z

434 – 86 42 42 18 06 07 04 02 07 09 12 13 16 –
445 86 – 50 44 22 09 07 07 02 04 07 11 13 14 –
465 42 50 – 81 47 17 10 08 02 01 02 01 05 03 –
472 42 44 81 – 54 25 10 09 02 01 00 01 02 04 –
490 18 22 47 54 – 61 31 26 07 02 02 01 02 00 –
504 06 09 17 25 61 – 62 45 14 08 02 02 02 01 –
537 07 07 10 10 31 62 – 73 22 14 05 02 02 00 –
555 04 07 08 09 26 45 73 – 33 19 04 03 02 02 –
584 02 02 02 02 07 14 22 33 – 58 37 27 20 23 –
600 07 04 01 01 02 08 14 19 58 – 74 50 41 28 –
610 09 07 02 00 02 02 05 04 37 74 – 76 62 55 –
628 12 11 01 01 01 02 02 03 27 50 76 – 85 68 –
651 13 13 05 02 02 02 02 02 20 41 62 85 – 76 –
674 16 14 03 04 00 01 00 02 23 28 55 68 76 – –

Z – – – – – – – – – – – – – – –

TABLE 10.4. Restriction matrix for color data in Table 10.3; – denotes a missing
value; the matrix is called P2 in the text.

nm 434 445 465 472 490 504 537 555 584 600 610 628 651 674 Z

434 – – – – – – – – – – – – – – 10
445 – – – – – – – – – – – – – – 10
465 – – – – – – – – – – – – – – 10
472 – – – – – – – – – – – – – – 10
490 – – – – – – – – – – – – – – 10
504 – – – – – – – – – – – – – – 10
537 – – – – – – – – – – – – – – 10
555 – – – – – – – – – – – – – – 10
584 – – – – – – – – – – – – – – 10
600 – – – – – – – – – – – – – – 10
610 – – – – – – – – – – – – – – 10
628 – – – – – – – – – – – – – – 10
651 – – – – – – – – – – – – – – 10
674 – – – – – – – – – – – – – – 10

Z 10 10 10 10 10 10 10 10 10 10 10 10 10 10 –
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where σr(X;P1) is the loss of configuration X relative to P1, σr(X;P2)
the loss relative to P2, and a is a nonnegative weight. This means that
σr(X;P1) is the Stress of a given configuration relative to the proximity
matrix P1, and σr(X;P2) is the Stress of this configuration relative to the
constraint matrix P2. The second term of (10.5) is called a penalty term.
It penalizes the solution for not satisfying the constraints. The strength of
the penalty is determined by the size of the penalty parameter a. Of course,
σr(X;P1) and σr(X;P2) are computed only over those elements of the
matrices P1 and P2 that are not defined to be missing data. Thus,

σr(X;P) =
∑
i<j

[d̂ij − dij(X)]2, for all defined pij ,

where d̂ij (dependent on P) is the target distance (disparity) of dij(X) de-
fined by the chosen MDS model. In the present example, we choose ordinal
MDS and the secondary approach to ties on P2, because all tied data val-
ues in the restriction matrix P2 should be mapped into exactly the same
distance. (With the primary approach to ties, σr(X;P2) = 0 for any X, be-
cause all defined elements of P2 are equal.) But then the target distances in
σr(X;P2) obtained by monotone regression are all equal to the arithmetic
mean of the distances from point Z to all other points of the configuration
X.

Fifth, find a method to minimize (10.5). This does not pose a new prob-
lem. We proceed as in Chapter 8, that is, using the majorizing approach
to minimize Stress.

Sixth, given the initial configuration of the unconstrained solution in
Figure 4.1, iterate to solve the MDS task. If we start with a = 1, the
restrictions only slightly determine the final solution. As a is increased, the
effect of the side constraints on the configuration is increased. If a → ∞,
then every solution strictly satisfies the circular constraint. Because the
effect of the constraints on the solution is set by the penalty parameter
a, the method in this section that minimizes (10.5) may be called weakly
constrained MDS (after the weakly constrained regression of Ten Berge,
1991). Often, choosing a = 100 generates a theory-conforming solution.

If it is at all possible to impose the side constraints onto a configura-
tion of n points in a space of fixed dimensionality, we should end up with
σr(X;P2) = 0, provided the iterations do not get stuck in a local minimum.
Of course, we can impose conditions that are impossible to satisfy (e.g., at-
tempting to represent the distances among a cube’s corners in a ratio MDS
plane). The final σr(X;P1) is an index for how well the theory-conforming
solution represents the given data. However, the raw measures σr(X;P1)
and σr(X;P2) are not very practical, so we express the fit of X relative to
P1 and P2 by a more familiar index such as Stress.

A procedure similar to the one described above is the program CMDA
(Borg & Lingoes, 1980). Weakly constrained MDS can also be computed
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FIGURE 10.6. Stress-optimal (circles) and perfectly circular (points) MDS rep-
resentation of color proximities in Table 4.1.

by programs that allow for data weights, such as Kyst and Proxscal.
Then data weights wijk are set to 0 for missing proximities, and wij1 = 1
for nonmissing proximities of P1 and wij2 = a for nonmissing proximities
of P2.

With the matrices given in Tables 10.3 and 10.4, and using ordinal MDS
with the secondary approach to ties, we obtain the configuration of the
solid points in Figure 10.6. To demonstrate how σr(X;P2) has affected the
MDS solution, Figure 10.6 also shows the MDS configuration (open circles)
obtained from a regular MDS analysis. The Stress of the weakly constrained
MDS configuration relative to P1 is σ1 = 0.0374, whereas it is σ1 = 0.0316
for the unconstrained MDS configuration. The side constraints have led
to an increment in Stress so small that both representations should be
considered equally good, especially because we can assume that the data
are not error-free. We therefore conclude that the color-circle theory is
compatible with the given data.

A different approach was followed by Cox and Cox (1991). They forced
the configuration onto the surface of a sphere by expressing the point coor-
dinates not as Cartesian but as spherical coordinates, and then minimizing
Stress only over the longitude and latitude angles that specify the points’
positions in space.

Hubert, Arabie, and Meulman (1997) analyzed a related but different
problem, namely to model the dissimilarities by distance between points
along the path of the circle. This model is essentially the same as unidi-
mensional scaling where the dimension is bent to be circular. Hubert et al.
call their model circular unidimensional scaling. In Section 13.5, we show
that unidimensional scaling suffers from many local minima and that a
combinatorial approach is useful to find a global minimum. For this rea-
son, Hubert et al. use combinatorial optimization together with iterative
projection techniques to solve the circular unidimensional scaling problem.
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TABLE 10.5. Correlations of eight intelligence tests (lower half); for structuples,
see text; upper half contains hypothesized similarities.

Test NA1 NA2 NI GI1 GI2 GA1 GA2 GA3
NA1 – 5 4 3 3 4 4 4
NA2 .67 – 4 3 3 4 4 4
NI .40 .50 – 4 4 3 3 3
GI1 .19 .26 .52 – 5 4 4 4
GI2 .12 .20 .39 .55 – 4 4 4
GA1 .25 .28 .31 .49 .46 – 5 5
GA2 .26 .26 .18 .25 .29 .42 – 5
GA3 .39 .38 .24 .22 .14 .38 .40 –

Enforcing Order Constraints onto MDS Distances
We now look at weakly constrained MDS where certain order relations are
imposed onto the MDS distances. Consider the correlation matrix in Table
5.1, repeated for convenience in the lower half of Table 10.5 (Guttman,
1965). The variables here are eight intelligence test items, coded by the
facets “language of communication” = {N = numerical, G = geometrical}
and “requirement” = {I = inference, A = application}. For example, item
1 and item 2 both were classified as NA or numerical-application items.

One can predict how these items should be correlated among each other
by invoking the contiguity principle. This principle is based on the (seem-
ingly) plausible idea that “variables which are more similar in their facet
structure will also be more related empirically” (Foa, 1965, p.264).5 Simi-
larity in facet structure is typically defined as the number of structs that
two structuples have in common, whereas empirical similarity is assessed
by some correlation between items (Foa, 1958). Hence, one predicts here,
for example, that item 4 should be at least as similar to item 8 as to item 2,
because the former share one definitional element (their language), whereas
the latter differ on both facets. Predictions of this kind imply that the MDS
configuration should be circular (Figure 10.7).

To test this prediction, we have to set up a restriction matrix P2 that
enforces certain order relations onto the MDS distances. Because P1 (lower
half in Table 10.5) contains similarity coefficients, we choose P2’s values
correspondingly. A P2 that confirms the theory of Figure 10.7 is given
in the upper half of Table 10.5. It is built as follows. The proximities for
items with the same structuples, such as p(NA1,NA2) and p(GA1,GA3), all
are set to the value 5. The proximities that correspond to the immediate

5Upon closer inspection, the contiguity makes sense only if all facets are ordered in
the sense of the observational range (see Borg & Shye, 1995). However, we do not study
these conditions here but simply use the example to demonstrate how certain constraints
can be set up.
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FIGURE 10.8. Best MDS representa-
tion that perfectly satisfies regional hy-
potheses in Figure 10.7.

neighborhood relations (shown in Figure 10.7 by the line segments) are
set to the value 4, since none of these distances should be larger than
any distance between definitionally equivalent items. Finally, what remain
are the large distances between the groups NI, GA and the groups NA, GI,
which are set to 3 in P2. Because we are doing ordinal MDS on similarities,
the values 3, 4, and 5 are immaterial and may be replaced by any numbers
that have the same order. By using the primary approach to ties on P2, all
distances associated with a, say, 4 in P2, should not be larger than those
associated with a 3 in P2. However, the distances within either class are
not required to be equal.

The weakly constrained MDS representation (with a = 100) is shown in
Figure 10.8. It satisfies the side constraints perfectly, with an acceptably
small overall Stress (σ1 = .0404). What remains, though, is some scatter
among the items with the same structuples (notably GA and GI), so more
and/or modified facets might be considered.

10.5 General Comments on Confirmatory MDS

Confirmatory MDS offers models that are open for theory-driven ad hoc
specifications. Standard MDS models, in contrast, are more like closed sys-
tems that allow the user only some global specifications, such as choosing
the dimensionality of the solution space or the Minkowski metric parameter
(see Chapter 17). The purpose of confirmatory MDS is to enforce certain
expected relations on an otherwise optimal data representation in order to
see how compatible these relations are with the data.
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The varieties of confirmatory MDS are, in principle, without bounds.
New theories may require new confirmatory MDS procedures. Dimensional
theories are best served by the existing procedures, and regional theories
worst. We have seen that it is rather easy to enforce certain axial parti-
tionings onto an MDS solution. It is also not too difficult to enforce cluster
structures onto the MDS configuration, for example, for strict clustering
by cluster differences scaling (Heiser & Groenen, 1997) and for weak clus-
tering by setting up appropriate order constraints on the distances (Borg
& Lingoes, 1987). However, with the MDS programs available today, it is
difficult to enforce a more intricate regional pattern such as a radex, for
example, onto an MDS solution. It is even more difficult, or even impossi-
ble, to formulate constraints on general partitionability relative to a facet
design for the points, as discussed in Chapter 5.6

Apart from such problems of enforcing particular types of constraints
onto an MDS solution, the general question of how to evaluate such meth-
ods and their results within cumulative scientific research remains to be
answered. The more theoretically guided researcher may be tempted to al-
ways force his or her theory onto an MDS solution and then evaluate the
resulting Stress. Unless there is a good estimate for the random noise com-
ponent in the data (e.g., reliability measures), this is a dangerous strategy,
because it does not allow one to separate errors of approximation from
errors of estimation. The latter are due to sampling errors, and Stress in
standard (unconstrained) MDS essentially reflects, as we saw in Chapter 3,
such random errors in the data. Thus, high Stress values may be discarded
as “technical” information only. Errors of approximation, however, would
not go away even if the data were perfectly reliable. They simply express
the misfit of the model. To separate these two error sources, one should
always compute a standard MDS solution and then compare its Stress to
the Stress obtained under additional restrictions. What is important, then,
is the Stress increment. If strict constraints are used (as opposed to weakly
constrained MDS), one should compare the ratio of Stress due to model
misfit and Stress due to violation of the constraints. If the latter term is
relatively small, then the theory-confirming solution can be accepted.

As a rule of thumb, it holds that if a standard MDS solution is similar to
what was predicted theoretically, enforcing the theory onto the MDS solu-
tion does not make much difference in terms of Stress. However, if standard
MDS does not yield the expected configuration, then it is impossible to say
whether confirmatory MDS will make much difference. That depends on
the loss function and its local minima.

6Guttman (1976) suggested combining MDS with multidimensional scalogram anal-
ysis, using MSA’s notions of contiguity. See also Borg and Groenen (1998). These ideas
have not yet been studied systematically, however.
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Stress increments must be evaluated in any case, and this is a complex
matter (Lingoes & Borg, 1983). What must be taken into account here is:
(a) the number of points, n, because enforcing external constraints on few
points or distances is generally easier than dealing with a large n; (b) the
dimensionality of the MDS solution, m, for reasons similar to those for n;
(c) the error component in the proximities, because with very noisy data,
further constraints have less effect on Stress; (d) the similarity between the
standard solution and the confirmatory solution: minor corrections of the
standard solution should have little effect on Stress; and (e) the increased
theoretical intelligibility of the confirmatory solution over the standard
solution: if the latter makes little sense, one may be willing to accept larger
increments in Stress, because a theoretically justified solution promises to
be more stable over replications, and there is no reason to predict stability
for structures that are not understood.

10.6 Exercises

Exercise 10.1 Consider the matrix below. In its lower half it shows sim-
ilarity coefficients for tonal stimuli (Levelt, Geer, & Plomp, 1966). Each
stimulus consisted of two simultaneously heard tones with a fixed ratio
between their frequencies. Fifteen stimuli were used: the twelve musical
intervals within the octave; and in addition two wider intervals (4:9 and
2:5) and one narrow interval between minor and major second (11:12). To
control for pitch effects, the mean frequency for each interval was held con-
stant at 500 Hz. Previous analyses by Levelt et al. (1966) and by Shepard
(1974) had shown that the subjective similarities for these tone intervals
form a horseshoe-like structure in the two-dimensional MDS plane.

Freq. Ratio No. 15 13 12 7 6 3 9 2 10 5 8 14 1 11 4
15:16 15 – 14 13 12 11 10 9 8 7 6 5 4 3 2 1
11:12 13 32 – 14 13 12 11 10 9 8 7 6 5 4 3 2
8:9 12 29 32 – 14 13 12 11 10 9 8 7 6 5 4 3
5:6 7 19 22 28 – 14 13 12 11 10 9 8 7 6 5 4
4:5 6 14 17 23 28 – 14 13 12 11 10 9 8 7 6 5
3:4 3 15 10 13 22 25 – 14 13 12 11 10 9 8 7 6
5:7 9 8 8 14 25 24 27 – 14 13 12 11 10 9 8 7
1:2 2 9 10 14 13 18 21 22 – 14 13 12 11 10 9 8
5:8 10 6 7 13 20 21 17 22 27 – 14 13 12 11 10 9
3:5 5 12 11 12 15 20 24 13 25 24 – 14 13 12 11 10
4:7 8 7 11 15 14 18 14 16 13 27 30 – 14 13 12 11
8:15 14 7 10 7 10 17 10 19 18 18 18 26 – 14 13 12
1:2 1 8 3 9 9 14 15 9 14 12 13 22 26 – 14 13
4:9 11 9 14 6 8 8 12 9 10 10 17 20 13 29 – 14
2:5 4 9 14 6 10 7 12 10 16 18 18 14 13 25 30 –
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TABLE 10.6. Correlation coefficients (decimal points omitted) for the 30 forms
of protest acts described in Table 1.2.

Act 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 41 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 53 45 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 20 30 26 . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 20 37 33 46 . . . . . . . . . . . . . . . . . . . . . . . . . .
6 18 27 28 41 54 . . . . . . . . . . . . . . . . . . . . . . . . .
7 19 29 29 45 58 57 . . . . . . . . . . . . . . . . . . . . . . . .
8 25 30 37 36 47 46 56 . . . . . . . . . . . . . . . . . . . . . . .
9 03 14 06 31 34 40 41 33 . . . . . . . . . . . . . . . . . . . . . .

10 03 09 04 20 25 31 31 27 52 . . . . . . . . . . . . . . . . . . . . .
11 53 15 31 10 08 07 08 12 -03 05 . . . . . . . . . . . . . . . . . . . .
12 37 64 39 26 31 24 25 27 10 07 29 . . . . . . . . . . . . . . . . . . .
13 38 26 57 17 18 19 16 23 03 05 49 39 . . . . . . . . . . . . . . . . . .
14 19 26 24 58 37 32 34 29 21 15 16 37 24 . . . . . . . . . . . . . . . . .
15 21 30 29 31 52 34 37 36 18 12 12 40 24 45 . . . . . . . . . . . . . . . .
16 13 16 21 23 33 49 32 30 23 15 15 23 25 31 43 . . . . . . . . . . . . . . .
17 17 23 23 26 36 36 46 39 21 20 06 36 21 40 60 44 . . . . . . . . . . . . . .
18 20 22 25 23 27 32 33 51 17 15 15 32 29 36 50 44 62 . . . . . . . . . . . . .
19 02 08 05 16 18 23 22 20 29 20 00 15 08 31 34 38 43 43 . . . . . . . . . . . .
20 00 06 03 12 14 20 18 17 21 37 00 16 07 25 31 31 39 38 70 . . . . . . . . . . .
21 57 34 44 18 22 18 20 25 -01 02 44 34 36 16 24 14 21 23 04 06 . . . . . . . . . .
22 33 68 37 22 28 21 25 29 09 06 16 63 25 22 28 15 26 27 08 08 45 . . . . . . . . .
23 41 35 60 21 29 26 27 34 04 05 30 34 48 20 27 18 24 28 04 04 55 46 . . . . . . . .
24 23 26 26 54 38 32 39 33 15 17 14 27 14 52 31 21 32 25 16 14 29 30 34 . . . . . . .
25 22 28 30 32 61 38 42 40 20 15 10 27 18 29 51 27 37 31 17 13 28 33 41 45 . . . . . .
26 17 21 25 29 36 59 37 34 26 20 09 22 18 28 31 48 35 31 22 20 22 27 32 35 47 . . . . .
27 20 26 27 31 43 42 52 42 23 22 11 27 18 27 34 28 47 31 17 15 24 33 34 47 54 54 . . . .
28 24 25 32 30 36 36 42 58 20 16 15 27 24 28 33 26 38 46 17 16 31 36 45 44 49 45 58 . . .
29 02 08 03 18 20 23 20 17 32 24 03 09 05 18 15 16 17 13 24 15 07 15 09 22 22 30 32 32 . .
30 02 06 01 16 18 19 16 14 25 33 03 09 04 15 10 12 15 12 17 28 09 12 09 22 22 26 31 30 57 .

(a) Replicate Shepard’s MDS analysis and verify that the order of the
stimuli on the horseshoe corresponds to the order of the entries of
the table.

(b) Use confirmatory ordinal MDS and try to unbend the horseshoe such
that it does not bend back upon itself. The upper half of the table
indicates a pattern of values that satifies such a simple structure. You
may use these pseudodata to impose the “unbending” constraints, but
note that a simplex is a biconditional order structure. Impose only
minimal constraints.

(c) Compare the constrained MDS solution with the one that does not
use external constraints and discuss the findings.

Exercise 10.2 Consider the lower-half matrix in Table 17.7. Its uncon-
strained city-block MDS representation is shown in Figure 17.8. Try to
force a perfect “rectangular” structure onto this solution so that, for ex-
ample, points 1, 2, 3, and 4 lie on a straight vertical line, and points 1, 5,
9, and 13 lie on a straight horizontal line (see dashed grid in Figure 17.8).

Exercise 10.3 Table 10.6 shows the intercorrelations of the 30 forms of
protest behavior (Levy, 1983) analyzed before in Section 1.2 (West German
data of early 1974, N = 2307).
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(a) Use confirmatory MDS to enforce a solution where the points are
perfectly separated in 3D space in the sense of their design facets
that are shown in Table 1.2.

(b) Compare the solution to an “unconstrained” solution as discussed in
Section 1.2.

(c) Discuss any amount of additional Stress due to the external con-
straints.
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MDS Fit Measures, Their Relations,
and Some Algorithms

A problem in MDS is how to evaluate the Stress value. Once a solution is
found, how good is it? In Chapter 3, several statistical simulation studies
were reported. Here we give an interpretation of normalized Stress in terms
of the proportion of the explained sum-of-squares of the disparities. We also
show that normalized Stress is equal to Stress-1 at a minimum and that the
configurations only differ by a scale factor. Then, other common measures
of fit for MDS are discussed. For these fit measures, we refer to some recent
algorithmic work. Finally, it is discussed how weights in MDS can be used
to emphasize different aspects of the data, to approach other MDS loss
functions, or to take the reliability of the data into account.

Throughout this chapter, we refer to the data as being dissimilarities
δij for notational simplicity. However, all definitions of Stress measures
and their relations remain valid when the dissimilarities are replaced by
d̂ij obtained by optimal transformation (see the approach taken in Section
9.1).

11.1 Normalized Stress and Raw Stress

In Section 3.2, we saw that σr depends on the “size” of X. Changing the
scale of the coordinates of X changes σr accordingly. To avoid this scale
dependency, one can use the implicit normalization used in Kruskal’s Stress-
1. Here, we elaborate on a different measure, which we call normalized
Stress. This coefficient shows (after convergence) the proportion of the sum-



248 11. MDS Fit Measures, Their Relations, and Some Algorithms

of-squares of the δijs that is not accounted for by the distances. We define
normalized Stress σn(X) as

σn(X) =
σr(X)

η2
δ

=

∑
i<j wij(δij − dij(X))2∑

i<j wijδ2
ij

. (11.1)

Clearly, if
∑

i<j wijδ
2
ij = 1, then σn(X) = σr(X).

De Leeuw (1977) (and, among others, Commandeur, 1993) show how
σn(X) is related to the square of Tucker’s coefficient of congruence.1 This
relation can be explained as follows. Suppose that X∗ is a local minimum
of σr(X). This implies that bY∗ = X∗ (with b > 0) also must be a local
minimum. Note that Y∗ has coordinates that are proportional to X∗. We
show that for optimal b normalized Stress is equal to one minus the square
of Tucker’s coefficient of congruence.

To find an optimal b, we use the property that the Euclidean distance is
a positively homogeneous function in X; that is, dij(bY∗) = bdij(Y∗) for
b ≥ 0. Then σr(bY∗) can be written as

σr(bY∗) =
∑
i<j

wij(δij − dij(bY∗))2

=
∑
i<j

wijδ
2
ij + b2

∑
i<j

wijd
2
ij(Y

∗) − 2b
∑
i<j

wijδijdij(Y∗)

= η2
δ + b2η2(Y∗) − 2bρ(Y∗). (11.2)

The minimum of (11.2) over b is obtained by setting the first derivative of
σr(bY∗) with respect to b equal to zero, 2bη2(Y∗) − 2ρ(Y∗) = 0. Thus,
the optimal b is b∗ = ρ(Y∗)/η2(Y∗) (see, e.g., Mathar & Groenen, 1991).
Inserting b∗ in σr(bY∗) gives

σr(b∗Y∗) = η2
δ −

(
ρ(Y∗)
η(Y∗)

)2

. (11.3)

Dividing both sides by η2
δ yields

σn(b∗Y∗) =
σr(b∗Y∗)

η2
δ

= 1 −
(

ρ(Y∗)
ηδη(Y∗)

)2

, (11.4)

where the last term is equal to the square of Tucker’s congruence coeffi-
cient with distances and dissimilarities. The congruence coefficient is al-
ways between −1 and 1, due to the Cauchy–Schwarz inequality. Moreover,

1The congruence coefficient of two variables X and Y , c, is the correlation of these
variables about their origin or “zero”, not about their means (as in Pearson’s correlation
coefficient). The coefficient c was first used by Tucker (see, e.g., Tucker, 1951) to assess
the similarity of corresponding factors resulting from factor analyses of different samples.
It is defined as c = (

∑
i
(xiyi)/[(

∑
i
x2

i )(
∑

i
y2

i )]1/2.



11.1 Normalized Stress and Raw Stress 249

negative congruence coefficients are impossible because distances and dis-
similarities are nonnegative. Hence, at a stationary point X∗, it holds that
0 ≤ σn(X∗) ≤ 1. The value of σn(X∗) is the proportion of variation of
the dissimilarities not accounted for by the distances, and 1 − σn(X∗) is
the fitted proportion, a coefficient of determination. Because distances and
dissimilarities both are positive, congruence coefficients tend to be close to
1 in practice. Therefore, values of σn(X∗) < .10 are usually not difficult to
obtain.

Using the normalized Stress (as defined in this section) gives a clear
interpretation that does not depend on the scale of the dissimilarities.

Relation Between Normalized Stress and Stress-1
Fortunately, there exists a simple relation between the normalized Stress
σn and Stress-1 σ1. In fact, we show here that σ2

1 = σn at a local minimum
if we allow for a rescaling of the solution. Note that Raw Stress σr and
normalized Stress σn differ from most other Stress measures in that no
square root is taken.

Let X∗ be a local minimum obtained by minimizing σn. De Leeuw
and Heiser (1980) and De Leeuw (1988) proved that for X∗ it holds that
η2(X∗) = ρ(X∗). This result implies that

σn(X∗) = 1 − η2(X∗)
η2

δ

. (11.5)

Now, for the same configuration, Stress-1 can be expressed as

σ2
1(X∗) =

η2
δ + η2(X∗) − 2ρ(X∗)

η2(X∗)
=

η2
δ − η2(X∗)
η2(X∗)

=
η2

δ

η2(X∗)
− 1.

From (11.5) we have η2
δ/η2(X∗) = 1/(1 − σn(X∗)), so that

σ2
1(X∗) =

σn(X∗)
1 − σn(X∗)

.

However, the scale of X∗ is not optimal for Stress-1. By allowing for a
scaling factor b, Stress-1 becomes

σ2
1(bX∗) =

η2
δ + b2η2(X∗) − 2bρ(X∗)

b2η2(X∗)
=

η2
δ + (b2 − 2b)η2(X∗)

b2η2(X∗)
.

An optimal b can be found by differentiating σ2
1(bX∗) with respect to b;

that is,

∂σ2
1(bX∗)
∂b

=
2b2[b − 1]η4(X∗) − 2bη2(X∗)[η2

δ + (b2 − 2b)η2(X∗)]
b4η2(X∗)
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=
2bη2(X∗) − 2η2

δ

b3 ,

which is equal to zero for b∗ = η2
δ/η2(X∗). Inserting b∗ into σ2

1(bX∗) yields

σ2
1(b∗X∗) =

η2
δ + η4

δ

η4(X∗)
η2(X∗) − 2 η2

δ

η2(X∗)
η2(X∗)

η4
δ

η4(X∗)
η2(X∗)

=
η2

δ/η2(X∗) − 1
η2

δ/η2(X∗)

= 1 − η2(X∗)
η2

δ

= σn(X∗).

This proves that Stress-1 is equal to normalized Stress at a local minimum
if the scale is calibrated properly.

11.2 Other Fit Measures and Recent Algorithms

A whole variety of MDS loss functions have been proposed in the litera-
ture. In this section, we describe some of them. A summary of different
fit measures and their relations is given by Heiser (1988a). Here, we re-
strict ourselves to the most commonly used MDS loss functions. One of the
reasons for our emphasis on using Stress in MDS is that the majorization
algorithm is a simple procedure for which nice theoretical convergence re-
sults have been derived (De Leeuw, 1988). In this section, we assume that
the weights wij = 1, for all i, j. We start with a brief overview of other
algorithms for minimizing Stress.

Algorithms for Minimizing Raw Stress
Let us first turn to raw Stress. Apart from majorization, several other
approaches for minimizing raw Stress have been reported in the litera-
ture. Some of these approaches are equivalent to the majorization algo-
rithm discussed in Section 8.6. For example, De Leeuw (1993) reparam-
eterized the raw Stress function, where the coordinates are restricted to
be a sum of some other fixed coordinate matrices. The algorithm is also
based on majorization. A convex analysis approach for minimizing raw
Stress (De Leeuw, 1977; Mathar, 1989; Mathar & Groenen, 1991; Meyer,
1993) leads to the same algorithm as the majorization approach. A rela-
tion between the convex analysis approach and the majorization approach
(for the more general case of Minkowski distances) was discussed by Mathar
(1994). A genetic algorithm to minimize raw Stress was proposed by Mathar
and Z̆ilinskas (1993), who found this a promising approach for small MDS



11.2 Other Fit Measures and Recent Algorithms 251

problems. Glunt, Hayden, and Raydan (1993) proposed a spectral gradient
algorithm, which was, in one example, 10 times faster than the majorizing
algorithm.

Implicitly Normalized Stress
In Section 3.2, it was indicated that raw Stress σr(X) can be misleading,
because it is dependent on the normalization of the dissimilarities. To cir-
cumvent this inconvenience, normalized Stress σn(X) was introduced in
Section 11.1. A different solution is to require explicitly η2

δ = c, with c
a positive constant (e.g., η2

δ = n(n − 1)/2), as was imposed in nonmetric
MDS by (9.2). This solution is called explicit normalization. A third (but
historically earlier) solution was pursued by Kruskal (1964a), which is called
implicit normalization. Here, Stress is expressed in relation to the size of
X. More concretely, σ is divided by the sum of the squared distances in X
and the root is taken of the total fraction; that is,

σ1(X) =
(

σ(X)
η2(X)

)1/2

=

(∑
i<j [δij − dij(X)]2∑

i<j dij(X)

)1/2

.

This expression, proposed by Kruskal (1964a) is called Stress formula 1.
Note that often Stress-1 is expressed using disparities d̂ij to allow for trans-
formations. Throughout this chapter, we use dissimilarities δij instead of
d̂ij for reasons of notational simplicity. Kruskal and Carroll (1969) proved
that implicitly or explicitly normalized Stress gives the same configuration
up to scaling constant. A different form of implicit normalization is Stress
formula 2; that is,

σ2(X) =

(∑
i<j [δij − dij(X)]2∑
i<j [dij(X) − d̄]2

)1/2

,

with d̄ the average distance. This version of Stress was introduced to avoid
a particular type of degeneracy in unfolding, that is, solutions where all
distances are equal.

The Alienation Coefficient and the Guttman–Lingoes Programs
Another error measure, the alienation coefficient, abbreviated as K, is used
only in combination with rank-images as target distances. K can be derived
from normalized Stress σn(X) as defined in (11.4) by setting δij = d∗

ij ,
where d∗

ij denotes the disparity obtained by the rank-image transformation
(see Section 9.5). Thus, the alienation coefficient is defined as

K =

(
1 − [

∑
i<j d∗

ijdij(X)]2∑
i<j(d

∗
ij)2

∑
i<j d2

ij(X)

)1/2

. (11.6)
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The quotient term in (11.6) is known as the monotonicity coefficient, µ
(Guttman, 1981). It is similar to a correlation coefficient, which is easier
to see if we rewrite it as

µ =

∑
i<j d∗

ijdij(X)

[
∑

i<j(d
∗
ij)2

∑
i<j d2

ij(X)]1/2 . (11.7)

Hence, µ differs from the usual Pearson correlation coefficient on the vari-
ables distances and rank-images in not subtracting the means from the
variables. The regression line, therefore, runs through the origin and not
the centroid of the image diagram, the plot of all points with coordinates
(dij , d

∗
ij). Note that in an image diagram all points are exactly on the bisec-

tor if and only if the solution is perfect. In that case, µ = 1. Furthermore,
µ is equal to Tucker’s congruence coefficient of the distances and their
rank-images.

For practical purposes, µ has the disadvantage that it takes on values
close to 1 even if the MDS solution is far from perfect. We can, however,
convert µ into the coefficient of alienation

K = (1 − µ2)1/2,

which yields values that vary over a greater range and, thus, are easier to
distinguish. K is a measure for the “unexplained” variation of the points
in the image diagram, whereas µ2 is a coefficient of determination, that is,
a measure for the “explained” variance. The smaller K, the more precise
is the representation, or, conversely, the greater K, the worse the fit of the
MDS model to the proximities. The squared alienation coefficient is equal to
normalized Stress σn(X) if rank-images are used instead of disparities. The
Guttman–Lingoes programs and various other programs (see Appendix A)
do ordinal MDS by attempting to minimize K rather than Stress.

Minimizing S-Stress
The S-Stress loss function of Takane, Young, and De Leeuw (1977),

σAL(X) =
∑
i<j

(d2
ij(X) − δ2

ij)
2, (11.8)

is minimized by Alscal (see Appendix A). This loss function sums the
differences of squared dissimilarities and squared distances. One of the rea-
sons for using squared distances is that σAL(X) is differentiable everywhere,
even if dij(X) = 0 for some pair i, j. Squaring distances and dissimilari-
ties causes S-Stress to emphasize larger dissimilarities more than smaller
ones, which may be viewed as a disadvantage of S-Stress. A fast Newton–
Raphson procedure to minimize S-Stress was proposed by Browne (1987).
An alternative algorithm was presented by Glunt, Hayden, and Liu (1991).
For the full-dimensional case of m = n − 1, Gaffke and Mathar (1989)
developed an algorithm that always yields a global minimum.
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Maximum Likelihood MDS and Multiscale
The Multiscale loss function of Ramsay (1977) is based on the sum of the
squared difference of the logarithm of the dissimilarities and the distances;
that is,

σMU (X) =
∑
i<j

[log(dij(X)) − log(δij)]
2
.

This loss function is used in a maximum likelihood (ML) framework. The
likelihood is the probability that we find the data given X. This proba-
bility is maximized in ML-MDS. For ML estimation, we need to assume
independence among the residuals and a lognormal distribution of the resid-
uals. In many cases, these assumptions are too rigid. However, if they do
hold, then σMU has the advantage that confidence regions of the points
can be obtained and that different models can be tested. If the residuals
are assumed to be normally distributed, then Multiscale reduces to min-
imizing Stress. An advantage of using a logarithm in σMU is that the large
dissimilarities do not determine the solution as much as when Stress is
minimized. Conversely, dissimilarities close to zero are relatively important
for the solution. The Multiscale program is discussed in Appendix A.

Further Algorithms and Developments
Groenen, De Leeuw, and Mathar (1996) discussed a least-squares loss func-
tion for MDS that includes Stress, S-Stress, and Multiscale as special
cases. They used

σG(X) =
∑
i<j

wij

[
f(δ2

ij) − f(d2
ij(X))

]2
,

where f(z) is an increasing scalar function. For example, choosing f(z) =
z1/2 gives Stress, f(z) = z gives S-Stress, and f(z) = log(z) gives the
Multiscale loss function. They derive several properties of the gradient
and hessian (the matrix of second derivatives) of this function. For example,
it can be shown that S-Stress is differentiable everywhere (Takane et al.,
1977) and that at a local minimum Stress has no zero distances (and thus
is differentiable) if wijδij > 0 for all i, j (De Leeuw, 1984). Kearsley, Tapia,
and Trosset (1998) provide an algorithm for the Stress and S-Stress versions
of σG based on a globalized Newton’s method, which they claim uses fewer
iterations than the majorizing algorithm and yields lower Stress solutions.

To minimize Stress, Luengo, Raydan, Glunt, and Hayden (2002) have
elaborated on the so-called spectral gradient algorithm. In a small com-
parison study, Groenen and Heiser (2000) found that the spectral gradient
algorithm was the fastest algorithm, outperforming Smacof and Kyst.
This may be of importance for MDS with a large number of objects.
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A special case of σG occurs in applications in chemistry, where the ob-
jective is to find stable molecules. The energy function used is essentially
equal to σG(X) with f(z) = z6 and δij = 1 for all i, j. The gradient be-
comes so steep that this problem turns out to be combinatorial in nature
(see, e.g., Xue, 1994).

De Leeuw and Groenen (1997) considered the problem of finding those
dissimilarity matrices for which a given X is a local minimum (or has a
zero gradient) for Stress. This problem is called inverse MDS. If this set
of dissimilarities is large, then the local minimum is not very informative.
After all, many dissimilarity matrices have X as a (possible) local minimum.
Groenen et al. (1996) discuss the problem of inverse MDS for the loss
function σG(X).

An overview of various algorithmic approaches in MDS is given by Mathar
(1997).

11.3 Using Weights in MDS

So far, we have used the weights wij only to indicate nonmissing dissimi-
larities. Choosing wij = 1 indicates that for object pair ij a dissimilarity
has been observed, whereas wij = 0 is used for pairs ij where a dissimi-
larity is “missing”. As zero weights lead to zero error terms in the Stress
loss function, the distance that corresponds to a missing data value can-
not be assessed in terms of fit. Hence, it contributes nothing to the Stress,
whatever its value. But this also means that this distance cannot be inter-
preted directly, but only in terms of what is implied by the distances that
represent given data. If the number of missing dissimilarities gets large or
if they form special block patterns (as in Table 6.1, e.g.), we should take
care in interpreting distances that “represent” missing data. Then, one
should emphasize the interpretation of distances that represent observed
data values.

Using Particular Weighting Schemes
Instead of using wij ’s that are zero or one in the minimization of Raw
Stress, we can apply any positive value for wij . Heiser (1988a) exploited
this powerful idea and distinguished several weighting schemes of which we
discuss a few below.

Consider the S-Stress loss function. Instead of (11.8), S-Stress may also
be written as

σAL(X) =
∑
i<j

(δij + dij(X))2(δij − dij(X))2,

which shows that each S-Stress error term consists of two factors: the square
of the ordinary Stress residual (δij − dij(X))2 and a weighting term (δij +
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dij(X))2 that is also dependent on dij(X). Assume that the residuals are
reasonably small. Then, (δij + dij(X))2 can be approximated by replacing
dij(X) by δij so that

(δij + dij(X))2 ≈ 4δ2
ij .

Therefore, the minimization of S-Stress can be approximated by minimizing
Stress choosing wij = 4δ2

ij . This approximation shows that optimizing S-
Stress tends to lead to small errors for the large dissimilarities and large
errors for the smaller dissimilarities. In other words, large dissimilarities
are much better represented than the small ones.

McGee (1966) proposed the idea of elastic scaling. This form of MDS
fits relative residuals so that the proper representation of small dissimilar-
ities is equally important as fitting large dissimilarities. The loss function
minimized in elastic scaling is

σEL(X) =
∑
i<j

(1 − dij(X)/δij)2 =
∑
i<j

δ−2
ij (δij − dij(X))2.

Thus, choosing wij = δ−2
ij makes minimizing raw Stress do the same as

McGee’s elastic scaling.
An MDS method popular in the pattern recognition literature is called

Sammon mapping after Sammon (1969). The loss function can be expressed
as

σSAM (X) =
∑
i<j

δ−1
ij (δij − dij(X))2,

which is identical to raw Stress for wij = δ−q
ij , with q = −1. The objective is

somewhat similar to that of elastic scaling of McGee (1966), although larger
dissimilarities still are somewhat more emphasized in the MDS solution.

The Multiscale loss function of Ramsay (1977) can be written as

σMU (X) =
∑
i<j

log2(dij(X)/δij),

showing that the squared logarithm of the relative error is minimized. Pro-
vided that the relative error is close to one, log(a) can be approximated by
a − 1; that is,

σMU (X) =
∑
i<j

log2(dij(X)/δij) ≈
∑
i<j

(1 − dij(X)/δij)2 = σEL(X).

Thus, the objective of Multiscale and elastic scaling scaling coincides in
that errors are corrected for the size of the dissimilarities.

The examples above show that choosing wij as a power of δij leads to
(approximations) of other loss functions. For this reason, Buja and Swayne
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(2002) incorporated the weights wij = δq
ij in their Ggvis software (see

Appendix A). Figure 11.1 shows solutions for ratio MDS of the facial ex-
pression data of Table 4.4 using several values of q. The middle panels show
the standard solution with q = 0 and all weights being one as wij = δ0

ij = 1.
The Shepard diagram in the middle-right panel shows that the size of the
errors does not depend on the size of the dissimilarities. Note that the
solution for q = 0 is the same as Figures 4.8 and 4.9 up to a rotation.

In contrast, for q = −5, the large dissimilarities show much error and
thus are not well represented. For example, the two worst fitting large
dissimilarities are between faces 12 and 13 (“Knows plane will crash” and
“Light sleep”) and faces 3 and 7 (“Very pleasant surprise” and “Anger at
seeing dog beaten”). Both distances are too small in this representation. In
this case, the small dissimilarities have little error, and thus can be safely
interpreted.

The reverse situation occurs for q = 5 where the large dissimilarities
are fitted with almost no error and there is quite some error in the rep-
resentation of the smaller errors. The Shepard plot shows three or four
bad-fitting small dissimilarities, which turn out to be connected with face
12. However, face 12 is located so far away because it has several large dis-
similarities with other faces (2, 3, 4, 5, 8, 9, and 13) that are all large and
represented with almost no error. This compromise is typical for choosing
large q. Hence, only large distances can be properly interpreted and small
distances should be interpreted with care. If the dissimilarities have some
clustering, then choosing a large q may reveal a clearer clustering structure
than choosing all wij = 1.

Summarizing, to emphasize the representation of small dissimilarities,
choose a large negative q. For a proper representation of the large dissimi-
larities, choose a large q. If you want to use relative errors to penalize small
deviations for small dissimilarities equally heavy as large deviations for
large dissimilarities, choose q = −2. To measure the error directly without
any modification, choose q = 1.

Using Weights on Substantive Grounds
All of the above schemes for picking weights wij had in common that the
weights were specified on the basis of general and rather formal considera-
tions. We conclude this discussion about using weights in MDS by pointing
out that weights can also be picked on a substantive basis. One particular
choice for wij would be to set it equal to the empirically assessed reliability
of the proximity pij . This means that highly reliable proximities have more
impact on the MDS solution than unreliable ones.

The problem, of course, is that reliabilities are seldom collected, because
to collect one set of proximities is typically demanding enough. Estimating
reliabilities from other information is not that simple either. Consider, for
example, the Morse code data in Table 4.2. We may come to the conclusion
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FIGURE 11.1. Ratio MDS of facial expression data of Table 4.4 where wij = δq
ij

for q is −5, −2, 0, 2, and 5. The left panels show the configurations, the right
panels the corresponding Shepard plots.
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that these data are essentially symmetric, symmetrize the data, and use
the degree of asymmetry as a measure of the unreliability of the confusion
probability for each pair. This approach sounds plausible but a closer study
of the asymmetries in Chapter 23 reveals that the asymmetries are clearly
not just random. Other solutions to obtain reliabilities from the data we
have could be considered. For example, one may feel that confusing a signal
with itself relates to reliability, and then compute a reliability measure for a
pair of signals on the basis of their individual reliabilities. Obviously, many
such measures could be considered, and there are many ways to collect
reliabilities directly such as, for example, simply replicating the proximity
observations at least twice. What is and what is not a good reliability
estimate must be decided within the substantive context of the particular
data.

Note also that proximities are often data that are collapsed over individ-
uals. This is true too for the Morse code data in Table 4.2. But different
individuals can agree on the similarity of some pairs, and disagree on others.
This information could also be used to weight the data so that the respon-
dents’ common perceptual space relies more on data where interindividual
agreement is relatively high.

11.4 Exercises

Exercise 11.1 Compute, by hand, the alienation coefficient for the pij and
dij in Table 9.2, p. 206.

Exercise 11.2 Consider the data in Table 1.3, p. 10. One may attempt
to weight these data somehow to account for possible differences in their
reliability. For example, the students who generated these similarity ratings
were certainly less familiar with (what was then) “Congo” than with the
U.S.A. or the U.K.

(a) Develop a scheme that generates reliability estimates for each proxim-
ity in Table 1.3 on the basis of simple ratings of the different nations
in terms of their assumed familiarity to the students in this experi-
ment. (Hint: One way of rating the reliability of the proximity pij is
to multiply the familiarity ratings for i and for j.)

(b) Use these estimates to weight the proximities, and redo the (ordinal)
MDS with these weights.

(c) Discuss any differences (configuration, Stress, pointwise Stress, inter-
pretation) of the weighted MDS solution and the “unweighted” (or,
rather, unit-weights) solution in Figure 1.5.
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Exercise 11.3 There are many ways to generate weights δij for proximities
pij .

(a) MDS is often used to analyze the structure of correlation matrices
(see, e.g., Tables 1.1, 5.1, and 20.1). Discuss some ways to sensibly
weight correlations for potentially more robust MDS analyses of such
data.

(b) Consider the similarity judgments on facial expressions described in
Section 4.3. The respondents may make these judgments with differ-
ent degrees of confidence. How could this information be collected
and incorporated into the MDS analysis?

(c) Even the similarities on the colors in Table 4.1 could be weighted. One
possible way is to assume that primary colors (red, blue, green) gen-
erate more reliable judgments. Devise a method to generate weights
on that basis.

Exercise 11.4 Consider the data in Table 4.1, p. 65. Their Shepard diagram
in Figure 4.2 exhibits a slightly nonlinear trend. Find a transformation on
the similarities that linearizes the relationship of these data to their MDS
distances. Justify this transformation in terms of psychophysics, if possible.
Redo the MDS analysis with the rescaled data and a linear MDS model.

Exercise 11.5 Dissimilarities may be related to nonlinear manifolds that
are embedded in very high-dimensional space. For example, a constant
face that an observer looks at from different angles in space corresponds to
different points in the space of its image pixels on the retina. This space
has thousands of dimensions, but the points that represent the faces still
lie on some nonlinear manifolds (with the angles as parameters) within
this space. MDS does not necessarily uncover such manifolds, because of
“using greedy optimization techniques that first fit the large-scale (linear)
structure of the data, before making small-scale (nonlinear) refinements”
(Tenenbaum, 1998, p. 683). One suggestion to solve this problem is to use
a “bottom-up” approach that computes distances for points in small local
environments only, and then build up large distances by concatenating such
distances over geodesics within the manifolds (given that these manifolds
are densely packed with points).

(a) Construct a so-called Swiss roll of points in 3D as in the left panel
of Figure 11.2. A Swiss roll can be made as follows. Generate two
uniformly distributed vectors u and v of n points (say, choose n =
1000). Then, the coordinates are xi = 1

2vi sin(4πvi), yi = ui − 1
2 , and

zi = 1
2vi cos(4πvi).

(b) Compute Euclidean distances for the points in your manifold, and
then use metric MDS in an attempt to recover the original Swiss roll
configuration.
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FIGURE 11.2. Manifolds described in Exercise 11.5. The left panel shows the
“Swiss roll” manifold, the right panel a “bowl”.

(c) Now focus predominantly on small distances by a suitable weighting
pattern, and repeat the MDS analyses with small or even zero weights
on large distances. Check to what extent this approach manages to
unroll the Swiss roll into a plane. [Shepard and Carroll (1966) call this
the “intrinsic” dimensionality of the manifold.] Compare the resulting
MDS configuration to the one obtained in Exercise (b) above.

(d) Repeat (a) to (c), but now for a “bowl” of points in 3D. A bowl
is generated similarly as the Swiss roll in (a), except that xi =
1
2v

1/2
i cos(2πui), yi = 1

2v
1/2
i sin(2πui), and zi = vi − 1

2 . Can you “flat-
ten” the bowl-like manifold by appropriate weighting into a 2D MDS
configuration?



12
Classical Scaling

Because the first practical method available for MDS was a technique due to
Torgerson (1952, 1958) and Gower (1966), classical scaling is also known un-
der the names Torgerson scaling and Torgerson–Gower scaling. It is based
on theorems by Eckart and Young (1936) and by Young and Householder
(1938). The basic idea of classical scaling is to assume that the dissimilar-
ities are distances and then find coordinates that explain them. In (7.5) a
simple matrix expression is given between the matrix of squared distances
D(2)(X) (we also write D(2) for short) and the coordinate matrix X, which
shows how to get squared Euclidean distances from a given matrix of coor-
dinates and then scalar products from these distances. In Section 7.9, the
reverse was discussed, that is, how to find the coordinate matrix given a
matrix of scalar products B = XX′. Classical scaling uses the same proce-
dure but operates on squared dissimilarities ∆(2) instead of D(2), because
the latter is unknown. This method is popular because it gives an analytical
solution, requiring no iterations.

12.1 Finding Coordinates in Classical Scaling

We now explain some fundamental issues in classical scaling. How do we
arrive at a scalar product matrix B, given a matrix of squared distances
D(2)? Because distances do not change under translations, we assume that
X has column means equal to 0. Remember from (7.5) that the squared
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distances are computed from X by

D(2) = c1′ + 1c′ − 2XX′ = c1′ + 1c′ − 2B, (12.1)

where c is the vector with the diagonal elements of XX′. Multiplying the
left and the right sides by the centering matrix J = I − n−111′ and by the
factor − 1

2 gives

− 1
2JD(2)J = − 1

2J(c1′ + 1c′ − 2XX′)J
= − 1

2Jc1′J − 1
2J1c′J + 1

2J(2B)J
= − 1

2Jc0′ − 1
20c′J + JBJ = B. (12.2)

The first two terms are zero, because centering a vector of ones yields a
vector of zeros (1′J = 0). The centering around B can be removed be-
cause X is column centered, and hence so is B. The operation in (12.2) is
called double centering. To find the MDS coordinates from B, we factor B
by eigendecomposition, QΛQ′ = (QΛ1/2)(QΛ1/2)′ = XX′. The method
of classical scaling only differs from this procedure in that the matrix of
squared distances D(2) is replaced by the squared dissimilarities ∆(2).

The procedure for classical scaling is summarized in the following steps.

1. Compute the matrix of squared dissimilarities ∆(2).

2. Apply double centering to this matrix:

B∆ = − 1
2J∆(2)J. (12.3)

3. Compute the eigendecomposition of B∆ = QΛQ′.

4. Let the matrix of the first m eigenvalues greater than zero be Λ+
and Q+ the first m columns of Q. Then, the coordinate matrix of
classical scaling is given by X = Q+Λ1/2

+ .

If ∆ happens to be a Euclidean distance matrix, then classical scaling
finds the coordinates up to a rotation. Note that the solution Q+Λ1/2

+ = X
is a principal axes solution (see Section 7.10). In step 4, negative eigen-
values can occur but not if ∆ is a Euclidean distance matrix (see Chapter
19). In classical scaling, the negative eigenvalues (and its eigenvectors) are
simply ignored as error.

Classical scaling minimizes the loss function

L(X) = || − 1
2J[D(2)(X) − ∆(2)]J||2

= ||XX′ + 1
2J∆(2)J||2

= ||XX′ − B∆||2, (12.4)
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sometimes called Strain (see Carroll & Chang, 1972). Gower (1966) proved
that choosing the classical scaling solution solves (12.4).1

A nice property of classical scaling is that the dimensions are nested.
This means that, for example, the first two dimensions of a 3D classical
scaling solution are the same as the two dimensions of a 2D classical scal-
ing solution. Note that MDS by minimizing Stress does not give nested
solutions.

It remains to be seen what dimensionality one should choose. Sibson
(1979) suggests that the sum of the eigenvalues in Λ+ should approximate
the sum of all eigenvalues in Λ, so that small negative eigenvalues cancel out
small positive eigenvalues. For a rationale of this proposal, see Chapter 19.

12.2 A Numerical Example for Classical Scaling

As an example, we use the faces data from Table 4.4. Here, we consider the
first four items only; that is,

∆ =

⎡⎢⎣ 0 4.05 8.25 5.57
4.05 0 2.54 2.69
8.25 2.54 0 2.11
5.57 2.69 2.11 0

⎤⎥⎦ , so that ∆(2) =

⎡⎢⎣ .00 16.40 68.06 31.02
16.40 .00 6.45 7.24
68.06 6.45 .00 4.45
31.02 7.24 4.45 .00

⎤⎥⎦ .

The second step in classical scaling is to compute

B∆ = − 1
2J∆(2)J

= − 1
2

⎡⎢⎣
3
4 - 1

4 - 1
4 - 1

4
- 1
4

3
4 - 1

4 - 1
4

- 1
4 - 1

4
3
4 - 1

4
- 1
4 - 1

4 - 1
4

3
4

⎤⎥⎦
⎡⎢⎣ .00 16.40 68.06 31.02

16.40 .00 6.45 7.24
68.06 6.45 .00 4.45
31.02 7.24 4.45 .00

⎤⎥⎦
⎡⎢⎣

3
4 - 1

4 - 1
4 - 1

4
- 1
4

3
4 - 1

4 - 1
4

- 1
4 - 1

4
3
4 - 1

4
- 1
4 - 1

4 - 1
4

3
4

⎤⎥⎦
=

⎡⎢⎣ 20.52 1.64 -18.08 -4.09
1.64 -.83 2.05 -2.87

-18.08 2.05 11.39 4.63
-4.09 -2.87 4.63 2.33

⎤⎥⎦ .

In the third step, we compute the eigendecomposition of B∆; that is, B∆ =
QΛQ′ with

Q =

⎡⎢⎣ .77 .04 .50 -.39
.01 -.61 .50 .61

-.61 -.19 .50 -.59
-.18 .76 .50 .37

⎤⎥⎦ and Λ =

⎡⎢⎣ 35.71 .00 .00 .00
.00 3.27 .00 .00
.00 .00 .00 .00
.00 .00 .00 -5.57

⎤⎥⎦ .

There are two positive eigenvalues, one zero eigenvalue due to the double
centering and one negative eigenvalue.2 For this example, we can construct

1Note that Kloek and Theil (1965) also derived the classical scaling solution, but
more in the sense of a how-to-do construction scheme than in terms of algebra.

2Double centering introduces a linear dependency, because if the columns of a matrix
add up to the zero vector, then any column can be expressed as a linear combination
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at most two dimensions in Euclidean space. Step 4 tells us that the config-
uration X is found by

X = Q+Λ1/2
+

=

⎡⎢⎣ .77 .04
.01 -.61

-.61 -.19
-.18 .76

⎤⎥⎦[
5.98 .00
.00 1.81

]
=

⎡⎢⎣ 4.62 .07
.09 -1.11

-3.63 -.34
-1.08 1.38

⎤⎥⎦ .

12.3 Choosing a Different Origin

Usually, X is constructed so that its columns sum to zero. This means
that the origin of configuration X coincides with the center of gravity of
its points (centroid). Choosing this origin is, however, not necessarily the
best choice. In psychological research, for example, some objects may be
less familiar to the respondents, and thus lead to less reliable distance
estimates than others. In such a case, it is wiser to pick as an origin a point
that is based more on the points associated with less error. How could this
be accomplished?

For a general solution, consider picking some arbitrary point s as the
new origin, with the restriction that s lies in the space of the other points.
That is, in terms of algebra, point s should lie in the row space of X; that
is, the coordinate vector of s is a weighted sum of the rows of X, s′ = w′X,
where w′ is an m-element row vector of weights. With s as the new origin,
the point coordinates become

Xs = X − 1s′ = X − 1w′X = (I − 1w′)X = PwX. (12.5)

If the weight vector w is chosen such that w′1 = 1, then Pw is a projector3.
If B = XX′, one obtains Bs = XsX′

s after projecting X to a new origin s.
In terms of the old origin, Bs = PwBP′

w.
If one chooses a particular object i as the origin, then w′ =

[0, . . . , 1, . . . , 0], where the 1 is in the ith position. If one picks the cen-
troid as the origin, then w′ = [1/n, . . . , 1/n]. Another choice is to pick
the weights in w so that they reflect the reliability of the objects. In this
case, unreliable elements should have a weight close to zero and reliable el-
ements a high value. In this way, the origin will be attracted more towards
the reliable points.

of the other columns. Hence, a doubly centered matrix does not have full rank, and,
therefore, it has at least one zero eigenvalue (see Chapter 7). The negative eigenvalue
shows that ∆ is not a matrix of Euclidean distances (see Section 19.1).

3For every projector matrix P it holds that PP = P (idempotency). In the given
case, it is also true that Ps1 = 0 (Schönemann, 1970).
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Instead of using J in the double-centering formula, we can also use
the projector Pw. Then, step 2 in classical scaling becomes B∆ =
− 1

2Pw∆(2)P′
w. The zero eigenvalue of B∆ has eigenvector w, so that the

weighted average (using weights w) of the classical scaling coordinate ma-
trix X is equal to zero.

12.4 Advanced Topics

A solution for classical scaling with linear constraints was discussed by
Carroll, Green, and Carmone (1976), De Leeuw and Heiser (1982), and
Ter Braak (1992). The linear constraints imposed on X require X = YC,
where Y is an n×r matrix of r external variables, and C are weights to be
optimized by classical scaling. (This type of constraint was also discussed
in Section 10.3 for constrained MDS with Stress.)

How can the weights in C be computed? Let Y = PΦQ′ be the singu-
lar value decomposition. Then X = YC = PΦQ′C = PC∗, where P is
orthonormal (P′P = I). The Strain loss function (12.4) used by classical
scaling can be written as

L(C) = ||B∆ − YCC′Y′||2 = ||B∆ − PC∗C′
∗P

′||2
= ||B∆||2 − ||P′B∆P||2 + ||P′B∆P − C∗C′

∗||2, (12.6)

which can be verified by writing out all of the terms in the equation. Only
the last term of (12.6) is dependent on C∗. L(C) is solved for C by the
eigendecomposition of P′B∆P = QΛQ′ and choosing C∗ = Q+Λ1/2

+ (as
in Step 4 in Section 12.1), so that C = QΦ−1C∗.

To illustrate constrained classical scaling, we reanalyze the constrained
MDS of the facial expression data in Section 10.3. The external constraint
matrix Y is defined as in Table 10.2. The total loss of the constrained
2D classical scaling solution is 8366.3, which explains 75% of the sum-of-
squares of B∆, against 92% for the unconstrained classical scaling solution
(with loss 2739.9). The corresponding solution is shown in Figure 12.1,
where the external variables are represented by lines. The optimal weight
matrix C obtained by constrained classical scaling is

C =

⎡⎣ 1.283 .482
−.219 .300
−.445 .782

⎤⎦ .

To get the coordinates X in Figure 12.1, we compute X = YC. This
solution does not differ much from the constrained MDS solution in Figure
10.4. The main difference lies in the location of point 8.

Even for loss functions other than L(X), classical scaling is optimal. Let
E = XX′−B∆, so that L(X) = ||E||2. The loss can also be expressed as the
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FIGURE 12.1. Constrained classical scaling of the facial expression data of Abel-
son and Sermat (1962).

sum of the squared eigenvalues of E; that is, if E = KΦK′, then ||E||2 =∑
i φ2

i . This loss function is an example of an orthonormal invariant norm,
because the value of the loss function remains invariant under pre- and
postmultiplication of the orthonormal matrix K. Mathar and Meyer (1993)
prove that the classical scaling solution is also optimal for the minimization
of any orthonormal invariant norm on E. For example, the classical scaling
solution is optimal if the loss is defined as L(X) =

∑
i |φi|.

In contrast to the MDS method discussed in Chapter 9, it is difficult
to incorporate transformations of the proximities in classical scaling. An
algorithm was proposed by Trosset (1993) that optimally transforms the
proximities for Strain.

Classical scaling can even be used to study or discover the “intrinsic
geometry” of highly nonlinear structures contained in high-dimensional
spaces. For example, a point configuration that forms a helix in 3D space is
intrinsically one-dimensional in the sense that if you move back and forth on
this helix, the distances along the helix are additive. As long as you stay on
the helix, Euclidean distances dij are only approximately correct measures
for the length of the path from point i to point j if i and j are close (or,
in the case of highly nonlinear structures, “very close”) to each other. For
points that are far apart, Euclidean distances can grossly underestimate
the intrinsic distance of i and j. To study such geometries and to unroll
them into low-dimensional Euclidean geometries, Tenenbaum, De Silva,
and Langford (2000) first define the radius of a small neighborhood, ε, and
then set δij = dij for all ij where dij < ε, and δij = ∞ otherwise. Then,
in a second cycle, these values are replaced by computing distances over
the network of point triples as follows: δij = mink(δij , δik + δjk), for all
k. If there are many points that are well spread out, this generates graph



12.5 Exercises 267

distances that approximate the lengths of the paths within the curved struc-
ture. Applying classical scaling to dissimilarities generated in such a way
from nonlinear structures allowed Tenenbaum et al. (2000) to unroll these
structures successfully.

12.5 Exercises

Exercise 12.1 Use classical scaling on the data in Table 4.1, p. 65. (Note:
You first have to transform the similarity data into reasonable dissimilar-
ities.) Compare the solution to the one obtained by ordinal MDS (Figure
4.1).

Exercise 12.2 Use matrix X computed in Section 12.2, p. 264, to recon-
struct both B∆ and ∆. Assess how well this X “explains” ∆.

Exercise 12.3 Take matrix ∆ from Section 12.2. Instead of centering this
matrix, choose one of its entries as the element serves as the origin of the
MDS space.

(a) Compute B∆ relative to this particular origin.

(b) Find the classical scaling representation for this B∆.

(c) Compare this solution to the solution X found in Section 12.2.



13
Special Solutions, Degeneracies, and
Local Minima

In this chapter, we explain several technical peculiarities of MDS. First,
we discuss degenerate solutions in ordinal MDS, where Stress approaches
zero even though the MDS distances do not represent the data properly.
Then we consider MDS of a constant dissimilarity matrix (all dissimilar-
ities are equal) and indicate what configurations are found in this case.
Another problem in MDS is the existence of multiple local minima solu-
tions. This problem is especially severe for unidimensional scaling. For this
case, several strategies are discussed that are less prone to local minima.
For full-dimensional scaling, in contrast, it is shown that the majorization
algorithm always finds a globally optimal solution. For other dimensional-
ities, several methods for finding a global minimum exist, for example, the
tunneling method and distance smoothing.

13.1 A Degenerate Solution in Ordinal MDS

In the various MDS applications discussed so far in this book, we assumed
that the loss function employed to find the MDS configuration X would
actually work in the desired sense. In particular, a low Stress value was
interpreted as an index that the given proximities were well represented by
the distances of X. But is that always true? In Section 3.2, we noticed, for
example, that if one minimizes raw Stress, a trivial solution is possible: if X
is made smaller and smaller over the iterations, raw Stress can be arbitrar-
ily reduced, even though proximities and distances are not systematically
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TABLE 13.1. Correlations of some KIPT subtests of Guthrie (1973). The lower
triangular elements contain the correlations, the upper triangular the rank-order
of the correlations in decreasing order.

Subtest np lvp svp ccp nr slp ccr ilr
Nonsense word production (np) - 9 4 1 6 19 10 12
Long vowel production (lvp) .78 - 1 7 5 21 20 22
Short vowel production (svp) .87 .94 - 3 2 17 16 23
Consonant cluster production (ccp) .94 .83 .90 - 7 14 11 16
Nonsense word recognition (nr) .84 .85 .91 .83 - 17 15 18
Single letter production (slp) .53 .47 .56 .60 .56 - 13 16
Consonant cluster recognition(ccr) .72 .48 .57 .69 .59 .62 - 8
Initial letter recognition (ilr) .66 .45 .44 .57 .55 .57 .82 -

related. Therefore, one has to avoid this outcome (e.g., by using normal-
ized Stress as a loss criterion), because it may—and usually does—lead to
a pseudo solution that does not represent the data in the desired sense.

MDS configurations where the loss criterion can be made arbitrarily small
irrespective of the relationship of data and distances are called degenerate
solutions of the particular loss function. They can be avoided, in general,
by imposing additional constraints onto the loss function. One example was
shown above for raw Stress, where the constraint is a normalization of raw
Stress or the requirement that X must not shrink.

In ordinal MDS, there exist further degenerate solutions, even when using
normalized Stress. These solutions arise for particular data. Consider an
example. Table 13.1 presents a matrix of correlation coefficients on eight
subtests of the Kennedy Institute Phonics Test (KIPT), a reading skills
test (Guthrie, 1973). If we scale these data by ordinal MDS in a plane,
we obtain the configuration shown in Figure 13.1a. There are just three
groups of points. One contains the subtests NP, LVP, SVP, CCP, and NR
in a very tight cluster in the upper right-hand corner; a second contains
CCR and ILR, also very close together in the upper left-hand corner; finally,
point SLP is clearly separated from both of these clusters, with essentially
the same distance to either one of them. We find, furthermore, that the
MDS solution appears to be almost perfect, because its Stress value is
practically equal to zero (i.e., smaller than the stopping criterion for the
MDS algorithm).

The Shepard diagram in Figure 13.1b reveals, however, some peculiari-
ties. The data, which are relatively evenly distributed over an interval from
r = .44 to r = .94 (see Table 13.1), are not represented by distances with a
similar distribution but rather by two clearly distinct classes of distances.
In fact, the MDS procedure maps all correlations r ≥ .78 into almost the
same small distance, and all correlations r < .72 into almost the same
large distance. Even though the resulting step function is perfectly admis-
sible within ordinal MDS, we would probably be reluctant to accept it as a
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FIGURE 13.1. Ordinal MDS solution (a) and Shepard diagram (b) for correla-
tions in Table 13.1.

sensible transformation of the empirical data, because the transformation
simply dichotomizes our data. Using ordinal MDS does not mean that we
are indifferent to which monotonic function is chosen as being optimal for
the procedure. For our correlations in Table 13.1, it appears reasonable
to assume that their differences are also meaningful to some extent, even
though their order relations may be more reliable. Hence, we should in-
sist that the correlations be mapped into distances by a more smoothly
increasing monotone function. The regression line in the Shepard diagram
could then be approximated by a parametric function, for example, a power
function or a monotone spline. However, the exact type of the regression
function is not known a priori. Otherwise, we would simply choose it and
specify a metric MDS model.

On closer analysis, one finds that the solution in Figure 13.1 does not
only have an odd transformation function, but it also possesses a pecu-
liar relationship to the data. We can see this as follows. Table 13.1 has
been arranged so that the subtests are lumped together into three blocks,
where one cluster consists of only one element, SLP. This reveals that: (1)
the five subtests in the block {NP, . . . , NR} correlate higher with each
other than with any subtest in the other blocks, CCR, ILR, or SLP; the
lowest within-block correlation is r(NR,LVP) = .78, but the highest corre-
lation with any other subtest is r(NR,CCR) = .72; (2) for the block {CCR,
ILR}, the within-block correlation is r(CCR, ILR) = .82, which is higher
than any of the between-block correlations; (3) the same holds trivially
for the block {SLP}, where r(SLP, SLP) = 1.00. Because all correlations
r ≥ .78 are mapped into (almost) the same very small distance and all
r < .78 into (almost) the same much larger distance, the MDS procedure
shrinks all within-block distances to almost zero and makes all between-
block distances almost equally large. This represents a formal solution to
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TABLE 13.2. The rank-order of KIPT subtests in the upper half, the optimal
disparities in ordinal MDS in the lower half.

Subtest np lvp svp ccp nr slp ccr ilr
np - 9 4 1 6 19 10 12
lvp 0 - 1 7 5 21 20 22
svp 0 0 - 3 2 17 16 23
ccp 0 0 0 - 7 14 11 16
nr 0 0 0 0 - 17 15 18
slp 1 1 1 1 1 - 13 16
ccr 1 1 1 1 1 1 - 8
ilr 1 1 1 1 1 1 0 -

the MDS problem, because it reduces the loss function to a very small value
indeed—whether or not the within-block and the between-block distances,
respectively, are ordered as the data are! The only aspect of the data that
is properly represented, therefore, is that between-block distances are all
larger than within-block distances.

It is not difficult to see why Stress is so small in the example above. The
lower half of Table 13.2 shows the optimal disparities. One notes that as
long as the ranking number in the upper half of the matrix is 9 or smaller,
the disparities are all zero, and for rank-order 10 or larger, the disparities
are all one. These disparities perfectly match the rank-order information of
the data. Ordinal MDS assigns the subtests to three clusters. The within-
cluster disparities are zero, so that all points within the cluster have the
same coordinates and thus zero distance. Between the cluster points, the
distances should be one.

This type of degeneracy can be expected with ordinal MDS when the
dimensionality is high compared to the number of objects. It all depends,
though, on how many within-blocks of zero exist. In our example, we have
three blocks of zero disparities (counting SLP as one cluster). With four
within-blocks of zeros, one obtains four clusters for which a perfect solution
exists in three dimensions, and so on. The only information that this ordinal
MDS solution correctly represents is the partitioning of items in clusters.

13.2 Avoiding Degenerate Solutions

The general solution to degeneracy is to impose stronger restrictions onto
the function that maps data into distances. In many instances, a degenerate
solution occurs because there are not enough constraints to avoid it. In
Table 9.1, we ordered the transformations from strong to weak. Because
an ordinal transformation is the weakest possible form of transformation,
we can choose any of the stronger transformations as an alternative. We
have applied two stronger transformations to the data in Table 13.1, a
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FIGURE 13.2. Solution of linear MDS with intercept (a) on correlations
(σn = .0065) in Table 13.1 and the transformation plot (b), and the solution
of MDS with monotonic spline (one interior knot, of order 2, σn = .0054).

linear transformation (with intercept) and a spline transformation (with
one interior knot and order 2). The results are in Figure 13.2. Both MDS
solutions fit well (interval MDS σn = .0065, monotone spline σn = .0054),
and both, of course, map the correlations smoothly into distances.

Interval scaling of the data is not the only possibility for arriving at a
reasonable MDS configuration when the data possess the peculiar block
pattern discussed above. Indeed, any kind of metric representation of the
data prevents degenerate solutions. The transformation could also be de-
fined, for example, by d̂ij = a + b · exp(δij). Depending on the context,
such a model may be more attractive a priori, because it specifies a theory
about the relation of data and distances that is more precise than to admit
just any monotone mapping.
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13.3 Special Solutions: Almost Equal
Dissimilarities

An interesting special case of MDS is concerned with equal dissimilarities.
By the constant dissimilarity case we mean that δij = c, for all i, j, with
c > 0.1 We may regard these data as null-data: the differences between all
pairs of objects are the same.2 If we do a ratio MDS on these dissimilarities,
the solution has a particular pattern. Consider a simple example of a 3× 3
dissimilarity matrix with all dissimilarities equal to 1. An MDS solution
with σn = 0 in two dimensions is obtained by placing the points on the
corners of an equilateral triangle. It is not hard to extend this result to a
solution of a 4×4 constant dissimilarity matrix in three dimensions, where
a perfect solution consists of the corner points of a regular tetrahedron (a
three-sided pyramid, all sides of equal length). Such a figure is called a
simplex .3 The perfect solution for a general n × n constant dissimilarity
matrix is a simplex in n − 1 dimensions.

But what happens in lower dimensionality? The optimal MDS solu-
tion for constant dissimilarities in one dimension consists of points equally
spread on a line. In two dimensions, the points lie on concentric circles
(De Leeuw & Stoop, 1984). In three dimensions (or higher), the points lie
equally spaced on the surface of a sphere (Buja, Logan, Reeds, & Shepp,
1994). Any permutation of these points gives an equally good fit. Examples
of these solutions are shown in Figure 13.3.

For ordinal MDS, we allowed that pij ≤ pkl can be admissibly trans-
formed by a weak monotone function into d̂ij = d̂kl. Yet, this means that if
we choose all disparities equal, then the disparities satisfy any rank-order
of the proximities, and equal disparities, in turn, ask for an MDS configu-
ration with equal distances. Generally, though, monotone regression should
find disparities with a stronger relation to the order of the data (see Section
9.2 and Table 9.4 for an example). However, the equal-disparities scenario
can be used to compute a particular upper bound for Stress values in ordi-
nal MDS. Such bounds were determined as follows. We entered a matrix of
constant dissimilarities into an MDS program and let the program deter-
mine the local minimum Stress. This was done for a range of different ns in
one to six dimensions. The Stress values are given in Table 13.3 and can be

1The dissimilarities do not have to be exactly equal; they may also be approximately
equal; that is, c − ε ≤ δij ≤ c + ε for some small ε (0 ≤ ε ≤ c).

2We may regard the constant dissimilarity case as one variety of a formal null hypoth-
esis. Another, more common, form of such a null hypothesis is the assumption that the
dissimilarities are “random” (see Chapter 3). A substantively motivated null hypothesis,
in contrast, is derived from the incumbent theory on the domain of interest, whereas the
alternative hypothesis relates to the challenging theory.

3Note that this simplex (of points) is not equivalent to the simplex of ordered regions
discussed in Chapter 5.
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FIGURE 13.3. Solutions for constant dissimilarities with n = 30. The left plot
shows the unidimensional solution and the right plot a 2D solution.

used as a reference. For example, the Stress found for ordinal MDS on the
Morse code data in Chapter 4 was .18 (n = 36, 2D). In Table 13.3, we find
that for n = 35 in 2D the worst expected Stress under the equal-disparity
scenario is .3957. Thus, from the Stress value alone, we can safely assume
that the 2D solution of the Morse code data shows more structure than the
constant dissimilarities case, which was verified by the interpretation.

De Leeuw and Stoop (1984) proved, using theoretical arguments, that for
unidimensional scaling Stress could never be larger than [(n − 2)/3n]1/2,
which for large n becomes 1/

√
3 = .5774. In 2D, they derive the upper

bound of Stress by assuming that the points lie equally spaced on a circle
(which need not be the optimal solution for constant dissimilarities; see,
e.g., the panel on the right-hand side of Figure 13.3). Then, Stress is smaller
than [1 − 2 cot2(π/2n)/(n2 − n)]1/2, with the limit [1 − 8/π2]1/2 = .4352
for large n.

The all-disparities-being-equal degenerate solution seems uncommon in
practice. In any case, if it occurs it can be most easily detected by checking
the Shepard diagram for numerically highly similar dissimilarities or d-
hats. For example, if ratio MDS is used on dissimilarities that fall into the
interval [.85, .95] and, thus, have quite similar ratios, a solution is found that
is close to the one obtained for constant dissimilarities. Thus, the strong
ratio MDS model is not always optimal for showing the data structure.
Rather, in such a case we advise redoing the analysis with interval MDS
or by using monotone splines. The intercept estimates the constant part
of the dissimilarities, and the varying part of the dissimilarities is shown
by the MDS configuration. In other words: if the Shepard diagram shows
signs of constant dissimilarities or d-hats, the MDS user’s strategy should
not consist in mechanically choosing a stronger transformation, but rather
one that has at least an intercept.
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TABLE 13.3. Upper bound values of Stress for ordinal MDS based on MDS of
constant dissimilarities.

n 1D 2D 3D 4D 5D 6D
2 .0000 .0000 .0000 .0000 .0000 .0000
3 .3333 .0000 .0000 .0000 .0000 .0000
4 .4083 .1691 .0000 .0000 .0000 .0000
5 .4472 .2598 .1277 .0000 .0000 .0000
6 .4714 .2674 .1513 .1005 .0000 .0000
7 .4880 .2933 .1838 .1265 .0843 .0000
8 .5000 .3084 .2027 .1356 .1091 .0728
9 .5092 .3209 .2145 .1568 .1192 .0949

10 .5164 .3315 .2280 .1688 .1237 .1072
12 .5271 .3473 .2423 .1847 .1473 .1140
14 .5345 .3579 .2555 .1977 .1612 .1334
16 .5401 .3658 .2648 .2069 .1691 .1442
18 .5443 .3719 .2718 .2145 .1780 .1520
20 .5477 .3767 .2777 .2200 .1838 .1572
25 .5538 .3855 .2883 .2311 .1949 .1694
30 .5578 .3914 .2955 .2387 .2022 .1766
35 .5606 .3957 .3007 .2439 .2078 .1822
40 .5628 .3987 .3045 .2480 .2121 .1868
45 .5644 .4012 .3076 .2512 .2154 .1900
50 .5657 .4032 .3100 .2538 .2179 .1926

13.4 Local Minima

MDS algorithms usually end up in a local minimum. This property guar-
antees that any small change of the configuration leads to a higher Stress.
In contrast, for a global minimum MDS configuration, there is no other
configuration with lower Stress. A simplified view of the Stress function is
shown in Figure 13.4 for an MDS analysis with two local minima, X∗ and
X∗∗, where X∗∗ is a global minimum. The solution found by MDS algo-
rithms is sometimes a global minimum, sometimes only a local minimum.4

Note that more than one global minimum configuration may exist. Those
configurations all have the same global minimum Stress, although the con-
figurations are different (even when the freedom of rotation, translation,
and reflection are taken into account). For this reason, we refer to a global
minimum instead of the global minimum.

There are differences between the various MDS algorithms in the effec-
tiveness of locating a global minimum. We limit our discussion of local
minima to absolute MDS because for this MDS model the local minimum
problem is complicated enough. The local minimum problem can be worse

4Local minima in MDS are not necessarily bad. A configuration with a slightly worse
fit is acceptable if it has a clearer interpretation than a configuration with a better fit
(see also Chapter 10).
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FIGURE 13.4. Example of local minima of a simplified Stress function σr(X).
X∗ is a local minimum, whereas X∗∗ is also a global minimum. X◦ and X◦◦ have
Stress σr(X∗).

for nonmetric MDS, or, in the case of nonmetric unidimensional scaling, be
less severe.

A simulation study of Groenen and Heiser (1996) showed that local min-
ima are more likely to occur in low dimensionality and hardly occur or
are absent in high dimensionality. Below, two special cases are discussed,
unidimensional scaling and full-dimensional scaling, for which theoretical
results exist concerning local and global optima.

The start configuration of the searching process is of crucial importance
for the determination of the final minimum. A random configuration X is
most likely not ideal for finding the lowest-Stress solution by the gradient
method, because it does not pay any attention to the data. Therefore, all
modern MDS programs use, by default, a rational starting configuration
derived by some variant of the metric methods discussed in Chapter 12,
usually the classical scaling solution of Torgerson (1958) and Gower (1966).
Naturally, rationality in the above sense does not guarantee that the start-
ing configuration is best for the particular purpose of an MDS analysis;
we may therefore sometimes choose to construct a starting configuration
according to given substantive expectations.

Several different methods exist for finding the global minimum. The
method of dimension reduction repeats the MDS analysis, starting from
a high dimensionality (say, 10) and then reducing the dimensionality of
the solution space stepwise (down to 2, say). The local minimum config-
uration of the higher-dimensional analysis is used as a start configuration
for the MDS analysis in one dimension lower by dropping the dimension
that accounts for the least variance (i.e., the last principal component).
Proceeding in this manner, one hopes that the low-dimensional solution is
a global minimum.

A different method, called multiple random starts, or multistart, consists
of running the MDS analysis from many (say, 100) different random starting
configurations and choosing the one with the lowest Stress. Using multistart



278 13. Special Solutions, Degeneracies, and Local Minima

and making some mild assumptions (see Boender, 1984), an estimate for
the expected total number of local minima can be given. Let ns be the
number of multistart start configurations and nm the number of different
local minima obtained. Then, the total expected number of local minima
nt is

nt =
nm(ns − 1)
ns − nm − 2

. (13.1)

If ns is approximately equal to nt, then we may assume that all local min-
ima are found. The one with the lowest Stress is the candidate global min-
imum. Multistart usually gives satisfactory results but is computationally
intensive.

Yet another approach is the tunneling method, discussed in Section 13.7.
For an overview of other global minimization methods, we refer to Groenen
(1993). For a comparison of various global optimization methods on a large
empirical data set, see Groenen, Mathar, and Trejos (2000).

13.5 Unidimensional Scaling

It has been noted by De Leeuw and Heiser (1977), Defays (1978), Hubert
and Arabie (1986), and Pliner (1996) that minimizing the Stress function
with equal weights changes to a combinatorial problem when m = 1. It
turns out that Stress has many local minima. Therefore, when doing (ab-
solute) MDS in one dimension, one always has to be concerned about the
local minimum problem. If, however, transformations of the proximities are
allowed, then the local minimum problem in unidimensional scaling may
be less severe. What follows is a technical discussion of the local minimum
problem in unidimensional absolute MDS.

Unidimensional Scaling: A Combinatorial Problem
Inasmuch we are dealing with one dimension, the matrix of coordinates
X has one column and is presented by the n × 1 column vector x in this
section. The distance between two points in one dimension is equal to
dij(x) = |xi −xj |. This can be expressed as dij(x) = (xi −xj)sign(xi −xj),
where sign(xi − xj) = 1 for xi > xj , sign(xi − xj) = 0 for xi = xj , and
sign(xi − xj) = −1 for xi < xj . An important observation is that only the
rank-order of x determines the sign(xi − xj). In this case, Stress can be
expressed as

σr(x) = η2
δ + η2(x) − 2ρ(x)

=
∑
i<j

wijδ
2
ij +

∑
i<j

wij(xi − xj)2 − 2
∑
i<j

wijδij |xi − xj |
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= η2
δ + x′Vx − 2

∑
i<j

wijδij(xi − xj)sign(xi − xj). (13.2)

This shows that the cross-product term of Stress, ρ(x), can be factored
into a term that is linear in x and a term that depends only on the rank-
order of the elements of x. Therefore, ρ(x) is a piecewise linear function,
its pieces being linear within each rank-order of x. For each rank-order, the
Stress is consequently quadratic in x. This suggests that the unidimensional
scaling problem can be solved by minimizing Stress over all permutations, a
combinatorial problem. We show that at a local optimum of a function that
is only dependent on the rank-order of x, the Guttman transform yields
an x that has the same rank-order. For that rank-order, Stress has a local
minimum.

Let ψ denote the rank-order of the vector x, such that xψ(1) denotes the
smallest element of x, and xψ(i) the element of x with rank i, so that xψ(1) ≤
xψ(2) ≤ · · · ≤ xψ(i) ≤ · · · ≤ xψ(n). Let R be the corresponding permutation
matrix, so that Rx is the vector with the elements ordered nondecreasingly.
Define li =

∑
j<i wψ(i)ψ(j)δψ(i)ψ(j) and ui =

∑
j>i wψ(i)ψ(j)δψ(i)ψ(j), which

are, respectively, the row sum up to the main diagonal and the row sum
from the main diagonal of the matrix with values wψ(i)ψ(j)δψ(i)ψ(j). Using
this notation, (13.2) can be written as

σr(x) = η2
δ + x′Vx − 2x′R′(l − u). (13.3)

For a given rank-order ψ, (13.3) is quadratic in x and has its minimum when
x is equal to the Guttman transform V+R′(l−u). The Guttman transform
of the majorization approach only uses the rank-order information of the
previous configuration, because R, l, and u only depend on the permutation
of x. Therefore, the majorizing algorithm stops if the rank-order of x does
not change, which usually happens in a few iterations. At this point, Stress
has a local minimum. Function (13.3) can also be expressed as

σr(x) = η2
δ + ‖x − V+R′(l − u)‖2

V − ‖l − u‖2
RV+R′ , (13.4)

where the term t(ψ) = ‖l−u‖2
RV+R′ is a function of the permutation only.

Thus, if t(ψ) is maximized, the second term of (13.4) vanishes if x is chosen
equal to the Guttman transform V+R′(l − u).

Defays (1978) minimizes (13.4) by maximizing t(ψ). Suppose that we
have found a permutation ψ that is locally optimal with respect to adja-
cent pairwise interchanges. That is, any local change of ψ, interchanging
ψ(i) and ψ(i+1), does not increase the value of t(ψ). We say that t(ψ) has
a local maximum if permutation ψ satisfies this condition. Note that this
is a stronger formulation for a local minimum than we used for Stress, be-
cause Stress has a local minimum whenever the Guttman transform cannot
change the order of x. Groenen (1993) proves that, even for nonconstant
wij , Stress has a local minimum whenever t(ψ) has a local maximum. Sup-
pose that we know how to find a ψ that makes t(ψ) attain the highest
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possible value. Then ψ defines the order of x for a global minimum of
Stress.

Pliner (1996) gives a 100(1 − α)% confidence interval for the number of
local minima in unidimensional scaling. Let ns be the number of (random)
sample configurations ψ and nm be the number of those permutations for
which σr(x) is a local minimum. Then, the confidence interval is given by[

n!
nm

nm + (ns − nm + 1)XF (2(ns − nm + 1), 2nm)
,

n!
(nm + 1)XF (2(nm + 1), 2(ns − nm))

(ns − nm) + (nm + 1)XF (2(nm + 1), 2(ns − nm))

]
,

where XF (ν1, ν2) is the critical point of an F distribution with (ν1, ν2)
degrees of freedom such that the probability equals α/2 for a similarly
distributed t to have t larger or equal to the critical point. Pliner showed
that for an 8 × 8 example (13.5) gave the exact number of local minima of
12770. For another (random data) example, he obtained a 95% confidence
interval of [2.6 · 109, 3.4 · 109] for the number of local minima.

Some Algorithms for Unidimensional Scaling
A whole variety of combinatorial optimization strategies is available for
maximizing t(ψ) over ψ. One obvious strategy is simply to try all different
orders ψ of n objects, and choose the one for which t(ψ) is maximal. This
strategy of complete search guarantees a global maximum of t(ψ) and thus
a global minimum of Stress. However, because there are n! different per-
mutations, a complete search becomes impractical for n ≥ 10. Other, more
efficient strategies are available. For equal weights, the strategy of dynamic
programming of Hubert and Golledge (1981) and Hubert and Arabie (1986)
is very efficient for moderate n. Their strategy reduces the order of compu-
tation from n! to 2n while still finding a globally optimal solution. Groenen
(1993) extended their approach to the case of nonidentical weights but
loses the guarantee of reaching a global optimum and some of the compu-
tational efficiency. The strategy of local pairwise interchange (LOPI) does
not guarantee global optimality, but it is very efficient and yields good re-
sults. LOPI strategies amount to choosing a pair of objects, interchanging
them, and evaluating t(ψ) for the changed rank-order. If t(ψ) is higher
than any rank-order we have found so far, then we accept the pairwise in-
terchange. The search is stopped if the pairwise interchanges do not yield
a higher t(ψ). The resulting ψ defines a local minimum of Stress. The vari-
ous implementations of the LOPI strategy result in better local minima of
Stress compared to applying the Smacof algorithm. In a simulation study
of Groenen (1993), the LOPI strategies found a global maximum of t(ψ) in
the majority of the cases. Poole (1984, 1990) obtained good results in lo-
cating the global optimum for unidimensional unfolding. De Soete, Hubert,
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and Arabie (1988) found that LOPI performed better than an alternative
method called simulated annealing. Brusco (2001) studied the use of an-
other implementation of simulated annealing in unidimensional scaling and
reported that often a good candidate global minimum was found. Brusco
and Stahl (2000) focused on good initial configurations for unidimensional
scaling. They proposed to use the results of a related quadratic assignment
problem as a start for unidimensional scaling. Their study showed that such
an approach can indeed provide effective and efficient initial solutions for
large-scale unidimensional scaling problems. A review of unidimensional
scaling algorithms minimizing the sum of absolute errors instead of the
usual squared errors can be found in Brusco (2002).

Instead of a combinatorial technique, Pliner (1996) used a smoothing
approach to the local minimum problem in unidimensional scaling. The
Stress function is replaced by the function

σε(X) =
∑
i<j

δ2
ij +

∑
i<j

(xi − xj)2 − 2
∑
i<j

δijgε(xi − xj) with (13.5)

gε(t) =
{

t2(3ε − |t|)/3ε2 + ε/3, if |t| < ε
|t|, if |t| ≥ ε,

(13.6)

which smooths −dij(x). The only difference of (13.5) with Stress is that
for small distances (dij < ε) the distance in the last term of (13.5)
is replaced by a smooth function. Figure 13.5 shows how gε(xi − xj)
smooths dij(x) = |xi − xj |. Pliner recommends starting with the value
ε = 2 max1≤i≤n n−1 ∑n

j=1 δij , minimizing σε(X) over X, and using the
minimizer as a starting configuration for minimizing σε(X) again, but with
a smaller value of ε. This procedure is repeated until ε is very small. If we
assume that all distances are greater than 0, then there exists an ε for which
σε(X) reduces to raw Stress. Because −gε(t) is a concave function in t, it
can be linearly majorized, so that a convergent algorithm can be obtained
[as proved by Pliner (1996) using a different argumentation]. More impor-
tant, the smoothing algorithm turns out to yield global minima solutions
very often. Numerical experiments of Pliner suggest that in at least 60%
(sometimes even 100%) of the runs, a global minimum was found, which
makes this smoothing strategy an important aid for finding the global min-
imum in unidimensional scaling. Section 13.8 discusses an extension of this
smoothing strategy to higher dimensionality.

13.6 Full-Dimensional Scaling

To better understand the local minimum problem for Stress, we consider
full-dimensional scaling (absolute MDS), where the dimensionality is m =
n − 1. In full-dimensional scaling, there is only one minimum, a global one
(De Leeuw, 1993). This can be seen as follows. Consider the matrix of
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-|xi - xj|

-gε(xi - xj)

xi-ε ε xj

0

FIGURE 13.5. The function −dij(x) and the smoothed version −gε(x) in (13.5)
used by Pliner (1996).

squared distances D(2)(X) = 1c′ + c1′ − 2XX′, with X being column cen-
tered and where c contains the diagonal elements of XX′ (see also Section
7.3). Thus, the rank of XX′ can never exceed n − 1. For m = n − 1, the
cross-product term XX′ is simply a double-centered positive semidefinite
(p.s.d.) matrix B, so that the squared distances are equal to bii +bjj −2bij .
It can be verified that the set of p.s.d. matrices is convex, because for
B1,B2 p.s.d. and 0 ≤ α ≤ 1, αB1 +(1−α)B2 is p.s.d., too. This allows us
to express Stress as

σr(B) =
∑
i<j

wijδ
2
ij +

∑
i<j

wij(bii + bjj − 2bij)

−2
∑
i<j

wijδij(bii + bjj − 2bij)1/2. (13.7)

The first term of (13.7) does not depend on B, and the second term is a
linear function of B. The third term is minus the square root of the same
linear function of B, which is also a convex function in B. It may be verified
that the sum of a linear and a convex function is convex, so that σr(B)
is a convex function in B. Thus, minimizing Stress over B is minimizing
a convex function over a convex set, which has a local minimum that is a
global minimum. Note that this result does not hold in the case where B
is restricted to have m < n − 1, because the set of Bs restricted to have
rank m < n − 1 is not convex.

Although one would expect B to be of rank n − 1 at a minimum, this
usually is not the case. In fact, numerical experiments suggest that at a
minimum, the rank of B does not exceed the number of positive eigen-
values in classical scaling. Critchley (1986) and Bailey and Gower (1990)
proved this conjecture for S-Stress, but no proof exists for Stress. This re-
sult implies that an MDS analysis (with or without transformations) in
dimensionality n − 1 usually ends with a solution of lower rank. De Leeuw
and Groenen (1997) prove that at a minimum B has rank n−1 only in the
case of a perfect representation of Stress zero with ∆ a Euclidean distance
matrix. The converse is also true: at a minimum with nonzero Stress, B
has rank n − 2 or smaller.
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In confirmatory MDS, the linear constraint X = YC is used quite often
(see Chapter 10). If, without loss of generality, Y has r < n columns and is
of full rank r, and the dimensionality m of X equals r, then confirmatory
MDS with linear constraints has one minimum, which is global. The same
reasoning as above can be used to verify this statement, with the additional
constraint that B = YCC′Y′, which is also convex if C is square. In the
extreme case where Y has only one column, C becomes a scalar, for which
the global minimum solution was given in Section 11.1 by b∗.

13.7 The Tunneling Method for Avoiding
Local Minima

The problem of local minima is not limited to MDS but is also quite com-
mon in numerical optimization. There are many methods for finding a
configuration that is not only locally optimal but also has the overall best
minimum. One of these methods, called the tunneling method, was made
suitable for MDS by Groenen and Heiser (1991), Groenen (1993), and Groe-
nen and Heiser (1996). The basic idea of the tunneling method can be de-
scribed by the following analogy. Suppose that our objective is to find the
lowest spot in a mountainous area. First, we try to find the lowest spot in a
small area by pouring water and following the water until it forms a small
pool. Then, we start drilling a tunnel horizontally. If the tunnel gets out of
the mountain, then we are sure that the water flows to a spot that is lower
(or remains at the same height). Repeating these steps leads us eventually
to the global minimum.

The same idea can be applied for finding the global minimum of the
Stress function. Then, the tunneling method alternates over the following
two steps.

• Find a local minimum X∗ of the Stress function.

• Find another configuration that has the same Stress as X∗.

The second step is the crux of the method and is called the tunneling step.
It is performed by minimizing the tunneling function τ(X). Suppose that
the Stress function to be minimized is the one graphed in Figure 13.4. For
this Stress function, the tunneling function τ(X) is shown in Figure 13.6.
Near the local minimum X∗, the tunneling function τ(X) has a pole (peak)
to avoid finding X∗ as a solution of the tunneling step. Furthermore, τ(X)
becomes zero at X◦ and X◦◦, which are exactly those points in Figure
13.4 that have the same Stress as X∗. Thus, finding the minimum of τ(X)
gives the solution of the second step of the tunneling method. The precise
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1

X* X° X°°

τ(X)

FIGURE 13.6. The tunneling function τ (X). X∗ is a local minimum of Stress
(see also Figure 13.4), X◦ and X◦◦ are configurations with the same Stress as
X∗.

definition of the tunneling function is

τ(X) = |σr(X) − σr(X∗)|λ
(

1 +
ω∑

i<j wij [dij(X∗) − dij(X)]2

)
. (13.8)

Here λ is the pole strength parameter that determines how steep the peak
is near the local minimum X∗. The pole width parameter ω determines
the width of activity of the pole. Groenen and Heiser (1996) suggest that
λ ≤ 1/3 and ω ≈ n/2 are needed to have an effective pole, although the
latter seems to depend much on the particular data set.

The effectiveness of the tunneling method is determined by the success
of the tunneling step. Clearly, if we start the tunneling step from the global
minimum X∗, then τ(X) cannot become zero (assuming that there is no
other global minimum with the same global minimum Stress). Therefore, at
some point the tunneling step must be stopped. However, if the tunneling
step is stopped too early, then the global minimum can be missed. Exper-
iments of Groenen and Heiser (1996) showed that the tunneling method is
able to find the global minimum systematically. However, for some combi-
nations of λ and ω and for certain data sets, the tunneling method fails.

For more details about the tunneling method and the iterative majoriza-
tion algorithm used for minimizing τ(X), we refer to Groenen (1993) or
Groenen and Heiser (1996). The latter also contains an extension of the
tunneling method with Minkowski distances.

13.8 Distance Smoothing for Avoiding Local
Minima

In Section 13.5, we discussed the idea of Pliner (1996) to avoid local minima
by gradually introducing the rough edges of the Stress function. However,
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FIGURE 13.7. Surface of the error term (5 − d14(X))2 in panel (a) and of the
corresponding error term (5 − d14(X|ε))2 in distance smoothing with ε = 2.

he only implemented his idea for unidimensional scaling and no algorithm
was developed or tested for higher dimensionality. Groenen et al. (1999)
continued this line of research by extending this method to more than one
dimension. In addition, they also allowed for any Minkowski distance and
derived a majorizing algorithm. Their method for avoiding local minima in
MDS was called distance smoothing. Here, we explain the basic ideas.

Consider a toy example to visualize the raw Stress function in two di-
mensions. Suppose that we have n = 4 points in 2D, keeping point 1 fixed
at (0, 0), point 2 at (5, 0), and point 3 at (2,−1) and leaving the coordinates
(x41, x42) for point 4 free, so that

X =

⎡⎢⎢⎣
0 0
5 0
2 −1

x41 x42

⎤⎥⎥⎦ .

The only relevant dissimilarities are those that involve point 4. Assume
that δ14 = 5, δ24 = 3, and δ34 = 2. Then, minimizing Stress amounts to
finding the optimal coordinates x41 and x42. For this example, the Stress
function can be written as

σr(x41, x42) = (5 − d14(X))2 + (3 − d24(X))2 + (2 − d34(X))2 + c,
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where dij(X)) are Euclidean distances and c takes all constant terms. The
error term (5 − d14(X))2 is visualized in Figure 13.7a and shows a peak at
the origin.

Now, we show what happens if we smooth the peak of the distance.
Groenen et al. (1999) do this by using the smoothed distance

dij(X|ε) =

(
p∑

s=1

h2
ε(xis − xjs)

)1/2

, (13.9)

where

hε(t) =
{ 1

2 t2/ε + 1
2ε, if |t| < ε,

|t|, if |t| ≥ ε,
(13.10)

Note that hε(t) is slightly different from the definition of gε(t) in (13.5),
but has almost the same form. Now the smoothed Stress becomes

σε(x41, x42) = (5 − d14(X|ε))2 + (3 − d24(X|ε))2 + (2 − d34(X|ε))2 + c.

The effect of distance smoothing on a single error term is shown in Figure
13.7b for ε = 2. Clearly, the peak is replaced by a smoothed form. The
smoothing is governed by the parameter ε: for a large ε, there is much
smoothing and for ε approaching zero no smoothing occurs, so that the
error (5 − d14(X|ε))2 approaches (5 − d14(X))2.

The effect of the combined error terms for σr(x41, x42) and σε(x41, x42)
with ε = 2 and ε = 5 are shown in Figure 13.8. The irregularities in the
Stress function of Figure 13.8a are caused by the peaks that appear in each
of the error terms. Increasing ε smooths the irregularity as can be seen in
Figures 13.8b and 13.8c. Distance smoothing starts from a large ε so that σε

is very smooth. Then smaller values of ε gradually introduce the irregularity.
Eventually, for ε close to zero, σε(x41, x42) approaches σr(x41, x42) closely.

The distance smoothing strategy consists of the following steps. Start
with a large value of ε and minimize σε. Then reduce ε somewhat and
continue minimizing σε. Repeat these steps until ε is close to zero. Finally,
continue minimization σr.

Groenen et al. (1999) studied the effectiveness of distance smoothing in
comparison to the Smacof algorithm and Kyst. In a simulation study
on error-free data using 100 random starts, distance smoothing recovered
the true global minimum always for unidimensional scaling and almost al-
ways in 2D or 3D. Smacof and Kyst recovered the perfect data only in a
small percentage of the random starts. However, for MDS with Minkowski
distances close to the dominance distance, distance smoothing did not per-
form well and Kyst yielded the same or better results. Similar results were
obtained for error-perturbed data.

To be on the safe side, Groenen et al. (1999) recommend applying the
distance smoothing strategy with 10 random starts and choosing the lowest
local minimum as the candidate global minimum.
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FIGURE 13.8. The surface of the original Stress function σr(x41, x42) panel (a),
of the smoothed Stress function σε(x41, x42) for ε = 2 in panel (b) and ε = 5 in
panel (c).
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Note that throughout the discussion on global minima in this chapter,
we have assumed ratio MDS. It is not clear how severe the local minimum
problem is when we allow for optimal transformations of the d-hats.

13.9 Exercises

Exercise 13.1 Consider the multitrait-multimethod matrix in Exercise 1.6.
Do both an ordinal and an interval MDS with these data. Study the Shep-
ard diagrams of both solutions. What would you recommend to a user of
MDS, given these findings?

Exercise 13.2 Consider the data matrix in Exercise 1.6.

(a) Use the T - and M -codings of the nine variables to define a starting
configuration for MDS and then repeat Exercise 1.6 with this starting
configuration. Point 1, thus, gets starting coordinates (1,1); point 2
gets (2,1), and so on.

(b) Study the Shepard diagram of an ordinal MDS and compare it to the
Shepard diagram of a linear MDS. Discuss whether these data are
better scaled with an ordinal or with an interval MDS (see also Borg
& Groenen, 1997; Borg, 1999).

Exercise 13.3 Set up a data matrix (at least 5×5) with δij = 1 for all i �= j
and δij = 0 for all i = j.

(a) Use an interactive MDS program (such as the freeware program
Permap, see Appendix A) to find a 2D ratio MDS solution for these
data.

(b) Click on one point of the solution and move this point to a differ-
ent position. Then, rerun the MDS analysis with this new starting
configuration. Possibly repeat this process, trying to find a different
solution from the one obtained above. Compare your results to Figure
13.3.

(c) Find a 1D solution and compare it to Figure 13.3. Test the stabil-
ity of this solution by the procedure described above. What do you
conclude?

(d) Repeat the above analyses with ordinal MDS.

(e) Set up a new data matrix with “nearly equal” but all different dissim-
ilarities (i �= j) from the interval [.85, .95]. Run ratio, interval, and
ordinal MDS analyses for these data, using different MDS programs
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and forcing the program to do many iterations. Which approach rep-
resents the data best not just in terms of Stress, but in terms of
describing the structure of the data? Explain why.

Exercise 13.4 Use the data in Table 10.1 on p. 229.

(a) Scale these data with ordinal MDS and compare the solution to the
one in Figure 10.3.

(b) Redo the above scaling with two different starting configurations,
one that corresponds to Figure 10.2 and one that corresponds to
Figure 10.3. Does your MDS program lead to solutions similar to the
starting configurations? Can you generate radically different local-
minima solutions? How much do they differ in terms of Stress?

(c) Check whether the solutions generated with the different starting
configurations remain the same when you force the program to do
many (100, say) iterations. (Hint: You may also have to set a very
small Stress target value to force your program to actually do that
many iterations.)

(d) Use an interactive program (such as Permap) and test the stability
of the MDS solutions by moving some points and then rerunning
MDS from thereon.



Part III

Unfolding



14
Unfolding

The unfolding model is a model for preferential choice. It assumes that
different individuals perceive various objects of choice in the same way but
differ with respect to what they consider an ideal combination of the ob-
jects’ attributes. In unfolding, the data are usually preference scores (such
as rank-orders of preference) of different individuals for a set of choice ob-
jects. These data can be conceived as proximities between the elements of
two sets, individuals and choice objects. Technically, unfolding can be seen
as a special case of MDS where the within-sets proximities are missing.
Individuals are represented as “ideal” points in the MDS space so that the
distances from each ideal point to the object points correspond to the pref-
erence scores. We indicate how an unfolding solution can be computed by
the majorization algorithm. Two variants for incorporating transformations
are discussed: the conditional approach, which only considers the relations
of the data values within rows (or columns), and the unconditional ap-
proach, which considers the relations among all data values as meaningful.
It is found that if transformations are allowed on the data, then unfold-
ing solutions are subject to many potential degeneracies. Stress forms that
reduce the chances for degenerate solutions are discussed.

14.1 The Ideal-Point Model

To introduce the basic notions of unfolding models, we start with an exam-
ple. Green and Rao (1972) asked 42 individuals to rank-order 15 breakfast
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TABLE 14.1. Preference orders for 42 individuals on 15 breakfast items (Green
& Rao, 1972). The items are: A=toast pop-up; B=buttered toast; C=English
muffin and margarine; D=jelly donut; E=cinnamon toast; F=blueberry muffin
and margarine; G=hard rolls and butter; H=toast and marmalade; I=buttered
toast and jelly; J=toast and margarine; K=cinnamon bun; L=Danish pastry;
M=glazed donut; N=coffee cake; O=corn muffin and butter.

A B C D E F G H I J K L M N O
1 13 12 7 3 5 4 8 11 10 15 2 1 6 9 14
2 15 11 6 3 10 5 14 8 9 12 7 1 4 2 13
3 15 10 12 14 3 2 9 8 7 11 1 6 4 5 13
4 6 14 11 3 7 8 12 10 9 15 4 1 2 5 13
5 15 9 6 14 13 2 12 8 7 10 11 1 4 3 5
6 9 11 14 4 7 6 15 10 8 12 5 2 3 1 13
7 9 14 5 6 8 4 13 11 12 15 7 2 1 3 10
8 15 10 12 6 9 2 13 8 7 11 3 1 5 4 14
9 15 12 2 4 5 8 10 11 3 13 7 9 6 1 14

10 15 13 10 7 6 4 9 12 11 14 5 2 8 1 3
11 9 2 4 15 8 5 1 10 6 7 11 13 14 12 3
12 11 1 2 15 12 3 4 8 7 14 10 9 13 5 6
13 12 1 14 4 5 6 11 13 2 15 10 3 9 8 7
14 13 11 14 5 4 12 10 8 7 15 3 2 6 1 9
15 12 11 8 1 4 7 14 10 9 13 5 2 6 3 15
16 15 12 4 14 5 3 11 9 7 13 6 8 1 2 10
17 7 10 8 3 13 6 15 12 11 9 5 1 4 2 14
18 7 12 6 4 10 1 15 9 8 13 5 3 14 2 11
19 2 9 8 5 15 12 7 10 6 11 1 3 4 13 14
20 10 11 15 6 9 4 14 2 13 12 8 1 3 7 5
21 12 1 2 10 3 15 5 6 4 13 7 11 8 9 14
22 14 12 10 1 11 5 15 8 7 13 2 6 4 3 9
23 14 6 1 13 2 5 15 8 4 12 7 10 9 3 11
24 10 11 9 15 5 6 12 1 3 13 8 2 14 4 7
25 15 8 7 5 9 10 13 3 11 6 2 1 12 4 14
26 15 13 8 5 10 7 14 12 11 6 4 1 3 2 9
27 11 3 6 14 1 7 9 4 2 5 10 15 13 12 8
28 6 15 3 11 8 2 13 9 10 14 5 7 12 1 4
29 15 7 10 2 12 9 13 8 5 6 11 1 3 4 14
30 15 10 7 2 9 6 14 12 8 11 5 3 1 4 13
31 11 4 9 10 15 8 6 5 1 13 14 2 12 3 7
32 9 3 10 13 14 11 1 2 4 5 15 6 7 8 12
33 15 8 1 11 10 2 4 13 14 9 6 5 12 3 7
34 15 8 3 11 10 2 4 13 14 9 6 5 12 1 7
35 15 6 10 14 12 8 2 4 3 5 11 1 13 7 9
36 12 2 13 11 9 15 3 1 4 5 6 8 10 7 14
37 5 1 6 11 12 10 7 4 3 2 13 9 8 14 15
38 15 11 7 13 4 6 9 14 8 12 1 10 3 2 5
39 6 1 12 5 15 9 2 7 11 3 8 10 4 14 13
40 14 1 5 15 4 6 3 8 9 2 12 11 13 10 7
41 10 3 2 14 9 1 8 12 13 4 11 5 15 6 7
42 13 3 1 14 4 10 5 15 6 2 11 7 12 8 9

items from 1 (= most preferred) to 15 (= least preferred). They obtained
the data in Table 14.1, where each row i contains the ranking numbers as-
signed to breakfast items A, . . ., O by individual i. These numbers express
some kind of closeness, the proximity of each item to an optimal breakfast
item.

In contrast to other examples discussed so far, the row entries of this
matrix differ from the column entries: the former are individuals, the lat-
ter breakfast items.1 It is possible, though, to conceive of Table 14.1 as a
submatrix of the familiar proximity matrix. This is shown in Figure 14.1,
where the shaded rectangles stand for the observed scores. Both rectangles
contain the same scores: the rows and columns of one rectangle appear

1A matrix with different row and column entries is called a two-mode matrix, see
Section 3.7.
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FIGURE 14.1. Schematic view of proximity matrix in Table 14.1 as a submatrix
of a complete proximity matrix.

as columns and rows in the other. Each rectangle is called an off-diagonal
corner matrix. One notes that in this data matrix only between-sets proxim-
ities are given and no within-sets proximities. Hence, one can analyze these
proximities by “regular” MDS if the within-sets proximities are treated as
missing values.

Ideal Points and Isopreference Contours
Figure 14.2 presents such an unfolding solution for Table 14.1. The result-
ing configuration consists of 57 points, 42 for the individuals (shown as
stars) and 15 for the breakfast items (shown as solid points). Every indi-
vidual is represented by an ideal point. The closer an object point lies to an
ideal point, the more the object is preferred by the respective individual.
For example, Figure 14.2 says that individual 4 prefers K (cinnamon bun)
and L (Danish pastry) the most, because the object points of these break-
fast items are closest to this individual’s ideal point. The circles around
point 4 are isopreference contours. Each such contour represents a class of
choice objects that are preferred equally by individual 4. We note that for
individual 4, D and M are slightly less preferred than K and L. Somewhat
less preferred is the coffee and cake breakfast (N), whereas A, B, C, E, F,
G, H, I, J, and O are more or less equally disliked.

In this way, the preferences for every individual are modeled by relating
ideal points to the points representing the choice objects. This defines the
ideal-point model of unfolding. Note that the model assumes that all indi-
viduals share the same psychological space for the choice objects. Individual
differences are modeled exclusively by the different ideal points.

The term “unfolding” (Coombs, 1950) was chosen for the following rea-
son. Assume that Figure 14.2 was printed on a thin handkerchief. If this
handkerchief is picked up with two fingers at the point representing in-
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FIGURE 14.2. Unfolding representation of data in Table 14.1. Stars are indi-
viduals, solid points are items; the circles show the isopreference contours for
individual 4.

dividual i, yi, and then pulled through the other hand, we have folded it:
point yi is on top, and the farther down the object points, the less preferred
the objects they represent. The order of the points in the vertical direction
corresponds (if we folded a perfect representation) to how individual i or-
dered these objects in terms of preference. Picking up the handkerchief in
this way at any individual’s ideal point yields this individual’s empirical
rank-order. The MDS process, then, is the inverse of the folding, that is,
the unfolding of the given rank-orders into the distances.2

Figure 14.2 seems to indicate that none of the breakfast items is partic-
ularly attractive to the respondents, because none really comes close to an
ideal point (a “star”). Furthermore, we also see that the ideal points scatter
quite a bit, indicating considerable interindividual differences in what kind
of breakfast item the respondents prefer. Thus, it would be impossible to
please everybody with any particular small set of breakfast items. However,
before embarking on further interpretations, we should first ask to what ex-
tent we can really trust what we see here in the unfolding configuration.

Unfolding: Technical Challenges
An MDS analysis of an off-diagonal proximity matrix poses technical chal-
lenges. A lot of data are missing and, moreover, the missing data are not
just randomly scattered throughout the data matrix. What does that mean
in terms of the model? Consider a case suggested by Green and Carmone
(1970). Figure 14.3 shows 35 points, arranged to form an A and an M . As-
sume that we compute the distances for this configuration, and use them

2More precisely, the case just described is conditional unfolding; see below.
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FIGURE 14.3. Synthetic AM configuration (after Green & Carmone, 1970).

as data for ordinal MDS. If a 2D representation is computed, it will, no
doubt, recover the underlying AM configuration almost perfectly. But what
happens in the unfolding situation when only those data that correspond
to distances between the points in the A and the M are employed? If M ’s
points are fixed, then, for example, the order of d(13, 23) to d(13, 29) im-
plies that point 13 must be placed to the left of the perpendicular through
the midpoint of the line segment connecting 23 to 29. At the same time,
the points in A impose constraints on those in M , and, indeed, those are
the only ones imposed on M ’s points, just as M ’s points are the only points
to constrain the points of A. Note that this involves all distances between
A and M . Considering that there are many such order relations, it seems
plausible to expect a very good recovery of the AM configuration.

In the next sections, we show, however, that blind optimization of Stress
(with admissible transformation of the proximities) yields degenerate solu-
tions for unfolding. We discuss why this is so.

14.2 A Majorizing Algorithm for Unfolding

Assume that the proximities are dissimilarities and that no transformations
are allowed on the data. Let W be the partitioned matrix of weights wij ,[

W11 W12
W′

12 W22

]
=

[
0 W12

W′
12 0

]
,

and let the coordinate matrix X be partitioned in X1 for the n1 individuals
and X2 for the n2 objects in the unfolding analysis. Because the within-sets
proximities are missing, W11 = 0 and W22 = 0. This weight matrix can be
used in any program for MDS that allows missing values to do unfolding.
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Heiser (1981) applied this idea for the majorizing algorithm for minimizing
Stress (see Chapter 8). The corresponding algorithm is summarized below.

Consider the minimization of raw Stress; that is,

σr(X) =
∑
i<j

wij(δij − dij(X))2

= η2
δ + tr X′VX − 2tr X′B(X)X,

where V is defined as in (8.18) and B(X) as in (8.24). For the moment,
assume that all between-sets weights are one, so that the n1 × n2 matrix
W12 = 11′, where the vectors 1 are of appropriate lengths. Then, the
partitioned matrix V equals

V =
[

V11 V12
V′

12 V22

]
=

[
n2I −11′

−11′ n1I

]
.

The majorization algorithm of Section 8.6 proves that Stress is reduced by
iteratively taking the Guttman transform (8.28), Xu = V+B(Y)Y, where
Y is the previous estimate of X. Heiser (1981) showed that for unfolding
with equal weights W12 = 11′ we can use instead of the Moore–Penrose
inverse V+ a generalized inverse

V− =
[

n−1
2 (I − n−111′) 0

0 n−1
1 (I − n−111′)

]
,

where n = n1 + n2. B(Y) can be partitioned in the same way as V; that
is,

B(Y) =
[

B11(Y) B12(Y)
B12(Y)′ B22(Y)

]
;

see (8.24).
The update becomes

Xu
1 = [V−]11[B11(Y)Y1 + B12(Y)Y2], (14.1)

Xu
2 = [V−]22[B12(Y)′Y1 + B22(Y)Y2]. (14.2)

As with every majorizing algorithm, the Stress is reduced in every iteration
until convergence is reached.

If the between-sets weights have different values, then the update for-
mulas (14.1) and (14.2) do not work anymore. Instead, the update for-
mula (8.28) for MDS with weights should be applied. The Smacof al-
gorithm needs the computation of the Moore-Penrose inverse V+ of the
(n1 + n2) × (n1 + n2) matrix V which can be computed outside the itera-
tion loop and stored in memory. For reasonable-sized unfolding problems,
the memory and computational effort do not pose a problem for current
computers.
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FIGURE 14.4. Ordinal unconditional unfolding representation based on distances
between points in A and M in Figure 14.3.

14.3 Unconditional Versus Conditional Unfolding

We now take the 19 × 16 corner matrix of the between-sets distances of the
AM example and check whether ordinal MDS (called “unfolding” under
these circumstances) can recover the AM configuration in Figure 14.3. We
emphasize ordinal unfolding, but any of the transformations discussed in
Chapter 9 for complete MDS can be used.

Unconditional Unfolding
In ordinary MDS, any nonmissing proximity can be compared uncondi-
tionally to any other nonmissing proximity. For unfolding, this situation is
called unconditional unfolding.

The unconditional unfolding solution for the AM data is shown in Figure
14.4.3 Contrary to expectation, this is not a particularly good reconstruc-
tion of the original AM configuration. The M is quite deformed, and the
A is sheared to the left. Yet, the Stress is only .01, so it seems that the
ordinal relations of the between-sets proximities are too weak to guarantee
perfect recovery of the underlying configuration.

An MDS analysis for a complete set of proximities on A and M is con-
strained by many more order relations than doing MDS on an off-diagonal
submatrix. In the off-diagonal submatrix, we have nA · nM entities, where
nA = 16, the number of points in A, and nM = 19 for M . Because we can
compare any two entities, we have

(
nA·nM

2

)
= 46, 056 order relations. In

3We used the program Minissa-I (Lingoes, 1989), but any other MDS program that
allows for missing data could be used as well. Unconditional unfolding can be accom-
plished by embedding the corner matrix into a complete matrix as shown in Figure
14.1. Programs that allow the user to input off-diagonal matrices directly are only more
convenient, but they yield the same solutions as “regular” MDS with missing data.
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the complete case (no missing data), we have
(
nA+nM

2

)
= 595 different en-

tities, and, thus,
(595

2

)
= 176, 715 order relations. Yet, the sheer reduction

of proximities and thus of relevant order relations between the proximi-
ties is, by itself, not of crucial importance: Figure 6.1, for example, shows
that almost perfect recovery of the underlying configuration is still possible
even when 80% of the proximities are eliminated. This recovery, however,
depends critically on a systematic interlocking of the nonmissing proximi-
ties. In the unfolding case, such interlocking is not given: rather, there are
no proximities at all for determining the distances within the two subsets
of points.

Conditional Unfolding
The data information is now reduced even further by treating the 19 × 16
proximity matrix derived from the AM configuration row-conditionally.4 A
proximity is only compared to other proximities within its own row, not to
proximities in other rows. With nA = 16 and nM = 19, row-conditionality
reduces the number of order constraints in the MDS representation from
46,056 in the unconditional case to only nA · [nM (nM −1)/2] = 2,736 in the
conditional case. An early reference of the use of row-conditional unfolding
is Gleason (1967).

Why do we consider conditional unfolding at all? After all, the uncon-
ditional approach already has serious problems. But consider Table 14.1.
Each of its rows is generated by a different individual. For such data, it
must be asked whether they can be meaningfully compared over individ-
uals. By comparing the ranks unconditionally, we would assume that if
individual i ranks beakfast item x higher than individual j ranks item y,
then x comes closer to i’s ideal item than y is to j’s ideal. This is a strong
assumption, because individuals i and j may carry out their ranking task
completely differently. For example, i may be essentially indifferent to all
items, whereas j likes all items very much so that it becomes difficult to
decide which one he or she likes best. In unconditional ordinal unfolding,
all 1s must be mapped into distances smaller than those representing 2s,
and so on, but the row-conditional case requires only that a 1 in a given
row is mapped into a distance smaller than the distance representing a 2
of the same row, and so on, for all rows separately.

For the breakfast item preferences in Table 14.1, the configuration in
Figure 14.2 was obtained by ordinal row-conditional unfolding (with the
program SSAR-2). The alienation coefficient of this solution is K = .047,
so the order of the proximities in each row of data seems to match the order

4This restriction is called split-by-rows by Kruskal and Carmone (1969), which sug-
gests that the data matrix is treated as if we had cut it into horizontal strips: the
elements can be compared within a strip, but not between strips.
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all A points all M points

the M points

all A points

a. b.

FIGURE 14.5. Trivial unconditional ordinal unfolding solutions for the AM data
when using Stress.

of the corresponding distances very well. For individual 11, for example, we
find that d(11, G) is indeed the smallest distance, whereas d(11, D) is the
greatest distance, corresponding to the ranks 1 for item G and 15 for D.
Moreover, the distances from point 11 to those points representing items of
intermediate preference are also approximately in agreement with the data.
The configuration suggests further that the individuals seem to divide the
items into four groups. Yet, we notice that the object points are essentially
all located on a circle. Such peculiar regularities often indicate degeneracies
in the MDS solution. We turn to this question in the next section.

14.4 Trivial Unfolding Solutions and σ2

The minimization of Stress for conditional or unconditional unfolding leads
easily to trivial or even degenerate solutions, apart from the degeneracies
that can occur in ordinary MDS.

The Equal Distance Solution
In unconditional ordinal unfolding there exist two trivial or degenerate
solutions if Stress is used as a minimization criterion. That is, Stress can
be reduced arbitrarily close to 0, irrespective of the order relations in the
data. Two such degenerate solutions are presented in Figure 14.5.

For our AM problem, one trivial solution consists of only two point
clusters: all points of the A are condensed into one point and all points of
the M into another; the A and the M clusters are clearly separated from
each other. The other trivial solution consists of all M points on a circle
(not necessarily equally spaced) and the A points in the center, or vice
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versa. In higher dimensions, the M points could appear on the surface of
a (hyper)sphere. These two solutions share the fact that all distances from
the ideal points to the object points are the same.

Why these configurations represent solutions to the scaling problem fol-
lows from the Stress-1 function, that is, from

σ1(X) =

(∑
i<j wij(dij(X) − d̂ij)2∑

i<j wijd2
ij(X)

)1/2

, for all defined pij , (14.3)

where X is the matrix with the coordinates of the A- and the M-points. In
the configurations of Figure 14.5, all between-sets distances are equal. Thus,
dij(X)−d̂ij = 0, for all defined pij , but

∑
i<j wijd

2
ij(X) > 0. This condition

means that σ1(X) is zero, irrespective of the proximities. This degenerate
solution is not limited to ordinal transformations. Even interval unfolding
(with intercept one and slope zero) may lead to constant disparities yielding
the trivial solutions above. The trivial solution of Figure 14.5a is a special
case of the one discussed in Section 13.1. For ordinal or interval unfolding,
it always exists, because the within-sets proximities are missing and the
between-sets disparities all can be made equal.

Although these equal disparity solutions seem without any information
about the data, Van Deun, Groenen, Heiser, Busing, and Delbeke (2005)
showed that still a meaningful interpretation of such a solution is possible.
The important idea is that one needs to zoom in on the points that are clus-
tered together. Then it turns out that these points have different positions
that depend on the data. The interpretation is done by projection using
the so-called signed-compensatory distance model. For more information,
we refer to Van Deun et al. (2005). Of course, without zooming, no useful
information of the equal disparity solution can be derived.

To avoid these solutions, Kruskal (1968) and Kruskal and Carroll (1969)
proposed the use of a variant of the stress measure called Stress2 or Stress-
form2,

σ2(X) =

(∑
i<j wij(dij(X) − d̂ij)2∑
i<j wij(dij(X) − d̄)2

)1/2

, for all defined pij , (14.4)

where d̄ denotes the mean of all distances over which the summation ex-
tends (see Section 11.2). For the above solutions where all between-sets
distances are strictly equal, we find that σ2(X) is not defined because∑

i<j wij(dij(X) − d̄)2 = 0, which leads to 0/0. However, if an MDS pro-
gram is started from a configuration slightly different from the trivial so-
lution, the program iterates away from the trivial solution. The reason is
that close to the trivial solution σ2 is large, because the denominator of
(14.4) is close to zero. Several computer programs for ordinal MDS offer an
option for minimizing σ2 rather than σ1. The criterion σ2 always (except
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FIGURE 14.6. Trivial solution for ordinal unfolding under σ2 (after Carroll,
1980).

at 0) yields values higher (typically twice as large) than σ1, because it has
the same numerator but a smaller denominator. Thus, using σ2 avoids the
equal-distance trivial solution.5

The Four-Point Solution
Using σ2 does not free unfolding from degeneracies totally. If we compute
the distances for the AM configuration in Figure 14.3 and use the between-
sets distances as data for a 1D unfolding representation under σ2, then
the four-point configuration in Figure 14.6 is a perfect but trivial solution
(Kruskal & Carroll, 1969; Carroll, 1980). It represents all A-points of Figure
14.3 by A′, except for point 7, which corresponds to a. Similarly, all M -
points of Figure 14.3 are mapped into M ′, except for point 35, which is
carried into m. Because only the distances between A and M define the
solution, σ2 involves only two distance values, k and 3k. 3k represents
the greatest distance of the AM configuration, and k represents all other
distances. Hence, the Shepard diagram essentially exhibits a horizontal
array of points, except that the last point to the right is shifted upwards
so that its value on the ordinate is three times that of the other points.
This step function is perfectly monotonic, which makes the numerator of
σ2 equal to zero. At the same time, the norming factor (dij − d̄)2 is not
equal to zero. Therefore, σ2 = 0.

This degeneracy is somewhat contrived and not likely to occur often, if
at all, in real applications. It shows, however, that the norming factor used

5Although σ2 tends to keep the variance of the distances large, this does not prevent
degeneracies in “regular” ordinal MDS (see Section 13.1).
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the A points

all M points

the A points

all M points

a. b.

FIGURE 14.7. Trivial row-conditional ordinal unfolding solutions for the AM
data (with the points of A in the rows) using Stress, panel a., and using (14.4),
panel b.

in σ2 has alleviated the degeneracy problem only to a degree. More specific
degeneracies are discussed in Heiser (1989a).

Trivial Solutions for Row-Conditional Unfolding
For preference rank-orders, it is quite natural to have independent or-
dinal transformations for each of the individuals. If the individuals are
represented by the rows, then it means that the data are treated row-
conditionally. Again, minimizing Stress using a row-conditional transfor-
mation of at least interval level may lead to a zero Stress solution with
equal distances as in Figure 14.5.

However, treating the transformations row-conditionally, also introduces
additional trivial unfolding solutions. Consider the AM data, where the A
points are the rows. Then, the equal distance solution in panel a. of Figure
14.7 looks similar to panel b. of Figure 14.5. The difference lies in the role of
the points in the center which are the rows in Figure 14.5b and the column
points (M) in Figure 14.7a.

A second trivial solution may occur when minimizing (14.4) with row-
conditional transformations. In Figure 14.7b, all column points (M) are
again represented in the center, but the row points scatter through the
space. The row-conditional transformation has allowed different distances
between row points to the cluster of column points in the center while
keeping the distances within a row equal. In (14.4), the numerator is zero
because all distances are the equal to the d-hats within each row. The
denominator is nonzero because the distances from a row point to the
cluster differ per row. This solution can be considered degenerate because
it is independent of the data.
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FIGURE 14.8. Row-conditional unfold-
ing representation based on distances
between points in A and M in Fig. 14.3.

13

FIGURE 14.9. Isotonic region (shaded)
for point 13 in configuration of
Fig. 14.3; boundaries defined by order
of distances of 13 to points in M .

14.5 Isotonic Regions and Indeterminacies

To get a feeling for the uniqueness or, expressed conversely, the indetermi-
nacies of a conditional, ordinal unfolding representation we return again to
our AM configuration in Figure 14.3 and use its distances. In conditional
unfolding, there are two possible analyses: we may use the 16×19 proximity
matrix in which A’s points form the rows and M ’s points the columns, or
the 19 × 16 transposed matrix in which the roles of A and M are reversed.
We choose the first approach, which implies that only the distances from
each point in A to every point in M are constrained by the data, but not
the distances from each point in M to every point in A. (You may think
of A as the set of ideal points and of M as the set of points representing
choice objects.) The SSAR-2 program then leads to Figure 14.8, with the
low alienation K = 0.002 [see (11.6)]). We note that there is a substantial
deformation of the letters, in fact, a much stronger one than for the un-
conditional case. The M , in particular, can hardly be recognized. As could
be expected, the row-conditional unfolding does not recover the underlying
configuration nearly as well as the unconditional version.

In Figure 14.8, we can move the points around quite a bit without making
the alienation worse. One example of what is possible is the underlying
configuration itself (Figure 14.3), for which K = 0. Hence, the SSAR-2
solution is only weakly determined, that is, many more configurations exist
with equal or even better fit to the data. This implies that it may be risky
to embark on substantive interpretations of such representations, so we
should study when we may do so.

A natural first question is whether the poor recovery of the AM config-
uration is a consequence of certain properties that are not likely to hold in
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7

FIGURE 14.10. Isotonic region
(shaded) for point 7, defined as in
Fig. 14.9.

26

FIGURE 14.11. Isotonic region
(shaded) for point 26, defined by its
distances to all other points.

general. To answer this question, let us check the invariance of some of the
points. Assume that M is fixed and that A’s points have to be located un-
der the constraints of conditional unfolding. For point 13, which is closest
to M , we obtain as its solution space or isotonic region (i.e., the region in
which the distances of every point to M ’s points are ordered equivalently)
the grey area shown in Figure 14.9. Note that all boundaries are straight
lines in the conditional case, in contrast to the unconditional MDS consid-
ered in Chapter 2. The indeterminacy of point 13 is considerable but not
unlimited.

Determining the isotonic region for point 7 in a similar fashion leads
to Figure 14.10. We notice immediately that this point’s solution space
is much greater and is closed to the outside only by the boundary line
marked with the arrow. Thus, point 7 could be positioned much farther
to the outside of this region without affecting the fit of the conditional
unfolding solution at all. But why is this point’s solution space so much
greater than the one for point 13? One conjecture is that the boundary lines
for those points that are closer to the M differ more in their directions,
which leads to a network with tighter meshes. To test this conjecture,
we look at the isotonic region of point 26 relative to all other points in
M . Figure 14.11 shows that the boundary lines indeed run in many very
different directions, which generates a comparatively small isotonic region,
even though many fewer order relations are involved than in the above. The
number of constraints as such does not imply anything about the metric
determinacy of a point. What is important is how ideal and object points
are distributed throughout the space relative to each other.

The best relative distribution of ideal points and object points is one
where they are thoroughly mixed, that is, where both are evenly spread
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FIGURE 14.12. Row-conditional unfolding representation of distances from su-
perimposed A and M point sets.

throughout the space. Substantively, this implies that we have individuals
with many different preference patterns, so each object is someone’s first
choice. With our AM configuration, a situation like this can be approxi-
mated by superimposing A on M , which is done here by shifting A and M
so that their respective centroids coincide with the origin. With the dis-
tances of this configuration, SSAR-2 leads to Figure 14.12, with K = 0.002.
The metric recovery of the underlying configuration is virtually perfect, as
expected. Thus, conditional unfolding does work—under favorable circum-
stances!

Part of the favorable circumstances of the situation leading to Figure
14.12 was also that the number of ideal and object points was high for a
2D solution. Coombs (1964) has shown that if there are n object points in
an (n − 1)-dimensional MDS space, then all isotonic regions for the ideal
points are open to the outside. Why this is so is easy to see for the special
case of three object points in the plane. We connect the points A, B, and C
by straight-line segments, and draw straight lines running perpendicularly
through the midpoints of the line segments. These lines will then intersect
at just one point, which is the center of the circle on which A, B, and
C fall. Moreover, the three lines will partition the plane into six regions,
which are all open to the outside. Any ideal point falls into one of these
regions, depending on the empirical preference order for the individual it
represents. With three objects, there are exactly six different rank-orders,
corresponding to the six regions. But, because all regions are open, the
location of the ideal points is very weakly determined indeed. If the number
of object points grows relative to the dimensionality of the representation
space, then more and more closed regions result. These regions are located
primarily where the object points are, as we concluded above.
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TABLE 14.2. Similarity data for breweries A, . . ., I and attributes 1, . . ., 26.

A B C D E F G H I
1 3.51 4.43 4.76 3.68 4.77 4.74 3.43 5.05 4.20
2 3.41 4.05 3.42 3.78 1.04 3.37 3.47 3.25 3.79
3 3.20 3.66 4.22 3.07 3.86 4.50 3.19 4.62 3.75
4 2.73 5.25 2.44 2.75 5.28 2.11 2.68 2.07 3.63
5 2.35 3.88 4.18 2.78 3.86 4.37 2.38 4.21 4.63
6 3.03 4.23 2.47 3.12 4.24 2.47 2.90 2.36 3.53
7 2.21 3.27 3.67 2.49 3.40 4.10 2.53 4.03 3.33
8 3.91 2.71 4.59 3.91 4.23 4.72 3.81 4.88 3.96
9 3.07 4.08 4.74 3.34 4.23 4.88 3.20 5.20 3.95

10 3.21 3.57 4.20 3.24 3.85 4.28 3.16 4.30 3.75
11 3.15 3.80 4.34 3.33 3.88 4.49 3.17 4.70 3.67
12 2.84 3.41 4.01 2.89 3.64 4.15 2.95 4.25 3.65
13 2.75 3.24 4.07 2.68 3.55 4.18 2.84 4.56 3.22
14 2.35 3.44 4.13 3.16 3.55 4.55 2.82 4.49 3.29
15 3.07 3.82 4.17 3.21 3.94 4.42 3.21 4.41 3.67
16 3.45 4.29 4.44 3.74 4.47 4.68 3.61 4.76 4.04
17 2.53 4.71 4.53 2.83 4.83 4.71 2.70 4.83 4.72
18 3.12 3.58 4.10 3.14 3.82 4.28 3.10 4.53 3.50
19 2.93 3.27 4.13 2.80 3.46 4.10 2.84 5.12 3.13
20 2.24 3.11 4.12 2.39 3.39 4.17 2.54 4.33 3.19
21 2.41 3.14 3.43 2.40 3.22 3.45 2.43 3.22 3.93
22 3.32 3.74 4.32 3.32 4.01 4.64 3.26 4.88 3.72
23 3.39 4.04 4.51 3.48 4.23 4.63 3.43 4.95 3.86
24 2.88 3.39 3.85 2.90 3.61 4.18 2.79 3.94 3.96
25 2.74 3.57 2.37 2.77 3.96 2.49 2.71 2.44 3.26
26 2.70 3.10 3.85 2.82 3.58 4.13 2.79 4.17 3.20

14.6 Unfolding Degeneracies in Practice and
Metric Unfolding

We now demonstrate some of the degeneration problems with the data in
Table 14.2. Beer drinkers were asked to rate nine breweries on 26 attributes
(Borg & Bergermaier, 1982). The attributes were, for example, “Brewery
has rich tradition” or “Brewery makes very good Pils beer”. Relative to
each attribute, the informant had to assign each brewery a score on a 6-
point scale ranging from 1 = not true at all to 6 = very true. The resulting
scores are therefore taken as similarity values.

Minimizing Stress (σ1) in unconditional ordinal unfolding, Kyst yields a
computer printout similar to Figure 14.13a. We find that all of the brewery
points are tightly clustered, whereas all of the attribute points lie on a J-
shaped curve. The Shepard diagram for this configuration is given in Figure
14.13b. At first sight, these results do not look degenerate, even though the
extremely low Stress of σ1 = .0005 would at least suggest this possibility.
Indeed, a second look at the Shepard diagram reveals that the distances
scatter over only a small range. Thus, they are very similar, in spite of the
considerable scatter in the diagram. The horizontal step function in Figure
14.13b is the monotone regression line. So, the sum of the squared (vertical)
distances of each point from this line defines the numerator of Stress, which
is definitely much smaller than the sum of the squared distance coordinates
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FIGURE 14.13. Ordinal unfolding representation (a) of data in Table 14.2, using
Stress, σ1, and (b) its Shepard diagram.

of the points in the Shepard diagram, the denominator of Stress. The J-
shaped curve in Figure 14.13a thus turns out to be a segment of a circle
with its origin at the brewery points. Thus, this example is a degenerate
solution of the equal distance type shown in Figure 14.5.

Instead of ordinal unfolding, stronger assumptions (or hypotheses) about
the data can be imposed, because metric MDS is often more robust than
ordinal MDS. If it seems justifiable to assume that the proximities are at
least roughly interval scaled, using metric MDS is no problem. But even if
this is not the case, one could replace the original data with appropriate
ranking numbers and then use interval MDS, because the rank-linear model
is very robust vis-à-vis nonlinearities in the relations of data and distances,
as we saw in Chapter 3. For metric conditional unfolding, we have

pij �→ ai + bi · pij ≈ dij , (14.5)

where i denotes an individual, j is an object, and ≈ means as nearly equal
as possible. In the unconditional case, the intercept a and slope b are equal
for every individual i; that is,

pij �→ a + b · pij ≈ dij . (14.6)

Using (unconditional) interval unfolding, however, has little effect for the
data in Table 14.2 and leads to virtually the same configuration as in Figure
14.13a. Moreover, it has the additional drawback that now the regression
line in the Shepard diagram has the “wrong” slope: given that the data
are similarities, the regression line should run from the upper left-hand
corner to the lower right-hand corner of the diagram in order to preserve
the interpretation of the individuals’ points as ideal points or, in the present
case, the direct correspondence of geometrical and psychological closeness.

We see that using Stress as a minimization criterion can lead to wrong
solutions. This is easy to see because the configuration in Figure 14.13a
suggests that all breweries are evaluated in the same way with respect to
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FIGURE 14.14. Shepard diagram of linear unfolding of data in Table 14.2 using
Stress, σ1.
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FIGURE 14.15. Ordinal unfolding representation (a) of data in Table 14.2, using
σ2, and (b) its Shepard diagram.

all attributes. From the empirical data in Table 14.2, this cannot be true.
When we use σ2, it becomes far more difficult to diagnose, from looking
at the configuration, that something went wrong. The ordinal unfolding
solution (under σ2) is shown in Figure 14.15a. The letters A, . . ., I stand for
the nine breweries, the solid points for the 26 attributes. The figure suggests
that the breweries form three groups, and the attributes also seem to cluster
to some extent. But the Shepard diagram for the unfolding solution (Figure
14.15b) shows immediately that we have a degeneracy of the two-distance-
classes type. Although the data scatter quite evenly over the range 2.0 to
5.5, there are practically only two distances. All of the small proximities
up to about 3.0 are mapped into distances of about 2.5, whereas all other
proximities are represented by distances about equal to 1.2. Almost all
points lie very close to the regression line; thus, σ2 is very low.

After learning from the Shepard diagram that there are essentially only
two different distances in the scaling solution, we can identify them. Be-
cause we are only concerned with between-sets distances, we have to show
that each distance from a brewery point to an attribute point is equal to
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FIGURE 14.16. Linear unfolding representation (a) of data in Table 14.2, using
σ2, and its Shepard diagram (b).

either a or b, where a < b. Moreover, because the unfolding was done un-
conditionally, the same would be true in the reverse direction, that is, from
each attribute point to all brewery points. In Figure 14.15a, the two dis-
tance types are indicated (for the perspective from the brewery points to
the attribute points) by either solid circles (for a-type distances) or broken
circles (for b-type distances). Similar circles, with radius equal to either a
or b, could be drawn about the attribute points in such a way that the
brewery points would fall onto or close to them.

As we did for Stress, we now unfold the data with an interval regression
approach. The solution is given in Figure 14.16a, where the brewery points
are labeled A, . . ., I , as above, and the attribute points as 1, . . ., 26. The
brewery points tend to arrange themselves in the same groups as in the
degenerate solution in Figure 14.15a for empirical reasons, as the Shepard
diagram in Figure 14.16b shows. The distances and the proximities of the
unfolding solution vary over a wide range. There are no gaps in the distri-
bution, and the linear regression line fits very well. The problem with this
solution is that the slope of the regression line is not as we would like it
to be. If this is not noticed by the user, serious interpretational mistakes
are bound to result. The configuration in Figure 14.16a puts a brewery
closer to an attribute the less (!) this brewery was judged to possess this
attribute. Thus, for example, brewery A is not really close to attribute 21
as the configuration suggests; rather, the contrary is true. This certainly
leads to an awkward and unnatural meaning for the configuration, where
two points are close when the objects they represent are psychologically
different.

We conclude that using σ2 instead of σ1 does not eliminate the problems
of unfolding. In the ordinal case, we again get a degenerate solution (even
though it is somewhat less degenerate than for σ1). For the metric approach,
we obtain an undesirable inverse representation that is hard to interpret.
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FIGURE 14.17. Hypothetical example to demonstrate problems of dimensional
interpretations in unfolding.

14.7 Dimensions in Multidimensional Unfolding

Apart from degeneracies and indeterminacies, there are further problems in
unfolding that one should be aware of when interpreting an unfolding solu-
tion. Consider an example. Assume that we want to know how an individual
selects a car from a set of different automobiles. Assume further that the
preference judgments were made in a 2D unfolding space with dimensions
“performance” and “sporty looks”. Figure 14.17a shows 16 hypothetical
cars in a space spanned by these dimensions. A market researcher wants
to infer this space from the person’s similarity data. This is a difficult task
if, as Figure 14.17b illustrates, there are no cars in the upper left- and the
lower right-hand corners. The reason for the empty corners in this example
is that cars with a very high performance must look sporty to some ex-
tent, for engineering reasons. The converse is usually also true empirically;
that is, cars with extremely poor performance do not look like racing ma-
chines. But with the remaining 10 cars it is likely that the researcher would
conclude that essentially only one dimension explains the similarity data,
especially because the resulting dimension (“sportiness”) seems to make
sense psychologically (Figure 14.17c).

Figure 14.17d shows the consequences of this false interpretation. Let
Y be the ideal point of some individual. This individual wants a car with
very high performance and moderately sporty looks. A market researcher,
therefore, should recommend making car M in Figure 14.17d less sporty
in looks and more powerful in its performance. However, on the basis of
the accepted unfolding solution, the market researcher would come to a
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different, incorrect conclusion: with “sportiness” as the assumed decision
criterion, the advice would be to increase M’s sportiness so that M would
move closer to Y on this dimension. Concretely, this movement could be
achieved in two ways: increase performance and/or sporty looks. Because
the latter is cheaper and easier to implement, this would be the likely
immediate action. But this would be just the wrong thing to do, because
the person wanted a reduction, not an increase, in the sporty looks of M.

The problems encountered here are a consequence of the fact that some
corners of the similarity space remain empty. Coombs and Avrunin (1977,
p. 617) therefore argue that “deliberate efforts” should be made to avoid
collapsing the preference space due to correlated dimensions. This means,
in practice, that an unfolding analysis should be based on a set of objects
that are carefully selected from the product space of the presumed choice
criteria, not on a haphazard collection of objects.

14.8 Multiple Versus Multidimensional Unfolding

When aggregated data are analyzed in MDS, there is always a danger that
the multidimensionality is an aggregation artifact. This danger is particu-
larly acute in multidimensional unfolding because here the data are usually
from different individuals.

Unfolding assumes that all individuals perceive the world in essentially
the same way. There is just one configuration of objects. Differences among
individuals are restricted to different ideal points. If this assumption is not
correct, unfolding preference data will be misleading. Consider an example.

Norpoth (1979a) reports two data sets, where German voters were asked
to rank-order five political parties in terms of preference. The parties ranged
from Nationalists to Communists, and so one could expect that the respon-
dents should have agreed, more or less, on the position of each party on a
left-to-right continuum.

Running an unfolding analysis on these data, Norpoth (1979a) concluded
that he needed a 2D solution for an adequate representation of the data.
The solution shows one dimension where the Communists are on one end
and the Nationalists are on the other. This is interpreted as the familiar left-
to-right spectrum. The second dimension shows the (then) ruling coalition
parties on one end and the major opposition party on the other. This
interpretation also seemed to make sense.

One can question, however, whether all voters really perceived the par-
ties in the same way. One hypothesis is that the voters do indeed all or-
der the parties on a left-to-right dimension, but that they do not always
agree on where these parties are located relative to each other. Indeed, Van
Schuur (1989) and Borg and Staufenbiel (1993) independently showed for
Norpoth’s data that by splitting the set of respondents into two groups
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(in each sample) by simply placing the Liberals to the right of the Con-
servatives in one case, and to the left of the Conservatives in the other,
while leaving all other parties ordered in the same way, two subsamples are
obtained that each yield one-dimensional unfolding solutions.

Substantively, such multiple solutions are much more convincing: they
preserve a simple dimensional model of how political parties are perceived;
they explain different preferences by a simple ideal-point model; and, fi-
nally, they account for group differences by a simple shift of the position
of the Liberals, an ambiguous party in any case.

There exist computer programs for multiple one-dimensional unfolding
(e.g., Lingoes, 1989; Van Schuur & Post, 1990). They offer the easiest way
to test for the existence of multiple 1D unfolding scales.

14.9 Concluding Remarks

Unfolding is a natural extension of MDS for two-way dissimilarity data.
When no transformation is allowed on the data (or a ratio transformation),
unfolding can be safely used. However, if transformations are required, for
example, for preference rank-orders, then special caution is needed because
the usual approaches yield a degenerate solution with all disparities being
equal. Chapter 15 discusses several of such solutions.

14.10 Exercises

Exercise 14.1 Consider the unfolding solution for the breakfast items in
Figure 14.2. Attempt an interpretation. In particular, find “labels” for the
four groups of breakfast items, and interpret their positions relative to each
other. (What lies opposite each other, and why?)

Exercise 14.2 Consider the (contrived) color preferences of six persons (A..F)
in the table below (Davison, 1983). The data are ranks, where 1 = most
preferred.

Person
Color A B C D E F
Orange 1 2 3 4 3 2
Red 2 1 2 3 4 3
Violet 3 2 1 2 3 4
Blue 4 3 2 1 2 3
Green 3 4 3 2 1 2
Yellow 2 3 4 3 2 1

(a) Unfold these data without any transformations.
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(b) Discuss the solution(s) substantively, relating them to Figure 4.1 and
to unfolding theory. In what sense are the six persons similar, in what
sense do they differ?

(c) Discuss technical reasons why the unfolding analysis works for these
data.

(d) Construct a set of plausible color preference data that do not satisfy
the ideal point model.

(e) Discuss some data sets that satisfy the ideal point model but that
would most likely lead to degenerate or other nondesirable MDS so-
lutions. (Hint: Consider the distribution of ideal points in the percep-
tual space.)

Exercise 14.3 The following table shows empirical color preferences of 15
persons (Wilkinson, 1996). The data are ranks, where 1 = most preferred.

Person
Color A B C D E F G H I J L M N O P
Red 3 1 3 1 5 3 3 2 4 2 1 1 1 2 1
Orange 5 4 5 3 3 2 4 4 5 5 5 5 4 5 2
Yellow 4 3 1 5 2 5 5 3 3 4 2 4 5 3 3
Green 1 5 4 4 4 1 2 5 1 3 4 2 2 4 4
Blue 2 2 2 2 1 4 1 1 2 1 3 3 3 1 5

(a) Unfold these data.

(b) Discuss the solution(s) substantively, connecting the color points in
the order of the electromagnetic wavelengths of the respective colors.

(c) Use an external starting configuration where the color points are po-
sitioned on a rough color circle similar to the one in Figure 4.1. (Hint:
Place the person points close to their most preferred color points in
the starting configuration.)

(d) Compare the unfolding solutions with and without external starting
configurations, both technically in terms of Stress and substantively
in terms of a reasonable theory.

Exercise 14.4 The following table shows the dominant preference profiles
(columns) for German political parties in 1969. A score of 1 indicates “most
preferred”. The row “freq” shows the frequency of the respective preference
order in a representative survey of 907 persons (Norpoth, 1979b).
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Preference Type
Political Party 1 2 3 4 5 6 7 8 9 10 11
SPD (Social Democrats) 1 1 1 1 3 3 2 2 2 2 3
FDP (Liberals) 2 2 3 3 2 2 3 3 4 1 1
CDU (Conservatives) 3 3 2 2 1 1 1 1 1 3 2
NPD (Nationalists) 4 5 4 5 5 4 5 4 3 5 4
DKP (Communists) 5 4 5 4 4 5 4 5 5 4 5
Freq 29 85 122 141 56 66 135 138 11 16 19

(a) Unfold these data in one to three dimensions and discuss the solu-
tions. Use both ordinal and linear MDS, and both unweighted and
weighted (by “freq”) unfolding.

(b) Norpoth (1979a) claims that these data require a 2D unfolding space.
Yet, most Germans would probably order these parties from left
to right as DKP-SPD-FDP-CDU-NPD or as DKP-SPD-CDU-FDP-
NPD. Sketch diagrams for these two orders, where the Y -axis repre-
sents preference ranking—the highest rank 1 getting the highest Y-
score—and the X-axis the left-to-right order. What do these diagrams
show you with respect to single-peakedness of the preference func-
tions? Can you accommodate most preference profiles in the scales?
Can you accommodate them in one single scale too?

(c) Compute two (or more) 1D unfoldings for subsets of the voter profiles
as an alternative to one common unfolding solution for all persons
combined. Discuss the substantive implications.



15
Avoiding Trivial Solutions in
Unfolding

The occurrence of trivial solutions in unfolding was recognized soon after
the introduction of MDS. It was one of the reasons for introducing Stress-2.
However, as indicated in the previous chapter, Stress-2 does not solve the
degeneracy problem totally. In this section, we discuss several methods that
have been proposed in the literature to avoid trivial unfolding representa-
tions. They all adapt the unfolding procedure in such a way that the ideal
point interpretation is retained. The solutions can be categorized into three
classes: (a) adapting the unfolding data, (b) adjusting the transformation,
and (c) modifying the loss function.

15.1 Adjusting the Unfolding Data

One way to avoid a trivial solution in unfolding is to make sure that the
transformation cannot contain a nonzero intercept and a slope of zero by
adapting the data. Here, we discuss two of these options. The first one, is
an ordinal-ratio approach to unfolding.

Ordinal-Ratio Approach
The idea behind this approach is to use an ordinal and a ratio transfor-
mation simultaneously on the same data. Thus, the data are duplicated,
one data set is transformed by a ratio transformation, the other one by an
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FIGURE 15.1. Unfolding representation (a) of data in Table 14.2, using mixed
ordinal-linear σ2 loss function, and its Shepard diagram (b).

ordinal transformation, and both sets of disparities are approximated by a
single matrix of distances.

Let L(o) be the loss function that defines an ordinal approach and L(r)
the corresponding loss function for ratio unfolding. For example, L(o) may
be σ2 with disparities as target distances under, say, the primary approach
to ties, and L(r) is σ2 with target distances computed by a ratio transfor-
mation. Then, we simply define the total loss as

L = a · L(o) + b · L(r), (15.1)

where a and b are weights such that a, b > 0 and a + b = 1. L is equal to
0 only if both L(o) and L(r) are equal to 0. Note that if L(r) is zero, L(o)
will also be zero because the ratio transformation is an admissible ordinal
transformation. L will be small if both L(o) and L(r) are small, or if one
is very small and the other is not very large. The ordinal transformation
tries to model the data as usual in an ordinal manner. However, as a ratio
transformation does not allow for an intercept, the trivial transformation
with a nonzero intercept and zero slope cannot occur.

One drawback of this approach is that one needs to have dissimilarities in
order to do a ratio transformation. For similarities, a ratio transformation
with a negative slope is required to map larger similarities into smaller
distances. Yet, such a transformation leads to negative disparities, which
can never be properly modeled by nonnegative distances. Therefore, if we
have similarities, we either have to convert similarities into dissimilarities
before the unfolding analysis or revert to an ordinal-interval approach with
L = a·L(o) + b·L(i) and L(i) the loss for unfolding of data that are interval-
scaled. This ordinal-interval approach is not guaranteed to always avoid
the trivial solution but the example discussed below shows a successful
application.

Let us apply this approach to the brewery data, using Kyst with weights
a = b = 0.5 and loss function L = a · L(o) + b · L(i). This yields a solution
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with the Shepard diagram in Figure 15.1b. There are two regression curves
now: a monotonic one, related to L(o), and a linear one, related to L(i).
The (vertical) scatter of the points about the monotonic curve makes up
one component of L, and the scatter of these same points about the linear
regression line makes up the other. Hence, minimizing L tends to avoid a
solution with a crude step function in the Shepard diagram, because this
would make L(i) large. On the other hand, the regression slope must have
the desired sense to make L(o) small.

The configuration resulting from this mixed ordinal-linear unfolding is
presented in Figure 15.1a. It allows the usual ideal-point interpretation, but
differs radically from the previous interval representation in Figure 14.16a.
We now observe, for example, that brewery A is very far from the attribute
point 21, which, as can be seen from studying the proximities, has the
usual meaning that A possesses relatively little of this property. On the
other hand, we again find that the breweries form three groups, because
this closeness relation remains unaffected by the slope of the regression line.

It should be noted that, even though the loss criteria L = a·L(o) + b·L(i)
and L = b · L(i) + a · L(o) are algebraically equivalent, they may lead
to different results in an iterative optimization procedure. If the Kyst
program is used, for example, we find that if L(o) appears as the first
criterion in the weighted sum, then a solution like the one reported above
is obtained; if L(i) is the first criterion, then the approach does not work
as desired. In other words, a solution with a Shepard diagram like Figure
14.14 results, where the monotone regression curve is a horizontal straight
line. In general, such differences can result from various features of the
optimization method.

Augmenting the Within-Objects Blocks
A second way to avoid a trivial solution in unfolding by “changing the
data,” builds on the idea that unfolding is equivalent to MDS with missing
data as visualized in Figure 14.1. The main idea here is to augment the
data matrix with one or both of the missing “within”-sets data. Steverink,
Van der Kloot, and Heiser (2002) proposed to insert Kemeny distances for
the within-individuals data. In addition, they allow for different transfor-
mations within the blocks of the data matrix. The choice of transformation
is critical: it must exclude the possibility of zero within-sets disparities
and constant between-sets disparities to avoid the trivial equal-distances
solution. For example, ordinal transformations for the between-sets proxim-
ities should be combined with the absolute transformation for the within-
persons proximities to guarantee avoiding the trivial solution.

Kemeny distances for the within-persons data appear particularly suit-
able for unfolding preferential choice data. They are derived from preference
rankings as follows. First, each person i gets a score for each pair of items
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TABLE 15.1. Illustration of computing the Kemeny distance of two persons.

Pair k, l z1(k, l) z2(k, l) |zi(k, l) − zj(k, l)|
AB 1 1 0
AC 1 -1 2
BC 1 -1 2

Sum 4

TABLE 15.2. Illustrative example of an unfolding data matrix where the
within-persons data are Kemeny distances. Note that the between-sets data val-
ues are the preference orders of the persons for the objects.

A B C 1 2
A – – – 3 2
B – – – 2 3
C – – – 1 1
1 3 2 1 0 4
2 2 1 3 4 0

k and l on the function zi(k, l):

1 if A > B (person i prefers A over B),
0 if A = B (person i is indifferent to A and B),

−1 if A < B (person i prefers B over A).

Second, these zi-scores are aggregated over all pairs to yield the Kemeny
distance between persons i and j:

dKem(i, j) =
∑
k<l

|zi(k, l) − zj(k, l)|. (15.2)

As an illustration, consider a situation where three objects A, B, and C
are judged by two persons: the preference rank-order of person 1 is A >
B > C, and C > A > B of person 2. Then, there are only three possible
pairs of objects, that is, AB, AC, and BC. Table 15.1 shows the steps
taken to compute their Kemeny distance, which equals 4 in this case. For
this mini example, the data matrix augmented by within-persons distances
is presented in Table 15.2.

The augmentation approach described above was applied to the brewery
data, where the between-sets similarities were transformed ordinally (and
unconditionally) and Kemeny distances were computed among the 26 at-
tributes. The results are presented in Figure 15.2. As predicted, the trivial
solution with equal distances does not occur. The breweries are located in
three clusters in the center, a solution that is similar to that of the ordinal-
interval approach in Figure 15.1. The right panel of Figure 15.2 shows the
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FIGURE 15.2. Unfolding representation (a) of data in Table 14.2, using the aug-
mentation approach, and its Shepard diagram (b) for the between-sets data.

Shepard diagram of the between-sets data. The ordinal transformation is
quite reasonable and does not have big jumps. However, the scatter of the
distances about the regression curve is somewhat high, indicating that not
all points are fitted perfectly. We also see that the disparities range from
about .75 to 1.15. This means that even a brewery with the highest score
on an attribute will be located at a moderate distance from the attribute.
This aspect is shown in the left panel of Figure 15.2 by the fact that all
attributes are distant from the center where the breweries are located.

A problem arises when the between-blocks data are transformed row-
conditionally, which is a natural option for preference rank-order data.
Applying the augmentation approach will yield a proper scatter of the
attributes and a cluster of brewery points on top of each other. The within-
block data for the attributes are properly represented, but the between-
sets data (the original preference rank-orders) are trivially represented in
the same way as the degeneracy in Figure 14.7b. Steverink et al. (2002)
proposed to solve this problem by augmenting the data matrix with a
within-columns data block as well.

Here, we propose a different type of augmentation by a within-columns
data block. As the preference rank-orders are known for each subject, one
can compute city-block distances between the columns using the rank-
orders as coordinates. Thus, for each row, a unidimensional distance matrix
is computed between the columns. Then, taking the sum of all those dis-
tance matrices over the rows gives a city-block distance matrix between
the column objects. We take two additional steps. First, Steverink et al.
(2002) indicate that the Kemeny distance can also be seen as a city-block
distance matrix. Because we are fitting these data by Euclidean distances,
we transform both within-blocks to Euclidean distances matrices by sim-
ply taking the square root of all elements (for a rationale, see Gower &
Legendre, 1986). The second step involves making the range of the values
in the two within-blocks equal. This adaptation is important because the
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FIGURE 15.3. Ordinal row-conditional unfolding representation (a) of data in
Table 14.2, augmentation both within blocks, and its Shepard diagram (b) for
the between-sets data.

within-blocks are not transformed and it makes sure that the ranges of dis-
tances for the two sets of points are equivalent. Therefore, we divide each
within-block by its maximum value.

The proposed procedure of augmenting both within-blocks is applied
to the brewery data in Figure 15.3. In the analysis, the within-blocks data
were not transformed but the between-sets data were obtained by an ordinal
row-conditional transformation. The Shepard diagram in the right panel of
Figure 15.3 shows that the transformations are far from constant. A similar
pattern as before emerges for the configuration (Figure 15.3a), with three
clusters of breweries. Note that in this analysis we may explicitly interpret
the distances between all points and not only the between-sets distances
because we have (generated) data for all dissimilarities.

A disadvantage of the augmentation approach proposed above is that it
may be seen as doing two separate metric MDS analyses on the within-
blocks data. The between-sets data are of minor importance and merely
determine the translation of one of the sets with respect to the other.
On the other hand, all three blocks of the data use the same rank-order
information of the between-sets data. More experience with this approach
is needed to see how well it performs in practice.

Other suggestions to fill the within-blocks data have been proposed by
Rabinowitz (1976), Heiser and De Leeuw (1979), and Van Deun, Heiser,
and Delbeke (2004).

15.2 Adjusting the Transformation

A different way to avoid the trivial equal-distances unfolding solution is
to restrict the transformation so that the nonzero intercept and zero slope
transformation is excluded. This goal could be either achieved by a bound



15.2 Adjusting the Transformation 323

on the intercept or some restriction on the slope that excludes a slope
of zero. One obvious transformation satisfying this restriction is the ratio
transformation. Clearly, no intercept is estimated and the slope is equal
to one, so that the zero slope and nonzero intercept cannot occur. It is a
simple manner to avoid the trivial solution in unfolding, but it may not
recognize the ordinal nature of data that are often used in unfolding, such
as preference rank-orders.

A variant of this idea was proposed by Kim, Rangaswamy, and DeSarbo
(1999), who use a two-step procedure. In their first step, they preprocess
the original dissimilarities by a transformation (λij) of the original data.
These λijs satisfy several properties. First, λij should be strictly monotone
with the dissimilarities such as, for example, a linear or a strictly ordinal
transformation. Second, λij for the most preferred item in each row is set
to zero. Third, the transformations are the same for all rows. The form
of the transformation is left to the user, as long as it satisfies the three
conditions stated above. In the second step, after this preprocessing of the
data, the λijs are used as input data in Stress, allowing for row-conditional
ratio transformations.

The reason why this approach avoids the trivial solution is that the d-hats
of each row cannot become the same constant, as the d-hat corresponding
to the most preferred stimulus per row is equal to zero and the remaining
d-hats per row necessarily are nonzero because of the ratio transformation.
It should be said, though, that this method has some arbitrariness in the
way the user specifies the λijs. Different specifications of the λijs for the
same data will lead to different solutions.

For preference rank-orders, it is more preferable to apply a transforma-
tion that has more freedom than the ratio transformation but is still able to
avoid the nonzero constant and zero slope transformation. The smoothed
monotone regression approach of Heiser (1985, 1989a) can do this (see also
Section 9.2). The basic idea is that the absolute difference of the differences
d̂k − d̂k−1 and d̂k−1− d̂k−2 in the transformation should be smaller than the
average d-hat. Note that for k = 1 and k = 2, there will be references to
nonexisting elements d̂0 and d̂−1 that are substituted by zero. The impor-
tant consequence of this substitution is that the smallest d-hat cannot be
larger than the average d-hat. Thus, this approach has an internal upper
bound on the smallest d-hat, while restricting the size of the steps that
can be made in the transformation. These restrictions combined with the
requirement that the sum of squared d-hats are equal to some nonzero con-
stant assure that the constant d-hat solution is excluded so that the trivial
solution cannot occur.
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FIGURE 15.4. A degenerated linear unfolding solution obtained by Kyst (Panel
a) of the brewery data in Table 14.2. Panel b displays the Shepard diagram).

15.3 Adjustments to the Loss Function

Several authors have tried to avoid the trivial unfolding solution by adjust-
ing the loss function. The first proposal was to use Stress-2; that is,

σ2(X) =

(∑
i<j [δij − dij(X)]2∑
i<j [dij(X) − d̄]2

)1/2

.

The denominator of σ2(X) measures the variance of the distances about the
mean distance. Therefore, the denominator will be close to zero if all dis-
tances are almost the same. This implies that if the distances become sim-
ilar during the iterations, σ2(X) becomes larger and larger. Hence, equal-
distances solutions should be avoided.

Ordinal unfolding by the Kyst program using Stress-2 resulted in a
configuration with three clusters of breweries and attributes located at two
different distances (see Figure 14.13). Although the ordinal solution may
not be totally satisfactory, it certainly does not display the equal-distances
solution. However, a linear transformation with Kyst (with strict conver-
gence settings) does yield a constant distance solution (see Figure 15.4).
To understand why this happens, we need to consider both the numera-
tor and denominator of Stress-2 as the distances become almost equal. In
that case, both the denominator and the numerator approach zero, so that
no immediate conclusions can be drawn about the behavior of Stress-2.
Mathematical analysis should bring more insight into this situation. We
get back to this issue in the next chapter. For now it suffices to remark
that apparently linear unfolding using Stress-2 does not avoid equal dis-
tances. Stress-2 may stay away from the trivial equal distance solution but
it is not guaranteed to do so.
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FIGURE 15.5. Influence of a weight wij as a function of the rank-order as pro-
posed by DeSarbo and Rao (1984).

Weighting Strategies
DeSarbo and Rao (1984) proposed to use specialized weighting schemes in
raw Stress to avoid the trivial solution: wij = δ−p

ij , where δij is a ranking
number (1 = most preferred) and p > 0 determines the influence of the
object to the Stress function. Figure 15.5 shows how much an object con-
tributes to Stress as a function of its ranking number for p = 2, . . . , 5. In
Figure 15.5, we see that even for p = 2, the residuals of the second most
preferred object are weighted by only 25% compared to the most preferred
object. An object with ranking number 3 is weighted by about 11%, and so
on. Thus, even with a small p of 2, only the three most preferred objects of
each individual (row) determine the solution. In the case of p = 5, the sec-
ond most preferred stimulus contributes only 3%. This means that for each
row there is essentially only a single stimulus that contributes to Stress.
As a consequence, there will be only very few effective constraints between
the points of both sets so that the points can be quite freely located in
space. For this approach, the quality of the solution mainly depends on
the quality of the starting configuration. A similar condition is true for the
transformation. Only the transformations of the first few most preferred
stimuli can be interpreted; the others hardly contribute to Stress.

Contrary to its claim, the weighting method does not exclude the trivial
solution. The reason is that for any transformation that allows for a zero
slope and constant intercept, distances can be obtained that are equal to
the intercept. For a formal proof, we refer to Busing, Groenen, and Heiser
(2005).

Penalizing the Intercept
For linear unfolding, Busing (2005) proposed a simple idea to avoid a trans-
formation with a nonzero intercept and zero slope. His idea is to add a
penalty to the Stress function to avoid a large value of the intercept. This
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idea can be formalized by the following loss function.

σi(a, b,X) =
∑
(i,j)

[a + bδij − dij(X)]2 + ωa2, (15.3)

where ω is a nonnegative value indicating the strength of the penalty.
Clearly, for ω = 0 the old Stress function is retained. In the limiting case of
ω = ∞, the intercept a will become zero and minimizing σi(a, b,X) reduces
to ratio unfolding.

Penalizing the intercept only makes sense for dissimilarity data. If the
data are similarities, we expect a transformation with a large intercept and
a negative slope, so that large similarities correspond to small nonnegative
d-hats and small distances, whereas small similarities correspond to large
nonnegative d-hats and large distances. This means that the intercept is
expected to be large, which contradicts the idea of penalizing the intercept.
To overcome this problem, the similarities have to be transformed into
dissimilarities before applying the current approach. As a consequence,
the Shepard diagram will be increasing because dissimilarities are used in
(15.3).

Penalizing the intercept is not applicable to just any transformation.
For example, the approach is not effective for ordinal unfolding, because
the transformation is free to find a constant transformation for all but the
smallest dissimilarity. However, penalizing the intercept can be effective for
spline transformations (see Section 9.6), provided that the spline is quite
restricted.

We applied this approach to the brewery data of Table 14.2. Because
the data (pij) in this case are similarity ratings from 1 = not true to 6 =
very true, they had to be transformed into dissimilarities first. This was
done by setting δij = 7 − pij so that the dissimilarities were again in the
range from 1 to 6, where 1 now indicates “very true” and 6 “not true”.
In this application, ω was set to 5 after some experimentation. The results
are presented in Figure 15.6. Again we see the split of the breweries into
the three different clusters that turn up in the other solutions as well. The
Shepard diagram in panel b of Figure 15.6 is increasing indeed and has an
intercept that is reasonably small compared to the slope. We may conclude
that for linear unfolding, the simple approach of penalizing the intercept is
effective to avoid the trivial solution.

Prefscal: Penalizing Equal d-hats
Another penalty approach was taken by Busing et al. (2005). As trivial
unfolding solutions are characterized by constant d-hats, one obvious way
to avoid a trivial solution is penalizing the Stress function for equal d-hats.
An advantage of this approach is that all standard transformations (see
Chapter 9) can be applied. Also, the resulting unfolding configuration can
be interpreted in terms of the ideal point model.
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FIGURE 15.6. Linear unfolding representation (a) of data in Table 14.2, by pe-
nalizing the size of the intercept, and its Shepard diagram (b).

To identify constant d-hats, Busing et al. (2005) suggests using the vari-
ation coefficient of Pearson (1896), which is defined by

ν(d̂) =
standard deviation(d̂)

mean(d̂)
=

(
K−1∑

k(d̂k − ¯̂
d)2

)1/2

K−1
∑

k d̂k

, (15.4)

where ¯̂
d = K−1 ∑

k d̂k and k is an index that runs over all d-hats. The
coefficient of variation is a measure that indicates the spread with respect
to the mean. It can be derived that ν(d̂) is independent of the scale of d̂,
so that ν(d̂) = ν(ad̂) for any a > 0.

To see what the variation coefficient does, we simulated four different
distributions of 300 d-hats, varying the mean, the standard deviation, and
the modality. Both from Figure 15.7a and from (15.4) it can be seen that
a zero standard deviation yields a zero variation coefficient. If the spread
around the mean is small relative to the mean, then ν(d̂) is also small (panel
b. of Figure 15.7). As the spread around the mean gets larger relative to
the mean, then ν(d̂) also increases (Figures 15.7c and 15.7d). A maximum
value of ν(d̂) = (K − 1)1/2 is attained if all but one of the d-hats are zero.

The variation coefficient can be used as a diagnostic for identifying so-
lutions with constant d-hats. The Prefscal model proposed by Busing
et al. (2005) exploits this diagnostic by using it as a penalty. To be more
precise, their Prefscal model minimizes penalized Stress that is defined
as

σp(d̂,X) = σλ
n(d̂,X)

(
1 +

ω

ν2(d̂)

)
, (15.5)

where σn(d̂,X) is normalized Stress defined by (11.1) and λ and ω are
two penalty parameters to be specified under the restrictions 0 < λ < 1
and ω > 0. The parameter λ is called a lack-of-penalty parameter that
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FIGURE 15.7. Value of the variation coefficient ν as a function of the mean and
the standard deviation of four hypothetical distributions of 300 d̂s.

influences the balance between the penalty 1 + ων−2(d̂) and σn(d̂,X): the
closer λ gets to zero, the stronger the penalty. The parameter ω determines
when the penalty gets active: for small ω, say, ω = .1, the σp(d̂,X) will
hardly be influenced by the penalty for d-hats as in Figure 15.7b, whereas
a large ω, say, ω = 5, ensures strong influence of the penalty for the same
d-hats. Based on extensive simulations, Busing et al. (2005) recommend
choosing λ = .5 and a value of ω = .5, although ω may need some fine
tuning depending on the data.

The penalty term in (15.5) obtains high values whenever almost equal
d-hats occur (thus when ν2(d̂) is close to zero), because the inverse of
the squared variation coefficient, ν−2(d̂), will become large. Thus, when
minimizing σp(d̂,X), the algorithm will stay away from constant d-hats,
because σp(d̂,X) has high values for those d-hats. Penalized Stress has the
additional advantage that as we move away from the trivial solution, the
penalty term becomes less influential and σn(d̂,X) will dominate the min-
imization. The cause of this property lies in the sum of one plus ων−2(d̂).
Thus, whenever ν(d̂) is large, ν−2(d̂) gets close to zero, so that the entire
penalty term is close to one. Then, the minimization of σn(d̂,X) is the
most important part and the penalty term will hardly influence the min-
imization. An additional advantage of the definition of penalized Stress is
that σp(d̂,X) = 0 for perfect nontrivial solutions (i.e., solutions with zero



15.3 Adjustments to the Loss Function 329

2 3 4 5 6
0

0.5

1

1.5

2

Data

D
is

ta
nc

e 
an

d 
T

ra
ns

fo
rm

ed
 D

at
a

A

B

C
D

E

F

G

H

I

1

2

3

4

5

6

7

8

9 1011 12

1314

1516

17

18

19
20

21

22
23

24

25

26

a. b.

FIGURE 15.8. Linear unfolding representation (a) of data in Table 14.2 obtained
by Prefscal, and its Shepard diagram (b).

normalized Stress). Thus, if a perfect nontrivial solution exists, penalized
Stress should be able to find it. Another property of σp(d̂,X) is that the
minimum of σp(d̂,X) is independent of the scale of X or d̂, by which we
mean that multiplying both X and d̂ by a positive constant a does not
change the value of σp. Without the property of scale independence, penal-
ized Stress would be sensitive to the size of the unfolding problem. Thus,
the Prefscal penalty parameters λ and ω are independent of the number
of row and column objects and of the normalization of the d-hats.

Figure 15.8 displays the results of a Prefscal analysis on the brewery
data. The Prefscal solution is quite similar to Figure 15.1 obtained by
the ordinal-interval approach. Again, the three clusters with three breweries
each emerge. However, there are some differences in the positioning of the
attributes. For example, in Figure 15.1 attribute 8 is located outside the
triangle spanned by the three clusters, whereas Prefscal locates it inside
the triangle.

For row conditional transformations, constant d-hats should be avoided
for each row. Therefore, the penalty should be large whenever the d-hats of
a single row become constant. Prefscal achieves this objective by defining
row conditional penalized Stress as

σp.rc(d̂,X) = σλ
n(d̂,X)n−1

2

n2∑
i=1

(
1 +

ω

ν2(d̂i)

)
, (15.6)

where n2 is the number of rows in the unfolding problem and d̂i contains
the d-hats for row i (Busing et al., 2005). Here, too, ν−2(d̂i) becomes large
as the d-hats of row i become constant. Therefore, if any row tends to a
constant, then the penalty term n−1

2
∑n2

i=1[1 + ων−2(d̂i)] becomes large.
To see how well Prefscal performs in conditional unfolding, we allowed

separate transformations for each attribute of the brewery data (the rows
in Table 14.2). We specified a monotone spline transformation of the sec-
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FIGURE 15.9. Representation of row conditional unfolding of data in Table 14.2
obtained by Prefscal(panel a), and its Shepard diagram (panel b).

ond degree with one interior knot, which is less restrictive than a linear
or quadratic transformation, but more restrictive than an ordinal trans-
formation. A striking feature of the solution (left panel of Figure 15.9) is
that the breweries are located among the attributes, whereas in the other
solutions discussed so far there is a clear separation of the breweries and
the attributes. The right panel of Figure 15.9 contains the combined Shep-
ard diagram of all attributes. It can be seen that the fit is high (Kruskal’s
Stress-1 is .0001) because most of the points are closely located to the
a curve indicating that the difference between distance and d-hat will be
small for these brewery and attribute pairs. The transformation curves gen-
erally are smooth and have variation coefficients markedly different from
zero. Therefore, they are obviously not horizontal and not degenerated.

At the time of writing, Prefscal is scheduled to appear in SPSS in
2005. However, in the Prefscal program in SPSS, the row-conditional
penalized Stress is defined slightly different from (15.6). In the program,
σλ

n(d̂,X) in (15.6) is replaced by an implicitly normalized form of Stress for
each of the rows (Busing, 2004); that is, the Prefscal program in SPSS
minimizes (

n−1
∑

i

‖d̂i − di‖2

‖d̂i‖2

)λ

n−1
2

n2∑
i=1

(
1 +

ω

ν2(d̂i)

)
. (15.7)

The reason for this difference is that it is computationally more convenient
and can handle additional constraints on the configuration more easily.
Both (15.6) and (15.7) are otherwise the same.

15.4 Summary

To give an overview of the quality and main properties of the methods
discussed in this chapter, we have constructed Table 15.3. Most of the
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TABLE 15.3. Comparison of approaches aimed at avoiding trivial solutions.

Un- Row- Trivial
condi- condi- Solution
tional tional Transformation Excluded Quality

Adjusting Data
Ratio-ordinal + + Ordinal Yes +
Interval-ordinal + + Ordinal No +/–
Augmenting within-persons block + – All for between-sets No +/–

ratio for within-sets
Augmenting both within-sets + + All for between-sets Yes +

ratio for within-sets

Adjusting the Transformation
Ratio transformation + + Ratio Yes +
Approach of Kim et al. (1999) + + Ratio Yes +
Smoothed monotone regression + + Restricted ordinal Yes +

Adjusting the Loss Function
Stress-2 + + All No –
Weighting approach by DeSarbo + + All No –
Penalizing the intercept + + Interval Yes +
Penalized Stress by Prefscal + + All Yes +

methods either have limited applicability and may depend highly on the
software that is available. For example, the ratio-ordinal or the augmen-
tation method both require that different types of transformations can be
specified for the data. Kyst can do that, but other programs cannot. Some
of the methods discussed use forms of ratio transformations that may not
be suited for preference rank-order data. The most promising approach to
fit the ideal point model for unfolding seems to be the Prefscal model
that gives good quality solutions for all standard transformations used in
MDS.

When applying one of the methods for unfolding described in this chap-
ter, one caution is needed. It is our experience that convergence criteria of
the unfolding algorithms have to be set much more strictly than for ordi-
nary MDS programs. Failing to do so may lead to a premature halt of the
algorithm. The obtained solution may look nontrivial at a first glance, but
continuing the algorithm with stricter convergence criteria may well lead
to the trivial solution. Therefore, it is wise to make the algorithm run for
many iterations so that one is sure to have avoided the trivial solution.

15.5 Exercises

Exercise 15.1 Table 15.4 on p. 333 shows the average ratings of 90 stu-
dents from 15 different countries for 21 nations (columns) on 18 attributes
(rows). The data were collected and reported by Wish, Deutsch, and Biener
(1972). The rating scales are bipolar 9-point scales such as “collectivistic
vs. individualistic” (scale 2). For most scales, only one label is shown: the
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other end of the scale is obvious (as in “rich”, where the other scale end is
“poor”).

(a) To analyze these data, first use ordinal unconditional unfolding. Rep-
resent these data in a plane. The solution is most likely degenerated
into points-on-circles and/or into clusters of attributes and countries,
respectively.

(b) Check whether linear unfolding helps to avoid the degeneracies. Dis-
cuss how the linear unfolding solution differs from the one for ordinal
unfolding.

(c) Try out some of the methods discussed in this chapter to avoid the
degeneracies. For example, compute within-country proximities and
within-attribute proximities. Augment the above data matrix with
these coefficients, and then run unfolding on this matrix.

Exercise 15.2 Use the data from Table 14.2 to compute coefficients for
the similarity of breweries and of attributes, respectively. Then run an
unfolding analysis of the data matrix in Table 14.2 after “completing” it
with within-breweries and with within-attributes similarities (as suggested
in Figure 14.1). Do you succeed in avoiding the degeneracies observed in
Figures 14.13 and 14.15, respectively?

Exercise 15.3 Consider the contingency table below that is reported by
Garmize and Rychlak (1964). Its entries show the frequencies with which
different persons gave particular interpretations (rows) to Rorschach inkblot
pictures when induced (by role play) into one of the moods shown in the
columns.

Interpretation Fear Anger Depression Love Ambition Security
Bat 33 10 18 1 2 6
Bear 0 0 2 0 0 0
Blood 10 5 2 1 0 0
Boot(s) 0 1 2 0 0 0
Bridge 1 0 0 0 0 0
Butterfly 0 2 1 26 5 18
Cave 7 0 13 1 4 2
Cloud(s) 2 9 30 4 1 6
Fire 5 9 1 2 1 1
Fur 0 3 4 5 5 21
Hair 0 1 1 2 0 0
Island 0 0 0 1 0 0
Mask 3 2 6 2 2 3
Mountains 2 1 4 1 18 2
Rock(s) 0 4 2 1 2 2
Smoke 1 6 1 0 1 0

(a) Unfold these data with ordinal and metric models and test out dif-
ferent ways to avoid degeneracies.
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TABLE 15.4. Average ratings of 90 students from 15 different countries for 21
nations on 18 attributes (Wish et al., 1972).
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U.S.A. 9.0 7.4 4.5 7.5 7.5 6.6 5.5 7.5 7.2 6.1 4.8 7.4 4.4 8.8 8.8 8.9 6.6 8.8
U.K. 8.5 5.8 6.7 7.9 7.7 7.2 5.8 5.8 7.7 6.6 6.9 6.8 8.1 7.2 8.3 6.5 5.3 4.0
W.Germany 8.1 5.9 5.7 6.4 6.5 6.3 4.7 6.2 7.0 6.7 6.3 5.4 7.9 7.8 8.3 7.1 7.6 5.6
France 7.2 5.6 5.8 6.1 6.4 6.1 5.4 5.7 5.4 5.6 5.1 6.4 7.9 6.4 6.6 6.1 6.0 5.6
Israel 7.4 3.1 3.3 6.4 6.1 5.7 4.4 6.2 6.5 6.6 7.6 5.4 6.8 6.2 6.1 5.9 7.6 1.9
Japan 7.2 4.9 6.4 6.6 6.8 6.9 5.2 6.7 7.4 6.5 7.2 5.9 6.6 7.4 8.3 7.0 8.0 5.0
South Africa 6.0 6.6 5.1 2.9 3.6 3.4 2.2 2.8 4.6 3.4 2.8 3.2 6.9 6.3 5.6 4.7 4.7 5.7
Greece 6.9 5.9 6.2 3.2 6.4 4.8 3.6 3.7 3.5 3.8 4.2 6.2 3.4 3.6 3.7 3.0 4.5 3.0
Spain 6.6 6.1 6.4 3.4 5.5 4.2 2.9 3.5 5.5 4.4 4.5 5.0 4.6 3.5 3.9 3.1 4.3 4.6
Brazil 6.4 5.6 6.8 4.4 6.5 5.2 3.1 3.9 3.6 3.6 4.3 3.6 3.0 4.2 3.8 3.8 5.9 7.2
Mexico 6.8 5.2 7.0 4.6 6.4 5.7 3.5 4.1 5.2 4.6 5.7 4.7 3.3 3.8 4.0 3.4 5.7 5.4
Ethiopia 5.6 5.2 6.8 4.1 6.2 5.4 2.7 3.6 5.4 4.8 5.9 3.1 2.8 3.0 2.5 2.8 5.4 4.1
India 6.0 4.6 6.8 4.6 6.2 5.5 2.9 3.4 5.0 3.5 3.4 5.6 2.5 2.1 3.0 3.6 5.6 8.1
Indonesia 5.1 5.5 4.8 3.3 5.2 4.3 2.5 3.6 3.4 3.9 3.7 3.2 2.8 3.4 3.0 3.4 5.2 5.3
Congo 5.0 5.7 4.8 3.0 4.8 3.8 1.7 3.0 2.4 3.5 2.6 3.0 2.2 3.1 2.2 2.6 4.5 5.4
Egypt 3.6 4.1 3.1 3.8 5.1 4.2 2.5 3.5 4.1 4.5 5.6 5.0 3.0 3.4 3.5 3.7 4.7 5.1
China 1.1 2.0 2.4 2.1 4.2 3.9 2.7 3.2 4.5 3.8 4.2 5.2 3.4 3.1 4.7 7.0 6.4 8.7
Cuba 2.1 2.6 3.7 2.9 5.0 4.4 2.9 3.7 4.5 4.3 6.1 4.0 3.7 3.6 3.8 3.5 5.7 2.0
Yugoslavia 3.9 2.6 6.6 4.1 6.5 5.5 3.9 4.4 6.2 5.6 6.0 3.7 5.4 4.0 5.0 3.8 6.4 4.1
Poland 3.2 2.4 5.7 3.1 5.6 4.9 3.3 4.0 6.6 4.9 6.3 3.6 6.1 4.6 5.9 3.9 5.8 4.5
USSR 2.7 1.5 3.7 2.6 5.3 5.0 4.0 4.3 7.3 5.6 6.8 6.6 7.1 7.1 7.9 8.5 7.8 8.8
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(b) Discuss in what ways the data could be preprocessed or weighted,
noting, for example, that there are many zeros and also many very
low frequencies.

(c) Check out what applying weights on the data does to your unfolding
solutions.



16
Special Unfolding Models

In this chapter, some special unfolding models are discussed. First, we dis-
tinguish internal and external unfolding. In the latter case, one first derives
an MDS configuration of the choice objects from proximity data and af-
terwards inserts ideal points to represent preference data. Then, the vector
model for unfolding is introduced as a special case of the ideal-point model.
In the vector model, individuals are represented by vectors and choice ob-
jects as points such that the projections of the objects on an individual’s
vector correspond to his or her preference scores. Then, in weighted un-
folding, dimensional weights are chosen freely for each individual. A closer
investigation reveals that these weights must be positive to yield a sensi-
ble model. A variant of metric unfolding is discussed that builds on the
Bradley–Terry–Luce (BTL) choice theory.

16.1 External Unfolding

We now turn to external unfolding models. These models assume that a
similarity configuration of the choice objects is given, possibly obtained
from a previous MDS analysis. If we have preference data on these objects
for one or more individuals, then external unfolding puts a point (ideal
point) for each individual in this space so that the closer this point lies to
a point that represents a choice object, the more this object is preferred
by this individual. In an internal unfolding problem, by contrast, only the
preference data are given, from which both the object configuration and the
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ideal points have to be derived. Thus, external unfolding for the breakfast
objects, say, would require a coordinate matrix on the objects A, . . ., O and,
in addition, preference data as in Table 14.1. The coordinate matrix could
be obtained from an MDS analysis of an additional matrix of proximities
for the 15 objects. Afterwards, an ideal point S would have to be embedded
into this MDS configuration for each person in turn such that the distances
from S to the points A, . . ., O have an optimal monotonic correspondence
to the preference ranks in Table 14.1.

Finding the optimal location for individual i’s ideal point is straightfor-
ward. Consider the majorization algorithm for internal unfolding in Section
14.2. The coordinates for the set of objects, X1, are given and hence are
fixed. Thus, we only have to compute iteratively the update for X2, the
coordinates of the individuals, given by (14.2). Instead of δij we may use d̂ij

to allow for admissibly transformed preference values of individual i with
respect to object j. In this case, we do not have to be concerned about
degenerate solutions, because the coordinates of the objects are fixed. Be-
cause the distances among the individuals do not represent any data (the
within-individuals proximities are missing in external unfolding), the indi-
viduals’ points can be computed one at a time or simultaneously without
giving different solutions. However, if the coordinates of the individuals are
fixed and we use external unfolding to determine the coordinates of the
objects, then the trivial solution in Figure 14.7b can occur in which all
objects collapse in one point.

In Figure 14.1, we saw that unfolding can be viewed as MDS of two sets of
points (represented by the coordinates in X1 for the individuals and X2 for
the objects), where the within-sets proximities are missing. Additionally, in
external unfolding, X1 (or X2) is fixed. Groenen (1993) elaborates on this
idea to identify special cases for MDS on two sets of objects. Table 16.1
shows some relations of the MDS models. For example, if the proximity
weights wij of the within-individuals and within-objects proximities are
nonmissing (W11 �= 0, W22 �= 0), and all coordinates of X1 and X2 are
free, then the model is full MDS. But if W11 = 0 and W22 = 0, we have
(internal) unfolding. For almost complete MDS we have one of the within-
blocks portion of the data matrix missing. (Therefore, almost complete
MDS appears twice in Table 16.1.) It is semi-complete MDS if additionally
X1 is fixed, so that the between-blocks and within-objects proximities are
fitted by X2 for given X1. Note that for fixed X1, W11 is immaterial and
W22 determines the model.

16.2 The Vector Model of Unfolding

The ideal-point model for unfolding has a popular companion, the vector
model of unfolding, which goes back to Tucker (1960). It differs from the
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TABLE 16.1. Relation of unfolding, external unfolding, and MDS using the par-
titioning in two sets, X1 (objects) X2 (individuals), as in Figure 14.1. We assume
that X2 is always free and W12 �= 0.

Model
X1 Free W11 = 0 W22 = 0 Unfolding
X1 Free W11 = 0 W22 �= 0 Almost complete MDS
X1 Free W11 �= 0 W22 = 0 Almost complete MDS
X1 Free W11 �= 0 W22 �= 0 Complete MDS
X1 Fixed W11 = 0 W22 = 0 External unfolding
X1 Fixed W11 = 0 W22 �= 0 Semi-complete MDS
X1 Fixed W11 �= 0 W22 = 0 External unfolding
X1 Fixed W11 �= 0 W22 �= 0 Semi-complete MDS

B
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D
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A

L2

L1

ABCDEC
D

A
E

B

FIGURE 16.1. Illustration of the vector model of unfolding; L1 and L2 represent
two individuals.

ideal-point model in representing each individual i not by a point but by a
directed line (segment), a vector. From now on, we switch to the notation
X for the objects and Y for the individuals.

Representing Individuals by Preference Vectors
For each individual i, a linear combination of the coordinate vectors of X
is to be found so that it corresponds as much as possible to the preference
data pi of this individual. Figure 16.1 should clarify the situation. The
diagram shows a configuration of five choice objects (points A, . . . , E) and,
in addition, two preference lines, L1 and L2.

Assume that individual i had ordered the objects as A > B > C > D >
E in terms of preference. Then, L2 is a perfect (ordinal) representation of
i’s preferences, because the projections of the object points onto this line
perfectly match i’s preference rank-order.
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FIGURE 16.2. Illustrating the relation of the ideal-point and the vector model
for preferential choice. Panel (a) shows that the more the ideal points move away
from the object points (solid points) on line L, the more the ideal-point model
approximates the vector model. Panel (b) zooms in on the box in panel (a). The
straight dashed lines show the projections according to the vector model.

Of course, with so few points, many other lines around L2 would be
equally perfect representations for the empirical preference order A > · · · >
E. On the other hand, any arbitrary direction would not do, and for some
preference orders (such as D > C > E > A > B) no perfect representation
exists at all in Figure 16.1.

The vector model is, in a way, but a special case of the ideal-point model.
To see this, consider Figure 16.2 and assume that person i’s ideal point I is
moved from ideal point 1 to 3 along the direction of vector L. As I moves
away from the object points A, . . . , D in the direction of line L, the iso-
preference circles grow and grow in diameter, so that the circle segments
from the object points to L will become increasingly less curved. When I’s
distance from the centroid of the object points approaches ∞, the circle
segments approximate the straight projection lines of A, . . . , D onto L (Car-
roll, 1972; Coombs, 1975). Expressed differently, the distances from I to
the various object points approximate the distances of I to the projections
of the object points onto the line L. Hence, in terms of fitting the models
to data, the ideal and the vector models become very similar. However,
this does not imply that the psychological models also become equivalent
(Van Deun, Groenen, & Delbeke, 2005). The main difference is that in the
vector model, preferences are confined to a subspace of the unfolding space
(i.e., the preference vector) and any variation in the surrounding space is
ignored. In a dimensional interpretation of the unfolding models, we note
that in the vector model the attributes (dimensions) contribute with fixed
weights to the preference function of an individual, however close or distant
the object points are from line L, whereas in the ideal-point model a low
score on one attribute can be compensated by a very high score on other
dimensions to lead to the same projection onto L (see also Section 14.7).
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Hence, the vector model and the ideal-point model imply similar decision
functions only for points that are close to the vector.

Apart from this difference, the vector model also represents a particular
preference notion that can be described as “the more, the better” on all
dimensions. Obviously, this property does not hold in general. For example,
suppose that respondents have to rate how much they like teas of various
temperatures. It is certainly not true that the hotter the tea the better.
The opposite (the colder, the better) is not plausible either, not even for
iced tea.

Metric and Ordinal Vector Models
In a metric model, the indeterminacy of locating Li is eliminated or at
least reduced, because the distances of the projection points on Li are
also meaningful in some quantitative sense. For example, if we require that
d(B,E) = d(E, D) on Li, then only a line corresponding closely to the
vertical coordinate axis may be selected as a representation. But then we
could conclude that this individual based his or her preference judgments
on the vertical dimension only, whereas some other person whose preference
line is the bisector from the lower left-hand to the upper right-hand corner
used both dimensions with equal weight. Note that if we put the arrowhead
at the other end of the line, the person represented by this line would still
weight both dimensions equally, but now the negative, not the positive,
ends of each dimension are most attractive.

Fitting the Vector Model Metrically
In the vector model, one has to find an m-dimensional space that contains
two sets of elements: (a) a configuration X of n points that represent the
objects and (b) an m-dimensional configuration Y of N vectors that repre-
sent the individuals. The projections of all object points onto each vector
of Y should correspond to the given preference data in the N columns of
Pn×N . The model attempts to explain individual differences of preference
by different weightings of the objects’ dimensions.

Formally, we have the loss function

L(X;Y) = ||Xn×mY′
m×N − Pn×N ||2. (16.1)

Note that P corresponds to the upper corner matrix in Figure 14.1. The
vector model is fitted by minimizing (16.1) over X and Y.

The loss function can be minimized by a singular value decomposition.
Let P = KΛL′ be the SVD of P. Then, the first m columns of KΛ and of
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L define optimal solutions for X and for Y, respectively. Setting X = K
and Y = LΛ would do equally well.1

However, there are many more than just these two solutions. Minimizing
L(X;Y) by choice of X and Y does not uniquely determine particular
matrices X and Y. Rather, if X is transformed into X∗ = XM by a
nonsingular matrix M, then we simply have to transform Y into Y∗ =
Y(M−1)′ to obtain the same matrix product. Such transformations can be
conceived of as rotations and stretchings along the dimensions, because M
can be decomposed by SVD into PΦQ′, where P and Q are orthonormal
and Φ is a diagonal matrix of dimension weights [see (7.14)]. Geometrically,
this means, for example, that one can stretch out a planar X along the Y -
axis (like a rubber sheet), provided Y is stretched out along by the same
amount along the X-axis. This destroys relations of incidence, for example,
and thus makes interpretation difficult.

By restricting the vectors of Y to the same length (1, say), the model
becomes more meaningful:

L(X;Y) = ||XY′ − P||2,
diag(YY′) = diag(I). (16.2)

The indeterminacy now reduces to a rotation; that is, M must satisfy
MM′ = I, because only then does Y∗ = Y(M−1)′ satisfy the additional
side constraint in formula (16.2). This rotation is unproblematic for in-
terpretations because it affects both X and Y in the same way because
Y(M−1)′ = YM if M is orthonormal.

Chang and Carroll (1969) developed a popular program, Mdpref, for
solving the length-restricted vector model in (16.2). It first finds an SVD
of P and then imposes the side constraint of unit length onto Y’s vectors.
Schönemann and Borg (1983) showed that this sequential approach may
be misleading. The argument is based on first deriving a direct solution for
(16.2). It exists only if the data satisfy certain conditions implied by the
side condition diag(YY′) = diag(I). Hence, (16.2) is a testable model that
may or may not hold, whereas Mdpref always provides a solution.

If X is given, then things become very simple. The vector model for
external unfolding only has to minimize (16.1) over the weights Y. This
problem is formally equivalent to one considered in Chapter 4, where we
wanted to fit an external scale into an MDS configuration. If the preferences
are rank-orders, then an optimal transformation also has to be computed.2

1In contrast to ordinary PCA, P has individuals as column entries and the objects
as row entries. Hence, the vector model for unfolding is sometimes referred to as a
“transposed PCA.”

2This model can be fitted by the Prefmap program (for computational details, see
Carroll, 1972).
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Fitting the Vector Model Ordinally
Now, suppose that P contains preference rank-orders. Gifi (1990) proposes
to minimize the closely related problem

∑N
i=1 ||X− p̂iy′

i||2, where yi is row
i of Y and p̂i has the same rank-order as pi but is optimally transformed.
This resembles the strategy for conditional unfolding for the ideal-point
model, except that in this case the data are treated as column conditional.
To avoid the degenerate solution of Y = 0, X = 0, and p̂i = 0, Gifi
(1990) imposes the normalization constraint p̂′

ip̂i = n and X′X = nI. This
model can be computed by the program Catpca (categorical principal
components analysis) formerly known under the name Princals (nonlinear
principal components analysis), both available in the SPSS package. Note
that Catpca has to be applied to the objects × individuals matrix, because
the ordinal transformations are computed columnwise. More details about
this and related approaches can be found in Gifi (1990).

Van Deun et al. (2005) discuss the Vipscal model for unfolding. This
model allows some subjects to be presented by an ideal point and others
by the vector model. The model also allows some length and orthogonality
constraints on X and Y. Special cases within Vipscal are the ordinary
ideal point model and an (ordinal) vector model.

An Illustrative Application of the Vector Model
Consider the breakfast data in Table 14.1 again. Figure 16.3 shows the
result of the vector model for unfolding obtained by Catpca, using the
preference rank-orders only. The preference vectors for every individual
are scaled to have equal length, because it is the direction that matters,
not the actual length. Note that high values in Table 14.1 indicate least
preferred breakfast items; hence the correlations of p̂i with X (called com-
ponent loadings in Catpca) have to be multiplied by minus one to obtain
the preference vectors in Figure 16.3. The Catpca solution indicates that
there are three groups of individuals. The first group of 15 respondents is
represented by the preference vectors directed away from A. This group
has a strong dislike for A (toast pop-up) and does not care much about
the other breakfast items either. The other groups are orthogonally related
to the first group, indicating that they are indifferent to breakfast A, be-
cause A projects onto the origin. The second group is directed to the lower
left-hand corner. This group prefers the breakfast items K, D, L, M, and
N, and dislikes breakfast items with toast, that is, B, G, and J. The third
group has the opposite preference of the second group. The interpretation
of this solution is not very different from the ideal-point solution in Figure
14.2.
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FIGURE 16.3. The vector model of unfolding of the breakfast items in Table 14.1
computed by Catpca.

16.3 Weighted Unfolding

We now consider a generalization of external unfolding, that is, weighted
unfolding (Carroll, 1980). Assume that the coordinate axes could be cho-
sen to correspond to the dimensions that determined person i’s preference
judgment. It is then possible to conjecture that person i weights these di-
mensions in some particular way depending on how important he or she
feels each dimension to be. Consider, for example, an investment problem
and assume that various portfolios are distinguished with respect to risk
and expected profit. All individuals agree, say, that portfolio x is riskier
than y, and that y has a higher expected yield than z; that is, all individuals
perceive the portfolios in the same way. But person i may be more cau-
tious than j, so in making a preference judgment the subject weights the
risk dimension more heavily than j. In other words, in making preference
judgments on the basis of a common similarity space, person i stretches
this space along the risk dimension, but j compresses it, and this will, of
course, affect the the distances differentially. We can express such weight-
ings of dimensions as follows.

dij(X;Y;W) =

[
m∑

a=1

(wiayia − wiaxja)2
]1/2

=

[
m∑

a=1

w2
ia(yia − xja)2

]1/2

, (16.3)

where xja is the coordinate of object j on dimension a, yia is the coordinate
of the ideal points for individual i on dimension a, and wia is the weight
that this individual assigns to dimension a.
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FIGURE 16.4. MDS configuration for tea proximities (circles); numbers indicate
teaspoons of sugar, letters temperature of tea (sh=“steaming hot”, h=“hot”,
lw=“lukewarm”, c=“cold”, ic=“ice cold”). Crosses show ideal points for ten sub-
jects; length of bars proportional to dimensional weights; dashed/solid bars indi-
cate negative/positive weights, respectively (after Carroll, 1972).

Private Preference Spaces and Common Similarity Space
This seemingly minor modification of the distance formula has important
consequences. The most obvious one is that the weighted model generally
does not permit the construction of a joint space of objects and individu-
als in which the differences among the various individuals are represented
by the different locations of the respective ideal points. Rather, each in-
dividual has his or her own private preference space, independent of the
preference spaces for other individuals, even though they are all related to
a common similarity space by dimensional stretchings. Further implications
of the weighted unfolding model can be seen from the following example.

In an experiment by Wish (see Carroll, 1972), 12 subjects evaluated 25
stimuli with respect to (a) their dissimilarities and (b) their subjective val-
ues. The dissimilarity data were collected by rating each of the stimulus
pairs on a scale from 0 (= identical) to 9 (= extremely different). The stim-
uli were verbal descriptions of tea, varying in temperature and sweetness.
The proximities are represented by the MDS configuration in Figure 16.4,
where the different teas are shown by circles. The configuration X reflects
the 5 × 5 design of the stimuli very clearly: the horizontal axis corresponds
to the temperature factor and the vertical one to the sweetness scale.

Additionally, the individuals indicated their preferences for each type of
tea. These data and the fixed coordinates X of the stimuli are used to find
the dimension weights and the ideal points for each individual i. To do this,



344 16. Special Unfolding Models

Carroll (1972) minimized the loss function

L(Y;W) =
n∑

i=1

n∑
j=1

(
d2

ij(Y;X;W) − δ2
ij

)2
(16.4)

over ideal points Y and dimension weights W. L(Y;W) differs from a
Stress-based criterion in that it uses squared distances d2

ij for computational
convenience instead of the distance dij (just as in S-Stress; see Section 11.2).
L(Y;W) is minimized in an alternating least-squares fashion, where the
update of Y with W fixed is alternated by the update of W for fixed Y,
until convergence is reached.

Figure 16.4 also represents the resulting 12 private preference spaces
through weight crosses on the ideal points. The scatter of the ideal points
shows that the individuals differ considerably with respect to the preferred
sweetness of the tea. There is much less variation on the temperature di-
mension, but, strangely, most individuals seem to prefer lukewarm tea,
because the ideal points are concentrated mostly in the lukewarm range of
the temperature dimension. On the other hand, it is not very surprising
that no individual preferred steaming hot tea, and the inclusion of these
choice objects might have obscured the situation in Figure 16.4, according
to Carroll (1972). He therefore eliminated the steaming hot stimuli from the
analysis. This led to an unfolding solution very similar to Figure 16.4 but,
of course, without the “sh” points. Its ideal points were still in the luke-
warm range, but now the (squared) dimension weights on the temperature
dimension were negative for all individuals.

Negative Dimension Weights and Anti-Ideal Points
How are we to interpret negative dimension weights w2

ia? Assume that a
given object is considered “ideal” on all dimensions except for dimension
a. Then, all dimensional differences are zero in (16.3), except for the one
on a. If w2

ia < 0, the term under the square root will be negative. Hence,
d2

ij is negative, and dij is an imaginary number. But then dij is not a dis-
tance, because distances are nonnegative real numbers, by definition. Thus,
without any restrictions on the dimension weights, the weighted unfolding
model is not a distance model.

Is such a model needed? Assume that we have a 2D configuration, with
person i’s ideal point at the origin, and dimension weights w2

i1 = 1 and
w2

i2 = −1. Then, according to (16.3), all points on the bisector between
dimensions 1 and 2 have distance zero to the ideal point yi and, thus, are
also ideal points. For all points x on, below, and above the bisector, we
get d2(x, yi) = 0, d2(x, yi) > 0, and d2(x, yi) < 0, respectively. The plane
thus becomes discontinuous and thereby incompatible with the ideal-point
model that underlies unfolding. In such a situation, it remains unclear
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what purpose further generalizations of this model might serve (Srinivasan
& Shocker, 1973; Roskam, 1979b; Carroll, 1980).

Should one preserve the idea of negative dimension weights? Carroll
(1972) writes: “This possibility of negative weights might be a serious prob-
lem except that a reasonable interpretation attaches to negative w’s . . . This
interpretation is simply that if wit [corresponding to our w2

ia] is negative,
then, with respect to dimension t, the ideal point for individual i indicates
the least preferred rather than the most preferred value, and the farther a
stimulus is along that dimension from the ideal point, the more highly pre-
ferred the stimulus” (p. 133). Coombs and Avrunin (1977) argue, however,
that anti-ideal points are artifacts caused by confounding two qualitatively
different sets of stimuli. For tea, they argue that one should expect single-
peaked preference functions over the temperature dimension for each iced
tea and for hot tea, respectively. For iced tea, each individual has some pre-
ferred coldness, and the individual’s preference drops when the tea becomes
warmer or colder. The same is true for hot tea, except that the ideal tem-
perature for hot tea lies somewhere in the “hot” region of the temperature
scale. Thus, iced tea and hot tea both yield single-peaked preference func-
tions over the temperature dimension. Superimposing these functions—and
thus generating a meaningless value distribution for “tea”—leads to a two-
peaked function with a minimum at lukewarm.

If one restricts the dimension weights to be nonnegative, then there are
two models. If zero weights are admitted, dij in (16.3) is not a distance, be-
cause it can be zero for different points. This characteristic means that one
cannot interpret the formula as a psychological model saying that person i
generates his or her preferences by computing weighted distances in a com-
mon similarity space. Rather, the model implies a two-step process, where
the individual first weights the dimensions of the similarity space and then
computes distances from the ideal point in this (“private”) transformed
space.

In summary, sensible dimensional weighting allows for better account-
ing of individual differences, but it also means giving up the joint-space
property of simple unfolding. In most applications so far, it turned out
that the weighted unfolding model fitted the data only marginally better,
and so “relatively little appears to be gained by going beyond the simple
(equal-axis weighting) ideal-point model” (Green & Rao, 1972, p.113).

16.4 Value Scales and Distances in Unfolding

We now return to internal unfolding and the simple unfolding model. So
far, not much attention has been paid to the exact relationship of the
distances between ideal points and object points and the subjective value
of the represented objects. We simply claimed that preference strength is
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linearly or monotonically related to the unfolding distances. The particular
shape of the preference function was not derived from further theory. We
now consider a model that does just that.

Relating Unfolding Distances to Preference Strength Data by
the BTL Model
There are many proposals for modeling preference behavior and subjec-
tive value (see, e.g., Luce & Suppes, 1963). One prominent proposal is the
Bradley–Terry–Luce (BTL) model (Luce, 1959). This model predicts that
person i chooses an object oj over an object ok with a probability pjk|i that
depends only on the pair (oj , ok), not on what other choice objects there
are. Restricting the set of choice objects to those that are neither always
chosen nor never chosen, a subjective-value scale v can be constructed for
i by first selecting some object oa as an “anchor” of the scale, and then
setting

vi(oj) =
pja|i
paj|i

. (16.5)

Conversely, pairwise choice probabilities can be derived from the ratio scale
values by using

pjk|i =
vi(oj)

vi(oj) + vi(ok)
. (16.6)

Given a set of preference frequencies, it is possible to first find v-values
for the choice objects and then map these values into the distances of an
unfolding representation. This permits one to test a choice theory (here,
the BTL theory) as a first step of data analysis. If the test rejects the
choice theory, then it makes little sense to go on to unfolding, because the
choice process has not been understood adequately and must be modeled
differently. If, on the other hand, the test comes out positive, the distance
representation has a better justification.

Luce (1961) and Krantz (1967) discuss two functions that connect the
scale v with corresponding distances in the unfolding space. One would
want such a function to be monotonically decreasing so that greater v-
scale values are related to smaller distances. One reasonable function in
this family is

d(xj , yi) = − ln[vi(oj)], (16.7)

or, expressed differently,

vi(oj) = exp[−d(xj , yi)], (16.8)

where d(xj , yi) denotes the distance between the points xj and yi represent-
ing object oj and individual i, respectively, in the unfolding space. Thus,
vi(oj) = max = 1 if d(xj , yi) = 0 (i.e., at the ideal point) and 0 < vi(oj) < 1
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FIGURE 16.5. (a.) Distance (vertical) from ideal point yi with coordi-
nates (0,0) in 2D to stimulus xj , and (b) the corresponding scale value
vi(oj) = exp[−d(xj , yi)] according to (16.8).

for all other objects. Figure 16.5b shows the the preference function for in-
dividual i with ideal point (0, 0) in 2D. The circles in the horizontal plane
indicate the positions of the object points with equal preference. The cor-
responding preference strength is shown on the vertical axis. The model
defines an inverted bowl over the plane, and this bowl never touches the
plane, even though it comes very close to it when we move far away from
the ideal point.

A similar function is discussed by Schönemann and Wang (1972) and
Wang, Schönemann, and Rusk (1975):

vi(oj) = exp[−c · d2(xj , yi)], (16.9)

where c > 0 is some arbitrary multiplier. Setting c = 1, the only differ-
ence3 between (16.9) and (16.8) is that the distances are squared in the
former case. For squared distances, the value surface over the object space
is normal for each ideal point yj . Thus, in a 2D case like the one in Figure
16.5b, the inverted bowl has the familiar bell shape. Equation (16.9) is then
connected to individual i’s pairwise preference probabilities pjk|i by using
the BTL choice model. Inserting the vi(oj) values into (16.9) yields

pjk|i =
1

1 + exp[d2(xj , yi) − d2(xk, yi)]2
. (16.10)

Thus, preference probabilities and (squared) distances of the unfolding
space are related, according to this model, by a logistic function4 oper-
ating on differences of (squared) distances.

3That difference, however, is critical, because it renders the model mathematically
tractable so that the exact case can be solved algebraically, without iteration. The alge-
braic solution given in Schönemann (1970) generalizes the Young–Householder theorem
to the asymmetric case.

4The exact form of the probability distribution is not of critical importance for fitting
the model to the data. This follows from many detailed investigations on generalized
Fechner scales (see, e.g., Baird & Noma, 1978), which include the logistic function as just
one special case. An alternative is the normal curve, but almost any other approximately
symmetrical function would do as well.
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TABLE 16.2. Politicians and interviewee groups of Wang et al. (1975) study.

1. Wallace (Wal) 5. Humphrey (Hum) 9. Nixon (Nix)
2. McCarthy (McC) 6. Reagan (Rea) 10. Rockefeller (Roc)
3. Johnson (Joh) 7. Romney (Rom) 11. R. Kennedy (Ken)
4. Muskie (Mus) 8. Agnew (Agn) 12. LeMay (LeM)

Interviewee Group Code Ni

1. Black, South BS 88
2. Black, Non-South BN 77
3. White, strong Democrat, South, high ed. SDSH 17
4. White, strong Democrat, South, low education SDSL 43
5. White, weak Democrat, South, high education WDSH 27
6. White, weak Democrat, South, low education WDSL 79
7. White, strong Democrat, Non-South, high ed. SDNH 21
8. White, strong Democrat, Non-South, low ed. SDNL 85
9. White, weak Democrat, Non-South, high ed. WDNH 65

10. White, weak Democrat, Non-South, low ed. WDNL 180
11. White, Independent, South, high education ISH 8
12. White, Independent, South, low education ISL 27
13. White, Independent, Non-South, high ed. INH 25
14. White, Independent, Non-South, low ed. INL 46
15. White, strong Republican, South, low ed. SRSL 13
16. White, strong Republican, Non-South, high ed. SRNH 40
17. White, strong Republican, Non-South, low ed. SRNL 60
18. White, weak Republican, South, high ed. WRSH 34
19. White, weak Republican, South, low ed. WRSL 36
20. White, weak Republican, Non-South, high ed. WRNH 90
21. White, weak Republican, Non-South, low ed. WRNL 117

An Application of Schönemann and Wang’s BTL Model
Consider an application. Wang et al. (1975) analyzed data collected in 1968
on 1178 persons who were asked to evaluate 12 candidates for the presi-
dency on a rating scale from 0 (= very cold or unfavorable feeling for the
candidate) to 100 (= very warm or favorable feeling toward the candidate)
(Rabinowitz, 1975). The respondents were classified into 21 groups accord-
ing to their race, party preference, geographical region, and education. The
21 groups and the 12 candidates are listed in Table 16.2. Twenty-one 12×12
preference matrices were derived from the rating values of the respondents
in each group. The pjk|i values (where i indicates the group i = 1, . . . , 21)
were computed as the relative frequencies with which candidate oj ’s rating
score was higher than the score for candidate ok.

The least-squares BTL scale values for the 12 candidates and the 21
groups are shown in Table 16.3. It turned out that these scale values ac-
counted for the probabilities sufficiently well; that is, it is possible to ap-
proximately reconstruct the

(12
2

)
probability data from the 12 scale values

for each group. By taking the logarithm of both sides of (16.9), the v-values
can be transformed into squared distances, which in turn are the dissim-
ilarities for our unfolding analysis. Wang et al. (1975) then employed an
iterative optimization method for finding an unfolding configuration. (Of
course, the internal unfolding solution could also be computed by the ma-
jorization algorithm in Section 14.2.) The final fit to the i = 1, . . . , 21 em-
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TABLE 16.3. BTL scale values for interviewee groups and politicians from
Table 16.2.

Wal Hum Nix McC Rea Roc Joh Rom Ken Mus Agn LeM
BS .11 9.00 .95 .75 .28 .66 9.10 .51 21.70 1.52 .35 .14
BN .03 12.09 .95 1.27 .29 1.78 7.54 .58 16.02 2.15 .26 .11
SDSH .49 3.82 1.00 1.17 .42 .94 1.48 .45 1.89 3.43 .62 .43
SDSL .86 2.64 1.09 .58 .46 .70 2.54 .53 1.89 1.70 .74 .67
WDSH .72 1.08 2.82 1.01 .84 1.21 1.27 .56 1.37 1.52 .69 .44
WDSL 1.24 1.20 2.30 .76 .68 .66 1.12 .64 1.45 .93 1.03 .86
SDNH .09 4.72 1.11 1.67 .40 1.07 2.64 1.23 5.92 4.44 .38 .09
SDNL .26 3.80 .95 .86 .43 .81 3.12 .64 5.99 2.38 .49 .25
WDNH .12 2.99 1.46 1.68 .42 1.61 1.54 .92 5.13 2.46 .49 .19
WDNL .37 1.99 1.57 .98 .59 .82 1.58 .68 3.69 1.71 .70 .40
ISH .43 1.24 4.07 .76 .89 .97 .88 .60 2.88 1.10 1.34 .31
ISL 6.68 .90 3.40 .87 .83 .86 .95 .51 2.53 .87 1.03 .71
INH .43 1.77 2.54 1.49 .66 .84 1.01 .77 1.69 1.80 .88 .30
INL 6.37 1.48 2.30 1.13 .74 .95 1.12 .71 2.66 1.82 .83 .31
SRSL .11 .66 20.37 .55 1.43 .82 .86 .78 1.93 .77 3.20 .34
SRNH .16 .55 14.29 1.05 1.98 1.44 .54 1.29 1.26 .98 1.19 .26
SRNL .28 .62 8.49 1.02 1.39 1.02 .61 .95 1.28 .87 1.78 .41
WRSH .76 .45 7.53 .64 1.78 .99 .82 .65 .86 .82 1.15 .80
WRSL .85 .56 5.23 1.07 1.03 1.10 .78 .62 1.55 .55 1.23 .66
WRNH .28 .89 4.78 1.56 1.12 1.46 .68 .75 1.38 1.34 1.01 .34
WRNL .33 .86 5.84 1.06 1.08 1.06 .76 .73 1.75 .99 1.17 .43

pirical preference probabilities can be checked by substituting the d2(xj , yi)
terms in (16.10) with the reconstructed distances in the unfolding solution.
Wang et al. (1975) concluded from statistical tests that a 3D representation
was sufficiently precise.

The 3D unfolding representation, however, possesses a peculiar property:
the ideal points are not distributed throughout the whole space, but lie al-
most completely in a plane. This implies that the solution has a considerable
indeterminacy with respect to the point locations.5 Figure 16.6 illustrates
the problem with a 2D example. All ideal points y1, . . . , y4 lie on a straight
line, whereas the object points x1, . . . , x5 scatter throughout the space. In
internal unfolding, the only information available for determining the loca-
tion of the points is the closeness of object and ideal points. But then each
xj can be reflected on the line running through yis, because this does not
change any between-sets distance. Thus, for example, instead of the solid
point x2 in Figure 16.6, we could also choose its counterpoint shown as an
open circle. Such choices have a tremendous effect on the appearance of
the unfolding solution and, by way of that, on its interpretation.

How can one diagnose this subspace condition in practice? One can do a
principal axes rotation of the X configuration and of the Y configuration,
respectively, and then check, on the basis of the eigenvalues, whether either
one can be said to essentially lie in a subspace of the joint space. Table 16.4

5This indeterminacy is not restricted to the Schönemann and Wang model, but it is
a property of all Euclidean ideal-point unfolding models.
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FIGURE 16.6. An indeterminacy in an unfolding space; the xj points can be
reflected on the line of the yis without affecting the distance d(xj , yi).

TABLE 16.4. Coordinates for candidates and subgroup ideal points in 3D: un-
rotated (left-hand side, X and Y) and after subspace rotation (right-hand side,
X∗ and Y∗).

X 1 2 3 Y 1 2 3 X∗ 1 2 3 Y∗ 1 2 3
Wal -1.17 -1.40 -.31 NS .66 .21 -.39 Wal .99 -1.38 -.97 NS -.10 .63 -.14
Hum 1.41 -.31 .24 NN .74 .51 -.42 Hum .78 1.24 .14 NN -.40 .75 -.00
Nix -1.21 .15 -.09 SDSH .21 -.53 .29 Nix -.20 -1.25 .05 SDSH .80 .03 .04
McC .07 .53 1.42 SDSL .14 -.59 .20 McC .49 -.09 1.56 SDSL .79 -.04 -.08
Rea -.93 .56 1.19 WDSH -.06 -.22 .10 Rea .18 -1.05 1.35 WDSH .40 -.18 .03
Roc -.03 .63 1.39 WDSL -.11 -.43 .12 Roc .37 -.18 1.58 WDSL .57 -.26 -.07
Joh 1.02 -.89 -.80 SDNH .48 .22 -.08 Joh .66 .89 -1.06 SDNH .02 .42 .13
Rom -.12 .71 1.47 SDNL .37 -.16 -.02 Rom .32 -.26 1.69 SDNL .35 .26 -.02
Ken 1.16 -.46 -.54 WDNH .32 .20 -.10 Ken .46 1.06 -.61 WDNH .00 .26 .09
Mus .53 .29 1.28 WDNL .15 -.12 -.03 Mus .69 .34 1.31 WDNL .28 .05 -.01
Agn -.96 -.89 -1.05 ISH -.05 .22 -.26 Agn .21 -1.04 -1.31 ISH -.16 -.08 -.04
LeM -.96 -1.34 -.91 ISL -.11 -.06 -.12 LeM .66 -1.11 -1.44 ISL .14 -.19 -.07

INH .03 -.07 .03 INH .25 -.07 .05
INL .06 .01 -.05 INL .15 -.02 .03
SRSL -.25 1.14 -.92 SRSL -1.31 -.09 -.10
SRNH -.27 .85 -.50 SRNH -.85 -.19 .09
SRNL -.26 .53 -.39 SRNL -.52 -.23 .01
WRSH -.34 .09 -.15 WRSH -.04 -.40 -.02
WRSL -.25 .03 -.14 WRSL .02 -.32 -.04
WRNH -.13 .28 -.15 WRNH -.16 -.16 .09
WRNL -.15 .32 -.27 WRNL -.26 -.17 .01
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FIGURE 16.7. Unfolding representation of BTL values in Table 16.3; for labels,
see Table 16.2 (after Wang et al., 1975).

illustrates this approach for the Wang et al. case. The panels on the left-
hand side show the coordinates for the candidates and the ideal points in
some 3D joint space. The panels on the right-hand side exhibit the coordi-
nates of both configurations in a rotated 3D joint space whose dimensions
correspond to the principal axes of the ideal-point configuration. The table
(rightmost column) shows that the ideal points lie essentially in a plane of
the 3D joint space, because their coordinates on the third principal axis are
all very similar (here: close to zero). If one projects the candidates into this
plane, one obtains an unfolding representation that is free from reflection
indeterminacies.

Figure 16.7 represents the person groups as stars and the candidates as
points. The dimensions correspond to the interpretation given by Wang
et al. (1975) on the basis of considering the projections of the candidates
onto various straight lines. But one could also proceed by studying the
ideal-point labels. For example, a Republican vs. Democrat dimension is
suggested by studying the party affiliations of the various groups of white
voters. If we draw lines around the groups with party preference SR, WR,
I, WD, and SD, respectively, regions of ideal points result that can be parti-
tioned almost perfectly by parallel straight lines. These lines are, however,
not quite orthogonal to the direction of the Republican–Democrat dimen-
sion chosen by Wang et al. Rather, they partition the axis through the
points Nixon and Humphrey. The two other group facets, education and
region, do not allow simple partitionings. Wang et al.’s liberal–conservative
dimension essentially distinguishes blacks from whites.

Interpreting dimensions is not affected by the reflection indeterminacy
discussed above. In contrast, the usual ideal-point interpretation is only
partially possible in Figure 16.7. A naive approach can lead to gross mis-
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takes. We know from Table 16.4 that a number of candidate points such
as Rockefeller, for example, are positioned far above or below the subspace
plane shown in Figure 16.7. But Figure 16.7 shows “Roc” close to most ideal
points, so that one might expect, incorrectly, that Rockefeller is among the
top choices for most groups. The usual ideal-point unfolding interpretation
leads to correct preference predictions only for those candidates close to
the subspace plane, such as Nixon and Humphrey.

How should one interpret such extra dimensions? There is no simple an-
swer, and additional information beyond the data on which the unfolding
is based is required in any case. In the given example, one might specu-
late that the extra dimension for the candidates reflects additional features
of the candidates, unrelated to the preferential choice criteria that distin-
guish the different groups, such as, for example, the extent to which the
candidates are known or unknown. In any case, such interpretations remain
complicated because each point can be reflected on this dimension.

Although the meaning of the joint space and its ideal-point subspace
remains somewhat unclear in the given example, it is easy to derive some
testable implications. The BTL model states a function between v-values
of objects and the probability for choosing one object oj out of any set of
choice objects. This function is simply the v-value of object oi divided by
the sum of the v-values of all choice objects. The v-values, in turn, can be
estimated from the unfolding distances using (16.9). For the three candi-
dates Nixon, Humphrey, and Wallace (i.e., those that actually remained as
candidates in the general presidential election) we can thus estimate, for
each group, the probability for choosing each candidate out of the three
remaining ones. The prediction for a candidate’s chances in the general
election is then the (weighted) average of all 21 group-specific probabilities.
The predicted preference probabilities of voting for Wallace, Humphrey, or
Nixon, computed in this way, are 0.0797, 0.3891, and 0.5311, respectively.
These values are quite close to the relative frequencies of direct votes given
in the interviews, which are 0.1091, 0.4122, and 0.4788, respectively.

16.5 Exercises

Exercise 16.1 Consider the vector model for unfolding.

(a) First, set up a configuration X such as the one shown in the ta-
ble below. Then, define preference vectors for a number of persons,
pi (i = 1, . . .), as lines that run through the origin E = (0, 0) and
through one other point (x1i, x2i) of X. Finally, construct the pref-
erence scale for each person i by projecting the points of X onto the
ideal vectors.
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Object Dim. 1 Dim. 2
A -1 1
B 0 1
C 1 1
D -1 0
E 0 0
F 1 0
G -1 -1
H 0 -1
I 1 -1

(b) Discuss, in terms of psychology, the meaning of the coordinates yi1
and yi2 of each person i. What do these “weights” express? (Hint: How
much do the dimensions of X contribute to an ideal line’s direction?)

(c) How should yi1 and yi2 be restricted in model (16.2)? (Hint: Note the
constraint on diag(YY′). How can you interpret the thus-constrained
coordinates?

(d) Unfold the preference data thus constructed and compare the solution
to the X and the Y from which you started.

(e) Add random error to X and Y and repeat the above investigations
for different levels of error. Discuss the robustness of the scaling pro-
cedure.

(f) Construct a preference vector that does not fit into the space of the
objects, X. What could you do to represent it in the preference vector
model anyway? (Hint: Consider augmenting the dimensionality of the
unfolding space.)

Exercise 16.2 Consider the country-by-attributes data in Exercise 15.1.

(a) Discuss the ideal-point unfolding model for these data. How does it
differ from scaling the proximities for the countries (as in Section 1.3)
and then fitting external property scales (as in Section 4.3)?

(b) Discuss the difference between an ideal-point model and a vector
model in unfolding preferential data and what this difference means
in the context of the attribute-by-country data.

(c) Scale the country-by-attributes data into a vector unfolding model,
with countries as points and attributes as vectors. Then, scale the
same data into an ideal-point model. Compare the solutions in terms
of what they suggest about how the student-subjects perceived these
countries.

(d) Would it make sense to also scale the countries into vectors, and the
attributes into points? How would you interpret such a solution?
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Exercise 16.3 The following data set is a data set reported by SAS (1999).
It contains the ratings by 25 judges of their preference for each of 17 auto-
mobiles. The ratings are made on a 0 to 9 scale, with 0 meaning very weak
preference and 9 meaning very strong preference for the automobile.

Manufacturer Type Rating per Judge
1 Cadillac Eldorado 8 0 0 7 9 9 0 4 9 1 2 4 0 5 0 8 9 7 1 0 9 3 8 0 9
2 Chevrolet Chevette 0 0 5 1 2 0 0 4 2 3 4 5 1 0 4 3 0 0 3 5 1 5 6 9 8
3 Chevrolet Citation 4 0 5 3 3 0 5 8 1 4 1 6 1 6 4 3 5 4 4 7 4 7 7 9 5
4 Chevrolet Malibu 6 0 2 7 4 0 0 7 2 3 1 2 1 3 4 5 5 4 5 6 6 8 6 5 8
5 Ford Fairmont 2 0 2 4 0 0 6 7 1 5 0 2 1 4 4 3 5 3 0 6 4 8 6 5 5
6 Ford Mustang 5 0 0 7 1 9 7 7 0 5 0 2 1 1 0 1 8 5 0 6 5 7 5 5 5
7 Ford Pinto 0 0 2 1 0 0 0 3 0 3 0 3 0 2 0 1 5 0 0 5 1 4 0 7 8
8 Honda Accord 5 9 5 6 8 9 7 6 0 9 6 9 9 9 5 2 9 9 8 9 7 5 0 7 8
9 Honda Civic 4 8 3 6 7 0 9 5 0 7 4 8 8 8 5 2 5 6 7 7 6 5 0 7 5
10 Lincoln Continental 7 0 0 8 9 9 0 5 9 2 2 3 0 4 0 9 9 6 2 0 9 1 9 0 9
11 Plymouth Gran Fury 7 0 0 6 0 0 0 4 3 4 1 0 1 1 0 7 3 3 3 4 5 8 7 0 8
12 Plymouth Horizon 3 0 0 5 0 0 5 6 3 5 4 6 1 3 0 2 4 4 4 6 7 5 6 5 5
13 Plymouth Volare 4 0 0 5 0 0 3 6 1 4 0 2 1 6 0 2 7 5 4 4 7 6 5 5 5
14 Pontiac Firebird 0 1 0 7 8 9 5 6 1 3 2 0 1 2 0 6 9 5 8 2 6 5 9 0 7
15 Volkswagen Dasher 4 8 5 8 6 9 6 5 0 8 8 7 7 7 9 5 3 7 7 8 9 5 0 0 0
16 Volkswagen Rabbit 4 8 5 8 5 0 9 7 0 9 6 9 5 7 9 5 4 8 7 8 8 5 0 0 0
17 Volvo DL 9 9 8 9 9 9 8 9 0 9 9 9 9 9 8 7 9 8 9 9 1 9 0 0 0

(a) Unfold these preference data into the vector model, with cars as points
and vectors as persons. Discuss the solution in terms of what it says
about the different automobiles, and what it suggests about groups
of potential buyers of automobiles and their preferences.

(b) It was previously observed from unfolding these data that the
solution “suggests that there is a market for luxury Japanese
and European cars” (http://rocs.acomp.usf.edu/sas/sashtml/stat
/chap53/sect25.htm). How did the market researchers arrive at this
insight? On what assumptions does this interpretation hinge? Would
you be willing to bet your money on this interpretation?

Exercise 16.4 Use the data in Table 16.3 on p. 349to construct a vector-
model unfolding representation. Compare your solution to the configuration
in Figure 16.7. Discuss where the models suggest similar substantive con-
clusions (despite possibly different “looks” of the plots), and where they
differ.

Exercise 16.5 The table below shows the (contrived) preferences of six dif-
ferent persons for the composition of an ideal family in terms of how many
children a person wants, and whether these children should be girls or boys.
For example, person 1 wants no children at all, and his or her second choice
is one boy. Person 2, on the other hand, ideally wants 2 girls and 2 boys.
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Number of Person
Girls Boys 1 2 3 4 5 6

0 0 1 9 5 6 6 7
0 1 2 8 3 7 2 3
0 2 5 5 1 9 7 8
1 0 3 7 8 2 3 4
1 1 4 4 4 4 1 1
1 2 8 2 2 8 4 5
2 0 6 6 9 1 8 9
2 1 7 3 7 3 5 2
2 2 9 1 6 5 9 6

(a) Use ordinal unfolding to study the structure of these preference data.
Some programs and some model specifications are likely to yield de-
generate solutions. Is your solution degenerate? If so, can you prevent
this degeneracy?

(b) The space of choice objects and its dimensions can be thought of as
a “boys by girls” space. Does your unfolding yield this space?

(c) Experiment with constraints on the unfolding model so that the boys-
by-girls configuration in its solution space approximates a rectangular
grid pattern.

(d) Although such family composition preference data have been ana-
lyzed before within an unfolding framework, the unfolding model is
not really adequate for them. Why? (Hint: Can you have a prefer-
ence for 1.3 boys and 2.8 girls, for example? Take a close look at the
ideal-point isopreference-contours model.)



Part IV

MDS Geometry as a
Substantive Model



17
MDS as a Psychological Model

MDS has been used not only as a tool for data analysis but also as a
framework for modeling psychological phenomena. This is made clear by
equating an MDS space with the notion of psychological space. A metric
geometry is interpreted as a model that explains perceptions of similarity.
Most attention has been devoted to investigations where the distance func-
tion was taken as a composition rule for generating similarity judgments
from dimensional differences. Minkowski distances are one family of such
composition rules. Guided by such modeling hypotheses, psychophysical
studies on well-designed simple stimuli such as rectangles uncovered inter-
esting regularities of human similarity judgments. This model also allows
one to study how responses conditioned to particular stimuli are generalized
to other stimuli.

17.1 Physical and Psychological Space

In most applications of MDS today, little attention is devoted to the Shep-
ard diagram. It may therefore surprise the reader that ordinal MDS was
originally invented to study the shape of the regression curve in this dia-
gram, not the MDS configuration. This also makes clear how closely MDS
used to be related to efforts for modeling psychological phenomena, where
the MDS geometry served as a model of psychological space and the dis-
tance function as a model of mental arithmetic.
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FIGURE 17.1. (a) Four generalization gradients over the electromagnetic spec-
trum, with intervals adjusted to make gradients similar; panel (b) shows su-
perimposed gradients constructed over the nonadjusted scale; panel (c) shows
superimposed gradients from panel (a).

The Shape of Generalization Gradients in Learning
The scientific context for the interest in Shepard diagrams becomes clear
from the following experiment. Guttman and Kalish (1956) trained four
groups of pigeons to peck at a translucent plastic key when illuminated from
behind by monochromatic light with wavelengths 530, 550, 580, and 600
nm, respectively. After the learning sessions, they assessed the frequency
with which the pigeons in each group pecked at the key when illuminated
with different colors. Figure 17.1a shows that the probability of pecking at
the key is highest for the original conditioned color and decreases mono-
tonically as a function of the difference between the original and the test
color.

One can ask whether such generalization gradients always have the same
shape. Are they, say, always exponential decay functions over the stimulus
dimensions? This is difficult to decide, because it is the psychological, not
the physical, stimulus dimensions that are relevant. In a simple case such as
the Guttman–Kalish experiment, the stimuli vary on just one dimension.
The physical (here: wavelength) and the psychological (here: hue) dimen-
sions are related to each other by a psychophysical mapping. The shape of
generalization gradients depends on this mapping. This can be seen from
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Figure 17.1, taken from Shepard (1965). The X-axis in panel (a) shows
the physical wavelengths of the stimuli, but its units have been somewhat
compressed and stretched locally to make the four gradients as similar as
possible. Without these adjustments, that is, over the physical wavelength
scale, the gradients are less similar (Figure 17.1b). After the adjustment,
the gradients are almost equal in shape (Figure 17.1c).

Thus, knowledge of the psychological space of the stimuli, or at least
the “psychological” distances between any two stimuli, Si and Sk, is nec-
essary for meaningful statements on the shape of generalization gradients.
Older approaches often tried to arrive at psychological distances directly
by summing just noticeable differences (JNDs) between Si and Sk. The
idea that this sum explains the subjective dissimilarity of Si and Sk goes
back to Fechner (1860). There are many problems associated with this
model (Krantz, 1972), but one is particularly important for MDS: “Unfor-
tunately, in order to sum JNDs between two stimuli, this summation must
be carried out along some path between these stimuli. But the resulting
sum will be invariant . . . only if this path is a least path, that is, yields
a shortest distance (in psychological space) between the two stimuli. We
cannot presume, in arbitrarily holding certain physical parameters constant
. . ., that the summation is constrained thereby to a shortest path . . . in psy-
chological space, even though it is, of course, confined to a shortest path . . .
in physical space. . . . These considerations lead us to look for some way of
estimating the psychological distance between two stimuli without depend-
ing either upon physical scales or upon any arbitrary path of integration”
(Shepard, 1957, p. 334).

Relating Physical Space to Psychological Space
An external approach for the problem of estimating psychological distances
first assumes a particular correspondence of physical space to psychologi-
cal space and then explains how the response probabilities are distributed
over this space. An internal approach, in contrast, builds directly and ex-
clusively on the response probabilities and formulates how these arise as
a function of unknown psychological distances. Let us consider Shepard’s
original derivations (Shepard, 1957). Let pik be the probability of giving
the Si response to stimulus Sk. If i = k, then pik is the probability of giving
the correct response. It is postulated that there exists a function f such
that pik is proportional to f(dik), where dik is the psychological distance
between Si and Sk,

pik = ci · f(dik), (17.1)

with ci a proportionality constant associated with Si. Summing over all k,
we obtain

∑
k pik = 1 and ci ·∑k f(dik) for the two sides of (17.1), so that
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ci = 1/
∑

k f(dik). Inserting this term for ci in (17.1) yields

pik = f(dik)/
∑

j

f(dij). (17.2)

With the pik-values given as data, we now search for a function f that
satisfies (17.2). The important point here is that the d-values on the right-
hand side are not just any values that satisfy (at least approximately)
all equations of type (17.2), but they must also possess the properties of
distances and even of Euclidean distances in a space of given dimensionality.
Moreover, we would not accept any function f , but only those that are
smooth (continuous) and monotone increasing or decreasing. Then f is
invertible, so that response probabilities can in turn be derived from the
psychological distances. If we assume that the psychological space is related
to the physical space by a smooth transformation, then straight lines in
physical space are transformed into lines in psychological space that may
not be straight but smoothly curved. Hence, given any three stimuli on
a straight line in physical space, their psychological images should also
be approximately on a straight line if the stimuli are physically similar.
From this assumption and some additional simple postulates on decay and
diffusion of memory traces, Shepard (1958a) derives that f is a negative
exponential function. Elsewhere, without any assumptions, Shepard (1957)
simply defines f to be a negative exponential function. This function turns
(17.2) into

pik = exp(−dik)/
∑

j

exp(−dij). (17.3)

Because dii = 0, exp(−dii) = exp(0) = 1 and so

pik/pii = exp(−dik). (17.4)

Dividing pik by pii means that the probability of giving the i response to
stimulus k is expressed relative to the probability of responding properly
to Si. Thus, norming all response probabilities in this way, and specifying
that dik is a Euclidean distance in a space with dimensionality m, we end
up with a metric MDS problem that requires finding a point space such
that its distances satisfy (17.4) as closely as possible. A reasonable choice
for m should be the dimensionality of the physical space.

Determining the Shape of Generalization Gradients via MDS
The discussion above led to a confirmatory MDS problem: the data (i.e.,
the ratios pik/pii) are to be optimally mapped into a particular model. The
fit of the model to the data is then evaluated. Shepard (1958b) concluded
that the negative exponential function allows one to explain the data suf-
ficiently well, but other functions, such as a simple linear one, may also be
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in good or even better agreement with the data. Shepard tried to solve this
problem and allow the data to “reveal themselves” by requiring only that f
in (17.1) be monotonically decreasing rather than some specific parametric
function. In other words, expressed in terms of the generalization gradi-
ents, he required that they should decrease from the correct stimulus Sr

monotonically into all directions of the stimulus space.
To see how a psychological scale (e.g., the X-axis in Figure 17.1a) is

derived, fold Figure 17.1b at the points where the gradients peak. What
will then be obtained is nothing other than a Shepard diagram, where the
data appear on the Y -axis and the “psychological” distances on the X-
axis. Hence, finding the psychological scale amounts to using ordinal MDS
with m = 1 in the present case. Of course, the Shepard diagram will show
a scatter of points only, and the various gradients have to be found by
unfolding the Shepard diagram and connecting the respective points. The
unfolding is done simply by arraying the points in the order of their physical
stimulus coordinates (here: wavelengths) and with distances among them
as computed by the MDS procedure.

17.2 Minkowski Distances

Over a 2D stimulus space, the generalization gradients are surfaces such as
the cones and pyramids shown schematically in Figure 17.2. Assume that
the directions labeled as D1 and D2 are psychologically meaningful dimen-
sions such as hue and saturation for color stimuli. Assume further that the
correct stimulus Sr corresponds to the point where D1 and D2 intersect.
Cross (1965a) then distinguishes the following three models: (1) the ex-
citation model, which assumes that the generalization gradient decreases
evenly around Sr into all directions of the psychological space; (2) the dis-
crimination model, which says that the strength of reacting to a stimulus
different from Sr on both dimensions corresponds to the sum of the gen-
eralization of Sr on both dimensions; and (3) the dominance model, where
the strength of reacting to Si �= Sr is determined by only that dimension
on which Si and Sr differ most. These models are illustrated in Figure 17.2.
The gradients are shown as linear functions to simplify the pictures. Note
that the gradients for the discrimination model and the dominance model
have the same shape (for a two-dimensional psychological space) but differ
in their orientation relative to the dimensions.

The Family of Minkowski Distances
The generalization models in Figure 17.2 illustrate three special cases of
the Minkowski metric or, equivalently, the Minkowski distance. The general



364 17. MDS as a Psychological Model

R D1

D2

R D1

D2

R D1

D2

dominance model
p = ∞

discrimination model
p = 1

excitation model
p = 2

FIGURE 17.2. Three models of generalization over a 2D stimulus continuum; Sr

corresponds to intersection of D1 and D2 (after Cross, 1965b).

p = ∞

p = 2p = 1

Sr
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p-values in the Minkowski distance formula.

formula for this metric is

dij(X) =

(
m∑

a=1

|xia − xja|p
)1/p

, p ≥ 1. (17.5)

For p = 2, equation (17.5) yields the usual Euclidean distance formula. For
p = 1, we obtain the city-block metric, and for p → ∞, the dominance
metric.

The implications of choosing different p-values can be seen from the fol-
lowing. If we look, from above, at the three gradient models in Figure 17.2,
a circle, a diamond, and a square, respectively, appear in the psychologi-
cal space. Superimposing these three figures leads to the diagram in Figure
17.3. Assume, for simplicity, that the point Sr has coordinates (0, 0). Then,
(17.5) reduces to

drj = (|xj1|p + |xj2|p)1/p. (17.6)

For p = 1 we obtain drj as just the sum of the absolute coordinates of Sj .
Thus, all stimuli located on the diamond in Figure 17.3 have the same city-
block distance to Sr. The diamond is therefore called the isosimilarity curve
of the city-block metric. It is the set of all points with the same distance to
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Sr. But this is just the definition of a circle in analytical geometry, so the
diamond is nothing but a circle in the city-block plane, even though it does
not look like a circle at all. Our Euclidean notion of a circle corresponds
exactly to the isosimilarity curve for p = 2. Finally, the circle for p → ∞
looks like a square with sides parallel to the dimensions.

It is important to realize that the distance drj for two given points Sr

and Sj remains the same under rotations of the coordinate system only if
p = 2. For p = 1, drj is smallest when both stimulus points lie on one of
the coordinate axes. If the coordinate system is rotated about Sr, then drj

grows (even though the points remain fixed), reaches its maximum at a 45◦

rotation, and then shrinks again to the original value at 90◦. This behavior
of a distance function may appear strange at first, but “. . . under a good
many situations, [this distance] describes a reasonable state of affairs. For
example, suppose one were in a city which is laid out in square blocks. A
point three blocks away in one direction and four blocks away in the other
would quite reasonably be described as seven blocks away. Few people,
if asked, would describe the point as five blocks distant. Further, if new
streets were put in at an angle to the old, the ‘distance’ between the two
points would change” (Torgerson, 1958, p. 254).

Minkowski Distances and Intradimensional Differences
Further properties of different Minkowski distances follow directly from
(17.5). Cross (1965b, 1965a) rearranges its terms in a way that we show
here for the special case of (17.6):

dp
rj = |xj1|p + |xj2|p,

drjd
p−1
rj = |xj1|p−1 · |xj1| + |xj2|p−1 · |xj2|,
drj = (|xj1|p−1/dp−1

rj )︸ ︷︷ ︸ ·|xj1| + (|xj2|p−1/dp−1
rj )︸ ︷︷ ︸ ·|xj2|),

drj = w1 ·|xj1| + w2 ·|xj2|.

(17.7)

It follows that for p = 1, drj is just the sum of the coordinate values
of stimulus Sj , because w1 = w2 = 1. If p > 1, then the coordinates
are weighted by w1 and w2 in proportion to their size. If p → ∞, drj

approximates its largest coordinate value. This can be seen most easily
from a numerical example. Table 17.1 shows such an example for Sr =
(0,0) and Sj = (1,2), for which |xj1| = 1 and |xj2| = 2. For p = 1, we
obtain drj = (1/3)0 · 1 + (2/3)2 · 2 = 1 · 1 + 1 · 2 = 3. For p = 2, we get
drj = (1/

√
5)1 · 1 + (2/

√
5)1 · 2 = 0.44721360 + 1.78885438 = 2.23606798.

Generally, if p → ∞, then drj → 2; that is, as p grows, the larger of the
two coordinates of Sj (i.e., the larger of the two-dimensional differences
between Sr and Sj) tends to dominate the global distance value. Indeed,
drj approximates the limiting value 2 quite rapidly as p grows: for p = 20,
drj differs from 2 only in the seventh position after the decimal point.
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TABLE 17.1. Demonstration of how dimensional differences (xja) enter the
distance of two points r and j under different Minkowski p parameters, with
xr1 = 0, xr2 = 0, xj1 = 1, xj2 = 2.

p w1 · xj1 w2 · xj2 w2/w1 drj

1.0 1.00000000 2.00000000 1.00 3.00000000
1.5 0.63923401 1.80802681 1.41 2.44726081
2.0 0.44721360 1.78885438 2.00 2.23606798
3.0 0.23112042 1.84896340 4.00 2.08008382
4.0 0.11944372 1.91109947 8.00 2.03054318
5.0 0.06098020 1.95136642 16.00 2.01234662

10.0 0.00195141 1.99824382 512.00 2.00019523
20.0 0.00000191 1.99999819 524288.00 2.00000010

In terms of Figure 17.3, increasing p from 1 to 2 means that the diamond
bulges outwards and approximates the Euclidean circle. For Minkowski
parameters greater than 2, the circle then moves towards the square for
p → ∞. Hence, the three generalization models in Figure 17.2 correspond
to different ways of composing a distance from given intradimensional dif-
ferences between pairs of stimuli. For example, given two tones that differ
in frequency and sound pressure, one possible composition rule yielding
their subjective global dissimilarity would be simply to add their frequency
and pressure differences in the corresponding psychological space, that is,
add their differences in pitch and loudness. This corresponds to computing
a city-block distance. The Euclidean distance formula, on the other hand,
implies a composition rule that is much harder to understand. What is
clear, though, is that, for all p > 1, the differences first are weighted and
then added, with the larger differences receiving a larger weight. In the
extreme case (p → ∞), the largest difference completely dominates the
dissimilarity judgment.1

Torgerson (1958), Garner (1962), and others argue that if the stimuli are
such that their dimensions are obvious and natural (analyzable stimuli),
then the city-block distance should be the best model to explain dissimi-
larity judgments. If, on the other hand, the stimuli are integral, then the
Euclidean metric should be more appropriate.2

1Interpreting the Minkowski distance as a composition rule is just one possibility.
Micko and Fischer (1970) and Fischer and Micko (1972), for example, present an al-
ternative conceptualization in which the composition rule is not a summation of in-
tradimensional differences. Rather, an attention distribution is postulated to exist over
all directions in space, so that the effect of an increment in p in the Minkowski model
corresponds to a concentration of attention in certain spatial directions.

2An example of an analyzable stimulus is the one-spoked wheel shown in Figure 1.6.
Its “obvious and compelling dimensions” (Torgerson, 1958, p. 254) are its size and the
inclination angle of its spoke. A color patch, on the other hand, is an integral stimulus
whose dimensions hue, saturation, and brightness can be extracted only with effort.
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Wender (1971) and Ahrens (1972) propose that as similarity judgments
become more difficult—because of, say, time constraints or increasing com-
plexity of the stimuli—subjects tend to simplify by concentrating on the
largest stimulus differences only. Hence, we should expect that such simi-
larity data could be explained best with large Minkowski p parameters.

Maximum Dimensionality for Minkowski Distances
Suppose that D is a matrix of Minkowski distances. If D is Euclidean, then
there are at most m = n − 1 dimensions. But what about other cases of
Minkowski distances? Fichet (1994) shows that for city-block distances the
dimensionality can be at most [n(n−1)/2]−1. For the dominance distance,
the maximum dimensionality is n − 1 (Critchley & Fichet, 1994), a result
that goes back to Fréchet (1910). Note though that these theoretical results
are not based on analyses that would allow us to identify the dimension-
ality of the underlying configuration X of a given D, except for Euclidean
distances (see Section 19.3).

In addition, Critchley and Fichet (1994) show that certain Minkowski
distance matrices are exchangeable. To be more precise, for every Euclidean
distance matrix, there exists a city-block and dominance distance matrix
having the same values (most likely in a different dimensionality and with
a different configuration). Also, for every city-block distance matrix there
exists a dominance distance matrix having the same values. And, of course,
all unidimensional Minkowski distance matrices are equal irrespective of
the Minkowski parameter p. These results imply that a solution found by
MDS using the Euclidean distance can be exchanged by a solution using
the city-block distance (or the dominance distance) without changing the
Stress value, although the dimensionality of the three solutions is most
likely not the same.

17.3 Identifying the True Minkowski Distance

How can the true Minkowski distance be identified? There are two ap-
proaches, one based on scaling proximities in MDS with different metrics,
and one based on analyzing the proximities and assuming certain properties
of the psychological space.

Take two points in psychological space. The Euclidean distance between
these points is not affected by rotations of the dimension system. The city-

Indeed, “if dimensions are integral, they are not really perceived as dimensions at all.
Dimensions exist for the experimenter. . . But these are constructs. . . and do not reflect
the immediate perceptual experience of the subject in such experiments. . .”(Garner,
1974, p. 119).
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FIGURE 17.4. Stress values for representing data in Table 4.1 in 2D MDS spaces
using Minkowski distances with different exponents (after Kruskal, 1964a).

block distance, however, is smallest if these points lie on a line parallel to a
dimension and greatest if this line forms an angle of 45◦ to the dimensions.

This suggests that one should test whether two points with a given Eu-
clidean distance are perceived as more dissimilar if they differ on just one
dimension rather than on several dimensions. If this matters, then the Eu-
clidean distance cannot be the true metric. Shepard (1964) attempted to
check this condition by constructing one-spoked wheels with dimensions
“size” and “angle of spoke” (as in Figure 1.6) and assuming that the psy-
chological space is essentially equivalent to this 2D physical space. He ob-
served that stimuli that differed on one dimension only were perceived as
relatively similar as compared to those that differed on two dimensions,
although their Euclidean distances in physical space were equal. He took
this finding as supporting evidence for the city-block metric, which was
predicted to be appropriate for such analyzable stimuli.

Determining the True Minkowski Distance by MDS
A second approach for determining the true Minkowski distance is to test
how well given proximities can be represented in a space with a given met-
ric. Such scaling tests are easy to compute but difficult to evaluate. If the
dimensionality question can be settled beforehand in some way, Kruskal
(1964a) suggests computing MDS representations for a large range of dif-
ferent p-values and then selecting as the true metric the one that leads to
the lowest Stress. This is shown in Figure 17.4 for Ekman’s color data from
Table 4.1. The lowest Stress (.0215) occurs at p = 2.5. Kruskal (1964a)
comments on this finding: “We do not feel that this demonstrates any sig-
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nificant fact about color vision, though there is the hint that subjective
distance between colors may be slightly non-Euclidean” (p. 24).3

Ahrens (1974) proposes varying both p and m. In this way, a curve like
the one in Figure 17.4 is obtained for each m. If these curves all dip at the
same p-value, then we can decide the metric question independently of the
dimensionality question.

Yet, proposals for deciding on the true metric empirically and not by
theoretical considerations assume that the Stress values arrived at under
different specifications for p and m are comparable. This requires that all
solutions must be global minima, because otherwise it would not make
sense to conclude that p = 1, say, yields a better solution than p = 2. The
global minimum condition can be checked by using many—Hubert, Arabie,
and Hesson-McInnis (1992) used 100!—different starting configurations for
each fixed pair of p and m.4

We must, moreover, decide whether any small difference between two
Stress values is significant. In Figure 17.4, the Stress values around p =
2.5 are quite similar. Should we really conclude that the subjects use p
= 2.5 and not, say, p = 2, because the Stress is slightly smaller for the p
parameter than for the latter? Probably not. It seems more reasonable to
decide that the subjects used a p parameter close5 to 2.

Distinguishing among MDS Solutions with Different
Minkowski Distances
There are p-values that lead to the same Stress for a given 2D configuration,
for example, the extreme cases p = 1 and p → ∞. Figure 17.3 shows
why this is so. If the dimension system is rotated by 45◦, the isosimilarity
contour for p = 1 is transformed into the isosimilarity contour for p → ∞,
except for its overall size. This means that city-block distances computed
from a given MDS configuration and a given coordinate system are, except

3 There are several ways to minimize Stress for Minkowski distances. A general gradi-
ent approach is taken in Kyst, Systat, and Minissa. Groenen et al. (1995) and Groenen
et al. (1999) give a majorization algorithm of which the Smacof algorithm of Section
8.6 is a special case. The majorizing algorithm turns out to have a quadratic majorizing
function for 1 ≤ p ≤ ∞, so that each update can be found in one step. For p outside
this range, the update has to be found by an iterative procedure.

4For the special (but important) case of city-block distances, Groenen and Heiser
(1996) found many local minima. To find the global minimum, they applied the tunneling
method (see Section 13.7). Different approaches were pursued by Heiser (1989b) and
Hubert et al. (1992), who used combinatorial strategies, and Pliner (1996), who proposed
to apply the smoothing strategy (see Section 13.5).

5Indeed, by scaling the data with more modern MDS programs, one finds that the
minimum Stress is at p = 2. Arabie (1991) conjectured, moreover, that “to the extent
that our theory predicts a circle . . ., the curve in Figure [17.4] should be flat unless
disturbed by either (a) numerical artifacts in computation or (b) noise in the data.”
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FIGURE 17.5. Unit balls in 3D for the Euclidean, the city-block, and the domi-
nance metric, respectively.

for an overall multiplicative constant, identical to dominance distances,
provided the dimension system is rotated by 45◦. The converse is also true.
Hence, given some MDS configuration that is perfect for p → ∞, it must
also be perfect for p = 1, and vice versa, because the Stress is the same for
two sets of distances that differ by a multiplicative constant only.

The close relationship between city-block distances and dominance dis-
tances holds, however, only for 2D. In 3D, the unit circles become unit
balls, and Figure 17.5 shows that these balls look quite different for p = 1
and p = ∞. The city-block ball has, for example, six corners, and the dom-
inance ball has eight corners. The two types of distances therefore cannot
be related to each other by a simple transformation and a stretch, as is
true for the 2D case.

For given 2D configurations, Stress is, moreover, almost equal for dis-
tances with p-exponents of p1 and p2 = p1/(p1 − 1) (Wender, 1969; Bortz,
1974). For example, for p = 1.5 and p = (1.5)/(1.5−1) = 3, the Stress values
should be nearly equal. The geometrical reasons for this quasi-equivalency
have been studied in detail by Wolfrum (1976a).

Furthermore, Stress may also be somewhat misleading. Consider the fol-
lowing case (Borg & Staufenbiel, 1984). For a given configuration, the dis-
tances are greatest for p = 1. When p grows, all distances that relate to line
segments not parallel to one of the dimensions drop sharply in size. They
continue to drop monotonically, but reach asymptotic values for larger ps
(p > 10, say). As long as these size functions over p do not intersect, one
obtains intervals of rank-equivalent distances over p (Wolfrum, 1976b). Yet,
one should not expect that Stress (for nonperfect solutions) is equal for each
p within such an interval, because the variance of the distances generally
shrinks substantially if p grows. This makes it easier to fit a monotone re-
gression function, and, hence, Stress tends to become smaller with greater
p. Nevertheless, the existence of rank-equivalent intervals means that there
is no unique optimal p-value but rather intervals of ps that are all equally
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FIGURE 17.6. Demonstration of an indeterminacy in a city-block plane (after
Bortz, 1974).

good, even though Stress would, in general, not allow one to diagnose this
situation correctly.

On the other hand, there is also an opposite trend that makes low-Stress
MDS solutions more likely when p = 1 than when p = 2, for example. To
see this, consider the four corner points of the diamond curve in Figure
17.3. One can readily verify that the city-block distances between these
points are all equal, whereas the Euclidean distances form two different
classes. Thus, if p = 1, four points can be represented in a plane so that
all possible distances among them are equal; but if p = 2, this is only true
for the three corners of an equilateral triangle. Because making distances
equal would reduce Stress, such solutions are systematically approximated
over the iterations (Shepard, 1974). These effects become more and more
pronounced as p approaches the extremes 1 and ∞. Shepard (1974, p. 404)
concludes, therefore, that “while finding that the lowest Stress is attainable
for p = 2 may be evidence that the underlying metric is Euclidean, the
finding that a lower Stress is attainable for a value of p that is much smaller
or larger may be artifactual.”

Interpreting Non-Euclidean MDS Spaces
It has been suggested that the problem of finding the true p-value em-
pirically is easier to solve if other criteria, especially the solution’s in-
terpretability, are also taken into account. However, interpreting non-
Euclidean Minkowski spaces requires much care. Things are not always
what they seem to be, for example, a circle in a city-block space looks
like a square. In addition, it can happen that for p = 1 and p → ∞ the
configurations are indeterminate in peculiar ways. Bortz (1974) reports
some examples of partial isometries, that is, transformations that preserve
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the distances within a point configuration while substantially changing the
configuration itself. Consider Figure 17.6. If we reflect all points labeled by
capital Ps on the diagonal line, we find that the city-block distances of their
images (primed Ps) to any point in the shaded region in the lower right-
hand corner are exactly the same as before. Hence, either configuration is
an equally good data representation, although they may suggest different
substantive interpretations. For p = 2, no such partial isometries exist in
general.

Robustness of the Euclidean Metric
Is the Euclidean metric robust if incorrect? That is, is it likely that MDS
closely approximates a true configuration defined by non-Euclidean dis-
tances if the scaling is done with p = 2? Shepard (1969) concluded from
simulation studies using as proximities non-Euclidean distances and even
semi-metrics (measures that satisfy only nonnegativity and symmetry, but
not the triangle inequality) that the true underlying configuration could be
recovered almost perfectly with p = 2.

This successful recovery of the original configuration using p = 2, how-
ever, may be partially attributed to the large number (=50) of points in
2D so that the points’ locations were highly restricted. The circular isosim-
ilarity contour of the Euclidean distance then is a good approximation to
the isosimilarity contours of other Minkowski metrics (see Figure 17.3).

There are no systematic studies that allow one to predict under what con-
ditions the Euclidean metric is robust and when it is not. However, using
the Euclidean metric if, say, the city-block metric is true may lead to erro-
neous conclusions. Consider the following case. Lüer and Fillbrandt (1970),
Lüer, Osterloh, and Ruge (1970), and Torgerson (1965) report empirical ev-
idence that similarity judgments for simple two-dimensional stimuli (such
as one-spoked wheels) seem to be perceived in an “over-determined” (3D)
psychological space. That is, the psychological space seemed to contain ad-
ditional and redundant dimensions. However, when scaling the data with
p = 1 rather than with p = 2, the underlying physical space is clearly re-
covered (Borg, Schönemann, & Leutner, 1982). Taking a closer look reveals
that using p = 2 warps the city-block plane by pulling two of its “corners”
upwards and pushing the two other corners downwards along the third
dimension.

17.4 The Psychology of Rectangles

We now consider a classic case using MDS as a model of judgmental behav-
ior. In this model, the Minkowski distance formula is taken as a theory of
how a dissimilarity judgment on two stimuli is generated. The choice of the
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FIGURE 17.7. Design for two sets of rectangles by varying width and height
(upper panel). As an example, stimuli 6 and 1 are shown (lower panel).

particular p-values is decided a priori on theoretical grounds. Two different
dimension systems appear natural, so that we have to decide empirically
which one is the more appropriate.

Two-Dimensional Models for Rectangle Perception
The stimuli here are rectangles. A particular design for rectangles is given
in Figure 17.7. It defines two sets of rectangles, characterized by the grid
of 16 solid points connected by solid lines and the rotated set of 16 open
points connected by dashed lines. The first set is called the width × height
(WH) design, because it is orthogonal to the width and height dimensions.
In other words, for each level of width, there are rectangles of all height
levels. Note that for all rectangles it holds that their width exceeds their
heights.

The dashed grid is orthogonal to the WH system rotated by 45◦. The
point coordinates on this system can be computed from the width × height
system as width + height and width − height (multiplied by a constant).
Psychologically, these dimensions represent something like size and shape
(SS). (If width and height are rescaled logarithmically, then size becomes
area.) The SS system represents an alternative model for the perception of
rectangles.

Borg and Leutner (1983) randomly assigned 42 subjects to two groups
of 21 persons each, one group judging the SS rectangles and the other the
WH stimuli. Each subject rated all possible 120 stimulus pairs twice on
a scale with end categories 0=equal, identical, and 9=extremely different.
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TABLE 17.2. Dissimilarity ratings for rectangle pairs; row and column numbers
correspond to rectangle numbers in Figure 17.7; ratings averaged over all subjects
and replications in WH group (lower half) and in SS group (upper half).

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2.05 2.64 3.31 4.93 4.31 4.60 5.79 6.50 6.55 6.19 5.52 8.00 6.98 6.79 7.14
2 4.33 2.12 2.71 4.71 4.69 4.43 4.98 6.40 5.98 5.81 5.71 8.14 6.95 6.76 6.79
3 6.12 4.07 1.79 5.40 5.07 4.36 4.24 6.93 6.29 5.98 5.71 8.17 7.40 6.76 6.71
4 7.21 5.62 3.24 6.36 5.83 4.88 4.31 7.14 6.52 5.71 5.79 8.67 7.69 7.17 6.40
5 2.38 5.76 7.12 7.57 3.17 4.19 4.57 3.52 3.79 3.69 4.95 6.33 5.67 5.29 4.69
6 4.52 2.52 5.48 6.86 4.10 3.43 3.93 4.12 3.57 3.74 3.60 6.62 5.76 5.31 4.90
7 6.00 4.52 3.38 5.21 6.10 4.31 3.43 5.64 4.07 3.48 2.98 7.26 5.83 5.64 5.26
8 7.76 6.21 4.40 3.12 6.83 5.45 4.00 5.55 4.45 3.71 3.64 6.95 5.98 5.24 5.00
9 3.36 6.14 7.14 8.10 2.00 4.71 6.52 7.71 2.86 4.45 5.79 4.14 3.02 3.00 4.57

10 5.93 4.24 6.07 6.93 5.00 2.81 5.43 5.67 4.38 2.86 4.17 4.50 3.48 3.05 3.17
11 6.71 5.60 4.29 5.90 6.86 4.50 2.64 5.21 6.26 3.60 3.31 5.52 3.83 3.40 2.50
12 7.88 6.31 5.48 5.00 7.83 5.55 4.43 2.69 7.21 5.83 3.60 5.95 5.17 3.88 3.55
13 3.69 6.98 7.98 8.45 2.60 5.95 7.69 7.86 1.60 4.31 6.95 7.43 2.38 4.29 5.43
14 5.86 4.55 6.64 7.17 4.86 2.88 5.40 6.50 4.14 1.19 3.79 5.88 4.17 2.64 3.81
15 7.36 5.88 4.55 6.79 6.93 4.50 3.50 5.55 5.95 3.95 1.48 4.60 6.07 4.02 2.74
16 8.36 7.02 5.86 5.40 7.57 5.86 4.52 3.50 6.86 5.17 3.71 1.62 7.07 5.26 3.45

The resulting proximities, averaged over all 21 subjects in each group, are
shown in Table 17.2.

An ordinal MDS representation of the WH data is given by the solid
points in Figure 17.8. Because the city-block metric was used, the coordi-
nate axes cannot be rotated without adversely affecting Stress. The MDS
result thus suggests that the solid grid of the physical space (Figure 17.7)
was transformed into the MDS representation by simple rescalings of the
width and height dimensions. These rescalings are such that the physical
units decrease more on each dimension the more one moves away from the
origin. Thus, perceptually, physically constant increments of an attribute
affect the overall impression of similarity increasingly less the more the rect-
angle already possesses this attribute. This suggests that the psychophysi-
cal rescalings might follow the Weber–Fechner law, which postulates a log-
arithmic correspondence of psychological and physical units. Indeed, the
design configuration (grid of solid points in Figure 17.7) can be rescaled
in this way to closely fit the MDS representation (grid of open squares in
Figure 17.8). Thus, it seems that the subjects in the WH group judged the
dissimilarities of the rectangles by first logarithmically rescaling the width
and height dimensions, and then simply adding intradimensional differences
over the dimensions. But if this were so, what should be expected for the
MDS configuration of the SS data?

If width and height are the dimensions that the subjects attend to, and
not size and shape, then the SS design grid in Figure 17.7 should be psycho-
physically rescaled along the width and height axes. A nonlinear rescaling
such as the logarithm would lead to some bending of the design lattice,
destroying all right angles. The solid points in Figure 17.9 show the MDS
representation for the SS data, together with the logarithmically rescaled SS
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cal SS configuration (squares).

design grid (open squares). One notes that the predictions are not strictly
satisfied. In particular, the rectangles in the upper left-hand corner (which
look like squares!) seem to involve some further effects. The result suggests,
however, that explaining similarity judgments for rectangles seems impos-
sible with size and shape dimensions, because there is no way to explain the
bending effects by any rescalings of these dimensions. Rather, a size–shape
theory requires additional components such as “dimensional interaction”
[for such a theory, see Krantz and Tversky (1975)].

Some Open Questions on Rectangle Perception
These findings are, unfortunately, less simple to interpret than it may ap-
pear at first sight. In the following, we give a brief listing of some problem
points.

(1) Hubert et al. (1992) reanalyzed the above rectangle data to test the
performance of their combinatorial algorithm for MDS. Using 100 random
configurations as initial configurations, as well as the physical stimulus
space, they found that most solutions for the WH data were similar to Fig-
ure 17.8. However, for the SS data, there exist a number of quite different
solutions with almost the same Stress. Indeed, based on results from Sys-
tat’s MDS module, Hubert et al. (1992) concluded generally for gradient-
based algorithms that “where one begins is close to where one ends” (p.
234). In particular, it turns out that the SS data can also be explained in
a grid that is roughly similar to the SS design configuration.

(2) Staufenbiel and Borg (1987) found similar results for ellipses con-
structed in WH and SS designs. Using the city-block metric and the Kyst
program with an ordinal as well as an interval MDS model, the proximities
of both types of ellipses could be explained with low Stress by different
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configurations. These configurations were related to the WH or the SS
design configuration by monotonic adjustments of the width and height
dimension or by the size and shape dimension, respectively. The particular
configuration computed by the Kyst program was a function of the initial
configuration, as observed above. Solutions that were not either roughly
WH or SS consistent, however, did not result when random starts were
chosen. Using confirmatory MDS to enforce solutions that were perfectly
consistent with either a WH or an SS model confirmed that either dimen-
sion system allows one to explain the data well.

(3) Schönemann, Dorcey, and Kienapple (1985), Schönemann and Lazarte
(1987), and Lazarte and Schönemann (1991) studied whether it makes sense
to aggregate individual proximities in the first place. They concluded that
such aggregation “was unjustified because distinct strategy groups were
found. Some subjects used mainly height and width, others mainly area
and shape, and still others mainly shape alone to form their dissimilarity
ratings” (Schönemann, 1994, p. 156).

(4) A closer look at the raw data at the subject level also showed that
most ratings were subadditive in the sense that δ(x, y) + δ(y, z) > δ(x, z).
This relation is interesting if x, y, and z differ on one dimension only,
because for triples where y lies between x and z one should expect that
δ(x, y) + δ(y, z) ≈ δ(x, z), provided one takes the data seriously as they
come and does not allow for transformations such as adding some constant.6

Subadditivity is also evident in Table 17.2 for the unidimensional triple
(1, 5, 9), for example, where one finds δ(1, 5) + δ(5, 9) = 2.38 + 2.00 >
δ(1, 9) = 3.36. This inequality suggests “a ceiling effect. Once the ceiling
was removed (by transforming the data with Fisher’s z-transformation),
most distortions, such as curvature and non-parallelism of lines, markedly
diminished” (Schönemann, 1994, p. 156).

(5) δs that satisfy the triangle inequality “can always be modeled as dis-
tances. However, because the observed direct dissimilarities are consistently
segmentally subadditive along any possible judgment dimension [of the hy-
pothesized systems; our addition], they cannot be modeled as Minkowski
metrics because these metrics assume intradimensional additivity” (Lazarte
& Schönemann, 1991, p. 144). (This is shown in the section below.)

(6) One may even question the whole notion of a psychological space—in
the sense of a metric geometrical space—where all stimuli are represented at
the same time and whose distances, after a possible additional transforma-

6If one admits an arbitrary additive constant (interval scale), then subadditivity
becomes less meaningful, because one can at least reduce systematic subadditivity for
one-dimensional triples by subtracting a sufficiently large constant from all δs (Attneave,
1950). On an interval scale, all such constants are considered admissible and substan-
tively meaningless. One may question, however, whether it is scientifically wise to elim-
inate an apparent empirical lawfulness—subadditivity of one-dimensional triples—by
such transformations.
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tion, define the observed dissimilarities. Lazarte and Schönemann (1991),
for example, used simple linear models (“psychophysical maps”) to relate
the observed dissimilarity to physical dimensions of the observed stimulus
pair and describe a strategy that is a function of pair-by-pair comparisons.
Restle (1959) and Tversky and Gati (1982), among others, proposed al-
ternative (set-theoretical) models that explain similarity judgments on the
basis of the common and the distinctive features of the stimuli.

In summary, one notes that building psychological models via MDS is a
difficult and complex undertaking. Early MDS applications tended to be
over-optimistic, relying almost exclusively on the global loss, Stress, for
answering a whole series of questions—such as the appropriateness of a
particular mapping of the data into distances, the dimensionality of the
psychological space, the true metric of this space, or the validity of the
metric space model as such—all at the same time. This clearly was asking
too much from one measure.

17.5 Axiomatic Foundations of Minkowski Spaces

Under certain circumstances, one can study the appropriateness of a mul-
tidimensional scaling representation in a way that does not rely on com-
puting this representation and therefore does not depend on minimizing a
loss function such as Stress. The approach requires that a theory be given
that explains the observed proximities as resulting from an additive combi-
nation of dimensional differences. For example, one may hypothesize that
similarity judgments on pairs of rectangles can be explained by city-block
distances of these rectangles with respect to the physical dimensions width
and height. A somewhat less demanding theory might allow for a reason-
able psychophysical scaling of the width and height dimensions and for
a monotonic function that relates the computed distances to dissimilarity
ratings (“response function”).

Outside psychophysics, such theories may appear too difficult to for-
mulate. Yet, it is nevertheless worthwhile to study what they imply for
MDS, because they provide interesting insights into some of the mathe-
matical properties of MDS representations that are not revealed by mere
data fitting. Moreover, to view distances as the image of some underlying
composition rule for the basic dimensions of the objects corresponds to a
common way of interpreting MDS spaces.

Asking for the conditions that must be satisfied by a set of observations
(such as dissimilarity judgments) so that they can be mapped (by an ordinal
transformation, say) onto some elements of a particular mathematical sys-
tem (such as distances of a Euclidean space) is the domain of measurement
theory (see, e.g., Krantz, Luce, Suppes, & Tversky, 1971; Schönemann &
Borg, 1983). Measurement theorists attempt to specify, first of all, condi-
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FIGURE 17.10. An A × P array.

tions (axioms) that must be satisfied by the observations or else the desired
representation does not exist (with Loss = 0). Such necessary conditions
may not be sufficient, that is, they may not guarantee the existence of the
model representation, and so one typically asks for conditions that are not
only necessary but also sufficient. The art of measurement theory is to
formulate conditions that are not only necessary and sufficient, but that
also can be tested on a finite set of data assumed to have a relatively weak
scale level (such as an ordinal one). It is generally easier to axiomatize an
assumed infinite set of data for which no transformation is allowed.

The way one sets up such axiomatic systems is to start with the desired
representation and check what properties it implies for observations that
can be mapped into this model. So, what are the properties that Minkowski
spaces imply for its data? For simplicity, we consider the 2D case only. It
represents the most interesting case for psychological modeling and can be
easily generalized to higher dimensionality.

Let A = {a, b, c, . . .} and P = {p, q, r, . . .} denote the levels of two design
factors, A and P , and let A×P be the set of all combinations ap, bp, bq, . . . in
the factorial design (Figure 17.10). Assume that dissimilarities are collected
for pairs of objects characterized by the cells of this design structure. Under
what conditions can such dissimilarities (δs) be interpreted as Minkowski
distances computed on dimensions that are some monotonic functions of A
and P? This is possible only if the δs possess some general properties.

If the δs are ordinal measures, then any monotone transformation is ad-
missible. Yet, even under such transformations, some properties must hold.
For example, distances are always symmetric and, thus, δs must be sym-
metric, because there is no admissible transformation (on any scale level)
that would turn nonsymmetric δs into symmetric values. Furthermore, the
distance of any point to itself is always 0, and any distance between two dif-
ferent points in greater than zero (minimality). For ordinal dissimilarities,
symmetry and minimality require that δ(x, y) = δ(y, x) > δ(x, x) = δ(y, y),
for all objects x and y. If the δs do not satisfy this condition, they cannot
be represented by Minkowski distances or, indeed, by any other distance.

In the following, we discuss further qualitative requirements (i.e., condi-
tions involving only notions of order and equality on the δs) and also some
properties that can only be partially tested with ordinal data.
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Dimensional Axioms
According to Gati and Tversky (1982), a two-way proximity structure is
called monotone if the following three conditions are satisfied.

The first condition is called dominance:

δ(ap, bq) > δ(ap, aq), δ(aq, bq); (17.8)

that is, any two-way difference always exceeds its one-way components.
The second condition is called consistency:

δ(ap, bp) > δ(cp, dp) if and only if δ(aq, bq) > δ(cq, dq),
and

δ(ap, aq) > δ(ar, as) if and only if δ(bp, bq) > δ(br, bs); (17.9)

that is, the ordering of differences on one dimension is independent of the
other dimension. The third condition is called transitivity:

if δ(ap, cq) > δ(ap, bp), δ(bp, cp),
and δ(bp, dp) > δ(bp, cp), δ(cp, dp),
then δ(ap, dp) > δ(ap, cp), δ(bp, dp).

(17.10)

Condition (17.10) is required to hold also for the second dimension. Tran-
sitivity on the δs is equivalent to transitivity of betweenness for the points:
a|b|c and b|c|d imply a|b|d and a|c|d, where a|b|c means that b lies between
a and c (Gati & Tversky, 1982).

The conditions of dominance (17.8), consistency (17.9), and transitivity
(17.10) are called monotonicity axioms (for a two-way monotone proximity
structure) because they specify requirements on the order among the δs.

A more particular property of Minkowski distances is decomposability:

δ(ap, bq) = F [g(a, b), h(p, q)], (17.11)

where F is a strictly increasing function in two arguments, and g and
h are real-valued functions defined on A × A and P × P , respectively.
The arguments g and h are the contributions of the two dimensions to
the dissimilarity. If δ is symmetric, g and h satisfy g(a, b) = g(b, a) and
h(p, q) = h(q, p). If δ is also minimal, one can set g(a, a) = 0 and h(p, p) = 0,
for all a and p. If g and h can be assumed to be absolute-value functions,
then (17.11) can be expressed as intradimensional subtractivity:

δ(ap, bq) = F (|Xa − Xb|, |Yp − Yq|), (17.12)

where Xa and Yp represent the coordinates of a and p on dimensions X
and Y , respectively.

If one assumes that the two dimensions contribute additively to δ, then
(17.11) becomes

δ(ap, bq) = F [g(a, b) + h(p, q)], (17.13)



380 17. MDS as a Psychological Model

Minkowski
distance (17.5)


segmental

additivity (17.18)


metric axioms
(17.15)-(17.17)

symmetry (17.15)

minimality (17.16)

triangle
inequality (17.17)


dimensional assumptions (17.8)-(17.14)

�����
intradimensional
additivity (17.12)


decompo-

sability (17.11)


consistency (17.9)


dominance (17.8)

�����
interdimensional

subtractivity (17.13)



�

transitivity (17.10)

FIGURE 17.11. A hierarchy of conditions necessary for Minkowski distances;
entailment is denoted by an arrow.

which is called interdimensional additivity. If (17.13) holds, then the ac-
tual dissimilarities, not merely their order, are independent of the second
dimension, so that:

δ(ap, bp) = δ(aq, bq) and δ(ap, aq) = δ(bp, bq). (17.14)

The conditions (17.8)–(17.14) (sometimes collectively called dimensional
assumptions) are organized in a hierarchy (Figure 17.11). The diagram
shows, for example, that (17.11) implies both (17.8) and (17.9). All
Minkowski metrics imply (17.13) and (17.12).

If axiom (17.8), say, is not satisfied by δs that are, by construction or by
hypothesis, related to an A×P design, then these δs cannot be modeled by
any Minkowski metric that operates on A and P . This does not rule out that
the δs can be represented by a Minkowski metric computed on dimensions
other than A and P in the same space and/or in a higher-dimensional space.
(Indeed, any δ(i, j)s, i < j, can be represented by Euclidean distances in
n − 2 dimensions, where n is the number of objects. See Chapter 19.)

Distance Axioms
In addition to the dimensional assumptions, it must also be possible to
map the δs into distances d. Distances satisfy three conditions, the metric
axioms. Two of them, symmetry and minimality, were already discussed
above, but are repeated here for completeness. For any points x, y, and z,

d(x, y) = d(y, x) (symmetry), (17.15)
d(x, y) > d(x, x) = d(y, y) = 0 (minimality), (17.16)

d(x, z) ≥ d(x, y) + d(y, z) (triangle inequality). (17.17)
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Axioms (17.15)–(17.16), in practice, are almost never testable, simply
because one rarely collects a complete matrix of δs. Axiom (17.17) can
be trivially satisfied in all MDS models that allow at least an interval
transformation of the data: one simply determines the triangle inequality
that is violated most and then finds a constant c that, when added to every
δ in this inequality, turns the inequality into an equality; the same c is then
added to every δ, an admissible transformation for interval-scaled δs.

Segmental Additivity Axiom
Minkowski distances assume a dimensional structure that restricts the
choice of such additive constants c, because the triangle inequality becomes
an equality for points that lie on a straight line in psychological space. That
is, for any three points x, y, and z that are ordered as x|y|z on a straight
line (such as a dimension), segmental additivity is satisfied:

d(x, z) = d(x, y) + d(y, z). (17.18)

Minkowski Space Axioms in Practice
Tversky and Krantz (1970) have shown that segmental additivity in con-
junction with the dimensional assumptions and the metric axioms imply
the Minkowski distance. If one wants to test the dimensional conditions
(17.8)–(17.14) on real (2D) data, one has to specify the A × P structure
that supposedly underlies the δs (see, e.g., Krantz & Tversky, 1975; Tver-
sky & Gati, 1982; Schönemann & Borg, 1981b).

Staufenbiel and Borg (1987) tested some of these conditions for ellipses
constructed in designs analogous to the above WH and SS designs for rect-
angles. Their data are interesting because they also collected similarity
judgments on pairs of identical stimuli, which allow one to test the min-
imality requirement. It was found that minimality was satisfied for data
aggregated over subjects in the sense that δ(i, i) < δ(i, j), for all i �= j.
Tests of the triangle inequality showed marked subadditivity. Subadditiv-
ity correlated highly with violations of minimality on the subject level:
these subjects seemed to avoid using the category “0 = equal, identical” on
the rating scale, thus, in effect, always adding a positive constant to each δ.
Tests of the equality requirements (17.14) showed that they were satisfied
in only 20% of the cases. However, the violations revealed no particular
systematic pattern and, thus, could be explained as largely due to error.

17.6 Subadditivity and the MBR Metric

Subadditivity of dissimilarities is a frequently observed phenomenon. If
the δs are judgments on a rating scale, there are various ways to explain
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why δ(x, y) + δ(y, z) > δ(x, z) might occur even for triples (x, y, z) that
differ on one dimension only. One possibility was offered by Staufenbiel
and Borg (1987), who argue that respondents tend to stay away from the
lower bound of the scale, thus in effect adding a positive constant to all
distance estimates (see item (2) in Section 17.4). Another, or possibly ad-
ditional, explanation concentrates more on the upper bound, which makes
it impossible for the respondent to generate huge dissimilarities. Thus, if
δ(x, y) is rated as quite different, and δ(y, z) is also rated as quite dif-
ferent, then the respondent tends to run out of possibilities to properly
express the extent of the difference of x and z. Because of upper response
bounds, “the subject therefore has to contract his response in a continu-
ous fashion, more so for larger than for smaller arguments” (Schönemann,
1982, p. 318). Even with unbounded response scales, subjects typically un-
derestimate large differences (Borg & Tremmel, 1988). The MBR metric
(metric for monotone-bounded response scales) proposes a hypothesis on
how numerical dissimilarities—not just some monotone transformation of
them—might be generated under such upper-bound conditions. Let us con-
sider the 2D case and assume that u is the upper bound. The MBR metric
of Schönemann (1982) predicts that, given two stimuli, x and y, and given
their differences on the physical dimensions, ∆∗

1 and ∆∗
2 (measured in the

metric of the observations), it holds that

δ(x, y) = d∗
M (x, y) =

∆∗
1 + ∆∗

2

1 + ∆∗
1∆

∗
2/u2 , 0 ≤ d∗

M ≤ u. (17.19)

The numerator of the composition rule on the right-hand side of this for-
mula is the city-block metric. The denominator is a contraction factor that
ensures that the distance of x and y does not exceed the upper bound u
when either ∆∗

1 or ∆∗
2, or both, are close to it. This upper bound may be

experimenter-imposed (“Please tell me the dissimilarity on a scale from 0
to 9.”), but it may also be self-imposed by the subjects (e.g., as a conse-
quence of their laziness to generate best-possible answers) or imposed by
nature (e.g., in form of limitations of the subjects’ cognitive capacities).
The proper value for u is therefore open to some experimentation. Simple
specifications for u in practice are to set it equal to the greatest category
of the response scale or to the greatest observed dissimilarity. However,
Lazarte and Schönemann (1991) found that “within subjects, the MBR
with a slightly reduced upper bound was optimal in restoring additivity
among collinear points” (p. 144). Formally, one notes that “permitting [u]
to vary across subjects, one obtains a one-parameter family of subject-
specific MBR’s” (Schönemann et al., 1985, p. 6).

To apply the MBR in practice, one first expresses all observations relative
the upper bound u (which need not be the same for all subjects). Dividing
the dissimilarities by u, formula (17.19) simplifies to a standardized version,

δ(x, y) = dM (x, y) =
∆1 + ∆2

1 + ∆1∆2
, 0 ≤ a, b, dM ≤ 1. (17.20)
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This formula can be further simplified by applying the hyperbolic tangent
transformation (Schönemann, 1983). This yields

dM = (∆1 + ∆2)/(1 + ∆1∆2)
= [tanh(u) + tanh(v)]/[1 + tanh(u) tanh(v)]
= tanh(u + v), (17.21)

where ∆1 = tanh(u) and ∆2 = tanh(v). Hence,

tanh−1(dM ) = u + v. (17.22)

This offers a way for testing the model: preprocessing the given dis-
similarities by applying the inverse hyperbolic tangent should “linearize”
the data (expressed as proportions to some upper bound such such as the
greatest category on the response scale7) so that they can be explained by
a simple city-block distance

The MBR metric may strike one as a rather odd composition rule. Should
one understand it as a model for how dissimilarity judgments are actually
generated? Schönemann (1990) suggests that subjects first compute a city-
block metric and then do some contraction to fit it into the bounded rating
scale. However, he adds: “We do not expect subjects to do this literally,
but we know they must make some contracting adjustment if they want to
use the simple city-block addition rule” (p. 154).

One may want to think of alternatives to the MBR metric that seem
more plausible as composition rules. One example is the rule

f(x, y) = ∆1 + ∆2 − ∆1∆2, 0 ≤ ∆1, ∆2, f(x, y) ≤ 1. (17.23)

This function yields values that are very similar to MBR distances but al-
ways somewhat smaller. But what are the formal properties of these com-
position rules? One property that can be proved is that

max(∆1, ∆2) ≤ f(x, y) ≤ dM (x, y) ≤ ∆1 + ∆2, (17.24)

so that the two composition rules lead to values that lie between the two
extreme metrics of the Minkowski family, the dominance distance and the
city-block distance.

Formally, though, the MBR distance has some nice additional properties.
Circles in the MBR plane have a peculiar resemblance to circles in different
Minkowski planes. Namely, circles with small radius closely resemble city-
block circles (see Figure 17.3), and the larger the radius, the more they

7Note that the value for the upper bound b must be chosen such that all distance
estimates fall into the half-open interval [0, 1). This is required to make sure that the
tangent function exists everywhere. Hence, one proper choice for b is max(δ) + ε, where
ε is “a small constant” (Schönemann et al., 1985).
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FIGURE 17.12. Circles in the MBR plane, with radii 0.20, . . ., 0.90, 0.99.

approximate Euclidean circles, before they asymptotically tend towards
dominance circles. This is shown in Figure 17.12. Thus, the shape of a
circle in the MBR plane depends on its radius. MBR distances, in other
words, emulate the various Minkowski distances depending on the size of
the distance: relatively small MBR distances are like city-block distances,
large MBR distances are like dominance distances, and intermediate MBR
distances are like Euclidean distances.

But does the MBR distance solve the subadditivity problem? Tversky
and Gati (1982) report evidence that shows that subadditivity may not
affect all triples in a set of objects to the same extent. Dissimilarities
were collected for a series of simple 2D stimuli, using different methods
of assessment. Three types of stimulus triples were distinguished: corner
triples [such as (ap, aq, bq) in Figure 17.10], unidimensional triples [such as
(ap, aq, ac)], and two-dimensional triples [such as (ap, aq, ar)]. In uni- and
two-dimensional triples, all stimuli differ on the same number of dimen-
sions. Geometrically, such triples lie on a straight line in the design space
(collinear points). In corner triples, two pairs differ on one dimension only,
and one pair on both dimensions. City-block distances are additive in all
cases, but Euclidean distances are subadditive for corner triples and addi-
tive for collinear triples. (Under nonlinear transformations of the dimen-
sions, unidimensional triples, in any case, remain collinear.) The observed
dissimilarities, then, were almost additive for corner triples, but clearly
subadditive for both uni- and two-dimensional triples.

It could be argued that the data are only interval-scaled so that they
can be admissibly transformed by adding a constant, for example. Indeed,
by subtracting an appropriate constant from all dissimilarities, one could
produce values that are, more or less, segmentally additive for the collinear
triples. This transformation would, however, make the corner triples super-
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additive, so that the direct dissimilarity between two points such as ap
and bq in Figure 17.10 becomes larger than the sum of its intradimensional
differences, which is impossible to model by any distance function. MDS
analyses with the program Kyst thus showed the least Stress for p < 1
for all data sets (except for “color”). With p < 1, however, the Minkowski
formula (17.5) does not yield a distance. Tversky and Gati (1982) took
this finding as supportive for a nongeometric (“feature-matching”) model
of psychological similarity.

17.7 Minkowski Spaces, Metric Spaces, and
Psychological Models

In summary, one may question the ultimate validity of Minkowski spaces
for modeling psychological similarity. Indeed, even the much wider class
of metric spaces (i.e., sets with distance functions that relate their ele-
ments) may be inappropriate, because dissimilarities may systematically
violate the symmetry requirement, for example. In this situation, one has
four alternatives: (a) give up distance models altogether, as Tversky and
Gati (1982) and Gati and Tversky (1982) recommend; (b) modify the dis-
tance models by additional notions to make them more flexible (see, e.g.,
Krumhansl, 1978); (c) possibly drop the restriction to Minkowski spaces
and also consider other geometries such as curved spaces (see, e.g., Lind-
man & Caelli, 1978; Drösler, 1979); and (d) study the conditions under
which Minkowski models are likely to be bad or good models of similarity.

The last route is, in fact, necessary for any modeling attempts, because no
model is valid without bounds. In this sense, research by Tversky (1977) is
relevant. He reports some examples, conditions, and set-theoretical models
that allow one to predict when the general distance axioms can be expected
to be violated in dissimilarity judgments. For example, symmetry should
not hold if one object is a prototype and the other one a variant of this
prototype, just as an ellipse is an “imperfect” circle. In that case, the variant
should be judged as more similar to the prototype than vice versa. The
triangle inequality should be violated if the similarity judgments are based
on different criteria. For example, although Jamaica may be judged similar
to Cuba, and Cuba is seen as similar to Russia, Jamaica is not seen as
similar to Russia at all. (The criteria of similarity in this example could be
geographic closeness in the first case and political alignment in the second.)
In spite of such counterexamples, the distance axioms are often satisfied in
practice. The counterexamples suggest conditions when this should not be
the case.

More generally, such fine-grained studies into the foundations of MDS as
a psychological model show how one could proceed in cumulative theory
building, beginning with exploratory studies on convenient stimuli such as
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nations (see Chapter 1), proceeding to efforts where one explicitly models
judgments for well-designed stimuli such as rectangles, and finally turning
to the axiomatic foundations of a particular model.

Studying well-designed stimuli does not have to limit itself to simple
contrived stimuli such as rectangles, for example. Steyvers and Busey (2000)
study similarity ratings on extremely complex stimuli, namely faces. They
comment on the method to collect global ratings of similarity on pairs
of faces and then analyzing these data as follows: “The resulting MDS
solutions . . . can give valuable insights about the way faces are perceived,
and sometimes form a useful basis for modeling performance in recognition
and/or categorization tasks” (p. 116). However, “this approach explicitly
ignores the physical representation of the features comprising the faces.
In this purely top-down approach, the multidimensional representations
are sometime difficult to relate back to the physical stimulus” (p.116). To
remedy this problem, they suggest a complementary bottom-up approach,
which offers a way to predict the usual similarity ratings for faces on the
basis of studying, via MDS, the structure of proximities derived from a
large number of physical measurements on these faces (e.g., eye width, eye
separation, or nose length), possibly even the vectors containing the light
intensities of all the pixels of an image of each face. Using this methodology,
they conclude, for example, that facial adiposity (from narrow and skinny
to wide and pudgy) and age (from young to old) are major dimensions of
the perceived similarity of faces.

17.8 Exercises

Exercise 17.1 Consider the data in Table 1.4 on p. 12.

(a) Repeat the two-dimensional MDS analysis that led to Figure 1.7 using
an ordinal MDS approach and city-block distances.

(b) Repeat the MDS analysis using an explicit starting configuration with
coordinates as shown in Figure 1.6. Compare the solutions with and
without an external starting configuration. Discuss using such an ex-
ternal starting configuration. Is it justified?

(c) Repeat the MDS analysis with p = 2. Compare the p = 2 solution
to the one computed with the city-block metric both in terms of the
configuration and in terms of the Stress value.

(d) Specify the set of admissible transformations for the city-block and
the Euclidean solutions.

Exercise 17.2 Consider Table 17.2 on p. 374.
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(a) Check the dissimilarity ratings in the lower-half matrix for subaddi-
tivity and find the intradimensional triple and the corner triple that
violate subadditivity most.

(b) Apply the MBR theory to these data. For this you first have to trans-
form the data so that they lie in the half-open interval [0,1). One
reasonable way of doing this in this particular case is to divide all
values by the maximal value of the rating scale (i.e., by 9). Then, use
the inverse hyperbolic tangent function. Finally, check whether the
transformed data can be represented in a 2D city-block plane with
lower Stress than without this transformation, using linear MDS in
both cases.

(c) Plot the original dissimilarity ratings from Table 17.2 against the
transformed data. Describe the effect of the hyperbolic tangent trans-
formation on the values.

(d) Discuss the transformation that maps the dissimilarities into the half-
open interval [0,1). This mapping expresses the original dissimilarities
as proportions relative to an upper bound b. Dividing the dissimi-
larities by the greatest observed dissimilarity value does not strictly
achieve a mapping into the half-open interval [0, 1). The upper bound
value b must at least be “slightly” greater than the greatest dissimi-
larity. Why? (Hint: Note the “open” in half-open!)

(e) Discuss the consequences of choosing a relatively small upper-bound
value b or a huge value for b, where “small” and “huge” means “rela-
tive to the size of the dissimilarities.” How do such choices of b affect
the following hyperbolic tangent transformation?

(f) Experiment with a few different choices for upper bounds b that are
slightly greater (say, 0.1 to 0.000001) than the greatest observed dis-
similarity. Test out how such different choices of b affect the MDS
solutions of the rescaled data (see Borg & Staufenbiel, 1986).

(g) Check whether the dissimilarities in Table 17.2 provide evidence that
subadditivity affects corner triples, unidimensional triples, and two-
dimensional triples in the sense of Tversky & Gati to a different
extent.

Exercise 17.3 Consider the data matrix below (Schönemann et al., 1985).
It shows relative dissimilarity ratings (averaged over 20 subjects) for nine
different rectangles. The physical width–height design characteristics (in
cm) of the rectangles are shown in the first two columns.
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Width Height No. 1 2 3 4 5 6 7 8 9
2.7 3.1 1 0 0.388 0.491 0.405 0.613 0.771 0.649 0.769 0.865
5.4 3.1 2 0.388 0 0.305 0.660 0.466 0.527 0.749 0.630 0.752
8.1 3.1 3 0.491 0.305 0 0.802 0.655 0.369 0.849 0.777 0.585
2.7 5.4 4 0.405 0.660 0.802 0 0.508 0.669 0.358 0.583 0.757
5.4 5.4 5 0.613 0.466 0.655 0.508 0 0.397 0.594 0.447 0.530
8.1 5.4 6 0.771 0.527 0.369 0.669 0.397 0 0.777 0.608 0.369
2.7 8.1 7 0.649 0.749 0.849 0.358 0.594 0.777 0 0.474 0.660
5.4 8.1 8 0.769 0.630 0.777 0.583 0.447 0.608 0.474 0 0.377
8.1 8.1 9 0.865 0.752 0.585 0.757 0.530 0.369 0.660 0.377 0

(a) Plot the design space of the rectangles. Sketch the nine rectangles.

(b) Scale the dissimilarities with and without a rational starting config-
uration. What evidence do you find that the respondents generated
their dissimilarities from a width–height dimension system?

(c) Check the dissimilarities for subadditivities.

(d) Preprocess the data by the MBR logic and then repeat the MDS
scalings. Do you find theoretically interesting differences?

Exercise 17.4 Consider the data in Table 1.4 on p. 12. Theoretical consid-
erations suggest that they were generated by city-block composition of two
intradimensional differences. Observe what happens when you scale these
data with the “incorrect” Euclidean distance in 2D and in 3D, using the
design configuration in Figure 1.6 as a starting configuration.

Exercise 17.5 Construct a grid of points in the plane (as in Figure 19.3,
e.g.) and measure their city-block distances. Then scale these distances in
Euclidean 3D space, using

(a) ordinal MDS,

(b) interval MDS, and

(c) classical scaling.

Carefully study the resulting configurations in the planes spanned by the
principal components. Discuss the effects of using the improper Euclidean
distance function with MDS models that allow for arbitrary monotone
transformations, linear transformations, and ratio transformations of the
data, respectively.



18
Scalar Products and Euclidean
Distances

Scalar products are functions that are closely related to Euclidean dis-
tances. They are often used as an index for the similarity of a pair of
vectors. A particularly well-known variant is the product-moment correla-
tion for (deviation) scores. Scalar products have convenient mathematical
properties and, thus, it seems natural to ask whether they can serve not
only as indices but as models for judgments of similarity. Although there
is no direct way to collect scalar product judgments, it seems possible to
derive scalar products from “containment” questions such as “How much of
A is contained in B?” Because distance judgments can be collected directly,
but scalar products are easier to handle numerically, it is also interesting
to study whether distances can be converted into scalar products.

18.1 The Scalar Product Function

The earliest papers on MDS paid more attention to scalar products than to
distances. The reason was simply computational. Given a matrix of scalar
products, it is easy to find a representing MDS configuration for them. In
fact, this MDS problem can be solved analytically (see Chapter 7).

In the usual geometry, the scalar product bij of the points i and j is
defined as the sum of the products of the coordinates of i and j:

bij =
m∑

a=1

xiaxja. (18.1)
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i

j

dij

hi

hj

FIGURE 18.1. Illustration of two vectors (arrows) and of the Euclidean distance
between their endpoints.

To illustrate, Figure 18.1 shows three distinct points in the X−Y -plane: the
origin O with coordinates (0, 0), the point i with coordinates (xi1, xi2) =
(3, 5), and the point j = (6, 3). The points i and j are depicted as endpoints
of vectors (“arrows”) emanating from O.

Once a particular point in a plane is chosen as the origin, then all points
can be conceived as vectors bound to this origin, and vice versa. So one
can alternate between the notions of point and vector whenever it seems
useful to do so. Notationally, the origin to which the vectors are bound is
not explicitly shown, so one simply writes a bold j for the vector from O
to j.

For the scalar product of i and j in Figure 18.1, we find bij = 3 ·6+5 ·3 =
33. But formula (18.1) can also be used on each vector alone. For example,
for j, one finds bjj = 6 · 6 + 3 · 3 = 45. This corresponds to the length of j.
For the length of j, one often writes hj . So, hj =

√
bjj = dOj .1

Some of the relations between a scalar product, the lengths of its vectors,
and the angle subtended by them may be seen by considering the triangle
formed by the points O, i, and j in Figure 18.1. The lengths of its sides are
easily found by using the Pythagorean theorem, which yields h2

i = 62+32 =
45, h2

j = 52 + 32 = 34, and d2
ij = (6 − 3)2 + (5 − 3)2 = 13. The angle α in

Figure 18.1 is computed by using the cosine law for a triangle with sides
a, b, and c, which says that a2 = b2 + c2 − 2bc cos(α), where α is the angle
between the sides b and c. Thus, d2

ij = h2
i + h2

j − 2hihj cos(α), and solving
this equation for cos(α) yields

cos(α) =
h2

i + h2
j − d2

ij

2hihj
, (18.2)

1The term hj is the image of a scalar function on the vector argument j. The func-
tion is the Euclidean norm ‖j‖ (see Chapter 7). Norm functions on vectors have general
properties that are similar to those of distances between points, but, unlike distances,
they cannot be defined on just any set. Rather, they require sets that possess the prop-
erties of vector spaces so that operations such as + in (7.2) have a particular well-defined
meaning (see Chapter 19).
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TABLE 18.1. Scalar product matrix for three variables.

Variable x y z
x 25 15 20
y 15 25 12
z 20 12 25

y z

x

(a) (b) (c)

x xy yz z

(d)
53 6137

FIGURE 18.2. Vector configurations for scalar products in Table 18.1; panels
(a), (b), and (c) show combinations of pairs of vectors; panel (d) results from
combining panels (a), (b), and (c).

or, in more detail,

cos(α) =

∑
a x2

ia +
∑

a x2
ja − ∑

a(xia − xja)2

2(
∑

a x2
ia)1/2(

∑
a x2

ja)1/2 , (18.3)

which simplifies to

cos(α) =
∑

a xiaxja

(
∑

a x2
ia

∑
a x2

ja)1/2 =
bij

hihj
. (18.4)

(This is the formula for the product-moment correlation coefficient for de-
viation scores, which can therefore be interpreted as an angle function of
the data vectors i and j.) The scalar product bij is thus

bij = hihj cos(α). (18.5)

One notes that the value of bij depends on three arguments: the length
of the vector i; the length of j; and the angle α subtended by i and j. If
α = 0, then cos(α) = 1, and the scalar product is equivalent to the squared
Euclidean distance between the origin O and the endpoint of vector i.

If all scalar products are given for a set of vectors, then it is possible to
construct the corresponding vector configuration from these values. This
was shown algebraically in Section 7.9, but it is also easy to understand
geometrically. Consider an example. Assume that Table 18.1 is a matrix
whose entries are scalar products.2 Then, the values in the main diagonal

2The matrix does not obviously violate this assumption. It is symmetric and its main
diagonal elements are nonnegative. Symmetry must be satisfied by all scalar product
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tell us that the vectors x, y, and z all have the same length, hx = hy =
hz =

√
25 = 5. To construct the vector configuration, we need to know

the angles between each pair of vectors. The angle between x and y, say,
is found from bxy = 15. By formula (18.5), bxy = 5 · 5 · cos(α) = 15 or
cos(α) = 3/5, and this yields α = 53.13◦. Figure 18.2a shows the resulting
configuration of the two vectors x and y. Proceeding in the same way for
the other vector pairs, we arrive at Figures 18.2b and 18.2c. If everything is
put together, we find the configuration of all three vectors, which requires
a 3D space (Figure 18.2d).

18.2 Collecting Scalar Products Empirically

A scalar product is a more complex measure than a distance. In terms of
points in a space, it not only involves the endpoints i and j but also a third
point that serves as the origin. Does such a complicated function serve any
other purpose than a purely mathematical one? Is it possible to translate
all or some of the properties of scalar products into real questions on the
similarity of two objects, i and j?

Building Scalar Products from Empirical Judgments
It would be futile, of course, to ask a subject to directly rate the “scalar
product” of two stimuli i and j, although we could certainly ask him or her
to rate their “distance”. A scalar product is a notion that has no intuitive
meaning. Ekman (1963), therefore, suggested an indirect approach, asking
for two particular judgments, which are then combined to form a scalar
product. Consider Figure 18.3. Let vectors i and j in panel (b) represent
two stimuli such as the colors blue and red. We could ask the subject to
assess the ratio cij/hj , that is, judge the length of the projection of i onto
j relative to the length of j. Concretely, this could be operationalized in a
question like, “How much of this blue is contained in this red?” to which
the subject may answer by giving a percentage judgment (such as “80%”).
The question is then inverted to, “How much of this red is contained in
this blue?” and the subject’s answer is taken as an assessment of the ratio
cji/hi.

matrices, because it follows from (18.1) that bij = bji. Moreover, all elements in the
main diagonal must be nonnegative, because, for i = j, formula (18.1) is but a sum
of squared numbers. These conditions do not guarantee, however, that the matrix is a
scalar product matrix. A matrix B is a (Euclidean) scalar product matrix only if it can
be decomposed into the matrix product XX′, with real X (see Chapter 19). If this is
possible, then each element of B satisfies formula (18.1).
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FIGURE 18.3. Vector representations of two stimuli, i and j.

We show what can be done with such data. To simplify the notation, let

vij = cij/hj , (18.6)
vji = cji/hi. (18.7)

Note that what one observes are the v-values; the expressions on the right-
hand side of the equations are how these data are explained by the vector
model. Note also that one can assume that the v-values are nonnegative
because a score of zero is the least possible containment. In terms of the
model, the c-terms are projections,

cij = hi · cos(α), (18.8)
cji = hj · cos(α). (18.9)

Thus,

cos(α) = (vij · vji)1/2, (18.10)

hi/hj = (vij/vji)1/2. (18.11)

If vij and vji can be estimated empirically, we can derive from them (a)
the angle α between the vectors i and j via (18.10), and (b) the ratio of the
lengths of these vectors via (18.11). If one of the vectors is fixed arbitrarily
(say, by setting hi = 1), then a unit for scaling is given, and the vector
configuration can be constructed.

Consider some data (Ekman, 1963). Six monochromatic lights of equal
brightness served as stimuli. Their wavelengths were 593, 600, 610, 628,
651, and 674 nm; that is, the lights were in the red-yellow range. All possi-
ble pairs of lights were projected onto a screen, and 10 subjects were asked
for “contained-in” judgments on each pair. The averages of the observed
values are presented in Table 18.2. This data matrix is denoted as V. From
V we can derive a matrix H(2) that contains the quotients vij/vji as its el-
ements (Table 18.3). These values are, by formula (18.11), the quotients of
the squared lengths of our six vectors. For example, the second element in
the first row is v12/v21 = h2

1/h2
2 = .94/.95 = .99. Summing over all elements
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TABLE 18.2. Averaged v-data for colors with wavelengths 593, . . . , 674 nm
(Ekman, 1963).

nm 593 600 610 628 651 674
593 1.00 .94 .67 .22 .08 .04
600 .95 1.00 .80 .31 .16 .06
610 .63 .75 1.00 .78 .56 .38
628 .21 .37 .78 1.00 .81 .72
651 .14 .23 .61 .85 1.00 .86
674 .07 .13 .40 .80 .90 1.00

TABLE 18.3. H(2) matrix, based on v-values in Table 18.2; H(2) = (vij/vji).

First Est. Sec. Est.
nm 593 600 610 628 651 674 h2

i h2
i

593 1.00 .99 1.07 1.05 .56 .62 5.29 4.11
600 1.01 1.00 1.07 .85 .70 .47 5.10 3.93
610 .94 .93 1.00 1.00 .91 .94 5.72 3.87
628 .95 1.18 1.00 1.00 .95 .89 5.97 4.13
651 1.79 1.44 1.09 1.05 1.00 .96 7.33 4.33
674 1.61 2.14 1.06 1.11 1.05 1.00 7.97 4.58

of row i of H(2) yields, symbolically,
∑n

j=1 h2
i /h2

j = h2
i

∑n
j=1(1/h2

j ). Hence,
this sum always involves a constant term,

∑n
j=1(1/h2

j ). Ekman (1963) sug-
gested simply setting this term equal to 1, thus introducing a scaling norm
for the vectors. With

∑n
j=1(1/h2

i ) = 1, we get h2
1 = 5.29, h2

2 = 5.10, and
so on, as shown in Table 18.3.

Further Considerations on Constructing Scalar Products
Selecting a scaling norm for the vectors is a trivial matter in the case of
error-free data. The simplest choice would be to arbitrarily select one vector
and take its length as the norming length for all vectors. With real data,
however, Ekman’s suggestion for norming by setting

∑
i(1/h2

i ) = 1 seems
better, because the vector lengths are derived from all data, not just a
subset. This should lead to more robust vector-length estimates for fallible
data.

Computational accuracy remains a problem in any case, because our
estimates rely very much on divisions and multiplications. Such operations
are numerically unstable. Consider, for example, the v-values for 593 and
674. Their quotient forms two entries in the H(2) matrix. For example, we
should find the value for the element in row 593 and column 674 of H(2)

from 0.04/0.07. But 0.04/0.07 = 0.57, and not 0.62, as we find in the table.
The discrepancy is a consequence of the fact that Table 18.3 reports only
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two decimal places. Other small changes in the v-values also render quite
different h2-values.

The reliability of the v-data could also be taken into account. One may
argue that very small v-data should be less reliable because they express
that the subject felt that the two objects had essentially nothing in com-
mon. A subject should, therefore, be relatively indifferent whether, say,
one object is said to contain 4% or 3% of the other. Forming ratios of such
small contained-in percentages is, however, very much affected by such
small changes in the magnitude of the contained-in data. Ekman (1963)
therefore suggested skipping such small v-values in estimating the vector
lengths. In Table 18.2, he decided to ignore the values in the upper right-
hand and the lower left-hand corners of the matrix, because these corners
contain relatively many small v-values. The vector lengths were estimated
only from the values in the upper 4× 4 left-hand and the lower 3× 3 right-
hand submatrices of H(2) in Table 18.3. That means, for example, that
h2

593 results from adding the first four elements in row 593. For h2
651, the

last three elements of row 651 are added, and, because this sum involves
one element less than before, the sum is rescaled by the adjustment factor
1.45 to yield h2

651 = 4.33. The factor 1.45 is computed from row 628, where
the first four elements add up to 4.13 and the last three to 2.84, giving the
ratio 4.13/2.84 = 1.45. If one compares the results of this estimation (see
column “Second Estimates” in Table 18.3) with those obtained before, one
notes (apart from the irrelevant differences in the magnitudes of the h2

i -
values) that their proportions are quite different. Whether these values are
indeed better estimates is, of course, impossible to say without any further
evidence. We note, however, that the estimation approach is obviously not
very robust.

The angles for each vector pair could be found in a similar way using
(18.10). This would then yield scalar products by (18.5). However, there is
a more direct estimation approach that also provides a test. It follows from
(18.8) that bij = h2

j · vij . Because we also obtain bji from h2
i · vji, nothing

guarantees that B is symmetric so that bij = bji, for all i, j. This provides
a test for assessing to what extent the properties derived from the vector
model are consistent with the data. We find that there are indeed some
asymmetries, for example, b(593,600) = (3.93)(0.94) = 3.69, but b(600,593)
= (4.12)(0.95) = 3.91 (Table 18.4). However, these asymmetries are quite
small, as Figure 18.4 makes clear, and can be assumed to lie within the
error range. Thus, finally, a scalar product matrix is obtained by averaging
these b-values.

Different Vector Lengths and v-Data
One notes that the V-matrix in Table 18.2 is not symmetric; that is, vij �=
vji for most i, j. The asymmetries are, however, minor in their magnitudes.
Empirically, one also finds cases where asymmetries are substantial. One
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TABLE 18.4. Preliminary (nonsymmetrized) B matrix for values in Table 18.2.

nm 593 600 610 628 651 674
593 4.12 3.68 2.59 .92 .35 .20
600 3.89 3.93 3.09 1.28 .71 .27
610 2.58 2.92 3.87 3.21 2.42 1.71
628 .87 1.44 3.01 4.13 3.51 3.27
651 .59 .92 2.37 3.51 4.33 3.89
674 .29 .50 1.54 3.30 3.88 4.55

bij (i<j)

b i
j

(i>
j)

1.0

.8

.6

.4

.2

.2 .4 .6 .7 1.0

FIGURE 18.4. Scatter plot of scalar products in Table 18.4; points’ coordinates
on X-axis (Y -axis) are values in upper (lower) half of Table 18.4.
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example is a study by Sixtl (1967) on the similarity of different emotional
experiences or feelings. He reports that his subjects felt that “wrath” has
83% in common with “aggressiveness”, but “aggressiveness” overlaps with
“wrath” only to 60%. Within the vector model, such asymmetries of the
containment judgments imply different lengths for the representing vectors.
This can be seen from Figure 18.3b, where i does have more in common with
j than vice versa. The reason is that j is longer and, thus, its perpendicular
projection is also longer.

This example also shows that, in the model, symmetric contained-in judg-
ments are not necessary for symmetric scalar products: bij = bji implies
that h2

jvij = h2
i vji. Hence, asymmetries of vij and vji judgments can be

compensated by the different lengths of i and j.
Vastly different vector lengths may, on the other hand, lead to a serious

problem for the contained-in judgments. Consider Figure 18.3a. Here, j =
2 · i and, so, vji = 2. This yields consistent equations: if one sets hj = 1
(units), then bij = h2

jvij = (1)2(1/2) = 0.5 and bji = h2
i vji = (1/2)2(2) =

0.5. However, the operationalization, “How much of j is contained in i?”
does not work anymore for this case, because it seems impossible that a
containment judgment is smaller than 0% or larger than 100%.

But are such cases really impossible? The projection of j onto i should
be longer than i itself if j contains more of i than i itself. This case is
not quite as paradoxical as it may appear at first sight. A conceivable
instance of this situation involves the colors j = bright red and i = pale
reddish, where the latter is but a “pale” instance of the prototypical color.
If this situation seems likely, conventional contained-in judgments do not
appear to be sufficient to measure scalar products. It would be desirable, for
example, to somehow assess the vector lengths independently of any notions
of similarity or containment. A set-theoretic approach where objects are
equated with feature sets might be a possibility (see, e.g., Restle, 1959).

18.3 Scalar Products and Euclidean Distances:
Formal Relations

In an exploratory context, the mapping of v-values into a vector configu-
ration does not have to pass major tests that would allow one to conclude
that the model is inappropriate. The only such test is the required rough
symmetry of the preliminary B-matrix. If this matrix is grossly asymmet-
ric, the model should be dropped as inappropriate.

One could devise further tests though, for example, constraints on the
dimensionality of the vector configuration or predictions as to how the vec-
tors should be positioned relative to each other. The more such tests there
are, the more can be learned about the data. Ekman, Engen, Künnapas,
and Lindman (1964) suggested collecting further measures besides the
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contained-in judgments (v-data), and then checking whether everything
fits together. Given two stimuli i and j as in Figure 18.1, we would expect
that the dissimilarity judgments on i and j could be mapped into the dis-
tance dij , and the v-data would mirror the discussed projection-to-length
ratios.

Converting Scalar Products into Euclidean Distances,
and Vice Versa
Scalar products and Euclidean distances are closely related; for example,
for vectors of constant length, they stand in an inverse monotonic relation
to each other, so that if dij grows, bij gets smaller, and vice versa. But there
is a major difference between scalar products and distances: if the origin
of the coordinate system is shifted in space, then the scalar products will
also change, whereas the distances remain the same. Expressed in terms of
the formulas, we have bij =

∑
a xiaxja and d2

ij =
∑

a(xia − xja)2 for the
old coordinate system. Shifting the coordinate system by the translation
vector (t1, . . . , tm), one obtains bij(t) =

∑
a(xia + ta)(xja + ta) �= bij , unless

t1 = 0, . . . , tm = 0. For distances, on the other hand, one gets d2
ij(t) =∑

a[(xia+ta)−(xja+ta)]2 = d2
ij . However, once some point has been chosen

to serve as the origin, we can compute scalar products from distances and
vice versa (see also Chapter 12). To see this, consider Figure 18.5. Let point
k be the origin. Then, by the cosine theorem,

d2
ij = d2

kj + d2
ki − 2dkjdki cos(α), (18.12)

where α is the angle between the vectors from point k to j and from k to
i, respectively. Rearranging (18.12), we find

dkjdki cos(α) = 1
2 (d2

kj + d2
ki − d2

ij), (18.13)

which is, by (18.5),
bij = 1

2 (d2
kj + d2

ki − d2
ij), (18.14)

because dkj and dki are just the lengths of the vectors j and i. Thus, we find
the scalar product bij from three distances. Conversely, we find the distance
dij from three scalar products: observing that d2

kj = bjj and d2
ki = bii, we

have d2
ij = bii + bjj − 2bij . Note that the origin k always enters into these

conversions.
Typically, one chooses the centroid as the origin, because this point

is supposedly more reliable than any point representing a single variable
(Torgerson, 1958). This choice should therefore lead to more robust scalar-
product estimates. The centroid is the point z with coordinates

(z1, . . . , zm) =

(
1
n

n∑
i=1

xi1, . . . ,
1
n

n∑
i=1

xim

)
. (18.15)
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FIGURE 18.5. Defining a vector configuration on the points f, . . . , k by choosing
one point, k, as an origin.

TABLE 18.5. Numerical example for the relation (18.17).

Centered Squared Scalar
Point Coordinates Coordinates Distances Products

1 2 1 2 1 2 3 4 1 2 3 4
1 1 2 -1.5 0.75 0 1 8 10 2.81 1.31 -1.69 -2.44
2 2 2 -0.5 0.75 1 0 5 5 1.31 0.81 -1.19 -0.94
3 3 0 0.5 -1.25 8 5 0 2 -1.69 -1.19 1.81 1.06
4 4 1 1.5 -0.25 10 5 2 0 -2.44 -0.94 1.06 2.31

Sum 2.5 1.25 0.0 0.0 19 11 15 17

With the centroid of all points as the origin, we obtain the scalar product

bij =
∑

a

(xia − za)(xja − za), (18.16)

because each coordinate is now expressed as a deviation score from the
origin z. This expression is transformed into a formula with only distances
appearing on the right-hand side, as in (18.14). Such a formula allows one to
convert distances—for which empirical estimates are assumed to be given—
into scalar products relative to the centroid. Inserting z values into (18.16),
one obtains, after some rearrangements of terms,

bij = − 1
2

⎛⎝d2
ij − 1

n

∑
i

d2
ij − 1

n

∑
j

d2
ij +

1
n2

∑
i

∑
j

d2
ij

⎞⎠ . (18.17)

Table 18.5 shows an example for this conversion. Given the squared dis-
tances, bij values are found by first subtracting from each d2

ij value the
mean of row i and column j, then adding to it the mean of all squared
distances, and finally multiplying all values by − 1

2 . For example, for points
1 and 2 we get d2

12 = (1 − 2)2 + (2 − 2)2 = 1 from the coordinates. The
scalar product relative to the centroid is b12 = − 1

2 (1−19/4−11/4 + 62/16)
= 1.31. But this should be the same as computing the scalar product di-
rectly by formula (18.5) from the centered coordinates. Indeed, we find
b12 = (−1.5)(−0.5) + (0.75)(0.75) = 1.31.
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Table 18.5 also demonstrates that the scalar product between i and j
depends on the origin, whereas the distance of i and j does not. For example,
the scalar product for points 1 and 2 is 5.00 for the raw coordinates but, as
we saw, 1.31 for the centered coordinates. On the other hand, the distance
d12 = 1.00 for any origin. Thus, scalar products are in a sense stronger or
richer in information than distances, because they depend on the n points
of a configuration and, in addition, on an origin. This issue is unrelated
to the scale level of the data. Even for absolute proximities, any point
of the MDS configuration can be chosen to serve as an origin. Hence, in
distance scaling, the origin is, by itself, meaningless, although meaning may
be brought in from elsewhere, as, for example, in the radexes in Chapter 5.
For scalar-product data, in contrast, the origin necessarily has an empirical
meaning. In Figure 18.7, it represents the color gray, and the fact that all
points have the same distance from it reflects the equal saturation of the six
colors used in the experiment. Consequently, Ekman (1963) interprets the
different directions of the color vectors as due to their qualitative differences,
whereas different vector lengths represent their quantitative differences.

18.4 Scalar Products and Euclidean Distances:
Empirical Relations

The formal relations between scalar products and distances may be used
in empirical research. If one collects both contained-in data (v-data) and
also asks the subjects to directly assess the global similarity (s-data) of
the objects of interest, it becomes possible to test whether the subjects’
proximity judgments can be accounted for by their scalar products. If so,
our confidence in the empirical validity of the geometrical models should
be increased. The converse, however, is not possible, because one cannot
uniquely derive scalar products from given distances due to the arbitrary
choice of origin.

A number of researchers have studied whether there exist empirical re-
lationships between distance and scalar-product data that allow such two-
way conversions. Let us first consider the special case where hi = hj , for all
i, j. Under this equal-length condition, Ekman proposed that the relation
sij = cos(α)/ cos(α/2) could be shown to hold very well empirically, where
cos(α) = √

vijvji from equations (18.6)–(18.10). (Both the s- and the v-
data were collected on percentage scales, in which 100 meant “identity”
for proximity judgments, and “completely contained in” for contained-in
judgments.) If such a relation would indeed hold, then we could arrive at
a natural origin by converting proximity data into scalar products. This
has the advantage that all we need are proximity data, which are much
easier to collect. Of course, this should work only if hi = hj holds for all
i and j, a condition that supposedly is guaranteed by proper instruction
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of the subjects. Therefore, in an experiment on the similarity of different
emotions, Ekman et al. (1964) asked their subjects “to consider emotions of
equal intensity” (p. 532) and “to disregard possible quantitative differences
in the intensity of the (emotions) and base their judgments on qualitative
characteristics” (p. 533).

It seems hard to evaluate what the results of such experiments mean.
Because they involve complicated formal relations and equally complicated
instructions, it is impossible to see where things break down. Nevertheless,
it is interesting to consider the more general principles from which Ekman
derived such relations. He started by studying models for the subjective
similarity of stimuli differing on one attribute only. For example, Ekman,
Goude, and Waern (1961) report an experiment in which subjects had to
assess all possible pairs of different grays (a) with respect to their global
similarity on a 10-point scale, and (b) relative to their darkness ratios. The
resulting proximity values were divided by 10, and a simple function was
found closely describing the relation between ratio and similarity data:

sij =
2hi

hi + hj
, hi ≤ hj , (18.18)

where hi and hj are the values of stimuli i and j on the darkness scale, and
sij is the (rescaled) distance estimate for i and j. In terms of the actual
data collection procedure, (18.18) can be written as sij = 2/(1 + hj/hi),
with hj/hi being the empirical ratio judgment. Because the different gray
stimuli on which the relation (18.18) is based do not differ qualitatively,
the situation can be best understood by considering Figure 18.3a, where
i is completely contained in j. Also, i is, of course, completely contained
in itself. Hence, one can interpret the term 2hi in formula (18.18) as an
expression for what i and j have in common (e.g., in the sense of their
stimulation). The term hi + hj , on the other hand, expresses what i and j
comprise together. What equation (18.18) says, thus, is that the subjective
dissimilarity of i and j is given as the ratio3 of the communality and the
totality of i and j,

sij =
communality of i and j

totality of i and j
=

Kij

Tij
. (18.19)

We now want to drop the model constraint that i and j are both collinear
(as in Figure 18.3a) and generalize the notions of communality and totality
to the higher-dimensional case. One possibility is to set Kij = cij + cji,
because cij is just that component that i shares with j, and the converse is

3This is similar to feature-set models of stimuli, where communality is equated with
the intersection of the object’s feature sets, and totality with the union of these sets. The
2 in the numerator of (18.18) could be interpreted as a scaling factor on the similarity
judgments.
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FIGURE 18.6. Illustrations of some notions of communality and totality.

true for cji. With Tij = hi + hj as before, this gives

sij =
cij + cji

hi + hj
. (18.20)

But cij = hicos(α) and cji = hjcos(α), so (18.20) is equal to

sij = cos(α), (18.21)

assuming that cij ≤ hj and cji ≤ hi, that is, that the projections of any
vector onto another vector should not be longer than the vector itself (see
Section 18.2). This equation means, in terms of the observations, that sij =√

vijvji.
Unfortunately, this simple hypothesis on the relation between s- and

v-values was found to describe empirical correspondences rather poorly.
Hence, other proposals were made. Ekman et al. (1964) tested a version of
(18.19) in which the totality of i and j was modeled by the vector sum of
i and j, as shown in Figure 18.6a. If hi = hj , we obtain

sij =
cos(α)

cos(α/2)
. (18.22)

But (18.22) can also be interpreted in a different way. The projections of
i and j onto the stimulus vector that lies (“qualitatively”) halfway between
i and j (see Figure 18.6b) are hicos(α/2) and hjcos(α/2), respectively.
If hi = hj , then the these projections sum to 2hicos(α). If this term is
used for Tij , one also obtains (18.22). One could also reason that Kij =
[hicos(α)+hjcos(α)]/2 = hicos(α) and Tij = [hicos(α/2)+hjcos(α/2)]/2 =
hicos(α/2), which again implies (18.22).

Of course, many more possibilities for Kij and Tij offer themselves if
the special constraint hi = hj is dropped. Sjöberg (1975) presents the
partial overview shown in Table 18.6. It is not surprising that none of
these hypotheses has been found to be universally superior. But this leads
us back to the question raised at the beginning of this section, and we can
now conclude that there is no empirical correspondence between proximities
and scalar-product estimates that allows one to derive the latter from the
former.
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TABLE 18.6. Some formulations for communality Kij and totality Tij of two
stimuli. K̄ij in model 4 (Goude, 1972) denotes what is not common to i and j,
so that sij = 1−K̄ij/Tij . The function min(a, b) selects the smaller of a and b. If
hi = hj , model 2 (Ekman et al., 1964) is equal to formula (18.22). Kij in model
3 (Ekehammar, 1972) is the vector sum of cij and cji in Figure 18.6c. Model 1
is by Ekman and Lindman (1961), and model 5 (the content model) is by Eisler
and Roskam (1977) and Eisler and Lindman (1990).

Model Communality Kij Totality Tij

1 (hi + hj) cos(α) hi + hj

2 min[hj , hi cos(α)] + min[hi, hj cos(α)] [h2
i + h2

j + 2hihj cos(α)]1/2

3 cos(α)[h2
i + h2

j + 2hihj cos(α)]1/2 hi + hj

4 [h2
i + h2

j − 2hihj cos(α)]1/2 = K̄ij = dij [h2
i + h2

j + 2hihj cos(α)]1/2

5 2 · min(hi, hj) cos(α) hi + hj

18.5 MDS of Scalar Products

Given a matrix of scalar products, we can compute—by solving B = XX′

for X—a configuration X that represents or approximates the scalar prod-
ucts (see Chapter 7). Because B = XX′ = (XT)(XT)′ = XTT′X′ = XX′

for TT′ = I, X is unique up to an orthogonal transformation T. That is,
X can be rotated and/or reflected freely without affecting the quality of
the solution.

An Application on the Color Data
For the symmetrized matrix of Table 18.4, B = (B+B′)/2, Ekman (1963)
reports the point coordinates in Table 18.7. The column ĥ2

i shows the
squared length of vector i in the MDS space; the hat denotes that this
length is a reconstruction of the vector length computed directly from the
data. For example, using (18.5) with i = j, we find for i = 3: (1.29)(1.29)+
(−1.47)(−1.47)+(0.15)(0.15) = 3.85. In Table 18.3, we had concluded that
this color’s vector should have a length of 3.87, so the 3D MDS configura-
tion comes very close to representing this value accurately. The five other
vectors also represent their colors well.

Table 18.7 shows that the vectors are distributed primarily around the
first principal axis: the sum of the squared projections onto this dimension
is 14.87, and only 7.72 and 1.54 for the second and third principal axes,
respectively. Thus, the vector configuration is essentially two-dimensional.
The dimensions of this space are principal axes. Therefore, we know that
the plane spanned by the first two axes is the best possible approximation
to the 3D vector configuration X.

Any coordinate system can be picked to coordinate this plane. Ekman
(1963), for example, rotated the principal axes to a simple structure ori-
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TABLE 18.7. Coordinates of vector configuration for symmetrized scalar prod-
ucts of Table 18.4; PAs are principal axes of 3D representation; D1 and D2 are
dimensions of the 2D plane spanned by PA1 and PA2 after rotation to simple
structure; SS is the sum-of-squares of the column elements; ĥ2

i is the squared
length of the vector in space.

nm PA1 PA2 PA3 ĥ2
i D1 D2 ĥ2

i

593 1.14 -1.58 0.51 4.04 0.00 1.95 3.79
600 1.29 -1.47 0.15 3.84 0.18 1.95 3.81
610 1.75 -0.59 -0.64 3.81 1.07 1.50 3.40
628 1.82 0.60 -0.55 3.97 1.82 0.58 3.67
651 1.74 0.99 0.14 4.03 1.99 0.22 4.01
674 1.59 1.20 0.70 4.45 1.99 -0.05 3.97
SS 14.86 7.79 1.50 24.14 12.43 10.22 22.65

D1

D2

610

628

651

674

600593

PA 1

FIGURE 18.7. Vector representation of point coordinates in Table 18.7.
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entation (Thurstone, 1947). Simple structure requests that the point co-
ordinates are either very large or very small, and intermediate values are
avoided. Table 18.7 shows such simple-structure coordinates resulting from
rotating the first two principal axes. For the rotated dimensions, D1 and
D2, the vector for color 593 has a coordinate value of 1.95 on the second
axis, while its projection onto the first axis has zero length. Thus, this
vector is collinear with the second axis. For 674, the converse is almost
true.

Because the third dimension accounts for so little, we may simply ignore
it, and concentrate on the plane spanned by the first two PAs. This plane is
presented in Figure 18.7, together with the principal axes and the simple-
structure coordinate system that give rise to the values in Tables 18.7.
The endpoints of our six color vectors fall almost onto a circle about the
origin in the order of their wavelengths. Thus, the perceived dissimilarities
in the colors are represented by the different orientations of the vectors.
The fact that all vectors have roughly the same length is, according to
Ekman (1963), a consequence of the fact that the colors were all matched
in brightness and saturation.

How well does Figure 18.7 represent the data? A global answer is pro-
vided by comparing the data with the scalar products implied by the given
vector configuration. The latter are computed from the first two principal
axes in Table 18.7 or, equivalently, from D1 and D2 in Table 18.7. One
finds, for example, that the reconstructed scalar product is b̂(593, 600) =
(1.14)(1.29) + (−1.58)(−1.47) = 3.793, and this is almost the same as the
data value b(593, 600) = (3.68 + 3.89)/2 = 3.785. Given all b̂ and b values,
we can combine them into a global fit measure. One possibility is to use
the correlation coefficient of the b̂ and the b values. It yields r = 0.9805.
Another measure is obtained by adding the squared differences of all b̂ and
b values and dividing this sum by the sum-of-squares of the b values. There
are no standards for evaluating such a loss function, but it suggests other
representation criteria; for example, the b̂ values could be replaced by the
rank-image values of the data, defining a loss function for a procedure that
maps the data ordinally into scalar products. This criterion was used in
SSA-III, a program for nonmetric factor analysis (Lingoes & Guttman,
1967).

Successive Extractions of Dimensions from Scalar Products
Rather than computing an MDS solution for scalar products in one fixed
dimensionality, one can extract this solution dimension by dimension. This
allows further tests.

Consider the preliminary B-matrix in Table 18.4. One may interpret its
asymmetries as essentially due to random noise and thus generate a “bet-
ter” B-matrix by averaging the corresponding bij- and bji-values. For the
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TABLE 18.8. Upper half with diagonal shows error values bij − b̂ij for 3D vector
configuration; lower half shows asymmetries, (bij −bji)/2 of values in Table 18.4.

nm 593 600 610 628 651 674
593 .08 -.08 -.01 .05 -.02 -.01
600 .11 .09 -.01 -.02 .01 .01
610 -.01 -.09 .06 -.07 .03 .01
628 -.03 .08 -.10 .16 -.17 .07
651 .12 .11 -.03 .00 .30 -.16
674 .05 .12 -.09 .02 .00 .10

3

2

1

0

-1

-1 0 1 2 3 4 5

4

5

bij

b̂ij

FIGURE 18.8. Plot of residuals of empirical scalar products of Table 18.4 esti-
mated by vector configurations in 1D (squares), 2D (open circles), and 3D (filled
circles).
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MDS representation of B, we now proceed stepwise, extracting one princi-
pal component after the other,4 until the representation seems sufficiently
precise. Precision may be defined by requiring that the bijs do not differ
from the scalar products computed on the MDS coordinates, b̂ij , by a mag-
nitude that lies in the range of the asymmetries. Because these asymmetries
were assumed to be due to error, further principal components would only
represent structure that cannot be distinguished from error. Table 18.8
shows that the criterion is satisfied by a 3D solution. Figure 18.8 shows
the residuals of the estimation of the scalar products in 1D, 2D, and 3D.
The sum of squared errors is in 1D 63.17, in 2D 2.53, and in 3D .29. Ac-
cording to these criteria, a representation in at most 3D seems adequate,
because the error sum-of-squares in 3D is less than the sum-of-squares of
the asymmetries in Table 18.8 (= .336).

MDS Representations of v- and s-Data
We have seen that scalar products determine not only n stimulus points
but also a unique origin. However, scalar products are often employed in a
purely ancillary fashion, because they allow direct computation of a vector
configuration by algebraic means. If we begin with distance estimates, we
can convert them into scalar products by picking some point to serve as
an origin. In that case, the origin has no direct empirical meaning. If the
data are scalar products that are not just indices such as correlations com-
puted over persons, say, but measurements constructed from contained-in
judgments, then the origin has a meaning, as we have seen for the color
data.

But will there be other differences between the MDS solutions derived
from scalar-product and distance data? Yes, because of restrictions built
into v-judgments. Figure 18.3b shows that the contained-in judgments have
a lower bound when the two respective stimulus vectors i and j are perpen-
dicular, so that cij = 0. In the color circle in Figure 4.1, this is the case,
for example, for the colors with wavelengths 674 nm and 584 nm. Indeed,
Table 18.2 shows for the very similar stimulus pair (674 nm and 593 nm)
that the contained-in rating is almost equal to 0. But what can the subject
say when asked to evaluate to what extent the color with wavelength 555
nm is contained in the color 674 nm? For these colors, the respective vec-
tors in the color circle form an obtuse angle. Even more extreme are the
complementary colors red and green, which are opposite each other in the
color circle: what portion of red is contained in green? Because the subject
cannot respond with v-values of less than 0 (unless the procedure is gen-

4This extraction process amounts to a spectral decomposition of B, B = λ1q1q′
1 +

. . .+λmqmq′
m, where λi is the ith eigenvalue and qi the corresponding eigenvector. See

formula (7.12).
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eralized in some way), it seems plausible that we end up with b(674,584)
= 0, b(674,490) = 0, and also b(584, 490) = 0. But this means that the
scaling problem corresponds to a situation like that in Figure 18.2, where
all three angles are equal to 90◦. To fit the three quarter-circles together
necessitates a 3D space. So, for the complete color circle, we should expect
a 4D MDS representation if it is based on v-data.

18.6 Exercises

Exercise 18.1 Given a matrix B, how can one check, by matrix computa-
tion, whether B is a scalar-product matrix?

Exercise 18.2 Consider the following geometric problems.

(a) What is the angle between x = (2,−2, 1) and y = (1, 2, 2)?

(b) What is the projection of x onto y?

(c) What is the projection of x onto the plane spanned by (1, 0, 0) and
(1, 1, 0)?

Exercise 18.3 What multiple of a = (1, 1) should be subtracted from b =
(4, 0) to make the result orthogonal to a? Sketch a figure.

Exercise 18.4 Draw two vectors a and b in the plane, both emanating from
the same origin, such that a+b is perpendicular to a−b. What properties
have to hold for a and b to make this possible?

Exercise 18.5 Consider the experiment by Sixtl (1967) reported on p. 397.
He asked subjects to assess how much of emotion x is contained in emotion
y. The exact question posed to the subjects was: “How much does x have
of y?” Whether this instruction was further explained is not reported. The
emotions were shyness, compassion, desire, love, humbleness, tenderness,
anxiety, aggressiveness, wrath, and disgust.

(a) Discuss the task to which these subjects had to respond. Devise ad-
ditional or alternative instructions that would make it very clear to
them what they were expected to deliver.

(b) What type of questions concerning this task do you expect the sub-
jects to raise in this context?

(c) Compare the above experimental method to one where proximities
are collected. What type of data collection would you prefer? Which
one is more likely to yield better data?



18.6 Exercises 409

(d) Assume that the contained-in judgments generate the type of data
that proponents of this method are hoping to get. What are the ad-
ditional insights that these data would then allow over and beyond
direct similarity ratings, say?

Exercise 18.6 Data collection by way of contained-in judgments has been
restricted to a range of 0% to 100%. This implies that the respondents
cannot distinguish stimuli that are “orthogonal” to each other from those
that are opposite to each other, for example. They would both be rated
as 0%. Devise a method that does away with this restriction. Work out
the instructions that you would use to instruct the respondents about their
task, and discuss your approach in the context of both the color similarities
and the similarity of emotional experiences discussed in this chapter.
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Euclidean Embeddings

Distances are functions that can be defined on any set of objects. Euclidean
distances, in contrast, are functions that can only be defined on sets that
possess a particular structure. Given a set of dissimilarities, one can test
whether these values are distances and, moreover, whether they can even
be interpreted as Euclidean distances. More generally, one can ask the same
questions allowing for particular transformations of the given dissimilari-
ties such as adding a constant to each value. For ordinal transformations,
the hypothesis that dissimilarities are Euclidean distances is trivially true.
Hence, in ordinal MDS, we learn nothing from the fact that the dissimilar-
ities can be represented in a Euclidean space. In interval MDS, in contrast,
Euclidean embedding is not trivial. If the data can be mapped into Eu-
clidean distances, one can ask how many dimensions at most are necessary
for a perfect representation. A further question, related to classical MDS,
is how to find an interval transformation that leads to approximate Eu-
clidean distances, while keeping the dimensionality of the MDS space as
low as possible.

19.1 Distances and Euclidean Distances

Given a matrix of distances, one can ask whether these distances can be
interpreted as Euclidean distances. This is true only if they can be embed-
ded into a Euclidean space. The answer is positive if the scalar product
matrix B derived from these distances (see Section 7.9 or 18.4) can be de-
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FIGURE 19.1. (a) Radian distances among points a, . . . , d, and (b) their inter-
pretation as Euclidean distances.

TABLE 19.1. Distances between points a, . . . , d on the circle in Figure 19.1a
measured along the circle (radius=1).

Point a b c d
a 0.0000 3.1416 0.7854 1.5708
b 3.1416 0.0000 2.3562 1.5708
c 0.7854 2.3562 0.0000 2.3562
d 1.5708 1.5708 2.3562 0.0000

composed into B = XX′, with real X, or, equivalently, if B’s eigenvalues
are nonnegative (see Chapter 7). Conversely, if B has negative eigenval-
ues, the dissimilarities on which it is based can still be distances, albeit
non-Euclidean distances. Consider an example.

Distances on a Circle
Figure 19.1a shows a configuration of four points on a circle. To determine
their distances, we usually employ a straight ruler. This yields Euclidean
distances. But here we measure the length of the shortest path (“geodesic”)
between points i and j on the circle. The circumference of a circle with
radius 1 is equal to 2π. Thus, dab = π, dac = π/4, and so on, leading
to the values in Table 19.1. These values are definitely distances: they
are symmetric, they are nonnegative and exactly equal to 0 in the main
diagonal, and the triangle inequality holds for all triples.

In fact, all triangle inequalities turn out to be equalities; for example,
dab = dac + dcb. In Euclidean geometry, this implies that a, b, and c lie
on a straight line. Moreover, dab = dad + ddb and, thus, the points a, b,
and d must also lie on a straight line if the dissimilarities are interpreted
as Euclidean distances. But in Euclidean geometry, there is just one line
through the points a and b; hence, a, b, c, and d must all lie on it.
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Figure 19.1b shows this line. The points c and d are positioned on it
so that their distances satisfy the two triangle equalities above, and this
implies that the distance between c and d should be π/4, which, however,
is not in agreement with the value in Table 19.1.

Similarly, the scalar-product matrix derived from the distances in Table
19.1 using formula (18.17) yields the eigenvalues 5.61, 2.22, 0.00, and −1.21.
Hence, this matrix is not positive semidefinite and so we are led to the same
conclusion as before: the distances in Table 19.1 cannot be embedded into
a Euclidean space.

Properties of Euclidean Distances
Because we did not arrive at the values in Table 19.1 by using a straight
ruler, they cannot be Euclidean distances. Indeed, checking through them,
we are led to contradictions if we assume that they were. Euclidean dis-
tances, therefore, have properties above and beyond those of general dis-
tances. The contradiction to which we were led in Figure 19.1b rests on the
fact that for Euclidean distances there is just one geodesic path between
any two points; that is, all points x that satisfy dab = dax + dxb must lie
between a and b on the line through a and b.

This is not always true for other Minkowski distances. If points a and b
lie on a line not parallel to the coordinate axes, then the city-block metric,
for example, allows for infinitely many geodesics between a and b, so that
the above triangle equality for x does not mean that x will be crossed if we
move from a to b on a path of length dab. Hence, other Minkowski distances
have special properties that require investigation.

Investigations of a mathematical structure typically begin by consider-
ing particular cases (such as, e.g., a plane with a straight-ruler distance
measurement). One then attempts to describe the “essential” properties of
these cases and to write them up in a simple list of axioms from which
all of the theorems one has in mind may be proved. The axioms should
be abstract in the sense that they do not rely on ad hoc features of the
cases such as the dimensionality of the chosen geometry or a particular
coordination for its points.

Euclidean distances are defined abstractly (coordinate-free and
dimension-free) as the square root of the scalar product b(i− j, i− j), where
i−j is the difference vector of the vectors i and j. Thus, Euclidean distances
have properties related to those of scalar products. Two of these proper-
ties correspond to the axioms of (general) distances, namely, symmetry and
nonnegativity. The remaining property, linearity, brings in the special prop-
erties of Euclidean distances: b(s ◦ u + t ◦ v,w) = s · b(u,w) + t · b(v,w),
for any vectors u,v,w and scalars s, t. The operation · denotes the usual
multiplication of real numbers, whereas ◦ is different. It denotes that a vec-
tor is multiplied by a number (scalar). Also, + denotes addition of vectors,
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not the usual addition of numbers.1 As long as the rules that govern scalar
multiplication and vector addition are not specified, the linearity axiom
remains meaningless. But what are these rules?

The rules are collected in a system of axioms known as Abelian vector
spaces. It comprises two structures, a field and a group. The field is usually
the set of real numbers, with its two operations of addition and multipli-
cation. A group is a set of elements with one operation that satisfies the
following axioms.

g1 for any three of its elements, x, y, and z, (x + y) + z = x + (y + z)
(+ is associative);

g2 there exists a zero element, z, so that x + z = x, for any x;

g3 there exists an inverse element x(i) for any x, so that x + x(i) = z;

g4 (for Abelian groups only) for any elements x, y, x + y = y + x
(+ is commutative).

A vector space ties together the field and the group (whose elements are
now called vectors and written in this book in bold fonts) by an operation
◦ so that:

v1 k ◦ (x + y) = k ◦ x + c ◦ y;

v2 (s + t) ◦ x = s ◦ x + t ◦ x;

v3 s ◦ (t ◦ x) = (s · t) ◦ x;

v4 e ◦ x = x,

where s, t, e are scalars, e is the neutral element of the field, and x,y are
any elements of the group.

What does that tell us? It means that when we talk about Euclidean
distances we are necessarily talking (at least by implication) about a rich
mathematical structure. The notion of Euclidean distance is defined only
in this system. It can be defined on a set of points u, v, w only if these
points are first linked to corresponding elements u,v,w of a vector space
(“embedding”). Distances in general need no such structural embeddings.
The trivial distance, for example, defined as dij = 1 and dii = 0 for all
i, j, exists on any set of elements i, j, whether they can be interpreted as
vectors or not.

This also means that the properties of vector spaces cannot be tested
for any finite set of vectors, because they must hold, for example, for any

1A different symbol (such as ⊕) might be better to denote vector addition. We do
not use such particular notation here because we are almost always dealing with vectors
that are n-tuples of real numbers in this book. In this case, addition of vectors is defined
as the familiar addition of corresponding elements.
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TABLE 19.2. (a) Dissimilarities for five objects; - denotes a missing value; (b)
completing the proximity matrix by setting δii = 0 and δij = δji, for all i, j; (c)
matrix after adding 4.8 to each element.

(a) 1 2 3 4 5 (b) 1 2 3 4 5 (c) 1 2 3 4 5
1 - - - - - 1 0.0 0.2 1.2 0.2 -1.8 1 0 5 6 5 3
2 0.2 - - - - 2 0.2 0.0 0.2 3.2 -0.8 2 5 0 5 8 4
3 1.2 0.2 - - - 3 1.2 0.2 0.0 0.2 -1.8 3 6 5 0 5 3
4 0.2 3.2 0.2 - - 4 0.2 3.2 0.2 0.0 -0.8 4 5 8 5 0 4
5 -1.8 -0.8 -1.8 -0.8 - 5 -1.8 -0.8 -1.8 -0.8 0.0 5 3 4 3 4 0

scalars s and t, and, therefore, involve all vectors of the space. This is why
testing whether a given set of numbers are Euclidean distances is often
called, more correctly, testing whether these numbers can be embedded
into distances of a Euclidean space.

19.2 Mapping Dissimilarities into Distances

MDS models almost never assume that the given dissimilarities are dis-
tances. Rather, all models (except absolute MDS) admit some transfor-
mation on the dissimilarities such as, for example, a free choice of additive
and multiplicative constants on the dissimilarities in interval MDS. We now
study to what extent one can claim that some given dissimilarities can be
embedded into a Euclidean space, given that some such transformation can
be picked in an optimal way.

Allowing for a Multiplier on the Dissimilarities
Consider the dissimilarity matrix in Table 19.2a. This table is typical in-
sofar as often only the δijs for i < j are collected. This immediately makes
it impossible to test whether these values satisfy two of the properties of
distances: δij = δji and δii = 0, for all i, j. With no data to the contrary,
we assume that these conditions are satisfied and complete the matrix as
usual (Table 19.2b).

The resulting values violate the nonnegativity condition for distances.
However, ratio MDS does not claim that the dissimilarities are distances
but only that k · δij = dij , k �= 0. Hence, one can ask whether there exists
a multiplier k such that the k · δij values satisfy all three distance axioms.
For Table 19.2a, the answer is easily found: there is no such constant k for
these data, because a negative k would make the positive values negative,
and a positive one would not reverse the sign of the negative values. Hence,
the hypothesis that the values in Table 19.2a are distances except for a
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multiplicative constant k is wrong. Because they are not distances, they
are not, a fortiori, Euclidean distances.

Generally, we note that the relation k · δij = dij (for some appropriately
chosen k) is a hypothesis that may prove to be empirically wrong. Such
hypotheses are called (empirically) falsifiable.

Allowing for an Interval Transformation on the Dissimilarities
More important than ratio MDS is interval MDS. Interval MDS also allows
for an additive constant and, hence, claims that k · δij + c = dij , for some
k �= 0 and c. Under this condition, we can transform all of the values in
Table 19.2a into positive numbers. We simply add a number c > 1.8 to
each δij (c = 1.9, say), which transforms, for example, δ35 = −1.8 into the
new value δ∗

35 = δ35 + 1.9 = 0.1.
This then leaves only the triangle inequality as a distance criterion. We

find that it is violated for the δ∗
ij-values, because δ∗

45 + δ∗
52 < δ∗

42. However,
this inequality can be reversed by adding a larger constant c to all δijs,
because c appears twice on the left-hand side δ∗

45 + δ∗
52 = δ45 + c + δ52 + c

and only once in δ∗
24 = δ24 + c. To find the smallest possible c that gives

all triangle inequalities the desired sense, we check through all inequalities
and find that δ45 + δ52 = −1.6 ≥ 3.2 = δ42 is most violated; adding
c to the dissimilarities, we should obtain −1.6 + 2c > 3.2 + c or, at least,
−1.6+2c = 3.2+c; hence, the minimal c is c = 4.8. If we turn this inequality
around in the desired way by adding some c ≥ 4.8 to all dissimilarities, then
all of the other inequalities will also have the proper sense, because in each
case c is added twice to the side that should be greater and only once to the
other side. Taking c = 4.8 and setting all δii = 0, we arrive at Table 19.2c,
which satisfies all distance axioms. We can conclude that the proposition
that given dissimilarities are distances apart from an appropriate interval
transformation is always true (tautological) if δijs are given for only i < j.

Adding a positive additive constant will, in any case, transform any set
of dissimilarities δij , i < j, into distances, provided the constant is large
enough. Yet, in the extreme case where c → ∞, the distances thus generated
approximate trivial distances.

If, on the other hand, a complete data matrix is given, it cannot be
guaranteed that such constants exist. In fact, if just the δiis are given, then
the constants k and c must be chosen such that k · δii + c = dii = 0. This
restricts them so much that it is impossible to transform the dissimilarities
into distances if n ≥ 3.

Interval Transformed Dissimilarities and Euclidean Distances
We now go on and ask whether it is always possible to transform dissimi-
larities δij , i < j, not only into distances, but into Euclidean distances by
picking appropriate additive and multiplicative constants. The answer is
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yes. Assume that some constant has already been added to the dissimilari-
ties to make them all positive and that δii = 0, for all i, by definition. The
factor k is irrelevant in the following and is set to k = 1. Substituting δij +c
for dij in (18.17) should yield a matrix of bijs that is positive semidefinite if
an appropriate c is chosen. Setting δij +c for dij (for i �= j) and dii = 0 (for
all i) in (18.17), or, more compactly, dij = δij + (1 − θij)c, where θij = 1
(for i = j) and θij = 0 (for i �= j), we obtain

b∗
ij =

[ 1
2 (δ2

i. + δ2
.j − δ2

.. − δ2
ij)

]
+2c

[ 1
2 (δi. + δ.j − δ.. − δij)

]
+

c2

2

[
θij − 1

n

]
, (19.1)

where the point subscripts mean that the δs are averaged over the respective
indices.

If c = 0, then (19.1) is equal to (18.17). Otherwise, there are two addi-
tional terms. If we store the bracketed terms in (19.1) in the ij cells of the
matrices B, Br, and J, respectively, then (19.1) reads in matrix notation

B∗ = B + 2cBr +
c2

2
J. (19.2)

Note that B is the usual scalar-product matrix associated with the δijs,
and Br is the scalar-product matrix associated with the square roots of
the dissimilarities. J, finally, is the centering matrix used in (12.2). Our
task is to choose c such that B∗ is positive semidefinite. There are several
equivalent ways to state this condition. So far, we have seen two closely
related tests: B∗ has nonnegative eigenvalues; B∗ can be factored into XX′,
with real X. A third way to state positive semidefiniteness is that x′B∗x ≥
0, for all x. That is, the number resulting from premultiplying B∗ by any
(real) vector x′ and then postmultiplying x′B∗ by x must be nonnegative
(see Chapter 7).

The condition x′B∗x ≥ 0 is trivially true if x is the zero-vector: then
we have x′B∗x = 0. If x is any other vector, this product should also be
nonnegative. This condition is generally not as convenient as the eigenvalue
test, but sometimes it leads to insights. The condition requires that

x′B∗x = x′
[
B + 2cBr +

c2

2
J
]
x

= x′Bx + 2cx′Brx +
c2

2
x′Jx

= k1 + c · k2 + c2 · k3 ≥ 0. (19.3)

We find that k3 > 0, because x′Jx is positive for any x �= 0. (x′Jx simply
says

∑
i(xi − x̄)2 in summation notation.) The term k3 is multiplied by c2,

but k2 is multiplied by c only, and k1 does not change as a function of c
at all. Thus, if c is chosen ever larger, then c2 · k3 will eventually dominate
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FIGURE 19.2. Five-point configuration, with distances among points as in Table
19.2c.

the sum of the other two terms and make x′B∗x positive semidefinite.
It is therefore always possible to find an additive constant c that turns
dissimilarities δij (i < j) into Euclidean distances.

19.3 Maximal Dimensionality for Perfect
Interval MDS

We now know that dissimilarities δij , i < j, can always be mapped into Eu-
clidean distances by an interval transformation and by setting δij = δji and
δii = 0, for all i, j. With respect to the additive constant c, any sufficiently
large value will do. There are reasons, however, to choose the smallest pos-
sible value for c. For the values in Table 19.2a, we saw that they can be
transformed into distances by adding c1 = 4.8. This value turns the triangle
inequality that was most violated into an equality. The resulting distances
in Table 19.2c are Euclidean distances, because, by applying straight-ruler
measurements, we obtain the configuration in Figure 19.2. Adding some
c2 > c1 = 4.8 also leads to values that satisfy the triangle inequalities, but
wherever we had a triangle equality for c1 we will have a triangle inequality
for c2. Geometrically, adding some segment of length c2 − c1 to each line
segment in Figure 19.2 will force point 5 out of the plane of the paper, so
that our 5-point configuration will form a pyramid, and a space of three
dimensions will be required to represent the data.

Because this makes the representation unnecessarily inaccessible for in-
terpretation, it should be avoided. Of course, there is nothing in the data
that would allow us to decide whether the pyramid or the square-with-
midpoint configuration from Figure 19.2 is the true configuration, but, in
the absence of any further knowledge or hypotheses, there is no reason not
to assume that point 5 lies in the middle of the shortest path from 1 to 3.

We show how many dimensions are needed at most for a geometric em-
bedding of an n×n matrix of Euclidean distances. In equation (12.2), D(2)

is double-centered by J. This makes the rows/columns of B linearly depen-
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TABLE 19.3. Matrix for finding the minimal additive constant c for data in
Table 19.1 using formula (19.4); c = 1.291, the largest real eigenvalue of this
matrix.

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 3.16 −5.48 2.24 0.08
0 0 0 0 −5.48 5.63 −1.47 1.31
0 0 0 0 2.24 −1.47 2.55 −3.32
0 0 0 0 0.08 1.31 −3.32 1.93

−1 0 0 0 −2.55 2.95 −0.98 0.59
0 −1 0 0 2.95 −4.12 1.37 −0.20
0 0 −1 0 −0.98 1.37 −2.55 2.16
0 0 0 −1 0.59 −0.20 2.16 −2.55

⎤⎥⎥⎥⎥⎥⎥⎥⎦

dent so that rank(B) < n: the centering matrix J generates deviation scores
in the matrix it operates on, and, thus, the rows or columns, respectively,
of the matrix product sum to the null vector 0. Hence, rank(B) ≤ n−1, so
that the maximum dimensionality of a Euclidean distance matrix is n − 1.
But, as we saw above in Figure 19.2, there may be a c that reduces the
dimensionality further. Cailliez (1983) presents a solution for c which guar-
antees distances that can be represented in at most n − 2 dimensions. The
minimal additive constant c is given by

c = largest (real) eigenvalue of =
[

0 2B
−I −4Br

]
. (19.4)

The matrix in (19.4) is set up by collecting the matrices 2B, 4Br, the null
matrix 0, and the identity matrix I into one supermatrix. All four matrices
have the order n × n; hence, the supermatrix has the order 2n × 2n. For
the values in Table 19.1, we find by formula (19.4) that c ≈ 1.29. Adding
1.29 to all numbers in Table 19.1 leads (almost precisely) to a positive
semidefinite B∗ with two zero eigenvalues or rank(B∗) = n − 2 = 2.

If we deal with an ordinal MDS problem, we are not restricted to inter-
val transformations for mapping dissimilarities into Euclidean distances.
However, it seems that this does not allow one to reduce the maximal di-
mensionality of the MDS space below n − 2. Lingoes (1971), in an earlier
paper, describes a simple monotonic transformation on the dissimilarities
that guarantees Euclidean distances but does not reduce the dimensionality
below n − 2.

19.4 Mapping Fallible Dissimilarities into
Euclidean Distances

In the preceding sections, we ignored the issue of measurement error. But
now that we understand how error-free dissimilarities are related to dis-
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tances and Euclidean distances under various transformations, some sta-
tistical considerations should be made. For fallible data, the transformation
problem becomes k · pij + c = dij + eij , where dij is the true distance and
eij is an error component. The task, then, is to find an additive constant c
such that the transformed dissimilarities are distances except for a random
component. In other words, the shifted data values may violate the critical
triangle inequality condition only to such an extent that the violations can
be attributed to error. This requires an error theory and results in a much
more complicated problem than those considered above. We may require, in
addition, that the dijs be Euclidean distances and that their representation
space be as small as possible. This represents a difficult problem, which is
subject to different interpretations. We consider the formulation of Mes-
sick and Abelson (1956), which, in combination with the double-centering
conversion in formula (12.3), is known as classical MDS.

The Minimum Statistical Additive Constant
For error-free Euclidean distances, the eigenvalues of the associated scalar-
product matrix B are all positive or zero. The number of positive eigen-
values is equal to the rank of B. Thus, an additive constant c should be
chosen such that (a) B becomes positive semidefinite and (b) the number
of zero eigenvalues is maximal.

For error-affected Euclidean distances, this c would be too large. Be-
cause of error, the distance estimates cannot be expected to be Euclidean
distances so that B has, in general, some negative eigenvalues. But the
distribution of the eigenvalues should have a peculiar form. If the error
component is small, there should be some large eigenvalues and some small
ones. The large eigenvalues represent the true structure, and the small ones
are due to the random over- and under-estimation of the distances. More-
over, “. . . with fallible data . . . the small roots will probably not equal zero
but will vary positively and negatively around zero” (Messick & Abelson,
1956, p. 7). If this assumption is made, the sum of the small eigenvalues
should be equal to zero, and c should be chosen accordingly.

We start with equation (12.2) and see what can be derived from this
assumption about the eigenvalue distribution. Messick and Abelson (1956)
use a theorem from matrix algebra which says that the trace of a symmetric
matrix B is equal to the sum of its eigenvalues. That is, if QΛQ′ is the
eigendecomposition of B, then

tr B = tr QΛQ′ = tr ΛQ′Q = tr Λ,

which uses Q′Q = I and the invariance of the trace function under cyclic
permutation (property 3 of Table 7.4). Assume that the eigendecomposition
of B∗—which, of course, cannot be computed before c is defined—yields
the eigenvalues λ1,. . . , λn and the corresponding eigenvectors q1,. . . ,qn.
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Thus, B∗qi = λiqi or q′
iB

∗qi = q′
iλiqi = λiq′

iqi = λi, because q′
iqi = 1,

by convention. Now, let the first r eigenvalues be large and the remaining
n − r small, as discussed above. Then, r is the dimensionality of the true
distances and their scalar products. The sum of the first r eigenvalues is∑r

i=1 λi =
∑r

i=1 q′
iB

∗qi. Hence, by the trace-eigenvalue theorem (see also
Section 7.4), we find

n∑
i=1

b∗
ii =

r∑
i=1

λi, (19.5)

or

tr B∗ =
r∑

i=1

q′
iB

∗qi. (19.6)

Substituting B + 2cBr + (c2/2)J for B∗ leads to

tr
[
B + 2cBr +

c2

2
J
]

=
r∑

i=1

q′
i

[
B + 2cBr +

c2

2
J
]
qi, (19.7)

a quadratic equation with the unknown c. The derivation hinges on (19.5):
the sum of the first r eigenvalues of B∗ is equal to the trace of B∗ only if
the sum of the remaining n − r eigenvalues is equal to zero. This means
that the n − r smallest eigenvalues are either all equal to zero or they are
distributed symmetrically about zero, as assumed.

Equation (19.7) involves two unknowns, r and c. However, even if we
assume for a moment that r has been estimated in some way, we note that
it still is not possible to solve the equation for c, because the eigenvectors
qi are computed from B∗ and thus also depend on c. Solving the problem
may therefore be attempted in the usual iterative fashion. First, choose
some value for c[0], compute the eigenvalues for B∗, and solve (19.7) for a
new c, c[1] . This c[1] leads to a new B∗, new eigenvalues, and a new c, c[2],
and so on. We show that it is better to choose c[0] too large than too small.
A good choice for c[0] would be the additive constant that strictly satisfies
all triangle inequalities.

An Illustration for Finding the Statistical Additive Constant
It is peculiar that Messick and Abelson (1956) illustrate their method by
an example in which there is no error at all in the distances, that is, a
case where we do not really have to estimate the additive constant c but
can simply compute it. We nevertheless present this example here because
it is transparent and instructive. We start by defining the configuration
in Figure 19.3, which yields the true Euclidean distances. As before, only
the values in one-half of the distance matrix are considered. Assume that
subtracting 1 from these distances generates the dissimilarities that we
observe; for example, dAB = 1 and hence δAB = dAB − 1 = 1 − 1 = 0.



422 19. Euclidean Embeddings



















I

H

G

F

E

D

C

B

A

-1

-1

0

1

1

FIGURE 19.3. Configuration used in Messick and Abelson (1956) study.

Because δAC = 1 and δCB = 0, the triangle inequality δAC ≤ δAB + δBC is
violated for the dissimilarities.

To find the true additive constant c in the sense of Messick and Abelson
(1956) (which here is c = 1 because there is no error in the dissimilarities) a
starting value c[0] has to be chosen so that B∗ is defined and its eigenvectors
can be computed. Table 19.4 shows the effect of different c[0]-values on the
eigenvalues and eigenvectors of B∗. All values equal to or greater than 1
transform the dissimilarities into Euclidean distances. For c[0] = 1, the true
additive constant, only two nonzero eigenvalues result. (One eigenvalue is
equal to 0 in all cases due to the centering of B∗.) For c[0] < 1, negative
eigenvalues arise, because the triangle inequalities remain violated under
this condition. Moreover, for c[0] = 0, the first two eigenvectors define a
configuration very similar to the one in Figure 19.3, but this is not the case
for c[0] = −1 and = −2. Messick and Abelson (1956) claim that, in these
latter cases, it is the eighth and ninth eigenvectors whose coordinates define
a configuration similar to the one in Figure 19.3. However, such similarities
are more apparent than real, because negative eigenvalues correspond to
negative distances, and it is quite unclear what this means geometrically.
What is definite, in contrast, is that choosing a “small” value for c[0] may
lead to problems, because it may result in using the “wrong” r eigenvectors
in (19.7). We also note that, for larger initial c-values, two eigenvalues
are definitely dominant, which enables us to make a decision on the true
dimensionality r.

Assume now that c[0] = 4 was chosen. This defines B∗ in (19.6), which can
then be factored. Studying the resulting eigenvalue distribution suggests
setting r = 2. This defines (19.7) and yields as the solutions for its unknown
c1 = 0.997 and c2 = −0.55. The value −0.55 is evidently not the desired
additive constant, because it does not eliminate violations of the triangle
inequalities. Hence, 0.997 must be the solution. We know that the true
c = 1, so c1 = 0.997 is quite close. The Messick–Abelson procedure has,
thus, after just one iteration, almost recovered the true value. But why is
c1 not exactly equal to 1? The reason is that c[0] = 4 was too large a value.
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TABLE 19.4. First two eigenvectors (fitted to correspond to configuration in
Fig. 19.3) and all eigenvalues for different choices of c[0]; eigenvalues with star
correspond to shown eigenvectors; after Messick and Abelson (1956).

c[0] = 4 3 2 1 0 −1 −2
q1 q2 q1 q2 q1 q2 q1 q2 q1 q2 q1 q2 q1 q2

A .97 .97 .98 .98 .99 .99 1.00 1.00 1.05 1.05 .72 .72 .90 .90
B 1.05 .00 1.04 .00 1.03 .00 1.00 .00 .88 .00 1.31 .00 1.15 .00
C .97 −.97 .98 −.98 .99 −.99 1.00 −1.00 1.05 −1.05 .72 −.72 .90 −.90
D .00 1.05 .00 1.04 .00 1.03 .00 1.00 .00 .88 .00 1.31 .00 1.15
E .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
F .00 −1.05 .00 −1.04 .00 −1.03 .00 −1.00 .00 −.88 .00 −1.31 .00 −1.15
G −.97 .97 −.98 .98 −.99 .99 −1.00 1.00 −1.05 1.05 −.72 .72 −.90 .90
H −1.05 .00 −1.00 .00 −1.03 .00 −1.00 .00 −.88 .00 −1.31 .00 −1.15 .00
I −.97 −.97 −.98 −.98 −.99 −.99 −1.00 −1.00 −1.05 −1.05 −.72 −.72 −.90 −.90
λ1 23.12∗ 16.41∗ 1.70∗ 6.00∗ 2.31∗ 1.03 3.05
λ2 23.12∗ 16.41∗ 1.70∗ 6.00∗ 2.31∗ 1.03 3.05
λ3 8.02 4.34 1.67 .00 .02 .86 2.69
λ4 7.32 3.88 1.44 .00 .00 .11 2.01
λ5 6.93 3.66 1.33 .00 −.14 .00 1.68
λ6 6.36 3.24 1.12 .00 −.14 − .34 .99
λ7 6.36 3.24 1.12 .00 .33 − .34 .00
λ8 5.95 2.97 .98 .00 −.33 −.52∗ −2.17∗

λ9 .00 .00 .00 .00 −.44 −.52∗ −2.17∗

On the other hand, we see from Table 19.3 that the first two coordinate
vectors (which are the eigenvectors rotated to match the true coordinate
vectors of Figure 19.3 as closely as possible) are very similar across different
values for c ≥ 1. Thus, it hardly matters which eigenvectors are used in
(19.7). For this reason, c1 is found to be so close to the true value after
just one iteration. If, on the other hand, too small a value had been chosen
for c[0], negative eigenvalues would have resulted for B∗. In this case, one
should start all over again using a larger constant.

Geometric Effects of Nonminimal Additive Constants
Table 19.4 shows that choosing any value other than the true additive
constant has a distorting effect on the recovered configuration.2 The true
underlying configuration in Figure 19.3 is a pattern of squares in which the
points lie on a network of straight lines. If we plot the point coordinates for
c = 4 in Table 19.4, we find that the resulting configuration is very similar
to Figure 19.3, but the grid is bent convexly outwards from the origin. For
example, point B is shifted away from the origin on the Y -axis, whereas A
and C stay put. The analogous situation is true for D, F , and H. Moreover,
in the 3D MDS space, the plane that best represents Figure 19.3 is warped
to form a peculiar saddle shape: A and I are pulled upwards, but G and

2Similar distorting effects can be observed when a metric is chosen in MDS that
does not correspond to the metric used to generate the distance estimates in the true
underlying space. See Section 17.3.
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C are pushed downwards, with all other points in a horizontal plane. In
contrast, if c = 0, the points on the coordinate axes of the 2D space are,
relative to the other points, shifted towards the origin, resulting in a convex
distortion of the grid. Hence, choosing an inappropriate additive constant
results not merely in higher dimensionality but in a systematic distortion
of the configuration.

Once the data are transformed into distances, statistically or strictly
speaking, any further additive constant will change the distance function
and thus affect the geometric representation (in a metric context). This is
important because dissimilarity data may already be distances, without any
transformation, and so adding a constant to them has direct effects on their
geometry. In practice, one finds, for example, that ratings of dissimilarity
typically require an additive constant that is negative. Such data satisfy the
properties of distances so that adding a constant merely serves the purpose
of transforming them into Euclidean distances of low dimensionality or into
distances with particular segmental additivity properties (see Chapter 17).
In that case, an alternative and possibly more fruitful way to proceed would
be to consider alternative geometries in which the given distances can be
embedded as they are.

19.5 Fitting Dissimilarities into a Euclidean Space

We have seen that the additive constant problem for interval-scaled dissim-
ilarities δij , i < j, has a simple solution if it is formulated in an algebraic or
error-free way. A statistical model, in which the unknown additive constant
is not computed but estimated, is more demanding. The Messick–Abelson
solution is complicated, however, and its underlying model is not entirely
clear. It suggests, perhaps, that we should not insist on an additive constant
strictly satisfying the requirement that the transformed dissimilarities be
Euclidean distances. Yet, it seems that in most applications we could drop
the parameter r from those that have to be estimated and simply set it to
some value that appears theoretically appropriate. With a fixed r, and with
the requirement that the distances should be approximately mapped into
Euclidean distances, we end up with a familiar problem: interval MDS.

In this context, the transformation question gets a positive answer if the
resulting value for the loss criterion is sufficiently small, so that the required
conditions are more or less satisfied. What should be considered sufficiently
small depends on the context. Among the earliest proposals for treating
the additive constant problem in this way are those of Cooper (1972) and
Roskam (1972). These authors use the algebraic solution for c as a starting
value; that is, c[0] = max[δij − (δik + δkj)], over all i, j, k. The resulting
B∗ is decomposed into XX′, and the first r columns of X are used as the
starting configuration. With these starting parameters, a flip-flop procedure
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for minimizing L =
∑

[dij −(k ·δij +c)]2/
∑

d2
ij is entered. As we have seen,

however, this procedure may not produce the best possible solution for c.
Nevertheless, the method works in practice, and we can always check the
optimality of the solution by trying other starting configurations. In any
case, it is important to distinguish the optimization approach conceptually
from the algebraic and the statistical viewpoints taken above. In the first
case, c is optimized, in the second it is computed, and in the third it is
estimated.

The so-called rational starting configurations for ordinal MDS are con-
structed by using the optimization method of interval MDS. Often, ranking-
numbers are first substituted for the given dissimilarities: if the data are
dissimilarities, the smallest δij is set equal to 1, the second-smallest to
2, . . . , and the largest to

(
n
2

)
; for similarities, the largest δij is set equal

to 1, the second largest to 2, and so on. We can also use the δij values
as they are. In either case, there are several options for proceeding. One
possibility would be to add the algebraic additive constant, find the as-
sociated B, decompose this into XX′, and use the first r dimensions as
an initial configuration. Another possibility would be to use the data or
ranking-number matrix without adding any constant c and check whether
the resulting X has some small imaginary dimensions. If so, we keep the
first r and proceed with ordinal optimization. If not, a constant c can be
added to the dissimilarities repeatedly until this situation results: if there
are no negative eigenvalues for B∗, then we choose c < 0; otherwise, we set
c > 0.

19.6 Exercises

Exercise 19.1 Consider the similarities in Table 4.1 on p. 65. For this ex-
ercise you need software that can do matrix algebra.

(a) Transform the similarities into dissimilarities.

(b) Then, find the smallest possible additive constant that turns these
values into Euclidean distances.

(c) Use classical scaling on the transformed dissimilarities. Compare the
solution to the one obtained in Exercise 12.1 and in Figure 4.1. What
do you conclude?

(d) Instead of the distances being Euclidean, find the smallest possible
additive constant that turns dissimilarities into distances (not neces-
sarily Euclidean). Is this constant the same as the one for Euclidean
distance?
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(d) Using a large additive constant, the dissimilarities are turned into
distances. Are they also turned into Euclidean distances? Try a few
cases numerically.

Exercise 19.2 Consider the data matrix below (Torgerson, 1958). It shows
“absolute distances” based on 84 judgments of closeness for all possible
triads of nine colors. The colors were all of the same red hue (=5R in
Munsell notation) but differed from each other in brightness (value) and
saturation (chroma). The conversion of the triadic closeness judgments into
the values shown below involved a series of conversions aimed at adding
the best additive constant.

Number of Stimulus
No Value Chroma 1 2 3 4 5 6 7 8 9
1 7 4 – 1.23 3.48 2.98 3.83 5.16 4.69 5.62 5.83
2 6 6 1.23 – 2.59 1.67 2.70 4.40 3.13 4.65 4.38
3 6 10 3.48 2.59 – 4.30 2.28 2.93 4.67 4.30 6.22
4 5 4 2.98 1.67 4.30 – 2.82 4.85 1.85 3.88 2.88
5 5 8 3.83 2.70 2.28 2.82 – 2.58 2.37 1.95 4.09
6 5 12 5.16 4.40 2.93 4.85 2.58 – 4.17 2.93 5.48
7 4 6 4.69 3.13 4.67 1.85 2.37 4.17 – 2.42 2.30
8 4 10 5.62 4.65 4.30 3.88 1.95 2.93 2.42 – 4.02
9 3 4 5.83 4.38 6.22 2.88 4.09 5.48 2.30 4.02 –

(a) Check whether these data violate any distance axioms.

(b) Determine the minimum additive constant that turns these values
into distances, if possible. (If this constant exists, it may be equal to
zero. When?)

(c) Same as (b), but now replace “distances” by “Euclidean distances”.

(d) Use classical scaling to check to which extent the data mirror their
physical design. (The design is given by the Munsell values for value
and chroma; hue is constant.)

(e) Enforce an MDS structure that mirrors the physical design except for
possible monotonic transformations along the coordinate axes value
and chroma.
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Procrustes Procedures

The Procrustes problem is concerned with fitting a configuration (testee) to
another (target) as closely as possible. In the simplest case, both configura-
tions have the same dimensionality and the same number of points, which
can be brought into a 1–1 correspondence by substantive considerations.
Under orthogonal transformations, the testee can be rotated and reflected
arbitrarily in an effort to fit it to the target. In addition to such rigid mo-
tions, one may also allow for dilations and for shifts. In the oblique case,
the testee can also be distorted linearly. Further generalizations include an
incompletely specified target configuration, different dimensionalities of the
configurations, and different numbers of points in both configurations.

20.1 The Problem

We now consider a problem that arose repeatedly throughout the text. In
Figure 2.14, using rotations, reflections, and dilations, we found it possible
to match two configurations almost perfectly. Without these transforma-
tions, it would have been difficult to see that ratio and ordinal MDS led
to virtually the same configurations. If the dimensionality of two configu-
rations is higher than 2D, such comparisons become even more difficult or,
indeed, impossible. Therefore, one needs procedures that eliminate mean-
ingless differences as much as possible by transforming one configuration
(testee) by a set of admissible transformations so that it most closely ap-
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proximates a given target configuration. Such fitting problems are known
as Procrustes problems (Hurley & Cattell, 1962).1

In geometry, two figures (configurations) are called similar if they can be
brought to a complete match by rigid motions and dilations. These trans-
formations are admissible for all MDS solutions up to ratio MDS, so we
can freely exploit similarity transformations to facilitate comparisons of dif-
ferent MDS configurations. Before considering similarity transformations,
however, we first consider a restricted Procrustes problem, the orthogonal
Procrustes. Once this problem is solved, it can be easily extended to cover
the similarity case.

20.2 Solving the Orthogonal Procrustean Problem

Let A be the target configuration and B the corresponding testee. Assume
that A and B are both of order n×m. We now want to fit B to A by rigid
motions. That is, we want A ≈ BT by picking a best-possible matrix T
out of the set of all orthogonal T. Geometrically, T therefore is restricted
to rotations and reflections.

Without the restriction TT′ = T′T = I, T could be any matrix, which
means, geometrically, that T is some linear transformation. Such transfor-
mations, however, do not, in general, preserve B’s “shape”. Rather, linear
transformations can cause shears, stretch B differentially along some di-
rections, or collapse its dimensionality (see, e.g., Green & Carroll, 1976).
Such transformations are clearly inadmissible ones, because they generally
change the ratios of the distances among B’s points and, thus, affect the
fit of these distances to the data. For the moment, we are not interested in
such transformations.

As for the ≈ criterion, a reasonable definition would be to measure the
distances between corresponding points, square these values, and add them
to obtain the sum-of-squares criterion L. The transformation T should be
chosen to minimize this L. Expressed in matrix notation, the differences of
the coordinates of A and BT are given by A − BT. We want to minimize
the sum of the squared error, that is,

L(T) = tr (A − BT)′(A − BT) (20.1)

or, equivalently,

L(T) = tr (A − BT)(A − BT)′,

1Procrustes was an innkeeper in Greek mythology who “fitted” his guests to his beds
by stretching them or by chopping off their legs. The terminology “Procrustes problem”
is now standard, even though it is generally misleading, inasmuch we do not want to
mutilate or distort the testee configuration.
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as explained in Table 7.4. In other words, L(T) measures the squared dis-
tances of the points of A and the corresponding points of BT.

Expanding (20.1), we get

L(T) = tr (A − BT)′(A − BT)
= tr A′A + tr T′B′BT − 2tr A′BT

= tr A′A + tr B′B − 2tr A′BT

over T subject to T′T = TT′ = I. Note that the simplification
tr T′B′BT = tr B′B is obtained by using the property of invariance of
the trace function under cyclic permutation (see Table 7.4, property 3),
which implies tr T′B′BT = tr B′BTT′, and using T′T = TT′ = I, so
that tr B′BTT′ = tr B′B. Because tr A′A and tr B′B are not dependent
on T, minimizing L(T) is equivalent to minimizing

L(T) = c − 2tr A′BT (20.2)

over T subject to T′T = I, where c is a constant that is not dependent on
T.

Minimization of L(T) can be accomplished by applying the concept of
an attainable lower bound (Ten Berge, 1993).2 Suppose that we can find an
inequality that tells us that L(T) ≥ h and also gives the condition under
which L(T) = h. Solving L(T) = h for T (subject to the appropriate
constraints) automatically gives us the smallest possible value of L(T) and
hence the global minimum.

To apply this notion to the problem in (20.2), let us first consider a lower
bound inequality derived by Kristof (1970). If Y is a diagonal matrix with
nonnegative entries, and R is orthogonal, Kristof’s inequality states that

−tr RY ≥ −tr Y, (20.3)

with equality if and only if R = I.
To prove this theorem, note that because Y is diagonal, we may express

(20.3) as

−tr RY = −
∑

i

riiyii ≥ −
∑

i

yii.

Now, because RR′ = R′R = I, it holds for each column j of R that
r′

jrj =
∑

i r2
ij = 1, so that −1 ≤ rii ≤ 1. Thus, −riiyii ≥ −yii. Obviously,

only if rii = 1 or, in matrix terms, only if R = I, then inequality (20.3) is
an equality.

2The orthogonal Procrustes problem was first solved by Green (1952) and later si-
multaneously by Cliff (1966) and Schönemann (1966). Their solutions are, however,
somewhat less easy to understand and to compute.
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We can use this theorem to find L(T) as follows. Let PΦQ′ be the
singular value decomposition of A′B, where P′P = I, Q′Q = I, and Φ is
the diagonal matrix with the singular values. Using the invariance of the
trace function under cyclic permutation (see Table 8.3)

L(T) = c − 2tr A′BT = c − 2tr PΦQ′T
= c − 2tr Q′TPΦ

≥ c − 2tr Φ.

Because T is orthonormal, so is Q′TP. Now the minimization of L(T) is
written in the form of (20.3) with R = Q′TP and Y = Φ. We know that
L(T) is minimal if R = I or, equivalently, Q′TP = I. Hence, we have to
choose T as

T = QP′, (20.4)

because substitution of (20.4) in Q′TP yields Q′QP′P = I, so that L(T) =
c − 2tr Φ.

20.3 Examples for Orthogonal Procrustean
Transformations

We now consider a simple artificial case where T can be computed by
hand. In Figure 20.1, two vector configurations, A and B, are shown. Their
points are connected to form rectangles. If panels 1 and 2 of Figure 20.1
are superimposed (panel 3), then L(T) is equal to the sum of the squared
lengths of the dashed-line segments that connect corresponding points of
A and B. Computing T as discussed above, we find

T =
( −.866 −.500

−.500 .866

)
.

What does T do to B? From Figure 20.1, we see that T should first
reflect B along the horizontal axis (or, reflect it on the vertical axis) and
then rotate it by 30◦ counterclockwise. The reflection matrix is thus

U1 =
( −1 0

0 1

)
and the rotation matrix by 30◦ is

R1 =
(

cos 30◦ sin 30◦

− sin 30◦ cos 30◦

)
=

(
.866 .500

−.500 .866

)
.

Applying U1 first and R1 afterwards yields U1R1 = T and BT = BU1R1.
But the decomposition of T into U1 and R1 is not unique. This may be
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FIGURE 20.1. Illustration of some steps involved in fitting B to A by an orthog-
onal transformation.
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more evident geometrically: in order to transform B into BT, it would also
be possible to first rotate B by −30◦ (i.e., clockwise by 30◦) and then reflect
it horizontally. This reverses the order of rotation and reflection but leads
to the same result. Another possibility would be to reflect B vertically and
then turn it by 210◦. To see that this produces the same effect, we simply
find the corresponding reflection and rotation matrices,

U2 =
(

1 0
0 −1

)
,

R2 =
(

cos 210◦ sin 210◦

− sin 210◦ cos 210◦

)
=

( −.866 −.500
.500 −.866

)
,

which yield T = U2R2 = U1R1. Thus, T can be interpreted in different
ways.

20.4 Procrustean Similarity Transformations

We now return to our original Procrustean problem of fitting one MDS
configuration (testee) to another (target) MDS configuration. Because the
overall size and the origin of MDS configurations are irrelevant, we now
attempt to optimally exploit these additional transformations in fitting the
testee matrix to the target. That is, we now extend the rotation/reflection
task by finding an optimal dilation factor and an optimal translation for B
(Schönemann & Carroll, 1970). In the context of Figure 20.1, this means
that BT should also be scaled to the size of A, so that the corresponding
points are incident, i.e., lie on top of each other. The translation generalizes
the fitting problem so that it can be used for distance representations where
there is no fixed origin.

Consider now the example in Figure 20.2, where Y is derived from X by
reflecting it horizontally, then rotating it by 30◦, shrinking it by s = 1/2,
and finally shifting it by the translation vector t′ = (1.00, 2.00). Formally,
Y = sXT+1t′, where T is the rotation/reflection matrix and 1 is a vector
of 1s. Given the coordinate matrices

X =

⎛⎜⎜⎝
1 2

−1 2
−1 −2

1 −2

⎞⎟⎟⎠ and Y =

⎛⎜⎜⎝
0.07 2.62
0.93 3.12
1.93 1.38
1.07 0.88

⎞⎟⎟⎠ ,

we want to find s, T, and t that transform Y back to X. In this case,
we know the solutions: because Y = sXT + 1t′, we subtract first 1t′

on both sides, which yields Y − 1t′ = sXT; then, premultiplying by 1/s
and postmultiplying by T−1 = T′ gives (1/s)(Y − 1t′)T′ = X, which is
(1/s)YT′ − (1/s)1t′T′ = X. In words: we first multiply Y by 1/s, then
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FIGURE 20.2. Illustration of fitting Y to X by a similarity transformation.

rotate it clockwise by 30◦ and reflect it horizontally, and then subtract the
translation vector (1/s)1t′T′ from it. Because the T matrix is the same
as the one discussed in the last section, and 1/s = 2 and t′ = (1, 2) are
also known, the transformations involved in mapping Y back into X can
be computed easily.

In general, of course, only X and Y are given, and we have to find optimal
s, T, and t. The loss function L(s, t,T) is therefore

L(s, t,T) = tr [X − (sYT + 1t′)]′[X − (sYT + 1t′)], (20.5)

subject to T′T = I. An optimal translation vector t is obtained by setting
the derivative of L(s, t,T) with respect to t equal to zero and solving for
t, i.e.,

∂L(s, t,T)/∂t = 2nt − 2X′1 + 2sT′Y′1 = 0, (20.6)
t = n−1(X − sYT)′1. (20.7)

Inserting the optimal t (20.7) into (20.5) gives

L(s,T)

= tr [(X − sYT) − 11′

n
(X − sYT)]′[(X − sYT) − 11′

n
(X − sYT)]

= tr [(I − 11′

n
)(X − sYT)]′[(I − 11′

n
)(X − sYT)]

= tr [JX − sJYT]′[JX − sJYT],

with J the centering matrix I−n−111′. Similarly, setting the partial deriva-
tive of L(s,T) to s equal to zero and solving for s yields

∂L(s,T)/∂s = 2s(tr Y′JY) − 2tr X′JYT = 0, (20.8)
s = (tr X′JYT)/(tr Y′JY). (20.9)
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Inserting the optimal s into L(s,T) gives

L(s,T) = tr [JX − tr X′JYT
tr Y′JY

JYT]′[JX − tr X′JYT
tr Y′JY

JYT]

= tr X′JX +
(tr X′JYT)2

tr Y′JY
− 2

(tr X′JYT)2

tr Y′JY

= tr X′JX − (tr X′JYT)2

tr Y′JY
. (20.10)

Minimizing (20.10) over T (TT′=I) is equal to minimizing −tr X′JYT
over T because T may always be chosen such that tr X′JYT is nonnega-
tive. Therefore, we can apply the results from the previous section to find
the optimal T. This also explains why maximizing the correlation r(A,BT)
(see Section 20.6) or (20.1) yields the same T as the Procrustes problem
(20.1).

The steps to compute the Procrustean similarity transformation are:

1. Compute C = X′JY.

2. Compute the SVD of C; that is, C = PΦQ′.

3. The optimal rotation matrix is T = QP′.

4. The optimal dilation factor is s = (tr X′JYT)/(tr Y′JY).

5. The optimal translation vector is t = n−1(X − sYT)′1.

20.5 An Example of Procrustean Similarity
Transformations

We now return to Figure 20.2. To transform Y back to X, the original
transformations that led to Y have to be undone. According to our com-
putation scheme of the previous section, what has to be found first is the
orthogonal matrix T, then the dilation factor s, and finally t.

C = X′JY turns out to be simply C = X′Y in the present case, because
J = I − 11′/n can be seen to center the rows of X′ or the columns of Y.
But the columns of X are centered already (i.e., the values in the columns
of X sum to 0); thus J is not needed here. For C = X′Y we obtain

C =
( −1.72 −1.00

−4.00 6.96

)
.

The singular value decomposition of C, C = PΦQ′, is

C =
(

.00 −1.00
1.00 .00

)(
8.03 .00
.00 1.99

)( −.50 .87
.87 .50

)
.
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Thus, T is given by

T = QP′ =
( −.87 −.50

−.50 .87

)
.

It is easier to see what T does when it is decomposed into a rotation and
a subsequent reflection:

T = RU =
(

.87 −.50

.50 .87

)( −1 0
0 1

)
.

In R, we have cos(α) = .87 and hence3 α = 30◦. Also, sin(α) = .50; thus,
α = 30◦. Hence, R rotates Y by 30◦ to the right or clockwise, which aligns
the sides of Y in Figure 20.2 with the coordinate axes. U then undoes the
previous reflection along the horizontal axis, because all of the coordinates
in the first column of YR are reflected by −1.

The transformations s and t are also easy to compute. For s we compute
s = (tr X′JYT)/(tr Y′JY) = 10.02/5.01 = 2, which is just the inverse
of the dilation factor from above. Finally, we find t′ = (3.73,−2.47). It
is harder to understand why such a translation is obtained, and not just
(−1,−2). At the beginning of the previous section, it was shown alge-
braically that to undo the translation t it is generally not correct to set
−t. This is so because other transformations are also done at the same
time; thus, what has to be back-translated is not Y, but Y after it has
been back-rotated, -reflected, and -dilated. If we check what these trans-
formations do to Y in Figure 20.2, we can see that t = (3.73,−2.47) must
result. (Note, in particular, that R rotates Y about the origin, not about
the centroid of Y.)

20.6 Configurational Similarity and Correlation
Coefficients

So far, we have considered Procrustean procedures primarily for transform-
ing a configuration so that it becomes easier, in one sense or another, to
look at. We now discuss a measure that assesses the degree of similarity
between the transformed configuration and its target. One obvious choice
for such a measure is the product-moment correlation coefficient computed
over the corresponding coordinates of X and YT.

Consider the three data matrices in Table 20.1, taken from a study by
Andrews and Inglehart (1979). The matrices show the product-moment

3Note that R′ = R−1 rotates a configuration to the left or counterclockwise. See
(7.31), which shows a rotation matrix for the plane that moves the points counterclock-
wise.
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TABLE 20.1. Intercorrelations of items in three studies on well-being in the
U.S.A., Italy, and Denmark, respectively. Items are: (1) housing, (2) neighbor-
hood, (3) income, (4) standard of living, (5) job, (6) spare time activities, (7)
transportation, (8) health, (9) amount of spare time, (10) treatment by others,
(11) getting along with others. Decimal points omitted.

Italy
1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11

1 – 33 44 52 38 37 26 23 20 27 23 –
2 38 – 23 19 29 23 28 18 21 29 31 46 –
3 30 21 – 77 57 43 38 25 23 17 19 38 29 –
4 42 30 66 – 56 52 38 28 29 22 2 46 35 64 –
5 10 18 34 23 – 49 35 23 23 32 29 29 30 42 47 –
6 27 28 33 36 31 – 28 28 39 25 32 27 29 28 37 41 –
7 14 19 28 29 26 26 – 18 24 18 22 16 16 22 24 20 18 –
8 15 11 23 21 17 15 22 – 27 17 21 08 13 14 12 24 15 17 –
9 17 15 18 26 25 29 18 08 – 20 28 22 21 19 26 24 37 15 14 –

10 23 30 27 30 38 26 26 20 26 – 69 27 33 26 30 32 26 17 14 23 –
11 18 18 14 24 23 21 21 29 14 36 – 31 39 29 37 34 38 22 13 28 53 -

U.S.A. Denmark

TABLE 20.2. Similarity coefficients of three attitude structures on well-being.
Lower half: squared correlations over coordinates. Upper half: squared congru-
ence coefficients of distances.

U.S.A. Italy Denmark
U.S.A. 1.000 0.883 0.859
Italy 0.347 1.000 0.857
Denmark 0.521 0.515 1.000

correlations of 11 questions on subjective well-being asked in the U.S.A.,
Italy, and Denmark, respectively. The questions were always phrased ac-
cording to the schema “How satisfied are you with [X]?”. The interviewees
responded by giving a score on a rating scale. The scores were correlated
over persons. Data from representative samples in each of nine different
Western societies were available. The general hypothesis was that the atti-
tude structures on well-being in these countries would be very similar.

Andrews and Inglehart (1979) represented each of these correlation ma-
trices in a 3D MDS space. For the matrices in Table 20.1, this leads to the
Stress values .09, .08, and .04, respectively. It was then asked how similar
each pair of these configurations is, and Procrustean transformations were
used to “remove inconsequential differences in the original locations, orien-
tations, and sizes of the configurations” (Andrews & Inglehart, 1979, p.78).
For our three data sets, this leads to the indices in Table 20.2 (lower half).
(Note that we report squared correlations here, which is in agreement with
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the notion of common variance in statistics.) On the basis of such measures,
Andrews and Inglehart conclude that “there seems to be a basic similarity
in structures among all nine of these Western societies” (p.83).

Such an evaluation assumes that the observed similarity indices are
greater than can be expected by chance alone. For two configurations, X
and Y, both chosen completely at random, r(X, sYT + 1t′) = r(X,Y∗)
would probably not be zero but should be positive. The fewer points there
are in X and Y, the greater the correlation should be. The Procrustean
transformations are designed to maximize r(X,Y∗); the fewer points there
are, the greater the effect of these transformations, in general. Langeheine
(1980b, 1982) has studied by extensive computer simulations what r-values
could be expected for different numbers of points (n) and different di-
mensionalities (m). He finds virtually the same results for different error
models (such as sampling the points from multidimensional rectangular
or normal distributions). For n = 10 and m = 3, the parameters rele-
vant for the present 3D MDS configurations with ten points, he reports
0.072 ≤ r2(X,Y∗) ≤ 0.522 and r̄2(X,Y∗) = 0.260. Furthermore, only 5%
of the observed coefficients were greater than 0.457. We should therefore
conclude that the degree of similarity observed for these structures is hardly
impressive.

20.7 Configurational Similarity and Congruence
Coefficients

It is possible to skip the Procrustean transformations altogether and still
arrive at a measure of similarity for each pair of configurations. This can
be done by directly comparing the distances of X and Y, because their
ratios remain the same under any transformations where T′T = I. Thus,
Shepard (1966) computes the product-moment correlation coefficient over
the corresponding distances of X and Y, and Poor and Wherry (1976)
report extensive simulations on the behavior of such correlations in ran-
domly chosen configurations. Yet, the usual correlation is an inadmissible
and misleading index when used on distances. To see why, consider the fol-
lowing example. Assume that X and Y consist of three points each. Let the
distances in X be d12(X) = 1, d23(X) = 2, d13(X) = 3 and the distances in
Y, d12(Y) = 2, d23(Y) = 3, d13(Y) = 4. The correlation of these distances
is r = 1, indicating perfect similarity of X and Y. But this is false; X and
Y do not have the same shape: Y forms a triangle, but X’s points lie on a
straight line because they satisfy the equation d12(X) + d23(X) = d13(X).
If a constant s is subtracted from each distance in this equation, the in-
equality d12(X) − k + d23(X) − k �= d13(X) − k results. The translated
values vij = dij(X)−k are therefore not distances of three collinear points.
Thus, pulling out any nonzero constant from the distances implies that the
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new values are either distances of a configuration different from the one we
wanted to assess, or are not even distances at all, i.e., they correspond to
no geometric configuration whatsoever. Hence, correlating distances does
not properly assess the similarity of geometric figures (configurations).

The problem is easily resolved, however, if we do not extract the mean
from the distances and compute a correlation about the origin, not the
centroid. The resulting congruence coefficient is

c(X,Y) =

∑
i<j wijdij(X)dij(Y)

[
∑

i<j wijd2
ij(X)]1/2[

∑
i<j wijd2

ij(Y)]1/2 ,

with wij nonnegative weights. Because distances are nonnegative and, by
the Cauchy–Schwarz inequality, c(X,Y) ranges from 0 to 1, we have c(X,Y) =
1 if X and Y are perfectly similar [i.e., if r(X, sYT + 1t′) = 1], and c = 0
if r = 0. But apart from these boundary cases, there is no easy relation of
r and c and it seems impossible to convert a given r-value directly into the
corresponding c-value, and vice versa.

Computing the congruence coefficients for the MDS configurations of
the data in Table 20.1 yields the values in the upper half of Table 20.2. In
comparison with the Procrustean correlation values in the lower half of the
matrix, these measures lead to a different interpretation of the similarity
pattern: the similarity of the Italian and the U.S.A. configurations is lowest
in terms of r but highest in terms of c. Indeed, the order of the similarities
among countries is exactly the opposite for both coefficients. Thus, using
two equally admissible indices leads to different conclusions. Why this is
so is not difficult to see: each coefficient must condense a great deal of
information on the similarity of two configurations into a single number,
and this can be done by weighting this or that piece of information more
or less. Furthermore, the distinction between geometric and correlational
similarity should be noted in problems of this sort.

The question that remains is whether r and c typically yield different
answers in practical applications. In particular, by comparing r with its
statistical norms (Langeheine, 1982) and c with analogous norms (Leutner
& Borg, 1983), are we likely to conclude in one case that the configuration
pair is significantly similar and in the other that it is not? In simulation
studies, Borg and Leutner (1985) showed that, for randomly chosen config-
urations with different numbers of points and dimensionalities, r and c led
to the same statistical judgment in not more than 60% of the cases. Hence,
if we claim that two configurations are more similar than can reasonably
be expected by chance alone, both the r and c values should be well above
their respective statistical norms.

The problems associated with such similarity coefficients are ultimately
due to the fact that these measures are extrinsic to substantive problems.
It would be an illusion to believe that somehow a better coefficient could be
constructed, because any such coefficient must condense the given complex
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information into a single number. It is evident that the way this should be
done depends on the substantive question being studied. Moreover, it seems
that, in a case like the Andrews–Inglehart study on attitude structures, the
question of how close corresponding points can be brought to each other
is much too parametric. The formal reason is that with 10 points in a 3D
space, the MDS configurations are not strongly determined by Stress; that
is, many other configurations exist (some more similar, some less similar
among themselves) that represent the data almost equally well. This was
shown by Borg and Bergermaier (1981). The deeper scientific reason is that
there is actually no basis for expecting such a point-by-point matching of
different attitude structures in the first place. In Section 5.3, the similarity
question was therefore asked quite differently: can two (or more) MDS
configurations both be partitioned into regions by facets from the same
facet design [see also Shye (1981)]. Because this could be done, it was
concluded that the structures were indeed similar in the sense that they all
reflected the same facets. In other contexts, the pointwise matching of two
configurations may be more meaningful, but this has to be checked in each
single case. For the psychophysical example discussed in Section 17.4, for
example, such indices are adequate in Figure 17.8 to assess the fit of the
design configuration (transformed in a theoretically meaningful way) and
the respective MDS representations. It is a widespread fallacy, however,
to believe that such indices are somehow “harder” and “more meaningful”
than the pictures themselves. Rather, the indices play only a supplementary
role, because the pictures show in detail where the configurations match
and where they do not.

20.8 Artificial Target Matrices in
Procrustean Analysis

Procrustean procedures were first introduced in factor analysis because
it frequently deals with relatively high-dimensional vector configurations
which would otherwise be hard to compare. Moreover, with very few ex-
ceptions [e.g., the radex of Guttman (1954) or the positive manifold hy-
pothesis of Thurstone (1935)], factor analysts have been interested only
in dimensions, whose similarity can be seen directly from comparing X
and YT. In addition, it was soon noted that the Procrustean methods
can also be used in a confirmatory manner, where X does not relate to
a configuration of empirical data but is a matrix constructed to express
a substantive hypothesis; for example, X could contain the point coordi-
nates for an expected configuration in a psychophysical study such as the
one on rectangles in Section 17.4. Here, we might simply take the solid grid
configuration in Figure 17.7 as a target for the MDS configuration in Fig-
ure 17.8 (assuming, for the sake of argument, that the MDS configuration
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was generated under the Euclidean metric, because otherwise no rotations
are admissible). Of course, in the plane, such rotations are more cosmetic
(to obtain better aligned plots, e.g.) and we can easily do without them.
However, imagine that the stimuli had been boxes rather than rectangles.
A theory for the similarity judgments on such stimuli would certainly ask
for a 3D representation, but the common principal-component orientation
routinely used by most MDS procedures may not give us the desired ori-

entation. Hence, even though using the design configuration without, say,
any logarithmic rescalings of its dimensions may be primitive, it may lead
to a more interpretable orientation of the MDS configuration.

Sometimes the target matrix X and testee matrix Y do not to have the
same dimensionality. For example, in the rectangle study from above, we
might have various other variables associated with the rectangles (such as
different colorings and patterns). A higher-dimensional MDS space is then
probably necessary to represent their similarity scores. Nevertheless, the
2D design lattice can still serve to derive a partial target matrix X, which
can serve as a partial hypothesis structure for the higher-dimensional MDS
configuration. Technically, what needs to be done in this case to guarantee
that the necessary matrix computations can be carried out is to append
columns of zeros on X until the column orders of the augmented X and the
Y matrix match. A reference for procedures on missing dimensionalities in
Procrustean analysis is Peay (1988).

A further generalization of the Procrustean procedures allows partial
specification of X by leaving some of its elements undefined (Browne, 1972a;
Ten Berge, Kiers, & Commandeur, 1993). This possibility is needed when
only partial hypotheses exist. A typical application is the case in which
some points represent previously investigated variables and the remaining
variables are “new” ones. We might then use the configuration from a
previous study as a partial target for the present data in order to check how
well this structure has been replicated. A different strategy was pursued by
Commandeur (1991) in the Matchals program where entire rows can be
undefined.

Another case of an incomplete formal match of X and Y is one in which
the configurations contain a different number of points. Consider a study
of Levy (1976) concerned with the psychology of well-being. Using a facet-
theoretical approach, Levy used items based on two facets: A = {state,
resource} and B = life area with eight elements. Respondents were asked
how satisfied they were with the content of an item on a 9-point rating
scale. For example, the respondent had to indicate how satisfied he or she
was with “the city as place to live” on a scale of −4 for “very dissatisfied”
to +4 for “very satisfied”. The data were taken from two studies carried
out in 1971, one in the U.S. and one in Israel. Similarity coefficients were
derived from the items (correlations for the U.S. study and µ2 for the
Israel study), followed by an MDS analysis for each country. The resulting
coordinate matrices for the configurations are given in Table 20.3. There
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TABLE 20.3. Generating comparable matrices Xc and Yc by averaging the co-
ordinates of points in X and Y that have equivalent structuples, dropping rows
that do not have matching structuples, and permuting the rows of the resulting
matrices into a common order of structuples. Bold-face structuples are common
to both studies.

U.S. Study Structuple Structuple Xc

1 82.878 -42.163 23 23 83.014 -41.638
2 88.993 -60.939 23 17 -4.189 -31.551
3 60.183 -46.662 23 14 3.004 -8.451
4 100.000 -16.787 23 26 -100.000 -28.496
5 -13.325 -87.959 21 22 19.631 -46.593
6 -19.009 -100.000 21 18 8.226 -15.692
7 -4.189 -31.551 17
8 3.004 -8.451 14
9 -100.000 -28.496 26

10 27.065 -38.147 12
11 19.631 -46.593 22
12 41.695 20.110 29
13 -7.944 40.172 25
14 7.994 15.670 15
15 8.226 -15.692 18

Israel Study Structuple Structuple Yc

1 55.109 -38.601 22 23 100.000 -87.625
2 100.000 -87.625 23 17 -20.501 45.374
3 -100.000 -59.374 26 14 9.139 9.563
4 -89.866 -100.000 26 26 -94.933 -79.687
5 -50.625 -60.229 16 22 55.109 -38.601
6 3.523 -48.208 18 18 -12.976 -39.149
7 -20.501 45.374 17
8 -31.567 49.099 27
9 -29.474 -30.089 18

10 9.139 -9.563 14

are 15 points in the U.S. representation, but only 10 in the Israeli solution.
However, most of these points are associated with structuples that are
common across the two studies. Hence, we can proceed as indicated in
Table 20.3: (1) in each configuration, average the coordinates of all points
that have common structuples; (2) set up matrices Xc and Yc consisting
of the average coordinate vectors in such a way that the rows of Xc and
Yc correspond substantively (i.e., in terms of their structuples); centroids
without a partner in the other configuration are dropped; (3) with Xc

and Yc proceed as in a usual Procrustean problem; (4) finally, use the
transformations computed in (3) to transform the original matrices (Borg,
1977b, 1978a). Provided there are enough different common structuples,
this procedure does what can be done to make the configurations easier to
compare.
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20.9 Other Generalizations of Procrustean
Analysis

Here, we consider variants of the Procrustes problem. In particular, we
discuss the so-called oblique Procrustean rotation, rotation to optimal con-
gruence, and robust Procrustean rotation.

The problem of oblique Procrustean rotation has been encountered pre-
viously in this book under different names. It consists of rotating each
coordinate axis independently of the others in such a way that BT approx-
imates A as closely as possible. Thus, we want to minimize (20.1) without
any constraint on T. Such a solution can be readily found by multiple
regression for each dimension separately.

Oblique Procrustes rotation can be interpreted as follows. Let T be de-
composed by a singular value decomposition; then T = PΦQ′. It follows
what T does: first, B is rotated by P; then Φ multiplies the coordinate
vectors of BP with different weights, thus geometrically stretching BP dif-
ferentially along the axes, and finally BPΦ is rotated by Q′. Hence, only
if Φ = I is T = PQ′ an orthonormal matrix. The transformation problem
turns out to be the same as the one encountered in Section 4.3, where ex-
ternal scales had to be optimally placed into a given configuration. In factor
analysis, certain additional constraints are often placed on T, so that the
oblique Procrustes problem is not always equivalent to the linear fitting.
However, these additional constraints are not relevant in the MDS context
(see, e.g., Browne, 1969, 1972b; Browne & Kristof, 1969; Mulaik, 1972). Ap-
plying oblique Procrustes rotation of MDS solutions has to be done with
caution, because the transformed solution has different distances.

A different fit criterion for Procrustes rotation is based on the congruence
between the columns of A and BT. Brokken (1983) proposed a rotation
method where the congruence between corresponding columns is optimized.
If A and B have column means of zero, then rotation to optimal congruence
can be interpreted as Procrustes rotation while assuming that each column
of A and B is measured on an interval level. Kiers and Groenen (1996)
developed a majorizing algorithm to optimize this criterion. This type of
analysis is particularly suitable if the columns of the matrices are interval
variables measured on the same scale.

In some cases, all but a few of the points of two configurations may
be similar (after rotation). Verboon (1994) discusses the following artificial
example. Let A contain the coordinates of cornerpoints of a centered square
and B the same coordinates but rotated by 45◦. An “outlier” in B is created
by multiplying the second coordinate of point 1 by −10. This outlier has
a different orientation (180◦) and is located much farther from the origin
than the other points. Ordinary Procrustes analysis yields a rotation matrix
with an angle of −18◦, a deviation of more than 60◦.
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Verboon and Heiser (1992) and Verboon (1994) propose a robust form of
Procrustes analysis that is less sensitive to outliers. They start by decom-
posing the misfit into the contribution of error of each object to the total
error; that is,

L(T) = tr (A − BT)′(A − BT)

=
n∑

i=1

(ai − T′bi)′(ai − T′bi) =
n∑

i=1

r2
i ,

where ai denotes row i of A. The basic idea is to downweight large resid-
uals so that outliers have less influence on the final rotation. This can be
achieved by minimizing

Lr(T) =
n∑

i=1

f(ri),

with f(x) a robust function. Some often-used robust functions are |x|, the
Huber function (Huber, 1964), and the biweight function (Beaton & Tukey,
1974), all of which have as a main characteristic that f(ri) < r2

i for large
values of ri. Clearly, choosing f(x) = x2 reduces Lr(T) to L(T). Algorithms
for minimizing Lr(T) for different robust functions f(x) based on iterative
majorization can be found in Verboon (1994).

20.10 Exercises

Exercise 20.1 Consider the three correlation matrices in Table 20.1 on
p. 438. Scale each data matrix individually via MDS. Then use Procrustean
transformations to eliminate irrelevant differences among the MDS solu-
tions. How do the three solutions differ from one another?

Exercise 20.2 It looks as if the plane spanned by dimension 1 and dimen-
sion 2 in Figure 4.3 corresponds closely to the 2D configuration in Figure
4.1.

(a) Replicate the scalings and then fit the 3D solution to the 2D solution
by Procrustean methods.

(b) Compute indices that indicate the similarity of the 2D MDS solution
and the fitted plane of the 3D solution. Use two different measures of
similarity.

Exercise 20.3 Use the data matrix of Table 4.1 on p. 65 and represent it
in a 3D MDS space. Then use an artificial target matrix to swing the MDS
solution into a plane that shows a color circle.
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Exercise 20.4 The matrices below show the point coordinates of two con-
figurations in three dimensions.

X =

⎡⎢⎢⎢⎢⎢⎢⎣
1 2 −.5

−1 2 .5
−1 0 −.5

1 0 .5
−1 −2 .5

1 −2 −.5

⎤⎥⎥⎥⎥⎥⎥⎦ and Y =

⎡⎢⎢⎢⎢⎢⎢⎣
1.2449 −0.8589 −1.7202
0.4572 1.1834 −1.7793

−0.9626 0.5000 −0.5321
0.9086 −0.4459 0.3364

−1.1118 0.8645 1.8433
−0.5361 −1.2432 1.8519

⎤⎥⎥⎥⎥⎥⎥⎦ .

(a) Find the rotation that optimally fits Y to X.

(b) Assess the fit of the fitted Y to the target X.

Exercise 20.5 The matrix below shows the coordinates of four points in
4D. Transform this configuration so that it optimally fits into a 2D plane.
(Hint: Procrustean transformations may not be the best method to solve
this problem.)

M =

⎡⎢⎢⎣
1.4944 −0.2109 −1.5806 −0.4718
0.2397 0.4019 −1.9928 0.8993

−1.4944 0.2109 1.5806 0.4718
−0.2397 −0.4019 1.9928 −0.8993

⎤⎥⎥⎦
Exercise 20.6 Use the coordinate matrices X and Y from Section 20.4.

(a) Augment matrix Y with a vector of random error so that Y becomes
three-dimensional. Repeat the Procrustean transformations and as-
sess the fit to the target configuration.

(b) Repeat the above with different amounts of random error. How does
this error affect the fittings?

Exercise 20.7 Assume we drop the constraint that TT′ = I in Section 20.2
and admit any linear transformation T to solve the loss function in formula
20.1.

(a) Show that T = (B′B)−1B′A minimizes the loss function in this case.
(Hint: Expand the expression and use the rules developed in Section
8.3.)

(b) Apply the result to two simple 2D configurations, A and B, that are
both centered.

(c) Study geometrically in which way T affects B in fitting it to A.

(d) Analyze what T does to B in terms of its singular value decomposi-
tion. (Hint: Note the the SVD decomposes T into a rotation/reflection,
followed by a stretching along the dimensions, followed by another ro-
tation/reflection.)
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(e) What properties of a configuration B are generally left unchanged
when using a linear transformation T? (Hint: Check points that are
on a straight line in B. Where do they end up in BT? Also, consider
the dashed grid in Figure 17.9 and how it is related to its design grid
in Figure 17.7.)

(f) Repeat fitting B to A, but now make sure that neither A nor B is
centered. Compare the shape of BT in this case to the shape of BT
in the centered case above.
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Three-Way Procrustean Models

In this chapter, we look at some varieties of generalized Procrustes anal-
ysis. The simplest task is to fit several given coordinate matrices Xk(k =
1, . . . , K) to each other in such a way that uninformative differences are
eliminated. We also consider generalizations of the Procrustean problem
that first find an optimal average configuration for all Xk and then at-
tempt to explain each individual Xk in turn by some simple transforma-
tion of the average configuration. One important case is to admit different
weights on the dimensions of the average configuration. This case defines
an interesting model for individual differences scaling: if the fit is good,
then the perceptual space of individual k corresponds to the group’s per-
ceptual space, except that k weights the space’s dimensions in his or her
own idiosyncratic way.

21.1 Generalized Procrustean Analysis

We now begin by generalizing the Procrustes problem to the case of more
than two configurations. To introduce the problem, assume that we had K
proximity matrices and that each matrix was generated by one of K differ-
ent individuals. Assume further that we had computed an MDS solution
Xk for each of these K individuals. What we would have, then, is a stack
of Xks as depicted in Figure 21.1, a three-way array of coordinates xiak

(i = 1, . . . , n; a = 1, . . . , m; k = 1, . . . , K).
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X6
X5X4

X3
X2

X1

FIGURE 21.1. Schematic representation of a three-way data matrix, where the
coordinate matrices Xk of six subjects are stacked one after the other.

We now ask to what extent the K different Xk “really” differ. We know
from Chapter 20 that just looking at different Xks may be misleading,
because one may notice differences that are uninformative in terms of
the data. The task to visually separate uninformative from data-based
differences becomes difficult or, indeed, unsolvable in the case of higher-
dimensional spaces, but even in 2D it is at least helpful to first align dif-
ferent MDS solutions before comparing them.

Technically, given a set of K matrices Xk, generalized Procrustean anal-
ysis is confronted with the task of optimally fitting these matrices to each
other under a choice of rigid motions, dilations, and translations.

All of the above transformations are admissible ones, because they do
not change the ratio of the distances and, hence, do not affect the way in
which the various Xk represent the corresponding proximity data. General-
ized Procrustean fitting can, however, be generalized further by admitting
nonadmissible free parameters to the transformations. For example, after
fitting the K individual configurations Xk to each other by similarity trans-
formations, one may compute from them a group configuration,1 Z. We may
then attempt to explain how the individuals differ from each other by con-
sidering certain simple transformations of Z that allow one to approximate
each Xk in turn. The most important example is to compress and stretch Z
along its dimensions so that it best explains Xk. The dimensional weights
used in these deformations of Z may be interpreted psychologically, for ex-
ample, as expressions of the different importance that individual k attaches
to the dimensions of the group space.

Gower and Dijksterhuis (2004) discuss the Procrustes problem and its
three-way extensions in great mathematical depth. It is an excellent overview

1This choice of terminology refers to the frequent case where each Xk represents the
proximity data from one individual k. The group configuration, then, is some kind of
multidimensional average that represents the respective group of K individuals.
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1 2

3

FIGURE 21.2. Data collection device used by Helm (1959).

of developments in this area. In the remainder of this chapter, we discuss
a selection of three-way Procrustean models.

21.2 Helm’s Color Data

We now consider an experiment by Helm (1959) that is used later on to
illustrate various formal considerations. Different individuals were asked to
judge the similarity of colors. The stimuli were 10 chips with different hues
but constant brightness and saturation. The colors ranged over the entire
spectrum from red to purple. With 10 stimuli, 120 different triples can be
formed. For each triple, the subjects were asked first to identify the two
colors that appeared most different. The respective chips were then placed
onto points 1 and 2 in a schema like the one shown in Figure 21.2. The
remaining chip of the triple was positioned somewhere in the shaded area so
that the resulting distances would correspond to the perceived similarities
among the colors. In this way, each subject generates more than the usual
n(n−1)/2 distance judgments, because each stimulus pair is presented not
just once but in combination with each of the remaining eight colors. The
data were averaged to get more reliable estimates of the perceived distances
than presenting each pair only once. The resulting values are reported in
Table 21.1, where each column contains the n(n − 1)/2 = 45 dissimilarity
pairs of colors for one subject.

There were 14 different subjects, two of whom replicated the experiment
after a four-week interval (s[1]

6 , s
[2]
6 and s

[1]
12 , s

[2]
12) leading to a total of 16

replications. The resulting dissimilarity vectors of the two replications cor-
relate with r(s[1]

6 , s
[2]
6 ) = .96 and r(s[1]

12 , s
[2]
12) = .91, which indicates high

reliability for the judgments.
The subjects fall into two groups. Some of them have normal color vision,

and others are deuteranopic (red-green deficient) in varying degrees. For a
deuteranopic person, both red and green stimuli look gray. The subjects
with deuteranopia are ordered, from least to most severe disability, as s11 <
s12 < s13 < s14.

Helm (1959, 1964) treats the data in Table 21.1 as direct distance esti-
mates and applies classical scaling in maximal dimensionality, without any
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TABLE 21.1. Distance estimates for color pairs (Helm, 1959) s
[1]
6 and s

[2]
6 , and

s
[1]
12 s

[2]
12 are replications for one subject each. Subjects s1 to s10 are color-normals,

and s11 to s14 are color-deficient.

Color-Normals Color-Deficients
Pair s1 s2 s3 s4 s5 s

[1]
6 s

[2]
6 s7 s8 s9 s10 s11 s

[1]
12 s

[2]
12 s13 s14

AC 6.8 5.9 7.1 7.5 6.6 5.2 5.8 6.2 7.5 6.0 9.2 11.5 9.3 9.0 10.4 9.9
AE 12.5 11.1 10.2 10.3 10.5 9.4 10.5 10.8 9.1 9.4 10.8 13.1 10.7 10.0 12.4 13.2
AG 13.8 18.8 11.1 10.7 10.2 11.4 13.4 9.9 10.2 9.5 9.7 12.6 10.7 10.4 12.8 12.3
AI 14.2 17.3 12.5 11.6 9.6 13.3 14.0 11.1 12.1 9.5 10.1 10.6 11.9 10.0 13.7 11.1
AK 12.5 16.6 11.8 10.6 10.8 12.0 13.2 10.3 12.5 9.8 10.3 10.6 11.0 9.3 11.8 8.7
AM 11.0 16.5 9.9 9.7 9.7 12.3 11.7 8.8 9.7 8.7 9.7 10.8 9.8 8.6 4.3 5.6
AO 8.6 8.3 8.6 8.4 8.5 10.6 10.2 7.6 9.8 6.7 9.0 7.3 8.9 8.8 4.0 7.4
AQ 5.5 5.7 4.3 5.8 4.9 4.9 6.4 5.8 8.3 4.9 6.6 5.4 8.9 7.5 5.5 6.4
AS 3.5 4.2 2.9 3.6 3.5 3.5 3.5 3.0 6.7 4.1 4.6 5.0 5.1 5.8 4.1 5.8
CE 5.4 4.9 5.7 6.9 5.5 6.2 4.9 7.5 4.4 7.1 5.5 6.0 6.5 6.9 8.1 7.3
CG 8.3 10.6 11.5 8.5 9.6 11.2 12.2 8.9 7.9 9.5 8.2 7.9 8.0 8.9 10.8 7.9
CI 10.4 14.3 10.7 10.7 9.3 13.5 14.8 10.7 10.4 9.5 9.4 8.4 8.2 8.4 10.4 6.9
CK 11.6 16.6 11.8 11.1 9.9 12.9 14.6 10.8 11.2 9.9 10.1 9.4 8.9 8.3 4.6 6.8
CM 13.8 17.3 11.2 12.2 11.7 12.0 14.1 10.6 12.6 10.6 10.5 10.2 9.3 9.7 9.6 9.9
CO 14.3 14.5 12.5 10.8 11.6 11.5 13.4 10.4 11.4 10.6 10.8 11.3 10.7 11.1 12.3 13.1
CQ 11.8 9.5 9.2 9.9 10.3 8.2 9.7 9.0 11.3 8.5 11.2 11.5 10.1 10.6 14.2 12.7
CS 8.9 7.3 8.2 8.0 8.0 6.3 7.9 7.5 10.4 7.9 10.5 11.5 9.6 10.3 13.0 12.1
EG 5.2 4.8 6.7 4.9 7.2 5.6 4.6 6.3 5.7 7.6 4.6 6.2 4.4 6.0 3.5 4.5
EI 7.2 8.3 8.9 6.6 8.3 8.2 8.3 8.7 8.3 8.9 6.7 8.4 7.0 6.8 4.3 5.3
EK 9.5 13.2 9.4 8.7 9.3 9.6 10.7 9.6 10.2 9.8 9.8 9.9 10.8 8.2 7.9 9.7
EM 11.3 14.6 11.3 10.6 11.3 12.7 12.8 10.1 11.3 10.5 11.3 10.3 10.4 10.9 13.0 11.5
EO 13.5 16.1 12.5 11.7 11.9 13.7 14.1 10.8 12.2 10.7 11.9 12.7 11.8 11.6 13.8 13.7
EQ 14.6 14.0 11.9 11.1 11.8 13.4 12.9 11.7 11.9 9.7 11.5 12.9 11.6 9.6 14.8 14.1
ES 14.1 13.8 10.5 12.0 11.5 11.7 10.9 9.4 10.7 10.2 10.2 10.7 10.2 10.5 13.9 13.4
GI 3.7 3.6 3.7 3.5 4.7 4.0 3.5 3.9 3.9 3.8 3.7 5.2 4.6 4.2 3.5 5.3
GK 5.9 5.3 5.9 6.3 6.2 5.8 4.7 6.8 6.5 5.3 6.6 6.5 9.6 7.3 9.0 8.6
GM 10.1 8.2 10.3 7.8 8.9 6.8 8.8 9.4 8.7 7.3 8.7 8.8 10.8 10.1 12.3 12.5
GO 11.1 14.5 11.6 10.4 10.3 9.3 11.0 9.7 10.3 7.6 10.6 11.2 11.9 10.2 12.3 13.4
GQ 12.3 17.0 10.9 11.6 11.6 10.5 11.8 10.4 10.7 9.2 10.0 11.7 11.3 10.6 12.9 14.1
GS 12.5 17.3 11.5 11.3 10.2 12.2 11.7 9.7 12.6 10.1 7.7 10.2 10.9 10.3 14.5 13.1
IK 4.2 3.5 3.6 4.1 3.3 3.8 3.6 5.0 4.6 4.8 4.0 4.1 5.8 5.2 7.0 6.9
IM 6.9 6.8 8.2 6.5 6.3 5.4 6.9 8.3 7.8 6.2 7.5 7.0 8.0 7.6 13.1 9.0
IO 10.2 11.0 9.8 8.6 9.1 7.9 9.4 9.0 9.9 8.2 9.9 10.4 10.5 9.2 13.1 12.2
IQ 12.1 15.8 11.3 10.0 11.1 9.9 12.4 10.9 11.2 9.1 10.9 10.8 10.4 10.3 13.6 12.5
IS 11.2 15.8 11.1 10.8 10.4 13.2 13.7 9.6 11.6 9.7 10.6 10.6 10.7 10.3 14.1 13.4
KM 4.3 3.8 5.1 5.0 4.2 3.6 4.1 4.3 6.3 4.7 5.4 6.4 7.7 6.4 9.9 6.7
KO 6.8 7.4 8.1 7.4 8.9 5.6 6.9 7.3 9.6 6.7 9.3 9.9 9.6 9.5 11.3 9.7
KQ 9.9 13.8 10.2 9.1 9.4 9.0 10.6 9.0 10.6 8.8 9.9 9.4 10.6 10.0 13.6 11.3
KS 10.7 15.1 10.6 10.7 10.6 10.4 12.2 8.8 11.6 9.9 9.7 10.1 10.7 9.6 12.3 9.9
MO 4.8 5.7 4.9 5.9 6.6 4.2 4.1 4.9 4.8 4.5 5.6 4.2 7.4 7.0 3.9 5.5
MQ 7.4 10.9 8.7 8.7 8.9 8.2 10.0 7.2 6.8 7.2 8.2 8.4 9.0 7.9 5.3 7.4
MS 8.7 13.9 9.7 9.6 9.2 9.8 11.1 7.6 9.1 6.8 9.7 8.1 8.7 8.7 6.4 5.4
OQ 4.5 5.0 6.3 5.6 5.8 5.1 4.1 4.7 4.6 4.0 5.3 4.5 4.5 4.8 4.7 4.2
OS 6.1 6.0 7.5 6.7 7.3 6.8 6.9 5.6 7.4 5.3 6.3 6.4 7.0 6.7 3.2 4.0
QS 3.6 3.5 3.0 3.5 2.9 3.8 3.4 3.5 5.2 3.4 3.4 3.0 4.5 4.3 2.4 4.3
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TABLE 21.2. Eigenvalues obtained by classical scaling on each of the 16 indi-
vidual dissimilarity matrices of the Helm (1959) data; color-normal subjects in
upper table, color-deficient subjects in lower table; “Average” shows eigenvalues
for averaged data.

s1 s2 s3 s4 s5 s
[1]
6 s

[2]
6 s7 s8 s9 s10 Average

1 260.0 449.2 191.6 179.7 166.8 233.8 276.4 147.7 182.0 126.6 164.8 204.4
2 178.3 276.5 143.6 125.8 127.1 165.1 190.1 110.4 150.0 105.9 102.9 160.2
3 28.6 32.0 44.1 22.8 29.5 23.3 27.5 32.7 28.5 28.4 48.6 12.1
4 17.9 15.8 18.4 18.6 26.8 16.4 8.9 21.6 24.9 18.2 32.3 6.7
5 4.8 5.2 11.3 13.3 15.8 6.6 7.0 11.2 14.7 12.9 10.7 6.5
6 4.3 .0 5.2 8.9 7.3 1.3 2.3 7.8 10.7 7.2 6.7 4.8
7 .0 -12.6 2.8 1.0 5.6 .0 .0 6.7 7.9 3.0 6.0 2.5
8 -9.5 -17.2 .0 .0 .0 -6.2 -6.2 .0 .0 .0 .0 1.3
9 -18.2 -40.6 -5.4 -3.4 -2.1 -10.5 -17.3 -.4 -5.9 -2.4 -3.1 .0

10 -30.5 -71.8 -17.1 -8.6 -15.3 -35.8 -26.5 -8.0 -11.3 -3.0 -14.1 -.4

s11 s
[1]
12 s

[2]
12 s14 s14 Average

1 213.2 175.2 154.0 347.7 296.0 232.0
2 80.7 92.5 72.5 98.7 56.9 59.9
3 48.4 47.5 51.7 34.2 38.3 51.5
4 36.0 32.7 31.3 25.0 26.3 22.0
5 14.9 28.3 19.9 9.8 21.6 15.8
6 10.9 14.8 13.2 .0 13.1 11.6
7 .8 7.0 6.8 -1.8 .4 8.6
8 .0 .0 3.3 -4.0 .0 2.6
9 -3.0 -2.5 .0 -6.2 -3.1 .0

10 -13.0 -5.0 -3.0 -17.7 -13.1 -1.3

prior transformations. The eigenvalues of classical scaling for each subject
are reported in Table 21.2. One notes some negative eigenvalues, because
the dissimilarities are not exact distances. The negative eigenvalues are,
however, relatively small and can be explained by the Messick–Abelson
model (Section 19.4). On the average, the color-normal subjects have two
rather large eigenvalues, with the remaining eight eigenvalues close to zero.
For the deuteranopic subjects, on the other hand, we find essentially only
one large eigenvalue.

If a configuration is sought that is most representative for all color-normal
subjects, the simplest answer is to derive it from the scores averaged over
all respective data sets. This leads to the eigenvalues shown in the column
“Average” of Table 21.2. Their distribution suggests that the color-normal
subjects have a true 2D MDS configuration and that further dimensions are
due to errors in perception and judgment. This interpretation is buttressed
by the fact that the plane spanned by the first two eigenvectors shows
the expected color circle as shown in Figure 21.3a. Classical scaling on
the average data of the color-deficient subjects leads to Figure 21.3b. For
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FIGURE 21.3. The 2D configuration obtained by classical scaling on the average
of (a) the color-normal subjects, (b) the color-deficient subjects.

these subjects, one notes that the second principal axis of the color circle
is clearly less pronounced.

21.3 Generalized Procrustean Analysis

Using average data is a rather crude approach. A possible alternative is to
map all 11 data sets simultaneously into one configuration. Another pos-
sibility is generalized Procrustes analysis (GPA), which transforms all K
individual configurations, X1, . . . ,XK , at the same time so that each con-
figuration matches all others as closely as possible. The admissible trans-
formations consist of rotations, reflections, dilations, and translations, as
in Procrustean similarity transformations.

Expressed in terms of a loss function, generalized Procrustes analysis
amounts to minimizing

GPA =
K∑

k<l

tr (X̃k − X̃l)′(X̃k − X̃l), (21.1)

where X̃k = skXkTk + 1t′
k and T′

kTk = I. The function (21.1) is to
be minimized through a proper choice of K scale factors sk, K orthonor-
mal matrices Tk, and K translation vectors tk. The trivial solution where
sk = 0 must be avoided by imposing additional restrictions. For example,
Commandeur (1991) proposes to require

∑K
k s2

ktr X̃′
kX̃k =

∑K
k tr X′

kXk,
which we assume implicitly whenever needed.

The GPA loss function (21.1) has to be minimized with an iterative al-
gorithm, because no direct analytical solution is known. We describe three
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methods for minimizing GPA. The first method consists of cyclically updat-
ing one configuration while keeping the others fixed. Thus, each iteration
consists of first updating X̃1 while keeping the remaining configurations
fixed, then updating X̃2 while keeping the remaining configurations fixed,
and so on. Writing only the terms of the GPA function dependent on X̃k

gives

GPAk(X̃k) = (K − 1)tr X̃′
kX̃k − 2tr X̃′

k

∑
l �=k

X̃l + c

= (K − 1)(tr X̃′
kX̃k − 2tr X̃′

kY) + c,

where Y = (K−1)−1 ∑
l �=k X̃l, and c contains terms that are not dependent

on X̃k. The minimum of GPAk(X̃k) can be found by the Procrustean sim-
ilarity transformation procedure outlined in Section 20.4. This procedure
is iteratively repeated over all ks until GPA no longer drops. The proposed
algorithm must converge, because (21.1) can never become greater as a
consequence of any individual Procrustean fitting and because (21.1) has
a lower bound of 0. Usually, very few iterations are required to reach con-
vergence. The current procedure is used by Kristof and Wingersky (1971)
and Ten Berge (1977).

A second procedure for solving the GPA problem is described by Gower
(1975). Differentiating (21.1) with respect to tk, he first finds that all con-
figurations must be translated so that their respective centroids are all
incident with the origin. Hence, all Xks must be centered so that their
columns sum to 0. This solves the translation problem directly. The ro-
tation/reflection problems associated with Tk can then be solved in the
iterative manner described above. Finally, a direct solution exists for the
scale factors sk (Ten Berge, 1977). Let B be the K × K matrix with ele-
ments bkl = tr X′

kXl and QΛQ′ the eigendecomposition of B. Then, the
scale factors should be chosen as sk = (

∑
k X′

kXk/tr X′
kXk)1/2qk1, where

qk1 is element k of the largest eigenvector of B.
A third method for minimizing GPA uses the centroid configuration Z

of all X̃ks, Z = (1/K)
∑

k X̃k. The function GPA in (21.1) is equivalent to

GPA = K

K∑
k=1

tr (X̃k − Z)′(X̃k − Z), (21.2)

which is minimized by updating the X̃ks and the centroid configuration Z
one at a time while keeping the others fixed. Commandeur (1991) notes,
however, that this procedure has slower convergence properties than the
method described above.

To see that (21.1) is the same as (21.2), consider the following.

GPA =
K∑

k<l

tr (X̃k − X̃l)′(X̃k − X̃l) (21.3)
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=
1
2

K∑
k=1

K∑
l=1

tr (X̃k − X̃l)′(X̃k − X̃l) (21.4)

=
1
2

K∑
k=1

K∑
l=1

tr X̃′
kX̃k +

1
2

K∑
k=1

K∑
l=1

tr X̃′
lX̃l

−
K∑

k=1

K∑
l=1

tr X̃′
kX̃l. (21.5)

Summing the first two terms of (21.5) yields K
∑K

k=1 tr X̃′
kX̃k. Because X̃k

in the last term of (21.5) does not depend on l, this term can be written
as K

∑K
k=1 tr X̃′

k(K−1 ∑K
l=1 X̃l), so that

GPA = K

K∑
k=1

tr X̃′
kX̃k − K

K∑
k=1

tr X̃′
k(K−1

K∑
l=1

X̃l)

= K

(
K∑

k=1

tr X̃′
kX̃k −

K∑
k=1

tr X̃′
kZ

)
.

Using this result, the derivation continues as

GPA = K

(
K∑

k=1

tr X̃′
kX̃k +

K∑
k=1

tr X̃′
kZ − 2

K∑
k=1

tr X̃′
kZ

)

= K

(
K∑

k=1

tr X̃′
kX̃k + K(K−1

K∑
k=1

tr X̃k)′Z − 2
K∑

k=1

tr X̃′
kZ

)

= K

(
K∑

k=1

tr X̃′
kX̃k + K(tr Z′Z) − 2

K∑
k=1

tr X̃′
kZ

)

= K

(
K∑

k=1

tr X̃′
kX̃k +

K∑
k=1

tr Z′Z − 2
K∑

k=1

tr X̃′
kZ

)

= K
K∑

k=1

tr (X̃k − Z)′(X̃k − Z). (21.6)

This shows that GPA minimizes the squared differences of all X̃k to the
centroid configuration Z. Therefore, Z can be used as the configuration that
summarizes all of the optimally transformed Xks. Dijksterhuis and Gower
(1991) go one step further. They provide a much more detailed analysis-of-
variance-like decomposition of the error of the GPA loss function, so that
several sources of misfit can be attributed.

Geometrically, each of Z’s points is the centroid of the corresponding
points from the fitted individual configurations. Thus, if (21.1) is small,
these centroids lie somewhere in the middle of a tight cluster of K points,
where each single point belongs to a different X̃k.
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FIGURE 21.4. (a) Centroid configuration for 11 color-normal subjects in Table
21.1. (b) Example of an individual space using the weighted Euclidean distance
for a hypothetical subject with dimension weights 1.0 (dim 1) and .5 (dim 2).
(c) Example of an individual space using the generalized Euclidean distance for
a hypothetical subject with dimension weights 1.0 (dim 1), .5 (dim 2), and id-
iosyncratic anticlockwise rotation of 30◦.

21.4 Individual Differences Models:
Dimension Weights

The generalized Procrustean transformation problem is of limited interest
in practice. A more interesting question to ask is whether each individual
configuration can be accounted for by stretching the centroid configuration
appropriately along the dimensions. This idea for explaining individual dif-
ferences was introduced by Horan (1969) and Bloxom (1968) and developed
by Carroll and Chang (1970) in the Indscal procedure (see Section 22.1).

To illustrate the model, let us look at Figure 21.4a which shows the
centroid configuration obtained by GPA. Every individual is allowed his or
her own weights for every column of Z. For example, a mildly color-deficient
subject k could weight the first dimension by 1.0 and the second dimension
by 0.5, showing that the second dimension accounts for less variance in
his or her data than the first dimension. Figure 21.4a shows the centroid
configuration obtained by GPA. The weighted centroid configuration in
Figure 21.4b shows clearly that for this subject the first dimension of Z is
more important than the second dimension.

The weighted centroid configuration for subject k can be expressed as
ZWk, where Wk is an m×m diagonal matrix of nonzero dimension weights.
Hence, the corresponding distance between points i and j is

dijk(ZWk) =

[
m∑

a=1

(waakzia − waakzja)2
]1/2

=
[
(zi − zj)′W2

k(zi − zj)
]1/2

, (21.7)
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where z′
i is row i of Z. Equation (21.7) is called the weighted Euclidean

distance.2 Note waak may be positive or not: a negative dimension weight
simply reflects the corresponding axis but does not change the distances.

An extension of dimension weighting allows for idiosyncratic rotations as
well. Before applying dimension weights, an individual would first orient
Z in his or her particular way. The transformed centroid configuration for
individual k becomes ZSkWk, where Sk is a rotation matrix with S′

kSk =
SkS′

k = I. The generalized Euclidean distance is

dijk(ZSkWk) =
[
(zi − zj)′SkW2

kS
′
k(zi − zj)

]1/2
. (21.8)

The use of this type of distance was popularized by Carroll and Wish
(1974a) in the Idioscal model (see Section 22.2). In Figure 21.4c, the
perceptual space of a hypothetical individual is shown. This individual
first rotates the centroid configuration of Figure 21.4a by 30◦ anticlockwise
and then weights the newly obtained axes by w11k = 1.0 and w22k = 0.5.

Helm’s Color Data and the Subject Space
Consider our color perception example. Figure 21.4a shows the centroid
configuration Z derived from the 11 MDS configurations of the color-normal
subjects by minimizing (21.1). Z matches each of the 11 individual configu-
rations exceedingly well, as can be seen from the r2(X̃k,Z) values in Table
21.3. None of the fit values shows an agreement of less than 96%; hence,
Z is truly representative for these subjects. In Figure 21.4a, the coordinate
axes are rotated so that the vertical dimension intersects the color circle at
the points red-purple and green-blue. But these are just the colors that the
deuteranopic subjects cannot reliably discriminate, although they have no
problems distinguishing yellow from blue. Thus, their color circles should
be squeezed together in the red-green direction, because the point distances
represent the perceived dissimilarities. Figure 21.4b shows what distance
structures would be expected for a mildly deuteranopic subject. In this
case, the transformation can be represented in terms of point coordinates
as X̃k ≈ ZWk, where ZWk is the approximated MDS configuration of
individual k, and Wk is a 2 × 2 diagonal matrix consisting of the weights
w11 = 1.00 and w22 = 0.5, which has the effect of shrinking all coordinates
in Z’s second column to a half of their original magnitude.

In general, this fitting problem can be expressed as

tr (ZWk − X̃k)′(ZWk − X̃k) = min, (21.9)

2Actually, dijk is simply a Euclidean distance on a “weighted” MDS space, Xk =
ZWk. The term “weighted Euclidean distance”, therefore, characterizes formula (21.7)
but does not imply that we are dealing with a special type of distance.
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TABLE 21.3. Fit measures for simple and weighted Procrustean analyses of MDS
configurations of Helm data, split by color-normal subjects and color-deficient
subjects.

Color- Color-
Normals r2(X̃k, Z) r2(X̃k, ZWk) Deficients r2(X̃k, Z) r2(X̃k, ZWk)

s1 0.98 0.98 s11 0.89 0.92
s2 0.98 0.98 s

[1]
12 0.91 0.92

s3 0.99 0.99 s
[2]
12 0.94 0.97

s4 0.99 0.99 s13 0.50 0.75
s5 0.99 0.99 s14 0.44 0.82
s
[1]
6 0.97 0.97 Average 0.74 0.88

s
[2]
6 0.98 0.99
s7 0.98 0.98
s8 0.97 0.97
s9 0.98 0.98
s10 0.96 0.97

Average 0.98 0.98

13

 yellow-blue

14

 re
d-

gr
ee

n

FIGURE 21.5. Subject space for centroid configuration in Fig. 21.4a and data
in Table 21.1; solid points represent color-normal and open points color-deficient
subjects.
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where Wk is the unknown diagonal matrix of weights, and X̃k is the ith
individual configuration optimally fitted to Z by similarity transformations.
Because Wk is diagonal, finding the best Wk amounts to solving a set
of simple regression problems. To see this, let za and xa be the column
vectors of of Z and X̃a, respectively, and zia and xia the ith elements in
these vectors. Then, find the weight wa (the ath diagonal element of Wk)
for za such that

∑n
i=1(wazia −xia)2 is minimal. Differentiating and setting

the derivative equal to 0 leads to wa = (
∑

i xiazia)/
∑

i z2
ia, the formula for

the regression coefficient. With such weights in each Wk, the agreement of
the ZWks and the individual configurations of the deuteranopic subjects
goes up substantially relative to the unweighted case (Table 21.3). The size
of the increments mirrors the degree of deuteranopia.

If the weights are normalized appropriately (see below), they can be dis-
played as in Figure 21.5. The diagram, known as a subject space (Carroll &
Chang, 1970), shows the color-normal persons represented by solid points
and the color-deficient subjects by open points. The coordinates of these
points correspond to the weights assigned to the dimensions by the respec-
tive individual. The color-normal persons weight the centroid configuration
on both the red-green (X-axis) and the yellow-blue (Y -axis) dimensions
about equally, because the points cluster tightly around the bisector. The
color-deficient persons, on the other hand, weight the red-green dimension
of Z less than the yellow-blue dimension. Moreover, the open point closest
to the yellow-blue axis represents s14, the individual with the most severe
case of deuteranopia, and the open point next to it stands for s13, who is
next in color deficiency. For these individuals, the red-green dimension is
practically irrelevant for their dissimilarity judgments, as predicted.

For the subject space, the dimension weights waak were normed so that
their sum-of-squares is equal to r2(X̃k,ZWk). This equality holds if the
normed weights, w̄aak, satisfy w̄aak = waak/(

∑
i z2

ia)1/2, which follows from
writing out the squared correlation r2(X̃k,ZWk) in scalar notation (Borg,
1977a). Thus, the distance of the points in the subject space from the origin
corresponds to the communality of the weighted average configuration and
an individual configuration. We have X̃k = ZWk if the weight point of
individual k lies on the circle with radius 1 around the origin.

Common Misinterpretations of the Subject Space
We should note here that the subject space depends on how the group
space Z is defined. In the above example, Z was the centroid configuration
of the color-normal persons only. Alternatively, it would also be possible
to derive Z from, say, the configurations of all subjects. But then Z would
have a different shape: it would be more elliptical, and this would entail
that all points and stars in the subject space be rotated towards the red-
green dimension, so that the color-normals would not be distributed around
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the bisector. Hence, it is not possible to infer from a subject’s point in the
subject space that he or she weights dimension a more than dimension b,
because these ratios change if we change the group space. The weights,
thus, are only relative to those of other subjects.

Another misinterpretation can occur if we take the name “subject space”
in the sense of a Euclidean point space. The meaning of distances computed
by the Euclidean distance formula in the subject space is completely ob-
scure, because each of its points is placed so that the distance from the
origin denotes the communality of the respective configuration X̃k with Z,
and the direction of the ray on which the point lies represents the weights in
Wk. Moreover, as we mentioned above, the distances in the subject space
are conditional on how Z is defined: if we choose different Zs, different
subject spaces result. To avoid the distance interpretation between points
in the subject space, one can project the points on the dimensions and
interpret the weights for each dimension separately.

Dimension Weighting with Idiosyncratic Rotations
The dimensional weighting of Z in Figure 21.4 was done along the given
dimensions red-green and yellow-blue. Different ellipses would have resulted
in Figures 21.4b and 21.4c if Z were squeezed together in other directions.
For example, we could squeeze Z in the direction purple 1/green-yellow 2,
which would bring the points S and I in close proximity. Expressed more
technically, if the dimensional system in Figure 21.4a were rotated by S,
then weighting ZS by Wk would lead to a different result than weighting
Z by Wk, in general. Thus, for each S, we obtain the loss function

tr (ZSWk − X̃k)′(ZSWk − X̃k), (21.10)

where S′S = I, and X̃k is an individual configuration fitted optimally to
ZS. Note that S does not have a subscript here, so that ZS is the group
space for all individuals.

How do we minimize (21.10 over all k = 1, . . . , K individuals? To do this,
we need to find the best S in

L =
K∑

k=1

tr (ZSWk − XkTk)′(ZSWk − XkTk), (21.11)

where we write XkTk (with T′
kTk = I) for X̃k, because it turns out that

the optimal translation of an individual configuration is always to center it,
and because the optimal scaling factor becomes irrelevant when correlations
are used as similarity measures (Lingoes & Borg, 1978). Equation (21.11)
involves the unknown S, and K unknown weight matrices Wk and rotations
Tk. To find the optimal matrices is a difficult problem, and it is useful to
consider a simpler case first.
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Let Sk be an idiosyncratic rotation, that is, a different rotation matrix
Sk for every subject k. Find Sk and Wk in

tr (ZSkWk − XkTk)′(ZSkWk − XkTk). (21.12)

In terms of our color perception example, we want to find a rotation Sk

and a set of dimensional weights Wk that distort the color circle in Fig-
ure 21.4a such that individual k-th’s configuration, rotated appropriately
by Tk, is approximated as closely as possible. A direct solution for this
problem is known only for the 2D case (Lingoes & Borg, 1978; Mooijaart
& Commandeur, 1990). This solution can be used for each plane of the
space in turn, and then one can repeat the fittings iteratively, because ev-
ery m × m rotation matrix can be expressed as the product of m(m − 1)/2
planar rotation matrices (see also Section 7.10). The average of all ZSks is
then used as a target matrix to solve for the ZS of (21.11).

We obtain a group space that is uniquely rotated; that is, L in (21.11) is
minimal for one particular S and increases for any other rotation, except in
special cases. This will be so for any Z, whether it represents empirical data
or whether it has been defined completely at random. Hence, to conclude
that “this method automatically gives psychologically meaningful axes, if
they exist” (Indow, 1974, p.497) appears too optimistic. It may just be the
case that no dimensional theory is psychologically relevant and that the
dimension-weighting model, which leads to the unique dimensions, yields
nothing but substantively empty formal relations. But even when the model
is adequate, we should keep in mind that the rotational uniqueness is an
algebraic property. For real data, which always have error components, it
may just be that the resulting dimensions are a consequence of the par-
ticular error distribution. In any case, we usually find that the rotational
uniqueness is statistically weak. Thus, for formal as well as substantive
reasons, we recommend rotating Z such that the dimensions reflect some
substantive theory (as in Figure 21.4) rather than leaving the finding of
the coordinate axes to a blind procedure.

21.5 An Application of the Dimension-Weighting
Model

Consider another example. Green and Rao (1972) asked 41 individuals
to evaluate the 15 breakfast objects described in Table 14.1 with respect
to their pairwise similarities. (The 41 proximity matrices are presented
in Green & Rao’s book.) By an ordinal MDS of each of the 41 15 × 15
proximity matrices, 2D representations are obtained. Using the program
Pindis (Lingoes & Borg, 1977), the centroid configuration Z shown in
Figure 21.6 is derived. The representation shows Z in its optimal rotation
with respect to the loss function (21.12), so that we already have ZS. The
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FIGURE 21.6. The Pindis centroid configuration derived from 41 individual con-
figurations obtained by MDS of the 15 breakfast items reported in Table 14.1
(after Borg & Lingoes, 1977).

fit measures (squared correlations, common variances, or communalities)
between this group space and each individual configuration are given in
Table 21.4 in the column r2(X̃k,Z). These values vary substantially over
the individuals. Although X̃22 and Z share some 92% of their variance,
X̃38 and Z have almost nothing in common.

There is one typical misinterpretation of such results. Table 21.4 shows
that, for example, X̃25 and X̃35 correlate with Z with about r2 = .50. Yet
we cannot infer from this value that X̃25 and X̃35 have anything in common:
a simple, pairwise Procrustean analysis could show that r2(X̃25, X̃35) = 0.
It is easy to see why this is so. X̃25 and X̃35 each share some 50% variance
with Z, but these variance proportions may be complementary, so that
Z shares with X̃25 one-half of its variance, and with X̃35 the remaining
half. To see how similar X̃25 and X̃35 are, we would have to do a pairwise
Procrustean analysis.

We now use dimensional weightings with and without idiosyncratic rota-
tions. This is a purely formal exercise here because, in contrast to the color
perception data considered above, there is no reason why the individuals
should perceive the similarity of these breakfast items dimensionally, and
also no reason why they should differ with respect to the importance of di-
mensions. This lack of a substantive theory is, in fact, evidenced by the very
fact that we use such blindly optimizing rotations in the first place. Not
surprisingly, it turns out that both dimension-weighting models do not ac-
count for much additional variance relative to the model using unit weights.
Table 21.4 shows the respective fit values in columns r2(X̃k,ZSWk) and
r2(X̃k,ZSkWk). On the average, the fit increments are just 2.6% and 4.5%,
and in no individual case is there an increment of the magnitude found in
Table 21.3 for the severely color-deficient persons.
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TABLE 21.4. Communalities of individual configurations fitted to different trans-
formations of centroid configuration Z.

Subject r2(X̃k, Z) r2(X̃k, ZSk) r2(X̃k, ZSkWk) r2(X̃k, VkZ)
1 0.7999 0.8005 0.8008 0.8335
2 0.8520 0.8713 0.8714 0.8926
3 0.9088 0.9112 0.9159 0.9519
4 0.9194 0.9222 0.9283 0.9488
5 0.5669 0.6811 0.7352 0.8410
6 0.8939 0.9056 0.9065 0.9376
7 0.8376 0.8469 0.8480 0.8692
8 0.8365 0.9014 0.9032 0.8900
9 0.8518 0.8520 0.8849 0.8977

10 0.7369 0.7404 0.7439 0.8407
11 0.7765 0.7958 0.8803 0.8631
12 0.7044 0.7188 0.7649 0.8099
13 0.7833 0.9152 0.9161 0.9154
14 0.7772 0.7814 0.8020 0.9219
15 0.8982 0.9175 0.9175 0.9339
16 0.6199 0.6698 0.6747 0.7751
17 0.6871 0.7765 0.7805 0.8015
18 0.7881 0.8174 0.8324 0.8821
19 0.8050 0.8469 0.8493 0.8540
20 0.1118 0.1307 0.1307 0.7782
21 0.6179 0.6310 0.6631 0.6754
22 0.9222 0.9429 0.9470 0.9588
23 0.8770 0.8794 0.9005 0.9184
24 0.8721 0.8777 0.8785 0.8866
25 0.5101 0.5135 0.5419 0.8383
26 0.6827 0.6884 0.6895 0.7731
27 0.8251 0.8280 0.8385 0.8712
28 0.7198 0.7268 0.7644 0.8292
29 0.8493 0.8931 0.8936 0.9199
30 0.8593 0.8978 0.9068 0.9289
31 0.3929 0.4067 0.4695 0.8143
32 0.2728 0.2994 0.3642 0.6585
33 0.8498 0.8700 0.8776 0.9448
34 0.7973 0.8299 0.8451 0.8860
35 0.5126 0.6170 0.6623 0.6976
36 0.6076 0.6212 0.6894 0.6806
37 0.8137 0.8192 0.8322 0.8786
38 0.0192 0.0262 0.0331 0.4690
39 0.7077 0.7426 0.7478 0.8903
40 0.7824 0.8004 0.8019 0.8306
41 0.8559 0.8581 0.9178 0.9178

Mean 0.7196 0.7456 0.7647 0.8465
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FIGURE 21.7. The subject space for the dimension-weighting model of the
Green–Rao data (after Borg & Lingoes, 1977).

Most programs (e.g., Indscal; see Chapter 22) designed specifically to
represent data in the dimension-weighting model skip the step with the unit
weights, which yields the fit values in column r2(X̃k,Z) of Table 21.3. In
other words, they analyze the entire 41 × 15 × 15 data block at once in the
sense of the dimension-weighting models, which yields a group space and
its related subject space of weights. This information alone is difficult to
interpret, however. Consider the subject space for the dimension-weighting
model of the present data (Figure 21.7). We observe that: (1) the sub-
ject points scatter considerably in their distance from the origin, which
expresses the different communalities of ZS and the individual configu-
rations; (2) the subject points also scatter in terms of their North-West
directions, and this, as we saw, indicates that the subjects weight the di-
mensions differently. But, as Table 21.4 demonstrates, this second scatter
really does not mean much, because if all of the points were forced onto the
bisector, the model would be reduced to the unit-weighting case, whose av-
erage communality is just 2.6% lower. Thus, it would be risky to infer that
because the subject points scatter so much in terms of direction, the differ-
ential weights (and with them, the particular dimensions) are meaningful
or even descriptively important. The scatter simply reflects the fact that
no restrictions were placed on the Procrustean procedure, so that whatever
reduces the loss function most is chosen for a weight.

21.6 Vector Weightings

Because the dimension-weighting models proved ineffective in explaining
the interindividual differences in the Green–Rao breakfast data, we might
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FIGURE 21.8. Illustration of some vector weights for centroid configuration and
MDS configuration of subject 20 in Green–Rao study.

seek other, more successful models. Dimensional weightings are constrained
by the property that the neighborhood relations of the points in Z are
preserved in a certain way when transforming Z into ZWk. Namely, those
points that are close together in Z are also close together in ZWk.

Radial Point Shifts by Vector Weightings
For the Green–Rao breakfast data, it may be possible that most individuals
do indeed perceive the breakfast objects just as the average person Z does
but that they see some neighborhood relations differently. We consider a
particularly simple transformation, whose loss function is expressed by

K∑
k=1

tr (VkZ − X̃k)′(VkZ − X̃k), (21.13)

where Vk is an n × n diagonal matrix of unknown weights and X̃k is the
individual configuration Xk optimally fitted to VkZ. The elements in Vk

act on the points and are called vector weights. Formally, (21.13) differs
from (21.9) only insofar as Z is now weighted by a diagonal matrix from
the left, not the right. The solution of (21.13) is simple in the 2D case, but
to find all transformations (Vk and all those on Xk) in higher-dimensional
spaces simultaneously appears intractable. Hence, to minimize (21.13) we
have to iterate over all planes of the space (see Lingoes & Borg, 1978). We
continue with an example of the vector-weighting model, and then discuss
several ways to interpret and apply vector weights.

Analyzing X20 and the Z configuration from Figure 21.6 with the vector-
weighting model yields 15 weights, one for each point. Most of these weights
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are very close to +1, except those for points A, E, and F , where the pro-
cedure finds 1.7, 1.6, and −1.4, respectively. Premultiplying Z by V20 has
the effect shown in Figure 21.8. Point A is shifted away from the origin in
the direction and sense of the vector associated with it. In other words, the
vector with endpoint A is simply stretched by the factor 1.7. The analogous
movement is true for point F . For point E, in contrast, the weight −1.4
not only stretches the respective vector but also flips it over, or reverses its
sense. From Table 21.4, column r2(X̃k,VkZ), we see that these movements
lead to a communality increment of almost 70% relative to the unweighted
Procrustean fitting. Thus, moving the points A, E, and F into different
neighborhoods in the described way seems to capture an important char-
acteristic in which person 20 differs from most others.

Evaluating the Fit in Vector Weighting
Table 21.4 shows that the vector weightings allow a much better approxi-
mation of the individual configurations than the dimension-weighting mod-
els. However, the dimension-weighting models use only 2 (the dimensional
weights) or 3 (the idiosyncratic rotation angle, in addition) parameters,
but the vector weightings use up to 15 parameters. Of course, the sheer
number of free parameters cannot be compared directly if the models are
restricted in different ways, but simulation studies (Langeheine, 1980a,
1982) show that the vector-weighting model can be expected to fit 2D ran-
dom configurations considerably better than dimensional weightings. For
K = 41, m = 2, and n = 15, the average fit value of 0.169 was found for the
unweighted Procrustean fitting, 0.186 for the dimension-weighting model,
0.200 for the dimension-weighting model with idiosyncratic orientation, and
0.699 for the vector-weighting model. If we evaluate the observed fit values
against these expectations for random configurations, the performance of
the vector weighting is less impressive in this example.

As the dimensionality m goes up, the dimension-weighting model offers
increasingly more fitting parameters, whereas their number remains con-
stant in the vector-weighting model. This partly explains why, when m
goes up and n remains constant, the communalities for random configu-
rations grow substantially for unweighted Procrustean fittings and dimen-
sional weightings but do not increase much for the vector-weighting models.
Naturally, this is also a consequence of how these parameters are used in
the analyses. Because there are various complicated interdependencies, it
becomes difficult to say what should be expected for random configurations
in general, but fortunately Langeheine (1980a) provides extensive tables.

Interpreting Vector Weights
In contrast to dimensional weighting, there is no convincing interpreta-
tion of vector weighting as a psychological model. For dimension weights,
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such terms as relative importance or salience may be appropriate. No such
interpretations can be given to the vector weights, except when their val-
ues are constrained to be nonnegative (see below: the perspective model).
However, vector weighting may provide valuable index information. If we
find that an optimal fitting of Z to each individual configuration can be
done only with weights varying considerably around +1, then it makes lit-
tle sense to consider the centroid configuration Z as a structure common
to all individuals. To see this, consider the distribution of voters in France.
This distribution is almost perfectly bimodal over the political left–right
continuum. But it would be foolish to say that “the” French voter is po-
litically “in the middle”. In fact, no one really is. Similarly, in respect to
centroid configurations, it may just be the case that this configuration does
not really represent anybody. But there may be groups of individuals with
very similar perceptions. Whether this is so may be seen from studying the
distributions of the vector weights.

Because we can also arrive at such conclusions by directly studying the
data, we return to the question of whether there is an interpretation of vec-
tor weighting as a psychological model. The answer is yes, but only under
some restrictions on (21.13). One possibility would be to carry out the vec-
tor weightings with respect not to the centroid of Z but to a substantively
meaningful origin. In a radex (see Chapter 5), for example, the centroid is
extrinsic to the scientific problem under investigation, but the point chosen
as the radex origin is not. If several such radexes were given, we could first
translate them all such that their origins lie at these points. If we then
fit each individual configuration to an average configuration derived from
them all, the vector weights would express the different relative centrality
of the points.

A different interpretation is given by Feger (1980) which clarifies why
the vector-weighting transformations are called the perspective model un-
der certain conditions. Feger asked nine subjects to rate pairs of 10 attitude
objects (the six major political parties in West Germany; the trade unions;
the Church; the employers’ association; the subject him- or herself) with
respect to the criterion “closeness”. The ratings were replicated 12 times
in intervals of 3 weeks. The data led to 108 2D MDS configurations. A cen-
troid configuration was computed, and all configurations were translated
such that their origins were at the points representing the object self. Using
vector weightings on Z, it was possible to explain most of the intra- and
interindividual differences. It seemed as if the individuals perceived the
attitude objects from this perspective in space, sometimes pulling some
objects closer to themselves, sometimes pushing them farther away. Feger
(1980) goes on to interpret the self point as the ideal point of the subjects
(just as in the unfolding models) and the distances from the ideal point
to the (possibly shifted) points of the nine other objects as indicators of
the strength of preference of the respective person for these objects. In
this interpretation, the point shiftings assessed by the vector weights are
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due to changes of preferences over time and individuals. This complex but
interesting interpretation implies a dependency between similarity judg-
ments and preferences but becomes intractable if negative vector weights
are observed.

Adding an Idiosyncratic Origin to Vector Weighting
Finally, as in the idiosyncratic rotations in the dimension-weighting model,
we can generalize the vector-weighting transformations to a model with
an idiosyncratic origin. In other words, rather than fixing the perspective
origin externally either at the centroid or at some other more meaningful
point, it is also possible to leave it to the model to find an origin that maxi-
mizes the correspondence of an individual configuration and a transformed
Z. The relevant loss function becomes rather complex:

K∑
k=1

tr E′
kEk, with Ek = Vk(Z − 1t′

k) − sk(Xk − 1u′
k)Tk, (21.14)

where tk and uk are translation vectors for Z and Xk, respectively, T′
kTk =

I, Vk is diagonal, and sk is a scalar. Differentiating (21.14) with respect to
the unknowns Vk, tk,uk, sk, and Tk shows that none of these unknowns
is redundant and that they are interrelated in a complicated way (Lingoes
& Borg, 1978). However, minimizing (21.14) is uninteresting in itself, be-
cause what was true for idiosyncratic rotations holds here: an origin chosen
by substantive considerations is always preferable to one found by blind
optimization. The latter may, at best, serve an exploratory purpose as an
index.

21.7 Pindis, a Collection of Procrustean Models

The transformations of Z for individual k discussed so far are the dimension
weights Wk, the idiosyncratic rotations Sk, and the vector weightings Vk.
Table 21.5 summarizes all combinations of these transformations and the
resulting models. Note that the models with the idiosyncratic rotation Sk

but without the dimension weights Wk are equivalent to the same model
without Sk. In this case, the idiosyncratic rotation appears both in Z and
in X̃k, so that one of them can be omitted. The vector dimension-weighting
model, VkZWk, and the full model, VkZSkWk, are difficult to interpret.
This explains why the other models are more popular.

Most of the Procrustean transformations discussed above are carried out
by the program Pindis3 (Lingoes & Borg, 1977). The program needs as in-

3A good overview of the least-squares estimation of the Pindis models can be found in
Commandeur (1991). Moreover, his Matchals algorithm can handle entire rows of miss-
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TABLE 21.5. Overview of transformations of Z in Procrustes models. For each
model a ‘+’ indicates the presence of the factor, a ‘–’ the absence. The factors
are: dimension weights Wk, idiosyncratic rotations Sk, vector weights Vk. Ek

denotes the error of the model, and tr E′
kEk is the loss function minimized.

Wk Sk Vk Model Ek

– – – GPA Z − X̃k

+ – – Dimension weighting ZWk − X̃k

– + – GPA ZSk − X̃k ⇔ Z − X̃k

– – + Vector weighting VkZ − X̃k

+ + – Idiosyncratic rotations ZSkWk − X̃k

+ – + Vector and dimension weighting VkZWk − X̃k

– + + Vector weighting VkZSk − X̃k ⇔ VkZk − X̃k

+ + + Full VkZSkWk − X̃k

put K individual configurations (Xk). From these, it computes a centroid
configuration Z via the generalized Procrustean fitting in (21.1). Alter-
natively, we can input some configuration Z derived externally from, say,
substantive considerations. Z can also be based on an empirical configu-
ration that is fixed in some desirable rotation and/or translated to some
meaningful origin.

The various models and transformations discussed above are summarized
in Table 21.6. X̃k always denotes an Xk optimally rotated and translated
relative to the (weighted, rotated, translated) Z that tries to account for it.
For the Procrustean transformations involving rigid motions and dilations
only, all of the parameters chosen to maximize r2(X̃k,Z) are admissible
and, thus, uninformative because they leave the distance ratios of Xk and
Z invariant. Informative are those parameters on Z that change the ratios
of its distances directly or in combination with other transformations that
are applied at the same time. The dimension-weighting model uses, in gen-
eral, different weights for each of the m dimensions of Z, which has the
effect of changing the distance ratios of Z. Hence, these weight parameters
are informative about simple ways in which Z relates to Xk. In contrast to
admissible fitting parameters that cannot possibly be interpreted in a sub-
stantive sense, informative parameters are potential candidates for interpre-
tations: the dimensional weights, for example, might be viewed as dimen-
sional saliences. Similarly, the rotation angles in the dimension-weighting
model with idiosyncratic rotation lead to the interpretation that this sub-
ject uses dimensions differently from those chosen by the average person.
Because there is one such angle for each of the m(m − 1)/2 planes, this
model has m(m − 1)/2 additional inadmissible parameters. The perspec-

ing values in the coordinate matrices. Ten Berge et al. (1993) discuss a GPA algorithm
in which only the missing values themselves are discarded.
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TABLE 21.6. Overview of the transformations in Pindis. Zr = optimally rotated
Z in model 2; Zr

k = idiosyncratically optimal Z in model 3; Wr
k is Wk relative

to Zr
k. Similarly for Zt,Vt, and Zt

k, where t denotes an optimal translation.

Number of
Informative

Model Fitting Parameters Fit Index
(1) Similarity transformation 0 r2(X̃k, Z)

(unit weighting)
(2) Dimension weighting m r2(X̃k, ZrWk)

(dimensional salience)
(3) Dimension weighting with m + m(m − 1)/2 r2(X̃k, ZrWr

k)
Idiosyncratic orientation

(4) Perspective model with fixed n r2(X̃k, VkZ)
origin (vector weighting)

(5) Perspective model with n + m r2(X̃k, Vt
kZt

k)
idiosyncratic origin

tive model involves n inadmissible fitting parameters, one for each point. In
its generalized version with an idiosyncratic origin, there are m additional
parameters corresponding to the m coordinates of the freely chosen origin
of Z.

The Pindis transformations form two genuine hierarchies: the models
denoted as 1, 2, and 3 in Table 21.6 establish one such set of nested ap-
proaches, and models 1, 4, and 5 the other. Moreover, in practical appli-
cations, n is usually much greater than m, so that 0 < m < m + m(m −
1)/2 < n < n + m results. Thus, in terms of complexity, the models in
Pindis are linearly ordered. The order of the various communality values
typically mirrors the order of complexity.

21.8 Exercises

Exercise 21.1 Consider the data matrix from Exercise 1.6 on p. 16.

(a) Compute Euclidean distances for its columns. Then scale these dis-
tances in a two-dimensional MDS space (ordinal MDS).

(b) Next, randomly eliminate 20, 30, and 40 percent of the Euclidean
distances and consider these distances as missing data. With the re-
maining distance values run three ordinal MDS analyses in 2D.

(c) Then compare the four configurations using Procrustean methods.
(Hint: Would you choose one fixed target, or would you rather do
one generalized Procrustean fitting?)
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(d) Discuss the similarity of the MDS solutions in terms of robustness of
MDS.

Exercise 21.2 The table below contains the coordinates of four configura-
tions, X1 to X4.

Point X1 X2 X3 X4

1 1 2 2 1 1 1 2.64 0.50
2 -1 2 -2 1 -1 1 -1.00 1.32
3 -1 -2 -2 -1 -1 -1 -2.64 -0.50
4 1 -2 2 -1 1 -1 1.00 -1.32

(a) Find, by geometric means, the centroid configuration Z of the config-
urations X1 to X3. (Hint: Plot the configurations in one chart, then
determine Z’s points.)

(b) Find the dimension weights that turn Z into X1, X2, and X3, respec-
tively.

(c) Find the dimension weights that turn (a possibly rotated) Z into X4.

(d) Characterize in which way rotating Z and then weighting its dimen-
sions affects the resulting configuration?

Exercise 21.3 Consider the group space in Figure 21.6 on p. 463.

(a) Interpret this configuration and its four clusters.

(b) Interpret what weighting the X- and the Y -axis of this configuration
means in terms of the perceived similarity of the breakfast items.

(c) Assume that one particular person assigns a vector weight of −1 to
item B, and weights of about +1 to all other items. What do you
conclude from this?

(d) Assume that we decided to adopt an interpretation for this group
space with two orthogonal dimensions whose ends are defined by the
characteristics of the items in the four clusters in Figure 21.6. In that
case, we may also decide to translate the group space to a more mean-
ingful origin. Sketch in Figure 21.6 what seems the most reasonable
origin to you. Discuss what implications such a shift of origin has for
dimensional- and for vector-weighting models.
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Three-Way MDS Models

In the Procrustean context, the dimension-weighting model was used in
order to better match a set of K given configurations Xk to each other. We
now ask how a solution of the dimension-weighting model can be found di-
rectly from the set of K proximity matrices without first deriving individual
MDS spaces Xk for each individual k. We discuss how dimension weight-
ing can be incorporated into a framework for minimizing Stress. Another
popular algorithm for solving this problem, Indscal, is considered in some
detail. Then, some algebraic properties of dimension-weighting models are
investigated. Finally, matrix-conditional and -unconditional approaches are
distinguished, and some general comments on dimension-weighting models
are made. Table 22.1 gives an overview of the (three-way) Procrustean
models discussed so far and the three-way MDS models of this chapter.

22.1 The Model: Individual Weights on
Fixed Dimensions

We now return to procedures that find a solution to dimension-weighting
models directly. That is, given K proximity matrices, each of order n × n,
a group space and its associated subject space are computed without any
intermediate analyses. This situation is depicted in Figure 3.10.



474 22. Three-Way MDS Models

TABLE 22.1. Overview of models for three-way data in Chapters 21 and 22.

Distance Xk Model Chapter/
Section

Equal dimension weights Given Generalized Procrustes 21.3
Equal dimension weights Derived from Pk Identity model Stress 8.6
Equal dimension weights Derived from Pk Classical scaling 12
Weighted Euclidean Given Pindis 21.4
Weighted Euclidean Derived from Pk Three-way Stress 22.1
Weighted Euclidean Derived from Pk Indscal 22.1
Generalized Euclidean Given Oblique Procrustes 21.4
Generalized Euclidean Derived from Pk Three-way Stress 22.2
Generalized Euclidean Derived from Pk Idioscal 22.2

The Weighted Euclidean Model
The problem consists of representing the dissimilarity δijk between objects
i and j as seen by individual (or replication) k by the distance dijk:

dijk(GWk) =

[
m∑

a=1

(waakgia − waakgja)2
]1/2

=

[
m∑

a=1

w2
aak(gia − gja)2

]1/2

, (22.1)

where i, j = 1, . . . , n; k = 1, . . . , K; a = 1, . . . , m;Wk is an m × m diagonal
matrix of nonnegative weights waak for every dimension a for individual k;
and G is the matrix of coordinates of the group stimulus space G. Note that
G does not have subscript k: individual differences are possible only in the
weights on the dimensions of G. The group stimulus space is also called
a common space (Heiser, 1988b). Equation (22.1) is called the weighted
Euclidean distance, which we encountered before in (21.7).

In terms of an individual k, the weighted Euclidean model says that

Xk = GWk, (22.2)

where Xk is the individual configuration. Because distances do not change
under translation, we may assume that G is column centered. Xk = GWk

is similar to ZSWk in (21.11), where Z was defined as the average config-
uration of N individual configurations Xk transformed to an optimal fit in
the sense of the generalized Procrustean loss function in (21.1). However,
in this chapter there are no individual configurations Xk to begin with,
and thus G must be computed differently.

There is an inherent indeterminacy in the weighted Euclidean model: the
dimension weights depend on the particular definition of the group space.
Let D be any diagonal matrix with full rank. Then

Xk = GWk = GDD−1Wk = (GD)(D−1Wk) = G∗W∗
k; (22.3)
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that is, if G is stretched by D, and the weights in Wk are subjected to
the inverse transformation, the product remains the same. For the group
space G, no restriction was defined yet, except for the irrelevant centering
convention. Yet, in order to make G identifiable, it must be normed some-
how. One such norming is to require that GG′ = I. Although this norming
is a purely formal requirement, it nevertheless affects the interpretation of
the weights in each Wk: they are conditional to G, as 22.3 makes clear.
Hence, care must be taken with claims that, for example, a person weights
dimension X twice as much as dimension Y . This assertion is only true
relative to the given group space G. However, it is possible to compare the
weights of different persons on each dimension in turn without restrictions.

The weighted Euclidean model can be implemented in several ways. First,
we discuss a method that minimizes Stress to find a group space G and
dimension weights Wk from K proximity matrices. Then, we discuss the
popular Indscal algorithm, which finds G and the Wks from the scalar
product matrices derived from the K proximity matrices.

Fitting the Dimension-Weighting Model via Stress
Dimension weights can be implemented fairly easily in the Stress framework
by applying the constrained MDS theory (De Leeuw & Heiser, 1980) from
Section 10.3. Let us assume that the proximities are dissimilarities. Then,
the Stress that needs to be minimized equals

σr(X1, . . . ,Xk) =
K∑

k=1

∑
i<j

(δijk − dij(Xk))2 , (22.4)

subject to the constraints that Xk = GWk as required for the dimension-
weighting model. This minimization can also be viewed as doing MDS on
a Kn × Kn dissimilarity supermatrix ∆∗ (with the individual K dissimi-
larity matrices ∆k on the diagonal blocks, and other blocks missing) and a
configuration supermatrix X∗ (with the individual configuration matrices
Xk stacked under each other); that is,

∆∗ =

⎡⎢⎢⎢⎣
∆1

∆2
. . .

∆K

⎤⎥⎥⎥⎦ and X∗ =

⎡⎢⎢⎢⎣
X1
X2
...

XK

⎤⎥⎥⎥⎦
subject to the constraints that Xk = GWk. The theory of Section 10.3
says that every iteration of the majorization algorithm for confirmatory
MDS consists of the following two steps.

1. Compute the unconstrained update X
∗

by the Guttman transform
(8.28).
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2. Minimize tr (X−X
∗
)′V∗(X−X

∗
) over X subject to the constraints

to obtain the update Xu, where here V∗ is a block-diagonal matrix
with nJ on the diagonal blocks and where J = I − n−111′ is the
centering matrix.

Minimizing tr (X − X
∗
)′V∗(X − X

∗
) in the second step is equal to mini-

mizing ∑
k

tr n(Xk − Xk)′J(X − Xk) =∑
k

tr n(GWk − Xk)′(GWk − Xk) (22.5)

over G and Wk. The centering matrix nJ may be removed from (22.5),
because Xk is already column centered. De Leeuw and Heiser (1980) give a
solution that is based on dimensionwise solving (22.5). Let Xa denote the
n×K matrix with column a of each unconstrained update Xk stacked next
to each other. Let ga be column a of G and wa the K × 1 vector of the
dimension weight waak for individual k in dimension a. Then, minimizing
(22.5) is the same as minimizing∑

a

tr (gaw′
a − Xa)′(gaw′

a − Xa). (22.6)

This problem can be solved for each dimension separately by an alternating
least squares algorithm, where in each iteration (22.6) is minimized over
ga, keeping wa fixed, followed by the minimization over wa, keeping ga

fixed. Alternatively, the analytic minimum is obtained by computing the
singular value decomposition of Xa = PΦQ′ and setting ga = p1 and
wa = φ1q1. The Proxscal program implements the dimension-weighting
model for Stress with more options (such as fixing coordinates and allowing
for missing proximities). For the detailed mathematics of that approach,
we refer to Heiser (1988b) and Commandeur and Heiser (1993). A different
algorithm for dimension weighting with constrained dimensions is given by
Winsberg and De Soete (1997).

If all weights wa are constrained to be equal, we get the identity model
for three-way proximities (Commandeur & Heiser, 1993). Then, the only
thing that needs to be estimated is the group stimulus space G. This allows
(22.4) to be written as

σr(G) =
K∑
k

∑
i<j

(δijk − dij(G))2

= K
∑
i<j

(
δij − dij(G)

)2
+

∑
i<j

K∑
k

(
δij − δijk

)2
,
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where δij = K−1 ∑K
k δijk. The first term of σr(G) amounts to simple

MDS of the average dissimilarity matrix, and the second term measures
the difference of the individual dissimilarity matrices to their average.

Heiser (1989b) discusses the minimization of the weighted Euclidean
model for Stress with city-block distances. The minimization can be done
by a combinatorial approach (similar to combinatorial methods used for
unidimensional scaling) combined with a majorizing approach that accom-
modates negative disparities, or by majorization of city-block distances
(Groenen et al., 1995).

The Indscal Algorithm
A popular algorithm for solving the dimension-weighting model is based on
the scalar-product matrix, similar to classical scaling. Let B∆k

= − 1
2J∆(2)

k J
be the n × n scalar-product matrix for individual k derived from the dis-
tances via (12.2). Classical scaling for individual k minimizes

1
4
||J[∆(2)

k − D(2)(X)]J||2 =
1
4
4||B∆k

− XX′||2.
This is extended by including dimension weights in the Indscal loss func-
tion; that is,

LIND(G,W1, . . . ,WK) =
K∑
k

||B∆k
− GW2

kG
′||2 (22.7)

=
K∑

k=1

∑
i,j

(
bijk −

m∑
a=1

giagjaw2
aak

)2

. (22.8)

It is assumed that the scalar-product matrices B∆k
, k = 1, . . . , K, are

given. In the case of interval-scale proximities, an additive constant that
leads to Euclidean distances must be computed, and scalar products are
then derived from these distances. If only ordinal proximities (possibly even
with missing data values) are given as data, one often proceeds as in Pindis,
that is, by first computing the individual configurations Xk, k = 1, . . . , K,
via ordinal MDS, and then from these deriving the needed scalar products
(e.g., Krantz & Tversky, 1975). We now describe a solution for (22.7).

The Indscal procedure (Carroll & Chang, 1970) proceeds as follows.
The Indscal loss function LIND has to be solved over two sets of param-
eters, G and the Wks. Unfortunately, this loss function does not have an
analytical solution, except in the error-free case (Schönemann, 1972). Ind-
scal uses the alternating update strategy in which an update of G for
fixed Wks is followed by an update of the Wks for fixed G. These updates
are iterated until convergence. The two steps are computed as follows.

1. The update for the Wks for fixed G is found by standard regression.
However, LIND has to be rewritten. First, we string out each B∆k
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into one column vector with n2 elements and then form an n2 × K
matrix B∗ by stacking these column vectors next to each other. In a
similar fashion, we then stack the diagonals of the K weight matrices
W2

k in an m×K matrix W. Finally, we compute the products gag′
a,

string out its elements into one column vector, and place them for
each dimension a = 1, . . . , m next to each other in the n2 ×m matrix
V. This leads to a compact way of writing LIND as

LIND = tr (B∗ − VW)′(B∗ − VW). (22.9)

The update for W is found by differentiating (22.9) with respect to
W and setting the result equal to the null matrix 0, which yields

W = (V′V)−1V′B∗. (22.10)

The columns of W are the diagonals of the individual weight matri-
ces W2

k. Note, however, that some elements of W may be negative,
so that the corresponding dimension weight is not a real number.
This problem of negative squared dimension weights in the Indscal
algorithm could be avoided by minimizing (22.9) over W under the
constraint that W ≥ 0, as suggested by Ten Berge, Kiers, and Krij-
nen (1993), who used nonnegative least-squares (Lawson & Hanson,
1974). De Soete, Carroll, and Chaturvedi (1993) imposed these con-
straints using the alternating least-squares method discussed in Sec-
tion 9.6.

2. A better G, relative to the given W2
ks, is computed by Indscal as

follows. With fixed Wks, we minimize

LIND(G,H) =
K∑
k

||B∆k
− HW2

kG
′||2

=
K∑
k

tr B2
∆k

+ tr G

[∑
k

W2
kH

′HW2
k

]
G)′

−2tr G

[∑
k

W2
kH

′B∆k

]
(22.11)

over both G and H, the so-called candecomp algorithm (Carroll &
Chang, 1970). After convergence, it turns out that G and H are equal
or can be made equal. Differentiating (22.11) with respect to G and
setting the result equal to 0 gives the update for G; that is,

G =

(∑
k

B∆k
HW2

k

)(∑
k

W2
kH

′HW2
k

)−1

.

H is updated with the same update formula by reversing the roles of
G and H.
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These two steps are repeated until the process converges to a final solution
for W and G, which “almost always” is the global optimum, according to
Carroll and Wish (1974a, p. 90) and Ten Berge and Kiers (1991).

22.2 The Generalized Euclidean Model

The weighted Euclidean distance can be extended by the generalized Eu-
clidean distance, where the individual space is defined as Xk = GTk, with
Tk an m × m (real-valued) matrix that need not be diagonal.

Interpreting the Generalized Euclidean Model
The generalized Euclidean model can be interpreted as follows. Consider
the singular value decomposition of Tk, Tk = PΛQ′. Then, the transfor-
mation GTk = GPΦQ′ can be interpreted as: take group space G, rotate
it by P, and stretch it along its dimensions by Φ. Because we are concerned
with the distances of GTk, the final rotation by Q′ is irrelevant. This shows
that in the generalized Euclidean model every individual k transforms the
group space first by a rotation and/or a reflection, and then by stretching.
In contrast to the weighted Euclidean model, each individual may weight
a different set of dimensions of the group space. Therefore, this model is
somewhat less restrictive than the dimension-weighting model.

Other interpretations are possible. For example, Tucker (1972) and Harsh-
man (1972) proposed decomposing Tk = DkMk, where the diagonal matrix
Dk contains the standard deviation of the column elements of Tk [so that
diag(D2

k) = diag(T′
kTk)]. Thus, M′

kMk has diagonal elements 1 and can
be seen as a correlation matrix or as a matrix of cosines of angles among
oblique dimensions. The interpretation of the generalized Euclidean model
using this decomposition is that the individual space Xk can be obtained
from the group space G by first stretching its dimensions by Dk and then
applying an oblique rotation by Mk. Harshman and Lundy (1984) proposed
a model with only one M that is common to all individuals. However, this
model is not equivalent to the generalized Euclidean model.

Whether or not there are applications for the generalized Euclidean
model, there is nothing that rules it out formally. Indeed, even more exotic
interpretations derived from other decompositions (Carroll & Wish, 1974a,
1974b) are possible.

If generalized Euclidean models are interpreted as a distance model in
G,

d2
ijk(G) = (giTk − gjTk)′(giTk − gjTk)

= (gi − gj)′Ck(gi − gj),
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then Ck must be positive definite, not just positive semidefinite, as Carroll
and Wish (1974b) declare, because otherwise one may obtain dijk(G) = 0
even though i �= j. That is, if we want to interpret the model in such a way
that each individual k picks his or her own particular distance function
from the family of weighted Euclidean distances or, as mathematicians
sometimes call it, from the family of elliptical distances (Pease, 1965, p.
219) on the group space G, then all dimension weights must be positive. If
some of these weights are zero, then this interpretation has to be changed
slightly to one in which individual k first reduces G to a subspace and then
computes distances in this, possibly further transformed, subspace of G.
The first model has been called a subjective metrics model (Schönemann
& Borg, 1981a), and the latter, due to Schulz (1972, 1975, 1980), may be
called a subjective transformations model. From a practical point of view,
however, these distinctions are irrelevant because, in the subjective metrics
model, G may be almost reduced to a lower rank by choosing extremely
small weights for some of its dimensions.

Fitting the Generalized Euclidean Model via Stress
The method for minimizing Stress with the generalized Euclidean model
is the same as for the weighted Euclidean model via Stress, except that
Xk is restricted as Xk = GTk, where Tk may be any real-valued m × m
matrix. In the second step of the algorithm, the restrictions are imposed
by minimizing ∑

k

tr (GTk − Xk)′(GTk − Xk) (22.12)

over G and the Tks. Let the n × mK matrix X contain the Xks stacked
next to each other, and the m × mK matrix T the Tks stacked next to
each other. Then, (22.12) is equal to

tr (GT − X)′(GT − X),

which is solved analytically (De Leeuw & Heiser, 1980) by taking the
singular value decomposition of X = PΦQ′ and setting G = Pm and
T = ΦmQ′

m, where the subscript m implies taking only the first m singu-
lar values and vectors.

The Idioscal Model
The generalized Euclidean model gained its popularity in the framework
of scalar products. This idiosyncratic weighting model is also called the
Idioscal model (Carroll & Wish, 1974a, 1974b; Schulz, 1980). In scalar
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product notation, this model minimizes

LIDIO(G,T1,T2, . . . ,TK) =
K∑

k=1

||Bk − (GTk)(GTk)′||2

=
K∑

k=1

||Bk − GTkT′
kG

′||2

=
K∑

k=1

||Bk − GCkG′||2, (22.13)

where TkT′
k = Ck and Ck is positive semidefinite.

Apart from the many possibilities for factoring Ck, it is of interest to
ask whether there is only one Ck and one G that solve (22.13). This is not
so, because

Bk = GCkG′

= G(AA−1)Ck(AA−1)′G′

= (GA)[A−1Ck(A′)−1](GA)′

= G∗C∗
k(G∗)′, (22.14)

where A is an arbitrary m × m matrix with full rank. In comparison to
(22.3), the more general Idioscal model is less unique. This has the prac-
tical implication that if this model is applied to a set of data matrices,
many quite different group spaces G can be derived, and it is impossible to
say which one is the true common structure. Schönemann (1972) proposed
imposing the restriction that the Cks average to I; that is,

1
K

K∑
k=1

Ck = I. (22.15)

Given a set of k = 1, . . . , K arbitrary C∗
k as in (22.14), property (22.15)

can be imposed by choosing a transformation matrix A such that

I = K−1[A−1C∗
1(A

′)−1 + . . . + A−1C∗
K(A′)−1]

= K−1A−1(C∗
1 + . . . + C∗

K)(A′)−1,

whence KAA′ = C∗
1 + . . .+C∗

K . Because each C∗
k is symmetric by (22.13),

C∗
1 + . . . +C∗

K is also symmetric, so A is found by factoring the average of
all Cks into AA′. If (22.15) holds, then

1
K

K∑
k=1

Bk =
1
K

∑
GCkG =

1
K

G(C1 + . . . + CK)G′ = GG′. (22.16)

For error-free data, this equation can be solved immediately (by classical
scaling) to yield the group space G, or, more properly, one possible G
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because each such G can be arbitrarily rotated and/or reflected and would
still satisfy (22.16).

To find each individual Ck is also simple. We just solve the following
equation for Ck,

Bk = GCkG′, (22.17)
G′BkG = G′GCkG′G, (22.18)

(G′G)−1G′BkG(G′G)−1 = Ck. (22.19)

Note that the pre- and postmultiplications in (22.18) serve the purpose of
generating the matrix G′G, which, assuming that rank(G) = m, is invert-
ible, whereas G generally is not. Thus, for error-free Bks, the Idioscal
loss function (22.13) can be solved analytically (Schönemann, 1972).

Chaturvedi and Carroll (1994) imposed the additional restriction on G
that every row only contains a single 1 and the rest 0, which makes G an
indicator matrix. Thus, G classifies each stimulus i to one of M clusters.
This model, called Indclus, falls somewhere between clustering and MDS.

22.3 Overview of Three-Way Models in MDS

To develop some geometric feeling for the various three-way models dis-
cussed in this chapter, let us demonstrate with the help of a simple example
how they relate a common space to the individual space of each subject.1.
An overview of these models is given in Figure 22.1 The identity model
is trivial boundary case: every subject space should be equal to the com-
mon space, that is, Xk = G. This model is equivalent to computing the
average dissimilarity and doing an ordinary MDS (see Section 22.1). Note
that the weight plot shows dimension weights of one for all subjects on all
dimensions.

However, we also know that only the relative distances between the points
in a configuration are of importance, not the absolute distances. Therefore,
instead of the identity model, it is better to fit the dilation model that
allows for a dilation factor for each subject; that is, Xk = wkG. This
model is shown in the second row of Figure 22.1. Inserting the dilation
factors ensures that the size of the individual configuration reflects the fit
(see Section 11.1). As the weights do not differ per dimension, the points
for individuals in the weights plot are on a line.

The third row in Figure 22.1 shows the weighted Euclidean model that
allows each subject to weight the fixed dimensions of the common space,
that is, Xk = GWk. In this example, the weights are w111 = 1.5 and w221 =

1Note that we are not discussing models with idiosyncratic origins or with vector
weightings, as discussed in Chapter 21. Rather, the models considered here are all within
the dimension-weighting family for group spaces centered at the origin.
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FIGURE 22.1. Overview of five three-way models for MDS. For each model the
common space, the weights, and three individual spaces are given. The first row
considers the identity model, the second row the dilation model, the third row
the weighted Euclidean distance model, the fourth row the generalized Euclidean
distance model, and the fifth row the reduced rank model.
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.5 for Subject 1, w112 = .8 and w222 = 1.5 for Subject 2, and w113 = 1 and
w223 = .3 for Subject 3. The weights plot shows each subject as a point
with its dimension weights as coordinates. The weighted Euclidean model
generalizes the dilation model by allowing for each subject to have unequal
weights per dimension. In this example, we see that the Subjects 1 and 3
emphasize the first dimension in their individual spaces and Subject 2 the
second dimension.

The generalized Euclidean model is given in the fourth row of Figure 22.1.
In this model, the common space is first rotated to each individual’s prin-
cipal directions, as Young (1984) calls this orientation, and subsequently
weighted to obtain the individual space, that is, Xk = GTkWk, where Tk

is a rotation matrix and Wk is again a diagonal matrix with weights.
In our example, we choose

T1 =
[

.866 −.500

.500 .866

]
, W1 =

[
1.2 .0
.0 .5

]
,

T2 =
[

.707 −.707

.707 .707

]
, W2 =

[
.8 .0
.0 .5

]
,

T3 =
[

.985 .174
−.174 .985

]
, W3 =

[
1.0 .0
.0 .3

]
,

where the rotation matrices T1,T2, and T3 correspond to rotation by
30◦, 45◦, and −10◦. The weight plot is different than before. It shows how
to obtain the subject space from the common space. For example, the solid
vectors 11 and 12 show that the space of subject 1 is obtained by rotating
the common space by 30◦ and to obtain dimension 1, stretch in the direction
of vector 11 by a factor 1.2 (i.e., the length of vector 11) and for dimension
2, shrink in the direction of vector 12 by a factor 0.5 (the length of vector
12). Thus, the weight vectors belonging to each subject always have an
angle of 90◦. These vectors are obtained by T′

kWk.
The last row of Figure 22.1 displays the reduced rank model. In this case,

the individual spaces are allowed to have a lower rank than the common
space, that is, Xk = GTkWk, where G is n × m, Tk is an m × q rotation
projection matrix with q < m, and Wk a diagonal q × q matrix with
dimension weights. Thus, the dimensionality m of the common space is
reduced to q for each subject space by the Tks. The example shows the
common space of a cube in 3D and the individual spaces in 2D (thus m = 3
and q = 2). Then, the weights plot is interpreted in the same way as for the
generalized Euclidean model. For example, the vectors 21 and 22 for subject
2 are connected to form a rectangle so that it is easy to see which 2D plane
is associated with the space of Subject 2. Again, the length of each vector
indicates the weighting factor for stretching or shrinking along its direction
to obtain the dimension for this subject. Unless the common space and the
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subject spaces are very structured, it may be hard to interpret the reduced
rank model in empirical applications.

22.4 Some Algebra of Dimension-Weighting Models

The fit measure provided by Indscal is the correlation between the origi-
nal scalar products, given in the K matrices Bk, and the reproduced scalar
products, computed by B̂k = GW2

kG
′. These correlations are usually ex-

tremely high, even if the model is not adequate. This was shown by Mac-
Callum (1976). He generated synthetic data from a group space that was
stretched not only differentially for each k = 1, . . . , K, but also, in violation
of the Indscal model, along different directions for each k. He observed
fit coefficients that were not lower than r = .97 and commented that “one
must wonder whether this index provides in any sense a measure of the ap-
propriateness of the Indscal model to a given set of data” (pp. 181–182).

Finer fit indices can, however, be derived from an algebraic analysis of
the model. Such an analysis starts out by assuming the ideal case, where
data are given that perfectly satisfy the model. Of course, this is unrealistic,
because data always have error components. Hence, one can never expect to
satisfy a deterministic model strictly, except in trivial cases. Nevertheless,
by studying the ideal case, one can derive certain properties that data must
possess if they are to be accounted for by a particular model. Real data
should then also satisfy these conditions “more or less”. They may also
violate the model conditions systematically, and this provides potentially
very informative insights into the structure of the data.

The Common-Space Condition
What does the dimension-weighting model imply for the data? That is,
what properties must the data possess so that they can be explained by
such models? For the subjective metrics interpretation, it is necessary that
rank(Bk) = m, for all k, because rank(Ck) = m and rank(G) = m. More-
over, because Ck = TkT′

k, rank(Tk) = m. Even if rank(Ck) < m (as may
be the case in the subjective transformations model), it must hold that
each individual space, Xk = GTk, lies in the column space of G; that is,
the columns of Xk must be linear combinations of the columns of G. For
example, column 1 of Xk should result from adding the columns of G with
the weights of column 1 of Tk.

In practical applications of the model, we typically would not use the
G resulting from (22.16) as the group space but only its first few dimen-
sions. But, with only a subspace of the complete G, each Bk can only
be approximated by the model, because the model requires rank(Bk) =
rank(G) = m. However, if the dropped dimensions represent just error,
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g32

FIGURE 22.2. Geometric view of projecting a vector x onto the column space of
a matrix with column vectors g1 and g2.

then the low-dimensional G should account for most of the variance of
each Bk or, at least, for more variance than could be expected by chance.

This is easier to understand geometrically. In Figure 22.2, the column
vectors g1 and g2 span a plane onto which the vector x is projected. The
vectors g1 and g2 together form the 3 × 2 matrix G. The projection of x
onto the G-plane, xp, is equal to some linear combination w1 ·g1+w2 ·g2 or
xp = Gw, where w′ = (w1, w2) is the weight or coordinate vector of xp. The
residual vector (i.e., the component of x not contained in G) is xr = x −
xp = x−Gw. As Figure 22.2 shows, xr is orthogonal to xp. Thus, x′

pxr = 0
or (Gw)′(x−Gw) = 0 or w′(G′x−G′Gw) = 0. Because w �= 0, in general,
we have G′x−G′Gw = 0 and w = (G′G)−1G′x. With this weight vector,
we obtain xp = Gw = G[(G′G)−1G′x] = [G(G′G)−1G′]x = PGx, where
PG denotes the matrix that effects the projection of x onto the column
space of G.

Now, the common-space index is constructed as follows. The portion
of Bk that can be reproduced from PGXk is B̂k = (PGXk)(PGXk)′ =
PGBkP′

G. The sum-of-squares of its elements can be expressed as
tr (PGBkPG)2, and the sum-of-squares of Bks elements is tr B2

k. The ra-
tio of these two sums-of-squares is a possible measure for how well the
common-space condition is satisfied empirically:

vk =
tr (PGBkPG)2

tr B2
k

, (22.20)

the common-space index for individual k (Schönemann, James, & Carter,
1979). We would require, of course, that this index be close to 1 or “high”
before any of the models in the Idioscal family could be considered seri-
ously as an explanation for an individual’s data.
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The Diagonality Condition
The common-space condition is a rather weak criterion the data must sat-
isfy so that they can be represented by a model of the Idioscal type. This
weakness is simply a consequence of the generality of the models, which,
without many more additional constraints on G and/or Ck, are not likely
to lead to much scientific insight. Thus, we now go on to the more re-
strictive dimension-weighting model Bk = GW2

kG
′ and investigate what

further properties must hold in the Bks for such a representation to be
possible.

We first impose a condition similar to the one in (22.15),

1
K

K∑
k=1

Wk = I, (22.21)

which leads to
1
K

∑
k

Bk = GG′ (22.22)

and thus to a direct solution2 for G. To compute Wk is somewhat more
demanding than to find Ck in (22.19) because Wk must be diagonal. Thus,
we first find Ck and then try to “diagonalize” it. This is done as follows.
We note again that G is determined only up to an orthogonal matrix S,
because G∗(G∗)′ = (GS)(GS)′ = GSS′G′ = GG′. Hence, we want to find
that S which diagonalizes Ck; that is,

Bk = (GS)Ck(GS)′ = GSCkS′G′ = G(SCkS′)G′, (22.23)

so that
SCkS′ = W2

k. (22.24)

If we write
Ck = S′W2

kS, (22.25)

we see that S and W2
k are the eigenvector and eigenvalue matrices of Ck.

Because Ck is symmetric and positive definite, S is orthogonal or can be
so constructed, and W2

k is positive definite. Note, however, that S does
not have a subscript, and thus (22.25) cannot be guaranteed to hold for
every set of Bks. Rather, these Bks must have a common set of eigenvec-
tors. Otherwise, the data cannot be explained by the dimension-weighting
model. Geometrically, the reason for this condition is apparent and sim-
ply expresses that the model requires one fixed dimension system for all
individuals.

2This G is taken as a rational starting configuration in the dimension-weighting
option of Alscal (Takane et al., 1977). For Alscal, see Appendix A.
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With an S computed from one particular Ck or from the average of
all Cks, we can check how well it does in generating a diagonal matrix
W2

k from SCkS′. An index for how much the data violate this diagonality
condition is provided by the sum-of-squares of the nondiagonal elements
of all W2

ks, computed with this one S, appropriately normed to make the
index independent of the size of G. Schönemann et al. (1979) define a
diagonality index

δk =
tr [W̃2

k − I]2

(m − 1)m
, (22.26)

where W̃2
k is a normalized3 form of W2

k. If Wk is diagonal, then δk = 0.
Otherwise, δk > 0, and we then must decide whether it is still acceptably
small.

An Empirical Application: Helm’s Color Similarities
To illustrate, we scale the Helm color data from Table 21.1 with Cospa
(Schönemann, James, & Carter, 1978), a program that also computes a
common-space and a diagonality index for each k. Table 22.2 shows these
indices. If the model were strictly adequate, we should have vk = 1 and
δk = 0 for all individuals. Even though this is not true, it holds that
all vks are high and most δks are small. Moreover, the vk-indices of the
color-deficient subjects are generally lower than those of the color-normal
subjects. This could be expected from the results in Table 22.2, because
the former persons have relatively much more variance accounted for by the
“small” dimensions, possibly due to a greater error variance in their data.
Also, s13 has the worst δk value, which mirrors this person’s relatively low
communality values from Table 21.3.

Schönemann et al. (1979) report some statistical norms for these in-
dices, derived by computer simulations under various error conditions. In
the least restrictive or—relative to the model—the “nullest” case, each in-
dividual scalar-product matrix Bk is generated by forming the product
XkX′

k with a random Xk. For m = 2, n = 10, and N = 16, it is found
that 90% of the vk-values are less than 0.40. Hence, common-space values
of the magnitude of those in Table 22.2 are extremely unlikely if the null-
hypothetical situation is true. For the diagonality index, 90% of the values
obtained were greater than 0.04. Some of the δks in Table 22.2 are greater
than this value, and, if taken by themselves, would not lead to a rejection
of the null hypothesis. But if all of the diagonality indices are taken to-
gether, then a value distribution like the one observed for the Helm data
is highly improbable under this random condition. These tests provide just
rough guidelines, because it is not clear when we should assume such a

3The normalization of W2
k is achieved by pre- and postmultiplying it by

diag[(W2
k)′W2

k]−1.
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TABLE 22.2. Model test, indices for Helm data of Table 21.1.

Subject Common Space (vk) Diagonality (δk)
s1 0.95 0.04
s2 0.94 0.02
s3 0.94 0.01
s4 0.96 0.02
s5 0.93 0.04
s
[1]
6 0.91 0.09

s
[2]
6 0.96 0.08

s7 0.92 0.02
s8 0.93 0.12
s9 0.92 0.07
s10 0.87 0.08
s11 0.86 0.06
s
[1]
12 0.84 0.04

s
[2]
12 0.85 0.01

s13 0.86 0.45
s14 0.93 0.17

null hypothesis. In color perception, it is certainly not the incumbent hy-
pothesis, which the null hypothesis should be (Guttman, 1977). Moreover,
we are not really interested in “some” dimension-weighting model but in
a model where a particular group space (i.e., the color circle) is expected,
and where this configuration is individually transformed by weighting a
particular dimension, not just any one. Because everything comes out as
predicted (except that, for some individuals, there is some residual un-
specified variance) it would be foolish to reject the model altogether, just
because some formal norms are too high. Rather, it seems more fruitful to
take this result as a reasonable approximation, modify and/or supplement
the theory somewhat, and test it in further empirical studies.

22.5 Conditional and Unconditional Approaches

The dimension-weighting model Bk = GW2
kG comes in two variants. In

one case, the individual scalar-product matrices are processed as they are;
in the other, they first are normed so that their sum-of-squares is equal
to 1 for each k. Some authors call the first case the Horan model and
the latter the Indscal model (Schönemann et al., 1979). A more gripping
distinction calls the first approach unconditional and the latter matrix-
conditional (Takane et al., 1977). This reveals the similarity to the situation
in unfolding, where we did not want to compare data values across the
rows of the data matrix and so used a split-by-rows or row-conditional
approach. Analogously, a matrix-conditional or split-by-matrices treatment
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FIGURE 22.3. Synthetic (a) group space G and (b) subject space weights w11k

and w22k for subjects a, b, . . ., i used in the MacCallum (1977) study.

of the data implies that we do not want to compare the values of Bk and Bl,
for any k �= l. The approach to be chosen depends on the particular data
under investigation. For the Helm color data, for example, it seems that
we should opt for the unconditional approach, because the data collection
procedure suggests that all individuals used the same ratio scale for their
proximity judgments. For the Green–Rao breakfast data (Table 14.1), on
the other hand, the data were just ordinal, so ordinal MDS was used to
arrive at ratio-scaled values. These values are the MDS distances, and they
can be uniformly dilated or shrunk, of course, so that in this case we should
prefer the matrix-conditional approach.

If the data are unconditionally comparable over individuals, then to
norm all of the Bks in the same way leads to a loss of empirical infor-
mation. This is apparent from the following demonstration due to Mac-
Callum (1977). [Similar examples are given by Möbus (1975) and Schulz
and Pittner (1978).] Figure 22.3 shows a group space G (panel a) and
the associated subject space (panel b) that determines the weight matri-
ces Wa,Wb, . . . ,Wi. The nine Bks that can be derived from these figures
as Bk = GW2

kG
′ differ in their sum-of-squares: for example, Bc’s values

are all much larger than the corresponding values in Bg. Now, scaling the
Bks with Indscal (which is always matrix-conditional) or with the matrix-
conditional option of Alscal yields the subject space in Figure 22.4 (panel
a). The different “size” of each individual’s private perceptual space Xk is
not represented. But because, for example, Xc, Xe, and Xg are perfectly
similar and differ only in their sizes, the norming has the effect of project-
ing c, e, and g onto the same point in the subject space, as shown in Figure
22.4 (panel b). If the unconditional approach is used, the subject space is
recovered perfectly.
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22.6 On the Dimension-Weighting Models

The dimension-weighting models have received considerable attention in
the literature. In their restrictive versions with fixed dimensions, they have
been used in many applications because they promised to yield dimensions
with a unique orientation while offering an intuitively appealing explana-
tion for interindividual differences. The only other popular MDS model
that accounts for interindividual differences is unfolding, but unfolding is
for dominance data, not for similarity data. Unfolding assumes that the
perceptual space is the same for all persons. It models different preferences
by different ideal points in this space. The weighted Euclidean model allows
for different perceptual spaces, related to each other by different weights
attached to a set of fixed dimensions. Both models can be combined into
one, an unfolding model with different dimensional weights for each person
(see Chapter 16).

Some more recent developments should also be mentioned. They are mo-
tivated by practical and applied problems such as analyzing data sets where
n is very large. The usual computer programs cannot handle such cases,
or, more important, the subject space tends to be cluttered. “Marketing
research suppliers often collect samples from thousands of consumers, and
the ability of MDS procedures to fully portray the structure in such vol-
umes of data is indeed limited. The resulting joint spaces or individual
weight spaces become saturated with points/vectors, often rendering inter-
pretation impossible . . . Yet, marketeers are rarely interested in the partic-
ular responses of consumers at the individual level . . . marketeers are more
concerned with identifying and targeting market segments—homogeneous
groups of consumers who share some designated set of characteristics (e.g.,
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demographics, psychographics, consumption patterns, etc.) . . .” (DeSarbo,
Manrai, & Manrai, 1994, p. 191). In order to identify such segments, mod-
els were invented that combine a fuzzy form of cluster analysis with MDS.
In essence, what one wants is an MDS solution where the subject space
does not represent individual persons but types of persons. One procedure
for that purpose is Clascal by Winsberg and De Soete (1993), a latent
class MDS model (LCMDS). If the number of types of persons, S, is equal
to 1, Clascal is but normal MDS. If S = K, Clascal corresponds to the
Indscal model. For 1 < S < K, Clascal estimates the probability that
each person belongs to class S and, furthermore, computes an Indscal-like
MDS solution for each class separately.

The dimension-weighting model therefore continues to be of interest. One
may ask, however, whether it has led to noticeable substantive insights or
to the establishment of scientific laws. In this regard, the model seems to
have been much less successful, in contrast, for example, to the numer-
ous regional laws established in the context of facet theoretical analyses
of “normal” MDS data representations (see Chapter 5). Why is this so,
even though the model certainly seems to be a plausible one? The an-
swer may be found in the problems that we encountered with dimensional
models in Chapter 17: if one takes a close look at dimensional models in
the sense that the distance formula explains how dissimilarity judgments
are generated from meaningful psychological dimensions, they are found
to be less convincing, even in the case of stimuli as simple as rectangles.
Adding interindividual differences to such models does not change things
for the better. One should, therefore, be careful not to be misled by the
dimension-weighting models: the dimensions they identify are not automat-
ically meaningful ones, even though they may be rotationally unique.

22.7 Exercises

Exercise 22.1 Consider the three correlation matrices in Table 20.1 at p. 438.

(a) Without going into much theory, represent these data in the dimen-
sionally weighted (DW) MDS model by using, for example, the Prox-
scal program in SPSS. How do you evaluate the outcome of this
scaling effort?

(b) Scale each data matrix individually via MDS and then compare the
configurations (by using Procrustean methods) and its Stress values
with the DW solution.

(c) Use the DW configuration as a common starting configuration for
an MDS scaling of each correlation matrix. How does this approach
affect the MDS solutions?
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Exercise 22.2 Consider Figure 17.7 at p. 373.

(a) Use the configuration of the 16 points on the solid grid to construct
two different configurations, one by stretching this grid by factor 2
along the horizontal dimension (width), the other by stretching the
grid by 2 along the vertical dimension (height). Compute the dis-
tances for the two resulting configurations.

(b) Use the two sets of distance as data in dimensional-weighting individ-
ual differences scaling. Check whether you succeed in recovering both
the underlying configurations and the weights used in (a) to generate
these distances.

(c) Add error to the distances and repeat the MDS analyses.

(d) Interpret the above weightings of the dimensions’ width and height
in substantive terms in the context of the perception of rectangles.

(e) Assume that you would generate more sets of distance matrices. This
time, the configuration of points on the dashed grid in Figure 17.7 is
stretched (or shrunk) along the dimensions width and height. Would
these data lead to the same MDS configurations as the data generated
above in (a)?

(f) Again assume that you would generate more sets of distances, this
time by differentially stretching the configuration of points on the
dashed grid in Figure 17.7 along a width-by-height coordinate system
rotated counterclockwise by 45 degrees. Discuss what this would mean
in terms of rectangle perception.

(g) Would you be able to discriminate persons using a weighted width-
by-height model as in (a) and (e) from those using the rotated system
in (f) by using Indscal or by using Idioscal?

Exercise 22.3 Young (1987) reports the following hypothetical coordinates
for four food stimuli and the dimension weights for five persons.

Food I II Person I II
Potato -2 1 1 .0 .9
Spinach -1 4 2 .2 .8 .
Lettuce 1 3 3 .6 .6
Tuna 4 -1 4 .4 .4

5 .8 .2

(a) Interpret these data in the context of a dimensional salience model.

(b) Use the matrix equations of this model to compute the distance ma-
trix for each person.



494 22. Three-Way MDS Models

(c) Use a suitable MDS program to reconstruct the underlying configu-
ration and weights from the set of distance matrices.

(d) Add an idiosyncratic rotation for each person, and repeat the above
analyses with an MDS program that fits this model.

Exercise 22.4 The table below (Dunn-Rankin, Knezek, Wallace, & Zhang,
2004) shows ratings of five persons on the similarity of four handicaps:
Learning Disability (LD), Mental Retardation (MR), Deafness (D), and
Blindness (B).

Person Handicap LD MR D B Person Handicap LD MR D B
1 LD – 4 LD –
1 MR 4 – 4 MR 2 –
1 D 4 5 – 4 D 2 4 –
1 B 4 2 5 – 4 B 6 2 5 –
2 LD – 5 LD –
2 MR 6 – 5 MR 2 –
2 D 3 8 – 5 D 6 7 –
2 B 2 2 4 – 5 B 6 4 5 –
3 LD –
3 MR 5 –
3 D 4 6 –
3 B 4 3 4 –

(a) Analyze these data with a dimensional salience model. Assess its fit.

(b) Interpret the dimensions of the solution space.

(c) Interpret the subject space (its meaning and how well it explains each
person).



23
Modeling Asymmetric Data

Distances are always symmetric, but proximities may be asymmetric. Prox-
imities, therefore, cannot always be fully represented by the distances among
points in an MDS space. If one feels that the proximities deviate from be-
ing symmetric due to error only, this is not a problem. In that case, one
may somehow symmetrize the proximities (e.g., by first averaging the corre-
sponding pijs and pjis and then running the MDS on these averages). If one
hypothesizes, however, that the nonsymmetries are meaningful, one needs
special models for analyzing such data. In this chapter, we consider a num-
ber of such models. First, it is shown that an asymmetric proximity matrix
can always be decomposed into a symmetric and a skew-symmetric com-
ponent. The symmetric component can be then be subjected to ordinary
MDS. For the skew-symmetric part, we discuss special visualization tech-
niques for either the nonsymmetric component by itself or for embedding
the nonsymmetric component into an MDS representation of the symmet-
ric component. In the rest of the chapter, we treat a variety of models that
analyze asymmetric proximities directly or indirectly. Many other models
for asymmetric data exist. For a good overview of models for asymmetric
data, we refer to Zielman and Heiser (1996).

23.1 Symmetry and Skew-Symmetry

We compare the values in row A of Table 4.2 with those in column A. Row
A shows the confusion rate for code A, presented first, with codes B, C,
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and so on, respectively, presented afterwards. In column A, the code A is
always the second stimulus in the comparison. Comparing corresponding
elements in column A and row A, we note, for example, that p(A, R) = .35,
and p(R, A) = .13. Hence, A is definitely confused more often with R if it
is presented before A than if it follows A in time.

Thus, the Morse code data are definitely not symmetric. However, in
the analysis of these data so far, asymmetries played no further role. They
were simply discarded as error, and only the symmetric part was analyzed.
But is that good science? We know that asymmetries are not uncommon
in cognition. A child, for example, is typically seen as similar to a parent,
but one would not say that the parent resembles the child. This asymmetry
is explained as a prototype–specimen relation: the specimen resembles the
prototype, but the prototype does not resemble the specimen. Other ex-
amples and more theorizing are reported by Tversky (1977), for example.
So, it is at least conceivable that the asymmetries in the Morse code data
are not purely random but systematic.

To arrive at an answer to that question, we first note that every square
matrix P can be uniquely decomposed into a symmetric matrix and a skew-
symmetric matrix: That is, every asymmetric proximity matrix P can be
uniquely decomposed into

P = M + N, (23.1)

where M is symmetric and N is skew-symmetric. This means that M = M′

and N = −N′. The two components of P are

M = (P + P′)/2, and (23.2)
N = (P − P′)/2. (23.3)

Note that the diagonal elements of N are always zero, because for those
elements it holds that nii = (pii − pii)/2 = 0.

To demonstrate this decomposition numerically, consider the following
example, where P is equal to the first four rows and columns of Table 4.2.
Then, P has the decomposition

P =

⎡⎢⎣ 92 4 6 13
5 84 37 31
4 38 87 17
8 62 17 88

⎤⎥⎦ = M + N

=

⎡⎢⎣ 92.0 4.5 5.0 10.5
4.5 84.0 37.5 46.5
5.0 37.5 87.0 17.0

10.5 46.5 17.0 88.0

⎤⎥⎦ +

⎡⎢⎣ 0.0 -0.5 1.0 2.5
0.5 0.0 -0.5 -15.5

-1.0 0.5 0.0 0.0
-2.5 15.5 0.0 0.0

⎤⎥⎦ . (23.4)

To show that the decomposition is unique, assume that P = M1 + N1
is another such decomposition with M1 = M′

1 and N1 = −N′
1. Then, we

have P′ = M′
1 + N′

1 = M1 − N1, and it follows that P + P′ = 2M1 and
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P − P′ = 2N1. Inserting this into (23.2) and (23.3), respectively, we find
that M = M1 and N = N1, which proves uniqueness of the decomposition
(23.1).

Furthermore, the decomposition in M and N allows one to partition
the sum-of-squares into a part due to symmetry and a part due to skew-
symmetry. That is,∑

i,j

p2
ij =

∑
i,j

[ 1
2 (pij + pji) + 1

2 (pij − pji)
]2

=
∑
i,j

1
4

[
(pij + pji)2 + (pij − pji)2 + 2(pij + pji)(pij − pji)

]
=

∑
i,j

m2
ij +

∑
i,j

n2
ij + 2

∑
i,j

mijnij

=
∑
i,j

m2
ij +

∑
i,j

n2
ij .

The cross-product term
∑

i,j mijnij vanishes because∑
i,j

mijnij = 1
4

∑
i,j

(pij + pji)(pij − pji)

= 1
4

⎡⎣∑
i,j

p2
ij −

∑
i,j

p2
ji +

∑
i,j

pijpji −
∑
i,j

pijpji

⎤⎦ = 0.

Thus, M and N are orthogonal because tr MN = 0. The decomposition
of the sum-of-squares suggests analyzing asymmetric data in two separate
steps: the analysis of the symmetric part and the analysis of the skew-
symmetric part. For the Morse code data, the sum of the squared proxim-
ities without the diagonal equals 698,309.0, from which 671,489.5 (96%) is
due to symmetry and 26,819.5 (4%) is due to asymmetry. This implies that
the symmetric part of the data is dominant, and asymmetry plays a minor
role, but may still reveal interesting relations.

23.2 A Simple Model for Skew-Symmetric Data

The simplest model for representing skew-symmetric data N locates every
object on a line such that the signed distance for every pair of coordinates
represents the corresponding elements of N. Expressed algebraically, this
model postulates that nij = xi − xj , or, in matrix form,

N = x1′ − 1x′, (23.5)

where x has sum zero. Choosing x = n−1N1 or, in other words, the averages
of the nij values within each row i over all columns, is the least-squares
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solution for (23.5). Obviously, this model is so restricted that it does not
fit many data. Hence, we now turn to more general models.

23.3 The Gower Model for Skew-Symmetries

An interesting decomposition of a skew-symmetric matrix has been given
by Gower (1977) and Constantine and Gower (1978). The singular value
decomposition of any skew-symmetric matrix N has the special form

N = PKΦP′, (23.6)

where P is orthonormal, Φ has singular values ordered in pairs (φ1, φ1,
φ2, φ2, . . .), and K is a permutation-reflection matrix that has along its
diagonal 2×2 blocks with off-diagonal values −1 and 1. The decomposition
of N in (23.4) is⎡⎢⎣ .16 .00 .00 -.99

-.97 .19 .00 -.16
-.01 -.04 1.00 -.00
-.19 -.98 -.04 -.03

⎤⎥⎦
⎡⎢⎣ 0 1 0 0

-1 0 0 0
0 0 0 1
0 0 -1 0

⎤⎥⎦
⎡⎢⎣ 15.72

15.72
.91

.91

⎤⎥⎦
⎡⎢⎣ .00 .19 -.04 -.98

-.16 .97 .01 .19
.99 .16 .00 .03
.00 .00 1.00 -.04

⎤⎥⎦ .

The dimensions here come in pairs with equal singular values. Such a pair
of dimensions is called a bimension. Each bimension spans a plane. Its
points can be taken from the pairs of columns (1,2), (3,4), and so on of PK
or from the respective columns of P. The configurations are the same in
both cases. Their interpretation hinges on how any two points are related
to each other in terms of (a) the angle subtended by the vectors that they
define, and (b) the area of the triangle spanned by these vectors. The
area of the triangle represents the size of the asymmetry, and sense of the
angle represents the sign of the asymmetry. Note that because the singular
values in each bimension are equal, the bimension may be freely rotated
or reflected without changing the fit. Thus, in the Gower model, the axes
cannot be interpreted.

To illustrate these notions, let us apply the Gower decomposition to the
skew-symmetric part of the Morse code confusion data (Rothkopf, 1957).
Zielman and Heiser (1996) did the same analysis on the Morse codes that
represent the 10 digits only. The first bimension (with singular value 67.37,
showing 34% of the total skew-symmetry) of the full table is presented in
Figure 23.1, a display we call a Gower diagram. In this display, all the
rows of P are plotted as vectors and we have to use a clockwise rotation
for positive estimates of nij . To understand how to interpret this plot,
consider the triangle between the origin, point H, and point V. The area of
the triangle is an estimate of the size of the asymmetry. Because clockwise
rotations indicate positive estimates, going from H to V indicates that if H
is the first stimulus in the pair, it is more often confused with V than vice
versa.
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FIGURE 23.1. Gower diagram of the skew-symmetric part of the Morse code
data (first bimension). The area of the triangle between the origin and the two
points H and V is an estimate of the value nHV. The clockwise rotation indicates
that nHV > 0 and nVH < 0.

Once identified, an asymmetry like this one can be interpreted substan-
tively. In this case, it is easy to understand, because the sequence HV is
· · · · followed by · · · −, whereas VH is · · · − followed by · · · ·. Clearly, the
middle − makes it easier for the subjects to distinguish the two signals.

We also note from Figure 23.1 that the big contributors to asymmetry are
the signals X, 4, V, and H, where, for example, H4, VX, and V4 generate
higher confusion rates than, respectively, 4H, XV, and 4V. In contrast, for
E, I, and T it does not really matter whether they occur as the first or
second signal, because they lie close to the origin and do not have much
asymmetry with other signals.

Some of the properties of Gower’s model are as follows.

• If n is even, then there are n/2 bimensions; if n is odd, then there
are n/2 − 1 bimensions; that is, φn = 0.

• Points that lie on the same line through the origin do not have asym-
metry, thus spanning a triangle with zero area.

• A point close to the origin has little asymmetry with all other points,
and, hence, triangles where these points together with the origin and
any other point form the corners tend to be small, in general.

• If there is a line through the origin in a bimension such that all of
the vectors project positively on this line, then reordering N by the
order of the vectors of the bimension yields a matrix with all negative
elements in the lower (or upper) triangular matrix and the positive
elements in the upper (or lower) triangular matrix. No circular triads
are present in the data in this case.
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• If points lie on a line not through the origin of the vectors, then the
points form an additive scale. Let the order of three points along such
a line be A, B, C. Then, the area spanned by the triangle OAC equals
OAB + OBC, which is clearly additive.

• When computing the solution for the Gower model, we do not know
a priori what the direction of interpretation will be. If the submatrix
of K equals

[
0 -1
1 0

]
, then an anticlockwise rotation from vector i to

j indicates a positive estimate of nij and a negative estimate for nij .

If the computational procedure gives
[

0 1
-1 0

]
as a submatrix, then we

have to apply a clockwise rotation to identify a positive estimate of
nij .

23.4 Modeling Skew-Symmetry by Distances

The power of the Gower decomposition is that a graph of only n objects
is obtained in a plane where the angles subtended by the vectors have a
fixed meaning. A disadvantage is that areas represent the size of asymme-
tries, because judgments on areas are cognitively demanding. Interpreting
distances is easier. Therefore, we propose a new model for visualizing a
skew-symmetric matrix that expresses asymmetries by Euclidean distances.

The distance model for skew-symmetry uses Euclidean distances between
points i and j to estimate the size of the skew-symmetric effect |nij |. In
addition, similar to the Gower model, the direction of rotation is impor-
tant. If the angle measured clockwise between the vector to point i and
the vector to point j is less then 180◦, then nij is estimated by dij(X).
Conversely, if this angle is between 180◦ and 360◦ measured clockwise (or,
equivalently, between 0 and −180◦, in the counterclockwise sense), then
nij is estimated by −dij(X). Thus, the model predicts that starting from a
point i all points j that are in the half plane with positive angles between 0◦

and 180◦ (measured clockwise) have a positive estimate for nij . All points
j that have negative angles between 0◦ and −180◦ (measured clockwise)
produce a negative estimate for nij .

To fit the distance model to skew-symmetric data, we need to determine
for point i whether point j lies in the positive or in the negative rotational
half of the plane. Let xi be the 2 × 1 vector with the row coordinates of
point i. Now, a rotation of xi by −90◦ is obtained by reflecting the first
coordinate vector and then swapping the dimensions, that is, by T′xi with

T′ =
[

0 1
−1 0

]
and T =

[
0 −1
1 0

]
.

If another vector xj is projected onto T′xi, and the result is positive, then
point j is on the positive side of the plane so that nij is estimated by
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FIGURE 23.2. Illustration of determining whether point j gives a positive or
negative contribution for a combination ij. Vector xj is projected on T′xi, the
−90◦ rotation of xi. In this example, the projection x′

jT
′xi is positive indicating

a positive estimate for nij .

dij(X). Figure 23.2 gives an example of this case. On the other hand, if the
projection is negative, then point j is on the negative side of the plane so
that nij is estimated by −dij(X). The projection of xj onto T′xi is given
by x′

jT
′xi. Let the sign function be defined by

sign(z) =

⎧⎨⎩
1 if z > 0,
0 if z = 0,

−1 if z < 0.

Now, the estimate of nij can be obtained by sign(x′
jT

′xi)dij(X). A formal
model for the distance model for skew-symmetry is obtained by minimizing
the sum of squared differences between nij and its estimate, that is, by
minimizing

L(X) =
n∑

i=1

n∑
j=1

[nij − sign(xiTxj)dij(X)]2 (23.7)

over X.
We applied this model to the skew-symmetric part of the Morse code

data and the results are given in Figure 23.3. Small distances in the plot
generally indicate small skew-symmetries. The plot is dominated by large
asymmetries that are shown by large distances. For example, we see that H
and X have a large distance. Because we are using a clockwise rotation, the
sequence HX leads to higher confusion rates than presenting X first and H
afterwards. Comparing this solution to the Gower diagram in Figure 23.1
shows that there is not so much difference. However, the advantage of the
distance model for skew symmetry is that the distance of two points shows
to what extent the proximities of two objects are asymmetric.

Some caution is required here. The loss function (23.7) was fitted with a
general-purpose optimization routine in MatLab. Such a routine may not
be optimal for this loss function. In particular, we expect that this loss
function may be quite sensitive to local optima. Further study is needed to
see how severe this problem is.
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FIGURE 23.3. Plot of the distance model for skew-symmetry on the Morse code
data. The distance in a clockwise direction estimates positive values for nij and
those in an anticlockwise direction estimate minus the distance for nij .

As is the case for the Gower decomposition, the dimensions in the current
model come in pairs, the so-called bimension. The distance model for skew-
symmetry could be extended to two or more pairs of such dimensions.
It seems natural to compute the distance for each bimension separately,
inasmuch as the interpretation is done bimensionwise.

23.5 Embedding Skew-Symmetries as Drift Vectors
into MDS Plots

Another simple method for asymmetries is simultaneously displaying the
symmetric part and the skew-symmetric part of the data. This makes it
possible to see how these two data components are related to each other.
The skew-symmetric values are embedded into the MDS representation of
the symmetrized data by drawing arrows (drift vectors) from each point i
to any other point j in the configuration so that these vectors correspond
in length and direction to the values in row i of the skew-symmetric matrix
(Borg, 1979; Borg & Groenen, 1995). Thus, on point R in Figure 4.6 we
would attach a vector of length .11 = (.35 − .13)/2 pointing towards A.
The units for the arrows are chosen so that they can be represented most
conveniently in the given configuration. The arrow’s direction towards A
is chosen to express that A is more often confused with R when presented
first than vice versa.

To avoid a cluttered picture, we can draw only the resultant of the vector
bundle thus attached to each point. The resultant averages out random
nonsymmetries and shows the general drift (see Figure 23.4). Length and
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direction angle of drift vectors are computed as follows. We use vector
notation and show the 2D case.

1. Do for all points i.

2. Do for all points j �= i.

3. Given vectors xi and xj in terms of their MDS coordinates,
aij = xj − xi is the vector from point i to point j in the
MDS configuration.

4. Norm aij to unit length to get bij ; that is, bij = aij/(a′
ijaij)1/2.

5. Multiply bij by element nij of the skew-symmetric component
of the proximity matrix to obtain cij ; that is, cij = nijbij .

6. End do.

7. Average the n vectors cij to obtain the (average) drift vector for
point i, di; that is, di = n−1 ∑

j cij .

8. For plotting di, compute di’s length as the root mean square
of its elements and the direction angle relative to the Y -axis,
αi = arccos(d′

iu/
√

d′
idi), where u′ = (0, 1).

9. End do.

Figure 23.4 shows the 2D MDS solution with the embedded drift vectors.
It is obvious that the nonsymmetries in the confusion data are not random
(see also Möbus, 1979). One notes that the arrows exhibit a definite vector
field with a trend that, in substantive terms, indicates that shorter Morse
code signals are more often confused with longer ones than vice versa.
The vertical axis reflects the temporal length of the signals. The signal E,
for example, is just one ·, while the signal for O is – – – – –. Moreover,
because the trend is towards the North-West, the asymmetries also reflect
the composition pattern of the signals: signals in the direction of the drift
vectors tend to have more short components (see Figure 4.7).

23.6 Analyzing Asymmetry by Unfolding

We now change to models that directly analyze the entire asymmetric prox-
imity matrix. One property that all these models share is that they some-
how model both the symmetric part of the data and the skew-symmetric
part. One of the simplest distance models that can be used is unfolding (see
Chapters 14 to 16) as, for example, has been suggested by Gower (1977).

We look at an example of brand switching data. These data are derived
from supermarket scanner data as described by Bell and Lattin (1998).
In this example, we want to investigate how households change in buying
15 different cola soft drinks. The daily purchases of cola soft drinks were
recorded for 488 U.S. households over a period of 104 weeks from June 1991
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FIGURE 23.4. 2D Morse code MDS configuration with drift vectors to model the
asymmetry in the Morse codes.

to June 1993. A household is considered to make a change whenever the
products were of a different type or brand for two subsequent purchases.
If a household has more than one purchase on a day, then we divide this
switch evenly over all the products that have been bought that day. Table
23.1 shows the rounded brand switching data for colas. The rows of the
table indicate the type of cola bought before and the column indicates the
type of cola that is currently bought. Thus, the changes are made from the
row product to the column product.

Brand switching data can be interpreted as similarities, because large
values indicate that households easily switch between the two products
and, hence, consider them similar. For unfolding, we need to transform
these similarities into dissimilarities. One such transformation can be ob-
tained by the gravity model discussed in Section 6.4. This model stems from
astronomy and relates the gravitational force pij to a squared Euclidean
distance d2

ij by the relation pij = kmimj/d2
ij , where k is a constant and

mi and mj are the masses of the two bodies. We equate mi and mj with
the row and column sums of the brand switching matrix. Then,

δij =
(

mi · mj

pij

)1/2

(23.8)

gives an asymmetric dissimilarity matrix on which unfolding can be per-
formed. If pij equals zero, then δij is declared missing. The brand switching
data converted in the sense of the gravity model are given in Table 23.2.
Note that Zielman and Heiser (1993) and Groenen and Heiser (1996) have
used the gravity model in a similar context.

We have applied unfolding to the cola brand switching data. The joint
representation is given in Figure 23.5, where the rows (the colas from which
the change is made) are plotted as solid points and the columns (the colas
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TABLE 23.1. Brand switching data among 15 different colas. The row indicates
from which product the change is made, the column contains the product to
which is changed.

To
From a. b. c. d. e. f. g. h. i. j. k. l. m. n. o.

a. Coke decaf 41 11 2 8 0 2 15 8 14 0 9 11 0 6 2
b. Coke diet decaf 9 341 32 3 4 8 55 78 31 1 63 16 17 14 4
c. Pepsi diet decaf 3 27 160 15 8 2 18 15 32 2 31 13 2 12 7
d. Pepsi decaf 7 3 17 89 2 3 16 8 4 0 3 27 1 6 3
e. Canfield 1 7 6 2 119 6 20 8 19 0 16 15 2 21 7
f. Coke 4 4 2 1 4 73 37 8 12 3 8 33 3 36 6
g. Coke classic 14 53 16 16 22 38 675 98 56 10 48 187 33 172 20
h. Coke diet 5 74 14 12 7 5 108 716 123 26 92 31 11 27 18
i. Pepsi diet 14 35 36 3 15 11 56 120 422 20 86 82 29 38 10
j. RC diet 0 5 0 1 3 3 6 30 5 12 17 6 4 14 1
k. Rite diet 13 70 29 6 12 5 49 87 92 19 471 40 11 34 8
l. Pepsi 8 18 9 26 19 29 204 26 91 5 29 663 24 217 51
m. Private label 2 14 4 3 1 2 35 13 22 1 20 19 364 23 1
n. RC 7 10 13 7 19 34 171 30 31 10 36 230 22 440 41
o. Wildwood 3 3 7 3 10 9 26 22 11 2 4 48 2 35 215

TABLE 23.2. Brand switching data of Table 23.1 converted in the sense of the
gravity model (23.8).

To
From a. b. c. d. e. f. g. h. i. j. k. l. m. n. o.

a. Coke decaf 20 89 150 56 0 122 113 143 94 0 116 129 0 153 159
b. Coke diet decaf 99 37 86 210 203 139 135 105 145 274 100 245 144 230 258
c. Pepsi diet decaf 123 93 27 67 103 200 170 171 102 139 102 195 302 178 140
d. Pepsi decaf 59 206 62 20 152 120 133 173 214 0 242 100 315 186 158
e. Canfield 181 155 120 156 23 98 136 199 112 0 120 154 256 114 118
f. Coke 88 199 201 214 120 27 97 193 137 93 165 100 202 84 124
g. Coke classic 117 136 178 133 127 94 57 137 159 127 168 105 152 96 169
h. Coke diet 182 108 177 144 211 242 132 47 100 74 113 241 246 227 167
i. Pepsi diet 96 137 97 252 126 143 161 102 47 74 103 130 133 168 196
j. RC diet 0 120 0 144 93 91 163 67 144 31 77 159 119 91 205
k. Rite diet 98 96 106 175 139 209 170 117 100 74 43 183 212 175 216
l. Pepsi 152 231 234 103 135 106 102 263 123 177 214 55 176 85 105
m. Private label 185 159 213 185 358 245 149 226 152 241 156 198 27 158 454
n. RC 144 273 171 175 119 86 98 216 185 111 169 82 162 52 103
o. Wildwood 132 300 141 161 99 101 151 152 187 149 305 109 324 112 27
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FIGURE 23.5. Unfolding on the brand switching data of Table 23.1 after being
converted by the gravity model. The solid points denote the the colas chosen at
time t, the open circles represent colas chosen at time t + 1.

to which the change is made) as open circles. To interpret this diagram, one
studies, for example, how Coke diet buyers change: note that they tend to
move to Riet diet, Coke diet decaf, Pepsi diet, RC diet, and Pepsi diet decaf,
because they are the nearest in the plot. They are not likely to change to
Private label, Wildwood, and Canfield because these brands are far away.
A striking feature of the solution is that there is not much changing going
on for customers buying the Private label because it is located far away
from all other colas. In the same manner, one can focus on any other cola
and see how customers change to the competing colas.

23.7 The Slide-Vector Model

The unfolding model for asymmetry estimates many parameters. To reduce
the number of parameters, a constrained form of unfolding can be used. One
such model is the slide-vector model that constrains the row and column
points to be equal up to a translation. This restriction implies that the
solution consists of the points that represent the choice objects and one
uniform shift of the entire space, the slide-vector z, in a fixed direction. This
model was first proposed by De Leeuw and Heiser (1982, who attributed
it to a personal communication with Kruskal, 1973) and was thoroughly
worked out by Zielman and Heiser (1993). Note that Carroll and Wish
(1974b) refer to the same model when they speak of the drift vector model.
The rationale behind the model is that the data can be thought to consist
of symmetric distances augmented by a strong wind: changes against the
wind direction will take more effort, whereas changes in the direction are
easier. In fact, Figure 23.4 suggests just that model.
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To lay out the slide-vector model formally, we define X to be the row
coordinates and Y the column coordinates in the unfolding problem. Then,
the restriction in the slide-vector model amounts to yis = xis − zs. The
definition of the distance in the slide-vector model is given by

dij(X,Y, z) =

(∑
s

(xis − yjs)2
)1/2

=

(∑
s

(xis + zs − xjs)2
)1/2

.(23.9)

Thus, the row points X are equal to the column points Y translated by
the slide-vector z.

Clearly, if z = 0, then (23.9) reduces to the ordinary symmetric Euclidean
distance. For two objects that are at the same position, dij(X,Y, z) reduces
to (

∑
s z2

s)1/2, which again is symmetric. In fact, if diagonal values δii are
fitted in the unfolding problem, then these entries are all estimated by the
length of the slide vector.

The slide-vector model can easily be fitted by considering unfolding as
MDS with missing within-group dissimilarities (see Section 14.1) combined
with external constraints (see Section 10.3). In matrix notation, the slide-
vector restrictions are given by Y = X−1z′. Stacking the row and column
coordinates underneath each other gives[

X
Y

]
=

[
X

X − 1z′

]
=

[
I 0
I −1

] [
X
z′

]
= E

[
X
z′

]
.

Thus, the slide-vector model is fitted by providing the external constraints
E in this way.

Consider a small illustrative example of three objects for generating the
matrix of external constraints E. Suppose we want to apply the slide-vector
model in two dimensions. Then, the full MDS matrix becomes

∆ =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 δ11 δ12 δ13
0 0 0 δ21 δ22 δ23
0 0 0 δ31 δ32 δ33

δ11 δ21 δ31 0 0 0
δ12 δ22 δ32 0 0 0
δ13 δ23 δ33 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ and W =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

Note that the matrix W indicates that the within-block dissimilarities are
missing, so that we are dealing with unfolding. The between-block dissim-
ilarities contain the asymmetric data. The matrix of coordinates is simply⎡⎢⎢⎢⎢⎢⎢⎣

x11 x12
x21 x22
x31 x32
y11 y12
y21 y22
y31 y32

⎤⎥⎥⎥⎥⎥⎥⎦ ,



508 23. Modeling Asymmetric Data

Coke decaf

Coke diet decaf

Pepsi diet 
decaf

Pepsi decaf

Canfield

Coke

Coke classic

Coke diet

Pepsi diet

RC diet

Rite diet

Pepsi

Private label

RC

Wildwood

Coke decaf

Coke diet decaf

Pepsi diet 
decaf

Pepsi decaf

Canfield

Coke

Coke classic

Coke diet

Pepsi diet

RC diet

Rite diet

Pepsi

Private label

b. Slide vector representation.a. Joint representation.

RC

Wildwood

FIGURE 23.6. The slide-vector model fitted to the brand switching data of Ta-
ble 23.1 after being converted by the gravity model. Panel (a) shows the joint
representation of rows (*) and columns (o). Panel (b) shows the representation
with one set of points and the slide vector. The arrow in the center that indicates
the slide vector is rather small.

that is, restricted to be equal to

E
[

X
z′

]
=

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 −1
0 1 0 −1
0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎣

x11 x12
x21 x22
x31 x32
z1 z2

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
x11 x12
x21 x22
x31 x32

x11 − z1 x12 − z2
x21 − z1 x22 − z2
x31 − z1 x32 − z2

⎤⎥⎥⎥⎥⎥⎥⎦ .

Thus, the slide-vector model can be fitted by providing the matrix of exter-
nal variables E above to an MDS program that allows for linear restrictions
on the configuration and allows for missing values of the dissimilarities.

We now return to the colaswitching data of Table 23.1 and their trans-
formations by the gravity model in Table 23.2. The slide-vector model was
fitted by Proxscal in SPSS as it allows for external variables such as those
defined by E. The resulting configuration is given in Figure 23.6. Because
the slide-vector model is a constrained version of unfolding, there are two
possible representations. The joint representation in Figure 23.6a shows
the row and column points together. It can be clearly seen that the column
points are indeed equal to the row point up to a translation. The second
representation (see Figure 23.6b) only shows a single set of coordinates
together with the slide-vector z.

The example shows that the slide vector is rather small for these data.
The model mostly captures the symmetric part of the data and shows that
a uniform trend in the asymmetries, however large they may be, is relatively
small.
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It seems that switching takes place mostly between colas of the same
type. For example, there is switching with the group of Coke, Pepsi, RC,
and Canfield, within the group Pepsi diet, Coke diet decaf, Rite diet, and
Coke diet, but less switching between these groups. In this solution, too,
we see that Private label is farthest away from all other colas indicating
that those households do not switch easily to other colas.

A disadvantage of the slide-vector model is that it is quite restrictive
compared to unconstrained unfolding. Instead of n×p coordinates for Y in
unrestricted unfolding, the slide-vector model only estimates p parameters
for the slide vector. It seems that the slide-vector model works better if
asymmetries are large relative to the symmetric part of the data. We also
expect the slide-vector model to perform better for small data sets because
the restrictions on the coordinates are weaker than for large n.

23.8 The Hill-Climbing Model

The formal advantage of the slide-vector model is that it easily fits into
the constrained unfolding framework so that it can be fitted by a standard
program such as Proxscal. The joint representation of X and the con-
strained Y is easy to interpret even though it doubles the number of points.
The more parsimonious representation of only X and z seems harder to in-
terpret. To remedy the latter problem, we propose an adaptation of the
slide-vector model. We are not aware of references in the literature that
have proposed this model earlier.

The new model is based on the hill-climbing metaphor: walking uphill is
more difficult than walking downhill, whereas on a plateau walking from
point A to B takes the same effort as walking from B to A. This idea can
be modeled by choosing the distance measure as

dij(X, z) =

(∑
s

(xis − xjs)2
)1/2

+
∑

s(xis − xjs)zs

(
∑

s(xis − xjs)2)
1/2 , (23.10)

or in matrix notation

dij(X, z) = ‖xi − xj‖ +
(xi − xj)′z
‖xi − xj‖ . (23.11)

A least-squares model estimating (23.11) is given by

L(X, z) =
n∑

i=1

n∑
j=1

(
δij −

[
‖xi − xj‖ +

(xi − xj)′z
‖xi − xj‖

])2

. (23.12)

The rationale behind this model is that the projection of the difference
vector xi − xj of going from point i to point j on a slope given by the
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slope vector z measures to what extent it is more difficult or easier to go
from point i to j than the Euclidean distance only. If the difference vector
is orthogonal to the slope vector z, then no asymmetry is modeled. If the
difference vector is parallel to the slope vector, then maximum asymmetry
is achieved. Note that dii(X, z) = 0 by definition so that the diagonal values
cannot be modeled. The denominator ‖xi −xj‖ in (23.11) is chosen so that
the length of the Euclidean distance between i and j does not influence the
amount of asymmetry.

The orientation of the difference vector, and thus the positioning of the
points, is influenced by the asymmetry in the data because the orientation
of the difference vector determines the projection on the slope vector. It
may be verified that (23.12) can be decomposed into a symmetric part
M with elements mij = (δij + δji)/2 and a skew-symmetric part N with
elements nij = (δij − δji)/2; that is,

L(X, z) = 2
n∑

i=1

n∑
j=i+1

(mij − ‖xi − xj‖)2

+
n∑

i=1

n∑
j=1

(
nij − (xi − xj)′z

‖xi − xj‖
)2

. (23.13)

This reformulation shows that the distances directly model the symmet-
ric part of ∆, and the projections model the skew-symmetric part. The
size of the symmetric part and the skew-symmetric part can be expressed
in terms of the sum-of-squares ‖M‖2 and ‖N‖2. The relative difference
between those measures influences the solution (23.13) in how much sym-
metry and how much skew-symmetry of the data is fitted. Consider the
following adaptation of (23.13); that is,

Lw(X, z) =
2α

‖M‖2

n∑
i=1

n∑
j=i+1

(mij − ‖xi − xj‖)2

+
1 − α

‖N‖2

n∑
i=1

n∑
j=1

(
nij − (xi − xj)′z

‖xi − xj‖
)2

, (23.14)

where 0 ≤ α ≤ 1 is a fixed weight that sets the relative importance of the
two parts. Choosing α = 1 fits only the symmetric part M as in regular
MDS. For α = 0, only the skew-symmetric part N is fitted. If α = .5, then
both parts are equally important in the solution. Note that the length of
z only reflects the amount of skew-symmetry that is captured from N. For
the interpretation, it is the direction of z that shows how the difference
vectors project on the hill slope z.

We have fitted the hill-climbing model to the cola data. Our model cannot
be estimated by a constrained form of MDS and a specialized algorithm
had to be developed. Here we have used a general-purpose minimization
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FIGURE 23.7. The hill-climbing model fitted to the brand switching data of
Table 23.1 after being converted by the gravity model. The dotted line gives the
direction of the slope up the hill.

function in MatLab to compute a solution. Figure 23.7 presents the results.
The slope vector gives the uphill direction. The symmetric part of the data
can be interpreted as usual. For example, there seems to be much switching
between Coke, Coke classic, RC, and Pepsi because they are close together.
To a lesser extent this also holds for the group of Coke decaf and Pepsi
decaf, the group Coke diet, Pepsi diet and Rite diet, and the group of Coke
diet decaf and Pepsi diet decaf.

To see how much skew-symmetry is present, the hill-climbing model pre-
dicts that changing from Private label to most other colas is easier than
changing from those colas to Private label. The reason is that starting from
Private label to any other cola it is downhill and the other way is uphill. We
also see that there are several groups of colas whose difference vectors are
almost orthogonal to the slope direction. Those groups lie at the same alti-
tude on the hill and hardly display asymmetry in how often people change
from one cola to the other or vice versa. One such group is Coke, Coke
classic, RC, and Pespi. Other groups that are mostly symmetric consist of
Coke decaf and Pepsi decaf, a group with Pepsi diet and Rite diet, and
a group of Coke diet decaf and Pepsi diet decaf. In a similar way, more
relations could be deferred from the hill-climbing representation in Figure
23.7.

The hill-climbing model resembles to some extent the jet-stream model
proposed by Gower (1977). This model uses the metaphor of flying times
taking the jet-stream into account. Using our notation, the distances in the
jet-stream model are defined by

dij(X, z) =
‖xi − xj‖

1 + (xi−xj)′z
‖xi−xj‖

. (23.15)
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The difference from the hill-climbing model is that the asymmetry factor
appears in the jet-stream model in the denominator, whereas in the hill-
climbing model it turns up as a separate term.

23.9 The Radius-Distance Model

Another model for fitting asymmetry directly is based on a representation
of objects by circles with different radii (Okada & Imaizumi, 1987). The
asymmetric dissimilarity δij is modeled along the line connecting the cen-
ters i and j of two circles. The radius-distance from i to j is defined as the
Euclidean distance dij between the centers of the circles, subtracting the
starting radius of object i and adding the ending radius of object j. Thus,
the radius-distance model can be fitted by minimizing

L(X, r) =
n∑

i=1

n∑
j=1

[δij − (dij(X) − ri + rj)]2

= ‖∆ − (D(X) − 1r′ + r1′)‖2, (23.16)

where D(X) has elements dij(X) which refer to the usual Euclidean dis-
tance and r is a vector containing nonnegative radii ri. As the hill-climbing
model, the radius distance model always fits the diagonal elements by 0
because for the symmetric part dii(X) = 0 and for the skew-symmetric
part ri − ri = 0.

An algorithm to minimize L(X, r) can be easily formulated by recogniz-
ing that the loss can be decomposed in a symmetric and skew-symmetric
part (Bove & Critchley, 1993). This property means that L(X, r) may be
written as

L(X, r) = ‖(∆ + ∆′)/2 − D(X)‖2

+‖(∆ − ∆′)/2 − (r1′ − 1r′)‖2. (23.17)

Therefore, the symmetric part can be fitted by a regular MDS on (∆ +
∆′)/2. The solution for the skew-symmetric part N = (∆−∆′)/2 requires
a bit more care because of the nonnegativity constraints on the radii ri.
Some rewriting allows the skew-symmetric term of (23.17) to be expressed
as

‖N − (r1′ − 1r′)‖2 = tr N′N + 2nr′Jr − 4r′JN1, (23.18)

where N = (∆−∆′)/2 and J = I− n−111′ is the centering matrix. There
is a simple analytic solution to (23.18). In Section 23.2, the unconstrained
minimizer for (23.18) was given as ru = n−1JN1. Note that the centering
matrix J can be left out because N1 has column sum zero due to the skew-
symmetry of N. It is clear that ru does not satisfy the restriction that all
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FIGURE 23.8. The radius-distance model of Okada and Imaizumi (1987) fitted
to the brand switching data of Table 23.1 after being converted by the gravity
model.

ri ≥ 0. However, any rc = ru + c1 with a c ≥ mini ri will be a feasible
solution. The reason is that adding a constant does not change (23.18),
because r is premultiplied by J and the nonnegativity constraints will be
satisfied. Therefore, we choose c = mini ri so that the smallest radius equals
zero.

Figure 23.8 shows the results of the distance radius model to these data.
The symmetric relations can be easily interpreted by considering the centers
of the circles. Large distances indicate little mutual switching whereas colas
at close distance imply more mutual switching. The asymmetric part is
taken care of by the differences in circle sizes. The fitted distance going
from Coke decaf to Rite diet is indicated by the arrow in Figure 23.8.
Going the other way around, from Rite diet to Coke decaf, the distance is
computed from the border of the Rite diet circle to the far end of the Coke
decaf circle. Because the circle of Coke decaf is larger than the circle of Rite
diet, the distance Rite diet to Coke decaf is larger than the distance Coke
decaf to Rite diet. This indicates that more households are changing from
Coke decaf to Rite diet than vice versa. In a similar way, all the relations
can be interpreted.

A nonmetric version of the radius-distance model was proposed by Okada
and Imaizumi (1987) who included a gradient-based algorithm. However,
the algorithmic approach outlined here can still be followed. First, replace
the δij by d̂ij as was done in Chapter 9 when going from metric to nonmetric
MDS. Then alternatingly update one set of parameters while keeping the
other fixed. Thus, given X and r, update d̂. Normalize d̂′d̂ to n2 so that
the trivial solution of d̂ = 0, X = 0, and r = 0 is avoided. Next, update
X and r given d̂. The update of X is given by (8.29) where (D̂ + D̂′)/2
should used instead of the dissimilarities. The update of r can be obtained
by rc discussed above. Remain iterating until convergence is obtained.
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a. b.

FIGURE 23.9. A circular vector field (panel a) and a configuration with a dom-
inant point that “feeds” into all other points (panel b).

Okada (1990) discusses how the radius-distance model can be extended
to ellipsoids instead of circles. This relaxation has the advantage that for
each dimension and each object the radius can be different thereby allowing
to estimate the skew-symmetric component in a better way. Okada (1990)
also presents a gradient based algorithm.

23.10 Using Asymmetry Models

The MDS user should be aware of the simple but important fact that any
asymmetry model is, as all models are, designed for a particular purpose
only. Each such model represents one particular form of asymmetry only.
It helps to detect only those patterns in the data on which it focuses. If the
chosen model does not show this particular form of asymmetry for the given
data, it does not imply that there are no other systematic asymmetries in
the data. Consider, for example, the slide-vector model. It is made to show
to what extent the data contain a general asymmetry in one direction of the
space. As we can see in Figure 23.6, this form of asymmetry can be rather
small. However, the data may contain other interesting asymmetries. Figure
23.9 shows two particular forms of asymmetries that would go unnoticed
by the slide-vector model: the circular vector field in panel A and the
configuration with one “dominant” element in panel B. (Neither of these
cases is inconceivable for real data.) The circular field would be detected
by the drift-vector model, for example, but the case in panel B would not
lead to a (resultant) drift vector that adequately describes the asymmetries.
Rather, in this case, it would be more revealing to show all the drift vectors
attached to this one particular point, provided that the asymmetries can
be considered big enough (relative to the symmetric part of the data) and,
of course, reliable enough to warrant further studies.

When analyzing asymmetries, the user should experiment with different
models to avoid missing systematic patterns that exist in the data. Mod-
els that identify the extent of one global and linear trend, in particular,
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should be complemented with models that represent the more fine-grained
asymmetries. To use such a hierarchy of models also allows one to assess
whether it is worth it, relative to the quality of the data, to pursue models
with many free fitting parameters.

23.11 Overview

In this section, we give a summary of the models for asymmetry and skew-
symmetry discussed in this chapter. The reader should know that the dis-
cussion in this chapter is not exhaustive. Other models for asymmetry exist
in the literature, some aimed at specific applications. In this chapter, we
have restricted ourselves to mostly distance-based models for asymmetry
or skew-symmetry.

Many of the models for asymmetry can be decomposed into a symmetric
part and a skew-symmetric part. Some models only estimate the skew-
symmetric part. Others fit the asymmetric data directly. Table 23.3 gives
an overview of the models discussed in this chapter. Analyzing the skew-
symmetric component separately from the symmetric part has the advan-
tage that for the interpretation one only cares about the skew-symmetry.
On the other hand, it may be useful to see the symmetric and skew-
symmetric relations simultaneously. An important issue in deciding for an
asymmetry model is the way of representing the asymmetry and how easy
it is to interpret it. The latter remains a subjective matter.

Throughout this chapter, we only discussed the analysis of two-way
asymmetric data. For three-way data, several models have been proposed
in the literature. For example, Okada and Imaizumi (1997) extend the
radius-distance model to the case of replications of two-way asymmetry
data. De Rooij and Heiser (2000) extend distance measures to deal with
the case of one-mode three-way asymmetric data.

23.12 Exercises

Exercise 23.1 Consider the data in the table below. They represent
preceding–following contingencies for certain types of threat display be-
haviors shown by a common bird, the great tit (Blurton Jones, 1968). The
numbers correspond to the proportion of times that the behavior in col-
umn j followed the behavior in row j. For example, feeding follows fluffing
3% of the time. Spence (1978) argues that these data are “a measure of
how ‘close’ behavior j is to behavior i” and uses MDS to “visually detect”
possible groupings of behaviors. The asymmetry of the data is noticed by
Spence, but not studied.
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TABLE 23.3. Summary of the properties of the models for asymmetric data dis-
cussed in this chapter. A + or a − in the columns P,M, and N indicate whether
the model fits asymmetric proximities directly (column P), the symmetric part
separately (column M), and the skew-symmetric part separately (column N).

Section Model P M N Graphical Representation
23.3 Signed-distance model – – + Signed distances between points on

line
23.3 Gower decomposition – – + Areas between vectors plus orientation
23.4 Distance model for

skew-symmetry
– – + Distance between points plus orienta-

tion
23.5 Scaling the skew-

symmetry
– + + Symmetry by distance between points,

skew-symmetry by a summary vector
23.6 Unfolding + – – Distances between row and column ob-

jects
23.7 Slide-vector model + – – As unfolding, but row and column

points are equal up to a translation
23.8 Hill-climbing model + – – Symmetry by distance between points,

skew-symmetry modeled by projection
of difference vector onto the slope di-
rection.

23.9 Radius-distance model – + + Distance between two points with the
radius from the starting circle removed
and the radius of the arriving circle
added
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Type of Behavior 1 2 3 4 5 6 7 8 9 10 11 12 13
1 Attack 4 17 16 11 10 13 11 0 6 0 0 9 4
2 Head down 26 0 5 14 4 13 2 8 5 0 0 5 18
3 Horizontal 25 3 0 12 13 11 3 2 10 8 0 4 9
4 Head up 5 9 8 8 14 15 5 4 13 0 2 5 12
5 Wings out 22 13 10 5 2 10 2 7 7 0 0 2 19
6 Feeding 2 5 18 13 11 3 3 5 13 8 1 16 1
7 Incomplete feeding 4 10 15 4 4 13 7 22 0 0 12 8 0
8 Hopping around 1 10 0 4 2 4 46 0 3 6 11 11 3
9 Hopping away 0 4 6 9 5 1 8 4 1 6 31 15 10

10 Crest raising 0 0 0 6 7 3 0 11 17 1 30 13 12
11 Fluffing 0 4 5 6 3 3 0 23 13 35 0 6 3
12 Looking around 5 0 5 0 3 6 12 12 11 30 8 0 9
13 Hopping towards 5 25 12 8 21 4 2 2 2 7 5 6 0

(a) Assess, by matrix decomposition, just how asymmetric these data
are.

(b) Use the symmetric portion of the data for a two-dimensional MDS
analysis. Then, add the skew-symmetric portion as vectors to a few
behaviors that are strongly asymmetric, and to a few others that are
only mildly asymmetric.

(c) How would you interpret the symmetric portion of these data? (Hint:
Blurton Jones speculates that behaviors within each “group” may
have certain causal factors in common.)

(d) Scale these data by the slide vector model, using Proxscal.

Exercise 23.2 Consider the data matrix below (Coombs, 1964). It shows
the frequencies with which an article that appeared in the journal shown
as a row entry cites an article in the column journal.

Journal AJP JASP JAP JCPP JCP JEdP JexP Pka
Am. J. Psy. 119 8 4 21 0 1 85 2
J. Abnorm. Soc. Psy. 32 510 16 11 73 9 119 4
J. Applied Psy. 2 8 84 1 7 8 16 10
J. Comp. Physiol. Psy. 35 8 0 533 0 1 126 1
J. Consulting Psy. 6 116 11 1 225 7 12 7
J. Educ. Psy. 4 9 7 0 3 52 27 5
J. Exp. Psy. 125 19 6 70 0 0 586 15
Psychometrika 2 5 5 0 13 2 13 58

To study the interaction behavior of these journals, we may follow Coombs,
Dawes, and Tversky (1970) by first subtracting the column and the row
means from the matrix entries. This leaves pure interaction values. Then,
proceed as follows.

(a) Split the matrix of interaction values into its symmetric and skew-
symmetric component.



518 23. Modeling Asymmetric Data

(b) Scale the symmetric part via MDS. Interpret the solution.

(c) Attach drift vectors to the points of the MDS configuration by hand or
by using an appropriate graphics package (see, e.g., Borg & Groenen,
1995).

(d) How do you interpret these drift vectors?

Exercise 23.3 Consider Table 23.2 on p. 505 with the asymmetric dissimi-
larities obtained from the brand switching between 15 colas.

(a) Compute the skew-symmetric matrix of this table.

(b) Compute the unidimensional skew-symmetry model (23.5). Plot the
results on a line. How do you interpret this solution?

(c) Apply Gower’s decomposition to these data. Plot the first bimension.
Interpret the solution.

(d) Which model do you expect to recover the skew-symmetry the best?
Why do you think so?

(e) Compute for both models how much of the sum of squared skew-
symmetry is recovered by the unidimensional skew-symmetry model
and by Gower’s decomposition using the first bimension. Does your
computation coincide with your expectations?

(f) Do the two models differ in their interpretation? If so, how?



24
Methods Related to MDS

In this chapter, two other techniques are discussed that have something in
common with MDS. First, we discuss the analysis of a variables-by-objects
data matrix by principal components analysis and show how it is related to
MDS. Then, we discuss correspondence analysis, a technique particularly
suited for the analysis of a contingency table of two categorical variables.

24.1 Principal Component Analysis

Principal component analysis (PCA) is a technique that goes back to Pear-
son (1901) and Hotelling (1933). It begins with a data matrix of n cases
(often: persons) and k variables (often: items, tasks). The objective of the
method is to explain the k variables by a much smaller set of m “new” vari-
ables that are linear combinations of the original variables. Thus, new vari-
able i = w1 ·(variable 1)+w2 ·(variable 2)+ · · ·+wk ·(variable k), where the
weights, wj , are the unknowns. The hypothesis is that only a few (m � k)
of these new variables suffice to explain most of the variance of the data.
For example, in intelligence testing, the testees are typically asked to work
through test batteries with many items. One assumes, however, that not
every item requires a special ability to solve it. Rather, only a few abili-
ties should be needed, and each item requires a different mixture of these
abilities. Somewhat more formally, one thus wants to (a) find these under-
lying mixtures of more general components, and then (b) assign each case
a score on them. For example, a test battery of an intelligence test may
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require essentially only verbal and numerical reasoning (the components),
and each testee is assigned a score on these components on the basis of his
or her test results. The components are, of course, not identified directly:
rather, PCA shows which variables combine with high weights to form one
particular component, and then one has to infer from the content of these
variables what the component means. This approach is similar to inter-
preting dimensions in MDS on the basis of the points that have the longest
projections onto these dimensions.

Consider an example. Assume that M is the usual person-by-variable
data matrix. We begin by standardizing M so that its columns all sum to
zero and have norms equal to 1. This leads to matrix Z; that is,

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8 9 1
5 5 5
4 4 5
8 7 2
7 1 4
4 5 7
5 3 6
2 6 8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
→ Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.46 .62 −.60
−.07 .00 .04
−.24 −.15 .04

.46 .31 −.44

.29 −.62 −.12
−.24 .00 .36
−.07 −.31 .20
−.60 .15 .52

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (24.1)

To see what PCA does geometrically, we plot in Figure 24.1a the persons
(=rows) of Z as points in a 3D space. The axes are formed by the three
variables (=columns) of Z. If we rotate the axes, the variance of the pro-
jections of the points on the rotated axes will change in general. We know
from Section 7.10 that there exists one particular rotation to principal axes.
These axes are characterized by the property that they are closest to the
points or, expressed differently, that the projections of all points onto the
principal axes have maximal length, axis by axis in decreasing order. The
principal axes give us what we are looking for: the coordinates of the points
on the principal axes are the principal components. The variance of the el-
ements of the first principal component (denoted by k1) is maximal. The
second principal axis gives rise to the second PC, k2, and the third principal
axis to the last PC, k3. Note that each principal axis ka may be reflected
without changing the variance of the corresponding PC. Thus, any PCA
solution is unique up to reflections of its components.

To see how PCA works computationally, consider the (full rank) singular
value decomposition Z = PΛQ′; that is,

Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−.64 .32 −.10
.05 .03 −.08
.16 −.05 −.80

−.49 .04 .22
−.02 −.75 .03

.27 .16 .48

.20 −.25 .25

.46 .49 −.00

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎣ 1.46 0 0
0 .92 0
0 0 .20

⎤⎦⎡⎣ −.64 −.38 .67
−.38 .91 .16

.67 .15 .72

⎤⎦ , (24.2)
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FIGURE 24.1. Plot of persons of Z in space spanned by variables of Z (panel a);
same space with principal axes shown as tripod K (panel b).

where P contains the standardized principal components (PCs). The PCs
are orthogonal to each other, because P′P = I in any singular value de-
composition. The columns of K = PΛ are the unstandardized principal
components. Figure 24.1b shows the principal axes that generate these
PCs—k1,k2, and k3—in the space of the original variables, the columns of
Z. The PCs are related to the original Z by a rotation/reflection, K = ZQ,
because Q′Q = QQ′ = I in any singular value decomposition.

We can also directly look at the space spanned by the principal axes,
where the elements of K are the coordinates of points that represent the
persons. This view is shown in Figure 24.2a, where the tripod of z1, z2, and
z3 indicates how the original variables are oriented in this principal axes
space.

The norms of the principal components k1,k2, and k3 are equal to the
respective singular values λa on the diagonal of Λ. The squared singular
values indicate how much variance is accounted for by the various principal
components. In our small example, we see that the third PC is very small
so that the various person points are almost all located at the same height
on the third dimension of Figure 24.2a. Expressed algebraically, the data
matrix Z is decomposed into a sum of matrices each with rank 1, λ1p1q′

1 +
λ2p2q′

2 + λ3p3q′
3 (with qa column a of Q), so that the first k < 3 terms

are the best approximation of Z by a matrix of lower rank k. The singular
value λa is the weight of the information in the term λapaq′

a (see Section
7.6, item 4).

Standardizing K amounts to adjusting the components k1,k2, and k3 to
length one by dividing each column of K by the corresponding λa. That is,
P = KΛ−1. Geometrically, this operation means that the configuration is
stretched or compressed along the axes of Figure 24.2a. The result of this
transformation is shown in Figure 24.2b.
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FIGURE 24.2. Persons as points in space that have a principal axes orientation;
the axes that correspond to the original variables are shown as the tripod Z
(panel a). Panel (b) shows same as panel (a), except that space is spanned here
by the standardized principal components.

Figure 24.2b can be obtained from the original data as follows. Start
with the original row-points configuration Z, rotate it to principal axes
orientation by Q, and then stretch or compress the configuration along the
principal axes by the weights in Λ−1. Algebraically, this corresponds to
computing P = ZQΛ−1, where the columns of P are obviously weighted
sums of Z’s columns, as intended.

The matrices Q and Λ can also be found from an eigendecomposition
of the intercorrelation matrix of the original variables, R = Z′Z, because
R = QΛP′PΛQ′ = QΛ2Q′. Thus, the eigenvalues of R are equal to the
squared singular values of Z. A graphical representation of the first two
principal axes for our small example is given in Figure 24.3.

Once the components P are found, one can reverse the perspective and
ask how they explain the original variables. Assuming here that the de-
composition has full rank, we can simply reverse the equation P = ZQΛ−1

to get Z from P via Z = PL′ with L = QΛ. The coefficients in L are
called component loadings and can be interpreted as the correlations be-
tween the variables and the components. This property can be seen as
follows. The correlations between the variables (columns) of Z and P
are Z′P, because both Z and P are standardized. Thus, we get Z′P =
Z′ZQΛ−1 = RQΛ−1 = QΛ2Q′QΛ−1 = QΛ. This yields for the example
above

L =

⎡⎣ −.93 −.35 .13
−.55 .84 .03

.98 .14 .14

⎤⎦ .
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FIGURE 24.3. Persons (labeled by row numbers) in the space of the first two stan-
dardized principal components, together with projections of the original variables
z1, z2, and z3 onto this space.

L shows that the column vector 1 of the data matrix correlates with the
first PC with −0.93. It is therefore almost fully explained by this PC. The
second variable of the data matrix correlates with the first PC with −0.55,
and the third variable with 0.98. Overall, the component loadings make
clear that the three variables of our data matrix are essentially only two-
dimensional (as Figure 24.2a shows graphically). They correlate most with
the first PC, and almost not at all with the third PC.

The loadings can also be interpreted geometrically as the lengths of the
projections of the vectors that represent the variables onto the standardized
PCs P. The squares of the elements of the component loadings in L are a
measure of fit for the variables (see Table 24.1). The sum of the squared
component loadings for dimension a is equal to the eigenvalue λ2

a. Because
the sum-of-squares of the loadings in matrix L above is 1 in each row, each
variable is fully accounted for in the 3D space spanned by the PCs and for
98.7% in 2D.

The simultaneous representation of objects and variables in one plot as in
Figure 24.3 is called a biplot (Gabriel, 1971). The term bi in biplot refers to
the representation of the two modes (the objects and the variables) in one
plot but not to the dimensionality, although the plots are usually made in
two dimensions. The two sets of points, the object points that correspond
to the rows of P and the variables whose coordinates are the component
loadings L = QΛ, are related as scalar products. This means that we can
only interpret the projection of object points on the vector that represents
a variable (similar to Figure 16.3), not the distance between an object point
and the variable-vector. This projection predicts the value of the object on
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TABLE 24.1. Squared component loadings of the example data in (24.1). The
last row contains the proportion of variance accounted for (VAF).

Dimension Total
Variable 1 2 3 1 + 2 1 + 2 + 3

1 .860 .122 .018 .982 1.000
2 .299 .700 .001 .999 1.000
3 .961 .019 .021 .980 1.000
λ2

a 2.120 .841 .040 2.961 3.000
VAF .707 .280 .013 .987 1.000

the variable. For more details and some examples of biplots, we refer to
Gabriel (1971), Gower and Hand (1996), and Gifi (1990).

A Typical Application of PCA
In many applications, only the structure of the variables is of interest.
Then, PCA becomes quite similar to (metric) MDS, because it then re-
duces to the question of analyzing the structure of a correlation matrix. As
an illustration, consider the correlation matrix in Table 5.1. Rather than
taking these numbers as similarities and attempting to represent them by
distances in a Euclidean space, in PCA we look at the correlations as scalar
products. An optimal solution for a PCA representation is easy to find, as
was shown above. The loadings of the intelligence test items of Table 5.1
are exhibited in Table 24.2. Overall, these eight variables have a total vari-
ance of 8 (geometrically expressed: a total length of 8). Hence, for example,
the first three PCs account for λ2

1 + λ2
2 + λ2

3 = 3.37 + 1.35 + 1.05 = 5.77 or
(5.77/8) · 100 = 72% of the variance. This follows from the spectral decom-
position theorem [see (7.11)], and the convention to norm the eigenvectors
to length 1. Note also that the ath PC accounts for a maximum of the
variance of the original variables that has not been explained already by
the PCs 1, . . . , a − 1.

Geometrically, we see that the configuration of the variables in the space
spanned by the first three PCs, as shown in Figure 24.4, is similar to Figure
5.1. Both exhibit a circular arrangement of the points and vector endpoints,
respectively. The PCA representation, however, is higher-dimensional. The
(ordinal) MDS representation of Figure 5.1 essentially corresponds to a
plane that captures the vector endpoints in Figure 24.4, because in MDS
it is the distance of the vectors’ endpoints that we want to represent, not
the angles that the vectors subtend.

MDS and PCA (in the sense of metrically analyzing a correlation matrix)
are, therefore, closely related. However, one cannot always expect similar
results. PCA not only leads to higher-dimensional representation spaces
than MDS. PCA is also almost always done metrically, whereas most MDS
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FIGURE 24.4. 3D principal component representation of correlations in Table
5.1, rotated to simple structure.

TABLE 24.2. Loading of variables in Table 5.1 on principal components (PC1,
. . ., PC8) and on dimensions rotated to simple structure in the space spanned
by first three PCs (SS1, SS2, SS3).

Test PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 SS1 SS2 SS3
1 0.63 -0.59 0.15 -0.14 -0.22 -0.02 -0.22 0.33 0.02 0.85 0.24
2 0.69 -0.50 0.24 -0.13 -0.11 -0.04 0.06 -0.41 0.15 0.86 0.18
3 0.70 0.02 0.50 0.06 0.35 0.15 0.31 0.15 0.60 0.61 -0.07
4 0.68 0.48 0.22 0.18 0.11 0.17 -0.42 -0.10 0.84 0.16 0.12
5 0.60 0.57 0.10 -0.20 -0.10 -0.49 0.06 0.04 0.82 0.00 0.18
6 0.70 0.30 -0.29 0.15 -0.44 0.27 0.21 0.03 0.56 0.08 0.58
7 0.57 0.02 -0.61 -0.46 0.28 0.13 -0.02 -0.01 0.18 0.07 0.81
8 0.59 -0.31 -0.46 0.50 0.18 -0.25 0.01 0.00 0.01 0.38 0.72

λ2
a 3.37 1.35 1.05 0.59 0.51 0.45 0.37 0.31

Explained
variance (%) 42.1 16.9 13.1 7.4 6.4 5.59 4.7 3.9 26.4 25.1 20.7
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applications are ordinal ones, in particular those in exploratory data anal-
ysis where one wants data representations that are as simple as possible.
Moreover, the PCA solution is seldom studied geometrically. Rather, typ-
ically only the loadings of the vectors on the components are interpreted,
similar to traditional dimension-oriented MDS. In our illustrative applica-
tion, that means that one would interpret the values of the various tests on
the rotated components SS1, SS2, and SS3 but not the circular manifold
that we see in Figure 24.4.

Principal Coordinates Analysis
A closely related technique with the same algebraic results as PCA, called
principal coordinates analysis (PCO), emphasizes the representation of the
objects (Gower, 1966). Consider the rows of the data matrix Z with k
variables as points in the k-dimensional space. The aim is to approximate
the distances dij(Z) in a low-dimensional m < k space X. If this is done
with classical scaling, then we have to do the following computations. First,
compute the matrix of squared distances D(2)(Z) = 1c′ + c1′ − 2ZZ′, with
c the vector of the diagonal elements of ZZ′; see (7.5). Then pre- and
postmultiply D(2)(Z) with the centering matrix J and multiply the result
with − 1

2 . These operations lead to

− 1
2JD(2)(Z)J = − 1

2J(1c′ + c1′ − 2ZZ′)J
= − 1

2J(−2ZZ′)J = ZZ′.

Then, the eigendecomposition of ZZ′ = PΛ2P′ is computed. The config-
uration X for the object points obtained by classical scaling equals the
first m columns of PΛ. The configuration obtained from PCO is exactly
the same as K obtained by PCA. Thus, using the normalization PΛ, this
equivalence shows that PCA may be seen as MDS that tries to reconstruct
distances in a high-dimensional space by a low-dimensional representation.

Of course, instead of using the classical MDS criterion, the high-dimensional
distances can also be approximated by using the Stress function in MDS.
This approach has been advocated by Meulman (1986, 1992) and is called
distance-based PCA. It turns out that the Stress values at a minimum can
also be interpreted as a ratio of variances, similar to PCA (Groenen &
Meulman, 2004).

24.2 Correspondence Analysis

Correspondence analysis (CA) can be seen as an equivalent of PCA on a
contingency table of two categorical variables. In such a table, every entry
gives the frequency of each combination of categories of the two variables.
The objective of CA is to show the interaction in this table graphically.
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TABLE 24.3. A hypothetical contingency table of the distributions of seats by
country and political faction (Groenen & Gifi, 1989).

Political Faction
Christian

Country Democrats Socialists Other Total
Belgium 8 9 7 24
Germany 39 30 6 75
Italy 25 11 39 75
Luxembourg 3 2 1 6
The Netherlands 13 10 2 25
Total 88 62 55 205

Consider the following hypothetical example. Assume we are interested
in the political similarity of some European countries. One set of data that
speaks to this issue is the distribution of the seats of these countries in
the European Parliament over the political factions. Let Table 24.3 be the
hypothetical contingency table of sets for five countries and three politi-
cal factions. Figure 24.5 shows the result of the correspondence analysis
of Table 24.3. In the figure, both the row points (the countries) and the
column points (political factions) are plotted. The distance between row
points is a particular form of similarity of the countries. For example, The
Netherlands and Germany have the same relative distribution of seats over
the political factions (see Table 24.4). That is, they have the same data
“profile” (Greenacre, 1984, p. 55). Zero distances in CA always occur for
profiles that are exactly the same. The properties of these two countries
are similar to the profile of Luxembourg and thus are located close to each
other but not at zero distance. The centroid can be interpreted as the aver-
age country, so that the closer a country is located towards the centroid, the
more similar the country is to the average country. Italy and Belgium differ
from the other countries because they are not located close together. Note
that the scatter of the country points is almost exclusively along the first
dimension, indicating that the second dimension is of minor importance.
The distance between column points along each axis can be interpreted in a
similar way, but the distance between country points and party points has
to be interpreted with some care. We return to this later when discussing
the example at the end of this section.

Although CA is often applied to contingency tables, the method can
in principle be used on any rectangular table with nonnegative similarity
values. For example, CA can be used on preference rankings and could be
used as an alternative to unfolding. (If used this way, the entries in the
table should be similarities, though.)

CA is known under different names, such as reciprocal averaging, dual
scaling, canonical correlation analysis (applied to qualitative data), and si-
multaneous regression, because it has been discovered independently in dif-
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FIGURE 24.5. The correspondence analysis solution of Table 24.3. Note that the
points for Germany and the Netherlands are located on top of each other.

TABLE 24.4. Row profiles of Table 24.3.

Political Faction
Christian

Country Democrats Socialists Other Total
Belgium .333 .375 .292 1
Germany .520 .400 .080 1
Italy .333 .147 .520 1
Luxembourg .500 .333 .167 1
The Netherlands .520 .400 .080 1
Mean row profile .429 .302 .268
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ferent areas (Hotelling, 1933; Richardson & Kuder, 1933; Hirschfeld, 1935).
Guttman (1941) presented a comprehensive treatment of the algebra of
CA. The graphical and geometric emphasis in CA has been largely due
to Benzécri et al. (1973), a book that also contains a historical overview.1

There is a wide literature on CA, and standard textbooks are: Nishisato
(1980, 1994), Lebart, Morineau, and Warwick (1984), Greenacre (1984,
1994), and Gifi (1990). Developments on CA can be found in Greenacre
and Blasius (1994) and Blasius and Greenacre (1998). For a discussion of
the relation of CA with MDS, we refer to Heiser and Meulman (1983a).
Groenen and Van de Velden (2004) discuss the inverse CA problem, that
is, given a CA solution what data sets would have produced the same CA
solution.

The remainder of this section is organized as follows. First, we consider
the geometry of CA following the example of Groenen and Gifi (1989), also
discussed in SPSS (1990). Then, it is shown how the CA solution can be
computed. Also, several algebraic properties of CA are discussed such as
the inertia, the contribution of a point to the inertia of a dimension, and
the proportion of total distance of a point shown in a dimension. Next, we
apply CA to crime rates in 10 US states. Finally, we end with some remarks
on the relation of CA and MDS.

Geometry of Correspondence Analysis
To measure the similarity between two countries, correspondence analysis
uses (row) profiles normed to sum to one in each row. For example, the
Christian Democrats occupy 52% (39/75 = .520) of Germany’s seats in the
European Parliament. Table 24.4 contains the row profiles of Table 24.3.
From the row profiles, we see that the Netherlands and Germany have the
same relative distribution of seats over the factions, irrespective of their
difference in the total number of seats. Now, we discuss how to reconstruct
geometrically the CA solution of Figure 24.5 in three steps.

1. Consider Table 24.4 as coordinates in a 3D space (Figure 24.6). The
mean row profile is represented as the centroid. Because the profiles
sum to one, all of the points lie in the 2D subspace spanned by the
points representing the political factions: point (1, 0, 0) for Christian
Democrats, point (0, 1, 0) for Socialist, and point (0, 0, 1) for Other.
This 2D triangle is shown in Figure 24.7.

2. The next step in correspondence analysis is to assign weights to the
dimensions. Let F = (fij) be the contingency table, such as Table
24.3. In CA, a weighted Euclidean distance is used, where the dimen-

1Other historical overviews can be found in Nishisato (1980), Van Rijckevoorsel and
Tijssen (1987), Van Rijckevoorsel (1987), and Gifi (1990).
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sion weights are equal to (
∑

j fij/
∑

ij fij)−1/2, that is, the inverse
of the square root of the column means of Table 24.4. In CA, the
columns with small means are considered to be more discriminating
than the columns with large means. Hence, the weight for column 1 is
1/

√
.429 = 1.527, for column 2 it is 1/

√
.302 = 1.820, and for column

3 it is
√

.268 = 1.932. The weighted configuration is shown in Figure
24.8. This configuration is the same as the solution obtained by CA
in Figure 24.5, apart from the rotation.

3. The final step is to rotate to principal axes such that maximum vari-
ance is shown in the first dimension, the second dimension maximizing
the remaining variance, and so on.

These three steps show geometrically how a correspondence analysis solu-
tion is obtained. The emphasis in these steps was on the row points. The
role of the rows and columns can be reversed by simply transposing the
correspondence table. Next, we discuss some of the algebraic properties of
correspondence analysis.

Algebraic Properties
The weighted Euclidean distance used in CA has a close relation with the
χ2-statistic and so-called χ2-distances, provided the entries in the corre-
spondence table are frequencies. Let fi+ =

∑
j fij be the row sum of F,

f+j =
∑

i fij the column sum, and n =
∑

ij fij the total sum. The weighted
Euclidean distance of row profiles k and l (the distances between the points
in Figure 24.8) is given by

dkl =

⎛⎝∑
j

(fkj/fk+ − flj/fl+)2

f+j/n

⎞⎠1/2

, (24.3)
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and the weighted Euclidean distance of row profile k to the average profile
z by

dkz =

⎛⎝∑
j

(fkj/fk+ − f+j/n)2

f+j/n

⎞⎠1/2

. (24.4)

These distances are called χ2-distances because

∑
i

fi+

n
d2

iz =

⎛⎝∑
i,j

(fi+/n)(fij/fi+ − f+j/n)2

f+j/n

⎞⎠
= n−1

⎛⎝∑
i,j

(fij − fi+f+j/n)2

fi+f+j/n

⎞⎠ =
χ2

n
.

Thus, n times the weighted sum of the squared distances of the row points to
their centroid (in full dimensionality) is equal to the χ2-statistic. Expression
(24.5) is called total inertia.

We continue discussing how the coordinates in correspondence analysis
are obtained. Let Dr be the diagonal matrix of row marginals (with diag-
onal elements fi+) and Dc the diagonal matrix of column marginals (with
diagonal elements f+j). Let matrix E be the matrix of expected values
under the independence model, which has elements eij = fi+f+j/n. Then,
correspondence analysis requires the singular value decomposition of

D−1/2
r (F − E)D−1/2

c = PΦQ′, (24.5)
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with the usual properties P′P = Q′Q = I and Φ the diagonal matrix of
singular values. The rank of the decomposed matrix in (24.5) is at most
M = min(number of row points, number of column points) − 1. The row
scores R and column scores C are given by

R = n1/2D−1/2
r PΦ and C = n1/2D−1/2

c Q. (24.6)

This normalization implies R′DrR = Φ2, C′DcC = nI, and is called
the row principal by SPSS (1990), because the squared singular values
are the weighted sum of the squared row coordinates (after the principal
coordinates normalization of Greenacre, 1984, p. 88). For a discussion of
other normalizations, we refer to Greenacre (1984) and Gifi (1990).

Properties of this decomposition are:

• The weighted sum of the row scores (weights Dr) and the weighted
sum of the column scores (weights Dc) are equal to zero. The origin
is the average row (and column) profile.

• The term
∑

a φ2
a is called the inertia. In our example, we have perfect

fit, so that all of the inertia is shown in 2D. Inertia is related to the χ2-
statistic by χ2/n =

∑
a φ2

a. Therefore, the proportion of total inertia
recovered in m dimensions equals (

∑m
a=1 φ2

a)/(χ2/n).

• The contribution of row point i in recovering the inertia in dimension
a is (fi+/n)r2

ia/φ2
a. For column points, this contribution is (f+j/n)c2

ja.
The difference in formulas for row and column points stems from the
row principal normalization that is used. These relative contributions
are important to find those points that are important on dimension
a.

• Another interesting measure is the proportion of the χ2-distance of
row i to the centroid that is represented by the coordinate in dimen-
sion a. This proportion is given by r2

ia/d2
iz for the row objects, and

c2
jaφ2

a/(
∑

l c
2
jlφ

2
l ) for the column objects.

• Using the normalization above, the row scores are the weighted cen-
troid of the column scores, which is called the barycentric principle
(Benzécri et al., 1973). The transition formulas allow the transfor-
mation of the column scores into row scores and the row scores into
column scores by

R = D−1
r FC, (24.7)

C = D−1
c F′RΦ−2. (24.8)

Note that (24.7) computes the weighted centroid of the column points.
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• Because (24.5) is a dimensionwise decomposition, the elements of F
can be reconstituted in m dimensions by

f̂ij = (fi+f+j/n)

[
1 +

m∑
a=1

riacja

]
. (24.9)

If m = M (full dimensionality), then (24.9) reconstitutes F perfectly.

• In our example, we saw that the Netherlands and Germany have the
same row profile which gave yielding equal scores in CA. It turns
out that CA also gives the same results if these two rows are ag-
gregated. This principle is called distributional equivalence (Benzécri
et al., 1973). For our example, this principle implies that the matrix
with aggregated frequencies for the Netherlands and Germany,

F =

⎡⎢⎢⎣
8 9 7

52 40 8
25 11 39
3 2 1

⎤⎥⎥⎦ ,

yields exactly the same correspondence analysis solution as the one
obtained in Figure 24.5.

CA can be viewed as the residual analysis of the independence model
for a contingency table. If the χ2-value is significant (the independence
model does not hold), then the residuals contain more than noise alone, so
that it makes sense to analyze the remaining structure in the residuals by
CA. However, if the χ2-value of the independence model is not significant,
then the residuals are simply the result of noise, so that CA should be
avoided. The view of CA as residual analysis of loglinear models has been
advocated by Van der Heijden and De Leeuw (1985) and Van der Heijden,
De Falguerolles, and De Leeuw (1989). A maximum likelihood version of CA
was proposed by Goodman (1985, 1986), and Gilula and Haberman (1986).
For a comparison of these methods, see Van der Heijden, Mooijaart, and
Takane (1994).

Crime Rates
To illustrate how CA works, consider Table 24.5 with crime rates of seven
offenses of 10 U.S. states (U.S. Statistical Abstract 1970, Bureau of Census:
Crime rates per 100,000 people). The 50 states were used in an MDS anal-
ysis in Chapter 1, but here we restrict ourselves to the 10 states reported
in Table 24.5. The main question is how similar or different the states are
with respect to their crime statistics. What criminal offenses characterize
the states?

CA on Table 24.5 yields the inertia reported in Table 24.6. The first
two dimensions show 72% of the total inertia, 47% in the first dimension
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TABLE 24.5. Crime rates per 100,000 people for 10 U.S. states. The rows entries
are the criminal offenses and the column entries are the states.

State AK AL AR HI IL MA NE NY TN WY
Murder 12.2 11.7 10.1 3.6 9.6 3.5 3.0 7.9 8.8 5.7
Rape 26.1 18.5 17.1 11.8 20.4 12.0 9.3 15.5 15.5 12.3
Robbery 71.8 50.3 45.6 63.3 251.1 99.5 57.3 443.3 82.0 22.0
Assault 168.0 215.0 150.0 43.0 187.0 88.0 115.0 209.0 169.0 73.0
Burglary 790.0 763.0 885.0 1456.0 765.0 1134.0 505.0 1414.0 807.0 646.0
Larceny 2183.0 1125.0 1211.0 3106.0 2028.0 1531.0 1572.0 2025.0 1025.0 2049.0
Auto theft 551.0 223.0 109.0 581.0 518.0 878.0 292.0 682.0 289.0 165.0

TABLE 24.6. Singular values φa and percentage of reconstructed inertia of cor-
respondence analysis on crime rates in Table 24.5.

Inertia Perc. Cum.
Dim. φa φ2

a Inertia Inertia
1 .195 .038 46.8 46.8
2 .143 .020 25.1 72.0
3 .123 .015 18.6 90.6
4 .086 .007 9.1 99.7
5 .014 .000 0.3 100.0
6 .002 .000 0.0 100.0

Total .081 100.0

and 25% in the second dimension. The coordinates for the points are dis-
played in Figure 24.9. Because the row principal normalization is used, the
crimes are the weighted average of the points representing the states. The
predicted profile (or reconstructed profile) for a state consists of the projec-
tions of the criminal offenses points onto the line through the origin and a
state. For example, the projections on the line through the origin and MA
(Massachusetts) (see Figure 24.9) show that auto theft and robbery happen
more often than average. Because larceny and burglary project almost on
the origin, they occur at an average rate in Massachusetts, whereas mur-
der, rape, and assault are below average. Robbery (and to a lesser extent
assault) happens in New York (NY) more often than average, and larceny
less than average. In contrast, Nebraska (NE), Wyoming (WY), and Hawaii
(HI) have the opposite profile compared to NY. Murder happens more often
than average in the Southern states of Arkansas (AR), Alabama (AL), and
Tennessee (TN). The first dimension seems to be dominated by states with
robbery (on the right) versus states with more than average larceny. The
second axis shows crimes with physical violence (bottom) versus property
crimes (top).

Detailed results for the row and column points are given in Table 24.7.
The second column gives the so-called mass (Dr/n and Dc/n for the rows
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FIGURE 24.9. The correspondence analysis solution of the crime data for 10 U.S.
states reported in Table 24.5.

and columns, respectively) weighting the importance of each point in the
CA solution. The next two columns give the row scores R and column scores
C. Then, column diz and djz shows how much of the each point contributes
to the total inertia of .018 in the full dimensional space. We see that the
crimes murder and rape and the states AK, IL, and NE hardly determine
the CA solution as their contributions to the total inertia are very low. The
next two columns show the contribution of each point to the total inertia
of a dimension. For example, the first dimension is mostly determined by
the crimes robbery and larceny in the states NY, WY, and to a lesser
extent in HI and MA. The second dimension is mainly determined by the
crimes assault and auto theft in the states AL, AR, and MA. Even though
points may not determine the dimension, it may still be that a reasonable
proportion of the inertia of a point is shown in that dimension. The last
column shows the proportion of the inertia diz and djz that is shown in
both dimensions. We see that the inertia of all crimes is reasonably well
recovered in these two CA dimensions, because their total proportion of
inertia diz and djz recovered in two dimensions is varying from 42.1% to
87.9%. The same is true for the states with the exception of IL of which
only 19.2% of its inertia is shown in these two dimensions. Therefore, IL
should be excluded from the interpretation of this CA solution.

The MDS analysis in Chapter 1 (Figure 1.1) yields similar results. In
both analyses, we find that violent crimes (rape, assault, murder) are close
together as opposed to the property crimes. These results seem more pro-
nounced in the ordinal MDS solution. We have to bear in mind, though,
that the MDS solution was based on the full data set, whereas the corre-
spondence analysis solution was based on 10 states only.
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TABLE 24.7. Results for row and column points of the correspondence analysis
on crime rates in Table 24.5.

Contr. to Dim. Prop. diz Shown
Crime Dr/n r1 r2 diz Dim 1 Dim 2 Dim 1 Dim 2 Total
Murder .002 .012 -.470 .001 .000 .024 .000 .642 .642
Rape .005 -.015 -.258 .001 .000 .015 .001 .420 .421
Robbery .035 .656 -.055 .023 .393 .005 .648 .005 .653
Assault .041 .157 -.421 .012 .027 .360 .086 .621 .708
Burglary .268 .077 -.101 .011 .042 .133 .150 .253 .403
Larceny .523 -.156 .029 .015 .333 .021 .848 .029 .876
Auto theft .126 .249 .268 .019 .205 .442 .408 .471 .879
Total 1.000 .081 1.000 1.000

Contr. to Dim. Prop. djz Shown
State Dc/n c1 c2 djz Dim 1 Dim 2 Dim 1 Dim 2 Total
AK .111 -.469 .561 .003 .024 .035 .273 .210 .483
AL .070 .068 -1.797 .006 .000 .227 .002 .740 .742
AR .071 -.427 -2.016 .008 .013 .289 .064 .772 .836
HI .154 -.886 .668 .008 .121 .069 .547 .167 .713
IL .111 .464 .228 .005 .024 .006 .170 .022 .192
MA .110 1.035 1.540 .015 .118 .260 .303 .360 .663
NE .075 -.794 .327 .003 .047 .008 .579 .053 .632
NY .140 1.578 -.220 .017 .350 .007 .785 .008 .793
TN .070 .606 -1.188 .004 .026 .099 .245 .507 .752
WY .087 -1.784 .001 .011 .277 .000 .930 .000 .930
Total 1.000 .081 1.000 1.000
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Comparing CA and MDS
Correspondence analysis has several properties in common with MDS but
differs on other aspects. Both techniques graphically display the objects as
points in a low-dimensional space. In its basic form, MDS is a one-mode
technique (only one set of objects is analyzed), whereas CA is a two-mode
technique (row and column objects are displayed, as in unfolding). The
data in CA are restricted to be nonnegative, whereas MDS can process
more types of data: nonnegative or negative, frequencies, correlations, rat-
ings, rankings, and so on. In addition, MDS can optimally transform the
data. For contingency tables (the most widely used type of data for CA)
the nonnegativity restriction does not pose a problem, because frequen-
cies between two categorical variables are always nonnegative. CA uses the
χ2-distance as a dissimilarity measure, whereas MDS can accept any dis-
similarity or similarity measures (see Chapter 6). In MDS (and unfolding),
the distances between all points can be directly interpreted, but in CA this
is so only for either the row or the column points. The relation between row
and column points can only be assessed by projection (as in Figure 24.9).
Therefore, a CA solution has to be interpreted with some care, analogous
to non-Euclidean MDS solutions.

There exists a close relation between CA and Classical Scaling. Let ∆
contain the χ2-distances between the rows. Let the centering matrix J be
replaced by the weighted centering matrix Jw = I − (1Dr1)−111′Dr, so
that JwX has weighted mean zero (see Section 12.3). Then, the eigende-
composition in classical scaling of −(1/2)Jw∆(2)J′

w yields exactly the same
solution for the row scores as does correspondence analysis.

Applying MDS to this ∆ gives an even higher proportion of explained
inertia than CA. Gifi (1990) discusses the decomposition of the χ2-distances
with Stress for binary F. For a general F, setting δik = dik as defined in
(24.3) and setting the weight wik = n/(fi+f+k) gives a decomposition of
the χ2-distances by MDS. If the MDS algorithm uses the CA solution as
a start configuration, then the final MDS solution always gives a better
reconstruction of the χ2-distances than CA. One drawback of using MDS
(on the matrix of χ2-distances) instead of CA is that the MDS solution only
displays the row points, not the column points. If X has weighted sum zero,
that is,

∑
i fi+xia = 0 for each dimension a, then the origin represents the

average row profile, just as in correspondence analysis.

24.3 Exercises

Exercise 24.1 Consider the matrix below. It shows correlations (multiplied
by 100) among 13 work value items described in Table 5.2. The lower
(upper) half of the matrix is based on a representative survey of the East
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(West) German workforce. Note that in this study, no data were gathered
on work value item 10.

No. Work Value 1 2 3 4 5 6 7 8 9 11 12 13 14
1 Interesting job 47 43 38 28 37 29 28 27 16 15 21 28
2 Independent work 51 53 31 27 34 23 25 28 25 16 15 26
3 Much responsibility 42 57 39 32 42 38 38 41 24 16 09 25
4 Meaningful job 37 30 33 20 33 38 44 29 24 13 08 33
5 Chances for advancement 28 29 33 18 43 19 25 15 39 52 27 34
6 Respected job 18 23 34 24 43 37 39 29 37 29 21 35
7 Can help others 20 19 31 33 17 32 48 49 16 10 14 26
8 Useful job 20 17 28 40 18 37 56 32 23 16 18 30
9 Contact with other people 31 34 39 31 21 24 43 34 16 11 10 19

11 Secure position 14 17 18 19 39 37 24 25 17 40 18 38
12 High income 20 26 25 05 54 32 05 08 11 32 27 29
13 Much spare time 25 22 13 09 19 30 13 18 19 16 30 25
14 Healthy working cond. 32 31 23 37 25 20 25 23 24 33 16 23

(a) Analyze both of these correlation matrices via PCA (varimax rota-
tion) and interpret the resulting component loadings. Do the compo-
nents correspond to any of the facets of Table 5.2?

(b) What type of facets—axial, modular, or polar facets—can or cannot
be seen in a PCA of item correlations?

(c) Take the facet “Alderfer” in Table 5.2, for example. Imagine we had
many “material” work values, but only very few “growth” and “rela-
tional” work values, respectively. How would this affect an attempt
to verify a facet classification via PCA and via MDS analysis with
regional interpretations, respectively? Which approach is less robust
against uneven item sampling, and why?

(d) Fit the two PCA solutions by Procrustean methods to each other.
Which transformations are admissible for PCA solutions and why
are they? Which ones are not and why not?

Exercise 24.2 Assume that it takes two abilities, AR = “ability to read
well” and AM = “ability for mathematics”, to perform well in the tasks
T1, . . . , T4. The table below shows the ability scores for five persons, their
respective performance in four tasks (Ti), and the measured performance
in these tests (T ∗

i ). The scores were constructed as follows: let Ti = a ·AR+
b · AM , where a + b = 1; let T ∗

i = Ti + error.

Person AR AM T1 T2 T3 T4 T ∗
1 T ∗

2 T ∗
3 T ∗

4
1 10 4 8.80 8.20 5.80 4.00 8.06 7.50 7.01 3.69
2 5 3 4.60 4.40 3.60 3.00 3.93 3.86 4.63 0.93
3 2 7 3.00 3.50 5.50 7.00 3.24 3.91 6.43 5.11
4 5 9 5.80 6.20 7.80 9.00 4.19 4.48 8.70 8.76
5 9 10 9.20 9.30 9.70 10.00 9.51 9.93 11.04 9.92
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(a) Take the observed task scores, T ∗
1 , . . . , T ∗

4 , intercorrelate them, and
find out by using PCA how these scores can best be explained through
(possibly rotated) latent factors.

(b) Compute the components and compare them with the true AR- and
AM-scores, respectively.

(c) Sketch the vector configuration of the four tasks in 2D, both in prin-
cipal axes orientation and in varimax orientation.

(d) Intercorrelate T ∗
1 , . . . , T ∗

4 and do an MDS analysis of these correla-
tions. Compare the result with the PCA solution.

Exercise 24.3 Bendixen (1996) reports frequencies of 14 statements on 8
breakfast items judged by a sample of 100 housewives (see the table below).
The breakfast items are Cereals (CER), Muesli (MUE), Porridge (POR),
Bacon and eggs (B&E), Toast and tea (T&T), Fresh fruit (FRF), Stewed
fruit (STF), and Yoghurt (YOG). Note that each respondent could choose
more than one statement for each breakfast item.

Breakfast Item
no. Statement CER MUE POR B&E T&T FRF STF YOG

1 Healthy 14 38 25 18 8 31 28 34
2 Nutritious 14 28 25 25 7 32 26 31
3 Good in summer 42 22 11 13 7 37 16 35
4 Good in winter 10 10 32 26 6 11 19 8
5 Expensive 6 33 5 27 3 9 18 10
6 Quick and easy 54 33 8 2 15 26 8 20
7 Tasty 24 21 16 34 11 33 26 26
8 Economical 24 3 20 3 16 7 3 7
9 For a treat 5 3 3 31 4 4 16 17

10 For weekdays 47 24 15 9 13 11 6 10
11 For weekends 12 5 8 56 16 10 23 18
12 Tasteless 8 6 2 2 0 0 2 1
13 Takes too long to prepare 0 0 9 35 1 0 10 0
14 Family favorite 14 4 10 31 5 7 2 5

(a) What items and statements do you expect to influence the CA solu-
tion most? Why do you think so?

(b) Apply CA to the matrix of frequencies above. (You can use, for exam-
ple, the correspondence program in SPSS.) How many dimensions
do you choose? How much of the total inertia is accounted for by these
dimensions?

(c) Interpret the most important relations in the CA solution. (Hint:
focus on a statement and look which breakfast items are more and
less than average characterized by this statement.)
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(d) What items and statements are not well represented in this CA solu-
tion? Do you need to revise your interpretation at (c)?

(e) Remove the bad fitting items and statements and redo CA. Interpret
the solution. Are the relations different from the CA solution in (b)?
If so, explain the differences.

Exercise 24.4 Consider the data on the interpretations of Rorschach inkblot
pictures reported in Exercise 15.3 on p. 332.

(a) Do CA on these data. How many dimensions do you choose?

(b) Identify good and bad fitting row and column points. What measures
do you use for doing so?

(c) Interpret the CA solution. What are the most important relations in
these data?

Exercise 24.5 PCA can also be attempted “by hand”.

(a) Consider the correlation matrix 5.1. Convert the correlations into
angles among pairs of vectors. [Hint: For example, for r12 = .67 in
Table 5.1, the angle of the corresponding geometric vectors for items
1 and 2 is arccos(.67) = 47.9◦.]

(b) With this angle information, construct a vector representation of the
correlations. First, take eight knitting needles, straws, sticks, or the
like. Then stick needle 1 into a styrofoam ball and then needle 2 such
that it forms an angle of 47.9◦ with 1. Then proceed with needle 3,
and so on.

(c) Compare your result to a solution arrived at by computation.
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Appendix A
Computer Programs for MDS

Several computer programs for doing MDS exist, some of which are included
in major software packages, and others are in the public domain. The list of
programs we discuss in this appendix is not exhaustive, although we have
tried to find the most important ones in terms of options and availability
at the time of writing. Each program is described briefly. We also give an
example of how a simple MDS job is run in each program. Where possible,
we provide a subset of the commands and keywords needed for running a
simple MDS analysis.

MDS is very much a visualization technique. Fortunately, the graphi-
cal capabilities of modern PCs have improved drastically over the years.
Therefore, we place more emphasis on the graphical representations pro-
vided by MDS programs. In addition, we found two programs (Ggvis and
Permap) freely available on the Internet that show interactively how the
MDS solution is obtained. To reflect the development, we have organized
the remainder of this appendix into three sections: the first section dis-
cusses two interactive MDS programs, the second section is focused mainly
on commercial statistical packages that have high-resolution graphics, and
the third section treats MDS programs that do not have high resolution
graphics and have mostly been developed in the early days of MDS.

Table A.1 gives an overview of the properties of each of the programs.
The MDS models in Table A.1 denote: (a) ordinal MDS with the primary
approach to ties; (b) ordinal MDS with the secondary approach to ties; (c)
ordinal MDS, using rank-image transformations; (d) interval MDS, a + b ·
pij = dij(X); (e) ratio MDS, b · pij = dij(X); (f) splines; (g) polynomial
regression, a+b·pij(X)+c·p2

ij(X)+· · · = dij(X); (h) power, pij = a·db
ij(X),
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which is equivalent to a linear MDS on logged proximities; (i) mixed models,
for example, ordinal (unconditional) MDS for matrix 1 and linear MDS for
a copy of matrix 1 stored in matrix 2. Note that (h) is but a linear MDS
on logged proximities.

One general warning for the use of all programs is in place: many pro-
grams have rather weak convergence criteria, which may cause the program
stopping the iterations too early and give suboptimal solutions. To be on
the safe side, we advise to stop the iterative process only if the difference in
two subsequent loss function values (usually Stress, or S-Stress) is smaller
than 10−6 and setting the maximum number of iterations to 100 or more.

To illustrate the setup of a program, we use the artificial data on the
ranking of pairs of politicians in Tables 9.4 and 9.3.

A.1 Interactive MDS Programs

With improving speed and graphical capabilities of modern computers, it
becomes possible to animate the way in which MDS solutions are obtained.
In this section, we discuss two of these programs, Ggvis and Permap.
We call these programs an interactive form of MDS because they allow
us to manipulate the MDS options by an easy user interface. Any change
of MDS options usually leads to animations showing the changes leading
to an optimal configuration. In such a way, you can test the stability of
the solution interactively, for example, by eliminating points, changing the
MDS model, rearranging points to check for local minima, and so on. These
programs stay close to the exploratory nature of MDS with an emphasis
on visualization.

Ggvis
Ggvis is a standard plug-in for MDS that comes with the Ggobi visual-
ization software. It is freely available from the Internet and can be run as a
standalone application or within the statistical programming environment
R (also freely available). Ggobi visualizes rectangular two-way-two-mode
data allowing an interactive grand tour through high-dimensional spaces,
labeling, glyphing, connecting edges, and the like. Ggvis uses many of these
options but is tailored for MDS. For an extensive discussion of Ggvis, we
refer to Buja and Swayne (2002).

A nice feature of Ggvis is that a change of options has immediate effects
on the solution. Thus, the user can see in real-time, for example, how the
configuration changes from a metric to a nonmetric solution. Although the
emphasis of Ggvis is on metric MDS, it also allows for ordinal transforma-
tions. Two options in Ggvis are unique. First, you can set interactively a
power transformation of the dissimilarities and the resulting distribution is
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TABLE A.1. A summary of several MDS programs; + stands for Yes or indicates
that option is available, – shows that option is not available, n.a. means not
applicable, and mem indicates that the maximum number of objects depends on
memory available.
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Platforms
Version 1.0.0b 11.3 n.a. 4.0.4 1.0 n.a. 4.5 11 3 2a 1 n.a.
Standalone program + + + + – – – – + + + +
In larger package + – + – + + + + – – + –
Commercial – – + + + + + + – – + –
MS-Windows + + + + + + + + – + – +
Macintosh – – + – + + + + – + – +
Graphical user interface + + + + + + + + – – – –
High resolution graphics + + + + + + + + – – – –
Dynamic graphics + + – – – – – – – – – –

General features
Minimizes Stress + + – + + + + + – + + +
Minimizes S-Stress – + + – – + – + – – – –
Minimizes alienation – – – + – – – + + – + –
Maximizes likelihood – + – – – – – – – – – +
Max. number of objects mem 200 100 100 mem mem 90 mem 50 60 100 mem
Min. number of objects 2 2 4 2 2 2 2 2 3 3 2 3
Max. dimensionality n-1 4 6 10 n-1 n-1 9 5 10 6 10 n-1
Processes rectangular data + + + + + – – + – + + +
Allows for missing data + + + + + + + + + + + +
Offers Minkowski distances + + – + – – – + – + + –
Allows for weights wij + + – – + + – – – + – –

MDS models
Ordinal, prim. appr. ties – + + + + + + + – + + –
Ordinal, sec. appr. ties + – + + + + – – + + + +
Ordinal, rank-image – – – + – – – + + – + –
Interval – + + – + + – + – + – +
Ratio + + + – + + – – – + – +
Absolute + – + – – + – – – – – +
Splines – – – – + – – – – – – +
Polynomial regression – – + – + – – – – + – +
Power – – – – + – – + – – – –
Mixed models – – – – – – – – – + – –

Special models
Split, by row – – + + – + + + + + + +
Split, by row and by col. – – – + – – – – – + + –
Split, by matrix – – + – + + – + – + – –
Asymmetry models – – + – – – – – – – – –
Weighted Euclidean model – – + + + + – + – – + +
Generalized Euclidean model – – + + + – – – – – + –
External variables – – – – + – – – + – – –
Constrained solutions – + + + + + – – – + + –
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FIGURE A.1. Three different situations of the MDS settings windows of Ggvis
with four tabs at the top.

shown in a histogram. A power may be chosen such that the transformed
dissimilarities have a uniform distribution (for an application, see Section
9.7). The second unique option is to set the weights that are applied to
the errors to a power of the dissimilarities. Choosing a large positive power
emphasizes the correct display of large dissimilarities, whereas a large neg-
ative power mostly ignores large dissimilarities and emphasizes the proper
representation of small dissimilarities (see Section 11.3).

We tested a beta version of Ggvis. To use Ggvis, you first have to set
up a data file that Ggvis can process. Below, we present a sample file in
XML. Once the data are read, move to the MDS module by choosing Tools
> Ggvis (MDS).... This brings up the window shown in Figure A.1.

Here, you can move to the fourth tab (or directly click on the “Run”
button). It opens a window (see middle panel of Figure A.1) where you can
change the default parameter settings for the dimensionality of the MDS
space and the stepsize for the iterations. For our politicians data, we would
set the dimensionality to 2, changing it from the default value of 3. To get
an ordinal rather than a metric MDS solution, we would then press the
pull-down menu “Metric MDS” in the middle of the window, where we can
click on “Nonmetric MDS”. Then, click on the “Run MDS” button which
starts the program showing how Stress is minimized and how the data are
weighted (see windows in the middle of the right panel of Figure A.2). The
ordinal MDS solution is given in Figure A.2.

The “Run MDS” button is a toggle. You may, for example, experiment
with different stepsizes, metric vs. nonmetric MDS, different weights and
so on, and rerun the MDS. From the “Reset” menu, you can reinitialize or
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FIGURE A.2. Solution obtained by Ggvis.

scramble the MDS configuration, and from the “View” menu you can view
the Shepard diagram.

Ggvis reads its data in XML format. Below you find an example. XML
commands are written between <>-signs. Every command that is opened,
for example, <description>, should also be closed again </description>.
The first two lines define that these data belong to Ggobi.

<?xml version="1.0"?> <!DOCTYPE
ggobidata SYSTEM "ggobi.dtd">

<ggobidata count="2">
<data name="Politicians">
<description>
Example data set to illustrate {\sc Ggvis}
</description>
<variables count="0">
</variables>
<records count="5" glyph="fr 1" color="3">
<record id="1" label="Humphrey" color="1"> </record>
<record id="2" label="McGovern" color="3"> </record>
<record id="3" label="Percy" color="3"> </record>
<record id="4" label="Wallace" color="2"> </record>
<record id="5" label="Nixon" color="0"> </record>
</records>
</data>

<data name="dissimilarity">
<description>
Dissimilarities (rank orders)

</description>
<variables count="1">

<realvariable name="Dissimilarity" nickname="D" />
</variables>
<records count="10" glyph="fr 1" color="0">
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<record source="1" destination="2"> 1 </record>
<record source="1" destination="3"> 5 </record>
<record source="1" destination="4"> 7 </record>
<record source="1" destination="5"> 6 </record>
<record source="2" destination="3"> 2 </record>
<record source="2" destination="4"> 10 </record>
<record source="2" destination="5"> 8 </record>
<record source="3" destination="4"> 9 </record>
<record source="3" destination="5"> 4 </record>
<record source="4" destination="5"> 3 </record>
</records>
</data>

</ggobidata>

Ggvis uses the following commands:

• <ggobidata count="2"> says that what follows are two data sets specific for
Ggobi.

• <data name="Politicians"> specifies that the data defined here are called ‘Politi-
cians’.

• <description> allows a description of the data.

• <variables count="0"> indicate that the rows defined below have no variables. If,
for example, count=1 then one lines should follow defining the variable name and
nickname by <realvariable name="Variable 1" nickname="V1" />. For more
variables, add more lines.

• <records count="5" glyph="fr 1" color="3"> specifies that five records follow
with a certain form of glyph type and color.

• <record id="1" label="Humphrey" color="1"> </record> defines the first record
to have label ‘Humphrey’ and a specific color. If there is at least one variable,
then their values should be specified before </record>.

• <record source="1" destination="2"> 1 </record> defines a single dissimilar-
ity for objects 1 and 2. For all available dissimilarities, a single record should be
specified indicating the row number and their column number. Missing dissimi-
larities are obtained by omitting the records for the missing pairs of objects.

More information can be found on the Ggobi website http://www.ggobi.org; E-mail:
ggobi-help@ggobi.org

Permap
Permap is one of the few interactive MDS packages available. It allows
users to interact directly with an MDS solution, move objects in the solution
space, remove certain objects, and change MDS options. Permap is not
built on any of the previously existing MDS software and can be freely
downloaded from the Internet.

The program has a wide range of options, some of which are unique to
Permap. It allows for ratio, interval, and ordinal MDS, the latter using
the primary approach to ties. It can minimize several MDS loss functions,
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FIGURE A.3. Screen shot of Permap.

including Stress, Stress-1, S-Stress, and Multiscale. In addition, weights
can be specified for every dissimilarity. Permap uses the general Minkowski
distances that include Euclidean, city-block, and dominance distances. The
program can also compute dissimilarities from a rectangular data matrix.
A summary of the MDS solution can be saved into a text file. Permap
comes with an extensive documentation aimed at the nonexpert.

A user-friendly option of Permap is to drag objects away from the so-
lution into a “parking lot” to exclude the objects from the current MDS
configuration. Permap will recompute the solution without these points.
This option enables the user to test the influence of these points on the
solution. If you want to use the object again, then you can drag the object
back from the parking lot to the MDS configuration. In addition, points
can be moved by dragging them around in the MDS solution. It is also
possible to lock certain points that will keep them at a fixed location. Fig-
ure A.3 shows a screen shot of Permap using the politicians data. Text
labels can be attached to the points by providing them as the first entry
on a line with dissimilarities. The program can compute solutions in 1 to
4 dimensions. However, for three- or four-dimensional solutions, Permap
shows a 2D projection of the 4D space. Note that these 2D projections may
differ when Permap reruns the analysis.

The data input for Permap comes from a text file that can be written
with any editor. The data file must be structured by certain specific key-
words that instruct Permap how to read the information. Other text is
simply ignored and can be used to explain the data. A simple setup for our
politicians data looks like this:

TITLE= Example setup: politicians
NOBJECTS= 5
DISSIMILARITYLIST
Humphrey 0
MacGovern 1 0
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Percy 5 2 0
Wallace 7 10 9 0
Nixon 6 8 4 3 0

A nonexhaustive list of subcommands of Permap is given below.

• nobjects sets the number of objects.

• title and subtitle set the title and subtitle to be used in the output. If the
message and submessage are specified, then these are used in the output.

• dissimilaritylist or similaritylist indicate that a triangular matrix with the
dissimilarities or similarities are specified below. Note that the diagonal elements
should be given as well and that NA specifies a missing value. If a dissimilarity
line starts with a text entry, then it is used as a label for the points.

• weightlist announces to Permap that the weights are specified below.

• attributelist specifies that the two-way data to be used to compute dissimilar-
ities follow below. Note that nattributes (indicating the number of columns of
the two-way data) has to be defined before.

• locationlist gives the initial configuration.

• STARTMDSAnalysisType defines the transformations. Choose 0 for a ratio
transformation, 2 for interval, and 4 for ordinal primary approach to ties. The
program cannot do the secondary approach to ties.

• STARTBadnessFunction defines what MDS loss function is used. Choose 0 for
Stress, 1 for Stress-1, 2 for S-Stress, and 3 for Multiscale.

• STARTDistanceFunction defines the distance to be used. Choose 0 for Eu-
clidean distances, 1 for city-block, and 2 for Minkowski.

• STARTAttributeFunctionNum defines how the two-way data should be trans-
formed into dissimilarities. Choose 0 for one minus the cosine of the angle between
the vectors defined by the columns, 1 for Euclidean distances between the rows,
2 for city-block distances between the rows, 3 for one minus Guttman’s µ2 coef-
ficient, 4 for the Pearson correlation between the columns, 5 for the Spearman
rank correlation between the columns, 6 for the proportion of different categories
between the rows (to be used for nominal variables). Options 7 to 12 are used
for binary variables: 7 for the Jaccard indexes, 8 for Gower/Russel/Rao, 9 for
Sokal-Michener distances, 10 for Hamman, 11 for Yule, and 12 for Askin/Charles.

• STARTDimensionNum allows to specify the dimensionality of the solution be-
tween 1 and 4.

Apart from the nobjects command and a command to read the data, all other
commands are optional.

For more information, contact Ron B. Heady, University of Louisiana at Lafayette,
U.S.A. E-mail: ron@heady.us; Internet: http://www.ucs.louisiana.edu/˜rbh8900

A.2 MDS Programs with High-Resolution
Graphics

Current computers are able to provide high-resolution graphics, which is
particularly important for a visualization technique such as MDS. All ma-
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jor statistical packages provide these high-resolution graphics. Below we
discuss several MDS procedures available in commercial statistical pack-
ages and a package called Newmdsx c© that provides a shell for text-based
MDS programs that produce high-resolution graphics.

Alscal
Alscal (Takane et al., 1977) is one of the current MDS modules in SPSS.
Alscal differs from other MDS programs in minimizing S-Stress rather
than Stress, thereby fitting squared distances to squared dissimilarities. As
a result, in Alscal the large dissimilarities are much better represented
than the small dissimilarities. Alscal is a flexible MDS program that also
provides models for asymmetric data, unfolding, and three-way analyses
(by the weighted or generalized Euclidean model). Many options can be
combined. Alscal also allows coordinates to be fixed, which is especially
useful for external unfolding.

Alscal can be started in SPSS by choosing the menu “Analyze >
Scale > Multidimensional Scaling...”. Using dialogue boxes, the Alscal
options can be specified. In addition, (dis)similarity matrices can be cre-
ated from rectangular data matrices. Alternatively, Alscal can be run
through SPSS-syntax allowing for some more options. Some care has to
be taken when adapting a configuration plot in Alscal. If you change
the range of the axes or resize the plot differently for the two axes, then
the horizontal units can be different from the vertical units so that the
distances you see may be misleading. In addition, the default convergence
criterion is far too weak and should be manually tightened to, say, .000001
or smaller.

A sample setup for an ordinal MDS analysis with Alscal of a 5 × 5
matrix of dissimilarity scores on five politicians is this:

TITLE ’Alscal in SPSS example setup: politicians’.
MATRIX DATA /VARIABLES Humphrey McGovern Percy Wallace Nixon

/CONTENTS PROX /FORMAT LOWER NODIAGONAL.
BEGIN DATA
1
5 2
7 10 9
6 8 4 3

END DATA.
ALSCAL /VARIABLES Humphrey McGovern Percy Wallace Nixon
/CRITERIA CONVERGE(0.000001) ITER(100) STRESSMIN(0.000001)
/LEVEL ORDINAL.

Commands in SPSS are ended by a dot (.); subcommands start with a slash (/) and
usually have one or more keywords; keywords are printed in caps.

The Alscal job above first formulates a title. It then defines the data setup in the
matrix data command and lists the proximities between begin data and end data. In
the matrix data command, /variables should be followed by a list of variable names,
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one for each variable (object, point). This list can also be abbreviated by ‘var1 to
var5’ or ‘object1 to object5’. The variable names are at most eight characters long.
The subcommand /contents prox indicates that the contents is a proximity matrix.
/format lower nodiagonal indicates that only the lower triangular elements of the
proximities are to be read. Finally, the desired MDS model is specified in the Alscal
command: The variables option lists the variables that are to be mapped into points;
the criteria option specifies a number of technical requests for the optimization; the
level option requests an ordinal MDS.

Some optional subcommands of Alscal are:

• /shape specifies the shape of the dissimilarity matrix. Valid keywords are sym-
metric, asymmetric, and rectangular. shape = rectangular defines unfold-
ing.

• /level indicates the allowed transformation of the dissimilarities. Default is or-
dinal, which does monotone regression with the secondary approach to ties. For
the primary approach specify, ordinal(untie). If the proximities are similari-
ties instead of dissimilarities, you can specify ordinal(similar), which may be
combined with untie. The keyword interval indicates interval transformations.
For example, interval(3) specifies polynomial regression of the order 3. ratio
excludes the intercept and followed by ‘(2)’ indicates quadratic polynomial re-
gression.

• /condition specifies conditionality of the transformations. In three-way scaling,
matrix indicates that for each replication a separate transformation of the prox-
imities has to be found (default). unconditional specifies that there is only one
transformation for all replications. row means that the proximities in every row
may have a different transformation, which is useful for unfolding.

• /model indicates which model has to be used. euclidean indicates the ordi-
nary Euclidean distance (default), Indscal specifies the individual differences
(weighted) Euclidean distance model.

• /criteria controls the stopping conditions of the algorithm. convergence
(.000001) causes the program to stop whenever the difference in S-Stress between
subsequent iterations is less than .000001. iter(100) sets the maximum number
of iterations to 100. stressmin(.0001) causes the iterations to stop whenever
S-Stress is less than .0001. negative allows negative dimension weights in the
Indscal model. cutoff(0) causes negative proximities to be treated as missing
(default). dimens(2,5) causes Alscal to compute a solution in 5 dimensions, then
4, 3, and 2 dimensions. Default is dimens(2,2).

• /print specifies print options. data prints the proximities. intermed prints in-
termediate results, which can generate a huge amount of output. header prints
a summary of options specified.

• /plot controls the plots made by Alscal. Defaults are the plots for the object
configuration, the weight matrix (for Indscal) and Shepard plots. In addition,
all generates a transformation plot for every replication or row (depending on
condition) and a plot of the weighted object coordinates for every replication
(when appropriate).

For more information, contact: worldwide headquarters SPSS Inc. 233 S. Wacker Drive,
11th Floor, Chicago, IL 60606-6307, U.S.A. Phone: (312) 651-3000; Fax: (312) 651-3668;
Internet: http://www.spss.com
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FIGURE A.4. Newmdsx c© wizard for
constructing Minissa input.

FIGURE A.5. Newmdsx c© data entry
window for Minissa.

Newmdsx c©

Many of the first-generation MDS programs have text-based input and
output, and no graphical user interface nor high-resolution graphics. The
package Newmdsx c© is aimed to fill this gap. It offers a shell with an
easy graphical user interface to run a variety of programs reported in the
literature. In this shell, you can start a wizard to construct the input file
for the program you want; see Figure A.4 (based on a beta version of
Newmdsx c©, version 4.0.4.). It also has several ways to read data, including
a spreadsheet-like data entry window; see Figure A.5. The MDS program
included in Newmdsx c© is Minissa (discussed separately in Section A.3).

Newmdsx c© has high-resolution graphics for configurations in one to
three dimensions. In addition, it provides Shepard diagrams and Stress
plots. For hierarchical clustering it provides a dendrogram. The graphics
the program produces can be edited.

In Figure A.6, an example is given of the graphics windows. Newmdsx c©
is the only package currently available that provides a relatively easy in-
terface for the MDS programs developed from 1960 to 1980. Table A.2
contains an overview of the MDS programs included, many of which are
discussed in this book. Newmdsx c© is a package with not too many options
but with a rich amount of MDS programs.

More info at: E-mail: enquiries@newmdsx.com; Internet: http://www.newmdsx.com

Proxscal
Proxscal is a program for least-squares MDS minimizing Stress available
in SPSS (Commandeur & Heiser, 1993; Meulman, Heiser, & SPSS, 1999).
It builds on the majorizing algorithm of De Leeuw and Heiser (1980) (see
Chapter 8), which guarantees convergence of Stress. Proxscal offers a
large variety of options for MDS analysis. One of the unique features of
Proxscal is that the user can impose external constraints on the MDS
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FIGURE A.6. Graphics window obtained by Newmdsx c© .

TABLE A.2. Overview of programs that can be run within Newmdsx c©.

Program Remarks
Candecomp Three-way decomposition for three-way data.
Conjoint Performs unidimensional conjoint analysis.
Corresp Correspondence analysis.
Hiclus Performs hierarchical clustering on dissimilarity data using single

or complete linkage.
Indscal-s INdividual Differences SCALing for fitting the weighted Euclidean

distances.
Mdsort MDS of sorting data.
Mdpref MultiDimensional PREFerence for the vector model of unfolding.
Mini-rsa Ideal point unfolding model.
Minissa Nonmetric MDS program.
Mrscal MetRic SCALing for metric MDS with Minkowski distances.
Paramap For maximizing local monotonicity.
Pindis Procrustean INdividual Differences Scaling for doing Procrustes

analysis.
Prefmap PREFerence MAPping for external unfolding using the ideal point

or vector model for unfolding.
Pro-fit PROperty FITting for external unfolding using the vector model.
Trisoscal TRIadic Similarities Ordinal SCALing for MDS analysis of triadic

dissimilarities.
Wombats Work Out Measures Before Attempting To Scale converts a two-

way two-mode data matrix into a dissimilarity matrix.
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FIGURE A.7. Main dialogue boxes in
SPSS Proxscal.
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FIGURE A.8. Proxscal solution of
the politicans data.

configuration, such as the restriction that the coordinates are a linear com-
bination of some external variables (see Section 10.3). It also allows fixing
some of the coordinates. These options can be combined with the weighted
Euclidean model (Section 22.1) or the generalized Euclidean model (Sec-
tion 22.2). The implementation of these models in Proxscal never gives
negative dimension weights.

Proxscal can attach user-defined weights to every proximity. The trans-
formations of the proximities in Proxscal are ordinal, interval, power, and
monotone spline. Proxscal is the only program that avoids negative dis-
parities that may arise when specifying an interval transformation of the
dissimilarities as shown by Heiser (1990).

Proxscal can be specified in SPSS by choosing the menu “Analyze >
Scale > Multidimensional Scaling (PROXSCAL)...”. The main dialogue
box of Proxscal is given in Figure A.7. Most options can be accessed
through dialogue boxes. However, some options can only be specified using
syntax.

TITLE ’Proxscal in SPSS example setup: politicians’.
MATRIX DATA /VARIABLES Humphrey McGovern Percy Wallace Nixon

/CONTENTS MAT /FORMAT LOWER NODIAGONAL.
BEGIN DATA
1
5 2
7 10 9
6 8 4 3

END DATA.
PROXSCAL /VARIABLES Humphrey McGovern Percy Wallace Nixon
/SHAPE = LOWER
/INITIAL = TORGERSON
/CRITERIA = DIMENSION(2) DIFFSTRESS(0.000001)

MAXITER(100) MINSTRESS(0.000001)
/TRANSFORMATION = ORDINAL.

Proxscal has many different options, some of which are only accessible from syntax.
The commands in the example above up to PROXSCAL correspond to those discussed
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above for the Alscal program. A nonexhaustive list of subcommands of Proxscal is
given below.

• /variables specifies the columns of the dissimilarity matrix. Unless the /table
subcommand is used, the number of rows should be a multiple of the number of
variables specified. In the simple case of a single dissimilarity matrix, the number
of rows is equal to the number of columns. For three-way analyses, the replications
should be stacked underneath each other. The labels used in the plot are either
the variable names or their variable labels.

• /table allows to read dissimilarities from a single column. To identify a dissimilar-
ity, two extra variables are needed: its row and column number. If three-way data
are present, a third variable is needed to define the replication (called a source
in Proxscal). The value labels to the row, column, and replication variable are
used as labels in the plots.

• /shape specifies the shape of the dissimilarity matrix. Valid keywords are lower,
upper, and both to specify respectively the lower part of the dissimilarity matrix,
the upper part, or the symmetrized table.

• /weights is used to specify nonnegative weights for weighting the residuals. The
weights are read similarly as the dissimilarities as specified by the variables
subcommand.

• /proximities defines whether the data are assumed to be dissimilarities (de-
fault) or similarities.

• /initial specifies what initial configuration is used. simplex (default) uses a
Proxscal specific start assuming that all objects are at distance one of each
other. Torgerson defines classical scaling as a start configuration. This option
tends to give better quality solutions than simplex. random(n) computes a Prox-
scal solution for n random starts and reports the best.

• /transformation indicates the allowed proximities of the dissimilarities. Default
is ratio where the dissimilarities are only multiplied such that the disparities have
a specific sum of squares. The keyword interval indicates interval transforma-
tions. ordinal does monotone regression with the secondary approach to ties and
ordinal(untie) specifies the primary approach to ties. spline(degree,inknot)
specifies a spline transformation of order degree and inknot interior knots.

• /condition specifies the conditionality of the transformations. In three-way scal-
ing, matrix indicates that for each replication a separate transformation of the
proximities has to be found (default). unconditional specifies that there is only
one transformation for all replications.

• /model has the identity model as default thereby modeling all replications by
the same configuration. For three-way data, weighted indicates the weighted
Euclidean distance so that dimensions may differ in the third way according to
their individual dimension weight. generalized specifies the individual differ-
ences (weighted) Euclidean distance model. reduced specifies the reduced rank
model.

• /criteria controls the stopping conditions of the algorithm. convergence
(.000001) causes the program to stop whenever the difference in S-Stress between
subsequent iterations is less than .000001. maxiter(100) sets the maximum num-
ber of iterations to 100. minstress(.0001) causes the iterations to stop whenever
Stress is less than .0001. In addition, by dimensions(dmin,dmax) you can let
Proxscal compute solutions from dmax dimensions to dmin dimensions.

• /print specifies print options. input prints the proximities, history the history
of iterations, stress several standard Stress measures, decomposition a decom-
position of Stress into Stress per object and possibly per replication, common the
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coordinates, distances the distances, weights the weights used by the generalized
or weighted Euclidean distances found by three-way models, and transforma-
tion the transformations.

• /plot controls the plots made by Proxscal. Defaults are the plots for the object
configuration (common), and the weight matrix (weights) for three-way models.
In addition, a stress-plot is available for plotting Stress against the number of
dimensions of the solution, transformation for plotting the the data against
the disparities, residuals for plotting the disparities against the distances, and
individual for plotting the coordinates of replications in three-way models. Note
that Proxscal does not provide a Shepard plot.

For more information contact: Frank M.T.A. Busing, Dept. of Psychometrics,
Univ. of Leiden, P.O. Box 9555, 2300 RB Leiden, The Netherlands. E-mail: bus-
ing@fsw.leidenuniv.nl; Internet: http://www.spss.com

SAS
SAS is a comprehensive system of software products for managing, analyz-
ing, and presenting data. SAS has versions for virtually all platforms. SAS
can be run in batch mode, submit mode, interactive line mode, and display
manager (windows) mode. SAS used to offer Alscal as its MDS module
but now has replaced Alscal by ‘PROC MDS’. This program has many
options, some of them rather tricky ones, with effects that are difficult to
predict.

In batch mode, our sample MDS job can be set up in the SAS command
language as follows. SAS commands and options are printed in capital
letters. Commands are ended with a ;.

DATA polit;
TITLE Politicians Example;
INPUT (var1-var5)(3.) @21 name $ 8.;
CARDS;

0 Humphrey
1 0 McGovern
5 2 0 Percy
7 10 9 0 Wallace
6 8 4 3 0 Nixon

;
PROC MDS DIM=2 LEVEL=ORDINAL PFINAL PCONFIG OUT=OUT OUTRES=RES;
OBJECT name;
RUN;

The job first reads five numeric variables in fixed format (fields of length
3) and one alphanumeric variable, “name”, in a field of length 8, starting in
column 21. Then, the MDS procedure is called, together with a set of op-
tions. Proc mds analyzes the proximities among all variables at the ordinal
measurement level (level=ordinal) in two dimensions (dimension=2.
The fit values and the configuration are printed (pfinal and pconfig, re-
spectively). The estimates and fitted values are saved in output data files
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(“out” and “res”, respectively). Proc mds produces no plots. For plotting,
one must utilize special plotting procedures with the output files.

SAS has its own command language. The following summarizes the most
important commands for proc mds. The general syntax is:

PROC MDS options;
VAR variables;
INVAR variables;
OBJECT variable;
SUBJECT variable;
WEIGHT variable;
BY variables;

The proc mds statement is required. All other statements are optional. The var state-
ment defines the numeric variables in the file data = xyz that contain the proximities.
Each variable corresponds to one object/point. If var is omitted, all numeric variables
not specified in another statement are used. The invar statement defines the numeric
variables in the file initial=xyz, the initial configuration, where the first variable con-
tains the coordinates on the first dimension, ..., the mth variable the coordinate on the
mth dimension. The weight statement specifies a numeric variable in the file data=xyz
that contains weights for each proximity. The number of weight variables must be the
same as the number of var variables, and the variables in the weight statement must
be in the same order as the corresponding variables in the var statement. If no weight
statement is used, all data within a partition are assigned equal weight. The by state-
ment is used to obtain separate MDS analyses on groups of proximity data defined by
the by variables. The object statement defines a variable that contains descriptive la-
bels for the points. The subject statement specifies a variable in the file data = xyz
that contains descriptive labels for the data matrices or “subjects”.

The options for proc mds are:

• The Proximities

– data = SAS file name, the data set containing one or more square matri-
ces to be analyzed. (The requirement to input square proximity matrices
makes the procedure clumsy for unfolding applications, because off-diagonal
matrices cannot be processed directly. Rather, they have to be defined as
submatrices within a square matrix with missing values.) Usually, there is
one matrix per person. Data are generally assumed to be dissimilarities
unless (a) there are diagonal elements that are generally larger than the
off-diagonal elements or (b) one uses the similar option.

– similar causes the data to be treated as similarities.

– shape = triangular | square determines whether the entire data matrix
for each subject is stored and analyzed or only one triangle of the matrix.
Default is triangle, unless condition = row.

• The MDS Model

– level = absolute | ratio | interval | loginterval | ordinal specifies
the admissible transformation on the proximities.

– condition = un | matrix | row. Conditionalities of proximities. Default is
matrix.

– dimension = mmin [ to mmax ], where 1 ≤ mmin ≤ mmax < n. Skipping
the TO term leads to mmin = m.
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– cutoff = k, causes data less than k to be treated as missing values. Default
value is 0.

– untie specifies the primary approach to ties for level = ordinal.

– negative allows slopes or powers to be negative with level = ratio, in-
terval, or loginterval.

– coeff = identity | diagonal, yields Euclidean distances and weighted
Euclidean distances (“indscal”), respectively.

• The Loss Function

– formula = 0 | 1 | 2 determines how the badness-of-fit criterion is standard-
ized. 0 fits a regression model by ordinary least squares, not for level=ordinal.
1 is Stress-1 (for fit = distance and level = ordinal) or S-Stress (for fit
= squared and level = ordinal). 2 standardizes each partition specified
by condition; corresponds to Stress-2 for fit = distance and level =
ordinal. Default is 1 unless fit = log.

– alternate = none | matrix | row. Determines what form of alternating
least-squares algorithm is used. none causes all parameters to be adjusted
simultaneously on each iteration; best for small n (=objects) and N (=ma-
trices). matrix adjusts the parameters for the first proximity matrix, then
for the second, etc.; best for large N and small n. row adds further stages;
best for large n.

– fit = distance | squared | log | n specifies a fixed transformation to apply
to both f (pij)s and dijs before the error is computed. This leads to different
weighting of large/small values. The default is distance or, equivalently, 1
which fits f (pij)’s to dij ’s. fit = n fits nth power f (pij)s to nth power dijs.

• Some technical options

– maxiter = k, the maximum number of iterations. Default is 100.

– convergence = k, the convergence criterion. Default is k = .01. Values of
less than .0001 may be impossible because of machine precision.

– random = k, causes initial coordinate values to be pseudorandom numbers
with seed=k.

• Some output options

– pfit and pconfig: print the fit values and the MDS configuration, respec-
tively. Various other print options exists, e.g., pinit, which prints the initial
values, and ptrans, which prints the estimated transformation parameters
if any are computed in metric models.

– out = xyz. Creates the SAS data file “xyz” containing the estimates of all
parameters of the MDS model and the value of the badness-of-fit criterion.

– outres = xyz. Creates file that contains original proximities, MDS dis-
tances, transformed proximities/distances, residuals.

For more information, contact: SAS Institute Inc., 100 SAS Campus Drive,
Cary, NC 27513-2414, U.S.A. Phone: (919) 677-8000. Fax: (919) 677-4444. Internet:
http://www.sas.com
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Statistica
Statistica is a comprehensive package for statistics and statistical graph-
ics that includes an MDS module. Doing MDS, Statistica yields windows
of numerical output, high-resolution plots of the MDS configuration (also
3D configurations that can be rotated in space), fit plots such as data vs.
d-hats or data vs. rank-images, and so on. The graphics windows can be
modified by changing fonts, changing the line thickness, resizing points,
moving point labels as objects, and the like, or by drawing into the plots
with the built-in drawing tools.

Statistica’s MDS module uses the Guttman–Lingoes initial configura-
tion or a user-supplied external initial configuration. It then employs the
Minissa algorithm (Roskam & Lingoes, 1981), which does ordinal MDS
with rank-images in the initial iterations and monotone regression later on
to ensure convergence. As fit indices, Stress and Raw Stress are computed
with both monotone regression values and rank-images. The coefficient of
alienation is also reported.

Statistica’s MDS only offers ordinal MDS and the Euclidean metric.
Although this is sufficient for most applications, models like interval MDS,
say, are needed for some data to avoid degeneracies.

Statistica can be run interactively (via mouse clicks that can be recorded),
by submitting a program of previously stored mouse clicks, or by executing
a file of Statistica’s SCL command language. In SCL, our politicians ex-
ample is set up as shown below, assuming that a system file “proxpol.sta”
has been created beforehand. There exists only one further option: itera-
tions = k.

FILE = "c:\proxpol.sta"
MDS
/ VARIABLES = ALL
/ DIMENSIONS = 2

For more information, contact: StatSoft Inc., 2300 East 14th St., Tulsa, OK 74104,
U.S.A. Phone: (918) 749-1119. Fax: (918) 749-2217. E-mail: info@statsoft.com. Internet:
http://www.statsoft.com

Systat
Systat is a comprehensive package for statistics, including graphics (Wilkin-
son & Hill, 1994). Systat can be run in batch mode, submit mode, inter-
active line mode, and in a pull-down menu mode. As is true for all statistics
packages, it is best to first set up a system file containing the proximity ma-
trix. System files are defined via a spreadsheet, reading data from an ASCII
file, or by computing proximities internally from other data. However, data
can also be input from within a command file. To do a Systat MDS analy-
sis, one calls, from within the MDS module, the system file “polit.syd”, say,
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by typing “use polit” (return), followed by “model var1..var5” (return)
and “estimate” (return). Alternatively, one first defines a command file
containing these three lines and then submits this command file. (The first
three letters of the commands are sufficient.) This will do an ordinal MDS
in 2D, using Euclidean distances. A more explicit batch mode command
job is this:

BASIC
SAVE polit
TYPE=DISSIMILARITY
INPUT Humphrey McGovern Percy Wallace Nixon
DIAGONAL=ABSENT
RUN
1
5 2
7 10 9
6 8 4 3
˜
MDS
USE polit
MODEL Humphrey..Nixon
ESTIMATE / LOSS=KRUSKAL, REG=MONOTONIC, DIM=2, R=2

If the batch job is called “mds.cmd”, it is run by typing “systat <
mds.cmd” from the DOS prompt. The resulting configuration and its Shep-
ard diagram are shown on the computer screen, where they can be fine-
tuned, previewed, and sent to a printer. The results can also be saved,
along with distances, d-hats, and residuals for further analyses. In combi-
nation with a built-in spreadsheet editor, the points in the configuration
plot can be labeled. Using this feature, one can, for example, create a facet
diagram, where the points are labeled by their codings on a particular
facet (see Chapter 5). Three-dimensional plots with embedded axes, labels,
surfaces, and the like, are also available.

For an experienced data analyst, Systat is best used with its command
language and submit files. All Systat jobs can be documented and easily
modified if needed. However, even using pull-down menus or Windows,
command language files are automatically generated for previewing and
saving.

A Systat MDS job generally looks like this:

MDS
MODEL variables / options
CONFIG arguments
SAVE filename / arguments
ESTIMATE / options

• The model options: rows = N and shape = rect | square: when doing unfold-
ing, one needs to specify that the proximity matrix is “rectangular” with N rows;
the number of columns corresponds to the number of objects n.
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• The config arguments: config = [coordinates of first point; coordinates of second
point; ... ] or config = last. The last argument allows using the configuration
from the previous scaling. An example for an external 3-point configuration in
2D is config = [1 2; 3.3 5; 4 5].

• The save arguments: Specifying distances saves the MDS distances; config saves
the final MDS configuration; resid saves the proximities, distances, d-hats, and
residuals, together with row and column subscripts.

• The estimate options:

– dimension = m specifies the dimensionality m of the mds solution.

– regression = monotonic | linear | log | power uses ordinal, interval,
log-interval, or power-function MDS, respectively.

– split = row is split-by-rows (unfolding); split =matrix is split-by-matrix
conditionality for stacked proximity matrices.

– weight is individual differences scaling with dimension weights for each
matrix.

– r = r specifies the exponent of the Minkowski metric. For example, r = 2
requests Euclidean distances.

– loss = kruskal | guttman | young specifies the loss function. kruskal is
Stress-1; guttman is the coefficient of alienation, K ; young is S-Stress.

– iterations = k sets the maximum number of iterations to k.

– converge = k causes MDS to stop when the maximum absolute difference
between any coordinate in the solution X at iteration i and iteration i + 1
is less than k.

The program defaults are dim =2, regr = mono, no split, no weight, loss = krus,
r = 2, iter = 50, decrement = 0.005.

For more information, contact: Systat Software, Inc.; 501 Canal Blvd; Suite E; Point
Richmond, CA 94804-2028; U.S.A. Phone: (800) 797-7401. Fax: (800) 797-7406. E-mail:
info-usa@systat.com. Internet: http://www.systat.com

A.3 MDS Programs without High-Resolution
Graphics

Most programs from the early days of MDS lack high-resolution graphics.
Nevertheless, these programs are usually well documented in the literature
and often used in simulation studies. For completeness, we discuss a few of
these programs.

The Guttman–Lingoes Nonmetric PC Series
The GL Series is a collection of 32 individual programs for the analy-
sis of qualitative and ordinal data. The philosophy of the GL Series is
to have compact programs that are good for particular purposes rather
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than one jumbo program that does everything. For MDS, the main pro-
gram is Minissa-I for unconditional and row/column conditional proximi-
ties, but there are also special programs for proximities that are both row
and column conditional at the same time (SSA-II), for imposing a number
of independent sets of order constraints onto the distances (CMDA), for
individual differences scaling (Pindis), or for representing proximities in
a vector model (SSA-III). A complete documentation of the source code
(FORTRAN IV) of most of the programs is available (Lingoes, 1973).

The GL programs are essentially batch programs. The user is required
to “punch” his or her specifications as numbers in four-field columns of the
parameter “cards” of the batch job (see below, fourth row of batch job). A
typical set-up for Minissa-I for our politicians data looks as follows.

SSA-I.OUT (name of file for numerical output)
SSA-I.PLT (name of file for printer-plot output)
1 MDS of five politicians ("title card")

5 2 2 0 0 1 0 0 0 0 0 0 0 0 0
(5F3.0)

1
5 2
7 10 9
6 8 4 3

The various numerical entries on the fourth “card” specify the number of objects (5),
the lowest MDS dimensionality (2), the highest MDS dimensionality (2), the type of
proximities (0=dissimilarities), a request to print out the distance matrix (0=no), and
a request to minimize Kruskal’s Stress (1=yes). The remaining zeros refer to the usual
defaults: Adding points to a fixed configuration (no=0, yes=1), external initial configu-
ration (no=0, yes=1), special switch for program options (0=no special setting,1=ignore
cells in SSA-I/MDS, number of column fields for SSAR-I/unfolding), ignore cells in data
matrix (no=0, yes=1), missing data (no=0, yes=1), distance formula (Euclidean=0,
city-block=1), differential weighting of small and large distances (global weighting=0, lo-
cal weighting=1), type of analysis (SSA-I/MDS=0, SSAR-I/unfolding=1), missing data
code (real value), value above/below which all input data are considered tied (real value).

Most of the GL programs can be downloaded from http://www.newmdsx.com

Fssa: Faceted Smallest Space Analysis
A special MDS program is fssa by Shye (1991). Fssa is a stand-alone
program that is public domain for scientists. It analyzes from 3 to 50 objects
in two to ten dimensions, using the Guttman algorithm. What makes fssa
unique is that it allows one to code the objects with respect to several
facets (see Chapter 5). Fssa then partitions the resulting 2D planes, facet
by facet, in three ways (axial, polar, modular), using parallel straight lines,
concentric circles, and rays emanating from a common origin, respectively.
The partitionings are shown as screen diagrams.
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The program can be obtained from: Samuel Shye, Dept. of Psychology, Hebrew Univer-
sity of Jerusalem, Jerusalem 91905, Israel. E-mail: msshye@pluto.mscc.huji.ac.il

Kyst
Kyst (Kruskal et al., 1978) is an exceedingly flexible MDS program. It
allows one to set up virtually any MDS model, except MDS with side
constraints on coordinates or distances. Kyst is noncommercial software,
available on the Internet at http://www.netlib.org/mds/. The program is
written in FORTRAN and can, in principle, be compiled on any machine.
Kyst allows the user to specify Minkowski distances other than the Eu-
clidean distance. Moreover, weights can be assigned to each proximity, for
example, for weighting each datum by its reliability. Another feature is the
possibility of polynomial regression for specifying the transformation func-
tion of the proximities. Because Kyst is an old program, it provides only
printer-type graphics with 132 characters per line. Kyst’s manual is not
made for today’s occasional user of MDS, but the logic of Kyst’s command
language is straightforward.

An example setup for a Kyst2e job is the following.

DIMMAX = 2, DIMMIN = 2
REGRESSION = ASCENDING
COORDINATES = ROTATE
ITERATIONS = 100
PRINT = HISTORY
PRINT = DATA
PLOT = SCATTER = ALL
PLOT = CONFIGURATION
TORSCA
DATA, LOWERHALFMATRIX, DIAGON = ABSENT
KYST example setup: politicians

5 1 1
(5F3.0)

1
5 2
7 10 9
6 8 4 3

COMPUTE
STOP

The setup consists of control lines and the data definition lines (data deck). The
order of the control lines mostly does not matter. The data definition lines start in this
example with the line “data, lowerhalfmatrix,...” and end with the line “ 6 8 4 3”.
These lines are in strict order and may not be reordered. Also, the regression control
lines should precede the data definition lines. Some of the control commands on the
control lines are:

• Analysis options: dimmax = 3 sets the maximum dimensionality to 3, dimmin = 2
sets the minimum dimensionality to 2. sform1 makes the program use Kruskal’s
Stress formula 1, sform2 requests Kruskal’s Stress formula 2. primary requests



A.3 MDS Programs without High-Resolution Graphics 565

the primary approach to ties, and secondary the secondary approach. iterations
= 100 sets the maximum number of iterations to 100, sratst = 0.9999 causes
Kyst to stop the iterations whenever the ratio of subsequent Stress values is
smaller than 0.9999. strmin = .00001 stops the iterations if the Stress becomes
smaller than .00001. torsca takes the classical scaling solution as the initial
configuration. coordinates = rotation causes the solution to be rotated to
principal axes (recommended).

• regression specifies the type of admissible transformation of the proximities.
regression = ascending indicates that the proximities are dissimilarities, re-
gression = descending that they are similarities. regression = polynomial =
3 specifies a third-degree polynomial regression transformation. Adding regres-
sion = constant (or noconstant) makes the program pick an optimal additive
constant. Thus, an interval transformation is specified by regression = polyno-
mial = 1, regression = constant.

• Print and plot options. print = (no)data prints the proximities, print =
(no)history outputs the history of iterations, and print = (no)distances prints
the distances and the disparities. When a range of dimensions is specified, a plot
of Stress against the number of dimensions is given. plot = scatter = all (or =
none for no plots) produces a plot of distances and disparities against the prox-
imities. plot = configuration = all (or =some or = none) causes Kyst to
plot all principal components projection planes of the MDS configuration. some
only plots the first principal component against all other components.

• Data definition. The data are defined by five parts: (1) a line (“card”) specifying
the data; (2) a title line; (3) a line of parameters; (4) a line with the format of the
data; (5) lines specifying the data. Line 1 of the data definition part starts with
data followed by lowerhalfmatrix to indicate the lower triangular elements,
upperhalfmatrix indicates the upper triangular elements, and matrix specifies
the full matrix. For triangular matrices, one specifies either diagonal = present
or = absent. For unfolding, one sets lowercornermatrix (or uppercornerma-
trix). Line 3 expects 3 or 4 numbers that should end in columns 3, 6, 9, and 12,
respectively. The parameters specify number of objects, number of replications
(usually 1), number of groups (usually 1), respectively. For corner matrices, the
parameters are: number of rows; number of columns; the number of replications;
number of groups. Line 4 contains a FORTRAN format, for example, (5F10.3).
Line 5 (and further) contains the data, possibly followed by weights. The weights
definition block is specified in the same way as the data definition block, except
that the word data has to be replaced by weights.

• compute causes the program to start computing. After the compute command,
further MDS jobs can be set up, before a final stop.

For more information contact: Scott M. Smith, Ph.D., Dept. of Marketing, 634 TNRB
Brigham Young University, Provo, Utah 84602, U.S.A. E-mail: smsmith@byu.edu. Phone:
(801) 376-1339. Fax: (801) 705-9430. Internet: http://marketing.byu.edu

Multiscale

Multiscale (Ramsay, 1977) is one of the few MDS programs that offers
a Maximum Likelihood (ML) approach. For ML, it can assume normal



566 Appendix A. Computer Programs for MDS

or lognormal distributions of the residuals and assumes that the errors are
independent. Multiscale is one of the few programs that yields confidence
regions for each point. The program has various options, including, for
example, spline transformations, power transformations, and the weighted
Euclidean model. The output of this program is somewhat hard to read
because it contains much statistical information. However, the program has
a clearly written manual. The MS-DOS version of Multiscale has high-
resolution graphics and can output postscript plots. Multiscale runs on
several operating systems.

A sample setup for Multiscale is

@TITLE LINES=2;
Example setup of {\sc Multiscale}:
similarity of 5 politicians,

@PARAMETERS NSTIM=5, NSUB=1, NDIM=2,
TRAN=SPLINES, DISTRIB=LOG;

@DISDATA VECTOR FORMAT=FREE;
1
5 2
7 10 9
6 8 4 3
@STIMLABS FORMAT=FREE;
Humphrey McGovern Percy Wallace Nixon
@COMPUTE;

Multiscale has its own command language. The following summarizes the most
important commands. The input of Multiscale is organized in blocks. Each block starts
with an @ and ends with a semicolon (;). For example, there exists a block for the title,
a block for the parameters of the analysis, and a block for reading the data. For the
most part, these blocks can appear in any order, with the following exceptions: the
parameter block must be the first block or the second block just after the title block,
and the compute block is the last block before the analysis takes place. Several runs
can be specified in one file by repeating a (possibly different) parameter (and title)
block ended by the next compute block.

Here is a short description of some of the blocks:

• The title block indicates that the next line is a title. lines = 2 specifies that
the title has two lines (maximum is five lines).

• The parameter block sets all the important options of the analysis. nstimuli
defines the number of objects, ndimensions sets the number of dimensions, nsub-
jects specifies the number of replications, nknots sets the number of interior
knots when using spline transformation, probability sets the confidence level for
the confidence regions for points, metric = identity (default) for weighting every
dimension equal and metric = diagonal for weighting each dimension separate
(needed for the weighted Euclidean model). transform sets the transformation
of the proximities: the keyword scale sets the disparity (optimally) to the sum of
the proximity and an additive constant only, power assumes interval level of the
proximities, spline specifies monotone splines. With distribution = lognor-
mal, we assume that the error distribution is lognormal (default); with normal,
we simply obtain the Stress function. dcomplete indicates that the complete
proximity matrix is available for each replication instead of the lower triangu-
lar elements, listdata prints input matrices, nostats avoids printing statistics
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for replications, noasympt avoids printing asymptotic variance estimates, nodist
suppresses the matrix of distances, and tables prints the matrix of disparities,
distances and normalized residuals for each replication. dplot plots the dispari-
ties against the distances, tplot plots the disparities against the proximities, and
qplot plots the normalized residuals against quantiles of the normal distribution.
For preference data, specify pcomplete for complete preference matrix instead
of lower triangular elements, pplot for plotting the preference against predicted
preference.

• The disdata block inputs the proximities. Multiscale assumes that the prox-
imities are entered in lower triangular format. However, vector indicates that
the proximities are in one large vector, not in lower triangular format. diagonal
specifies that diagonal values are present. format = fixed specifies that the data
are read by a FORTRAN format, which is entered before the first line of data.
format = free lets Multiscale read the data in free format, which means that
the proximities should be separated by a space or a comma.

• The stimlabels block allows you to input labels of the objects. The labels should
be on the lines following this block. By specifying format=free, the labels have
to be separated by a space or a comma. In the same way, the sublabels block
allows you to specify labels for the replications.

• The compute block starts the analysis. itmax=100 sets the maximum number
of iterations to 100, and conv=.005 sets a convergence criterion dependent on
the log-likelihood.

The program can be obtained free of charge from: James O. Ram-
say, Dept. of Psychology, McGill University, 1205 Docteur Penfield Avenue,
Montreal, Québec H4A 1B1, Canada. E-mail: ramsay@psych.mcgill.ca, Internet:
ftp://ego.psych.mcgill.ca/pub/ramsay/multiscl/



Appendix B
Notation

For convenience, we summarize the notation used throughout this book.
We use the following conventions: a lowercase italic character denotes a
scalar, a lowercase bold character denotes a vector, and a uppercase bold
character denotes a matrix. Elements of vectors or matrices are denoted by
a subscripted scalar. A function is usually denoted by a character followed
by an argument in parentheses, for example, f(x) is a scalar function of
the vector x, and A(x) is a matrix function of the vector x. Some explicit
notation follows below.

n Number of objects, persons, and so on.

i, j Running index for objects, i, j = 1, . . . , n.

m Number of dimensions.

a Running index for dimensions, a = 1, . . . , m.

X Matrix of coordinates xia of n objects on m dimensions.

pij Proximity between object i and j. It could be either a similarity
or a dissimilarity measure.

δij Nonnegative dissimilarity between object i and j.

∆ Symmetric matrix of nonnegative dissimilarities δij of size n × n,
with δii = 0.
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dij(X) The Euclidean distance distance between row i and row j of X;
that is, d2

ij(X) =
∑m

a=1 (xia − xja)2.

dij A shorter notation for the Euclidean distance dij(X).

d̂ij Disparity between objects i and j. Disparities are admissibly
transformed proximities that optimally approximate given dis-
tances.

wij A nonnegative weight used to (down)weight the residual in the
Stress function.

W Symmetric matrix of weights wij with zero diagonal.

D(X) Matrix of Euclidean distances between the rows of X.

A′ The transpose of A.

I The identity matrix, which is a square matrix with diagonal ele-
ments equal to 1 and off-diagonal elements equal to 0.

1 A column vector with all elements equal to 1.

J The n × n centering matrix, J = I − n−111′, where all elements
of the matrix 11′ are equal to 1.

Aq The qth power of a square matrix A. For example, A3 = AAA.

A−1 The matrix inverse of a square matrix A assuming that A is of
full rank, so that A−1A = AA−1 = I.

A− A generalized inverse of a square matrix A where A may be rank
deficient, so that AA−A = A and A−AA− = A− holds. Usu-
ally, we choose the Moore–Penrose inverse A+ as the generalized
inverse.

A(2) Matrix A with squared elements.

A(X) Any matrix function of X with elements aij(X).

tr A The trace operator sums the diagonal elements of A; that is,
tr A =

∑n
i=1 aii.

φ̂(x,y) Majorizing function of φ(x) for which φ(x) ≤ φ̂(x,y) and φ(x) =
φ̂(x,x) holds for all feasible x and y.

‖X‖ The Euclidean norm of matrix X; that is, ‖X‖2 =
∑n

i=1
∑m

a=1 x2
ia.

‖X‖V The weighted Euclidean norm of matrix X; that is,
‖X‖2

V = tr X′VX.
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σr Raw Stress, that is, the sum of the squared differences between the
optimally transformed proximities f(pij) (i.e., the disparities d̂ij)
and the corresponding distances dij(X) of the MDS configuration
X.

σn Normalized Stress, that is, raw Stress divided by the sum of
squared dissimilarities or disparities.

σ1 Stress formula 1, that is, the square root of raw Stress divided by
the sum of squared distances.

σ2 Stress formula 2, that is, the square root of raw Stress divided by
the sum of squares of the distances minus the average distance.
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Ekman, Engen, Künnapas, and Lind-

man (1964), 397, 401–403
Ekman, Goude, and Waern (1961), 401
Ekman and Lindman (1961), 403
Elizur, Borg, Hunt, and Magyari-Beck

(1991), 95, 120
Engen, Levy, and Schlosberg (1958), 74,

75, 129, 230
England and Ruiz-Quintanilla (1994),

127
Fechner (1860), 361
Feger (1980), 468
Fichet (1994), 367
Fischer and Micko (1972), 366



Author Index 601

Fletcher (1987), 181
Foa (1958), 241
Foa (1965), 241
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nonmetric, 405

Feature-set models, 401
Fit per point, 46
Free sorting, 114
fssa, 563
Full rank decomposition, 152
Full-dimensional scaling, 281
Function

biweight, 445
gradient of, 176
Huber, 445
loss, 37
minimization by attainable lower

bound, 431
minimization by iterative majoriza-

tion, 178, 445
partial derivative, 176
representation, 39
robust, 445
slope of, 172
trace, 143, 144, 176, 570

Generalization gradients, 360
Generalized Euclidean distance, 458, 479,

484
Generalized Euclidean model

subjective-metrics interpretation,
480, 485

subjective-transformation interpre-
tation, 480, 485

Generalized inverse, 155, 570
Generalized Procrustes analysis, 454
Geodesic, 39, 412
Geometry

curved, 30, 32
Euclidean, 31
exotic, 13
flat, 30
natural, 31

Ggobi, 544
Ggvis, 544
Global minimum, 172, 276, 277
Gower’s decomposition, 498
Gradient, 176



Subject Index 609

Gravity model, 126, 504
Group algebra, 414
Group space, 460, 474
Guttman scale, 92
Guttman transform, 191, 194, 230, 279,

298, 475

Hefner model, 50, 71
Hiclus, 554
Hill-climbing model, 509

Ideal point, 295
anti, 345

Identity model, 482
Idioscal, 458, 480–482
IM, see (iterative) majorization
Incidence matrix, 126
Incomplete data designs, 115
Indclus, 482
Individual differences

scaling, 474, 491
subject space, 460

Indscal, 457, 465, 477–479, 490, 554
Inequality

Cauchy–Schwarz, 120, 189, 248, 440
Kristof, 431
sandwich, 180
triangle, 33, 143, 376, 381, 412

Initial configuration, 41
in ordinal MDS, 57, 425

Integral stimuli, 366
Internal scales, 76
Interpretation

clusters, 5, 81
dimensional, 5, 9, 73, 74, 82
of manifolds, 5
of MDS solution, 55, 80
regional, 5, 9, 81

Interval MDS, 42, 201
additive constant, 416

Intradimensional additivity, 376
Invariance, 23
Inverse MDS, 254
Isometry, 23

partial, 371, 372
Isosimilarity curve, 364
Isotonic region, 29, 306
I-spline, 214
Iterative improvements, 41
Iterative majorization, see majorization

Jaccard similarity measure, 127
Jet-stream model, 511
Judgment model, 13

Just noticeable differences (JND), 361

Kemeny distance, 319, 320
Knots, 215
Kyst, 71, 240, 253, 286, 308, 318, 319,

324, 331, 369, 376, 385, 564

Latent class MDS, 492
Law of comparative judgment, 125
Limit operator, 173
Linear equation systems, 154

approximate solutions, 156
inconsistent, 155
solving, 155
underdetermined, 156

Linear regression, 77, 311
Linearizing data, 383
Local minimum, 171, 228, 276

for MDS with Minkowski distances,
369

µ2, 68, 120, 130, 442
Majorization, 297, 444, 475

iterative, 178, 445
linear, 181
majorizing function, 179, 570
of Stress with Minkowski distances,

369
quadratic, 182, 369
supporting point, 179

Manifold, 81
Mapping sentence, 88, 96
Matchals, 442, 469
Matrix, 137

and configurations, 148
and transformations, 148
centering, 149, 191, 262, 435, 537,

570
diagonal, 140
Euclidean scalar product, 392
full rank, 140, 148
g-inverse, 155
generalized inverse, 570
idempotent, 149, 264
identity, 139, 570
indicator, 236, 482
inverse, 139, 150, 570
irreducible, 187
Moore–Penrose inverse, 157, 191,

298, 570
multiplication from the right, 139
negative definite, 149
negative semidefinite, 149
order, 138
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orthogonal, 140
orthonormal, 140
permutation, 213, 279
positive definite, 149
positive semidefinite, 149, 282, 417
postmultiplication, 139
power, 570
premultiplication, 139
projector, 264
pseudoinverse, 157
quadratic, 138
rank, 148
rank deficient, 152
rectangular, 137
reflection, 434
rotation, 162, 434
scalar product, 145, 160, 417
singular, 152
singular value decomposition, 150,

444
skew-symmetric, 496
square, 138, 139
symmetric, 138
trace of, 143, 144, 176
transpose, 138
two-mode, 294

Maximum dimensions
for Euclidean distances, 419
for Minkowski distances, 367
required, 418

Maximum likelihood, 53, 253
correspondence analysis, 533
MDS, 253

MBR metric, 382
Mdpref, 340, 554
MDS

absolute, 200
almost complete, 336
and factor analysis, 105
as a psychological model, 11
axiomatic approach, 111
by computation, 19
by geometric construction, 19
by hand, 5
circular constraints, 237
confirmatory, 475
exploratory, 4
interval, 40, 201, 415
inverse, 254
maximum likelihood, 53
metric, 55, 200, 203
model, 39, 200
non-Euclidean, 32

nonmetric, 200, 203, 251, 277
of scalar products, 403, 405
ordinal, 24, 40, 200
purpose, 3
ratio, 20, 23, 200, 201, 430
ratio vs. ordinal, 29
ruler-and-compass approach, 20
semi-complete, 336
solution, 20
true underlying space, 51

Mdsort, 554
Measurement

axiomatic, 377
Median, 182
Metric MDS, 55, 200
Mini-rsa, 554
Minimum

global, 172, 277, 431
local, 171, 228

Minissa, 214, 299, 369, 554, 563
Minkowski

metric, 363
parameter, 242

Minkowski distances, 363, 413
and Stress, 367
exchangability, 367
family of, 364
maximum dimensionality, 367
true, 367

Minkowski spaces
axioms, 377, 379
distinguishing, 369

Missing data, 42, 169, 171
designs, 117

Model
bounds of, 385
building, 13
building vs. data analysis, 14
deterministic, 485
dimensional, 14
of judgment, 372
perspective, 468

Modes of data, 58
Monotone function

strong, 40
weak, 40

Monotone regression, 42, 205, 206, 220,
233

geometry of, 209
ordered cone, 210
smoothed, 208, 323

Monotonicity coefficient, 252
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Moore–Penrose inverse, 157, 191, 298,
570

Mrscal, 554
Multidimensional similarity structure anal-

ysis, 13
Multiplex, 100

and dimensions, 100
Multiscale, 53, 253, 255, 565
Multistart, 277

Negative definite matrix, 149
Negative semidefinite matrix, 149
Newmdsx c©, 553
Non-Euclidean spaces

interpreting, 371
Nonmetric MDS, 200
Nonnegative least-squares, 221, 478
Norm, 143

Euclidean, 143, 390, 570
function, 390
orthonormal invariant, 266

Null space, 148

Object point, 295
Optimal scaling, 233
Order

equivalence, 24
of a spline, 216

Ordered cone, 210
Ordinal MDS, 24, 200

maximum dimensionality, 419
rank-images, 213

Orthogonal matrix, 140
Orthonormal matrix, 140
Outlier, 43
Over-compression, 47, 54
Over-fitting, 47

PA, see Principal, axes rotation
Pairwise comparison, 113
Paramap, 554
Partial derivative, 176
Partitioning, 73

an MDS space, 90
and dimensions, 99
choosing lines, 90
errors in, 97
polar, 105

Partitioning lines, 72
robust, 100

PCA, 519, see principal components anal-
ysis

distance-based, 526
PCO, see principal coordinates analysis

Pearson’s r

and Euclidean distances, 130
Penalty term, 239
Perceptual space, 50
Perfect representation, 41

in full-dimensional scaling, 282
Permap, 548
Perspective model, 468
Pindis, 469, 554, 563
Plot

bi, 523
Shepard, 43
transformation, 202

Polar coordinates, 99
Positive definite matrix, 149
Positive semidefinite matrix, 149, 417
Positively homogeneous function, 248
Power method, 157
Prefmap, 340, 554
Prefscal, 327
Princals, 341
Principal

axes orientation, 162
axes rotation, 75, 97, 161, 262, 442,

530
axis, 403
component, 407, 519
components analysis, 64, 341, 519
coordinates analysis, 526

Pro-fit, 554
Procrustean similarity transformation,

455
Procrustes rotation, 429, 430

generalized, 454
oblique, 444
robust, 445

Projection
orthogonal planes, 98
plane, 97

Projection plane, 7
Projector, 149
Proximities, 37, 169

angular separation, 122
Bray–Curtis distance, 122
Canberra distance, 122
choosing particular measures, 128
chord distance, 122
city-block distance, 122, 130
coarse, 118
conditional, 114
congruence coefficient, 122
correlations, 120, 122
degraded, 118
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derived, 112, 119, 125
direct, 112, 129
dominance distance, 122
Euclidean distance, 122, 130
forms of, 112
free sorting, 114
from attribute profiles, 121
from card sortings, 129
from co-occurrence data, 126
from common elements, 124
from conversions, 125
from dominance probabilities, 126
from feature set measures, 124
from index conversions, 125
from laboratory studies, 129
from surveys, 129
Gower’s general similarity measure,

125
granularity of, 118
gravity model, 126, 504
incomplete, 115
incomplete designs for, 115
Jaccard measures, 127
µ2, 120, 122
Minkowski distance, 122
missing, 117
monotonic correlations, 130
position effects, 115
profile distance, 121
profile similarity, 130
Q-sort, 113
rankings, 113
ratings, 113
s2 coefficient, 127
s3 coefficient, 127
s4 coefficient, 128
simple matching coefficient, 128
Spearman’s ρ, 120
timing effects, 115
types, 111

Proxscal, 235, 240, 476, 508, 509, 553
Pseudo distances, 199
Psychological space, 359
Psychophysical

maps, 360, 377
scaling, 14

Psychophysical maps, 377

Q-sort, 113
Quasi-equivalency, 370

Radex, 91, 95, 100, 400
Radius-distance model, 512

Rank of matrix, 148
Rank-images, 213, 251
Rank-interval MDS, 56
Ranking

complete, 113
numbers, 24

Ratio MDS, 430
Rational starting configuration, 425
Recovering distances, 53, 55
Recovery

metric, 54
Rectangles

psychology of, 372
Reduced rank model, 484
Reflection, 22, 23, 147, 429
Regional hypothesis, 89, 91

falsifiability of, 101
Regions, 25, 71

and clusters, 104
and factors, 104
and theory, 102
choosing, 100
interpreting, 87
laws, 91
ordered, 98
predicting, 102
simple, 100

Regression
linear, 42, 77, 311
monotone, 42, 205, 206, 220, 233
polynomial, 219

Response function, 377
Rigid motion, 23
Root mean squared residual, 68
Rotation, 23, 429

idiosyncratic, 462
matrix, 162
oblique Procrustes, 444
principal axes, 75, 162, 262, 442,

530
Procrustes, 430
simple structure, 161, 405
varimax, 105, 161

Rotations, 160
Row-conditional unfolding, 300

σ, see Stress, formula 1
σ1, see Stress, formula 1
σ2, see Stress, formula 2
Sammon mapping, 255
SAS, 557
Scalar, 139
Scalar function, 142, 390
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Scalar products, 142, 389
and distances, 400
and Euclidean distances, 398
and origin of point space, 400
and translations, 398
axioms of, 413
empirical, 392, 394
matrix, 392

Scale level of proximities, 40
Scales

factor, 20
rating, 30

Scree
plot, 48, 52, 71
test, 66

Set-theoretic models, 397
Shepard diagram, 43, 44, 47, 65, 270,

275, 303, 308–311, 319, 359,
363

Similarity, 3, 37, 111
Similarity of MDS configurations, 95
Simple-structure rotation, 161, 405
Simplex, 92, 100, 274
Simulated annealing, 281
Singular value decomposition, 150, 232,

432, 444, 476, 520, 531
and least-squares, 153
left singular vectors, 150
of symmetric matrix, 153
rank deficient case, 152
right singular vectors, 150
singular value, 150

Skew-symmetry
drift vectors, 502
matrix, 496

Slide-vector model, 506
Slope of a function, 172
Smacof, 187–194, 204, 205, 298, 369
Smallest space analysis, 13
Smoothing out noise, 41
σn, see Stress, normalized
Solution

avoiding degeneracy, 272
degenerate, 270
empty space, 27
set, 25, 27
space, 25, 27

Space
physical, 12
physical vs. psychological, 361
psychological, 11
subject, 460

Spearman correlation, 67

and Euclidean distances, 130
Spectral decomposition, 146, 407, 524

properties, 147
Spectral gradient algorithm, 251
Spherex, 100
Spline, 214, 326

degree of, 216
integrated, 214
interior knots, 215
knots, 215
monotone, 214
order of, 216

σr, see Stress, raw
SSA program, 563
SSA-III, 405
S-Stress, 252, 254, 282, 344
Starting configuration

in ordinal MDS, 425
Stationary point, 174
Statistica, 560
Straight line, 39
Strain, 263
Stress

constrained, 230
definition, 171
evaluating, 47
expected, 49
for Minkowski distances, 369
for random data, 48
formula 1, 42, 251
formula 2, 251, 302, 324
implicit normalization, 42
normalized, 247, 327
penalized, 327
per point, 44, 45, 235
raw, 42, 171, 250

Structuple, 89
Subadditivity, 376, 381
Subject space, 460
SVD, see Singular value decomposition
Symmetrized data, 71
Systat, 369, 375, 560

Tangent, 173
Target distances, 199
Three-way data, 58, 449
Three-way models

dilation, 482
generalized Euclidean, 484
identity, 482
reduced rank, 484
weighted Euclidean, 482

Thurstone case-V model, 51
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Ties
in data, 211
primary approach, 40, 203, 204,

211, 212
secondary approach, 40, 211

Torgerson scaling, 261
Torgerson–Gower scaling, 261
Trace function, 143, 144, 176, 570
Trace-eigenvalue theorem, 420
Transformation, 23, 170

admissible, 23, 29
alias interpretation, 23, 161
alibi interpretation, 23, 161
continuous, 362
inadmissible, 23
invertible, 362
isometric, 23, 29
isotonic, 28
plot, 202
power, 221
similarity, 23
smooth, 362
spline, 214, 326
split-by-row, 300

Translation, 23
Transpose of a matrix, 138
Triangle inequality, 33, 143, 376
Trisoscal, 554
Tunneling method, 283, 369
Two-dimensional triple, 384
Two-mode data, 58, 294

Unconditional unfolding, 299
Under-compression, 54
Unfolding, 153, 489, 491

analyzing asymmetry, 503
conditional, 300
external, 335
ideal-point model, 295
internal, 335
ordinal-interval approach, 318
ordinal-ratio approach, 317
unconditional, 299
vector model, 336
vector-ideal point model (Vipscal),

341
weighted, 342

Unidimensional scaling, 278
circular, 240
dynamic programming strategy, 280
local pairwise interchange strategy

(LOPI), 280
Unidimensional triple, 384

Unit ball for Minkowski metrics, 370

Variation coefficient, 327
Varimax rotation, 105, 161
v-data, 393, 395, 400

and dissimilarities, 398
built-in restrictions, 407

Vector, 138
Abelian space, 414
and points, 390
configuration, 391–393
length of, 390
linear dependency, 152
norm, 143
normal, 143
orthogonal, 142
properties of norms, 143
space, 390, 414
unit, 143
weights, 466

Vector model, 393
appropriateness of, 395, 397
for unfolding, 336
interpretation of properties, 400

Vector-ideal point model for unfolding
(Vipscal), 341

Vipscal (vector-ideal point model for
unfolding), 341

Ways of data, 58
Weakly constrained MDS, 237
Weber–Fechner law, 374
Weighted Euclidean distance, 458, 474,

482
Weighted unfolding, 342
Wombats, 554
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